aboutsummaryrefslogtreecommitdiff
path: root/src
diff options
context:
space:
mode:
Diffstat (limited to 'src')
-rw-r--r--src/ChangeLog6
-rw-r--r--src/algebra/Makefile.in4
-rw-r--r--src/algebra/Makefile.pamphlet4
-rw-r--r--src/algebra/exposed.lsp.pamphlet1
-rw-r--r--src/algebra/syntax.spad.pamphlet170
-rw-r--r--src/share/algebra/browse.daase1572
-rw-r--r--src/share/algebra/category.daase2099
-rw-r--r--src/share/algebra/compress.daase1320
-rw-r--r--src/share/algebra/interp.daase9386
-rw-r--r--src/share/algebra/operation.daase28491
10 files changed, 21574 insertions, 21479 deletions
diff --git a/src/ChangeLog b/src/ChangeLog
index 9428a5b5..c14a761d 100644
--- a/src/ChangeLog
+++ b/src/ChangeLog
@@ -1,3 +1,9 @@
+2009-11-17 Gabriel Dos Reis <gdr@cs.tamu.edu>
+
+ * algebra/syntax.spad.pamphlet (StepAst): New.
+ (SpadAstExports): Add case for StepAst.
+ (SpadAst): Implement.
+
2009-11-09 Gabriel Dos Reis <gdr@cs.tamu.edu>
* interp/i-syscmd.boot (reportOpsFromUnitDirectly): Fix thinko.
diff --git a/src/algebra/Makefile.in b/src/algebra/Makefile.in
index 1d773d79..3299a58d 100644
--- a/src/algebra/Makefile.in
+++ b/src/algebra/Makefile.in
@@ -880,7 +880,7 @@ axiom_algebra_layer_user = \
LETAST SUCHAST RDUCEAST COLONAST ADDAST CAPSLAST \
CASEAST HASAST ISAST CATAST WHEREAST COMMAAST \
QQUTAST DEFAST MACROAST SPADXPT SPADAST PARAMAST \
- INBFILE OUTBFILE IOBFILE RGBCMDL RGBCSPC \
+ INBFILE OUTBFILE IOBFILE RGBCMDL RGBCSPC STEPAST \
CTOR IP4ADDR NETCLT INETCLTS \
FMC FMFUN FORTFN FVC FVFUN ASP34 \
ASP1 ASP10 ASP24 ASP4 ASP50 ASP6 \
@@ -911,6 +911,8 @@ $(OUT)/IFAST.$(FASLEXT): $(OUT)/SPADXPT.$(FASLEXT)
$(OUT)/RPTAST.$(FASLEXT): $(OUT)/SPADXPT.$(FASLEXT)
$(OUT)/WHILEAST.$(FASLEXT): $(OUT)/SPADXPT.$(FASLEXT)
$(OUT)/INAST.$(FASLEXT): $(OUT)/SPADXPT.$(FASLEXT)
+$(OUT)/STEPAST.$(FASLEXT): $(OUT)/SPADXPT.$(FASLEXT) \
+ $(OUT)/IDENT.$(FASLEXT) $(OUT)/MAYBE.$(FASLEXT)
$(OUT)/CLLCTAST.$(FASLEXT): $(OUT)/SPADXPT.$(FASLEXT)
$(OUT)/LSTAST.$(FASLEXT): $(OUT)/SPADXPT.$(FASLEXT)
$(OUT)/EXITAST.$(FASLEXT): $(OUT)/SPADXPT.$(FASLEXT)
diff --git a/src/algebra/Makefile.pamphlet b/src/algebra/Makefile.pamphlet
index f4338dfd..1c2c56e8 100644
--- a/src/algebra/Makefile.pamphlet
+++ b/src/algebra/Makefile.pamphlet
@@ -959,7 +959,7 @@ axiom_algebra_layer_user = \
LETAST SUCHAST RDUCEAST COLONAST ADDAST CAPSLAST \
CASEAST HASAST ISAST CATAST WHEREAST COMMAAST \
QQUTAST DEFAST MACROAST SPADXPT SPADAST PARAMAST \
- INBFILE OUTBFILE IOBFILE RGBCMDL RGBCSPC \
+ INBFILE OUTBFILE IOBFILE RGBCMDL RGBCSPC STEPAST \
CTOR IP4ADDR NETCLT INETCLTS \
FMC FMFUN FORTFN FVC FVFUN ASP34 \
ASP1 ASP10 ASP24 ASP4 ASP50 ASP6 \
@@ -990,6 +990,8 @@ $(OUT)/IFAST.$(FASLEXT): $(OUT)/SPADXPT.$(FASLEXT)
$(OUT)/RPTAST.$(FASLEXT): $(OUT)/SPADXPT.$(FASLEXT)
$(OUT)/WHILEAST.$(FASLEXT): $(OUT)/SPADXPT.$(FASLEXT)
$(OUT)/INAST.$(FASLEXT): $(OUT)/SPADXPT.$(FASLEXT)
+$(OUT)/STEPAST.$(FASLEXT): $(OUT)/SPADXPT.$(FASLEXT) \
+ $(OUT)/IDENT.$(FASLEXT) $(OUT)/MAYBE.$(FASLEXT)
$(OUT)/CLLCTAST.$(FASLEXT): $(OUT)/SPADXPT.$(FASLEXT)
$(OUT)/LSTAST.$(FASLEXT): $(OUT)/SPADXPT.$(FASLEXT)
$(OUT)/EXITAST.$(FASLEXT): $(OUT)/SPADXPT.$(FASLEXT)
diff --git a/src/algebra/exposed.lsp.pamphlet b/src/algebra/exposed.lsp.pamphlet
index 25bf5eef..075a425c 100644
--- a/src/algebra/exposed.lsp.pamphlet
+++ b/src/algebra/exposed.lsp.pamphlet
@@ -403,6 +403,7 @@
(|SquareFreeRegularTriangularSetGcdPackage| . SFRGCD)
(|SquareFreeQuasiComponentPackage| . SFQCMPK)
(|Stack| . STACK)
+ (|StepAst| . STEPAST)
(|Stream| . STREAM)
(|StreamFunctions1| . STREAM1)
(|StreamFunctions2| . STREAM2)
diff --git a/src/algebra/syntax.spad.pamphlet b/src/algebra/syntax.spad.pamphlet
index 924767d3..683115df 100644
--- a/src/algebra/syntax.spad.pamphlet
+++ b/src/algebra/syntax.spad.pamphlet
@@ -341,172 +341,179 @@ SpadSyntaxCategory(): Category == AbstractSyntaxCategory
++ Description: This category describes the exported
++ signatures of the SpadAst domain.
SpadAstExports(): Category == Join(SpadSyntaxCategory, UnionType) with
- case: (%, [|ImportAst()|]) -> Boolean
+ case: (%, [|ImportAst|]) -> Boolean
++ s case ImportAst holds if `s' represents an `import' statement.
- autoCoerce: % -> ImportAst()
+ autoCoerce: % -> ImportAst
++ autoCoerce(s) returns the ImportAst view of `s'. Left at the
++ discretion of the compiler.
- case: (%, [|DefinitionAst()|]) -> Boolean
+ case: (%, [|DefinitionAst|]) -> Boolean
++ s case DefinitionAst holds if `s' represents a definition.
autoCoerce: % -> DefinitionAst()
++ autoCoerce(s) returns the DefinitionAst view of `s'. Left at the
++ discretion of the compiler.
- case: (%, [|MacroAst()|]) -> Boolean
+ case: (%, [|MacroAst|]) -> Boolean
++ s case MacroAst holds if `s' represents a macro definition.
- autoCoerce: % -> MacroAst()
+ autoCoerce: % -> MacroAst
++ autoCoerce(s) returns the MacroAst view of `s'. Left at the
++ discretion of the compiler.
- case: (%, [|WhereAst()|]) -> Boolean
+ case: (%, [|WhereAst|]) -> Boolean
++ s case WhereAst holds if `s' represents an expression with
++ local definitions.
- autoCoerce: % -> WhereAst()
+ autoCoerce: % -> WhereAst
++ autoCoerce(s) returns the WhereAst view of `s'. Left at the
++ discretion of the compiler.
- case: (%, [|CategoryAst()|]) -> Boolean
+ case: (%, [|CategoryAst|]) -> Boolean
++ s case CategoryAst holds if `s' represents an unnamed category.
- autoCoerce: % -> CategoryAst()
+ autoCoerce: % -> CategoryAst
++ autoCoerce(s) returns the CategoryAst view of `s'. Left at the
++ discretion of the compiler.
- case: (%, [|CapsuleAst()|]) -> Boolean
+ case: (%, [|CapsuleAst|]) -> Boolean
++ s case CapsuleAst holds if `s' represents a domain capsule.
- autoCoerce: % -> CapsuleAst()
+ autoCoerce: % -> CapsuleAst
++ autoCoerce(s) returns the CapsuleAst view of `s'. Left at the
++ discretion of the compiler.
- case: (%, [|SignatureAst()|]) -> Boolean
+ case: (%, [|SignatureAst|]) -> Boolean
++ s case SignatureAst holds if `s' represents a signature export.
autoCoerce: % -> SignatureAst()
++ autoCoerce(s) returns the SignatureAst view of `s'. Left at the
++ discretion of the compiler.
- case: (%, [|AttributeAst()|]) -> Boolean
+ case: (%, [|AttributeAst|]) -> Boolean
++ s case AttributeAst holds if `s' represents an attribute.
autoCoerce: % -> AttributeAst()
++ autoCoerce(s) returns the AttributeAst view of `s'. Left at the
++ discretion of the compiler.
- case: (%, [|MappingAst()|]) -> Boolean
+ case: (%, [|MappingAst|]) -> Boolean
++ s case MappingAst holds if `s' represents a mapping type.
- autoCoerce: % -> MappingAst()
+ autoCoerce: % -> MappingAst
++ autoCoerce(s) returns the MappingAst view of `s'. Left at the
++ discretion of the compiler.
- case: (%, [|IfAst()|]) -> Boolean
+ case: (%, [|IfAst|]) -> Boolean
++ s case IfAst holds if `s' represents an if-statement.
- autoCoerce: % -> IfAst()
+ autoCoerce: % -> IfAst
++ autoCoerce(s) returns the IfAst view of `s'. Left at the
++ discretion of the compiler.
- case: (%, [|RepeatAst()|]) -> Boolean
+ case: (%, [|RepeatAst|]) -> Boolean
++ s case RepeatAst holds if `s' represents an repeat-loop.
- autoCoerce: % -> RepeatAst()
+ autoCoerce: % -> RepeatAst
++ autoCoerce(s) returns the RepeatAst view of `s'. Left at the
++ discretion of the compiler.
- case: (%, [|WhileAst()|]) -> Boolean
+ case: (%, [|WhileAst|]) -> Boolean
++ s case WhileAst holds if `s' represents a while-iterator
- autoCoerce: % -> WhileAst()
+ autoCoerce: % -> WhileAst
++ autoCoerce(s) returns the WhileAst view of `s'. Left at the
++ discretion of the compiler.
- case: (%, [|InAst()|]) -> Boolean
+ case: (%, [|InAst|]) -> Boolean
++ s case InAst holds if `s' represents a in-iterator
- autoCoerce: % -> InAst()
+ autoCoerce: % -> InAst
++ autoCoerce(s) returns the InAst view of `s'. Left at the
++ discretion of the compiler.
- case: (%, [|CollectAst()|]) -> Boolean
+ case: (%, [|StepAst|]) -> Boolean
+ ++ \spad{s case StepAst} holds if \spad{s} represents an
+ ++ arithmetic progression iterator.
+ autoCoerce: % -> StepAst
+ ++ \spad{autoCoerce(s)} returns the InAst view of \spad{s}. Left
+ ++ at the discretion of the compiler.
+
+ case: (%, [|CollectAst|]) -> Boolean
++ s case CollectAst holds if `s' represents a list-comprehension.
- autoCoerce: % -> CollectAst()
+ autoCoerce: % -> CollectAst
++ autoCoerce(s) returns the CollectAst view of `s'. Left at the
++ discretion of the compiler.
- case: (%, [|ConstructAst()|]) -> Boolean
+ case: (%, [|ConstructAst|]) -> Boolean
++ s case ConstructAst holds if `s' represents a list-expression.
- autoCoerce: % -> ConstructAst()
+ autoCoerce: % -> ConstructAst
++ autoCoerce(s) returns the ConstructAst view of `s'. Left at the
++ discretion of the compiler.
- case: (%, [|ExitAst()|]) -> Boolean
+ case: (%, [|ExitAst|]) -> Boolean
++ s case ExitAst holds if `s' represents an exit-expression.
- autoCoerce: % -> ExitAst()
+ autoCoerce: % -> ExitAst
++ autoCoerce(s) returns the ExitAst view of `s'. Left at the
++ discretion of the compiler.
- case: (%, [|ReturnAst()|]) -> Boolean
+ case: (%, [|ReturnAst|]) -> Boolean
++ s case ReturnAst holds if `s' represents a return-statement.
- autoCoerce: % -> ReturnAst()
+ autoCoerce: % -> ReturnAst
++ autoCoerce(s) returns the ReturnAst view of `s'. Left at the
++ discretion of the compiler.
- case: (%, [|CoerceAst()|]) -> Boolean
+ case: (%, [|CoerceAst|]) -> Boolean
++ s case ReturnAst holds if `s' represents a coerce-expression.
- autoCoerce: % -> CoerceAst()
+ autoCoerce: % -> CoerceAst
++ autoCoerce(s) returns the CoerceAst view of `s'. Left at the
++ discretion of the compiler.
- case: (%, [|PretendAst()|]) -> Boolean
+ case: (%, [|PretendAst|]) -> Boolean
++ s case PretendAst holds if `s' represents a pretend-expression.
- autoCoerce: % -> PretendAst()
+ autoCoerce: % -> PretendAst
++ autoCoerce(s) returns the PretendAst view of `s'. Left at the
++ discretion of the compiler.
- case: (%, [|RestrictAst()|]) -> Boolean
+ case: (%, [|RestrictAst|]) -> Boolean
++ s case RestrictAst holds if `s' represents a restrict-expression.
- autoCoerce: % -> RestrictAst()
+ autoCoerce: % -> RestrictAst
++ autoCoerce(s) returns the RestrictAst view of `s'. Left at the
++ discretion of the compiler.
- case: (%, [|SegmentAst()|]) -> Boolean
+ case: (%, [|SegmentAst|]) -> Boolean
++ s case SegmentAst holds if `s' represents a segment-expression.
- autoCoerce: % -> SegmentAst()
+ autoCoerce: % -> SegmentAst
++ autoCoerce(s) returns the SegmentAst view of `s'. Left at the
++ discretion of the compiler.
- case: (%, [|SequenceAst()|]) -> Boolean
+ case: (%, [|SequenceAst|]) -> Boolean
++ s case SequenceAst holds if `s' represents a sequence-of-statements.
- autoCoerce: % -> SequenceAst()
+ autoCoerce: % -> SequenceAst
++ autoCoerce(s) returns the SequenceAst view of `s'. Left at the
++ discretion of the compiler.
- case: (%, [|LetAst()|]) -> Boolean
+ case: (%, [|LetAst|]) -> Boolean
++ s case LetAst holds if `s' represents an assignment-expression.
- autoCoerce: % -> LetAst()
+ autoCoerce: % -> LetAst
++ autoCoerce(s) returns the LetAst view of `s'. Left at the
++ discretion of the compiler.
- case: (%, [|SuchThatAst()|]) -> Boolean
+ case: (%, [|SuchThatAst|]) -> Boolean
++ s case SuchThatAst holds if `s' represents a qualified-expression.
- autoCoerce: % -> SuchThatAst()
+ autoCoerce: % -> SuchThatAst
++ autoCoerce(s) returns the SuchThatAst view of `s'. Left at the
++ discretion of the compiler.
- case: (%, [|ColonAst()|]) -> Boolean
+ case: (%, [|ColonAst|]) -> Boolean
++ s case ColonAst holds if `s' represents a colon-expression.
- autoCoerce: % -> ColonAst()
+ autoCoerce: % -> ColonAst
++ autoCoerce(s) returns the ColoonAst view of `s'. Left at the
++ discretion of the compiler.
- case: (%, [|CaseAst()|]) -> Boolean
+ case: (%, [|CaseAst|]) -> Boolean
++ s case CaseAst holds if `s' represents a case-expression.
- autoCoerce: % -> CaseAst()
+ autoCoerce: % -> CaseAst
++ autoCoerce(s) returns the CaseAst view of `s'. Left at the
++ discretion of the compiler.
- case: (%, [|HasAst()|]) -> Boolean
+ case: (%, [|HasAst|]) -> Boolean
++ s case HasAst holds if `s' represents a has-expression.
- autoCoerce: % -> HasAst()
+ autoCoerce: % -> HasAst
++ autoCoerce(s) returns the HasAst view of `s'. Left at the
++ discretion of the compiler.
- case: (%, [|IsAst()|]) -> Boolean
+ case: (%, [|IsAst|]) -> Boolean
++ s case IsAst holds if `s' represents an is-expression.
- autoCoerce: % -> IsAst()
+ autoCoerce: % -> IsAst
++ autoCoerce(s) returns the IsAst view of `s'. Left at the
++ discretion of the compiler.
@@ -930,6 +937,58 @@ InAst(): Public == Private where
@
+\subection{The StepAst domain}
+
+<<domain STEPAST StepAst>>=
+++ Author: Gabriel Dos Reis
+++ Date Created: November 16, 2009
+++ Date Last Modified: November 16, 2009
+++ Description:
+++ This domain represents an arithmetic progression iterator syntax.
+)abbrev domain STEPAST StepAst
+StepAst(): Public == Private where
+ Public == SpadSyntaxCategory with
+ iterationVar: % -> Identifier
+ ++ \spad{iterationVar(i)} returns the name of the iterating
+ ++ variable of the arithmetic progression iterator \spad{i}.
+ lowerBound: % -> SpadAst
+ ++ \spad{lowerBound(i)} returns the lower bound on the values
+ ++ assumed by the iteration variable.
+ upperBound: % -> Maybe SpadAst
+ ++ If the set of values assumed by the iteration variable is
+ ++ bounded from above, \spad{upperBound(i)} returns the
+ ++ upper bound. Otherwise, its returns \spad{nothing}.
+ step: % -> SpadAst
+ ++ \spad{step(i)} returns the Spad AST denoting the step
+ ++ of the arithmetic progression represented by the
+ ++ iterator \spad{i}.
+ Private == add
+ Rep == Pair(Identifier, List SpadAst)
+ import List SpadAst
+ iterationVar x == first(second rep x)::Identifier
+ step x == third second rep x
+ lowerBound x == second second rep x
+ upperBound x ==
+ a := second rep x
+ #a = 3 => nothing$Maybe(SpadAst)
+ just qelt(a, 4)
+ coerce(x: %): OutputForm ==
+ v := iterationVar(x)::OutputForm
+ i := step(x)::OutputForm
+ l := lowerBound(x)::OutputForm
+ u := upperBound x
+ u case nothing =>
+ elt('StepAst::OutputForm,
+ ['iterationVar::OutputForm = v,
+ 'step::OutputForm = i, 'lowerBound::OutputForm = l])$OutputForm
+ elt('StepAst::OutputForm,
+ ['iterationVar::OutputForm = v, 'step::OutputForm = i,
+ 'lowerBound::OutputForm = l,
+ 'upperBound::OutputForm = (u@SpadAst)::OutputForm])$OutputForm
+
+@
+
+
\subsection{The CollectAst domain}
<<domain CLLCTAST CollectAst>>=
@@ -1651,6 +1710,9 @@ SpadAst(): SpadAstExports() == add
x case InAst == isAst(x,'IN)
autoCoerce(x: %): InAst == x : InAst
+ x case StepAst == isAst(x,'STEP)
+ autoCoerce(x: %): StepAst == x : StepAst
+
x case CollectAst == isAst(x,'COLLECT)
autoCoerce(x: %): CollectAst == x : CollectAst
@@ -1712,6 +1774,7 @@ SpadAst(): SpadAstExports() == add
op = 'REPEAT => x:RepeatAst::OutputForm
op = 'WHILE => x:WhileAst::OutputForm
op = 'IN => x:InAst::OutputForm
+ op = 'STEP => x:StepAst::OutputForm
op = 'COLLECT => x:CollectAst::OutputForm
op = 'construct => x:ConstructAst::OutputForm
op = 'exit => x:ExitAst::OutputForm
@@ -1804,6 +1867,7 @@ SpadAst(): SpadAstExports() == add
<<domain RPTAST RepeatAst>>
<<domain WHILEAST WhileAst>>
<<domain INAST InAst>>
+<<domain STEPAST StepAst>>
<<domain CLLCTAST CollectAst>>
<<domain LSTAST ConstructAst>>
<<domain EXITAST ExitAst>>
diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase
index ee6ecd1d..0506e175 100644
--- a/src/share/algebra/browse.daase
+++ b/src/share/algebra/browse.daase
@@ -1,12 +1,12 @@
-(2263553 . 3466723534)
+(2264570 . 3467417890)
(-18 A S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
NIL
NIL
(-19 S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
-((-4419 . T) (-4418 . T))
+((-4423 . T) (-4422 . T))
NIL
(-20 S)
((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}")))
@@ -38,7 +38,7 @@ NIL
NIL
(-27)
((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
-((-4410 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T))
+((-4414 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T))
NIL
(-28 S R)
((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
@@ -46,7 +46,7 @@ NIL
NIL
(-29 R)
((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
-((-4415 . T) (-4413 . T) (-4412 . T) ((-4420 "*") . T) (-4411 . T) (-4416 . T) (-4410 . T))
+((-4419 . T) (-4417 . T) (-4416 . T) ((-4424 "*") . T) (-4415 . T) (-4420 . T) (-4414 . T))
NIL
(-30)
((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,x,y,a..b,c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b, c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,x,y,xMin..xMax,yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted.")))
@@ -56,14 +56,14 @@ NIL
((|constructor| (NIL "This domain represents the syntax for an add-expression.")) (|body| (((|SpadAst|) $) "base(\\spad{d}) returns the actual body of the add-domain expression \\spad{`d'}.")) (|base| (((|SpadAst|) $) "\\spad{base(d)} returns the base domain(\\spad{s}) of the add-domain expression.")))
NIL
NIL
-(-32 R -3879)
+(-32 R -3888)
((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p, n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p, x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.")))
NIL
((|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))))
(-33 S)
((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4418)))
+((|HasAttribute| |#1| (QUOTE -4422)))
(-34)
((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects.")))
NIL
@@ -74,7 +74,7 @@ NIL
NIL
(-36 |Key| |Entry|)
((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}.")))
-((-4418 . T) (-4419 . T))
+((-4422 . T) (-4423 . T))
NIL
(-37 S R)
((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")))
@@ -82,17 +82,17 @@ NIL
NIL
(-38 R)
((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")))
-((-4412 . T) (-4413 . T) (-4415 . T))
+((-4416 . T) (-4417 . T) (-4419 . T))
NIL
(-39 UP)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p, [a1,...,an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an.")))
NIL
NIL
-(-40 -3879 UP UPUP -2211)
+(-40 -3888 UP UPUP -3054)
((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}")))
-((-4411 |has| (-410 |#2|) (-365)) (-4416 |has| (-410 |#2|) (-365)) (-4410 |has| (-410 |#2|) (-365)) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T))
-((|HasCategory| (-410 |#2|) (QUOTE (-145))) (|HasCategory| (-410 |#2|) (QUOTE (-147))) (|HasCategory| (-410 |#2|) (QUOTE (-351))) (-2800 (|HasCategory| (-410 |#2|) (QUOTE (-365))) (|HasCategory| (-410 |#2|) (QUOTE (-351)))) (|HasCategory| (-410 |#2|) (QUOTE (-365))) (|HasCategory| (-410 |#2|) (QUOTE (-370))) (-2800 (-12 (|HasCategory| (-410 |#2|) (QUOTE (-233))) (|HasCategory| (-410 |#2|) (QUOTE (-365)))) (|HasCategory| (-410 |#2|) (QUOTE (-351)))) (-2800 (-12 (|HasCategory| (-410 |#2|) (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| (-410 |#2|) (QUOTE (-365)))) (-12 (|HasCategory| (-410 |#2|) (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| (-410 |#2|) (QUOTE (-351))))) (|HasCategory| (-410 |#2|) (LIST (QUOTE -640) (QUOTE (-567)))) (-2800 (|HasCategory| (-410 |#2|) (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| (-410 |#2|) (QUOTE (-365)))) (|HasCategory| (-410 |#2|) (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| (-410 |#2|) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-370))) (-12 (|HasCategory| (-410 |#2|) (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| (-410 |#2|) (QUOTE (-365)))) (-12 (|HasCategory| (-410 |#2|) (QUOTE (-233))) (|HasCategory| (-410 |#2|) (QUOTE (-365)))))
-(-41 R -3879)
+((-4415 |has| (-410 |#2|) (-365)) (-4420 |has| (-410 |#2|) (-365)) (-4414 |has| (-410 |#2|) (-365)) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T))
+((|HasCategory| (-410 |#2|) (QUOTE (-145))) (|HasCategory| (-410 |#2|) (QUOTE (-147))) (|HasCategory| (-410 |#2|) (QUOTE (-351))) (-2811 (|HasCategory| (-410 |#2|) (QUOTE (-365))) (|HasCategory| (-410 |#2|) (QUOTE (-351)))) (|HasCategory| (-410 |#2|) (QUOTE (-365))) (|HasCategory| (-410 |#2|) (QUOTE (-370))) (-2811 (-12 (|HasCategory| (-410 |#2|) (QUOTE (-233))) (|HasCategory| (-410 |#2|) (QUOTE (-365)))) (|HasCategory| (-410 |#2|) (QUOTE (-351)))) (-2811 (-12 (|HasCategory| (-410 |#2|) (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| (-410 |#2|) (QUOTE (-365)))) (-12 (|HasCategory| (-410 |#2|) (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| (-410 |#2|) (QUOTE (-351))))) (|HasCategory| (-410 |#2|) (LIST (QUOTE -640) (QUOTE (-567)))) (-2811 (|HasCategory| (-410 |#2|) (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| (-410 |#2|) (QUOTE (-365)))) (|HasCategory| (-410 |#2|) (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| (-410 |#2|) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-370))) (-12 (|HasCategory| (-410 |#2|) (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| (-410 |#2|) (QUOTE (-365)))) (-12 (|HasCategory| (-410 |#2|) (QUOTE (-233))) (|HasCategory| (-410 |#2|) (QUOTE (-365)))))
+(-41 R -3888)
((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,f,n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f, a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented")))
NIL
((-12 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -433) (|devaluate| |#1|)))))
@@ -106,23 +106,23 @@ NIL
((|HasCategory| |#1| (QUOTE (-308))))
(-44 R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,..,an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{ai * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra.")))
-((-4415 |has| |#1| (-559)) (-4413 . T) (-4412 . T))
+((-4419 |has| |#1| (-559)) (-4417 . T) (-4416 . T))
((|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559))))
(-45 |Key| |Entry|)
((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data.")))
-((-4418 . T) (-4419 . T))
-((-2800 (-12 (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (QUOTE (-851))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1795) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4237) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1795) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4237) (|devaluate| |#2|))))))) (-2800 (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (QUOTE (-851))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (LIST (QUOTE -615) (QUOTE (-539)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-2800 (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (QUOTE (-851))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (QUOTE (-1102))) (|HasCategory| |#2| (QUOTE (-1102)))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (QUOTE (-1102))) (-2800 (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (-2800 (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (QUOTE (-1102))) (|HasCategory| |#2| (QUOTE (-1102)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1795) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4237) (|devaluate| |#2|)))))))
+((-4422 . T) (-4423 . T))
+((-2811 (-12 (|HasCategory| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (QUOTE (-851))) (|HasCategory| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1809) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4236) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1809) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4236) (|devaluate| |#2|))))))) (-2811 (|HasCategory| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (QUOTE (-851))) (|HasCategory| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (LIST (QUOTE -615) (QUOTE (-539)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-2811 (|HasCategory| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (QUOTE (-851))) (|HasCategory| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (QUOTE (-1102))) (|HasCategory| |#2| (QUOTE (-1102)))) (|HasCategory| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (QUOTE (-1102))) (-2811 (|HasCategory| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (-2811 (|HasCategory| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (QUOTE (-1102))) (|HasCategory| |#2| (QUOTE (-1102)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1809) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4236) (|devaluate| |#2|)))))))
(-46 S R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
NIL
((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365))))
(-47 R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
-(((-4420 "*") |has| |#1| (-172)) (-4411 |has| |#1| (-559)) (-4412 . T) (-4413 . T) (-4415 . T))
+(((-4424 "*") |has| |#1| (-172)) (-4415 |has| |#1| (-559)) (-4416 . T) (-4417 . T) (-4419 . T))
NIL
(-48)
((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number.")))
-((-4410 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T))
+((-4414 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T))
((|HasCategory| $ (QUOTE (-1051))) (|HasCategory| $ (LIST (QUOTE -1040) (QUOTE (-567)))))
(-49)
((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function \\spad{`f'}.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(f)} returns the list of parameters bound by \\spad{`f'}.")))
@@ -130,7 +130,7 @@ NIL
NIL
(-50 R |lVar|)
((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}.")))
-((-4415 . T))
+((-4419 . T))
NIL
(-51 S)
((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}.")))
@@ -144,7 +144,7 @@ NIL
((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p, f, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}.")))
NIL
NIL
-(-54 |Base| R -3879)
+(-54 |Base| R -3888)
((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,...,rn], expr, n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,...,rn], expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression.")))
NIL
NIL
@@ -158,7 +158,7 @@ NIL
NIL
(-57 R |Row| |Col|)
((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,a)} assign \\spad{a(i,j)} to \\spad{f(a(i,j))} for all \\spad{i, j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,a,b,r)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} when both \\spad{a(i,j)} and \\spad{b(i,j)} exist; else \\spad{c(i,j) = f(r, b(i,j))} when \\spad{a(i,j)} does not exist; else \\spad{c(i,j) = f(a(i,j),r)} when \\spad{b(i,j)} does not exist; otherwise \\spad{c(i,j) = f(r,r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i, j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = f(a(i,j))} for all \\spad{i, j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,j,v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,i,v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,n,r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays")))
-((-4418 . T) (-4419 . T))
+((-4422 . T) (-4423 . T))
NIL
(-58 A B)
((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")))
@@ -166,65 +166,65 @@ NIL
NIL
(-59 S)
((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}")))
-((-4419 . T) (-4418 . T))
-((-2800 (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2800 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
+((-4423 . T) (-4422 . T))
+((-2811 (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2811 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
(-60 R)
((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}.")))
-((-4418 . T) (-4419 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1102))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))))
-(-61 -1996)
+((-4422 . T) (-4423 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1102))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))))
+(-61 -2007)
((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-62 -1996)
+(-62 -2007)
((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}.")))
NIL
NIL
-(-63 -1996)
+(-63 -2007)
((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-64 -1996)
+(-64 -2007)
((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-65 -1996)
+(-65 -2007)
((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}")))
NIL
NIL
-(-66 -1996)
+(-66 -2007)
((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-67 -1996)
+(-67 -2007)
((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-68 -1996)
+(-68 -2007)
((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-69 -1996)
+(-69 -2007)
((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}.")))
NIL
NIL
-(-70 -1996)
+(-70 -2007)
((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}")))
NIL
NIL
-(-71 -1996)
+(-71 -2007)
((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-72 -1996)
+(-72 -2007)
((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}.")))
NIL
NIL
-(-73 -1996)
+(-73 -2007)
((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}")))
NIL
NIL
-(-74 -1996)
+(-74 -2007)
((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
@@ -236,55 +236,55 @@ NIL
((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-77 -1996)
+(-77 -2007)
((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-78 -1996)
+(-78 -2007)
((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-79 -1996)
+(-79 -2007)
((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-80 -1996)
+(-80 -2007)
((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-81 -1996)
+(-81 -2007)
((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}")))
NIL
NIL
-(-82 -1996)
+(-82 -2007)
((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-83 -1996)
+(-83 -2007)
((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-84 -1996)
+(-84 -2007)
((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-85 -1996)
+(-85 -2007)
((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-86 -1996)
+(-86 -2007)
((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-87 -1996)
+(-87 -2007)
((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-88 -1996)
+(-88 -2007)
((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}")))
NIL
NIL
-(-89 -1996)
+(-89 -2007)
((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
@@ -294,8 +294,8 @@ NIL
((|HasCategory| |#1| (QUOTE (-365))))
(-91 S)
((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,y,...,z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
-((-4418 . T) (-4419 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1102))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))))
+((-4422 . T) (-4423 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1102))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))))
(-92 S)
((|constructor| (NIL "This is the category of Spad abstract syntax trees.")))
NIL
@@ -318,15 +318,15 @@ NIL
NIL
(-97)
((|constructor| (NIL "\\axiomType{AttributeButtons} implements a database and associated adjustment mechanisms for a set of attributes. \\blankline For ODEs these attributes are \"stiffness\",{} \"stability\" (\\spadignore{i.e.} how much affect the cosine or sine component of the solution has on the stability of the result),{} \"accuracy\" and \"expense\" (\\spadignore{i.e.} how expensive is the evaluation of the ODE). All these have bearing on the cost of calculating the solution given that reducing the step-length to achieve greater accuracy requires considerable number of evaluations and calculations. \\blankline The effect of each of these attributes can be altered by increasing or decreasing the button value. \\blankline For Integration there is a button for increasing and decreasing the preset number of function evaluations for each method. This is automatically used by ANNA when a method fails due to insufficient workspace or where the limit of function evaluations has been reached before the required accuracy is achieved. \\blankline")) (|setButtonValue| (((|Float|) (|String|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}routineName,{}\\spad{n})} sets the value of the button of attribute \\spad{attributeName} to routine \\spad{routineName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}\\spad{n})} sets the value of all buttons of attribute \\spad{attributeName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|setAttributeButtonStep| (((|Float|) (|Float|)) "\\axiom{setAttributeButtonStep(\\spad{n})} sets the value of the steps for increasing and decreasing the button values. \\axiom{\\spad{n}} must be greater than 0 and less than 1. The preset value is 0.5.")) (|resetAttributeButtons| (((|Void|)) "\\axiom{resetAttributeButtons()} resets the Attribute buttons to a neutral level.")) (|getButtonValue| (((|Float|) (|String|) (|String|)) "\\axiom{getButtonValue(routineName,{}attributeName)} returns the current value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|decrease| (((|Float|) (|String|)) "\\axiom{decrease(attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{decrease(routineName,{}attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|increase| (((|Float|) (|String|)) "\\axiom{increase(attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{increase(routineName,{}attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")))
-((-4418 . T))
+((-4422 . T))
NIL
(-98)
((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|shallowlyMutable| ((|attribute|) "\\spad{shallowlyMutable} is \\spad{true} if its values have immediate components that are updateable (mutable). Note: the properties of any component domain are irrevelant to the \\spad{shallowlyMutable} proper.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements.")))
-((-4418 . T) ((-4420 "*") . T) (-4419 . T) (-4415 . T) (-4413 . T) (-4412 . T) (-4411 . T) (-4416 . T) (-4410 . T) (-4409 . T) (-4408 . T) (-4407 . T) (-4406 . T) (-4414 . T) (-4417 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4405 . T))
+((-4422 . T) ((-4424 "*") . T) (-4423 . T) (-4419 . T) (-4417 . T) (-4416 . T) (-4415 . T) (-4420 . T) (-4414 . T) (-4413 . T) (-4412 . T) (-4411 . T) (-4410 . T) (-4418 . T) (-4421 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4409 . T))
NIL
(-99 R)
((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f, g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}.")))
-((-4415 . T))
+((-4419 . T))
NIL
(-100 R UP)
((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a, [b1,...,bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,...,bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a, b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{b}.")))
@@ -342,15 +342,15 @@ NIL
NIL
(-103 S)
((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,pl,f)} and \\spad{mapDown!(l,pr,f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,t1,f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t, ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n, s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}.")))
-((-4418 . T) (-4419 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1102))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))))
+((-4422 . T) (-4423 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1102))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))))
(-104 R UP M |Row| |Col|)
((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}.")))
NIL
-((|HasAttribute| |#1| (QUOTE (-4420 "*"))))
+((|HasAttribute| |#1| (QUOTE (-4424 "*"))))
(-105)
((|bfEntry| (((|Record| (|:| |zeros| (|Stream| (|DoubleFloat|))) (|:| |ones| (|Stream| (|DoubleFloat|))) (|:| |singularities| (|Stream| (|DoubleFloat|)))) (|Symbol|)) "\\spad{bfEntry(k)} returns the entry in the \\axiomType{BasicFunctions} table corresponding to \\spad{k}")) (|bfKeys| (((|List| (|Symbol|))) "\\spad{bfKeys()} returns the names of each function in the \\axiomType{BasicFunctions} table")))
-((-4418 . T))
+((-4422 . T))
NIL
(-106 A S)
((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed.")))
@@ -358,23 +358,23 @@ NIL
NIL
(-107 S)
((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed.")))
-((-4419 . T))
+((-4423 . T))
NIL
(-108)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion.")))
-((-4410 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T))
-((|HasCategory| (-567) (QUOTE (-911))) (|HasCategory| (-567) (LIST (QUOTE -1040) (QUOTE (-1178)))) (|HasCategory| (-567) (QUOTE (-145))) (|HasCategory| (-567) (QUOTE (-147))) (|HasCategory| (-567) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-567) (QUOTE (-1024))) (|HasCategory| (-567) (QUOTE (-821))) (-2800 (|HasCategory| (-567) (QUOTE (-821))) (|HasCategory| (-567) (QUOTE (-851)))) (|HasCategory| (-567) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| (-567) (QUOTE (-1153))) (|HasCategory| (-567) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| (-567) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| (-567) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| (-567) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| (-567) (QUOTE (-233))) (|HasCategory| (-567) (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| (-567) (LIST (QUOTE -517) (QUOTE (-1178)) (QUOTE (-567)))) (|HasCategory| (-567) (LIST (QUOTE -310) (QUOTE (-567)))) (|HasCategory| (-567) (LIST (QUOTE -287) (QUOTE (-567)) (QUOTE (-567)))) (|HasCategory| (-567) (QUOTE (-308))) (|HasCategory| (-567) (QUOTE (-548))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| (-567) (LIST (QUOTE -640) (QUOTE (-567)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-567) (QUOTE (-911)))) (-2800 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-567) (QUOTE (-911)))) (|HasCategory| (-567) (QUOTE (-145)))))
+((-4414 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T))
+((|HasCategory| (-567) (QUOTE (-911))) (|HasCategory| (-567) (LIST (QUOTE -1040) (QUOTE (-1179)))) (|HasCategory| (-567) (QUOTE (-145))) (|HasCategory| (-567) (QUOTE (-147))) (|HasCategory| (-567) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-567) (QUOTE (-1024))) (|HasCategory| (-567) (QUOTE (-821))) (-2811 (|HasCategory| (-567) (QUOTE (-821))) (|HasCategory| (-567) (QUOTE (-851)))) (|HasCategory| (-567) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| (-567) (QUOTE (-1154))) (|HasCategory| (-567) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| (-567) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| (-567) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| (-567) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| (-567) (QUOTE (-233))) (|HasCategory| (-567) (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| (-567) (LIST (QUOTE -517) (QUOTE (-1179)) (QUOTE (-567)))) (|HasCategory| (-567) (LIST (QUOTE -310) (QUOTE (-567)))) (|HasCategory| (-567) (LIST (QUOTE -287) (QUOTE (-567)) (QUOTE (-567)))) (|HasCategory| (-567) (QUOTE (-308))) (|HasCategory| (-567) (QUOTE (-548))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| (-567) (LIST (QUOTE -640) (QUOTE (-567)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-567) (QUOTE (-911)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-567) (QUOTE (-911)))) (|HasCategory| (-567) (QUOTE (-145)))))
(-109)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Identifier|) (|List| (|Property|))) "\\spad{binding(n,props)} constructs a binding with name \\spad{`n'} and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Identifier|) $) "\\spad{name(b)} returns the name of binding \\spad{b}")))
NIL
NIL
(-110)
((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,b)} creates bits with \\spad{n} values of \\spad{b}")))
-((-4419 . T) (-4418 . T))
+((-4423 . T) (-4422 . T))
((-12 (|HasCategory| (-112) (QUOTE (-1102))) (|HasCategory| (-112) (LIST (QUOTE -310) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-112) (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| (-112) (QUOTE (-1102))) (|HasCategory| (-112) (LIST (QUOTE -614) (QUOTE (-863)))))
(-111 R S)
((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}")))
-((-4413 . T) (-4412 . T))
+((-4417 . T) (-4416 . T))
NIL
(-112)
((|constructor| (NIL "\\indented{1}{\\spadtype{Boolean} is the elementary logic with 2 values:} \\spad{true} and \\spad{false}")) (|test| (($ $) "\\spad{test(b)} returns \\spad{b} and is provided for compatibility with the new compiler.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical exclusive {\\em or} of Boolean \\spad{a} and \\spad{b}.")))
@@ -388,22 +388,22 @@ NIL
((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op, l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|Identifier|) (|None|)) "\\spad{setProperty(op, p, v)} attaches property \\spad{p} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|) (|None|)) "\\spad{setProperty(op, s, v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Maybe| (|None|)) $ (|Identifier|)) "\\spad{property(op, p)} returns the value of property \\spad{p} if it is attached to \\spad{op},{} otherwise \\spad{nothing}.") (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op, s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|Identifier|)) "\\spad{deleteProperty!(op, p)} unattaches property \\spad{p} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|)) "\\spad{deleteProperty!(op, s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|Identifier|)) "\\spad{assert(op, p)} attaches property \\spad{p} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|Identifier|)) "\\spad{has?(op,p)} tests if property \\spad{s} is attached to \\spad{op}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op, foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,...,an)} gets converted to InputForm as \\spad{f(a1,...,an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op, foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op, foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,...,an)} gets converted to OutputForm as \\spad{f(a1,...,an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op, foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1, op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op, foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1, op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op, n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|operator| (($ (|Symbol|) (|Arity|)) "\\spad{operator(f, a)} makes \\spad{f} into an operator of arity \\spad{a}.") (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f, n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}.")))
NIL
NIL
-(-115 -3879 UP)
+(-115 -3888 UP)
((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots.")))
NIL
NIL
(-116 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
-((-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T))
+((-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T))
NIL
(-117 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
-((-4410 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T))
-((|HasCategory| (-116 |#1|) (QUOTE (-911))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1040) (QUOTE (-1178)))) (|HasCategory| (-116 |#1|) (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-147))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-116 |#1|) (QUOTE (-1024))) (|HasCategory| (-116 |#1|) (QUOTE (-821))) (-2800 (|HasCategory| (-116 |#1|) (QUOTE (-821))) (|HasCategory| (-116 |#1|) (QUOTE (-851)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| (-116 |#1|) (QUOTE (-1153))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| (-116 |#1|) (QUOTE (-233))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -517) (QUOTE (-1178)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -310) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -287) (LIST (QUOTE -116) (|devaluate| |#1|)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (QUOTE (-308))) (|HasCategory| (-116 |#1|) (QUOTE (-548))) (|HasCategory| (-116 |#1|) (QUOTE (-851))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-911)))) (-2800 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-911)))) (|HasCategory| (-116 |#1|) (QUOTE (-145)))))
+((-4414 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T))
+((|HasCategory| (-116 |#1|) (QUOTE (-911))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1040) (QUOTE (-1179)))) (|HasCategory| (-116 |#1|) (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-147))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-116 |#1|) (QUOTE (-1024))) (|HasCategory| (-116 |#1|) (QUOTE (-821))) (-2811 (|HasCategory| (-116 |#1|) (QUOTE (-821))) (|HasCategory| (-116 |#1|) (QUOTE (-851)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| (-116 |#1|) (QUOTE (-1154))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| (-116 |#1|) (QUOTE (-233))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -517) (QUOTE (-1179)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -310) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -287) (LIST (QUOTE -116) (|devaluate| |#1|)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (QUOTE (-308))) (|HasCategory| (-116 |#1|) (QUOTE (-548))) (|HasCategory| (-116 |#1|) (QUOTE (-851))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-911)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-911)))) (|HasCategory| (-116 |#1|) (QUOTE (-145)))))
(-118 A S)
((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4419)))
+((|HasAttribute| |#1| (QUOTE -4423)))
(-119 S)
((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
NIL
@@ -414,15 +414,15 @@ NIL
NIL
(-121 S)
((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented")))
-((-4418 . T) (-4419 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1102))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))))
+((-4422 . T) (-4423 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1102))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))))
(-122 S)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")))
NIL
NIL
(-123)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")))
-((-4419 . T) (-4418 . T))
+((-4423 . T) (-4422 . T))
NIL
(-124 A S)
((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components")))
@@ -430,20 +430,20 @@ NIL
NIL
(-125 S)
((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components")))
-((-4418 . T) (-4419 . T))
+((-4422 . T) (-4423 . T))
NIL
(-126 S)
((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes.")))
-((-4418 . T) (-4419 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1102))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))))
+((-4422 . T) (-4423 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1102))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))))
(-127 S)
((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,v,r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty.")))
-((-4418 . T) (-4419 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1102))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))))
+((-4422 . T) (-4423 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1102))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))))
(-128)
((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity \\spad{`n'}. The array can then store up to \\spad{`n'} bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|finiteAggregate| ((|attribute|) "A ByteBuffer object is a finite aggregate")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,n)} sets the number of active bytes in the `buf'. Error if \\spad{`n'} is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0.")))
-((-4419 . T) (-4418 . T))
-((-2800 (-12 (|HasCategory| (-129) (QUOTE (-851))) (|HasCategory| (-129) (LIST (QUOTE -310) (QUOTE (-129))))) (-12 (|HasCategory| (-129) (QUOTE (-1102))) (|HasCategory| (-129) (LIST (QUOTE -310) (QUOTE (-129)))))) (-2800 (-12 (|HasCategory| (-129) (QUOTE (-1102))) (|HasCategory| (-129) (LIST (QUOTE -310) (QUOTE (-129))))) (|HasCategory| (-129) (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-129) (LIST (QUOTE -615) (QUOTE (-539)))) (-2800 (|HasCategory| (-129) (QUOTE (-851))) (|HasCategory| (-129) (QUOTE (-1102)))) (|HasCategory| (-129) (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| (-129) (QUOTE (-1102))) (|HasCategory| (-129) (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| (-129) (QUOTE (-1102))) (|HasCategory| (-129) (LIST (QUOTE -310) (QUOTE (-129))))))
+((-4423 . T) (-4422 . T))
+((-2811 (-12 (|HasCategory| (-129) (QUOTE (-851))) (|HasCategory| (-129) (LIST (QUOTE -310) (QUOTE (-129))))) (-12 (|HasCategory| (-129) (QUOTE (-1102))) (|HasCategory| (-129) (LIST (QUOTE -310) (QUOTE (-129)))))) (-2811 (-12 (|HasCategory| (-129) (QUOTE (-1102))) (|HasCategory| (-129) (LIST (QUOTE -310) (QUOTE (-129))))) (|HasCategory| (-129) (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-129) (LIST (QUOTE -615) (QUOTE (-539)))) (-2811 (|HasCategory| (-129) (QUOTE (-851))) (|HasCategory| (-129) (QUOTE (-1102)))) (|HasCategory| (-129) (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| (-129) (QUOTE (-1102))) (|HasCategory| (-129) (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| (-129) (QUOTE (-1102))) (|HasCategory| (-129) (LIST (QUOTE -310) (QUOTE (-129))))))
(-129)
((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value \\spad{`v'} into the Byte algebra. \\spad{`v'} must be non-negative and less than 256.")))
NIL
@@ -466,13 +466,13 @@ NIL
NIL
(-134)
((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0, 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative.")))
-(((-4420 "*") . T))
+(((-4424 "*") . T))
NIL
-(-135 |minix| -2612 S T$)
+(-135 |minix| -2622 S T$)
((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}.")))
NIL
NIL
-(-136 |minix| -2612 R)
+(-136 |minix| -2622 R)
((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,...idim) = +1/0/-1} if \\spad{i1,...,idim} is an even/is nota /is an odd permutation of \\spad{minix,...,minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,[i1,...,idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t, [4,1,2,3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,i,j,k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,i,j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,2,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(i,k,j,l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,j,k,i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,i,j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,1,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,j) = sum(h=1..dim,t(h,i,h,j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,i,s,j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,2,t,1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,j,k,l) = sum(h=1..dim,s(i,h,j)*t(h,k,l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,rank t, s, 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N, t[i1,..,iN,k]*s[k,j1,..,jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = s(i,j)*t(k,l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,[i1,...,iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k,l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,i,j)} gives a component of a rank 2 tensor.") ((|#3| $ (|Integer|)) "\\spad{elt(t,i)} gives a component of a rank 1 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,...,t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,...,r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor.")))
NIL
NIL
@@ -494,8 +494,8 @@ NIL
NIL
(-141)
((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}.")))
-((-4418 . T) (-4408 . T) (-4419 . T))
-((-2800 (-12 (|HasCategory| (-144) (QUOTE (-370))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1102))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-144) (QUOTE (-370))) (|HasCategory| (-144) (QUOTE (-851))) (|HasCategory| (-144) (QUOTE (-1102))) (|HasCategory| (-144) (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| (-144) (QUOTE (-1102))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144))))))
+((-4422 . T) (-4412 . T) (-4423 . T))
+((-2811 (-12 (|HasCategory| (-144) (QUOTE (-370))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1102))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-144) (QUOTE (-370))) (|HasCategory| (-144) (QUOTE (-851))) (|HasCategory| (-144) (QUOTE (-1102))) (|HasCategory| (-144) (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| (-144) (QUOTE (-1102))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144))))))
(-142 R Q A)
((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}.")))
NIL
@@ -510,7 +510,7 @@ NIL
NIL
(-145)
((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring.")))
-((-4415 . T))
+((-4419 . T))
NIL
(-146 R)
((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial \\spad{'x},{} then it returns the characteristic polynomial expressed as a polynomial in \\spad{'x}.")))
@@ -518,9 +518,9 @@ NIL
NIL
(-147)
((|constructor| (NIL "Rings of Characteristic Zero.")))
-((-4415 . T))
+((-4419 . T))
NIL
-(-148 -3879 UP UPUP)
+(-148 -3888 UP UPUP)
((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,y), p(x,y))} returns \\spad{[g(z,t), q(z,t), c1(z), c2(z), n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,y) = g(z,t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z, t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,y), f(x), g(x))} returns \\spad{p(f(x), y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p, q)} returns an integer a such that a is neither a pole of \\spad{p(x,y)} nor a branch point of \\spad{q(x,y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g, n)} returns \\spad{[m, c, P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x, y))} returns \\spad{[c(x), n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,y))} returns \\spad{[c(x), q(x,z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x, z) = 0}.")))
NIL
NIL
@@ -531,14 +531,14 @@ NIL
(-150 A S)
((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (QUOTE (-1102))) (|HasAttribute| |#1| (QUOTE -4418)))
+((|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (QUOTE (-1102))) (|HasAttribute| |#1| (QUOTE -4422)))
(-151 S)
((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
NIL
NIL
(-152 |n| K Q)
((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,[i1,i2,...,iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,[i1,i2,...,iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element.")))
-((-4413 . T) (-4412 . T) (-4415 . T))
+((-4417 . T) (-4416 . T) (-4419 . T))
NIL
(-153)
((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,xMin,xMax,yMin,yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function.")))
@@ -560,7 +560,7 @@ NIL
((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.")))
NIL
NIL
-(-158 R -3879)
+(-158 R -3888)
((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n), n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n), n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n), n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n), n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f, x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} \\spad{n!}.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n, r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n, r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{r!} * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator.")))
NIL
NIL
@@ -591,10 +591,10 @@ NIL
(-165 S R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})")))
NIL
-((|HasCategory| |#2| (QUOTE (-911))) (|HasCategory| |#2| (QUOTE (-548))) (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (QUOTE (-1203))) (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (QUOTE (-1024))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (QUOTE (-365))) (|HasAttribute| |#2| (QUOTE -4414)) (|HasAttribute| |#2| (QUOTE -4417)) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-559))))
+((|HasCategory| |#2| (QUOTE (-911))) (|HasCategory| |#2| (QUOTE (-548))) (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (QUOTE (-1204))) (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (QUOTE (-1024))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (QUOTE (-365))) (|HasAttribute| |#2| (QUOTE -4418)) (|HasAttribute| |#2| (QUOTE -4421)) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-559))))
(-166 R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})")))
-((-4411 -2800 (|has| |#1| (-559)) (-12 (|has| |#1| (-308)) (|has| |#1| (-911)))) (-4416 |has| |#1| (-365)) (-4410 |has| |#1| (-365)) (-4414 |has| |#1| (-6 -4414)) (-4417 |has| |#1| (-6 -4417)) (-3056 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T))
+((-4415 -2811 (|has| |#1| (-559)) (-12 (|has| |#1| (-308)) (|has| |#1| (-911)))) (-4420 |has| |#1| (-365)) (-4414 |has| |#1| (-365)) (-4418 |has| |#1| (-6 -4418)) (-4421 |has| |#1| (-6 -4421)) (-3065 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T))
NIL
(-167 RR PR)
((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients.")))
@@ -606,8 +606,8 @@ NIL
NIL
(-169 R)
((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}.")))
-((-4411 -2800 (|has| |#1| (-559)) (-12 (|has| |#1| (-308)) (|has| |#1| (-911)))) (-4416 |has| |#1| (-365)) (-4410 |has| |#1| (-365)) (-4414 |has| |#1| (-6 -4414)) (-4417 |has| |#1| (-6 -4417)) (-3056 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T))
-((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-351))) (-2800 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-351)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-370))) (-2800 (-12 (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -517) (QUOTE (-1178)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-351)))) (|HasCategory| |#1| (QUOTE (-233))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1178))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-829)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-1024)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-1203)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (-2800 (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-911))))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-911)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-911)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-911))))) (-2800 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (QUOTE (-1203)))) (|HasCategory| |#1| (QUOTE (-1203))) (|HasCategory| |#1| (QUOTE (-1024))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2800 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-559)))) (-2800 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-351)))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -517) (QUOTE (-1178)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-829))) (|HasCategory| |#1| (QUOTE (-1062))) (-12 (|HasCategory| |#1| (QUOTE (-1062))) (|HasCategory| |#1| (QUOTE (-1203)))) (|HasCategory| |#1| (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-911))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-365)))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-233))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasAttribute| |#1| (QUOTE -4414)) (|HasAttribute| |#1| (QUOTE -4417)) (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1178))))) (-2800 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-145)))) (-2800 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-351)))))
+((-4415 -2811 (|has| |#1| (-559)) (-12 (|has| |#1| (-308)) (|has| |#1| (-911)))) (-4420 |has| |#1| (-365)) (-4414 |has| |#1| (-365)) (-4418 |has| |#1| (-6 -4418)) (-4421 |has| |#1| (-6 -4421)) (-3065 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T))
+((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-351))) (-2811 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-351)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-370))) (-2811 (-12 (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -517) (QUOTE (-1179)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-351)))) (|HasCategory| |#1| (QUOTE (-233))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1179))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-829)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-1024)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-1204)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-911))))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-911)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-911)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-911))))) (-2811 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (QUOTE (-1204)))) (|HasCategory| |#1| (QUOTE (-1204))) (|HasCategory| |#1| (QUOTE (-1024))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2811 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-559)))) (-2811 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-351)))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -517) (QUOTE (-1179)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-829))) (|HasCategory| |#1| (QUOTE (-1062))) (-12 (|HasCategory| |#1| (QUOTE (-1062))) (|HasCategory| |#1| (QUOTE (-1204)))) (|HasCategory| |#1| (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-911))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-365)))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-233))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasAttribute| |#1| (QUOTE -4418)) (|HasAttribute| |#1| (QUOTE -4421)) (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1179))))) (-2811 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-145)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-351)))))
(-170 R S CS)
((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern")))
NIL
@@ -618,7 +618,7 @@ NIL
NIL
(-172)
((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative.")))
-(((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T))
+(((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T))
NIL
(-173)
((|constructor| (NIL "This category is the root of the I/O conduits.")) (|close!| (($ $) "\\spad{close!(c)} closes the conduit \\spad{c},{} changing its state to one that is invalid for future read or write operations.")))
@@ -626,7 +626,7 @@ NIL
NIL
(-174 R)
((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0, x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialQuotients(x) = [b0,b1,b2,b3,...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialDenominators(x) = [b1,b2,b3,...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialNumerators(x) = [a1,a2,a3,...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,b)} constructs a continued fraction in the following way: if \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,a,b)} constructs a continued fraction in the following way: if \\spad{a = [a1,a2,...]} and \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}.")))
-(((-4420 "*") . T) (-4411 . T) (-4416 . T) (-4410 . T) (-4412 . T) (-4413 . T) (-4415 . T))
+(((-4424 "*") . T) (-4415 . T) (-4420 . T) (-4414 . T) (-4416 . T) (-4417 . T) (-4419 . T))
NIL
(-175)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(c,n)} returns the first binding associated with \\spad{`n'}. Otherwise `nothing.")) (|push| (($ (|Binding|) $) "\\spad{push(c,b)} augments the contour with binding \\spad{`b'}.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}.")))
@@ -680,7 +680,7 @@ NIL
((|constructor| (NIL "This domain provides implementations for constructors.")) (|findConstructor| (((|Maybe| $) (|Identifier|)) "\\spad{findConstructor(s)} attempts to find a constructor named \\spad{s}. If successful,{} returns that constructor; otherwise,{} returns \\spad{nothing}.")))
NIL
NIL
-(-188 R -3879)
+(-188 R -3888)
((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
@@ -788,23 +788,23 @@ NIL
((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,start,end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,s)} returns an element of \\spad{x} indexed by \\spad{s}")))
NIL
NIL
-(-215 -3879 UP UPUP R)
+(-215 -3888 UP UPUP R)
((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f, ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use.")))
NIL
NIL
-(-216 -3879 FP)
+(-216 -3888 FP)
((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,k,v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,k,v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,k,v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}.")))
NIL
NIL
(-217)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion.")))
-((-4410 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T))
-((|HasCategory| (-567) (QUOTE (-911))) (|HasCategory| (-567) (LIST (QUOTE -1040) (QUOTE (-1178)))) (|HasCategory| (-567) (QUOTE (-145))) (|HasCategory| (-567) (QUOTE (-147))) (|HasCategory| (-567) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-567) (QUOTE (-1024))) (|HasCategory| (-567) (QUOTE (-821))) (-2800 (|HasCategory| (-567) (QUOTE (-821))) (|HasCategory| (-567) (QUOTE (-851)))) (|HasCategory| (-567) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| (-567) (QUOTE (-1153))) (|HasCategory| (-567) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| (-567) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| (-567) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| (-567) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| (-567) (QUOTE (-233))) (|HasCategory| (-567) (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| (-567) (LIST (QUOTE -517) (QUOTE (-1178)) (QUOTE (-567)))) (|HasCategory| (-567) (LIST (QUOTE -310) (QUOTE (-567)))) (|HasCategory| (-567) (LIST (QUOTE -287) (QUOTE (-567)) (QUOTE (-567)))) (|HasCategory| (-567) (QUOTE (-308))) (|HasCategory| (-567) (QUOTE (-548))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| (-567) (LIST (QUOTE -640) (QUOTE (-567)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-567) (QUOTE (-911)))) (-2800 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-567) (QUOTE (-911)))) (|HasCategory| (-567) (QUOTE (-145)))))
+((-4414 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T))
+((|HasCategory| (-567) (QUOTE (-911))) (|HasCategory| (-567) (LIST (QUOTE -1040) (QUOTE (-1179)))) (|HasCategory| (-567) (QUOTE (-145))) (|HasCategory| (-567) (QUOTE (-147))) (|HasCategory| (-567) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-567) (QUOTE (-1024))) (|HasCategory| (-567) (QUOTE (-821))) (-2811 (|HasCategory| (-567) (QUOTE (-821))) (|HasCategory| (-567) (QUOTE (-851)))) (|HasCategory| (-567) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| (-567) (QUOTE (-1154))) (|HasCategory| (-567) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| (-567) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| (-567) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| (-567) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| (-567) (QUOTE (-233))) (|HasCategory| (-567) (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| (-567) (LIST (QUOTE -517) (QUOTE (-1179)) (QUOTE (-567)))) (|HasCategory| (-567) (LIST (QUOTE -310) (QUOTE (-567)))) (|HasCategory| (-567) (LIST (QUOTE -287) (QUOTE (-567)) (QUOTE (-567)))) (|HasCategory| (-567) (QUOTE (-308))) (|HasCategory| (-567) (QUOTE (-548))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| (-567) (LIST (QUOTE -640) (QUOTE (-567)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-567) (QUOTE (-911)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-567) (QUOTE (-911)))) (|HasCategory| (-567) (QUOTE (-145)))))
(-218)
((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|SpadAst|) $) "\\spad{body(d)} returns the right hand side of the definition \\spad{`d'}.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|HeadAst|) $) "\\spad{head(d)} returns the head of the definition \\spad{`d'}. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any.")))
NIL
NIL
-(-219 R -3879)
+(-219 R -3888)
((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f, x, a, b, ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.")))
NIL
NIL
@@ -818,19 +818,19 @@ NIL
NIL
(-222 S)
((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.")))
-((-4418 . T) (-4419 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1102))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))))
+((-4422 . T) (-4423 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1102))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))))
(-223 |CoefRing| |listIndVar|)
((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}.")))
-((-4415 . T))
+((-4419 . T))
NIL
-(-224 R -3879)
+(-224 R -3888)
((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, x, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x, g, a, b, eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval.")))
NIL
NIL
(-225)
((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-3050 . T) (-4410 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T))
+((-3058 . T) (-4414 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T))
NIL
(-226)
((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}")))
@@ -838,23 +838,23 @@ NIL
NIL
(-227 R)
((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,Y,Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,sy,sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}")))
-((-4418 . T) (-4419 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1102))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-559))) (|HasAttribute| |#1| (QUOTE (-4420 "*"))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))))
+((-4422 . T) (-4423 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1102))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-559))) (|HasAttribute| |#1| (QUOTE (-4424 "*"))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))))
(-228 A S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
NIL
NIL
(-229 S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
-((-4419 . T))
+((-4423 . T))
NIL
(-230 S R)
((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x, deriv, n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x, deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x, deriv, n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x, deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#2| (QUOTE (-233))))
+((|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#2| (QUOTE (-233))))
(-231 R)
((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x, deriv, n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x, deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x, deriv, n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x, deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")))
-((-4415 . T))
+((-4419 . T))
NIL
(-232 S)
((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x, n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x, n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")))
@@ -862,36 +862,36 @@ NIL
NIL
(-233)
((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x, n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x, n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")))
-((-4415 . T))
+((-4419 . T))
NIL
(-234 A S)
((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4418)))
+((|HasAttribute| |#1| (QUOTE -4422)))
(-235 S)
((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}.")))
-((-4419 . T))
+((-4423 . T))
NIL
(-236)
((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation")))
NIL
NIL
-(-237 S -2612 R)
+(-237 S -2622 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#3|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#3| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#3| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
NIL
-((|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-794))) (|HasCategory| |#3| (QUOTE (-849))) (|HasAttribute| |#3| (QUOTE -4415)) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (QUOTE (-727))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1051))) (|HasCategory| |#3| (QUOTE (-1102))))
-(-238 -2612 R)
+((|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-794))) (|HasCategory| |#3| (QUOTE (-849))) (|HasAttribute| |#3| (QUOTE -4419)) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (QUOTE (-727))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1051))) (|HasCategory| |#3| (QUOTE (-1102))))
+(-238 -2622 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
-((-4412 |has| |#2| (-1051)) (-4413 |has| |#2| (-1051)) (-4415 |has| |#2| (-6 -4415)) ((-4420 "*") |has| |#2| (-172)) (-4418 . T))
+((-4416 |has| |#2| (-1051)) (-4417 |has| |#2| (-1051)) (-4419 |has| |#2| (-6 -4419)) ((-4424 "*") |has| |#2| (-172)) (-4422 . T))
NIL
-(-239 -2612 A B)
+(-239 -2622 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
-(-240 -2612 R)
+(-240 -2622 R)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation.")))
-((-4412 |has| |#2| (-1051)) (-4413 |has| |#2| (-1051)) (-4415 |has| |#2| (-6 -4415)) ((-4420 "*") |has| |#2| (-172)) (-4418 . T))
-((-2800 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))))) (-2800 (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1102)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1051)))) (-12 (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178))))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#2| (QUOTE (-365))) (-2800 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1051)))) (-2800 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365)))) (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-794))) (-2800 (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (QUOTE (-849)))) (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (QUOTE (-727))) (-2800 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1051)))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))) (-2800 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1051)))) (-2800 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1051)))) (-2800 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1051)))) (-2800 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1051)))) (|HasCategory| |#2| (QUOTE (-233))) (-2800 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (QUOTE (-1102)))) (|HasCategory| |#2| (QUOTE (-1102))) (-2800 (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-365)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-370)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-727)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-794)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-849)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1051)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1102))))) (-2800 (-12 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1051))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))))) (-2800 (-12 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))))) (|HasCategory| (-567) (QUOTE (-851))) (-12 (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1051)))) (-12 (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178))))) (-2800 (|HasCategory| |#2| (QUOTE (-1051))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1102)))) (|HasAttribute| |#2| (QUOTE -4415)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))))
+((-4416 |has| |#2| (-1051)) (-4417 |has| |#2| (-1051)) (-4419 |has| |#2| (-6 -4419)) ((-4424 "*") |has| |#2| (-172)) (-4422 . T))
+((-2811 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))))) (-2811 (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1102)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1051)))) (-12 (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179))))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#2| (QUOTE (-365))) (-2811 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1051)))) (-2811 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365)))) (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-794))) (-2811 (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (QUOTE (-849)))) (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (QUOTE (-727))) (-2811 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1051)))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1051)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1051)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1051)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1051)))) (|HasCategory| |#2| (QUOTE (-233))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (QUOTE (-1102)))) (|HasCategory| |#2| (QUOTE (-1102))) (-2811 (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-365)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-370)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-727)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-794)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-849)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1051)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1102))))) (-2811 (-12 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1051))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))))) (-2811 (-12 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))))) (|HasCategory| (-567) (QUOTE (-851))) (-12 (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1051)))) (-12 (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179))))) (-2811 (|HasCategory| |#2| (QUOTE (-1051))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1102)))) (|HasAttribute| |#2| (QUOTE -4419)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))))
(-241)
((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,i,s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,i,s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type.")))
NIL
@@ -902,7 +902,7 @@ NIL
NIL
(-243)
((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")))
-((-4411 . T) (-4412 . T) (-4413 . T) (-4415 . T))
+((-4415 . T) (-4416 . T) (-4417 . T) (-4419 . T))
NIL
(-244 S)
((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")))
@@ -910,16 +910,16 @@ NIL
NIL
(-245 S)
((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}")))
-((-4419 . T) (-4418 . T))
-((-2800 (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2800 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
+((-4423 . T) (-4422 . T))
+((-2811 (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2811 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
(-246 M)
((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,a,p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}")))
NIL
NIL
(-247 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4420 "*") |has| |#2| (-172)) (-4411 |has| |#2| (-559)) (-4416 |has| |#2| (-6 -4416)) (-4413 . T) (-4412 . T) (-4415 . T))
-((|HasCategory| |#2| (QUOTE (-911))) (-2800 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-911)))) (-2800 (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-911)))) (-2800 (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-911)))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-172))) (-2800 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-559)))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-381))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-567))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567)))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))) (-2800 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-365))) (|HasAttribute| |#2| (QUOTE -4416)) (|HasCategory| |#2| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-911)))) (-2800 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-911)))) (|HasCategory| |#2| (QUOTE (-145)))))
+(((-4424 "*") |has| |#2| (-172)) (-4415 |has| |#2| (-559)) (-4420 |has| |#2| (-6 -4420)) (-4417 . T) (-4416 . T) (-4419 . T))
+((|HasCategory| |#2| (QUOTE (-911))) (-2811 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-911)))) (-2811 (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-911)))) (-2811 (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-911)))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-172))) (-2811 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-559)))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-381))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-567))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567)))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-365))) (|HasAttribute| |#2| (QUOTE -4420)) (|HasCategory| |#2| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-911)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-911)))) (|HasCategory| |#2| (QUOTE (-145)))))
(-248)
((|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain \\spad{`d'}.")) (|reflect| (($ (|ConstructorCall| (|DomainConstructor|))) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall| (|DomainConstructor|)) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: December 20,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall") (((|DomainConstructor|) $) "\\spad{constructor(d)} returns the domain constructor that is instantiated to the domain object \\spad{`d'}.")))
NIL
@@ -934,23 +934,23 @@ NIL
NIL
(-251 |n| R M S)
((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view.")))
-((-4415 -2800 (-1667 (|has| |#4| (-1051)) (|has| |#4| (-233))) (-1667 (|has| |#4| (-1051)) (|has| |#4| (-902 (-1178)))) (|has| |#4| (-6 -4415)) (-1667 (|has| |#4| (-1051)) (|has| |#4| (-640 (-567))))) (-4412 |has| |#4| (-1051)) (-4413 |has| |#4| (-1051)) ((-4420 "*") |has| |#4| (-172)) (-4418 . T))
-((-2800 (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-365))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-727))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-794))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-849))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1051))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1102))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -902) (QUOTE (-1178)))))) (|HasCategory| |#4| (QUOTE (-365))) (-2800 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-365))) (|HasCategory| |#4| (QUOTE (-1051)))) (-2800 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-365)))) (|HasCategory| |#4| (QUOTE (-1051))) (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-794))) (-2800 (|HasCategory| |#4| (QUOTE (-794))) (|HasCategory| |#4| (QUOTE (-849)))) (|HasCategory| |#4| (QUOTE (-849))) (|HasCategory| |#4| (QUOTE (-727))) (-2800 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-1051)))) (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#4| (LIST (QUOTE -902) (QUOTE (-1178)))) (-2800 (|HasCategory| |#4| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#4| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1051)))) (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1102))) (-2800 (-12 (|HasCategory| |#4| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (LIST (QUOTE -902) (QUOTE (-1178))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (QUOTE (-172)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (QUOTE (-233)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (QUOTE (-365)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (QUOTE (-370)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (QUOTE (-727)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (QUOTE (-794)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (QUOTE (-849)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (QUOTE (-1051)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (QUOTE (-1102))))) (-2800 (-12 (|HasCategory| |#4| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-365))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-727))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-794))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-849))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (|HasCategory| |#4| (QUOTE (-1051))) (-12 (|HasCategory| |#4| (QUOTE (-1102))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567)))))) (-2800 (-12 (|HasCategory| |#4| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-365))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-727))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-794))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-849))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-1051))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-1102))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567)))))) (|HasCategory| (-567) (QUOTE (-851))) (-12 (|HasCategory| |#4| (QUOTE (-1051))) (|HasCategory| |#4| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-1051))) (|HasCategory| |#4| (LIST (QUOTE -902) (QUOTE (-1178))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1051)))) (-2800 (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1051)))) (|HasCategory| |#4| (QUOTE (-727))) (-12 (|HasCategory| |#4| (QUOTE (-1051))) (|HasCategory| |#4| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-1051))) (|HasCategory| |#4| (LIST (QUOTE -902) (QUOTE (-1178)))))) (-12 (|HasCategory| |#4| (QUOTE (-1102))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (-2800 (|HasCategory| |#4| (QUOTE (-1051))) (-12 (|HasCategory| |#4| (QUOTE (-1102))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (QUOTE (-1102)))) (-2800 (|HasAttribute| |#4| (QUOTE -4415)) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1051)))) (-12 (|HasCategory| |#4| (QUOTE (-1051))) (|HasCategory| |#4| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-1051))) (|HasCategory| |#4| (LIST (QUOTE -902) (QUOTE (-1178)))))) (|HasCategory| |#4| (QUOTE (-131))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#4| (QUOTE (-1102))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))))
+((-4419 -2811 (-1686 (|has| |#4| (-1051)) (|has| |#4| (-233))) (-1686 (|has| |#4| (-1051)) (|has| |#4| (-902 (-1179)))) (|has| |#4| (-6 -4419)) (-1686 (|has| |#4| (-1051)) (|has| |#4| (-640 (-567))))) (-4416 |has| |#4| (-1051)) (-4417 |has| |#4| (-1051)) ((-4424 "*") |has| |#4| (-172)) (-4422 . T))
+((-2811 (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-365))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-727))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-794))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-849))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1051))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1102))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -902) (QUOTE (-1179)))))) (|HasCategory| |#4| (QUOTE (-365))) (-2811 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-365))) (|HasCategory| |#4| (QUOTE (-1051)))) (-2811 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-365)))) (|HasCategory| |#4| (QUOTE (-1051))) (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-794))) (-2811 (|HasCategory| |#4| (QUOTE (-794))) (|HasCategory| |#4| (QUOTE (-849)))) (|HasCategory| |#4| (QUOTE (-849))) (|HasCategory| |#4| (QUOTE (-727))) (-2811 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-1051)))) (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#4| (LIST (QUOTE -902) (QUOTE (-1179)))) (-2811 (|HasCategory| |#4| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#4| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1051)))) (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1102))) (-2811 (-12 (|HasCategory| |#4| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (LIST (QUOTE -902) (QUOTE (-1179))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (QUOTE (-172)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (QUOTE (-233)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (QUOTE (-365)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (QUOTE (-370)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (QUOTE (-727)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (QUOTE (-794)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (QUOTE (-849)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (QUOTE (-1051)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (QUOTE (-1102))))) (-2811 (-12 (|HasCategory| |#4| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-365))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-727))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-794))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-849))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (|HasCategory| |#4| (QUOTE (-1051))) (-12 (|HasCategory| |#4| (QUOTE (-1102))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567)))))) (-2811 (-12 (|HasCategory| |#4| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-365))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-727))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-794))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-849))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-1051))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-1102))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567)))))) (|HasCategory| (-567) (QUOTE (-851))) (-12 (|HasCategory| |#4| (QUOTE (-1051))) (|HasCategory| |#4| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-1051))) (|HasCategory| |#4| (LIST (QUOTE -902) (QUOTE (-1179))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1051)))) (-2811 (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1051)))) (|HasCategory| |#4| (QUOTE (-727))) (-12 (|HasCategory| |#4| (QUOTE (-1051))) (|HasCategory| |#4| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-1051))) (|HasCategory| |#4| (LIST (QUOTE -902) (QUOTE (-1179)))))) (-12 (|HasCategory| |#4| (QUOTE (-1102))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (-2811 (|HasCategory| |#4| (QUOTE (-1051))) (-12 (|HasCategory| |#4| (QUOTE (-1102))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (QUOTE (-1102)))) (-2811 (|HasAttribute| |#4| (QUOTE -4419)) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1051)))) (-12 (|HasCategory| |#4| (QUOTE (-1051))) (|HasCategory| |#4| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-1051))) (|HasCategory| |#4| (LIST (QUOTE -902) (QUOTE (-1179)))))) (|HasCategory| |#4| (QUOTE (-131))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#4| (QUOTE (-1102))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))))
(-252 |n| R S)
((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view.")))
-((-4415 -2800 (-1667 (|has| |#3| (-1051)) (|has| |#3| (-233))) (-1667 (|has| |#3| (-1051)) (|has| |#3| (-902 (-1178)))) (|has| |#3| (-6 -4415)) (-1667 (|has| |#3| (-1051)) (|has| |#3| (-640 (-567))))) (-4412 |has| |#3| (-1051)) (-4413 |has| |#3| (-1051)) ((-4420 "*") |has| |#3| (-172)) (-4418 . T))
-((-2800 (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-727))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-794))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-849))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1051))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1102))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1178)))))) (|HasCategory| |#3| (QUOTE (-365))) (-2800 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1051)))) (-2800 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-365)))) (|HasCategory| |#3| (QUOTE (-1051))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-794))) (-2800 (|HasCategory| |#3| (QUOTE (-794))) (|HasCategory| |#3| (QUOTE (-849)))) (|HasCategory| |#3| (QUOTE (-849))) (|HasCategory| |#3| (QUOTE (-727))) (-2800 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-1051)))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1178)))) (-2800 (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1051)))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1102))) (-2800 (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1178))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-172)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-233)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-365)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-370)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-727)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-794)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-849)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-1051)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-1102))))) (-2800 (-12 (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-727))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-794))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-849))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-1051))) (-12 (|HasCategory| |#3| (QUOTE (-1102))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567)))))) (-2800 (-12 (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-727))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-794))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-849))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-1051))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-1102))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567)))))) (|HasCategory| (-567) (QUOTE (-851))) (-12 (|HasCategory| |#3| (QUOTE (-1051))) (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-1051))) (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1178))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1051)))) (-2800 (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1051)))) (|HasCategory| |#3| (QUOTE (-727))) (-12 (|HasCategory| |#3| (QUOTE (-1051))) (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-1051))) (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1178)))))) (-12 (|HasCategory| |#3| (QUOTE (-1102))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-2800 (|HasCategory| |#3| (QUOTE (-1051))) (-12 (|HasCategory| |#3| (QUOTE (-1102))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-1102)))) (-2800 (|HasAttribute| |#3| (QUOTE -4415)) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1051)))) (-12 (|HasCategory| |#3| (QUOTE (-1051))) (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-1051))) (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1178)))))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#3| (QUOTE (-1102))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))))
+((-4419 -2811 (-1686 (|has| |#3| (-1051)) (|has| |#3| (-233))) (-1686 (|has| |#3| (-1051)) (|has| |#3| (-902 (-1179)))) (|has| |#3| (-6 -4419)) (-1686 (|has| |#3| (-1051)) (|has| |#3| (-640 (-567))))) (-4416 |has| |#3| (-1051)) (-4417 |has| |#3| (-1051)) ((-4424 "*") |has| |#3| (-172)) (-4422 . T))
+((-2811 (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-727))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-794))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-849))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1051))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1102))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1179)))))) (|HasCategory| |#3| (QUOTE (-365))) (-2811 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1051)))) (-2811 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-365)))) (|HasCategory| |#3| (QUOTE (-1051))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-794))) (-2811 (|HasCategory| |#3| (QUOTE (-794))) (|HasCategory| |#3| (QUOTE (-849)))) (|HasCategory| |#3| (QUOTE (-849))) (|HasCategory| |#3| (QUOTE (-727))) (-2811 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-1051)))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1179)))) (-2811 (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1051)))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1102))) (-2811 (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1179))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-172)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-233)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-365)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-370)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-727)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-794)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-849)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-1051)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-1102))))) (-2811 (-12 (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-727))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-794))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-849))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-1051))) (-12 (|HasCategory| |#3| (QUOTE (-1102))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567)))))) (-2811 (-12 (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-727))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-794))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-849))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-1051))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-1102))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567)))))) (|HasCategory| (-567) (QUOTE (-851))) (-12 (|HasCategory| |#3| (QUOTE (-1051))) (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-1051))) (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1179))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1051)))) (-2811 (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1051)))) (|HasCategory| |#3| (QUOTE (-727))) (-12 (|HasCategory| |#3| (QUOTE (-1051))) (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-1051))) (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1179)))))) (-12 (|HasCategory| |#3| (QUOTE (-1102))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-2811 (|HasCategory| |#3| (QUOTE (-1051))) (-12 (|HasCategory| |#3| (QUOTE (-1102))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-1102)))) (-2811 (|HasAttribute| |#3| (QUOTE -4419)) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1051)))) (-12 (|HasCategory| |#3| (QUOTE (-1051))) (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-1051))) (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1179)))))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#3| (QUOTE (-1102))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))))
(-253 A R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
NIL
((|HasCategory| |#2| (QUOTE (-233))))
(-254 R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
-(((-4420 "*") |has| |#1| (-172)) (-4411 |has| |#1| (-559)) (-4416 |has| |#1| (-6 -4416)) (-4413 . T) (-4412 . T) (-4415 . T))
+(((-4424 "*") |has| |#1| (-172)) (-4415 |has| |#1| (-559)) (-4420 |has| |#1| (-6 -4420)) (-4417 . T) (-4416 . T) (-4419 . T))
NIL
(-255 S)
((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}.")))
-((-4418 . T) (-4419 . T))
+((-4422 . T) (-4423 . T))
NIL
(-256)
((|constructor| (NIL "TopLevelDrawFunctionsForCompiledFunctions provides top level functions for drawing graphics of expressions.")) (|recolor| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{recolor()},{} uninteresting to top level user; exported in order to compile package.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(surface(f,g,h),a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f,g,h),a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,a..b,c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)},{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{makeObject(sp,curve(f,g,h),a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,g,h),a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{makeObject(sp,curve(f,g,h),a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,g,h),a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(surface(f,g,h),a..b,c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f,g,h),a..b,c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,c..d)} draws the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,c..d)} draws the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,c..d)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,c..d,l)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,g,h),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,g,h),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,g),a..b)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,g),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")))
@@ -990,8 +990,8 @@ NIL
NIL
(-265 R S V)
((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline")))
-(((-4420 "*") |has| |#1| (-172)) (-4411 |has| |#1| (-559)) (-4416 |has| |#1| (-6 -4416)) (-4413 . T) (-4412 . T) (-4415 . T))
-((|HasCategory| |#1| (QUOTE (-911))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-911)))) (-2800 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-911)))) (-2800 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#3| (LIST (QUOTE -888) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -888) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#3| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#3| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (-2800 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4416)) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (-2800 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(((-4424 "*") |has| |#1| (-172)) (-4415 |has| |#1| (-559)) (-4420 |has| |#1| (-6 -4420)) (-4417 . T) (-4416 . T) (-4419 . T))
+((|HasCategory| |#1| (QUOTE (-911))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-911)))) (-2811 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-911)))) (-2811 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#3| (LIST (QUOTE -888) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -888) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#3| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#3| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4420)) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-266 A S)
((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v, n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s, n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate.")))
NIL
@@ -1036,11 +1036,11 @@ NIL
((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1\\spad{'s} in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0\\spad{'s} and 1\\spad{'s} into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1.")))
NIL
NIL
-(-277 R -3879)
+(-277 R -3888)
((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{pi()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}")))
NIL
NIL
-(-278 R -3879)
+(-278 R -3888)
((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f, k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,...,kn],f,x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f, x)} returns \\spad{[g, [k1,...,kn], [h1,...,hn]]} such that \\spad{g = normalize(f, x)} and each \\spad{ki} was rewritten as \\spad{hi} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f, x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels.")))
NIL
NIL
@@ -1062,7 +1062,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-851))) (|HasCategory| |#2| (QUOTE (-1102))))
(-283 S)
((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}.")))
-((-4419 . T))
+((-4423 . T))
NIL
(-284 S)
((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}.")))
@@ -1083,18 +1083,18 @@ NIL
(-288 S |Dom| |Im|)
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4419)))
+((|HasAttribute| |#1| (QUOTE -4423)))
(-289 |Dom| |Im|)
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
NIL
-(-290 S R |Mod| -1591 -4135 |exactQuo|)
+(-290 S R |Mod| -3438 -2473 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|elt| ((|#2| $ |#2|) "\\spad{elt(x,r)} or \\spad{x}.\\spad{r} \\undocumented")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented")))
-((-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T))
+((-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T))
NIL
(-291)
((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero.")))
-((-4411 . T) (-4412 . T) (-4413 . T) (-4415 . T))
+((-4415 . T) (-4416 . T) (-4417 . T) (-4419 . T))
NIL
(-292)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 19,{} 2008. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|interactiveEnv| (($) "the current interactive environment in effect.")) (|currentEnv| (($) "the current normal environment in effect.")) (|setProperties!| (($ (|Identifier|) (|List| (|Property|)) $) "setBinding!(\\spad{n},{}props,{}\\spad{e}) set the list of properties of \\spad{`n'} to `props' in `e'.")) (|getProperties| (((|List| (|Property|)) (|Identifier|) $) "getBinding(\\spad{n},{}\\spad{e}) returns the list of properties of \\spad{`n'} in \\spad{e}.")) (|setProperty!| (($ (|Identifier|) (|Identifier|) (|SExpression|) $) "\\spad{setProperty!(n,p,v,e)} binds the property `(\\spad{p},{}\\spad{v})' to \\spad{`n'} in the topmost scope of `e'.")) (|getProperty| (((|Maybe| (|SExpression|)) (|Identifier|) (|Identifier|) $) "\\spad{getProperty(n,p,e)} returns the value of property with name \\spad{`p'} for the symbol \\spad{`n'} in environment `e'. Otherwise,{} `nothing.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment")))
@@ -1110,21 +1110,21 @@ NIL
NIL
(-295 S)
((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn, [x1=v1, ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn, x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation.")))
-((-4415 -2800 (|has| |#1| (-1051)) (|has| |#1| (-476))) (-4412 |has| |#1| (-1051)) (-4413 |has| |#1| (-1051)))
-((|HasCategory| |#1| (QUOTE (-365))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1051)))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1178)))) (-2800 (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#1| (QUOTE (-1051)))) (-2800 (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1051)))) (-2800 (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1051)))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-1051)))) (-2800 (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#1| (QUOTE (-727)))) (|HasCategory| |#1| (QUOTE (-476))) (-2800 (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#1| (QUOTE (-727))) (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (QUOTE (-1114))) (|HasCategory| |#1| (QUOTE (-1102)))) (-2800 (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#1| (QUOTE (-727))) (|HasCategory| |#1| (QUOTE (-1114)))) (|HasCategory| |#1| (LIST (QUOTE -517) (QUOTE (-1178)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-303))) (-2800 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-476)))) (-2800 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-727)))) (-2800 (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#1| (QUOTE (-1051)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1114))) (|HasCategory| |#1| (QUOTE (-727))))
+((-4419 -2811 (|has| |#1| (-1051)) (|has| |#1| (-476))) (-4416 |has| |#1| (-1051)) (-4417 |has| |#1| (-1051)))
+((|HasCategory| |#1| (QUOTE (-365))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1051)))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1179)))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#1| (QUOTE (-1051)))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1051)))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1051)))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-1051)))) (-2811 (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#1| (QUOTE (-727)))) (|HasCategory| |#1| (QUOTE (-476))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#1| (QUOTE (-727))) (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (QUOTE (-1114))) (|HasCategory| |#1| (QUOTE (-1102)))) (-2811 (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#1| (QUOTE (-727))) (|HasCategory| |#1| (QUOTE (-1114)))) (|HasCategory| |#1| (LIST (QUOTE -517) (QUOTE (-1179)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-303))) (-2811 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-476)))) (-2811 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-727)))) (-2811 (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#1| (QUOTE (-1051)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1114))) (|HasCategory| |#1| (QUOTE (-727))))
(-296 |Key| |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure.")))
-((-4418 . T) (-4419 . T))
-((-12 (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1795) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4237) (|devaluate| |#2|)))))) (-2800 (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (QUOTE (-1102))) (|HasCategory| |#2| (QUOTE (-1102)))) (-2800 (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (LIST (QUOTE -615) (QUOTE (-539)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#2| (QUOTE (-1102))) (-2800 (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))))
+((-4422 . T) (-4423 . T))
+((-12 (|HasCategory| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1809) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4236) (|devaluate| |#2|)))))) (-2811 (|HasCategory| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (QUOTE (-1102))) (|HasCategory| |#2| (QUOTE (-1102)))) (-2811 (|HasCategory| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (LIST (QUOTE -615) (QUOTE (-539)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#2| (QUOTE (-1102))) (-2811 (|HasCategory| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))))
(-297)
((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates.")))
NIL
NIL
-(-298 -3879 S)
+(-298 -3888 S)
((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f, p, k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}.")))
NIL
NIL
-(-299 E -3879)
+(-299 E -3888)
((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f, k)} returns \\spad{g = op(f(a1),...,f(an))} where \\spad{k = op(a1,...,an)}.")))
NIL
NIL
@@ -1162,7 +1162,7 @@ NIL
NIL
(-308)
((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,...,fn],z)} returns a list of coefficients \\spad{[a1, ..., an]} such that \\spad{ z / prod fi = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,y,z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}.")))
-((-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T))
+((-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T))
NIL
(-309 S R)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
@@ -1172,7 +1172,7 @@ NIL
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-311 -3879)
+(-311 -3888)
((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}")))
NIL
NIL
@@ -1186,8 +1186,8 @@ NIL
NIL
(-314 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,f(var))}.")))
-((-4410 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T))
-((|HasCategory| (-1254 |#1| |#2| |#3| |#4|) (QUOTE (-911))) (|HasCategory| (-1254 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1040) (QUOTE (-1178)))) (|HasCategory| (-1254 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1254 |#1| |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1254 |#1| |#2| |#3| |#4|) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-1254 |#1| |#2| |#3| |#4|) (QUOTE (-1024))) (|HasCategory| (-1254 |#1| |#2| |#3| |#4|) (QUOTE (-821))) (-2800 (|HasCategory| (-1254 |#1| |#2| |#3| |#4|) (QUOTE (-821))) (|HasCategory| (-1254 |#1| |#2| |#3| |#4|) (QUOTE (-851)))) (|HasCategory| (-1254 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| (-1254 |#1| |#2| |#3| |#4|) (QUOTE (-1153))) (|HasCategory| (-1254 |#1| |#2| |#3| |#4|) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| (-1254 |#1| |#2| |#3| |#4|) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| (-1254 |#1| |#2| |#3| |#4|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| (-1254 |#1| |#2| |#3| |#4|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| (-1254 |#1| |#2| |#3| |#4|) (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| (-1254 |#1| |#2| |#3| |#4|) (QUOTE (-233))) (|HasCategory| (-1254 |#1| |#2| |#3| |#4|) (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| (-1254 |#1| |#2| |#3| |#4|) (LIST (QUOTE -517) (QUOTE (-1178)) (LIST (QUOTE -1254) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1254 |#1| |#2| |#3| |#4|) (LIST (QUOTE -310) (LIST (QUOTE -1254) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1254 |#1| |#2| |#3| |#4|) (LIST (QUOTE -287) (LIST (QUOTE -1254) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1254) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1254 |#1| |#2| |#3| |#4|) (QUOTE (-308))) (|HasCategory| (-1254 |#1| |#2| |#3| |#4|) (QUOTE (-548))) (|HasCategory| (-1254 |#1| |#2| |#3| |#4|) (QUOTE (-851))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3| |#4|) (QUOTE (-911))) (|HasCategory| $ (QUOTE (-145)))) (-2800 (|HasCategory| (-1254 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3| |#4|) (QUOTE (-911))) (|HasCategory| $ (QUOTE (-145))))))
+((-4414 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T))
+((|HasCategory| (-1255 |#1| |#2| |#3| |#4|) (QUOTE (-911))) (|HasCategory| (-1255 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1040) (QUOTE (-1179)))) (|HasCategory| (-1255 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1255 |#1| |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1255 |#1| |#2| |#3| |#4|) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-1255 |#1| |#2| |#3| |#4|) (QUOTE (-1024))) (|HasCategory| (-1255 |#1| |#2| |#3| |#4|) (QUOTE (-821))) (-2811 (|HasCategory| (-1255 |#1| |#2| |#3| |#4|) (QUOTE (-821))) (|HasCategory| (-1255 |#1| |#2| |#3| |#4|) (QUOTE (-851)))) (|HasCategory| (-1255 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| (-1255 |#1| |#2| |#3| |#4|) (QUOTE (-1154))) (|HasCategory| (-1255 |#1| |#2| |#3| |#4|) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| (-1255 |#1| |#2| |#3| |#4|) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| (-1255 |#1| |#2| |#3| |#4|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| (-1255 |#1| |#2| |#3| |#4|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| (-1255 |#1| |#2| |#3| |#4|) (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| (-1255 |#1| |#2| |#3| |#4|) (QUOTE (-233))) (|HasCategory| (-1255 |#1| |#2| |#3| |#4|) (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| (-1255 |#1| |#2| |#3| |#4|) (LIST (QUOTE -517) (QUOTE (-1179)) (LIST (QUOTE -1255) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1255 |#1| |#2| |#3| |#4|) (LIST (QUOTE -310) (LIST (QUOTE -1255) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1255 |#1| |#2| |#3| |#4|) (LIST (QUOTE -287) (LIST (QUOTE -1255) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1255) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1255 |#1| |#2| |#3| |#4|) (QUOTE (-308))) (|HasCategory| (-1255 |#1| |#2| |#3| |#4|) (QUOTE (-548))) (|HasCategory| (-1255 |#1| |#2| |#3| |#4|) (QUOTE (-851))) (-12 (|HasCategory| (-1255 |#1| |#2| |#3| |#4|) (QUOTE (-911))) (|HasCategory| $ (QUOTE (-145)))) (-2811 (|HasCategory| (-1255 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (-12 (|HasCategory| (-1255 |#1| |#2| |#3| |#4|) (QUOTE (-911))) (|HasCategory| $ (QUOTE (-145))))))
(-315 R S)
((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f, e)} applies \\spad{f} to all the constants appearing in \\spad{e}.")))
NIL
@@ -1198,9 +1198,9 @@ NIL
NIL
(-317 R)
((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations.")))
-((-4415 -2800 (-1667 (|has| |#1| (-1051)) (|has| |#1| (-640 (-567)))) (-12 (|has| |#1| (-559)) (-2800 (-1667 (|has| |#1| (-1051)) (|has| |#1| (-640 (-567)))) (|has| |#1| (-1051)) (|has| |#1| (-476)))) (|has| |#1| (-1051)) (|has| |#1| (-476))) (-4413 |has| |#1| (-172)) (-4412 |has| |#1| (-172)) ((-4420 "*") |has| |#1| (-559)) (-4411 |has| |#1| (-559)) (-4416 |has| |#1| (-559)) (-4410 |has| |#1| (-559)))
-((-2800 (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))))) (|HasCategory| |#1| (QUOTE (-559))) (-2800 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-1051)))) (|HasCategory| |#1| (QUOTE (-21))) (-2800 (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (-2800 (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#1| (QUOTE (-1114)))) (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2800 (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567))))) (-2800 (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-1051)))) (-2800 (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-1051)))) (-2800 (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-1051)))) (-12 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559)))) (-2800 (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567))))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-1114)))) (-2800 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))))) (-2800 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-1114)))) (-2800 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))))) (-2800 (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#1| (QUOTE (-1051)))) (-2800 (-12 (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1114))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| $ (QUOTE (-1051))) (|HasCategory| $ (LIST (QUOTE -1040) (QUOTE (-567)))))
-(-318 R -3879)
+((-4419 -2811 (-1686 (|has| |#1| (-1051)) (|has| |#1| (-640 (-567)))) (-12 (|has| |#1| (-559)) (-2811 (-1686 (|has| |#1| (-1051)) (|has| |#1| (-640 (-567)))) (|has| |#1| (-1051)) (|has| |#1| (-476)))) (|has| |#1| (-1051)) (|has| |#1| (-476))) (-4417 |has| |#1| (-172)) (-4416 |has| |#1| (-172)) ((-4424 "*") |has| |#1| (-559)) (-4415 |has| |#1| (-559)) (-4420 |has| |#1| (-559)) (-4414 |has| |#1| (-559)))
+((-2811 (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))))) (|HasCategory| |#1| (QUOTE (-559))) (-2811 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-1051)))) (|HasCategory| |#1| (QUOTE (-21))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (-2811 (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#1| (QUOTE (-1114)))) (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2811 (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567))))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-1051)))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-1051)))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-1051)))) (-12 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559)))) (-2811 (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567))))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-1114)))) (-2811 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))))) (-2811 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-1114)))) (-2811 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))))) (-2811 (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#1| (QUOTE (-1051)))) (-2811 (-12 (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1114))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| $ (QUOTE (-1051))) (|HasCategory| $ (LIST (QUOTE -1040) (QUOTE (-567)))))
+(-318 R -3888)
((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq, y, x = a, [b0,...,bn])} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, [b0,...,b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq, y, x = a, y a = b)} is equivalent to \\spad{seriesSolve(eq=0, y, x=a, y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq, y, x = a, b)} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,y, x=a, b)} is equivalent to \\spad{seriesSolve(eq, y, x=a, y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a,[y1 a = b1,..., yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x=a, [b1,...,bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn],[y1,...,yn],x = a,[y1 a = b1,...,yn a = bn])} returns a taylor series solution of \\spad{[eq1,...,eqn]} around \\spad{x = a} with initial conditions \\spad{yi(a) = bi}. Note: eqi must be of the form \\spad{fi(x, y1 x, y2 x,..., yn x) y1'(x) + gi(x, y1 x, y2 x,..., yn x) = h(x, y1 x, y2 x,..., yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,y,x=a,[b0,...,b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x, y x, y'(x),..., y(n-1)(x)) y(n)(x) + g(x,y x,y'(x),...,y(n-1)(x)) = h(x,y x, y'(x),..., y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,y,x=a, y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x, y x) y'(x) + g(x, y x) = h(x, y x)}.")))
NIL
NIL
@@ -1210,8 +1210,8 @@ NIL
NIL
(-320 FE |var| |cen|)
((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms.")))
-(((-4420 "*") |has| |#1| (-172)) (-4411 |has| |#1| (-559)) (-4416 |has| |#1| (-365)) (-4410 |has| |#1| (-365)) (-4412 . T) (-4413 . T) (-4415 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567))) (|devaluate| |#1|)))) (|HasCategory| (-410 (-567)) (QUOTE (-1114))) (|HasCategory| |#1| (QUOTE (-365))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-2800 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasSignature| |#1| (LIST (QUOTE -4132) (LIST (|devaluate| |#1|) (QUOTE (-1178)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567)))))) (-2800 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (QUOTE (-1203))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -2416) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1178))))) (|HasSignature| |#1| (LIST (QUOTE -2847) (LIST (LIST (QUOTE -645) (QUOTE (-1178))) (|devaluate| |#1|)))))))
+(((-4424 "*") |has| |#1| (-172)) (-4415 |has| |#1| (-559)) (-4420 |has| |#1| (-365)) (-4414 |has| |#1| (-365)) (-4416 . T) (-4417 . T) (-4419 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567))) (|devaluate| |#1|)))) (|HasCategory| (-410 (-567)) (QUOTE (-1114))) (|HasCategory| |#1| (QUOTE (-365))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-2811 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasSignature| |#1| (LIST (QUOTE -4129) (LIST (|devaluate| |#1|) (QUOTE (-1179)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567)))))) (-2811 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (QUOTE (-1204))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -4083) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1179))))) (|HasSignature| |#1| (LIST (QUOTE -2859) (LIST (LIST (QUOTE -645) (QUOTE (-1179))) (|devaluate| |#1|)))))))
(-321 M)
((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,b1),...,(am,bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f, n)} returns \\spad{(p, r, [r1,...,rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}.")))
NIL
@@ -1222,7 +1222,7 @@ NIL
NIL
(-323 S)
((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The operation is commutative.")))
-((-4413 . T) (-4412 . T))
+((-4417 . T) (-4416 . T))
((|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-793))))
(-324 S E)
((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an, f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,[max(ei, fi) ci])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,...,an}} and \\spad{{b1,...,bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f, e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s, e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}\\spad{'s}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x, n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} a1\\spad{\\^}e1 ... an\\spad{\\^}en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}.")))
@@ -1238,19 +1238,19 @@ NIL
((|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-172))))
(-327 R E)
((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring.")))
-(((-4420 "*") |has| |#1| (-172)) (-4411 |has| |#1| (-559)) (-4412 . T) (-4413 . T) (-4415 . T))
+(((-4424 "*") |has| |#1| (-172)) (-4415 |has| |#1| (-559)) (-4416 . T) (-4417 . T) (-4419 . T))
NIL
(-328 S)
((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")))
-((-4419 . T) (-4418 . T))
-((-2800 (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2800 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
-(-329 S -3879)
+((-4423 . T) (-4422 . T))
+((-2811 (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2811 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
+(-329 S -3888)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace.")))
NIL
((|HasCategory| |#2| (QUOTE (-370))))
-(-330 -3879)
+(-330 -3888)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace.")))
-((-4410 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T))
+((-4414 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T))
NIL
(-331)
((|constructor| (NIL "This domain builds representations of program code segments for use with the FortranProgram domain.")) (|setLabelValue| (((|SingleInteger|) (|SingleInteger|)) "\\spad{setLabelValue(i)} resets the counter which produces labels to \\spad{i}")) (|getCode| (((|SExpression|) $) "\\spad{getCode(f)} returns a Lisp list of strings representing \\spad{f} in Fortran notation. This is used by the FortranProgram domain.")) (|printCode| (((|Void|) $) "\\spad{printCode(f)} prints out \\spad{f} in FORTRAN notation.")) (|code| (((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $) "\\spad{code(f)} returns the internal representation of the object represented by \\spad{f}.")) (|operation| (((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) "\\spad{operation(f)} returns the name of the operation represented by \\spad{f}.")) (|common| (($ (|Symbol|) (|List| (|Symbol|))) "\\spad{common(name,contents)} creates a representation a named common block.")) (|printStatement| (($ (|List| (|OutputForm|))) "\\spad{printStatement(l)} creates a representation of a PRINT statement.")) (|save| (($) "\\spad{save()} creates a representation of a SAVE statement.")) (|stop| (($) "\\spad{stop()} creates a representation of a STOP statement.")) (|block| (($ (|List| $)) "\\spad{block(l)} creates a representation of the statements in \\spad{l} as a block.")) (|assign| (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Integer|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Integer|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Float|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Integer|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|String|)) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.")) (|cond| (($ (|Switch|) $ $) "\\spad{cond(s,e,f)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e} ELSE \\spad{f}.") (($ (|Switch|) $) "\\spad{cond(s,e)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e}.")) (|returns| (($ (|Expression| (|Complex| (|Float|)))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Integer|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Float|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineComplex|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineInteger|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineFloat|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($) "\\spad{returns()} creates a representation of a FORTRAN RETURN statement.")) (|call| (($ (|String|)) "\\spad{call(s)} creates a representation of a FORTRAN CALL statement")) (|comment| (($ (|List| (|String|))) "\\spad{comment(s)} creates a representation of the Strings \\spad{s} as a multi-line FORTRAN comment.") (($ (|String|)) "\\spad{comment(s)} creates a representation of the String \\spad{s} as a single FORTRAN comment.")) (|continue| (($ (|SingleInteger|)) "\\spad{continue(l)} creates a representation of a FORTRAN CONTINUE labelled with \\spad{l}")) (|goto| (($ (|SingleInteger|)) "\\spad{goto(l)} creates a representation of a FORTRAN GOTO statement")) (|repeatUntilLoop| (($ (|Switch|) $) "\\spad{repeatUntilLoop(s,c)} creates a repeat ... until loop in FORTRAN.")) (|whileLoop| (($ (|Switch|) $) "\\spad{whileLoop(s,c)} creates a while loop in FORTRAN.")) (|forLoop| (($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $) "\\spad{forLoop(i=1..10,n,c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10 by \\spad{n}.") (($ (|SegmentBinding| (|Polynomial| (|Integer|))) $) "\\spad{forLoop(i=1..10,c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10.")))
@@ -1272,54 +1272,54 @@ NIL
((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,d)} \\undocumented{}")))
NIL
NIL
-(-336 S -3879 UP UPUP R)
+(-336 S -3888 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a, b)} makes the divisor \\spad{P:} \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
-(-337 -3879 UP UPUP R)
+(-337 -3888 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a, b)} makes the divisor \\spad{P:} \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
-(-338 -3879 UP UPUP R)
+(-338 -3888 UP UPUP R)
((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}.")))
NIL
NIL
(-339 S R)
((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -517) (QUOTE (-1178)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|))))
+((|HasCategory| |#2| (LIST (QUOTE -517) (QUOTE (-1179)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|))))
(-340 R)
((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex.")))
NIL
NIL
(-341 |basicSymbols| |subscriptedSymbols| R)
((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{pi(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function LOG10")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")))
-((-4412 . T) (-4413 . T) (-4415 . T))
+((-4416 . T) (-4417 . T) (-4419 . T))
((|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-381)))) (|HasCategory| $ (QUOTE (-1051))) (|HasCategory| $ (LIST (QUOTE -1040) (QUOTE (-567)))))
(-342 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f, p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}.")))
NIL
NIL
-(-343 S -3879 UP UPUP)
+(-343 S -3888 UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
NIL
((|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-365))))
-(-344 -3879 UP UPUP)
+(-344 -3888 UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
-((-4411 |has| (-410 |#2|) (-365)) (-4416 |has| (-410 |#2|) (-365)) (-4410 |has| (-410 |#2|) (-365)) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T))
+((-4415 |has| (-410 |#2|) (-365)) (-4420 |has| (-410 |#2|) (-365)) (-4414 |has| (-410 |#2|) (-365)) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T))
NIL
(-345 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
-((-4410 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T))
-((-2800 (|HasCategory| (-912 |#1|) (QUOTE (-145))) (|HasCategory| (-912 |#1|) (QUOTE (-370)))) (|HasCategory| (-912 |#1|) (QUOTE (-147))) (|HasCategory| (-912 |#1|) (QUOTE (-370))) (|HasCategory| (-912 |#1|) (QUOTE (-145))))
+((-4414 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T))
+((-2811 (|HasCategory| (-912 |#1|) (QUOTE (-145))) (|HasCategory| (-912 |#1|) (QUOTE (-370)))) (|HasCategory| (-912 |#1|) (QUOTE (-147))) (|HasCategory| (-912 |#1|) (QUOTE (-370))) (|HasCategory| (-912 |#1|) (QUOTE (-145))))
(-346 GF |defpol|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly.")))
-((-4410 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T))
-((-2800 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145))))
+((-4414 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T))
+((-2811 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145))))
(-347 GF |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
-((-4410 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T))
-((-2800 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145))))
+((-4414 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T))
+((-2811 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145))))
(-348 GF)
((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}.")))
NIL
@@ -1334,33 +1334,33 @@ NIL
NIL
(-351)
((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields.")))
-((-4410 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T))
+((-4414 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T))
NIL
-(-352 R UP -3879)
+(-352 R UP -3888)
((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
(-353 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4410 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T))
-((-2800 (|HasCategory| (-912 |#1|) (QUOTE (-145))) (|HasCategory| (-912 |#1|) (QUOTE (-370)))) (|HasCategory| (-912 |#1|) (QUOTE (-147))) (|HasCategory| (-912 |#1|) (QUOTE (-370))) (|HasCategory| (-912 |#1|) (QUOTE (-145))))
+((-4414 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T))
+((-2811 (|HasCategory| (-912 |#1|) (QUOTE (-145))) (|HasCategory| (-912 |#1|) (QUOTE (-370)))) (|HasCategory| (-912 |#1|) (QUOTE (-147))) (|HasCategory| (-912 |#1|) (QUOTE (-370))) (|HasCategory| (-912 |#1|) (QUOTE (-145))))
(-354 GF |uni|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4410 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T))
-((-2800 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145))))
+((-4414 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T))
+((-2811 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145))))
(-355 GF |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4410 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T))
-((-2800 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145))))
+((-4414 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T))
+((-2811 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145))))
(-356 |p| |n|)
((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}.")))
-((-4410 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T))
-((-2800 (|HasCategory| (-912 |#1|) (QUOTE (-145))) (|HasCategory| (-912 |#1|) (QUOTE (-370)))) (|HasCategory| (-912 |#1|) (QUOTE (-147))) (|HasCategory| (-912 |#1|) (QUOTE (-370))) (|HasCategory| (-912 |#1|) (QUOTE (-145))))
+((-4414 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T))
+((-2811 (|HasCategory| (-912 |#1|) (QUOTE (-145))) (|HasCategory| (-912 |#1|) (QUOTE (-370)))) (|HasCategory| (-912 |#1|) (QUOTE (-147))) (|HasCategory| (-912 |#1|) (QUOTE (-370))) (|HasCategory| (-912 |#1|) (QUOTE (-145))))
(-357 GF |defpol|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible.")))
-((-4410 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T))
-((-2800 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145))))
-(-358 -3879 GF)
+((-4414 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T))
+((-2811 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145))))
+(-358 -3888 GF)
((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
@@ -1368,21 +1368,21 @@ NIL
((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,x**q,x**(q**2),...,x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive.")))
NIL
NIL
-(-360 -3879 FP FPP)
+(-360 -3888 FP FPP)
((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")))
NIL
NIL
(-361 GF |n|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}.")))
-((-4410 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T))
-((-2800 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145))))
+((-4414 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T))
+((-2811 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145))))
(-362 R |ls|)
((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}.")))
NIL
NIL
(-363 S)
((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
-((-4415 . T))
+((-4419 . T))
NIL
(-364 S)
((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0.")))
@@ -1390,7 +1390,7 @@ NIL
NIL
(-365)
((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0.")))
-((-4410 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T))
+((-4414 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T))
NIL
(-366 |Name| S)
((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input.")))
@@ -1406,7 +1406,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-559))))
(-369 R)
((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis.")))
-((-4415 |has| |#1| (-559)) (-4413 . T) (-4412 . T))
+((-4419 |has| |#1| (-559)) (-4417 . T) (-4416 . T))
NIL
(-370)
((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set.")))
@@ -1418,7 +1418,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-365))))
(-372 R UP)
((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,..,vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,..,vn])} returns \\spad{determinant(traceMatrix([v1,..,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,..,an],[v1,..,vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,...,vm], basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra.")))
-((-4412 . T) (-4413 . T) (-4415 . T))
+((-4416 . T) (-4417 . T) (-4419 . T))
NIL
(-373 S A R B)
((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain.")))
@@ -1427,14 +1427,14 @@ NIL
(-374 A S)
((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4419)) (|HasCategory| |#2| (QUOTE (-851))) (|HasCategory| |#2| (QUOTE (-1102))))
+((|HasAttribute| |#1| (QUOTE -4423)) (|HasCategory| |#2| (QUOTE (-851))) (|HasCategory| |#2| (QUOTE (-1102))))
(-375 S)
((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
-((-4418 . T))
+((-4422 . T))
NIL
(-376 |VarSet| R)
((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}\\spad{xn}],{} [\\spad{v1},{}...,{}\\spad{vn}])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4413 . T) (-4412 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4417 . T) (-4416 . T))
NIL
(-377 S V)
((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm.")))
@@ -1446,7 +1446,7 @@ NIL
((|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))))
(-379 R)
((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}")))
-((-4415 . T))
+((-4419 . T))
NIL
(-380 |Par|)
((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf, lv, eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf, eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}.")))
@@ -1454,7 +1454,7 @@ NIL
NIL
(-381)
((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,exponent,\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{pi},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-4401 . T) (-4409 . T) (-3050 . T) (-4410 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T))
+((-4405 . T) (-4413 . T) (-3058 . T) (-4414 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T))
NIL
(-382 |Par|)
((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf, eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,lv,eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.")))
@@ -1462,11 +1462,11 @@ NIL
NIL
(-383 R S)
((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}")))
-((-4413 . T) (-4412 . T))
+((-4417 . T) (-4416 . T))
((|HasCategory| |#1| (QUOTE (-172))))
(-384 R |Basis|)
((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis, c: R)} such that \\spad{x} equals \\spad{reduce(+, map(x +-> monom(x.k, x.c), lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}.")))
-((-4413 . T) (-4412 . T))
+((-4417 . T) (-4416 . T))
NIL
(-385)
((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}.")))
@@ -1478,7 +1478,7 @@ NIL
NIL
(-387 R S)
((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored.")))
-((-4413 . T) (-4412 . T))
+((-4417 . T) (-4416 . T))
((|HasCategory| |#1| (QUOTE (-172))))
(-388 S)
((|constructor| (NIL "A free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x, y)} returns \\spad{[l, m, r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l, r) = [l, 1, r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x, y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l, r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x, y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x, y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x, y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x, y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
@@ -1490,7 +1490,7 @@ NIL
((|HasCategory| |#1| (QUOTE (-851))))
(-390)
((|constructor| (NIL "A category of domains which model machine arithmetic used by machines in the AXIOM-NAG link.")))
-((-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T))
+((-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T))
NIL
(-391)
((|constructor| (NIL "This domain provides an interface to names in the file system.")))
@@ -1502,13 +1502,13 @@ NIL
NIL
(-393 |n| |class| R)
((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra")))
-((-4413 . T) (-4412 . T))
+((-4417 . T) (-4416 . T))
NIL
(-394)
((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack")))
NIL
NIL
-(-395 -3879 UP UPUP R)
+(-395 -3888 UP UPUP R)
((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented")))
NIL
NIL
@@ -1532,11 +1532,11 @@ NIL
((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,t,lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,l,ll,lv,t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,ll,lv)} \\undocumented{}")))
NIL
NIL
-(-401 -1996 |returnType| -4165 |symbols|)
+(-401 -2007 |returnType| -4176 |symbols|)
((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}")))
NIL
NIL
-(-402 -3879 UP)
+(-402 -3888 UP)
((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: 6 October 1993 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(f, n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{D(f)} returns the derivative of \\spad{f}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f, n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{differentiate(f)} returns the derivative of \\spad{f}.")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p, [[j, Dj, Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,Dj,Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}")))
NIL
NIL
@@ -1550,15 +1550,15 @@ NIL
NIL
(-405)
((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0.")))
-((-4410 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T))
+((-4414 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T))
NIL
(-406 S)
((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
NIL
-((|HasAttribute| |#1| (QUOTE -4401)) (|HasAttribute| |#1| (QUOTE -4409)))
+((|HasAttribute| |#1| (QUOTE -4405)) (|HasAttribute| |#1| (QUOTE -4413)))
(-407)
((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
-((-3050 . T) (-4410 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T))
+((-3058 . T) (-4414 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T))
NIL
(-408 R S)
((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type.")))
@@ -1570,15 +1570,15 @@ NIL
NIL
(-410 S)
((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical.")))
-((-4405 -12 (|has| |#1| (-6 -4416)) (|has| |#1| (-455)) (|has| |#1| (-6 -4405))) (-4410 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T))
-((|HasCategory| |#1| (QUOTE (-911))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-1178)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-829)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#1| (QUOTE (-1024))) (|HasCategory| |#1| (QUOTE (-821))) (-2800 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-851)))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-829)))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-1153))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-381)))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-829)))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (-2800 (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-829))))) (-2800 (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (-12 (|HasCategory| |#1| (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-829))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#1| (LIST (QUOTE -517) (QUOTE (-1178)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-829)))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-548))) (-12 (|HasAttribute| |#1| (QUOTE -4416)) (|HasAttribute| |#1| (QUOTE -4405)) (|HasCategory| |#1| (QUOTE (-455)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (-2800 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-145)))))
+((-4409 -12 (|has| |#1| (-6 -4420)) (|has| |#1| (-455)) (|has| |#1| (-6 -4409))) (-4414 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T))
+((|HasCategory| |#1| (QUOTE (-911))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-1179)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-829)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#1| (QUOTE (-1024))) (|HasCategory| |#1| (QUOTE (-821))) (-2811 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-851)))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-829)))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-1154))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-381)))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-829)))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-829))))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (-12 (|HasCategory| |#1| (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-829))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#1| (LIST (QUOTE -517) (QUOTE (-1179)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-829)))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-548))) (-12 (|HasAttribute| |#1| (QUOTE -4420)) (|HasAttribute| |#1| (QUOTE -4409)) (|HasCategory| |#1| (QUOTE (-455)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-411 S R UP)
((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
NIL
NIL
(-412 R UP)
((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
-((-4412 . T) (-4413 . T) (-4415 . T))
+((-4416 . T) (-4417 . T) (-4419 . T))
NIL
(-413 A S)
((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991")))
@@ -1592,11 +1592,11 @@ NIL
((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,i)} \\undocumented{}")))
NIL
NIL
-(-416 R -3879 UP A)
+(-416 R -3888 UP A)
((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,...,fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,...,fn))} = the vector \\spad{[f1,...,fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} returns the vector \\spad{[f1,...,fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,...,fn])} returns the ideal \\spad{(f1,...,fn)}.")))
-((-4415 . T))
+((-4419 . T))
NIL
-(-417 R -3879 UP A |ibasis|)
+(-417 R -3888 UP A |ibasis|)
((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,...,fn])} = the module generated by \\spad{(f1,...,fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} = the vector \\spad{[f1,...,fn]}.")))
NIL
((|HasCategory| |#4| (LIST (QUOTE -1040) (|devaluate| |#2|))))
@@ -1610,12 +1610,12 @@ NIL
((|HasCategory| |#2| (QUOTE (-365))))
(-420 R)
((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#1| $ (|Integer|)) "\\spad{elt(a,i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
-((-4415 |has| |#1| (-559)) (-4413 . T) (-4412 . T))
+((-4419 |has| |#1| (-559)) (-4417 . T) (-4416 . T))
NIL
(-421 R)
((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,exponent,flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically.")))
-((-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T))
-((|HasCategory| |#1| (LIST (QUOTE -517) (QUOTE (-1178)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -310) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -287) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-1222))) (-2800 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-1222)))) (|HasCategory| |#1| (QUOTE (-1024))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -517) (QUOTE (-1178)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#1| (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-455))))
+((-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T))
+((|HasCategory| |#1| (LIST (QUOTE -517) (QUOTE (-1179)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -310) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -287) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-1223))) (-2811 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-1223)))) (|HasCategory| |#1| (QUOTE (-1024))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -517) (QUOTE (-1179)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#1| (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-455))))
(-422 R)
((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,2)} then \\spad{refine(u,factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,2) * primeFactor(5,2)}.")))
NIL
@@ -1642,17 +1642,17 @@ NIL
((|HasCategory| |#2| (QUOTE (-851))) (|HasCategory| |#2| (QUOTE (-370))))
(-428 S)
((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}.")))
-((-4418 . T) (-4408 . T) (-4419 . T))
+((-4422 . T) (-4412 . T) (-4423 . T))
NIL
-(-429 R -3879)
+(-429 R -3888)
((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")))
NIL
NIL
(-430 R E)
((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series")))
-((-4405 -12 (|has| |#1| (-6 -4405)) (|has| |#2| (-6 -4405))) (-4412 . T) (-4413 . T) (-4415 . T))
-((-12 (|HasAttribute| |#1| (QUOTE -4405)) (|HasAttribute| |#2| (QUOTE -4405))))
-(-431 R -3879)
+((-4409 -12 (|has| |#1| (-6 -4409)) (|has| |#2| (-6 -4409))) (-4416 . T) (-4417 . T) (-4419 . T))
+((-12 (|HasAttribute| |#1| (QUOTE -4409)) (|HasAttribute| |#2| (QUOTE -4409))))
+(-431 R -3888)
((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable.")))
NIL
NIL
@@ -1662,17 +1662,17 @@ NIL
((|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-476))) (|HasCategory| |#2| (QUOTE (-1114))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539)))))
(-433 R)
((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
-((-4415 -2800 (|has| |#1| (-1051)) (|has| |#1| (-476))) (-4413 |has| |#1| (-172)) (-4412 |has| |#1| (-172)) ((-4420 "*") |has| |#1| (-559)) (-4411 |has| |#1| (-559)) (-4416 |has| |#1| (-559)) (-4410 |has| |#1| (-559)))
+((-4419 -2811 (|has| |#1| (-1051)) (|has| |#1| (-476))) (-4417 |has| |#1| (-172)) (-4416 |has| |#1| (-172)) ((-4424 "*") |has| |#1| (-559)) (-4415 |has| |#1| (-559)) (-4420 |has| |#1| (-559)) (-4414 |has| |#1| (-559)))
NIL
-(-434 R -3879)
+(-434 R -3888)
((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator.")))
NIL
NIL
-(-435 R -3879)
+(-435 R -3888)
((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1, a2)} returns \\spad{[a, q1, q2, q]} such that \\spad{k(a1, a2) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,...,an])} returns \\spad{[a, [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.")))
NIL
((|HasCategory| |#2| (QUOTE (-27))))
-(-436 R -3879)
+(-436 R -3888)
((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented")))
NIL
NIL
@@ -1680,7 +1680,7 @@ NIL
((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\"")))
NIL
NIL
-(-438 R -3879 UP)
+(-438 R -3888 UP)
((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}")))
NIL
((|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-48)))))
@@ -1712,7 +1712,7 @@ NIL
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,sqf,pd,r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r,sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,p,listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object.")))
NIL
NIL
-(-446 R UP -3879)
+(-446 R UP -3888)
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}.")))
NIL
NIL
@@ -1750,16 +1750,16 @@ NIL
NIL
(-455)
((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y}.")))
-((-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T))
+((-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T))
NIL
(-456 R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,s2,..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,s2,..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed")))
-((-4415 |has| (-410 (-954 |#1|)) (-559)) (-4413 . T) (-4412 . T))
+((-4419 |has| (-410 (-954 |#1|)) (-559)) (-4417 . T) (-4416 . T))
((|HasCategory| (-410 (-954 |#1|)) (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| (-410 (-954 |#1|)) (QUOTE (-559))))
(-457 |vl| R E)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4420 "*") |has| |#2| (-172)) (-4411 |has| |#2| (-559)) (-4416 |has| |#2| (-6 -4416)) (-4413 . T) (-4412 . T) (-4415 . T))
-((|HasCategory| |#2| (QUOTE (-911))) (-2800 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-911)))) (-2800 (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-911)))) (-2800 (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-911)))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-172))) (-2800 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-559)))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-381))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-567))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567)))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))) (-2800 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-365))) (|HasAttribute| |#2| (QUOTE -4416)) (|HasCategory| |#2| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-911)))) (-2800 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-911)))) (|HasCategory| |#2| (QUOTE (-145)))))
+(((-4424 "*") |has| |#2| (-172)) (-4415 |has| |#2| (-559)) (-4420 |has| |#2| (-6 -4420)) (-4417 . T) (-4416 . T) (-4419 . T))
+((|HasCategory| |#2| (QUOTE (-911))) (-2811 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-911)))) (-2811 (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-911)))) (-2811 (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-911)))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-172))) (-2811 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-559)))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-381))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-567))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567)))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-365))) (|HasAttribute| |#2| (QUOTE -4420)) (|HasCategory| |#2| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-911)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-911)))) (|HasCategory| |#2| (QUOTE (-145)))))
(-458 R BP)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,prime,lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional.")))
NIL
@@ -1786,7 +1786,7 @@ NIL
NIL
(-464 |vl| R IS E |ff| P)
((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,e,x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,i,e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented")))
-((-4413 . T) (-4412 . T))
+((-4417 . T) (-4416 . T))
NIL
(-465 E V R P Q)
((|constructor| (NIL "Gosper\\spad{'s} summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b, n, new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}.")))
@@ -1794,7 +1794,7 @@ NIL
NIL
(-466 R E |VarSet| P)
((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(\\spad{lp})} returns the polynomial set whose members are the polynomials of \\axiom{\\spad{lp}}.")))
-((-4419 . T) (-4418 . T))
+((-4423 . T) (-4422 . T))
((-12 (|HasCategory| |#4| (QUOTE (-1102))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#4| (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#4| (LIST (QUOTE -614) (QUOTE (-863)))))
(-467 S R E)
((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)}} \\indented{2}{\\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)}} \\indented{2}{\\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)}} \\indented{2}{\\spad{product(a,product(b,c)) = product(product(a,b),c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}.")))
@@ -1824,7 +1824,7 @@ NIL
((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module.")))
NIL
NIL
-(-474 |lv| -3879 R)
+(-474 |lv| -3888 R)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}.")))
NIL
NIL
@@ -1834,23 +1834,23 @@ NIL
NIL
(-476)
((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}.")))
-((-4415 . T))
+((-4419 . T))
NIL
(-477 |Coef| |var| |cen|)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
-(((-4420 "*") |has| |#1| (-172)) (-4411 |has| |#1| (-559)) (-4416 |has| |#1| (-365)) (-4410 |has| |#1| (-365)) (-4412 . T) (-4413 . T) (-4415 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567))) (|devaluate| |#1|)))) (|HasCategory| (-410 (-567)) (QUOTE (-1114))) (|HasCategory| |#1| (QUOTE (-365))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-2800 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasSignature| |#1| (LIST (QUOTE -4132) (LIST (|devaluate| |#1|) (QUOTE (-1178)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567)))))) (-2800 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (QUOTE (-1203))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -2416) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1178))))) (|HasSignature| |#1| (LIST (QUOTE -2847) (LIST (LIST (QUOTE -645) (QUOTE (-1178))) (|devaluate| |#1|)))))))
+(((-4424 "*") |has| |#1| (-172)) (-4415 |has| |#1| (-559)) (-4420 |has| |#1| (-365)) (-4414 |has| |#1| (-365)) (-4416 . T) (-4417 . T) (-4419 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567))) (|devaluate| |#1|)))) (|HasCategory| (-410 (-567)) (QUOTE (-1114))) (|HasCategory| |#1| (QUOTE (-365))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-2811 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasSignature| |#1| (LIST (QUOTE -4129) (LIST (|devaluate| |#1|) (QUOTE (-1179)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567)))))) (-2811 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (QUOTE (-1204))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -4083) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1179))))) (|HasSignature| |#1| (LIST (QUOTE -2859) (LIST (LIST (QUOTE -645) (QUOTE (-1179))) (|devaluate| |#1|)))))))
(-478 |Key| |Entry| |Tbl| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
-((-4419 . T))
-((-12 (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1795) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4237) (|devaluate| |#2|)))))) (-2800 (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (QUOTE (-1102))) (|HasCategory| |#2| (QUOTE (-1102)))) (-2800 (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (LIST (QUOTE -615) (QUOTE (-539)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-851))) (-2800 (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (QUOTE (-1102))))
+((-4423 . T))
+((-12 (|HasCategory| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1809) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4236) (|devaluate| |#2|)))))) (-2811 (|HasCategory| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (QUOTE (-1102))) (|HasCategory| |#2| (QUOTE (-1102)))) (-2811 (|HasCategory| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (LIST (QUOTE -615) (QUOTE (-539)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-851))) (-2811 (|HasCategory| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (QUOTE (-1102))))
(-479 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")))
-((-4419 . T) (-4418 . T))
+((-4423 . T) (-4422 . T))
((-12 (|HasCategory| |#4| (QUOTE (-1102))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#4| (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -614) (QUOTE (-863)))))
(-480)
((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{pi()} returns the symbolic \\%\\spad{pi}.")))
-((-4410 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T))
+((-4414 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T))
NIL
(-481)
((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the case expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the has expression `e'.")))
@@ -1858,29 +1858,29 @@ NIL
NIL
(-482 |Key| |Entry| |hashfn|)
((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained.")))
-((-4418 . T) (-4419 . T))
-((-12 (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1795) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4237) (|devaluate| |#2|)))))) (-2800 (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (QUOTE (-1102))) (|HasCategory| |#2| (QUOTE (-1102)))) (-2800 (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (LIST (QUOTE -615) (QUOTE (-539)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#2| (QUOTE (-1102))) (-2800 (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))))
+((-4422 . T) (-4423 . T))
+((-12 (|HasCategory| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1809) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4236) (|devaluate| |#2|)))))) (-2811 (|HasCategory| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (QUOTE (-1102))) (|HasCategory| |#2| (QUOTE (-1102)))) (-2811 (|HasCategory| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (LIST (QUOTE -615) (QUOTE (-539)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#2| (QUOTE (-1102))) (-2811 (|HasCategory| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))))
(-483)
((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens, maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens, leftCandidate, rightCandidate, left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,wt,rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2")))
NIL
NIL
(-484 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4420 "*") |has| |#2| (-172)) (-4411 |has| |#2| (-559)) (-4416 |has| |#2| (-6 -4416)) (-4413 . T) (-4412 . T) (-4415 . T))
-((|HasCategory| |#2| (QUOTE (-911))) (-2800 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-911)))) (-2800 (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-911)))) (-2800 (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-911)))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-172))) (-2800 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-559)))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-381))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-567))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567)))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))) (-2800 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-365))) (|HasAttribute| |#2| (QUOTE -4416)) (|HasCategory| |#2| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-911)))) (-2800 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-911)))) (|HasCategory| |#2| (QUOTE (-145)))))
-(-485 -2612 S)
+(((-4424 "*") |has| |#2| (-172)) (-4415 |has| |#2| (-559)) (-4420 |has| |#2| (-6 -4420)) (-4417 . T) (-4416 . T) (-4419 . T))
+((|HasCategory| |#2| (QUOTE (-911))) (-2811 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-911)))) (-2811 (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-911)))) (-2811 (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-911)))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-172))) (-2811 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-559)))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-381))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-567))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567)))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-365))) (|HasAttribute| |#2| (QUOTE -4420)) (|HasCategory| |#2| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-911)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-911)))) (|HasCategory| |#2| (QUOTE (-145)))))
+(-485 -2622 S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4412 |has| |#2| (-1051)) (-4413 |has| |#2| (-1051)) (-4415 |has| |#2| (-6 -4415)) ((-4420 "*") |has| |#2| (-172)) (-4418 . T))
-((-2800 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))))) (-2800 (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1102)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1051)))) (-12 (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178))))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#2| (QUOTE (-365))) (-2800 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1051)))) (-2800 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365)))) (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-794))) (-2800 (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (QUOTE (-849)))) (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (QUOTE (-727))) (-2800 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1051)))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))) (-2800 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1051)))) (-2800 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1051)))) (-2800 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1051)))) (-2800 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1051)))) (|HasCategory| |#2| (QUOTE (-233))) (-2800 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (QUOTE (-1102)))) (|HasCategory| |#2| (QUOTE (-1102))) (-2800 (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-365)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-370)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-727)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-794)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-849)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1051)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1102))))) (-2800 (-12 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1051))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))))) (-2800 (-12 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))))) (|HasCategory| (-567) (QUOTE (-851))) (-12 (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1051)))) (-12 (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178))))) (-2800 (|HasCategory| |#2| (QUOTE (-1051))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1102)))) (|HasAttribute| |#2| (QUOTE -4415)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))))
+((-4416 |has| |#2| (-1051)) (-4417 |has| |#2| (-1051)) (-4419 |has| |#2| (-6 -4419)) ((-4424 "*") |has| |#2| (-172)) (-4422 . T))
+((-2811 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))))) (-2811 (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1102)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1051)))) (-12 (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179))))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#2| (QUOTE (-365))) (-2811 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1051)))) (-2811 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365)))) (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-794))) (-2811 (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (QUOTE (-849)))) (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (QUOTE (-727))) (-2811 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1051)))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1051)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1051)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1051)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1051)))) (|HasCategory| |#2| (QUOTE (-233))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (QUOTE (-1102)))) (|HasCategory| |#2| (QUOTE (-1102))) (-2811 (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-365)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-370)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-727)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-794)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-849)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1051)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1102))))) (-2811 (-12 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1051))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))))) (-2811 (-12 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))))) (|HasCategory| (-567) (QUOTE (-851))) (-12 (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1051)))) (-12 (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179))))) (-2811 (|HasCategory| |#2| (QUOTE (-1051))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1102)))) (|HasAttribute| |#2| (QUOTE -4419)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))))
(-486)
((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|ParameterAst|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header \\spad{`h'}.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|ParameterAst|))) "\\spad{headAst(f,[x1,..,xn])} constructs a function definition header.")))
NIL
NIL
(-487 S)
((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}.")))
-((-4418 . T) (-4419 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1102))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))))
-(-488 -3879 UP UPUP R)
+((-4422 . T) (-4423 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1102))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))))
+(-488 -3888 UP UPUP R)
((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree.")))
NIL
NIL
@@ -1890,12 +1890,12 @@ NIL
NIL
(-490)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion.")))
-((-4410 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T))
-((|HasCategory| (-567) (QUOTE (-911))) (|HasCategory| (-567) (LIST (QUOTE -1040) (QUOTE (-1178)))) (|HasCategory| (-567) (QUOTE (-145))) (|HasCategory| (-567) (QUOTE (-147))) (|HasCategory| (-567) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-567) (QUOTE (-1024))) (|HasCategory| (-567) (QUOTE (-821))) (-2800 (|HasCategory| (-567) (QUOTE (-821))) (|HasCategory| (-567) (QUOTE (-851)))) (|HasCategory| (-567) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| (-567) (QUOTE (-1153))) (|HasCategory| (-567) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| (-567) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| (-567) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| (-567) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| (-567) (QUOTE (-233))) (|HasCategory| (-567) (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| (-567) (LIST (QUOTE -517) (QUOTE (-1178)) (QUOTE (-567)))) (|HasCategory| (-567) (LIST (QUOTE -310) (QUOTE (-567)))) (|HasCategory| (-567) (LIST (QUOTE -287) (QUOTE (-567)) (QUOTE (-567)))) (|HasCategory| (-567) (QUOTE (-308))) (|HasCategory| (-567) (QUOTE (-548))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| (-567) (LIST (QUOTE -640) (QUOTE (-567)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-567) (QUOTE (-911)))) (-2800 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-567) (QUOTE (-911)))) (|HasCategory| (-567) (QUOTE (-145)))))
+((-4414 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T))
+((|HasCategory| (-567) (QUOTE (-911))) (|HasCategory| (-567) (LIST (QUOTE -1040) (QUOTE (-1179)))) (|HasCategory| (-567) (QUOTE (-145))) (|HasCategory| (-567) (QUOTE (-147))) (|HasCategory| (-567) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-567) (QUOTE (-1024))) (|HasCategory| (-567) (QUOTE (-821))) (-2811 (|HasCategory| (-567) (QUOTE (-821))) (|HasCategory| (-567) (QUOTE (-851)))) (|HasCategory| (-567) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| (-567) (QUOTE (-1154))) (|HasCategory| (-567) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| (-567) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| (-567) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| (-567) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| (-567) (QUOTE (-233))) (|HasCategory| (-567) (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| (-567) (LIST (QUOTE -517) (QUOTE (-1179)) (QUOTE (-567)))) (|HasCategory| (-567) (LIST (QUOTE -310) (QUOTE (-567)))) (|HasCategory| (-567) (LIST (QUOTE -287) (QUOTE (-567)) (QUOTE (-567)))) (|HasCategory| (-567) (QUOTE (-308))) (|HasCategory| (-567) (QUOTE (-548))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| (-567) (LIST (QUOTE -640) (QUOTE (-567)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-567) (QUOTE (-911)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-567) (QUOTE (-911)))) (|HasCategory| (-567) (QUOTE (-145)))))
(-491 A S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4418)) (|HasAttribute| |#1| (QUOTE -4419)) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))))
+((|HasAttribute| |#1| (QUOTE -4422)) (|HasAttribute| |#1| (QUOTE -4423)) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))))
(-492 S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
NIL
@@ -1916,33 +1916,33 @@ NIL
((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}.")))
NIL
NIL
-(-497 -3879 UP |AlExt| |AlPol|)
+(-497 -3888 UP |AlExt| |AlPol|)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p, f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP.")))
NIL
NIL
(-498)
((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number.")))
-((-4410 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T))
+((-4414 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T))
((|HasCategory| $ (QUOTE (-1051))) (|HasCategory| $ (LIST (QUOTE -1040) (QUOTE (-567)))))
(-499 S |mn|)
((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type.")))
-((-4419 . T) (-4418 . T))
-((-2800 (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2800 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
+((-4423 . T) (-4422 . T))
+((-2811 (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2811 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
(-500 R |mnRow| |mnCol|)
((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")))
-((-4418 . T) (-4419 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1102))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))))
+((-4422 . T) (-4423 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1102))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))))
(-501 K R UP)
((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,lr,n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,q,n)} returns the list \\spad{[bas,bas^Frob,bas^(Frob^2),...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,n,m,j)} \\undocumented")))
NIL
NIL
-(-502 R UP -3879)
+(-502 R UP -3888)
((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{mi} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn} and \\spad{mi} is a record \\spad{[basis,basisDen,basisInv]}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then a basis \\spad{v1,...,vn} for \\spad{mi} is given by \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1, m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,m2,d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,matrixOut,prime,n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,sing,n)} is \\spad{gcd(sing,g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
(-503 |mn|)
((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}.")))
-((-4419 . T) (-4418 . T))
+((-4423 . T) (-4422 . T))
((-12 (|HasCategory| (-112) (QUOTE (-1102))) (|HasCategory| (-112) (LIST (QUOTE -310) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-112) (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| (-112) (QUOTE (-1102))) (|HasCategory| (-112) (LIST (QUOTE -614) (QUOTE (-863)))))
(-504 K R UP L)
((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,p(x,y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.")))
@@ -1956,10 +1956,10 @@ NIL
((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}.")))
NIL
NIL
-(-507 -3879 |Expon| |VarSet| |DPoly|)
+(-507 -3888 |Expon| |VarSet| |DPoly|)
((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,f,lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}.")))
NIL
-((|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-1178)))))
+((|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-1179)))))
(-508 |vl| |nv|)
((|constructor| (NIL "\\indented{2}{This package provides functions for the primary decomposition of} polynomial ideals over the rational numbers. The ideals are members of the \\spadtype{PolynomialIdeals} domain,{} and the polynomial generators are required to be from the \\spadtype{DistributedMultivariatePolynomial} domain.")) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) "\\spad{contract(I,lvar)} contracts the ideal \\spad{I} to the polynomial ring \\spad{F[lvar]}.")) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{primaryDecomp(I)} returns a list of primary ideals such that their intersection is the ideal \\spad{I}.")) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radical(I)} returns the radical of the ideal \\spad{I}.")) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{prime?(I)} tests if the ideal \\spad{I} is prime.")) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrimary?(I)} tests if the ideal \\spad{I} is 0-dimensional primary.")) (|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrime?(I)} tests if the ideal \\spad{I} is a 0-dimensional prime.")))
NIL
@@ -2006,36 +2006,36 @@ NIL
((|HasCategory| |#2| (QUOTE (-793))))
(-519 S |mn|)
((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}")))
-((-4419 . T) (-4418 . T))
-((-2800 (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2800 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
+((-4423 . T) (-4422 . T))
+((-2811 (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2811 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
(-520)
((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|SpadAst|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|SpadAst|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|SpadAst|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'.")))
NIL
NIL
(-521 |p| |n|)
((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}.")))
-((-4410 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T))
-((-2800 (|HasCategory| (-584 |#1|) (QUOTE (-145))) (|HasCategory| (-584 |#1|) (QUOTE (-370)))) (|HasCategory| (-584 |#1|) (QUOTE (-147))) (|HasCategory| (-584 |#1|) (QUOTE (-370))) (|HasCategory| (-584 |#1|) (QUOTE (-145))))
+((-4414 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T))
+((-2811 (|HasCategory| (-584 |#1|) (QUOTE (-145))) (|HasCategory| (-584 |#1|) (QUOTE (-370)))) (|HasCategory| (-584 |#1|) (QUOTE (-147))) (|HasCategory| (-584 |#1|) (QUOTE (-370))) (|HasCategory| (-584 |#1|) (QUOTE (-145))))
(-522 R |mnRow| |mnCol| |Row| |Col|)
((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}.")))
-((-4418 . T) (-4419 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1102))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))))
+((-4422 . T) (-4423 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1102))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))))
(-523 S |mn|)
((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists.")))
-((-4419 . T) (-4418 . T))
-((-2800 (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2800 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
+((-4423 . T) (-4422 . T))
+((-2811 (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2811 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
(-524 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")))
NIL
-((|HasAttribute| |#3| (QUOTE -4419)))
+((|HasAttribute| |#3| (QUOTE -4423)))
(-525 R |Row| |Col| M QF |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field.")))
NIL
-((|HasAttribute| |#7| (QUOTE -4419)))
+((|HasAttribute| |#7| (QUOTE -4423)))
(-526 R |mnRow| |mnCol|)
((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa.")))
-((-4418 . T) (-4419 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1102))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-559))) (|HasAttribute| |#1| (QUOTE (-4420 "*"))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))))
+((-4422 . T) (-4423 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1102))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-559))) (|HasAttribute| |#1| (QUOTE (-4424 "*"))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))))
(-527)
((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'.")))
NIL
@@ -2068,7 +2068,7 @@ NIL
((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables")))
NIL
NIL
-(-535 K -3879 |Par|)
+(-535 K -3888 |Par|)
((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,eps,factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol, eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}")))
NIL
NIL
@@ -2092,7 +2092,7 @@ NIL
((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-541 K -3879 |Par|)
+(-541 K -3888 |Par|)
((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,lden,lvar,eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}.")))
NIL
NIL
@@ -2122,7 +2122,7 @@ NIL
NIL
(-548)
((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)},{} \\spad{0<=a<b>1},{} \\spad{(a,b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{a-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd.")))
-((-4416 . T) (-4417 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T))
+((-4420 . T) (-4421 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T))
NIL
(-549)
((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 16 bits.")))
@@ -2142,13 +2142,13 @@ NIL
NIL
(-553 |Key| |Entry| |addDom|)
((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}.")))
-((-4418 . T) (-4419 . T))
-((-12 (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1795) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4237) (|devaluate| |#2|)))))) (-2800 (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (QUOTE (-1102))) (|HasCategory| |#2| (QUOTE (-1102)))) (-2800 (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (LIST (QUOTE -615) (QUOTE (-539)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#2| (QUOTE (-1102))) (-2800 (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))))
-(-554 R -3879)
+((-4422 . T) (-4423 . T))
+((-12 (|HasCategory| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1809) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4236) (|devaluate| |#2|)))))) (-2811 (|HasCategory| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (QUOTE (-1102))) (|HasCategory| |#2| (QUOTE (-1102)))) (-2811 (|HasCategory| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (LIST (QUOTE -615) (QUOTE (-539)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#2| (QUOTE (-1102))) (-2811 (|HasCategory| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))))
+(-554 R -3888)
((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f, x, y, d)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}.")))
NIL
NIL
-(-555 R0 -3879 UP UPUP R)
+(-555 R0 -3888 UP UPUP R)
((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f, d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}.")))
NIL
NIL
@@ -2158,7 +2158,7 @@ NIL
NIL
(-557 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise.")))
-((-3050 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T))
+((-3058 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T))
NIL
(-558 S)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
@@ -2166,9 +2166,9 @@ NIL
NIL
(-559)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
-((-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T))
+((-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T))
NIL
-(-560 R -3879)
+(-560 R -3888)
((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,x,k,[k1,...,kn])} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f, x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f, x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,x,[g1,...,gn])} returns functions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} and \\spad{d(h+sum(ci log(gi)))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f, x, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise.")))
NIL
NIL
@@ -2180,7 +2180,7 @@ NIL
((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions.")))
NIL
NIL
-(-563 R -3879 L)
+(-563 R -3888 L)
((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x, y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,g,x,y,z,t,c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op, g, x, y, d, p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,k,f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,k,k,p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f, g, x, y, foo, t, c)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f, g, x, y, foo, d, p)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f, x, y, [u1,...,un], z, t, c)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f, x, y, [u1,...,un], d, p)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f, x, y, g, z, t, c)} returns functions \\spad{[h, d]} such that \\spad{dh/dx = f(x,y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f, x, y, g, d, p)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f, x, y, z, t, c)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f, x, y, d, p)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}.")))
NIL
((|HasCategory| |#3| (LIST (QUOTE -657) (|devaluate| |#2|))))
@@ -2188,31 +2188,31 @@ NIL
((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,1/2)},{} where \\spad{E(n,x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,m1,x2,m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,0)},{} where \\spad{B(n,x)} is the \\spad{n}th Bernoulli polynomial.")))
NIL
NIL
-(-565 -3879 UP UPUP R)
+(-565 -3888 UP UPUP R)
((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, ')} returns \\spad{[g,h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles.")))
NIL
NIL
-(-566 -3879 UP)
+(-566 -3888 UP)
((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, D)} returns \\spad{[g, h, s, p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}.")))
NIL
NIL
(-567)
((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")))
-((-4400 . T) (-4406 . T) (-4410 . T) (-4405 . T) (-4416 . T) (-4417 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T))
+((-4404 . T) (-4410 . T) (-4414 . T) (-4409 . T) (-4420 . T) (-4421 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T))
NIL
(-568)
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp, x = a..b, numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp, x = a..b, \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel, routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp, [a..b,c..d,...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp, a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp, a..b, epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp, a..b, epsabs, epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, a..b, epsrel, routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.")))
NIL
NIL
-(-569 R -3879 L)
+(-569 R -3888 L)
((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op, g, kx, y, x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp, f, g, x, y, foo)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a, b, x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f, x, y, [u1,...,un])} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f, x, y, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f, x, y)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}.")))
NIL
((|HasCategory| |#3| (LIST (QUOTE -657) (|devaluate| |#2|))))
-(-570 R -3879)
+(-570 R -3888)
((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f, x)} returns \\spad{[c, g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}.")))
NIL
((-12 (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-1141)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-630)))))
-(-571 -3879 UP)
+(-571 -3888 UP)
((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f, [g1,...,gn])} returns fractions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(ci log(gi)))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f, g)} returns fractions \\spad{[h, c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}.")))
NIL
NIL
@@ -2220,27 +2220,27 @@ NIL
((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer.")))
NIL
NIL
-(-573 -3879)
+(-573 -3888)
((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f, x, g)} returns fractions \\spad{[h, c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f, x, [g1,...,gn])} returns fractions \\spad{[h, [[ci,gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(ci log(gi)))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f, x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns \\spad{g} such that \\spad{dg/dx = f}.")))
NIL
NIL
(-574 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals.")))
-((-3050 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T))
+((-3058 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T))
NIL
(-575)
((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")))
NIL
NIL
-(-576 R -3879)
+(-576 R -3888)
((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f, x, int, pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f, x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f, x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,...,fn],x)} returns the set-theoretic union of \\spad{(varselect(f1,x),...,varselect(fn,x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1, l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k, [k1,...,kn], x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,...,kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,...,kn], x)} returns the \\spad{ki} which involve \\spad{x}.")))
NIL
-((-12 (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-285))) (|HasCategory| |#2| (QUOTE (-630))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-1178))))) (-12 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-285)))) (|HasCategory| |#1| (QUOTE (-559))))
-(-577 -3879 UP)
+((-12 (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-285))) (|HasCategory| |#2| (QUOTE (-630))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-1179))))) (-12 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-285)))) (|HasCategory| |#1| (QUOTE (-559))))
+(-577 -3888 UP)
((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p, ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f, ')} returns \\spad{[ir, s, p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p, foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p, ', t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f, ', [u1,...,un])} returns \\spad{[v, [c1,...,cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[ci * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f, ', g)} returns \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}.")))
NIL
NIL
-(-578 R -3879)
+(-578 R -3888)
((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f, s, t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form.")))
NIL
NIL
@@ -2262,28 +2262,28 @@ NIL
NIL
(-583 |p| |unBalanced?|)
((|constructor| (NIL "This domain implements \\spad{Zp},{} the \\spad{p}-adic completion of the integers. This is an internal domain.")))
-((-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T))
+((-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T))
NIL
(-584 |p|)
((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check.")))
-((-4410 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T))
+((-4414 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T))
((|HasCategory| $ (QUOTE (-147))) (|HasCategory| $ (QUOTE (-145))) (|HasCategory| $ (QUOTE (-370))))
(-585)
((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor.")))
NIL
NIL
-(-586 R -3879)
+(-586 R -3888)
((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}.")))
NIL
NIL
-(-587 E -3879)
+(-587 E -3888)
((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,ire)} \\undocumented")))
NIL
NIL
-(-588 -3879)
+(-588 -3888)
((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,l,ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}.")))
-((-4413 . T) (-4412 . T))
-((|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-1178)))))
+((-4417 . T) (-4416 . T))
+((|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-1179)))))
(-589 I)
((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise")))
NIL
@@ -2310,19 +2310,19 @@ NIL
NIL
(-595 |mn|)
((|constructor| (NIL "This domain implements low-level strings")))
-((-4419 . T) (-4418 . T))
-((-2800 (-12 (|HasCategory| (-144) (QUOTE (-851))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1102))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) (-2800 (|HasCategory| (-144) (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| (-144) (QUOTE (-1102))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -615) (QUOTE (-539)))) (-2800 (|HasCategory| (-144) (QUOTE (-851))) (|HasCategory| (-144) (QUOTE (-1102)))) (|HasCategory| (-144) (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| (-144) (QUOTE (-1102))) (|HasCategory| (-144) (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| (-144) (QUOTE (-1102))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144))))))
+((-4423 . T) (-4422 . T))
+((-2811 (-12 (|HasCategory| (-144) (QUOTE (-851))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1102))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) (-2811 (|HasCategory| (-144) (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| (-144) (QUOTE (-1102))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -615) (QUOTE (-539)))) (-2811 (|HasCategory| (-144) (QUOTE (-851))) (|HasCategory| (-144) (QUOTE (-1102)))) (|HasCategory| (-144) (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| (-144) (QUOTE (-1102))) (|HasCategory| (-144) (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| (-144) (QUOTE (-1102))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144))))))
(-596 E V R P)
((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n), n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n), n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}.")))
NIL
NIL
(-597 |Coef|)
((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,refer,var,cen,r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,g,taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,f)} returns the series \\spad{sum(fn(n) * an * x^n,n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}.")))
-(((-4420 "*") |has| |#1| (-172)) (-4411 |has| |#1| (-559)) (-4412 . T) (-4413 . T) (-4415 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-559))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-567)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-567)) (|devaluate| |#1|)))) (|HasCategory| (-567) (QUOTE (-1114))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -4132) (LIST (|devaluate| |#1|) (QUOTE (-1178)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-567))))))
+(((-4424 "*") |has| |#1| (-172)) (-4415 |has| |#1| (-559)) (-4416 . T) (-4417 . T) (-4419 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-559))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-567)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-567)) (|devaluate| |#1|)))) (|HasCategory| (-567) (QUOTE (-1114))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -4129) (LIST (|devaluate| |#1|) (QUOTE (-1179)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-567))))))
(-598 |Coef|)
((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}")))
-(((-4420 "*") |has| |#1| (-559)) (-4411 |has| |#1| (-559)) (-4412 . T) (-4413 . T) (-4415 . T))
+(((-4424 "*") |has| |#1| (-559)) (-4415 |has| |#1| (-559)) (-4416 . T) (-4417 . T) (-4419 . T))
((|HasCategory| |#1| (QUOTE (-559))))
(-599 A B)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,[x0,x1,x2,...])} returns \\spad{[f(x0),f(x1),f(x2),..]}.")))
@@ -2332,7 +2332,7 @@ NIL
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented")))
NIL
NIL
-(-601 R -3879 FG)
+(-601 R -3888 FG)
((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f, [k1,...,kn], [x1,...,xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{xi's} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{ki's},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain.")))
NIL
NIL
@@ -2342,12 +2342,12 @@ NIL
NIL
(-603 R |mn|)
((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index.")))
-((-4419 . T) (-4418 . T))
-((-2800 (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2800 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-727))) (|HasCategory| |#1| (QUOTE (-1051))) (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (QUOTE (-1051)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
+((-4423 . T) (-4422 . T))
+((-2811 (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2811 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-727))) (|HasCategory| |#1| (QUOTE (-1051))) (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (QUOTE (-1051)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
(-604 S |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4419)) (|HasCategory| |#2| (QUOTE (-851))) (|HasAttribute| |#1| (QUOTE -4418)) (|HasCategory| |#3| (QUOTE (-1102))))
+((|HasAttribute| |#1| (QUOTE -4423)) (|HasCategory| |#2| (QUOTE (-851))) (|HasAttribute| |#1| (QUOTE -4422)) (|HasCategory| |#3| (QUOTE (-1102))))
(-605 |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
NIL
@@ -2362,19 +2362,19 @@ NIL
NIL
(-608 R A)
((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A).")))
-((-4415 -2800 (-1667 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))) (-4413 . T) (-4412 . T))
-((-2800 (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -420) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -420) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -420) (|devaluate| |#1|)))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#2| (LIST (QUOTE -420) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|))))
+((-4419 -2811 (-1686 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))) (-4417 . T) (-4416 . T))
+((-2811 (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -420) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -420) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -420) (|devaluate| |#1|)))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#2| (LIST (QUOTE -420) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|))))
(-609 |Entry|)
((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")))
-((-4418 . T) (-4419 . T))
-((-12 (|HasCategory| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1795) (QUOTE (-1160))) (LIST (QUOTE |:|) (QUOTE -4237) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (LIST (QUOTE -615) (QUOTE (-539)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| (-1160) (QUOTE (-851))) (|HasCategory| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (LIST (QUOTE -614) (QUOTE (-863)))))
+((-4422 . T) (-4423 . T))
+((-12 (|HasCategory| (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1809) (QUOTE (-1161))) (LIST (QUOTE |:|) (QUOTE -4236) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (LIST (QUOTE -615) (QUOTE (-539)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| (-1161) (QUOTE (-851))) (|HasCategory| (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (LIST (QUOTE -614) (QUOTE (-863)))))
(-610 S |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}.")))
NIL
NIL
(-611 |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}.")))
-((-4419 . T))
+((-4423 . T))
NIL
(-612 R S)
((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented")))
@@ -2392,7 +2392,7 @@ NIL
((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}.")))
NIL
NIL
-(-616 -3879 UP)
+(-616 -3888 UP)
((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,a_1,a_2,ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,a_1,a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions.")))
NIL
NIL
@@ -2414,20 +2414,20 @@ NIL
NIL
(-621 R)
((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra.")))
-((-4415 . T))
+((-4419 . T))
NIL
(-622 A R S)
((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-4412 . T) (-4413 . T) (-4415 . T))
+((-4416 . T) (-4417 . T) (-4419 . T))
((|HasCategory| |#1| (QUOTE (-849))))
-(-623 R -3879)
+(-623 R -3888)
((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f, t, s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t), t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f, t, s)} if it cannot compute the transform.")))
NIL
NIL
(-624 R UP)
((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented")))
-((-4413 . T) (-4412 . T) ((-4420 "*") . T) (-4411 . T) (-4415 . T))
-((|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))))
+((-4417 . T) (-4416 . T) ((-4424 "*") . T) (-4415 . T) (-4419 . T))
+((|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))))
(-625 R E V P TS ST)
((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(\\spad{lp},{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(\\spad{ts})} returns \\axiom{\\spad{ts}} in an normalized shape if \\axiom{\\spad{ts}} is zero-dimensional.")))
NIL
@@ -2442,7 +2442,7 @@ NIL
NIL
(-628 |VarSet| R |Order|)
((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(\\spad{lv})} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}.")))
-((-4415 . T))
+((-4419 . T))
NIL
(-629 R |ls|)
((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}}. If \\axiom{\\spad{lp}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lp})} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(\\spad{lp})} returns \\spad{true} iff \\axiom{\\spad{lp}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{\\spad{lp}}.")))
@@ -2452,30 +2452,30 @@ NIL
((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%pi)} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{li(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{Ci(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{Si(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{Ei(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}.")))
NIL
NIL
-(-631 R -3879)
+(-631 R -3888)
((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{li(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{Ci(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{Si(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{Ei(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian")))
NIL
NIL
-(-632 |lv| -3879)
+(-632 |lv| -3888)
((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented")))
NIL
NIL
(-633)
((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|elt| (((|Any|) $ (|Symbol|)) "\\spad{elt(lib,k)} or \\spad{lib}.\\spad{k} extracts the value corresponding to the key \\spad{k} from the library \\spad{lib}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file.")))
-((-4419 . T))
-((-12 (|HasCategory| (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1795) (QUOTE (-1160))) (LIST (QUOTE |:|) (QUOTE -4237) (QUOTE (-52))))))) (-2800 (|HasCategory| (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (QUOTE (-1102))) (|HasCategory| (-52) (QUOTE (-1102)))) (-2800 (|HasCategory| (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-52) (QUOTE (-1102))) (|HasCategory| (-52) (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (LIST (QUOTE -615) (QUOTE (-539)))) (-12 (|HasCategory| (-52) (QUOTE (-1102))) (|HasCategory| (-52) (LIST (QUOTE -310) (QUOTE (-52))))) (|HasCategory| (-1160) (QUOTE (-851))) (-2800 (|HasCategory| (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-52) (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-52) (QUOTE (-1102))) (|HasCategory| (-52) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (QUOTE (-1102))))
+((-4423 . T))
+((-12 (|HasCategory| (-2 (|:| -1809 (-1161)) (|:| -4236 (-52))) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -1809 (-1161)) (|:| -4236 (-52))) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1809) (QUOTE (-1161))) (LIST (QUOTE |:|) (QUOTE -4236) (QUOTE (-52))))))) (-2811 (|HasCategory| (-2 (|:| -1809 (-1161)) (|:| -4236 (-52))) (QUOTE (-1102))) (|HasCategory| (-52) (QUOTE (-1102)))) (-2811 (|HasCategory| (-2 (|:| -1809 (-1161)) (|:| -4236 (-52))) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -1809 (-1161)) (|:| -4236 (-52))) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-52) (QUOTE (-1102))) (|HasCategory| (-52) (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-2 (|:| -1809 (-1161)) (|:| -4236 (-52))) (LIST (QUOTE -615) (QUOTE (-539)))) (-12 (|HasCategory| (-52) (QUOTE (-1102))) (|HasCategory| (-52) (LIST (QUOTE -310) (QUOTE (-52))))) (|HasCategory| (-1161) (QUOTE (-851))) (-2811 (|HasCategory| (-2 (|:| -1809 (-1161)) (|:| -4236 (-52))) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-52) (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-52) (QUOTE (-1102))) (|HasCategory| (-52) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -1809 (-1161)) (|:| -4236 (-52))) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -1809 (-1161)) (|:| -4236 (-52))) (QUOTE (-1102))))
(-634 S R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
NIL
((|HasCategory| |#2| (QUOTE (-365))))
(-635 R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4413 . T) (-4412 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4417 . T) (-4416 . T))
NIL
(-636 R A)
((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A).")))
-((-4415 -2800 (-1667 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))) (-4413 . T) (-4412 . T))
-((-2800 (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -420) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -420) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -420) (|devaluate| |#1|)))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#2| (LIST (QUOTE -420) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|))))
+((-4419 -2811 (-1686 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))) (-4417 . T) (-4416 . T))
+((-2811 (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -420) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -420) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -420) (|devaluate| |#1|)))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#2| (LIST (QUOTE -420) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|))))
(-637 R FE)
((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit \\spad{lim(x -> a,f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),x=a,\"left\")} computes the left hand real limit \\spad{lim(x -> a-,f(x))}; \\spad{limit(f(x),x=a,\"right\")} computes the right hand real limit \\spad{lim(x -> a+,f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),x = a)} computes the real limit \\spad{lim(x -> a,f(x))}.")))
NIL
@@ -2487,10 +2487,10 @@ NIL
(-639 S R)
((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise.")))
NIL
-((-1657 (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-365))))
+((-1673 (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-365))))
(-640 R)
((|constructor| (NIL "An extension ring with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A, v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}.")))
-((-4415 . T))
+((-4419 . T))
NIL
(-641 R)
((|constructor| (NIL "\\indented{2}{A set is an \\spad{R}-linear set if it is stable by dilation} \\indented{2}{by elements in the ring \\spad{R}.\\space{2}This category differs from} \\indented{2}{\\spad{Module} in that no other assumption (such as addition)} \\indented{2}{is made about the underlying set.} See Also: LeftLinearSet,{} RightLinearSet.")))
@@ -2510,8 +2510,8 @@ NIL
NIL
(-645 S)
((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil} is the empty list.")))
-((-4419 . T) (-4418 . T))
-((-2800 (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2800 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-829))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
+((-4423 . T) (-4422 . T))
+((-2811 (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2811 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-829))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
(-646 T$)
((|constructor| (NIL "This domain represents AST for Spad literals.")))
NIL
@@ -2522,8 +2522,8 @@ NIL
NIL
(-648 S)
((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,y,d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries.")))
-((-4418 . T) (-4419 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1102))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))))
+((-4422 . T) (-4423 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1102))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))))
(-649 R)
((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline")))
NIL
@@ -2535,22 +2535,22 @@ NIL
(-651 A S)
((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4419)))
+((|HasAttribute| |#1| (QUOTE -4423)))
(-652 S)
((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
NIL
NIL
-(-653 R -3879 L)
+(-653 R -3888 L)
((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op, g, x, a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{op y = g, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op, g, x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable.")))
NIL
NIL
(-654 A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
-((-4412 . T) (-4413 . T) (-4415 . T))
+((-4416 . T) (-4417 . T) (-4419 . T))
((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-365))))
(-655 A M)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}")))
-((-4412 . T) (-4413 . T) (-4415 . T))
+((-4416 . T) (-4417 . T) (-4419 . T))
((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-365))))
(-656 S A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
@@ -2558,15 +2558,15 @@ NIL
((|HasCategory| |#2| (QUOTE (-365))))
(-657 A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
-((-4412 . T) (-4413 . T) (-4415 . T))
+((-4416 . T) (-4417 . T) (-4419 . T))
NIL
-(-658 -3879 UP)
+(-658 -3888 UP)
((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a, zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-659 A -4074)
+(-659 A -3225)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
-((-4412 . T) (-4413 . T) (-4415 . T))
+((-4416 . T) (-4417 . T) (-4419 . T))
((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-365))))
(-660 A L)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,n,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")))
@@ -2582,7 +2582,7 @@ NIL
NIL
(-663 M R S)
((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-4413 . T) (-4412 . T))
+((-4417 . T) (-4416 . T))
((|HasCategory| |#1| (QUOTE (-792))))
(-664 R)
((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such exists.")))
@@ -2590,7 +2590,7 @@ NIL
NIL
(-665 |VarSet| R)
((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4413 . T) (-4412 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4417 . T) (-4416 . T))
((|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-172))))
(-666 A S)
((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
@@ -2598,13 +2598,13 @@ NIL
NIL
(-667 S)
((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
-((-4419 . T) (-4418 . T))
+((-4423 . T) (-4422 . T))
NIL
-(-668 -3879)
+(-668 -3888)
((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
-(-669 -3879 |Row| |Col| M)
+(-669 -3888 |Row| |Col| M)
((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
@@ -2614,8 +2614,8 @@ NIL
NIL
(-671 |n| R)
((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,R) b - b *\\$SQMATRIX(n,R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication.")))
-((-4415 . T) (-4418 . T) (-4412 . T) (-4413 . T))
-((|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE (-4420 "*"))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))) (-2800 (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-559))) (-2800 (|HasAttribute| |#2| (QUOTE (-4420 "*"))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-172))))
+((-4419 . T) (-4422 . T) (-4416 . T) (-4417 . T))
+((|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE (-4424 "*"))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))) (-2811 (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-559))) (-2811 (|HasAttribute| |#2| (QUOTE (-4424 "*"))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-172))))
(-672)
((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'.")))
NIL
@@ -2635,7 +2635,7 @@ NIL
(-676 R)
((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,x,y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,i,j,k,s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,i,j,k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,j,k)} create a matrix with all zero terms")))
NIL
-((-2800 (-12 (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1102))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
+((-2811 (-12 (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1102))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
(-677)
((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|SpadAst|) $) "\\spad{body(m)} returns the right hand side of the definition \\spad{`m'}.")) (|head| (((|HeadAst|) $) "\\spad{head(m)} returns the head of the macro definition \\spad{`m'}. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any.")))
NIL
@@ -2679,10 +2679,10 @@ NIL
(-687 S R |Row| |Col|)
((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
NIL
-((|HasAttribute| |#2| (QUOTE (-4420 "*"))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-559))))
+((|HasAttribute| |#2| (QUOTE (-4424 "*"))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-559))))
(-688 R |Row| |Col|)
((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
-((-4418 . T) (-4419 . T))
+((-4422 . T) (-4423 . T))
NIL
(-689 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that \\spad{m*n} = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,a,i,j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,a,i,j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,i,j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")))
@@ -2690,8 +2690,8 @@ NIL
((|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-559))))
(-690 R)
((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal.")))
-((-4418 . T) (-4419 . T))
-((-2800 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1102))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-559))) (|HasAttribute| |#1| (QUOTE (-4420 "*"))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
+((-4422 . T) (-4423 . T))
+((-2811 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1102))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-559))) (|HasAttribute| |#1| (QUOTE (-4424 "*"))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
(-691 R)
((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,b,c,m,n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,a,b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,a,r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,r,a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,a,b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,a,b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")))
NIL
@@ -2700,7 +2700,7 @@ NIL
((|constructor| (NIL "This domain implements the notion of optional value,{} where a computation may fail to produce expected value.")) (|nothing| (($) "\\spad{nothing} represents failure or absence of value.")) (|autoCoerce| ((|#1| $) "\\spad{autoCoerce} is a courtesy coercion function used by the compiler in case it knows that \\spad{`x'} really is a \\spadtype{T}.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} holds if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}.")) (|just| (($ |#1|) "\\spad{just x} injects the value \\spad{`x'} into \\%.")))
NIL
NIL
-(-693 S -3879 FLAF FLAS)
+(-693 S -3888 FLAF FLAS)
((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,xlist,kl,ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,xlist,k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")))
NIL
NIL
@@ -2710,11 +2710,11 @@ NIL
NIL
(-695)
((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex")))
-((-4411 . T) (-4416 |has| (-700) (-365)) (-4410 |has| (-700) (-365)) (-3056 . T) (-4417 |has| (-700) (-6 -4417)) (-4414 |has| (-700) (-6 -4414)) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T))
-((|HasCategory| (-700) (QUOTE (-147))) (|HasCategory| (-700) (QUOTE (-145))) (|HasCategory| (-700) (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| (-700) (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| (-700) (QUOTE (-370))) (|HasCategory| (-700) (QUOTE (-365))) (-2800 (|HasCategory| (-700) (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| (-700) (QUOTE (-365)))) (|HasCategory| (-700) (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| (-700) (QUOTE (-233))) (-2800 (|HasCategory| (-700) (QUOTE (-365))) (|HasCategory| (-700) (QUOTE (-351)))) (|HasCategory| (-700) (QUOTE (-351))) (|HasCategory| (-700) (LIST (QUOTE -287) (QUOTE (-700)) (QUOTE (-700)))) (|HasCategory| (-700) (LIST (QUOTE -310) (QUOTE (-700)))) (|HasCategory| (-700) (LIST (QUOTE -517) (QUOTE (-1178)) (QUOTE (-700)))) (|HasCategory| (-700) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| (-700) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| (-700) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| (-700) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (-2800 (|HasCategory| (-700) (QUOTE (-308))) (|HasCategory| (-700) (QUOTE (-365))) (|HasCategory| (-700) (QUOTE (-351)))) (|HasCategory| (-700) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-700) (QUOTE (-1024))) (|HasCategory| (-700) (QUOTE (-1203))) (-12 (|HasCategory| (-700) (QUOTE (-1004))) (|HasCategory| (-700) (QUOTE (-1203)))) (-2800 (-12 (|HasCategory| (-700) (QUOTE (-308))) (|HasCategory| (-700) (QUOTE (-911)))) (|HasCategory| (-700) (QUOTE (-365))) (-12 (|HasCategory| (-700) (QUOTE (-351))) (|HasCategory| (-700) (QUOTE (-911))))) (-2800 (-12 (|HasCategory| (-700) (QUOTE (-308))) (|HasCategory| (-700) (QUOTE (-911)))) (-12 (|HasCategory| (-700) (QUOTE (-365))) (|HasCategory| (-700) (QUOTE (-911)))) (-12 (|HasCategory| (-700) (QUOTE (-351))) (|HasCategory| (-700) (QUOTE (-911))))) (|HasCategory| (-700) (QUOTE (-548))) (-12 (|HasCategory| (-700) (QUOTE (-1062))) (|HasCategory| (-700) (QUOTE (-1203)))) (|HasCategory| (-700) (QUOTE (-1062))) (|HasCategory| (-700) (QUOTE (-308))) (|HasCategory| (-700) (QUOTE (-911))) (-2800 (-12 (|HasCategory| (-700) (QUOTE (-308))) (|HasCategory| (-700) (QUOTE (-911)))) (|HasCategory| (-700) (QUOTE (-365)))) (-2800 (-12 (|HasCategory| (-700) (QUOTE (-308))) (|HasCategory| (-700) (QUOTE (-911)))) (|HasCategory| (-700) (QUOTE (-559)))) (-12 (|HasCategory| (-700) (QUOTE (-233))) (|HasCategory| (-700) (QUOTE (-365)))) (-12 (|HasCategory| (-700) (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| (-700) (QUOTE (-365)))) (|HasCategory| (-700) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| (-700) (QUOTE (-559))) (|HasAttribute| (-700) (QUOTE -4417)) (|HasAttribute| (-700) (QUOTE -4414)) (-12 (|HasCategory| (-700) (QUOTE (-308))) (|HasCategory| (-700) (QUOTE (-911)))) (-2800 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-700) (QUOTE (-308))) (|HasCategory| (-700) (QUOTE (-911)))) (|HasCategory| (-700) (QUOTE (-145)))) (-2800 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-700) (QUOTE (-308))) (|HasCategory| (-700) (QUOTE (-911)))) (|HasCategory| (-700) (QUOTE (-351)))))
+((-4415 . T) (-4420 |has| (-700) (-365)) (-4414 |has| (-700) (-365)) (-3065 . T) (-4421 |has| (-700) (-6 -4421)) (-4418 |has| (-700) (-6 -4418)) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T))
+((|HasCategory| (-700) (QUOTE (-147))) (|HasCategory| (-700) (QUOTE (-145))) (|HasCategory| (-700) (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| (-700) (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| (-700) (QUOTE (-370))) (|HasCategory| (-700) (QUOTE (-365))) (-2811 (|HasCategory| (-700) (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| (-700) (QUOTE (-365)))) (|HasCategory| (-700) (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| (-700) (QUOTE (-233))) (-2811 (|HasCategory| (-700) (QUOTE (-365))) (|HasCategory| (-700) (QUOTE (-351)))) (|HasCategory| (-700) (QUOTE (-351))) (|HasCategory| (-700) (LIST (QUOTE -287) (QUOTE (-700)) (QUOTE (-700)))) (|HasCategory| (-700) (LIST (QUOTE -310) (QUOTE (-700)))) (|HasCategory| (-700) (LIST (QUOTE -517) (QUOTE (-1179)) (QUOTE (-700)))) (|HasCategory| (-700) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| (-700) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| (-700) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| (-700) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (-2811 (|HasCategory| (-700) (QUOTE (-308))) (|HasCategory| (-700) (QUOTE (-365))) (|HasCategory| (-700) (QUOTE (-351)))) (|HasCategory| (-700) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-700) (QUOTE (-1024))) (|HasCategory| (-700) (QUOTE (-1204))) (-12 (|HasCategory| (-700) (QUOTE (-1004))) (|HasCategory| (-700) (QUOTE (-1204)))) (-2811 (-12 (|HasCategory| (-700) (QUOTE (-308))) (|HasCategory| (-700) (QUOTE (-911)))) (|HasCategory| (-700) (QUOTE (-365))) (-12 (|HasCategory| (-700) (QUOTE (-351))) (|HasCategory| (-700) (QUOTE (-911))))) (-2811 (-12 (|HasCategory| (-700) (QUOTE (-308))) (|HasCategory| (-700) (QUOTE (-911)))) (-12 (|HasCategory| (-700) (QUOTE (-365))) (|HasCategory| (-700) (QUOTE (-911)))) (-12 (|HasCategory| (-700) (QUOTE (-351))) (|HasCategory| (-700) (QUOTE (-911))))) (|HasCategory| (-700) (QUOTE (-548))) (-12 (|HasCategory| (-700) (QUOTE (-1062))) (|HasCategory| (-700) (QUOTE (-1204)))) (|HasCategory| (-700) (QUOTE (-1062))) (|HasCategory| (-700) (QUOTE (-308))) (|HasCategory| (-700) (QUOTE (-911))) (-2811 (-12 (|HasCategory| (-700) (QUOTE (-308))) (|HasCategory| (-700) (QUOTE (-911)))) (|HasCategory| (-700) (QUOTE (-365)))) (-2811 (-12 (|HasCategory| (-700) (QUOTE (-308))) (|HasCategory| (-700) (QUOTE (-911)))) (|HasCategory| (-700) (QUOTE (-559)))) (-12 (|HasCategory| (-700) (QUOTE (-233))) (|HasCategory| (-700) (QUOTE (-365)))) (-12 (|HasCategory| (-700) (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| (-700) (QUOTE (-365)))) (|HasCategory| (-700) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| (-700) (QUOTE (-559))) (|HasAttribute| (-700) (QUOTE -4421)) (|HasAttribute| (-700) (QUOTE -4418)) (-12 (|HasCategory| (-700) (QUOTE (-308))) (|HasCategory| (-700) (QUOTE (-911)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-700) (QUOTE (-308))) (|HasCategory| (-700) (QUOTE (-911)))) (|HasCategory| (-700) (QUOTE (-145)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-700) (QUOTE (-308))) (|HasCategory| (-700) (QUOTE (-911)))) (|HasCategory| (-700) (QUOTE (-351)))))
(-696 S)
((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,d,n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}.")))
-((-4419 . T))
+((-4423 . T))
NIL
(-697 U)
((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,n,g,p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl, p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,f2,p)} computes the \\spad{gcd} of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}.")))
@@ -2724,13 +2724,13 @@ NIL
((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,b,c,d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,t,u,f,s1,l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,g,s1,s2,l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,g,h,j,s1,s2,l)} \\undocumented")))
NIL
NIL
-(-699 OV E -3879 PG)
+(-699 OV E -3888 PG)
((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field.")))
NIL
NIL
(-700)
((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,man,base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}")))
-((-3050 . T) (-4410 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T))
+((-3058 . T) (-4414 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T))
NIL
(-701 R)
((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m, d, p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m, d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus.")))
@@ -2738,7 +2738,7 @@ NIL
NIL
(-702)
((|constructor| (NIL "A domain which models the integer representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Expression| $) (|Expression| (|Integer|))) "\\spad{coerce(x)} returns \\spad{x} with coefficients in the domain")) (|maxint| (((|PositiveInteger|)) "\\spad{maxint()} returns the maximum integer in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{maxint(u)} sets the maximum integer in the model to \\spad{u}")))
-((-4417 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T))
+((-4421 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T))
NIL
(-703 S D1 D2 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,x,y)} returns a function \\spad{f: (D1, D2) -> I} defined by \\spad{f(x, y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1, D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function")))
@@ -2756,7 +2756,7 @@ NIL
((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}.")))
NIL
NIL
-(-707 S -2637 I)
+(-707 S -2647 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr, x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function")))
NIL
NIL
@@ -2766,7 +2766,7 @@ NIL
NIL
(-709 R)
((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i, i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\~= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")))
-((-4412 . T) (-4413 . T) (-4415 . T))
+((-4416 . T) (-4417 . T) (-4419 . T))
NIL
(-710 R1 UP1 UPUP1 R2 UP2 UPUP2)
((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f, p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}.")))
@@ -2776,25 +2776,25 @@ NIL
((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format.")))
NIL
NIL
-(-712 R |Mod| -1591 -4135 |exactQuo|)
+(-712 R |Mod| -3438 -2473 |exactQuo|)
((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
-((-4410 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T))
+((-4414 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T))
NIL
(-713 R |Rep|)
((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented")))
-(((-4420 "*") |has| |#1| (-172)) (-4411 |has| |#1| (-559)) (-4414 |has| |#1| (-365)) (-4416 |has| |#1| (-6 -4416)) (-4413 . T) (-4412 . T) (-4415 . T))
-((|HasCategory| |#1| (QUOTE (-911))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-381))))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-567))))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567)))))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (-2800 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-911)))) (-2800 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-911)))) (-2800 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1153))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4416)) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (-2800 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(((-4424 "*") |has| |#1| (-172)) (-4415 |has| |#1| (-559)) (-4418 |has| |#1| (-365)) (-4420 |has| |#1| (-6 -4420)) (-4417 . T) (-4416 . T) (-4419 . T))
+((|HasCategory| |#1| (QUOTE (-911))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-381))))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-567))))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567)))))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-911)))) (-2811 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-911)))) (-2811 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1154))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4420)) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-714 IS E |ff|)
((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,e)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented")))
NIL
NIL
(-715 R M)
((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f, u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1, op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}.")))
-((-4413 |has| |#1| (-172)) (-4412 |has| |#1| (-172)) (-4415 . T))
+((-4417 |has| |#1| (-172)) (-4416 |has| |#1| (-172)) (-4419 . T))
((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))))
-(-716 R |Mod| -1591 -4135 |exactQuo|)
+(-716 R |Mod| -3438 -2473 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
-((-4415 . T))
+((-4419 . T))
NIL
(-717 S R)
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
@@ -2802,11 +2802,11 @@ NIL
NIL
(-718 R)
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
-((-4413 . T) (-4412 . T))
+((-4417 . T) (-4416 . T))
NIL
-(-719 -3879)
+(-719 -3888)
((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,1],[1,0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,0],[0,1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,k],[0,1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,b,c,d)} returns \\spad{matrix [[a,b],[c,d]]}.")))
-((-4415 . T))
+((-4419 . T))
NIL
(-720 S)
((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation.")))
@@ -2830,7 +2830,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-351))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-370))))
(-725 R UP)
((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b, ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain.")))
-((-4411 |has| |#1| (-365)) (-4416 |has| |#1| (-365)) (-4410 |has| |#1| (-365)) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T))
+((-4415 |has| |#1| (-365)) (-4420 |has| |#1| (-365)) (-4414 |has| |#1| (-365)) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T))
NIL
(-726 S)
((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity.")))
@@ -2840,7 +2840,7 @@ NIL
((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity.")))
NIL
NIL
-(-728 -3879 UP)
+(-728 -3888 UP)
((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f, D)} returns \\spad{[p,n,s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f, D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p, D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m, s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p, D)} returns \\spad{[n,s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use.")))
NIL
NIL
@@ -2858,8 +2858,8 @@ NIL
NIL
(-732 |vl| R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")))
-(((-4420 "*") |has| |#2| (-172)) (-4411 |has| |#2| (-559)) (-4416 |has| |#2| (-6 -4416)) (-4413 . T) (-4412 . T) (-4415 . T))
-((|HasCategory| |#2| (QUOTE (-911))) (-2800 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-911)))) (-2800 (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-911)))) (-2800 (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-911)))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-172))) (-2800 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-559)))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-381))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-567))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567)))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))) (-2800 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-365))) (|HasAttribute| |#2| (QUOTE -4416)) (|HasCategory| |#2| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-911)))) (-2800 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-911)))) (|HasCategory| |#2| (QUOTE (-145)))))
+(((-4424 "*") |has| |#2| (-172)) (-4415 |has| |#2| (-559)) (-4420 |has| |#2| (-6 -4420)) (-4417 . T) (-4416 . T) (-4419 . T))
+((|HasCategory| |#2| (QUOTE (-911))) (-2811 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-911)))) (-2811 (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-911)))) (-2811 (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-911)))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-172))) (-2811 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-559)))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-381))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-567))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567)))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-365))) (|HasAttribute| |#2| (QUOTE -4420)) (|HasCategory| |#2| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-911)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-911)))) (|HasCategory| |#2| (QUOTE (-145)))))
(-733 E OV R PRF)
((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
@@ -2874,15 +2874,15 @@ NIL
NIL
(-736 R M)
((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,m)} creates a scalar multiple of the basis element \\spad{m}.")))
-((-4413 |has| |#1| (-172)) (-4412 |has| |#1| (-172)) (-4415 . T))
+((-4417 |has| |#1| (-172)) (-4416 |has| |#1| (-172)) (-4419 . T))
((-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-851))))
(-737 S)
((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements.")))
-((-4408 . T) (-4419 . T))
+((-4412 . T) (-4423 . T))
NIL
(-738 S)
((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,ms,number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,ms,number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,ms,number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,ms,number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}.")))
-((-4418 . T) (-4408 . T) (-4419 . T))
+((-4422 . T) (-4412 . T) (-4423 . T))
((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))))
(-739)
((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned.")))
@@ -2894,7 +2894,7 @@ NIL
NIL
(-741 |Coef| |Var|)
((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,x,n)} returns \\spad{min(n,order(f,x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[x1,x2,...,xk],[n1,n2,...,nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,[x1,x2,...,xk],[n1,n2,...,nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,x,n)} returns the coefficient of \\spad{x^n} in \\spad{f}.")))
-(((-4420 "*") |has| |#1| (-172)) (-4411 |has| |#1| (-559)) (-4413 . T) (-4412 . T) (-4415 . T))
+(((-4424 "*") |has| |#1| (-172)) (-4415 |has| |#1| (-559)) (-4417 . T) (-4416 . T) (-4419 . T))
NIL
(-742 OV E R P)
((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")))
@@ -2910,7 +2910,7 @@ NIL
NIL
(-745 R)
((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}.")))
-((-4413 . T) (-4412 . T))
+((-4417 . T) (-4416 . T))
NIL
(-746)
((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients. See \\downlink{Manual Page}{manpageXXc02}.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,n,scale,ifail)} finds all the roots of a real polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,n,scale,ifail)} finds all the roots of a complex polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02aff}.")))
@@ -2992,11 +2992,11 @@ NIL
((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable.")))
NIL
NIL
-(-766 -3879)
+(-766 -3888)
((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction.")))
NIL
NIL
-(-767 P -3879)
+(-767 P -3888)
((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")))
NIL
NIL
@@ -3004,7 +3004,7 @@ NIL
NIL
NIL
NIL
-(-769 UP -3879)
+(-769 UP -3888)
((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}.")))
NIL
NIL
@@ -3018,9 +3018,9 @@ NIL
NIL
(-772)
((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder.")))
-(((-4420 "*") . T))
+(((-4424 "*") . T))
NIL
-(-773 R -3879)
+(-773 R -3888)
((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,y), N(x,y), y, x)} returns \\spad{F(x,y)} such that \\spad{F(x,y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,y) dx + N(x,y) dy = 0},{} or \"failed\" if no first-integral can be found.")))
NIL
NIL
@@ -3040,7 +3040,7 @@ NIL
((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")))
NIL
NIL
-(-778 -3879 |ExtF| |SUEx| |ExtP| |n|)
+(-778 -3888 |ExtF| |SUEx| |ExtP| |n|)
((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented")))
NIL
NIL
@@ -3054,23 +3054,23 @@ NIL
NIL
(-781 R |VarSet|)
((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor.")))
-(((-4420 "*") |has| |#1| (-172)) (-4411 |has| |#1| (-559)) (-4416 |has| |#1| (-6 -4416)) (-4413 . T) (-4412 . T) (-4415 . T))
-((|HasCategory| |#1| (QUOTE (-911))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-911)))) (-2800 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-911)))) (-2800 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (-2800 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-1178))))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-1178)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-1178))))) (-2800 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-1178)))) (-1657 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-1178)))))) (-2800 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-1178)))) (-1657 (|HasCategory| |#1| (QUOTE (-548)))) (-1657 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-1178)))) (-1657 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-567))))) (-1657 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-1178)))) (-1657 (|HasCategory| |#1| (LIST (QUOTE -994) (QUOTE (-567))))))) (|HasAttribute| |#1| (QUOTE -4416)) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (-2800 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(((-4424 "*") |has| |#1| (-172)) (-4415 |has| |#1| (-559)) (-4420 |has| |#1| (-6 -4420)) (-4417 . T) (-4416 . T) (-4419 . T))
+((|HasCategory| |#1| (QUOTE (-911))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-911)))) (-2811 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-911)))) (-2811 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-1179))))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-1179)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-1179))))) (-2811 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-1179)))) (-1673 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-1179)))))) (-2811 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-1179)))) (-1673 (|HasCategory| |#1| (QUOTE (-548)))) (-1673 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-1179)))) (-1673 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-567))))) (-1673 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-1179)))) (-1673 (|HasCategory| |#1| (LIST (QUOTE -994) (QUOTE (-567))))))) (|HasAttribute| |#1| (QUOTE -4420)) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-782 R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
(-783 R)
((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}")))
-(((-4420 "*") |has| |#1| (-172)) (-4411 |has| |#1| (-559)) (-4414 |has| |#1| (-365)) (-4416 |has| |#1| (-6 -4416)) (-4413 . T) (-4412 . T) (-4415 . T))
-((|HasCategory| |#1| (QUOTE (-911))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-381))))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-567))))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567)))))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (-2800 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-911)))) (-2800 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-911)))) (-2800 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1153))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4416)) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (-2800 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(((-4424 "*") |has| |#1| (-172)) (-4415 |has| |#1| (-559)) (-4418 |has| |#1| (-365)) (-4420 |has| |#1| (-6 -4420)) (-4417 . T) (-4416 . T) (-4419 . T))
+((|HasCategory| |#1| (QUOTE (-911))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-381))))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-567))))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567)))))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-911)))) (-2811 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-911)))) (-2811 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1154))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4420)) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-784 R)
((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,r)} \\undocumented")))
NIL
((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))))
(-785 R E V P)
((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")))
-((-4419 . T) (-4418 . T))
+((-4423 . T) (-4422 . T))
NIL
(-786 S)
((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.")))
@@ -3122,25 +3122,25 @@ NIL
((|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-548))) (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (QUOTE (-851))) (|HasCategory| |#2| (QUOTE (-370))))
(-798 R)
((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}.")))
-((-4412 . T) (-4413 . T) (-4415 . T))
+((-4416 . T) (-4417 . T) (-4419 . T))
NIL
-(-799 -2800 R OS S)
+(-799 -2811 R OS S)
((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}.")))
NIL
NIL
(-800 R)
((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}.")))
-((-4412 . T) (-4413 . T) (-4415 . T))
-((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (LIST (QUOTE -517) (QUOTE (-1178)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|))) (-2800 (|HasCategory| (-1001 |#1|) (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567)))))) (-2800 (|HasCategory| (-1001 |#1|) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-1062))) (|HasCategory| |#1| (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1001 |#1|) (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| (-1001 |#1|) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))))
+((-4416 . T) (-4417 . T) (-4419 . T))
+((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (LIST (QUOTE -517) (QUOTE (-1179)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|))) (-2811 (|HasCategory| (-1001 |#1|) (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567)))))) (-2811 (|HasCategory| (-1001 |#1|) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-1062))) (|HasCategory| |#1| (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1001 |#1|) (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| (-1001 |#1|) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))))
(-801)
((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-802 R -3879 L)
+(-802 R -3888 L)
((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op, g, x)} returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{yi}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}.")))
NIL
NIL
-(-803 R -3879)
+(-803 R -3888)
((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m, x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m, v, x)} returns \\spad{[v_p, [v_1,...,v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.")))
NIL
NIL
@@ -3148,7 +3148,7 @@ NIL
((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions.")))
NIL
NIL
-(-805 R -3879)
+(-805 R -3888)
((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f, x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f, x)} returns the integral of \\spad{f} with respect to \\spad{x}.")))
NIL
NIL
@@ -3156,11 +3156,11 @@ NIL
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,epsabs,epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,xStart,xEnd,yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.")))
NIL
NIL
-(-807 -3879 UP UPUP R)
+(-807 -3888 UP UPUP R)
((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation.")))
NIL
NIL
-(-808 -3879 UP L LQ)
+(-808 -3888 UP L LQ)
((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op, [g1,...,gm])} returns \\spad{op0, [h1,...,hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op, [g1,...,gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op, g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution.")))
NIL
NIL
@@ -3168,41 +3168,41 @@ NIL
((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-810 -3879 UP L LQ)
+(-810 -3888 UP L LQ)
((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, zeros, ezfactor)} returns \\spad{[[f1, L1], [f2, L2], ... , [fk, Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z=0}. \\spad{zeros(C(x),H(x,y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk, Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op, ric)} returns \\spad{[[a1, L1], [a2, L2], ... , [ak, Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1, p1], [m2, p2], ... , [mk, pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}.")))
NIL
NIL
-(-811 -3879 UP)
+(-811 -3888 UP)
((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.")))
NIL
NIL
-(-812 -3879 L UP A LO)
+(-812 -3888 L UP A LO)
((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op, g)} returns \\spad{[m, v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,...,z_m) . (b_1,...,b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}.")))
NIL
NIL
-(-813 -3879 UP)
+(-813 -3888 UP)
((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk,Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{Li z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, ezfactor)} returns \\spad{[[f1,L1], [f2,L2],..., [fk,Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-814 -3879 LO)
+(-814 -3888 LO)
((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m, v)} returns \\spad{[m_0, v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,v)} returns \\spad{A,[[C_1,g_1,L_1,h_1],...,[C_k,g_k,L_k,h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}.")))
NIL
NIL
-(-815 -3879 LODO)
+(-815 -3888 LODO)
((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op, g, [f1,...,fm], I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op, g, [f1,...,fm])} returns \\spad{[u1,...,um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,...,fn], q, D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,...,fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.")))
NIL
NIL
-(-816 -2612 S |f|)
+(-816 -2622 S |f|)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4412 |has| |#2| (-1051)) (-4413 |has| |#2| (-1051)) (-4415 |has| |#2| (-6 -4415)) ((-4420 "*") |has| |#2| (-172)) (-4418 . T))
-((-2800 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))))) (-2800 (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1102)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1051)))) (-12 (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178))))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#2| (QUOTE (-365))) (-2800 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1051)))) (-2800 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365)))) (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-794))) (-2800 (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (QUOTE (-849)))) (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (QUOTE (-727))) (-2800 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1051)))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))) (-2800 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1051)))) (-2800 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1051)))) (-2800 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1051)))) (-2800 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1051)))) (|HasCategory| |#2| (QUOTE (-233))) (-2800 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (QUOTE (-1102)))) (|HasCategory| |#2| (QUOTE (-1102))) (-2800 (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-365)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-370)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-727)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-794)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-849)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1051)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1102))))) (-2800 (-12 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1051))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))))) (-2800 (-12 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))))) (|HasCategory| (-567) (QUOTE (-851))) (-12 (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1051)))) (-12 (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178))))) (-2800 (|HasCategory| |#2| (QUOTE (-1051))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1102)))) (|HasAttribute| |#2| (QUOTE -4415)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))))
+((-4416 |has| |#2| (-1051)) (-4417 |has| |#2| (-1051)) (-4419 |has| |#2| (-6 -4419)) ((-4424 "*") |has| |#2| (-172)) (-4422 . T))
+((-2811 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))))) (-2811 (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1102)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1051)))) (-12 (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179))))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#2| (QUOTE (-365))) (-2811 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1051)))) (-2811 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365)))) (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-794))) (-2811 (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (QUOTE (-849)))) (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (QUOTE (-727))) (-2811 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1051)))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1051)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1051)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1051)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1051)))) (|HasCategory| |#2| (QUOTE (-233))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (QUOTE (-1102)))) (|HasCategory| |#2| (QUOTE (-1102))) (-2811 (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-365)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-370)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-727)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-794)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-849)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1051)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1102))))) (-2811 (-12 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1051))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))))) (-2811 (-12 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))))) (|HasCategory| (-567) (QUOTE (-851))) (-12 (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1051)))) (-12 (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179))))) (-2811 (|HasCategory| |#2| (QUOTE (-1051))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1102)))) (|HasAttribute| |#2| (QUOTE -4419)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))))
(-817 R)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline")))
-(((-4420 "*") |has| |#1| (-172)) (-4411 |has| |#1| (-559)) (-4416 |has| |#1| (-6 -4416)) (-4413 . T) (-4412 . T) (-4415 . T))
-((|HasCategory| |#1| (QUOTE (-911))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-911)))) (-2800 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-911)))) (-2800 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| (-819 (-1178)) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-381))))) (-12 (|HasCategory| (-819 (-1178)) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-567))))) (-12 (|HasCategory| (-819 (-1178)) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| (-819 (-1178)) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567)))))) (-12 (|HasCategory| (-819 (-1178)) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (-2800 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4416)) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (-2800 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(((-4424 "*") |has| |#1| (-172)) (-4415 |has| |#1| (-559)) (-4420 |has| |#1| (-6 -4420)) (-4417 . T) (-4416 . T) (-4419 . T))
+((|HasCategory| |#1| (QUOTE (-911))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-911)))) (-2811 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-911)))) (-2811 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| (-819 (-1179)) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-381))))) (-12 (|HasCategory| (-819 (-1179)) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-567))))) (-12 (|HasCategory| (-819 (-1179)) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| (-819 (-1179)) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567)))))) (-12 (|HasCategory| (-819 (-1179)) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4420)) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-818 |Kernels| R |var|)
((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable.")))
-(((-4420 "*") |has| |#2| (-365)) (-4411 |has| |#2| (-365)) (-4416 |has| |#2| (-365)) (-4410 |has| |#2| (-365)) (-4415 . T) (-4413 . T) (-4412 . T))
+(((-4424 "*") |has| |#2| (-365)) (-4415 |has| |#2| (-365)) (-4420 |has| |#2| (-365)) (-4414 |has| |#2| (-365)) (-4419 . T) (-4417 . T) (-4416 . T))
((|HasCategory| |#2| (QUOTE (-365))))
(-819 S)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u})).")))
@@ -3214,7 +3214,7 @@ NIL
((|HasCategory| |#1| (QUOTE (-851))))
(-821)
((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline")))
-((-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T))
+((-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T))
NIL
(-822)
((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}")))
@@ -3242,7 +3242,7 @@ NIL
NIL
(-828 P R)
((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite\\spad{''} in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}.")))
-((-4412 . T) (-4413 . T) (-4415 . T))
+((-4416 . T) (-4417 . T) (-4419 . T))
((|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-233))))
(-829)
((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev, u, true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev, u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u, true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object.")))
@@ -3254,7 +3254,7 @@ NIL
NIL
(-831 S)
((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}.")))
-((-4418 . T) (-4408 . T) (-4419 . T))
+((-4422 . T) (-4412 . T) (-4423 . T))
NIL
(-832)
((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server,{} reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls \\spadignore{e.g.} \\axiom{Omserve(4000,{}60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,timeout)} puts AXIOM into server mode on port number \\axiom{\\spad{portnum}}. The parameter \\axiom{\\spad{timeout}} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,u)} attempts to output \\axiom{\\spad{u}} on \\aciom{\\spad{c}} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{\\spad{c}} and returns the appropriate AXIOM object.")))
@@ -3266,8 +3266,8 @@ NIL
NIL
(-834 R)
((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity.")))
-((-4415 |has| |#1| (-849)))
-((|HasCategory| |#1| (QUOTE (-849))) (|HasCategory| |#1| (QUOTE (-21))) (-2800 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-849)))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (-2800 (|HasCategory| |#1| (QUOTE (-849))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-548))))
+((-4419 |has| |#1| (-849)))
+((|HasCategory| |#1| (QUOTE (-849))) (|HasCategory| |#1| (QUOTE (-21))) (-2811 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-849)))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (-2811 (|HasCategory| |#1| (QUOTE (-849))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-548))))
(-835 A S)
((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#2|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#2| $) "\\spad{name(op)} returns the externam name of \\spad{op}.")))
NIL
@@ -3278,7 +3278,7 @@ NIL
NIL
(-837 R)
((|constructor| (NIL "Algebra of ADDITIVE operators over a ring.")))
-((-4413 |has| |#1| (-172)) (-4412 |has| |#1| (-172)) (-4415 . T))
+((-4417 |has| |#1| (-172)) (-4416 |has| |#1| (-172)) (-4419 . T))
((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))))
(-838)
((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \\spad{\"k\"} (constructors),{} \\spad{\"d\"} (domains),{} \\spad{\"c\"} (categories) or \\spad{\"p\"} (packages).")))
@@ -3306,13 +3306,13 @@ NIL
NIL
(-844 R)
((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity.")))
-((-4415 |has| |#1| (-849)))
-((|HasCategory| |#1| (QUOTE (-849))) (|HasCategory| |#1| (QUOTE (-21))) (-2800 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-849)))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (-2800 (|HasCategory| |#1| (QUOTE (-849))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-548))))
+((-4419 |has| |#1| (-849)))
+((|HasCategory| |#1| (QUOTE (-849))) (|HasCategory| |#1| (QUOTE (-21))) (-2811 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-849)))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (-2811 (|HasCategory| |#1| (QUOTE (-849))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-548))))
(-845)
((|constructor| (NIL "Ordered finite sets.")) (|max| (($) "\\spad{max} is the maximum value of \\%.")) (|min| (($) "\\spad{min} is the minimum value of \\%.")))
NIL
NIL
-(-846 -2612 S)
+(-846 -2622 S)
((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering.")))
NIL
NIL
@@ -3326,7 +3326,7 @@ NIL
NIL
(-849)
((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0.")))
-((-4415 . T))
+((-4419 . T))
NIL
(-850 S)
((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set.")))
@@ -3342,19 +3342,19 @@ NIL
((|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-172))))
(-853 R)
((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")))
-((-4412 . T) (-4413 . T) (-4415 . T))
+((-4416 . T) (-4417 . T) (-4419 . T))
NIL
(-854 R C)
((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p, c, m, sigma, delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p, q, sigma, delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use.")))
NIL
((|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559))))
-(-855 R |sigma| -1781)
+(-855 R |sigma| -3116)
((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p, x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable.")))
-((-4412 . T) (-4413 . T) (-4415 . T))
+((-4416 . T) (-4417 . T) (-4419 . T))
((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-365))))
-(-856 |x| R |sigma| -1781)
+(-856 |x| R |sigma| -3116)
((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")))
-((-4412 . T) (-4413 . T) (-4415 . T))
+((-4416 . T) (-4417 . T) (-4419 . T))
((|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-365))))
(-857 R)
((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n, n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,n,x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!, n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}.")))
@@ -3398,7 +3398,7 @@ NIL
NIL
(-867 R |vl| |wl| |wtlevel|)
((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")))
-((-4413 |has| |#1| (-172)) (-4412 |has| |#1| (-172)) (-4415 . T))
+((-4417 |has| |#1| (-172)) (-4416 |has| |#1| (-172)) (-4419 . T))
((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))))
(-868 R PS UP)
((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,dd,ns,ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")))
@@ -3410,24 +3410,24 @@ NIL
NIL
(-870 |p|)
((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}.")))
-((-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T))
+((-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T))
NIL
(-871 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
-((-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T))
+((-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T))
NIL
(-872 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
-((-4410 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T))
-((|HasCategory| (-871 |#1|) (QUOTE (-911))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -1040) (QUOTE (-1178)))) (|HasCategory| (-871 |#1|) (QUOTE (-145))) (|HasCategory| (-871 |#1|) (QUOTE (-147))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-871 |#1|) (QUOTE (-1024))) (|HasCategory| (-871 |#1|) (QUOTE (-821))) (-2800 (|HasCategory| (-871 |#1|) (QUOTE (-821))) (|HasCategory| (-871 |#1|) (QUOTE (-851)))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| (-871 |#1|) (QUOTE (-1153))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| (-871 |#1|) (QUOTE (-233))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -517) (QUOTE (-1178)) (LIST (QUOTE -871) (|devaluate| |#1|)))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -310) (LIST (QUOTE -871) (|devaluate| |#1|)))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -287) (LIST (QUOTE -871) (|devaluate| |#1|)) (LIST (QUOTE -871) (|devaluate| |#1|)))) (|HasCategory| (-871 |#1|) (QUOTE (-308))) (|HasCategory| (-871 |#1|) (QUOTE (-548))) (|HasCategory| (-871 |#1|) (QUOTE (-851))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-871 |#1|) (QUOTE (-911)))) (-2800 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-871 |#1|) (QUOTE (-911)))) (|HasCategory| (-871 |#1|) (QUOTE (-145)))))
+((-4414 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T))
+((|HasCategory| (-871 |#1|) (QUOTE (-911))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -1040) (QUOTE (-1179)))) (|HasCategory| (-871 |#1|) (QUOTE (-145))) (|HasCategory| (-871 |#1|) (QUOTE (-147))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-871 |#1|) (QUOTE (-1024))) (|HasCategory| (-871 |#1|) (QUOTE (-821))) (-2811 (|HasCategory| (-871 |#1|) (QUOTE (-821))) (|HasCategory| (-871 |#1|) (QUOTE (-851)))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| (-871 |#1|) (QUOTE (-1154))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| (-871 |#1|) (QUOTE (-233))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -517) (QUOTE (-1179)) (LIST (QUOTE -871) (|devaluate| |#1|)))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -310) (LIST (QUOTE -871) (|devaluate| |#1|)))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -287) (LIST (QUOTE -871) (|devaluate| |#1|)) (LIST (QUOTE -871) (|devaluate| |#1|)))) (|HasCategory| (-871 |#1|) (QUOTE (-308))) (|HasCategory| (-871 |#1|) (QUOTE (-548))) (|HasCategory| (-871 |#1|) (QUOTE (-851))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-871 |#1|) (QUOTE (-911)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-871 |#1|) (QUOTE (-911)))) (|HasCategory| (-871 |#1|) (QUOTE (-145)))))
(-873 |p| PADIC)
((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}.")))
-((-4410 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T))
-((|HasCategory| |#2| (QUOTE (-911))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-1178)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (QUOTE (-1024))) (|HasCategory| |#2| (QUOTE (-821))) (-2800 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-851)))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-1153))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#2| (LIST (QUOTE -517) (QUOTE (-1178)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-548))) (|HasCategory| |#2| (QUOTE (-851))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-911)))) (-2800 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-911)))) (|HasCategory| |#2| (QUOTE (-145)))))
+((-4414 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T))
+((|HasCategory| |#2| (QUOTE (-911))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-1179)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (QUOTE (-1024))) (|HasCategory| |#2| (QUOTE (-821))) (-2811 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-851)))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-1154))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#2| (LIST (QUOTE -517) (QUOTE (-1179)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-548))) (|HasCategory| |#2| (QUOTE (-851))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-911)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-911)))) (|HasCategory| |#2| (QUOTE (-145)))))
(-874 S T$)
((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of \\spad{`p'}.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of \\spad{`p'}.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,t)} returns a pair object composed of \\spad{`s'} and \\spad{`t'}.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#2| (QUOTE (-1102)))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#2| (QUOTE (-1102)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))))
+((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#2| (QUOTE (-1102)))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#2| (QUOTE (-1102)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))))
(-875)
((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value.")))
NIL
@@ -3487,7 +3487,7 @@ NIL
(-889 |Base| |Subject| |Pat|)
((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,...,vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,...,en], pat)} matches the pattern pat on the list of expressions \\spad{[e1,...,en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,...,en], pat)} tests if the list of expressions \\spad{[e1,...,en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr, pat)} tests if the expression \\spad{expr} matches the pattern pat.")))
NIL
-((-12 (-1657 (|HasCategory| |#2| (QUOTE (-1051)))) (-1657 (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-1178)))))) (-12 (|HasCategory| |#2| (QUOTE (-1051))) (-1657 (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-1178)))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-1178)))))
+((-12 (-1673 (|HasCategory| |#2| (QUOTE (-1051)))) (-1673 (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-1179)))))) (-12 (|HasCategory| |#2| (QUOTE (-1051))) (-1673 (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-1179)))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-1179)))))
(-890 R A B)
((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f, [(v1,a1),...,(vn,an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))].")))
NIL
@@ -3496,7 +3496,7 @@ NIL
((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r, p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,e1],...,[vn,en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var, expr, r, val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var, r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a, b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match.")))
NIL
NIL
-(-892 R -2637)
+(-892 R -2647)
((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,...,vn], p)} returns \\spad{f(v1,...,vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v, p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p, [a1,...,an], f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,...,an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p, [f1,...,fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p, f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned.")))
NIL
NIL
@@ -3520,7 +3520,7 @@ NIL
((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-898 UP -3879)
+(-898 UP -3888)
((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,m,n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented")))
NIL
NIL
@@ -3538,19 +3538,19 @@ NIL
NIL
(-902 S)
((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x, [s1,...,sn], [n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x, s1, n1)..., sn, nn)}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x, s, n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{D(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x, s1)..., sn)}.") (($ $ |#1|) "\\spad{D(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x, [s1,...,sn], [n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x, s, n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}.") (($ $ |#1|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")))
-((-4415 . T))
+((-4419 . T))
NIL
(-903 S)
((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|ptree| (($ $ $) "\\spad{ptree(x,y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1102))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1102))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))))
(-904 |n| R)
((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}")))
NIL
NIL
(-905 S)
((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p, el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|elt| ((|#1| $ |#1|) "\\spad{elt(p, el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|eval| ((|#1| $ |#1|) "\\spad{eval(p, el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.")))
-((-4415 . T))
+((-4419 . T))
NIL
(-906 S)
((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,m,n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,0,1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}.")))
@@ -3558,8 +3558,8 @@ NIL
NIL
(-907 S)
((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,...,n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(p)} returns the set of points moved by the permutation \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation.")))
-((-4415 . T))
-((-2800 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-851)))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-851))))
+((-4419 . T))
+((-2811 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-851)))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-851))))
(-908 R E |VarSet| S)
((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,p,v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned.")))
NIL
@@ -3574,13 +3574,13 @@ NIL
((|HasCategory| |#1| (QUOTE (-145))))
(-911)
((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}.")))
-((-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T))
+((-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T))
NIL
(-912 |p|)
((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime.")))
-((-4410 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T))
+((-4414 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T))
((|HasCategory| $ (QUOTE (-147))) (|HasCategory| $ (QUOTE (-145))) (|HasCategory| $ (QUOTE (-370))))
-(-913 R0 -3879 UP UPUP R)
+(-913 R0 -3888 UP UPUP R)
((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented")))
NIL
NIL
@@ -3594,7 +3594,7 @@ NIL
NIL
(-916 R)
((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact\\spad{''} form has only one fractional term per prime in the denominator,{} while the \\spad{``p}-adic\\spad{''} form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,x)} is a utility function that expands the second argument \\spad{x} \\spad{``p}-adically\\spad{''} in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction.")))
-((-4410 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T))
+((-4414 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T))
NIL
(-917 R)
((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num, facdenom, var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf, var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var.")))
@@ -3608,7 +3608,7 @@ NIL
((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,...,nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(li)} constructs the janko group acting on the 100 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(li)} constructs the mathieu group acting on the 24 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(li)} constructs the mathieu group acting on the 23 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(li)} constructs the mathieu group acting on the 22 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(li)} constructs the mathieu group acting on the 12 integers given in the list {\\em li}. Note: duplicates in the list will be removed Error: if {\\em li} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(li)} constructs the mathieu group acting on the 11 integers given in the list {\\em li}. Note: duplicates in the list will be removed. error,{} if {\\em li} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,...,ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,...,ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,...,nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em ni}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(li)} constructs the alternating group acting on the integers in the list {\\em li},{} generators are in general the {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (li.1,li.2)} with {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,2)} with {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(li)} constructs the symmetric group acting on the integers in the list {\\em li},{} generators are the cycle given by {\\em li} and the 2-cycle {\\em (li.1,li.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,...,n)} and the 2-cycle {\\em (1,2)}.")))
NIL
NIL
-(-920 -3879)
+(-920 -3888)
((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}.")))
NIL
NIL
@@ -3618,17 +3618,17 @@ NIL
NIL
(-922)
((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,...,fn],h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,...,fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,...,fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}")))
-((-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T))
+((-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T))
NIL
(-923)
((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}.")))
-(((-4420 "*") . T))
+(((-4424 "*") . T))
NIL
-(-924 -3879 P)
+(-924 -3888 P)
((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,l2)} \\undocumented")))
NIL
NIL
-(-925 |xx| -3879)
+(-925 |xx| -3888)
((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,lf,lg)} \\undocumented")))
NIL
NIL
@@ -3652,7 +3652,7 @@ NIL
((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented")))
NIL
NIL
-(-931 R -3879)
+(-931 R -3888)
((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol.")))
NIL
NIL
@@ -3664,7 +3664,7 @@ NIL
((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B).")))
NIL
NIL
-(-934 S R -3879)
+(-934 S R -3888)
((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
@@ -3684,11 +3684,11 @@ NIL
((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p, pat, res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p, pat, res, vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables.")))
NIL
((|HasCategory| |#3| (LIST (QUOTE -888) (|devaluate| |#1|))))
-(-939 R -3879 -2637)
+(-939 R -3888 -2647)
((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol.")))
NIL
NIL
-(-940 -2637)
+(-940 -2647)
((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}.")))
NIL
NIL
@@ -3710,8 +3710,8 @@ NIL
NIL
(-945 R)
((|constructor| (NIL "This domain implements points in coordinate space")))
-((-4419 . T) (-4418 . T))
-((-2800 (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2800 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-727))) (|HasCategory| |#1| (QUOTE (-1051))) (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (QUOTE (-1051)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
+((-4423 . T) (-4422 . T))
+((-2811 (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2811 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-727))) (|HasCategory| |#1| (QUOTE (-1051))) (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (QUOTE (-1051)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
(-946 |lv| R)
((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}.")))
NIL
@@ -3731,12 +3731,12 @@ NIL
(-950 S R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-911))) (|HasAttribute| |#2| (QUOTE -4416)) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#4| (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#4| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#4| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539)))))
+((|HasCategory| |#2| (QUOTE (-911))) (|HasAttribute| |#2| (QUOTE -4420)) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#4| (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#4| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#4| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539)))))
(-951 R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
-(((-4420 "*") |has| |#1| (-172)) (-4411 |has| |#1| (-559)) (-4416 |has| |#1| (-6 -4416)) (-4413 . T) (-4412 . T) (-4415 . T))
+(((-4424 "*") |has| |#1| (-172)) (-4415 |has| |#1| (-559)) (-4420 |has| |#1| (-6 -4420)) (-4417 . T) (-4416 . T) (-4419 . T))
NIL
-(-952 E V R P -3879)
+(-952 E V R P -3888)
((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f, x, p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
NIL
NIL
@@ -3746,9 +3746,9 @@ NIL
NIL
(-954 R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}.")))
-(((-4420 "*") |has| |#1| (-172)) (-4411 |has| |#1| (-559)) (-4416 |has| |#1| (-6 -4416)) (-4413 . T) (-4412 . T) (-4415 . T))
-((|HasCategory| |#1| (QUOTE (-911))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-911)))) (-2800 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-911)))) (-2800 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| (-1178) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-381))))) (-12 (|HasCategory| (-1178) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-567))))) (-12 (|HasCategory| (-1178) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| (-1178) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567)))))) (-12 (|HasCategory| (-1178) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (-2800 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4416)) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (-2800 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-145)))))
-(-955 E V R P -3879)
+(((-4424 "*") |has| |#1| (-172)) (-4415 |has| |#1| (-559)) (-4420 |has| |#1| (-6 -4420)) (-4417 . T) (-4416 . T) (-4419 . T))
+((|HasCategory| |#1| (QUOTE (-911))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-911)))) (-2811 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-911)))) (-2811 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| (-1179) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-381))))) (-12 (|HasCategory| (-1179) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-567))))) (-12 (|HasCategory| (-1179) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| (-1179) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567)))))) (-12 (|HasCategory| (-1179) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4420)) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(-955 E V R P -3888)
((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented")))
NIL
((|HasCategory| |#3| (QUOTE (-455))))
@@ -3770,13 +3770,13 @@ NIL
NIL
(-960 S)
((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed")))
-((-4419 . T) (-4418 . T))
-((-2800 (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2800 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
+((-4423 . T) (-4422 . T))
+((-2811 (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2811 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
(-961)
((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f, x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f, x)} returns the formal integral of \\spad{f} \\spad{dx}.")))
NIL
NIL
-(-962 -3879)
+(-962 -3888)
((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,...,pn], [a1,...,an], a)} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,...,pn], [a1,...,an])} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1, a1, p2, a2)} returns \\spad{[c1, c2, q]} such that \\spad{k(a1, a2) = k(a)} where \\spad{a = c1 a1 + c2 a2, and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}.")))
NIL
NIL
@@ -3790,12 +3790,12 @@ NIL
NIL
(-965 R E)
((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
-(((-4420 "*") |has| |#1| (-172)) (-4411 |has| |#1| (-559)) (-4416 |has| |#1| (-6 -4416)) (-4412 . T) (-4413 . T) (-4415 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-559))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-2800 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-131)))) (|HasAttribute| |#1| (QUOTE -4416)))
+(((-4424 "*") |has| |#1| (-172)) (-4415 |has| |#1| (-559)) (-4420 |has| |#1| (-6 -4420)) (-4416 . T) (-4417 . T) (-4419 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-559))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-131)))) (|HasAttribute| |#1| (QUOTE -4420)))
(-966 A B)
((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,b)} \\undocumented")))
-((-4415 -12 (|has| |#2| (-476)) (|has| |#1| (-476))))
-((-2800 (-12 (|HasCategory| |#1| (QUOTE (-794))) (|HasCategory| |#2| (QUOTE (-794)))) (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#2| (QUOTE (-851))))) (-12 (|HasCategory| |#1| (QUOTE (-794))) (|HasCategory| |#2| (QUOTE (-794)))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-794))) (|HasCategory| |#2| (QUOTE (-794))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-794))) (|HasCategory| |#2| (QUOTE (-794))))) (-12 (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#2| (QUOTE (-476)))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#2| (QUOTE (-476)))) (-12 (|HasCategory| |#1| (QUOTE (-727))) (|HasCategory| |#2| (QUOTE (-727))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-370)))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#2| (QUOTE (-476)))) (-12 (|HasCategory| |#1| (QUOTE (-727))) (|HasCategory| |#2| (QUOTE (-727)))) (-12 (|HasCategory| |#1| (QUOTE (-794))) (|HasCategory| |#2| (QUOTE (-794))))) (-12 (|HasCategory| |#1| (QUOTE (-727))) (|HasCategory| |#2| (QUOTE (-727)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#2| (QUOTE (-851)))))
+((-4419 -12 (|has| |#2| (-476)) (|has| |#1| (-476))))
+((-2811 (-12 (|HasCategory| |#1| (QUOTE (-794))) (|HasCategory| |#2| (QUOTE (-794)))) (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#2| (QUOTE (-851))))) (-12 (|HasCategory| |#1| (QUOTE (-794))) (|HasCategory| |#2| (QUOTE (-794)))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-794))) (|HasCategory| |#2| (QUOTE (-794))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-794))) (|HasCategory| |#2| (QUOTE (-794))))) (-12 (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#2| (QUOTE (-476)))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#2| (QUOTE (-476)))) (-12 (|HasCategory| |#1| (QUOTE (-727))) (|HasCategory| |#2| (QUOTE (-727))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-370)))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#2| (QUOTE (-476)))) (-12 (|HasCategory| |#1| (QUOTE (-727))) (|HasCategory| |#2| (QUOTE (-727)))) (-12 (|HasCategory| |#1| (QUOTE (-794))) (|HasCategory| |#2| (QUOTE (-794))))) (-12 (|HasCategory| |#1| (QUOTE (-727))) (|HasCategory| |#2| (QUOTE (-727)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#2| (QUOTE (-851)))))
(-967)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Identifier|) (|SExpression|)) "\\spad{property(n,val)} constructs a property with name \\spad{`n'} and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Identifier|) $) "\\spad{name(p)} returns the name of property \\spad{p}")))
NIL
@@ -3810,7 +3810,7 @@ NIL
NIL
(-970 S)
((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}.")))
-((-4418 . T) (-4419 . T))
+((-4422 . T) (-4423 . T))
NIL
(-971 R |polR|)
((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean1}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean2}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.\\spad{fr}}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{nextsousResultant2(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{\\spad{S_}{\\spad{e}-1}} where \\axiom{\\spad{P} ~ \\spad{S_d},{} \\spad{Q} = \\spad{S_}{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = \\spad{lc}(\\spad{S_d})}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard2(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)\\spad{**}(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{\\spad{gcd}(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{coef1 * \\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")))
@@ -3830,7 +3830,7 @@ NIL
NIL
(-975 |Coef| |Expon| |Var|)
((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}.")))
-(((-4420 "*") |has| |#1| (-172)) (-4411 |has| |#1| (-559)) (-4412 . T) (-4413 . T) (-4415 . T))
+(((-4424 "*") |has| |#1| (-172)) (-4415 |has| |#1| (-559)) (-4416 . T) (-4417 . T) (-4419 . T))
NIL
(-976)
((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x-},{} \\spad{y-},{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}.")))
@@ -3842,7 +3842,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-559))))
(-978 R E |VarSet| P)
((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned.")))
-((-4418 . T))
+((-4422 . T))
NIL
(-979 R E V P)
((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{irreducibleFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of \\spad{gcd} techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{\\spad{lp}}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp},{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(\\spad{lp})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp})} returns \\axiom{\\spad{lg}} where \\axiom{\\spad{lg}} is a list of the gcds of every pair in \\axiom{\\spad{lp}} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(\\spad{lp},{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} and \\axiom{\\spad{lp}} generate the same ideal in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{lq}} has rank not higher than the one of \\axiom{\\spad{lp}}. Moreover,{} \\axiom{\\spad{lq}} is computed by reducing \\axiom{\\spad{lp}} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{\\spad{lp}}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(\\spad{lp},{}pred?,{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and and \\axiom{\\spad{lq}} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{\\spad{lq}}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(\\spad{lp})} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{\\spad{lp}}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and \\axiom{\\spad{lq}} generate the same ideal and no polynomial in \\axiom{\\spad{lq}} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}\\spad{lf})} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}\\spad{lf},{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf},{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(\\spad{lp})} returns \\axiom{\\spad{bps},{}nbps} where \\axiom{\\spad{bps}} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(\\spad{lp})} returns \\axiom{\\spad{lps},{}nlps} where \\axiom{\\spad{lps}} is a list of the linear polynomials in \\spad{lp},{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(\\spad{lp})} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(\\spad{lp})} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{\\spad{lp}} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{\\spad{bps}} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(\\spad{lp})} returns \\spad{true} iff the number of polynomials in \\axiom{\\spad{lp}} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}\\spad{llp})} returns \\spad{true} iff for every \\axiom{\\spad{lp}} in \\axiom{\\spad{llp}} certainlySubVariety?(newlp,{}\\spad{lp}) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}\\spad{lp})} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is \\spad{gcd}-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(\\spad{lp})} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in \\spad{lp}]} if \\axiom{\\spad{R}} is \\spad{gcd}-domain else returns \\axiom{\\spad{lp}}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq},{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lq})),{}\\spad{lq})} assuming that \\axiom{remOp(\\spad{lq})} returns \\axiom{\\spad{lq}} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{removeRedundantFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}\\spad{lp}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lq}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lq} = [\\spad{q1},{}...,{}\\spad{qm}]} then the product \\axiom{p1*p2*...\\spad{*pn}} vanishes iff the product \\axiom{q1*q2*...\\spad{*qm}} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{\\spad{pj}},{} and no polynomial in \\axiom{\\spad{lq}} divides another polynomial in \\axiom{\\spad{lq}}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{\\spad{lq}} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is \\spad{gcd}-domain,{} the polynomials in \\axiom{\\spad{lq}} are pairwise without common non trivial factor.")))
@@ -3858,7 +3858,7 @@ NIL
NIL
(-982 R)
((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,l,r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}.")))
-((-4419 . T) (-4418 . T))
+((-4423 . T) (-4422 . T))
NIL
(-983 R1 R2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,p)} \\undocumented")))
@@ -3876,7 +3876,7 @@ NIL
((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-987 K R UP -3879)
+(-987 K R UP -3888)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,y]/(f(x,y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")))
NIL
NIL
@@ -3903,10 +3903,10 @@ NIL
(-993 A S)
((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-911))) (|HasCategory| |#2| (QUOTE (-548))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-1178)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (QUOTE (-1024))) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-851))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-1153))))
+((|HasCategory| |#2| (QUOTE (-911))) (|HasCategory| |#2| (QUOTE (-548))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-1179)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (QUOTE (-1024))) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-851))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-1154))))
(-994 S)
((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}.")))
-((-4410 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T))
+((-4414 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T))
NIL
(-995 |n| K)
((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|elt| ((|#2| $ (|DirectProduct| |#1| |#2|)) "\\spad{elt(qf,v)} evaluates the quadratic form \\spad{qf} on the vector \\spad{v},{} producing a scalar.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}.")))
@@ -3918,7 +3918,7 @@ NIL
NIL
(-997 S)
((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\spad{#q}}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,q)} inserts \\spad{x} into the queue \\spad{q} at the back end.")))
-((-4418 . T) (-4419 . T))
+((-4422 . T) (-4423 . T))
NIL
(-998 S R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
@@ -3926,7 +3926,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-548))) (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-851))) (|HasCategory| |#2| (QUOTE (-291))))
(-999 R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
-((-4411 |has| |#1| (-291)) (-4412 . T) (-4413 . T) (-4415 . T))
+((-4415 |has| |#1| (-291)) (-4416 . T) (-4417 . T) (-4419 . T))
NIL
(-1000 QR R QS S)
((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}.")))
@@ -3934,12 +3934,12 @@ NIL
NIL
(-1001 R)
((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}")))
-((-4411 |has| |#1| (-291)) (-4412 . T) (-4413 . T) (-4415 . T))
-((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-365))) (-2800 (|HasCategory| |#1| (QUOTE (-291))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-291))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -517) (QUOTE (-1178)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1178)))) (-2800 (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-1062))) (|HasCategory| |#1| (QUOTE (-548))))
+((-4415 |has| |#1| (-291)) (-4416 . T) (-4417 . T) (-4419 . T))
+((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-365))) (-2811 (|HasCategory| |#1| (QUOTE (-291))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-291))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -517) (QUOTE (-1179)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1179)))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-1062))) (|HasCategory| |#1| (QUOTE (-548))))
(-1002 S)
((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,y,...,z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}.")))
-((-4418 . T) (-4419 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1102))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))))
+((-4422 . T) (-4423 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1102))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))))
(-1003 S)
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
@@ -3948,14 +3948,14 @@ NIL
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
NIL
-(-1005 -3879 UP UPUP |radicnd| |n|)
+(-1005 -3888 UP UPUP |radicnd| |n|)
((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x}).")))
-((-4411 |has| (-410 |#2|) (-365)) (-4416 |has| (-410 |#2|) (-365)) (-4410 |has| (-410 |#2|) (-365)) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T))
-((|HasCategory| (-410 |#2|) (QUOTE (-145))) (|HasCategory| (-410 |#2|) (QUOTE (-147))) (|HasCategory| (-410 |#2|) (QUOTE (-351))) (-2800 (|HasCategory| (-410 |#2|) (QUOTE (-365))) (|HasCategory| (-410 |#2|) (QUOTE (-351)))) (|HasCategory| (-410 |#2|) (QUOTE (-365))) (|HasCategory| (-410 |#2|) (QUOTE (-370))) (-2800 (-12 (|HasCategory| (-410 |#2|) (QUOTE (-233))) (|HasCategory| (-410 |#2|) (QUOTE (-365)))) (|HasCategory| (-410 |#2|) (QUOTE (-351)))) (-2800 (-12 (|HasCategory| (-410 |#2|) (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| (-410 |#2|) (QUOTE (-365)))) (-12 (|HasCategory| (-410 |#2|) (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| (-410 |#2|) (QUOTE (-351))))) (|HasCategory| (-410 |#2|) (LIST (QUOTE -640) (QUOTE (-567)))) (-2800 (|HasCategory| (-410 |#2|) (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| (-410 |#2|) (QUOTE (-365)))) (|HasCategory| (-410 |#2|) (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| (-410 |#2|) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-370))) (-12 (|HasCategory| (-410 |#2|) (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| (-410 |#2|) (QUOTE (-365)))) (-12 (|HasCategory| (-410 |#2|) (QUOTE (-233))) (|HasCategory| (-410 |#2|) (QUOTE (-365)))))
+((-4415 |has| (-410 |#2|) (-365)) (-4420 |has| (-410 |#2|) (-365)) (-4414 |has| (-410 |#2|) (-365)) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T))
+((|HasCategory| (-410 |#2|) (QUOTE (-145))) (|HasCategory| (-410 |#2|) (QUOTE (-147))) (|HasCategory| (-410 |#2|) (QUOTE (-351))) (-2811 (|HasCategory| (-410 |#2|) (QUOTE (-365))) (|HasCategory| (-410 |#2|) (QUOTE (-351)))) (|HasCategory| (-410 |#2|) (QUOTE (-365))) (|HasCategory| (-410 |#2|) (QUOTE (-370))) (-2811 (-12 (|HasCategory| (-410 |#2|) (QUOTE (-233))) (|HasCategory| (-410 |#2|) (QUOTE (-365)))) (|HasCategory| (-410 |#2|) (QUOTE (-351)))) (-2811 (-12 (|HasCategory| (-410 |#2|) (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| (-410 |#2|) (QUOTE (-365)))) (-12 (|HasCategory| (-410 |#2|) (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| (-410 |#2|) (QUOTE (-351))))) (|HasCategory| (-410 |#2|) (LIST (QUOTE -640) (QUOTE (-567)))) (-2811 (|HasCategory| (-410 |#2|) (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| (-410 |#2|) (QUOTE (-365)))) (|HasCategory| (-410 |#2|) (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| (-410 |#2|) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-370))) (-12 (|HasCategory| (-410 |#2|) (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| (-410 |#2|) (QUOTE (-365)))) (-12 (|HasCategory| (-410 |#2|) (QUOTE (-233))) (|HasCategory| (-410 |#2|) (QUOTE (-365)))))
(-1006 |bb|)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,3,4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,1,4,2,8,5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion.")))
-((-4410 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T))
-((|HasCategory| (-567) (QUOTE (-911))) (|HasCategory| (-567) (LIST (QUOTE -1040) (QUOTE (-1178)))) (|HasCategory| (-567) (QUOTE (-145))) (|HasCategory| (-567) (QUOTE (-147))) (|HasCategory| (-567) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-567) (QUOTE (-1024))) (|HasCategory| (-567) (QUOTE (-821))) (-2800 (|HasCategory| (-567) (QUOTE (-821))) (|HasCategory| (-567) (QUOTE (-851)))) (|HasCategory| (-567) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| (-567) (QUOTE (-1153))) (|HasCategory| (-567) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| (-567) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| (-567) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| (-567) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| (-567) (QUOTE (-233))) (|HasCategory| (-567) (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| (-567) (LIST (QUOTE -517) (QUOTE (-1178)) (QUOTE (-567)))) (|HasCategory| (-567) (LIST (QUOTE -310) (QUOTE (-567)))) (|HasCategory| (-567) (LIST (QUOTE -287) (QUOTE (-567)) (QUOTE (-567)))) (|HasCategory| (-567) (QUOTE (-308))) (|HasCategory| (-567) (QUOTE (-548))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| (-567) (LIST (QUOTE -640) (QUOTE (-567)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-567) (QUOTE (-911)))) (-2800 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-567) (QUOTE (-911)))) (|HasCategory| (-567) (QUOTE (-145)))))
+((-4414 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T))
+((|HasCategory| (-567) (QUOTE (-911))) (|HasCategory| (-567) (LIST (QUOTE -1040) (QUOTE (-1179)))) (|HasCategory| (-567) (QUOTE (-145))) (|HasCategory| (-567) (QUOTE (-147))) (|HasCategory| (-567) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-567) (QUOTE (-1024))) (|HasCategory| (-567) (QUOTE (-821))) (-2811 (|HasCategory| (-567) (QUOTE (-821))) (|HasCategory| (-567) (QUOTE (-851)))) (|HasCategory| (-567) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| (-567) (QUOTE (-1154))) (|HasCategory| (-567) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| (-567) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| (-567) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| (-567) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| (-567) (QUOTE (-233))) (|HasCategory| (-567) (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| (-567) (LIST (QUOTE -517) (QUOTE (-1179)) (QUOTE (-567)))) (|HasCategory| (-567) (LIST (QUOTE -310) (QUOTE (-567)))) (|HasCategory| (-567) (LIST (QUOTE -287) (QUOTE (-567)) (QUOTE (-567)))) (|HasCategory| (-567) (QUOTE (-308))) (|HasCategory| (-567) (QUOTE (-548))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| (-567) (LIST (QUOTE -640) (QUOTE (-567)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-567) (QUOTE (-911)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-567) (QUOTE (-911)))) (|HasCategory| (-567) (QUOTE (-145)))))
(-1007)
((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,b)} converts \\spad{x} to a radix expansion in base \\spad{b}.")))
NIL
@@ -3975,7 +3975,7 @@ NIL
(-1011 A S)
((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4419)) (|HasCategory| |#2| (QUOTE (-1102))))
+((|HasAttribute| |#1| (QUOTE -4423)) (|HasCategory| |#2| (QUOTE (-1102))))
(-1012 S)
((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
NIL
@@ -3986,21 +3986,21 @@ NIL
NIL
(-1014)
((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}")))
-((-4411 . T) (-4416 . T) (-4410 . T) (-4413 . T) (-4412 . T) ((-4420 "*") . T) (-4415 . T))
+((-4415 . T) (-4420 . T) (-4414 . T) (-4417 . T) (-4416 . T) ((-4424 "*") . T) (-4419 . T))
NIL
-(-1015 R -3879)
+(-1015 R -3888)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n, f, g, x, lim, ext)} returns \\spad{[y, h, b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function.")))
NIL
NIL
-(-1016 R -3879)
+(-1016 R -3888)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n, f, g_1, g_2, x,lim,ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,dy2/dx) + ((0, - n df/dx),(n df/dx,0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function.")))
NIL
NIL
-(-1017 -3879 UP)
+(-1017 -3888 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a, B, C, n, D)} returns either: 1. \\spad{[Q, b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1, C1, m, \\alpha, \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f, g)} returns a \\spad{[y, b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,g,D)} returns \\spad{[A, B, C, T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-1018 -3879 UP)
+(-1018 -3888 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f, g1, g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,g1,g2,D)} returns \\spad{[A, B, H, C1, C2, T]} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} has a solution if and only if \\spad{y1 = Q1 / T, y2 = Q2 / T},{} where \\spad{B,C1,C2,Q1,Q2} have no normal poles and satisfy A \\spad{(Q1', Q2') + ((H, -B), (B, H)) (Q1,Q2) = (C1,C2)} \\spad{D} is the derivation to use.")))
NIL
NIL
@@ -4034,9 +4034,9 @@ NIL
NIL
(-1026 |TheField|)
((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number")))
-((-4411 . T) (-4416 . T) (-4410 . T) (-4413 . T) (-4412 . T) ((-4420 "*") . T) (-4415 . T))
-((-2800 (|HasCategory| (-410 (-567)) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| (-410 (-567)) (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| (-410 (-567)) (LIST (QUOTE -1040) (QUOTE (-567)))))
-(-1027 -3879 L)
+((-4415 . T) (-4420 . T) (-4414 . T) (-4417 . T) (-4416 . T) ((-4424 "*") . T) (-4419 . T))
+((-2811 (|HasCategory| (-410 (-567)) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| (-410 (-567)) (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| (-410 (-567)) (LIST (QUOTE -1040) (QUOTE (-567)))))
+(-1027 -3888 L)
((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op, [f1,...,fk])} returns \\spad{[op1,[g1,...,gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{fi} must satisfy \\spad{op fi = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op, s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}.")))
NIL
NIL
@@ -4046,12 +4046,12 @@ NIL
((|HasCategory| |#1| (QUOTE (-1102))))
(-1029 R E V P)
((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
-((-4419 . T) (-4418 . T))
+((-4423 . T) (-4422 . T))
((-12 (|HasCategory| |#4| (QUOTE (-1102))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#4| (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -614) (QUOTE (-863)))))
(-1030 R)
((|constructor| (NIL "RepresentationPackage1 provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,4,3,2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,2,...,n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} (Kronecker delta) for the permutations {\\em pi1,...,pik} of {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) if the permutation {\\em pi} is in list notation and permutes {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) for a permutation {\\em pi} of {\\em {1,2,...,n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...ak])} calculates the list of Kronecker products of each matrix {\\em ai} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...,ak],[b1,...,bk])} calculates the list of Kronecker products of the matrices {\\em ai} and {\\em bi} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.")))
NIL
-((|HasAttribute| |#1| (QUOTE (-4420 "*"))))
+((|HasAttribute| |#1| (QUOTE (-4424 "*"))))
(-1031 R)
((|constructor| (NIL "RepresentationPackage2 provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,...,0,1,*,...,*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG, numberOfTries)} calls {\\em meatAxe(aG,true,numberOfTries,7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG, randomElements)} calls {\\em meatAxe(aG,false,6,7)},{} only using Parker\\spad{'s} fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,true,25,7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,false,25,7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker\\spad{'s} fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,randomElements,numberOfTries, maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker\\spad{'s} fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG, vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG, numberOfTries)} uses Norton\\spad{'s} irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,numberOfTries)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,aG1)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,randomelements,numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis.")))
NIL
@@ -4072,14 +4072,14 @@ NIL
((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used.")))
NIL
NIL
-(-1036 -3879 |Expon| |VarSet| |FPol| |LFPol|)
+(-1036 -3888 |Expon| |VarSet| |FPol| |LFPol|)
((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring")))
-(((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T))
+(((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T))
NIL
(-1037)
((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}")))
-((-4418 . T) (-4419 . T))
-((-12 (|HasCategory| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1795) (QUOTE (-1178))) (LIST (QUOTE |:|) (QUOTE -4237) (QUOTE (-52))))))) (-2800 (|HasCategory| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (QUOTE (-1102))) (|HasCategory| (-52) (QUOTE (-1102)))) (-2800 (|HasCategory| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-52) (QUOTE (-1102))) (|HasCategory| (-52) (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (LIST (QUOTE -615) (QUOTE (-539)))) (-12 (|HasCategory| (-52) (QUOTE (-1102))) (|HasCategory| (-52) (LIST (QUOTE -310) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (QUOTE (-1102))) (|HasCategory| (-1178) (QUOTE (-851))) (|HasCategory| (-52) (QUOTE (-1102))) (-2800 (|HasCategory| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-52) (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-52) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (LIST (QUOTE -614) (QUOTE (-863)))))
+((-4422 . T) (-4423 . T))
+((-12 (|HasCategory| (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1809) (QUOTE (-1179))) (LIST (QUOTE |:|) (QUOTE -4236) (QUOTE (-52))))))) (-2811 (|HasCategory| (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (QUOTE (-1102))) (|HasCategory| (-52) (QUOTE (-1102)))) (-2811 (|HasCategory| (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-52) (QUOTE (-1102))) (|HasCategory| (-52) (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (LIST (QUOTE -615) (QUOTE (-539)))) (-12 (|HasCategory| (-52) (QUOTE (-1102))) (|HasCategory| (-52) (LIST (QUOTE -310) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (QUOTE (-1102))) (|HasCategory| (-1179) (QUOTE (-851))) (|HasCategory| (-52) (QUOTE (-1102))) (-2811 (|HasCategory| (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-52) (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-52) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (LIST (QUOTE -614) (QUOTE (-863)))))
(-1038)
((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'.")))
NIL
@@ -4122,7 +4122,7 @@ NIL
NIL
(-1048 R |ls|)
((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a \\spad{Gcd}-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?,info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}.")))
-((-4419 . T) (-4418 . T))
+((-4423 . T) (-4422 . T))
((-12 (|HasCategory| (-781 |#1| (-865 |#2|)) (QUOTE (-1102))) (|HasCategory| (-781 |#1| (-865 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -781) (|devaluate| |#1|) (LIST (QUOTE -865) (|devaluate| |#2|)))))) (|HasCategory| (-781 |#1| (-865 |#2|)) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-781 |#1| (-865 |#2|)) (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| (-865 |#2|) (QUOTE (-370))) (|HasCategory| (-781 |#1| (-865 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))))
(-1049)
((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,j,k,l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented")))
@@ -4134,9 +4134,9 @@ NIL
NIL
(-1051)
((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists.")))
-((-4415 . T))
+((-4419 . T))
NIL
-(-1052 |xx| -3879)
+(-1052 |xx| -3888)
((|constructor| (NIL "This package exports rational interpolation algorithms")))
NIL
NIL
@@ -4150,12 +4150,12 @@ NIL
((|HasCategory| |#4| (QUOTE (-308))) (|HasCategory| |#4| (QUOTE (-365))) (|HasCategory| |#4| (QUOTE (-559))) (|HasCategory| |#4| (QUOTE (-172))))
(-1055 |m| |n| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite")))
-((-4418 . T) (-4413 . T) (-4412 . T))
+((-4422 . T) (-4417 . T) (-4416 . T))
NIL
(-1056 |m| |n| R)
((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}.")))
-((-4418 . T) (-4413 . T) (-4412 . T))
-((|HasCategory| |#3| (QUOTE (-172))) (-2800 (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1102))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-539)))) (-2800 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-365)))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1102))) (|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (QUOTE (-559))) (-12 (|HasCategory| |#3| (QUOTE (-1102))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -614) (QUOTE (-863)))))
+((-4422 . T) (-4417 . T) (-4416 . T))
+((|HasCategory| |#3| (QUOTE (-172))) (-2811 (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1102))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-539)))) (-2811 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-365)))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1102))) (|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (QUOTE (-559))) (-12 (|HasCategory| |#3| (QUOTE (-1102))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -614) (QUOTE (-863)))))
(-1057 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.")))
NIL
@@ -4178,7 +4178,7 @@ NIL
NIL
(-1062)
((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value.")))
-((-4410 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T))
+((-4414 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T))
NIL
(-1063 |TheField| |ThePolDom|)
((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval")))
@@ -4186,19 +4186,19 @@ NIL
NIL
(-1064)
((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")))
-((-4406 . T) (-4410 . T) (-4405 . T) (-4416 . T) (-4417 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T))
+((-4410 . T) (-4414 . T) (-4409 . T) (-4420 . T) (-4421 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T))
NIL
(-1065)
((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,routineName,ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,s,newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,s,newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,y)} merges two tables \\spad{x} and \\spad{y}")))
-((-4418 . T) (-4419 . T))
-((-12 (|HasCategory| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1795) (QUOTE (-1178))) (LIST (QUOTE |:|) (QUOTE -4237) (QUOTE (-52))))))) (-2800 (|HasCategory| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (QUOTE (-1102))) (|HasCategory| (-52) (QUOTE (-1102)))) (-2800 (|HasCategory| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-52) (QUOTE (-1102))) (|HasCategory| (-52) (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (LIST (QUOTE -615) (QUOTE (-539)))) (-12 (|HasCategory| (-52) (QUOTE (-1102))) (|HasCategory| (-52) (LIST (QUOTE -310) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (QUOTE (-1102))) (|HasCategory| (-1178) (QUOTE (-851))) (|HasCategory| (-52) (QUOTE (-1102))) (-2800 (|HasCategory| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-52) (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-52) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (LIST (QUOTE -614) (QUOTE (-863)))))
+((-4422 . T) (-4423 . T))
+((-12 (|HasCategory| (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1809) (QUOTE (-1179))) (LIST (QUOTE |:|) (QUOTE -4236) (QUOTE (-52))))))) (-2811 (|HasCategory| (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (QUOTE (-1102))) (|HasCategory| (-52) (QUOTE (-1102)))) (-2811 (|HasCategory| (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-52) (QUOTE (-1102))) (|HasCategory| (-52) (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (LIST (QUOTE -615) (QUOTE (-539)))) (-12 (|HasCategory| (-52) (QUOTE (-1102))) (|HasCategory| (-52) (LIST (QUOTE -310) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (QUOTE (-1102))) (|HasCategory| (-1179) (QUOTE (-851))) (|HasCategory| (-52) (QUOTE (-1102))) (-2811 (|HasCategory| (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-52) (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-52) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (LIST (QUOTE -614) (QUOTE (-863)))))
(-1066 S R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-548))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -994) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-1178)))))
+((|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-548))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -994) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-1179)))))
(-1067 R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
-(((-4420 "*") |has| |#1| (-172)) (-4411 |has| |#1| (-559)) (-4416 |has| |#1| (-6 -4416)) (-4413 . T) (-4412 . T) (-4415 . T))
+(((-4424 "*") |has| |#1| (-172)) (-4415 |has| |#1| (-559)) (-4420 |has| |#1| (-6 -4420)) (-4417 . T) (-4416 . T) (-4419 . T))
NIL
(-1068)
((|constructor| (NIL "This domain represents the `repeat' iterator syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} returns the body of the loop `e'.")) (|iterators| (((|List| (|SpadAst|)) $) "\\spad{iterators(e)} returns the list of iterators controlling the loop `e'.")))
@@ -4222,7 +4222,7 @@ NIL
NIL
(-1073 R E V P)
((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#4| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")))
-((-4419 . T) (-4418 . T))
+((-4423 . T) (-4422 . T))
NIL
(-1074 R E V P TS)
((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts},{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
@@ -4240,11 +4240,11 @@ NIL
((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol")))
NIL
NIL
-(-1078 |Base| R -3879)
+(-1078 |Base| R -3888)
((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r, [a1,...,an], f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,...,an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f, g, [f1,...,fn])} creates the rewrite rule \\spad{f == eval(eval(g, g is f), [f1,...,fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f, g)} creates the rewrite rule: \\spad{f == eval(g, g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}.")))
NIL
NIL
-(-1079 |Base| R -3879)
+(-1079 |Base| R -3888)
((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,...,rn])} creates the rule set \\spad{{r1,...,rn}}.")))
NIL
NIL
@@ -4258,8 +4258,8 @@ NIL
NIL
(-1082 R UP M)
((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself.")))
-((-4411 |has| |#1| (-365)) (-4416 |has| |#1| (-365)) (-4410 |has| |#1| (-365)) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T))
-((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-351))) (-2800 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-351)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-370))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-351)))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1178))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1178)))))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (-2800 (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1178))))) (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365)))))
+((-4415 |has| |#1| (-365)) (-4420 |has| |#1| (-365)) (-4414 |has| |#1| (-365)) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T))
+((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-351))) (-2811 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-351)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-370))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-351)))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1179))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1179)))))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1179))))) (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365)))))
(-1083 UP SAE UPA)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
@@ -4286,8 +4286,8 @@ NIL
NIL
(-1089 R)
((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline")))
-(((-4420 "*") |has| |#1| (-172)) (-4411 |has| |#1| (-559)) (-4416 |has| |#1| (-6 -4416)) (-4413 . T) (-4412 . T) (-4415 . T))
-((|HasCategory| |#1| (QUOTE (-911))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-911)))) (-2800 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-911)))) (-2800 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| (-1090 (-1178)) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-381))))) (-12 (|HasCategory| (-1090 (-1178)) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-567))))) (-12 (|HasCategory| (-1090 (-1178)) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| (-1090 (-1178)) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567)))))) (-12 (|HasCategory| (-1090 (-1178)) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (-2800 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4416)) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (-2800 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(((-4424 "*") |has| |#1| (-172)) (-4415 |has| |#1| (-559)) (-4420 |has| |#1| (-6 -4420)) (-4417 . T) (-4416 . T) (-4419 . T))
+((|HasCategory| |#1| (QUOTE (-911))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-911)))) (-2811 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-911)))) (-2811 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| (-1090 (-1179)) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-381))))) (-12 (|HasCategory| (-1090 (-1179)) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-567))))) (-12 (|HasCategory| (-1090 (-1179)) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| (-1090 (-1179)) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567)))))) (-12 (|HasCategory| (-1090 (-1179)) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4420)) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-1090 S)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u})).")))
NIL
@@ -4330,7 +4330,7 @@ NIL
NIL
(-1100 S)
((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
-((-4408 . T))
+((-4412 . T))
NIL
(-1101 S)
((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|before?| (((|Boolean|) $ $) "spad{before?(\\spad{x},{}\\spad{y})} holds if \\spad{x} comes before \\spad{y} in the internal total ordering used by OpenAxiom.")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}.")))
@@ -4346,8 +4346,8 @@ NIL
NIL
(-1104 S)
((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,b,c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{union(s,t)},{} \\spad{intersect(s,t)},{} \\spad{minus(s,t)},{} \\spad{symmetricDifference(s,t)} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{member(x,t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,t)} and \\spad{remove(x,t)} is \\spad{O(n)}}")))
-((-4418 . T) (-4408 . T) (-4419 . T))
-((-2800 (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
+((-4422 . T) (-4412 . T) (-4423 . T))
+((-2811 (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
(-1105 |Str| |Sym| |Int| |Flt| |Expr|)
((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|elt| (($ $ (|List| (|Integer|))) "\\spad{elt((a1,...,an), [i1,...,im])} returns \\spad{(a_i1,...,a_im)}.") (($ $ (|Integer|)) "\\spad{elt((a1,...,an), i)} returns \\spad{ai}.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,...,an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,...,an))} returns \\spad{(a2,...,an)}.")) (|car| (($ $) "\\spad{car((a1,...,an))} returns a1.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,...,an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s, t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp.")))
NIL
@@ -4374,7 +4374,7 @@ NIL
NIL
(-1111 R E V P)
((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the \\spad{gcd} of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
-((-4419 . T) (-4418 . T))
+((-4423 . T) (-4422 . T))
NIL
(-1112)
((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,0,0] < [0,3,0] < [0,0,3] < [2,1,0] < [2,0,1] < [0,2,1] < [1,2,0] < [1,0,2] < [0,1,2] < [1,1,1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,0,3] < [0,1,2] < [0,2,1] < [0,3,0] < [1,0,2] < [1,1,1] < [1,2,0] < [2,0,1] < [2,1,0] < [3,0,0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,m,k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,1,...,(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,...,(m-1)} into {\\em 0,...,(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,3)} is 10,{} since {\\em [0,0,3], [0,1,2], [0,2,1], [0,3,0], [1,0,2], [1,1,1], [1,2,0], [2,0,1], [2,1,0], [3,0,0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,lattP,constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,beta,C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,1,0)}. Also,{} {\\em new(1,1,0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,...,n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,...,n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,beta,C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em pi} in the corresponding double coset. Note: the resulting permutation {\\em pi} of {\\em {1,2,...,n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,beta,pi)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em pi} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha, beta, pi}. Note: The permutation {\\em pi} of {\\em {1,2,...,n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em pi} is the lexicographical smallest permutation in the coset). For details see James/Kerber.")))
@@ -4390,8 +4390,8 @@ NIL
NIL
(-1115 |dimtot| |dim1| S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4412 |has| |#3| (-1051)) (-4413 |has| |#3| (-1051)) (-4415 |has| |#3| (-6 -4415)) ((-4420 "*") |has| |#3| (-172)) (-4418 . T))
-((-2800 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-727))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-794))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-849))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1051))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1102))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1178)))))) (-2800 (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-1102)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1051)))) (-12 (|HasCategory| |#3| (QUOTE (-1051))) (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-1051))) (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1178))))) (-12 (|HasCategory| |#3| (QUOTE (-1102))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1102))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (|HasCategory| |#3| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#3| (QUOTE (-365))) (-2800 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1051)))) (-2800 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-365)))) (|HasCategory| |#3| (QUOTE (-1051))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-794))) (-2800 (|HasCategory| |#3| (QUOTE (-794))) (|HasCategory| |#3| (QUOTE (-849)))) (|HasCategory| |#3| (QUOTE (-849))) (|HasCategory| |#3| (QUOTE (-727))) (-2800 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-1051)))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1178)))) (-2800 (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1051)))) (-2800 (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1051)))) (-2800 (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1051)))) (-2800 (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1051)))) (|HasCategory| |#3| (QUOTE (-233))) (-2800 (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (QUOTE (-727))) (|HasCategory| |#3| (QUOTE (-794))) (|HasCategory| |#3| (QUOTE (-849))) (|HasCategory| |#3| (QUOTE (-1051))) (|HasCategory| |#3| (QUOTE (-1102)))) (|HasCategory| |#3| (QUOTE (-1102))) (-2800 (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1178))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-131)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-172)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-233)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-365)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-370)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-727)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-794)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-849)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-1051)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-1102))))) (-2800 (-12 (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-727))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-794))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-849))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-1051))) (-12 (|HasCategory| |#3| (QUOTE (-1102))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567)))))) (-2800 (-12 (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-727))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-794))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-849))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-1051))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-1102))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567)))))) (|HasCategory| (-567) (QUOTE (-851))) (-12 (|HasCategory| |#3| (QUOTE (-1051))) (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1051)))) (-12 (|HasCategory| |#3| (QUOTE (-1051))) (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1178))))) (-2800 (|HasCategory| |#3| (QUOTE (-1051))) (-12 (|HasCategory| |#3| (QUOTE (-1102))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567)))))) (-12 (|HasCategory| |#3| (QUOTE (-1102))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-1102)))) (|HasAttribute| |#3| (QUOTE -4415)) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#3| (QUOTE (-1102))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))))
+((-4416 |has| |#3| (-1051)) (-4417 |has| |#3| (-1051)) (-4419 |has| |#3| (-6 -4419)) ((-4424 "*") |has| |#3| (-172)) (-4422 . T))
+((-2811 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-727))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-794))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-849))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1051))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1102))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1179)))))) (-2811 (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-1102)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1051)))) (-12 (|HasCategory| |#3| (QUOTE (-1051))) (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-1051))) (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1179))))) (-12 (|HasCategory| |#3| (QUOTE (-1102))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1102))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (|HasCategory| |#3| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#3| (QUOTE (-365))) (-2811 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1051)))) (-2811 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-365)))) (|HasCategory| |#3| (QUOTE (-1051))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-794))) (-2811 (|HasCategory| |#3| (QUOTE (-794))) (|HasCategory| |#3| (QUOTE (-849)))) (|HasCategory| |#3| (QUOTE (-849))) (|HasCategory| |#3| (QUOTE (-727))) (-2811 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-1051)))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1179)))) (-2811 (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1051)))) (-2811 (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1051)))) (-2811 (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1051)))) (-2811 (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1051)))) (|HasCategory| |#3| (QUOTE (-233))) (-2811 (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (QUOTE (-727))) (|HasCategory| |#3| (QUOTE (-794))) (|HasCategory| |#3| (QUOTE (-849))) (|HasCategory| |#3| (QUOTE (-1051))) (|HasCategory| |#3| (QUOTE (-1102)))) (|HasCategory| |#3| (QUOTE (-1102))) (-2811 (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1179))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-131)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-172)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-233)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-365)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-370)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-727)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-794)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-849)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-1051)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-1102))))) (-2811 (-12 (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-727))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-794))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-849))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-1051))) (-12 (|HasCategory| |#3| (QUOTE (-1102))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567)))))) (-2811 (-12 (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-727))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-794))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-849))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-1051))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-1102))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567)))))) (|HasCategory| (-567) (QUOTE (-851))) (-12 (|HasCategory| |#3| (QUOTE (-1051))) (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1051)))) (-12 (|HasCategory| |#3| (QUOTE (-1051))) (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1179))))) (-2811 (|HasCategory| |#3| (QUOTE (-1051))) (-12 (|HasCategory| |#3| (QUOTE (-1102))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567)))))) (-12 (|HasCategory| |#3| (QUOTE (-1102))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-1102)))) (|HasAttribute| |#3| (QUOTE -4419)) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#3| (QUOTE (-1102))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))))
(-1116 R |x|)
((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}")))
NIL
@@ -4400,7 +4400,7 @@ NIL
((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for \\spad{`s'}.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature \\spad{`s'}.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,s,t)} builds the signature AST \\spad{n:} \\spad{s} \\spad{->} \\spad{t}")))
NIL
NIL
-(-1118 R -3879)
+(-1118 R -3888)
((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere.")))
NIL
NIL
@@ -4418,19 +4418,19 @@ NIL
NIL
(-1122)
((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|Or| (($ $ $) "\\spad{Or(n,m)} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|And| (($ $ $) "\\spad{And(n,m)} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|xor| (($ $ $) "\\spad{xor(n,m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|not| (($ $) "\\spad{not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality.")))
-((-4406 . T) (-4410 . T) (-4405 . T) (-4416 . T) (-4417 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T))
+((-4410 . T) (-4414 . T) (-4409 . T) (-4420 . T) (-4421 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T))
NIL
(-1123 S)
((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\spad{#s}}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}.")))
-((-4418 . T) (-4419 . T))
+((-4422 . T) (-4423 . T))
NIL
(-1124 S |ndim| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")))
NIL
-((|HasCategory| |#3| (QUOTE (-365))) (|HasAttribute| |#3| (QUOTE (-4420 "*"))) (|HasCategory| |#3| (QUOTE (-172))))
+((|HasCategory| |#3| (QUOTE (-365))) (|HasAttribute| |#3| (QUOTE (-4424 "*"))) (|HasCategory| |#3| (QUOTE (-172))))
(-1125 |ndim| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")))
-((-4418 . T) (-4412 . T) (-4413 . T) (-4415 . T))
+((-4422 . T) (-4416 . T) (-4417 . T) (-4419 . T))
NIL
(-1126 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}.")))
@@ -4438,17 +4438,17 @@ NIL
NIL
(-1127 R |VarSet|)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute.")))
-(((-4420 "*") |has| |#1| (-172)) (-4411 |has| |#1| (-559)) (-4416 |has| |#1| (-6 -4416)) (-4413 . T) (-4412 . T) (-4415 . T))
-((|HasCategory| |#1| (QUOTE (-911))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-911)))) (-2800 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-911)))) (-2800 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (-2800 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4416)) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (-2800 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(((-4424 "*") |has| |#1| (-172)) (-4415 |has| |#1| (-559)) (-4420 |has| |#1| (-6 -4420)) (-4417 . T) (-4416 . T) (-4419 . T))
+((|HasCategory| |#1| (QUOTE (-911))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-911)))) (-2811 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-911)))) (-2811 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4420)) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-1128 |Coef| |Var| SMP)
((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}.")))
-(((-4420 "*") |has| |#1| (-172)) (-4411 |has| |#1| (-559)) (-4413 . T) (-4412 . T) (-4415 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-365))))
+(((-4424 "*") |has| |#1| (-172)) (-4415 |has| |#1| (-559)) (-4417 . T) (-4416 . T) (-4419 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-365))))
(-1129 R E V P)
((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}")))
-((-4419 . T) (-4418 . T))
+((-4423 . T) (-4422 . T))
NIL
-(-1130 UP -3879)
+(-1130 UP -3888)
((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,g,h,i,k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,g,h,j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,g,h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,g,h,i,j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,g,h,i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,g,h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented")))
NIL
NIL
@@ -4485,7 +4485,7 @@ NIL
NIL
NIL
(-1139)
-((|constructor| (NIL "This category describes the exported \\indented{2}{signatures of the SpadAst domain.}")) (|autoCoerce| (((|Integer|) $) "\\spad{autoCoerce(s)} returns the Integer view of \\spad{`s'}. Left at the discretion of the compiler.") (((|String|) $) "\\spad{autoCoerce(s)} returns the String view of \\spad{`s'}. Left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} returns the Identifier view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IsAst|) $) "\\spad{autoCoerce(s)} returns the IsAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|HasAst|) $) "\\spad{autoCoerce(s)} returns the HasAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CaseAst|) $) "\\spad{autoCoerce(s)} returns the CaseAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ColonAst|) $) "\\spad{autoCoerce(s)} returns the ColoonAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SuchThatAst|) $) "\\spad{autoCoerce(s)} returns the SuchThatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|LetAst|) $) "\\spad{autoCoerce(s)} returns the LetAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SequenceAst|) $) "\\spad{autoCoerce(s)} returns the SequenceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SegmentAst|) $) "\\spad{autoCoerce(s)} returns the SegmentAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RestrictAst|) $) "\\spad{autoCoerce(s)} returns the RestrictAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|PretendAst|) $) "\\spad{autoCoerce(s)} returns the PretendAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CoerceAst|) $) "\\spad{autoCoerce(s)} returns the CoerceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ReturnAst|) $) "\\spad{autoCoerce(s)} returns the ReturnAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ExitAst|) $) "\\spad{autoCoerce(s)} returns the ExitAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ConstructAst|) $) "\\spad{autoCoerce(s)} returns the ConstructAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CollectAst|) $) "\\spad{autoCoerce(s)} returns the CollectAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|InAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhileAst|) $) "\\spad{autoCoerce(s)} returns the WhileAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RepeatAst|) $) "\\spad{autoCoerce(s)} returns the RepeatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IfAst|) $) "\\spad{autoCoerce(s)} returns the IfAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MappingAst|) $) "\\spad{autoCoerce(s)} returns the MappingAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|AttributeAst|) $) "\\spad{autoCoerce(s)} returns the AttributeAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SignatureAst|) $) "\\spad{autoCoerce(s)} returns the SignatureAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CapsuleAst|) $) "\\spad{autoCoerce(s)} returns the CapsuleAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CategoryAst|) $) "\\spad{autoCoerce(s)} returns the CategoryAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhereAst|) $) "\\spad{autoCoerce(s)} returns the WhereAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MacroAst|) $) "\\spad{autoCoerce(s)} returns the MacroAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|DefinitionAst|) $) "\\spad{autoCoerce(s)} returns the DefinitionAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ImportAst|) $) "\\spad{autoCoerce(s)} returns the ImportAst view of \\spad{`s'}. Left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{s case Integer} holds if \\spad{`s'} represents an integer literal.") (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{s case String} holds if \\spad{`s'} represents a string literal.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{s case Identifier} holds if \\spad{`s'} represents an identifier.") (((|Boolean|) $ (|[\|\|]| (|IsAst|))) "\\spad{s case IsAst} holds if \\spad{`s'} represents an is-expression.") (((|Boolean|) $ (|[\|\|]| (|HasAst|))) "\\spad{s case HasAst} holds if \\spad{`s'} represents a has-expression.") (((|Boolean|) $ (|[\|\|]| (|CaseAst|))) "\\spad{s case CaseAst} holds if \\spad{`s'} represents a case-expression.") (((|Boolean|) $ (|[\|\|]| (|ColonAst|))) "\\spad{s case ColonAst} holds if \\spad{`s'} represents a colon-expression.") (((|Boolean|) $ (|[\|\|]| (|SuchThatAst|))) "\\spad{s case SuchThatAst} holds if \\spad{`s'} represents a qualified-expression.") (((|Boolean|) $ (|[\|\|]| (|LetAst|))) "\\spad{s case LetAst} holds if \\spad{`s'} represents an assignment-expression.") (((|Boolean|) $ (|[\|\|]| (|SequenceAst|))) "\\spad{s case SequenceAst} holds if \\spad{`s'} represents a sequence-of-statements.") (((|Boolean|) $ (|[\|\|]| (|SegmentAst|))) "\\spad{s case SegmentAst} holds if \\spad{`s'} represents a segment-expression.") (((|Boolean|) $ (|[\|\|]| (|RestrictAst|))) "\\spad{s case RestrictAst} holds if \\spad{`s'} represents a restrict-expression.") (((|Boolean|) $ (|[\|\|]| (|PretendAst|))) "\\spad{s case PretendAst} holds if \\spad{`s'} represents a pretend-expression.") (((|Boolean|) $ (|[\|\|]| (|CoerceAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a coerce-expression.") (((|Boolean|) $ (|[\|\|]| (|ReturnAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a return-statement.") (((|Boolean|) $ (|[\|\|]| (|ExitAst|))) "\\spad{s case ExitAst} holds if \\spad{`s'} represents an exit-expression.") (((|Boolean|) $ (|[\|\|]| (|ConstructAst|))) "\\spad{s case ConstructAst} holds if \\spad{`s'} represents a list-expression.") (((|Boolean|) $ (|[\|\|]| (|CollectAst|))) "\\spad{s case CollectAst} holds if \\spad{`s'} represents a list-comprehension.") (((|Boolean|) $ (|[\|\|]| (|InAst|))) "\\spad{s case InAst} holds if \\spad{`s'} represents a in-iterator") (((|Boolean|) $ (|[\|\|]| (|WhileAst|))) "\\spad{s case WhileAst} holds if \\spad{`s'} represents a while-iterator") (((|Boolean|) $ (|[\|\|]| (|RepeatAst|))) "\\spad{s case RepeatAst} holds if \\spad{`s'} represents an repeat-loop.") (((|Boolean|) $ (|[\|\|]| (|IfAst|))) "\\spad{s case IfAst} holds if \\spad{`s'} represents an if-statement.") (((|Boolean|) $ (|[\|\|]| (|MappingAst|))) "\\spad{s case MappingAst} holds if \\spad{`s'} represents a mapping type.") (((|Boolean|) $ (|[\|\|]| (|AttributeAst|))) "\\spad{s case AttributeAst} holds if \\spad{`s'} represents an attribute.") (((|Boolean|) $ (|[\|\|]| (|SignatureAst|))) "\\spad{s case SignatureAst} holds if \\spad{`s'} represents a signature export.") (((|Boolean|) $ (|[\|\|]| (|CapsuleAst|))) "\\spad{s case CapsuleAst} holds if \\spad{`s'} represents a domain capsule.") (((|Boolean|) $ (|[\|\|]| (|CategoryAst|))) "\\spad{s case CategoryAst} holds if \\spad{`s'} represents an unnamed category.") (((|Boolean|) $ (|[\|\|]| (|WhereAst|))) "\\spad{s case WhereAst} holds if \\spad{`s'} represents an expression with local definitions.") (((|Boolean|) $ (|[\|\|]| (|MacroAst|))) "\\spad{s case MacroAst} holds if \\spad{`s'} represents a macro definition.") (((|Boolean|) $ (|[\|\|]| (|DefinitionAst|))) "\\spad{s case DefinitionAst} holds if \\spad{`s'} represents a definition.") (((|Boolean|) $ (|[\|\|]| (|ImportAst|))) "\\spad{s case ImportAst} holds if \\spad{`s'} represents an `import' statement.")))
+((|constructor| (NIL "This category describes the exported \\indented{2}{signatures of the SpadAst domain.}")) (|autoCoerce| (((|Integer|) $) "\\spad{autoCoerce(s)} returns the Integer view of \\spad{`s'}. Left at the discretion of the compiler.") (((|String|) $) "\\spad{autoCoerce(s)} returns the String view of \\spad{`s'}. Left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} returns the Identifier view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IsAst|) $) "\\spad{autoCoerce(s)} returns the IsAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|HasAst|) $) "\\spad{autoCoerce(s)} returns the HasAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CaseAst|) $) "\\spad{autoCoerce(s)} returns the CaseAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ColonAst|) $) "\\spad{autoCoerce(s)} returns the ColoonAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SuchThatAst|) $) "\\spad{autoCoerce(s)} returns the SuchThatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|LetAst|) $) "\\spad{autoCoerce(s)} returns the LetAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SequenceAst|) $) "\\spad{autoCoerce(s)} returns the SequenceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SegmentAst|) $) "\\spad{autoCoerce(s)} returns the SegmentAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RestrictAst|) $) "\\spad{autoCoerce(s)} returns the RestrictAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|PretendAst|) $) "\\spad{autoCoerce(s)} returns the PretendAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CoerceAst|) $) "\\spad{autoCoerce(s)} returns the CoerceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ReturnAst|) $) "\\spad{autoCoerce(s)} returns the ReturnAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ExitAst|) $) "\\spad{autoCoerce(s)} returns the ExitAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ConstructAst|) $) "\\spad{autoCoerce(s)} returns the ConstructAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CollectAst|) $) "\\spad{autoCoerce(s)} returns the CollectAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|StepAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{s}. Left at the discretion of the compiler.") (((|InAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhileAst|) $) "\\spad{autoCoerce(s)} returns the WhileAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RepeatAst|) $) "\\spad{autoCoerce(s)} returns the RepeatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IfAst|) $) "\\spad{autoCoerce(s)} returns the IfAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MappingAst|) $) "\\spad{autoCoerce(s)} returns the MappingAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|AttributeAst|) $) "\\spad{autoCoerce(s)} returns the AttributeAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SignatureAst|) $) "\\spad{autoCoerce(s)} returns the SignatureAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CapsuleAst|) $) "\\spad{autoCoerce(s)} returns the CapsuleAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CategoryAst|) $) "\\spad{autoCoerce(s)} returns the CategoryAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhereAst|) $) "\\spad{autoCoerce(s)} returns the WhereAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MacroAst|) $) "\\spad{autoCoerce(s)} returns the MacroAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|DefinitionAst|) $) "\\spad{autoCoerce(s)} returns the DefinitionAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ImportAst|) $) "\\spad{autoCoerce(s)} returns the ImportAst view of \\spad{`s'}. Left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{s case Integer} holds if \\spad{`s'} represents an integer literal.") (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{s case String} holds if \\spad{`s'} represents a string literal.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{s case Identifier} holds if \\spad{`s'} represents an identifier.") (((|Boolean|) $ (|[\|\|]| (|IsAst|))) "\\spad{s case IsAst} holds if \\spad{`s'} represents an is-expression.") (((|Boolean|) $ (|[\|\|]| (|HasAst|))) "\\spad{s case HasAst} holds if \\spad{`s'} represents a has-expression.") (((|Boolean|) $ (|[\|\|]| (|CaseAst|))) "\\spad{s case CaseAst} holds if \\spad{`s'} represents a case-expression.") (((|Boolean|) $ (|[\|\|]| (|ColonAst|))) "\\spad{s case ColonAst} holds if \\spad{`s'} represents a colon-expression.") (((|Boolean|) $ (|[\|\|]| (|SuchThatAst|))) "\\spad{s case SuchThatAst} holds if \\spad{`s'} represents a qualified-expression.") (((|Boolean|) $ (|[\|\|]| (|LetAst|))) "\\spad{s case LetAst} holds if \\spad{`s'} represents an assignment-expression.") (((|Boolean|) $ (|[\|\|]| (|SequenceAst|))) "\\spad{s case SequenceAst} holds if \\spad{`s'} represents a sequence-of-statements.") (((|Boolean|) $ (|[\|\|]| (|SegmentAst|))) "\\spad{s case SegmentAst} holds if \\spad{`s'} represents a segment-expression.") (((|Boolean|) $ (|[\|\|]| (|RestrictAst|))) "\\spad{s case RestrictAst} holds if \\spad{`s'} represents a restrict-expression.") (((|Boolean|) $ (|[\|\|]| (|PretendAst|))) "\\spad{s case PretendAst} holds if \\spad{`s'} represents a pretend-expression.") (((|Boolean|) $ (|[\|\|]| (|CoerceAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a coerce-expression.") (((|Boolean|) $ (|[\|\|]| (|ReturnAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a return-statement.") (((|Boolean|) $ (|[\|\|]| (|ExitAst|))) "\\spad{s case ExitAst} holds if \\spad{`s'} represents an exit-expression.") (((|Boolean|) $ (|[\|\|]| (|ConstructAst|))) "\\spad{s case ConstructAst} holds if \\spad{`s'} represents a list-expression.") (((|Boolean|) $ (|[\|\|]| (|CollectAst|))) "\\spad{s case CollectAst} holds if \\spad{`s'} represents a list-comprehension.") (((|Boolean|) $ (|[\|\|]| (|StepAst|))) "\\spad{s case StepAst} holds if \\spad{s} represents an arithmetic progression iterator.") (((|Boolean|) $ (|[\|\|]| (|InAst|))) "\\spad{s case InAst} holds if \\spad{`s'} represents a in-iterator") (((|Boolean|) $ (|[\|\|]| (|WhileAst|))) "\\spad{s case WhileAst} holds if \\spad{`s'} represents a while-iterator") (((|Boolean|) $ (|[\|\|]| (|RepeatAst|))) "\\spad{s case RepeatAst} holds if \\spad{`s'} represents an repeat-loop.") (((|Boolean|) $ (|[\|\|]| (|IfAst|))) "\\spad{s case IfAst} holds if \\spad{`s'} represents an if-statement.") (((|Boolean|) $ (|[\|\|]| (|MappingAst|))) "\\spad{s case MappingAst} holds if \\spad{`s'} represents a mapping type.") (((|Boolean|) $ (|[\|\|]| (|AttributeAst|))) "\\spad{s case AttributeAst} holds if \\spad{`s'} represents an attribute.") (((|Boolean|) $ (|[\|\|]| (|SignatureAst|))) "\\spad{s case SignatureAst} holds if \\spad{`s'} represents a signature export.") (((|Boolean|) $ (|[\|\|]| (|CapsuleAst|))) "\\spad{s case CapsuleAst} holds if \\spad{`s'} represents a domain capsule.") (((|Boolean|) $ (|[\|\|]| (|CategoryAst|))) "\\spad{s case CategoryAst} holds if \\spad{`s'} represents an unnamed category.") (((|Boolean|) $ (|[\|\|]| (|WhereAst|))) "\\spad{s case WhereAst} holds if \\spad{`s'} represents an expression with local definitions.") (((|Boolean|) $ (|[\|\|]| (|MacroAst|))) "\\spad{s case MacroAst} holds if \\spad{`s'} represents a macro definition.") (((|Boolean|) $ (|[\|\|]| (|DefinitionAst|))) "\\spad{s case DefinitionAst} holds if \\spad{`s'} represents a definition.") (((|Boolean|) $ (|[\|\|]| (|ImportAst|))) "\\spad{s case ImportAst} holds if \\spad{`s'} represents an `import' statement.")))
NIL
NIL
(-1140)
@@ -4502,19 +4502,19 @@ NIL
NIL
(-1143 V C)
((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned.")))
-((-4418 . T) (-4419 . T))
-((-12 (|HasCategory| (-1142 |#1| |#2|) (LIST (QUOTE -310) (LIST (QUOTE -1142) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1142 |#1| |#2|) (QUOTE (-1102)))) (|HasCategory| (-1142 |#1| |#2|) (QUOTE (-1102))) (-2800 (|HasCategory| (-1142 |#1| |#2|) (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| (-1142 |#1| |#2|) (LIST (QUOTE -310) (LIST (QUOTE -1142) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1142 |#1| |#2|) (QUOTE (-1102))))) (|HasCategory| (-1142 |#1| |#2|) (LIST (QUOTE -614) (QUOTE (-863)))))
+((-4422 . T) (-4423 . T))
+((-12 (|HasCategory| (-1142 |#1| |#2|) (LIST (QUOTE -310) (LIST (QUOTE -1142) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1142 |#1| |#2|) (QUOTE (-1102)))) (|HasCategory| (-1142 |#1| |#2|) (QUOTE (-1102))) (-2811 (|HasCategory| (-1142 |#1| |#2|) (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| (-1142 |#1| |#2|) (LIST (QUOTE -310) (LIST (QUOTE -1142) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1142 |#1| |#2|) (QUOTE (-1102))))) (|HasCategory| (-1142 |#1| |#2|) (LIST (QUOTE -614) (QUOTE (-863)))))
(-1144 |ndim| R)
((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}.")))
-((-4415 . T) (-4407 |has| |#2| (-6 (-4420 "*"))) (-4418 . T) (-4412 . T) (-4413 . T))
-((|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE (-4420 "*"))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))) (-2800 (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (QUOTE (-365))) (-2800 (|HasAttribute| |#2| (QUOTE (-4420 "*"))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-172))))
+((-4419 . T) (-4411 |has| |#2| (-6 (-4424 "*"))) (-4422 . T) (-4416 . T) (-4417 . T))
+((|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE (-4424 "*"))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))) (-2811 (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (QUOTE (-365))) (-2811 (|HasAttribute| |#2| (QUOTE (-4424 "*"))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-172))))
(-1145 S)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
NIL
NIL
(-1146)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
-((-4419 . T) (-4418 . T))
+((-4423 . T) (-4422 . T))
NIL
(-1147 R E V P TS)
((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,E,V,P,TS)} and \\spad{RSETGCD(R,E,V,P,TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
@@ -4522,12 +4522,12 @@ NIL
NIL
(-1148 R E V P)
((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
-((-4419 . T) (-4418 . T))
+((-4423 . T) (-4422 . T))
((-12 (|HasCategory| |#4| (QUOTE (-1102))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#4| (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -614) (QUOTE (-863)))))
(-1149 S)
((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,y,...,z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
-((-4418 . T) (-4419 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1102))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))))
+((-4422 . T) (-4423 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1102))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))))
(-1150 A S)
((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}.")))
NIL
@@ -4538,583 +4538,587 @@ NIL
NIL
(-1152 |Key| |Ent| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
-((-4419 . T))
-((-12 (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1795) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4237) (|devaluate| |#2|)))))) (-2800 (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (QUOTE (-1102))) (|HasCategory| |#2| (QUOTE (-1102)))) (-2800 (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (LIST (QUOTE -615) (QUOTE (-539)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-851))) (-2800 (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (QUOTE (-1102))))
+((-4423 . T))
+((-12 (|HasCategory| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1809) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4236) (|devaluate| |#2|)))))) (-2811 (|HasCategory| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (QUOTE (-1102))) (|HasCategory| |#2| (QUOTE (-1102)))) (-2811 (|HasCategory| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (LIST (QUOTE -615) (QUOTE (-539)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-851))) (-2811 (|HasCategory| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (QUOTE (-1102))))
(-1153)
+((|constructor| (NIL "This domain represents an arithmetic progression iterator syntax.")) (|step| (((|SpadAst|) $) "\\spad{step(i)} returns the Spad AST denoting the step of the arithmetic progression represented by the iterator \\spad{i}.")) (|upperBound| (((|Maybe| (|SpadAst|)) $) "If the set of values assumed by the iteration variable is bounded from above,{} \\spad{upperBound(i)} returns the upper bound. Otherwise,{} its returns \\spad{nothing}.")) (|lowerBound| (((|SpadAst|) $) "\\spad{lowerBound(i)} returns the lower bound on the values assumed by the iteration variable.")) (|iterationVar| (((|Identifier|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the arithmetic progression iterator \\spad{i}.")))
+NIL
+NIL
+(-1154)
((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}\\spad{'s} are never \"failed\".}")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping.")))
NIL
NIL
-(-1154 |Coef|)
+(-1155 |Coef|)
((|constructor| (NIL "This package computes infinite products of Taylor series over an integral domain of characteristic 0. Here Taylor series are represented by streams of Taylor coefficients.")) (|generalInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-1155 S)
+(-1156 S)
((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,u)}.")))
NIL
NIL
-(-1156 A B)
+(-1157 A B)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,f,u)},{} where \\spad{u} is a finite stream \\spad{[x0,x1,...,xn]},{} returns the value \\spad{r(n)} computed as follows: \\spad{r0 = f(x0,b), r1 = f(x1,r0),..., r(n) = f(xn,r(n-1))}.")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,h,[x0,x1,x2,...])} returns \\spad{[y0,y1,y2,...]},{} where \\spad{y0 = h(x0,b)},{} \\spad{y1 = h(x1,y0)},{}\\spad{...} \\spad{yn = h(xn,y(n-1))}.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,s)} returns a stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{s}. Note: \\spad{map(f,[x0,x1,x2,...]) = [f(x0),f(x1),f(x2),..]}.")))
NIL
NIL
-(-1157 A B C)
+(-1158 A B C)
((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,st1,st2)} returns the stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{st1} and \\spad{st2}. Note: \\spad{map(f,[x0,x1,x2,..],[y0,y1,y2,..]) = [f(x0,y0),f(x1,y1),..]}.")))
NIL
NIL
-(-1158 S)
+(-1159 S)
((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,s)} returns \\spad{[x0,x1,...,x(n)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,s)} returns \\spad{[x0,x1,...,x(n-1)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,x) = [x,f(x),f(f(x)),...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),f(),f(),...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,n,y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,s) = concat(a,s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries.")))
-((-4419 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1102))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))))
-(-1159)
+((-4423 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1102))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))))
+(-1160)
((|constructor| (NIL "A category for string-like objects")) (|string| (($ (|Integer|)) "\\spad{string(i)} returns the decimal representation of \\spad{i} in a string")))
-((-4419 . T) (-4418 . T))
+((-4423 . T) (-4422 . T))
NIL
-(-1160)
+(-1161)
NIL
-((-4419 . T) (-4418 . T))
-((-2800 (-12 (|HasCategory| (-144) (QUOTE (-851))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1102))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-144) (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| (-144) (QUOTE (-1102))) (|HasCategory| (-144) (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| (-144) (QUOTE (-1102))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144))))))
-(-1161 |Entry|)
+((-4423 . T) (-4422 . T))
+((-2811 (-12 (|HasCategory| (-144) (QUOTE (-851))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1102))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-144) (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| (-144) (QUOTE (-1102))) (|HasCategory| (-144) (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| (-144) (QUOTE (-1102))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144))))))
+(-1162 |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used.")))
-((-4418 . T) (-4419 . T))
-((-12 (|HasCategory| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1795) (QUOTE (-1160))) (LIST (QUOTE |:|) (QUOTE -4237) (|devaluate| |#1|)))))) (-2800 (|HasCategory| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-1102)))) (-2800 (|HasCategory| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (LIST (QUOTE -615) (QUOTE (-539)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (QUOTE (-1102))) (|HasCategory| (-1160) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102))) (-2800 (|HasCategory| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (LIST (QUOTE -614) (QUOTE (-863)))))
-(-1162 A)
+((-4422 . T) (-4423 . T))
+((-12 (|HasCategory| (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1809) (QUOTE (-1161))) (LIST (QUOTE |:|) (QUOTE -4236) (|devaluate| |#1|)))))) (-2811 (|HasCategory| (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-1102)))) (-2811 (|HasCategory| (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (LIST (QUOTE -615) (QUOTE (-539)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (QUOTE (-1102))) (|HasCategory| (-1161) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102))) (-2811 (|HasCategory| (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (LIST (QUOTE -614) (QUOTE (-863)))))
+(-1163 A)
((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,r,g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,a1,..],[b0,b1,..])} returns \\spad{[a0/b0,a1/b1,..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,0>,b<0,1>,...],[b<1,0>,b<1,1>,.],...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,j=0 to infinity,b<i,j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,[a0,a1,a2,...]) = [a,a0,a1/2,a2/3,...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,b,st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,b,st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,0>,a<0,1>,..],[a<1,0>,a<1,1>,..],[a<2,0>,a<2,1>,..],..]} and \\spad{addiag(x) = [b<0,b<1>,...], then b<k> = sum(i+j=k,a<i,j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient 1.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,[a0,a1,a2,..])} returns \\spad{[f(0)*a0,f(1)*a1,f(2)*a2,..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,a1,a2,...])} returns \\spad{[a1,2 a2,3 a3,...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,a1,..],[b0,b1,..])} returns \\spad{[a0*b0,a1*b1,..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,n+2,n+4,...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,n+1,n+2,...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,a1,...] * r = [a0 * r,a1 * r,...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,a1,...] = [r * a0,r * a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,a1,...] * [b0,b1,...] = [c0,c1,...]} where \\spad{ck = sum(i + j = k,ai * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,a1,...] = [- a0,- a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] - [b0,b1,..] = [a0 - b0,a1 - b1,..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] + [b0,b1,..] = [a0 + b0,a1 + b1,..]}")))
NIL
((|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))))
-(-1163 |Coef|)
+(-1164 |Coef|)
((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
NIL
NIL
-(-1164 |Coef|)
+(-1165 |Coef|)
((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
NIL
NIL
-(-1165 R UP)
+(-1166 R UP)
((|constructor| (NIL "This package computes the subresultants of two polynomials which is needed for the `Lazard Rioboo' enhancement to Tragers integrations formula For efficiency reasons this has been rewritten to call Lionel Ducos package which is currently the best one. \\blankline")) (|primitivePart| ((|#2| |#2| |#1|) "\\spad{primitivePart(p, q)} reduces the coefficient of \\spad{p} modulo \\spad{q},{} takes the primitive part of the result,{} and ensures that the leading coefficient of that result is monic.")) (|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) "\\spad{subresultantVector(p, q)} returns \\spad{[p0,...,pn]} where \\spad{pi} is the \\spad{i}-th subresultant of \\spad{p} and \\spad{q}. In particular,{} \\spad{p0 = resultant(p, q)}.")))
NIL
((|HasCategory| |#1| (QUOTE (-308))))
-(-1166 |n| R)
+(-1167 |n| R)
((|constructor| (NIL "This domain \\undocumented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,li)} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,li,p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,li,b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,ind,p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,li,i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,li,p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,s2,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,li,i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} \\undocumented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} \\undocumented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} \\undocumented")) (|children| (((|List| $) $) "\\spad{children(x)} \\undocumented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,n)} \\undocumented")) (|birth| (($ $) "\\spad{birth(x)} \\undocumented")) (|subspace| (($) "\\spad{subspace()} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} \\undocumented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} \\undocumented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} \\undocumented")))
NIL
NIL
-(-1167 S1 S2)
+(-1168 S1 S2)
((|constructor| (NIL "This domain implements \"such that\" forms")) (|rhs| ((|#2| $) "\\spad{rhs(f)} returns the right side of \\spad{f}")) (|lhs| ((|#1| $) "\\spad{lhs(f)} returns the left side of \\spad{f}")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} makes a form \\spad{s:t}")))
NIL
NIL
-(-1168)
+(-1169)
((|constructor| (NIL "This domain represents the filter iterator syntax.")) (|predicate| (((|SpadAst|) $) "\\spad{predicate(e)} returns the syntax object for the predicate in the filter iterator syntax `e'.")))
NIL
NIL
-(-1169 |Coef| |var| |cen|)
+(-1170 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,x,3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-4420 "*") -2800 (-1667 (|has| |#1| (-365)) (|has| (-1176 |#1| |#2| |#3|) (-821))) (|has| |#1| (-172)) (-1667 (|has| |#1| (-365)) (|has| (-1176 |#1| |#2| |#3|) (-911)))) (-4411 -2800 (-1667 (|has| |#1| (-365)) (|has| (-1176 |#1| |#2| |#3|) (-821))) (|has| |#1| (-559)) (-1667 (|has| |#1| (-365)) (|has| (-1176 |#1| |#2| |#3|) (-911)))) (-4416 |has| |#1| (-365)) (-4410 |has| |#1| (-365)) (-4412 . T) (-4413 . T) (-4415 . T))
-((-2800 (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-911))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-1024))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-1153))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -287) (LIST (QUOTE -1176) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1176) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -310) (LIST (QUOTE -1176) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -517) (QUOTE (-1178)) (LIST (QUOTE -1176) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -1040) (QUOTE (-1178)))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (-2800 (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-145)))) (-2800 (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2800 (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-567)) (|devaluate| |#1|)))))) (-2800 (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-567)) (|devaluate| |#1|))))) (|HasCategory| (-567) (QUOTE (-1114))) (-2800 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-911))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -1040) (QUOTE (-1178)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-1024))) (|HasCategory| |#1| (QUOTE (-365)))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-365)))) (-2800 (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-365))))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-1153))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -287) (LIST (QUOTE -1176) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1176) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -310) (LIST (QUOTE -1176) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -517) (QUOTE (-1178)) (LIST (QUOTE -1176) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -4132) (LIST (|devaluate| |#1|) (QUOTE (-1178)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-567))))) (-2800 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (QUOTE (-1203))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -2416) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1178))))) (|HasSignature| |#1| (LIST (QUOTE -2847) (LIST (LIST (QUOTE -645) (QUOTE (-1178))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-911))) (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-2800 (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-911))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-559)))) (-2800 (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (-2800 (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-911))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-172)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-911))) (|HasCategory| |#1| (QUOTE (-365)))) (-2800 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-911))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-145)))))
-(-1170 R -3879)
+(((-4424 "*") -2811 (-1686 (|has| |#1| (-365)) (|has| (-1177 |#1| |#2| |#3|) (-821))) (|has| |#1| (-172)) (-1686 (|has| |#1| (-365)) (|has| (-1177 |#1| |#2| |#3|) (-911)))) (-4415 -2811 (-1686 (|has| |#1| (-365)) (|has| (-1177 |#1| |#2| |#3|) (-821))) (|has| |#1| (-559)) (-1686 (|has| |#1| (-365)) (|has| (-1177 |#1| |#2| |#3|) (-911)))) (-4420 |has| |#1| (-365)) (-4414 |has| |#1| (-365)) (-4416 . T) (-4417 . T) (-4419 . T))
+((-2811 (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (QUOTE (-911))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (QUOTE (-1024))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (QUOTE (-1154))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (LIST (QUOTE -287) (LIST (QUOTE -1177) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1177) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (LIST (QUOTE -310) (LIST (QUOTE -1177) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (LIST (QUOTE -517) (QUOTE (-1179)) (LIST (QUOTE -1177) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (LIST (QUOTE -1040) (QUOTE (-1179)))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (-2811 (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-145)))) (-2811 (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2811 (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-567)) (|devaluate| |#1|)))))) (-2811 (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-567)) (|devaluate| |#1|))))) (|HasCategory| (-567) (QUOTE (-1114))) (-2811 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (QUOTE (-911))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (LIST (QUOTE -1040) (QUOTE (-1179)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (QUOTE (-1024))) (|HasCategory| |#1| (QUOTE (-365)))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-365)))) (-2811 (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-365))))) (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (QUOTE (-1154))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (LIST (QUOTE -287) (LIST (QUOTE -1177) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1177) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (LIST (QUOTE -310) (LIST (QUOTE -1177) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (LIST (QUOTE -517) (QUOTE (-1179)) (LIST (QUOTE -1177) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -4129) (LIST (|devaluate| |#1|) (QUOTE (-1179)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-567))))) (-2811 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (QUOTE (-1204))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -4083) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1179))))) (|HasSignature| |#1| (LIST (QUOTE -2859) (LIST (LIST (QUOTE -645) (QUOTE (-1179))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| (-1177 |#1| |#2| |#3|) (QUOTE (-911))) (|HasCategory| (-1177 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-2811 (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (QUOTE (-911))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-559)))) (-2811 (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (-2811 (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (QUOTE (-911))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-172)))) (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1177 |#1| |#2| |#3|) (QUOTE (-911))) (|HasCategory| |#1| (QUOTE (-365)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1177 |#1| |#2| |#3|) (QUOTE (-911))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(-1171 R -3888)
((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n), n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n), n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n}).")))
NIL
NIL
-(-1171 R)
+(-1172 R)
((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.")))
NIL
NIL
-(-1172 R S)
+(-1173 R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-1173 E OV R P)
+(-1174 E OV R P)
((|constructor| (NIL "\\indented{1}{SupFractionFactorize} contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}. Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}.")))
NIL
NIL
-(-1174 R)
+(-1175 R)
((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable.")))
-(((-4420 "*") |has| |#1| (-172)) (-4411 |has| |#1| (-559)) (-4414 |has| |#1| (-365)) (-4416 |has| |#1| (-6 -4416)) (-4413 . T) (-4412 . T) (-4415 . T))
-((|HasCategory| |#1| (QUOTE (-911))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-381))))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-567))))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567)))))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (-2800 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-911)))) (-2800 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-911)))) (-2800 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1153))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4416)) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (-2800 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-145)))))
-(-1175 |Coef| |var| |cen|)
-((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")))
-(((-4420 "*") |has| |#1| (-172)) (-4411 |has| |#1| (-559)) (-4416 |has| |#1| (-365)) (-4410 |has| |#1| (-365)) (-4412 . T) (-4413 . T) (-4415 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567))) (|devaluate| |#1|)))) (|HasCategory| (-410 (-567)) (QUOTE (-1114))) (|HasCategory| |#1| (QUOTE (-365))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-2800 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasSignature| |#1| (LIST (QUOTE -4132) (LIST (|devaluate| |#1|) (QUOTE (-1178)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567)))))) (-2800 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (QUOTE (-1203))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -2416) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1178))))) (|HasSignature| |#1| (LIST (QUOTE -2847) (LIST (LIST (QUOTE -645) (QUOTE (-1178))) (|devaluate| |#1|)))))))
+(((-4424 "*") |has| |#1| (-172)) (-4415 |has| |#1| (-559)) (-4418 |has| |#1| (-365)) (-4420 |has| |#1| (-6 -4420)) (-4417 . T) (-4416 . T) (-4419 . T))
+((|HasCategory| |#1| (QUOTE (-911))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-381))))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-567))))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567)))))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-911)))) (-2811 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-911)))) (-2811 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1154))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4420)) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-1176 |Coef| |var| |cen|)
+((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")))
+(((-4424 "*") |has| |#1| (-172)) (-4415 |has| |#1| (-559)) (-4420 |has| |#1| (-365)) (-4414 |has| |#1| (-365)) (-4416 . T) (-4417 . T) (-4419 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567))) (|devaluate| |#1|)))) (|HasCategory| (-410 (-567)) (QUOTE (-1114))) (|HasCategory| |#1| (QUOTE (-365))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-2811 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasSignature| |#1| (LIST (QUOTE -4129) (LIST (|devaluate| |#1|) (QUOTE (-1179)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567)))))) (-2811 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (QUOTE (-1204))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -4083) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1179))))) (|HasSignature| |#1| (LIST (QUOTE -2859) (LIST (LIST (QUOTE -645) (QUOTE (-1179))) (|devaluate| |#1|)))))))
+(-1177 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-4420 "*") |has| |#1| (-172)) (-4411 |has| |#1| (-559)) (-4412 . T) (-4413 . T) (-4415 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-559))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-772)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-772)) (|devaluate| |#1|)))) (|HasCategory| (-772) (QUOTE (-1114))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-772))))) (|HasSignature| |#1| (LIST (QUOTE -4132) (LIST (|devaluate| |#1|) (QUOTE (-1178)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-772))))) (|HasCategory| |#1| (QUOTE (-365))) (-2800 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (QUOTE (-1203))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -2416) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1178))))) (|HasSignature| |#1| (LIST (QUOTE -2847) (LIST (LIST (QUOTE -645) (QUOTE (-1178))) (|devaluate| |#1|)))))))
-(-1177)
+(((-4424 "*") |has| |#1| (-172)) (-4415 |has| |#1| (-559)) (-4416 . T) (-4417 . T) (-4419 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-559))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-772)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-772)) (|devaluate| |#1|)))) (|HasCategory| (-772) (QUOTE (-1114))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-772))))) (|HasSignature| |#1| (LIST (QUOTE -4129) (LIST (|devaluate| |#1|) (QUOTE (-1179)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-772))))) (|HasCategory| |#1| (QUOTE (-365))) (-2811 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (QUOTE (-1204))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -4083) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1179))))) (|HasSignature| |#1| (LIST (QUOTE -2859) (LIST (LIST (QUOTE -645) (QUOTE (-1179))) (|devaluate| |#1|)))))))
+(-1178)
((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}")))
NIL
NIL
-(-1178)
+(-1179)
((|constructor| (NIL "Basic and scripted symbols.")) (|sample| (($) "\\spad{sample()} returns a sample of \\%")) (|list| (((|List| $) $) "\\spad{list(sy)} takes a scripted symbol and produces a list of the name followed by the scripts.")) (|string| (((|String|) $) "\\spad{string(s)} converts the symbol \\spad{s} to a string. Error: if the symbol is subscripted.")) (|elt| (($ $ (|List| (|OutputForm|))) "\\spad{elt(s,[a1,...,an])} or \\spad{s}([a1,{}...,{}an]) returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|argscript| (($ $ (|List| (|OutputForm|))) "\\spad{argscript(s, [a1,...,an])} returns \\spad{s} arg-scripted by \\spad{[a1,...,an]}.")) (|superscript| (($ $ (|List| (|OutputForm|))) "\\spad{superscript(s, [a1,...,an])} returns \\spad{s} superscripted by \\spad{[a1,...,an]}.")) (|subscript| (($ $ (|List| (|OutputForm|))) "\\spad{subscript(s, [a1,...,an])} returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|script| (($ $ (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|))))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}.") (($ $ (|List| (|List| (|OutputForm|)))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}. Omitted components are taken to be empty. For example,{} \\spad{script(s, [a,b,c])} is equivalent to \\spad{script(s,[a,b,c,[],[]])}.")) (|scripts| (((|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))) $) "\\spad{scripts(s)} returns all the scripts of \\spad{s}.")) (|scripted?| (((|Boolean|) $) "\\spad{scripted?(s)} is \\spad{true} if \\spad{s} has been given any scripts.")) (|name| (($ $) "\\spad{name(s)} returns \\spad{s} without its scripts.")) (|resetNew| (((|Void|)) "\\spad{resetNew()} resets the internals counters that new() and new(\\spad{s}) use to return distinct symbols every time.")) (|new| (($ $) "\\spad{new(s)} returns a new symbol whose name starts with \\%\\spad{s}.") (($) "\\spad{new()} returns a new symbol whose name starts with \\%.")))
NIL
NIL
-(-1179 R)
+(-1180 R)
((|constructor| (NIL "Computes all the symmetric functions in \\spad{n} variables.")) (|symFunc| (((|Vector| |#1|) |#1| (|PositiveInteger|)) "\\spad{symFunc(r, n)} returns the vector of the elementary symmetric functions in \\spad{[r,r,...,r]} \\spad{n} times.") (((|Vector| |#1|) (|List| |#1|)) "\\spad{symFunc([r1,...,rn])} returns the vector of the elementary symmetric functions in the \\spad{ri's}: \\spad{[r1 + ... + rn, r1 r2 + ... + r(n-1) rn, ..., r1 r2 ... rn]}.")))
NIL
NIL
-(-1180 R)
+(-1181 R)
((|constructor| (NIL "This domain implements symmetric polynomial")))
-(((-4420 "*") |has| |#1| (-172)) (-4411 |has| |#1| (-559)) (-4416 |has| |#1| (-6 -4416)) (-4412 . T) (-4413 . T) (-4415 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-559))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-2800 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| (-973) (QUOTE (-131))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasAttribute| |#1| (QUOTE -4416)))
-(-1181)
+(((-4424 "*") |has| |#1| (-172)) (-4415 |has| |#1| (-559)) (-4420 |has| |#1| (-6 -4420)) (-4416 . T) (-4417 . T) (-4419 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-559))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| (-973) (QUOTE (-131))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasAttribute| |#1| (QUOTE -4420)))
+(-1182)
((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $) "\\spad{returnTypeOf(f,tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(f,t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{returnType!(f,t,tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,l,tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,t,asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table.")))
NIL
NIL
-(-1182)
+(-1183)
((|constructor| (NIL "Create and manipulate a symbol table for generated FORTRAN code")) (|symbolTable| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|FortranType|))))) "\\spad{symbolTable(l)} creates a symbol table from the elements of \\spad{l}.")) (|printTypes| (((|Void|) $) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|newTypeLists| (((|SExpression|) $) "\\spad{newTypeLists(x)} \\undocumented")) (|typeLists| (((|List| (|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|))))))))) $) "\\spad{typeLists(tab)} returns a list of lists of types of objects in \\spad{tab}")) (|externalList| (((|List| (|Symbol|)) $) "\\spad{externalList(tab)} returns a list of all the external symbols in \\spad{tab}")) (|typeList| (((|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|)))))))) (|FortranScalarType|) $) "\\spad{typeList(t,tab)} returns a list of all the objects of type \\spad{t} in \\spad{tab}")) (|parametersOf| (((|List| (|Symbol|)) $) "\\spad{parametersOf(tab)} returns a list of all the symbols declared in \\spad{tab}")) (|fortranTypeOf| (((|FortranType|) (|Symbol|) $) "\\spad{fortranTypeOf(u,tab)} returns the type of \\spad{u} in \\spad{tab}")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) $) "\\spad{declare!(u,t,tab)} creates a new entry in \\spad{tab},{} declaring \\spad{u} to be of type \\spad{t}") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) $) "\\spad{declare!(l,t,tab)} creates new entrys in \\spad{tab},{} declaring each of \\spad{l} to be of type \\spad{t}")) (|empty| (($) "\\spad{empty()} returns a new,{} empty symbol table")) (|coerce| (((|Table| (|Symbol|) (|FortranType|)) $) "\\spad{coerce(x)} returns a table view of \\spad{x}")))
NIL
NIL
-(-1183)
+(-1184)
((|constructor| (NIL "\\indented{1}{This domain provides a simple domain,{} general enough for} \\indented{2}{building complete representation of Spad programs as objects} \\indented{2}{of a term algebra built from ground terms of type integers,{} foats,{}} \\indented{2}{identifiers,{} and strings.} \\indented{2}{This domain differs from InputForm in that it represents} \\indented{2}{any entity in a Spad program,{} not just expressions.\\space{2}Furthermore,{}} \\indented{2}{while InputForm may contain atoms like vectors and other Lisp} \\indented{2}{objects,{} the Syntax domain is supposed to contain only that} \\indented{2}{initial algebra build from the primitives listed above.} Related Constructors: \\indented{2}{Integer,{} DoubleFloat,{} Identifier,{} String,{} SExpression.} See Also: SExpression,{} InputForm. The equality supported by this domain is structural.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} is \\spad{true} if \\spad{`x'} really is a String") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{x case Identifier} is \\spad{true} if \\spad{`x'} really is an Identifier") (((|Boolean|) $ (|[\|\|]| (|DoubleFloat|))) "\\spad{x case DoubleFloat} is \\spad{true} if \\spad{`x'} really is a DoubleFloat") (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{x case Integer} is \\spad{true} if \\spad{`x'} really is an Integer")) (|compound?| (((|Boolean|) $) "\\spad{compound? x} is \\spad{true} when \\spad{`x'} is not an atomic syntax.")) (|getOperands| (((|List| $) $) "\\spad{getOperands(x)} returns the list of operands to the operator in \\spad{`x'}.")) (|getOperator| (((|Union| (|Integer|) (|DoubleFloat|) (|Identifier|) (|String|) $) $) "\\spad{getOperator(x)} returns the operator,{} or tag,{} of the syntax \\spad{`x'}. The value returned is itself a syntax if \\spad{`x'} really is an application of a function symbol as opposed to being an atomic ground term.")) (|nil?| (((|Boolean|) $) "\\spad{nil?(s)} is \\spad{true} when \\spad{`s'} is a syntax for the constant nil.")) (|buildSyntax| (($ $ (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).") (($ (|Identifier|) (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(s)} forcibly extracts a string value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} forcibly extracts an identifier from the Syntax domain \\spad{`s'}; no check performed. To be called only at at the discretion of the compiler.") (((|DoubleFloat|) $) "\\spad{autoCoerce(s)} forcibly extracts a float value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler") (((|Integer|) $) "\\spad{autoCoerce(s)} forcibly extracts an integer value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.")) (|coerce| (((|String|) $) "\\spad{coerce(s)} extracts a string value from the syntax \\spad{`s'}.") (((|Identifier|) $) "\\spad{coerce(s)} extracts an identifier from the syntax \\spad{`s'}.") (((|DoubleFloat|) $) "\\spad{coerce(s)} extracts a float value from the syntax \\spad{`s'}.") (((|Integer|) $) "\\spad{coerce(s)} extracts and integer value from the syntax \\spad{`s'}")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} converts an \\spad{s}-expression to Syntax. Note,{} when \\spad{`s'} is not an atom,{} it is expected that it designates a proper list,{} \\spadignore{e.g.} a sequence of cons cells ending with nil.") (((|SExpression|) $) "\\spad{convert(s)} returns the \\spad{s}-expression representation of a syntax.")))
NIL
NIL
-(-1184 N)
+(-1185 N)
((|constructor| (NIL "This domain implements sized (signed) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of this type.")))
NIL
NIL
-(-1185 N)
+(-1186 N)
((|constructor| (NIL "This domain implements sized (unsigned) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")))
NIL
NIL
-(-1186)
+(-1187)
((|constructor| (NIL "This domain is a datatype system-level pointer values.")))
NIL
NIL
-(-1187 R)
+(-1188 R)
((|triangularSystems| (((|List| (|List| (|Polynomial| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{triangularSystems(lf,lv)} solves the system of equations defined by \\spad{lf} with respect to the list of symbols \\spad{lv}; the system of equations is obtaining by equating to zero the list of rational functions \\spad{lf}. The output is a list of solutions where each solution is expressed as a \"reduced\" triangular system of polynomials.")) (|solve| (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} with respect to the unique variable appearing in \\spad{eq}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|))) "\\spad{solve(p)} finds the solution of a rational function \\spad{p} = 0 with respect to the unique variable appearing in \\spad{p}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{solve(eq,v)} finds the solutions of the equation \\spad{eq} with respect to the variable \\spad{v}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{solve(p,v)} solves the equation \\spad{p=0},{} where \\spad{p} is a rational function with respect to the variable \\spad{v}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{solve(le)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to all symbols appearing in \\spad{le}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(lp)} finds the solutions of the list \\spad{lp} of rational functions with respect to all symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{solve(le,lv)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to the list of symbols \\spad{lv}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{solve(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")))
NIL
NIL
-(-1188)
+(-1189)
((|constructor| (NIL "The package \\spadtype{System} provides information about the runtime system and its characteristics.")) (|loadNativeModule| (((|Void|) (|String|)) "\\spad{loadNativeModule(path)} loads the native modile designated by \\spadvar{\\spad{path}}.")) (|nativeModuleExtension| (((|String|)) "\\spad{nativeModuleExtension} is a string representation of a filename extension for native modules.")) (|hostByteOrder| (((|ByteOrder|)) "\\sapd{hostByteOrder}")) (|hostPlatform| (((|String|)) "\\spad{hostPlatform} is a string `triplet' description of the platform hosting the running OpenAxiom system.")) (|rootDirectory| (((|String|)) "\\spad{rootDirectory()} returns the pathname of the root directory for the running OpenAxiom system.")))
NIL
NIL
-(-1189 S)
+(-1190 S)
((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,b,c,d,e)} is an auxiliary function for \\spad{mr}")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{ListFunctions3}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{tab1}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation bat1 is the inverse of tab1.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,pr,r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record")))
NIL
NIL
-(-1190 S)
+(-1191 S)
((|constructor| (NIL "\\indented{1}{The tableau domain is for printing Young tableaux,{} and} coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists t} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau.")))
NIL
NIL
-(-1191 |Key| |Entry|)
+(-1192 |Key| |Entry|)
((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}")))
-((-4418 . T) (-4419 . T))
-((-12 (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1795) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4237) (|devaluate| |#2|)))))) (-2800 (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (QUOTE (-1102))) (|HasCategory| |#2| (QUOTE (-1102)))) (-2800 (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (LIST (QUOTE -615) (QUOTE (-539)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#2| (QUOTE (-1102))) (-2800 (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))))
-(-1192 R)
+((-4422 . T) (-4423 . T))
+((-12 (|HasCategory| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1809) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4236) (|devaluate| |#2|)))))) (-2811 (|HasCategory| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (QUOTE (-1102))) (|HasCategory| |#2| (QUOTE (-1102)))) (-2811 (|HasCategory| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (LIST (QUOTE -615) (QUOTE (-539)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#2| (QUOTE (-1102))) (-2811 (|HasCategory| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))))
+(-1193 R)
((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a, n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a, n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,...,an])} returns \\spad{f(a1,...,an)} such that if \\spad{ai = tan(ui)} then \\spad{f(a1,...,an) = tan(u1 + ... + un)}.")))
NIL
NIL
-(-1193 S |Key| |Entry|)
+(-1194 S |Key| |Entry|)
((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(t,k,e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}.")))
NIL
NIL
-(-1194 |Key| |Entry|)
+(-1195 |Key| |Entry|)
((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,k,e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}.")))
-((-4419 . T))
+((-4423 . T))
NIL
-(-1195 |Key| |Entry|)
+(-1196 |Key| |Entry|)
((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key \\spad{->} Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table.")))
NIL
NIL
-(-1196)
+(-1197)
((|constructor| (NIL "This package provides functions for template manipulation")) (|stripCommentsAndBlanks| (((|String|) (|String|)) "\\spad{stripCommentsAndBlanks(s)} treats \\spad{s} as a piece of AXIOM input,{} and removes comments,{} and leading and trailing blanks.")) (|interpretString| (((|Any|) (|String|)) "\\spad{interpretString(s)} treats a string as a piece of AXIOM input,{} by parsing and interpreting it.")))
NIL
NIL
-(-1197 S)
+(-1198 S)
((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format.")))
NIL
NIL
-(-1198)
+(-1199)
((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \\spad{``}\\verb+\\spad{\\[}+\\spad{''} and \\spad{``}\\verb+\\spad{\\]}+\\spad{''},{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,step,type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")))
NIL
NIL
-(-1199)
+(-1200)
((|constructor| (NIL "This domain provides an implementation of text files. Text is stored in these files using the native character set of the computer.")) (|endOfFile?| (((|Boolean|) $) "\\spad{endOfFile?(f)} tests whether the file \\spad{f} is positioned after the end of all text. If the file is open for output,{} then this test is always \\spad{true}.")) (|readIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLineIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readLineIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLine!| (((|String|) $) "\\spad{readLine!(f)} returns a string of the contents of a line from the file \\spad{f}.")) (|writeLine!| (((|String|) $) "\\spad{writeLine!(f)} finishes the current line in the file \\spad{f}. An empty string is returned. The call \\spad{writeLine!(f)} is equivalent to \\spad{writeLine!(f,\"\")}.") (((|String|) $ (|String|)) "\\spad{writeLine!(f,s)} writes the contents of the string \\spad{s} and finishes the current line in the file \\spad{f}. The value of \\spad{s} is returned.")))
NIL
NIL
-(-1200 R)
+(-1201 R)
((|constructor| (NIL "Tools for the sign finding utilities.")) (|direction| (((|Integer|) (|String|)) "\\spad{direction(s)} \\undocumented")) (|nonQsign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{nonQsign(r)} \\undocumented")) (|sign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{sign(r)} \\undocumented")))
NIL
NIL
-(-1201)
+(-1202)
((|constructor| (NIL "This package exports a function for making a \\spadtype{ThreeSpace}")) (|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) "\\spad{createThreeSpace()} creates a \\spadtype{ThreeSpace(DoubleFloat)} object capable of holding point,{} curve,{} mesh components and any combination.")))
NIL
NIL
-(-1202 S)
+(-1203 S)
((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}.")))
NIL
NIL
-(-1203)
+(-1204)
((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}.")))
NIL
NIL
-(-1204 S)
-((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1, t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}.")))
-((-4419 . T) (-4418 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1102))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))))
(-1205 S)
+((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1, t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}.")))
+((-4423 . T) (-4422 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1102))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))))
+(-1206 S)
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
NIL
-(-1206)
+(-1207)
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
NIL
-(-1207 R -3879)
+(-1208 R -3888)
((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
-(-1208 R |Row| |Col| M)
+(-1209 R |Row| |Col| M)
((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")))
NIL
NIL
-(-1209 R -3879)
+(-1210 R -3888)
((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}")))
NIL
((-12 (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -888) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -888) (|devaluate| |#1|)))))
-(-1210 S R E V P)
+(-1211 S R E V P)
((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#5|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense.")))
NIL
((|HasCategory| |#4| (QUOTE (-370))))
-(-1211 R E V P)
+(-1212 R E V P)
((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#4|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense.")))
-((-4419 . T) (-4418 . T))
+((-4423 . T) (-4422 . T))
NIL
-(-1212 |Coef|)
+(-1213 |Coef|)
((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}.")))
-(((-4420 "*") |has| |#1| (-172)) (-4411 |has| |#1| (-559)) (-4413 . T) (-4412 . T) (-4415 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-365))))
-(-1213 |Curve|)
+(((-4424 "*") |has| |#1| (-172)) (-4415 |has| |#1| (-559)) (-4417 . T) (-4416 . T) (-4419 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-365))))
+(-1214 |Curve|)
((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,ll,b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}.")))
NIL
NIL
-(-1214)
+(-1215)
((|constructor| (NIL "Tools for constructing tubes around 3-dimensional parametric curves.")) (|loopPoints| (((|List| (|Point| (|DoubleFloat|))) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|List| (|List| (|DoubleFloat|)))) "\\spad{loopPoints(p,n,b,r,lls)} creates and returns a list of points which form the loop with radius \\spad{r},{} around the center point indicated by the point \\spad{p},{} with the principal normal vector of the space curve at point \\spad{p} given by the point(vector) \\spad{n},{} and the binormal vector given by the point(vector) \\spad{b},{} and a list of lists,{} \\spad{lls},{} which is the \\spadfun{cosSinInfo} of the number of points defining the loop.")) (|cosSinInfo| (((|List| (|List| (|DoubleFloat|))) (|Integer|)) "\\spad{cosSinInfo(n)} returns the list of lists of values for \\spad{n},{} in the form: \\spad{[[cos(n - 1) a,sin(n - 1) a],...,[cos 2 a,sin 2 a],[cos a,sin a]]} where \\spad{a = 2 pi/n}. Note: \\spad{n} should be greater than 2.")) (|unitVector| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{unitVector(p)} creates the unit vector of the point \\spad{p} and returns the result as a point. Note: \\spad{unitVector(p) = p/|p|}.")) (|cross| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and keeping the color of the first point \\spad{p}. The result is returned as a point.")) (|dot| (((|DoubleFloat|) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{dot(p,q)} computes the dot product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and returns the resulting \\spadtype{DoubleFloat}.")) (- (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p - q} computes and returns a point whose coordinates are the differences of the coordinates of two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (+ (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p + q} computes and returns a point whose coordinates are the sums of the coordinates of the two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (* (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|Point| (|DoubleFloat|))) "\\spad{s * p} returns a point whose coordinates are the scalar multiple of the point \\spad{p} by the scalar \\spad{s},{} preserving the color,{} or fourth coordinate,{} of \\spad{p}.")) (|point| (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{point(x1,x2,x3,c)} creates and returns a point from the three specified coordinates \\spad{x1},{} \\spad{x2},{} \\spad{x3},{} and also a fourth coordinate,{} \\spad{c},{} which is generally used to specify the color of the point.")))
NIL
NIL
-(-1215 S)
+(-1216 S)
((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based")))
NIL
((|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))))
-(-1216 -3879)
+(-1217 -3888)
((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")))
NIL
NIL
-(-1217)
+(-1218)
((|constructor| (NIL "This domain represents a type AST.")))
NIL
NIL
-(-1218)
+(-1219)
((|constructor| (NIL "The fundamental Type.")))
NIL
NIL
-(-1219 S)
+(-1220 S)
((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l, fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by \\spad{fn}.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a, b, fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a, b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,...,bm],[a1,...,an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,...,bm], [a1,...,an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < ai}\\space{2}for \\spad{c} not among the \\spad{ai}\\spad{'s} and \\spad{bj}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,d)} if neither is among the \\spad{ai}\\spad{'s},{}\\spad{bj}\\spad{'s}.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,...,an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < ai\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b, c)} if neither is among the \\spad{ai}\\spad{'s}.}")))
NIL
((|HasCategory| |#1| (QUOTE (-851))))
-(-1220)
+(-1221)
((|constructor| (NIL "This packages provides functions to allow the user to select the ordering on the variables and operators for displaying polynomials,{} fractions and expressions. The ordering affects the display only and not the computations.")) (|resetVariableOrder| (((|Void|)) "\\spad{resetVariableOrder()} cancels any previous use of setVariableOrder and returns to the default system ordering.")) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) "\\spad{getVariableOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the ordering on the variables was given by \\spad{setVariableOrder([b1,...,bm], [a1,...,an])}.")) (|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) "\\spad{setVariableOrder([b1,...,bm], [a1,...,an])} defines an ordering on the variables given by \\spad{b1 > b2 > ... > bm >} other variables \\spad{> a1 > a2 > ... > an}.") (((|Void|) (|List| (|Symbol|))) "\\spad{setVariableOrder([a1,...,an])} defines an ordering on the variables given by \\spad{a1 > a2 > ... > an > other variables}.")))
NIL
NIL
-(-1221 S)
+(-1222 S)
((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element.")))
NIL
NIL
-(-1222)
+(-1223)
((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element.")))
-((-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T))
+((-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T))
NIL
-(-1223)
+(-1224)
((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 16 bits.")))
NIL
NIL
-(-1224)
+(-1225)
((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 32 bits.")))
NIL
NIL
-(-1225)
+(-1226)
((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 64 bits.")))
NIL
NIL
-(-1226)
+(-1227)
((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 8 bits.")))
NIL
NIL
-(-1227 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
+(-1228 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}.")))
NIL
NIL
-(-1228 |Coef|)
+(-1229 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,k1,k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{<=} \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = n0..infinity,a[n] * x**n)) = sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-4420 "*") |has| |#1| (-172)) (-4411 |has| |#1| (-559)) (-4416 |has| |#1| (-365)) (-4410 |has| |#1| (-365)) (-4412 . T) (-4413 . T) (-4415 . T))
+(((-4424 "*") |has| |#1| (-172)) (-4415 |has| |#1| (-559)) (-4420 |has| |#1| (-365)) (-4414 |has| |#1| (-365)) (-4416 . T) (-4417 . T) (-4419 . T))
NIL
-(-1229 S |Coef| UTS)
+(-1230 S |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}.")))
NIL
((|HasCategory| |#2| (QUOTE (-365))))
-(-1230 |Coef| UTS)
+(-1231 |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}.")))
-(((-4420 "*") |has| |#1| (-172)) (-4411 |has| |#1| (-559)) (-4416 |has| |#1| (-365)) (-4410 |has| |#1| (-365)) (-4412 . T) (-4413 . T) (-4415 . T))
+(((-4424 "*") |has| |#1| (-172)) (-4415 |has| |#1| (-559)) (-4420 |has| |#1| (-365)) (-4414 |has| |#1| (-365)) (-4416 . T) (-4417 . T) (-4419 . T))
NIL
-(-1231 |Coef| UTS)
+(-1232 |Coef| UTS)
((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")))
-(((-4420 "*") |has| |#1| (-172)) (-4411 |has| |#1| (-559)) (-4416 |has| |#1| (-365)) (-4410 |has| |#1| (-365)) (-4412 . T) (-4413 . T) (-4415 . T))
-((-2800 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -517) (QUOTE (-1178)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-821)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-851)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-911)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1024)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1153)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-1178)))))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (-2800 (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-145))))) (-2800 (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-147))))) (-2800 (-12 (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-567)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-567)) (|devaluate| |#1|))))) (|HasCategory| (-567) (QUOTE (-1114))) (-2800 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-911)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-1178))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1024)))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-821)))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-821)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-851))))) (-2800 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -517) (QUOTE (-1178)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-821)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-851)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-911)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1024)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1153)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-1178)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1153)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -517) (QUOTE (-1178)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-381))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -4132) (LIST (|devaluate| |#1|) (QUOTE (-1178)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-567))))) (-2800 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (QUOTE (-1203))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -2416) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1178))))) (|HasSignature| |#1| (LIST (QUOTE -2847) (LIST (LIST (QUOTE -645) (QUOTE (-1178))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-851)))) (|HasCategory| |#2| (QUOTE (-911))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-548)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-308)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-911)))) (-2800 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-145))))))
-(-1232 |Coef| |var| |cen|)
+(((-4424 "*") |has| |#1| (-172)) (-4415 |has| |#1| (-559)) (-4420 |has| |#1| (-365)) (-4414 |has| |#1| (-365)) (-4416 . T) (-4417 . T) (-4419 . T))
+((-2811 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -517) (QUOTE (-1179)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-821)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-851)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-911)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1024)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1154)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-1179)))))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (-2811 (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-145))))) (-2811 (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-147))))) (-2811 (-12 (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-567)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-567)) (|devaluate| |#1|))))) (|HasCategory| (-567) (QUOTE (-1114))) (-2811 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-911)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-1179))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1024)))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-821)))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-821)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-851))))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -517) (QUOTE (-1179)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-821)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-851)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-911)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1024)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1154)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-1179)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1154)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -517) (QUOTE (-1179)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-381))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -4129) (LIST (|devaluate| |#1|) (QUOTE (-1179)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-567))))) (-2811 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (QUOTE (-1204))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -4083) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1179))))) (|HasSignature| |#1| (LIST (QUOTE -2859) (LIST (LIST (QUOTE -645) (QUOTE (-1179))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-851)))) (|HasCategory| |#2| (QUOTE (-911))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-548)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-308)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-911)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-145))))))
+(-1233 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,x,3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-4420 "*") -2800 (-1667 (|has| |#1| (-365)) (|has| (-1260 |#1| |#2| |#3|) (-821))) (|has| |#1| (-172)) (-1667 (|has| |#1| (-365)) (|has| (-1260 |#1| |#2| |#3|) (-911)))) (-4411 -2800 (-1667 (|has| |#1| (-365)) (|has| (-1260 |#1| |#2| |#3|) (-821))) (|has| |#1| (-559)) (-1667 (|has| |#1| (-365)) (|has| (-1260 |#1| |#2| |#3|) (-911)))) (-4416 |has| |#1| (-365)) (-4410 |has| |#1| (-365)) (-4412 . T) (-4413 . T) (-4415 . T))
-((-2800 (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-911))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-1024))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-1153))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (LIST (QUOTE -287) (LIST (QUOTE -1260) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1260) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (LIST (QUOTE -310) (LIST (QUOTE -1260) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (LIST (QUOTE -517) (QUOTE (-1178)) (LIST (QUOTE -1260) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (LIST (QUOTE -1040) (QUOTE (-1178)))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (-2800 (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-145)))) (-2800 (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2800 (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-567)) (|devaluate| |#1|)))))) (-2800 (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-567)) (|devaluate| |#1|))))) (|HasCategory| (-567) (QUOTE (-1114))) (-2800 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-911))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (LIST (QUOTE -1040) (QUOTE (-1178)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-1024))) (|HasCategory| |#1| (QUOTE (-365)))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-365)))) (-2800 (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-365))))) (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-1153))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (LIST (QUOTE -287) (LIST (QUOTE -1260) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1260) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (LIST (QUOTE -310) (LIST (QUOTE -1260) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (LIST (QUOTE -517) (QUOTE (-1178)) (LIST (QUOTE -1260) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -4132) (LIST (|devaluate| |#1|) (QUOTE (-1178)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-567))))) (-2800 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (QUOTE (-1203))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -2416) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1178))))) (|HasSignature| |#1| (LIST (QUOTE -2847) (LIST (LIST (QUOTE -645) (QUOTE (-1178))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-911))) (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-2800 (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-911))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-559)))) (-2800 (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (-2800 (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-911))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-172)))) (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-911))) (|HasCategory| |#1| (QUOTE (-365)))) (-2800 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-911))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1260 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-145)))))
-(-1233 ZP)
+(((-4424 "*") -2811 (-1686 (|has| |#1| (-365)) (|has| (-1261 |#1| |#2| |#3|) (-821))) (|has| |#1| (-172)) (-1686 (|has| |#1| (-365)) (|has| (-1261 |#1| |#2| |#3|) (-911)))) (-4415 -2811 (-1686 (|has| |#1| (-365)) (|has| (-1261 |#1| |#2| |#3|) (-821))) (|has| |#1| (-559)) (-1686 (|has| |#1| (-365)) (|has| (-1261 |#1| |#2| |#3|) (-911)))) (-4420 |has| |#1| (-365)) (-4414 |has| |#1| (-365)) (-4416 . T) (-4417 . T) (-4419 . T))
+((-2811 (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (QUOTE (-911))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (QUOTE (-1024))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (QUOTE (-1154))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (LIST (QUOTE -287) (LIST (QUOTE -1261) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1261) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (LIST (QUOTE -310) (LIST (QUOTE -1261) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (LIST (QUOTE -517) (QUOTE (-1179)) (LIST (QUOTE -1261) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (LIST (QUOTE -1040) (QUOTE (-1179)))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (-2811 (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-145)))) (-2811 (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2811 (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-567)) (|devaluate| |#1|)))))) (-2811 (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-567)) (|devaluate| |#1|))))) (|HasCategory| (-567) (QUOTE (-1114))) (-2811 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (QUOTE (-911))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (LIST (QUOTE -1040) (QUOTE (-1179)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (QUOTE (-1024))) (|HasCategory| |#1| (QUOTE (-365)))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-365)))) (-2811 (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-365))))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (QUOTE (-1154))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (LIST (QUOTE -287) (LIST (QUOTE -1261) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1261) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (LIST (QUOTE -310) (LIST (QUOTE -1261) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (LIST (QUOTE -517) (QUOTE (-1179)) (LIST (QUOTE -1261) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -4129) (LIST (|devaluate| |#1|) (QUOTE (-1179)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-567))))) (-2811 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (QUOTE (-1204))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -4083) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1179))))) (|HasSignature| |#1| (LIST (QUOTE -2859) (LIST (LIST (QUOTE -645) (QUOTE (-1179))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| (-1261 |#1| |#2| |#3|) (QUOTE (-911))) (|HasCategory| (-1261 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-2811 (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (QUOTE (-911))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-559)))) (-2811 (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (-2811 (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (QUOTE (-911))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-172)))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1261 |#1| |#2| |#3|) (QUOTE (-911))) (|HasCategory| |#1| (QUOTE (-365)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1261 |#1| |#2| |#3|) (QUOTE (-911))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(-1234 ZP)
((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}")))
NIL
NIL
-(-1234 R S)
+(-1235 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}.")))
NIL
((|HasCategory| |#1| (QUOTE (-849))))
-(-1235 S)
+(-1236 S)
((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound.")))
NIL
((|HasCategory| |#1| (QUOTE (-849))) (|HasCategory| |#1| (QUOTE (-1102))))
-(-1236 |x| R |y| S)
+(-1237 |x| R |y| S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-1237 R Q UP)
+(-1238 R Q UP)
((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a \\spad{gcd} domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p, d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}.")))
NIL
NIL
-(-1238 R UP)
+(-1239 R UP)
((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} \\spad{fn} ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} \\spad{fn}).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,d,c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")))
NIL
NIL
-(-1239 R UP)
+(-1240 R UP)
((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded.")))
NIL
NIL
-(-1240 R U)
+(-1241 R U)
((|constructor| (NIL "This package implements Karatsuba\\spad{'s} trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,b,l,k)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,b)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,b)} returns \\spad{a*b} without using Karatsuba\\spad{'s} trick at all.")))
NIL
NIL
-(-1241 |x| R)
+(-1242 |x| R)
((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
-(((-4420 "*") |has| |#2| (-172)) (-4411 |has| |#2| (-559)) (-4414 |has| |#2| (-365)) (-4416 |has| |#2| (-6 -4416)) (-4413 . T) (-4412 . T) (-4415 . T))
-((|HasCategory| |#2| (QUOTE (-911))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-172))) (-2800 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-559)))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-381))))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-567))))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567)))))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))) (-2800 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (-2800 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-911)))) (-2800 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-911)))) (-2800 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-911)))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1153))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE -4416)) (|HasCategory| |#2| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-911)))) (-2800 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-911)))) (|HasCategory| |#2| (QUOTE (-145)))))
-(-1242 R PR S PS)
+(((-4424 "*") |has| |#2| (-172)) (-4415 |has| |#2| (-559)) (-4418 |has| |#2| (-365)) (-4420 |has| |#2| (-6 -4420)) (-4417 . T) (-4416 . T) (-4419 . T))
+((|HasCategory| |#2| (QUOTE (-911))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-172))) (-2811 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-559)))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-381))))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-567))))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567)))))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (-2811 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-911)))) (-2811 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-911)))) (-2811 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-911)))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1154))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE -4420)) (|HasCategory| |#2| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-911)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-911)))) (|HasCategory| |#2| (QUOTE (-145)))))
+(-1243 R PR S PS)
((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero.")))
NIL
NIL
-(-1243 S R)
+(-1244 S R)
((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1153))))
-(-1244 R)
+((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1154))))
+(-1245 R)
((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
-(((-4420 "*") |has| |#1| (-172)) (-4411 |has| |#1| (-559)) (-4414 |has| |#1| (-365)) (-4416 |has| |#1| (-6 -4416)) (-4413 . T) (-4412 . T) (-4415 . T))
+(((-4424 "*") |has| |#1| (-172)) (-4415 |has| |#1| (-559)) (-4418 |has| |#1| (-365)) (-4420 |has| |#1| (-6 -4420)) (-4417 . T) (-4416 . T) (-4419 . T))
NIL
-(-1245 S |Coef| |Expon|)
+(-1246 S |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#2| $ |#3|) "\\spad{elt(f(x),r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1114))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -4132) (LIST (|devaluate| |#2|) (QUOTE (-1178))))))
-(-1246 |Coef| |Expon|)
+((|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1114))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -4129) (LIST (|devaluate| |#2|) (QUOTE (-1179))))))
+(-1247 |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#1| $ |#2|) "\\spad{elt(f(x),r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
-(((-4420 "*") |has| |#1| (-172)) (-4411 |has| |#1| (-559)) (-4412 . T) (-4413 . T) (-4415 . T))
+(((-4424 "*") |has| |#1| (-172)) (-4415 |has| |#1| (-559)) (-4416 . T) (-4417 . T) (-4419 . T))
NIL
-(-1247 RC P)
+(-1248 RC P)
((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}.")))
NIL
NIL
-(-1248 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
+(-1249 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}.")))
NIL
NIL
-(-1249 |Coef|)
+(-1250 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms.")))
-(((-4420 "*") |has| |#1| (-172)) (-4411 |has| |#1| (-559)) (-4416 |has| |#1| (-365)) (-4410 |has| |#1| (-365)) (-4412 . T) (-4413 . T) (-4415 . T))
+(((-4424 "*") |has| |#1| (-172)) (-4415 |has| |#1| (-559)) (-4420 |has| |#1| (-365)) (-4414 |has| |#1| (-365)) (-4416 . T) (-4417 . T) (-4419 . T))
NIL
-(-1250 S |Coef| ULS)
+(-1251 S |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}.")))
NIL
NIL
-(-1251 |Coef| ULS)
+(-1252 |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}.")))
-(((-4420 "*") |has| |#1| (-172)) (-4411 |has| |#1| (-559)) (-4416 |has| |#1| (-365)) (-4410 |has| |#1| (-365)) (-4412 . T) (-4413 . T) (-4415 . T))
+(((-4424 "*") |has| |#1| (-172)) (-4415 |has| |#1| (-559)) (-4420 |has| |#1| (-365)) (-4414 |has| |#1| (-365)) (-4416 . T) (-4417 . T) (-4419 . T))
NIL
-(-1252 |Coef| ULS)
+(-1253 |Coef| ULS)
((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")))
-(((-4420 "*") |has| |#1| (-172)) (-4411 |has| |#1| (-559)) (-4416 |has| |#1| (-365)) (-4410 |has| |#1| (-365)) (-4412 . T) (-4413 . T) (-4415 . T))
-((|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567))) (|devaluate| |#1|)))) (|HasCategory| (-410 (-567)) (QUOTE (-1114))) (|HasCategory| |#1| (QUOTE (-365))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-2800 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasSignature| |#1| (LIST (QUOTE -4132) (LIST (|devaluate| |#1|) (QUOTE (-1178)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567)))))) (-2800 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (QUOTE (-1203))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -2416) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1178))))) (|HasSignature| |#1| (LIST (QUOTE -2847) (LIST (LIST (QUOTE -645) (QUOTE (-1178))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))))
-(-1253 |Coef| |var| |cen|)
+(((-4424 "*") |has| |#1| (-172)) (-4415 |has| |#1| (-559)) (-4420 |has| |#1| (-365)) (-4414 |has| |#1| (-365)) (-4416 . T) (-4417 . T) (-4419 . T))
+((|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567))) (|devaluate| |#1|)))) (|HasCategory| (-410 (-567)) (QUOTE (-1114))) (|HasCategory| |#1| (QUOTE (-365))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-2811 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasSignature| |#1| (LIST (QUOTE -4129) (LIST (|devaluate| |#1|) (QUOTE (-1179)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567)))))) (-2811 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (QUOTE (-1204))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -4083) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1179))))) (|HasSignature| |#1| (LIST (QUOTE -2859) (LIST (LIST (QUOTE -645) (QUOTE (-1179))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))))
+(-1254 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")))
-(((-4420 "*") |has| |#1| (-172)) (-4411 |has| |#1| (-559)) (-4416 |has| |#1| (-365)) (-4410 |has| |#1| (-365)) (-4412 . T) (-4413 . T) (-4415 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567))) (|devaluate| |#1|)))) (|HasCategory| (-410 (-567)) (QUOTE (-1114))) (|HasCategory| |#1| (QUOTE (-365))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-2800 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasSignature| |#1| (LIST (QUOTE -4132) (LIST (|devaluate| |#1|) (QUOTE (-1178)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567)))))) (-2800 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (QUOTE (-1203))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -2416) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1178))))) (|HasSignature| |#1| (LIST (QUOTE -2847) (LIST (LIST (QUOTE -645) (QUOTE (-1178))) (|devaluate| |#1|)))))))
-(-1254 R FE |var| |cen|)
+(((-4424 "*") |has| |#1| (-172)) (-4415 |has| |#1| (-559)) (-4420 |has| |#1| (-365)) (-4414 |has| |#1| (-365)) (-4416 . T) (-4417 . T) (-4419 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567))) (|devaluate| |#1|)))) (|HasCategory| (-410 (-567)) (QUOTE (-1114))) (|HasCategory| |#1| (QUOTE (-365))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-2811 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasSignature| |#1| (LIST (QUOTE -4129) (LIST (|devaluate| |#1|) (QUOTE (-1179)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567)))))) (-2811 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (QUOTE (-1204))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -4083) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1179))))) (|HasSignature| |#1| (LIST (QUOTE -2859) (LIST (LIST (QUOTE -645) (QUOTE (-1179))) (|devaluate| |#1|)))))))
+(-1255 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,f(var))}.")))
-(((-4420 "*") |has| (-1253 |#2| |#3| |#4|) (-172)) (-4411 |has| (-1253 |#2| |#3| |#4|) (-559)) (-4412 . T) (-4413 . T) (-4415 . T))
-((|HasCategory| (-1253 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| (-1253 |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1253 |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1253 |#2| |#3| |#4|) (QUOTE (-172))) (-2800 (|HasCategory| (-1253 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| (-1253 |#2| |#3| |#4|) (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| (-1253 |#2| |#3| |#4|) (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| (-1253 |#2| |#3| |#4|) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| (-1253 |#2| |#3| |#4|) (QUOTE (-365))) (|HasCategory| (-1253 |#2| |#3| |#4|) (QUOTE (-455))) (|HasCategory| (-1253 |#2| |#3| |#4|) (QUOTE (-559))))
-(-1255 A S)
+(((-4424 "*") |has| (-1254 |#2| |#3| |#4|) (-172)) (-4415 |has| (-1254 |#2| |#3| |#4|) (-559)) (-4416 . T) (-4417 . T) (-4419 . T))
+((|HasCategory| (-1254 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| (-1254 |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1254 |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1254 |#2| |#3| |#4|) (QUOTE (-172))) (-2811 (|HasCategory| (-1254 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| (-1254 |#2| |#3| |#4|) (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| (-1254 |#2| |#3| |#4|) (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| (-1254 |#2| |#3| |#4|) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| (-1254 |#2| |#3| |#4|) (QUOTE (-365))) (|HasCategory| (-1254 |#2| |#3| |#4|) (QUOTE (-455))) (|HasCategory| (-1254 |#2| |#3| |#4|) (QUOTE (-559))))
+(-1256 A S)
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4419)))
-(-1256 S)
+((|HasAttribute| |#1| (QUOTE -4423)))
+(-1257 S)
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
NIL
NIL
-(-1257 |Coef1| |Coef2| UTS1 UTS2)
+(-1258 |Coef1| |Coef2| UTS1 UTS2)
((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}")))
NIL
NIL
-(-1258 S |Coef|)
+(-1259 S |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-1203))) (|HasSignature| |#2| (LIST (QUOTE -2847) (LIST (LIST (QUOTE -645) (QUOTE (-1178))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -2416) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1178))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-365))))
-(-1259 |Coef|)
+((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-1204))) (|HasSignature| |#2| (LIST (QUOTE -2859) (LIST (LIST (QUOTE -645) (QUOTE (-1179))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -4083) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1179))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-365))))
+(-1260 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-4420 "*") |has| |#1| (-172)) (-4411 |has| |#1| (-559)) (-4412 . T) (-4413 . T) (-4415 . T))
+(((-4424 "*") |has| |#1| (-172)) (-4415 |has| |#1| (-559)) (-4416 . T) (-4417 . T) (-4419 . T))
NIL
-(-1260 |Coef| |var| |cen|)
+(-1261 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,b,f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,b,f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and 1st order coefficient 1.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-4420 "*") |has| |#1| (-172)) (-4411 |has| |#1| (-559)) (-4412 . T) (-4413 . T) (-4415 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-559))) (-2800 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1178)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-772)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-772)) (|devaluate| |#1|)))) (|HasCategory| (-772) (QUOTE (-1114))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-772))))) (|HasSignature| |#1| (LIST (QUOTE -4132) (LIST (|devaluate| |#1|) (QUOTE (-1178)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-772))))) (|HasCategory| |#1| (QUOTE (-365))) (-2800 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (QUOTE (-1203))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -2416) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1178))))) (|HasSignature| |#1| (LIST (QUOTE -2847) (LIST (LIST (QUOTE -645) (QUOTE (-1178))) (|devaluate| |#1|)))))))
-(-1261 |Coef| UTS)
+(((-4424 "*") |has| |#1| (-172)) (-4415 |has| |#1| (-559)) (-4416 . T) (-4417 . T) (-4419 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-559))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-772)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-772)) (|devaluate| |#1|)))) (|HasCategory| (-772) (QUOTE (-1114))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-772))))) (|HasSignature| |#1| (LIST (QUOTE -4129) (LIST (|devaluate| |#1|) (QUOTE (-1179)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-772))))) (|HasCategory| |#1| (QUOTE (-365))) (-2811 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (QUOTE (-1204))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -4083) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1179))))) (|HasSignature| |#1| (LIST (QUOTE -2859) (LIST (LIST (QUOTE -645) (QUOTE (-1179))) (|devaluate| |#1|)))))))
+(-1262 |Coef| UTS)
((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,y[1],y[2],...,y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,cl)} is the solution to \\spad{y<n>=f(y,y',..,y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,c0,c1)} is the solution to \\spad{y'' = f(y,y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")))
NIL
NIL
-(-1262 -3879 UP L UTS)
+(-1263 -3888 UP L UTS)
((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s, n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series.")))
NIL
((|HasCategory| |#1| (QUOTE (-559))))
-(-1263)
+(-1264)
((|constructor| (NIL "The category of domains that act like unions. UnionType,{} like Type or Category,{} acts mostly as a take that communicates `union-like' intended semantics to the compiler. A domain \\spad{D} that satifies UnionType should provide definitions for `case' operators,{} with corresponding `autoCoerce' operators.")))
NIL
NIL
-(-1264 |sym|)
+(-1265 |sym|)
((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol")))
NIL
NIL
-(-1265 S R)
+(-1266 S R)
((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")))
NIL
((|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))))
-(-1266 R)
+(-1267 R)
((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")))
-((-4419 . T) (-4418 . T))
+((-4423 . T) (-4422 . T))
NIL
-(-1267 A B)
+(-1268 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
-(-1268 R)
+(-1269 R)
((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector.")))
-((-4419 . T) (-4418 . T))
-((-2800 (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2800 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2800 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-727))) (|HasCategory| |#1| (QUOTE (-1051))) (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (QUOTE (-1051)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
-(-1269)
+((-4423 . T) (-4422 . T))
+((-2811 (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2811 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-727))) (|HasCategory| |#1| (QUOTE (-1051))) (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (QUOTE (-1051)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
+(-1270)
((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,gr,n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,n,s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,n,dx,dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,n,sx,sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,n,s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,n,s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,n,s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,n,c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,n,s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,n,c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,n,s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,gi,n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{gi} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{gi} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,num,sX,sY,dX,dY,pts,lns,box,axes,axesC,un,unC,cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(gi,lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{gi},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc.")))
NIL
NIL
-(-1270)
+(-1271)
((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,c1,c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,x,y,z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,dx,dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,sx,sy,sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,rotx,roty,rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,ind,pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians.")))
NIL
NIL
-(-1271)
+(-1272)
((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport.")))
NIL
NIL
-(-1272)
+(-1273)
((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(gi)} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],[p1],...,[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}.")))
NIL
NIL
-(-1273)
+(-1274)
((|constructor| (NIL "This type is used when no value is needed,{} \\spadignore{e.g.} in the \\spad{then} part of a one armed \\spad{if}. All values can be coerced to type Void. Once a value has been coerced to Void,{} it cannot be recovered.")) (|void| (($) "\\spad{void()} produces a void object.")))
NIL
NIL
-(-1274 A S)
+(-1275 A S)
((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#2|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}.")))
NIL
NIL
-(-1275 S)
+(-1276 S)
((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}.")))
-((-4413 . T) (-4412 . T))
+((-4417 . T) (-4416 . T))
NIL
-(-1276 R)
+(-1277 R)
((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,s,st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally.")))
NIL
NIL
-(-1277 K R UP -3879)
+(-1278 K R UP -3888)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")))
NIL
NIL
-(-1278)
+(-1279)
((|constructor| (NIL "This domain represents the syntax of a `where' expression.")) (|qualifier| (((|SpadAst|) $) "\\spad{qualifier(e)} returns the qualifier of the expression `e'.")) (|mainExpression| (((|SpadAst|) $) "\\spad{mainExpression(e)} returns the main expression of the `where' expression `e'.")))
NIL
NIL
-(-1279)
+(-1280)
((|constructor| (NIL "This domain represents the `while' iterator syntax.")) (|condition| (((|SpadAst|) $) "\\spad{condition(i)} returns the condition of the while iterator `i'.")))
NIL
NIL
-(-1280 R |VarSet| E P |vl| |wl| |wtlevel|)
+(-1281 R |VarSet| E P |vl| |wl| |wtlevel|)
((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")))
-((-4413 |has| |#1| (-172)) (-4412 |has| |#1| (-172)) (-4415 . T))
+((-4417 |has| |#1| (-172)) (-4416 |has| |#1| (-172)) (-4419 . T))
((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))))
-(-1281 R E V P)
+(-1282 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{\\spad{MM} Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. DISCO'92. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(\\spad{ps})} returns the same as \\axiom{characteristicSerie(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(\\spad{ps},{}redOp?,{}redOp)} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{ps}} is the union of the regular zero sets of the members of \\axiom{\\spad{lts}}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(\\spad{ps})} returns the same as \\axiom{characteristicSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{\\spad{ps}} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(\\spad{ps})} returns the same as \\axiom{medialSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(\\spad{ps},{}redOp?,{}redOp)} returns \\axiom{\\spad{bs}} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{\\spad{ps}} (with rank not higher than any basic set of \\axiom{\\spad{ps}}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{\\spad{bs}} has to be understood as a candidate for being a characteristic set of \\axiom{\\spad{ps}}. In the original algorithm,{} \\axiom{\\spad{bs}} is simply a basic set of \\axiom{\\spad{ps}}.")))
-((-4419 . T) (-4418 . T))
+((-4423 . T) (-4422 . T))
((-12 (|HasCategory| |#4| (QUOTE (-1102))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#4| (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -614) (QUOTE (-863)))))
-(-1282 R)
+(-1283 R)
((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.\\spad{fr})")))
-((-4412 . T) (-4413 . T) (-4415 . T))
+((-4416 . T) (-4417 . T) (-4419 . T))
NIL
-(-1283 |vl| R)
+(-1284 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute.")))
-((-4415 . T) (-4411 |has| |#2| (-6 -4411)) (-4413 . T) (-4412 . T))
-((|HasCategory| |#2| (QUOTE (-172))) (|HasAttribute| |#2| (QUOTE -4411)))
-(-1284 R |VarSet| XPOLY)
+((-4419 . T) (-4415 |has| |#2| (-6 -4415)) (-4417 . T) (-4416 . T))
+((|HasCategory| |#2| (QUOTE (-172))) (|HasAttribute| |#2| (QUOTE -4415)))
+(-1285 R |VarSet| XPOLY)
((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")))
NIL
NIL
-(-1285 |vl| R)
+(-1286 |vl| R)
((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}.")))
-((-4411 |has| |#2| (-6 -4411)) (-4413 . T) (-4412 . T) (-4415 . T))
+((-4415 |has| |#2| (-6 -4415)) (-4417 . T) (-4416 . T) (-4419 . T))
NIL
-(-1286 S -3879)
+(-1287 S -3888)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
NIL
((|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))))
-(-1287 -3879)
+(-1288 -3888)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
-((-4410 . T) (-4416 . T) (-4411 . T) ((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T))
+((-4414 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T))
NIL
-(-1288 |VarSet| R)
+(-1289 |VarSet| R)
((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}.")))
-((-4411 |has| |#2| (-6 -4411)) (-4413 . T) (-4412 . T) (-4415 . T))
-((|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -718) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasAttribute| |#2| (QUOTE -4411)))
-(-1289 |vl| R)
+((-4415 |has| |#2| (-6 -4415)) (-4417 . T) (-4416 . T) (-4419 . T))
+((|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -718) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasAttribute| |#2| (QUOTE -4415)))
+(-1290 |vl| R)
((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}.")))
-((-4411 |has| |#2| (-6 -4411)) (-4413 . T) (-4412 . T) (-4415 . T))
+((-4415 |has| |#2| (-6 -4415)) (-4417 . T) (-4416 . T) (-4419 . T))
NIL
-(-1290 R)
+(-1291 R)
((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute.")))
-((-4411 |has| |#1| (-6 -4411)) (-4413 . T) (-4412 . T) (-4415 . T))
-((|HasCategory| |#1| (QUOTE (-172))) (|HasAttribute| |#1| (QUOTE -4411)))
-(-1291 R E)
+((-4415 |has| |#1| (-6 -4415)) (-4417 . T) (-4416 . T) (-4419 . T))
+((|HasCategory| |#1| (QUOTE (-172))) (|HasAttribute| |#1| (QUOTE -4415)))
+(-1292 R E)
((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}.")))
-((-4415 . T) (-4416 |has| |#1| (-6 -4416)) (-4411 |has| |#1| (-6 -4411)) (-4413 . T) (-4412 . T))
-((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4415)) (|HasAttribute| |#1| (QUOTE -4416)) (|HasAttribute| |#1| (QUOTE -4411)))
-(-1292 |VarSet| R)
+((-4419 . T) (-4420 |has| |#1| (-6 -4420)) (-4415 |has| |#1| (-6 -4415)) (-4417 . T) (-4416 . T))
+((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4419)) (|HasAttribute| |#1| (QUOTE -4420)) (|HasAttribute| |#1| (QUOTE -4415)))
+(-1293 |VarSet| R)
((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form.")))
-((-4411 |has| |#2| (-6 -4411)) (-4413 . T) (-4412 . T) (-4415 . T))
-((|HasCategory| |#2| (QUOTE (-172))) (|HasAttribute| |#2| (QUOTE -4411)))
-(-1293 A)
+((-4415 |has| |#2| (-6 -4415)) (-4417 . T) (-4416 . T) (-4419 . T))
+((|HasCategory| |#2| (QUOTE (-172))) (|HasAttribute| |#2| (QUOTE -4415)))
+(-1294 A)
((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}.")))
NIL
NIL
-(-1294 R |ls| |ls2|)
+(-1295 R |ls| |ls2|)
((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING: The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see the \\spadtype{LexTriangularPackage} package constructor). For that purpose,{} the operations \\axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage},{} \\axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \\axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} admit an optional argument. \\newline Author: Marc Moreno Maza.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}.") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover,{} each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts},{} which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING: \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,info?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,info?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{positiveSolve(lp,info?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,false,false,false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,info?)} returns the same as \\spad{realSolve(ts,info?,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?)} returns the same as \\spad{realSolve(ts,info?,check?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{realSolve(ts,info?,check?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING: For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,false,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,info?)} returns the same as \\spad{univariateSolve(lp,info?,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?)} returns the same as \\spad{univariateSolve(lp,info?,check?,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?,lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,false,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,info?)} returns the same as \\spad{triangSolve(lp,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,info?,lextri?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{\\spad{lp}} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (\\spad{w}.\\spad{r}.\\spad{t}. Zarisky topology). Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}(\\spad{lp},{}\\spad{true},{}\\spad{info?}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.")))
NIL
NIL
-(-1295 R)
+(-1296 R)
((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such rational numbers \\spad{ci}\\spad{'s} exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over the integers,{} \\spad{false} otherwise.")))
NIL
NIL
-(-1296 |p|)
+(-1297 |p|)
((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}.")))
-(((-4420 "*") . T) (-4412 . T) (-4413 . T) (-4415 . T))
+(((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T))
NIL
NIL
NIL
@@ -5132,4 +5136,4 @@ NIL
NIL
NIL
NIL
-((-3 NIL 2263533 2263538 2263543 2263548) (-2 NIL 2263513 2263518 2263523 2263528) (-1 NIL 2263493 2263498 2263503 2263508) (0 NIL 2263473 2263478 2263483 2263488) (-1296 "ZMOD.spad" 2263282 2263295 2263411 2263468) (-1295 "ZLINDEP.spad" 2262348 2262359 2263272 2263277) (-1294 "ZDSOLVE.spad" 2252293 2252315 2262338 2262343) (-1293 "YSTREAM.spad" 2251788 2251799 2252283 2252288) (-1292 "XRPOLY.spad" 2251008 2251028 2251644 2251713) (-1291 "XPR.spad" 2248803 2248816 2250726 2250825) (-1290 "XPOLY.spad" 2248358 2248369 2248659 2248728) (-1289 "XPOLYC.spad" 2247677 2247693 2248284 2248353) (-1288 "XPBWPOLY.spad" 2246114 2246134 2247457 2247526) (-1287 "XF.spad" 2244577 2244592 2246016 2246109) (-1286 "XF.spad" 2243020 2243037 2244461 2244466) (-1285 "XFALG.spad" 2240068 2240084 2242946 2243015) (-1284 "XEXPPKG.spad" 2239319 2239345 2240058 2240063) (-1283 "XDPOLY.spad" 2238933 2238949 2239175 2239244) (-1282 "XALG.spad" 2238593 2238604 2238889 2238928) (-1281 "WUTSET.spad" 2234432 2234449 2238239 2238266) (-1280 "WP.spad" 2233631 2233675 2234290 2234357) (-1279 "WHILEAST.spad" 2233429 2233438 2233621 2233626) (-1278 "WHEREAST.spad" 2233100 2233109 2233419 2233424) (-1277 "WFFINTBS.spad" 2230763 2230785 2233090 2233095) (-1276 "WEIER.spad" 2228985 2228996 2230753 2230758) (-1275 "VSPACE.spad" 2228658 2228669 2228953 2228980) (-1274 "VSPACE.spad" 2228351 2228364 2228648 2228653) (-1273 "VOID.spad" 2228028 2228037 2228341 2228346) (-1272 "VIEW.spad" 2225708 2225717 2228018 2228023) (-1271 "VIEWDEF.spad" 2220909 2220918 2225698 2225703) (-1270 "VIEW3D.spad" 2204870 2204879 2220899 2220904) (-1269 "VIEW2D.spad" 2192761 2192770 2204860 2204865) (-1268 "VECTOR.spad" 2191435 2191446 2191686 2191713) (-1267 "VECTOR2.spad" 2190074 2190087 2191425 2191430) (-1266 "VECTCAT.spad" 2187978 2187989 2190042 2190069) (-1265 "VECTCAT.spad" 2185689 2185702 2187755 2187760) (-1264 "VARIABLE.spad" 2185469 2185484 2185679 2185684) (-1263 "UTYPE.spad" 2185113 2185122 2185459 2185464) (-1262 "UTSODETL.spad" 2184408 2184432 2185069 2185074) (-1261 "UTSODE.spad" 2182624 2182644 2184398 2184403) (-1260 "UTS.spad" 2177437 2177465 2181091 2181188) (-1259 "UTSCAT.spad" 2174916 2174932 2177335 2177432) (-1258 "UTSCAT.spad" 2172039 2172057 2174460 2174465) (-1257 "UTS2.spad" 2171634 2171669 2172029 2172034) (-1256 "URAGG.spad" 2166307 2166318 2171624 2171629) (-1255 "URAGG.spad" 2160944 2160957 2166263 2166268) (-1254 "UPXSSING.spad" 2158589 2158615 2160025 2160158) (-1253 "UPXS.spad" 2155743 2155771 2156721 2156870) (-1252 "UPXSCONS.spad" 2153502 2153522 2153875 2154024) (-1251 "UPXSCCA.spad" 2152073 2152093 2153348 2153497) (-1250 "UPXSCCA.spad" 2150786 2150808 2152063 2152068) (-1249 "UPXSCAT.spad" 2149375 2149391 2150632 2150781) (-1248 "UPXS2.spad" 2148918 2148971 2149365 2149370) (-1247 "UPSQFREE.spad" 2147332 2147346 2148908 2148913) (-1246 "UPSCAT.spad" 2144943 2144967 2147230 2147327) (-1245 "UPSCAT.spad" 2142260 2142286 2144549 2144554) (-1244 "UPOLYC.spad" 2137300 2137311 2142102 2142255) (-1243 "UPOLYC.spad" 2132232 2132245 2137036 2137041) (-1242 "UPOLYC2.spad" 2131703 2131722 2132222 2132227) (-1241 "UP.spad" 2128902 2128917 2129289 2129442) (-1240 "UPMP.spad" 2127802 2127815 2128892 2128897) (-1239 "UPDIVP.spad" 2127367 2127381 2127792 2127797) (-1238 "UPDECOMP.spad" 2125612 2125626 2127357 2127362) (-1237 "UPCDEN.spad" 2124821 2124837 2125602 2125607) (-1236 "UP2.spad" 2124185 2124206 2124811 2124816) (-1235 "UNISEG.spad" 2123538 2123549 2124104 2124109) (-1234 "UNISEG2.spad" 2123035 2123048 2123494 2123499) (-1233 "UNIFACT.spad" 2122138 2122150 2123025 2123030) (-1232 "ULS.spad" 2112696 2112724 2113783 2114212) (-1231 "ULSCONS.spad" 2105092 2105112 2105462 2105611) (-1230 "ULSCCAT.spad" 2102829 2102849 2104938 2105087) (-1229 "ULSCCAT.spad" 2100674 2100696 2102785 2102790) (-1228 "ULSCAT.spad" 2098906 2098922 2100520 2100669) (-1227 "ULS2.spad" 2098420 2098473 2098896 2098901) (-1226 "UINT8.spad" 2098297 2098306 2098410 2098415) (-1225 "UINT64.spad" 2098173 2098182 2098287 2098292) (-1224 "UINT32.spad" 2098049 2098058 2098163 2098168) (-1223 "UINT16.spad" 2097925 2097934 2098039 2098044) (-1222 "UFD.spad" 2096990 2096999 2097851 2097920) (-1221 "UFD.spad" 2096117 2096128 2096980 2096985) (-1220 "UDVO.spad" 2094998 2095007 2096107 2096112) (-1219 "UDPO.spad" 2092491 2092502 2094954 2094959) (-1218 "TYPE.spad" 2092423 2092432 2092481 2092486) (-1217 "TYPEAST.spad" 2092342 2092351 2092413 2092418) (-1216 "TWOFACT.spad" 2090994 2091009 2092332 2092337) (-1215 "TUPLE.spad" 2090480 2090491 2090893 2090898) (-1214 "TUBETOOL.spad" 2087347 2087356 2090470 2090475) (-1213 "TUBE.spad" 2085994 2086011 2087337 2087342) (-1212 "TS.spad" 2084593 2084609 2085559 2085656) (-1211 "TSETCAT.spad" 2071720 2071737 2084561 2084588) (-1210 "TSETCAT.spad" 2058833 2058852 2071676 2071681) (-1209 "TRMANIP.spad" 2053199 2053216 2058539 2058544) (-1208 "TRIMAT.spad" 2052162 2052187 2053189 2053194) (-1207 "TRIGMNIP.spad" 2050689 2050706 2052152 2052157) (-1206 "TRIGCAT.spad" 2050201 2050210 2050679 2050684) (-1205 "TRIGCAT.spad" 2049711 2049722 2050191 2050196) (-1204 "TREE.spad" 2048286 2048297 2049318 2049345) (-1203 "TRANFUN.spad" 2048125 2048134 2048276 2048281) (-1202 "TRANFUN.spad" 2047962 2047973 2048115 2048120) (-1201 "TOPSP.spad" 2047636 2047645 2047952 2047957) (-1200 "TOOLSIGN.spad" 2047299 2047310 2047626 2047631) (-1199 "TEXTFILE.spad" 2045860 2045869 2047289 2047294) (-1198 "TEX.spad" 2043006 2043015 2045850 2045855) (-1197 "TEX1.spad" 2042562 2042573 2042996 2043001) (-1196 "TEMUTL.spad" 2042117 2042126 2042552 2042557) (-1195 "TBCMPPK.spad" 2040210 2040233 2042107 2042112) (-1194 "TBAGG.spad" 2039260 2039283 2040190 2040205) (-1193 "TBAGG.spad" 2038318 2038343 2039250 2039255) (-1192 "TANEXP.spad" 2037726 2037737 2038308 2038313) (-1191 "TABLE.spad" 2036137 2036160 2036407 2036434) (-1190 "TABLEAU.spad" 2035618 2035629 2036127 2036132) (-1189 "TABLBUMP.spad" 2032421 2032432 2035608 2035613) (-1188 "SYSTEM.spad" 2031649 2031658 2032411 2032416) (-1187 "SYSSOLP.spad" 2029132 2029143 2031639 2031644) (-1186 "SYSPTR.spad" 2029031 2029040 2029122 2029127) (-1185 "SYSNNI.spad" 2028213 2028224 2029021 2029026) (-1184 "SYSINT.spad" 2027617 2027628 2028203 2028208) (-1183 "SYNTAX.spad" 2023823 2023832 2027607 2027612) (-1182 "SYMTAB.spad" 2021891 2021900 2023813 2023818) (-1181 "SYMS.spad" 2017914 2017923 2021881 2021886) (-1180 "SYMPOLY.spad" 2016921 2016932 2017003 2017130) (-1179 "SYMFUNC.spad" 2016422 2016433 2016911 2016916) (-1178 "SYMBOL.spad" 2013925 2013934 2016412 2016417) (-1177 "SWITCH.spad" 2010696 2010705 2013915 2013920) (-1176 "SUTS.spad" 2007601 2007629 2009163 2009260) (-1175 "SUPXS.spad" 2004742 2004770 2005733 2005882) (-1174 "SUP.spad" 2001555 2001566 2002328 2002481) (-1173 "SUPFRACF.spad" 2000660 2000678 2001545 2001550) (-1172 "SUP2.spad" 2000052 2000065 2000650 2000655) (-1171 "SUMRF.spad" 1999026 1999037 2000042 2000047) (-1170 "SUMFS.spad" 1998663 1998680 1999016 1999021) (-1169 "SULS.spad" 1989208 1989236 1990308 1990737) (-1168 "SUCHTAST.spad" 1988977 1988986 1989198 1989203) (-1167 "SUCH.spad" 1988659 1988674 1988967 1988972) (-1166 "SUBSPACE.spad" 1980774 1980789 1988649 1988654) (-1165 "SUBRESP.spad" 1979944 1979958 1980730 1980735) (-1164 "STTF.spad" 1976043 1976059 1979934 1979939) (-1163 "STTFNC.spad" 1972511 1972527 1976033 1976038) (-1162 "STTAYLOR.spad" 1965165 1965176 1972392 1972397) (-1161 "STRTBL.spad" 1963670 1963687 1963819 1963846) (-1160 "STRING.spad" 1963079 1963088 1963093 1963120) (-1159 "STRICAT.spad" 1962867 1962876 1963047 1963074) (-1158 "STREAM.spad" 1959785 1959796 1962392 1962407) (-1157 "STREAM3.spad" 1959358 1959373 1959775 1959780) (-1156 "STREAM2.spad" 1958486 1958499 1959348 1959353) (-1155 "STREAM1.spad" 1958192 1958203 1958476 1958481) (-1154 "STINPROD.spad" 1957128 1957144 1958182 1958187) (-1153 "STEP.spad" 1956329 1956338 1957118 1957123) (-1152 "STBL.spad" 1954855 1954883 1955022 1955037) (-1151 "STAGG.spad" 1953930 1953941 1954845 1954850) (-1150 "STAGG.spad" 1953003 1953016 1953920 1953925) (-1149 "STACK.spad" 1952360 1952371 1952610 1952637) (-1148 "SREGSET.spad" 1950064 1950081 1952006 1952033) (-1147 "SRDCMPK.spad" 1948625 1948645 1950054 1950059) (-1146 "SRAGG.spad" 1943768 1943777 1948593 1948620) (-1145 "SRAGG.spad" 1938931 1938942 1943758 1943763) (-1144 "SQMATRIX.spad" 1936547 1936565 1937463 1937550) (-1143 "SPLTREE.spad" 1931099 1931112 1935983 1936010) (-1142 "SPLNODE.spad" 1927687 1927700 1931089 1931094) (-1141 "SPFCAT.spad" 1926496 1926505 1927677 1927682) (-1140 "SPECOUT.spad" 1925048 1925057 1926486 1926491) (-1139 "SPADXPT.spad" 1917187 1917196 1925038 1925043) (-1138 "spad-parser.spad" 1916652 1916661 1917177 1917182) (-1137 "SPADAST.spad" 1916353 1916362 1916642 1916647) (-1136 "SPACEC.spad" 1900552 1900563 1916343 1916348) (-1135 "SPACE3.spad" 1900328 1900339 1900542 1900547) (-1134 "SORTPAK.spad" 1899877 1899890 1900284 1900289) (-1133 "SOLVETRA.spad" 1897640 1897651 1899867 1899872) (-1132 "SOLVESER.spad" 1896168 1896179 1897630 1897635) (-1131 "SOLVERAD.spad" 1892194 1892205 1896158 1896163) (-1130 "SOLVEFOR.spad" 1890656 1890674 1892184 1892189) (-1129 "SNTSCAT.spad" 1890256 1890273 1890624 1890651) (-1128 "SMTS.spad" 1888528 1888554 1889821 1889918) (-1127 "SMP.spad" 1886003 1886023 1886393 1886520) (-1126 "SMITH.spad" 1884848 1884873 1885993 1885998) (-1125 "SMATCAT.spad" 1882958 1882988 1884792 1884843) (-1124 "SMATCAT.spad" 1881000 1881032 1882836 1882841) (-1123 "SKAGG.spad" 1879963 1879974 1880968 1880995) (-1122 "SINT.spad" 1878795 1878804 1879829 1879958) (-1121 "SIMPAN.spad" 1878523 1878532 1878785 1878790) (-1120 "SIG.spad" 1877853 1877862 1878513 1878518) (-1119 "SIGNRF.spad" 1876971 1876982 1877843 1877848) (-1118 "SIGNEF.spad" 1876250 1876267 1876961 1876966) (-1117 "SIGAST.spad" 1875635 1875644 1876240 1876245) (-1116 "SHP.spad" 1873563 1873578 1875591 1875596) (-1115 "SHDP.spad" 1863274 1863301 1863783 1863914) (-1114 "SGROUP.spad" 1862882 1862891 1863264 1863269) (-1113 "SGROUP.spad" 1862488 1862499 1862872 1862877) (-1112 "SGCF.spad" 1855651 1855660 1862478 1862483) (-1111 "SFRTCAT.spad" 1854581 1854598 1855619 1855646) (-1110 "SFRGCD.spad" 1853644 1853664 1854571 1854576) (-1109 "SFQCMPK.spad" 1848281 1848301 1853634 1853639) (-1108 "SFORT.spad" 1847720 1847734 1848271 1848276) (-1107 "SEXOF.spad" 1847563 1847603 1847710 1847715) (-1106 "SEX.spad" 1847455 1847464 1847553 1847558) (-1105 "SEXCAT.spad" 1845056 1845096 1847445 1847450) (-1104 "SET.spad" 1843380 1843391 1844477 1844516) (-1103 "SETMN.spad" 1841830 1841847 1843370 1843375) (-1102 "SETCAT.spad" 1841152 1841161 1841820 1841825) (-1101 "SETCAT.spad" 1840472 1840483 1841142 1841147) (-1100 "SETAGG.spad" 1837021 1837032 1840452 1840467) (-1099 "SETAGG.spad" 1833578 1833591 1837011 1837016) (-1098 "SEQAST.spad" 1833281 1833290 1833568 1833573) (-1097 "SEGXCAT.spad" 1832437 1832450 1833271 1833276) (-1096 "SEG.spad" 1832250 1832261 1832356 1832361) (-1095 "SEGCAT.spad" 1831175 1831186 1832240 1832245) (-1094 "SEGBIND.spad" 1830933 1830944 1831122 1831127) (-1093 "SEGBIND2.spad" 1830631 1830644 1830923 1830928) (-1092 "SEGAST.spad" 1830345 1830354 1830621 1830626) (-1091 "SEG2.spad" 1829780 1829793 1830301 1830306) (-1090 "SDVAR.spad" 1829056 1829067 1829770 1829775) (-1089 "SDPOL.spad" 1826482 1826493 1826773 1826900) (-1088 "SCPKG.spad" 1824571 1824582 1826472 1826477) (-1087 "SCOPE.spad" 1823724 1823733 1824561 1824566) (-1086 "SCACHE.spad" 1822420 1822431 1823714 1823719) (-1085 "SASTCAT.spad" 1822329 1822338 1822410 1822415) (-1084 "SAOS.spad" 1822201 1822210 1822319 1822324) (-1083 "SAERFFC.spad" 1821914 1821934 1822191 1822196) (-1082 "SAE.spad" 1820089 1820105 1820700 1820835) (-1081 "SAEFACT.spad" 1819790 1819810 1820079 1820084) (-1080 "RURPK.spad" 1817449 1817465 1819780 1819785) (-1079 "RULESET.spad" 1816902 1816926 1817439 1817444) (-1078 "RULE.spad" 1815142 1815166 1816892 1816897) (-1077 "RULECOLD.spad" 1814994 1815007 1815132 1815137) (-1076 "RTVALUE.spad" 1814729 1814738 1814984 1814989) (-1075 "RSTRCAST.spad" 1814446 1814455 1814719 1814724) (-1074 "RSETGCD.spad" 1810824 1810844 1814436 1814441) (-1073 "RSETCAT.spad" 1800760 1800777 1810792 1810819) (-1072 "RSETCAT.spad" 1790716 1790735 1800750 1800755) (-1071 "RSDCMPK.spad" 1789168 1789188 1790706 1790711) (-1070 "RRCC.spad" 1787552 1787582 1789158 1789163) (-1069 "RRCC.spad" 1785934 1785966 1787542 1787547) (-1068 "RPTAST.spad" 1785636 1785645 1785924 1785929) (-1067 "RPOLCAT.spad" 1764996 1765011 1785504 1785631) (-1066 "RPOLCAT.spad" 1744070 1744087 1764580 1764585) (-1065 "ROUTINE.spad" 1739953 1739962 1742717 1742744) (-1064 "ROMAN.spad" 1739281 1739290 1739819 1739948) (-1063 "ROIRC.spad" 1738361 1738393 1739271 1739276) (-1062 "RNS.spad" 1737264 1737273 1738263 1738356) (-1061 "RNS.spad" 1736253 1736264 1737254 1737259) (-1060 "RNG.spad" 1735988 1735997 1736243 1736248) (-1059 "RNGBIND.spad" 1735148 1735162 1735943 1735948) (-1058 "RMODULE.spad" 1734913 1734924 1735138 1735143) (-1057 "RMCAT2.spad" 1734333 1734390 1734903 1734908) (-1056 "RMATRIX.spad" 1733157 1733176 1733500 1733539) (-1055 "RMATCAT.spad" 1728736 1728767 1733113 1733152) (-1054 "RMATCAT.spad" 1724205 1724238 1728584 1728589) (-1053 "RLINSET.spad" 1723599 1723610 1724195 1724200) (-1052 "RINTERP.spad" 1723487 1723507 1723589 1723594) (-1051 "RING.spad" 1722957 1722966 1723467 1723482) (-1050 "RING.spad" 1722435 1722446 1722947 1722952) (-1049 "RIDIST.spad" 1721827 1721836 1722425 1722430) (-1048 "RGCHAIN.spad" 1720410 1720426 1721312 1721339) (-1047 "RGBCSPC.spad" 1720191 1720203 1720400 1720405) (-1046 "RGBCMDL.spad" 1719721 1719733 1720181 1720186) (-1045 "RF.spad" 1717363 1717374 1719711 1719716) (-1044 "RFFACTOR.spad" 1716825 1716836 1717353 1717358) (-1043 "RFFACT.spad" 1716560 1716572 1716815 1716820) (-1042 "RFDIST.spad" 1715556 1715565 1716550 1716555) (-1041 "RETSOL.spad" 1714975 1714988 1715546 1715551) (-1040 "RETRACT.spad" 1714403 1714414 1714965 1714970) (-1039 "RETRACT.spad" 1713829 1713842 1714393 1714398) (-1038 "RETAST.spad" 1713641 1713650 1713819 1713824) (-1037 "RESULT.spad" 1711701 1711710 1712288 1712315) (-1036 "RESRING.spad" 1711048 1711095 1711639 1711696) (-1035 "RESLATC.spad" 1710372 1710383 1711038 1711043) (-1034 "REPSQ.spad" 1710103 1710114 1710362 1710367) (-1033 "REP.spad" 1707657 1707666 1710093 1710098) (-1032 "REPDB.spad" 1707364 1707375 1707647 1707652) (-1031 "REP2.spad" 1697022 1697033 1707206 1707211) (-1030 "REP1.spad" 1691218 1691229 1696972 1696977) (-1029 "REGSET.spad" 1689015 1689032 1690864 1690891) (-1028 "REF.spad" 1688350 1688361 1688970 1688975) (-1027 "REDORDER.spad" 1687556 1687573 1688340 1688345) (-1026 "RECLOS.spad" 1686339 1686359 1687043 1687136) (-1025 "REALSOLV.spad" 1685479 1685488 1686329 1686334) (-1024 "REAL.spad" 1685351 1685360 1685469 1685474) (-1023 "REAL0Q.spad" 1682649 1682664 1685341 1685346) (-1022 "REAL0.spad" 1679493 1679508 1682639 1682644) (-1021 "RDUCEAST.spad" 1679214 1679223 1679483 1679488) (-1020 "RDIV.spad" 1678869 1678894 1679204 1679209) (-1019 "RDIST.spad" 1678436 1678447 1678859 1678864) (-1018 "RDETRS.spad" 1677300 1677318 1678426 1678431) (-1017 "RDETR.spad" 1675439 1675457 1677290 1677295) (-1016 "RDEEFS.spad" 1674538 1674555 1675429 1675434) (-1015 "RDEEF.spad" 1673548 1673565 1674528 1674533) (-1014 "RCFIELD.spad" 1670734 1670743 1673450 1673543) (-1013 "RCFIELD.spad" 1668006 1668017 1670724 1670729) (-1012 "RCAGG.spad" 1665934 1665945 1667996 1668001) (-1011 "RCAGG.spad" 1663789 1663802 1665853 1665858) (-1010 "RATRET.spad" 1663149 1663160 1663779 1663784) (-1009 "RATFACT.spad" 1662841 1662853 1663139 1663144) (-1008 "RANDSRC.spad" 1662160 1662169 1662831 1662836) (-1007 "RADUTIL.spad" 1661916 1661925 1662150 1662155) (-1006 "RADIX.spad" 1658837 1658851 1660383 1660476) (-1005 "RADFF.spad" 1657250 1657287 1657369 1657525) (-1004 "RADCAT.spad" 1656845 1656854 1657240 1657245) (-1003 "RADCAT.spad" 1656438 1656449 1656835 1656840) (-1002 "QUEUE.spad" 1655786 1655797 1656045 1656072) (-1001 "QUAT.spad" 1654367 1654378 1654710 1654775) (-1000 "QUATCT2.spad" 1653987 1654006 1654357 1654362) (-999 "QUATCAT.spad" 1652158 1652168 1653917 1653982) (-998 "QUATCAT.spad" 1650080 1650092 1651841 1651846) (-997 "QUAGG.spad" 1648908 1648918 1650048 1650075) (-996 "QQUTAST.spad" 1648677 1648685 1648898 1648903) (-995 "QFORM.spad" 1648142 1648156 1648667 1648672) (-994 "QFCAT.spad" 1646845 1646855 1648044 1648137) (-993 "QFCAT.spad" 1645139 1645151 1646340 1646345) (-992 "QFCAT2.spad" 1644832 1644848 1645129 1645134) (-991 "QEQUAT.spad" 1644391 1644399 1644822 1644827) (-990 "QCMPACK.spad" 1639138 1639157 1644381 1644386) (-989 "QALGSET.spad" 1635217 1635249 1639052 1639057) (-988 "QALGSET2.spad" 1633213 1633231 1635207 1635212) (-987 "PWFFINTB.spad" 1630629 1630650 1633203 1633208) (-986 "PUSHVAR.spad" 1629968 1629987 1630619 1630624) (-985 "PTRANFN.spad" 1626096 1626106 1629958 1629963) (-984 "PTPACK.spad" 1623184 1623194 1626086 1626091) (-983 "PTFUNC2.spad" 1623007 1623021 1623174 1623179) (-982 "PTCAT.spad" 1622262 1622272 1622975 1623002) (-981 "PSQFR.spad" 1621569 1621593 1622252 1622257) (-980 "PSEUDLIN.spad" 1620455 1620465 1621559 1621564) (-979 "PSETPK.spad" 1605888 1605904 1620333 1620338) (-978 "PSETCAT.spad" 1599808 1599831 1605868 1605883) (-977 "PSETCAT.spad" 1593702 1593727 1599764 1599769) (-976 "PSCURVE.spad" 1592685 1592693 1593692 1593697) (-975 "PSCAT.spad" 1591468 1591497 1592583 1592680) (-974 "PSCAT.spad" 1590341 1590372 1591458 1591463) (-973 "PRTITION.spad" 1589302 1589310 1590331 1590336) (-972 "PRTDAST.spad" 1589021 1589029 1589292 1589297) (-971 "PRS.spad" 1578583 1578600 1588977 1588982) (-970 "PRQAGG.spad" 1578018 1578028 1578551 1578578) (-969 "PROPLOG.spad" 1577317 1577325 1578008 1578013) (-968 "PROPFRML.spad" 1576133 1576144 1577307 1577312) (-967 "PROPERTY.spad" 1575621 1575629 1576123 1576128) (-966 "PRODUCT.spad" 1573303 1573315 1573587 1573642) (-965 "PR.spad" 1571695 1571707 1572394 1572521) (-964 "PRINT.spad" 1571447 1571455 1571685 1571690) (-963 "PRIMES.spad" 1569700 1569710 1571437 1571442) (-962 "PRIMELT.spad" 1567781 1567795 1569690 1569695) (-961 "PRIMCAT.spad" 1567408 1567416 1567771 1567776) (-960 "PRIMARR.spad" 1566413 1566423 1566591 1566618) (-959 "PRIMARR2.spad" 1565180 1565192 1566403 1566408) (-958 "PREASSOC.spad" 1564562 1564574 1565170 1565175) (-957 "PPCURVE.spad" 1563699 1563707 1564552 1564557) (-956 "PORTNUM.spad" 1563474 1563482 1563689 1563694) (-955 "POLYROOT.spad" 1562323 1562345 1563430 1563435) (-954 "POLY.spad" 1559658 1559668 1560173 1560300) (-953 "POLYLIFT.spad" 1558923 1558946 1559648 1559653) (-952 "POLYCATQ.spad" 1557041 1557063 1558913 1558918) (-951 "POLYCAT.spad" 1550511 1550532 1556909 1557036) (-950 "POLYCAT.spad" 1543319 1543342 1549719 1549724) (-949 "POLY2UP.spad" 1542771 1542785 1543309 1543314) (-948 "POLY2.spad" 1542368 1542380 1542761 1542766) (-947 "POLUTIL.spad" 1541309 1541338 1542324 1542329) (-946 "POLTOPOL.spad" 1540057 1540072 1541299 1541304) (-945 "POINT.spad" 1538895 1538905 1538982 1539009) (-944 "PNTHEORY.spad" 1535597 1535605 1538885 1538890) (-943 "PMTOOLS.spad" 1534372 1534386 1535587 1535592) (-942 "PMSYM.spad" 1533921 1533931 1534362 1534367) (-941 "PMQFCAT.spad" 1533512 1533526 1533911 1533916) (-940 "PMPRED.spad" 1532991 1533005 1533502 1533507) (-939 "PMPREDFS.spad" 1532445 1532467 1532981 1532986) (-938 "PMPLCAT.spad" 1531525 1531543 1532377 1532382) (-937 "PMLSAGG.spad" 1531110 1531124 1531515 1531520) (-936 "PMKERNEL.spad" 1530689 1530701 1531100 1531105) (-935 "PMINS.spad" 1530269 1530279 1530679 1530684) (-934 "PMFS.spad" 1529846 1529864 1530259 1530264) (-933 "PMDOWN.spad" 1529136 1529150 1529836 1529841) (-932 "PMASS.spad" 1528146 1528154 1529126 1529131) (-931 "PMASSFS.spad" 1527113 1527129 1528136 1528141) (-930 "PLOTTOOL.spad" 1526893 1526901 1527103 1527108) (-929 "PLOT.spad" 1521816 1521824 1526883 1526888) (-928 "PLOT3D.spad" 1518280 1518288 1521806 1521811) (-927 "PLOT1.spad" 1517437 1517447 1518270 1518275) (-926 "PLEQN.spad" 1504727 1504754 1517427 1517432) (-925 "PINTERP.spad" 1504349 1504368 1504717 1504722) (-924 "PINTERPA.spad" 1504133 1504149 1504339 1504344) (-923 "PI.spad" 1503742 1503750 1504107 1504128) (-922 "PID.spad" 1502712 1502720 1503668 1503737) (-921 "PICOERCE.spad" 1502369 1502379 1502702 1502707) (-920 "PGROEB.spad" 1500970 1500984 1502359 1502364) (-919 "PGE.spad" 1492587 1492595 1500960 1500965) (-918 "PGCD.spad" 1491477 1491494 1492577 1492582) (-917 "PFRPAC.spad" 1490626 1490636 1491467 1491472) (-916 "PFR.spad" 1487289 1487299 1490528 1490621) (-915 "PFOTOOLS.spad" 1486547 1486563 1487279 1487284) (-914 "PFOQ.spad" 1485917 1485935 1486537 1486542) (-913 "PFO.spad" 1485336 1485363 1485907 1485912) (-912 "PF.spad" 1484910 1484922 1485141 1485234) (-911 "PFECAT.spad" 1482592 1482600 1484836 1484905) (-910 "PFECAT.spad" 1480302 1480312 1482548 1482553) (-909 "PFBRU.spad" 1478190 1478202 1480292 1480297) (-908 "PFBR.spad" 1475750 1475773 1478180 1478185) (-907 "PERM.spad" 1471435 1471445 1475580 1475595) (-906 "PERMGRP.spad" 1466197 1466207 1471425 1471430) (-905 "PERMCAT.spad" 1464755 1464765 1466177 1466192) (-904 "PERMAN.spad" 1463287 1463301 1464745 1464750) (-903 "PENDTREE.spad" 1462628 1462638 1462916 1462921) (-902 "PDRING.spad" 1461179 1461189 1462608 1462623) (-901 "PDRING.spad" 1459738 1459750 1461169 1461174) (-900 "PDEPROB.spad" 1458753 1458761 1459728 1459733) (-899 "PDEPACK.spad" 1452793 1452801 1458743 1458748) (-898 "PDECOMP.spad" 1452263 1452280 1452783 1452788) (-897 "PDECAT.spad" 1450619 1450627 1452253 1452258) (-896 "PCOMP.spad" 1450472 1450485 1450609 1450614) (-895 "PBWLB.spad" 1449060 1449077 1450462 1450467) (-894 "PATTERN.spad" 1443599 1443609 1449050 1449055) (-893 "PATTERN2.spad" 1443337 1443349 1443589 1443594) (-892 "PATTERN1.spad" 1441673 1441689 1443327 1443332) (-891 "PATRES.spad" 1439248 1439260 1441663 1441668) (-890 "PATRES2.spad" 1438920 1438934 1439238 1439243) (-889 "PATMATCH.spad" 1437117 1437148 1438628 1438633) (-888 "PATMAB.spad" 1436546 1436556 1437107 1437112) (-887 "PATLRES.spad" 1435632 1435646 1436536 1436541) (-886 "PATAB.spad" 1435396 1435406 1435622 1435627) (-885 "PARTPERM.spad" 1432796 1432804 1435386 1435391) (-884 "PARSURF.spad" 1432230 1432258 1432786 1432791) (-883 "PARSU2.spad" 1432027 1432043 1432220 1432225) (-882 "script-parser.spad" 1431547 1431555 1432017 1432022) (-881 "PARSCURV.spad" 1430981 1431009 1431537 1431542) (-880 "PARSC2.spad" 1430772 1430788 1430971 1430976) (-879 "PARPCURV.spad" 1430234 1430262 1430762 1430767) (-878 "PARPC2.spad" 1430025 1430041 1430224 1430229) (-877 "PARAMAST.spad" 1429153 1429161 1430015 1430020) (-876 "PAN2EXPR.spad" 1428565 1428573 1429143 1429148) (-875 "PALETTE.spad" 1427535 1427543 1428555 1428560) (-874 "PAIR.spad" 1426522 1426535 1427123 1427128) (-873 "PADICRC.spad" 1423856 1423874 1425027 1425120) (-872 "PADICRAT.spad" 1421871 1421883 1422092 1422185) (-871 "PADIC.spad" 1421566 1421578 1421797 1421866) (-870 "PADICCT.spad" 1420115 1420127 1421492 1421561) (-869 "PADEPAC.spad" 1418804 1418823 1420105 1420110) (-868 "PADE.spad" 1417556 1417572 1418794 1418799) (-867 "OWP.spad" 1416796 1416826 1417414 1417481) (-866 "OVERSET.spad" 1416369 1416377 1416786 1416791) (-865 "OVAR.spad" 1416150 1416173 1416359 1416364) (-864 "OUT.spad" 1415236 1415244 1416140 1416145) (-863 "OUTFORM.spad" 1404628 1404636 1415226 1415231) (-862 "OUTBFILE.spad" 1404046 1404054 1404618 1404623) (-861 "OUTBCON.spad" 1403052 1403060 1404036 1404041) (-860 "OUTBCON.spad" 1402056 1402066 1403042 1403047) (-859 "OSI.spad" 1401531 1401539 1402046 1402051) (-858 "OSGROUP.spad" 1401449 1401457 1401521 1401526) (-857 "ORTHPOL.spad" 1399934 1399944 1401366 1401371) (-856 "OREUP.spad" 1399387 1399415 1399614 1399653) (-855 "ORESUP.spad" 1398688 1398712 1399067 1399106) (-854 "OREPCTO.spad" 1396545 1396557 1398608 1398613) (-853 "OREPCAT.spad" 1390692 1390702 1396501 1396540) (-852 "OREPCAT.spad" 1384729 1384741 1390540 1390545) (-851 "ORDSET.spad" 1383901 1383909 1384719 1384724) (-850 "ORDSET.spad" 1383071 1383081 1383891 1383896) (-849 "ORDRING.spad" 1382461 1382469 1383051 1383066) (-848 "ORDRING.spad" 1381859 1381869 1382451 1382456) (-847 "ORDMON.spad" 1381714 1381722 1381849 1381854) (-846 "ORDFUNS.spad" 1380846 1380862 1381704 1381709) (-845 "ORDFIN.spad" 1380666 1380674 1380836 1380841) (-844 "ORDCOMP.spad" 1379131 1379141 1380213 1380242) (-843 "ORDCOMP2.spad" 1378424 1378436 1379121 1379126) (-842 "OPTPROB.spad" 1377062 1377070 1378414 1378419) (-841 "OPTPACK.spad" 1369471 1369479 1377052 1377057) (-840 "OPTCAT.spad" 1367150 1367158 1369461 1369466) (-839 "OPSIG.spad" 1366804 1366812 1367140 1367145) (-838 "OPQUERY.spad" 1366353 1366361 1366794 1366799) (-837 "OP.spad" 1366095 1366105 1366175 1366242) (-836 "OPERCAT.spad" 1365561 1365571 1366085 1366090) (-835 "OPERCAT.spad" 1365025 1365037 1365551 1365556) (-834 "ONECOMP.spad" 1363770 1363780 1364572 1364601) (-833 "ONECOMP2.spad" 1363194 1363206 1363760 1363765) (-832 "OMSERVER.spad" 1362200 1362208 1363184 1363189) (-831 "OMSAGG.spad" 1361988 1361998 1362156 1362195) (-830 "OMPKG.spad" 1360604 1360612 1361978 1361983) (-829 "OM.spad" 1359577 1359585 1360594 1360599) (-828 "OMLO.spad" 1359002 1359014 1359463 1359502) (-827 "OMEXPR.spad" 1358836 1358846 1358992 1358997) (-826 "OMERR.spad" 1358381 1358389 1358826 1358831) (-825 "OMERRK.spad" 1357415 1357423 1358371 1358376) (-824 "OMENC.spad" 1356759 1356767 1357405 1357410) (-823 "OMDEV.spad" 1351068 1351076 1356749 1356754) (-822 "OMCONN.spad" 1350477 1350485 1351058 1351063) (-821 "OINTDOM.spad" 1350240 1350248 1350403 1350472) (-820 "OFMONOID.spad" 1348363 1348373 1350196 1350201) (-819 "ODVAR.spad" 1347624 1347634 1348353 1348358) (-818 "ODR.spad" 1347268 1347294 1347436 1347585) (-817 "ODPOL.spad" 1344650 1344660 1344990 1345117) (-816 "ODP.spad" 1334497 1334517 1334870 1335001) (-815 "ODETOOLS.spad" 1333146 1333165 1334487 1334492) (-814 "ODESYS.spad" 1330840 1330857 1333136 1333141) (-813 "ODERTRIC.spad" 1326849 1326866 1330797 1330802) (-812 "ODERED.spad" 1326248 1326272 1326839 1326844) (-811 "ODERAT.spad" 1323863 1323880 1326238 1326243) (-810 "ODEPRRIC.spad" 1320900 1320922 1323853 1323858) (-809 "ODEPROB.spad" 1320157 1320165 1320890 1320895) (-808 "ODEPRIM.spad" 1317491 1317513 1320147 1320152) (-807 "ODEPAL.spad" 1316877 1316901 1317481 1317486) (-806 "ODEPACK.spad" 1303543 1303551 1316867 1316872) (-805 "ODEINT.spad" 1302978 1302994 1303533 1303538) (-804 "ODEIFTBL.spad" 1300373 1300381 1302968 1302973) (-803 "ODEEF.spad" 1295864 1295880 1300363 1300368) (-802 "ODECONST.spad" 1295401 1295419 1295854 1295859) (-801 "ODECAT.spad" 1293999 1294007 1295391 1295396) (-800 "OCT.spad" 1292135 1292145 1292849 1292888) (-799 "OCTCT2.spad" 1291781 1291802 1292125 1292130) (-798 "OC.spad" 1289577 1289587 1291737 1291776) (-797 "OC.spad" 1287098 1287110 1289260 1289265) (-796 "OCAMON.spad" 1286946 1286954 1287088 1287093) (-795 "OASGP.spad" 1286761 1286769 1286936 1286941) (-794 "OAMONS.spad" 1286283 1286291 1286751 1286756) (-793 "OAMON.spad" 1286144 1286152 1286273 1286278) (-792 "OAGROUP.spad" 1286006 1286014 1286134 1286139) (-791 "NUMTUBE.spad" 1285597 1285613 1285996 1286001) (-790 "NUMQUAD.spad" 1273573 1273581 1285587 1285592) (-789 "NUMODE.spad" 1264927 1264935 1273563 1273568) (-788 "NUMINT.spad" 1262493 1262501 1264917 1264922) (-787 "NUMFMT.spad" 1261333 1261341 1262483 1262488) (-786 "NUMERIC.spad" 1253447 1253457 1261138 1261143) (-785 "NTSCAT.spad" 1251955 1251971 1253415 1253442) (-784 "NTPOLFN.spad" 1251506 1251516 1251872 1251877) (-783 "NSUP.spad" 1244552 1244562 1249092 1249245) (-782 "NSUP2.spad" 1243944 1243956 1244542 1244547) (-781 "NSMP.spad" 1240175 1240194 1240483 1240610) (-780 "NREP.spad" 1238553 1238567 1240165 1240170) (-779 "NPCOEF.spad" 1237799 1237819 1238543 1238548) (-778 "NORMRETR.spad" 1237397 1237436 1237789 1237794) (-777 "NORMPK.spad" 1235299 1235318 1237387 1237392) (-776 "NORMMA.spad" 1234987 1235013 1235289 1235294) (-775 "NONE.spad" 1234728 1234736 1234977 1234982) (-774 "NONE1.spad" 1234404 1234414 1234718 1234723) (-773 "NODE1.spad" 1233891 1233907 1234394 1234399) (-772 "NNI.spad" 1232786 1232794 1233865 1233886) (-771 "NLINSOL.spad" 1231412 1231422 1232776 1232781) (-770 "NIPROB.spad" 1229953 1229961 1231402 1231407) (-769 "NFINTBAS.spad" 1227513 1227530 1229943 1229948) (-768 "NETCLT.spad" 1227487 1227498 1227503 1227508) (-767 "NCODIV.spad" 1225703 1225719 1227477 1227482) (-766 "NCNTFRAC.spad" 1225345 1225359 1225693 1225698) (-765 "NCEP.spad" 1223511 1223525 1225335 1225340) (-764 "NASRING.spad" 1223107 1223115 1223501 1223506) (-763 "NASRING.spad" 1222701 1222711 1223097 1223102) (-762 "NARNG.spad" 1222053 1222061 1222691 1222696) (-761 "NARNG.spad" 1221403 1221413 1222043 1222048) (-760 "NAGSP.spad" 1220480 1220488 1221393 1221398) (-759 "NAGS.spad" 1210141 1210149 1220470 1220475) (-758 "NAGF07.spad" 1208572 1208580 1210131 1210136) (-757 "NAGF04.spad" 1202974 1202982 1208562 1208567) (-756 "NAGF02.spad" 1197043 1197051 1202964 1202969) (-755 "NAGF01.spad" 1192804 1192812 1197033 1197038) (-754 "NAGE04.spad" 1186504 1186512 1192794 1192799) (-753 "NAGE02.spad" 1177164 1177172 1186494 1186499) (-752 "NAGE01.spad" 1173166 1173174 1177154 1177159) (-751 "NAGD03.spad" 1171170 1171178 1173156 1173161) (-750 "NAGD02.spad" 1163917 1163925 1171160 1171165) (-749 "NAGD01.spad" 1158210 1158218 1163907 1163912) (-748 "NAGC06.spad" 1154085 1154093 1158200 1158205) (-747 "NAGC05.spad" 1152586 1152594 1154075 1154080) (-746 "NAGC02.spad" 1151853 1151861 1152576 1152581) (-745 "NAALG.spad" 1151394 1151404 1151821 1151848) (-744 "NAALG.spad" 1150955 1150967 1151384 1151389) (-743 "MULTSQFR.spad" 1147913 1147930 1150945 1150950) (-742 "MULTFACT.spad" 1147296 1147313 1147903 1147908) (-741 "MTSCAT.spad" 1145390 1145411 1147194 1147291) (-740 "MTHING.spad" 1145049 1145059 1145380 1145385) (-739 "MSYSCMD.spad" 1144483 1144491 1145039 1145044) (-738 "MSET.spad" 1142441 1142451 1144189 1144228) (-737 "MSETAGG.spad" 1142286 1142296 1142409 1142436) (-736 "MRING.spad" 1139263 1139275 1141994 1142061) (-735 "MRF2.spad" 1138833 1138847 1139253 1139258) (-734 "MRATFAC.spad" 1138379 1138396 1138823 1138828) (-733 "MPRFF.spad" 1136419 1136438 1138369 1138374) (-732 "MPOLY.spad" 1133890 1133905 1134249 1134376) (-731 "MPCPF.spad" 1133154 1133173 1133880 1133885) (-730 "MPC3.spad" 1132971 1133011 1133144 1133149) (-729 "MPC2.spad" 1132617 1132650 1132961 1132966) (-728 "MONOTOOL.spad" 1130968 1130985 1132607 1132612) (-727 "MONOID.spad" 1130287 1130295 1130958 1130963) (-726 "MONOID.spad" 1129604 1129614 1130277 1130282) (-725 "MONOGEN.spad" 1128352 1128365 1129464 1129599) (-724 "MONOGEN.spad" 1127122 1127137 1128236 1128241) (-723 "MONADWU.spad" 1125152 1125160 1127112 1127117) (-722 "MONADWU.spad" 1123180 1123190 1125142 1125147) (-721 "MONAD.spad" 1122340 1122348 1123170 1123175) (-720 "MONAD.spad" 1121498 1121508 1122330 1122335) (-719 "MOEBIUS.spad" 1120234 1120248 1121478 1121493) (-718 "MODULE.spad" 1120104 1120114 1120202 1120229) (-717 "MODULE.spad" 1119994 1120006 1120094 1120099) (-716 "MODRING.spad" 1119329 1119368 1119974 1119989) (-715 "MODOP.spad" 1117994 1118006 1119151 1119218) (-714 "MODMONOM.spad" 1117725 1117743 1117984 1117989) (-713 "MODMON.spad" 1114520 1114536 1115239 1115392) (-712 "MODFIELD.spad" 1113882 1113921 1114422 1114515) (-711 "MMLFORM.spad" 1112742 1112750 1113872 1113877) (-710 "MMAP.spad" 1112484 1112518 1112732 1112737) (-709 "MLO.spad" 1110943 1110953 1112440 1112479) (-708 "MLIFT.spad" 1109555 1109572 1110933 1110938) (-707 "MKUCFUNC.spad" 1109090 1109108 1109545 1109550) (-706 "MKRECORD.spad" 1108694 1108707 1109080 1109085) (-705 "MKFUNC.spad" 1108101 1108111 1108684 1108689) (-704 "MKFLCFN.spad" 1107069 1107079 1108091 1108096) (-703 "MKBCFUNC.spad" 1106564 1106582 1107059 1107064) (-702 "MINT.spad" 1106003 1106011 1106466 1106559) (-701 "MHROWRED.spad" 1104514 1104524 1105993 1105998) (-700 "MFLOAT.spad" 1103034 1103042 1104404 1104509) (-699 "MFINFACT.spad" 1102434 1102456 1103024 1103029) (-698 "MESH.spad" 1100216 1100224 1102424 1102429) (-697 "MDDFACT.spad" 1098427 1098437 1100206 1100211) (-696 "MDAGG.spad" 1097718 1097728 1098407 1098422) (-695 "MCMPLX.spad" 1093729 1093737 1094343 1094544) (-694 "MCDEN.spad" 1092939 1092951 1093719 1093724) (-693 "MCALCFN.spad" 1090061 1090087 1092929 1092934) (-692 "MAYBE.spad" 1089345 1089356 1090051 1090056) (-691 "MATSTOR.spad" 1086653 1086663 1089335 1089340) (-690 "MATRIX.spad" 1085357 1085367 1085841 1085868) (-689 "MATLIN.spad" 1082701 1082725 1085241 1085246) (-688 "MATCAT.spad" 1074430 1074452 1082669 1082696) (-687 "MATCAT.spad" 1066031 1066055 1074272 1074277) (-686 "MATCAT2.spad" 1065313 1065361 1066021 1066026) (-685 "MAPPKG3.spad" 1064228 1064242 1065303 1065308) (-684 "MAPPKG2.spad" 1063566 1063578 1064218 1064223) (-683 "MAPPKG1.spad" 1062394 1062404 1063556 1063561) (-682 "MAPPAST.spad" 1061709 1061717 1062384 1062389) (-681 "MAPHACK3.spad" 1061521 1061535 1061699 1061704) (-680 "MAPHACK2.spad" 1061290 1061302 1061511 1061516) (-679 "MAPHACK1.spad" 1060934 1060944 1061280 1061285) (-678 "MAGMA.spad" 1058724 1058741 1060924 1060929) (-677 "MACROAST.spad" 1058303 1058311 1058714 1058719) (-676 "M3D.spad" 1056023 1056033 1057681 1057686) (-675 "LZSTAGG.spad" 1053261 1053271 1056013 1056018) (-674 "LZSTAGG.spad" 1050497 1050509 1053251 1053256) (-673 "LWORD.spad" 1047202 1047219 1050487 1050492) (-672 "LSTAST.spad" 1046986 1046994 1047192 1047197) (-671 "LSQM.spad" 1045216 1045230 1045610 1045661) (-670 "LSPP.spad" 1044751 1044768 1045206 1045211) (-669 "LSMP.spad" 1043601 1043629 1044741 1044746) (-668 "LSMP1.spad" 1041419 1041433 1043591 1043596) (-667 "LSAGG.spad" 1041088 1041098 1041387 1041414) (-666 "LSAGG.spad" 1040777 1040789 1041078 1041083) (-665 "LPOLY.spad" 1039731 1039750 1040633 1040702) (-664 "LPEFRAC.spad" 1039002 1039012 1039721 1039726) (-663 "LO.spad" 1038403 1038417 1038936 1038963) (-662 "LOGIC.spad" 1038005 1038013 1038393 1038398) (-661 "LOGIC.spad" 1037605 1037615 1037995 1038000) (-660 "LODOOPS.spad" 1036535 1036547 1037595 1037600) (-659 "LODO.spad" 1035919 1035935 1036215 1036254) (-658 "LODOF.spad" 1034965 1034982 1035876 1035881) (-657 "LODOCAT.spad" 1033631 1033641 1034921 1034960) (-656 "LODOCAT.spad" 1032295 1032307 1033587 1033592) (-655 "LODO2.spad" 1031568 1031580 1031975 1032014) (-654 "LODO1.spad" 1030968 1030978 1031248 1031287) (-653 "LODEEF.spad" 1029770 1029788 1030958 1030963) (-652 "LNAGG.spad" 1025602 1025612 1029760 1029765) (-651 "LNAGG.spad" 1021398 1021410 1025558 1025563) (-650 "LMOPS.spad" 1018166 1018183 1021388 1021393) (-649 "LMODULE.spad" 1017934 1017944 1018156 1018161) (-648 "LMDICT.spad" 1017221 1017231 1017485 1017512) (-647 "LLINSET.spad" 1016618 1016628 1017211 1017216) (-646 "LITERAL.spad" 1016524 1016535 1016608 1016613) (-645 "LIST.spad" 1014259 1014269 1015671 1015698) (-644 "LIST3.spad" 1013570 1013584 1014249 1014254) (-643 "LIST2.spad" 1012272 1012284 1013560 1013565) (-642 "LIST2MAP.spad" 1009175 1009187 1012262 1012267) (-641 "LINSET.spad" 1008797 1008807 1009165 1009170) (-640 "LINEXP.spad" 1008231 1008241 1008777 1008792) (-639 "LINDEP.spad" 1007040 1007052 1008143 1008148) (-638 "LIMITRF.spad" 1004968 1004978 1007030 1007035) (-637 "LIMITPS.spad" 1003871 1003884 1004958 1004963) (-636 "LIE.spad" 1001887 1001899 1003161 1003306) (-635 "LIECAT.spad" 1001363 1001373 1001813 1001882) (-634 "LIECAT.spad" 1000867 1000879 1001319 1001324) (-633 "LIB.spad" 998917 998925 999526 999541) (-632 "LGROBP.spad" 996270 996289 998907 998912) (-631 "LF.spad" 995225 995241 996260 996265) (-630 "LFCAT.spad" 994284 994292 995215 995220) (-629 "LEXTRIPK.spad" 989787 989802 994274 994279) (-628 "LEXP.spad" 987790 987817 989767 989782) (-627 "LETAST.spad" 987489 987497 987780 987785) (-626 "LEADCDET.spad" 985887 985904 987479 987484) (-625 "LAZM3PK.spad" 984591 984613 985877 985882) (-624 "LAUPOL.spad" 983284 983297 984184 984253) (-623 "LAPLACE.spad" 982867 982883 983274 983279) (-622 "LA.spad" 982307 982321 982789 982828) (-621 "LALG.spad" 982083 982093 982287 982302) (-620 "LALG.spad" 981867 981879 982073 982078) (-619 "KVTFROM.spad" 981602 981612 981857 981862) (-618 "KTVLOGIC.spad" 981114 981122 981592 981597) (-617 "KRCFROM.spad" 980852 980862 981104 981109) (-616 "KOVACIC.spad" 979575 979592 980842 980847) (-615 "KONVERT.spad" 979297 979307 979565 979570) (-614 "KOERCE.spad" 979034 979044 979287 979292) (-613 "KERNEL.spad" 977689 977699 978818 978823) (-612 "KERNEL2.spad" 977392 977404 977679 977684) (-611 "KDAGG.spad" 976501 976523 977372 977387) (-610 "KDAGG.spad" 975618 975642 976491 976496) (-609 "KAFILE.spad" 974581 974597 974816 974843) (-608 "JORDAN.spad" 972410 972422 973871 974016) (-607 "JOINAST.spad" 972104 972112 972400 972405) (-606 "JAVACODE.spad" 971970 971978 972094 972099) (-605 "IXAGG.spad" 970103 970127 971960 971965) (-604 "IXAGG.spad" 968091 968117 969950 969955) (-603 "IVECTOR.spad" 966861 966876 967016 967043) (-602 "ITUPLE.spad" 966022 966032 966851 966856) (-601 "ITRIGMNP.spad" 964861 964880 966012 966017) (-600 "ITFUN3.spad" 964367 964381 964851 964856) (-599 "ITFUN2.spad" 964111 964123 964357 964362) (-598 "ITAYLOR.spad" 962105 962120 963975 964072) (-597 "ISUPS.spad" 954542 954557 961079 961176) (-596 "ISUMP.spad" 954043 954059 954532 954537) (-595 "ISTRING.spad" 953131 953144 953212 953239) (-594 "ISAST.spad" 952850 952858 953121 953126) (-593 "IRURPK.spad" 951567 951586 952840 952845) (-592 "IRSN.spad" 949571 949579 951557 951562) (-591 "IRRF2F.spad" 948056 948066 949527 949532) (-590 "IRREDFFX.spad" 947657 947668 948046 948051) (-589 "IROOT.spad" 945996 946006 947647 947652) (-588 "IR.spad" 943797 943811 945851 945878) (-587 "IR2.spad" 942825 942841 943787 943792) (-586 "IR2F.spad" 942031 942047 942815 942820) (-585 "IPRNTPK.spad" 941791 941799 942021 942026) (-584 "IPF.spad" 941356 941368 941596 941689) (-583 "IPADIC.spad" 941117 941143 941282 941351) (-582 "IP4ADDR.spad" 940674 940682 941107 941112) (-581 "IOMODE.spad" 940295 940303 940664 940669) (-580 "IOBFILE.spad" 939656 939664 940285 940290) (-579 "IOBCON.spad" 939521 939529 939646 939651) (-578 "INVLAPLA.spad" 939170 939186 939511 939516) (-577 "INTTR.spad" 932552 932569 939160 939165) (-576 "INTTOOLS.spad" 930307 930323 932126 932131) (-575 "INTSLPE.spad" 929627 929635 930297 930302) (-574 "INTRVL.spad" 929193 929203 929541 929622) (-573 "INTRF.spad" 927617 927631 929183 929188) (-572 "INTRET.spad" 927049 927059 927607 927612) (-571 "INTRAT.spad" 925776 925793 927039 927044) (-570 "INTPM.spad" 924161 924177 925419 925424) (-569 "INTPAF.spad" 922025 922043 924093 924098) (-568 "INTPACK.spad" 912399 912407 922015 922020) (-567 "INT.spad" 911847 911855 912253 912394) (-566 "INTHERTR.spad" 911121 911138 911837 911842) (-565 "INTHERAL.spad" 910791 910815 911111 911116) (-564 "INTHEORY.spad" 907230 907238 910781 910786) (-563 "INTG0.spad" 900963 900981 907162 907167) (-562 "INTFTBL.spad" 894992 895000 900953 900958) (-561 "INTFACT.spad" 894051 894061 894982 894987) (-560 "INTEF.spad" 892436 892452 894041 894046) (-559 "INTDOM.spad" 891059 891067 892362 892431) (-558 "INTDOM.spad" 889744 889754 891049 891054) (-557 "INTCAT.spad" 888003 888013 889658 889739) (-556 "INTBIT.spad" 887510 887518 887993 887998) (-555 "INTALG.spad" 886698 886725 887500 887505) (-554 "INTAF.spad" 886198 886214 886688 886693) (-553 "INTABL.spad" 884716 884747 884879 884906) (-552 "INT8.spad" 884596 884604 884706 884711) (-551 "INT64.spad" 884475 884483 884586 884591) (-550 "INT32.spad" 884354 884362 884465 884470) (-549 "INT16.spad" 884233 884241 884344 884349) (-548 "INS.spad" 881736 881744 884135 884228) (-547 "INS.spad" 879325 879335 881726 881731) (-546 "INPSIGN.spad" 878773 878786 879315 879320) (-545 "INPRODPF.spad" 877869 877888 878763 878768) (-544 "INPRODFF.spad" 876957 876981 877859 877864) (-543 "INNMFACT.spad" 875932 875949 876947 876952) (-542 "INMODGCD.spad" 875420 875450 875922 875927) (-541 "INFSP.spad" 873717 873739 875410 875415) (-540 "INFPROD0.spad" 872797 872816 873707 873712) (-539 "INFORM.spad" 869996 870004 872787 872792) (-538 "INFORM1.spad" 869621 869631 869986 869991) (-537 "INFINITY.spad" 869173 869181 869611 869616) (-536 "INETCLTS.spad" 869150 869158 869163 869168) (-535 "INEP.spad" 867688 867710 869140 869145) (-534 "INDE.spad" 867417 867434 867678 867683) (-533 "INCRMAPS.spad" 866838 866848 867407 867412) (-532 "INBFILE.spad" 865910 865918 866828 866833) (-531 "INBFF.spad" 861704 861715 865900 865905) (-530 "INBCON.spad" 859994 860002 861694 861699) (-529 "INBCON.spad" 858282 858292 859984 859989) (-528 "INAST.spad" 857943 857951 858272 858277) (-527 "IMPTAST.spad" 857651 857659 857933 857938) (-526 "IMATRIX.spad" 856596 856622 857108 857135) (-525 "IMATQF.spad" 855690 855734 856552 856557) (-524 "IMATLIN.spad" 854295 854319 855646 855651) (-523 "ILIST.spad" 852953 852968 853478 853505) (-522 "IIARRAY2.spad" 852341 852379 852560 852587) (-521 "IFF.spad" 851751 851767 852022 852115) (-520 "IFAST.spad" 851365 851373 851741 851746) (-519 "IFARRAY.spad" 848858 848873 850548 850575) (-518 "IFAMON.spad" 848720 848737 848814 848819) (-517 "IEVALAB.spad" 848125 848137 848710 848715) (-516 "IEVALAB.spad" 847528 847542 848115 848120) (-515 "IDPO.spad" 847326 847338 847518 847523) (-514 "IDPOAMS.spad" 847082 847094 847316 847321) (-513 "IDPOAM.spad" 846802 846814 847072 847077) (-512 "IDPC.spad" 845740 845752 846792 846797) (-511 "IDPAM.spad" 845485 845497 845730 845735) (-510 "IDPAG.spad" 845232 845244 845475 845480) (-509 "IDENT.spad" 844882 844890 845222 845227) (-508 "IDECOMP.spad" 842121 842139 844872 844877) (-507 "IDEAL.spad" 837070 837109 842056 842061) (-506 "ICDEN.spad" 836259 836275 837060 837065) (-505 "ICARD.spad" 835450 835458 836249 836254) (-504 "IBPTOOLS.spad" 834057 834074 835440 835445) (-503 "IBITS.spad" 833260 833273 833693 833720) (-502 "IBATOOL.spad" 830237 830256 833250 833255) (-501 "IBACHIN.spad" 828744 828759 830227 830232) (-500 "IARRAY2.spad" 827732 827758 828351 828378) (-499 "IARRAY1.spad" 826777 826792 826915 826942) (-498 "IAN.spad" 825000 825008 826593 826686) (-497 "IALGFACT.spad" 824603 824636 824990 824995) (-496 "HYPCAT.spad" 824027 824035 824593 824598) (-495 "HYPCAT.spad" 823449 823459 824017 824022) (-494 "HOSTNAME.spad" 823257 823265 823439 823444) (-493 "HOMOTOP.spad" 823000 823010 823247 823252) (-492 "HOAGG.spad" 820282 820292 822990 822995) (-491 "HOAGG.spad" 817339 817351 820049 820054) (-490 "HEXADEC.spad" 815441 815449 815806 815899) (-489 "HEUGCD.spad" 814476 814487 815431 815436) (-488 "HELLFDIV.spad" 814066 814090 814466 814471) (-487 "HEAP.spad" 813458 813468 813673 813700) (-486 "HEADAST.spad" 812991 812999 813448 813453) (-485 "HDP.spad" 802834 802850 803211 803342) (-484 "HDMP.spad" 800048 800063 800664 800791) (-483 "HB.spad" 798299 798307 800038 800043) (-482 "HASHTBL.spad" 796769 796800 796980 797007) (-481 "HASAST.spad" 796485 796493 796759 796764) (-480 "HACKPI.spad" 795976 795984 796387 796480) (-479 "GTSET.spad" 794915 794931 795622 795649) (-478 "GSTBL.spad" 793434 793469 793608 793623) (-477 "GSERIES.spad" 790605 790632 791566 791715) (-476 "GROUP.spad" 789878 789886 790585 790600) (-475 "GROUP.spad" 789159 789169 789868 789873) (-474 "GROEBSOL.spad" 787653 787674 789149 789154) (-473 "GRMOD.spad" 786224 786236 787643 787648) (-472 "GRMOD.spad" 784793 784807 786214 786219) (-471 "GRIMAGE.spad" 777682 777690 784783 784788) (-470 "GRDEF.spad" 776061 776069 777672 777677) (-469 "GRAY.spad" 774524 774532 776051 776056) (-468 "GRALG.spad" 773601 773613 774514 774519) (-467 "GRALG.spad" 772676 772690 773591 773596) (-466 "GPOLSET.spad" 772130 772153 772358 772385) (-465 "GOSPER.spad" 771399 771417 772120 772125) (-464 "GMODPOL.spad" 770547 770574 771367 771394) (-463 "GHENSEL.spad" 769630 769644 770537 770542) (-462 "GENUPS.spad" 765923 765936 769620 769625) (-461 "GENUFACT.spad" 765500 765510 765913 765918) (-460 "GENPGCD.spad" 765086 765103 765490 765495) (-459 "GENMFACT.spad" 764538 764557 765076 765081) (-458 "GENEEZ.spad" 762489 762502 764528 764533) (-457 "GDMP.spad" 759545 759562 760319 760446) (-456 "GCNAALG.spad" 753468 753495 759339 759406) (-455 "GCDDOM.spad" 752644 752652 753394 753463) (-454 "GCDDOM.spad" 751882 751892 752634 752639) (-453 "GB.spad" 749408 749446 751838 751843) (-452 "GBINTERN.spad" 745428 745466 749398 749403) (-451 "GBF.spad" 741195 741233 745418 745423) (-450 "GBEUCLID.spad" 739077 739115 741185 741190) (-449 "GAUSSFAC.spad" 738390 738398 739067 739072) (-448 "GALUTIL.spad" 736716 736726 738346 738351) (-447 "GALPOLYU.spad" 735170 735183 736706 736711) (-446 "GALFACTU.spad" 733343 733362 735160 735165) (-445 "GALFACT.spad" 723532 723543 733333 733338) (-444 "FVFUN.spad" 720555 720563 723522 723527) (-443 "FVC.spad" 719607 719615 720545 720550) (-442 "FUNDESC.spad" 719285 719293 719597 719602) (-441 "FUNCTION.spad" 719134 719146 719275 719280) (-440 "FT.spad" 717431 717439 719124 719129) (-439 "FTEM.spad" 716596 716604 717421 717426) (-438 "FSUPFACT.spad" 715496 715515 716532 716537) (-437 "FST.spad" 713582 713590 715486 715491) (-436 "FSRED.spad" 713062 713078 713572 713577) (-435 "FSPRMELT.spad" 711944 711960 713019 713024) (-434 "FSPECF.spad" 710035 710051 711934 711939) (-433 "FS.spad" 704303 704313 709810 710030) (-432 "FS.spad" 698349 698361 703858 703863) (-431 "FSINT.spad" 698009 698025 698339 698344) (-430 "FSERIES.spad" 697200 697212 697829 697928) (-429 "FSCINT.spad" 696517 696533 697190 697195) (-428 "FSAGG.spad" 695634 695644 696473 696512) (-427 "FSAGG.spad" 694713 694725 695554 695559) (-426 "FSAGG2.spad" 693456 693472 694703 694708) (-425 "FS2UPS.spad" 687947 687981 693446 693451) (-424 "FS2.spad" 687594 687610 687937 687942) (-423 "FS2EXPXP.spad" 686719 686742 687584 687589) (-422 "FRUTIL.spad" 685673 685683 686709 686714) (-421 "FR.spad" 679389 679399 684697 684766) (-420 "FRNAALG.spad" 674508 674518 679331 679384) (-419 "FRNAALG.spad" 669639 669651 674464 674469) (-418 "FRNAAF2.spad" 669095 669113 669629 669634) (-417 "FRMOD.spad" 668505 668535 669026 669031) (-416 "FRIDEAL.spad" 667730 667751 668485 668500) (-415 "FRIDEAL2.spad" 667334 667366 667720 667725) (-414 "FRETRCT.spad" 666845 666855 667324 667329) (-413 "FRETRCT.spad" 666222 666234 666703 666708) (-412 "FRAMALG.spad" 664570 664583 666178 666217) (-411 "FRAMALG.spad" 662950 662965 664560 664565) (-410 "FRAC.spad" 660049 660059 660452 660625) (-409 "FRAC2.spad" 659654 659666 660039 660044) (-408 "FR2.spad" 658990 659002 659644 659649) (-407 "FPS.spad" 655805 655813 658880 658985) (-406 "FPS.spad" 652648 652658 655725 655730) (-405 "FPC.spad" 651694 651702 652550 652643) (-404 "FPC.spad" 650826 650836 651684 651689) (-403 "FPATMAB.spad" 650588 650598 650816 650821) (-402 "FPARFRAC.spad" 649075 649092 650578 650583) (-401 "FORTRAN.spad" 647581 647624 649065 649070) (-400 "FORT.spad" 646530 646538 647571 647576) (-399 "FORTFN.spad" 643700 643708 646520 646525) (-398 "FORTCAT.spad" 643384 643392 643690 643695) (-397 "FORMULA.spad" 640858 640866 643374 643379) (-396 "FORMULA1.spad" 640337 640347 640848 640853) (-395 "FORDER.spad" 640028 640052 640327 640332) (-394 "FOP.spad" 639229 639237 640018 640023) (-393 "FNLA.spad" 638653 638675 639197 639224) (-392 "FNCAT.spad" 637248 637256 638643 638648) (-391 "FNAME.spad" 637140 637148 637238 637243) (-390 "FMTC.spad" 636938 636946 637066 637135) (-389 "FMONOID.spad" 636603 636613 636894 636899) (-388 "FMONCAT.spad" 633756 633766 636593 636598) (-387 "FM.spad" 633451 633463 633690 633717) (-386 "FMFUN.spad" 630481 630489 633441 633446) (-385 "FMC.spad" 629533 629541 630471 630476) (-384 "FMCAT.spad" 627201 627219 629501 629528) (-383 "FM1.spad" 626558 626570 627135 627162) (-382 "FLOATRP.spad" 624293 624307 626548 626553) (-381 "FLOAT.spad" 617607 617615 624159 624288) (-380 "FLOATCP.spad" 615038 615052 617597 617602) (-379 "FLINEXP.spad" 614750 614760 615018 615033) (-378 "FLINEXP.spad" 614416 614428 614686 614691) (-377 "FLASORT.spad" 613742 613754 614406 614411) (-376 "FLALG.spad" 611388 611407 613668 613737) (-375 "FLAGG.spad" 608430 608440 611368 611383) (-374 "FLAGG.spad" 605373 605385 608313 608318) (-373 "FLAGG2.spad" 604098 604114 605363 605368) (-372 "FINRALG.spad" 602159 602172 604054 604093) (-371 "FINRALG.spad" 600146 600161 602043 602048) (-370 "FINITE.spad" 599298 599306 600136 600141) (-369 "FINAALG.spad" 588419 588429 599240 599293) (-368 "FINAALG.spad" 577552 577564 588375 588380) (-367 "FILE.spad" 577135 577145 577542 577547) (-366 "FILECAT.spad" 575661 575678 577125 577130) (-365 "FIELD.spad" 575067 575075 575563 575656) (-364 "FIELD.spad" 574559 574569 575057 575062) (-363 "FGROUP.spad" 573206 573216 574539 574554) (-362 "FGLMICPK.spad" 571993 572008 573196 573201) (-361 "FFX.spad" 571368 571383 571709 571802) (-360 "FFSLPE.spad" 570871 570892 571358 571363) (-359 "FFPOLY.spad" 562133 562144 570861 570866) (-358 "FFPOLY2.spad" 561193 561210 562123 562128) (-357 "FFP.spad" 560590 560610 560909 561002) (-356 "FF.spad" 560038 560054 560271 560364) (-355 "FFNBX.spad" 558550 558570 559754 559847) (-354 "FFNBP.spad" 557063 557080 558266 558359) (-353 "FFNB.spad" 555528 555549 556744 556837) (-352 "FFINTBAS.spad" 553042 553061 555518 555523) (-351 "FFIELDC.spad" 550619 550627 552944 553037) (-350 "FFIELDC.spad" 548282 548292 550609 550614) (-349 "FFHOM.spad" 547030 547047 548272 548277) (-348 "FFF.spad" 544465 544476 547020 547025) (-347 "FFCGX.spad" 543312 543332 544181 544274) (-346 "FFCGP.spad" 542201 542221 543028 543121) (-345 "FFCG.spad" 540993 541014 541882 541975) (-344 "FFCAT.spad" 534166 534188 540832 540988) (-343 "FFCAT.spad" 527418 527442 534086 534091) (-342 "FFCAT2.spad" 527165 527205 527408 527413) (-341 "FEXPR.spad" 518882 518928 526921 526960) (-340 "FEVALAB.spad" 518590 518600 518872 518877) (-339 "FEVALAB.spad" 518083 518095 518367 518372) (-338 "FDIV.spad" 517525 517549 518073 518078) (-337 "FDIVCAT.spad" 515589 515613 517515 517520) (-336 "FDIVCAT.spad" 513651 513677 515579 515584) (-335 "FDIV2.spad" 513307 513347 513641 513646) (-334 "FCTRDATA.spad" 512315 512323 513297 513302) (-333 "FCPAK1.spad" 510882 510890 512305 512310) (-332 "FCOMP.spad" 510261 510271 510872 510877) (-331 "FC.spad" 500268 500276 510251 510256) (-330 "FAXF.spad" 493239 493253 500170 500263) (-329 "FAXF.spad" 486262 486278 493195 493200) (-328 "FARRAY.spad" 484412 484422 485445 485472) (-327 "FAMR.spad" 482548 482560 484310 484407) (-326 "FAMR.spad" 480668 480682 482432 482437) (-325 "FAMONOID.spad" 480336 480346 480622 480627) (-324 "FAMONC.spad" 478632 478644 480326 480331) (-323 "FAGROUP.spad" 478256 478266 478528 478555) (-322 "FACUTIL.spad" 476460 476477 478246 478251) (-321 "FACTFUNC.spad" 475654 475664 476450 476455) (-320 "EXPUPXS.spad" 472487 472510 473786 473935) (-319 "EXPRTUBE.spad" 469775 469783 472477 472482) (-318 "EXPRODE.spad" 466935 466951 469765 469770) (-317 "EXPR.spad" 462210 462220 462924 463331) (-316 "EXPR2UPS.spad" 458332 458345 462200 462205) (-315 "EXPR2.spad" 458037 458049 458322 458327) (-314 "EXPEXPAN.spad" 454977 455002 455609 455702) (-313 "EXIT.spad" 454648 454656 454967 454972) (-312 "EXITAST.spad" 454384 454392 454638 454643) (-311 "EVALCYC.spad" 453844 453858 454374 454379) (-310 "EVALAB.spad" 453416 453426 453834 453839) (-309 "EVALAB.spad" 452986 452998 453406 453411) (-308 "EUCDOM.spad" 450560 450568 452912 452981) (-307 "EUCDOM.spad" 448196 448206 450550 450555) (-306 "ESTOOLS.spad" 440042 440050 448186 448191) (-305 "ESTOOLS2.spad" 439645 439659 440032 440037) (-304 "ESTOOLS1.spad" 439330 439341 439635 439640) (-303 "ES.spad" 432145 432153 439320 439325) (-302 "ES.spad" 424866 424876 432043 432048) (-301 "ESCONT.spad" 421659 421667 424856 424861) (-300 "ESCONT1.spad" 421408 421420 421649 421654) (-299 "ES2.spad" 420913 420929 421398 421403) (-298 "ES1.spad" 420483 420499 420903 420908) (-297 "ERROR.spad" 417810 417818 420473 420478) (-296 "EQTBL.spad" 416282 416304 416491 416518) (-295 "EQ.spad" 411087 411097 413874 413986) (-294 "EQ2.spad" 410805 410817 411077 411082) (-293 "EP.spad" 407131 407141 410795 410800) (-292 "ENV.spad" 405793 405801 407121 407126) (-291 "ENTIRER.spad" 405461 405469 405737 405788) (-290 "EMR.spad" 404668 404709 405387 405456) (-289 "ELTAGG.spad" 402922 402941 404658 404663) (-288 "ELTAGG.spad" 401140 401161 402878 402883) (-287 "ELTAB.spad" 400589 400607 401130 401135) (-286 "ELFUTS.spad" 399976 399995 400579 400584) (-285 "ELEMFUN.spad" 399665 399673 399966 399971) (-284 "ELEMFUN.spad" 399352 399362 399655 399660) (-283 "ELAGG.spad" 397323 397333 399332 399347) (-282 "ELAGG.spad" 395231 395243 397242 397247) (-281 "ELABEXPR.spad" 394163 394171 395221 395226) (-280 "EFUPXS.spad" 390939 390969 394119 394124) (-279 "EFULS.spad" 387775 387798 390895 390900) (-278 "EFSTRUC.spad" 385790 385806 387765 387770) (-277 "EF.spad" 380566 380582 385780 385785) (-276 "EAB.spad" 378842 378850 380556 380561) (-275 "E04UCFA.spad" 378378 378386 378832 378837) (-274 "E04NAFA.spad" 377955 377963 378368 378373) (-273 "E04MBFA.spad" 377535 377543 377945 377950) (-272 "E04JAFA.spad" 377071 377079 377525 377530) (-271 "E04GCFA.spad" 376607 376615 377061 377066) (-270 "E04FDFA.spad" 376143 376151 376597 376602) (-269 "E04DGFA.spad" 375679 375687 376133 376138) (-268 "E04AGNT.spad" 371529 371537 375669 375674) (-267 "DVARCAT.spad" 368218 368228 371519 371524) (-266 "DVARCAT.spad" 364905 364917 368208 368213) (-265 "DSMP.spad" 362372 362386 362677 362804) (-264 "DROPT.spad" 356331 356339 362362 362367) (-263 "DROPT1.spad" 355996 356006 356321 356326) (-262 "DROPT0.spad" 350853 350861 355986 355991) (-261 "DRAWPT.spad" 349026 349034 350843 350848) (-260 "DRAW.spad" 341902 341915 349016 349021) (-259 "DRAWHACK.spad" 341210 341220 341892 341897) (-258 "DRAWCX.spad" 338680 338688 341200 341205) (-257 "DRAWCURV.spad" 338227 338242 338670 338675) (-256 "DRAWCFUN.spad" 327759 327767 338217 338222) (-255 "DQAGG.spad" 325937 325947 327727 327754) (-254 "DPOLCAT.spad" 321286 321302 325805 325932) (-253 "DPOLCAT.spad" 316721 316739 321242 321247) (-252 "DPMO.spad" 308947 308963 309085 309386) (-251 "DPMM.spad" 301186 301204 301311 301612) (-250 "DOMTMPLT.spad" 300846 300854 301176 301181) (-249 "DOMCTOR.spad" 300601 300609 300836 300841) (-248 "DOMAIN.spad" 299688 299696 300591 300596) (-247 "DMP.spad" 296948 296963 297518 297645) (-246 "DLP.spad" 296300 296310 296938 296943) (-245 "DLIST.spad" 294879 294889 295483 295510) (-244 "DLAGG.spad" 293296 293306 294869 294874) (-243 "DIVRING.spad" 292838 292846 293240 293291) (-242 "DIVRING.spad" 292424 292434 292828 292833) (-241 "DISPLAY.spad" 290614 290622 292414 292419) (-240 "DIRPROD.spad" 280194 280210 280834 280965) (-239 "DIRPROD2.spad" 279012 279030 280184 280189) (-238 "DIRPCAT.spad" 277956 277972 278876 279007) (-237 "DIRPCAT.spad" 276629 276647 277551 277556) (-236 "DIOSP.spad" 275454 275462 276619 276624) (-235 "DIOPS.spad" 274450 274460 275434 275449) (-234 "DIOPS.spad" 273420 273432 274406 274411) (-233 "DIFRING.spad" 272716 272724 273400 273415) (-232 "DIFRING.spad" 272020 272030 272706 272711) (-231 "DIFEXT.spad" 271191 271201 272000 272015) (-230 "DIFEXT.spad" 270279 270291 271090 271095) (-229 "DIAGG.spad" 269909 269919 270259 270274) (-228 "DIAGG.spad" 269547 269559 269899 269904) (-227 "DHMATRIX.spad" 267859 267869 269004 269031) (-226 "DFSFUN.spad" 261499 261507 267849 267854) (-225 "DFLOAT.spad" 258230 258238 261389 261494) (-224 "DFINTTLS.spad" 256461 256477 258220 258225) (-223 "DERHAM.spad" 254375 254407 256441 256456) (-222 "DEQUEUE.spad" 253699 253709 253982 254009) (-221 "DEGRED.spad" 253316 253330 253689 253694) (-220 "DEFINTRF.spad" 250853 250863 253306 253311) (-219 "DEFINTEF.spad" 249363 249379 250843 250848) (-218 "DEFAST.spad" 248731 248739 249353 249358) (-217 "DECIMAL.spad" 246837 246845 247198 247291) (-216 "DDFACT.spad" 244650 244667 246827 246832) (-215 "DBLRESP.spad" 244250 244274 244640 244645) (-214 "DBASE.spad" 242914 242924 244240 244245) (-213 "DATAARY.spad" 242376 242389 242904 242909) (-212 "D03FAFA.spad" 242204 242212 242366 242371) (-211 "D03EEFA.spad" 242024 242032 242194 242199) (-210 "D03AGNT.spad" 241110 241118 242014 242019) (-209 "D02EJFA.spad" 240572 240580 241100 241105) (-208 "D02CJFA.spad" 240050 240058 240562 240567) (-207 "D02BHFA.spad" 239540 239548 240040 240045) (-206 "D02BBFA.spad" 239030 239038 239530 239535) (-205 "D02AGNT.spad" 233844 233852 239020 239025) (-204 "D01WGTS.spad" 232163 232171 233834 233839) (-203 "D01TRNS.spad" 232140 232148 232153 232158) (-202 "D01GBFA.spad" 231662 231670 232130 232135) (-201 "D01FCFA.spad" 231184 231192 231652 231657) (-200 "D01ASFA.spad" 230652 230660 231174 231179) (-199 "D01AQFA.spad" 230098 230106 230642 230647) (-198 "D01APFA.spad" 229522 229530 230088 230093) (-197 "D01ANFA.spad" 229016 229024 229512 229517) (-196 "D01AMFA.spad" 228526 228534 229006 229011) (-195 "D01ALFA.spad" 228066 228074 228516 228521) (-194 "D01AKFA.spad" 227592 227600 228056 228061) (-193 "D01AJFA.spad" 227115 227123 227582 227587) (-192 "D01AGNT.spad" 223182 223190 227105 227110) (-191 "CYCLOTOM.spad" 222688 222696 223172 223177) (-190 "CYCLES.spad" 219544 219552 222678 222683) (-189 "CVMP.spad" 218961 218971 219534 219539) (-188 "CTRIGMNP.spad" 217461 217477 218951 218956) (-187 "CTOR.spad" 217152 217160 217451 217456) (-186 "CTORKIND.spad" 216755 216763 217142 217147) (-185 "CTORCAT.spad" 216004 216012 216745 216750) (-184 "CTORCAT.spad" 215251 215261 215994 215999) (-183 "CTORCALL.spad" 214840 214850 215241 215246) (-182 "CSTTOOLS.spad" 214085 214098 214830 214835) (-181 "CRFP.spad" 207809 207822 214075 214080) (-180 "CRCEAST.spad" 207529 207537 207799 207804) (-179 "CRAPACK.spad" 206580 206590 207519 207524) (-178 "CPMATCH.spad" 206084 206099 206505 206510) (-177 "CPIMA.spad" 205789 205808 206074 206079) (-176 "COORDSYS.spad" 200798 200808 205779 205784) (-175 "CONTOUR.spad" 200209 200217 200788 200793) (-174 "CONTFRAC.spad" 195959 195969 200111 200204) (-173 "CONDUIT.spad" 195717 195725 195949 195954) (-172 "COMRING.spad" 195391 195399 195655 195712) (-171 "COMPPROP.spad" 194909 194917 195381 195386) (-170 "COMPLPAT.spad" 194676 194691 194899 194904) (-169 "COMPLEX.spad" 188813 188823 189057 189318) (-168 "COMPLEX2.spad" 188528 188540 188803 188808) (-167 "COMPFACT.spad" 188130 188144 188518 188523) (-166 "COMPCAT.spad" 186202 186212 187864 188125) (-165 "COMPCAT.spad" 184002 184014 185666 185671) (-164 "COMMUPC.spad" 183750 183768 183992 183997) (-163 "COMMONOP.spad" 183283 183291 183740 183745) (-162 "COMM.spad" 183094 183102 183273 183278) (-161 "COMMAAST.spad" 182857 182865 183084 183089) (-160 "COMBOPC.spad" 181772 181780 182847 182852) (-159 "COMBINAT.spad" 180539 180549 181762 181767) (-158 "COMBF.spad" 177921 177937 180529 180534) (-157 "COLOR.spad" 176758 176766 177911 177916) (-156 "COLONAST.spad" 176424 176432 176748 176753) (-155 "CMPLXRT.spad" 176135 176152 176414 176419) (-154 "CLLCTAST.spad" 175797 175805 176125 176130) (-153 "CLIP.spad" 171905 171913 175787 175792) (-152 "CLIF.spad" 170560 170576 171861 171900) (-151 "CLAGG.spad" 167065 167075 170550 170555) (-150 "CLAGG.spad" 163441 163453 166928 166933) (-149 "CINTSLPE.spad" 162772 162785 163431 163436) (-148 "CHVAR.spad" 160910 160932 162762 162767) (-147 "CHARZ.spad" 160825 160833 160890 160905) (-146 "CHARPOL.spad" 160335 160345 160815 160820) (-145 "CHARNZ.spad" 160088 160096 160315 160330) (-144 "CHAR.spad" 157962 157970 160078 160083) (-143 "CFCAT.spad" 157290 157298 157952 157957) (-142 "CDEN.spad" 156486 156500 157280 157285) (-141 "CCLASS.spad" 154635 154643 155897 155936) (-140 "CATEGORY.spad" 153677 153685 154625 154630) (-139 "CATCTOR.spad" 153568 153576 153667 153672) (-138 "CATAST.spad" 153186 153194 153558 153563) (-137 "CASEAST.spad" 152900 152908 153176 153181) (-136 "CARTEN.spad" 148187 148211 152890 152895) (-135 "CARTEN2.spad" 147577 147604 148177 148182) (-134 "CARD.spad" 144872 144880 147551 147572) (-133 "CAPSLAST.spad" 144646 144654 144862 144867) (-132 "CACHSET.spad" 144270 144278 144636 144641) (-131 "CABMON.spad" 143825 143833 144260 144265) (-130 "BYTEORD.spad" 143500 143508 143815 143820) (-129 "BYTE.spad" 142927 142935 143490 143495) (-128 "BYTEBUF.spad" 140786 140794 142096 142123) (-127 "BTREE.spad" 139859 139869 140393 140420) (-126 "BTOURN.spad" 138864 138874 139466 139493) (-125 "BTCAT.spad" 138256 138266 138832 138859) (-124 "BTCAT.spad" 137668 137680 138246 138251) (-123 "BTAGG.spad" 136796 136804 137636 137663) (-122 "BTAGG.spad" 135944 135954 136786 136791) (-121 "BSTREE.spad" 134685 134695 135551 135578) (-120 "BRILL.spad" 132882 132893 134675 134680) (-119 "BRAGG.spad" 131822 131832 132872 132877) (-118 "BRAGG.spad" 130726 130738 131778 131783) (-117 "BPADICRT.spad" 128707 128719 128962 129055) (-116 "BPADIC.spad" 128371 128383 128633 128702) (-115 "BOUNDZRO.spad" 128027 128044 128361 128366) (-114 "BOP.spad" 123209 123217 128017 128022) (-113 "BOP1.spad" 120675 120685 123199 123204) (-112 "BOOLEAN.spad" 120113 120121 120665 120670) (-111 "BMODULE.spad" 119825 119837 120081 120108) (-110 "BITS.spad" 119246 119254 119461 119488) (-109 "BINDING.spad" 118659 118667 119236 119241) (-108 "BINARY.spad" 116770 116778 117126 117219) (-107 "BGAGG.spad" 115975 115985 116750 116765) (-106 "BGAGG.spad" 115188 115200 115965 115970) (-105 "BFUNCT.spad" 114752 114760 115168 115183) (-104 "BEZOUT.spad" 113892 113919 114702 114707) (-103 "BBTREE.spad" 110737 110747 113499 113526) (-102 "BASTYPE.spad" 110409 110417 110727 110732) (-101 "BASTYPE.spad" 110079 110089 110399 110404) (-100 "BALFACT.spad" 109538 109551 110069 110074) (-99 "AUTOMOR.spad" 108989 108998 109518 109533) (-98 "ATTREG.spad" 105712 105719 108741 108984) (-97 "ATTRBUT.spad" 101735 101742 105692 105707) (-96 "ATTRAST.spad" 101452 101459 101725 101730) (-95 "ATRIG.spad" 100922 100929 101442 101447) (-94 "ATRIG.spad" 100390 100399 100912 100917) (-93 "ASTCAT.spad" 100294 100301 100380 100385) (-92 "ASTCAT.spad" 100196 100205 100284 100289) (-91 "ASTACK.spad" 99535 99544 99803 99830) (-90 "ASSOCEQ.spad" 98361 98372 99491 99496) (-89 "ASP9.spad" 97442 97455 98351 98356) (-88 "ASP8.spad" 96485 96498 97432 97437) (-87 "ASP80.spad" 95807 95820 96475 96480) (-86 "ASP7.spad" 94967 94980 95797 95802) (-85 "ASP78.spad" 94418 94431 94957 94962) (-84 "ASP77.spad" 93787 93800 94408 94413) (-83 "ASP74.spad" 92879 92892 93777 93782) (-82 "ASP73.spad" 92150 92163 92869 92874) (-81 "ASP6.spad" 91017 91030 92140 92145) (-80 "ASP55.spad" 89526 89539 91007 91012) (-79 "ASP50.spad" 87343 87356 89516 89521) (-78 "ASP4.spad" 86638 86651 87333 87338) (-77 "ASP49.spad" 85637 85650 86628 86633) (-76 "ASP42.spad" 84044 84083 85627 85632) (-75 "ASP41.spad" 82623 82662 84034 84039) (-74 "ASP35.spad" 81611 81624 82613 82618) (-73 "ASP34.spad" 80912 80925 81601 81606) (-72 "ASP33.spad" 80472 80485 80902 80907) (-71 "ASP31.spad" 79612 79625 80462 80467) (-70 "ASP30.spad" 78504 78517 79602 79607) (-69 "ASP29.spad" 77970 77983 78494 78499) (-68 "ASP28.spad" 69243 69256 77960 77965) (-67 "ASP27.spad" 68140 68153 69233 69238) (-66 "ASP24.spad" 67227 67240 68130 68135) (-65 "ASP20.spad" 66691 66704 67217 67222) (-64 "ASP1.spad" 66072 66085 66681 66686) (-63 "ASP19.spad" 60758 60771 66062 66067) (-62 "ASP12.spad" 60172 60185 60748 60753) (-61 "ASP10.spad" 59443 59456 60162 60167) (-60 "ARRAY2.spad" 58803 58812 59050 59077) (-59 "ARRAY1.spad" 57640 57649 57986 58013) (-58 "ARRAY12.spad" 56353 56364 57630 57635) (-57 "ARR2CAT.spad" 52127 52148 56321 56348) (-56 "ARR2CAT.spad" 47921 47944 52117 52122) (-55 "ARITY.spad" 47293 47300 47911 47916) (-54 "APPRULE.spad" 46553 46575 47283 47288) (-53 "APPLYORE.spad" 46172 46185 46543 46548) (-52 "ANY.spad" 45031 45038 46162 46167) (-51 "ANY1.spad" 44102 44111 45021 45026) (-50 "ANTISYM.spad" 42547 42563 44082 44097) (-49 "ANON.spad" 42240 42247 42537 42542) (-48 "AN.spad" 40549 40556 42056 42149) (-47 "AMR.spad" 38734 38745 40447 40544) (-46 "AMR.spad" 36756 36769 38471 38476) (-45 "ALIST.spad" 34168 34189 34518 34545) (-44 "ALGSC.spad" 33303 33329 34040 34093) (-43 "ALGPKG.spad" 29086 29097 33259 33264) (-42 "ALGMFACT.spad" 28279 28293 29076 29081) (-41 "ALGMANIP.spad" 25753 25768 28112 28117) (-40 "ALGFF.spad" 24068 24095 24285 24441) (-39 "ALGFACT.spad" 23195 23205 24058 24063) (-38 "ALGEBRA.spad" 23028 23037 23151 23190) (-37 "ALGEBRA.spad" 22893 22904 23018 23023) (-36 "ALAGG.spad" 22405 22426 22861 22888) (-35 "AHYP.spad" 21786 21793 22395 22400) (-34 "AGG.spad" 20103 20110 21776 21781) (-33 "AGG.spad" 18384 18393 20059 20064) (-32 "AF.spad" 16815 16830 18319 18324) (-31 "ADDAST.spad" 16493 16500 16805 16810) (-30 "ACPLOT.spad" 15084 15091 16483 16488) (-29 "ACFS.spad" 12893 12902 14986 15079) (-28 "ACFS.spad" 10788 10799 12883 12888) (-27 "ACF.spad" 7470 7477 10690 10783) (-26 "ACF.spad" 4238 4247 7460 7465) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file
+((-3 NIL 2264550 2264555 2264560 2264565) (-2 NIL 2264530 2264535 2264540 2264545) (-1 NIL 2264510 2264515 2264520 2264525) (0 NIL 2264490 2264495 2264500 2264505) (-1297 "ZMOD.spad" 2264299 2264312 2264428 2264485) (-1296 "ZLINDEP.spad" 2263365 2263376 2264289 2264294) (-1295 "ZDSOLVE.spad" 2253310 2253332 2263355 2263360) (-1294 "YSTREAM.spad" 2252805 2252816 2253300 2253305) (-1293 "XRPOLY.spad" 2252025 2252045 2252661 2252730) (-1292 "XPR.spad" 2249820 2249833 2251743 2251842) (-1291 "XPOLY.spad" 2249375 2249386 2249676 2249745) (-1290 "XPOLYC.spad" 2248694 2248710 2249301 2249370) (-1289 "XPBWPOLY.spad" 2247131 2247151 2248474 2248543) (-1288 "XF.spad" 2245594 2245609 2247033 2247126) (-1287 "XF.spad" 2244037 2244054 2245478 2245483) (-1286 "XFALG.spad" 2241085 2241101 2243963 2244032) (-1285 "XEXPPKG.spad" 2240336 2240362 2241075 2241080) (-1284 "XDPOLY.spad" 2239950 2239966 2240192 2240261) (-1283 "XALG.spad" 2239610 2239621 2239906 2239945) (-1282 "WUTSET.spad" 2235449 2235466 2239256 2239283) (-1281 "WP.spad" 2234648 2234692 2235307 2235374) (-1280 "WHILEAST.spad" 2234446 2234455 2234638 2234643) (-1279 "WHEREAST.spad" 2234117 2234126 2234436 2234441) (-1278 "WFFINTBS.spad" 2231780 2231802 2234107 2234112) (-1277 "WEIER.spad" 2230002 2230013 2231770 2231775) (-1276 "VSPACE.spad" 2229675 2229686 2229970 2229997) (-1275 "VSPACE.spad" 2229368 2229381 2229665 2229670) (-1274 "VOID.spad" 2229045 2229054 2229358 2229363) (-1273 "VIEW.spad" 2226725 2226734 2229035 2229040) (-1272 "VIEWDEF.spad" 2221926 2221935 2226715 2226720) (-1271 "VIEW3D.spad" 2205887 2205896 2221916 2221921) (-1270 "VIEW2D.spad" 2193778 2193787 2205877 2205882) (-1269 "VECTOR.spad" 2192452 2192463 2192703 2192730) (-1268 "VECTOR2.spad" 2191091 2191104 2192442 2192447) (-1267 "VECTCAT.spad" 2188995 2189006 2191059 2191086) (-1266 "VECTCAT.spad" 2186706 2186719 2188772 2188777) (-1265 "VARIABLE.spad" 2186486 2186501 2186696 2186701) (-1264 "UTYPE.spad" 2186130 2186139 2186476 2186481) (-1263 "UTSODETL.spad" 2185425 2185449 2186086 2186091) (-1262 "UTSODE.spad" 2183641 2183661 2185415 2185420) (-1261 "UTS.spad" 2178454 2178482 2182108 2182205) (-1260 "UTSCAT.spad" 2175933 2175949 2178352 2178449) (-1259 "UTSCAT.spad" 2173056 2173074 2175477 2175482) (-1258 "UTS2.spad" 2172651 2172686 2173046 2173051) (-1257 "URAGG.spad" 2167324 2167335 2172641 2172646) (-1256 "URAGG.spad" 2161961 2161974 2167280 2167285) (-1255 "UPXSSING.spad" 2159606 2159632 2161042 2161175) (-1254 "UPXS.spad" 2156760 2156788 2157738 2157887) (-1253 "UPXSCONS.spad" 2154519 2154539 2154892 2155041) (-1252 "UPXSCCA.spad" 2153090 2153110 2154365 2154514) (-1251 "UPXSCCA.spad" 2151803 2151825 2153080 2153085) (-1250 "UPXSCAT.spad" 2150392 2150408 2151649 2151798) (-1249 "UPXS2.spad" 2149935 2149988 2150382 2150387) (-1248 "UPSQFREE.spad" 2148349 2148363 2149925 2149930) (-1247 "UPSCAT.spad" 2145960 2145984 2148247 2148344) (-1246 "UPSCAT.spad" 2143277 2143303 2145566 2145571) (-1245 "UPOLYC.spad" 2138317 2138328 2143119 2143272) (-1244 "UPOLYC.spad" 2133249 2133262 2138053 2138058) (-1243 "UPOLYC2.spad" 2132720 2132739 2133239 2133244) (-1242 "UP.spad" 2129919 2129934 2130306 2130459) (-1241 "UPMP.spad" 2128819 2128832 2129909 2129914) (-1240 "UPDIVP.spad" 2128384 2128398 2128809 2128814) (-1239 "UPDECOMP.spad" 2126629 2126643 2128374 2128379) (-1238 "UPCDEN.spad" 2125838 2125854 2126619 2126624) (-1237 "UP2.spad" 2125202 2125223 2125828 2125833) (-1236 "UNISEG.spad" 2124555 2124566 2125121 2125126) (-1235 "UNISEG2.spad" 2124052 2124065 2124511 2124516) (-1234 "UNIFACT.spad" 2123155 2123167 2124042 2124047) (-1233 "ULS.spad" 2113713 2113741 2114800 2115229) (-1232 "ULSCONS.spad" 2106109 2106129 2106479 2106628) (-1231 "ULSCCAT.spad" 2103846 2103866 2105955 2106104) (-1230 "ULSCCAT.spad" 2101691 2101713 2103802 2103807) (-1229 "ULSCAT.spad" 2099923 2099939 2101537 2101686) (-1228 "ULS2.spad" 2099437 2099490 2099913 2099918) (-1227 "UINT8.spad" 2099314 2099323 2099427 2099432) (-1226 "UINT64.spad" 2099190 2099199 2099304 2099309) (-1225 "UINT32.spad" 2099066 2099075 2099180 2099185) (-1224 "UINT16.spad" 2098942 2098951 2099056 2099061) (-1223 "UFD.spad" 2098007 2098016 2098868 2098937) (-1222 "UFD.spad" 2097134 2097145 2097997 2098002) (-1221 "UDVO.spad" 2096015 2096024 2097124 2097129) (-1220 "UDPO.spad" 2093508 2093519 2095971 2095976) (-1219 "TYPE.spad" 2093440 2093449 2093498 2093503) (-1218 "TYPEAST.spad" 2093359 2093368 2093430 2093435) (-1217 "TWOFACT.spad" 2092011 2092026 2093349 2093354) (-1216 "TUPLE.spad" 2091497 2091508 2091910 2091915) (-1215 "TUBETOOL.spad" 2088364 2088373 2091487 2091492) (-1214 "TUBE.spad" 2087011 2087028 2088354 2088359) (-1213 "TS.spad" 2085610 2085626 2086576 2086673) (-1212 "TSETCAT.spad" 2072737 2072754 2085578 2085605) (-1211 "TSETCAT.spad" 2059850 2059869 2072693 2072698) (-1210 "TRMANIP.spad" 2054216 2054233 2059556 2059561) (-1209 "TRIMAT.spad" 2053179 2053204 2054206 2054211) (-1208 "TRIGMNIP.spad" 2051706 2051723 2053169 2053174) (-1207 "TRIGCAT.spad" 2051218 2051227 2051696 2051701) (-1206 "TRIGCAT.spad" 2050728 2050739 2051208 2051213) (-1205 "TREE.spad" 2049303 2049314 2050335 2050362) (-1204 "TRANFUN.spad" 2049142 2049151 2049293 2049298) (-1203 "TRANFUN.spad" 2048979 2048990 2049132 2049137) (-1202 "TOPSP.spad" 2048653 2048662 2048969 2048974) (-1201 "TOOLSIGN.spad" 2048316 2048327 2048643 2048648) (-1200 "TEXTFILE.spad" 2046877 2046886 2048306 2048311) (-1199 "TEX.spad" 2044023 2044032 2046867 2046872) (-1198 "TEX1.spad" 2043579 2043590 2044013 2044018) (-1197 "TEMUTL.spad" 2043134 2043143 2043569 2043574) (-1196 "TBCMPPK.spad" 2041227 2041250 2043124 2043129) (-1195 "TBAGG.spad" 2040277 2040300 2041207 2041222) (-1194 "TBAGG.spad" 2039335 2039360 2040267 2040272) (-1193 "TANEXP.spad" 2038743 2038754 2039325 2039330) (-1192 "TABLE.spad" 2037154 2037177 2037424 2037451) (-1191 "TABLEAU.spad" 2036635 2036646 2037144 2037149) (-1190 "TABLBUMP.spad" 2033438 2033449 2036625 2036630) (-1189 "SYSTEM.spad" 2032666 2032675 2033428 2033433) (-1188 "SYSSOLP.spad" 2030149 2030160 2032656 2032661) (-1187 "SYSPTR.spad" 2030048 2030057 2030139 2030144) (-1186 "SYSNNI.spad" 2029230 2029241 2030038 2030043) (-1185 "SYSINT.spad" 2028634 2028645 2029220 2029225) (-1184 "SYNTAX.spad" 2024840 2024849 2028624 2028629) (-1183 "SYMTAB.spad" 2022908 2022917 2024830 2024835) (-1182 "SYMS.spad" 2018931 2018940 2022898 2022903) (-1181 "SYMPOLY.spad" 2017938 2017949 2018020 2018147) (-1180 "SYMFUNC.spad" 2017439 2017450 2017928 2017933) (-1179 "SYMBOL.spad" 2014942 2014951 2017429 2017434) (-1178 "SWITCH.spad" 2011713 2011722 2014932 2014937) (-1177 "SUTS.spad" 2008618 2008646 2010180 2010277) (-1176 "SUPXS.spad" 2005759 2005787 2006750 2006899) (-1175 "SUP.spad" 2002572 2002583 2003345 2003498) (-1174 "SUPFRACF.spad" 2001677 2001695 2002562 2002567) (-1173 "SUP2.spad" 2001069 2001082 2001667 2001672) (-1172 "SUMRF.spad" 2000043 2000054 2001059 2001064) (-1171 "SUMFS.spad" 1999680 1999697 2000033 2000038) (-1170 "SULS.spad" 1990225 1990253 1991325 1991754) (-1169 "SUCHTAST.spad" 1989994 1990003 1990215 1990220) (-1168 "SUCH.spad" 1989676 1989691 1989984 1989989) (-1167 "SUBSPACE.spad" 1981791 1981806 1989666 1989671) (-1166 "SUBRESP.spad" 1980961 1980975 1981747 1981752) (-1165 "STTF.spad" 1977060 1977076 1980951 1980956) (-1164 "STTFNC.spad" 1973528 1973544 1977050 1977055) (-1163 "STTAYLOR.spad" 1966182 1966193 1973409 1973414) (-1162 "STRTBL.spad" 1964687 1964704 1964836 1964863) (-1161 "STRING.spad" 1964096 1964105 1964110 1964137) (-1160 "STRICAT.spad" 1963884 1963893 1964064 1964091) (-1159 "STREAM.spad" 1960802 1960813 1963409 1963424) (-1158 "STREAM3.spad" 1960375 1960390 1960792 1960797) (-1157 "STREAM2.spad" 1959503 1959516 1960365 1960370) (-1156 "STREAM1.spad" 1959209 1959220 1959493 1959498) (-1155 "STINPROD.spad" 1958145 1958161 1959199 1959204) (-1154 "STEP.spad" 1957346 1957355 1958135 1958140) (-1153 "STEPAST.spad" 1956580 1956589 1957336 1957341) (-1152 "STBL.spad" 1955106 1955134 1955273 1955288) (-1151 "STAGG.spad" 1954181 1954192 1955096 1955101) (-1150 "STAGG.spad" 1953254 1953267 1954171 1954176) (-1149 "STACK.spad" 1952611 1952622 1952861 1952888) (-1148 "SREGSET.spad" 1950315 1950332 1952257 1952284) (-1147 "SRDCMPK.spad" 1948876 1948896 1950305 1950310) (-1146 "SRAGG.spad" 1944019 1944028 1948844 1948871) (-1145 "SRAGG.spad" 1939182 1939193 1944009 1944014) (-1144 "SQMATRIX.spad" 1936798 1936816 1937714 1937801) (-1143 "SPLTREE.spad" 1931350 1931363 1936234 1936261) (-1142 "SPLNODE.spad" 1927938 1927951 1931340 1931345) (-1141 "SPFCAT.spad" 1926747 1926756 1927928 1927933) (-1140 "SPECOUT.spad" 1925299 1925308 1926737 1926742) (-1139 "SPADXPT.spad" 1917187 1917196 1925289 1925294) (-1138 "spad-parser.spad" 1916652 1916661 1917177 1917182) (-1137 "SPADAST.spad" 1916353 1916362 1916642 1916647) (-1136 "SPACEC.spad" 1900552 1900563 1916343 1916348) (-1135 "SPACE3.spad" 1900328 1900339 1900542 1900547) (-1134 "SORTPAK.spad" 1899877 1899890 1900284 1900289) (-1133 "SOLVETRA.spad" 1897640 1897651 1899867 1899872) (-1132 "SOLVESER.spad" 1896168 1896179 1897630 1897635) (-1131 "SOLVERAD.spad" 1892194 1892205 1896158 1896163) (-1130 "SOLVEFOR.spad" 1890656 1890674 1892184 1892189) (-1129 "SNTSCAT.spad" 1890256 1890273 1890624 1890651) (-1128 "SMTS.spad" 1888528 1888554 1889821 1889918) (-1127 "SMP.spad" 1886003 1886023 1886393 1886520) (-1126 "SMITH.spad" 1884848 1884873 1885993 1885998) (-1125 "SMATCAT.spad" 1882958 1882988 1884792 1884843) (-1124 "SMATCAT.spad" 1881000 1881032 1882836 1882841) (-1123 "SKAGG.spad" 1879963 1879974 1880968 1880995) (-1122 "SINT.spad" 1878795 1878804 1879829 1879958) (-1121 "SIMPAN.spad" 1878523 1878532 1878785 1878790) (-1120 "SIG.spad" 1877853 1877862 1878513 1878518) (-1119 "SIGNRF.spad" 1876971 1876982 1877843 1877848) (-1118 "SIGNEF.spad" 1876250 1876267 1876961 1876966) (-1117 "SIGAST.spad" 1875635 1875644 1876240 1876245) (-1116 "SHP.spad" 1873563 1873578 1875591 1875596) (-1115 "SHDP.spad" 1863274 1863301 1863783 1863914) (-1114 "SGROUP.spad" 1862882 1862891 1863264 1863269) (-1113 "SGROUP.spad" 1862488 1862499 1862872 1862877) (-1112 "SGCF.spad" 1855651 1855660 1862478 1862483) (-1111 "SFRTCAT.spad" 1854581 1854598 1855619 1855646) (-1110 "SFRGCD.spad" 1853644 1853664 1854571 1854576) (-1109 "SFQCMPK.spad" 1848281 1848301 1853634 1853639) (-1108 "SFORT.spad" 1847720 1847734 1848271 1848276) (-1107 "SEXOF.spad" 1847563 1847603 1847710 1847715) (-1106 "SEX.spad" 1847455 1847464 1847553 1847558) (-1105 "SEXCAT.spad" 1845056 1845096 1847445 1847450) (-1104 "SET.spad" 1843380 1843391 1844477 1844516) (-1103 "SETMN.spad" 1841830 1841847 1843370 1843375) (-1102 "SETCAT.spad" 1841152 1841161 1841820 1841825) (-1101 "SETCAT.spad" 1840472 1840483 1841142 1841147) (-1100 "SETAGG.spad" 1837021 1837032 1840452 1840467) (-1099 "SETAGG.spad" 1833578 1833591 1837011 1837016) (-1098 "SEQAST.spad" 1833281 1833290 1833568 1833573) (-1097 "SEGXCAT.spad" 1832437 1832450 1833271 1833276) (-1096 "SEG.spad" 1832250 1832261 1832356 1832361) (-1095 "SEGCAT.spad" 1831175 1831186 1832240 1832245) (-1094 "SEGBIND.spad" 1830933 1830944 1831122 1831127) (-1093 "SEGBIND2.spad" 1830631 1830644 1830923 1830928) (-1092 "SEGAST.spad" 1830345 1830354 1830621 1830626) (-1091 "SEG2.spad" 1829780 1829793 1830301 1830306) (-1090 "SDVAR.spad" 1829056 1829067 1829770 1829775) (-1089 "SDPOL.spad" 1826482 1826493 1826773 1826900) (-1088 "SCPKG.spad" 1824571 1824582 1826472 1826477) (-1087 "SCOPE.spad" 1823724 1823733 1824561 1824566) (-1086 "SCACHE.spad" 1822420 1822431 1823714 1823719) (-1085 "SASTCAT.spad" 1822329 1822338 1822410 1822415) (-1084 "SAOS.spad" 1822201 1822210 1822319 1822324) (-1083 "SAERFFC.spad" 1821914 1821934 1822191 1822196) (-1082 "SAE.spad" 1820089 1820105 1820700 1820835) (-1081 "SAEFACT.spad" 1819790 1819810 1820079 1820084) (-1080 "RURPK.spad" 1817449 1817465 1819780 1819785) (-1079 "RULESET.spad" 1816902 1816926 1817439 1817444) (-1078 "RULE.spad" 1815142 1815166 1816892 1816897) (-1077 "RULECOLD.spad" 1814994 1815007 1815132 1815137) (-1076 "RTVALUE.spad" 1814729 1814738 1814984 1814989) (-1075 "RSTRCAST.spad" 1814446 1814455 1814719 1814724) (-1074 "RSETGCD.spad" 1810824 1810844 1814436 1814441) (-1073 "RSETCAT.spad" 1800760 1800777 1810792 1810819) (-1072 "RSETCAT.spad" 1790716 1790735 1800750 1800755) (-1071 "RSDCMPK.spad" 1789168 1789188 1790706 1790711) (-1070 "RRCC.spad" 1787552 1787582 1789158 1789163) (-1069 "RRCC.spad" 1785934 1785966 1787542 1787547) (-1068 "RPTAST.spad" 1785636 1785645 1785924 1785929) (-1067 "RPOLCAT.spad" 1764996 1765011 1785504 1785631) (-1066 "RPOLCAT.spad" 1744070 1744087 1764580 1764585) (-1065 "ROUTINE.spad" 1739953 1739962 1742717 1742744) (-1064 "ROMAN.spad" 1739281 1739290 1739819 1739948) (-1063 "ROIRC.spad" 1738361 1738393 1739271 1739276) (-1062 "RNS.spad" 1737264 1737273 1738263 1738356) (-1061 "RNS.spad" 1736253 1736264 1737254 1737259) (-1060 "RNG.spad" 1735988 1735997 1736243 1736248) (-1059 "RNGBIND.spad" 1735148 1735162 1735943 1735948) (-1058 "RMODULE.spad" 1734913 1734924 1735138 1735143) (-1057 "RMCAT2.spad" 1734333 1734390 1734903 1734908) (-1056 "RMATRIX.spad" 1733157 1733176 1733500 1733539) (-1055 "RMATCAT.spad" 1728736 1728767 1733113 1733152) (-1054 "RMATCAT.spad" 1724205 1724238 1728584 1728589) (-1053 "RLINSET.spad" 1723599 1723610 1724195 1724200) (-1052 "RINTERP.spad" 1723487 1723507 1723589 1723594) (-1051 "RING.spad" 1722957 1722966 1723467 1723482) (-1050 "RING.spad" 1722435 1722446 1722947 1722952) (-1049 "RIDIST.spad" 1721827 1721836 1722425 1722430) (-1048 "RGCHAIN.spad" 1720410 1720426 1721312 1721339) (-1047 "RGBCSPC.spad" 1720191 1720203 1720400 1720405) (-1046 "RGBCMDL.spad" 1719721 1719733 1720181 1720186) (-1045 "RF.spad" 1717363 1717374 1719711 1719716) (-1044 "RFFACTOR.spad" 1716825 1716836 1717353 1717358) (-1043 "RFFACT.spad" 1716560 1716572 1716815 1716820) (-1042 "RFDIST.spad" 1715556 1715565 1716550 1716555) (-1041 "RETSOL.spad" 1714975 1714988 1715546 1715551) (-1040 "RETRACT.spad" 1714403 1714414 1714965 1714970) (-1039 "RETRACT.spad" 1713829 1713842 1714393 1714398) (-1038 "RETAST.spad" 1713641 1713650 1713819 1713824) (-1037 "RESULT.spad" 1711701 1711710 1712288 1712315) (-1036 "RESRING.spad" 1711048 1711095 1711639 1711696) (-1035 "RESLATC.spad" 1710372 1710383 1711038 1711043) (-1034 "REPSQ.spad" 1710103 1710114 1710362 1710367) (-1033 "REP.spad" 1707657 1707666 1710093 1710098) (-1032 "REPDB.spad" 1707364 1707375 1707647 1707652) (-1031 "REP2.spad" 1697022 1697033 1707206 1707211) (-1030 "REP1.spad" 1691218 1691229 1696972 1696977) (-1029 "REGSET.spad" 1689015 1689032 1690864 1690891) (-1028 "REF.spad" 1688350 1688361 1688970 1688975) (-1027 "REDORDER.spad" 1687556 1687573 1688340 1688345) (-1026 "RECLOS.spad" 1686339 1686359 1687043 1687136) (-1025 "REALSOLV.spad" 1685479 1685488 1686329 1686334) (-1024 "REAL.spad" 1685351 1685360 1685469 1685474) (-1023 "REAL0Q.spad" 1682649 1682664 1685341 1685346) (-1022 "REAL0.spad" 1679493 1679508 1682639 1682644) (-1021 "RDUCEAST.spad" 1679214 1679223 1679483 1679488) (-1020 "RDIV.spad" 1678869 1678894 1679204 1679209) (-1019 "RDIST.spad" 1678436 1678447 1678859 1678864) (-1018 "RDETRS.spad" 1677300 1677318 1678426 1678431) (-1017 "RDETR.spad" 1675439 1675457 1677290 1677295) (-1016 "RDEEFS.spad" 1674538 1674555 1675429 1675434) (-1015 "RDEEF.spad" 1673548 1673565 1674528 1674533) (-1014 "RCFIELD.spad" 1670734 1670743 1673450 1673543) (-1013 "RCFIELD.spad" 1668006 1668017 1670724 1670729) (-1012 "RCAGG.spad" 1665934 1665945 1667996 1668001) (-1011 "RCAGG.spad" 1663789 1663802 1665853 1665858) (-1010 "RATRET.spad" 1663149 1663160 1663779 1663784) (-1009 "RATFACT.spad" 1662841 1662853 1663139 1663144) (-1008 "RANDSRC.spad" 1662160 1662169 1662831 1662836) (-1007 "RADUTIL.spad" 1661916 1661925 1662150 1662155) (-1006 "RADIX.spad" 1658837 1658851 1660383 1660476) (-1005 "RADFF.spad" 1657250 1657287 1657369 1657525) (-1004 "RADCAT.spad" 1656845 1656854 1657240 1657245) (-1003 "RADCAT.spad" 1656438 1656449 1656835 1656840) (-1002 "QUEUE.spad" 1655786 1655797 1656045 1656072) (-1001 "QUAT.spad" 1654367 1654378 1654710 1654775) (-1000 "QUATCT2.spad" 1653987 1654006 1654357 1654362) (-999 "QUATCAT.spad" 1652158 1652168 1653917 1653982) (-998 "QUATCAT.spad" 1650080 1650092 1651841 1651846) (-997 "QUAGG.spad" 1648908 1648918 1650048 1650075) (-996 "QQUTAST.spad" 1648677 1648685 1648898 1648903) (-995 "QFORM.spad" 1648142 1648156 1648667 1648672) (-994 "QFCAT.spad" 1646845 1646855 1648044 1648137) (-993 "QFCAT.spad" 1645139 1645151 1646340 1646345) (-992 "QFCAT2.spad" 1644832 1644848 1645129 1645134) (-991 "QEQUAT.spad" 1644391 1644399 1644822 1644827) (-990 "QCMPACK.spad" 1639138 1639157 1644381 1644386) (-989 "QALGSET.spad" 1635217 1635249 1639052 1639057) (-988 "QALGSET2.spad" 1633213 1633231 1635207 1635212) (-987 "PWFFINTB.spad" 1630629 1630650 1633203 1633208) (-986 "PUSHVAR.spad" 1629968 1629987 1630619 1630624) (-985 "PTRANFN.spad" 1626096 1626106 1629958 1629963) (-984 "PTPACK.spad" 1623184 1623194 1626086 1626091) (-983 "PTFUNC2.spad" 1623007 1623021 1623174 1623179) (-982 "PTCAT.spad" 1622262 1622272 1622975 1623002) (-981 "PSQFR.spad" 1621569 1621593 1622252 1622257) (-980 "PSEUDLIN.spad" 1620455 1620465 1621559 1621564) (-979 "PSETPK.spad" 1605888 1605904 1620333 1620338) (-978 "PSETCAT.spad" 1599808 1599831 1605868 1605883) (-977 "PSETCAT.spad" 1593702 1593727 1599764 1599769) (-976 "PSCURVE.spad" 1592685 1592693 1593692 1593697) (-975 "PSCAT.spad" 1591468 1591497 1592583 1592680) (-974 "PSCAT.spad" 1590341 1590372 1591458 1591463) (-973 "PRTITION.spad" 1589302 1589310 1590331 1590336) (-972 "PRTDAST.spad" 1589021 1589029 1589292 1589297) (-971 "PRS.spad" 1578583 1578600 1588977 1588982) (-970 "PRQAGG.spad" 1578018 1578028 1578551 1578578) (-969 "PROPLOG.spad" 1577317 1577325 1578008 1578013) (-968 "PROPFRML.spad" 1576133 1576144 1577307 1577312) (-967 "PROPERTY.spad" 1575621 1575629 1576123 1576128) (-966 "PRODUCT.spad" 1573303 1573315 1573587 1573642) (-965 "PR.spad" 1571695 1571707 1572394 1572521) (-964 "PRINT.spad" 1571447 1571455 1571685 1571690) (-963 "PRIMES.spad" 1569700 1569710 1571437 1571442) (-962 "PRIMELT.spad" 1567781 1567795 1569690 1569695) (-961 "PRIMCAT.spad" 1567408 1567416 1567771 1567776) (-960 "PRIMARR.spad" 1566413 1566423 1566591 1566618) (-959 "PRIMARR2.spad" 1565180 1565192 1566403 1566408) (-958 "PREASSOC.spad" 1564562 1564574 1565170 1565175) (-957 "PPCURVE.spad" 1563699 1563707 1564552 1564557) (-956 "PORTNUM.spad" 1563474 1563482 1563689 1563694) (-955 "POLYROOT.spad" 1562323 1562345 1563430 1563435) (-954 "POLY.spad" 1559658 1559668 1560173 1560300) (-953 "POLYLIFT.spad" 1558923 1558946 1559648 1559653) (-952 "POLYCATQ.spad" 1557041 1557063 1558913 1558918) (-951 "POLYCAT.spad" 1550511 1550532 1556909 1557036) (-950 "POLYCAT.spad" 1543319 1543342 1549719 1549724) (-949 "POLY2UP.spad" 1542771 1542785 1543309 1543314) (-948 "POLY2.spad" 1542368 1542380 1542761 1542766) (-947 "POLUTIL.spad" 1541309 1541338 1542324 1542329) (-946 "POLTOPOL.spad" 1540057 1540072 1541299 1541304) (-945 "POINT.spad" 1538895 1538905 1538982 1539009) (-944 "PNTHEORY.spad" 1535597 1535605 1538885 1538890) (-943 "PMTOOLS.spad" 1534372 1534386 1535587 1535592) (-942 "PMSYM.spad" 1533921 1533931 1534362 1534367) (-941 "PMQFCAT.spad" 1533512 1533526 1533911 1533916) (-940 "PMPRED.spad" 1532991 1533005 1533502 1533507) (-939 "PMPREDFS.spad" 1532445 1532467 1532981 1532986) (-938 "PMPLCAT.spad" 1531525 1531543 1532377 1532382) (-937 "PMLSAGG.spad" 1531110 1531124 1531515 1531520) (-936 "PMKERNEL.spad" 1530689 1530701 1531100 1531105) (-935 "PMINS.spad" 1530269 1530279 1530679 1530684) (-934 "PMFS.spad" 1529846 1529864 1530259 1530264) (-933 "PMDOWN.spad" 1529136 1529150 1529836 1529841) (-932 "PMASS.spad" 1528146 1528154 1529126 1529131) (-931 "PMASSFS.spad" 1527113 1527129 1528136 1528141) (-930 "PLOTTOOL.spad" 1526893 1526901 1527103 1527108) (-929 "PLOT.spad" 1521816 1521824 1526883 1526888) (-928 "PLOT3D.spad" 1518280 1518288 1521806 1521811) (-927 "PLOT1.spad" 1517437 1517447 1518270 1518275) (-926 "PLEQN.spad" 1504727 1504754 1517427 1517432) (-925 "PINTERP.spad" 1504349 1504368 1504717 1504722) (-924 "PINTERPA.spad" 1504133 1504149 1504339 1504344) (-923 "PI.spad" 1503742 1503750 1504107 1504128) (-922 "PID.spad" 1502712 1502720 1503668 1503737) (-921 "PICOERCE.spad" 1502369 1502379 1502702 1502707) (-920 "PGROEB.spad" 1500970 1500984 1502359 1502364) (-919 "PGE.spad" 1492587 1492595 1500960 1500965) (-918 "PGCD.spad" 1491477 1491494 1492577 1492582) (-917 "PFRPAC.spad" 1490626 1490636 1491467 1491472) (-916 "PFR.spad" 1487289 1487299 1490528 1490621) (-915 "PFOTOOLS.spad" 1486547 1486563 1487279 1487284) (-914 "PFOQ.spad" 1485917 1485935 1486537 1486542) (-913 "PFO.spad" 1485336 1485363 1485907 1485912) (-912 "PF.spad" 1484910 1484922 1485141 1485234) (-911 "PFECAT.spad" 1482592 1482600 1484836 1484905) (-910 "PFECAT.spad" 1480302 1480312 1482548 1482553) (-909 "PFBRU.spad" 1478190 1478202 1480292 1480297) (-908 "PFBR.spad" 1475750 1475773 1478180 1478185) (-907 "PERM.spad" 1471435 1471445 1475580 1475595) (-906 "PERMGRP.spad" 1466197 1466207 1471425 1471430) (-905 "PERMCAT.spad" 1464755 1464765 1466177 1466192) (-904 "PERMAN.spad" 1463287 1463301 1464745 1464750) (-903 "PENDTREE.spad" 1462628 1462638 1462916 1462921) (-902 "PDRING.spad" 1461179 1461189 1462608 1462623) (-901 "PDRING.spad" 1459738 1459750 1461169 1461174) (-900 "PDEPROB.spad" 1458753 1458761 1459728 1459733) (-899 "PDEPACK.spad" 1452793 1452801 1458743 1458748) (-898 "PDECOMP.spad" 1452263 1452280 1452783 1452788) (-897 "PDECAT.spad" 1450619 1450627 1452253 1452258) (-896 "PCOMP.spad" 1450472 1450485 1450609 1450614) (-895 "PBWLB.spad" 1449060 1449077 1450462 1450467) (-894 "PATTERN.spad" 1443599 1443609 1449050 1449055) (-893 "PATTERN2.spad" 1443337 1443349 1443589 1443594) (-892 "PATTERN1.spad" 1441673 1441689 1443327 1443332) (-891 "PATRES.spad" 1439248 1439260 1441663 1441668) (-890 "PATRES2.spad" 1438920 1438934 1439238 1439243) (-889 "PATMATCH.spad" 1437117 1437148 1438628 1438633) (-888 "PATMAB.spad" 1436546 1436556 1437107 1437112) (-887 "PATLRES.spad" 1435632 1435646 1436536 1436541) (-886 "PATAB.spad" 1435396 1435406 1435622 1435627) (-885 "PARTPERM.spad" 1432796 1432804 1435386 1435391) (-884 "PARSURF.spad" 1432230 1432258 1432786 1432791) (-883 "PARSU2.spad" 1432027 1432043 1432220 1432225) (-882 "script-parser.spad" 1431547 1431555 1432017 1432022) (-881 "PARSCURV.spad" 1430981 1431009 1431537 1431542) (-880 "PARSC2.spad" 1430772 1430788 1430971 1430976) (-879 "PARPCURV.spad" 1430234 1430262 1430762 1430767) (-878 "PARPC2.spad" 1430025 1430041 1430224 1430229) (-877 "PARAMAST.spad" 1429153 1429161 1430015 1430020) (-876 "PAN2EXPR.spad" 1428565 1428573 1429143 1429148) (-875 "PALETTE.spad" 1427535 1427543 1428555 1428560) (-874 "PAIR.spad" 1426522 1426535 1427123 1427128) (-873 "PADICRC.spad" 1423856 1423874 1425027 1425120) (-872 "PADICRAT.spad" 1421871 1421883 1422092 1422185) (-871 "PADIC.spad" 1421566 1421578 1421797 1421866) (-870 "PADICCT.spad" 1420115 1420127 1421492 1421561) (-869 "PADEPAC.spad" 1418804 1418823 1420105 1420110) (-868 "PADE.spad" 1417556 1417572 1418794 1418799) (-867 "OWP.spad" 1416796 1416826 1417414 1417481) (-866 "OVERSET.spad" 1416369 1416377 1416786 1416791) (-865 "OVAR.spad" 1416150 1416173 1416359 1416364) (-864 "OUT.spad" 1415236 1415244 1416140 1416145) (-863 "OUTFORM.spad" 1404628 1404636 1415226 1415231) (-862 "OUTBFILE.spad" 1404046 1404054 1404618 1404623) (-861 "OUTBCON.spad" 1403052 1403060 1404036 1404041) (-860 "OUTBCON.spad" 1402056 1402066 1403042 1403047) (-859 "OSI.spad" 1401531 1401539 1402046 1402051) (-858 "OSGROUP.spad" 1401449 1401457 1401521 1401526) (-857 "ORTHPOL.spad" 1399934 1399944 1401366 1401371) (-856 "OREUP.spad" 1399387 1399415 1399614 1399653) (-855 "ORESUP.spad" 1398688 1398712 1399067 1399106) (-854 "OREPCTO.spad" 1396545 1396557 1398608 1398613) (-853 "OREPCAT.spad" 1390692 1390702 1396501 1396540) (-852 "OREPCAT.spad" 1384729 1384741 1390540 1390545) (-851 "ORDSET.spad" 1383901 1383909 1384719 1384724) (-850 "ORDSET.spad" 1383071 1383081 1383891 1383896) (-849 "ORDRING.spad" 1382461 1382469 1383051 1383066) (-848 "ORDRING.spad" 1381859 1381869 1382451 1382456) (-847 "ORDMON.spad" 1381714 1381722 1381849 1381854) (-846 "ORDFUNS.spad" 1380846 1380862 1381704 1381709) (-845 "ORDFIN.spad" 1380666 1380674 1380836 1380841) (-844 "ORDCOMP.spad" 1379131 1379141 1380213 1380242) (-843 "ORDCOMP2.spad" 1378424 1378436 1379121 1379126) (-842 "OPTPROB.spad" 1377062 1377070 1378414 1378419) (-841 "OPTPACK.spad" 1369471 1369479 1377052 1377057) (-840 "OPTCAT.spad" 1367150 1367158 1369461 1369466) (-839 "OPSIG.spad" 1366804 1366812 1367140 1367145) (-838 "OPQUERY.spad" 1366353 1366361 1366794 1366799) (-837 "OP.spad" 1366095 1366105 1366175 1366242) (-836 "OPERCAT.spad" 1365561 1365571 1366085 1366090) (-835 "OPERCAT.spad" 1365025 1365037 1365551 1365556) (-834 "ONECOMP.spad" 1363770 1363780 1364572 1364601) (-833 "ONECOMP2.spad" 1363194 1363206 1363760 1363765) (-832 "OMSERVER.spad" 1362200 1362208 1363184 1363189) (-831 "OMSAGG.spad" 1361988 1361998 1362156 1362195) (-830 "OMPKG.spad" 1360604 1360612 1361978 1361983) (-829 "OM.spad" 1359577 1359585 1360594 1360599) (-828 "OMLO.spad" 1359002 1359014 1359463 1359502) (-827 "OMEXPR.spad" 1358836 1358846 1358992 1358997) (-826 "OMERR.spad" 1358381 1358389 1358826 1358831) (-825 "OMERRK.spad" 1357415 1357423 1358371 1358376) (-824 "OMENC.spad" 1356759 1356767 1357405 1357410) (-823 "OMDEV.spad" 1351068 1351076 1356749 1356754) (-822 "OMCONN.spad" 1350477 1350485 1351058 1351063) (-821 "OINTDOM.spad" 1350240 1350248 1350403 1350472) (-820 "OFMONOID.spad" 1348363 1348373 1350196 1350201) (-819 "ODVAR.spad" 1347624 1347634 1348353 1348358) (-818 "ODR.spad" 1347268 1347294 1347436 1347585) (-817 "ODPOL.spad" 1344650 1344660 1344990 1345117) (-816 "ODP.spad" 1334497 1334517 1334870 1335001) (-815 "ODETOOLS.spad" 1333146 1333165 1334487 1334492) (-814 "ODESYS.spad" 1330840 1330857 1333136 1333141) (-813 "ODERTRIC.spad" 1326849 1326866 1330797 1330802) (-812 "ODERED.spad" 1326248 1326272 1326839 1326844) (-811 "ODERAT.spad" 1323863 1323880 1326238 1326243) (-810 "ODEPRRIC.spad" 1320900 1320922 1323853 1323858) (-809 "ODEPROB.spad" 1320157 1320165 1320890 1320895) (-808 "ODEPRIM.spad" 1317491 1317513 1320147 1320152) (-807 "ODEPAL.spad" 1316877 1316901 1317481 1317486) (-806 "ODEPACK.spad" 1303543 1303551 1316867 1316872) (-805 "ODEINT.spad" 1302978 1302994 1303533 1303538) (-804 "ODEIFTBL.spad" 1300373 1300381 1302968 1302973) (-803 "ODEEF.spad" 1295864 1295880 1300363 1300368) (-802 "ODECONST.spad" 1295401 1295419 1295854 1295859) (-801 "ODECAT.spad" 1293999 1294007 1295391 1295396) (-800 "OCT.spad" 1292135 1292145 1292849 1292888) (-799 "OCTCT2.spad" 1291781 1291802 1292125 1292130) (-798 "OC.spad" 1289577 1289587 1291737 1291776) (-797 "OC.spad" 1287098 1287110 1289260 1289265) (-796 "OCAMON.spad" 1286946 1286954 1287088 1287093) (-795 "OASGP.spad" 1286761 1286769 1286936 1286941) (-794 "OAMONS.spad" 1286283 1286291 1286751 1286756) (-793 "OAMON.spad" 1286144 1286152 1286273 1286278) (-792 "OAGROUP.spad" 1286006 1286014 1286134 1286139) (-791 "NUMTUBE.spad" 1285597 1285613 1285996 1286001) (-790 "NUMQUAD.spad" 1273573 1273581 1285587 1285592) (-789 "NUMODE.spad" 1264927 1264935 1273563 1273568) (-788 "NUMINT.spad" 1262493 1262501 1264917 1264922) (-787 "NUMFMT.spad" 1261333 1261341 1262483 1262488) (-786 "NUMERIC.spad" 1253447 1253457 1261138 1261143) (-785 "NTSCAT.spad" 1251955 1251971 1253415 1253442) (-784 "NTPOLFN.spad" 1251506 1251516 1251872 1251877) (-783 "NSUP.spad" 1244552 1244562 1249092 1249245) (-782 "NSUP2.spad" 1243944 1243956 1244542 1244547) (-781 "NSMP.spad" 1240175 1240194 1240483 1240610) (-780 "NREP.spad" 1238553 1238567 1240165 1240170) (-779 "NPCOEF.spad" 1237799 1237819 1238543 1238548) (-778 "NORMRETR.spad" 1237397 1237436 1237789 1237794) (-777 "NORMPK.spad" 1235299 1235318 1237387 1237392) (-776 "NORMMA.spad" 1234987 1235013 1235289 1235294) (-775 "NONE.spad" 1234728 1234736 1234977 1234982) (-774 "NONE1.spad" 1234404 1234414 1234718 1234723) (-773 "NODE1.spad" 1233891 1233907 1234394 1234399) (-772 "NNI.spad" 1232786 1232794 1233865 1233886) (-771 "NLINSOL.spad" 1231412 1231422 1232776 1232781) (-770 "NIPROB.spad" 1229953 1229961 1231402 1231407) (-769 "NFINTBAS.spad" 1227513 1227530 1229943 1229948) (-768 "NETCLT.spad" 1227487 1227498 1227503 1227508) (-767 "NCODIV.spad" 1225703 1225719 1227477 1227482) (-766 "NCNTFRAC.spad" 1225345 1225359 1225693 1225698) (-765 "NCEP.spad" 1223511 1223525 1225335 1225340) (-764 "NASRING.spad" 1223107 1223115 1223501 1223506) (-763 "NASRING.spad" 1222701 1222711 1223097 1223102) (-762 "NARNG.spad" 1222053 1222061 1222691 1222696) (-761 "NARNG.spad" 1221403 1221413 1222043 1222048) (-760 "NAGSP.spad" 1220480 1220488 1221393 1221398) (-759 "NAGS.spad" 1210141 1210149 1220470 1220475) (-758 "NAGF07.spad" 1208572 1208580 1210131 1210136) (-757 "NAGF04.spad" 1202974 1202982 1208562 1208567) (-756 "NAGF02.spad" 1197043 1197051 1202964 1202969) (-755 "NAGF01.spad" 1192804 1192812 1197033 1197038) (-754 "NAGE04.spad" 1186504 1186512 1192794 1192799) (-753 "NAGE02.spad" 1177164 1177172 1186494 1186499) (-752 "NAGE01.spad" 1173166 1173174 1177154 1177159) (-751 "NAGD03.spad" 1171170 1171178 1173156 1173161) (-750 "NAGD02.spad" 1163917 1163925 1171160 1171165) (-749 "NAGD01.spad" 1158210 1158218 1163907 1163912) (-748 "NAGC06.spad" 1154085 1154093 1158200 1158205) (-747 "NAGC05.spad" 1152586 1152594 1154075 1154080) (-746 "NAGC02.spad" 1151853 1151861 1152576 1152581) (-745 "NAALG.spad" 1151394 1151404 1151821 1151848) (-744 "NAALG.spad" 1150955 1150967 1151384 1151389) (-743 "MULTSQFR.spad" 1147913 1147930 1150945 1150950) (-742 "MULTFACT.spad" 1147296 1147313 1147903 1147908) (-741 "MTSCAT.spad" 1145390 1145411 1147194 1147291) (-740 "MTHING.spad" 1145049 1145059 1145380 1145385) (-739 "MSYSCMD.spad" 1144483 1144491 1145039 1145044) (-738 "MSET.spad" 1142441 1142451 1144189 1144228) (-737 "MSETAGG.spad" 1142286 1142296 1142409 1142436) (-736 "MRING.spad" 1139263 1139275 1141994 1142061) (-735 "MRF2.spad" 1138833 1138847 1139253 1139258) (-734 "MRATFAC.spad" 1138379 1138396 1138823 1138828) (-733 "MPRFF.spad" 1136419 1136438 1138369 1138374) (-732 "MPOLY.spad" 1133890 1133905 1134249 1134376) (-731 "MPCPF.spad" 1133154 1133173 1133880 1133885) (-730 "MPC3.spad" 1132971 1133011 1133144 1133149) (-729 "MPC2.spad" 1132617 1132650 1132961 1132966) (-728 "MONOTOOL.spad" 1130968 1130985 1132607 1132612) (-727 "MONOID.spad" 1130287 1130295 1130958 1130963) (-726 "MONOID.spad" 1129604 1129614 1130277 1130282) (-725 "MONOGEN.spad" 1128352 1128365 1129464 1129599) (-724 "MONOGEN.spad" 1127122 1127137 1128236 1128241) (-723 "MONADWU.spad" 1125152 1125160 1127112 1127117) (-722 "MONADWU.spad" 1123180 1123190 1125142 1125147) (-721 "MONAD.spad" 1122340 1122348 1123170 1123175) (-720 "MONAD.spad" 1121498 1121508 1122330 1122335) (-719 "MOEBIUS.spad" 1120234 1120248 1121478 1121493) (-718 "MODULE.spad" 1120104 1120114 1120202 1120229) (-717 "MODULE.spad" 1119994 1120006 1120094 1120099) (-716 "MODRING.spad" 1119329 1119368 1119974 1119989) (-715 "MODOP.spad" 1117994 1118006 1119151 1119218) (-714 "MODMONOM.spad" 1117725 1117743 1117984 1117989) (-713 "MODMON.spad" 1114520 1114536 1115239 1115392) (-712 "MODFIELD.spad" 1113882 1113921 1114422 1114515) (-711 "MMLFORM.spad" 1112742 1112750 1113872 1113877) (-710 "MMAP.spad" 1112484 1112518 1112732 1112737) (-709 "MLO.spad" 1110943 1110953 1112440 1112479) (-708 "MLIFT.spad" 1109555 1109572 1110933 1110938) (-707 "MKUCFUNC.spad" 1109090 1109108 1109545 1109550) (-706 "MKRECORD.spad" 1108694 1108707 1109080 1109085) (-705 "MKFUNC.spad" 1108101 1108111 1108684 1108689) (-704 "MKFLCFN.spad" 1107069 1107079 1108091 1108096) (-703 "MKBCFUNC.spad" 1106564 1106582 1107059 1107064) (-702 "MINT.spad" 1106003 1106011 1106466 1106559) (-701 "MHROWRED.spad" 1104514 1104524 1105993 1105998) (-700 "MFLOAT.spad" 1103034 1103042 1104404 1104509) (-699 "MFINFACT.spad" 1102434 1102456 1103024 1103029) (-698 "MESH.spad" 1100216 1100224 1102424 1102429) (-697 "MDDFACT.spad" 1098427 1098437 1100206 1100211) (-696 "MDAGG.spad" 1097718 1097728 1098407 1098422) (-695 "MCMPLX.spad" 1093729 1093737 1094343 1094544) (-694 "MCDEN.spad" 1092939 1092951 1093719 1093724) (-693 "MCALCFN.spad" 1090061 1090087 1092929 1092934) (-692 "MAYBE.spad" 1089345 1089356 1090051 1090056) (-691 "MATSTOR.spad" 1086653 1086663 1089335 1089340) (-690 "MATRIX.spad" 1085357 1085367 1085841 1085868) (-689 "MATLIN.spad" 1082701 1082725 1085241 1085246) (-688 "MATCAT.spad" 1074430 1074452 1082669 1082696) (-687 "MATCAT.spad" 1066031 1066055 1074272 1074277) (-686 "MATCAT2.spad" 1065313 1065361 1066021 1066026) (-685 "MAPPKG3.spad" 1064228 1064242 1065303 1065308) (-684 "MAPPKG2.spad" 1063566 1063578 1064218 1064223) (-683 "MAPPKG1.spad" 1062394 1062404 1063556 1063561) (-682 "MAPPAST.spad" 1061709 1061717 1062384 1062389) (-681 "MAPHACK3.spad" 1061521 1061535 1061699 1061704) (-680 "MAPHACK2.spad" 1061290 1061302 1061511 1061516) (-679 "MAPHACK1.spad" 1060934 1060944 1061280 1061285) (-678 "MAGMA.spad" 1058724 1058741 1060924 1060929) (-677 "MACROAST.spad" 1058303 1058311 1058714 1058719) (-676 "M3D.spad" 1056023 1056033 1057681 1057686) (-675 "LZSTAGG.spad" 1053261 1053271 1056013 1056018) (-674 "LZSTAGG.spad" 1050497 1050509 1053251 1053256) (-673 "LWORD.spad" 1047202 1047219 1050487 1050492) (-672 "LSTAST.spad" 1046986 1046994 1047192 1047197) (-671 "LSQM.spad" 1045216 1045230 1045610 1045661) (-670 "LSPP.spad" 1044751 1044768 1045206 1045211) (-669 "LSMP.spad" 1043601 1043629 1044741 1044746) (-668 "LSMP1.spad" 1041419 1041433 1043591 1043596) (-667 "LSAGG.spad" 1041088 1041098 1041387 1041414) (-666 "LSAGG.spad" 1040777 1040789 1041078 1041083) (-665 "LPOLY.spad" 1039731 1039750 1040633 1040702) (-664 "LPEFRAC.spad" 1039002 1039012 1039721 1039726) (-663 "LO.spad" 1038403 1038417 1038936 1038963) (-662 "LOGIC.spad" 1038005 1038013 1038393 1038398) (-661 "LOGIC.spad" 1037605 1037615 1037995 1038000) (-660 "LODOOPS.spad" 1036535 1036547 1037595 1037600) (-659 "LODO.spad" 1035919 1035935 1036215 1036254) (-658 "LODOF.spad" 1034965 1034982 1035876 1035881) (-657 "LODOCAT.spad" 1033631 1033641 1034921 1034960) (-656 "LODOCAT.spad" 1032295 1032307 1033587 1033592) (-655 "LODO2.spad" 1031568 1031580 1031975 1032014) (-654 "LODO1.spad" 1030968 1030978 1031248 1031287) (-653 "LODEEF.spad" 1029770 1029788 1030958 1030963) (-652 "LNAGG.spad" 1025602 1025612 1029760 1029765) (-651 "LNAGG.spad" 1021398 1021410 1025558 1025563) (-650 "LMOPS.spad" 1018166 1018183 1021388 1021393) (-649 "LMODULE.spad" 1017934 1017944 1018156 1018161) (-648 "LMDICT.spad" 1017221 1017231 1017485 1017512) (-647 "LLINSET.spad" 1016618 1016628 1017211 1017216) (-646 "LITERAL.spad" 1016524 1016535 1016608 1016613) (-645 "LIST.spad" 1014259 1014269 1015671 1015698) (-644 "LIST3.spad" 1013570 1013584 1014249 1014254) (-643 "LIST2.spad" 1012272 1012284 1013560 1013565) (-642 "LIST2MAP.spad" 1009175 1009187 1012262 1012267) (-641 "LINSET.spad" 1008797 1008807 1009165 1009170) (-640 "LINEXP.spad" 1008231 1008241 1008777 1008792) (-639 "LINDEP.spad" 1007040 1007052 1008143 1008148) (-638 "LIMITRF.spad" 1004968 1004978 1007030 1007035) (-637 "LIMITPS.spad" 1003871 1003884 1004958 1004963) (-636 "LIE.spad" 1001887 1001899 1003161 1003306) (-635 "LIECAT.spad" 1001363 1001373 1001813 1001882) (-634 "LIECAT.spad" 1000867 1000879 1001319 1001324) (-633 "LIB.spad" 998917 998925 999526 999541) (-632 "LGROBP.spad" 996270 996289 998907 998912) (-631 "LF.spad" 995225 995241 996260 996265) (-630 "LFCAT.spad" 994284 994292 995215 995220) (-629 "LEXTRIPK.spad" 989787 989802 994274 994279) (-628 "LEXP.spad" 987790 987817 989767 989782) (-627 "LETAST.spad" 987489 987497 987780 987785) (-626 "LEADCDET.spad" 985887 985904 987479 987484) (-625 "LAZM3PK.spad" 984591 984613 985877 985882) (-624 "LAUPOL.spad" 983284 983297 984184 984253) (-623 "LAPLACE.spad" 982867 982883 983274 983279) (-622 "LA.spad" 982307 982321 982789 982828) (-621 "LALG.spad" 982083 982093 982287 982302) (-620 "LALG.spad" 981867 981879 982073 982078) (-619 "KVTFROM.spad" 981602 981612 981857 981862) (-618 "KTVLOGIC.spad" 981114 981122 981592 981597) (-617 "KRCFROM.spad" 980852 980862 981104 981109) (-616 "KOVACIC.spad" 979575 979592 980842 980847) (-615 "KONVERT.spad" 979297 979307 979565 979570) (-614 "KOERCE.spad" 979034 979044 979287 979292) (-613 "KERNEL.spad" 977689 977699 978818 978823) (-612 "KERNEL2.spad" 977392 977404 977679 977684) (-611 "KDAGG.spad" 976501 976523 977372 977387) (-610 "KDAGG.spad" 975618 975642 976491 976496) (-609 "KAFILE.spad" 974581 974597 974816 974843) (-608 "JORDAN.spad" 972410 972422 973871 974016) (-607 "JOINAST.spad" 972104 972112 972400 972405) (-606 "JAVACODE.spad" 971970 971978 972094 972099) (-605 "IXAGG.spad" 970103 970127 971960 971965) (-604 "IXAGG.spad" 968091 968117 969950 969955) (-603 "IVECTOR.spad" 966861 966876 967016 967043) (-602 "ITUPLE.spad" 966022 966032 966851 966856) (-601 "ITRIGMNP.spad" 964861 964880 966012 966017) (-600 "ITFUN3.spad" 964367 964381 964851 964856) (-599 "ITFUN2.spad" 964111 964123 964357 964362) (-598 "ITAYLOR.spad" 962105 962120 963975 964072) (-597 "ISUPS.spad" 954542 954557 961079 961176) (-596 "ISUMP.spad" 954043 954059 954532 954537) (-595 "ISTRING.spad" 953131 953144 953212 953239) (-594 "ISAST.spad" 952850 952858 953121 953126) (-593 "IRURPK.spad" 951567 951586 952840 952845) (-592 "IRSN.spad" 949571 949579 951557 951562) (-591 "IRRF2F.spad" 948056 948066 949527 949532) (-590 "IRREDFFX.spad" 947657 947668 948046 948051) (-589 "IROOT.spad" 945996 946006 947647 947652) (-588 "IR.spad" 943797 943811 945851 945878) (-587 "IR2.spad" 942825 942841 943787 943792) (-586 "IR2F.spad" 942031 942047 942815 942820) (-585 "IPRNTPK.spad" 941791 941799 942021 942026) (-584 "IPF.spad" 941356 941368 941596 941689) (-583 "IPADIC.spad" 941117 941143 941282 941351) (-582 "IP4ADDR.spad" 940674 940682 941107 941112) (-581 "IOMODE.spad" 940295 940303 940664 940669) (-580 "IOBFILE.spad" 939656 939664 940285 940290) (-579 "IOBCON.spad" 939521 939529 939646 939651) (-578 "INVLAPLA.spad" 939170 939186 939511 939516) (-577 "INTTR.spad" 932552 932569 939160 939165) (-576 "INTTOOLS.spad" 930307 930323 932126 932131) (-575 "INTSLPE.spad" 929627 929635 930297 930302) (-574 "INTRVL.spad" 929193 929203 929541 929622) (-573 "INTRF.spad" 927617 927631 929183 929188) (-572 "INTRET.spad" 927049 927059 927607 927612) (-571 "INTRAT.spad" 925776 925793 927039 927044) (-570 "INTPM.spad" 924161 924177 925419 925424) (-569 "INTPAF.spad" 922025 922043 924093 924098) (-568 "INTPACK.spad" 912399 912407 922015 922020) (-567 "INT.spad" 911847 911855 912253 912394) (-566 "INTHERTR.spad" 911121 911138 911837 911842) (-565 "INTHERAL.spad" 910791 910815 911111 911116) (-564 "INTHEORY.spad" 907230 907238 910781 910786) (-563 "INTG0.spad" 900963 900981 907162 907167) (-562 "INTFTBL.spad" 894992 895000 900953 900958) (-561 "INTFACT.spad" 894051 894061 894982 894987) (-560 "INTEF.spad" 892436 892452 894041 894046) (-559 "INTDOM.spad" 891059 891067 892362 892431) (-558 "INTDOM.spad" 889744 889754 891049 891054) (-557 "INTCAT.spad" 888003 888013 889658 889739) (-556 "INTBIT.spad" 887510 887518 887993 887998) (-555 "INTALG.spad" 886698 886725 887500 887505) (-554 "INTAF.spad" 886198 886214 886688 886693) (-553 "INTABL.spad" 884716 884747 884879 884906) (-552 "INT8.spad" 884596 884604 884706 884711) (-551 "INT64.spad" 884475 884483 884586 884591) (-550 "INT32.spad" 884354 884362 884465 884470) (-549 "INT16.spad" 884233 884241 884344 884349) (-548 "INS.spad" 881736 881744 884135 884228) (-547 "INS.spad" 879325 879335 881726 881731) (-546 "INPSIGN.spad" 878773 878786 879315 879320) (-545 "INPRODPF.spad" 877869 877888 878763 878768) (-544 "INPRODFF.spad" 876957 876981 877859 877864) (-543 "INNMFACT.spad" 875932 875949 876947 876952) (-542 "INMODGCD.spad" 875420 875450 875922 875927) (-541 "INFSP.spad" 873717 873739 875410 875415) (-540 "INFPROD0.spad" 872797 872816 873707 873712) (-539 "INFORM.spad" 869996 870004 872787 872792) (-538 "INFORM1.spad" 869621 869631 869986 869991) (-537 "INFINITY.spad" 869173 869181 869611 869616) (-536 "INETCLTS.spad" 869150 869158 869163 869168) (-535 "INEP.spad" 867688 867710 869140 869145) (-534 "INDE.spad" 867417 867434 867678 867683) (-533 "INCRMAPS.spad" 866838 866848 867407 867412) (-532 "INBFILE.spad" 865910 865918 866828 866833) (-531 "INBFF.spad" 861704 861715 865900 865905) (-530 "INBCON.spad" 859994 860002 861694 861699) (-529 "INBCON.spad" 858282 858292 859984 859989) (-528 "INAST.spad" 857943 857951 858272 858277) (-527 "IMPTAST.spad" 857651 857659 857933 857938) (-526 "IMATRIX.spad" 856596 856622 857108 857135) (-525 "IMATQF.spad" 855690 855734 856552 856557) (-524 "IMATLIN.spad" 854295 854319 855646 855651) (-523 "ILIST.spad" 852953 852968 853478 853505) (-522 "IIARRAY2.spad" 852341 852379 852560 852587) (-521 "IFF.spad" 851751 851767 852022 852115) (-520 "IFAST.spad" 851365 851373 851741 851746) (-519 "IFARRAY.spad" 848858 848873 850548 850575) (-518 "IFAMON.spad" 848720 848737 848814 848819) (-517 "IEVALAB.spad" 848125 848137 848710 848715) (-516 "IEVALAB.spad" 847528 847542 848115 848120) (-515 "IDPO.spad" 847326 847338 847518 847523) (-514 "IDPOAMS.spad" 847082 847094 847316 847321) (-513 "IDPOAM.spad" 846802 846814 847072 847077) (-512 "IDPC.spad" 845740 845752 846792 846797) (-511 "IDPAM.spad" 845485 845497 845730 845735) (-510 "IDPAG.spad" 845232 845244 845475 845480) (-509 "IDENT.spad" 844882 844890 845222 845227) (-508 "IDECOMP.spad" 842121 842139 844872 844877) (-507 "IDEAL.spad" 837070 837109 842056 842061) (-506 "ICDEN.spad" 836259 836275 837060 837065) (-505 "ICARD.spad" 835450 835458 836249 836254) (-504 "IBPTOOLS.spad" 834057 834074 835440 835445) (-503 "IBITS.spad" 833260 833273 833693 833720) (-502 "IBATOOL.spad" 830237 830256 833250 833255) (-501 "IBACHIN.spad" 828744 828759 830227 830232) (-500 "IARRAY2.spad" 827732 827758 828351 828378) (-499 "IARRAY1.spad" 826777 826792 826915 826942) (-498 "IAN.spad" 825000 825008 826593 826686) (-497 "IALGFACT.spad" 824603 824636 824990 824995) (-496 "HYPCAT.spad" 824027 824035 824593 824598) (-495 "HYPCAT.spad" 823449 823459 824017 824022) (-494 "HOSTNAME.spad" 823257 823265 823439 823444) (-493 "HOMOTOP.spad" 823000 823010 823247 823252) (-492 "HOAGG.spad" 820282 820292 822990 822995) (-491 "HOAGG.spad" 817339 817351 820049 820054) (-490 "HEXADEC.spad" 815441 815449 815806 815899) (-489 "HEUGCD.spad" 814476 814487 815431 815436) (-488 "HELLFDIV.spad" 814066 814090 814466 814471) (-487 "HEAP.spad" 813458 813468 813673 813700) (-486 "HEADAST.spad" 812991 812999 813448 813453) (-485 "HDP.spad" 802834 802850 803211 803342) (-484 "HDMP.spad" 800048 800063 800664 800791) (-483 "HB.spad" 798299 798307 800038 800043) (-482 "HASHTBL.spad" 796769 796800 796980 797007) (-481 "HASAST.spad" 796485 796493 796759 796764) (-480 "HACKPI.spad" 795976 795984 796387 796480) (-479 "GTSET.spad" 794915 794931 795622 795649) (-478 "GSTBL.spad" 793434 793469 793608 793623) (-477 "GSERIES.spad" 790605 790632 791566 791715) (-476 "GROUP.spad" 789878 789886 790585 790600) (-475 "GROUP.spad" 789159 789169 789868 789873) (-474 "GROEBSOL.spad" 787653 787674 789149 789154) (-473 "GRMOD.spad" 786224 786236 787643 787648) (-472 "GRMOD.spad" 784793 784807 786214 786219) (-471 "GRIMAGE.spad" 777682 777690 784783 784788) (-470 "GRDEF.spad" 776061 776069 777672 777677) (-469 "GRAY.spad" 774524 774532 776051 776056) (-468 "GRALG.spad" 773601 773613 774514 774519) (-467 "GRALG.spad" 772676 772690 773591 773596) (-466 "GPOLSET.spad" 772130 772153 772358 772385) (-465 "GOSPER.spad" 771399 771417 772120 772125) (-464 "GMODPOL.spad" 770547 770574 771367 771394) (-463 "GHENSEL.spad" 769630 769644 770537 770542) (-462 "GENUPS.spad" 765923 765936 769620 769625) (-461 "GENUFACT.spad" 765500 765510 765913 765918) (-460 "GENPGCD.spad" 765086 765103 765490 765495) (-459 "GENMFACT.spad" 764538 764557 765076 765081) (-458 "GENEEZ.spad" 762489 762502 764528 764533) (-457 "GDMP.spad" 759545 759562 760319 760446) (-456 "GCNAALG.spad" 753468 753495 759339 759406) (-455 "GCDDOM.spad" 752644 752652 753394 753463) (-454 "GCDDOM.spad" 751882 751892 752634 752639) (-453 "GB.spad" 749408 749446 751838 751843) (-452 "GBINTERN.spad" 745428 745466 749398 749403) (-451 "GBF.spad" 741195 741233 745418 745423) (-450 "GBEUCLID.spad" 739077 739115 741185 741190) (-449 "GAUSSFAC.spad" 738390 738398 739067 739072) (-448 "GALUTIL.spad" 736716 736726 738346 738351) (-447 "GALPOLYU.spad" 735170 735183 736706 736711) (-446 "GALFACTU.spad" 733343 733362 735160 735165) (-445 "GALFACT.spad" 723532 723543 733333 733338) (-444 "FVFUN.spad" 720555 720563 723522 723527) (-443 "FVC.spad" 719607 719615 720545 720550) (-442 "FUNDESC.spad" 719285 719293 719597 719602) (-441 "FUNCTION.spad" 719134 719146 719275 719280) (-440 "FT.spad" 717431 717439 719124 719129) (-439 "FTEM.spad" 716596 716604 717421 717426) (-438 "FSUPFACT.spad" 715496 715515 716532 716537) (-437 "FST.spad" 713582 713590 715486 715491) (-436 "FSRED.spad" 713062 713078 713572 713577) (-435 "FSPRMELT.spad" 711944 711960 713019 713024) (-434 "FSPECF.spad" 710035 710051 711934 711939) (-433 "FS.spad" 704303 704313 709810 710030) (-432 "FS.spad" 698349 698361 703858 703863) (-431 "FSINT.spad" 698009 698025 698339 698344) (-430 "FSERIES.spad" 697200 697212 697829 697928) (-429 "FSCINT.spad" 696517 696533 697190 697195) (-428 "FSAGG.spad" 695634 695644 696473 696512) (-427 "FSAGG.spad" 694713 694725 695554 695559) (-426 "FSAGG2.spad" 693456 693472 694703 694708) (-425 "FS2UPS.spad" 687947 687981 693446 693451) (-424 "FS2.spad" 687594 687610 687937 687942) (-423 "FS2EXPXP.spad" 686719 686742 687584 687589) (-422 "FRUTIL.spad" 685673 685683 686709 686714) (-421 "FR.spad" 679389 679399 684697 684766) (-420 "FRNAALG.spad" 674508 674518 679331 679384) (-419 "FRNAALG.spad" 669639 669651 674464 674469) (-418 "FRNAAF2.spad" 669095 669113 669629 669634) (-417 "FRMOD.spad" 668505 668535 669026 669031) (-416 "FRIDEAL.spad" 667730 667751 668485 668500) (-415 "FRIDEAL2.spad" 667334 667366 667720 667725) (-414 "FRETRCT.spad" 666845 666855 667324 667329) (-413 "FRETRCT.spad" 666222 666234 666703 666708) (-412 "FRAMALG.spad" 664570 664583 666178 666217) (-411 "FRAMALG.spad" 662950 662965 664560 664565) (-410 "FRAC.spad" 660049 660059 660452 660625) (-409 "FRAC2.spad" 659654 659666 660039 660044) (-408 "FR2.spad" 658990 659002 659644 659649) (-407 "FPS.spad" 655805 655813 658880 658985) (-406 "FPS.spad" 652648 652658 655725 655730) (-405 "FPC.spad" 651694 651702 652550 652643) (-404 "FPC.spad" 650826 650836 651684 651689) (-403 "FPATMAB.spad" 650588 650598 650816 650821) (-402 "FPARFRAC.spad" 649075 649092 650578 650583) (-401 "FORTRAN.spad" 647581 647624 649065 649070) (-400 "FORT.spad" 646530 646538 647571 647576) (-399 "FORTFN.spad" 643700 643708 646520 646525) (-398 "FORTCAT.spad" 643384 643392 643690 643695) (-397 "FORMULA.spad" 640858 640866 643374 643379) (-396 "FORMULA1.spad" 640337 640347 640848 640853) (-395 "FORDER.spad" 640028 640052 640327 640332) (-394 "FOP.spad" 639229 639237 640018 640023) (-393 "FNLA.spad" 638653 638675 639197 639224) (-392 "FNCAT.spad" 637248 637256 638643 638648) (-391 "FNAME.spad" 637140 637148 637238 637243) (-390 "FMTC.spad" 636938 636946 637066 637135) (-389 "FMONOID.spad" 636603 636613 636894 636899) (-388 "FMONCAT.spad" 633756 633766 636593 636598) (-387 "FM.spad" 633451 633463 633690 633717) (-386 "FMFUN.spad" 630481 630489 633441 633446) (-385 "FMC.spad" 629533 629541 630471 630476) (-384 "FMCAT.spad" 627201 627219 629501 629528) (-383 "FM1.spad" 626558 626570 627135 627162) (-382 "FLOATRP.spad" 624293 624307 626548 626553) (-381 "FLOAT.spad" 617607 617615 624159 624288) (-380 "FLOATCP.spad" 615038 615052 617597 617602) (-379 "FLINEXP.spad" 614750 614760 615018 615033) (-378 "FLINEXP.spad" 614416 614428 614686 614691) (-377 "FLASORT.spad" 613742 613754 614406 614411) (-376 "FLALG.spad" 611388 611407 613668 613737) (-375 "FLAGG.spad" 608430 608440 611368 611383) (-374 "FLAGG.spad" 605373 605385 608313 608318) (-373 "FLAGG2.spad" 604098 604114 605363 605368) (-372 "FINRALG.spad" 602159 602172 604054 604093) (-371 "FINRALG.spad" 600146 600161 602043 602048) (-370 "FINITE.spad" 599298 599306 600136 600141) (-369 "FINAALG.spad" 588419 588429 599240 599293) (-368 "FINAALG.spad" 577552 577564 588375 588380) (-367 "FILE.spad" 577135 577145 577542 577547) (-366 "FILECAT.spad" 575661 575678 577125 577130) (-365 "FIELD.spad" 575067 575075 575563 575656) (-364 "FIELD.spad" 574559 574569 575057 575062) (-363 "FGROUP.spad" 573206 573216 574539 574554) (-362 "FGLMICPK.spad" 571993 572008 573196 573201) (-361 "FFX.spad" 571368 571383 571709 571802) (-360 "FFSLPE.spad" 570871 570892 571358 571363) (-359 "FFPOLY.spad" 562133 562144 570861 570866) (-358 "FFPOLY2.spad" 561193 561210 562123 562128) (-357 "FFP.spad" 560590 560610 560909 561002) (-356 "FF.spad" 560038 560054 560271 560364) (-355 "FFNBX.spad" 558550 558570 559754 559847) (-354 "FFNBP.spad" 557063 557080 558266 558359) (-353 "FFNB.spad" 555528 555549 556744 556837) (-352 "FFINTBAS.spad" 553042 553061 555518 555523) (-351 "FFIELDC.spad" 550619 550627 552944 553037) (-350 "FFIELDC.spad" 548282 548292 550609 550614) (-349 "FFHOM.spad" 547030 547047 548272 548277) (-348 "FFF.spad" 544465 544476 547020 547025) (-347 "FFCGX.spad" 543312 543332 544181 544274) (-346 "FFCGP.spad" 542201 542221 543028 543121) (-345 "FFCG.spad" 540993 541014 541882 541975) (-344 "FFCAT.spad" 534166 534188 540832 540988) (-343 "FFCAT.spad" 527418 527442 534086 534091) (-342 "FFCAT2.spad" 527165 527205 527408 527413) (-341 "FEXPR.spad" 518882 518928 526921 526960) (-340 "FEVALAB.spad" 518590 518600 518872 518877) (-339 "FEVALAB.spad" 518083 518095 518367 518372) (-338 "FDIV.spad" 517525 517549 518073 518078) (-337 "FDIVCAT.spad" 515589 515613 517515 517520) (-336 "FDIVCAT.spad" 513651 513677 515579 515584) (-335 "FDIV2.spad" 513307 513347 513641 513646) (-334 "FCTRDATA.spad" 512315 512323 513297 513302) (-333 "FCPAK1.spad" 510882 510890 512305 512310) (-332 "FCOMP.spad" 510261 510271 510872 510877) (-331 "FC.spad" 500268 500276 510251 510256) (-330 "FAXF.spad" 493239 493253 500170 500263) (-329 "FAXF.spad" 486262 486278 493195 493200) (-328 "FARRAY.spad" 484412 484422 485445 485472) (-327 "FAMR.spad" 482548 482560 484310 484407) (-326 "FAMR.spad" 480668 480682 482432 482437) (-325 "FAMONOID.spad" 480336 480346 480622 480627) (-324 "FAMONC.spad" 478632 478644 480326 480331) (-323 "FAGROUP.spad" 478256 478266 478528 478555) (-322 "FACUTIL.spad" 476460 476477 478246 478251) (-321 "FACTFUNC.spad" 475654 475664 476450 476455) (-320 "EXPUPXS.spad" 472487 472510 473786 473935) (-319 "EXPRTUBE.spad" 469775 469783 472477 472482) (-318 "EXPRODE.spad" 466935 466951 469765 469770) (-317 "EXPR.spad" 462210 462220 462924 463331) (-316 "EXPR2UPS.spad" 458332 458345 462200 462205) (-315 "EXPR2.spad" 458037 458049 458322 458327) (-314 "EXPEXPAN.spad" 454977 455002 455609 455702) (-313 "EXIT.spad" 454648 454656 454967 454972) (-312 "EXITAST.spad" 454384 454392 454638 454643) (-311 "EVALCYC.spad" 453844 453858 454374 454379) (-310 "EVALAB.spad" 453416 453426 453834 453839) (-309 "EVALAB.spad" 452986 452998 453406 453411) (-308 "EUCDOM.spad" 450560 450568 452912 452981) (-307 "EUCDOM.spad" 448196 448206 450550 450555) (-306 "ESTOOLS.spad" 440042 440050 448186 448191) (-305 "ESTOOLS2.spad" 439645 439659 440032 440037) (-304 "ESTOOLS1.spad" 439330 439341 439635 439640) (-303 "ES.spad" 432145 432153 439320 439325) (-302 "ES.spad" 424866 424876 432043 432048) (-301 "ESCONT.spad" 421659 421667 424856 424861) (-300 "ESCONT1.spad" 421408 421420 421649 421654) (-299 "ES2.spad" 420913 420929 421398 421403) (-298 "ES1.spad" 420483 420499 420903 420908) (-297 "ERROR.spad" 417810 417818 420473 420478) (-296 "EQTBL.spad" 416282 416304 416491 416518) (-295 "EQ.spad" 411087 411097 413874 413986) (-294 "EQ2.spad" 410805 410817 411077 411082) (-293 "EP.spad" 407131 407141 410795 410800) (-292 "ENV.spad" 405793 405801 407121 407126) (-291 "ENTIRER.spad" 405461 405469 405737 405788) (-290 "EMR.spad" 404668 404709 405387 405456) (-289 "ELTAGG.spad" 402922 402941 404658 404663) (-288 "ELTAGG.spad" 401140 401161 402878 402883) (-287 "ELTAB.spad" 400589 400607 401130 401135) (-286 "ELFUTS.spad" 399976 399995 400579 400584) (-285 "ELEMFUN.spad" 399665 399673 399966 399971) (-284 "ELEMFUN.spad" 399352 399362 399655 399660) (-283 "ELAGG.spad" 397323 397333 399332 399347) (-282 "ELAGG.spad" 395231 395243 397242 397247) (-281 "ELABEXPR.spad" 394163 394171 395221 395226) (-280 "EFUPXS.spad" 390939 390969 394119 394124) (-279 "EFULS.spad" 387775 387798 390895 390900) (-278 "EFSTRUC.spad" 385790 385806 387765 387770) (-277 "EF.spad" 380566 380582 385780 385785) (-276 "EAB.spad" 378842 378850 380556 380561) (-275 "E04UCFA.spad" 378378 378386 378832 378837) (-274 "E04NAFA.spad" 377955 377963 378368 378373) (-273 "E04MBFA.spad" 377535 377543 377945 377950) (-272 "E04JAFA.spad" 377071 377079 377525 377530) (-271 "E04GCFA.spad" 376607 376615 377061 377066) (-270 "E04FDFA.spad" 376143 376151 376597 376602) (-269 "E04DGFA.spad" 375679 375687 376133 376138) (-268 "E04AGNT.spad" 371529 371537 375669 375674) (-267 "DVARCAT.spad" 368218 368228 371519 371524) (-266 "DVARCAT.spad" 364905 364917 368208 368213) (-265 "DSMP.spad" 362372 362386 362677 362804) (-264 "DROPT.spad" 356331 356339 362362 362367) (-263 "DROPT1.spad" 355996 356006 356321 356326) (-262 "DROPT0.spad" 350853 350861 355986 355991) (-261 "DRAWPT.spad" 349026 349034 350843 350848) (-260 "DRAW.spad" 341902 341915 349016 349021) (-259 "DRAWHACK.spad" 341210 341220 341892 341897) (-258 "DRAWCX.spad" 338680 338688 341200 341205) (-257 "DRAWCURV.spad" 338227 338242 338670 338675) (-256 "DRAWCFUN.spad" 327759 327767 338217 338222) (-255 "DQAGG.spad" 325937 325947 327727 327754) (-254 "DPOLCAT.spad" 321286 321302 325805 325932) (-253 "DPOLCAT.spad" 316721 316739 321242 321247) (-252 "DPMO.spad" 308947 308963 309085 309386) (-251 "DPMM.spad" 301186 301204 301311 301612) (-250 "DOMTMPLT.spad" 300846 300854 301176 301181) (-249 "DOMCTOR.spad" 300601 300609 300836 300841) (-248 "DOMAIN.spad" 299688 299696 300591 300596) (-247 "DMP.spad" 296948 296963 297518 297645) (-246 "DLP.spad" 296300 296310 296938 296943) (-245 "DLIST.spad" 294879 294889 295483 295510) (-244 "DLAGG.spad" 293296 293306 294869 294874) (-243 "DIVRING.spad" 292838 292846 293240 293291) (-242 "DIVRING.spad" 292424 292434 292828 292833) (-241 "DISPLAY.spad" 290614 290622 292414 292419) (-240 "DIRPROD.spad" 280194 280210 280834 280965) (-239 "DIRPROD2.spad" 279012 279030 280184 280189) (-238 "DIRPCAT.spad" 277956 277972 278876 279007) (-237 "DIRPCAT.spad" 276629 276647 277551 277556) (-236 "DIOSP.spad" 275454 275462 276619 276624) (-235 "DIOPS.spad" 274450 274460 275434 275449) (-234 "DIOPS.spad" 273420 273432 274406 274411) (-233 "DIFRING.spad" 272716 272724 273400 273415) (-232 "DIFRING.spad" 272020 272030 272706 272711) (-231 "DIFEXT.spad" 271191 271201 272000 272015) (-230 "DIFEXT.spad" 270279 270291 271090 271095) (-229 "DIAGG.spad" 269909 269919 270259 270274) (-228 "DIAGG.spad" 269547 269559 269899 269904) (-227 "DHMATRIX.spad" 267859 267869 269004 269031) (-226 "DFSFUN.spad" 261499 261507 267849 267854) (-225 "DFLOAT.spad" 258230 258238 261389 261494) (-224 "DFINTTLS.spad" 256461 256477 258220 258225) (-223 "DERHAM.spad" 254375 254407 256441 256456) (-222 "DEQUEUE.spad" 253699 253709 253982 254009) (-221 "DEGRED.spad" 253316 253330 253689 253694) (-220 "DEFINTRF.spad" 250853 250863 253306 253311) (-219 "DEFINTEF.spad" 249363 249379 250843 250848) (-218 "DEFAST.spad" 248731 248739 249353 249358) (-217 "DECIMAL.spad" 246837 246845 247198 247291) (-216 "DDFACT.spad" 244650 244667 246827 246832) (-215 "DBLRESP.spad" 244250 244274 244640 244645) (-214 "DBASE.spad" 242914 242924 244240 244245) (-213 "DATAARY.spad" 242376 242389 242904 242909) (-212 "D03FAFA.spad" 242204 242212 242366 242371) (-211 "D03EEFA.spad" 242024 242032 242194 242199) (-210 "D03AGNT.spad" 241110 241118 242014 242019) (-209 "D02EJFA.spad" 240572 240580 241100 241105) (-208 "D02CJFA.spad" 240050 240058 240562 240567) (-207 "D02BHFA.spad" 239540 239548 240040 240045) (-206 "D02BBFA.spad" 239030 239038 239530 239535) (-205 "D02AGNT.spad" 233844 233852 239020 239025) (-204 "D01WGTS.spad" 232163 232171 233834 233839) (-203 "D01TRNS.spad" 232140 232148 232153 232158) (-202 "D01GBFA.spad" 231662 231670 232130 232135) (-201 "D01FCFA.spad" 231184 231192 231652 231657) (-200 "D01ASFA.spad" 230652 230660 231174 231179) (-199 "D01AQFA.spad" 230098 230106 230642 230647) (-198 "D01APFA.spad" 229522 229530 230088 230093) (-197 "D01ANFA.spad" 229016 229024 229512 229517) (-196 "D01AMFA.spad" 228526 228534 229006 229011) (-195 "D01ALFA.spad" 228066 228074 228516 228521) (-194 "D01AKFA.spad" 227592 227600 228056 228061) (-193 "D01AJFA.spad" 227115 227123 227582 227587) (-192 "D01AGNT.spad" 223182 223190 227105 227110) (-191 "CYCLOTOM.spad" 222688 222696 223172 223177) (-190 "CYCLES.spad" 219544 219552 222678 222683) (-189 "CVMP.spad" 218961 218971 219534 219539) (-188 "CTRIGMNP.spad" 217461 217477 218951 218956) (-187 "CTOR.spad" 217152 217160 217451 217456) (-186 "CTORKIND.spad" 216755 216763 217142 217147) (-185 "CTORCAT.spad" 216004 216012 216745 216750) (-184 "CTORCAT.spad" 215251 215261 215994 215999) (-183 "CTORCALL.spad" 214840 214850 215241 215246) (-182 "CSTTOOLS.spad" 214085 214098 214830 214835) (-181 "CRFP.spad" 207809 207822 214075 214080) (-180 "CRCEAST.spad" 207529 207537 207799 207804) (-179 "CRAPACK.spad" 206580 206590 207519 207524) (-178 "CPMATCH.spad" 206084 206099 206505 206510) (-177 "CPIMA.spad" 205789 205808 206074 206079) (-176 "COORDSYS.spad" 200798 200808 205779 205784) (-175 "CONTOUR.spad" 200209 200217 200788 200793) (-174 "CONTFRAC.spad" 195959 195969 200111 200204) (-173 "CONDUIT.spad" 195717 195725 195949 195954) (-172 "COMRING.spad" 195391 195399 195655 195712) (-171 "COMPPROP.spad" 194909 194917 195381 195386) (-170 "COMPLPAT.spad" 194676 194691 194899 194904) (-169 "COMPLEX.spad" 188813 188823 189057 189318) (-168 "COMPLEX2.spad" 188528 188540 188803 188808) (-167 "COMPFACT.spad" 188130 188144 188518 188523) (-166 "COMPCAT.spad" 186202 186212 187864 188125) (-165 "COMPCAT.spad" 184002 184014 185666 185671) (-164 "COMMUPC.spad" 183750 183768 183992 183997) (-163 "COMMONOP.spad" 183283 183291 183740 183745) (-162 "COMM.spad" 183094 183102 183273 183278) (-161 "COMMAAST.spad" 182857 182865 183084 183089) (-160 "COMBOPC.spad" 181772 181780 182847 182852) (-159 "COMBINAT.spad" 180539 180549 181762 181767) (-158 "COMBF.spad" 177921 177937 180529 180534) (-157 "COLOR.spad" 176758 176766 177911 177916) (-156 "COLONAST.spad" 176424 176432 176748 176753) (-155 "CMPLXRT.spad" 176135 176152 176414 176419) (-154 "CLLCTAST.spad" 175797 175805 176125 176130) (-153 "CLIP.spad" 171905 171913 175787 175792) (-152 "CLIF.spad" 170560 170576 171861 171900) (-151 "CLAGG.spad" 167065 167075 170550 170555) (-150 "CLAGG.spad" 163441 163453 166928 166933) (-149 "CINTSLPE.spad" 162772 162785 163431 163436) (-148 "CHVAR.spad" 160910 160932 162762 162767) (-147 "CHARZ.spad" 160825 160833 160890 160905) (-146 "CHARPOL.spad" 160335 160345 160815 160820) (-145 "CHARNZ.spad" 160088 160096 160315 160330) (-144 "CHAR.spad" 157962 157970 160078 160083) (-143 "CFCAT.spad" 157290 157298 157952 157957) (-142 "CDEN.spad" 156486 156500 157280 157285) (-141 "CCLASS.spad" 154635 154643 155897 155936) (-140 "CATEGORY.spad" 153677 153685 154625 154630) (-139 "CATCTOR.spad" 153568 153576 153667 153672) (-138 "CATAST.spad" 153186 153194 153558 153563) (-137 "CASEAST.spad" 152900 152908 153176 153181) (-136 "CARTEN.spad" 148187 148211 152890 152895) (-135 "CARTEN2.spad" 147577 147604 148177 148182) (-134 "CARD.spad" 144872 144880 147551 147572) (-133 "CAPSLAST.spad" 144646 144654 144862 144867) (-132 "CACHSET.spad" 144270 144278 144636 144641) (-131 "CABMON.spad" 143825 143833 144260 144265) (-130 "BYTEORD.spad" 143500 143508 143815 143820) (-129 "BYTE.spad" 142927 142935 143490 143495) (-128 "BYTEBUF.spad" 140786 140794 142096 142123) (-127 "BTREE.spad" 139859 139869 140393 140420) (-126 "BTOURN.spad" 138864 138874 139466 139493) (-125 "BTCAT.spad" 138256 138266 138832 138859) (-124 "BTCAT.spad" 137668 137680 138246 138251) (-123 "BTAGG.spad" 136796 136804 137636 137663) (-122 "BTAGG.spad" 135944 135954 136786 136791) (-121 "BSTREE.spad" 134685 134695 135551 135578) (-120 "BRILL.spad" 132882 132893 134675 134680) (-119 "BRAGG.spad" 131822 131832 132872 132877) (-118 "BRAGG.spad" 130726 130738 131778 131783) (-117 "BPADICRT.spad" 128707 128719 128962 129055) (-116 "BPADIC.spad" 128371 128383 128633 128702) (-115 "BOUNDZRO.spad" 128027 128044 128361 128366) (-114 "BOP.spad" 123209 123217 128017 128022) (-113 "BOP1.spad" 120675 120685 123199 123204) (-112 "BOOLEAN.spad" 120113 120121 120665 120670) (-111 "BMODULE.spad" 119825 119837 120081 120108) (-110 "BITS.spad" 119246 119254 119461 119488) (-109 "BINDING.spad" 118659 118667 119236 119241) (-108 "BINARY.spad" 116770 116778 117126 117219) (-107 "BGAGG.spad" 115975 115985 116750 116765) (-106 "BGAGG.spad" 115188 115200 115965 115970) (-105 "BFUNCT.spad" 114752 114760 115168 115183) (-104 "BEZOUT.spad" 113892 113919 114702 114707) (-103 "BBTREE.spad" 110737 110747 113499 113526) (-102 "BASTYPE.spad" 110409 110417 110727 110732) (-101 "BASTYPE.spad" 110079 110089 110399 110404) (-100 "BALFACT.spad" 109538 109551 110069 110074) (-99 "AUTOMOR.spad" 108989 108998 109518 109533) (-98 "ATTREG.spad" 105712 105719 108741 108984) (-97 "ATTRBUT.spad" 101735 101742 105692 105707) (-96 "ATTRAST.spad" 101452 101459 101725 101730) (-95 "ATRIG.spad" 100922 100929 101442 101447) (-94 "ATRIG.spad" 100390 100399 100912 100917) (-93 "ASTCAT.spad" 100294 100301 100380 100385) (-92 "ASTCAT.spad" 100196 100205 100284 100289) (-91 "ASTACK.spad" 99535 99544 99803 99830) (-90 "ASSOCEQ.spad" 98361 98372 99491 99496) (-89 "ASP9.spad" 97442 97455 98351 98356) (-88 "ASP8.spad" 96485 96498 97432 97437) (-87 "ASP80.spad" 95807 95820 96475 96480) (-86 "ASP7.spad" 94967 94980 95797 95802) (-85 "ASP78.spad" 94418 94431 94957 94962) (-84 "ASP77.spad" 93787 93800 94408 94413) (-83 "ASP74.spad" 92879 92892 93777 93782) (-82 "ASP73.spad" 92150 92163 92869 92874) (-81 "ASP6.spad" 91017 91030 92140 92145) (-80 "ASP55.spad" 89526 89539 91007 91012) (-79 "ASP50.spad" 87343 87356 89516 89521) (-78 "ASP4.spad" 86638 86651 87333 87338) (-77 "ASP49.spad" 85637 85650 86628 86633) (-76 "ASP42.spad" 84044 84083 85627 85632) (-75 "ASP41.spad" 82623 82662 84034 84039) (-74 "ASP35.spad" 81611 81624 82613 82618) (-73 "ASP34.spad" 80912 80925 81601 81606) (-72 "ASP33.spad" 80472 80485 80902 80907) (-71 "ASP31.spad" 79612 79625 80462 80467) (-70 "ASP30.spad" 78504 78517 79602 79607) (-69 "ASP29.spad" 77970 77983 78494 78499) (-68 "ASP28.spad" 69243 69256 77960 77965) (-67 "ASP27.spad" 68140 68153 69233 69238) (-66 "ASP24.spad" 67227 67240 68130 68135) (-65 "ASP20.spad" 66691 66704 67217 67222) (-64 "ASP1.spad" 66072 66085 66681 66686) (-63 "ASP19.spad" 60758 60771 66062 66067) (-62 "ASP12.spad" 60172 60185 60748 60753) (-61 "ASP10.spad" 59443 59456 60162 60167) (-60 "ARRAY2.spad" 58803 58812 59050 59077) (-59 "ARRAY1.spad" 57640 57649 57986 58013) (-58 "ARRAY12.spad" 56353 56364 57630 57635) (-57 "ARR2CAT.spad" 52127 52148 56321 56348) (-56 "ARR2CAT.spad" 47921 47944 52117 52122) (-55 "ARITY.spad" 47293 47300 47911 47916) (-54 "APPRULE.spad" 46553 46575 47283 47288) (-53 "APPLYORE.spad" 46172 46185 46543 46548) (-52 "ANY.spad" 45031 45038 46162 46167) (-51 "ANY1.spad" 44102 44111 45021 45026) (-50 "ANTISYM.spad" 42547 42563 44082 44097) (-49 "ANON.spad" 42240 42247 42537 42542) (-48 "AN.spad" 40549 40556 42056 42149) (-47 "AMR.spad" 38734 38745 40447 40544) (-46 "AMR.spad" 36756 36769 38471 38476) (-45 "ALIST.spad" 34168 34189 34518 34545) (-44 "ALGSC.spad" 33303 33329 34040 34093) (-43 "ALGPKG.spad" 29086 29097 33259 33264) (-42 "ALGMFACT.spad" 28279 28293 29076 29081) (-41 "ALGMANIP.spad" 25753 25768 28112 28117) (-40 "ALGFF.spad" 24068 24095 24285 24441) (-39 "ALGFACT.spad" 23195 23205 24058 24063) (-38 "ALGEBRA.spad" 23028 23037 23151 23190) (-37 "ALGEBRA.spad" 22893 22904 23018 23023) (-36 "ALAGG.spad" 22405 22426 22861 22888) (-35 "AHYP.spad" 21786 21793 22395 22400) (-34 "AGG.spad" 20103 20110 21776 21781) (-33 "AGG.spad" 18384 18393 20059 20064) (-32 "AF.spad" 16815 16830 18319 18324) (-31 "ADDAST.spad" 16493 16500 16805 16810) (-30 "ACPLOT.spad" 15084 15091 16483 16488) (-29 "ACFS.spad" 12893 12902 14986 15079) (-28 "ACFS.spad" 10788 10799 12883 12888) (-27 "ACF.spad" 7470 7477 10690 10783) (-26 "ACF.spad" 4238 4247 7460 7465) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file
diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase
index 66fcecce..a8b81b21 100644
--- a/src/share/algebra/category.daase
+++ b/src/share/algebra/category.daase
@@ -1,15 +1,15 @@
-(188328 . 3466723540)
-(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) ((#0=(-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) #0#) |has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))))
-((((-567)) . T) (($) -2800 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-559))) (((-410 (-567))) -2800 (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-1040 (-410 (-567))))) ((|#1|) . T))
+(188400 . 3467417897)
+(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) ((#0=(-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) #0#) |has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-310 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))))
+((((-567)) . T) (($) -2811 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-559))) (((-410 (-567))) -2811 (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-1040 (-410 (-567))))) ((|#1|) . T))
(((|#2| |#2|) . T))
((((-567)) . T))
-((($ $) -2800 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))) ((|#2| |#2|) . T) ((#0=(-410 (-567)) #0#) |has| |#2| (-38 (-410 (-567)))))
+((($ $) -2811 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))) ((|#2| |#2|) . T) ((#0=(-410 (-567)) #0#) |has| |#2| (-38 (-410 (-567)))))
((($) . T))
(((|#1|) . T))
((($) . T) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
(((|#2|) . T))
-((($) -2800 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))) ((|#2|) . T) (((-410 (-567))) |has| |#2| (-38 (-410 (-567)))))
+((($) -2811 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))) ((|#2|) . T) (((-410 (-567))) |has| |#2| (-38 (-410 (-567)))))
(|has| |#1| (-911))
((((-863)) . T))
((((-863)) . T))
@@ -19,48 +19,48 @@
((($) . T))
(((|#2| |#2|) . T))
((((-144)) . T))
-((((-539)) . T) (((-1160)) . T) (((-225)) . T) (((-381)) . T) (((-894 (-381))) . T))
+((((-539)) . T) (((-1161)) . T) (((-225)) . T) (((-381)) . T) (((-894 (-381))) . T))
(((|#1|) . T))
((((-225)) . T) (((-863)) . T))
(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))
(((|#1|) . T))
-(-2800 (|has| |#1| (-21)) (|has| |#1| (-849)))
-((($ $) . T) ((#0=(-410 (-567)) #0#) -2800 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1| |#1|) . T))
-(-2800 (|has| |#1| (-821)) (|has| |#1| (-851)))
+(-2811 (|has| |#1| (-21)) (|has| |#1| (-849)))
+((($ $) . T) ((#0=(-410 (-567)) #0#) -2811 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1| |#1|) . T))
+(-2811 (|has| |#1| (-821)) (|has| |#1| (-851)))
((((-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) (((-567)) |has| |#1| (-1040 (-567))) ((|#1|) . T))
((((-863)) . T))
((((-863)) . T))
-(-2800 (|has| |#1| (-365)) (|has| |#1| (-559)))
+(-2811 (|has| |#1| (-365)) (|has| |#1| (-559)))
(|has| |#1| (-849))
(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))
((((-317 |#1|)) . T) (((-567)) . T) (($) . T))
(((|#1| |#2| |#3|) . T))
((((-567)) . T) (((-871 |#1|)) . T) (($) . T) (((-410 (-567))) . T))
-((($) . T) (((-410 (-567))) -2800 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T))
+((($) . T) (((-410 (-567))) -2811 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T))
((((-410 (-567))) . T) (((-700)) . T) (($) . T))
((((-863)) . T))
-((((-1183)) . T))
-((((-1183)) . T))
+((((-1184)) . T))
+((((-1184)) . T))
(((|#4|) . T))
((((-410 (-567))) . T) (((-700)) . T) (($) . T))
((((-863)) . T))
((((-863)) |has| (-1096 |#1|) (-1102)))
-((((-863)) . T) (((-1183)) . T))
+((((-863)) . T) (((-1184)) . T))
(((|#1|) . T) ((|#2|) . T))
-((((-1183)) . T))
+((((-1184)) . T))
(((|#1|) . T) (((-567)) |has| |#1| (-1040 (-567))) (((-410 (-567))) |has| |#1| (-1040 (-410 (-567)))))
-(-2800 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))
-(-2800 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))
-(((|#2| (-485 (-2414 |#1|) (-772))) . T))
-(((|#1| (-534 (-1178))) . T))
+(-2811 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))
+(-2811 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))
+(((|#2| (-485 (-2423 |#1|) (-772))) . T))
+(((|#1| (-534 (-1179))) . T))
(((#0=(-871 |#1|) #0#) . T) ((#1=(-410 (-567)) #1#) . T) (($ $) . T))
-((((-1160)) . T) (((-960 (-129))) . T) (((-863)) . T))
+((((-1161)) . T) (((-960 (-129))) . T) (((-863)) . T))
((((-863)) . T))
-((((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T))
+((((-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) . T))
(|has| |#4| (-370))
(|has| |#3| (-370))
(((|#1|) . T))
-((((-1178)) . T))
+((((-1179)) . T))
((((-509)) . T))
((((-871 |#1|)) . T) (((-410 (-567))) . T) (($) . T))
((((-863)) . T))
@@ -71,15 +71,15 @@
(|has| |#1| (-145))
(|has| |#1| (-147))
(|has| |#1| (-559))
-((((-567)) . T) (((-410 (-567))) -2800 (|has| |#2| (-38 (-410 (-567)))) (|has| |#2| (-1040 (-410 (-567))))) ((|#2|) . T) (($) -2800 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))) (((-865 |#1|)) . T))
-(-2800 (|has| |#1| (-365)) (|has| |#1| (-559)))
-(-2800 (|has| |#1| (-365)) (|has| |#1| (-559)))
-((((-2 (|:| -3768 |#1|) (|:| -3458 |#2|))) . T))
+((((-567)) . T) (((-410 (-567))) -2811 (|has| |#2| (-38 (-410 (-567)))) (|has| |#2| (-1040 (-410 (-567))))) ((|#2|) . T) (($) -2811 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))) (((-865 |#1|)) . T))
+(-2811 (|has| |#1| (-365)) (|has| |#1| (-559)))
+(-2811 (|has| |#1| (-365)) (|has| |#1| (-559)))
+((((-2 (|:| -3779 |#1|) (|:| -3468 |#2|))) . T))
((($) . T))
-((((-567)) . T) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567))))) ((|#1|) . T) (($) -2800 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) (((-1178)) . T))
-((((-863)) -2800 (|has| |#1| (-614 (-863))) (|has| |#1| (-851)) (|has| |#1| (-1102))))
+((((-567)) . T) (((-410 (-567))) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567))))) ((|#1|) . T) (($) -2811 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) (((-1179)) . T))
+((((-863)) -2811 (|has| |#1| (-614 (-863))) (|has| |#1| (-851)) (|has| |#1| (-1102))))
((((-539)) |has| |#1| (-615 (-539))))
-((((-1178)) . T))
+((((-1179)) . T))
((((-567)) . T) (($) . T))
((((-584 |#1|)) . T) (((-410 (-567))) . T) (((-567)) . T) (($) . T))
((($) . T) (((-567)) . T) (((-410 (-567))) . T))
@@ -98,11 +98,11 @@
((((-863)) . T))
(((|#1|) . T))
(|has| |#1| (-1102))
-(((#0=(-410 (-567)) #0#) |has| |#2| (-38 (-410 (-567)))) ((|#2| |#2|) . T) (($ $) -2800 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))))
+(((#0=(-410 (-567)) #0#) |has| |#2| (-38 (-410 (-567)))) ((|#2| |#2|) . T) (($ $) -2811 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))))
(((|#1|) . T))
((((-116 |#1|)) . T) (($) . T) (((-410 (-567))) . T))
-((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) |has| |#2| (-172)) (($) -2800 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))))
-((($) -2800 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) |has| |#2| (-172)) (($) -2811 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))))
+((($) -2811 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
(((|#1|) . T) (((-410 (-567))) . T) (($) . T))
((((-116 |#1|)) . T) (((-410 (-567))) . T) (($) . T))
(((|#1|) . T) (((-410 (-567))) . T) (($) . T))
@@ -110,14 +110,14 @@
((((-410 (-567))) . T) (($) . T) (((-567)) . T))
((($) . T) (((-567)) . T) (((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T))
(((|#2|) . T) (((-567)) . T) ((|#6|) . T))
-((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T) (($) -2800 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))))
+((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T) (($) -2811 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))))
((($) . T))
(((|#2|) . T))
((($) . T))
(((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) (((-567)) . T) (($) . T))
((((-567)) . T) (($) . T) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
-(((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567)))) ((|#1| |#1|) . T) (($ $) -2800 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))))
-((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T) (($) -2800 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))))
+(((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567)))) ((|#1| |#1|) . T) (($ $) -2811 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))))
+((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T) (($) -2811 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))))
((($ $) . T))
((($) . T))
((((-567)) . T) (($) . T) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
@@ -126,30 +126,30 @@
(((|#1|) . T))
(|has| |#1| (-370))
(((|#1|) . T))
-((((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-1260 |#1| |#2| |#3|)) |has| |#1| (-365)) (($) . T) ((|#1|) . T))
-(((|#1|) . T) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) . T))
+((((-410 (-567))) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-1261 |#1| |#2| |#3|)) |has| |#1| (-365)) (($) . T) ((|#1|) . T))
+(((|#1|) . T) (((-410 (-567))) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) . T))
(((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) (($) . T))
-(-2800 (|has| |#1| (-851)) (|has| |#1| (-1102)))
+(-2811 (|has| |#1| (-851)) (|has| |#1| (-1102)))
(((|#1|) . T))
-((((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T))
+((((-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) . T))
((((-567)) . T))
((((-863)) . T))
(((|#1| |#2|) . T))
-(-2800 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-902 (-1178))) (|has| |#1| (-1051)))
-(-2800 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-902 (-1178))) (|has| |#1| (-1051)))
+(-2811 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-902 (-1179))) (|has| |#1| (-1051)))
+(-2811 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-902 (-1179))) (|has| |#1| (-1051)))
(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))
(((|#1|) . T) (((-567)) . T) (($) . T))
(|has| |#1| (-559))
(((|#1| |#1|) . T))
((((-410 |#2|)) . T) (((-410 (-567))) . T) (($) . T))
-(-2800 (|has| |#1| (-21)) (|has| |#1| (-849)))
+(-2811 (|has| |#1| (-21)) (|has| |#1| (-849)))
((($ $) . T) ((#0=(-410 (-567)) #0#) . T))
-(-2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559)))
-(-2800 (|has| |#1| (-851)) (|has| |#1| (-1102)))
+(-2811 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559)))
+(-2811 (|has| |#1| (-851)) (|has| |#1| (-1102)))
(|has| |#1| (-1102))
-(-2800 (|has| |#1| (-851)) (|has| |#1| (-1102)))
+(-2811 (|has| |#1| (-851)) (|has| |#1| (-1102)))
(|has| |#1| (-1102))
-(-2800 (|has| |#1| (-851)) (|has| |#1| (-1102)))
+(-2811 (|has| |#1| (-851)) (|has| |#1| (-1102)))
(|has| |#1| (-849))
((($) . T) (((-410 (-567))) . T))
((((-863)) . T))
@@ -158,19 +158,19 @@
((((-567) (-129)) . T))
((($) . T) (((-410 (-567))) . T))
((((-129)) . T))
-(-2800 (|has| |#4| (-794)) (|has| |#4| (-849)))
-(-2800 (|has| |#4| (-794)) (|has| |#4| (-849)))
-(-2800 (|has| |#3| (-794)) (|has| |#3| (-849)))
-(-2800 (|has| |#3| (-794)) (|has| |#3| (-849)))
+(-2811 (|has| |#4| (-794)) (|has| |#4| (-849)))
+(-2811 (|has| |#4| (-794)) (|has| |#4| (-849)))
+(-2811 (|has| |#3| (-794)) (|has| |#3| (-849)))
+(-2811 (|has| |#3| (-794)) (|has| |#3| (-849)))
(((|#1| |#2|) . T))
-(-2800 (|has| |#1| (-365)) (|has| |#1| (-351)))
-((((-1183)) . T))
-(((|#2| |#2|) -12 (|has| |#1| (-365)) (|has| |#2| (-310 |#2|))) (((-1178) |#2|) -12 (|has| |#1| (-365)) (|has| |#2| (-517 (-1178) |#2|))))
+(-2811 (|has| |#1| (-365)) (|has| |#1| (-351)))
+((((-1184)) . T))
+(((|#2| |#2|) -12 (|has| |#1| (-365)) (|has| |#2| (-310 |#2|))) (((-1179) |#2|) -12 (|has| |#1| (-365)) (|has| |#2| (-517 (-1179) |#2|))))
(((|#1| |#2|) . T))
(|has| |#1| (-1102))
(|has| |#1| (-1102))
((((-567)) . T) (((-410 (-567))) . T))
-(((|#1| (-1178) (-1090 (-1178)) (-534 (-1090 (-1178)))) . T))
+(((|#1| (-1179) (-1090 (-1179)) (-534 (-1090 (-1179)))) . T))
((((-567) |#1|) . T))
((((-567)) . T))
((((-567)) . T))
@@ -179,43 +179,43 @@
((((-567)) . T))
((((-567)) . T))
(((|#1|) . T))
-(-2800 (|has| |#2| (-172)) (|has| |#2| (-727)) (|has| |#2| (-849)) (|has| |#2| (-1051)))
+(-2811 (|has| |#2| (-172)) (|has| |#2| (-727)) (|has| |#2| (-849)) (|has| |#2| (-1051)))
(((|#1| (-772)) . T))
(|has| |#2| (-794))
-(-2800 (|has| |#2| (-794)) (|has| |#2| (-849)))
+(-2811 (|has| |#2| (-794)) (|has| |#2| (-849)))
(|has| |#2| (-849))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2|) . T))
-((((-1160) |#1|) . T))
+((((-1161) |#1|) . T))
((((-567) (-129)) . T))
(((|#1|) . T))
-((((-863)) -2800 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102))))
+((((-863)) -2811 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102))))
(((|#3| (-772)) . T))
(|has| |#1| (-147))
(|has| |#1| (-145))
((($) . T) (((-410 (-567))) . T))
((($) . T))
((($) . T))
-(-2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559)))
-(-2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559)))
+(-2811 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559)))
+(-2811 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559)))
((((-410 (-567))) . T) (($) . T))
((($) . T))
((($) . T))
(|has| |#1| (-1102))
((((-410 (-567))) . T) (((-567)) . T))
((((-567)) . T) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-1040 (-410 (-567)))))
-((((-567)) . T) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567))))) ((|#1|) . T) (($) -2800 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#2|) . T))
-((((-1178) |#2|) |has| |#2| (-517 (-1178) |#2|)) ((|#2| |#2|) |has| |#2| (-310 |#2|)))
+((((-567)) . T) (((-410 (-567))) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567))))) ((|#1|) . T) (($) -2811 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#2|) . T))
+((((-1179) |#2|) |has| |#2| (-517 (-1179) |#2|)) ((|#2| |#2|) |has| |#2| (-310 |#2|)))
((((-410 (-567))) . T) (((-567)) . T))
-((((-567)) . T) (($) -2800 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) (((-1084)) . T) ((|#1|) . T) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567))))))
+((((-567)) . T) (($) -2811 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) (((-1084)) . T) ((|#1|) . T) (((-410 (-567))) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567))))))
(((|#1|) . T) (($) . T))
((((-567)) . T))
((((-567)) . T))
-((($) -2800 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172)))
+((($) -2811 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172)))
((((-567)) . T))
((((-567)) . T))
((((-410 (-567))) . T) (($) . T))
-(((#0=(-700) (-1174 #0#)) . T))
+(((#0=(-700) (-1175 #0#)) . T))
((((-410 (-567))) . T) (((-567)) . T) (($) . T))
(((|#1|) . T) (((-410 (-567))) . T) (($) . T))
(((|#1|) . T))
@@ -227,18 +227,18 @@
(((|#1| |#2|) . T))
((((-863)) . T))
(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))
-((((-1160) |#1|) . T))
+((((-1161) |#1|) . T))
(((|#3| |#3|) . T))
((((-863)) . T))
((((-863)) . T))
(((|#1| |#1|) . T))
-(((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567)))) ((|#1| |#1|) . T) (($ $) -2800 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))))
-((($ $) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1| |#1|) . T) ((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567)))))
+(((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567)))) ((|#1| |#1|) . T) (($ $) -2811 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))))
+((($ $) -2811 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1| |#1|) . T) ((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567)))))
(((|#1|) . T))
(((|#1|) . T))
-((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T) (($) -2800 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))))
-((($) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
-((($) -2800 (|has| |#2| (-172)) (|has| |#2| (-849)) (|has| |#2| (-1051))) ((|#2|) -2800 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1051))))
+((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T) (($) -2811 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))))
+((($) -2811 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+((($) -2811 (|has| |#2| (-172)) (|has| |#2| (-849)) (|has| |#2| (-1051))) ((|#2|) -2811 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1051))))
((((-863)) . T))
((((-863)) . T))
((((-863)) . T))
@@ -246,13 +246,13 @@
((((-863)) . T))
((((-567) |#1|) . T))
((((-863)) . T))
-((((-169 (-225))) |has| |#1| (-1024)) (((-169 (-381))) |has| |#1| (-1024)) (((-539)) |has| |#1| (-615 (-539))) (((-1174 |#1|)) . T) (((-894 (-567))) |has| |#1| (-615 (-894 (-567)))) (((-894 (-381))) |has| |#1| (-615 (-894 (-381)))))
+((((-169 (-225))) |has| |#1| (-1024)) (((-169 (-381))) |has| |#1| (-1024)) (((-539)) |has| |#1| (-615 (-539))) (((-1175 |#1|)) . T) (((-894 (-567))) |has| |#1| (-615 (-894 (-567)))) (((-894 (-381))) |has| |#1| (-615 (-894 (-381)))))
(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))
(((|#1|) . T))
-(-2800 (|has| |#1| (-21)) (|has| |#1| (-849)))
-(-2800 (|has| |#1| (-21)) (|has| |#1| (-849)))
-((((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2800 (|has| |#1| (-365)) (|has| |#1| (-559))) ((|#2|) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172)))
-(((|#1|) |has| |#1| (-172)) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2800 (|has| |#1| (-365)) (|has| |#1| (-559))))
+(-2811 (|has| |#1| (-21)) (|has| |#1| (-849)))
+(-2811 (|has| |#1| (-21)) (|has| |#1| (-849)))
+((((-410 (-567))) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2811 (|has| |#1| (-365)) (|has| |#1| (-559))) ((|#2|) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172)))
+(((|#1|) |has| |#1| (-172)) (((-410 (-567))) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2811 (|has| |#1| (-365)) (|has| |#1| (-559))))
(|has| |#1| (-365))
((((-863)) . T))
((($) . T))
@@ -260,51 +260,51 @@
((((-129)) . T))
(-12 (|has| |#4| (-233)) (|has| |#4| (-1051)))
(-12 (|has| |#3| (-233)) (|has| |#3| (-1051)))
-(-2800 (|has| |#4| (-172)) (|has| |#4| (-849)) (|has| |#4| (-1051)))
-(-2800 (|has| |#3| (-172)) (|has| |#3| (-849)) (|has| |#3| (-1051)))
-((((-863)) . T) (((-1183)) . T))
-((((-863)) . T) (((-1183)) . T))
-((((-1183)) . T))
-((((-1183)) . T))
+(-2811 (|has| |#4| (-172)) (|has| |#4| (-849)) (|has| |#4| (-1051)))
+(-2811 (|has| |#3| (-172)) (|has| |#3| (-849)) (|has| |#3| (-1051)))
+((((-863)) . T) (((-1184)) . T))
+((((-863)) . T) (((-1184)) . T))
+((((-1184)) . T))
+((((-1184)) . T))
((((-863)) . T))
(((|#1|) . T))
((((-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) (((-567)) |has| |#1| (-1040 (-567))) ((|#1|) . T))
(((|#1|) . T) (((-567)) |has| |#1| (-640 (-567))))
-(((|#2|) . T) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T))
-(((|#1|) . T) (((-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) . T))
+(((|#2|) . T) (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) . T))
+(((|#1|) . T) (((-2 (|:| -1809 (-1161)) (|:| -4236 |#1|))) . T))
(|has| |#1| (-559))
-((((-567)) -2800 (|has| |#4| (-172)) (|has| |#4| (-849)) (-12 (|has| |#4| (-1040 (-567))) (|has| |#4| (-1102))) (|has| |#4| (-1051))) ((|#4|) -2800 (|has| |#4| (-172)) (|has| |#4| (-1102))) (((-410 (-567))) -12 (|has| |#4| (-1040 (-410 (-567)))) (|has| |#4| (-1102))))
-((((-567)) -2800 (|has| |#3| (-172)) (|has| |#3| (-849)) (-12 (|has| |#3| (-1040 (-567))) (|has| |#3| (-1102))) (|has| |#3| (-1051))) ((|#3|) -2800 (|has| |#3| (-172)) (|has| |#3| (-1102))) (((-410 (-567))) -12 (|has| |#3| (-1040 (-410 (-567)))) (|has| |#3| (-1102))))
+((((-567)) -2811 (|has| |#4| (-172)) (|has| |#4| (-849)) (-12 (|has| |#4| (-1040 (-567))) (|has| |#4| (-1102))) (|has| |#4| (-1051))) ((|#4|) -2811 (|has| |#4| (-172)) (|has| |#4| (-1102))) (((-410 (-567))) -12 (|has| |#4| (-1040 (-410 (-567)))) (|has| |#4| (-1102))))
+((((-567)) -2811 (|has| |#3| (-172)) (|has| |#3| (-849)) (-12 (|has| |#3| (-1040 (-567))) (|has| |#3| (-1102))) (|has| |#3| (-1051))) ((|#3|) -2811 (|has| |#3| (-172)) (|has| |#3| (-1102))) (((-410 (-567))) -12 (|has| |#3| (-1040 (-410 (-567)))) (|has| |#3| (-1102))))
(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))
(|has| |#1| (-559))
-(-2800 (|has| |#1| (-851)) (|has| |#1| (-1102)))
+(-2811 (|has| |#1| (-851)) (|has| |#1| (-1102)))
(((|#1|) . T))
(|has| |#1| (-559))
(|has| |#1| (-559))
(|has| |#1| (-559))
((((-700)) . T))
(((|#1|) . T))
-(-12 (|has| |#1| (-1004)) (|has| |#1| (-1203)))
+(-12 (|has| |#1| (-1004)) (|has| |#1| (-1204)))
((((-410 |#2|)) . T) (((-410 (-567))) . T) (($) . T))
(((|#2|) . T) (($) . T) (((-410 (-567))) . T))
((((-410 |#2|)) . T) (((-410 (-567))) . T) (($) . T))
(-12 (|has| |#1| (-1102)) (|has| |#2| (-1102)))
((($) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T))
-((((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-1176 |#1| |#2| |#3|)) |has| |#1| (-365)) (($) . T) ((|#1|) . T))
-(((|#1|) . T) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) . T))
+((((-410 (-567))) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-1177 |#1| |#2| |#3|)) |has| |#1| (-365)) (($) . T) ((|#1|) . T))
+(((|#1|) . T) (((-410 (-567))) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) . T))
(((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) (($) . T))
-(((|#4| |#4|) -2800 (|has| |#4| (-172)) (|has| |#4| (-365)) (|has| |#4| (-1051))) (($ $) |has| |#4| (-172)))
-(((|#3| |#3|) -2800 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1051))) (($ $) |has| |#3| (-172)))
+(((|#4| |#4|) -2811 (|has| |#4| (-172)) (|has| |#4| (-365)) (|has| |#4| (-1051))) (($ $) |has| |#4| (-172)))
+(((|#3| |#3|) -2811 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1051))) (($ $) |has| |#3| (-172)))
(((|#2|) . T))
(((|#1|) . T))
((((-539)) |has| |#2| (-615 (-539))) (((-894 (-381))) |has| |#2| (-615 (-894 (-381)))) (((-894 (-567))) |has| |#2| (-615 (-894 (-567)))))
((((-863)) . T))
(((|#1| |#2| |#3| |#4|) . T))
-((((-2 (|:| -3768 |#1|) (|:| -3458 |#2|))) . T) (((-863)) . T))
+((((-2 (|:| -3779 |#1|) (|:| -3468 |#2|))) . T) (((-863)) . T))
((((-539)) |has| |#1| (-615 (-539))) (((-894 (-381))) |has| |#1| (-615 (-894 (-381)))) (((-894 (-567))) |has| |#1| (-615 (-894 (-567)))))
-(((|#4|) -2800 (|has| |#4| (-172)) (|has| |#4| (-365)) (|has| |#4| (-1051))) (($) |has| |#4| (-172)))
-(((|#3|) -2800 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1051))) (($) |has| |#3| (-172)))
-((((-2 (|:| -3768 |#1|) (|:| -3458 |#2|))) . T))
+(((|#4|) -2811 (|has| |#4| (-172)) (|has| |#4| (-365)) (|has| |#4| (-1051))) (($) |has| |#4| (-172)))
+(((|#3|) -2811 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1051))) (($) |has| |#3| (-172)))
+((((-2 (|:| -3779 |#1|) (|:| -3468 |#2|))) . T))
((((-863)) . T))
((((-863)) . T))
((((-539)) . T) (((-567)) . T) (((-894 (-567))) . T) (((-381)) . T) (((-225)) . T))
@@ -312,14 +312,14 @@
(((|#1|) . T) (((-567)) |has| |#1| (-1040 (-567))) (((-410 (-567))) |has| |#1| (-1040 (-410 (-567)))))
((($) . T) (((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T))
((((-410 $) (-410 $)) |has| |#2| (-559)) (($ $) . T) ((|#2| |#2|) . T))
-((((-2 (|:| -1795 (-1160)) (|:| -4237 (-52)))) . T))
+((((-2 (|:| -1809 (-1161)) (|:| -4236 (-52)))) . T))
(((|#1|) . T))
(|has| |#2| (-911))
-((((-1160) (-52)) . T))
+((((-1161) (-52)) . T))
((((-567)) |has| #0=(-410 |#2|) (-640 (-567))) ((#0#) . T))
((((-539)) . T) (((-225)) . T) (((-381)) . T) (((-894 (-381))) . T))
((((-863)) . T))
-(-2800 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-902 (-1178))) (|has| |#1| (-1051)))
+(-2811 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-902 (-1179))) (|has| |#1| (-1051)))
(((|#1|) |has| |#1| (-172)))
(((|#1| $) |has| |#1| (-287 |#1| |#1|)))
((((-863)) . T))
@@ -333,16 +333,16 @@
(|has| |#1| (-1102))
((((-912 |#1|)) . T) (($) . T) (((-410 (-567))) . T))
(((|#1|) . T))
-((((-863)) -2800 (|has| |#1| (-614 (-863))) (|has| |#1| (-851)) (|has| |#1| (-1102))))
+((((-863)) -2811 (|has| |#1| (-614 (-863))) (|has| |#1| (-851)) (|has| |#1| (-1102))))
((((-539)) |has| |#1| (-615 (-539))))
-((((-863)) . T) (((-1183)) . T))
-((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) |has| |#2| (-172)) (($) -2800 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))))
-((((-1183)) . T))
-((($) -2800 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
-((($) -2800 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+((((-863)) . T) (((-1184)) . T))
+((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) |has| |#2| (-172)) (($) -2811 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))))
+((((-1184)) . T))
+((($) -2811 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+((($) -2811 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
(|has| |#1| (-233))
-((($) -2800 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
-(((|#1| (-534 (-819 (-1178)))) . T))
+((($) -2811 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+(((|#1| (-534 (-819 (-1179)))) . T))
(((|#1| (-973)) . T))
((((-567)) . T) ((|#2|) . T))
(((#0=(-871 |#1|) $) |has| #0# (-287 #0# #0#)))
@@ -350,60 +350,60 @@
((((-567) |#3|) . T))
(((|#1|) . T))
(((|#2| |#2|) . T))
-(|has| |#1| (-1153))
-((((-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) . T))
-(|has| (-1254 |#1| |#2| |#3| |#4|) (-145))
-(|has| (-1254 |#1| |#2| |#3| |#4|) (-147))
+(|has| |#1| (-1154))
+((((-2 (|:| -1809 (-1161)) (|:| -4236 |#1|))) . T))
+(|has| (-1255 |#1| |#2| |#3| |#4|) (-145))
+(|has| (-1255 |#1| |#2| |#3| |#4|) (-147))
(|has| |#1| (-145))
(|has| |#1| (-147))
(((|#1|) |has| |#1| (-172)))
-((((-1178)) -12 (|has| |#2| (-902 (-1178))) (|has| |#2| (-1051))))
+((((-1179)) -12 (|has| |#2| (-902 (-1179))) (|has| |#2| (-1051))))
(|has| |#1| (-1102))
-((((-1160) |#1|) . T))
+((((-1161) |#1|) . T))
(((|#2|) . T))
(((|#1|) . T))
(((|#2|) . T) (((-567)) |has| |#2| (-640 (-567))))
-((((-1127 |#1| (-1178))) . T) (((-567)) . T) (((-819 (-1178))) . T) (($) -2800 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) . T) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567))))) (((-1178)) . T))
+((((-1127 |#1| (-1179))) . T) (((-567)) . T) (((-819 (-1179))) . T) (($) -2811 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) . T) (((-410 (-567))) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567))))) (((-1179)) . T))
(|has| |#2| (-370))
(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))
((($) . T) ((|#1|) . T))
(((|#2|) |has| |#2| (-1051)))
((((-863)) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) ((#0=(-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) #0#) |has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))))
+(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) ((#0=(-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) #0#) |has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-310 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))))
(((|#1|) . T))
-((((-1268 (-341 (-4147) (-4147 (QUOTE X)) (-700)))) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((#0=(-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) #0#) |has| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-310 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)))))
+((((-1269 (-341 (-4145) (-4145 (QUOTE X)) (-700)))) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((#0=(-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) #0#) |has| (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (-310 (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)))))
((((-863)) . T))
((((-567) |#1|) . T))
((((-539)) -12 (|has| |#1| (-615 (-539))) (|has| |#2| (-615 (-539)))) (((-894 (-381))) -12 (|has| |#1| (-615 (-894 (-381)))) (|has| |#2| (-615 (-894 (-381))))) (((-894 (-567))) -12 (|has| |#1| (-615 (-894 (-567)))) (|has| |#2| (-615 (-894 (-567))))))
((($) . T))
((((-863)) . T))
-((($ $) -2800 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1| |#1|) . T) ((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567)))))
+((($ $) -2811 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1| |#1|) . T) ((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567)))))
((((-863)) . T))
((($) . T))
((($) . T))
((($) . T))
-((($) -2800 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+((($) -2811 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
((((-863)) . T))
((((-863)) . T))
-(|has| (-1253 |#2| |#3| |#4|) (-147))
-(|has| (-1253 |#2| |#3| |#4|) (-145))
+(|has| (-1254 |#2| |#3| |#4|) (-147))
+(|has| (-1254 |#2| |#3| |#4|) (-145))
(((|#2|) |has| |#2| (-1102)) (((-567)) -12 (|has| |#2| (-1040 (-567))) (|has| |#2| (-1102))) (((-410 (-567))) -12 (|has| |#2| (-1040 (-410 (-567)))) (|has| |#2| (-1102))))
(((|#1|) . T))
(|has| |#1| (-1102))
((((-863)) . T))
(((|#1|) . T))
(((|#1|) . T))
-(-2800 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-902 (-1178))) (|has| |#1| (-1051)))
+(-2811 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-902 (-1179))) (|has| |#1| (-1051)))
(((|#1|) . T))
((((-567) |#1|) . T))
(((|#2|) |has| |#2| (-172)))
(((|#1|) |has| |#1| (-172)))
(((|#1|) . T))
-(-2800 (|has| |#1| (-21)) (|has| |#1| (-849)))
+(-2811 (|has| |#1| (-21)) (|has| |#1| (-849)))
((((-863)) |has| |#1| (-1102)))
-(-2800 (|has| |#1| (-476)) (|has| |#1| (-727)) (|has| |#1| (-902 (-1178))) (|has| |#1| (-1051)) (|has| |#1| (-1114)))
-(-2800 (|has| |#1| (-365)) (|has| |#1| (-351)))
+(-2811 (|has| |#1| (-476)) (|has| |#1| (-727)) (|has| |#1| (-902 (-1179))) (|has| |#1| (-1051)) (|has| |#1| (-1114)))
+(-2811 (|has| |#1| (-365)) (|has| |#1| (-351)))
((((-912 |#1|)) . T))
((((-410 |#2|) |#3|) . T))
(|has| |#1| (-15 * (|#1| (-567) |#1|)))
@@ -414,7 +414,7 @@
((((-863)) . T))
((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-559)))
(|has| |#1| (-365))
-(-2800 (-12 (|has| (-1260 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))
+(-2811 (-12 (|has| (-1261 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))
(|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))
(|has| |#1| (-365))
(|has| |#1| (-15 * (|#1| (-772) |#1|)))
@@ -428,40 +428,40 @@
((((-567) |#1|) . T))
((((-863)) . T))
(((|#2|) . T))
-(-2800 (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))
+(-2811 (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))
((((-567)) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-559)))
((($) |has| |#1| (-559)) (((-567)) . T))
-(-2800 (|has| |#2| (-794)) (|has| |#2| (-849)))
-(-2800 (|has| |#2| (-794)) (|has| |#2| (-849)))
-((((-1260 |#1| |#2| |#3|)) . T) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2800 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-567)) . T) ((|#1|) |has| |#1| (-172)))
-((((-1264 |#2|)) . T) (((-1260 |#1| |#2| |#3|)) . T) (((-1232 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-567)) . T) (($) -2800 (|has| |#1| (-365)) (|has| |#1| (-559))))
+(-2811 (|has| |#2| (-794)) (|has| |#2| (-849)))
+(-2811 (|has| |#2| (-794)) (|has| |#2| (-849)))
+((((-1261 |#1| |#2| |#3|)) . T) (((-410 (-567))) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2811 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-567)) . T) ((|#1|) |has| |#1| (-172)))
+((((-1265 |#2|)) . T) (((-1261 |#1| |#2| |#3|)) . T) (((-1233 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-567)) . T) (($) -2811 (|has| |#1| (-365)) (|has| |#1| (-559))))
((($) |has| |#1| (-559)) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) (((-567)) . T))
(((|#1|) . T))
-((((-1178)) -12 (|has| |#3| (-902 (-1178))) (|has| |#3| (-1051))))
+((((-1179)) -12 (|has| |#3| (-902 (-1179))) (|has| |#3| (-1051))))
(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))
(-12 (|has| |#1| (-365)) (|has| |#2| (-821)))
-(-2800 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-559)))
-(((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567)))) ((|#1| |#1|) . T) (($ $) -2800 (|has| |#1| (-172)) (|has| |#1| (-559))))
+(-2811 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-559)))
+(((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567)))) ((|#1| |#1|) . T) (($ $) -2811 (|has| |#1| (-172)) (|has| |#1| (-559))))
((($ $) |has| |#1| (-559)) ((|#1| |#1|) . T))
-(((#0=(-700) (-1174 #0#)) . T))
+(((#0=(-700) (-1175 #0#)) . T))
((((-584 |#1|)) . T) (((-410 (-567))) . T) (($) . T))
((((-410 (-567))) . T) (($) . T))
-((((-863)) . T) (((-1268 |#4|)) . T))
-((((-863)) . T) (((-1268 |#3|)) . T))
+((((-863)) . T) (((-1269 |#4|)) . T))
+((((-863)) . T) (((-1269 |#3|)) . T))
((((-584 |#1|)) . T) (($) . T) (((-410 (-567))) . T))
((($) . T) (((-410 (-567))) . T))
-((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T) (($) -2800 (|has| |#1| (-172)) (|has| |#1| (-559))))
+((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T) (($) -2811 (|has| |#1| (-172)) (|has| |#1| (-559))))
((($) |has| |#1| (-559)) ((|#1|) . T))
((((-863)) . T))
((($) . T) (((-567)) . T) (((-410 (-567))) . T))
((($) . T))
-((($ $) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) ((#0=(-410 (-567)) #0#) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((#1=(-1260 |#1| |#2| |#3|) #1#) |has| |#1| (-365)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) ((#0=(-410 (-567)) #0#) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))))
-((($) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-1260 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) . T))
-(((|#1|) . T) (($) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))))
+((($ $) -2811 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) ((#0=(-410 (-567)) #0#) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((#1=(-1261 |#1| |#2| |#3|) #1#) |has| |#1| (-365)) ((|#1| |#1|) . T))
+(((|#1| |#1|) . T) (($ $) -2811 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) ((#0=(-410 (-567)) #0#) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))))
+((($) -2811 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-1261 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) . T))
+(((|#1|) . T) (($) -2811 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))))
(((|#3|) |has| |#3| (-1051)))
-((($) -2800 (|has| |#1| (-172)) (|has| |#1| (-559))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
-((($ $) -2800 (|has| |#1| (-172)) (|has| |#1| (-559))) ((|#1| |#1|) . T) ((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567)))))
+((($) -2811 (|has| |#1| (-172)) (|has| |#1| (-559))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+((($ $) -2811 (|has| |#1| (-172)) (|has| |#1| (-559))) ((|#1| |#1|) . T) ((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567)))))
(|has| (-1096 |#1|) (-1102))
(((|#2| (-820 |#1|)) . T))
((($) . T) (((-567)) . T) (((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T))
@@ -469,20 +469,20 @@
(((|#1|) . T) (((-410 (-567))) . T) (((-567)) . T) (($) . T))
(((|#1|) . T) (((-410 (-567))) . T) (((-567)) . T) (($) . T))
(((|#1|) . T) (((-410 (-567))) . T) (((-567)) . T) (($) . T))
-((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) |has| |#2| (-172)) (($) -2800 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))))
+((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) |has| |#2| (-172)) (($) -2811 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))))
(((|#2|) . T) ((|#6|) . T))
(|has| |#1| (-365))
((((-567)) . T) ((|#2|) . T))
-((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T) (($) -2800 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))))
+((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T) (($) -2811 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))))
(((|#2|) . T) ((|#6|) . T))
-((($) -2800 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
-((($) -2800 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
-((($) -2800 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
-((($) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+((($) -2811 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+((($) -2811 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+((($) -2811 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+((($) -2811 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
(((|#1|) . T))
-((($) -2800 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+((($) -2811 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
((((-410 $) (-410 $)) |has| |#1| (-559)) (($ $) . T) ((|#1| |#1|) . T))
-((($) -2800 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+((($) -2811 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
(((#0=(-1084) |#2|) . T) ((#0# $) . T) (($ $) . T))
((((-863)) . T))
((((-912 |#1|)) . T))
@@ -490,57 +490,57 @@
((((-144)) . T))
(((|#3|) |has| |#3| (-1102)) (((-567)) -12 (|has| |#3| (-1040 (-567))) (|has| |#3| (-1102))) (((-410 (-567))) -12 (|has| |#3| (-1040 (-410 (-567)))) (|has| |#3| (-1102))))
((((-863)) . T))
-((((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T))
+((((-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) . T))
(((|#1|) . T))
-((((-863)) -2800 (|has| |#1| (-614 (-863))) (|has| |#1| (-851)) (|has| |#1| (-1102))))
+((((-863)) -2811 (|has| |#1| (-614 (-863))) (|has| |#1| (-851)) (|has| |#1| (-1102))))
((((-539)) |has| |#1| (-615 (-539))))
(((|#1|) |has| |#1| (-172)))
-((((-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) . T))
+((((-2 (|:| -1809 (-1179)) (|:| -4236 (-52)))) . T))
(|has| |#1| (-365))
-((((-1183)) . T))
+((((-1184)) . T))
(((|#1|) . T))
-(-2800 (|has| |#1| (-21)) (|has| |#1| (-849)))
-((((-1178) |#1|) |has| |#1| (-517 (-1178) |#1|)) ((|#1| |#1|) |has| |#1| (-310 |#1|)))
+(-2811 (|has| |#1| (-21)) (|has| |#1| (-849)))
+((((-1179) |#1|) |has| |#1| (-517 (-1179) |#1|)) ((|#1| |#1|) |has| |#1| (-310 |#1|)))
(|has| |#2| (-821))
(|has| |#1| (-38 (-410 (-567))))
(|has| |#1| (-849))
-(-2800 (|has| |#1| (-851)) (|has| |#1| (-1102)))
+(-2811 (|has| |#1| (-851)) (|has| |#1| (-1102)))
((((-863)) . T))
-((((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T))
+((((-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) . T))
((((-539)) |has| |#1| (-615 (-539))))
(((|#1| |#2|) . T))
-((((-1178)) -12 (|has| |#1| (-365)) (|has| |#1| (-902 (-1178)))))
-((((-1160) |#1|) . T))
+((((-1179)) -12 (|has| |#1| (-365)) (|has| |#1| (-902 (-1179)))))
+((((-1161) |#1|) . T))
(((|#1| |#2| |#3| (-534 |#3|)) . T))
-((((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T))
+((((-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) . T))
(|has| |#1| (-370))
(|has| |#1| (-370))
(|has| |#1| (-370))
((((-863)) . T))
((((-410 (-567))) . T))
(((|#1|) . T))
-(-2800 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))
+(-2811 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))
((((-410 (-567))) . T))
(|has| |#1| (-370))
-(-2800 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))
+(-2811 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))
((((-567)) . T))
((((-567)) . T))
(((|#1|) . T) (((-567)) . T))
-(-2800 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))
+(-2811 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))
((((-863)) . T))
((((-863)) . T))
(((|#1|) . T) (((-410 (-567))) . T) (((-567)) . T) (($) . T))
((((-567)) . T) (($) . T) (((-410 (-567))) . T))
(-12 (|has| |#2| (-233)) (|has| |#2| (-1051)))
-((((-1178) #0=(-871 |#1|)) |has| #0# (-517 (-1178) #0#)) ((#0# #0#) |has| #0# (-310 #0#)))
+((((-1179) #0=(-871 |#1|)) |has| #0# (-517 (-1179) #0#)) ((#0# #0#) |has| #0# (-310 #0#)))
(((|#1|) . T))
((((-567) |#4|) . T))
((((-567) |#3|) . T))
(((|#1|) . T) (((-567)) |has| |#1| (-640 (-567))))
-(-2800 (|has| |#2| (-172)) (|has| |#2| (-849)) (|has| |#2| (-1051)))
-((((-1254 |#1| |#2| |#3| |#4|)) . T))
+(-2811 (|has| |#2| (-172)) (|has| |#2| (-849)) (|has| |#2| (-1051)))
+((((-1255 |#1| |#2| |#3| |#4|)) . T))
((((-410 (-567))) . T) (((-567)) . T))
-((((-863)) -2800 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102))))
+((((-863)) -2811 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102))))
(((|#1| |#1|) . T))
(((|#1|) . T))
(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))
@@ -549,9 +549,9 @@
((($) . T) (((-567)) . T) (((-410 (-567))) . T))
((((-567)) . T))
((((-567)) . T))
-((($) . T) (((-567)) . T) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#1|) . T))
+((($) . T) (((-567)) . T) (((-410 (-567))) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#1|) . T))
((($) . T) (((-567)) . T) (((-410 (-567))) . T))
-((((-567)) -2800 (|has| |#2| (-172)) (|has| |#2| (-849)) (-12 (|has| |#2| (-1040 (-567))) (|has| |#2| (-1102))) (|has| |#2| (-1051))) ((|#2|) -2800 (|has| |#2| (-172)) (|has| |#2| (-1102))) (((-410 (-567))) -12 (|has| |#2| (-1040 (-410 (-567)))) (|has| |#2| (-1102))))
+((((-567)) -2811 (|has| |#2| (-172)) (|has| |#2| (-849)) (-12 (|has| |#2| (-1040 (-567))) (|has| |#2| (-1102))) (|has| |#2| (-1051))) ((|#2|) -2811 (|has| |#2| (-172)) (|has| |#2| (-1102))) (((-410 (-567))) -12 (|has| |#2| (-1040 (-410 (-567)))) (|has| |#2| (-1102))))
(((|#1|) . T))
(((|#1|) . T))
((((-410 (-567))) . T) (($) . T))
@@ -567,104 +567,104 @@
((((-567) |#3|) . T))
((((-863)) . T))
((((-567)) . T) (((-410 (-567))) . T) (($) . T))
-((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T) (($) -2800 (|has| |#1| (-172)) (|has| |#1| (-559))))
+((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T) (($) -2811 (|has| |#1| (-172)) (|has| |#1| (-559))))
((((-863)) . T))
((((-567) |#1|) . T))
(((|#1|) . T))
((($ $) . T) ((#0=(-865 |#1|) $) . T) ((#0# |#2|) . T))
((($) . T))
-((($ $) . T) ((#0=(-1178) $) . T) ((#0# |#1|) . T))
+((($ $) . T) ((#0=(-1179) $) . T) ((#0# |#1|) . T))
(((|#2|) |has| |#2| (-172)))
-((($) -2800 (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))) ((|#2|) |has| |#2| (-172)) (((-410 (-567))) |has| |#2| (-38 (-410 (-567)))))
-(((|#2| |#2|) -2800 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1051))) (($ $) |has| |#2| (-172)))
+((($) -2811 (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))) ((|#2|) |has| |#2| (-172)) (((-410 (-567))) |has| |#2| (-38 (-410 (-567)))))
+(((|#2| |#2|) -2811 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1051))) (($ $) |has| |#2| (-172)))
((((-144)) . T))
(((|#1|) . T))
(-12 (|has| |#1| (-370)) (|has| |#2| (-370)))
((((-863)) . T))
-(((|#2|) -2800 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1051))) (($) |has| |#2| (-172)))
+(((|#2|) -2811 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1051))) (($) |has| |#2| (-172)))
(((|#1|) . T))
((((-863)) . T))
(|has| |#1| (-1102))
(|has| $ (-147))
-((((-1183)) . T))
-((((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#2|) |has| |#1| (-365)) (((-567)) . T) (($) . T) ((|#1|) . T))
-(((|#1|) . T) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-567)) . T) (($) . T))
+((((-1184)) . T))
+((((-410 (-567))) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#2|) |has| |#1| (-365)) (((-567)) . T) (($) . T) ((|#1|) . T))
+(((|#1|) . T) (((-410 (-567))) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-567)) . T) (($) . T))
((((-567) |#1|) . T))
-((($) -2800 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-559))) (((-410 (-567))) -2800 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T))
-((((-1178)) -12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178)))))
+((($) -2811 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-559))) (((-410 (-567))) -2811 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T))
+((((-1179)) -12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179)))))
(|has| |#1| (-365))
-(-2800 (-12 (|has| (-1176 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))
+(-2811 (-12 (|has| (-1177 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))
(|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))
(|has| |#1| (-365))
(|has| |#1| (-15 * (|#1| (-772) |#1|)))
(((|#1|) . T))
-(-2800 (|has| |#1| (-851)) (|has| |#1| (-1102)))
+(-2811 (|has| |#1| (-851)) (|has| |#1| (-1102)))
((((-863)) . T))
(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))
-(-2800 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))
+(-2811 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))
(((|#2| (-534 (-865 |#1|))) . T))
((((-863)) . T))
(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))
(((|#1|) . T))
-(-2800 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))
-(-2800 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))
-(-2800 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))
+(-2811 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))
+(-2811 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))
+(-2811 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))
((((-584 |#1|)) . T))
((($) . T))
((((-567)) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-559)))
(((|#1|) . T) (($) . T))
((((-567)) |has| |#1| (-640 (-567))) ((|#1|) . T))
-((((-1176 |#1| |#2| |#3|)) . T) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2800 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-567)) . T) ((|#1|) |has| |#1| (-172)))
-((((-1264 |#2|)) . T) (((-1176 |#1| |#2| |#3|)) . T) (((-1169 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-567)) . T) (($) -2800 (|has| |#1| (-365)) (|has| |#1| (-559))))
+((((-1177 |#1| |#2| |#3|)) . T) (((-410 (-567))) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2811 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-567)) . T) ((|#1|) |has| |#1| (-172)))
+((((-1265 |#2|)) . T) (((-1177 |#1| |#2| |#3|)) . T) (((-1170 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-567)) . T) (($) -2811 (|has| |#1| (-365)) (|has| |#1| (-559))))
(((|#4|) . T))
(((|#3|) . T))
((((-871 |#1|)) . T) (($) . T) (((-410 (-567))) . T))
((($) |has| |#1| (-559)) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) (((-567)) . T))
-((((-1178)) -12 (|has| |#2| (-902 (-1178))) (|has| |#2| (-1051))))
+((((-1179)) -12 (|has| |#2| (-902 (-1179))) (|has| |#2| (-1051))))
(((|#1|) . T))
((((-863)) . T))
((((-863)) . T))
-((((-567)) . T) (((-410 (-567))) -2800 (|has| |#2| (-38 (-410 (-567)))) (|has| |#2| (-1040 (-410 (-567))))) ((|#2|) . T) (($) -2800 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))) (((-865 |#1|)) . T))
+((((-567)) . T) (((-410 (-567))) -2811 (|has| |#2| (-38 (-410 (-567)))) (|has| |#2| (-1040 (-410 (-567))))) ((|#2|) . T) (($) -2811 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))) (((-865 |#1|)) . T))
((((-567) |#2|) . T))
((((-863)) . T))
((($) . T) (((-567)) . T) ((|#2|) . T) (((-410 (-567))) . T))
((((-863)) . T))
((((-863)) . T))
(((|#1| |#2| |#3| |#4| |#5|) . T))
-(((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567)))) ((|#1| |#1|) . T) (($ $) -2800 (|has| |#1| (-172)) (|has| |#1| (-559))))
-((($ $) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) ((#0=(-410 (-567)) #0#) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((#1=(-1176 |#1| |#2| |#3|) #1#) |has| |#1| (-365)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) ((#0=(-410 (-567)) #0#) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))))
-((($ $) -2800 (|has| |#1| (-172)) (|has| |#1| (-559))) ((|#1| |#1|) . T) ((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567)))))
+(((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567)))) ((|#1| |#1|) . T) (($ $) -2811 (|has| |#1| (-172)) (|has| |#1| (-559))))
+((($ $) -2811 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) ((#0=(-410 (-567)) #0#) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((#1=(-1177 |#1| |#2| |#3|) #1#) |has| |#1| (-365)) ((|#1| |#1|) . T))
+(((|#1| |#1|) . T) (($ $) -2811 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) ((#0=(-410 (-567)) #0#) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))))
+((($ $) -2811 (|has| |#1| (-172)) (|has| |#1| (-559))) ((|#1| |#1|) . T) ((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567)))))
((((-863)) . T))
(((|#2|) |has| |#2| (-1051)))
(|has| |#1| (-1102))
-((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T) (($) -2800 (|has| |#1| (-172)) (|has| |#1| (-559))))
-((($) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-1176 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) . T))
-(((|#1|) . T) (($) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))))
-((($) -2800 (|has| |#1| (-172)) (|has| |#1| (-559))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T) (($) -2811 (|has| |#1| (-172)) (|has| |#1| (-559))))
+((($) -2811 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-1177 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) . T))
+(((|#1|) . T) (($) -2811 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))))
+((($) -2811 (|has| |#1| (-172)) (|has| |#1| (-559))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
(((|#1|) |has| |#1| (-172)) (($) . T))
(((|#1|) . T))
-(((#0=(-410 (-567)) #0#) |has| |#2| (-38 (-410 (-567)))) ((|#2| |#2|) . T) (($ $) -2800 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))))
+(((#0=(-410 (-567)) #0#) |has| |#2| (-38 (-410 (-567)))) ((|#2| |#2|) . T) (($ $) -2811 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))))
((((-863)) . T))
-((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) |has| |#2| (-172)) (($) -2800 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))))
+((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) |has| |#2| (-172)) (($) -2811 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))))
((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T))
-((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) -2800 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))))
+((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) -2811 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))))
(((#0=(-1084) |#1|) . T) ((#0# $) . T) (($ $) . T))
-((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T) (($) -2800 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))))
+((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T) (($) -2811 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))))
((($) . T))
(((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) (($) . T))
-(-2800 (|has| |#1| (-851)) (|has| |#1| (-1102)))
+(-2811 (|has| |#1| (-851)) (|has| |#1| (-1102)))
(((|#1|) . T))
(((|#2|) |has| |#2| (-1102)) (((-567)) -12 (|has| |#2| (-1040 (-567))) (|has| |#2| (-1102))) (((-410 (-567))) -12 (|has| |#2| (-1040 (-410 (-567)))) (|has| |#2| (-1102))))
(((|#2|) |has| |#1| (-365)))
((((-567) |#1|) . T))
-((((-1183)) . T))
-((((-1183)) . T))
-((((-1183)) . T))
-((((-1183)) . T))
-((((-1183)) . T))
+((((-1184)) . T))
+((((-1184)) . T))
+((((-1184)) . T))
+((((-1184)) . T))
+((((-1184)) . T))
(((|#1|) |has| |#1| (-172)) (($) . T) (((-567)) . T))
-((((-1183)) . T))
+((((-1184)) . T))
((((-863)) . T))
((((-410 |#2|) |#3|) . T))
(((|#1| (-410 (-567))) . T))
@@ -673,37 +673,37 @@
(|has| |#1| (-38 (-410 (-567))))
(|has| |#1| (-38 (-410 (-567))))
(|has| |#1| (-38 (-410 (-567))))
-((((-863)) . T) (((-1183)) . T))
+((((-863)) . T) (((-1184)) . T))
(|has| |#1| (-145))
(|has| |#1| (-147))
-((((-1183)) . T))
-((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) |has| |#2| (-172)) (($) -2800 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))))
-((($) -2800 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+((((-1184)) . T))
+((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) |has| |#2| (-172)) (($) -2811 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))))
+((($) -2811 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
((((-410 (-567))) . T) (($) . T))
((((-410 (-567))) . T) (($) . T))
((((-410 (-567))) . T) (($) . T))
(((|#2| |#3| (-865 |#1|)) . T))
-((((-1178)) |has| |#2| (-902 (-1178))))
+((((-1179)) |has| |#2| (-902 (-1179))))
(((|#1|) . T))
(((|#1| (-534 |#2|) |#2|) . T))
(((|#1| (-772) (-1084)) . T))
((((-410 (-567))) |has| |#2| (-365)) (($) . T))
-(((|#1| (-534 (-1090 (-1178))) (-1090 (-1178))) . T))
-(-2800 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))
-(-2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))
+(((|#1| (-534 (-1090 (-1179))) (-1090 (-1179))) . T))
+(-2811 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))
+(-2811 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))
(((|#2|) . T))
(((|#1|) . T))
(((|#2|) . T))
-((((-1001 |#1|)) . T) (((-567)) . T) ((|#1|) . T) (((-410 (-567))) -2800 (|has| (-1001 |#1|) (-1040 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567))))))
-(-2800 (|has| |#2| (-172)) (|has| |#2| (-727)) (|has| |#2| (-849)) (|has| |#2| (-1051)))
+((((-1001 |#1|)) . T) (((-567)) . T) ((|#1|) . T) (((-410 (-567))) -2811 (|has| (-1001 |#1|) (-1040 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567))))))
+(-2811 (|has| |#2| (-172)) (|has| |#2| (-727)) (|has| |#2| (-849)) (|has| |#2| (-1051)))
(|has| |#2| (-794))
-(-2800 (|has| |#2| (-794)) (|has| |#2| (-849)))
+(-2811 (|has| |#2| (-794)) (|has| |#2| (-849)))
(|has| |#1| (-370))
(|has| |#1| (-370))
(|has| |#1| (-370))
(|has| |#2| (-849))
((((-895 |#1|)) . T) (((-820 |#1|)) . T))
-((((-820 (-1178))) . T))
+((((-820 (-1179))) . T))
(((|#1|) . T))
(((|#2|) . T))
(((|#2|) . T))
@@ -721,14 +721,14 @@
((($ $) . T))
(((|#1| |#1|) . T))
(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))
-((((-1260 |#1| |#2| |#3|) $) -12 (|has| (-1260 |#1| |#2| |#3|) (-287 (-1260 |#1| |#2| |#3|) (-1260 |#1| |#2| |#3|))) (|has| |#1| (-365))) (($ $) . T))
+((((-1261 |#1| |#2| |#3|) $) -12 (|has| (-1261 |#1| |#2| |#3|) (-287 (-1261 |#1| |#2| |#3|) (-1261 |#1| |#2| |#3|))) (|has| |#1| (-365))) (($ $) . T))
((($ $) . T))
((($ $) . T))
(((|#1|) . T))
((((-1142 |#1| |#2|)) |has| (-1142 |#1| |#2|) (-310 (-1142 |#1| |#2|))))
(((|#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))))
(((|#3| |#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102))))
-(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) |has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))))
+(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) |has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-310 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))))
(((|#2|) . T) (((-567)) |has| |#2| (-1040 (-567))) (((-410 (-567))) |has| |#2| (-1040 (-410 (-567)))))
(((|#1|) . T))
(((|#1| |#2|) . T))
@@ -736,112 +736,112 @@
((($) . T))
(((|#2|) . T))
(((|#3|) . T))
-(-2800 (|has| |#1| (-851)) (|has| |#1| (-1102)))
-(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) |has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))))
+(-2811 (|has| |#1| (-851)) (|has| |#1| (-1102)))
+(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) |has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-310 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))))
(((|#2|) . T))
-((((-863)) -2800 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-614 (-863))) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-727)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1051)) (|has| |#2| (-1102))) (((-1268 |#2|)) . T))
+((((-863)) -2811 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-614 (-863))) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-727)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1051)) (|has| |#2| (-1102))) (((-1269 |#2|)) . T))
((((-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) ((|#1|) . T) (((-567)) . T) (($) . T))
(((|#1|) |has| |#1| (-172)))
((((-567)) . T))
-((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) -2800 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))))
+((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) -2811 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))))
(|has| |#1| (-1102))
-((($) -2800 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+((($) -2811 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
((((-567) (-144)) . T))
-((($) -2800 (|has| |#2| (-172)) (|has| |#2| (-849)) (|has| |#2| (-1051))) ((|#2|) -2800 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1051))))
+((($) -2811 (|has| |#2| (-172)) (|has| |#2| (-849)) (|has| |#2| (-1051))) ((|#2|) -2811 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1051))))
((((-567)) . T))
(((|#1|) . T) ((|#2|) . T) (((-567)) . T))
-((($) |has| |#1| (-559)) ((|#1|) . T) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567))))) (((-567)) . T))
-(-2800 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-559)) (|has| |#1| (-1051)))
+((($) |has| |#1| (-559)) ((|#1|) . T) (((-410 (-567))) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567))))) (((-567)) . T))
+(-2811 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-559)) (|has| |#1| (-1051)))
(((|#1|) . T))
-(-2800 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-559)) (|has| |#1| (-1051)))
+(-2811 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-559)) (|has| |#1| (-1051)))
((($) . T) (((-567)) . T) ((|#2|) . T))
(((|#1|) |has| |#1| (-172)) (($) . T) (((-567)) . T))
(((|#2|) |has| |#1| (-365)))
(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))
(((|#1| |#1|) . T) (($ $) . T))
-((($) -2800 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172)))
+((($) -2811 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172)))
(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))
-((((-1183)) . T))
+((((-1184)) . T))
((((-410 (-567))) . T) (((-567)) . T) (($) . T))
-(((|#1| (-534 #0=(-1178)) #0#) . T))
+(((|#1| (-534 #0=(-1179)) #0#) . T))
(((|#1|) . T) (($) . T))
((((-567)) . T))
(|has| |#4| (-172))
(|has| |#3| (-172))
(((#0=(-410 (-954 |#1|)) #0#) . T))
-(-2800 (|has| |#1| (-851)) (|has| |#1| (-1102)))
+(-2811 (|has| |#1| (-851)) (|has| |#1| (-1102)))
(|has| |#1| (-1102))
-(-2800 (|has| |#1| (-851)) (|has| |#1| (-1102)))
+(-2811 (|has| |#1| (-851)) (|has| |#1| (-1102)))
(|has| |#1| (-1102))
-((((-863)) -2800 (|has| |#1| (-614 (-863))) (|has| |#1| (-851)) (|has| |#1| (-1102))))
+((((-863)) -2811 (|has| |#1| (-614 (-863))) (|has| |#1| (-851)) (|has| |#1| (-1102))))
((((-539)) |has| |#1| (-615 (-539))))
-(-2800 (|has| |#1| (-851)) (|has| |#1| (-1102)))
-((((-863)) . T) (((-1183)) . T))
-((((-1183)) . T))
+(-2811 (|has| |#1| (-851)) (|has| |#1| (-1102)))
+((((-863)) . T) (((-1184)) . T))
+((((-1184)) . T))
(((|#1| |#1|) |has| |#1| (-172)))
-((($ $) -2800 (|has| |#1| (-172)) (|has| |#1| (-559))) ((|#1| |#1|) . T) ((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567)))))
+((($ $) -2811 (|has| |#1| (-172)) (|has| |#1| (-559))) ((|#1| |#1|) . T) ((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567)))))
(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))
(((|#1|) . T))
((((-410 (-954 |#1|))) . T))
(((|#1|) . T) (((-567)) . T) (($) . T))
(((|#1|) |has| |#1| (-172)))
-((($) -2800 (|has| |#1| (-172)) (|has| |#1| (-559))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
-(-2800 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))
+((($) -2811 (|has| |#1| (-172)) (|has| |#1| (-559))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+(-2811 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))
((((-863)) . T))
((((-863)) . T))
-((((-1254 |#1| |#2| |#3| |#4|)) . T))
+((((-1255 |#1| |#2| |#3| |#4|)) . T))
(((|#1|) |has| |#1| (-1051)) (((-567)) -12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051))))
(((|#1| |#2|) . T))
-(-2800 (|has| |#3| (-172)) (|has| |#3| (-727)) (|has| |#3| (-849)) (|has| |#3| (-1051)))
+(-2811 (|has| |#3| (-172)) (|has| |#3| (-727)) (|has| |#3| (-849)) (|has| |#3| (-1051)))
(|has| |#3| (-794))
-(-2800 (|has| |#3| (-794)) (|has| |#3| (-849)))
+(-2811 (|has| |#3| (-794)) (|has| |#3| (-849)))
(|has| |#3| (-849))
-((((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2800 (|has| |#1| (-365)) (|has| |#1| (-559))) ((|#2|) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172)))
-(((|#1|) |has| |#1| (-172)) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2800 (|has| |#1| (-365)) (|has| |#1| (-559))))
+((((-410 (-567))) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2811 (|has| |#1| (-365)) (|has| |#1| (-559))) ((|#2|) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172)))
+(((|#1|) |has| |#1| (-172)) (((-410 (-567))) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2811 (|has| |#1| (-365)) (|has| |#1| (-559))))
(((|#2|) . T))
((((-863)) . T))
((((-863)) . T))
((((-863)) . T))
((((-863)) . T))
-(((|#1| (-1158 |#1|)) |has| |#1| (-849)))
+(((|#1| (-1159 |#1|)) |has| |#1| (-849)))
((((-567) |#2|) . T))
(|has| |#1| (-1102))
(((|#1|) . T))
-(-12 (|has| |#1| (-365)) (|has| |#2| (-1153)))
+(-12 (|has| |#1| (-365)) (|has| |#2| (-1154)))
((((-410 (-567))) . T) (($) . T))
(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))
((($) . T) (((-410 (-567))) . T))
(|has| |#1| (-1102))
(((|#2|) . T))
((((-539)) |has| |#2| (-615 (-539))) (((-894 (-381))) |has| |#2| (-615 (-894 (-381)))) (((-894 (-567))) |has| |#2| (-615 (-894 (-567)))))
-(((|#4|) -2800 (|has| |#4| (-172)) (|has| |#4| (-365))))
-(((|#3|) -2800 (|has| |#3| (-172)) (|has| |#3| (-365))))
+(((|#4|) -2811 (|has| |#4| (-172)) (|has| |#4| (-365))))
+(((|#3|) -2811 (|has| |#3| (-172)) (|has| |#3| (-365))))
((((-863)) . T))
(((|#1|) . T))
-(-2800 (|has| |#2| (-455)) (|has| |#2| (-911)))
-((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) |has| |#2| (-172)) (($) -2800 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))))
-((($) -2800 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+(-2811 (|has| |#2| (-455)) (|has| |#2| (-911)))
+((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) |has| |#2| (-172)) (($) -2811 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))))
+((($) -2811 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
(((|#1|) . T) (((-410 (-567))) . T) (($) . T))
(((|#1|) . T) (((-410 (-567))) . T) (($) . T))
(((|#1|) . T) (((-410 (-567))) . T) (($) . T))
-(-2800 (|has| |#1| (-455)) (|has| |#1| (-911)))
-((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T) (($) -2800 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))))
-((($) -2800 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+(-2811 (|has| |#1| (-455)) (|has| |#1| (-911)))
+((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T) (($) -2811 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))))
+((($) -2811 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
(((|#1|) . T) (($) . T) (((-410 (-567))) . T))
(((|#1|) . T) (($) . T) (((-410 (-567))) . T))
(((|#1|) . T) (($) . T) (((-410 (-567))) . T))
(((|#2|) . T))
-(-2800 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-911)))
+(-2811 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-911)))
(((|#2|) . T))
-((($ $) . T) ((#0=(-1178) $) |has| |#1| (-233)) ((#0# |#1|) |has| |#1| (-233)) ((#1=(-819 (-1178)) |#1|) . T) ((#1# $) . T))
-(-2800 (|has| |#1| (-455)) (|has| |#1| (-911)))
+((($ $) . T) ((#0=(-1179) $) |has| |#1| (-233)) ((#0# |#1|) |has| |#1| (-233)) ((#1=(-819 (-1179)) |#1|) . T) ((#1# $) . T))
+(-2811 (|has| |#1| (-455)) (|has| |#1| (-911)))
((((-567) |#2|) . T))
((((-863)) . T))
-((((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T))
-((((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T))
-((((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T))
+((((-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) . T))
+((((-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) . T))
+((((-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) . T))
(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))
-((($) -2800 (|has| |#3| (-172)) (|has| |#3| (-849)) (|has| |#3| (-1051))) ((|#3|) -2800 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1051))))
+((($) -2811 (|has| |#3| (-172)) (|has| |#3| (-849)) (|has| |#3| (-1051))) ((|#3|) -2811 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1051))))
((((-567) |#1|) . T))
(|has| (-410 |#2|) (-147))
(|has| (-410 |#2|) (-145))
@@ -854,40 +854,40 @@
(|has| |#1| (-559))
(|has| |#1| (-38 (-410 (-567))))
(|has| |#1| (-38 (-410 (-567))))
-((((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T))
+((((-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) . T))
((((-863)) . T))
-((((-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) . T))
+((((-2 (|:| -1809 (-1161)) (|:| -4236 |#1|))) . T))
(|has| |#1| (-38 (-410 (-567))))
-((((-391) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) . T))
+((((-391) (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|))) . T))
(|has| |#1| (-38 (-410 (-567))))
-(|has| |#2| (-1153))
-(-2800 (|has| |#1| (-365)) (|has| |#1| (-559)))
-(-2800 (|has| |#1| (-365)) (|has| |#1| (-559)))
-((((-863)) . T) (((-1183)) . T))
-((((-863)) . T) (((-1183)) . T))
-((((-863)) . T) (((-1183)) . T))
-((((-1183)) . T))
-((((-1183)) . T))
-((((-1183)) . T))
-((((-863)) . T) (((-1183)) . T))
-((((-1183)) . T))
-((((-1217)) . T) (((-863)) . T) (((-1183)) . T))
+(|has| |#2| (-1154))
+(-2811 (|has| |#1| (-365)) (|has| |#1| (-559)))
+(-2811 (|has| |#1| (-365)) (|has| |#1| (-559)))
+((((-863)) . T) (((-1184)) . T))
+((((-863)) . T) (((-1184)) . T))
+((((-863)) . T) (((-1184)) . T))
+((((-1184)) . T))
+((((-1184)) . T))
+((((-1184)) . T))
+((((-863)) . T) (((-1184)) . T))
+((((-1184)) . T))
+((((-1218)) . T) (((-863)) . T) (((-1184)) . T))
((((-116 |#1|)) . T))
-((((-1183)) . T))
-((((-863)) . T) (((-1183)) . T))
-((((-1183)) . T))
+((((-1184)) . T))
+((((-863)) . T) (((-1184)) . T))
+((((-1184)) . T))
(((|#1|) . T))
-((((-391) (-1160)) . T))
+((((-391) (-1161)) . T))
(|has| |#1| (-559))
((((-567) |#1|) . T))
-(-2800 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))
+(-2811 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))
((((-567)) . T) (($) . T) (((-410 (-567))) . T))
((((-567)) . T) (($) . T) (((-410 (-567))) . T))
(((|#2|) . T))
((((-863)) . T))
((((-820 |#1|)) . T))
(((|#2|) |has| |#2| (-172)))
-((((-1178) (-52)) . T))
+((((-1179) (-52)) . T))
(((|#1|) . T))
(|has| |#1| (-38 (-410 (-567))))
(|has| |#1| (-38 (-410 (-567))))
@@ -896,24 +896,24 @@
((((-645 |#1|)) . T))
((((-863)) . T))
((((-539)) |has| |#1| (-615 (-539))))
-(-2800 (|has| |#1| (-851)) (|has| |#1| (-1102)))
+(-2811 (|has| |#1| (-851)) (|has| |#1| (-1102)))
(((|#2|) |has| |#2| (-310 |#2|)))
(((#0=(-567) #0#) . T) ((#1=(-410 (-567)) #1#) . T) (($ $) . T))
(((|#1|) . T))
-(((|#1| (-1174 |#1|)) . T))
+(((|#1| (-1175 |#1|)) . T))
(|has| $ (-147))
(((|#2|) . T))
(((#0=(-567) #0#) . T) ((#1=(-410 (-567)) #1#) . T) (($ $) . T))
((($) . T) (((-567)) . T) (((-410 (-567))) . T))
(|has| |#2| (-370))
-(-2800 (|has| |#1| (-851)) (|has| |#1| (-1102)))
+(-2811 (|has| |#1| (-851)) (|has| |#1| (-1102)))
(((|#1|) . T) (((-410 (-567))) . T) (($) . T))
(((|#1|) . T) (((-410 (-567))) . T) (($) . T))
(((|#1|) . T) (((-410 (-567))) . T) (($) . T))
((((-567)) . T) (((-410 (-567))) . T) (($) . T))
-((($) -2800 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172)))
+((($) -2811 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172)))
(((|#1| |#2|) . T))
-((((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) ((|#1|) . T))
+((((-410 (-567))) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2811 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) ((|#1|) . T))
((((-567)) . T) (((-410 (-567))) . T) (($) . T))
(((|#1| |#2|) . T))
((((-863)) . T))
@@ -921,81 +921,81 @@
((((-863)) . T))
((((-863)) . T))
((((-539)) |has| |#1| (-615 (-539))))
-((((-863)) -2800 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102))))
-((($) . T) (((-410 (-567))) -2800 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T))
+((((-863)) -2811 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102))))
+((($) . T) (((-410 (-567))) -2811 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T))
((((-863)) . T))
-((((-1176 |#1| |#2| |#3|) $) -12 (|has| (-1176 |#1| |#2| |#3|) (-287 (-1176 |#1| |#2| |#3|) (-1176 |#1| |#2| |#3|))) (|has| |#1| (-365))) (($ $) . T))
+((((-1177 |#1| |#2| |#3|) $) -12 (|has| (-1177 |#1| |#2| |#3|) (-287 (-1177 |#1| |#2| |#3|) (-1177 |#1| |#2| |#3|))) (|has| |#1| (-365))) (($ $) . T))
((($ $) . T))
((($ $) . T))
(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))
-(((#0=(-1260 |#1| |#2| |#3|) #0#) -12 (|has| (-1260 |#1| |#2| |#3|) (-310 (-1260 |#1| |#2| |#3|))) (|has| |#1| (-365))) (((-1178) #0#) -12 (|has| (-1260 |#1| |#2| |#3|) (-517 (-1178) (-1260 |#1| |#2| |#3|))) (|has| |#1| (-365))))
+(((#0=(-1261 |#1| |#2| |#3|) #0#) -12 (|has| (-1261 |#1| |#2| |#3|) (-310 (-1261 |#1| |#2| |#3|))) (|has| |#1| (-365))) (((-1179) #0#) -12 (|has| (-1261 |#1| |#2| |#3|) (-517 (-1179) (-1261 |#1| |#2| |#3|))) (|has| |#1| (-365))))
(-12 (|has| |#1| (-1102)) (|has| |#2| (-1102)))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
((((-567)) . T) (($) . T))
-((($) -2800 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+((($) -2811 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
((($) . T) (((-567)) . T) ((|#2|) . T))
((((-567)) . T) (($) . T) ((|#2|) . T) (((-410 (-567))) |has| |#2| (-38 (-410 (-567)))))
((((-410 (-567))) . T) (((-567)) . T))
((((-567) (-144)) . T))
((((-144)) . T))
(((|#1|) . T))
-(-2800 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-559)) (|has| |#1| (-1051)))
+(-2811 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-559)) (|has| |#1| (-1051)))
((((-112)) . T))
(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))
((((-112)) . T))
(((|#1|) . T))
((((-539)) |has| |#1| (-615 (-539))) (((-225)) . #0=(|has| |#1| (-1024))) (((-381)) . #0#))
((((-863)) . T))
-((((-1183)) . T))
+((((-1184)) . T))
(|has| |#1| (-821))
-(-2800 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))
-((($) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#2|) |has| |#1| (-365)) ((|#1|) . T))
-((((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2800 (|has| |#1| (-365)) (|has| |#1| (-559))) ((|#2|) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172)))
-(((|#1|) . T) (($) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))))
-(((|#1|) |has| |#1| (-172)) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2800 (|has| |#1| (-365)) (|has| |#1| (-559))))
-(-2800 (|has| |#1| (-172)) (|has| |#1| (-559)))
+(-2811 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))
+((($) -2811 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#2|) |has| |#1| (-365)) ((|#1|) . T))
+((((-410 (-567))) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2811 (|has| |#1| (-365)) (|has| |#1| (-559))) ((|#2|) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172)))
+(((|#1|) . T) (($) -2811 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))))
+(((|#1|) |has| |#1| (-172)) (((-410 (-567))) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2811 (|has| |#1| (-365)) (|has| |#1| (-559))))
+(-2811 (|has| |#1| (-172)) (|has| |#1| (-559)))
(|has| |#1| (-559))
(|has| |#1| (-851))
-((($) . T) (((-567)) . T) (((-410 (-567))) -2800 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T))
+((($) . T) (((-567)) . T) (((-410 (-567))) -2811 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T))
((((-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) ((|#1|) . T) (((-567)) . T))
(|has| |#1| (-911))
(((|#1|) . T))
(|has| |#1| (-1102))
((((-863)) . T))
-(-2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559)))
-(-2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559)))
-(-2800 (|has| |#1| (-172)) (|has| |#1| (-559)))
+(-2811 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559)))
+(-2811 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559)))
+(-2811 (|has| |#1| (-172)) (|has| |#1| (-559)))
((((-863)) . T))
((((-863)) . T))
((((-863)) . T))
-(((|#1| (-1268 |#1|) (-1268 |#1|)) . T))
+(((|#1| (-1269 |#1|) (-1269 |#1|)) . T))
((((-567) (-144)) . T))
((($) . T))
-(-2800 (|has| |#4| (-172)) (|has| |#4| (-849)) (|has| |#4| (-1051)))
-(-2800 (|has| |#3| (-172)) (|has| |#3| (-849)) (|has| |#3| (-1051)))
-((((-1183)) . T) (((-863)) . T))
-((((-1183)) . T))
+(-2811 (|has| |#4| (-172)) (|has| |#4| (-849)) (|has| |#4| (-1051)))
+(-2811 (|has| |#3| (-172)) (|has| |#3| (-849)) (|has| |#3| (-1051)))
+((((-1184)) . T) (((-863)) . T))
+((((-1184)) . T))
((((-863)) . T))
(|has| |#1| (-1102))
(((|#1| (-973)) . T))
(((|#1| |#1|) . T))
((($) . T))
-(-2800 (|has| |#2| (-794)) (|has| |#2| (-849)))
-(-2800 (|has| |#2| (-794)) (|has| |#2| (-849)))
+(-2811 (|has| |#2| (-794)) (|has| |#2| (-849)))
+(-2811 (|has| |#2| (-794)) (|has| |#2| (-849)))
(-12 (|has| |#1| (-476)) (|has| |#2| (-476)))
-(-2800 (|has| |#2| (-172)) (|has| |#2| (-727)) (|has| |#2| (-849)) (|has| |#2| (-1051)))
+(-2811 (|has| |#2| (-172)) (|has| |#2| (-727)) (|has| |#2| (-849)) (|has| |#2| (-1051)))
((($) . T) (((-567)) . T) (((-871 |#1|)) . T) (((-410 (-567))) . T))
(((|#1|) . T))
(|has| |#2| (-794))
-(-2800 (|has| |#2| (-794)) (|has| |#2| (-849)))
+(-2811 (|has| |#2| (-794)) (|has| |#2| (-849)))
(((|#1| |#2|) . T))
(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))
(|has| |#2| (-849))
(-12 (|has| |#1| (-794)) (|has| |#2| (-794)))
(-12 (|has| |#1| (-794)) (|has| |#2| (-794)))
-(-2800 (-12 (|has| |#1| (-476)) (|has| |#2| (-476))) (-12 (|has| |#1| (-727)) (|has| |#2| (-727))))
+(-2811 (-12 (|has| |#1| (-476)) (|has| |#2| (-476))) (-12 (|has| |#1| (-727)) (|has| |#2| (-727))))
(((|#1| |#2|) . T))
(((|#1|) |has| |#1| (-172)) ((|#4|) . T) (((-567)) . T))
(((|#2|) |has| |#2| (-172)))
@@ -1007,7 +1007,7 @@
(((|#1|) . T))
((((-410 (-567))) . T) (($) . T))
(((|#2|) . T) (($) . T) (((-410 (-567))) . T))
-((($) . T) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#1|) . T))
+((($) . T) (((-410 (-567))) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#1|) . T))
(|has| |#1| (-829))
((((-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) (((-567)) |has| |#1| (-1040 (-567))) ((|#1|) . T))
(|has| |#1| (-1102))
@@ -1018,13 +1018,13 @@
(((|#4|) |has| |#4| (-1102)))
(((|#3|) |has| |#3| (-1102)))
(|has| |#3| (-370))
-((($) |has| |#1| (-559)) ((|#1|) . T) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567))))) (((-567)) . T))
-((((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2800 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-1260 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172)))
+((($) |has| |#1| (-559)) ((|#1|) . T) (((-410 (-567))) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567))))) (((-567)) . T))
+((((-410 (-567))) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2811 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-1261 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172)))
((((-863)) . T))
((((-863)) . T))
(((|#2|) . T))
(((|#1| |#2|) . T))
-(((|#1|) |has| |#1| (-172)) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2800 (|has| |#1| (-365)) (|has| |#1| (-559))))
+(((|#1|) |has| |#1| (-172)) (((-410 (-567))) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2811 (|has| |#1| (-365)) (|has| |#1| (-559))))
((($) |has| |#1| (-559)) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
(((|#1| |#1|) |has| |#1| (-172)))
(|has| |#2| (-365))
@@ -1032,37 +1032,37 @@
(((|#1|) |has| |#1| (-172)))
((((-410 (-567))) . T) (((-567)) . T))
((($) . T) (((-567)) . T) (((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T))
-((($ $) -2800 (|has| |#1| (-172)) (|has| |#1| (-559))) ((|#1| |#1|) . T) ((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567)))))
+((($ $) -2811 (|has| |#1| (-172)) (|has| |#1| (-559))) ((|#1| |#1|) . T) ((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567)))))
((($) . T) (((-567)) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T))
((($) . T) (((-567)) . T))
-((($) -2800 (|has| |#1| (-172)) (|has| |#1| (-559))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+((($) -2811 (|has| |#1| (-172)) (|has| |#1| (-559))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))))
((((-144)) . T))
(((|#1|) . T))
-((($) -2800 (|has| |#2| (-172)) (|has| |#2| (-849)) (|has| |#2| (-1051))) ((|#2|) -2800 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1051))))
+((($) -2811 (|has| |#2| (-172)) (|has| |#2| (-849)) (|has| |#2| (-1051))) ((|#2|) -2811 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1051))))
((((-144)) . T))
((((-144)) . T))
((((-410 (-567))) . #0=(|has| |#2| (-365))) (($) . #0#) ((|#2|) . T) (((-567)) . T))
(((|#1| |#2| |#3|) . T))
-(-2800 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-559)) (|has| |#1| (-1051)))
+(-2811 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-559)) (|has| |#1| (-1051)))
(((|#1|) |has| |#1| (-172)))
(|has| $ (-147))
(|has| $ (-147))
-((((-1183)) . T))
+((((-1184)) . T))
(((|#1|) |has| |#1| (-172)))
(|has| |#1| (-1102))
((((-863)) . T))
(|has| |#1| (-38 (-410 (-567))))
(|has| |#1| (-38 (-410 (-567))))
-(-2800 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-476)) (|has| |#1| (-559)) (|has| |#1| (-1051)) (|has| |#1| (-1114)))
+(-2811 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-476)) (|has| |#1| (-559)) (|has| |#1| (-1051)) (|has| |#1| (-1114)))
((($ $) |has| |#1| (-287 $ $)) ((|#1| $) |has| |#1| (-287 |#1| |#1|)))
(((|#1| (-410 (-567))) . T))
(((|#1|) . T))
((((-410 (-567))) . T) (((-567)) . T) (($) . T))
-((((-1178)) . T))
+((((-1179)) . T))
(|has| |#1| (-559))
-(-2800 (|has| |#1| (-365)) (|has| |#1| (-559)))
-(-2800 (|has| |#1| (-365)) (|has| |#1| (-559)))
+(-2811 (|has| |#1| (-365)) (|has| |#1| (-559)))
+(-2811 (|has| |#1| (-365)) (|has| |#1| (-559)))
(|has| |#1| (-559))
(|has| |#1| (-38 (-410 (-567))))
(|has| |#1| (-38 (-410 (-567))))
@@ -1073,7 +1073,7 @@
(|has| |#1| (-147))
(|has| |#1| (-145))
(|has| |#4| (-849))
-(((|#2| (-240 (-2414 |#1|) (-772)) (-865 |#1|)) . T))
+(((|#2| (-240 (-2423 |#1|) (-772)) (-865 |#1|)) . T))
(|has| |#3| (-849))
(((|#1| (-534 |#3|) |#3|) . T))
(|has| |#1| (-147))
@@ -1088,20 +1088,20 @@
(|has| |#1| (-145))
((((-410 (-567))) |has| |#2| (-365)) (($) . T))
(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))
-(-2800 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))
-(-2800 (|has| |#1| (-351)) (|has| |#1| (-370)))
+(-2811 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))
+(-2811 (|has| |#1| (-351)) (|has| |#1| (-370)))
((((-1144 |#2| |#1|)) . T) ((|#1|) . T))
(|has| |#2| (-172))
(((|#1| |#2|) . T))
(-12 (|has| |#2| (-233)) (|has| |#2| (-1051)))
-(((|#2|) . T) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T))
-(-2800 (|has| |#3| (-794)) (|has| |#3| (-849)))
-(-2800 (|has| |#3| (-794)) (|has| |#3| (-849)))
+(((|#2|) . T) (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) . T))
+(-2811 (|has| |#3| (-794)) (|has| |#3| (-849)))
+(-2811 (|has| |#3| (-794)) (|has| |#3| (-849)))
((((-863)) . T))
(((|#1|) . T))
(((|#2|) . T) (($) . T))
((((-700)) . T))
-(-2800 (|has| |#2| (-172)) (|has| |#2| (-849)) (|has| |#2| (-1051)))
+(-2811 (|has| |#2| (-172)) (|has| |#2| (-849)) (|has| |#2| (-1051)))
(|has| |#1| (-559))
(((|#1|) . T))
(((|#1|) . T))
@@ -1110,7 +1110,7 @@
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-1178) (-52)) . T))
+((((-1179) (-52)) . T))
(((|#1|) . T) (($) . T))
((((-1006 10)) . T) (((-410 (-567))) . T) (((-863)) . T))
((((-539)) . T) (((-894 (-567))) . T) (((-381)) . T) (((-225)) . T))
@@ -1125,26 +1125,26 @@
(((|#1| (-410 (-567))) . T))
(((|#3|) . T) (((-613 $)) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T))
+((((-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) . T))
(((|#1|) . T))
(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))
-((((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T))
-((((-567)) -2800 (|has| |#2| (-172)) (|has| |#2| (-849)) (-12 (|has| |#2| (-1040 (-567))) (|has| |#2| (-1102))) (|has| |#2| (-1051))) ((|#2|) -2800 (|has| |#2| (-172)) (|has| |#2| (-1102))) (((-410 (-567))) -12 (|has| |#2| (-1040 (-410 (-567)))) (|has| |#2| (-1102))))
+((((-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) . T))
+((((-567)) -2811 (|has| |#2| (-172)) (|has| |#2| (-849)) (-12 (|has| |#2| (-1040 (-567))) (|has| |#2| (-1102))) (|has| |#2| (-1051))) ((|#2|) -2811 (|has| |#2| (-172)) (|has| |#2| (-1102))) (((-410 (-567))) -12 (|has| |#2| (-1040 (-410 (-567)))) (|has| |#2| (-1102))))
(((|#1|) . T) (((-410 (-567))) . T) (($) . T))
((($ $) . T) ((|#2| $) . T))
((((-567)) . T) (($) . T) (((-410 (-567))) . T))
-(((#0=(-1176 |#1| |#2| |#3|) #0#) -12 (|has| (-1176 |#1| |#2| |#3|) (-310 (-1176 |#1| |#2| |#3|))) (|has| |#1| (-365))) (((-1178) #0#) -12 (|has| (-1176 |#1| |#2| |#3|) (-517 (-1178) (-1176 |#1| |#2| |#3|))) (|has| |#1| (-365))))
+(((#0=(-1177 |#1| |#2| |#3|) #0#) -12 (|has| (-1177 |#1| |#2| |#3|) (-310 (-1177 |#1| |#2| |#3|))) (|has| |#1| (-365))) (((-1179) #0#) -12 (|has| (-1177 |#1| |#2| |#3|) (-517 (-1179) (-1177 |#1| |#2| |#3|))) (|has| |#1| (-365))))
((((-863)) . T))
((((-863)) . T))
(((|#1| |#1|) . T))
-(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) |has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))))
-(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) (((-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) |has| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-310 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)))))
+(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) |has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-310 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))))
+(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) (((-2 (|:| -1809 (-1161)) (|:| -4236 |#1|))) |has| (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (-310 (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)))))
((((-863)) . T))
(((|#1|) . T))
(((|#3| |#3|) . T))
(((|#1|) . T))
((($) . T) ((|#2|) . T))
-((((-1178) (-52)) . T))
+((((-1179) (-52)) . T))
(((|#3|) . T))
((($ $) . T) ((#0=(-865 |#1|) $) . T) ((#0# |#2|) . T))
(|has| |#1| (-829))
@@ -1152,12 +1152,12 @@
((($) . T) (((-567)) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T))
((((-567)) . T) (($) . T) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
(|has| (-1096 |#1|) (-1102))
-(((|#2| |#2|) -2800 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1051))) (($ $) |has| |#2| (-172)))
-(((|#2|) -2800 (|has| |#2| (-172)) (|has| |#2| (-365))))
-((((-567) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T) ((|#1| |#2|) . T))
-(((|#2|) -2800 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1051))) (($) |has| |#2| (-172)))
+(((|#2| |#2|) -2811 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1051))) (($ $) |has| |#2| (-172)))
+(((|#2|) -2811 (|has| |#2| (-172)) (|has| |#2| (-365))))
+((((-567) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) . T) ((|#1| |#2|) . T))
+(((|#2|) -2811 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1051))) (($) |has| |#2| (-172)))
((((-567)) . T))
-((((-1183)) . T))
+((((-1184)) . T))
((((-772)) . T))
(((|#2|) |has| |#2| (-172)))
(((|#1|) |has| |#1| (-172)))
@@ -1173,103 +1173,104 @@
((((-116 |#1|)) . T))
(((|#1|) . T))
((((-410 (-567))) . T) (($) . T))
-(-2800 (|has| |#1| (-172)) (|has| |#1| (-559)))
-(-2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559)))
+(-2811 (|has| |#1| (-172)) (|has| |#1| (-559)))
+((((-1184)) . T))
((($) . T) (((-410 (-567))) . T))
-(-2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559)))
-(-2800 (|has| |#1| (-172)) (|has| |#1| (-559)))
+(-2811 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559)))
+(-2811 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559)))
+(-2811 (|has| |#1| (-172)) (|has| |#1| (-559)))
(|has| |#1| (-145))
-(|has| |#1| (-147))
((((-567)) . T))
+(|has| |#1| (-147))
((((-567)) . T))
-((((-894 (-567))) . T) (((-894 (-381))) . T) (((-539)) . T) (((-1178)) . T))
+((((-894 (-567))) . T) (((-894 (-381))) . T) (((-539)) . T) (((-1179)) . T))
((((-863)) . T))
-(-2800 (|has| |#1| (-851)) (|has| |#1| (-1102)))
-((((-863)) . T) (((-1183)) . T))
-((((-1183)) . T))
+(-2811 (|has| |#1| (-851)) (|has| |#1| (-1102)))
+((((-863)) . T) (((-1184)) . T))
+((((-1184)) . T))
((($) . T))
(((|#1|) . T))
((((-863)) . T))
-(-2800 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))
+(-2811 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))
(((|#1|) . T) (($) . T))
(((|#2|) |has| |#2| (-172)))
-((($) -2800 (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))) ((|#2|) |has| |#2| (-172)) (((-410 (-567))) |has| |#2| (-38 (-410 (-567)))))
+((($) -2811 (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))) ((|#2|) |has| |#2| (-172)) (((-410 (-567))) |has| |#2| (-38 (-410 (-567)))))
((((-871 |#1|)) . T))
-(-2800 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-727)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1051)) (|has| |#2| (-1102)))
+(-2811 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-727)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1051)) (|has| |#2| (-1102)))
(-12 (|has| |#3| (-233)) (|has| |#3| (-1051)))
-(|has| |#2| (-1153))
-(((#0=(-52)) . T) (((-2 (|:| -1795 (-1178)) (|:| -4237 #0#))) . T))
+(|has| |#2| (-1154))
+(((#0=(-52)) . T) (((-2 (|:| -1809 (-1179)) (|:| -4236 #0#))) . T))
(((|#1| |#2|) . T))
-(-2800 (|has| |#3| (-172)) (|has| |#3| (-849)) (|has| |#3| (-1051)))
+(-2811 (|has| |#3| (-172)) (|has| |#3| (-849)) (|has| |#3| (-1051)))
(((|#1| (-567) (-1084)) . T))
(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))
(((|#1| (-410 (-567)) (-1084)) . T))
-((($) -2800 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-559))) (((-410 (-567))) -2800 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T))
+((($) -2811 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-559))) (((-410 (-567))) -2811 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T))
((((-567) |#2|) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
(|has| |#2| (-370))
(-12 (|has| |#1| (-370)) (|has| |#2| (-370)))
((((-863)) . T))
-((((-1178) |#1|) |has| |#1| (-517 (-1178) |#1|)) ((|#1| |#1|) |has| |#1| (-310 |#1|)))
-(-2800 (|has| |#1| (-145)) (|has| |#1| (-370)))
-(-2800 (|has| |#1| (-145)) (|has| |#1| (-370)))
-(-2800 (|has| |#1| (-145)) (|has| |#1| (-370)))
+((((-1179) |#1|) |has| |#1| (-517 (-1179) |#1|)) ((|#1| |#1|) |has| |#1| (-310 |#1|)))
+(-2811 (|has| |#1| (-145)) (|has| |#1| (-370)))
+(-2811 (|has| |#1| (-145)) (|has| |#1| (-370)))
+(-2811 (|has| |#1| (-145)) (|has| |#1| (-370)))
(((|#1|) . T))
((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-559)))
-((((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2800 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-1176 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172)))
-(((|#1|) |has| |#1| (-172)) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2800 (|has| |#1| (-365)) (|has| |#1| (-559))))
+((((-410 (-567))) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2811 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-1177 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172)))
+(((|#1|) |has| |#1| (-172)) (((-410 (-567))) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2811 (|has| |#1| (-365)) (|has| |#1| (-559))))
((($) |has| |#1| (-559)) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
(((|#4|) . T))
(|has| |#1| (-351))
-((((-567)) -2800 (|has| |#3| (-172)) (|has| |#3| (-849)) (-12 (|has| |#3| (-1040 (-567))) (|has| |#3| (-1102))) (|has| |#3| (-1051))) ((|#3|) -2800 (|has| |#3| (-172)) (|has| |#3| (-1102))) (((-410 (-567))) -12 (|has| |#3| (-1040 (-410 (-567)))) (|has| |#3| (-1102))))
+((((-567)) -2811 (|has| |#3| (-172)) (|has| |#3| (-849)) (-12 (|has| |#3| (-1040 (-567))) (|has| |#3| (-1102))) (|has| |#3| (-1051))) ((|#3|) -2811 (|has| |#3| (-172)) (|has| |#3| (-1102))) (((-410 (-567))) -12 (|has| |#3| (-1040 (-410 (-567)))) (|has| |#3| (-1102))))
(((|#1|) . T))
(((|#4|) . T) (((-863)) . T))
-(((|#3|) . T) ((|#2|) . T) (($) -2800 (|has| |#4| (-172)) (|has| |#4| (-849)) (|has| |#4| (-1051))) (((-567)) . T) ((|#4|) -2800 (|has| |#4| (-172)) (|has| |#4| (-365)) (|has| |#4| (-1051))))
-(((|#2|) . T) (($) -2800 (|has| |#3| (-172)) (|has| |#3| (-849)) (|has| |#3| (-1051))) (((-567)) . T) ((|#3|) -2800 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1051))))
-(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) ((#0=(-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) #0#) |has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))))
+(((|#3|) . T) ((|#2|) . T) (($) -2811 (|has| |#4| (-172)) (|has| |#4| (-849)) (|has| |#4| (-1051))) (((-567)) . T) ((|#4|) -2811 (|has| |#4| (-172)) (|has| |#4| (-365)) (|has| |#4| (-1051))))
+(((|#2|) . T) (($) -2811 (|has| |#3| (-172)) (|has| |#3| (-849)) (|has| |#3| (-1051))) (((-567)) . T) ((|#3|) -2811 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1051))))
+(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) ((#0=(-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) #0#) |has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-310 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))))
(|has| |#1| (-559))
(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))
((((-863)) . T))
(((|#1| |#2|) . T))
-(-2800 (|has| |#2| (-455)) (|has| |#2| (-911)))
-(-2800 (|has| |#1| (-851)) (|has| |#1| (-1102)))
-(-2800 (|has| |#1| (-455)) (|has| |#1| (-911)))
+(-2811 (|has| |#2| (-455)) (|has| |#2| (-911)))
+(-2811 (|has| |#1| (-851)) (|has| |#1| (-1102)))
+(-2811 (|has| |#1| (-455)) (|has| |#1| (-911)))
((((-410 (-567))) . T) (((-567)) . T))
((((-567)) . T))
-((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) |has| |#2| (-172)) (($) -2800 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))))
+((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) |has| |#2| (-172)) (($) -2811 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))))
((($) . T))
((((-863)) . T))
(((|#1|) . T))
((((-871 |#1|)) . T) (($) . T) (((-410 (-567))) . T))
((((-863)) . T))
-(((|#3| |#3|) -2800 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1051))) (($ $) |has| |#3| (-172)))
+(((|#3| |#3|) -2811 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1051))) (($ $) |has| |#3| (-172)))
(|has| |#1| (-1024))
((((-863)) . T))
-(((|#3|) -2800 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1051))) (($) |has| |#3| (-172)))
+(((|#3|) -2811 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1051))) (($) |has| |#3| (-172)))
((((-567) (-112)) . T))
-((((-1183)) . T))
+((((-1184)) . T))
(((|#1|) |has| |#1| (-310 |#1|)))
-((((-1183)) . T))
+((((-1184)) . T))
(|has| |#1| (-370))
(|has| |#1| (-370))
(|has| |#1| (-370))
-((((-1178) $) |has| |#1| (-517 (-1178) $)) (($ $) |has| |#1| (-310 $)) ((|#1| |#1|) |has| |#1| (-310 |#1|)) (((-1178) |#1|) |has| |#1| (-517 (-1178) |#1|)))
-((((-1178)) |has| |#1| (-902 (-1178))))
-(-2800 (-12 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))
+((((-1179) $) |has| |#1| (-517 (-1179) $)) (($ $) |has| |#1| (-310 $)) ((|#1| |#1|) |has| |#1| (-310 |#1|)) (((-1179) |#1|) |has| |#1| (-517 (-1179) |#1|)))
+((((-1179)) |has| |#1| (-902 (-1179))))
+(-2811 (-12 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))
(((|#1| |#4|) . T))
(((|#1| |#3|) . T))
((((-391) |#1|) . T))
-(-2800 (|has| |#1| (-365)) (|has| |#1| (-351)))
+(-2811 (|has| |#1| (-365)) (|has| |#1| (-351)))
(|has| |#1| (-1102))
(((|#2|) . T) (((-863)) . T))
((((-863)) . T))
(((|#2|) . T))
((((-912 |#1|)) . T))
-((((-863)) . T) (((-1183)) . T))
-((((-1183)) . T))
-((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) |has| |#2| (-172)) (($) -2800 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))))
-((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) -2800 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))))
+((((-863)) . T) (((-1184)) . T))
+((((-1184)) . T))
+((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) |has| |#2| (-172)) (($) -2811 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))))
+((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) -2811 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))))
(((|#1| |#2|) . T))
((($) . T))
((((-567)) . T) (($) . T) (((-410 (-567))) . T))
@@ -1278,18 +1279,18 @@
(((|#1|) . T) (((-410 (-567))) . T) (($) . T) (((-567)) . T))
(((|#1| |#1|) . T))
(((#0=(-871 |#1|)) |has| #0# (-310 #0#)))
-((((-567)) . T) (($) -2800 (|has| |#1| (-365)) (|has| |#1| (-351))) (((-410 (-567))) -2800 (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-1040 (-410 (-567))))) ((|#1|) . T))
+((((-567)) . T) (($) -2811 (|has| |#1| (-365)) (|has| |#1| (-351))) (((-410 (-567))) -2811 (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-1040 (-410 (-567))))) ((|#1|) . T))
(((|#1| |#2|) . T))
-(-2800 (|has| |#2| (-794)) (|has| |#2| (-849)))
-(-2800 (|has| |#2| (-794)) (|has| |#2| (-849)))
+(-2811 (|has| |#2| (-794)) (|has| |#2| (-849)))
+(-2811 (|has| |#2| (-794)) (|has| |#2| (-849)))
(((|#1|) . T))
(-12 (|has| |#1| (-794)) (|has| |#2| (-794)))
(-12 (|has| |#1| (-794)) (|has| |#2| (-794)))
-(-2800 (|has| |#2| (-172)) (|has| |#2| (-849)) (|has| |#2| (-1051)))
+(-2811 (|has| |#2| (-172)) (|has| |#2| (-849)) (|has| |#2| (-1051)))
((($) . T) (((-567)) . T) ((|#2|) . T))
-(((|#2|) . T) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T))
+(((|#2|) . T) (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) . T))
(((|#2|) . T) (($) . T))
-(|has| |#1| (-1203))
+(|has| |#1| (-1204))
(((#0=(-567) #0#) . T) ((#1=(-410 (-567)) #1#) . T) (($ $) . T))
((((-410 (-567))) . T) (($) . T))
(((|#4|) |has| |#4| (-1051)))
@@ -1299,8 +1300,8 @@
(((|#1| |#1|) . T) (($ $) . T) ((#0=(-410 (-567)) #0#) . T))
(|has| |#1| (-365))
((((-567)) . T) (((-410 (-567))) . T) (($) . T))
-((($ $) . T) ((#0=(-410 (-567)) #0#) -2800 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1| |#1|) . T))
-((((-863)) -2800 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102))))
+((($ $) . T) ((#0=(-410 (-567)) #0#) -2811 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1| |#1|) . T))
+((((-863)) -2811 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102))))
(((|#1|) . T) (($) . T) (((-410 (-567))) . T))
((((-863)) . T))
((((-863)) . T))
@@ -1315,29 +1316,29 @@
(((|#1| |#2|) . T))
(|has| |#1| (-849))
(|has| |#1| (-849))
-((($) . T) (((-410 (-567))) -2800 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T))
-(-2800 (|has| |#1| (-172)) (|has| |#1| (-559)))
+((($) . T) (((-410 (-567))) -2811 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T))
+(-2811 (|has| |#1| (-172)) (|has| |#1| (-559)))
((($) . T))
-(((#0=(-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) #0#) |has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-310 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))))))
+(((#0=(-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) #0#) |has| (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (-310 (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))))))
((($) . T))
((($) . T))
(((|#2|) |has| |#2| (-1102)))
-((((-863)) -2800 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-614 (-863))) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-727)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1051)) (|has| |#2| (-1102))) (((-1268 |#2|)) . T))
+((((-863)) -2811 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-614 (-863))) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-727)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1051)) (|has| |#2| (-1102))) (((-1269 |#2|)) . T))
((($) . T))
((((-567)) . T) (($) . T) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
-((((-1160) (-52)) . T))
+((((-1161) (-52)) . T))
(((|#2|) |has| |#2| (-172)))
-((($) -2800 (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))) ((|#2|) |has| |#2| (-172)) (((-410 (-567))) |has| |#2| (-38 (-410 (-567)))))
+((($) -2811 (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))) ((|#2|) |has| |#2| (-172)) (((-410 (-567))) |has| |#2| (-38 (-410 (-567)))))
((((-863)) . T))
(((|#2|) . T))
-((($) -2800 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))) ((|#2|) . T) (((-410 (-567))) |has| |#2| (-38 (-410 (-567)))))
+((($) -2811 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))) ((|#2|) . T) (((-410 (-567))) |has| |#2| (-38 (-410 (-567)))))
((((-567)) |has| #0=(-410 |#2|) (-640 (-567))) ((#0#) . T))
((($) . T) (((-567)) . T))
((((-567) (-144)) . T))
-((((-567) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T) ((|#1| |#2|) . T))
+((((-567) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) . T) ((|#1| |#2|) . T))
((((-410 (-567))) . T) (($) . T))
(((|#1|) . T))
-((((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T))
+((((-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) . T))
((((-863)) . T))
((((-912 |#1|)) . T))
(|has| |#1| (-365))
@@ -1345,60 +1346,62 @@
(|has| |#1| (-365))
(|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))
(|has| |#1| (-849))
-((($) -2800 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-559))) (((-410 (-567))) -2800 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T))
+((($) -2811 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-559))) (((-410 (-567))) -2811 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T))
(|has| |#1| (-365))
(((|#1|) . T) (($) . T))
(|has| |#1| (-849))
-((($) . T) (((-410 (-567))) -2800 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T))
-((((-1178)) |has| |#1| (-902 (-1178))))
+((($) . T) (((-410 (-567))) -2811 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T))
+((((-1179)) |has| |#1| (-902 (-1179))))
(|has| |#1| (-849))
((((-509)) . T))
-(((|#1| (-1178)) . T))
-(((|#1| (-1268 |#1|) (-1268 |#1|)) . T))
-((((-863)) . T) (((-1183)) . T))
+(((|#1| (-1179)) . T))
+(((|#1| (-1269 |#1|) (-1269 |#1|)) . T))
+((((-863)) . T) (((-1184)) . T))
(((|#1| |#2|) . T))
((($ $) . T))
-((((-1183)) . T))
+((((-1184)) . T))
(|has| |#1| (-1102))
-(((|#1| (-1178) (-819 (-1178)) (-534 (-819 (-1178)))) . T))
+(((|#1| (-1179) (-819 (-1179)) (-534 (-819 (-1179)))) . T))
((((-410 (-954 |#1|))) . T))
((((-539)) . T))
((((-863)) . T))
((($) . T))
(((|#2|) . T) (($) . T))
-((((-567) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T) ((|#1| |#2|) . T))
+((((-567) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) . T) ((|#1| |#2|) . T))
(((|#1|) . T))
(((|#1|) |has| |#1| (-172)))
((($) |has| |#1| (-559)) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+((((-863)) . T) (((-1184)) . T))
+((((-1184)) . T))
(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))
(((|#3|) . T))
(((|#1|) |has| |#1| (-172)))
-((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) -2800 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))))
-((($) -2800 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
-((($) -2800 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-567)) . T) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172)))
+((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) -2811 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))))
+((($) -2811 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+((($) -2811 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-567)) . T) (((-410 (-567))) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172)))
(((|#1|) . T))
(((|#1|) . T))
((((-539)) |has| |#1| (-615 (-539))) (((-894 (-381))) |has| |#1| (-615 (-894 (-381)))) (((-894 (-567))) |has| |#1| (-615 (-894 (-567)))))
((((-863)) . T))
((((-871 |#1|)) . T) (($) . T) (((-410 (-567))) . T))
-(((|#2|) . T) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T))
+(((|#2|) . T) (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) . T))
((((-509)) . T))
(|has| |#2| (-849))
((((-509)) . T))
(-12 (|has| |#2| (-233)) (|has| |#2| (-1051)))
(|has| |#1| (-559))
((((-871 |#1|)) . T) (((-410 (-567))) . T) (($) . T))
-((((-1160) |#1|) . T))
-(|has| |#1| (-1153))
-(-2800 (|has| |#2| (-172)) (|has| |#2| (-849)) (|has| |#2| (-1051)))
+((((-1161) |#1|) . T))
+(|has| |#1| (-1154))
+(-2811 (|has| |#2| (-172)) (|has| |#2| (-849)) (|has| |#2| (-1051)))
((((-960 |#1|)) . T))
-(((#0=(-410 (-567)) #0#) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($ $) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) ((|#1| |#1|) . T))
-((((-410 (-567))) |has| |#1| (-1040 (-567))) (((-567)) |has| |#1| (-1040 (-567))) (((-1178)) |has| |#1| (-1040 (-1178))) ((|#1|) . T))
+(((#0=(-410 (-567)) #0#) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($ $) -2811 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) ((|#1| |#1|) . T))
+((((-410 (-567))) |has| |#1| (-1040 (-567))) (((-567)) |has| |#1| (-1040 (-567))) (((-1179)) |has| |#1| (-1040 (-1179))) ((|#1|) . T))
((((-567) |#2|) . T))
((((-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) (((-567)) |has| |#1| (-1040 (-567))) ((|#1|) . T))
((($) . T) (((-567)) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T))
((((-567)) |has| |#1| (-888 (-567))) (((-381)) |has| |#1| (-888 (-381))))
-((((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) ((|#1|) . T))
+((((-410 (-567))) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2811 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) ((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T) (($) . T) (((-567)) . T))
((((-645 |#4|)) . T) (((-863)) . T))
@@ -1406,37 +1409,37 @@
((((-539)) |has| |#4| (-615 (-539))))
((((-863)) . T) (((-645 |#4|)) . T))
((($) |has| |#1| (-849)))
-((((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-1260 |#1| |#2| |#3|)) |has| |#1| (-365)) (((-567)) . T) (($) . T) ((|#1|) . T))
-((((-567)) -2800 (|has| |#2| (-172)) (|has| |#2| (-849)) (-12 (|has| |#2| (-1040 (-567))) (|has| |#2| (-1102))) (|has| |#2| (-1051))) ((|#2|) -2800 (|has| |#2| (-172)) (|has| |#2| (-1102))) (((-410 (-567))) -12 (|has| |#2| (-1040 (-410 (-567)))) (|has| |#2| (-1102))))
+((((-410 (-567))) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-1261 |#1| |#2| |#3|)) |has| |#1| (-365)) (((-567)) . T) (($) . T) ((|#1|) . T))
+((((-567)) -2811 (|has| |#2| (-172)) (|has| |#2| (-849)) (-12 (|has| |#2| (-1040 (-567))) (|has| |#2| (-1102))) (|has| |#2| (-1051))) ((|#2|) -2811 (|has| |#2| (-172)) (|has| |#2| (-1102))) (((-410 (-567))) -12 (|has| |#2| (-1040 (-410 (-567)))) (|has| |#2| (-1102))))
(((|#1|) . T))
-(((|#1|) . T) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-567)) . T) (($) . T))
+(((|#1|) . T) (((-410 (-567))) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-567)) . T) (($) . T))
((((-645 |#4|)) . T) (((-863)) . T))
((((-539)) |has| |#4| (-615 (-539))))
(((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) (((-567)) . T) (($) . T))
(((|#1|) . T))
-((((-1178)) |has| (-410 |#2|) (-902 (-1178))))
+((((-1179)) |has| (-410 |#2|) (-902 (-1179))))
(((|#2|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) ((#0=(-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) #0#) |has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))))
-((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) |has| |#2| (-172)) (($) -2800 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))))
-((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T) (($) -2800 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))))
-((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) -2800 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))))
+(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) ((#0=(-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) #0#) |has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-310 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))))
+((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) |has| |#2| (-172)) (($) -2811 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))))
+((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T) (($) -2811 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))))
+((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) -2811 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))))
((($) . T))
((($) . T))
-((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T) (($) -2800 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))))
+((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T) (($) -2811 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))))
((($) . T))
((($) . T))
(((|#2|) . T))
-((((-863)) -2800 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-614 (-863))) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-370)) (|has| |#3| (-727)) (|has| |#3| (-794)) (|has| |#3| (-849)) (|has| |#3| (-1051)) (|has| |#3| (-1102))) (((-1268 |#3|)) . T))
+((((-863)) -2811 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-614 (-863))) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-370)) (|has| |#3| (-727)) (|has| |#3| (-794)) (|has| |#3| (-849)) (|has| |#3| (-1051)) (|has| |#3| (-1102))) (((-1269 |#3|)) . T))
((((-567) |#2|) . T))
-(-2800 (|has| |#1| (-851)) (|has| |#1| (-1102)))
-(((|#2| |#2|) -2800 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1051))) (($ $) |has| |#2| (-172)))
+(-2811 (|has| |#1| (-851)) (|has| |#1| (-1102)))
+(((|#2| |#2|) -2811 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1051))) (($ $) |has| |#2| (-172)))
(((|#2|) . T) (((-567)) . T))
((((-863)) . T))
((((-863)) . T))
-((((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T) ((|#2|) . T))
+((((-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) . T) ((|#2|) . T))
((((-863)) . T))
((((-863)) . T))
-((((-1160) (-1178) (-567) (-225) (-863)) . T))
+((((-1161) (-1179) (-567) (-225) (-863)) . T))
((((-863)) . T))
((((-863)) . T))
((((-863)) . T))
@@ -1469,9 +1472,9 @@
((((-410 (-567))) . T) (($) . T))
((((-863)) . T))
((((-539)) |has| |#1| (-615 (-539))))
-((((-863)) -2800 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102))))
+((((-863)) -2811 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102))))
((($) . T) (((-410 (-567))) . T))
-(((|#2|) -2800 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1051))) (($) |has| |#2| (-172)))
+(((|#2|) -2811 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1051))) (($) |has| |#2| (-172)))
(|has| $ (-147))
((((-410 |#2|)) . T))
((((-410 (-567))) |has| #0=(-410 |#2|) (-1040 (-410 (-567)))) (((-567)) |has| #0# (-1040 (-567))) ((#0#) . T))
@@ -1482,30 +1485,30 @@
(((|#3|) |has| |#3| (-172)))
(|has| |#1| (-147))
(|has| |#1| (-145))
-(-2800 (|has| |#1| (-145)) (|has| |#1| (-370)))
+(-2811 (|has| |#1| (-145)) (|has| |#1| (-370)))
(|has| |#1| (-147))
-(-2800 (|has| |#1| (-145)) (|has| |#1| (-370)))
+(-2811 (|has| |#1| (-145)) (|has| |#1| (-370)))
(|has| |#1| (-147))
-(-2800 (|has| |#1| (-145)) (|has| |#1| (-370)))
+(-2811 (|has| |#1| (-145)) (|has| |#1| (-370)))
(|has| |#1| (-147))
(((|#1|) . T))
(|has| |#2| (-233))
(((|#2|) . T))
-((((-863)) . T) (((-1183)) . T))
-((((-1183)) . T))
-((((-1178) (-52)) . T))
+((((-863)) . T) (((-1184)) . T))
+((((-1184)) . T))
+((((-1179) (-52)) . T))
((((-863)) . T))
-((((-863)) . T) (((-1183)) . T))
-((((-1183)) . T))
+((((-863)) . T) (((-1184)) . T))
+((((-1184)) . T))
(((|#1| |#1|) . T))
-((((-1178)) |has| |#2| (-902 (-1178))))
+((((-1179)) |has| |#2| (-902 (-1179))))
((((-129)) . T))
((((-895 |#1|)) . T) ((|#2|) . T) (((-567)) . T) (((-820 |#1|)) . T))
((((-567) (-112)) . T))
(|has| |#1| (-559))
(((|#2|) . T))
(((|#2|) . T))
-(((|#1|) . T) (((-567)) . T) (((-820 (-1178))) . T))
+(((|#1|) . T) (((-567)) . T) (((-820 (-1179))) . T))
(((|#1|) . T))
(((|#2| |#2|) . T))
(((|#1| |#1|) . T))
@@ -1524,17 +1527,17 @@
((((-1001 |#1|)) . T) ((|#1|) . T))
((((-863)) . T))
((((-863)) . T))
-((((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T))
+((((-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) . T))
((((-410 (-567))) . T) (((-410 |#1|)) . T) ((|#1|) . T) (($) . T))
-(((|#1| (-1174 |#1|)) . T))
+(((|#1| (-1175 |#1|)) . T))
((((-567)) . T) (($) . T) (((-410 (-567))) . T))
(((|#3|) . T) (($) . T))
(|has| |#1| (-851))
(((|#1|) . T) (((-567)) . T) (($) . T))
(((|#2|) . T))
((((-567)) . T) (($) . T) (((-410 (-567))) . T))
-((((-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) . T))
-((((-863)) -2800 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102))))
+((((-2 (|:| -1809 (-1161)) (|:| -4236 |#1|))) . T))
+((((-863)) -2811 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102))))
((((-567) |#2|) . T))
(((|#1|) . T) (((-410 (-567))) . T) (((-567)) . T) (($) . T))
((($) . T) (((-567)) . T) (((-410 (-567))) . T))
@@ -1546,32 +1549,32 @@
(((|#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102))))
(|has| |#1| (-38 (-410 (-567))))
(|has| |#1| (-38 (-410 (-567))))
-((((-1260 |#1| |#2| |#3|)) |has| |#1| (-365)))
-(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) ((#0=(-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) #0#) |has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))))
+((((-1261 |#1| |#2| |#3|)) |has| |#1| (-365)))
+(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) ((#0=(-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) #0#) |has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-310 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))))
(((|#2| |#2|) . T))
(|has| |#1| (-1102))
(|has| |#1| (-38 (-410 (-567))))
(|has| |#2| (-365))
(((|#2|) . T) (((-567)) |has| |#2| (-1040 (-567))) (((-410 (-567))) |has| |#2| (-1040 (-410 (-567)))))
(|has| |#1| (-38 (-410 (-567))))
-(|has| |#1| (-38 (-410 (-567))))
(((|#2|) . T))
+(|has| |#1| (-38 (-410 (-567))))
(((|#2|) . T))
-(((|#1|) . T))
(((|#1|) |has| |#1| (-172)))
-((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) -2800 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))))
-((($) -2800 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
-((((-1160) (-52)) . T))
+((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) -2811 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))))
+((($) -2811 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+(((|#1|) . T))
+((((-1161) (-52)) . T))
(((|#1|) . T))
-((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T) (($) -2800 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))))
-((($) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T) (($) -2811 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))))
+((($) -2811 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
(((|#2|) |has| |#2| (-172)))
-((($) -2800 (|has| |#2| (-172)) (|has| |#2| (-849)) (|has| |#2| (-1051))) (((-567)) -2800 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-849)) (|has| |#2| (-1051))) ((|#2|) -2800 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1051))))
+((($) -2811 (|has| |#2| (-172)) (|has| |#2| (-849)) (|has| |#2| (-1051))) (((-567)) -2811 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-849)) (|has| |#2| (-1051))) ((|#2|) -2811 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1051))))
((((-567) |#3|) . T))
((((-567) (-144)) . T))
((((-144)) . T))
((((-863)) . T))
-((((-1183)) . T))
+((((-1184)) . T))
((((-112)) . T))
(|has| |#1| (-147))
(((|#1|) . T))
@@ -1587,27 +1590,27 @@
((((-567)) |has| |#1| (-640 (-567))) ((|#1|) . T))
((((-567)) |has| |#1| (-640 (-567))) ((|#1|) . T))
((((-567)) |has| |#1| (-640 (-567))) ((|#1|) . T))
-((((-1160) (-52)) . T))
+((((-1161) (-52)) . T))
(((|#1|) . T))
(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))
(((|#1| |#2|) . T))
((((-567) (-144)) . T))
-(((#0=(-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) #0#) |has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))))
-((($) -2800 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+(((#0=(-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) #0#) |has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-310 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))))
+((($) -2811 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
(|has| |#1| (-851))
(((|#2| (-772) (-1084)) . T))
(((|#1| |#2|) . T))
-(-2800 (|has| |#1| (-172)) (|has| |#1| (-559)))
+(-2811 (|has| |#1| (-172)) (|has| |#1| (-559)))
(|has| |#1| (-792))
(((|#1|) |has| |#1| (-172)))
(((|#4|) . T))
(((|#4|) . T))
(((|#1| |#2|) . T))
-(-2800 (|has| |#1| (-147)) (-12 (|has| |#1| (-365)) (|has| |#2| (-147))))
-(-2800 (|has| |#1| (-145)) (-12 (|has| |#1| (-365)) (|has| |#2| (-145))))
+(-2811 (|has| |#1| (-147)) (-12 (|has| |#1| (-365)) (|has| |#2| (-147))))
+(-2811 (|has| |#1| (-145)) (-12 (|has| |#1| (-365)) (|has| |#2| (-145))))
(((|#4|) . T))
(|has| |#1| (-145))
-((((-1160) |#1|) . T))
+((((-1161) |#1|) . T))
(|has| |#1| (-147))
(((|#1|) . T))
((((-567)) . T))
@@ -1616,36 +1619,36 @@
((((-863)) . T))
(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))
(((|#3|) . T))
-((((-1260 |#1| |#2| |#3|)) |has| |#1| (-365)))
+((((-1261 |#1| |#2| |#3|)) |has| |#1| (-365)))
((($) . T) (((-567)) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T))
-((((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-1176 |#1| |#2| |#3|)) |has| |#1| (-365)) (((-567)) . T) (($) . T) ((|#1|) . T))
-(((|#1|) . T) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-567)) . T) (($) . T))
+((((-410 (-567))) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-1177 |#1| |#2| |#3|)) |has| |#1| (-365)) (((-567)) . T) (($) . T) ((|#1|) . T))
+(((|#1|) . T) (((-410 (-567))) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-567)) . T) (($) . T))
((((-863)) . T))
-(-2800 (|has| |#1| (-851)) (|has| |#1| (-1102)))
+(-2811 (|has| |#1| (-851)) (|has| |#1| (-1102)))
(((|#1|) . T))
(((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) (((-567)) . T) (($) . T))
-((((-863)) -2800 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102))))
-((((-863)) -2800 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102))) (((-960 |#1|)) . T))
+((((-863)) -2811 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102))))
+((((-863)) -2811 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102))) (((-960 |#1|)) . T))
(|has| |#1| (-849))
(|has| |#1| (-849))
(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))
((((-960 |#1|)) . T))
-(((|#4|) -2800 (|has| |#4| (-172)) (|has| |#4| (-365))))
-(((|#3|) -2800 (|has| |#3| (-172)) (|has| |#3| (-365))))
+(((|#4|) -2811 (|has| |#4| (-172)) (|has| |#4| (-365))))
+(((|#3|) -2811 (|has| |#3| (-172)) (|has| |#3| (-365))))
(|has| |#2| (-365))
(((|#1|) |has| |#1| (-172)))
-(((|#4|) -2800 (|has| |#4| (-172)) (|has| |#4| (-365)) (|has| |#4| (-1051))) (($) |has| |#4| (-172)))
-(((|#3|) -2800 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1051))) (($) |has| |#3| (-172)))
+(((|#4|) -2811 (|has| |#4| (-172)) (|has| |#4| (-365)) (|has| |#4| (-1051))) (($) |has| |#4| (-172)))
+(((|#3|) -2811 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1051))) (($) |has| |#3| (-172)))
(((|#2|) |has| |#2| (-1051)))
-((((-1160) |#1|) . T))
+((((-1161) |#1|) . T))
(((|#3| |#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102))))
(((|#2| (-895 |#1|)) . T))
((($) . T))
((($) . T) (((-567)) . T) (((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T))
-((((-391) (-1160)) . T))
+((((-391) (-1161)) . T))
((($) |has| |#1| (-559)) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
-((((-863)) -2800 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-614 (-863))) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-727)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1051)) (|has| |#2| (-1102))) (((-1268 |#2|)) . T))
-(((#0=(-52)) . T) (((-2 (|:| -1795 (-1160)) (|:| -4237 #0#))) . T))
+((((-863)) -2811 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-614 (-863))) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-727)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1051)) (|has| |#2| (-1102))) (((-1269 |#2|)) . T))
+(((#0=(-52)) . T) (((-2 (|:| -1809 (-1161)) (|:| -4236 #0#))) . T))
(((|#1|) . T))
((((-863)) . T))
(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))))
@@ -1654,30 +1657,30 @@
((((-567)) . T))
(|has| |#2| (-147))
(|has| |#1| (-476))
-(-2800 (|has| |#1| (-476)) (|has| |#1| (-727)) (|has| |#1| (-902 (-1178))) (|has| |#1| (-1051)))
+(-2811 (|has| |#1| (-476)) (|has| |#1| (-727)) (|has| |#1| (-902 (-1179))) (|has| |#1| (-1051)))
(|has| |#1| (-365))
((((-863)) . T))
(|has| |#1| (-38 (-410 (-567))))
((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-559)))
((($) |has| |#1| (-559)))
-((((-1183)) . T))
+((((-1184)) . T))
(|has| |#1| (-849))
(|has| |#1| (-849))
((((-863)) . T))
(((|#2|) . T))
-((((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2800 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-1260 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172)))
-(((|#1|) |has| |#1| (-172)) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2800 (|has| |#1| (-365)) (|has| |#1| (-559))))
+((((-410 (-567))) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2811 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-1261 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172)))
+(((|#1|) |has| |#1| (-172)) (((-410 (-567))) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2811 (|has| |#1| (-365)) (|has| |#1| (-559))))
((($) |has| |#1| (-559)) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
(((|#2|) . T) (((-567)) . T) (((-820 |#1|)) . T))
(((|#1| |#2|) . T))
-((((-1178)) |has| |#1| (-902 (-1178))))
+((((-1179)) |has| |#1| (-902 (-1179))))
((((-912 |#1|)) . T) (((-410 (-567))) . T) (($) . T))
((((-863)) . T))
((((-863)) . T))
(|has| |#1| (-1102))
-(((|#2| (-485 (-2414 |#1|) (-772)) (-865 |#1|)) . T))
+(((|#2| (-485 (-2423 |#1|) (-772)) (-865 |#1|)) . T))
((((-410 (-567))) . #0=(|has| |#2| (-365))) (($) . #0#))
-(((|#1| (-534 (-1178)) (-1178)) . T))
+(((|#1| (-534 (-1179)) (-1179)) . T))
(((|#1|) . T))
(((|#1|) . T))
((((-863)) . T))
@@ -1696,17 +1699,17 @@
(((|#2|) |has| |#2| (-172)))
(((|#1|) . T))
(((|#2|) . T))
-(((|#1|) . T) (((-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) . T))
-((((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T))
+(((|#1|) . T) (((-2 (|:| -1809 (-1161)) (|:| -4236 |#1|))) . T))
+((((-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) . T))
(((|#2|) . T))
-((((-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) . T))
-((((-1176 |#1| |#2| |#3|)) |has| |#1| (-365)))
-((((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T))
-((((-1178) (-52)) . T))
+((((-2 (|:| -1809 (-1179)) (|:| -4236 (-52)))) . T))
+((((-1177 |#1| |#2| |#3|)) |has| |#1| (-365)))
+((((-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) . T))
+((((-1179) (-52)) . T))
((($ $) . T))
(((|#1| (-567)) . T))
((((-912 |#1|)) . T))
-(((|#1|) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-1051))) (($) -2800 (|has| |#1| (-902 (-1178))) (|has| |#1| (-1051))))
+(((|#1|) -2811 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-1051))) (($) -2811 (|has| |#1| (-902 (-1179))) (|has| |#1| (-1051))))
(((|#1|) . T) (((-567)) |has| |#1| (-1040 (-567))) (((-410 (-567))) |has| |#1| (-1040 (-410 (-567)))))
(|has| |#1| (-851))
(|has| |#1| (-851))
@@ -1716,7 +1719,7 @@
((((-567)) . T))
(|has| |#1| (-851))
((((-690 |#2|)) . T) (((-863)) . T))
-((((-1260 |#1| |#2| |#3|)) -12 (|has| (-1260 |#1| |#2| |#3|) (-310 (-1260 |#1| |#2| |#3|))) (|has| |#1| (-365))))
+((((-1261 |#1| |#2| |#3|)) -12 (|has| (-1261 |#1| |#2| |#3|) (-310 (-1261 |#1| |#2| |#3|))) (|has| |#1| (-365))))
((((-410 (-567))) . T) (((-567)) . T) (($) . T))
(((|#1| |#2|) . T))
((((-410 (-954 |#1|))) . T))
@@ -1724,13 +1727,13 @@
(((|#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))))
(((|#1|) |has| |#1| (-172)))
(((|#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))))
-(((|#3|) -2800 (|has| |#3| (-172)) (|has| |#3| (-365))))
-((($) -2800 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
-(-2800 (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-911)))
-((($) -2800 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+(((|#3|) -2811 (|has| |#3| (-172)) (|has| |#3| (-365))))
+((($) -2811 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+(-2811 (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-911)))
+((($) -2811 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
((($ $) . T) ((#0=(-410 (-567)) #0#) . T))
((((-567) |#2|) . T))
-(((|#2|) -2800 (|has| |#2| (-172)) (|has| |#2| (-365))))
+(((|#2|) -2811 (|has| |#2| (-172)) (|has| |#2| (-365))))
(|has| |#1| (-351))
(((|#3| |#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102))))
(((|#2|) . T) (((-567)) . T))
@@ -1739,7 +1742,7 @@
(|has| |#1| (-821))
(|has| |#1| (-821))
(((|#1|) . T))
-(-2800 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351)))
+(-2811 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351)))
(|has| |#1| (-849))
(|has| |#1| (-849))
(|has| |#1| (-849))
@@ -1748,18 +1751,18 @@
((((-567)) . T) (($) . T) (((-410 (-567))) . T))
(|has| |#1| (-38 (-410 (-567))))
(|has| |#1| (-38 (-410 (-567))))
-(-2800 (|has| |#1| (-365)) (|has| |#1| (-351)))
+(-2811 (|has| |#1| (-365)) (|has| |#1| (-351)))
(|has| |#1| (-38 (-410 (-567))))
(|has| |#1| (-38 (-410 (-567))))
-((((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T))
-((((-1178)) |has| |#1| (-902 (-1178))) (((-1084)) . T))
+((((-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) . T))
+((((-1179)) |has| |#1| (-902 (-1179))) (((-1084)) . T))
(((|#1|) . T))
(|has| |#1| (-849))
-(((#0=(-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) #0#) |has| (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (-310 (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))))))
+(((#0=(-2 (|:| -1809 (-1161)) (|:| -4236 (-52))) #0#) |has| (-2 (|:| -1809 (-1161)) (|:| -4236 (-52))) (-310 (-2 (|:| -1809 (-1161)) (|:| -4236 (-52))))))
(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))
(|has| |#1| (-1102))
-((((-863)) . T) (((-1183)) . T))
-((((-1183)) . T))
+((((-863)) . T) (((-1184)) . T))
+((((-1184)) . T))
(((|#1|) . T))
(((|#2| |#2|) . T))
(((|#1|) . T))
@@ -1778,11 +1781,11 @@
(((|#1| (-772) (-1084)) . T))
(((|#3|) . T))
((((-144)) . T))
-((((-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) (((-567)) -2800 (|has| |#1| (-849)) (|has| |#1| (-1040 (-567)))) ((|#1|) . T))
+((((-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) (((-567)) -2811 (|has| |#1| (-849)) (|has| |#1| (-1040 (-567)))) ((|#1|) . T))
(((|#1|) . T))
((((-144)) . T))
(((|#2|) |has| |#2| (-172)))
-(-2800 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-727)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1051)) (|has| |#2| (-1102)))
+(-2811 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-727)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1051)) (|has| |#2| (-1102)))
(((|#1|) . T))
(|has| |#1| (-145))
(|has| |#1| (-147))
@@ -1793,78 +1796,78 @@
(((|#2|) |has| |#1| (-365)))
((((-863)) . T))
(((|#2|) . T))
-(((|#1| (-1174 |#1|)) . T))
+(((|#1| (-1175 |#1|)) . T))
((((-1084)) . T) ((|#1|) . T) (((-567)) |has| |#1| (-1040 (-567))) (((-410 (-567))) |has| |#1| (-1040 (-410 (-567)))))
((($) . T) ((|#1|) . T) (((-410 (-567))) . T))
((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-559)))
((($) |has| |#1| (-559)))
(((|#2|) . T))
-((((-1176 |#1| |#2| |#3|)) |has| |#1| (-365)))
-((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T) (($) -2800 (|has| |#1| (-172)) (|has| |#1| (-559))))
+((((-1177 |#1| |#2| |#3|)) |has| |#1| (-365)))
+((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T) (($) -2811 (|has| |#1| (-172)) (|has| |#1| (-559))))
((($) |has| |#1| (-559)) ((|#1|) . T))
((($) |has| |#1| (-849)))
-((((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2800 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-1260 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172)))
+((((-410 (-567))) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2811 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-1261 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172)))
(|has| |#1| (-911))
-((((-1178)) . T))
+((((-1179)) . T))
((((-863)) . T))
-((($) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-1260 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) . T))
-(((|#1|) . T) (($) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))))
-(((|#1|) |has| |#1| (-172)) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2800 (|has| |#1| (-365)) (|has| |#1| (-559))))
+((($) -2811 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-1261 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) . T))
+(((|#1|) . T) (($) -2811 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))))
+(((|#1|) |has| |#1| (-172)) (((-410 (-567))) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2811 (|has| |#1| (-365)) (|has| |#1| (-559))))
((($) |has| |#1| (-559)) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
-((($) -2800 (|has| |#1| (-172)) (|has| |#1| (-559))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+((($) -2811 (|has| |#1| (-172)) (|has| |#1| (-559))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))
(((|#1|) . T))
(((|#1| |#2|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((#0=(-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) #0#) |has| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-310 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)))))
-(-2800 (|has| |#2| (-455)) (|has| |#2| (-911)))
-(-2800 (|has| |#1| (-455)) (|has| |#1| (-911)))
+(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((#0=(-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) #0#) |has| (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (-310 (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)))))
+(-2811 (|has| |#2| (-455)) (|has| |#2| (-911)))
+(-2811 (|has| |#1| (-455)) (|has| |#1| (-911)))
(((|#1|) . T) (($) . T))
(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))))
(((|#1| |#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#3|) -2800 (|has| |#3| (-172)) (|has| |#3| (-365))))
+(((|#3|) -2811 (|has| |#3| (-172)) (|has| |#3| (-365))))
(|has| |#1| (-851))
(|has| |#1| (-559))
((((-584 |#1|)) . T))
((($) . T))
(((|#2|) . T))
-(-2800 (-12 (|has| |#1| (-365)) (|has| |#2| (-821))) (-12 (|has| |#1| (-365)) (|has| |#2| (-851))))
-(-2800 (|has| |#1| (-365)) (|has| |#1| (-559)))
+(-2811 (-12 (|has| |#1| (-365)) (|has| |#2| (-821))) (-12 (|has| |#1| (-365)) (|has| |#2| (-851))))
+(-2811 (|has| |#1| (-365)) (|has| |#1| (-559)))
((((-912 |#1|)) . T))
(((|#1| (-499 |#1| |#3|) (-499 |#1| |#2|)) . T))
(((|#1| |#4| |#5|) . T))
(((|#1| (-772)) . T))
((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-559)))
-((((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2800 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-1176 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172)))
-(((|#1|) |has| |#1| (-172)) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2800 (|has| |#1| (-365)) (|has| |#1| (-559))))
+((((-410 (-567))) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2811 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-1177 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172)))
+(((|#1|) |has| |#1| (-172)) (((-410 (-567))) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2811 (|has| |#1| (-365)) (|has| |#1| (-559))))
((($) |has| |#1| (-559)) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
-((((-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) . T))
+((((-2 (|:| -1809 (-1179)) (|:| -4236 (-52)))) . T))
((((-410 |#2|)) . T) (((-410 (-567))) . T) (($) . T))
((((-673 |#1|)) . T))
(((|#1| |#2| |#3| |#4|) . T))
-((((-863)) . T) (((-1183)) . T))
+((((-863)) . T) (((-1184)) . T))
((((-539)) . T))
((((-863)) . T))
(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))
((((-863)) . T))
-((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) |has| |#2| (-172)) (($) -2800 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))))
-((((-1183)) . T))
+((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) |has| |#2| (-172)) (($) -2811 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))))
+((((-1184)) . T))
((((-410 (-567))) . T) (($) . T) (((-410 |#1|)) . T) ((|#1|) . T) (((-567)) . T))
(((|#3|) . T) (((-567)) . T) (((-613 $)) . T))
((((-863)) . T))
((((-863)) . T))
((((-863)) . T))
(((|#2|) . T))
-(-2800 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-370)) (|has| |#3| (-727)) (|has| |#3| (-794)) (|has| |#3| (-849)) (|has| |#3| (-1051)) (|has| |#3| (-1102)))
-(-2800 (|has| |#2| (-172)) (|has| |#2| (-849)) (|has| |#2| (-1051)))
+(-2811 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-370)) (|has| |#3| (-727)) (|has| |#3| (-794)) (|has| |#3| (-849)) (|has| |#3| (-1051)) (|has| |#3| (-1102)))
+(-2811 (|has| |#2| (-172)) (|has| |#2| (-849)) (|has| |#2| (-1051)))
((((-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) (((-567)) |has| |#1| (-1040 (-567))) ((|#1|) . T))
-(|has| |#1| (-1203))
-(|has| |#1| (-1203))
-(-2800 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-727)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1051)) (|has| |#2| (-1102)))
-(|has| |#1| (-1203))
-(|has| |#1| (-1203))
+(|has| |#1| (-1204))
+(|has| |#1| (-1204))
+(-2811 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-727)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1051)) (|has| |#2| (-1102)))
+(|has| |#1| (-1204))
+(|has| |#1| (-1204))
((((-567)) . T) (($) . T) (((-410 (-567))) . T))
((($ $) . T) ((#0=(-410 (-567)) #0#) . T) ((#1=(-410 |#1|) #1#) . T) ((|#1| |#1|) . T))
((($) . T) (((-567)) . T) (((-410 (-567))) . T))
@@ -1877,19 +1880,19 @@
(((|#1|) . T))
(((|#1|) . T))
((($) . T) (((-567)) . T) (((-410 (-567))) . T))
-((((-1160) (-52)) . T))
+((((-1161) (-52)) . T))
(|has| |#1| (-1102))
(((|#1|) |has| |#1| (-172)) (($) . T))
-(-2800 (|has| |#2| (-821)) (|has| |#2| (-851)))
+(-2811 (|has| |#2| (-821)) (|has| |#2| (-851)))
(((|#1|) . T) (($) . T) (((-410 (-567))) . T))
(((|#1|) . T) (((-410 (-567))) . T) (($) . T))
(((|#1|) . T))
((((-567)) . T) (($) . T) (((-410 (-567))) . T))
((((-567)) . T) (((-410 (-567))) . T) (($) . T))
-((($) -2800 (|has| |#1| (-365)) (|has| |#1| (-351))) (((-410 (-567))) -2800 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T))
+((($) -2811 (|has| |#1| (-365)) (|has| |#1| (-351))) (((-410 (-567))) -2811 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T))
((((-567)) . T) (($) . T))
((((-772)) . T))
-(-2800 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))
+(-2811 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))
(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))
((((-863)) . T))
((($) . T) (((-567)) . T))
@@ -1897,35 +1900,35 @@
(|has| |#2| (-911))
(|has| |#1| (-365))
(((|#2|) |has| |#2| (-1102)))
-(-2800 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))
-(-2800 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))
-(-2800 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))
-((((-539)) . T) (((-410 (-1174 (-567)))) . T) (((-225)) . T) (((-381)) . T))
+(-2811 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))
+(-2811 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))
+(-2811 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))
+((((-539)) . T) (((-410 (-1175 (-567)))) . T) (((-225)) . T) (((-381)) . T))
((((-381)) . T) (((-225)) . T) (((-863)) . T))
(|has| |#1| (-911))
(|has| |#1| (-911))
(|has| |#1| (-911))
-(-2800 (|has| |#1| (-455)) (|has| |#1| (-911)))
+(-2811 (|has| |#1| (-455)) (|has| |#1| (-911)))
((($) . T))
-(-2800 (|has| |#1| (-851)) (|has| |#1| (-1102)))
+(-2811 (|has| |#1| (-851)) (|has| |#1| (-1102)))
((($) . T) ((|#2|) . T))
-(((|#2|) -2800 (|has| |#2| (-172)) (|has| |#2| (-365))))
-((((-1176 |#1| |#2| |#3|)) -12 (|has| (-1176 |#1| |#2| |#3|) (-310 (-1176 |#1| |#2| |#3|))) (|has| |#1| (-365))))
-(-2800 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-911)))
+(((|#2|) -2811 (|has| |#2| (-172)) (|has| |#2| (-365))))
+((((-1177 |#1| |#2| |#3|)) -12 (|has| (-1177 |#1| |#2| |#3|) (-310 (-1177 |#1| |#2| |#3|))) (|has| |#1| (-365))))
+(-2811 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-911)))
(((|#1|) . T))
-(((|#2|) -2800 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1051))) (($) |has| |#2| (-172)))
+(((|#2|) -2811 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1051))) (($) |has| |#2| (-172)))
(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))))
((((-863)) . T))
((((-863)) . T))
((($ $) . T))
-((((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T))
+((((-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) . T))
((($ $) . T))
((((-567) (-112)) . T))
((($) . T))
(((|#1|) . T))
((((-567)) . T))
((((-112)) . T))
-(-2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559)))
+(-2811 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559)))
(|has| |#1| (-38 (-410 (-567))))
(((|#1| (-567)) . T))
((($) . T))
@@ -1934,30 +1937,30 @@
(((|#1|) . T))
((((-567)) . T))
(((|#1| |#2|) . T))
-((((-1178)) |has| |#1| (-1051)))
+((((-1179)) |has| |#1| (-1051)))
(|has| |#1| (-38 (-410 (-567))))
(|has| |#1| (-38 (-410 (-567))))
(|has| |#1| (-38 (-410 (-567))))
(((|#1|) . T))
((((-863)) . T))
(((|#1| (-567)) . T))
-(((|#1| (-1260 |#1| |#2| |#3|)) . T))
+(((|#1| (-1261 |#1| |#2| |#3|)) . T))
(((|#1|) . T))
(((|#1| (-410 (-567))) . T))
-(((|#1| (-1232 |#1| |#2| |#3|)) . T))
+(((|#1| (-1233 |#1| |#2| |#3|)) . T))
(((|#1| (-772)) . T))
(((|#1|) . T))
-((((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T))
+((((-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) . T))
((((-863)) . T))
(|has| |#1| (-1102))
-((((-1160) |#1|) . T))
+((((-1161) |#1|) . T))
((($) . T))
(|has| |#2| (-147))
(|has| |#2| (-145))
-(((|#1| (-534 (-819 (-1178))) (-819 (-1178))) . T))
+(((|#1| (-534 (-819 (-1179))) (-819 (-1179))) . T))
((((-863)) . T))
-((((-1254 |#1| |#2| |#3| |#4|)) . T))
-((((-1254 |#1| |#2| |#3| |#4|)) . T))
+((((-1255 |#1| |#2| |#3| |#4|)) . T))
+((((-1255 |#1| |#2| |#3| |#4|)) . T))
(((|#1|) |has| |#1| (-1051)))
((((-567) (-112)) . T))
((((-863)) |has| |#1| (-1102)))
@@ -1968,35 +1971,35 @@
(((|#1|) . T))
((((-567)) . T))
((((-863)) . T))
-(-2800 (|has| |#1| (-145)) (|has| |#1| (-351)))
+(-2811 (|has| |#1| (-145)) (|has| |#1| (-351)))
((((-863)) . T))
(|has| |#1| (-147))
(((|#3|) . T))
-(-2800 (|has| |#3| (-172)) (|has| |#3| (-849)) (|has| |#3| (-1051)))
+(-2811 (|has| |#3| (-172)) (|has| |#3| (-849)) (|has| |#3| (-1051)))
((((-863)) . T))
-((((-1253 |#2| |#3| |#4|)) . T) (((-1254 |#1| |#2| |#3| |#4|)) . T))
+((((-1254 |#2| |#3| |#4|)) . T) (((-1255 |#1| |#2| |#3| |#4|)) . T))
((((-863)) . T))
-((((-48)) -12 (|has| |#1| (-559)) (|has| |#1| (-1040 (-567)))) (((-613 $)) . T) ((|#1|) . T) (((-567)) |has| |#1| (-1040 (-567))) (((-410 (-567))) -2800 (-12 (|has| |#1| (-559)) (|has| |#1| (-1040 (-567)))) (|has| |#1| (-1040 (-410 (-567))))) (((-410 (-954 |#1|))) |has| |#1| (-559)) (((-954 |#1|)) |has| |#1| (-1051)) (((-1178)) . T))
+((((-48)) -12 (|has| |#1| (-559)) (|has| |#1| (-1040 (-567)))) (((-613 $)) . T) ((|#1|) . T) (((-567)) |has| |#1| (-1040 (-567))) (((-410 (-567))) -2811 (-12 (|has| |#1| (-559)) (|has| |#1| (-1040 (-567)))) (|has| |#1| (-1040 (-410 (-567))))) (((-410 (-954 |#1|))) |has| |#1| (-559)) (((-954 |#1|)) |has| |#1| (-1051)) (((-1179)) . T))
(((|#1|) . T) (($) . T))
(((|#1| (-772)) . T))
(((|#1|) . T))
-((($) -2800 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172)))
+((($) -2811 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172)))
(((|#1|) |has| |#1| (-310 |#1|)))
-((((-1254 |#1| |#2| |#3| |#4|)) . T))
+((((-1255 |#1| |#2| |#3| |#4|)) . T))
((((-567)) |has| |#1| (-888 (-567))) (((-381)) |has| |#1| (-888 (-381))))
(((|#1|) . T))
(((|#1|) . T))
(|has| |#1| (-559))
((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-559)))
(((|#1|) . T))
-((((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2800 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-1176 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172)))
-(((|#1|) |has| |#1| (-172)) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2800 (|has| |#1| (-365)) (|has| |#1| (-559))))
+((((-410 (-567))) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2811 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-1177 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172)))
+(((|#1|) |has| |#1| (-172)) (((-410 (-567))) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2811 (|has| |#1| (-365)) (|has| |#1| (-559))))
((($) |has| |#1| (-559)) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
-((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T) (($) -2800 (|has| |#1| (-172)) (|has| |#1| (-559))))
-((($) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-1176 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) . T))
-(((|#1|) . T) (($) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))))
-((($) -2800 (|has| |#1| (-172)) (|has| |#1| (-559))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
-(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) |has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))))
+((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T) (($) -2811 (|has| |#1| (-172)) (|has| |#1| (-559))))
+((($) -2811 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-1177 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) . T))
+(((|#1|) . T) (($) -2811 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))))
+((($) -2811 (|has| |#1| (-172)) (|has| |#1| (-559))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) |has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-310 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))))
(((|#1|) |has| |#1| (-172)))
((((-863)) . T))
((($) |has| |#1| (-559)) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
@@ -2004,13 +2007,13 @@
(((|#1|) |has| |#1| (-172)) (($) . T) (((-567)) . T))
(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))))
(((|#1|) . T))
-((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) |has| |#2| (-172)) (($) -2800 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))))
-((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T) (($) -2800 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))))
+((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) |has| |#2| (-172)) (($) -2811 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))))
+((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T) (($) -2811 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))))
(((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) (((-567)) . T) (($) . T))
(((|#3|) |has| |#3| (-1102)))
((((-912 |#1|)) . T) (((-410 (-567))) . T) (($) . T) (((-567)) . T))
-(((|#2|) -2800 (|has| |#2| (-172)) (|has| |#2| (-365))))
-((((-1253 |#2| |#3| |#4|)) . T))
+(((|#2|) -2811 (|has| |#2| (-172)) (|has| |#2| (-365))))
+((((-1254 |#2| |#3| |#4|)) . T))
((((-112)) . T))
(|has| |#1| (-821))
(|has| |#1| (-821))
@@ -2019,8 +2022,8 @@
(|has| |#1| (-849))
(|has| |#1| (-849))
(((|#1| (-567) (-1084)) . T))
-(-2800 (|has| |#1| (-902 (-1178))) (|has| |#1| (-1051)))
-((((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T))
+(-2811 (|has| |#1| (-902 (-1179))) (|has| |#1| (-1051)))
+((((-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) . T))
(((|#1| (-410 (-567)) (-1084)) . T))
(((|#1| (-772) (-1084)) . T))
(|has| |#1| (-851))
@@ -2034,41 +2037,41 @@
((((-912 |#1|)) . T) (($) . T) (((-410 (-567))) . T))
(|has| |#1| (-1102))
((((-410 (-567))) |has| |#2| (-365)) (($) . T) (((-567)) . T))
-((((-567)) -2800 (|has| |#1| (-902 (-1178))) (|has| |#1| (-1051))))
+((((-567)) -2811 (|has| |#1| (-902 (-1179))) (|has| |#1| (-1051))))
(((|#1|) . T))
(|has| |#1| (-1102))
((((-567)) -12 (|has| |#1| (-365)) (|has| |#2| (-640 (-567)))) ((|#2|) |has| |#1| (-365)))
-(-2800 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-727)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1051)) (|has| |#2| (-1102)))
-((((-690 (-341 (-4147) (-4147 (QUOTE X) (QUOTE HESS)) (-700)))) . T))
+(-2811 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-727)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1051)) (|has| |#2| (-1102)))
+((((-690 (-341 (-4145) (-4145 (QUOTE X) (QUOTE HESS)) (-700)))) . T))
(((|#2|) |has| |#2| (-172)))
(((|#1|) |has| |#1| (-172)))
-((((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T))
-((((-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) . T))
+((((-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) . T))
+((((-2 (|:| -1809 (-1161)) (|:| -4236 |#1|))) . T))
((((-863)) . T))
(|has| |#3| (-849))
((((-863)) . T))
-((((-1253 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|)) . T))
+((((-1254 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|)) . T))
((((-863)) . T))
-(((|#1| |#1|) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-1051))))
+(((|#1| |#1|) -2811 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-1051))))
(((|#1|) . T))
((((-567)) . T))
((((-567)) . T))
-(((|#1|) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-1051))))
+(((|#1|) -2811 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-1051))))
(((|#2|) |has| |#2| (-365)))
(((|#1|) . T))
((($) . T) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-365)))
(|has| |#1| (-851))
(((|#1|) . T))
-((((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T))
+((((-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) . T))
(((|#1|) . T) (((-567)) . T))
(((|#2|) . T))
((((-567)) . T) ((|#3|) . T))
-((((-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) |has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-310 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))))))
-(-2800 (|has| |#1| (-455)) (|has| |#1| (-911)))
+((((-2 (|:| -1809 (-1179)) (|:| -4236 (-52)))) |has| (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (-310 (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))))))
+(-2811 (|has| |#1| (-455)) (|has| |#1| (-911)))
(((|#2|) . T) (((-567)) |has| |#2| (-640 (-567))))
((((-863)) . T))
((((-863)) . T))
-((($) -2800 (|has| |#2| (-172)) (|has| |#2| (-849)) (|has| |#2| (-1051))) (((-567)) -2800 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-849)) (|has| |#2| (-1051))) ((|#2|) -2800 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1051))))
+((($) -2811 (|has| |#2| (-172)) (|has| |#2| (-849)) (|has| |#2| (-1051))) (((-567)) -2811 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-849)) (|has| |#2| (-1051))) ((|#2|) -2811 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1051))))
((((-539)) . T) (((-567)) . T) (((-894 (-567))) . T) (((-381)) . T) (((-225)) . T))
((((-863)) . T))
(|has| |#1| (-38 (-410 (-567))))
@@ -2083,10 +2086,10 @@
(((|#1| |#1|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
-(((|#1| (-1176 |#1| |#2| |#3|)) . T))
+(((|#1| (-1177 |#1| |#2| |#3|)) . T))
(((|#1|) . T))
(((|#1| (-410 (-567))) . T))
-(((|#1| (-1169 |#1| |#2| |#3|)) . T))
+(((|#1| (-1170 |#1| |#2| |#3|)) . T))
(((|#1| |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) . T))
(((|#1| (-772)) . T))
(((|#1|) . T))
@@ -2101,28 +2104,28 @@
(|has| |#1| (-145))
((($) |has| |#1| (-559)) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
(((|#1|) |has| |#1| (-172)))
-((($) -2800 (|has| |#1| (-172)) (|has| |#1| (-559))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
-((((-567)) . T) ((|#1|) . T) (($) . T) (((-410 (-567))) . T) (((-1178)) |has| |#1| (-1040 (-1178))))
+((($) -2811 (|has| |#1| (-172)) (|has| |#1| (-559))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+((((-567)) . T) ((|#1|) . T) (($) . T) (((-410 (-567))) . T) (((-1179)) |has| |#1| (-1040 (-1179))))
(((|#1| |#2|) . T))
-((((-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) (((-567)) -2800 (|has| |#1| (-849)) (|has| |#1| (-1040 (-567)))) ((|#1|) . T))
+((((-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) (((-567)) -2811 (|has| |#1| (-849)) (|has| |#1| (-1040 (-567)))) ((|#1|) . T))
((((-144)) . T))
(|has| |#1| (-38 (-410 (-567))))
(|has| |#1| (-38 (-410 (-567))))
(((|#1|) . T))
-(-2800 (|has| |#2| (-172)) (|has| |#2| (-849)) (|has| |#2| (-1051)))
+(-2811 (|has| |#2| (-172)) (|has| |#2| (-849)) (|has| |#2| (-1051)))
(((|#1| |#1|) . T) ((#0=(-410 (-567)) #0#) . T) (($ $) . T))
(((|#2|) . T) ((|#1|) . T) (((-567)) . T))
((((-863)) . T))
(((|#1|) . T) (((-410 (-567))) . T) (($) . T))
((($) . T) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
-((((-863)) -2800 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102))))
+((((-863)) -2811 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102))))
(|has| |#1| (-365))
(|has| |#1| (-365))
(|has| (-410 |#2|) (-233))
((((-645 |#1|)) . T))
(|has| |#1| (-911))
(((|#2|) |has| |#2| (-1051)))
-(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) |has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))))
+(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) |has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-310 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))))
(|has| |#1| (-365))
(((|#1|) |has| |#1| (-172)))
(((|#1| |#1|) . T))
@@ -2132,8 +2135,8 @@
(((|#2|) |has| |#2| (-1102)))
(((|#1|) . T))
((((-410 |#2|)) . T) (((-410 (-567))) . T) (($) . T) (((-567)) . T))
-((((-645 $)) . T) (((-1160)) . T) (((-1178)) . T) (((-567)) . T) (((-225)) . T) (((-863)) . T))
-((($) -2800 (|has| |#3| (-172)) (|has| |#3| (-849)) (|has| |#3| (-1051))) (((-567)) -2800 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-849)) (|has| |#3| (-1051))) ((|#3|) -2800 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1051))))
+((((-645 $)) . T) (((-1161)) . T) (((-1179)) . T) (((-567)) . T) (((-225)) . T) (((-863)) . T))
+((($) -2811 (|has| |#3| (-172)) (|has| |#3| (-849)) (|has| |#3| (-1051))) (((-567)) -2811 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-849)) (|has| |#3| (-1051))) ((|#3|) -2811 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1051))))
((((-410 (-567))) . T) (((-567)) . T) (((-613 $)) . T))
(((|#1|) . T))
((((-863)) . T))
@@ -2148,7 +2151,7 @@
(((|#1|) . T))
(((|#1| (-772) (-1084)) . T))
(((#0=(-410 |#2|) #0#) . T) ((#1=(-410 (-567)) #1#) . T) (($ $) . T))
-(((|#1|) . T) (((-567)) -2800 (|has| (-410 (-567)) (-1040 (-567))) (|has| |#1| (-1040 (-567)))) (((-410 (-567))) . T))
+(((|#1|) . T) (((-567)) -2811 (|has| (-410 (-567)) (-1040 (-567))) (|has| |#1| (-1040 (-567)))) (((-410 (-567))) . T))
(((|#1| (-603 |#1| |#3|) (-603 |#1| |#2|)) . T))
(((|#1|) |has| |#1| (-172)))
(((|#1|) . T))
@@ -2169,12 +2172,12 @@
(((|#2|) |has| |#2| (-172)))
(|has| |#2| (-849))
((((-567)) . T) ((|#2|) . T) (((-410 (-567))) |has| |#2| (-1040 (-410 (-567)))))
-((((-112)) |has| |#1| (-1102)) (((-863)) -2800 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-476)) (|has| |#1| (-727)) (|has| |#1| (-902 (-1178))) (|has| |#1| (-1051)) (|has| |#1| (-1114)) (|has| |#1| (-1102))))
+((((-112)) |has| |#1| (-1102)) (((-863)) -2811 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-476)) (|has| |#1| (-727)) (|has| |#1| (-902 (-1179))) (|has| |#1| (-1051)) (|has| |#1| (-1114)) (|has| |#1| (-1102))))
(((|#1|) . T) (($) . T))
(((|#1| |#2|) . T))
((($) . T) (((-567)) . T) (((-410 (-567))) . T))
((((-567)) . T) (($) . T) (((-410 (-567))) . T))
-((((-2 (|:| -1795 (-1160)) (|:| -4237 (-52)))) . T))
+((((-2 (|:| -1809 (-1161)) (|:| -4236 (-52)))) . T))
(((|#1|) . T) (((-410 (-567))) . T) (((-567)) . T) (($) . T))
(((|#1|) . T) (((-410 (-567))) . T) (((-567)) . T) (($) . T))
(((|#1|) . T) (((-410 (-567))) . T) (((-567)) . T) (($) . T))
@@ -2186,33 +2189,33 @@
((((-700)) . T) (((-410 (-567))) . T) (((-567)) . T))
(((|#1| |#1|) |has| |#1| (-172)))
(((|#2|) . T))
-((($) . T) (((-567)) . T) (((-410 (-567))) -2800 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T))
+((($) . T) (((-567)) . T) (((-410 (-567))) -2811 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T))
((((-567) |#1|) . T))
-(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) |has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))))
+(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) |has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-310 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))))
((((-381)) . T))
((((-700)) . T))
((((-410 (-567))) . #0=(|has| |#2| (-365))) (($) . #0#))
(((|#1|) |has| |#1| (-172)))
((((-410 (-954 |#1|))) . T))
(((|#2| |#2|) . T))
-(-2800 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))
-(-2800 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))
+(-2811 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))
+(-2811 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))
(((|#1|) . T))
(((|#2|) . T))
(((|#3|) |has| |#3| (-1051)))
(|has| |#2| (-911))
(|has| |#1| (-911))
(|has| |#1| (-365))
-((((-1178)) |has| |#2| (-902 (-1178))))
+((((-1179)) |has| |#2| (-902 (-1179))))
((((-863)) . T))
-((((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T))
+((((-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) . T))
((((-410 (-567))) . T) (($) . T))
(|has| |#1| (-476))
(|has| |#1| (-370))
(|has| |#1| (-370))
(|has| |#1| (-370))
(|has| |#1| (-365))
-(-2800 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-476)) (|has| |#1| (-559)) (|has| |#1| (-1051)) (|has| |#1| (-1114)))
+(-2811 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-476)) (|has| |#1| (-559)) (|has| |#1| (-1051)) (|has| |#1| (-1114)))
(|has| |#1| (-38 (-410 (-567))))
((((-116 |#1|)) . T))
((((-116 |#1|)) . T))
@@ -2233,12 +2236,12 @@
(|has| |#1| (-38 (-410 (-567))))
(|has| |#1| (-38 (-410 (-567))))
(|has| |#1| (-851))
-((((-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) . T))
+((((-2 (|:| -1809 (-1161)) (|:| -4236 |#1|))) . T))
(((|#1| |#2|) . T))
((($) . T) (((-567)) . T))
(|has| |#1| (-147))
(|has| |#1| (-145))
-((((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) |has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) ((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))))
+((((-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) |has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-310 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) ((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))))
(((|#2|) . T))
(((|#3|) . T))
((((-116 |#1|)) . T))
@@ -2258,12 +2261,12 @@
((((-539)) |has| |#1| (-615 (-539))) (((-894 (-567))) |has| |#1| (-615 (-894 (-567)))) (((-894 (-381))) |has| |#1| (-615 (-894 (-381)))) (((-381)) . #0=(|has| |#1| (-1024))) (((-225)) . #0#))
(((|#1|) |has| |#1| (-365)))
((((-863)) . T))
-((((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T))
+((((-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) . T))
((($ $) . T) (((-613 $) $) . T))
-(-2800 (|has| |#1| (-365)) (|has| |#1| (-559)))
-((($) . T) (((-1254 |#1| |#2| |#3| |#4|)) . T) (((-410 (-567))) . T))
-((($) -2800 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-559)) (|has| |#1| (-1051))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-559)))
-((($) . T) (((-567)) . T) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#1|) . T))
+(-2811 (|has| |#1| (-365)) (|has| |#1| (-559)))
+((($) . T) (((-1255 |#1| |#2| |#3| |#4|)) . T) (((-410 (-567))) . T))
+((($) -2811 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-559)) (|has| |#1| (-1051))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-559)))
+((($) . T) (((-567)) . T) (((-410 (-567))) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#1|) . T))
(|has| |#1| (-365))
(|has| |#1| (-365))
(|has| |#1| (-365))
@@ -2276,30 +2279,30 @@
(((|#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102))))
(((|#1|) |has| |#1| (-172)))
((((-863)) . T))
-(-2800 (|has| |#2| (-455)) (|has| |#2| (-911)))
+(-2811 (|has| |#2| (-455)) (|has| |#2| (-911)))
(((|#1|) . T))
((($) |has| |#1| (-559)) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
-((($) -2800 (|has| |#1| (-172)) (|has| |#1| (-559))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
-((((-863)) -2800 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102))))
+((($) -2811 (|has| |#1| (-172)) (|has| |#1| (-559))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+((((-863)) -2811 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102))))
((((-539)) |has| |#1| (-615 (-539))))
(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))))
((((-772)) . T))
(|has| |#1| (-1102))
-((($) -2800 (|has| |#2| (-172)) (|has| |#2| (-849)) (|has| |#2| (-1051))) (((-567)) -2800 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-849)) (|has| |#2| (-1051))) ((|#2|) -2800 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1051))))
+((($) -2811 (|has| |#2| (-172)) (|has| |#2| (-849)) (|has| |#2| (-1051))) (((-567)) -2811 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-849)) (|has| |#2| (-1051))) ((|#2|) -2811 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1051))))
((((-863)) . T))
-((((-1178)) . T) (((-863)) . T))
+((((-1179)) . T) (((-863)) . T))
((((-567)) -12 (|has| |#1| (-21)) (|has| |#2| (-21))))
((((-410 (-567))) . T) (((-567)) . T) (((-613 $)) . T))
(|has| |#1| (-145))
(|has| |#1| (-147))
((((-567)) . T))
-(-2800 (|has| |#1| (-365)) (|has| |#1| (-559)))
-(-2800 (|has| |#1| (-365)) (|has| |#1| (-559)))
-(((#0=(-1253 |#2| |#3| |#4|)) . T) (((-410 (-567))) |has| #0# (-38 (-410 (-567)))) (($) . T))
+(-2811 (|has| |#1| (-365)) (|has| |#1| (-559)))
+(-2811 (|has| |#1| (-365)) (|has| |#1| (-559)))
+(((#0=(-1254 |#2| |#3| |#4|)) . T) (((-410 (-567))) |has| #0# (-38 (-410 (-567)))) (($) . T))
((((-567)) . T))
(|has| |#1| (-365))
-(-2800 (-12 (|has| (-1260 |#1| |#2| |#3|) (-147)) (|has| |#1| (-365))) (|has| |#1| (-147)))
-(-2800 (-12 (|has| (-1260 |#1| |#2| |#3|) (-145)) (|has| |#1| (-365))) (|has| |#1| (-145)))
+(-2811 (-12 (|has| (-1261 |#1| |#2| |#3|) (-147)) (|has| |#1| (-365))) (|has| |#1| (-147)))
+(-2811 (-12 (|has| (-1261 |#1| |#2| |#3|) (-145)) (|has| |#1| (-365))) (|has| |#1| (-145)))
(|has| |#1| (-365))
(|has| |#1| (-145))
(|has| |#1| (-147))
@@ -2318,25 +2321,25 @@
(|has| |#1| (-1102))
((((-1144 |#2| |#1|)) . T) ((|#1|) . T) (((-567)) . T))
(((|#1| |#2|) . T))
-((((-567)) . T) ((|#1|) . T) (((-410 (-567))) -2800 (|has| |#1| (-365)) (|has| |#1| (-1040 (-410 (-567))))))
+((((-567)) . T) ((|#1|) . T) (((-410 (-567))) -2811 (|has| |#1| (-365)) (|has| |#1| (-1040 (-410 (-567))))))
(((|#1|) . T) (((-567)) |has| |#1| (-640 (-567))))
(((|#3|) |has| |#3| (-172)))
(((|#2|) . T) (($) . T) (((-567)) . T))
(((|#1|) . T) (($) . T) (((-567)) . T))
-(-2800 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-727)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1051)) (|has| |#2| (-1102)))
+(-2811 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-727)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1051)) (|has| |#2| (-1102)))
((((-863)) . T))
((((-567)) . T))
(((|#1| $) |has| |#1| (-287 |#1| |#1|)))
((((-410 (-567))) . T) (($) . T) (((-410 |#1|)) . T) ((|#1|) . T))
((((-954 |#1|)) . T) (((-863)) . T))
(((|#3|) . T))
-(((|#1| |#1|) . T) (($ $) -2800 (|has| |#1| (-291)) (|has| |#1| (-365))) ((#0=(-410 (-567)) #0#) |has| |#1| (-365)))
-((((-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) . T))
+(((|#1| |#1|) . T) (($ $) -2811 (|has| |#1| (-291)) (|has| |#1| (-365))) ((#0=(-410 (-567)) #0#) |has| |#1| (-365)))
+((((-2 (|:| -1809 (-1179)) (|:| -4236 (-52)))) . T))
((((-954 |#1|)) . T))
((($) . T))
((((-567) |#1|) . T))
-((((-1178)) |has| (-410 |#2|) (-902 (-1178))))
-(((|#1|) . T) (($) -2800 (|has| |#1| (-291)) (|has| |#1| (-365))) (((-410 (-567))) |has| |#1| (-365)))
+((((-1179)) |has| (-410 |#2|) (-902 (-1179))))
+(((|#1|) . T) (($) -2811 (|has| |#1| (-291)) (|has| |#1| (-365))) (((-410 (-567))) |has| |#1| (-365)))
((((-539)) |has| |#2| (-615 (-539))))
((((-690 |#2|)) . T) (((-863)) . T))
(((|#1|) . T))
@@ -2344,22 +2347,22 @@
(((|#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))))
((((-871 |#1|)) . T))
(((|#1|) |has| |#1| (-172)))
-(-2800 (|has| |#4| (-794)) (|has| |#4| (-849)))
-(-2800 (|has| |#3| (-794)) (|has| |#3| (-849)))
+(-2811 (|has| |#4| (-794)) (|has| |#4| (-849)))
+(-2811 (|has| |#3| (-794)) (|has| |#3| (-849)))
(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))
((((-863)) . T))
((((-863)) . T))
(((|#1|) . T))
((($) . T) (((-567)) . T) ((|#2|) . T))
(((|#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))))
-(((|#3|) -2800 (|has| |#3| (-172)) (|has| |#3| (-365))))
+(((|#3|) -2811 (|has| |#3| (-172)) (|has| |#3| (-365))))
(((|#2|) |has| |#2| (-1051)))
(((|#3|) . T))
(((|#1|) . T))
((((-410 |#2|)) . T))
-(((|#2|) -2800 (|has| |#2| (-172)) (|has| |#2| (-365))))
+(((|#2|) -2811 (|has| |#2| (-172)) (|has| |#2| (-365))))
(((|#1|) . T))
-(((|#2|) -2800 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1051))) (($) |has| |#2| (-172)))
+(((|#2|) -2811 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1051))) (($) |has| |#2| (-172)))
(((|#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102))))
((((-567) |#1|) . T))
(((|#1|) . T))
@@ -2368,17 +2371,17 @@
((((-410 (-567))) . T) (($) . T))
((((-410 (-567))) . T) (($) . T))
((((-410 (-567))) . T) (($) . T))
-(-2800 (|has| |#1| (-455)) (|has| |#1| (-1222)))
+(-2811 (|has| |#1| (-455)) (|has| |#1| (-1223)))
((($) . T))
((((-410 (-567))) |has| #0=(-410 |#2|) (-1040 (-410 (-567)))) (((-567)) |has| #0# (-1040 (-567))) ((#0#) . T))
(((|#2|) . T) (((-567)) |has| |#2| (-640 (-567))))
(((|#1| (-772)) . T))
(|has| |#1| (-851))
(((|#1|) . T) (((-567)) |has| |#1| (-640 (-567))))
-((($) -2800 (|has| |#1| (-365)) (|has| |#1| (-351))) (((-410 (-567))) -2800 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T))
+((($) -2811 (|has| |#1| (-365)) (|has| |#1| (-351))) (((-410 (-567))) -2811 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T))
((((-567)) . T))
(|has| |#1| (-38 (-410 (-567))))
-((((-2 (|:| -1795 (-1160)) (|:| -4237 (-52)))) |has| (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (-310 (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))))))
+((((-2 (|:| -1809 (-1161)) (|:| -4236 (-52)))) |has| (-2 (|:| -1809 (-1161)) (|:| -4236 (-52))) (-310 (-2 (|:| -1809 (-1161)) (|:| -4236 (-52))))))
(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))
(|has| |#1| (-849))
(|has| |#1| (-38 (-410 (-567))))
@@ -2400,51 +2403,51 @@
(|has| |#1| (-38 (-410 (-567))))
(|has| |#1| (-38 (-410 (-567))))
(|has| |#1| (-38 (-410 (-567))))
-((((-1160)) . T) (((-509)) . T) (((-225)) . T) (((-567)) . T))
+((((-1161)) . T) (((-509)) . T) (((-225)) . T) (((-567)) . T))
((((-863)) . T))
-(((|#2|) . T) (((-567)) . T) (($) -2800 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) (((-1084)) . T) ((|#1|) . T) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567))))))
+(((|#2|) . T) (((-567)) . T) (($) -2811 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) (((-1084)) . T) ((|#1|) . T) (((-410 (-567))) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567))))))
(((|#1| |#2|) . T))
((((-144)) . T))
((((-781 |#1| (-865 |#2|))) . T))
-((((-863)) -2800 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102))))
-(|has| |#1| (-1203))
+((((-863)) -2811 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102))))
+(|has| |#1| (-1204))
((((-863)) . T))
(((|#1|) . T))
-(-2800 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-370)) (|has| |#3| (-727)) (|has| |#3| (-794)) (|has| |#3| (-849)) (|has| |#3| (-1051)) (|has| |#3| (-1102)))
-((((-1178) |#1|) |has| |#1| (-517 (-1178) |#1|)))
+(-2811 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-370)) (|has| |#3| (-727)) (|has| |#3| (-794)) (|has| |#3| (-849)) (|has| |#3| (-1051)) (|has| |#3| (-1102)))
+((((-1179) |#1|) |has| |#1| (-517 (-1179) |#1|)))
(((|#2|) . T))
-((($ $) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1| |#1|) . T) ((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567)))))
+((($ $) -2811 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1| |#1|) . T) ((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567)))))
((((-912 |#1|)) . T))
((($) . T))
((((-410 (-954 |#1|))) . T))
(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))
-((($) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+((($) -2811 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
((((-539)) |has| |#4| (-615 (-539))))
((((-863)) . T) (((-645 |#4|)) . T))
-((((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T))
+((((-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) . T))
(((|#1|) . T))
(|has| |#1| (-849))
-(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) (((-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) |has| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-310 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)))))
+(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) (((-2 (|:| -1809 (-1161)) (|:| -4236 |#1|))) |has| (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (-310 (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)))))
(|has| |#1| (-1102))
(|has| |#1| (-365))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#3|) -2800 (|has| |#3| (-172)) (|has| |#3| (-365))))
+(((|#3|) -2811 (|has| |#3| (-172)) (|has| |#3| (-365))))
((((-673 |#1|)) . T))
-(((|#3|) -2800 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1051))) (($) |has| |#3| (-172)))
+(((|#3|) -2811 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1051))) (($) |has| |#3| (-172)))
((($) . T) (((-410 (-567))) . T))
-((($) -2800 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172)))
+((($) -2811 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172)))
(|has| |#1| (-145))
(|has| |#1| (-147))
-(-2800 (-12 (|has| (-1176 |#1| |#2| |#3|) (-147)) (|has| |#1| (-365))) (|has| |#1| (-147)))
-(-2800 (-12 (|has| (-1176 |#1| |#2| |#3|) (-145)) (|has| |#1| (-365))) (|has| |#1| (-145)))
+(-2811 (-12 (|has| (-1177 |#1| |#2| |#3|) (-147)) (|has| |#1| (-365))) (|has| |#1| (-147)))
+(-2811 (-12 (|has| (-1177 |#1| |#2| |#3|) (-145)) (|has| |#1| (-365))) (|has| |#1| (-145)))
(|has| |#1| (-145))
(|has| |#1| (-147))
(|has| |#1| (-147))
(|has| |#1| (-145))
-((((-863)) -2800 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102))))
-((((-1260 |#1| |#2| |#3|)) |has| |#1| (-365)))
+((((-863)) -2811 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102))))
+((((-1261 |#1| |#2| |#3|)) |has| |#1| (-365)))
(|has| |#1| (-849))
(((|#1| |#2|) . T))
(((|#1|) . T) (((-567)) |has| |#1| (-640 (-567))))
@@ -2469,10 +2472,10 @@
((((-863)) . T))
((((-863)) . T))
((((-539)) |has| |#1| (-615 (-539))))
-((((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T))
+((((-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) . T))
((((-567)) . T) (($) . T) (((-410 (-567))) . T))
-((((-1178) |#1|) |has| |#1| (-517 (-1178) |#1|)) ((|#1| |#1|) |has| |#1| (-310 |#1|)))
-(((|#1|) -2800 (|has| |#1| (-172)) (|has| |#1| (-365))))
+((((-1179) |#1|) |has| |#1| (-517 (-1179) |#1|)) ((|#1| |#1|) |has| |#1| (-310 |#1|)))
+(((|#1|) -2811 (|has| |#1| (-172)) (|has| |#1| (-365))))
(((|#1|) . T) (((-410 (-567))) . T) (($) . T))
((((-567)) . T) (((-410 (-567))) . T) (($) . T))
(((|#1|) . T) (((-410 (-567))) . T) (($) . T))
@@ -2482,10 +2485,10 @@
(((|#1|) . T) (($) . T) (((-410 (-567))) . T))
(((|#1|) . T) (($) . T) (((-410 (-567))) . T))
(((|#2|) |has| |#2| (-365)))
-((($) -2800 (|has| |#1| (-365)) (|has| |#1| (-351))) (((-410 (-567))) -2800 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T))
+((($) -2811 (|has| |#1| (-365)) (|has| |#1| (-351))) (((-410 (-567))) -2811 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T))
(((|#2|) . T))
((((-410 (-567))) . T) (((-700)) . T) (($) . T))
-((($) . T) (((-410 (-567))) -2800 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T))
+((($) . T) (((-410 (-567))) -2811 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T))
(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))
(((#0=(-781 |#1| (-865 |#2|)) #0#) |has| (-781 |#1| (-865 |#2|)) (-310 (-781 |#1| (-865 |#2|)))))
((((-567)) . T) (($) . T))
@@ -2493,8 +2496,8 @@
(((|#2|) |has| |#2| (-172)))
(((|#1|) |has| |#1| (-172)))
(((|#2|) . T))
-((((-1178)) |has| |#1| (-902 (-1178))) (((-1084)) . T))
-((((-1178)) |has| |#1| (-902 (-1178))) (((-1090 (-1178))) . T))
+((((-1179)) |has| |#1| (-902 (-1179))) (((-1084)) . T))
+((((-1179)) |has| |#1| (-902 (-1179))) (((-1090 (-1179))) . T))
(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))))
((((-410 (-567))) . T) (((-567)) . T) (($) . T))
(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))
@@ -2504,13 +2507,13 @@
(|has| |#1| (-145))
(|has| |#1| (-147))
((($ $) . T))
-(-2800 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-476)) (|has| |#1| (-727)) (|has| |#1| (-902 (-1178))) (|has| |#1| (-1051)) (|has| |#1| (-1114)) (|has| |#1| (-1102)))
+(-2811 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-476)) (|has| |#1| (-727)) (|has| |#1| (-902 (-1179))) (|has| |#1| (-1051)) (|has| |#1| (-1114)) (|has| |#1| (-1102)))
(|has| |#1| (-559))
(((|#2|) . T))
((((-567)) . T))
-((((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T))
+((((-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) . T))
(((|#1|) . T))
-(-2800 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-559)) (|has| |#1| (-1051)))
+(-2811 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-559)) (|has| |#1| (-1051)))
(((|#1| (-59 |#1|) (-59 |#1|)) . T))
((((-584 |#1|)) . T))
((($) . T))
@@ -2519,7 +2522,7 @@
((($) . T))
(((|#1|) . T))
((((-863)) . T))
-(((|#2|) |has| |#2| (-6 (-4420 "*"))))
+(((|#2|) |has| |#2| (-6 (-4424 "*"))))
(((|#1|) . T))
(((|#1|) . T))
((($) . T))
@@ -2529,36 +2532,36 @@
(((|#1|) . T))
(((|#1|) . T))
(((|#3|) . T) (((-567)) . T))
-((((-1253 |#2| |#3| |#4|)) . T) (((-567)) . T) (((-1254 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-410 (-567))) . T))
-((((-48)) -12 (|has| |#1| (-559)) (|has| |#1| (-1040 (-567)))) (((-567)) -2800 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-559)) (|has| |#1| (-1040 (-567))) (|has| |#1| (-1051))) ((|#1|) . T) (((-613 $)) . T) (($) |has| |#1| (-559)) (((-410 (-567))) -2800 (|has| |#1| (-559)) (|has| |#1| (-1040 (-410 (-567))))) (((-410 (-954 |#1|))) |has| |#1| (-559)) (((-954 |#1|)) |has| |#1| (-1051)) (((-1178)) . T))
+((((-1254 |#2| |#3| |#4|)) . T) (((-567)) . T) (((-1255 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-410 (-567))) . T))
+((((-48)) -12 (|has| |#1| (-559)) (|has| |#1| (-1040 (-567)))) (((-567)) -2811 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-559)) (|has| |#1| (-1040 (-567))) (|has| |#1| (-1051))) ((|#1|) . T) (((-613 $)) . T) (($) |has| |#1| (-559)) (((-410 (-567))) -2811 (|has| |#1| (-559)) (|has| |#1| (-1040 (-410 (-567))))) (((-410 (-954 |#1|))) |has| |#1| (-559)) (((-954 |#1|)) |has| |#1| (-1051)) (((-1179)) . T))
((((-410 (-567))) |has| |#2| (-1040 (-410 (-567)))) (((-567)) |has| |#2| (-1040 (-567))) ((|#2|) . T) (((-865 |#1|)) . T))
((($) . T) (((-116 |#1|)) . T) (((-410 (-567))) . T))
((((-1127 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-567)) |has| |#1| (-1040 (-567))) (((-410 (-567))) |has| |#1| (-1040 (-410 (-567)))))
-((((-1174 |#1|)) . T) (((-1084)) . T) ((|#1|) . T) (((-567)) |has| |#1| (-1040 (-567))) (((-410 (-567))) |has| |#1| (-1040 (-410 (-567)))))
-((((-1127 |#1| (-1178))) . T) (((-1090 (-1178))) . T) ((|#1|) . T) (((-567)) |has| |#1| (-1040 (-567))) (((-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) (((-1178)) . T))
+((((-1175 |#1|)) . T) (((-1084)) . T) ((|#1|) . T) (((-567)) |has| |#1| (-1040 (-567))) (((-410 (-567))) |has| |#1| (-1040 (-410 (-567)))))
+((((-1127 |#1| (-1179))) . T) (((-1090 (-1179))) . T) ((|#1|) . T) (((-567)) |has| |#1| (-1040 (-567))) (((-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) (((-1179)) . T))
(|has| |#1| (-1102))
((($) . T))
(|has| |#1| (-1102))
((((-567)) -12 (|has| |#1| (-888 (-567))) (|has| |#2| (-888 (-567)))) (((-381)) -12 (|has| |#1| (-888 (-381))) (|has| |#2| (-888 (-381)))))
(((|#1| |#2|) . T))
-((((-1178) |#1|) . T))
+((((-1179) |#1|) . T))
(((|#4|) . T))
-(-2800 (|has| |#1| (-365)) (|has| |#1| (-351)))
-((((-1178) (-52)) . T))
-((((-1253 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|)) . T))
+(-2811 (|has| |#1| (-365)) (|has| |#1| (-351)))
+((((-1179) (-52)) . T))
+((((-1254 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|)) . T))
((((-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) (((-567)) |has| |#1| (-1040 (-567))) ((|#1|) . T))
((((-863)) . T))
-(-2800 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-727)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1051)) (|has| |#2| (-1102)))
-(((#0=(-1254 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-410 (-567)) #1#) . T) (($ $) . T))
+(-2811 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-727)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1051)) (|has| |#2| (-1102)))
+(((#0=(-1255 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-410 (-567)) #1#) . T) (($ $) . T))
(((|#1| |#1|) |has| |#1| (-172)) ((#0=(-410 (-567)) #0#) |has| |#1| (-559)) (($ $) |has| |#1| (-559)))
-((($) -2800 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172)))
+((($) -2811 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172)))
(((|#1|) . T) (($) . T) (((-410 (-567))) . T))
(((|#1| $) |has| |#1| (-287 |#1| |#1|)))
-((((-1254 |#1| |#2| |#3| |#4|)) . T) (((-410 (-567))) . T) (($) . T))
+((((-1255 |#1| |#2| |#3| |#4|)) . T) (((-410 (-567))) . T) (($) . T))
(((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-559)) (($) |has| |#1| (-559)))
-((((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) ((|#1|) . T))
+((((-410 (-567))) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2811 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) ((|#1|) . T))
(|has| |#1| (-365))
-((($) |has| |#1| (-849)) (((-567)) -2800 (|has| |#1| (-21)) (|has| |#1| (-849))))
+((($) |has| |#1| (-849)) (((-567)) -2811 (|has| |#1| (-21)) (|has| |#1| (-849))))
(|has| |#1| (-145))
(|has| |#1| (-147))
(|has| |#1| (-147))
@@ -2566,37 +2569,37 @@
((((-410 (-567))) . T) (($) . T))
(((|#3|) |has| |#3| (-365)))
(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))))
-((((-1178)) . T))
-((($) . T) (((-1253 |#2| |#3| |#4|)) . T) (((-410 (-567))) |has| (-1253 |#2| |#3| |#4|) (-38 (-410 (-567)))) (((-567)) . T))
+((((-1179)) . T))
+((($) . T) (((-1254 |#2| |#3| |#4|)) . T) (((-410 (-567))) |has| (-1254 |#2| |#3| |#4|) (-38 (-410 (-567)))) (((-567)) . T))
(((|#1|) . T))
(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))))
(((|#2| |#3|) . T))
-(-2800 (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))
+(-2811 (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))
(((|#1| (-534 |#2|)) . T))
(((|#1| (-772)) . T))
-(((|#1| (-534 (-1090 (-1178)))) . T))
+(((|#1| (-534 (-1090 (-1179)))) . T))
(((|#1|) |has| |#1| (-172)))
(((|#1|) . T))
(|has| |#2| (-911))
-(-2800 (|has| |#2| (-794)) (|has| |#2| (-849)))
+(-2811 (|has| |#2| (-794)) (|has| |#2| (-849)))
((((-863)) . T))
-(((|#2|) -2800 (|has| |#2| (-172)) (|has| |#2| (-365))))
-(((|#2|) -2800 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1051))) (($) |has| |#2| (-172)))
-((($ $) . T) ((#0=(-1253 |#2| |#3| |#4|) #0#) . T) ((#1=(-410 (-567)) #1#) |has| #0# (-38 (-410 (-567)))))
+(((|#2|) -2811 (|has| |#2| (-172)) (|has| |#2| (-365))))
+(((|#2|) -2811 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1051))) (($) |has| |#2| (-172)))
+((($ $) . T) ((#0=(-1254 |#2| |#3| |#4|) #0#) . T) ((#1=(-410 (-567)) #1#) |has| #0# (-38 (-410 (-567)))))
((((-912 |#1|)) . T))
(-12 (|has| |#1| (-365)) (|has| |#2| (-821)))
((($) . T) (((-410 (-567))) . T))
((((-863)) . T))
((($) . T))
((($) . T))
-(-2800 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-559)))
+(-2811 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-559)))
(|has| |#1| (-365))
(|has| |#1| (-365))
(((|#1| |#2|) . T))
-((($) . T) ((#0=(-1253 |#2| |#3| |#4|)) . T) (((-410 (-567))) |has| #0# (-38 (-410 (-567)))))
-((((-1176 |#1| |#2| |#3|)) |has| |#1| (-365)))
-(-2800 (-12 (|has| |#1| (-308)) (|has| |#1| (-911))) (|has| |#1| (-365)) (|has| |#1| (-351)))
-(-2800 (|has| |#1| (-902 (-1178))) (|has| |#1| (-1051)))
+((($) . T) ((#0=(-1254 |#2| |#3| |#4|)) . T) (((-410 (-567))) |has| #0# (-38 (-410 (-567)))))
+((((-1177 |#1| |#2| |#3|)) |has| |#1| (-365)))
+(-2811 (-12 (|has| |#1| (-308)) (|has| |#1| (-911))) (|has| |#1| (-365)) (|has| |#1| (-351)))
+(-2811 (|has| |#1| (-902 (-1179))) (|has| |#1| (-1051)))
((((-567)) |has| |#1| (-640 (-567))) ((|#1|) . T))
(((|#1| |#2|) . T))
((((-863)) . T))
@@ -2635,34 +2638,34 @@
((($ $) . T))
((($) . T))
((((-863)) . T))
-(((|#1| (-534 (-1178))) . T))
+(((|#1| (-534 (-1179))) . T))
(((|#1|) |has| |#1| (-172)))
((((-863)) . T))
(((|#2|) . T))
(((|#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))))
(((|#2|) . T))
-(((|#2|) -2800 (|has| |#2| (-6 (-4420 "*"))) (|has| |#2| (-172))))
-(-2800 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))
-(-2800 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))
+(((|#2|) -2811 (|has| |#2| (-6 (-4424 "*"))) (|has| |#2| (-172))))
+(-2811 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))
+(-2811 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))
(|has| |#2| (-911))
(|has| |#1| (-911))
(((|#2|) |has| |#2| (-172)))
-((((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T))
-((((-1260 |#1| |#2| |#3|)) |has| |#1| (-365)))
+((((-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) . T))
+((((-1261 |#1| |#2| |#3|)) |has| |#1| (-365)))
((((-863)) . T))
((((-863)) . T))
((((-539)) . T) (((-567)) . T) (((-894 (-567))) . T) (((-381)) . T) (((-225)) . T))
(((|#1| |#2|) . T))
((($) . T) (((-567)) . T))
-((((-2 (|:| -1795 (-1160)) (|:| -4237 (-52)))) . T))
+((((-2 (|:| -1809 (-1161)) (|:| -4236 (-52)))) . T))
(((|#1|) . T))
-((((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T))
+((((-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) . T))
((((-863)) . T))
(((|#1| |#2|) . T))
((($) . T) (((-567)) . T))
(((|#1| (-410 (-567))) . T))
(((|#1|) . T))
-(-2800 (|has| |#1| (-291)) (|has| |#1| (-365)))
+(-2811 (|has| |#1| (-291)) (|has| |#1| (-365)))
((((-144)) . T))
((((-410 |#2|)) . T) (((-410 (-567))) . T) (($) . T))
(|has| |#1| (-849))
@@ -2678,20 +2681,20 @@
((((-863)) . T))
((((-863)) . T))
((((-187)) . T) (((-863)) . T))
-((((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T))
+((((-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) . T))
(((|#2| |#2|) . T) ((|#1| |#1|) . T))
((((-863)) . T))
((((-863)) . T))
((((-539)) |has| |#1| (-615 (-539))) (((-894 (-567))) |has| |#1| (-615 (-894 (-567)))) (((-894 (-381))) |has| |#1| (-615 (-894 (-381)))))
-((((-1178) (-52)) . T))
+((((-1179) (-52)) . T))
(((|#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-645 (-144))) . T) (((-1160)) . T))
+((((-645 (-144))) . T) (((-1161)) . T))
((((-863)) . T))
-((((-1160)) . T))
-((((-1178) |#1|) |has| |#1| (-517 (-1178) |#1|)) ((|#1| |#1|) |has| |#1| (-310 |#1|)))
-((((-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) . T))
+((((-1161)) . T))
+((((-1179) |#1|) |has| |#1| (-517 (-1179) |#1|)) ((|#1| |#1|) |has| |#1| (-310 |#1|)))
+((((-2 (|:| -1809 (-1161)) (|:| -4236 |#1|))) . T))
(|has| |#1| (-851))
((((-863)) . T))
((((-539)) |has| |#1| (-615 (-539))))
@@ -2703,16 +2706,16 @@
(((|#2|) . T))
((((-912 |#1|)) . T) (((-410 (-567))) . T) (($) . T))
((($) . T) (((-567)) . T) (((-410 (-567))) . T) (((-613 $)) . T))
-(-2800 (|has| |#4| (-172)) (|has| |#4| (-727)) (|has| |#4| (-849)) (|has| |#4| (-1051)))
-(-2800 (|has| |#3| (-172)) (|has| |#3| (-727)) (|has| |#3| (-849)) (|has| |#3| (-1051)))
-((((-1178) (-52)) . T))
-(-2800 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))
-(-2800 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))
+(-2811 (|has| |#4| (-172)) (|has| |#4| (-727)) (|has| |#4| (-849)) (|has| |#4| (-1051)))
+(-2811 (|has| |#3| (-172)) (|has| |#3| (-727)) (|has| |#3| (-849)) (|has| |#3| (-1051)))
+((((-1179) (-52)) . T))
+(-2811 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))
+(-2811 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(-2800 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1051)))
-(-2800 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-849)) (|has| |#2| (-1051)))
+(-2811 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1051)))
+(-2811 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-849)) (|has| |#2| (-1051)))
(|has| |#1| (-911))
((((-912 |#1|)) . T) (((-410 (-567))) . T) (($) . T) (((-567)) . T))
(|has| |#1| (-911))
@@ -2729,12 +2732,12 @@
(|has| |#1| (-38 (-410 (-567))))
(|has| |#1| (-38 (-410 (-567))))
(|has| |#1| (-38 (-410 (-567))))
-(-2800 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))
+(-2811 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))
(|has| |#1| (-821))
(((#0=(-912 |#1|) #0#) . T) (($ $) . T) ((#1=(-410 (-567)) #1#) . T))
((((-410 |#2|)) . T))
(|has| |#1| (-849))
-((((-1204 |#1|)) . T) (((-863)) -2800 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102))))
+((((-1205 |#1|)) . T) (((-863)) -2811 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102))))
(((|#1| |#1|) . T) ((#0=(-410 (-567)) #0#) . T) ((#1=(-567) #1#) . T) (($ $) . T))
((((-912 |#1|)) . T) (($) . T) (((-410 (-567))) . T))
(((|#2|) |has| |#2| (-1051)) (((-567)) -12 (|has| |#2| (-640 (-567))) (|has| |#2| (-1051))))
@@ -2750,39 +2753,39 @@
(((|#2|) |has| |#2| (-172)))
(((|#1|) . T))
(((|#2|) . T))
-(-2800 (|has| |#1| (-145)) (|has| |#1| (-370)))
-(-2800 (|has| |#1| (-145)) (|has| |#1| (-370)))
-(-2800 (|has| |#1| (-145)) (|has| |#1| (-370)))
-((((-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) . T))
-(((#0=(-52)) . T) (((-2 (|:| -1795 (-1178)) (|:| -4237 #0#))) . T))
+(-2811 (|has| |#1| (-145)) (|has| |#1| (-370)))
+(-2811 (|has| |#1| (-145)) (|has| |#1| (-370)))
+(-2811 (|has| |#1| (-145)) (|has| |#1| (-370)))
+((((-2 (|:| -1809 (-1179)) (|:| -4236 (-52)))) . T))
+(((#0=(-52)) . T) (((-2 (|:| -1809 (-1179)) (|:| -4236 #0#))) . T))
(|has| |#1| (-351))
((((-567)) . T))
((((-863)) . T))
(((|#1|) . T))
-(((#0=(-1254 |#1| |#2| |#3| |#4|) $) |has| #0# (-287 #0# #0#)))
+(((#0=(-1255 |#1| |#2| |#3| |#4|) $) |has| #0# (-287 #0# #0#)))
(|has| |#1| (-365))
-(((|#1|) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-1051))) (($) -2800 (|has| |#1| (-902 (-1178))) (|has| |#1| (-1051))) (((-567)) -2800 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-902 (-1178))) (|has| |#1| (-1051))))
+(((|#1|) -2811 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-1051))) (($) -2811 (|has| |#1| (-902 (-1179))) (|has| |#1| (-1051))) (((-567)) -2811 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-902 (-1179))) (|has| |#1| (-1051))))
(((#0=(-1084) |#1|) . T) ((#0# $) . T) (($ $) . T))
-(-2800 (|has| |#1| (-365)) (|has| |#1| (-351)))
+(-2811 (|has| |#1| (-365)) (|has| |#1| (-351)))
(((#0=(-410 (-567)) #0#) . T) ((#1=(-700) #1#) . T) (($ $) . T))
((((-317 |#1|)) . T) (($) . T))
(((|#1|) . T) (((-410 (-567))) |has| |#1| (-365)))
((((-863)) . T))
(|has| |#1| (-1102))
(((|#1|) . T))
-(((|#1|) -2800 (|has| |#2| (-369 |#1|)) (|has| |#2| (-420 |#1|))))
-(((|#1|) -2800 (|has| |#2| (-369 |#1|)) (|has| |#2| (-420 |#1|))))
+(((|#1|) -2811 (|has| |#2| (-369 |#1|)) (|has| |#2| (-420 |#1|))))
+(((|#1|) -2811 (|has| |#2| (-369 |#1|)) (|has| |#2| (-420 |#1|))))
(((|#2|) . T))
((((-410 (-567))) . T) (((-700)) . T) (($) . T))
((((-582)) . T))
(((|#3| |#3|) . T))
(|has| |#2| (-233))
((((-865 |#1|)) . T))
-((((-1178)) |has| |#1| (-902 (-1178))) ((|#3|) . T))
+((((-1179)) |has| |#1| (-902 (-1179))) ((|#3|) . T))
((((-645 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T))
(-12 (|has| |#1| (-365)) (|has| |#2| (-1024)))
((((-410 (-567))) . T) (($) . T))
-((((-1176 |#1| |#2| |#3|)) |has| |#1| (-365)))
+((((-1177 |#1| |#2| |#3|)) |has| |#1| (-365)))
((($) . T) (((-410 (-567))) . T))
((((-863)) . T))
(|has| |#1| (-365))
@@ -2796,7 +2799,7 @@
(((|#1|) . T))
((((-567)) . T))
(((|#2|) . T) (((-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) ((|#1|) . T) (($) . T) (((-567)) . T))
-(-2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))
+(-2811 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))
(((|#2|) . T) (((-567)) |has| |#2| (-640 (-567))))
(((|#1| |#2|) . T))
((($) . T))
@@ -2806,7 +2809,7 @@
(((|#1|) . T) (($) . T))
(((|#1|) . T) (((-567)) . T))
(((|#1|) . T) (((-567)) . T))
-(((|#1| (-1268 |#1|) (-1268 |#1|)) . T))
+(((|#1| (-1269 |#1|) (-1269 |#1|)) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#2|) . T))
((((-863)) . T))
@@ -2840,7 +2843,7 @@
(|has| |#2| (-1024))
((($) . T))
(|has| |#1| (-911))
-((((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T))
+((((-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) . T))
((($) . T))
(((|#2|) . T))
(((|#1|) . T))
@@ -2849,31 +2852,31 @@
(|has| |#1| (-365))
((((-912 |#1|)) . T))
((($) . T) (((-567)) . T) ((|#1|) . T) (((-410 (-567))) . T))
-((($) -2800 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
-((($) |has| |#1| (-849)) (((-567)) -2800 (|has| |#1| (-21)) (|has| |#1| (-849))))
+((($) -2811 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+((($) |has| |#1| (-849)) (((-567)) -2811 (|has| |#1| (-21)) (|has| |#1| (-849))))
((($ $) . T) ((#0=(-410 (-567)) #0#) . T))
-(-2800 (|has| |#1| (-370)) (|has| |#1| (-851)))
+(-2811 (|has| |#1| (-370)) (|has| |#1| (-851)))
(((|#1|) . T))
((((-772)) . T))
((((-863)) . T))
-((((-1178)) -12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178)))))
+((((-1179)) -12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179)))))
((((-410 |#2|) |#3|) . T))
((($) . T) (((-410 (-567))) . T))
((($) . T) (((-567)) . T) (((-410 (-567))) . T) (((-613 $)) . T))
((((-567)) . T) (($) . T))
((((-567)) . T) (($) . T))
((((-772) |#1|) . T))
-(((|#2| (-240 (-2414 |#1|) (-772))) . T))
+(((|#2| (-240 (-2423 |#1|) (-772))) . T))
(((|#1| (-534 |#3|)) . T))
((((-410 (-567))) . T))
-(-2800 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))
-((((-1160)) . T) (((-863)) . T))
-(((#0=(-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) #0#) |has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-310 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))))))
-((((-1160)) . T))
+(-2811 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))
+((((-1161)) . T) (((-863)) . T))
+(((#0=(-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) #0#) |has| (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (-310 (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))))))
+((((-1161)) . T))
(|has| |#1| (-911))
(|has| |#2| (-365))
(((|#1|) . T) (($) . T) (((-567)) . T))
-(-2800 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1051)))
+(-2811 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1051)))
((((-169 (-381))) . T) (((-225)) . T) (((-381)) . T))
((((-863)) . T))
(((|#1|) . T))
@@ -2890,13 +2893,13 @@
(|has| |#1| (-38 (-410 (-567))))
(|has| |#1| (-38 (-410 (-567))))
(|has| |#1| (-38 (-410 (-567))))
-(-2800 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351)))
+(-2811 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351)))
(|has| |#1| (-38 (-410 (-567))))
(-12 (|has| |#1| (-548)) (|has| |#1| (-829)))
((((-863)) . T))
-((((-1178)) -2800 (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1178)))) (-12 (|has| |#1| (-365)) (|has| |#2| (-902 (-1178))))))
+((((-1179)) -2811 (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1179)))) (-12 (|has| |#1| (-365)) (|has| |#2| (-902 (-1179))))))
(|has| |#1| (-365))
-((((-1178)) -12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178)))))
+((((-1179)) -12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179)))))
(|has| |#1| (-365))
((((-410 (-567))) . T) (($) . T))
((((-410 |#2|)) . T) (((-410 (-567))) . T) (((-567)) . T) (($) . T))
@@ -2906,16 +2909,16 @@
(((|#2|) |has| |#1| (-365)))
(((|#2|) |has| |#1| (-365)))
((((-567)) . T) (($) . T))
-((((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T))
+((((-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) . T))
(((|#1|) . T))
(((|#1|) |has| |#1| (-172)))
(((|#1|) . T))
-(((|#2|) . T) (((-1178)) -12 (|has| |#1| (-365)) (|has| |#2| (-1040 (-1178)))) (((-567)) -12 (|has| |#1| (-365)) (|has| |#2| (-1040 (-567)))) (((-410 (-567))) -12 (|has| |#1| (-365)) (|has| |#2| (-1040 (-567)))))
+(((|#2|) . T) (((-1179)) -12 (|has| |#1| (-365)) (|has| |#2| (-1040 (-1179)))) (((-567)) -12 (|has| |#1| (-365)) (|has| |#2| (-1040 (-567)))) (((-410 (-567))) -12 (|has| |#1| (-365)) (|has| |#2| (-1040 (-567)))))
(((|#2|) . T))
-((((-1178) #0=(-1254 |#1| |#2| |#3| |#4|)) |has| #0# (-517 (-1178) #0#)) ((#0# #0#) |has| #0# (-310 #0#)))
+((((-1179) #0=(-1255 |#1| |#2| |#3| |#4|)) |has| #0# (-517 (-1179) #0#)) ((#0# #0#) |has| #0# (-310 #0#)))
((((-410 (-567))) . T) (($) . T) (((-410 |#1|)) . T) ((|#1|) . T))
((((-613 $) $) . T) (($ $) . T))
-((((-169 (-225))) . T) (((-169 (-381))) . T) (((-1174 (-700))) . T) (((-894 (-381))) . T))
+((((-169 (-225))) . T) (((-169 (-381))) . T) (((-1175 (-700))) . T) (((-894 (-381))) . T))
(((|#3|) . T))
(|has| |#1| (-559))
(|has| (-410 |#2|) (-233))
@@ -2927,7 +2930,7 @@
((($ $) . T))
((($) . T))
((((-863)) . T))
-((((-1178)) |has| |#2| (-902 (-1178))))
+((((-1179)) |has| |#2| (-902 (-1179))))
((((-410 (-567))) . T) (($) . T))
(((|#1|) |has| |#1| (-172)) (($) . T) (((-567)) . T))
(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))
@@ -2936,35 +2939,35 @@
(((|#2|) |has| |#1| (-365)))
((((-381)) -12 (|has| |#1| (-365)) (|has| |#2| (-888 (-381)))) (((-567)) -12 (|has| |#1| (-365)) (|has| |#2| (-888 (-567)))))
(|has| |#1| (-365))
-(-2800 (|has| |#1| (-365)) (|has| |#1| (-559)))
+(-2811 (|has| |#1| (-365)) (|has| |#1| (-559)))
(|has| |#1| (-365))
(((|#1|) . T))
((($) . T) (((-567)) . T) ((|#2|) . T))
-(-2800 (|has| |#1| (-365)) (|has| |#1| (-559)))
+(-2811 (|has| |#1| (-365)) (|has| |#1| (-559)))
(|has| |#1| (-365))
(((|#3|) . T))
-((((-1160)) . T) (((-509)) . T) (((-225)) . T) (((-567)) . T))
+((((-1161)) . T) (((-509)) . T) (((-225)) . T) (((-567)) . T))
(((|#1|) . T))
(|has| |#1| (-559))
(((|#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))))
((((-410 |#2|)) . T) (((-410 (-567))) . T) (($) . T) (((-567)) . T))
-(-2800 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1051)))
+(-2811 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1051)))
(((|#2|) . T))
(((|#2|) . T))
-(-2800 (|has| |#2| (-172)) (|has| |#2| (-727)) (|has| |#2| (-849)) (|has| |#2| (-1051)))
-((((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T))
-((((-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) . T))
-((((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T))
+(-2811 (|has| |#2| (-172)) (|has| |#2| (-727)) (|has| |#2| (-849)) (|has| |#2| (-1051)))
+((((-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) . T))
+((((-2 (|:| -1809 (-1161)) (|:| -4236 |#1|))) . T))
+((((-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) . T))
(|has| |#1| (-38 (-410 (-567))))
(((|#1| |#2|) . T))
(|has| |#1| (-38 (-410 (-567))))
-(-2800 (|has| |#1| (-145)) (|has| |#1| (-370)))
+(-2811 (|has| |#1| (-145)) (|has| |#1| (-370)))
((($) . T))
-((((-1160) |#1|) . T))
+((((-1161) |#1|) . T))
(|has| |#1| (-147))
-(-2800 (|has| |#1| (-145)) (|has| |#1| (-370)))
+(-2811 (|has| |#1| (-145)) (|has| |#1| (-370)))
(|has| |#1| (-147))
-(-2800 (|has| |#1| (-145)) (|has| |#1| (-370)))
+(-2811 (|has| |#1| (-145)) (|has| |#1| (-370)))
((($) . T))
(|has| |#1| (-147))
((((-584 |#1|)) . T))
@@ -2975,10 +2978,10 @@
((($) . T))
((($) . T))
((((-410 |#2|)) . T))
-((((-410 (-567))) |has| |#2| (-1040 (-567))) (((-567)) |has| |#2| (-1040 (-567))) (((-1178)) |has| |#2| (-1040 (-1178))) ((|#2|) . T))
+((((-410 (-567))) |has| |#2| (-1040 (-567))) (((-567)) |has| |#2| (-1040 (-567))) (((-1179)) |has| |#2| (-1040 (-1179))) ((|#2|) . T))
(((#0=(-410 |#2|) #0#) . T) ((#1=(-410 (-567)) #1#) . T) (($ $) . T))
(((|#1|) . T))
-(-2800 (|has| |#1| (-145)) (|has| |#1| (-351)))
+(-2811 (|has| |#1| (-145)) (|has| |#1| (-351)))
(|has| |#1| (-147))
((((-863)) . T))
((($) . T))
@@ -2993,7 +2996,7 @@
(((|#2|) . T))
((((-863)) . T))
(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))
-((((-1178) (-52)) . T))
+((((-1179) (-52)) . T))
((((-410 |#2|)) . T))
((((-863)) . T))
(((|#1|) . T))
@@ -3003,13 +3006,13 @@
((((-863)) . T))
((((-912 |#1|)) . T) (((-410 (-567))) . T) (($) . T) (((-567)) . T))
((((-539)) |has| |#1| (-615 (-539))))
-((((-863)) -2800 (|has| |#1| (-614 (-863))) (|has| |#1| (-851)) (|has| |#1| (-1102))))
+((((-863)) -2811 (|has| |#1| (-614 (-863))) (|has| |#1| (-851)) (|has| |#1| (-1102))))
((((-114)) . T) ((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
((((-225)) . T) (((-381)) . T) (((-894 (-381))) . T))
((((-863)) . T))
-((((-1254 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-410 (-567))) . T))
+((((-1255 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-410 (-567))) . T))
(((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-559)) (((-410 (-567))) |has| |#1| (-559)))
((((-863)) . T))
((((-863)) . T))
@@ -3025,22 +3028,22 @@
((((-567)) . T))
((((-863)) . T))
((((-567)) . T))
-(-2800 (|has| |#2| (-794)) (|has| |#2| (-849)))
+(-2811 (|has| |#2| (-794)) (|has| |#2| (-849)))
((((-169 (-381))) . T) (((-225)) . T) (((-381)) . T))
((((-863)) . T))
((((-863)) . T))
-((((-1160)) . T) (((-539)) . T) (((-567)) . T) (((-894 (-567))) . T) (((-381)) . T) (((-225)) . T))
+((((-1161)) . T) (((-539)) . T) (((-567)) . T) (((-894 (-567))) . T) (((-381)) . T) (((-225)) . T))
((((-863)) . T))
(|has| |#1| (-147))
(|has| |#1| (-145))
-((($) . T) ((#0=(-1253 |#2| |#3| |#4|)) |has| #0# (-172)) (((-410 (-567))) |has| #0# (-38 (-410 (-567)))))
+((($) . T) ((#0=(-1254 |#2| |#3| |#4|)) |has| #0# (-172)) (((-410 (-567))) |has| #0# (-38 (-410 (-567)))))
(((|#1|) . T) (($) . T) (((-410 (-567))) . T))
(|has| |#1| (-365))
(|has| |#1| (-365))
-((((-863)) -2800 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102))))
-((((-863)) -2800 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102))))
-(-2800 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-476)) (|has| |#1| (-727)) (|has| |#1| (-902 (-1178))) (|has| |#1| (-1051)) (|has| |#1| (-1114)) (|has| |#1| (-1102)))
-(|has| |#1| (-1153))
+((((-863)) -2811 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102))))
+((((-863)) -2811 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102))))
+(-2811 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-476)) (|has| |#1| (-727)) (|has| |#1| (-902 (-1179))) (|has| |#1| (-1051)) (|has| |#1| (-1114)) (|has| |#1| (-1102)))
+(|has| |#1| (-1154))
((((-912 |#1|)) . T) (((-410 (-567))) . T) (($) . T))
((((-912 |#1|)) . T) (($) . T) (((-410 (-567))) . T))
((((-567) |#1|) . T))
@@ -3055,26 +3058,26 @@
(((|#1| |#2|) . T))
(((|#1|) |has| |#1| (-310 |#1|)))
((((-567) |#1|) . T))
-((((-1178) |#1|) . T))
-(((|#1|) -2800 (|has| |#1| (-172)) (|has| |#1| (-365))))
+((((-1179) |#1|) . T))
+(((|#1|) -2811 (|has| |#1| (-172)) (|has| |#1| (-365))))
(((|#1|) . T))
-(((|#1|) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-1051))))
+(((|#1|) -2811 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-1051))))
((((-567)) . T) (((-410 (-567))) . T))
(((|#1|) . T))
(|has| |#1| (-559))
((($) . T) (((-567)) . T) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-365)))
((((-410 |#2|)) . T) (((-410 (-567))) . T) (($) . T))
-(-2800 (|has| |#1| (-365)) (|has| |#1| (-559)))
+(-2811 (|has| |#1| (-365)) (|has| |#1| (-559)))
((((-381)) . T))
(((|#1|) . T))
(((|#1|) . T))
(|has| |#1| (-365))
-(-2800 (|has| |#1| (-365)) (|has| |#1| (-559)))
+(-2811 (|has| |#1| (-365)) (|has| |#1| (-559)))
(|has| |#1| (-365))
(|has| |#1| (-559))
(|has| |#1| (-1102))
((((-781 |#1| (-865 |#2|))) |has| (-781 |#1| (-865 |#2|)) (-310 (-781 |#1| (-865 |#2|)))))
-(-2800 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))
+(-2811 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))
(((|#1|) . T))
(((|#2| |#3|) . T))
(((|#1|) . T))
@@ -3082,17 +3085,17 @@
(((|#1| (-534 |#2|)) . T))
(((|#1| (-772)) . T))
(|has| |#1| (-233))
-(((|#1| (-534 (-1090 (-1178)))) . T))
+(((|#1| (-534 (-1090 (-1179)))) . T))
(|has| |#2| (-365))
((((-584 |#1|)) . T) (((-410 (-567))) . T) (($) . T) (((-567)) . T))
((((-567)) . T) (((-410 (-567))) . T) (($) . T))
-((((-2 (|:| -1795 (-1160)) (|:| -4237 (-52)))) . T))
+((((-2 (|:| -1809 (-1161)) (|:| -4236 (-52)))) . T))
(((|#1|) . T))
(((|#1|) . T) (((-567)) . T))
(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))
((((-863)) . T))
((((-863)) . T))
-(-2800 (|has| |#3| (-794)) (|has| |#3| (-849)))
+(-2811 (|has| |#3| (-794)) (|has| |#3| (-849)))
((((-863)) . T))
((((-1122)) . T) (((-863)) . T))
((((-539)) . T) (((-863)) . T))
@@ -3103,16 +3106,16 @@
((((-567)) . T))
(((|#3|) . T))
((((-863)) . T))
-(-2800 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351)))
-((((-567)) . T) (((-410 (-567))) -2800 (|has| |#2| (-38 (-410 (-567)))) (|has| |#2| (-1040 (-410 (-567))))) ((|#2|) . T) (($) -2800 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))) (((-865 |#1|)) . T))
-((((-1127 |#1| |#2|)) . T) ((|#2|) . T) (($) -2800 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) . T) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567))))) (((-567)) . T))
-((((-1174 |#1|)) . T) (((-567)) . T) (($) -2800 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) (((-1084)) . T) ((|#1|) . T) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567))))))
-(-2800 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-559)) (|has| |#1| (-1051)))
-((((-1127 |#1| (-1178))) . T) (((-567)) . T) (((-1090 (-1178))) . T) (($) -2800 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) . T) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567))))) (((-1178)) . T))
+(-2811 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351)))
+((((-567)) . T) (((-410 (-567))) -2811 (|has| |#2| (-38 (-410 (-567)))) (|has| |#2| (-1040 (-410 (-567))))) ((|#2|) . T) (($) -2811 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))) (((-865 |#1|)) . T))
+((((-1127 |#1| |#2|)) . T) ((|#2|) . T) (($) -2811 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) . T) (((-410 (-567))) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567))))) (((-567)) . T))
+((((-1175 |#1|)) . T) (((-567)) . T) (($) -2811 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) (((-1084)) . T) ((|#1|) . T) (((-410 (-567))) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567))))))
+(-2811 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-559)) (|has| |#1| (-1051)))
+((((-1127 |#1| (-1179))) . T) (((-567)) . T) (((-1090 (-1179))) . T) (($) -2811 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) . T) (((-410 (-567))) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567))))) (((-1179)) . T))
(((#0=(-584 |#1|) #0#) . T) (($ $) . T) ((#1=(-410 (-567)) #1#) . T))
((($ $) . T) ((#0=(-410 (-567)) #0#) . T))
(((|#1|) |has| |#1| (-172)))
-(((|#1| (-1268 |#1|) (-1268 |#1|)) . T))
+(((|#1| (-1269 |#1|) (-1269 |#1|)) . T))
((((-584 |#1|)) . T) (($) . T) (((-410 (-567))) . T))
((($) . T) (((-410 (-567))) . T))
(((|#1|) . T))
@@ -3120,13 +3123,13 @@
(((|#1|) . T))
(((|#1|) . T))
((($) . T) (((-410 (-567))) . T))
-(((|#2|) |has| |#2| (-6 (-4420 "*"))))
+(((|#2|) |has| |#2| (-6 (-4424 "*"))))
(((|#1|) . T))
((((-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) ((|#1|) . T) (((-567)) . T))
(((|#1|) . T))
((((-863)) . T))
((((-295 |#3|)) . T))
-(((#0=(-410 (-567)) #0#) |has| |#2| (-38 (-410 (-567)))) ((|#2| |#2|) . T) (($ $) -2800 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))))
+(((#0=(-410 (-567)) #0#) |has| |#2| (-38 (-410 (-567)))) ((|#2| |#2|) . T) (($ $) -2811 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))))
(((|#2| |#2|) . T) ((|#6| |#6|) . T))
(((|#1|) . T))
((($) . T) (((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T))
@@ -3134,21 +3137,21 @@
(((|#1|) . T) (((-410 (-567))) . T) (($) . T))
(((|#1|) . T) (((-410 (-567))) . T) (($) . T))
(((|#1|) . T) (((-410 (-567))) . T) (($) . T))
-((($ $) -2800 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1| |#1|) . T) ((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567)))))
-((($ $) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1| |#1|) . T) ((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567)))))
+((($ $) -2811 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1| |#1|) . T) ((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567)))))
+((($ $) -2811 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1| |#1|) . T) ((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567)))))
(((|#2|) . T))
-((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T) (($) -2800 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))))
+((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T) (($) -2811 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))))
(((|#2|) . T) ((|#6|) . T))
-((($ $) -2800 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1| |#1|) . T) ((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567)))))
+((($ $) -2811 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1| |#1|) . T) ((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567)))))
((((-863)) . T))
-((($) -2800 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
-((($) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+((($) -2811 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+((($) -2811 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
(|has| |#2| (-911))
(|has| |#1| (-911))
-((($) -2800 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+((($) -2811 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
((((-863)) . T))
(((|#1|) . T))
-((((-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) . T))
+((((-2 (|:| -1809 (-1161)) (|:| -4236 |#1|))) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
@@ -3158,7 +3161,7 @@
(|has| |#1| (-1102))
(((|#1|) . T))
(((|#1|) . T) (($) . T) (((-410 (-567))) . T))
-((((-1178)) . T) ((|#1|) . T))
+((((-1179)) . T) ((|#1|) . T))
((((-863)) . T))
(((|#1|) . T) (((-410 (-567))) . T) (($) . T))
((((-863)) . T))
@@ -3167,42 +3170,42 @@
(((#0=(-410 (-567)) #0#) . T))
((((-410 (-567))) . T))
(((|#1|) |has| |#1| (-172)))
-(-2800 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1051)))
+(-2811 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1051)))
(((|#1|) . T))
(((|#1|) . T))
-(-2800 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-849)) (|has| |#2| (-1051)))
+(-2811 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-849)) (|has| |#2| (-1051)))
(((|#1|) . T))
((((-410 (-567))) . T) (((-567)) . T) (($) . T))
((((-539)) . T))
((((-863)) . T))
((((-567)) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-559)))
-((((-1178)) |has| |#2| (-902 (-1178))) (((-1084)) . T))
+((((-1179)) |has| |#2| (-902 (-1179))) (((-1084)) . T))
((((-863)) . T))
-((((-1253 |#2| |#3| |#4|)) . T))
+((((-1254 |#2| |#3| |#4|)) . T))
((((-912 |#1|)) . T))
((($) . T) (((-410 (-567))) . T))
(-12 (|has| |#1| (-365)) (|has| |#2| (-821)))
(-12 (|has| |#1| (-365)) (|has| |#2| (-821)))
((((-863)) . T))
-(|has| |#1| (-1222))
+(|has| |#1| (-1223))
(((|#2|) . T))
((($ $) . T) ((#0=(-410 (-567)) #0#) . T))
-((((-1178)) |has| |#1| (-902 (-1178))))
+((((-1179)) |has| |#1| (-902 (-1179))))
((((-912 |#1|)) . T) (((-410 (-567))) . T) (($) . T))
-((($) . T) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#1|) . T))
-(((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567)))) ((|#1| |#1|) . T) (($ $) -2800 (|has| |#1| (-172)) (|has| |#1| (-559))))
+((($) . T) (((-410 (-567))) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#1|) . T))
+(((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567)))) ((|#1| |#1|) . T) (($ $) -2811 (|has| |#1| (-172)) (|has| |#1| (-559))))
((((-410 |#2|)) . T) (((-410 (-567))) . T) (($) . T))
((($) . T) (((-410 (-567))) . T))
(((|#1|) . T) (((-410 (-567))) . T) (((-567)) . T) (($) . T))
(((|#2|) |has| |#2| (-1051)) (((-567)) -12 (|has| |#2| (-640 (-567))) (|has| |#2| (-1051))))
((((-410 |#2|)) . T) (((-410 (-567))) . T) (($) . T))
-((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T) (($) -2800 (|has| |#1| (-172)) (|has| |#1| (-559))))
+((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T) (($) -2811 (|has| |#1| (-172)) (|has| |#1| (-559))))
(|has| |#1| (-559))
(((|#1|) |has| |#1| (-365)))
((((-567)) . T))
(|has| |#1| (-792))
(|has| |#1| (-792))
-((((-1178) #0=(-116 |#1|)) |has| #0# (-517 (-1178) #0#)) ((#0# #0#) |has| #0# (-310 #0#)))
+((((-1179) #0=(-116 |#1|)) |has| #0# (-517 (-1179) #0#)) ((#0# #0#) |has| #0# (-310 #0#)))
(((|#2|) . T) (((-567)) |has| |#2| (-1040 (-567))) (((-410 (-567))) |has| |#2| (-1040 (-410 (-567)))))
((((-1084)) . T) ((|#2|) . T) (((-567)) |has| |#2| (-1040 (-567))) (((-410 (-567))) |has| |#2| (-1040 (-410 (-567)))))
(((|#1|) . T))
@@ -3216,8 +3219,8 @@
((((-863)) . T))
(|has| |#2| (-821))
(|has| |#2| (-821))
-((((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#2|) |has| |#1| (-365)) (($) . T) ((|#1|) . T))
-(((|#1|) . T) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) . T))
+((((-410 (-567))) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#2|) |has| |#1| (-365)) (($) . T) ((|#1|) . T))
+(((|#1|) . T) (((-410 (-567))) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) . T))
(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))
(((|#1|) . T) (((-567)) |has| |#1| (-1040 (-567))) (((-410 (-567))) |has| |#1| (-1040 (-410 (-567)))))
((((-567)) |has| |#1| (-888 (-567))) (((-381)) |has| |#1| (-888 (-381))))
@@ -3233,7 +3236,7 @@
(((|#1|) . T))
(((|#1|) |has| |#1| (-172)))
(((|#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))))
-(((|#2|) -2800 (|has| |#2| (-6 (-4420 "*"))) (|has| |#2| (-172))))
+(((|#2|) -2811 (|has| |#2| (-6 (-4424 "*"))) (|has| |#2| (-172))))
(((|#2|) . T))
(|has| |#1| (-365))
(((|#2|) . T))
@@ -3245,14 +3248,14 @@
(((|#1|) . T))
(((|#1|) . T))
(((|#2| (-772)) . T))
-((((-1178)) . T))
+((((-1179)) . T))
((((-871 |#1|)) . T))
-(-2800 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-794)) (|has| |#3| (-849)) (|has| |#3| (-1051)))
-(-2800 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-849)) (|has| |#3| (-1051)))
+(-2811 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-794)) (|has| |#3| (-849)) (|has| |#3| (-1051)))
+(-2811 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-849)) (|has| |#3| (-1051)))
((((-863)) . T))
(((|#1|) . T))
-(-2800 (|has| |#2| (-794)) (|has| |#2| (-849)))
-(-2800 (-12 (|has| |#1| (-794)) (|has| |#2| (-794))) (-12 (|has| |#1| (-851)) (|has| |#2| (-851))))
+(-2811 (|has| |#2| (-794)) (|has| |#2| (-849)))
+(-2811 (-12 (|has| |#1| (-794)) (|has| |#2| (-794))) (-12 (|has| |#1| (-851)) (|has| |#2| (-851))))
((((-871 |#1|)) . T))
(((|#1|) . T))
(|has| |#1| (-370))
@@ -3279,18 +3282,18 @@
(((|#1|) . T))
((((-863)) . T))
(|has| |#2| (-911))
-((((-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) . T))
+((((-2 (|:| -1809 (-1179)) (|:| -4236 (-52)))) . T))
((((-539)) |has| |#2| (-615 (-539))) (((-894 (-381))) |has| |#2| (-615 (-894 (-381)))) (((-894 (-567))) |has| |#2| (-615 (-894 (-567)))))
((((-863)) . T))
((((-863)) . T))
(((|#3|) |has| |#3| (-1051)) (((-567)) -12 (|has| |#3| (-640 (-567))) (|has| |#3| (-1051))))
-((((-1127 |#1| |#2|)) . T) (((-954 |#1|)) |has| |#2| (-615 (-1178))) (((-863)) . T))
-((((-954 |#1|)) |has| |#2| (-615 (-1178))) (((-1160)) -12 (|has| |#1| (-1040 (-567))) (|has| |#2| (-615 (-1178)))) (((-894 (-567))) -12 (|has| |#1| (-615 (-894 (-567)))) (|has| |#2| (-615 (-894 (-567))))) (((-894 (-381))) -12 (|has| |#1| (-615 (-894 (-381)))) (|has| |#2| (-615 (-894 (-381))))) (((-539)) -12 (|has| |#1| (-615 (-539))) (|has| |#2| (-615 (-539)))))
-((((-1174 |#1|)) . T) (((-863)) . T))
+((((-1127 |#1| |#2|)) . T) (((-954 |#1|)) |has| |#2| (-615 (-1179))) (((-863)) . T))
+((((-954 |#1|)) |has| |#2| (-615 (-1179))) (((-1161)) -12 (|has| |#1| (-1040 (-567))) (|has| |#2| (-615 (-1179)))) (((-894 (-567))) -12 (|has| |#1| (-615 (-894 (-567)))) (|has| |#2| (-615 (-894 (-567))))) (((-894 (-381))) -12 (|has| |#1| (-615 (-894 (-381)))) (|has| |#2| (-615 (-894 (-381))))) (((-539)) -12 (|has| |#1| (-615 (-539))) (|has| |#2| (-615 (-539)))))
+((((-1175 |#1|)) . T) (((-863)) . T))
((((-863)) . T))
((((-410 (-567))) |has| |#2| (-1040 (-410 (-567)))) (((-567)) |has| |#2| (-1040 (-567))) ((|#2|) . T) (((-865 |#1|)) . T))
((((-116 |#1|)) . T) (($) . T) (((-410 (-567))) . T))
-((((-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) (((-567)) |has| |#1| (-1040 (-567))) ((|#1|) . T) (((-1178)) . T))
+((((-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) (((-567)) |has| |#1| (-1040 (-567))) ((|#1|) . T) (((-1179)) . T))
((((-863)) . T))
((((-567)) . T))
(((|#1|) . T))
@@ -3301,18 +3304,18 @@
((((-863)) . T))
(((|#1|) . T))
((((-863)) . T))
-((((-1183)) . T))
-((((-1183)) . T))
-((((-1183)) . T))
+((((-1184)) . T))
+((((-1184)) . T))
+((((-1184)) . T))
((((-645 |#1|)) . T))
-((($) . T) (((-567)) . T) (((-1254 |#1| |#2| |#3| |#4|)) . T) (((-410 (-567))) . T))
-((((-567)) -2800 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-559)) (|has| |#1| (-1051))) (($) -2800 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-559)) (|has| |#1| (-1051))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-559)))
-((((-1183)) . T))
-((((-1183)) . T))
+((($) . T) (((-567)) . T) (((-1255 |#1| |#2| |#3| |#4|)) . T) (((-410 (-567))) . T))
+((((-567)) -2811 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-559)) (|has| |#1| (-1051))) (($) -2811 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-559)) (|has| |#1| (-1051))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-559)))
+((((-1184)) . T))
+((((-1184)) . T))
((((-567)) . T) (((-410 (-567))) . T))
-((((-1183)) . T))
+((((-1184)) . T))
(((|#1|) |has| |#1| (-172)) (($) . T))
-((((-1183)) . T))
+((((-1184)) . T))
(((|#1|) |has| |#1| (-310 |#1|)))
((((-381)) . T))
((((-863)) . T))
@@ -3323,25 +3326,25 @@
((((-410 |#2|) |#3|) . T))
(((|#1|) . T))
(|has| |#1| (-1102))
-(((|#2| (-485 (-2414 |#1|) (-772))) . T))
+(((|#2| (-485 (-2423 |#1|) (-772))) . T))
((((-567) |#1|) . T))
-((((-1160)) . T) (((-863)) . T))
+((((-1161)) . T) (((-863)) . T))
(((|#2| |#2|) . T))
-(((|#1| (-534 (-1178))) . T))
-(-2800 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1051)))
+(((|#1| (-534 (-1179))) . T))
+(-2811 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1051)))
((((-567)) . T))
(((|#2|) . T))
(((|#2|) . T))
-((((-1178)) |has| |#1| (-902 (-1178))) (((-1084)) . T))
+((((-1179)) |has| |#1| (-902 (-1179))) (((-1084)) . T))
(((|#1|) . T) (((-567)) |has| |#1| (-640 (-567))))
(|has| |#1| (-559))
-(((#0=(-1253 |#2| |#3| |#4|)) . T) (((-410 (-567))) |has| #0# (-38 (-410 (-567)))) (((-567)) . T) (($) . T))
+(((#0=(-1254 |#2| |#3| |#4|)) . T) (((-410 (-567))) |has| #0# (-38 (-410 (-567)))) (((-567)) . T) (($) . T))
((($) . T) (((-410 (-567))) . T))
((($) . T))
((($) . T))
-(-2800 (|has| |#1| (-851)) (|has| |#1| (-1102)))
+(-2811 (|has| |#1| (-851)) (|has| |#1| (-1102)))
(((|#1|) . T))
-((($) -2800 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+((($) -2811 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
((((-863)) . T))
((((-144)) . T))
(((|#1|) . T) (((-410 (-567))) . T))
@@ -3349,7 +3352,7 @@
(((|#1|) . T))
((((-863)) . T))
(((|#1|) . T))
-(|has| |#1| (-1153))
+(|has| |#1| (-1154))
(((|#1| (-534 (-865 |#2|)) (-865 |#2|) (-781 |#1| (-865 |#2|))) . T))
(((|#1|) . T))
((((-410 $) (-410 $)) |has| |#1| (-559)) (($ $) . T) ((|#1| |#1|) . T))
@@ -3358,7 +3361,7 @@
((((-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) (((-567)) |has| |#1| (-1040 (-567))) ((|#1|) . T) ((|#2|) . T))
((((-1084)) . T) ((|#1|) . T) (((-567)) |has| |#1| (-1040 (-567))) (((-410 (-567))) |has| |#1| (-1040 (-410 (-567)))))
((((-381)) -12 (|has| |#1| (-888 (-381))) (|has| |#2| (-888 (-381)))) (((-567)) -12 (|has| |#1| (-888 (-567))) (|has| |#2| (-888 (-567)))))
-((((-1254 |#1| |#2| |#3| |#4|)) . T))
+((((-1255 |#1| |#2| |#3| |#4|)) . T))
((((-567) |#1|) . T))
(((|#1| |#1|) . T))
((($) . T) ((|#2|) . T))
@@ -3373,51 +3376,51 @@
(|has| |#1| (-1102))
(|has| |#1| (-1102))
(|has| |#2| (-365))
-(((|#1|) . T) (($) -2800 (|has| |#1| (-291)) (|has| |#1| (-365))) (((-410 (-567))) |has| |#1| (-365)))
+(((|#1|) . T) (($) -2811 (|has| |#1| (-291)) (|has| |#1| (-365))) (((-410 (-567))) |has| |#1| (-365)))
(|has| |#1| (-365))
(|has| |#1| (-365))
(|has| |#1| (-38 (-410 (-567))))
((((-567)) . T))
-((((-1178)) -12 (|has| |#4| (-902 (-1178))) (|has| |#4| (-1051))))
-((((-1178)) -12 (|has| |#3| (-902 (-1178))) (|has| |#3| (-1051))))
+((((-1179)) -12 (|has| |#4| (-902 (-1179))) (|has| |#4| (-1051))))
+((((-1179)) -12 (|has| |#3| (-902 (-1179))) (|has| |#3| (-1051))))
(((|#1|) . T))
(|has| |#1| (-233))
-(((|#2| (-240 (-2414 |#1|) (-772))) . T))
+(((|#2| (-240 (-2423 |#1|) (-772))) . T))
(((|#1| (-534 |#3|)) . T))
(|has| |#1| (-370))
(|has| |#1| (-370))
(|has| |#1| (-370))
(((|#1|) . T) (($) . T))
(((|#1| (-534 |#2|)) . T))
-(-2800 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1051)))
+(-2811 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1051)))
(((|#1| (-772)) . T))
(|has| |#1| (-559))
-(-2800 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1051)))
-(-2800 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-849)) (|has| |#2| (-1051)))
+(-2811 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1051)))
+(-2811 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-849)) (|has| |#2| (-1051)))
(-12 (|has| |#1| (-21)) (|has| |#2| (-21)))
((((-863)) . T))
((((-567)) . T) (((-410 (-567))) . T) (($) . T))
-(-2800 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-794)) (|has| |#2| (-794))))
-(-2800 (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-794)) (|has| |#3| (-849)) (|has| |#3| (-1051)))
-(-2800 (|has| |#2| (-172)) (|has| |#2| (-727)) (|has| |#2| (-849)) (|has| |#2| (-1051)))
+(-2811 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-794)) (|has| |#2| (-794))))
+(-2811 (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-794)) (|has| |#3| (-849)) (|has| |#3| (-1051)))
+(-2811 (|has| |#2| (-172)) (|has| |#2| (-727)) (|has| |#2| (-849)) (|has| |#2| (-1051)))
(((|#1|) |has| |#1| (-172)))
(((|#4|) |has| |#4| (-1051)))
(((|#3|) |has| |#3| (-1051)))
(-12 (|has| |#1| (-365)) (|has| |#2| (-821)))
(-12 (|has| |#1| (-365)) (|has| |#2| (-821)))
-((((-567)) . T) (((-410 (-567))) -2800 (|has| |#2| (-38 (-410 (-567)))) (|has| |#2| (-1040 (-410 (-567))))) ((|#2|) . T) (($) -2800 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))) (((-865 |#1|)) . T))
-((((-1127 |#1| |#2|)) . T) (((-567)) . T) ((|#3|) . T) (($) -2800 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) . T) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567))))) ((|#2|) . T))
-((((-863)) -2800 (|has| |#1| (-614 (-863))) (|has| |#1| (-851)) (|has| |#1| (-1102))))
+((((-567)) . T) (((-410 (-567))) -2811 (|has| |#2| (-38 (-410 (-567)))) (|has| |#2| (-1040 (-410 (-567))))) ((|#2|) . T) (($) -2811 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))) (((-865 |#1|)) . T))
+((((-1127 |#1| |#2|)) . T) (((-567)) . T) ((|#3|) . T) (($) -2811 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) . T) (((-410 (-567))) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567))))) ((|#2|) . T))
+((((-863)) -2811 (|has| |#1| (-614 (-863))) (|has| |#1| (-851)) (|has| |#1| (-1102))))
((((-539)) |has| |#1| (-615 (-539))))
(((|#1|) . T) (((-410 (-567))) . T) (($) . T) (((-567)) . T))
(((|#1|) . T) (((-410 (-567))) . T) (($) . T) (((-567)) . T))
(((|#1|) . T) (((-410 (-567))) . T) (($) . T) (((-567)) . T))
-((((-1183)) . T))
+((((-1184)) . T))
((((-673 |#1|)) . T))
((((-410 |#2|)) . T) (((-410 (-567))) . T) (($) . T))
((($ $) . T) ((#0=(-410 (-567)) #0#) . T))
((((-863)) . T))
-((((-645 $)) . T) (((-1160)) . T) (((-1178)) . T) (((-567)) . T) (((-225)) . T) (((-863)) . T))
+((((-645 $)) . T) (((-1161)) . T) (((-1179)) . T) (((-567)) . T) (((-225)) . T) (((-863)) . T))
((($) . T) (((-410 (-567))) . T))
(((|#1|) . T))
(((|#4|) |has| |#4| (-1102)) (((-567)) -12 (|has| |#4| (-1040 (-567))) (|has| |#4| (-1102))) (((-410 (-567))) -12 (|has| |#4| (-1040 (-410 (-567)))) (|has| |#4| (-1102))))
@@ -3426,120 +3429,120 @@
(((|#2|) |has| |#2| (-1051)) (((-567)) -12 (|has| |#2| (-640 (-567))) (|has| |#2| (-1051))))
(((|#1|) . T))
(|has| |#2| (-365))
-(((#0=(-410 (-567)) #0#) |has| |#2| (-38 (-410 (-567)))) ((|#2| |#2|) . T) (($ $) -2800 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))))
-((($ $) -2800 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1| |#1|) . T) ((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567)))))
+(((#0=(-410 (-567)) #0#) |has| |#2| (-38 (-410 (-567)))) ((|#2| |#2|) . T) (($ $) -2811 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))))
+((($ $) -2811 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1| |#1|) . T) ((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567)))))
(((|#1| |#1|) . T) (($ $) . T) ((#0=(-410 (-567)) #0#) . T))
(((|#1| |#1|) . T) (($ $) . T) ((#0=(-410 (-567)) #0#) . T))
(((|#1| |#1|) . T) (($ $) . T) ((#0=(-410 (-567)) #0#) . T))
(((|#2| |#2|) . T))
-((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T) (($) -2800 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))))
-((($) -2800 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T) (($) -2811 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))))
+((($) -2811 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
(((|#1|) . T) (($) . T) (((-410 (-567))) . T))
(((|#1|) . T) (($) . T) (((-410 (-567))) . T))
(((|#1|) . T) (($) . T) (((-410 (-567))) . T))
(((|#2|) . T))
((((-863)) |has| |#1| (-1102)))
((($) . T))
-((((-1254 |#1| |#2| |#3| |#4|)) . T))
+((((-1255 |#1| |#2| |#3| |#4|)) . T))
(((|#1|) . T))
(((|#1|) . T))
(|has| |#2| (-821))
(|has| |#2| (-821))
-((($) -2800 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+((($) -2811 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
(|has| |#1| (-365))
(|has| |#1| (-365))
(|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))
(|has| |#1| (-365))
-((($) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+((($) -2811 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
(((|#1|) |has| |#2| (-420 |#1|)))
(((|#1|) |has| |#2| (-420 |#1|)))
-((((-1160)) . T))
+((((-1161)) . T))
((((-912 |#1|)) . T) (((-410 (-567))) . T) (($) . T))
-((((-863)) . T) (((-1183)) . T))
-((((-863)) . T) (((-1183)) . T))
-((((-863)) . T) (((-1183)) . T))
-((((-645 |#1|)) . T) (((-863)) -2800 (|has| |#1| (-614 (-863))) (|has| |#1| (-851)) (|has| |#1| (-1102))))
-((((-1183)) . T))
-((((-1183)) . T))
-((((-1183)) . T))
+((((-863)) . T) (((-1184)) . T))
+((((-863)) . T) (((-1184)) . T))
+((((-863)) . T) (((-1184)) . T))
+((((-645 |#1|)) . T) (((-863)) -2811 (|has| |#1| (-614 (-863))) (|has| |#1| (-851)) (|has| |#1| (-1102))))
+((((-1184)) . T))
+((((-1184)) . T))
+((((-1184)) . T))
((((-645 |#1|)) . T))
((((-539)) |has| |#1| (-615 (-539))))
-((((-863)) . T) (((-1183)) . T))
-((((-1183)) . T))
-((((-863)) . T))
-((((-863)) . T) (((-1183)) . T))
-((((-1217)) . T) (((-863)) . T) (((-1183)) . T))
-((((-1183)) . T))
-((((-1183)) . T))
-((((-863)) . T) (((-1183)) . T))
-((((-1183)) . T))
-((((-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) |has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-310 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))))))
-(-2800 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))
+((((-863)) . T) (((-1184)) . T))
+((((-1184)) . T))
+((((-863)) . T))
+((((-863)) . T) (((-1184)) . T))
+((((-1218)) . T) (((-863)) . T) (((-1184)) . T))
+((((-1184)) . T))
+((((-1184)) . T))
+((((-863)) . T) (((-1184)) . T))
+((((-1184)) . T))
+((((-2 (|:| -1809 (-1179)) (|:| -4236 (-52)))) |has| (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (-310 (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))))))
+(-2811 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))
((((-567) |#1|) . T))
((((-567) |#1|) . T))
((((-567) |#1|) . T))
-(-2800 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))
+(-2811 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))
((((-567) |#1|) . T))
(((|#1|) . T))
-(-2800 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))
-(-2800 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))
-((($) -2800 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-567)) . T) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172)))
-((((-1178)) |has| |#1| (-902 (-1178))) (((-819 (-1178))) . T))
-(-2800 (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-794)) (|has| |#3| (-849)) (|has| |#3| (-1051)))
+(-2811 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))
+(-2811 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))
+((($) -2811 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-567)) . T) (((-410 (-567))) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172)))
+((((-1179)) |has| |#1| (-902 (-1179))) (((-819 (-1179))) . T))
+(-2811 (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-794)) (|has| |#3| (-849)) (|has| |#3| (-1051)))
((((-820 |#1|)) . T))
(((|#1| |#2|) . T))
((((-863)) . T))
-(-2800 (|has| |#3| (-172)) (|has| |#3| (-727)) (|has| |#3| (-849)) (|has| |#3| (-1051)))
+(-2811 (|has| |#3| (-172)) (|has| |#3| (-727)) (|has| |#3| (-849)) (|has| |#3| (-1051)))
(((|#1| |#2|) . T))
((($) . T) (((-567)) . T) (((-410 (-567))) . T))
(|has| |#1| (-38 (-410 (-567))))
((((-863)) . T))
-((((-1254 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-410 (-567))) . T))
+((((-1255 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-410 (-567))) . T))
(((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-559)) (((-410 (-567))) |has| |#1| (-559)))
(((|#2|) . T) (((-567)) |has| |#2| (-640 (-567))))
(|has| |#1| (-365))
-(-2800 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (-12 (|has| |#1| (-365)) (|has| |#2| (-233))))
+(-2811 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (-12 (|has| |#1| (-365)) (|has| |#2| (-233))))
(|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))
(|has| |#1| (-365))
(((|#1|) . T))
-(((#0=(-410 (-567)) #0#) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($ $) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) ((|#1| |#1|) . T))
+(((#0=(-410 (-567)) #0#) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($ $) -2811 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) ((|#1| |#1|) . T))
((((-567) |#1|) . T))
((((-317 |#1|)) . T))
((((-912 |#1|)) . T) (((-410 (-567))) . T) (((-567)) . T) (($) . T))
-(((#0=(-700) (-1174 #0#)) . T))
-((((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) ((|#1|) . T))
+(((#0=(-700) (-1175 #0#)) . T))
+((((-410 (-567))) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2811 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) ((|#1|) . T))
(((|#1|) . T) (($) . T) (((-567)) . T) (((-410 (-567))) . T))
(((|#1| |#2| |#3| |#4|) . T))
(|has| |#1| (-849))
-(((|#2|) . T) (((-1178)) -12 (|has| |#1| (-365)) (|has| |#2| (-1040 (-1178)))) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2800 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-567)) . T) ((|#1|) |has| |#1| (-172)))
-(((|#2|) . T) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-567)) . T) (($) -2800 (|has| |#1| (-365)) (|has| |#1| (-559))))
+(((|#2|) . T) (((-1179)) -12 (|has| |#1| (-365)) (|has| |#2| (-1040 (-1179)))) (((-410 (-567))) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2811 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-567)) . T) ((|#1|) |has| |#1| (-172)))
+(((|#2|) . T) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-567)) . T) (($) -2811 (|has| |#1| (-365)) (|has| |#1| (-559))))
((($ $) . T) ((#0=(-865 |#1|) $) . T) ((#0# |#2|) . T))
-((((-1127 |#1| (-1178))) . T) (((-819 (-1178))) . T) ((|#1|) . T) (((-567)) |has| |#1| (-1040 (-567))) (((-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) (((-1178)) . T))
+((((-1127 |#1| (-1179))) . T) (((-819 (-1179))) . T) ((|#1|) . T) (((-567)) |has| |#1| (-1040 (-567))) (((-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) (((-1179)) . T))
((($) . T))
(((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T))
(((#0=(-1084) |#1|) . T) ((#0# $) . T) (($ $) . T))
-((($ $) . T) ((#0=(-1178) $) |has| |#1| (-233)) ((#0# |#1|) |has| |#1| (-233)) ((#1=(-1090 (-1178)) |#1|) . T) ((#1# $) . T))
+((($ $) . T) ((#0=(-1179) $) |has| |#1| (-233)) ((#0# |#1|) |has| |#1| (-233)) ((#1=(-1090 (-1179)) |#1|) . T) ((#1# $) . T))
((($) . T) ((|#2|) . T))
((($) . T) ((|#2|) . T) (((-410 (-567))) |has| |#2| (-38 (-410 (-567)))))
(|has| |#2| (-911))
-((($) . T) ((#0=(-1253 |#2| |#3| |#4|)) |has| #0# (-172)) (((-410 (-567))) |has| #0# (-38 (-410 (-567)))))
+((($) . T) ((#0=(-1254 |#2| |#3| |#4|)) |has| #0# (-172)) (((-410 (-567))) |has| #0# (-38 (-410 (-567)))))
(((|#1|) |has| |#1| (-172)))
((((-567) |#1|) . T))
(((|#1|) . T))
-((((-1183)) . T))
-(((#0=(-1254 |#1| |#2| |#3| |#4|)) |has| #0# (-310 #0#)))
+((((-1184)) . T))
+(((#0=(-1255 |#1| |#2| |#3| |#4|)) |has| #0# (-310 #0#)))
((($) . T))
(((|#1|) . T))
-((($ $) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) ((#0=(-410 (-567)) #0#) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#2| |#2|) |has| |#1| (-365)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) ((#0=(-410 (-567)) #0#) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))))
+((($ $) -2811 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) ((#0=(-410 (-567)) #0#) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#2| |#2|) |has| |#1| (-365)) ((|#1| |#1|) . T))
+(((|#1| |#1|) . T) (($ $) -2811 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) ((#0=(-410 (-567)) #0#) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))))
(|has| |#2| (-233))
(|has| $ (-147))
((((-863)) . T))
-((($) . T) (((-410 (-567))) -2800 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T))
+((($) . T) (((-410 (-567))) -2811 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T))
((((-863)) . T))
(|has| |#1| (-849))
((((-129)) . T))
-((((-1178)) -12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1178)))))
+((((-1179)) -12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1179)))))
((((-410 (-567))) . T) (((-700)) . T) (($) . T) (((-567)) . T))
(((|#1|) . T))
((((-129)) . T))
@@ -3551,41 +3554,41 @@
((((-863)) |has| |#1| (-1102)))
(((|#4|) . T))
(|has| |#1| (-559))
-((($) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#2|) |has| |#1| (-365)) ((|#1|) . T))
-((((-1178)) -2800 (-12 (|has| (-1260 |#1| |#2| |#3|) (-902 (-1178))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1178))))))
-(((|#1|) . T) (($) -2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))))
-((((-1178)) -12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178)))))
-((((-1178)) -12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-902 (-1178)))))
+((($) -2811 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#2|) |has| |#1| (-365)) ((|#1|) . T))
+((((-1179)) -2811 (-12 (|has| (-1261 |#1| |#2| |#3|) (-902 (-1179))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1179))))))
+(((|#1|) . T) (($) -2811 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))))
+((((-1179)) -12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179)))))
+((((-1179)) -12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-902 (-1179)))))
((((-567) |#1|) . T))
-(-2800 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))
+(-2811 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))
(((|#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))))
(((|#1|) . T))
-(((|#1| (-534 (-819 (-1178)))) . T))
-(-2800 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))
-(-2800 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))
-((((-567)) . T) ((|#2|) . T) (($) . T) (((-410 (-567))) . T) (((-1178)) |has| |#2| (-1040 (-1178))))
+(((|#1| (-534 (-819 (-1179)))) . T))
+(-2811 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))
+(-2811 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))
+((((-567)) . T) ((|#2|) . T) (($) . T) (((-410 (-567))) . T) (((-1179)) |has| |#2| (-1040 (-1179))))
(((|#1|) . T))
-(-2800 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))
+(-2811 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))
(((|#1|) . T))
-(-2800 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1051)))
-(-2800 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-794)) (|has| |#2| (-794))))
-((((-1260 |#1| |#2| |#3|)) |has| |#1| (-365)))
+(-2811 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1051)))
+(-2811 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-794)) (|has| |#2| (-794))))
+((((-1261 |#1| |#2| |#3|)) |has| |#1| (-365)))
((($) . T) (((-871 |#1|)) . T) (((-410 (-567))) . T))
-((((-1260 |#1| |#2| |#3|)) |has| |#1| (-365)))
+((((-1261 |#1| |#2| |#3|)) |has| |#1| (-365)))
(|has| |#1| (-559))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
((((-410 |#2|)) . T))
-(-2800 (|has| |#1| (-365)) (|has| |#1| (-351)))
-((((-863)) -2800 (|has| |#1| (-614 (-863))) (|has| |#1| (-851)) (|has| |#1| (-1102))))
+(-2811 (|has| |#1| (-365)) (|has| |#1| (-351)))
+((((-863)) -2811 (|has| |#1| (-614 (-863))) (|has| |#1| (-851)) (|has| |#1| (-1102))))
((((-539)) |has| |#1| (-615 (-539))))
-((((-863)) -2800 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102))))
-((((-863)) -2800 (|has| |#1| (-614 (-863))) (|has| |#1| (-851)) (|has| |#1| (-1102))))
+((((-863)) -2811 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102))))
+((((-863)) -2811 (|has| |#1| (-614 (-863))) (|has| |#1| (-851)) (|has| |#1| (-1102))))
((((-539)) |has| |#1| (-615 (-539))))
-((((-863)) -2800 (|has| |#1| (-614 (-863))) (|has| |#1| (-851)) (|has| |#1| (-1102))))
+((((-863)) -2811 (|has| |#1| (-614 (-863))) (|has| |#1| (-851)) (|has| |#1| (-1102))))
((((-539)) |has| |#1| (-615 (-539))))
-((((-863)) -2800 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102))))
+((((-863)) -2811 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102))))
(((|#1|) . T))
(((|#2| |#2|) . T) ((#0=(-410 (-567)) #0#) . T) (($ $) . T))
((((-567)) . T))
@@ -3598,7 +3601,7 @@
((((-567) |#1|) . T))
((($) . T))
((((-863)) . T))
-((($ $) . T) (((-1178) $) . T))
+((($ $) . T) (((-1179) $) . T))
((((-539)) |has| |#2| (-615 (-539))) (((-894 (-381))) |has| |#2| (-615 (-894 (-381)))) (((-894 (-567))) |has| |#2| (-615 (-894 (-567)))))
((((-863)) . T))
((((-863)) . T))
@@ -3606,9 +3609,9 @@
((((-863)) . T))
((((-863)) . T))
((((-863)) . T))
-(((|#1|) . T) (((-863)) . T) (((-1183)) . T))
+(((|#1|) . T) (((-863)) . T) (((-1184)) . T))
((((-863)) . T))
-((((-1183)) . T))
+((((-1184)) . T))
((((-114)) . T) ((|#1|) . T) (((-567)) . T))
(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))
(((|#1| (-534 (-865 |#2|)) (-865 |#2|) (-781 |#1| (-865 |#2|))) . T))
@@ -3616,22 +3619,22 @@
((($) . T) (((-567)) . T) (((-116 |#1|)) . T) (((-410 (-567))) . T))
(((|#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) . T))
((((-863)) . T))
-((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) |has| |#2| (-172)) (($) -2800 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))))
+((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) |has| |#2| (-172)) (($) -2811 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))))
(((|#2|) . T) ((|#6|) . T))
((($) . T) (((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T))
((($) . T) (((-567)) . T))
-((($) -2800 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+((($) -2811 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
((((-1106)) . T))
((((-863)) . T))
-((($) -2800 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+((($) -2811 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
((($) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T))
((($) . T))
-((($) -2800 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
-((((-1260 |#1| |#2| |#3|)) . T))
-((((-1260 |#1| |#2| |#3|)) |has| |#1| (-365)))
+((($) -2811 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+((((-1261 |#1| |#2| |#3|)) . T))
+((((-1261 |#1| |#2| |#3|)) |has| |#1| (-365)))
(|has| |#1| (-365))
-((((-1260 |#1| |#2| |#3|)) . T) (((-1232 |#1| |#2| |#3|)) . T))
-((((-1178)) . T) (((-863)) . T))
+((((-1261 |#1| |#2| |#3|)) . T) (((-1233 |#1| |#2| |#3|)) . T))
+((((-1179)) . T) (((-863)) . T))
(|has| |#2| (-911))
(((|#1|) . T))
(|has| |#1| (-911))
@@ -3639,30 +3642,30 @@
(((|#1|) . T))
(((|#1| |#1|) |has| |#1| (-172)))
((((-700)) . T))
-((((-863)) -2800 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102))))
-((((-1183)) . T))
+((((-863)) -2811 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102))))
+((((-1184)) . T))
(((|#1|) |has| |#1| (-172)))
-((((-1183)) . T))
-((((-1254 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-410 (-567))) . T))
+((((-1184)) . T))
+((((-1255 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-410 (-567))) . T))
(((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-559)) (((-410 (-567))) |has| |#1| (-559)))
-((((-1183)) . T))
-((((-1254 |#1| |#2| |#3| |#4|)) . T) (((-410 (-567))) . T) (($) . T))
+((((-1184)) . T))
+((((-1255 |#1| |#2| |#3| |#4|)) . T) (((-410 (-567))) . T) (($) . T))
(((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-559)) (($) |has| |#1| (-559)))
((((-410 (-567))) . T) (($) . T))
(((|#1| (-567)) . T))
(((|#1|) |has| |#1| (-172)))
((((-410 (-567))) . T) (((-567)) . T) (($) . T))
-((((-1183)) . T))
-((((-1183)) . T))
-((((-1183)) . T))
-((((-1183)) . T))
-(-2800 (|has| |#1| (-365)) (|has| |#1| (-351)))
-(-2800 (|has| |#1| (-365)) (|has| |#1| (-351)))
-((((-1183)) . T))
-((((-1183)) . T))
+((((-1184)) . T))
+((((-1184)) . T))
+((((-1184)) . T))
+((((-1184)) . T))
+(-2811 (|has| |#1| (-365)) (|has| |#1| (-351)))
+(-2811 (|has| |#1| (-365)) (|has| |#1| (-351)))
+((((-1184)) . T))
+((((-1184)) . T))
(|has| |#1| (-365))
(|has| |#1| (-365))
-(-2800 (|has| |#1| (-172)) (|has| |#1| (-559)))
+(-2811 (|has| |#1| (-172)) (|has| |#1| (-559)))
(((|#1| (-567)) . T))
(((|#1| (-410 (-567))) . T))
(((|#1| (-772)) . T))
@@ -3674,30 +3677,30 @@
((((-567) |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-894 (-381))) . T) (((-894 (-567))) . T) (((-1178)) . T) (((-539)) . T))
+((((-894 (-381))) . T) (((-894 (-567))) . T) (((-1179)) . T) (((-539)) . T))
(((|#1|) . T))
((((-863)) . T))
-(-2800 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1051)))
-(-2800 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-794)) (|has| |#2| (-794))))
+(-2811 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1051)))
+(-2811 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-794)) (|has| |#2| (-794))))
((((-567)) . T))
((((-567)) . T))
-((((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T))
+((((-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) . T))
(((|#1| |#2|) . T))
(((|#1|) . T))
-(-2800 (|has| |#2| (-172)) (|has| |#2| (-727)) (|has| |#2| (-849)) (|has| |#2| (-1051)))
-((((-1178)) -12 (|has| |#2| (-902 (-1178))) (|has| |#2| (-1051))))
-(-2800 (-12 (|has| |#1| (-476)) (|has| |#2| (-476))) (-12 (|has| |#1| (-727)) (|has| |#2| (-727))))
+(-2811 (|has| |#2| (-172)) (|has| |#2| (-727)) (|has| |#2| (-849)) (|has| |#2| (-1051)))
+((((-1179)) -12 (|has| |#2| (-902 (-1179))) (|has| |#2| (-1051))))
+(-2811 (-12 (|has| |#1| (-476)) (|has| |#2| (-476))) (-12 (|has| |#1| (-727)) (|has| |#2| (-727))))
(|has| |#1| (-145))
(|has| |#1| (-147))
(|has| |#1| (-365))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
-((($) . T) ((#0=(-1253 |#2| |#3| |#4|)) |has| #0# (-172)) (((-410 (-567))) |has| #0# (-38 (-410 (-567)))))
+((($) . T) ((#0=(-1254 |#2| |#3| |#4|)) |has| #0# (-172)) (((-410 (-567))) |has| #0# (-38 (-410 (-567)))))
(|has| |#1| (-233))
((($) . T) (((-567)) . T) (((-410 (-567))) . T))
((($) . T) (((-567)) . T))
((($) . T) (((-567)) . T))
-((($) . T) ((#0=(-1253 |#2| |#3| |#4|)) . T) (((-410 (-567))) |has| #0# (-38 (-410 (-567)))))
+((($) . T) ((#0=(-1254 |#2| |#3| |#4|)) . T) (((-410 (-567))) |has| #0# (-38 (-410 (-567)))))
((((-863)) . T))
(((|#1| (-772) (-1084)) . T))
((((-567) |#1|) . T))
@@ -3712,12 +3715,12 @@
((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-559)))
((((-567)) . T))
((((-567)) . T))
-((((-1160) (-1178) (-567) (-225) (-863)) . T))
+((((-1161) (-1179) (-567) (-225) (-863)) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2|) . T))
((((-567)) . T) ((|#2|) |has| |#2| (-172)))
((((-114)) . T) ((|#1|) . T) (((-567)) . T))
-(-2800 (|has| |#1| (-351)) (|has| |#1| (-370)))
+(-2811 (|has| |#1| (-351)) (|has| |#1| (-370)))
(((|#1| |#2|) . T))
((((-225)) . T))
((((-410 (-567))) . T) (($) . T) (((-567)) . T))
@@ -3729,7 +3732,7 @@
(((|#1|) . T))
(((|#1|) . T))
((((-539)) |has| |#1| (-615 (-539))))
-((((-863)) -2800 (|has| |#1| (-614 (-863))) (|has| |#1| (-851)) (|has| |#1| (-1102))))
+((((-863)) -2811 (|has| |#1| (-614 (-863))) (|has| |#1| (-851)) (|has| |#1| (-1102))))
((($) . T) (((-410 (-567))) . T))
(|has| |#1| (-911))
(|has| |#1| (-911))
@@ -3739,15 +3742,15 @@
(((|#2| |#2|) . T))
(((|#1| |#1|) |has| |#1| (-172)))
(((|#1|) . T) (((-567)) . T))
-((((-1183)) . T))
-(-2800 (|has| |#1| (-365)) (|has| |#1| (-559)))
-(-2800 (|has| |#1| (-21)) (|has| |#1| (-849)))
+((((-1184)) . T))
+(-2811 (|has| |#1| (-365)) (|has| |#1| (-559)))
+(-2811 (|has| |#1| (-21)) (|has| |#1| (-849)))
(((|#2|) . T))
-(-2800 (|has| |#1| (-21)) (|has| |#1| (-849)))
+(-2811 (|has| |#1| (-21)) (|has| |#1| (-849)))
(((|#1|) |has| |#1| (-172)))
(((|#1|) . T))
(((|#1|) . T))
-((((-863)) -2800 (-12 (|has| |#1| (-614 (-863))) (|has| |#2| (-614 (-863)))) (-12 (|has| |#1| (-1102)) (|has| |#2| (-1102)))))
+((((-863)) -2811 (-12 (|has| |#1| (-614 (-863))) (|has| |#2| (-614 (-863)))) (-12 (|has| |#1| (-1102)) (|has| |#2| (-1102)))))
((((-410 |#2|) |#3|) . T))
((((-410 (-567))) . T) (($) . T))
(|has| |#1| (-38 (-410 (-567))))
@@ -3761,21 +3764,21 @@
(((|#1|) . T) (((-410 (-567))) . T) (((-567)) . T) (($) . T))
(((#0=(-567) #0#) . T))
((($) . T) (((-410 (-567))) . T))
-(-2800 (|has| |#4| (-172)) (|has| |#4| (-727)) (|has| |#4| (-849)) (|has| |#4| (-1051)))
-(-2800 (|has| |#3| (-172)) (|has| |#3| (-727)) (|has| |#3| (-849)) (|has| |#3| (-1051)))
-((((-863)) . T) (((-1183)) . T))
+(-2811 (|has| |#4| (-172)) (|has| |#4| (-727)) (|has| |#4| (-849)) (|has| |#4| (-1051)))
+(-2811 (|has| |#3| (-172)) (|has| |#3| (-727)) (|has| |#3| (-849)) (|has| |#3| (-1051)))
+((((-863)) . T) (((-1184)) . T))
(|has| |#4| (-794))
-(-2800 (|has| |#4| (-794)) (|has| |#4| (-849)))
+(-2811 (|has| |#4| (-794)) (|has| |#4| (-849)))
(|has| |#4| (-849))
(|has| |#3| (-794))
-((((-1183)) . T))
-(-2800 (|has| |#3| (-794)) (|has| |#3| (-849)))
+((((-1184)) . T))
+(-2811 (|has| |#3| (-794)) (|has| |#3| (-849)))
(|has| |#3| (-849))
((((-567)) . T))
(((|#2|) . T))
-((((-1178)) -2800 (-12 (|has| (-1176 |#1| |#2| |#3|) (-902 (-1178))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1178))))))
-((((-1178)) -12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178)))))
-((((-1178)) -12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-902 (-1178)))))
+((((-1179)) -2811 (-12 (|has| (-1177 |#1| |#2| |#3|) (-902 (-1179))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1179))))))
+((((-1179)) -12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179)))))
+((((-1179)) -12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-902 (-1179)))))
(((|#1| |#1|) . T) (($ $) . T))
(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))
(((|#1|) . T))
@@ -3785,18 +3788,18 @@
(((|#1|) . T) (($) . T))
(((|#1|) . T))
((((-865 |#1|)) . T))
-((((-1176 |#1| |#2| |#3|)) |has| |#1| (-365)))
+((((-1177 |#1| |#2| |#3|)) |has| |#1| (-365)))
((((-1142 |#1| |#2|)) . T))
-((((-1176 |#1| |#2| |#3|)) |has| |#1| (-365)))
-(((|#2|) . T) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T))
-((((-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) . T))
+((((-1177 |#1| |#2| |#3|)) |has| |#1| (-365)))
+(((|#2|) . T) (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) . T))
+((((-2 (|:| -1809 (-1179)) (|:| -4236 (-52)))) . T))
((($) . T))
(|has| |#1| (-1024))
-(((|#2|) . T) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T))
+(((|#2|) . T) (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) . T))
((((-863)) . T))
((((-539)) |has| |#2| (-615 (-539))) (((-894 (-567))) |has| |#2| (-615 (-894 (-567)))) (((-894 (-381))) |has| |#2| (-615 (-894 (-381)))) (((-381)) . #0=(|has| |#2| (-1024))) (((-225)) . #0#))
((((-295 |#3|)) . T))
-((((-1178) (-52)) . T))
+((((-1179) (-52)) . T))
(((|#1|) . T))
(|has| |#1| (-38 (-410 (-567))))
(|has| |#1| (-38 (-410 (-567))))
@@ -3806,18 +3809,18 @@
((($ $) . T))
((((-410 |#2|)) . T) (((-410 (-567))) . T) (((-567)) . T) (($) . T))
((((-410 (-567))) . T) (((-700)) . T) (($) . T))
-((((-1176 |#1| |#2| |#3|)) . T))
-((((-1176 |#1| |#2| |#3|)) . T) (((-1169 |#1| |#2| |#3|)) . T))
+((((-1177 |#1| |#2| |#3|)) . T))
+((((-1177 |#1| |#2| |#3|)) . T) (((-1170 |#1| |#2| |#3|)) . T))
((((-863)) . T))
-((((-863)) -2800 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102))))
+((((-863)) -2811 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102))))
((((-567) |#1|) . T))
-((((-1176 |#1| |#2| |#3|)) |has| |#1| (-365)))
+((((-1177 |#1| |#2| |#3|)) |has| |#1| (-365)))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1|) . T))
(((|#2|) . T))
(|has| |#2| (-365))
-(((|#3|) . T) ((|#2|) . T) (($) -2800 (|has| |#4| (-172)) (|has| |#4| (-849)) (|has| |#4| (-1051))) ((|#4|) -2800 (|has| |#4| (-172)) (|has| |#4| (-365)) (|has| |#4| (-1051))))
-(((|#2|) . T) (($) -2800 (|has| |#3| (-172)) (|has| |#3| (-849)) (|has| |#3| (-1051))) ((|#3|) -2800 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1051))))
+(((|#3|) . T) ((|#2|) . T) (($) -2811 (|has| |#4| (-172)) (|has| |#4| (-849)) (|has| |#4| (-1051))) ((|#4|) -2811 (|has| |#4| (-172)) (|has| |#4| (-365)) (|has| |#4| (-1051))))
+(((|#2|) . T) (($) -2811 (|has| |#3| (-172)) (|has| |#3| (-849)) (|has| |#3| (-1051))) ((|#3|) -2811 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1051))))
(((|#1|) . T))
(((|#1|) . T))
(|has| |#1| (-365))
@@ -3825,14 +3828,14 @@
(((|#1|) . T))
(((|#1|) . T))
((((-410 (-567))) |has| |#2| (-1040 (-410 (-567)))) (((-567)) |has| |#2| (-1040 (-567))) ((|#2|) . T) (((-865 |#1|)) . T))
-((((-1178)) . T) ((|#1|) . T))
+((((-1179)) . T) ((|#1|) . T))
((((-863)) . T))
((((-863)) . T))
((((-863)) . T))
((((-187)) . T) (((-863)) . T))
((((-863)) . T))
(((|#1|) . T))
-((((-863)) -2800 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102))))
+((((-863)) -2811 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102))))
((((-129)) . T) (((-863)) . T))
((((-567) |#1|) . T))
((((-129)) . T))
@@ -3841,50 +3844,50 @@
(((|#1|) . T))
(((|#2| $) -12 (|has| |#1| (-365)) (|has| |#2| (-287 |#2| |#2|))) (($ $) . T))
((($ $) . T))
-(-2800 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-911)))
-(-2800 (|has| |#1| (-851)) (|has| |#1| (-1102)))
+(-2811 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-911)))
+(-2811 (|has| |#1| (-851)) (|has| |#1| (-1102)))
((((-863)) . T))
((((-863)) . T))
((((-863)) . T))
(((|#1| (-534 |#2|)) . T))
-((((-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) . T))
+((((-2 (|:| -1809 (-1179)) (|:| -4236 (-52)))) . T))
((((-567) (-129)) . T))
(((|#1| (-567)) . T))
(((|#1| (-410 (-567))) . T))
(((|#1| (-772)) . T))
((((-912 |#1|)) . T) (((-410 (-567))) . T) (((-567)) . T) (($) . T))
-((((-863)) . T) (((-1183)) . T))
-((((-863)) . T) (((-1183)) . T))
-((((-1183)) . T))
-((((-863)) . T) (((-1183)) . T))
-((((-1183)) . T))
+((((-863)) . T) (((-1184)) . T))
+((((-863)) . T) (((-1184)) . T))
+((((-1184)) . T))
+((((-863)) . T) (((-1184)) . T))
+((((-1184)) . T))
((((-116 |#1|)) . T) (($) . T) (((-410 (-567))) . T))
-((((-1183)) . T))
-((((-863)) . T) (((-1183)) . T))
-((((-863)) . T) (((-1183)) . T))
-(-2800 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))
-(-2800 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))
+((((-1184)) . T))
+((((-863)) . T) (((-1184)) . T))
+((((-863)) . T) (((-1184)) . T))
+(-2811 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))
+(-2811 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))
((($) . T))
(((|#2| (-534 (-865 |#1|))) . T))
-((((-1183)) . T))
-((((-1183)) . T))
+((((-1184)) . T))
+((((-1184)) . T))
((((-567) |#1|) . T))
-((((-863)) . T) (((-1183)) . T))
-((((-1183)) . T))
+((((-863)) . T) (((-1184)) . T))
+((((-1184)) . T))
(((|#2|) . T))
-((((-863)) . T) (((-1183)) . T))
-((((-1183)) . T))
-((((-863)) . T) (((-1183)) . T))
-((((-1183)) . T))
-((((-863)) . T) (((-1183)) . T))
-((((-1183)) . T))
-((((-863)) -2800 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102))))
+((((-863)) . T) (((-1184)) . T))
+((((-1184)) . T))
+((((-863)) . T) (((-1184)) . T))
+((((-1184)) . T))
+((((-863)) . T) (((-1184)) . T))
+((((-1184)) . T))
+((((-863)) -2811 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102))))
(((|#1|) . T))
(((|#2| (-772)) . T))
(((|#1| |#2|) . T))
-((((-1160) |#1|) . T))
+((((-1161) |#1|) . T))
((((-410 |#2|)) . T))
-((((-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T))
+((((-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) . T))
(|has| |#1| (-559))
(|has| |#1| (-559))
((($) . T) ((|#2|) . T))
@@ -3895,18 +3898,18 @@
((((-567)) . T) (($) . T))
(((|#2| $) |has| |#2| (-287 |#2| |#2|)))
(((|#1| (-645 |#1|)) |has| |#1| (-849)))
-(-2800 (|has| |#1| (-233)) (|has| |#1| (-351)))
-(-2800 (|has| |#1| (-365)) (|has| |#1| (-351)))
-((((-1264 |#1|)) . T) (((-567)) . T) ((|#2|) . T) (((-410 (-567))) |has| |#2| (-1040 (-410 (-567)))))
+(-2811 (|has| |#1| (-233)) (|has| |#1| (-351)))
+(-2811 (|has| |#1| (-365)) (|has| |#1| (-351)))
+((((-1265 |#1|)) . T) (((-567)) . T) ((|#2|) . T) (((-410 (-567))) |has| |#2| (-1040 (-410 (-567)))))
(|has| |#1| (-1102))
(((|#1|) . T))
-((((-1264 |#1|)) . T) (((-567)) . T) (($) -2800 (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))) (((-1084)) . T) ((|#2|) . T) (((-410 (-567))) -2800 (|has| |#2| (-38 (-410 (-567)))) (|has| |#2| (-1040 (-410 (-567))))))
+((((-1265 |#1|)) . T) (((-567)) . T) (($) -2811 (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))) (((-1084)) . T) ((|#2|) . T) (((-410 (-567))) -2811 (|has| |#2| (-38 (-410 (-567)))) (|has| |#2| (-1040 (-410 (-567))))))
((((-410 (-567))) . T) (($) . T))
-((((-1001 |#1|)) . T) ((|#1|) . T) (((-567)) -2800 (|has| (-1001 |#1|) (-1040 (-567))) (|has| |#1| (-1040 (-567)))) (((-410 (-567))) -2800 (|has| (-1001 |#1|) (-1040 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567))))))
+((((-1001 |#1|)) . T) ((|#1|) . T) (((-567)) -2811 (|has| (-1001 |#1|) (-1040 (-567))) (|has| |#1| (-1040 (-567)))) (((-410 (-567))) -2811 (|has| (-1001 |#1|) (-1040 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567))))))
((((-912 |#1|)) . T) (((-410 (-567))) . T) (($) . T))
(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))
(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))
-((((-1178)) |has| |#1| (-902 (-1178))))
+((((-1179)) |has| |#1| (-902 (-1179))))
(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))
(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))
((((-912 |#1|)) . T) (($) . T) (((-410 (-567))) . T))
@@ -3918,10 +3921,10 @@
(((|#1| |#2| |#3| |#4|) . T))
(((#0=(-1142 |#1| |#2|) #0#) |has| (-1142 |#1| |#2|) (-310 (-1142 |#1| |#2|))))
(((|#1|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) ((#0=(-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) #0#) |has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))))
+(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) ((#0=(-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) #0#) |has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-310 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))))
(((#0=(-116 |#1|)) |has| #0# (-310 #0#)))
((($ $) . T))
-(-2800 (|has| |#1| (-851)) (|has| |#1| (-1102)))
+(-2811 (|has| |#1| (-851)) (|has| |#1| (-1102)))
((($ $) . T) ((#0=(-865 |#1|) $) . T) ((#0# |#2|) . T))
((($ $) . T) ((|#2| $) |has| |#1| (-233)) ((|#2| |#1|) |has| |#1| (-233)) ((|#3| |#1|) . T) ((|#3| $) . T))
-(((-481 . -1102) T) ((-265 . -517) 188219) ((-247 . -517) 188162) ((-245 . -1102) 188112) ((-574 . -111) 188097) ((-534 . -23) T) ((-137 . -1102) T) ((-133 . -1102) T) ((-117 . -310) 188054) ((-138 . -1102) T) ((-482 . -517) 187846) ((-678 . -617) 187830) ((-695 . -102) T) ((-1143 . -517) 187749) ((-393 . -131) T) ((-1281 . -978) 187718) ((-1026 . -1053) 187655) ((-31 . -93) T) ((-603 . -492) 187639) ((-1026 . -641) 187576) ((-622 . -131) T) ((-820 . -847) T) ((-526 . -57) 187526) ((-522 . -517) 187459) ((-356 . -1053) 187404) ((-59 . -517) 187337) ((-519 . -517) 187270) ((-421 . -902) 187229) ((-169 . -1051) T) ((-500 . -517) 187162) ((-499 . -517) 187095) ((-356 . -641) 187040) ((-800 . -1040) 186820) ((-700 . -38) 186785) ((-1241 . -617) 186533) ((-345 . -351) T) ((-1096 . -1095) 186517) ((-1096 . -1102) 186495) ((-856 . -617) 186392) ((-169 . -243) 186343) ((-169 . -233) 186294) ((-1096 . -1097) 186252) ((-873 . -287) 186210) ((-225 . -796) T) ((-225 . -793) T) ((-695 . -285) NIL) ((-574 . -617) 186182) ((-1152 . -1194) 186161) ((-410 . -994) 186145) ((-48 . -1053) 186110) ((-702 . -21) T) ((-702 . -25) T) ((-48 . -641) 186075) ((-1283 . -649) 186049) ((-317 . -160) 186028) ((-317 . -143) 186007) ((-1152 . -107) 185957) ((-116 . -21) T) ((-40 . -231) 185934) ((-134 . -25) T) ((-116 . -25) T) ((-609 . -289) 185910) ((-478 . -289) 185889) ((-1241 . -327) 185866) ((-1241 . -1051) T) ((-856 . -1051) T) ((-800 . -340) 185850) ((-139 . -185) T) ((-117 . -1153) NIL) ((-91 . -614) 185782) ((-480 . -131) T) ((-1241 . -233) T) ((-1098 . -493) 185763) ((-1098 . -614) 185729) ((-1092 . -493) 185710) ((-1092 . -614) 185676) ((-595 . -1218) T) ((-1075 . -493) 185657) ((-574 . -1051) T) ((-1075 . -614) 185623) ((-663 . -718) 185607) ((-1068 . -493) 185588) ((-1068 . -614) 185554) ((-960 . -289) 185531) ((-60 . -34) T) ((-1064 . -796) T) ((-1064 . -793) T) ((-1038 . -493) 185512) ((-1021 . -493) 185493) ((-817 . -727) T) ((-732 . -47) 185458) ((-624 . -38) 185445) ((-357 . -291) T) ((-354 . -291) T) ((-346 . -291) T) ((-265 . -291) 185376) ((-247 . -291) 185307) ((-1038 . -614) 185273) ((-1026 . -102) T) ((-1021 . -614) 185239) ((-627 . -493) 185220) ((-416 . -727) T) ((-117 . -38) 185165) ((-486 . -493) 185146) ((-627 . -614) 185112) ((-416 . -476) T) ((-218 . -493) 185093) ((-486 . -614) 185059) ((-356 . -102) T) ((-218 . -614) 185025) ((-1212 . -1060) T) ((-345 . -647) 184955) ((-712 . -1060) T) ((-1176 . -47) 184932) ((-1175 . -47) 184902) ((-1169 . -47) 184879) ((-128 . -289) 184854) ((-1037 . -151) 184800) ((-912 . -291) T) ((-1128 . -47) 184772) ((-695 . -310) NIL) ((-518 . -614) 184754) ((-513 . -614) 184736) ((-511 . -614) 184718) ((-328 . -1102) 184668) ((-713 . -455) 184599) ((-48 . -102) T) ((-1252 . -287) 184584) ((-1231 . -287) 184504) ((-645 . -667) 184488) ((-645 . -652) 184472) ((-341 . -21) T) ((-341 . -25) T) ((-40 . -351) NIL) ((-174 . -21) T) ((-174 . -25) T) ((-645 . -375) 184456) ((-606 . -493) 184438) ((-603 . -287) 184415) ((-606 . -614) 184382) ((-391 . -102) T) ((-1122 . -143) T) ((-126 . -614) 184314) ((-875 . -1102) T) ((-659 . -414) 184298) ((-715 . -614) 184280) ((-249 . -614) 184247) ((-187 . -614) 184229) ((-162 . -614) 184211) ((-157 . -614) 184193) ((-1283 . -727) T) ((-1104 . -34) T) ((-872 . -796) NIL) ((-872 . -793) NIL) ((-859 . -851) T) ((-732 . -888) NIL) ((-1292 . -131) T) ((-383 . -131) T) ((-894 . -617) 184161) ((-906 . -102) T) ((-732 . -1040) 184037) ((-534 . -131) T) ((-1089 . -414) 184021) ((-1002 . -492) 184005) ((-117 . -403) 183982) ((-1169 . -1218) 183961) ((-783 . -414) 183945) ((-781 . -414) 183929) ((-945 . -34) T) ((-695 . -1153) NIL) ((-252 . -649) 183764) ((-251 . -649) 183586) ((-818 . -922) 183565) ((-457 . -414) 183549) ((-603 . -19) 183533) ((-1148 . -1211) 183502) ((-1169 . -888) NIL) ((-1169 . -886) 183454) ((-603 . -605) 183431) ((-1204 . -614) 183363) ((-1177 . -614) 183345) ((-62 . -398) T) ((-1175 . -1040) 183280) ((-1169 . -1040) 183246) ((-695 . -38) 183196) ((-40 . -647) 183126) ((-477 . -287) 183111) ((-1224 . -614) 183093) ((-732 . -379) 183077) ((-839 . -614) 183059) ((-659 . -1060) T) ((-1252 . -1004) 183025) ((-1231 . -1004) 182991) ((-1090 . -617) 182975) ((-1065 . -1194) 182950) ((-1078 . -617) 182927) ((-873 . -615) 182734) ((-873 . -614) 182716) ((-1191 . -492) 182653) ((-421 . -1024) 182631) ((-48 . -310) 182618) ((-1065 . -107) 182564) ((-482 . -492) 182501) ((-523 . -1218) T) ((-1169 . -340) 182453) ((-1143 . -492) 182424) ((-1169 . -379) 182376) ((-1089 . -1060) T) ((-440 . -102) T) ((-183 . -1102) T) ((-252 . -34) T) ((-251 . -34) T) ((-783 . -1060) T) ((-781 . -1060) T) ((-732 . -902) 182353) ((-457 . -1060) T) ((-59 . -492) 182337) ((-1036 . -1058) 182311) ((-522 . -492) 182295) ((-519 . -492) 182279) ((-500 . -492) 182263) ((-499 . -492) 182247) ((-245 . -517) 182180) ((-1036 . -111) 182147) ((-1176 . -902) 182060) ((-1175 . -902) 181966) ((-1169 . -902) 181799) ((-1128 . -902) 181783) ((-671 . -1114) T) ((-356 . -1153) T) ((-646 . -93) T) ((-323 . -1058) 181765) ((-252 . -792) 181744) ((-252 . -795) 181695) ((-31 . -493) 181676) ((-252 . -794) 181655) ((-251 . -792) 181634) ((-251 . -795) 181585) ((-251 . -794) 181564) ((-31 . -614) 181530) ((-50 . -1060) T) ((-252 . -727) 181440) ((-251 . -727) 181350) ((-1212 . -1102) T) ((-671 . -23) T) ((-584 . -1060) T) ((-521 . -1060) T) ((-381 . -1058) 181315) ((-323 . -111) 181290) ((-73 . -385) T) ((-73 . -398) T) ((-1026 . -38) 181227) ((-695 . -403) 181209) ((-99 . -102) T) ((-712 . -1102) T) ((-1296 . -1053) 181196) ((-1005 . -145) 181168) ((-1005 . -147) 181140) ((-871 . -647) 181112) ((-381 . -111) 181068) ((-320 . -1222) 181047) ((-477 . -1004) 181013) ((-356 . -38) 180978) ((-40 . -372) 180950) ((-874 . -614) 180822) ((-127 . -125) 180806) ((-121 . -125) 180790) ((-837 . -1058) 180760) ((-834 . -21) 180712) ((-828 . -1058) 180696) ((-834 . -25) 180648) ((-320 . -559) 180599) ((-520 . -617) 180580) ((-567 . -829) T) ((-240 . -1218) T) ((-1036 . -617) 180549) ((-837 . -111) 180514) ((-828 . -111) 180493) ((-1252 . -614) 180475) ((-1231 . -614) 180457) ((-1231 . -615) 180128) ((-1174 . -911) 180107) ((-1127 . -911) 180086) ((-48 . -38) 180051) ((-1290 . -1114) T) ((-603 . -614) 179963) ((-603 . -615) 179924) ((-1288 . -1114) T) ((-363 . -617) 179908) ((-323 . -617) 179892) ((-240 . -1040) 179719) ((-1174 . -649) 179644) ((-1127 . -649) 179569) ((-855 . -649) 179543) ((-719 . -614) 179525) ((-549 . -370) T) ((-1290 . -23) T) ((-1288 . -23) T) ((-494 . -1102) T) ((-381 . -617) 179475) ((-381 . -619) 179457) ((-1036 . -1051) T) ((-866 . -102) T) ((-1191 . -287) 179436) ((-169 . -370) 179387) ((-1006 . -1218) T) ((-837 . -617) 179341) ((-828 . -617) 179296) ((-44 . -23) T) ((-482 . -287) 179275) ((-588 . -1102) T) ((-1148 . -1111) 179244) ((-1106 . -1105) 179196) ((-393 . -21) T) ((-393 . -25) T) ((-152 . -1114) T) ((-1296 . -102) T) ((-1006 . -886) 179178) ((-1006 . -888) 179160) ((-1212 . -718) 179057) ((-624 . -231) 179041) ((-622 . -21) T) ((-290 . -559) T) ((-622 . -25) T) ((-1198 . -1102) T) ((-712 . -718) 179006) ((-240 . -379) 178975) ((-1006 . -1040) 178935) ((-381 . -1051) T) ((-223 . -1060) T) ((-117 . -231) 178912) ((-59 . -287) 178889) ((-152 . -23) T) ((-519 . -287) 178866) ((-328 . -517) 178799) ((-499 . -287) 178776) ((-381 . -243) T) ((-381 . -233) T) ((-837 . -1051) T) ((-828 . -1051) T) ((-713 . -951) 178745) ((-702 . -851) T) ((-477 . -614) 178727) ((-1254 . -1053) 178632) ((-583 . -647) 178604) ((-567 . -647) 178576) ((-498 . -647) 178526) ((-828 . -233) 178505) ((-134 . -851) T) ((-1254 . -641) 178397) ((-659 . -1102) T) ((-1191 . -605) 178376) ((-553 . -1194) 178355) ((-338 . -1102) T) ((-320 . -365) 178334) ((-410 . -147) 178313) ((-410 . -145) 178292) ((-966 . -1114) 178191) ((-240 . -902) 178123) ((-816 . -1114) 178033) ((-655 . -853) 178017) ((-482 . -605) 177996) ((-553 . -107) 177946) ((-1006 . -379) 177928) ((-1006 . -340) 177910) ((-97 . -1102) T) ((-966 . -23) 177721) ((-480 . -21) T) ((-480 . -25) T) ((-816 . -23) 177591) ((-1178 . -614) 177573) ((-59 . -19) 177557) ((-1178 . -615) 177479) ((-1174 . -727) T) ((-1127 . -727) T) ((-519 . -19) 177463) ((-499 . -19) 177447) ((-59 . -605) 177424) ((-1089 . -1102) T) ((-903 . -102) 177402) ((-855 . -727) T) ((-783 . -1102) T) ((-519 . -605) 177379) ((-499 . -605) 177356) ((-781 . -1102) T) ((-781 . -1067) 177323) ((-464 . -1102) T) ((-457 . -1102) T) ((-588 . -718) 177298) ((-650 . -1102) T) ((-1260 . -47) 177275) ((-1254 . -102) T) ((-1253 . -47) 177245) ((-1232 . -47) 177222) ((-1212 . -172) 177173) ((-1175 . -308) 177152) ((-1169 . -308) 177131) ((-1098 . -617) 177112) ((-1092 . -617) 177093) ((-1082 . -559) 177044) ((-1006 . -902) NIL) ((-1082 . -1222) 176995) ((-671 . -131) T) ((-628 . -1114) T) ((-1075 . -617) 176976) ((-1068 . -617) 176957) ((-1038 . -617) 176938) ((-1021 . -617) 176919) ((-700 . -647) 176869) ((-276 . -1102) T) ((-85 . -444) T) ((-85 . -398) T) ((-715 . -1058) 176839) ((-712 . -172) T) ((-50 . -1102) T) ((-597 . -47) 176816) ((-225 . -649) 176781) ((-584 . -1102) T) ((-521 . -1102) T) ((-490 . -821) T) ((-490 . -922) T) ((-361 . -1222) T) ((-355 . -1222) T) ((-347 . -1222) T) ((-320 . -1114) T) ((-317 . -1053) 176691) ((-314 . -1053) 176620) ((-108 . -1222) T) ((-627 . -617) 176601) ((-361 . -559) T) ((-217 . -922) T) ((-217 . -821) T) ((-317 . -641) 176511) ((-314 . -641) 176440) ((-355 . -559) T) ((-347 . -559) T) ((-486 . -617) 176421) ((-108 . -559) T) ((-659 . -718) 176391) ((-1169 . -1024) NIL) ((-218 . -617) 176372) ((-320 . -23) T) ((-67 . -1218) T) ((-1002 . -614) 176304) ((-695 . -231) 176286) ((-715 . -111) 176251) ((-645 . -34) T) ((-245 . -492) 176235) ((-1104 . -1100) 176219) ((-171 . -1102) T) ((-954 . -911) 176198) ((-1296 . -1153) T) ((-1292 . -21) T) ((-1292 . -25) T) ((-518 . -617) 176182) ((-1290 . -131) T) ((-1288 . -131) T) ((-1281 . -102) T) ((-484 . -911) 176161) ((-1264 . -614) 176127) ((-1253 . -1040) 176062) ((-1232 . -1218) 176041) ((-1232 . -888) NIL) ((-1232 . -886) 175993) ((-1232 . -1040) 175959) ((-1089 . -718) 175808) ((-1064 . -649) 175795) ((-954 . -649) 175720) ((-783 . -718) 175549) ((-539 . -614) 175531) ((-539 . -615) 175512) ((-781 . -718) 175361) ((-1079 . -102) T) ((-383 . -25) T) ((-624 . -647) 175333) ((-383 . -21) T) ((-484 . -649) 175258) ((-464 . -718) 175229) ((-457 . -718) 175078) ((-989 . -102) T) ((-1191 . -615) NIL) ((-1191 . -614) 175060) ((-1144 . -1125) 175005) ((-738 . -102) T) ((-117 . -647) 174935) ((-606 . -617) 174917) ((-1048 . -1211) 174846) ((-903 . -310) 174784) ((-534 . -25) T) ((-877 . -93) T) ((-715 . -617) 174738) ((-682 . -93) T) ((-646 . -493) 174719) ((-141 . -102) T) ((-44 . -131) T) ((-677 . -93) T) ((-665 . -614) 174701) ((-345 . -1060) T) ((-290 . -1114) T) ((-646 . -614) 174654) ((-481 . -93) T) ((-357 . -614) 174636) ((-354 . -614) 174618) ((-346 . -614) 174600) ((-265 . -615) 174348) ((-265 . -614) 174330) ((-247 . -614) 174312) ((-247 . -615) 174173) ((-133 . -93) T) ((-138 . -93) T) ((-137 . -93) T) ((-1212 . -517) 174140) ((-1143 . -614) 174122) ((-1122 . -641) 174109) ((-820 . -727) T) ((-820 . -858) T) ((-603 . -289) 174086) ((-584 . -718) 174051) ((-482 . -615) NIL) ((-482 . -614) 174033) ((-521 . -718) 173978) ((-317 . -102) T) ((-314 . -102) T) ((-290 . -23) T) ((-152 . -131) T) ((-1122 . -1053) 173965) ((-912 . -614) 173947) ((-389 . -727) T) ((-873 . -1058) 173899) ((-912 . -615) 173881) ((-873 . -111) 173819) ((-715 . -1051) T) ((-713 . -1244) 173803) ((-695 . -351) NIL) ((-136 . -102) T) ((-114 . -102) T) ((-139 . -102) T) ((-522 . -614) 173735) ((-381 . -796) T) ((-223 . -1102) T) ((-381 . -793) T) ((-225 . -795) T) ((-225 . -792) T) ((-59 . -615) 173696) ((-59 . -614) 173608) ((-225 . -727) T) ((-519 . -615) 173569) ((-519 . -614) 173481) ((-500 . -614) 173413) ((-499 . -615) 173374) ((-499 . -614) 173286) ((-1082 . -365) 173237) ((-40 . -414) 173214) ((-77 . -1218) T) ((-872 . -911) NIL) ((-361 . -330) 173198) ((-361 . -365) T) ((-355 . -330) 173182) ((-355 . -365) T) ((-347 . -330) 173166) ((-347 . -365) T) ((-317 . -285) 173145) ((-108 . -365) T) ((-70 . -1218) T) ((-1232 . -340) 173097) ((-872 . -649) 173042) ((-1232 . -379) 172994) ((-966 . -131) 172849) ((-816 . -131) 172719) ((-960 . -652) 172703) ((-1089 . -172) 172614) ((-960 . -375) 172598) ((-1064 . -795) T) ((-1064 . -792) T) ((-873 . -617) 172496) ((-783 . -172) 172387) ((-781 . -172) 172298) ((-817 . -47) 172260) ((-1064 . -727) T) ((-328 . -492) 172244) ((-954 . -727) T) ((-1281 . -310) 172182) ((-457 . -172) 172093) ((-245 . -287) 172070) ((-1260 . -902) 171983) ((-1253 . -902) 171889) ((-1252 . -1058) 171724) ((-484 . -727) T) ((-1232 . -902) 171557) ((-1231 . -1058) 171365) ((-1212 . -291) 171344) ((-1188 . -1218) T) ((-1185 . -370) T) ((-1184 . -370) T) ((-1148 . -151) 171328) ((-1122 . -102) T) ((-1120 . -1102) T) ((-1082 . -23) T) ((-1082 . -1114) T) ((-1077 . -102) T) ((-1059 . -614) 171295) ((-929 . -957) T) ((-738 . -310) 171233) ((-75 . -1218) T) ((-665 . -384) 171205) ((-169 . -911) 171158) ((-30 . -957) T) ((-112 . -845) T) ((-1 . -614) 171140) ((-1005 . -412) 171112) ((-128 . -652) 171094) ((-50 . -621) 171078) ((-695 . -647) 171013) ((-597 . -902) 170926) ((-441 . -102) T) ((-128 . -375) 170908) ((-141 . -310) NIL) ((-873 . -1051) T) ((-834 . -851) 170887) ((-81 . -1218) T) ((-712 . -291) T) ((-40 . -1060) T) ((-584 . -172) T) ((-521 . -172) T) ((-514 . -614) 170869) ((-169 . -649) 170779) ((-510 . -614) 170761) ((-353 . -147) 170743) ((-353 . -145) T) ((-361 . -1114) T) ((-355 . -1114) T) ((-347 . -1114) T) ((-1006 . -308) T) ((-916 . -308) T) ((-873 . -243) T) ((-108 . -1114) T) ((-873 . -233) 170722) ((-1252 . -111) 170543) ((-1231 . -111) 170332) ((-245 . -1256) 170316) ((-567 . -849) T) ((-361 . -23) T) ((-356 . -351) T) ((-317 . -310) 170303) ((-314 . -310) 170244) ((-355 . -23) T) ((-320 . -131) T) ((-347 . -23) T) ((-1006 . -1024) T) ((-31 . -617) 170225) ((-108 . -23) T) ((-655 . -1053) 170209) ((-245 . -605) 170186) ((-334 . -1102) T) ((-655 . -641) 170156) ((-1254 . -38) 170048) ((-1241 . -911) 170027) ((-112 . -1102) T) ((-1037 . -102) T) ((-1241 . -649) 169952) ((-872 . -795) NIL) ((-856 . -649) 169926) ((-872 . -792) NIL) ((-817 . -888) NIL) ((-872 . -727) T) ((-1089 . -517) 169799) ((-783 . -517) 169746) ((-781 . -517) 169698) ((-574 . -649) 169685) ((-817 . -1040) 169513) ((-457 . -517) 169456) ((-391 . -392) T) ((-1252 . -617) 169269) ((-1231 . -617) 169017) ((-60 . -1218) T) ((-622 . -851) 168996) ((-503 . -662) T) ((-1148 . -978) 168965) ((-1026 . -647) 168902) ((-1005 . -455) T) ((-700 . -849) T) ((-513 . -793) T) ((-477 . -1058) 168737) ((-345 . -1102) T) ((-314 . -1153) NIL) ((-290 . -131) T) ((-397 . -1102) T) ((-871 . -1060) T) ((-695 . -372) 168704) ((-356 . -647) 168634) ((-223 . -621) 168611) ((-328 . -287) 168588) ((-477 . -111) 168409) ((-1252 . -1051) T) ((-1231 . -1051) T) ((-817 . -379) 168393) ((-169 . -727) T) ((-655 . -102) T) ((-1252 . -243) 168372) ((-1252 . -233) 168324) ((-1231 . -233) 168229) ((-1231 . -243) 168208) ((-1005 . -405) NIL) ((-671 . -640) 168156) ((-317 . -38) 168066) ((-314 . -38) 167995) ((-69 . -614) 167977) ((-320 . -496) 167943) ((-48 . -647) 167893) ((-1191 . -289) 167872) ((-1226 . -851) T) ((-1115 . -1114) 167782) ((-83 . -1218) T) ((-61 . -614) 167764) ((-482 . -289) 167743) ((-1283 . -1040) 167720) ((-1166 . -1102) T) ((-1115 . -23) 167590) ((-817 . -902) 167526) ((-1241 . -727) T) ((-1104 . -1218) T) ((-477 . -617) 167352) ((-1089 . -291) 167283) ((-968 . -1102) T) ((-895 . -102) T) ((-783 . -291) 167194) ((-328 . -19) 167178) ((-59 . -289) 167155) ((-781 . -291) 167086) ((-856 . -727) T) ((-117 . -849) NIL) ((-519 . -289) 167063) ((-328 . -605) 167040) ((-499 . -289) 167017) ((-457 . -291) 166948) ((-1037 . -310) 166799) ((-877 . -493) 166780) ((-877 . -614) 166746) ((-682 . -493) 166727) ((-574 . -727) T) ((-677 . -493) 166708) ((-682 . -614) 166658) ((-677 . -614) 166624) ((-663 . -614) 166606) ((-481 . -493) 166587) ((-481 . -614) 166553) ((-245 . -615) 166514) ((-245 . -493) 166491) ((-138 . -493) 166472) ((-137 . -493) 166453) ((-133 . -493) 166434) ((-245 . -614) 166326) ((-213 . -102) T) ((-138 . -614) 166292) ((-137 . -614) 166258) ((-133 . -614) 166224) ((-1149 . -34) T) ((-945 . -1218) T) ((-345 . -718) 166169) ((-671 . -25) T) ((-671 . -21) T) ((-1178 . -617) 166150) ((-477 . -1051) T) ((-636 . -420) 166115) ((-608 . -420) 166080) ((-1122 . -1153) T) ((-713 . -1053) 165903) ((-584 . -291) T) ((-521 . -291) T) ((-1253 . -308) 165882) ((-477 . -233) 165834) ((-477 . -243) 165813) ((-1232 . -308) 165792) ((-713 . -641) 165621) ((-1232 . -1024) NIL) ((-1082 . -131) T) ((-873 . -796) 165600) ((-144 . -102) T) ((-40 . -1102) T) ((-873 . -793) 165579) ((-645 . -1012) 165563) ((-583 . -1060) T) ((-567 . -1060) T) ((-498 . -1060) T) ((-410 . -455) T) ((-361 . -131) T) ((-317 . -403) 165547) ((-314 . -403) 165508) ((-355 . -131) T) ((-347 . -131) T) ((-1183 . -1102) T) ((-1122 . -38) 165495) ((-1096 . -614) 165462) ((-108 . -131) T) ((-956 . -1102) T) ((-923 . -1102) T) ((-772 . -1102) T) ((-673 . -1102) T) ((-702 . -147) T) ((-116 . -147) T) ((-1290 . -21) T) ((-1290 . -25) T) ((-1288 . -21) T) ((-1288 . -25) T) ((-665 . -1058) 165446) ((-534 . -851) T) ((-503 . -851) T) ((-357 . -1058) 165398) ((-354 . -1058) 165350) ((-346 . -1058) 165302) ((-252 . -1218) T) ((-251 . -1218) T) ((-265 . -1058) 165145) ((-247 . -1058) 164988) ((-665 . -111) 164967) ((-550 . -845) T) ((-357 . -111) 164905) ((-354 . -111) 164843) ((-346 . -111) 164781) ((-265 . -111) 164610) ((-247 . -111) 164439) ((-818 . -1222) 164418) ((-624 . -414) 164402) ((-44 . -21) T) ((-44 . -25) T) ((-816 . -640) 164308) ((-818 . -559) 164287) ((-252 . -1040) 164114) ((-251 . -1040) 163941) ((-126 . -119) 163925) ((-912 . -1058) 163890) ((-713 . -102) T) ((-700 . -1060) T) ((-539 . -619) 163793) ((-345 . -172) T) ((-88 . -614) 163775) ((-152 . -21) T) ((-152 . -25) T) ((-912 . -111) 163731) ((-40 . -718) 163676) ((-871 . -1102) T) ((-665 . -617) 163653) ((-646 . -617) 163634) ((-357 . -617) 163571) ((-354 . -617) 163508) ((-550 . -1102) T) ((-346 . -617) 163445) ((-328 . -615) 163406) ((-328 . -614) 163318) ((-265 . -617) 163071) ((-247 . -617) 162856) ((-1231 . -793) 162809) ((-1231 . -796) 162762) ((-252 . -379) 162731) ((-251 . -379) 162700) ((-655 . -38) 162670) ((-609 . -34) T) ((-485 . -1114) 162580) ((-478 . -34) T) ((-1115 . -131) 162450) ((-966 . -25) 162261) ((-912 . -617) 162211) ((-875 . -614) 162193) ((-966 . -21) 162148) ((-816 . -21) 162058) ((-816 . -25) 161909) ((-1224 . -370) T) ((-624 . -1060) T) ((-1180 . -559) 161888) ((-1174 . -47) 161865) ((-357 . -1051) T) ((-354 . -1051) T) ((-485 . -23) 161735) ((-346 . -1051) T) ((-265 . -1051) T) ((-247 . -1051) T) ((-1127 . -47) 161707) ((-117 . -1060) T) ((-1036 . -649) 161681) ((-960 . -34) T) ((-357 . -233) 161660) ((-357 . -243) T) ((-354 . -233) 161639) ((-354 . -243) T) ((-346 . -233) 161618) ((-346 . -243) T) ((-265 . -327) 161590) ((-247 . -327) 161547) ((-265 . -233) 161526) ((-1158 . -151) 161510) ((-252 . -902) 161442) ((-251 . -902) 161374) ((-1084 . -851) T) ((-417 . -1114) T) ((-1056 . -23) T) ((-912 . -1051) T) ((-323 . -649) 161356) ((-1026 . -849) T) ((-1212 . -1004) 161322) ((-1175 . -922) 161301) ((-1169 . -922) 161280) ((-1169 . -821) NIL) ((-1001 . -1053) 161176) ((-912 . -243) T) ((-818 . -365) 161155) ((-387 . -23) T) ((-127 . -1102) 161133) ((-121 . -1102) 161111) ((-912 . -233) T) ((-128 . -34) T) ((-381 . -649) 161076) ((-1001 . -641) 161024) ((-871 . -718) 161011) ((-1296 . -647) 160983) ((-1048 . -151) 160948) ((-40 . -172) T) ((-695 . -414) 160930) ((-713 . -310) 160917) ((-837 . -649) 160877) ((-828 . -649) 160851) ((-320 . -25) T) ((-320 . -21) T) ((-659 . -287) 160830) ((-583 . -1102) T) ((-567 . -1102) T) ((-498 . -1102) T) ((-245 . -289) 160807) ((-314 . -231) 160768) ((-1174 . -888) NIL) ((-55 . -1102) T) ((-1127 . -888) 160627) ((-129 . -851) T) ((-1174 . -1040) 160507) ((-1127 . -1040) 160390) ((-183 . -614) 160372) ((-855 . -1040) 160268) ((-783 . -287) 160195) ((-818 . -1114) T) ((-1036 . -727) T) ((-603 . -652) 160179) ((-1048 . -978) 160108) ((-1001 . -102) T) ((-818 . -23) T) ((-713 . -1153) 160086) ((-695 . -1060) T) ((-603 . -375) 160070) ((-353 . -455) T) ((-345 . -291) T) ((-1269 . -1102) T) ((-248 . -1102) T) ((-402 . -102) T) ((-290 . -21) T) ((-290 . -25) T) ((-363 . -727) T) ((-711 . -1102) T) ((-700 . -1102) T) ((-363 . -476) T) ((-1212 . -614) 160052) ((-1174 . -379) 160036) ((-1127 . -379) 160020) ((-1026 . -414) 159982) ((-141 . -229) 159964) ((-381 . -795) T) ((-381 . -792) T) ((-871 . -172) T) ((-381 . -727) T) ((-712 . -614) 159946) ((-713 . -38) 159775) ((-1268 . -1266) 159759) ((-353 . -405) T) ((-1268 . -1102) 159709) ((-583 . -718) 159696) ((-567 . -718) 159683) ((-498 . -718) 159648) ((-1254 . -647) 159538) ((-317 . -630) 159517) ((-837 . -727) T) ((-828 . -727) T) ((-645 . -1218) T) ((-1082 . -640) 159465) ((-1174 . -902) 159408) ((-1127 . -902) 159392) ((-663 . -1058) 159376) ((-108 . -640) 159358) ((-485 . -131) 159228) ((-1180 . -1114) T) ((-954 . -47) 159197) ((-624 . -1102) T) ((-663 . -111) 159176) ((-494 . -614) 159142) ((-328 . -289) 159119) ((-484 . -47) 159076) ((-1180 . -23) T) ((-117 . -1102) T) ((-103 . -102) 159054) ((-1280 . -1114) T) ((-551 . -851) T) ((-1056 . -131) T) ((-1026 . -1060) T) ((-820 . -1040) 159038) ((-1005 . -725) 159010) ((-1280 . -23) T) ((-700 . -718) 158975) ((-588 . -614) 158957) ((-389 . -1040) 158941) ((-356 . -1060) T) ((-387 . -131) T) ((-325 . -1040) 158925) ((-1198 . -614) 158907) ((-1122 . -829) T) ((-1107 . -1102) T) ((-225 . -888) 158889) ((-1006 . -922) T) ((-91 . -34) T) ((-1006 . -821) T) ((-916 . -922) T) ((-1082 . -21) T) ((-1082 . -25) T) ((-490 . -1222) T) ((-1001 . -310) 158854) ((-877 . -617) 158835) ((-715 . -649) 158795) ((-217 . -1222) T) ((-682 . -617) 158776) ((-225 . -1040) 158736) ((-40 . -291) T) ((-677 . -617) 158717) ((-490 . -559) T) ((-481 . -617) 158698) ((-317 . -647) 158382) ((-314 . -647) 158296) ((-361 . -25) T) ((-361 . -21) T) ((-355 . -25) T) ((-217 . -559) T) ((-355 . -21) T) ((-347 . -25) T) ((-347 . -21) T) ((-245 . -617) 158273) ((-138 . -617) 158254) ((-137 . -617) 158235) ((-133 . -617) 158216) ((-108 . -25) T) ((-108 . -21) T) ((-48 . -1060) T) ((-583 . -172) T) ((-567 . -172) T) ((-498 . -172) T) ((-659 . -614) 158198) ((-738 . -737) 158182) ((-338 . -614) 158164) ((-68 . -385) T) ((-68 . -398) T) ((-1104 . -107) 158148) ((-1064 . -888) 158130) ((-954 . -888) 158055) ((-654 . -1114) T) ((-624 . -718) 158042) ((-484 . -888) NIL) ((-1148 . -102) T) ((-1096 . -619) 158026) ((-1064 . -1040) 158008) ((-97 . -614) 157990) ((-480 . -147) T) ((-954 . -1040) 157870) ((-117 . -718) 157815) ((-654 . -23) T) ((-484 . -1040) 157691) ((-1089 . -615) NIL) ((-1089 . -614) 157673) ((-783 . -615) NIL) ((-783 . -614) 157634) ((-781 . -615) 157268) ((-781 . -614) 157182) ((-1115 . -640) 157088) ((-464 . -614) 157070) ((-457 . -614) 157052) ((-457 . -615) 156913) ((-1037 . -229) 156859) ((-873 . -911) 156838) ((-126 . -34) T) ((-818 . -131) T) ((-650 . -614) 156820) ((-581 . -102) T) ((-357 . -1287) 156804) ((-354 . -1287) 156788) ((-346 . -1287) 156772) ((-127 . -517) 156705) ((-121 . -517) 156638) ((-514 . -793) T) ((-514 . -796) T) ((-513 . -795) T) ((-103 . -310) 156576) ((-222 . -102) 156554) ((-700 . -172) T) ((-695 . -1102) T) ((-873 . -649) 156506) ((-65 . -386) T) ((-276 . -614) 156488) ((-65 . -398) T) ((-954 . -379) 156472) ((-871 . -291) T) ((-50 . -614) 156454) ((-1001 . -38) 156402) ((-1122 . -647) 156374) ((-584 . -614) 156356) ((-484 . -379) 156340) ((-584 . -615) 156322) ((-521 . -614) 156304) ((-912 . -1287) 156291) ((-872 . -1218) T) ((-702 . -455) T) ((-498 . -517) 156257) ((-490 . -365) T) ((-357 . -370) 156236) ((-354 . -370) 156215) ((-346 . -370) 156194) ((-715 . -727) T) ((-217 . -365) T) ((-116 . -455) T) ((-1291 . -1282) 156178) ((-872 . -886) 156155) ((-872 . -888) NIL) ((-966 . -851) 156054) ((-816 . -851) 156005) ((-1225 . -102) T) ((-655 . -657) 155989) ((-1204 . -34) T) ((-171 . -614) 155971) ((-1115 . -21) 155881) ((-1115 . -25) 155732) ((-872 . -1040) 155709) ((-954 . -902) 155690) ((-1241 . -47) 155667) ((-912 . -370) T) ((-59 . -652) 155651) ((-519 . -652) 155635) ((-484 . -902) 155612) ((-71 . -444) T) ((-71 . -398) T) ((-499 . -652) 155596) ((-59 . -375) 155580) ((-624 . -172) T) ((-519 . -375) 155564) ((-499 . -375) 155548) ((-828 . -709) 155532) ((-1174 . -308) 155511) ((-1180 . -131) T) ((-1144 . -1053) 155495) ((-117 . -172) T) ((-1144 . -641) 155427) ((-1148 . -310) 155365) ((-169 . -1218) T) ((-1280 . -131) T) ((-867 . -1053) 155335) ((-636 . -745) 155319) ((-608 . -745) 155303) ((-1253 . -922) 155282) ((-1232 . -922) 155261) ((-1232 . -821) NIL) ((-867 . -641) 155231) ((-695 . -718) 155181) ((-1231 . -911) 155134) ((-1026 . -1102) T) ((-872 . -379) 155111) ((-872 . -340) 155088) ((-907 . -1114) T) ((-169 . -886) 155072) ((-169 . -888) 154997) ((-490 . -1114) T) ((-356 . -1102) T) ((-217 . -1114) T) ((-76 . -444) T) ((-76 . -398) T) ((-169 . -1040) 154893) ((-320 . -851) T) ((-1268 . -517) 154826) ((-1252 . -649) 154723) ((-1231 . -649) 154593) ((-873 . -795) 154572) ((-873 . -792) 154551) ((-873 . -727) T) ((-490 . -23) T) ((-223 . -614) 154533) ((-174 . -455) T) ((-222 . -310) 154471) ((-86 . -444) T) ((-86 . -398) T) ((-217 . -23) T) ((-1292 . -1285) 154450) ((-678 . -1040) 154434) ((-583 . -291) T) ((-567 . -291) T) ((-498 . -291) T) ((-136 . -473) 154389) ((-655 . -647) 154348) ((-48 . -1102) T) ((-713 . -231) 154332) ((-872 . -902) NIL) ((-1241 . -888) NIL) ((-891 . -102) T) ((-887 . -102) T) ((-391 . -1102) T) ((-169 . -379) 154316) ((-169 . -340) 154300) ((-1241 . -1040) 154180) ((-856 . -1040) 154076) ((-1144 . -102) T) ((-654 . -131) T) ((-117 . -517) 153984) ((-663 . -793) 153963) ((-663 . -796) 153942) ((-574 . -1040) 153924) ((-295 . -1275) 153894) ((-867 . -102) T) ((-965 . -559) 153873) ((-1212 . -1058) 153756) ((-1005 . -1053) 153701) ((-485 . -640) 153607) ((-906 . -1102) T) ((-1026 . -718) 153544) ((-712 . -1058) 153509) ((-1005 . -641) 153454) ((-618 . -102) T) ((-603 . -34) T) ((-1149 . -1218) T) ((-1212 . -111) 153323) ((-477 . -649) 153220) ((-356 . -718) 153165) ((-169 . -902) 153124) ((-700 . -291) T) ((-695 . -172) T) ((-712 . -111) 153080) ((-1296 . -1060) T) ((-1241 . -379) 153064) ((-421 . -1222) 153042) ((-1120 . -614) 153024) ((-314 . -849) NIL) ((-421 . -559) T) ((-225 . -308) T) ((-1231 . -792) 152977) ((-1231 . -795) 152930) ((-1252 . -727) T) ((-1231 . -727) T) ((-48 . -718) 152895) ((-225 . -1024) T) ((-353 . -1275) 152872) ((-1254 . -414) 152838) ((-719 . -727) T) ((-334 . -614) 152820) ((-1241 . -902) 152763) ((-1212 . -617) 152645) ((-112 . -614) 152627) ((-112 . -615) 152609) ((-719 . -476) T) ((-712 . -617) 152559) ((-1291 . -1053) 152543) ((-485 . -21) 152453) ((-127 . -492) 152437) ((-121 . -492) 152421) ((-485 . -25) 152272) ((-1291 . -641) 152242) ((-624 . -291) T) ((-588 . -1058) 152217) ((-440 . -1102) T) ((-1064 . -308) T) ((-117 . -291) T) ((-1106 . -102) T) ((-1005 . -102) T) ((-588 . -111) 152185) ((-1144 . -310) 152123) ((-1212 . -1051) T) ((-1064 . -1024) T) ((-66 . -1218) T) ((-1056 . -25) T) ((-1056 . -21) T) ((-712 . -1051) T) ((-387 . -21) T) ((-387 . -25) T) ((-695 . -517) NIL) ((-1026 . -172) T) ((-712 . -243) T) ((-1064 . -548) T) ((-713 . -647) 152033) ((-509 . -102) T) ((-505 . -102) T) ((-356 . -172) T) ((-345 . -614) 152015) ((-410 . -1053) 151967) ((-397 . -614) 151949) ((-1122 . -849) T) ((-477 . -727) T) ((-894 . -1040) 151917) ((-410 . -641) 151869) ((-108 . -851) T) ((-659 . -1058) 151853) ((-490 . -131) T) ((-1254 . -1060) T) ((-217 . -131) T) ((-1158 . -102) 151831) ((-99 . -1102) T) ((-245 . -667) 151815) ((-245 . -652) 151799) ((-659 . -111) 151778) ((-588 . -617) 151762) ((-317 . -414) 151746) ((-245 . -375) 151730) ((-1161 . -235) 151677) ((-1001 . -231) 151661) ((-74 . -1218) T) ((-48 . -172) T) ((-702 . -390) T) ((-702 . -143) T) ((-1291 . -102) T) ((-1198 . -617) 151643) ((-1089 . -1058) 151486) ((-265 . -911) 151465) ((-247 . -911) 151444) ((-783 . -1058) 151267) ((-781 . -1058) 151110) ((-609 . -1218) T) ((-1166 . -614) 151092) ((-1089 . -111) 150921) ((-1048 . -102) T) ((-478 . -1218) T) ((-464 . -1058) 150892) ((-457 . -1058) 150735) ((-665 . -649) 150719) ((-872 . -308) T) ((-783 . -111) 150528) ((-781 . -111) 150357) ((-357 . -649) 150309) ((-354 . -649) 150261) ((-346 . -649) 150213) ((-265 . -649) 150138) ((-247 . -649) 150063) ((-1160 . -851) T) ((-1090 . -1040) 150047) ((-464 . -111) 150008) ((-457 . -111) 149837) ((-1078 . -1040) 149814) ((-1002 . -34) T) ((-968 . -614) 149796) ((-960 . -1218) T) ((-126 . -1012) 149780) ((-965 . -1114) T) ((-872 . -1024) NIL) ((-736 . -1114) T) ((-716 . -1114) T) ((-659 . -617) 149698) ((-1268 . -492) 149682) ((-1144 . -38) 149642) ((-965 . -23) T) ((-912 . -649) 149607) ((-866 . -1102) T) ((-844 . -102) T) ((-818 . -21) T) ((-636 . -1053) 149591) ((-608 . -1053) 149575) ((-818 . -25) T) ((-736 . -23) T) ((-716 . -23) T) ((-636 . -641) 149559) ((-110 . -662) T) ((-608 . -641) 149543) ((-584 . -1058) 149508) ((-521 . -1058) 149453) ((-227 . -57) 149411) ((-456 . -23) T) ((-410 . -102) T) ((-264 . -102) T) ((-695 . -291) T) ((-867 . -38) 149381) ((-584 . -111) 149337) ((-521 . -111) 149266) ((-1089 . -617) 149002) ((-421 . -1114) T) ((-317 . -1060) 148892) ((-314 . -1060) T) ((-128 . -1218) T) ((-783 . -617) 148640) ((-781 . -617) 148406) ((-659 . -1051) T) ((-1296 . -1102) T) ((-457 . -617) 148191) ((-169 . -308) 148122) ((-421 . -23) T) ((-40 . -614) 148104) ((-40 . -615) 148088) ((-108 . -994) 148070) ((-116 . -870) 148054) ((-650 . -617) 148038) ((-48 . -517) 148004) ((-1204 . -1012) 147988) ((-1183 . -614) 147955) ((-1191 . -34) T) ((-956 . -614) 147921) ((-923 . -614) 147903) ((-1115 . -851) 147854) ((-772 . -614) 147836) ((-673 . -614) 147818) ((-1158 . -310) 147756) ((-482 . -34) T) ((-1094 . -1218) T) ((-480 . -455) T) ((-1143 . -34) T) ((-1089 . -1051) T) ((-50 . -617) 147725) ((-783 . -1051) T) ((-781 . -1051) T) ((-648 . -235) 147709) ((-633 . -235) 147655) ((-584 . -617) 147605) ((-521 . -617) 147535) ((-1241 . -308) 147514) ((-1089 . -327) 147475) ((-457 . -1051) T) ((-1180 . -21) T) ((-1089 . -233) 147454) ((-783 . -327) 147431) ((-783 . -233) T) ((-781 . -327) 147403) ((-732 . -1222) 147382) ((-328 . -652) 147366) ((-1180 . -25) T) ((-59 . -34) T) ((-522 . -34) T) ((-519 . -34) T) ((-457 . -327) 147345) ((-328 . -375) 147329) ((-500 . -34) T) ((-499 . -34) T) ((-1005 . -1153) NIL) ((-732 . -559) 147260) ((-636 . -102) T) ((-608 . -102) T) ((-357 . -727) T) ((-354 . -727) T) ((-346 . -727) T) ((-265 . -727) T) ((-247 . -727) T) ((-1048 . -310) 147168) ((-903 . -1102) 147146) ((-50 . -1051) T) ((-1280 . -21) T) ((-1280 . -25) T) ((-1176 . -559) 147125) ((-1175 . -1222) 147104) ((-1175 . -559) 147055) ((-584 . -1051) T) ((-521 . -1051) T) ((-1169 . -1222) 147034) ((-363 . -1040) 147018) ((-323 . -1040) 147002) ((-1026 . -291) T) ((-381 . -888) 146984) ((-1169 . -559) 146935) ((-1005 . -38) 146880) ((-1001 . -647) 146803) ((-800 . -1114) T) ((-912 . -727) T) ((-584 . -243) T) ((-584 . -233) T) ((-521 . -233) T) ((-521 . -243) T) ((-1128 . -559) 146782) ((-356 . -291) T) ((-648 . -696) 146766) ((-381 . -1040) 146726) ((-295 . -1053) 146647) ((-1122 . -1060) T) ((-103 . -125) 146631) ((-295 . -641) 146573) ((-800 . -23) T) ((-1290 . -1285) 146549) ((-1268 . -287) 146526) ((-410 . -310) 146491) ((-1288 . -1285) 146470) ((-1254 . -1102) T) ((-871 . -614) 146452) ((-837 . -1040) 146421) ((-203 . -788) T) ((-202 . -788) T) ((-201 . -788) T) ((-200 . -788) T) ((-199 . -788) T) ((-198 . -788) T) ((-197 . -788) T) ((-196 . -788) T) ((-195 . -788) T) ((-194 . -788) T) ((-550 . -614) 146403) ((-498 . -1004) T) ((-275 . -840) T) ((-274 . -840) T) ((-273 . -840) T) ((-272 . -840) T) ((-48 . -291) T) ((-271 . -840) T) ((-270 . -840) T) ((-269 . -840) T) ((-193 . -788) T) ((-613 . -851) T) ((-655 . -414) 146387) ((-223 . -617) 146349) ((-110 . -851) T) ((-654 . -21) T) ((-654 . -25) T) ((-1291 . -38) 146319) ((-117 . -287) 146270) ((-1268 . -19) 146254) ((-1268 . -605) 146231) ((-1281 . -1102) T) ((-353 . -1053) 146176) ((-1079 . -1102) T) ((-989 . -1102) T) ((-965 . -131) T) ((-738 . -1102) T) ((-353 . -641) 146121) ((-736 . -131) T) ((-716 . -131) T) ((-514 . -794) T) ((-514 . -795) T) ((-456 . -131) T) ((-410 . -1153) 146099) ((-223 . -1051) T) ((-295 . -102) 145881) ((-141 . -1102) T) ((-700 . -1004) T) ((-91 . -1218) T) ((-127 . -614) 145813) ((-121 . -614) 145745) ((-1296 . -172) T) ((-1175 . -365) 145724) ((-1169 . -365) 145703) ((-317 . -1102) T) ((-421 . -131) T) ((-314 . -1102) T) ((-410 . -38) 145655) ((-1135 . -102) T) ((-1254 . -718) 145547) ((-655 . -1060) T) ((-1137 . -1263) T) ((-320 . -145) 145526) ((-320 . -147) 145505) ((-136 . -1102) T) ((-139 . -1102) T) ((-114 . -1102) T) ((-859 . -102) T) ((-583 . -614) 145487) ((-567 . -615) 145386) ((-567 . -614) 145368) ((-498 . -614) 145350) ((-498 . -615) 145295) ((-488 . -23) T) ((-485 . -851) 145246) ((-490 . -640) 145228) ((-967 . -614) 145210) ((-217 . -640) 145192) ((-225 . -407) T) ((-663 . -649) 145176) ((-55 . -614) 145158) ((-1174 . -922) 145137) ((-732 . -1114) T) ((-353 . -102) T) ((-1217 . -1085) T) ((-1122 . -845) T) ((-819 . -851) T) ((-732 . -23) T) ((-345 . -1058) 145082) ((-1160 . -1159) T) ((-1149 . -107) 145066) ((-1176 . -1114) T) ((-1175 . -1114) T) ((-518 . -1040) 145050) ((-1169 . -1114) T) ((-1128 . -1114) T) ((-345 . -111) 144979) ((-1006 . -1222) T) ((-126 . -1218) T) ((-916 . -1222) T) ((-695 . -287) NIL) ((-1269 . -614) 144961) ((-1176 . -23) T) ((-1175 . -23) T) ((-1169 . -23) T) ((-1006 . -559) T) ((-1144 . -231) 144945) ((-916 . -559) T) ((-1128 . -23) T) ((-248 . -614) 144927) ((-1077 . -1102) T) ((-800 . -131) T) ((-711 . -614) 144909) ((-317 . -718) 144819) ((-314 . -718) 144748) ((-700 . -614) 144730) ((-700 . -615) 144675) ((-410 . -403) 144659) ((-441 . -1102) T) ((-490 . -25) T) ((-490 . -21) T) ((-1122 . -1102) T) ((-217 . -25) T) ((-217 . -21) T) ((-713 . -414) 144643) ((-715 . -1040) 144612) ((-1268 . -614) 144524) ((-1268 . -615) 144485) ((-1254 . -172) T) ((-245 . -34) T) ((-345 . -617) 144415) ((-397 . -617) 144397) ((-928 . -976) T) ((-1204 . -1218) T) ((-663 . -792) 144376) ((-663 . -795) 144355) ((-401 . -398) T) ((-526 . -102) 144333) ((-1037 . -1102) T) ((-222 . -997) 144317) ((-507 . -102) T) ((-624 . -614) 144299) ((-45 . -851) NIL) ((-624 . -615) 144276) ((-1037 . -611) 144251) ((-903 . -517) 144184) ((-345 . -1051) T) ((-117 . -615) NIL) ((-117 . -614) 144166) ((-873 . -1218) T) ((-671 . -420) 144150) ((-671 . -1125) 144095) ((-503 . -151) 144077) ((-345 . -233) T) ((-345 . -243) T) ((-40 . -1058) 144022) ((-873 . -886) 144006) ((-873 . -888) 143931) ((-713 . -1060) T) ((-695 . -1004) NIL) ((-1252 . -47) 143901) ((-1231 . -47) 143878) ((-1143 . -1012) 143849) ((-3 . |UnionCategory|) T) ((-1122 . -718) 143836) ((-1107 . -614) 143818) ((-1082 . -147) 143797) ((-1082 . -145) 143748) ((-968 . -617) 143732) ((-225 . -922) T) ((-40 . -111) 143661) ((-873 . -1040) 143525) ((-1006 . -365) T) ((-1005 . -231) 143502) ((-702 . -1053) 143489) ((-916 . -365) T) ((-702 . -641) 143476) ((-320 . -1206) 143442) ((-381 . -308) T) ((-320 . -1203) 143408) ((-317 . -172) 143387) ((-314 . -172) T) ((-584 . -1287) 143374) ((-521 . -1287) 143351) ((-361 . -147) 143330) ((-116 . -1053) 143317) ((-361 . -145) 143268) ((-355 . -147) 143247) ((-355 . -145) 143198) ((-347 . -147) 143177) ((-609 . -1194) 143153) ((-116 . -641) 143140) ((-347 . -145) 143091) ((-320 . -35) 143057) ((-478 . -1194) 143036) ((0 . |EnumerationCategory|) T) ((-320 . -95) 143002) ((-381 . -1024) T) ((-108 . -147) T) ((-108 . -145) NIL) ((-45 . -235) 142952) ((-655 . -1102) T) ((-609 . -107) 142899) ((-488 . -131) T) ((-478 . -107) 142849) ((-240 . -1114) 142759) ((-873 . -379) 142743) ((-873 . -340) 142727) ((-240 . -23) 142597) ((-40 . -617) 142527) ((-1064 . -922) T) ((-1064 . -821) T) ((-584 . -370) T) ((-521 . -370) T) ((-1281 . -517) 142460) ((-1260 . -559) 142439) ((-353 . -1153) T) ((-328 . -34) T) ((-44 . -420) 142423) ((-1183 . -617) 142359) ((-874 . -1218) T) ((-393 . -745) 142343) ((-1253 . -1222) 142322) ((-1253 . -559) 142273) ((-1144 . -647) 142232) ((-732 . -131) T) ((-673 . -617) 142216) ((-1232 . -1222) 142195) ((-1232 . -559) 142146) ((-1231 . -1218) 142125) ((-1231 . -888) 141998) ((-1231 . -886) 141968) ((-1176 . -131) T) ((-312 . -1085) T) ((-1175 . -131) T) ((-738 . -517) 141901) ((-1169 . -131) T) ((-1128 . -131) T) ((-895 . -1102) T) ((-144 . -845) T) ((-1026 . -1004) T) ((-692 . -614) 141883) ((-1006 . -23) T) ((-526 . -310) 141821) ((-1006 . -1114) T) ((-141 . -517) NIL) ((-867 . -647) 141766) ((-1005 . -351) NIL) ((-973 . -23) T) ((-916 . -1114) T) ((-353 . -38) 141731) ((-916 . -23) T) ((-873 . -902) 141690) ((-82 . -614) 141672) ((-40 . -1051) T) ((-871 . -1058) 141659) ((-871 . -111) 141644) ((-702 . -102) T) ((-695 . -614) 141626) ((-603 . -1218) T) ((-598 . -559) 141605) ((-430 . -1114) T) ((-341 . -1053) 141589) ((-213 . -1102) T) ((-174 . -1053) 141521) ((-477 . -47) 141491) ((-134 . -102) T) ((-40 . -233) 141463) ((-40 . -243) T) ((-116 . -102) T) ((-597 . -559) 141442) ((-341 . -641) 141426) ((-695 . -615) 141334) ((-317 . -517) 141300) ((-174 . -641) 141232) ((-314 . -517) 141124) ((-1252 . -1040) 141108) ((-1231 . -1040) 140894) ((-1001 . -414) 140878) ((-430 . -23) T) ((-1122 . -172) T) ((-1254 . -291) T) ((-655 . -718) 140848) ((-144 . -1102) T) ((-48 . -1004) T) ((-410 . -231) 140832) ((-296 . -235) 140782) ((-872 . -922) T) ((-872 . -821) NIL) ((-871 . -617) 140754) ((-865 . -851) T) ((-1231 . -340) 140724) ((-1231 . -379) 140694) ((-222 . -1123) 140678) ((-1268 . -289) 140655) ((-1212 . -649) 140580) ((-1005 . -647) 140510) ((-965 . -21) T) ((-965 . -25) T) ((-736 . -21) T) ((-736 . -25) T) ((-716 . -21) T) ((-716 . -25) T) ((-712 . -649) 140475) ((-456 . -21) T) ((-456 . -25) T) ((-341 . -102) T) ((-174 . -102) T) ((-1001 . -1060) T) ((-871 . -1051) T) ((-775 . -102) T) ((-1253 . -365) 140454) ((-1252 . -902) 140360) ((-1232 . -365) 140339) ((-1231 . -902) 140190) ((-1026 . -614) 140172) ((-410 . -829) 140125) ((-1176 . -496) 140091) ((-169 . -922) 140022) ((-1175 . -496) 139988) ((-1169 . -496) 139954) ((-713 . -1102) T) ((-1128 . -496) 139920) ((-583 . -1058) 139907) ((-567 . -1058) 139894) ((-498 . -1058) 139859) ((-317 . -291) 139838) ((-314 . -291) T) ((-356 . -614) 139820) ((-421 . -25) T) ((-421 . -21) T) ((-99 . -287) 139799) ((-583 . -111) 139784) ((-567 . -111) 139769) ((-498 . -111) 139725) ((-1178 . -888) 139692) ((-903 . -492) 139676) ((-48 . -614) 139658) ((-48 . -615) 139603) ((-240 . -131) 139473) ((-1291 . -647) 139432) ((-1241 . -922) 139411) ((-817 . -1222) 139390) ((-391 . -493) 139371) ((-1037 . -517) 139215) ((-391 . -614) 139181) ((-817 . -559) 139112) ((-588 . -649) 139087) ((-265 . -47) 139059) ((-247 . -47) 139016) ((-534 . -512) 138993) ((-583 . -617) 138965) ((-567 . -617) 138937) ((-498 . -617) 138870) ((-1076 . -1218) T) ((-1002 . -1218) T) ((-1260 . -23) T) ((-700 . -1058) 138835) ((-1260 . -1114) T) ((-1253 . -1114) T) ((-1253 . -23) T) ((-1232 . -1114) T) ((-1232 . -23) T) ((-1005 . -372) 138807) ((-112 . -370) T) ((-477 . -902) 138713) ((-1212 . -727) T) ((-906 . -614) 138695) ((-55 . -617) 138677) ((-91 . -107) 138661) ((-1122 . -291) T) ((-907 . -851) 138612) ((-702 . -1153) T) ((-700 . -111) 138568) ((-844 . -647) 138485) ((-598 . -1114) T) ((-597 . -1114) T) ((-713 . -718) 138314) ((-712 . -727) T) ((-1006 . -131) T) ((-973 . -131) T) ((-490 . -851) T) ((-916 . -131) T) ((-800 . -25) T) ((-800 . -21) T) ((-217 . -851) T) ((-410 . -647) 138251) ((-583 . -1051) T) ((-567 . -1051) T) ((-498 . -1051) T) ((-598 . -23) T) ((-345 . -1287) 138228) ((-320 . -455) 138207) ((-341 . -310) 138194) ((-597 . -23) T) ((-430 . -131) T) ((-659 . -649) 138168) ((-245 . -1012) 138152) ((-873 . -308) T) ((-1292 . -1282) 138136) ((-772 . -793) T) ((-772 . -796) T) ((-702 . -38) 138123) ((-567 . -233) T) ((-498 . -243) T) ((-498 . -233) T) ((-1152 . -235) 138073) ((-1089 . -911) 138052) ((-116 . -38) 138039) ((-209 . -801) T) ((-208 . -801) T) ((-207 . -801) T) ((-206 . -801) T) ((-873 . -1024) 138017) ((-1281 . -492) 138001) ((-783 . -911) 137980) ((-781 . -911) 137959) ((-1191 . -1218) T) ((-457 . -911) 137938) ((-738 . -492) 137922) ((-1089 . -649) 137847) ((-700 . -617) 137782) ((-783 . -649) 137707) ((-624 . -1058) 137694) ((-482 . -1218) T) ((-345 . -370) T) ((-141 . -492) 137676) ((-781 . -649) 137601) ((-1143 . -1218) T) ((-552 . -851) T) ((-464 . -649) 137572) ((-265 . -888) 137431) ((-247 . -888) NIL) ((-117 . -1058) 137376) ((-457 . -649) 137301) ((-665 . -1040) 137278) ((-624 . -111) 137263) ((-393 . -1053) 137247) ((-357 . -1040) 137231) ((-354 . -1040) 137215) ((-346 . -1040) 137199) ((-265 . -1040) 137043) ((-247 . -1040) 136919) ((-117 . -111) 136848) ((-59 . -1218) T) ((-393 . -641) 136832) ((-622 . -1053) 136816) ((-522 . -1218) T) ((-519 . -1218) T) ((-500 . -1218) T) ((-499 . -1218) T) ((-440 . -614) 136798) ((-437 . -614) 136780) ((-622 . -641) 136764) ((-3 . -102) T) ((-1029 . -1211) 136733) ((-834 . -102) T) ((-690 . -57) 136691) ((-700 . -1051) T) ((-636 . -647) 136660) ((-608 . -647) 136629) ((-50 . -649) 136603) ((-290 . -455) T) ((-479 . -1211) 136572) ((0 . -102) T) ((-584 . -649) 136537) ((-521 . -649) 136482) ((-49 . -102) T) ((-912 . -1040) 136469) ((-700 . -243) T) ((-1082 . -412) 136448) ((-732 . -640) 136396) ((-1001 . -1102) T) ((-713 . -172) 136287) ((-624 . -617) 136182) ((-490 . -994) 136164) ((-265 . -379) 136148) ((-247 . -379) 136132) ((-402 . -1102) T) ((-1028 . -102) 136110) ((-341 . -38) 136094) ((-217 . -994) 136076) ((-117 . -617) 136006) ((-174 . -38) 135938) ((-1252 . -308) 135917) ((-1231 . -308) 135896) ((-659 . -727) T) ((-99 . -614) 135878) ((-480 . -1053) 135843) ((-1169 . -640) 135795) ((-480 . -641) 135760) ((-488 . -25) T) ((-488 . -21) T) ((-1231 . -1024) 135712) ((-1059 . -1218) T) ((-624 . -1051) T) ((-381 . -407) T) ((-393 . -102) T) ((-1107 . -619) 135627) ((-265 . -902) 135573) ((-247 . -902) 135550) ((-117 . -1051) T) ((-817 . -1114) T) ((-1089 . -727) T) ((-624 . -233) 135529) ((-622 . -102) T) ((-783 . -727) T) ((-781 . -727) T) ((-416 . -1114) T) ((-117 . -243) T) ((-40 . -370) NIL) ((-117 . -233) NIL) ((-1223 . -851) T) ((-457 . -727) T) ((-817 . -23) T) ((-732 . -25) T) ((-732 . -21) T) ((-1079 . -287) 135508) ((-78 . -399) T) ((-78 . -398) T) ((-536 . -768) 135490) ((-695 . -1058) 135440) ((-1260 . -131) T) ((-1253 . -131) T) ((-1232 . -131) T) ((-1176 . -25) T) ((-1144 . -414) 135424) ((-636 . -369) 135356) ((-608 . -369) 135288) ((-1158 . -1151) 135272) ((-103 . -1102) 135250) ((-1176 . -21) T) ((-1175 . -21) T) ((-866 . -614) 135232) ((-1001 . -718) 135180) ((-223 . -649) 135147) ((-695 . -111) 135081) ((-50 . -727) T) ((-1175 . -25) T) ((-353 . -351) T) ((-1169 . -21) T) ((-1082 . -455) 135032) ((-1169 . -25) T) ((-713 . -517) 134979) ((-584 . -727) T) ((-521 . -727) T) ((-1128 . -21) T) ((-1128 . -25) T) ((-598 . -131) T) ((-295 . -647) 134714) ((-597 . -131) T) ((-361 . -455) T) ((-355 . -455) T) ((-347 . -455) T) ((-477 . -308) 134693) ((-1226 . -102) T) ((-314 . -287) 134628) ((-108 . -455) T) ((-79 . -444) T) ((-79 . -398) T) ((-480 . -102) T) ((-692 . -617) 134612) ((-1296 . -614) 134594) ((-1296 . -615) 134576) ((-1082 . -405) 134555) ((-1037 . -492) 134486) ((-567 . -796) T) ((-567 . -793) T) ((-1065 . -235) 134432) ((-361 . -405) 134383) ((-355 . -405) 134334) ((-347 . -405) 134285) ((-1283 . -1114) T) ((-1292 . -1053) 134269) ((-383 . -1053) 134253) ((-1292 . -641) 134223) ((-383 . -641) 134193) ((-695 . -617) 134128) ((-1283 . -23) T) ((-1270 . -102) T) ((-175 . -614) 134110) ((-1144 . -1060) T) ((-550 . -370) T) ((-671 . -745) 134094) ((-1180 . -145) 134073) ((-1180 . -147) 134052) ((-1148 . -1102) T) ((-1148 . -1073) 134021) ((-69 . -1218) T) ((-1026 . -1058) 133958) ((-353 . -647) 133888) ((-867 . -1060) T) ((-240 . -640) 133794) ((-695 . -1051) T) ((-356 . -1058) 133739) ((-61 . -1218) T) ((-1026 . -111) 133655) ((-903 . -614) 133566) ((-695 . -243) T) ((-695 . -233) NIL) ((-844 . -849) 133545) ((-700 . -796) T) ((-700 . -793) T) ((-1005 . -414) 133522) ((-356 . -111) 133451) ((-381 . -922) T) ((-410 . -849) 133430) ((-713 . -291) 133341) ((-223 . -727) T) ((-1260 . -496) 133307) ((-1253 . -496) 133273) ((-1232 . -496) 133239) ((-581 . -1102) T) ((-317 . -1004) 133218) ((-222 . -1102) 133196) ((-1225 . -845) T) ((-320 . -975) 133158) ((-105 . -102) T) ((-48 . -1058) 133123) ((-1292 . -102) T) ((-383 . -102) T) ((-48 . -111) 133079) ((-1006 . -640) 133061) ((-1254 . -614) 133043) ((-534 . -102) T) ((-503 . -102) T) ((-1135 . -1136) 133027) ((-152 . -1275) 133011) ((-245 . -1218) T) ((-1217 . -102) T) ((-1026 . -617) 132948) ((-1174 . -1222) 132927) ((-356 . -617) 132857) ((-1127 . -1222) 132836) ((-240 . -21) 132746) ((-240 . -25) 132597) ((-127 . -119) 132581) ((-121 . -119) 132565) ((-44 . -745) 132549) ((-1174 . -559) 132460) ((-1127 . -559) 132391) ((-1225 . -1102) T) ((-1037 . -287) 132366) ((-1168 . -1085) T) ((-996 . -1085) T) ((-817 . -131) T) ((-117 . -796) NIL) ((-117 . -793) NIL) ((-357 . -308) T) ((-354 . -308) T) ((-346 . -308) T) ((-252 . -1114) 132276) ((-251 . -1114) 132186) ((-1026 . -1051) T) ((-1005 . -1060) T) ((-48 . -617) 132119) ((-345 . -649) 132064) ((-622 . -38) 132048) ((-1281 . -614) 132010) ((-1281 . -615) 131971) ((-1079 . -614) 131953) ((-1026 . -243) T) ((-356 . -1051) T) ((-816 . -1275) 131923) ((-252 . -23) T) ((-251 . -23) T) ((-989 . -614) 131905) ((-738 . -615) 131866) ((-738 . -614) 131848) ((-800 . -851) 131827) ((-1161 . -151) 131774) ((-1001 . -517) 131686) ((-356 . -233) T) ((-356 . -243) T) ((-391 . -617) 131667) ((-1006 . -25) T) ((-141 . -614) 131649) ((-141 . -615) 131608) ((-912 . -308) T) ((-1006 . -21) T) ((-973 . -25) T) ((-916 . -21) T) ((-916 . -25) T) ((-430 . -21) T) ((-430 . -25) T) ((-844 . -414) 131592) ((-48 . -1051) T) ((-1290 . -1282) 131576) ((-1288 . -1282) 131560) ((-1037 . -605) 131535) ((-317 . -615) 131396) ((-317 . -614) 131378) ((-314 . -615) NIL) ((-314 . -614) 131360) ((-48 . -243) T) ((-48 . -233) T) ((-655 . -287) 131321) ((-553 . -235) 131271) ((-139 . -614) 131238) ((-136 . -614) 131220) ((-114 . -614) 131202) ((-480 . -38) 131167) ((-1292 . -1289) 131146) ((-1283 . -131) T) ((-1291 . -1060) T) ((-1084 . -102) T) ((-88 . -1218) T) ((-503 . -310) NIL) ((-1002 . -107) 131130) ((-891 . -1102) T) ((-887 . -1102) T) ((-1268 . -652) 131114) ((-1268 . -375) 131098) ((-328 . -1218) T) ((-595 . -851) T) ((-1144 . -1102) T) ((-1144 . -1055) 131038) ((-103 . -517) 130971) ((-929 . -614) 130953) ((-345 . -727) T) ((-30 . -614) 130935) ((-867 . -1102) T) ((-844 . -1060) 130914) ((-40 . -649) 130859) ((-225 . -1222) T) ((-410 . -1060) T) ((-1160 . -151) 130841) ((-1001 . -291) 130792) ((-618 . -1102) T) ((-225 . -559) T) ((-320 . -1249) 130776) ((-320 . -1246) 130746) ((-702 . -647) 130718) ((-1191 . -1194) 130697) ((-1077 . -614) 130679) ((-1191 . -107) 130629) ((-648 . -151) 130613) ((-633 . -151) 130559) ((-116 . -647) 130531) ((-482 . -1194) 130510) ((-490 . -147) T) ((-490 . -145) NIL) ((-1122 . -615) 130425) ((-441 . -614) 130407) ((-217 . -147) T) ((-217 . -145) NIL) ((-1122 . -614) 130389) ((-129 . -102) T) ((-52 . -102) T) ((-1232 . -640) 130341) ((-482 . -107) 130291) ((-995 . -23) T) ((-1292 . -38) 130261) ((-1174 . -1114) T) ((-1127 . -1114) T) ((-1064 . -1222) T) ((-312 . -102) T) ((-855 . -1114) T) ((-954 . -1222) 130240) ((-484 . -1222) 130219) ((-1064 . -559) T) ((-954 . -559) 130150) ((-1174 . -23) T) ((-1127 . -23) T) ((-855 . -23) T) ((-484 . -559) 130081) ((-1144 . -718) 130013) ((-671 . -1053) 129997) ((-1148 . -517) 129930) ((-671 . -641) 129914) ((-1037 . -615) NIL) ((-1037 . -614) 129896) ((-96 . -1085) T) ((-867 . -718) 129866) ((-1212 . -47) 129835) ((-252 . -131) T) ((-251 . -131) T) ((-1106 . -1102) T) ((-1005 . -1102) T) ((-62 . -614) 129817) ((-1169 . -851) NIL) ((-1026 . -793) T) ((-1026 . -796) T) ((-1296 . -1058) 129804) ((-1296 . -111) 129789) ((-1260 . -25) T) ((-1260 . -21) T) ((-871 . -649) 129776) ((-1253 . -21) T) ((-1253 . -25) T) ((-1232 . -21) T) ((-1232 . -25) T) ((-1029 . -151) 129760) ((-873 . -821) 129739) ((-873 . -922) T) ((-713 . -287) 129666) ((-598 . -21) T) ((-341 . -647) 129625) ((-598 . -25) T) ((-597 . -21) T) ((-174 . -647) 129542) ((-40 . -727) T) ((-222 . -517) 129475) ((-597 . -25) T) ((-479 . -151) 129459) ((-466 . -151) 129443) ((-923 . -795) T) ((-923 . -727) T) ((-772 . -794) T) ((-772 . -795) T) ((-509 . -1102) T) ((-505 . -1102) T) ((-772 . -727) T) ((-225 . -365) T) ((-1290 . -1053) 129427) ((-1288 . -1053) 129411) ((-1290 . -641) 129381) ((-1158 . -1102) 129359) ((-872 . -1222) T) ((-1288 . -641) 129329) ((-655 . -614) 129311) ((-872 . -559) T) ((-695 . -370) NIL) ((-44 . -1053) 129295) ((-1296 . -617) 129277) ((-1291 . -1102) T) ((-671 . -102) T) ((-361 . -1275) 129261) ((-355 . -1275) 129245) ((-44 . -641) 129229) ((-347 . -1275) 129213) ((-551 . -102) T) ((-523 . -851) 129192) ((-1048 . -1102) T) ((-818 . -455) 129171) ((-152 . -1053) 129155) ((-1048 . -1073) 129084) ((-1029 . -978) 129053) ((-820 . -1114) T) ((-1005 . -718) 128998) ((-152 . -641) 128982) ((-389 . -1114) T) ((-479 . -978) 128951) ((-466 . -978) 128920) ((-110 . -151) 128902) ((-73 . -614) 128884) ((-895 . -614) 128866) ((-1082 . -725) 128845) ((-1296 . -1051) T) ((-817 . -640) 128793) ((-295 . -1060) 128735) ((-169 . -1222) 128640) ((-225 . -1114) T) ((-325 . -23) T) ((-1169 . -994) 128592) ((-844 . -1102) T) ((-1254 . -1058) 128497) ((-1128 . -741) 128476) ((-1252 . -922) 128455) ((-1231 . -922) 128434) ((-871 . -727) T) ((-169 . -559) 128345) ((-583 . -649) 128332) ((-567 . -649) 128319) ((-410 . -1102) T) ((-264 . -1102) T) ((-213 . -614) 128301) ((-498 . -649) 128266) ((-225 . -23) T) ((-1231 . -821) 128219) ((-1290 . -102) T) ((-356 . -1287) 128196) ((-1288 . -102) T) ((-1254 . -111) 128088) ((-816 . -1053) 127985) ((-816 . -641) 127927) ((-144 . -614) 127909) ((-995 . -131) T) ((-44 . -102) T) ((-240 . -851) 127860) ((-1241 . -1222) 127839) ((-103 . -492) 127823) ((-1291 . -718) 127793) ((-1089 . -47) 127754) ((-1064 . -1114) T) ((-954 . -1114) T) ((-127 . -34) T) ((-121 . -34) T) ((-783 . -47) 127731) ((-781 . -47) 127703) ((-1241 . -559) 127614) ((-356 . -370) T) ((-484 . -1114) T) ((-1174 . -131) T) ((-1127 . -131) T) ((-457 . -47) 127593) ((-872 . -365) T) ((-855 . -131) T) ((-152 . -102) T) ((-1064 . -23) T) ((-954 . -23) T) ((-574 . -559) T) ((-817 . -25) T) ((-817 . -21) T) ((-1144 . -517) 127526) ((-594 . -1085) T) ((-588 . -1040) 127510) ((-1254 . -617) 127384) ((-484 . -23) T) ((-353 . -1060) T) ((-1212 . -902) 127365) ((-671 . -310) 127303) ((-1115 . -1275) 127273) ((-700 . -649) 127238) ((-1005 . -172) T) ((-965 . -145) 127217) ((-636 . -1102) T) ((-608 . -1102) T) ((-965 . -147) 127196) ((-1006 . -851) T) ((-736 . -147) 127175) ((-736 . -145) 127154) ((-973 . -851) T) ((-834 . -647) 127071) ((-477 . -922) 127050) ((-320 . -1053) 126885) ((-317 . -1058) 126795) ((-314 . -1058) 126724) ((-1001 . -287) 126682) ((-410 . -718) 126634) ((-320 . -641) 126475) ((-702 . -849) T) ((-1254 . -1051) T) ((-317 . -111) 126371) ((-314 . -111) 126284) ((-966 . -102) T) ((-816 . -102) 126074) ((-713 . -615) NIL) ((-713 . -614) 126056) ((-659 . -1040) 125952) ((-1254 . -327) 125896) ((-1037 . -289) 125871) ((-583 . -727) T) ((-567 . -795) T) ((-169 . -365) 125822) ((-567 . -792) T) ((-567 . -727) T) ((-498 . -727) T) ((-1148 . -492) 125806) ((-1089 . -888) NIL) ((-872 . -1114) T) ((-117 . -911) NIL) ((-1290 . -1289) 125782) ((-1288 . -1289) 125761) ((-783 . -888) NIL) ((-781 . -888) 125620) ((-1283 . -25) T) ((-1283 . -21) T) ((-1215 . -102) 125598) ((-1108 . -398) T) ((-624 . -649) 125585) ((-457 . -888) NIL) ((-676 . -102) 125563) ((-1089 . -1040) 125390) ((-872 . -23) T) ((-783 . -1040) 125249) ((-781 . -1040) 125106) ((-117 . -649) 125051) ((-457 . -1040) 124927) ((-317 . -617) 124491) ((-314 . -617) 124374) ((-393 . -647) 124343) ((-650 . -1040) 124327) ((-628 . -102) T) ((-222 . -492) 124311) ((-1268 . -34) T) ((-622 . -647) 124270) ((-290 . -1053) 124257) ((-136 . -617) 124241) ((-290 . -641) 124228) ((-636 . -718) 124212) ((-608 . -718) 124196) ((-671 . -38) 124156) ((-320 . -102) T) ((-85 . -614) 124138) ((-50 . -1040) 124122) ((-1122 . -1058) 124109) ((-1089 . -379) 124093) ((-783 . -379) 124077) ((-700 . -727) T) ((-700 . -795) T) ((-700 . -792) T) ((-584 . -1040) 124064) ((-521 . -1040) 124041) ((-60 . -57) 124003) ((-325 . -131) T) ((-317 . -1051) 123893) ((-314 . -1051) T) ((-169 . -1114) T) ((-781 . -379) 123877) ((-45 . -151) 123827) ((-1006 . -994) 123809) ((-457 . -379) 123793) ((-410 . -172) T) ((-317 . -243) 123772) ((-314 . -243) T) ((-314 . -233) NIL) ((-295 . -1102) 123554) ((-225 . -131) T) ((-1122 . -111) 123539) ((-169 . -23) T) ((-800 . -147) 123518) ((-800 . -145) 123497) ((-252 . -640) 123403) ((-251 . -640) 123309) ((-320 . -285) 123275) ((-1158 . -517) 123208) ((-480 . -647) 123158) ((-1135 . -1102) T) ((-225 . -1062) T) ((-816 . -310) 123096) ((-1089 . -902) 123031) ((-783 . -902) 122974) ((-781 . -902) 122958) ((-1290 . -38) 122928) ((-1288 . -38) 122898) ((-1241 . -1114) T) ((-856 . -1114) T) ((-457 . -902) 122875) ((-859 . -1102) T) ((-1241 . -23) T) ((-1122 . -617) 122847) ((-574 . -1114) T) ((-856 . -23) T) ((-624 . -727) T) ((-357 . -922) T) ((-354 . -922) T) ((-290 . -102) T) ((-346 . -922) T) ((-1064 . -131) T) ((-972 . -1085) T) ((-954 . -131) T) ((-117 . -795) NIL) ((-117 . -792) NIL) ((-117 . -727) T) ((-695 . -911) NIL) ((-1048 . -517) 122748) ((-484 . -131) T) ((-574 . -23) T) ((-676 . -310) 122686) ((-636 . -762) T) ((-608 . -762) T) ((-1232 . -851) NIL) ((-1082 . -1053) 122596) ((-1005 . -291) T) ((-695 . -649) 122546) ((-252 . -21) T) ((-353 . -1102) T) ((-252 . -25) T) ((-251 . -21) T) ((-251 . -25) T) ((-152 . -38) 122530) ((-2 . -102) T) ((-912 . -922) T) ((-1082 . -641) 122398) ((-485 . -1275) 122368) ((-1122 . -1051) T) ((-712 . -308) T) ((-361 . -1053) 122320) ((-355 . -1053) 122272) ((-347 . -1053) 122224) ((-361 . -641) 122176) ((-223 . -1040) 122153) ((-355 . -641) 122105) ((-108 . -1053) 122055) ((-347 . -641) 122007) ((-295 . -718) 121949) ((-702 . -1060) T) ((-490 . -455) T) ((-410 . -517) 121861) ((-108 . -641) 121811) ((-217 . -455) T) ((-1122 . -233) T) ((-296 . -151) 121761) ((-1001 . -615) 121722) ((-1001 . -614) 121704) ((-991 . -614) 121686) ((-116 . -1060) T) ((-655 . -1058) 121670) ((-225 . -496) T) ((-402 . -614) 121652) ((-402 . -615) 121629) ((-1056 . -1275) 121599) ((-655 . -111) 121578) ((-1144 . -492) 121562) ((-1292 . -647) 121521) ((-383 . -647) 121490) ((-816 . -38) 121460) ((-63 . -444) T) ((-63 . -398) T) ((-1161 . -102) T) ((-872 . -131) T) ((-487 . -102) 121438) ((-1296 . -370) T) ((-1082 . -102) T) ((-1063 . -102) T) ((-353 . -718) 121383) ((-732 . -147) 121362) ((-732 . -145) 121341) ((-655 . -617) 121259) ((-1026 . -649) 121196) ((-526 . -1102) 121174) ((-361 . -102) T) ((-355 . -102) T) ((-347 . -102) T) ((-108 . -102) T) ((-507 . -1102) T) ((-356 . -649) 121119) ((-1174 . -640) 121067) ((-1127 . -640) 121015) ((-387 . -512) 120994) ((-834 . -849) 120973) ((-381 . -1222) T) ((-695 . -727) T) ((-341 . -1060) T) ((-1232 . -994) 120925) ((-174 . -1060) T) ((-103 . -614) 120857) ((-1176 . -145) 120836) ((-1176 . -147) 120815) ((-381 . -559) T) ((-1175 . -147) 120794) ((-1175 . -145) 120773) ((-1169 . -145) 120680) ((-410 . -291) T) ((-1169 . -147) 120587) ((-1128 . -147) 120566) ((-1128 . -145) 120545) ((-320 . -38) 120386) ((-169 . -131) T) ((-314 . -796) NIL) ((-314 . -793) NIL) ((-655 . -1051) T) ((-48 . -649) 120351) ((-1115 . -1053) 120248) ((-895 . -617) 120225) ((-1115 . -641) 120167) ((-1168 . -102) T) ((-996 . -102) T) ((-995 . -21) T) ((-127 . -1012) 120151) ((-121 . -1012) 120135) ((-995 . -25) T) ((-903 . -119) 120119) ((-1160 . -102) T) ((-1241 . -131) T) ((-1174 . -25) T) ((-1174 . -21) T) ((-856 . -131) T) ((-1127 . -25) T) ((-1127 . -21) T) ((-855 . -25) T) ((-855 . -21) T) ((-783 . -308) 120098) ((-648 . -102) 120076) ((-633 . -102) T) ((-1161 . -310) 119871) ((-574 . -131) T) ((-622 . -849) 119850) ((-1158 . -492) 119834) ((-1152 . -151) 119784) ((-1148 . -614) 119746) ((-1148 . -615) 119707) ((-1026 . -792) T) ((-1026 . -795) T) ((-1026 . -727) T) ((-713 . -1058) 119530) ((-487 . -310) 119468) ((-456 . -420) 119438) ((-353 . -172) T) ((-290 . -38) 119425) ((-275 . -102) T) ((-274 . -102) T) ((-273 . -102) T) ((-272 . -102) T) ((-271 . -102) T) ((-270 . -102) T) ((-345 . -1040) 119402) ((-269 . -102) T) ((-212 . -102) T) ((-211 . -102) T) ((-209 . -102) T) ((-208 . -102) T) ((-207 . -102) T) ((-206 . -102) T) ((-203 . -102) T) ((-202 . -102) T) ((-201 . -102) T) ((-200 . -102) T) ((-199 . -102) T) ((-198 . -102) T) ((-197 . -102) T) ((-196 . -102) T) ((-195 . -102) T) ((-194 . -102) T) ((-193 . -102) T) ((-356 . -727) T) ((-713 . -111) 119211) ((-671 . -231) 119195) ((-584 . -308) T) ((-521 . -308) T) ((-295 . -517) 119144) ((-108 . -310) NIL) ((-72 . -398) T) ((-1115 . -102) 118934) ((-834 . -414) 118918) ((-1122 . -796) T) ((-1122 . -793) T) ((-702 . -1102) T) ((-581 . -614) 118900) ((-381 . -365) T) ((-169 . -496) 118878) ((-222 . -614) 118810) ((-134 . -1102) T) ((-116 . -1102) T) ((-48 . -727) T) ((-1048 . -492) 118775) ((-141 . -428) 118757) ((-141 . -370) T) ((-1029 . -102) T) ((-515 . -512) 118736) ((-713 . -617) 118492) ((-479 . -102) T) ((-466 . -102) T) ((-1036 . -1114) T) ((-1225 . -614) 118474) ((-1183 . -1040) 118410) ((-1176 . -35) 118376) ((-1176 . -95) 118342) ((-1176 . -1206) 118308) ((-1176 . -1203) 118274) ((-1160 . -310) NIL) ((-89 . -399) T) ((-89 . -398) T) ((-1082 . -1153) 118253) ((-1175 . -1203) 118219) ((-1175 . -1206) 118185) ((-1036 . -23) T) ((-1175 . -95) 118151) ((-574 . -496) T) ((-1175 . -35) 118117) ((-1169 . -1203) 118083) ((-1169 . -1206) 118049) ((-1169 . -95) 118015) ((-363 . -1114) T) ((-361 . -1153) 117994) ((-355 . -1153) 117973) ((-347 . -1153) 117952) ((-1169 . -35) 117918) ((-1128 . -35) 117884) ((-1128 . -95) 117850) ((-108 . -1153) T) ((-1128 . -1206) 117816) ((-834 . -1060) 117795) ((-648 . -310) 117733) ((-633 . -310) 117584) ((-1128 . -1203) 117550) ((-713 . -1051) T) ((-1064 . -640) 117532) ((-1082 . -38) 117400) ((-954 . -640) 117348) ((-1006 . -147) T) ((-1006 . -145) NIL) ((-381 . -1114) T) ((-325 . -25) T) ((-323 . -23) T) ((-945 . -851) 117327) ((-713 . -327) 117304) ((-484 . -640) 117252) ((-40 . -1040) 117140) ((-713 . -233) T) ((-702 . -718) 117127) ((-341 . -1102) T) ((-174 . -1102) T) ((-332 . -851) T) ((-421 . -455) 117077) ((-381 . -23) T) ((-361 . -38) 117042) ((-355 . -38) 117007) ((-347 . -38) 116972) ((-80 . -444) T) ((-80 . -398) T) ((-225 . -25) T) ((-225 . -21) T) ((-837 . -1114) T) ((-108 . -38) 116922) ((-828 . -1114) T) ((-775 . -1102) T) ((-116 . -718) 116909) ((-673 . -1040) 116893) ((-613 . -102) T) ((-837 . -23) T) ((-828 . -23) T) ((-1158 . -287) 116870) ((-1115 . -310) 116808) ((-485 . -1053) 116705) ((-1104 . -235) 116689) ((-64 . -399) T) ((-64 . -398) T) ((-110 . -102) T) ((-485 . -641) 116631) ((-40 . -379) 116608) ((-96 . -102) T) ((-654 . -853) 116592) ((-1137 . -1085) T) ((-1064 . -21) T) ((-1064 . -25) T) ((-1056 . -1053) 116576) ((-816 . -231) 116545) ((-954 . -25) T) ((-954 . -21) T) ((-1056 . -641) 116487) ((-622 . -1060) T) ((-1122 . -370) T) ((-1029 . -310) 116425) ((-671 . -647) 116384) ((-484 . -25) T) ((-484 . -21) T) ((-387 . -1053) 116368) ((-891 . -614) 116350) ((-887 . -614) 116332) ((-526 . -517) 116265) ((-252 . -851) 116216) ((-251 . -851) 116167) ((-387 . -641) 116137) ((-872 . -640) 116114) ((-479 . -310) 116052) ((-466 . -310) 115990) ((-353 . -291) T) ((-1158 . -1256) 115974) ((-1144 . -614) 115936) ((-1144 . -615) 115897) ((-1142 . -102) T) ((-1001 . -1058) 115793) ((-40 . -902) 115745) ((-1158 . -605) 115722) ((-1296 . -649) 115709) ((-867 . -493) 115686) ((-1065 . -151) 115632) ((-873 . -1222) T) ((-1001 . -111) 115514) ((-341 . -718) 115498) ((-867 . -614) 115460) ((-174 . -718) 115392) ((-410 . -287) 115350) ((-873 . -559) T) ((-108 . -403) 115332) ((-84 . -386) T) ((-84 . -398) T) ((-702 . -172) T) ((-618 . -614) 115314) ((-99 . -727) T) ((-485 . -102) 115104) ((-99 . -476) T) ((-116 . -172) T) ((-1290 . -647) 115063) ((-1288 . -647) 115022) ((-1115 . -38) 114992) ((-169 . -640) 114940) ((-1056 . -102) T) ((-1001 . -617) 114830) ((-872 . -25) T) ((-816 . -238) 114809) ((-872 . -21) T) ((-819 . -102) T) ((-44 . -647) 114752) ((-417 . -102) T) ((-387 . -102) T) ((-110 . -310) NIL) ((-227 . -102) 114730) ((-127 . -1218) T) ((-121 . -1218) T) ((-818 . -1053) 114681) ((-818 . -641) 114623) ((-1036 . -131) T) ((-671 . -369) 114607) ((-152 . -647) 114566) ((-1001 . -1051) T) ((-1241 . -640) 114514) ((-1106 . -614) 114496) ((-1005 . -614) 114478) ((-518 . -23) T) ((-513 . -23) T) ((-345 . -308) T) ((-511 . -23) T) ((-323 . -131) T) ((-3 . -1102) T) ((-1005 . -615) 114462) ((-1001 . -243) 114441) ((-1001 . -233) 114420) ((-1296 . -727) T) ((-1260 . -145) 114399) ((-834 . -1102) T) ((-1260 . -147) 114378) ((-1253 . -147) 114357) ((-1253 . -145) 114336) ((-1252 . -1222) 114315) ((-1232 . -145) 114222) ((-1232 . -147) 114129) ((-1231 . -1222) 114108) ((-381 . -131) T) ((-567 . -888) 114090) ((0 . -1102) T) ((-174 . -172) T) ((-169 . -21) T) ((-169 . -25) T) ((-49 . -1102) T) ((-1254 . -649) 113995) ((-1252 . -559) 113946) ((-715 . -1114) T) ((-1231 . -559) 113897) ((-567 . -1040) 113879) ((-597 . -147) 113858) ((-597 . -145) 113837) ((-498 . -1040) 113780) ((-1137 . -1139) T) ((-87 . -386) T) ((-87 . -398) T) ((-873 . -365) T) ((-837 . -131) T) ((-828 . -131) T) ((-966 . -647) 113724) ((-715 . -23) T) ((-509 . -614) 113690) ((-505 . -614) 113672) ((-816 . -647) 113422) ((-1292 . -1060) T) ((-381 . -1062) T) ((-1028 . -1102) 113400) ((-55 . -1040) 113382) ((-903 . -34) T) ((-485 . -310) 113320) ((-594 . -102) T) ((-1158 . -615) 113281) ((-1158 . -614) 113213) ((-1180 . -1053) 113096) ((-45 . -102) T) ((-818 . -102) T) ((-1180 . -641) 112993) ((-1241 . -25) T) ((-1241 . -21) T) ((-856 . -25) T) ((-44 . -369) 112977) ((-856 . -21) T) ((-732 . -455) 112928) ((-1291 . -614) 112910) ((-1280 . -1053) 112880) ((-1056 . -310) 112818) ((-672 . -1085) T) ((-607 . -1085) T) ((-393 . -1102) T) ((-574 . -25) T) ((-574 . -21) T) ((-180 . -1085) T) ((-161 . -1085) T) ((-156 . -1085) T) ((-154 . -1085) T) ((-1280 . -641) 112788) ((-622 . -1102) T) ((-700 . -888) 112770) ((-1268 . -1218) T) ((-227 . -310) 112708) ((-144 . -370) T) ((-1048 . -615) 112650) ((-1048 . -614) 112593) ((-314 . -911) NIL) ((-1226 . -845) T) ((-700 . -1040) 112538) ((-712 . -922) T) ((-477 . -1222) 112517) ((-1175 . -455) 112496) ((-1169 . -455) 112475) ((-331 . -102) T) ((-873 . -1114) T) ((-320 . -647) 112357) ((-317 . -649) 112178) ((-314 . -649) 112107) ((-477 . -559) 112058) ((-341 . -517) 112024) ((-553 . -151) 111974) ((-40 . -308) T) ((-844 . -614) 111956) ((-702 . -291) T) ((-873 . -23) T) ((-381 . -496) T) ((-1082 . -231) 111926) ((-515 . -102) T) ((-410 . -615) 111733) ((-410 . -614) 111715) ((-264 . -614) 111697) ((-116 . -291) T) ((-1254 . -727) T) ((-1252 . -365) 111676) ((-1231 . -365) 111655) ((-1281 . -34) T) ((-1226 . -1102) T) ((-117 . -1218) T) ((-108 . -231) 111637) ((-1180 . -102) T) ((-480 . -1102) T) ((-526 . -492) 111621) ((-738 . -34) T) ((-654 . -1053) 111605) ((-485 . -38) 111575) ((-654 . -641) 111545) ((-141 . -34) T) ((-117 . -886) 111522) ((-117 . -888) NIL) ((-624 . -1040) 111405) ((-645 . -851) 111384) ((-1280 . -102) T) ((-296 . -102) T) ((-713 . -370) 111363) ((-117 . -1040) 111340) ((-393 . -718) 111324) ((-622 . -718) 111308) ((-45 . -310) 111112) ((-817 . -145) 111091) ((-817 . -147) 111070) ((-290 . -647) 111042) ((-1291 . -384) 111021) ((-820 . -851) T) ((-1270 . -1102) T) ((-1161 . -229) 110968) ((-389 . -851) 110947) ((-1260 . -1206) 110913) ((-1260 . -1203) 110879) ((-1253 . -1203) 110845) ((-518 . -131) T) ((-1253 . -1206) 110811) ((-1232 . -1203) 110777) ((-1232 . -1206) 110743) ((-1260 . -35) 110709) ((-1260 . -95) 110675) ((-636 . -614) 110644) ((-608 . -614) 110613) ((-225 . -851) T) ((-1253 . -95) 110579) ((-1253 . -35) 110545) ((-1252 . -1114) T) ((-1122 . -649) 110532) ((-1232 . -95) 110498) ((-1231 . -1114) T) ((-595 . -151) 110480) ((-1082 . -351) 110459) ((-174 . -291) T) ((-117 . -379) 110436) ((-117 . -340) 110413) ((-1232 . -35) 110379) ((-871 . -308) T) ((-314 . -795) NIL) ((-314 . -792) NIL) ((-317 . -727) 110228) ((-314 . -727) T) ((-477 . -365) 110207) ((-361 . -351) 110186) ((-355 . -351) 110165) ((-347 . -351) 110144) ((-317 . -476) 110123) ((-1252 . -23) T) ((-1231 . -23) T) ((-719 . -1114) T) ((-715 . -131) T) ((-654 . -102) T) ((-480 . -718) 110088) ((-45 . -283) 110038) ((-105 . -1102) T) ((-68 . -614) 110020) ((-972 . -102) T) ((-865 . -102) T) ((-624 . -902) 109979) ((-1292 . -1102) T) ((-383 . -1102) T) ((-82 . -1218) T) ((-1217 . -1102) T) ((-1064 . -851) T) ((-117 . -902) NIL) ((-783 . -922) 109958) ((-714 . -851) T) ((-534 . -1102) T) ((-503 . -1102) T) ((-357 . -1222) T) ((-354 . -1222) T) ((-346 . -1222) T) ((-265 . -1222) 109937) ((-247 . -1222) 109916) ((-536 . -861) T) ((-1115 . -231) 109885) ((-1160 . -829) T) ((-1144 . -1058) 109869) ((-393 . -762) T) ((-695 . -1218) T) ((-692 . -1040) 109853) ((-357 . -559) T) ((-354 . -559) T) ((-346 . -559) T) ((-265 . -559) 109784) ((-247 . -559) 109715) ((-528 . -1085) T) ((-1144 . -111) 109694) ((-456 . -745) 109664) ((-867 . -1058) 109634) ((-818 . -38) 109576) ((-695 . -886) 109558) ((-695 . -888) 109540) ((-296 . -310) 109344) ((-912 . -1222) T) ((-1158 . -289) 109321) ((-1082 . -647) 109216) ((-671 . -414) 109200) ((-867 . -111) 109165) ((-1006 . -455) T) ((-695 . -1040) 109110) ((-912 . -559) T) ((-536 . -614) 109092) ((-584 . -922) T) ((-490 . -1053) 109042) ((-477 . -1114) T) ((-521 . -922) T) ((-916 . -455) T) ((-65 . -614) 109024) ((-217 . -1053) 108974) ((-490 . -641) 108924) ((-361 . -647) 108861) ((-355 . -647) 108798) ((-347 . -647) 108735) ((-633 . -229) 108681) ((-217 . -641) 108631) ((-108 . -647) 108581) ((-477 . -23) T) ((-1122 . -795) T) ((-873 . -131) T) ((-1122 . -792) T) ((-1283 . -1285) 108560) ((-1122 . -727) T) ((-655 . -649) 108534) ((-295 . -614) 108275) ((-1144 . -617) 108193) ((-1037 . -34) T) ((-816 . -849) 108172) ((-583 . -308) T) ((-567 . -308) T) ((-498 . -308) T) ((-1292 . -718) 108142) ((-695 . -379) 108124) ((-695 . -340) 108106) ((-480 . -172) T) ((-383 . -718) 108076) ((-867 . -617) 108011) ((-872 . -851) NIL) ((-567 . -1024) T) ((-498 . -1024) T) ((-1135 . -614) 107993) ((-1115 . -238) 107972) ((-214 . -102) T) ((-1152 . -102) T) ((-71 . -614) 107954) ((-1144 . -1051) T) ((-1180 . -38) 107851) ((-859 . -614) 107833) ((-567 . -548) T) ((-671 . -1060) T) ((-732 . -951) 107786) ((-1144 . -233) 107765) ((-1084 . -1102) T) ((-1036 . -25) T) ((-1036 . -21) T) ((-1005 . -1058) 107710) ((-907 . -102) T) ((-867 . -1051) T) ((-695 . -902) NIL) ((-357 . -330) 107694) ((-357 . -365) T) ((-354 . -330) 107678) ((-354 . -365) T) ((-346 . -330) 107662) ((-346 . -365) T) ((-490 . -102) T) ((-1280 . -38) 107632) ((-549 . -851) T) ((-526 . -688) 107582) ((-217 . -102) T) ((-1026 . -1040) 107462) ((-1005 . -111) 107391) ((-1176 . -975) 107360) ((-523 . -151) 107344) ((-1082 . -372) 107323) ((-353 . -614) 107305) ((-323 . -21) T) ((-356 . -1040) 107282) ((-323 . -25) T) ((-1175 . -975) 107244) ((-1169 . -975) 107213) ((-76 . -614) 107195) ((-1128 . -975) 107162) ((-700 . -308) T) ((-129 . -845) T) ((-912 . -365) T) ((-381 . -25) T) ((-381 . -21) T) ((-912 . -330) 107149) ((-86 . -614) 107131) ((-700 . -1024) T) ((-678 . -851) T) ((-1252 . -131) T) ((-1231 . -131) T) ((-903 . -1012) 107115) ((-837 . -21) T) ((-48 . -1040) 107058) ((-837 . -25) T) ((-828 . -25) T) ((-828 . -21) T) ((-1115 . -647) 106808) ((-1290 . -1060) T) ((-552 . -102) T) ((-1288 . -1060) T) ((-655 . -727) T) ((-1106 . -619) 106711) ((-1005 . -617) 106641) ((-1291 . -1058) 106625) ((-816 . -414) 106594) ((-103 . -119) 106578) ((-129 . -1102) T) ((-52 . -1102) T) ((-928 . -614) 106560) ((-872 . -994) 106537) ((-824 . -102) T) ((-1291 . -111) 106516) ((-654 . -38) 106486) ((-574 . -851) T) ((-357 . -1114) T) ((-354 . -1114) T) ((-346 . -1114) T) ((-265 . -1114) T) ((-247 . -1114) T) ((-624 . -308) 106465) ((-1152 . -310) 106269) ((-665 . -23) T) ((-527 . -1085) T) ((-312 . -1102) T) ((-485 . -231) 106238) ((-152 . -1060) T) ((-357 . -23) T) ((-354 . -23) T) ((-346 . -23) T) ((-117 . -308) T) ((-265 . -23) T) ((-247 . -23) T) ((-1005 . -1051) T) ((-713 . -911) 106217) ((-1158 . -617) 106194) ((-1005 . -233) 106166) ((-1005 . -243) T) ((-117 . -1024) NIL) ((-912 . -1114) T) ((-1253 . -455) 106145) ((-1232 . -455) 106124) ((-526 . -614) 106056) ((-713 . -649) 105981) ((-410 . -1058) 105933) ((-507 . -614) 105915) ((-912 . -23) T) ((-490 . -310) NIL) ((-1291 . -617) 105871) ((-477 . -131) T) ((-217 . -310) NIL) ((-410 . -111) 105809) ((-816 . -1060) 105739) ((-738 . -1100) 105723) ((-1252 . -496) 105689) ((-1231 . -496) 105655) ((-551 . -845) T) ((-141 . -1100) 105637) ((-480 . -291) T) ((-1291 . -1051) T) ((-1223 . -102) T) ((-1065 . -102) T) ((-844 . -617) 105505) ((-503 . -517) NIL) ((-485 . -238) 105484) ((-410 . -617) 105382) ((-965 . -1053) 105265) ((-736 . -1053) 105235) ((-965 . -641) 105132) ((-1174 . -145) 105111) ((-736 . -641) 105081) ((-456 . -1053) 105051) ((-1174 . -147) 105030) ((-1127 . -147) 105009) ((-1127 . -145) 104988) ((-636 . -1058) 104972) ((-608 . -1058) 104956) ((-456 . -641) 104926) ((-1176 . -1259) 104910) ((-1176 . -1246) 104887) ((-671 . -1102) T) ((-671 . -1055) 104827) ((-1175 . -1251) 104788) ((-551 . -1102) T) ((-490 . -1153) T) ((-1175 . -1246) 104758) ((-1175 . -1249) 104742) ((-1169 . -1230) 104703) ((-217 . -1153) T) ((-345 . -922) T) ((-819 . -267) 104687) ((-636 . -111) 104666) ((-608 . -111) 104645) ((-1169 . -1246) 104622) ((-844 . -1051) 104601) ((-1169 . -1228) 104585) ((-518 . -25) T) ((-498 . -303) T) ((-514 . -23) T) ((-513 . -25) T) ((-511 . -25) T) ((-510 . -23) T) ((-421 . -1053) 104559) ((-410 . -1051) T) ((-320 . -1060) T) ((-695 . -308) T) ((-421 . -641) 104533) ((-108 . -849) T) ((-713 . -727) T) ((-410 . -243) T) ((-410 . -233) 104512) ((-490 . -38) 104462) ((-217 . -38) 104412) ((-477 . -496) 104378) ((-1225 . -370) T) ((-1160 . -1146) T) ((-1103 . -102) T) ((-702 . -614) 104360) ((-702 . -615) 104275) ((-715 . -21) T) ((-715 . -25) T) ((-1137 . -102) T) ((-485 . -647) 104025) ((-134 . -614) 104007) ((-116 . -614) 103989) ((-157 . -25) T) ((-1290 . -1102) T) ((-873 . -640) 103937) ((-1288 . -1102) T) ((-965 . -102) T) ((-736 . -102) T) ((-716 . -102) T) ((-456 . -102) T) ((-817 . -455) 103888) ((-44 . -1102) T) ((-1090 . -851) T) ((-1065 . -310) 103739) ((-665 . -131) T) ((-1056 . -647) 103708) ((-671 . -718) 103692) ((-290 . -1060) T) ((-357 . -131) T) ((-354 . -131) T) ((-346 . -131) T) ((-265 . -131) T) ((-247 . -131) T) ((-387 . -647) 103661) ((-421 . -102) T) ((-152 . -1102) T) ((-45 . -229) 103611) ((-800 . -1053) 103595) ((-960 . -851) 103574) ((-1001 . -649) 103512) ((-800 . -641) 103496) ((-240 . -1275) 103466) ((-1026 . -308) T) ((-295 . -1058) 103387) ((-912 . -131) T) ((-40 . -922) T) ((-490 . -403) 103369) ((-356 . -308) T) ((-217 . -403) 103351) ((-1082 . -414) 103335) ((-295 . -111) 103251) ((-1185 . -851) T) ((-1184 . -851) T) ((-873 . -25) T) ((-873 . -21) T) ((-341 . -614) 103233) ((-1254 . -47) 103177) ((-225 . -147) T) ((-174 . -614) 103159) ((-1115 . -849) 103138) ((-775 . -614) 103120) ((-128 . -851) T) ((-609 . -235) 103067) ((-478 . -235) 103017) ((-1290 . -718) 102987) ((-48 . -308) T) ((-1288 . -718) 102957) ((-65 . -617) 102886) ((-966 . -1102) T) ((-816 . -1102) 102676) ((-313 . -102) T) ((-903 . -1218) T) ((-48 . -1024) T) ((-1231 . -640) 102584) ((-690 . -102) 102562) ((-44 . -718) 102546) ((-553 . -102) T) ((-295 . -617) 102477) ((-67 . -385) T) ((-67 . -398) T) ((-663 . -23) T) ((-818 . -647) 102413) ((-671 . -762) T) ((-1215 . -1102) 102391) ((-353 . -1058) 102336) ((-676 . -1102) 102314) ((-1064 . -147) T) ((-954 . -147) 102293) ((-954 . -145) 102272) ((-800 . -102) T) ((-152 . -718) 102256) ((-484 . -147) 102235) ((-484 . -145) 102214) ((-353 . -111) 102143) ((-1082 . -1060) T) ((-323 . -851) 102122) ((-1260 . -975) 102091) ((-628 . -1102) T) ((-1253 . -975) 102053) ((-514 . -131) T) ((-510 . -131) T) ((-296 . -229) 102003) ((-361 . -1060) T) ((-355 . -1060) T) ((-347 . -1060) T) ((-295 . -1051) 101945) ((-1232 . -975) 101914) ((-381 . -851) T) ((-108 . -1060) T) ((-1001 . -727) T) ((-871 . -922) T) ((-844 . -796) 101893) ((-844 . -793) 101872) ((-421 . -310) 101811) ((-471 . -102) T) ((-597 . -975) 101780) ((-320 . -1102) T) ((-410 . -796) 101759) ((-410 . -793) 101738) ((-503 . -492) 101720) ((-1254 . -1040) 101686) ((-1252 . -21) T) ((-1252 . -25) T) ((-1231 . -21) T) ((-1231 . -25) T) ((-816 . -718) 101628) ((-353 . -617) 101558) ((-700 . -407) T) ((-1281 . -1218) T) ((-607 . -102) T) ((-1115 . -414) 101527) ((-1005 . -370) NIL) ((-672 . -102) T) ((-180 . -102) T) ((-161 . -102) T) ((-156 . -102) T) ((-154 . -102) T) ((-103 . -34) T) ((-1180 . -647) 101437) ((-738 . -1218) T) ((-732 . -1053) 101280) ((-44 . -762) T) ((-732 . -641) 101129) ((-595 . -102) T) ((-77 . -399) T) ((-77 . -398) T) ((-654 . -657) 101113) ((-141 . -1218) T) ((-872 . -147) T) ((-872 . -145) NIL) ((-1217 . -93) T) ((-353 . -1051) T) ((-70 . -385) T) ((-70 . -398) T) ((-1167 . -102) T) ((-671 . -517) 101046) ((-1280 . -647) 100991) ((-690 . -310) 100929) ((-965 . -38) 100826) ((-1182 . -614) 100808) ((-736 . -38) 100778) ((-553 . -310) 100582) ((-1176 . -1053) 100465) ((-317 . -1218) T) ((-353 . -233) T) ((-353 . -243) T) ((-314 . -1218) T) ((-290 . -1102) T) ((-1175 . -1053) 100300) ((-1169 . -1053) 100090) ((-1128 . -1053) 99973) ((-1176 . -641) 99870) ((-1175 . -641) 99711) ((-712 . -1222) T) ((-1169 . -641) 99507) ((-1158 . -652) 99491) ((-1128 . -641) 99388) ((-1212 . -559) 99367) ((-820 . -388) 99351) ((-712 . -559) T) ((-317 . -886) 99335) ((-317 . -888) 99260) ((-314 . -886) 99221) ((-314 . -888) NIL) ((-800 . -310) 99186) ((-320 . -718) 99027) ((-389 . -388) 99011) ((-325 . -324) 98988) ((-488 . -102) T) ((-477 . -25) T) ((-477 . -21) T) ((-421 . -38) 98962) ((-317 . -1040) 98625) ((-225 . -1203) T) ((-225 . -1206) T) ((-3 . -614) 98607) ((-314 . -1040) 98537) ((-2 . -1102) T) ((-2 . |RecordCategory|) T) ((-834 . -614) 98519) ((-1115 . -1060) 98449) ((-583 . -922) T) ((-567 . -821) T) ((-567 . -922) T) ((-498 . -922) T) ((-136 . -1040) 98433) ((-225 . -95) T) ((-169 . -147) 98412) ((-75 . -444) T) ((0 . -614) 98394) ((-75 . -398) T) ((-169 . -145) 98345) ((-225 . -35) T) ((-49 . -614) 98327) ((-480 . -1060) T) ((-490 . -231) 98309) ((-487 . -970) 98293) ((-485 . -849) 98272) ((-217 . -231) 98254) ((-81 . -444) T) ((-81 . -398) T) ((-1148 . -34) T) ((-816 . -172) 98233) ((-732 . -102) T) ((-654 . -647) 98192) ((-1028 . -614) 98159) ((-503 . -287) 98134) ((-317 . -379) 98103) ((-314 . -379) 98064) ((-314 . -340) 98025) ((-1087 . -614) 98007) ((-817 . -951) 97954) ((-663 . -131) T) ((-1241 . -145) 97933) ((-1241 . -147) 97912) ((-1176 . -102) T) ((-1175 . -102) T) ((-1169 . -102) T) ((-1161 . -1102) T) ((-1128 . -102) T) ((-222 . -34) T) ((-290 . -718) 97899) ((-1161 . -611) 97875) ((-595 . -310) NIL) ((-487 . -1102) 97853) ((-393 . -614) 97835) ((-513 . -851) T) ((-1152 . -229) 97785) ((-1260 . -1259) 97769) ((-1260 . -1246) 97746) ((-1253 . -1251) 97707) ((-1253 . -1246) 97677) ((-1253 . -1249) 97661) ((-1232 . -1230) 97622) ((-1232 . -1246) 97599) ((-622 . -614) 97581) ((-1232 . -1228) 97565) ((-700 . -922) T) ((-1176 . -285) 97531) ((-1175 . -285) 97497) ((-1169 . -285) 97463) ((-1082 . -1102) T) ((-1063 . -1102) T) ((-48 . -303) T) ((-317 . -902) 97429) ((-314 . -902) NIL) ((-1063 . -1070) 97408) ((-1122 . -888) 97390) ((-800 . -38) 97374) ((-265 . -640) 97322) ((-247 . -640) 97270) ((-702 . -1058) 97257) ((-597 . -1246) 97234) ((-1128 . -285) 97200) ((-320 . -172) 97131) ((-361 . -1102) T) ((-355 . -1102) T) ((-347 . -1102) T) ((-503 . -19) 97113) ((-1122 . -1040) 97095) ((-1104 . -151) 97079) ((-108 . -1102) T) ((-116 . -1058) 97066) ((-712 . -365) T) ((-503 . -605) 97041) ((-702 . -111) 97026) ((-439 . -102) T) ((-877 . -1263) T) ((-250 . -102) T) ((-45 . -1151) 96976) ((-116 . -111) 96961) ((-636 . -721) T) ((-608 . -721) T) ((-1270 . -614) 96943) ((-1226 . -614) 96925) ((-1224 . -851) T) ((-816 . -517) 96858) ((-1037 . -1218) T) ((-240 . -1053) 96755) ((-1212 . -1114) T) ((-1212 . -23) T) ((-945 . -151) 96739) ((-1174 . -455) 96670) ((-1169 . -310) 96555) ((-240 . -641) 96497) ((-1168 . -1102) T) ((-1160 . -1102) T) ((-1144 . -649) 96471) ((-528 . -102) T) ((-523 . -102) 96421) ((-1128 . -310) 96408) ((-1127 . -455) 96359) ((-1089 . -1222) 96338) ((-783 . -1222) 96317) ((-781 . -1222) 96296) ((-62 . -1218) T) ((-480 . -614) 96248) ((-480 . -615) 96170) ((-1089 . -559) 96101) ((-996 . -1102) T) ((-783 . -559) 96012) ((-781 . -559) 95943) ((-485 . -414) 95912) ((-624 . -922) 95891) ((-457 . -1222) 95870) ((-732 . -310) 95857) ((-702 . -617) 95829) ((-401 . -614) 95811) ((-676 . -517) 95744) ((-665 . -25) T) ((-665 . -21) T) ((-457 . -559) 95675) ((-357 . -25) T) ((-357 . -21) T) ((-117 . -922) T) ((-117 . -821) NIL) ((-354 . -25) T) ((-354 . -21) T) ((-346 . -25) T) ((-346 . -21) T) ((-265 . -25) T) ((-265 . -21) T) ((-247 . -25) T) ((-247 . -21) T) ((-83 . -386) T) ((-83 . -398) T) ((-134 . -617) 95657) ((-116 . -617) 95629) ((-1082 . -718) 95497) ((-1006 . -1053) 95447) ((-1006 . -641) 95397) ((-945 . -982) 95381) ((-916 . -641) 95333) ((-916 . -1053) 95285) ((-912 . -21) T) ((-912 . -25) T) ((-873 . -851) 95236) ((-867 . -649) 95196) ((-712 . -1114) T) ((-712 . -23) T) ((-290 . -172) T) ((-702 . -1051) T) ((-312 . -93) T) ((-702 . -233) T) ((-648 . -1102) 95174) ((-633 . -611) 95149) ((-633 . -1102) T) ((-584 . -1222) T) ((-584 . -559) T) ((-521 . -1222) T) ((-521 . -559) T) ((-490 . -647) 95099) ((-430 . -1053) 95083) ((-430 . -641) 95067) ((-361 . -718) 95019) ((-355 . -718) 94971) ((-341 . -1058) 94955) ((-347 . -718) 94907) ((-341 . -111) 94886) ((-174 . -1058) 94818) ((-217 . -647) 94768) ((-174 . -111) 94679) ((-108 . -718) 94629) ((-275 . -1102) T) ((-274 . -1102) T) ((-273 . -1102) T) ((-272 . -1102) T) ((-271 . -1102) T) ((-270 . -1102) T) ((-269 . -1102) T) ((-212 . -1102) T) ((-211 . -1102) T) ((-169 . -1206) 94607) ((-169 . -1203) 94585) ((-209 . -1102) T) ((-208 . -1102) T) ((-116 . -1051) T) ((-207 . -1102) T) ((-206 . -1102) T) ((-203 . -1102) T) ((-202 . -1102) T) ((-201 . -1102) T) ((-200 . -1102) T) ((-199 . -1102) T) ((-198 . -1102) T) ((-197 . -1102) T) ((-196 . -1102) T) ((-195 . -1102) T) ((-194 . -1102) T) ((-193 . -1102) T) ((-240 . -102) 94375) ((-169 . -35) 94353) ((-169 . -95) 94331) ((-655 . -1040) 94227) ((-485 . -1060) 94157) ((-1115 . -1102) 93947) ((-1144 . -34) T) ((-671 . -492) 93931) ((-73 . -1218) T) ((-105 . -614) 93913) ((-1292 . -614) 93895) ((-383 . -614) 93877) ((-341 . -617) 93829) ((-174 . -617) 93746) ((-1217 . -493) 93727) ((-732 . -38) 93576) ((-574 . -1206) T) ((-574 . -1203) T) ((-534 . -614) 93558) ((-523 . -310) 93496) ((-503 . -614) 93478) ((-503 . -615) 93460) ((-1217 . -614) 93426) ((-1169 . -1153) NIL) ((-1029 . -1073) 93395) ((-1029 . -1102) T) ((-1006 . -102) T) ((-973 . -102) T) ((-916 . -102) T) ((-895 . -1040) 93372) ((-1144 . -727) T) ((-1005 . -649) 93317) ((-479 . -1102) T) ((-466 . -1102) T) ((-588 . -23) T) ((-574 . -35) T) ((-574 . -95) T) ((-430 . -102) T) ((-1065 . -229) 93263) ((-1176 . -38) 93160) ((-867 . -727) T) ((-695 . -922) T) ((-514 . -25) T) ((-510 . -21) T) ((-510 . -25) T) ((-1175 . -38) 93001) ((-341 . -1051) T) ((-1169 . -38) 92797) ((-1082 . -172) T) ((-174 . -1051) T) ((-1128 . -38) 92694) ((-713 . -47) 92671) ((-361 . -172) T) ((-355 . -172) T) ((-522 . -57) 92645) ((-500 . -57) 92595) ((-353 . -1287) 92572) ((-225 . -455) T) ((-320 . -291) 92523) ((-347 . -172) T) ((-174 . -243) T) ((-1231 . -851) 92422) ((-108 . -172) T) ((-873 . -994) 92406) ((-659 . -1114) T) ((-584 . -365) T) ((-584 . -330) 92393) ((-521 . -330) 92370) ((-521 . -365) T) ((-317 . -308) 92349) ((-314 . -308) T) ((-603 . -851) 92328) ((-1115 . -718) 92270) ((-523 . -283) 92254) ((-659 . -23) T) ((-421 . -231) 92238) ((-314 . -1024) NIL) ((-338 . -23) T) ((-103 . -1012) 92222) ((-45 . -36) 92201) ((-613 . -1102) T) ((-353 . -370) T) ((-527 . -102) T) ((-498 . -27) T) ((-240 . -310) 92139) ((-1089 . -1114) T) ((-1291 . -649) 92113) ((-783 . -1114) T) ((-781 . -1114) T) ((-457 . -1114) T) ((-1064 . -455) T) ((-954 . -455) 92064) ((-1117 . -1085) T) ((-110 . -1102) T) ((-1089 . -23) T) ((-818 . -1060) T) ((-783 . -23) T) ((-781 . -23) T) ((-484 . -455) 92015) ((-1161 . -517) 91798) ((-383 . -384) 91777) ((-1180 . -414) 91761) ((-464 . -23) T) ((-457 . -23) T) ((-96 . -1102) T) ((-487 . -517) 91694) ((-1260 . -1053) 91577) ((-1260 . -641) 91474) ((-1253 . -641) 91315) ((-1253 . -1053) 91150) ((-290 . -291) T) ((-1232 . -1053) 90940) ((-1084 . -614) 90922) ((-1084 . -615) 90903) ((-410 . -911) 90882) ((-1232 . -641) 90678) ((-50 . -1114) T) ((-1212 . -131) T) ((-1026 . -922) T) ((-1005 . -727) T) ((-844 . -649) 90651) ((-713 . -888) NIL) ((-598 . -1053) 90611) ((-584 . -1114) T) ((-521 . -1114) T) ((-597 . -1053) 90494) ((-1169 . -403) 90446) ((-1006 . -310) NIL) ((-816 . -492) 90430) ((-598 . -641) 90403) ((-356 . -922) T) ((-597 . -641) 90300) ((-1158 . -34) T) ((-410 . -649) 90252) ((-50 . -23) T) ((-712 . -131) T) ((-713 . -1040) 90132) ((-584 . -23) T) ((-108 . -517) NIL) ((-521 . -23) T) ((-169 . -412) 90103) ((-1142 . -1102) T) ((-1283 . -1282) 90087) ((-702 . -796) T) ((-702 . -793) T) ((-1122 . -308) T) ((-381 . -147) T) ((-281 . -614) 90069) ((-1231 . -994) 90039) ((-48 . -922) T) ((-676 . -492) 90023) ((-252 . -1275) 89993) ((-251 . -1275) 89963) ((-1178 . -851) T) ((-1115 . -172) 89942) ((-1122 . -1024) T) ((-1048 . -34) T) ((-837 . -147) 89921) ((-837 . -145) 89900) ((-738 . -107) 89884) ((-613 . -132) T) ((-485 . -1102) 89674) ((-1180 . -1060) T) ((-872 . -455) T) ((-85 . -1218) T) ((-240 . -38) 89644) ((-141 . -107) 89626) ((-713 . -379) 89610) ((-834 . -617) 89478) ((-1291 . -727) T) ((-1280 . -1060) T) ((-1122 . -548) T) ((-582 . -102) T) ((-129 . -493) 89460) ((-1260 . -102) T) ((-393 . -1058) 89444) ((-1253 . -102) T) ((-1174 . -951) 89413) ((-129 . -614) 89380) ((-52 . -614) 89362) ((-1127 . -951) 89329) ((-654 . -414) 89313) ((-1232 . -102) T) ((-1160 . -517) NIL) ((-622 . -1058) 89297) ((-663 . -25) T) ((-663 . -21) T) ((-965 . -647) 89207) ((-736 . -647) 89152) ((-716 . -647) 89124) ((-393 . -111) 89103) ((-222 . -255) 89087) ((-1056 . -1055) 89027) ((-1056 . -1102) T) ((-1006 . -1153) T) ((-819 . -1102) T) ((-456 . -647) 88942) ((-345 . -1222) T) ((-636 . -649) 88926) ((-622 . -111) 88905) ((-608 . -649) 88889) ((-598 . -102) T) ((-312 . -493) 88870) ((-588 . -131) T) ((-597 . -102) T) ((-417 . -1102) T) ((-387 . -1102) T) ((-312 . -614) 88836) ((-227 . -1102) 88814) ((-648 . -517) 88747) ((-633 . -517) 88591) ((-834 . -1051) 88570) ((-645 . -151) 88554) ((-345 . -559) T) ((-713 . -902) 88497) ((-553 . -229) 88447) ((-1260 . -285) 88413) ((-1253 . -285) 88379) ((-1082 . -291) 88330) ((-490 . -849) T) ((-223 . -1114) T) ((-1232 . -285) 88296) ((-1212 . -496) 88262) ((-1006 . -38) 88212) ((-217 . -849) T) ((-421 . -647) 88171) ((-916 . -38) 88123) ((-844 . -795) 88102) ((-844 . -792) 88081) ((-844 . -727) 88060) ((-361 . -291) T) ((-355 . -291) T) ((-347 . -291) T) ((-169 . -455) 87991) ((-430 . -38) 87975) ((-108 . -291) T) ((-223 . -23) T) ((-410 . -795) 87954) ((-410 . -792) 87933) ((-410 . -727) T) ((-503 . -289) 87908) ((-480 . -1058) 87873) ((-659 . -131) T) ((-622 . -617) 87842) ((-1115 . -517) 87775) ((-338 . -131) T) ((-169 . -405) 87754) ((-485 . -718) 87696) ((-816 . -287) 87673) ((-480 . -111) 87629) ((-654 . -1060) T) ((-817 . -1053) 87472) ((-1279 . -1085) T) ((-1241 . -455) 87403) ((-817 . -641) 87252) ((-1278 . -1085) T) ((-1089 . -131) T) ((-1056 . -718) 87194) ((-783 . -131) T) ((-781 . -131) T) ((-574 . -455) T) ((-1029 . -517) 87127) ((-622 . -1051) T) ((-594 . -1102) T) ((-536 . -173) T) ((-464 . -131) T) ((-457 . -131) T) ((-45 . -1102) T) ((-387 . -718) 87097) ((-818 . -1102) T) ((-479 . -517) 87030) ((-466 . -517) 86963) ((-456 . -369) 86933) ((-45 . -611) 86912) ((-317 . -303) T) ((-480 . -617) 86862) ((-1232 . -310) 86747) ((-671 . -614) 86709) ((-59 . -851) 86688) ((-1006 . -403) 86670) ((-551 . -614) 86652) ((-800 . -647) 86611) ((-816 . -605) 86588) ((-519 . -851) 86567) ((-499 . -851) 86546) ((-40 . -1222) T) ((-1001 . -1040) 86442) ((-50 . -131) T) ((-584 . -131) T) ((-521 . -131) T) ((-295 . -649) 86302) ((-345 . -330) 86279) ((-345 . -365) T) ((-323 . -324) 86256) ((-320 . -287) 86241) ((-40 . -559) T) ((-381 . -1203) T) ((-381 . -1206) T) ((-1037 . -1194) 86216) ((-1191 . -235) 86166) ((-1169 . -231) 86118) ((-331 . -1102) T) ((-381 . -95) T) ((-381 . -35) T) ((-1037 . -107) 86064) ((-480 . -1051) T) ((-1292 . -1058) 86048) ((-482 . -235) 85998) ((-1161 . -492) 85932) ((-1283 . -1053) 85916) ((-383 . -1058) 85900) ((-1283 . -641) 85870) ((-480 . -243) T) ((-817 . -102) T) ((-715 . -147) 85849) ((-715 . -145) 85828) ((-487 . -492) 85812) ((-488 . -337) 85781) ((-1292 . -111) 85760) ((-515 . -1102) T) ((-485 . -172) 85739) ((-1001 . -379) 85723) ((-416 . -102) T) ((-383 . -111) 85702) ((-1001 . -340) 85686) ((-280 . -985) 85670) ((-279 . -985) 85654) ((-1290 . -614) 85636) ((-1288 . -614) 85618) ((-110 . -517) NIL) ((-1174 . -1244) 85602) ((-855 . -853) 85586) ((-1180 . -1102) T) ((-103 . -1218) T) ((-954 . -951) 85547) ((-818 . -718) 85489) ((-1232 . -1153) NIL) ((-484 . -951) 85434) ((-1064 . -143) T) ((-60 . -102) 85412) ((-44 . -614) 85394) ((-78 . -614) 85376) ((-353 . -649) 85321) ((-1280 . -1102) T) ((-514 . -851) T) ((-345 . -1114) T) ((-296 . -1102) T) ((-1001 . -902) 85280) ((-296 . -611) 85259) ((-1292 . -617) 85208) ((-1260 . -38) 85105) ((-1253 . -38) 84946) ((-1232 . -38) 84742) ((-490 . -1060) T) ((-383 . -617) 84726) ((-217 . -1060) T) ((-345 . -23) T) ((-152 . -614) 84708) ((-834 . -796) 84687) ((-834 . -793) 84666) ((-1217 . -617) 84647) ((-598 . -38) 84620) ((-597 . -38) 84517) ((-871 . -559) T) ((-223 . -131) T) ((-320 . -1004) 84483) ((-79 . -614) 84465) ((-713 . -308) 84444) ((-295 . -727) 84346) ((-825 . -102) T) ((-865 . -845) T) ((-295 . -476) 84325) ((-1283 . -102) T) ((-40 . -365) T) ((-873 . -147) 84304) ((-488 . -647) 84286) ((-873 . -145) 84265) ((-1160 . -492) 84247) ((-1292 . -1051) T) ((-485 . -517) 84180) ((-1148 . -1218) T) ((-966 . -614) 84162) ((-648 . -492) 84146) ((-633 . -492) 84077) ((-816 . -614) 83808) ((-48 . -27) T) ((-1180 . -718) 83705) ((-654 . -1102) T) ((-862 . -861) T) ((-439 . -366) 83679) ((-732 . -647) 83589) ((-1104 . -102) T) ((-972 . -1102) T) ((-865 . -1102) T) ((-817 . -310) 83576) ((-536 . -530) T) ((-536 . -579) T) ((-1288 . -384) 83548) ((-1056 . -517) 83481) ((-1161 . -287) 83457) ((-240 . -231) 83426) ((-252 . -1053) 83323) ((-251 . -1053) 83220) ((-1280 . -718) 83190) ((-1168 . -93) T) ((-996 . -93) T) ((-818 . -172) 83169) ((-252 . -641) 83111) ((-251 . -641) 83053) ((-1215 . -493) 83030) ((-227 . -517) 82963) ((-622 . -796) 82942) ((-622 . -793) 82921) ((-1215 . -614) 82833) ((-222 . -1218) T) ((-676 . -614) 82765) ((-1176 . -647) 82675) ((-1158 . -1012) 82659) ((-945 . -102) 82609) ((-353 . -727) T) ((-862 . -614) 82591) ((-1175 . -647) 82473) ((-1169 . -647) 82310) ((-1128 . -647) 82220) ((-1232 . -403) 82172) ((-1115 . -492) 82156) ((-60 . -310) 82094) ((-332 . -102) T) ((-1212 . -21) T) ((-1212 . -25) T) ((-40 . -1114) T) ((-712 . -21) T) ((-628 . -614) 82076) ((-518 . -324) 82055) ((-712 . -25) T) ((-442 . -102) T) ((-108 . -287) NIL) ((-923 . -1114) T) ((-40 . -23) T) ((-772 . -1114) T) ((-567 . -1222) T) ((-498 . -1222) T) ((-320 . -614) 82037) ((-1006 . -231) 82019) ((-169 . -166) 82003) ((-583 . -559) T) ((-567 . -559) T) ((-498 . -559) T) ((-772 . -23) T) ((-1252 . -147) 81982) ((-1161 . -605) 81958) ((-1252 . -145) 81937) ((-1029 . -492) 81921) ((-1231 . -145) 81846) ((-1231 . -147) 81771) ((-1283 . -1289) 81750) ((-479 . -492) 81734) ((-466 . -492) 81718) ((-526 . -34) T) ((-654 . -718) 81688) ((-112 . -969) T) ((-663 . -851) 81667) ((-1180 . -172) 81618) ((-367 . -102) T) ((-240 . -238) 81597) ((-252 . -102) T) ((-251 . -102) T) ((-1241 . -951) 81566) ((-245 . -851) 81545) ((-817 . -38) 81394) ((-45 . -517) 81186) ((-1160 . -287) 81161) ((-214 . -1102) T) ((-1152 . -1102) T) ((-1152 . -611) 81140) ((-588 . -25) T) ((-588 . -21) T) ((-1104 . -310) 81078) ((-965 . -414) 81062) ((-700 . -1222) T) ((-633 . -287) 81037) ((-1089 . -640) 80985) ((-783 . -640) 80933) ((-781 . -640) 80881) ((-345 . -131) T) ((-290 . -614) 80863) ((-907 . -1102) T) ((-700 . -559) T) ((-129 . -617) 80845) ((-871 . -1114) T) ((-457 . -640) 80793) ((-907 . -905) 80777) ((-381 . -455) T) ((-490 . -1102) T) ((-945 . -310) 80715) ((-702 . -649) 80702) ((-552 . -845) T) ((-217 . -1102) T) ((-317 . -922) 80681) ((-314 . -922) T) ((-314 . -821) NIL) ((-393 . -721) T) ((-871 . -23) T) ((-116 . -649) 80668) ((-477 . -145) 80647) ((-421 . -414) 80631) ((-477 . -147) 80610) ((-110 . -492) 80592) ((-312 . -617) 80573) ((-2 . -614) 80555) ((-186 . -102) T) ((-1160 . -19) 80537) ((-1160 . -605) 80512) ((-659 . -21) T) ((-659 . -25) T) ((-595 . -1146) T) ((-1115 . -287) 80489) ((-338 . -25) T) ((-338 . -21) T) ((-240 . -647) 80239) ((-498 . -365) T) ((-1283 . -38) 80209) ((-1174 . -1053) 80032) ((-1144 . -1218) T) ((-1127 . -1053) 79875) ((-855 . -1053) 79859) ((-633 . -605) 79834) ((-1174 . -641) 79663) ((-1127 . -641) 79512) ((-855 . -641) 79482) ((-1290 . -1058) 79466) ((-1288 . -1058) 79450) ((-552 . -1102) T) ((-1089 . -25) T) ((-1089 . -21) T) ((-534 . -793) T) ((-534 . -796) T) ((-117 . -1222) T) ((-965 . -1060) T) ((-624 . -559) T) ((-783 . -25) T) ((-783 . -21) T) ((-781 . -21) T) ((-781 . -25) T) ((-736 . -1060) T) ((-716 . -1060) T) ((-671 . -1058) 79434) ((-520 . -1085) T) ((-464 . -25) T) ((-117 . -559) T) ((-464 . -21) T) ((-457 . -25) T) ((-457 . -21) T) ((-1252 . -1203) 79400) ((-1252 . -1206) 79366) ((-1144 . -1040) 79262) ((-818 . -291) 79241) ((-1252 . -95) 79207) ((-824 . -1102) T) ((-1235 . -102) 79185) ((-968 . -969) T) ((-671 . -111) 79164) ((-296 . -517) 78956) ((-1232 . -231) 78908) ((-1231 . -1203) 78874) ((-1231 . -1206) 78840) ((-252 . -310) 78778) ((-251 . -310) 78716) ((-1226 . -370) T) ((-1161 . -615) NIL) ((-1161 . -614) 78698) ((-1223 . -845) T) ((-1144 . -379) 78682) ((-1122 . -821) T) ((-96 . -93) T) ((-1122 . -922) T) ((-1115 . -605) 78659) ((-1082 . -615) 78643) ((-1006 . -647) 78593) ((-916 . -647) 78530) ((-816 . -289) 78507) ((-487 . -614) 78439) ((-609 . -151) 78386) ((-490 . -718) 78336) ((-421 . -1060) T) ((-485 . -492) 78320) ((-430 . -647) 78279) ((-328 . -851) 78258) ((-341 . -649) 78232) ((-50 . -21) T) ((-50 . -25) T) ((-217 . -718) 78182) ((-169 . -725) 78153) ((-174 . -649) 78085) ((-584 . -21) T) ((-584 . -25) T) ((-521 . -25) T) ((-521 . -21) T) ((-478 . -151) 78035) ((-1082 . -614) 78017) ((-1063 . -614) 77999) ((-995 . -102) T) ((-863 . -102) T) ((-800 . -414) 77962) ((-40 . -131) T) ((-700 . -365) T) ((-702 . -727) T) ((-702 . -795) T) ((-702 . -792) T) ((-212 . -897) T) ((-583 . -1114) T) ((-567 . -1114) T) ((-498 . -1114) T) ((-361 . -614) 77944) ((-355 . -614) 77926) ((-347 . -614) 77908) ((-66 . -399) T) ((-66 . -398) T) ((-108 . -615) 77838) ((-108 . -614) 77780) ((-211 . -897) T) ((-960 . -151) 77764) ((-772 . -131) T) ((-671 . -617) 77682) ((-134 . -727) T) ((-116 . -727) T) ((-1252 . -35) 77648) ((-1056 . -492) 77632) ((-583 . -23) T) ((-567 . -23) T) ((-498 . -23) T) ((-1231 . -95) 77598) ((-1231 . -35) 77564) ((-1174 . -102) T) ((-1127 . -102) T) ((-855 . -102) T) ((-227 . -492) 77548) ((-1290 . -111) 77527) ((-1288 . -111) 77506) ((-44 . -1058) 77490) ((-1290 . -617) 77436) ((-1241 . -1244) 77420) ((-856 . -853) 77404) ((-1290 . -1051) T) ((-1180 . -291) 77383) ((-110 . -287) 77358) ((-1288 . -617) 77287) ((-128 . -151) 77269) ((-1144 . -902) 77228) ((-44 . -111) 77207) ((-1223 . -1102) T) ((-1183 . -1263) T) ((-1168 . -493) 77188) ((-1168 . -614) 77154) ((-671 . -1051) T) ((-1160 . -615) NIL) ((-1160 . -614) 77136) ((-1065 . -611) 77111) ((-1065 . -1102) T) ((-996 . -493) 77092) ((-74 . -444) T) ((-74 . -398) T) ((-996 . -614) 77058) ((-152 . -1058) 77042) ((-671 . -233) 77021) ((-574 . -557) 77005) ((-357 . -147) 76984) ((-357 . -145) 76935) ((-354 . -147) 76914) ((-354 . -145) 76865) ((-346 . -147) 76844) ((-346 . -145) 76795) ((-265 . -145) 76774) ((-265 . -147) 76753) ((-252 . -38) 76723) ((-247 . -147) 76702) ((-117 . -365) T) ((-247 . -145) 76681) ((-251 . -38) 76651) ((-152 . -111) 76630) ((-1005 . -1040) 76518) ((-1169 . -849) NIL) ((-695 . -1222) T) ((-800 . -1060) T) ((-700 . -1114) T) ((-1288 . -1051) T) ((-1158 . -1218) T) ((-1005 . -379) 76495) ((-912 . -145) T) ((-912 . -147) 76477) ((-871 . -131) T) ((-816 . -1058) 76374) ((-700 . -23) T) ((-695 . -559) T) ((-225 . -1053) 76339) ((-648 . -614) 76271) ((-648 . -615) 76232) ((-633 . -615) NIL) ((-633 . -614) 76214) ((-490 . -172) T) ((-225 . -641) 76179) ((-223 . -21) T) ((-217 . -172) T) ((-223 . -25) T) ((-477 . -1206) 76145) ((-477 . -1203) 76111) ((-275 . -614) 76093) ((-274 . -614) 76075) ((-273 . -614) 76057) ((-272 . -614) 76039) ((-271 . -614) 76021) ((-503 . -652) 76003) ((-270 . -614) 75985) ((-341 . -727) T) ((-269 . -614) 75967) ((-110 . -19) 75949) ((-174 . -727) T) ((-503 . -375) 75931) ((-212 . -614) 75913) ((-523 . -1151) 75897) ((-503 . -123) T) ((-110 . -605) 75872) ((-211 . -614) 75854) ((-477 . -35) 75820) ((-477 . -95) 75786) ((-209 . -614) 75768) ((-208 . -614) 75750) ((-207 . -614) 75732) ((-206 . -614) 75714) ((-203 . -614) 75696) ((-202 . -614) 75678) ((-201 . -614) 75660) ((-200 . -614) 75642) ((-199 . -614) 75624) ((-198 . -614) 75606) ((-197 . -614) 75588) ((-539 . -1105) 75540) ((-196 . -614) 75522) ((-195 . -614) 75504) ((-45 . -492) 75441) ((-194 . -614) 75423) ((-193 . -614) 75405) ((-152 . -617) 75374) ((-1117 . -102) T) ((-816 . -111) 75264) ((-645 . -102) 75214) ((-485 . -287) 75191) ((-1115 . -614) 74922) ((-1103 . -1102) T) ((-1048 . -1218) T) ((-1291 . -1040) 74906) ((-1064 . -1053) 74893) ((-1174 . -310) 74880) ((-954 . -1053) 74723) ((-1137 . -1102) T) ((-1127 . -310) 74710) ((-624 . -1114) T) ((-1064 . -641) 74697) ((-1098 . -1085) T) ((-954 . -641) 74546) ((-1092 . -1085) T) ((-484 . -1053) 74389) ((-1075 . -1085) T) ((-1068 . -1085) T) ((-1038 . -1085) T) ((-1021 . -1085) T) ((-117 . -1114) T) ((-484 . -641) 74238) ((-820 . -102) T) ((-627 . -1085) T) ((-624 . -23) T) ((-1152 . -517) 74030) ((-486 . -1085) T) ((-389 . -102) T) ((-325 . -102) T) ((-218 . -1085) T) ((-965 . -1102) T) ((-152 . -1051) T) ((-732 . -414) 74014) ((-117 . -23) T) ((-1005 . -902) 73966) ((-736 . -1102) T) ((-716 . -1102) T) ((-456 . -1102) T) ((-410 . -1218) T) ((-317 . -433) 73950) ((-594 . -93) T) ((-1260 . -647) 73860) ((-1029 . -615) 73821) ((-1026 . -1222) T) ((-225 . -102) T) ((-1029 . -614) 73783) ((-1253 . -647) 73665) ((-817 . -231) 73649) ((-816 . -617) 73379) ((-1232 . -647) 73216) ((-1026 . -559) T) ((-834 . -649) 73189) ((-356 . -1222) T) ((-479 . -614) 73151) ((-479 . -615) 73112) ((-466 . -615) 73073) ((-466 . -614) 73035) ((-598 . -647) 72994) ((-410 . -886) 72978) ((-320 . -1058) 72813) ((-410 . -888) 72738) ((-597 . -647) 72648) ((-844 . -1040) 72544) ((-490 . -517) NIL) ((-485 . -605) 72521) ((-356 . -559) T) ((-217 . -517) NIL) ((-873 . -455) T) ((-421 . -1102) T) ((-410 . -1040) 72385) ((-320 . -111) 72206) ((-695 . -365) T) ((-225 . -285) T) ((-1215 . -617) 72183) ((-48 . -1222) T) ((-816 . -1051) 72113) ((-1174 . -1153) 72091) ((-583 . -131) T) ((-567 . -131) T) ((-498 . -131) T) ((-1161 . -289) 72067) ((-48 . -559) T) ((-1064 . -102) T) ((-954 . -102) T) ((-872 . -1053) 72012) ((-317 . -27) 71991) ((-816 . -233) 71943) ((-249 . -836) 71925) ((-240 . -849) 71904) ((-187 . -836) 71886) ((-714 . -102) T) ((-296 . -492) 71823) ((-872 . -641) 71768) ((-484 . -102) T) ((-732 . -1060) T) ((-613 . -614) 71750) ((-613 . -615) 71611) ((-410 . -379) 71595) ((-410 . -340) 71579) ((-320 . -617) 71405) ((-1174 . -38) 71234) ((-1127 . -38) 71083) ((-855 . -38) 71053) ((-393 . -649) 71037) ((-645 . -310) 70975) ((-965 . -718) 70872) ((-736 . -718) 70842) ((-222 . -107) 70826) ((-45 . -287) 70751) ((-622 . -649) 70725) ((-313 . -1102) T) ((-290 . -1058) 70712) ((-110 . -614) 70694) ((-110 . -615) 70676) ((-456 . -718) 70646) ((-817 . -254) 70585) ((-690 . -1102) 70563) ((-553 . -1102) T) ((-1176 . -1060) T) ((-1175 . -1060) T) ((-96 . -493) 70544) ((-1169 . -1060) T) ((-290 . -111) 70529) ((-1128 . -1060) T) ((-553 . -611) 70508) ((-96 . -614) 70474) ((-1006 . -849) T) ((-227 . -688) 70432) ((-695 . -1114) T) ((-1212 . -741) 70408) ((-1026 . -365) T) ((-839 . -836) 70390) ((-834 . -795) 70369) ((-410 . -902) 70328) ((-320 . -1051) T) ((-345 . -25) T) ((-345 . -21) T) ((-169 . -1053) 70238) ((-68 . -1218) T) ((-834 . -792) 70217) ((-421 . -718) 70191) ((-800 . -1102) T) ((-713 . -922) 70170) ((-700 . -131) T) ((-169 . -641) 69998) ((-695 . -23) T) ((-490 . -291) T) ((-834 . -727) 69977) ((-320 . -233) 69929) ((-320 . -243) 69908) ((-217 . -291) T) ((-129 . -370) T) ((-1252 . -455) 69887) ((-1231 . -455) 69866) ((-356 . -330) 69843) ((-356 . -365) T) ((-1142 . -614) 69825) ((-45 . -1256) 69775) ((-872 . -102) T) ((-645 . -283) 69759) ((-700 . -1062) T) ((-1279 . -102) T) ((-1278 . -102) T) ((-480 . -649) 69724) ((-471 . -1102) T) ((-45 . -605) 69649) ((-1160 . -289) 69624) ((-290 . -617) 69596) ((-40 . -640) 69535) ((-1241 . -1053) 69358) ((-856 . -1053) 69342) ((-48 . -365) T) ((-1108 . -614) 69324) ((-1241 . -641) 69153) ((-856 . -641) 69123) ((-633 . -289) 69098) ((-817 . -647) 69008) ((-574 . -1053) 68995) ((-485 . -614) 68726) ((-240 . -414) 68695) ((-954 . -310) 68682) ((-574 . -641) 68669) ((-65 . -1218) T) ((-1065 . -517) 68513) ((-672 . -1102) T) ((-624 . -131) T) ((-484 . -310) 68500) ((-607 . -1102) T) ((-549 . -102) T) ((-117 . -131) T) ((-290 . -1051) T) ((-180 . -1102) T) ((-161 . -1102) T) ((-156 . -1102) T) ((-154 . -1102) T) ((-456 . -762) T) ((-31 . -1085) T) ((-965 . -172) 68451) ((-972 . -93) T) ((-1082 . -1058) 68361) ((-622 . -795) 68340) ((-595 . -1102) T) ((-622 . -792) 68319) ((-622 . -727) T) ((-296 . -287) 68298) ((-295 . -1218) T) ((-1056 . -614) 68260) ((-1056 . -615) 68221) ((-1026 . -1114) T) ((-169 . -102) T) ((-276 . -851) T) ((-1167 . -1102) T) ((-819 . -614) 68203) ((-1115 . -289) 68180) ((-1104 . -229) 68164) ((-1005 . -308) T) ((-800 . -718) 68148) ((-361 . -1058) 68100) ((-356 . -1114) T) ((-355 . -1058) 68052) ((-417 . -614) 68034) ((-387 . -614) 68016) ((-347 . -1058) 67968) ((-227 . -614) 67900) ((-1082 . -111) 67796) ((-1026 . -23) T) ((-108 . -1058) 67746) ((-900 . -102) T) ((-842 . -102) T) ((-809 . -102) T) ((-770 . -102) T) ((-678 . -102) T) ((-477 . -455) 67725) ((-421 . -172) T) ((-361 . -111) 67663) ((-355 . -111) 67601) ((-347 . -111) 67539) ((-252 . -231) 67508) ((-251 . -231) 67477) ((-356 . -23) T) ((-71 . -1218) T) ((-225 . -38) 67442) ((-108 . -111) 67376) ((-40 . -25) T) ((-40 . -21) T) ((-671 . -721) T) ((-169 . -285) 67354) ((-48 . -1114) T) ((-923 . -25) T) ((-772 . -25) T) ((-1292 . -649) 67328) ((-1152 . -492) 67265) ((-488 . -1102) T) ((-1283 . -647) 67224) ((-1241 . -102) T) ((-1064 . -1153) T) ((-856 . -102) T) ((-240 . -1060) 67154) ((-966 . -793) 67107) ((-966 . -796) 67060) ((-383 . -649) 67044) ((-48 . -23) T) ((-816 . -796) 66995) ((-816 . -793) 66946) ((-551 . -370) T) ((-296 . -605) 66925) ((-480 . -727) T) ((-574 . -102) T) ((-1082 . -617) 66743) ((-249 . -185) T) ((-187 . -185) T) ((-872 . -310) 66700) ((-654 . -287) 66679) ((-112 . -662) T) ((-361 . -617) 66616) ((-355 . -617) 66553) ((-347 . -617) 66490) ((-76 . -1218) T) ((-108 . -617) 66440) ((-1064 . -38) 66427) ((-665 . -376) 66406) ((-954 . -38) 66255) ((-732 . -1102) T) ((-484 . -38) 66104) ((-86 . -1218) T) ((-594 . -493) 66085) ((-574 . -285) T) ((-1232 . -849) NIL) ((-594 . -614) 66051) ((-1176 . -1102) T) ((-1175 . -1102) T) ((-1082 . -1051) T) ((-353 . -1040) 66028) ((-818 . -493) 66012) ((-1006 . -1060) T) ((-45 . -614) 65994) ((-45 . -615) NIL) ((-916 . -1060) T) ((-818 . -614) 65963) ((-1169 . -1102) T) ((-1149 . -102) 65941) ((-1082 . -243) 65892) ((-430 . -1060) T) ((-361 . -1051) T) ((-367 . -366) 65869) ((-355 . -1051) T) ((-347 . -1051) T) ((-252 . -238) 65848) ((-251 . -238) 65827) ((-1082 . -233) 65752) ((-1128 . -1102) T) ((-295 . -902) 65711) ((-108 . -1051) T) ((-695 . -131) T) ((-421 . -517) 65553) ((-361 . -233) 65532) ((-361 . -243) T) ((-44 . -721) T) ((-355 . -233) 65511) ((-355 . -243) T) ((-347 . -233) 65490) ((-347 . -243) T) ((-1168 . -617) 65471) ((-169 . -310) 65436) ((-108 . -243) T) ((-108 . -233) T) ((-996 . -617) 65417) ((-320 . -793) T) ((-871 . -21) T) ((-871 . -25) T) ((-410 . -308) T) ((-503 . -34) T) ((-110 . -289) 65392) ((-1115 . -1058) 65289) ((-872 . -1153) NIL) ((-331 . -614) 65271) ((-410 . -1024) 65249) ((-1115 . -111) 65139) ((-692 . -1263) T) ((-439 . -1102) T) ((-250 . -1102) T) ((-1292 . -727) T) ((-63 . -614) 65121) ((-872 . -38) 65066) ((-526 . -1218) T) ((-603 . -151) 65050) ((-515 . -614) 65032) ((-1241 . -310) 65019) ((-732 . -718) 64868) ((-534 . -794) T) ((-534 . -795) T) ((-567 . -640) 64850) ((-498 . -640) 64810) ((-357 . -455) T) ((-354 . -455) T) ((-346 . -455) T) ((-265 . -455) 64761) ((-528 . -1102) T) ((-523 . -1102) 64711) ((-247 . -455) 64662) ((-1152 . -287) 64641) ((-1180 . -614) 64623) ((-690 . -517) 64556) ((-965 . -291) 64535) ((-553 . -517) 64327) ((-252 . -647) 64147) ((-251 . -647) 63954) ((-1280 . -614) 63923) ((-1174 . -231) 63907) ((-1115 . -617) 63637) ((-169 . -1153) 63616) ((-1280 . -493) 63600) ((-1176 . -718) 63497) ((-1175 . -718) 63338) ((-894 . -102) T) ((-1169 . -718) 63134) ((-1128 . -718) 63031) ((-1158 . -675) 63015) ((-357 . -405) 62966) ((-354 . -405) 62917) ((-346 . -405) 62868) ((-1026 . -131) T) ((-800 . -517) 62780) ((-296 . -615) NIL) ((-296 . -614) 62762) ((-912 . -455) T) ((-966 . -370) 62715) ((-816 . -370) 62694) ((-513 . -512) 62673) ((-511 . -512) 62652) ((-490 . -287) NIL) ((-485 . -289) 62629) ((-421 . -291) T) ((-356 . -131) T) ((-217 . -287) NIL) ((-695 . -496) NIL) ((-99 . -1114) T) ((-169 . -38) 62457) ((-1252 . -975) 62419) ((-1149 . -310) 62357) ((-1231 . -975) 62326) ((-912 . -405) T) ((-1115 . -1051) 62256) ((-1254 . -559) T) ((-1152 . -605) 62235) ((-112 . -851) T) ((-1065 . -492) 62166) ((-583 . -21) T) ((-583 . -25) T) ((-567 . -21) T) ((-567 . -25) T) ((-498 . -25) T) ((-498 . -21) T) ((-1241 . -1153) 62144) ((-1115 . -233) 62096) ((-48 . -131) T) ((-1199 . -102) T) ((-240 . -1102) 61886) ((-872 . -403) 61863) ((-1090 . -102) T) ((-1078 . -102) T) ((-609 . -102) T) ((-478 . -102) T) ((-1241 . -38) 61692) ((-856 . -38) 61662) ((-1036 . -1053) 61636) ((-732 . -172) 61547) ((-654 . -614) 61529) ((-646 . -1085) T) ((-1036 . -641) 61513) ((-574 . -38) 61500) ((-972 . -493) 61481) ((-972 . -614) 61447) ((-960 . -102) 61397) ((-865 . -614) 61379) ((-865 . -615) 61301) ((-595 . -517) NIL) ((-1260 . -1060) T) ((-1253 . -1060) T) ((-323 . -1053) 61283) ((-1232 . -1060) T) ((-1296 . -1114) T) ((-323 . -641) 61265) ((-1212 . -147) 61244) ((-1212 . -145) 61223) ((-1186 . -102) T) ((-1185 . -102) T) ((-1184 . -102) T) ((-598 . -1060) T) ((-597 . -1060) T) ((-1176 . -172) 61174) ((-1175 . -172) 61105) ((-381 . -1053) 61070) ((-1169 . -172) 61001) ((-1128 . -172) 60952) ((-1006 . -1102) T) ((-973 . -1102) T) ((-916 . -1102) T) ((-381 . -641) 60917) ((-800 . -798) 60901) ((-700 . -25) T) ((-700 . -21) T) ((-117 . -640) 60878) ((-702 . -888) 60860) ((-430 . -1102) T) ((-317 . -1222) 60839) ((-314 . -1222) T) ((-169 . -403) 60823) ((-837 . -1053) 60793) ((-477 . -975) 60755) ((-130 . -102) T) ((-128 . -102) T) ((-72 . -614) 60737) ((-828 . -1053) 60721) ((-108 . -796) T) ((-108 . -793) T) ((-702 . -1040) 60703) ((-317 . -559) 60682) ((-314 . -559) T) ((-837 . -641) 60652) ((-828 . -641) 60622) ((-1296 . -23) T) ((-134 . -1040) 60604) ((-96 . -617) 60585) ((-995 . -647) 60567) ((-485 . -1058) 60464) ((-45 . -289) 60389) ((-240 . -718) 60331) ((-520 . -102) T) ((-485 . -111) 60221) ((-1094 . -102) 60191) ((-1036 . -102) T) ((-1174 . -647) 60101) ((-1127 . -647) 60011) ((-855 . -647) 59970) ((-645 . -829) 59949) ((-732 . -517) 59892) ((-1056 . -1058) 59876) ((-1137 . -93) T) ((-1065 . -287) 59851) ((-624 . -21) T) ((-624 . -25) T) ((-527 . -1102) T) ((-671 . -649) 59825) ((-363 . -102) T) ((-323 . -102) T) ((-387 . -1058) 59809) ((-1056 . -111) 59788) ((-817 . -414) 59772) ((-117 . -25) T) ((-89 . -614) 59754) ((-117 . -21) T) ((-609 . -310) 59549) ((-478 . -310) 59353) ((-1152 . -615) NIL) ((-387 . -111) 59332) ((-381 . -102) T) ((-214 . -614) 59314) ((-1152 . -614) 59296) ((-1169 . -517) 59065) ((-1006 . -718) 59015) ((-1128 . -517) 58985) ((-916 . -718) 58937) ((-485 . -617) 58667) ((-353 . -308) T) ((-1191 . -151) 58617) ((-960 . -310) 58555) ((-837 . -102) T) ((-430 . -718) 58539) ((-225 . -829) T) ((-828 . -102) T) ((-826 . -102) T) ((-482 . -151) 58489) ((-1252 . -1251) 58468) ((-1122 . -1222) T) ((-341 . -1040) 58435) ((-1252 . -1246) 58405) ((-1252 . -1249) 58389) ((-1231 . -1230) 58368) ((-80 . -614) 58350) ((-907 . -614) 58332) ((-1231 . -1246) 58309) ((-1122 . -559) T) ((-923 . -851) T) ((-772 . -851) T) ((-673 . -851) T) ((-490 . -615) 58239) ((-490 . -614) 58180) ((-381 . -285) T) ((-1231 . -1228) 58164) ((-1254 . -1114) T) ((-217 . -615) 58094) ((-217 . -614) 58035) ((-1290 . -649) 58009) ((-1065 . -605) 57984) ((-819 . -617) 57968) ((-59 . -151) 57952) ((-519 . -151) 57936) ((-499 . -151) 57920) ((-361 . -1287) 57904) ((-355 . -1287) 57888) ((-347 . -1287) 57872) ((-317 . -365) 57851) ((-314 . -365) T) ((-485 . -1051) 57781) ((-695 . -640) 57763) ((-1288 . -649) 57737) ((-128 . -310) NIL) ((-1254 . -23) T) ((-690 . -492) 57721) ((-64 . -614) 57703) ((-1115 . -796) 57654) ((-1115 . -793) 57605) ((-553 . -492) 57542) ((-671 . -34) T) ((-485 . -233) 57494) ((-296 . -289) 57473) ((-240 . -172) 57452) ((-817 . -1060) T) ((-44 . -649) 57410) ((-1082 . -370) 57361) ((-732 . -291) 57292) ((-523 . -517) 57225) ((-818 . -1058) 57176) ((-1089 . -145) 57155) ((-552 . -614) 57137) ((-361 . -370) 57116) ((-355 . -370) 57095) ((-347 . -370) 57074) ((-1089 . -147) 57053) ((-872 . -231) 57030) ((-818 . -111) 56972) ((-783 . -145) 56951) ((-783 . -147) 56930) ((-265 . -951) 56897) ((-252 . -849) 56876) ((-247 . -951) 56821) ((-251 . -849) 56800) ((-781 . -145) 56779) ((-781 . -147) 56758) ((-152 . -649) 56732) ((-582 . -1102) T) ((-457 . -147) 56711) ((-457 . -145) 56690) ((-671 . -727) T) ((-824 . -614) 56672) ((-1260 . -1102) T) ((-1253 . -1102) T) ((-1232 . -1102) T) ((-1212 . -1206) 56638) ((-1212 . -1203) 56604) ((-1176 . -291) 56583) ((-1175 . -291) 56534) ((-1169 . -291) 56485) ((-1128 . -291) 56464) ((-341 . -902) 56445) ((-1006 . -172) T) ((-916 . -172) T) ((-695 . -21) T) ((-695 . -25) T) ((-225 . -647) 56395) ((-598 . -1102) T) ((-597 . -1102) T) ((-477 . -1249) 56379) ((-477 . -1246) 56349) ((-421 . -287) 56277) ((-550 . -851) T) ((-317 . -1114) 56126) ((-314 . -1114) T) ((-1212 . -35) 56092) ((-1212 . -95) 56058) ((-84 . -614) 56040) ((-91 . -102) 56018) ((-1296 . -131) T) ((-715 . -1053) 55988) ((-594 . -617) 55969) ((-584 . -145) T) ((-584 . -147) 55951) ((-521 . -147) 55933) ((-521 . -145) T) ((-715 . -641) 55903) ((-317 . -23) 55755) ((-40 . -344) 55729) ((-314 . -23) T) ((-818 . -617) 55643) ((-1160 . -652) 55625) ((-1283 . -1060) T) ((-1160 . -375) 55607) ((-816 . -649) 55455) ((-1098 . -102) T) ((-1092 . -102) T) ((-1075 . -102) T) ((-169 . -231) 55439) ((-1068 . -102) T) ((-1038 . -102) T) ((-1021 . -102) T) ((-595 . -492) 55421) ((-627 . -102) T) ((-240 . -517) 55354) ((-486 . -102) T) ((-1290 . -727) T) ((-1288 . -727) T) ((-218 . -102) T) ((-1180 . -1058) 55237) ((-1064 . -647) 55209) ((-954 . -647) 55119) ((-1180 . -111) 54988) ((-877 . -1085) T) ((-484 . -647) 54898) ((-862 . -173) T) ((-818 . -1051) T) ((-682 . -1085) T) ((-677 . -1085) T) ((-518 . -102) T) ((-513 . -102) T) ((-48 . -640) 54858) ((-511 . -102) T) ((-481 . -1085) T) ((-1280 . -1058) 54828) ((-138 . -1085) T) ((-137 . -1085) T) ((-133 . -1085) T) ((-1036 . -38) 54812) ((-818 . -233) T) ((-818 . -243) 54791) ((-1280 . -111) 54756) ((-1260 . -718) 54653) ((-1253 . -718) 54494) ((-553 . -287) 54473) ((-1241 . -231) 54457) ((-1223 . -614) 54439) ((-607 . -93) T) ((-1065 . -615) NIL) ((-1065 . -614) 54421) ((-672 . -93) T) ((-180 . -93) T) ((-161 . -93) T) ((-156 . -93) T) ((-154 . -93) T) ((-1232 . -718) 54217) ((-1005 . -922) T) ((-152 . -727) T) ((-1180 . -617) 54070) ((-1115 . -370) 54049) ((-1026 . -25) T) ((-1006 . -517) NIL) ((-252 . -414) 54018) ((-251 . -414) 53987) ((-1026 . -21) T) ((-873 . -1053) 53939) ((-598 . -718) 53912) ((-597 . -718) 53809) ((-800 . -287) 53767) ((-126 . -102) 53745) ((-834 . -1040) 53641) ((-169 . -829) 53620) ((-320 . -649) 53517) ((-816 . -34) T) ((-715 . -102) T) ((-1122 . -1114) T) ((-1028 . -1218) T) ((-873 . -641) 53469) ((-381 . -38) 53434) ((-356 . -25) T) ((-356 . -21) T) ((-187 . -102) T) ((-162 . -102) T) ((-249 . -102) T) ((-157 . -102) T) ((-357 . -1275) 53418) ((-354 . -1275) 53402) ((-346 . -1275) 53386) ((-169 . -351) 53365) ((-567 . -851) T) ((-1122 . -23) T) ((-87 . -614) 53347) ((-702 . -308) T) ((-837 . -38) 53317) ((-828 . -38) 53287) ((-1280 . -617) 53229) ((-1254 . -131) T) ((-1152 . -289) 53208) ((-966 . -727) 53107) ((-966 . -794) 53060) ((-966 . -795) 53013) ((-816 . -792) 52992) ((-116 . -308) T) ((-91 . -310) 52930) ((-676 . -34) T) ((-553 . -605) 52909) ((-48 . -25) T) ((-48 . -21) T) ((-816 . -795) 52860) ((-816 . -794) 52839) ((-702 . -1024) T) ((-654 . -1058) 52823) ((-872 . -647) 52753) ((-816 . -727) 52663) ((-966 . -476) 52616) ((-485 . -796) 52567) ((-485 . -793) 52518) ((-912 . -1275) 52505) ((-1180 . -1051) T) ((-654 . -111) 52484) ((-1180 . -327) 52461) ((-1204 . -102) 52439) ((-1103 . -614) 52421) ((-702 . -548) T) ((-817 . -1102) T) ((-1280 . -1051) T) ((-1137 . -493) 52402) ((-1224 . -102) T) ((-416 . -1102) T) ((-1137 . -614) 52368) ((-252 . -1060) 52298) ((-251 . -1060) 52228) ((-839 . -102) T) ((-290 . -649) 52215) ((-595 . -287) 52190) ((-690 . -688) 52148) ((-965 . -614) 52130) ((-873 . -102) T) ((-736 . -614) 52112) ((-716 . -614) 52094) ((-1260 . -172) 52045) ((-1253 . -172) 51976) ((-1232 . -172) 51907) ((-700 . -851) T) ((-1006 . -291) T) ((-456 . -614) 51889) ((-628 . -727) T) ((-60 . -1102) 51867) ((-245 . -151) 51851) ((-916 . -291) T) ((-1026 . -1014) T) ((-628 . -476) T) ((-713 . -1222) 51830) ((-654 . -617) 51748) ((-169 . -647) 51643) ((-1268 . -851) 51622) ((-598 . -172) 51601) ((-597 . -172) 51552) ((-1252 . -641) 51393) ((-1252 . -1053) 51228) ((-1231 . -641) 51042) ((-1231 . -1053) 50850) ((-713 . -559) 50761) ((-410 . -922) T) ((-410 . -821) 50740) ((-320 . -795) T) ((-972 . -617) 50721) ((-320 . -727) T) ((-421 . -614) 50703) ((-421 . -615) 50610) ((-645 . -1151) 50594) ((-110 . -652) 50576) ((-174 . -308) T) ((-126 . -310) 50514) ((-110 . -375) 50496) ((-401 . -1218) T) ((-317 . -131) 50367) ((-314 . -131) T) ((-69 . -398) T) ((-110 . -123) T) ((-523 . -492) 50351) ((-655 . -1114) T) ((-595 . -19) 50333) ((-61 . -444) T) ((-61 . -398) T) ((-825 . -1102) T) ((-595 . -605) 50308) ((-480 . -1040) 50268) ((-654 . -1051) T) ((-655 . -23) T) ((-1283 . -1102) T) ((-31 . -102) T) ((-1241 . -647) 50178) ((-856 . -647) 50137) ((-817 . -718) 49986) ((-580 . -861) T) ((-574 . -647) 49958) ((-117 . -851) NIL) ((-1174 . -414) 49942) ((-1127 . -414) 49926) ((-855 . -414) 49910) ((-874 . -102) 49861) ((-1252 . -102) T) ((-1232 . -517) 49630) ((-1231 . -102) T) ((-1204 . -310) 49568) ((-1176 . -287) 49553) ((-1175 . -287) 49538) ((-528 . -93) T) ((-1169 . -287) 49386) ((-313 . -614) 49368) ((-1104 . -1102) T) ((-1082 . -649) 49278) ((-712 . -455) T) ((-690 . -614) 49210) ((-290 . -727) T) ((-108 . -911) NIL) ((-690 . -615) 49171) ((-602 . -614) 49153) ((-580 . -614) 49135) ((-553 . -615) NIL) ((-553 . -614) 49117) ((-532 . -614) 49099) ((-514 . -512) 49078) ((-490 . -1058) 49028) ((-477 . -1053) 48863) ((-510 . -512) 48842) ((-477 . -641) 48683) ((-217 . -1058) 48633) ((-361 . -649) 48585) ((-355 . -649) 48537) ((-225 . -849) T) ((-347 . -649) 48489) ((-603 . -102) 48439) ((-485 . -370) 48418) ((-108 . -649) 48368) ((-490 . -111) 48302) ((-240 . -492) 48286) ((-345 . -147) 48268) ((-345 . -145) T) ((-169 . -372) 48239) ((-945 . -1266) 48223) ((-217 . -111) 48157) ((-873 . -310) 48122) ((-945 . -1102) 48072) ((-800 . -615) 48033) ((-800 . -614) 48015) ((-719 . -102) T) ((-332 . -1102) T) ((-214 . -617) 47992) ((-1122 . -131) T) ((-715 . -38) 47962) ((-317 . -496) 47941) ((-503 . -1218) T) ((-1252 . -285) 47907) ((-1231 . -285) 47873) ((-328 . -151) 47857) ((-442 . -1102) T) ((-1065 . -289) 47832) ((-1283 . -718) 47802) ((-1161 . -34) T) ((-1292 . -1040) 47779) ((-471 . -614) 47761) ((-487 . -34) T) ((-383 . -1040) 47745) ((-1174 . -1060) T) ((-1127 . -1060) T) ((-855 . -1060) T) ((-1064 . -849) T) ((-490 . -617) 47695) ((-217 . -617) 47645) ((-817 . -172) 47556) ((-523 . -287) 47533) ((-1260 . -291) 47512) ((-1199 . -366) 47486) ((-1090 . -267) 47470) ((-672 . -493) 47451) ((-672 . -614) 47417) ((-607 . -493) 47398) ((-117 . -994) 47375) ((-607 . -614) 47325) ((-477 . -102) T) ((-180 . -493) 47306) ((-180 . -614) 47272) ((-161 . -493) 47253) ((-156 . -493) 47234) ((-154 . -493) 47215) ((-161 . -614) 47181) ((-156 . -614) 47147) ((-367 . -1102) T) ((-252 . -1102) T) ((-251 . -1102) T) ((-154 . -614) 47113) ((-1253 . -291) 47064) ((-1232 . -291) 47015) ((-873 . -1153) 46993) ((-1176 . -1004) 46959) ((-609 . -366) 46899) ((-1175 . -1004) 46865) ((-609 . -229) 46812) ((-695 . -851) T) ((-595 . -614) 46794) ((-595 . -615) NIL) ((-478 . -229) 46744) ((-490 . -1051) T) ((-1169 . -1004) 46710) ((-88 . -443) T) ((-88 . -398) T) ((-217 . -1051) T) ((-1128 . -1004) 46676) ((-1082 . -727) T) ((-713 . -1114) T) ((-598 . -291) 46655) ((-597 . -291) 46634) ((-490 . -243) T) ((-490 . -233) T) ((-217 . -243) T) ((-217 . -233) T) ((-1167 . -614) 46616) ((-873 . -38) 46568) ((-361 . -727) T) ((-355 . -727) T) ((-347 . -727) T) ((-108 . -795) T) ((-108 . -792) T) ((-713 . -23) T) ((-108 . -727) T) ((-523 . -1256) 46552) ((-1296 . -25) T) ((-477 . -285) 46518) ((-1296 . -21) T) ((-1231 . -310) 46457) ((-1178 . -102) T) ((-40 . -145) 46429) ((-40 . -147) 46401) ((-523 . -605) 46378) ((-1115 . -649) 46226) ((-603 . -310) 46164) ((-45 . -652) 46114) ((-45 . -667) 46064) ((-45 . -375) 46014) ((-1160 . -34) T) ((-872 . -849) NIL) ((-655 . -131) T) ((-488 . -614) 45996) ((-240 . -287) 45973) ((-186 . -1102) T) ((-1089 . -455) 45924) ((-817 . -517) 45798) ((-665 . -1053) 45782) ((-648 . -34) T) ((-633 . -34) T) ((-783 . -455) 45713) ((-665 . -641) 45697) ((-357 . -1053) 45649) ((-354 . -1053) 45601) ((-346 . -1053) 45553) ((-265 . -1053) 45396) ((-247 . -1053) 45239) ((-781 . -455) 45190) ((-357 . -641) 45142) ((-354 . -641) 45094) ((-346 . -641) 45046) ((-265 . -641) 44895) ((-247 . -641) 44744) ((-457 . -455) 44695) ((-954 . -414) 44679) ((-732 . -614) 44661) ((-252 . -718) 44603) ((-251 . -718) 44545) ((-732 . -615) 44406) ((-484 . -414) 44390) ((-341 . -303) T) ((-527 . -93) T) ((-353 . -922) T) ((-1002 . -102) 44368) ((-912 . -1053) 44333) ((-1026 . -851) T) ((-60 . -517) 44266) ((-912 . -641) 44231) ((-1231 . -1153) 44183) ((-1006 . -287) NIL) ((-225 . -1060) T) ((-381 . -829) T) ((-1115 . -34) T) ((-584 . -455) T) ((-521 . -455) T) ((-1235 . -1095) 44167) ((-1235 . -1102) 44145) ((-240 . -605) 44122) ((-1235 . -1097) 44079) ((-1176 . -614) 44061) ((-1175 . -614) 44043) ((-1169 . -614) 44025) ((-1169 . -615) NIL) ((-1128 . -614) 44007) ((-873 . -403) 43991) ((-539 . -102) T) ((-1252 . -38) 43832) ((-1231 . -38) 43646) ((-871 . -147) T) ((-584 . -405) T) ((-521 . -405) T) ((-1264 . -102) T) ((-1254 . -21) T) ((-1254 . -25) T) ((-1115 . -792) 43625) ((-1115 . -795) 43576) ((-1115 . -794) 43555) ((-995 . -1102) T) ((-1029 . -34) T) ((-863 . -1102) T) ((-1115 . -727) 43465) ((-665 . -102) T) ((-646 . -102) T) ((-553 . -289) 43444) ((-1191 . -102) T) ((-479 . -34) T) ((-466 . -34) T) ((-357 . -102) T) ((-354 . -102) T) ((-346 . -102) T) ((-265 . -102) T) ((-247 . -102) T) ((-480 . -308) T) ((-1064 . -1060) T) ((-954 . -1060) T) ((-317 . -640) 43350) ((-314 . -640) 43311) ((-1174 . -1102) T) ((-484 . -1060) T) ((-482 . -102) T) ((-439 . -614) 43293) ((-1127 . -1102) T) ((-250 . -614) 43275) ((-855 . -1102) T) ((-1143 . -102) T) ((-817 . -291) 43206) ((-965 . -1058) 43089) ((-480 . -1024) T) ((-736 . -1058) 43059) ((-1036 . -647) 43018) ((-456 . -1058) 42988) ((-1149 . -1123) 42972) ((-1104 . -517) 42905) ((-965 . -111) 42774) ((-912 . -102) T) ((-736 . -111) 42739) ((-528 . -493) 42720) ((-528 . -614) 42686) ((-59 . -102) 42636) ((-523 . -615) 42597) ((-523 . -614) 42509) ((-522 . -102) 42487) ((-519 . -102) 42437) ((-500 . -102) 42415) ((-499 . -102) 42365) ((-456 . -111) 42328) ((-252 . -172) 42307) ((-251 . -172) 42286) ((-323 . -647) 42268) ((-421 . -1058) 42242) ((-1212 . -975) 42204) ((-1001 . -1114) T) ((-381 . -647) 42154) ((-1137 . -617) 42135) ((-945 . -517) 42068) ((-490 . -796) T) ((-477 . -38) 41909) ((-421 . -111) 41876) ((-490 . -793) T) ((-1002 . -310) 41814) ((-217 . -796) T) ((-217 . -793) T) ((-1001 . -23) T) ((-713 . -131) T) ((-1231 . -403) 41784) ((-837 . -647) 41729) ((-828 . -647) 41688) ((-317 . -25) 41540) ((-169 . -414) 41524) ((-317 . -21) 41395) ((-314 . -25) T) ((-314 . -21) T) ((-865 . -370) T) ((-965 . -617) 41248) ((-110 . -34) T) ((-736 . -617) 41204) ((-716 . -617) 41186) ((-485 . -649) 41034) ((-872 . -1060) T) ((-595 . -289) 41009) ((-583 . -147) T) ((-567 . -147) T) ((-498 . -147) T) ((-1174 . -718) 40838) ((-1059 . -102) 40816) ((-1127 . -718) 40665) ((-1122 . -640) 40647) ((-855 . -718) 40617) ((-671 . -1218) T) ((-1 . -102) T) ((-421 . -617) 40525) ((-240 . -614) 40256) ((-1117 . -1102) T) ((-1241 . -414) 40240) ((-1191 . -310) 40044) ((-965 . -1051) T) ((-736 . -1051) T) ((-716 . -1051) T) ((-645 . -1102) 39994) ((-1056 . -649) 39978) ((-856 . -414) 39962) ((-514 . -102) T) ((-510 . -102) T) ((-265 . -310) 39949) ((-247 . -310) 39936) ((-965 . -327) 39915) ((-387 . -649) 39899) ((-671 . -1040) 39795) ((-482 . -310) 39599) ((-252 . -517) 39532) ((-251 . -517) 39465) ((-1143 . -310) 39391) ((-820 . -1102) T) ((-800 . -1058) 39375) ((-1260 . -287) 39360) ((-1253 . -287) 39345) ((-1232 . -287) 39193) ((-389 . -1102) T) ((-325 . -1102) T) ((-421 . -1051) T) ((-169 . -1060) T) ((-59 . -310) 39131) ((-800 . -111) 39110) ((-597 . -287) 39095) ((-522 . -310) 39033) ((-519 . -310) 38971) ((-500 . -310) 38909) ((-499 . -310) 38847) ((-421 . -233) 38826) ((-485 . -34) T) ((-1006 . -615) 38756) ((-225 . -1102) T) ((-1006 . -614) 38716) ((-973 . -614) 38676) ((-973 . -615) 38651) ((-916 . -614) 38633) ((-700 . -147) T) ((-702 . -922) T) ((-702 . -821) T) ((-430 . -614) 38615) ((-1122 . -21) T) ((-1122 . -25) T) ((-671 . -379) 38599) ((-116 . -922) T) ((-873 . -231) 38583) ((-78 . -1218) T) ((-126 . -125) 38567) ((-1056 . -34) T) ((-1290 . -1040) 38541) ((-1288 . -1040) 38498) ((-1241 . -1060) T) ((-856 . -1060) T) ((-485 . -792) 38477) ((-357 . -1153) 38456) ((-354 . -1153) 38435) ((-346 . -1153) 38414) ((-485 . -795) 38365) ((-485 . -794) 38344) ((-227 . -34) T) ((-485 . -727) 38254) ((-800 . -617) 38100) ((-663 . -1053) 38084) ((-60 . -492) 38068) ((-574 . -1060) T) ((-663 . -641) 38052) ((-1174 . -172) 37943) ((-1127 . -172) 37854) ((-1064 . -1102) T) ((-1089 . -951) 37799) ((-954 . -1102) T) ((-818 . -649) 37750) ((-783 . -951) 37719) ((-714 . -1102) T) ((-781 . -951) 37686) ((-519 . -283) 37670) ((-671 . -902) 37629) ((-484 . -1102) T) ((-457 . -951) 37596) ((-79 . -1218) T) ((-357 . -38) 37561) ((-354 . -38) 37526) ((-346 . -38) 37491) ((-265 . -38) 37340) ((-247 . -38) 37189) ((-912 . -1153) T) ((-527 . -493) 37170) ((-624 . -147) 37149) ((-624 . -145) 37128) ((-527 . -614) 37094) ((-117 . -147) T) ((-117 . -145) NIL) ((-417 . -727) T) ((-800 . -1051) T) ((-345 . -455) T) ((-1260 . -1004) 37060) ((-1253 . -1004) 37026) ((-1232 . -1004) 36992) ((-912 . -38) 36957) ((-225 . -718) 36922) ((-320 . -47) 36892) ((-40 . -412) 36864) ((-140 . -614) 36846) ((-1001 . -131) T) ((-816 . -1218) T) ((-174 . -922) T) ((-552 . -370) T) ((-607 . -617) 36827) ((-345 . -405) T) ((-715 . -647) 36772) ((-672 . -617) 36753) ((-180 . -617) 36734) ((-161 . -617) 36715) ((-156 . -617) 36696) ((-154 . -617) 36677) ((-523 . -289) 36654) ((-1231 . -231) 36624) ((-877 . -102) T) ((-816 . -1040) 36451) ((-45 . -34) T) ((-682 . -102) T) ((-677 . -102) T) ((-663 . -102) T) ((-655 . -21) T) ((-655 . -25) T) ((-1104 . -492) 36435) ((-676 . -1218) T) ((-481 . -102) T) ((-245 . -102) 36385) ((-549 . -845) T) ((-137 . -102) T) ((-133 . -102) T) ((-138 . -102) T) ((-872 . -1102) T) ((-1180 . -649) 36310) ((-1064 . -718) 36297) ((-732 . -1058) 36140) ((-1174 . -517) 36087) ((-954 . -718) 35936) ((-1127 . -517) 35888) ((-1279 . -1102) T) ((-1278 . -1102) T) ((-484 . -718) 35737) ((-67 . -614) 35719) ((-732 . -111) 35548) ((-945 . -492) 35532) ((-1280 . -649) 35492) ((-818 . -727) T) ((-1176 . -1058) 35375) ((-1175 . -1058) 35210) ((-1169 . -1058) 35000) ((-1128 . -1058) 34883) ((-1005 . -1222) T) ((-1096 . -102) 34861) ((-816 . -379) 34830) ((-582 . -614) 34812) ((-549 . -1102) T) ((-1005 . -559) T) ((-1176 . -111) 34681) ((-1175 . -111) 34502) ((-1169 . -111) 34271) ((-1128 . -111) 34140) ((-1107 . -1105) 34104) ((-381 . -849) T) ((-1260 . -614) 34086) ((-1253 . -614) 34068) ((-873 . -647) 34005) ((-1232 . -614) 33987) ((-1232 . -615) NIL) ((-240 . -289) 33964) ((-40 . -455) T) ((-225 . -172) T) ((-169 . -1102) T) ((-732 . -617) 33749) ((-695 . -147) T) ((-695 . -145) NIL) ((-598 . -614) 33731) ((-597 . -614) 33713) ((-900 . -1102) T) ((-842 . -1102) T) ((-809 . -1102) T) ((-770 . -1102) T) ((-659 . -853) 33697) ((-678 . -1102) T) ((-816 . -902) 33629) ((-1223 . -370) T) ((-40 . -405) NIL) ((-1176 . -617) 33511) ((-1122 . -662) T) ((-872 . -718) 33456) ((-252 . -492) 33440) ((-251 . -492) 33424) ((-1175 . -617) 33167) ((-1169 . -617) 32962) ((-713 . -640) 32910) ((-654 . -649) 32884) ((-1128 . -617) 32766) ((-296 . -34) T) ((-732 . -1051) T) ((-584 . -1275) 32753) ((-521 . -1275) 32730) ((-1241 . -1102) T) ((-1174 . -291) 32641) ((-1127 . -291) 32572) ((-1064 . -172) T) ((-856 . -1102) T) ((-954 . -172) 32483) ((-783 . -1244) 32467) ((-645 . -517) 32400) ((-77 . -614) 32382) ((-732 . -327) 32347) ((-1180 . -727) T) ((-574 . -1102) T) ((-484 . -172) 32258) ((-245 . -310) 32196) ((-1144 . -1114) T) ((-70 . -614) 32178) ((-1280 . -727) T) ((-1176 . -1051) T) ((-1175 . -1051) T) ((-328 . -102) 32128) ((-1169 . -1051) T) ((-1144 . -23) T) ((-1128 . -1051) T) ((-91 . -1123) 32112) ((-867 . -1114) T) ((-1176 . -233) 32071) ((-1175 . -243) 32050) ((-1175 . -233) 32002) ((-1169 . -233) 31889) ((-1169 . -243) 31868) ((-320 . -902) 31774) ((-867 . -23) T) ((-169 . -718) 31602) ((-410 . -1222) T) ((-1103 . -370) T) ((-1005 . -365) T) ((-871 . -455) T) ((-1026 . -147) T) ((-945 . -287) 31579) ((-314 . -851) NIL) ((-1252 . -647) 31461) ((-875 . -102) T) ((-1231 . -647) 31316) ((-713 . -25) T) ((-410 . -559) T) ((-713 . -21) T) ((-528 . -617) 31297) ((-356 . -147) 31279) ((-356 . -145) T) ((-1149 . -1102) 31257) ((-456 . -721) T) ((-75 . -614) 31239) ((-114 . -851) T) ((-245 . -283) 31223) ((-240 . -1058) 31120) ((-81 . -614) 31102) ((-736 . -370) 31055) ((-1178 . -829) T) ((-738 . -235) 31039) ((-1161 . -1218) T) ((-141 . -235) 31021) ((-240 . -111) 30911) ((-1241 . -718) 30740) ((-48 . -147) T) ((-872 . -172) T) ((-856 . -718) 30710) ((-487 . -1218) T) ((-954 . -517) 30657) ((-654 . -727) T) ((-574 . -718) 30644) ((-1036 . -1060) T) ((-484 . -517) 30587) ((-945 . -19) 30571) ((-945 . -605) 30548) ((-817 . -615) NIL) ((-817 . -614) 30530) ((-1212 . -1053) 30413) ((-1006 . -1058) 30363) ((-416 . -614) 30345) ((-252 . -287) 30322) ((-251 . -287) 30299) ((-490 . -911) NIL) ((-317 . -29) 30269) ((-108 . -1218) T) ((-1005 . -1114) T) ((-217 . -911) NIL) ((-1212 . -641) 30166) ((-916 . -1058) 30118) ((-1082 . -1040) 30014) ((-1006 . -111) 29948) ((-712 . -1053) 29913) ((-1005 . -23) T) ((-916 . -111) 29851) ((-738 . -696) 29835) ((-712 . -641) 29800) ((-265 . -231) 29784) ((-430 . -1058) 29768) ((-381 . -1060) T) ((-240 . -617) 29498) ((-695 . -1206) NIL) ((-490 . -649) 29448) ((-477 . -647) 29330) ((-108 . -886) 29312) ((-108 . -888) 29294) ((-695 . -1203) NIL) ((-217 . -649) 29244) ((-361 . -1040) 29228) ((-355 . -1040) 29212) ((-328 . -310) 29150) ((-347 . -1040) 29134) ((-225 . -291) T) ((-430 . -111) 29113) ((-60 . -614) 29045) ((-169 . -172) T) ((-1122 . -851) T) ((-108 . -1040) 29005) ((-894 . -1102) T) ((-837 . -1060) T) ((-828 . -1060) T) ((-695 . -35) NIL) ((-695 . -95) NIL) ((-314 . -994) 28966) ((-183 . -102) T) ((-583 . -455) T) ((-567 . -455) T) ((-498 . -455) T) ((-410 . -365) T) ((-240 . -1051) 28896) ((-1152 . -34) T) ((-480 . -922) T) ((-1001 . -640) 28844) ((-252 . -605) 28821) ((-251 . -605) 28798) ((-1082 . -379) 28782) ((-872 . -517) 28690) ((-240 . -233) 28642) ((-1160 . -1218) T) ((-1006 . -617) 28592) ((-916 . -617) 28529) ((-825 . -614) 28511) ((-1291 . -1114) T) ((-1283 . -614) 28493) ((-1241 . -172) 28384) ((-430 . -617) 28353) ((-108 . -379) 28335) ((-108 . -340) 28317) ((-1064 . -291) T) ((-954 . -291) 28248) ((-800 . -370) 28227) ((-648 . -1218) T) ((-633 . -1218) T) ((-588 . -1053) 28202) ((-484 . -291) 28133) ((-574 . -172) T) ((-328 . -283) 28117) ((-1291 . -23) T) ((-1212 . -102) T) ((-1199 . -1102) T) ((-1090 . -1102) T) ((-1078 . -1102) T) ((-588 . -641) 28092) ((-83 . -614) 28074) ((-1185 . -845) T) ((-1184 . -845) T) ((-712 . -102) T) ((-357 . -351) 28053) ((-609 . -1102) T) ((-354 . -351) 28032) ((-346 . -351) 28011) ((-478 . -1102) T) ((-1191 . -229) 27961) ((-265 . -254) 27923) ((-1144 . -131) T) ((-609 . -611) 27899) ((-1082 . -902) 27832) ((-1006 . -1051) T) ((-916 . -1051) T) ((-478 . -611) 27811) ((-1169 . -793) NIL) ((-1169 . -796) NIL) ((-1104 . -615) 27772) ((-482 . -229) 27722) ((-1104 . -614) 27704) ((-1006 . -243) T) ((-1006 . -233) T) ((-430 . -1051) T) ((-960 . -1102) 27654) ((-916 . -243) T) ((-867 . -131) T) ((-700 . -455) T) ((-844 . -1114) 27633) ((-108 . -902) NIL) ((-1212 . -285) 27599) ((-873 . -849) 27578) ((-1115 . -1218) T) ((-907 . -727) T) ((-169 . -517) 27490) ((-1001 . -25) T) ((-907 . -476) T) ((-410 . -1114) T) ((-490 . -795) T) ((-490 . -792) T) ((-912 . -351) T) ((-490 . -727) T) ((-217 . -795) T) ((-217 . -792) T) ((-1001 . -21) T) ((-217 . -727) T) ((-844 . -23) 27442) ((-1186 . -1102) T) ((-659 . -1053) 27426) ((-1185 . -1102) T) ((-527 . -617) 27407) ((-1184 . -1102) T) ((-320 . -308) 27386) ((-1037 . -235) 27332) ((-659 . -641) 27302) ((-410 . -23) T) ((-945 . -615) 27263) ((-945 . -614) 27175) ((-645 . -492) 27159) ((-45 . -1012) 27109) ((-618 . -969) T) ((-494 . -102) T) ((-332 . -614) 27091) ((-1115 . -1040) 26918) ((-595 . -652) 26900) ((-130 . -1102) T) ((-128 . -1102) T) ((-595 . -375) 26882) ((-345 . -1275) 26859) ((-442 . -614) 26841) ((-1241 . -517) 26788) ((-1089 . -1053) 26631) ((-1029 . -1218) T) ((-872 . -291) T) ((-1174 . -287) 26558) ((-1089 . -641) 26407) ((-1002 . -997) 26391) ((-783 . -1053) 26214) ((-781 . -1053) 26057) ((-783 . -641) 25886) ((-781 . -641) 25735) ((-479 . -1218) T) ((-466 . -1218) T) ((-588 . -102) T) ((-464 . -1053) 25706) ((-457 . -1053) 25549) ((-665 . -647) 25518) ((-624 . -455) 25497) ((-464 . -641) 25468) ((-457 . -641) 25317) ((-357 . -647) 25254) ((-354 . -647) 25191) ((-346 . -647) 25128) ((-265 . -647) 25038) ((-247 . -647) 24948) ((-1283 . -384) 24920) ((-520 . -1102) T) ((-117 . -455) T) ((-1198 . -102) T) ((-1094 . -1102) 24890) ((-1036 . -1102) T) ((-1117 . -93) T) ((-895 . -851) T) ((-1260 . -111) 24759) ((-353 . -1222) T) ((-1260 . -1058) 24642) ((-1115 . -379) 24611) ((-1253 . -1058) 24446) ((-1232 . -1058) 24236) ((-1253 . -111) 24057) ((-1232 . -111) 23826) ((-1212 . -310) 23813) ((-1005 . -131) T) ((-912 . -647) 23763) ((-367 . -614) 23745) ((-353 . -559) T) ((-290 . -308) T) ((-598 . -1058) 23705) ((-597 . -1058) 23588) ((-584 . -1053) 23553) ((-521 . -1053) 23498) ((-363 . -1102) T) ((-323 . -1102) T) ((-252 . -614) 23459) ((-251 . -614) 23420) ((-584 . -641) 23385) ((-521 . -641) 23330) ((-695 . -412) 23297) ((-636 . -23) T) ((-608 . -23) T) ((-659 . -102) T) ((-598 . -111) 23250) ((-597 . -111) 23119) ((-381 . -1102) T) ((-338 . -102) T) ((-169 . -291) 23030) ((-1231 . -849) 22983) ((-715 . -1060) T) ((-1149 . -517) 22916) ((-1115 . -902) 22848) ((-837 . -1102) T) ((-828 . -1102) T) ((-826 . -1102) T) ((-97 . -102) T) ((-144 . -851) T) ((-613 . -886) 22832) ((-110 . -1218) T) ((-1089 . -102) T) ((-1065 . -34) T) ((-783 . -102) T) ((-781 . -102) T) ((-1260 . -617) 22714) ((-1253 . -617) 22457) ((-464 . -102) T) ((-457 . -102) T) ((-1232 . -617) 22252) ((-240 . -796) 22203) ((-240 . -793) 22154) ((-650 . -102) T) ((-598 . -617) 22112) ((-597 . -617) 21994) ((-1241 . -291) 21905) ((-665 . -635) 21889) ((-186 . -614) 21871) ((-645 . -287) 21848) ((-1036 . -718) 21832) ((-574 . -291) T) ((-965 . -649) 21757) ((-1291 . -131) T) ((-736 . -649) 21717) ((-716 . -649) 21704) ((-276 . -102) T) ((-456 . -649) 21634) ((-50 . -102) T) ((-584 . -102) T) ((-521 . -102) T) ((-1260 . -1051) T) ((-1253 . -1051) T) ((-1232 . -1051) T) ((-510 . -647) 21616) ((-323 . -718) 21598) ((-1260 . -233) 21557) ((-1253 . -243) 21536) ((-1253 . -233) 21488) ((-1232 . -233) 21375) ((-1232 . -243) 21354) ((-1212 . -38) 21251) ((-598 . -1051) T) ((-597 . -1051) T) ((-1006 . -796) T) ((-1006 . -793) T) ((-973 . -796) T) ((-973 . -793) T) ((-873 . -1060) T) ((-109 . -614) 21233) ((-695 . -455) T) ((-381 . -718) 21198) ((-421 . -649) 21172) ((-871 . -870) 21156) ((-712 . -38) 21121) ((-597 . -233) 21080) ((-40 . -725) 21052) ((-353 . -330) 21029) ((-353 . -365) T) ((-1082 . -308) 20980) ((-295 . -1114) 20861) ((-1108 . -1218) T) ((-171 . -102) T) ((-1235 . -614) 20828) ((-844 . -131) 20780) ((-645 . -1256) 20764) ((-837 . -718) 20734) ((-828 . -718) 20704) ((-485 . -1218) T) ((-361 . -308) T) ((-355 . -308) T) ((-347 . -308) T) ((-645 . -605) 20681) ((-410 . -131) T) ((-523 . -667) 20665) ((-108 . -308) T) ((-295 . -23) 20548) ((-523 . -652) 20532) ((-695 . -405) NIL) ((-523 . -375) 20516) ((-292 . -614) 20498) ((-91 . -1102) 20476) ((-108 . -1024) T) ((-567 . -143) T) ((-1268 . -151) 20460) ((-485 . -1040) 20287) ((-1254 . -145) 20248) ((-1254 . -147) 20209) ((-1056 . -1218) T) ((-995 . -614) 20191) ((-863 . -614) 20173) ((-817 . -1058) 20016) ((-1279 . -93) T) ((-1278 . -93) T) ((-1174 . -615) NIL) ((-1098 . -1102) T) ((-1092 . -1102) T) ((-1089 . -310) 20003) ((-1075 . -1102) T) ((-227 . -1218) T) ((-1068 . -1102) T) ((-1038 . -1102) T) ((-1021 . -1102) T) ((-783 . -310) 19990) ((-781 . -310) 19977) ((-1174 . -614) 19959) ((-817 . -111) 19788) ((-1127 . -614) 19770) ((-627 . -1102) T) ((-580 . -173) T) ((-532 . -173) T) ((-457 . -310) 19757) ((-486 . -1102) T) ((-1127 . -615) 19505) ((-1036 . -172) T) ((-945 . -289) 19482) ((-218 . -1102) T) ((-855 . -614) 19464) ((-609 . -517) 19247) ((-81 . -617) 19188) ((-819 . -1040) 19172) ((-478 . -517) 18964) ((-965 . -727) T) ((-736 . -727) T) ((-716 . -727) T) ((-353 . -1114) T) ((-1181 . -614) 18946) ((-223 . -102) T) ((-485 . -379) 18915) ((-518 . -1102) T) ((-513 . -1102) T) ((-511 . -1102) T) ((-800 . -649) 18889) ((-1026 . -455) T) ((-960 . -517) 18822) ((-353 . -23) T) ((-636 . -131) T) ((-608 . -131) T) ((-356 . -455) T) ((-240 . -370) 18801) ((-381 . -172) T) ((-1252 . -1060) T) ((-1231 . -1060) T) ((-225 . -1004) T) ((-817 . -617) 18538) ((-700 . -390) T) ((-421 . -727) T) ((-702 . -1222) T) ((-1144 . -640) 18486) ((-583 . -870) 18470) ((-1283 . -1058) 18454) ((-1161 . -1194) 18430) ((-702 . -559) T) ((-126 . -1102) 18408) ((-715 . -1102) T) ((-485 . -902) 18340) ((-249 . -1102) T) ((-187 . -1102) T) ((-659 . -38) 18310) ((-356 . -405) T) ((-317 . -147) 18289) ((-317 . -145) 18268) ((-128 . -517) NIL) ((-116 . -559) T) ((-314 . -147) 18224) ((-314 . -145) 18180) ((-48 . -455) T) ((-162 . -1102) T) ((-157 . -1102) T) ((-1161 . -107) 18127) ((-783 . -1153) 18105) ((-690 . -34) T) ((-1283 . -111) 18084) ((-553 . -34) T) ((-487 . -107) 18068) ((-252 . -289) 18045) ((-251 . -289) 18022) ((-872 . -287) 17973) ((-45 . -1218) T) ((-1224 . -845) T) ((-817 . -1051) T) ((-663 . -647) 17942) ((-1180 . -47) 17919) ((-817 . -327) 17881) ((-1089 . -38) 17730) ((-817 . -233) 17709) ((-783 . -38) 17538) ((-781 . -38) 17387) ((-1117 . -493) 17368) ((-457 . -38) 17217) ((-1117 . -614) 17183) ((-1120 . -102) T) ((-645 . -615) 17144) ((-645 . -614) 17056) ((-584 . -1153) T) ((-521 . -1153) T) ((-1149 . -492) 17040) ((-345 . -1053) 16985) ((-1204 . -1102) 16963) ((-1144 . -25) T) ((-1144 . -21) T) ((-345 . -641) 16908) ((-1283 . -617) 16857) ((-477 . -1060) T) ((-1224 . -1102) T) ((-1232 . -793) NIL) ((-1232 . -796) NIL) ((-1001 . -851) 16836) ((-839 . -1102) T) ((-820 . -614) 16818) ((-867 . -21) T) ((-867 . -25) T) ((-800 . -727) T) ((-174 . -1222) T) ((-584 . -38) 16783) ((-521 . -38) 16748) ((-389 . -614) 16730) ((-334 . -102) T) ((-325 . -614) 16712) ((-169 . -287) 16670) ((-63 . -1218) T) ((-112 . -102) T) ((-873 . -1102) T) ((-174 . -559) T) ((-715 . -718) 16640) ((-295 . -131) 16523) ((-225 . -614) 16505) ((-225 . -615) 16435) ((-1005 . -640) 16374) ((-1283 . -1051) T) ((-1122 . -147) T) ((-633 . -1194) 16349) ((-732 . -911) 16328) ((-595 . -34) T) ((-648 . -107) 16312) ((-633 . -107) 16258) ((-1241 . -287) 16185) ((-732 . -649) 16110) ((-296 . -1218) T) ((-1180 . -1040) 16006) ((-945 . -619) 15983) ((-580 . -579) T) ((-580 . -530) T) ((-532 . -530) T) ((-1169 . -911) NIL) ((-1064 . -615) 15898) ((-1064 . -614) 15880) ((-954 . -614) 15862) ((-714 . -493) 15812) ((-345 . -102) T) ((-252 . -1058) 15709) ((-251 . -1058) 15606) ((-397 . -102) T) ((-31 . -1102) T) ((-954 . -615) 15467) ((-714 . -614) 15402) ((-1281 . -1211) 15371) ((-484 . -614) 15353) ((-484 . -615) 15214) ((-265 . -414) 15198) ((-247 . -414) 15182) ((-252 . -111) 15072) ((-251 . -111) 14962) ((-1176 . -649) 14887) ((-1175 . -649) 14784) ((-1169 . -649) 14636) ((-1128 . -649) 14561) ((-353 . -131) T) ((-82 . -444) T) ((-82 . -398) T) ((-1005 . -25) T) ((-1005 . -21) T) ((-874 . -1102) 14512) ((-40 . -1053) 14457) ((-873 . -718) 14409) ((-40 . -641) 14354) ((-381 . -291) T) ((-169 . -1004) 14305) ((-695 . -390) T) ((-1001 . -999) 14289) ((-702 . -1114) T) ((-695 . -166) 14271) ((-1252 . -1102) T) ((-1231 . -1102) T) ((-317 . -1203) 14250) ((-317 . -1206) 14229) ((-1166 . -102) T) ((-317 . -961) 14208) ((-134 . -1114) T) ((-116 . -1114) T) ((-603 . -1266) 14192) ((-702 . -23) T) ((-603 . -1102) 14142) ((-317 . -95) 14121) ((-91 . -517) 14054) ((-174 . -365) T) ((-252 . -617) 13784) ((-251 . -617) 13514) ((-317 . -35) 13493) ((-609 . -492) 13427) ((-134 . -23) T) ((-116 . -23) T) ((-968 . -102) T) ((-719 . -1102) T) ((-478 . -492) 13364) ((-410 . -640) 13312) ((-654 . -1040) 13208) ((-960 . -492) 13192) ((-357 . -1060) T) ((-354 . -1060) T) ((-346 . -1060) T) ((-265 . -1060) T) ((-247 . -1060) T) ((-872 . -615) NIL) ((-872 . -614) 13174) ((-1279 . -493) 13155) ((-1278 . -493) 13136) ((-1291 . -21) T) ((-1279 . -614) 13102) ((-1278 . -614) 13068) ((-574 . -1004) T) ((-732 . -727) T) ((-1291 . -25) T) ((-252 . -1051) 12998) ((-251 . -1051) 12928) ((-72 . -1218) T) ((-252 . -233) 12880) ((-251 . -233) 12832) ((-40 . -102) T) ((-912 . -1060) T) ((-1183 . -102) T) ((-128 . -492) 12814) ((-1176 . -727) T) ((-1175 . -727) T) ((-1169 . -727) T) ((-1169 . -792) NIL) ((-1169 . -795) NIL) ((-956 . -102) T) ((-923 . -102) T) ((-871 . -1053) 12801) ((-1128 . -727) T) ((-772 . -102) T) ((-673 . -102) T) ((-871 . -641) 12788) ((-549 . -614) 12770) ((-477 . -1102) T) ((-341 . -1114) T) ((-174 . -1114) T) ((-320 . -922) 12749) ((-1252 . -718) 12590) ((-873 . -172) T) ((-1231 . -718) 12404) ((-844 . -21) 12356) ((-844 . -25) 12308) ((-245 . -1151) 12292) ((-126 . -517) 12225) ((-410 . -25) T) ((-410 . -21) T) ((-341 . -23) T) ((-169 . -615) 11991) ((-169 . -614) 11973) ((-174 . -23) T) ((-645 . -289) 11950) ((-523 . -34) T) ((-900 . -614) 11932) ((-89 . -1218) T) ((-842 . -614) 11914) ((-809 . -614) 11896) ((-770 . -614) 11878) ((-678 . -614) 11860) ((-240 . -649) 11708) ((-1178 . -1102) T) ((-1174 . -1058) 11531) ((-1152 . -1218) T) ((-1127 . -1058) 11374) ((-855 . -1058) 11358) ((-1235 . -619) 11342) ((-1174 . -111) 11151) ((-1127 . -111) 10980) ((-855 . -111) 10959) ((-1225 . -851) T) ((-1241 . -615) NIL) ((-1241 . -614) 10941) ((-345 . -1153) T) ((-856 . -614) 10923) ((-1078 . -287) 10902) ((-80 . -1218) T) ((-1006 . -911) NIL) ((-609 . -287) 10878) ((-1204 . -517) 10811) ((-490 . -1218) T) ((-574 . -614) 10793) ((-478 . -287) 10772) ((-1212 . -647) 10682) ((-520 . -93) T) ((-1089 . -231) 10666) ((-217 . -1218) T) ((-1006 . -649) 10616) ((-960 . -287) 10593) ((-290 . -922) T) ((-818 . -308) 10572) ((-871 . -102) T) ((-783 . -231) 10556) ((-916 . -649) 10508) ((-712 . -647) 10458) ((-695 . -725) 10425) ((-636 . -21) T) ((-636 . -25) T) ((-608 . -21) T) ((-550 . -102) T) ((-345 . -38) 10390) ((-490 . -886) 10372) ((-490 . -888) 10354) ((-477 . -718) 10195) ((-217 . -886) 10177) ((-64 . -1218) T) ((-217 . -888) 10159) ((-608 . -25) T) ((-430 . -649) 10133) ((-1174 . -617) 9902) ((-490 . -1040) 9862) ((-873 . -517) 9774) ((-1127 . -617) 9566) ((-855 . -617) 9484) ((-217 . -1040) 9444) ((-240 . -34) T) ((-1002 . -1102) 9422) ((-583 . -1053) 9409) ((-567 . -1053) 9396) ((-498 . -1053) 9361) ((-1252 . -172) 9292) ((-1231 . -172) 9223) ((-583 . -641) 9210) ((-567 . -641) 9197) ((-498 . -641) 9162) ((-713 . -145) 9141) ((-713 . -147) 9120) ((-702 . -131) T) ((-136 . -468) 9097) ((-1149 . -614) 9029) ((-659 . -657) 9013) ((-128 . -287) 8988) ((-116 . -131) T) ((-480 . -1222) T) ((-609 . -605) 8964) ((-478 . -605) 8943) ((-338 . -337) 8912) ((-539 . -1102) T) ((-480 . -559) T) ((-1174 . -1051) T) ((-1127 . -1051) T) ((-855 . -1051) T) ((-240 . -792) 8891) ((-240 . -795) 8842) ((-240 . -794) 8821) ((-1174 . -327) 8798) ((-240 . -727) 8708) ((-960 . -19) 8692) ((-490 . -379) 8674) ((-490 . -340) 8656) ((-1127 . -327) 8628) ((-356 . -1275) 8605) ((-217 . -379) 8587) ((-217 . -340) 8569) ((-960 . -605) 8546) ((-1174 . -233) T) ((-1264 . -1102) T) ((-665 . -1102) T) ((-646 . -1102) T) ((-1191 . -1102) T) ((-1089 . -254) 8483) ((-588 . -647) 8443) ((-357 . -1102) T) ((-354 . -1102) T) ((-346 . -1102) T) ((-265 . -1102) T) ((-247 . -1102) T) ((-84 . -1218) T) ((-127 . -102) 8421) ((-121 . -102) 8399) ((-1191 . -611) 8378) ((-1231 . -517) 8238) ((-1143 . -1102) T) ((-1117 . -617) 8219) ((-482 . -1102) T) ((-1082 . -922) 8170) ((-1006 . -795) T) ((-482 . -611) 8149) ((-252 . -796) 8100) ((-252 . -793) 8051) ((-251 . -796) 8002) ((-40 . -1153) NIL) ((-251 . -793) 7953) ((-1006 . -792) T) ((-128 . -19) 7935) ((-1006 . -727) T) ((-700 . -1053) 7900) ((-973 . -795) T) ((-916 . -727) T) ((-912 . -1102) T) ((-128 . -605) 7875) ((-700 . -641) 7840) ((-91 . -492) 7824) ((-490 . -902) NIL) ((-894 . -614) 7806) ((-225 . -1058) 7771) ((-873 . -291) T) ((-217 . -902) NIL) ((-834 . -1114) 7750) ((-59 . -1102) 7700) ((-522 . -1102) 7678) ((-519 . -1102) 7628) ((-500 . -1102) 7606) ((-499 . -1102) 7556) ((-583 . -102) T) ((-567 . -102) T) ((-498 . -102) T) ((-477 . -172) 7487) ((-361 . -922) T) ((-355 . -922) T) ((-347 . -922) T) ((-225 . -111) 7443) ((-834 . -23) 7395) ((-430 . -727) T) ((-108 . -922) T) ((-40 . -38) 7340) ((-108 . -821) T) ((-584 . -351) T) ((-521 . -351) T) ((-837 . -287) 7319) ((-317 . -455) 7298) ((-314 . -455) T) ((-659 . -647) 7257) ((-603 . -517) 7190) ((-341 . -131) T) ((-174 . -131) T) ((-295 . -25) 7054) ((-295 . -21) 6937) ((-45 . -1194) 6916) ((-66 . -614) 6898) ((-55 . -102) T) ((-338 . -647) 6880) ((-45 . -107) 6830) ((-820 . -617) 6814) ((-1269 . -102) T) ((-1268 . -102) 6764) ((-1260 . -649) 6689) ((-1253 . -649) 6586) ((-1232 . -649) 6438) ((-1104 . -428) 6422) ((-1104 . -370) 6401) ((-389 . -617) 6385) ((-325 . -617) 6369) ((-1232 . -911) NIL) ((-1199 . -614) 6351) ((-1065 . -1218) T) ((-1089 . -647) 6261) ((-1064 . -1058) 6248) ((-1064 . -111) 6233) ((-954 . -1058) 6076) ((-954 . -111) 5905) ((-783 . -647) 5815) ((-781 . -647) 5725) ((-624 . -1053) 5712) ((-665 . -718) 5696) ((-624 . -641) 5683) ((-484 . -1058) 5526) ((-480 . -365) T) ((-464 . -647) 5482) ((-457 . -647) 5392) ((-225 . -617) 5342) ((-357 . -718) 5294) ((-354 . -718) 5246) ((-117 . -1053) 5191) ((-346 . -718) 5143) ((-265 . -718) 4992) ((-247 . -718) 4841) ((-1098 . -93) T) ((-1092 . -93) T) ((-117 . -641) 4786) ((-1075 . -93) T) ((-945 . -652) 4770) ((-1068 . -93) T) ((-484 . -111) 4599) ((-1059 . -1102) 4577) ((-1038 . -93) T) ((-945 . -375) 4561) ((-248 . -102) T) ((-1021 . -93) T) ((-74 . -614) 4543) ((-965 . -47) 4522) ((-711 . -102) T) ((-700 . -102) T) ((-1 . -1102) T) ((-622 . -1114) T) ((-1090 . -614) 4504) ((-627 . -93) T) ((-1078 . -614) 4486) ((-912 . -718) 4451) ((-126 . -492) 4435) ((-486 . -93) T) ((-622 . -23) T) ((-393 . -23) T) ((-87 . -1218) T) ((-218 . -93) T) ((-609 . -614) 4417) ((-609 . -615) NIL) ((-478 . -615) NIL) ((-478 . -614) 4399) ((-353 . -25) T) ((-353 . -21) T) ((-50 . -647) 4358) ((-514 . -1102) T) ((-510 . -1102) T) ((-127 . -310) 4296) ((-121 . -310) 4234) ((-598 . -649) 4208) ((-597 . -649) 4133) ((-584 . -647) 4083) ((-225 . -1051) T) ((-521 . -647) 4013) ((-381 . -1004) T) ((-225 . -243) T) ((-225 . -233) T) ((-1064 . -617) 3985) ((-1064 . -619) 3966) ((-960 . -615) 3927) ((-960 . -614) 3839) ((-954 . -617) 3628) ((-871 . -38) 3615) ((-714 . -617) 3565) ((-1252 . -291) 3516) ((-1231 . -291) 3467) ((-484 . -617) 3252) ((-1122 . -455) T) ((-505 . -851) T) ((-317 . -1141) 3231) ((-1001 . -147) 3210) ((-1001 . -145) 3189) ((-498 . -310) 3176) ((-296 . -1194) 3155) ((-1186 . -614) 3137) ((-1185 . -614) 3119) ((-1184 . -614) 3101) ((-872 . -1058) 3046) ((-480 . -1114) T) ((-139 . -836) 3028) ((-114 . -836) 3009) ((-624 . -102) T) ((-1204 . -492) 2993) ((-252 . -370) 2972) ((-251 . -370) 2951) ((-1064 . -1051) T) ((-296 . -107) 2901) ((-130 . -614) 2883) ((-128 . -615) NIL) ((-128 . -614) 2827) ((-117 . -102) T) ((-954 . -1051) T) ((-872 . -111) 2756) ((-480 . -23) T) ((-484 . -1051) T) ((-1064 . -233) T) ((-954 . -327) 2725) ((-484 . -327) 2682) ((-357 . -172) T) ((-354 . -172) T) ((-346 . -172) T) ((-265 . -172) 2593) ((-247 . -172) 2504) ((-965 . -1040) 2400) ((-520 . -493) 2381) ((-736 . -1040) 2352) ((-520 . -614) 2318) ((-1107 . -102) T) ((-1094 . -614) 2277) ((-1036 . -614) 2259) ((-695 . -1053) 2209) ((-1281 . -151) 2193) ((-1279 . -617) 2174) ((-1278 . -617) 2155) ((-1273 . -614) 2137) ((-1260 . -727) T) ((-695 . -641) 2087) ((-1253 . -727) T) ((-1232 . -792) NIL) ((-1232 . -795) NIL) ((-169 . -1058) 1997) ((-912 . -172) T) ((-872 . -617) 1927) ((-1232 . -727) T) ((-1005 . -344) 1901) ((-223 . -647) 1853) ((-1002 . -517) 1786) ((-844 . -851) 1765) ((-567 . -1153) T) ((-477 . -291) 1716) ((-598 . -727) T) ((-363 . -614) 1698) ((-323 . -614) 1680) ((-421 . -1040) 1576) ((-597 . -727) T) ((-410 . -851) 1527) ((-169 . -111) 1423) ((-834 . -131) 1375) ((-738 . -151) 1359) ((-1268 . -310) 1297) ((-490 . -308) T) ((-381 . -614) 1264) ((-523 . -1012) 1248) ((-381 . -615) 1162) ((-217 . -308) T) ((-141 . -151) 1144) ((-715 . -287) 1123) ((-490 . -1024) T) ((-583 . -38) 1110) ((-567 . -38) 1097) ((-498 . -38) 1062) ((-217 . -1024) T) ((-872 . -1051) T) ((-837 . -614) 1044) ((-828 . -614) 1026) ((-826 . -614) 1008) ((-817 . -911) 987) ((-1292 . -1114) T) ((-1241 . -1058) 810) ((-856 . -1058) 794) ((-872 . -243) T) ((-872 . -233) NIL) ((-690 . -1218) T) ((-1292 . -23) T) ((-817 . -649) 719) ((-553 . -1218) T) ((-421 . -340) 703) ((-574 . -1058) 690) ((-1241 . -111) 499) ((-702 . -640) 481) ((-856 . -111) 460) ((-383 . -23) T) ((-169 . -617) 238) ((-1191 . -517) 30) ((-877 . -1102) T) ((-682 . -1102) T) ((-677 . -1102) T) ((-663 . -1102) T)) \ No newline at end of file
+(((-481 . -1102) T) ((-265 . -517) 188291) ((-247 . -517) 188234) ((-245 . -1102) 188184) ((-574 . -111) 188169) ((-534 . -23) T) ((-137 . -1102) T) ((-133 . -1102) T) ((-117 . -310) 188126) ((-138 . -1102) T) ((-482 . -517) 187918) ((-678 . -617) 187902) ((-695 . -102) T) ((-1143 . -517) 187821) ((-393 . -131) T) ((-1282 . -978) 187790) ((-1026 . -1053) 187727) ((-31 . -93) T) ((-603 . -492) 187711) ((-1026 . -641) 187648) ((-622 . -131) T) ((-820 . -847) T) ((-526 . -57) 187598) ((-522 . -517) 187531) ((-356 . -1053) 187476) ((-59 . -517) 187409) ((-519 . -517) 187342) ((-421 . -902) 187301) ((-169 . -1051) T) ((-500 . -517) 187234) ((-499 . -517) 187167) ((-356 . -641) 187112) ((-800 . -1040) 186892) ((-700 . -38) 186857) ((-1242 . -617) 186605) ((-345 . -351) T) ((-1096 . -1095) 186589) ((-1096 . -1102) 186567) ((-856 . -617) 186464) ((-169 . -243) 186415) ((-169 . -233) 186366) ((-1096 . -1097) 186324) ((-873 . -287) 186282) ((-225 . -796) T) ((-225 . -793) T) ((-695 . -285) NIL) ((-574 . -617) 186254) ((-1152 . -1195) 186233) ((-410 . -994) 186217) ((-48 . -1053) 186182) ((-702 . -21) T) ((-702 . -25) T) ((-48 . -641) 186147) ((-1284 . -649) 186121) ((-317 . -160) 186100) ((-317 . -143) 186079) ((-1152 . -107) 186029) ((-116 . -21) T) ((-40 . -231) 186006) ((-134 . -25) T) ((-116 . -25) T) ((-609 . -289) 185982) ((-478 . -289) 185961) ((-1242 . -327) 185938) ((-1242 . -1051) T) ((-856 . -1051) T) ((-800 . -340) 185922) ((-139 . -185) T) ((-117 . -1154) NIL) ((-91 . -614) 185854) ((-480 . -131) T) ((-1242 . -233) T) ((-1098 . -493) 185835) ((-1098 . -614) 185801) ((-1092 . -493) 185782) ((-1092 . -614) 185748) ((-595 . -1219) T) ((-1075 . -493) 185729) ((-574 . -1051) T) ((-1075 . -614) 185695) ((-663 . -718) 185679) ((-1068 . -493) 185660) ((-1068 . -614) 185626) ((-960 . -289) 185603) ((-60 . -34) T) ((-1064 . -796) T) ((-1064 . -793) T) ((-1038 . -493) 185584) ((-1021 . -493) 185565) ((-817 . -727) T) ((-732 . -47) 185530) ((-624 . -38) 185517) ((-357 . -291) T) ((-354 . -291) T) ((-346 . -291) T) ((-265 . -291) 185448) ((-247 . -291) 185379) ((-1038 . -614) 185345) ((-1026 . -102) T) ((-1021 . -614) 185311) ((-627 . -493) 185292) ((-416 . -727) T) ((-117 . -38) 185237) ((-486 . -493) 185218) ((-627 . -614) 185184) ((-416 . -476) T) ((-218 . -493) 185165) ((-486 . -614) 185131) ((-356 . -102) T) ((-218 . -614) 185097) ((-1213 . -1060) T) ((-345 . -647) 185027) ((-712 . -1060) T) ((-1177 . -47) 185004) ((-1176 . -47) 184974) ((-1170 . -47) 184951) ((-128 . -289) 184926) ((-1037 . -151) 184872) ((-912 . -291) T) ((-1128 . -47) 184844) ((-695 . -310) NIL) ((-518 . -614) 184826) ((-513 . -614) 184808) ((-511 . -614) 184790) ((-328 . -1102) 184740) ((-713 . -455) 184671) ((-48 . -102) T) ((-1253 . -287) 184656) ((-1232 . -287) 184576) ((-645 . -667) 184560) ((-645 . -652) 184544) ((-341 . -21) T) ((-341 . -25) T) ((-40 . -351) NIL) ((-174 . -21) T) ((-174 . -25) T) ((-645 . -375) 184528) ((-606 . -493) 184510) ((-603 . -287) 184487) ((-606 . -614) 184454) ((-391 . -102) T) ((-1122 . -143) T) ((-126 . -614) 184386) ((-875 . -1102) T) ((-659 . -414) 184370) ((-715 . -614) 184352) ((-249 . -614) 184319) ((-187 . -614) 184301) ((-162 . -614) 184283) ((-157 . -614) 184265) ((-1284 . -727) T) ((-1104 . -34) T) ((-872 . -796) NIL) ((-872 . -793) NIL) ((-859 . -851) T) ((-732 . -888) NIL) ((-1293 . -131) T) ((-383 . -131) T) ((-894 . -617) 184233) ((-906 . -102) T) ((-732 . -1040) 184109) ((-534 . -131) T) ((-1089 . -414) 184093) ((-1002 . -492) 184077) ((-117 . -403) 184054) ((-1170 . -1219) 184033) ((-783 . -414) 184017) ((-781 . -414) 184001) ((-945 . -34) T) ((-695 . -1154) NIL) ((-252 . -649) 183836) ((-251 . -649) 183658) ((-818 . -922) 183637) ((-457 . -414) 183621) ((-603 . -19) 183605) ((-1148 . -1212) 183574) ((-1170 . -888) NIL) ((-1170 . -886) 183526) ((-603 . -605) 183503) ((-1205 . -614) 183435) ((-1178 . -614) 183417) ((-62 . -398) T) ((-1176 . -1040) 183352) ((-1170 . -1040) 183318) ((-695 . -38) 183268) ((-40 . -647) 183198) ((-477 . -287) 183183) ((-1225 . -614) 183165) ((-732 . -379) 183149) ((-839 . -614) 183131) ((-659 . -1060) T) ((-1253 . -1004) 183097) ((-1232 . -1004) 183063) ((-1090 . -617) 183047) ((-1065 . -1195) 183022) ((-1078 . -617) 182999) ((-873 . -615) 182806) ((-873 . -614) 182788) ((-1192 . -492) 182725) ((-421 . -1024) 182703) ((-48 . -310) 182690) ((-1065 . -107) 182636) ((-482 . -492) 182573) ((-523 . -1219) T) ((-1170 . -340) 182525) ((-1143 . -492) 182496) ((-1170 . -379) 182448) ((-1089 . -1060) T) ((-440 . -102) T) ((-183 . -1102) T) ((-252 . -34) T) ((-251 . -34) T) ((-783 . -1060) T) ((-781 . -1060) T) ((-732 . -902) 182425) ((-457 . -1060) T) ((-59 . -492) 182409) ((-1036 . -1058) 182383) ((-522 . -492) 182367) ((-519 . -492) 182351) ((-500 . -492) 182335) ((-499 . -492) 182319) ((-245 . -517) 182252) ((-1036 . -111) 182219) ((-1177 . -902) 182132) ((-1176 . -902) 182038) ((-1170 . -902) 181871) ((-1128 . -902) 181855) ((-671 . -1114) T) ((-356 . -1154) T) ((-646 . -93) T) ((-323 . -1058) 181837) ((-252 . -792) 181816) ((-252 . -795) 181767) ((-31 . -493) 181748) ((-252 . -794) 181727) ((-251 . -792) 181706) ((-251 . -795) 181657) ((-251 . -794) 181636) ((-31 . -614) 181602) ((-50 . -1060) T) ((-252 . -727) 181512) ((-251 . -727) 181422) ((-1213 . -1102) T) ((-671 . -23) T) ((-584 . -1060) T) ((-521 . -1060) T) ((-381 . -1058) 181387) ((-323 . -111) 181362) ((-73 . -385) T) ((-73 . -398) T) ((-1026 . -38) 181299) ((-695 . -403) 181281) ((-99 . -102) T) ((-712 . -1102) T) ((-1297 . -1053) 181268) ((-1005 . -145) 181240) ((-1005 . -147) 181212) ((-871 . -647) 181184) ((-381 . -111) 181140) ((-320 . -1223) 181119) ((-477 . -1004) 181085) ((-356 . -38) 181050) ((-40 . -372) 181022) ((-874 . -614) 180894) ((-127 . -125) 180878) ((-121 . -125) 180862) ((-837 . -1058) 180832) ((-834 . -21) 180784) ((-828 . -1058) 180768) ((-834 . -25) 180720) ((-320 . -559) 180671) ((-520 . -617) 180652) ((-567 . -829) T) ((-240 . -1219) T) ((-1036 . -617) 180621) ((-837 . -111) 180586) ((-828 . -111) 180565) ((-1253 . -614) 180547) ((-1232 . -614) 180529) ((-1232 . -615) 180200) ((-1175 . -911) 180179) ((-1127 . -911) 180158) ((-48 . -38) 180123) ((-1291 . -1114) T) ((-603 . -614) 180035) ((-603 . -615) 179996) ((-1289 . -1114) T) ((-363 . -617) 179980) ((-323 . -617) 179964) ((-240 . -1040) 179791) ((-1175 . -649) 179716) ((-1127 . -649) 179641) ((-855 . -649) 179615) ((-719 . -614) 179597) ((-549 . -370) T) ((-1291 . -23) T) ((-1289 . -23) T) ((-494 . -1102) T) ((-381 . -617) 179547) ((-381 . -619) 179529) ((-1036 . -1051) T) ((-866 . -102) T) ((-1192 . -287) 179508) ((-169 . -370) 179459) ((-1006 . -1219) T) ((-837 . -617) 179413) ((-828 . -617) 179368) ((-44 . -23) T) ((-482 . -287) 179347) ((-588 . -1102) T) ((-1148 . -1111) 179316) ((-1106 . -1105) 179268) ((-393 . -21) T) ((-393 . -25) T) ((-152 . -1114) T) ((-1297 . -102) T) ((-1006 . -886) 179250) ((-1006 . -888) 179232) ((-1213 . -718) 179129) ((-624 . -231) 179113) ((-622 . -21) T) ((-290 . -559) T) ((-622 . -25) T) ((-1199 . -1102) T) ((-712 . -718) 179078) ((-240 . -379) 179047) ((-1006 . -1040) 179007) ((-381 . -1051) T) ((-223 . -1060) T) ((-117 . -231) 178984) ((-59 . -287) 178961) ((-152 . -23) T) ((-519 . -287) 178938) ((-328 . -517) 178871) ((-499 . -287) 178848) ((-381 . -243) T) ((-381 . -233) T) ((-837 . -1051) T) ((-828 . -1051) T) ((-713 . -951) 178817) ((-702 . -851) T) ((-477 . -614) 178799) ((-1255 . -1053) 178704) ((-583 . -647) 178676) ((-567 . -647) 178648) ((-498 . -647) 178598) ((-828 . -233) 178577) ((-134 . -851) T) ((-1255 . -641) 178469) ((-659 . -1102) T) ((-1192 . -605) 178448) ((-553 . -1195) 178427) ((-338 . -1102) T) ((-320 . -365) 178406) ((-410 . -147) 178385) ((-410 . -145) 178364) ((-966 . -1114) 178263) ((-240 . -902) 178195) ((-816 . -1114) 178105) ((-655 . -853) 178089) ((-482 . -605) 178068) ((-553 . -107) 178018) ((-1006 . -379) 178000) ((-1006 . -340) 177982) ((-97 . -1102) T) ((-966 . -23) 177793) ((-480 . -21) T) ((-480 . -25) T) ((-816 . -23) 177663) ((-1179 . -614) 177645) ((-59 . -19) 177629) ((-1179 . -615) 177551) ((-1175 . -727) T) ((-1127 . -727) T) ((-519 . -19) 177535) ((-499 . -19) 177519) ((-59 . -605) 177496) ((-1089 . -1102) T) ((-903 . -102) 177474) ((-855 . -727) T) ((-783 . -1102) T) ((-519 . -605) 177451) ((-499 . -605) 177428) ((-781 . -1102) T) ((-781 . -1067) 177395) ((-464 . -1102) T) ((-457 . -1102) T) ((-588 . -718) 177370) ((-650 . -1102) T) ((-1261 . -47) 177347) ((-1255 . -102) T) ((-1254 . -47) 177317) ((-1233 . -47) 177294) ((-1213 . -172) 177245) ((-1176 . -308) 177224) ((-1170 . -308) 177203) ((-1098 . -617) 177184) ((-1092 . -617) 177165) ((-1082 . -559) 177116) ((-1006 . -902) NIL) ((-1082 . -1223) 177067) ((-671 . -131) T) ((-628 . -1114) T) ((-1075 . -617) 177048) ((-1068 . -617) 177029) ((-1038 . -617) 177010) ((-1021 . -617) 176991) ((-700 . -647) 176941) ((-276 . -1102) T) ((-85 . -444) T) ((-85 . -398) T) ((-715 . -1058) 176911) ((-712 . -172) T) ((-50 . -1102) T) ((-597 . -47) 176888) ((-225 . -649) 176853) ((-584 . -1102) T) ((-521 . -1102) T) ((-490 . -821) T) ((-490 . -922) T) ((-361 . -1223) T) ((-355 . -1223) T) ((-347 . -1223) T) ((-320 . -1114) T) ((-317 . -1053) 176763) ((-314 . -1053) 176692) ((-108 . -1223) T) ((-627 . -617) 176673) ((-361 . -559) T) ((-217 . -922) T) ((-217 . -821) T) ((-317 . -641) 176583) ((-314 . -641) 176512) ((-355 . -559) T) ((-347 . -559) T) ((-486 . -617) 176493) ((-108 . -559) T) ((-659 . -718) 176463) ((-1170 . -1024) NIL) ((-218 . -617) 176444) ((-320 . -23) T) ((-67 . -1219) T) ((-1002 . -614) 176376) ((-695 . -231) 176358) ((-715 . -111) 176323) ((-645 . -34) T) ((-245 . -492) 176307) ((-1104 . -1100) 176291) ((-171 . -1102) T) ((-954 . -911) 176270) ((-1297 . -1154) T) ((-1293 . -21) T) ((-1293 . -25) T) ((-518 . -617) 176254) ((-1291 . -131) T) ((-1289 . -131) T) ((-1282 . -102) T) ((-484 . -911) 176233) ((-1265 . -614) 176199) ((-1254 . -1040) 176134) ((-1233 . -1219) 176113) ((-1233 . -888) NIL) ((-1233 . -886) 176065) ((-1233 . -1040) 176031) ((-1089 . -718) 175880) ((-1064 . -649) 175867) ((-954 . -649) 175792) ((-783 . -718) 175621) ((-539 . -614) 175603) ((-539 . -615) 175584) ((-781 . -718) 175433) ((-1079 . -102) T) ((-383 . -25) T) ((-624 . -647) 175405) ((-383 . -21) T) ((-484 . -649) 175330) ((-464 . -718) 175301) ((-457 . -718) 175150) ((-989 . -102) T) ((-1192 . -615) NIL) ((-1192 . -614) 175132) ((-1144 . -1125) 175077) ((-738 . -102) T) ((-117 . -647) 175007) ((-606 . -617) 174989) ((-1048 . -1212) 174918) ((-903 . -310) 174856) ((-534 . -25) T) ((-877 . -93) T) ((-715 . -617) 174810) ((-682 . -93) T) ((-646 . -493) 174791) ((-141 . -102) T) ((-44 . -131) T) ((-677 . -93) T) ((-665 . -614) 174773) ((-345 . -1060) T) ((-290 . -1114) T) ((-646 . -614) 174726) ((-481 . -93) T) ((-357 . -614) 174708) ((-354 . -614) 174690) ((-346 . -614) 174672) ((-265 . -615) 174420) ((-265 . -614) 174402) ((-247 . -614) 174384) ((-247 . -615) 174245) ((-133 . -93) T) ((-138 . -93) T) ((-137 . -93) T) ((-1213 . -517) 174212) ((-1143 . -614) 174194) ((-1122 . -641) 174181) ((-820 . -727) T) ((-820 . -858) T) ((-603 . -289) 174158) ((-584 . -718) 174123) ((-482 . -615) NIL) ((-482 . -614) 174105) ((-521 . -718) 174050) ((-317 . -102) T) ((-314 . -102) T) ((-290 . -23) T) ((-152 . -131) T) ((-1122 . -1053) 174037) ((-912 . -614) 174019) ((-389 . -727) T) ((-873 . -1058) 173971) ((-912 . -615) 173953) ((-873 . -111) 173891) ((-715 . -1051) T) ((-713 . -1245) 173875) ((-695 . -351) NIL) ((-136 . -102) T) ((-114 . -102) T) ((-139 . -102) T) ((-522 . -614) 173807) ((-381 . -796) T) ((-223 . -1102) T) ((-381 . -793) T) ((-225 . -795) T) ((-225 . -792) T) ((-59 . -615) 173768) ((-59 . -614) 173680) ((-225 . -727) T) ((-519 . -615) 173641) ((-519 . -614) 173553) ((-500 . -614) 173485) ((-499 . -615) 173446) ((-499 . -614) 173358) ((-1082 . -365) 173309) ((-40 . -414) 173286) ((-77 . -1219) T) ((-872 . -911) NIL) ((-361 . -330) 173270) ((-361 . -365) T) ((-355 . -330) 173254) ((-355 . -365) T) ((-347 . -330) 173238) ((-347 . -365) T) ((-317 . -285) 173217) ((-108 . -365) T) ((-70 . -1219) T) ((-1233 . -340) 173169) ((-872 . -649) 173114) ((-1233 . -379) 173066) ((-966 . -131) 172921) ((-816 . -131) 172791) ((-960 . -652) 172775) ((-1089 . -172) 172686) ((-960 . -375) 172670) ((-1064 . -795) T) ((-1064 . -792) T) ((-873 . -617) 172568) ((-783 . -172) 172459) ((-781 . -172) 172370) ((-817 . -47) 172332) ((-1064 . -727) T) ((-328 . -492) 172316) ((-954 . -727) T) ((-1282 . -310) 172254) ((-457 . -172) 172165) ((-245 . -287) 172142) ((-1261 . -902) 172055) ((-1254 . -902) 171961) ((-1253 . -1058) 171796) ((-484 . -727) T) ((-1233 . -902) 171629) ((-1232 . -1058) 171437) ((-1213 . -291) 171416) ((-1189 . -1219) T) ((-1186 . -370) T) ((-1185 . -370) T) ((-1148 . -151) 171400) ((-1122 . -102) T) ((-1120 . -1102) T) ((-1082 . -23) T) ((-1082 . -1114) T) ((-1077 . -102) T) ((-1059 . -614) 171367) ((-929 . -957) T) ((-738 . -310) 171305) ((-75 . -1219) T) ((-665 . -384) 171277) ((-169 . -911) 171230) ((-30 . -957) T) ((-112 . -845) T) ((-1 . -614) 171212) ((-1005 . -412) 171184) ((-128 . -652) 171166) ((-50 . -621) 171150) ((-695 . -647) 171085) ((-597 . -902) 170998) ((-441 . -102) T) ((-128 . -375) 170980) ((-141 . -310) NIL) ((-873 . -1051) T) ((-834 . -851) 170959) ((-81 . -1219) T) ((-712 . -291) T) ((-40 . -1060) T) ((-584 . -172) T) ((-521 . -172) T) ((-514 . -614) 170941) ((-169 . -649) 170851) ((-510 . -614) 170833) ((-353 . -147) 170815) ((-353 . -145) T) ((-361 . -1114) T) ((-355 . -1114) T) ((-347 . -1114) T) ((-1006 . -308) T) ((-916 . -308) T) ((-873 . -243) T) ((-108 . -1114) T) ((-873 . -233) 170794) ((-1253 . -111) 170615) ((-1232 . -111) 170404) ((-245 . -1257) 170388) ((-567 . -849) T) ((-361 . -23) T) ((-356 . -351) T) ((-317 . -310) 170375) ((-314 . -310) 170316) ((-355 . -23) T) ((-320 . -131) T) ((-347 . -23) T) ((-1006 . -1024) T) ((-31 . -617) 170297) ((-108 . -23) T) ((-655 . -1053) 170281) ((-245 . -605) 170258) ((-334 . -1102) T) ((-655 . -641) 170228) ((-1255 . -38) 170120) ((-1242 . -911) 170099) ((-112 . -1102) T) ((-1037 . -102) T) ((-1242 . -649) 170024) ((-872 . -795) NIL) ((-856 . -649) 169998) ((-872 . -792) NIL) ((-817 . -888) NIL) ((-872 . -727) T) ((-1089 . -517) 169871) ((-783 . -517) 169818) ((-781 . -517) 169770) ((-574 . -649) 169757) ((-817 . -1040) 169585) ((-457 . -517) 169528) ((-391 . -392) T) ((-1253 . -617) 169341) ((-1232 . -617) 169089) ((-60 . -1219) T) ((-622 . -851) 169068) ((-503 . -662) T) ((-1148 . -978) 169037) ((-1026 . -647) 168974) ((-1005 . -455) T) ((-700 . -849) T) ((-513 . -793) T) ((-477 . -1058) 168809) ((-345 . -1102) T) ((-314 . -1154) NIL) ((-290 . -131) T) ((-397 . -1102) T) ((-871 . -1060) T) ((-695 . -372) 168776) ((-356 . -647) 168706) ((-223 . -621) 168683) ((-328 . -287) 168660) ((-477 . -111) 168481) ((-1253 . -1051) T) ((-1232 . -1051) T) ((-817 . -379) 168465) ((-169 . -727) T) ((-655 . -102) T) ((-1253 . -243) 168444) ((-1253 . -233) 168396) ((-1232 . -233) 168301) ((-1232 . -243) 168280) ((-1005 . -405) NIL) ((-671 . -640) 168228) ((-317 . -38) 168138) ((-314 . -38) 168067) ((-69 . -614) 168049) ((-320 . -496) 168015) ((-48 . -647) 167965) ((-1192 . -289) 167944) ((-1227 . -851) T) ((-1115 . -1114) 167854) ((-83 . -1219) T) ((-61 . -614) 167836) ((-482 . -289) 167815) ((-1284 . -1040) 167792) ((-1167 . -1102) T) ((-1115 . -23) 167662) ((-817 . -902) 167598) ((-1242 . -727) T) ((-1104 . -1219) T) ((-477 . -617) 167424) ((-1089 . -291) 167355) ((-968 . -1102) T) ((-895 . -102) T) ((-783 . -291) 167266) ((-328 . -19) 167250) ((-59 . -289) 167227) ((-781 . -291) 167158) ((-856 . -727) T) ((-117 . -849) NIL) ((-519 . -289) 167135) ((-328 . -605) 167112) ((-499 . -289) 167089) ((-457 . -291) 167020) ((-1037 . -310) 166871) ((-877 . -493) 166852) ((-877 . -614) 166818) ((-682 . -493) 166799) ((-574 . -727) T) ((-677 . -493) 166780) ((-682 . -614) 166730) ((-677 . -614) 166696) ((-663 . -614) 166678) ((-481 . -493) 166659) ((-481 . -614) 166625) ((-245 . -615) 166586) ((-245 . -493) 166563) ((-138 . -493) 166544) ((-137 . -493) 166525) ((-133 . -493) 166506) ((-245 . -614) 166398) ((-213 . -102) T) ((-138 . -614) 166364) ((-137 . -614) 166330) ((-133 . -614) 166296) ((-1149 . -34) T) ((-945 . -1219) T) ((-345 . -718) 166241) ((-671 . -25) T) ((-671 . -21) T) ((-1179 . -617) 166222) ((-477 . -1051) T) ((-636 . -420) 166187) ((-608 . -420) 166152) ((-1122 . -1154) T) ((-713 . -1053) 165975) ((-584 . -291) T) ((-521 . -291) T) ((-1254 . -308) 165954) ((-477 . -233) 165906) ((-477 . -243) 165885) ((-1233 . -308) 165864) ((-713 . -641) 165693) ((-1233 . -1024) NIL) ((-1082 . -131) T) ((-873 . -796) 165672) ((-144 . -102) T) ((-40 . -1102) T) ((-873 . -793) 165651) ((-645 . -1012) 165635) ((-583 . -1060) T) ((-567 . -1060) T) ((-498 . -1060) T) ((-410 . -455) T) ((-361 . -131) T) ((-317 . -403) 165619) ((-314 . -403) 165580) ((-355 . -131) T) ((-347 . -131) T) ((-1184 . -1102) T) ((-1122 . -38) 165567) ((-1096 . -614) 165534) ((-108 . -131) T) ((-956 . -1102) T) ((-923 . -1102) T) ((-772 . -1102) T) ((-673 . -1102) T) ((-702 . -147) T) ((-116 . -147) T) ((-1291 . -21) T) ((-1291 . -25) T) ((-1289 . -21) T) ((-1289 . -25) T) ((-665 . -1058) 165518) ((-534 . -851) T) ((-503 . -851) T) ((-357 . -1058) 165470) ((-354 . -1058) 165422) ((-346 . -1058) 165374) ((-252 . -1219) T) ((-251 . -1219) T) ((-265 . -1058) 165217) ((-247 . -1058) 165060) ((-665 . -111) 165039) ((-550 . -845) T) ((-357 . -111) 164977) ((-354 . -111) 164915) ((-346 . -111) 164853) ((-265 . -111) 164682) ((-247 . -111) 164511) ((-818 . -1223) 164490) ((-624 . -414) 164474) ((-44 . -21) T) ((-44 . -25) T) ((-816 . -640) 164380) ((-818 . -559) 164359) ((-252 . -1040) 164186) ((-251 . -1040) 164013) ((-126 . -119) 163997) ((-912 . -1058) 163962) ((-713 . -102) T) ((-700 . -1060) T) ((-539 . -619) 163865) ((-345 . -172) T) ((-88 . -614) 163847) ((-152 . -21) T) ((-152 . -25) T) ((-912 . -111) 163803) ((-40 . -718) 163748) ((-871 . -1102) T) ((-665 . -617) 163725) ((-646 . -617) 163706) ((-357 . -617) 163643) ((-354 . -617) 163580) ((-550 . -1102) T) ((-346 . -617) 163517) ((-328 . -615) 163478) ((-328 . -614) 163390) ((-265 . -617) 163143) ((-247 . -617) 162928) ((-1232 . -793) 162881) ((-1232 . -796) 162834) ((-252 . -379) 162803) ((-251 . -379) 162772) ((-655 . -38) 162742) ((-609 . -34) T) ((-485 . -1114) 162652) ((-478 . -34) T) ((-1115 . -131) 162522) ((-966 . -25) 162333) ((-912 . -617) 162283) ((-875 . -614) 162265) ((-966 . -21) 162220) ((-816 . -21) 162130) ((-816 . -25) 161981) ((-1225 . -370) T) ((-624 . -1060) T) ((-1181 . -559) 161960) ((-1175 . -47) 161937) ((-357 . -1051) T) ((-354 . -1051) T) ((-485 . -23) 161807) ((-346 . -1051) T) ((-265 . -1051) T) ((-247 . -1051) T) ((-1127 . -47) 161779) ((-117 . -1060) T) ((-1036 . -649) 161753) ((-960 . -34) T) ((-357 . -233) 161732) ((-357 . -243) T) ((-354 . -233) 161711) ((-354 . -243) T) ((-346 . -233) 161690) ((-346 . -243) T) ((-265 . -327) 161662) ((-247 . -327) 161619) ((-265 . -233) 161598) ((-1159 . -151) 161582) ((-252 . -902) 161514) ((-251 . -902) 161446) ((-1084 . -851) T) ((-417 . -1114) T) ((-1056 . -23) T) ((-912 . -1051) T) ((-323 . -649) 161428) ((-1026 . -849) T) ((-1213 . -1004) 161394) ((-1176 . -922) 161373) ((-1170 . -922) 161352) ((-1170 . -821) NIL) ((-1001 . -1053) 161248) ((-912 . -243) T) ((-818 . -365) 161227) ((-387 . -23) T) ((-127 . -1102) 161205) ((-121 . -1102) 161183) ((-912 . -233) T) ((-128 . -34) T) ((-381 . -649) 161148) ((-1001 . -641) 161096) ((-871 . -718) 161083) ((-1297 . -647) 161055) ((-1048 . -151) 161020) ((-40 . -172) T) ((-695 . -414) 161002) ((-713 . -310) 160989) ((-837 . -649) 160949) ((-828 . -649) 160923) ((-320 . -25) T) ((-320 . -21) T) ((-659 . -287) 160902) ((-583 . -1102) T) ((-567 . -1102) T) ((-498 . -1102) T) ((-245 . -289) 160879) ((-314 . -231) 160840) ((-1175 . -888) NIL) ((-55 . -1102) T) ((-1127 . -888) 160699) ((-129 . -851) T) ((-1175 . -1040) 160579) ((-1127 . -1040) 160462) ((-183 . -614) 160444) ((-855 . -1040) 160340) ((-783 . -287) 160267) ((-818 . -1114) T) ((-1036 . -727) T) ((-603 . -652) 160251) ((-1048 . -978) 160180) ((-1001 . -102) T) ((-818 . -23) T) ((-713 . -1154) 160158) ((-695 . -1060) T) ((-603 . -375) 160142) ((-353 . -455) T) ((-345 . -291) T) ((-1270 . -1102) T) ((-248 . -1102) T) ((-402 . -102) T) ((-290 . -21) T) ((-290 . -25) T) ((-363 . -727) T) ((-711 . -1102) T) ((-700 . -1102) T) ((-363 . -476) T) ((-1213 . -614) 160124) ((-1175 . -379) 160108) ((-1127 . -379) 160092) ((-1026 . -414) 160054) ((-141 . -229) 160036) ((-381 . -795) T) ((-381 . -792) T) ((-871 . -172) T) ((-381 . -727) T) ((-712 . -614) 160018) ((-713 . -38) 159847) ((-1269 . -1267) 159831) ((-353 . -405) T) ((-1269 . -1102) 159781) ((-583 . -718) 159768) ((-567 . -718) 159755) ((-498 . -718) 159720) ((-1255 . -647) 159610) ((-317 . -630) 159589) ((-837 . -727) T) ((-828 . -727) T) ((-645 . -1219) T) ((-1082 . -640) 159537) ((-1175 . -902) 159480) ((-1127 . -902) 159464) ((-663 . -1058) 159448) ((-108 . -640) 159430) ((-485 . -131) 159300) ((-1181 . -1114) T) ((-954 . -47) 159269) ((-624 . -1102) T) ((-663 . -111) 159248) ((-494 . -614) 159214) ((-328 . -289) 159191) ((-484 . -47) 159148) ((-1181 . -23) T) ((-117 . -1102) T) ((-103 . -102) 159126) ((-1281 . -1114) T) ((-551 . -851) T) ((-1056 . -131) T) ((-1026 . -1060) T) ((-820 . -1040) 159110) ((-1005 . -725) 159082) ((-1281 . -23) T) ((-700 . -718) 159047) ((-588 . -614) 159029) ((-389 . -1040) 159013) ((-356 . -1060) T) ((-387 . -131) T) ((-325 . -1040) 158997) ((-1199 . -614) 158979) ((-1122 . -829) T) ((-1107 . -1102) T) ((-225 . -888) 158961) ((-1006 . -922) T) ((-91 . -34) T) ((-1006 . -821) T) ((-916 . -922) T) ((-1082 . -21) T) ((-1082 . -25) T) ((-490 . -1223) T) ((-1001 . -310) 158926) ((-877 . -617) 158907) ((-715 . -649) 158867) ((-217 . -1223) T) ((-682 . -617) 158848) ((-225 . -1040) 158808) ((-40 . -291) T) ((-677 . -617) 158789) ((-490 . -559) T) ((-481 . -617) 158770) ((-317 . -647) 158454) ((-314 . -647) 158368) ((-361 . -25) T) ((-361 . -21) T) ((-355 . -25) T) ((-217 . -559) T) ((-355 . -21) T) ((-347 . -25) T) ((-347 . -21) T) ((-245 . -617) 158345) ((-138 . -617) 158326) ((-137 . -617) 158307) ((-133 . -617) 158288) ((-108 . -25) T) ((-108 . -21) T) ((-48 . -1060) T) ((-583 . -172) T) ((-567 . -172) T) ((-498 . -172) T) ((-659 . -614) 158270) ((-738 . -737) 158254) ((-338 . -614) 158236) ((-68 . -385) T) ((-68 . -398) T) ((-1104 . -107) 158220) ((-1064 . -888) 158202) ((-954 . -888) 158127) ((-654 . -1114) T) ((-624 . -718) 158114) ((-484 . -888) NIL) ((-1148 . -102) T) ((-1096 . -619) 158098) ((-1064 . -1040) 158080) ((-97 . -614) 158062) ((-480 . -147) T) ((-954 . -1040) 157942) ((-117 . -718) 157887) ((-654 . -23) T) ((-484 . -1040) 157763) ((-1089 . -615) NIL) ((-1089 . -614) 157745) ((-783 . -615) NIL) ((-783 . -614) 157706) ((-781 . -615) 157340) ((-781 . -614) 157254) ((-1115 . -640) 157160) ((-464 . -614) 157142) ((-457 . -614) 157124) ((-457 . -615) 156985) ((-1037 . -229) 156931) ((-873 . -911) 156910) ((-126 . -34) T) ((-818 . -131) T) ((-650 . -614) 156892) ((-581 . -102) T) ((-357 . -1288) 156876) ((-354 . -1288) 156860) ((-346 . -1288) 156844) ((-127 . -517) 156777) ((-121 . -517) 156710) ((-514 . -793) T) ((-514 . -796) T) ((-513 . -795) T) ((-103 . -310) 156648) ((-222 . -102) 156626) ((-700 . -172) T) ((-695 . -1102) T) ((-873 . -649) 156578) ((-65 . -386) T) ((-276 . -614) 156560) ((-65 . -398) T) ((-954 . -379) 156544) ((-871 . -291) T) ((-50 . -614) 156526) ((-1001 . -38) 156474) ((-1122 . -647) 156446) ((-584 . -614) 156428) ((-484 . -379) 156412) ((-584 . -615) 156394) ((-521 . -614) 156376) ((-912 . -1288) 156363) ((-872 . -1219) T) ((-702 . -455) T) ((-498 . -517) 156329) ((-490 . -365) T) ((-357 . -370) 156308) ((-354 . -370) 156287) ((-346 . -370) 156266) ((-715 . -727) T) ((-217 . -365) T) ((-116 . -455) T) ((-1292 . -1283) 156250) ((-872 . -886) 156227) ((-872 . -888) NIL) ((-966 . -851) 156126) ((-816 . -851) 156077) ((-1226 . -102) T) ((-655 . -657) 156061) ((-1205 . -34) T) ((-171 . -614) 156043) ((-1115 . -21) 155953) ((-1115 . -25) 155804) ((-872 . -1040) 155781) ((-954 . -902) 155762) ((-1242 . -47) 155739) ((-912 . -370) T) ((-59 . -652) 155723) ((-519 . -652) 155707) ((-484 . -902) 155684) ((-71 . -444) T) ((-71 . -398) T) ((-499 . -652) 155668) ((-59 . -375) 155652) ((-624 . -172) T) ((-519 . -375) 155636) ((-499 . -375) 155620) ((-828 . -709) 155604) ((-1175 . -308) 155583) ((-1181 . -131) T) ((-1144 . -1053) 155567) ((-117 . -172) T) ((-1144 . -641) 155499) ((-1148 . -310) 155437) ((-169 . -1219) T) ((-1281 . -131) T) ((-867 . -1053) 155407) ((-636 . -745) 155391) ((-608 . -745) 155375) ((-1254 . -922) 155354) ((-1233 . -922) 155333) ((-1233 . -821) NIL) ((-867 . -641) 155303) ((-695 . -718) 155253) ((-1232 . -911) 155206) ((-1026 . -1102) T) ((-872 . -379) 155183) ((-872 . -340) 155160) ((-907 . -1114) T) ((-169 . -886) 155144) ((-169 . -888) 155069) ((-490 . -1114) T) ((-356 . -1102) T) ((-217 . -1114) T) ((-76 . -444) T) ((-76 . -398) T) ((-169 . -1040) 154965) ((-320 . -851) T) ((-1269 . -517) 154898) ((-1253 . -649) 154795) ((-1232 . -649) 154665) ((-873 . -795) 154644) ((-873 . -792) 154623) ((-873 . -727) T) ((-490 . -23) T) ((-223 . -614) 154605) ((-174 . -455) T) ((-222 . -310) 154543) ((-86 . -444) T) ((-86 . -398) T) ((-217 . -23) T) ((-1293 . -1286) 154522) ((-678 . -1040) 154506) ((-583 . -291) T) ((-567 . -291) T) ((-498 . -291) T) ((-136 . -473) 154461) ((-655 . -647) 154420) ((-48 . -1102) T) ((-713 . -231) 154404) ((-872 . -902) NIL) ((-1242 . -888) NIL) ((-891 . -102) T) ((-887 . -102) T) ((-391 . -1102) T) ((-169 . -379) 154388) ((-169 . -340) 154372) ((-1242 . -1040) 154252) ((-856 . -1040) 154148) ((-1144 . -102) T) ((-654 . -131) T) ((-117 . -517) 154056) ((-663 . -793) 154035) ((-663 . -796) 154014) ((-574 . -1040) 153996) ((-295 . -1276) 153966) ((-867 . -102) T) ((-965 . -559) 153945) ((-1213 . -1058) 153828) ((-1005 . -1053) 153773) ((-485 . -640) 153679) ((-906 . -1102) T) ((-1026 . -718) 153616) ((-712 . -1058) 153581) ((-1005 . -641) 153526) ((-618 . -102) T) ((-603 . -34) T) ((-1149 . -1219) T) ((-1213 . -111) 153395) ((-477 . -649) 153292) ((-356 . -718) 153237) ((-169 . -902) 153196) ((-700 . -291) T) ((-695 . -172) T) ((-712 . -111) 153152) ((-1297 . -1060) T) ((-1242 . -379) 153136) ((-421 . -1223) 153114) ((-1120 . -614) 153096) ((-314 . -849) NIL) ((-421 . -559) T) ((-225 . -308) T) ((-1232 . -792) 153049) ((-1232 . -795) 153002) ((-1253 . -727) T) ((-1232 . -727) T) ((-48 . -718) 152967) ((-225 . -1024) T) ((-353 . -1276) 152944) ((-1255 . -414) 152910) ((-719 . -727) T) ((-334 . -614) 152892) ((-1242 . -902) 152835) ((-1213 . -617) 152717) ((-112 . -614) 152699) ((-112 . -615) 152681) ((-719 . -476) T) ((-712 . -617) 152631) ((-1292 . -1053) 152615) ((-485 . -21) 152525) ((-127 . -492) 152509) ((-121 . -492) 152493) ((-485 . -25) 152344) ((-1292 . -641) 152314) ((-624 . -291) T) ((-588 . -1058) 152289) ((-440 . -1102) T) ((-1064 . -308) T) ((-117 . -291) T) ((-1106 . -102) T) ((-1005 . -102) T) ((-588 . -111) 152257) ((-1144 . -310) 152195) ((-1213 . -1051) T) ((-1064 . -1024) T) ((-66 . -1219) T) ((-1056 . -25) T) ((-1056 . -21) T) ((-712 . -1051) T) ((-387 . -21) T) ((-387 . -25) T) ((-695 . -517) NIL) ((-1026 . -172) T) ((-712 . -243) T) ((-1064 . -548) T) ((-713 . -647) 152105) ((-509 . -102) T) ((-505 . -102) T) ((-356 . -172) T) ((-345 . -614) 152087) ((-410 . -1053) 152039) ((-397 . -614) 152021) ((-1122 . -849) T) ((-477 . -727) T) ((-894 . -1040) 151989) ((-410 . -641) 151941) ((-108 . -851) T) ((-659 . -1058) 151925) ((-490 . -131) T) ((-1255 . -1060) T) ((-217 . -131) T) ((-1159 . -102) 151903) ((-99 . -1102) T) ((-245 . -667) 151887) ((-245 . -652) 151871) ((-659 . -111) 151850) ((-588 . -617) 151834) ((-317 . -414) 151818) ((-245 . -375) 151802) ((-1162 . -235) 151749) ((-1001 . -231) 151733) ((-74 . -1219) T) ((-48 . -172) T) ((-702 . -390) T) ((-702 . -143) T) ((-1292 . -102) T) ((-1199 . -617) 151715) ((-1089 . -1058) 151558) ((-265 . -911) 151537) ((-247 . -911) 151516) ((-783 . -1058) 151339) ((-781 . -1058) 151182) ((-609 . -1219) T) ((-1167 . -614) 151164) ((-1089 . -111) 150993) ((-1048 . -102) T) ((-478 . -1219) T) ((-464 . -1058) 150964) ((-457 . -1058) 150807) ((-665 . -649) 150791) ((-872 . -308) T) ((-783 . -111) 150600) ((-781 . -111) 150429) ((-357 . -649) 150381) ((-354 . -649) 150333) ((-346 . -649) 150285) ((-265 . -649) 150210) ((-247 . -649) 150135) ((-1161 . -851) T) ((-1090 . -1040) 150119) ((-464 . -111) 150080) ((-457 . -111) 149909) ((-1078 . -1040) 149886) ((-1002 . -34) T) ((-968 . -614) 149868) ((-960 . -1219) T) ((-126 . -1012) 149852) ((-965 . -1114) T) ((-872 . -1024) NIL) ((-736 . -1114) T) ((-716 . -1114) T) ((-659 . -617) 149770) ((-1269 . -492) 149754) ((-1144 . -38) 149714) ((-965 . -23) T) ((-912 . -649) 149679) ((-866 . -1102) T) ((-844 . -102) T) ((-818 . -21) T) ((-636 . -1053) 149663) ((-608 . -1053) 149647) ((-818 . -25) T) ((-736 . -23) T) ((-716 . -23) T) ((-636 . -641) 149631) ((-110 . -662) T) ((-608 . -641) 149615) ((-584 . -1058) 149580) ((-521 . -1058) 149525) ((-227 . -57) 149483) ((-456 . -23) T) ((-410 . -102) T) ((-264 . -102) T) ((-695 . -291) T) ((-867 . -38) 149453) ((-584 . -111) 149409) ((-521 . -111) 149338) ((-1089 . -617) 149074) ((-421 . -1114) T) ((-317 . -1060) 148964) ((-314 . -1060) T) ((-128 . -1219) T) ((-783 . -617) 148712) ((-781 . -617) 148478) ((-659 . -1051) T) ((-1297 . -1102) T) ((-457 . -617) 148263) ((-169 . -308) 148194) ((-421 . -23) T) ((-40 . -614) 148176) ((-40 . -615) 148160) ((-108 . -994) 148142) ((-116 . -870) 148126) ((-650 . -617) 148110) ((-48 . -517) 148076) ((-1205 . -1012) 148060) ((-1184 . -614) 148027) ((-1192 . -34) T) ((-956 . -614) 147993) ((-923 . -614) 147975) ((-1115 . -851) 147926) ((-772 . -614) 147908) ((-673 . -614) 147890) ((-1159 . -310) 147828) ((-482 . -34) T) ((-1094 . -1219) T) ((-480 . -455) T) ((-1143 . -34) T) ((-1089 . -1051) T) ((-50 . -617) 147797) ((-783 . -1051) T) ((-781 . -1051) T) ((-648 . -235) 147781) ((-633 . -235) 147727) ((-584 . -617) 147677) ((-521 . -617) 147607) ((-1242 . -308) 147586) ((-1089 . -327) 147547) ((-457 . -1051) T) ((-1181 . -21) T) ((-1089 . -233) 147526) ((-783 . -327) 147503) ((-783 . -233) T) ((-781 . -327) 147475) ((-732 . -1223) 147454) ((-328 . -652) 147438) ((-1181 . -25) T) ((-59 . -34) T) ((-522 . -34) T) ((-519 . -34) T) ((-457 . -327) 147417) ((-328 . -375) 147401) ((-500 . -34) T) ((-499 . -34) T) ((-1005 . -1154) NIL) ((-732 . -559) 147332) ((-636 . -102) T) ((-608 . -102) T) ((-357 . -727) T) ((-354 . -727) T) ((-346 . -727) T) ((-265 . -727) T) ((-247 . -727) T) ((-1048 . -310) 147240) ((-903 . -1102) 147218) ((-50 . -1051) T) ((-1281 . -21) T) ((-1281 . -25) T) ((-1177 . -559) 147197) ((-1176 . -1223) 147176) ((-1176 . -559) 147127) ((-584 . -1051) T) ((-521 . -1051) T) ((-1170 . -1223) 147106) ((-363 . -1040) 147090) ((-323 . -1040) 147074) ((-1026 . -291) T) ((-381 . -888) 147056) ((-1170 . -559) 147007) ((-1005 . -38) 146952) ((-1001 . -647) 146875) ((-800 . -1114) T) ((-912 . -727) T) ((-584 . -243) T) ((-584 . -233) T) ((-521 . -233) T) ((-521 . -243) T) ((-1128 . -559) 146854) ((-356 . -291) T) ((-648 . -696) 146838) ((-381 . -1040) 146798) ((-295 . -1053) 146719) ((-1122 . -1060) T) ((-103 . -125) 146703) ((-295 . -641) 146645) ((-800 . -23) T) ((-1291 . -1286) 146621) ((-1269 . -287) 146598) ((-410 . -310) 146563) ((-1289 . -1286) 146542) ((-1255 . -1102) T) ((-871 . -614) 146524) ((-837 . -1040) 146493) ((-203 . -788) T) ((-202 . -788) T) ((-201 . -788) T) ((-200 . -788) T) ((-199 . -788) T) ((-198 . -788) T) ((-197 . -788) T) ((-196 . -788) T) ((-195 . -788) T) ((-194 . -788) T) ((-550 . -614) 146475) ((-498 . -1004) T) ((-275 . -840) T) ((-274 . -840) T) ((-273 . -840) T) ((-272 . -840) T) ((-48 . -291) T) ((-271 . -840) T) ((-270 . -840) T) ((-269 . -840) T) ((-193 . -788) T) ((-613 . -851) T) ((-655 . -414) 146459) ((-223 . -617) 146421) ((-110 . -851) T) ((-654 . -21) T) ((-654 . -25) T) ((-1292 . -38) 146391) ((-117 . -287) 146342) ((-1269 . -19) 146326) ((-1269 . -605) 146303) ((-1282 . -1102) T) ((-353 . -1053) 146248) ((-1079 . -1102) T) ((-989 . -1102) T) ((-965 . -131) T) ((-738 . -1102) T) ((-353 . -641) 146193) ((-736 . -131) T) ((-716 . -131) T) ((-514 . -794) T) ((-514 . -795) T) ((-456 . -131) T) ((-410 . -1154) 146171) ((-223 . -1051) T) ((-295 . -102) 145953) ((-141 . -1102) T) ((-700 . -1004) T) ((-91 . -1219) T) ((-127 . -614) 145885) ((-121 . -614) 145817) ((-1297 . -172) T) ((-1176 . -365) 145796) ((-1170 . -365) 145775) ((-317 . -1102) T) ((-421 . -131) T) ((-314 . -1102) T) ((-410 . -38) 145727) ((-1135 . -102) T) ((-1255 . -718) 145619) ((-655 . -1060) T) ((-1137 . -1264) T) ((-320 . -145) 145598) ((-320 . -147) 145577) ((-136 . -1102) T) ((-139 . -1102) T) ((-114 . -1102) T) ((-859 . -102) T) ((-583 . -614) 145559) ((-567 . -615) 145458) ((-567 . -614) 145440) ((-498 . -614) 145422) ((-498 . -615) 145367) ((-488 . -23) T) ((-485 . -851) 145318) ((-490 . -640) 145300) ((-967 . -614) 145282) ((-217 . -640) 145264) ((-225 . -407) T) ((-663 . -649) 145248) ((-55 . -614) 145230) ((-1175 . -922) 145209) ((-732 . -1114) T) ((-353 . -102) T) ((-1218 . -1085) T) ((-1122 . -845) T) ((-819 . -851) T) ((-732 . -23) T) ((-345 . -1058) 145154) ((-1161 . -1160) T) ((-1149 . -107) 145138) ((-1177 . -1114) T) ((-1176 . -1114) T) ((-518 . -1040) 145122) ((-1170 . -1114) T) ((-1128 . -1114) T) ((-345 . -111) 145051) ((-1006 . -1223) T) ((-126 . -1219) T) ((-916 . -1223) T) ((-695 . -287) NIL) ((-1270 . -614) 145033) ((-1177 . -23) T) ((-1176 . -23) T) ((-1170 . -23) T) ((-1006 . -559) T) ((-1144 . -231) 145017) ((-916 . -559) T) ((-1128 . -23) T) ((-248 . -614) 144999) ((-1077 . -1102) T) ((-800 . -131) T) ((-711 . -614) 144981) ((-317 . -718) 144891) ((-314 . -718) 144820) ((-700 . -614) 144802) ((-700 . -615) 144747) ((-410 . -403) 144731) ((-441 . -1102) T) ((-490 . -25) T) ((-490 . -21) T) ((-1122 . -1102) T) ((-217 . -25) T) ((-217 . -21) T) ((-713 . -414) 144715) ((-715 . -1040) 144684) ((-1269 . -614) 144596) ((-1269 . -615) 144557) ((-1255 . -172) T) ((-245 . -34) T) ((-345 . -617) 144487) ((-397 . -617) 144469) ((-928 . -976) T) ((-1205 . -1219) T) ((-663 . -792) 144448) ((-663 . -795) 144427) ((-401 . -398) T) ((-526 . -102) 144405) ((-1037 . -1102) T) ((-222 . -997) 144389) ((-507 . -102) T) ((-624 . -614) 144371) ((-45 . -851) NIL) ((-624 . -615) 144348) ((-1037 . -611) 144323) ((-903 . -517) 144256) ((-345 . -1051) T) ((-117 . -615) NIL) ((-117 . -614) 144238) ((-873 . -1219) T) ((-671 . -420) 144222) ((-671 . -1125) 144167) ((-503 . -151) 144149) ((-345 . -233) T) ((-345 . -243) T) ((-40 . -1058) 144094) ((-873 . -886) 144078) ((-873 . -888) 144003) ((-713 . -1060) T) ((-695 . -1004) NIL) ((-1253 . -47) 143973) ((-1232 . -47) 143950) ((-1143 . -1012) 143921) ((-3 . |UnionCategory|) T) ((-1122 . -718) 143908) ((-1107 . -614) 143890) ((-1082 . -147) 143869) ((-1082 . -145) 143820) ((-968 . -617) 143804) ((-225 . -922) T) ((-40 . -111) 143733) ((-873 . -1040) 143597) ((-1006 . -365) T) ((-1005 . -231) 143574) ((-702 . -1053) 143561) ((-916 . -365) T) ((-702 . -641) 143548) ((-320 . -1207) 143514) ((-381 . -308) T) ((-320 . -1204) 143480) ((-317 . -172) 143459) ((-314 . -172) T) ((-584 . -1288) 143446) ((-521 . -1288) 143423) ((-361 . -147) 143402) ((-116 . -1053) 143389) ((-361 . -145) 143340) ((-355 . -147) 143319) ((-355 . -145) 143270) ((-347 . -147) 143249) ((-609 . -1195) 143225) ((-116 . -641) 143212) ((-347 . -145) 143163) ((-320 . -35) 143129) ((-478 . -1195) 143108) ((0 . |EnumerationCategory|) T) ((-320 . -95) 143074) ((-381 . -1024) T) ((-108 . -147) T) ((-108 . -145) NIL) ((-45 . -235) 143024) ((-655 . -1102) T) ((-609 . -107) 142971) ((-488 . -131) T) ((-478 . -107) 142921) ((-240 . -1114) 142831) ((-873 . -379) 142815) ((-873 . -340) 142799) ((-240 . -23) 142669) ((-40 . -617) 142599) ((-1064 . -922) T) ((-1064 . -821) T) ((-584 . -370) T) ((-521 . -370) T) ((-1282 . -517) 142532) ((-1261 . -559) 142511) ((-353 . -1154) T) ((-328 . -34) T) ((-44 . -420) 142495) ((-1184 . -617) 142431) ((-874 . -1219) T) ((-393 . -745) 142415) ((-1254 . -1223) 142394) ((-1254 . -559) 142345) ((-1144 . -647) 142304) ((-732 . -131) T) ((-673 . -617) 142288) ((-1233 . -1223) 142267) ((-1233 . -559) 142218) ((-1232 . -1219) 142197) ((-1232 . -888) 142070) ((-1232 . -886) 142040) ((-1177 . -131) T) ((-312 . -1085) T) ((-1176 . -131) T) ((-738 . -517) 141973) ((-1170 . -131) T) ((-1128 . -131) T) ((-895 . -1102) T) ((-144 . -845) T) ((-1026 . -1004) T) ((-692 . -614) 141955) ((-1006 . -23) T) ((-526 . -310) 141893) ((-1006 . -1114) T) ((-141 . -517) NIL) ((-867 . -647) 141838) ((-1005 . -351) NIL) ((-973 . -23) T) ((-916 . -1114) T) ((-353 . -38) 141803) ((-916 . -23) T) ((-873 . -902) 141762) ((-82 . -614) 141744) ((-40 . -1051) T) ((-871 . -1058) 141731) ((-871 . -111) 141716) ((-702 . -102) T) ((-695 . -614) 141698) ((-603 . -1219) T) ((-598 . -559) 141677) ((-430 . -1114) T) ((-341 . -1053) 141661) ((-213 . -1102) T) ((-174 . -1053) 141593) ((-477 . -47) 141563) ((-134 . -102) T) ((-40 . -233) 141535) ((-40 . -243) T) ((-116 . -102) T) ((-597 . -559) 141514) ((-341 . -641) 141498) ((-695 . -615) 141406) ((-317 . -517) 141372) ((-174 . -641) 141304) ((-314 . -517) 141196) ((-1253 . -1040) 141180) ((-1232 . -1040) 140966) ((-1001 . -414) 140950) ((-430 . -23) T) ((-1122 . -172) T) ((-1255 . -291) T) ((-655 . -718) 140920) ((-144 . -1102) T) ((-48 . -1004) T) ((-410 . -231) 140904) ((-296 . -235) 140854) ((-872 . -922) T) ((-872 . -821) NIL) ((-871 . -617) 140826) ((-865 . -851) T) ((-1232 . -340) 140796) ((-1232 . -379) 140766) ((-222 . -1123) 140750) ((-1269 . -289) 140727) ((-1213 . -649) 140652) ((-1005 . -647) 140582) ((-965 . -21) T) ((-965 . -25) T) ((-736 . -21) T) ((-736 . -25) T) ((-716 . -21) T) ((-716 . -25) T) ((-712 . -649) 140547) ((-456 . -21) T) ((-456 . -25) T) ((-341 . -102) T) ((-174 . -102) T) ((-1001 . -1060) T) ((-871 . -1051) T) ((-775 . -102) T) ((-1254 . -365) 140526) ((-1253 . -902) 140432) ((-1233 . -365) 140411) ((-1232 . -902) 140262) ((-1026 . -614) 140244) ((-410 . -829) 140197) ((-1177 . -496) 140163) ((-169 . -922) 140094) ((-1176 . -496) 140060) ((-1170 . -496) 140026) ((-713 . -1102) T) ((-1128 . -496) 139992) ((-583 . -1058) 139979) ((-567 . -1058) 139966) ((-498 . -1058) 139931) ((-317 . -291) 139910) ((-314 . -291) T) ((-356 . -614) 139892) ((-421 . -25) T) ((-421 . -21) T) ((-99 . -287) 139871) ((-583 . -111) 139856) ((-567 . -111) 139841) ((-498 . -111) 139797) ((-1179 . -888) 139764) ((-903 . -492) 139748) ((-48 . -614) 139730) ((-48 . -615) 139675) ((-240 . -131) 139545) ((-1292 . -647) 139504) ((-1242 . -922) 139483) ((-817 . -1223) 139462) ((-391 . -493) 139443) ((-1037 . -517) 139287) ((-391 . -614) 139253) ((-817 . -559) 139184) ((-588 . -649) 139159) ((-265 . -47) 139131) ((-247 . -47) 139088) ((-534 . -512) 139065) ((-583 . -617) 139037) ((-567 . -617) 139009) ((-498 . -617) 138942) ((-1076 . -1219) T) ((-1002 . -1219) T) ((-1261 . -23) T) ((-700 . -1058) 138907) ((-1261 . -1114) T) ((-1254 . -1114) T) ((-1254 . -23) T) ((-1233 . -1114) T) ((-1233 . -23) T) ((-1005 . -372) 138879) ((-112 . -370) T) ((-477 . -902) 138785) ((-1213 . -727) T) ((-906 . -614) 138767) ((-55 . -617) 138749) ((-91 . -107) 138733) ((-1122 . -291) T) ((-907 . -851) 138684) ((-702 . -1154) T) ((-700 . -111) 138640) ((-844 . -647) 138557) ((-598 . -1114) T) ((-597 . -1114) T) ((-713 . -718) 138386) ((-712 . -727) T) ((-1006 . -131) T) ((-973 . -131) T) ((-490 . -851) T) ((-916 . -131) T) ((-800 . -25) T) ((-800 . -21) T) ((-217 . -851) T) ((-410 . -647) 138323) ((-583 . -1051) T) ((-567 . -1051) T) ((-498 . -1051) T) ((-598 . -23) T) ((-345 . -1288) 138300) ((-320 . -455) 138279) ((-341 . -310) 138266) ((-597 . -23) T) ((-430 . -131) T) ((-659 . -649) 138240) ((-245 . -1012) 138224) ((-873 . -308) T) ((-1293 . -1283) 138208) ((-772 . -793) T) ((-772 . -796) T) ((-702 . -38) 138195) ((-567 . -233) T) ((-498 . -243) T) ((-498 . -233) T) ((-1152 . -235) 138145) ((-1089 . -911) 138124) ((-116 . -38) 138111) ((-209 . -801) T) ((-208 . -801) T) ((-207 . -801) T) ((-206 . -801) T) ((-873 . -1024) 138089) ((-1282 . -492) 138073) ((-783 . -911) 138052) ((-781 . -911) 138031) ((-1192 . -1219) T) ((-457 . -911) 138010) ((-738 . -492) 137994) ((-1089 . -649) 137919) ((-700 . -617) 137854) ((-783 . -649) 137779) ((-624 . -1058) 137766) ((-482 . -1219) T) ((-345 . -370) T) ((-141 . -492) 137748) ((-781 . -649) 137673) ((-1143 . -1219) T) ((-552 . -851) T) ((-464 . -649) 137644) ((-265 . -888) 137503) ((-247 . -888) NIL) ((-117 . -1058) 137448) ((-457 . -649) 137373) ((-665 . -1040) 137350) ((-624 . -111) 137335) ((-393 . -1053) 137319) ((-357 . -1040) 137303) ((-354 . -1040) 137287) ((-346 . -1040) 137271) ((-265 . -1040) 137115) ((-247 . -1040) 136991) ((-117 . -111) 136920) ((-59 . -1219) T) ((-393 . -641) 136904) ((-622 . -1053) 136888) ((-522 . -1219) T) ((-519 . -1219) T) ((-500 . -1219) T) ((-499 . -1219) T) ((-440 . -614) 136870) ((-437 . -614) 136852) ((-622 . -641) 136836) ((-3 . -102) T) ((-1029 . -1212) 136805) ((-834 . -102) T) ((-690 . -57) 136763) ((-700 . -1051) T) ((-636 . -647) 136732) ((-608 . -647) 136701) ((-50 . -649) 136675) ((-290 . -455) T) ((-479 . -1212) 136644) ((0 . -102) T) ((-584 . -649) 136609) ((-521 . -649) 136554) ((-49 . -102) T) ((-912 . -1040) 136541) ((-700 . -243) T) ((-1082 . -412) 136520) ((-732 . -640) 136468) ((-1001 . -1102) T) ((-713 . -172) 136359) ((-624 . -617) 136254) ((-490 . -994) 136236) ((-265 . -379) 136220) ((-247 . -379) 136204) ((-402 . -1102) T) ((-1028 . -102) 136182) ((-341 . -38) 136166) ((-217 . -994) 136148) ((-117 . -617) 136078) ((-174 . -38) 136010) ((-1253 . -308) 135989) ((-1232 . -308) 135968) ((-659 . -727) T) ((-99 . -614) 135950) ((-480 . -1053) 135915) ((-1170 . -640) 135867) ((-480 . -641) 135832) ((-488 . -25) T) ((-488 . -21) T) ((-1232 . -1024) 135784) ((-1059 . -1219) T) ((-624 . -1051) T) ((-381 . -407) T) ((-393 . -102) T) ((-1107 . -619) 135699) ((-265 . -902) 135645) ((-247 . -902) 135622) ((-117 . -1051) T) ((-817 . -1114) T) ((-1089 . -727) T) ((-624 . -233) 135601) ((-622 . -102) T) ((-783 . -727) T) ((-781 . -727) T) ((-416 . -1114) T) ((-117 . -243) T) ((-40 . -370) NIL) ((-117 . -233) NIL) ((-1224 . -851) T) ((-457 . -727) T) ((-817 . -23) T) ((-732 . -25) T) ((-732 . -21) T) ((-1079 . -287) 135580) ((-78 . -399) T) ((-78 . -398) T) ((-536 . -768) 135562) ((-695 . -1058) 135512) ((-1261 . -131) T) ((-1254 . -131) T) ((-1233 . -131) T) ((-1177 . -25) T) ((-1144 . -414) 135496) ((-636 . -369) 135428) ((-608 . -369) 135360) ((-1159 . -1151) 135344) ((-103 . -1102) 135322) ((-1177 . -21) T) ((-1176 . -21) T) ((-866 . -614) 135304) ((-1001 . -718) 135252) ((-223 . -649) 135219) ((-695 . -111) 135153) ((-50 . -727) T) ((-1176 . -25) T) ((-353 . -351) T) ((-1170 . -21) T) ((-1082 . -455) 135104) ((-1170 . -25) T) ((-713 . -517) 135051) ((-584 . -727) T) ((-521 . -727) T) ((-1128 . -21) T) ((-1128 . -25) T) ((-598 . -131) T) ((-295 . -647) 134786) ((-597 . -131) T) ((-361 . -455) T) ((-355 . -455) T) ((-347 . -455) T) ((-477 . -308) 134765) ((-1227 . -102) T) ((-314 . -287) 134700) ((-108 . -455) T) ((-79 . -444) T) ((-79 . -398) T) ((-480 . -102) T) ((-692 . -617) 134684) ((-1297 . -614) 134666) ((-1297 . -615) 134648) ((-1082 . -405) 134627) ((-1037 . -492) 134558) ((-567 . -796) T) ((-567 . -793) T) ((-1065 . -235) 134504) ((-361 . -405) 134455) ((-355 . -405) 134406) ((-347 . -405) 134357) ((-1284 . -1114) T) ((-1293 . -1053) 134341) ((-383 . -1053) 134325) ((-1293 . -641) 134295) ((-383 . -641) 134265) ((-695 . -617) 134200) ((-1284 . -23) T) ((-1271 . -102) T) ((-175 . -614) 134182) ((-1144 . -1060) T) ((-550 . -370) T) ((-671 . -745) 134166) ((-1181 . -145) 134145) ((-1181 . -147) 134124) ((-1148 . -1102) T) ((-1148 . -1073) 134093) ((-69 . -1219) T) ((-1026 . -1058) 134030) ((-353 . -647) 133960) ((-867 . -1060) T) ((-240 . -640) 133866) ((-695 . -1051) T) ((-356 . -1058) 133811) ((-61 . -1219) T) ((-1026 . -111) 133727) ((-903 . -614) 133638) ((-695 . -243) T) ((-695 . -233) NIL) ((-844 . -849) 133617) ((-700 . -796) T) ((-700 . -793) T) ((-1005 . -414) 133594) ((-356 . -111) 133523) ((-381 . -922) T) ((-410 . -849) 133502) ((-713 . -291) 133413) ((-223 . -727) T) ((-1261 . -496) 133379) ((-1254 . -496) 133345) ((-1233 . -496) 133311) ((-581 . -1102) T) ((-317 . -1004) 133290) ((-222 . -1102) 133268) ((-1226 . -845) T) ((-320 . -975) 133230) ((-105 . -102) T) ((-48 . -1058) 133195) ((-1293 . -102) T) ((-383 . -102) T) ((-48 . -111) 133151) ((-1006 . -640) 133133) ((-1255 . -614) 133115) ((-534 . -102) T) ((-503 . -102) T) ((-1135 . -1136) 133099) ((-152 . -1276) 133083) ((-245 . -1219) T) ((-1218 . -102) T) ((-1026 . -617) 133020) ((-1175 . -1223) 132999) ((-356 . -617) 132929) ((-1127 . -1223) 132908) ((-240 . -21) 132818) ((-240 . -25) 132669) ((-127 . -119) 132653) ((-121 . -119) 132637) ((-44 . -745) 132621) ((-1175 . -559) 132532) ((-1127 . -559) 132463) ((-1226 . -1102) T) ((-1037 . -287) 132438) ((-1169 . -1085) T) ((-996 . -1085) T) ((-817 . -131) T) ((-117 . -796) NIL) ((-117 . -793) NIL) ((-357 . -308) T) ((-354 . -308) T) ((-346 . -308) T) ((-252 . -1114) 132348) ((-251 . -1114) 132258) ((-1026 . -1051) T) ((-1005 . -1060) T) ((-48 . -617) 132191) ((-345 . -649) 132136) ((-622 . -38) 132120) ((-1282 . -614) 132082) ((-1282 . -615) 132043) ((-1079 . -614) 132025) ((-1026 . -243) T) ((-356 . -1051) T) ((-816 . -1276) 131995) ((-252 . -23) T) ((-251 . -23) T) ((-989 . -614) 131977) ((-738 . -615) 131938) ((-738 . -614) 131920) ((-800 . -851) 131899) ((-1162 . -151) 131846) ((-1001 . -517) 131758) ((-356 . -233) T) ((-356 . -243) T) ((-391 . -617) 131739) ((-1006 . -25) T) ((-141 . -614) 131721) ((-141 . -615) 131680) ((-912 . -308) T) ((-1006 . -21) T) ((-973 . -25) T) ((-916 . -21) T) ((-916 . -25) T) ((-430 . -21) T) ((-430 . -25) T) ((-844 . -414) 131664) ((-48 . -1051) T) ((-1291 . -1283) 131648) ((-1289 . -1283) 131632) ((-1037 . -605) 131607) ((-317 . -615) 131468) ((-317 . -614) 131450) ((-314 . -615) NIL) ((-314 . -614) 131432) ((-48 . -243) T) ((-48 . -233) T) ((-655 . -287) 131393) ((-553 . -235) 131343) ((-139 . -614) 131310) ((-136 . -614) 131292) ((-114 . -614) 131274) ((-480 . -38) 131239) ((-1293 . -1290) 131218) ((-1284 . -131) T) ((-1292 . -1060) T) ((-1084 . -102) T) ((-88 . -1219) T) ((-503 . -310) NIL) ((-1002 . -107) 131202) ((-891 . -1102) T) ((-887 . -1102) T) ((-1269 . -652) 131186) ((-1269 . -375) 131170) ((-328 . -1219) T) ((-595 . -851) T) ((-1144 . -1102) T) ((-1144 . -1055) 131110) ((-103 . -517) 131043) ((-929 . -614) 131025) ((-345 . -727) T) ((-30 . -614) 131007) ((-867 . -1102) T) ((-844 . -1060) 130986) ((-40 . -649) 130931) ((-225 . -1223) T) ((-410 . -1060) T) ((-1161 . -151) 130913) ((-1001 . -291) 130864) ((-618 . -1102) T) ((-225 . -559) T) ((-320 . -1250) 130848) ((-320 . -1247) 130818) ((-702 . -647) 130790) ((-1192 . -1195) 130769) ((-1077 . -614) 130751) ((-1192 . -107) 130701) ((-648 . -151) 130685) ((-633 . -151) 130631) ((-116 . -647) 130603) ((-482 . -1195) 130582) ((-490 . -147) T) ((-490 . -145) NIL) ((-1122 . -615) 130497) ((-441 . -614) 130479) ((-217 . -147) T) ((-217 . -145) NIL) ((-1122 . -614) 130461) ((-129 . -102) T) ((-52 . -102) T) ((-1233 . -640) 130413) ((-482 . -107) 130363) ((-995 . -23) T) ((-1293 . -38) 130333) ((-1175 . -1114) T) ((-1127 . -1114) T) ((-1064 . -1223) T) ((-312 . -102) T) ((-855 . -1114) T) ((-954 . -1223) 130312) ((-484 . -1223) 130291) ((-1064 . -559) T) ((-954 . -559) 130222) ((-1175 . -23) T) ((-1153 . -1085) T) ((-1127 . -23) T) ((-855 . -23) T) ((-484 . -559) 130153) ((-1144 . -718) 130085) ((-671 . -1053) 130069) ((-1148 . -517) 130002) ((-671 . -641) 129986) ((-1037 . -615) NIL) ((-1037 . -614) 129968) ((-96 . -1085) T) ((-867 . -718) 129938) ((-1213 . -47) 129907) ((-252 . -131) T) ((-251 . -131) T) ((-1106 . -1102) T) ((-1005 . -1102) T) ((-62 . -614) 129889) ((-1170 . -851) NIL) ((-1026 . -793) T) ((-1026 . -796) T) ((-1297 . -1058) 129876) ((-1297 . -111) 129861) ((-1261 . -25) T) ((-1261 . -21) T) ((-871 . -649) 129848) ((-1254 . -21) T) ((-1254 . -25) T) ((-1233 . -21) T) ((-1233 . -25) T) ((-1029 . -151) 129832) ((-873 . -821) 129811) ((-873 . -922) T) ((-713 . -287) 129738) ((-598 . -21) T) ((-341 . -647) 129697) ((-598 . -25) T) ((-597 . -21) T) ((-174 . -647) 129614) ((-40 . -727) T) ((-222 . -517) 129547) ((-597 . -25) T) ((-479 . -151) 129531) ((-466 . -151) 129515) ((-923 . -795) T) ((-923 . -727) T) ((-772 . -794) T) ((-772 . -795) T) ((-509 . -1102) T) ((-505 . -1102) T) ((-772 . -727) T) ((-225 . -365) T) ((-1291 . -1053) 129499) ((-1289 . -1053) 129483) ((-1291 . -641) 129453) ((-1159 . -1102) 129431) ((-872 . -1223) T) ((-1289 . -641) 129401) ((-655 . -614) 129383) ((-872 . -559) T) ((-695 . -370) NIL) ((-44 . -1053) 129367) ((-1297 . -617) 129349) ((-1292 . -1102) T) ((-671 . -102) T) ((-361 . -1276) 129333) ((-355 . -1276) 129317) ((-44 . -641) 129301) ((-347 . -1276) 129285) ((-551 . -102) T) ((-523 . -851) 129264) ((-1048 . -1102) T) ((-818 . -455) 129243) ((-152 . -1053) 129227) ((-1048 . -1073) 129156) ((-1029 . -978) 129125) ((-820 . -1114) T) ((-1005 . -718) 129070) ((-152 . -641) 129054) ((-389 . -1114) T) ((-479 . -978) 129023) ((-466 . -978) 128992) ((-110 . -151) 128974) ((-73 . -614) 128956) ((-895 . -614) 128938) ((-1082 . -725) 128917) ((-1297 . -1051) T) ((-817 . -640) 128865) ((-295 . -1060) 128807) ((-169 . -1223) 128712) ((-225 . -1114) T) ((-325 . -23) T) ((-1170 . -994) 128664) ((-844 . -1102) T) ((-1255 . -1058) 128569) ((-1128 . -741) 128548) ((-1253 . -922) 128527) ((-1232 . -922) 128506) ((-871 . -727) T) ((-169 . -559) 128417) ((-583 . -649) 128404) ((-567 . -649) 128391) ((-410 . -1102) T) ((-264 . -1102) T) ((-213 . -614) 128373) ((-498 . -649) 128338) ((-225 . -23) T) ((-1232 . -821) 128291) ((-1291 . -102) T) ((-356 . -1288) 128268) ((-1289 . -102) T) ((-1255 . -111) 128160) ((-816 . -1053) 128057) ((-816 . -641) 127999) ((-144 . -614) 127981) ((-995 . -131) T) ((-44 . -102) T) ((-240 . -851) 127932) ((-1242 . -1223) 127911) ((-103 . -492) 127895) ((-1292 . -718) 127865) ((-1089 . -47) 127826) ((-1064 . -1114) T) ((-954 . -1114) T) ((-127 . -34) T) ((-121 . -34) T) ((-783 . -47) 127803) ((-781 . -47) 127775) ((-1242 . -559) 127686) ((-356 . -370) T) ((-484 . -1114) T) ((-1175 . -131) T) ((-1127 . -131) T) ((-457 . -47) 127665) ((-872 . -365) T) ((-855 . -131) T) ((-152 . -102) T) ((-1064 . -23) T) ((-954 . -23) T) ((-574 . -559) T) ((-817 . -25) T) ((-817 . -21) T) ((-1144 . -517) 127598) ((-594 . -1085) T) ((-588 . -1040) 127582) ((-1255 . -617) 127456) ((-484 . -23) T) ((-353 . -1060) T) ((-1213 . -902) 127437) ((-671 . -310) 127375) ((-1115 . -1276) 127345) ((-700 . -649) 127310) ((-1005 . -172) T) ((-965 . -145) 127289) ((-636 . -1102) T) ((-608 . -1102) T) ((-965 . -147) 127268) ((-1006 . -851) T) ((-736 . -147) 127247) ((-736 . -145) 127226) ((-973 . -851) T) ((-834 . -647) 127143) ((-477 . -922) 127122) ((-320 . -1053) 126957) ((-317 . -1058) 126867) ((-314 . -1058) 126796) ((-1001 . -287) 126754) ((-410 . -718) 126706) ((-320 . -641) 126547) ((-702 . -849) T) ((-1255 . -1051) T) ((-317 . -111) 126443) ((-314 . -111) 126356) ((-966 . -102) T) ((-816 . -102) 126146) ((-713 . -615) NIL) ((-713 . -614) 126128) ((-659 . -1040) 126024) ((-1255 . -327) 125968) ((-1037 . -289) 125943) ((-583 . -727) T) ((-567 . -795) T) ((-169 . -365) 125894) ((-567 . -792) T) ((-567 . -727) T) ((-498 . -727) T) ((-1148 . -492) 125878) ((-1089 . -888) NIL) ((-872 . -1114) T) ((-117 . -911) NIL) ((-1291 . -1290) 125854) ((-1289 . -1290) 125833) ((-783 . -888) NIL) ((-781 . -888) 125692) ((-1284 . -25) T) ((-1284 . -21) T) ((-1216 . -102) 125670) ((-1108 . -398) T) ((-624 . -649) 125657) ((-457 . -888) NIL) ((-676 . -102) 125635) ((-1089 . -1040) 125462) ((-872 . -23) T) ((-783 . -1040) 125321) ((-781 . -1040) 125178) ((-117 . -649) 125123) ((-457 . -1040) 124999) ((-317 . -617) 124563) ((-314 . -617) 124446) ((-393 . -647) 124415) ((-650 . -1040) 124399) ((-628 . -102) T) ((-222 . -492) 124383) ((-1269 . -34) T) ((-622 . -647) 124342) ((-290 . -1053) 124329) ((-136 . -617) 124313) ((-290 . -641) 124300) ((-636 . -718) 124284) ((-608 . -718) 124268) ((-671 . -38) 124228) ((-320 . -102) T) ((-85 . -614) 124210) ((-50 . -1040) 124194) ((-1122 . -1058) 124181) ((-1089 . -379) 124165) ((-783 . -379) 124149) ((-700 . -727) T) ((-700 . -795) T) ((-700 . -792) T) ((-584 . -1040) 124136) ((-521 . -1040) 124113) ((-60 . -57) 124075) ((-325 . -131) T) ((-317 . -1051) 123965) ((-314 . -1051) T) ((-169 . -1114) T) ((-781 . -379) 123949) ((-45 . -151) 123899) ((-1006 . -994) 123881) ((-457 . -379) 123865) ((-410 . -172) T) ((-317 . -243) 123844) ((-314 . -243) T) ((-314 . -233) NIL) ((-295 . -1102) 123626) ((-225 . -131) T) ((-1122 . -111) 123611) ((-169 . -23) T) ((-800 . -147) 123590) ((-800 . -145) 123569) ((-252 . -640) 123475) ((-251 . -640) 123381) ((-320 . -285) 123347) ((-1159 . -517) 123280) ((-480 . -647) 123230) ((-1135 . -1102) T) ((-225 . -1062) T) ((-816 . -310) 123168) ((-1089 . -902) 123103) ((-783 . -902) 123046) ((-781 . -902) 123030) ((-1291 . -38) 123000) ((-1289 . -38) 122970) ((-1242 . -1114) T) ((-856 . -1114) T) ((-457 . -902) 122947) ((-859 . -1102) T) ((-1242 . -23) T) ((-1122 . -617) 122919) ((-574 . -1114) T) ((-856 . -23) T) ((-624 . -727) T) ((-357 . -922) T) ((-354 . -922) T) ((-290 . -102) T) ((-346 . -922) T) ((-1064 . -131) T) ((-972 . -1085) T) ((-954 . -131) T) ((-117 . -795) NIL) ((-117 . -792) NIL) ((-117 . -727) T) ((-695 . -911) NIL) ((-1048 . -517) 122820) ((-484 . -131) T) ((-574 . -23) T) ((-676 . -310) 122758) ((-636 . -762) T) ((-608 . -762) T) ((-1233 . -851) NIL) ((-1082 . -1053) 122668) ((-1005 . -291) T) ((-695 . -649) 122618) ((-252 . -21) T) ((-353 . -1102) T) ((-252 . -25) T) ((-251 . -21) T) ((-251 . -25) T) ((-152 . -38) 122602) ((-2 . -102) T) ((-912 . -922) T) ((-1082 . -641) 122470) ((-485 . -1276) 122440) ((-1122 . -1051) T) ((-712 . -308) T) ((-361 . -1053) 122392) ((-355 . -1053) 122344) ((-347 . -1053) 122296) ((-361 . -641) 122248) ((-223 . -1040) 122225) ((-355 . -641) 122177) ((-108 . -1053) 122127) ((-347 . -641) 122079) ((-295 . -718) 122021) ((-702 . -1060) T) ((-490 . -455) T) ((-410 . -517) 121933) ((-108 . -641) 121883) ((-217 . -455) T) ((-1122 . -233) T) ((-296 . -151) 121833) ((-1001 . -615) 121794) ((-1001 . -614) 121776) ((-991 . -614) 121758) ((-116 . -1060) T) ((-655 . -1058) 121742) ((-225 . -496) T) ((-402 . -614) 121724) ((-402 . -615) 121701) ((-1056 . -1276) 121671) ((-655 . -111) 121650) ((-1144 . -492) 121634) ((-1293 . -647) 121593) ((-383 . -647) 121562) ((-816 . -38) 121532) ((-63 . -444) T) ((-63 . -398) T) ((-1162 . -102) T) ((-872 . -131) T) ((-487 . -102) 121510) ((-1297 . -370) T) ((-1082 . -102) T) ((-1063 . -102) T) ((-353 . -718) 121455) ((-732 . -147) 121434) ((-732 . -145) 121413) ((-655 . -617) 121331) ((-1026 . -649) 121268) ((-526 . -1102) 121246) ((-361 . -102) T) ((-355 . -102) T) ((-347 . -102) T) ((-108 . -102) T) ((-507 . -1102) T) ((-356 . -649) 121191) ((-1175 . -640) 121139) ((-1127 . -640) 121087) ((-387 . -512) 121066) ((-834 . -849) 121045) ((-381 . -1223) T) ((-695 . -727) T) ((-341 . -1060) T) ((-1233 . -994) 120997) ((-174 . -1060) T) ((-103 . -614) 120929) ((-1177 . -145) 120908) ((-1177 . -147) 120887) ((-381 . -559) T) ((-1176 . -147) 120866) ((-1176 . -145) 120845) ((-1170 . -145) 120752) ((-410 . -291) T) ((-1170 . -147) 120659) ((-1128 . -147) 120638) ((-1128 . -145) 120617) ((-320 . -38) 120458) ((-169 . -131) T) ((-314 . -796) NIL) ((-314 . -793) NIL) ((-655 . -1051) T) ((-48 . -649) 120423) ((-1115 . -1053) 120320) ((-895 . -617) 120297) ((-1115 . -641) 120239) ((-1169 . -102) T) ((-996 . -102) T) ((-995 . -21) T) ((-127 . -1012) 120223) ((-121 . -1012) 120207) ((-995 . -25) T) ((-903 . -119) 120191) ((-1161 . -102) T) ((-1242 . -131) T) ((-1175 . -25) T) ((-1175 . -21) T) ((-856 . -131) T) ((-1127 . -25) T) ((-1127 . -21) T) ((-855 . -25) T) ((-855 . -21) T) ((-783 . -308) 120170) ((-648 . -102) 120148) ((-633 . -102) T) ((-1162 . -310) 119943) ((-574 . -131) T) ((-622 . -849) 119922) ((-1159 . -492) 119906) ((-1152 . -151) 119856) ((-1148 . -614) 119818) ((-1148 . -615) 119779) ((-1026 . -792) T) ((-1026 . -795) T) ((-1026 . -727) T) ((-713 . -1058) 119602) ((-487 . -310) 119540) ((-456 . -420) 119510) ((-353 . -172) T) ((-290 . -38) 119497) ((-275 . -102) T) ((-274 . -102) T) ((-273 . -102) T) ((-272 . -102) T) ((-271 . -102) T) ((-270 . -102) T) ((-345 . -1040) 119474) ((-269 . -102) T) ((-212 . -102) T) ((-211 . -102) T) ((-209 . -102) T) ((-208 . -102) T) ((-207 . -102) T) ((-206 . -102) T) ((-203 . -102) T) ((-202 . -102) T) ((-201 . -102) T) ((-200 . -102) T) ((-199 . -102) T) ((-198 . -102) T) ((-197 . -102) T) ((-196 . -102) T) ((-195 . -102) T) ((-194 . -102) T) ((-193 . -102) T) ((-356 . -727) T) ((-713 . -111) 119283) ((-671 . -231) 119267) ((-584 . -308) T) ((-521 . -308) T) ((-295 . -517) 119216) ((-108 . -310) NIL) ((-72 . -398) T) ((-1115 . -102) 119006) ((-834 . -414) 118990) ((-1122 . -796) T) ((-1122 . -793) T) ((-702 . -1102) T) ((-581 . -614) 118972) ((-381 . -365) T) ((-169 . -496) 118950) ((-222 . -614) 118882) ((-134 . -1102) T) ((-116 . -1102) T) ((-48 . -727) T) ((-1048 . -492) 118847) ((-141 . -428) 118829) ((-141 . -370) T) ((-1029 . -102) T) ((-515 . -512) 118808) ((-713 . -617) 118564) ((-479 . -102) T) ((-466 . -102) T) ((-1036 . -1114) T) ((-1226 . -614) 118546) ((-1184 . -1040) 118482) ((-1177 . -35) 118448) ((-1177 . -95) 118414) ((-1177 . -1207) 118380) ((-1177 . -1204) 118346) ((-1161 . -310) NIL) ((-89 . -399) T) ((-89 . -398) T) ((-1082 . -1154) 118325) ((-1176 . -1204) 118291) ((-1176 . -1207) 118257) ((-1036 . -23) T) ((-1176 . -95) 118223) ((-574 . -496) T) ((-1176 . -35) 118189) ((-1170 . -1204) 118155) ((-1170 . -1207) 118121) ((-1170 . -95) 118087) ((-363 . -1114) T) ((-361 . -1154) 118066) ((-355 . -1154) 118045) ((-347 . -1154) 118024) ((-1170 . -35) 117990) ((-1128 . -35) 117956) ((-1128 . -95) 117922) ((-108 . -1154) T) ((-1128 . -1207) 117888) ((-834 . -1060) 117867) ((-648 . -310) 117805) ((-633 . -310) 117656) ((-1128 . -1204) 117622) ((-713 . -1051) T) ((-1064 . -640) 117604) ((-1082 . -38) 117472) ((-954 . -640) 117420) ((-1006 . -147) T) ((-1006 . -145) NIL) ((-381 . -1114) T) ((-325 . -25) T) ((-323 . -23) T) ((-945 . -851) 117399) ((-713 . -327) 117376) ((-484 . -640) 117324) ((-40 . -1040) 117212) ((-713 . -233) T) ((-702 . -718) 117199) ((-341 . -1102) T) ((-174 . -1102) T) ((-332 . -851) T) ((-421 . -455) 117149) ((-381 . -23) T) ((-361 . -38) 117114) ((-355 . -38) 117079) ((-347 . -38) 117044) ((-80 . -444) T) ((-80 . -398) T) ((-225 . -25) T) ((-225 . -21) T) ((-837 . -1114) T) ((-108 . -38) 116994) ((-828 . -1114) T) ((-775 . -1102) T) ((-116 . -718) 116981) ((-673 . -1040) 116965) ((-613 . -102) T) ((-837 . -23) T) ((-828 . -23) T) ((-1159 . -287) 116942) ((-1115 . -310) 116880) ((-485 . -1053) 116777) ((-1104 . -235) 116761) ((-64 . -399) T) ((-64 . -398) T) ((-1153 . -102) T) ((-110 . -102) T) ((-485 . -641) 116703) ((-40 . -379) 116680) ((-96 . -102) T) ((-654 . -853) 116664) ((-1137 . -1085) T) ((-1064 . -21) T) ((-1064 . -25) T) ((-1056 . -1053) 116648) ((-816 . -231) 116617) ((-954 . -25) T) ((-954 . -21) T) ((-1056 . -641) 116559) ((-622 . -1060) T) ((-1122 . -370) T) ((-1029 . -310) 116497) ((-671 . -647) 116456) ((-484 . -25) T) ((-484 . -21) T) ((-387 . -1053) 116440) ((-891 . -614) 116422) ((-887 . -614) 116404) ((-526 . -517) 116337) ((-252 . -851) 116288) ((-251 . -851) 116239) ((-387 . -641) 116209) ((-872 . -640) 116186) ((-479 . -310) 116124) ((-466 . -310) 116062) ((-353 . -291) T) ((-1159 . -1257) 116046) ((-1144 . -614) 116008) ((-1144 . -615) 115969) ((-1142 . -102) T) ((-1001 . -1058) 115865) ((-40 . -902) 115817) ((-1159 . -605) 115794) ((-1297 . -649) 115781) ((-867 . -493) 115758) ((-1065 . -151) 115704) ((-873 . -1223) T) ((-1001 . -111) 115586) ((-341 . -718) 115570) ((-867 . -614) 115532) ((-174 . -718) 115464) ((-410 . -287) 115422) ((-873 . -559) T) ((-108 . -403) 115404) ((-84 . -386) T) ((-84 . -398) T) ((-702 . -172) T) ((-618 . -614) 115386) ((-99 . -727) T) ((-485 . -102) 115176) ((-99 . -476) T) ((-116 . -172) T) ((-1291 . -647) 115135) ((-1289 . -647) 115094) ((-1115 . -38) 115064) ((-169 . -640) 115012) ((-1056 . -102) T) ((-1001 . -617) 114902) ((-872 . -25) T) ((-816 . -238) 114881) ((-872 . -21) T) ((-819 . -102) T) ((-44 . -647) 114824) ((-417 . -102) T) ((-387 . -102) T) ((-110 . -310) NIL) ((-227 . -102) 114802) ((-127 . -1219) T) ((-121 . -1219) T) ((-818 . -1053) 114753) ((-818 . -641) 114695) ((-1036 . -131) T) ((-671 . -369) 114679) ((-152 . -647) 114638) ((-1001 . -1051) T) ((-1242 . -640) 114586) ((-1106 . -614) 114568) ((-1005 . -614) 114550) ((-518 . -23) T) ((-513 . -23) T) ((-345 . -308) T) ((-511 . -23) T) ((-323 . -131) T) ((-3 . -1102) T) ((-1005 . -615) 114534) ((-1001 . -243) 114513) ((-1001 . -233) 114492) ((-1297 . -727) T) ((-1261 . -145) 114471) ((-834 . -1102) T) ((-1261 . -147) 114450) ((-1254 . -147) 114429) ((-1254 . -145) 114408) ((-1253 . -1223) 114387) ((-1233 . -145) 114294) ((-1233 . -147) 114201) ((-1232 . -1223) 114180) ((-381 . -131) T) ((-567 . -888) 114162) ((0 . -1102) T) ((-174 . -172) T) ((-169 . -21) T) ((-169 . -25) T) ((-49 . -1102) T) ((-1255 . -649) 114067) ((-1253 . -559) 114018) ((-715 . -1114) T) ((-1232 . -559) 113969) ((-567 . -1040) 113951) ((-597 . -147) 113930) ((-597 . -145) 113909) ((-498 . -1040) 113852) ((-1137 . -1139) T) ((-87 . -386) T) ((-87 . -398) T) ((-873 . -365) T) ((-837 . -131) T) ((-828 . -131) T) ((-966 . -647) 113796) ((-715 . -23) T) ((-509 . -614) 113762) ((-505 . -614) 113744) ((-816 . -647) 113494) ((-1293 . -1060) T) ((-381 . -1062) T) ((-1028 . -1102) 113472) ((-55 . -1040) 113454) ((-903 . -34) T) ((-485 . -310) 113392) ((-594 . -102) T) ((-1159 . -615) 113353) ((-1159 . -614) 113285) ((-1181 . -1053) 113168) ((-45 . -102) T) ((-818 . -102) T) ((-1181 . -641) 113065) ((-1242 . -25) T) ((-1242 . -21) T) ((-856 . -25) T) ((-44 . -369) 113049) ((-856 . -21) T) ((-732 . -455) 113000) ((-1292 . -614) 112982) ((-1281 . -1053) 112952) ((-1056 . -310) 112890) ((-672 . -1085) T) ((-607 . -1085) T) ((-393 . -1102) T) ((-574 . -25) T) ((-574 . -21) T) ((-180 . -1085) T) ((-161 . -1085) T) ((-156 . -1085) T) ((-154 . -1085) T) ((-1281 . -641) 112860) ((-622 . -1102) T) ((-700 . -888) 112842) ((-1269 . -1219) T) ((-227 . -310) 112780) ((-144 . -370) T) ((-1048 . -615) 112722) ((-1048 . -614) 112665) ((-314 . -911) NIL) ((-1227 . -845) T) ((-700 . -1040) 112610) ((-712 . -922) T) ((-477 . -1223) 112589) ((-1176 . -455) 112568) ((-1170 . -455) 112547) ((-331 . -102) T) ((-873 . -1114) T) ((-320 . -647) 112429) ((-317 . -649) 112250) ((-314 . -649) 112179) ((-477 . -559) 112130) ((-341 . -517) 112096) ((-553 . -151) 112046) ((-40 . -308) T) ((-844 . -614) 112028) ((-702 . -291) T) ((-873 . -23) T) ((-381 . -496) T) ((-1082 . -231) 111998) ((-515 . -102) T) ((-410 . -615) 111805) ((-410 . -614) 111787) ((-264 . -614) 111769) ((-116 . -291) T) ((-1255 . -727) T) ((-1253 . -365) 111748) ((-1232 . -365) 111727) ((-1282 . -34) T) ((-1227 . -1102) T) ((-117 . -1219) T) ((-108 . -231) 111709) ((-1181 . -102) T) ((-480 . -1102) T) ((-526 . -492) 111693) ((-738 . -34) T) ((-654 . -1053) 111677) ((-485 . -38) 111647) ((-654 . -641) 111617) ((-141 . -34) T) ((-117 . -886) 111594) ((-117 . -888) NIL) ((-624 . -1040) 111477) ((-645 . -851) 111456) ((-1281 . -102) T) ((-296 . -102) T) ((-713 . -370) 111435) ((-117 . -1040) 111412) ((-393 . -718) 111396) ((-622 . -718) 111380) ((-45 . -310) 111184) ((-817 . -145) 111163) ((-817 . -147) 111142) ((-290 . -647) 111114) ((-1292 . -384) 111093) ((-820 . -851) T) ((-1271 . -1102) T) ((-1162 . -229) 111040) ((-389 . -851) 111019) ((-1261 . -1207) 110985) ((-1261 . -1204) 110951) ((-1254 . -1204) 110917) ((-518 . -131) T) ((-1254 . -1207) 110883) ((-1233 . -1204) 110849) ((-1233 . -1207) 110815) ((-1261 . -35) 110781) ((-1261 . -95) 110747) ((-636 . -614) 110716) ((-608 . -614) 110685) ((-225 . -851) T) ((-1254 . -95) 110651) ((-1254 . -35) 110617) ((-1253 . -1114) T) ((-1122 . -649) 110604) ((-1233 . -95) 110570) ((-1232 . -1114) T) ((-595 . -151) 110552) ((-1082 . -351) 110531) ((-174 . -291) T) ((-117 . -379) 110508) ((-117 . -340) 110485) ((-1233 . -35) 110451) ((-871 . -308) T) ((-314 . -795) NIL) ((-314 . -792) NIL) ((-317 . -727) 110300) ((-314 . -727) T) ((-477 . -365) 110279) ((-361 . -351) 110258) ((-355 . -351) 110237) ((-347 . -351) 110216) ((-317 . -476) 110195) ((-1253 . -23) T) ((-1232 . -23) T) ((-719 . -1114) T) ((-715 . -131) T) ((-654 . -102) T) ((-480 . -718) 110160) ((-45 . -283) 110110) ((-105 . -1102) T) ((-68 . -614) 110092) ((-972 . -102) T) ((-865 . -102) T) ((-624 . -902) 110051) ((-1293 . -1102) T) ((-383 . -1102) T) ((-82 . -1219) T) ((-1218 . -1102) T) ((-1064 . -851) T) ((-117 . -902) NIL) ((-783 . -922) 110030) ((-714 . -851) T) ((-534 . -1102) T) ((-503 . -1102) T) ((-357 . -1223) T) ((-354 . -1223) T) ((-346 . -1223) T) ((-265 . -1223) 110009) ((-247 . -1223) 109988) ((-536 . -861) T) ((-1115 . -231) 109957) ((-1161 . -829) T) ((-1144 . -1058) 109941) ((-393 . -762) T) ((-695 . -1219) T) ((-692 . -1040) 109925) ((-357 . -559) T) ((-354 . -559) T) ((-346 . -559) T) ((-265 . -559) 109856) ((-247 . -559) 109787) ((-528 . -1085) T) ((-1144 . -111) 109766) ((-456 . -745) 109736) ((-867 . -1058) 109706) ((-818 . -38) 109648) ((-695 . -886) 109630) ((-695 . -888) 109612) ((-296 . -310) 109416) ((-912 . -1223) T) ((-1159 . -289) 109393) ((-1082 . -647) 109288) ((-671 . -414) 109272) ((-867 . -111) 109237) ((-1006 . -455) T) ((-695 . -1040) 109182) ((-912 . -559) T) ((-536 . -614) 109164) ((-584 . -922) T) ((-490 . -1053) 109114) ((-477 . -1114) T) ((-521 . -922) T) ((-916 . -455) T) ((-65 . -614) 109096) ((-217 . -1053) 109046) ((-490 . -641) 108996) ((-361 . -647) 108933) ((-355 . -647) 108870) ((-347 . -647) 108807) ((-633 . -229) 108753) ((-217 . -641) 108703) ((-108 . -647) 108653) ((-477 . -23) T) ((-1122 . -795) T) ((-873 . -131) T) ((-1122 . -792) T) ((-1284 . -1286) 108632) ((-1122 . -727) T) ((-655 . -649) 108606) ((-295 . -614) 108347) ((-1144 . -617) 108265) ((-1037 . -34) T) ((-816 . -849) 108244) ((-583 . -308) T) ((-567 . -308) T) ((-498 . -308) T) ((-1293 . -718) 108214) ((-695 . -379) 108196) ((-695 . -340) 108178) ((-480 . -172) T) ((-383 . -718) 108148) ((-867 . -617) 108083) ((-872 . -851) NIL) ((-567 . -1024) T) ((-498 . -1024) T) ((-1135 . -614) 108065) ((-1115 . -238) 108044) ((-214 . -102) T) ((-1152 . -102) T) ((-71 . -614) 108026) ((-1144 . -1051) T) ((-1181 . -38) 107923) ((-859 . -614) 107905) ((-567 . -548) T) ((-671 . -1060) T) ((-732 . -951) 107858) ((-1144 . -233) 107837) ((-1084 . -1102) T) ((-1036 . -25) T) ((-1036 . -21) T) ((-1005 . -1058) 107782) ((-907 . -102) T) ((-867 . -1051) T) ((-695 . -902) NIL) ((-357 . -330) 107766) ((-357 . -365) T) ((-354 . -330) 107750) ((-354 . -365) T) ((-346 . -330) 107734) ((-346 . -365) T) ((-490 . -102) T) ((-1281 . -38) 107704) ((-549 . -851) T) ((-526 . -688) 107654) ((-217 . -102) T) ((-1026 . -1040) 107534) ((-1005 . -111) 107463) ((-1177 . -975) 107432) ((-523 . -151) 107416) ((-1082 . -372) 107395) ((-353 . -614) 107377) ((-323 . -21) T) ((-356 . -1040) 107354) ((-323 . -25) T) ((-1176 . -975) 107316) ((-1170 . -975) 107285) ((-76 . -614) 107267) ((-1128 . -975) 107234) ((-700 . -308) T) ((-129 . -845) T) ((-912 . -365) T) ((-381 . -25) T) ((-381 . -21) T) ((-912 . -330) 107221) ((-86 . -614) 107203) ((-700 . -1024) T) ((-678 . -851) T) ((-1253 . -131) T) ((-1232 . -131) T) ((-903 . -1012) 107187) ((-837 . -21) T) ((-48 . -1040) 107130) ((-837 . -25) T) ((-828 . -25) T) ((-828 . -21) T) ((-1115 . -647) 106880) ((-1291 . -1060) T) ((-552 . -102) T) ((-1289 . -1060) T) ((-655 . -727) T) ((-1106 . -619) 106783) ((-1005 . -617) 106713) ((-1292 . -1058) 106697) ((-816 . -414) 106666) ((-103 . -119) 106650) ((-129 . -1102) T) ((-52 . -1102) T) ((-928 . -614) 106632) ((-872 . -994) 106609) ((-824 . -102) T) ((-1292 . -111) 106588) ((-654 . -38) 106558) ((-574 . -851) T) ((-357 . -1114) T) ((-354 . -1114) T) ((-346 . -1114) T) ((-265 . -1114) T) ((-247 . -1114) T) ((-624 . -308) 106537) ((-1152 . -310) 106341) ((-665 . -23) T) ((-527 . -1085) T) ((-312 . -1102) T) ((-485 . -231) 106310) ((-152 . -1060) T) ((-357 . -23) T) ((-354 . -23) T) ((-346 . -23) T) ((-117 . -308) T) ((-265 . -23) T) ((-247 . -23) T) ((-1005 . -1051) T) ((-713 . -911) 106289) ((-1159 . -617) 106266) ((-1005 . -233) 106238) ((-1005 . -243) T) ((-117 . -1024) NIL) ((-912 . -1114) T) ((-1254 . -455) 106217) ((-1233 . -455) 106196) ((-526 . -614) 106128) ((-713 . -649) 106053) ((-410 . -1058) 106005) ((-507 . -614) 105987) ((-912 . -23) T) ((-490 . -310) NIL) ((-1292 . -617) 105943) ((-477 . -131) T) ((-217 . -310) NIL) ((-410 . -111) 105881) ((-816 . -1060) 105811) ((-738 . -1100) 105795) ((-1253 . -496) 105761) ((-1232 . -496) 105727) ((-551 . -845) T) ((-141 . -1100) 105709) ((-480 . -291) T) ((-1292 . -1051) T) ((-1224 . -102) T) ((-1065 . -102) T) ((-844 . -617) 105577) ((-503 . -517) NIL) ((-485 . -238) 105556) ((-410 . -617) 105454) ((-965 . -1053) 105337) ((-736 . -1053) 105307) ((-965 . -641) 105204) ((-1175 . -145) 105183) ((-736 . -641) 105153) ((-456 . -1053) 105123) ((-1175 . -147) 105102) ((-1127 . -147) 105081) ((-1127 . -145) 105060) ((-636 . -1058) 105044) ((-608 . -1058) 105028) ((-456 . -641) 104998) ((-1177 . -1260) 104982) ((-1177 . -1247) 104959) ((-671 . -1102) T) ((-671 . -1055) 104899) ((-1176 . -1252) 104860) ((-551 . -1102) T) ((-490 . -1154) T) ((-1176 . -1247) 104830) ((-1176 . -1250) 104814) ((-1170 . -1231) 104775) ((-217 . -1154) T) ((-345 . -922) T) ((-819 . -267) 104759) ((-636 . -111) 104738) ((-608 . -111) 104717) ((-1170 . -1247) 104694) ((-844 . -1051) 104673) ((-1170 . -1229) 104657) ((-518 . -25) T) ((-498 . -303) T) ((-514 . -23) T) ((-513 . -25) T) ((-511 . -25) T) ((-510 . -23) T) ((-421 . -1053) 104631) ((-410 . -1051) T) ((-320 . -1060) T) ((-695 . -308) T) ((-421 . -641) 104605) ((-108 . -849) T) ((-713 . -727) T) ((-410 . -243) T) ((-410 . -233) 104584) ((-490 . -38) 104534) ((-217 . -38) 104484) ((-477 . -496) 104450) ((-1226 . -370) T) ((-1161 . -1146) T) ((-1103 . -102) T) ((-702 . -614) 104432) ((-702 . -615) 104347) ((-715 . -21) T) ((-715 . -25) T) ((-1137 . -102) T) ((-485 . -647) 104097) ((-134 . -614) 104079) ((-116 . -614) 104061) ((-157 . -25) T) ((-1291 . -1102) T) ((-873 . -640) 104009) ((-1289 . -1102) T) ((-965 . -102) T) ((-736 . -102) T) ((-716 . -102) T) ((-456 . -102) T) ((-817 . -455) 103960) ((-44 . -1102) T) ((-1090 . -851) T) ((-1065 . -310) 103811) ((-665 . -131) T) ((-1056 . -647) 103780) ((-671 . -718) 103764) ((-290 . -1060) T) ((-357 . -131) T) ((-354 . -131) T) ((-346 . -131) T) ((-265 . -131) T) ((-247 . -131) T) ((-387 . -647) 103733) ((-421 . -102) T) ((-152 . -1102) T) ((-45 . -229) 103683) ((-800 . -1053) 103667) ((-960 . -851) 103646) ((-1001 . -649) 103584) ((-800 . -641) 103568) ((-240 . -1276) 103538) ((-1026 . -308) T) ((-295 . -1058) 103459) ((-912 . -131) T) ((-40 . -922) T) ((-490 . -403) 103441) ((-356 . -308) T) ((-217 . -403) 103423) ((-1082 . -414) 103407) ((-295 . -111) 103323) ((-1186 . -851) T) ((-1185 . -851) T) ((-873 . -25) T) ((-873 . -21) T) ((-341 . -614) 103305) ((-1255 . -47) 103249) ((-225 . -147) T) ((-174 . -614) 103231) ((-1115 . -849) 103210) ((-775 . -614) 103192) ((-128 . -851) T) ((-609 . -235) 103139) ((-478 . -235) 103089) ((-1291 . -718) 103059) ((-48 . -308) T) ((-1289 . -718) 103029) ((-65 . -617) 102958) ((-966 . -1102) T) ((-816 . -1102) 102748) ((-313 . -102) T) ((-903 . -1219) T) ((-48 . -1024) T) ((-1232 . -640) 102656) ((-690 . -102) 102634) ((-44 . -718) 102618) ((-553 . -102) T) ((-295 . -617) 102549) ((-67 . -385) T) ((-67 . -398) T) ((-663 . -23) T) ((-818 . -647) 102485) ((-671 . -762) T) ((-1216 . -1102) 102463) ((-353 . -1058) 102408) ((-676 . -1102) 102386) ((-1064 . -147) T) ((-954 . -147) 102365) ((-954 . -145) 102344) ((-800 . -102) T) ((-152 . -718) 102328) ((-484 . -147) 102307) ((-484 . -145) 102286) ((-353 . -111) 102215) ((-1082 . -1060) T) ((-323 . -851) 102194) ((-1261 . -975) 102163) ((-628 . -1102) T) ((-1254 . -975) 102125) ((-514 . -131) T) ((-510 . -131) T) ((-296 . -229) 102075) ((-361 . -1060) T) ((-355 . -1060) T) ((-347 . -1060) T) ((-295 . -1051) 102017) ((-1233 . -975) 101986) ((-381 . -851) T) ((-108 . -1060) T) ((-1001 . -727) T) ((-871 . -922) T) ((-844 . -796) 101965) ((-844 . -793) 101944) ((-421 . -310) 101883) ((-471 . -102) T) ((-597 . -975) 101852) ((-320 . -1102) T) ((-410 . -796) 101831) ((-410 . -793) 101810) ((-503 . -492) 101792) ((-1255 . -1040) 101758) ((-1253 . -21) T) ((-1253 . -25) T) ((-1232 . -21) T) ((-1232 . -25) T) ((-816 . -718) 101700) ((-353 . -617) 101630) ((-700 . -407) T) ((-1282 . -1219) T) ((-607 . -102) T) ((-1115 . -414) 101599) ((-1005 . -370) NIL) ((-672 . -102) T) ((-180 . -102) T) ((-161 . -102) T) ((-156 . -102) T) ((-154 . -102) T) ((-103 . -34) T) ((-1181 . -647) 101509) ((-738 . -1219) T) ((-732 . -1053) 101352) ((-44 . -762) T) ((-732 . -641) 101201) ((-595 . -102) T) ((-77 . -399) T) ((-77 . -398) T) ((-654 . -657) 101185) ((-141 . -1219) T) ((-872 . -147) T) ((-872 . -145) NIL) ((-1218 . -93) T) ((-353 . -1051) T) ((-70 . -385) T) ((-70 . -398) T) ((-1168 . -102) T) ((-671 . -517) 101118) ((-1281 . -647) 101063) ((-690 . -310) 101001) ((-965 . -38) 100898) ((-1183 . -614) 100880) ((-736 . -38) 100850) ((-553 . -310) 100654) ((-1177 . -1053) 100537) ((-317 . -1219) T) ((-353 . -233) T) ((-353 . -243) T) ((-314 . -1219) T) ((-290 . -1102) T) ((-1176 . -1053) 100372) ((-1170 . -1053) 100162) ((-1128 . -1053) 100045) ((-1177 . -641) 99942) ((-1176 . -641) 99783) ((-712 . -1223) T) ((-1170 . -641) 99579) ((-1159 . -652) 99563) ((-1128 . -641) 99460) ((-1213 . -559) 99439) ((-820 . -388) 99423) ((-712 . -559) T) ((-317 . -886) 99407) ((-317 . -888) 99332) ((-314 . -886) 99293) ((-314 . -888) NIL) ((-800 . -310) 99258) ((-320 . -718) 99099) ((-389 . -388) 99083) ((-325 . -324) 99060) ((-488 . -102) T) ((-477 . -25) T) ((-477 . -21) T) ((-421 . -38) 99034) ((-317 . -1040) 98697) ((-225 . -1204) T) ((-225 . -1207) T) ((-3 . -614) 98679) ((-314 . -1040) 98609) ((-2 . -1102) T) ((-2 . |RecordCategory|) T) ((-834 . -614) 98591) ((-1115 . -1060) 98521) ((-583 . -922) T) ((-567 . -821) T) ((-567 . -922) T) ((-498 . -922) T) ((-136 . -1040) 98505) ((-225 . -95) T) ((-169 . -147) 98484) ((-75 . -444) T) ((0 . -614) 98466) ((-75 . -398) T) ((-169 . -145) 98417) ((-225 . -35) T) ((-49 . -614) 98399) ((-480 . -1060) T) ((-490 . -231) 98381) ((-487 . -970) 98365) ((-485 . -849) 98344) ((-217 . -231) 98326) ((-81 . -444) T) ((-81 . -398) T) ((-1148 . -34) T) ((-816 . -172) 98305) ((-732 . -102) T) ((-654 . -647) 98264) ((-1028 . -614) 98231) ((-503 . -287) 98206) ((-317 . -379) 98175) ((-314 . -379) 98136) ((-314 . -340) 98097) ((-1087 . -614) 98079) ((-817 . -951) 98026) ((-663 . -131) T) ((-1242 . -145) 98005) ((-1242 . -147) 97984) ((-1177 . -102) T) ((-1176 . -102) T) ((-1170 . -102) T) ((-1162 . -1102) T) ((-1128 . -102) T) ((-222 . -34) T) ((-290 . -718) 97971) ((-1162 . -611) 97947) ((-595 . -310) NIL) ((-487 . -1102) 97925) ((-393 . -614) 97907) ((-513 . -851) T) ((-1152 . -229) 97857) ((-1261 . -1260) 97841) ((-1261 . -1247) 97818) ((-1254 . -1252) 97779) ((-1254 . -1247) 97749) ((-1254 . -1250) 97733) ((-1233 . -1231) 97694) ((-1233 . -1247) 97671) ((-622 . -614) 97653) ((-1233 . -1229) 97637) ((-700 . -922) T) ((-1177 . -285) 97603) ((-1176 . -285) 97569) ((-1170 . -285) 97535) ((-1082 . -1102) T) ((-1063 . -1102) T) ((-48 . -303) T) ((-317 . -902) 97501) ((-314 . -902) NIL) ((-1063 . -1070) 97480) ((-1122 . -888) 97462) ((-800 . -38) 97446) ((-265 . -640) 97394) ((-247 . -640) 97342) ((-702 . -1058) 97329) ((-597 . -1247) 97306) ((-1128 . -285) 97272) ((-320 . -172) 97203) ((-361 . -1102) T) ((-355 . -1102) T) ((-347 . -1102) T) ((-503 . -19) 97185) ((-1122 . -1040) 97167) ((-1104 . -151) 97151) ((-108 . -1102) T) ((-116 . -1058) 97138) ((-712 . -365) T) ((-503 . -605) 97113) ((-702 . -111) 97098) ((-439 . -102) T) ((-877 . -1264) T) ((-250 . -102) T) ((-45 . -1151) 97048) ((-116 . -111) 97033) ((-636 . -721) T) ((-608 . -721) T) ((-1271 . -614) 97015) ((-1227 . -614) 96997) ((-1225 . -851) T) ((-816 . -517) 96930) ((-1037 . -1219) T) ((-240 . -1053) 96827) ((-1213 . -1114) T) ((-1213 . -23) T) ((-945 . -151) 96811) ((-1175 . -455) 96742) ((-1170 . -310) 96627) ((-240 . -641) 96569) ((-1169 . -1102) T) ((-1161 . -1102) T) ((-1144 . -649) 96543) ((-528 . -102) T) ((-523 . -102) 96493) ((-1128 . -310) 96480) ((-1127 . -455) 96431) ((-1089 . -1223) 96410) ((-783 . -1223) 96389) ((-781 . -1223) 96368) ((-62 . -1219) T) ((-480 . -614) 96320) ((-480 . -615) 96242) ((-1089 . -559) 96173) ((-996 . -1102) T) ((-783 . -559) 96084) ((-781 . -559) 96015) ((-485 . -414) 95984) ((-624 . -922) 95963) ((-457 . -1223) 95942) ((-732 . -310) 95929) ((-702 . -617) 95901) ((-401 . -614) 95883) ((-676 . -517) 95816) ((-665 . -25) T) ((-665 . -21) T) ((-457 . -559) 95747) ((-357 . -25) T) ((-357 . -21) T) ((-117 . -922) T) ((-117 . -821) NIL) ((-354 . -25) T) ((-354 . -21) T) ((-346 . -25) T) ((-346 . -21) T) ((-265 . -25) T) ((-265 . -21) T) ((-247 . -25) T) ((-247 . -21) T) ((-83 . -386) T) ((-83 . -398) T) ((-134 . -617) 95729) ((-116 . -617) 95701) ((-1082 . -718) 95569) ((-1006 . -1053) 95519) ((-1006 . -641) 95469) ((-945 . -982) 95453) ((-916 . -641) 95405) ((-916 . -1053) 95357) ((-912 . -21) T) ((-912 . -25) T) ((-873 . -851) 95308) ((-867 . -649) 95268) ((-712 . -1114) T) ((-712 . -23) T) ((-290 . -172) T) ((-702 . -1051) T) ((-312 . -93) T) ((-702 . -233) T) ((-648 . -1102) 95246) ((-633 . -611) 95221) ((-633 . -1102) T) ((-584 . -1223) T) ((-584 . -559) T) ((-521 . -1223) T) ((-521 . -559) T) ((-490 . -647) 95171) ((-430 . -1053) 95155) ((-430 . -641) 95139) ((-361 . -718) 95091) ((-355 . -718) 95043) ((-341 . -1058) 95027) ((-347 . -718) 94979) ((-341 . -111) 94958) ((-174 . -1058) 94890) ((-217 . -647) 94840) ((-174 . -111) 94751) ((-108 . -718) 94701) ((-275 . -1102) T) ((-274 . -1102) T) ((-273 . -1102) T) ((-272 . -1102) T) ((-271 . -1102) T) ((-270 . -1102) T) ((-269 . -1102) T) ((-212 . -1102) T) ((-211 . -1102) T) ((-169 . -1207) 94679) ((-169 . -1204) 94657) ((-209 . -1102) T) ((-208 . -1102) T) ((-116 . -1051) T) ((-207 . -1102) T) ((-206 . -1102) T) ((-203 . -1102) T) ((-202 . -1102) T) ((-201 . -1102) T) ((-200 . -1102) T) ((-199 . -1102) T) ((-198 . -1102) T) ((-197 . -1102) T) ((-196 . -1102) T) ((-195 . -1102) T) ((-194 . -1102) T) ((-193 . -1102) T) ((-240 . -102) 94447) ((-169 . -35) 94425) ((-169 . -95) 94403) ((-655 . -1040) 94299) ((-485 . -1060) 94229) ((-1115 . -1102) 94019) ((-1144 . -34) T) ((-671 . -492) 94003) ((-73 . -1219) T) ((-105 . -614) 93985) ((-1293 . -614) 93967) ((-383 . -614) 93949) ((-341 . -617) 93901) ((-174 . -617) 93818) ((-1218 . -493) 93799) ((-732 . -38) 93648) ((-574 . -1207) T) ((-574 . -1204) T) ((-534 . -614) 93630) ((-523 . -310) 93568) ((-503 . -614) 93550) ((-503 . -615) 93532) ((-1218 . -614) 93498) ((-1170 . -1154) NIL) ((-1029 . -1073) 93467) ((-1029 . -1102) T) ((-1006 . -102) T) ((-973 . -102) T) ((-916 . -102) T) ((-895 . -1040) 93444) ((-1144 . -727) T) ((-1005 . -649) 93389) ((-479 . -1102) T) ((-466 . -1102) T) ((-588 . -23) T) ((-574 . -35) T) ((-574 . -95) T) ((-430 . -102) T) ((-1065 . -229) 93335) ((-1177 . -38) 93232) ((-867 . -727) T) ((-695 . -922) T) ((-514 . -25) T) ((-510 . -21) T) ((-510 . -25) T) ((-1176 . -38) 93073) ((-341 . -1051) T) ((-1170 . -38) 92869) ((-1082 . -172) T) ((-174 . -1051) T) ((-1128 . -38) 92766) ((-713 . -47) 92743) ((-361 . -172) T) ((-355 . -172) T) ((-522 . -57) 92717) ((-500 . -57) 92667) ((-353 . -1288) 92644) ((-225 . -455) T) ((-320 . -291) 92595) ((-347 . -172) T) ((-174 . -243) T) ((-1232 . -851) 92494) ((-108 . -172) T) ((-873 . -994) 92478) ((-659 . -1114) T) ((-584 . -365) T) ((-584 . -330) 92465) ((-521 . -330) 92442) ((-521 . -365) T) ((-317 . -308) 92421) ((-314 . -308) T) ((-603 . -851) 92400) ((-1115 . -718) 92342) ((-523 . -283) 92326) ((-659 . -23) T) ((-421 . -231) 92310) ((-314 . -1024) NIL) ((-338 . -23) T) ((-103 . -1012) 92294) ((-45 . -36) 92273) ((-613 . -1102) T) ((-353 . -370) T) ((-527 . -102) T) ((-498 . -27) T) ((-240 . -310) 92211) ((-1089 . -1114) T) ((-1292 . -649) 92185) ((-783 . -1114) T) ((-781 . -1114) T) ((-457 . -1114) T) ((-1064 . -455) T) ((-1153 . -1102) T) ((-954 . -455) 92136) ((-1117 . -1085) T) ((-110 . -1102) T) ((-1089 . -23) T) ((-818 . -1060) T) ((-783 . -23) T) ((-781 . -23) T) ((-484 . -455) 92087) ((-1162 . -517) 91870) ((-383 . -384) 91849) ((-1181 . -414) 91833) ((-464 . -23) T) ((-457 . -23) T) ((-96 . -1102) T) ((-487 . -517) 91766) ((-1261 . -1053) 91649) ((-1261 . -641) 91546) ((-1254 . -641) 91387) ((-1254 . -1053) 91222) ((-290 . -291) T) ((-1233 . -1053) 91012) ((-1084 . -614) 90994) ((-1084 . -615) 90975) ((-410 . -911) 90954) ((-1233 . -641) 90750) ((-50 . -1114) T) ((-1213 . -131) T) ((-1026 . -922) T) ((-1005 . -727) T) ((-844 . -649) 90723) ((-713 . -888) NIL) ((-598 . -1053) 90683) ((-584 . -1114) T) ((-521 . -1114) T) ((-597 . -1053) 90566) ((-1170 . -403) 90518) ((-1006 . -310) NIL) ((-816 . -492) 90502) ((-598 . -641) 90475) ((-356 . -922) T) ((-597 . -641) 90372) ((-1159 . -34) T) ((-410 . -649) 90324) ((-50 . -23) T) ((-712 . -131) T) ((-713 . -1040) 90204) ((-584 . -23) T) ((-108 . -517) NIL) ((-521 . -23) T) ((-169 . -412) 90175) ((-1142 . -1102) T) ((-1284 . -1283) 90159) ((-702 . -796) T) ((-702 . -793) T) ((-1122 . -308) T) ((-381 . -147) T) ((-281 . -614) 90141) ((-1232 . -994) 90111) ((-48 . -922) T) ((-676 . -492) 90095) ((-252 . -1276) 90065) ((-251 . -1276) 90035) ((-1179 . -851) T) ((-1115 . -172) 90014) ((-1122 . -1024) T) ((-1048 . -34) T) ((-837 . -147) 89993) ((-837 . -145) 89972) ((-738 . -107) 89956) ((-613 . -132) T) ((-485 . -1102) 89746) ((-1181 . -1060) T) ((-872 . -455) T) ((-85 . -1219) T) ((-240 . -38) 89716) ((-141 . -107) 89698) ((-713 . -379) 89682) ((-834 . -617) 89550) ((-1292 . -727) T) ((-1281 . -1060) T) ((-1122 . -548) T) ((-582 . -102) T) ((-129 . -493) 89532) ((-1261 . -102) T) ((-393 . -1058) 89516) ((-1254 . -102) T) ((-1175 . -951) 89485) ((-129 . -614) 89452) ((-52 . -614) 89434) ((-1127 . -951) 89401) ((-654 . -414) 89385) ((-1233 . -102) T) ((-1161 . -517) NIL) ((-622 . -1058) 89369) ((-663 . -25) T) ((-663 . -21) T) ((-965 . -647) 89279) ((-736 . -647) 89224) ((-716 . -647) 89196) ((-393 . -111) 89175) ((-222 . -255) 89159) ((-1056 . -1055) 89099) ((-1056 . -1102) T) ((-1006 . -1154) T) ((-819 . -1102) T) ((-456 . -647) 89014) ((-345 . -1223) T) ((-636 . -649) 88998) ((-622 . -111) 88977) ((-608 . -649) 88961) ((-598 . -102) T) ((-312 . -493) 88942) ((-588 . -131) T) ((-597 . -102) T) ((-417 . -1102) T) ((-387 . -1102) T) ((-312 . -614) 88908) ((-227 . -1102) 88886) ((-648 . -517) 88819) ((-633 . -517) 88663) ((-834 . -1051) 88642) ((-645 . -151) 88626) ((-345 . -559) T) ((-713 . -902) 88569) ((-553 . -229) 88519) ((-1261 . -285) 88485) ((-1254 . -285) 88451) ((-1082 . -291) 88402) ((-490 . -849) T) ((-223 . -1114) T) ((-1233 . -285) 88368) ((-1213 . -496) 88334) ((-1006 . -38) 88284) ((-217 . -849) T) ((-421 . -647) 88243) ((-916 . -38) 88195) ((-844 . -795) 88174) ((-844 . -792) 88153) ((-844 . -727) 88132) ((-361 . -291) T) ((-355 . -291) T) ((-347 . -291) T) ((-169 . -455) 88063) ((-430 . -38) 88047) ((-108 . -291) T) ((-223 . -23) T) ((-410 . -795) 88026) ((-410 . -792) 88005) ((-410 . -727) T) ((-503 . -289) 87980) ((-480 . -1058) 87945) ((-659 . -131) T) ((-622 . -617) 87914) ((-1115 . -517) 87847) ((-338 . -131) T) ((-169 . -405) 87826) ((-485 . -718) 87768) ((-816 . -287) 87745) ((-480 . -111) 87701) ((-654 . -1060) T) ((-817 . -1053) 87544) ((-1280 . -1085) T) ((-1242 . -455) 87475) ((-817 . -641) 87324) ((-1279 . -1085) T) ((-1089 . -131) T) ((-1056 . -718) 87266) ((-783 . -131) T) ((-781 . -131) T) ((-574 . -455) T) ((-1029 . -517) 87199) ((-622 . -1051) T) ((-594 . -1102) T) ((-536 . -173) T) ((-464 . -131) T) ((-457 . -131) T) ((-45 . -1102) T) ((-387 . -718) 87169) ((-818 . -1102) T) ((-479 . -517) 87102) ((-466 . -517) 87035) ((-456 . -369) 87005) ((-45 . -611) 86984) ((-317 . -303) T) ((-480 . -617) 86934) ((-1233 . -310) 86819) ((-671 . -614) 86781) ((-59 . -851) 86760) ((-1006 . -403) 86742) ((-551 . -614) 86724) ((-800 . -647) 86683) ((-816 . -605) 86660) ((-519 . -851) 86639) ((-499 . -851) 86618) ((-40 . -1223) T) ((-1001 . -1040) 86514) ((-50 . -131) T) ((-584 . -131) T) ((-521 . -131) T) ((-295 . -649) 86374) ((-345 . -330) 86351) ((-345 . -365) T) ((-323 . -324) 86328) ((-320 . -287) 86313) ((-40 . -559) T) ((-381 . -1204) T) ((-381 . -1207) T) ((-1037 . -1195) 86288) ((-1192 . -235) 86238) ((-1170 . -231) 86190) ((-331 . -1102) T) ((-381 . -95) T) ((-381 . -35) T) ((-1037 . -107) 86136) ((-480 . -1051) T) ((-1293 . -1058) 86120) ((-482 . -235) 86070) ((-1162 . -492) 86004) ((-1284 . -1053) 85988) ((-383 . -1058) 85972) ((-1284 . -641) 85942) ((-480 . -243) T) ((-817 . -102) T) ((-715 . -147) 85921) ((-715 . -145) 85900) ((-487 . -492) 85884) ((-488 . -337) 85853) ((-1293 . -111) 85832) ((-515 . -1102) T) ((-485 . -172) 85811) ((-1001 . -379) 85795) ((-416 . -102) T) ((-383 . -111) 85774) ((-1001 . -340) 85758) ((-280 . -985) 85742) ((-279 . -985) 85726) ((-1291 . -614) 85708) ((-1289 . -614) 85690) ((-110 . -517) NIL) ((-1175 . -1245) 85674) ((-855 . -853) 85658) ((-1181 . -1102) T) ((-103 . -1219) T) ((-954 . -951) 85619) ((-818 . -718) 85561) ((-1233 . -1154) NIL) ((-484 . -951) 85506) ((-1064 . -143) T) ((-60 . -102) 85484) ((-44 . -614) 85466) ((-78 . -614) 85448) ((-353 . -649) 85393) ((-1281 . -1102) T) ((-514 . -851) T) ((-345 . -1114) T) ((-296 . -1102) T) ((-1001 . -902) 85352) ((-296 . -611) 85331) ((-1293 . -617) 85280) ((-1261 . -38) 85177) ((-1254 . -38) 85018) ((-1233 . -38) 84814) ((-490 . -1060) T) ((-383 . -617) 84798) ((-217 . -1060) T) ((-345 . -23) T) ((-152 . -614) 84780) ((-834 . -796) 84759) ((-834 . -793) 84738) ((-1218 . -617) 84719) ((-598 . -38) 84692) ((-597 . -38) 84589) ((-871 . -559) T) ((-223 . -131) T) ((-320 . -1004) 84555) ((-79 . -614) 84537) ((-713 . -308) 84516) ((-295 . -727) 84418) ((-825 . -102) T) ((-865 . -845) T) ((-295 . -476) 84397) ((-1284 . -102) T) ((-40 . -365) T) ((-873 . -147) 84376) ((-488 . -647) 84358) ((-873 . -145) 84337) ((-1161 . -492) 84319) ((-1293 . -1051) T) ((-485 . -517) 84252) ((-1148 . -1219) T) ((-966 . -614) 84234) ((-648 . -492) 84218) ((-633 . -492) 84149) ((-816 . -614) 83880) ((-48 . -27) T) ((-1181 . -718) 83777) ((-654 . -1102) T) ((-862 . -861) T) ((-439 . -366) 83751) ((-732 . -647) 83661) ((-1104 . -102) T) ((-972 . -1102) T) ((-865 . -1102) T) ((-817 . -310) 83648) ((-536 . -530) T) ((-536 . -579) T) ((-1289 . -384) 83620) ((-1056 . -517) 83553) ((-1162 . -287) 83529) ((-240 . -231) 83498) ((-252 . -1053) 83395) ((-251 . -1053) 83292) ((-1281 . -718) 83262) ((-1169 . -93) T) ((-996 . -93) T) ((-818 . -172) 83241) ((-252 . -641) 83183) ((-251 . -641) 83125) ((-1216 . -493) 83102) ((-227 . -517) 83035) ((-622 . -796) 83014) ((-622 . -793) 82993) ((-1216 . -614) 82905) ((-222 . -1219) T) ((-676 . -614) 82837) ((-1177 . -647) 82747) ((-1159 . -1012) 82731) ((-945 . -102) 82681) ((-353 . -727) T) ((-862 . -614) 82663) ((-1176 . -647) 82545) ((-1170 . -647) 82382) ((-1128 . -647) 82292) ((-1233 . -403) 82244) ((-1115 . -492) 82228) ((-60 . -310) 82166) ((-332 . -102) T) ((-1213 . -21) T) ((-1213 . -25) T) ((-40 . -1114) T) ((-712 . -21) T) ((-628 . -614) 82148) ((-518 . -324) 82127) ((-712 . -25) T) ((-442 . -102) T) ((-108 . -287) NIL) ((-923 . -1114) T) ((-40 . -23) T) ((-772 . -1114) T) ((-567 . -1223) T) ((-498 . -1223) T) ((-320 . -614) 82109) ((-1006 . -231) 82091) ((-169 . -166) 82075) ((-583 . -559) T) ((-567 . -559) T) ((-498 . -559) T) ((-772 . -23) T) ((-1253 . -147) 82054) ((-1162 . -605) 82030) ((-1253 . -145) 82009) ((-1029 . -492) 81993) ((-1232 . -145) 81918) ((-1232 . -147) 81843) ((-1284 . -1290) 81822) ((-479 . -492) 81806) ((-466 . -492) 81790) ((-526 . -34) T) ((-654 . -718) 81760) ((-112 . -969) T) ((-663 . -851) 81739) ((-1181 . -172) 81690) ((-367 . -102) T) ((-240 . -238) 81669) ((-252 . -102) T) ((-251 . -102) T) ((-1242 . -951) 81638) ((-245 . -851) 81617) ((-817 . -38) 81466) ((-45 . -517) 81258) ((-1161 . -287) 81233) ((-214 . -1102) T) ((-1152 . -1102) T) ((-1152 . -611) 81212) ((-588 . -25) T) ((-588 . -21) T) ((-1104 . -310) 81150) ((-965 . -414) 81134) ((-700 . -1223) T) ((-633 . -287) 81109) ((-1089 . -640) 81057) ((-783 . -640) 81005) ((-781 . -640) 80953) ((-345 . -131) T) ((-290 . -614) 80935) ((-907 . -1102) T) ((-700 . -559) T) ((-129 . -617) 80917) ((-871 . -1114) T) ((-457 . -640) 80865) ((-907 . -905) 80849) ((-381 . -455) T) ((-490 . -1102) T) ((-945 . -310) 80787) ((-702 . -649) 80774) ((-552 . -845) T) ((-217 . -1102) T) ((-317 . -922) 80753) ((-314 . -922) T) ((-314 . -821) NIL) ((-393 . -721) T) ((-871 . -23) T) ((-116 . -649) 80740) ((-477 . -145) 80719) ((-421 . -414) 80703) ((-477 . -147) 80682) ((-110 . -492) 80664) ((-312 . -617) 80645) ((-2 . -614) 80627) ((-186 . -102) T) ((-1161 . -19) 80609) ((-1161 . -605) 80584) ((-659 . -21) T) ((-659 . -25) T) ((-595 . -1146) T) ((-1115 . -287) 80561) ((-338 . -25) T) ((-338 . -21) T) ((-240 . -647) 80311) ((-498 . -365) T) ((-1284 . -38) 80281) ((-1175 . -1053) 80104) ((-1144 . -1219) T) ((-1127 . -1053) 79947) ((-855 . -1053) 79931) ((-633 . -605) 79906) ((-1291 . -1058) 79890) ((-1175 . -641) 79719) ((-1127 . -641) 79568) ((-855 . -641) 79538) ((-1289 . -1058) 79522) ((-1253 . -1204) 79488) ((-552 . -1102) T) ((-1089 . -25) T) ((-1089 . -21) T) ((-534 . -793) T) ((-534 . -796) T) ((-117 . -1223) T) ((-965 . -1060) T) ((-624 . -559) T) ((-783 . -25) T) ((-783 . -21) T) ((-781 . -21) T) ((-781 . -25) T) ((-736 . -1060) T) ((-716 . -1060) T) ((-671 . -1058) 79472) ((-520 . -1085) T) ((-464 . -25) T) ((-117 . -559) T) ((-464 . -21) T) ((-457 . -25) T) ((-457 . -21) T) ((-1253 . -1207) 79438) ((-1153 . -93) T) ((-1144 . -1040) 79334) ((-818 . -291) 79313) ((-1253 . -95) 79279) ((-824 . -1102) T) ((-1236 . -102) 79257) ((-968 . -969) T) ((-671 . -111) 79236) ((-296 . -517) 79028) ((-1233 . -231) 78980) ((-1232 . -1204) 78946) ((-1232 . -1207) 78912) ((-252 . -310) 78850) ((-251 . -310) 78788) ((-1227 . -370) T) ((-1162 . -615) NIL) ((-1162 . -614) 78770) ((-1224 . -845) T) ((-1144 . -379) 78754) ((-1122 . -821) T) ((-96 . -93) T) ((-1122 . -922) T) ((-1115 . -605) 78731) ((-1082 . -615) 78715) ((-1006 . -647) 78665) ((-916 . -647) 78602) ((-816 . -289) 78579) ((-487 . -614) 78511) ((-609 . -151) 78458) ((-490 . -718) 78408) ((-421 . -1060) T) ((-485 . -492) 78392) ((-430 . -647) 78351) ((-328 . -851) 78330) ((-341 . -649) 78304) ((-50 . -21) T) ((-50 . -25) T) ((-217 . -718) 78254) ((-169 . -725) 78225) ((-174 . -649) 78157) ((-584 . -21) T) ((-584 . -25) T) ((-521 . -25) T) ((-521 . -21) T) ((-478 . -151) 78107) ((-1082 . -614) 78089) ((-1063 . -614) 78071) ((-995 . -102) T) ((-863 . -102) T) ((-800 . -414) 78034) ((-40 . -131) T) ((-700 . -365) T) ((-702 . -727) T) ((-702 . -795) T) ((-702 . -792) T) ((-212 . -897) T) ((-583 . -1114) T) ((-567 . -1114) T) ((-498 . -1114) T) ((-361 . -614) 78016) ((-355 . -614) 77998) ((-347 . -614) 77980) ((-66 . -399) T) ((-66 . -398) T) ((-108 . -615) 77910) ((-108 . -614) 77852) ((-211 . -897) T) ((-960 . -151) 77836) ((-772 . -131) T) ((-671 . -617) 77754) ((-134 . -727) T) ((-116 . -727) T) ((-1253 . -35) 77720) ((-1056 . -492) 77704) ((-583 . -23) T) ((-567 . -23) T) ((-498 . -23) T) ((-1232 . -95) 77670) ((-1232 . -35) 77636) ((-1175 . -102) T) ((-1127 . -102) T) ((-855 . -102) T) ((-227 . -492) 77620) ((-1291 . -111) 77599) ((-1289 . -111) 77578) ((-44 . -1058) 77562) ((-1291 . -617) 77508) ((-1242 . -1245) 77492) ((-856 . -853) 77476) ((-1291 . -1051) T) ((-1181 . -291) 77455) ((-110 . -287) 77430) ((-1289 . -617) 77359) ((-128 . -151) 77341) ((-1144 . -902) 77300) ((-44 . -111) 77279) ((-1224 . -1102) T) ((-1184 . -1264) T) ((-1169 . -493) 77260) ((-1169 . -614) 77226) ((-671 . -1051) T) ((-1161 . -615) NIL) ((-1161 . -614) 77208) ((-1065 . -611) 77183) ((-1065 . -1102) T) ((-996 . -493) 77164) ((-74 . -444) T) ((-74 . -398) T) ((-996 . -614) 77130) ((-152 . -1058) 77114) ((-671 . -233) 77093) ((-574 . -557) 77077) ((-357 . -147) 77056) ((-357 . -145) 77007) ((-354 . -147) 76986) ((-354 . -145) 76937) ((-346 . -147) 76916) ((-346 . -145) 76867) ((-265 . -145) 76846) ((-265 . -147) 76825) ((-252 . -38) 76795) ((-247 . -147) 76774) ((-117 . -365) T) ((-247 . -145) 76753) ((-251 . -38) 76723) ((-152 . -111) 76702) ((-1005 . -1040) 76590) ((-1170 . -849) NIL) ((-695 . -1223) T) ((-800 . -1060) T) ((-700 . -1114) T) ((-1289 . -1051) T) ((-1159 . -1219) T) ((-1005 . -379) 76567) ((-912 . -145) T) ((-912 . -147) 76549) ((-871 . -131) T) ((-816 . -1058) 76446) ((-700 . -23) T) ((-695 . -559) T) ((-225 . -1053) 76411) ((-648 . -614) 76343) ((-648 . -615) 76304) ((-633 . -615) NIL) ((-633 . -614) 76286) ((-490 . -172) T) ((-225 . -641) 76251) ((-223 . -21) T) ((-217 . -172) T) ((-223 . -25) T) ((-477 . -1207) 76217) ((-477 . -1204) 76183) ((-275 . -614) 76165) ((-274 . -614) 76147) ((-273 . -614) 76129) ((-272 . -614) 76111) ((-271 . -614) 76093) ((-503 . -652) 76075) ((-270 . -614) 76057) ((-341 . -727) T) ((-269 . -614) 76039) ((-110 . -19) 76021) ((-174 . -727) T) ((-503 . -375) 76003) ((-212 . -614) 75985) ((-523 . -1151) 75969) ((-503 . -123) T) ((-110 . -605) 75944) ((-211 . -614) 75926) ((-477 . -35) 75892) ((-477 . -95) 75858) ((-209 . -614) 75840) ((-208 . -614) 75822) ((-207 . -614) 75804) ((-206 . -614) 75786) ((-203 . -614) 75768) ((-202 . -614) 75750) ((-201 . -614) 75732) ((-200 . -614) 75714) ((-199 . -614) 75696) ((-198 . -614) 75678) ((-197 . -614) 75660) ((-539 . -1105) 75612) ((-196 . -614) 75594) ((-195 . -614) 75576) ((-45 . -492) 75513) ((-194 . -614) 75495) ((-193 . -614) 75477) ((-152 . -617) 75446) ((-1117 . -102) T) ((-816 . -111) 75336) ((-645 . -102) 75286) ((-485 . -287) 75263) ((-1115 . -614) 74994) ((-1103 . -1102) T) ((-1048 . -1219) T) ((-1292 . -1040) 74978) ((-1064 . -1053) 74965) ((-1175 . -310) 74952) ((-954 . -1053) 74795) ((-1137 . -1102) T) ((-1127 . -310) 74782) ((-624 . -1114) T) ((-1064 . -641) 74769) ((-1098 . -1085) T) ((-954 . -641) 74618) ((-1092 . -1085) T) ((-484 . -1053) 74461) ((-1075 . -1085) T) ((-1068 . -1085) T) ((-1038 . -1085) T) ((-1021 . -1085) T) ((-117 . -1114) T) ((-484 . -641) 74310) ((-820 . -102) T) ((-627 . -1085) T) ((-624 . -23) T) ((-1152 . -517) 74102) ((-486 . -1085) T) ((-389 . -102) T) ((-325 . -102) T) ((-218 . -1085) T) ((-965 . -1102) T) ((-152 . -1051) T) ((-732 . -414) 74086) ((-117 . -23) T) ((-1005 . -902) 74038) ((-736 . -1102) T) ((-716 . -1102) T) ((-456 . -1102) T) ((-410 . -1219) T) ((-317 . -433) 74022) ((-594 . -93) T) ((-1261 . -647) 73932) ((-1029 . -615) 73893) ((-1026 . -1223) T) ((-225 . -102) T) ((-1029 . -614) 73855) ((-1254 . -647) 73737) ((-817 . -231) 73721) ((-816 . -617) 73451) ((-1233 . -647) 73288) ((-1026 . -559) T) ((-834 . -649) 73261) ((-356 . -1223) T) ((-479 . -614) 73223) ((-479 . -615) 73184) ((-466 . -615) 73145) ((-466 . -614) 73107) ((-598 . -647) 73066) ((-410 . -886) 73050) ((-320 . -1058) 72885) ((-410 . -888) 72810) ((-597 . -647) 72720) ((-844 . -1040) 72616) ((-490 . -517) NIL) ((-485 . -605) 72593) ((-356 . -559) T) ((-217 . -517) NIL) ((-873 . -455) T) ((-421 . -1102) T) ((-410 . -1040) 72457) ((-320 . -111) 72278) ((-695 . -365) T) ((-225 . -285) T) ((-1216 . -617) 72255) ((-48 . -1223) T) ((-816 . -1051) 72185) ((-1175 . -1154) 72163) ((-583 . -131) T) ((-567 . -131) T) ((-498 . -131) T) ((-1162 . -289) 72139) ((-48 . -559) T) ((-1064 . -102) T) ((-954 . -102) T) ((-872 . -1053) 72084) ((-317 . -27) 72063) ((-816 . -233) 72015) ((-249 . -836) 71997) ((-240 . -849) 71976) ((-187 . -836) 71958) ((-714 . -102) T) ((-296 . -492) 71895) ((-872 . -641) 71840) ((-484 . -102) T) ((-732 . -1060) T) ((-613 . -614) 71822) ((-613 . -615) 71683) ((-410 . -379) 71667) ((-410 . -340) 71651) ((-320 . -617) 71477) ((-1175 . -38) 71306) ((-1127 . -38) 71155) ((-855 . -38) 71125) ((-393 . -649) 71109) ((-645 . -310) 71047) ((-1153 . -493) 71028) ((-1153 . -614) 70994) ((-965 . -718) 70891) ((-736 . -718) 70861) ((-222 . -107) 70845) ((-45 . -287) 70770) ((-622 . -649) 70744) ((-313 . -1102) T) ((-290 . -1058) 70731) ((-110 . -614) 70713) ((-110 . -615) 70695) ((-456 . -718) 70665) ((-817 . -254) 70604) ((-690 . -1102) 70582) ((-553 . -1102) T) ((-1177 . -1060) T) ((-1176 . -1060) T) ((-96 . -493) 70563) ((-1170 . -1060) T) ((-290 . -111) 70548) ((-1128 . -1060) T) ((-553 . -611) 70527) ((-96 . -614) 70493) ((-1006 . -849) T) ((-227 . -688) 70451) ((-695 . -1114) T) ((-1213 . -741) 70427) ((-1026 . -365) T) ((-839 . -836) 70409) ((-834 . -795) 70388) ((-410 . -902) 70347) ((-320 . -1051) T) ((-345 . -25) T) ((-345 . -21) T) ((-169 . -1053) 70257) ((-68 . -1219) T) ((-834 . -792) 70236) ((-421 . -718) 70210) ((-800 . -1102) T) ((-713 . -922) 70189) ((-700 . -131) T) ((-169 . -641) 70017) ((-695 . -23) T) ((-490 . -291) T) ((-834 . -727) 69996) ((-320 . -233) 69948) ((-320 . -243) 69927) ((-217 . -291) T) ((-129 . -370) T) ((-1253 . -455) 69906) ((-1232 . -455) 69885) ((-356 . -330) 69862) ((-356 . -365) T) ((-1142 . -614) 69844) ((-45 . -1257) 69794) ((-872 . -102) T) ((-645 . -283) 69778) ((-700 . -1062) T) ((-1280 . -102) T) ((-1279 . -102) T) ((-480 . -649) 69743) ((-471 . -1102) T) ((-45 . -605) 69668) ((-1161 . -289) 69643) ((-290 . -617) 69615) ((-40 . -640) 69554) ((-1242 . -1053) 69377) ((-856 . -1053) 69361) ((-48 . -365) T) ((-1108 . -614) 69343) ((-1242 . -641) 69172) ((-856 . -641) 69142) ((-633 . -289) 69117) ((-817 . -647) 69027) ((-574 . -1053) 69014) ((-485 . -614) 68745) ((-240 . -414) 68714) ((-954 . -310) 68701) ((-574 . -641) 68688) ((-65 . -1219) T) ((-1065 . -517) 68532) ((-672 . -1102) T) ((-624 . -131) T) ((-484 . -310) 68519) ((-607 . -1102) T) ((-549 . -102) T) ((-117 . -131) T) ((-290 . -1051) T) ((-180 . -1102) T) ((-161 . -1102) T) ((-156 . -1102) T) ((-154 . -1102) T) ((-456 . -762) T) ((-31 . -1085) T) ((-965 . -172) 68470) ((-972 . -93) T) ((-1082 . -1058) 68380) ((-622 . -795) 68359) ((-595 . -1102) T) ((-622 . -792) 68338) ((-622 . -727) T) ((-296 . -287) 68317) ((-295 . -1219) T) ((-1056 . -614) 68279) ((-1056 . -615) 68240) ((-1026 . -1114) T) ((-169 . -102) T) ((-276 . -851) T) ((-1168 . -1102) T) ((-819 . -614) 68222) ((-1115 . -289) 68199) ((-1104 . -229) 68183) ((-1005 . -308) T) ((-800 . -718) 68167) ((-361 . -1058) 68119) ((-356 . -1114) T) ((-355 . -1058) 68071) ((-417 . -614) 68053) ((-387 . -614) 68035) ((-347 . -1058) 67987) ((-227 . -614) 67919) ((-1082 . -111) 67815) ((-1026 . -23) T) ((-108 . -1058) 67765) ((-900 . -102) T) ((-842 . -102) T) ((-809 . -102) T) ((-770 . -102) T) ((-678 . -102) T) ((-477 . -455) 67744) ((-421 . -172) T) ((-361 . -111) 67682) ((-355 . -111) 67620) ((-347 . -111) 67558) ((-252 . -231) 67527) ((-251 . -231) 67496) ((-356 . -23) T) ((-71 . -1219) T) ((-225 . -38) 67461) ((-108 . -111) 67395) ((-40 . -25) T) ((-40 . -21) T) ((-671 . -721) T) ((-169 . -285) 67373) ((-48 . -1114) T) ((-923 . -25) T) ((-772 . -25) T) ((-1293 . -649) 67347) ((-1152 . -492) 67284) ((-488 . -1102) T) ((-1284 . -647) 67243) ((-1242 . -102) T) ((-1064 . -1154) T) ((-856 . -102) T) ((-240 . -1060) 67173) ((-966 . -793) 67126) ((-966 . -796) 67079) ((-383 . -649) 67063) ((-48 . -23) T) ((-816 . -796) 67014) ((-816 . -793) 66965) ((-551 . -370) T) ((-296 . -605) 66944) ((-480 . -727) T) ((-574 . -102) T) ((-1082 . -617) 66762) ((-249 . -185) T) ((-187 . -185) T) ((-872 . -310) 66719) ((-654 . -287) 66698) ((-112 . -662) T) ((-361 . -617) 66635) ((-355 . -617) 66572) ((-347 . -617) 66509) ((-76 . -1219) T) ((-108 . -617) 66459) ((-1064 . -38) 66446) ((-665 . -376) 66425) ((-954 . -38) 66274) ((-732 . -1102) T) ((-484 . -38) 66123) ((-86 . -1219) T) ((-594 . -493) 66104) ((-574 . -285) T) ((-1233 . -849) NIL) ((-594 . -614) 66070) ((-1177 . -1102) T) ((-1176 . -1102) T) ((-1082 . -1051) T) ((-353 . -1040) 66047) ((-818 . -493) 66031) ((-1006 . -1060) T) ((-45 . -614) 66013) ((-45 . -615) NIL) ((-916 . -1060) T) ((-818 . -614) 65982) ((-1170 . -1102) T) ((-1149 . -102) 65960) ((-1082 . -243) 65911) ((-430 . -1060) T) ((-361 . -1051) T) ((-367 . -366) 65888) ((-355 . -1051) T) ((-347 . -1051) T) ((-252 . -238) 65867) ((-251 . -238) 65846) ((-1082 . -233) 65771) ((-1128 . -1102) T) ((-295 . -902) 65730) ((-108 . -1051) T) ((-695 . -131) T) ((-421 . -517) 65572) ((-361 . -233) 65551) ((-361 . -243) T) ((-44 . -721) T) ((-355 . -233) 65530) ((-355 . -243) T) ((-347 . -233) 65509) ((-347 . -243) T) ((-1169 . -617) 65490) ((-169 . -310) 65455) ((-108 . -243) T) ((-108 . -233) T) ((-996 . -617) 65436) ((-320 . -793) T) ((-871 . -21) T) ((-871 . -25) T) ((-410 . -308) T) ((-503 . -34) T) ((-110 . -289) 65411) ((-1115 . -1058) 65308) ((-872 . -1154) NIL) ((-331 . -614) 65290) ((-410 . -1024) 65268) ((-1115 . -111) 65158) ((-692 . -1264) T) ((-439 . -1102) T) ((-250 . -1102) T) ((-1293 . -727) T) ((-63 . -614) 65140) ((-872 . -38) 65085) ((-526 . -1219) T) ((-603 . -151) 65069) ((-515 . -614) 65051) ((-1242 . -310) 65038) ((-732 . -718) 64887) ((-534 . -794) T) ((-534 . -795) T) ((-567 . -640) 64869) ((-498 . -640) 64829) ((-357 . -455) T) ((-354 . -455) T) ((-346 . -455) T) ((-265 . -455) 64780) ((-528 . -1102) T) ((-523 . -1102) 64730) ((-247 . -455) 64681) ((-1152 . -287) 64660) ((-1181 . -614) 64642) ((-690 . -517) 64575) ((-965 . -291) 64554) ((-553 . -517) 64346) ((-252 . -647) 64166) ((-251 . -647) 63973) ((-1281 . -614) 63942) ((-1175 . -231) 63926) ((-1115 . -617) 63656) ((-169 . -1154) 63635) ((-1281 . -493) 63619) ((-1177 . -718) 63516) ((-1176 . -718) 63357) ((-894 . -102) T) ((-1170 . -718) 63153) ((-1128 . -718) 63050) ((-1159 . -675) 63034) ((-357 . -405) 62985) ((-354 . -405) 62936) ((-346 . -405) 62887) ((-1026 . -131) T) ((-800 . -517) 62799) ((-296 . -615) NIL) ((-296 . -614) 62781) ((-912 . -455) T) ((-966 . -370) 62734) ((-816 . -370) 62713) ((-513 . -512) 62692) ((-511 . -512) 62671) ((-490 . -287) NIL) ((-485 . -289) 62648) ((-421 . -291) T) ((-356 . -131) T) ((-217 . -287) NIL) ((-695 . -496) NIL) ((-99 . -1114) T) ((-169 . -38) 62476) ((-1253 . -975) 62438) ((-1149 . -310) 62376) ((-1232 . -975) 62345) ((-912 . -405) T) ((-1115 . -1051) 62275) ((-1255 . -559) T) ((-1152 . -605) 62254) ((-112 . -851) T) ((-1065 . -492) 62185) ((-583 . -21) T) ((-583 . -25) T) ((-567 . -21) T) ((-567 . -25) T) ((-498 . -25) T) ((-498 . -21) T) ((-1242 . -1154) 62163) ((-1115 . -233) 62115) ((-48 . -131) T) ((-1200 . -102) T) ((-240 . -1102) 61905) ((-872 . -403) 61882) ((-1090 . -102) T) ((-1078 . -102) T) ((-609 . -102) T) ((-478 . -102) T) ((-1242 . -38) 61711) ((-856 . -38) 61681) ((-1036 . -1053) 61655) ((-732 . -172) 61566) ((-654 . -614) 61548) ((-646 . -1085) T) ((-1036 . -641) 61532) ((-574 . -38) 61519) ((-972 . -493) 61500) ((-972 . -614) 61466) ((-960 . -102) 61416) ((-865 . -614) 61398) ((-865 . -615) 61320) ((-595 . -517) NIL) ((-1261 . -1060) T) ((-1254 . -1060) T) ((-323 . -1053) 61302) ((-1233 . -1060) T) ((-1297 . -1114) T) ((-1213 . -147) 61281) ((-323 . -641) 61263) ((-1213 . -145) 61242) ((-1187 . -102) T) ((-1186 . -102) T) ((-1185 . -102) T) ((-1177 . -172) 61193) ((-598 . -1060) T) ((-597 . -1060) T) ((-1176 . -172) 61124) ((-1170 . -172) 61055) ((-381 . -1053) 61020) ((-1153 . -617) 61001) ((-1128 . -172) 60952) ((-1006 . -1102) T) ((-973 . -1102) T) ((-916 . -1102) T) ((-381 . -641) 60917) ((-800 . -798) 60901) ((-700 . -25) T) ((-700 . -21) T) ((-117 . -640) 60878) ((-702 . -888) 60860) ((-430 . -1102) T) ((-317 . -1223) 60839) ((-314 . -1223) T) ((-169 . -403) 60823) ((-837 . -1053) 60793) ((-477 . -975) 60755) ((-130 . -102) T) ((-128 . -102) T) ((-72 . -614) 60737) ((-828 . -1053) 60721) ((-108 . -796) T) ((-108 . -793) T) ((-702 . -1040) 60703) ((-317 . -559) 60682) ((-314 . -559) T) ((-837 . -641) 60652) ((-828 . -641) 60622) ((-1297 . -23) T) ((-134 . -1040) 60604) ((-96 . -617) 60585) ((-995 . -647) 60567) ((-485 . -1058) 60464) ((-45 . -289) 60389) ((-240 . -718) 60331) ((-520 . -102) T) ((-485 . -111) 60221) ((-1094 . -102) 60191) ((-1036 . -102) T) ((-1175 . -647) 60101) ((-1127 . -647) 60011) ((-855 . -647) 59970) ((-645 . -829) 59949) ((-732 . -517) 59892) ((-1056 . -1058) 59876) ((-1137 . -93) T) ((-1065 . -287) 59851) ((-624 . -21) T) ((-624 . -25) T) ((-527 . -1102) T) ((-671 . -649) 59825) ((-363 . -102) T) ((-323 . -102) T) ((-387 . -1058) 59809) ((-1056 . -111) 59788) ((-817 . -414) 59772) ((-117 . -25) T) ((-89 . -614) 59754) ((-117 . -21) T) ((-609 . -310) 59549) ((-478 . -310) 59353) ((-1152 . -615) NIL) ((-387 . -111) 59332) ((-381 . -102) T) ((-214 . -614) 59314) ((-1152 . -614) 59296) ((-1170 . -517) 59065) ((-1006 . -718) 59015) ((-1128 . -517) 58985) ((-916 . -718) 58937) ((-485 . -617) 58667) ((-353 . -308) T) ((-1192 . -151) 58617) ((-960 . -310) 58555) ((-837 . -102) T) ((-430 . -718) 58539) ((-225 . -829) T) ((-828 . -102) T) ((-826 . -102) T) ((-482 . -151) 58489) ((-1253 . -1252) 58468) ((-1122 . -1223) T) ((-341 . -1040) 58435) ((-1253 . -1247) 58405) ((-1253 . -1250) 58389) ((-1232 . -1231) 58368) ((-80 . -614) 58350) ((-907 . -614) 58332) ((-1232 . -1247) 58309) ((-1122 . -559) T) ((-923 . -851) T) ((-772 . -851) T) ((-673 . -851) T) ((-490 . -615) 58239) ((-490 . -614) 58180) ((-381 . -285) T) ((-1232 . -1229) 58164) ((-1255 . -1114) T) ((-217 . -615) 58094) ((-217 . -614) 58035) ((-1291 . -649) 58009) ((-1065 . -605) 57984) ((-819 . -617) 57968) ((-59 . -151) 57952) ((-519 . -151) 57936) ((-499 . -151) 57920) ((-361 . -1288) 57904) ((-355 . -1288) 57888) ((-347 . -1288) 57872) ((-317 . -365) 57851) ((-314 . -365) T) ((-485 . -1051) 57781) ((-695 . -640) 57763) ((-1289 . -649) 57737) ((-128 . -310) NIL) ((-1255 . -23) T) ((-690 . -492) 57721) ((-64 . -614) 57703) ((-1115 . -796) 57654) ((-1115 . -793) 57605) ((-553 . -492) 57542) ((-671 . -34) T) ((-485 . -233) 57494) ((-296 . -289) 57473) ((-240 . -172) 57452) ((-817 . -1060) T) ((-44 . -649) 57410) ((-1082 . -370) 57361) ((-732 . -291) 57292) ((-523 . -517) 57225) ((-818 . -1058) 57176) ((-1089 . -145) 57155) ((-552 . -614) 57137) ((-361 . -370) 57116) ((-355 . -370) 57095) ((-347 . -370) 57074) ((-1089 . -147) 57053) ((-872 . -231) 57030) ((-818 . -111) 56972) ((-783 . -145) 56951) ((-783 . -147) 56930) ((-265 . -951) 56897) ((-252 . -849) 56876) ((-247 . -951) 56821) ((-251 . -849) 56800) ((-781 . -145) 56779) ((-781 . -147) 56758) ((-152 . -649) 56732) ((-582 . -1102) T) ((-457 . -147) 56711) ((-457 . -145) 56690) ((-671 . -727) T) ((-824 . -614) 56672) ((-1261 . -1102) T) ((-1254 . -1102) T) ((-1233 . -1102) T) ((-1213 . -1207) 56638) ((-1213 . -1204) 56604) ((-1177 . -291) 56583) ((-1176 . -291) 56534) ((-1170 . -291) 56485) ((-1128 . -291) 56464) ((-341 . -902) 56445) ((-1006 . -172) T) ((-916 . -172) T) ((-695 . -21) T) ((-695 . -25) T) ((-225 . -647) 56395) ((-598 . -1102) T) ((-597 . -1102) T) ((-477 . -1250) 56379) ((-477 . -1247) 56349) ((-421 . -287) 56277) ((-550 . -851) T) ((-317 . -1114) 56126) ((-314 . -1114) T) ((-1213 . -35) 56092) ((-1213 . -95) 56058) ((-84 . -614) 56040) ((-91 . -102) 56018) ((-1297 . -131) T) ((-715 . -1053) 55988) ((-594 . -617) 55969) ((-584 . -145) T) ((-584 . -147) 55951) ((-521 . -147) 55933) ((-521 . -145) T) ((-715 . -641) 55903) ((-317 . -23) 55755) ((-40 . -344) 55729) ((-314 . -23) T) ((-818 . -617) 55643) ((-1161 . -652) 55625) ((-1284 . -1060) T) ((-1161 . -375) 55607) ((-816 . -649) 55455) ((-1098 . -102) T) ((-1092 . -102) T) ((-1075 . -102) T) ((-169 . -231) 55439) ((-1068 . -102) T) ((-1038 . -102) T) ((-1021 . -102) T) ((-595 . -492) 55421) ((-627 . -102) T) ((-240 . -517) 55354) ((-486 . -102) T) ((-1291 . -727) T) ((-1289 . -727) T) ((-218 . -102) T) ((-1181 . -1058) 55237) ((-1064 . -647) 55209) ((-954 . -647) 55119) ((-1181 . -111) 54988) ((-877 . -1085) T) ((-484 . -647) 54898) ((-862 . -173) T) ((-818 . -1051) T) ((-682 . -1085) T) ((-677 . -1085) T) ((-518 . -102) T) ((-513 . -102) T) ((-48 . -640) 54858) ((-511 . -102) T) ((-481 . -1085) T) ((-1281 . -1058) 54828) ((-138 . -1085) T) ((-137 . -1085) T) ((-133 . -1085) T) ((-1036 . -38) 54812) ((-818 . -233) T) ((-818 . -243) 54791) ((-1281 . -111) 54756) ((-1261 . -718) 54653) ((-1254 . -718) 54494) ((-553 . -287) 54473) ((-1242 . -231) 54457) ((-1224 . -614) 54439) ((-607 . -93) T) ((-1065 . -615) NIL) ((-1065 . -614) 54421) ((-672 . -93) T) ((-180 . -93) T) ((-161 . -93) T) ((-156 . -93) T) ((-154 . -93) T) ((-1233 . -718) 54217) ((-1005 . -922) T) ((-152 . -727) T) ((-1181 . -617) 54070) ((-1115 . -370) 54049) ((-1026 . -25) T) ((-1006 . -517) NIL) ((-252 . -414) 54018) ((-251 . -414) 53987) ((-1026 . -21) T) ((-873 . -1053) 53939) ((-598 . -718) 53912) ((-597 . -718) 53809) ((-800 . -287) 53767) ((-126 . -102) 53745) ((-834 . -1040) 53641) ((-169 . -829) 53620) ((-320 . -649) 53517) ((-816 . -34) T) ((-715 . -102) T) ((-1122 . -1114) T) ((-1028 . -1219) T) ((-873 . -641) 53469) ((-381 . -38) 53434) ((-356 . -25) T) ((-356 . -21) T) ((-187 . -102) T) ((-162 . -102) T) ((-249 . -102) T) ((-157 . -102) T) ((-357 . -1276) 53418) ((-354 . -1276) 53402) ((-346 . -1276) 53386) ((-169 . -351) 53365) ((-567 . -851) T) ((-1122 . -23) T) ((-87 . -614) 53347) ((-702 . -308) T) ((-837 . -38) 53317) ((-828 . -38) 53287) ((-1281 . -617) 53229) ((-1255 . -131) T) ((-1152 . -289) 53208) ((-966 . -727) 53107) ((-966 . -794) 53060) ((-966 . -795) 53013) ((-816 . -792) 52992) ((-116 . -308) T) ((-91 . -310) 52930) ((-676 . -34) T) ((-553 . -605) 52909) ((-48 . -25) T) ((-48 . -21) T) ((-816 . -795) 52860) ((-816 . -794) 52839) ((-702 . -1024) T) ((-654 . -1058) 52823) ((-872 . -647) 52753) ((-816 . -727) 52663) ((-966 . -476) 52616) ((-485 . -796) 52567) ((-485 . -793) 52518) ((-912 . -1276) 52505) ((-1181 . -1051) T) ((-654 . -111) 52484) ((-1181 . -327) 52461) ((-1205 . -102) 52439) ((-1103 . -614) 52421) ((-702 . -548) T) ((-817 . -1102) T) ((-1281 . -1051) T) ((-1137 . -493) 52402) ((-1225 . -102) T) ((-416 . -1102) T) ((-1137 . -614) 52368) ((-252 . -1060) 52298) ((-251 . -1060) 52228) ((-839 . -102) T) ((-290 . -649) 52215) ((-595 . -287) 52190) ((-690 . -688) 52148) ((-965 . -614) 52130) ((-873 . -102) T) ((-736 . -614) 52112) ((-716 . -614) 52094) ((-1261 . -172) 52045) ((-1254 . -172) 51976) ((-1233 . -172) 51907) ((-700 . -851) T) ((-1006 . -291) T) ((-456 . -614) 51889) ((-628 . -727) T) ((-60 . -1102) 51867) ((-245 . -151) 51851) ((-916 . -291) T) ((-1026 . -1014) T) ((-628 . -476) T) ((-713 . -1223) 51830) ((-654 . -617) 51748) ((-169 . -647) 51643) ((-1269 . -851) 51622) ((-598 . -172) 51601) ((-597 . -172) 51552) ((-1253 . -641) 51393) ((-1253 . -1053) 51228) ((-1232 . -641) 51042) ((-1232 . -1053) 50850) ((-713 . -559) 50761) ((-410 . -922) T) ((-410 . -821) 50740) ((-320 . -795) T) ((-972 . -617) 50721) ((-320 . -727) T) ((-421 . -614) 50703) ((-421 . -615) 50610) ((-645 . -1151) 50594) ((-110 . -652) 50576) ((-174 . -308) T) ((-126 . -310) 50514) ((-110 . -375) 50496) ((-401 . -1219) T) ((-317 . -131) 50367) ((-314 . -131) T) ((-69 . -398) T) ((-110 . -123) T) ((-523 . -492) 50351) ((-655 . -1114) T) ((-595 . -19) 50333) ((-61 . -444) T) ((-61 . -398) T) ((-825 . -1102) T) ((-595 . -605) 50308) ((-480 . -1040) 50268) ((-654 . -1051) T) ((-655 . -23) T) ((-1284 . -1102) T) ((-31 . -102) T) ((-1242 . -647) 50178) ((-856 . -647) 50137) ((-817 . -718) 49986) ((-580 . -861) T) ((-574 . -647) 49958) ((-117 . -851) NIL) ((-1175 . -414) 49942) ((-1127 . -414) 49926) ((-855 . -414) 49910) ((-874 . -102) 49861) ((-1253 . -102) T) ((-1233 . -517) 49630) ((-1232 . -102) T) ((-1205 . -310) 49568) ((-1177 . -287) 49553) ((-1176 . -287) 49538) ((-528 . -93) T) ((-1170 . -287) 49386) ((-313 . -614) 49368) ((-1104 . -1102) T) ((-1082 . -649) 49278) ((-712 . -455) T) ((-690 . -614) 49210) ((-290 . -727) T) ((-108 . -911) NIL) ((-690 . -615) 49171) ((-602 . -614) 49153) ((-580 . -614) 49135) ((-553 . -615) NIL) ((-553 . -614) 49117) ((-532 . -614) 49099) ((-514 . -512) 49078) ((-490 . -1058) 49028) ((-477 . -1053) 48863) ((-510 . -512) 48842) ((-477 . -641) 48683) ((-217 . -1058) 48633) ((-361 . -649) 48585) ((-355 . -649) 48537) ((-225 . -849) T) ((-347 . -649) 48489) ((-603 . -102) 48439) ((-485 . -370) 48418) ((-108 . -649) 48368) ((-490 . -111) 48302) ((-240 . -492) 48286) ((-345 . -147) 48268) ((-345 . -145) T) ((-169 . -372) 48239) ((-945 . -1267) 48223) ((-217 . -111) 48157) ((-873 . -310) 48122) ((-945 . -1102) 48072) ((-800 . -615) 48033) ((-800 . -614) 48015) ((-719 . -102) T) ((-332 . -1102) T) ((-214 . -617) 47992) ((-1122 . -131) T) ((-715 . -38) 47962) ((-317 . -496) 47941) ((-503 . -1219) T) ((-1253 . -285) 47907) ((-1232 . -285) 47873) ((-328 . -151) 47857) ((-442 . -1102) T) ((-1065 . -289) 47832) ((-1284 . -718) 47802) ((-1162 . -34) T) ((-1293 . -1040) 47779) ((-471 . -614) 47761) ((-487 . -34) T) ((-383 . -1040) 47745) ((-1175 . -1060) T) ((-1127 . -1060) T) ((-855 . -1060) T) ((-1064 . -849) T) ((-490 . -617) 47695) ((-217 . -617) 47645) ((-817 . -172) 47556) ((-523 . -287) 47533) ((-1261 . -291) 47512) ((-1200 . -366) 47486) ((-1090 . -267) 47470) ((-672 . -493) 47451) ((-672 . -614) 47417) ((-607 . -493) 47398) ((-117 . -994) 47375) ((-607 . -614) 47325) ((-477 . -102) T) ((-180 . -493) 47306) ((-180 . -614) 47272) ((-161 . -493) 47253) ((-156 . -493) 47234) ((-154 . -493) 47215) ((-161 . -614) 47181) ((-156 . -614) 47147) ((-367 . -1102) T) ((-252 . -1102) T) ((-251 . -1102) T) ((-154 . -614) 47113) ((-1254 . -291) 47064) ((-1233 . -291) 47015) ((-873 . -1154) 46993) ((-1177 . -1004) 46959) ((-609 . -366) 46899) ((-1176 . -1004) 46865) ((-609 . -229) 46812) ((-695 . -851) T) ((-595 . -614) 46794) ((-595 . -615) NIL) ((-478 . -229) 46744) ((-490 . -1051) T) ((-1170 . -1004) 46710) ((-88 . -443) T) ((-88 . -398) T) ((-217 . -1051) T) ((-1128 . -1004) 46676) ((-1082 . -727) T) ((-713 . -1114) T) ((-598 . -291) 46655) ((-597 . -291) 46634) ((-490 . -243) T) ((-490 . -233) T) ((-217 . -243) T) ((-217 . -233) T) ((-1168 . -614) 46616) ((-873 . -38) 46568) ((-361 . -727) T) ((-355 . -727) T) ((-347 . -727) T) ((-108 . -795) T) ((-108 . -792) T) ((-713 . -23) T) ((-108 . -727) T) ((-523 . -1257) 46552) ((-1297 . -25) T) ((-477 . -285) 46518) ((-1297 . -21) T) ((-1232 . -310) 46457) ((-1179 . -102) T) ((-40 . -145) 46429) ((-40 . -147) 46401) ((-523 . -605) 46378) ((-1115 . -649) 46226) ((-603 . -310) 46164) ((-45 . -652) 46114) ((-45 . -667) 46064) ((-45 . -375) 46014) ((-1161 . -34) T) ((-872 . -849) NIL) ((-655 . -131) T) ((-488 . -614) 45996) ((-240 . -287) 45973) ((-186 . -1102) T) ((-1089 . -455) 45924) ((-817 . -517) 45798) ((-665 . -1053) 45782) ((-648 . -34) T) ((-633 . -34) T) ((-783 . -455) 45713) ((-665 . -641) 45697) ((-357 . -1053) 45649) ((-354 . -1053) 45601) ((-346 . -1053) 45553) ((-265 . -1053) 45396) ((-247 . -1053) 45239) ((-781 . -455) 45190) ((-357 . -641) 45142) ((-354 . -641) 45094) ((-346 . -641) 45046) ((-265 . -641) 44895) ((-247 . -641) 44744) ((-457 . -455) 44695) ((-954 . -414) 44679) ((-732 . -614) 44661) ((-252 . -718) 44603) ((-251 . -718) 44545) ((-732 . -615) 44406) ((-484 . -414) 44390) ((-341 . -303) T) ((-527 . -93) T) ((-353 . -922) T) ((-1002 . -102) 44368) ((-912 . -1053) 44333) ((-1026 . -851) T) ((-60 . -517) 44266) ((-912 . -641) 44231) ((-1232 . -1154) 44183) ((-1006 . -287) NIL) ((-225 . -1060) T) ((-381 . -829) T) ((-1115 . -34) T) ((-584 . -455) T) ((-521 . -455) T) ((-1236 . -1095) 44167) ((-1236 . -1102) 44145) ((-240 . -605) 44122) ((-1236 . -1097) 44079) ((-1177 . -614) 44061) ((-1176 . -614) 44043) ((-1170 . -614) 44025) ((-1170 . -615) NIL) ((-1128 . -614) 44007) ((-873 . -403) 43991) ((-539 . -102) T) ((-1253 . -38) 43832) ((-1232 . -38) 43646) ((-871 . -147) T) ((-584 . -405) T) ((-521 . -405) T) ((-1265 . -102) T) ((-1255 . -21) T) ((-1255 . -25) T) ((-1115 . -792) 43625) ((-1115 . -795) 43576) ((-1115 . -794) 43555) ((-995 . -1102) T) ((-1029 . -34) T) ((-863 . -1102) T) ((-1115 . -727) 43465) ((-665 . -102) T) ((-646 . -102) T) ((-553 . -289) 43444) ((-1192 . -102) T) ((-479 . -34) T) ((-466 . -34) T) ((-357 . -102) T) ((-354 . -102) T) ((-346 . -102) T) ((-265 . -102) T) ((-247 . -102) T) ((-480 . -308) T) ((-1064 . -1060) T) ((-954 . -1060) T) ((-317 . -640) 43350) ((-314 . -640) 43311) ((-1175 . -1102) T) ((-484 . -1060) T) ((-482 . -102) T) ((-439 . -614) 43293) ((-1127 . -1102) T) ((-250 . -614) 43275) ((-855 . -1102) T) ((-1143 . -102) T) ((-817 . -291) 43206) ((-965 . -1058) 43089) ((-480 . -1024) T) ((-736 . -1058) 43059) ((-1036 . -647) 43018) ((-456 . -1058) 42988) ((-1149 . -1123) 42972) ((-1104 . -517) 42905) ((-965 . -111) 42774) ((-912 . -102) T) ((-736 . -111) 42739) ((-528 . -493) 42720) ((-528 . -614) 42686) ((-59 . -102) 42636) ((-523 . -615) 42597) ((-523 . -614) 42509) ((-522 . -102) 42487) ((-519 . -102) 42437) ((-500 . -102) 42415) ((-499 . -102) 42365) ((-456 . -111) 42328) ((-252 . -172) 42307) ((-251 . -172) 42286) ((-323 . -647) 42268) ((-421 . -1058) 42242) ((-1213 . -975) 42204) ((-1001 . -1114) T) ((-381 . -647) 42154) ((-1137 . -617) 42135) ((-945 . -517) 42068) ((-490 . -796) T) ((-477 . -38) 41909) ((-421 . -111) 41876) ((-490 . -793) T) ((-1002 . -310) 41814) ((-217 . -796) T) ((-217 . -793) T) ((-1001 . -23) T) ((-713 . -131) T) ((-1232 . -403) 41784) ((-837 . -647) 41729) ((-828 . -647) 41688) ((-317 . -25) 41540) ((-169 . -414) 41524) ((-317 . -21) 41395) ((-314 . -25) T) ((-314 . -21) T) ((-865 . -370) T) ((-965 . -617) 41248) ((-110 . -34) T) ((-736 . -617) 41204) ((-716 . -617) 41186) ((-485 . -649) 41034) ((-872 . -1060) T) ((-595 . -289) 41009) ((-583 . -147) T) ((-567 . -147) T) ((-498 . -147) T) ((-1175 . -718) 40838) ((-1059 . -102) 40816) ((-1127 . -718) 40665) ((-1122 . -640) 40647) ((-855 . -718) 40617) ((-671 . -1219) T) ((-1 . -102) T) ((-421 . -617) 40525) ((-240 . -614) 40256) ((-1117 . -1102) T) ((-1242 . -414) 40240) ((-1192 . -310) 40044) ((-965 . -1051) T) ((-736 . -1051) T) ((-716 . -1051) T) ((-645 . -1102) 39994) ((-1056 . -649) 39978) ((-856 . -414) 39962) ((-514 . -102) T) ((-510 . -102) T) ((-265 . -310) 39949) ((-247 . -310) 39936) ((-965 . -327) 39915) ((-387 . -649) 39899) ((-671 . -1040) 39795) ((-482 . -310) 39599) ((-252 . -517) 39532) ((-251 . -517) 39465) ((-1143 . -310) 39391) ((-820 . -1102) T) ((-800 . -1058) 39375) ((-1261 . -287) 39360) ((-1254 . -287) 39345) ((-1233 . -287) 39193) ((-389 . -1102) T) ((-325 . -1102) T) ((-421 . -1051) T) ((-169 . -1060) T) ((-59 . -310) 39131) ((-800 . -111) 39110) ((-597 . -287) 39095) ((-522 . -310) 39033) ((-519 . -310) 38971) ((-500 . -310) 38909) ((-499 . -310) 38847) ((-421 . -233) 38826) ((-485 . -34) T) ((-1006 . -615) 38756) ((-225 . -1102) T) ((-1006 . -614) 38716) ((-973 . -614) 38676) ((-973 . -615) 38651) ((-916 . -614) 38633) ((-700 . -147) T) ((-702 . -922) T) ((-702 . -821) T) ((-430 . -614) 38615) ((-1122 . -21) T) ((-1122 . -25) T) ((-671 . -379) 38599) ((-116 . -922) T) ((-873 . -231) 38583) ((-78 . -1219) T) ((-126 . -125) 38567) ((-1056 . -34) T) ((-1291 . -1040) 38541) ((-1289 . -1040) 38498) ((-1242 . -1060) T) ((-856 . -1060) T) ((-485 . -792) 38477) ((-357 . -1154) 38456) ((-354 . -1154) 38435) ((-346 . -1154) 38414) ((-485 . -795) 38365) ((-485 . -794) 38344) ((-227 . -34) T) ((-485 . -727) 38254) ((-800 . -617) 38100) ((-663 . -1053) 38084) ((-60 . -492) 38068) ((-574 . -1060) T) ((-663 . -641) 38052) ((-1175 . -172) 37943) ((-1127 . -172) 37854) ((-1064 . -1102) T) ((-1089 . -951) 37799) ((-954 . -1102) T) ((-818 . -649) 37750) ((-783 . -951) 37719) ((-714 . -1102) T) ((-781 . -951) 37686) ((-519 . -283) 37670) ((-671 . -902) 37629) ((-484 . -1102) T) ((-457 . -951) 37596) ((-79 . -1219) T) ((-357 . -38) 37561) ((-354 . -38) 37526) ((-346 . -38) 37491) ((-265 . -38) 37340) ((-247 . -38) 37189) ((-912 . -1154) T) ((-527 . -493) 37170) ((-624 . -147) 37149) ((-624 . -145) 37128) ((-527 . -614) 37094) ((-117 . -147) T) ((-117 . -145) NIL) ((-417 . -727) T) ((-800 . -1051) T) ((-345 . -455) T) ((-1261 . -1004) 37060) ((-1254 . -1004) 37026) ((-1233 . -1004) 36992) ((-912 . -38) 36957) ((-225 . -718) 36922) ((-320 . -47) 36892) ((-40 . -412) 36864) ((-140 . -614) 36846) ((-1001 . -131) T) ((-816 . -1219) T) ((-174 . -922) T) ((-552 . -370) T) ((-607 . -617) 36827) ((-345 . -405) T) ((-715 . -647) 36772) ((-672 . -617) 36753) ((-180 . -617) 36734) ((-161 . -617) 36715) ((-156 . -617) 36696) ((-154 . -617) 36677) ((-523 . -289) 36654) ((-1232 . -231) 36624) ((-877 . -102) T) ((-816 . -1040) 36451) ((-45 . -34) T) ((-682 . -102) T) ((-677 . -102) T) ((-663 . -102) T) ((-655 . -21) T) ((-655 . -25) T) ((-1104 . -492) 36435) ((-676 . -1219) T) ((-481 . -102) T) ((-245 . -102) 36385) ((-549 . -845) T) ((-137 . -102) T) ((-133 . -102) T) ((-138 . -102) T) ((-872 . -1102) T) ((-1181 . -649) 36310) ((-1064 . -718) 36297) ((-732 . -1058) 36140) ((-1175 . -517) 36087) ((-954 . -718) 35936) ((-1127 . -517) 35888) ((-1280 . -1102) T) ((-1279 . -1102) T) ((-484 . -718) 35737) ((-67 . -614) 35719) ((-732 . -111) 35548) ((-945 . -492) 35532) ((-1281 . -649) 35492) ((-818 . -727) T) ((-1177 . -1058) 35375) ((-1176 . -1058) 35210) ((-1170 . -1058) 35000) ((-1128 . -1058) 34883) ((-1005 . -1223) T) ((-1096 . -102) 34861) ((-816 . -379) 34830) ((-582 . -614) 34812) ((-549 . -1102) T) ((-1005 . -559) T) ((-1177 . -111) 34681) ((-1176 . -111) 34502) ((-1170 . -111) 34271) ((-1128 . -111) 34140) ((-1107 . -1105) 34104) ((-381 . -849) T) ((-1261 . -614) 34086) ((-1254 . -614) 34068) ((-873 . -647) 34005) ((-1233 . -614) 33987) ((-1233 . -615) NIL) ((-240 . -289) 33964) ((-40 . -455) T) ((-225 . -172) T) ((-169 . -1102) T) ((-732 . -617) 33749) ((-695 . -147) T) ((-695 . -145) NIL) ((-598 . -614) 33731) ((-597 . -614) 33713) ((-900 . -1102) T) ((-842 . -1102) T) ((-809 . -1102) T) ((-770 . -1102) T) ((-659 . -853) 33697) ((-678 . -1102) T) ((-816 . -902) 33629) ((-1224 . -370) T) ((-40 . -405) NIL) ((-1177 . -617) 33511) ((-1122 . -662) T) ((-872 . -718) 33456) ((-252 . -492) 33440) ((-251 . -492) 33424) ((-1176 . -617) 33167) ((-1170 . -617) 32962) ((-713 . -640) 32910) ((-654 . -649) 32884) ((-1128 . -617) 32766) ((-296 . -34) T) ((-732 . -1051) T) ((-584 . -1276) 32753) ((-521 . -1276) 32730) ((-1242 . -1102) T) ((-1175 . -291) 32641) ((-1127 . -291) 32572) ((-1064 . -172) T) ((-856 . -1102) T) ((-954 . -172) 32483) ((-783 . -1245) 32467) ((-645 . -517) 32400) ((-77 . -614) 32382) ((-732 . -327) 32347) ((-1181 . -727) T) ((-574 . -1102) T) ((-484 . -172) 32258) ((-245 . -310) 32196) ((-1144 . -1114) T) ((-70 . -614) 32178) ((-1281 . -727) T) ((-1177 . -1051) T) ((-1176 . -1051) T) ((-328 . -102) 32128) ((-1170 . -1051) T) ((-1144 . -23) T) ((-1128 . -1051) T) ((-91 . -1123) 32112) ((-867 . -1114) T) ((-1177 . -233) 32071) ((-1176 . -243) 32050) ((-1176 . -233) 32002) ((-1170 . -233) 31889) ((-1170 . -243) 31868) ((-320 . -902) 31774) ((-867 . -23) T) ((-169 . -718) 31602) ((-410 . -1223) T) ((-1103 . -370) T) ((-1005 . -365) T) ((-871 . -455) T) ((-1026 . -147) T) ((-945 . -287) 31579) ((-314 . -851) NIL) ((-1253 . -647) 31461) ((-875 . -102) T) ((-1232 . -647) 31316) ((-713 . -25) T) ((-410 . -559) T) ((-713 . -21) T) ((-528 . -617) 31297) ((-356 . -147) 31279) ((-356 . -145) T) ((-1149 . -1102) 31257) ((-456 . -721) T) ((-75 . -614) 31239) ((-114 . -851) T) ((-245 . -283) 31223) ((-240 . -1058) 31120) ((-81 . -614) 31102) ((-736 . -370) 31055) ((-1179 . -829) T) ((-738 . -235) 31039) ((-1162 . -1219) T) ((-141 . -235) 31021) ((-240 . -111) 30911) ((-1242 . -718) 30740) ((-48 . -147) T) ((-872 . -172) T) ((-856 . -718) 30710) ((-487 . -1219) T) ((-954 . -517) 30657) ((-654 . -727) T) ((-574 . -718) 30644) ((-1036 . -1060) T) ((-484 . -517) 30587) ((-945 . -19) 30571) ((-945 . -605) 30548) ((-817 . -615) NIL) ((-817 . -614) 30530) ((-1213 . -1053) 30413) ((-1006 . -1058) 30363) ((-416 . -614) 30345) ((-252 . -287) 30322) ((-251 . -287) 30299) ((-490 . -911) NIL) ((-317 . -29) 30269) ((-108 . -1219) T) ((-1005 . -1114) T) ((-217 . -911) NIL) ((-1213 . -641) 30166) ((-916 . -1058) 30118) ((-1082 . -1040) 30014) ((-1006 . -111) 29948) ((-712 . -1053) 29913) ((-1005 . -23) T) ((-916 . -111) 29851) ((-738 . -696) 29835) ((-712 . -641) 29800) ((-265 . -231) 29784) ((-430 . -1058) 29768) ((-381 . -1060) T) ((-240 . -617) 29498) ((-695 . -1207) NIL) ((-490 . -649) 29448) ((-477 . -647) 29330) ((-108 . -886) 29312) ((-108 . -888) 29294) ((-695 . -1204) NIL) ((-217 . -649) 29244) ((-361 . -1040) 29228) ((-355 . -1040) 29212) ((-328 . -310) 29150) ((-347 . -1040) 29134) ((-225 . -291) T) ((-430 . -111) 29113) ((-60 . -614) 29045) ((-169 . -172) T) ((-1122 . -851) T) ((-108 . -1040) 29005) ((-894 . -1102) T) ((-837 . -1060) T) ((-828 . -1060) T) ((-695 . -35) NIL) ((-695 . -95) NIL) ((-314 . -994) 28966) ((-183 . -102) T) ((-583 . -455) T) ((-567 . -455) T) ((-498 . -455) T) ((-410 . -365) T) ((-240 . -1051) 28896) ((-1152 . -34) T) ((-480 . -922) T) ((-1001 . -640) 28844) ((-252 . -605) 28821) ((-251 . -605) 28798) ((-1082 . -379) 28782) ((-872 . -517) 28690) ((-240 . -233) 28642) ((-1161 . -1219) T) ((-1006 . -617) 28592) ((-916 . -617) 28529) ((-825 . -614) 28511) ((-1292 . -1114) T) ((-1284 . -614) 28493) ((-1242 . -172) 28384) ((-430 . -617) 28353) ((-108 . -379) 28335) ((-108 . -340) 28317) ((-1064 . -291) T) ((-954 . -291) 28248) ((-800 . -370) 28227) ((-648 . -1219) T) ((-633 . -1219) T) ((-588 . -1053) 28202) ((-484 . -291) 28133) ((-574 . -172) T) ((-328 . -283) 28117) ((-1292 . -23) T) ((-1213 . -102) T) ((-1200 . -1102) T) ((-1090 . -1102) T) ((-1078 . -1102) T) ((-588 . -641) 28092) ((-83 . -614) 28074) ((-1186 . -845) T) ((-1185 . -845) T) ((-712 . -102) T) ((-357 . -351) 28053) ((-609 . -1102) T) ((-354 . -351) 28032) ((-346 . -351) 28011) ((-478 . -1102) T) ((-1192 . -229) 27961) ((-265 . -254) 27923) ((-1144 . -131) T) ((-609 . -611) 27899) ((-1082 . -902) 27832) ((-1006 . -1051) T) ((-916 . -1051) T) ((-478 . -611) 27811) ((-1170 . -793) NIL) ((-1170 . -796) NIL) ((-1104 . -615) 27772) ((-482 . -229) 27722) ((-1104 . -614) 27704) ((-1006 . -243) T) ((-1006 . -233) T) ((-430 . -1051) T) ((-960 . -1102) 27654) ((-916 . -243) T) ((-867 . -131) T) ((-700 . -455) T) ((-844 . -1114) 27633) ((-108 . -902) NIL) ((-1213 . -285) 27599) ((-873 . -849) 27578) ((-1115 . -1219) T) ((-907 . -727) T) ((-169 . -517) 27490) ((-1001 . -25) T) ((-907 . -476) T) ((-410 . -1114) T) ((-490 . -795) T) ((-490 . -792) T) ((-912 . -351) T) ((-490 . -727) T) ((-217 . -795) T) ((-217 . -792) T) ((-1001 . -21) T) ((-217 . -727) T) ((-844 . -23) 27442) ((-1187 . -1102) T) ((-659 . -1053) 27426) ((-1186 . -1102) T) ((-527 . -617) 27407) ((-1185 . -1102) T) ((-320 . -308) 27386) ((-1037 . -235) 27332) ((-659 . -641) 27302) ((-410 . -23) T) ((-945 . -615) 27263) ((-945 . -614) 27175) ((-645 . -492) 27159) ((-45 . -1012) 27109) ((-618 . -969) T) ((-494 . -102) T) ((-332 . -614) 27091) ((-1115 . -1040) 26918) ((-595 . -652) 26900) ((-130 . -1102) T) ((-128 . -1102) T) ((-595 . -375) 26882) ((-345 . -1276) 26859) ((-442 . -614) 26841) ((-1242 . -517) 26788) ((-1089 . -1053) 26631) ((-1029 . -1219) T) ((-872 . -291) T) ((-1175 . -287) 26558) ((-1089 . -641) 26407) ((-1002 . -997) 26391) ((-783 . -1053) 26214) ((-781 . -1053) 26057) ((-783 . -641) 25886) ((-781 . -641) 25735) ((-479 . -1219) T) ((-466 . -1219) T) ((-588 . -102) T) ((-464 . -1053) 25706) ((-457 . -1053) 25549) ((-665 . -647) 25518) ((-624 . -455) 25497) ((-464 . -641) 25468) ((-457 . -641) 25317) ((-357 . -647) 25254) ((-354 . -647) 25191) ((-346 . -647) 25128) ((-265 . -647) 25038) ((-247 . -647) 24948) ((-1284 . -384) 24920) ((-520 . -1102) T) ((-117 . -455) T) ((-1199 . -102) T) ((-1094 . -1102) 24890) ((-1036 . -1102) T) ((-1117 . -93) T) ((-895 . -851) T) ((-1261 . -111) 24759) ((-353 . -1223) T) ((-1261 . -1058) 24642) ((-1115 . -379) 24611) ((-1254 . -1058) 24446) ((-1233 . -1058) 24236) ((-1254 . -111) 24057) ((-1233 . -111) 23826) ((-1213 . -310) 23813) ((-1005 . -131) T) ((-912 . -647) 23763) ((-367 . -614) 23745) ((-353 . -559) T) ((-290 . -308) T) ((-598 . -1058) 23705) ((-597 . -1058) 23588) ((-584 . -1053) 23553) ((-521 . -1053) 23498) ((-363 . -1102) T) ((-323 . -1102) T) ((-252 . -614) 23459) ((-251 . -614) 23420) ((-584 . -641) 23385) ((-521 . -641) 23330) ((-695 . -412) 23297) ((-636 . -23) T) ((-608 . -23) T) ((-659 . -102) T) ((-598 . -111) 23250) ((-597 . -111) 23119) ((-381 . -1102) T) ((-338 . -102) T) ((-169 . -291) 23030) ((-1232 . -849) 22983) ((-715 . -1060) T) ((-1149 . -517) 22916) ((-1115 . -902) 22848) ((-837 . -1102) T) ((-828 . -1102) T) ((-826 . -1102) T) ((-97 . -102) T) ((-144 . -851) T) ((-613 . -886) 22832) ((-110 . -1219) T) ((-1089 . -102) T) ((-1065 . -34) T) ((-783 . -102) T) ((-781 . -102) T) ((-1261 . -617) 22714) ((-1254 . -617) 22457) ((-464 . -102) T) ((-457 . -102) T) ((-1233 . -617) 22252) ((-240 . -796) 22203) ((-240 . -793) 22154) ((-650 . -102) T) ((-598 . -617) 22112) ((-597 . -617) 21994) ((-1242 . -291) 21905) ((-665 . -635) 21889) ((-186 . -614) 21871) ((-645 . -287) 21848) ((-1036 . -718) 21832) ((-574 . -291) T) ((-965 . -649) 21757) ((-1292 . -131) T) ((-736 . -649) 21717) ((-716 . -649) 21704) ((-276 . -102) T) ((-456 . -649) 21634) ((-50 . -102) T) ((-584 . -102) T) ((-521 . -102) T) ((-1261 . -1051) T) ((-1254 . -1051) T) ((-1233 . -1051) T) ((-510 . -647) 21616) ((-323 . -718) 21598) ((-1261 . -233) 21557) ((-1254 . -243) 21536) ((-1254 . -233) 21488) ((-1233 . -233) 21375) ((-1233 . -243) 21354) ((-1213 . -38) 21251) ((-598 . -1051) T) ((-597 . -1051) T) ((-1006 . -796) T) ((-1006 . -793) T) ((-973 . -796) T) ((-973 . -793) T) ((-873 . -1060) T) ((-109 . -614) 21233) ((-695 . -455) T) ((-381 . -718) 21198) ((-421 . -649) 21172) ((-871 . -870) 21156) ((-712 . -38) 21121) ((-597 . -233) 21080) ((-40 . -725) 21052) ((-353 . -330) 21029) ((-353 . -365) T) ((-1082 . -308) 20980) ((-295 . -1114) 20861) ((-1108 . -1219) T) ((-171 . -102) T) ((-1236 . -614) 20828) ((-844 . -131) 20780) ((-645 . -1257) 20764) ((-837 . -718) 20734) ((-828 . -718) 20704) ((-485 . -1219) T) ((-361 . -308) T) ((-355 . -308) T) ((-347 . -308) T) ((-645 . -605) 20681) ((-410 . -131) T) ((-523 . -667) 20665) ((-108 . -308) T) ((-295 . -23) 20548) ((-523 . -652) 20532) ((-695 . -405) NIL) ((-523 . -375) 20516) ((-292 . -614) 20498) ((-91 . -1102) 20476) ((-108 . -1024) T) ((-567 . -143) T) ((-1269 . -151) 20460) ((-485 . -1040) 20287) ((-1255 . -145) 20248) ((-1255 . -147) 20209) ((-1056 . -1219) T) ((-995 . -614) 20191) ((-863 . -614) 20173) ((-817 . -1058) 20016) ((-1280 . -93) T) ((-1279 . -93) T) ((-1175 . -615) NIL) ((-1098 . -1102) T) ((-1092 . -1102) T) ((-1089 . -310) 20003) ((-1075 . -1102) T) ((-227 . -1219) T) ((-1068 . -1102) T) ((-1038 . -1102) T) ((-1021 . -1102) T) ((-783 . -310) 19990) ((-781 . -310) 19977) ((-1175 . -614) 19959) ((-817 . -111) 19788) ((-1127 . -614) 19770) ((-627 . -1102) T) ((-580 . -173) T) ((-532 . -173) T) ((-457 . -310) 19757) ((-486 . -1102) T) ((-1127 . -615) 19505) ((-1036 . -172) T) ((-945 . -289) 19482) ((-218 . -1102) T) ((-855 . -614) 19464) ((-609 . -517) 19247) ((-81 . -617) 19188) ((-819 . -1040) 19172) ((-478 . -517) 18964) ((-965 . -727) T) ((-736 . -727) T) ((-716 . -727) T) ((-353 . -1114) T) ((-1182 . -614) 18946) ((-223 . -102) T) ((-485 . -379) 18915) ((-518 . -1102) T) ((-513 . -1102) T) ((-511 . -1102) T) ((-800 . -649) 18889) ((-1026 . -455) T) ((-960 . -517) 18822) ((-353 . -23) T) ((-636 . -131) T) ((-608 . -131) T) ((-356 . -455) T) ((-240 . -370) 18801) ((-381 . -172) T) ((-1253 . -1060) T) ((-1232 . -1060) T) ((-225 . -1004) T) ((-817 . -617) 18538) ((-700 . -390) T) ((-421 . -727) T) ((-702 . -1223) T) ((-1144 . -640) 18486) ((-583 . -870) 18470) ((-1284 . -1058) 18454) ((-1162 . -1195) 18430) ((-702 . -559) T) ((-126 . -1102) 18408) ((-715 . -1102) T) ((-485 . -902) 18340) ((-249 . -1102) T) ((-187 . -1102) T) ((-659 . -38) 18310) ((-356 . -405) T) ((-317 . -147) 18289) ((-317 . -145) 18268) ((-128 . -517) NIL) ((-116 . -559) T) ((-314 . -147) 18224) ((-314 . -145) 18180) ((-48 . -455) T) ((-162 . -1102) T) ((-157 . -1102) T) ((-1162 . -107) 18127) ((-783 . -1154) 18105) ((-690 . -34) T) ((-1284 . -111) 18084) ((-553 . -34) T) ((-487 . -107) 18068) ((-252 . -289) 18045) ((-251 . -289) 18022) ((-872 . -287) 17973) ((-45 . -1219) T) ((-1225 . -845) T) ((-817 . -1051) T) ((-663 . -647) 17942) ((-1181 . -47) 17919) ((-817 . -327) 17881) ((-1089 . -38) 17730) ((-817 . -233) 17709) ((-783 . -38) 17538) ((-781 . -38) 17387) ((-1117 . -493) 17368) ((-457 . -38) 17217) ((-1117 . -614) 17183) ((-1120 . -102) T) ((-645 . -615) 17144) ((-645 . -614) 17056) ((-584 . -1154) T) ((-521 . -1154) T) ((-1149 . -492) 17040) ((-345 . -1053) 16985) ((-1205 . -1102) 16963) ((-1144 . -25) T) ((-1144 . -21) T) ((-345 . -641) 16908) ((-1284 . -617) 16857) ((-477 . -1060) T) ((-1225 . -1102) T) ((-1233 . -793) NIL) ((-1233 . -796) NIL) ((-1001 . -851) 16836) ((-839 . -1102) T) ((-820 . -614) 16818) ((-867 . -21) T) ((-867 . -25) T) ((-800 . -727) T) ((-174 . -1223) T) ((-584 . -38) 16783) ((-521 . -38) 16748) ((-389 . -614) 16730) ((-334 . -102) T) ((-325 . -614) 16712) ((-169 . -287) 16670) ((-63 . -1219) T) ((-112 . -102) T) ((-873 . -1102) T) ((-174 . -559) T) ((-715 . -718) 16640) ((-295 . -131) 16523) ((-225 . -614) 16505) ((-225 . -615) 16435) ((-1005 . -640) 16374) ((-1284 . -1051) T) ((-1122 . -147) T) ((-633 . -1195) 16349) ((-732 . -911) 16328) ((-595 . -34) T) ((-648 . -107) 16312) ((-633 . -107) 16258) ((-1242 . -287) 16185) ((-732 . -649) 16110) ((-296 . -1219) T) ((-1181 . -1040) 16006) ((-945 . -619) 15983) ((-580 . -579) T) ((-580 . -530) T) ((-532 . -530) T) ((-1170 . -911) NIL) ((-1064 . -615) 15898) ((-1064 . -614) 15880) ((-954 . -614) 15862) ((-714 . -493) 15812) ((-345 . -102) T) ((-252 . -1058) 15709) ((-251 . -1058) 15606) ((-397 . -102) T) ((-31 . -1102) T) ((-954 . -615) 15467) ((-714 . -614) 15402) ((-1282 . -1212) 15371) ((-484 . -614) 15353) ((-484 . -615) 15214) ((-265 . -414) 15198) ((-247 . -414) 15182) ((-252 . -111) 15072) ((-251 . -111) 14962) ((-1177 . -649) 14887) ((-1176 . -649) 14784) ((-1170 . -649) 14636) ((-1128 . -649) 14561) ((-353 . -131) T) ((-82 . -444) T) ((-82 . -398) T) ((-1005 . -25) T) ((-1005 . -21) T) ((-874 . -1102) 14512) ((-40 . -1053) 14457) ((-873 . -718) 14409) ((-40 . -641) 14354) ((-381 . -291) T) ((-169 . -1004) 14305) ((-695 . -390) T) ((-1001 . -999) 14289) ((-702 . -1114) T) ((-695 . -166) 14271) ((-1253 . -1102) T) ((-1232 . -1102) T) ((-317 . -1204) 14250) ((-317 . -1207) 14229) ((-1167 . -102) T) ((-317 . -961) 14208) ((-134 . -1114) T) ((-116 . -1114) T) ((-603 . -1267) 14192) ((-702 . -23) T) ((-603 . -1102) 14142) ((-317 . -95) 14121) ((-91 . -517) 14054) ((-174 . -365) T) ((-252 . -617) 13784) ((-251 . -617) 13514) ((-317 . -35) 13493) ((-609 . -492) 13427) ((-134 . -23) T) ((-116 . -23) T) ((-968 . -102) T) ((-719 . -1102) T) ((-478 . -492) 13364) ((-410 . -640) 13312) ((-654 . -1040) 13208) ((-960 . -492) 13192) ((-357 . -1060) T) ((-354 . -1060) T) ((-346 . -1060) T) ((-265 . -1060) T) ((-247 . -1060) T) ((-872 . -615) NIL) ((-872 . -614) 13174) ((-1280 . -493) 13155) ((-1279 . -493) 13136) ((-1292 . -21) T) ((-1280 . -614) 13102) ((-1279 . -614) 13068) ((-574 . -1004) T) ((-732 . -727) T) ((-1292 . -25) T) ((-252 . -1051) 12998) ((-251 . -1051) 12928) ((-72 . -1219) T) ((-252 . -233) 12880) ((-251 . -233) 12832) ((-40 . -102) T) ((-912 . -1060) T) ((-1184 . -102) T) ((-128 . -492) 12814) ((-1177 . -727) T) ((-1176 . -727) T) ((-1170 . -727) T) ((-1170 . -792) NIL) ((-1170 . -795) NIL) ((-956 . -102) T) ((-923 . -102) T) ((-871 . -1053) 12801) ((-1128 . -727) T) ((-772 . -102) T) ((-673 . -102) T) ((-871 . -641) 12788) ((-549 . -614) 12770) ((-477 . -1102) T) ((-341 . -1114) T) ((-174 . -1114) T) ((-320 . -922) 12749) ((-1253 . -718) 12590) ((-873 . -172) T) ((-1232 . -718) 12404) ((-844 . -21) 12356) ((-844 . -25) 12308) ((-245 . -1151) 12292) ((-126 . -517) 12225) ((-410 . -25) T) ((-410 . -21) T) ((-341 . -23) T) ((-169 . -615) 11991) ((-169 . -614) 11973) ((-174 . -23) T) ((-645 . -289) 11950) ((-523 . -34) T) ((-900 . -614) 11932) ((-89 . -1219) T) ((-842 . -614) 11914) ((-809 . -614) 11896) ((-770 . -614) 11878) ((-678 . -614) 11860) ((-240 . -649) 11708) ((-1179 . -1102) T) ((-1175 . -1058) 11531) ((-1152 . -1219) T) ((-1127 . -1058) 11374) ((-855 . -1058) 11358) ((-1236 . -619) 11342) ((-1175 . -111) 11151) ((-1127 . -111) 10980) ((-855 . -111) 10959) ((-1226 . -851) T) ((-1242 . -615) NIL) ((-1242 . -614) 10941) ((-345 . -1154) T) ((-856 . -614) 10923) ((-1078 . -287) 10902) ((-80 . -1219) T) ((-1006 . -911) NIL) ((-609 . -287) 10878) ((-1205 . -517) 10811) ((-490 . -1219) T) ((-574 . -614) 10793) ((-478 . -287) 10772) ((-1213 . -647) 10682) ((-520 . -93) T) ((-1089 . -231) 10666) ((-217 . -1219) T) ((-1006 . -649) 10616) ((-960 . -287) 10593) ((-290 . -922) T) ((-818 . -308) 10572) ((-871 . -102) T) ((-783 . -231) 10556) ((-916 . -649) 10508) ((-712 . -647) 10458) ((-695 . -725) 10425) ((-636 . -21) T) ((-636 . -25) T) ((-608 . -21) T) ((-550 . -102) T) ((-345 . -38) 10390) ((-490 . -886) 10372) ((-490 . -888) 10354) ((-477 . -718) 10195) ((-217 . -886) 10177) ((-64 . -1219) T) ((-217 . -888) 10159) ((-608 . -25) T) ((-430 . -649) 10133) ((-1175 . -617) 9902) ((-490 . -1040) 9862) ((-873 . -517) 9774) ((-1127 . -617) 9566) ((-855 . -617) 9484) ((-217 . -1040) 9444) ((-240 . -34) T) ((-1002 . -1102) 9422) ((-583 . -1053) 9409) ((-567 . -1053) 9396) ((-498 . -1053) 9361) ((-1253 . -172) 9292) ((-1232 . -172) 9223) ((-583 . -641) 9210) ((-567 . -641) 9197) ((-498 . -641) 9162) ((-713 . -145) 9141) ((-713 . -147) 9120) ((-702 . -131) T) ((-136 . -468) 9097) ((-1149 . -614) 9029) ((-659 . -657) 9013) ((-128 . -287) 8988) ((-116 . -131) T) ((-480 . -1223) T) ((-609 . -605) 8964) ((-478 . -605) 8943) ((-338 . -337) 8912) ((-539 . -1102) T) ((-480 . -559) T) ((-1175 . -1051) T) ((-1127 . -1051) T) ((-855 . -1051) T) ((-240 . -792) 8891) ((-240 . -795) 8842) ((-240 . -794) 8821) ((-1175 . -327) 8798) ((-240 . -727) 8708) ((-960 . -19) 8692) ((-490 . -379) 8674) ((-490 . -340) 8656) ((-1127 . -327) 8628) ((-356 . -1276) 8605) ((-217 . -379) 8587) ((-217 . -340) 8569) ((-960 . -605) 8546) ((-1175 . -233) T) ((-1265 . -1102) T) ((-665 . -1102) T) ((-646 . -1102) T) ((-1192 . -1102) T) ((-1089 . -254) 8483) ((-588 . -647) 8443) ((-357 . -1102) T) ((-354 . -1102) T) ((-346 . -1102) T) ((-265 . -1102) T) ((-247 . -1102) T) ((-84 . -1219) T) ((-127 . -102) 8421) ((-121 . -102) 8399) ((-1192 . -611) 8378) ((-1232 . -517) 8238) ((-1143 . -1102) T) ((-1117 . -617) 8219) ((-482 . -1102) T) ((-1082 . -922) 8170) ((-1006 . -795) T) ((-482 . -611) 8149) ((-252 . -796) 8100) ((-252 . -793) 8051) ((-251 . -796) 8002) ((-40 . -1154) NIL) ((-251 . -793) 7953) ((-1006 . -792) T) ((-128 . -19) 7935) ((-1006 . -727) T) ((-700 . -1053) 7900) ((-973 . -795) T) ((-916 . -727) T) ((-912 . -1102) T) ((-128 . -605) 7875) ((-700 . -641) 7840) ((-91 . -492) 7824) ((-490 . -902) NIL) ((-894 . -614) 7806) ((-225 . -1058) 7771) ((-873 . -291) T) ((-217 . -902) NIL) ((-834 . -1114) 7750) ((-59 . -1102) 7700) ((-522 . -1102) 7678) ((-519 . -1102) 7628) ((-500 . -1102) 7606) ((-499 . -1102) 7556) ((-583 . -102) T) ((-567 . -102) T) ((-498 . -102) T) ((-477 . -172) 7487) ((-361 . -922) T) ((-355 . -922) T) ((-347 . -922) T) ((-225 . -111) 7443) ((-834 . -23) 7395) ((-430 . -727) T) ((-108 . -922) T) ((-40 . -38) 7340) ((-108 . -821) T) ((-584 . -351) T) ((-521 . -351) T) ((-837 . -287) 7319) ((-317 . -455) 7298) ((-314 . -455) T) ((-659 . -647) 7257) ((-603 . -517) 7190) ((-341 . -131) T) ((-174 . -131) T) ((-295 . -25) 7054) ((-295 . -21) 6937) ((-45 . -1195) 6916) ((-66 . -614) 6898) ((-55 . -102) T) ((-338 . -647) 6880) ((-45 . -107) 6830) ((-820 . -617) 6814) ((-1270 . -102) T) ((-1269 . -102) 6764) ((-1261 . -649) 6689) ((-1254 . -649) 6586) ((-1233 . -649) 6438) ((-1104 . -428) 6422) ((-1104 . -370) 6401) ((-389 . -617) 6385) ((-325 . -617) 6369) ((-1233 . -911) NIL) ((-1200 . -614) 6351) ((-1065 . -1219) T) ((-1089 . -647) 6261) ((-1064 . -1058) 6248) ((-1064 . -111) 6233) ((-954 . -1058) 6076) ((-954 . -111) 5905) ((-783 . -647) 5815) ((-781 . -647) 5725) ((-624 . -1053) 5712) ((-665 . -718) 5696) ((-624 . -641) 5683) ((-484 . -1058) 5526) ((-480 . -365) T) ((-464 . -647) 5482) ((-457 . -647) 5392) ((-225 . -617) 5342) ((-357 . -718) 5294) ((-354 . -718) 5246) ((-117 . -1053) 5191) ((-346 . -718) 5143) ((-265 . -718) 4992) ((-247 . -718) 4841) ((-1098 . -93) T) ((-1092 . -93) T) ((-117 . -641) 4786) ((-1075 . -93) T) ((-945 . -652) 4770) ((-1068 . -93) T) ((-484 . -111) 4599) ((-1059 . -1102) 4577) ((-1038 . -93) T) ((-945 . -375) 4561) ((-248 . -102) T) ((-1021 . -93) T) ((-74 . -614) 4543) ((-965 . -47) 4522) ((-711 . -102) T) ((-700 . -102) T) ((-1 . -1102) T) ((-622 . -1114) T) ((-1090 . -614) 4504) ((-627 . -93) T) ((-1078 . -614) 4486) ((-912 . -718) 4451) ((-126 . -492) 4435) ((-486 . -93) T) ((-622 . -23) T) ((-393 . -23) T) ((-87 . -1219) T) ((-218 . -93) T) ((-609 . -614) 4417) ((-609 . -615) NIL) ((-478 . -615) NIL) ((-478 . -614) 4399) ((-353 . -25) T) ((-353 . -21) T) ((-50 . -647) 4358) ((-514 . -1102) T) ((-510 . -1102) T) ((-127 . -310) 4296) ((-121 . -310) 4234) ((-598 . -649) 4208) ((-597 . -649) 4133) ((-584 . -647) 4083) ((-225 . -1051) T) ((-521 . -647) 4013) ((-381 . -1004) T) ((-225 . -243) T) ((-225 . -233) T) ((-1064 . -617) 3985) ((-1064 . -619) 3966) ((-960 . -615) 3927) ((-960 . -614) 3839) ((-954 . -617) 3628) ((-871 . -38) 3615) ((-714 . -617) 3565) ((-1253 . -291) 3516) ((-1232 . -291) 3467) ((-484 . -617) 3252) ((-1122 . -455) T) ((-505 . -851) T) ((-317 . -1141) 3231) ((-1001 . -147) 3210) ((-1001 . -145) 3189) ((-498 . -310) 3176) ((-296 . -1195) 3155) ((-1187 . -614) 3137) ((-1186 . -614) 3119) ((-1185 . -614) 3101) ((-872 . -1058) 3046) ((-480 . -1114) T) ((-139 . -836) 3028) ((-114 . -836) 3009) ((-624 . -102) T) ((-1205 . -492) 2993) ((-252 . -370) 2972) ((-251 . -370) 2951) ((-1064 . -1051) T) ((-296 . -107) 2901) ((-130 . -614) 2883) ((-128 . -615) NIL) ((-128 . -614) 2827) ((-117 . -102) T) ((-954 . -1051) T) ((-872 . -111) 2756) ((-480 . -23) T) ((-484 . -1051) T) ((-1064 . -233) T) ((-954 . -327) 2725) ((-484 . -327) 2682) ((-357 . -172) T) ((-354 . -172) T) ((-346 . -172) T) ((-265 . -172) 2593) ((-247 . -172) 2504) ((-965 . -1040) 2400) ((-520 . -493) 2381) ((-736 . -1040) 2352) ((-520 . -614) 2318) ((-1107 . -102) T) ((-1094 . -614) 2277) ((-1036 . -614) 2259) ((-695 . -1053) 2209) ((-1282 . -151) 2193) ((-1280 . -617) 2174) ((-1279 . -617) 2155) ((-1274 . -614) 2137) ((-1261 . -727) T) ((-695 . -641) 2087) ((-1254 . -727) T) ((-1233 . -792) NIL) ((-1233 . -795) NIL) ((-169 . -1058) 1997) ((-912 . -172) T) ((-872 . -617) 1927) ((-1233 . -727) T) ((-1005 . -344) 1901) ((-223 . -647) 1853) ((-1002 . -517) 1786) ((-844 . -851) 1765) ((-567 . -1154) T) ((-477 . -291) 1716) ((-598 . -727) T) ((-363 . -614) 1698) ((-323 . -614) 1680) ((-421 . -1040) 1576) ((-597 . -727) T) ((-410 . -851) 1527) ((-169 . -111) 1423) ((-834 . -131) 1375) ((-738 . -151) 1359) ((-1269 . -310) 1297) ((-490 . -308) T) ((-381 . -614) 1264) ((-523 . -1012) 1248) ((-381 . -615) 1162) ((-217 . -308) T) ((-141 . -151) 1144) ((-715 . -287) 1123) ((-490 . -1024) T) ((-583 . -38) 1110) ((-567 . -38) 1097) ((-498 . -38) 1062) ((-217 . -1024) T) ((-872 . -1051) T) ((-837 . -614) 1044) ((-828 . -614) 1026) ((-826 . -614) 1008) ((-817 . -911) 987) ((-1293 . -1114) T) ((-1242 . -1058) 810) ((-856 . -1058) 794) ((-872 . -243) T) ((-872 . -233) NIL) ((-690 . -1219) T) ((-1293 . -23) T) ((-817 . -649) 719) ((-553 . -1219) T) ((-421 . -340) 703) ((-574 . -1058) 690) ((-1242 . -111) 499) ((-702 . -640) 481) ((-856 . -111) 460) ((-383 . -23) T) ((-169 . -617) 238) ((-1192 . -517) 30) ((-877 . -1102) T) ((-682 . -1102) T) ((-677 . -1102) T) ((-663 . -1102) T)) \ No newline at end of file
diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase
index 5bf50190..eed89d43 100644
--- a/src/share/algebra/compress.daase
+++ b/src/share/algebra/compress.daase
@@ -1,6 +1,6 @@
-(30 . 3466723533)
-(4421 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain|
+(30 . 3467417888)
+(4425 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain|
ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join|
|ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&|
|OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup|
@@ -421,9 +421,10 @@
|SplittingNode| |SplittingTree| |SquareMatrix| |StringAggregate&|
|StringAggregate| |SquareFreeRegularSetDecompositionPackage|
|SquareFreeRegularTriangularSet| |Stack| |StreamAggregate&|
- |StreamAggregate| |SparseTable| |StepThrough| |StreamInfiniteProduct|
- |StreamFunctions1| |StreamFunctions2| |StreamFunctions3| |Stream|
- |StringCategory| |String| |StringTable| |StreamTaylorSeriesOperations|
+ |StreamAggregate| |SparseTable| |StepAst| |StepThrough|
+ |StreamInfiniteProduct| |StreamFunctions1| |StreamFunctions2|
+ |StreamFunctions3| |Stream| |StringCategory| |String| |StringTable|
+ |StreamTaylorSeriesOperations|
|StreamTranscendentalFunctionsNonCommutative|
|StreamTranscendentalFunctions| |SubResultantPackage| |SubSpace|
|SuchThat| |SuchThatAst| |SparseUnivariateLaurentSeries|
@@ -480,660 +481,661 @@
|XPolynomial| |XPolynomialRing| |XRecursivePolynomial|
|ParadoxicalCombinatorsForStreams| |ZeroDimensionalSolvePackage|
|IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping|
- |Record| |Union| |setchildren!| |hasHi| |cylindrical| |result|
- |solve1| |series| |expPot| |plot| |semiLastSubResultantEuclidean|
- |connect| |OMlistSymbols| |movedPoints| |c06gbf| |finite?| |reset|
- |zero| |df2fi| |dmpToP| |constantIfCan| |ratDenom| |ideal|
- |numberOfCycles| |multinomial| |getExplanations| |nullSpace|
- |stronglyReduced?| |complexForm| |mkAnswer| |e02def|
- |changeWeightLevel| |singularAtInfinity?| FG2F |sumOfKthPowerDivisors|
- |box| |plotPolar| |leftFactorIfCan| |iroot| |makeFloatFunction|
- |dominantTerm| |write| |And| |OMputApp| |generalLambert| |fixedPoint|
- |fullDisplay| |reducedDiscriminant| |limitPlus| |random| |sechIfCan|
- |radicalRoots| |save| |colorDef| |modifyPointData| |min| |Or|
- |nilFactor| |addPoint2| |sizePascalTriangle| |leastMonomial| |makeEq|
- |evaluateInverse| |rootKerSimp| |push| |genericLeftTrace| |variable?|
- |Not| |subHeight| |normalizeIfCan| |makeVariable| |clearTheFTable|
- |whileLoop| |inverseColeman| |minGbasis|
- |standardBasisOfCyclicSubmodule| |perfectNthPower?| |predicates|
- |Lazard2| |coerceS| |powerAssociative?| |linears| |rationalPoints|
- |logpart| |categoryFrame| |c06fqf| |qPot| |pushNewContour|
- |fullPartialFraction| |matrixGcd| |mergeDifference| |karatsuba| |keys|
- |s17agf| |complexEigenvectors| |sort!| |copyInto!| |LyndonWordsList1|
- |SturmHabicht| |generator| |possiblyInfinite?| |hasTopPredicate?|
- |inverse| |viewDeltaYDefault| |symbolTable| |singular?| |double?|
- |lazy?| |lo| |legendre| |e02ddf| |resetNew| |lfextlimint|
- |strongGenerators| |normInvertible?| |selectODEIVPRoutines|
- |getSyntaxFormsFromFile| |RemainderList| |iicosh| |horizConcat|
- |latex| |insertBottom!| |lineColorDefault| |randomR| |ceiling|
- |pushFortranOutputStack| |indicialEquationAtInfinity| |normal?| |cExp|
- |LiePolyIfCan| |transform| |incr| |setButtonValue| |fi2df| |one?|
- |outputFloating| |monomialIntPoly| |popFortranOutputStack| |infix?|
- |clipWithRanges| |completeEval| |eulerE| |rewriteSetWithReduction|
- |realEigenvalues| |hi| |rightAlternative?| |flatten| |mask| |s13acf|
- |numer| ** |Ci| |lazyResidueClass| |partitions| |outputAsFortran|
- |exptMod| |subspace| |rombergo| |OMlistCDs| |validExponential|
- |checkRur| |denom| |accuracyIF| |componentUpperBound| |makeCrit|
- |reorder| |charClass| |factorset| |vertConcat| |totalDegree|
- |printingInfo?| |coth2trigh| |stoseInternalLastSubResultant|
- |bumptab1| |c06frf| |s19abf| |prinshINFO| |connectTo| |true|
- |squareFreePrim| |quasiMonic?| |cardinality| |host| |pi|
- |palgintegrate| LODO2FUN |commutator| |oddlambert| |stirling1|
- |numberOfDivisors| |subResultantGcdEuclidean| |roughUnitIdeal?|
- |lazyPrem| |loopPoints| |infinity| |OMputEndBVar| |exponential1|
- |f01qcf| |cfirst| |sparsityIF| |prologue| |principal?| |rotate|
- |commutative?| |cycleEntry| |UpTriBddDenomInv| |invmultisect|
- |squareFreeLexTriangular| |messagePrint| |basisOfNucleus| |mapmult|
- |d01akf| |fixPredicate| |choosemon| |rightOne| |commaSeparate|
- |resize| |shiftRight| |lagrange| |totalfract| |argscript|
- |skewSFunction| |zag| |genericLeftMinimalPolynomial| |nextSubsetGray|
- |normDeriv2| |radicalEigenvectors| |setPosition|
- |createPrimitiveElement| |overbar| |hconcat| |OMputFloat| |children|
- |intChoose| |curve| |setProperties| |s18aef| |imagk| |showClipRegion|
- |categories| |comparison| |primlimintfrac| |bipolar|
- |stiffnessAndStabilityFactor| |e02baf| |outerProduct| |returnTypeOf|
- |shellSort| |curryLeft| |fillPascalTriangle| |f07fef| |eigenvalues|
- |nthFractionalTerm| |space| |sumSquares| |s17dgf| |lfextendedint|
- |OMgetEndAttr| |logIfCan| |wordsForStrongGenerators| |reseed| |delete|
- |cyclotomicDecomposition| |absolutelyIrreducible?| |bitCoef|
- |simplifyExp| |basisOfRightAnnihilator| |inspect| |insertTop!|
- |lookupFunction| |pmintegrate| |usingTable?| |minimize| |npcoef|
- |coerceP| |orthonormalBasis| |rightMinimalPolynomial| |factorial|
- |f04mbf| |readInt8!| |continuedFraction| |radicalSolve| |vector|
- |atoms| |string?| |gcdprim| |quasiComponent| |comment| |generators|
- |identitySquareMatrix| |genericLeftTraceForm| |innerSolve1|
- |reduction| |sizeMultiplication| |differentiate| |getlo| |csch2sinh|
- |e02bdf| |routines| |cubic| |divisors| |perfectNthRoot| |leftMult|
- |OMputObject| |listOfLists| |range| |LyndonWordsList| |getCode|
- |linearDependenceOverZ| |thetaCoord| |poisson| |superHeight|
- |resetVariableOrder| |readUInt32!| |indiceSubResultantEuclidean|
- |optAttributes| |ode| |degreeSubResultant| |exponential| |e02zaf|
- |factorOfDegree| |c05pbf| |monicDivide| |iicot| |subResultantsChain|
- |monicLeftDivide| |acothIfCan| |functorData| |nextLatticePermutation|
- |iiatan| |pseudoRemainder| |OMopenFile| |setPrologue!| |expIfCan|
- |hitherPlane| |isobaric?| |s17aef| |antiCommutative?| |OMputBind|
- |lyndon?| |reduceBasisAtInfinity| |getIdentifier| |univariate?| |null|
- |numFunEvals3D| |cycleTail| |positiveSolve| |discriminantEuclidean|
- |makeSUP| |quotientByP| |sinhIfCan| |schwerpunkt| |addMatch| |module|
- |preprocess| |d01gaf| |midpoint| GF2FG |not| |fortranLogical|
- |OMputEndAttr| |extractTop!| |enumerate| |d01aqf| |nthExponent|
- |normalized?| |lfintegrate| |wordInGenerators| |and| |polygon?|
- |rightMult| |sqfree| |atrapezoidal| |stoseIntegralLastSubResultant|
- |roman| |alphanumeric| |close!| |symmetricSquare| |or|
- |univariatePolynomialsGcds| |mvar| |setErrorBound| |argumentList!|
- |rightCharacteristicPolynomial| |satisfy?| |real?| |OMreceive|
- |listYoungTableaus| |karatsubaOnce| |Lazard| |xor| |returnType!|
- |irreducibleRepresentation| |tube| |OMread|
- |removeIrreducibleRedundantFactors| |symmetricGroup| |att2Result|
- |setsubMatrix!| |factorSFBRlcUnit| |length| |isList|
- |monicRightDivide| |case| |log10| |property| |OMcloseConn|
- |wordInStrongGenerators| |completeHensel| |getVariableOrder|
- |monomials| |nonLinearPart| |scripts| |hasoln| |viewPosDefault|
- |imagi| |overset?| |Zero| |bitand| |finiteBound| |s01eaf| |prindINFO|
- |monic?| |dualSignature| |style| |rewriteIdealWithRemainder|
- |multiEuclidean| |tRange| |slash| |One| |bitior| |exprex|
- |stoseLastSubResultant| |rightScalarTimes!| |incrementKthElement|
- |subResultantChain| |rightTraceMatrix| |subMatrix|
- |numberOfIrreduciblePoly| |topPredicate| |leftLcm| |tubeRadiusDefault|
- |units| |d02cjf| |tab| |s17dlf| |before?| |s14baf| |critM|
- |palgextint| |antiAssociative?| |sign| |primaryDecomp| |ratpart|
- |ocf2ocdf| |isAnd| |constantOperator| |invertibleSet| |trim| |iiacos|
- |f01brf| |redPol| |orbits| |repSq| |showScalarValues| |reverse!|
- |symbol?| |quickSort| |generalizedInverse| |variationOfParameters|
- |modTree| |numberOfNormalPoly| |exQuo| |exactQuotient!| |setClosed|
- |padicFraction| |coercePreimagesImages| |closeComponent|
- |complexLimit| |leftRemainder| |univariatePolynomial| |systemSizeIF|
- |delta| |domainTemplate| |swap!| |readInt32!| |cAcsc|
- |resultantEuclidean| |elt| |rootSimp| |indices| |rroot|
- |initiallyReduced?| |wreath| |extract!| |entry?| |key|
- |factorsOfCyclicGroupSize| |gbasis| |newTypeLists| |makeprod| |code|
- |c06fuf| |setAdaptive| |drawComplexVectorField| UP2UTS
- |measure2Result| |cn| |rightZero| |subNode?| |ScanRoman| |addBadValue|
- |regularRepresentation| |acotIfCan| |localUnquote| |wholeRadix|
- |lintgcd| |jacobian| |tanh2coth| |resetAttributeButtons| |filename|
- |triangularSystems| |zeroVector| |isImplies| |conjugate| |pquo|
- |c05nbf| |s14aaf| |s17def| |sylvesterSequence|
- |purelyAlgebraicLeadingMonomial?| |factorials| |cot2trig| |d02raf|
- |branchIfCan| |interactiveEnv| |leadingIdeal| |algebraicDecompose|
- |hostPlatform| |monicModulo| |rur| |indiceSubResultant|
- |exprHasAlgebraicWeight| |parse| |terms| |zeroSquareMatrix|
- |ip4Address| |commutativeEquality| |c06ebf| |iibinom| |startStats!|
- |nary?| |OMUnknownSymbol?| |unrankImproperPartitions0| |any?| |is?|
- |e01bgf| |OMputEndApp| |point?| |hdmpToDmp| |component|
- |lazyPseudoRemainder| |polar| |rational?| |digit?|
- |resultantEuclideannaif| |curveColorPalette| |derivationCoordinates|
- |listConjugateBases| |extractPoint| |typeList| |endSubProgram|
- |Vectorise| |cschIfCan| |fortranReal| |curve?| |LazardQuotient|
- |s17ajf| |diagonalProduct| |eyeDistance| |dimension| |setMinPoints|
- |lSpaceBasis| |e02dff| |rightNorm| |setOrder| |compBound| |asechIfCan|
- |iiasin| |csubst| |OMParseError?| |Gamma| |rootDirectory| |iomode|
- |extendedSubResultantGcd| |imagE| |conditionP| |completeEchelonBasis|
- |computeCycleEntry| Y |eigenvector| |integralMatrixAtInfinity|
- |leadingTerm| |li| |charthRoot| |blue| |datalist| |bandedHessian| |sh|
- |convergents| |showTheFTable| |top!| |omError| |isPower|
- |internalSubPolSet?| |overlap| |isAbsolutelyIrreducible?| |cAsec|
- |e02aef| |substring?| |quadraticForm| |s13adf| |coerceListOfPairs|
- |expt| |rarrow| |ParCond| |initializeGroupForWordProblem| |iiacsch|
- |fortranCompilerName| |integralAtInfinity?| |opeval| |showSummary|
- |nthr| |monicDecomposeIfCan| |quadraticNorm| |innerSolve| |constant?|
- |nthCoef| |quasiMonicPolynomials| |suffix?| |fprindINFO| |nullity|
- |factorGroebnerBasis| |palglimint| |compdegd| |row| |e|
- |pseudoQuotient| |constantToUnaryFunction| |square?| |unary?|
- |truncate| |showAttributes| |integers| |extensionDegree| |rank|
- |deleteProperty!| |fortranCarriageReturn| |aQuadratic| |prefix?|
- |const| |makeSin| |setColumn!| |s18dcf| |d01asf| |f01maf|
- |selectIntegrationRoutines| |splitLinear| |denominator|
- |sylvesterMatrix| |debug3D| |degreePartition| |contract| |parabolic|
- |iFTable| |homogeneous?| |radicalOfLeftTraceForm| |iiacot| |mapdiv|
- |lowerCase?| |closedCurve| |HenselLift| |symmetric?| |sequence|
- |equiv| |pastel| |e01bef| |nothing| |monomRDE|
- |shanksDiscLogAlgorithm| |splitDenominator| |euclideanSize|
- |symbolIfCan| |decimal| |highCommonTerms| |s19aaf| |credPol| |name|
- |thenBranch| |laplacian| |removeZero| |complexSolve| |identityMatrix|
- |s19adf| |harmonic| |makeUnit| |rootsOf| |body| |relationsIdeal|
- |s17adf| |alternating| |printInfo!| |OMgetEndError| |algebraic?|
- |s17dhf| |updateStatus!| |morphism| |linearAssociatedOrder|
- |trivialIdeal?| |iprint| |multiEuclideanTree| |setFormula!|
- |stoseSquareFreePart| |lists| |computeInt| |lazyGintegrate|
- |findBinding| |clearCache| |OMputAttr| |s21bcf| |headAst| |besselK|
- |minordet| |realSolve| |henselFact| |operators| |initTable!| |e02dcf|
- |stoseInvertibleSet| |retract| |width| |boundOfCauchy|
- |characteristicSerie| |selectfirst| |weierstrass| |c06ekf| |cCosh|
- |f04jgf| |integer?| |imagK| |listBranches| |repeating|
- |inGroundField?| |numberOfFractionalTerms| |makeViewport2D| |f02adf|
- |condition| |isTimes| |changeBase| |error| |alternative?| |e01daf|
- |supRittWu?| |addPoint| |idealiserMatrix| |getMeasure| |stop|
- |brillhartTrials| |port| |paren| |mindeg| |prinb| |divideIfCan|
- |nextPartition| |coHeight| |assert| |stopMusserTrials|
- |halfExtendedResultant1| |more?| |factorSquareFreeByRecursion|
- |removeCoshSq| |rightExactQuotient| |ruleset| |palgint0| |fglmIfCan|
- |pointPlot| |rationalIfCan| |axesColorDefault| |t| |cycle|
- |internalLastSubResultant| |sts2stst| |mainContent| |meshPar1Var|
- |quoted?| |countRealRoots| |dflist| |nextColeman| |LazardQuotient2| EQ
- |complement| |cCos| |setAttributeButtonStep| |f07fdf|
- |leviCivitaSymbol| |branchPointAtInfinity?| |readUInt16!| |bumptab|
- |maxRowIndex| |infix| |recip| |pdct| |suchThat| |e04ucf|
- |setTopPredicate| |matrix| |optional| |htrigs| |outputGeneral|
- |errorKind| |leftTraceMatrix| |collectUnder| |setEpilogue!| |plus!|
- |e04gcf| |arity| |infinite?| |setPoly| |purelyAlgebraic?| |graphState|
- |critT| |inconsistent?| UTS2UP |OMgetType| |removeDuplicates!|
- |mainExpression| |cAtanh| |coshIfCan| |e02bef| |setvalue!| |infLex?|
- |medialSet| |traceMatrix| |parseString| |restorePrecision|
- |cyclicGroup| |generalTwoFactor| |fortran| |exteriorDifferential|
- |mantissa| |gderiv| |printTypes| |move| |solveLinearlyOverQ|
- |associator| |polynomialZeros| |characteristicPolynomial| |mathieu12|
- |rationalFunction| |gethi| |composite| |defineProperty| |makingStats?|
- |fortranInteger| |getDatabase| |mesh| |trigs| |center| |readable?|
- |readUInt8!| |OMsupportsCD?| |makeGraphImage| |ode1| |scale| |lquo|
- |iitan| |callForm?| |s18acf| |check| |trailingCoefficient| SEGMENT
- |edf2efi| |pair?| |nodes| |operation| |characteristicSet| |cCsc|
- |resultantReduitEuclidean| |OMbindTCP| |mainDefiningPolynomial|
- |structuralConstants| |interpolate| |reindex| |complete| |innerint|
- |pointColor| |getProperties| |invmod| |makeYoungTableau|
- |trigs2explogs| |comp| |leftNorm| |compile| |expenseOfEvaluation|
- |subTriSet?| |makeFR| |plus| |f02wef| |hypergeometric0F1| |submod|
- |rightRecip| |rightQuotient| |modulus| |c06eaf| |diagonal|
- |antiCommutator| |OMputEndBind| |infieldIntegrate| |outputArgs|
- |contains?| |abs| |basicSet| |raisePolynomial| |monicRightFactorIfCan|
- |numberOfHues| |acosIfCan| |coord| |SturmHabichtSequence|
- |limitedIntegrate| |monomialIntegrate| |moebiusMu| |graphImage|
- |d01alf| |rischDE| |rowEchelon| |dequeue!| |splitNodeOf!| |root|
- |column| |parameters| |noKaratsuba| |var2Steps| |linearDependence|
- |iipow| |times| |ddFact| |compiledFunction| |BumInSepFFE| |cosIfCan|
- |definingEquations| |frst| |algSplitSimple| |zeroDimensional?|
- |optimize| |tan2trig| |signAround| |char| |supersub|
- |getMultiplicationTable| |fractRadix| |iidprod| |OMputString|
- |iiasinh| |top| |f01qdf| |measure| |currentCategoryFrame| |maxIndex|
- |bindings| |sortConstraints| |concat| |unparse| |setfirst!|
- |lastSubResultant| |script| |components| |safeCeiling| |f02axf| |dec|
- |times!| |members| |linearAssociatedLog| |tableau| |rootPower|
- |stoseInvertible?reg| |list| |leftExtendedGcd| |linearAssociatedExp|
- |acoshIfCan| |multiplyCoefficients| |inc| |monom| |divisorCascade|
- |removeConstantTerm| |partialFraction| |iiatanh|
- |solveLinearPolynomialEquationByRecursion| |car| |basisOfLeftNucloid|
- |refine| |Si| |iteratedInitials| |nonQsign| |direction| |twist|
- |sturmVariationsOf| |secIfCan| |create3Space| |cdr| |sdf2lst|
- |subresultantVector| |approxSqrt| |OMconnInDevice| |printStatement|
- |decrease| |queue| |setlast!| |mat| |mulmod| |setDifference|
- |plusInfinity| |pomopo!| |kroneckerDelta| |OMputBVar|
- |subResultantGcd| |common| |cond| |getZechTable| |float| |fibonacci|
- |linearPolynomials| |complexEigenvalues| |rational| |setIntersection|
- |minusInfinity| |duplicates| |s14abf| |rightRemainder|
- |cRationalPower| |reify| |entries| |semiSubResultantGcdEuclidean1|
- |insertRoot!| |hex| |setUnion| |initial| |cos2sec| |bernoulli|
- |viewSizeDefault| |groebgen| |rem| |rationalApproximation| |bumprow|
- |stripCommentsAndBlanks| |minrank| |algebraicSort| |apply|
- |parabolicCylindrical| |notelem| |OMsupportsSymbol?| |cAcoth| |quo|
- |createLowComplexityTable| |coerceL| |atanIfCan| |singularitiesOf|
- |groebnerIdeal| |split!| |Ei| |corrPoly| |viewpoint| |intersect|
- |makeop| |setMaxPoints| |kmax| |redpps| |size| |tanhIfCan|
- |rewriteIdealWithQuasiMonicGenerators| |changeThreshhold|
- |partialNumerators| |div| |doublyTransitive?| |LyndonBasis| |lifting|
- |divide| |algebraicVariables| |type| |polygamma| |rootSplit|
- |makeResult| |linearPart| |exquo| |innerEigenvectors| |output| |tree|
- |differentialVariables| |bat1| |collectUpper| |weighted|
- |trace2PowMod| |intPatternMatch| |taylorIfCan| |eof?| ~= |c02agf|
- |nextPrimitivePoly| |bitLength| |perfectSqrt| |scripted?| |first|
- |extend| |inputOutputBinaryFile| |OMgetVariable| |patternVariable| |#|
- GE |integrate| |cSin| |explicitlyEmpty?|
- |semiDegreeSubResultantEuclidean| |changeMeasure| |rest|
- |topFortranOutputStack| |safeFloor| |prod| ~ |buildSyntax|
- |dimensionOfIrreducibleRepresentation| GT |qroot| |headRemainder|
- |noLinearFactor?| |setAdaptive3D| |substitute| |exprToGenUPS|
- |factorSquareFreePolynomial| |patternMatchTimes| |graphStates| LE
- |regime| |asinIfCan| |simplifyLog| |cartesian| |representationType|
- |removeDuplicates| |complexZeros| |leftExactQuotient| |isTerm|
- |antisymmetricTensors| |colorFunction| LT |radPoly| |stopTable!|
- |irreducibleFactor| |cAtan| |rk4qc| |central?| |whitePoint| |/\\|
- |showTheRoutinesTable| |zero?| |endOfFile?| |cot2tan| |capacity|
- |getOrder| |lift| |expandPower| |interval| |OMmakeConn|
- |binaryTournament| |\\/| |tryFunctionalDecomposition|
- |definingInequation| |OMUnknownCD?| |extractIndex| |norm| |compose|
- |reduce| |exprHasWeightCosWXorSinWX| |s21baf| |FormatArabic|
- |typeLists| |createNormalPrimitivePoly| |printStats!| |concat!|
- |f01mcf| |isOp| |hMonic| |e02ajf| |chebyshevT| |rightFactorIfCan|
- |discreteLog| |OMopenString| |subset?| |basisOfCentroid|
- |numberOfPrimitivePoly| |sorted?| |fractRagits|
- |stoseInvertible?sqfreg| |simplifyPower| |normalizedDivide|
- |binaryTree| |complexExpand| |wrregime| |low| |lazyVariations|
- |elementary| |totalLex| |pushucoef| |localAbs| |screenResolution3D|
- |selectOrPolynomials| |exprHasLogarithmicWeights| |cAcsch| |realRoots|
- |bivariatePolynomials| |interReduce| |pol| |cAsin| |startTable!|
- |normal01| |lazyPseudoDivide| |rename!| |autoCoerce| |extractBottom!|
- |Is| |permanent| |minRowIndex| |stirling2| |rectangularMatrix|
- |recolor| |insert!| |decompose| |presub| |abelianGroup| |round|
- |optional?| |equation| |rischDEsys| |remove!| |cyclePartition|
- |irreducibleFactors| |branchPoint?| |setTex!| |zoom|
- |internalZeroSetSplit| |iiexp| |bits| |part?| |continue| |properties|
- |maxPoints3D| |combineFeatureCompatibility| |outputSpacing|
- |headReduced?| |extractClosed| |f02aff| |s13aaf| |flexibleArray|
- |elements| |subSet| |extractProperty| |intermediateResultsIF|
- |translate| |makeSeries| |cyclicEqual?| |tower| |fortranLinkerArgs|
- |OMgetAttr| |position| |outputForm| |stFunc1| |physicalLength|
- |symbolTableOf| |tan2cot| |f2df| |push!| |signatureAst| |sin2csc|
- |cotIfCan| |match?| |cosh2sech| |setprevious!| |rightTrace| |rst|
- |sample| |rightPower| |d02gbf| |ScanArabic| |musserTrials|
- |partialQuotients| |repeating?| |f02akf| |polyRDE| |byte|
- |upDateBranches| |rightFactorCandidate| |bright| |exportedOperators|
- |reciprocalPolynomial| |solveRetract| |iifact| |iilog|
- |viewWriteDefault| |palgRDE| |primes| |deepestInitial|
- |mapMatrixIfCan| |recoverAfterFail| |jordanAlgebra?|
- |createRandomElement| |scaleRoots| |dim| |setFieldInfo| |function|
- |setRow!| |firstSubsetGray| |bombieriNorm| |socf2socdf|
- |antisymmetric?| |ellipticCylindrical| |internalIntegrate0|
- |complexNumeric| |basis| |jacobi| |pow| |debug| |bothWays|
- |viewThetaDefault| |radix| |reducedSystem| |eval| |currentScope|
- |atom?| |generalizedEigenvector| |qfactor| |read!| D |writable?|
- |virtualDegree| |open?| |kernels| |in?| |basisOfRightNucleus|
- |removeCosSq| |maximumExponent| |maxColIndex| |setCondition!|
- |element?| |interpret| |setMaxPoints3D| |nthRoot|
- |associatorDependence| |appendPoint| |operator| |indicialEquation|
- |minimumDegree| |generateIrredPoly| |distance| |arrayStack| |float?|
- |createNormalElement| |curry| |mapUnivariateIfCan| |OMserve| |conjug|
- |genus| |semiSubResultantGcdEuclidean2| |autoReduced?| |int| |s17aff|
- |selectMultiDimensionalRoutines| |init| |power| |cSinh| |univariate|
- |rightDiscriminant| |limit| |algDsolve| |nextPrime| |rightGcd|
- |f02awf| |acschIfCan| |btwFact| |level| |double| |OMencodingBinary|
- |LagrangeInterpolation| |factorSquareFree| |nextsubResultant2|
- |triangSolve| |controlPanel| |bfEntry| |completeSmith|
- |outputBinaryFile| |numberOfMonomials| |s17acf| |viewPhiDefault| |mr|
- |rotatex| |mainKernel| |sin?| |leftRegularRepresentation| |unmakeSUP|
- |figureUnits| |semicolonSeparate| |factor| |clipParametric|
- |lyndonIfCan| |trapezoidal| |OMencodingUnknown| |writeLine!|
- |genericRightMinimalPolynomial| |e01baf| |coefChoose| BY |sqrt|
- |setref| |dictionary| |mainCoefficients| |leftDivide| |trunc|
- |primitive?| |leftFactor| |head| |OMputEndObject| |leftTrace| |real|
- |mapExpon| |composites| |createMultiplicationTable| |e04dgf| |Aleph|
- |print| |d01apf| |f01rcf| |iisec| |iisin| |mathieu22| |imag| |lcm|
- |cyclicSubmodule| |dmp2rfi| |separate| |resolve| |f04axf| |f01rdf|
- |lazyIrreducibleFactors| |nextsousResultant2| |directProduct| |tanNa|
- |iiasec| |roughSubIdeal?| |makeCos| |toseInvertible?|
- |findConstructor| |inHallBasis?| |even?| |countable?| |declare!|
- |append| |ListOfTerms| |pole?| |subPolSet?| |conjugates| |removeSinSq|
- |wholeRagits| |lazyPquo| |nodeOf?| |leaf?| |linSolve|
- |removeRedundantFactors| |brace| |chebyshevU| |gcd| |groebner?|
- |showIntensityFunctions| |parts| |rk4f| |sayLength| |floor|
- |doubleResultant| |bezoutMatrix| |bounds| |destruct| |rightLcm|
- |false| |symmetricTensors| |scan| |reduceLODE| NOT |mkIntegral|
- |f04faf| |coleman| |light| |iiabs| |showAll?| |computeCycleLength|
- |OMreadStr| |argument| OR |bringDown| |pushdown| |padecf|
- |deepestTail| |pmComplexintegrate| |resultantReduit| |copies|
- |mainVariable?| AND |nativeModuleExtension| |changeNameToObjf| |block|
- |collect| |rootPoly| |outputFixed| |f02agf| |janko2| |aQuartic|
- |cCoth| |numberOfFactors| |taylorRep| |cAsech| |constantRight|
- |monomial| |imaginary| |mainVariables| |linearMatrix| |reopen!|
- |stack| |gcdPrimitive| |integerIfCan|
- |solveLinearPolynomialEquationByFractions| |f07adf| |f04mcf| |table|
- |multivariate| |torsionIfCan| |setValue!| |select!| |twoFactor|
- |writeInt8!| |numberOfComposites| |monomial?| |just| |insert| |new|
- |variables| |algebraicCoefficients?| |critMonD1| |solveid| |anticoord|
- |crest| |useEisensteinCriterion| |OMgetSymbol| |adaptive?| |pdf2df|
- |elColumn2!| |s18aff| |po| |tanintegrate| |viewDefaults| |cache|
- |less?| |mainCharacterization| |csc2sin| |removeSinhSq| |build|
- |outputMeasure| |critpOrder| |primlimitedint| |sturmSequence|
- |primitivePart!| |beauzamyBound| |cscIfCan| |alphabetic|
- |chineseRemainder| |changeVar| |laguerre| |hasSolution?| |delay|
- |SturmHabichtMultiple| |symmetricRemainder| |indicialEquations|
- |approximants| |rquo| |edf2ef| |coordinates| |bfKeys| |OMgetApp|
- |unprotectedRemoveRedundantFactors| |bytes| |subCase?| |d01bbf|
- |basisOfRightNucloid| |iisech| |taylor| |swapColumns!| |psolve| |tab1|
- |revert| |readIfCan!| * |oblateSpheroidal| |OMwrite| |d02bbf|
- |nullary?| |laurent| |squareFree| |f04adf| |oddintegers| |maxint|
- |complexElementary| |status| |principalAncestors| |nthFlag|
- |getOperands| |OMgetFloat| |df2mf| |puiseux| |associatedEquations|
- |alphabetic?| |complex?| |cSech| |rowEchLocal| |neglist| |cycles|
- |baseRDE| |nextNormalPrimitivePoly| |drawComplex| |e04jaf| |cAsinh|
- |realZeros| |chvar| |stiffnessAndStabilityOfODEIF| |laplace| = |erf|
- |f02fjf| |inv| |integral| |constantCoefficientRicDE| |getMatch|
- |makeMulti| |besselI| |powers| |bezoutResultant| |FormatRoman|
- |parametric?| |ground?| |left| |resultant| |OMconnectTCP| |viewport2D|
- |constantOpIfCan| |argumentListOf| |toScale| |leastPower| <
- |screenResolution| |subst| |vspace| |ground| |right|
- |mainSquareFreePart| |arbitrary| |merge!| |permutation| |list?|
- |getMultiplicationMatrix| |s20adf| > |sec2cos| |dilog| |adjoint| F2FG
- |leadingMonomial| |setLength!| |s17dcf| |idealiser| |f04atf| |max|
- |toroidal| |shallowExpand| <= |qqq| |companionBlocks| |sin|
- |deleteRoutine!| |leadingCoefficient| |mergeFactors| |mdeg|
- |calcRanges| |supDimElseRittWu?| |generalPosition| |extendedint|
- |index?| >= |eisensteinIrreducible?| |cos| |primitiveMonomials| |rule|
- |findCycle| |mappingAst| |c05adf| |prolateSpheroidal| |extractIfCan|
- |separateDegrees| |hermiteH| |ksec| |primextendedint| |nil| |tan|
- |associative?| |reductum| |relerror| |f02ajf| |cTanh| |solve|
- |OMputError| |f01bsf| |externalList| |iiacsc| |cot| |computeBasis|
- |every?| |wronskianMatrix| |unknownEndian| |epilogue| |heapSort|
- |deepExpand| |besselY| |coefficients| + |objects| |sec|
- |tryFunctionalDecomposition?| |rightExtendedGcd| |digits|
- |fortranLiteral| |d03faf| |next| |leftDiscriminant| |green|
- |loadNativeModule| - |mainVariable| |base| |pToHdmp| |csc|
- |approximate| |fortranTypeOf| |digit| |leftGcd| |normalise| |uniform|
- |complex| |readInt16!| |rationalPower| |goodnessOfFit| / |rotate!|
- |asin| |log| |realEigenvectors| |fixedDivisor| |maxdeg| |polyRicDE|
- |diagonalMatrix| |dom| |jordanAdmissible?| |ratDsolve| |pointData|
- |semiResultantEuclidean2| |acos| |gramschmidt| |llprop| |degree|
- |doubleDisc| |quatern| |leftRecip| |genericPosition| |middle|
- |clearTheIFTable| |atan| |symbol| |contractSolve| |cycleElt|
- |inverseLaplace| |internalIntegrate| |back| |vedf2vef| |eq?|
- |wholePart| |transpose| |acot| |vconcat| |expression| |tanSum|
- |segment| |aromberg| |internalAugment| |quotient| |fortranComplex|
- |selectAndPolynomials| |applyRules| |asec| |nand| |integer|
- |sinh2csch| |fmecg| |parents| |mpsode| |say| |cothIfCan| |consnewpol|
- |c02aff| |expressIdealMember| |acsc| |spherical| |clikeUniv|
- |radicalEigenvalues| |hermite| |prepareSubResAlgo| |title|
- |intcompBasis| |prevPrime| |certainlySubVariety?| |sinh| |outputList|
- |limitedint| |high| |setRealSteps| |elseBranch| |genericLeftNorm|
- |currentSubProgram| |enqueue!| |cosh| |se2rfi| |karatsubaDivide|
- |recur| |particularSolution| |expextendedint| |associatedSystem|
- |randnum| |unitNormalize| |tanh| |useSingleFactorBound|
- |leadingSupport| |binding| |internalInfRittWu?| |leader|
- |genericRightTrace| |getButtonValue| |lieAdmissible?| |froot| |coth|
- |isConnected?| |clearTable!| |initiallyReduce| |outlineRender|
- |outputAsScript| |previous| |exprToUPS| |retractable?| |redPo| |sech|
- |lambda| |cAcot| |e04fdf| |label| |replaceKthElement| |quadratic?|
- |flagFactor| |rdHack1| |csch| |readBytes!| |c06ecf| |binaryFunction|
- |principalIdeal| |generalizedEigenvectors| |normalDeriv|
- |semiResultantReduitEuclidean| |asinh| |prime?| |divideIfCan!|
- |LowTriBddDenomInv| |option?| |explimitedint| |Hausdorff| |iicsc|
- |myDegree| |createGenericMatrix| |acosh| |leftRank| |redmat|
- |clipBoolean| |rewriteIdealWithHeadRemainder|
- |createLowComplexityNormalBasis| |createIrreduciblePoly| |atanh|
- |dioSolve| |nthExpon| |OMputSymbol| |mapSolve| |ode2| |super|
- |meshFun2Var| |dihedralGroup| |assign| |firstNumer| |acoth|
- |OMgetInteger| |maxPoints| |increasePrecision| |setPredicates|
- |fractionFreeGauss!| |escape| |listLoops| |byteBuffer| |summation|
- |asech| |pack!| |mathieu23| |zerosOf| |e02bcf| |swap| |bernoulliB|
- |roughBasicSet| |littleEndian| |constructor| |hcrf|
- |lastSubResultantElseSplit| |e04ycf| |dimensionsOf| |insertMatch|
- |multiple| |addPointLast| |remove| |leftScalarTimes!| |lowerCase!|
- |distribute| |OMgetError| |option| |zeroSetSplit| |external?|
- |showTheIFTable| |applyQuote| |squareFreePart| |zeroDim?| |pushuconst|
- |eulerPhi| |numberOfVariables| |Frobenius| |isOpen?|
- |semiIndiceSubResultantEuclidean| |euclideanGroebner| |last| |ldf2lst|
- |minset| |lowerPolynomial| |monicCompleteDecompose| |printInfo|
- |minPoly| |inverseIntegralMatrix| |graphCurves| |assoc| |varList|
- |isNot| |simplify| |integralCoordinates| |modifyPoint| |depth|
- |mapExponents| |setProperty| |pushdterm| |qualifier| |elliptic?|
- |rootNormalize| |rightTrim| |knownInfBasis| |doubleRank|
- |rationalPoint?| |divergence| |stosePrepareSubResAlgo| |droot|
- |constant| |cTan| |exactQuotient| |leftTrim| |nlde| |generate|
- |yCoord| |getRef| |e02ahf| |closedCurve?| |pToDmp| |moduloP| |seed|
- |aspFilename| |internalSubQuasiComponent?| |f04qaf| |ricDsolve|
- |front| |lazyPseudoQuotient| |fortranCharacter| |incrementBy|
- |primintfldpoly| |perfectSquare?| |univcase| |elRow1!| |s18def|
- |lexGroebner| |enterInCache| |uniform01| |palgextint0| |e01saf|
- |expand| |OMgetEndAtp| |sinhcosh| |ranges| |normalize|
- |removeRedundantFactorsInContents| |explicitlyFinite?| |setnext!|
- |genericRightTraceForm| |filterWhile| |rightDivide| |rdregime|
- |cyclicCopy| |rischNormalize| |OMgetEndApp| |OMgetEndBind| |largest|
- |OMputAtp| |weights| |functionIsFracPolynomial?| |someBasis|
- |filterUntil| |diagonal?| |critMTonD1| |definingPolynomial|
- |predicate| |logical?| |cycleLength| |leftUnit| |elliptic| |ramified?|
- |lastSubResultantEuclidean| |prinpolINFO| |select| |infinityNorm|
- |multisect| |basisOfLeftNucleus| |commonDenominator|
- |numericalIntegration| |reflect| |enterPointData| |multMonom|
- |B1solve| |minPol| |e02adf| |rangePascalTriangle| |subQuasiComponent?|
- |replace| |tanh2trigh| |dot| |oneDimensionalArray| |stoseInvertible?|
- |removeRedundantFactorsInPols| |pattern| |safetyMargin| |charpol|
- |hdmpToP| |putGraph| |lieAlgebra?| |f02bjf| |startPolynomial|
- |dAndcExp| |perspective| |isOr| |lazyEvaluate| |airyBi|
- |bandedJacobian| |OMgetBind| |nil?| |signature|
- |semiResultantEuclideannaif| |mainMonomials| |functionIsOscillatory|
- |resetBadValues| |asecIfCan| |infRittWu?| |ODESolve| |asimpson|
- |primPartElseUnitCanonical| |leftAlternative?| |zeroDimPrime?|
- |c06gsf| |surface| |tableForDiscreteLogarithm| |toseLastSubResultant|
- |extendedEuclidean| |node| |dfRange| |createNormalPoly| |whatInfinity|
- |powmod| |makeRecord| |rewriteSetByReducingWithParticularGenerators|
- |message| |primPartElseUnitCanonical!| |leftUnits| |compound?|
- |OMReadError?| |setOfMinN| |closed?| |palgLODE| |primextintfrac|
- |transcendent?| |f02abf| |imagI| |decomposeFunc| |number?| |mkcomm|
- |rightUnits| |setStatus| |ptree| |getOperator| |eigenvectors| |hash|
- |primitiveElement| |setleaves!| |useEisensteinCriterion?|
- |selectPolynomials| |testModulus| |palgRDE0| |iiacoth| |leftOne|
- |count| |d01amf| |iiperm| |pointColorPalette| |hspace| |cyclotomic|
- |size?| |setLegalFortranSourceExtensions| |phiCoord| |mainValue|
- |iicoth| |leftPower| |sech2cosh| |permutations| |diagonals|
- |localIntegralBasis| |iisinh| |evaluate| |bitTruth| |exponent|
- |physicalLength!| |setVariableOrder| |squareMatrix|
- |basisOfCommutingElements| |rangeIsFinite| |factorAndSplit| |cons|
- |sub| |minPoints| |d02bhf| |superscript| |updatD| |qinterval|
- |subtractIfCan| |PDESolve| |tensorProduct| |halfExtendedResultant2|
- |lighting| |divisor| |gcdcofactprim| |mightHaveRoots| |unvectorise|
- |newReduc| |nextSublist| |rootOf| |asinhIfCan|
- |numberOfImproperPartitions| |iicsch|
- |zeroSetSplitIntoTriangularSystems| |iterationVar| |shuffle| |df2ef|
- |mathieu11| |genericRightNorm| |critBonD| |negative?| |iisqrt3|
- |mapGen| |f02aaf| |empty| |hessian| |bubbleSort!| |primitivePart|
- |forLoop| |sPol| |extendedIntegrate| |blankSeparate| |e02gaf|
- |OMencodingSGML| |checkPrecision| |oddInfiniteProduct| |polyred|
- |lfunc| |node?| |infiniteProduct| |fortranDouble| |groebnerFactorize|
- |singleFactorBound| |factorPolynomial| |normFactors| |cycleSplit!|
- |trueEqual| |halfExtendedSubResultantGcd2| |basisOfMiddleNucleus|
- |showArrayValues| |removeSuperfluousCases| |weakBiRank| |dn| |source|
- |rightRegularRepresentation| |mathieu24| |numerator| |deriv|
- |numberOfComputedEntries| |universe| |fortranDoubleComplex| |lambert|
- |scalarMatrix| |localReal?| |exprToXXP| |lfinfieldint| |outputAsTex|
- |graphs| |doubleComplex?| |increment| |copy!| |paraboloidal| |c06fpf|
- |roughBase?| |cCot| |solveInField| |optpair| |bag| |pdf2ef| |bracket|
- |ptFunc| |setScreenResolution3D| |isMult| |lprop| |nsqfree|
- |normalElement| |d03edf| |approxNthRoot| |iflist2Result|
- |userOrdered?| |integralMatrix| |slex| RF2UTS
- |leftCharacteristicPolynomial| |eigenMatrix| |failed?| |target|
- |stopTableGcd!| |empty?| |invertible?| |internalDecompose|
- |hostByteOrder| |expenseOfEvaluationIF| |SturmHabichtCoefficients|
- |numerators| |sum| |anfactor| |OMgetBVar| |null?| |fintegrate|
- |reverse| |axes| |lllp| |readLine!| |LyndonCoordinates| |inf|
- |palglimint0| |logGamma| |mirror| |formula| |sequences|
- |partialDenominators| |ef2edf| |writeBytes!| |basisOfLeftAnnihilator|
- |tanIfCan| |shrinkable| |infieldint| |expr| |lllip|
- |balancedFactorisation| |postfix| |child?| |identification|
- |univariateSolve| |sizeLess?| |createMultiplicationMatrix| |lp|
- |increase| |rootProduct| |univariatePolynomials| |taylorQuoByVar|
- |ravel| |leadingExponent| |idealSimplify| |primintegrate| |setEmpty!|
- |declare| |f04maf| |triangular?| |options| |prepareDecompose|
- |constDsolve| |tubePoints| |constantLeft| |reshape| |printCode|
- |c06gcf| |kernel| |nrows| |separant| |vark| |d01ajf| |setProperty!|
- |draw| |algint| |seriesToOutputForm| |realElementary| |cPower| |ncols|
- |variable| |rightUnit| |coordinate| |sincos| |exists?| |e01bff|
- |quasiRegular?| |saturate| |squareFreeFactors| |iterators| |polyPart|
- |heap| |splitConstant| |string| |represents| |currentEnv|
- |OMgetEndObject| |implies| |simpson| |numberOfComponents| |changeName|
- |critB| |unitNormal| |iCompose| |failed| |permutationGroup| |delete!|
- |isPlus| |showFortranOutputStack| |c06gqf| |integerBound|
- |integralBasis| |e01sbf| |lowerCase| |processTemplate| |scopes| |qelt|
- |completeHermite| |update| |leftQuotient| |laguerreL| |makeObject|
- |over| |stopTableInvSet!| |semiDiscriminantEuclidean| |qsetelt|
- |tubePlot| |f02bbf| |invertIfCan| |crushedSet| |coef| |red|
- |repeatUntilLoop| |linear| |badValues| |quasiAlgebraicSet| |yellow|
- |identity| |OMunhandledSymbol| |xRange| |getGoodPrime| |moebius|
- |readByte!| |baseRDEsys| |pseudoDivide| |swapRows!| |An| |yRange|
- |expandTrigProducts| |mindegTerm| |upperCase| |numberOfChildren|
- |groebner| |polynomial| |resultantnaif| |plenaryPower| |zRange|
- |imagj| |stronglyReduce| |f04arf| |iExquo| |precision| |ldf2vmf|
- |cAcos| |stoseInvertibleSetsqfreg| |weight| |reduceByQuasiMonic|
- |map!| |singRicDE| |bat| |simpsono| |OMgetObject| |selectPDERoutines|
- |normalDenom| |clearFortranOutputStack| |unaryFunction| |tubeRadius|
- |qsetelt!| |generic| |derivative| |factor1| |totalGroebner|
- |pointSizeDefault| |minPoints3D| |dmpToHdmp| |tablePow|
- |gcdPolynomial| |extension| |unravel| |retractIfCan| |radicalSimplify|
- |getGraph| |iiacosh| |traverse| |internal?| |mix| |cyclic| |maxrow|
- |normalizedAssociate| |printHeader| |untab| |mapBivariate| |d01gbf|
- |cyclicParents| |index| |nthRootIfCan| |expintegrate| |OMputEndAtp|
- |legendreP| |leaves| |goodPoint| |permutationRepresentation| |sn|
- |rk4a| |overlabel| |unrankImproperPartitions1| |matrixConcat3D|
- |showTheSymbolTable| |areEquivalent?| |purelyTranscendental?|
- |linearlyDependentOverZ?| |acsch| |reduced?| |selectsecond|
- |discriminant| |getBadValues| |simpleBounds?| |computePowers|
- |factorList| |constantKernel| |numericIfCan| |pair| |tanQ| |belong?|
- |isExpt| |test| |imports| |f02aef| |value| |bezoutDiscriminant|
- |laurentRep| |compactFraction| |s17ahf| |multiplyExponents|
- |hexDigit?| |randomLC| |rules| |hue| |removeZeroes| |var1Steps|
- |lazyIntegrate| |solveLinearPolynomialEquation| |associates?|
- |listexp| |directory| |xn| |child| |nextNormalPoly| |fTable| |open|
- |quadratic| |inRadical?| |subresultantSequence| |hclf| |lex| |map|
- |modularFactor| |pr2dmp| |rowEchelonLocal| |generalInfiniteProduct|
- |brillhartIrreducible?| |writeUInt8!| |showAllElements| |odd?|
- |mainForm| |denomLODE| |euler| |iicos| |quoByVar| |reducedQPowers|
- |any| |eq| |newLine| |s15adf| |prefix| |listRepresentation|
- |chiSquare1| |quasiRegular| |yCoordinates| |dimensions| |f01qef|
- |cycleRagits| |OMgetString| |generic?| |unknown| |iter|
- |quotedOperators| |powern| |transcendenceDegree| |ramifiedAtInfinity?|
- |removeSuperfluousQuasiComponents| |iidsum| |numFunEvals|
- |bivariateSLPEBR| |drawStyle| |alphanumeric?| |mapCoef| |operations|
- |curveColor| |var1StepsDefault| |curryRight| |numeric| |pushup|
- |clipSurface| |makeSketch| F |genericLeftDiscriminant| |binomial|
- |nextPrimitiveNormalPoly| |e01sef| |ran|
- |removeRoughlyRedundantFactorsInPol| |edf2fi| |writeByte!| |squareTop|
- |chiSquare| |radical| |region| |complexRoots| |convert|
- |explogs2trigs| |dark| |polCase| |toseInvertibleSet| |fixedPointExquo|
- |octon| |cyclic?| |groebSolve| |OMsend| |sumOfSquares|
- |modularGcdPrimitive| |df2st| |distFact| |pile| |magnitude|
- |setright!| |distdfact| |functionIsContinuousAtEndPoints|
- |numericalOptimization| |besselJ| |leadingBasisTerm| |padicallyExpand|
- |createZechTable| |doubleFloatFormat| |palgLODE0|
- |selectOptimizationRoutines| |factors| |PollardSmallFactor| |freeOf?|
- |firstUncouplingMatrix| |quote| |rubiksGroup| |imagJ|
- |leadingCoefficientRicDE| |nullary| |extractSplittingLeaf|
- |sqfrFactor| |symmetricPower| |points| |withPredicates| |upperCase?|
- |fortranLiteralLine| |removeSquaresIfCan| |aCubic| |listOfMonoms|
- |multiple?| |makeTerm| |polygon| |BasicMethod| |e01bhf| |Beta|
- |isEquiv| |exp| |problemPoints| |OMgetEndBVar| |unit?| |prime| |unit|
- |d02gaf| |position!| |stoseInvertibleSetreg| |mkPrim| |setMinPoints3D|
- |sumOfDivisors| |transcendentalDecompose| |ipow|
- |leftMinimalPolynomial| |ffactor| |getPickedPoints| |mapUnivariate|
- |meshPar2Var| |UnVectorise| |ridHack1| |monomRDEsys| |subNodeOf?|
- |UP2ifCan| |separateFactors| |log2| |nextItem|
- |selectNonFiniteRoutines| |unexpand| |f02xef| |s18adf| |hexDigit|
- |bipolarCylindrical| |id| |lflimitedint| |d03eef| |linGenPos|
- |lazyPremWithDefault| |second| |iitanh| |fill!| |goto| |rename|
- |aLinear| |rspace| |reducedContinuedFraction|
- |integralBasisAtInfinity| |shiftLeft| |evenlambert| |close| |e02daf|
- |divideExponents| |third| |binarySearchTree| |complementaryBasis|
- |e02agf| |pade| |cCsch| |algebraicOf| |nor| |triangulate|
- |subscriptedVariables| |solveLinear| |seriesSolve|
- |leastAffineMultiple| |bigEndian| |setLabelValue|
- |conditionsForIdempotents| |symmetricProduct| |useNagFunctions| |sup|
- |cup| |rootOfIrreduciblePoly| |search| |semiResultantEuclidean1|
- |augment| |display| |airyAi| |subscript| |obj| |rotatey| |varselect|
- |edf2df| |e04mbf| |shiftRoots| |frobenius| |write!| |denomRicDE|
- |generalizedContinuumHypothesisAssumed?| |trapezoidalo| |fracPart|
- |s17akf| |setProperties!| |color| |mainMonomial| |viewZoomDefault|
- |setStatus!| |minColIndex| |errorInfo| |scanOneDimSubspaces|
- |numberOfOperations| |coth2tanh| |minimumExponent| |complexNormalize|
- |hyperelliptic| |initials| |schema| |getCurve| |rk4| |pureLex|
- |e02bbf| |invertibleElseSplit?| |genericRightDiscriminant|
- |drawToScale| |SFunction| |rowEch| |setleft!| |rightRankPolynomial|
- |specialTrigs| |removeRoughlyRedundantFactorsInContents| |geometric|
- |youngGroup| |isQuotient| |minIndex| |shufflein| |difference|
- |insertionSort!| |returns| |diff| |pleskenSplit| |totalDifferential|
- |extendIfCan| |viewport3D| |clipPointsDefault| |pointColorDefault|
- |input| |multiset| |determinant| |duplicates?|
- |selectSumOfSquaresRoutines| |f2st| |hasPredicate?| |ratPoly| |lhs|
- |deref| |d02ejf| |normalForm| |lepol| |fractionPart| |category|
- |irreducible?| |expintfldpoly| |library| |ScanFloatIgnoreSpaces|
- |makeViewport3D| |stFunc2| |badNum| |zeroOf| |rhs| |coerceImages|
- |cAcosh| |extendedResultant| |nthFactor| |acscIfCan| |domain|
- |attributeData| |elRow2!| |setImagSteps| |meatAxe| |equality|
- |directSum| |zeroMatrix| |showRegion| |linear?| |tanAn| |ParCondList|
- |relativeApprox| |package| |Nul| |getStream| |normalizeAtInfinity|
- |clearTheSymbolTable| |find| |collectQuasiMonic| |shift| |mesh?|
- |coerce| |romberg| |inR?| |merge| |coefficient| |dequeue| |height|
- |systemCommand| |expint| |gradient| |tValues|
- |inverseIntegralMatrixAtInfinity| |laurentIfCan| |arg1|
- |mainPrimitivePart| |construct| |uncouplingMatrices| |partition|
- |symFunc| |readLineIfCan!| |linkToFortran| |factorByRecursion|
- |deepCopy| |set| |viewDeltaXDefault| |rotatez| |bottom!| |elem?|
- |arg2| |generalizedContinuumHypothesisAssumed| |leftRankPolynomial|
- |parametersOf| |headReduce| |arguments| |kind| |gensym|
- |selectFiniteRoutines| |tracePowMod| |algintegrate| |f07aef|
- |upperCase!| |d01anf| |solid?| |lexico| |binomThmExpt| |totolex|
- |matrixDimensions| |op| |normal| |addiag| |cLog| |var2StepsDefault|
- |backOldPos| |s15aef| |conditions| |bivariate?| |toseSquareFreePart|
- |e01sff| |f04asf| |createPrimitivePoly| |character?| |denominators|
- |remainder| |moreAlgebraic?| |OMclose| |match| |zCoord| |vectorise|
- |createPrimitiveNormalPoly| |palgint| |diag| |countRealRootsMultiple|
- |packageCall| |prem| |minimalPolynomial| |product| |GospersMethod|
- |setrest!| |bit?| |s19acf| |chainSubResultants| |atanhIfCan| |tex|
- |OMgetAtp| |fixedPoints| |linearlyDependent?| |clip| |mapUp!|
- |torsion?| |characteristic| |RittWuCompare| |decreasePrecision|
- |roughEqualIdeals?| |primeFrobenius| |squareFreePolynomial| |binary|
- |iiasech| |contours| |KrullNumber| |has?| |stFuncN| |biRank| |setelt!|
- |tubePointsDefault| |integralRepresents| |entry| |f01ref| |exponents|
- |ScanFloatIgnoreSpacesIfCan| |expandLog| |modularGcd| |OMputInteger|
- |union| |setClipValue| |alternatingGroup| |solid| |power!| |lookup|
- |splitSquarefree| |key?| |viewWriteAvailable|
- |integralDerivationMatrix| |positiveRemainder| |integral?|
- |probablyZeroDim?| |inrootof| |inputBinaryFile| |OMencodingXML|
- |factorFraction| |adaptive3D?| |allRootsOf| |OMputEndError| |presuper|
- |powerSum| |zeroDimPrimary?| |OMputVariable| |startTableInvSet!|
- |show| |maxrank| |pascalTriangle| |rCoord| |diophantineSystem|
- |possiblyNewVariety?| |digamma| |orbit| |evenInfiniteProduct|
- |ignore?| |reverseLex| |integralLastSubResultant| |call| |kovacic|
- |tail| |setelt| |balancedBinaryTree| |getConstant|
- |symmetricDifference| |drawCurves| |cyclotomicFactorization|
- |putColorInfo| |OMreadFile| |lifting1| |trace| |prefixRagits| |cross|
- |sncndn| |exp1| |updatF| |generalSqFr| |encodingDirectory|
- |firstDenom| |s21bdf| |patternMatch| |clearDenominator| |copy|
- |intensity| |adaptive| |setScreenResolution| |addmod| |root?|
- |pointLists| |midpoints| |reducedForm| |create| |shade| |s21bbf|
- |scalarTypeOf| |e04naf| |conical| |explicitEntries?| |void|
- |OMsetEncoding| |split| |iisqrt2| |iiGamma| |cyclicEntries|
- |checkForZero| |complexNumericIfCan| |shallowCopy| |leftZero|
- |interpretString| |mapDown!| |palginfieldint| |nonSingularModel|
- |quartic| |positive?| |member?| |pop!| |exponentialOrder| |birth|
- |jacobiIdentity?| |d02kef| |getProperty| |minus!| |radicalEigenvector|
- |parent| |lyndon| |halfExtendedSubResultantGcd1| |moduleSum|
- |sinIfCan| |polarCoordinates| |rootBound|
- |noncommutativeJordanAlgebra?| |d01fcf| |degreeSubResultantEuclidean|
- |flexible?| |leadingIndex| |content| |lexTriangular|
- |removeRoughlyRedundantFactorsInPols| |bsolve| |smith| |LiePoly|
- |OMconnOutDevice| |ReduceOrder| |xCoord| |testDim| |s20acf| |dihedral|
- |factorsOfDegree| |point| |graeffe| |addMatchRestricted| |finiteBasis|
- |rootRadius| |cap| |HermiteIntegrate| |startTableGcd!|
- |createThreeSpace| |ord| |unitCanonical| |nextIrreduciblePoly|
- |newSubProgram| |order| |basisOfCenter| |useSingleFactorBound?|
- |unitVector| |primeFactor| |cSec| |e02akf| |cosSinInfo| |gcdcofact|
- |complexIntegrate| |euclideanNormalForm| |rightRank| |sort| |ref|
- |unitsColorDefault| |nil| |infinite| |arbitraryExponent| |approximate|
- |complex| |shallowMutable| |canonical| |noetherian| |central|
+ |Record| |Union| |normInvertible?| |setPredicates| |result|
+ |primitive?| |B1solve| |unknownEndian| |groebnerIdeal| |mkcomm|
+ |printCode| |sort| |newLine| |primPartElseUnitCanonical|
+ |outputMeasure| |s15adf| |reset| |series| |zero| |mathieu11|
+ |isAbsolutelyIrreducible?| |linearAssociatedExp| |cAcsch| |leaf?|
+ |getGraph| |sup| |trunc| |c02agf| |OMlistSymbols| |alternatingGroup|
+ |acschIfCan| |chvar| |factorFraction| |dihedral| |integralMatrix|
+ |OMwrite| |padicFraction| |convergents| |coercePreimagesImages|
+ |write| |logIfCan| |And| |outputFloating| |multiplyExponents|
+ |scanOneDimSubspaces| |factorial| |OMreceive| |triangularSystems|
+ |setprevious!| |eof?| |save| |readUInt8!| |OMputError|
+ |removeSuperfluousCases| |Or| |radicalOfLeftTraceForm|
+ |rischNormalize| |irreducibleFactor| |hspace| |random| |polyRicDE|
+ |showArrayValues| |branchPoint?| |hMonic| |deepCopy| |min| |Not|
+ |conjug| |aromberg| |nilFactor| |mainDefiningPolynomial| |secIfCan|
+ |box| |factorByRecursion| |pseudoQuotient| |critB| |prinshINFO|
+ |rewriteIdealWithRemainder| |stFuncN| |clearFortranOutputStack|
+ |d02gaf| |palgint| |rowEch| |s19abf| |complexNumericIfCan| |escape|
+ |OMreadFile| |insertBottom!| |halfExtendedResultant2|
+ |createRandomElement| |setValue!| |decimal| |inverseIntegralMatrix|
+ |getCode| |fglmIfCan| |f04qaf| |bernoulli| |d01fcf| |shallowExpand|
+ |generator| |iiacosh| |lagrange| |lfunc| |normalise| |irreducible?|
+ |keys| |critpOrder| |leftFactor| |lo| |composite| |f07fef|
+ |radicalEigenvalues| |dimension| |purelyAlgebraic?| |polygamma|
+ |constant?| |symbolTable| |contains?| |listRepresentation| |copies|
+ |OMputAttr| |rightUnits| |realRoots| |reducedSystem| |linSolve|
+ |dequeue| |repeatUntilLoop| |weakBiRank| |minPol| |incr| |rubiksGroup|
+ |initiallyReduce| |pushFortranOutputStack| |c06gcf| |factorsOfDegree|
+ |dark| |physicalLength| |componentUpperBound| |genus| |lflimitedint|
+ |closeComponent| |hi| |unrankImproperPartitions0| |getProperty|
+ |zeroVector| |popFortranOutputStack| |adaptive3D?| |numer| **
+ |nthExpon| |listYoungTableaus| |e04naf| |infix?| |nextPrimitivePoly|
+ |movedPoints| |computePowers| |e02ajf| |flatten| GF2FG |mask| |cAtan|
+ |f04mbf| |denom| |cyclotomic| |paren| |changeWeightLevel|
+ |outputAsFortran| |showTheFTable| |viewDeltaXDefault| |multiEuclidean|
+ |tanIfCan| |OMReadError?| |OMgetEndApp| |create3Space| |slex|
+ |basisOfRightNucloid| |lyndonIfCan| |f01bsf| |connectTo| |true|
+ |biRank| |lighting| |components| |structuralConstants| |pi| |setleft!|
+ |diag| |generalInfiniteProduct| |setPrologue!| |unitNormal|
+ |pointPlot| |lineColorDefault| |viewSizeDefault| |cSech| |select!|
+ |infinity| |highCommonTerms| |totalfract| |compiledFunction|
+ |showScalarValues| |setTex!| |listLoops| |expintfldpoly| |ricDsolve|
+ |trapezoidalo| |rootSplit| |position!| |hermite| |graphState|
+ |numberOfFactors| |semiResultantEuclideannaif| |lifting1| |chiSquare1|
+ |s21bcf| |defineProperty| |cycleElt| |singular?| |setMinPoints|
+ |currentScope| |graphCurves| |node?| |aCubic| |primlimitedint| |head|
+ |mainVariable?| |outlineRender| |selectIntegrationRoutines|
+ |rootProduct| |qqq| |polCase| |traverse| |solveLinear| |expint| |dn|
+ |e02adf| |factorList| |imagJ| |cAcos| |arbitrary| |graeffe| |separant|
+ |nthCoef| |removeRedundantFactors| |makeCrit| |fortran| |categories|
+ |complexLimit| |abs| |shrinkable| |semiSubResultantGcdEuclidean2|
+ |solveRetract| |curveColorPalette| |bivariatePolynomials| |isImplies|
+ |karatsubaOnce| |OMputSymbol| |uniform| |bitLength| |c06gbf| |tRange|
+ |chebyshevT| |minus!| |outerProduct| |size?| |allRootsOf|
+ |normalizedDivide| |rk4qc| |badValues| |mindeg| |delete| |rotatez|
+ |d03eef| |divisor| |setelt!| |fortranLogical| |brillhartIrreducible?|
+ |readInt8!| |sdf2lst| RF2UTS |testDim| |symbolTableOf| |top!|
+ |squareFreePrim| |groebgen| |randomR| |safeCeiling| |conical|
+ |OMgetEndBind| |rightRankPolynomial| |countRealRootsMultiple|
+ |bitCoef| |trapezoidal| |byteBuffer| |externalList|
+ |ScanFloatIgnoreSpaces| |front| |setOfMinN| |singularAtInfinity?|
+ |critT| |interpolate| |palgextint0| |s19aaf| |reverse!| |vector|
+ |iCompose| |rationalIfCan| |headAst| |makingStats?| |comment|
+ |fracPart| |iisech| |listOfMonoms| |stoseInvertibleSetreg|
+ |prepareSubResAlgo| |argscript| |makeResult| |differentiate|
+ |OMputEndObject| |zoom| |leadingCoefficientRicDE| |outputAsScript|
+ |rowEchLocal| |isNot| |twoFactor| |atom?| |expIfCan| |infiniteProduct|
+ |lquo| |prefixRagits| |quasiRegular| |constantKernel|
+ |nativeModuleExtension| |iifact| |lSpaceBasis| |gradient| |chebyshevU|
+ |internal?| |mainMonomials| |taylorRep| |rightRegularRepresentation|
+ |numberOfDivisors| |incrementKthElement| |autoReduced?| |splitLinear|
+ |reorder| |companionBlocks| |addMatchRestricted| |toseInvertibleSet|
+ |derivationCoordinates| |BumInSepFFE| |rangePascalTriangle|
+ |leftRemainder| |infieldint| |slash| |inverseLaplace| |seriesSolve|
+ |copyInto!| |vark| |prinb| |Lazard| |null| |merge!| |perfectSqrt|
+ |linGenPos| |rationalApproximation| |rightFactorIfCan|
+ |stoseInvertibleSetsqfreg| |binaryTree| |OMsupportsCD?|
+ |setLegalFortranSourceExtensions| |interReduce| |double?| |conjugate|
+ |not| |mapSolve| |bottom!| |basicSet| |gcdcofactprim|
+ |tubePointsDefault| |radicalEigenvector| |bezoutResultant| |central?|
+ |OMputEndError| |readInt16!| |subresultantVector| |OMencodingUnknown|
+ |and| |sturmSequence| |quasiMonic?| |ceiling| |makeViewport3D|
+ |OMputEndAttr| |reindex| |specialTrigs| |leftCharacteristicPolynomial|
+ |writeUInt8!| |or| |quasiMonicPolynomials| |summation| |dec| |finite?|
+ |exprToUPS| |fortranInteger| |f02axf| |generalizedEigenvector|
+ |continuedFraction| |packageCall| |quasiAlgebraicSet| |symbol?| |xor|
+ |iiacsc| |axesColorDefault| |lazyPseudoQuotient| |besselK| |closed?|
+ |skewSFunction| |mkPrim| |linearPart| |credPol| |case| |tan2cot|
+ |log10| |property| |yCoordinates| |omError| |changeNameToObjf|
+ |s17aff| |neglist| |fortranDouble| |largest| |intcompBasis|
+ |inconsistent?| FG2F |Zero| |bitand| |leftTrace| |permutationGroup|
+ |nullary| |numericIfCan| |s17akf| |explicitEntries?| |writeInt8!|
+ |mix| |simplify| |One| |tValues| |bitior| |elem?|
+ |internalZeroSetSplit| |exprex| |subResultantChain|
+ |internalIntegrate| |e02dff| |finiteBasis| |groebner?| |charClass|
+ |functionIsOscillatory| |units| |univariatePolynomial| |cross|
+ |discreteLog| |mightHaveRoots| |denominator| |deleteRoutine!|
+ |returnType!| |fixedPointExquo| |divideIfCan| |hitherPlane|
+ |mathieu24| |subResultantGcdEuclidean| |lllip| |bumprow| |weight|
+ |leastAffineMultiple| |pol| |approxSqrt| |pquo| |ode2| |integral|
+ |df2fi| |scripted?| |integralRepresents| |stFunc2| |iilog| |d01ajf|
+ |phiCoord| |eigenMatrix| |cosIfCan| |showAllElements|
+ |complexNormalize| |raisePolynomial| |cardinality|
+ |indicialEquationAtInfinity| |retractable?| |parent| |lazy?| |e01bgf|
+ |presuper| |removeRoughlyRedundantFactorsInContents| |whitePoint|
+ |writeLine!| |elt| |pack!| |subQuasiComponent?| |fortranCharacter|
+ |minordet| |extractTop!| |quickSort| |OMputAtp| |key| |thenBranch|
+ |prem| |swapColumns!| |OMconnectTCP| |code| |cycle| |primitivePart!|
+ |tanQ| |getDatabase| |palgLODE| |derivative| |radicalSolve| |zag|
+ |prevPrime| |groebnerFactorize| |fprindINFO| |mapExpon|
+ |lazyPremWithDefault| |block| |selectMultiDimensionalRoutines|
+ |times!| |cyclic| |cn| |filename| |complete| |integralCoordinates|
+ |firstSubsetGray| |innerEigenvectors| |rationalPower| |computeBasis|
+ |dimensions| |stoseLastSubResultant| |extractSplittingLeaf|
+ |setProperties!| |yellow| |setMinPoints3D| |qfactor| UTS2UP
+ |inverseIntegralMatrixAtInfinity| |content| |systemSizeIF| |isPower|
+ |rightTraceMatrix| |unvectorise| |cycles| |rootRadius|
+ |numberOfComposites| |parse| |f2df| |octon| |sumSquares| |factorset|
+ |iiexp| |numerator| |balancedFactorisation| |stripCommentsAndBlanks|
+ |sylvesterMatrix| |hyperelliptic| |rightNorm|
+ |irreducibleRepresentation| |showIntensityFunctions|
+ |sumOfKthPowerDivisors| |meshFun2Var| |delete!| |extend|
+ |OMopenString| |badNum| |back| |mergeFactors| |c05nbf|
+ |OMconnInDevice| |OMsetEncoding| |nextPartition|
+ |constantCoefficientRicDE| |generalizedContinuumHypothesisAssumed|
+ |sncndn| |redPo| |f01ref| |digit?| |reduceByQuasiMonic| |bigEndian|
+ |failed?| |mainValue| |genericRightMinimalPolynomial| |OMputEndApp|
+ |host| |roughUnitIdeal?| |normal?| |realSolve| |viewWriteDefault|
+ |adjoint| |isobaric?| |geometric| |showTheRoutinesTable| |odd?|
+ |viewport2D| |iitanh| |mathieu23| |sqfrFactor| |belong?| |lyndon| Y
+ |cschIfCan| |bombieriNorm| |minimalPolynomial| |laplacian|
+ |generalizedInverse| |resetBadValues| |internalLastSubResultant|
+ |replace| |collect| |power| |enumerate| |f04maf|
+ |differentialVariables| |genericLeftMinimalPolynomial| |li|
+ |certainlySubVariety?| |factor1| |definingEquations| |datalist|
+ |newReduc| |subMatrix| |primextintfrac| |totalLex| |read!| |OMgetType|
+ |singleFactorBound| |psolve| |solve1| |rightScalarTimes!| |postfix|
+ |members| |positiveRemainder| |showSummary| |modifyPoint| |maxrow|
+ |legendre| |laurentIfCan| |perfectNthRoot|
+ |standardBasisOfCyclicSubmodule| |subset?| |color| |usingTable?| |cap|
+ |rk4f| |identity| |vertConcat| |e| |c06eaf| |exponents| |minrank|
+ |baseRDE| |pair?| |showAttributes| |goodnessOfFit| |dihedralGroup|
+ |commonDenominator| |zeroOf| |cExp| |vedf2vef| |explicitlyFinite?|
+ |ellipticCylindrical| |edf2fi| |nullity| |coHeight| |rank|
+ |selectNonFiniteRoutines| |flagFactor| |cAcot| |debug3D|
+ |gcdPrimitive| |minPoints3D| |subPolSet?| |e01baf| |push!| |less?|
+ |stoseInvertibleSet| |henselFact| |palgRDE| |isEquiv| |localUnquote|
+ |univariatePolynomialsGcds| |plotPolar| |mainForm| |elRow1!|
+ |associative?| |nothing| |singRicDE| |fortranReal| |testModulus|
+ |nsqfree| |lexTriangular| |variationOfParameters| |split| |rk4|
+ |leadingTerm| |name| |logGamma| |d02bhf|
+ |halfExtendedSubResultantGcd1| F2FG |leftExactQuotient| |refine|
+ |setLabelValue| |s17dgf| |factorPolynomial| |body| |OMgetEndObject|
+ |hasPredicate?| |typeLists| |d01aqf| |pushucoef| |remainder|
+ |toseSquareFreePart| |s17aef| |bat1| |optional?| |iprint|
+ |squareFreePolynomial| |linearAssociatedLog| |triangular?|
+ |euclideanGroebner| |pastel| |stiffnessAndStabilityFactor|
+ |getConstant| |internalInfRittWu?| |clearCache| |transcendent?|
+ |integral?| |fixPredicate| |mpsode| |inRadical?| |cyclicEqual?|
+ |lists| |expPot| |arrayStack| |associator| |nextNormalPrimitivePoly|
+ |minimize| |internalIntegrate0| |retract| |width| |setEpilogue!|
+ |reducedForm| |invertibleSet| |leftMult| |purelyTranscendental?|
+ |closedCurve?| |mainMonomial| |setnext!| |writeByte!| |dmpToHdmp|
+ |partialNumerators| |nullSpace| |numericalIntegration| |condition|
+ |rightRank| |bringDown| |error| |nodes| |conjugates| |mvar|
+ |functorData| |extendedIntegrate| |port| |diagonal| |finiteBound|
+ |selectOptimizationRoutines| |e04mbf| |problemPoints| |palgRDE0|
+ |wholeRadix| |assert| |cCsch| |collectQuasiMonic| |stop|
+ |mainCharacterization| |reify| |commutativeEquality| |getOperands|
+ |integerIfCan| |normalElement| |Si| |lazyEvaluate| |subspace|
+ |createNormalPrimitivePoly| |t| |unexpand| |const| |superscript|
+ |ruleset| |level| |setLength!| |e01sff| |isTerm| |e01daf|
+ |noKaratsuba| |relerror| EQ |ratPoly| |mirror| |plenaryPower| |curve?|
+ |e01bef| |moreAlgebraic?| |OMgetApp| |redmat| |charthRoot|
+ |multiEuclideanTree| |binary| |quatern| |localAbs| |choosemon|
+ |matrix| |optional| |cothIfCan| |sin?| |mergeDifference| |implies|
+ |genericRightTrace| |e02baf| |f02akf| |suchThat| |prepareDecompose|
+ |ldf2lst| |tablePow| |pToHdmp| |subresultantSequence| |rischDEsys|
+ |polynomialZeros| |float?| |pop!| |probablyZeroDim?| |basis| |plus!|
+ |nthr| |trim| |symmetricDifference| |pToDmp| |linearlyDependentOverZ?|
+ |addMatch| |npcoef| |setErrorBound| |squareTop| |doublyTransitive?|
+ |f02bbf| |reflect| |factors| |mantissa| |ref| |bindings|
+ |genericRightTraceForm| |iiacoth| |removeSinSq| |fortranLinkerArgs|
+ |blankSeparate| |component| |OMputObject| |s01eaf| |pushdown| |powmod|
+ |characteristicSet| |lintgcd| |iteratedInitials| |mesh?|
+ |stronglyReduced?| |updatD| |f02xef| |c06ebf| |smith| |shiftRoots|
+ |solveLinearPolynomialEquationByFractions| |consnewpol| |d03edf|
+ |center| |clipBoolean| |create| |antiCommutator| SEGMENT |entries|
+ |sequences| |OMgetFloat| |OMgetEndBVar| |monomRDE|
+ |antisymmetricTensors| |var2Steps| |rombergo| |csc2sin| |deref|
+ |printStats!| |makeSin| |jacobi| |s17dcf| |comp| |OMclose|
+ |supRittWu?| |nextLatticePermutation| |simplifyPower| |compile| |plot|
+ |getButtonValue| |iiasech| |leftRecip| |plus| |LazardQuotient|
+ |rightOne| |gcdPolynomial| |hclf| |airyBi| |f02ajf| |setFormula!|
+ |returnTypeOf| |imagj| |constDsolve| |e04gcf| |argumentList!|
+ |leftRegularRepresentation| |unprotectedRemoveRedundantFactors| |blue|
+ |createNormalElement| |characteristicPolynomial| |polyRDE|
+ |screenResolution3D| |leftOne| |minset| |iiacos| |algebraicOf|
+ |simpson| |moduloP| |reduced?| |exponentialOrder| |inrootof|
+ |wholeRagits| |nonQsign| |LyndonBasis| |invertIfCan| |remove!|
+ |PollardSmallFactor| |unitsColorDefault| |module| |times| |coerceP|
+ |chiSquare| |invertibleElseSplit?| |e02gaf| |fortranTypeOf|
+ |parameters| |prindINFO| |drawCurves| |optimize| |padecf|
+ |sortConstraints| |char| |cCsc| |shanksDiscLogAlgorithm| |jacobian|
+ |romberg| |monicDecomposeIfCan| |primintfldpoly| |top| |s18adf|
+ |iibinom| |qinterval| |rewriteSetByReducingWithParticularGenerators|
+ |rightDivide| |concat| |colorFunction| |c02aff|
+ |rewriteIdealWithHeadRemainder| |complexForm| |mesh| |listOfLists|
+ |partialDenominators| |semiSubResultantGcdEuclidean1| |df2mf| |unit?|
+ |extension| |approxNthRoot| |OMgetAttr| |OMlistCDs| |list|
+ |OMputEndBind| |d02ejf| |concat!| |frobenius| |monom| |f07adf| |pow|
+ |zCoord| |addPoint| |karatsuba| |car| |enterPointData|
+ |lieAdmissible?| |contours| |setColumn!| |inc| |idealiser|
+ |rightCharacteristicPolynomial| |commaSeparate| |shade| |lex| |cdr|
+ |resultantEuclideannaif| |removeSinhSq| |shellSort|
+ |stoseSquareFreePart| |genericPosition| |s17ajf| |lowerPolynomial|
+ |d01amf| |iiatan| |unmakeSUP| |setDifference| |plusInfinity|
+ |mainSquareFreePart| |semiLastSubResultantEuclidean| |curry|
+ |mathieu12| |tubePoints| |upDateBranches| |common| |cond| |length|
+ |float| |arity| |direction| |linearDependence| |f01brf|
+ |setIntersection| |minusInfinity| |cTanh| |selectsecond| |seed|
+ |stronglyReduce| |genericRightDiscriminant| |selectOrPolynomials|
+ |scripts| |lazyPquo| |bandedJacobian| |lifting| |setUnion| |initial|
+ |bandedHessian| |insertRoot!| |freeOf?| |rem| |birth|
+ |inputBinaryFile| |unravel| |region| |nor| |OMencodingSGML| |apply|
+ |cyclePartition| |monic?| |deepestTail| |quo| |preprocess| |f04mcf|
+ |radPoly| |expressIdealMember| |bytes| |inR?| |numberOfComponents|
+ |subtractIfCan| |startStats!| |unparse| |orthonormalBasis| |tanh2coth|
+ |splitDenominator| |digit| |validExponential| |size|
+ |cyclotomicFactorization| |ef2edf| |normalForm| |div|
+ |primPartElseUnitCanonical!| |rdregime| |iflist2Result| |bothWays|
+ |createLowComplexityNormalBasis| |quadraticNorm| |type| |hexDigit|
+ |computeInt| |f01mcf| |associatedEquations| |exquo|
+ |resultantReduitEuclidean| |output| |tree| |satisfy?| |vectorise|
+ |idealiserMatrix| |crushedSet| |range| |froot| |KrullNumber| |write!|
+ ~= |prime| |iiperm| |resize| |modularFactor| |outputForm| |first|
+ |multMonom| |mapUnivariateIfCan| |pmComplexintegrate| |f04arf| |#|
+ |f04atf| GE |twist| |infinite?| |figureUnits| |mkAnswer| |rest|
+ |infieldIntegrate| |aspFilename| |discriminant| ~ |s18dcf| GT
+ |diagonalProduct| |drawToScale| |monicCompleteDecompose| |redPol|
+ |s21bbf| |substitute| |build| |dualSignature| |rationalFunction|
+ |middle| |exprHasLogarithmicWeights| LE |spherical| |complexRoots|
+ |iipow| |divide| |removeDuplicates| |connect| |hex| |c06fqf|
+ |rightFactorCandidate| |constantLeft| LT |euclideanSize| |nodeOf?|
+ |oddInfiniteProduct| |pseudoRemainder| |solve| |PDESolve|
+ |firstUncouplingMatrix| |jacobiIdentity?| |/\\| |OMencodingXML|
+ |resetAttributeButtons| |radicalSimplify| |triangulate| |merge| |sh|
+ |nary?| |lepol| |\\/| |d01gaf| |rightMinimalPolynomial| |stopTable!|
+ |viewThetaDefault| |checkRur| |OMgetBind| |lift| |changeName|
+ |isConnected?| |writeBytes!| |leftUnits| |createIrreduciblePoly|
+ |real?| |userOrdered?| |rational?| |subCase?| |reduce|
+ |irreducibleFactors| |isOp| |lazyGintegrate| |setfirst!|
+ |univariatePolynomials| |pointColorPalette|
+ |createMultiplicationMatrix| |modifyPointData| |getMeasure| |inverse|
+ |putColorInfo| |has?| |OMserve| |alphabetic?| |s20acf|
+ |createPrimitiveNormalPoly| |sturmVariationsOf| |innerSolve|
+ |semicolonSeparate| |bipolarCylindrical| |getBadValues| |latex|
+ |denomRicDE| |simplifyExp| |SFunction| |shiftRight| |leftGcd| |pr2dmp|
+ |style| |gethi| |exportedOperators| |iitan| |outputList| |minPoly|
+ |symbolIfCan| |orbits| |red| |recolor| |autoCoerce| |qPot|
+ |tensorProduct| |d01asf| |e01saf| |setPoly| |clikeUniv| |polyred|
+ |stFunc1| |saturate| |internalSubQuasiComponent?| |cos2sec|
+ |clearTheIFTable| |cAsech| |equation| |explogs2trigs| |radix|
+ |scalarTypeOf| |algebraicVariables| |evenInfiniteProduct| |quote|
+ |fractionPart| |iExquo| |multiple?| |e02def| |coefficient| |continue|
+ |properties| |csch2sinh| |resultantReduit| |findBinding| |d02kef|
+ |permutation| |iiacot| |root?| |accuracyIF| |subscriptedVariables|
+ |xCoord| |hypergeometric0F1| |translate| |OMUnknownSymbol?|
+ |clearTable!| |tower| |midpoint| |listConjugateBases| |position|
+ |internalAugment| |UpTriBddDenomInv| |brillhartTrials| |OMopenFile|
+ |stoseInvertible?sqfreg| |absolutelyIrreducible?|
+ |lastSubResultantEuclidean| |basisOfLeftAnnihilator| |simpleBounds?|
+ |lastSubResultant| |complexExpand| |match?| |mapCoef| |e04ucf|
+ |dioSolve| |ddFact| |ReduceOrder| |uniform01| |elColumn2!| |compound?|
+ |taylorQuoByVar| |findConstructor| |lazyIrreducibleFactors|
+ |clipParametric| |nil?| |scale| |subNodeOf?| |bright|
+ |associatedSystem| |coleman| |generalizedContinuumHypothesisAssumed?|
+ |basisOfRightAnnihilator| |genericLeftDiscriminant| |sqfree|
+ |rowEchelonLocal| |d01bbf| |byte| |conditionP| |monicModulo|
+ |algebraic?| |paraboloidal| |complex?| |callForm?| |dim| |rightZero|
+ |function| |repSq| |viewDeltaYDefault| |extractIfCan|
+ |associatorDependence| |extractIndex| |f01maf| |complexNumeric|
+ |OMgetEndAtp| |pdf2ef| |headRemainder| |squareFreeFactors| |debug|
+ |rk4a| |axes| |contractSolve| |makeTerm| |matrixDimensions| |eval|
+ |regime| |c05pbf| |inGroundField?| |insert!| D |cSec| |torsion?|
+ |reciprocalPolynomial| |kernels| |constantRight| |pointLists|
+ |quotient| |lieAlgebra?| |listexp| |ignore?| |s18aef| |monomials|
+ |ldf2vmf| |leadingExponent| |operator| |mapdiv| |invmultisect|
+ |rischDE| |completeSmith| |pureLex| |basisOfCommutingElements|
+ |e02bdf| |interpret| |cTan| |curveColor| |list?| |pushuconst|
+ |univariateSolve| |sort!| |sign| |polar| |prinpolINFO|
+ |complexEigenvalues| |generalTwoFactor| |airyAi| |LiePoly|
+ |univariate| |extractPoint| |setTopPredicate| |nextsousResultant2|
+ |digits| |setMaxPoints| |submod| |int| |multiset| |light| |init|
+ |oddintegers| |double| |wrregime| |inHallBasis?| |atrapezoidal|
+ |ParCond| |empty| |UP2ifCan| |s17dhf| |besselJ|
+ |semiResultantEuclidean2| |inspect| |noLinearFactor?| |binomial| |mr|
+ |leftQuotient| |relativeApprox| |s18aff| |randnum| |rur| |integers|
+ |splitSquarefree| |factor| |c06fpf| |subNode?| |rightAlternative?|
+ |elements| |separateDegrees| |appendPoint| |norm| |d02gbf| |imaginary|
+ BY |sqrt| |bracket| |addiag| |approximants| |explimitedint|
+ |completeEchelonBasis| |overlabel| |lllp| |mindegTerm| |s18acf| |real|
+ |lowerCase?| |asinIfCan| |numberOfFractionalTerms| |monicDivide|
+ |polyPart| |print| |e02akf| |characteristic| |palginfieldint|
+ |fortranComplex| |sinhcosh| |imag| |lcm| |squareFreeLexTriangular|
+ |xn| |f02bjf| |resolve| |decompose| |nonLinearPart| |imagk|
+ |limitPlus| |directProduct| |polygon| |eulerPhi| |tanNa|
+ |outputBinaryFile| |rowEchelon| |reverseLex| |rangeIsFinite|
+ |exteriorDifferential| |discriminantEuclidean| |declare!|
+ |getMultiplicationMatrix| |append| |htrigs| |var1StepsDefault|
+ |primaryDecomp| |divideExponents| |infinityNorm| |rational|
+ |exactQuotient| |iiasinh| |nextPrimitiveNormalPoly| |brace| |typeList|
+ |stoseIntegralLastSubResultant| |gcd| |fortranLiteral| |kmax|
+ |routines| |leadingBasisTerm| |determinant| |toseLastSubResultant|
+ |cLog| |idealSimplify| |destruct| |even?| |false| |hessian|
+ |initializeGroupForWordProblem| |parts| |separateFactors| NOT
+ |unitNormalize| |iiabs| |maxint| |low| |ScanRoman|
+ |selectAndPolynomials| |Nul| |laguerreL| |rightRecip| OR
+ |indicialEquation| |indiceSubResultant| |subscript| |operation| |key?|
+ |ptFunc| |closedCurve| |s13acf| |subSet| |po| AND |updateStatus!|
+ |compose| |nonSingularModel| |insertTop!| |iiasec| |simplifyLog|
+ |iicot| |makeViewport2D| |setchildren!| |evaluateInverse| |readLine!|
+ |gramschmidt| |ranges| |monomial| |curryRight| |f04asf|
+ |startPolynomial| |Hausdorff| |stack| |computeCycleEntry|
+ |RittWuCompare| |unrankImproperPartitions1| |extensionDegree|
+ |BasicMethod| |table| |multivariate| |outputGeneral| |roman|
+ |numberOfMonomials| |dequeue!| |hermiteH| |cosSinInfo|
+ |showClipRegion| |ScanArabic| |insert| |new| |variables| |check|
+ |messagePrint| |partialFraction| |binarySearchTree| |child| |heap|
+ |hasoln| |gderiv| |upperCase| |mainVariables| |primitiveElement|
+ |numberOfVariables| |ratpart| |rquo| |cache| |presub| |factorAndSplit|
+ |nlde| |coerceS| |s20adf| |countable?| |var2StepsDefault| |iiacsch|
+ |redpps| |integralLastSubResultant| |duplicates| |padicallyExpand|
+ |sechIfCan| |endSubProgram| |applyRules| |e01sef| |d03faf|
+ |bubbleSort!| |log2| |duplicates?| |showAll?| |makeSUP|
+ |primintegrate| |HenselLift| |addBadValue| |getStream| |over| |cubic|
+ |rootKerSimp| |exprHasAlgebraicWeight| |extendedEuclidean|
+ |lazyVariations| |taylor| |cartesian| |roughSubIdeal?| |Ci|
+ |extractProperty| |rightQuotient| * |exprHasWeightCosWXorSinWX|
+ |normalizeIfCan| |f01qdf| |laurent| |viewWriteAvailable|
+ |setScreenResolution3D| |pushup| |iicsc| |subResultantsChain|
+ |multisect| |morphism| |LyndonCoordinates| |rotatey| |lookupFunction|
+ |puiseux| |alphanumeric| |createPrimitivePoly| |dAndcExp| |f02adf|
+ |status| |tanintegrate| |decreasePrecision| |useSingleFactorBound|
+ |complexElementary| |trailingCoefficient| |basisOfNucleus|
+ |setleaves!| |nextNormalPoly| |splitNodeOf!| |comparison| |hasHi|
+ |matrixConcat3D| = |deleteProperty!| |normalize| |inv| |iiatanh|
+ |errorKind| |edf2ef| |s17acf| |eigenvector| |minimumDegree| |yCoord|
+ |powerAssociative?| |erf| |linearMatrix| |ground?| |left| |backOldPos|
+ |Frobenius| |ocf2ocdf| |complementaryBasis| |gcdcofact| |ksec| <
+ |printTypes| |musserTrials| |ground| |e01bhf| |right| |ran| |logpart|
+ |leftDiscriminant| |tanhIfCan| |computeCycleLength| |splitConstant| >
+ |viewPosDefault| |subst| |llprop| |Vectorise| |leadingMonomial| |nand|
+ |ListOfTerms| |fortranCompilerName| |primitivePart| |createZechTable|
+ |abelianGroup| |s14abf| <= |dilog| |numberOfChildren|
+ |leadingCoefficient| |sec2cos| |representationType| |symmetric?|
+ |intermediateResultsIF| |normalizeAtInfinity| |max| |kovacic| >= |sub|
+ |terms| |quartic| |sin| |elementary| |primitiveMonomials| |rule|
+ |regularRepresentation| |makeCos| |lazyResidueClass|
+ |stopTableInvSet!| |basisOfLeftNucleus| |inf| |nil|
+ |selectSumOfSquaresRoutines| |radicalRoots| |cos| |setEmpty!|
+ |reductum| |isMult| |clipSurface| |multinomial| |myDegree|
+ |cylindrical| |makeVariable| |s21baf| |quotientByP| |tan|
+ |integralDerivationMatrix| |close!| |character?| |monicLeftDivide|
+ |isTimes| |linearAssociatedOrder| |divisors| |roughEqualIdeals?| +
+ |dfRange| |cot| |pmintegrate| |useEisensteinCriterion?| |mapmult|
+ |fTable| |root| |next| |leadingSupport| |primlimintfrac|
+ |loadNativeModule| - |modulus| |measure| |objects| |sec| |approximate|
+ |edf2efi| |leftTraceMatrix| |solveLinearPolynomialEquationByRecursion|
+ |perspective| |viewPhiDefault| |principalAncestors| |complex|
+ |generateIrredPoly| |nextItem| |getRef| / |base| |csc| |log|
+ |removeRedundantFactorsInContents| |categoryFrame| |isOpen?| |e02agf|
+ |isAnd| |dom| |viewDefaults| |showTheSymbolTable| |move| |varselect|
+ |asin| |reopen!| |s15aef| |pole?| |forLoop| |coordinates|
+ |integralMatrixAtInfinity| |complexIntegrate| |OMreadStr|
+ |fortranCarriageReturn| |acos| |symbol| |Beta| |sequence|
+ |removeRoughlyRedundantFactorsInPol| |integralAtInfinity?|
+ |rewriteIdealWithQuasiMonicGenerators| |primextendedint| |imagi|
+ |doubleFloatFormat| |atan| |degree| |matrixGcd| |expression|
+ |acotIfCan| |sinh2csch| |segment| |clearTheSymbolTable| |represents|
+ |zeroSquareMatrix| |rightRemainder| |partialQuotients| |acot| |delta|
+ |integer| |complexZeros| |symmetricSquare| |partitions| |green|
+ |round| |palglimint0| |minPoints| |groebner| |asec|
+ |basisOfLeftNucloid| |parents| |lprop| |makeSeries| |changeBase|
+ |balancedBinaryTree| |say| |title| |f2st| |FormatArabic| |positive?|
+ |acsc| |denominators| |selectPolynomials| |semiDiscriminantEuclidean|
+ |createGenericMatrix| |binding| |primeFrobenius| |sinh| |colorDef|
+ |d01akf| |bivariate?| |rotatex| |getExplanations| |trigs2explogs|
+ |bipolar| |trivialIdeal?| |sinhIfCan| |cosh| |equiv|
+ |semiIndiceSubResultantEuclidean| |midpoints| |quadratic| |anticoord|
+ |e02ahf| |distance| |createNormalPoly| |tanh| |collectUnder| |fmecg|
+ |constantOperator| |acothIfCan| |definingPolynomial| |areEquivalent?|
+ |solveLinearlyOverQ| |currentCategoryFrame| |coth| |sPol| |isOr|
+ |label| |getPickedPoints| |previous| |euclideanNormalForm| |palgLODE0|
+ |edf2df| |sech| |lambda| |localReal?| |extractClosed| |column|
+ |changeThreshhold| |index?| |argument| |overset?| |nthFlag| |csch|
+ |patternMatch| |semiDegreeSubResultantEuclidean| |bfKeys| |find|
+ |OMParseError?| |ip4Address| |cRationalPower| |doubleDisc| |asinh|
+ |sparsityIF| |algintegrate| |exptMod| |pade| |coordinate| |aQuadratic|
+ |acosh| |distribute| |hcrf| |leftRank| |opeval| |Is| |pomopo!|
+ |rightLcm| |resultantnaif| |atanh| |readUInt16!| |nextColeman|
+ |alternative?| |mainVariable| |rCoord| |super| |d02raf| |diff|
+ |FormatRoman| |repeating?| |acoth| |iisin| |integralBasisAtInfinity|
+ |mainKernel| |tubePlot| |leftNorm| |rootsOf| |interval| |vspace|
+ |member?| |asech| |constructor| |ramifiedAtInfinity?| |delay|
+ |genericLeftTraceForm| |maximumExponent| |SturmHabichtCoefficients|
+ |schwerpunkt| |remove| |rroot| |leastMonomial|
+ |generalizedEigenvectors| |indiceSubResultantEuclidean| |option|
+ |logical?| |atanhIfCan| |enqueue!| |maxIndex| |multiple| |exprToXXP|
+ |makeprod| |setImagSteps| |cCosh| |mapUnivariate| |hconcat|
+ |nthRootIfCan| |applyQuote| |whatInfinity| |last| |changeMeasure|
+ |clearDenominator| |cAsec| |s17dlf| |crest| |knownInfBasis|
+ |newSubProgram| |assoc| |varList| |f07aef| |prologue|
+ |genericRightNorm| |epilogue| |eisensteinIrreducible?| |isList|
+ |infLex?| |baseRDEsys| |OMgetError| |LazardQuotient2| |rightTrim|
+ |hexDigit?| |split!| |depth| |Gamma| |kroneckerDelta| |pile|
+ |predicates| |solid| |lastSubResultantElseSplit| |leftTrim| |bumptab|
+ |btwFact| |generate| |permanent| |evaluate| |symmetricTensors|
+ |OMputApp| |constant| |constantIfCan| |mathieu22| |optAttributes|
+ |normalDeriv| |sincos| |pleskenSplit| |s17agf| |cup| |incrementBy|
+ |removeSuperfluousQuasiComponents| |SturmHabichtMultiple|
+ |monomialIntPoly| |stoseInvertible?| |acoshIfCan| |diophantineSystem|
+ |relationsIdeal| |branchIfCan| |getIdentifier| |f04jgf|
+ |initiallyReduced?| |shiftLeft| |expand| |SturmHabichtSequence|
+ |stiffnessAndStabilityOfODEIF| |expenseOfEvaluation| |numerators|
+ |se2rfi| |leftAlternative?| |topFortranOutputStack| |makeEq|
+ |filterWhile| |meatAxe| |removeZeroes| |numberOfOperations|
+ |innerSolve1| |expintegrate| |OMmakeConn| |supersub| |heapSort|
+ |lfinfieldint| |c06fuf| |filterUntil| |factorSquareFree| |scaleRoots|
+ |useEisensteinCriterion| |OMgetAtp| |maxColIndex| |d02bbf| |e02aef|
+ |setAdaptive3D| |upperCase!| |select| |before?| |unaryFunction|
+ |cycleLength| |predicate| |OMputFloat| |order| |selectODEIVPRoutines|
+ |complement| |roughBase?| |push| |critBonD| |linears| |meshPar2Var|
+ |doubleRank| |monicRightDivide| |constantToUnaryFunction| |e04ycf|
+ |intensity| |randomLC| |Ei| |degreeSubResultantEuclidean| |pattern|
+ |findCycle| |bitTruth| |medialSet| |rightTrace| |iidsum| |principal?|
+ |power!| |OMencodingBinary| |eigenvalues| |rootDirectory| |OMputBVar|
+ |magnitude| |diagonalMatrix| |cyclicSubmodule| |maxRowIndex|
+ |signature| |clipWithRanges| |ode| |setStatus| |exists?|
+ |totalDifferential| |scan| |Lazard2| |safeFloor| |zeroSetSplit|
+ |limitedIntegrate| |semiResultantReduitEuclidean|
+ |multiplyCoefficients| |minRowIndex| |s17adf| |complexEigenvectors|
+ |pseudoDivide| |ratDenom| |node| |makeRecord| |outputAsTex|
+ |removeRedundantFactorsInPols| |integer?| |laplace| |message|
+ |possiblyNewVariety?| |interactiveEnv| |karatsubaDivide| |shallowCopy|
+ |symmetricRemainder| |d01anf| |equality| |var1Steps| |coth2tanh|
+ |leftUnit| |binaryTournament| |OMputEndAtp| |generalLambert| |cCos|
+ |evenlambert| |deepExpand| |nextsubResultant2| |any?| |hash|
+ |reduction| |anfactor| |setCondition!| |nullary?| |s14baf|
+ |dimensionsOf| |setAdaptive| |ptree| |quadraticForm| |count|
+ |parametric?| |UnVectorise| |basisOfCenter| |fixedPoints|
+ |univariate?| |exprToGenUPS| |dmp2rfi| |genericLeftTrace| |corrPoly|
+ |tubeRadius| |subTriSet?| |rationalPoint?| |OMcloseConn|
+ |getMultiplicationTable| |cCot| |numFunEvals| |LagrangeInterpolation|
+ |negative?| |setFieldInfo| |OMgetSymbol| |exponent| |children|
+ |zeroDimPrime?| |cons| |adaptive| |lfintegrate| |lookup| |hue|
+ |rationalPoints| |iomode| |traceMatrix| |subResultantGcd|
+ |rootOfIrreduciblePoly| |prod| |rotate| |completeEval|
+ |degreeSubResultant| |flexible?| |mappingAst| |setright!|
+ |extendIfCan| |getSyntaxFormsFromFile| |external?| |graphs|
+ |safetyMargin| |imagK| |nthFractionalTerm| |stirling2| |alternating|
+ |reduceLODE| |jordanAdmissible?| |solid?| |infix| |monomialIntegrate|
+ |prime?| |divisorCascade| |e01bff| |leadingIdeal| |recur| |square?|
+ |setAttributeButtonStep| |e02daf| |directSum| |lazyIntegrate|
+ |checkPrecision| |getOperator| |digamma| |tryFunctionalDecomposition|
+ |element?| |rst| |s13adf| |indicialEquations| |insertMatch| |powers|
+ |triangSolve| |minimumExponent| |elliptic| |OMgetBVar| |legendreP|
+ |swapRows!| |drawComplexVectorField| |wordsForStrongGenerators|
+ |source| |sorted?| |bivariateSLPEBR| |inverseColeman| |besselY|
+ |f02fjf| |sizeMultiplication| |useSingleFactorBound?|
+ |linearlyDependent?| |leftZero| |s18def| |solveInField| |separate|
+ |iisqrt3| |exponential| |is?| |makeFR| |parseString|
+ |wordInStrongGenerators| |fixedPoint| |wordInGenerators|
+ |factorSquareFreePolynomial| |critM| |charpol| |resultant| |adaptive?|
+ |getZechTable| |intChoose| |c06gsf| |doubleComplex?|
+ |setScreenResolution| |moebiusMu| |viewpoint| |setRow!| |ridHack1|
+ |physicalLength!| |divergence| |numFunEvals3D| |commutative?|
+ |buildSyntax| |variable?| |zeroMatrix| |generic| |c05adf| |mkIntegral|
+ |viewport3D| |semiResultantEuclidean1| |target| |showTheIFTable|
+ |lexico| |eulerE| |upperBound| |leadingIndex|
+ |extendedSubResultantGcd| |distdfact| |particularSolution|
+ |fractRadix| |f07fdf| |recip| |divideIfCan!| |coerceListOfPairs|
+ |space| |reverse| |rectangularMatrix| |algebraicDecompose|
+ |printInfo!| |sum| |squareFree| |optpair| |addPointLast|
+ |listBranches| |coefficients| |eigenvectors| |quasiRegular?|
+ |goodPoint| |definingInequation| |RemainderList| |f04axf| UP2UTS
+ |processTemplate| |solveLinearPolynomialEquation| |removeConstantTerm|
+ |expr| |orbit| |setMaxPoints3D| |null?| |unary?| |patternMatchTimes|
+ |drawStyle| |f02aff| |controlPanel| |step| |getlo| |clip| |unitVector|
+ |ratDsolve| |ravel| |addmod| |polygon?| |minGbasis| |e02zaf| |declare|
+ |lp| |pdf2df| |completeHensel| |options| |curve| |An| |increment|
+ |reshape| |cycleEntry| |graphImage| |palgextint| |kernel| |ramified?|
+ |fibonacci| |restorePrecision| |sample|
+ |dimensionOfIrreducibleRepresentation| |pdct| |mapGen| |hdmpToP|
+ |draw| |variable| |f02wef| |stosePrepareSubResAlgo| |setVariableOrder|
+ |fullDisplay| |binomThmExpt| |squareFreePart| |intersect| |showRegion|
+ |iterators| |functionIsContinuousAtEndPoints| |monomRDEsys|
+ |clipPointsDefault| |string| |interpretString| |currentEnv|
+ |makeSketch| |alphanumeric?| |substring?| |lowerBound| |tanAn|
+ |printInfo| |prolateSpheroidal| |expextendedint| |f04faf| |failed|
+ |iidprod| |f01rdf| |toseInvertible?| |tryFunctionalDecomposition?|
+ |rewriteSetWithReduction| |screenResolution| |imagE| |OMgetEndError|
+ |hostPlatform| |cycleTail| |measure2Result| |rightMult| |suffix?|
+ |update| |subHeight| |expt| |makeObject| |sizeLess?| |OMUnknownCD?|
+ |nthRoot| |iicosh| |bag| |scopes| |copy!| |qelt| |repeating| |coef|
+ |setProperty!| |permutationRepresentation| |fintegrate| |surface|
+ |qsetelt| |qroot| |prefix?| |graphStates| |s13aaf| |LowTriBddDenomInv|
+ |cAsin| |mapUp!| |primeFactor| |linear| |f04adf| |bfEntry| |zeroDim?|
+ |totolex| |factorOfDegree| |xRange| |leader| |powerSum|
+ |setProperties| |getVariableOrder| |augment| |associates?| |d01alf|
+ |yRange| |atoms| |droot| |polynomial| |linearPolynomials| |pointData|
+ |f01qef| |monicRightFactorIfCan| |antiAssociative?| |zRange|
+ |putGraph| |innerint| |precision| |cyclicGroup| |squareMatrix|
+ |truncate| |beauzamyBound| |composites| |map!| |f02aaf| |linear?|
+ |weights| |numericalOptimization| |pointColorDefault| |rightPower|
+ |domainTemplate| |dmpToP| |qsetelt!| |makeop| |rightExtendedGcd|
+ |sumOfDivisors| |expandTrigProducts| |retractIfCan| |bits|
+ |inputOutputBinaryFile| |rarrow| |ParCondList| |monomial?| |cyclic?|
+ |tube| |mapDown!| |isPlus| |deriv| |leastPower| |flexibleArray|
+ |realEigenvalues| |index| |mdeg| |iicoth| |s14aaf|
+ |reducedDiscriminant| |exp1| |leftRankPolynomial| |option?|
+ |lazyPseudoRemainder| |completeHermite| |setOrder| |printStatement|
+ |zero?| |tableForDiscreteLogarithm| |leaves| |palgintegrate|
+ |lazyPrem| |sn| |algint| |youngGroup| |stopTableGcd!| |positiveSolve|
+ |numberOfHues| |zerosOf| |rootPoly| |cSinh| |acsch| |pair|
+ |startTable!| |limitedint| |product| |horizConcat| |test| |value|
+ |tanh2trigh| |sts2stst| |symmetricPower| |isExpt| |zeroDimPrimary?|
+ |nextSubsetGray| |removeZero| |OMputString| |rules|
+ |createMultiplicationTable| |fill!| |perfectNthPower?|
+ |LyndonWordsList1| |string?| |mapExponents| |writable?| |increase|
+ |cscIfCan| |cycleRagits| |numberOfIrreduciblePoly| |nextSublist|
+ |pointColor| |open| |directory| |removeDuplicates!|
+ |normalizedAssociate| |frst| |mainPrimitivePart| |map| |wreath|
+ |swap!| |basisOfCentroid| |algebraicSort| |functionIsFracPolynomial?|
+ |sayLength| |HermiteIntegrate| |totalDegree| |asecIfCan|
+ |showFortranOutputStack| |numberOfComputedEntries| |coerceImages|
+ |child?| |eq| |just| |groebSolve| |OMread| |stopMusserTrials| |e02ddf|
+ |OMgetVariable| |part?| |operators| |ScanFloatIgnoreSpacesIfCan| |any|
+ |getMatch| |unknown| |iter| |decrease| |transcendentalDecompose|
+ |s17def| |prefix| |assign| |tab1| |eq?| |updatF| |parametersOf|
+ |rightDiscriminant| |LiePolyIfCan| |cyclotomicDecomposition|
+ |initials| |operations| |compBound| |leftPower| |empty?|
+ |factorGroebnerBasis| |coefChoose| F |loopPoints| LODO2FUN |e04fdf|
+ |boundOfCauchy| |constantOpIfCan| |degreePartition| |minIndex|
+ |calcRanges| |numeric| |endOfFile?| |denomLODE| |rotate!| |imports|
+ |convert| |e02bcf| |acosIfCan| |enterInCache| |rdHack1| |point?|
+ |primes| |modTree| |seriesToOutputForm| |complexSolve| |GospersMethod|
+ |radical| |OMunhandledSymbol| |socf2socdf| |mainContent| |dot|
+ |outputFixed| |linearDependenceOverZ| |ode1| |bat| |normal01|
+ |normDeriv2| |high| |normFactors| |signatureAst| |alphabetic| |e04dgf|
+ |parabolicCylindrical| |pushNewContour| |moduleSum| |totalGroebner|
+ |OMputVariable| |setProperty| |virtualDegree| |iisqrt2| |collectUpper|
+ |goto| |OMgetString| |rootOf| |points| |nthExponent|
+ |removeRoughlyRedundantFactorsInPols| |gcdprim| |printHeader|
+ |mainExpression| |uncouplingMatrices| |leftFactorIfCan| |extract!|
+ |universe| |cAcosh| |SturmHabicht| |lfextendedint| |f02abf| |exp|
+ |getProperties| |OMsend| |startTableGcd!| |algSplitSimple|
+ |printingInfo?| |readInt32!| |c06gqf| |topPredicate|
+ |replaceKthElement| |perfectSquare?| |tableau| |someBasis|
+ |removeIrreducibleRedundantFactors| |floor| |antiCommutative?|
+ |halfExtendedResultant1| |patternVariable| |maxPoints3D|
+ |numberOfPrimitivePoly| |initTable!| |drawComplex| |trigs| |ipow|
+ |sylvesterSequence| |queue| |conditionsForIdempotents| |firstNumer|
+ |id| |headReduce| |generalSqFr| |identification| |limit| |makeMulti|
+ |viewZoomDefault| |second| |algebraicCoefficients?| |invertible?|
+ |sech2cosh| |euler| |infRittWu?| |f02aef| |commutator| |OMputEndBVar|
+ |expandLog| |close| |contract| |schema| |third| |asechIfCan|
+ |shufflein| |cot2tan| |setref| |revert| |oneDimensionalArray| |swap|
+ |transform| |thetaCoord| |hdmpToDmp| |wholePart| |supDimElseRittWu?|
+ |setRealSteps| |setrest!| |numberOfNormalPoly| |resetNew| |readBytes!|
+ |search| |coord| |meshPar1Var| |notelem| |display| |argumentListOf|
+ |simpsono| |obj| |realElementary| |identityMatrix|
+ |radicalEigenvectors| |palglimint| |weighted| |Aleph|
+ |chineseRemainder| |asinhIfCan| |characteristicSerie| |deepestInitial|
+ |addPoint2| |lazyPseudoDivide| |cAtanh| |untab| |realEigenvectors|
+ |cycleSplit!| |generic?| |rename| |fullPartialFraction|
+ |extendedResultant| |sinIfCan| |antisymmetric?| |startTableInvSet!|
+ |pushdterm| |open?| |getGoodPrime| |partition| |bezoutDiscriminant|
+ |cAcsc| |entry?| |f02agf| |fractRagits| |normalized?|
+ |pointSizeDefault| |leftMinimalPolynomial| |doubleResultant|
+ |createThreeSpace| |coth2trigh| |sin2csc| |rootPower| |isQuotient|
+ |integerBound| |fortranDoubleComplex| |quadratic?| |withPredicates|
+ |OMconnOutDevice| |bsolve| |quasiComponent| |sumOfSquares|
+ |symmetricGroup| |iroot| |OMgetInteger| |combineFeatureCompatibility|
+ |input| |integrate| |e02dcf| |possiblyInfinite?| |readable?| |imagI|
+ |invmod| |lhs| |ideal| |permutations| |iiGamma| |more?| |category|
+ |encodingDirectory| |gensym| |library| |algDsolve| |leftLcm| |e04jaf|
+ |OMgetEndAttr| |rhs| |diagonal?| |purelyAlgebraicLeadingMonomial?|
+ |setlast!| |dictionary| |lfextlimint| |domain| |exponential1|
+ |oddlambert| |modularGcd| |poisson| |univcase| |setStatus!|
+ |critMonD1| |capacity| |difference| |iicos| |OMputBind| |package|
+ |bernoulliB| |changeVar| |setButtonValue| |OMsupportsSymbol?|
+ |parabolic| |besselI| |iiasin| |shift| |coerce| |mapBivariate|
+ |internalDecompose| |zeroDimensional?| |exQuo| |systemCommand|
+ |c06ecf| |height| |quoted?| |aLinear| |reseed|
+ |numberOfImproperPartitions| |transpose| |getCurve| |generalPosition|
+ |arg1| |construct| |elseBranch| |bit?| |trace2PowMod| |ODESolve|
+ |toScale| |factorsOfCyclicGroupSize| |nthFactor| |d01apf|
+ |selectfirst| |set| |makeGraphImage| |mapMatrixIfCan| |cPower| |arg2|
+ |setPosition| |s19adf| |trueEqual| |symmetricProduct| |kind|
+ |outputSpacing| |quotedOperators| |upperCase?| |nextPrime|
+ |sizePascalTriangle| |OMgetObject| |rename!| |in?| |coshIfCan|
+ |symFunc| |readIfCan!| |arguments| |resultantEuclidean| |op| |normal|
+ |integralBasis| |janko2| |laurentRep| |polarCoordinates| |maxrank|
+ |conditions| |ord| |qualifier| |compdegd|
+ |stoseInternalLastSubResultant| |cSin| |firstDenom| |script|
+ |superHeight| |hasTopPredicate?| |stoseInvertible?reg|
+ |clearTheFTable| |match| |bezoutMatrix| |att2Result|
+ |factorSquareFreeByRecursion| |fixedDivisor| |f01qcf| |lambert|
+ |iicsch| |tubeRadiusDefault| |decomposeFunc| |ffactor| |mat|
+ |modularGcdPrimitive| |moebius| |maxPoints| |leviCivitaSymbol|
+ |selectFiniteRoutines| |cAcoth| |shuffle| |cAsinh| |generators|
+ |numberOfCycles| |diagonals| |cotIfCan| |mainCoefficients| |stirling1|
+ |leftScalarTimes!| |tex| |atanIfCan| |acscIfCan| |minColIndex|
+ |critMTonD1| |factorials| |insertionSort!| |makeFloatFunction|
+ |quoByVar| |every?| |rspace| |roughBasicSet| |entry| |OMputInteger|
+ |iFTable| |makeYoungTableau| |genericLeftNorm| |hostByteOrder|
+ |exactQuotient!| |cyclicEntries| |union| |laguerre| |countRealRoots|
+ |fi2df| |internalSubPolSet?| |formula| |vconcat| |solveid| |harmonic|
+ |getOrder| |oblateSpheroidal| |intPatternMatch| |gbasis| |f01rcf|
+ |binaryFunction| |rightGcd| |recoverAfterFail| |extendedint|
+ |basisOfRightNucleus| |s19acf| |lyndon?|
+ |halfExtendedSubResultantGcd2| |e01sbf| |powern| |compactFraction|
+ |show| |weierstrass| |selectPDERoutines| |csubst|
+ |createPrimitiveElement| |d01gbf| |asimpson| |readLineIfCan!|
+ |rootSimp| |headReduced?| |fortranLiteralLine| |resetVariableOrder|
+ |rootBound| |extractBottom!| |call| |tail| |setelt| |elliptic?|
+ |unitCanonical| |bumptab1| |tan2trig| |createLowComplexityTable|
+ |explicitlyEmpty?| |s21bdf| |trace| |aQuartic| |curryLeft| |nrows|
+ |rightUnit| |setsubMatrix!| |e02bef| |useNagFunctions|
+ |increasePrecision| |scalarMatrix| |cfirst| |d02cjf|
+ |zeroSetSplitIntoTriangularSystems| |number?| |ncols| |pascalTriangle|
+ |copy| |df2st| |mulmod| |strongGenerators| |removeCoshSq|
+ |tracePowMod| |branchPointAtInfinity?| |singularitiesOf|
+ |attributeData| |leftExtendedGcd| |whileLoop| |bounds|
+ |localIntegralBasis| |reducedQPowers| |row| |void| |littleEndian|
+ |lowerCase!| |df2ef| |overlap| |errorInfo| |identitySquareMatrix|
+ |returns| |cot2trig| |leftDivide| |maxdeg| |reducedContinuedFraction|
+ |iisec| |setClipValue| |wronskianMatrix| |realZeros|
+ |expenseOfEvaluationIF| |makeUnit| |basisOfMiddleNucleus| |readByte!|
+ |dflist| |hasSolution?| |one?| |f02awf| |homogeneous?| |OMbindTCP|
+ |currentSubProgram| |expandPower| |cosh2sech| |setClosed|
+ |newTypeLists| |transcendenceDegree| |c06ekf| |s17ahf| |tanSum|
+ |cyclicCopy| |chainSubResultants| |cyclicParents| |checkForZero|
+ |taylorIfCan| |indices| |lowerCase| |readUInt32!| |principalIdeal|
+ |jordanAlgebra?| |unit| |overbar| |removeCosSq| |linkToFortran|
+ |dominantTerm| |cCoth| |coerceL| |normalDenom| |lexGroebner|
+ |torsionIfCan| |rootNormalize| |nextIrreduciblePoly|
+ |reduceBasisAtInfinity| |c06frf| |palgint0| |LyndonWordsList| |point|
+ |removeSquaresIfCan| |iterationVar| |noncommutativeJordanAlgebra?|
+ |e02bbf| |toroidal| |factorSFBRlcUnit| |setvalue!| |signAround|
+ |rightExactQuotient| |fractionFreeGauss!| |outputArgs| |elRow2!| |tab|
+ |fillPascalTriangle| |eyeDistance| |iisinh| |distFact| |nil|
+ |infinite| |arbitraryExponent| |approximate| |complex|
+ |shallowMutable| |canonical| |noetherian| |central|
|partiallyOrderedSet| |arbitraryPrecision| |canonicalsClosed|
|noZeroDivisors| |rightUnitary| |leftUnitary| |additiveValuation|
|unitsKnown| |canonicalUnitNormal| |multiplicativeValuation|
diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase
index 787d1458..340dc6e0 100644
--- a/src/share/algebra/interp.daase
+++ b/src/share/algebra/interp.daase
@@ -1,5349 +1,5353 @@
-(3222214 . 3466723552)
-((-2496 (((-112) (-1 (-112) |#2| |#2|) $) 87) (((-112) $) NIL)) (-1394 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-4284 ((|#2| $ (-567) |#2|) NIL) ((|#2| $ (-1235 (-567)) |#2|) 44)) (-1764 (($ $) 81)) (-2477 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50) ((|#2| (-1 |#2| |#2| |#2|) $) 49)) (-2569 (((-567) (-1 (-112) |#2|) $) 27) (((-567) |#2| $) NIL) (((-567) |#2| $ (-567)) 97)) (-2777 (((-645 |#2|) $) 13)) (-4135 (($ (-1 (-112) |#2| |#2|) $ $) 64) (($ $ $) NIL)) (-3731 (($ (-1 |#2| |#2|) $) 37)) (-3829 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 60)) (-2845 (($ |#2| $ (-567)) NIL) (($ $ $ (-567)) 67)) (-4128 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 29)) (-3025 (((-112) (-1 (-112) |#2|) $) 23)) (-1787 ((|#2| $ (-567) |#2|) NIL) ((|#2| $ (-567)) NIL) (($ $ (-1235 (-567))) 66)) (-1560 (($ $ (-567)) 76) (($ $ (-1235 (-567))) 75)) (-3439 (((-772) (-1 (-112) |#2|) $) 34) (((-772) |#2| $) NIL)) (-1395 (($ $ $ (-567)) 69)) (-4305 (($ $) 68)) (-4147 (($ (-645 |#2|)) 73)) (-2269 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 88) (($ (-645 $)) 86)) (-4132 (((-863) $) 93)) (-1853 (((-112) (-1 (-112) |#2|) $) 22)) (-2936 (((-112) $ $) 96)) (-2958 (((-112) $ $) 100)))
-(((-18 |#1| |#2|) (-10 -8 (-15 -2936 ((-112) |#1| |#1|)) (-15 -4132 ((-863) |#1|)) (-15 -2958 ((-112) |#1| |#1|)) (-15 -1394 (|#1| |#1|)) (-15 -1394 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1764 (|#1| |#1|)) (-15 -1395 (|#1| |#1| |#1| (-567))) (-15 -2496 ((-112) |#1|)) (-15 -4135 (|#1| |#1| |#1|)) (-15 -2569 ((-567) |#2| |#1| (-567))) (-15 -2569 ((-567) |#2| |#1|)) (-15 -2569 ((-567) (-1 (-112) |#2|) |#1|)) (-15 -2496 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -4135 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4284 (|#2| |#1| (-1235 (-567)) |#2|)) (-15 -2845 (|#1| |#1| |#1| (-567))) (-15 -2845 (|#1| |#2| |#1| (-567))) (-15 -1560 (|#1| |#1| (-1235 (-567)))) (-15 -1560 (|#1| |#1| (-567))) (-15 -1787 (|#1| |#1| (-1235 (-567)))) (-15 -3829 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2269 (|#1| (-645 |#1|))) (-15 -2269 (|#1| |#1| |#1|)) (-15 -2269 (|#1| |#2| |#1|)) (-15 -2269 (|#1| |#1| |#2|)) (-15 -4147 (|#1| (-645 |#2|))) (-15 -4128 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2477 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2477 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2477 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1787 (|#2| |#1| (-567))) (-15 -1787 (|#2| |#1| (-567) |#2|)) (-15 -4284 (|#2| |#1| (-567) |#2|)) (-15 -3439 ((-772) |#2| |#1|)) (-15 -2777 ((-645 |#2|) |#1|)) (-15 -3439 ((-772) (-1 (-112) |#2|) |#1|)) (-15 -3025 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1853 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3731 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3829 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4305 (|#1| |#1|))) (-19 |#2|) (-1218)) (T -18))
+(3223342 . 3467417912)
+((-3531 (((-112) (-1 (-112) |#2| |#2|) $) 87) (((-112) $) NIL)) (-2676 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-4285 ((|#2| $ (-567) |#2|) NIL) ((|#2| $ (-1236 (-567)) |#2|) 44)) (-1602 (($ $) 81)) (-2494 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50) ((|#2| (-1 |#2| |#2| |#2|) $) 49)) (-2578 (((-567) (-1 (-112) |#2|) $) 27) (((-567) |#2| $) NIL) (((-567) |#2| $ (-567)) 97)) (-2799 (((-645 |#2|) $) 13)) (-2473 (($ (-1 (-112) |#2| |#2|) $ $) 64) (($ $ $) NIL)) (-3751 (($ (-1 |#2| |#2|) $) 37)) (-3841 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 60)) (-2857 (($ |#2| $ (-567)) NIL) (($ $ $ (-567)) 67)) (-3196 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 29)) (-4233 (((-112) (-1 (-112) |#2|) $) 23)) (-1801 ((|#2| $ (-567) |#2|) NIL) ((|#2| $ (-567)) NIL) (($ $ (-1236 (-567))) 66)) (-1569 (($ $ (-567)) 76) (($ $ (-1236 (-567))) 75)) (-3447 (((-772) (-1 (-112) |#2|) $) 34) (((-772) |#2| $) NIL)) (-1656 (($ $ $ (-567)) 69)) (-4309 (($ $) 68)) (-4145 (($ (-645 |#2|)) 73)) (-2276 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 88) (($ (-645 $)) 86)) (-4129 (((-863) $) 93)) (-3436 (((-112) (-1 (-112) |#2|) $) 22)) (-2946 (((-112) $ $) 96)) (-2968 (((-112) $ $) 100)))
+(((-18 |#1| |#2|) (-10 -8 (-15 -2946 ((-112) |#1| |#1|)) (-15 -4129 ((-863) |#1|)) (-15 -2968 ((-112) |#1| |#1|)) (-15 -2676 (|#1| |#1|)) (-15 -2676 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1602 (|#1| |#1|)) (-15 -1656 (|#1| |#1| |#1| (-567))) (-15 -3531 ((-112) |#1|)) (-15 -2473 (|#1| |#1| |#1|)) (-15 -2578 ((-567) |#2| |#1| (-567))) (-15 -2578 ((-567) |#2| |#1|)) (-15 -2578 ((-567) (-1 (-112) |#2|) |#1|)) (-15 -3531 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2473 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4285 (|#2| |#1| (-1236 (-567)) |#2|)) (-15 -2857 (|#1| |#1| |#1| (-567))) (-15 -2857 (|#1| |#2| |#1| (-567))) (-15 -1569 (|#1| |#1| (-1236 (-567)))) (-15 -1569 (|#1| |#1| (-567))) (-15 -1801 (|#1| |#1| (-1236 (-567)))) (-15 -3841 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2276 (|#1| (-645 |#1|))) (-15 -2276 (|#1| |#1| |#1|)) (-15 -2276 (|#1| |#2| |#1|)) (-15 -2276 (|#1| |#1| |#2|)) (-15 -4145 (|#1| (-645 |#2|))) (-15 -3196 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2494 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2494 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2494 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1801 (|#2| |#1| (-567))) (-15 -1801 (|#2| |#1| (-567) |#2|)) (-15 -4285 (|#2| |#1| (-567) |#2|)) (-15 -3447 ((-772) |#2| |#1|)) (-15 -2799 ((-645 |#2|) |#1|)) (-15 -3447 ((-772) (-1 (-112) |#2|) |#1|)) (-15 -4233 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3436 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3751 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3841 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4309 (|#1| |#1|))) (-19 |#2|) (-1219)) (T -18))
NIL
-(-10 -8 (-15 -2936 ((-112) |#1| |#1|)) (-15 -4132 ((-863) |#1|)) (-15 -2958 ((-112) |#1| |#1|)) (-15 -1394 (|#1| |#1|)) (-15 -1394 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1764 (|#1| |#1|)) (-15 -1395 (|#1| |#1| |#1| (-567))) (-15 -2496 ((-112) |#1|)) (-15 -4135 (|#1| |#1| |#1|)) (-15 -2569 ((-567) |#2| |#1| (-567))) (-15 -2569 ((-567) |#2| |#1|)) (-15 -2569 ((-567) (-1 (-112) |#2|) |#1|)) (-15 -2496 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -4135 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4284 (|#2| |#1| (-1235 (-567)) |#2|)) (-15 -2845 (|#1| |#1| |#1| (-567))) (-15 -2845 (|#1| |#2| |#1| (-567))) (-15 -1560 (|#1| |#1| (-1235 (-567)))) (-15 -1560 (|#1| |#1| (-567))) (-15 -1787 (|#1| |#1| (-1235 (-567)))) (-15 -3829 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2269 (|#1| (-645 |#1|))) (-15 -2269 (|#1| |#1| |#1|)) (-15 -2269 (|#1| |#2| |#1|)) (-15 -2269 (|#1| |#1| |#2|)) (-15 -4147 (|#1| (-645 |#2|))) (-15 -4128 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2477 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2477 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2477 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1787 (|#2| |#1| (-567))) (-15 -1787 (|#2| |#1| (-567) |#2|)) (-15 -4284 (|#2| |#1| (-567) |#2|)) (-15 -3439 ((-772) |#2| |#1|)) (-15 -2777 ((-645 |#2|) |#1|)) (-15 -3439 ((-772) (-1 (-112) |#2|) |#1|)) (-15 -3025 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1853 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3731 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3829 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4305 (|#1| |#1|)))
-((-2403 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-1783 (((-1273) $ (-567) (-567)) 41 (|has| $ (-6 -4419)))) (-2496 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-851)))) (-1394 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4419))) (($ $) 89 (-12 (|has| |#1| (-851)) (|has| $ (-6 -4419))))) (-4396 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-851)))) (-3445 (((-112) $ (-772)) 8)) (-4284 ((|#1| $ (-567) |#1|) 53 (|has| $ (-6 -4419))) ((|#1| $ (-1235 (-567)) |#1|) 59 (|has| $ (-6 -4419)))) (-3350 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4418)))) (-2585 (($) 7 T CONST)) (-1764 (($ $) 91 (|has| $ (-6 -4419)))) (-3584 (($ $) 101)) (-2444 (($ $) 79 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-3238 (($ |#1| $) 78 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4418)))) (-2477 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4418)))) (-3741 ((|#1| $ (-567) |#1|) 54 (|has| $ (-6 -4419)))) (-3680 ((|#1| $ (-567)) 52)) (-2569 (((-567) (-1 (-112) |#1|) $) 98) (((-567) |#1| $) 97 (|has| |#1| (-1102))) (((-567) |#1| $ (-567)) 96 (|has| |#1| (-1102)))) (-2777 (((-645 |#1|) $) 31 (|has| $ (-6 -4418)))) (-2846 (($ (-772) |#1|) 70)) (-2077 (((-112) $ (-772)) 9)) (-4069 (((-567) $) 44 (|has| (-567) (-851)))) (-1354 (($ $ $) 88 (|has| |#1| (-851)))) (-4135 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-851)))) (-2279 (((-645 |#1|) $) 30 (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-2266 (((-567) $) 45 (|has| (-567) (-851)))) (-2981 (($ $ $) 87 (|has| |#1| (-851)))) (-3731 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2863 (((-112) $ (-772)) 10)) (-1419 (((-1160) $) 22 (|has| |#1| (-1102)))) (-2845 (($ |#1| $ (-567)) 61) (($ $ $ (-567)) 60)) (-1789 (((-645 (-567)) $) 47)) (-2996 (((-112) (-567) $) 48)) (-3430 (((-1122) $) 21 (|has| |#1| (-1102)))) (-2409 ((|#1| $) 43 (|has| (-567) (-851)))) (-4128 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-3986 (($ $ |#1|) 42 (|has| $ (-6 -4419)))) (-3025 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) 14)) (-1794 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2339 (((-645 |#1|) $) 49)) (-3572 (((-112) $) 11)) (-3498 (($) 12)) (-1787 ((|#1| $ (-567) |#1|) 51) ((|#1| $ (-567)) 50) (($ $ (-1235 (-567))) 64)) (-1560 (($ $ (-567)) 63) (($ $ (-1235 (-567))) 62)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4418))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-1395 (($ $ $ (-567)) 92 (|has| $ (-6 -4419)))) (-4305 (($ $) 13)) (-3893 (((-539) $) 80 (|has| |#1| (-615 (-539))))) (-4147 (($ (-645 |#1|)) 71)) (-2269 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-645 $)) 66)) (-4132 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-1745 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4418)))) (-2997 (((-112) $ $) 85 (|has| |#1| (-851)))) (-2971 (((-112) $ $) 84 (|has| |#1| (-851)))) (-2936 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2984 (((-112) $ $) 86 (|has| |#1| (-851)))) (-2958 (((-112) $ $) 83 (|has| |#1| (-851)))) (-2414 (((-772) $) 6 (|has| $ (-6 -4418)))))
-(((-19 |#1|) (-140) (-1218)) (T -19))
+(-10 -8 (-15 -2946 ((-112) |#1| |#1|)) (-15 -4129 ((-863) |#1|)) (-15 -2968 ((-112) |#1| |#1|)) (-15 -2676 (|#1| |#1|)) (-15 -2676 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1602 (|#1| |#1|)) (-15 -1656 (|#1| |#1| |#1| (-567))) (-15 -3531 ((-112) |#1|)) (-15 -2473 (|#1| |#1| |#1|)) (-15 -2578 ((-567) |#2| |#1| (-567))) (-15 -2578 ((-567) |#2| |#1|)) (-15 -2578 ((-567) (-1 (-112) |#2|) |#1|)) (-15 -3531 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2473 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4285 (|#2| |#1| (-1236 (-567)) |#2|)) (-15 -2857 (|#1| |#1| |#1| (-567))) (-15 -2857 (|#1| |#2| |#1| (-567))) (-15 -1569 (|#1| |#1| (-1236 (-567)))) (-15 -1569 (|#1| |#1| (-567))) (-15 -1801 (|#1| |#1| (-1236 (-567)))) (-15 -3841 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2276 (|#1| (-645 |#1|))) (-15 -2276 (|#1| |#1| |#1|)) (-15 -2276 (|#1| |#2| |#1|)) (-15 -2276 (|#1| |#1| |#2|)) (-15 -4145 (|#1| (-645 |#2|))) (-15 -3196 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2494 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2494 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2494 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1801 (|#2| |#1| (-567))) (-15 -1801 (|#2| |#1| (-567) |#2|)) (-15 -4285 (|#2| |#1| (-567) |#2|)) (-15 -3447 ((-772) |#2| |#1|)) (-15 -2799 ((-645 |#2|) |#1|)) (-15 -3447 ((-772) (-1 (-112) |#2|) |#1|)) (-15 -4233 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3436 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3751 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3841 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4309 (|#1| |#1|)))
+((-2412 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-3843 (((-1274) $ (-567) (-567)) 41 (|has| $ (-6 -4423)))) (-3531 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-851)))) (-2676 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4423))) (($ $) 89 (-12 (|has| |#1| (-851)) (|has| $ (-6 -4423))))) (-1311 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-851)))) (-1563 (((-112) $ (-772)) 8)) (-4285 ((|#1| $ (-567) |#1|) 53 (|has| $ (-6 -4423))) ((|#1| $ (-1236 (-567)) |#1|) 59 (|has| $ (-6 -4423)))) (-3356 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4422)))) (-3647 (($) 7 T CONST)) (-1602 (($ $) 91 (|has| $ (-6 -4423)))) (-3592 (($ $) 101)) (-2453 (($ $) 79 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-3246 (($ |#1| $) 78 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4422)))) (-2494 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4422)))) (-3760 ((|#1| $ (-567) |#1|) 54 (|has| $ (-6 -4423)))) (-3703 ((|#1| $ (-567)) 52)) (-2578 (((-567) (-1 (-112) |#1|) $) 98) (((-567) |#1| $) 97 (|has| |#1| (-1102))) (((-567) |#1| $ (-567)) 96 (|has| |#1| (-1102)))) (-2799 (((-645 |#1|) $) 31 (|has| $ (-6 -4422)))) (-2858 (($ (-772) |#1|) 70)) (-4093 (((-112) $ (-772)) 9)) (-3895 (((-567) $) 44 (|has| (-567) (-851)))) (-1365 (($ $ $) 88 (|has| |#1| (-851)))) (-2473 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-851)))) (-1942 (((-645 |#1|) $) 30 (|has| $ (-6 -4422)))) (-3237 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-3255 (((-567) $) 45 (|has| (-567) (-851)))) (-3002 (($ $ $) 87 (|has| |#1| (-851)))) (-3751 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-1986 (((-112) $ (-772)) 10)) (-2516 (((-1161) $) 22 (|has| |#1| (-1102)))) (-2857 (($ |#1| $ (-567)) 61) (($ $ $ (-567)) 60)) (-4364 (((-645 (-567)) $) 47)) (-3188 (((-112) (-567) $) 48)) (-3437 (((-1122) $) 21 (|has| |#1| (-1102)))) (-2418 ((|#1| $) 43 (|has| (-567) (-851)))) (-3196 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-3823 (($ $ |#1|) 42 (|has| $ (-6 -4423)))) (-4233 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3875 (((-112) $ $) 14)) (-4058 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-2190 (((-645 |#1|) $) 49)) (-3885 (((-112) $) 11)) (-2701 (($) 12)) (-1801 ((|#1| $ (-567) |#1|) 51) ((|#1| $ (-567)) 50) (($ $ (-1236 (-567))) 64)) (-1569 (($ $ (-567)) 63) (($ $ (-1236 (-567))) 62)) (-3447 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4422))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-1656 (($ $ $ (-567)) 92 (|has| $ (-6 -4423)))) (-4309 (($ $) 13)) (-3902 (((-539) $) 80 (|has| |#1| (-615 (-539))))) (-4145 (($ (-645 |#1|)) 71)) (-2276 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-645 $)) 66)) (-4129 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-3357 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-3436 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4422)))) (-3004 (((-112) $ $) 85 (|has| |#1| (-851)))) (-2980 (((-112) $ $) 84 (|has| |#1| (-851)))) (-2946 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2993 (((-112) $ $) 86 (|has| |#1| (-851)))) (-2968 (((-112) $ $) 83 (|has| |#1| (-851)))) (-2423 (((-772) $) 6 (|has| $ (-6 -4422)))))
+(((-19 |#1|) (-140) (-1219)) (T -19))
NIL
-(-13 (-375 |t#1|) (-10 -7 (-6 -4419)))
-(((-34) . T) ((-102) -2800 (|has| |#1| (-1102)) (|has| |#1| (-851))) ((-614 (-863)) -2800 (|has| |#1| (-1102)) (|has| |#1| (-851)) (|has| |#1| (-614 (-863)))) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-287 #0=(-567) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-375 |#1|) . T) ((-492 |#1|) . T) ((-605 #0# |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-652 |#1|) . T) ((-851) |has| |#1| (-851)) ((-1102) -2800 (|has| |#1| (-1102)) (|has| |#1| (-851))) ((-1218) . T))
-((-3472 (((-3 $ "failed") $ $) 12)) (-3045 (($ $) NIL) (($ $ $) 9)) (* (($ (-923) $) NIL) (($ (-772) $) 16) (($ (-567) $) 26)))
-(((-20 |#1|) (-10 -8 (-15 -3045 (|#1| |#1| |#1|)) (-15 -3045 (|#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 -3472 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-923) |#1|))) (-21)) (T -20))
+(-13 (-375 |t#1|) (-10 -7 (-6 -4423)))
+(((-34) . T) ((-102) -2811 (|has| |#1| (-1102)) (|has| |#1| (-851))) ((-614 (-863)) -2811 (|has| |#1| (-1102)) (|has| |#1| (-851)) (|has| |#1| (-614 (-863)))) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-287 #0=(-567) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-375 |#1|) . T) ((-492 |#1|) . T) ((-605 #0# |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-652 |#1|) . T) ((-851) |has| |#1| (-851)) ((-1102) -2811 (|has| |#1| (-1102)) (|has| |#1| (-851))) ((-1219) . T))
+((-2376 (((-3 $ "failed") $ $) 12)) (-3053 (($ $) NIL) (($ $ $) 9)) (* (($ (-923) $) NIL) (($ (-772) $) 16) (($ (-567) $) 26)))
+(((-20 |#1|) (-10 -8 (-15 -3053 (|#1| |#1| |#1|)) (-15 -3053 (|#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 -2376 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-923) |#1|))) (-21)) (T -20))
NIL
-(-10 -8 (-15 -3045 (|#1| |#1| |#1|)) (-15 -3045 (|#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 -3472 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-923) |#1|)))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-1716 (($) 19 T CONST)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24)))
+(-10 -8 (-15 -3053 (|#1| |#1| |#1|)) (-15 -3053 (|#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 -2376 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-923) |#1|)))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-2376 (((-3 $ "failed") $ $) 20)) (-3647 (($) 18 T CONST)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-4129 (((-863) $) 12)) (-3357 (((-112) $ $) 9)) (-1733 (($) 19 T CONST)) (-2946 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24)))
(((-21) (-140)) (T -21))
-((-3045 (*1 *1 *1) (-4 *1 (-21))) (-3045 (*1 *1 *1 *1) (-4 *1 (-21))))
-(-13 (-131) (-647 (-567)) (-10 -8 (-15 -3045 ($ $)) (-15 -3045 ($ $ $))))
+((-3053 (*1 *1 *1) (-4 *1 (-21))) (-3053 (*1 *1 *1 *1) (-4 *1 (-21))))
+(-13 (-131) (-647 (-567)) (-10 -8 (-15 -3053 ($ $)) (-15 -3053 ($ $ $))))
(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-1102) . T))
-((-2460 (((-112) $) 10)) (-2585 (($) 15)) (* (($ (-923) $) 14) (($ (-772) $) 19)))
-(((-22 |#1|) (-10 -8 (-15 * (|#1| (-772) |#1|)) (-15 -2460 ((-112) |#1|)) (-15 -2585 (|#1|)) (-15 * (|#1| (-923) |#1|))) (-23)) (T -22))
+((-3791 (((-112) $) 10)) (-3647 (($) 15)) (* (($ (-923) $) 14) (($ (-772) $) 19)))
+(((-22 |#1|) (-10 -8 (-15 * (|#1| (-772) |#1|)) (-15 -3791 ((-112) |#1|)) (-15 -3647 (|#1|)) (-15 * (|#1| (-923) |#1|))) (-23)) (T -22))
NIL
-(-10 -8 (-15 * (|#1| (-772) |#1|)) (-15 -2460 ((-112) |#1|)) (-15 -2585 (|#1|)) (-15 * (|#1| (-923) |#1|)))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-2585 (($) 18 T CONST)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-1716 (($) 19 T CONST)) (-2936 (((-112) $ $) 6)) (-3033 (($ $ $) 15)) (* (($ (-923) $) 14) (($ (-772) $) 16)))
+(-10 -8 (-15 * (|#1| (-772) |#1|)) (-15 -3791 ((-112) |#1|)) (-15 -3647 (|#1|)) (-15 * (|#1| (-923) |#1|)))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-3647 (($) 18 T CONST)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-4129 (((-863) $) 12)) (-3357 (((-112) $ $) 9)) (-1733 (($) 19 T CONST)) (-2946 (((-112) $ $) 6)) (-3041 (($ $ $) 15)) (* (($ (-923) $) 14) (($ (-772) $) 16)))
(((-23) (-140)) (T -23))
-((-1716 (*1 *1) (-4 *1 (-23))) (-2585 (*1 *1) (-4 *1 (-23))) (-2460 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-772)))))
-(-13 (-25) (-10 -8 (-15 (-1716) ($) -3286) (-15 -2585 ($) -3286) (-15 -2460 ((-112) $)) (-15 * ($ (-772) $))))
+((-1733 (*1 *1) (-4 *1 (-23))) (-3647 (*1 *1) (-4 *1 (-23))) (-3791 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-772)))))
+(-13 (-25) (-10 -8 (-15 (-1733) ($) -3304) (-15 -3647 ($) -3304) (-15 -3791 ((-112) $)) (-15 * ($ (-772) $))))
(((-25) . T) ((-102) . T) ((-614 (-863)) . T) ((-1102) . T))
((* (($ (-923) $) 10)))
(((-24 |#1|) (-10 -8 (-15 * (|#1| (-923) |#1|))) (-25)) (T -24))
NIL
(-10 -8 (-15 * (|#1| (-923) |#1|)))
-((-2403 (((-112) $ $) 7)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-2936 (((-112) $ $) 6)) (-3033 (($ $ $) 15)) (* (($ (-923) $) 14)))
+((-2412 (((-112) $ $) 7)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-4129 (((-863) $) 12)) (-3357 (((-112) $ $) 9)) (-2946 (((-112) $ $) 6)) (-3041 (($ $ $) 15)) (* (($ (-923) $) 14)))
(((-25) (-140)) (T -25))
-((-3033 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-923)))))
-(-13 (-1102) (-10 -8 (-15 -3033 ($ $ $)) (-15 * ($ (-923) $))))
+((-3041 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-923)))))
+(-13 (-1102) (-10 -8 (-15 -3041 ($ $ $)) (-15 * ($ (-923) $))))
(((-102) . T) ((-614 (-863)) . T) ((-1102) . T))
-((-3224 (((-645 $) (-954 $)) 32) (((-645 $) (-1174 $)) 16) (((-645 $) (-1174 $) (-1178)) 20)) (-4103 (($ (-954 $)) 30) (($ (-1174 $)) 11) (($ (-1174 $) (-1178)) 60)) (-2005 (((-645 $) (-954 $)) 33) (((-645 $) (-1174 $)) 18) (((-645 $) (-1174 $) (-1178)) 19)) (-3483 (($ (-954 $)) 31) (($ (-1174 $)) 13) (($ (-1174 $) (-1178)) NIL)))
-(((-26 |#1|) (-10 -8 (-15 -3224 ((-645 |#1|) (-1174 |#1|) (-1178))) (-15 -3224 ((-645 |#1|) (-1174 |#1|))) (-15 -3224 ((-645 |#1|) (-954 |#1|))) (-15 -4103 (|#1| (-1174 |#1|) (-1178))) (-15 -4103 (|#1| (-1174 |#1|))) (-15 -4103 (|#1| (-954 |#1|))) (-15 -2005 ((-645 |#1|) (-1174 |#1|) (-1178))) (-15 -2005 ((-645 |#1|) (-1174 |#1|))) (-15 -2005 ((-645 |#1|) (-954 |#1|))) (-15 -3483 (|#1| (-1174 |#1|) (-1178))) (-15 -3483 (|#1| (-1174 |#1|))) (-15 -3483 (|#1| (-954 |#1|)))) (-27)) (T -26))
+((-3802 (((-645 $) (-954 $)) 32) (((-645 $) (-1175 $)) 16) (((-645 $) (-1175 $) (-1179)) 20)) (-1968 (($ (-954 $)) 30) (($ (-1175 $)) 11) (($ (-1175 $) (-1179)) 60)) (-3234 (((-645 $) (-954 $)) 33) (((-645 $) (-1175 $)) 18) (((-645 $) (-1175 $) (-1179)) 19)) (-3940 (($ (-954 $)) 31) (($ (-1175 $)) 13) (($ (-1175 $) (-1179)) NIL)))
+(((-26 |#1|) (-10 -8 (-15 -3802 ((-645 |#1|) (-1175 |#1|) (-1179))) (-15 -3802 ((-645 |#1|) (-1175 |#1|))) (-15 -3802 ((-645 |#1|) (-954 |#1|))) (-15 -1968 (|#1| (-1175 |#1|) (-1179))) (-15 -1968 (|#1| (-1175 |#1|))) (-15 -1968 (|#1| (-954 |#1|))) (-15 -3234 ((-645 |#1|) (-1175 |#1|) (-1179))) (-15 -3234 ((-645 |#1|) (-1175 |#1|))) (-15 -3234 ((-645 |#1|) (-954 |#1|))) (-15 -3940 (|#1| (-1175 |#1|) (-1179))) (-15 -3940 (|#1| (-1175 |#1|))) (-15 -3940 (|#1| (-954 |#1|)))) (-27)) (T -26))
NIL
-(-10 -8 (-15 -3224 ((-645 |#1|) (-1174 |#1|) (-1178))) (-15 -3224 ((-645 |#1|) (-1174 |#1|))) (-15 -3224 ((-645 |#1|) (-954 |#1|))) (-15 -4103 (|#1| (-1174 |#1|) (-1178))) (-15 -4103 (|#1| (-1174 |#1|))) (-15 -4103 (|#1| (-954 |#1|))) (-15 -2005 ((-645 |#1|) (-1174 |#1|) (-1178))) (-15 -2005 ((-645 |#1|) (-1174 |#1|))) (-15 -2005 ((-645 |#1|) (-954 |#1|))) (-15 -3483 (|#1| (-1174 |#1|) (-1178))) (-15 -3483 (|#1| (-1174 |#1|))) (-15 -3483 (|#1| (-954 |#1|))))
-((-2403 (((-112) $ $) 7)) (-3224 (((-645 $) (-954 $)) 88) (((-645 $) (-1174 $)) 87) (((-645 $) (-1174 $) (-1178)) 86)) (-4103 (($ (-954 $)) 91) (($ (-1174 $)) 90) (($ (-1174 $) (-1178)) 89)) (-2460 (((-112) $) 17)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 47)) (-4381 (($ $) 46)) (-3949 (((-112) $) 44)) (-3472 (((-3 $ "failed") $ $) 20)) (-3248 (($ $) 81)) (-2908 (((-421 $) $) 80)) (-2716 (($ $) 100)) (-3609 (((-112) $ $) 65)) (-2585 (($) 18 T CONST)) (-2005 (((-645 $) (-954 $)) 94) (((-645 $) (-1174 $)) 93) (((-645 $) (-1174 $) (-1178)) 92)) (-3483 (($ (-954 $)) 97) (($ (-1174 $)) 96) (($ (-1174 $) (-1178)) 95)) (-2349 (($ $ $) 61)) (-2109 (((-3 $ "failed") $) 37)) (-2360 (($ $ $) 62)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) 57)) (-3184 (((-112) $) 79)) (-1433 (((-112) $) 35)) (-2651 (($ $ (-567)) 99)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) 58)) (-2740 (($ $ $) 52) (($ (-645 $)) 51)) (-1419 (((-1160) $) 10)) (-2939 (($ $) 78)) (-3430 (((-1122) $) 11)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 50)) (-2774 (($ $ $) 54) (($ (-645 $)) 53)) (-2706 (((-421 $) $) 82)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2391 (((-3 $ "failed") $ $) 48)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-1990 (((-772) $) 64)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 63)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-410 (-567))) 74)) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-3816 (((-112) $ $) 45)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2936 (((-112) $ $) 6)) (-3060 (($ $ $) 73)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 77) (($ $ (-410 (-567))) 98)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 76) (($ (-410 (-567)) $) 75)))
+(-10 -8 (-15 -3802 ((-645 |#1|) (-1175 |#1|) (-1179))) (-15 -3802 ((-645 |#1|) (-1175 |#1|))) (-15 -3802 ((-645 |#1|) (-954 |#1|))) (-15 -1968 (|#1| (-1175 |#1|) (-1179))) (-15 -1968 (|#1| (-1175 |#1|))) (-15 -1968 (|#1| (-954 |#1|))) (-15 -3234 ((-645 |#1|) (-1175 |#1|) (-1179))) (-15 -3234 ((-645 |#1|) (-1175 |#1|))) (-15 -3234 ((-645 |#1|) (-954 |#1|))) (-15 -3940 (|#1| (-1175 |#1|) (-1179))) (-15 -3940 (|#1| (-1175 |#1|))) (-15 -3940 (|#1| (-954 |#1|))))
+((-2412 (((-112) $ $) 7)) (-3802 (((-645 $) (-954 $)) 88) (((-645 $) (-1175 $)) 87) (((-645 $) (-1175 $) (-1179)) 86)) (-1968 (($ (-954 $)) 91) (($ (-1175 $)) 90) (($ (-1175 $) (-1179)) 89)) (-3791 (((-112) $) 17)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) 47)) (-4287 (($ $) 46)) (-2286 (((-112) $) 44)) (-2376 (((-3 $ "failed") $ $) 20)) (-3659 (($ $) 81)) (-3597 (((-421 $) $) 80)) (-2728 (($ $) 100)) (-3696 (((-112) $ $) 65)) (-3647 (($) 18 T CONST)) (-3234 (((-645 $) (-954 $)) 94) (((-645 $) (-1175 $)) 93) (((-645 $) (-1175 $) (-1179)) 92)) (-3940 (($ (-954 $)) 97) (($ (-1175 $)) 96) (($ (-1175 $) (-1179)) 95)) (-2357 (($ $ $) 61)) (-3588 (((-3 $ "failed") $) 37)) (-2368 (($ $ $) 62)) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) 57)) (-3502 (((-112) $) 79)) (-4346 (((-112) $) 35)) (-3698 (($ $ (-567)) 99)) (-1469 (((-3 (-645 $) "failed") (-645 $) $) 58)) (-2751 (($ $ $) 52) (($ (-645 $)) 51)) (-2516 (((-1161) $) 10)) (-2949 (($ $) 78)) (-3437 (((-1122) $) 11)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) 50)) (-2785 (($ $ $) 54) (($ (-645 $)) 53)) (-2717 (((-421 $) $) 82)) (-2905 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2400 (((-3 $ "failed") $ $) 48)) (-2372 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-2460 (((-772) $) 64)) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) 63)) (-4129 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-410 (-567))) 74)) (-2746 (((-772)) 32 T CONST)) (-3357 (((-112) $ $) 9)) (-3731 (((-112) $ $) 45)) (-1733 (($) 19 T CONST)) (-1744 (($) 34 T CONST)) (-2946 (((-112) $ $) 6)) (-3069 (($ $ $) 73)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 77) (($ $ (-410 (-567))) 98)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 76) (($ (-410 (-567)) $) 75)))
(((-27) (-140)) (T -27))
-((-3483 (*1 *1 *2) (-12 (-5 *2 (-954 *1)) (-4 *1 (-27)))) (-3483 (*1 *1 *2) (-12 (-5 *2 (-1174 *1)) (-4 *1 (-27)))) (-3483 (*1 *1 *2 *3) (-12 (-5 *2 (-1174 *1)) (-5 *3 (-1178)) (-4 *1 (-27)))) (-2005 (*1 *2 *3) (-12 (-5 *3 (-954 *1)) (-4 *1 (-27)) (-5 *2 (-645 *1)))) (-2005 (*1 *2 *3) (-12 (-5 *3 (-1174 *1)) (-4 *1 (-27)) (-5 *2 (-645 *1)))) (-2005 (*1 *2 *3 *4) (-12 (-5 *3 (-1174 *1)) (-5 *4 (-1178)) (-4 *1 (-27)) (-5 *2 (-645 *1)))) (-4103 (*1 *1 *2) (-12 (-5 *2 (-954 *1)) (-4 *1 (-27)))) (-4103 (*1 *1 *2) (-12 (-5 *2 (-1174 *1)) (-4 *1 (-27)))) (-4103 (*1 *1 *2 *3) (-12 (-5 *2 (-1174 *1)) (-5 *3 (-1178)) (-4 *1 (-27)))) (-3224 (*1 *2 *3) (-12 (-5 *3 (-954 *1)) (-4 *1 (-27)) (-5 *2 (-645 *1)))) (-3224 (*1 *2 *3) (-12 (-5 *3 (-1174 *1)) (-4 *1 (-27)) (-5 *2 (-645 *1)))) (-3224 (*1 *2 *3 *4) (-12 (-5 *3 (-1174 *1)) (-5 *4 (-1178)) (-4 *1 (-27)) (-5 *2 (-645 *1)))))
-(-13 (-365) (-1004) (-10 -8 (-15 -3483 ($ (-954 $))) (-15 -3483 ($ (-1174 $))) (-15 -3483 ($ (-1174 $) (-1178))) (-15 -2005 ((-645 $) (-954 $))) (-15 -2005 ((-645 $) (-1174 $))) (-15 -2005 ((-645 $) (-1174 $) (-1178))) (-15 -4103 ($ (-954 $))) (-15 -4103 ($ (-1174 $))) (-15 -4103 ($ (-1174 $) (-1178))) (-15 -3224 ((-645 $) (-954 $))) (-15 -3224 ((-645 $) (-1174 $))) (-15 -3224 ((-645 $) (-1174 $) (-1178)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-617 #0#) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-455) . T) ((-559) . T) ((-647 #0#) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 #0#) . T) ((-649 $) . T) ((-641 #0#) . T) ((-641 $) . T) ((-718 #0#) . T) ((-718 $) . T) ((-727) . T) ((-922) . T) ((-1004) . T) ((-1053 #0#) . T) ((-1053 $) . T) ((-1058 #0#) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1222) . T))
-((-3224 (((-645 $) (-954 $)) NIL) (((-645 $) (-1174 $)) NIL) (((-645 $) (-1174 $) (-1178)) 55) (((-645 $) $) 22) (((-645 $) $ (-1178)) 46)) (-4103 (($ (-954 $)) NIL) (($ (-1174 $)) NIL) (($ (-1174 $) (-1178)) 57) (($ $) 20) (($ $ (-1178)) 40)) (-2005 (((-645 $) (-954 $)) NIL) (((-645 $) (-1174 $)) NIL) (((-645 $) (-1174 $) (-1178)) 53) (((-645 $) $) 18) (((-645 $) $ (-1178)) 48)) (-3483 (($ (-954 $)) NIL) (($ (-1174 $)) NIL) (($ (-1174 $) (-1178)) NIL) (($ $) 15) (($ $ (-1178)) 42)))
-(((-28 |#1| |#2|) (-10 -8 (-15 -3224 ((-645 |#1|) |#1| (-1178))) (-15 -4103 (|#1| |#1| (-1178))) (-15 -3224 ((-645 |#1|) |#1|)) (-15 -4103 (|#1| |#1|)) (-15 -2005 ((-645 |#1|) |#1| (-1178))) (-15 -3483 (|#1| |#1| (-1178))) (-15 -2005 ((-645 |#1|) |#1|)) (-15 -3483 (|#1| |#1|)) (-15 -3224 ((-645 |#1|) (-1174 |#1|) (-1178))) (-15 -3224 ((-645 |#1|) (-1174 |#1|))) (-15 -3224 ((-645 |#1|) (-954 |#1|))) (-15 -4103 (|#1| (-1174 |#1|) (-1178))) (-15 -4103 (|#1| (-1174 |#1|))) (-15 -4103 (|#1| (-954 |#1|))) (-15 -2005 ((-645 |#1|) (-1174 |#1|) (-1178))) (-15 -2005 ((-645 |#1|) (-1174 |#1|))) (-15 -2005 ((-645 |#1|) (-954 |#1|))) (-15 -3483 (|#1| (-1174 |#1|) (-1178))) (-15 -3483 (|#1| (-1174 |#1|))) (-15 -3483 (|#1| (-954 |#1|)))) (-29 |#2|) (-559)) (T -28))
-NIL
-(-10 -8 (-15 -3224 ((-645 |#1|) |#1| (-1178))) (-15 -4103 (|#1| |#1| (-1178))) (-15 -3224 ((-645 |#1|) |#1|)) (-15 -4103 (|#1| |#1|)) (-15 -2005 ((-645 |#1|) |#1| (-1178))) (-15 -3483 (|#1| |#1| (-1178))) (-15 -2005 ((-645 |#1|) |#1|)) (-15 -3483 (|#1| |#1|)) (-15 -3224 ((-645 |#1|) (-1174 |#1|) (-1178))) (-15 -3224 ((-645 |#1|) (-1174 |#1|))) (-15 -3224 ((-645 |#1|) (-954 |#1|))) (-15 -4103 (|#1| (-1174 |#1|) (-1178))) (-15 -4103 (|#1| (-1174 |#1|))) (-15 -4103 (|#1| (-954 |#1|))) (-15 -2005 ((-645 |#1|) (-1174 |#1|) (-1178))) (-15 -2005 ((-645 |#1|) (-1174 |#1|))) (-15 -2005 ((-645 |#1|) (-954 |#1|))) (-15 -3483 (|#1| (-1174 |#1|) (-1178))) (-15 -3483 (|#1| (-1174 |#1|))) (-15 -3483 (|#1| (-954 |#1|))))
-((-2403 (((-112) $ $) 7)) (-3224 (((-645 $) (-954 $)) 88) (((-645 $) (-1174 $)) 87) (((-645 $) (-1174 $) (-1178)) 86) (((-645 $) $) 134) (((-645 $) $ (-1178)) 132)) (-4103 (($ (-954 $)) 91) (($ (-1174 $)) 90) (($ (-1174 $) (-1178)) 89) (($ $) 135) (($ $ (-1178)) 133)) (-2460 (((-112) $) 17)) (-2847 (((-645 (-1178)) $) 203)) (-2675 (((-410 (-1174 $)) $ (-613 $)) 235 (|has| |#1| (-559)))) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 47)) (-4381 (($ $) 46)) (-3949 (((-112) $) 44)) (-2566 (((-645 (-613 $)) $) 166)) (-3472 (((-3 $ "failed") $ $) 20)) (-2960 (($ $ (-645 (-613 $)) (-645 $)) 156) (($ $ (-645 (-295 $))) 155) (($ $ (-295 $)) 154)) (-3248 (($ $) 81)) (-2908 (((-421 $) $) 80)) (-2716 (($ $) 100)) (-3609 (((-112) $ $) 65)) (-2585 (($) 18 T CONST)) (-2005 (((-645 $) (-954 $)) 94) (((-645 $) (-1174 $)) 93) (((-645 $) (-1174 $) (-1178)) 92) (((-645 $) $) 138) (((-645 $) $ (-1178)) 136)) (-3483 (($ (-954 $)) 97) (($ (-1174 $)) 96) (($ (-1174 $) (-1178)) 95) (($ $) 139) (($ $ (-1178)) 137)) (-3753 (((-3 (-954 |#1|) "failed") $) 253 (|has| |#1| (-1051))) (((-3 (-410 (-954 |#1|)) "failed") $) 237 (|has| |#1| (-559))) (((-3 |#1| "failed") $) 199) (((-3 (-567) "failed") $) 196 (|has| |#1| (-1040 (-567)))) (((-3 (-1178) "failed") $) 190) (((-3 (-613 $) "failed") $) 141) (((-3 (-410 (-567)) "failed") $) 130 (-2800 (-12 (|has| |#1| (-1040 (-567))) (|has| |#1| (-559))) (|has| |#1| (-1040 (-410 (-567))))))) (-2038 (((-954 |#1|) $) 252 (|has| |#1| (-1051))) (((-410 (-954 |#1|)) $) 236 (|has| |#1| (-559))) ((|#1| $) 198) (((-567) $) 197 (|has| |#1| (-1040 (-567)))) (((-1178) $) 189) (((-613 $) $) 140) (((-410 (-567)) $) 131 (-2800 (-12 (|has| |#1| (-1040 (-567))) (|has| |#1| (-559))) (|has| |#1| (-1040 (-410 (-567))))))) (-2349 (($ $ $) 61)) (-2630 (((-690 |#1|) (-690 $)) 243 (|has| |#1| (-1051))) (((-2 (|:| -2316 (-690 |#1|)) (|:| |vec| (-1268 |#1|))) (-690 $) (-1268 $)) 242 (|has| |#1| (-1051))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) 129 (-2800 (-1667 (|has| |#1| (-1051)) (|has| |#1| (-640 (-567)))) (-1667 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051))))) (((-690 (-567)) (-690 $)) 128 (-2800 (-1667 (|has| |#1| (-1051)) (|has| |#1| (-640 (-567)))) (-1667 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051)))))) (-2109 (((-3 $ "failed") $) 37)) (-2360 (($ $ $) 62)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) 57)) (-3184 (((-112) $) 79)) (-4303 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) 195 (|has| |#1| (-888 (-381)))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) 194 (|has| |#1| (-888 (-567))))) (-2068 (($ (-645 $)) 160) (($ $) 159)) (-2034 (((-645 (-114)) $) 167)) (-2654 (((-114) (-114)) 168)) (-1433 (((-112) $) 35)) (-3837 (((-112) $) 188 (|has| $ (-1040 (-567))))) (-3530 (($ $) 220 (|has| |#1| (-1051)))) (-1448 (((-1127 |#1| (-613 $)) $) 219 (|has| |#1| (-1051)))) (-2651 (($ $ (-567)) 99)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) 58)) (-3263 (((-1174 $) (-613 $)) 185 (|has| $ (-1051)))) (-3829 (($ (-1 $ $) (-613 $)) 174)) (-2700 (((-3 (-613 $) "failed") $) 164)) (-2740 (($ $ $) 52) (($ (-645 $)) 51)) (-1419 (((-1160) $) 10)) (-2641 (((-645 (-613 $)) $) 165)) (-3632 (($ (-114) (-645 $)) 173) (($ (-114) $) 172)) (-2056 (((-3 (-645 $) "failed") $) 214 (|has| |#1| (-1114)))) (-1912 (((-3 (-2 (|:| |val| $) (|:| -3458 (-567))) "failed") $) 223 (|has| |#1| (-1051)))) (-3671 (((-3 (-645 $) "failed") $) 216 (|has| |#1| (-25)))) (-3556 (((-3 (-2 (|:| -3694 (-567)) (|:| |var| (-613 $))) "failed") $) 217 (|has| |#1| (-25)))) (-3798 (((-3 (-2 (|:| |var| (-613 $)) (|:| -3458 (-567))) "failed") $ (-1178)) 222 (|has| |#1| (-1051))) (((-3 (-2 (|:| |var| (-613 $)) (|:| -3458 (-567))) "failed") $ (-114)) 221 (|has| |#1| (-1051))) (((-3 (-2 (|:| |var| (-613 $)) (|:| -3458 (-567))) "failed") $) 215 (|has| |#1| (-1114)))) (-1854 (((-112) $ (-1178)) 171) (((-112) $ (-114)) 170)) (-2939 (($ $) 78)) (-4138 (((-772) $) 163)) (-3430 (((-1122) $) 11)) (-2949 (((-112) $) 201)) (-2962 ((|#1| $) 202)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 50)) (-2774 (($ $ $) 54) (($ (-645 $)) 53)) (-3922 (((-112) $ (-1178)) 176) (((-112) $ $) 175)) (-2706 (((-421 $) $) 82)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2391 (((-3 $ "failed") $ $) 48)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-2757 (((-112) $) 187 (|has| $ (-1040 (-567))))) (-2631 (($ $ (-1178) (-772) (-1 $ $)) 227 (|has| |#1| (-1051))) (($ $ (-1178) (-772) (-1 $ (-645 $))) 226 (|has| |#1| (-1051))) (($ $ (-645 (-1178)) (-645 (-772)) (-645 (-1 $ (-645 $)))) 225 (|has| |#1| (-1051))) (($ $ (-645 (-1178)) (-645 (-772)) (-645 (-1 $ $))) 224 (|has| |#1| (-1051))) (($ $ (-645 (-114)) (-645 $) (-1178)) 213 (|has| |#1| (-615 (-539)))) (($ $ (-114) $ (-1178)) 212 (|has| |#1| (-615 (-539)))) (($ $) 211 (|has| |#1| (-615 (-539)))) (($ $ (-645 (-1178))) 210 (|has| |#1| (-615 (-539)))) (($ $ (-1178)) 209 (|has| |#1| (-615 (-539)))) (($ $ (-114) (-1 $ $)) 184) (($ $ (-114) (-1 $ (-645 $))) 183) (($ $ (-645 (-114)) (-645 (-1 $ (-645 $)))) 182) (($ $ (-645 (-114)) (-645 (-1 $ $))) 181) (($ $ (-1178) (-1 $ $)) 180) (($ $ (-1178) (-1 $ (-645 $))) 179) (($ $ (-645 (-1178)) (-645 (-1 $ (-645 $)))) 178) (($ $ (-645 (-1178)) (-645 (-1 $ $))) 177) (($ $ (-645 $) (-645 $)) 148) (($ $ $ $) 147) (($ $ (-295 $)) 146) (($ $ (-645 (-295 $))) 145) (($ $ (-645 (-613 $)) (-645 $)) 144) (($ $ (-613 $) $) 143)) (-1990 (((-772) $) 64)) (-1787 (($ (-114) (-645 $)) 153) (($ (-114) $ $ $ $) 152) (($ (-114) $ $ $) 151) (($ (-114) $ $) 150) (($ (-114) $) 149)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 63)) (-3241 (($ $ $) 162) (($ $) 161)) (-1593 (($ $ (-1178)) 251 (|has| |#1| (-1051))) (($ $ (-645 (-1178))) 250 (|has| |#1| (-1051))) (($ $ (-1178) (-772)) 249 (|has| |#1| (-1051))) (($ $ (-645 (-1178)) (-645 (-772))) 248 (|has| |#1| (-1051)))) (-1967 (($ $) 230 (|has| |#1| (-559)))) (-1460 (((-1127 |#1| (-613 $)) $) 229 (|has| |#1| (-559)))) (-3341 (($ $) 186 (|has| $ (-1051)))) (-3893 (((-539) $) 257 (|has| |#1| (-615 (-539)))) (($ (-421 $)) 228 (|has| |#1| (-559))) (((-894 (-381)) $) 193 (|has| |#1| (-615 (-894 (-381))))) (((-894 (-567)) $) 192 (|has| |#1| (-615 (-894 (-567)))))) (-1823 (($ $ $) 256 (|has| |#1| (-476)))) (-1485 (($ $ $) 255 (|has| |#1| (-476)))) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-410 (-567))) 74) (($ (-954 |#1|)) 254 (|has| |#1| (-1051))) (($ (-410 (-954 |#1|))) 238 (|has| |#1| (-559))) (($ (-410 (-954 (-410 |#1|)))) 234 (|has| |#1| (-559))) (($ (-954 (-410 |#1|))) 233 (|has| |#1| (-559))) (($ (-410 |#1|)) 232 (|has| |#1| (-559))) (($ (-1127 |#1| (-613 $))) 218 (|has| |#1| (-1051))) (($ |#1|) 200) (($ (-1178)) 191) (($ (-613 $)) 142)) (-1903 (((-3 $ "failed") $) 241 (|has| |#1| (-145)))) (-4221 (((-772)) 32 T CONST)) (-1334 (($ (-645 $)) 158) (($ $) 157)) (-3797 (((-112) (-114)) 169)) (-1745 (((-112) $ $) 9)) (-3816 (((-112) $ $) 45)) (-3247 (($ (-1178) (-645 $)) 208) (($ (-1178) $ $ $ $) 207) (($ (-1178) $ $ $) 206) (($ (-1178) $ $) 205) (($ (-1178) $) 204)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2637 (($ $ (-1178)) 247 (|has| |#1| (-1051))) (($ $ (-645 (-1178))) 246 (|has| |#1| (-1051))) (($ $ (-1178) (-772)) 245 (|has| |#1| (-1051))) (($ $ (-645 (-1178)) (-645 (-772))) 244 (|has| |#1| (-1051)))) (-2936 (((-112) $ $) 6)) (-3060 (($ $ $) 73) (($ (-1127 |#1| (-613 $)) (-1127 |#1| (-613 $))) 231 (|has| |#1| (-559)))) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 77) (($ $ (-410 (-567))) 98)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 76) (($ (-410 (-567)) $) 75) (($ $ |#1|) 240 (|has| |#1| (-172))) (($ |#1| $) 239 (|has| |#1| (-172)))))
+((-3940 (*1 *1 *2) (-12 (-5 *2 (-954 *1)) (-4 *1 (-27)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-1175 *1)) (-4 *1 (-27)))) (-3940 (*1 *1 *2 *3) (-12 (-5 *2 (-1175 *1)) (-5 *3 (-1179)) (-4 *1 (-27)))) (-3234 (*1 *2 *3) (-12 (-5 *3 (-954 *1)) (-4 *1 (-27)) (-5 *2 (-645 *1)))) (-3234 (*1 *2 *3) (-12 (-5 *3 (-1175 *1)) (-4 *1 (-27)) (-5 *2 (-645 *1)))) (-3234 (*1 *2 *3 *4) (-12 (-5 *3 (-1175 *1)) (-5 *4 (-1179)) (-4 *1 (-27)) (-5 *2 (-645 *1)))) (-1968 (*1 *1 *2) (-12 (-5 *2 (-954 *1)) (-4 *1 (-27)))) (-1968 (*1 *1 *2) (-12 (-5 *2 (-1175 *1)) (-4 *1 (-27)))) (-1968 (*1 *1 *2 *3) (-12 (-5 *2 (-1175 *1)) (-5 *3 (-1179)) (-4 *1 (-27)))) (-3802 (*1 *2 *3) (-12 (-5 *3 (-954 *1)) (-4 *1 (-27)) (-5 *2 (-645 *1)))) (-3802 (*1 *2 *3) (-12 (-5 *3 (-1175 *1)) (-4 *1 (-27)) (-5 *2 (-645 *1)))) (-3802 (*1 *2 *3 *4) (-12 (-5 *3 (-1175 *1)) (-5 *4 (-1179)) (-4 *1 (-27)) (-5 *2 (-645 *1)))))
+(-13 (-365) (-1004) (-10 -8 (-15 -3940 ($ (-954 $))) (-15 -3940 ($ (-1175 $))) (-15 -3940 ($ (-1175 $) (-1179))) (-15 -3234 ((-645 $) (-954 $))) (-15 -3234 ((-645 $) (-1175 $))) (-15 -3234 ((-645 $) (-1175 $) (-1179))) (-15 -1968 ($ (-954 $))) (-15 -1968 ($ (-1175 $))) (-15 -1968 ($ (-1175 $) (-1179))) (-15 -3802 ((-645 $) (-954 $))) (-15 -3802 ((-645 $) (-1175 $))) (-15 -3802 ((-645 $) (-1175 $) (-1179)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-617 #0#) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-455) . T) ((-559) . T) ((-647 #0#) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 #0#) . T) ((-649 $) . T) ((-641 #0#) . T) ((-641 $) . T) ((-718 #0#) . T) ((-718 $) . T) ((-727) . T) ((-922) . T) ((-1004) . T) ((-1053 #0#) . T) ((-1053 $) . T) ((-1058 #0#) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1223) . T))
+((-3802 (((-645 $) (-954 $)) NIL) (((-645 $) (-1175 $)) NIL) (((-645 $) (-1175 $) (-1179)) 55) (((-645 $) $) 22) (((-645 $) $ (-1179)) 46)) (-1968 (($ (-954 $)) NIL) (($ (-1175 $)) NIL) (($ (-1175 $) (-1179)) 57) (($ $) 20) (($ $ (-1179)) 40)) (-3234 (((-645 $) (-954 $)) NIL) (((-645 $) (-1175 $)) NIL) (((-645 $) (-1175 $) (-1179)) 53) (((-645 $) $) 18) (((-645 $) $ (-1179)) 48)) (-3940 (($ (-954 $)) NIL) (($ (-1175 $)) NIL) (($ (-1175 $) (-1179)) NIL) (($ $) 15) (($ $ (-1179)) 42)))
+(((-28 |#1| |#2|) (-10 -8 (-15 -3802 ((-645 |#1|) |#1| (-1179))) (-15 -1968 (|#1| |#1| (-1179))) (-15 -3802 ((-645 |#1|) |#1|)) (-15 -1968 (|#1| |#1|)) (-15 -3234 ((-645 |#1|) |#1| (-1179))) (-15 -3940 (|#1| |#1| (-1179))) (-15 -3234 ((-645 |#1|) |#1|)) (-15 -3940 (|#1| |#1|)) (-15 -3802 ((-645 |#1|) (-1175 |#1|) (-1179))) (-15 -3802 ((-645 |#1|) (-1175 |#1|))) (-15 -3802 ((-645 |#1|) (-954 |#1|))) (-15 -1968 (|#1| (-1175 |#1|) (-1179))) (-15 -1968 (|#1| (-1175 |#1|))) (-15 -1968 (|#1| (-954 |#1|))) (-15 -3234 ((-645 |#1|) (-1175 |#1|) (-1179))) (-15 -3234 ((-645 |#1|) (-1175 |#1|))) (-15 -3234 ((-645 |#1|) (-954 |#1|))) (-15 -3940 (|#1| (-1175 |#1|) (-1179))) (-15 -3940 (|#1| (-1175 |#1|))) (-15 -3940 (|#1| (-954 |#1|)))) (-29 |#2|) (-559)) (T -28))
+NIL
+(-10 -8 (-15 -3802 ((-645 |#1|) |#1| (-1179))) (-15 -1968 (|#1| |#1| (-1179))) (-15 -3802 ((-645 |#1|) |#1|)) (-15 -1968 (|#1| |#1|)) (-15 -3234 ((-645 |#1|) |#1| (-1179))) (-15 -3940 (|#1| |#1| (-1179))) (-15 -3234 ((-645 |#1|) |#1|)) (-15 -3940 (|#1| |#1|)) (-15 -3802 ((-645 |#1|) (-1175 |#1|) (-1179))) (-15 -3802 ((-645 |#1|) (-1175 |#1|))) (-15 -3802 ((-645 |#1|) (-954 |#1|))) (-15 -1968 (|#1| (-1175 |#1|) (-1179))) (-15 -1968 (|#1| (-1175 |#1|))) (-15 -1968 (|#1| (-954 |#1|))) (-15 -3234 ((-645 |#1|) (-1175 |#1|) (-1179))) (-15 -3234 ((-645 |#1|) (-1175 |#1|))) (-15 -3234 ((-645 |#1|) (-954 |#1|))) (-15 -3940 (|#1| (-1175 |#1|) (-1179))) (-15 -3940 (|#1| (-1175 |#1|))) (-15 -3940 (|#1| (-954 |#1|))))
+((-2412 (((-112) $ $) 7)) (-3802 (((-645 $) (-954 $)) 88) (((-645 $) (-1175 $)) 87) (((-645 $) (-1175 $) (-1179)) 86) (((-645 $) $) 134) (((-645 $) $ (-1179)) 132)) (-1968 (($ (-954 $)) 91) (($ (-1175 $)) 90) (($ (-1175 $) (-1179)) 89) (($ $) 135) (($ $ (-1179)) 133)) (-3791 (((-112) $) 17)) (-2859 (((-645 (-1179)) $) 203)) (-2684 (((-410 (-1175 $)) $ (-613 $)) 235 (|has| |#1| (-559)))) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) 47)) (-4287 (($ $) 46)) (-2286 (((-112) $) 44)) (-2575 (((-645 (-613 $)) $) 166)) (-2376 (((-3 $ "failed") $ $) 20)) (-2982 (($ $ (-645 (-613 $)) (-645 $)) 156) (($ $ (-645 (-295 $))) 155) (($ $ (-295 $)) 154)) (-3659 (($ $) 81)) (-3597 (((-421 $) $) 80)) (-2728 (($ $) 100)) (-3696 (((-112) $ $) 65)) (-3647 (($) 18 T CONST)) (-3234 (((-645 $) (-954 $)) 94) (((-645 $) (-1175 $)) 93) (((-645 $) (-1175 $) (-1179)) 92) (((-645 $) $) 138) (((-645 $) $ (-1179)) 136)) (-3940 (($ (-954 $)) 97) (($ (-1175 $)) 96) (($ (-1175 $) (-1179)) 95) (($ $) 139) (($ $ (-1179)) 137)) (-3765 (((-3 (-954 |#1|) "failed") $) 253 (|has| |#1| (-1051))) (((-3 (-410 (-954 |#1|)) "failed") $) 237 (|has| |#1| (-559))) (((-3 |#1| "failed") $) 199) (((-3 (-567) "failed") $) 196 (|has| |#1| (-1040 (-567)))) (((-3 (-1179) "failed") $) 190) (((-3 (-613 $) "failed") $) 141) (((-3 (-410 (-567)) "failed") $) 130 (-2811 (-12 (|has| |#1| (-1040 (-567))) (|has| |#1| (-559))) (|has| |#1| (-1040 (-410 (-567))))))) (-2051 (((-954 |#1|) $) 252 (|has| |#1| (-1051))) (((-410 (-954 |#1|)) $) 236 (|has| |#1| (-559))) ((|#1| $) 198) (((-567) $) 197 (|has| |#1| (-1040 (-567)))) (((-1179) $) 189) (((-613 $) $) 140) (((-410 (-567)) $) 131 (-2811 (-12 (|has| |#1| (-1040 (-567))) (|has| |#1| (-559))) (|has| |#1| (-1040 (-410 (-567))))))) (-2357 (($ $ $) 61)) (-1423 (((-690 |#1|) (-690 $)) 243 (|has| |#1| (-1051))) (((-2 (|:| -4208 (-690 |#1|)) (|:| |vec| (-1269 |#1|))) (-690 $) (-1269 $)) 242 (|has| |#1| (-1051))) (((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) 129 (-2811 (-1686 (|has| |#1| (-1051)) (|has| |#1| (-640 (-567)))) (-1686 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051))))) (((-690 (-567)) (-690 $)) 128 (-2811 (-1686 (|has| |#1| (-1051)) (|has| |#1| (-640 (-567)))) (-1686 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051)))))) (-3588 (((-3 $ "failed") $) 37)) (-2368 (($ $ $) 62)) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) 57)) (-3502 (((-112) $) 79)) (-3193 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) 195 (|has| |#1| (-888 (-381)))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) 194 (|has| |#1| (-888 (-567))))) (-1464 (($ (-645 $)) 160) (($ $) 159)) (-3863 (((-645 (-114)) $) 167)) (-2662 (((-114) (-114)) 168)) (-4346 (((-112) $) 35)) (-1904 (((-112) $) 188 (|has| $ (-1040 (-567))))) (-1863 (($ $) 220 (|has| |#1| (-1051)))) (-1447 (((-1127 |#1| (-613 $)) $) 219 (|has| |#1| (-1051)))) (-3698 (($ $ (-567)) 99)) (-1469 (((-3 (-645 $) "failed") (-645 $) $) 58)) (-2528 (((-1175 $) (-613 $)) 185 (|has| $ (-1051)))) (-3841 (($ (-1 $ $) (-613 $)) 174)) (-3231 (((-3 (-613 $) "failed") $) 164)) (-2751 (($ $ $) 52) (($ (-645 $)) 51)) (-2516 (((-1161) $) 10)) (-2651 (((-645 (-613 $)) $) 165)) (-3643 (($ (-114) (-645 $)) 173) (($ (-114) $) 172)) (-3037 (((-3 (-645 $) "failed") $) 214 (|has| |#1| (-1114)))) (-1851 (((-3 (-2 (|:| |val| $) (|:| -3468 (-567))) "failed") $) 223 (|has| |#1| (-1051)))) (-3774 (((-3 (-645 $) "failed") $) 216 (|has| |#1| (-25)))) (-3024 (((-3 (-2 (|:| -3705 (-567)) (|:| |var| (-613 $))) "failed") $) 217 (|has| |#1| (-25)))) (-3816 (((-3 (-2 (|:| |var| (-613 $)) (|:| -3468 (-567))) "failed") $ (-1179)) 222 (|has| |#1| (-1051))) (((-3 (-2 (|:| |var| (-613 $)) (|:| -3468 (-567))) "failed") $ (-114)) 221 (|has| |#1| (-1051))) (((-3 (-2 (|:| |var| (-613 $)) (|:| -3468 (-567))) "failed") $) 215 (|has| |#1| (-1114)))) (-3545 (((-112) $ (-1179)) 171) (((-112) $ (-114)) 170)) (-2949 (($ $) 78)) (-4136 (((-772) $) 163)) (-3437 (((-1122) $) 11)) (-2960 (((-112) $) 201)) (-2971 ((|#1| $) 202)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) 50)) (-2785 (($ $ $) 54) (($ (-645 $)) 53)) (-2356 (((-112) $ (-1179)) 176) (((-112) $ $) 175)) (-2717 (((-421 $) $) 82)) (-2905 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2400 (((-3 $ "failed") $ $) 48)) (-2372 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-2795 (((-112) $) 187 (|has| $ (-1040 (-567))))) (-2642 (($ $ (-1179) (-772) (-1 $ $)) 227 (|has| |#1| (-1051))) (($ $ (-1179) (-772) (-1 $ (-645 $))) 226 (|has| |#1| (-1051))) (($ $ (-645 (-1179)) (-645 (-772)) (-645 (-1 $ (-645 $)))) 225 (|has| |#1| (-1051))) (($ $ (-645 (-1179)) (-645 (-772)) (-645 (-1 $ $))) 224 (|has| |#1| (-1051))) (($ $ (-645 (-114)) (-645 $) (-1179)) 213 (|has| |#1| (-615 (-539)))) (($ $ (-114) $ (-1179)) 212 (|has| |#1| (-615 (-539)))) (($ $) 211 (|has| |#1| (-615 (-539)))) (($ $ (-645 (-1179))) 210 (|has| |#1| (-615 (-539)))) (($ $ (-1179)) 209 (|has| |#1| (-615 (-539)))) (($ $ (-114) (-1 $ $)) 184) (($ $ (-114) (-1 $ (-645 $))) 183) (($ $ (-645 (-114)) (-645 (-1 $ (-645 $)))) 182) (($ $ (-645 (-114)) (-645 (-1 $ $))) 181) (($ $ (-1179) (-1 $ $)) 180) (($ $ (-1179) (-1 $ (-645 $))) 179) (($ $ (-645 (-1179)) (-645 (-1 $ (-645 $)))) 178) (($ $ (-645 (-1179)) (-645 (-1 $ $))) 177) (($ $ (-645 $) (-645 $)) 148) (($ $ $ $) 147) (($ $ (-295 $)) 146) (($ $ (-645 (-295 $))) 145) (($ $ (-645 (-613 $)) (-645 $)) 144) (($ $ (-613 $) $) 143)) (-2460 (((-772) $) 64)) (-1801 (($ (-114) (-645 $)) 153) (($ (-114) $ $ $ $) 152) (($ (-114) $ $ $) 151) (($ (-114) $ $) 150) (($ (-114) $) 149)) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) 63)) (-3209 (($ $ $) 162) (($ $) 161)) (-1616 (($ $ (-1179)) 251 (|has| |#1| (-1051))) (($ $ (-645 (-1179))) 250 (|has| |#1| (-1051))) (($ $ (-1179) (-772)) 249 (|has| |#1| (-1051))) (($ $ (-645 (-1179)) (-645 (-772))) 248 (|has| |#1| (-1051)))) (-1762 (($ $) 230 (|has| |#1| (-559)))) (-1462 (((-1127 |#1| (-613 $)) $) 229 (|has| |#1| (-559)))) (-3169 (($ $) 186 (|has| $ (-1051)))) (-3902 (((-539) $) 257 (|has| |#1| (-615 (-539)))) (($ (-421 $)) 228 (|has| |#1| (-559))) (((-894 (-381)) $) 193 (|has| |#1| (-615 (-894 (-381))))) (((-894 (-567)) $) 192 (|has| |#1| (-615 (-894 (-567)))))) (-1672 (($ $ $) 256 (|has| |#1| (-476)))) (-3997 (($ $ $) 255 (|has| |#1| (-476)))) (-4129 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-410 (-567))) 74) (($ (-954 |#1|)) 254 (|has| |#1| (-1051))) (($ (-410 (-954 |#1|))) 238 (|has| |#1| (-559))) (($ (-410 (-954 (-410 |#1|)))) 234 (|has| |#1| (-559))) (($ (-954 (-410 |#1|))) 233 (|has| |#1| (-559))) (($ (-410 |#1|)) 232 (|has| |#1| (-559))) (($ (-1127 |#1| (-613 $))) 218 (|has| |#1| (-1051))) (($ |#1|) 200) (($ (-1179)) 191) (($ (-613 $)) 142)) (-2118 (((-3 $ "failed") $) 241 (|has| |#1| (-145)))) (-2746 (((-772)) 32 T CONST)) (-1372 (($ (-645 $)) 158) (($ $) 157)) (-1909 (((-112) (-114)) 169)) (-3357 (((-112) $ $) 9)) (-3731 (((-112) $ $) 45)) (-3264 (($ (-1179) (-645 $)) 208) (($ (-1179) $ $ $ $) 207) (($ (-1179) $ $ $) 206) (($ (-1179) $ $) 205) (($ (-1179) $) 204)) (-1733 (($) 19 T CONST)) (-1744 (($) 34 T CONST)) (-2647 (($ $ (-1179)) 247 (|has| |#1| (-1051))) (($ $ (-645 (-1179))) 246 (|has| |#1| (-1051))) (($ $ (-1179) (-772)) 245 (|has| |#1| (-1051))) (($ $ (-645 (-1179)) (-645 (-772))) 244 (|has| |#1| (-1051)))) (-2946 (((-112) $ $) 6)) (-3069 (($ $ $) 73) (($ (-1127 |#1| (-613 $)) (-1127 |#1| (-613 $))) 231 (|has| |#1| (-559)))) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 77) (($ $ (-410 (-567))) 98)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 76) (($ (-410 (-567)) $) 75) (($ $ |#1|) 240 (|has| |#1| (-172))) (($ |#1| $) 239 (|has| |#1| (-172)))))
(((-29 |#1|) (-140) (-559)) (T -29))
-((-3483 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-559)))) (-2005 (*1 *2 *1) (-12 (-4 *3 (-559)) (-5 *2 (-645 *1)) (-4 *1 (-29 *3)))) (-3483 (*1 *1 *1 *2) (-12 (-5 *2 (-1178)) (-4 *1 (-29 *3)) (-4 *3 (-559)))) (-2005 (*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-559)) (-5 *2 (-645 *1)) (-4 *1 (-29 *4)))) (-4103 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-559)))) (-3224 (*1 *2 *1) (-12 (-4 *3 (-559)) (-5 *2 (-645 *1)) (-4 *1 (-29 *3)))) (-4103 (*1 *1 *1 *2) (-12 (-5 *2 (-1178)) (-4 *1 (-29 *3)) (-4 *3 (-559)))) (-3224 (*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-559)) (-5 *2 (-645 *1)) (-4 *1 (-29 *4)))))
-(-13 (-27) (-433 |t#1|) (-10 -8 (-15 -3483 ($ $)) (-15 -2005 ((-645 $) $)) (-15 -3483 ($ $ (-1178))) (-15 -2005 ((-645 $) $ (-1178))) (-15 -4103 ($ $)) (-15 -3224 ((-645 $) $)) (-15 -4103 ($ $ (-1178))) (-15 -3224 ((-645 $) $ (-1178)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) . T) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) |has| |#1| (-172)) ((-111 $ $) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #0#) . T) ((-617 #1=(-410 (-954 |#1|))) |has| |#1| (-559)) ((-617 (-567)) . T) ((-617 #2=(-613 $)) . T) ((-617 #3=(-954 |#1|)) |has| |#1| (-1051)) ((-617 #4=(-1178)) . T) ((-617 |#1|) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-615 (-894 (-381))) |has| |#1| (-615 (-894 (-381)))) ((-615 (-894 (-567))) |has| |#1| (-615 (-894 (-567)))) ((-243) . T) ((-291) . T) ((-308) . T) ((-310 $) . T) ((-303) . T) ((-365) . T) ((-379 |#1|) |has| |#1| (-1051)) ((-403 |#1|) . T) ((-414 |#1|) . T) ((-433 |#1|) . T) ((-455) . T) ((-476) |has| |#1| (-476)) ((-517 (-613 $) $) . T) ((-517 $ $) . T) ((-559) . T) ((-647 #0#) . T) ((-647 (-567)) . T) ((-647 |#1|) |has| |#1| (-172)) ((-647 $) . T) ((-649 #0#) . T) ((-649 |#1|) |has| |#1| (-172)) ((-649 $) . T) ((-641 #0#) . T) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) . T) ((-640 (-567)) -12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051))) ((-640 |#1|) |has| |#1| (-1051)) ((-718 #0#) . T) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) . T) ((-727) . T) ((-902 (-1178)) |has| |#1| (-1051)) ((-888 (-381)) |has| |#1| (-888 (-381))) ((-888 (-567)) |has| |#1| (-888 (-567))) ((-886 |#1|) . T) ((-922) . T) ((-1004) . T) ((-1040 (-410 (-567))) -2800 (|has| |#1| (-1040 (-410 (-567)))) (-12 (|has| |#1| (-559)) (|has| |#1| (-1040 (-567))))) ((-1040 #1#) |has| |#1| (-559)) ((-1040 (-567)) |has| |#1| (-1040 (-567))) ((-1040 #2#) . T) ((-1040 #3#) |has| |#1| (-1051)) ((-1040 #4#) . T) ((-1040 |#1|) . T) ((-1053 #0#) . T) ((-1053 |#1|) |has| |#1| (-172)) ((-1053 $) . T) ((-1058 #0#) . T) ((-1058 |#1|) |has| |#1| (-172)) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1218) . T) ((-1222) . T))
-((-3711 (((-1096 (-225)) $) NIL)) (-3703 (((-1096 (-225)) $) NIL)) (-2298 (($ $ (-225)) 166)) (-3878 (($ (-954 (-567)) (-1178) (-1178) (-1096 (-410 (-567))) (-1096 (-410 (-567)))) 104)) (-2049 (((-645 (-645 (-945 (-225)))) $) 182)) (-4132 (((-863) $) 196)))
-(((-30) (-13 (-957) (-10 -8 (-15 -3878 ($ (-954 (-567)) (-1178) (-1178) (-1096 (-410 (-567))) (-1096 (-410 (-567))))) (-15 -2298 ($ $ (-225)))))) (T -30))
-((-3878 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-954 (-567))) (-5 *3 (-1178)) (-5 *4 (-1096 (-410 (-567)))) (-5 *1 (-30)))) (-2298 (*1 *1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-30)))))
-(-13 (-957) (-10 -8 (-15 -3878 ($ (-954 (-567)) (-1178) (-1178) (-1096 (-410 (-567))) (-1096 (-410 (-567))))) (-15 -2298 ($ $ (-225)))))
-((-2403 (((-112) $ $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 17) (($ (-1183)) NIL) (((-1183) $) NIL)) (-2006 (((-1137) $) 11)) (-1745 (((-112) $ $) NIL)) (-3047 (((-1137) $) 9)) (-2936 (((-112) $ $) NIL)))
-(((-31) (-13 (-1085) (-10 -8 (-15 -3047 ((-1137) $)) (-15 -2006 ((-1137) $))))) (T -31))
-((-3047 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-31)))) (-2006 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-31)))))
-(-13 (-1085) (-10 -8 (-15 -3047 ((-1137) $)) (-15 -2006 ((-1137) $))))
-((-3483 ((|#2| (-1174 |#2|) (-1178)) 41)) (-2654 (((-114) (-114)) 55)) (-3263 (((-1174 |#2|) (-613 |#2|)) 149 (|has| |#1| (-1040 (-567))))) (-1337 ((|#2| |#1| (-567)) 137 (|has| |#1| (-1040 (-567))))) (-4257 ((|#2| (-1174 |#2|) |#2|) 29)) (-3285 (((-863) (-645 |#2|)) 86)) (-3341 ((|#2| |#2|) 144 (|has| |#1| (-1040 (-567))))) (-3797 (((-112) (-114)) 17)) (** ((|#2| |#2| (-410 (-567))) 103 (|has| |#1| (-1040 (-567))))))
-(((-32 |#1| |#2|) (-10 -7 (-15 -3483 (|#2| (-1174 |#2|) (-1178))) (-15 -2654 ((-114) (-114))) (-15 -3797 ((-112) (-114))) (-15 -4257 (|#2| (-1174 |#2|) |#2|)) (-15 -3285 ((-863) (-645 |#2|))) (IF (|has| |#1| (-1040 (-567))) (PROGN (-15 ** (|#2| |#2| (-410 (-567)))) (-15 -3263 ((-1174 |#2|) (-613 |#2|))) (-15 -3341 (|#2| |#2|)) (-15 -1337 (|#2| |#1| (-567)))) |%noBranch|)) (-559) (-433 |#1|)) (T -32))
-((-1337 (*1 *2 *3 *4) (-12 (-5 *4 (-567)) (-4 *2 (-433 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1040 *4)) (-4 *3 (-559)))) (-3341 (*1 *2 *2) (-12 (-4 *3 (-1040 (-567))) (-4 *3 (-559)) (-5 *1 (-32 *3 *2)) (-4 *2 (-433 *3)))) (-3263 (*1 *2 *3) (-12 (-5 *3 (-613 *5)) (-4 *5 (-433 *4)) (-4 *4 (-1040 (-567))) (-4 *4 (-559)) (-5 *2 (-1174 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-410 (-567))) (-4 *4 (-1040 (-567))) (-4 *4 (-559)) (-5 *1 (-32 *4 *2)) (-4 *2 (-433 *4)))) (-3285 (*1 *2 *3) (-12 (-5 *3 (-645 *5)) (-4 *5 (-433 *4)) (-4 *4 (-559)) (-5 *2 (-863)) (-5 *1 (-32 *4 *5)))) (-4257 (*1 *2 *3 *2) (-12 (-5 *3 (-1174 *2)) (-4 *2 (-433 *4)) (-4 *4 (-559)) (-5 *1 (-32 *4 *2)))) (-3797 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-559)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-433 *4)))) (-2654 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-559)) (-5 *1 (-32 *3 *4)) (-4 *4 (-433 *3)))) (-3483 (*1 *2 *3 *4) (-12 (-5 *3 (-1174 *2)) (-5 *4 (-1178)) (-4 *2 (-433 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-559)))))
-(-10 -7 (-15 -3483 (|#2| (-1174 |#2|) (-1178))) (-15 -2654 ((-114) (-114))) (-15 -3797 ((-112) (-114))) (-15 -4257 (|#2| (-1174 |#2|) |#2|)) (-15 -3285 ((-863) (-645 |#2|))) (IF (|has| |#1| (-1040 (-567))) (PROGN (-15 ** (|#2| |#2| (-410 (-567)))) (-15 -3263 ((-1174 |#2|) (-613 |#2|))) (-15 -3341 (|#2| |#2|)) (-15 -1337 (|#2| |#1| (-567)))) |%noBranch|))
-((-3445 (((-112) $ (-772)) 20)) (-2585 (($) 10)) (-2077 (((-112) $ (-772)) 19)) (-2863 (((-112) $ (-772)) 17)) (-3092 (((-112) $ $) 8)) (-3572 (((-112) $) 15)))
-(((-33 |#1|) (-10 -8 (-15 -2585 (|#1|)) (-15 -3445 ((-112) |#1| (-772))) (-15 -2077 ((-112) |#1| (-772))) (-15 -2863 ((-112) |#1| (-772))) (-15 -3572 ((-112) |#1|)) (-15 -3092 ((-112) |#1| |#1|))) (-34)) (T -33))
-NIL
-(-10 -8 (-15 -2585 (|#1|)) (-15 -3445 ((-112) |#1| (-772))) (-15 -2077 ((-112) |#1| (-772))) (-15 -2863 ((-112) |#1| (-772))) (-15 -3572 ((-112) |#1|)) (-15 -3092 ((-112) |#1| |#1|)))
-((-3445 (((-112) $ (-772)) 8)) (-2585 (($) 7 T CONST)) (-2077 (((-112) $ (-772)) 9)) (-2863 (((-112) $ (-772)) 10)) (-3092 (((-112) $ $) 14)) (-3572 (((-112) $) 11)) (-3498 (($) 12)) (-4305 (($ $) 13)) (-2414 (((-772) $) 6 (|has| $ (-6 -4418)))))
+((-3940 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-559)))) (-3234 (*1 *2 *1) (-12 (-4 *3 (-559)) (-5 *2 (-645 *1)) (-4 *1 (-29 *3)))) (-3940 (*1 *1 *1 *2) (-12 (-5 *2 (-1179)) (-4 *1 (-29 *3)) (-4 *3 (-559)))) (-3234 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-559)) (-5 *2 (-645 *1)) (-4 *1 (-29 *4)))) (-1968 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-559)))) (-3802 (*1 *2 *1) (-12 (-4 *3 (-559)) (-5 *2 (-645 *1)) (-4 *1 (-29 *3)))) (-1968 (*1 *1 *1 *2) (-12 (-5 *2 (-1179)) (-4 *1 (-29 *3)) (-4 *3 (-559)))) (-3802 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-559)) (-5 *2 (-645 *1)) (-4 *1 (-29 *4)))))
+(-13 (-27) (-433 |t#1|) (-10 -8 (-15 -3940 ($ $)) (-15 -3234 ((-645 $) $)) (-15 -3940 ($ $ (-1179))) (-15 -3234 ((-645 $) $ (-1179))) (-15 -1968 ($ $)) (-15 -3802 ((-645 $) $)) (-15 -1968 ($ $ (-1179))) (-15 -3802 ((-645 $) $ (-1179)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) . T) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) |has| |#1| (-172)) ((-111 $ $) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #0#) . T) ((-617 #1=(-410 (-954 |#1|))) |has| |#1| (-559)) ((-617 (-567)) . T) ((-617 #2=(-613 $)) . T) ((-617 #3=(-954 |#1|)) |has| |#1| (-1051)) ((-617 #4=(-1179)) . T) ((-617 |#1|) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-615 (-894 (-381))) |has| |#1| (-615 (-894 (-381)))) ((-615 (-894 (-567))) |has| |#1| (-615 (-894 (-567)))) ((-243) . T) ((-291) . T) ((-308) . T) ((-310 $) . T) ((-303) . T) ((-365) . T) ((-379 |#1|) |has| |#1| (-1051)) ((-403 |#1|) . T) ((-414 |#1|) . T) ((-433 |#1|) . T) ((-455) . T) ((-476) |has| |#1| (-476)) ((-517 (-613 $) $) . T) ((-517 $ $) . T) ((-559) . T) ((-647 #0#) . T) ((-647 (-567)) . T) ((-647 |#1|) |has| |#1| (-172)) ((-647 $) . T) ((-649 #0#) . T) ((-649 |#1|) |has| |#1| (-172)) ((-649 $) . T) ((-641 #0#) . T) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) . T) ((-640 (-567)) -12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051))) ((-640 |#1|) |has| |#1| (-1051)) ((-718 #0#) . T) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) . T) ((-727) . T) ((-902 (-1179)) |has| |#1| (-1051)) ((-888 (-381)) |has| |#1| (-888 (-381))) ((-888 (-567)) |has| |#1| (-888 (-567))) ((-886 |#1|) . T) ((-922) . T) ((-1004) . T) ((-1040 (-410 (-567))) -2811 (|has| |#1| (-1040 (-410 (-567)))) (-12 (|has| |#1| (-559)) (|has| |#1| (-1040 (-567))))) ((-1040 #1#) |has| |#1| (-559)) ((-1040 (-567)) |has| |#1| (-1040 (-567))) ((-1040 #2#) . T) ((-1040 #3#) |has| |#1| (-1051)) ((-1040 #4#) . T) ((-1040 |#1|) . T) ((-1053 #0#) . T) ((-1053 |#1|) |has| |#1| (-172)) ((-1053 $) . T) ((-1058 #0#) . T) ((-1058 |#1|) |has| |#1| (-172)) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1219) . T) ((-1223) . T))
+((-3733 (((-1096 (-225)) $) NIL)) (-3725 (((-1096 (-225)) $) NIL)) (-2013 (($ $ (-225)) 166)) (-3669 (($ (-954 (-567)) (-1179) (-1179) (-1096 (-410 (-567))) (-1096 (-410 (-567)))) 104)) (-3600 (((-645 (-645 (-945 (-225)))) $) 182)) (-4129 (((-863) $) 196)))
+(((-30) (-13 (-957) (-10 -8 (-15 -3669 ($ (-954 (-567)) (-1179) (-1179) (-1096 (-410 (-567))) (-1096 (-410 (-567))))) (-15 -2013 ($ $ (-225)))))) (T -30))
+((-3669 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-954 (-567))) (-5 *3 (-1179)) (-5 *4 (-1096 (-410 (-567)))) (-5 *1 (-30)))) (-2013 (*1 *1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-30)))))
+(-13 (-957) (-10 -8 (-15 -3669 ($ (-954 (-567)) (-1179) (-1179) (-1096 (-410 (-567))) (-1096 (-410 (-567))))) (-15 -2013 ($ $ (-225)))))
+((-2412 (((-112) $ $) NIL)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) 17) (($ (-1184)) NIL) (((-1184) $) NIL)) (-2017 (((-1137) $) 11)) (-3357 (((-112) $ $) NIL)) (-3070 (((-1137) $) 9)) (-2946 (((-112) $ $) NIL)))
+(((-31) (-13 (-1085) (-10 -8 (-15 -3070 ((-1137) $)) (-15 -2017 ((-1137) $))))) (T -31))
+((-3070 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-31)))) (-2017 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-31)))))
+(-13 (-1085) (-10 -8 (-15 -3070 ((-1137) $)) (-15 -2017 ((-1137) $))))
+((-3940 ((|#2| (-1175 |#2|) (-1179)) 41)) (-2662 (((-114) (-114)) 55)) (-2528 (((-1175 |#2|) (-613 |#2|)) 149 (|has| |#1| (-1040 (-567))))) (-4079 ((|#2| |#1| (-567)) 137 (|has| |#1| (-1040 (-567))))) (-2242 ((|#2| (-1175 |#2|) |#2|) 29)) (-3735 (((-863) (-645 |#2|)) 86)) (-3169 ((|#2| |#2|) 144 (|has| |#1| (-1040 (-567))))) (-1909 (((-112) (-114)) 17)) (** ((|#2| |#2| (-410 (-567))) 103 (|has| |#1| (-1040 (-567))))))
+(((-32 |#1| |#2|) (-10 -7 (-15 -3940 (|#2| (-1175 |#2|) (-1179))) (-15 -2662 ((-114) (-114))) (-15 -1909 ((-112) (-114))) (-15 -2242 (|#2| (-1175 |#2|) |#2|)) (-15 -3735 ((-863) (-645 |#2|))) (IF (|has| |#1| (-1040 (-567))) (PROGN (-15 ** (|#2| |#2| (-410 (-567)))) (-15 -2528 ((-1175 |#2|) (-613 |#2|))) (-15 -3169 (|#2| |#2|)) (-15 -4079 (|#2| |#1| (-567)))) |%noBranch|)) (-559) (-433 |#1|)) (T -32))
+((-4079 (*1 *2 *3 *4) (-12 (-5 *4 (-567)) (-4 *2 (-433 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1040 *4)) (-4 *3 (-559)))) (-3169 (*1 *2 *2) (-12 (-4 *3 (-1040 (-567))) (-4 *3 (-559)) (-5 *1 (-32 *3 *2)) (-4 *2 (-433 *3)))) (-2528 (*1 *2 *3) (-12 (-5 *3 (-613 *5)) (-4 *5 (-433 *4)) (-4 *4 (-1040 (-567))) (-4 *4 (-559)) (-5 *2 (-1175 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-410 (-567))) (-4 *4 (-1040 (-567))) (-4 *4 (-559)) (-5 *1 (-32 *4 *2)) (-4 *2 (-433 *4)))) (-3735 (*1 *2 *3) (-12 (-5 *3 (-645 *5)) (-4 *5 (-433 *4)) (-4 *4 (-559)) (-5 *2 (-863)) (-5 *1 (-32 *4 *5)))) (-2242 (*1 *2 *3 *2) (-12 (-5 *3 (-1175 *2)) (-4 *2 (-433 *4)) (-4 *4 (-559)) (-5 *1 (-32 *4 *2)))) (-1909 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-559)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-433 *4)))) (-2662 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-559)) (-5 *1 (-32 *3 *4)) (-4 *4 (-433 *3)))) (-3940 (*1 *2 *3 *4) (-12 (-5 *3 (-1175 *2)) (-5 *4 (-1179)) (-4 *2 (-433 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-559)))))
+(-10 -7 (-15 -3940 (|#2| (-1175 |#2|) (-1179))) (-15 -2662 ((-114) (-114))) (-15 -1909 ((-112) (-114))) (-15 -2242 (|#2| (-1175 |#2|) |#2|)) (-15 -3735 ((-863) (-645 |#2|))) (IF (|has| |#1| (-1040 (-567))) (PROGN (-15 ** (|#2| |#2| (-410 (-567)))) (-15 -2528 ((-1175 |#2|) (-613 |#2|))) (-15 -3169 (|#2| |#2|)) (-15 -4079 (|#2| |#1| (-567)))) |%noBranch|))
+((-1563 (((-112) $ (-772)) 20)) (-3647 (($) 10)) (-4093 (((-112) $ (-772)) 19)) (-1986 (((-112) $ (-772)) 17)) (-3875 (((-112) $ $) 8)) (-3885 (((-112) $) 15)))
+(((-33 |#1|) (-10 -8 (-15 -3647 (|#1|)) (-15 -1563 ((-112) |#1| (-772))) (-15 -4093 ((-112) |#1| (-772))) (-15 -1986 ((-112) |#1| (-772))) (-15 -3885 ((-112) |#1|)) (-15 -3875 ((-112) |#1| |#1|))) (-34)) (T -33))
+NIL
+(-10 -8 (-15 -3647 (|#1|)) (-15 -1563 ((-112) |#1| (-772))) (-15 -4093 ((-112) |#1| (-772))) (-15 -1986 ((-112) |#1| (-772))) (-15 -3885 ((-112) |#1|)) (-15 -3875 ((-112) |#1| |#1|)))
+((-1563 (((-112) $ (-772)) 8)) (-3647 (($) 7 T CONST)) (-4093 (((-112) $ (-772)) 9)) (-1986 (((-112) $ (-772)) 10)) (-3875 (((-112) $ $) 14)) (-3885 (((-112) $) 11)) (-2701 (($) 12)) (-4309 (($ $) 13)) (-2423 (((-772) $) 6 (|has| $ (-6 -4422)))))
(((-34) (-140)) (T -34))
-((-3092 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-4305 (*1 *1 *1) (-4 *1 (-34))) (-3498 (*1 *1) (-4 *1 (-34))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-2863 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-772)) (-5 *2 (-112)))) (-2077 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-772)) (-5 *2 (-112)))) (-3445 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-772)) (-5 *2 (-112)))) (-2585 (*1 *1) (-4 *1 (-34))) (-2414 (*1 *2 *1) (-12 (|has| *1 (-6 -4418)) (-4 *1 (-34)) (-5 *2 (-772)))))
-(-13 (-1218) (-10 -8 (-15 -3092 ((-112) $ $)) (-15 -4305 ($ $)) (-15 -3498 ($)) (-15 -3572 ((-112) $)) (-15 -2863 ((-112) $ (-772))) (-15 -2077 ((-112) $ (-772))) (-15 -3445 ((-112) $ (-772))) (-15 -2585 ($) -3286) (IF (|has| $ (-6 -4418)) (-15 -2414 ((-772) $)) |%noBranch|)))
-(((-1218) . T))
-((-3200 (($ $) 11)) (-3183 (($ $) 10)) (-3221 (($ $) 9)) (-3785 (($ $) 8)) (-3211 (($ $) 7)) (-3193 (($ $) 6)))
+((-3875 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-4309 (*1 *1 *1) (-4 *1 (-34))) (-2701 (*1 *1) (-4 *1 (-34))) (-3885 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-1986 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-772)) (-5 *2 (-112)))) (-4093 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-772)) (-5 *2 (-112)))) (-1563 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-772)) (-5 *2 (-112)))) (-3647 (*1 *1) (-4 *1 (-34))) (-2423 (*1 *2 *1) (-12 (|has| *1 (-6 -4422)) (-4 *1 (-34)) (-5 *2 (-772)))))
+(-13 (-1219) (-10 -8 (-15 -3875 ((-112) $ $)) (-15 -4309 ($ $)) (-15 -2701 ($)) (-15 -3885 ((-112) $)) (-15 -1986 ((-112) $ (-772))) (-15 -4093 ((-112) $ (-772))) (-15 -1563 ((-112) $ (-772))) (-15 -3647 ($) -3304) (IF (|has| $ (-6 -4422)) (-15 -2423 ((-772) $)) |%noBranch|)))
+(((-1219) . T))
+((-3217 (($ $) 11)) (-3201 (($ $) 10)) (-3238 (($ $) 9)) (-3805 (($ $) 8)) (-3228 (($ $) 7)) (-3208 (($ $) 6)))
(((-35) (-140)) (T -35))
-((-3200 (*1 *1 *1) (-4 *1 (-35))) (-3183 (*1 *1 *1) (-4 *1 (-35))) (-3221 (*1 *1 *1) (-4 *1 (-35))) (-3785 (*1 *1 *1) (-4 *1 (-35))) (-3211 (*1 *1 *1) (-4 *1 (-35))) (-3193 (*1 *1 *1) (-4 *1 (-35))))
-(-13 (-10 -8 (-15 -3193 ($ $)) (-15 -3211 ($ $)) (-15 -3785 ($ $)) (-15 -3221 ($ $)) (-15 -3183 ($ $)) (-15 -3200 ($ $))))
-((-2403 (((-112) $ $) 19 (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102))))) (-3802 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) 126)) (-3998 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) 149)) (-4283 (($ $) 147)) (-2835 (($) 73) (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) 72)) (-1783 (((-1273) $ |#1| |#1|) 100 (|has| $ (-6 -4419))) (((-1273) $ (-567) (-567)) 179 (|has| $ (-6 -4419)))) (-2366 (($ $ (-567)) 160 (|has| $ (-6 -4419)))) (-2496 (((-112) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 210) (((-112) $) 204 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-851)))) (-1394 (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 201 (|has| $ (-6 -4419))) (($ $) 200 (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-851)) (|has| $ (-6 -4419))))) (-4396 (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 211) (($ $) 205 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-851)))) (-3445 (((-112) $ (-772)) 8)) (-2138 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) 135 (|has| $ (-6 -4419)))) (-4209 (($ $ $) 156 (|has| $ (-6 -4419)))) (-2315 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) 158 (|has| $ (-6 -4419)))) (-2271 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) 154 (|has| $ (-6 -4419)))) (-4284 ((|#2| $ |#1| |#2|) 74) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $ (-567) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) 190 (|has| $ (-6 -4419))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $ (-1235 (-567)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) 161 (|has| $ (-6 -4419))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $ "last" (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) 159 (|has| $ (-6 -4419))) (($ $ "rest" $) 157 (|has| $ (-6 -4419))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $ "first" (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) 155 (|has| $ (-6 -4419))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $ "value" (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) 134 (|has| $ (-6 -4419)))) (-1301 (($ $ (-645 $)) 133 (|has| $ (-6 -4419)))) (-2839 (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 46 (|has| $ (-6 -4418))) (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 217)) (-3350 (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 56 (|has| $ (-6 -4418))) (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 176 (|has| $ (-6 -4418)))) (-3984 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) 148)) (-4019 (((-3 |#2| "failed") |#1| $) 62)) (-2585 (($) 7 T CONST)) (-1764 (($ $) 202 (|has| $ (-6 -4419)))) (-3584 (($ $) 212)) (-2421 (($ $ (-772)) 143) (($ $) 141)) (-2133 (($ $) 215 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (-2444 (($ $) 59 (-2800 (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| $ (-6 -4418))) (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| $ (-6 -4418)))))) (-2539 (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) 48 (|has| $ (-6 -4418))) (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 47 (|has| $ (-6 -4418))) (((-3 |#2| "failed") |#1| $) 63) (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 221) (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) 216 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (-3238 (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) 58 (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| $ (-6 -4418)))) (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 55 (|has| $ (-6 -4418))) (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) 178 (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| $ (-6 -4418)))) (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 175 (|has| $ (-6 -4418)))) (-2477 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) 57 (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| $ (-6 -4418)))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) 54 (|has| $ (-6 -4418))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 53 (|has| $ (-6 -4418))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) 177 (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| $ (-6 -4418)))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) 174 (|has| $ (-6 -4418))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 173 (|has| $ (-6 -4418)))) (-3741 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4419))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $ (-567) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) 191 (|has| $ (-6 -4419)))) (-3680 ((|#2| $ |#1|) 89) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $ (-567)) 189)) (-1399 (((-112) $) 193)) (-2569 (((-567) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 209) (((-567) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) 208 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102))) (((-567) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $ (-567)) 207 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (-2777 (((-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 31 (|has| $ (-6 -4418))) (((-645 |#2|) $) 80 (|has| $ (-6 -4418))) (((-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 115 (|has| $ (-6 -4418)))) (-2182 (((-645 $) $) 124)) (-3512 (((-112) $ $) 132 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (-2846 (($ (-772) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) 170)) (-2077 (((-112) $ (-772)) 9)) (-4069 ((|#1| $) 97 (|has| |#1| (-851))) (((-567) $) 181 (|has| (-567) (-851)))) (-1354 (($ $ $) 199 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-851)))) (-2966 (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $ $) 218) (($ $ $) 214 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-851)))) (-4135 (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $ $) 213) (($ $ $) 206 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-851)))) (-2279 (((-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 30 (|has| $ (-6 -4418))) (((-645 |#2|) $) 81 (|has| $ (-6 -4418))) (((-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 116 (|has| $ (-6 -4418)))) (-4337 (((-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) 28 (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| $ (-6 -4418)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1102)) (|has| $ (-6 -4418)))) (((-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) 118 (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| $ (-6 -4418))))) (-2266 ((|#1| $) 96 (|has| |#1| (-851))) (((-567) $) 182 (|has| (-567) (-851)))) (-2981 (($ $ $) 198 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-851)))) (-3731 (($ (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 35 (|has| $ (-6 -4419))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4419))) (($ (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 111 (|has| $ (-6 -4419)))) (-3829 (($ (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71) (($ (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $ $) 167) (($ (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 110)) (-2284 (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) 226)) (-2863 (((-112) $ (-772)) 10)) (-3773 (((-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 129)) (-2769 (((-112) $) 125)) (-1419 (((-1160) $) 22 (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102))))) (-3257 (($ $ (-772)) 146) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) 144)) (-1391 (((-645 |#1|) $) 64)) (-4251 (((-112) |#1| $) 65)) (-1566 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) 40)) (-2531 (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) 41) (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $ (-567)) 220) (($ $ $ (-567)) 219)) (-2845 (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $ (-567)) 163) (($ $ $ (-567)) 162)) (-1789 (((-645 |#1|) $) 94) (((-645 (-567)) $) 184)) (-2996 (((-112) |#1| $) 93) (((-112) (-567) $) 185)) (-3430 (((-1122) $) 21 (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102))))) (-2409 ((|#2| $) 98 (|has| |#1| (-851))) (($ $ (-772)) 140) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) 138)) (-4128 (((-3 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) "failed") (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 52) (((-3 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) "failed") (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 172)) (-3986 (($ $ |#2|) 99 (|has| $ (-6 -4419))) (($ $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) 180 (|has| $ (-6 -4419)))) (-1793 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) 42)) (-3323 (((-112) $) 192)) (-3025 (((-112) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 33 (|has| $ (-6 -4418))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4418))) (((-112) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 113 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))))) 27 (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-295 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) 26 (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) 25 (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) 24 (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-645 |#2|) (-645 |#2|)) 87 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-295 |#2|)) 85 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-645 (-295 |#2|))) 84 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) 122 (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) 121 (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-295 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) 120 (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-645 (-295 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))))) 119 (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102))))) (-3092 (((-112) $ $) 14)) (-1794 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4418)) (|has| |#2| (-1102)))) (((-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) 183 (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102))))) (-2339 (((-645 |#2|) $) 92) (((-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 186)) (-3572 (((-112) $) 11)) (-3498 (($) 12)) (-1787 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $ (-567) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) 188) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $ (-567)) 187) (($ $ (-1235 (-567))) 166) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $ "last") 145) (($ $ "rest") 142) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $ "first") 139) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $ "value") 127)) (-2658 (((-567) $ $) 130)) (-2718 (($) 50) (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) 49)) (-3670 (($ $ (-567)) 223) (($ $ (-1235 (-567))) 222)) (-1560 (($ $ (-567)) 165) (($ $ (-1235 (-567))) 164)) (-3900 (((-112) $) 128)) (-1644 (($ $) 152)) (-3519 (($ $) 153 (|has| $ (-6 -4419)))) (-3344 (((-772) $) 151)) (-1503 (($ $) 150)) (-3439 (((-772) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 32 (|has| $ (-6 -4418))) (((-772) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) 29 (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| $ (-6 -4418)))) (((-772) |#2| $) 82 (-12 (|has| |#2| (-1102)) (|has| $ (-6 -4418)))) (((-772) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4418))) (((-772) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) 117 (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| $ (-6 -4418)))) (((-772) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 114 (|has| $ (-6 -4418)))) (-1395 (($ $ $ (-567)) 203 (|has| $ (-6 -4419)))) (-4305 (($ $) 13)) (-3893 (((-539) $) 60 (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-615 (-539))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-615 (-539)))))) (-4147 (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) 51) (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) 171)) (-2484 (($ $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) 225) (($ $ $) 224)) (-2269 (($ $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) 169) (($ (-645 $)) 168) (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) 137) (($ $ $) 136)) (-4132 (((-863) $) 18 (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-614 (-863))) (|has| |#2| (-614 (-863))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-614 (-863)))))) (-1531 (((-645 $) $) 123)) (-3606 (((-112) $ $) 131 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (-1745 (((-112) $ $) 23 (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102))))) (-3551 (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) 43)) (-3266 (((-3 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) "failed") |#1| $) 109)) (-1853 (((-112) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 34 (|has| $ (-6 -4418))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4418))) (((-112) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 112 (|has| $ (-6 -4418)))) (-2997 (((-112) $ $) 196 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-851)))) (-2971 (((-112) $ $) 195 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-851)))) (-2936 (((-112) $ $) 20 (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102))))) (-2984 (((-112) $ $) 197 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-851)))) (-2958 (((-112) $ $) 194 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-851)))) (-2414 (((-772) $) 6 (|has| $ (-6 -4418)))))
+((-3217 (*1 *1 *1) (-4 *1 (-35))) (-3201 (*1 *1 *1) (-4 *1 (-35))) (-3238 (*1 *1 *1) (-4 *1 (-35))) (-3805 (*1 *1 *1) (-4 *1 (-35))) (-3228 (*1 *1 *1) (-4 *1 (-35))) (-3208 (*1 *1 *1) (-4 *1 (-35))))
+(-13 (-10 -8 (-15 -3208 ($ $)) (-15 -3228 ($ $)) (-15 -3805 ($ $)) (-15 -3238 ($ $)) (-15 -3201 ($ $)) (-15 -3217 ($ $))))
+((-2412 (((-112) $ $) 19 (-2811 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)) (|has| |#2| (-1102)) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102))))) (-3812 (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) 126)) (-4003 (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) 149)) (-4284 (($ $) 147)) (-2847 (($) 73) (($ (-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) 72)) (-3843 (((-1274) $ |#1| |#1|) 100 (|has| $ (-6 -4423))) (((-1274) $ (-567) (-567)) 179 (|has| $ (-6 -4423)))) (-3288 (($ $ (-567)) 160 (|has| $ (-6 -4423)))) (-3531 (((-112) (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) 210) (((-112) $) 204 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-851)))) (-2676 (($ (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) 201 (|has| $ (-6 -4423))) (($ $) 200 (-12 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-851)) (|has| $ (-6 -4423))))) (-1311 (($ (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) 211) (($ $) 205 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-851)))) (-1563 (((-112) $ (-772)) 8)) (-4392 (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) 135 (|has| $ (-6 -4423)))) (-4017 (($ $ $) 156 (|has| $ (-6 -4423)))) (-4105 (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) 158 (|has| $ (-6 -4423)))) (-2498 (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) 154 (|has| $ (-6 -4423)))) (-4285 ((|#2| $ |#1| |#2|) 74) (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $ (-567) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) 190 (|has| $ (-6 -4423))) (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $ (-1236 (-567)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) 161 (|has| $ (-6 -4423))) (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $ "last" (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) 159 (|has| $ (-6 -4423))) (($ $ "rest" $) 157 (|has| $ (-6 -4423))) (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $ "first" (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) 155 (|has| $ (-6 -4423))) (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $ "value" (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) 134 (|has| $ (-6 -4423)))) (-2831 (($ $ (-645 $)) 133 (|has| $ (-6 -4423)))) (-1494 (($ (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) 46 (|has| $ (-6 -4422))) (($ (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) 217)) (-3356 (($ (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) 56 (|has| $ (-6 -4422))) (($ (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) 176 (|has| $ (-6 -4422)))) (-3990 (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) 148)) (-4021 (((-3 |#2| "failed") |#1| $) 62)) (-3647 (($) 7 T CONST)) (-1602 (($ $) 202 (|has| $ (-6 -4423)))) (-3592 (($ $) 212)) (-2430 (($ $ (-772)) 143) (($ $) 141)) (-3837 (($ $) 215 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (-2453 (($ $) 59 (-2811 (-12 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)) (|has| $ (-6 -4422))) (-12 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)) (|has| $ (-6 -4422)))))) (-2247 (($ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) 48 (|has| $ (-6 -4422))) (($ (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) 47 (|has| $ (-6 -4422))) (((-3 |#2| "failed") |#1| $) 63) (($ (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) 221) (($ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) 216 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (-3246 (($ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) 58 (-12 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)) (|has| $ (-6 -4422)))) (($ (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) 55 (|has| $ (-6 -4422))) (($ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) 178 (-12 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)) (|has| $ (-6 -4422)))) (($ (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) 175 (|has| $ (-6 -4422)))) (-2494 (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) 57 (-12 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)) (|has| $ (-6 -4422)))) (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) 54 (|has| $ (-6 -4422))) (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) 53 (|has| $ (-6 -4422))) (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) 177 (-12 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)) (|has| $ (-6 -4422)))) (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) 174 (|has| $ (-6 -4422))) (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) 173 (|has| $ (-6 -4422)))) (-3760 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4423))) (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $ (-567) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) 191 (|has| $ (-6 -4423)))) (-3703 ((|#2| $ |#1|) 89) (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $ (-567)) 189)) (-4085 (((-112) $) 193)) (-2578 (((-567) (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) 209) (((-567) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) 208 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102))) (((-567) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $ (-567)) 207 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (-2799 (((-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) 31 (|has| $ (-6 -4422))) (((-645 |#2|) $) 80 (|has| $ (-6 -4422))) (((-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) 115 (|has| $ (-6 -4422)))) (-2070 (((-645 $) $) 124)) (-1520 (((-112) $ $) 132 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (-2858 (($ (-772) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) 170)) (-4093 (((-112) $ (-772)) 9)) (-3895 ((|#1| $) 97 (|has| |#1| (-851))) (((-567) $) 181 (|has| (-567) (-851)))) (-1365 (($ $ $) 199 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-851)))) (-1661 (($ (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $ $) 218) (($ $ $) 214 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-851)))) (-2473 (($ (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $ $) 213) (($ $ $) 206 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-851)))) (-1942 (((-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) 30 (|has| $ (-6 -4422))) (((-645 |#2|) $) 81 (|has| $ (-6 -4422))) (((-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) 116 (|has| $ (-6 -4422)))) (-3237 (((-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) 28 (-12 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)) (|has| $ (-6 -4422)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1102)) (|has| $ (-6 -4422)))) (((-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) 118 (-12 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)) (|has| $ (-6 -4422))))) (-3255 ((|#1| $) 96 (|has| |#1| (-851))) (((-567) $) 182 (|has| (-567) (-851)))) (-3002 (($ $ $) 198 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-851)))) (-3751 (($ (-1 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) 35 (|has| $ (-6 -4423))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4423))) (($ (-1 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) 111 (|has| $ (-6 -4423)))) (-3841 (($ (-1 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71) (($ (-1 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $ $) 167) (($ (-1 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) 110)) (-2291 (($ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) 226)) (-1986 (((-112) $ (-772)) 10)) (-3793 (((-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) 129)) (-1323 (((-112) $) 125)) (-2516 (((-1161) $) 22 (-2811 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)) (|has| |#2| (-1102)) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102))))) (-3266 (($ $ (-772)) 146) (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) 144)) (-1405 (((-645 |#1|) $) 64)) (-2816 (((-112) |#1| $) 65)) (-2706 (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) 40)) (-2646 (($ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) 41) (($ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $ (-567)) 220) (($ $ $ (-567)) 219)) (-2857 (($ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $ (-567)) 163) (($ $ $ (-567)) 162)) (-4364 (((-645 |#1|) $) 94) (((-645 (-567)) $) 184)) (-3188 (((-112) |#1| $) 93) (((-112) (-567) $) 185)) (-3437 (((-1122) $) 21 (-2811 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)) (|has| |#2| (-1102)) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102))))) (-2418 ((|#2| $) 98 (|has| |#1| (-851))) (($ $ (-772)) 140) (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) 138)) (-3196 (((-3 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) "failed") (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) 52) (((-3 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) "failed") (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) 172)) (-3823 (($ $ |#2|) 99 (|has| $ (-6 -4423))) (($ $ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) 180 (|has| $ (-6 -4423)))) (-3949 (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) 42)) (-1971 (((-112) $) 192)) (-4233 (((-112) (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) 33 (|has| $ (-6 -4422))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4422))) (((-112) (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) 113 (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))))) 27 (-12 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-310 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (($ $ (-295 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) 26 (-12 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-310 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (($ $ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) 25 (-12 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-310 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (($ $ (-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) (-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) 24 (-12 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-310 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (($ $ (-645 |#2|) (-645 |#2|)) 87 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-295 |#2|)) 85 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-645 (-295 |#2|))) 84 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) (-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) 122 (-12 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-310 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (($ $ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) 121 (-12 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-310 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (($ $ (-295 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) 120 (-12 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-310 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (($ $ (-645 (-295 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))))) 119 (-12 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-310 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102))))) (-3875 (((-112) $ $) 14)) (-4058 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4422)) (|has| |#2| (-1102)))) (((-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) 183 (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102))))) (-2190 (((-645 |#2|) $) 92) (((-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) 186)) (-3885 (((-112) $) 11)) (-2701 (($) 12)) (-1801 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90) (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $ (-567) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) 188) (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $ (-567)) 187) (($ $ (-1236 (-567))) 166) (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $ "last") 145) (($ $ "rest") 142) (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $ "first") 139) (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $ "value") 127)) (-3162 (((-567) $ $) 130)) (-4106 (($) 50) (($ (-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) 49)) (-1873 (($ $ (-567)) 223) (($ $ (-1236 (-567))) 222)) (-1569 (($ $ (-567)) 165) (($ $ (-1236 (-567))) 164)) (-3771 (((-112) $) 128)) (-3688 (($ $) 152)) (-4044 (($ $) 153 (|has| $ (-6 -4423)))) (-3359 (((-772) $) 151)) (-3640 (($ $) 150)) (-3447 (((-772) (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) 32 (|has| $ (-6 -4422))) (((-772) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) 29 (-12 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)) (|has| $ (-6 -4422)))) (((-772) |#2| $) 82 (-12 (|has| |#2| (-1102)) (|has| $ (-6 -4422)))) (((-772) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4422))) (((-772) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) 117 (-12 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)) (|has| $ (-6 -4422)))) (((-772) (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) 114 (|has| $ (-6 -4422)))) (-1656 (($ $ $ (-567)) 203 (|has| $ (-6 -4423)))) (-4309 (($ $) 13)) (-3902 (((-539) $) 60 (-2811 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-615 (-539))) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-615 (-539)))))) (-4145 (($ (-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) 51) (($ (-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) 171)) (-2294 (($ $ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) 225) (($ $ $) 224)) (-2276 (($ $ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) 169) (($ (-645 $)) 168) (($ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) 137) (($ $ $) 136)) (-4129 (((-863) $) 18 (-2811 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-614 (-863))) (|has| |#2| (-614 (-863))) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-614 (-863)))))) (-3469 (((-645 $) $) 123)) (-3854 (((-112) $ $) 131 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (-3357 (((-112) $ $) 23 (-2811 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)) (|has| |#2| (-1102)) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102))))) (-3700 (($ (-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) 43)) (-3274 (((-3 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) "failed") |#1| $) 109)) (-3436 (((-112) (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) 34 (|has| $ (-6 -4422))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4422))) (((-112) (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) 112 (|has| $ (-6 -4422)))) (-3004 (((-112) $ $) 196 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-851)))) (-2980 (((-112) $ $) 195 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-851)))) (-2946 (((-112) $ $) 20 (-2811 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)) (|has| |#2| (-1102)) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102))))) (-2993 (((-112) $ $) 197 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-851)))) (-2968 (((-112) $ $) 194 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-851)))) (-2423 (((-772) $) 6 (|has| $ (-6 -4422)))))
(((-36 |#1| |#2|) (-140) (-1102) (-1102)) (T -36))
-((-3266 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-5 *2 (-2 (|:| -1795 *3) (|:| -4237 *4))))))
-(-13 (-1194 |t#1| |t#2|) (-667 (-2 (|:| -1795 |t#1|) (|:| -4237 |t#2|))) (-10 -8 (-15 -3266 ((-3 (-2 (|:| -1795 |t#1|) (|:| -4237 |t#2|)) "failed") |t#1| $))))
-(((-34) . T) ((-107 #0=(-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T) ((-102) -2800 (|has| |#2| (-1102)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-851))) ((-614 (-863)) -2800 (|has| |#2| (-1102)) (|has| |#2| (-614 (-863))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-851)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-614 (-863)))) ((-151 #1=(-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T) ((-615 (-539)) |has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-615 (-539))) ((-229 #0#) . T) ((-235 #0#) . T) ((-287 #2=(-567) #1#) . T) ((-287 |#1| |#2|) . T) ((-289 #2# #1#) . T) ((-289 |#1| |#2|) . T) ((-310 #1#) -12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102))) ((-310 |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) ((-283 #1#) . T) ((-375 #1#) . T) ((-492 #1#) . T) ((-492 |#2|) . T) ((-605 #2# #1#) . T) ((-605 |#1| |#2|) . T) ((-517 #1# #1#) -12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102))) ((-517 |#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) ((-611 |#1| |#2|) . T) ((-652 #1#) . T) ((-667 #1#) . T) ((-851) |has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-851)) ((-1012 #1#) . T) ((-1102) -2800 (|has| |#2| (-1102)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-851))) ((-1151 #1#) . T) ((-1194 |#1| |#2|) . T) ((-1218) . T) ((-1256 #1#) . T))
-((-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ |#2|) 10)))
-(((-37 |#1| |#2|) (-10 -8 (-15 -4132 (|#1| |#2|)) (-15 -4132 (|#1| (-567))) (-15 -4132 ((-863) |#1|))) (-38 |#2|) (-172)) (T -37))
-NIL
-(-10 -8 (-15 -4132 (|#1| |#2|)) (-15 -4132 (|#1| (-567))) (-15 -4132 ((-863) |#1|)))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-2109 (((-3 $ "failed") $) 37)) (-1433 (((-112) $) 35)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 44)) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45)))
+((-3274 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-5 *2 (-2 (|:| -1809 *3) (|:| -4236 *4))))))
+(-13 (-1195 |t#1| |t#2|) (-667 (-2 (|:| -1809 |t#1|) (|:| -4236 |t#2|))) (-10 -8 (-15 -3274 ((-3 (-2 (|:| -1809 |t#1|) (|:| -4236 |t#2|)) "failed") |t#1| $))))
+(((-34) . T) ((-107 #0=(-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) . T) ((-102) -2811 (|has| |#2| (-1102)) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-851))) ((-614 (-863)) -2811 (|has| |#2| (-1102)) (|has| |#2| (-614 (-863))) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-851)) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-614 (-863)))) ((-151 #1=(-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) . T) ((-615 (-539)) |has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-615 (-539))) ((-229 #0#) . T) ((-235 #0#) . T) ((-287 #2=(-567) #1#) . T) ((-287 |#1| |#2|) . T) ((-289 #2# #1#) . T) ((-289 |#1| |#2|) . T) ((-310 #1#) -12 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-310 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102))) ((-310 |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) ((-283 #1#) . T) ((-375 #1#) . T) ((-492 #1#) . T) ((-492 |#2|) . T) ((-605 #2# #1#) . T) ((-605 |#1| |#2|) . T) ((-517 #1# #1#) -12 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-310 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102))) ((-517 |#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) ((-611 |#1| |#2|) . T) ((-652 #1#) . T) ((-667 #1#) . T) ((-851) |has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-851)) ((-1012 #1#) . T) ((-1102) -2811 (|has| |#2| (-1102)) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-851))) ((-1151 #1#) . T) ((-1195 |#1| |#2|) . T) ((-1219) . T) ((-1257 #1#) . T))
+((-4129 (((-863) $) NIL) (($ (-567)) NIL) (($ |#2|) 10)))
+(((-37 |#1| |#2|) (-10 -8 (-15 -4129 (|#1| |#2|)) (-15 -4129 (|#1| (-567))) (-15 -4129 ((-863) |#1|))) (-38 |#2|) (-172)) (T -37))
+NIL
+(-10 -8 (-15 -4129 (|#1| |#2|)) (-15 -4129 (|#1| (-567))) (-15 -4129 ((-863) |#1|)))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-2376 (((-3 $ "failed") $ $) 20)) (-3647 (($) 18 T CONST)) (-3588 (((-3 $ "failed") $) 37)) (-4346 (((-112) $) 35)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-4129 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 44)) (-2746 (((-772)) 32 T CONST)) (-3357 (((-112) $ $) 9)) (-1733 (($) 19 T CONST)) (-1744 (($) 34 T CONST)) (-2946 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45)))
(((-38 |#1|) (-140) (-172)) (T -38))
NIL
(-13 (-1051) (-718 |t#1|) (-617 |t#1|))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-641 |#1|) . T) ((-718 |#1|) . T) ((-727) . T) ((-1053 |#1|) . T) ((-1058 |#1|) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T))
-((-4323 (((-421 |#1|) |#1|) 41)) (-2706 (((-421 |#1|) |#1|) 30) (((-421 |#1|) |#1| (-645 (-48))) 33)) (-2381 (((-112) |#1|) 59)))
-(((-39 |#1|) (-10 -7 (-15 -2706 ((-421 |#1|) |#1| (-645 (-48)))) (-15 -2706 ((-421 |#1|) |#1|)) (-15 -4323 ((-421 |#1|) |#1|)) (-15 -2381 ((-112) |#1|))) (-1244 (-48))) (T -39))
-((-2381 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1244 (-48))))) (-4323 (*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1244 (-48))))) (-2706 (*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1244 (-48))))) (-2706 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-48))) (-5 *2 (-421 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1244 (-48))))))
-(-10 -7 (-15 -2706 ((-421 |#1|) |#1| (-645 (-48)))) (-15 -2706 ((-421 |#1|) |#1|)) (-15 -4323 ((-421 |#1|) |#1|)) (-15 -2381 ((-112) |#1|)))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3852 (((-2 (|:| |num| (-1268 |#2|)) (|:| |den| |#2|)) $) NIL)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL (|has| (-410 |#2|) (-365)))) (-4381 (($ $) NIL (|has| (-410 |#2|) (-365)))) (-3949 (((-112) $) NIL (|has| (-410 |#2|) (-365)))) (-2141 (((-690 (-410 |#2|)) (-1268 $)) NIL) (((-690 (-410 |#2|))) NIL)) (-4293 (((-410 |#2|) $) NIL)) (-3400 (((-1191 (-923) (-772)) (-567)) NIL (|has| (-410 |#2|) (-351)))) (-3472 (((-3 $ "failed") $ $) NIL)) (-3248 (($ $) NIL (|has| (-410 |#2|) (-365)))) (-2908 (((-421 $) $) NIL (|has| (-410 |#2|) (-365)))) (-3609 (((-112) $ $) NIL (|has| (-410 |#2|) (-365)))) (-2375 (((-772)) NIL (|has| (-410 |#2|) (-370)))) (-1331 (((-112)) NIL)) (-1404 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-2585 (($) NIL T CONST)) (-3753 (((-3 (-567) "failed") $) NIL (|has| (-410 |#2|) (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| (-410 |#2|) (-1040 (-410 (-567))))) (((-3 (-410 |#2|) "failed") $) NIL)) (-2038 (((-567) $) NIL (|has| (-410 |#2|) (-1040 (-567)))) (((-410 (-567)) $) NIL (|has| (-410 |#2|) (-1040 (-410 (-567))))) (((-410 |#2|) $) NIL)) (-3658 (($ (-1268 (-410 |#2|)) (-1268 $)) NIL) (($ (-1268 (-410 |#2|))) 61) (($ (-1268 |#2|) |#2|) 136)) (-2443 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-410 |#2|) (-351)))) (-2349 (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-1811 (((-690 (-410 |#2|)) $ (-1268 $)) NIL) (((-690 (-410 |#2|)) $) NIL)) (-2630 (((-690 (-567)) (-690 $)) NIL (|has| (-410 |#2|) (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (|has| (-410 |#2|) (-640 (-567)))) (((-2 (|:| -2316 (-690 (-410 |#2|))) (|:| |vec| (-1268 (-410 |#2|)))) (-690 $) (-1268 $)) NIL) (((-690 (-410 |#2|)) (-690 $)) NIL)) (-1639 (((-1268 $) (-1268 $)) NIL)) (-2477 (($ |#3|) NIL) (((-3 $ "failed") (-410 |#3|)) NIL (|has| (-410 |#2|) (-365)))) (-2109 (((-3 $ "failed") $) NIL)) (-1381 (((-645 (-645 |#1|))) NIL (|has| |#1| (-370)))) (-3282 (((-112) |#1| |#1|) NIL)) (-1954 (((-923)) NIL)) (-1348 (($) NIL (|has| (-410 |#2|) (-370)))) (-3863 (((-112)) NIL)) (-3347 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-2360 (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL (|has| (-410 |#2|) (-365)))) (-3501 (($ $) NIL)) (-3431 (($) NIL (|has| (-410 |#2|) (-351)))) (-2722 (((-112) $) NIL (|has| (-410 |#2|) (-351)))) (-4225 (($ $ (-772)) NIL (|has| (-410 |#2|) (-351))) (($ $) NIL (|has| (-410 |#2|) (-351)))) (-3184 (((-112) $) NIL (|has| (-410 |#2|) (-365)))) (-4384 (((-923) $) NIL (|has| (-410 |#2|) (-351))) (((-834 (-923)) $) NIL (|has| (-410 |#2|) (-351)))) (-1433 (((-112) $) NIL)) (-3663 (((-772)) NIL)) (-4126 (((-1268 $) (-1268 $)) 111)) (-2475 (((-410 |#2|) $) NIL)) (-4334 (((-645 (-954 |#1|)) (-1178)) NIL (|has| |#1| (-365)))) (-3972 (((-3 $ "failed") $) NIL (|has| (-410 |#2|) (-351)))) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| (-410 |#2|) (-365)))) (-4206 ((|#3| $) NIL (|has| (-410 |#2|) (-365)))) (-4249 (((-923) $) NIL (|has| (-410 |#2|) (-370)))) (-2465 ((|#3| $) NIL)) (-2740 (($ (-645 $)) NIL (|has| (-410 |#2|) (-365))) (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-1419 (((-1160) $) NIL)) (-3280 (((-1273) (-772)) 88)) (-4143 (((-690 (-410 |#2|))) 56)) (-3264 (((-690 (-410 |#2|))) 49)) (-2939 (($ $) NIL (|has| (-410 |#2|) (-365)))) (-4236 (($ (-1268 |#2|) |#2|) 137)) (-1900 (((-690 (-410 |#2|))) 50)) (-3564 (((-690 (-410 |#2|))) 48)) (-4253 (((-2 (|:| |num| (-690 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 135)) (-3270 (((-2 (|:| |num| (-1268 |#2|)) (|:| |den| |#2|)) $) 68)) (-3992 (((-1268 $)) 47)) (-3675 (((-1268 $)) 46)) (-1928 (((-112) $) NIL)) (-4255 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-2672 (($) NIL (|has| (-410 |#2|) (-351)) CONST)) (-3768 (($ (-923)) NIL (|has| (-410 |#2|) (-370)))) (-4050 (((-3 |#2| "failed")) NIL)) (-3430 (((-1122) $) NIL)) (-2666 (((-772)) NIL)) (-1398 (($) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| (-410 |#2|) (-365)))) (-2774 (($ (-645 $)) NIL (|has| (-410 |#2|) (-365))) (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-1796 (((-645 (-2 (|:| -2706 (-567)) (|:| -3458 (-567))))) NIL (|has| (-410 |#2|) (-351)))) (-2706 (((-421 $) $) NIL (|has| (-410 |#2|) (-365)))) (-3402 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-410 |#2|) (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL (|has| (-410 |#2|) (-365)))) (-2391 (((-3 $ "failed") $ $) NIL (|has| (-410 |#2|) (-365)))) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| (-410 |#2|) (-365)))) (-1990 (((-772) $) NIL (|has| (-410 |#2|) (-365)))) (-1787 ((|#1| $ |#1| |#1|) NIL)) (-3346 (((-3 |#2| "failed")) NIL)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL (|has| (-410 |#2|) (-365)))) (-3788 (((-410 |#2|) (-1268 $)) NIL) (((-410 |#2|)) 44)) (-2491 (((-772) $) NIL (|has| (-410 |#2|) (-351))) (((-3 (-772) "failed") $ $) NIL (|has| (-410 |#2|) (-351)))) (-1593 (($ $ (-1 (-410 |#2|) (-410 |#2|)) (-772)) NIL (|has| (-410 |#2|) (-365))) (($ $ (-1 (-410 |#2|) (-410 |#2|))) NIL (|has| (-410 |#2|) (-365))) (($ $ (-1 |#2| |#2|)) 131) (($ $ (-645 (-1178)) (-645 (-772))) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1178))))) (($ $ (-1178) (-772)) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1178))))) (($ $ (-645 (-1178))) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1178))))) (($ $ (-1178)) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1178))))) (($ $ (-772)) NIL (-2800 (-12 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-351)))) (($ $) NIL (-2800 (-12 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-351))))) (-1866 (((-690 (-410 |#2|)) (-1268 $) (-1 (-410 |#2|) (-410 |#2|))) NIL (|has| (-410 |#2|) (-365)))) (-3341 ((|#3|) 55)) (-1527 (($) NIL (|has| (-410 |#2|) (-351)))) (-2887 (((-1268 (-410 |#2|)) $ (-1268 $)) NIL) (((-690 (-410 |#2|)) (-1268 $) (-1268 $)) NIL) (((-1268 (-410 |#2|)) $) 62) (((-690 (-410 |#2|)) (-1268 $)) 112)) (-3893 (((-1268 (-410 |#2|)) $) NIL) (($ (-1268 (-410 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (|has| (-410 |#2|) (-351)))) (-4000 (((-1268 $) (-1268 $)) NIL)) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ (-410 |#2|)) NIL) (($ (-410 (-567))) NIL (-2800 (|has| (-410 |#2|) (-1040 (-410 (-567)))) (|has| (-410 |#2|) (-365)))) (($ $) NIL (|has| (-410 |#2|) (-365)))) (-1903 (($ $) NIL (|has| (-410 |#2|) (-351))) (((-3 $ "failed") $) NIL (|has| (-410 |#2|) (-145)))) (-2155 ((|#3| $) NIL)) (-4221 (((-772)) NIL T CONST)) (-2104 (((-112)) 42)) (-2542 (((-112) |#1|) 54) (((-112) |#2|) 143)) (-1745 (((-112) $ $) NIL)) (-2623 (((-1268 $)) 102)) (-3816 (((-112) $ $) NIL (|has| (-410 |#2|) (-365)))) (-2250 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1562 (((-112)) NIL)) (-1716 (($) 17 T CONST)) (-1728 (($) 27 T CONST)) (-2637 (($ $ (-1 (-410 |#2|) (-410 |#2|)) (-772)) NIL (|has| (-410 |#2|) (-365))) (($ $ (-1 (-410 |#2|) (-410 |#2|))) NIL (|has| (-410 |#2|) (-365))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1178))))) (($ $ (-1178) (-772)) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1178))))) (($ $ (-645 (-1178))) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1178))))) (($ $ (-1178)) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1178))))) (($ $ (-772)) NIL (-2800 (-12 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-351)))) (($ $) NIL (-2800 (-12 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-351))))) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL (|has| (-410 |#2|) (-365)))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 |#2|)) NIL) (($ (-410 |#2|) $) NIL) (($ (-410 (-567)) $) NIL (|has| (-410 |#2|) (-365))) (($ $ (-410 (-567))) NIL (|has| (-410 |#2|) (-365)))))
-(((-40 |#1| |#2| |#3| |#4|) (-13 (-344 |#1| |#2| |#3|) (-10 -7 (-15 -3280 ((-1273) (-772))))) (-365) (-1244 |#1|) (-1244 (-410 |#2|)) |#3|) (T -40))
-((-3280 (*1 *2 *3) (-12 (-5 *3 (-772)) (-4 *4 (-365)) (-4 *5 (-1244 *4)) (-5 *2 (-1273)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1244 (-410 *5))) (-14 *7 *6))))
-(-13 (-344 |#1| |#2| |#3|) (-10 -7 (-15 -3280 ((-1273) (-772)))))
-((-2388 ((|#2| |#2|) 47)) (-1788 ((|#2| |#2|) 139 (-12 (|has| |#2| (-433 |#1|)) (|has| |#1| (-13 (-455) (-1040 (-567))))))) (-3613 ((|#2| |#2|) 100 (-12 (|has| |#2| (-433 |#1|)) (|has| |#1| (-13 (-455) (-1040 (-567))))))) (-2282 ((|#2| |#2|) 101 (-12 (|has| |#2| (-433 |#1|)) (|has| |#1| (-13 (-455) (-1040 (-567))))))) (-1362 ((|#2| (-114) |#2| (-772)) 135 (-12 (|has| |#2| (-433 |#1|)) (|has| |#1| (-13 (-455) (-1040 (-567))))))) (-4088 (((-1174 |#2|) |#2|) 44)) (-1320 ((|#2| |#2| (-645 (-613 |#2|))) 18) ((|#2| |#2| (-645 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16)))
-(((-41 |#1| |#2|) (-10 -7 (-15 -2388 (|#2| |#2|)) (-15 -1320 (|#2| |#2|)) (-15 -1320 (|#2| |#2| |#2|)) (-15 -1320 (|#2| |#2| (-645 |#2|))) (-15 -1320 (|#2| |#2| (-645 (-613 |#2|)))) (-15 -4088 ((-1174 |#2|) |#2|)) (IF (|has| |#1| (-13 (-455) (-1040 (-567)))) (IF (|has| |#2| (-433 |#1|)) (PROGN (-15 -2282 (|#2| |#2|)) (-15 -3613 (|#2| |#2|)) (-15 -1788 (|#2| |#2|)) (-15 -1362 (|#2| (-114) |#2| (-772)))) |%noBranch|) |%noBranch|)) (-559) (-13 (-365) (-303) (-10 -8 (-15 -1448 ((-1127 |#1| (-613 $)) $)) (-15 -1460 ((-1127 |#1| (-613 $)) $)) (-15 -4132 ($ (-1127 |#1| (-613 $))))))) (T -41))
-((-1362 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-114)) (-5 *4 (-772)) (-4 *5 (-13 (-455) (-1040 (-567)))) (-4 *5 (-559)) (-5 *1 (-41 *5 *2)) (-4 *2 (-433 *5)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -1448 ((-1127 *5 (-613 $)) $)) (-15 -1460 ((-1127 *5 (-613 $)) $)) (-15 -4132 ($ (-1127 *5 (-613 $))))))))) (-1788 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1040 (-567)))) (-4 *3 (-559)) (-5 *1 (-41 *3 *2)) (-4 *2 (-433 *3)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -1448 ((-1127 *3 (-613 $)) $)) (-15 -1460 ((-1127 *3 (-613 $)) $)) (-15 -4132 ($ (-1127 *3 (-613 $))))))))) (-3613 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1040 (-567)))) (-4 *3 (-559)) (-5 *1 (-41 *3 *2)) (-4 *2 (-433 *3)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -1448 ((-1127 *3 (-613 $)) $)) (-15 -1460 ((-1127 *3 (-613 $)) $)) (-15 -4132 ($ (-1127 *3 (-613 $))))))))) (-2282 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1040 (-567)))) (-4 *3 (-559)) (-5 *1 (-41 *3 *2)) (-4 *2 (-433 *3)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -1448 ((-1127 *3 (-613 $)) $)) (-15 -1460 ((-1127 *3 (-613 $)) $)) (-15 -4132 ($ (-1127 *3 (-613 $))))))))) (-4088 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-1174 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-365) (-303) (-10 -8 (-15 -1448 ((-1127 *4 (-613 $)) $)) (-15 -1460 ((-1127 *4 (-613 $)) $)) (-15 -4132 ($ (-1127 *4 (-613 $))))))))) (-1320 (*1 *2 *2 *3) (-12 (-5 *3 (-645 (-613 *2))) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -1448 ((-1127 *4 (-613 $)) $)) (-15 -1460 ((-1127 *4 (-613 $)) $)) (-15 -4132 ($ (-1127 *4 (-613 $))))))) (-4 *4 (-559)) (-5 *1 (-41 *4 *2)))) (-1320 (*1 *2 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -1448 ((-1127 *4 (-613 $)) $)) (-15 -1460 ((-1127 *4 (-613 $)) $)) (-15 -4132 ($ (-1127 *4 (-613 $))))))) (-4 *4 (-559)) (-5 *1 (-41 *4 *2)))) (-1320 (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -1448 ((-1127 *3 (-613 $)) $)) (-15 -1460 ((-1127 *3 (-613 $)) $)) (-15 -4132 ($ (-1127 *3 (-613 $))))))))) (-1320 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -1448 ((-1127 *3 (-613 $)) $)) (-15 -1460 ((-1127 *3 (-613 $)) $)) (-15 -4132 ($ (-1127 *3 (-613 $))))))))) (-2388 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -1448 ((-1127 *3 (-613 $)) $)) (-15 -1460 ((-1127 *3 (-613 $)) $)) (-15 -4132 ($ (-1127 *3 (-613 $))))))))))
-(-10 -7 (-15 -2388 (|#2| |#2|)) (-15 -1320 (|#2| |#2|)) (-15 -1320 (|#2| |#2| |#2|)) (-15 -1320 (|#2| |#2| (-645 |#2|))) (-15 -1320 (|#2| |#2| (-645 (-613 |#2|)))) (-15 -4088 ((-1174 |#2|) |#2|)) (IF (|has| |#1| (-13 (-455) (-1040 (-567)))) (IF (|has| |#2| (-433 |#1|)) (PROGN (-15 -2282 (|#2| |#2|)) (-15 -3613 (|#2| |#2|)) (-15 -1788 (|#2| |#2|)) (-15 -1362 (|#2| (-114) |#2| (-772)))) |%noBranch|) |%noBranch|))
-((-2706 (((-421 (-1174 |#3|)) (-1174 |#3|) (-645 (-48))) 23) (((-421 |#3|) |#3| (-645 (-48))) 19)))
-(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -2706 ((-421 |#3|) |#3| (-645 (-48)))) (-15 -2706 ((-421 (-1174 |#3|)) (-1174 |#3|) (-645 (-48))))) (-851) (-794) (-951 (-48) |#2| |#1|)) (T -42))
-((-2706 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-48))) (-4 *5 (-851)) (-4 *6 (-794)) (-4 *7 (-951 (-48) *6 *5)) (-5 *2 (-421 (-1174 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1174 *7)))) (-2706 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-48))) (-4 *5 (-851)) (-4 *6 (-794)) (-5 *2 (-421 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-951 (-48) *6 *5)))))
-(-10 -7 (-15 -2706 ((-421 |#3|) |#3| (-645 (-48)))) (-15 -2706 ((-421 (-1174 |#3|)) (-1174 |#3|) (-645 (-48)))))
-((-3525 (((-772) |#2|) 72)) (-4395 (((-772) |#2|) 76)) (-1975 (((-645 |#2|)) 39)) (-3194 (((-772) |#2|) 75)) (-3281 (((-772) |#2|) 71)) (-4233 (((-772) |#2|) 74)) (-2894 (((-645 (-690 |#1|))) 67)) (-2643 (((-645 |#2|)) 62)) (-1565 (((-645 |#2|) |#2|) 50)) (-1508 (((-645 |#2|)) 64)) (-3522 (((-645 |#2|)) 63)) (-2297 (((-645 (-690 |#1|))) 55)) (-3353 (((-645 |#2|)) 61)) (-3598 (((-645 |#2|) |#2|) 49)) (-3462 (((-645 |#2|)) 57)) (-2494 (((-645 (-690 |#1|))) 68)) (-4385 (((-645 |#2|)) 66)) (-2623 (((-1268 |#2|) (-1268 |#2|)) 101 (|has| |#1| (-308)))))
-(((-43 |#1| |#2|) (-10 -7 (-15 -3194 ((-772) |#2|)) (-15 -4395 ((-772) |#2|)) (-15 -3281 ((-772) |#2|)) (-15 -3525 ((-772) |#2|)) (-15 -4233 ((-772) |#2|)) (-15 -3462 ((-645 |#2|))) (-15 -3598 ((-645 |#2|) |#2|)) (-15 -1565 ((-645 |#2|) |#2|)) (-15 -3353 ((-645 |#2|))) (-15 -2643 ((-645 |#2|))) (-15 -3522 ((-645 |#2|))) (-15 -1508 ((-645 |#2|))) (-15 -4385 ((-645 |#2|))) (-15 -2297 ((-645 (-690 |#1|)))) (-15 -2894 ((-645 (-690 |#1|)))) (-15 -2494 ((-645 (-690 |#1|)))) (-15 -1975 ((-645 |#2|))) (IF (|has| |#1| (-308)) (-15 -2623 ((-1268 |#2|) (-1268 |#2|))) |%noBranch|)) (-559) (-420 |#1|)) (T -43))
-((-2623 (*1 *2 *2) (-12 (-5 *2 (-1268 *4)) (-4 *4 (-420 *3)) (-4 *3 (-308)) (-4 *3 (-559)) (-5 *1 (-43 *3 *4)))) (-1975 (*1 *2) (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-420 *3)))) (-2494 (*1 *2) (-12 (-4 *3 (-559)) (-5 *2 (-645 (-690 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-420 *3)))) (-2894 (*1 *2) (-12 (-4 *3 (-559)) (-5 *2 (-645 (-690 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-420 *3)))) (-2297 (*1 *2) (-12 (-4 *3 (-559)) (-5 *2 (-645 (-690 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-420 *3)))) (-4385 (*1 *2) (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-420 *3)))) (-1508 (*1 *2) (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-420 *3)))) (-3522 (*1 *2) (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-420 *3)))) (-2643 (*1 *2) (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-420 *3)))) (-3353 (*1 *2) (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-420 *3)))) (-1565 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-645 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-420 *4)))) (-3598 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-645 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-420 *4)))) (-3462 (*1 *2) (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-420 *3)))) (-4233 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-772)) (-5 *1 (-43 *4 *3)) (-4 *3 (-420 *4)))) (-3525 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-772)) (-5 *1 (-43 *4 *3)) (-4 *3 (-420 *4)))) (-3281 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-772)) (-5 *1 (-43 *4 *3)) (-4 *3 (-420 *4)))) (-4395 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-772)) (-5 *1 (-43 *4 *3)) (-4 *3 (-420 *4)))) (-3194 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-772)) (-5 *1 (-43 *4 *3)) (-4 *3 (-420 *4)))))
-(-10 -7 (-15 -3194 ((-772) |#2|)) (-15 -4395 ((-772) |#2|)) (-15 -3281 ((-772) |#2|)) (-15 -3525 ((-772) |#2|)) (-15 -4233 ((-772) |#2|)) (-15 -3462 ((-645 |#2|))) (-15 -3598 ((-645 |#2|) |#2|)) (-15 -1565 ((-645 |#2|) |#2|)) (-15 -3353 ((-645 |#2|))) (-15 -2643 ((-645 |#2|))) (-15 -3522 ((-645 |#2|))) (-15 -1508 ((-645 |#2|))) (-15 -4385 ((-645 |#2|))) (-15 -2297 ((-645 (-690 |#1|)))) (-15 -2894 ((-645 (-690 |#1|)))) (-15 -2494 ((-645 (-690 |#1|)))) (-15 -1975 ((-645 |#2|))) (IF (|has| |#1| (-308)) (-15 -2623 ((-1268 |#2|) (-1268 |#2|))) |%noBranch|))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3951 (((-3 $ "failed")) NIL (|has| |#1| (-559)))) (-3472 (((-3 $ "failed") $ $) NIL)) (-2189 (((-1268 (-690 |#1|)) (-1268 $)) NIL) (((-1268 (-690 |#1|))) 24)) (-3337 (((-1268 $)) 55)) (-2585 (($) NIL T CONST)) (-3425 (((-3 (-2 (|:| |particular| $) (|:| -2623 (-645 $))) "failed")) NIL (|has| |#1| (-559)))) (-3645 (((-3 $ "failed")) NIL (|has| |#1| (-559)))) (-1735 (((-690 |#1|) (-1268 $)) NIL) (((-690 |#1|)) NIL)) (-2583 ((|#1| $) NIL)) (-3528 (((-690 |#1|) $ (-1268 $)) NIL) (((-690 |#1|) $) NIL)) (-2209 (((-3 $ "failed") $) NIL (|has| |#1| (-559)))) (-4063 (((-1174 (-954 |#1|))) NIL (|has| |#1| (-365)))) (-2586 (($ $ (-923)) NIL)) (-1883 ((|#1| $) NIL)) (-1575 (((-1174 |#1|) $) NIL (|has| |#1| (-559)))) (-2676 ((|#1| (-1268 $)) NIL) ((|#1|) NIL)) (-1682 (((-1174 |#1|) $) NIL)) (-1444 (((-112)) 102)) (-3658 (($ (-1268 |#1|) (-1268 $)) NIL) (($ (-1268 |#1|)) NIL)) (-2109 (((-3 $ "failed") $) 14 (|has| |#1| (-559)))) (-1954 (((-923)) 56)) (-1379 (((-112)) NIL)) (-3719 (($ $ (-923)) NIL)) (-4353 (((-112)) NIL)) (-3375 (((-112)) NIL)) (-3154 (((-112)) 104)) (-3412 (((-3 (-2 (|:| |particular| $) (|:| -2623 (-645 $))) "failed")) NIL (|has| |#1| (-559)))) (-3345 (((-3 $ "failed")) NIL (|has| |#1| (-559)))) (-2119 (((-690 |#1|) (-1268 $)) NIL) (((-690 |#1|)) NIL)) (-2726 ((|#1| $) NIL)) (-2702 (((-690 |#1|) $ (-1268 $)) NIL) (((-690 |#1|) $) NIL)) (-3080 (((-3 $ "failed") $) NIL (|has| |#1| (-559)))) (-4162 (((-1174 (-954 |#1|))) NIL (|has| |#1| (-365)))) (-3450 (($ $ (-923)) NIL)) (-2200 ((|#1| $) NIL)) (-3960 (((-1174 |#1|) $) NIL (|has| |#1| (-559)))) (-3042 ((|#1| (-1268 $)) NIL) ((|#1|) NIL)) (-3567 (((-1174 |#1|) $) NIL)) (-3396 (((-112)) 101)) (-1419 (((-1160) $) NIL)) (-2609 (((-112)) 109)) (-3070 (((-112)) 108)) (-4341 (((-112)) 110)) (-3430 (((-1122) $) NIL)) (-4356 (((-112)) 103)) (-1787 ((|#1| $ (-567)) 58)) (-2887 (((-1268 |#1|) $ (-1268 $)) 53) (((-690 |#1|) (-1268 $) (-1268 $)) NIL) (((-1268 |#1|) $) 28) (((-690 |#1|) (-1268 $)) NIL)) (-3893 (((-1268 |#1|) $) NIL) (($ (-1268 |#1|)) NIL)) (-4013 (((-645 (-954 |#1|)) (-1268 $)) NIL) (((-645 (-954 |#1|))) NIL)) (-1485 (($ $ $) NIL)) (-1502 (((-112)) 98)) (-4132 (((-863) $) 75) (($ (-1268 |#1|)) 22)) (-1745 (((-112) $ $) NIL)) (-2623 (((-1268 $)) 49)) (-2652 (((-645 (-1268 |#1|))) NIL (|has| |#1| (-559)))) (-2153 (($ $ $ $) NIL)) (-3013 (((-112)) 94)) (-2355 (($ (-690 |#1|) $) 18)) (-2214 (($ $ $) NIL)) (-1636 (((-112)) 100)) (-1749 (((-112)) 95)) (-2059 (((-112)) 93)) (-1716 (($) NIL T CONST)) (-2936 (((-112) $ $) NIL)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 84) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1144 |#2| |#1|) $) 19)))
-(((-44 |#1| |#2| |#3| |#4|) (-13 (-420 |#1|) (-649 (-1144 |#2| |#1|)) (-10 -8 (-15 -4132 ($ (-1268 |#1|))))) (-365) (-923) (-645 (-1178)) (-1268 (-690 |#1|))) (T -44))
-((-4132 (*1 *1 *2) (-12 (-5 *2 (-1268 *3)) (-4 *3 (-365)) (-14 *6 (-1268 (-690 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-923)) (-14 *5 (-645 (-1178))))))
-(-13 (-420 |#1|) (-649 (-1144 |#2| |#1|)) (-10 -8 (-15 -4132 ($ (-1268 |#1|)))))
-((-2403 (((-112) $ $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-3802 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL)) (-3998 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL)) (-4283 (($ $) NIL)) (-2835 (($) NIL) (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL)) (-1783 (((-1273) $ |#1| |#1|) NIL (|has| $ (-6 -4419))) (((-1273) $ (-567) (-567)) NIL (|has| $ (-6 -4419)))) (-2366 (($ $ (-567)) NIL (|has| $ (-6 -4419)))) (-2496 (((-112) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-851)))) (-1394 (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4419))) (($ $) NIL (-12 (|has| $ (-6 -4419)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-851))))) (-4396 (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-851)))) (-3445 (((-112) $ (-772)) NIL)) (-2138 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) NIL (|has| $ (-6 -4419)))) (-4209 (($ $ $) 33 (|has| $ (-6 -4419)))) (-2315 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) NIL (|has| $ (-6 -4419)))) (-2271 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) 35 (|has| $ (-6 -4419)))) (-4284 ((|#2| $ |#1| |#2|) 53) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $ (-567) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) NIL (|has| $ (-6 -4419))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $ (-1235 (-567)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) NIL (|has| $ (-6 -4419))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $ "last" (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) NIL (|has| $ (-6 -4419))) (($ $ "rest" $) NIL (|has| $ (-6 -4419))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $ "first" (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) NIL (|has| $ (-6 -4419))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $ "value" (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) NIL (|has| $ (-6 -4419)))) (-1301 (($ $ (-645 $)) NIL (|has| $ (-6 -4419)))) (-2839 (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL)) (-3350 (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-3984 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL)) (-4019 (((-3 |#2| "failed") |#1| $) 43)) (-2585 (($) NIL T CONST)) (-1764 (($ $) NIL (|has| $ (-6 -4419)))) (-3584 (($ $) NIL)) (-2421 (($ $ (-772)) NIL) (($ $) 29)) (-2133 (($ $) NIL (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (-2444 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102))))) (-2539 (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL (|has| $ (-6 -4418))) (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-3 |#2| "failed") |#1| $) 56) (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL) (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (-3238 (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-2477 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) NIL (|has| $ (-6 -4418))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) NIL (|has| $ (-6 -4418))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-3741 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4419))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $ (-567) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) NIL (|has| $ (-6 -4419)))) (-3680 ((|#2| $ |#1|) NIL) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $ (-567)) NIL)) (-1399 (((-112) $) NIL)) (-2569 (((-567) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL) (((-567) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102))) (((-567) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $ (-567)) NIL (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (-2777 (((-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 20 (|has| $ (-6 -4418))) (((-645 |#2|) $) NIL (|has| $ (-6 -4418))) (((-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 20 (|has| $ (-6 -4418)))) (-2182 (((-645 $) $) NIL)) (-3512 (((-112) $ $) NIL (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (-2846 (($ (-772) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) NIL)) (-2077 (((-112) $ (-772)) NIL)) (-4069 ((|#1| $) NIL (|has| |#1| (-851))) (((-567) $) 38 (|has| (-567) (-851)))) (-1354 (($ $ $) NIL (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-851)))) (-2966 (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-851)))) (-4135 (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-851)))) (-2279 (((-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-645 |#2|) $) NIL (|has| $ (-6 -4418))) (((-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#2| (-1102)))) (((-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102))))) (-2266 ((|#1| $) NIL (|has| |#1| (-851))) (((-567) $) 40 (|has| (-567) (-851)))) (-2981 (($ $ $) NIL (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-851)))) (-3731 (($ (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4419))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4419))) (($ (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL)) (-2284 (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-3773 (((-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL)) (-2769 (((-112) $) NIL)) (-1419 (((-1160) $) 49 (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-3257 (($ $ (-772)) NIL) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL)) (-1391 (((-645 |#1|) $) 22)) (-4251 (((-112) |#1| $) NIL)) (-1566 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL)) (-2531 (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL) (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $ (-567)) NIL) (($ $ $ (-567)) NIL)) (-2845 (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $ (-567)) NIL) (($ $ $ (-567)) NIL)) (-1789 (((-645 |#1|) $) NIL) (((-645 (-567)) $) NIL)) (-2996 (((-112) |#1| $) NIL) (((-112) (-567) $) NIL)) (-3430 (((-1122) $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-2409 ((|#2| $) NIL (|has| |#1| (-851))) (($ $ (-772)) NIL) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) 27)) (-4128 (((-3 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) "failed") (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL) (((-3 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) "failed") (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL)) (-3986 (($ $ |#2|) NIL (|has| $ (-6 -4419))) (($ $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) NIL (|has| $ (-6 -4419)))) (-1793 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL)) (-3323 (((-112) $) NIL)) (-3025 (((-112) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4418))) (((-112) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))))) NIL (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-295 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) NIL (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) NIL (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-295 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-645 (-295 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))))) NIL (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102))))) (-3092 (((-112) $ $) NIL)) (-1794 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#2| (-1102)))) (((-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102))))) (-2339 (((-645 |#2|) $) NIL) (((-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 19)) (-3572 (((-112) $) 18)) (-3498 (($) 14)) (-1787 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $ (-567) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) NIL) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $ (-567)) NIL) (($ $ (-1235 (-567))) NIL) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $ "first") NIL) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $ "value") NIL)) (-2658 (((-567) $ $) NIL)) (-2718 (($) 13) (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL)) (-3670 (($ $ (-567)) NIL) (($ $ (-1235 (-567))) NIL)) (-1560 (($ $ (-567)) NIL) (($ $ (-1235 (-567))) NIL)) (-3900 (((-112) $) NIL)) (-1644 (($ $) NIL)) (-3519 (($ $) NIL (|has| $ (-6 -4419)))) (-3344 (((-772) $) NIL)) (-1503 (($ $) NIL)) (-3439 (((-772) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-772) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (((-772) |#2| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#2| (-1102)))) (((-772) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4418))) (((-772) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (((-772) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-1395 (($ $ $ (-567)) NIL (|has| $ (-6 -4419)))) (-4305 (($ $) NIL)) (-3893 (((-539) $) NIL (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-615 (-539))))) (-4147 (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL) (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL)) (-2484 (($ $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) NIL) (($ $ $) NIL)) (-2269 (($ $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) NIL) (($ (-645 $)) NIL) (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) 31) (($ $ $) NIL)) (-4132 (((-863) $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-614 (-863))) (|has| |#2| (-614 (-863)))))) (-1531 (((-645 $) $) NIL)) (-3606 (((-112) $ $) NIL (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (-1745 (((-112) $ $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-3551 (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL)) (-3266 (((-3 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) "failed") |#1| $) 51)) (-1853 (((-112) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4418))) (((-112) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-2997 (((-112) $ $) NIL (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-851)))) (-2971 (((-112) $ $) NIL (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-851)))) (-2936 (((-112) $ $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-2984 (((-112) $ $) NIL (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-851)))) (-2958 (((-112) $ $) NIL (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-851)))) (-2414 (((-772) $) 25 (|has| $ (-6 -4418)))))
+((-2004 (((-421 |#1|) |#1|) 41)) (-2717 (((-421 |#1|) |#1|) 30) (((-421 |#1|) |#1| (-645 (-48))) 33)) (-2155 (((-112) |#1|) 59)))
+(((-39 |#1|) (-10 -7 (-15 -2717 ((-421 |#1|) |#1| (-645 (-48)))) (-15 -2717 ((-421 |#1|) |#1|)) (-15 -2004 ((-421 |#1|) |#1|)) (-15 -2155 ((-112) |#1|))) (-1245 (-48))) (T -39))
+((-2155 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1245 (-48))))) (-2004 (*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1245 (-48))))) (-2717 (*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1245 (-48))))) (-2717 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-48))) (-5 *2 (-421 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1245 (-48))))))
+(-10 -7 (-15 -2717 ((-421 |#1|) |#1| (-645 (-48)))) (-15 -2717 ((-421 |#1|) |#1|)) (-15 -2004 ((-421 |#1|) |#1|)) (-15 -2155 ((-112) |#1|)))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-1723 (((-2 (|:| |num| (-1269 |#2|)) (|:| |den| |#2|)) $) NIL)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) NIL (|has| (-410 |#2|) (-365)))) (-4287 (($ $) NIL (|has| (-410 |#2|) (-365)))) (-2286 (((-112) $) NIL (|has| (-410 |#2|) (-365)))) (-3478 (((-690 (-410 |#2|)) (-1269 $)) NIL) (((-690 (-410 |#2|))) NIL)) (-4293 (((-410 |#2|) $) NIL)) (-3792 (((-1192 (-923) (-772)) (-567)) NIL (|has| (-410 |#2|) (-351)))) (-2376 (((-3 $ "failed") $ $) NIL)) (-3659 (($ $) NIL (|has| (-410 |#2|) (-365)))) (-3597 (((-421 $) $) NIL (|has| (-410 |#2|) (-365)))) (-3696 (((-112) $ $) NIL (|has| (-410 |#2|) (-365)))) (-2384 (((-772)) NIL (|has| (-410 |#2|) (-370)))) (-1597 (((-112)) NIL)) (-1516 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-3647 (($) NIL T CONST)) (-3765 (((-3 (-567) "failed") $) NIL (|has| (-410 |#2|) (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| (-410 |#2|) (-1040 (-410 (-567))))) (((-3 (-410 |#2|) "failed") $) NIL)) (-2051 (((-567) $) NIL (|has| (-410 |#2|) (-1040 (-567)))) (((-410 (-567)) $) NIL (|has| (-410 |#2|) (-1040 (-410 (-567))))) (((-410 |#2|) $) NIL)) (-3111 (($ (-1269 (-410 |#2|)) (-1269 $)) NIL) (($ (-1269 (-410 |#2|))) 61) (($ (-1269 |#2|) |#2|) 136)) (-2998 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-410 |#2|) (-351)))) (-2357 (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-3012 (((-690 (-410 |#2|)) $ (-1269 $)) NIL) (((-690 (-410 |#2|)) $) NIL)) (-1423 (((-690 (-567)) (-690 $)) NIL (|has| (-410 |#2|) (-640 (-567)))) (((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (|has| (-410 |#2|) (-640 (-567)))) (((-2 (|:| -4208 (-690 (-410 |#2|))) (|:| |vec| (-1269 (-410 |#2|)))) (-690 $) (-1269 $)) NIL) (((-690 (-410 |#2|)) (-690 $)) NIL)) (-4381 (((-1269 $) (-1269 $)) NIL)) (-2494 (($ |#3|) NIL) (((-3 $ "failed") (-410 |#3|)) NIL (|has| (-410 |#2|) (-365)))) (-3588 (((-3 $ "failed") $) NIL)) (-3476 (((-645 (-645 |#1|))) NIL (|has| |#1| (-370)))) (-3459 (((-112) |#1| |#1|) NIL)) (-1976 (((-923)) NIL)) (-1359 (($) NIL (|has| (-410 |#2|) (-370)))) (-3240 (((-112)) NIL)) (-3644 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-2368 (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) NIL (|has| (-410 |#2|) (-365)))) (-2989 (($ $) NIL)) (-2870 (($) NIL (|has| (-410 |#2|) (-351)))) (-1305 (((-112) $) NIL (|has| (-410 |#2|) (-351)))) (-3144 (($ $ (-772)) NIL (|has| (-410 |#2|) (-351))) (($ $) NIL (|has| (-410 |#2|) (-351)))) (-3502 (((-112) $) NIL (|has| (-410 |#2|) (-365)))) (-3362 (((-923) $) NIL (|has| (-410 |#2|) (-351))) (((-834 (-923)) $) NIL (|has| (-410 |#2|) (-351)))) (-4346 (((-112) $) NIL)) (-2375 (((-772)) NIL)) (-3001 (((-1269 $) (-1269 $)) 111)) (-2724 (((-410 |#2|) $) NIL)) (-2825 (((-645 (-954 |#1|)) (-1179)) NIL (|has| |#1| (-365)))) (-3067 (((-3 $ "failed") $) NIL (|has| (-410 |#2|) (-351)))) (-1469 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| (-410 |#2|) (-365)))) (-1914 ((|#3| $) NIL (|has| (-410 |#2|) (-365)))) (-3474 (((-923) $) NIL (|has| (-410 |#2|) (-370)))) (-2484 ((|#3| $) NIL)) (-2751 (($ (-645 $)) NIL (|has| (-410 |#2|) (-365))) (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-2516 (((-1161) $) NIL)) (-3272 (((-1274) (-772)) 88)) (-1848 (((-690 (-410 |#2|))) 56)) (-1392 (((-690 (-410 |#2|))) 49)) (-2949 (($ $) NIL (|has| (-410 |#2|) (-365)))) (-1781 (($ (-1269 |#2|) |#2|) 137)) (-3089 (((-690 (-410 |#2|))) 50)) (-1334 (((-690 (-410 |#2|))) 48)) (-3033 (((-2 (|:| |num| (-690 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 135)) (-1835 (((-2 (|:| |num| (-1269 |#2|)) (|:| |den| |#2|)) $) 68)) (-3230 (((-1269 $)) 47)) (-4180 (((-1269 $)) 46)) (-3098 (((-112) $) NIL)) (-2039 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-2694 (($) NIL (|has| (-410 |#2|) (-351)) CONST)) (-3779 (($ (-923)) NIL (|has| (-410 |#2|) (-370)))) (-1867 (((-3 |#2| "failed")) NIL)) (-3437 (((-1122) $) NIL)) (-1438 (((-772)) NIL)) (-1399 (($) NIL)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| (-410 |#2|) (-365)))) (-2785 (($ (-645 $)) NIL (|has| (-410 |#2|) (-365))) (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-4151 (((-645 (-2 (|:| -2717 (-567)) (|:| -3468 (-567))))) NIL (|has| (-410 |#2|) (-351)))) (-2717 (((-421 $) $) NIL (|has| (-410 |#2|) (-365)))) (-2905 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-410 |#2|) (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) NIL (|has| (-410 |#2|) (-365)))) (-2400 (((-3 $ "failed") $ $) NIL (|has| (-410 |#2|) (-365)))) (-2372 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| (-410 |#2|) (-365)))) (-2460 (((-772) $) NIL (|has| (-410 |#2|) (-365)))) (-1801 ((|#1| $ |#1| |#1|) NIL)) (-3524 (((-3 |#2| "failed")) NIL)) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) NIL (|has| (-410 |#2|) (-365)))) (-2433 (((-410 |#2|) (-1269 $)) NIL) (((-410 |#2|)) 44)) (-1760 (((-772) $) NIL (|has| (-410 |#2|) (-351))) (((-3 (-772) "failed") $ $) NIL (|has| (-410 |#2|) (-351)))) (-1616 (($ $ (-1 (-410 |#2|) (-410 |#2|)) (-772)) NIL (|has| (-410 |#2|) (-365))) (($ $ (-1 (-410 |#2|) (-410 |#2|))) NIL (|has| (-410 |#2|) (-365))) (($ $ (-1 |#2| |#2|)) 131) (($ $ (-645 (-1179)) (-645 (-772))) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1179))))) (($ $ (-1179) (-772)) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1179))))) (($ $ (-645 (-1179))) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1179))))) (($ $ (-1179)) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1179))))) (($ $ (-772)) NIL (-2811 (-12 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-351)))) (($ $) NIL (-2811 (-12 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-351))))) (-1648 (((-690 (-410 |#2|)) (-1269 $) (-1 (-410 |#2|) (-410 |#2|))) NIL (|has| (-410 |#2|) (-365)))) (-3169 ((|#3|) 55)) (-4273 (($) NIL (|has| (-410 |#2|) (-351)))) (-3088 (((-1269 (-410 |#2|)) $ (-1269 $)) NIL) (((-690 (-410 |#2|)) (-1269 $) (-1269 $)) NIL) (((-1269 (-410 |#2|)) $) 62) (((-690 (-410 |#2|)) (-1269 $)) 112)) (-3902 (((-1269 (-410 |#2|)) $) NIL) (($ (-1269 (-410 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-2616 (((-3 (-1269 $) "failed") (-690 $)) NIL (|has| (-410 |#2|) (-351)))) (-2965 (((-1269 $) (-1269 $)) NIL)) (-4129 (((-863) $) NIL) (($ (-567)) NIL) (($ (-410 |#2|)) NIL) (($ (-410 (-567))) NIL (-2811 (|has| (-410 |#2|) (-1040 (-410 (-567)))) (|has| (-410 |#2|) (-365)))) (($ $) NIL (|has| (-410 |#2|) (-365)))) (-2118 (($ $) NIL (|has| (-410 |#2|) (-351))) (((-3 $ "failed") $) NIL (|has| (-410 |#2|) (-145)))) (-2231 ((|#3| $) NIL)) (-2746 (((-772)) NIL T CONST)) (-4315 (((-112)) 42)) (-1362 (((-112) |#1|) 54) (((-112) |#2|) 143)) (-3357 (((-112) $ $) NIL)) (-2144 (((-1269 $)) 102)) (-3731 (((-112) $ $) NIL (|has| (-410 |#2|) (-365)))) (-3959 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-2584 (((-112)) NIL)) (-1733 (($) 17 T CONST)) (-1744 (($) 27 T CONST)) (-2647 (($ $ (-1 (-410 |#2|) (-410 |#2|)) (-772)) NIL (|has| (-410 |#2|) (-365))) (($ $ (-1 (-410 |#2|) (-410 |#2|))) NIL (|has| (-410 |#2|) (-365))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1179))))) (($ $ (-1179) (-772)) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1179))))) (($ $ (-645 (-1179))) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1179))))) (($ $ (-1179)) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1179))))) (($ $ (-772)) NIL (-2811 (-12 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-351)))) (($ $) NIL (-2811 (-12 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-351))))) (-2946 (((-112) $ $) NIL)) (-3069 (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL (|has| (-410 |#2|) (-365)))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 |#2|)) NIL) (($ (-410 |#2|) $) NIL) (($ (-410 (-567)) $) NIL (|has| (-410 |#2|) (-365))) (($ $ (-410 (-567))) NIL (|has| (-410 |#2|) (-365)))))
+(((-40 |#1| |#2| |#3| |#4|) (-13 (-344 |#1| |#2| |#3|) (-10 -7 (-15 -3272 ((-1274) (-772))))) (-365) (-1245 |#1|) (-1245 (-410 |#2|)) |#3|) (T -40))
+((-3272 (*1 *2 *3) (-12 (-5 *3 (-772)) (-4 *4 (-365)) (-4 *5 (-1245 *4)) (-5 *2 (-1274)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1245 (-410 *5))) (-14 *7 *6))))
+(-13 (-344 |#1| |#2| |#3|) (-10 -7 (-15 -3272 ((-1274) (-772)))))
+((-1505 ((|#2| |#2|) 47)) (-4277 ((|#2| |#2|) 139 (-12 (|has| |#2| (-433 |#1|)) (|has| |#1| (-13 (-455) (-1040 (-567))))))) (-1527 ((|#2| |#2|) 100 (-12 (|has| |#2| (-433 |#1|)) (|has| |#1| (-13 (-455) (-1040 (-567))))))) (-4068 ((|#2| |#2|) 101 (-12 (|has| |#2| (-433 |#1|)) (|has| |#1| (-13 (-455) (-1040 (-567))))))) (-2903 ((|#2| (-114) |#2| (-772)) 135 (-12 (|has| |#2| (-433 |#1|)) (|has| |#1| (-13 (-455) (-1040 (-567))))))) (-2110 (((-1175 |#2|) |#2|) 44)) (-3411 ((|#2| |#2| (-645 (-613 |#2|))) 18) ((|#2| |#2| (-645 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16)))
+(((-41 |#1| |#2|) (-10 -7 (-15 -1505 (|#2| |#2|)) (-15 -3411 (|#2| |#2|)) (-15 -3411 (|#2| |#2| |#2|)) (-15 -3411 (|#2| |#2| (-645 |#2|))) (-15 -3411 (|#2| |#2| (-645 (-613 |#2|)))) (-15 -2110 ((-1175 |#2|) |#2|)) (IF (|has| |#1| (-13 (-455) (-1040 (-567)))) (IF (|has| |#2| (-433 |#1|)) (PROGN (-15 -4068 (|#2| |#2|)) (-15 -1527 (|#2| |#2|)) (-15 -4277 (|#2| |#2|)) (-15 -2903 (|#2| (-114) |#2| (-772)))) |%noBranch|) |%noBranch|)) (-559) (-13 (-365) (-303) (-10 -8 (-15 -1447 ((-1127 |#1| (-613 $)) $)) (-15 -1462 ((-1127 |#1| (-613 $)) $)) (-15 -4129 ($ (-1127 |#1| (-613 $))))))) (T -41))
+((-2903 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-114)) (-5 *4 (-772)) (-4 *5 (-13 (-455) (-1040 (-567)))) (-4 *5 (-559)) (-5 *1 (-41 *5 *2)) (-4 *2 (-433 *5)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -1447 ((-1127 *5 (-613 $)) $)) (-15 -1462 ((-1127 *5 (-613 $)) $)) (-15 -4129 ($ (-1127 *5 (-613 $))))))))) (-4277 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1040 (-567)))) (-4 *3 (-559)) (-5 *1 (-41 *3 *2)) (-4 *2 (-433 *3)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -1447 ((-1127 *3 (-613 $)) $)) (-15 -1462 ((-1127 *3 (-613 $)) $)) (-15 -4129 ($ (-1127 *3 (-613 $))))))))) (-1527 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1040 (-567)))) (-4 *3 (-559)) (-5 *1 (-41 *3 *2)) (-4 *2 (-433 *3)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -1447 ((-1127 *3 (-613 $)) $)) (-15 -1462 ((-1127 *3 (-613 $)) $)) (-15 -4129 ($ (-1127 *3 (-613 $))))))))) (-4068 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1040 (-567)))) (-4 *3 (-559)) (-5 *1 (-41 *3 *2)) (-4 *2 (-433 *3)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -1447 ((-1127 *3 (-613 $)) $)) (-15 -1462 ((-1127 *3 (-613 $)) $)) (-15 -4129 ($ (-1127 *3 (-613 $))))))))) (-2110 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-1175 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-365) (-303) (-10 -8 (-15 -1447 ((-1127 *4 (-613 $)) $)) (-15 -1462 ((-1127 *4 (-613 $)) $)) (-15 -4129 ($ (-1127 *4 (-613 $))))))))) (-3411 (*1 *2 *2 *3) (-12 (-5 *3 (-645 (-613 *2))) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -1447 ((-1127 *4 (-613 $)) $)) (-15 -1462 ((-1127 *4 (-613 $)) $)) (-15 -4129 ($ (-1127 *4 (-613 $))))))) (-4 *4 (-559)) (-5 *1 (-41 *4 *2)))) (-3411 (*1 *2 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -1447 ((-1127 *4 (-613 $)) $)) (-15 -1462 ((-1127 *4 (-613 $)) $)) (-15 -4129 ($ (-1127 *4 (-613 $))))))) (-4 *4 (-559)) (-5 *1 (-41 *4 *2)))) (-3411 (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -1447 ((-1127 *3 (-613 $)) $)) (-15 -1462 ((-1127 *3 (-613 $)) $)) (-15 -4129 ($ (-1127 *3 (-613 $))))))))) (-3411 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -1447 ((-1127 *3 (-613 $)) $)) (-15 -1462 ((-1127 *3 (-613 $)) $)) (-15 -4129 ($ (-1127 *3 (-613 $))))))))) (-1505 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -1447 ((-1127 *3 (-613 $)) $)) (-15 -1462 ((-1127 *3 (-613 $)) $)) (-15 -4129 ($ (-1127 *3 (-613 $))))))))))
+(-10 -7 (-15 -1505 (|#2| |#2|)) (-15 -3411 (|#2| |#2|)) (-15 -3411 (|#2| |#2| |#2|)) (-15 -3411 (|#2| |#2| (-645 |#2|))) (-15 -3411 (|#2| |#2| (-645 (-613 |#2|)))) (-15 -2110 ((-1175 |#2|) |#2|)) (IF (|has| |#1| (-13 (-455) (-1040 (-567)))) (IF (|has| |#2| (-433 |#1|)) (PROGN (-15 -4068 (|#2| |#2|)) (-15 -1527 (|#2| |#2|)) (-15 -4277 (|#2| |#2|)) (-15 -2903 (|#2| (-114) |#2| (-772)))) |%noBranch|) |%noBranch|))
+((-2717 (((-421 (-1175 |#3|)) (-1175 |#3|) (-645 (-48))) 23) (((-421 |#3|) |#3| (-645 (-48))) 19)))
+(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -2717 ((-421 |#3|) |#3| (-645 (-48)))) (-15 -2717 ((-421 (-1175 |#3|)) (-1175 |#3|) (-645 (-48))))) (-851) (-794) (-951 (-48) |#2| |#1|)) (T -42))
+((-2717 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-48))) (-4 *5 (-851)) (-4 *6 (-794)) (-4 *7 (-951 (-48) *6 *5)) (-5 *2 (-421 (-1175 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1175 *7)))) (-2717 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-48))) (-4 *5 (-851)) (-4 *6 (-794)) (-5 *2 (-421 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-951 (-48) *6 *5)))))
+(-10 -7 (-15 -2717 ((-421 |#3|) |#3| (-645 (-48)))) (-15 -2717 ((-421 (-1175 |#3|)) (-1175 |#3|) (-645 (-48)))))
+((-1427 (((-772) |#2|) 72)) (-2067 (((-772) |#2|) 76)) (-1355 (((-645 |#2|)) 39)) (-3211 (((-772) |#2|) 75)) (-3370 (((-772) |#2|) 71)) (-1480 (((-772) |#2|) 74)) (-1475 (((-645 (-690 |#1|))) 67)) (-4262 (((-645 |#2|)) 62)) (-2610 (((-645 |#2|) |#2|) 50)) (-2939 (((-645 |#2|)) 64)) (-4342 (((-645 |#2|)) 63)) (-3127 (((-645 (-690 |#1|))) 55)) (-3016 (((-645 |#2|)) 61)) (-2586 (((-645 |#2|) |#2|) 49)) (-2668 (((-645 |#2|)) 57)) (-3844 (((-645 (-690 |#1|))) 68)) (-3450 (((-645 |#2|)) 66)) (-2144 (((-1269 |#2|) (-1269 |#2|)) 101 (|has| |#1| (-308)))))
+(((-43 |#1| |#2|) (-10 -7 (-15 -3211 ((-772) |#2|)) (-15 -2067 ((-772) |#2|)) (-15 -3370 ((-772) |#2|)) (-15 -1427 ((-772) |#2|)) (-15 -1480 ((-772) |#2|)) (-15 -2668 ((-645 |#2|))) (-15 -2586 ((-645 |#2|) |#2|)) (-15 -2610 ((-645 |#2|) |#2|)) (-15 -3016 ((-645 |#2|))) (-15 -4262 ((-645 |#2|))) (-15 -4342 ((-645 |#2|))) (-15 -2939 ((-645 |#2|))) (-15 -3450 ((-645 |#2|))) (-15 -3127 ((-645 (-690 |#1|)))) (-15 -1475 ((-645 (-690 |#1|)))) (-15 -3844 ((-645 (-690 |#1|)))) (-15 -1355 ((-645 |#2|))) (IF (|has| |#1| (-308)) (-15 -2144 ((-1269 |#2|) (-1269 |#2|))) |%noBranch|)) (-559) (-420 |#1|)) (T -43))
+((-2144 (*1 *2 *2) (-12 (-5 *2 (-1269 *4)) (-4 *4 (-420 *3)) (-4 *3 (-308)) (-4 *3 (-559)) (-5 *1 (-43 *3 *4)))) (-1355 (*1 *2) (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-420 *3)))) (-3844 (*1 *2) (-12 (-4 *3 (-559)) (-5 *2 (-645 (-690 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-420 *3)))) (-1475 (*1 *2) (-12 (-4 *3 (-559)) (-5 *2 (-645 (-690 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-420 *3)))) (-3127 (*1 *2) (-12 (-4 *3 (-559)) (-5 *2 (-645 (-690 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-420 *3)))) (-3450 (*1 *2) (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-420 *3)))) (-2939 (*1 *2) (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-420 *3)))) (-4342 (*1 *2) (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-420 *3)))) (-4262 (*1 *2) (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-420 *3)))) (-3016 (*1 *2) (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-420 *3)))) (-2610 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-645 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-420 *4)))) (-2586 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-645 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-420 *4)))) (-2668 (*1 *2) (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-420 *3)))) (-1480 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-772)) (-5 *1 (-43 *4 *3)) (-4 *3 (-420 *4)))) (-1427 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-772)) (-5 *1 (-43 *4 *3)) (-4 *3 (-420 *4)))) (-3370 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-772)) (-5 *1 (-43 *4 *3)) (-4 *3 (-420 *4)))) (-2067 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-772)) (-5 *1 (-43 *4 *3)) (-4 *3 (-420 *4)))) (-3211 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-772)) (-5 *1 (-43 *4 *3)) (-4 *3 (-420 *4)))))
+(-10 -7 (-15 -3211 ((-772) |#2|)) (-15 -2067 ((-772) |#2|)) (-15 -3370 ((-772) |#2|)) (-15 -1427 ((-772) |#2|)) (-15 -1480 ((-772) |#2|)) (-15 -2668 ((-645 |#2|))) (-15 -2586 ((-645 |#2|) |#2|)) (-15 -2610 ((-645 |#2|) |#2|)) (-15 -3016 ((-645 |#2|))) (-15 -4262 ((-645 |#2|))) (-15 -4342 ((-645 |#2|))) (-15 -2939 ((-645 |#2|))) (-15 -3450 ((-645 |#2|))) (-15 -3127 ((-645 (-690 |#1|)))) (-15 -1475 ((-645 (-690 |#1|)))) (-15 -3844 ((-645 (-690 |#1|)))) (-15 -1355 ((-645 |#2|))) (IF (|has| |#1| (-308)) (-15 -2144 ((-1269 |#2|) (-1269 |#2|))) |%noBranch|))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-4369 (((-3 $ "failed")) NIL (|has| |#1| (-559)))) (-2376 (((-3 $ "failed") $ $) NIL)) (-1483 (((-1269 (-690 |#1|)) (-1269 $)) NIL) (((-1269 (-690 |#1|))) 24)) (-3967 (((-1269 $)) 55)) (-3647 (($) NIL T CONST)) (-1421 (((-3 (-2 (|:| |particular| $) (|:| -2144 (-645 $))) "failed")) NIL (|has| |#1| (-559)))) (-4297 (((-3 $ "failed")) NIL (|has| |#1| (-559)))) (-1852 (((-690 |#1|) (-1269 $)) NIL) (((-690 |#1|)) NIL)) (-3382 ((|#1| $) NIL)) (-1639 (((-690 |#1|) $ (-1269 $)) NIL) (((-690 |#1|) $) NIL)) (-2810 (((-3 $ "failed") $) NIL (|has| |#1| (-559)))) (-1588 (((-1175 (-954 |#1|))) NIL (|has| |#1| (-365)))) (-3757 (($ $ (-923)) NIL)) (-1868 ((|#1| $) NIL)) (-2479 (((-1175 |#1|) $) NIL (|has| |#1| (-559)))) (-3878 ((|#1| (-1269 $)) NIL) ((|#1|) NIL)) (-2309 (((-1175 |#1|) $) NIL)) (-2720 (((-112)) 102)) (-3111 (($ (-1269 |#1|) (-1269 $)) NIL) (($ (-1269 |#1|)) NIL)) (-3588 (((-3 $ "failed") $) 14 (|has| |#1| (-559)))) (-1976 (((-923)) 56)) (-2957 (((-112)) NIL)) (-2112 (($ $ (-923)) NIL)) (-4388 (((-112)) NIL)) (-2655 (((-112)) NIL)) (-2304 (((-112)) 104)) (-2488 (((-3 (-2 (|:| |particular| $) (|:| -2144 (-645 $))) "failed")) NIL (|has| |#1| (-559)))) (-3428 (((-3 $ "failed")) NIL (|has| |#1| (-559)))) (-3060 (((-690 |#1|) (-1269 $)) NIL) (((-690 |#1|)) NIL)) (-1735 ((|#1| $) NIL)) (-2227 (((-690 |#1|) $ (-1269 $)) NIL) (((-690 |#1|) $) NIL)) (-2213 (((-3 $ "failed") $) NIL (|has| |#1| (-559)))) (-3785 (((-1175 (-954 |#1|))) NIL (|has| |#1| (-365)))) (-3884 (($ $ (-923)) NIL)) (-3233 ((|#1| $) NIL)) (-4063 (((-1175 |#1|) $) NIL (|has| |#1| (-559)))) (-2976 ((|#1| (-1269 $)) NIL) ((|#1|) NIL)) (-1694 (((-1175 |#1|) $) NIL)) (-3332 (((-112)) 101)) (-2516 (((-1161) $) NIL)) (-4368 (((-112)) 109)) (-3498 (((-112)) 108)) (-2467 (((-112)) 110)) (-3437 (((-1122) $) NIL)) (-3485 (((-112)) 103)) (-1801 ((|#1| $ (-567)) 58)) (-3088 (((-1269 |#1|) $ (-1269 $)) 53) (((-690 |#1|) (-1269 $) (-1269 $)) NIL) (((-1269 |#1|) $) 28) (((-690 |#1|) (-1269 $)) NIL)) (-3902 (((-1269 |#1|) $) NIL) (($ (-1269 |#1|)) NIL)) (-3981 (((-645 (-954 |#1|)) (-1269 $)) NIL) (((-645 (-954 |#1|))) NIL)) (-3997 (($ $ $) NIL)) (-3568 (((-112)) 98)) (-4129 (((-863) $) 75) (($ (-1269 |#1|)) 22)) (-3357 (((-112) $ $) NIL)) (-2144 (((-1269 $)) 49)) (-2628 (((-645 (-1269 |#1|))) NIL (|has| |#1| (-559)))) (-2047 (($ $ $ $) NIL)) (-1996 (((-112)) 94)) (-2364 (($ (-690 |#1|) $) 18)) (-2188 (($ $ $) NIL)) (-3970 (((-112)) 100)) (-3741 (((-112)) 95)) (-3220 (((-112)) 93)) (-1733 (($) NIL T CONST)) (-2946 (((-112) $ $) NIL)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-923)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 84) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1144 |#2| |#1|) $) 19)))
+(((-44 |#1| |#2| |#3| |#4|) (-13 (-420 |#1|) (-649 (-1144 |#2| |#1|)) (-10 -8 (-15 -4129 ($ (-1269 |#1|))))) (-365) (-923) (-645 (-1179)) (-1269 (-690 |#1|))) (T -44))
+((-4129 (*1 *1 *2) (-12 (-5 *2 (-1269 *3)) (-4 *3 (-365)) (-14 *6 (-1269 (-690 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-923)) (-14 *5 (-645 (-1179))))))
+(-13 (-420 |#1|) (-649 (-1144 |#2| |#1|)) (-10 -8 (-15 -4129 ($ (-1269 |#1|)))))
+((-2412 (((-112) $ $) NIL (-2811 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-3812 (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) NIL)) (-4003 (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) NIL)) (-4284 (($ $) NIL)) (-2847 (($) NIL) (($ (-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) NIL)) (-3843 (((-1274) $ |#1| |#1|) NIL (|has| $ (-6 -4423))) (((-1274) $ (-567) (-567)) NIL (|has| $ (-6 -4423)))) (-3288 (($ $ (-567)) NIL (|has| $ (-6 -4423)))) (-3531 (((-112) (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-851)))) (-2676 (($ (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4423))) (($ $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-851))))) (-1311 (($ (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-851)))) (-1563 (((-112) $ (-772)) NIL)) (-4392 (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) NIL (|has| $ (-6 -4423)))) (-4017 (($ $ $) 33 (|has| $ (-6 -4423)))) (-4105 (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) NIL (|has| $ (-6 -4423)))) (-2498 (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) 35 (|has| $ (-6 -4423)))) (-4285 ((|#2| $ |#1| |#2|) 53) (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $ (-567) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) NIL (|has| $ (-6 -4423))) (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $ (-1236 (-567)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) NIL (|has| $ (-6 -4423))) (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $ "last" (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) NIL (|has| $ (-6 -4423))) (($ $ "rest" $) NIL (|has| $ (-6 -4423))) (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $ "first" (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) NIL (|has| $ (-6 -4423))) (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $ "value" (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) NIL (|has| $ (-6 -4423)))) (-2831 (($ $ (-645 $)) NIL (|has| $ (-6 -4423)))) (-1494 (($ (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4422))) (($ (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL)) (-3356 (($ (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4422))) (($ (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4422)))) (-3990 (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) NIL)) (-4021 (((-3 |#2| "failed") |#1| $) 43)) (-3647 (($) NIL T CONST)) (-1602 (($ $) NIL (|has| $ (-6 -4423)))) (-3592 (($ $) NIL)) (-2430 (($ $ (-772)) NIL) (($ $) 29)) (-3837 (($ $) NIL (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (-2453 (($ $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102))))) (-2247 (($ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) NIL (|has| $ (-6 -4422))) (($ (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-3 |#2| "failed") |#1| $) 56) (($ (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL) (($ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) NIL (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (-3246 (($ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (($ (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4422))) (($ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (($ (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4422)))) (-2494 (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) NIL (|has| $ (-6 -4422))) (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) NIL (|has| $ (-6 -4422))) (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4422)))) (-3760 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4423))) (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $ (-567) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) NIL (|has| $ (-6 -4423)))) (-3703 ((|#2| $ |#1|) NIL) (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $ (-567)) NIL)) (-4085 (((-112) $) NIL)) (-2578 (((-567) (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL) (((-567) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) NIL (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102))) (((-567) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $ (-567)) NIL (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (-2799 (((-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) 20 (|has| $ (-6 -4422))) (((-645 |#2|) $) NIL (|has| $ (-6 -4422))) (((-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) 20 (|has| $ (-6 -4422)))) (-2070 (((-645 $) $) NIL)) (-1520 (((-112) $ $) NIL (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (-2858 (($ (-772) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) NIL)) (-4093 (((-112) $ (-772)) NIL)) (-3895 ((|#1| $) NIL (|has| |#1| (-851))) (((-567) $) 38 (|has| (-567) (-851)))) (-1365 (($ $ $) NIL (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-851)))) (-1661 (($ (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-851)))) (-2473 (($ (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-851)))) (-1942 (((-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-645 |#2|) $) NIL (|has| $ (-6 -4422))) (((-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4422)))) (-3237 (((-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#2| (-1102)))) (((-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102))))) (-3255 ((|#1| $) NIL (|has| |#1| (-851))) (((-567) $) 40 (|has| (-567) (-851)))) (-3002 (($ $ $) NIL (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-851)))) (-3751 (($ (-1 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4423))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4423))) (($ (-1 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4423)))) (-3841 (($ (-1 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL)) (-2291 (($ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) NIL)) (-1986 (((-112) $ (-772)) NIL)) (-3793 (((-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL)) (-1323 (((-112) $) NIL)) (-2516 (((-1161) $) 49 (-2811 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-3266 (($ $ (-772)) NIL) (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) NIL)) (-1405 (((-645 |#1|) $) 22)) (-2816 (((-112) |#1| $) NIL)) (-2706 (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) NIL)) (-2646 (($ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) NIL) (($ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $ (-567)) NIL) (($ $ $ (-567)) NIL)) (-2857 (($ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $ (-567)) NIL) (($ $ $ (-567)) NIL)) (-4364 (((-645 |#1|) $) NIL) (((-645 (-567)) $) NIL)) (-3188 (((-112) |#1| $) NIL) (((-112) (-567) $) NIL)) (-3437 (((-1122) $) NIL (-2811 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-2418 ((|#2| $) NIL (|has| |#1| (-851))) (($ $ (-772)) NIL) (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) 27)) (-3196 (((-3 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) "failed") (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL) (((-3 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) "failed") (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL)) (-3823 (($ $ |#2|) NIL (|has| $ (-6 -4423))) (($ $ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) NIL (|has| $ (-6 -4423)))) (-3949 (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) NIL)) (-1971 (((-112) $) NIL)) (-4233 (((-112) (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4422))) (((-112) (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))))) NIL (-12 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-310 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (($ $ (-295 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) NIL (-12 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-310 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (($ $ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) NIL (-12 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-310 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (($ $ (-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) (-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) NIL (-12 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-310 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) (-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) NIL (-12 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-310 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (($ $ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) NIL (-12 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-310 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (($ $ (-295 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) NIL (-12 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-310 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (($ $ (-645 (-295 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))))) NIL (-12 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-310 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102))))) (-3875 (((-112) $ $) NIL)) (-4058 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#2| (-1102)))) (((-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102))))) (-2190 (((-645 |#2|) $) NIL) (((-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) 19)) (-3885 (((-112) $) 18)) (-2701 (($) 14)) (-1801 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $ (-567) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) NIL) (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $ (-567)) NIL) (($ $ (-1236 (-567))) NIL) (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $ "first") NIL) (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $ "value") NIL)) (-3162 (((-567) $ $) NIL)) (-4106 (($) 13) (($ (-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) NIL)) (-1873 (($ $ (-567)) NIL) (($ $ (-1236 (-567))) NIL)) (-1569 (($ $ (-567)) NIL) (($ $ (-1236 (-567))) NIL)) (-3771 (((-112) $) NIL)) (-3688 (($ $) NIL)) (-4044 (($ $) NIL (|has| $ (-6 -4423)))) (-3359 (((-772) $) NIL)) (-3640 (($ $) NIL)) (-3447 (((-772) (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-772) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (((-772) |#2| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#2| (-1102)))) (((-772) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4422))) (((-772) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (((-772) (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4422)))) (-1656 (($ $ $ (-567)) NIL (|has| $ (-6 -4423)))) (-4309 (($ $) NIL)) (-3902 (((-539) $) NIL (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-615 (-539))))) (-4145 (($ (-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) NIL) (($ (-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) NIL)) (-2294 (($ $ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) NIL) (($ $ $) NIL)) (-2276 (($ $ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) NIL) (($ (-645 $)) NIL) (($ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) 31) (($ $ $) NIL)) (-4129 (((-863) $) NIL (-2811 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-614 (-863))) (|has| |#2| (-614 (-863)))))) (-3469 (((-645 $) $) NIL)) (-3854 (((-112) $ $) NIL (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (-3357 (((-112) $ $) NIL (-2811 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-3700 (($ (-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) NIL)) (-3274 (((-3 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) "failed") |#1| $) 51)) (-3436 (((-112) (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4422))) (((-112) (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4422)))) (-3004 (((-112) $ $) NIL (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-851)))) (-2980 (((-112) $ $) NIL (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-851)))) (-2946 (((-112) $ $) NIL (-2811 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-2993 (((-112) $ $) NIL (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-851)))) (-2968 (((-112) $ $) NIL (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-851)))) (-2423 (((-772) $) 25 (|has| $ (-6 -4422)))))
(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1102) (-1102)) (T -45))
NIL
(-36 |#1| |#2|)
-((-2843 (((-112) $) 12)) (-3829 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-410 (-567)) $) 25) (($ $ (-410 (-567))) NIL)))
-(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-410 (-567)))) (-15 * (|#1| (-410 (-567)) |#1|)) (-15 -2843 ((-112) |#1|)) (-15 -3829 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-923) |#1|))) (-47 |#2| |#3|) (-1051) (-793)) (T -46))
+((-3770 (((-112) $) 12)) (-3841 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-410 (-567)) $) 25) (($ $ (-410 (-567))) NIL)))
+(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-410 (-567)))) (-15 * (|#1| (-410 (-567)) |#1|)) (-15 -3770 ((-112) |#1|)) (-15 -3841 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-923) |#1|))) (-47 |#2| |#3|) (-1051) (-793)) (T -46))
NIL
-(-10 -8 (-15 * (|#1| |#1| (-410 (-567)))) (-15 * (|#1| (-410 (-567)) |#1|)) (-15 -2843 ((-112) |#1|)) (-15 -3829 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-923) |#1|)))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 63 (|has| |#1| (-559)))) (-4381 (($ $) 64 (|has| |#1| (-559)))) (-3949 (((-112) $) 66 (|has| |#1| (-559)))) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-3014 (($ $) 72)) (-2109 (((-3 $ "failed") $) 37)) (-1433 (((-112) $) 35)) (-2843 (((-112) $) 74)) (-2824 (($ |#1| |#2|) 73)) (-3829 (($ (-1 |#1| |#1|) $) 75)) (-2976 (($ $) 77)) (-2989 ((|#1| $) 78)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-2391 (((-3 $ "failed") $ $) 62 (|has| |#1| (-559)))) (-3077 ((|#2| $) 76)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ (-410 (-567))) 69 (|has| |#1| (-38 (-410 (-567))))) (($ $) 61 (|has| |#1| (-559))) (($ |#1|) 59 (|has| |#1| (-172)))) (-4136 ((|#1| $ |#2|) 71)) (-1903 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-3816 (((-112) $ $) 65 (|has| |#1| (-559)))) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2936 (((-112) $ $) 6)) (-3060 (($ $ |#1|) 70 (|has| |#1| (-365)))) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-410 (-567)) $) 68 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 67 (|has| |#1| (-38 (-410 (-567)))))))
+(-10 -8 (-15 * (|#1| |#1| (-410 (-567)))) (-15 * (|#1| (-410 (-567)) |#1|)) (-15 -3770 ((-112) |#1|)) (-15 -3841 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-923) |#1|)))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) 63 (|has| |#1| (-559)))) (-4287 (($ $) 64 (|has| |#1| (-559)))) (-2286 (((-112) $) 66 (|has| |#1| (-559)))) (-2376 (((-3 $ "failed") $ $) 20)) (-3647 (($) 18 T CONST)) (-3023 (($ $) 72)) (-3588 (((-3 $ "failed") $) 37)) (-4346 (((-112) $) 35)) (-3770 (((-112) $) 74)) (-2836 (($ |#1| |#2|) 73)) (-3841 (($ (-1 |#1| |#1|) $) 75)) (-2985 (($ $) 77)) (-2996 ((|#1| $) 78)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-2400 (((-3 $ "failed") $ $) 62 (|has| |#1| (-559)))) (-3104 ((|#2| $) 76)) (-4129 (((-863) $) 12) (($ (-567)) 33) (($ (-410 (-567))) 69 (|has| |#1| (-38 (-410 (-567))))) (($ $) 61 (|has| |#1| (-559))) (($ |#1|) 59 (|has| |#1| (-172)))) (-2558 ((|#1| $ |#2|) 71)) (-2118 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-2746 (((-772)) 32 T CONST)) (-3357 (((-112) $ $) 9)) (-3731 (((-112) $ $) 65 (|has| |#1| (-559)))) (-1733 (($) 19 T CONST)) (-1744 (($) 34 T CONST)) (-2946 (((-112) $ $) 6)) (-3069 (($ $ |#1|) 70 (|has| |#1| (-365)))) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-410 (-567)) $) 68 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 67 (|has| |#1| (-38 (-410 (-567)))))))
(((-47 |#1| |#2|) (-140) (-1051) (-793)) (T -47))
-((-2989 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-793)) (-4 *2 (-1051)))) (-2976 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-793)))) (-3077 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-793)))) (-3829 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-793)))) (-2843 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-793)) (-5 *2 (-112)))) (-2824 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-793)))) (-3014 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-793)))) (-4136 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-793)) (-4 *2 (-1051)))) (-3060 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-793)) (-4 *2 (-365)))))
-(-13 (-1051) (-111 |t#1| |t#1|) (-10 -8 (-15 -2989 (|t#1| $)) (-15 -2976 ($ $)) (-15 -3077 (|t#2| $)) (-15 -3829 ($ (-1 |t#1| |t#1|) $)) (-15 -2843 ((-112) $)) (-15 -2824 ($ |t#1| |t#2|)) (-15 -3014 ($ $)) (-15 -4136 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-365)) (-15 -3060 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-172)) (PROGN (-6 (-172)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-559)) (-6 (-559)) |%noBranch|) (IF (|has| |t#1| (-38 (-410 (-567)))) (-6 (-38 (-410 (-567)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-559)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-410 (-567)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2800 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #0#) |has| |#1| (-38 (-410 (-567)))) ((-617 (-567)) . T) ((-617 |#1|) |has| |#1| (-172)) ((-617 $) |has| |#1| (-559)) ((-614 (-863)) . T) ((-172) -2800 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-291) |has| |#1| (-559)) ((-559) |has| |#1| (-559)) ((-647 #0#) |has| |#1| (-38 (-410 (-567)))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) |has| |#1| (-38 (-410 (-567)))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) |has| |#1| (-38 (-410 (-567)))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) |has| |#1| (-559)) ((-718 #0#) |has| |#1| (-38 (-410 (-567)))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) |has| |#1| (-559)) ((-727) . T) ((-1053 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1053 |#1|) . T) ((-1053 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-1058 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1058 |#1|) . T) ((-1058 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T))
-((-2403 (((-112) $ $) NIL)) (-3224 (((-645 $) (-1174 $) (-1178)) NIL) (((-645 $) (-1174 $)) NIL) (((-645 $) (-954 $)) NIL)) (-4103 (($ (-1174 $) (-1178)) NIL) (($ (-1174 $)) NIL) (($ (-954 $)) NIL)) (-2460 (((-112) $) 11)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-2566 (((-645 (-613 $)) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2960 (($ $ (-295 $)) NIL) (($ $ (-645 (-295 $))) NIL) (($ $ (-645 (-613 $)) (-645 $)) NIL)) (-3248 (($ $) NIL)) (-2908 (((-421 $) $) NIL)) (-2716 (($ $) NIL)) (-3609 (((-112) $ $) NIL)) (-2585 (($) NIL T CONST)) (-2005 (((-645 $) (-1174 $) (-1178)) NIL) (((-645 $) (-1174 $)) NIL) (((-645 $) (-954 $)) NIL)) (-3483 (($ (-1174 $) (-1178)) NIL) (($ (-1174 $)) NIL) (($ (-954 $)) NIL)) (-3753 (((-3 (-613 $) "failed") $) NIL) (((-3 (-567) "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL)) (-2038 (((-613 $) $) NIL) (((-567) $) NIL) (((-410 (-567)) $) NIL)) (-2349 (($ $ $) NIL)) (-2630 (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL) (((-690 (-567)) (-690 $)) NIL) (((-2 (|:| -2316 (-690 (-410 (-567)))) (|:| |vec| (-1268 (-410 (-567))))) (-690 $) (-1268 $)) NIL) (((-690 (-410 (-567))) (-690 $)) NIL)) (-2477 (($ $) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-2360 (($ $ $) NIL)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-3184 (((-112) $) NIL)) (-2068 (($ $) NIL) (($ (-645 $)) NIL)) (-2034 (((-645 (-114)) $) NIL)) (-2654 (((-114) (-114)) NIL)) (-1433 (((-112) $) 14)) (-3837 (((-112) $) NIL (|has| $ (-1040 (-567))))) (-1448 (((-1127 (-567) (-613 $)) $) NIL)) (-2651 (($ $ (-567)) NIL)) (-2475 (((-1174 $) (-1174 $) (-613 $)) NIL) (((-1174 $) (-1174 $) (-645 (-613 $))) NIL) (($ $ (-613 $)) NIL) (($ $ (-645 (-613 $))) NIL)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-3263 (((-1174 $) (-613 $)) NIL (|has| $ (-1051)))) (-3829 (($ (-1 $ $) (-613 $)) NIL)) (-2700 (((-3 (-613 $) "failed") $) NIL)) (-2740 (($ (-645 $)) NIL) (($ $ $) NIL)) (-1419 (((-1160) $) NIL)) (-2641 (((-645 (-613 $)) $) NIL)) (-3632 (($ (-114) $) NIL) (($ (-114) (-645 $)) NIL)) (-1854 (((-112) $ (-114)) NIL) (((-112) $ (-1178)) NIL)) (-2939 (($ $) NIL)) (-4138 (((-772) $) NIL)) (-3430 (((-1122) $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-2774 (($ (-645 $)) NIL) (($ $ $) NIL)) (-3922 (((-112) $ $) NIL) (((-112) $ (-1178)) NIL)) (-2706 (((-421 $) $) NIL)) (-3402 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL)) (-2391 (((-3 $ "failed") $ $) NIL)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2757 (((-112) $) NIL (|has| $ (-1040 (-567))))) (-2631 (($ $ (-613 $) $) NIL) (($ $ (-645 (-613 $)) (-645 $)) NIL) (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-645 (-1178)) (-645 (-1 $ $))) NIL) (($ $ (-645 (-1178)) (-645 (-1 $ (-645 $)))) NIL) (($ $ (-1178) (-1 $ (-645 $))) NIL) (($ $ (-1178) (-1 $ $)) NIL) (($ $ (-645 (-114)) (-645 (-1 $ $))) NIL) (($ $ (-645 (-114)) (-645 (-1 $ (-645 $)))) NIL) (($ $ (-114) (-1 $ (-645 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-1990 (((-772) $) NIL)) (-1787 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-645 $)) NIL)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL)) (-3241 (($ $) NIL) (($ $ $) NIL)) (-1593 (($ $ (-772)) NIL) (($ $) NIL)) (-1460 (((-1127 (-567) (-613 $)) $) NIL)) (-3341 (($ $) NIL (|has| $ (-1051)))) (-3893 (((-381) $) NIL) (((-225) $) NIL) (((-169 (-381)) $) NIL)) (-4132 (((-863) $) NIL) (($ (-613 $)) NIL) (($ (-410 (-567))) NIL) (($ $) NIL) (($ (-567)) NIL) (($ (-1127 (-567) (-613 $))) NIL)) (-4221 (((-772)) NIL T CONST)) (-1334 (($ $) NIL) (($ (-645 $)) NIL)) (-3797 (((-112) (-114)) NIL)) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL)) (-1716 (($) 7 T CONST)) (-1728 (($) 12 T CONST)) (-2637 (($ $ (-772)) NIL) (($ $) NIL)) (-2936 (((-112) $ $) 16)) (-3060 (($ $ $) NIL)) (-3045 (($ $ $) 15) (($ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-410 (-567))) NIL) (($ $ (-567)) NIL) (($ $ (-772)) NIL) (($ $ (-923)) NIL)) (* (($ (-410 (-567)) $) NIL) (($ $ (-410 (-567))) NIL) (($ $ $) NIL) (($ (-567) $) NIL) (($ (-772) $) NIL) (($ (-923) $) NIL)))
-(((-48) (-13 (-303) (-27) (-1040 (-567)) (-1040 (-410 (-567))) (-640 (-567)) (-1024) (-640 (-410 (-567))) (-147) (-615 (-169 (-381))) (-233) (-10 -8 (-15 -4132 ($ (-1127 (-567) (-613 $)))) (-15 -1448 ((-1127 (-567) (-613 $)) $)) (-15 -1460 ((-1127 (-567) (-613 $)) $)) (-15 -2477 ($ $)) (-15 -2475 ((-1174 $) (-1174 $) (-613 $))) (-15 -2475 ((-1174 $) (-1174 $) (-645 (-613 $)))) (-15 -2475 ($ $ (-613 $))) (-15 -2475 ($ $ (-645 (-613 $))))))) (T -48))
-((-4132 (*1 *1 *2) (-12 (-5 *2 (-1127 (-567) (-613 (-48)))) (-5 *1 (-48)))) (-1448 (*1 *2 *1) (-12 (-5 *2 (-1127 (-567) (-613 (-48)))) (-5 *1 (-48)))) (-1460 (*1 *2 *1) (-12 (-5 *2 (-1127 (-567) (-613 (-48)))) (-5 *1 (-48)))) (-2477 (*1 *1 *1) (-5 *1 (-48))) (-2475 (*1 *2 *2 *3) (-12 (-5 *2 (-1174 (-48))) (-5 *3 (-613 (-48))) (-5 *1 (-48)))) (-2475 (*1 *2 *2 *3) (-12 (-5 *2 (-1174 (-48))) (-5 *3 (-645 (-613 (-48)))) (-5 *1 (-48)))) (-2475 (*1 *1 *1 *2) (-12 (-5 *2 (-613 (-48))) (-5 *1 (-48)))) (-2475 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-613 (-48)))) (-5 *1 (-48)))))
-(-13 (-303) (-27) (-1040 (-567)) (-1040 (-410 (-567))) (-640 (-567)) (-1024) (-640 (-410 (-567))) (-147) (-615 (-169 (-381))) (-233) (-10 -8 (-15 -4132 ($ (-1127 (-567) (-613 $)))) (-15 -1448 ((-1127 (-567) (-613 $)) $)) (-15 -1460 ((-1127 (-567) (-613 $)) $)) (-15 -2477 ($ $)) (-15 -2475 ((-1174 $) (-1174 $) (-613 $))) (-15 -2475 ((-1174 $) (-1174 $) (-645 (-613 $)))) (-15 -2475 ($ $ (-613 $))) (-15 -2475 ($ $ (-645 (-613 $))))))
-((-2403 (((-112) $ $) NIL)) (-2238 (((-645 (-509)) $) 17)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 7)) (-2006 (((-1183) $) 18)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)))
-(((-49) (-13 (-1102) (-10 -8 (-15 -2238 ((-645 (-509)) $)) (-15 -2006 ((-1183) $))))) (T -49))
-((-2238 (*1 *2 *1) (-12 (-5 *2 (-645 (-509))) (-5 *1 (-49)))) (-2006 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-49)))))
-(-13 (-1102) (-10 -8 (-15 -2238 ((-645 (-509)) $)) (-15 -2006 ((-1183) $))))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) 87)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2585 (($) NIL T CONST)) (-3164 (((-112) $) 30)) (-3753 (((-3 |#1| "failed") $) 33)) (-2038 ((|#1| $) 34)) (-3014 (($ $) 40)) (-2109 (((-3 $ "failed") $) NIL)) (-1433 (((-112) $) NIL)) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-2989 ((|#1| $) 31)) (-3914 (($ $) 76)) (-1419 (((-1160) $) NIL)) (-1974 (((-112) $) 43)) (-3430 (((-1122) $) NIL)) (-1398 (($ (-772)) 74)) (-3946 (($ (-645 (-567))) 75)) (-3077 (((-772) $) 44)) (-4132 (((-863) $) 93) (($ (-567)) 71) (($ |#1|) 69)) (-4136 ((|#1| $ $) 28)) (-4221 (((-772)) 73 T CONST)) (-1745 (((-112) $ $) NIL)) (-1716 (($) 45 T CONST)) (-1728 (($) 17 T CONST)) (-2936 (((-112) $ $) NIL)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) 66)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 67) (($ |#1| $) 60)))
-(((-50 |#1| |#2|) (-13 (-621 |#1|) (-1040 |#1|) (-10 -8 (-15 -2989 (|#1| $)) (-15 -3914 ($ $)) (-15 -3014 ($ $)) (-15 -4136 (|#1| $ $)) (-15 -1398 ($ (-772))) (-15 -3946 ($ (-645 (-567)))) (-15 -1974 ((-112) $)) (-15 -3164 ((-112) $)) (-15 -3077 ((-772) $)) (-15 -3829 ($ (-1 |#1| |#1|) $)))) (-1051) (-645 (-1178))) (T -50))
-((-2989 (*1 *2 *1) (-12 (-4 *2 (-1051)) (-5 *1 (-50 *2 *3)) (-14 *3 (-645 (-1178))))) (-3914 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1051)) (-14 *3 (-645 (-1178))))) (-3014 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1051)) (-14 *3 (-645 (-1178))))) (-4136 (*1 *2 *1 *1) (-12 (-4 *2 (-1051)) (-5 *1 (-50 *2 *3)) (-14 *3 (-645 (-1178))))) (-1398 (*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1051)) (-14 *4 (-645 (-1178))))) (-3946 (*1 *1 *2) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1051)) (-14 *4 (-645 (-1178))))) (-1974 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1051)) (-14 *4 (-645 (-1178))))) (-3164 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1051)) (-14 *4 (-645 (-1178))))) (-3077 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1051)) (-14 *4 (-645 (-1178))))) (-3829 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1051)) (-5 *1 (-50 *3 *4)) (-14 *4 (-645 (-1178))))))
-(-13 (-621 |#1|) (-1040 |#1|) (-10 -8 (-15 -2989 (|#1| $)) (-15 -3914 ($ $)) (-15 -3014 ($ $)) (-15 -4136 (|#1| $ $)) (-15 -1398 ($ (-772))) (-15 -3946 ($ (-645 (-567)))) (-15 -1974 ((-112) $)) (-15 -3164 ((-112) $)) (-15 -3077 ((-772) $)) (-15 -3829 ($ (-1 |#1| |#1|) $))))
-((-3164 (((-112) (-52)) 18)) (-3753 (((-3 |#1| "failed") (-52)) 20)) (-2038 ((|#1| (-52)) 21)) (-4132 (((-52) |#1|) 14)))
-(((-51 |#1|) (-10 -7 (-15 -4132 ((-52) |#1|)) (-15 -3753 ((-3 |#1| "failed") (-52))) (-15 -3164 ((-112) (-52))) (-15 -2038 (|#1| (-52)))) (-1218)) (T -51))
-((-2038 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1218)))) (-3164 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1218)))) (-3753 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1218)))) (-4132 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1218)))))
-(-10 -7 (-15 -4132 ((-52) |#1|)) (-15 -3753 ((-3 |#1| "failed") (-52))) (-15 -3164 ((-112) (-52))) (-15 -2038 (|#1| (-52))))
-((-2403 (((-112) $ $) NIL)) (-4025 (((-775) $) 8)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-3069 (((-1106) $) 10)) (-4132 (((-863) $) 15)) (-1745 (((-112) $ $) NIL)) (-3844 (($ (-1106) (-775)) 16)) (-2936 (((-112) $ $) 12)))
-(((-52) (-13 (-1102) (-10 -8 (-15 -3844 ($ (-1106) (-775))) (-15 -3069 ((-1106) $)) (-15 -4025 ((-775) $))))) (T -52))
-((-3844 (*1 *1 *2 *3) (-12 (-5 *2 (-1106)) (-5 *3 (-775)) (-5 *1 (-52)))) (-3069 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-52)))) (-4025 (*1 *2 *1) (-12 (-5 *2 (-775)) (-5 *1 (-52)))))
-(-13 (-1102) (-10 -8 (-15 -3844 ($ (-1106) (-775))) (-15 -3069 ((-1106) $)) (-15 -4025 ((-775) $))))
-((-2355 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 19)))
-(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2355 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1051) (-649 |#1|) (-853 |#1|)) (T -53))
-((-2355 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-649 *5)) (-4 *5 (-1051)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-853 *5)))))
-(-10 -7 (-15 -2355 (|#2| |#3| (-1 |#2| |#2|) |#2|)))
-((-1813 ((|#3| |#3| (-645 (-1178))) 46)) (-3105 ((|#3| (-645 (-1078 |#1| |#2| |#3|)) |#3| (-923)) 32) ((|#3| (-645 (-1078 |#1| |#2| |#3|)) |#3|) 31)))
-(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -3105 (|#3| (-645 (-1078 |#1| |#2| |#3|)) |#3|)) (-15 -3105 (|#3| (-645 (-1078 |#1| |#2| |#3|)) |#3| (-923))) (-15 -1813 (|#3| |#3| (-645 (-1178))))) (-1102) (-13 (-1051) (-888 |#1|) (-615 (-894 |#1|))) (-13 (-433 |#2|) (-888 |#1|) (-615 (-894 |#1|)))) (T -54))
-((-1813 (*1 *2 *2 *3) (-12 (-5 *3 (-645 (-1178))) (-4 *4 (-1102)) (-4 *5 (-13 (-1051) (-888 *4) (-615 (-894 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-433 *5) (-888 *4) (-615 (-894 *4)))))) (-3105 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-645 (-1078 *5 *6 *2))) (-5 *4 (-923)) (-4 *5 (-1102)) (-4 *6 (-13 (-1051) (-888 *5) (-615 (-894 *5)))) (-4 *2 (-13 (-433 *6) (-888 *5) (-615 (-894 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-3105 (*1 *2 *3 *2) (-12 (-5 *3 (-645 (-1078 *4 *5 *2))) (-4 *4 (-1102)) (-4 *5 (-13 (-1051) (-888 *4) (-615 (-894 *4)))) (-4 *2 (-13 (-433 *5) (-888 *4) (-615 (-894 *4)))) (-5 *1 (-54 *4 *5 *2)))))
-(-10 -7 (-15 -3105 (|#3| (-645 (-1078 |#1| |#2| |#3|)) |#3|)) (-15 -3105 (|#3| (-645 (-1078 |#1| |#2| |#3|)) |#3| (-923))) (-15 -1813 (|#3| |#3| (-645 (-1178)))))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) 14)) (-3753 (((-3 (-772) "failed") $) 34)) (-2038 (((-772) $) NIL)) (-1433 (((-112) $) 16)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) 18)) (-4132 (((-863) $) 23) (($ (-772)) 29)) (-1745 (((-112) $ $) NIL)) (-2965 (($) 11 T CONST)) (-2936 (((-112) $ $) 20)))
-(((-55) (-13 (-1102) (-1040 (-772)) (-10 -8 (-15 -2965 ($) -3286) (-15 -2460 ((-112) $)) (-15 -1433 ((-112) $))))) (T -55))
-((-2965 (*1 *1) (-5 *1 (-55))) (-2460 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) (-1433 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))))
-(-13 (-1102) (-1040 (-772)) (-10 -8 (-15 -2965 ($) -3286) (-15 -2460 ((-112) $)) (-15 -1433 ((-112) $))))
-((-3445 (((-112) $ (-772)) 27)) (-2615 (($ $ (-567) |#3|) 66)) (-1961 (($ $ (-567) |#4|) 70)) (-1944 ((|#3| $ (-567)) 79)) (-2777 (((-645 |#2|) $) 47)) (-2077 (((-112) $ (-772)) 31)) (-4337 (((-112) |#2| $) 74)) (-3731 (($ (-1 |#2| |#2|) $) 55)) (-3829 (($ (-1 |#2| |#2|) $) 54) (($ (-1 |#2| |#2| |#2|) $ $) 58) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 62)) (-2863 (((-112) $ (-772)) 29)) (-3986 (($ $ |#2|) 52)) (-3025 (((-112) (-1 (-112) |#2|) $) 21)) (-1787 ((|#2| $ (-567) (-567)) NIL) ((|#2| $ (-567) (-567) |#2|) 35)) (-3439 (((-772) (-1 (-112) |#2|) $) 41) (((-772) |#2| $) 76)) (-4305 (($ $) 51)) (-2237 ((|#4| $ (-567)) 82)) (-4132 (((-863) $) 88)) (-1853 (((-112) (-1 (-112) |#2|) $) 20)) (-2936 (((-112) $ $) 73)) (-2414 (((-772) $) 32)))
-(((-56 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4132 ((-863) |#1|)) (-15 -3829 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -3829 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3731 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1961 (|#1| |#1| (-567) |#4|)) (-15 -2615 (|#1| |#1| (-567) |#3|)) (-15 -2777 ((-645 |#2|) |#1|)) (-15 -2237 (|#4| |#1| (-567))) (-15 -1944 (|#3| |#1| (-567))) (-15 -1787 (|#2| |#1| (-567) (-567) |#2|)) (-15 -1787 (|#2| |#1| (-567) (-567))) (-15 -3986 (|#1| |#1| |#2|)) (-15 -2936 ((-112) |#1| |#1|)) (-15 -4337 ((-112) |#2| |#1|)) (-15 -3439 ((-772) |#2| |#1|)) (-15 -3439 ((-772) (-1 (-112) |#2|) |#1|)) (-15 -3025 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1853 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3829 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2414 ((-772) |#1|)) (-15 -3445 ((-112) |#1| (-772))) (-15 -2077 ((-112) |#1| (-772))) (-15 -2863 ((-112) |#1| (-772))) (-15 -4305 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1218) (-375 |#2|) (-375 |#2|)) (T -56))
-NIL
-(-10 -8 (-15 -4132 ((-863) |#1|)) (-15 -3829 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -3829 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3731 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1961 (|#1| |#1| (-567) |#4|)) (-15 -2615 (|#1| |#1| (-567) |#3|)) (-15 -2777 ((-645 |#2|) |#1|)) (-15 -2237 (|#4| |#1| (-567))) (-15 -1944 (|#3| |#1| (-567))) (-15 -1787 (|#2| |#1| (-567) (-567) |#2|)) (-15 -1787 (|#2| |#1| (-567) (-567))) (-15 -3986 (|#1| |#1| |#2|)) (-15 -2936 ((-112) |#1| |#1|)) (-15 -4337 ((-112) |#2| |#1|)) (-15 -3439 ((-772) |#2| |#1|)) (-15 -3439 ((-772) (-1 (-112) |#2|) |#1|)) (-15 -3025 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1853 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3829 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2414 ((-772) |#1|)) (-15 -3445 ((-112) |#1| (-772))) (-15 -2077 ((-112) |#1| (-772))) (-15 -2863 ((-112) |#1| (-772))) (-15 -4305 (|#1| |#1|)))
-((-2403 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-3445 (((-112) $ (-772)) 8)) (-4284 ((|#1| $ (-567) (-567) |#1|) 45)) (-2615 (($ $ (-567) |#2|) 43)) (-1961 (($ $ (-567) |#3|) 42)) (-2585 (($) 7 T CONST)) (-1944 ((|#2| $ (-567)) 47)) (-3741 ((|#1| $ (-567) (-567) |#1|) 44)) (-3680 ((|#1| $ (-567) (-567)) 49)) (-2777 (((-645 |#1|) $) 31)) (-3633 (((-772) $) 52)) (-2846 (($ (-772) (-772) |#1|) 58)) (-3643 (((-772) $) 51)) (-2077 (((-112) $ (-772)) 9)) (-2527 (((-567) $) 56)) (-4043 (((-567) $) 54)) (-2279 (((-645 |#1|) $) 30 (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-2107 (((-567) $) 55)) (-2646 (((-567) $) 53)) (-3731 (($ (-1 |#1| |#1|) $) 35)) (-3829 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-2863 (((-112) $ (-772)) 10)) (-1419 (((-1160) $) 22 (|has| |#1| (-1102)))) (-3430 (((-1122) $) 21 (|has| |#1| (-1102)))) (-3986 (($ $ |#1|) 57)) (-3025 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) 14)) (-3572 (((-112) $) 11)) (-3498 (($) 12)) (-1787 ((|#1| $ (-567) (-567)) 50) ((|#1| $ (-567) (-567) |#1|) 48)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4418))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-4305 (($ $) 13)) (-2237 ((|#3| $ (-567)) 46)) (-4132 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-1745 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2414 (((-772) $) 6 (|has| $ (-6 -4418)))))
-(((-57 |#1| |#2| |#3|) (-140) (-1218) (-375 |t#1|) (-375 |t#1|)) (T -57))
-((-3829 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-2846 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-772)) (-4 *3 (-1218)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-3986 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1218)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-2527 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-567)))) (-2107 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-567)))) (-4043 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-567)))) (-2646 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-567)))) (-3633 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-772)))) (-3643 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-772)))) (-1787 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-567)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-1218)))) (-3680 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-567)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-1218)))) (-1787 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-567)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1218)) (-4 *4 (-375 *2)) (-4 *5 (-375 *2)))) (-1944 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1218)) (-4 *5 (-375 *4)) (-4 *2 (-375 *4)))) (-2237 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1218)) (-4 *5 (-375 *4)) (-4 *2 (-375 *4)))) (-2777 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-645 *3)))) (-4284 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-567)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1218)) (-4 *4 (-375 *2)) (-4 *5 (-375 *2)))) (-3741 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-567)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1218)) (-4 *4 (-375 *2)) (-4 *5 (-375 *2)))) (-2615 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-567)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1218)) (-4 *3 (-375 *4)) (-4 *5 (-375 *4)))) (-1961 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-567)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1218)) (-4 *5 (-375 *4)) (-4 *3 (-375 *4)))) (-3731 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-3829 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-3829 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))))
-(-13 (-492 |t#1|) (-10 -8 (-6 -4419) (-6 -4418) (-15 -2846 ($ (-772) (-772) |t#1|)) (-15 -3986 ($ $ |t#1|)) (-15 -2527 ((-567) $)) (-15 -2107 ((-567) $)) (-15 -4043 ((-567) $)) (-15 -2646 ((-567) $)) (-15 -3633 ((-772) $)) (-15 -3643 ((-772) $)) (-15 -1787 (|t#1| $ (-567) (-567))) (-15 -3680 (|t#1| $ (-567) (-567))) (-15 -1787 (|t#1| $ (-567) (-567) |t#1|)) (-15 -1944 (|t#2| $ (-567))) (-15 -2237 (|t#3| $ (-567))) (-15 -2777 ((-645 |t#1|) $)) (-15 -4284 (|t#1| $ (-567) (-567) |t#1|)) (-15 -3741 (|t#1| $ (-567) (-567) |t#1|)) (-15 -2615 ($ $ (-567) |t#2|)) (-15 -1961 ($ $ (-567) |t#3|)) (-15 -3829 ($ (-1 |t#1| |t#1|) $)) (-15 -3731 ($ (-1 |t#1| |t#1|) $)) (-15 -3829 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3829 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|))))
-(((-34) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2800 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-1102) |has| |#1| (-1102)) ((-1218) . T))
-((-2788 (((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 16)) (-2477 ((|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 18)) (-3829 (((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)) 13)))
-(((-58 |#1| |#2|) (-10 -7 (-15 -2788 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2477 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -3829 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) (-1218) (-1218)) (T -58))
-((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1218)) (-4 *6 (-1218)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) (-2477 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1218)) (-4 *2 (-1218)) (-5 *1 (-58 *5 *2)))) (-2788 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1218)) (-4 *5 (-1218)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5)))))
-(-10 -7 (-15 -2788 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2477 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -3829 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|))))
-((-2403 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1783 (((-1273) $ (-567) (-567)) NIL (|has| $ (-6 -4419)))) (-2496 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-851)))) (-1394 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4419))) (($ $) NIL (-12 (|has| $ (-6 -4419)) (|has| |#1| (-851))))) (-4396 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-851)))) (-3445 (((-112) $ (-772)) NIL)) (-4284 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4419))) ((|#1| $ (-1235 (-567)) |#1|) NIL (|has| $ (-6 -4419)))) (-3350 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2585 (($) NIL T CONST)) (-1764 (($ $) NIL (|has| $ (-6 -4419)))) (-3584 (($ $) NIL)) (-2444 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-3238 (($ |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2477 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4418)))) (-3741 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4419)))) (-3680 ((|#1| $ (-567)) NIL)) (-2569 (((-567) (-1 (-112) |#1|) $) NIL) (((-567) |#1| $) NIL (|has| |#1| (-1102))) (((-567) |#1| $ (-567)) NIL (|has| |#1| (-1102)))) (-2777 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-3367 (($ (-645 |#1|)) 11) (($ (-772) |#1|) 14)) (-2846 (($ (-772) |#1|) 13)) (-2077 (((-112) $ (-772)) NIL)) (-4069 (((-567) $) NIL (|has| (-567) (-851)))) (-1354 (($ $ $) NIL (|has| |#1| (-851)))) (-4135 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-851)))) (-2279 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2266 (((-567) $) NIL (|has| (-567) (-851)))) (-2981 (($ $ $) NIL (|has| |#1| (-851)))) (-3731 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL (|has| |#1| (-1102)))) (-2845 (($ |#1| $ (-567)) NIL) (($ $ $ (-567)) NIL)) (-1789 (((-645 (-567)) $) NIL)) (-2996 (((-112) (-567) $) NIL)) (-3430 (((-1122) $) NIL (|has| |#1| (-1102)))) (-2409 ((|#1| $) NIL (|has| (-567) (-851)))) (-4128 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3986 (($ $ |#1|) NIL (|has| $ (-6 -4419)))) (-3025 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) NIL)) (-1794 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2339 (((-645 |#1|) $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) NIL)) (-1787 ((|#1| $ (-567) |#1|) NIL) ((|#1| $ (-567)) NIL) (($ $ (-1235 (-567))) NIL)) (-1560 (($ $ (-567)) NIL) (($ $ (-1235 (-567))) NIL)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-1395 (($ $ $ (-567)) NIL (|has| $ (-6 -4419)))) (-4305 (($ $) NIL)) (-3893 (((-539) $) NIL (|has| |#1| (-615 (-539))))) (-4147 (($ (-645 |#1|)) 10)) (-2269 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-645 $)) NIL)) (-4132 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-1745 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2997 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2971 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2936 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2984 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2958 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2414 (((-772) $) NIL (|has| $ (-6 -4418)))))
-(((-59 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -3367 ($ (-645 |#1|))) (-15 -3367 ($ (-772) |#1|)))) (-1218)) (T -59))
-((-3367 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1218)) (-5 *1 (-59 *3)))) (-3367 (*1 *1 *2 *3) (-12 (-5 *2 (-772)) (-5 *1 (-59 *3)) (-4 *3 (-1218)))))
-(-13 (-19 |#1|) (-10 -8 (-15 -3367 ($ (-645 |#1|))) (-15 -3367 ($ (-772) |#1|))))
-((-2403 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3445 (((-112) $ (-772)) NIL)) (-4284 ((|#1| $ (-567) (-567) |#1|) NIL)) (-2615 (($ $ (-567) (-59 |#1|)) NIL)) (-1961 (($ $ (-567) (-59 |#1|)) NIL)) (-2585 (($) NIL T CONST)) (-1944 (((-59 |#1|) $ (-567)) NIL)) (-3741 ((|#1| $ (-567) (-567) |#1|) NIL)) (-3680 ((|#1| $ (-567) (-567)) NIL)) (-2777 (((-645 |#1|) $) NIL)) (-3633 (((-772) $) NIL)) (-2846 (($ (-772) (-772) |#1|) NIL)) (-3643 (((-772) $) NIL)) (-2077 (((-112) $ (-772)) NIL)) (-2527 (((-567) $) NIL)) (-4043 (((-567) $) NIL)) (-2279 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2107 (((-567) $) NIL)) (-2646 (((-567) $) NIL)) (-3731 (($ (-1 |#1| |#1|) $) NIL)) (-3829 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL (|has| |#1| (-1102)))) (-3430 (((-1122) $) NIL (|has| |#1| (-1102)))) (-3986 (($ $ |#1|) NIL)) (-3025 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) NIL)) (-1787 ((|#1| $ (-567) (-567)) NIL) ((|#1| $ (-567) (-567) |#1|) NIL)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-4305 (($ $) NIL)) (-2237 (((-59 |#1|) $ (-567)) NIL)) (-4132 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-1745 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2414 (((-772) $) NIL (|has| $ (-6 -4418)))))
-(((-60 |#1|) (-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4419))) (-1218)) (T -60))
-NIL
-(-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4419)))
-((-3753 (((-3 $ "failed") (-1268 (-317 (-381)))) 74) (((-3 $ "failed") (-1268 (-317 (-567)))) 63) (((-3 $ "failed") (-1268 (-954 (-381)))) 94) (((-3 $ "failed") (-1268 (-954 (-567)))) 84) (((-3 $ "failed") (-1268 (-410 (-954 (-381))))) 52) (((-3 $ "failed") (-1268 (-410 (-954 (-567))))) 39)) (-2038 (($ (-1268 (-317 (-381)))) 70) (($ (-1268 (-317 (-567)))) 59) (($ (-1268 (-954 (-381)))) 90) (($ (-1268 (-954 (-567)))) 80) (($ (-1268 (-410 (-954 (-381))))) 48) (($ (-1268 (-410 (-954 (-567))))) 32)) (-1453 (((-1273) $) 127)) (-4132 (((-863) $) 121) (($ (-645 (-331))) 103) (($ (-331)) 97) (($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) 101) (($ (-1268 (-341 (-4147 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-4147) (-700)))) 31)))
-(((-61 |#1|) (-13 (-444) (-10 -8 (-15 -4132 ($ (-1268 (-341 (-4147 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-4147) (-700))))))) (-1178)) (T -61))
-((-4132 (*1 *1 *2) (-12 (-5 *2 (-1268 (-341 (-4147 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-4147) (-700)))) (-5 *1 (-61 *3)) (-14 *3 (-1178)))))
-(-13 (-444) (-10 -8 (-15 -4132 ($ (-1268 (-341 (-4147 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-4147) (-700)))))))
-((-1453 (((-1273) $) 54) (((-1273)) 55)) (-4132 (((-863) $) 51)))
-(((-62 |#1|) (-13 (-398) (-10 -7 (-15 -1453 ((-1273))))) (-1178)) (T -62))
-((-1453 (*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-62 *3)) (-14 *3 (-1178)))))
-(-13 (-398) (-10 -7 (-15 -1453 ((-1273)))))
-((-3753 (((-3 $ "failed") (-1268 (-317 (-381)))) 154) (((-3 $ "failed") (-1268 (-317 (-567)))) 144) (((-3 $ "failed") (-1268 (-954 (-381)))) 174) (((-3 $ "failed") (-1268 (-954 (-567)))) 164) (((-3 $ "failed") (-1268 (-410 (-954 (-381))))) 133) (((-3 $ "failed") (-1268 (-410 (-954 (-567))))) 121)) (-2038 (($ (-1268 (-317 (-381)))) 150) (($ (-1268 (-317 (-567)))) 140) (($ (-1268 (-954 (-381)))) 170) (($ (-1268 (-954 (-567)))) 160) (($ (-1268 (-410 (-954 (-381))))) 129) (($ (-1268 (-410 (-954 (-567))))) 114)) (-1453 (((-1273) $) 107)) (-4132 (((-863) $) 101) (($ (-645 (-331))) 30) (($ (-331)) 35) (($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) 33) (($ (-1268 (-341 (-4147) (-4147 (QUOTE XC)) (-700)))) 99)))
-(((-63 |#1|) (-13 (-444) (-10 -8 (-15 -4132 ($ (-1268 (-341 (-4147) (-4147 (QUOTE XC)) (-700))))))) (-1178)) (T -63))
-((-4132 (*1 *1 *2) (-12 (-5 *2 (-1268 (-341 (-4147) (-4147 (QUOTE XC)) (-700)))) (-5 *1 (-63 *3)) (-14 *3 (-1178)))))
-(-13 (-444) (-10 -8 (-15 -4132 ($ (-1268 (-341 (-4147) (-4147 (QUOTE XC)) (-700)))))))
-((-3753 (((-3 $ "failed") (-317 (-381))) 41) (((-3 $ "failed") (-317 (-567))) 46) (((-3 $ "failed") (-954 (-381))) 50) (((-3 $ "failed") (-954 (-567))) 54) (((-3 $ "failed") (-410 (-954 (-381)))) 36) (((-3 $ "failed") (-410 (-954 (-567)))) 29)) (-2038 (($ (-317 (-381))) 39) (($ (-317 (-567))) 44) (($ (-954 (-381))) 48) (($ (-954 (-567))) 52) (($ (-410 (-954 (-381)))) 34) (($ (-410 (-954 (-567)))) 26)) (-1453 (((-1273) $) 76)) (-4132 (((-863) $) 69) (($ (-645 (-331))) 61) (($ (-331)) 66) (($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) 64) (($ (-341 (-4147 (QUOTE X)) (-4147) (-700))) 25)))
-(((-64 |#1|) (-13 (-399) (-10 -8 (-15 -4132 ($ (-341 (-4147 (QUOTE X)) (-4147) (-700)))))) (-1178)) (T -64))
-((-4132 (*1 *1 *2) (-12 (-5 *2 (-341 (-4147 (QUOTE X)) (-4147) (-700))) (-5 *1 (-64 *3)) (-14 *3 (-1178)))))
-(-13 (-399) (-10 -8 (-15 -4132 ($ (-341 (-4147 (QUOTE X)) (-4147) (-700))))))
-((-3753 (((-3 $ "failed") (-690 (-317 (-381)))) 114) (((-3 $ "failed") (-690 (-317 (-567)))) 102) (((-3 $ "failed") (-690 (-954 (-381)))) 136) (((-3 $ "failed") (-690 (-954 (-567)))) 125) (((-3 $ "failed") (-690 (-410 (-954 (-381))))) 90) (((-3 $ "failed") (-690 (-410 (-954 (-567))))) 76)) (-2038 (($ (-690 (-317 (-381)))) 110) (($ (-690 (-317 (-567)))) 98) (($ (-690 (-954 (-381)))) 132) (($ (-690 (-954 (-567)))) 121) (($ (-690 (-410 (-954 (-381))))) 86) (($ (-690 (-410 (-954 (-567))))) 69)) (-1453 (((-1273) $) 144)) (-4132 (((-863) $) 138) (($ (-645 (-331))) 29) (($ (-331)) 34) (($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) 32) (($ (-690 (-341 (-4147) (-4147 (QUOTE X) (QUOTE HESS)) (-700)))) 59)))
-(((-65 |#1|) (-13 (-386) (-617 (-690 (-341 (-4147) (-4147 (QUOTE X) (QUOTE HESS)) (-700))))) (-1178)) (T -65))
-NIL
-(-13 (-386) (-617 (-690 (-341 (-4147) (-4147 (QUOTE X) (QUOTE HESS)) (-700)))))
-((-3753 (((-3 $ "failed") (-317 (-381))) 60) (((-3 $ "failed") (-317 (-567))) 65) (((-3 $ "failed") (-954 (-381))) 69) (((-3 $ "failed") (-954 (-567))) 73) (((-3 $ "failed") (-410 (-954 (-381)))) 55) (((-3 $ "failed") (-410 (-954 (-567)))) 48)) (-2038 (($ (-317 (-381))) 58) (($ (-317 (-567))) 63) (($ (-954 (-381))) 67) (($ (-954 (-567))) 71) (($ (-410 (-954 (-381)))) 53) (($ (-410 (-954 (-567)))) 45)) (-1453 (((-1273) $) 82)) (-4132 (((-863) $) 76) (($ (-645 (-331))) 29) (($ (-331)) 34) (($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) 32) (($ (-341 (-4147) (-4147 (QUOTE XC)) (-700))) 40)))
-(((-66 |#1|) (-13 (-399) (-10 -8 (-15 -4132 ($ (-341 (-4147) (-4147 (QUOTE XC)) (-700)))))) (-1178)) (T -66))
-((-4132 (*1 *1 *2) (-12 (-5 *2 (-341 (-4147) (-4147 (QUOTE XC)) (-700))) (-5 *1 (-66 *3)) (-14 *3 (-1178)))))
-(-13 (-399) (-10 -8 (-15 -4132 ($ (-341 (-4147) (-4147 (QUOTE XC)) (-700))))))
-((-1453 (((-1273) $) 68)) (-4132 (((-863) $) 62) (($ (-690 (-700))) 54) (($ (-645 (-331))) 53) (($ (-331)) 60) (($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) 58)))
-(((-67 |#1|) (-385) (-1178)) (T -67))
+((-2996 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-793)) (-4 *2 (-1051)))) (-2985 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-793)))) (-3104 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-793)))) (-3841 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-793)))) (-3770 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-793)) (-5 *2 (-112)))) (-2836 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-793)))) (-3023 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-793)))) (-2558 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-793)) (-4 *2 (-1051)))) (-3069 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-793)) (-4 *2 (-365)))))
+(-13 (-1051) (-111 |t#1| |t#1|) (-10 -8 (-15 -2996 (|t#1| $)) (-15 -2985 ($ $)) (-15 -3104 (|t#2| $)) (-15 -3841 ($ (-1 |t#1| |t#1|) $)) (-15 -3770 ((-112) $)) (-15 -2836 ($ |t#1| |t#2|)) (-15 -3023 ($ $)) (-15 -2558 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-365)) (-15 -3069 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-172)) (PROGN (-6 (-172)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-559)) (-6 (-559)) |%noBranch|) (IF (|has| |t#1| (-38 (-410 (-567)))) (-6 (-38 (-410 (-567)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-559)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-410 (-567)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2811 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #0#) |has| |#1| (-38 (-410 (-567)))) ((-617 (-567)) . T) ((-617 |#1|) |has| |#1| (-172)) ((-617 $) |has| |#1| (-559)) ((-614 (-863)) . T) ((-172) -2811 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-291) |has| |#1| (-559)) ((-559) |has| |#1| (-559)) ((-647 #0#) |has| |#1| (-38 (-410 (-567)))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) |has| |#1| (-38 (-410 (-567)))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) |has| |#1| (-38 (-410 (-567)))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) |has| |#1| (-559)) ((-718 #0#) |has| |#1| (-38 (-410 (-567)))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) |has| |#1| (-559)) ((-727) . T) ((-1053 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1053 |#1|) . T) ((-1053 $) -2811 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-1058 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1058 |#1|) . T) ((-1058 $) -2811 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T))
+((-2412 (((-112) $ $) NIL)) (-3802 (((-645 $) (-1175 $) (-1179)) NIL) (((-645 $) (-1175 $)) NIL) (((-645 $) (-954 $)) NIL)) (-1968 (($ (-1175 $) (-1179)) NIL) (($ (-1175 $)) NIL) (($ (-954 $)) NIL)) (-3791 (((-112) $) 11)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-4287 (($ $) NIL)) (-2286 (((-112) $) NIL)) (-2575 (((-645 (-613 $)) $) NIL)) (-2376 (((-3 $ "failed") $ $) NIL)) (-2982 (($ $ (-295 $)) NIL) (($ $ (-645 (-295 $))) NIL) (($ $ (-645 (-613 $)) (-645 $)) NIL)) (-3659 (($ $) NIL)) (-3597 (((-421 $) $) NIL)) (-2728 (($ $) NIL)) (-3696 (((-112) $ $) NIL)) (-3647 (($) NIL T CONST)) (-3234 (((-645 $) (-1175 $) (-1179)) NIL) (((-645 $) (-1175 $)) NIL) (((-645 $) (-954 $)) NIL)) (-3940 (($ (-1175 $) (-1179)) NIL) (($ (-1175 $)) NIL) (($ (-954 $)) NIL)) (-3765 (((-3 (-613 $) "failed") $) NIL) (((-3 (-567) "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL)) (-2051 (((-613 $) $) NIL) (((-567) $) NIL) (((-410 (-567)) $) NIL)) (-2357 (($ $ $) NIL)) (-1423 (((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL) (((-690 (-567)) (-690 $)) NIL) (((-2 (|:| -4208 (-690 (-410 (-567)))) (|:| |vec| (-1269 (-410 (-567))))) (-690 $) (-1269 $)) NIL) (((-690 (-410 (-567))) (-690 $)) NIL)) (-2494 (($ $) NIL)) (-3588 (((-3 $ "failed") $) NIL)) (-2368 (($ $ $) NIL)) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) NIL)) (-3502 (((-112) $) NIL)) (-1464 (($ $) NIL) (($ (-645 $)) NIL)) (-3863 (((-645 (-114)) $) NIL)) (-2662 (((-114) (-114)) NIL)) (-4346 (((-112) $) 14)) (-1904 (((-112) $) NIL (|has| $ (-1040 (-567))))) (-1447 (((-1127 (-567) (-613 $)) $) NIL)) (-3698 (($ $ (-567)) NIL)) (-2724 (((-1175 $) (-1175 $) (-613 $)) NIL) (((-1175 $) (-1175 $) (-645 (-613 $))) NIL) (($ $ (-613 $)) NIL) (($ $ (-645 (-613 $))) NIL)) (-1469 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2528 (((-1175 $) (-613 $)) NIL (|has| $ (-1051)))) (-3841 (($ (-1 $ $) (-613 $)) NIL)) (-3231 (((-3 (-613 $) "failed") $) NIL)) (-2751 (($ (-645 $)) NIL) (($ $ $) NIL)) (-2516 (((-1161) $) NIL)) (-2651 (((-645 (-613 $)) $) NIL)) (-3643 (($ (-114) $) NIL) (($ (-114) (-645 $)) NIL)) (-3545 (((-112) $ (-114)) NIL) (((-112) $ (-1179)) NIL)) (-2949 (($ $) NIL)) (-4136 (((-772) $) NIL)) (-3437 (((-1122) $) NIL)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-2785 (($ (-645 $)) NIL) (($ $ $) NIL)) (-2356 (((-112) $ $) NIL) (((-112) $ (-1179)) NIL)) (-2717 (((-421 $) $) NIL)) (-2905 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) NIL)) (-2400 (((-3 $ "failed") $ $) NIL)) (-2372 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2795 (((-112) $) NIL (|has| $ (-1040 (-567))))) (-2642 (($ $ (-613 $) $) NIL) (($ $ (-645 (-613 $)) (-645 $)) NIL) (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-645 (-1179)) (-645 (-1 $ $))) NIL) (($ $ (-645 (-1179)) (-645 (-1 $ (-645 $)))) NIL) (($ $ (-1179) (-1 $ (-645 $))) NIL) (($ $ (-1179) (-1 $ $)) NIL) (($ $ (-645 (-114)) (-645 (-1 $ $))) NIL) (($ $ (-645 (-114)) (-645 (-1 $ (-645 $)))) NIL) (($ $ (-114) (-1 $ (-645 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-2460 (((-772) $) NIL)) (-1801 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-645 $)) NIL)) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) NIL)) (-3209 (($ $) NIL) (($ $ $) NIL)) (-1616 (($ $ (-772)) NIL) (($ $) NIL)) (-1462 (((-1127 (-567) (-613 $)) $) NIL)) (-3169 (($ $) NIL (|has| $ (-1051)))) (-3902 (((-381) $) NIL) (((-225) $) NIL) (((-169 (-381)) $) NIL)) (-4129 (((-863) $) NIL) (($ (-613 $)) NIL) (($ (-410 (-567))) NIL) (($ $) NIL) (($ (-567)) NIL) (($ (-1127 (-567) (-613 $))) NIL)) (-2746 (((-772)) NIL T CONST)) (-1372 (($ $) NIL) (($ (-645 $)) NIL)) (-1909 (((-112) (-114)) NIL)) (-3357 (((-112) $ $) NIL)) (-3731 (((-112) $ $) NIL)) (-1733 (($) 7 T CONST)) (-1744 (($) 12 T CONST)) (-2647 (($ $ (-772)) NIL) (($ $) NIL)) (-2946 (((-112) $ $) 16)) (-3069 (($ $ $) NIL)) (-3053 (($ $ $) 15) (($ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-410 (-567))) NIL) (($ $ (-567)) NIL) (($ $ (-772)) NIL) (($ $ (-923)) NIL)) (* (($ (-410 (-567)) $) NIL) (($ $ (-410 (-567))) NIL) (($ $ $) NIL) (($ (-567) $) NIL) (($ (-772) $) NIL) (($ (-923) $) NIL)))
+(((-48) (-13 (-303) (-27) (-1040 (-567)) (-1040 (-410 (-567))) (-640 (-567)) (-1024) (-640 (-410 (-567))) (-147) (-615 (-169 (-381))) (-233) (-10 -8 (-15 -4129 ($ (-1127 (-567) (-613 $)))) (-15 -1447 ((-1127 (-567) (-613 $)) $)) (-15 -1462 ((-1127 (-567) (-613 $)) $)) (-15 -2494 ($ $)) (-15 -2724 ((-1175 $) (-1175 $) (-613 $))) (-15 -2724 ((-1175 $) (-1175 $) (-645 (-613 $)))) (-15 -2724 ($ $ (-613 $))) (-15 -2724 ($ $ (-645 (-613 $))))))) (T -48))
+((-4129 (*1 *1 *2) (-12 (-5 *2 (-1127 (-567) (-613 (-48)))) (-5 *1 (-48)))) (-1447 (*1 *2 *1) (-12 (-5 *2 (-1127 (-567) (-613 (-48)))) (-5 *1 (-48)))) (-1462 (*1 *2 *1) (-12 (-5 *2 (-1127 (-567) (-613 (-48)))) (-5 *1 (-48)))) (-2494 (*1 *1 *1) (-5 *1 (-48))) (-2724 (*1 *2 *2 *3) (-12 (-5 *2 (-1175 (-48))) (-5 *3 (-613 (-48))) (-5 *1 (-48)))) (-2724 (*1 *2 *2 *3) (-12 (-5 *2 (-1175 (-48))) (-5 *3 (-645 (-613 (-48)))) (-5 *1 (-48)))) (-2724 (*1 *1 *1 *2) (-12 (-5 *2 (-613 (-48))) (-5 *1 (-48)))) (-2724 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-613 (-48)))) (-5 *1 (-48)))))
+(-13 (-303) (-27) (-1040 (-567)) (-1040 (-410 (-567))) (-640 (-567)) (-1024) (-640 (-410 (-567))) (-147) (-615 (-169 (-381))) (-233) (-10 -8 (-15 -4129 ($ (-1127 (-567) (-613 $)))) (-15 -1447 ((-1127 (-567) (-613 $)) $)) (-15 -1462 ((-1127 (-567) (-613 $)) $)) (-15 -2494 ($ $)) (-15 -2724 ((-1175 $) (-1175 $) (-613 $))) (-15 -2724 ((-1175 $) (-1175 $) (-645 (-613 $)))) (-15 -2724 ($ $ (-613 $))) (-15 -2724 ($ $ (-645 (-613 $))))))
+((-2412 (((-112) $ $) NIL)) (-2257 (((-645 (-509)) $) 17)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) 7)) (-2017 (((-1184) $) 18)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)))
+(((-49) (-13 (-1102) (-10 -8 (-15 -2257 ((-645 (-509)) $)) (-15 -2017 ((-1184) $))))) (T -49))
+((-2257 (*1 *2 *1) (-12 (-5 *2 (-645 (-509))) (-5 *1 (-49)))) (-2017 (*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-49)))))
+(-13 (-1102) (-10 -8 (-15 -2257 ((-645 (-509)) $)) (-15 -2017 ((-1184) $))))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) 87)) (-2376 (((-3 $ "failed") $ $) NIL)) (-3647 (($) NIL T CONST)) (-1793 (((-112) $) 30)) (-3765 (((-3 |#1| "failed") $) 33)) (-2051 ((|#1| $) 34)) (-3023 (($ $) 40)) (-3588 (((-3 $ "failed") $) NIL)) (-4346 (((-112) $) NIL)) (-3841 (($ (-1 |#1| |#1|) $) NIL)) (-2996 ((|#1| $) 31)) (-2789 (($ $) 76)) (-2516 (((-1161) $) NIL)) (-4348 (((-112) $) 43)) (-3437 (((-1122) $) NIL)) (-1399 (($ (-772)) 74)) (-3955 (($ (-645 (-567))) 75)) (-3104 (((-772) $) 44)) (-4129 (((-863) $) 93) (($ (-567)) 71) (($ |#1|) 69)) (-2558 ((|#1| $ $) 28)) (-2746 (((-772)) 73 T CONST)) (-3357 (((-112) $ $) NIL)) (-1733 (($) 45 T CONST)) (-1744 (($) 17 T CONST)) (-2946 (((-112) $ $) NIL)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) 66)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 67) (($ |#1| $) 60)))
+(((-50 |#1| |#2|) (-13 (-621 |#1|) (-1040 |#1|) (-10 -8 (-15 -2996 (|#1| $)) (-15 -2789 ($ $)) (-15 -3023 ($ $)) (-15 -2558 (|#1| $ $)) (-15 -1399 ($ (-772))) (-15 -3955 ($ (-645 (-567)))) (-15 -4348 ((-112) $)) (-15 -1793 ((-112) $)) (-15 -3104 ((-772) $)) (-15 -3841 ($ (-1 |#1| |#1|) $)))) (-1051) (-645 (-1179))) (T -50))
+((-2996 (*1 *2 *1) (-12 (-4 *2 (-1051)) (-5 *1 (-50 *2 *3)) (-14 *3 (-645 (-1179))))) (-2789 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1051)) (-14 *3 (-645 (-1179))))) (-3023 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1051)) (-14 *3 (-645 (-1179))))) (-2558 (*1 *2 *1 *1) (-12 (-4 *2 (-1051)) (-5 *1 (-50 *2 *3)) (-14 *3 (-645 (-1179))))) (-1399 (*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1051)) (-14 *4 (-645 (-1179))))) (-3955 (*1 *1 *2) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1051)) (-14 *4 (-645 (-1179))))) (-4348 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1051)) (-14 *4 (-645 (-1179))))) (-1793 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1051)) (-14 *4 (-645 (-1179))))) (-3104 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1051)) (-14 *4 (-645 (-1179))))) (-3841 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1051)) (-5 *1 (-50 *3 *4)) (-14 *4 (-645 (-1179))))))
+(-13 (-621 |#1|) (-1040 |#1|) (-10 -8 (-15 -2996 (|#1| $)) (-15 -2789 ($ $)) (-15 -3023 ($ $)) (-15 -2558 (|#1| $ $)) (-15 -1399 ($ (-772))) (-15 -3955 ($ (-645 (-567)))) (-15 -4348 ((-112) $)) (-15 -1793 ((-112) $)) (-15 -3104 ((-772) $)) (-15 -3841 ($ (-1 |#1| |#1|) $))))
+((-1793 (((-112) (-52)) 18)) (-3765 (((-3 |#1| "failed") (-52)) 20)) (-2051 ((|#1| (-52)) 21)) (-4129 (((-52) |#1|) 14)))
+(((-51 |#1|) (-10 -7 (-15 -4129 ((-52) |#1|)) (-15 -3765 ((-3 |#1| "failed") (-52))) (-15 -1793 ((-112) (-52))) (-15 -2051 (|#1| (-52)))) (-1219)) (T -51))
+((-2051 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1219)))) (-1793 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1219)))) (-3765 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1219)))) (-4129 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1219)))))
+(-10 -7 (-15 -4129 ((-52) |#1|)) (-15 -3765 ((-3 |#1| "failed") (-52))) (-15 -1793 ((-112) (-52))) (-15 -2051 (|#1| (-52))))
+((-2412 (((-112) $ $) NIL)) (-4028 (((-775) $) 8)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-3078 (((-1106) $) 10)) (-4129 (((-863) $) 15)) (-3357 (((-112) $ $) NIL)) (-3865 (($ (-1106) (-775)) 16)) (-2946 (((-112) $ $) 12)))
+(((-52) (-13 (-1102) (-10 -8 (-15 -3865 ($ (-1106) (-775))) (-15 -3078 ((-1106) $)) (-15 -4028 ((-775) $))))) (T -52))
+((-3865 (*1 *1 *2 *3) (-12 (-5 *2 (-1106)) (-5 *3 (-775)) (-5 *1 (-52)))) (-3078 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-52)))) (-4028 (*1 *2 *1) (-12 (-5 *2 (-775)) (-5 *1 (-52)))))
+(-13 (-1102) (-10 -8 (-15 -3865 ($ (-1106) (-775))) (-15 -3078 ((-1106) $)) (-15 -4028 ((-775) $))))
+((-2364 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 19)))
+(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2364 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1051) (-649 |#1|) (-853 |#1|)) (T -53))
+((-2364 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-649 *5)) (-4 *5 (-1051)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-853 *5)))))
+(-10 -7 (-15 -2364 (|#2| |#3| (-1 |#2| |#2|) |#2|)))
+((-1991 ((|#3| |#3| (-645 (-1179))) 46)) (-2889 ((|#3| (-645 (-1078 |#1| |#2| |#3|)) |#3| (-923)) 32) ((|#3| (-645 (-1078 |#1| |#2| |#3|)) |#3|) 31)))
+(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -2889 (|#3| (-645 (-1078 |#1| |#2| |#3|)) |#3|)) (-15 -2889 (|#3| (-645 (-1078 |#1| |#2| |#3|)) |#3| (-923))) (-15 -1991 (|#3| |#3| (-645 (-1179))))) (-1102) (-13 (-1051) (-888 |#1|) (-615 (-894 |#1|))) (-13 (-433 |#2|) (-888 |#1|) (-615 (-894 |#1|)))) (T -54))
+((-1991 (*1 *2 *2 *3) (-12 (-5 *3 (-645 (-1179))) (-4 *4 (-1102)) (-4 *5 (-13 (-1051) (-888 *4) (-615 (-894 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-433 *5) (-888 *4) (-615 (-894 *4)))))) (-2889 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-645 (-1078 *5 *6 *2))) (-5 *4 (-923)) (-4 *5 (-1102)) (-4 *6 (-13 (-1051) (-888 *5) (-615 (-894 *5)))) (-4 *2 (-13 (-433 *6) (-888 *5) (-615 (-894 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-2889 (*1 *2 *3 *2) (-12 (-5 *3 (-645 (-1078 *4 *5 *2))) (-4 *4 (-1102)) (-4 *5 (-13 (-1051) (-888 *4) (-615 (-894 *4)))) (-4 *2 (-13 (-433 *5) (-888 *4) (-615 (-894 *4)))) (-5 *1 (-54 *4 *5 *2)))))
+(-10 -7 (-15 -2889 (|#3| (-645 (-1078 |#1| |#2| |#3|)) |#3|)) (-15 -2889 (|#3| (-645 (-1078 |#1| |#2| |#3|)) |#3| (-923))) (-15 -1991 (|#3| |#3| (-645 (-1179)))))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) 14)) (-3765 (((-3 (-772) "failed") $) 34)) (-2051 (((-772) $) NIL)) (-4346 (((-112) $) 16)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) 18)) (-4129 (((-863) $) 23) (($ (-772)) 29)) (-3357 (((-112) $ $) NIL)) (-1538 (($) 11 T CONST)) (-2946 (((-112) $ $) 20)))
+(((-55) (-13 (-1102) (-1040 (-772)) (-10 -8 (-15 -1538 ($) -3304) (-15 -3791 ((-112) $)) (-15 -4346 ((-112) $))))) (T -55))
+((-1538 (*1 *1) (-5 *1 (-55))) (-3791 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) (-4346 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))))
+(-13 (-1102) (-1040 (-772)) (-10 -8 (-15 -1538 ($) -3304) (-15 -3791 ((-112) $)) (-15 -4346 ((-112) $))))
+((-1563 (((-112) $ (-772)) 27)) (-3563 (($ $ (-567) |#3|) 66)) (-2306 (($ $ (-567) |#4|) 70)) (-4323 ((|#3| $ (-567)) 79)) (-2799 (((-645 |#2|) $) 47)) (-4093 (((-112) $ (-772)) 31)) (-3237 (((-112) |#2| $) 74)) (-3751 (($ (-1 |#2| |#2|) $) 55)) (-3841 (($ (-1 |#2| |#2|) $) 54) (($ (-1 |#2| |#2| |#2|) $ $) 58) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 62)) (-1986 (((-112) $ (-772)) 29)) (-3823 (($ $ |#2|) 52)) (-4233 (((-112) (-1 (-112) |#2|) $) 21)) (-1801 ((|#2| $ (-567) (-567)) NIL) ((|#2| $ (-567) (-567) |#2|) 35)) (-3447 (((-772) (-1 (-112) |#2|) $) 41) (((-772) |#2| $) 76)) (-4309 (($ $) 51)) (-3186 ((|#4| $ (-567)) 82)) (-4129 (((-863) $) 88)) (-3436 (((-112) (-1 (-112) |#2|) $) 20)) (-2946 (((-112) $ $) 73)) (-2423 (((-772) $) 32)))
+(((-56 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4129 ((-863) |#1|)) (-15 -3841 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -3841 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3751 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2306 (|#1| |#1| (-567) |#4|)) (-15 -3563 (|#1| |#1| (-567) |#3|)) (-15 -2799 ((-645 |#2|) |#1|)) (-15 -3186 (|#4| |#1| (-567))) (-15 -4323 (|#3| |#1| (-567))) (-15 -1801 (|#2| |#1| (-567) (-567) |#2|)) (-15 -1801 (|#2| |#1| (-567) (-567))) (-15 -3823 (|#1| |#1| |#2|)) (-15 -2946 ((-112) |#1| |#1|)) (-15 -3237 ((-112) |#2| |#1|)) (-15 -3447 ((-772) |#2| |#1|)) (-15 -3447 ((-772) (-1 (-112) |#2|) |#1|)) (-15 -4233 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3436 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3841 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2423 ((-772) |#1|)) (-15 -1563 ((-112) |#1| (-772))) (-15 -4093 ((-112) |#1| (-772))) (-15 -1986 ((-112) |#1| (-772))) (-15 -4309 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1219) (-375 |#2|) (-375 |#2|)) (T -56))
+NIL
+(-10 -8 (-15 -4129 ((-863) |#1|)) (-15 -3841 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -3841 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3751 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2306 (|#1| |#1| (-567) |#4|)) (-15 -3563 (|#1| |#1| (-567) |#3|)) (-15 -2799 ((-645 |#2|) |#1|)) (-15 -3186 (|#4| |#1| (-567))) (-15 -4323 (|#3| |#1| (-567))) (-15 -1801 (|#2| |#1| (-567) (-567) |#2|)) (-15 -1801 (|#2| |#1| (-567) (-567))) (-15 -3823 (|#1| |#1| |#2|)) (-15 -2946 ((-112) |#1| |#1|)) (-15 -3237 ((-112) |#2| |#1|)) (-15 -3447 ((-772) |#2| |#1|)) (-15 -3447 ((-772) (-1 (-112) |#2|) |#1|)) (-15 -4233 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3436 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3841 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2423 ((-772) |#1|)) (-15 -1563 ((-112) |#1| (-772))) (-15 -4093 ((-112) |#1| (-772))) (-15 -1986 ((-112) |#1| (-772))) (-15 -4309 (|#1| |#1|)))
+((-2412 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-1563 (((-112) $ (-772)) 8)) (-4285 ((|#1| $ (-567) (-567) |#1|) 45)) (-3563 (($ $ (-567) |#2|) 43)) (-2306 (($ $ (-567) |#3|) 42)) (-3647 (($) 7 T CONST)) (-4323 ((|#2| $ (-567)) 47)) (-3760 ((|#1| $ (-567) (-567) |#1|) 44)) (-3703 ((|#1| $ (-567) (-567)) 49)) (-2799 (((-645 |#1|) $) 31)) (-4296 (((-772) $) 52)) (-2858 (($ (-772) (-772) |#1|) 58)) (-4307 (((-772) $) 51)) (-4093 (((-112) $ (-772)) 9)) (-3407 (((-567) $) 56)) (-4227 (((-567) $) 54)) (-1942 (((-645 |#1|) $) 30 (|has| $ (-6 -4422)))) (-3237 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-3393 (((-567) $) 55)) (-3351 (((-567) $) 53)) (-3751 (($ (-1 |#1| |#1|) $) 35)) (-3841 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-1986 (((-112) $ (-772)) 10)) (-2516 (((-1161) $) 22 (|has| |#1| (-1102)))) (-3437 (((-1122) $) 21 (|has| |#1| (-1102)))) (-3823 (($ $ |#1|) 57)) (-4233 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3875 (((-112) $ $) 14)) (-3885 (((-112) $) 11)) (-2701 (($) 12)) (-1801 ((|#1| $ (-567) (-567)) 50) ((|#1| $ (-567) (-567) |#1|) 48)) (-3447 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4422))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-4309 (($ $) 13)) (-3186 ((|#3| $ (-567)) 46)) (-4129 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-3357 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-3436 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4422)))) (-2946 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2423 (((-772) $) 6 (|has| $ (-6 -4422)))))
+(((-57 |#1| |#2| |#3|) (-140) (-1219) (-375 |t#1|) (-375 |t#1|)) (T -57))
+((-3841 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-2858 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-772)) (-4 *3 (-1219)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-3823 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1219)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-3407 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-567)))) (-3393 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-567)))) (-4227 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-567)))) (-3351 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-567)))) (-4296 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-772)))) (-4307 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-772)))) (-1801 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-567)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-1219)))) (-3703 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-567)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-1219)))) (-1801 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-567)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1219)) (-4 *4 (-375 *2)) (-4 *5 (-375 *2)))) (-4323 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1219)) (-4 *5 (-375 *4)) (-4 *2 (-375 *4)))) (-3186 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1219)) (-4 *5 (-375 *4)) (-4 *2 (-375 *4)))) (-2799 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-645 *3)))) (-4285 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-567)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1219)) (-4 *4 (-375 *2)) (-4 *5 (-375 *2)))) (-3760 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-567)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1219)) (-4 *4 (-375 *2)) (-4 *5 (-375 *2)))) (-3563 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-567)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1219)) (-4 *3 (-375 *4)) (-4 *5 (-375 *4)))) (-2306 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-567)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1219)) (-4 *5 (-375 *4)) (-4 *3 (-375 *4)))) (-3751 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-3841 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-3841 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))))
+(-13 (-492 |t#1|) (-10 -8 (-6 -4423) (-6 -4422) (-15 -2858 ($ (-772) (-772) |t#1|)) (-15 -3823 ($ $ |t#1|)) (-15 -3407 ((-567) $)) (-15 -3393 ((-567) $)) (-15 -4227 ((-567) $)) (-15 -3351 ((-567) $)) (-15 -4296 ((-772) $)) (-15 -4307 ((-772) $)) (-15 -1801 (|t#1| $ (-567) (-567))) (-15 -3703 (|t#1| $ (-567) (-567))) (-15 -1801 (|t#1| $ (-567) (-567) |t#1|)) (-15 -4323 (|t#2| $ (-567))) (-15 -3186 (|t#3| $ (-567))) (-15 -2799 ((-645 |t#1|) $)) (-15 -4285 (|t#1| $ (-567) (-567) |t#1|)) (-15 -3760 (|t#1| $ (-567) (-567) |t#1|)) (-15 -3563 ($ $ (-567) |t#2|)) (-15 -2306 ($ $ (-567) |t#3|)) (-15 -3841 ($ (-1 |t#1| |t#1|) $)) (-15 -3751 ($ (-1 |t#1| |t#1|) $)) (-15 -3841 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3841 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|))))
+(((-34) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2811 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-1102) |has| |#1| (-1102)) ((-1219) . T))
+((-3400 (((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 16)) (-2494 ((|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 18)) (-3841 (((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)) 13)))
+(((-58 |#1| |#2|) (-10 -7 (-15 -3400 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2494 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -3841 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) (-1219) (-1219)) (T -58))
+((-3841 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) (-2494 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1219)) (-4 *2 (-1219)) (-5 *1 (-58 *5 *2)))) (-3400 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1219)) (-4 *5 (-1219)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5)))))
+(-10 -7 (-15 -3400 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2494 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -3841 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|))))
+((-2412 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3843 (((-1274) $ (-567) (-567)) NIL (|has| $ (-6 -4423)))) (-3531 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-851)))) (-2676 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4423))) (($ $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-851))))) (-1311 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-851)))) (-1563 (((-112) $ (-772)) NIL)) (-4285 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4423))) ((|#1| $ (-1236 (-567)) |#1|) NIL (|has| $ (-6 -4423)))) (-3356 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-3647 (($) NIL T CONST)) (-1602 (($ $) NIL (|has| $ (-6 -4423)))) (-3592 (($ $) NIL)) (-2453 (($ $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3246 (($ |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2494 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4422)))) (-3760 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4423)))) (-3703 ((|#1| $ (-567)) NIL)) (-2578 (((-567) (-1 (-112) |#1|) $) NIL) (((-567) |#1| $) NIL (|has| |#1| (-1102))) (((-567) |#1| $ (-567)) NIL (|has| |#1| (-1102)))) (-2799 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-4009 (($ (-645 |#1|)) 11) (($ (-772) |#1|) 14)) (-2858 (($ (-772) |#1|) 13)) (-4093 (((-112) $ (-772)) NIL)) (-3895 (((-567) $) NIL (|has| (-567) (-851)))) (-1365 (($ $ $) NIL (|has| |#1| (-851)))) (-2473 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-851)))) (-1942 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-3237 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3255 (((-567) $) NIL (|has| (-567) (-851)))) (-3002 (($ $ $) NIL (|has| |#1| (-851)))) (-3751 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1986 (((-112) $ (-772)) NIL)) (-2516 (((-1161) $) NIL (|has| |#1| (-1102)))) (-2857 (($ |#1| $ (-567)) NIL) (($ $ $ (-567)) NIL)) (-4364 (((-645 (-567)) $) NIL)) (-3188 (((-112) (-567) $) NIL)) (-3437 (((-1122) $) NIL (|has| |#1| (-1102)))) (-2418 ((|#1| $) NIL (|has| (-567) (-851)))) (-3196 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3823 (($ $ |#1|) NIL (|has| $ (-6 -4423)))) (-4233 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3875 (((-112) $ $) NIL)) (-4058 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-2190 (((-645 |#1|) $) NIL)) (-3885 (((-112) $) NIL)) (-2701 (($) NIL)) (-1801 ((|#1| $ (-567) |#1|) NIL) ((|#1| $ (-567)) NIL) (($ $ (-1236 (-567))) NIL)) (-1569 (($ $ (-567)) NIL) (($ $ (-1236 (-567))) NIL)) (-3447 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-1656 (($ $ $ (-567)) NIL (|has| $ (-6 -4423)))) (-4309 (($ $) NIL)) (-3902 (((-539) $) NIL (|has| |#1| (-615 (-539))))) (-4145 (($ (-645 |#1|)) 10)) (-2276 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-645 $)) NIL)) (-4129 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-3357 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3436 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-3004 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2980 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2993 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2968 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2423 (((-772) $) NIL (|has| $ (-6 -4422)))))
+(((-59 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -4009 ($ (-645 |#1|))) (-15 -4009 ($ (-772) |#1|)))) (-1219)) (T -59))
+((-4009 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1219)) (-5 *1 (-59 *3)))) (-4009 (*1 *1 *2 *3) (-12 (-5 *2 (-772)) (-5 *1 (-59 *3)) (-4 *3 (-1219)))))
+(-13 (-19 |#1|) (-10 -8 (-15 -4009 ($ (-645 |#1|))) (-15 -4009 ($ (-772) |#1|))))
+((-2412 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1563 (((-112) $ (-772)) NIL)) (-4285 ((|#1| $ (-567) (-567) |#1|) NIL)) (-3563 (($ $ (-567) (-59 |#1|)) NIL)) (-2306 (($ $ (-567) (-59 |#1|)) NIL)) (-3647 (($) NIL T CONST)) (-4323 (((-59 |#1|) $ (-567)) NIL)) (-3760 ((|#1| $ (-567) (-567) |#1|) NIL)) (-3703 ((|#1| $ (-567) (-567)) NIL)) (-2799 (((-645 |#1|) $) NIL)) (-4296 (((-772) $) NIL)) (-2858 (($ (-772) (-772) |#1|) NIL)) (-4307 (((-772) $) NIL)) (-4093 (((-112) $ (-772)) NIL)) (-3407 (((-567) $) NIL)) (-4227 (((-567) $) NIL)) (-1942 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-3237 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3393 (((-567) $) NIL)) (-3351 (((-567) $) NIL)) (-3751 (($ (-1 |#1| |#1|) $) NIL)) (-3841 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1986 (((-112) $ (-772)) NIL)) (-2516 (((-1161) $) NIL (|has| |#1| (-1102)))) (-3437 (((-1122) $) NIL (|has| |#1| (-1102)))) (-3823 (($ $ |#1|) NIL)) (-4233 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3875 (((-112) $ $) NIL)) (-3885 (((-112) $) NIL)) (-2701 (($) NIL)) (-1801 ((|#1| $ (-567) (-567)) NIL) ((|#1| $ (-567) (-567) |#1|) NIL)) (-3447 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-4309 (($ $) NIL)) (-3186 (((-59 |#1|) $ (-567)) NIL)) (-4129 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-3357 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3436 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2423 (((-772) $) NIL (|has| $ (-6 -4422)))))
+(((-60 |#1|) (-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4423))) (-1219)) (T -60))
+NIL
+(-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4423)))
+((-3765 (((-3 $ "failed") (-1269 (-317 (-381)))) 74) (((-3 $ "failed") (-1269 (-317 (-567)))) 63) (((-3 $ "failed") (-1269 (-954 (-381)))) 94) (((-3 $ "failed") (-1269 (-954 (-567)))) 84) (((-3 $ "failed") (-1269 (-410 (-954 (-381))))) 52) (((-3 $ "failed") (-1269 (-410 (-954 (-567))))) 39)) (-2051 (($ (-1269 (-317 (-381)))) 70) (($ (-1269 (-317 (-567)))) 59) (($ (-1269 (-954 (-381)))) 90) (($ (-1269 (-954 (-567)))) 80) (($ (-1269 (-410 (-954 (-381))))) 48) (($ (-1269 (-410 (-954 (-567))))) 32)) (-1466 (((-1274) $) 127)) (-4129 (((-863) $) 121) (($ (-645 (-331))) 103) (($ (-331)) 97) (($ (-2 (|:| |localSymbols| (-1183)) (|:| -1814 (-645 (-331))))) 101) (($ (-1269 (-341 (-4145 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-4145) (-700)))) 31)))
+(((-61 |#1|) (-13 (-444) (-10 -8 (-15 -4129 ($ (-1269 (-341 (-4145 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-4145) (-700))))))) (-1179)) (T -61))
+((-4129 (*1 *1 *2) (-12 (-5 *2 (-1269 (-341 (-4145 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-4145) (-700)))) (-5 *1 (-61 *3)) (-14 *3 (-1179)))))
+(-13 (-444) (-10 -8 (-15 -4129 ($ (-1269 (-341 (-4145 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-4145) (-700)))))))
+((-1466 (((-1274) $) 54) (((-1274)) 55)) (-4129 (((-863) $) 51)))
+(((-62 |#1|) (-13 (-398) (-10 -7 (-15 -1466 ((-1274))))) (-1179)) (T -62))
+((-1466 (*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-62 *3)) (-14 *3 (-1179)))))
+(-13 (-398) (-10 -7 (-15 -1466 ((-1274)))))
+((-3765 (((-3 $ "failed") (-1269 (-317 (-381)))) 154) (((-3 $ "failed") (-1269 (-317 (-567)))) 144) (((-3 $ "failed") (-1269 (-954 (-381)))) 174) (((-3 $ "failed") (-1269 (-954 (-567)))) 164) (((-3 $ "failed") (-1269 (-410 (-954 (-381))))) 133) (((-3 $ "failed") (-1269 (-410 (-954 (-567))))) 121)) (-2051 (($ (-1269 (-317 (-381)))) 150) (($ (-1269 (-317 (-567)))) 140) (($ (-1269 (-954 (-381)))) 170) (($ (-1269 (-954 (-567)))) 160) (($ (-1269 (-410 (-954 (-381))))) 129) (($ (-1269 (-410 (-954 (-567))))) 114)) (-1466 (((-1274) $) 107)) (-4129 (((-863) $) 101) (($ (-645 (-331))) 30) (($ (-331)) 35) (($ (-2 (|:| |localSymbols| (-1183)) (|:| -1814 (-645 (-331))))) 33) (($ (-1269 (-341 (-4145) (-4145 (QUOTE XC)) (-700)))) 99)))
+(((-63 |#1|) (-13 (-444) (-10 -8 (-15 -4129 ($ (-1269 (-341 (-4145) (-4145 (QUOTE XC)) (-700))))))) (-1179)) (T -63))
+((-4129 (*1 *1 *2) (-12 (-5 *2 (-1269 (-341 (-4145) (-4145 (QUOTE XC)) (-700)))) (-5 *1 (-63 *3)) (-14 *3 (-1179)))))
+(-13 (-444) (-10 -8 (-15 -4129 ($ (-1269 (-341 (-4145) (-4145 (QUOTE XC)) (-700)))))))
+((-3765 (((-3 $ "failed") (-317 (-381))) 41) (((-3 $ "failed") (-317 (-567))) 46) (((-3 $ "failed") (-954 (-381))) 50) (((-3 $ "failed") (-954 (-567))) 54) (((-3 $ "failed") (-410 (-954 (-381)))) 36) (((-3 $ "failed") (-410 (-954 (-567)))) 29)) (-2051 (($ (-317 (-381))) 39) (($ (-317 (-567))) 44) (($ (-954 (-381))) 48) (($ (-954 (-567))) 52) (($ (-410 (-954 (-381)))) 34) (($ (-410 (-954 (-567)))) 26)) (-1466 (((-1274) $) 76)) (-4129 (((-863) $) 69) (($ (-645 (-331))) 61) (($ (-331)) 66) (($ (-2 (|:| |localSymbols| (-1183)) (|:| -1814 (-645 (-331))))) 64) (($ (-341 (-4145 (QUOTE X)) (-4145) (-700))) 25)))
+(((-64 |#1|) (-13 (-399) (-10 -8 (-15 -4129 ($ (-341 (-4145 (QUOTE X)) (-4145) (-700)))))) (-1179)) (T -64))
+((-4129 (*1 *1 *2) (-12 (-5 *2 (-341 (-4145 (QUOTE X)) (-4145) (-700))) (-5 *1 (-64 *3)) (-14 *3 (-1179)))))
+(-13 (-399) (-10 -8 (-15 -4129 ($ (-341 (-4145 (QUOTE X)) (-4145) (-700))))))
+((-3765 (((-3 $ "failed") (-690 (-317 (-381)))) 114) (((-3 $ "failed") (-690 (-317 (-567)))) 102) (((-3 $ "failed") (-690 (-954 (-381)))) 136) (((-3 $ "failed") (-690 (-954 (-567)))) 125) (((-3 $ "failed") (-690 (-410 (-954 (-381))))) 90) (((-3 $ "failed") (-690 (-410 (-954 (-567))))) 76)) (-2051 (($ (-690 (-317 (-381)))) 110) (($ (-690 (-317 (-567)))) 98) (($ (-690 (-954 (-381)))) 132) (($ (-690 (-954 (-567)))) 121) (($ (-690 (-410 (-954 (-381))))) 86) (($ (-690 (-410 (-954 (-567))))) 69)) (-1466 (((-1274) $) 144)) (-4129 (((-863) $) 138) (($ (-645 (-331))) 29) (($ (-331)) 34) (($ (-2 (|:| |localSymbols| (-1183)) (|:| -1814 (-645 (-331))))) 32) (($ (-690 (-341 (-4145) (-4145 (QUOTE X) (QUOTE HESS)) (-700)))) 59)))
+(((-65 |#1|) (-13 (-386) (-617 (-690 (-341 (-4145) (-4145 (QUOTE X) (QUOTE HESS)) (-700))))) (-1179)) (T -65))
+NIL
+(-13 (-386) (-617 (-690 (-341 (-4145) (-4145 (QUOTE X) (QUOTE HESS)) (-700)))))
+((-3765 (((-3 $ "failed") (-317 (-381))) 60) (((-3 $ "failed") (-317 (-567))) 65) (((-3 $ "failed") (-954 (-381))) 69) (((-3 $ "failed") (-954 (-567))) 73) (((-3 $ "failed") (-410 (-954 (-381)))) 55) (((-3 $ "failed") (-410 (-954 (-567)))) 48)) (-2051 (($ (-317 (-381))) 58) (($ (-317 (-567))) 63) (($ (-954 (-381))) 67) (($ (-954 (-567))) 71) (($ (-410 (-954 (-381)))) 53) (($ (-410 (-954 (-567)))) 45)) (-1466 (((-1274) $) 82)) (-4129 (((-863) $) 76) (($ (-645 (-331))) 29) (($ (-331)) 34) (($ (-2 (|:| |localSymbols| (-1183)) (|:| -1814 (-645 (-331))))) 32) (($ (-341 (-4145) (-4145 (QUOTE XC)) (-700))) 40)))
+(((-66 |#1|) (-13 (-399) (-10 -8 (-15 -4129 ($ (-341 (-4145) (-4145 (QUOTE XC)) (-700)))))) (-1179)) (T -66))
+((-4129 (*1 *1 *2) (-12 (-5 *2 (-341 (-4145) (-4145 (QUOTE XC)) (-700))) (-5 *1 (-66 *3)) (-14 *3 (-1179)))))
+(-13 (-399) (-10 -8 (-15 -4129 ($ (-341 (-4145) (-4145 (QUOTE XC)) (-700))))))
+((-1466 (((-1274) $) 68)) (-4129 (((-863) $) 62) (($ (-690 (-700))) 54) (($ (-645 (-331))) 53) (($ (-331)) 60) (($ (-2 (|:| |localSymbols| (-1183)) (|:| -1814 (-645 (-331))))) 58)))
+(((-67 |#1|) (-385) (-1179)) (T -67))
NIL
(-385)
-((-1453 (((-1273) $) 69)) (-4132 (((-863) $) 63) (($ (-690 (-700))) 55) (($ (-645 (-331))) 54) (($ (-331)) 57) (($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) 60)))
-(((-68 |#1|) (-385) (-1178)) (T -68))
+((-1466 (((-1274) $) 69)) (-4129 (((-863) $) 63) (($ (-690 (-700))) 55) (($ (-645 (-331))) 54) (($ (-331)) 57) (($ (-2 (|:| |localSymbols| (-1183)) (|:| -1814 (-645 (-331))))) 60)))
+(((-68 |#1|) (-385) (-1179)) (T -68))
NIL
(-385)
-((-1453 (((-1273) $) NIL) (((-1273)) 33)) (-4132 (((-863) $) NIL)))
-(((-69 |#1|) (-13 (-398) (-10 -7 (-15 -1453 ((-1273))))) (-1178)) (T -69))
-((-1453 (*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-69 *3)) (-14 *3 (-1178)))))
-(-13 (-398) (-10 -7 (-15 -1453 ((-1273)))))
-((-1453 (((-1273) $) 75)) (-4132 (((-863) $) 69) (($ (-690 (-700))) 61) (($ (-645 (-331))) 63) (($ (-331)) 66) (($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) 60)))
-(((-70 |#1|) (-385) (-1178)) (T -70))
+((-1466 (((-1274) $) NIL) (((-1274)) 33)) (-4129 (((-863) $) NIL)))
+(((-69 |#1|) (-13 (-398) (-10 -7 (-15 -1466 ((-1274))))) (-1179)) (T -69))
+((-1466 (*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-69 *3)) (-14 *3 (-1179)))))
+(-13 (-398) (-10 -7 (-15 -1466 ((-1274)))))
+((-1466 (((-1274) $) 75)) (-4129 (((-863) $) 69) (($ (-690 (-700))) 61) (($ (-645 (-331))) 63) (($ (-331)) 66) (($ (-2 (|:| |localSymbols| (-1183)) (|:| -1814 (-645 (-331))))) 60)))
+(((-70 |#1|) (-385) (-1179)) (T -70))
NIL
(-385)
-((-3753 (((-3 $ "failed") (-1268 (-317 (-381)))) 111) (((-3 $ "failed") (-1268 (-317 (-567)))) 100) (((-3 $ "failed") (-1268 (-954 (-381)))) 131) (((-3 $ "failed") (-1268 (-954 (-567)))) 121) (((-3 $ "failed") (-1268 (-410 (-954 (-381))))) 89) (((-3 $ "failed") (-1268 (-410 (-954 (-567))))) 76)) (-2038 (($ (-1268 (-317 (-381)))) 107) (($ (-1268 (-317 (-567)))) 96) (($ (-1268 (-954 (-381)))) 127) (($ (-1268 (-954 (-567)))) 117) (($ (-1268 (-410 (-954 (-381))))) 85) (($ (-1268 (-410 (-954 (-567))))) 69)) (-1453 (((-1273) $) 144)) (-4132 (((-863) $) 138) (($ (-645 (-331))) 133) (($ (-331)) 136) (($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) 61) (($ (-1268 (-341 (-4147 (QUOTE X)) (-4147 (QUOTE -1898)) (-700)))) 62)))
-(((-71 |#1|) (-13 (-444) (-10 -8 (-15 -4132 ($ (-1268 (-341 (-4147 (QUOTE X)) (-4147 (QUOTE -1898)) (-700))))))) (-1178)) (T -71))
-((-4132 (*1 *1 *2) (-12 (-5 *2 (-1268 (-341 (-4147 (QUOTE X)) (-4147 (QUOTE -1898)) (-700)))) (-5 *1 (-71 *3)) (-14 *3 (-1178)))))
-(-13 (-444) (-10 -8 (-15 -4132 ($ (-1268 (-341 (-4147 (QUOTE X)) (-4147 (QUOTE -1898)) (-700)))))))
-((-1453 (((-1273) $) 33) (((-1273)) 32)) (-4132 (((-863) $) 36)))
-(((-72 |#1|) (-13 (-398) (-10 -7 (-15 -1453 ((-1273))))) (-1178)) (T -72))
-((-1453 (*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-72 *3)) (-14 *3 (-1178)))))
-(-13 (-398) (-10 -7 (-15 -1453 ((-1273)))))
-((-1453 (((-1273) $) 65)) (-4132 (((-863) $) 59) (($ (-690 (-700))) 51) (($ (-645 (-331))) 53) (($ (-331)) 56) (($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) 50)))
-(((-73 |#1|) (-385) (-1178)) (T -73))
+((-3765 (((-3 $ "failed") (-1269 (-317 (-381)))) 111) (((-3 $ "failed") (-1269 (-317 (-567)))) 100) (((-3 $ "failed") (-1269 (-954 (-381)))) 131) (((-3 $ "failed") (-1269 (-954 (-567)))) 121) (((-3 $ "failed") (-1269 (-410 (-954 (-381))))) 89) (((-3 $ "failed") (-1269 (-410 (-954 (-567))))) 76)) (-2051 (($ (-1269 (-317 (-381)))) 107) (($ (-1269 (-317 (-567)))) 96) (($ (-1269 (-954 (-381)))) 127) (($ (-1269 (-954 (-567)))) 117) (($ (-1269 (-410 (-954 (-381))))) 85) (($ (-1269 (-410 (-954 (-567))))) 69)) (-1466 (((-1274) $) 144)) (-4129 (((-863) $) 138) (($ (-645 (-331))) 133) (($ (-331)) 136) (($ (-2 (|:| |localSymbols| (-1183)) (|:| -1814 (-645 (-331))))) 61) (($ (-1269 (-341 (-4145 (QUOTE X)) (-4145 (QUOTE -1911)) (-700)))) 62)))
+(((-71 |#1|) (-13 (-444) (-10 -8 (-15 -4129 ($ (-1269 (-341 (-4145 (QUOTE X)) (-4145 (QUOTE -1911)) (-700))))))) (-1179)) (T -71))
+((-4129 (*1 *1 *2) (-12 (-5 *2 (-1269 (-341 (-4145 (QUOTE X)) (-4145 (QUOTE -1911)) (-700)))) (-5 *1 (-71 *3)) (-14 *3 (-1179)))))
+(-13 (-444) (-10 -8 (-15 -4129 ($ (-1269 (-341 (-4145 (QUOTE X)) (-4145 (QUOTE -1911)) (-700)))))))
+((-1466 (((-1274) $) 33) (((-1274)) 32)) (-4129 (((-863) $) 36)))
+(((-72 |#1|) (-13 (-398) (-10 -7 (-15 -1466 ((-1274))))) (-1179)) (T -72))
+((-1466 (*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-72 *3)) (-14 *3 (-1179)))))
+(-13 (-398) (-10 -7 (-15 -1466 ((-1274)))))
+((-1466 (((-1274) $) 65)) (-4129 (((-863) $) 59) (($ (-690 (-700))) 51) (($ (-645 (-331))) 53) (($ (-331)) 56) (($ (-2 (|:| |localSymbols| (-1183)) (|:| -1814 (-645 (-331))))) 50)))
+(((-73 |#1|) (-385) (-1179)) (T -73))
NIL
(-385)
-((-3753 (((-3 $ "failed") (-1268 (-317 (-381)))) 130) (((-3 $ "failed") (-1268 (-317 (-567)))) 120) (((-3 $ "failed") (-1268 (-954 (-381)))) 150) (((-3 $ "failed") (-1268 (-954 (-567)))) 140) (((-3 $ "failed") (-1268 (-410 (-954 (-381))))) 110) (((-3 $ "failed") (-1268 (-410 (-954 (-567))))) 98)) (-2038 (($ (-1268 (-317 (-381)))) 126) (($ (-1268 (-317 (-567)))) 116) (($ (-1268 (-954 (-381)))) 146) (($ (-1268 (-954 (-567)))) 136) (($ (-1268 (-410 (-954 (-381))))) 106) (($ (-1268 (-410 (-954 (-567))))) 91)) (-1453 (((-1273) $) 83)) (-4132 (((-863) $) 28) (($ (-645 (-331))) 73) (($ (-331)) 69) (($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) 76) (($ (-1268 (-341 (-4147) (-4147 (QUOTE X)) (-700)))) 70)))
-(((-74 |#1|) (-13 (-444) (-10 -8 (-15 -4132 ($ (-1268 (-341 (-4147) (-4147 (QUOTE X)) (-700))))))) (-1178)) (T -74))
-((-4132 (*1 *1 *2) (-12 (-5 *2 (-1268 (-341 (-4147) (-4147 (QUOTE X)) (-700)))) (-5 *1 (-74 *3)) (-14 *3 (-1178)))))
-(-13 (-444) (-10 -8 (-15 -4132 ($ (-1268 (-341 (-4147) (-4147 (QUOTE X)) (-700)))))))
-((-3753 (((-3 $ "failed") (-1268 (-317 (-381)))) 135) (((-3 $ "failed") (-1268 (-317 (-567)))) 124) (((-3 $ "failed") (-1268 (-954 (-381)))) 155) (((-3 $ "failed") (-1268 (-954 (-567)))) 145) (((-3 $ "failed") (-1268 (-410 (-954 (-381))))) 113) (((-3 $ "failed") (-1268 (-410 (-954 (-567))))) 100)) (-2038 (($ (-1268 (-317 (-381)))) 131) (($ (-1268 (-317 (-567)))) 120) (($ (-1268 (-954 (-381)))) 151) (($ (-1268 (-954 (-567)))) 141) (($ (-1268 (-410 (-954 (-381))))) 109) (($ (-1268 (-410 (-954 (-567))))) 93)) (-1453 (((-1273) $) 85)) (-4132 (((-863) $) 77) (($ (-645 (-331))) NIL) (($ (-331)) NIL) (($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) NIL) (($ (-1268 (-341 (-4147 (QUOTE X) (QUOTE EPS)) (-4147 (QUOTE -1898)) (-700)))) 72)))
-(((-75 |#1| |#2| |#3|) (-13 (-444) (-10 -8 (-15 -4132 ($ (-1268 (-341 (-4147 (QUOTE X) (QUOTE EPS)) (-4147 (QUOTE -1898)) (-700))))))) (-1178) (-1178) (-1178)) (T -75))
-((-4132 (*1 *1 *2) (-12 (-5 *2 (-1268 (-341 (-4147 (QUOTE X) (QUOTE EPS)) (-4147 (QUOTE -1898)) (-700)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1178)) (-14 *4 (-1178)) (-14 *5 (-1178)))))
-(-13 (-444) (-10 -8 (-15 -4132 ($ (-1268 (-341 (-4147 (QUOTE X) (QUOTE EPS)) (-4147 (QUOTE -1898)) (-700)))))))
-((-3753 (((-3 $ "failed") (-1268 (-317 (-381)))) 141) (((-3 $ "failed") (-1268 (-317 (-567)))) 130) (((-3 $ "failed") (-1268 (-954 (-381)))) 161) (((-3 $ "failed") (-1268 (-954 (-567)))) 151) (((-3 $ "failed") (-1268 (-410 (-954 (-381))))) 119) (((-3 $ "failed") (-1268 (-410 (-954 (-567))))) 106)) (-2038 (($ (-1268 (-317 (-381)))) 137) (($ (-1268 (-317 (-567)))) 126) (($ (-1268 (-954 (-381)))) 157) (($ (-1268 (-954 (-567)))) 147) (($ (-1268 (-410 (-954 (-381))))) 115) (($ (-1268 (-410 (-954 (-567))))) 99)) (-1453 (((-1273) $) 91)) (-4132 (((-863) $) 83) (($ (-645 (-331))) NIL) (($ (-331)) NIL) (($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) NIL) (($ (-1268 (-341 (-4147 (QUOTE EPS)) (-4147 (QUOTE YA) (QUOTE YB)) (-700)))) 78)))
-(((-76 |#1| |#2| |#3|) (-13 (-444) (-10 -8 (-15 -4132 ($ (-1268 (-341 (-4147 (QUOTE EPS)) (-4147 (QUOTE YA) (QUOTE YB)) (-700))))))) (-1178) (-1178) (-1178)) (T -76))
-((-4132 (*1 *1 *2) (-12 (-5 *2 (-1268 (-341 (-4147 (QUOTE EPS)) (-4147 (QUOTE YA) (QUOTE YB)) (-700)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1178)) (-14 *4 (-1178)) (-14 *5 (-1178)))))
-(-13 (-444) (-10 -8 (-15 -4132 ($ (-1268 (-341 (-4147 (QUOTE EPS)) (-4147 (QUOTE YA) (QUOTE YB)) (-700)))))))
-((-3753 (((-3 $ "failed") (-317 (-381))) 83) (((-3 $ "failed") (-317 (-567))) 88) (((-3 $ "failed") (-954 (-381))) 92) (((-3 $ "failed") (-954 (-567))) 96) (((-3 $ "failed") (-410 (-954 (-381)))) 78) (((-3 $ "failed") (-410 (-954 (-567)))) 71)) (-2038 (($ (-317 (-381))) 81) (($ (-317 (-567))) 86) (($ (-954 (-381))) 90) (($ (-954 (-567))) 94) (($ (-410 (-954 (-381)))) 76) (($ (-410 (-954 (-567)))) 68)) (-1453 (((-1273) $) 63)) (-4132 (((-863) $) 51) (($ (-645 (-331))) 47) (($ (-331)) 57) (($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) 55) (($ (-341 (-4147) (-4147 (QUOTE X)) (-700))) 48)))
-(((-77 |#1|) (-13 (-399) (-10 -8 (-15 -4132 ($ (-341 (-4147) (-4147 (QUOTE X)) (-700)))))) (-1178)) (T -77))
-((-4132 (*1 *1 *2) (-12 (-5 *2 (-341 (-4147) (-4147 (QUOTE X)) (-700))) (-5 *1 (-77 *3)) (-14 *3 (-1178)))))
-(-13 (-399) (-10 -8 (-15 -4132 ($ (-341 (-4147) (-4147 (QUOTE X)) (-700))))))
-((-3753 (((-3 $ "failed") (-317 (-381))) 47) (((-3 $ "failed") (-317 (-567))) 52) (((-3 $ "failed") (-954 (-381))) 56) (((-3 $ "failed") (-954 (-567))) 60) (((-3 $ "failed") (-410 (-954 (-381)))) 42) (((-3 $ "failed") (-410 (-954 (-567)))) 35)) (-2038 (($ (-317 (-381))) 45) (($ (-317 (-567))) 50) (($ (-954 (-381))) 54) (($ (-954 (-567))) 58) (($ (-410 (-954 (-381)))) 40) (($ (-410 (-954 (-567)))) 32)) (-1453 (((-1273) $) 81)) (-4132 (((-863) $) 75) (($ (-645 (-331))) 67) (($ (-331)) 72) (($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) 70) (($ (-341 (-4147) (-4147 (QUOTE X)) (-700))) 31)))
-(((-78 |#1|) (-13 (-399) (-10 -8 (-15 -4132 ($ (-341 (-4147) (-4147 (QUOTE X)) (-700)))))) (-1178)) (T -78))
-((-4132 (*1 *1 *2) (-12 (-5 *2 (-341 (-4147) (-4147 (QUOTE X)) (-700))) (-5 *1 (-78 *3)) (-14 *3 (-1178)))))
-(-13 (-399) (-10 -8 (-15 -4132 ($ (-341 (-4147) (-4147 (QUOTE X)) (-700))))))
-((-3753 (((-3 $ "failed") (-1268 (-317 (-381)))) 90) (((-3 $ "failed") (-1268 (-317 (-567)))) 79) (((-3 $ "failed") (-1268 (-954 (-381)))) 110) (((-3 $ "failed") (-1268 (-954 (-567)))) 100) (((-3 $ "failed") (-1268 (-410 (-954 (-381))))) 68) (((-3 $ "failed") (-1268 (-410 (-954 (-567))))) 55)) (-2038 (($ (-1268 (-317 (-381)))) 86) (($ (-1268 (-317 (-567)))) 75) (($ (-1268 (-954 (-381)))) 106) (($ (-1268 (-954 (-567)))) 96) (($ (-1268 (-410 (-954 (-381))))) 64) (($ (-1268 (-410 (-954 (-567))))) 48)) (-1453 (((-1273) $) 126)) (-4132 (((-863) $) 120) (($ (-645 (-331))) 113) (($ (-331)) 38) (($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) 116) (($ (-1268 (-341 (-4147) (-4147 (QUOTE XC)) (-700)))) 39)))
-(((-79 |#1|) (-13 (-444) (-10 -8 (-15 -4132 ($ (-1268 (-341 (-4147) (-4147 (QUOTE XC)) (-700))))))) (-1178)) (T -79))
-((-4132 (*1 *1 *2) (-12 (-5 *2 (-1268 (-341 (-4147) (-4147 (QUOTE XC)) (-700)))) (-5 *1 (-79 *3)) (-14 *3 (-1178)))))
-(-13 (-444) (-10 -8 (-15 -4132 ($ (-1268 (-341 (-4147) (-4147 (QUOTE XC)) (-700)))))))
-((-3753 (((-3 $ "failed") (-1268 (-317 (-381)))) 158) (((-3 $ "failed") (-1268 (-317 (-567)))) 148) (((-3 $ "failed") (-1268 (-954 (-381)))) 178) (((-3 $ "failed") (-1268 (-954 (-567)))) 168) (((-3 $ "failed") (-1268 (-410 (-954 (-381))))) 138) (((-3 $ "failed") (-1268 (-410 (-954 (-567))))) 126)) (-2038 (($ (-1268 (-317 (-381)))) 154) (($ (-1268 (-317 (-567)))) 144) (($ (-1268 (-954 (-381)))) 174) (($ (-1268 (-954 (-567)))) 164) (($ (-1268 (-410 (-954 (-381))))) 134) (($ (-1268 (-410 (-954 (-567))))) 119)) (-1453 (((-1273) $) 112)) (-4132 (((-863) $) 106) (($ (-645 (-331))) 97) (($ (-331)) 104) (($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) 102) (($ (-1268 (-341 (-4147) (-4147 (QUOTE X)) (-700)))) 98)))
-(((-80 |#1|) (-13 (-444) (-10 -8 (-15 -4132 ($ (-1268 (-341 (-4147) (-4147 (QUOTE X)) (-700))))))) (-1178)) (T -80))
-((-4132 (*1 *1 *2) (-12 (-5 *2 (-1268 (-341 (-4147) (-4147 (QUOTE X)) (-700)))) (-5 *1 (-80 *3)) (-14 *3 (-1178)))))
-(-13 (-444) (-10 -8 (-15 -4132 ($ (-1268 (-341 (-4147) (-4147 (QUOTE X)) (-700)))))))
-((-3753 (((-3 $ "failed") (-1268 (-317 (-381)))) 79) (((-3 $ "failed") (-1268 (-317 (-567)))) 68) (((-3 $ "failed") (-1268 (-954 (-381)))) 99) (((-3 $ "failed") (-1268 (-954 (-567)))) 89) (((-3 $ "failed") (-1268 (-410 (-954 (-381))))) 57) (((-3 $ "failed") (-1268 (-410 (-954 (-567))))) 44)) (-2038 (($ (-1268 (-317 (-381)))) 75) (($ (-1268 (-317 (-567)))) 64) (($ (-1268 (-954 (-381)))) 95) (($ (-1268 (-954 (-567)))) 85) (($ (-1268 (-410 (-954 (-381))))) 53) (($ (-1268 (-410 (-954 (-567))))) 37)) (-1453 (((-1273) $) 125)) (-4132 (((-863) $) 119) (($ (-645 (-331))) 110) (($ (-331)) 116) (($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) 114) (($ (-1268 (-341 (-4147) (-4147 (QUOTE X)) (-700)))) 36)))
-(((-81 |#1|) (-13 (-444) (-617 (-1268 (-341 (-4147) (-4147 (QUOTE X)) (-700))))) (-1178)) (T -81))
-NIL
-(-13 (-444) (-617 (-1268 (-341 (-4147) (-4147 (QUOTE X)) (-700)))))
-((-3753 (((-3 $ "failed") (-1268 (-317 (-381)))) 98) (((-3 $ "failed") (-1268 (-317 (-567)))) 87) (((-3 $ "failed") (-1268 (-954 (-381)))) 118) (((-3 $ "failed") (-1268 (-954 (-567)))) 108) (((-3 $ "failed") (-1268 (-410 (-954 (-381))))) 76) (((-3 $ "failed") (-1268 (-410 (-954 (-567))))) 63)) (-2038 (($ (-1268 (-317 (-381)))) 94) (($ (-1268 (-317 (-567)))) 83) (($ (-1268 (-954 (-381)))) 114) (($ (-1268 (-954 (-567)))) 104) (($ (-1268 (-410 (-954 (-381))))) 72) (($ (-1268 (-410 (-954 (-567))))) 56)) (-1453 (((-1273) $) 48)) (-4132 (((-863) $) 42) (($ (-645 (-331))) 32) (($ (-331)) 35) (($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) 38) (($ (-1268 (-341 (-4147 (QUOTE X) (QUOTE -1898)) (-4147) (-700)))) 33)))
-(((-82 |#1|) (-13 (-444) (-10 -8 (-15 -4132 ($ (-1268 (-341 (-4147 (QUOTE X) (QUOTE -1898)) (-4147) (-700))))))) (-1178)) (T -82))
-((-4132 (*1 *1 *2) (-12 (-5 *2 (-1268 (-341 (-4147 (QUOTE X) (QUOTE -1898)) (-4147) (-700)))) (-5 *1 (-82 *3)) (-14 *3 (-1178)))))
-(-13 (-444) (-10 -8 (-15 -4132 ($ (-1268 (-341 (-4147 (QUOTE X) (QUOTE -1898)) (-4147) (-700)))))))
-((-3753 (((-3 $ "failed") (-690 (-317 (-381)))) 118) (((-3 $ "failed") (-690 (-317 (-567)))) 107) (((-3 $ "failed") (-690 (-954 (-381)))) 140) (((-3 $ "failed") (-690 (-954 (-567)))) 129) (((-3 $ "failed") (-690 (-410 (-954 (-381))))) 96) (((-3 $ "failed") (-690 (-410 (-954 (-567))))) 83)) (-2038 (($ (-690 (-317 (-381)))) 114) (($ (-690 (-317 (-567)))) 103) (($ (-690 (-954 (-381)))) 136) (($ (-690 (-954 (-567)))) 125) (($ (-690 (-410 (-954 (-381))))) 92) (($ (-690 (-410 (-954 (-567))))) 76)) (-1453 (((-1273) $) 66)) (-4132 (((-863) $) 53) (($ (-645 (-331))) 60) (($ (-331)) 49) (($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) 58) (($ (-690 (-341 (-4147 (QUOTE X) (QUOTE -1898)) (-4147) (-700)))) 50)))
-(((-83 |#1|) (-13 (-386) (-10 -8 (-15 -4132 ($ (-690 (-341 (-4147 (QUOTE X) (QUOTE -1898)) (-4147) (-700))))))) (-1178)) (T -83))
-((-4132 (*1 *1 *2) (-12 (-5 *2 (-690 (-341 (-4147 (QUOTE X) (QUOTE -1898)) (-4147) (-700)))) (-5 *1 (-83 *3)) (-14 *3 (-1178)))))
-(-13 (-386) (-10 -8 (-15 -4132 ($ (-690 (-341 (-4147 (QUOTE X) (QUOTE -1898)) (-4147) (-700)))))))
-((-3753 (((-3 $ "failed") (-690 (-317 (-381)))) 113) (((-3 $ "failed") (-690 (-317 (-567)))) 101) (((-3 $ "failed") (-690 (-954 (-381)))) 135) (((-3 $ "failed") (-690 (-954 (-567)))) 124) (((-3 $ "failed") (-690 (-410 (-954 (-381))))) 89) (((-3 $ "failed") (-690 (-410 (-954 (-567))))) 75)) (-2038 (($ (-690 (-317 (-381)))) 109) (($ (-690 (-317 (-567)))) 97) (($ (-690 (-954 (-381)))) 131) (($ (-690 (-954 (-567)))) 120) (($ (-690 (-410 (-954 (-381))))) 85) (($ (-690 (-410 (-954 (-567))))) 68)) (-1453 (((-1273) $) 60)) (-4132 (((-863) $) 54) (($ (-645 (-331))) 48) (($ (-331)) 51) (($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) 45) (($ (-690 (-341 (-4147 (QUOTE X)) (-4147) (-700)))) 46)))
-(((-84 |#1|) (-13 (-386) (-10 -8 (-15 -4132 ($ (-690 (-341 (-4147 (QUOTE X)) (-4147) (-700))))))) (-1178)) (T -84))
-((-4132 (*1 *1 *2) (-12 (-5 *2 (-690 (-341 (-4147 (QUOTE X)) (-4147) (-700)))) (-5 *1 (-84 *3)) (-14 *3 (-1178)))))
-(-13 (-386) (-10 -8 (-15 -4132 ($ (-690 (-341 (-4147 (QUOTE X)) (-4147) (-700)))))))
-((-3753 (((-3 $ "failed") (-1268 (-317 (-381)))) 105) (((-3 $ "failed") (-1268 (-317 (-567)))) 94) (((-3 $ "failed") (-1268 (-954 (-381)))) 125) (((-3 $ "failed") (-1268 (-954 (-567)))) 115) (((-3 $ "failed") (-1268 (-410 (-954 (-381))))) 83) (((-3 $ "failed") (-1268 (-410 (-954 (-567))))) 70)) (-2038 (($ (-1268 (-317 (-381)))) 101) (($ (-1268 (-317 (-567)))) 90) (($ (-1268 (-954 (-381)))) 121) (($ (-1268 (-954 (-567)))) 111) (($ (-1268 (-410 (-954 (-381))))) 79) (($ (-1268 (-410 (-954 (-567))))) 63)) (-1453 (((-1273) $) 47)) (-4132 (((-863) $) 41) (($ (-645 (-331))) 50) (($ (-331)) 37) (($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) 53) (($ (-1268 (-341 (-4147 (QUOTE X)) (-4147) (-700)))) 38)))
-(((-85 |#1|) (-13 (-444) (-10 -8 (-15 -4132 ($ (-1268 (-341 (-4147 (QUOTE X)) (-4147) (-700))))))) (-1178)) (T -85))
-((-4132 (*1 *1 *2) (-12 (-5 *2 (-1268 (-341 (-4147 (QUOTE X)) (-4147) (-700)))) (-5 *1 (-85 *3)) (-14 *3 (-1178)))))
-(-13 (-444) (-10 -8 (-15 -4132 ($ (-1268 (-341 (-4147 (QUOTE X)) (-4147) (-700)))))))
-((-3753 (((-3 $ "failed") (-1268 (-317 (-381)))) 80) (((-3 $ "failed") (-1268 (-317 (-567)))) 69) (((-3 $ "failed") (-1268 (-954 (-381)))) 100) (((-3 $ "failed") (-1268 (-954 (-567)))) 90) (((-3 $ "failed") (-1268 (-410 (-954 (-381))))) 58) (((-3 $ "failed") (-1268 (-410 (-954 (-567))))) 45)) (-2038 (($ (-1268 (-317 (-381)))) 76) (($ (-1268 (-317 (-567)))) 65) (($ (-1268 (-954 (-381)))) 96) (($ (-1268 (-954 (-567)))) 86) (($ (-1268 (-410 (-954 (-381))))) 54) (($ (-1268 (-410 (-954 (-567))))) 38)) (-1453 (((-1273) $) 126)) (-4132 (((-863) $) 120) (($ (-645 (-331))) 111) (($ (-331)) 117) (($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) 115) (($ (-1268 (-341 (-4147 (QUOTE X)) (-4147 (QUOTE -1898)) (-700)))) 37)))
-(((-86 |#1|) (-13 (-444) (-10 -8 (-15 -4132 ($ (-1268 (-341 (-4147 (QUOTE X)) (-4147 (QUOTE -1898)) (-700))))))) (-1178)) (T -86))
-((-4132 (*1 *1 *2) (-12 (-5 *2 (-1268 (-341 (-4147 (QUOTE X)) (-4147 (QUOTE -1898)) (-700)))) (-5 *1 (-86 *3)) (-14 *3 (-1178)))))
-(-13 (-444) (-10 -8 (-15 -4132 ($ (-1268 (-341 (-4147 (QUOTE X)) (-4147 (QUOTE -1898)) (-700)))))))
-((-3753 (((-3 $ "failed") (-690 (-317 (-381)))) 117) (((-3 $ "failed") (-690 (-317 (-567)))) 105) (((-3 $ "failed") (-690 (-954 (-381)))) 139) (((-3 $ "failed") (-690 (-954 (-567)))) 128) (((-3 $ "failed") (-690 (-410 (-954 (-381))))) 93) (((-3 $ "failed") (-690 (-410 (-954 (-567))))) 79)) (-2038 (($ (-690 (-317 (-381)))) 113) (($ (-690 (-317 (-567)))) 101) (($ (-690 (-954 (-381)))) 135) (($ (-690 (-954 (-567)))) 124) (($ (-690 (-410 (-954 (-381))))) 89) (($ (-690 (-410 (-954 (-567))))) 72)) (-1453 (((-1273) $) 63)) (-4132 (((-863) $) 57) (($ (-645 (-331))) 47) (($ (-331)) 54) (($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) 52) (($ (-690 (-341 (-4147 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-4147) (-700)))) 48)))
-(((-87 |#1|) (-13 (-386) (-10 -8 (-15 -4132 ($ (-690 (-341 (-4147 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-4147) (-700))))))) (-1178)) (T -87))
-((-4132 (*1 *1 *2) (-12 (-5 *2 (-690 (-341 (-4147 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-4147) (-700)))) (-5 *1 (-87 *3)) (-14 *3 (-1178)))))
-(-13 (-386) (-10 -8 (-15 -4132 ($ (-690 (-341 (-4147 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-4147) (-700)))))))
-((-1453 (((-1273) $) 45)) (-4132 (((-863) $) 39) (($ (-1268 (-700))) 101) (($ (-645 (-331))) 31) (($ (-331)) 36) (($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) 34)))
-(((-88 |#1|) (-443) (-1178)) (T -88))
+((-3765 (((-3 $ "failed") (-1269 (-317 (-381)))) 130) (((-3 $ "failed") (-1269 (-317 (-567)))) 120) (((-3 $ "failed") (-1269 (-954 (-381)))) 150) (((-3 $ "failed") (-1269 (-954 (-567)))) 140) (((-3 $ "failed") (-1269 (-410 (-954 (-381))))) 110) (((-3 $ "failed") (-1269 (-410 (-954 (-567))))) 98)) (-2051 (($ (-1269 (-317 (-381)))) 126) (($ (-1269 (-317 (-567)))) 116) (($ (-1269 (-954 (-381)))) 146) (($ (-1269 (-954 (-567)))) 136) (($ (-1269 (-410 (-954 (-381))))) 106) (($ (-1269 (-410 (-954 (-567))))) 91)) (-1466 (((-1274) $) 83)) (-4129 (((-863) $) 28) (($ (-645 (-331))) 73) (($ (-331)) 69) (($ (-2 (|:| |localSymbols| (-1183)) (|:| -1814 (-645 (-331))))) 76) (($ (-1269 (-341 (-4145) (-4145 (QUOTE X)) (-700)))) 70)))
+(((-74 |#1|) (-13 (-444) (-10 -8 (-15 -4129 ($ (-1269 (-341 (-4145) (-4145 (QUOTE X)) (-700))))))) (-1179)) (T -74))
+((-4129 (*1 *1 *2) (-12 (-5 *2 (-1269 (-341 (-4145) (-4145 (QUOTE X)) (-700)))) (-5 *1 (-74 *3)) (-14 *3 (-1179)))))
+(-13 (-444) (-10 -8 (-15 -4129 ($ (-1269 (-341 (-4145) (-4145 (QUOTE X)) (-700)))))))
+((-3765 (((-3 $ "failed") (-1269 (-317 (-381)))) 135) (((-3 $ "failed") (-1269 (-317 (-567)))) 124) (((-3 $ "failed") (-1269 (-954 (-381)))) 155) (((-3 $ "failed") (-1269 (-954 (-567)))) 145) (((-3 $ "failed") (-1269 (-410 (-954 (-381))))) 113) (((-3 $ "failed") (-1269 (-410 (-954 (-567))))) 100)) (-2051 (($ (-1269 (-317 (-381)))) 131) (($ (-1269 (-317 (-567)))) 120) (($ (-1269 (-954 (-381)))) 151) (($ (-1269 (-954 (-567)))) 141) (($ (-1269 (-410 (-954 (-381))))) 109) (($ (-1269 (-410 (-954 (-567))))) 93)) (-1466 (((-1274) $) 85)) (-4129 (((-863) $) 77) (($ (-645 (-331))) NIL) (($ (-331)) NIL) (($ (-2 (|:| |localSymbols| (-1183)) (|:| -1814 (-645 (-331))))) NIL) (($ (-1269 (-341 (-4145 (QUOTE X) (QUOTE EPS)) (-4145 (QUOTE -1911)) (-700)))) 72)))
+(((-75 |#1| |#2| |#3|) (-13 (-444) (-10 -8 (-15 -4129 ($ (-1269 (-341 (-4145 (QUOTE X) (QUOTE EPS)) (-4145 (QUOTE -1911)) (-700))))))) (-1179) (-1179) (-1179)) (T -75))
+((-4129 (*1 *1 *2) (-12 (-5 *2 (-1269 (-341 (-4145 (QUOTE X) (QUOTE EPS)) (-4145 (QUOTE -1911)) (-700)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1179)) (-14 *4 (-1179)) (-14 *5 (-1179)))))
+(-13 (-444) (-10 -8 (-15 -4129 ($ (-1269 (-341 (-4145 (QUOTE X) (QUOTE EPS)) (-4145 (QUOTE -1911)) (-700)))))))
+((-3765 (((-3 $ "failed") (-1269 (-317 (-381)))) 141) (((-3 $ "failed") (-1269 (-317 (-567)))) 130) (((-3 $ "failed") (-1269 (-954 (-381)))) 161) (((-3 $ "failed") (-1269 (-954 (-567)))) 151) (((-3 $ "failed") (-1269 (-410 (-954 (-381))))) 119) (((-3 $ "failed") (-1269 (-410 (-954 (-567))))) 106)) (-2051 (($ (-1269 (-317 (-381)))) 137) (($ (-1269 (-317 (-567)))) 126) (($ (-1269 (-954 (-381)))) 157) (($ (-1269 (-954 (-567)))) 147) (($ (-1269 (-410 (-954 (-381))))) 115) (($ (-1269 (-410 (-954 (-567))))) 99)) (-1466 (((-1274) $) 91)) (-4129 (((-863) $) 83) (($ (-645 (-331))) NIL) (($ (-331)) NIL) (($ (-2 (|:| |localSymbols| (-1183)) (|:| -1814 (-645 (-331))))) NIL) (($ (-1269 (-341 (-4145 (QUOTE EPS)) (-4145 (QUOTE YA) (QUOTE YB)) (-700)))) 78)))
+(((-76 |#1| |#2| |#3|) (-13 (-444) (-10 -8 (-15 -4129 ($ (-1269 (-341 (-4145 (QUOTE EPS)) (-4145 (QUOTE YA) (QUOTE YB)) (-700))))))) (-1179) (-1179) (-1179)) (T -76))
+((-4129 (*1 *1 *2) (-12 (-5 *2 (-1269 (-341 (-4145 (QUOTE EPS)) (-4145 (QUOTE YA) (QUOTE YB)) (-700)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1179)) (-14 *4 (-1179)) (-14 *5 (-1179)))))
+(-13 (-444) (-10 -8 (-15 -4129 ($ (-1269 (-341 (-4145 (QUOTE EPS)) (-4145 (QUOTE YA) (QUOTE YB)) (-700)))))))
+((-3765 (((-3 $ "failed") (-317 (-381))) 83) (((-3 $ "failed") (-317 (-567))) 88) (((-3 $ "failed") (-954 (-381))) 92) (((-3 $ "failed") (-954 (-567))) 96) (((-3 $ "failed") (-410 (-954 (-381)))) 78) (((-3 $ "failed") (-410 (-954 (-567)))) 71)) (-2051 (($ (-317 (-381))) 81) (($ (-317 (-567))) 86) (($ (-954 (-381))) 90) (($ (-954 (-567))) 94) (($ (-410 (-954 (-381)))) 76) (($ (-410 (-954 (-567)))) 68)) (-1466 (((-1274) $) 63)) (-4129 (((-863) $) 51) (($ (-645 (-331))) 47) (($ (-331)) 57) (($ (-2 (|:| |localSymbols| (-1183)) (|:| -1814 (-645 (-331))))) 55) (($ (-341 (-4145) (-4145 (QUOTE X)) (-700))) 48)))
+(((-77 |#1|) (-13 (-399) (-10 -8 (-15 -4129 ($ (-341 (-4145) (-4145 (QUOTE X)) (-700)))))) (-1179)) (T -77))
+((-4129 (*1 *1 *2) (-12 (-5 *2 (-341 (-4145) (-4145 (QUOTE X)) (-700))) (-5 *1 (-77 *3)) (-14 *3 (-1179)))))
+(-13 (-399) (-10 -8 (-15 -4129 ($ (-341 (-4145) (-4145 (QUOTE X)) (-700))))))
+((-3765 (((-3 $ "failed") (-317 (-381))) 47) (((-3 $ "failed") (-317 (-567))) 52) (((-3 $ "failed") (-954 (-381))) 56) (((-3 $ "failed") (-954 (-567))) 60) (((-3 $ "failed") (-410 (-954 (-381)))) 42) (((-3 $ "failed") (-410 (-954 (-567)))) 35)) (-2051 (($ (-317 (-381))) 45) (($ (-317 (-567))) 50) (($ (-954 (-381))) 54) (($ (-954 (-567))) 58) (($ (-410 (-954 (-381)))) 40) (($ (-410 (-954 (-567)))) 32)) (-1466 (((-1274) $) 81)) (-4129 (((-863) $) 75) (($ (-645 (-331))) 67) (($ (-331)) 72) (($ (-2 (|:| |localSymbols| (-1183)) (|:| -1814 (-645 (-331))))) 70) (($ (-341 (-4145) (-4145 (QUOTE X)) (-700))) 31)))
+(((-78 |#1|) (-13 (-399) (-10 -8 (-15 -4129 ($ (-341 (-4145) (-4145 (QUOTE X)) (-700)))))) (-1179)) (T -78))
+((-4129 (*1 *1 *2) (-12 (-5 *2 (-341 (-4145) (-4145 (QUOTE X)) (-700))) (-5 *1 (-78 *3)) (-14 *3 (-1179)))))
+(-13 (-399) (-10 -8 (-15 -4129 ($ (-341 (-4145) (-4145 (QUOTE X)) (-700))))))
+((-3765 (((-3 $ "failed") (-1269 (-317 (-381)))) 90) (((-3 $ "failed") (-1269 (-317 (-567)))) 79) (((-3 $ "failed") (-1269 (-954 (-381)))) 110) (((-3 $ "failed") (-1269 (-954 (-567)))) 100) (((-3 $ "failed") (-1269 (-410 (-954 (-381))))) 68) (((-3 $ "failed") (-1269 (-410 (-954 (-567))))) 55)) (-2051 (($ (-1269 (-317 (-381)))) 86) (($ (-1269 (-317 (-567)))) 75) (($ (-1269 (-954 (-381)))) 106) (($ (-1269 (-954 (-567)))) 96) (($ (-1269 (-410 (-954 (-381))))) 64) (($ (-1269 (-410 (-954 (-567))))) 48)) (-1466 (((-1274) $) 126)) (-4129 (((-863) $) 120) (($ (-645 (-331))) 113) (($ (-331)) 38) (($ (-2 (|:| |localSymbols| (-1183)) (|:| -1814 (-645 (-331))))) 116) (($ (-1269 (-341 (-4145) (-4145 (QUOTE XC)) (-700)))) 39)))
+(((-79 |#1|) (-13 (-444) (-10 -8 (-15 -4129 ($ (-1269 (-341 (-4145) (-4145 (QUOTE XC)) (-700))))))) (-1179)) (T -79))
+((-4129 (*1 *1 *2) (-12 (-5 *2 (-1269 (-341 (-4145) (-4145 (QUOTE XC)) (-700)))) (-5 *1 (-79 *3)) (-14 *3 (-1179)))))
+(-13 (-444) (-10 -8 (-15 -4129 ($ (-1269 (-341 (-4145) (-4145 (QUOTE XC)) (-700)))))))
+((-3765 (((-3 $ "failed") (-1269 (-317 (-381)))) 158) (((-3 $ "failed") (-1269 (-317 (-567)))) 148) (((-3 $ "failed") (-1269 (-954 (-381)))) 178) (((-3 $ "failed") (-1269 (-954 (-567)))) 168) (((-3 $ "failed") (-1269 (-410 (-954 (-381))))) 138) (((-3 $ "failed") (-1269 (-410 (-954 (-567))))) 126)) (-2051 (($ (-1269 (-317 (-381)))) 154) (($ (-1269 (-317 (-567)))) 144) (($ (-1269 (-954 (-381)))) 174) (($ (-1269 (-954 (-567)))) 164) (($ (-1269 (-410 (-954 (-381))))) 134) (($ (-1269 (-410 (-954 (-567))))) 119)) (-1466 (((-1274) $) 112)) (-4129 (((-863) $) 106) (($ (-645 (-331))) 97) (($ (-331)) 104) (($ (-2 (|:| |localSymbols| (-1183)) (|:| -1814 (-645 (-331))))) 102) (($ (-1269 (-341 (-4145) (-4145 (QUOTE X)) (-700)))) 98)))
+(((-80 |#1|) (-13 (-444) (-10 -8 (-15 -4129 ($ (-1269 (-341 (-4145) (-4145 (QUOTE X)) (-700))))))) (-1179)) (T -80))
+((-4129 (*1 *1 *2) (-12 (-5 *2 (-1269 (-341 (-4145) (-4145 (QUOTE X)) (-700)))) (-5 *1 (-80 *3)) (-14 *3 (-1179)))))
+(-13 (-444) (-10 -8 (-15 -4129 ($ (-1269 (-341 (-4145) (-4145 (QUOTE X)) (-700)))))))
+((-3765 (((-3 $ "failed") (-1269 (-317 (-381)))) 79) (((-3 $ "failed") (-1269 (-317 (-567)))) 68) (((-3 $ "failed") (-1269 (-954 (-381)))) 99) (((-3 $ "failed") (-1269 (-954 (-567)))) 89) (((-3 $ "failed") (-1269 (-410 (-954 (-381))))) 57) (((-3 $ "failed") (-1269 (-410 (-954 (-567))))) 44)) (-2051 (($ (-1269 (-317 (-381)))) 75) (($ (-1269 (-317 (-567)))) 64) (($ (-1269 (-954 (-381)))) 95) (($ (-1269 (-954 (-567)))) 85) (($ (-1269 (-410 (-954 (-381))))) 53) (($ (-1269 (-410 (-954 (-567))))) 37)) (-1466 (((-1274) $) 125)) (-4129 (((-863) $) 119) (($ (-645 (-331))) 110) (($ (-331)) 116) (($ (-2 (|:| |localSymbols| (-1183)) (|:| -1814 (-645 (-331))))) 114) (($ (-1269 (-341 (-4145) (-4145 (QUOTE X)) (-700)))) 36)))
+(((-81 |#1|) (-13 (-444) (-617 (-1269 (-341 (-4145) (-4145 (QUOTE X)) (-700))))) (-1179)) (T -81))
+NIL
+(-13 (-444) (-617 (-1269 (-341 (-4145) (-4145 (QUOTE X)) (-700)))))
+((-3765 (((-3 $ "failed") (-1269 (-317 (-381)))) 98) (((-3 $ "failed") (-1269 (-317 (-567)))) 87) (((-3 $ "failed") (-1269 (-954 (-381)))) 118) (((-3 $ "failed") (-1269 (-954 (-567)))) 108) (((-3 $ "failed") (-1269 (-410 (-954 (-381))))) 76) (((-3 $ "failed") (-1269 (-410 (-954 (-567))))) 63)) (-2051 (($ (-1269 (-317 (-381)))) 94) (($ (-1269 (-317 (-567)))) 83) (($ (-1269 (-954 (-381)))) 114) (($ (-1269 (-954 (-567)))) 104) (($ (-1269 (-410 (-954 (-381))))) 72) (($ (-1269 (-410 (-954 (-567))))) 56)) (-1466 (((-1274) $) 48)) (-4129 (((-863) $) 42) (($ (-645 (-331))) 32) (($ (-331)) 35) (($ (-2 (|:| |localSymbols| (-1183)) (|:| -1814 (-645 (-331))))) 38) (($ (-1269 (-341 (-4145 (QUOTE X) (QUOTE -1911)) (-4145) (-700)))) 33)))
+(((-82 |#1|) (-13 (-444) (-10 -8 (-15 -4129 ($ (-1269 (-341 (-4145 (QUOTE X) (QUOTE -1911)) (-4145) (-700))))))) (-1179)) (T -82))
+((-4129 (*1 *1 *2) (-12 (-5 *2 (-1269 (-341 (-4145 (QUOTE X) (QUOTE -1911)) (-4145) (-700)))) (-5 *1 (-82 *3)) (-14 *3 (-1179)))))
+(-13 (-444) (-10 -8 (-15 -4129 ($ (-1269 (-341 (-4145 (QUOTE X) (QUOTE -1911)) (-4145) (-700)))))))
+((-3765 (((-3 $ "failed") (-690 (-317 (-381)))) 118) (((-3 $ "failed") (-690 (-317 (-567)))) 107) (((-3 $ "failed") (-690 (-954 (-381)))) 140) (((-3 $ "failed") (-690 (-954 (-567)))) 129) (((-3 $ "failed") (-690 (-410 (-954 (-381))))) 96) (((-3 $ "failed") (-690 (-410 (-954 (-567))))) 83)) (-2051 (($ (-690 (-317 (-381)))) 114) (($ (-690 (-317 (-567)))) 103) (($ (-690 (-954 (-381)))) 136) (($ (-690 (-954 (-567)))) 125) (($ (-690 (-410 (-954 (-381))))) 92) (($ (-690 (-410 (-954 (-567))))) 76)) (-1466 (((-1274) $) 66)) (-4129 (((-863) $) 53) (($ (-645 (-331))) 60) (($ (-331)) 49) (($ (-2 (|:| |localSymbols| (-1183)) (|:| -1814 (-645 (-331))))) 58) (($ (-690 (-341 (-4145 (QUOTE X) (QUOTE -1911)) (-4145) (-700)))) 50)))
+(((-83 |#1|) (-13 (-386) (-10 -8 (-15 -4129 ($ (-690 (-341 (-4145 (QUOTE X) (QUOTE -1911)) (-4145) (-700))))))) (-1179)) (T -83))
+((-4129 (*1 *1 *2) (-12 (-5 *2 (-690 (-341 (-4145 (QUOTE X) (QUOTE -1911)) (-4145) (-700)))) (-5 *1 (-83 *3)) (-14 *3 (-1179)))))
+(-13 (-386) (-10 -8 (-15 -4129 ($ (-690 (-341 (-4145 (QUOTE X) (QUOTE -1911)) (-4145) (-700)))))))
+((-3765 (((-3 $ "failed") (-690 (-317 (-381)))) 113) (((-3 $ "failed") (-690 (-317 (-567)))) 101) (((-3 $ "failed") (-690 (-954 (-381)))) 135) (((-3 $ "failed") (-690 (-954 (-567)))) 124) (((-3 $ "failed") (-690 (-410 (-954 (-381))))) 89) (((-3 $ "failed") (-690 (-410 (-954 (-567))))) 75)) (-2051 (($ (-690 (-317 (-381)))) 109) (($ (-690 (-317 (-567)))) 97) (($ (-690 (-954 (-381)))) 131) (($ (-690 (-954 (-567)))) 120) (($ (-690 (-410 (-954 (-381))))) 85) (($ (-690 (-410 (-954 (-567))))) 68)) (-1466 (((-1274) $) 60)) (-4129 (((-863) $) 54) (($ (-645 (-331))) 48) (($ (-331)) 51) (($ (-2 (|:| |localSymbols| (-1183)) (|:| -1814 (-645 (-331))))) 45) (($ (-690 (-341 (-4145 (QUOTE X)) (-4145) (-700)))) 46)))
+(((-84 |#1|) (-13 (-386) (-10 -8 (-15 -4129 ($ (-690 (-341 (-4145 (QUOTE X)) (-4145) (-700))))))) (-1179)) (T -84))
+((-4129 (*1 *1 *2) (-12 (-5 *2 (-690 (-341 (-4145 (QUOTE X)) (-4145) (-700)))) (-5 *1 (-84 *3)) (-14 *3 (-1179)))))
+(-13 (-386) (-10 -8 (-15 -4129 ($ (-690 (-341 (-4145 (QUOTE X)) (-4145) (-700)))))))
+((-3765 (((-3 $ "failed") (-1269 (-317 (-381)))) 105) (((-3 $ "failed") (-1269 (-317 (-567)))) 94) (((-3 $ "failed") (-1269 (-954 (-381)))) 125) (((-3 $ "failed") (-1269 (-954 (-567)))) 115) (((-3 $ "failed") (-1269 (-410 (-954 (-381))))) 83) (((-3 $ "failed") (-1269 (-410 (-954 (-567))))) 70)) (-2051 (($ (-1269 (-317 (-381)))) 101) (($ (-1269 (-317 (-567)))) 90) (($ (-1269 (-954 (-381)))) 121) (($ (-1269 (-954 (-567)))) 111) (($ (-1269 (-410 (-954 (-381))))) 79) (($ (-1269 (-410 (-954 (-567))))) 63)) (-1466 (((-1274) $) 47)) (-4129 (((-863) $) 41) (($ (-645 (-331))) 50) (($ (-331)) 37) (($ (-2 (|:| |localSymbols| (-1183)) (|:| -1814 (-645 (-331))))) 53) (($ (-1269 (-341 (-4145 (QUOTE X)) (-4145) (-700)))) 38)))
+(((-85 |#1|) (-13 (-444) (-10 -8 (-15 -4129 ($ (-1269 (-341 (-4145 (QUOTE X)) (-4145) (-700))))))) (-1179)) (T -85))
+((-4129 (*1 *1 *2) (-12 (-5 *2 (-1269 (-341 (-4145 (QUOTE X)) (-4145) (-700)))) (-5 *1 (-85 *3)) (-14 *3 (-1179)))))
+(-13 (-444) (-10 -8 (-15 -4129 ($ (-1269 (-341 (-4145 (QUOTE X)) (-4145) (-700)))))))
+((-3765 (((-3 $ "failed") (-1269 (-317 (-381)))) 80) (((-3 $ "failed") (-1269 (-317 (-567)))) 69) (((-3 $ "failed") (-1269 (-954 (-381)))) 100) (((-3 $ "failed") (-1269 (-954 (-567)))) 90) (((-3 $ "failed") (-1269 (-410 (-954 (-381))))) 58) (((-3 $ "failed") (-1269 (-410 (-954 (-567))))) 45)) (-2051 (($ (-1269 (-317 (-381)))) 76) (($ (-1269 (-317 (-567)))) 65) (($ (-1269 (-954 (-381)))) 96) (($ (-1269 (-954 (-567)))) 86) (($ (-1269 (-410 (-954 (-381))))) 54) (($ (-1269 (-410 (-954 (-567))))) 38)) (-1466 (((-1274) $) 126)) (-4129 (((-863) $) 120) (($ (-645 (-331))) 111) (($ (-331)) 117) (($ (-2 (|:| |localSymbols| (-1183)) (|:| -1814 (-645 (-331))))) 115) (($ (-1269 (-341 (-4145 (QUOTE X)) (-4145 (QUOTE -1911)) (-700)))) 37)))
+(((-86 |#1|) (-13 (-444) (-10 -8 (-15 -4129 ($ (-1269 (-341 (-4145 (QUOTE X)) (-4145 (QUOTE -1911)) (-700))))))) (-1179)) (T -86))
+((-4129 (*1 *1 *2) (-12 (-5 *2 (-1269 (-341 (-4145 (QUOTE X)) (-4145 (QUOTE -1911)) (-700)))) (-5 *1 (-86 *3)) (-14 *3 (-1179)))))
+(-13 (-444) (-10 -8 (-15 -4129 ($ (-1269 (-341 (-4145 (QUOTE X)) (-4145 (QUOTE -1911)) (-700)))))))
+((-3765 (((-3 $ "failed") (-690 (-317 (-381)))) 117) (((-3 $ "failed") (-690 (-317 (-567)))) 105) (((-3 $ "failed") (-690 (-954 (-381)))) 139) (((-3 $ "failed") (-690 (-954 (-567)))) 128) (((-3 $ "failed") (-690 (-410 (-954 (-381))))) 93) (((-3 $ "failed") (-690 (-410 (-954 (-567))))) 79)) (-2051 (($ (-690 (-317 (-381)))) 113) (($ (-690 (-317 (-567)))) 101) (($ (-690 (-954 (-381)))) 135) (($ (-690 (-954 (-567)))) 124) (($ (-690 (-410 (-954 (-381))))) 89) (($ (-690 (-410 (-954 (-567))))) 72)) (-1466 (((-1274) $) 63)) (-4129 (((-863) $) 57) (($ (-645 (-331))) 47) (($ (-331)) 54) (($ (-2 (|:| |localSymbols| (-1183)) (|:| -1814 (-645 (-331))))) 52) (($ (-690 (-341 (-4145 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-4145) (-700)))) 48)))
+(((-87 |#1|) (-13 (-386) (-10 -8 (-15 -4129 ($ (-690 (-341 (-4145 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-4145) (-700))))))) (-1179)) (T -87))
+((-4129 (*1 *1 *2) (-12 (-5 *2 (-690 (-341 (-4145 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-4145) (-700)))) (-5 *1 (-87 *3)) (-14 *3 (-1179)))))
+(-13 (-386) (-10 -8 (-15 -4129 ($ (-690 (-341 (-4145 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-4145) (-700)))))))
+((-1466 (((-1274) $) 45)) (-4129 (((-863) $) 39) (($ (-1269 (-700))) 101) (($ (-645 (-331))) 31) (($ (-331)) 36) (($ (-2 (|:| |localSymbols| (-1183)) (|:| -1814 (-645 (-331))))) 34)))
+(((-88 |#1|) (-443) (-1179)) (T -88))
NIL
(-443)
-((-3753 (((-3 $ "failed") (-317 (-381))) 48) (((-3 $ "failed") (-317 (-567))) 53) (((-3 $ "failed") (-954 (-381))) 57) (((-3 $ "failed") (-954 (-567))) 61) (((-3 $ "failed") (-410 (-954 (-381)))) 43) (((-3 $ "failed") (-410 (-954 (-567)))) 36)) (-2038 (($ (-317 (-381))) 46) (($ (-317 (-567))) 51) (($ (-954 (-381))) 55) (($ (-954 (-567))) 59) (($ (-410 (-954 (-381)))) 41) (($ (-410 (-954 (-567)))) 33)) (-1453 (((-1273) $) 91)) (-4132 (((-863) $) 85) (($ (-645 (-331))) 79) (($ (-331)) 82) (($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) 77) (($ (-341 (-4147 (QUOTE X)) (-4147 (QUOTE -1898)) (-700))) 32)))
-(((-89 |#1|) (-13 (-399) (-10 -8 (-15 -4132 ($ (-341 (-4147 (QUOTE X)) (-4147 (QUOTE -1898)) (-700)))))) (-1178)) (T -89))
-((-4132 (*1 *1 *2) (-12 (-5 *2 (-341 (-4147 (QUOTE X)) (-4147 (QUOTE -1898)) (-700))) (-5 *1 (-89 *3)) (-14 *3 (-1178)))))
-(-13 (-399) (-10 -8 (-15 -4132 ($ (-341 (-4147 (QUOTE X)) (-4147 (QUOTE -1898)) (-700))))))
-((-4148 (((-1268 (-690 |#1|)) (-690 |#1|)) 65)) (-3143 (((-2 (|:| -2316 (-690 |#1|)) (|:| |vec| (-1268 (-645 (-923))))) |#2| (-923)) 54)) (-2920 (((-2 (|:| |minor| (-645 (-923))) (|:| -3845 |#2|) (|:| |minors| (-645 (-645 (-923)))) (|:| |ops| (-645 |#2|))) |#2| (-923)) 76 (|has| |#1| (-365)))))
-(((-90 |#1| |#2|) (-10 -7 (-15 -3143 ((-2 (|:| -2316 (-690 |#1|)) (|:| |vec| (-1268 (-645 (-923))))) |#2| (-923))) (-15 -4148 ((-1268 (-690 |#1|)) (-690 |#1|))) (IF (|has| |#1| (-365)) (-15 -2920 ((-2 (|:| |minor| (-645 (-923))) (|:| -3845 |#2|) (|:| |minors| (-645 (-645 (-923)))) (|:| |ops| (-645 |#2|))) |#2| (-923))) |%noBranch|)) (-559) (-657 |#1|)) (T -90))
-((-2920 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *5 (-559)) (-5 *2 (-2 (|:| |minor| (-645 (-923))) (|:| -3845 *3) (|:| |minors| (-645 (-645 (-923)))) (|:| |ops| (-645 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-923)) (-4 *3 (-657 *5)))) (-4148 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-1268 (-690 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-690 *4)) (-4 *5 (-657 *4)))) (-3143 (*1 *2 *3 *4) (-12 (-4 *5 (-559)) (-5 *2 (-2 (|:| -2316 (-690 *5)) (|:| |vec| (-1268 (-645 (-923)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-923)) (-4 *3 (-657 *5)))))
-(-10 -7 (-15 -3143 ((-2 (|:| -2316 (-690 |#1|)) (|:| |vec| (-1268 (-645 (-923))))) |#2| (-923))) (-15 -4148 ((-1268 (-690 |#1|)) (-690 |#1|))) (IF (|has| |#1| (-365)) (-15 -2920 ((-2 (|:| |minor| (-645 (-923))) (|:| -3845 |#2|) (|:| |minors| (-645 (-645 (-923)))) (|:| |ops| (-645 |#2|))) |#2| (-923))) |%noBranch|))
-((-2403 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2262 ((|#1| $) 42)) (-3445 (((-112) $ (-772)) NIL)) (-2585 (($) NIL T CONST)) (-2576 ((|#1| |#1| $) 37)) (-4338 ((|#1| $) 35)) (-2777 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-2077 (((-112) $ (-772)) NIL)) (-2279 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-3731 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL (|has| |#1| (-1102)))) (-1566 ((|#1| $) NIL)) (-2531 (($ |#1| $) 38)) (-3430 (((-1122) $) NIL (|has| |#1| (-1102)))) (-1793 ((|#1| $) 36)) (-3025 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) NIL)) (-3572 (((-112) $) 18)) (-3498 (($) 46)) (-3272 (((-772) $) 33)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-4305 (($ $) 17)) (-4132 (((-863) $) 32 (|has| |#1| (-614 (-863))))) (-1745 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3551 (($ (-645 |#1|)) NIL)) (-2659 (($ (-645 |#1|)) 44)) (-1853 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 15 (|has| |#1| (-1102)))) (-2414 (((-772) $) 12 (|has| $ (-6 -4418)))))
-(((-91 |#1|) (-13 (-1123 |#1|) (-10 -8 (-15 -2659 ($ (-645 |#1|))))) (-1102)) (T -91))
-((-2659 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-5 *1 (-91 *3)))))
-(-13 (-1123 |#1|) (-10 -8 (-15 -2659 ($ (-645 |#1|)))))
-((-4132 (((-863) $) 13) (($ (-1183)) 9) (((-1183) $) 8)))
-(((-92 |#1|) (-10 -8 (-15 -4132 ((-1183) |#1|)) (-15 -4132 (|#1| (-1183))) (-15 -4132 ((-863) |#1|))) (-93)) (T -92))
-NIL
-(-10 -8 (-15 -4132 ((-1183) |#1|)) (-15 -4132 (|#1| (-1183))) (-15 -4132 ((-863) |#1|)))
-((-2403 (((-112) $ $) 7)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12) (($ (-1183)) 17) (((-1183) $) 16)) (-1745 (((-112) $ $) 9)) (-2936 (((-112) $ $) 6)))
+((-3765 (((-3 $ "failed") (-317 (-381))) 48) (((-3 $ "failed") (-317 (-567))) 53) (((-3 $ "failed") (-954 (-381))) 57) (((-3 $ "failed") (-954 (-567))) 61) (((-3 $ "failed") (-410 (-954 (-381)))) 43) (((-3 $ "failed") (-410 (-954 (-567)))) 36)) (-2051 (($ (-317 (-381))) 46) (($ (-317 (-567))) 51) (($ (-954 (-381))) 55) (($ (-954 (-567))) 59) (($ (-410 (-954 (-381)))) 41) (($ (-410 (-954 (-567)))) 33)) (-1466 (((-1274) $) 91)) (-4129 (((-863) $) 85) (($ (-645 (-331))) 79) (($ (-331)) 82) (($ (-2 (|:| |localSymbols| (-1183)) (|:| -1814 (-645 (-331))))) 77) (($ (-341 (-4145 (QUOTE X)) (-4145 (QUOTE -1911)) (-700))) 32)))
+(((-89 |#1|) (-13 (-399) (-10 -8 (-15 -4129 ($ (-341 (-4145 (QUOTE X)) (-4145 (QUOTE -1911)) (-700)))))) (-1179)) (T -89))
+((-4129 (*1 *1 *2) (-12 (-5 *2 (-341 (-4145 (QUOTE X)) (-4145 (QUOTE -1911)) (-700))) (-5 *1 (-89 *3)) (-14 *3 (-1179)))))
+(-13 (-399) (-10 -8 (-15 -4129 ($ (-341 (-4145 (QUOTE X)) (-4145 (QUOTE -1911)) (-700))))))
+((-3947 (((-1269 (-690 |#1|)) (-690 |#1|)) 65)) (-2607 (((-2 (|:| -4208 (-690 |#1|)) (|:| |vec| (-1269 (-645 (-923))))) |#2| (-923)) 54)) (-2399 (((-2 (|:| |minor| (-645 (-923))) (|:| -3855 |#2|) (|:| |minors| (-645 (-645 (-923)))) (|:| |ops| (-645 |#2|))) |#2| (-923)) 76 (|has| |#1| (-365)))))
+(((-90 |#1| |#2|) (-10 -7 (-15 -2607 ((-2 (|:| -4208 (-690 |#1|)) (|:| |vec| (-1269 (-645 (-923))))) |#2| (-923))) (-15 -3947 ((-1269 (-690 |#1|)) (-690 |#1|))) (IF (|has| |#1| (-365)) (-15 -2399 ((-2 (|:| |minor| (-645 (-923))) (|:| -3855 |#2|) (|:| |minors| (-645 (-645 (-923)))) (|:| |ops| (-645 |#2|))) |#2| (-923))) |%noBranch|)) (-559) (-657 |#1|)) (T -90))
+((-2399 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *5 (-559)) (-5 *2 (-2 (|:| |minor| (-645 (-923))) (|:| -3855 *3) (|:| |minors| (-645 (-645 (-923)))) (|:| |ops| (-645 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-923)) (-4 *3 (-657 *5)))) (-3947 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-1269 (-690 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-690 *4)) (-4 *5 (-657 *4)))) (-2607 (*1 *2 *3 *4) (-12 (-4 *5 (-559)) (-5 *2 (-2 (|:| -4208 (-690 *5)) (|:| |vec| (-1269 (-645 (-923)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-923)) (-4 *3 (-657 *5)))))
+(-10 -7 (-15 -2607 ((-2 (|:| -4208 (-690 |#1|)) (|:| |vec| (-1269 (-645 (-923))))) |#2| (-923))) (-15 -3947 ((-1269 (-690 |#1|)) (-690 |#1|))) (IF (|has| |#1| (-365)) (-15 -2399 ((-2 (|:| |minor| (-645 (-923))) (|:| -3855 |#2|) (|:| |minors| (-645 (-645 (-923)))) (|:| |ops| (-645 |#2|))) |#2| (-923))) |%noBranch|))
+((-2412 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2270 ((|#1| $) 42)) (-1563 (((-112) $ (-772)) NIL)) (-3647 (($) NIL T CONST)) (-1985 ((|#1| |#1| $) 37)) (-2142 ((|#1| $) 35)) (-2799 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-4093 (((-112) $ (-772)) NIL)) (-1942 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-3237 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3751 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#1| |#1|) $) NIL)) (-1986 (((-112) $ (-772)) NIL)) (-2516 (((-1161) $) NIL (|has| |#1| (-1102)))) (-2706 ((|#1| $) NIL)) (-2646 (($ |#1| $) 38)) (-3437 (((-1122) $) NIL (|has| |#1| (-1102)))) (-3949 ((|#1| $) 36)) (-4233 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3875 (((-112) $ $) NIL)) (-3885 (((-112) $) 18)) (-2701 (($) 46)) (-3289 (((-772) $) 33)) (-3447 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-4309 (($ $) 17)) (-4129 (((-863) $) 32 (|has| |#1| (-614 (-863))))) (-3357 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3700 (($ (-645 |#1|)) NIL)) (-2046 (($ (-645 |#1|)) 44)) (-3436 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2946 (((-112) $ $) 15 (|has| |#1| (-1102)))) (-2423 (((-772) $) 12 (|has| $ (-6 -4422)))))
+(((-91 |#1|) (-13 (-1123 |#1|) (-10 -8 (-15 -2046 ($ (-645 |#1|))))) (-1102)) (T -91))
+((-2046 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-5 *1 (-91 *3)))))
+(-13 (-1123 |#1|) (-10 -8 (-15 -2046 ($ (-645 |#1|)))))
+((-4129 (((-863) $) 13) (($ (-1184)) 9) (((-1184) $) 8)))
+(((-92 |#1|) (-10 -8 (-15 -4129 ((-1184) |#1|)) (-15 -4129 (|#1| (-1184))) (-15 -4129 ((-863) |#1|))) (-93)) (T -92))
+NIL
+(-10 -8 (-15 -4129 ((-1184) |#1|)) (-15 -4129 (|#1| (-1184))) (-15 -4129 ((-863) |#1|)))
+((-2412 (((-112) $ $) 7)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-4129 (((-863) $) 12) (($ (-1184)) 17) (((-1184) $) 16)) (-3357 (((-112) $ $) 9)) (-2946 (((-112) $ $) 6)))
(((-93) (-140)) (T -93))
NIL
-(-13 (-1102) (-493 (-1183)))
-(((-102) . T) ((-617 #0=(-1183)) . T) ((-614 (-863)) . T) ((-614 #0#) . T) ((-493 #0#) . T) ((-1102) . T))
-((-3106 (($ $) 10)) (-3118 (($ $) 12)))
-(((-94 |#1|) (-10 -8 (-15 -3118 (|#1| |#1|)) (-15 -3106 (|#1| |#1|))) (-95)) (T -94))
+(-13 (-1102) (-493 (-1184)))
+(((-102) . T) ((-617 #0=(-1184)) . T) ((-614 (-863)) . T) ((-614 #0#) . T) ((-493 #0#) . T) ((-1102) . T))
+((-3126 (($ $) 10)) (-3138 (($ $) 12)))
+(((-94 |#1|) (-10 -8 (-15 -3138 (|#1| |#1|)) (-15 -3126 (|#1| |#1|))) (-95)) (T -94))
NIL
-(-10 -8 (-15 -3118 (|#1| |#1|)) (-15 -3106 (|#1| |#1|)))
-((-3084 (($ $) 11)) (-3062 (($ $) 10)) (-3106 (($ $) 9)) (-3118 (($ $) 8)) (-3095 (($ $) 7)) (-3074 (($ $) 6)))
+(-10 -8 (-15 -3138 (|#1| |#1|)) (-15 -3126 (|#1| |#1|)))
+((-3103 (($ $) 11)) (-3083 (($ $) 10)) (-3126 (($ $) 9)) (-3138 (($ $) 8)) (-3115 (($ $) 7)) (-3093 (($ $) 6)))
(((-95) (-140)) (T -95))
-((-3084 (*1 *1 *1) (-4 *1 (-95))) (-3062 (*1 *1 *1) (-4 *1 (-95))) (-3106 (*1 *1 *1) (-4 *1 (-95))) (-3118 (*1 *1 *1) (-4 *1 (-95))) (-3095 (*1 *1 *1) (-4 *1 (-95))) (-3074 (*1 *1 *1) (-4 *1 (-95))))
-(-13 (-10 -8 (-15 -3074 ($ $)) (-15 -3095 ($ $)) (-15 -3118 ($ $)) (-15 -3106 ($ $)) (-15 -3062 ($ $)) (-15 -3084 ($ $))))
-((-2403 (((-112) $ $) NIL)) (-1996 (((-1137) $) 9)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 15) (($ (-1183)) NIL) (((-1183) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)))
-(((-96) (-13 (-1085) (-10 -8 (-15 -1996 ((-1137) $))))) (T -96))
-((-1996 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-96)))))
-(-13 (-1085) (-10 -8 (-15 -1996 ((-1137) $))))
-((-2403 (((-112) $ $) NIL)) (-1431 (((-381) (-1160) (-381)) 47) (((-381) (-1160) (-1160) (-381)) 45)) (-2101 (((-381) (-381)) 35)) (-1818 (((-1273)) 38)) (-1419 (((-1160) $) NIL)) (-3612 (((-381) (-1160) (-1160)) 51) (((-381) (-1160)) 53)) (-3430 (((-1122) $) NIL)) (-3153 (((-381) (-1160) (-1160)) 52)) (-2313 (((-381) (-1160) (-1160)) 54) (((-381) (-1160)) 55)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)))
-(((-97) (-13 (-1102) (-10 -7 (-15 -3612 ((-381) (-1160) (-1160))) (-15 -3612 ((-381) (-1160))) (-15 -2313 ((-381) (-1160) (-1160))) (-15 -2313 ((-381) (-1160))) (-15 -3153 ((-381) (-1160) (-1160))) (-15 -1818 ((-1273))) (-15 -2101 ((-381) (-381))) (-15 -1431 ((-381) (-1160) (-381))) (-15 -1431 ((-381) (-1160) (-1160) (-381))) (-6 -4418)))) (T -97))
-((-3612 (*1 *2 *3 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-381)) (-5 *1 (-97)))) (-3612 (*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-381)) (-5 *1 (-97)))) (-2313 (*1 *2 *3 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-381)) (-5 *1 (-97)))) (-2313 (*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-381)) (-5 *1 (-97)))) (-3153 (*1 *2 *3 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-381)) (-5 *1 (-97)))) (-1818 (*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-97)))) (-2101 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-97)))) (-1431 (*1 *2 *3 *2) (-12 (-5 *2 (-381)) (-5 *3 (-1160)) (-5 *1 (-97)))) (-1431 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-381)) (-5 *3 (-1160)) (-5 *1 (-97)))))
-(-13 (-1102) (-10 -7 (-15 -3612 ((-381) (-1160) (-1160))) (-15 -3612 ((-381) (-1160))) (-15 -2313 ((-381) (-1160) (-1160))) (-15 -2313 ((-381) (-1160))) (-15 -3153 ((-381) (-1160) (-1160))) (-15 -1818 ((-1273))) (-15 -2101 ((-381) (-381))) (-15 -1431 ((-381) (-1160) (-381))) (-15 -1431 ((-381) (-1160) (-1160) (-381))) (-6 -4418)))
+((-3103 (*1 *1 *1) (-4 *1 (-95))) (-3083 (*1 *1 *1) (-4 *1 (-95))) (-3126 (*1 *1 *1) (-4 *1 (-95))) (-3138 (*1 *1 *1) (-4 *1 (-95))) (-3115 (*1 *1 *1) (-4 *1 (-95))) (-3093 (*1 *1 *1) (-4 *1 (-95))))
+(-13 (-10 -8 (-15 -3093 ($ $)) (-15 -3115 ($ $)) (-15 -3138 ($ $)) (-15 -3126 ($ $)) (-15 -3083 ($ $)) (-15 -3103 ($ $))))
+((-2412 (((-112) $ $) NIL)) (-2007 (((-1137) $) 9)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) 15) (($ (-1184)) NIL) (((-1184) $) NIL)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)))
+(((-96) (-13 (-1085) (-10 -8 (-15 -2007 ((-1137) $))))) (T -96))
+((-2007 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-96)))))
+(-13 (-1085) (-10 -8 (-15 -2007 ((-1137) $))))
+((-2412 (((-112) $ $) NIL)) (-4123 (((-381) (-1161) (-381)) 47) (((-381) (-1161) (-1161) (-381)) 45)) (-3508 (((-381) (-381)) 35)) (-2470 (((-1274)) 38)) (-2516 (((-1161) $) NIL)) (-3829 (((-381) (-1161) (-1161)) 51) (((-381) (-1161)) 53)) (-3437 (((-1122) $) NIL)) (-2211 (((-381) (-1161) (-1161)) 52)) (-3869 (((-381) (-1161) (-1161)) 54) (((-381) (-1161)) 55)) (-4129 (((-863) $) NIL)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)))
+(((-97) (-13 (-1102) (-10 -7 (-15 -3829 ((-381) (-1161) (-1161))) (-15 -3829 ((-381) (-1161))) (-15 -3869 ((-381) (-1161) (-1161))) (-15 -3869 ((-381) (-1161))) (-15 -2211 ((-381) (-1161) (-1161))) (-15 -2470 ((-1274))) (-15 -3508 ((-381) (-381))) (-15 -4123 ((-381) (-1161) (-381))) (-15 -4123 ((-381) (-1161) (-1161) (-381))) (-6 -4422)))) (T -97))
+((-3829 (*1 *2 *3 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-381)) (-5 *1 (-97)))) (-3829 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-381)) (-5 *1 (-97)))) (-3869 (*1 *2 *3 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-381)) (-5 *1 (-97)))) (-3869 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-381)) (-5 *1 (-97)))) (-2211 (*1 *2 *3 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-381)) (-5 *1 (-97)))) (-2470 (*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-97)))) (-3508 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-97)))) (-4123 (*1 *2 *3 *2) (-12 (-5 *2 (-381)) (-5 *3 (-1161)) (-5 *1 (-97)))) (-4123 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-381)) (-5 *3 (-1161)) (-5 *1 (-97)))))
+(-13 (-1102) (-10 -7 (-15 -3829 ((-381) (-1161) (-1161))) (-15 -3829 ((-381) (-1161))) (-15 -3869 ((-381) (-1161) (-1161))) (-15 -3869 ((-381) (-1161))) (-15 -2211 ((-381) (-1161) (-1161))) (-15 -2470 ((-1274))) (-15 -3508 ((-381) (-381))) (-15 -4123 ((-381) (-1161) (-381))) (-15 -4123 ((-381) (-1161) (-1161) (-381))) (-6 -4422)))
NIL
(((-98) (-140)) (T -98))
NIL
-(-13 (-10 -7 (-6 -4418) (-6 (-4420 "*")) (-6 -4419) (-6 -4415) (-6 -4413) (-6 -4412) (-6 -4411) (-6 -4416) (-6 -4410) (-6 -4409) (-6 -4408) (-6 -4407) (-6 -4406) (-6 -4414) (-6 -4417) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4405)))
-((-2403 (((-112) $ $) NIL)) (-2585 (($) NIL T CONST)) (-2109 (((-3 $ "failed") $) NIL)) (-1433 (((-112) $) NIL)) (-2015 (($ (-1 |#1| |#1|)) 27) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26) (($ (-1 |#1| |#1| (-567))) 24)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) 16)) (-3430 (((-1122) $) NIL)) (-1787 ((|#1| $ |#1|) 13)) (-1823 (($ $ $) NIL)) (-1485 (($ $ $) NIL)) (-4132 (((-863) $) 22)) (-1745 (((-112) $ $) NIL)) (-1728 (($) 8 T CONST)) (-2936 (((-112) $ $) 10)) (-3060 (($ $ $) NIL)) (** (($ $ (-923)) 34) (($ $ (-772)) NIL) (($ $ (-567)) 18)) (* (($ $ $) 35)))
-(((-99 |#1|) (-13 (-476) (-287 |#1| |#1|) (-10 -8 (-15 -2015 ($ (-1 |#1| |#1|))) (-15 -2015 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -2015 ($ (-1 |#1| |#1| (-567)))))) (-1051)) (T -99))
-((-2015 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1051)) (-5 *1 (-99 *3)))) (-2015 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1051)) (-5 *1 (-99 *3)))) (-2015 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-567))) (-4 *3 (-1051)) (-5 *1 (-99 *3)))))
-(-13 (-476) (-287 |#1| |#1|) (-10 -8 (-15 -2015 ($ (-1 |#1| |#1|))) (-15 -2015 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -2015 ($ (-1 |#1| |#1| (-567))))))
-((-3604 (((-421 |#2|) |#2| (-645 |#2|)) 10) (((-421 |#2|) |#2| |#2|) 11)))
-(((-100 |#1| |#2|) (-10 -7 (-15 -3604 ((-421 |#2|) |#2| |#2|)) (-15 -3604 ((-421 |#2|) |#2| (-645 |#2|)))) (-13 (-455) (-147)) (-1244 |#1|)) (T -100))
-((-3604 (*1 *2 *3 *4) (-12 (-5 *4 (-645 *3)) (-4 *3 (-1244 *5)) (-4 *5 (-13 (-455) (-147))) (-5 *2 (-421 *3)) (-5 *1 (-100 *5 *3)))) (-3604 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-455) (-147))) (-5 *2 (-421 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1244 *4)))))
-(-10 -7 (-15 -3604 ((-421 |#2|) |#2| |#2|)) (-15 -3604 ((-421 |#2|) |#2| (-645 |#2|))))
-((-2403 (((-112) $ $) 10)))
-(((-101 |#1|) (-10 -8 (-15 -2403 ((-112) |#1| |#1|))) (-102)) (T -101))
-NIL
-(-10 -8 (-15 -2403 ((-112) |#1| |#1|)))
-((-2403 (((-112) $ $) 7)) (-2936 (((-112) $ $) 6)))
+(-13 (-10 -7 (-6 -4422) (-6 (-4424 "*")) (-6 -4423) (-6 -4419) (-6 -4417) (-6 -4416) (-6 -4415) (-6 -4420) (-6 -4414) (-6 -4413) (-6 -4412) (-6 -4411) (-6 -4410) (-6 -4418) (-6 -4421) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4409)))
+((-2412 (((-112) $ $) NIL)) (-3647 (($) NIL T CONST)) (-3588 (((-3 $ "failed") $) NIL)) (-4346 (((-112) $) NIL)) (-2924 (($ (-1 |#1| |#1|)) 27) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26) (($ (-1 |#1| |#1| (-567))) 24)) (-2516 (((-1161) $) NIL)) (-2949 (($ $) 16)) (-3437 (((-1122) $) NIL)) (-1801 ((|#1| $ |#1|) 13)) (-1672 (($ $ $) NIL)) (-3997 (($ $ $) NIL)) (-4129 (((-863) $) 22)) (-3357 (((-112) $ $) NIL)) (-1744 (($) 8 T CONST)) (-2946 (((-112) $ $) 10)) (-3069 (($ $ $) NIL)) (** (($ $ (-923)) 34) (($ $ (-772)) NIL) (($ $ (-567)) 18)) (* (($ $ $) 35)))
+(((-99 |#1|) (-13 (-476) (-287 |#1| |#1|) (-10 -8 (-15 -2924 ($ (-1 |#1| |#1|))) (-15 -2924 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -2924 ($ (-1 |#1| |#1| (-567)))))) (-1051)) (T -99))
+((-2924 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1051)) (-5 *1 (-99 *3)))) (-2924 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1051)) (-5 *1 (-99 *3)))) (-2924 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-567))) (-4 *3 (-1051)) (-5 *1 (-99 *3)))))
+(-13 (-476) (-287 |#1| |#1|) (-10 -8 (-15 -2924 ($ (-1 |#1| |#1|))) (-15 -2924 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -2924 ($ (-1 |#1| |#1| (-567))))))
+((-1864 (((-421 |#2|) |#2| (-645 |#2|)) 10) (((-421 |#2|) |#2| |#2|) 11)))
+(((-100 |#1| |#2|) (-10 -7 (-15 -1864 ((-421 |#2|) |#2| |#2|)) (-15 -1864 ((-421 |#2|) |#2| (-645 |#2|)))) (-13 (-455) (-147)) (-1245 |#1|)) (T -100))
+((-1864 (*1 *2 *3 *4) (-12 (-5 *4 (-645 *3)) (-4 *3 (-1245 *5)) (-4 *5 (-13 (-455) (-147))) (-5 *2 (-421 *3)) (-5 *1 (-100 *5 *3)))) (-1864 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-455) (-147))) (-5 *2 (-421 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1245 *4)))))
+(-10 -7 (-15 -1864 ((-421 |#2|) |#2| |#2|)) (-15 -1864 ((-421 |#2|) |#2| (-645 |#2|))))
+((-2412 (((-112) $ $) 10)))
+(((-101 |#1|) (-10 -8 (-15 -2412 ((-112) |#1| |#1|))) (-102)) (T -101))
+NIL
+(-10 -8 (-15 -2412 ((-112) |#1| |#1|)))
+((-2412 (((-112) $ $) 7)) (-2946 (((-112) $ $) 6)))
(((-102) (-140)) (T -102))
-((-2403 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-2936 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))))
-(-13 (-10 -8 (-15 -2936 ((-112) $ $)) (-15 -2403 ((-112) $ $))))
-((-2403 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3802 ((|#1| $) NIL)) (-3445 (((-112) $ (-772)) NIL)) (-2138 ((|#1| $ |#1|) 24 (|has| $ (-6 -4419)))) (-3909 (($ $ $) NIL (|has| $ (-6 -4419)))) (-4062 (($ $ $) NIL (|has| $ (-6 -4419)))) (-3432 (($ $ (-645 |#1|)) 34)) (-4284 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4419))) (($ $ "left" $) NIL (|has| $ (-6 -4419))) (($ $ "right" $) NIL (|has| $ (-6 -4419)))) (-1301 (($ $ (-645 $)) NIL (|has| $ (-6 -4419)))) (-2585 (($) NIL T CONST)) (-2963 (($ $) 12)) (-2777 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-2182 (((-645 $) $) NIL)) (-3512 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3403 (($ $ |#1| $) 36)) (-2077 (((-112) $ (-772)) NIL)) (-2279 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-4219 ((|#1| $ (-1 |#1| |#1| |#1|)) 44) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 49)) (-4332 (($ $ |#1| (-1 |#1| |#1| |#1|)) 50) (($ $ |#1| (-1 (-645 |#1|) |#1| |#1| |#1|)) 53)) (-3731 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-2950 (($ $) 11)) (-3773 (((-645 |#1|) $) NIL)) (-2769 (((-112) $) 13)) (-1419 (((-1160) $) NIL (|has| |#1| (-1102)))) (-3430 (((-1122) $) NIL (|has| |#1| (-1102)))) (-3025 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) NIL)) (-3572 (((-112) $) 9)) (-3498 (($) 35)) (-1787 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2658 (((-567) $ $) NIL)) (-3900 (((-112) $) NIL)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-4305 (($ $) NIL)) (-4132 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-1531 (((-645 $) $) NIL)) (-3606 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1745 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-4285 (($ (-772) |#1|) 37)) (-1853 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2414 (((-772) $) NIL (|has| $ (-6 -4418)))))
-(((-103 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4418) (-6 -4419) (-15 -4285 ($ (-772) |#1|)) (-15 -3432 ($ $ (-645 |#1|))) (-15 -4219 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -4219 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -4332 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -4332 ($ $ |#1| (-1 (-645 |#1|) |#1| |#1| |#1|))))) (-1102)) (T -103))
-((-4285 (*1 *1 *2 *3) (-12 (-5 *2 (-772)) (-5 *1 (-103 *3)) (-4 *3 (-1102)))) (-3432 (*1 *1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-5 *1 (-103 *3)))) (-4219 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1102)))) (-4219 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1102)) (-5 *1 (-103 *3)))) (-4332 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1102)) (-5 *1 (-103 *2)))) (-4332 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-645 *2) *2 *2 *2)) (-4 *2 (-1102)) (-5 *1 (-103 *2)))))
-(-13 (-125 |#1|) (-10 -8 (-6 -4418) (-6 -4419) (-15 -4285 ($ (-772) |#1|)) (-15 -3432 ($ $ (-645 |#1|))) (-15 -4219 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -4219 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -4332 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -4332 ($ $ |#1| (-1 (-645 |#1|) |#1| |#1| |#1|)))))
-((-1968 ((|#3| |#2| |#2|) 36)) (-2946 ((|#1| |#2| |#2|) 53 (|has| |#1| (-6 (-4420 "*"))))) (-2782 ((|#3| |#2| |#2|) 38)) (-3803 ((|#1| |#2|) 58 (|has| |#1| (-6 (-4420 "*"))))))
-(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1968 (|#3| |#2| |#2|)) (-15 -2782 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4420 "*"))) (PROGN (-15 -2946 (|#1| |#2| |#2|)) (-15 -3803 (|#1| |#2|))) |%noBranch|)) (-1051) (-1244 |#1|) (-688 |#1| |#4| |#5|) (-375 |#1|) (-375 |#1|)) (T -104))
-((-3803 (*1 *2 *3) (-12 (|has| *2 (-6 (-4420 "*"))) (-4 *5 (-375 *2)) (-4 *6 (-375 *2)) (-4 *2 (-1051)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1244 *2)) (-4 *4 (-688 *2 *5 *6)))) (-2946 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4420 "*"))) (-4 *5 (-375 *2)) (-4 *6 (-375 *2)) (-4 *2 (-1051)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1244 *2)) (-4 *4 (-688 *2 *5 *6)))) (-2782 (*1 *2 *3 *3) (-12 (-4 *4 (-1051)) (-4 *2 (-688 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1244 *4)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)))) (-1968 (*1 *2 *3 *3) (-12 (-4 *4 (-1051)) (-4 *2 (-688 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1244 *4)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)))))
-(-10 -7 (-15 -1968 (|#3| |#2| |#2|)) (-15 -2782 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4420 "*"))) (PROGN (-15 -2946 (|#1| |#2| |#2|)) (-15 -3803 (|#1| |#2|))) |%noBranch|))
-((-2403 (((-112) $ $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-2888 (((-645 (-1178))) 37)) (-2692 (((-2 (|:| |zeros| (-1158 (-225))) (|:| |ones| (-1158 (-225))) (|:| |singularities| (-1158 (-225)))) (-1178)) 39)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)))
-(((-105) (-13 (-1102) (-10 -7 (-15 -2888 ((-645 (-1178)))) (-15 -2692 ((-2 (|:| |zeros| (-1158 (-225))) (|:| |ones| (-1158 (-225))) (|:| |singularities| (-1158 (-225)))) (-1178))) (-6 -4418)))) (T -105))
-((-2888 (*1 *2) (-12 (-5 *2 (-645 (-1178))) (-5 *1 (-105)))) (-2692 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-2 (|:| |zeros| (-1158 (-225))) (|:| |ones| (-1158 (-225))) (|:| |singularities| (-1158 (-225))))) (-5 *1 (-105)))))
-(-13 (-1102) (-10 -7 (-15 -2888 ((-645 (-1178)))) (-15 -2692 ((-2 (|:| |zeros| (-1158 (-225))) (|:| |ones| (-1158 (-225))) (|:| |singularities| (-1158 (-225)))) (-1178))) (-6 -4418)))
-((-3551 (($ (-645 |#2|)) 11)))
-(((-106 |#1| |#2|) (-10 -8 (-15 -3551 (|#1| (-645 |#2|)))) (-107 |#2|) (-1218)) (T -106))
-NIL
-(-10 -8 (-15 -3551 (|#1| (-645 |#2|))))
-((-2403 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-3445 (((-112) $ (-772)) 8)) (-2585 (($) 7 T CONST)) (-2777 (((-645 |#1|) $) 31 (|has| $ (-6 -4418)))) (-2077 (((-112) $ (-772)) 9)) (-2279 (((-645 |#1|) $) 30 (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-3731 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) 36)) (-2863 (((-112) $ (-772)) 10)) (-1419 (((-1160) $) 22 (|has| |#1| (-1102)))) (-1566 ((|#1| $) 40)) (-2531 (($ |#1| $) 41)) (-3430 (((-1122) $) 21 (|has| |#1| (-1102)))) (-1793 ((|#1| $) 42)) (-3025 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) 14)) (-3572 (((-112) $) 11)) (-3498 (($) 12)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4418))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-4305 (($ $) 13)) (-4132 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-1745 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-3551 (($ (-645 |#1|)) 43)) (-1853 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2414 (((-772) $) 6 (|has| $ (-6 -4418)))))
-(((-107 |#1|) (-140) (-1218)) (T -107))
-((-3551 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1218)) (-4 *1 (-107 *3)))) (-1793 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1218)))) (-2531 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1218)))) (-1566 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1218)))))
-(-13 (-492 |t#1|) (-10 -8 (-6 -4419) (-15 -3551 ($ (-645 |t#1|))) (-15 -1793 (|t#1| $)) (-15 -2531 ($ |t#1| $)) (-15 -1566 (|t#1| $))))
-(((-34) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2800 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-1102) |has| |#1| (-1102)) ((-1218) . T))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3093 (((-567) $) NIL (|has| (-567) (-308)))) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-4226 (((-421 (-1174 $)) (-1174 $)) NIL (|has| (-567) (-911)))) (-3248 (($ $) NIL)) (-2908 (((-421 $) $) NIL)) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) NIL (|has| (-567) (-911)))) (-3609 (((-112) $ $) NIL)) (-1750 (((-567) $) NIL (|has| (-567) (-821)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 (-567) "failed") $) NIL) (((-3 (-1178) "failed") $) NIL (|has| (-567) (-1040 (-1178)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| (-567) (-1040 (-567)))) (((-3 (-567) "failed") $) NIL (|has| (-567) (-1040 (-567))))) (-2038 (((-567) $) NIL) (((-1178) $) NIL (|has| (-567) (-1040 (-1178)))) (((-410 (-567)) $) NIL (|has| (-567) (-1040 (-567)))) (((-567) $) NIL (|has| (-567) (-1040 (-567))))) (-2349 (($ $ $) NIL)) (-2630 (((-690 (-567)) (-690 $)) NIL (|has| (-567) (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (|has| (-567) (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL) (((-690 (-567)) (-690 $)) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-1348 (($) NIL (|has| (-567) (-548)))) (-2360 (($ $ $) NIL)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-3184 (((-112) $) NIL)) (-4336 (((-112) $) NIL (|has| (-567) (-821)))) (-4303 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (|has| (-567) (-888 (-567)))) (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (|has| (-567) (-888 (-381))))) (-1433 (((-112) $) NIL)) (-3530 (($ $) NIL)) (-1448 (((-567) $) NIL)) (-3972 (((-3 $ "failed") $) NIL (|has| (-567) (-1153)))) (-3494 (((-112) $) NIL (|has| (-567) (-821)))) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1354 (($ $ $) NIL (|has| (-567) (-851)))) (-2981 (($ $ $) NIL (|has| (-567) (-851)))) (-3829 (($ (-1 (-567) (-567)) $) NIL)) (-2740 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) NIL)) (-2672 (($) NIL (|has| (-567) (-1153)) CONST)) (-3430 (((-1122) $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-2774 (($ $ $) NIL) (($ (-645 $)) NIL)) (-4094 (($ $) NIL (|has| (-567) (-308))) (((-410 (-567)) $) NIL)) (-2780 (((-567) $) NIL (|has| (-567) (-548)))) (-2435 (((-421 (-1174 $)) (-1174 $)) NIL (|has| (-567) (-911)))) (-3517 (((-421 (-1174 $)) (-1174 $)) NIL (|has| (-567) (-911)))) (-2706 (((-421 $) $) NIL)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2391 (((-3 $ "failed") $ $) NIL)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2631 (($ $ (-645 (-567)) (-645 (-567))) NIL (|has| (-567) (-310 (-567)))) (($ $ (-567) (-567)) NIL (|has| (-567) (-310 (-567)))) (($ $ (-295 (-567))) NIL (|has| (-567) (-310 (-567)))) (($ $ (-645 (-295 (-567)))) NIL (|has| (-567) (-310 (-567)))) (($ $ (-645 (-1178)) (-645 (-567))) NIL (|has| (-567) (-517 (-1178) (-567)))) (($ $ (-1178) (-567)) NIL (|has| (-567) (-517 (-1178) (-567))))) (-1990 (((-772) $) NIL)) (-1787 (($ $ (-567)) NIL (|has| (-567) (-287 (-567) (-567))))) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL)) (-1593 (($ $) NIL (|has| (-567) (-233))) (($ $ (-772)) NIL (|has| (-567) (-233))) (($ $ (-1178)) NIL (|has| (-567) (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| (-567) (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| (-567) (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| (-567) (-902 (-1178)))) (($ $ (-1 (-567) (-567)) (-772)) NIL) (($ $ (-1 (-567) (-567))) NIL)) (-1967 (($ $) NIL)) (-1460 (((-567) $) NIL)) (-3893 (((-894 (-567)) $) NIL (|has| (-567) (-615 (-894 (-567))))) (((-894 (-381)) $) NIL (|has| (-567) (-615 (-894 (-381))))) (((-539) $) NIL (|has| (-567) (-615 (-539)))) (((-381) $) NIL (|has| (-567) (-1024))) (((-225) $) NIL (|has| (-567) (-1024)))) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| (-567) (-911))))) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) 8) (($ (-567)) NIL) (($ (-1178)) NIL (|has| (-567) (-1040 (-1178)))) (((-410 (-567)) $) NIL) (((-1006 2) $) 10)) (-1903 (((-3 $ "failed") $) NIL (-2800 (-12 (|has| $ (-145)) (|has| (-567) (-911))) (|has| (-567) (-145))))) (-4221 (((-772)) NIL T CONST)) (-1423 (((-567) $) NIL (|has| (-567) (-548)))) (-4227 (($ (-410 (-567))) 9)) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL)) (-2219 (($ $) NIL (|has| (-567) (-821)))) (-1716 (($) NIL T CONST)) (-1728 (($) NIL T CONST)) (-2637 (($ $) NIL (|has| (-567) (-233))) (($ $ (-772)) NIL (|has| (-567) (-233))) (($ $ (-1178)) NIL (|has| (-567) (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| (-567) (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| (-567) (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| (-567) (-902 (-1178)))) (($ $ (-1 (-567) (-567)) (-772)) NIL) (($ $ (-1 (-567) (-567))) NIL)) (-2997 (((-112) $ $) NIL (|has| (-567) (-851)))) (-2971 (((-112) $ $) NIL (|has| (-567) (-851)))) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL (|has| (-567) (-851)))) (-2958 (((-112) $ $) NIL (|has| (-567) (-851)))) (-3060 (($ $ $) NIL) (($ (-567) (-567)) NIL)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ (-567) $) NIL) (($ $ (-567)) NIL)))
-(((-108) (-13 (-994 (-567)) (-614 (-410 (-567))) (-614 (-1006 2)) (-10 -8 (-15 -4094 ((-410 (-567)) $)) (-15 -4227 ($ (-410 (-567))))))) (T -108))
-((-4094 (*1 *2 *1) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-108)))) (-4227 (*1 *1 *2) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-108)))))
-(-13 (-994 (-567)) (-614 (-410 (-567))) (-614 (-1006 2)) (-10 -8 (-15 -4094 ((-410 (-567)) $)) (-15 -4227 ($ (-410 (-567))))))
-((-2550 (((-645 (-967)) $) 13)) (-1996 (((-509) $) 9)) (-4132 (((-863) $) 20)) (-3149 (($ (-509) (-645 (-967))) 15)))
-(((-109) (-13 (-614 (-863)) (-10 -8 (-15 -1996 ((-509) $)) (-15 -2550 ((-645 (-967)) $)) (-15 -3149 ($ (-509) (-645 (-967))))))) (T -109))
-((-1996 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-109)))) (-2550 (*1 *2 *1) (-12 (-5 *2 (-645 (-967))) (-5 *1 (-109)))) (-3149 (*1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-645 (-967))) (-5 *1 (-109)))))
-(-13 (-614 (-863)) (-10 -8 (-15 -1996 ((-509) $)) (-15 -2550 ((-645 (-967)) $)) (-15 -3149 ($ (-509) (-645 (-967))))))
-((-2403 (((-112) $ $) NIL)) (-2425 (($ $) NIL)) (-1689 (($ $ $) NIL)) (-1783 (((-1273) $ (-567) (-567)) NIL (|has| $ (-6 -4419)))) (-2496 (((-112) $) NIL (|has| (-112) (-851))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4419)) (|has| (-112) (-851)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4419)))) (-4396 (($ $) NIL (|has| (-112) (-851))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-3445 (((-112) $ (-772)) NIL)) (-4284 (((-112) $ (-1235 (-567)) (-112)) NIL (|has| $ (-6 -4419))) (((-112) $ (-567) (-112)) NIL (|has| $ (-6 -4419)))) (-3350 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4418)))) (-2585 (($) NIL T CONST)) (-1764 (($ $) NIL (|has| $ (-6 -4419)))) (-3584 (($ $) NIL)) (-2444 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-112) (-1102))))) (-3238 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4418))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-112) (-1102))))) (-2477 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4418))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4418))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4418)) (|has| (-112) (-1102))))) (-3741 (((-112) $ (-567) (-112)) NIL (|has| $ (-6 -4419)))) (-3680 (((-112) $ (-567)) NIL)) (-2569 (((-567) (-112) $ (-567)) NIL (|has| (-112) (-1102))) (((-567) (-112) $) NIL (|has| (-112) (-1102))) (((-567) (-1 (-112) (-112)) $) NIL)) (-2777 (((-645 (-112)) $) NIL (|has| $ (-6 -4418)))) (-1677 (($ $ $) NIL)) (-1657 (($ $) NIL)) (-4005 (($ $ $) NIL)) (-2846 (($ (-772) (-112)) 10)) (-3107 (($ $ $) NIL)) (-2077 (((-112) $ (-772)) NIL)) (-4069 (((-567) $) NIL (|has| (-567) (-851)))) (-1354 (($ $ $) NIL)) (-4135 (($ $ $) NIL (|has| (-112) (-851))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2279 (((-645 (-112)) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-112) (-1102))))) (-2266 (((-567) $) NIL (|has| (-567) (-851)))) (-2981 (($ $ $) NIL)) (-3731 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL)) (-2845 (($ $ $ (-567)) NIL) (($ (-112) $ (-567)) NIL)) (-1789 (((-645 (-567)) $) NIL)) (-2996 (((-112) (-567) $) NIL)) (-3430 (((-1122) $) NIL)) (-2409 (((-112) $) NIL (|has| (-567) (-851)))) (-4128 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-3986 (($ $ (-112)) NIL (|has| $ (-6 -4419)))) (-3025 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-112)) (-645 (-112))) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1102)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1102)))) (($ $ (-295 (-112))) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1102)))) (($ $ (-645 (-295 (-112)))) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1102))))) (-3092 (((-112) $ $) NIL)) (-1794 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-112) (-1102))))) (-2339 (((-645 (-112)) $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) NIL)) (-1787 (($ $ (-1235 (-567))) NIL) (((-112) $ (-567)) NIL) (((-112) $ (-567) (-112)) NIL)) (-1560 (($ $ (-1235 (-567))) NIL) (($ $ (-567)) NIL)) (-3439 (((-772) (-112) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-112) (-1102)))) (((-772) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4418)))) (-1395 (($ $ $ (-567)) NIL (|has| $ (-6 -4419)))) (-4305 (($ $) NIL)) (-3893 (((-539) $) NIL (|has| (-112) (-615 (-539))))) (-4147 (($ (-645 (-112))) NIL)) (-2269 (($ (-645 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-4132 (((-863) $) NIL)) (-2547 (($ (-772) (-112)) 11)) (-1745 (((-112) $ $) NIL)) (-1853 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4418)))) (-1667 (($ $ $) NIL)) (-2470 (($ $ $) NIL)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) NIL)) (-2458 (($ $ $) NIL)) (-2414 (((-772) $) NIL (|has| $ (-6 -4418)))))
-(((-110) (-13 (-123) (-10 -8 (-15 -2547 ($ (-772) (-112)))))) (T -110))
-((-2547 (*1 *1 *2 *3) (-12 (-5 *2 (-772)) (-5 *3 (-112)) (-5 *1 (-110)))))
-(-13 (-123) (-10 -8 (-15 -2547 ($ (-772) (-112)))))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-1716 (($) 19 T CONST)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ |#1| $) 27) (($ $ |#2|) 31)))
+((-2412 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-2946 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))))
+(-13 (-10 -8 (-15 -2946 ((-112) $ $)) (-15 -2412 ((-112) $ $))))
+((-2412 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3812 ((|#1| $) NIL)) (-1563 (((-112) $ (-772)) NIL)) (-4392 ((|#1| $ |#1|) 24 (|has| $ (-6 -4423)))) (-3487 (($ $ $) NIL (|has| $ (-6 -4423)))) (-1485 (($ $ $) NIL (|has| $ (-6 -4423)))) (-2940 (($ $ (-645 |#1|)) 34)) (-4285 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4423))) (($ $ "left" $) NIL (|has| $ (-6 -4423))) (($ $ "right" $) NIL (|has| $ (-6 -4423)))) (-2831 (($ $ (-645 $)) NIL (|has| $ (-6 -4423)))) (-3647 (($) NIL T CONST)) (-2973 (($ $) 12)) (-2799 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-2070 (((-645 $) $) NIL)) (-1520 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3412 (($ $ |#1| $) 36)) (-4093 (((-112) $ (-772)) NIL)) (-1942 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-3237 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3717 ((|#1| $ (-1 |#1| |#1| |#1|)) 44) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 49)) (-3773 (($ $ |#1| (-1 |#1| |#1| |#1|)) 50) (($ $ |#1| (-1 (-645 |#1|) |#1| |#1| |#1|)) 53)) (-3751 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#1| |#1|) $) NIL)) (-1986 (((-112) $ (-772)) NIL)) (-2961 (($ $) 11)) (-3793 (((-645 |#1|) $) NIL)) (-1323 (((-112) $) 13)) (-2516 (((-1161) $) NIL (|has| |#1| (-1102)))) (-3437 (((-1122) $) NIL (|has| |#1| (-1102)))) (-4233 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3875 (((-112) $ $) NIL)) (-3885 (((-112) $) 9)) (-2701 (($) 35)) (-1801 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3162 (((-567) $ $) NIL)) (-3771 (((-112) $) NIL)) (-3447 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-4309 (($ $) NIL)) (-4129 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-3469 (((-645 $) $) NIL)) (-3854 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3357 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3132 (($ (-772) |#1|) 37)) (-3436 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2423 (((-772) $) NIL (|has| $ (-6 -4422)))))
+(((-103 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4422) (-6 -4423) (-15 -3132 ($ (-772) |#1|)) (-15 -2940 ($ $ (-645 |#1|))) (-15 -3717 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3717 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3773 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3773 ($ $ |#1| (-1 (-645 |#1|) |#1| |#1| |#1|))))) (-1102)) (T -103))
+((-3132 (*1 *1 *2 *3) (-12 (-5 *2 (-772)) (-5 *1 (-103 *3)) (-4 *3 (-1102)))) (-2940 (*1 *1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-5 *1 (-103 *3)))) (-3717 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1102)))) (-3717 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1102)) (-5 *1 (-103 *3)))) (-3773 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1102)) (-5 *1 (-103 *2)))) (-3773 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-645 *2) *2 *2 *2)) (-4 *2 (-1102)) (-5 *1 (-103 *2)))))
+(-13 (-125 |#1|) (-10 -8 (-6 -4422) (-6 -4423) (-15 -3132 ($ (-772) |#1|)) (-15 -2940 ($ $ (-645 |#1|))) (-15 -3717 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3717 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3773 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3773 ($ $ |#1| (-1 (-645 |#1|) |#1| |#1| |#1|)))))
+((-1866 ((|#3| |#2| |#2|) 36)) (-1680 ((|#1| |#2| |#2|) 53 (|has| |#1| (-6 (-4424 "*"))))) (-4198 ((|#3| |#2| |#2|) 38)) (-4056 ((|#1| |#2|) 58 (|has| |#1| (-6 (-4424 "*"))))))
+(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1866 (|#3| |#2| |#2|)) (-15 -4198 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4424 "*"))) (PROGN (-15 -1680 (|#1| |#2| |#2|)) (-15 -4056 (|#1| |#2|))) |%noBranch|)) (-1051) (-1245 |#1|) (-688 |#1| |#4| |#5|) (-375 |#1|) (-375 |#1|)) (T -104))
+((-4056 (*1 *2 *3) (-12 (|has| *2 (-6 (-4424 "*"))) (-4 *5 (-375 *2)) (-4 *6 (-375 *2)) (-4 *2 (-1051)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1245 *2)) (-4 *4 (-688 *2 *5 *6)))) (-1680 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4424 "*"))) (-4 *5 (-375 *2)) (-4 *6 (-375 *2)) (-4 *2 (-1051)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1245 *2)) (-4 *4 (-688 *2 *5 *6)))) (-4198 (*1 *2 *3 *3) (-12 (-4 *4 (-1051)) (-4 *2 (-688 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1245 *4)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)))) (-1866 (*1 *2 *3 *3) (-12 (-4 *4 (-1051)) (-4 *2 (-688 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1245 *4)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)))))
+(-10 -7 (-15 -1866 (|#3| |#2| |#2|)) (-15 -4198 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4424 "*"))) (PROGN (-15 -1680 (|#1| |#2| |#2|)) (-15 -4056 (|#1| |#2|))) |%noBranch|))
+((-2412 (((-112) $ $) NIL)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) NIL)) (-3195 (((-645 (-1179))) 37)) (-3721 (((-2 (|:| |zeros| (-1159 (-225))) (|:| |ones| (-1159 (-225))) (|:| |singularities| (-1159 (-225)))) (-1179)) 39)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)))
+(((-105) (-13 (-1102) (-10 -7 (-15 -3195 ((-645 (-1179)))) (-15 -3721 ((-2 (|:| |zeros| (-1159 (-225))) (|:| |ones| (-1159 (-225))) (|:| |singularities| (-1159 (-225)))) (-1179))) (-6 -4422)))) (T -105))
+((-3195 (*1 *2) (-12 (-5 *2 (-645 (-1179))) (-5 *1 (-105)))) (-3721 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-2 (|:| |zeros| (-1159 (-225))) (|:| |ones| (-1159 (-225))) (|:| |singularities| (-1159 (-225))))) (-5 *1 (-105)))))
+(-13 (-1102) (-10 -7 (-15 -3195 ((-645 (-1179)))) (-15 -3721 ((-2 (|:| |zeros| (-1159 (-225))) (|:| |ones| (-1159 (-225))) (|:| |singularities| (-1159 (-225)))) (-1179))) (-6 -4422)))
+((-3700 (($ (-645 |#2|)) 11)))
+(((-106 |#1| |#2|) (-10 -8 (-15 -3700 (|#1| (-645 |#2|)))) (-107 |#2|) (-1219)) (T -106))
+NIL
+(-10 -8 (-15 -3700 (|#1| (-645 |#2|))))
+((-2412 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-1563 (((-112) $ (-772)) 8)) (-3647 (($) 7 T CONST)) (-2799 (((-645 |#1|) $) 31 (|has| $ (-6 -4422)))) (-4093 (((-112) $ (-772)) 9)) (-1942 (((-645 |#1|) $) 30 (|has| $ (-6 -4422)))) (-3237 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-3751 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#1| |#1|) $) 36)) (-1986 (((-112) $ (-772)) 10)) (-2516 (((-1161) $) 22 (|has| |#1| (-1102)))) (-2706 ((|#1| $) 40)) (-2646 (($ |#1| $) 41)) (-3437 (((-1122) $) 21 (|has| |#1| (-1102)))) (-3949 ((|#1| $) 42)) (-4233 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3875 (((-112) $ $) 14)) (-3885 (((-112) $) 11)) (-2701 (($) 12)) (-3447 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4422))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-4309 (($ $) 13)) (-4129 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-3357 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-3700 (($ (-645 |#1|)) 43)) (-3436 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4422)))) (-2946 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2423 (((-772) $) 6 (|has| $ (-6 -4422)))))
+(((-107 |#1|) (-140) (-1219)) (T -107))
+((-3700 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1219)) (-4 *1 (-107 *3)))) (-3949 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1219)))) (-2646 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1219)))) (-2706 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1219)))))
+(-13 (-492 |t#1|) (-10 -8 (-6 -4423) (-15 -3700 ($ (-645 |t#1|))) (-15 -3949 (|t#1| $)) (-15 -2646 ($ |t#1| $)) (-15 -2706 (|t#1| $))))
+(((-34) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2811 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-1102) |has| |#1| (-1102)) ((-1219) . T))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-4014 (((-567) $) NIL (|has| (-567) (-308)))) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-4287 (($ $) NIL)) (-2286 (((-112) $) NIL)) (-2376 (((-3 $ "failed") $ $) NIL)) (-2029 (((-421 (-1175 $)) (-1175 $)) NIL (|has| (-567) (-911)))) (-3659 (($ $) NIL)) (-3597 (((-421 $) $) NIL)) (-3610 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) NIL (|has| (-567) (-911)))) (-3696 (((-112) $ $) NIL)) (-2677 (((-567) $) NIL (|has| (-567) (-821)))) (-3647 (($) NIL T CONST)) (-3765 (((-3 (-567) "failed") $) NIL) (((-3 (-1179) "failed") $) NIL (|has| (-567) (-1040 (-1179)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| (-567) (-1040 (-567)))) (((-3 (-567) "failed") $) NIL (|has| (-567) (-1040 (-567))))) (-2051 (((-567) $) NIL) (((-1179) $) NIL (|has| (-567) (-1040 (-1179)))) (((-410 (-567)) $) NIL (|has| (-567) (-1040 (-567)))) (((-567) $) NIL (|has| (-567) (-1040 (-567))))) (-2357 (($ $ $) NIL)) (-1423 (((-690 (-567)) (-690 $)) NIL (|has| (-567) (-640 (-567)))) (((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (|has| (-567) (-640 (-567)))) (((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL) (((-690 (-567)) (-690 $)) NIL)) (-3588 (((-3 $ "failed") $) NIL)) (-1359 (($) NIL (|has| (-567) (-548)))) (-2368 (($ $ $) NIL)) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) NIL)) (-3502 (((-112) $) NIL)) (-3137 (((-112) $) NIL (|has| (-567) (-821)))) (-3193 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (|has| (-567) (-888 (-567)))) (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (|has| (-567) (-888 (-381))))) (-4346 (((-112) $) NIL)) (-1863 (($ $) NIL)) (-1447 (((-567) $) NIL)) (-3067 (((-3 $ "failed") $) NIL (|has| (-567) (-1154)))) (-3465 (((-112) $) NIL (|has| (-567) (-821)))) (-1469 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1365 (($ $ $) NIL (|has| (-567) (-851)))) (-3002 (($ $ $) NIL (|has| (-567) (-851)))) (-3841 (($ (-1 (-567) (-567)) $) NIL)) (-2751 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2516 (((-1161) $) NIL)) (-2949 (($ $) NIL)) (-2694 (($) NIL (|has| (-567) (-1154)) CONST)) (-3437 (((-1122) $) NIL)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-2785 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2554 (($ $) NIL (|has| (-567) (-308))) (((-410 (-567)) $) NIL)) (-3969 (((-567) $) NIL (|has| (-567) (-548)))) (-3551 (((-421 (-1175 $)) (-1175 $)) NIL (|has| (-567) (-911)))) (-2016 (((-421 (-1175 $)) (-1175 $)) NIL (|has| (-567) (-911)))) (-2717 (((-421 $) $) NIL)) (-2905 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2400 (((-3 $ "failed") $ $) NIL)) (-2372 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2642 (($ $ (-645 (-567)) (-645 (-567))) NIL (|has| (-567) (-310 (-567)))) (($ $ (-567) (-567)) NIL (|has| (-567) (-310 (-567)))) (($ $ (-295 (-567))) NIL (|has| (-567) (-310 (-567)))) (($ $ (-645 (-295 (-567)))) NIL (|has| (-567) (-310 (-567)))) (($ $ (-645 (-1179)) (-645 (-567))) NIL (|has| (-567) (-517 (-1179) (-567)))) (($ $ (-1179) (-567)) NIL (|has| (-567) (-517 (-1179) (-567))))) (-2460 (((-772) $) NIL)) (-1801 (($ $ (-567)) NIL (|has| (-567) (-287 (-567) (-567))))) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) NIL)) (-1616 (($ $) NIL (|has| (-567) (-233))) (($ $ (-772)) NIL (|has| (-567) (-233))) (($ $ (-1179)) NIL (|has| (-567) (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| (-567) (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| (-567) (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| (-567) (-902 (-1179)))) (($ $ (-1 (-567) (-567)) (-772)) NIL) (($ $ (-1 (-567) (-567))) NIL)) (-1762 (($ $) NIL)) (-1462 (((-567) $) NIL)) (-3902 (((-894 (-567)) $) NIL (|has| (-567) (-615 (-894 (-567))))) (((-894 (-381)) $) NIL (|has| (-567) (-615 (-894 (-381))))) (((-539) $) NIL (|has| (-567) (-615 (-539)))) (((-381) $) NIL (|has| (-567) (-1024))) (((-225) $) NIL (|has| (-567) (-1024)))) (-2616 (((-3 (-1269 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| (-567) (-911))))) (-4129 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) 8) (($ (-567)) NIL) (($ (-1179)) NIL (|has| (-567) (-1040 (-1179)))) (((-410 (-567)) $) NIL) (((-1006 2) $) 10)) (-2118 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-145)) (|has| (-567) (-911))) (|has| (-567) (-145))))) (-2746 (((-772)) NIL T CONST)) (-1689 (((-567) $) NIL (|has| (-567) (-548)))) (-2120 (($ (-410 (-567))) 9)) (-3357 (((-112) $ $) NIL)) (-3731 (((-112) $ $) NIL)) (-1547 (($ $) NIL (|has| (-567) (-821)))) (-1733 (($) NIL T CONST)) (-1744 (($) NIL T CONST)) (-2647 (($ $) NIL (|has| (-567) (-233))) (($ $ (-772)) NIL (|has| (-567) (-233))) (($ $ (-1179)) NIL (|has| (-567) (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| (-567) (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| (-567) (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| (-567) (-902 (-1179)))) (($ $ (-1 (-567) (-567)) (-772)) NIL) (($ $ (-1 (-567) (-567))) NIL)) (-3004 (((-112) $ $) NIL (|has| (-567) (-851)))) (-2980 (((-112) $ $) NIL (|has| (-567) (-851)))) (-2946 (((-112) $ $) NIL)) (-2993 (((-112) $ $) NIL (|has| (-567) (-851)))) (-2968 (((-112) $ $) NIL (|has| (-567) (-851)))) (-3069 (($ $ $) NIL) (($ (-567) (-567)) NIL)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ (-567) $) NIL) (($ $ (-567)) NIL)))
+(((-108) (-13 (-994 (-567)) (-614 (-410 (-567))) (-614 (-1006 2)) (-10 -8 (-15 -2554 ((-410 (-567)) $)) (-15 -2120 ($ (-410 (-567))))))) (T -108))
+((-2554 (*1 *2 *1) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-108)))) (-2120 (*1 *1 *2) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-108)))))
+(-13 (-994 (-567)) (-614 (-410 (-567))) (-614 (-1006 2)) (-10 -8 (-15 -2554 ((-410 (-567)) $)) (-15 -2120 ($ (-410 (-567))))))
+((-2560 (((-645 (-967)) $) 13)) (-2007 (((-509) $) 9)) (-4129 (((-863) $) 20)) (-3143 (($ (-509) (-645 (-967))) 15)))
+(((-109) (-13 (-614 (-863)) (-10 -8 (-15 -2007 ((-509) $)) (-15 -2560 ((-645 (-967)) $)) (-15 -3143 ($ (-509) (-645 (-967))))))) (T -109))
+((-2007 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-109)))) (-2560 (*1 *2 *1) (-12 (-5 *2 (-645 (-967))) (-5 *1 (-109)))) (-3143 (*1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-645 (-967))) (-5 *1 (-109)))))
+(-13 (-614 (-863)) (-10 -8 (-15 -2007 ((-509) $)) (-15 -2560 ((-645 (-967)) $)) (-15 -3143 ($ (-509) (-645 (-967))))))
+((-2412 (((-112) $ $) NIL)) (-2434 (($ $) NIL)) (-1709 (($ $ $) NIL)) (-3843 (((-1274) $ (-567) (-567)) NIL (|has| $ (-6 -4423)))) (-3531 (((-112) $) NIL (|has| (-112) (-851))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-2676 (($ $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-112) (-851)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4423)))) (-1311 (($ $) NIL (|has| (-112) (-851))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-1563 (((-112) $ (-772)) NIL)) (-4285 (((-112) $ (-1236 (-567)) (-112)) NIL (|has| $ (-6 -4423))) (((-112) $ (-567) (-112)) NIL (|has| $ (-6 -4423)))) (-3356 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4422)))) (-3647 (($) NIL T CONST)) (-1602 (($ $) NIL (|has| $ (-6 -4423)))) (-3592 (($ $) NIL)) (-2453 (($ $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-112) (-1102))))) (-3246 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4422))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-112) (-1102))))) (-2494 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4422))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4422))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4422)) (|has| (-112) (-1102))))) (-3760 (((-112) $ (-567) (-112)) NIL (|has| $ (-6 -4423)))) (-3703 (((-112) $ (-567)) NIL)) (-2578 (((-567) (-112) $ (-567)) NIL (|has| (-112) (-1102))) (((-567) (-112) $) NIL (|has| (-112) (-1102))) (((-567) (-1 (-112) (-112)) $) NIL)) (-2799 (((-645 (-112)) $) NIL (|has| $ (-6 -4422)))) (-1696 (($ $ $) NIL)) (-1673 (($ $) NIL)) (-2362 (($ $ $) NIL)) (-2858 (($ (-772) (-112)) 10)) (-2986 (($ $ $) NIL)) (-4093 (((-112) $ (-772)) NIL)) (-3895 (((-567) $) NIL (|has| (-567) (-851)))) (-1365 (($ $ $) NIL)) (-2473 (($ $ $) NIL (|has| (-112) (-851))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-1942 (((-645 (-112)) $) NIL (|has| $ (-6 -4422)))) (-3237 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-112) (-1102))))) (-3255 (((-567) $) NIL (|has| (-567) (-851)))) (-3002 (($ $ $) NIL)) (-3751 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4423)))) (-3841 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-1986 (((-112) $ (-772)) NIL)) (-2516 (((-1161) $) NIL)) (-2857 (($ $ $ (-567)) NIL) (($ (-112) $ (-567)) NIL)) (-4364 (((-645 (-567)) $) NIL)) (-3188 (((-112) (-567) $) NIL)) (-3437 (((-1122) $) NIL)) (-2418 (((-112) $) NIL (|has| (-567) (-851)))) (-3196 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-3823 (($ $ (-112)) NIL (|has| $ (-6 -4423)))) (-4233 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-112)) (-645 (-112))) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1102)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1102)))) (($ $ (-295 (-112))) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1102)))) (($ $ (-645 (-295 (-112)))) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1102))))) (-3875 (((-112) $ $) NIL)) (-4058 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-112) (-1102))))) (-2190 (((-645 (-112)) $) NIL)) (-3885 (((-112) $) NIL)) (-2701 (($) NIL)) (-1801 (($ $ (-1236 (-567))) NIL) (((-112) $ (-567)) NIL) (((-112) $ (-567) (-112)) NIL)) (-1569 (($ $ (-1236 (-567))) NIL) (($ $ (-567)) NIL)) (-3447 (((-772) (-112) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-112) (-1102)))) (((-772) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4422)))) (-1656 (($ $ $ (-567)) NIL (|has| $ (-6 -4423)))) (-4309 (($ $) NIL)) (-3902 (((-539) $) NIL (|has| (-112) (-615 (-539))))) (-4145 (($ (-645 (-112))) NIL)) (-2276 (($ (-645 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-4129 (((-863) $) NIL)) (-3766 (($ (-772) (-112)) 11)) (-3357 (((-112) $ $) NIL)) (-3436 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4422)))) (-1686 (($ $ $) NIL)) (-2477 (($ $ $) NIL)) (-3004 (((-112) $ $) NIL)) (-2980 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2993 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)) (-2468 (($ $ $) NIL)) (-2423 (((-772) $) NIL (|has| $ (-6 -4422)))))
+(((-110) (-13 (-123) (-10 -8 (-15 -3766 ($ (-772) (-112)))))) (T -110))
+((-3766 (*1 *1 *2 *3) (-12 (-5 *2 (-772)) (-5 *3 (-112)) (-5 *1 (-110)))))
+(-13 (-123) (-10 -8 (-15 -3766 ($ (-772) (-112)))))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-2376 (((-3 $ "failed") $ $) 20)) (-3647 (($) 18 T CONST)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-4129 (((-863) $) 12)) (-3357 (((-112) $ $) 9)) (-1733 (($) 19 T CONST)) (-2946 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ |#1| $) 27) (($ $ |#2|) 31)))
(((-111 |#1| |#2|) (-140) (-1051) (-1051)) (T -111))
NIL
-(-13 (-649 |t#1|) (-1058 |t#2|) (-10 -7 (-6 -4413) (-6 -4412)))
+(-13 (-649 |t#1|) (-1058 |t#2|) (-10 -7 (-6 -4417) (-6 -4416)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-649 |#1|) . T) ((-1053 |#2|) . T) ((-1058 |#2|) . T) ((-1102) . T))
-((-2403 (((-112) $ $) NIL)) (-2425 (($ $) 13)) (-1689 (($ $ $) 18)) (-1477 (($) 7 T CONST)) (-3799 (($ $) 6)) (-2375 (((-772)) 26)) (-1348 (($) 34)) (-1677 (($ $ $) 16)) (-1657 (($ $) 9)) (-4005 (($ $ $) 19)) (-3107 (($ $ $) 20)) (-1354 (($ $ $) NIL) (($) NIL T CONST)) (-2981 (($ $ $) NIL) (($) NIL T CONST)) (-4249 (((-923) $) 32)) (-1419 (((-1160) $) NIL)) (-3768 (($ (-923)) 30)) (-3661 (($ $ $) 22)) (-3430 (((-1122) $) NIL)) (-2786 (($) 8 T CONST)) (-1983 (($ $ $) 23)) (-3893 (((-539) $) 36)) (-4132 (((-863) $) 38)) (-1745 (((-112) $ $) NIL)) (-1667 (($ $ $) 14)) (-2470 (($ $ $) 17)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 21)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) 24)) (-2458 (($ $ $) 15)))
-(((-112) (-13 (-845) (-662) (-969) (-615 (-539)) (-10 -8 (-15 -1689 ($ $ $)) (-15 -3107 ($ $ $)) (-15 -4005 ($ $ $)) (-15 -3799 ($ $))))) (T -112))
-((-1689 (*1 *1 *1 *1) (-5 *1 (-112))) (-3107 (*1 *1 *1 *1) (-5 *1 (-112))) (-4005 (*1 *1 *1 *1) (-5 *1 (-112))) (-3799 (*1 *1 *1) (-5 *1 (-112))))
-(-13 (-845) (-662) (-969) (-615 (-539)) (-10 -8 (-15 -1689 ($ $ $)) (-15 -3107 ($ $ $)) (-15 -4005 ($ $ $)) (-15 -3799 ($ $))))
-((-3456 (((-3 (-1 |#1| (-645 |#1|)) "failed") (-114)) 23) (((-114) (-114) (-1 |#1| |#1|)) 13) (((-114) (-114) (-1 |#1| (-645 |#1|))) 11) (((-3 |#1| "failed") (-114) (-645 |#1|)) 25)) (-3743 (((-3 (-645 (-1 |#1| (-645 |#1|))) "failed") (-114)) 29) (((-114) (-114) (-1 |#1| |#1|)) 33) (((-114) (-114) (-645 (-1 |#1| (-645 |#1|)))) 30)) (-1755 (((-114) |#1|) 63)) (-2954 (((-3 |#1| "failed") (-114)) 58)))
-(((-113 |#1|) (-10 -7 (-15 -3456 ((-3 |#1| "failed") (-114) (-645 |#1|))) (-15 -3456 ((-114) (-114) (-1 |#1| (-645 |#1|)))) (-15 -3456 ((-114) (-114) (-1 |#1| |#1|))) (-15 -3456 ((-3 (-1 |#1| (-645 |#1|)) "failed") (-114))) (-15 -3743 ((-114) (-114) (-645 (-1 |#1| (-645 |#1|))))) (-15 -3743 ((-114) (-114) (-1 |#1| |#1|))) (-15 -3743 ((-3 (-645 (-1 |#1| (-645 |#1|))) "failed") (-114))) (-15 -1755 ((-114) |#1|)) (-15 -2954 ((-3 |#1| "failed") (-114)))) (-1102)) (T -113))
-((-2954 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *1 (-113 *2)) (-4 *2 (-1102)))) (-1755 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-1102)))) (-3743 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-645 (-1 *4 (-645 *4)))) (-5 *1 (-113 *4)) (-4 *4 (-1102)))) (-3743 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1102)) (-5 *1 (-113 *4)))) (-3743 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-645 (-1 *4 (-645 *4)))) (-4 *4 (-1102)) (-5 *1 (-113 *4)))) (-3456 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-645 *4))) (-5 *1 (-113 *4)) (-4 *4 (-1102)))) (-3456 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1102)) (-5 *1 (-113 *4)))) (-3456 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-645 *4))) (-4 *4 (-1102)) (-5 *1 (-113 *4)))) (-3456 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-645 *2)) (-5 *1 (-113 *2)) (-4 *2 (-1102)))))
-(-10 -7 (-15 -3456 ((-3 |#1| "failed") (-114) (-645 |#1|))) (-15 -3456 ((-114) (-114) (-1 |#1| (-645 |#1|)))) (-15 -3456 ((-114) (-114) (-1 |#1| |#1|))) (-15 -3456 ((-3 (-1 |#1| (-645 |#1|)) "failed") (-114))) (-15 -3743 ((-114) (-114) (-645 (-1 |#1| (-645 |#1|))))) (-15 -3743 ((-114) (-114) (-1 |#1| |#1|))) (-15 -3743 ((-3 (-645 (-1 |#1| (-645 |#1|))) "failed") (-114))) (-15 -1755 ((-114) |#1|)) (-15 -2954 ((-3 |#1| "failed") (-114))))
-((-2403 (((-112) $ $) NIL)) (-3729 (((-772) $) 91) (($ $ (-772)) 37)) (-1949 (((-112) $) 41)) (-3274 (($ $ (-1160) (-775)) 58) (($ $ (-509) (-775)) 33)) (-1534 (($ $ (-45 (-1160) (-775))) 16)) (-1704 (((-3 (-775) "failed") $ (-1160)) 27) (((-692 (-775)) $ (-509)) 32)) (-2550 (((-45 (-1160) (-775)) $) 15)) (-2654 (($ (-1178)) 20) (($ (-1178) (-772)) 23) (($ (-1178) (-55)) 24)) (-2906 (((-112) $) 39)) (-1850 (((-112) $) 43)) (-1996 (((-1178) $) 8)) (-1354 (($ $ $) NIL)) (-2981 (($ $ $) NIL)) (-1419 (((-1160) $) NIL)) (-1854 (((-112) $ (-1178)) 11)) (-4081 (($ $ (-1 (-539) (-645 (-539)))) 64) (((-3 (-1 (-539) (-645 (-539))) "failed") $) 71)) (-3430 (((-1122) $) NIL)) (-4231 (((-112) $ (-509)) 36)) (-4115 (($ $ (-1 (-112) $ $)) 45)) (-4022 (((-3 (-1 (-863) (-645 (-863))) "failed") $) 69) (($ $ (-1 (-863) (-645 (-863)))) 51) (($ $ (-1 (-863) (-863))) 53)) (-1955 (($ $ (-1160)) 55) (($ $ (-509)) 56)) (-4305 (($ $) 77)) (-1539 (($ $ (-1 (-112) $ $)) 46)) (-4132 (((-863) $) 60)) (-1745 (((-112) $ $) NIL)) (-2074 (($ $ (-509)) 34)) (-2124 (((-55) $) 72)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 89)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) 103)))
-(((-114) (-13 (-851) (-836 (-1178)) (-10 -8 (-15 -2550 ((-45 (-1160) (-775)) $)) (-15 -4305 ($ $)) (-15 -2654 ($ (-1178))) (-15 -2654 ($ (-1178) (-772))) (-15 -2654 ($ (-1178) (-55))) (-15 -2906 ((-112) $)) (-15 -1949 ((-112) $)) (-15 -1850 ((-112) $)) (-15 -3729 ((-772) $)) (-15 -3729 ($ $ (-772))) (-15 -4115 ($ $ (-1 (-112) $ $))) (-15 -1539 ($ $ (-1 (-112) $ $))) (-15 -4022 ((-3 (-1 (-863) (-645 (-863))) "failed") $)) (-15 -4022 ($ $ (-1 (-863) (-645 (-863))))) (-15 -4022 ($ $ (-1 (-863) (-863)))) (-15 -4081 ($ $ (-1 (-539) (-645 (-539))))) (-15 -4081 ((-3 (-1 (-539) (-645 (-539))) "failed") $)) (-15 -4231 ((-112) $ (-509))) (-15 -2074 ($ $ (-509))) (-15 -1955 ($ $ (-1160))) (-15 -1955 ($ $ (-509))) (-15 -1704 ((-3 (-775) "failed") $ (-1160))) (-15 -1704 ((-692 (-775)) $ (-509))) (-15 -3274 ($ $ (-1160) (-775))) (-15 -3274 ($ $ (-509) (-775))) (-15 -1534 ($ $ (-45 (-1160) (-775))))))) (T -114))
-((-2550 (*1 *2 *1) (-12 (-5 *2 (-45 (-1160) (-775))) (-5 *1 (-114)))) (-4305 (*1 *1 *1) (-5 *1 (-114))) (-2654 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-114)))) (-2654 (*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-772)) (-5 *1 (-114)))) (-2654 (*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-55)) (-5 *1 (-114)))) (-2906 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-1949 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-1850 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-3729 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-114)))) (-3729 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-114)))) (-4115 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-1539 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-4022 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-863) (-645 (-863)))) (-5 *1 (-114)))) (-4022 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-863) (-645 (-863)))) (-5 *1 (-114)))) (-4022 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-863) (-863))) (-5 *1 (-114)))) (-4081 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-539) (-645 (-539)))) (-5 *1 (-114)))) (-4081 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-539) (-645 (-539)))) (-5 *1 (-114)))) (-4231 (*1 *2 *1 *3) (-12 (-5 *3 (-509)) (-5 *2 (-112)) (-5 *1 (-114)))) (-2074 (*1 *1 *1 *2) (-12 (-5 *2 (-509)) (-5 *1 (-114)))) (-1955 (*1 *1 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-114)))) (-1955 (*1 *1 *1 *2) (-12 (-5 *2 (-509)) (-5 *1 (-114)))) (-1704 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1160)) (-5 *2 (-775)) (-5 *1 (-114)))) (-1704 (*1 *2 *1 *3) (-12 (-5 *3 (-509)) (-5 *2 (-692 (-775))) (-5 *1 (-114)))) (-3274 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1160)) (-5 *3 (-775)) (-5 *1 (-114)))) (-3274 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-775)) (-5 *1 (-114)))) (-1534 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1160) (-775))) (-5 *1 (-114)))))
-(-13 (-851) (-836 (-1178)) (-10 -8 (-15 -2550 ((-45 (-1160) (-775)) $)) (-15 -4305 ($ $)) (-15 -2654 ($ (-1178))) (-15 -2654 ($ (-1178) (-772))) (-15 -2654 ($ (-1178) (-55))) (-15 -2906 ((-112) $)) (-15 -1949 ((-112) $)) (-15 -1850 ((-112) $)) (-15 -3729 ((-772) $)) (-15 -3729 ($ $ (-772))) (-15 -4115 ($ $ (-1 (-112) $ $))) (-15 -1539 ($ $ (-1 (-112) $ $))) (-15 -4022 ((-3 (-1 (-863) (-645 (-863))) "failed") $)) (-15 -4022 ($ $ (-1 (-863) (-645 (-863))))) (-15 -4022 ($ $ (-1 (-863) (-863)))) (-15 -4081 ($ $ (-1 (-539) (-645 (-539))))) (-15 -4081 ((-3 (-1 (-539) (-645 (-539))) "failed") $)) (-15 -4231 ((-112) $ (-509))) (-15 -2074 ($ $ (-509))) (-15 -1955 ($ $ (-1160))) (-15 -1955 ($ $ (-509))) (-15 -1704 ((-3 (-775) "failed") $ (-1160))) (-15 -1704 ((-692 (-775)) $ (-509))) (-15 -3274 ($ $ (-1160) (-775))) (-15 -3274 ($ $ (-509) (-775))) (-15 -1534 ($ $ (-45 (-1160) (-775))))))
-((-3674 (((-567) |#2|) 41)))
-(((-115 |#1| |#2|) (-10 -7 (-15 -3674 ((-567) |#2|))) (-13 (-365) (-1040 (-410 (-567)))) (-1244 |#1|)) (T -115))
-((-3674 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-1040 (-410 *2)))) (-5 *2 (-567)) (-5 *1 (-115 *4 *3)) (-4 *3 (-1244 *4)))))
-(-10 -7 (-15 -3674 ((-567) |#2|)))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2716 (($ $ (-567)) NIL)) (-3609 (((-112) $ $) NIL)) (-2585 (($) NIL T CONST)) (-2236 (($ (-1174 (-567)) (-567)) NIL)) (-2349 (($ $ $) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-1648 (($ $) NIL)) (-2360 (($ $ $) NIL)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-4384 (((-772) $) NIL)) (-1433 (((-112) $) NIL)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2211 (((-567)) NIL)) (-3297 (((-567) $) NIL)) (-2740 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-2774 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2410 (($ $ (-567)) NIL)) (-2391 (((-3 $ "failed") $ $) NIL)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1990 (((-772) $) NIL)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL)) (-3038 (((-1158 (-567)) $) NIL)) (-2192 (($ $) NIL)) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL)) (-4221 (((-772)) NIL T CONST)) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL)) (-3050 (((-567) $ (-567)) NIL)) (-1716 (($) NIL T CONST)) (-1728 (($) NIL T CONST)) (-2936 (((-112) $ $) NIL)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL)))
+((-2412 (((-112) $ $) NIL)) (-2434 (($ $) 13)) (-1709 (($ $ $) 18)) (-1479 (($) 7 T CONST)) (-3811 (($ $) 6)) (-2384 (((-772)) 26)) (-1359 (($) 34)) (-1696 (($ $ $) 16)) (-1673 (($ $) 9)) (-2362 (($ $ $) 19)) (-2986 (($ $ $) 20)) (-1365 (($ $ $) NIL) (($) NIL T CONST)) (-3002 (($ $ $) NIL) (($) NIL T CONST)) (-3474 (((-923) $) 32)) (-2516 (((-1161) $) NIL)) (-3779 (($ (-923)) 30)) (-2129 (($ $ $) 22)) (-3437 (((-1122) $) NIL)) (-2796 (($) 8 T CONST)) (-3156 (($ $ $) 23)) (-3902 (((-539) $) 36)) (-4129 (((-863) $) 38)) (-3357 (((-112) $ $) NIL)) (-1686 (($ $ $) 14)) (-2477 (($ $ $) 17)) (-3004 (((-112) $ $) NIL)) (-2980 (((-112) $ $) NIL)) (-2946 (((-112) $ $) 21)) (-2993 (((-112) $ $) NIL)) (-2968 (((-112) $ $) 24)) (-2468 (($ $ $) 15)))
+(((-112) (-13 (-845) (-662) (-969) (-615 (-539)) (-10 -8 (-15 -1709 ($ $ $)) (-15 -2986 ($ $ $)) (-15 -2362 ($ $ $)) (-15 -3811 ($ $))))) (T -112))
+((-1709 (*1 *1 *1 *1) (-5 *1 (-112))) (-2986 (*1 *1 *1 *1) (-5 *1 (-112))) (-2362 (*1 *1 *1 *1) (-5 *1 (-112))) (-3811 (*1 *1 *1) (-5 *1 (-112))))
+(-13 (-845) (-662) (-969) (-615 (-539)) (-10 -8 (-15 -1709 ($ $ $)) (-15 -2986 ($ $ $)) (-15 -2362 ($ $ $)) (-15 -3811 ($ $))))
+((-3301 (((-3 (-1 |#1| (-645 |#1|)) "failed") (-114)) 23) (((-114) (-114) (-1 |#1| |#1|)) 13) (((-114) (-114) (-1 |#1| (-645 |#1|))) 11) (((-3 |#1| "failed") (-114) (-645 |#1|)) 25)) (-1820 (((-3 (-645 (-1 |#1| (-645 |#1|))) "failed") (-114)) 29) (((-114) (-114) (-1 |#1| |#1|)) 33) (((-114) (-114) (-645 (-1 |#1| (-645 |#1|)))) 30)) (-3167 (((-114) |#1|) 63)) (-3893 (((-3 |#1| "failed") (-114)) 58)))
+(((-113 |#1|) (-10 -7 (-15 -3301 ((-3 |#1| "failed") (-114) (-645 |#1|))) (-15 -3301 ((-114) (-114) (-1 |#1| (-645 |#1|)))) (-15 -3301 ((-114) (-114) (-1 |#1| |#1|))) (-15 -3301 ((-3 (-1 |#1| (-645 |#1|)) "failed") (-114))) (-15 -1820 ((-114) (-114) (-645 (-1 |#1| (-645 |#1|))))) (-15 -1820 ((-114) (-114) (-1 |#1| |#1|))) (-15 -1820 ((-3 (-645 (-1 |#1| (-645 |#1|))) "failed") (-114))) (-15 -3167 ((-114) |#1|)) (-15 -3893 ((-3 |#1| "failed") (-114)))) (-1102)) (T -113))
+((-3893 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *1 (-113 *2)) (-4 *2 (-1102)))) (-3167 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-1102)))) (-1820 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-645 (-1 *4 (-645 *4)))) (-5 *1 (-113 *4)) (-4 *4 (-1102)))) (-1820 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1102)) (-5 *1 (-113 *4)))) (-1820 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-645 (-1 *4 (-645 *4)))) (-4 *4 (-1102)) (-5 *1 (-113 *4)))) (-3301 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-645 *4))) (-5 *1 (-113 *4)) (-4 *4 (-1102)))) (-3301 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1102)) (-5 *1 (-113 *4)))) (-3301 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-645 *4))) (-4 *4 (-1102)) (-5 *1 (-113 *4)))) (-3301 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-645 *2)) (-5 *1 (-113 *2)) (-4 *2 (-1102)))))
+(-10 -7 (-15 -3301 ((-3 |#1| "failed") (-114) (-645 |#1|))) (-15 -3301 ((-114) (-114) (-1 |#1| (-645 |#1|)))) (-15 -3301 ((-114) (-114) (-1 |#1| |#1|))) (-15 -3301 ((-3 (-1 |#1| (-645 |#1|)) "failed") (-114))) (-15 -1820 ((-114) (-114) (-645 (-1 |#1| (-645 |#1|))))) (-15 -1820 ((-114) (-114) (-1 |#1| |#1|))) (-15 -1820 ((-3 (-645 (-1 |#1| (-645 |#1|))) "failed") (-114))) (-15 -3167 ((-114) |#1|)) (-15 -3893 ((-3 |#1| "failed") (-114))))
+((-2412 (((-112) $ $) NIL)) (-1772 (((-772) $) 91) (($ $ (-772)) 37)) (-3616 (((-112) $) 41)) (-3934 (($ $ (-1161) (-775)) 58) (($ $ (-509) (-775)) 33)) (-3728 (($ $ (-45 (-1161) (-775))) 16)) (-1722 (((-3 (-775) "failed") $ (-1161)) 27) (((-692 (-775)) $ (-509)) 32)) (-2560 (((-45 (-1161) (-775)) $) 15)) (-2662 (($ (-1179)) 20) (($ (-1179) (-772)) 23) (($ (-1179) (-55)) 24)) (-3441 (((-112) $) 39)) (-2475 (((-112) $) 43)) (-2007 (((-1179) $) 8)) (-1365 (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (-2516 (((-1161) $) NIL)) (-3545 (((-112) $ (-1179)) 11)) (-4082 (($ $ (-1 (-539) (-645 (-539)))) 64) (((-3 (-1 (-539) (-645 (-539))) "failed") $) 71)) (-3437 (((-1122) $) NIL)) (-2506 (((-112) $ (-509)) 36)) (-3425 (($ $ (-1 (-112) $ $)) 45)) (-4025 (((-3 (-1 (-863) (-645 (-863))) "failed") $) 69) (($ $ (-1 (-863) (-645 (-863)))) 51) (($ $ (-1 (-863) (-863))) 53)) (-2947 (($ $ (-1161)) 55) (($ $ (-509)) 56)) (-4309 (($ $) 77)) (-2943 (($ $ (-1 (-112) $ $)) 46)) (-4129 (((-863) $) 60)) (-3357 (((-112) $ $) NIL)) (-2083 (($ $ (-509)) 34)) (-2336 (((-55) $) 72)) (-3004 (((-112) $ $) NIL)) (-2980 (((-112) $ $) NIL)) (-2946 (((-112) $ $) 89)) (-2993 (((-112) $ $) NIL)) (-2968 (((-112) $ $) 103)))
+(((-114) (-13 (-851) (-836 (-1179)) (-10 -8 (-15 -2560 ((-45 (-1161) (-775)) $)) (-15 -4309 ($ $)) (-15 -2662 ($ (-1179))) (-15 -2662 ($ (-1179) (-772))) (-15 -2662 ($ (-1179) (-55))) (-15 -3441 ((-112) $)) (-15 -3616 ((-112) $)) (-15 -2475 ((-112) $)) (-15 -1772 ((-772) $)) (-15 -1772 ($ $ (-772))) (-15 -3425 ($ $ (-1 (-112) $ $))) (-15 -2943 ($ $ (-1 (-112) $ $))) (-15 -4025 ((-3 (-1 (-863) (-645 (-863))) "failed") $)) (-15 -4025 ($ $ (-1 (-863) (-645 (-863))))) (-15 -4025 ($ $ (-1 (-863) (-863)))) (-15 -4082 ($ $ (-1 (-539) (-645 (-539))))) (-15 -4082 ((-3 (-1 (-539) (-645 (-539))) "failed") $)) (-15 -2506 ((-112) $ (-509))) (-15 -2083 ($ $ (-509))) (-15 -2947 ($ $ (-1161))) (-15 -2947 ($ $ (-509))) (-15 -1722 ((-3 (-775) "failed") $ (-1161))) (-15 -1722 ((-692 (-775)) $ (-509))) (-15 -3934 ($ $ (-1161) (-775))) (-15 -3934 ($ $ (-509) (-775))) (-15 -3728 ($ $ (-45 (-1161) (-775))))))) (T -114))
+((-2560 (*1 *2 *1) (-12 (-5 *2 (-45 (-1161) (-775))) (-5 *1 (-114)))) (-4309 (*1 *1 *1) (-5 *1 (-114))) (-2662 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-114)))) (-2662 (*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-772)) (-5 *1 (-114)))) (-2662 (*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-55)) (-5 *1 (-114)))) (-3441 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-3616 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-2475 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-1772 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-114)))) (-1772 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-114)))) (-3425 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-2943 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-4025 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-863) (-645 (-863)))) (-5 *1 (-114)))) (-4025 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-863) (-645 (-863)))) (-5 *1 (-114)))) (-4025 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-863) (-863))) (-5 *1 (-114)))) (-4082 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-539) (-645 (-539)))) (-5 *1 (-114)))) (-4082 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-539) (-645 (-539)))) (-5 *1 (-114)))) (-2506 (*1 *2 *1 *3) (-12 (-5 *3 (-509)) (-5 *2 (-112)) (-5 *1 (-114)))) (-2083 (*1 *1 *1 *2) (-12 (-5 *2 (-509)) (-5 *1 (-114)))) (-2947 (*1 *1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-114)))) (-2947 (*1 *1 *1 *2) (-12 (-5 *2 (-509)) (-5 *1 (-114)))) (-1722 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1161)) (-5 *2 (-775)) (-5 *1 (-114)))) (-1722 (*1 *2 *1 *3) (-12 (-5 *3 (-509)) (-5 *2 (-692 (-775))) (-5 *1 (-114)))) (-3934 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-775)) (-5 *1 (-114)))) (-3934 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-775)) (-5 *1 (-114)))) (-3728 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1161) (-775))) (-5 *1 (-114)))))
+(-13 (-851) (-836 (-1179)) (-10 -8 (-15 -2560 ((-45 (-1161) (-775)) $)) (-15 -4309 ($ $)) (-15 -2662 ($ (-1179))) (-15 -2662 ($ (-1179) (-772))) (-15 -2662 ($ (-1179) (-55))) (-15 -3441 ((-112) $)) (-15 -3616 ((-112) $)) (-15 -2475 ((-112) $)) (-15 -1772 ((-772) $)) (-15 -1772 ($ $ (-772))) (-15 -3425 ($ $ (-1 (-112) $ $))) (-15 -2943 ($ $ (-1 (-112) $ $))) (-15 -4025 ((-3 (-1 (-863) (-645 (-863))) "failed") $)) (-15 -4025 ($ $ (-1 (-863) (-645 (-863))))) (-15 -4025 ($ $ (-1 (-863) (-863)))) (-15 -4082 ($ $ (-1 (-539) (-645 (-539))))) (-15 -4082 ((-3 (-1 (-539) (-645 (-539))) "failed") $)) (-15 -2506 ((-112) $ (-509))) (-15 -2083 ($ $ (-509))) (-15 -2947 ($ $ (-1161))) (-15 -2947 ($ $ (-509))) (-15 -1722 ((-3 (-775) "failed") $ (-1161))) (-15 -1722 ((-692 (-775)) $ (-509))) (-15 -3934 ($ $ (-1161) (-775))) (-15 -3934 ($ $ (-509) (-775))) (-15 -3728 ($ $ (-45 (-1161) (-775))))))
+((-4070 (((-567) |#2|) 41)))
+(((-115 |#1| |#2|) (-10 -7 (-15 -4070 ((-567) |#2|))) (-13 (-365) (-1040 (-410 (-567)))) (-1245 |#1|)) (T -115))
+((-4070 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-1040 (-410 *2)))) (-5 *2 (-567)) (-5 *1 (-115 *4 *3)) (-4 *3 (-1245 *4)))))
+(-10 -7 (-15 -4070 ((-567) |#2|)))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-4287 (($ $) NIL)) (-2286 (((-112) $) NIL)) (-2376 (((-3 $ "failed") $ $) NIL)) (-2728 (($ $ (-567)) NIL)) (-3696 (((-112) $ $) NIL)) (-3647 (($) NIL T CONST)) (-3048 (($ (-1175 (-567)) (-567)) NIL)) (-2357 (($ $ $) NIL)) (-3588 (((-3 $ "failed") $) NIL)) (-3031 (($ $) NIL)) (-2368 (($ $ $) NIL)) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) NIL)) (-3362 (((-772) $) NIL)) (-4346 (((-112) $) NIL)) (-1469 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-3054 (((-567)) NIL)) (-2239 (((-567) $) NIL)) (-2751 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-2785 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2905 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1874 (($ $ (-567)) NIL)) (-2400 (((-3 $ "failed") $ $) NIL)) (-2372 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2460 (((-772) $) NIL)) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) NIL)) (-2688 (((-1159 (-567)) $) NIL)) (-1834 (($ $) NIL)) (-4129 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL)) (-2746 (((-772)) NIL T CONST)) (-3357 (((-112) $ $) NIL)) (-3731 (((-112) $ $) NIL)) (-3058 (((-567) $ (-567)) NIL)) (-1733 (($) NIL T CONST)) (-1744 (($) NIL T CONST)) (-2946 (((-112) $ $) NIL)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL)))
(((-116 |#1|) (-870 |#1|) (-567)) (T -116))
NIL
(-870 |#1|)
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3093 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-308)))) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-4226 (((-421 (-1174 $)) (-1174 $)) NIL (|has| (-116 |#1|) (-911)))) (-3248 (($ $) NIL)) (-2908 (((-421 $) $) NIL)) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) NIL (|has| (-116 |#1|) (-911)))) (-3609 (((-112) $ $) NIL)) (-1750 (((-567) $) NIL (|has| (-116 |#1|) (-821)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 (-116 |#1|) "failed") $) NIL) (((-3 (-1178) "failed") $) NIL (|has| (-116 |#1|) (-1040 (-1178)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| (-116 |#1|) (-1040 (-567)))) (((-3 (-567) "failed") $) NIL (|has| (-116 |#1|) (-1040 (-567))))) (-2038 (((-116 |#1|) $) NIL) (((-1178) $) NIL (|has| (-116 |#1|) (-1040 (-1178)))) (((-410 (-567)) $) NIL (|has| (-116 |#1|) (-1040 (-567)))) (((-567) $) NIL (|has| (-116 |#1|) (-1040 (-567))))) (-3812 (($ $) NIL) (($ (-567) $) NIL)) (-2349 (($ $ $) NIL)) (-2630 (((-690 (-567)) (-690 $)) NIL (|has| (-116 |#1|) (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (|has| (-116 |#1|) (-640 (-567)))) (((-2 (|:| -2316 (-690 (-116 |#1|))) (|:| |vec| (-1268 (-116 |#1|)))) (-690 $) (-1268 $)) NIL) (((-690 (-116 |#1|)) (-690 $)) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-1348 (($) NIL (|has| (-116 |#1|) (-548)))) (-2360 (($ $ $) NIL)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-3184 (((-112) $) NIL)) (-4336 (((-112) $) NIL (|has| (-116 |#1|) (-821)))) (-4303 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (|has| (-116 |#1|) (-888 (-567)))) (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (|has| (-116 |#1|) (-888 (-381))))) (-1433 (((-112) $) NIL)) (-3530 (($ $) NIL)) (-1448 (((-116 |#1|) $) NIL)) (-3972 (((-3 $ "failed") $) NIL (|has| (-116 |#1|) (-1153)))) (-3494 (((-112) $) NIL (|has| (-116 |#1|) (-821)))) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1354 (($ $ $) NIL (|has| (-116 |#1|) (-851)))) (-2981 (($ $ $) NIL (|has| (-116 |#1|) (-851)))) (-3829 (($ (-1 (-116 |#1|) (-116 |#1|)) $) NIL)) (-2740 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) NIL)) (-2672 (($) NIL (|has| (-116 |#1|) (-1153)) CONST)) (-3430 (((-1122) $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-2774 (($ $ $) NIL) (($ (-645 $)) NIL)) (-4094 (($ $) NIL (|has| (-116 |#1|) (-308)))) (-2780 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-548)))) (-2435 (((-421 (-1174 $)) (-1174 $)) NIL (|has| (-116 |#1|) (-911)))) (-3517 (((-421 (-1174 $)) (-1174 $)) NIL (|has| (-116 |#1|) (-911)))) (-2706 (((-421 $) $) NIL)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2391 (((-3 $ "failed") $ $) NIL)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2631 (($ $ (-645 (-116 |#1|)) (-645 (-116 |#1|))) NIL (|has| (-116 |#1|) (-310 (-116 |#1|)))) (($ $ (-116 |#1|) (-116 |#1|)) NIL (|has| (-116 |#1|) (-310 (-116 |#1|)))) (($ $ (-295 (-116 |#1|))) NIL (|has| (-116 |#1|) (-310 (-116 |#1|)))) (($ $ (-645 (-295 (-116 |#1|)))) NIL (|has| (-116 |#1|) (-310 (-116 |#1|)))) (($ $ (-645 (-1178)) (-645 (-116 |#1|))) NIL (|has| (-116 |#1|) (-517 (-1178) (-116 |#1|)))) (($ $ (-1178) (-116 |#1|)) NIL (|has| (-116 |#1|) (-517 (-1178) (-116 |#1|))))) (-1990 (((-772) $) NIL)) (-1787 (($ $ (-116 |#1|)) NIL (|has| (-116 |#1|) (-287 (-116 |#1|) (-116 |#1|))))) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL)) (-1593 (($ $) NIL (|has| (-116 |#1|) (-233))) (($ $ (-772)) NIL (|has| (-116 |#1|) (-233))) (($ $ (-1178)) NIL (|has| (-116 |#1|) (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| (-116 |#1|) (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| (-116 |#1|) (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| (-116 |#1|) (-902 (-1178)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-772)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-1967 (($ $) NIL)) (-1460 (((-116 |#1|) $) NIL)) (-3893 (((-894 (-567)) $) NIL (|has| (-116 |#1|) (-615 (-894 (-567))))) (((-894 (-381)) $) NIL (|has| (-116 |#1|) (-615 (-894 (-381))))) (((-539) $) NIL (|has| (-116 |#1|) (-615 (-539)))) (((-381) $) NIL (|has| (-116 |#1|) (-1024))) (((-225) $) NIL (|has| (-116 |#1|) (-1024)))) (-1579 (((-174 (-410 (-567))) $) NIL)) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| (-116 |#1|) (-911))))) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ (-116 |#1|)) NIL) (($ (-1178)) NIL (|has| (-116 |#1|) (-1040 (-1178))))) (-1903 (((-3 $ "failed") $) NIL (-2800 (-12 (|has| $ (-145)) (|has| (-116 |#1|) (-911))) (|has| (-116 |#1|) (-145))))) (-4221 (((-772)) NIL T CONST)) (-1423 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-548)))) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL)) (-3050 (((-410 (-567)) $ (-567)) NIL)) (-2219 (($ $) NIL (|has| (-116 |#1|) (-821)))) (-1716 (($) NIL T CONST)) (-1728 (($) NIL T CONST)) (-2637 (($ $) NIL (|has| (-116 |#1|) (-233))) (($ $ (-772)) NIL (|has| (-116 |#1|) (-233))) (($ $ (-1178)) NIL (|has| (-116 |#1|) (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| (-116 |#1|) (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| (-116 |#1|) (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| (-116 |#1|) (-902 (-1178)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-772)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-2997 (((-112) $ $) NIL (|has| (-116 |#1|) (-851)))) (-2971 (((-112) $ $) NIL (|has| (-116 |#1|) (-851)))) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL (|has| (-116 |#1|) (-851)))) (-2958 (((-112) $ $) NIL (|has| (-116 |#1|) (-851)))) (-3060 (($ $ $) NIL) (($ (-116 |#1|) (-116 |#1|)) NIL)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ (-116 |#1|) $) NIL) (($ $ (-116 |#1|)) NIL)))
-(((-117 |#1|) (-13 (-994 (-116 |#1|)) (-10 -8 (-15 -3050 ((-410 (-567)) $ (-567))) (-15 -1579 ((-174 (-410 (-567))) $)) (-15 -3812 ($ $)) (-15 -3812 ($ (-567) $)))) (-567)) (T -117))
-((-3050 (*1 *2 *1 *3) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-117 *4)) (-14 *4 *3) (-5 *3 (-567)))) (-1579 (*1 *2 *1) (-12 (-5 *2 (-174 (-410 (-567)))) (-5 *1 (-117 *3)) (-14 *3 (-567)))) (-3812 (*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-567)))) (-3812 (*1 *1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-117 *3)) (-14 *3 *2))))
-(-13 (-994 (-116 |#1|)) (-10 -8 (-15 -3050 ((-410 (-567)) $ (-567))) (-15 -1579 ((-174 (-410 (-567))) $)) (-15 -3812 ($ $)) (-15 -3812 ($ (-567) $))))
-((-4284 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 61) (($ $ "right" $) 63)) (-2182 (((-645 $) $) 31)) (-3512 (((-112) $ $) 36)) (-4337 (((-112) |#2| $) 40)) (-3773 (((-645 |#2|) $) 25)) (-2769 (((-112) $) 18)) (-1787 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-3900 (((-112) $) 57)) (-4132 (((-863) $) 47)) (-1531 (((-645 $) $) 32)) (-2936 (((-112) $ $) 38)) (-2414 (((-772) $) 50)))
-(((-118 |#1| |#2|) (-10 -8 (-15 -4132 ((-863) |#1|)) (-15 -4284 (|#1| |#1| "right" |#1|)) (-15 -4284 (|#1| |#1| "left" |#1|)) (-15 -1787 (|#1| |#1| "right")) (-15 -1787 (|#1| |#1| "left")) (-15 -4284 (|#2| |#1| "value" |#2|)) (-15 -3512 ((-112) |#1| |#1|)) (-15 -3773 ((-645 |#2|) |#1|)) (-15 -3900 ((-112) |#1|)) (-15 -1787 (|#2| |#1| "value")) (-15 -2769 ((-112) |#1|)) (-15 -2182 ((-645 |#1|) |#1|)) (-15 -1531 ((-645 |#1|) |#1|)) (-15 -2936 ((-112) |#1| |#1|)) (-15 -4337 ((-112) |#2| |#1|)) (-15 -2414 ((-772) |#1|))) (-119 |#2|) (-1218)) (T -118))
-NIL
-(-10 -8 (-15 -4132 ((-863) |#1|)) (-15 -4284 (|#1| |#1| "right" |#1|)) (-15 -4284 (|#1| |#1| "left" |#1|)) (-15 -1787 (|#1| |#1| "right")) (-15 -1787 (|#1| |#1| "left")) (-15 -4284 (|#2| |#1| "value" |#2|)) (-15 -3512 ((-112) |#1| |#1|)) (-15 -3773 ((-645 |#2|) |#1|)) (-15 -3900 ((-112) |#1|)) (-15 -1787 (|#2| |#1| "value")) (-15 -2769 ((-112) |#1|)) (-15 -2182 ((-645 |#1|) |#1|)) (-15 -1531 ((-645 |#1|) |#1|)) (-15 -2936 ((-112) |#1| |#1|)) (-15 -4337 ((-112) |#2| |#1|)) (-15 -2414 ((-772) |#1|)))
-((-2403 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-3802 ((|#1| $) 49)) (-3445 (((-112) $ (-772)) 8)) (-2138 ((|#1| $ |#1|) 40 (|has| $ (-6 -4419)))) (-3909 (($ $ $) 53 (|has| $ (-6 -4419)))) (-4062 (($ $ $) 55 (|has| $ (-6 -4419)))) (-4284 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4419))) (($ $ "left" $) 56 (|has| $ (-6 -4419))) (($ $ "right" $) 54 (|has| $ (-6 -4419)))) (-1301 (($ $ (-645 $)) 42 (|has| $ (-6 -4419)))) (-2585 (($) 7 T CONST)) (-2963 (($ $) 58)) (-2777 (((-645 |#1|) $) 31 (|has| $ (-6 -4418)))) (-2182 (((-645 $) $) 51)) (-3512 (((-112) $ $) 43 (|has| |#1| (-1102)))) (-2077 (((-112) $ (-772)) 9)) (-2279 (((-645 |#1|) $) 30 (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-3731 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) 36)) (-2863 (((-112) $ (-772)) 10)) (-2950 (($ $) 60)) (-3773 (((-645 |#1|) $) 46)) (-2769 (((-112) $) 50)) (-1419 (((-1160) $) 22 (|has| |#1| (-1102)))) (-3430 (((-1122) $) 21 (|has| |#1| (-1102)))) (-3025 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) 14)) (-3572 (((-112) $) 11)) (-3498 (($) 12)) (-1787 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-2658 (((-567) $ $) 45)) (-3900 (((-112) $) 47)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4418))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-4305 (($ $) 13)) (-4132 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-1531 (((-645 $) $) 52)) (-3606 (((-112) $ $) 44 (|has| |#1| (-1102)))) (-1745 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2414 (((-772) $) 6 (|has| $ (-6 -4418)))))
-(((-119 |#1|) (-140) (-1218)) (T -119))
-((-2950 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1218)))) (-1787 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1218)))) (-2963 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1218)))) (-1787 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1218)))) (-4284 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4419)) (-4 *1 (-119 *3)) (-4 *3 (-1218)))) (-4062 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4419)) (-4 *1 (-119 *2)) (-4 *2 (-1218)))) (-4284 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4419)) (-4 *1 (-119 *3)) (-4 *3 (-1218)))) (-3909 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4419)) (-4 *1 (-119 *2)) (-4 *2 (-1218)))))
-(-13 (-1012 |t#1|) (-10 -8 (-15 -2950 ($ $)) (-15 -1787 ($ $ "left")) (-15 -2963 ($ $)) (-15 -1787 ($ $ "right")) (IF (|has| $ (-6 -4419)) (PROGN (-15 -4284 ($ $ "left" $)) (-15 -4062 ($ $ $)) (-15 -4284 ($ $ "right" $)) (-15 -3909 ($ $ $))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2800 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-1012 |#1|) . T) ((-1102) |has| |#1| (-1102)) ((-1218) . T))
-((-2431 (((-112) |#1|) 29)) (-2066 (((-772) (-772)) 28) (((-772)) 27)) (-3834 (((-112) |#1| (-112)) 30) (((-112) |#1|) 31)))
-(((-120 |#1|) (-10 -7 (-15 -3834 ((-112) |#1|)) (-15 -3834 ((-112) |#1| (-112))) (-15 -2066 ((-772))) (-15 -2066 ((-772) (-772))) (-15 -2431 ((-112) |#1|))) (-1244 (-567))) (T -120))
-((-2431 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1244 (-567))))) (-2066 (*1 *2 *2) (-12 (-5 *2 (-772)) (-5 *1 (-120 *3)) (-4 *3 (-1244 (-567))))) (-2066 (*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-120 *3)) (-4 *3 (-1244 (-567))))) (-3834 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1244 (-567))))) (-3834 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1244 (-567))))))
-(-10 -7 (-15 -3834 ((-112) |#1|)) (-15 -3834 ((-112) |#1| (-112))) (-15 -2066 ((-772))) (-15 -2066 ((-772) (-772))) (-15 -2431 ((-112) |#1|)))
-((-2403 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3802 ((|#1| $) 18)) (-4323 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26)) (-3445 (((-112) $ (-772)) NIL)) (-2138 ((|#1| $ |#1|) NIL (|has| $ (-6 -4419)))) (-3909 (($ $ $) 21 (|has| $ (-6 -4419)))) (-4062 (($ $ $) 23 (|has| $ (-6 -4419)))) (-4284 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4419))) (($ $ "left" $) NIL (|has| $ (-6 -4419))) (($ $ "right" $) NIL (|has| $ (-6 -4419)))) (-1301 (($ $ (-645 $)) NIL (|has| $ (-6 -4419)))) (-2585 (($) NIL T CONST)) (-2963 (($ $) 20)) (-2777 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-2182 (((-645 $) $) NIL)) (-3512 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3403 (($ $ |#1| $) 27)) (-2077 (((-112) $ (-772)) NIL)) (-2279 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-3731 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-2950 (($ $) 22)) (-3773 (((-645 |#1|) $) NIL)) (-2769 (((-112) $) NIL)) (-1419 (((-1160) $) NIL (|has| |#1| (-1102)))) (-2341 (($ |#1| $) 28)) (-2531 (($ |#1| $) 15)) (-3430 (((-1122) $) NIL (|has| |#1| (-1102)))) (-3025 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) NIL)) (-3572 (((-112) $) 17)) (-3498 (($) 11)) (-1787 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2658 (((-567) $ $) NIL)) (-3900 (((-112) $) NIL)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-4305 (($ $) NIL)) (-4132 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-1531 (((-645 $) $) NIL)) (-3606 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3999 (($ (-645 |#1|)) 16)) (-1745 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2414 (((-772) $) NIL (|has| $ (-6 -4418)))))
-(((-121 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4419) (-6 -4418) (-15 -3999 ($ (-645 |#1|))) (-15 -2531 ($ |#1| $)) (-15 -2341 ($ |#1| $)) (-15 -4323 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-851)) (T -121))
-((-3999 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-851)) (-5 *1 (-121 *3)))) (-2531 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-851)))) (-2341 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-851)))) (-4323 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) (-5 *1 (-121 *3)) (-4 *3 (-851)))))
-(-13 (-125 |#1|) (-10 -8 (-6 -4419) (-6 -4418) (-15 -3999 ($ (-645 |#1|))) (-15 -2531 ($ |#1| $)) (-15 -2341 ($ |#1| $)) (-15 -4323 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $))))
-((-2425 (($ $) 13)) (-1657 (($ $) 11)) (-4005 (($ $ $) 23)) (-3107 (($ $ $) 21)) (-2470 (($ $ $) 19)) (-2458 (($ $ $) 17)))
-(((-122 |#1|) (-10 -8 (-15 -4005 (|#1| |#1| |#1|)) (-15 -3107 (|#1| |#1| |#1|)) (-15 -1657 (|#1| |#1|)) (-15 -2425 (|#1| |#1|)) (-15 -2458 (|#1| |#1| |#1|)) (-15 -2470 (|#1| |#1| |#1|))) (-123)) (T -122))
-NIL
-(-10 -8 (-15 -4005 (|#1| |#1| |#1|)) (-15 -3107 (|#1| |#1| |#1|)) (-15 -1657 (|#1| |#1|)) (-15 -2425 (|#1| |#1|)) (-15 -2458 (|#1| |#1| |#1|)) (-15 -2470 (|#1| |#1| |#1|)))
-((-2403 (((-112) $ $) 7)) (-2425 (($ $) 104)) (-1689 (($ $ $) 26)) (-1783 (((-1273) $ (-567) (-567)) 67 (|has| $ (-6 -4419)))) (-2496 (((-112) $) 99 (|has| (-112) (-851))) (((-112) (-1 (-112) (-112) (-112)) $) 93)) (-1394 (($ $) 103 (-12 (|has| (-112) (-851)) (|has| $ (-6 -4419)))) (($ (-1 (-112) (-112) (-112)) $) 102 (|has| $ (-6 -4419)))) (-4396 (($ $) 98 (|has| (-112) (-851))) (($ (-1 (-112) (-112) (-112)) $) 92)) (-3445 (((-112) $ (-772)) 38)) (-4284 (((-112) $ (-1235 (-567)) (-112)) 89 (|has| $ (-6 -4419))) (((-112) $ (-567) (-112)) 55 (|has| $ (-6 -4419)))) (-3350 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4418)))) (-2585 (($) 39 T CONST)) (-1764 (($ $) 101 (|has| $ (-6 -4419)))) (-3584 (($ $) 91)) (-2444 (($ $) 69 (-12 (|has| (-112) (-1102)) (|has| $ (-6 -4418))))) (-3238 (($ (-1 (-112) (-112)) $) 73 (|has| $ (-6 -4418))) (($ (-112) $) 70 (-12 (|has| (-112) (-1102)) (|has| $ (-6 -4418))))) (-2477 (((-112) (-1 (-112) (-112) (-112)) $) 75 (|has| $ (-6 -4418))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 74 (|has| $ (-6 -4418))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 71 (-12 (|has| (-112) (-1102)) (|has| $ (-6 -4418))))) (-3741 (((-112) $ (-567) (-112)) 54 (|has| $ (-6 -4419)))) (-3680 (((-112) $ (-567)) 56)) (-2569 (((-567) (-112) $ (-567)) 96 (|has| (-112) (-1102))) (((-567) (-112) $) 95 (|has| (-112) (-1102))) (((-567) (-1 (-112) (-112)) $) 94)) (-2777 (((-645 (-112)) $) 46 (|has| $ (-6 -4418)))) (-1677 (($ $ $) 27)) (-1657 (($ $) 31)) (-4005 (($ $ $) 29)) (-2846 (($ (-772) (-112)) 78)) (-3107 (($ $ $) 30)) (-2077 (((-112) $ (-772)) 37)) (-4069 (((-567) $) 64 (|has| (-567) (-851)))) (-1354 (($ $ $) 14)) (-4135 (($ $ $) 97 (|has| (-112) (-851))) (($ (-1 (-112) (-112) (-112)) $ $) 90)) (-2279 (((-645 (-112)) $) 47 (|has| $ (-6 -4418)))) (-4337 (((-112) (-112) $) 49 (-12 (|has| (-112) (-1102)) (|has| $ (-6 -4418))))) (-2266 (((-567) $) 63 (|has| (-567) (-851)))) (-2981 (($ $ $) 15)) (-3731 (($ (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4419)))) (-3829 (($ (-1 (-112) (-112) (-112)) $ $) 83) (($ (-1 (-112) (-112)) $) 41)) (-2863 (((-112) $ (-772)) 36)) (-1419 (((-1160) $) 10)) (-2845 (($ $ $ (-567)) 88) (($ (-112) $ (-567)) 87)) (-1789 (((-645 (-567)) $) 61)) (-2996 (((-112) (-567) $) 60)) (-3430 (((-1122) $) 11)) (-2409 (((-112) $) 65 (|has| (-567) (-851)))) (-4128 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 76)) (-3986 (($ $ (-112)) 66 (|has| $ (-6 -4419)))) (-3025 (((-112) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-112)) (-645 (-112))) 53 (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1102)))) (($ $ (-112) (-112)) 52 (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1102)))) (($ $ (-295 (-112))) 51 (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1102)))) (($ $ (-645 (-295 (-112)))) 50 (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1102))))) (-3092 (((-112) $ $) 32)) (-1794 (((-112) (-112) $) 62 (-12 (|has| $ (-6 -4418)) (|has| (-112) (-1102))))) (-2339 (((-645 (-112)) $) 59)) (-3572 (((-112) $) 35)) (-3498 (($) 34)) (-1787 (($ $ (-1235 (-567))) 84) (((-112) $ (-567)) 58) (((-112) $ (-567) (-112)) 57)) (-1560 (($ $ (-1235 (-567))) 86) (($ $ (-567)) 85)) (-3439 (((-772) (-112) $) 48 (-12 (|has| (-112) (-1102)) (|has| $ (-6 -4418)))) (((-772) (-1 (-112) (-112)) $) 45 (|has| $ (-6 -4418)))) (-1395 (($ $ $ (-567)) 100 (|has| $ (-6 -4419)))) (-4305 (($ $) 33)) (-3893 (((-539) $) 68 (|has| (-112) (-615 (-539))))) (-4147 (($ (-645 (-112))) 77)) (-2269 (($ (-645 $)) 82) (($ $ $) 81) (($ (-112) $) 80) (($ $ (-112)) 79)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-1853 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4418)))) (-1667 (($ $ $) 28)) (-2470 (($ $ $) 106)) (-2997 (((-112) $ $) 17)) (-2971 (((-112) $ $) 18)) (-2936 (((-112) $ $) 6)) (-2984 (((-112) $ $) 16)) (-2958 (((-112) $ $) 19)) (-2458 (($ $ $) 105)) (-2414 (((-772) $) 40 (|has| $ (-6 -4418)))))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-4014 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-308)))) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-4287 (($ $) NIL)) (-2286 (((-112) $) NIL)) (-2376 (((-3 $ "failed") $ $) NIL)) (-2029 (((-421 (-1175 $)) (-1175 $)) NIL (|has| (-116 |#1|) (-911)))) (-3659 (($ $) NIL)) (-3597 (((-421 $) $) NIL)) (-3610 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) NIL (|has| (-116 |#1|) (-911)))) (-3696 (((-112) $ $) NIL)) (-2677 (((-567) $) NIL (|has| (-116 |#1|) (-821)))) (-3647 (($) NIL T CONST)) (-3765 (((-3 (-116 |#1|) "failed") $) NIL) (((-3 (-1179) "failed") $) NIL (|has| (-116 |#1|) (-1040 (-1179)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| (-116 |#1|) (-1040 (-567)))) (((-3 (-567) "failed") $) NIL (|has| (-116 |#1|) (-1040 (-567))))) (-2051 (((-116 |#1|) $) NIL) (((-1179) $) NIL (|has| (-116 |#1|) (-1040 (-1179)))) (((-410 (-567)) $) NIL (|has| (-116 |#1|) (-1040 (-567)))) (((-567) $) NIL (|has| (-116 |#1|) (-1040 (-567))))) (-3337 (($ $) NIL) (($ (-567) $) NIL)) (-2357 (($ $ $) NIL)) (-1423 (((-690 (-567)) (-690 $)) NIL (|has| (-116 |#1|) (-640 (-567)))) (((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (|has| (-116 |#1|) (-640 (-567)))) (((-2 (|:| -4208 (-690 (-116 |#1|))) (|:| |vec| (-1269 (-116 |#1|)))) (-690 $) (-1269 $)) NIL) (((-690 (-116 |#1|)) (-690 $)) NIL)) (-3588 (((-3 $ "failed") $) NIL)) (-1359 (($) NIL (|has| (-116 |#1|) (-548)))) (-2368 (($ $ $) NIL)) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) NIL)) (-3502 (((-112) $) NIL)) (-3137 (((-112) $) NIL (|has| (-116 |#1|) (-821)))) (-3193 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (|has| (-116 |#1|) (-888 (-567)))) (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (|has| (-116 |#1|) (-888 (-381))))) (-4346 (((-112) $) NIL)) (-1863 (($ $) NIL)) (-1447 (((-116 |#1|) $) NIL)) (-3067 (((-3 $ "failed") $) NIL (|has| (-116 |#1|) (-1154)))) (-3465 (((-112) $) NIL (|has| (-116 |#1|) (-821)))) (-1469 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1365 (($ $ $) NIL (|has| (-116 |#1|) (-851)))) (-3002 (($ $ $) NIL (|has| (-116 |#1|) (-851)))) (-3841 (($ (-1 (-116 |#1|) (-116 |#1|)) $) NIL)) (-2751 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2516 (((-1161) $) NIL)) (-2949 (($ $) NIL)) (-2694 (($) NIL (|has| (-116 |#1|) (-1154)) CONST)) (-3437 (((-1122) $) NIL)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-2785 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2554 (($ $) NIL (|has| (-116 |#1|) (-308)))) (-3969 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-548)))) (-3551 (((-421 (-1175 $)) (-1175 $)) NIL (|has| (-116 |#1|) (-911)))) (-2016 (((-421 (-1175 $)) (-1175 $)) NIL (|has| (-116 |#1|) (-911)))) (-2717 (((-421 $) $) NIL)) (-2905 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2400 (((-3 $ "failed") $ $) NIL)) (-2372 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2642 (($ $ (-645 (-116 |#1|)) (-645 (-116 |#1|))) NIL (|has| (-116 |#1|) (-310 (-116 |#1|)))) (($ $ (-116 |#1|) (-116 |#1|)) NIL (|has| (-116 |#1|) (-310 (-116 |#1|)))) (($ $ (-295 (-116 |#1|))) NIL (|has| (-116 |#1|) (-310 (-116 |#1|)))) (($ $ (-645 (-295 (-116 |#1|)))) NIL (|has| (-116 |#1|) (-310 (-116 |#1|)))) (($ $ (-645 (-1179)) (-645 (-116 |#1|))) NIL (|has| (-116 |#1|) (-517 (-1179) (-116 |#1|)))) (($ $ (-1179) (-116 |#1|)) NIL (|has| (-116 |#1|) (-517 (-1179) (-116 |#1|))))) (-2460 (((-772) $) NIL)) (-1801 (($ $ (-116 |#1|)) NIL (|has| (-116 |#1|) (-287 (-116 |#1|) (-116 |#1|))))) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) NIL)) (-1616 (($ $) NIL (|has| (-116 |#1|) (-233))) (($ $ (-772)) NIL (|has| (-116 |#1|) (-233))) (($ $ (-1179)) NIL (|has| (-116 |#1|) (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| (-116 |#1|) (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| (-116 |#1|) (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| (-116 |#1|) (-902 (-1179)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-772)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-1762 (($ $) NIL)) (-1462 (((-116 |#1|) $) NIL)) (-3902 (((-894 (-567)) $) NIL (|has| (-116 |#1|) (-615 (-894 (-567))))) (((-894 (-381)) $) NIL (|has| (-116 |#1|) (-615 (-894 (-381))))) (((-539) $) NIL (|has| (-116 |#1|) (-615 (-539)))) (((-381) $) NIL (|has| (-116 |#1|) (-1024))) (((-225) $) NIL (|has| (-116 |#1|) (-1024)))) (-1705 (((-174 (-410 (-567))) $) NIL)) (-2616 (((-3 (-1269 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| (-116 |#1|) (-911))))) (-4129 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ (-116 |#1|)) NIL) (($ (-1179)) NIL (|has| (-116 |#1|) (-1040 (-1179))))) (-2118 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-145)) (|has| (-116 |#1|) (-911))) (|has| (-116 |#1|) (-145))))) (-2746 (((-772)) NIL T CONST)) (-1689 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-548)))) (-3357 (((-112) $ $) NIL)) (-3731 (((-112) $ $) NIL)) (-3058 (((-410 (-567)) $ (-567)) NIL)) (-1547 (($ $) NIL (|has| (-116 |#1|) (-821)))) (-1733 (($) NIL T CONST)) (-1744 (($) NIL T CONST)) (-2647 (($ $) NIL (|has| (-116 |#1|) (-233))) (($ $ (-772)) NIL (|has| (-116 |#1|) (-233))) (($ $ (-1179)) NIL (|has| (-116 |#1|) (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| (-116 |#1|) (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| (-116 |#1|) (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| (-116 |#1|) (-902 (-1179)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-772)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-3004 (((-112) $ $) NIL (|has| (-116 |#1|) (-851)))) (-2980 (((-112) $ $) NIL (|has| (-116 |#1|) (-851)))) (-2946 (((-112) $ $) NIL)) (-2993 (((-112) $ $) NIL (|has| (-116 |#1|) (-851)))) (-2968 (((-112) $ $) NIL (|has| (-116 |#1|) (-851)))) (-3069 (($ $ $) NIL) (($ (-116 |#1|) (-116 |#1|)) NIL)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ (-116 |#1|) $) NIL) (($ $ (-116 |#1|)) NIL)))
+(((-117 |#1|) (-13 (-994 (-116 |#1|)) (-10 -8 (-15 -3058 ((-410 (-567)) $ (-567))) (-15 -1705 ((-174 (-410 (-567))) $)) (-15 -3337 ($ $)) (-15 -3337 ($ (-567) $)))) (-567)) (T -117))
+((-3058 (*1 *2 *1 *3) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-117 *4)) (-14 *4 *3) (-5 *3 (-567)))) (-1705 (*1 *2 *1) (-12 (-5 *2 (-174 (-410 (-567)))) (-5 *1 (-117 *3)) (-14 *3 (-567)))) (-3337 (*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-567)))) (-3337 (*1 *1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-117 *3)) (-14 *3 *2))))
+(-13 (-994 (-116 |#1|)) (-10 -8 (-15 -3058 ((-410 (-567)) $ (-567))) (-15 -1705 ((-174 (-410 (-567))) $)) (-15 -3337 ($ $)) (-15 -3337 ($ (-567) $))))
+((-4285 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 61) (($ $ "right" $) 63)) (-2070 (((-645 $) $) 31)) (-1520 (((-112) $ $) 36)) (-3237 (((-112) |#2| $) 40)) (-3793 (((-645 |#2|) $) 25)) (-1323 (((-112) $) 18)) (-1801 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-3771 (((-112) $) 57)) (-4129 (((-863) $) 47)) (-3469 (((-645 $) $) 32)) (-2946 (((-112) $ $) 38)) (-2423 (((-772) $) 50)))
+(((-118 |#1| |#2|) (-10 -8 (-15 -4129 ((-863) |#1|)) (-15 -4285 (|#1| |#1| "right" |#1|)) (-15 -4285 (|#1| |#1| "left" |#1|)) (-15 -1801 (|#1| |#1| "right")) (-15 -1801 (|#1| |#1| "left")) (-15 -4285 (|#2| |#1| "value" |#2|)) (-15 -1520 ((-112) |#1| |#1|)) (-15 -3793 ((-645 |#2|) |#1|)) (-15 -3771 ((-112) |#1|)) (-15 -1801 (|#2| |#1| "value")) (-15 -1323 ((-112) |#1|)) (-15 -2070 ((-645 |#1|) |#1|)) (-15 -3469 ((-645 |#1|) |#1|)) (-15 -2946 ((-112) |#1| |#1|)) (-15 -3237 ((-112) |#2| |#1|)) (-15 -2423 ((-772) |#1|))) (-119 |#2|) (-1219)) (T -118))
+NIL
+(-10 -8 (-15 -4129 ((-863) |#1|)) (-15 -4285 (|#1| |#1| "right" |#1|)) (-15 -4285 (|#1| |#1| "left" |#1|)) (-15 -1801 (|#1| |#1| "right")) (-15 -1801 (|#1| |#1| "left")) (-15 -4285 (|#2| |#1| "value" |#2|)) (-15 -1520 ((-112) |#1| |#1|)) (-15 -3793 ((-645 |#2|) |#1|)) (-15 -3771 ((-112) |#1|)) (-15 -1801 (|#2| |#1| "value")) (-15 -1323 ((-112) |#1|)) (-15 -2070 ((-645 |#1|) |#1|)) (-15 -3469 ((-645 |#1|) |#1|)) (-15 -2946 ((-112) |#1| |#1|)) (-15 -3237 ((-112) |#2| |#1|)) (-15 -2423 ((-772) |#1|)))
+((-2412 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-3812 ((|#1| $) 49)) (-1563 (((-112) $ (-772)) 8)) (-4392 ((|#1| $ |#1|) 40 (|has| $ (-6 -4423)))) (-3487 (($ $ $) 53 (|has| $ (-6 -4423)))) (-1485 (($ $ $) 55 (|has| $ (-6 -4423)))) (-4285 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4423))) (($ $ "left" $) 56 (|has| $ (-6 -4423))) (($ $ "right" $) 54 (|has| $ (-6 -4423)))) (-2831 (($ $ (-645 $)) 42 (|has| $ (-6 -4423)))) (-3647 (($) 7 T CONST)) (-2973 (($ $) 58)) (-2799 (((-645 |#1|) $) 31 (|has| $ (-6 -4422)))) (-2070 (((-645 $) $) 51)) (-1520 (((-112) $ $) 43 (|has| |#1| (-1102)))) (-4093 (((-112) $ (-772)) 9)) (-1942 (((-645 |#1|) $) 30 (|has| $ (-6 -4422)))) (-3237 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-3751 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#1| |#1|) $) 36)) (-1986 (((-112) $ (-772)) 10)) (-2961 (($ $) 60)) (-3793 (((-645 |#1|) $) 46)) (-1323 (((-112) $) 50)) (-2516 (((-1161) $) 22 (|has| |#1| (-1102)))) (-3437 (((-1122) $) 21 (|has| |#1| (-1102)))) (-4233 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3875 (((-112) $ $) 14)) (-3885 (((-112) $) 11)) (-2701 (($) 12)) (-1801 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-3162 (((-567) $ $) 45)) (-3771 (((-112) $) 47)) (-3447 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4422))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-4309 (($ $) 13)) (-4129 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-3469 (((-645 $) $) 52)) (-3854 (((-112) $ $) 44 (|has| |#1| (-1102)))) (-3357 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-3436 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4422)))) (-2946 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2423 (((-772) $) 6 (|has| $ (-6 -4422)))))
+(((-119 |#1|) (-140) (-1219)) (T -119))
+((-2961 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1219)))) (-1801 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1219)))) (-2973 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1219)))) (-1801 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1219)))) (-4285 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4423)) (-4 *1 (-119 *3)) (-4 *3 (-1219)))) (-1485 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4423)) (-4 *1 (-119 *2)) (-4 *2 (-1219)))) (-4285 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4423)) (-4 *1 (-119 *3)) (-4 *3 (-1219)))) (-3487 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4423)) (-4 *1 (-119 *2)) (-4 *2 (-1219)))))
+(-13 (-1012 |t#1|) (-10 -8 (-15 -2961 ($ $)) (-15 -1801 ($ $ "left")) (-15 -2973 ($ $)) (-15 -1801 ($ $ "right")) (IF (|has| $ (-6 -4423)) (PROGN (-15 -4285 ($ $ "left" $)) (-15 -1485 ($ $ $)) (-15 -4285 ($ $ "right" $)) (-15 -3487 ($ $ $))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2811 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-1012 |#1|) . T) ((-1102) |has| |#1| (-1102)) ((-1219) . T))
+((-2707 (((-112) |#1|) 29)) (-2581 (((-772) (-772)) 28) (((-772)) 27)) (-1575 (((-112) |#1| (-112)) 30) (((-112) |#1|) 31)))
+(((-120 |#1|) (-10 -7 (-15 -1575 ((-112) |#1|)) (-15 -1575 ((-112) |#1| (-112))) (-15 -2581 ((-772))) (-15 -2581 ((-772) (-772))) (-15 -2707 ((-112) |#1|))) (-1245 (-567))) (T -120))
+((-2707 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1245 (-567))))) (-2581 (*1 *2 *2) (-12 (-5 *2 (-772)) (-5 *1 (-120 *3)) (-4 *3 (-1245 (-567))))) (-2581 (*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-120 *3)) (-4 *3 (-1245 (-567))))) (-1575 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1245 (-567))))) (-1575 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1245 (-567))))))
+(-10 -7 (-15 -1575 ((-112) |#1|)) (-15 -1575 ((-112) |#1| (-112))) (-15 -2581 ((-772))) (-15 -2581 ((-772) (-772))) (-15 -2707 ((-112) |#1|)))
+((-2412 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3812 ((|#1| $) 18)) (-2004 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26)) (-1563 (((-112) $ (-772)) NIL)) (-4392 ((|#1| $ |#1|) NIL (|has| $ (-6 -4423)))) (-3487 (($ $ $) 21 (|has| $ (-6 -4423)))) (-1485 (($ $ $) 23 (|has| $ (-6 -4423)))) (-4285 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4423))) (($ $ "left" $) NIL (|has| $ (-6 -4423))) (($ $ "right" $) NIL (|has| $ (-6 -4423)))) (-2831 (($ $ (-645 $)) NIL (|has| $ (-6 -4423)))) (-3647 (($) NIL T CONST)) (-2973 (($ $) 20)) (-2799 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-2070 (((-645 $) $) NIL)) (-1520 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3412 (($ $ |#1| $) 27)) (-4093 (((-112) $ (-772)) NIL)) (-1942 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-3237 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3751 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#1| |#1|) $) NIL)) (-1986 (((-112) $ (-772)) NIL)) (-2961 (($ $) 22)) (-3793 (((-645 |#1|) $) NIL)) (-1323 (((-112) $) NIL)) (-2516 (((-1161) $) NIL (|has| |#1| (-1102)))) (-2355 (($ |#1| $) 28)) (-2646 (($ |#1| $) 15)) (-3437 (((-1122) $) NIL (|has| |#1| (-1102)))) (-4233 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3875 (((-112) $ $) NIL)) (-3885 (((-112) $) 17)) (-2701 (($) 11)) (-1801 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3162 (((-567) $ $) NIL)) (-3771 (((-112) $) NIL)) (-3447 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-4309 (($ $) NIL)) (-4129 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-3469 (((-645 $) $) NIL)) (-3854 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2863 (($ (-645 |#1|)) 16)) (-3357 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3436 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2423 (((-772) $) NIL (|has| $ (-6 -4422)))))
+(((-121 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4423) (-6 -4422) (-15 -2863 ($ (-645 |#1|))) (-15 -2646 ($ |#1| $)) (-15 -2355 ($ |#1| $)) (-15 -2004 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-851)) (T -121))
+((-2863 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-851)) (-5 *1 (-121 *3)))) (-2646 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-851)))) (-2355 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-851)))) (-2004 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) (-5 *1 (-121 *3)) (-4 *3 (-851)))))
+(-13 (-125 |#1|) (-10 -8 (-6 -4423) (-6 -4422) (-15 -2863 ($ (-645 |#1|))) (-15 -2646 ($ |#1| $)) (-15 -2355 ($ |#1| $)) (-15 -2004 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $))))
+((-2434 (($ $) 13)) (-1673 (($ $) 11)) (-2362 (($ $ $) 23)) (-2986 (($ $ $) 21)) (-2477 (($ $ $) 19)) (-2468 (($ $ $) 17)))
+(((-122 |#1|) (-10 -8 (-15 -2362 (|#1| |#1| |#1|)) (-15 -2986 (|#1| |#1| |#1|)) (-15 -1673 (|#1| |#1|)) (-15 -2434 (|#1| |#1|)) (-15 -2468 (|#1| |#1| |#1|)) (-15 -2477 (|#1| |#1| |#1|))) (-123)) (T -122))
+NIL
+(-10 -8 (-15 -2362 (|#1| |#1| |#1|)) (-15 -2986 (|#1| |#1| |#1|)) (-15 -1673 (|#1| |#1|)) (-15 -2434 (|#1| |#1|)) (-15 -2468 (|#1| |#1| |#1|)) (-15 -2477 (|#1| |#1| |#1|)))
+((-2412 (((-112) $ $) 7)) (-2434 (($ $) 104)) (-1709 (($ $ $) 26)) (-3843 (((-1274) $ (-567) (-567)) 67 (|has| $ (-6 -4423)))) (-3531 (((-112) $) 99 (|has| (-112) (-851))) (((-112) (-1 (-112) (-112) (-112)) $) 93)) (-2676 (($ $) 103 (-12 (|has| (-112) (-851)) (|has| $ (-6 -4423)))) (($ (-1 (-112) (-112) (-112)) $) 102 (|has| $ (-6 -4423)))) (-1311 (($ $) 98 (|has| (-112) (-851))) (($ (-1 (-112) (-112) (-112)) $) 92)) (-1563 (((-112) $ (-772)) 38)) (-4285 (((-112) $ (-1236 (-567)) (-112)) 89 (|has| $ (-6 -4423))) (((-112) $ (-567) (-112)) 55 (|has| $ (-6 -4423)))) (-3356 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4422)))) (-3647 (($) 39 T CONST)) (-1602 (($ $) 101 (|has| $ (-6 -4423)))) (-3592 (($ $) 91)) (-2453 (($ $) 69 (-12 (|has| (-112) (-1102)) (|has| $ (-6 -4422))))) (-3246 (($ (-1 (-112) (-112)) $) 73 (|has| $ (-6 -4422))) (($ (-112) $) 70 (-12 (|has| (-112) (-1102)) (|has| $ (-6 -4422))))) (-2494 (((-112) (-1 (-112) (-112) (-112)) $) 75 (|has| $ (-6 -4422))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 74 (|has| $ (-6 -4422))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 71 (-12 (|has| (-112) (-1102)) (|has| $ (-6 -4422))))) (-3760 (((-112) $ (-567) (-112)) 54 (|has| $ (-6 -4423)))) (-3703 (((-112) $ (-567)) 56)) (-2578 (((-567) (-112) $ (-567)) 96 (|has| (-112) (-1102))) (((-567) (-112) $) 95 (|has| (-112) (-1102))) (((-567) (-1 (-112) (-112)) $) 94)) (-2799 (((-645 (-112)) $) 46 (|has| $ (-6 -4422)))) (-1696 (($ $ $) 27)) (-1673 (($ $) 31)) (-2362 (($ $ $) 29)) (-2858 (($ (-772) (-112)) 78)) (-2986 (($ $ $) 30)) (-4093 (((-112) $ (-772)) 37)) (-3895 (((-567) $) 64 (|has| (-567) (-851)))) (-1365 (($ $ $) 14)) (-2473 (($ $ $) 97 (|has| (-112) (-851))) (($ (-1 (-112) (-112) (-112)) $ $) 90)) (-1942 (((-645 (-112)) $) 47 (|has| $ (-6 -4422)))) (-3237 (((-112) (-112) $) 49 (-12 (|has| (-112) (-1102)) (|has| $ (-6 -4422))))) (-3255 (((-567) $) 63 (|has| (-567) (-851)))) (-3002 (($ $ $) 15)) (-3751 (($ (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4423)))) (-3841 (($ (-1 (-112) (-112) (-112)) $ $) 83) (($ (-1 (-112) (-112)) $) 41)) (-1986 (((-112) $ (-772)) 36)) (-2516 (((-1161) $) 10)) (-2857 (($ $ $ (-567)) 88) (($ (-112) $ (-567)) 87)) (-4364 (((-645 (-567)) $) 61)) (-3188 (((-112) (-567) $) 60)) (-3437 (((-1122) $) 11)) (-2418 (((-112) $) 65 (|has| (-567) (-851)))) (-3196 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 76)) (-3823 (($ $ (-112)) 66 (|has| $ (-6 -4423)))) (-4233 (((-112) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-112)) (-645 (-112))) 53 (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1102)))) (($ $ (-112) (-112)) 52 (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1102)))) (($ $ (-295 (-112))) 51 (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1102)))) (($ $ (-645 (-295 (-112)))) 50 (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1102))))) (-3875 (((-112) $ $) 32)) (-4058 (((-112) (-112) $) 62 (-12 (|has| $ (-6 -4422)) (|has| (-112) (-1102))))) (-2190 (((-645 (-112)) $) 59)) (-3885 (((-112) $) 35)) (-2701 (($) 34)) (-1801 (($ $ (-1236 (-567))) 84) (((-112) $ (-567)) 58) (((-112) $ (-567) (-112)) 57)) (-1569 (($ $ (-1236 (-567))) 86) (($ $ (-567)) 85)) (-3447 (((-772) (-112) $) 48 (-12 (|has| (-112) (-1102)) (|has| $ (-6 -4422)))) (((-772) (-1 (-112) (-112)) $) 45 (|has| $ (-6 -4422)))) (-1656 (($ $ $ (-567)) 100 (|has| $ (-6 -4423)))) (-4309 (($ $) 33)) (-3902 (((-539) $) 68 (|has| (-112) (-615 (-539))))) (-4145 (($ (-645 (-112))) 77)) (-2276 (($ (-645 $)) 82) (($ $ $) 81) (($ (-112) $) 80) (($ $ (-112)) 79)) (-4129 (((-863) $) 12)) (-3357 (((-112) $ $) 9)) (-3436 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4422)))) (-1686 (($ $ $) 28)) (-2477 (($ $ $) 106)) (-3004 (((-112) $ $) 17)) (-2980 (((-112) $ $) 18)) (-2946 (((-112) $ $) 6)) (-2993 (((-112) $ $) 16)) (-2968 (((-112) $ $) 19)) (-2468 (($ $ $) 105)) (-2423 (((-772) $) 40 (|has| $ (-6 -4422)))))
(((-123) (-140)) (T -123))
-((-1657 (*1 *1 *1) (-4 *1 (-123))) (-3107 (*1 *1 *1 *1) (-4 *1 (-123))) (-4005 (*1 *1 *1 *1) (-4 *1 (-123))) (-1667 (*1 *1 *1 *1) (-4 *1 (-123))) (-1677 (*1 *1 *1 *1) (-4 *1 (-123))) (-1689 (*1 *1 *1 *1) (-4 *1 (-123))))
-(-13 (-851) (-662) (-19 (-112)) (-10 -8 (-15 -1657 ($ $)) (-15 -3107 ($ $ $)) (-15 -4005 ($ $ $)) (-15 -1667 ($ $ $)) (-15 -1677 ($ $ $)) (-15 -1689 ($ $ $))))
-(((-34) . T) ((-102) . T) ((-614 (-863)) . T) ((-151 #0=(-112)) . T) ((-615 (-539)) |has| (-112) (-615 (-539))) ((-287 #1=(-567) #0#) . T) ((-289 #1# #0#) . T) ((-310 #0#) -12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1102))) ((-375 #0#) . T) ((-492 #0#) . T) ((-605 #1# #0#) . T) ((-517 #0# #0#) -12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1102))) ((-652 #0#) . T) ((-662) . T) ((-19 #0#) . T) ((-851) . T) ((-1102) . T) ((-1218) . T))
-((-3731 (($ (-1 |#2| |#2|) $) 22)) (-4305 (($ $) 16)) (-2414 (((-772) $) 25)))
-(((-124 |#1| |#2|) (-10 -8 (-15 -3731 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2414 ((-772) |#1|)) (-15 -4305 (|#1| |#1|))) (-125 |#2|) (-1102)) (T -124))
-NIL
-(-10 -8 (-15 -3731 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2414 ((-772) |#1|)) (-15 -4305 (|#1| |#1|)))
-((-2403 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-3802 ((|#1| $) 49)) (-3445 (((-112) $ (-772)) 8)) (-2138 ((|#1| $ |#1|) 40 (|has| $ (-6 -4419)))) (-3909 (($ $ $) 53 (|has| $ (-6 -4419)))) (-4062 (($ $ $) 55 (|has| $ (-6 -4419)))) (-4284 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4419))) (($ $ "left" $) 56 (|has| $ (-6 -4419))) (($ $ "right" $) 54 (|has| $ (-6 -4419)))) (-1301 (($ $ (-645 $)) 42 (|has| $ (-6 -4419)))) (-2585 (($) 7 T CONST)) (-2963 (($ $) 58)) (-2777 (((-645 |#1|) $) 31 (|has| $ (-6 -4418)))) (-2182 (((-645 $) $) 51)) (-3512 (((-112) $ $) 43 (|has| |#1| (-1102)))) (-3403 (($ $ |#1| $) 61)) (-2077 (((-112) $ (-772)) 9)) (-2279 (((-645 |#1|) $) 30 (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-3731 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) 36)) (-2863 (((-112) $ (-772)) 10)) (-2950 (($ $) 60)) (-3773 (((-645 |#1|) $) 46)) (-2769 (((-112) $) 50)) (-1419 (((-1160) $) 22 (|has| |#1| (-1102)))) (-3430 (((-1122) $) 21 (|has| |#1| (-1102)))) (-3025 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) 14)) (-3572 (((-112) $) 11)) (-3498 (($) 12)) (-1787 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-2658 (((-567) $ $) 45)) (-3900 (((-112) $) 47)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4418))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-4305 (($ $) 13)) (-4132 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-1531 (((-645 $) $) 52)) (-3606 (((-112) $ $) 44 (|has| |#1| (-1102)))) (-1745 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2414 (((-772) $) 6 (|has| $ (-6 -4418)))))
+((-1673 (*1 *1 *1) (-4 *1 (-123))) (-2986 (*1 *1 *1 *1) (-4 *1 (-123))) (-2362 (*1 *1 *1 *1) (-4 *1 (-123))) (-1686 (*1 *1 *1 *1) (-4 *1 (-123))) (-1696 (*1 *1 *1 *1) (-4 *1 (-123))) (-1709 (*1 *1 *1 *1) (-4 *1 (-123))))
+(-13 (-851) (-662) (-19 (-112)) (-10 -8 (-15 -1673 ($ $)) (-15 -2986 ($ $ $)) (-15 -2362 ($ $ $)) (-15 -1686 ($ $ $)) (-15 -1696 ($ $ $)) (-15 -1709 ($ $ $))))
+(((-34) . T) ((-102) . T) ((-614 (-863)) . T) ((-151 #0=(-112)) . T) ((-615 (-539)) |has| (-112) (-615 (-539))) ((-287 #1=(-567) #0#) . T) ((-289 #1# #0#) . T) ((-310 #0#) -12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1102))) ((-375 #0#) . T) ((-492 #0#) . T) ((-605 #1# #0#) . T) ((-517 #0# #0#) -12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1102))) ((-652 #0#) . T) ((-662) . T) ((-19 #0#) . T) ((-851) . T) ((-1102) . T) ((-1219) . T))
+((-3751 (($ (-1 |#2| |#2|) $) 22)) (-4309 (($ $) 16)) (-2423 (((-772) $) 25)))
+(((-124 |#1| |#2|) (-10 -8 (-15 -3751 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2423 ((-772) |#1|)) (-15 -4309 (|#1| |#1|))) (-125 |#2|) (-1102)) (T -124))
+NIL
+(-10 -8 (-15 -3751 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2423 ((-772) |#1|)) (-15 -4309 (|#1| |#1|)))
+((-2412 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-3812 ((|#1| $) 49)) (-1563 (((-112) $ (-772)) 8)) (-4392 ((|#1| $ |#1|) 40 (|has| $ (-6 -4423)))) (-3487 (($ $ $) 53 (|has| $ (-6 -4423)))) (-1485 (($ $ $) 55 (|has| $ (-6 -4423)))) (-4285 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4423))) (($ $ "left" $) 56 (|has| $ (-6 -4423))) (($ $ "right" $) 54 (|has| $ (-6 -4423)))) (-2831 (($ $ (-645 $)) 42 (|has| $ (-6 -4423)))) (-3647 (($) 7 T CONST)) (-2973 (($ $) 58)) (-2799 (((-645 |#1|) $) 31 (|has| $ (-6 -4422)))) (-2070 (((-645 $) $) 51)) (-1520 (((-112) $ $) 43 (|has| |#1| (-1102)))) (-3412 (($ $ |#1| $) 61)) (-4093 (((-112) $ (-772)) 9)) (-1942 (((-645 |#1|) $) 30 (|has| $ (-6 -4422)))) (-3237 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-3751 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#1| |#1|) $) 36)) (-1986 (((-112) $ (-772)) 10)) (-2961 (($ $) 60)) (-3793 (((-645 |#1|) $) 46)) (-1323 (((-112) $) 50)) (-2516 (((-1161) $) 22 (|has| |#1| (-1102)))) (-3437 (((-1122) $) 21 (|has| |#1| (-1102)))) (-4233 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3875 (((-112) $ $) 14)) (-3885 (((-112) $) 11)) (-2701 (($) 12)) (-1801 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-3162 (((-567) $ $) 45)) (-3771 (((-112) $) 47)) (-3447 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4422))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-4309 (($ $) 13)) (-4129 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-3469 (((-645 $) $) 52)) (-3854 (((-112) $ $) 44 (|has| |#1| (-1102)))) (-3357 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-3436 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4422)))) (-2946 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2423 (((-772) $) 6 (|has| $ (-6 -4422)))))
(((-125 |#1|) (-140) (-1102)) (T -125))
-((-3403 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1102)))))
-(-13 (-119 |t#1|) (-10 -8 (-6 -4419) (-6 -4418) (-15 -3403 ($ $ |t#1| $))))
-(((-34) . T) ((-102) |has| |#1| (-1102)) ((-119 |#1|) . T) ((-614 (-863)) -2800 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-1012 |#1|) . T) ((-1102) |has| |#1| (-1102)) ((-1218) . T))
-((-2403 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3802 ((|#1| $) 18)) (-3445 (((-112) $ (-772)) NIL)) (-2138 ((|#1| $ |#1|) 22 (|has| $ (-6 -4419)))) (-3909 (($ $ $) 23 (|has| $ (-6 -4419)))) (-4062 (($ $ $) 21 (|has| $ (-6 -4419)))) (-4284 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4419))) (($ $ "left" $) NIL (|has| $ (-6 -4419))) (($ $ "right" $) NIL (|has| $ (-6 -4419)))) (-1301 (($ $ (-645 $)) NIL (|has| $ (-6 -4419)))) (-2585 (($) NIL T CONST)) (-2963 (($ $) 24)) (-2777 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-2182 (((-645 $) $) NIL)) (-3512 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3403 (($ $ |#1| $) NIL)) (-2077 (((-112) $ (-772)) NIL)) (-2279 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-3731 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-2950 (($ $) NIL)) (-3773 (((-645 |#1|) $) NIL)) (-2769 (((-112) $) NIL)) (-1419 (((-1160) $) NIL (|has| |#1| (-1102)))) (-2531 (($ |#1| $) 15)) (-3430 (((-1122) $) NIL (|has| |#1| (-1102)))) (-3025 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) NIL)) (-3572 (((-112) $) 17)) (-3498 (($) 11)) (-1787 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2658 (((-567) $ $) NIL)) (-3900 (((-112) $) NIL)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-4305 (($ $) 20)) (-4132 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-1531 (((-645 $) $) NIL)) (-3606 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2469 (($ (-645 |#1|)) 16)) (-1745 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2414 (((-772) $) NIL (|has| $ (-6 -4418)))))
-(((-126 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4419) (-15 -2469 ($ (-645 |#1|))) (-15 -2531 ($ |#1| $)))) (-851)) (T -126))
-((-2469 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-851)) (-5 *1 (-126 *3)))) (-2531 (*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-851)))))
-(-13 (-125 |#1|) (-10 -8 (-6 -4419) (-15 -2469 ($ (-645 |#1|))) (-15 -2531 ($ |#1| $))))
-((-2403 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3802 ((|#1| $) 30)) (-3445 (((-112) $ (-772)) NIL)) (-2138 ((|#1| $ |#1|) 32 (|has| $ (-6 -4419)))) (-3909 (($ $ $) 36 (|has| $ (-6 -4419)))) (-4062 (($ $ $) 34 (|has| $ (-6 -4419)))) (-4284 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4419))) (($ $ "left" $) NIL (|has| $ (-6 -4419))) (($ $ "right" $) NIL (|has| $ (-6 -4419)))) (-1301 (($ $ (-645 $)) NIL (|has| $ (-6 -4419)))) (-2585 (($) NIL T CONST)) (-2963 (($ $) 23)) (-2777 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-2182 (((-645 $) $) NIL)) (-3512 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3403 (($ $ |#1| $) 16)) (-2077 (((-112) $ (-772)) NIL)) (-2279 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-3731 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-2950 (($ $) 22)) (-3773 (((-645 |#1|) $) NIL)) (-2769 (((-112) $) 25)) (-1419 (((-1160) $) NIL (|has| |#1| (-1102)))) (-3430 (((-1122) $) NIL (|has| |#1| (-1102)))) (-3025 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) NIL)) (-3572 (((-112) $) 20)) (-3498 (($) 11)) (-1787 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2658 (((-567) $ $) NIL)) (-3900 (((-112) $) NIL)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-4305 (($ $) NIL)) (-4132 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-1531 (((-645 $) $) NIL)) (-3606 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2501 (($ |#1|) 18) (($ $ |#1| $) 17)) (-1745 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 10 (|has| |#1| (-1102)))) (-2414 (((-772) $) NIL (|has| $ (-6 -4418)))))
-(((-127 |#1|) (-13 (-125 |#1|) (-10 -8 (-15 -2501 ($ |#1|)) (-15 -2501 ($ $ |#1| $)))) (-1102)) (T -127))
-((-2501 (*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1102)))) (-2501 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1102)))))
-(-13 (-125 |#1|) (-10 -8 (-15 -2501 ($ |#1|)) (-15 -2501 ($ $ |#1| $))))
-((-2403 (((-112) $ $) NIL (|has| (-129) (-1102)))) (-1783 (((-1273) $ (-567) (-567)) NIL (|has| $ (-6 -4419)))) (-2496 (((-112) (-1 (-112) (-129) (-129)) $) NIL) (((-112) $) NIL (|has| (-129) (-851)))) (-1394 (($ (-1 (-112) (-129) (-129)) $) NIL (|has| $ (-6 -4419))) (($ $) NIL (-12 (|has| $ (-6 -4419)) (|has| (-129) (-851))))) (-4396 (($ (-1 (-112) (-129) (-129)) $) NIL) (($ $) NIL (|has| (-129) (-851)))) (-3445 (((-112) $ (-772)) NIL)) (-4284 (((-129) $ (-567) (-129)) 26 (|has| $ (-6 -4419))) (((-129) $ (-1235 (-567)) (-129)) NIL (|has| $ (-6 -4419)))) (-2977 (((-772) $ (-772)) 34)) (-3350 (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4418)))) (-2585 (($) NIL T CONST)) (-1764 (($ $) NIL (|has| $ (-6 -4419)))) (-3584 (($ $) NIL)) (-2444 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-129) (-1102))))) (-3238 (($ (-129) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-129) (-1102)))) (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4418)))) (-2477 (((-129) (-1 (-129) (-129) (-129)) $ (-129) (-129)) NIL (-12 (|has| $ (-6 -4418)) (|has| (-129) (-1102)))) (((-129) (-1 (-129) (-129) (-129)) $ (-129)) NIL (|has| $ (-6 -4418))) (((-129) (-1 (-129) (-129) (-129)) $) NIL (|has| $ (-6 -4418)))) (-3741 (((-129) $ (-567) (-129)) 25 (|has| $ (-6 -4419)))) (-3680 (((-129) $ (-567)) 20)) (-2569 (((-567) (-1 (-112) (-129)) $) NIL) (((-567) (-129) $) NIL (|has| (-129) (-1102))) (((-567) (-129) $ (-567)) NIL (|has| (-129) (-1102)))) (-2777 (((-645 (-129)) $) NIL (|has| $ (-6 -4418)))) (-2846 (($ (-772) (-129)) 14)) (-2077 (((-112) $ (-772)) NIL)) (-4069 (((-567) $) 27 (|has| (-567) (-851)))) (-1354 (($ $ $) NIL (|has| (-129) (-851)))) (-4135 (($ (-1 (-112) (-129) (-129)) $ $) NIL) (($ $ $) NIL (|has| (-129) (-851)))) (-2279 (((-645 (-129)) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-129) (-1102))))) (-2266 (((-567) $) 30 (|has| (-567) (-851)))) (-2981 (($ $ $) NIL (|has| (-129) (-851)))) (-3731 (($ (-1 (-129) (-129)) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 (-129) (-129)) $) NIL) (($ (-1 (-129) (-129) (-129)) $ $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL (|has| (-129) (-1102)))) (-2845 (($ (-129) $ (-567)) NIL) (($ $ $ (-567)) NIL)) (-1789 (((-645 (-567)) $) NIL)) (-2996 (((-112) (-567) $) NIL)) (-3430 (((-1122) $) NIL (|has| (-129) (-1102)))) (-2409 (((-129) $) NIL (|has| (-567) (-851)))) (-4128 (((-3 (-129) "failed") (-1 (-112) (-129)) $) NIL)) (-3986 (($ $ (-129)) NIL (|has| $ (-6 -4419)))) (-3025 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 (-129)))) NIL (-12 (|has| (-129) (-310 (-129))) (|has| (-129) (-1102)))) (($ $ (-295 (-129))) NIL (-12 (|has| (-129) (-310 (-129))) (|has| (-129) (-1102)))) (($ $ (-129) (-129)) NIL (-12 (|has| (-129) (-310 (-129))) (|has| (-129) (-1102)))) (($ $ (-645 (-129)) (-645 (-129))) NIL (-12 (|has| (-129) (-310 (-129))) (|has| (-129) (-1102))))) (-3092 (((-112) $ $) NIL)) (-1794 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-129) (-1102))))) (-2339 (((-645 (-129)) $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) 12)) (-1787 (((-129) $ (-567) (-129)) NIL) (((-129) $ (-567)) 23) (($ $ (-1235 (-567))) NIL)) (-1560 (($ $ (-567)) NIL) (($ $ (-1235 (-567))) NIL)) (-3439 (((-772) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4418))) (((-772) (-129) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-129) (-1102))))) (-1395 (($ $ $ (-567)) NIL (|has| $ (-6 -4419)))) (-4305 (($ $) NIL)) (-3893 (((-539) $) NIL (|has| (-129) (-615 (-539))))) (-4147 (($ (-645 (-129))) 47)) (-2269 (($ $ (-129)) NIL) (($ (-129) $) NIL) (($ $ $) 48) (($ (-645 $)) NIL)) (-4132 (((-960 (-129)) $) 35) (((-1160) $) 44) (((-863) $) NIL (|has| (-129) (-614 (-863))))) (-2463 (((-772) $) 18)) (-3219 (($ (-772)) 8)) (-1745 (((-112) $ $) NIL (|has| (-129) (-1102)))) (-1853 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4418)))) (-2997 (((-112) $ $) NIL (|has| (-129) (-851)))) (-2971 (((-112) $ $) NIL (|has| (-129) (-851)))) (-2936 (((-112) $ $) 32 (|has| (-129) (-1102)))) (-2984 (((-112) $ $) NIL (|has| (-129) (-851)))) (-2958 (((-112) $ $) NIL (|has| (-129) (-851)))) (-2414 (((-772) $) 15 (|has| $ (-6 -4418)))))
-(((-128) (-13 (-19 (-129)) (-614 (-960 (-129))) (-614 (-1160)) (-10 -8 (-15 -3219 ($ (-772))) (-15 -2463 ((-772) $)) (-15 -2977 ((-772) $ (-772))) (-6 -4418)))) (T -128))
-((-3219 (*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-128)))) (-2463 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-128)))) (-2977 (*1 *2 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-128)))))
-(-13 (-19 (-129)) (-614 (-960 (-129))) (-614 (-1160)) (-10 -8 (-15 -3219 ($ (-772))) (-15 -2463 ((-772) $)) (-15 -2977 ((-772) $ (-772))) (-6 -4418)))
-((-2403 (((-112) $ $) NIL)) (-2375 (((-772)) 27)) (-2585 (($) 12 T CONST)) (-1348 (($) 36)) (-1354 (($ $ $) NIL) (($) 25 T CONST)) (-2981 (($ $ $) NIL) (($) 26 T CONST)) (-4249 (((-923) $) 34)) (-1419 (((-1160) $) NIL)) (-3768 (($ (-923)) 32)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL) (($ (-144)) 16) (((-144) $) 18)) (-2594 (($ (-772)) 8)) (-1729 (($ $ $) 38)) (-1717 (($ $ $) 37)) (-1745 (((-112) $ $) NIL)) (-2997 (((-112) $ $) 23)) (-2971 (((-112) $ $) 21)) (-2936 (((-112) $ $) 19)) (-2984 (((-112) $ $) 22)) (-2958 (((-112) $ $) 20)))
-(((-129) (-13 (-845) (-493 (-144)) (-10 -8 (-15 -2594 ($ (-772))) (-15 -1717 ($ $ $)) (-15 -1729 ($ $ $)) (-15 -2585 ($) -3286)))) (T -129))
-((-2594 (*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-129)))) (-1717 (*1 *1 *1 *1) (-5 *1 (-129))) (-1729 (*1 *1 *1 *1) (-5 *1 (-129))) (-2585 (*1 *1) (-5 *1 (-129))))
-(-13 (-845) (-493 (-144)) (-10 -8 (-15 -2594 ($ (-772))) (-15 -1717 ($ $ $)) (-15 -1729 ($ $ $)) (-15 -2585 ($) -3286)))
+((-3412 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1102)))))
+(-13 (-119 |t#1|) (-10 -8 (-6 -4423) (-6 -4422) (-15 -3412 ($ $ |t#1| $))))
+(((-34) . T) ((-102) |has| |#1| (-1102)) ((-119 |#1|) . T) ((-614 (-863)) -2811 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-1012 |#1|) . T) ((-1102) |has| |#1| (-1102)) ((-1219) . T))
+((-2412 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3812 ((|#1| $) 18)) (-1563 (((-112) $ (-772)) NIL)) (-4392 ((|#1| $ |#1|) 22 (|has| $ (-6 -4423)))) (-3487 (($ $ $) 23 (|has| $ (-6 -4423)))) (-1485 (($ $ $) 21 (|has| $ (-6 -4423)))) (-4285 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4423))) (($ $ "left" $) NIL (|has| $ (-6 -4423))) (($ $ "right" $) NIL (|has| $ (-6 -4423)))) (-2831 (($ $ (-645 $)) NIL (|has| $ (-6 -4423)))) (-3647 (($) NIL T CONST)) (-2973 (($ $) 24)) (-2799 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-2070 (((-645 $) $) NIL)) (-1520 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3412 (($ $ |#1| $) NIL)) (-4093 (((-112) $ (-772)) NIL)) (-1942 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-3237 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3751 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#1| |#1|) $) NIL)) (-1986 (((-112) $ (-772)) NIL)) (-2961 (($ $) NIL)) (-3793 (((-645 |#1|) $) NIL)) (-1323 (((-112) $) NIL)) (-2516 (((-1161) $) NIL (|has| |#1| (-1102)))) (-2646 (($ |#1| $) 15)) (-3437 (((-1122) $) NIL (|has| |#1| (-1102)))) (-4233 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3875 (((-112) $ $) NIL)) (-3885 (((-112) $) 17)) (-2701 (($) 11)) (-1801 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3162 (((-567) $ $) NIL)) (-3771 (((-112) $) NIL)) (-3447 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-4309 (($ $) 20)) (-4129 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-3469 (((-645 $) $) NIL)) (-3854 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3429 (($ (-645 |#1|)) 16)) (-3357 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3436 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2423 (((-772) $) NIL (|has| $ (-6 -4422)))))
+(((-126 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4423) (-15 -3429 ($ (-645 |#1|))) (-15 -2646 ($ |#1| $)))) (-851)) (T -126))
+((-3429 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-851)) (-5 *1 (-126 *3)))) (-2646 (*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-851)))))
+(-13 (-125 |#1|) (-10 -8 (-6 -4423) (-15 -3429 ($ (-645 |#1|))) (-15 -2646 ($ |#1| $))))
+((-2412 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3812 ((|#1| $) 30)) (-1563 (((-112) $ (-772)) NIL)) (-4392 ((|#1| $ |#1|) 32 (|has| $ (-6 -4423)))) (-3487 (($ $ $) 36 (|has| $ (-6 -4423)))) (-1485 (($ $ $) 34 (|has| $ (-6 -4423)))) (-4285 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4423))) (($ $ "left" $) NIL (|has| $ (-6 -4423))) (($ $ "right" $) NIL (|has| $ (-6 -4423)))) (-2831 (($ $ (-645 $)) NIL (|has| $ (-6 -4423)))) (-3647 (($) NIL T CONST)) (-2973 (($ $) 23)) (-2799 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-2070 (((-645 $) $) NIL)) (-1520 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3412 (($ $ |#1| $) 16)) (-4093 (((-112) $ (-772)) NIL)) (-1942 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-3237 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3751 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#1| |#1|) $) NIL)) (-1986 (((-112) $ (-772)) NIL)) (-2961 (($ $) 22)) (-3793 (((-645 |#1|) $) NIL)) (-1323 (((-112) $) 25)) (-2516 (((-1161) $) NIL (|has| |#1| (-1102)))) (-3437 (((-1122) $) NIL (|has| |#1| (-1102)))) (-4233 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3875 (((-112) $ $) NIL)) (-3885 (((-112) $) 20)) (-2701 (($) 11)) (-1801 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3162 (((-567) $ $) NIL)) (-3771 (((-112) $) NIL)) (-3447 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-4309 (($ $) NIL)) (-4129 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-3469 (((-645 $) $) NIL)) (-3854 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1667 (($ |#1|) 18) (($ $ |#1| $) 17)) (-3357 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3436 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2946 (((-112) $ $) 10 (|has| |#1| (-1102)))) (-2423 (((-772) $) NIL (|has| $ (-6 -4422)))))
+(((-127 |#1|) (-13 (-125 |#1|) (-10 -8 (-15 -1667 ($ |#1|)) (-15 -1667 ($ $ |#1| $)))) (-1102)) (T -127))
+((-1667 (*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1102)))) (-1667 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1102)))))
+(-13 (-125 |#1|) (-10 -8 (-15 -1667 ($ |#1|)) (-15 -1667 ($ $ |#1| $))))
+((-2412 (((-112) $ $) NIL (|has| (-129) (-1102)))) (-3843 (((-1274) $ (-567) (-567)) NIL (|has| $ (-6 -4423)))) (-3531 (((-112) (-1 (-112) (-129) (-129)) $) NIL) (((-112) $) NIL (|has| (-129) (-851)))) (-2676 (($ (-1 (-112) (-129) (-129)) $) NIL (|has| $ (-6 -4423))) (($ $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-129) (-851))))) (-1311 (($ (-1 (-112) (-129) (-129)) $) NIL) (($ $) NIL (|has| (-129) (-851)))) (-1563 (((-112) $ (-772)) NIL)) (-4285 (((-129) $ (-567) (-129)) 26 (|has| $ (-6 -4423))) (((-129) $ (-1236 (-567)) (-129)) NIL (|has| $ (-6 -4423)))) (-2103 (((-772) $ (-772)) 34)) (-3356 (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4422)))) (-3647 (($) NIL T CONST)) (-1602 (($ $) NIL (|has| $ (-6 -4423)))) (-3592 (($ $) NIL)) (-2453 (($ $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-129) (-1102))))) (-3246 (($ (-129) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-129) (-1102)))) (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4422)))) (-2494 (((-129) (-1 (-129) (-129) (-129)) $ (-129) (-129)) NIL (-12 (|has| $ (-6 -4422)) (|has| (-129) (-1102)))) (((-129) (-1 (-129) (-129) (-129)) $ (-129)) NIL (|has| $ (-6 -4422))) (((-129) (-1 (-129) (-129) (-129)) $) NIL (|has| $ (-6 -4422)))) (-3760 (((-129) $ (-567) (-129)) 25 (|has| $ (-6 -4423)))) (-3703 (((-129) $ (-567)) 20)) (-2578 (((-567) (-1 (-112) (-129)) $) NIL) (((-567) (-129) $) NIL (|has| (-129) (-1102))) (((-567) (-129) $ (-567)) NIL (|has| (-129) (-1102)))) (-2799 (((-645 (-129)) $) NIL (|has| $ (-6 -4422)))) (-2858 (($ (-772) (-129)) 14)) (-4093 (((-112) $ (-772)) NIL)) (-3895 (((-567) $) 27 (|has| (-567) (-851)))) (-1365 (($ $ $) NIL (|has| (-129) (-851)))) (-2473 (($ (-1 (-112) (-129) (-129)) $ $) NIL) (($ $ $) NIL (|has| (-129) (-851)))) (-1942 (((-645 (-129)) $) NIL (|has| $ (-6 -4422)))) (-3237 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-129) (-1102))))) (-3255 (((-567) $) 30 (|has| (-567) (-851)))) (-3002 (($ $ $) NIL (|has| (-129) (-851)))) (-3751 (($ (-1 (-129) (-129)) $) NIL (|has| $ (-6 -4423)))) (-3841 (($ (-1 (-129) (-129)) $) NIL) (($ (-1 (-129) (-129) (-129)) $ $) NIL)) (-1986 (((-112) $ (-772)) NIL)) (-2516 (((-1161) $) NIL (|has| (-129) (-1102)))) (-2857 (($ (-129) $ (-567)) NIL) (($ $ $ (-567)) NIL)) (-4364 (((-645 (-567)) $) NIL)) (-3188 (((-112) (-567) $) NIL)) (-3437 (((-1122) $) NIL (|has| (-129) (-1102)))) (-2418 (((-129) $) NIL (|has| (-567) (-851)))) (-3196 (((-3 (-129) "failed") (-1 (-112) (-129)) $) NIL)) (-3823 (($ $ (-129)) NIL (|has| $ (-6 -4423)))) (-4233 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 (-129)))) NIL (-12 (|has| (-129) (-310 (-129))) (|has| (-129) (-1102)))) (($ $ (-295 (-129))) NIL (-12 (|has| (-129) (-310 (-129))) (|has| (-129) (-1102)))) (($ $ (-129) (-129)) NIL (-12 (|has| (-129) (-310 (-129))) (|has| (-129) (-1102)))) (($ $ (-645 (-129)) (-645 (-129))) NIL (-12 (|has| (-129) (-310 (-129))) (|has| (-129) (-1102))))) (-3875 (((-112) $ $) NIL)) (-4058 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-129) (-1102))))) (-2190 (((-645 (-129)) $) NIL)) (-3885 (((-112) $) NIL)) (-2701 (($) 12)) (-1801 (((-129) $ (-567) (-129)) NIL) (((-129) $ (-567)) 23) (($ $ (-1236 (-567))) NIL)) (-1569 (($ $ (-567)) NIL) (($ $ (-1236 (-567))) NIL)) (-3447 (((-772) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4422))) (((-772) (-129) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-129) (-1102))))) (-1656 (($ $ $ (-567)) NIL (|has| $ (-6 -4423)))) (-4309 (($ $) NIL)) (-3902 (((-539) $) NIL (|has| (-129) (-615 (-539))))) (-4145 (($ (-645 (-129))) 47)) (-2276 (($ $ (-129)) NIL) (($ (-129) $) NIL) (($ $ $) 48) (($ (-645 $)) NIL)) (-4129 (((-960 (-129)) $) 35) (((-1161) $) 44) (((-863) $) NIL (|has| (-129) (-614 (-863))))) (-4116 (((-772) $) 18)) (-1592 (($ (-772)) 8)) (-3357 (((-112) $ $) NIL (|has| (-129) (-1102)))) (-3436 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4422)))) (-3004 (((-112) $ $) NIL (|has| (-129) (-851)))) (-2980 (((-112) $ $) NIL (|has| (-129) (-851)))) (-2946 (((-112) $ $) 32 (|has| (-129) (-1102)))) (-2993 (((-112) $ $) NIL (|has| (-129) (-851)))) (-2968 (((-112) $ $) NIL (|has| (-129) (-851)))) (-2423 (((-772) $) 15 (|has| $ (-6 -4422)))))
+(((-128) (-13 (-19 (-129)) (-614 (-960 (-129))) (-614 (-1161)) (-10 -8 (-15 -1592 ($ (-772))) (-15 -4116 ((-772) $)) (-15 -2103 ((-772) $ (-772))) (-6 -4422)))) (T -128))
+((-1592 (*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-128)))) (-4116 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-128)))) (-2103 (*1 *2 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-128)))))
+(-13 (-19 (-129)) (-614 (-960 (-129))) (-614 (-1161)) (-10 -8 (-15 -1592 ($ (-772))) (-15 -4116 ((-772) $)) (-15 -2103 ((-772) $ (-772))) (-6 -4422)))
+((-2412 (((-112) $ $) NIL)) (-2384 (((-772)) 27)) (-3647 (($) 12 T CONST)) (-1359 (($) 36)) (-1365 (($ $ $) NIL) (($) 25 T CONST)) (-3002 (($ $ $) NIL) (($) 26 T CONST)) (-3474 (((-923) $) 34)) (-2516 (((-1161) $) NIL)) (-3779 (($ (-923)) 32)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) NIL) (($ (-144)) 16) (((-144) $) 18)) (-2615 (($ (-772)) 8)) (-1746 (($ $ $) 38)) (-1734 (($ $ $) 37)) (-3357 (((-112) $ $) NIL)) (-3004 (((-112) $ $) 23)) (-2980 (((-112) $ $) 21)) (-2946 (((-112) $ $) 19)) (-2993 (((-112) $ $) 22)) (-2968 (((-112) $ $) 20)))
+(((-129) (-13 (-845) (-493 (-144)) (-10 -8 (-15 -2615 ($ (-772))) (-15 -1734 ($ $ $)) (-15 -1746 ($ $ $)) (-15 -3647 ($) -3304)))) (T -129))
+((-2615 (*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-129)))) (-1734 (*1 *1 *1 *1) (-5 *1 (-129))) (-1746 (*1 *1 *1 *1) (-5 *1 (-129))) (-3647 (*1 *1) (-5 *1 (-129))))
+(-13 (-845) (-493 (-144)) (-10 -8 (-15 -2615 ($ (-772))) (-15 -1734 ($ $ $)) (-15 -1746 ($ $ $)) (-15 -3647 ($) -3304)))
((|NonNegativeInteger|) (< |#1| 256))
-((-2403 (((-112) $ $) NIL)) (-3027 (($) 6 T CONST)) (-3229 (($) 7 T CONST)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 14)) (-4011 (($) 8 T CONST)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 10)))
-(((-130) (-13 (-1102) (-10 -8 (-15 -3229 ($) -3286) (-15 -4011 ($) -3286) (-15 -3027 ($) -3286)))) (T -130))
-((-3229 (*1 *1) (-5 *1 (-130))) (-4011 (*1 *1) (-5 *1 (-130))) (-3027 (*1 *1) (-5 *1 (-130))))
-(-13 (-1102) (-10 -8 (-15 -3229 ($) -3286) (-15 -4011 ($) -3286) (-15 -3027 ($) -3286)))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-1716 (($) 19 T CONST)) (-2936 (((-112) $ $) 6)) (-3033 (($ $ $) 15)) (* (($ (-923) $) 14) (($ (-772) $) 16)))
+((-2412 (((-112) $ $) NIL)) (-1307 (($) 6 T CONST)) (-4325 (($) 7 T CONST)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) 14)) (-1890 (($) 8 T CONST)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) 10)))
+(((-130) (-13 (-1102) (-10 -8 (-15 -4325 ($) -3304) (-15 -1890 ($) -3304) (-15 -1307 ($) -3304)))) (T -130))
+((-4325 (*1 *1) (-5 *1 (-130))) (-1890 (*1 *1) (-5 *1 (-130))) (-1307 (*1 *1) (-5 *1 (-130))))
+(-13 (-1102) (-10 -8 (-15 -4325 ($) -3304) (-15 -1890 ($) -3304) (-15 -1307 ($) -3304)))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-2376 (((-3 $ "failed") $ $) 20)) (-3647 (($) 18 T CONST)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-4129 (((-863) $) 12)) (-3357 (((-112) $ $) 9)) (-1733 (($) 19 T CONST)) (-2946 (((-112) $ $) 6)) (-3041 (($ $ $) 15)) (* (($ (-923) $) 14) (($ (-772) $) 16)))
(((-131) (-140)) (T -131))
-((-3472 (*1 *1 *1 *1) (|partial| -4 *1 (-131))))
-(-13 (-23) (-10 -8 (-15 -3472 ((-3 $ "failed") $ $))))
+((-2376 (*1 *1 *1 *1) (|partial| -4 *1 (-131))))
+(-13 (-23) (-10 -8 (-15 -2376 ((-3 $ "failed") $ $))))
(((-23) . T) ((-25) . T) ((-102) . T) ((-614 (-863)) . T) ((-1102) . T))
-((-2403 (((-112) $ $) 7)) (-1526 (((-1273) $ (-772)) 14)) (-2569 (((-772) $) 15)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-2936 (((-112) $ $) 6)))
+((-2412 (((-112) $ $) 7)) (-4160 (((-1274) $ (-772)) 14)) (-2578 (((-772) $) 15)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-4129 (((-863) $) 12)) (-3357 (((-112) $ $) 9)) (-2946 (((-112) $ $) 6)))
(((-132) (-140)) (T -132))
-((-2569 (*1 *2 *1) (-12 (-4 *1 (-132)) (-5 *2 (-772)))) (-1526 (*1 *2 *1 *3) (-12 (-4 *1 (-132)) (-5 *3 (-772)) (-5 *2 (-1273)))))
-(-13 (-1102) (-10 -8 (-15 -2569 ((-772) $)) (-15 -1526 ((-1273) $ (-772)))))
+((-2578 (*1 *2 *1) (-12 (-4 *1 (-132)) (-5 *2 (-772)))) (-4160 (*1 *2 *1 *3) (-12 (-4 *1 (-132)) (-5 *3 (-772)) (-5 *2 (-1274)))))
+(-13 (-1102) (-10 -8 (-15 -2578 ((-772) $)) (-15 -4160 ((-1274) $ (-772)))))
(((-102) . T) ((-614 (-863)) . T) ((-1102) . T))
-((-2403 (((-112) $ $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 16) (($ (-1183)) NIL) (((-1183) $) NIL)) (-2006 (((-645 (-1137)) $) 10)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)))
-(((-133) (-13 (-1085) (-10 -8 (-15 -2006 ((-645 (-1137)) $))))) (T -133))
-((-2006 (*1 *2 *1) (-12 (-5 *2 (-645 (-1137))) (-5 *1 (-133)))))
-(-13 (-1085) (-10 -8 (-15 -2006 ((-645 (-1137)) $))))
-((-2403 (((-112) $ $) 49)) (-2460 (((-112) $) NIL)) (-2585 (($) NIL T CONST)) (-3753 (((-3 (-772) "failed") $) 58)) (-2038 (((-772) $) 56)) (-2109 (((-3 $ "failed") $) NIL)) (-1433 (((-112) $) NIL)) (-1354 (($ $ $) NIL)) (-2981 (($ $ $) 37)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4034 (((-112)) 59)) (-4161 (((-112) (-112)) 61)) (-1314 (((-112) $) 30)) (-2758 (((-112) $) 55)) (-4132 (((-863) $) 28) (($ (-772)) 20)) (-1745 (((-112) $ $) NIL)) (-1716 (($) 18 T CONST)) (-1728 (($) 19 T CONST)) (-2732 (($ (-772)) 21)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) 40)) (-2936 (((-112) $ $) 32)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) 35)) (-3045 (((-3 $ "failed") $ $) 42)) (-3033 (($ $ $) 38)) (** (($ $ (-772)) NIL) (($ $ (-923)) NIL) (($ $ $) 54)) (* (($ (-772) $) 48) (($ (-923) $) NIL) (($ $ $) 45)))
-(((-134) (-13 (-851) (-23) (-727) (-1040 (-772)) (-10 -8 (-6 (-4420 "*")) (-15 -3045 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2732 ($ (-772))) (-15 -1314 ((-112) $)) (-15 -2758 ((-112) $)) (-15 -4034 ((-112))) (-15 -4161 ((-112) (-112)))))) (T -134))
-((-3045 (*1 *1 *1 *1) (|partial| -5 *1 (-134))) (** (*1 *1 *1 *1) (-5 *1 (-134))) (-2732 (*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-134)))) (-1314 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-2758 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-4034 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-4161 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134)))))
-(-13 (-851) (-23) (-727) (-1040 (-772)) (-10 -8 (-6 (-4420 "*")) (-15 -3045 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2732 ($ (-772))) (-15 -1314 ((-112) $)) (-15 -2758 ((-112) $)) (-15 -4034 ((-112))) (-15 -4161 ((-112) (-112)))))
-((-3629 (((-136 |#1| |#2| |#4|) (-645 |#4|) (-136 |#1| |#2| |#3|)) 14)) (-3829 (((-136 |#1| |#2| |#4|) (-1 |#4| |#3|) (-136 |#1| |#2| |#3|)) 18)))
-(((-135 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3629 ((-136 |#1| |#2| |#4|) (-645 |#4|) (-136 |#1| |#2| |#3|))) (-15 -3829 ((-136 |#1| |#2| |#4|) (-1 |#4| |#3|) (-136 |#1| |#2| |#3|)))) (-567) (-772) (-172) (-172)) (T -135))
-((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-567)) (-14 *6 (-772)) (-4 *7 (-172)) (-4 *8 (-172)) (-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8)))) (-3629 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-567)) (-14 *6 (-772)) (-4 *7 (-172)) (-4 *8 (-172)) (-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8)))))
-(-10 -7 (-15 -3629 ((-136 |#1| |#2| |#4|) (-645 |#4|) (-136 |#1| |#2| |#3|))) (-15 -3829 ((-136 |#1| |#2| |#4|) (-1 |#4| |#3|) (-136 |#1| |#2| |#3|))))
-((-2403 (((-112) $ $) NIL)) (-3752 (($ (-645 |#3|)) 64)) (-3094 (($ $) 126) (($ $ (-567) (-567)) 125)) (-2585 (($) 20)) (-3753 (((-3 |#3| "failed") $) 86)) (-2038 ((|#3| $) NIL)) (-2191 (($ $ (-645 (-567))) 127)) (-3616 (((-645 |#3|) $) 59)) (-1954 (((-772) $) 69)) (-4207 (($ $ $) 120)) (-2103 (($) 68)) (-1419 (((-1160) $) NIL)) (-2321 (($) 19)) (-3430 (((-1122) $) NIL)) (-1787 ((|#3| $) 71) ((|#3| $ (-567)) 72) ((|#3| $ (-567) (-567)) 73) ((|#3| $ (-567) (-567) (-567)) 74) ((|#3| $ (-567) (-567) (-567) (-567)) 75) ((|#3| $ (-645 (-567))) 76)) (-3077 (((-772) $) 70)) (-1971 (($ $ (-567) $ (-567)) 121) (($ $ (-567) (-567)) 123)) (-4132 (((-863) $) 94) (($ |#3|) 95) (($ (-240 |#2| |#3|)) 102) (($ (-1144 |#2| |#3|)) 105) (($ (-645 |#3|)) 77) (($ (-645 $)) 83)) (-1745 (((-112) $ $) NIL)) (-1716 (($) 96 T CONST)) (-1728 (($) 97 T CONST)) (-2936 (((-112) $ $) 107)) (-3045 (($ $) 113) (($ $ $) 111)) (-3033 (($ $ $) 109)) (* (($ |#3| $) 118) (($ $ |#3|) 119) (($ $ (-567)) 116) (($ (-567) $) 115) (($ $ $) 122)))
-(((-136 |#1| |#2| |#3|) (-13 (-468 |#3| (-772)) (-473 (-567) (-772)) (-10 -8 (-15 -4132 ($ (-240 |#2| |#3|))) (-15 -4132 ($ (-1144 |#2| |#3|))) (-15 -4132 ($ (-645 |#3|))) (-15 -4132 ($ (-645 $))) (-15 -1954 ((-772) $)) (-15 -1787 (|#3| $)) (-15 -1787 (|#3| $ (-567))) (-15 -1787 (|#3| $ (-567) (-567))) (-15 -1787 (|#3| $ (-567) (-567) (-567))) (-15 -1787 (|#3| $ (-567) (-567) (-567) (-567))) (-15 -1787 (|#3| $ (-645 (-567)))) (-15 -4207 ($ $ $)) (-15 * ($ $ $)) (-15 -1971 ($ $ (-567) $ (-567))) (-15 -1971 ($ $ (-567) (-567))) (-15 -3094 ($ $)) (-15 -3094 ($ $ (-567) (-567))) (-15 -2191 ($ $ (-645 (-567)))) (-15 -2321 ($)) (-15 -2103 ($)) (-15 -3616 ((-645 |#3|) $)) (-15 -3752 ($ (-645 |#3|))) (-15 -2585 ($)))) (-567) (-772) (-172)) (T -136))
-((-4207 (*1 *1 *1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-567)) (-14 *3 (-772)) (-4 *4 (-172)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-240 *4 *5)) (-14 *4 (-772)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-567)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-1144 *4 *5)) (-14 *4 (-772)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-567)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-645 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-567)) (-14 *4 (-772)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-645 (-136 *3 *4 *5))) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-567)) (-14 *4 (-772)) (-4 *5 (-172)))) (-1954 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-567)) (-14 *4 *2) (-4 *5 (-172)))) (-1787 (*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-136 *3 *4 *2)) (-14 *3 (-567)) (-14 *4 (-772)))) (-1787 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-772)))) (-1787 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-567)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-772)))) (-1787 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-567)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-772)))) (-1787 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-567)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-772)))) (-1787 (*1 *2 *1 *3) (-12 (-5 *3 (-645 (-567))) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 (-567)) (-14 *5 (-772)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-567)) (-14 *3 (-772)) (-4 *4 (-172)))) (-1971 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-772)) (-4 *5 (-172)))) (-1971 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-772)) (-4 *5 (-172)))) (-3094 (*1 *1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-567)) (-14 *3 (-772)) (-4 *4 (-172)))) (-3094 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-772)) (-4 *5 (-172)))) (-2191 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-567)) (-14 *4 (-772)) (-4 *5 (-172)))) (-2321 (*1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-567)) (-14 *3 (-772)) (-4 *4 (-172)))) (-2103 (*1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-567)) (-14 *3 (-772)) (-4 *4 (-172)))) (-3616 (*1 *2 *1) (-12 (-5 *2 (-645 *5)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-567)) (-14 *4 (-772)) (-4 *5 (-172)))) (-3752 (*1 *1 *2) (-12 (-5 *2 (-645 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-567)) (-14 *4 (-772)))) (-2585 (*1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-567)) (-14 *3 (-772)) (-4 *4 (-172)))))
-(-13 (-468 |#3| (-772)) (-473 (-567) (-772)) (-10 -8 (-15 -4132 ($ (-240 |#2| |#3|))) (-15 -4132 ($ (-1144 |#2| |#3|))) (-15 -4132 ($ (-645 |#3|))) (-15 -4132 ($ (-645 $))) (-15 -1954 ((-772) $)) (-15 -1787 (|#3| $)) (-15 -1787 (|#3| $ (-567))) (-15 -1787 (|#3| $ (-567) (-567))) (-15 -1787 (|#3| $ (-567) (-567) (-567))) (-15 -1787 (|#3| $ (-567) (-567) (-567) (-567))) (-15 -1787 (|#3| $ (-645 (-567)))) (-15 -4207 ($ $ $)) (-15 * ($ $ $)) (-15 -1971 ($ $ (-567) $ (-567))) (-15 -1971 ($ $ (-567) (-567))) (-15 -3094 ($ $)) (-15 -3094 ($ $ (-567) (-567))) (-15 -2191 ($ $ (-645 (-567)))) (-15 -2321 ($)) (-15 -2103 ($)) (-15 -3616 ((-645 |#3|) $)) (-15 -3752 ($ (-645 |#3|))) (-15 -2585 ($))))
-((-2403 (((-112) $ $) NIL)) (-4104 (((-1137) $) 11)) (-4089 (((-1137) $) 9)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 17) (($ (-1183)) NIL) (((-1183) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)))
-(((-137) (-13 (-1085) (-10 -8 (-15 -4089 ((-1137) $)) (-15 -4104 ((-1137) $))))) (T -137))
-((-4089 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-137)))) (-4104 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-137)))))
-(-13 (-1085) (-10 -8 (-15 -4089 ((-1137) $)) (-15 -4104 ((-1137) $))))
-((-2403 (((-112) $ $) NIL)) (-1419 (((-1160) $) NIL)) (-4166 (((-186) $) 10)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 20) (($ (-1183)) NIL) (((-1183) $) NIL)) (-2006 (((-645 (-1137)) $) 13)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)))
-(((-138) (-13 (-1085) (-10 -8 (-15 -4166 ((-186) $)) (-15 -2006 ((-645 (-1137)) $))))) (T -138))
-((-4166 (*1 *2 *1) (-12 (-5 *2 (-186)) (-5 *1 (-138)))) (-2006 (*1 *2 *1) (-12 (-5 *2 (-645 (-1137))) (-5 *1 (-138)))))
-(-13 (-1085) (-10 -8 (-15 -4166 ((-186) $)) (-15 -2006 ((-645 (-1137)) $))))
-((-2403 (((-112) $ $) NIL)) (-3871 (((-645 (-866)) $) NIL)) (-1996 (((-509) $) NIL)) (-1419 (((-1160) $) NIL)) (-4166 (((-186) $) NIL)) (-1854 (((-112) $ (-509)) NIL)) (-3430 (((-1122) $) NIL)) (-1722 (((-645 (-112)) $) NIL)) (-4132 (((-863) $) NIL) (((-187) $) 6)) (-1745 (((-112) $ $) NIL)) (-2124 (((-55) $) NIL)) (-2936 (((-112) $ $) NIL)))
+((-2412 (((-112) $ $) NIL)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) 16) (($ (-1184)) NIL) (((-1184) $) NIL)) (-2017 (((-645 (-1137)) $) 10)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)))
+(((-133) (-13 (-1085) (-10 -8 (-15 -2017 ((-645 (-1137)) $))))) (T -133))
+((-2017 (*1 *2 *1) (-12 (-5 *2 (-645 (-1137))) (-5 *1 (-133)))))
+(-13 (-1085) (-10 -8 (-15 -2017 ((-645 (-1137)) $))))
+((-2412 (((-112) $ $) 49)) (-3791 (((-112) $) NIL)) (-3647 (($) NIL T CONST)) (-3765 (((-3 (-772) "failed") $) 58)) (-2051 (((-772) $) 56)) (-3588 (((-3 $ "failed") $) NIL)) (-4346 (((-112) $) NIL)) (-1365 (($ $ $) NIL)) (-3002 (($ $ $) 37)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-2609 (((-112)) 59)) (-1884 (((-112) (-112)) 61)) (-1700 (((-112) $) 30)) (-2880 (((-112) $) 55)) (-4129 (((-863) $) 28) (($ (-772)) 20)) (-3357 (((-112) $ $) NIL)) (-1733 (($) 18 T CONST)) (-1744 (($) 19 T CONST)) (-4034 (($ (-772)) 21)) (-3004 (((-112) $ $) NIL)) (-2980 (((-112) $ $) 40)) (-2946 (((-112) $ $) 32)) (-2993 (((-112) $ $) NIL)) (-2968 (((-112) $ $) 35)) (-3053 (((-3 $ "failed") $ $) 42)) (-3041 (($ $ $) 38)) (** (($ $ (-772)) NIL) (($ $ (-923)) NIL) (($ $ $) 54)) (* (($ (-772) $) 48) (($ (-923) $) NIL) (($ $ $) 45)))
+(((-134) (-13 (-851) (-23) (-727) (-1040 (-772)) (-10 -8 (-6 (-4424 "*")) (-15 -3053 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -4034 ($ (-772))) (-15 -1700 ((-112) $)) (-15 -2880 ((-112) $)) (-15 -2609 ((-112))) (-15 -1884 ((-112) (-112)))))) (T -134))
+((-3053 (*1 *1 *1 *1) (|partial| -5 *1 (-134))) (** (*1 *1 *1 *1) (-5 *1 (-134))) (-4034 (*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-134)))) (-1700 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-2880 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-2609 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-1884 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134)))))
+(-13 (-851) (-23) (-727) (-1040 (-772)) (-10 -8 (-6 (-4424 "*")) (-15 -3053 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -4034 ($ (-772))) (-15 -1700 ((-112) $)) (-15 -2880 ((-112) $)) (-15 -2609 ((-112))) (-15 -1884 ((-112) (-112)))))
+((-3639 (((-136 |#1| |#2| |#4|) (-645 |#4|) (-136 |#1| |#2| |#3|)) 14)) (-3841 (((-136 |#1| |#2| |#4|) (-1 |#4| |#3|) (-136 |#1| |#2| |#3|)) 18)))
+(((-135 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3639 ((-136 |#1| |#2| |#4|) (-645 |#4|) (-136 |#1| |#2| |#3|))) (-15 -3841 ((-136 |#1| |#2| |#4|) (-1 |#4| |#3|) (-136 |#1| |#2| |#3|)))) (-567) (-772) (-172) (-172)) (T -135))
+((-3841 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-567)) (-14 *6 (-772)) (-4 *7 (-172)) (-4 *8 (-172)) (-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8)))) (-3639 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-567)) (-14 *6 (-772)) (-4 *7 (-172)) (-4 *8 (-172)) (-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8)))))
+(-10 -7 (-15 -3639 ((-136 |#1| |#2| |#4|) (-645 |#4|) (-136 |#1| |#2| |#3|))) (-15 -3841 ((-136 |#1| |#2| |#4|) (-1 |#4| |#3|) (-136 |#1| |#2| |#3|))))
+((-2412 (((-112) $ $) NIL)) (-2360 (($ (-645 |#3|)) 64)) (-4141 (($ $) 126) (($ $ (-567) (-567)) 125)) (-3647 (($) 20)) (-3765 (((-3 |#3| "failed") $) 86)) (-2051 ((|#3| $) NIL)) (-1692 (($ $ (-645 (-567))) 127)) (-3626 (((-645 |#3|) $) 59)) (-1976 (((-772) $) 69)) (-3809 (($ $ $) 120)) (-4212 (($) 68)) (-2516 (((-1161) $) NIL)) (-3291 (($) 19)) (-3437 (((-1122) $) NIL)) (-1801 ((|#3| $) 71) ((|#3| $ (-567)) 72) ((|#3| $ (-567) (-567)) 73) ((|#3| $ (-567) (-567) (-567)) 74) ((|#3| $ (-567) (-567) (-567) (-567)) 75) ((|#3| $ (-645 (-567))) 76)) (-3104 (((-772) $) 70)) (-4001 (($ $ (-567) $ (-567)) 121) (($ $ (-567) (-567)) 123)) (-4129 (((-863) $) 94) (($ |#3|) 95) (($ (-240 |#2| |#3|)) 102) (($ (-1144 |#2| |#3|)) 105) (($ (-645 |#3|)) 77) (($ (-645 $)) 83)) (-3357 (((-112) $ $) NIL)) (-1733 (($) 96 T CONST)) (-1744 (($) 97 T CONST)) (-2946 (((-112) $ $) 107)) (-3053 (($ $) 113) (($ $ $) 111)) (-3041 (($ $ $) 109)) (* (($ |#3| $) 118) (($ $ |#3|) 119) (($ $ (-567)) 116) (($ (-567) $) 115) (($ $ $) 122)))
+(((-136 |#1| |#2| |#3|) (-13 (-468 |#3| (-772)) (-473 (-567) (-772)) (-10 -8 (-15 -4129 ($ (-240 |#2| |#3|))) (-15 -4129 ($ (-1144 |#2| |#3|))) (-15 -4129 ($ (-645 |#3|))) (-15 -4129 ($ (-645 $))) (-15 -1976 ((-772) $)) (-15 -1801 (|#3| $)) (-15 -1801 (|#3| $ (-567))) (-15 -1801 (|#3| $ (-567) (-567))) (-15 -1801 (|#3| $ (-567) (-567) (-567))) (-15 -1801 (|#3| $ (-567) (-567) (-567) (-567))) (-15 -1801 (|#3| $ (-645 (-567)))) (-15 -3809 ($ $ $)) (-15 * ($ $ $)) (-15 -4001 ($ $ (-567) $ (-567))) (-15 -4001 ($ $ (-567) (-567))) (-15 -4141 ($ $)) (-15 -4141 ($ $ (-567) (-567))) (-15 -1692 ($ $ (-645 (-567)))) (-15 -3291 ($)) (-15 -4212 ($)) (-15 -3626 ((-645 |#3|) $)) (-15 -2360 ($ (-645 |#3|))) (-15 -3647 ($)))) (-567) (-772) (-172)) (T -136))
+((-3809 (*1 *1 *1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-567)) (-14 *3 (-772)) (-4 *4 (-172)))) (-4129 (*1 *1 *2) (-12 (-5 *2 (-240 *4 *5)) (-14 *4 (-772)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-567)))) (-4129 (*1 *1 *2) (-12 (-5 *2 (-1144 *4 *5)) (-14 *4 (-772)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-567)))) (-4129 (*1 *1 *2) (-12 (-5 *2 (-645 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-567)) (-14 *4 (-772)))) (-4129 (*1 *1 *2) (-12 (-5 *2 (-645 (-136 *3 *4 *5))) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-567)) (-14 *4 (-772)) (-4 *5 (-172)))) (-1976 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-567)) (-14 *4 *2) (-4 *5 (-172)))) (-1801 (*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-136 *3 *4 *2)) (-14 *3 (-567)) (-14 *4 (-772)))) (-1801 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-772)))) (-1801 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-567)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-772)))) (-1801 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-567)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-772)))) (-1801 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-567)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-772)))) (-1801 (*1 *2 *1 *3) (-12 (-5 *3 (-645 (-567))) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 (-567)) (-14 *5 (-772)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-567)) (-14 *3 (-772)) (-4 *4 (-172)))) (-4001 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-772)) (-4 *5 (-172)))) (-4001 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-772)) (-4 *5 (-172)))) (-4141 (*1 *1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-567)) (-14 *3 (-772)) (-4 *4 (-172)))) (-4141 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-772)) (-4 *5 (-172)))) (-1692 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-567)) (-14 *4 (-772)) (-4 *5 (-172)))) (-3291 (*1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-567)) (-14 *3 (-772)) (-4 *4 (-172)))) (-4212 (*1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-567)) (-14 *3 (-772)) (-4 *4 (-172)))) (-3626 (*1 *2 *1) (-12 (-5 *2 (-645 *5)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-567)) (-14 *4 (-772)) (-4 *5 (-172)))) (-2360 (*1 *1 *2) (-12 (-5 *2 (-645 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-567)) (-14 *4 (-772)))) (-3647 (*1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-567)) (-14 *3 (-772)) (-4 *4 (-172)))))
+(-13 (-468 |#3| (-772)) (-473 (-567) (-772)) (-10 -8 (-15 -4129 ($ (-240 |#2| |#3|))) (-15 -4129 ($ (-1144 |#2| |#3|))) (-15 -4129 ($ (-645 |#3|))) (-15 -4129 ($ (-645 $))) (-15 -1976 ((-772) $)) (-15 -1801 (|#3| $)) (-15 -1801 (|#3| $ (-567))) (-15 -1801 (|#3| $ (-567) (-567))) (-15 -1801 (|#3| $ (-567) (-567) (-567))) (-15 -1801 (|#3| $ (-567) (-567) (-567) (-567))) (-15 -1801 (|#3| $ (-645 (-567)))) (-15 -3809 ($ $ $)) (-15 * ($ $ $)) (-15 -4001 ($ $ (-567) $ (-567))) (-15 -4001 ($ $ (-567) (-567))) (-15 -4141 ($ $)) (-15 -4141 ($ $ (-567) (-567))) (-15 -1692 ($ $ (-645 (-567)))) (-15 -3291 ($)) (-15 -4212 ($)) (-15 -3626 ((-645 |#3|) $)) (-15 -2360 ($ (-645 |#3|))) (-15 -3647 ($))))
+((-2412 (((-112) $ $) NIL)) (-4102 (((-1137) $) 11)) (-4089 (((-1137) $) 9)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) 17) (($ (-1184)) NIL) (((-1184) $) NIL)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)))
+(((-137) (-13 (-1085) (-10 -8 (-15 -4089 ((-1137) $)) (-15 -4102 ((-1137) $))))) (T -137))
+((-4089 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-137)))) (-4102 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-137)))))
+(-13 (-1085) (-10 -8 (-15 -4089 ((-1137) $)) (-15 -4102 ((-1137) $))))
+((-2412 (((-112) $ $) NIL)) (-2516 (((-1161) $) NIL)) (-4164 (((-186) $) 10)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) 20) (($ (-1184)) NIL) (((-1184) $) NIL)) (-2017 (((-645 (-1137)) $) 13)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)))
+(((-138) (-13 (-1085) (-10 -8 (-15 -4164 ((-186) $)) (-15 -2017 ((-645 (-1137)) $))))) (T -138))
+((-4164 (*1 *2 *1) (-12 (-5 *2 (-186)) (-5 *1 (-138)))) (-2017 (*1 *2 *1) (-12 (-5 *2 (-645 (-1137))) (-5 *1 (-138)))))
+(-13 (-1085) (-10 -8 (-15 -4164 ((-186) $)) (-15 -2017 ((-645 (-1137)) $))))
+((-2412 (((-112) $ $) NIL)) (-3882 (((-645 (-866)) $) NIL)) (-2007 (((-509) $) NIL)) (-2516 (((-1161) $) NIL)) (-4164 (((-186) $) NIL)) (-3545 (((-112) $ (-509)) NIL)) (-3437 (((-1122) $) NIL)) (-2444 (((-645 (-112)) $) NIL)) (-4129 (((-863) $) NIL) (((-187) $) 6)) (-3357 (((-112) $ $) NIL)) (-2336 (((-55) $) NIL)) (-2946 (((-112) $ $) NIL)))
(((-139) (-13 (-185) (-614 (-187)))) (T -139))
NIL
(-13 (-185) (-614 (-187)))
-((-2914 (((-645 (-183 (-139))) $) 13)) (-3111 (((-645 (-183 (-139))) $) 14)) (-2598 (((-645 (-839)) $) 10)) (-3230 (((-139) $) 7)) (-4132 (((-863) $) 16)))
-(((-140) (-13 (-614 (-863)) (-10 -8 (-15 -3230 ((-139) $)) (-15 -2598 ((-645 (-839)) $)) (-15 -2914 ((-645 (-183 (-139))) $)) (-15 -3111 ((-645 (-183 (-139))) $))))) (T -140))
-((-3230 (*1 *2 *1) (-12 (-5 *2 (-139)) (-5 *1 (-140)))) (-2598 (*1 *2 *1) (-12 (-5 *2 (-645 (-839))) (-5 *1 (-140)))) (-2914 (*1 *2 *1) (-12 (-5 *2 (-645 (-183 (-139)))) (-5 *1 (-140)))) (-3111 (*1 *2 *1) (-12 (-5 *2 (-645 (-183 (-139)))) (-5 *1 (-140)))))
-(-13 (-614 (-863)) (-10 -8 (-15 -3230 ((-139) $)) (-15 -2598 ((-645 (-839)) $)) (-15 -2914 ((-645 (-183 (-139))) $)) (-15 -3111 ((-645 (-183 (-139))) $))))
-((-2403 (((-112) $ $) NIL)) (-3714 (($) 17 T CONST)) (-3533 (($) NIL (|has| (-144) (-370)))) (-4244 (($ $ $) 19) (($ $ (-144)) NIL) (($ (-144) $) NIL)) (-4287 (($ $ $) NIL)) (-2493 (((-112) $ $) NIL)) (-3445 (((-112) $ (-772)) NIL)) (-2375 (((-772)) NIL (|has| (-144) (-370)))) (-4155 (($) NIL) (($ (-645 (-144))) NIL)) (-2839 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4418)))) (-3350 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4418)))) (-2585 (($) NIL T CONST)) (-2444 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-144) (-1102))))) (-2539 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4418))) (($ (-144) $) 61 (|has| $ (-6 -4418)))) (-3238 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4418))) (($ (-144) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-144) (-1102))))) (-2477 (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4418))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4418))) (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4418)) (|has| (-144) (-1102))))) (-1348 (($) NIL (|has| (-144) (-370)))) (-2777 (((-645 (-144)) $) 70 (|has| $ (-6 -4418)))) (-2548 (((-112) $ $) NIL)) (-2077 (((-112) $ (-772)) NIL)) (-1354 (((-144) $) NIL (|has| (-144) (-851)))) (-2279 (((-645 (-144)) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) (-144) $) 27 (-12 (|has| $ (-6 -4418)) (|has| (-144) (-1102))))) (-2981 (((-144) $) NIL (|has| (-144) (-851)))) (-3731 (($ (-1 (-144) (-144)) $) 69 (|has| $ (-6 -4419)))) (-3829 (($ (-1 (-144) (-144)) $) 65)) (-3677 (($) 18 T CONST)) (-4249 (((-923) $) NIL (|has| (-144) (-370)))) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL)) (-2370 (($ $ $) 30)) (-1566 (((-144) $) 62)) (-2531 (($ (-144) $) 60)) (-3768 (($ (-923)) NIL (|has| (-144) (-370)))) (-3977 (($) 16 T CONST)) (-3430 (((-1122) $) NIL)) (-4128 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-1793 (((-144) $) 63)) (-3025 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-144)) (-645 (-144))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102)))) (($ $ (-295 (-144))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102)))) (($ $ (-645 (-295 (-144)))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102))))) (-3092 (((-112) $ $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) 58)) (-3052 (($) 15 T CONST)) (-4071 (($ $ $) 32) (($ $ (-144)) NIL)) (-2718 (($ (-645 (-144))) NIL) (($) NIL)) (-3439 (((-772) (-144) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-144) (-1102)))) (((-772) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4418)))) (-4305 (($ $) NIL)) (-3893 (((-1160) $) 37) (((-539) $) NIL (|has| (-144) (-615 (-539)))) (((-645 (-144)) $) 35)) (-4147 (($ (-645 (-144))) NIL)) (-2099 (($ $) 33 (|has| (-144) (-370)))) (-4132 (((-863) $) 55)) (-1465 (($ (-1160)) 14) (($ (-645 (-144))) 52)) (-1480 (((-772) $) NIL)) (-2772 (($) 59) (($ (-645 (-144))) NIL)) (-1745 (((-112) $ $) NIL)) (-3551 (($ (-645 (-144))) NIL)) (-1853 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4418)))) (-1674 (($) 21 T CONST)) (-2875 (($) 20 T CONST)) (-2936 (((-112) $ $) 24)) (-2414 (((-772) $) 57 (|has| $ (-6 -4418)))))
-(((-141) (-13 (-1102) (-615 (-1160)) (-428 (-144)) (-615 (-645 (-144))) (-10 -8 (-15 -1465 ($ (-1160))) (-15 -1465 ($ (-645 (-144)))) (-15 -3052 ($) -3286) (-15 -3977 ($) -3286) (-15 -3714 ($) -3286) (-15 -3677 ($) -3286) (-15 -2875 ($) -3286) (-15 -1674 ($) -3286)))) (T -141))
-((-1465 (*1 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-141)))) (-1465 (*1 *1 *2) (-12 (-5 *2 (-645 (-144))) (-5 *1 (-141)))) (-3052 (*1 *1) (-5 *1 (-141))) (-3977 (*1 *1) (-5 *1 (-141))) (-3714 (*1 *1) (-5 *1 (-141))) (-3677 (*1 *1) (-5 *1 (-141))) (-2875 (*1 *1) (-5 *1 (-141))) (-1674 (*1 *1) (-5 *1 (-141))))
-(-13 (-1102) (-615 (-1160)) (-428 (-144)) (-615 (-645 (-144))) (-10 -8 (-15 -1465 ($ (-1160))) (-15 -1465 ($ (-645 (-144)))) (-15 -3052 ($) -3286) (-15 -3977 ($) -3286) (-15 -3714 ($) -3286) (-15 -3677 ($) -3286) (-15 -2875 ($) -3286) (-15 -1674 ($) -3286)))
-((-1989 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-3354 ((|#1| |#3|) 9)) (-4304 ((|#3| |#3|) 15)))
-(((-142 |#1| |#2| |#3|) (-10 -7 (-15 -3354 (|#1| |#3|)) (-15 -4304 (|#3| |#3|)) (-15 -1989 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-559) (-994 |#1|) (-375 |#2|)) (T -142))
-((-1989 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-994 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-142 *4 *5 *3)) (-4 *3 (-375 *5)))) (-4304 (*1 *2 *2) (-12 (-4 *3 (-559)) (-4 *4 (-994 *3)) (-5 *1 (-142 *3 *4 *2)) (-4 *2 (-375 *4)))) (-3354 (*1 *2 *3) (-12 (-4 *4 (-994 *2)) (-4 *2 (-559)) (-5 *1 (-142 *2 *4 *3)) (-4 *3 (-375 *4)))))
-(-10 -7 (-15 -3354 (|#1| |#3|)) (-15 -4304 (|#3| |#3|)) (-15 -1989 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
-((-2967 (($ $ $) 8)) (-1576 (($ $) 7)) (-3881 (($ $ $) 6)))
+((-3064 (((-645 (-183 (-139))) $) 13)) (-3128 (((-645 (-183 (-139))) $) 14)) (-2525 (((-645 (-839)) $) 10)) (-3239 (((-139) $) 7)) (-4129 (((-863) $) 16)))
+(((-140) (-13 (-614 (-863)) (-10 -8 (-15 -3239 ((-139) $)) (-15 -2525 ((-645 (-839)) $)) (-15 -3064 ((-645 (-183 (-139))) $)) (-15 -3128 ((-645 (-183 (-139))) $))))) (T -140))
+((-3239 (*1 *2 *1) (-12 (-5 *2 (-139)) (-5 *1 (-140)))) (-2525 (*1 *2 *1) (-12 (-5 *2 (-645 (-839))) (-5 *1 (-140)))) (-3064 (*1 *2 *1) (-12 (-5 *2 (-645 (-183 (-139)))) (-5 *1 (-140)))) (-3128 (*1 *2 *1) (-12 (-5 *2 (-645 (-183 (-139)))) (-5 *1 (-140)))))
+(-13 (-614 (-863)) (-10 -8 (-15 -3239 ((-139) $)) (-15 -2525 ((-645 (-839)) $)) (-15 -3064 ((-645 (-183 (-139))) $)) (-15 -3128 ((-645 (-183 (-139))) $))))
+((-2412 (((-112) $ $) NIL)) (-2868 (($) 17 T CONST)) (-3950 (($) NIL (|has| (-144) (-370)))) (-4244 (($ $ $) 19) (($ $ (-144)) NIL) (($ (-144) $) NIL)) (-2148 (($ $ $) NIL)) (-1951 (((-112) $ $) NIL)) (-1563 (((-112) $ (-772)) NIL)) (-2384 (((-772)) NIL (|has| (-144) (-370)))) (-4155 (($) NIL) (($ (-645 (-144))) NIL)) (-1494 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4422)))) (-3356 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4422)))) (-3647 (($) NIL T CONST)) (-2453 (($ $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-144) (-1102))))) (-2247 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4422))) (($ (-144) $) 61 (|has| $ (-6 -4422)))) (-3246 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4422))) (($ (-144) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-144) (-1102))))) (-2494 (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4422))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4422))) (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4422)) (|has| (-144) (-1102))))) (-1359 (($) NIL (|has| (-144) (-370)))) (-2799 (((-645 (-144)) $) 70 (|has| $ (-6 -4422)))) (-3862 (((-112) $ $) NIL)) (-4093 (((-112) $ (-772)) NIL)) (-1365 (((-144) $) NIL (|has| (-144) (-851)))) (-1942 (((-645 (-144)) $) NIL (|has| $ (-6 -4422)))) (-3237 (((-112) (-144) $) 27 (-12 (|has| $ (-6 -4422)) (|has| (-144) (-1102))))) (-3002 (((-144) $) NIL (|has| (-144) (-851)))) (-3751 (($ (-1 (-144) (-144)) $) 69 (|has| $ (-6 -4423)))) (-3841 (($ (-1 (-144) (-144)) $) 65)) (-4365 (($) 18 T CONST)) (-3474 (((-923) $) NIL (|has| (-144) (-370)))) (-1986 (((-112) $ (-772)) NIL)) (-2516 (((-1161) $) NIL)) (-3660 (($ $ $) 30)) (-2706 (((-144) $) 62)) (-2646 (($ (-144) $) 60)) (-3779 (($ (-923)) NIL (|has| (-144) (-370)))) (-2396 (($) 16 T CONST)) (-3437 (((-1122) $) NIL)) (-3196 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-3949 (((-144) $) 63)) (-4233 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-144)) (-645 (-144))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102)))) (($ $ (-295 (-144))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102)))) (($ $ (-645 (-295 (-144)))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102))))) (-3875 (((-112) $ $) NIL)) (-3885 (((-112) $) NIL)) (-2701 (($) 58)) (-2382 (($) 15 T CONST)) (-4117 (($ $ $) 32) (($ $ (-144)) NIL)) (-4106 (($ (-645 (-144))) NIL) (($) NIL)) (-3447 (((-772) (-144) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-144) (-1102)))) (((-772) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4422)))) (-4309 (($ $) NIL)) (-3902 (((-1161) $) 37) (((-539) $) NIL (|has| (-144) (-615 (-539)))) (((-645 (-144)) $) 35)) (-4145 (($ (-645 (-144))) NIL)) (-3364 (($ $) 33 (|has| (-144) (-370)))) (-4129 (((-863) $) 55)) (-1755 (($ (-1161)) 14) (($ (-645 (-144))) 52)) (-1791 (((-772) $) NIL)) (-2782 (($) 59) (($ (-645 (-144))) NIL)) (-3357 (((-112) $ $) NIL)) (-3700 (($ (-645 (-144))) NIL)) (-3436 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4422)))) (-2929 (($) 21 T CONST)) (-3927 (($) 20 T CONST)) (-2946 (((-112) $ $) 24)) (-2423 (((-772) $) 57 (|has| $ (-6 -4422)))))
+(((-141) (-13 (-1102) (-615 (-1161)) (-428 (-144)) (-615 (-645 (-144))) (-10 -8 (-15 -1755 ($ (-1161))) (-15 -1755 ($ (-645 (-144)))) (-15 -2382 ($) -3304) (-15 -2396 ($) -3304) (-15 -2868 ($) -3304) (-15 -4365 ($) -3304) (-15 -3927 ($) -3304) (-15 -2929 ($) -3304)))) (T -141))
+((-1755 (*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-141)))) (-1755 (*1 *1 *2) (-12 (-5 *2 (-645 (-144))) (-5 *1 (-141)))) (-2382 (*1 *1) (-5 *1 (-141))) (-2396 (*1 *1) (-5 *1 (-141))) (-2868 (*1 *1) (-5 *1 (-141))) (-4365 (*1 *1) (-5 *1 (-141))) (-3927 (*1 *1) (-5 *1 (-141))) (-2929 (*1 *1) (-5 *1 (-141))))
+(-13 (-1102) (-615 (-1161)) (-428 (-144)) (-615 (-645 (-144))) (-10 -8 (-15 -1755 ($ (-1161))) (-15 -1755 ($ (-645 (-144)))) (-15 -2382 ($) -3304) (-15 -2396 ($) -3304) (-15 -2868 ($) -3304) (-15 -4365 ($) -3304) (-15 -3927 ($) -3304) (-15 -2929 ($) -3304)))
+((-2381 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-1967 ((|#1| |#3|) 9)) (-3268 ((|#3| |#3|) 15)))
+(((-142 |#1| |#2| |#3|) (-10 -7 (-15 -1967 (|#1| |#3|)) (-15 -3268 (|#3| |#3|)) (-15 -2381 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-559) (-994 |#1|) (-375 |#2|)) (T -142))
+((-2381 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-994 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-142 *4 *5 *3)) (-4 *3 (-375 *5)))) (-3268 (*1 *2 *2) (-12 (-4 *3 (-559)) (-4 *4 (-994 *3)) (-5 *1 (-142 *3 *4 *2)) (-4 *2 (-375 *4)))) (-1967 (*1 *2 *3) (-12 (-4 *4 (-994 *2)) (-4 *2 (-559)) (-5 *1 (-142 *2 *4 *3)) (-4 *3 (-375 *4)))))
+(-10 -7 (-15 -1967 (|#1| |#3|)) (-15 -3268 (|#3| |#3|)) (-15 -2381 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
+((-2565 (($ $ $) 8)) (-1345 (($ $) 7)) (-2708 (($ $ $) 6)))
(((-143) (-140)) (T -143))
-((-2967 (*1 *1 *1 *1) (-4 *1 (-143))) (-1576 (*1 *1 *1) (-4 *1 (-143))) (-3881 (*1 *1 *1 *1) (-4 *1 (-143))))
-(-13 (-10 -8 (-15 -3881 ($ $ $)) (-15 -1576 ($ $)) (-15 -2967 ($ $ $))))
-((-2403 (((-112) $ $) NIL)) (-3934 (((-112) $) 39)) (-3714 (($ $) 55)) (-1552 (($) 26 T CONST)) (-2375 (((-772)) 13)) (-1348 (($) 25)) (-3924 (($) 27 T CONST)) (-4380 (((-772) $) 21)) (-1354 (($ $ $) NIL) (($) NIL T CONST)) (-2981 (($ $ $) NIL) (($) NIL T CONST)) (-1978 (((-112) $) 41)) (-3677 (($ $) 56)) (-4249 (((-923) $) 23)) (-1419 (((-1160) $) 49)) (-3768 (($ (-923)) 20)) (-3808 (((-112) $) 37)) (-3430 (((-1122) $) NIL)) (-3217 (($) 28 T CONST)) (-1863 (((-112) $) 35)) (-4132 (((-863) $) 30)) (-2255 (($ (-772)) 19) (($ (-1160)) 54)) (-1745 (((-112) $ $) NIL)) (-3869 (((-112) $) 45)) (-2921 (((-112) $) 43)) (-2997 (((-112) $ $) 11)) (-2971 (((-112) $ $) 9)) (-2936 (((-112) $ $) 7)) (-2984 (((-112) $ $) 10)) (-2958 (((-112) $ $) 8)))
-(((-144) (-13 (-845) (-10 -8 (-15 -4380 ((-772) $)) (-15 -2255 ($ (-772))) (-15 -2255 ($ (-1160))) (-15 -1552 ($) -3286) (-15 -3924 ($) -3286) (-15 -3217 ($) -3286) (-15 -3714 ($ $)) (-15 -3677 ($ $)) (-15 -1863 ((-112) $)) (-15 -3808 ((-112) $)) (-15 -2921 ((-112) $)) (-15 -3934 ((-112) $)) (-15 -1978 ((-112) $)) (-15 -3869 ((-112) $))))) (T -144))
-((-4380 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-144)))) (-2255 (*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-144)))) (-2255 (*1 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-144)))) (-1552 (*1 *1) (-5 *1 (-144))) (-3924 (*1 *1) (-5 *1 (-144))) (-3217 (*1 *1) (-5 *1 (-144))) (-3714 (*1 *1 *1) (-5 *1 (-144))) (-3677 (*1 *1 *1) (-5 *1 (-144))) (-1863 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-3808 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-2921 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-3934 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-1978 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-3869 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
-(-13 (-845) (-10 -8 (-15 -4380 ((-772) $)) (-15 -2255 ($ (-772))) (-15 -2255 ($ (-1160))) (-15 -1552 ($) -3286) (-15 -3924 ($) -3286) (-15 -3217 ($) -3286) (-15 -3714 ($ $)) (-15 -3677 ($ $)) (-15 -1863 ((-112) $)) (-15 -3808 ((-112) $)) (-15 -2921 ((-112) $)) (-15 -3934 ((-112) $)) (-15 -1978 ((-112) $)) (-15 -3869 ((-112) $))))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-2109 (((-3 $ "failed") $) 37)) (-1433 (((-112) $) 35)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12) (($ (-567)) 33)) (-1903 (((-3 $ "failed") $) 39)) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27)))
+((-2565 (*1 *1 *1 *1) (-4 *1 (-143))) (-1345 (*1 *1 *1) (-4 *1 (-143))) (-2708 (*1 *1 *1 *1) (-4 *1 (-143))))
+(-13 (-10 -8 (-15 -2708 ($ $ $)) (-15 -1345 ($ $)) (-15 -2565 ($ $ $))))
+((-2412 (((-112) $ $) NIL)) (-4167 (((-112) $) 39)) (-2868 (($ $) 55)) (-3591 (($) 26 T CONST)) (-2384 (((-772)) 13)) (-1359 (($) 25)) (-2553 (($) 27 T CONST)) (-4186 (((-772) $) 21)) (-1365 (($ $ $) NIL) (($) NIL T CONST)) (-3002 (($ $ $) NIL) (($) NIL T CONST)) (-2739 (((-112) $) 41)) (-4365 (($ $) 56)) (-3474 (((-923) $) 23)) (-2516 (((-1161) $) 49)) (-3779 (($ (-923)) 20)) (-3287 (((-112) $) 37)) (-3437 (((-1122) $) NIL)) (-1385 (($) 28 T CONST)) (-1888 (((-112) $) 35)) (-4129 (((-863) $) 30)) (-2263 (($ (-772)) 19) (($ (-1161)) 54)) (-3357 (((-112) $ $) NIL)) (-3670 (((-112) $) 45)) (-2508 (((-112) $) 43)) (-3004 (((-112) $ $) 11)) (-2980 (((-112) $ $) 9)) (-2946 (((-112) $ $) 7)) (-2993 (((-112) $ $) 10)) (-2968 (((-112) $ $) 8)))
+(((-144) (-13 (-845) (-10 -8 (-15 -4186 ((-772) $)) (-15 -2263 ($ (-772))) (-15 -2263 ($ (-1161))) (-15 -3591 ($) -3304) (-15 -2553 ($) -3304) (-15 -1385 ($) -3304) (-15 -2868 ($ $)) (-15 -4365 ($ $)) (-15 -1888 ((-112) $)) (-15 -3287 ((-112) $)) (-15 -2508 ((-112) $)) (-15 -4167 ((-112) $)) (-15 -2739 ((-112) $)) (-15 -3670 ((-112) $))))) (T -144))
+((-4186 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-144)))) (-2263 (*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-144)))) (-2263 (*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-144)))) (-3591 (*1 *1) (-5 *1 (-144))) (-2553 (*1 *1) (-5 *1 (-144))) (-1385 (*1 *1) (-5 *1 (-144))) (-2868 (*1 *1 *1) (-5 *1 (-144))) (-4365 (*1 *1 *1) (-5 *1 (-144))) (-1888 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-3287 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-2508 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-4167 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-2739 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-3670 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
+(-13 (-845) (-10 -8 (-15 -4186 ((-772) $)) (-15 -2263 ($ (-772))) (-15 -2263 ($ (-1161))) (-15 -3591 ($) -3304) (-15 -2553 ($) -3304) (-15 -1385 ($) -3304) (-15 -2868 ($ $)) (-15 -4365 ($ $)) (-15 -1888 ((-112) $)) (-15 -3287 ((-112) $)) (-15 -2508 ((-112) $)) (-15 -4167 ((-112) $)) (-15 -2739 ((-112) $)) (-15 -3670 ((-112) $))))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-2376 (((-3 $ "failed") $ $) 20)) (-3647 (($) 18 T CONST)) (-3588 (((-3 $ "failed") $) 37)) (-4346 (((-112) $) 35)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-4129 (((-863) $) 12) (($ (-567)) 33)) (-2118 (((-3 $ "failed") $) 39)) (-2746 (((-772)) 32 T CONST)) (-3357 (((-112) $ $) 9)) (-1733 (($) 19 T CONST)) (-1744 (($) 34 T CONST)) (-2946 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27)))
(((-145) (-140)) (T -145))
-((-1903 (*1 *1 *1) (|partial| -4 *1 (-145))))
-(-13 (-1051) (-10 -8 (-15 -1903 ((-3 $ "failed") $))))
+((-2118 (*1 *1 *1) (|partial| -4 *1 (-145))))
+(-13 (-1051) (-10 -8 (-15 -2118 ((-3 $ "failed") $))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-617 (-567)) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-727) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T))
-((-2155 ((|#1| (-690 |#1|) |#1|) 23)))
-(((-146 |#1|) (-10 -7 (-15 -2155 (|#1| (-690 |#1|) |#1|))) (-172)) (T -146))
-((-2155 (*1 *2 *3 *2) (-12 (-5 *3 (-690 *2)) (-4 *2 (-172)) (-5 *1 (-146 *2)))))
-(-10 -7 (-15 -2155 (|#1| (-690 |#1|) |#1|)))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-2109 (((-3 $ "failed") $) 37)) (-1433 (((-112) $) 35)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12) (($ (-567)) 33)) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27)))
+((-2231 ((|#1| (-690 |#1|) |#1|) 23)))
+(((-146 |#1|) (-10 -7 (-15 -2231 (|#1| (-690 |#1|) |#1|))) (-172)) (T -146))
+((-2231 (*1 *2 *3 *2) (-12 (-5 *3 (-690 *2)) (-4 *2 (-172)) (-5 *1 (-146 *2)))))
+(-10 -7 (-15 -2231 (|#1| (-690 |#1|) |#1|)))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-2376 (((-3 $ "failed") $ $) 20)) (-3647 (($) 18 T CONST)) (-3588 (((-3 $ "failed") $) 37)) (-4346 (((-112) $) 35)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-4129 (((-863) $) 12) (($ (-567)) 33)) (-2746 (((-772)) 32 T CONST)) (-3357 (((-112) $ $) 9)) (-1733 (($) 19 T CONST)) (-1744 (($) 34 T CONST)) (-2946 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27)))
(((-147) (-140)) (T -147))
NIL
(-13 (-1051))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-617 (-567)) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-727) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T))
-((-2814 (((-2 (|:| -3458 (-772)) (|:| -3694 (-410 |#2|)) (|:| |radicand| |#2|)) (-410 |#2|) (-772)) 76)) (-2451 (((-3 (-2 (|:| |radicand| (-410 |#2|)) (|:| |deg| (-772))) "failed") |#3|) 56)) (-2791 (((-2 (|:| -3694 (-410 |#2|)) (|:| |poly| |#3|)) |#3|) 41)) (-3774 ((|#1| |#3| |#3|) 44)) (-2631 ((|#3| |#3| (-410 |#2|) (-410 |#2|)) 20)) (-2933 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-410 |#2|)) (|:| |c2| (-410 |#2|)) (|:| |deg| (-772))) |#3| |#3|) 53)))
-(((-148 |#1| |#2| |#3|) (-10 -7 (-15 -2791 ((-2 (|:| -3694 (-410 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2451 ((-3 (-2 (|:| |radicand| (-410 |#2|)) (|:| |deg| (-772))) "failed") |#3|)) (-15 -2814 ((-2 (|:| -3458 (-772)) (|:| -3694 (-410 |#2|)) (|:| |radicand| |#2|)) (-410 |#2|) (-772))) (-15 -3774 (|#1| |#3| |#3|)) (-15 -2631 (|#3| |#3| (-410 |#2|) (-410 |#2|))) (-15 -2933 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-410 |#2|)) (|:| |c2| (-410 |#2|)) (|:| |deg| (-772))) |#3| |#3|))) (-1222) (-1244 |#1|) (-1244 (-410 |#2|))) (T -148))
-((-2933 (*1 *2 *3 *3) (-12 (-4 *4 (-1222)) (-4 *5 (-1244 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-410 *5)) (|:| |c2| (-410 *5)) (|:| |deg| (-772)))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1244 (-410 *5))))) (-2631 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-410 *5)) (-4 *4 (-1222)) (-4 *5 (-1244 *4)) (-5 *1 (-148 *4 *5 *2)) (-4 *2 (-1244 *3)))) (-3774 (*1 *2 *3 *3) (-12 (-4 *4 (-1244 *2)) (-4 *2 (-1222)) (-5 *1 (-148 *2 *4 *3)) (-4 *3 (-1244 (-410 *4))))) (-2814 (*1 *2 *3 *4) (-12 (-5 *3 (-410 *6)) (-4 *5 (-1222)) (-4 *6 (-1244 *5)) (-5 *2 (-2 (|:| -3458 (-772)) (|:| -3694 *3) (|:| |radicand| *6))) (-5 *1 (-148 *5 *6 *7)) (-5 *4 (-772)) (-4 *7 (-1244 *3)))) (-2451 (*1 *2 *3) (|partial| -12 (-4 *4 (-1222)) (-4 *5 (-1244 *4)) (-5 *2 (-2 (|:| |radicand| (-410 *5)) (|:| |deg| (-772)))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1244 (-410 *5))))) (-2791 (*1 *2 *3) (-12 (-4 *4 (-1222)) (-4 *5 (-1244 *4)) (-5 *2 (-2 (|:| -3694 (-410 *5)) (|:| |poly| *3))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1244 (-410 *5))))))
-(-10 -7 (-15 -2791 ((-2 (|:| -3694 (-410 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2451 ((-3 (-2 (|:| |radicand| (-410 |#2|)) (|:| |deg| (-772))) "failed") |#3|)) (-15 -2814 ((-2 (|:| -3458 (-772)) (|:| -3694 (-410 |#2|)) (|:| |radicand| |#2|)) (-410 |#2|) (-772))) (-15 -3774 (|#1| |#3| |#3|)) (-15 -2631 (|#3| |#3| (-410 |#2|) (-410 |#2|))) (-15 -2933 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-410 |#2|)) (|:| |c2| (-410 |#2|)) (|:| |deg| (-772))) |#3| |#3|)))
-((-3815 (((-3 (-645 (-1174 |#2|)) "failed") (-645 (-1174 |#2|)) (-1174 |#2|)) 35)))
-(((-149 |#1| |#2|) (-10 -7 (-15 -3815 ((-3 (-645 (-1174 |#2|)) "failed") (-645 (-1174 |#2|)) (-1174 |#2|)))) (-548) (-166 |#1|)) (T -149))
-((-3815 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-645 (-1174 *5))) (-5 *3 (-1174 *5)) (-4 *5 (-166 *4)) (-4 *4 (-548)) (-5 *1 (-149 *4 *5)))))
-(-10 -7 (-15 -3815 ((-3 (-645 (-1174 |#2|)) "failed") (-645 (-1174 |#2|)) (-1174 |#2|))))
-((-3350 (($ (-1 (-112) |#2|) $) 35)) (-2444 (($ $) 42)) (-3238 (($ (-1 (-112) |#2|) $) 33) (($ |#2| $) 38)) (-2477 ((|#2| (-1 |#2| |#2| |#2|) $) 28) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 30) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40)) (-4128 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 25)) (-3025 (((-112) (-1 (-112) |#2|) $) 22)) (-3439 (((-772) (-1 (-112) |#2|) $) 18) (((-772) |#2| $) NIL)) (-1853 (((-112) (-1 (-112) |#2|) $) 21)) (-2414 (((-772) $) 12)))
-(((-150 |#1| |#2|) (-10 -8 (-15 -2444 (|#1| |#1|)) (-15 -3238 (|#1| |#2| |#1|)) (-15 -2477 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3350 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3238 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2477 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2477 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4128 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3439 ((-772) |#2| |#1|)) (-15 -3439 ((-772) (-1 (-112) |#2|) |#1|)) (-15 -3025 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1853 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2414 ((-772) |#1|))) (-151 |#2|) (-1218)) (T -150))
-NIL
-(-10 -8 (-15 -2444 (|#1| |#1|)) (-15 -3238 (|#1| |#2| |#1|)) (-15 -2477 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3350 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3238 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2477 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2477 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4128 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3439 ((-772) |#2| |#1|)) (-15 -3439 ((-772) (-1 (-112) |#2|) |#1|)) (-15 -3025 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1853 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2414 ((-772) |#1|)))
-((-2403 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-3445 (((-112) $ (-772)) 8)) (-3350 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4418)))) (-2585 (($) 7 T CONST)) (-2444 (($ $) 42 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-3238 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4418))) (($ |#1| $) 43 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-2477 ((|#1| (-1 |#1| |#1| |#1|) $) 48 (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 47 (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 44 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-2777 (((-645 |#1|) $) 31 (|has| $ (-6 -4418)))) (-2077 (((-112) $ (-772)) 9)) (-2279 (((-645 |#1|) $) 30 (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-3731 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) 36)) (-2863 (((-112) $ (-772)) 10)) (-1419 (((-1160) $) 22 (|has| |#1| (-1102)))) (-3430 (((-1122) $) 21 (|has| |#1| (-1102)))) (-4128 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 49)) (-3025 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) 14)) (-3572 (((-112) $) 11)) (-3498 (($) 12)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4418))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-4305 (($ $) 13)) (-3893 (((-539) $) 41 (|has| |#1| (-615 (-539))))) (-4147 (($ (-645 |#1|)) 50)) (-4132 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-1745 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2414 (((-772) $) 6 (|has| $ (-6 -4418)))))
-(((-151 |#1|) (-140) (-1218)) (T -151))
-((-4147 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1218)) (-4 *1 (-151 *3)))) (-4128 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-151 *2)) (-4 *2 (-1218)))) (-2477 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4418)) (-4 *1 (-151 *2)) (-4 *2 (-1218)))) (-2477 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4418)) (-4 *1 (-151 *2)) (-4 *2 (-1218)))) (-3238 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4418)) (-4 *1 (-151 *3)) (-4 *3 (-1218)))) (-3350 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4418)) (-4 *1 (-151 *3)) (-4 *3 (-1218)))) (-2477 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1102)) (|has| *1 (-6 -4418)) (-4 *1 (-151 *2)) (-4 *2 (-1218)))) (-3238 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4418)) (-4 *1 (-151 *2)) (-4 *2 (-1218)) (-4 *2 (-1102)))) (-2444 (*1 *1 *1) (-12 (|has| *1 (-6 -4418)) (-4 *1 (-151 *2)) (-4 *2 (-1218)) (-4 *2 (-1102)))))
-(-13 (-492 |t#1|) (-10 -8 (-15 -4147 ($ (-645 |t#1|))) (-15 -4128 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4418)) (PROGN (-15 -2477 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -2477 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -3238 ($ (-1 (-112) |t#1|) $)) (-15 -3350 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1102)) (PROGN (-15 -2477 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -3238 ($ |t#1| $)) (-15 -2444 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2800 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-1102) |has| |#1| (-1102)) ((-1218) . T))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2585 (($) NIL T CONST)) (-2109 (((-3 $ "failed") $) 114)) (-1433 (((-112) $) NIL)) (-2824 (($ |#2| (-645 (-923))) 74)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-1945 (($ (-923)) 61)) (-1879 (((-134)) 26)) (-4132 (((-863) $) 89) (($ (-567)) 57) (($ |#2|) 58)) (-4136 ((|#2| $ (-645 (-923))) 77)) (-4221 (((-772)) 23 T CONST)) (-1745 (((-112) $ $) NIL)) (-1716 (($) 51 T CONST)) (-1728 (($) 55 T CONST)) (-2936 (((-112) $ $) 37)) (-3060 (($ $ |#2|) NIL)) (-3045 (($ $) 46) (($ $ $) 44)) (-3033 (($ $ $) 42)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 48) (($ $ $) 67) (($ |#2| $) 50) (($ $ |#2|) NIL)))
-(((-152 |#1| |#2| |#3|) (-13 (-1051) (-38 |#2|) (-1275 |#2|) (-10 -8 (-15 -1945 ($ (-923))) (-15 -2824 ($ |#2| (-645 (-923)))) (-15 -4136 (|#2| $ (-645 (-923)))) (-15 -2109 ((-3 $ "failed") $)))) (-923) (-365) (-995 |#1| |#2|)) (T -152))
-((-2109 (*1 *1 *1) (|partial| -12 (-5 *1 (-152 *2 *3 *4)) (-14 *2 (-923)) (-4 *3 (-365)) (-14 *4 (-995 *2 *3)))) (-1945 (*1 *1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-152 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-365)) (-14 *5 (-995 *3 *4)))) (-2824 (*1 *1 *2 *3) (-12 (-5 *3 (-645 (-923))) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-923)) (-4 *2 (-365)) (-14 *5 (-995 *4 *2)))) (-4136 (*1 *2 *1 *3) (-12 (-5 *3 (-645 (-923))) (-4 *2 (-365)) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-923)) (-14 *5 (-995 *4 *2)))))
-(-13 (-1051) (-38 |#2|) (-1275 |#2|) (-10 -8 (-15 -1945 ($ (-923))) (-15 -2824 ($ |#2| (-645 (-923)))) (-15 -4136 (|#2| $ (-645 (-923)))) (-15 -2109 ((-3 $ "failed") $))))
-((-1438 (((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-645 (-645 (-945 (-225)))) (-225) (-225) (-225) (-225)) 62)) (-2707 (((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-929) (-410 (-567)) (-410 (-567))) 101) (((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-929)) 102)) (-4218 (((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-645 (-645 (-945 (-225))))) 105) (((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-645 (-945 (-225)))) 104) (((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-929) (-410 (-567)) (-410 (-567))) 96) (((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-929)) 97)))
-(((-153) (-10 -7 (-15 -4218 ((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-929))) (-15 -4218 ((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-929) (-410 (-567)) (-410 (-567)))) (-15 -2707 ((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-929))) (-15 -2707 ((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-929) (-410 (-567)) (-410 (-567)))) (-15 -1438 ((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-645 (-645 (-945 (-225)))) (-225) (-225) (-225) (-225))) (-15 -4218 ((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-645 (-945 (-225))))) (-15 -4218 ((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-645 (-645 (-945 (-225)))))))) (T -153))
-((-4218 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225))))) (-5 *1 (-153)) (-5 *3 (-645 (-645 (-945 (-225))))))) (-4218 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225))))) (-5 *1 (-153)) (-5 *3 (-645 (-945 (-225)))))) (-1438 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-225)) (-5 *2 (-2 (|:| |brans| (-645 (-645 (-945 *4)))) (|:| |xValues| (-1096 *4)) (|:| |yValues| (-1096 *4)))) (-5 *1 (-153)) (-5 *3 (-645 (-645 (-945 *4)))))) (-2707 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-929)) (-5 *4 (-410 (-567))) (-5 *2 (-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225))))) (-5 *1 (-153)))) (-2707 (*1 *2 *3) (-12 (-5 *3 (-929)) (-5 *2 (-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225))))) (-5 *1 (-153)))) (-4218 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-929)) (-5 *4 (-410 (-567))) (-5 *2 (-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225))))) (-5 *1 (-153)))) (-4218 (*1 *2 *3) (-12 (-5 *3 (-929)) (-5 *2 (-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225))))) (-5 *1 (-153)))))
-(-10 -7 (-15 -4218 ((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-929))) (-15 -4218 ((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-929) (-410 (-567)) (-410 (-567)))) (-15 -2707 ((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-929))) (-15 -2707 ((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-929) (-410 (-567)) (-410 (-567)))) (-15 -1438 ((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-645 (-645 (-945 (-225)))) (-225) (-225) (-225) (-225))) (-15 -4218 ((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-645 (-945 (-225))))) (-15 -4218 ((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-645 (-645 (-945 (-225)))))))
-((-2403 (((-112) $ $) NIL)) (-1419 (((-1160) $) NIL)) (-3653 (((-645 (-1137)) $) 20)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 27) (($ (-1183)) NIL) (((-1183) $) NIL)) (-2006 (((-1137) $) 9)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)))
-(((-154) (-13 (-1085) (-10 -8 (-15 -3653 ((-645 (-1137)) $)) (-15 -2006 ((-1137) $))))) (T -154))
-((-3653 (*1 *2 *1) (-12 (-5 *2 (-645 (-1137))) (-5 *1 (-154)))) (-2006 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-154)))))
-(-13 (-1085) (-10 -8 (-15 -3653 ((-645 (-1137)) $)) (-15 -2006 ((-1137) $))))
-((-2445 (((-645 (-169 |#2|)) |#1| |#2|) 50)))
-(((-155 |#1| |#2|) (-10 -7 (-15 -2445 ((-645 (-169 |#2|)) |#1| |#2|))) (-1244 (-169 (-567))) (-13 (-365) (-849))) (T -155))
-((-2445 (*1 *2 *3 *4) (-12 (-5 *2 (-645 (-169 *4))) (-5 *1 (-155 *3 *4)) (-4 *3 (-1244 (-169 (-567)))) (-4 *4 (-13 (-365) (-849))))))
-(-10 -7 (-15 -2445 ((-645 (-169 |#2|)) |#1| |#2|)))
-((-2403 (((-112) $ $) NIL)) (-4104 (((-1217) $) 12)) (-4089 (((-1137) $) 9)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 19) (($ (-1183)) NIL) (((-1183) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)))
-(((-156) (-13 (-1085) (-10 -8 (-15 -4089 ((-1137) $)) (-15 -4104 ((-1217) $))))) (T -156))
-((-4089 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-156)))) (-4104 (*1 *2 *1) (-12 (-5 *2 (-1217)) (-5 *1 (-156)))))
-(-13 (-1085) (-10 -8 (-15 -4089 ((-1137) $)) (-15 -4104 ((-1217) $))))
-((-2403 (((-112) $ $) NIL)) (-3700 (($) 41)) (-3695 (($) 40)) (-2223 (((-923)) 46)) (-1419 (((-1160) $) NIL)) (-3811 (((-567) $) 44)) (-3430 (((-1122) $) NIL)) (-3043 (($) 42)) (-4039 (($ (-567)) 47)) (-4132 (((-863) $) 53)) (-1904 (($) 43)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 38)) (-3033 (($ $ $) 35)) (* (($ (-923) $) 45) (($ (-225) $) 11)))
-(((-157) (-13 (-25) (-10 -8 (-15 * ($ (-923) $)) (-15 * ($ (-225) $)) (-15 -3033 ($ $ $)) (-15 -3695 ($)) (-15 -3700 ($)) (-15 -3043 ($)) (-15 -1904 ($)) (-15 -3811 ((-567) $)) (-15 -2223 ((-923))) (-15 -4039 ($ (-567)))))) (T -157))
-((-3033 (*1 *1 *1 *1) (-5 *1 (-157))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-923)) (-5 *1 (-157)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-157)))) (-3695 (*1 *1) (-5 *1 (-157))) (-3700 (*1 *1) (-5 *1 (-157))) (-3043 (*1 *1) (-5 *1 (-157))) (-1904 (*1 *1) (-5 *1 (-157))) (-3811 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-157)))) (-2223 (*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-157)))) (-4039 (*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-157)))))
-(-13 (-25) (-10 -8 (-15 * ($ (-923) $)) (-15 * ($ (-225) $)) (-15 -3033 ($ $ $)) (-15 -3695 ($)) (-15 -3700 ($)) (-15 -3043 ($)) (-15 -1904 ($)) (-15 -3811 ((-567) $)) (-15 -2223 ((-923))) (-15 -4039 ($ (-567)))))
-((-3220 ((|#2| |#2| (-1094 |#2|)) 98) ((|#2| |#2| (-1178)) 75)) (-4207 ((|#2| |#2| (-1094 |#2|)) 97) ((|#2| |#2| (-1178)) 74)) (-2967 ((|#2| |#2| |#2|) 25)) (-2654 (((-114) (-114)) 111)) (-3959 ((|#2| (-645 |#2|)) 130)) (-2242 ((|#2| (-645 |#2|)) 152)) (-3441 ((|#2| (-645 |#2|)) 138)) (-2601 ((|#2| |#2|) 136)) (-3865 ((|#2| (-645 |#2|)) 124)) (-2259 ((|#2| (-645 |#2|)) 125)) (-1848 ((|#2| (-645 |#2|)) 150)) (-1830 ((|#2| |#2| (-1178)) 63) ((|#2| |#2|) 62)) (-1576 ((|#2| |#2|) 21)) (-3881 ((|#2| |#2| |#2|) 24)) (-3797 (((-112) (-114)) 55)) (** ((|#2| |#2| |#2|) 46)))
-(((-158 |#1| |#2|) (-10 -7 (-15 -3797 ((-112) (-114))) (-15 -2654 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -3881 (|#2| |#2| |#2|)) (-15 -2967 (|#2| |#2| |#2|)) (-15 -1576 (|#2| |#2|)) (-15 -1830 (|#2| |#2|)) (-15 -1830 (|#2| |#2| (-1178))) (-15 -3220 (|#2| |#2| (-1178))) (-15 -3220 (|#2| |#2| (-1094 |#2|))) (-15 -4207 (|#2| |#2| (-1178))) (-15 -4207 (|#2| |#2| (-1094 |#2|))) (-15 -2601 (|#2| |#2|)) (-15 -1848 (|#2| (-645 |#2|))) (-15 -3441 (|#2| (-645 |#2|))) (-15 -2242 (|#2| (-645 |#2|))) (-15 -3865 (|#2| (-645 |#2|))) (-15 -2259 (|#2| (-645 |#2|))) (-15 -3959 (|#2| (-645 |#2|)))) (-559) (-433 |#1|)) (T -158))
-((-3959 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-433 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-559)))) (-2259 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-433 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-559)))) (-3865 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-433 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-559)))) (-2242 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-433 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-559)))) (-3441 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-433 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-559)))) (-1848 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-433 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-559)))) (-2601 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-158 *3 *2)) (-4 *2 (-433 *3)))) (-4207 (*1 *2 *2 *3) (-12 (-5 *3 (-1094 *2)) (-4 *2 (-433 *4)) (-4 *4 (-559)) (-5 *1 (-158 *4 *2)))) (-4207 (*1 *2 *2 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-559)) (-5 *1 (-158 *4 *2)) (-4 *2 (-433 *4)))) (-3220 (*1 *2 *2 *3) (-12 (-5 *3 (-1094 *2)) (-4 *2 (-433 *4)) (-4 *4 (-559)) (-5 *1 (-158 *4 *2)))) (-3220 (*1 *2 *2 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-559)) (-5 *1 (-158 *4 *2)) (-4 *2 (-433 *4)))) (-1830 (*1 *2 *2 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-559)) (-5 *1 (-158 *4 *2)) (-4 *2 (-433 *4)))) (-1830 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-158 *3 *2)) (-4 *2 (-433 *3)))) (-1576 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-158 *3 *2)) (-4 *2 (-433 *3)))) (-2967 (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-158 *3 *2)) (-4 *2 (-433 *3)))) (-3881 (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-158 *3 *2)) (-4 *2 (-433 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-158 *3 *2)) (-4 *2 (-433 *3)))) (-2654 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-559)) (-5 *1 (-158 *3 *4)) (-4 *4 (-433 *3)))) (-3797 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-559)) (-5 *2 (-112)) (-5 *1 (-158 *4 *5)) (-4 *5 (-433 *4)))))
-(-10 -7 (-15 -3797 ((-112) (-114))) (-15 -2654 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -3881 (|#2| |#2| |#2|)) (-15 -2967 (|#2| |#2| |#2|)) (-15 -1576 (|#2| |#2|)) (-15 -1830 (|#2| |#2|)) (-15 -1830 (|#2| |#2| (-1178))) (-15 -3220 (|#2| |#2| (-1178))) (-15 -3220 (|#2| |#2| (-1094 |#2|))) (-15 -4207 (|#2| |#2| (-1178))) (-15 -4207 (|#2| |#2| (-1094 |#2|))) (-15 -2601 (|#2| |#2|)) (-15 -1848 (|#2| (-645 |#2|))) (-15 -3441 (|#2| (-645 |#2|))) (-15 -2242 (|#2| (-645 |#2|))) (-15 -3865 (|#2| (-645 |#2|))) (-15 -2259 (|#2| (-645 |#2|))) (-15 -3959 (|#2| (-645 |#2|))))
-((-2528 ((|#1| |#1| |#1|) 67)) (-1487 ((|#1| |#1| |#1|) 64)) (-2967 ((|#1| |#1| |#1|) 58)) (-4149 ((|#1| |#1|) 45)) (-1323 ((|#1| |#1| (-645 |#1|)) 55)) (-1576 ((|#1| |#1|) 48)) (-3881 ((|#1| |#1| |#1|) 51)))
-(((-159 |#1|) (-10 -7 (-15 -3881 (|#1| |#1| |#1|)) (-15 -1576 (|#1| |#1|)) (-15 -1323 (|#1| |#1| (-645 |#1|))) (-15 -4149 (|#1| |#1|)) (-15 -2967 (|#1| |#1| |#1|)) (-15 -1487 (|#1| |#1| |#1|)) (-15 -2528 (|#1| |#1| |#1|))) (-548)) (T -159))
-((-2528 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548)))) (-1487 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548)))) (-2967 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548)))) (-4149 (*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548)))) (-1323 (*1 *2 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-548)) (-5 *1 (-159 *2)))) (-1576 (*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548)))) (-3881 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548)))))
-(-10 -7 (-15 -3881 (|#1| |#1| |#1|)) (-15 -1576 (|#1| |#1|)) (-15 -1323 (|#1| |#1| (-645 |#1|))) (-15 -4149 (|#1| |#1|)) (-15 -2967 (|#1| |#1| |#1|)) (-15 -1487 (|#1| |#1| |#1|)) (-15 -2528 (|#1| |#1| |#1|)))
-((-3220 (($ $ (-1178)) 12) (($ $ (-1094 $)) 11)) (-4207 (($ $ (-1178)) 10) (($ $ (-1094 $)) 9)) (-2967 (($ $ $) 8)) (-1830 (($ $) 14) (($ $ (-1178)) 13)) (-1576 (($ $) 7)) (-3881 (($ $ $) 6)))
+((-3803 (((-2 (|:| -3468 (-772)) (|:| -3705 (-410 |#2|)) (|:| |radicand| |#2|)) (-410 |#2|) (-772)) 76)) (-2371 (((-3 (-2 (|:| |radicand| (-410 |#2|)) (|:| |deg| (-772))) "failed") |#3|) 56)) (-3574 (((-2 (|:| -3705 (-410 |#2|)) (|:| |poly| |#3|)) |#3|) 41)) (-3604 ((|#1| |#3| |#3|) 44)) (-2642 ((|#3| |#3| (-410 |#2|) (-410 |#2|)) 20)) (-1331 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-410 |#2|)) (|:| |c2| (-410 |#2|)) (|:| |deg| (-772))) |#3| |#3|) 53)))
+(((-148 |#1| |#2| |#3|) (-10 -7 (-15 -3574 ((-2 (|:| -3705 (-410 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2371 ((-3 (-2 (|:| |radicand| (-410 |#2|)) (|:| |deg| (-772))) "failed") |#3|)) (-15 -3803 ((-2 (|:| -3468 (-772)) (|:| -3705 (-410 |#2|)) (|:| |radicand| |#2|)) (-410 |#2|) (-772))) (-15 -3604 (|#1| |#3| |#3|)) (-15 -2642 (|#3| |#3| (-410 |#2|) (-410 |#2|))) (-15 -1331 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-410 |#2|)) (|:| |c2| (-410 |#2|)) (|:| |deg| (-772))) |#3| |#3|))) (-1223) (-1245 |#1|) (-1245 (-410 |#2|))) (T -148))
+((-1331 (*1 *2 *3 *3) (-12 (-4 *4 (-1223)) (-4 *5 (-1245 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-410 *5)) (|:| |c2| (-410 *5)) (|:| |deg| (-772)))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1245 (-410 *5))))) (-2642 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-410 *5)) (-4 *4 (-1223)) (-4 *5 (-1245 *4)) (-5 *1 (-148 *4 *5 *2)) (-4 *2 (-1245 *3)))) (-3604 (*1 *2 *3 *3) (-12 (-4 *4 (-1245 *2)) (-4 *2 (-1223)) (-5 *1 (-148 *2 *4 *3)) (-4 *3 (-1245 (-410 *4))))) (-3803 (*1 *2 *3 *4) (-12 (-5 *3 (-410 *6)) (-4 *5 (-1223)) (-4 *6 (-1245 *5)) (-5 *2 (-2 (|:| -3468 (-772)) (|:| -3705 *3) (|:| |radicand| *6))) (-5 *1 (-148 *5 *6 *7)) (-5 *4 (-772)) (-4 *7 (-1245 *3)))) (-2371 (*1 *2 *3) (|partial| -12 (-4 *4 (-1223)) (-4 *5 (-1245 *4)) (-5 *2 (-2 (|:| |radicand| (-410 *5)) (|:| |deg| (-772)))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1245 (-410 *5))))) (-3574 (*1 *2 *3) (-12 (-4 *4 (-1223)) (-4 *5 (-1245 *4)) (-5 *2 (-2 (|:| -3705 (-410 *5)) (|:| |poly| *3))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1245 (-410 *5))))))
+(-10 -7 (-15 -3574 ((-2 (|:| -3705 (-410 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2371 ((-3 (-2 (|:| |radicand| (-410 |#2|)) (|:| |deg| (-772))) "failed") |#3|)) (-15 -3803 ((-2 (|:| -3468 (-772)) (|:| -3705 (-410 |#2|)) (|:| |radicand| |#2|)) (-410 |#2|) (-772))) (-15 -3604 (|#1| |#3| |#3|)) (-15 -2642 (|#3| |#3| (-410 |#2|) (-410 |#2|))) (-15 -1331 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-410 |#2|)) (|:| |c2| (-410 |#2|)) (|:| |deg| (-772))) |#3| |#3|)))
+((-3610 (((-3 (-645 (-1175 |#2|)) "failed") (-645 (-1175 |#2|)) (-1175 |#2|)) 35)))
+(((-149 |#1| |#2|) (-10 -7 (-15 -3610 ((-3 (-645 (-1175 |#2|)) "failed") (-645 (-1175 |#2|)) (-1175 |#2|)))) (-548) (-166 |#1|)) (T -149))
+((-3610 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-645 (-1175 *5))) (-5 *3 (-1175 *5)) (-4 *5 (-166 *4)) (-4 *4 (-548)) (-5 *1 (-149 *4 *5)))))
+(-10 -7 (-15 -3610 ((-3 (-645 (-1175 |#2|)) "failed") (-645 (-1175 |#2|)) (-1175 |#2|))))
+((-3356 (($ (-1 (-112) |#2|) $) 35)) (-2453 (($ $) 42)) (-3246 (($ (-1 (-112) |#2|) $) 33) (($ |#2| $) 38)) (-2494 ((|#2| (-1 |#2| |#2| |#2|) $) 28) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 30) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40)) (-3196 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 25)) (-4233 (((-112) (-1 (-112) |#2|) $) 22)) (-3447 (((-772) (-1 (-112) |#2|) $) 18) (((-772) |#2| $) NIL)) (-3436 (((-112) (-1 (-112) |#2|) $) 21)) (-2423 (((-772) $) 12)))
+(((-150 |#1| |#2|) (-10 -8 (-15 -2453 (|#1| |#1|)) (-15 -3246 (|#1| |#2| |#1|)) (-15 -2494 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3356 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3246 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2494 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2494 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3196 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3447 ((-772) |#2| |#1|)) (-15 -3447 ((-772) (-1 (-112) |#2|) |#1|)) (-15 -4233 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3436 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2423 ((-772) |#1|))) (-151 |#2|) (-1219)) (T -150))
+NIL
+(-10 -8 (-15 -2453 (|#1| |#1|)) (-15 -3246 (|#1| |#2| |#1|)) (-15 -2494 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3356 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3246 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2494 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2494 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3196 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3447 ((-772) |#2| |#1|)) (-15 -3447 ((-772) (-1 (-112) |#2|) |#1|)) (-15 -4233 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3436 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2423 ((-772) |#1|)))
+((-2412 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-1563 (((-112) $ (-772)) 8)) (-3356 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4422)))) (-3647 (($) 7 T CONST)) (-2453 (($ $) 42 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-3246 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4422))) (($ |#1| $) 43 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-2494 ((|#1| (-1 |#1| |#1| |#1|) $) 48 (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 47 (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 44 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-2799 (((-645 |#1|) $) 31 (|has| $ (-6 -4422)))) (-4093 (((-112) $ (-772)) 9)) (-1942 (((-645 |#1|) $) 30 (|has| $ (-6 -4422)))) (-3237 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-3751 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#1| |#1|) $) 36)) (-1986 (((-112) $ (-772)) 10)) (-2516 (((-1161) $) 22 (|has| |#1| (-1102)))) (-3437 (((-1122) $) 21 (|has| |#1| (-1102)))) (-3196 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 49)) (-4233 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3875 (((-112) $ $) 14)) (-3885 (((-112) $) 11)) (-2701 (($) 12)) (-3447 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4422))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-4309 (($ $) 13)) (-3902 (((-539) $) 41 (|has| |#1| (-615 (-539))))) (-4145 (($ (-645 |#1|)) 50)) (-4129 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-3357 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-3436 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4422)))) (-2946 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2423 (((-772) $) 6 (|has| $ (-6 -4422)))))
+(((-151 |#1|) (-140) (-1219)) (T -151))
+((-4145 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1219)) (-4 *1 (-151 *3)))) (-3196 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-151 *2)) (-4 *2 (-1219)))) (-2494 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4422)) (-4 *1 (-151 *2)) (-4 *2 (-1219)))) (-2494 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4422)) (-4 *1 (-151 *2)) (-4 *2 (-1219)))) (-3246 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4422)) (-4 *1 (-151 *3)) (-4 *3 (-1219)))) (-3356 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4422)) (-4 *1 (-151 *3)) (-4 *3 (-1219)))) (-2494 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1102)) (|has| *1 (-6 -4422)) (-4 *1 (-151 *2)) (-4 *2 (-1219)))) (-3246 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4422)) (-4 *1 (-151 *2)) (-4 *2 (-1219)) (-4 *2 (-1102)))) (-2453 (*1 *1 *1) (-12 (|has| *1 (-6 -4422)) (-4 *1 (-151 *2)) (-4 *2 (-1219)) (-4 *2 (-1102)))))
+(-13 (-492 |t#1|) (-10 -8 (-15 -4145 ($ (-645 |t#1|))) (-15 -3196 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4422)) (PROGN (-15 -2494 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -2494 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -3246 ($ (-1 (-112) |t#1|) $)) (-15 -3356 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1102)) (PROGN (-15 -2494 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -3246 ($ |t#1| $)) (-15 -2453 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2811 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-1102) |has| |#1| (-1102)) ((-1219) . T))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-2376 (((-3 $ "failed") $ $) NIL)) (-3647 (($) NIL T CONST)) (-3588 (((-3 $ "failed") $) 114)) (-4346 (((-112) $) NIL)) (-2836 (($ |#2| (-645 (-923))) 74)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-1958 (($ (-923)) 61)) (-1412 (((-134)) 26)) (-4129 (((-863) $) 89) (($ (-567)) 57) (($ |#2|) 58)) (-2558 ((|#2| $ (-645 (-923))) 77)) (-2746 (((-772)) 23 T CONST)) (-3357 (((-112) $ $) NIL)) (-1733 (($) 51 T CONST)) (-1744 (($) 55 T CONST)) (-2946 (((-112) $ $) 37)) (-3069 (($ $ |#2|) NIL)) (-3053 (($ $) 46) (($ $ $) 44)) (-3041 (($ $ $) 42)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 48) (($ $ $) 67) (($ |#2| $) 50) (($ $ |#2|) NIL)))
+(((-152 |#1| |#2| |#3|) (-13 (-1051) (-38 |#2|) (-1276 |#2|) (-10 -8 (-15 -1958 ($ (-923))) (-15 -2836 ($ |#2| (-645 (-923)))) (-15 -2558 (|#2| $ (-645 (-923)))) (-15 -3588 ((-3 $ "failed") $)))) (-923) (-365) (-995 |#1| |#2|)) (T -152))
+((-3588 (*1 *1 *1) (|partial| -12 (-5 *1 (-152 *2 *3 *4)) (-14 *2 (-923)) (-4 *3 (-365)) (-14 *4 (-995 *2 *3)))) (-1958 (*1 *1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-152 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-365)) (-14 *5 (-995 *3 *4)))) (-2836 (*1 *1 *2 *3) (-12 (-5 *3 (-645 (-923))) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-923)) (-4 *2 (-365)) (-14 *5 (-995 *4 *2)))) (-2558 (*1 *2 *1 *3) (-12 (-5 *3 (-645 (-923))) (-4 *2 (-365)) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-923)) (-14 *5 (-995 *4 *2)))))
+(-13 (-1051) (-38 |#2|) (-1276 |#2|) (-10 -8 (-15 -1958 ($ (-923))) (-15 -2836 ($ |#2| (-645 (-923)))) (-15 -2558 (|#2| $ (-645 (-923)))) (-15 -3588 ((-3 $ "failed") $))))
+((-3395 (((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-645 (-645 (-945 (-225)))) (-225) (-225) (-225) (-225)) 62)) (-2602 (((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-929) (-410 (-567)) (-410 (-567))) 101) (((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-929)) 102)) (-3623 (((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-645 (-645 (-945 (-225))))) 105) (((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-645 (-945 (-225)))) 104) (((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-929) (-410 (-567)) (-410 (-567))) 96) (((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-929)) 97)))
+(((-153) (-10 -7 (-15 -3623 ((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-929))) (-15 -3623 ((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-929) (-410 (-567)) (-410 (-567)))) (-15 -2602 ((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-929))) (-15 -2602 ((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-929) (-410 (-567)) (-410 (-567)))) (-15 -3395 ((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-645 (-645 (-945 (-225)))) (-225) (-225) (-225) (-225))) (-15 -3623 ((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-645 (-945 (-225))))) (-15 -3623 ((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-645 (-645 (-945 (-225)))))))) (T -153))
+((-3623 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225))))) (-5 *1 (-153)) (-5 *3 (-645 (-645 (-945 (-225))))))) (-3623 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225))))) (-5 *1 (-153)) (-5 *3 (-645 (-945 (-225)))))) (-3395 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-225)) (-5 *2 (-2 (|:| |brans| (-645 (-645 (-945 *4)))) (|:| |xValues| (-1096 *4)) (|:| |yValues| (-1096 *4)))) (-5 *1 (-153)) (-5 *3 (-645 (-645 (-945 *4)))))) (-2602 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-929)) (-5 *4 (-410 (-567))) (-5 *2 (-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225))))) (-5 *1 (-153)))) (-2602 (*1 *2 *3) (-12 (-5 *3 (-929)) (-5 *2 (-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225))))) (-5 *1 (-153)))) (-3623 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-929)) (-5 *4 (-410 (-567))) (-5 *2 (-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225))))) (-5 *1 (-153)))) (-3623 (*1 *2 *3) (-12 (-5 *3 (-929)) (-5 *2 (-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225))))) (-5 *1 (-153)))))
+(-10 -7 (-15 -3623 ((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-929))) (-15 -3623 ((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-929) (-410 (-567)) (-410 (-567)))) (-15 -2602 ((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-929))) (-15 -2602 ((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-929) (-410 (-567)) (-410 (-567)))) (-15 -3395 ((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-645 (-645 (-945 (-225)))) (-225) (-225) (-225) (-225))) (-15 -3623 ((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-645 (-945 (-225))))) (-15 -3623 ((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-645 (-645 (-945 (-225)))))))
+((-2412 (((-112) $ $) NIL)) (-2516 (((-1161) $) NIL)) (-3662 (((-645 (-1137)) $) 20)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) 27) (($ (-1184)) NIL) (((-1184) $) NIL)) (-2017 (((-1137) $) 9)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)))
+(((-154) (-13 (-1085) (-10 -8 (-15 -3662 ((-645 (-1137)) $)) (-15 -2017 ((-1137) $))))) (T -154))
+((-3662 (*1 *2 *1) (-12 (-5 *2 (-645 (-1137))) (-5 *1 (-154)))) (-2017 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-154)))))
+(-13 (-1085) (-10 -8 (-15 -3662 ((-645 (-1137)) $)) (-15 -2017 ((-1137) $))))
+((-3118 (((-645 (-169 |#2|)) |#1| |#2|) 50)))
+(((-155 |#1| |#2|) (-10 -7 (-15 -3118 ((-645 (-169 |#2|)) |#1| |#2|))) (-1245 (-169 (-567))) (-13 (-365) (-849))) (T -155))
+((-3118 (*1 *2 *3 *4) (-12 (-5 *2 (-645 (-169 *4))) (-5 *1 (-155 *3 *4)) (-4 *3 (-1245 (-169 (-567)))) (-4 *4 (-13 (-365) (-849))))))
+(-10 -7 (-15 -3118 ((-645 (-169 |#2|)) |#1| |#2|)))
+((-2412 (((-112) $ $) NIL)) (-4102 (((-1218) $) 12)) (-4089 (((-1137) $) 9)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) 19) (($ (-1184)) NIL) (((-1184) $) NIL)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)))
+(((-156) (-13 (-1085) (-10 -8 (-15 -4089 ((-1137) $)) (-15 -4102 ((-1218) $))))) (T -156))
+((-4089 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-156)))) (-4102 (*1 *2 *1) (-12 (-5 *2 (-1218)) (-5 *1 (-156)))))
+(-13 (-1085) (-10 -8 (-15 -4089 ((-1137) $)) (-15 -4102 ((-1218) $))))
+((-2412 (((-112) $ $) NIL)) (-1844 (($) 41)) (-2531 (($) 40)) (-3801 (((-923)) 46)) (-2516 (((-1161) $) NIL)) (-3475 (((-567) $) 44)) (-3437 (((-1122) $) NIL)) (-3121 (($) 42)) (-1952 (($ (-567)) 47)) (-4129 (((-863) $) 53)) (-2229 (($) 43)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) 38)) (-3041 (($ $ $) 35)) (* (($ (-923) $) 45) (($ (-225) $) 11)))
+(((-157) (-13 (-25) (-10 -8 (-15 * ($ (-923) $)) (-15 * ($ (-225) $)) (-15 -3041 ($ $ $)) (-15 -2531 ($)) (-15 -1844 ($)) (-15 -3121 ($)) (-15 -2229 ($)) (-15 -3475 ((-567) $)) (-15 -3801 ((-923))) (-15 -1952 ($ (-567)))))) (T -157))
+((-3041 (*1 *1 *1 *1) (-5 *1 (-157))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-923)) (-5 *1 (-157)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-157)))) (-2531 (*1 *1) (-5 *1 (-157))) (-1844 (*1 *1) (-5 *1 (-157))) (-3121 (*1 *1) (-5 *1 (-157))) (-2229 (*1 *1) (-5 *1 (-157))) (-3475 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-157)))) (-3801 (*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-157)))) (-1952 (*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-157)))))
+(-13 (-25) (-10 -8 (-15 * ($ (-923) $)) (-15 * ($ (-225) $)) (-15 -3041 ($ $ $)) (-15 -2531 ($)) (-15 -1844 ($)) (-15 -3121 ($)) (-15 -2229 ($)) (-15 -3475 ((-567) $)) (-15 -3801 ((-923))) (-15 -1952 ($ (-567)))))
+((-1698 ((|#2| |#2| (-1094 |#2|)) 98) ((|#2| |#2| (-1179)) 75)) (-3809 ((|#2| |#2| (-1094 |#2|)) 97) ((|#2| |#2| (-1179)) 74)) (-2565 ((|#2| |#2| |#2|) 25)) (-2662 (((-114) (-114)) 111)) (-3978 ((|#2| (-645 |#2|)) 130)) (-2451 ((|#2| (-645 |#2|)) 152)) (-2414 ((|#2| (-645 |#2|)) 138)) (-1632 ((|#2| |#2|) 136)) (-3383 ((|#2| (-645 |#2|)) 124)) (-3679 ((|#2| (-645 |#2|)) 125)) (-2272 ((|#2| (-645 |#2|)) 150)) (-4229 ((|#2| |#2| (-1179)) 63) ((|#2| |#2|) 62)) (-1345 ((|#2| |#2|) 21)) (-2708 ((|#2| |#2| |#2|) 24)) (-1909 (((-112) (-114)) 55)) (** ((|#2| |#2| |#2|) 46)))
+(((-158 |#1| |#2|) (-10 -7 (-15 -1909 ((-112) (-114))) (-15 -2662 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -2708 (|#2| |#2| |#2|)) (-15 -2565 (|#2| |#2| |#2|)) (-15 -1345 (|#2| |#2|)) (-15 -4229 (|#2| |#2|)) (-15 -4229 (|#2| |#2| (-1179))) (-15 -1698 (|#2| |#2| (-1179))) (-15 -1698 (|#2| |#2| (-1094 |#2|))) (-15 -3809 (|#2| |#2| (-1179))) (-15 -3809 (|#2| |#2| (-1094 |#2|))) (-15 -1632 (|#2| |#2|)) (-15 -2272 (|#2| (-645 |#2|))) (-15 -2414 (|#2| (-645 |#2|))) (-15 -2451 (|#2| (-645 |#2|))) (-15 -3383 (|#2| (-645 |#2|))) (-15 -3679 (|#2| (-645 |#2|))) (-15 -3978 (|#2| (-645 |#2|)))) (-559) (-433 |#1|)) (T -158))
+((-3978 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-433 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-559)))) (-3679 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-433 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-559)))) (-3383 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-433 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-559)))) (-2451 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-433 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-559)))) (-2414 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-433 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-559)))) (-2272 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-433 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-559)))) (-1632 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-158 *3 *2)) (-4 *2 (-433 *3)))) (-3809 (*1 *2 *2 *3) (-12 (-5 *3 (-1094 *2)) (-4 *2 (-433 *4)) (-4 *4 (-559)) (-5 *1 (-158 *4 *2)))) (-3809 (*1 *2 *2 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-559)) (-5 *1 (-158 *4 *2)) (-4 *2 (-433 *4)))) (-1698 (*1 *2 *2 *3) (-12 (-5 *3 (-1094 *2)) (-4 *2 (-433 *4)) (-4 *4 (-559)) (-5 *1 (-158 *4 *2)))) (-1698 (*1 *2 *2 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-559)) (-5 *1 (-158 *4 *2)) (-4 *2 (-433 *4)))) (-4229 (*1 *2 *2 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-559)) (-5 *1 (-158 *4 *2)) (-4 *2 (-433 *4)))) (-4229 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-158 *3 *2)) (-4 *2 (-433 *3)))) (-1345 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-158 *3 *2)) (-4 *2 (-433 *3)))) (-2565 (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-158 *3 *2)) (-4 *2 (-433 *3)))) (-2708 (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-158 *3 *2)) (-4 *2 (-433 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-158 *3 *2)) (-4 *2 (-433 *3)))) (-2662 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-559)) (-5 *1 (-158 *3 *4)) (-4 *4 (-433 *3)))) (-1909 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-559)) (-5 *2 (-112)) (-5 *1 (-158 *4 *5)) (-4 *5 (-433 *4)))))
+(-10 -7 (-15 -1909 ((-112) (-114))) (-15 -2662 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -2708 (|#2| |#2| |#2|)) (-15 -2565 (|#2| |#2| |#2|)) (-15 -1345 (|#2| |#2|)) (-15 -4229 (|#2| |#2|)) (-15 -4229 (|#2| |#2| (-1179))) (-15 -1698 (|#2| |#2| (-1179))) (-15 -1698 (|#2| |#2| (-1094 |#2|))) (-15 -3809 (|#2| |#2| (-1179))) (-15 -3809 (|#2| |#2| (-1094 |#2|))) (-15 -1632 (|#2| |#2|)) (-15 -2272 (|#2| (-645 |#2|))) (-15 -2414 (|#2| (-645 |#2|))) (-15 -2451 (|#2| (-645 |#2|))) (-15 -3383 (|#2| (-645 |#2|))) (-15 -3679 (|#2| (-645 |#2|))) (-15 -3978 (|#2| (-645 |#2|))))
+((-3495 ((|#1| |#1| |#1|) 67)) (-4222 ((|#1| |#1| |#1|) 64)) (-2565 ((|#1| |#1| |#1|) 58)) (-4055 ((|#1| |#1|) 45)) (-3026 ((|#1| |#1| (-645 |#1|)) 55)) (-1345 ((|#1| |#1|) 48)) (-2708 ((|#1| |#1| |#1|) 51)))
+(((-159 |#1|) (-10 -7 (-15 -2708 (|#1| |#1| |#1|)) (-15 -1345 (|#1| |#1|)) (-15 -3026 (|#1| |#1| (-645 |#1|))) (-15 -4055 (|#1| |#1|)) (-15 -2565 (|#1| |#1| |#1|)) (-15 -4222 (|#1| |#1| |#1|)) (-15 -3495 (|#1| |#1| |#1|))) (-548)) (T -159))
+((-3495 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548)))) (-4222 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548)))) (-2565 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548)))) (-4055 (*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548)))) (-3026 (*1 *2 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-548)) (-5 *1 (-159 *2)))) (-1345 (*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548)))) (-2708 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548)))))
+(-10 -7 (-15 -2708 (|#1| |#1| |#1|)) (-15 -1345 (|#1| |#1|)) (-15 -3026 (|#1| |#1| (-645 |#1|))) (-15 -4055 (|#1| |#1|)) (-15 -2565 (|#1| |#1| |#1|)) (-15 -4222 (|#1| |#1| |#1|)) (-15 -3495 (|#1| |#1| |#1|)))
+((-1698 (($ $ (-1179)) 12) (($ $ (-1094 $)) 11)) (-3809 (($ $ (-1179)) 10) (($ $ (-1094 $)) 9)) (-2565 (($ $ $) 8)) (-4229 (($ $) 14) (($ $ (-1179)) 13)) (-1345 (($ $) 7)) (-2708 (($ $ $) 6)))
(((-160) (-140)) (T -160))
-((-1830 (*1 *1 *1) (-4 *1 (-160))) (-1830 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1178)))) (-3220 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1178)))) (-3220 (*1 *1 *1 *2) (-12 (-5 *2 (-1094 *1)) (-4 *1 (-160)))) (-4207 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1178)))) (-4207 (*1 *1 *1 *2) (-12 (-5 *2 (-1094 *1)) (-4 *1 (-160)))))
-(-13 (-143) (-10 -8 (-15 -1830 ($ $)) (-15 -1830 ($ $ (-1178))) (-15 -3220 ($ $ (-1178))) (-15 -3220 ($ $ (-1094 $))) (-15 -4207 ($ $ (-1178))) (-15 -4207 ($ $ (-1094 $)))))
+((-4229 (*1 *1 *1) (-4 *1 (-160))) (-4229 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1179)))) (-1698 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1179)))) (-1698 (*1 *1 *1 *2) (-12 (-5 *2 (-1094 *1)) (-4 *1 (-160)))) (-3809 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1179)))) (-3809 (*1 *1 *1 *2) (-12 (-5 *2 (-1094 *1)) (-4 *1 (-160)))))
+(-13 (-143) (-10 -8 (-15 -4229 ($ $)) (-15 -4229 ($ $ (-1179))) (-15 -1698 ($ $ (-1179))) (-15 -1698 ($ $ (-1094 $))) (-15 -3809 ($ $ (-1179))) (-15 -3809 ($ $ (-1094 $)))))
(((-143) . T))
-((-2403 (((-112) $ $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 16) (($ (-1183)) NIL) (((-1183) $) NIL)) (-2006 (((-645 (-1137)) $) 10)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)))
-(((-161) (-13 (-1085) (-10 -8 (-15 -2006 ((-645 (-1137)) $))))) (T -161))
-((-2006 (*1 *2 *1) (-12 (-5 *2 (-645 (-1137))) (-5 *1 (-161)))))
-(-13 (-1085) (-10 -8 (-15 -2006 ((-645 (-1137)) $))))
-((-2403 (((-112) $ $) NIL)) (-3424 (($ (-567)) 14) (($ $ $) 15)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 18)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 9)))
-(((-162) (-13 (-1102) (-10 -8 (-15 -3424 ($ (-567))) (-15 -3424 ($ $ $))))) (T -162))
-((-3424 (*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-162)))) (-3424 (*1 *1 *1 *1) (-5 *1 (-162))))
-(-13 (-1102) (-10 -8 (-15 -3424 ($ (-567))) (-15 -3424 ($ $ $))))
-((-2654 (((-114) (-1178)) 102)))
-(((-163) (-10 -7 (-15 -2654 ((-114) (-1178))))) (T -163))
-((-2654 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-114)) (-5 *1 (-163)))))
-(-10 -7 (-15 -2654 ((-114) (-1178))))
-((-3226 ((|#3| |#3|) 19)))
-(((-164 |#1| |#2| |#3|) (-10 -7 (-15 -3226 (|#3| |#3|))) (-1051) (-1244 |#1|) (-1244 |#2|)) (T -164))
-((-3226 (*1 *2 *2) (-12 (-4 *3 (-1051)) (-4 *4 (-1244 *3)) (-5 *1 (-164 *3 *4 *2)) (-4 *2 (-1244 *4)))))
-(-10 -7 (-15 -3226 (|#3| |#3|)))
-((-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 223)) (-4293 ((|#2| $) 102)) (-3146 (($ $) 256)) (-3012 (($ $) 250)) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) 47)) (-3128 (($ $) 254)) (-2987 (($ $) 248)) (-3753 (((-3 (-567) "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 |#2| "failed") $) 146)) (-2038 (((-567) $) NIL) (((-410 (-567)) $) NIL) ((|#2| $) 144)) (-2349 (($ $ $) 229)) (-2630 (((-690 (-567)) (-690 $)) NIL) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL) (((-2 (|:| -2316 (-690 |#2|)) (|:| |vec| (-1268 |#2|))) (-690 $) (-1268 $)) 160) (((-690 |#2|) (-690 $)) 154)) (-2477 (($ (-1174 |#2|)) 125) (((-3 $ "failed") (-410 (-1174 |#2|))) NIL)) (-2109 (((-3 $ "failed") $) 214)) (-2085 (((-3 (-410 (-567)) "failed") $) 204)) (-1862 (((-112) $) 199)) (-2331 (((-410 (-567)) $) 202)) (-1954 (((-923)) 96)) (-2360 (($ $ $) 231)) (-4351 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 270)) (-1482 (($) 245)) (-4303 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) 193) (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) 198)) (-2475 ((|#2| $) 100)) (-4206 (((-1174 |#2|) $) 127)) (-3829 (($ (-1 |#2| |#2|) $) 108)) (-3063 (($ $) 247)) (-2465 (((-1174 |#2|) $) 126)) (-2939 (($ $) 207)) (-2825 (($) 103)) (-2435 (((-421 (-1174 $)) (-1174 $)) 95)) (-3517 (((-421 (-1174 $)) (-1174 $)) 64)) (-2391 (((-3 $ "failed") $ |#2|) 209) (((-3 $ "failed") $ $) 212)) (-3946 (($ $) 246)) (-1990 (((-772) $) 226)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 236)) (-3788 ((|#2| (-1268 $)) NIL) ((|#2|) 98)) (-1593 (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-1 |#2| |#2|)) 119) (($ $ (-645 (-1178)) (-645 (-772))) NIL) (($ $ (-1178) (-772)) NIL) (($ $ (-645 (-1178))) NIL) (($ $ (-1178)) NIL) (($ $ (-772)) NIL) (($ $) NIL)) (-3341 (((-1174 |#2|)) 120)) (-3137 (($ $) 255)) (-2999 (($ $) 249)) (-2887 (((-1268 |#2|) $ (-1268 $)) 136) (((-690 |#2|) (-1268 $) (-1268 $)) NIL) (((-1268 |#2|) $) 116) (((-690 |#2|) (-1268 $)) NIL)) (-3893 (((-1268 |#2|) $) NIL) (($ (-1268 |#2|)) NIL) (((-1174 |#2|) $) NIL) (($ (-1174 |#2|)) NIL) (((-894 (-567)) $) 184) (((-894 (-381)) $) 188) (((-169 (-381)) $) 172) (((-169 (-225)) $) 167) (((-539) $) 180)) (-1823 (($ $) 104)) (-4132 (((-863) $) 143) (($ (-567)) NIL) (($ |#2|) NIL) (($ (-410 (-567))) NIL) (($ $) NIL)) (-2155 (((-1174 |#2|) $) 32)) (-4221 (((-772)) 106)) (-1745 (((-112) $ $) 13)) (-3200 (($ $) 259)) (-3084 (($ $) 253)) (-3183 (($ $) 257)) (-3062 (($ $) 251)) (-2799 ((|#2| $) 242)) (-3193 (($ $) 258)) (-3074 (($ $) 252)) (-2219 (($ $) 162)) (-2936 (((-112) $ $) 110)) (-3045 (($ $) 112) (($ $ $) NIL)) (-3033 (($ $ $) 111)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-410 (-567))) 277) (($ $ $) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 118) (($ $ $) 147) (($ $ |#2|) NIL) (($ |#2| $) 114) (($ (-410 (-567)) $) NIL) (($ $ (-410 (-567))) NIL)))
-(((-165 |#1| |#2|) (-10 -8 (-15 -1593 (|#1| |#1|)) (-15 -1593 (|#1| |#1| (-772))) (-15 -4132 (|#1| |#1|)) (-15 -2391 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3666 ((-2 (|:| -3951 |#1|) (|:| -4405 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1593 (|#1| |#1| (-1178))) (-15 -1593 (|#1| |#1| (-645 (-1178)))) (-15 -1593 (|#1| |#1| (-1178) (-772))) (-15 -1593 (|#1| |#1| (-645 (-1178)) (-645 (-772)))) (-15 -1990 ((-772) |#1|)) (-15 -2384 ((-2 (|:| -3102 |#1|) (|:| -4194 |#1|)) |#1| |#1|)) (-15 -2360 (|#1| |#1| |#1|)) (-15 -2349 (|#1| |#1| |#1|)) (-15 -2939 (|#1| |#1|)) (-15 ** (|#1| |#1| (-567))) (-15 * (|#1| |#1| (-410 (-567)))) (-15 * (|#1| (-410 (-567)) |#1|)) (-15 -4132 (|#1| (-410 (-567)))) (-15 -3893 ((-539) |#1|)) (-15 -3893 ((-169 (-225)) |#1|)) (-15 -3893 ((-169 (-381)) |#1|)) (-15 -3012 (|#1| |#1|)) (-15 -2987 (|#1| |#1|)) (-15 -2999 (|#1| |#1|)) (-15 -3074 (|#1| |#1|)) (-15 -3062 (|#1| |#1|)) (-15 -3084 (|#1| |#1|)) (-15 -3137 (|#1| |#1|)) (-15 -3128 (|#1| |#1|)) (-15 -3146 (|#1| |#1|)) (-15 -3193 (|#1| |#1|)) (-15 -3183 (|#1| |#1|)) (-15 -3200 (|#1| |#1|)) (-15 -3063 (|#1| |#1|)) (-15 -3946 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1482 (|#1|)) (-15 ** (|#1| |#1| (-410 (-567)))) (-15 -3517 ((-421 (-1174 |#1|)) (-1174 |#1|))) (-15 -2435 ((-421 (-1174 |#1|)) (-1174 |#1|))) (-15 -3815 ((-3 (-645 (-1174 |#1|)) "failed") (-645 (-1174 |#1|)) (-1174 |#1|))) (-15 -2085 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2331 ((-410 (-567)) |#1|)) (-15 -1862 ((-112) |#1|)) (-15 -4351 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2799 (|#2| |#1|)) (-15 -2219 (|#1| |#1|)) (-15 -2391 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1823 (|#1| |#1|)) (-15 -2825 (|#1|)) (-15 -3893 ((-894 (-381)) |#1|)) (-15 -3893 ((-894 (-567)) |#1|)) (-15 -4303 ((-891 (-381) |#1|) |#1| (-894 (-381)) (-891 (-381) |#1|))) (-15 -4303 ((-891 (-567) |#1|) |#1| (-894 (-567)) (-891 (-567) |#1|))) (-15 -3829 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1593 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1593 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -2477 ((-3 |#1| "failed") (-410 (-1174 |#2|)))) (-15 -2465 ((-1174 |#2|) |#1|)) (-15 -3893 (|#1| (-1174 |#2|))) (-15 -2477 (|#1| (-1174 |#2|))) (-15 -3341 ((-1174 |#2|))) (-15 -2630 ((-690 |#2|) (-690 |#1|))) (-15 -2630 ((-2 (|:| -2316 (-690 |#2|)) (|:| |vec| (-1268 |#2|))) (-690 |#1|) (-1268 |#1|))) (-15 -2630 ((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 |#1|) (-1268 |#1|))) (-15 -2630 ((-690 (-567)) (-690 |#1|))) (-15 -3753 ((-3 |#2| "failed") |#1|)) (-15 -2038 (|#2| |#1|)) (-15 -2038 ((-410 (-567)) |#1|)) (-15 -3753 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2038 ((-567) |#1|)) (-15 -3753 ((-3 (-567) "failed") |#1|)) (-15 -3893 ((-1174 |#2|) |#1|)) (-15 -3788 (|#2|)) (-15 -3893 (|#1| (-1268 |#2|))) (-15 -3893 ((-1268 |#2|) |#1|)) (-15 -2887 ((-690 |#2|) (-1268 |#1|))) (-15 -2887 ((-1268 |#2|) |#1|)) (-15 -4206 ((-1174 |#2|) |#1|)) (-15 -2155 ((-1174 |#2|) |#1|)) (-15 -3788 (|#2| (-1268 |#1|))) (-15 -2887 ((-690 |#2|) (-1268 |#1|) (-1268 |#1|))) (-15 -2887 ((-1268 |#2|) |#1| (-1268 |#1|))) (-15 -2475 (|#2| |#1|)) (-15 -4293 (|#2| |#1|)) (-15 -1954 ((-923))) (-15 -4132 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4221 ((-772))) (-15 -4132 (|#1| (-567))) (-15 ** (|#1| |#1| (-772))) (-15 -2109 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-923))) (-15 -3045 (|#1| |#1| |#1|)) (-15 -3045 (|#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-923) |#1|)) (-15 -3033 (|#1| |#1| |#1|)) (-15 -1745 ((-112) |#1| |#1|)) (-15 -4132 ((-863) |#1|)) (-15 -2936 ((-112) |#1| |#1|))) (-166 |#2|) (-172)) (T -165))
-((-4221 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-772)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))) (-1954 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-923)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))) (-3788 (*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-165 *3 *2)) (-4 *3 (-166 *2)))) (-3341 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1174 *4)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))))
-(-10 -8 (-15 -1593 (|#1| |#1|)) (-15 -1593 (|#1| |#1| (-772))) (-15 -4132 (|#1| |#1|)) (-15 -2391 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3666 ((-2 (|:| -3951 |#1|) (|:| -4405 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1593 (|#1| |#1| (-1178))) (-15 -1593 (|#1| |#1| (-645 (-1178)))) (-15 -1593 (|#1| |#1| (-1178) (-772))) (-15 -1593 (|#1| |#1| (-645 (-1178)) (-645 (-772)))) (-15 -1990 ((-772) |#1|)) (-15 -2384 ((-2 (|:| -3102 |#1|) (|:| -4194 |#1|)) |#1| |#1|)) (-15 -2360 (|#1| |#1| |#1|)) (-15 -2349 (|#1| |#1| |#1|)) (-15 -2939 (|#1| |#1|)) (-15 ** (|#1| |#1| (-567))) (-15 * (|#1| |#1| (-410 (-567)))) (-15 * (|#1| (-410 (-567)) |#1|)) (-15 -4132 (|#1| (-410 (-567)))) (-15 -3893 ((-539) |#1|)) (-15 -3893 ((-169 (-225)) |#1|)) (-15 -3893 ((-169 (-381)) |#1|)) (-15 -3012 (|#1| |#1|)) (-15 -2987 (|#1| |#1|)) (-15 -2999 (|#1| |#1|)) (-15 -3074 (|#1| |#1|)) (-15 -3062 (|#1| |#1|)) (-15 -3084 (|#1| |#1|)) (-15 -3137 (|#1| |#1|)) (-15 -3128 (|#1| |#1|)) (-15 -3146 (|#1| |#1|)) (-15 -3193 (|#1| |#1|)) (-15 -3183 (|#1| |#1|)) (-15 -3200 (|#1| |#1|)) (-15 -3063 (|#1| |#1|)) (-15 -3946 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1482 (|#1|)) (-15 ** (|#1| |#1| (-410 (-567)))) (-15 -3517 ((-421 (-1174 |#1|)) (-1174 |#1|))) (-15 -2435 ((-421 (-1174 |#1|)) (-1174 |#1|))) (-15 -3815 ((-3 (-645 (-1174 |#1|)) "failed") (-645 (-1174 |#1|)) (-1174 |#1|))) (-15 -2085 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2331 ((-410 (-567)) |#1|)) (-15 -1862 ((-112) |#1|)) (-15 -4351 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2799 (|#2| |#1|)) (-15 -2219 (|#1| |#1|)) (-15 -2391 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1823 (|#1| |#1|)) (-15 -2825 (|#1|)) (-15 -3893 ((-894 (-381)) |#1|)) (-15 -3893 ((-894 (-567)) |#1|)) (-15 -4303 ((-891 (-381) |#1|) |#1| (-894 (-381)) (-891 (-381) |#1|))) (-15 -4303 ((-891 (-567) |#1|) |#1| (-894 (-567)) (-891 (-567) |#1|))) (-15 -3829 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1593 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1593 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -2477 ((-3 |#1| "failed") (-410 (-1174 |#2|)))) (-15 -2465 ((-1174 |#2|) |#1|)) (-15 -3893 (|#1| (-1174 |#2|))) (-15 -2477 (|#1| (-1174 |#2|))) (-15 -3341 ((-1174 |#2|))) (-15 -2630 ((-690 |#2|) (-690 |#1|))) (-15 -2630 ((-2 (|:| -2316 (-690 |#2|)) (|:| |vec| (-1268 |#2|))) (-690 |#1|) (-1268 |#1|))) (-15 -2630 ((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 |#1|) (-1268 |#1|))) (-15 -2630 ((-690 (-567)) (-690 |#1|))) (-15 -3753 ((-3 |#2| "failed") |#1|)) (-15 -2038 (|#2| |#1|)) (-15 -2038 ((-410 (-567)) |#1|)) (-15 -3753 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2038 ((-567) |#1|)) (-15 -3753 ((-3 (-567) "failed") |#1|)) (-15 -3893 ((-1174 |#2|) |#1|)) (-15 -3788 (|#2|)) (-15 -3893 (|#1| (-1268 |#2|))) (-15 -3893 ((-1268 |#2|) |#1|)) (-15 -2887 ((-690 |#2|) (-1268 |#1|))) (-15 -2887 ((-1268 |#2|) |#1|)) (-15 -4206 ((-1174 |#2|) |#1|)) (-15 -2155 ((-1174 |#2|) |#1|)) (-15 -3788 (|#2| (-1268 |#1|))) (-15 -2887 ((-690 |#2|) (-1268 |#1|) (-1268 |#1|))) (-15 -2887 ((-1268 |#2|) |#1| (-1268 |#1|))) (-15 -2475 (|#2| |#1|)) (-15 -4293 (|#2| |#1|)) (-15 -1954 ((-923))) (-15 -4132 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4221 ((-772))) (-15 -4132 (|#1| (-567))) (-15 ** (|#1| |#1| (-772))) (-15 -2109 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-923))) (-15 -3045 (|#1| |#1| |#1|)) (-15 -3045 (|#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-923) |#1|)) (-15 -3033 (|#1| |#1| |#1|)) (-15 -1745 ((-112) |#1| |#1|)) (-15 -4132 ((-863) |#1|)) (-15 -2936 ((-112) |#1| |#1|)))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 102 (-2800 (|has| |#1| (-559)) (-12 (|has| |#1| (-308)) (|has| |#1| (-911)))))) (-4381 (($ $) 103 (-2800 (|has| |#1| (-559)) (-12 (|has| |#1| (-308)) (|has| |#1| (-911)))))) (-3949 (((-112) $) 105 (-2800 (|has| |#1| (-559)) (-12 (|has| |#1| (-308)) (|has| |#1| (-911)))))) (-2141 (((-690 |#1|) (-1268 $)) 53) (((-690 |#1|)) 68)) (-4293 ((|#1| $) 59)) (-3146 (($ $) 229 (|has| |#1| (-1203)))) (-3012 (($ $) 212 (|has| |#1| (-1203)))) (-3400 (((-1191 (-923) (-772)) (-567)) 155 (|has| |#1| (-351)))) (-3472 (((-3 $ "failed") $ $) 20)) (-4226 (((-421 (-1174 $)) (-1174 $)) 243 (-12 (|has| |#1| (-308)) (|has| |#1| (-911))))) (-3248 (($ $) 122 (-2800 (-12 (|has| |#1| (-308)) (|has| |#1| (-911))) (|has| |#1| (-365))))) (-2908 (((-421 $) $) 123 (-2800 (-12 (|has| |#1| (-308)) (|has| |#1| (-911))) (|has| |#1| (-365))))) (-2716 (($ $) 242 (-12 (|has| |#1| (-1004)) (|has| |#1| (-1203))))) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) 246 (-12 (|has| |#1| (-308)) (|has| |#1| (-911))))) (-3609 (((-112) $ $) 113 (|has| |#1| (-308)))) (-2375 (((-772)) 96 (|has| |#1| (-370)))) (-3128 (($ $) 228 (|has| |#1| (-1203)))) (-2987 (($ $) 213 (|has| |#1| (-1203)))) (-3166 (($ $) 227 (|has| |#1| (-1203)))) (-3035 (($ $) 214 (|has| |#1| (-1203)))) (-2585 (($) 18 T CONST)) (-3753 (((-3 (-567) "failed") $) 178 (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) 176 (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) 173)) (-2038 (((-567) $) 177 (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) 175 (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) 174)) (-3658 (($ (-1268 |#1|) (-1268 $)) 55) (($ (-1268 |#1|)) 71)) (-2443 (((-3 "prime" "polynomial" "normal" "cyclic")) 161 (|has| |#1| (-351)))) (-2349 (($ $ $) 117 (|has| |#1| (-308)))) (-1811 (((-690 |#1|) $ (-1268 $)) 60) (((-690 |#1|) $) 66)) (-2630 (((-690 (-567)) (-690 $)) 172 (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) 171 (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 |#1|)) (|:| |vec| (-1268 |#1|))) (-690 $) (-1268 $)) 170) (((-690 |#1|) (-690 $)) 169)) (-2477 (($ (-1174 |#1|)) 166) (((-3 $ "failed") (-410 (-1174 |#1|))) 163 (|has| |#1| (-365)))) (-2109 (((-3 $ "failed") $) 37)) (-2727 ((|#1| $) 254)) (-2085 (((-3 (-410 (-567)) "failed") $) 247 (|has| |#1| (-548)))) (-1862 (((-112) $) 249 (|has| |#1| (-548)))) (-2331 (((-410 (-567)) $) 248 (|has| |#1| (-548)))) (-1954 (((-923)) 61)) (-1348 (($) 99 (|has| |#1| (-370)))) (-2360 (($ $ $) 116 (|has| |#1| (-308)))) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) 111 (|has| |#1| (-308)))) (-3431 (($) 157 (|has| |#1| (-351)))) (-2722 (((-112) $) 158 (|has| |#1| (-351)))) (-4225 (($ $ (-772)) 149 (|has| |#1| (-351))) (($ $) 148 (|has| |#1| (-351)))) (-3184 (((-112) $) 124 (-2800 (-12 (|has| |#1| (-308)) (|has| |#1| (-911))) (|has| |#1| (-365))))) (-4351 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 250 (-12 (|has| |#1| (-1062)) (|has| |#1| (-1203))))) (-1482 (($) 239 (|has| |#1| (-1203)))) (-4303 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) 262 (|has| |#1| (-888 (-567)))) (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) 261 (|has| |#1| (-888 (-381))))) (-4384 (((-923) $) 160 (|has| |#1| (-351))) (((-834 (-923)) $) 146 (|has| |#1| (-351)))) (-1433 (((-112) $) 35)) (-2651 (($ $ (-567)) 241 (-12 (|has| |#1| (-1004)) (|has| |#1| (-1203))))) (-2475 ((|#1| $) 58)) (-3972 (((-3 $ "failed") $) 150 (|has| |#1| (-351)))) (-1725 (((-3 (-645 $) "failed") (-645 $) $) 120 (|has| |#1| (-308)))) (-4206 (((-1174 |#1|) $) 51 (|has| |#1| (-365)))) (-3829 (($ (-1 |#1| |#1|) $) 263)) (-4249 (((-923) $) 98 (|has| |#1| (-370)))) (-3063 (($ $) 236 (|has| |#1| (-1203)))) (-2465 (((-1174 |#1|) $) 164)) (-2740 (($ (-645 $)) 109 (-2800 (|has| |#1| (-308)) (-12 (|has| |#1| (-308)) (|has| |#1| (-911))))) (($ $ $) 108 (-2800 (|has| |#1| (-308)) (-12 (|has| |#1| (-308)) (|has| |#1| (-911)))))) (-1419 (((-1160) $) 10)) (-2939 (($ $) 125 (|has| |#1| (-365)))) (-2672 (($) 151 (|has| |#1| (-351)) CONST)) (-3768 (($ (-923)) 97 (|has| |#1| (-370)))) (-2825 (($) 258)) (-2739 ((|#1| $) 255)) (-3430 (((-1122) $) 11)) (-1398 (($) 168)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 110 (-2800 (|has| |#1| (-308)) (-12 (|has| |#1| (-308)) (|has| |#1| (-911)))))) (-2774 (($ (-645 $)) 107 (-2800 (|has| |#1| (-308)) (-12 (|has| |#1| (-308)) (|has| |#1| (-911))))) (($ $ $) 106 (-2800 (|has| |#1| (-308)) (-12 (|has| |#1| (-308)) (|has| |#1| (-911)))))) (-1796 (((-645 (-2 (|:| -2706 (-567)) (|:| -3458 (-567))))) 154 (|has| |#1| (-351)))) (-2435 (((-421 (-1174 $)) (-1174 $)) 245 (-12 (|has| |#1| (-308)) (|has| |#1| (-911))))) (-3517 (((-421 (-1174 $)) (-1174 $)) 244 (-12 (|has| |#1| (-308)) (|has| |#1| (-911))))) (-2706 (((-421 $) $) 121 (-2800 (-12 (|has| |#1| (-308)) (|has| |#1| (-911))) (|has| |#1| (-365))))) (-3402 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119 (|has| |#1| (-308))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) 118 (|has| |#1| (-308)))) (-2391 (((-3 $ "failed") $ |#1|) 253 (|has| |#1| (-559))) (((-3 $ "failed") $ $) 101 (-2800 (|has| |#1| (-559)) (-12 (|has| |#1| (-308)) (|has| |#1| (-911)))))) (-3117 (((-3 (-645 $) "failed") (-645 $) $) 112 (|has| |#1| (-308)))) (-3946 (($ $) 237 (|has| |#1| (-1203)))) (-2631 (($ $ (-645 |#1|) (-645 |#1|)) 269 (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) 268 (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) 267 (|has| |#1| (-310 |#1|))) (($ $ (-645 (-295 |#1|))) 266 (|has| |#1| (-310 |#1|))) (($ $ (-645 (-1178)) (-645 |#1|)) 265 (|has| |#1| (-517 (-1178) |#1|))) (($ $ (-1178) |#1|) 264 (|has| |#1| (-517 (-1178) |#1|)))) (-1990 (((-772) $) 114 (|has| |#1| (-308)))) (-1787 (($ $ |#1|) 270 (|has| |#1| (-287 |#1| |#1|)))) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 115 (|has| |#1| (-308)))) (-3788 ((|#1| (-1268 $)) 54) ((|#1|) 67)) (-2491 (((-772) $) 159 (|has| |#1| (-351))) (((-3 (-772) "failed") $ $) 147 (|has| |#1| (-351)))) (-1593 (($ $ (-1 |#1| |#1|) (-772)) 131) (($ $ (-1 |#1| |#1|)) 130) (($ $ (-645 (-1178)) (-645 (-772))) 138 (|has| |#1| (-902 (-1178)))) (($ $ (-1178) (-772)) 139 (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178))) 140 (|has| |#1| (-902 (-1178)))) (($ $ (-1178)) 141 (|has| |#1| (-902 (-1178)))) (($ $ (-772)) 143 (-2800 (-1667 (|has| |#1| (-365)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-1667 (|has| |#1| (-233)) (|has| |#1| (-365))))) (($ $) 145 (-2800 (-1667 (|has| |#1| (-365)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-1667 (|has| |#1| (-233)) (|has| |#1| (-365)))))) (-1866 (((-690 |#1|) (-1268 $) (-1 |#1| |#1|)) 162 (|has| |#1| (-365)))) (-3341 (((-1174 |#1|)) 167)) (-3175 (($ $) 226 (|has| |#1| (-1203)))) (-3049 (($ $) 215 (|has| |#1| (-1203)))) (-1527 (($) 156 (|has| |#1| (-351)))) (-3156 (($ $) 225 (|has| |#1| (-1203)))) (-3023 (($ $) 216 (|has| |#1| (-1203)))) (-3137 (($ $) 224 (|has| |#1| (-1203)))) (-2999 (($ $) 217 (|has| |#1| (-1203)))) (-2887 (((-1268 |#1|) $ (-1268 $)) 57) (((-690 |#1|) (-1268 $) (-1268 $)) 56) (((-1268 |#1|) $) 73) (((-690 |#1|) (-1268 $)) 72)) (-3893 (((-1268 |#1|) $) 70) (($ (-1268 |#1|)) 69) (((-1174 |#1|) $) 179) (($ (-1174 |#1|)) 165) (((-894 (-567)) $) 260 (|has| |#1| (-615 (-894 (-567))))) (((-894 (-381)) $) 259 (|has| |#1| (-615 (-894 (-381))))) (((-169 (-381)) $) 211 (|has| |#1| (-1024))) (((-169 (-225)) $) 210 (|has| |#1| (-1024))) (((-539) $) 209 (|has| |#1| (-615 (-539))))) (-1823 (($ $) 257)) (-1895 (((-3 (-1268 $) "failed") (-690 $)) 153 (-2800 (-1667 (|has| $ (-145)) (-12 (|has| |#1| (-308)) (|has| |#1| (-911)))) (|has| |#1| (-351))))) (-3056 (($ |#1| |#1|) 256)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 44) (($ (-410 (-567))) 95 (-2800 (|has| |#1| (-365)) (|has| |#1| (-1040 (-410 (-567)))))) (($ $) 100 (-2800 (|has| |#1| (-559)) (-12 (|has| |#1| (-308)) (|has| |#1| (-911)))))) (-1903 (($ $) 152 (|has| |#1| (-351))) (((-3 $ "failed") $) 50 (-2800 (-1667 (|has| $ (-145)) (-12 (|has| |#1| (-308)) (|has| |#1| (-911)))) (|has| |#1| (-145))))) (-2155 (((-1174 |#1|) $) 52)) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-2623 (((-1268 $)) 74)) (-3200 (($ $) 235 (|has| |#1| (-1203)))) (-3084 (($ $) 223 (|has| |#1| (-1203)))) (-3816 (((-112) $ $) 104 (-2800 (|has| |#1| (-559)) (-12 (|has| |#1| (-308)) (|has| |#1| (-911)))))) (-3183 (($ $) 234 (|has| |#1| (-1203)))) (-3062 (($ $) 222 (|has| |#1| (-1203)))) (-3221 (($ $) 233 (|has| |#1| (-1203)))) (-3106 (($ $) 221 (|has| |#1| (-1203)))) (-2799 ((|#1| $) 251 (|has| |#1| (-1203)))) (-3785 (($ $) 232 (|has| |#1| (-1203)))) (-3118 (($ $) 220 (|has| |#1| (-1203)))) (-3211 (($ $) 231 (|has| |#1| (-1203)))) (-3095 (($ $) 219 (|has| |#1| (-1203)))) (-3193 (($ $) 230 (|has| |#1| (-1203)))) (-3074 (($ $) 218 (|has| |#1| (-1203)))) (-2219 (($ $) 252 (|has| |#1| (-1062)))) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2637 (($ $ (-1 |#1| |#1|) (-772)) 133) (($ $ (-1 |#1| |#1|)) 132) (($ $ (-645 (-1178)) (-645 (-772))) 134 (|has| |#1| (-902 (-1178)))) (($ $ (-1178) (-772)) 135 (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178))) 136 (|has| |#1| (-902 (-1178)))) (($ $ (-1178)) 137 (|has| |#1| (-902 (-1178)))) (($ $ (-772)) 142 (-2800 (-1667 (|has| |#1| (-365)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-1667 (|has| |#1| (-233)) (|has| |#1| (-365))))) (($ $) 144 (-2800 (-1667 (|has| |#1| (-365)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-1667 (|has| |#1| (-233)) (|has| |#1| (-365)))))) (-2936 (((-112) $ $) 6)) (-3060 (($ $ $) 129 (|has| |#1| (-365)))) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-410 (-567))) 240 (-12 (|has| |#1| (-1004)) (|has| |#1| (-1203)))) (($ $ $) 238 (|has| |#1| (-1203))) (($ $ (-567)) 126 (|has| |#1| (-365)))) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-410 (-567)) $) 128 (|has| |#1| (-365))) (($ $ (-410 (-567))) 127 (|has| |#1| (-365)))))
+((-2412 (((-112) $ $) NIL)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) 16) (($ (-1184)) NIL) (((-1184) $) NIL)) (-2017 (((-645 (-1137)) $) 10)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)))
+(((-161) (-13 (-1085) (-10 -8 (-15 -2017 ((-645 (-1137)) $))))) (T -161))
+((-2017 (*1 *2 *1) (-12 (-5 *2 (-645 (-1137))) (-5 *1 (-161)))))
+(-13 (-1085) (-10 -8 (-15 -2017 ((-645 (-1137)) $))))
+((-2412 (((-112) $ $) NIL)) (-1309 (($ (-567)) 14) (($ $ $) 15)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) 18)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) 9)))
+(((-162) (-13 (-1102) (-10 -8 (-15 -1309 ($ (-567))) (-15 -1309 ($ $ $))))) (T -162))
+((-1309 (*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-162)))) (-1309 (*1 *1 *1 *1) (-5 *1 (-162))))
+(-13 (-1102) (-10 -8 (-15 -1309 ($ (-567))) (-15 -1309 ($ $ $))))
+((-2662 (((-114) (-1179)) 102)))
+(((-163) (-10 -7 (-15 -2662 ((-114) (-1179))))) (T -163))
+((-2662 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-114)) (-5 *1 (-163)))))
+(-10 -7 (-15 -2662 ((-114) (-1179))))
+((-4010 ((|#3| |#3|) 19)))
+(((-164 |#1| |#2| |#3|) (-10 -7 (-15 -4010 (|#3| |#3|))) (-1051) (-1245 |#1|) (-1245 |#2|)) (T -164))
+((-4010 (*1 *2 *2) (-12 (-4 *3 (-1051)) (-4 *4 (-1245 *3)) (-5 *1 (-164 *3 *4 *2)) (-4 *2 (-1245 *4)))))
+(-10 -7 (-15 -4010 (|#3| |#3|)))
+((-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) 223)) (-4293 ((|#2| $) 102)) (-3164 (($ $) 256)) (-3032 (($ $) 250)) (-3610 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) 47)) (-3145 (($ $) 254)) (-3008 (($ $) 248)) (-3765 (((-3 (-567) "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 |#2| "failed") $) 146)) (-2051 (((-567) $) NIL) (((-410 (-567)) $) NIL) ((|#2| $) 144)) (-2357 (($ $ $) 229)) (-1423 (((-690 (-567)) (-690 $)) NIL) (((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL) (((-2 (|:| -4208 (-690 |#2|)) (|:| |vec| (-1269 |#2|))) (-690 $) (-1269 $)) 160) (((-690 |#2|) (-690 $)) 154)) (-2494 (($ (-1175 |#2|)) 125) (((-3 $ "failed") (-410 (-1175 |#2|))) NIL)) (-3588 (((-3 $ "failed") $) 214)) (-1605 (((-3 (-410 (-567)) "failed") $) 204)) (-2492 (((-112) $) 199)) (-2778 (((-410 (-567)) $) 202)) (-1976 (((-923)) 96)) (-2368 (($ $ $) 231)) (-4183 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 270)) (-1484 (($) 245)) (-3193 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) 193) (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) 198)) (-2724 ((|#2| $) 100)) (-1914 (((-1175 |#2|) $) 127)) (-3841 (($ (-1 |#2| |#2|) $) 108)) (-3072 (($ $) 247)) (-2484 (((-1175 |#2|) $) 126)) (-2949 (($ $) 207)) (-2726 (($) 103)) (-3551 (((-421 (-1175 $)) (-1175 $)) 95)) (-2016 (((-421 (-1175 $)) (-1175 $)) 64)) (-2400 (((-3 $ "failed") $ |#2|) 209) (((-3 $ "failed") $ $) 212)) (-3955 (($ $) 246)) (-2460 (((-772) $) 226)) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) 236)) (-2433 ((|#2| (-1269 $)) NIL) ((|#2|) 98)) (-1616 (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-1 |#2| |#2|)) 119) (($ $ (-645 (-1179)) (-645 (-772))) NIL) (($ $ (-1179) (-772)) NIL) (($ $ (-645 (-1179))) NIL) (($ $ (-1179)) NIL) (($ $ (-772)) NIL) (($ $) NIL)) (-3169 (((-1175 |#2|)) 120)) (-3155 (($ $) 255)) (-3021 (($ $) 249)) (-3088 (((-1269 |#2|) $ (-1269 $)) 136) (((-690 |#2|) (-1269 $) (-1269 $)) NIL) (((-1269 |#2|) $) 116) (((-690 |#2|) (-1269 $)) NIL)) (-3902 (((-1269 |#2|) $) NIL) (($ (-1269 |#2|)) NIL) (((-1175 |#2|) $) NIL) (($ (-1175 |#2|)) NIL) (((-894 (-567)) $) 184) (((-894 (-381)) $) 188) (((-169 (-381)) $) 172) (((-169 (-225)) $) 167) (((-539) $) 180)) (-1672 (($ $) 104)) (-4129 (((-863) $) 143) (($ (-567)) NIL) (($ |#2|) NIL) (($ (-410 (-567))) NIL) (($ $) NIL)) (-2231 (((-1175 |#2|) $) 32)) (-2746 (((-772)) 106)) (-3357 (((-112) $ $) 13)) (-3217 (($ $) 259)) (-3103 (($ $) 253)) (-3201 (($ $) 257)) (-3083 (($ $) 251)) (-3189 ((|#2| $) 242)) (-3208 (($ $) 258)) (-3093 (($ $) 252)) (-1547 (($ $) 162)) (-2946 (((-112) $ $) 110)) (-3053 (($ $) 112) (($ $ $) NIL)) (-3041 (($ $ $) 111)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-410 (-567))) 277) (($ $ $) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 118) (($ $ $) 147) (($ $ |#2|) NIL) (($ |#2| $) 114) (($ (-410 (-567)) $) NIL) (($ $ (-410 (-567))) NIL)))
+(((-165 |#1| |#2|) (-10 -8 (-15 -1616 (|#1| |#1|)) (-15 -1616 (|#1| |#1| (-772))) (-15 -4129 (|#1| |#1|)) (-15 -2400 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1489 ((-2 (|:| -4369 |#1|) (|:| -4409 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1616 (|#1| |#1| (-1179))) (-15 -1616 (|#1| |#1| (-645 (-1179)))) (-15 -1616 (|#1| |#1| (-1179) (-772))) (-15 -1616 (|#1| |#1| (-645 (-1179)) (-645 (-772)))) (-15 -2460 ((-772) |#1|)) (-15 -2452 ((-2 (|:| -2654 |#1|) (|:| -2023 |#1|)) |#1| |#1|)) (-15 -2368 (|#1| |#1| |#1|)) (-15 -2357 (|#1| |#1| |#1|)) (-15 -2949 (|#1| |#1|)) (-15 ** (|#1| |#1| (-567))) (-15 * (|#1| |#1| (-410 (-567)))) (-15 * (|#1| (-410 (-567)) |#1|)) (-15 -4129 (|#1| (-410 (-567)))) (-15 -3902 ((-539) |#1|)) (-15 -3902 ((-169 (-225)) |#1|)) (-15 -3902 ((-169 (-381)) |#1|)) (-15 -3032 (|#1| |#1|)) (-15 -3008 (|#1| |#1|)) (-15 -3021 (|#1| |#1|)) (-15 -3093 (|#1| |#1|)) (-15 -3083 (|#1| |#1|)) (-15 -3103 (|#1| |#1|)) (-15 -3155 (|#1| |#1|)) (-15 -3145 (|#1| |#1|)) (-15 -3164 (|#1| |#1|)) (-15 -3208 (|#1| |#1|)) (-15 -3201 (|#1| |#1|)) (-15 -3217 (|#1| |#1|)) (-15 -3072 (|#1| |#1|)) (-15 -3955 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1484 (|#1|)) (-15 ** (|#1| |#1| (-410 (-567)))) (-15 -2016 ((-421 (-1175 |#1|)) (-1175 |#1|))) (-15 -3551 ((-421 (-1175 |#1|)) (-1175 |#1|))) (-15 -3610 ((-3 (-645 (-1175 |#1|)) "failed") (-645 (-1175 |#1|)) (-1175 |#1|))) (-15 -1605 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2778 ((-410 (-567)) |#1|)) (-15 -2492 ((-112) |#1|)) (-15 -4183 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3189 (|#2| |#1|)) (-15 -1547 (|#1| |#1|)) (-15 -2400 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1672 (|#1| |#1|)) (-15 -2726 (|#1|)) (-15 -3902 ((-894 (-381)) |#1|)) (-15 -3902 ((-894 (-567)) |#1|)) (-15 -3193 ((-891 (-381) |#1|) |#1| (-894 (-381)) (-891 (-381) |#1|))) (-15 -3193 ((-891 (-567) |#1|) |#1| (-894 (-567)) (-891 (-567) |#1|))) (-15 -3841 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1616 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1616 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -2494 ((-3 |#1| "failed") (-410 (-1175 |#2|)))) (-15 -2484 ((-1175 |#2|) |#1|)) (-15 -3902 (|#1| (-1175 |#2|))) (-15 -2494 (|#1| (-1175 |#2|))) (-15 -3169 ((-1175 |#2|))) (-15 -1423 ((-690 |#2|) (-690 |#1|))) (-15 -1423 ((-2 (|:| -4208 (-690 |#2|)) (|:| |vec| (-1269 |#2|))) (-690 |#1|) (-1269 |#1|))) (-15 -1423 ((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 |#1|) (-1269 |#1|))) (-15 -1423 ((-690 (-567)) (-690 |#1|))) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -2051 (|#2| |#1|)) (-15 -2051 ((-410 (-567)) |#1|)) (-15 -3765 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2051 ((-567) |#1|)) (-15 -3765 ((-3 (-567) "failed") |#1|)) (-15 -3902 ((-1175 |#2|) |#1|)) (-15 -2433 (|#2|)) (-15 -3902 (|#1| (-1269 |#2|))) (-15 -3902 ((-1269 |#2|) |#1|)) (-15 -3088 ((-690 |#2|) (-1269 |#1|))) (-15 -3088 ((-1269 |#2|) |#1|)) (-15 -1914 ((-1175 |#2|) |#1|)) (-15 -2231 ((-1175 |#2|) |#1|)) (-15 -2433 (|#2| (-1269 |#1|))) (-15 -3088 ((-690 |#2|) (-1269 |#1|) (-1269 |#1|))) (-15 -3088 ((-1269 |#2|) |#1| (-1269 |#1|))) (-15 -2724 (|#2| |#1|)) (-15 -4293 (|#2| |#1|)) (-15 -1976 ((-923))) (-15 -4129 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2746 ((-772))) (-15 -4129 (|#1| (-567))) (-15 ** (|#1| |#1| (-772))) (-15 -3588 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-923))) (-15 -3053 (|#1| |#1| |#1|)) (-15 -3053 (|#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-923) |#1|)) (-15 -3041 (|#1| |#1| |#1|)) (-15 -3357 ((-112) |#1| |#1|)) (-15 -4129 ((-863) |#1|)) (-15 -2946 ((-112) |#1| |#1|))) (-166 |#2|) (-172)) (T -165))
+((-2746 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-772)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))) (-1976 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-923)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))) (-2433 (*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-165 *3 *2)) (-4 *3 (-166 *2)))) (-3169 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1175 *4)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))))
+(-10 -8 (-15 -1616 (|#1| |#1|)) (-15 -1616 (|#1| |#1| (-772))) (-15 -4129 (|#1| |#1|)) (-15 -2400 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1489 ((-2 (|:| -4369 |#1|) (|:| -4409 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1616 (|#1| |#1| (-1179))) (-15 -1616 (|#1| |#1| (-645 (-1179)))) (-15 -1616 (|#1| |#1| (-1179) (-772))) (-15 -1616 (|#1| |#1| (-645 (-1179)) (-645 (-772)))) (-15 -2460 ((-772) |#1|)) (-15 -2452 ((-2 (|:| -2654 |#1|) (|:| -2023 |#1|)) |#1| |#1|)) (-15 -2368 (|#1| |#1| |#1|)) (-15 -2357 (|#1| |#1| |#1|)) (-15 -2949 (|#1| |#1|)) (-15 ** (|#1| |#1| (-567))) (-15 * (|#1| |#1| (-410 (-567)))) (-15 * (|#1| (-410 (-567)) |#1|)) (-15 -4129 (|#1| (-410 (-567)))) (-15 -3902 ((-539) |#1|)) (-15 -3902 ((-169 (-225)) |#1|)) (-15 -3902 ((-169 (-381)) |#1|)) (-15 -3032 (|#1| |#1|)) (-15 -3008 (|#1| |#1|)) (-15 -3021 (|#1| |#1|)) (-15 -3093 (|#1| |#1|)) (-15 -3083 (|#1| |#1|)) (-15 -3103 (|#1| |#1|)) (-15 -3155 (|#1| |#1|)) (-15 -3145 (|#1| |#1|)) (-15 -3164 (|#1| |#1|)) (-15 -3208 (|#1| |#1|)) (-15 -3201 (|#1| |#1|)) (-15 -3217 (|#1| |#1|)) (-15 -3072 (|#1| |#1|)) (-15 -3955 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1484 (|#1|)) (-15 ** (|#1| |#1| (-410 (-567)))) (-15 -2016 ((-421 (-1175 |#1|)) (-1175 |#1|))) (-15 -3551 ((-421 (-1175 |#1|)) (-1175 |#1|))) (-15 -3610 ((-3 (-645 (-1175 |#1|)) "failed") (-645 (-1175 |#1|)) (-1175 |#1|))) (-15 -1605 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2778 ((-410 (-567)) |#1|)) (-15 -2492 ((-112) |#1|)) (-15 -4183 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3189 (|#2| |#1|)) (-15 -1547 (|#1| |#1|)) (-15 -2400 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1672 (|#1| |#1|)) (-15 -2726 (|#1|)) (-15 -3902 ((-894 (-381)) |#1|)) (-15 -3902 ((-894 (-567)) |#1|)) (-15 -3193 ((-891 (-381) |#1|) |#1| (-894 (-381)) (-891 (-381) |#1|))) (-15 -3193 ((-891 (-567) |#1|) |#1| (-894 (-567)) (-891 (-567) |#1|))) (-15 -3841 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1616 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1616 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -2494 ((-3 |#1| "failed") (-410 (-1175 |#2|)))) (-15 -2484 ((-1175 |#2|) |#1|)) (-15 -3902 (|#1| (-1175 |#2|))) (-15 -2494 (|#1| (-1175 |#2|))) (-15 -3169 ((-1175 |#2|))) (-15 -1423 ((-690 |#2|) (-690 |#1|))) (-15 -1423 ((-2 (|:| -4208 (-690 |#2|)) (|:| |vec| (-1269 |#2|))) (-690 |#1|) (-1269 |#1|))) (-15 -1423 ((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 |#1|) (-1269 |#1|))) (-15 -1423 ((-690 (-567)) (-690 |#1|))) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -2051 (|#2| |#1|)) (-15 -2051 ((-410 (-567)) |#1|)) (-15 -3765 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2051 ((-567) |#1|)) (-15 -3765 ((-3 (-567) "failed") |#1|)) (-15 -3902 ((-1175 |#2|) |#1|)) (-15 -2433 (|#2|)) (-15 -3902 (|#1| (-1269 |#2|))) (-15 -3902 ((-1269 |#2|) |#1|)) (-15 -3088 ((-690 |#2|) (-1269 |#1|))) (-15 -3088 ((-1269 |#2|) |#1|)) (-15 -1914 ((-1175 |#2|) |#1|)) (-15 -2231 ((-1175 |#2|) |#1|)) (-15 -2433 (|#2| (-1269 |#1|))) (-15 -3088 ((-690 |#2|) (-1269 |#1|) (-1269 |#1|))) (-15 -3088 ((-1269 |#2|) |#1| (-1269 |#1|))) (-15 -2724 (|#2| |#1|)) (-15 -4293 (|#2| |#1|)) (-15 -1976 ((-923))) (-15 -4129 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2746 ((-772))) (-15 -4129 (|#1| (-567))) (-15 ** (|#1| |#1| (-772))) (-15 -3588 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-923))) (-15 -3053 (|#1| |#1| |#1|)) (-15 -3053 (|#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-923) |#1|)) (-15 -3041 (|#1| |#1| |#1|)) (-15 -3357 ((-112) |#1| |#1|)) (-15 -4129 ((-863) |#1|)) (-15 -2946 ((-112) |#1| |#1|)))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) 102 (-2811 (|has| |#1| (-559)) (-12 (|has| |#1| (-308)) (|has| |#1| (-911)))))) (-4287 (($ $) 103 (-2811 (|has| |#1| (-559)) (-12 (|has| |#1| (-308)) (|has| |#1| (-911)))))) (-2286 (((-112) $) 105 (-2811 (|has| |#1| (-559)) (-12 (|has| |#1| (-308)) (|has| |#1| (-911)))))) (-3478 (((-690 |#1|) (-1269 $)) 53) (((-690 |#1|)) 68)) (-4293 ((|#1| $) 59)) (-3164 (($ $) 229 (|has| |#1| (-1204)))) (-3032 (($ $) 212 (|has| |#1| (-1204)))) (-3792 (((-1192 (-923) (-772)) (-567)) 155 (|has| |#1| (-351)))) (-2376 (((-3 $ "failed") $ $) 20)) (-2029 (((-421 (-1175 $)) (-1175 $)) 243 (-12 (|has| |#1| (-308)) (|has| |#1| (-911))))) (-3659 (($ $) 122 (-2811 (-12 (|has| |#1| (-308)) (|has| |#1| (-911))) (|has| |#1| (-365))))) (-3597 (((-421 $) $) 123 (-2811 (-12 (|has| |#1| (-308)) (|has| |#1| (-911))) (|has| |#1| (-365))))) (-2728 (($ $) 242 (-12 (|has| |#1| (-1004)) (|has| |#1| (-1204))))) (-3610 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) 246 (-12 (|has| |#1| (-308)) (|has| |#1| (-911))))) (-3696 (((-112) $ $) 113 (|has| |#1| (-308)))) (-2384 (((-772)) 96 (|has| |#1| (-370)))) (-3145 (($ $) 228 (|has| |#1| (-1204)))) (-3008 (($ $) 213 (|has| |#1| (-1204)))) (-3182 (($ $) 227 (|has| |#1| (-1204)))) (-3057 (($ $) 214 (|has| |#1| (-1204)))) (-3647 (($) 18 T CONST)) (-3765 (((-3 (-567) "failed") $) 178 (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) 176 (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) 173)) (-2051 (((-567) $) 177 (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) 175 (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) 174)) (-3111 (($ (-1269 |#1|) (-1269 $)) 55) (($ (-1269 |#1|)) 71)) (-2998 (((-3 "prime" "polynomial" "normal" "cyclic")) 161 (|has| |#1| (-351)))) (-2357 (($ $ $) 117 (|has| |#1| (-308)))) (-3012 (((-690 |#1|) $ (-1269 $)) 60) (((-690 |#1|) $) 66)) (-1423 (((-690 (-567)) (-690 $)) 172 (|has| |#1| (-640 (-567)))) (((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) 171 (|has| |#1| (-640 (-567)))) (((-2 (|:| -4208 (-690 |#1|)) (|:| |vec| (-1269 |#1|))) (-690 $) (-1269 $)) 170) (((-690 |#1|) (-690 $)) 169)) (-2494 (($ (-1175 |#1|)) 166) (((-3 $ "failed") (-410 (-1175 |#1|))) 163 (|has| |#1| (-365)))) (-3588 (((-3 $ "failed") $) 37)) (-2738 ((|#1| $) 254)) (-1605 (((-3 (-410 (-567)) "failed") $) 247 (|has| |#1| (-548)))) (-2492 (((-112) $) 249 (|has| |#1| (-548)))) (-2778 (((-410 (-567)) $) 248 (|has| |#1| (-548)))) (-1976 (((-923)) 61)) (-1359 (($) 99 (|has| |#1| (-370)))) (-2368 (($ $ $) 116 (|has| |#1| (-308)))) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) 111 (|has| |#1| (-308)))) (-2870 (($) 157 (|has| |#1| (-351)))) (-1305 (((-112) $) 158 (|has| |#1| (-351)))) (-3144 (($ $ (-772)) 149 (|has| |#1| (-351))) (($ $) 148 (|has| |#1| (-351)))) (-3502 (((-112) $) 124 (-2811 (-12 (|has| |#1| (-308)) (|has| |#1| (-911))) (|has| |#1| (-365))))) (-4183 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 250 (-12 (|has| |#1| (-1062)) (|has| |#1| (-1204))))) (-1484 (($) 239 (|has| |#1| (-1204)))) (-3193 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) 262 (|has| |#1| (-888 (-567)))) (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) 261 (|has| |#1| (-888 (-381))))) (-3362 (((-923) $) 160 (|has| |#1| (-351))) (((-834 (-923)) $) 146 (|has| |#1| (-351)))) (-4346 (((-112) $) 35)) (-3698 (($ $ (-567)) 241 (-12 (|has| |#1| (-1004)) (|has| |#1| (-1204))))) (-2724 ((|#1| $) 58)) (-3067 (((-3 $ "failed") $) 150 (|has| |#1| (-351)))) (-1469 (((-3 (-645 $) "failed") (-645 $) $) 120 (|has| |#1| (-308)))) (-1914 (((-1175 |#1|) $) 51 (|has| |#1| (-365)))) (-3841 (($ (-1 |#1| |#1|) $) 263)) (-3474 (((-923) $) 98 (|has| |#1| (-370)))) (-3072 (($ $) 236 (|has| |#1| (-1204)))) (-2484 (((-1175 |#1|) $) 164)) (-2751 (($ (-645 $)) 109 (-2811 (|has| |#1| (-308)) (-12 (|has| |#1| (-308)) (|has| |#1| (-911))))) (($ $ $) 108 (-2811 (|has| |#1| (-308)) (-12 (|has| |#1| (-308)) (|has| |#1| (-911)))))) (-2516 (((-1161) $) 10)) (-2949 (($ $) 125 (|has| |#1| (-365)))) (-2694 (($) 151 (|has| |#1| (-351)) CONST)) (-3779 (($ (-923)) 97 (|has| |#1| (-370)))) (-2726 (($) 258)) (-2750 ((|#1| $) 255)) (-3437 (((-1122) $) 11)) (-1399 (($) 168)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) 110 (-2811 (|has| |#1| (-308)) (-12 (|has| |#1| (-308)) (|has| |#1| (-911)))))) (-2785 (($ (-645 $)) 107 (-2811 (|has| |#1| (-308)) (-12 (|has| |#1| (-308)) (|has| |#1| (-911))))) (($ $ $) 106 (-2811 (|has| |#1| (-308)) (-12 (|has| |#1| (-308)) (|has| |#1| (-911)))))) (-4151 (((-645 (-2 (|:| -2717 (-567)) (|:| -3468 (-567))))) 154 (|has| |#1| (-351)))) (-3551 (((-421 (-1175 $)) (-1175 $)) 245 (-12 (|has| |#1| (-308)) (|has| |#1| (-911))))) (-2016 (((-421 (-1175 $)) (-1175 $)) 244 (-12 (|has| |#1| (-308)) (|has| |#1| (-911))))) (-2717 (((-421 $) $) 121 (-2811 (-12 (|has| |#1| (-308)) (|has| |#1| (-911))) (|has| |#1| (-365))))) (-2905 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119 (|has| |#1| (-308))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) 118 (|has| |#1| (-308)))) (-2400 (((-3 $ "failed") $ |#1|) 253 (|has| |#1| (-559))) (((-3 $ "failed") $ $) 101 (-2811 (|has| |#1| (-559)) (-12 (|has| |#1| (-308)) (|has| |#1| (-911)))))) (-2372 (((-3 (-645 $) "failed") (-645 $) $) 112 (|has| |#1| (-308)))) (-3955 (($ $) 237 (|has| |#1| (-1204)))) (-2642 (($ $ (-645 |#1|) (-645 |#1|)) 269 (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) 268 (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) 267 (|has| |#1| (-310 |#1|))) (($ $ (-645 (-295 |#1|))) 266 (|has| |#1| (-310 |#1|))) (($ $ (-645 (-1179)) (-645 |#1|)) 265 (|has| |#1| (-517 (-1179) |#1|))) (($ $ (-1179) |#1|) 264 (|has| |#1| (-517 (-1179) |#1|)))) (-2460 (((-772) $) 114 (|has| |#1| (-308)))) (-1801 (($ $ |#1|) 270 (|has| |#1| (-287 |#1| |#1|)))) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) 115 (|has| |#1| (-308)))) (-2433 ((|#1| (-1269 $)) 54) ((|#1|) 67)) (-1760 (((-772) $) 159 (|has| |#1| (-351))) (((-3 (-772) "failed") $ $) 147 (|has| |#1| (-351)))) (-1616 (($ $ (-1 |#1| |#1|) (-772)) 131) (($ $ (-1 |#1| |#1|)) 130) (($ $ (-645 (-1179)) (-645 (-772))) 138 (|has| |#1| (-902 (-1179)))) (($ $ (-1179) (-772)) 139 (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179))) 140 (|has| |#1| (-902 (-1179)))) (($ $ (-1179)) 141 (|has| |#1| (-902 (-1179)))) (($ $ (-772)) 143 (-2811 (-1686 (|has| |#1| (-365)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-1686 (|has| |#1| (-233)) (|has| |#1| (-365))))) (($ $) 145 (-2811 (-1686 (|has| |#1| (-365)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-1686 (|has| |#1| (-233)) (|has| |#1| (-365)))))) (-1648 (((-690 |#1|) (-1269 $) (-1 |#1| |#1|)) 162 (|has| |#1| (-365)))) (-3169 (((-1175 |#1|)) 167)) (-3192 (($ $) 226 (|has| |#1| (-1204)))) (-3071 (($ $) 215 (|has| |#1| (-1204)))) (-4273 (($) 156 (|has| |#1| (-351)))) (-3173 (($ $) 225 (|has| |#1| (-1204)))) (-3043 (($ $) 216 (|has| |#1| (-1204)))) (-3155 (($ $) 224 (|has| |#1| (-1204)))) (-3021 (($ $) 217 (|has| |#1| (-1204)))) (-3088 (((-1269 |#1|) $ (-1269 $)) 57) (((-690 |#1|) (-1269 $) (-1269 $)) 56) (((-1269 |#1|) $) 73) (((-690 |#1|) (-1269 $)) 72)) (-3902 (((-1269 |#1|) $) 70) (($ (-1269 |#1|)) 69) (((-1175 |#1|) $) 179) (($ (-1175 |#1|)) 165) (((-894 (-567)) $) 260 (|has| |#1| (-615 (-894 (-567))))) (((-894 (-381)) $) 259 (|has| |#1| (-615 (-894 (-381))))) (((-169 (-381)) $) 211 (|has| |#1| (-1024))) (((-169 (-225)) $) 210 (|has| |#1| (-1024))) (((-539) $) 209 (|has| |#1| (-615 (-539))))) (-1672 (($ $) 257)) (-2616 (((-3 (-1269 $) "failed") (-690 $)) 153 (-2811 (-1686 (|has| $ (-145)) (-12 (|has| |#1| (-308)) (|has| |#1| (-911)))) (|has| |#1| (-351))))) (-3065 (($ |#1| |#1|) 256)) (-4129 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 44) (($ (-410 (-567))) 95 (-2811 (|has| |#1| (-365)) (|has| |#1| (-1040 (-410 (-567)))))) (($ $) 100 (-2811 (|has| |#1| (-559)) (-12 (|has| |#1| (-308)) (|has| |#1| (-911)))))) (-2118 (($ $) 152 (|has| |#1| (-351))) (((-3 $ "failed") $) 50 (-2811 (-1686 (|has| $ (-145)) (-12 (|has| |#1| (-308)) (|has| |#1| (-911)))) (|has| |#1| (-145))))) (-2231 (((-1175 |#1|) $) 52)) (-2746 (((-772)) 32 T CONST)) (-3357 (((-112) $ $) 9)) (-2144 (((-1269 $)) 74)) (-3217 (($ $) 235 (|has| |#1| (-1204)))) (-3103 (($ $) 223 (|has| |#1| (-1204)))) (-3731 (((-112) $ $) 104 (-2811 (|has| |#1| (-559)) (-12 (|has| |#1| (-308)) (|has| |#1| (-911)))))) (-3201 (($ $) 234 (|has| |#1| (-1204)))) (-3083 (($ $) 222 (|has| |#1| (-1204)))) (-3238 (($ $) 233 (|has| |#1| (-1204)))) (-3126 (($ $) 221 (|has| |#1| (-1204)))) (-3189 ((|#1| $) 251 (|has| |#1| (-1204)))) (-3805 (($ $) 232 (|has| |#1| (-1204)))) (-3138 (($ $) 220 (|has| |#1| (-1204)))) (-3228 (($ $) 231 (|has| |#1| (-1204)))) (-3115 (($ $) 219 (|has| |#1| (-1204)))) (-3208 (($ $) 230 (|has| |#1| (-1204)))) (-3093 (($ $) 218 (|has| |#1| (-1204)))) (-1547 (($ $) 252 (|has| |#1| (-1062)))) (-1733 (($) 19 T CONST)) (-1744 (($) 34 T CONST)) (-2647 (($ $ (-1 |#1| |#1|) (-772)) 133) (($ $ (-1 |#1| |#1|)) 132) (($ $ (-645 (-1179)) (-645 (-772))) 134 (|has| |#1| (-902 (-1179)))) (($ $ (-1179) (-772)) 135 (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179))) 136 (|has| |#1| (-902 (-1179)))) (($ $ (-1179)) 137 (|has| |#1| (-902 (-1179)))) (($ $ (-772)) 142 (-2811 (-1686 (|has| |#1| (-365)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-1686 (|has| |#1| (-233)) (|has| |#1| (-365))))) (($ $) 144 (-2811 (-1686 (|has| |#1| (-365)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-1686 (|has| |#1| (-233)) (|has| |#1| (-365)))))) (-2946 (((-112) $ $) 6)) (-3069 (($ $ $) 129 (|has| |#1| (-365)))) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-410 (-567))) 240 (-12 (|has| |#1| (-1004)) (|has| |#1| (-1204)))) (($ $ $) 238 (|has| |#1| (-1204))) (($ $ (-567)) 126 (|has| |#1| (-365)))) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-410 (-567)) $) 128 (|has| |#1| (-365))) (($ $ (-410 (-567))) 127 (|has| |#1| (-365)))))
(((-166 |#1|) (-140) (-172)) (T -166))
-((-2475 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-2825 (*1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-1823 (*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-3056 (*1 *1 *2 *2) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-2739 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-2727 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-2391 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-559)))) (-2219 (*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1062)))) (-2799 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1203)))) (-4351 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-1062)) (-4 *3 (-1203)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-1862 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-112)))) (-2331 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-410 (-567))))) (-2085 (*1 *2 *1) (|partial| -12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-410 (-567))))))
-(-13 (-725 |t#1| (-1174 |t#1|)) (-414 |t#1|) (-231 |t#1|) (-340 |t#1|) (-403 |t#1|) (-886 |t#1|) (-379 |t#1|) (-172) (-10 -8 (-6 -3056) (-15 -2825 ($)) (-15 -1823 ($ $)) (-15 -3056 ($ |t#1| |t#1|)) (-15 -2739 (|t#1| $)) (-15 -2727 (|t#1| $)) (-15 -2475 (|t#1| $)) (IF (|has| |t#1| (-559)) (PROGN (-6 (-559)) (-15 -2391 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-308)) (-6 (-308)) |%noBranch|) (IF (|has| |t#1| (-6 -4417)) (-6 -4417) |%noBranch|) (IF (|has| |t#1| (-6 -4414)) (-6 -4414) |%noBranch|) (IF (|has| |t#1| (-365)) (-6 (-365)) |%noBranch|) (IF (|has| |t#1| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1024)) (PROGN (-6 (-615 (-169 (-225)))) (-6 (-615 (-169 (-381))))) |%noBranch|) (IF (|has| |t#1| (-1062)) (-15 -2219 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1203)) (PROGN (-6 (-1203)) (-15 -2799 (|t#1| $)) (IF (|has| |t#1| (-1004)) (-6 (-1004)) |%noBranch|) (IF (|has| |t#1| (-1062)) (-15 -4351 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-548)) (PROGN (-15 -1862 ((-112) $)) (-15 -2331 ((-410 (-567)) $)) (-15 -2085 ((-3 (-410 (-567)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-911)) (IF (|has| |t#1| (-308)) (-6 (-911)) |%noBranch|) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) -2800 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-38 |#1|) . T) ((-38 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-35) |has| |#1| (-1203)) ((-95) |has| |#1| (-1203)) ((-102) . T) ((-111 #0# #0#) -2800 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2800 (|has| |#1| (-351)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-617 #0#) -2800 (|has| |#1| (-1040 (-410 (-567)))) (|has| |#1| (-351)) (|has| |#1| (-365))) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-617 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-614 (-863)) . T) ((-172) . T) ((-615 (-169 (-225))) |has| |#1| (-1024)) ((-615 (-169 (-381))) |has| |#1| (-1024)) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-615 (-894 (-381))) |has| |#1| (-615 (-894 (-381)))) ((-615 (-894 (-567))) |has| |#1| (-615 (-894 (-567)))) ((-615 #1=(-1174 |#1|)) . T) ((-231 |#1|) . T) ((-233) -2800 (|has| |#1| (-351)) (|has| |#1| (-233))) ((-243) -2800 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-285) |has| |#1| (-1203)) ((-287 |#1| $) |has| |#1| (-287 |#1| |#1|)) ((-291) -2800 (|has| |#1| (-559)) (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-308) -2800 (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-310 |#1|) |has| |#1| (-310 |#1|)) ((-365) -2800 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-405) |has| |#1| (-351)) ((-370) -2800 (|has| |#1| (-370)) (|has| |#1| (-351))) ((-351) |has| |#1| (-351)) ((-372 |#1| #1#) . T) ((-412 |#1| #1#) . T) ((-340 |#1|) . T) ((-379 |#1|) . T) ((-403 |#1|) . T) ((-414 |#1|) . T) ((-455) -2800 (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-496) |has| |#1| (-1203)) ((-517 (-1178) |#1|) |has| |#1| (-517 (-1178) |#1|)) ((-517 |#1| |#1|) |has| |#1| (-310 |#1|)) ((-559) -2800 (|has| |#1| (-559)) (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-647 #0#) -2800 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) -2800 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) -2800 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-641 |#1|) . T) ((-641 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-640 (-567)) |has| |#1| (-640 (-567))) ((-640 |#1|) . T) ((-718 #0#) -2800 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-718 |#1|) . T) ((-718 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-725 |#1| #1#) . T) ((-727) . T) ((-902 (-1178)) |has| |#1| (-902 (-1178))) ((-888 (-381)) |has| |#1| (-888 (-381))) ((-888 (-567)) |has| |#1| (-888 (-567))) ((-886 |#1|) . T) ((-911) -12 (|has| |#1| (-308)) (|has| |#1| (-911))) ((-922) -2800 (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-1004) -12 (|has| |#1| (-1004)) (|has| |#1| (-1203))) ((-1040 (-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) ((-1040 (-567)) |has| |#1| (-1040 (-567))) ((-1040 |#1|) . T) ((-1053 #0#) -2800 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-1053 |#1|) . T) ((-1053 $) . T) ((-1058 #0#) -2800 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-1058 |#1|) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1153) |has| |#1| (-351)) ((-1203) |has| |#1| (-1203)) ((-1206) |has| |#1| (-1203)) ((-1218) . T) ((-1222) -2800 (|has| |#1| (-351)) (|has| |#1| (-365)) (-12 (|has| |#1| (-308)) (|has| |#1| (-911)))))
-((-2706 (((-421 |#2|) |#2|) 69)))
-(((-167 |#1| |#2|) (-10 -7 (-15 -2706 ((-421 |#2|) |#2|))) (-308) (-1244 (-169 |#1|))) (T -167))
-((-2706 (*1 *2 *3) (-12 (-4 *4 (-308)) (-5 *2 (-421 *3)) (-5 *1 (-167 *4 *3)) (-4 *3 (-1244 (-169 *4))))))
-(-10 -7 (-15 -2706 ((-421 |#2|) |#2|)))
-((-3829 (((-169 |#2|) (-1 |#2| |#1|) (-169 |#1|)) 14)))
-(((-168 |#1| |#2|) (-10 -7 (-15 -3829 ((-169 |#2|) (-1 |#2| |#1|) (-169 |#1|)))) (-172) (-172)) (T -168))
-((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-169 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-5 *2 (-169 *6)) (-5 *1 (-168 *5 *6)))))
-(-10 -7 (-15 -3829 ((-169 |#2|) (-1 |#2| |#1|) (-169 |#1|))))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) 34)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL (-2800 (-12 (|has| |#1| (-308)) (|has| |#1| (-911))) (|has| |#1| (-559))))) (-4381 (($ $) NIL (-2800 (-12 (|has| |#1| (-308)) (|has| |#1| (-911))) (|has| |#1| (-559))))) (-3949 (((-112) $) NIL (-2800 (-12 (|has| |#1| (-308)) (|has| |#1| (-911))) (|has| |#1| (-559))))) (-2141 (((-690 |#1|) (-1268 $)) NIL) (((-690 |#1|)) NIL)) (-4293 ((|#1| $) NIL)) (-3146 (($ $) NIL (|has| |#1| (-1203)))) (-3012 (($ $) NIL (|has| |#1| (-1203)))) (-3400 (((-1191 (-923) (-772)) (-567)) NIL (|has| |#1| (-351)))) (-3472 (((-3 $ "failed") $ $) NIL)) (-4226 (((-421 (-1174 $)) (-1174 $)) NIL (-12 (|has| |#1| (-308)) (|has| |#1| (-911))))) (-3248 (($ $) NIL (-2800 (-12 (|has| |#1| (-308)) (|has| |#1| (-911))) (|has| |#1| (-365))))) (-2908 (((-421 $) $) NIL (-2800 (-12 (|has| |#1| (-308)) (|has| |#1| (-911))) (|has| |#1| (-365))))) (-2716 (($ $) NIL (-12 (|has| |#1| (-1004)) (|has| |#1| (-1203))))) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) NIL (-12 (|has| |#1| (-308)) (|has| |#1| (-911))))) (-3609 (((-112) $ $) NIL (|has| |#1| (-308)))) (-2375 (((-772)) NIL (|has| |#1| (-370)))) (-3128 (($ $) NIL (|has| |#1| (-1203)))) (-2987 (($ $) NIL (|has| |#1| (-1203)))) (-3166 (($ $) NIL (|has| |#1| (-1203)))) (-3035 (($ $) NIL (|has| |#1| (-1203)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) NIL)) (-2038 (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) NIL)) (-3658 (($ (-1268 |#1|) (-1268 $)) NIL) (($ (-1268 |#1|)) NIL)) (-2443 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-351)))) (-2349 (($ $ $) NIL (|has| |#1| (-308)))) (-1811 (((-690 |#1|) $ (-1268 $)) NIL) (((-690 |#1|) $) NIL)) (-2630 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 |#1|)) (|:| |vec| (-1268 |#1|))) (-690 $) (-1268 $)) NIL) (((-690 |#1|) (-690 $)) NIL)) (-2477 (($ (-1174 |#1|)) NIL) (((-3 $ "failed") (-410 (-1174 |#1|))) NIL (|has| |#1| (-365)))) (-2109 (((-3 $ "failed") $) NIL)) (-2727 ((|#1| $) 13)) (-2085 (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-548)))) (-1862 (((-112) $) NIL (|has| |#1| (-548)))) (-2331 (((-410 (-567)) $) NIL (|has| |#1| (-548)))) (-1954 (((-923)) NIL)) (-1348 (($) NIL (|has| |#1| (-370)))) (-2360 (($ $ $) NIL (|has| |#1| (-308)))) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL (|has| |#1| (-308)))) (-3431 (($) NIL (|has| |#1| (-351)))) (-2722 (((-112) $) NIL (|has| |#1| (-351)))) (-4225 (($ $ (-772)) NIL (|has| |#1| (-351))) (($ $) NIL (|has| |#1| (-351)))) (-3184 (((-112) $) NIL (-2800 (-12 (|has| |#1| (-308)) (|has| |#1| (-911))) (|has| |#1| (-365))))) (-4351 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1062)) (|has| |#1| (-1203))))) (-1482 (($) NIL (|has| |#1| (-1203)))) (-4303 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (|has| |#1| (-888 (-567)))) (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (|has| |#1| (-888 (-381))))) (-4384 (((-923) $) NIL (|has| |#1| (-351))) (((-834 (-923)) $) NIL (|has| |#1| (-351)))) (-1433 (((-112) $) 36)) (-2651 (($ $ (-567)) NIL (-12 (|has| |#1| (-1004)) (|has| |#1| (-1203))))) (-2475 ((|#1| $) 47)) (-3972 (((-3 $ "failed") $) NIL (|has| |#1| (-351)))) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-308)))) (-4206 (((-1174 |#1|) $) NIL (|has| |#1| (-365)))) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-4249 (((-923) $) NIL (|has| |#1| (-370)))) (-3063 (($ $) NIL (|has| |#1| (-1203)))) (-2465 (((-1174 |#1|) $) NIL)) (-2740 (($ (-645 $)) NIL (|has| |#1| (-308))) (($ $ $) NIL (|has| |#1| (-308)))) (-1419 (((-1160) $) NIL)) (-2939 (($ $) NIL (|has| |#1| (-365)))) (-2672 (($) NIL (|has| |#1| (-351)) CONST)) (-3768 (($ (-923)) NIL (|has| |#1| (-370)))) (-2825 (($) NIL)) (-2739 ((|#1| $) 15)) (-3430 (((-1122) $) NIL)) (-1398 (($) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#1| (-308)))) (-2774 (($ (-645 $)) NIL (|has| |#1| (-308))) (($ $ $) NIL (|has| |#1| (-308)))) (-1796 (((-645 (-2 (|:| -2706 (-567)) (|:| -3458 (-567))))) NIL (|has| |#1| (-351)))) (-2435 (((-421 (-1174 $)) (-1174 $)) NIL (-12 (|has| |#1| (-308)) (|has| |#1| (-911))))) (-3517 (((-421 (-1174 $)) (-1174 $)) NIL (-12 (|has| |#1| (-308)) (|has| |#1| (-911))))) (-2706 (((-421 $) $) NIL (-2800 (-12 (|has| |#1| (-308)) (|has| |#1| (-911))) (|has| |#1| (-365))))) (-3402 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-308))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL (|has| |#1| (-308)))) (-2391 (((-3 $ "failed") $ |#1|) 45 (|has| |#1| (-559))) (((-3 $ "failed") $ $) 48 (-2800 (-12 (|has| |#1| (-308)) (|has| |#1| (-911))) (|has| |#1| (-559))))) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-308)))) (-3946 (($ $) NIL (|has| |#1| (-1203)))) (-2631 (($ $ (-645 |#1|) (-645 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ (-645 (-295 |#1|))) NIL (|has| |#1| (-310 |#1|))) (($ $ (-645 (-1178)) (-645 |#1|)) NIL (|has| |#1| (-517 (-1178) |#1|))) (($ $ (-1178) |#1|) NIL (|has| |#1| (-517 (-1178) |#1|)))) (-1990 (((-772) $) NIL (|has| |#1| (-308)))) (-1787 (($ $ |#1|) NIL (|has| |#1| (-287 |#1| |#1|)))) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL (|has| |#1| (-308)))) (-3788 ((|#1| (-1268 $)) NIL) ((|#1|) NIL)) (-2491 (((-772) $) NIL (|has| |#1| (-351))) (((-3 (-772) "failed") $ $) NIL (|has| |#1| (-351)))) (-1593 (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1178)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-1866 (((-690 |#1|) (-1268 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-365)))) (-3341 (((-1174 |#1|)) NIL)) (-3175 (($ $) NIL (|has| |#1| (-1203)))) (-3049 (($ $) NIL (|has| |#1| (-1203)))) (-1527 (($) NIL (|has| |#1| (-351)))) (-3156 (($ $) NIL (|has| |#1| (-1203)))) (-3023 (($ $) NIL (|has| |#1| (-1203)))) (-3137 (($ $) NIL (|has| |#1| (-1203)))) (-2999 (($ $) NIL (|has| |#1| (-1203)))) (-2887 (((-1268 |#1|) $ (-1268 $)) NIL) (((-690 |#1|) (-1268 $) (-1268 $)) NIL) (((-1268 |#1|) $) NIL) (((-690 |#1|) (-1268 $)) NIL)) (-3893 (((-1268 |#1|) $) NIL) (($ (-1268 |#1|)) NIL) (((-1174 |#1|) $) NIL) (($ (-1174 |#1|)) NIL) (((-894 (-567)) $) NIL (|has| |#1| (-615 (-894 (-567))))) (((-894 (-381)) $) NIL (|has| |#1| (-615 (-894 (-381))))) (((-169 (-381)) $) NIL (|has| |#1| (-1024))) (((-169 (-225)) $) NIL (|has| |#1| (-1024))) (((-539) $) NIL (|has| |#1| (-615 (-539))))) (-1823 (($ $) 46)) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (-2800 (-12 (|has| $ (-145)) (|has| |#1| (-308)) (|has| |#1| (-911))) (|has| |#1| (-351))))) (-3056 (($ |#1| |#1|) 38)) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) 37) (($ (-410 (-567))) NIL (-2800 (|has| |#1| (-365)) (|has| |#1| (-1040 (-410 (-567)))))) (($ $) NIL (-2800 (-12 (|has| |#1| (-308)) (|has| |#1| (-911))) (|has| |#1| (-559))))) (-1903 (($ $) NIL (|has| |#1| (-351))) (((-3 $ "failed") $) NIL (-2800 (-12 (|has| $ (-145)) (|has| |#1| (-308)) (|has| |#1| (-911))) (|has| |#1| (-145))))) (-2155 (((-1174 |#1|) $) NIL)) (-4221 (((-772)) NIL T CONST)) (-1745 (((-112) $ $) NIL)) (-2623 (((-1268 $)) NIL)) (-3200 (($ $) NIL (|has| |#1| (-1203)))) (-3084 (($ $) NIL (|has| |#1| (-1203)))) (-3816 (((-112) $ $) NIL (-2800 (-12 (|has| |#1| (-308)) (|has| |#1| (-911))) (|has| |#1| (-559))))) (-3183 (($ $) NIL (|has| |#1| (-1203)))) (-3062 (($ $) NIL (|has| |#1| (-1203)))) (-3221 (($ $) NIL (|has| |#1| (-1203)))) (-3106 (($ $) NIL (|has| |#1| (-1203)))) (-2799 ((|#1| $) NIL (|has| |#1| (-1203)))) (-3785 (($ $) NIL (|has| |#1| (-1203)))) (-3118 (($ $) NIL (|has| |#1| (-1203)))) (-3211 (($ $) NIL (|has| |#1| (-1203)))) (-3095 (($ $) NIL (|has| |#1| (-1203)))) (-3193 (($ $) NIL (|has| |#1| (-1203)))) (-3074 (($ $) NIL (|has| |#1| (-1203)))) (-2219 (($ $) NIL (|has| |#1| (-1062)))) (-1716 (($) 28 T CONST)) (-1728 (($) 30 T CONST)) (-2904 (((-1160) $) 23 (|has| |#1| (-829))) (((-1160) $ (-112)) 25 (|has| |#1| (-829))) (((-1273) (-823) $) 26 (|has| |#1| (-829))) (((-1273) (-823) $ (-112)) 27 (|has| |#1| (-829)))) (-2637 (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1178)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ $) NIL (|has| |#1| (-365)))) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) 40)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-410 (-567))) NIL (-12 (|has| |#1| (-1004)) (|has| |#1| (-1203)))) (($ $ $) NIL (|has| |#1| (-1203))) (($ $ (-567)) NIL (|has| |#1| (-365)))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 43) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-410 (-567)) $) NIL (|has| |#1| (-365))) (($ $ (-410 (-567))) NIL (|has| |#1| (-365)))))
+((-2724 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-2726 (*1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-1672 (*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-3065 (*1 *1 *2 *2) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-2750 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-2738 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-2400 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-559)))) (-1547 (*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1062)))) (-3189 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1204)))) (-4183 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-1062)) (-4 *3 (-1204)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-2492 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-112)))) (-2778 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-410 (-567))))) (-1605 (*1 *2 *1) (|partial| -12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-410 (-567))))))
+(-13 (-725 |t#1| (-1175 |t#1|)) (-414 |t#1|) (-231 |t#1|) (-340 |t#1|) (-403 |t#1|) (-886 |t#1|) (-379 |t#1|) (-172) (-10 -8 (-6 -3065) (-15 -2726 ($)) (-15 -1672 ($ $)) (-15 -3065 ($ |t#1| |t#1|)) (-15 -2750 (|t#1| $)) (-15 -2738 (|t#1| $)) (-15 -2724 (|t#1| $)) (IF (|has| |t#1| (-559)) (PROGN (-6 (-559)) (-15 -2400 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-308)) (-6 (-308)) |%noBranch|) (IF (|has| |t#1| (-6 -4421)) (-6 -4421) |%noBranch|) (IF (|has| |t#1| (-6 -4418)) (-6 -4418) |%noBranch|) (IF (|has| |t#1| (-365)) (-6 (-365)) |%noBranch|) (IF (|has| |t#1| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1024)) (PROGN (-6 (-615 (-169 (-225)))) (-6 (-615 (-169 (-381))))) |%noBranch|) (IF (|has| |t#1| (-1062)) (-15 -1547 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1204)) (PROGN (-6 (-1204)) (-15 -3189 (|t#1| $)) (IF (|has| |t#1| (-1004)) (-6 (-1004)) |%noBranch|) (IF (|has| |t#1| (-1062)) (-15 -4183 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-548)) (PROGN (-15 -2492 ((-112) $)) (-15 -2778 ((-410 (-567)) $)) (-15 -1605 ((-3 (-410 (-567)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-911)) (IF (|has| |t#1| (-308)) (-6 (-911)) |%noBranch|) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) -2811 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-38 |#1|) . T) ((-38 $) -2811 (|has| |#1| (-559)) (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-35) |has| |#1| (-1204)) ((-95) |has| |#1| (-1204)) ((-102) . T) ((-111 #0# #0#) -2811 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2811 (|has| |#1| (-351)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-617 #0#) -2811 (|has| |#1| (-1040 (-410 (-567)))) (|has| |#1| (-351)) (|has| |#1| (-365))) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-617 $) -2811 (|has| |#1| (-559)) (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-614 (-863)) . T) ((-172) . T) ((-615 (-169 (-225))) |has| |#1| (-1024)) ((-615 (-169 (-381))) |has| |#1| (-1024)) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-615 (-894 (-381))) |has| |#1| (-615 (-894 (-381)))) ((-615 (-894 (-567))) |has| |#1| (-615 (-894 (-567)))) ((-615 #1=(-1175 |#1|)) . T) ((-231 |#1|) . T) ((-233) -2811 (|has| |#1| (-351)) (|has| |#1| (-233))) ((-243) -2811 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-285) |has| |#1| (-1204)) ((-287 |#1| $) |has| |#1| (-287 |#1| |#1|)) ((-291) -2811 (|has| |#1| (-559)) (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-308) -2811 (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-310 |#1|) |has| |#1| (-310 |#1|)) ((-365) -2811 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-405) |has| |#1| (-351)) ((-370) -2811 (|has| |#1| (-370)) (|has| |#1| (-351))) ((-351) |has| |#1| (-351)) ((-372 |#1| #1#) . T) ((-412 |#1| #1#) . T) ((-340 |#1|) . T) ((-379 |#1|) . T) ((-403 |#1|) . T) ((-414 |#1|) . T) ((-455) -2811 (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-496) |has| |#1| (-1204)) ((-517 (-1179) |#1|) |has| |#1| (-517 (-1179) |#1|)) ((-517 |#1| |#1|) |has| |#1| (-310 |#1|)) ((-559) -2811 (|has| |#1| (-559)) (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-647 #0#) -2811 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) -2811 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) -2811 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-641 |#1|) . T) ((-641 $) -2811 (|has| |#1| (-559)) (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-640 (-567)) |has| |#1| (-640 (-567))) ((-640 |#1|) . T) ((-718 #0#) -2811 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-718 |#1|) . T) ((-718 $) -2811 (|has| |#1| (-559)) (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-725 |#1| #1#) . T) ((-727) . T) ((-902 (-1179)) |has| |#1| (-902 (-1179))) ((-888 (-381)) |has| |#1| (-888 (-381))) ((-888 (-567)) |has| |#1| (-888 (-567))) ((-886 |#1|) . T) ((-911) -12 (|has| |#1| (-308)) (|has| |#1| (-911))) ((-922) -2811 (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-1004) -12 (|has| |#1| (-1004)) (|has| |#1| (-1204))) ((-1040 (-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) ((-1040 (-567)) |has| |#1| (-1040 (-567))) ((-1040 |#1|) . T) ((-1053 #0#) -2811 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-1053 |#1|) . T) ((-1053 $) . T) ((-1058 #0#) -2811 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-1058 |#1|) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1154) |has| |#1| (-351)) ((-1204) |has| |#1| (-1204)) ((-1207) |has| |#1| (-1204)) ((-1219) . T) ((-1223) -2811 (|has| |#1| (-351)) (|has| |#1| (-365)) (-12 (|has| |#1| (-308)) (|has| |#1| (-911)))))
+((-2717 (((-421 |#2|) |#2|) 69)))
+(((-167 |#1| |#2|) (-10 -7 (-15 -2717 ((-421 |#2|) |#2|))) (-308) (-1245 (-169 |#1|))) (T -167))
+((-2717 (*1 *2 *3) (-12 (-4 *4 (-308)) (-5 *2 (-421 *3)) (-5 *1 (-167 *4 *3)) (-4 *3 (-1245 (-169 *4))))))
+(-10 -7 (-15 -2717 ((-421 |#2|) |#2|)))
+((-3841 (((-169 |#2|) (-1 |#2| |#1|) (-169 |#1|)) 14)))
+(((-168 |#1| |#2|) (-10 -7 (-15 -3841 ((-169 |#2|) (-1 |#2| |#1|) (-169 |#1|)))) (-172) (-172)) (T -168))
+((-3841 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-169 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-5 *2 (-169 *6)) (-5 *1 (-168 *5 *6)))))
+(-10 -7 (-15 -3841 ((-169 |#2|) (-1 |#2| |#1|) (-169 |#1|))))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) 34)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) NIL (-2811 (-12 (|has| |#1| (-308)) (|has| |#1| (-911))) (|has| |#1| (-559))))) (-4287 (($ $) NIL (-2811 (-12 (|has| |#1| (-308)) (|has| |#1| (-911))) (|has| |#1| (-559))))) (-2286 (((-112) $) NIL (-2811 (-12 (|has| |#1| (-308)) (|has| |#1| (-911))) (|has| |#1| (-559))))) (-3478 (((-690 |#1|) (-1269 $)) NIL) (((-690 |#1|)) NIL)) (-4293 ((|#1| $) NIL)) (-3164 (($ $) NIL (|has| |#1| (-1204)))) (-3032 (($ $) NIL (|has| |#1| (-1204)))) (-3792 (((-1192 (-923) (-772)) (-567)) NIL (|has| |#1| (-351)))) (-2376 (((-3 $ "failed") $ $) NIL)) (-2029 (((-421 (-1175 $)) (-1175 $)) NIL (-12 (|has| |#1| (-308)) (|has| |#1| (-911))))) (-3659 (($ $) NIL (-2811 (-12 (|has| |#1| (-308)) (|has| |#1| (-911))) (|has| |#1| (-365))))) (-3597 (((-421 $) $) NIL (-2811 (-12 (|has| |#1| (-308)) (|has| |#1| (-911))) (|has| |#1| (-365))))) (-2728 (($ $) NIL (-12 (|has| |#1| (-1004)) (|has| |#1| (-1204))))) (-3610 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) NIL (-12 (|has| |#1| (-308)) (|has| |#1| (-911))))) (-3696 (((-112) $ $) NIL (|has| |#1| (-308)))) (-2384 (((-772)) NIL (|has| |#1| (-370)))) (-3145 (($ $) NIL (|has| |#1| (-1204)))) (-3008 (($ $) NIL (|has| |#1| (-1204)))) (-3182 (($ $) NIL (|has| |#1| (-1204)))) (-3057 (($ $) NIL (|has| |#1| (-1204)))) (-3647 (($) NIL T CONST)) (-3765 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) NIL)) (-2051 (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) NIL)) (-3111 (($ (-1269 |#1|) (-1269 $)) NIL) (($ (-1269 |#1|)) NIL)) (-2998 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-351)))) (-2357 (($ $ $) NIL (|has| |#1| (-308)))) (-3012 (((-690 |#1|) $ (-1269 $)) NIL) (((-690 |#1|) $) NIL)) (-1423 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4208 (-690 |#1|)) (|:| |vec| (-1269 |#1|))) (-690 $) (-1269 $)) NIL) (((-690 |#1|) (-690 $)) NIL)) (-2494 (($ (-1175 |#1|)) NIL) (((-3 $ "failed") (-410 (-1175 |#1|))) NIL (|has| |#1| (-365)))) (-3588 (((-3 $ "failed") $) NIL)) (-2738 ((|#1| $) 13)) (-1605 (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-548)))) (-2492 (((-112) $) NIL (|has| |#1| (-548)))) (-2778 (((-410 (-567)) $) NIL (|has| |#1| (-548)))) (-1976 (((-923)) NIL)) (-1359 (($) NIL (|has| |#1| (-370)))) (-2368 (($ $ $) NIL (|has| |#1| (-308)))) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) NIL (|has| |#1| (-308)))) (-2870 (($) NIL (|has| |#1| (-351)))) (-1305 (((-112) $) NIL (|has| |#1| (-351)))) (-3144 (($ $ (-772)) NIL (|has| |#1| (-351))) (($ $) NIL (|has| |#1| (-351)))) (-3502 (((-112) $) NIL (-2811 (-12 (|has| |#1| (-308)) (|has| |#1| (-911))) (|has| |#1| (-365))))) (-4183 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1062)) (|has| |#1| (-1204))))) (-1484 (($) NIL (|has| |#1| (-1204)))) (-3193 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (|has| |#1| (-888 (-567)))) (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (|has| |#1| (-888 (-381))))) (-3362 (((-923) $) NIL (|has| |#1| (-351))) (((-834 (-923)) $) NIL (|has| |#1| (-351)))) (-4346 (((-112) $) 36)) (-3698 (($ $ (-567)) NIL (-12 (|has| |#1| (-1004)) (|has| |#1| (-1204))))) (-2724 ((|#1| $) 47)) (-3067 (((-3 $ "failed") $) NIL (|has| |#1| (-351)))) (-1469 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-308)))) (-1914 (((-1175 |#1|) $) NIL (|has| |#1| (-365)))) (-3841 (($ (-1 |#1| |#1|) $) NIL)) (-3474 (((-923) $) NIL (|has| |#1| (-370)))) (-3072 (($ $) NIL (|has| |#1| (-1204)))) (-2484 (((-1175 |#1|) $) NIL)) (-2751 (($ (-645 $)) NIL (|has| |#1| (-308))) (($ $ $) NIL (|has| |#1| (-308)))) (-2516 (((-1161) $) NIL)) (-2949 (($ $) NIL (|has| |#1| (-365)))) (-2694 (($) NIL (|has| |#1| (-351)) CONST)) (-3779 (($ (-923)) NIL (|has| |#1| (-370)))) (-2726 (($) NIL)) (-2750 ((|#1| $) 15)) (-3437 (((-1122) $) NIL)) (-1399 (($) NIL)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| |#1| (-308)))) (-2785 (($ (-645 $)) NIL (|has| |#1| (-308))) (($ $ $) NIL (|has| |#1| (-308)))) (-4151 (((-645 (-2 (|:| -2717 (-567)) (|:| -3468 (-567))))) NIL (|has| |#1| (-351)))) (-3551 (((-421 (-1175 $)) (-1175 $)) NIL (-12 (|has| |#1| (-308)) (|has| |#1| (-911))))) (-2016 (((-421 (-1175 $)) (-1175 $)) NIL (-12 (|has| |#1| (-308)) (|has| |#1| (-911))))) (-2717 (((-421 $) $) NIL (-2811 (-12 (|has| |#1| (-308)) (|has| |#1| (-911))) (|has| |#1| (-365))))) (-2905 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-308))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) NIL (|has| |#1| (-308)))) (-2400 (((-3 $ "failed") $ |#1|) 45 (|has| |#1| (-559))) (((-3 $ "failed") $ $) 48 (-2811 (-12 (|has| |#1| (-308)) (|has| |#1| (-911))) (|has| |#1| (-559))))) (-2372 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-308)))) (-3955 (($ $) NIL (|has| |#1| (-1204)))) (-2642 (($ $ (-645 |#1|) (-645 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ (-645 (-295 |#1|))) NIL (|has| |#1| (-310 |#1|))) (($ $ (-645 (-1179)) (-645 |#1|)) NIL (|has| |#1| (-517 (-1179) |#1|))) (($ $ (-1179) |#1|) NIL (|has| |#1| (-517 (-1179) |#1|)))) (-2460 (((-772) $) NIL (|has| |#1| (-308)))) (-1801 (($ $ |#1|) NIL (|has| |#1| (-287 |#1| |#1|)))) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) NIL (|has| |#1| (-308)))) (-2433 ((|#1| (-1269 $)) NIL) ((|#1|) NIL)) (-1760 (((-772) $) NIL (|has| |#1| (-351))) (((-3 (-772) "failed") $ $) NIL (|has| |#1| (-351)))) (-1616 (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1179)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-1648 (((-690 |#1|) (-1269 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-365)))) (-3169 (((-1175 |#1|)) NIL)) (-3192 (($ $) NIL (|has| |#1| (-1204)))) (-3071 (($ $) NIL (|has| |#1| (-1204)))) (-4273 (($) NIL (|has| |#1| (-351)))) (-3173 (($ $) NIL (|has| |#1| (-1204)))) (-3043 (($ $) NIL (|has| |#1| (-1204)))) (-3155 (($ $) NIL (|has| |#1| (-1204)))) (-3021 (($ $) NIL (|has| |#1| (-1204)))) (-3088 (((-1269 |#1|) $ (-1269 $)) NIL) (((-690 |#1|) (-1269 $) (-1269 $)) NIL) (((-1269 |#1|) $) NIL) (((-690 |#1|) (-1269 $)) NIL)) (-3902 (((-1269 |#1|) $) NIL) (($ (-1269 |#1|)) NIL) (((-1175 |#1|) $) NIL) (($ (-1175 |#1|)) NIL) (((-894 (-567)) $) NIL (|has| |#1| (-615 (-894 (-567))))) (((-894 (-381)) $) NIL (|has| |#1| (-615 (-894 (-381))))) (((-169 (-381)) $) NIL (|has| |#1| (-1024))) (((-169 (-225)) $) NIL (|has| |#1| (-1024))) (((-539) $) NIL (|has| |#1| (-615 (-539))))) (-1672 (($ $) 46)) (-2616 (((-3 (-1269 $) "failed") (-690 $)) NIL (-2811 (-12 (|has| $ (-145)) (|has| |#1| (-308)) (|has| |#1| (-911))) (|has| |#1| (-351))))) (-3065 (($ |#1| |#1|) 38)) (-4129 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) 37) (($ (-410 (-567))) NIL (-2811 (|has| |#1| (-365)) (|has| |#1| (-1040 (-410 (-567)))))) (($ $) NIL (-2811 (-12 (|has| |#1| (-308)) (|has| |#1| (-911))) (|has| |#1| (-559))))) (-2118 (($ $) NIL (|has| |#1| (-351))) (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-145)) (|has| |#1| (-308)) (|has| |#1| (-911))) (|has| |#1| (-145))))) (-2231 (((-1175 |#1|) $) NIL)) (-2746 (((-772)) NIL T CONST)) (-3357 (((-112) $ $) NIL)) (-2144 (((-1269 $)) NIL)) (-3217 (($ $) NIL (|has| |#1| (-1204)))) (-3103 (($ $) NIL (|has| |#1| (-1204)))) (-3731 (((-112) $ $) NIL (-2811 (-12 (|has| |#1| (-308)) (|has| |#1| (-911))) (|has| |#1| (-559))))) (-3201 (($ $) NIL (|has| |#1| (-1204)))) (-3083 (($ $) NIL (|has| |#1| (-1204)))) (-3238 (($ $) NIL (|has| |#1| (-1204)))) (-3126 (($ $) NIL (|has| |#1| (-1204)))) (-3189 ((|#1| $) NIL (|has| |#1| (-1204)))) (-3805 (($ $) NIL (|has| |#1| (-1204)))) (-3138 (($ $) NIL (|has| |#1| (-1204)))) (-3228 (($ $) NIL (|has| |#1| (-1204)))) (-3115 (($ $) NIL (|has| |#1| (-1204)))) (-3208 (($ $) NIL (|has| |#1| (-1204)))) (-3093 (($ $) NIL (|has| |#1| (-1204)))) (-1547 (($ $) NIL (|has| |#1| (-1062)))) (-1733 (($) 28 T CONST)) (-1744 (($) 30 T CONST)) (-1335 (((-1161) $) 23 (|has| |#1| (-829))) (((-1161) $ (-112)) 25 (|has| |#1| (-829))) (((-1274) (-823) $) 26 (|has| |#1| (-829))) (((-1274) (-823) $ (-112)) 27 (|has| |#1| (-829)))) (-2647 (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1179)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-2946 (((-112) $ $) NIL)) (-3069 (($ $ $) NIL (|has| |#1| (-365)))) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) 40)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-410 (-567))) NIL (-12 (|has| |#1| (-1004)) (|has| |#1| (-1204)))) (($ $ $) NIL (|has| |#1| (-1204))) (($ $ (-567)) NIL (|has| |#1| (-365)))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 43) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-410 (-567)) $) NIL (|has| |#1| (-365))) (($ $ (-410 (-567))) NIL (|has| |#1| (-365)))))
(((-169 |#1|) (-13 (-166 |#1|) (-10 -7 (IF (|has| |#1| (-829)) (-6 (-829)) |%noBranch|))) (-172)) (T -169))
NIL
(-13 (-166 |#1|) (-10 -7 (IF (|has| |#1| (-829)) (-6 (-829)) |%noBranch|)))
-((-3893 (((-894 |#1|) |#3|) 22)))
-(((-170 |#1| |#2| |#3|) (-10 -7 (-15 -3893 ((-894 |#1|) |#3|))) (-1102) (-13 (-615 (-894 |#1|)) (-172)) (-166 |#2|)) (T -170))
-((-3893 (*1 *2 *3) (-12 (-4 *5 (-13 (-615 *2) (-172))) (-5 *2 (-894 *4)) (-5 *1 (-170 *4 *5 *3)) (-4 *4 (-1102)) (-4 *3 (-166 *5)))))
-(-10 -7 (-15 -3893 ((-894 |#1|) |#3|)))
-((-2403 (((-112) $ $) NIL)) (-4174 (((-112) $) 9)) (-4247 (((-112) $ (-112)) 11)) (-2846 (($) 13)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4305 (($ $) 14)) (-4132 (((-863) $) 18)) (-3416 (((-112) $) 8)) (-3995 (((-112) $ (-112)) 10)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)))
-(((-171) (-13 (-1102) (-10 -8 (-15 -2846 ($)) (-15 -3416 ((-112) $)) (-15 -4174 ((-112) $)) (-15 -3995 ((-112) $ (-112))) (-15 -4247 ((-112) $ (-112))) (-15 -4305 ($ $))))) (T -171))
-((-2846 (*1 *1) (-5 *1 (-171))) (-3416 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-4174 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-3995 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-4247 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-4305 (*1 *1 *1) (-5 *1 (-171))))
-(-13 (-1102) (-10 -8 (-15 -2846 ($)) (-15 -3416 ((-112) $)) (-15 -4174 ((-112) $)) (-15 -3995 ((-112) $ (-112))) (-15 -4247 ((-112) $ (-112))) (-15 -4305 ($ $))))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-2109 (((-3 $ "failed") $) 37)) (-1433 (((-112) $) 35)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12) (($ (-567)) 33)) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27)))
+((-3902 (((-894 |#1|) |#3|) 22)))
+(((-170 |#1| |#2| |#3|) (-10 -7 (-15 -3902 ((-894 |#1|) |#3|))) (-1102) (-13 (-615 (-894 |#1|)) (-172)) (-166 |#2|)) (T -170))
+((-3902 (*1 *2 *3) (-12 (-4 *5 (-13 (-615 *2) (-172))) (-5 *2 (-894 *4)) (-5 *1 (-170 *4 *5 *3)) (-4 *4 (-1102)) (-4 *3 (-166 *5)))))
+(-10 -7 (-15 -3902 ((-894 |#1|) |#3|)))
+((-2412 (((-112) $ $) NIL)) (-3499 (((-112) $) 9)) (-3294 (((-112) $ (-112)) 11)) (-2858 (($) 13)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4309 (($ $) 14)) (-4129 (((-863) $) 18)) (-1714 (((-112) $) 8)) (-4000 (((-112) $ (-112)) 10)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)))
+(((-171) (-13 (-1102) (-10 -8 (-15 -2858 ($)) (-15 -1714 ((-112) $)) (-15 -3499 ((-112) $)) (-15 -4000 ((-112) $ (-112))) (-15 -3294 ((-112) $ (-112))) (-15 -4309 ($ $))))) (T -171))
+((-2858 (*1 *1) (-5 *1 (-171))) (-1714 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-3499 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-4000 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-3294 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-4309 (*1 *1 *1) (-5 *1 (-171))))
+(-13 (-1102) (-10 -8 (-15 -2858 ($)) (-15 -1714 ((-112) $)) (-15 -3499 ((-112) $)) (-15 -4000 ((-112) $ (-112))) (-15 -3294 ((-112) $ (-112))) (-15 -4309 ($ $))))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-2376 (((-3 $ "failed") $ $) 20)) (-3647 (($) 18 T CONST)) (-3588 (((-3 $ "failed") $) 37)) (-4346 (((-112) $) 35)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-4129 (((-863) $) 12) (($ (-567)) 33)) (-2746 (((-772)) 32 T CONST)) (-3357 (((-112) $ $) 9)) (-1733 (($) 19 T CONST)) (-1744 (($) 34 T CONST)) (-2946 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27)))
(((-172) (-140)) (T -172))
NIL
-(-13 (-1051) (-111 $ $) (-10 -7 (-6 (-4420 "*"))))
+(-13 (-1051) (-111 $ $) (-10 -7 (-6 (-4424 "*"))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-617 (-567)) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-727) . T) ((-1053 $) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T))
-((-1675 (($ $) 6)))
+((-3034 (($ $) 6)))
(((-173) (-140)) (T -173))
-((-1675 (*1 *1 *1) (-4 *1 (-173))))
-(-13 (-10 -8 (-15 -1675 ($ $))))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3093 ((|#1| $) 81)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-3248 (($ $) NIL)) (-2908 (((-421 $) $) NIL)) (-3609 (((-112) $ $) NIL)) (-2585 (($) NIL T CONST)) (-2349 (($ $ $) NIL)) (-4313 (($ $) 21)) (-3991 (($ |#1| (-1158 |#1|)) 50)) (-2109 (((-3 $ "failed") $) 123)) (-2360 (($ $ $) NIL)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-3184 (((-112) $) NIL)) (-2590 (((-1158 |#1|) $) 88)) (-2379 (((-1158 |#1|) $) 85)) (-3595 (((-1158 |#1|) $) 86)) (-1433 (((-112) $) NIL)) (-3578 (((-1158 |#1|) $) 94)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2740 (($ (-645 $)) NIL) (($ $ $) NIL)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) NIL)) (-3430 (((-1122) $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-2774 (($ (-645 $)) NIL) (($ $ $) NIL)) (-2706 (((-421 $) $) NIL)) (-3402 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL)) (-2410 (($ $ (-567)) 97)) (-2391 (((-3 $ "failed") $ $) NIL)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1990 (((-772) $) NIL)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL)) (-4193 (((-1158 |#1|) $) 95)) (-1908 (((-1158 (-410 |#1|)) $) 14)) (-1579 (($ (-410 |#1|)) 17) (($ |#1| (-1158 |#1|) (-1158 |#1|)) 40)) (-2192 (($ $) 99)) (-4132 (((-863) $) 140) (($ (-567)) 53) (($ |#1|) 54) (($ (-410 |#1|)) 38) (($ (-410 (-567))) NIL) (($ $) NIL)) (-4221 (((-772)) 70 T CONST)) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL)) (-2884 (((-1158 (-410 |#1|)) $) 20)) (-1716 (($) 27 T CONST)) (-1728 (($) 30 T CONST)) (-2936 (((-112) $ $) 37)) (-3060 (($ $ $) 121)) (-3045 (($ $) 112) (($ $ $) 109)) (-3033 (($ $ $) 107)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 119) (($ $ $) 114) (($ $ |#1|) NIL) (($ |#1| $) 116) (($ (-410 |#1|) $) 117) (($ $ (-410 |#1|)) NIL) (($ (-410 (-567)) $) NIL) (($ $ (-410 (-567))) NIL)))
-(((-174 |#1|) (-13 (-38 |#1|) (-38 (-410 |#1|)) (-365) (-10 -8 (-15 -1579 ($ (-410 |#1|))) (-15 -1579 ($ |#1| (-1158 |#1|) (-1158 |#1|))) (-15 -3991 ($ |#1| (-1158 |#1|))) (-15 -2379 ((-1158 |#1|) $)) (-15 -3595 ((-1158 |#1|) $)) (-15 -2590 ((-1158 |#1|) $)) (-15 -3093 (|#1| $)) (-15 -4313 ($ $)) (-15 -2884 ((-1158 (-410 |#1|)) $)) (-15 -1908 ((-1158 (-410 |#1|)) $)) (-15 -3578 ((-1158 |#1|) $)) (-15 -4193 ((-1158 |#1|) $)) (-15 -2410 ($ $ (-567))) (-15 -2192 ($ $)))) (-308)) (T -174))
-((-1579 (*1 *1 *2) (-12 (-5 *2 (-410 *3)) (-4 *3 (-308)) (-5 *1 (-174 *3)))) (-1579 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1158 *2)) (-4 *2 (-308)) (-5 *1 (-174 *2)))) (-3991 (*1 *1 *2 *3) (-12 (-5 *3 (-1158 *2)) (-4 *2 (-308)) (-5 *1 (-174 *2)))) (-2379 (*1 *2 *1) (-12 (-5 *2 (-1158 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-3595 (*1 *2 *1) (-12 (-5 *2 (-1158 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-2590 (*1 *2 *1) (-12 (-5 *2 (-1158 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-3093 (*1 *2 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-308)))) (-4313 (*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-308)))) (-2884 (*1 *2 *1) (-12 (-5 *2 (-1158 (-410 *3))) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-1908 (*1 *2 *1) (-12 (-5 *2 (-1158 (-410 *3))) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-3578 (*1 *2 *1) (-12 (-5 *2 (-1158 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-4193 (*1 *2 *1) (-12 (-5 *2 (-1158 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-2410 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-2192 (*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-308)))))
-(-13 (-38 |#1|) (-38 (-410 |#1|)) (-365) (-10 -8 (-15 -1579 ($ (-410 |#1|))) (-15 -1579 ($ |#1| (-1158 |#1|) (-1158 |#1|))) (-15 -3991 ($ |#1| (-1158 |#1|))) (-15 -2379 ((-1158 |#1|) $)) (-15 -3595 ((-1158 |#1|) $)) (-15 -2590 ((-1158 |#1|) $)) (-15 -3093 (|#1| $)) (-15 -4313 ($ $)) (-15 -2884 ((-1158 (-410 |#1|)) $)) (-15 -1908 ((-1158 (-410 |#1|)) $)) (-15 -3578 ((-1158 |#1|) $)) (-15 -4193 ((-1158 |#1|) $)) (-15 -2410 ($ $ (-567))) (-15 -2192 ($ $))))
-((-1363 (($ (-109) $) 15)) (-2025 (((-692 (-109)) (-509) $) 14)) (-4132 (((-863) $) 18)) (-2267 (((-645 (-109)) $) 8)))
-(((-175) (-13 (-614 (-863)) (-10 -8 (-15 -2267 ((-645 (-109)) $)) (-15 -1363 ($ (-109) $)) (-15 -2025 ((-692 (-109)) (-509) $))))) (T -175))
-((-2267 (*1 *2 *1) (-12 (-5 *2 (-645 (-109))) (-5 *1 (-175)))) (-1363 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-175)))) (-2025 (*1 *2 *3 *1) (-12 (-5 *3 (-509)) (-5 *2 (-692 (-109))) (-5 *1 (-175)))))
-(-13 (-614 (-863)) (-10 -8 (-15 -2267 ((-645 (-109)) $)) (-15 -1363 ($ (-109) $)) (-15 -2025 ((-692 (-109)) (-509) $))))
-((-2982 (((-1 (-945 |#1|) (-945 |#1|)) |#1|) 40)) (-3119 (((-945 |#1|) (-945 |#1|)) 24)) (-3005 (((-1 (-945 |#1|) (-945 |#1|)) |#1|) 36)) (-1861 (((-945 |#1|) (-945 |#1|)) 22)) (-3545 (((-945 |#1|) (-945 |#1|)) 30)) (-2356 (((-945 |#1|) (-945 |#1|)) 29)) (-1972 (((-945 |#1|) (-945 |#1|)) 28)) (-2903 (((-1 (-945 |#1|) (-945 |#1|)) |#1|) 37)) (-2620 (((-1 (-945 |#1|) (-945 |#1|)) |#1|) 35)) (-3346 (((-1 (-945 |#1|) (-945 |#1|)) |#1|) 34)) (-1303 (((-945 |#1|) (-945 |#1|)) 23)) (-4319 (((-1 (-945 |#1|) (-945 |#1|)) |#1| |#1|) 43)) (-2442 (((-945 |#1|) (-945 |#1|)) 8)) (-3978 (((-1 (-945 |#1|) (-945 |#1|)) |#1|) 39)) (-1541 (((-1 (-945 |#1|) (-945 |#1|)) |#1|) 38)))
-(((-176 |#1|) (-10 -7 (-15 -2442 ((-945 |#1|) (-945 |#1|))) (-15 -1861 ((-945 |#1|) (-945 |#1|))) (-15 -1303 ((-945 |#1|) (-945 |#1|))) (-15 -3119 ((-945 |#1|) (-945 |#1|))) (-15 -1972 ((-945 |#1|) (-945 |#1|))) (-15 -2356 ((-945 |#1|) (-945 |#1|))) (-15 -3545 ((-945 |#1|) (-945 |#1|))) (-15 -3346 ((-1 (-945 |#1|) (-945 |#1|)) |#1|)) (-15 -2620 ((-1 (-945 |#1|) (-945 |#1|)) |#1|)) (-15 -3005 ((-1 (-945 |#1|) (-945 |#1|)) |#1|)) (-15 -2903 ((-1 (-945 |#1|) (-945 |#1|)) |#1|)) (-15 -1541 ((-1 (-945 |#1|) (-945 |#1|)) |#1|)) (-15 -3978 ((-1 (-945 |#1|) (-945 |#1|)) |#1|)) (-15 -2982 ((-1 (-945 |#1|) (-945 |#1|)) |#1|)) (-15 -4319 ((-1 (-945 |#1|) (-945 |#1|)) |#1| |#1|))) (-13 (-365) (-1203) (-1004))) (T -176))
-((-4319 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-945 *3) (-945 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1203) (-1004))))) (-2982 (*1 *2 *3) (-12 (-5 *2 (-1 (-945 *3) (-945 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1203) (-1004))))) (-3978 (*1 *2 *3) (-12 (-5 *2 (-1 (-945 *3) (-945 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1203) (-1004))))) (-1541 (*1 *2 *3) (-12 (-5 *2 (-1 (-945 *3) (-945 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1203) (-1004))))) (-2903 (*1 *2 *3) (-12 (-5 *2 (-1 (-945 *3) (-945 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1203) (-1004))))) (-3005 (*1 *2 *3) (-12 (-5 *2 (-1 (-945 *3) (-945 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1203) (-1004))))) (-2620 (*1 *2 *3) (-12 (-5 *2 (-1 (-945 *3) (-945 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1203) (-1004))))) (-3346 (*1 *2 *3) (-12 (-5 *2 (-1 (-945 *3) (-945 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1203) (-1004))))) (-3545 (*1 *2 *2) (-12 (-5 *2 (-945 *3)) (-4 *3 (-13 (-365) (-1203) (-1004))) (-5 *1 (-176 *3)))) (-2356 (*1 *2 *2) (-12 (-5 *2 (-945 *3)) (-4 *3 (-13 (-365) (-1203) (-1004))) (-5 *1 (-176 *3)))) (-1972 (*1 *2 *2) (-12 (-5 *2 (-945 *3)) (-4 *3 (-13 (-365) (-1203) (-1004))) (-5 *1 (-176 *3)))) (-3119 (*1 *2 *2) (-12 (-5 *2 (-945 *3)) (-4 *3 (-13 (-365) (-1203) (-1004))) (-5 *1 (-176 *3)))) (-1303 (*1 *2 *2) (-12 (-5 *2 (-945 *3)) (-4 *3 (-13 (-365) (-1203) (-1004))) (-5 *1 (-176 *3)))) (-1861 (*1 *2 *2) (-12 (-5 *2 (-945 *3)) (-4 *3 (-13 (-365) (-1203) (-1004))) (-5 *1 (-176 *3)))) (-2442 (*1 *2 *2) (-12 (-5 *2 (-945 *3)) (-4 *3 (-13 (-365) (-1203) (-1004))) (-5 *1 (-176 *3)))))
-(-10 -7 (-15 -2442 ((-945 |#1|) (-945 |#1|))) (-15 -1861 ((-945 |#1|) (-945 |#1|))) (-15 -1303 ((-945 |#1|) (-945 |#1|))) (-15 -3119 ((-945 |#1|) (-945 |#1|))) (-15 -1972 ((-945 |#1|) (-945 |#1|))) (-15 -2356 ((-945 |#1|) (-945 |#1|))) (-15 -3545 ((-945 |#1|) (-945 |#1|))) (-15 -3346 ((-1 (-945 |#1|) (-945 |#1|)) |#1|)) (-15 -2620 ((-1 (-945 |#1|) (-945 |#1|)) |#1|)) (-15 -3005 ((-1 (-945 |#1|) (-945 |#1|)) |#1|)) (-15 -2903 ((-1 (-945 |#1|) (-945 |#1|)) |#1|)) (-15 -1541 ((-1 (-945 |#1|) (-945 |#1|)) |#1|)) (-15 -3978 ((-1 (-945 |#1|) (-945 |#1|)) |#1|)) (-15 -2982 ((-1 (-945 |#1|) (-945 |#1|)) |#1|)) (-15 -4319 ((-1 (-945 |#1|) (-945 |#1|)) |#1| |#1|)))
-((-2155 ((|#2| |#3|) 28)))
-(((-177 |#1| |#2| |#3|) (-10 -7 (-15 -2155 (|#2| |#3|))) (-172) (-1244 |#1|) (-725 |#1| |#2|)) (T -177))
-((-2155 (*1 *2 *3) (-12 (-4 *4 (-172)) (-4 *2 (-1244 *4)) (-5 *1 (-177 *4 *2 *3)) (-4 *3 (-725 *4 *2)))))
-(-10 -7 (-15 -2155 (|#2| |#3|)))
-((-4303 (((-891 |#1| |#3|) |#3| (-894 |#1|) (-891 |#1| |#3|)) 44 (|has| (-954 |#2|) (-888 |#1|)))))
-(((-178 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-954 |#2|) (-888 |#1|)) (-15 -4303 ((-891 |#1| |#3|) |#3| (-894 |#1|) (-891 |#1| |#3|))) |%noBranch|)) (-1102) (-13 (-888 |#1|) (-172)) (-166 |#2|)) (T -178))
-((-4303 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-891 *5 *3)) (-5 *4 (-894 *5)) (-4 *5 (-1102)) (-4 *3 (-166 *6)) (-4 (-954 *6) (-888 *5)) (-4 *6 (-13 (-888 *5) (-172))) (-5 *1 (-178 *5 *6 *3)))))
-(-10 -7 (IF (|has| (-954 |#2|) (-888 |#1|)) (-15 -4303 ((-891 |#1| |#3|) |#3| (-894 |#1|) (-891 |#1| |#3|))) |%noBranch|))
-((-2019 (((-645 |#1|) (-645 |#1|) |#1|) 41)) (-1769 (((-645 |#1|) |#1| (-645 |#1|)) 20)) (-2876 (((-645 |#1|) (-645 (-645 |#1|)) (-645 |#1|)) 36) ((|#1| (-645 |#1|) (-645 |#1|)) 32)))
-(((-179 |#1|) (-10 -7 (-15 -1769 ((-645 |#1|) |#1| (-645 |#1|))) (-15 -2876 (|#1| (-645 |#1|) (-645 |#1|))) (-15 -2876 ((-645 |#1|) (-645 (-645 |#1|)) (-645 |#1|))) (-15 -2019 ((-645 |#1|) (-645 |#1|) |#1|))) (-308)) (T -179))
-((-2019 (*1 *2 *2 *3) (-12 (-5 *2 (-645 *3)) (-4 *3 (-308)) (-5 *1 (-179 *3)))) (-2876 (*1 *2 *3 *2) (-12 (-5 *3 (-645 (-645 *4))) (-5 *2 (-645 *4)) (-4 *4 (-308)) (-5 *1 (-179 *4)))) (-2876 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *2)) (-5 *1 (-179 *2)) (-4 *2 (-308)))) (-1769 (*1 *2 *3 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-308)) (-5 *1 (-179 *3)))))
-(-10 -7 (-15 -1769 ((-645 |#1|) |#1| (-645 |#1|))) (-15 -2876 (|#1| (-645 |#1|) (-645 |#1|))) (-15 -2876 ((-645 |#1|) (-645 (-645 |#1|)) (-645 |#1|))) (-15 -2019 ((-645 |#1|) (-645 |#1|) |#1|)))
-((-2403 (((-112) $ $) NIL)) (-3570 (((-1217) $) 13)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-3097 (((-1137) $) 10)) (-4132 (((-863) $) 20) (($ (-1183)) NIL) (((-1183) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)))
-(((-180) (-13 (-1085) (-10 -8 (-15 -3097 ((-1137) $)) (-15 -3570 ((-1217) $))))) (T -180))
-((-3097 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-180)))) (-3570 (*1 *2 *1) (-12 (-5 *2 (-1217)) (-5 *1 (-180)))))
-(-13 (-1085) (-10 -8 (-15 -3097 ((-1137) $)) (-15 -3570 ((-1217) $))))
-((-3377 (((-2 (|:| |start| |#2|) (|:| -3920 (-421 |#2|))) |#2|) 66)) (-1680 ((|#1| |#1|) 58)) (-1650 (((-169 |#1|) |#2|) 93)) (-4375 ((|#1| |#2|) 141) ((|#1| |#2| |#1|) 90)) (-2599 ((|#2| |#2|) 91)) (-4075 (((-421 |#2|) |#2| |#1|) 121) (((-421 |#2|) |#2| |#1| (-112)) 88)) (-2475 ((|#1| |#2|) 120)) (-4372 ((|#2| |#2|) 135)) (-2706 (((-421 |#2|) |#2|) 158) (((-421 |#2|) |#2| |#1|) 33) (((-421 |#2|) |#2| |#1| (-112)) 157)) (-2291 (((-645 (-2 (|:| -3920 (-645 |#2|)) (|:| -2058 |#1|))) |#2| |#2|) 156) (((-645 (-2 (|:| -3920 (-645 |#2|)) (|:| -2058 |#1|))) |#2| |#2| (-112)) 81)) (-2445 (((-645 (-169 |#1|)) |#2| |#1|) 42) (((-645 (-169 |#1|)) |#2|) 43)))
-(((-181 |#1| |#2|) (-10 -7 (-15 -2445 ((-645 (-169 |#1|)) |#2|)) (-15 -2445 ((-645 (-169 |#1|)) |#2| |#1|)) (-15 -2291 ((-645 (-2 (|:| -3920 (-645 |#2|)) (|:| -2058 |#1|))) |#2| |#2| (-112))) (-15 -2291 ((-645 (-2 (|:| -3920 (-645 |#2|)) (|:| -2058 |#1|))) |#2| |#2|)) (-15 -2706 ((-421 |#2|) |#2| |#1| (-112))) (-15 -2706 ((-421 |#2|) |#2| |#1|)) (-15 -2706 ((-421 |#2|) |#2|)) (-15 -4372 (|#2| |#2|)) (-15 -2475 (|#1| |#2|)) (-15 -4075 ((-421 |#2|) |#2| |#1| (-112))) (-15 -4075 ((-421 |#2|) |#2| |#1|)) (-15 -2599 (|#2| |#2|)) (-15 -4375 (|#1| |#2| |#1|)) (-15 -4375 (|#1| |#2|)) (-15 -1650 ((-169 |#1|) |#2|)) (-15 -1680 (|#1| |#1|)) (-15 -3377 ((-2 (|:| |start| |#2|) (|:| -3920 (-421 |#2|))) |#2|))) (-13 (-365) (-849)) (-1244 (-169 |#1|))) (T -181))
-((-3377 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-849))) (-5 *2 (-2 (|:| |start| *3) (|:| -3920 (-421 *3)))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1244 (-169 *4))))) (-1680 (*1 *2 *2) (-12 (-4 *2 (-13 (-365) (-849))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1244 (-169 *2))))) (-1650 (*1 *2 *3) (-12 (-5 *2 (-169 *4)) (-5 *1 (-181 *4 *3)) (-4 *4 (-13 (-365) (-849))) (-4 *3 (-1244 *2)))) (-4375 (*1 *2 *3) (-12 (-4 *2 (-13 (-365) (-849))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1244 (-169 *2))))) (-4375 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-365) (-849))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1244 (-169 *2))))) (-2599 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-849))) (-5 *1 (-181 *3 *2)) (-4 *2 (-1244 (-169 *3))))) (-4075 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-365) (-849))) (-5 *2 (-421 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1244 (-169 *4))))) (-4075 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-365) (-849))) (-5 *2 (-421 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1244 (-169 *4))))) (-2475 (*1 *2 *3) (-12 (-4 *2 (-13 (-365) (-849))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1244 (-169 *2))))) (-4372 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-849))) (-5 *1 (-181 *3 *2)) (-4 *2 (-1244 (-169 *3))))) (-2706 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-849))) (-5 *2 (-421 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1244 (-169 *4))))) (-2706 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-365) (-849))) (-5 *2 (-421 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1244 (-169 *4))))) (-2706 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-365) (-849))) (-5 *2 (-421 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1244 (-169 *4))))) (-2291 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-365) (-849))) (-5 *2 (-645 (-2 (|:| -3920 (-645 *3)) (|:| -2058 *4)))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1244 (-169 *4))))) (-2291 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-365) (-849))) (-5 *2 (-645 (-2 (|:| -3920 (-645 *3)) (|:| -2058 *5)))) (-5 *1 (-181 *5 *3)) (-4 *3 (-1244 (-169 *5))))) (-2445 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-365) (-849))) (-5 *2 (-645 (-169 *4))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1244 (-169 *4))))) (-2445 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-849))) (-5 *2 (-645 (-169 *4))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1244 (-169 *4))))))
-(-10 -7 (-15 -2445 ((-645 (-169 |#1|)) |#2|)) (-15 -2445 ((-645 (-169 |#1|)) |#2| |#1|)) (-15 -2291 ((-645 (-2 (|:| -3920 (-645 |#2|)) (|:| -2058 |#1|))) |#2| |#2| (-112))) (-15 -2291 ((-645 (-2 (|:| -3920 (-645 |#2|)) (|:| -2058 |#1|))) |#2| |#2|)) (-15 -2706 ((-421 |#2|) |#2| |#1| (-112))) (-15 -2706 ((-421 |#2|) |#2| |#1|)) (-15 -2706 ((-421 |#2|) |#2|)) (-15 -4372 (|#2| |#2|)) (-15 -2475 (|#1| |#2|)) (-15 -4075 ((-421 |#2|) |#2| |#1| (-112))) (-15 -4075 ((-421 |#2|) |#2| |#1|)) (-15 -2599 (|#2| |#2|)) (-15 -4375 (|#1| |#2| |#1|)) (-15 -4375 (|#1| |#2|)) (-15 -1650 ((-169 |#1|) |#2|)) (-15 -1680 (|#1| |#1|)) (-15 -3377 ((-2 (|:| |start| |#2|) (|:| -3920 (-421 |#2|))) |#2|)))
-((-3087 (((-3 |#2| "failed") |#2|) 20)) (-2797 (((-772) |#2|) 23)) (-1897 ((|#2| |#2| |#2|) 25)))
-(((-182 |#1| |#2|) (-10 -7 (-15 -3087 ((-3 |#2| "failed") |#2|)) (-15 -2797 ((-772) |#2|)) (-15 -1897 (|#2| |#2| |#2|))) (-1218) (-675 |#1|)) (T -182))
-((-1897 (*1 *2 *2 *2) (-12 (-4 *3 (-1218)) (-5 *1 (-182 *3 *2)) (-4 *2 (-675 *3)))) (-2797 (*1 *2 *3) (-12 (-4 *4 (-1218)) (-5 *2 (-772)) (-5 *1 (-182 *4 *3)) (-4 *3 (-675 *4)))) (-3087 (*1 *2 *2) (|partial| -12 (-4 *3 (-1218)) (-5 *1 (-182 *3 *2)) (-4 *2 (-675 *3)))))
-(-10 -7 (-15 -3087 ((-3 |#2| "failed") |#2|)) (-15 -2797 ((-772) |#2|)) (-15 -1897 (|#2| |#2| |#2|)))
-((-2403 (((-112) $ $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-3230 ((|#1| $) 7)) (-4132 (((-863) $) 14)) (-1745 (((-112) $ $) NIL)) (-4165 (((-645 (-1183)) $) 10)) (-2936 (((-112) $ $) 12)))
-(((-183 |#1|) (-13 (-1102) (-10 -8 (-15 -3230 (|#1| $)) (-15 -4165 ((-645 (-1183)) $)))) (-185)) (T -183))
-((-3230 (*1 *2 *1) (-12 (-5 *1 (-183 *2)) (-4 *2 (-185)))) (-4165 (*1 *2 *1) (-12 (-5 *2 (-645 (-1183))) (-5 *1 (-183 *3)) (-4 *3 (-185)))))
-(-13 (-1102) (-10 -8 (-15 -3230 (|#1| $)) (-15 -4165 ((-645 (-1183)) $))))
-((-3871 (((-645 (-866)) $) 16)) (-4166 (((-186) $) 8)) (-1722 (((-645 (-112)) $) 13)) (-2124 (((-55) $) 10)))
-(((-184 |#1|) (-10 -8 (-15 -3871 ((-645 (-866)) |#1|)) (-15 -1722 ((-645 (-112)) |#1|)) (-15 -4166 ((-186) |#1|)) (-15 -2124 ((-55) |#1|))) (-185)) (T -184))
-NIL
-(-10 -8 (-15 -3871 ((-645 (-866)) |#1|)) (-15 -1722 ((-645 (-112)) |#1|)) (-15 -4166 ((-186) |#1|)) (-15 -2124 ((-55) |#1|)))
-((-2403 (((-112) $ $) 7)) (-3871 (((-645 (-866)) $) 19)) (-1996 (((-509) $) 16)) (-1419 (((-1160) $) 10)) (-4166 (((-186) $) 21)) (-1854 (((-112) $ (-509)) 14)) (-3430 (((-1122) $) 11)) (-1722 (((-645 (-112)) $) 20)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-2124 (((-55) $) 15)) (-2936 (((-112) $ $) 6)))
+((-3034 (*1 *1 *1) (-4 *1 (-173))))
+(-13 (-10 -8 (-15 -3034 ($ $))))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-4014 ((|#1| $) 81)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-4287 (($ $) NIL)) (-2286 (((-112) $) NIL)) (-2376 (((-3 $ "failed") $ $) NIL)) (-3659 (($ $) NIL)) (-3597 (((-421 $) $) NIL)) (-3696 (((-112) $ $) NIL)) (-3647 (($) NIL T CONST)) (-2357 (($ $ $) NIL)) (-2054 (($ $) 21)) (-4335 (($ |#1| (-1159 |#1|)) 50)) (-3588 (((-3 $ "failed") $) 123)) (-2368 (($ $ $) NIL)) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) NIL)) (-3502 (((-112) $) NIL)) (-3114 (((-1159 |#1|) $) 88)) (-2063 (((-1159 |#1|) $) 85)) (-2283 (((-1159 |#1|) $) 86)) (-4346 (((-112) $) NIL)) (-3330 (((-1159 |#1|) $) 94)) (-1469 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2751 (($ (-645 $)) NIL) (($ $ $) NIL)) (-2516 (((-1161) $) NIL)) (-2949 (($ $) NIL)) (-3437 (((-1122) $) NIL)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-2785 (($ (-645 $)) NIL) (($ $ $) NIL)) (-2717 (((-421 $) $) NIL)) (-2905 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) NIL)) (-1874 (($ $ (-567)) 97)) (-2400 (((-3 $ "failed") $ $) NIL)) (-2372 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2460 (((-772) $) NIL)) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) NIL)) (-3139 (((-1159 |#1|) $) 95)) (-1337 (((-1159 (-410 |#1|)) $) 14)) (-1705 (($ (-410 |#1|)) 17) (($ |#1| (-1159 |#1|) (-1159 |#1|)) 40)) (-1834 (($ $) 99)) (-4129 (((-863) $) 140) (($ (-567)) 53) (($ |#1|) 54) (($ (-410 |#1|)) 38) (($ (-410 (-567))) NIL) (($ $) NIL)) (-2746 (((-772)) 70 T CONST)) (-3357 (((-112) $ $) NIL)) (-3731 (((-112) $ $) NIL)) (-2731 (((-1159 (-410 |#1|)) $) 20)) (-1733 (($) 27 T CONST)) (-1744 (($) 30 T CONST)) (-2946 (((-112) $ $) 37)) (-3069 (($ $ $) 121)) (-3053 (($ $) 112) (($ $ $) 109)) (-3041 (($ $ $) 107)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 119) (($ $ $) 114) (($ $ |#1|) NIL) (($ |#1| $) 116) (($ (-410 |#1|) $) 117) (($ $ (-410 |#1|)) NIL) (($ (-410 (-567)) $) NIL) (($ $ (-410 (-567))) NIL)))
+(((-174 |#1|) (-13 (-38 |#1|) (-38 (-410 |#1|)) (-365) (-10 -8 (-15 -1705 ($ (-410 |#1|))) (-15 -1705 ($ |#1| (-1159 |#1|) (-1159 |#1|))) (-15 -4335 ($ |#1| (-1159 |#1|))) (-15 -2063 ((-1159 |#1|) $)) (-15 -2283 ((-1159 |#1|) $)) (-15 -3114 ((-1159 |#1|) $)) (-15 -4014 (|#1| $)) (-15 -2054 ($ $)) (-15 -2731 ((-1159 (-410 |#1|)) $)) (-15 -1337 ((-1159 (-410 |#1|)) $)) (-15 -3330 ((-1159 |#1|) $)) (-15 -3139 ((-1159 |#1|) $)) (-15 -1874 ($ $ (-567))) (-15 -1834 ($ $)))) (-308)) (T -174))
+((-1705 (*1 *1 *2) (-12 (-5 *2 (-410 *3)) (-4 *3 (-308)) (-5 *1 (-174 *3)))) (-1705 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1159 *2)) (-4 *2 (-308)) (-5 *1 (-174 *2)))) (-4335 (*1 *1 *2 *3) (-12 (-5 *3 (-1159 *2)) (-4 *2 (-308)) (-5 *1 (-174 *2)))) (-2063 (*1 *2 *1) (-12 (-5 *2 (-1159 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-2283 (*1 *2 *1) (-12 (-5 *2 (-1159 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-3114 (*1 *2 *1) (-12 (-5 *2 (-1159 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-4014 (*1 *2 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-308)))) (-2054 (*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-308)))) (-2731 (*1 *2 *1) (-12 (-5 *2 (-1159 (-410 *3))) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-1337 (*1 *2 *1) (-12 (-5 *2 (-1159 (-410 *3))) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-3330 (*1 *2 *1) (-12 (-5 *2 (-1159 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-3139 (*1 *2 *1) (-12 (-5 *2 (-1159 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-1874 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-1834 (*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-308)))))
+(-13 (-38 |#1|) (-38 (-410 |#1|)) (-365) (-10 -8 (-15 -1705 ($ (-410 |#1|))) (-15 -1705 ($ |#1| (-1159 |#1|) (-1159 |#1|))) (-15 -4335 ($ |#1| (-1159 |#1|))) (-15 -2063 ((-1159 |#1|) $)) (-15 -2283 ((-1159 |#1|) $)) (-15 -3114 ((-1159 |#1|) $)) (-15 -4014 (|#1| $)) (-15 -2054 ($ $)) (-15 -2731 ((-1159 (-410 |#1|)) $)) (-15 -1337 ((-1159 (-410 |#1|)) $)) (-15 -3330 ((-1159 |#1|) $)) (-15 -3139 ((-1159 |#1|) $)) (-15 -1874 ($ $ (-567))) (-15 -1834 ($ $))))
+((-3366 (($ (-109) $) 15)) (-2563 (((-692 (-109)) (-509) $) 14)) (-4129 (((-863) $) 18)) (-2161 (((-645 (-109)) $) 8)))
+(((-175) (-13 (-614 (-863)) (-10 -8 (-15 -2161 ((-645 (-109)) $)) (-15 -3366 ($ (-109) $)) (-15 -2563 ((-692 (-109)) (-509) $))))) (T -175))
+((-2161 (*1 *2 *1) (-12 (-5 *2 (-645 (-109))) (-5 *1 (-175)))) (-3366 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-175)))) (-2563 (*1 *2 *3 *1) (-12 (-5 *3 (-509)) (-5 *2 (-692 (-109))) (-5 *1 (-175)))))
+(-13 (-614 (-863)) (-10 -8 (-15 -2161 ((-645 (-109)) $)) (-15 -3366 ($ (-109) $)) (-15 -2563 ((-692 (-109)) (-509) $))))
+((-4390 (((-1 (-945 |#1|) (-945 |#1|)) |#1|) 40)) (-2449 (((-945 |#1|) (-945 |#1|)) 24)) (-3675 (((-1 (-945 |#1|) (-945 |#1|)) |#1|) 36)) (-2678 (((-945 |#1|) (-945 |#1|)) 22)) (-2619 (((-945 |#1|) (-945 |#1|)) 30)) (-3929 (((-945 |#1|) (-945 |#1|)) 29)) (-4125 (((-945 |#1|) (-945 |#1|)) 28)) (-4254 (((-1 (-945 |#1|) (-945 |#1|)) |#1|) 37)) (-1972 (((-1 (-945 |#1|) (-945 |#1|)) |#1|) 35)) (-3524 (((-1 (-945 |#1|) (-945 |#1|)) |#1|) 34)) (-3028 (((-945 |#1|) (-945 |#1|)) 23)) (-1586 (((-1 (-945 |#1|) (-945 |#1|)) |#1| |#1|) 43)) (-2908 (((-945 |#1|) (-945 |#1|)) 8)) (-2514 (((-1 (-945 |#1|) (-945 |#1|)) |#1|) 39)) (-3152 (((-1 (-945 |#1|) (-945 |#1|)) |#1|) 38)))
+(((-176 |#1|) (-10 -7 (-15 -2908 ((-945 |#1|) (-945 |#1|))) (-15 -2678 ((-945 |#1|) (-945 |#1|))) (-15 -3028 ((-945 |#1|) (-945 |#1|))) (-15 -2449 ((-945 |#1|) (-945 |#1|))) (-15 -4125 ((-945 |#1|) (-945 |#1|))) (-15 -3929 ((-945 |#1|) (-945 |#1|))) (-15 -2619 ((-945 |#1|) (-945 |#1|))) (-15 -3524 ((-1 (-945 |#1|) (-945 |#1|)) |#1|)) (-15 -1972 ((-1 (-945 |#1|) (-945 |#1|)) |#1|)) (-15 -3675 ((-1 (-945 |#1|) (-945 |#1|)) |#1|)) (-15 -4254 ((-1 (-945 |#1|) (-945 |#1|)) |#1|)) (-15 -3152 ((-1 (-945 |#1|) (-945 |#1|)) |#1|)) (-15 -2514 ((-1 (-945 |#1|) (-945 |#1|)) |#1|)) (-15 -4390 ((-1 (-945 |#1|) (-945 |#1|)) |#1|)) (-15 -1586 ((-1 (-945 |#1|) (-945 |#1|)) |#1| |#1|))) (-13 (-365) (-1204) (-1004))) (T -176))
+((-1586 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-945 *3) (-945 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1204) (-1004))))) (-4390 (*1 *2 *3) (-12 (-5 *2 (-1 (-945 *3) (-945 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1204) (-1004))))) (-2514 (*1 *2 *3) (-12 (-5 *2 (-1 (-945 *3) (-945 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1204) (-1004))))) (-3152 (*1 *2 *3) (-12 (-5 *2 (-1 (-945 *3) (-945 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1204) (-1004))))) (-4254 (*1 *2 *3) (-12 (-5 *2 (-1 (-945 *3) (-945 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1204) (-1004))))) (-3675 (*1 *2 *3) (-12 (-5 *2 (-1 (-945 *3) (-945 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1204) (-1004))))) (-1972 (*1 *2 *3) (-12 (-5 *2 (-1 (-945 *3) (-945 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1204) (-1004))))) (-3524 (*1 *2 *3) (-12 (-5 *2 (-1 (-945 *3) (-945 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1204) (-1004))))) (-2619 (*1 *2 *2) (-12 (-5 *2 (-945 *3)) (-4 *3 (-13 (-365) (-1204) (-1004))) (-5 *1 (-176 *3)))) (-3929 (*1 *2 *2) (-12 (-5 *2 (-945 *3)) (-4 *3 (-13 (-365) (-1204) (-1004))) (-5 *1 (-176 *3)))) (-4125 (*1 *2 *2) (-12 (-5 *2 (-945 *3)) (-4 *3 (-13 (-365) (-1204) (-1004))) (-5 *1 (-176 *3)))) (-2449 (*1 *2 *2) (-12 (-5 *2 (-945 *3)) (-4 *3 (-13 (-365) (-1204) (-1004))) (-5 *1 (-176 *3)))) (-3028 (*1 *2 *2) (-12 (-5 *2 (-945 *3)) (-4 *3 (-13 (-365) (-1204) (-1004))) (-5 *1 (-176 *3)))) (-2678 (*1 *2 *2) (-12 (-5 *2 (-945 *3)) (-4 *3 (-13 (-365) (-1204) (-1004))) (-5 *1 (-176 *3)))) (-2908 (*1 *2 *2) (-12 (-5 *2 (-945 *3)) (-4 *3 (-13 (-365) (-1204) (-1004))) (-5 *1 (-176 *3)))))
+(-10 -7 (-15 -2908 ((-945 |#1|) (-945 |#1|))) (-15 -2678 ((-945 |#1|) (-945 |#1|))) (-15 -3028 ((-945 |#1|) (-945 |#1|))) (-15 -2449 ((-945 |#1|) (-945 |#1|))) (-15 -4125 ((-945 |#1|) (-945 |#1|))) (-15 -3929 ((-945 |#1|) (-945 |#1|))) (-15 -2619 ((-945 |#1|) (-945 |#1|))) (-15 -3524 ((-1 (-945 |#1|) (-945 |#1|)) |#1|)) (-15 -1972 ((-1 (-945 |#1|) (-945 |#1|)) |#1|)) (-15 -3675 ((-1 (-945 |#1|) (-945 |#1|)) |#1|)) (-15 -4254 ((-1 (-945 |#1|) (-945 |#1|)) |#1|)) (-15 -3152 ((-1 (-945 |#1|) (-945 |#1|)) |#1|)) (-15 -2514 ((-1 (-945 |#1|) (-945 |#1|)) |#1|)) (-15 -4390 ((-1 (-945 |#1|) (-945 |#1|)) |#1|)) (-15 -1586 ((-1 (-945 |#1|) (-945 |#1|)) |#1| |#1|)))
+((-2231 ((|#2| |#3|) 28)))
+(((-177 |#1| |#2| |#3|) (-10 -7 (-15 -2231 (|#2| |#3|))) (-172) (-1245 |#1|) (-725 |#1| |#2|)) (T -177))
+((-2231 (*1 *2 *3) (-12 (-4 *4 (-172)) (-4 *2 (-1245 *4)) (-5 *1 (-177 *4 *2 *3)) (-4 *3 (-725 *4 *2)))))
+(-10 -7 (-15 -2231 (|#2| |#3|)))
+((-3193 (((-891 |#1| |#3|) |#3| (-894 |#1|) (-891 |#1| |#3|)) 44 (|has| (-954 |#2|) (-888 |#1|)))))
+(((-178 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-954 |#2|) (-888 |#1|)) (-15 -3193 ((-891 |#1| |#3|) |#3| (-894 |#1|) (-891 |#1| |#3|))) |%noBranch|)) (-1102) (-13 (-888 |#1|) (-172)) (-166 |#2|)) (T -178))
+((-3193 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-891 *5 *3)) (-5 *4 (-894 *5)) (-4 *5 (-1102)) (-4 *3 (-166 *6)) (-4 (-954 *6) (-888 *5)) (-4 *6 (-13 (-888 *5) (-172))) (-5 *1 (-178 *5 *6 *3)))))
+(-10 -7 (IF (|has| (-954 |#2|) (-888 |#1|)) (-15 -3193 ((-891 |#1| |#3|) |#3| (-894 |#1|) (-891 |#1| |#3|))) |%noBranch|))
+((-2119 (((-645 |#1|) (-645 |#1|) |#1|) 41)) (-3909 (((-645 |#1|) |#1| (-645 |#1|)) 20)) (-4035 (((-645 |#1|) (-645 (-645 |#1|)) (-645 |#1|)) 36) ((|#1| (-645 |#1|) (-645 |#1|)) 32)))
+(((-179 |#1|) (-10 -7 (-15 -3909 ((-645 |#1|) |#1| (-645 |#1|))) (-15 -4035 (|#1| (-645 |#1|) (-645 |#1|))) (-15 -4035 ((-645 |#1|) (-645 (-645 |#1|)) (-645 |#1|))) (-15 -2119 ((-645 |#1|) (-645 |#1|) |#1|))) (-308)) (T -179))
+((-2119 (*1 *2 *2 *3) (-12 (-5 *2 (-645 *3)) (-4 *3 (-308)) (-5 *1 (-179 *3)))) (-4035 (*1 *2 *3 *2) (-12 (-5 *3 (-645 (-645 *4))) (-5 *2 (-645 *4)) (-4 *4 (-308)) (-5 *1 (-179 *4)))) (-4035 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *2)) (-5 *1 (-179 *2)) (-4 *2 (-308)))) (-3909 (*1 *2 *3 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-308)) (-5 *1 (-179 *3)))))
+(-10 -7 (-15 -3909 ((-645 |#1|) |#1| (-645 |#1|))) (-15 -4035 (|#1| (-645 |#1|) (-645 |#1|))) (-15 -4035 ((-645 |#1|) (-645 (-645 |#1|)) (-645 |#1|))) (-15 -2119 ((-645 |#1|) (-645 |#1|) |#1|)))
+((-2412 (((-112) $ $) NIL)) (-3577 (((-1218) $) 13)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-3106 (((-1137) $) 10)) (-4129 (((-863) $) 20) (($ (-1184)) NIL) (((-1184) $) NIL)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)))
+(((-180) (-13 (-1085) (-10 -8 (-15 -3106 ((-1137) $)) (-15 -3577 ((-1218) $))))) (T -180))
+((-3106 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-180)))) (-3577 (*1 *2 *1) (-12 (-5 *2 (-1218)) (-5 *1 (-180)))))
+(-13 (-1085) (-10 -8 (-15 -3106 ((-1137) $)) (-15 -3577 ((-1218) $))))
+((-2839 (((-2 (|:| |start| |#2|) (|:| -2158 (-421 |#2|))) |#2|) 66)) (-2153 ((|#1| |#1|) 58)) (-3245 (((-169 |#1|) |#2|) 93)) (-1855 ((|#1| |#2|) 141) ((|#1| |#2| |#1|) 90)) (-2650 ((|#2| |#2|) 91)) (-3310 (((-421 |#2|) |#2| |#1|) 121) (((-421 |#2|) |#2| |#1| (-112)) 88)) (-2724 ((|#1| |#2|) 120)) (-1539 ((|#2| |#2|) 135)) (-2717 (((-421 |#2|) |#2|) 158) (((-421 |#2|) |#2| |#1|) 33) (((-421 |#2|) |#2| |#1| (-112)) 157)) (-3503 (((-645 (-2 (|:| -2158 (-645 |#2|)) (|:| -2069 |#1|))) |#2| |#2|) 156) (((-645 (-2 (|:| -2158 (-645 |#2|)) (|:| -2069 |#1|))) |#2| |#2| (-112)) 81)) (-3118 (((-645 (-169 |#1|)) |#2| |#1|) 42) (((-645 (-169 |#1|)) |#2|) 43)))
+(((-181 |#1| |#2|) (-10 -7 (-15 -3118 ((-645 (-169 |#1|)) |#2|)) (-15 -3118 ((-645 (-169 |#1|)) |#2| |#1|)) (-15 -3503 ((-645 (-2 (|:| -2158 (-645 |#2|)) (|:| -2069 |#1|))) |#2| |#2| (-112))) (-15 -3503 ((-645 (-2 (|:| -2158 (-645 |#2|)) (|:| -2069 |#1|))) |#2| |#2|)) (-15 -2717 ((-421 |#2|) |#2| |#1| (-112))) (-15 -2717 ((-421 |#2|) |#2| |#1|)) (-15 -2717 ((-421 |#2|) |#2|)) (-15 -1539 (|#2| |#2|)) (-15 -2724 (|#1| |#2|)) (-15 -3310 ((-421 |#2|) |#2| |#1| (-112))) (-15 -3310 ((-421 |#2|) |#2| |#1|)) (-15 -2650 (|#2| |#2|)) (-15 -1855 (|#1| |#2| |#1|)) (-15 -1855 (|#1| |#2|)) (-15 -3245 ((-169 |#1|) |#2|)) (-15 -2153 (|#1| |#1|)) (-15 -2839 ((-2 (|:| |start| |#2|) (|:| -2158 (-421 |#2|))) |#2|))) (-13 (-365) (-849)) (-1245 (-169 |#1|))) (T -181))
+((-2839 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-849))) (-5 *2 (-2 (|:| |start| *3) (|:| -2158 (-421 *3)))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1245 (-169 *4))))) (-2153 (*1 *2 *2) (-12 (-4 *2 (-13 (-365) (-849))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1245 (-169 *2))))) (-3245 (*1 *2 *3) (-12 (-5 *2 (-169 *4)) (-5 *1 (-181 *4 *3)) (-4 *4 (-13 (-365) (-849))) (-4 *3 (-1245 *2)))) (-1855 (*1 *2 *3) (-12 (-4 *2 (-13 (-365) (-849))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1245 (-169 *2))))) (-1855 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-365) (-849))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1245 (-169 *2))))) (-2650 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-849))) (-5 *1 (-181 *3 *2)) (-4 *2 (-1245 (-169 *3))))) (-3310 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-365) (-849))) (-5 *2 (-421 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1245 (-169 *4))))) (-3310 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-365) (-849))) (-5 *2 (-421 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1245 (-169 *4))))) (-2724 (*1 *2 *3) (-12 (-4 *2 (-13 (-365) (-849))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1245 (-169 *2))))) (-1539 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-849))) (-5 *1 (-181 *3 *2)) (-4 *2 (-1245 (-169 *3))))) (-2717 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-849))) (-5 *2 (-421 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1245 (-169 *4))))) (-2717 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-365) (-849))) (-5 *2 (-421 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1245 (-169 *4))))) (-2717 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-365) (-849))) (-5 *2 (-421 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1245 (-169 *4))))) (-3503 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-365) (-849))) (-5 *2 (-645 (-2 (|:| -2158 (-645 *3)) (|:| -2069 *4)))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1245 (-169 *4))))) (-3503 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-365) (-849))) (-5 *2 (-645 (-2 (|:| -2158 (-645 *3)) (|:| -2069 *5)))) (-5 *1 (-181 *5 *3)) (-4 *3 (-1245 (-169 *5))))) (-3118 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-365) (-849))) (-5 *2 (-645 (-169 *4))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1245 (-169 *4))))) (-3118 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-849))) (-5 *2 (-645 (-169 *4))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1245 (-169 *4))))))
+(-10 -7 (-15 -3118 ((-645 (-169 |#1|)) |#2|)) (-15 -3118 ((-645 (-169 |#1|)) |#2| |#1|)) (-15 -3503 ((-645 (-2 (|:| -2158 (-645 |#2|)) (|:| -2069 |#1|))) |#2| |#2| (-112))) (-15 -3503 ((-645 (-2 (|:| -2158 (-645 |#2|)) (|:| -2069 |#1|))) |#2| |#2|)) (-15 -2717 ((-421 |#2|) |#2| |#1| (-112))) (-15 -2717 ((-421 |#2|) |#2| |#1|)) (-15 -2717 ((-421 |#2|) |#2|)) (-15 -1539 (|#2| |#2|)) (-15 -2724 (|#1| |#2|)) (-15 -3310 ((-421 |#2|) |#2| |#1| (-112))) (-15 -3310 ((-421 |#2|) |#2| |#1|)) (-15 -2650 (|#2| |#2|)) (-15 -1855 (|#1| |#2| |#1|)) (-15 -1855 (|#1| |#2|)) (-15 -3245 ((-169 |#1|) |#2|)) (-15 -2153 (|#1| |#1|)) (-15 -2839 ((-2 (|:| |start| |#2|) (|:| -2158 (-421 |#2|))) |#2|)))
+((-1515 (((-3 |#2| "failed") |#2|) 20)) (-2978 (((-772) |#2|) 23)) (-2842 ((|#2| |#2| |#2|) 25)))
+(((-182 |#1| |#2|) (-10 -7 (-15 -1515 ((-3 |#2| "failed") |#2|)) (-15 -2978 ((-772) |#2|)) (-15 -2842 (|#2| |#2| |#2|))) (-1219) (-675 |#1|)) (T -182))
+((-2842 (*1 *2 *2 *2) (-12 (-4 *3 (-1219)) (-5 *1 (-182 *3 *2)) (-4 *2 (-675 *3)))) (-2978 (*1 *2 *3) (-12 (-4 *4 (-1219)) (-5 *2 (-772)) (-5 *1 (-182 *4 *3)) (-4 *3 (-675 *4)))) (-1515 (*1 *2 *2) (|partial| -12 (-4 *3 (-1219)) (-5 *1 (-182 *3 *2)) (-4 *2 (-675 *3)))))
+(-10 -7 (-15 -1515 ((-3 |#2| "failed") |#2|)) (-15 -2978 ((-772) |#2|)) (-15 -2842 (|#2| |#2| |#2|)))
+((-2412 (((-112) $ $) NIL)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-3239 ((|#1| $) 7)) (-4129 (((-863) $) 14)) (-3357 (((-112) $ $) NIL)) (-4176 (((-645 (-1184)) $) 10)) (-2946 (((-112) $ $) 12)))
+(((-183 |#1|) (-13 (-1102) (-10 -8 (-15 -3239 (|#1| $)) (-15 -4176 ((-645 (-1184)) $)))) (-185)) (T -183))
+((-3239 (*1 *2 *1) (-12 (-5 *1 (-183 *2)) (-4 *2 (-185)))) (-4176 (*1 *2 *1) (-12 (-5 *2 (-645 (-1184))) (-5 *1 (-183 *3)) (-4 *3 (-185)))))
+(-13 (-1102) (-10 -8 (-15 -3239 (|#1| $)) (-15 -4176 ((-645 (-1184)) $))))
+((-3882 (((-645 (-866)) $) 16)) (-4164 (((-186) $) 8)) (-2444 (((-645 (-112)) $) 13)) (-2336 (((-55) $) 10)))
+(((-184 |#1|) (-10 -8 (-15 -3882 ((-645 (-866)) |#1|)) (-15 -2444 ((-645 (-112)) |#1|)) (-15 -4164 ((-186) |#1|)) (-15 -2336 ((-55) |#1|))) (-185)) (T -184))
+NIL
+(-10 -8 (-15 -3882 ((-645 (-866)) |#1|)) (-15 -2444 ((-645 (-112)) |#1|)) (-15 -4164 ((-186) |#1|)) (-15 -2336 ((-55) |#1|)))
+((-2412 (((-112) $ $) 7)) (-3882 (((-645 (-866)) $) 19)) (-2007 (((-509) $) 16)) (-2516 (((-1161) $) 10)) (-4164 (((-186) $) 21)) (-3545 (((-112) $ (-509)) 14)) (-3437 (((-1122) $) 11)) (-2444 (((-645 (-112)) $) 20)) (-4129 (((-863) $) 12)) (-3357 (((-112) $ $) 9)) (-2336 (((-55) $) 15)) (-2946 (((-112) $ $) 6)))
(((-185) (-140)) (T -185))
-((-4166 (*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-186)))) (-1722 (*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-645 (-112))))) (-3871 (*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-645 (-866))))))
-(-13 (-836 (-509)) (-10 -8 (-15 -4166 ((-186) $)) (-15 -1722 ((-645 (-112)) $)) (-15 -3871 ((-645 (-866)) $))))
+((-4164 (*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-186)))) (-2444 (*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-645 (-112))))) (-3882 (*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-645 (-866))))))
+(-13 (-836 (-509)) (-10 -8 (-15 -4164 ((-186) $)) (-15 -2444 ((-645 (-112)) $)) (-15 -3882 ((-645 (-866)) $))))
(((-102) . T) ((-614 (-863)) . T) ((-836 (-509)) . T) ((-1102) . T))
-((-2403 (((-112) $ $) NIL)) (-7 (($) 8 T CONST)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-8 (($) 7 T CONST)) (-4132 (((-863) $) 12)) (-9 (($) 6 T CONST)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 10)))
-(((-186) (-13 (-1102) (-10 -8 (-15 -9 ($) -3286) (-15 -8 ($) -3286) (-15 -7 ($) -3286)))) (T -186))
+((-2412 (((-112) $ $) NIL)) (-7 (($) 8 T CONST)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-8 (($) 7 T CONST)) (-4129 (((-863) $) 12)) (-9 (($) 6 T CONST)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) 10)))
+(((-186) (-13 (-1102) (-10 -8 (-15 -9 ($) -3304) (-15 -8 ($) -3304) (-15 -7 ($) -3304)))) (T -186))
((-9 (*1 *1) (-5 *1 (-186))) (-8 (*1 *1) (-5 *1 (-186))) (-7 (*1 *1) (-5 *1 (-186))))
-(-13 (-1102) (-10 -8 (-15 -9 ($) -3286) (-15 -8 ($) -3286) (-15 -7 ($) -3286)))
-((-2403 (((-112) $ $) NIL)) (-3871 (((-645 (-866)) $) NIL)) (-1996 (((-509) $) 8)) (-1419 (((-1160) $) NIL)) (-4166 (((-186) $) 10)) (-1854 (((-112) $ (-509)) NIL)) (-3430 (((-1122) $) NIL)) (-2755 (((-692 $) (-509)) 17)) (-1722 (((-645 (-112)) $) NIL)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2124 (((-55) $) 12)) (-2936 (((-112) $ $) NIL)))
-(((-187) (-13 (-185) (-10 -8 (-15 -2755 ((-692 $) (-509)))))) (T -187))
-((-2755 (*1 *2 *3) (-12 (-5 *3 (-509)) (-5 *2 (-692 (-187))) (-5 *1 (-187)))))
-(-13 (-185) (-10 -8 (-15 -2755 ((-692 $) (-509)))))
-((-2165 ((|#2| |#2|) 28)) (-1684 (((-112) |#2|) 19)) (-2727 (((-317 |#1|) |#2|) 12)) (-2739 (((-317 |#1|) |#2|) 14)) (-4049 ((|#2| |#2| (-1178)) 69) ((|#2| |#2|) 70)) (-1327 (((-169 (-317 |#1|)) |#2|) 10)) (-2912 ((|#2| |#2| (-1178)) 66) ((|#2| |#2|) 60)))
-(((-188 |#1| |#2|) (-10 -7 (-15 -4049 (|#2| |#2|)) (-15 -4049 (|#2| |#2| (-1178))) (-15 -2912 (|#2| |#2|)) (-15 -2912 (|#2| |#2| (-1178))) (-15 -2727 ((-317 |#1|) |#2|)) (-15 -2739 ((-317 |#1|) |#2|)) (-15 -1684 ((-112) |#2|)) (-15 -2165 (|#2| |#2|)) (-15 -1327 ((-169 (-317 |#1|)) |#2|))) (-13 (-559) (-1040 (-567))) (-13 (-27) (-1203) (-433 (-169 |#1|)))) (T -188))
-((-1327 (*1 *2 *3) (-12 (-4 *4 (-13 (-559) (-1040 (-567)))) (-5 *2 (-169 (-317 *4))) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1203) (-433 (-169 *4)))))) (-2165 (*1 *2 *2) (-12 (-4 *3 (-13 (-559) (-1040 (-567)))) (-5 *1 (-188 *3 *2)) (-4 *2 (-13 (-27) (-1203) (-433 (-169 *3)))))) (-1684 (*1 *2 *3) (-12 (-4 *4 (-13 (-559) (-1040 (-567)))) (-5 *2 (-112)) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1203) (-433 (-169 *4)))))) (-2739 (*1 *2 *3) (-12 (-4 *4 (-13 (-559) (-1040 (-567)))) (-5 *2 (-317 *4)) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1203) (-433 (-169 *4)))))) (-2727 (*1 *2 *3) (-12 (-4 *4 (-13 (-559) (-1040 (-567)))) (-5 *2 (-317 *4)) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1203) (-433 (-169 *4)))))) (-2912 (*1 *2 *2 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-13 (-559) (-1040 (-567)))) (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1203) (-433 (-169 *4)))))) (-2912 (*1 *2 *2) (-12 (-4 *3 (-13 (-559) (-1040 (-567)))) (-5 *1 (-188 *3 *2)) (-4 *2 (-13 (-27) (-1203) (-433 (-169 *3)))))) (-4049 (*1 *2 *2 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-13 (-559) (-1040 (-567)))) (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1203) (-433 (-169 *4)))))) (-4049 (*1 *2 *2) (-12 (-4 *3 (-13 (-559) (-1040 (-567)))) (-5 *1 (-188 *3 *2)) (-4 *2 (-13 (-27) (-1203) (-433 (-169 *3)))))))
-(-10 -7 (-15 -4049 (|#2| |#2|)) (-15 -4049 (|#2| |#2| (-1178))) (-15 -2912 (|#2| |#2|)) (-15 -2912 (|#2| |#2| (-1178))) (-15 -2727 ((-317 |#1|) |#2|)) (-15 -2739 ((-317 |#1|) |#2|)) (-15 -1684 ((-112) |#2|)) (-15 -2165 (|#2| |#2|)) (-15 -1327 ((-169 (-317 |#1|)) |#2|)))
-((-1573 (((-1268 (-690 (-954 |#1|))) (-1268 (-690 |#1|))) 26)) (-4132 (((-1268 (-690 (-410 (-954 |#1|)))) (-1268 (-690 |#1|))) 37)))
-(((-189 |#1|) (-10 -7 (-15 -1573 ((-1268 (-690 (-954 |#1|))) (-1268 (-690 |#1|)))) (-15 -4132 ((-1268 (-690 (-410 (-954 |#1|)))) (-1268 (-690 |#1|))))) (-172)) (T -189))
-((-4132 (*1 *2 *3) (-12 (-5 *3 (-1268 (-690 *4))) (-4 *4 (-172)) (-5 *2 (-1268 (-690 (-410 (-954 *4))))) (-5 *1 (-189 *4)))) (-1573 (*1 *2 *3) (-12 (-5 *3 (-1268 (-690 *4))) (-4 *4 (-172)) (-5 *2 (-1268 (-690 (-954 *4)))) (-5 *1 (-189 *4)))))
-(-10 -7 (-15 -1573 ((-1268 (-690 (-954 |#1|))) (-1268 (-690 |#1|)))) (-15 -4132 ((-1268 (-690 (-410 (-954 |#1|)))) (-1268 (-690 |#1|)))))
-((-1792 (((-1180 (-410 (-567))) (-1180 (-410 (-567))) (-1180 (-410 (-567)))) 89)) (-1520 (((-1180 (-410 (-567))) (-645 (-567)) (-645 (-567))) 100)) (-4265 (((-1180 (-410 (-567))) (-567)) 56)) (-3541 (((-1180 (-410 (-567))) (-567)) 75)) (-2631 (((-410 (-567)) (-1180 (-410 (-567)))) 85)) (-2506 (((-1180 (-410 (-567))) (-567)) 37)) (-4369 (((-1180 (-410 (-567))) (-567)) 68)) (-3760 (((-1180 (-410 (-567))) (-567)) 62)) (-4017 (((-1180 (-410 (-567))) (-1180 (-410 (-567))) (-1180 (-410 (-567)))) 83)) (-2192 (((-1180 (-410 (-567))) (-567)) 29)) (-4376 (((-410 (-567)) (-1180 (-410 (-567))) (-1180 (-410 (-567)))) 87)) (-2009 (((-1180 (-410 (-567))) (-567)) 35)) (-4060 (((-1180 (-410 (-567))) (-645 (-567))) 96)))
-(((-190) (-10 -7 (-15 -2192 ((-1180 (-410 (-567))) (-567))) (-15 -4265 ((-1180 (-410 (-567))) (-567))) (-15 -2506 ((-1180 (-410 (-567))) (-567))) (-15 -2009 ((-1180 (-410 (-567))) (-567))) (-15 -3760 ((-1180 (-410 (-567))) (-567))) (-15 -4369 ((-1180 (-410 (-567))) (-567))) (-15 -3541 ((-1180 (-410 (-567))) (-567))) (-15 -4376 ((-410 (-567)) (-1180 (-410 (-567))) (-1180 (-410 (-567))))) (-15 -4017 ((-1180 (-410 (-567))) (-1180 (-410 (-567))) (-1180 (-410 (-567))))) (-15 -2631 ((-410 (-567)) (-1180 (-410 (-567))))) (-15 -1792 ((-1180 (-410 (-567))) (-1180 (-410 (-567))) (-1180 (-410 (-567))))) (-15 -4060 ((-1180 (-410 (-567))) (-645 (-567)))) (-15 -1520 ((-1180 (-410 (-567))) (-645 (-567)) (-645 (-567)))))) (T -190))
-((-1520 (*1 *2 *3 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-1180 (-410 (-567)))) (-5 *1 (-190)))) (-4060 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-1180 (-410 (-567)))) (-5 *1 (-190)))) (-1792 (*1 *2 *2 *2) (-12 (-5 *2 (-1180 (-410 (-567)))) (-5 *1 (-190)))) (-2631 (*1 *2 *3) (-12 (-5 *3 (-1180 (-410 (-567)))) (-5 *2 (-410 (-567))) (-5 *1 (-190)))) (-4017 (*1 *2 *2 *2) (-12 (-5 *2 (-1180 (-410 (-567)))) (-5 *1 (-190)))) (-4376 (*1 *2 *3 *3) (-12 (-5 *3 (-1180 (-410 (-567)))) (-5 *2 (-410 (-567))) (-5 *1 (-190)))) (-3541 (*1 *2 *3) (-12 (-5 *2 (-1180 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567)))) (-4369 (*1 *2 *3) (-12 (-5 *2 (-1180 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567)))) (-3760 (*1 *2 *3) (-12 (-5 *2 (-1180 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567)))) (-2009 (*1 *2 *3) (-12 (-5 *2 (-1180 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567)))) (-2506 (*1 *2 *3) (-12 (-5 *2 (-1180 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567)))) (-4265 (*1 *2 *3) (-12 (-5 *2 (-1180 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567)))) (-2192 (*1 *2 *3) (-12 (-5 *2 (-1180 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567)))))
-(-10 -7 (-15 -2192 ((-1180 (-410 (-567))) (-567))) (-15 -4265 ((-1180 (-410 (-567))) (-567))) (-15 -2506 ((-1180 (-410 (-567))) (-567))) (-15 -2009 ((-1180 (-410 (-567))) (-567))) (-15 -3760 ((-1180 (-410 (-567))) (-567))) (-15 -4369 ((-1180 (-410 (-567))) (-567))) (-15 -3541 ((-1180 (-410 (-567))) (-567))) (-15 -4376 ((-410 (-567)) (-1180 (-410 (-567))) (-1180 (-410 (-567))))) (-15 -4017 ((-1180 (-410 (-567))) (-1180 (-410 (-567))) (-1180 (-410 (-567))))) (-15 -2631 ((-410 (-567)) (-1180 (-410 (-567))))) (-15 -1792 ((-1180 (-410 (-567))) (-1180 (-410 (-567))) (-1180 (-410 (-567))))) (-15 -4060 ((-1180 (-410 (-567))) (-645 (-567)))) (-15 -1520 ((-1180 (-410 (-567))) (-645 (-567)) (-645 (-567)))))
-((-4289 (((-421 (-1174 (-567))) (-567)) 38)) (-1561 (((-645 (-1174 (-567))) (-567)) 33)) (-3444 (((-1174 (-567)) (-567)) 28)))
-(((-191) (-10 -7 (-15 -1561 ((-645 (-1174 (-567))) (-567))) (-15 -3444 ((-1174 (-567)) (-567))) (-15 -4289 ((-421 (-1174 (-567))) (-567))))) (T -191))
-((-4289 (*1 *2 *3) (-12 (-5 *2 (-421 (-1174 (-567)))) (-5 *1 (-191)) (-5 *3 (-567)))) (-3444 (*1 *2 *3) (-12 (-5 *2 (-1174 (-567))) (-5 *1 (-191)) (-5 *3 (-567)))) (-1561 (*1 *2 *3) (-12 (-5 *2 (-645 (-1174 (-567)))) (-5 *1 (-191)) (-5 *3 (-567)))))
-(-10 -7 (-15 -1561 ((-645 (-1174 (-567))) (-567))) (-15 -3444 ((-1174 (-567)) (-567))) (-15 -4289 ((-421 (-1174 (-567))) (-567))))
-((-2364 (((-1158 (-225)) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 132)) (-2308 (((-645 (-1160)) (-1158 (-225))) NIL)) (-3463 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 108)) (-3947 (((-645 (-225)) (-317 (-225)) (-1178) (-1096 (-844 (-225)))) NIL)) (-3258 (((-645 (-1160)) (-645 (-225))) NIL)) (-1594 (((-225) (-1096 (-844 (-225)))) 31)) (-2158 (((-225) (-1096 (-844 (-225)))) 32)) (-3389 (((-381) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 126)) (-3911 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 68)) (-3905 (((-1160) (-225)) NIL)) (-1514 (((-1160) (-645 (-1160))) 27)) (-3664 (((-1037) (-1178) (-1178) (-1037)) 13)))
-(((-192) (-10 -7 (-15 -3463 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3911 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1594 ((-225) (-1096 (-844 (-225))))) (-15 -2158 ((-225) (-1096 (-844 (-225))))) (-15 -3389 ((-381) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3947 ((-645 (-225)) (-317 (-225)) (-1178) (-1096 (-844 (-225))))) (-15 -2364 ((-1158 (-225)) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3905 ((-1160) (-225))) (-15 -3258 ((-645 (-1160)) (-645 (-225)))) (-15 -2308 ((-645 (-1160)) (-1158 (-225)))) (-15 -1514 ((-1160) (-645 (-1160)))) (-15 -3664 ((-1037) (-1178) (-1178) (-1037))))) (T -192))
-((-3664 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1037)) (-5 *3 (-1178)) (-5 *1 (-192)))) (-1514 (*1 *2 *3) (-12 (-5 *3 (-645 (-1160))) (-5 *2 (-1160)) (-5 *1 (-192)))) (-2308 (*1 *2 *3) (-12 (-5 *3 (-1158 (-225))) (-5 *2 (-645 (-1160))) (-5 *1 (-192)))) (-3258 (*1 *2 *3) (-12 (-5 *3 (-645 (-225))) (-5 *2 (-645 (-1160))) (-5 *1 (-192)))) (-3905 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1160)) (-5 *1 (-192)))) (-2364 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-1158 (-225))) (-5 *1 (-192)))) (-3947 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-317 (-225))) (-5 *4 (-1178)) (-5 *5 (-1096 (-844 (-225)))) (-5 *2 (-645 (-225))) (-5 *1 (-192)))) (-3389 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-381)) (-5 *1 (-192)))) (-2158 (*1 *2 *3) (-12 (-5 *3 (-1096 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-192)))) (-1594 (*1 *2 *3) (-12 (-5 *3 (-1096 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-192)))) (-3911 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-192)))) (-3463 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-192)))))
-(-10 -7 (-15 -3463 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3911 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1594 ((-225) (-1096 (-844 (-225))))) (-15 -2158 ((-225) (-1096 (-844 (-225))))) (-15 -3389 ((-381) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3947 ((-645 (-225)) (-317 (-225)) (-1178) (-1096 (-844 (-225))))) (-15 -2364 ((-1158 (-225)) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3905 ((-1160) (-225))) (-15 -3258 ((-645 (-1160)) (-645 (-225)))) (-15 -2308 ((-645 (-1160)) (-1158 (-225)))) (-15 -1514 ((-1160) (-645 (-1160)))) (-15 -3664 ((-1037) (-1178) (-1178) (-1037))))
-((-2403 (((-112) $ $) NIL)) (-3355 (((-1037) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) 61) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) NIL)) (-2264 (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 33) (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)))
+(-13 (-1102) (-10 -8 (-15 -9 ($) -3304) (-15 -8 ($) -3304) (-15 -7 ($) -3304)))
+((-2412 (((-112) $ $) NIL)) (-3882 (((-645 (-866)) $) NIL)) (-2007 (((-509) $) 8)) (-2516 (((-1161) $) NIL)) (-4164 (((-186) $) 10)) (-3545 (((-112) $ (-509)) NIL)) (-3437 (((-1122) $) NIL)) (-2600 (((-692 $) (-509)) 17)) (-2444 (((-645 (-112)) $) NIL)) (-4129 (((-863) $) NIL)) (-3357 (((-112) $ $) NIL)) (-2336 (((-55) $) 12)) (-2946 (((-112) $ $) NIL)))
+(((-187) (-13 (-185) (-10 -8 (-15 -2600 ((-692 $) (-509)))))) (T -187))
+((-2600 (*1 *2 *3) (-12 (-5 *3 (-509)) (-5 *2 (-692 (-187))) (-5 *1 (-187)))))
+(-13 (-185) (-10 -8 (-15 -2600 ((-692 $) (-509)))))
+((-3977 ((|#2| |#2|) 28)) (-2490 (((-112) |#2|) 19)) (-2738 (((-317 |#1|) |#2|) 12)) (-2750 (((-317 |#1|) |#2|) 14)) (-1789 ((|#2| |#2| (-1179)) 69) ((|#2| |#2|) 70)) (-2280 (((-169 (-317 |#1|)) |#2|) 10)) (-2937 ((|#2| |#2| (-1179)) 66) ((|#2| |#2|) 60)))
+(((-188 |#1| |#2|) (-10 -7 (-15 -1789 (|#2| |#2|)) (-15 -1789 (|#2| |#2| (-1179))) (-15 -2937 (|#2| |#2|)) (-15 -2937 (|#2| |#2| (-1179))) (-15 -2738 ((-317 |#1|) |#2|)) (-15 -2750 ((-317 |#1|) |#2|)) (-15 -2490 ((-112) |#2|)) (-15 -3977 (|#2| |#2|)) (-15 -2280 ((-169 (-317 |#1|)) |#2|))) (-13 (-559) (-1040 (-567))) (-13 (-27) (-1204) (-433 (-169 |#1|)))) (T -188))
+((-2280 (*1 *2 *3) (-12 (-4 *4 (-13 (-559) (-1040 (-567)))) (-5 *2 (-169 (-317 *4))) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1204) (-433 (-169 *4)))))) (-3977 (*1 *2 *2) (-12 (-4 *3 (-13 (-559) (-1040 (-567)))) (-5 *1 (-188 *3 *2)) (-4 *2 (-13 (-27) (-1204) (-433 (-169 *3)))))) (-2490 (*1 *2 *3) (-12 (-4 *4 (-13 (-559) (-1040 (-567)))) (-5 *2 (-112)) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1204) (-433 (-169 *4)))))) (-2750 (*1 *2 *3) (-12 (-4 *4 (-13 (-559) (-1040 (-567)))) (-5 *2 (-317 *4)) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1204) (-433 (-169 *4)))))) (-2738 (*1 *2 *3) (-12 (-4 *4 (-13 (-559) (-1040 (-567)))) (-5 *2 (-317 *4)) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1204) (-433 (-169 *4)))))) (-2937 (*1 *2 *2 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-13 (-559) (-1040 (-567)))) (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1204) (-433 (-169 *4)))))) (-2937 (*1 *2 *2) (-12 (-4 *3 (-13 (-559) (-1040 (-567)))) (-5 *1 (-188 *3 *2)) (-4 *2 (-13 (-27) (-1204) (-433 (-169 *3)))))) (-1789 (*1 *2 *2 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-13 (-559) (-1040 (-567)))) (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1204) (-433 (-169 *4)))))) (-1789 (*1 *2 *2) (-12 (-4 *3 (-13 (-559) (-1040 (-567)))) (-5 *1 (-188 *3 *2)) (-4 *2 (-13 (-27) (-1204) (-433 (-169 *3)))))))
+(-10 -7 (-15 -1789 (|#2| |#2|)) (-15 -1789 (|#2| |#2| (-1179))) (-15 -2937 (|#2| |#2|)) (-15 -2937 (|#2| |#2| (-1179))) (-15 -2738 ((-317 |#1|) |#2|)) (-15 -2750 ((-317 |#1|) |#2|)) (-15 -2490 ((-112) |#2|)) (-15 -3977 (|#2| |#2|)) (-15 -2280 ((-169 (-317 |#1|)) |#2|)))
+((-2252 (((-1269 (-690 (-954 |#1|))) (-1269 (-690 |#1|))) 26)) (-4129 (((-1269 (-690 (-410 (-954 |#1|)))) (-1269 (-690 |#1|))) 37)))
+(((-189 |#1|) (-10 -7 (-15 -2252 ((-1269 (-690 (-954 |#1|))) (-1269 (-690 |#1|)))) (-15 -4129 ((-1269 (-690 (-410 (-954 |#1|)))) (-1269 (-690 |#1|))))) (-172)) (T -189))
+((-4129 (*1 *2 *3) (-12 (-5 *3 (-1269 (-690 *4))) (-4 *4 (-172)) (-5 *2 (-1269 (-690 (-410 (-954 *4))))) (-5 *1 (-189 *4)))) (-2252 (*1 *2 *3) (-12 (-5 *3 (-1269 (-690 *4))) (-4 *4 (-172)) (-5 *2 (-1269 (-690 (-954 *4)))) (-5 *1 (-189 *4)))))
+(-10 -7 (-15 -2252 ((-1269 (-690 (-954 |#1|))) (-1269 (-690 |#1|)))) (-15 -4129 ((-1269 (-690 (-410 (-954 |#1|)))) (-1269 (-690 |#1|)))))
+((-3842 (((-1181 (-410 (-567))) (-1181 (-410 (-567))) (-1181 (-410 (-567)))) 89)) (-1715 (((-1181 (-410 (-567))) (-645 (-567)) (-645 (-567))) 100)) (-3727 (((-1181 (-410 (-567))) (-567)) 56)) (-3491 (((-1181 (-410 (-567))) (-567)) 75)) (-2642 (((-410 (-567)) (-1181 (-410 (-567)))) 85)) (-3009 (((-1181 (-410 (-567))) (-567)) 37)) (-1333 (((-1181 (-410 (-567))) (-567)) 68)) (-1831 (((-1181 (-410 (-567))) (-567)) 62)) (-3312 (((-1181 (-410 (-567))) (-1181 (-410 (-567))) (-1181 (-410 (-567)))) 83)) (-1834 (((-1181 (-410 (-567))) (-567)) 29)) (-1954 (((-410 (-567)) (-1181 (-410 (-567))) (-1181 (-410 (-567)))) 87)) (-3496 (((-1181 (-410 (-567))) (-567)) 35)) (-2519 (((-1181 (-410 (-567))) (-645 (-567))) 96)))
+(((-190) (-10 -7 (-15 -1834 ((-1181 (-410 (-567))) (-567))) (-15 -3727 ((-1181 (-410 (-567))) (-567))) (-15 -3009 ((-1181 (-410 (-567))) (-567))) (-15 -3496 ((-1181 (-410 (-567))) (-567))) (-15 -1831 ((-1181 (-410 (-567))) (-567))) (-15 -1333 ((-1181 (-410 (-567))) (-567))) (-15 -3491 ((-1181 (-410 (-567))) (-567))) (-15 -1954 ((-410 (-567)) (-1181 (-410 (-567))) (-1181 (-410 (-567))))) (-15 -3312 ((-1181 (-410 (-567))) (-1181 (-410 (-567))) (-1181 (-410 (-567))))) (-15 -2642 ((-410 (-567)) (-1181 (-410 (-567))))) (-15 -3842 ((-1181 (-410 (-567))) (-1181 (-410 (-567))) (-1181 (-410 (-567))))) (-15 -2519 ((-1181 (-410 (-567))) (-645 (-567)))) (-15 -1715 ((-1181 (-410 (-567))) (-645 (-567)) (-645 (-567)))))) (T -190))
+((-1715 (*1 *2 *3 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-1181 (-410 (-567)))) (-5 *1 (-190)))) (-2519 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-1181 (-410 (-567)))) (-5 *1 (-190)))) (-3842 (*1 *2 *2 *2) (-12 (-5 *2 (-1181 (-410 (-567)))) (-5 *1 (-190)))) (-2642 (*1 *2 *3) (-12 (-5 *3 (-1181 (-410 (-567)))) (-5 *2 (-410 (-567))) (-5 *1 (-190)))) (-3312 (*1 *2 *2 *2) (-12 (-5 *2 (-1181 (-410 (-567)))) (-5 *1 (-190)))) (-1954 (*1 *2 *3 *3) (-12 (-5 *3 (-1181 (-410 (-567)))) (-5 *2 (-410 (-567))) (-5 *1 (-190)))) (-3491 (*1 *2 *3) (-12 (-5 *2 (-1181 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567)))) (-1333 (*1 *2 *3) (-12 (-5 *2 (-1181 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567)))) (-1831 (*1 *2 *3) (-12 (-5 *2 (-1181 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567)))) (-3496 (*1 *2 *3) (-12 (-5 *2 (-1181 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567)))) (-3009 (*1 *2 *3) (-12 (-5 *2 (-1181 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567)))) (-3727 (*1 *2 *3) (-12 (-5 *2 (-1181 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567)))) (-1834 (*1 *2 *3) (-12 (-5 *2 (-1181 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567)))))
+(-10 -7 (-15 -1834 ((-1181 (-410 (-567))) (-567))) (-15 -3727 ((-1181 (-410 (-567))) (-567))) (-15 -3009 ((-1181 (-410 (-567))) (-567))) (-15 -3496 ((-1181 (-410 (-567))) (-567))) (-15 -1831 ((-1181 (-410 (-567))) (-567))) (-15 -1333 ((-1181 (-410 (-567))) (-567))) (-15 -3491 ((-1181 (-410 (-567))) (-567))) (-15 -1954 ((-410 (-567)) (-1181 (-410 (-567))) (-1181 (-410 (-567))))) (-15 -3312 ((-1181 (-410 (-567))) (-1181 (-410 (-567))) (-1181 (-410 (-567))))) (-15 -2642 ((-410 (-567)) (-1181 (-410 (-567))))) (-15 -3842 ((-1181 (-410 (-567))) (-1181 (-410 (-567))) (-1181 (-410 (-567))))) (-15 -2519 ((-1181 (-410 (-567))) (-645 (-567)))) (-15 -1715 ((-1181 (-410 (-567))) (-645 (-567)) (-645 (-567)))))
+((-2385 (((-421 (-1175 (-567))) (-567)) 38)) (-3880 (((-645 (-1175 (-567))) (-567)) 33)) (-1463 (((-1175 (-567)) (-567)) 28)))
+(((-191) (-10 -7 (-15 -3880 ((-645 (-1175 (-567))) (-567))) (-15 -1463 ((-1175 (-567)) (-567))) (-15 -2385 ((-421 (-1175 (-567))) (-567))))) (T -191))
+((-2385 (*1 *2 *3) (-12 (-5 *2 (-421 (-1175 (-567)))) (-5 *1 (-191)) (-5 *3 (-567)))) (-1463 (*1 *2 *3) (-12 (-5 *2 (-1175 (-567))) (-5 *1 (-191)) (-5 *3 (-567)))) (-3880 (*1 *2 *3) (-12 (-5 *2 (-645 (-1175 (-567)))) (-5 *1 (-191)) (-5 *3 (-567)))))
+(-10 -7 (-15 -3880 ((-645 (-1175 (-567))) (-567))) (-15 -1463 ((-1175 (-567)) (-567))) (-15 -2385 ((-421 (-1175 (-567))) (-567))))
+((-4316 (((-1159 (-225)) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 132)) (-1577 (((-645 (-1161)) (-1159 (-225))) NIL)) (-2767 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 108)) (-2080 (((-645 (-225)) (-317 (-225)) (-1179) (-1096 (-844 (-225)))) NIL)) (-2135 (((-645 (-1161)) (-645 (-225))) NIL)) (-3622 (((-225) (-1096 (-844 (-225)))) 31)) (-2524 (((-225) (-1096 (-844 (-225)))) 32)) (-1756 (((-381) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 126)) (-3663 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 68)) (-4310 (((-1161) (-225)) NIL)) (-2310 (((-1161) (-645 (-1161))) 27)) (-2485 (((-1037) (-1179) (-1179) (-1037)) 13)))
+(((-192) (-10 -7 (-15 -2767 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3663 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3622 ((-225) (-1096 (-844 (-225))))) (-15 -2524 ((-225) (-1096 (-844 (-225))))) (-15 -1756 ((-381) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2080 ((-645 (-225)) (-317 (-225)) (-1179) (-1096 (-844 (-225))))) (-15 -4316 ((-1159 (-225)) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4310 ((-1161) (-225))) (-15 -2135 ((-645 (-1161)) (-645 (-225)))) (-15 -1577 ((-645 (-1161)) (-1159 (-225)))) (-15 -2310 ((-1161) (-645 (-1161)))) (-15 -2485 ((-1037) (-1179) (-1179) (-1037))))) (T -192))
+((-2485 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1037)) (-5 *3 (-1179)) (-5 *1 (-192)))) (-2310 (*1 *2 *3) (-12 (-5 *3 (-645 (-1161))) (-5 *2 (-1161)) (-5 *1 (-192)))) (-1577 (*1 *2 *3) (-12 (-5 *3 (-1159 (-225))) (-5 *2 (-645 (-1161))) (-5 *1 (-192)))) (-2135 (*1 *2 *3) (-12 (-5 *3 (-645 (-225))) (-5 *2 (-645 (-1161))) (-5 *1 (-192)))) (-4310 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1161)) (-5 *1 (-192)))) (-4316 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-1159 (-225))) (-5 *1 (-192)))) (-2080 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-317 (-225))) (-5 *4 (-1179)) (-5 *5 (-1096 (-844 (-225)))) (-5 *2 (-645 (-225))) (-5 *1 (-192)))) (-1756 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-381)) (-5 *1 (-192)))) (-2524 (*1 *2 *3) (-12 (-5 *3 (-1096 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-192)))) (-3622 (*1 *2 *3) (-12 (-5 *3 (-1096 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-192)))) (-3663 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-192)))) (-2767 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-192)))))
+(-10 -7 (-15 -2767 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3663 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3622 ((-225) (-1096 (-844 (-225))))) (-15 -2524 ((-225) (-1096 (-844 (-225))))) (-15 -1756 ((-381) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2080 ((-645 (-225)) (-317 (-225)) (-1179) (-1096 (-844 (-225))))) (-15 -4316 ((-1159 (-225)) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4310 ((-1161) (-225))) (-15 -2135 ((-645 (-1161)) (-645 (-225)))) (-15 -1577 ((-645 (-1161)) (-1159 (-225)))) (-15 -2310 ((-1161) (-645 (-1161)))) (-15 -2485 ((-1037) (-1179) (-1179) (-1037))))
+((-2412 (((-112) $ $) NIL)) (-2065 (((-1037) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) 61) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -2408 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) NIL)) (-3055 (((-2 (|:| -3055 (-381)) (|:| |explanations| (-1161)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 33) (((-2 (|:| -3055 (-381)) (|:| |explanations| (-1161)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -2408 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) NIL)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)))
(((-193) (-788)) (T -193))
NIL
(-788)
-((-2403 (((-112) $ $) NIL)) (-3355 (((-1037) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) 66) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) NIL)) (-2264 (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 44) (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)))
+((-2412 (((-112) $ $) NIL)) (-2065 (((-1037) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) 66) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -2408 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) NIL)) (-3055 (((-2 (|:| -3055 (-381)) (|:| |explanations| (-1161)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 44) (((-2 (|:| -3055 (-381)) (|:| |explanations| (-1161)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -2408 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) NIL)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)))
(((-194) (-788)) (T -194))
NIL
(-788)
-((-2403 (((-112) $ $) NIL)) (-3355 (((-1037) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) 81) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) NIL)) (-2264 (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 46) (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)))
+((-2412 (((-112) $ $) NIL)) (-2065 (((-1037) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) 81) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -2408 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) NIL)) (-3055 (((-2 (|:| -3055 (-381)) (|:| |explanations| (-1161)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 46) (((-2 (|:| -3055 (-381)) (|:| |explanations| (-1161)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -2408 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) NIL)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)))
(((-195) (-788)) (T -195))
NIL
(-788)
-((-2403 (((-112) $ $) NIL)) (-3355 (((-1037) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) 63) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) NIL)) (-2264 (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 36) (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)))
+((-2412 (((-112) $ $) NIL)) (-2065 (((-1037) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) 63) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -2408 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) NIL)) (-3055 (((-2 (|:| -3055 (-381)) (|:| |explanations| (-1161)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 36) (((-2 (|:| -3055 (-381)) (|:| |explanations| (-1161)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -2408 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) NIL)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)))
(((-196) (-788)) (T -196))
NIL
(-788)
-((-2403 (((-112) $ $) NIL)) (-3355 (((-1037) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) 75) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) NIL)) (-2264 (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 40) (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)))
+((-2412 (((-112) $ $) NIL)) (-2065 (((-1037) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) 75) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -2408 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) NIL)) (-3055 (((-2 (|:| -3055 (-381)) (|:| |explanations| (-1161)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 40) (((-2 (|:| -3055 (-381)) (|:| |explanations| (-1161)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -2408 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) NIL)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)))
(((-197) (-788)) (T -197))
NIL
(-788)
-((-2403 (((-112) $ $) NIL)) (-3355 (((-1037) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) 90) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) NIL)) (-2264 (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 49) (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)))
+((-2412 (((-112) $ $) NIL)) (-2065 (((-1037) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) 90) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -2408 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) NIL)) (-3055 (((-2 (|:| -3055 (-381)) (|:| |explanations| (-1161)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 49) (((-2 (|:| -3055 (-381)) (|:| |explanations| (-1161)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -2408 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) NIL)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)))
(((-198) (-788)) (T -198))
NIL
(-788)
-((-2403 (((-112) $ $) NIL)) (-3355 (((-1037) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) 90) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) NIL)) (-2264 (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 51) (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)))
+((-2412 (((-112) $ $) NIL)) (-2065 (((-1037) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) 90) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -2408 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) NIL)) (-3055 (((-2 (|:| -3055 (-381)) (|:| |explanations| (-1161)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 51) (((-2 (|:| -3055 (-381)) (|:| |explanations| (-1161)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -2408 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) NIL)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)))
(((-199) (-788)) (T -199))
NIL
(-788)
-((-2403 (((-112) $ $) NIL)) (-3355 (((-1037) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) 77) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) NIL)) (-2264 (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 42) (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)))
+((-2412 (((-112) $ $) NIL)) (-2065 (((-1037) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) 77) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -2408 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) NIL)) (-3055 (((-2 (|:| -3055 (-381)) (|:| |explanations| (-1161)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 42) (((-2 (|:| -3055 (-381)) (|:| |explanations| (-1161)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -2408 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) NIL)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)))
(((-200) (-788)) (T -200))
NIL
(-788)
-((-2403 (((-112) $ $) NIL)) (-3355 (((-1037) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) NIL) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) 78)) (-2264 (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL) (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 38)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)))
+((-2412 (((-112) $ $) NIL)) (-2065 (((-1037) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) NIL) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -2408 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) 78)) (-3055 (((-2 (|:| -3055 (-381)) (|:| |explanations| (-1161)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL) (((-2 (|:| -3055 (-381)) (|:| |explanations| (-1161)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -2408 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 38)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) NIL)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)))
(((-201) (-788)) (T -201))
NIL
(-788)
-((-2403 (((-112) $ $) NIL)) (-3355 (((-1037) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) NIL) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) 79)) (-2264 (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL) (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 44)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)))
+((-2412 (((-112) $ $) NIL)) (-2065 (((-1037) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) NIL) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -2408 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) 79)) (-3055 (((-2 (|:| -3055 (-381)) (|:| |explanations| (-1161)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL) (((-2 (|:| -3055 (-381)) (|:| |explanations| (-1161)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -2408 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 44)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) NIL)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)))
(((-202) (-788)) (T -202))
NIL
(-788)
-((-2403 (((-112) $ $) NIL)) (-3355 (((-1037) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) 105) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) NIL)) (-2264 (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 86) (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)))
+((-2412 (((-112) $ $) NIL)) (-2065 (((-1037) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) 105) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -2408 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) NIL)) (-3055 (((-2 (|:| -3055 (-381)) (|:| |explanations| (-1161)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 86) (((-2 (|:| -3055 (-381)) (|:| |explanations| (-1161)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -2408 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) NIL)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)))
(((-203) (-788)) (T -203))
NIL
(-788)
-((-2478 (((-3 (-2 (|:| -4179 (-114)) (|:| |w| (-225))) "failed") (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 110)) (-2512 (((-567) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 60)) (-1841 (((-3 (-645 (-225)) "failed") (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 91)))
-(((-204) (-10 -7 (-15 -2478 ((-3 (-2 (|:| -4179 (-114)) (|:| |w| (-225))) "failed") (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1841 ((-3 (-645 (-225)) "failed") (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2512 ((-567) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -204))
-((-2512 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-567)) (-5 *1 (-204)))) (-1841 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-645 (-225))) (-5 *1 (-204)))) (-2478 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -4179 (-114)) (|:| |w| (-225)))) (-5 *1 (-204)))))
-(-10 -7 (-15 -2478 ((-3 (-2 (|:| -4179 (-114)) (|:| |w| (-225))) "failed") (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1841 ((-3 (-645 (-225)) "failed") (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2512 ((-567) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))
-((-1780 (((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 49)) (-2934 (((-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 160)) (-1542 (((-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))) (-690 (-317 (-225)))) 112)) (-1498 (((-381) (-690 (-317 (-225)))) 140)) (-1816 (((-690 (-317 (-225))) (-1268 (-317 (-225))) (-645 (-1178))) 136)) (-2562 (((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 37)) (-3576 (((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 53)) (-2631 (((-690 (-317 (-225))) (-690 (-317 (-225))) (-645 (-1178)) (-1268 (-317 (-225)))) 125)) (-2552 (((-381) (-381) (-645 (-381))) 133) (((-381) (-381) (-381)) 128)) (-1461 (((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 45)))
-(((-205) (-10 -7 (-15 -2552 ((-381) (-381) (-381))) (-15 -2552 ((-381) (-381) (-645 (-381)))) (-15 -1498 ((-381) (-690 (-317 (-225))))) (-15 -1816 ((-690 (-317 (-225))) (-1268 (-317 (-225))) (-645 (-1178)))) (-15 -2631 ((-690 (-317 (-225))) (-690 (-317 (-225))) (-645 (-1178)) (-1268 (-317 (-225))))) (-15 -1542 ((-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))) (-690 (-317 (-225))))) (-15 -2934 ((-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1780 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3576 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1461 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2562 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -205))
-((-2562 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-381)) (-5 *1 (-205)))) (-1461 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-381)) (-5 *1 (-205)))) (-3576 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-381)) (-5 *1 (-205)))) (-1780 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-381)) (-5 *1 (-205)))) (-2934 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381)))) (-5 *1 (-205)))) (-1542 (*1 *2 *3) (-12 (-5 *3 (-690 (-317 (-225)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381)))) (-5 *1 (-205)))) (-2631 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-690 (-317 (-225)))) (-5 *3 (-645 (-1178))) (-5 *4 (-1268 (-317 (-225)))) (-5 *1 (-205)))) (-1816 (*1 *2 *3 *4) (-12 (-5 *3 (-1268 (-317 (-225)))) (-5 *4 (-645 (-1178))) (-5 *2 (-690 (-317 (-225)))) (-5 *1 (-205)))) (-1498 (*1 *2 *3) (-12 (-5 *3 (-690 (-317 (-225)))) (-5 *2 (-381)) (-5 *1 (-205)))) (-2552 (*1 *2 *2 *3) (-12 (-5 *3 (-645 (-381))) (-5 *2 (-381)) (-5 *1 (-205)))) (-2552 (*1 *2 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-205)))))
-(-10 -7 (-15 -2552 ((-381) (-381) (-381))) (-15 -2552 ((-381) (-381) (-645 (-381)))) (-15 -1498 ((-381) (-690 (-317 (-225))))) (-15 -1816 ((-690 (-317 (-225))) (-1268 (-317 (-225))) (-645 (-1178)))) (-15 -2631 ((-690 (-317 (-225))) (-690 (-317 (-225))) (-645 (-1178)) (-1268 (-317 (-225))))) (-15 -1542 ((-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))) (-690 (-317 (-225))))) (-15 -2934 ((-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1780 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3576 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1461 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2562 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))
-((-2403 (((-112) $ $) NIL)) (-2264 (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160))) (-1065) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 43)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-3393 (((-1037) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 75)) (-2936 (((-112) $ $) NIL)))
+((-2914 (((-3 (-2 (|:| -4178 (-114)) (|:| |w| (-225))) "failed") (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 110)) (-2447 (((-567) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 60)) (-2904 (((-3 (-645 (-225)) "failed") (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 91)))
+(((-204) (-10 -7 (-15 -2914 ((-3 (-2 (|:| -4178 (-114)) (|:| |w| (-225))) "failed") (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2904 ((-3 (-645 (-225)) "failed") (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2447 ((-567) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -204))
+((-2447 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-567)) (-5 *1 (-204)))) (-2904 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-645 (-225))) (-5 *1 (-204)))) (-2914 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -4178 (-114)) (|:| |w| (-225)))) (-5 *1 (-204)))))
+(-10 -7 (-15 -2914 ((-3 (-2 (|:| -4178 (-114)) (|:| |w| (-225))) "failed") (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2904 ((-3 (-645 (-225)) "failed") (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2447 ((-567) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))
+((-1850 (((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 49)) (-3328 (((-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 160)) (-2034 (((-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))) (-690 (-317 (-225)))) 112)) (-3202 (((-381) (-690 (-317 (-225)))) 140)) (-2266 (((-690 (-317 (-225))) (-1269 (-317 (-225))) (-645 (-1179))) 136)) (-3000 (((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 37)) (-4340 (((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 53)) (-2642 (((-690 (-317 (-225))) (-690 (-317 (-225))) (-645 (-1179)) (-1269 (-317 (-225)))) 125)) (-4081 (((-381) (-381) (-645 (-381))) 133) (((-381) (-381) (-381)) 128)) (-2568 (((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 45)))
+(((-205) (-10 -7 (-15 -4081 ((-381) (-381) (-381))) (-15 -4081 ((-381) (-381) (-645 (-381)))) (-15 -3202 ((-381) (-690 (-317 (-225))))) (-15 -2266 ((-690 (-317 (-225))) (-1269 (-317 (-225))) (-645 (-1179)))) (-15 -2642 ((-690 (-317 (-225))) (-690 (-317 (-225))) (-645 (-1179)) (-1269 (-317 (-225))))) (-15 -2034 ((-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))) (-690 (-317 (-225))))) (-15 -3328 ((-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1850 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4340 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2568 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3000 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -205))
+((-3000 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-381)) (-5 *1 (-205)))) (-2568 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-381)) (-5 *1 (-205)))) (-4340 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-381)) (-5 *1 (-205)))) (-1850 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-381)) (-5 *1 (-205)))) (-3328 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381)))) (-5 *1 (-205)))) (-2034 (*1 *2 *3) (-12 (-5 *3 (-690 (-317 (-225)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381)))) (-5 *1 (-205)))) (-2642 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-690 (-317 (-225)))) (-5 *3 (-645 (-1179))) (-5 *4 (-1269 (-317 (-225)))) (-5 *1 (-205)))) (-2266 (*1 *2 *3 *4) (-12 (-5 *3 (-1269 (-317 (-225)))) (-5 *4 (-645 (-1179))) (-5 *2 (-690 (-317 (-225)))) (-5 *1 (-205)))) (-3202 (*1 *2 *3) (-12 (-5 *3 (-690 (-317 (-225)))) (-5 *2 (-381)) (-5 *1 (-205)))) (-4081 (*1 *2 *2 *3) (-12 (-5 *3 (-645 (-381))) (-5 *2 (-381)) (-5 *1 (-205)))) (-4081 (*1 *2 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-205)))))
+(-10 -7 (-15 -4081 ((-381) (-381) (-381))) (-15 -4081 ((-381) (-381) (-645 (-381)))) (-15 -3202 ((-381) (-690 (-317 (-225))))) (-15 -2266 ((-690 (-317 (-225))) (-1269 (-317 (-225))) (-645 (-1179)))) (-15 -2642 ((-690 (-317 (-225))) (-690 (-317 (-225))) (-645 (-1179)) (-1269 (-317 (-225))))) (-15 -2034 ((-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))) (-690 (-317 (-225))))) (-15 -3328 ((-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1850 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4340 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2568 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3000 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))
+((-2412 (((-112) $ $) NIL)) (-3055 (((-2 (|:| -3055 (-381)) (|:| |explanations| (-1161))) (-1065) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 43)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) NIL)) (-3357 (((-112) $ $) NIL)) (-4149 (((-1037) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 75)) (-2946 (((-112) $ $) NIL)))
(((-206) (-801)) (T -206))
NIL
(-801)
-((-2403 (((-112) $ $) NIL)) (-2264 (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160))) (-1065) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 43)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-3393 (((-1037) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 73)) (-2936 (((-112) $ $) NIL)))
+((-2412 (((-112) $ $) NIL)) (-3055 (((-2 (|:| -3055 (-381)) (|:| |explanations| (-1161))) (-1065) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 43)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) NIL)) (-3357 (((-112) $ $) NIL)) (-4149 (((-1037) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 73)) (-2946 (((-112) $ $) NIL)))
(((-207) (-801)) (T -207))
NIL
(-801)
-((-2403 (((-112) $ $) NIL)) (-2264 (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160))) (-1065) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 40)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-3393 (((-1037) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 76)) (-2936 (((-112) $ $) NIL)))
+((-2412 (((-112) $ $) NIL)) (-3055 (((-2 (|:| -3055 (-381)) (|:| |explanations| (-1161))) (-1065) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 40)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) NIL)) (-3357 (((-112) $ $) NIL)) (-4149 (((-1037) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 76)) (-2946 (((-112) $ $) NIL)))
(((-208) (-801)) (T -208))
NIL
(-801)
-((-2403 (((-112) $ $) NIL)) (-2264 (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160))) (-1065) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 48)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-3393 (((-1037) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 88)) (-2936 (((-112) $ $) NIL)))
+((-2412 (((-112) $ $) NIL)) (-3055 (((-2 (|:| -3055 (-381)) (|:| |explanations| (-1161))) (-1065) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 48)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) NIL)) (-3357 (((-112) $ $) NIL)) (-4149 (((-1037) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 88)) (-2946 (((-112) $ $) NIL)))
(((-209) (-801)) (T -209))
NIL
(-801)
-((-3267 (((-645 (-1178)) (-1178) (-772)) 26)) (-4007 (((-317 (-225)) (-317 (-225))) 35)) (-3277 (((-112) (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1160)) (|:| |tol| (-225)))) 87)) (-2456 (((-112) (-225) (-225) (-645 (-317 (-225)))) 47)))
-(((-210) (-10 -7 (-15 -3267 ((-645 (-1178)) (-1178) (-772))) (-15 -4007 ((-317 (-225)) (-317 (-225)))) (-15 -2456 ((-112) (-225) (-225) (-645 (-317 (-225))))) (-15 -3277 ((-112) (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1160)) (|:| |tol| (-225))))))) (T -210))
-((-3277 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1160)) (|:| |tol| (-225)))) (-5 *2 (-112)) (-5 *1 (-210)))) (-2456 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-645 (-317 (-225)))) (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-210)))) (-4007 (*1 *2 *2) (-12 (-5 *2 (-317 (-225))) (-5 *1 (-210)))) (-3267 (*1 *2 *3 *4) (-12 (-5 *4 (-772)) (-5 *2 (-645 (-1178))) (-5 *1 (-210)) (-5 *3 (-1178)))))
-(-10 -7 (-15 -3267 ((-645 (-1178)) (-1178) (-772))) (-15 -4007 ((-317 (-225)) (-317 (-225)))) (-15 -2456 ((-112) (-225) (-225) (-645 (-317 (-225))))) (-15 -3277 ((-112) (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1160)) (|:| |tol| (-225))))))
-((-2403 (((-112) $ $) NIL)) (-2264 (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160))) (-1065) (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1160)) (|:| |tol| (-225)))) 28)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-3473 (((-1037) (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1160)) (|:| |tol| (-225)))) 70)) (-2936 (((-112) $ $) NIL)))
+((-3275 (((-645 (-1179)) (-1179) (-772)) 26)) (-2569 (((-317 (-225)) (-317 (-225))) 35)) (-4286 (((-112) (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1161)) (|:| |tol| (-225)))) 87)) (-1681 (((-112) (-225) (-225) (-645 (-317 (-225)))) 47)))
+(((-210) (-10 -7 (-15 -3275 ((-645 (-1179)) (-1179) (-772))) (-15 -2569 ((-317 (-225)) (-317 (-225)))) (-15 -1681 ((-112) (-225) (-225) (-645 (-317 (-225))))) (-15 -4286 ((-112) (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1161)) (|:| |tol| (-225))))))) (T -210))
+((-4286 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1161)) (|:| |tol| (-225)))) (-5 *2 (-112)) (-5 *1 (-210)))) (-1681 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-645 (-317 (-225)))) (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-210)))) (-2569 (*1 *2 *2) (-12 (-5 *2 (-317 (-225))) (-5 *1 (-210)))) (-3275 (*1 *2 *3 *4) (-12 (-5 *4 (-772)) (-5 *2 (-645 (-1179))) (-5 *1 (-210)) (-5 *3 (-1179)))))
+(-10 -7 (-15 -3275 ((-645 (-1179)) (-1179) (-772))) (-15 -2569 ((-317 (-225)) (-317 (-225)))) (-15 -1681 ((-112) (-225) (-225) (-645 (-317 (-225))))) (-15 -4286 ((-112) (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1161)) (|:| |tol| (-225))))))
+((-2412 (((-112) $ $) NIL)) (-3055 (((-2 (|:| -3055 (-381)) (|:| |explanations| (-1161))) (-1065) (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1161)) (|:| |tol| (-225)))) 28)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) NIL)) (-3357 (((-112) $ $) NIL)) (-2465 (((-1037) (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1161)) (|:| |tol| (-225)))) 70)) (-2946 (((-112) $ $) NIL)))
(((-211) (-897)) (T -211))
NIL
(-897)
-((-2403 (((-112) $ $) NIL)) (-2264 (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160))) (-1065) (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1160)) (|:| |tol| (-225)))) 24)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-3473 (((-1037) (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1160)) (|:| |tol| (-225)))) NIL)) (-2936 (((-112) $ $) NIL)))
+((-2412 (((-112) $ $) NIL)) (-3055 (((-2 (|:| -3055 (-381)) (|:| |explanations| (-1161))) (-1065) (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1161)) (|:| |tol| (-225)))) 24)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) NIL)) (-3357 (((-112) $ $) NIL)) (-2465 (((-1037) (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1161)) (|:| |tol| (-225)))) NIL)) (-2946 (((-112) $ $) NIL)))
(((-212) (-897)) (T -212))
NIL
(-897)
-((-2403 (((-112) $ $) NIL)) (-3689 ((|#2| $ (-772) |#2|) 11)) (-3680 ((|#2| $ (-772)) 10)) (-2846 (($) 8)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 26)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 13)))
-(((-213 |#1| |#2|) (-13 (-1102) (-10 -8 (-15 -2846 ($)) (-15 -3680 (|#2| $ (-772))) (-15 -3689 (|#2| $ (-772) |#2|)))) (-923) (-1102)) (T -213))
-((-2846 (*1 *1) (-12 (-5 *1 (-213 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1102)))) (-3680 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-4 *2 (-1102)) (-5 *1 (-213 *4 *2)) (-14 *4 (-923)))) (-3689 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-213 *4 *2)) (-14 *4 (-923)) (-4 *2 (-1102)))))
-(-13 (-1102) (-10 -8 (-15 -2846 ($)) (-15 -3680 (|#2| $ (-772))) (-15 -3689 (|#2| $ (-772) |#2|))))
-((-2403 (((-112) $ $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-1345 (((-1273) $) 37) (((-1273) $ (-923) (-923)) 44)) (-1787 (($ $ (-991)) 19) (((-245 (-1160)) $ (-1178)) 15)) (-4022 (((-1273) $) 35)) (-4132 (((-863) $) 32) (($ (-645 |#1|)) 8)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)) (-3045 (($ $ $) 27)) (-3033 (($ $ $) 22)))
-(((-214 |#1|) (-13 (-1102) (-617 (-645 |#1|)) (-10 -8 (-15 -1787 ($ $ (-991))) (-15 -1787 ((-245 (-1160)) $ (-1178))) (-15 -3033 ($ $ $)) (-15 -3045 ($ $ $)) (-15 -4022 ((-1273) $)) (-15 -1345 ((-1273) $)) (-15 -1345 ((-1273) $ (-923) (-923))))) (-13 (-851) (-10 -8 (-15 -1787 ((-1160) $ (-1178))) (-15 -4022 ((-1273) $)) (-15 -1345 ((-1273) $))))) (T -214))
-((-1787 (*1 *1 *1 *2) (-12 (-5 *2 (-991)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-851) (-10 -8 (-15 -1787 ((-1160) $ (-1178))) (-15 -4022 ((-1273) $)) (-15 -1345 ((-1273) $))))))) (-1787 (*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-245 (-1160))) (-5 *1 (-214 *4)) (-4 *4 (-13 (-851) (-10 -8 (-15 -1787 ((-1160) $ *3)) (-15 -4022 ((-1273) $)) (-15 -1345 ((-1273) $))))))) (-3033 (*1 *1 *1 *1) (-12 (-5 *1 (-214 *2)) (-4 *2 (-13 (-851) (-10 -8 (-15 -1787 ((-1160) $ (-1178))) (-15 -4022 ((-1273) $)) (-15 -1345 ((-1273) $))))))) (-3045 (*1 *1 *1 *1) (-12 (-5 *1 (-214 *2)) (-4 *2 (-13 (-851) (-10 -8 (-15 -1787 ((-1160) $ (-1178))) (-15 -4022 ((-1273) $)) (-15 -1345 ((-1273) $))))))) (-4022 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-851) (-10 -8 (-15 -1787 ((-1160) $ (-1178))) (-15 -4022 (*2 $)) (-15 -1345 (*2 $))))))) (-1345 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-851) (-10 -8 (-15 -1787 ((-1160) $ (-1178))) (-15 -4022 (*2 $)) (-15 -1345 (*2 $))))))) (-1345 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1273)) (-5 *1 (-214 *4)) (-4 *4 (-13 (-851) (-10 -8 (-15 -1787 ((-1160) $ (-1178))) (-15 -4022 (*2 $)) (-15 -1345 (*2 $))))))))
-(-13 (-1102) (-617 (-645 |#1|)) (-10 -8 (-15 -1787 ($ $ (-991))) (-15 -1787 ((-245 (-1160)) $ (-1178))) (-15 -3033 ($ $ $)) (-15 -3045 ($ $ $)) (-15 -4022 ((-1273) $)) (-15 -1345 ((-1273) $)) (-15 -1345 ((-1273) $ (-923) (-923)))))
-((-2781 ((|#2| |#4| (-1 |#2| |#2|)) 49)))
-(((-215 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2781 (|#2| |#4| (-1 |#2| |#2|)))) (-365) (-1244 |#1|) (-1244 (-410 |#2|)) (-344 |#1| |#2| |#3|)) (T -215))
-((-2781 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-365)) (-4 *6 (-1244 (-410 *2))) (-4 *2 (-1244 *5)) (-5 *1 (-215 *5 *2 *6 *3)) (-4 *3 (-344 *5 *2 *6)))))
-(-10 -7 (-15 -2781 (|#2| |#4| (-1 |#2| |#2|))))
-((-4169 ((|#2| |#2| (-772) |#2|) 58)) (-2399 ((|#2| |#2| (-772) |#2|) 54)) (-3970 (((-645 |#2|) (-645 (-2 (|:| |deg| (-772)) (|:| -2424 |#2|)))) 82)) (-3007 (((-645 (-2 (|:| |deg| (-772)) (|:| -2424 |#2|))) |#2|) 76)) (-4096 (((-112) |#2|) 74)) (-2688 (((-421 |#2|) |#2|) 96)) (-2706 (((-421 |#2|) |#2|) 95)) (-1454 ((|#2| |#2| (-772) |#2|) 52)) (-3910 (((-2 (|:| |cont| |#1|) (|:| -3920 (-645 (-2 (|:| |irr| |#2|) (|:| -2625 (-567)))))) |#2| (-112)) 88)))
-(((-216 |#1| |#2|) (-10 -7 (-15 -2706 ((-421 |#2|) |#2|)) (-15 -2688 ((-421 |#2|) |#2|)) (-15 -3910 ((-2 (|:| |cont| |#1|) (|:| -3920 (-645 (-2 (|:| |irr| |#2|) (|:| -2625 (-567)))))) |#2| (-112))) (-15 -3007 ((-645 (-2 (|:| |deg| (-772)) (|:| -2424 |#2|))) |#2|)) (-15 -3970 ((-645 |#2|) (-645 (-2 (|:| |deg| (-772)) (|:| -2424 |#2|))))) (-15 -1454 (|#2| |#2| (-772) |#2|)) (-15 -2399 (|#2| |#2| (-772) |#2|)) (-15 -4169 (|#2| |#2| (-772) |#2|)) (-15 -4096 ((-112) |#2|))) (-351) (-1244 |#1|)) (T -216))
-((-4096 (*1 *2 *3) (-12 (-4 *4 (-351)) (-5 *2 (-112)) (-5 *1 (-216 *4 *3)) (-4 *3 (-1244 *4)))) (-4169 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-772)) (-4 *4 (-351)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1244 *4)))) (-2399 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-772)) (-4 *4 (-351)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1244 *4)))) (-1454 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-772)) (-4 *4 (-351)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1244 *4)))) (-3970 (*1 *2 *3) (-12 (-5 *3 (-645 (-2 (|:| |deg| (-772)) (|:| -2424 *5)))) (-4 *5 (-1244 *4)) (-4 *4 (-351)) (-5 *2 (-645 *5)) (-5 *1 (-216 *4 *5)))) (-3007 (*1 *2 *3) (-12 (-4 *4 (-351)) (-5 *2 (-645 (-2 (|:| |deg| (-772)) (|:| -2424 *3)))) (-5 *1 (-216 *4 *3)) (-4 *3 (-1244 *4)))) (-3910 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-351)) (-5 *2 (-2 (|:| |cont| *5) (|:| -3920 (-645 (-2 (|:| |irr| *3) (|:| -2625 (-567))))))) (-5 *1 (-216 *5 *3)) (-4 *3 (-1244 *5)))) (-2688 (*1 *2 *3) (-12 (-4 *4 (-351)) (-5 *2 (-421 *3)) (-5 *1 (-216 *4 *3)) (-4 *3 (-1244 *4)))) (-2706 (*1 *2 *3) (-12 (-4 *4 (-351)) (-5 *2 (-421 *3)) (-5 *1 (-216 *4 *3)) (-4 *3 (-1244 *4)))))
-(-10 -7 (-15 -2706 ((-421 |#2|) |#2|)) (-15 -2688 ((-421 |#2|) |#2|)) (-15 -3910 ((-2 (|:| |cont| |#1|) (|:| -3920 (-645 (-2 (|:| |irr| |#2|) (|:| -2625 (-567)))))) |#2| (-112))) (-15 -3007 ((-645 (-2 (|:| |deg| (-772)) (|:| -2424 |#2|))) |#2|)) (-15 -3970 ((-645 |#2|) (-645 (-2 (|:| |deg| (-772)) (|:| -2424 |#2|))))) (-15 -1454 (|#2| |#2| (-772) |#2|)) (-15 -2399 (|#2| |#2| (-772) |#2|)) (-15 -4169 (|#2| |#2| (-772) |#2|)) (-15 -4096 ((-112) |#2|)))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3093 (((-567) $) NIL (|has| (-567) (-308)))) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-4226 (((-421 (-1174 $)) (-1174 $)) NIL (|has| (-567) (-911)))) (-3248 (($ $) NIL)) (-2908 (((-421 $) $) NIL)) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) NIL (|has| (-567) (-911)))) (-3609 (((-112) $ $) NIL)) (-1750 (((-567) $) NIL (|has| (-567) (-821)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 (-567) "failed") $) NIL) (((-3 (-1178) "failed") $) NIL (|has| (-567) (-1040 (-1178)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| (-567) (-1040 (-567)))) (((-3 (-567) "failed") $) NIL (|has| (-567) (-1040 (-567))))) (-2038 (((-567) $) NIL) (((-1178) $) NIL (|has| (-567) (-1040 (-1178)))) (((-410 (-567)) $) NIL (|has| (-567) (-1040 (-567)))) (((-567) $) NIL (|has| (-567) (-1040 (-567))))) (-2349 (($ $ $) NIL)) (-2630 (((-690 (-567)) (-690 $)) NIL (|has| (-567) (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (|has| (-567) (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL) (((-690 (-567)) (-690 $)) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-1348 (($) NIL (|has| (-567) (-548)))) (-2360 (($ $ $) NIL)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-3184 (((-112) $) NIL)) (-4336 (((-112) $) NIL (|has| (-567) (-821)))) (-4303 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (|has| (-567) (-888 (-567)))) (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (|has| (-567) (-888 (-381))))) (-1433 (((-112) $) NIL)) (-3530 (($ $) NIL)) (-1448 (((-567) $) NIL)) (-3972 (((-3 $ "failed") $) NIL (|has| (-567) (-1153)))) (-3494 (((-112) $) NIL (|has| (-567) (-821)))) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1354 (($ $ $) NIL (|has| (-567) (-851)))) (-2981 (($ $ $) NIL (|has| (-567) (-851)))) (-3829 (($ (-1 (-567) (-567)) $) NIL)) (-2740 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) NIL)) (-2672 (($) NIL (|has| (-567) (-1153)) CONST)) (-3430 (((-1122) $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-2774 (($ $ $) NIL) (($ (-645 $)) NIL)) (-4094 (($ $) NIL (|has| (-567) (-308))) (((-410 (-567)) $) NIL)) (-2780 (((-567) $) NIL (|has| (-567) (-548)))) (-2435 (((-421 (-1174 $)) (-1174 $)) NIL (|has| (-567) (-911)))) (-3517 (((-421 (-1174 $)) (-1174 $)) NIL (|has| (-567) (-911)))) (-2706 (((-421 $) $) NIL)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2391 (((-3 $ "failed") $ $) NIL)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2631 (($ $ (-645 (-567)) (-645 (-567))) NIL (|has| (-567) (-310 (-567)))) (($ $ (-567) (-567)) NIL (|has| (-567) (-310 (-567)))) (($ $ (-295 (-567))) NIL (|has| (-567) (-310 (-567)))) (($ $ (-645 (-295 (-567)))) NIL (|has| (-567) (-310 (-567)))) (($ $ (-645 (-1178)) (-645 (-567))) NIL (|has| (-567) (-517 (-1178) (-567)))) (($ $ (-1178) (-567)) NIL (|has| (-567) (-517 (-1178) (-567))))) (-1990 (((-772) $) NIL)) (-1787 (($ $ (-567)) NIL (|has| (-567) (-287 (-567) (-567))))) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL)) (-1593 (($ $) NIL (|has| (-567) (-233))) (($ $ (-772)) NIL (|has| (-567) (-233))) (($ $ (-1178)) NIL (|has| (-567) (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| (-567) (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| (-567) (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| (-567) (-902 (-1178)))) (($ $ (-1 (-567) (-567)) (-772)) NIL) (($ $ (-1 (-567) (-567))) NIL)) (-1967 (($ $) NIL)) (-1460 (((-567) $) NIL)) (-1992 (($ (-410 (-567))) 9)) (-3893 (((-894 (-567)) $) NIL (|has| (-567) (-615 (-894 (-567))))) (((-894 (-381)) $) NIL (|has| (-567) (-615 (-894 (-381))))) (((-539) $) NIL (|has| (-567) (-615 (-539)))) (((-381) $) NIL (|has| (-567) (-1024))) (((-225) $) NIL (|has| (-567) (-1024)))) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| (-567) (-911))))) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) 8) (($ (-567)) NIL) (($ (-1178)) NIL (|has| (-567) (-1040 (-1178)))) (((-410 (-567)) $) NIL) (((-1006 10) $) 10)) (-1903 (((-3 $ "failed") $) NIL (-2800 (-12 (|has| $ (-145)) (|has| (-567) (-911))) (|has| (-567) (-145))))) (-4221 (((-772)) NIL T CONST)) (-1423 (((-567) $) NIL (|has| (-567) (-548)))) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL)) (-2219 (($ $) NIL (|has| (-567) (-821)))) (-1716 (($) NIL T CONST)) (-1728 (($) NIL T CONST)) (-2637 (($ $) NIL (|has| (-567) (-233))) (($ $ (-772)) NIL (|has| (-567) (-233))) (($ $ (-1178)) NIL (|has| (-567) (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| (-567) (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| (-567) (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| (-567) (-902 (-1178)))) (($ $ (-1 (-567) (-567)) (-772)) NIL) (($ $ (-1 (-567) (-567))) NIL)) (-2997 (((-112) $ $) NIL (|has| (-567) (-851)))) (-2971 (((-112) $ $) NIL (|has| (-567) (-851)))) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL (|has| (-567) (-851)))) (-2958 (((-112) $ $) NIL (|has| (-567) (-851)))) (-3060 (($ $ $) NIL) (($ (-567) (-567)) NIL)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ (-567) $) NIL) (($ $ (-567)) NIL)))
-(((-217) (-13 (-994 (-567)) (-614 (-410 (-567))) (-614 (-1006 10)) (-10 -8 (-15 -4094 ((-410 (-567)) $)) (-15 -1992 ($ (-410 (-567))))))) (T -217))
-((-4094 (*1 *2 *1) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-217)))) (-1992 (*1 *1 *2) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-217)))))
-(-13 (-994 (-567)) (-614 (-410 (-567))) (-614 (-1006 10)) (-10 -8 (-15 -4094 ((-410 (-567)) $)) (-15 -1992 ($ (-410 (-567))))))
-((-2403 (((-112) $ $) NIL)) (-3386 (((-1120) $) 13)) (-1419 (((-1160) $) NIL)) (-2724 (((-486) $) 10)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 23) (($ (-1183)) NIL) (((-1183) $) NIL)) (-2006 (((-1137) $) 15)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)))
-(((-218) (-13 (-1085) (-10 -8 (-15 -2724 ((-486) $)) (-15 -3386 ((-1120) $)) (-15 -2006 ((-1137) $))))) (T -218))
-((-2724 (*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-218)))) (-3386 (*1 *2 *1) (-12 (-5 *2 (-1120)) (-5 *1 (-218)))) (-2006 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-218)))))
-(-13 (-1085) (-10 -8 (-15 -2724 ((-486) $)) (-15 -3386 ((-1120) $)) (-15 -2006 ((-1137) $))))
-((-2416 (((-3 (|:| |f1| (-844 |#2|)) (|:| |f2| (-645 (-844 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1094 (-844 |#2|)) (-1160)) 29) (((-3 (|:| |f1| (-844 |#2|)) (|:| |f2| (-645 (-844 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1094 (-844 |#2|))) 25)) (-2193 (((-3 (|:| |f1| (-844 |#2|)) (|:| |f2| (-645 (-844 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1178) (-844 |#2|) (-844 |#2|) (-112)) 17)))
-(((-219 |#1| |#2|) (-10 -7 (-15 -2416 ((-3 (|:| |f1| (-844 |#2|)) (|:| |f2| (-645 (-844 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1094 (-844 |#2|)))) (-15 -2416 ((-3 (|:| |f1| (-844 |#2|)) (|:| |f2| (-645 (-844 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1094 (-844 |#2|)) (-1160))) (-15 -2193 ((-3 (|:| |f1| (-844 |#2|)) (|:| |f2| (-645 (-844 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1178) (-844 |#2|) (-844 |#2|) (-112)))) (-13 (-308) (-147) (-1040 (-567)) (-640 (-567))) (-13 (-1203) (-961) (-29 |#1|))) (T -219))
-((-2193 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1178)) (-5 *6 (-112)) (-4 *7 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) (-4 *3 (-13 (-1203) (-961) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-844 *3)) (|:| |f2| (-645 (-844 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *7 *3)) (-5 *5 (-844 *3)))) (-2416 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1094 (-844 *3))) (-5 *5 (-1160)) (-4 *3 (-13 (-1203) (-961) (-29 *6))) (-4 *6 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-3 (|:| |f1| (-844 *3)) (|:| |f2| (-645 (-844 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *6 *3)))) (-2416 (*1 *2 *3 *4) (-12 (-5 *4 (-1094 (-844 *3))) (-4 *3 (-13 (-1203) (-961) (-29 *5))) (-4 *5 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-3 (|:| |f1| (-844 *3)) (|:| |f2| (-645 (-844 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *5 *3)))))
-(-10 -7 (-15 -2416 ((-3 (|:| |f1| (-844 |#2|)) (|:| |f2| (-645 (-844 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1094 (-844 |#2|)))) (-15 -2416 ((-3 (|:| |f1| (-844 |#2|)) (|:| |f2| (-645 (-844 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1094 (-844 |#2|)) (-1160))) (-15 -2193 ((-3 (|:| |f1| (-844 |#2|)) (|:| |f2| (-645 (-844 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1178) (-844 |#2|) (-844 |#2|) (-112))))
-((-2416 (((-3 (|:| |f1| (-844 (-317 |#1|))) (|:| |f2| (-645 (-844 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-410 (-954 |#1|)) (-1094 (-844 (-410 (-954 |#1|)))) (-1160)) 49) (((-3 (|:| |f1| (-844 (-317 |#1|))) (|:| |f2| (-645 (-844 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-410 (-954 |#1|)) (-1094 (-844 (-410 (-954 |#1|))))) 46) (((-3 (|:| |f1| (-844 (-317 |#1|))) (|:| |f2| (-645 (-844 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-410 (-954 |#1|)) (-1094 (-844 (-317 |#1|))) (-1160)) 50) (((-3 (|:| |f1| (-844 (-317 |#1|))) (|:| |f2| (-645 (-844 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-410 (-954 |#1|)) (-1094 (-844 (-317 |#1|)))) 22)))
-(((-220 |#1|) (-10 -7 (-15 -2416 ((-3 (|:| |f1| (-844 (-317 |#1|))) (|:| |f2| (-645 (-844 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-410 (-954 |#1|)) (-1094 (-844 (-317 |#1|))))) (-15 -2416 ((-3 (|:| |f1| (-844 (-317 |#1|))) (|:| |f2| (-645 (-844 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-410 (-954 |#1|)) (-1094 (-844 (-317 |#1|))) (-1160))) (-15 -2416 ((-3 (|:| |f1| (-844 (-317 |#1|))) (|:| |f2| (-645 (-844 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-410 (-954 |#1|)) (-1094 (-844 (-410 (-954 |#1|)))))) (-15 -2416 ((-3 (|:| |f1| (-844 (-317 |#1|))) (|:| |f2| (-645 (-844 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-410 (-954 |#1|)) (-1094 (-844 (-410 (-954 |#1|)))) (-1160)))) (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) (T -220))
-((-2416 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1094 (-844 (-410 (-954 *6))))) (-5 *5 (-1160)) (-5 *3 (-410 (-954 *6))) (-4 *6 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-3 (|:| |f1| (-844 (-317 *6))) (|:| |f2| (-645 (-844 (-317 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *6)))) (-2416 (*1 *2 *3 *4) (-12 (-5 *4 (-1094 (-844 (-410 (-954 *5))))) (-5 *3 (-410 (-954 *5))) (-4 *5 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-3 (|:| |f1| (-844 (-317 *5))) (|:| |f2| (-645 (-844 (-317 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *5)))) (-2416 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-410 (-954 *6))) (-5 *4 (-1094 (-844 (-317 *6)))) (-5 *5 (-1160)) (-4 *6 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-3 (|:| |f1| (-844 (-317 *6))) (|:| |f2| (-645 (-844 (-317 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *6)))) (-2416 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-1094 (-844 (-317 *5)))) (-4 *5 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-3 (|:| |f1| (-844 (-317 *5))) (|:| |f2| (-645 (-844 (-317 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *5)))))
-(-10 -7 (-15 -2416 ((-3 (|:| |f1| (-844 (-317 |#1|))) (|:| |f2| (-645 (-844 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-410 (-954 |#1|)) (-1094 (-844 (-317 |#1|))))) (-15 -2416 ((-3 (|:| |f1| (-844 (-317 |#1|))) (|:| |f2| (-645 (-844 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-410 (-954 |#1|)) (-1094 (-844 (-317 |#1|))) (-1160))) (-15 -2416 ((-3 (|:| |f1| (-844 (-317 |#1|))) (|:| |f2| (-645 (-844 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-410 (-954 |#1|)) (-1094 (-844 (-410 (-954 |#1|)))))) (-15 -2416 ((-3 (|:| |f1| (-844 (-317 |#1|))) (|:| |f2| (-645 (-844 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-410 (-954 |#1|)) (-1094 (-844 (-410 (-954 |#1|)))) (-1160))))
-((-2477 (((-2 (|:| -2517 (-1174 |#1|)) (|:| |deg| (-923))) (-1174 |#1|)) 26)) (-3317 (((-645 (-317 |#2|)) (-317 |#2|) (-923)) 54)))
-(((-221 |#1| |#2|) (-10 -7 (-15 -2477 ((-2 (|:| -2517 (-1174 |#1|)) (|:| |deg| (-923))) (-1174 |#1|))) (-15 -3317 ((-645 (-317 |#2|)) (-317 |#2|) (-923)))) (-1051) (-559)) (T -221))
-((-3317 (*1 *2 *3 *4) (-12 (-5 *4 (-923)) (-4 *6 (-559)) (-5 *2 (-645 (-317 *6))) (-5 *1 (-221 *5 *6)) (-5 *3 (-317 *6)) (-4 *5 (-1051)))) (-2477 (*1 *2 *3) (-12 (-4 *4 (-1051)) (-5 *2 (-2 (|:| -2517 (-1174 *4)) (|:| |deg| (-923)))) (-5 *1 (-221 *4 *5)) (-5 *3 (-1174 *4)) (-4 *5 (-559)))))
-(-10 -7 (-15 -2477 ((-2 (|:| -2517 (-1174 |#1|)) (|:| |deg| (-923))) (-1174 |#1|))) (-15 -3317 ((-645 (-317 |#2|)) (-317 |#2|) (-923))))
-((-2403 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1910 ((|#1| $) NIL)) (-2262 ((|#1| $) 30)) (-3445 (((-112) $ (-772)) NIL)) (-2585 (($) NIL T CONST)) (-3061 (($ $) NIL)) (-1764 (($ $) 39)) (-2576 ((|#1| |#1| $) NIL)) (-4338 ((|#1| $) NIL)) (-2777 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-2077 (((-112) $ (-772)) NIL)) (-2279 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-3731 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-1699 (((-772) $) NIL)) (-1419 (((-1160) $) NIL (|has| |#1| (-1102)))) (-1566 ((|#1| $) NIL)) (-1567 ((|#1| |#1| $) 35)) (-1420 ((|#1| |#1| $) 37)) (-2531 (($ |#1| $) NIL)) (-4138 (((-772) $) 33)) (-3430 (((-1122) $) NIL (|has| |#1| (-1102)))) (-3303 ((|#1| $) NIL)) (-1660 ((|#1| $) 31)) (-2524 ((|#1| $) 29)) (-1793 ((|#1| $) NIL)) (-3025 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) NIL)) (-3136 ((|#1| |#1| $) NIL)) (-3572 (((-112) $) 9)) (-3498 (($) NIL)) (-2234 ((|#1| $) NIL)) (-4137 (($) NIL) (($ (-645 |#1|)) 16)) (-3272 (((-772) $) NIL)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-4305 (($ $) NIL)) (-4132 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-4158 ((|#1| $) 13)) (-1745 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3551 (($ (-645 |#1|)) NIL)) (-3090 ((|#1| $) NIL)) (-1853 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2414 (((-772) $) NIL (|has| $ (-6 -4418)))))
-(((-222 |#1|) (-13 (-255 |#1|) (-10 -8 (-15 -4137 ($ (-645 |#1|))))) (-1102)) (T -222))
-((-4137 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-5 *1 (-222 *3)))))
-(-13 (-255 |#1|) (-10 -8 (-15 -4137 ($ (-645 |#1|)))))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-4076 (($ (-317 |#1|)) 27)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2585 (($) NIL T CONST)) (-3164 (((-112) $) NIL)) (-3753 (((-3 (-317 |#1|) "failed") $) NIL)) (-2038 (((-317 |#1|) $) NIL)) (-3014 (($ $) 35)) (-2109 (((-3 $ "failed") $) NIL)) (-1433 (((-112) $) NIL)) (-3829 (($ (-1 (-317 |#1|) (-317 |#1|)) $) NIL)) (-2989 (((-317 |#1|) $) NIL)) (-3914 (($ $) 34)) (-1419 (((-1160) $) NIL)) (-1974 (((-112) $) NIL)) (-3430 (((-1122) $) NIL)) (-1398 (($ (-772)) NIL)) (-2147 (($ $) 36)) (-3077 (((-567) $) NIL)) (-4132 (((-863) $) 68) (($ (-567)) NIL) (($ (-317 |#1|)) NIL)) (-4136 (((-317 |#1|) $ $) NIL)) (-4221 (((-772)) NIL T CONST)) (-1745 (((-112) $ $) NIL)) (-1716 (($) 29 T CONST)) (-1728 (($) NIL T CONST)) (-2936 (((-112) $ $) 32)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) 23)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 28) (($ (-317 |#1|) $) 22)))
-(((-223 |#1| |#2|) (-13 (-621 (-317 |#1|)) (-1040 (-317 |#1|)) (-10 -8 (-15 -2989 ((-317 |#1|) $)) (-15 -3914 ($ $)) (-15 -3014 ($ $)) (-15 -4136 ((-317 |#1|) $ $)) (-15 -1398 ($ (-772))) (-15 -1974 ((-112) $)) (-15 -3164 ((-112) $)) (-15 -3077 ((-567) $)) (-15 -3829 ($ (-1 (-317 |#1|) (-317 |#1|)) $)) (-15 -4076 ($ (-317 |#1|))) (-15 -2147 ($ $)))) (-13 (-1051) (-851)) (-645 (-1178))) (T -223))
-((-2989 (*1 *2 *1) (-12 (-5 *2 (-317 *3)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1051) (-851))) (-14 *4 (-645 (-1178))))) (-3914 (*1 *1 *1) (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1051) (-851))) (-14 *3 (-645 (-1178))))) (-3014 (*1 *1 *1) (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1051) (-851))) (-14 *3 (-645 (-1178))))) (-4136 (*1 *2 *1 *1) (-12 (-5 *2 (-317 *3)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1051) (-851))) (-14 *4 (-645 (-1178))))) (-1398 (*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1051) (-851))) (-14 *4 (-645 (-1178))))) (-1974 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1051) (-851))) (-14 *4 (-645 (-1178))))) (-3164 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1051) (-851))) (-14 *4 (-645 (-1178))))) (-3077 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1051) (-851))) (-14 *4 (-645 (-1178))))) (-3829 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-317 *3) (-317 *3))) (-4 *3 (-13 (-1051) (-851))) (-5 *1 (-223 *3 *4)) (-14 *4 (-645 (-1178))))) (-4076 (*1 *1 *2) (-12 (-5 *2 (-317 *3)) (-4 *3 (-13 (-1051) (-851))) (-5 *1 (-223 *3 *4)) (-14 *4 (-645 (-1178))))) (-2147 (*1 *1 *1) (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1051) (-851))) (-14 *3 (-645 (-1178))))))
-(-13 (-621 (-317 |#1|)) (-1040 (-317 |#1|)) (-10 -8 (-15 -2989 ((-317 |#1|) $)) (-15 -3914 ($ $)) (-15 -3014 ($ $)) (-15 -4136 ((-317 |#1|) $ $)) (-15 -1398 ($ (-772))) (-15 -1974 ((-112) $)) (-15 -3164 ((-112) $)) (-15 -3077 ((-567) $)) (-15 -3829 ($ (-1 (-317 |#1|) (-317 |#1|)) $)) (-15 -4076 ($ (-317 |#1|))) (-15 -2147 ($ $))))
-((-4278 (((-112) (-1160)) 26)) (-2023 (((-3 (-844 |#2|) "failed") (-613 |#2|) |#2| (-844 |#2|) (-844 |#2|) (-112)) 35)) (-4327 (((-3 (-112) "failed") (-1174 |#2|) (-844 |#2|) (-844 |#2|) (-112)) 84) (((-3 (-112) "failed") (-954 |#1|) (-1178) (-844 |#2|) (-844 |#2|) (-112)) 85)))
-(((-224 |#1| |#2|) (-10 -7 (-15 -4278 ((-112) (-1160))) (-15 -2023 ((-3 (-844 |#2|) "failed") (-613 |#2|) |#2| (-844 |#2|) (-844 |#2|) (-112))) (-15 -4327 ((-3 (-112) "failed") (-954 |#1|) (-1178) (-844 |#2|) (-844 |#2|) (-112))) (-15 -4327 ((-3 (-112) "failed") (-1174 |#2|) (-844 |#2|) (-844 |#2|) (-112)))) (-13 (-455) (-1040 (-567)) (-640 (-567))) (-13 (-1203) (-29 |#1|))) (T -224))
-((-4327 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1174 *6)) (-5 *4 (-844 *6)) (-4 *6 (-13 (-1203) (-29 *5))) (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-224 *5 *6)))) (-4327 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-954 *6)) (-5 *4 (-1178)) (-5 *5 (-844 *7)) (-4 *6 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-4 *7 (-13 (-1203) (-29 *6))) (-5 *1 (-224 *6 *7)))) (-2023 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-844 *4)) (-5 *3 (-613 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1203) (-29 *6))) (-4 *6 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-224 *6 *4)))) (-4278 (*1 *2 *3) (-12 (-5 *3 (-1160)) (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-112)) (-5 *1 (-224 *4 *5)) (-4 *5 (-13 (-1203) (-29 *4))))))
-(-10 -7 (-15 -4278 ((-112) (-1160))) (-15 -2023 ((-3 (-844 |#2|) "failed") (-613 |#2|) |#2| (-844 |#2|) (-844 |#2|) (-112))) (-15 -4327 ((-3 (-112) "failed") (-954 |#1|) (-1178) (-844 |#2|) (-844 |#2|) (-112))) (-15 -4327 ((-3 (-112) "failed") (-1174 |#2|) (-844 |#2|) (-844 |#2|) (-112))))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) 100)) (-3093 (((-567) $) 36)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-1950 (($ $) NIL)) (-3146 (($ $) 89)) (-3012 (($ $) 77)) (-3472 (((-3 $ "failed") $ $) NIL)) (-3248 (($ $) NIL)) (-2908 (((-421 $) $) NIL)) (-2716 (($ $) 68)) (-3609 (((-112) $ $) NIL)) (-3128 (($ $) 87)) (-2987 (($ $) 75)) (-1750 (((-567) $) 130)) (-3166 (($ $) 92)) (-3035 (($ $) 79)) (-2585 (($) NIL T CONST)) (-2535 (($ $) NIL)) (-3753 (((-3 (-567) "failed") $) 129) (((-3 (-410 (-567)) "failed") $) 126)) (-2038 (((-567) $) 127) (((-410 (-567)) $) 124)) (-2349 (($ $ $) NIL)) (-2109 (((-3 $ "failed") $) 105)) (-2350 (((-410 (-567)) $ (-772)) 119) (((-410 (-567)) $ (-772) (-772)) 118)) (-2360 (($ $ $) NIL)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-3184 (((-112) $) NIL)) (-3725 (((-923)) 29) (((-923) (-923)) NIL (|has| $ (-6 -4409)))) (-4336 (((-112) $) NIL)) (-1482 (($) 47)) (-4303 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL)) (-4384 (((-567) $) 43)) (-1433 (((-112) $) 101)) (-2651 (($ $ (-567)) NIL)) (-2475 (($ $) NIL)) (-3494 (((-112) $) 99)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1354 (($ $ $) 65) (($) 39 (-12 (-1657 (|has| $ (-6 -4401))) (-1657 (|has| $ (-6 -4409)))))) (-2981 (($ $ $) 64) (($) 38 (-12 (-1657 (|has| $ (-6 -4401))) (-1657 (|has| $ (-6 -4409)))))) (-2148 (((-567) $) 27)) (-3971 (($ $) 34)) (-1703 (($ $) 69)) (-3063 (($ $) 74)) (-2740 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) NIL)) (-3214 (((-923) (-567)) NIL (|has| $ (-6 -4409)))) (-3430 (((-1122) $) 103)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-2774 (($ $ $) NIL) (($ (-645 $)) NIL)) (-4094 (($ $) NIL)) (-2780 (($ $) NIL)) (-2327 (($ (-567) (-567)) NIL) (($ (-567) (-567) (-923)) 112)) (-2706 (((-421 $) $) NIL)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2391 (((-3 $ "failed") $ $) NIL)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-3458 (((-567) $) 28)) (-4297 (($) 46)) (-3946 (($ $) 73)) (-1990 (((-772) $) NIL)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL)) (-3038 (((-923)) NIL) (((-923) (-923)) NIL (|has| $ (-6 -4409)))) (-1593 (($ $ (-772)) NIL) (($ $) 106)) (-4223 (((-923) (-567)) NIL (|has| $ (-6 -4409)))) (-3175 (($ $) 90)) (-3049 (($ $) 80)) (-3156 (($ $) 91)) (-3023 (($ $) 78)) (-3137 (($ $) 88)) (-2999 (($ $) 76)) (-3893 (((-381) $) 115) (((-225) $) 14) (((-894 (-381)) $) NIL) (((-539) $) 53)) (-4132 (((-863) $) 50) (($ (-567)) 72) (($ $) NIL) (($ (-410 (-567))) NIL) (($ (-567)) 72) (($ (-410 (-567))) NIL)) (-4221 (((-772)) NIL T CONST)) (-1423 (($ $) NIL)) (-2547 (((-923)) 37) (((-923) (-923)) NIL (|has| $ (-6 -4409)))) (-1745 (((-112) $ $) NIL)) (-3047 (((-923)) 25)) (-3200 (($ $) 95)) (-3084 (($ $) 83) (($ $ $) 122)) (-3816 (((-112) $ $) NIL)) (-3183 (($ $) 93)) (-3062 (($ $) 81)) (-3221 (($ $) 98)) (-3106 (($ $) 86)) (-3785 (($ $) 96)) (-3118 (($ $) 84)) (-3211 (($ $) 97)) (-3095 (($ $) 85)) (-3193 (($ $) 94)) (-3074 (($ $) 82)) (-2219 (($ $) 121)) (-1716 (($) 23 T CONST)) (-1728 (($) 44 T CONST)) (-2904 (((-1160) $) 18) (((-1160) $ (-112)) 20) (((-1273) (-823) $) 21) (((-1273) (-823) $ (-112)) 22)) (-1890 (($ $) 109)) (-2637 (($ $ (-772)) NIL) (($ $) NIL)) (-3944 (($ $ $) 111)) (-2997 (((-112) $ $) 58)) (-2971 (((-112) $ $) 55)) (-2936 (((-112) $ $) 66)) (-2984 (((-112) $ $) 57)) (-2958 (((-112) $ $) 54)) (-3060 (($ $ $) 45) (($ $ (-567)) 67)) (-3045 (($ $) 59) (($ $ $) 61)) (-3033 (($ $ $) 60)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) 70) (($ $ (-410 (-567))) 154) (($ $ $) 71)) (* (($ (-923) $) 35) (($ (-772) $) NIL) (($ (-567) $) 63) (($ $ $) 62) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL)))
-(((-225) (-13 (-407) (-233) (-829) (-1203) (-615 (-539)) (-10 -8 (-15 -3060 ($ $ (-567))) (-15 ** ($ $ $)) (-15 -4297 ($)) (-15 -3971 ($ $)) (-15 -1703 ($ $)) (-15 -3084 ($ $ $)) (-15 -1890 ($ $)) (-15 -3944 ($ $ $)) (-15 -2350 ((-410 (-567)) $ (-772))) (-15 -2350 ((-410 (-567)) $ (-772) (-772)))))) (T -225))
-((** (*1 *1 *1 *1) (-5 *1 (-225))) (-3060 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-225)))) (-4297 (*1 *1) (-5 *1 (-225))) (-3971 (*1 *1 *1) (-5 *1 (-225))) (-1703 (*1 *1 *1) (-5 *1 (-225))) (-3084 (*1 *1 *1 *1) (-5 *1 (-225))) (-1890 (*1 *1 *1) (-5 *1 (-225))) (-3944 (*1 *1 *1 *1) (-5 *1 (-225))) (-2350 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *2 (-410 (-567))) (-5 *1 (-225)))) (-2350 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-772)) (-5 *2 (-410 (-567))) (-5 *1 (-225)))))
-(-13 (-407) (-233) (-829) (-1203) (-615 (-539)) (-10 -8 (-15 -3060 ($ $ (-567))) (-15 ** ($ $ $)) (-15 -4297 ($)) (-15 -3971 ($ $)) (-15 -1703 ($ $)) (-15 -3084 ($ $ $)) (-15 -1890 ($ $)) (-15 -3944 ($ $ $)) (-15 -2350 ((-410 (-567)) $ (-772))) (-15 -2350 ((-410 (-567)) $ (-772) (-772)))))
-((-2387 (((-169 (-225)) (-772) (-169 (-225))) 11) (((-225) (-772) (-225)) 12)) (-3591 (((-169 (-225)) (-169 (-225))) 13) (((-225) (-225)) 14)) (-2207 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 19) (((-225) (-225) (-225)) 22)) (-4275 (((-169 (-225)) (-169 (-225))) 27) (((-225) (-225)) 26)) (-3031 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 57) (((-225) (-225) (-225)) 49)) (-2030 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 62) (((-225) (-225) (-225)) 60)) (-3913 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 15) (((-225) (-225) (-225)) 16)) (-2944 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 17) (((-225) (-225) (-225)) 18)) (-3382 (((-169 (-225)) (-169 (-225))) 74) (((-225) (-225)) 73)) (-4023 (((-225) (-225)) 68) (((-169 (-225)) (-169 (-225))) 72)) (-1890 (((-169 (-225)) (-169 (-225))) 8) (((-225) (-225)) 9)) (-3944 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 35) (((-225) (-225) (-225)) 31)))
-(((-226) (-10 -7 (-15 -1890 ((-225) (-225))) (-15 -1890 ((-169 (-225)) (-169 (-225)))) (-15 -3944 ((-225) (-225) (-225))) (-15 -3944 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3591 ((-225) (-225))) (-15 -3591 ((-169 (-225)) (-169 (-225)))) (-15 -4275 ((-225) (-225))) (-15 -4275 ((-169 (-225)) (-169 (-225)))) (-15 -2387 ((-225) (-772) (-225))) (-15 -2387 ((-169 (-225)) (-772) (-169 (-225)))) (-15 -3913 ((-225) (-225) (-225))) (-15 -3913 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3031 ((-225) (-225) (-225))) (-15 -3031 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -2944 ((-225) (-225) (-225))) (-15 -2944 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -2030 ((-225) (-225) (-225))) (-15 -2030 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -4023 ((-169 (-225)) (-169 (-225)))) (-15 -4023 ((-225) (-225))) (-15 -3382 ((-225) (-225))) (-15 -3382 ((-169 (-225)) (-169 (-225)))) (-15 -2207 ((-225) (-225) (-225))) (-15 -2207 ((-169 (-225)) (-169 (-225)) (-169 (-225)))))) (T -226))
-((-2207 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-2207 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3382 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3382 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-4023 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-4023 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-2030 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-2030 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-2944 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-2944 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3031 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3031 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3913 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3913 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-2387 (*1 *2 *3 *2) (-12 (-5 *2 (-169 (-225))) (-5 *3 (-772)) (-5 *1 (-226)))) (-2387 (*1 *2 *3 *2) (-12 (-5 *2 (-225)) (-5 *3 (-772)) (-5 *1 (-226)))) (-4275 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-4275 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3591 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3591 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3944 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3944 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-1890 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-1890 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))))
-(-10 -7 (-15 -1890 ((-225) (-225))) (-15 -1890 ((-169 (-225)) (-169 (-225)))) (-15 -3944 ((-225) (-225) (-225))) (-15 -3944 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3591 ((-225) (-225))) (-15 -3591 ((-169 (-225)) (-169 (-225)))) (-15 -4275 ((-225) (-225))) (-15 -4275 ((-169 (-225)) (-169 (-225)))) (-15 -2387 ((-225) (-772) (-225))) (-15 -2387 ((-169 (-225)) (-772) (-169 (-225)))) (-15 -3913 ((-225) (-225) (-225))) (-15 -3913 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3031 ((-225) (-225) (-225))) (-15 -3031 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -2944 ((-225) (-225) (-225))) (-15 -2944 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -2030 ((-225) (-225) (-225))) (-15 -2030 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -4023 ((-169 (-225)) (-169 (-225)))) (-15 -4023 ((-225) (-225))) (-15 -3382 ((-225) (-225))) (-15 -3382 ((-169 (-225)) (-169 (-225)))) (-15 -2207 ((-225) (-225) (-225))) (-15 -2207 ((-169 (-225)) (-169 (-225)) (-169 (-225)))))
-((-2403 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1316 (($ (-772) (-772)) NIL)) (-1467 (($ $ $) NIL)) (-3094 (($ (-1268 |#1|)) NIL) (($ $) NIL)) (-2563 (($ |#1| |#1| |#1|) 33)) (-1981 (((-112) $) NIL)) (-3709 (($ $ (-567) (-567)) NIL)) (-2897 (($ $ (-567) (-567)) NIL)) (-1736 (($ $ (-567) (-567) (-567) (-567)) NIL)) (-3888 (($ $) NIL)) (-1948 (((-112) $) NIL)) (-3445 (((-112) $ (-772)) NIL)) (-1697 (($ $ (-567) (-567) $) NIL)) (-4284 ((|#1| $ (-567) (-567) |#1|) NIL) (($ $ (-645 (-567)) (-645 (-567)) $) NIL)) (-2615 (($ $ (-567) (-1268 |#1|)) NIL)) (-1961 (($ $ (-567) (-1268 |#1|)) NIL)) (-2172 (($ |#1| |#1| |#1|) 32)) (-3536 (($ (-772) |#1|) NIL)) (-2585 (($) NIL T CONST)) (-2233 (($ $) NIL (|has| |#1| (-308)))) (-1944 (((-1268 |#1|) $ (-567)) NIL)) (-4157 (($ |#1|) 31)) (-4026 (($ |#1|) 30)) (-2699 (($ |#1|) 29)) (-1954 (((-772) $) NIL (|has| |#1| (-559)))) (-3741 ((|#1| $ (-567) (-567) |#1|) NIL)) (-3680 ((|#1| $ (-567) (-567)) NIL)) (-2777 (((-645 |#1|) $) NIL)) (-1940 (((-772) $) NIL (|has| |#1| (-559)))) (-1325 (((-645 (-1268 |#1|)) $) NIL (|has| |#1| (-559)))) (-3633 (((-772) $) NIL)) (-2846 (($ (-772) (-772) |#1|) NIL)) (-3643 (((-772) $) NIL)) (-2077 (((-112) $ (-772)) NIL)) (-2031 ((|#1| $) NIL (|has| |#1| (-6 (-4420 "*"))))) (-2527 (((-567) $) NIL)) (-4043 (((-567) $) NIL)) (-2279 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2107 (((-567) $) NIL)) (-2646 (((-567) $) NIL)) (-2114 (($ (-645 (-645 |#1|))) 11)) (-3731 (($ (-1 |#1| |#1|) $) NIL)) (-3829 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1603 (((-645 (-645 |#1|)) $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL (|has| |#1| (-1102)))) (-1401 (((-3 $ "failed") $) NIL (|has| |#1| (-365)))) (-3701 (($) 12)) (-1418 (($ $ $) NIL)) (-3430 (((-1122) $) NIL (|has| |#1| (-1102)))) (-3986 (($ $ |#1|) NIL)) (-2391 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559)))) (-3025 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) NIL)) (-1787 ((|#1| $ (-567) (-567)) NIL) ((|#1| $ (-567) (-567) |#1|) NIL) (($ $ (-645 (-567)) (-645 (-567))) NIL)) (-3068 (($ (-645 |#1|)) NIL) (($ (-645 $)) NIL)) (-3339 (((-112) $) NIL)) (-4083 ((|#1| $) NIL (|has| |#1| (-6 (-4420 "*"))))) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-4305 (($ $) NIL)) (-2237 (((-1268 |#1|) $ (-567)) NIL)) (-4132 (($ (-1268 |#1|)) NIL) (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-1745 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2619 (((-112) $) NIL)) (-2936 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3060 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3045 (($ $ $) NIL) (($ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-772)) NIL) (($ $ (-567)) NIL (|has| |#1| (-365)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-567) $) NIL) (((-1268 |#1|) $ (-1268 |#1|)) 15) (((-1268 |#1|) (-1268 |#1|) $) NIL) (((-945 |#1|) $ (-945 |#1|)) 21)) (-2414 (((-772) $) NIL (|has| $ (-6 -4418)))))
-(((-227 |#1|) (-13 (-688 |#1| (-1268 |#1|) (-1268 |#1|)) (-10 -8 (-15 * ((-945 |#1|) $ (-945 |#1|))) (-15 -3701 ($)) (-15 -2699 ($ |#1|)) (-15 -4026 ($ |#1|)) (-15 -4157 ($ |#1|)) (-15 -2172 ($ |#1| |#1| |#1|)) (-15 -2563 ($ |#1| |#1| |#1|)))) (-13 (-365) (-1203))) (T -227))
-((* (*1 *2 *1 *2) (-12 (-5 *2 (-945 *3)) (-4 *3 (-13 (-365) (-1203))) (-5 *1 (-227 *3)))) (-3701 (*1 *1) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1203))))) (-2699 (*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1203))))) (-4026 (*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1203))))) (-4157 (*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1203))))) (-2172 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1203))))) (-2563 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1203))))))
-(-13 (-688 |#1| (-1268 |#1|) (-1268 |#1|)) (-10 -8 (-15 * ((-945 |#1|) $ (-945 |#1|))) (-15 -3701 ($)) (-15 -2699 ($ |#1|)) (-15 -4026 ($ |#1|)) (-15 -4157 ($ |#1|)) (-15 -2172 ($ |#1| |#1| |#1|)) (-15 -2563 ($ |#1| |#1| |#1|))))
-((-2839 (($ (-1 (-112) |#2|) $) 16)) (-2539 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 27)) (-2718 (($) NIL) (($ (-645 |#2|)) 11)) (-2936 (((-112) $ $) 25)))
-(((-228 |#1| |#2|) (-10 -8 (-15 -2839 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2539 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2539 (|#1| |#2| |#1|)) (-15 -2718 (|#1| (-645 |#2|))) (-15 -2718 (|#1|)) (-15 -2936 ((-112) |#1| |#1|))) (-229 |#2|) (-1102)) (T -228))
-NIL
-(-10 -8 (-15 -2839 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2539 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2539 (|#1| |#2| |#1|)) (-15 -2718 (|#1| (-645 |#2|))) (-15 -2718 (|#1|)) (-15 -2936 ((-112) |#1| |#1|)))
-((-2403 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-3445 (((-112) $ (-772)) 8)) (-2839 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4418)))) (-3350 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4418)))) (-2585 (($) 7 T CONST)) (-2444 (($ $) 59 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-2539 (($ |#1| $) 48 (|has| $ (-6 -4418))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4418)))) (-3238 (($ |#1| $) 58 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4418)))) (-2477 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4418)))) (-2777 (((-645 |#1|) $) 31 (|has| $ (-6 -4418)))) (-2077 (((-112) $ (-772)) 9)) (-2279 (((-645 |#1|) $) 30 (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-3731 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) 36)) (-2863 (((-112) $ (-772)) 10)) (-1419 (((-1160) $) 22 (|has| |#1| (-1102)))) (-1566 ((|#1| $) 40)) (-2531 (($ |#1| $) 41)) (-3430 (((-1122) $) 21 (|has| |#1| (-1102)))) (-4128 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1793 ((|#1| $) 42)) (-3025 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) 14)) (-3572 (((-112) $) 11)) (-3498 (($) 12)) (-2718 (($) 50) (($ (-645 |#1|)) 49)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4418))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-4305 (($ $) 13)) (-3893 (((-539) $) 60 (|has| |#1| (-615 (-539))))) (-4147 (($ (-645 |#1|)) 51)) (-4132 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-1745 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-3551 (($ (-645 |#1|)) 43)) (-1853 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2414 (((-772) $) 6 (|has| $ (-6 -4418)))))
+((-2412 (((-112) $ $) NIL)) (-3710 ((|#2| $ (-772) |#2|) 11)) (-3703 ((|#2| $ (-772)) 10)) (-2858 (($) 8)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) 26)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) 13)))
+(((-213 |#1| |#2|) (-13 (-1102) (-10 -8 (-15 -2858 ($)) (-15 -3703 (|#2| $ (-772))) (-15 -3710 (|#2| $ (-772) |#2|)))) (-923) (-1102)) (T -213))
+((-2858 (*1 *1) (-12 (-5 *1 (-213 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1102)))) (-3703 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-4 *2 (-1102)) (-5 *1 (-213 *4 *2)) (-14 *4 (-923)))) (-3710 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-213 *4 *2)) (-14 *4 (-923)) (-4 *2 (-1102)))))
+(-13 (-1102) (-10 -8 (-15 -2858 ($)) (-15 -3703 (|#2| $ (-772))) (-15 -3710 (|#2| $ (-772) |#2|))))
+((-2412 (((-112) $ $) NIL)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-3657 (((-1274) $) 37) (((-1274) $ (-923) (-923)) 44)) (-1801 (($ $ (-991)) 19) (((-245 (-1161)) $ (-1179)) 15)) (-4025 (((-1274) $) 35)) (-4129 (((-863) $) 32) (($ (-645 |#1|)) 8)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3053 (($ $ $) 27)) (-3041 (($ $ $) 22)))
+(((-214 |#1|) (-13 (-1102) (-617 (-645 |#1|)) (-10 -8 (-15 -1801 ($ $ (-991))) (-15 -1801 ((-245 (-1161)) $ (-1179))) (-15 -3041 ($ $ $)) (-15 -3053 ($ $ $)) (-15 -4025 ((-1274) $)) (-15 -3657 ((-1274) $)) (-15 -3657 ((-1274) $ (-923) (-923))))) (-13 (-851) (-10 -8 (-15 -1801 ((-1161) $ (-1179))) (-15 -4025 ((-1274) $)) (-15 -3657 ((-1274) $))))) (T -214))
+((-1801 (*1 *1 *1 *2) (-12 (-5 *2 (-991)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-851) (-10 -8 (-15 -1801 ((-1161) $ (-1179))) (-15 -4025 ((-1274) $)) (-15 -3657 ((-1274) $))))))) (-1801 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-245 (-1161))) (-5 *1 (-214 *4)) (-4 *4 (-13 (-851) (-10 -8 (-15 -1801 ((-1161) $ *3)) (-15 -4025 ((-1274) $)) (-15 -3657 ((-1274) $))))))) (-3041 (*1 *1 *1 *1) (-12 (-5 *1 (-214 *2)) (-4 *2 (-13 (-851) (-10 -8 (-15 -1801 ((-1161) $ (-1179))) (-15 -4025 ((-1274) $)) (-15 -3657 ((-1274) $))))))) (-3053 (*1 *1 *1 *1) (-12 (-5 *1 (-214 *2)) (-4 *2 (-13 (-851) (-10 -8 (-15 -1801 ((-1161) $ (-1179))) (-15 -4025 ((-1274) $)) (-15 -3657 ((-1274) $))))))) (-4025 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-851) (-10 -8 (-15 -1801 ((-1161) $ (-1179))) (-15 -4025 (*2 $)) (-15 -3657 (*2 $))))))) (-3657 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-851) (-10 -8 (-15 -1801 ((-1161) $ (-1179))) (-15 -4025 (*2 $)) (-15 -3657 (*2 $))))))) (-3657 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1274)) (-5 *1 (-214 *4)) (-4 *4 (-13 (-851) (-10 -8 (-15 -1801 ((-1161) $ (-1179))) (-15 -4025 (*2 $)) (-15 -3657 (*2 $))))))))
+(-13 (-1102) (-617 (-645 |#1|)) (-10 -8 (-15 -1801 ($ $ (-991))) (-15 -1801 ((-245 (-1161)) $ (-1179))) (-15 -3041 ($ $ $)) (-15 -3053 ($ $ $)) (-15 -4025 ((-1274) $)) (-15 -3657 ((-1274) $)) (-15 -3657 ((-1274) $ (-923) (-923)))))
+((-4064 ((|#2| |#4| (-1 |#2| |#2|)) 49)))
+(((-215 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4064 (|#2| |#4| (-1 |#2| |#2|)))) (-365) (-1245 |#1|) (-1245 (-410 |#2|)) (-344 |#1| |#2| |#3|)) (T -215))
+((-4064 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-365)) (-4 *6 (-1245 (-410 *2))) (-4 *2 (-1245 *5)) (-5 *1 (-215 *5 *2 *6 *3)) (-4 *3 (-344 *5 *2 *6)))))
+(-10 -7 (-15 -4064 (|#2| |#4| (-1 |#2| |#2|))))
+((-4314 ((|#2| |#2| (-772) |#2|) 58)) (-4148 ((|#2| |#2| (-772) |#2|) 54)) (-2800 (((-645 |#2|) (-645 (-2 (|:| |deg| (-772)) (|:| -3481 |#2|)))) 82)) (-2722 (((-645 (-2 (|:| |deg| (-772)) (|:| -3481 |#2|))) |#2|) 76)) (-1404 (((-112) |#2|) 74)) (-3347 (((-421 |#2|) |#2|) 96)) (-2717 (((-421 |#2|) |#2|) 95)) (-3204 ((|#2| |#2| (-772) |#2|) 52)) (-3584 (((-2 (|:| |cont| |#1|) (|:| -2158 (-645 (-2 (|:| |irr| |#2|) (|:| -2298 (-567)))))) |#2| (-112)) 88)))
+(((-216 |#1| |#2|) (-10 -7 (-15 -2717 ((-421 |#2|) |#2|)) (-15 -3347 ((-421 |#2|) |#2|)) (-15 -3584 ((-2 (|:| |cont| |#1|) (|:| -2158 (-645 (-2 (|:| |irr| |#2|) (|:| -2298 (-567)))))) |#2| (-112))) (-15 -2722 ((-645 (-2 (|:| |deg| (-772)) (|:| -3481 |#2|))) |#2|)) (-15 -2800 ((-645 |#2|) (-645 (-2 (|:| |deg| (-772)) (|:| -3481 |#2|))))) (-15 -3204 (|#2| |#2| (-772) |#2|)) (-15 -4148 (|#2| |#2| (-772) |#2|)) (-15 -4314 (|#2| |#2| (-772) |#2|)) (-15 -1404 ((-112) |#2|))) (-351) (-1245 |#1|)) (T -216))
+((-1404 (*1 *2 *3) (-12 (-4 *4 (-351)) (-5 *2 (-112)) (-5 *1 (-216 *4 *3)) (-4 *3 (-1245 *4)))) (-4314 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-772)) (-4 *4 (-351)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1245 *4)))) (-4148 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-772)) (-4 *4 (-351)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1245 *4)))) (-3204 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-772)) (-4 *4 (-351)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1245 *4)))) (-2800 (*1 *2 *3) (-12 (-5 *3 (-645 (-2 (|:| |deg| (-772)) (|:| -3481 *5)))) (-4 *5 (-1245 *4)) (-4 *4 (-351)) (-5 *2 (-645 *5)) (-5 *1 (-216 *4 *5)))) (-2722 (*1 *2 *3) (-12 (-4 *4 (-351)) (-5 *2 (-645 (-2 (|:| |deg| (-772)) (|:| -3481 *3)))) (-5 *1 (-216 *4 *3)) (-4 *3 (-1245 *4)))) (-3584 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-351)) (-5 *2 (-2 (|:| |cont| *5) (|:| -2158 (-645 (-2 (|:| |irr| *3) (|:| -2298 (-567))))))) (-5 *1 (-216 *5 *3)) (-4 *3 (-1245 *5)))) (-3347 (*1 *2 *3) (-12 (-4 *4 (-351)) (-5 *2 (-421 *3)) (-5 *1 (-216 *4 *3)) (-4 *3 (-1245 *4)))) (-2717 (*1 *2 *3) (-12 (-4 *4 (-351)) (-5 *2 (-421 *3)) (-5 *1 (-216 *4 *3)) (-4 *3 (-1245 *4)))))
+(-10 -7 (-15 -2717 ((-421 |#2|) |#2|)) (-15 -3347 ((-421 |#2|) |#2|)) (-15 -3584 ((-2 (|:| |cont| |#1|) (|:| -2158 (-645 (-2 (|:| |irr| |#2|) (|:| -2298 (-567)))))) |#2| (-112))) (-15 -2722 ((-645 (-2 (|:| |deg| (-772)) (|:| -3481 |#2|))) |#2|)) (-15 -2800 ((-645 |#2|) (-645 (-2 (|:| |deg| (-772)) (|:| -3481 |#2|))))) (-15 -3204 (|#2| |#2| (-772) |#2|)) (-15 -4148 (|#2| |#2| (-772) |#2|)) (-15 -4314 (|#2| |#2| (-772) |#2|)) (-15 -1404 ((-112) |#2|)))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-4014 (((-567) $) NIL (|has| (-567) (-308)))) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-4287 (($ $) NIL)) (-2286 (((-112) $) NIL)) (-2376 (((-3 $ "failed") $ $) NIL)) (-2029 (((-421 (-1175 $)) (-1175 $)) NIL (|has| (-567) (-911)))) (-3659 (($ $) NIL)) (-3597 (((-421 $) $) NIL)) (-3610 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) NIL (|has| (-567) (-911)))) (-3696 (((-112) $ $) NIL)) (-2677 (((-567) $) NIL (|has| (-567) (-821)))) (-3647 (($) NIL T CONST)) (-3765 (((-3 (-567) "failed") $) NIL) (((-3 (-1179) "failed") $) NIL (|has| (-567) (-1040 (-1179)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| (-567) (-1040 (-567)))) (((-3 (-567) "failed") $) NIL (|has| (-567) (-1040 (-567))))) (-2051 (((-567) $) NIL) (((-1179) $) NIL (|has| (-567) (-1040 (-1179)))) (((-410 (-567)) $) NIL (|has| (-567) (-1040 (-567)))) (((-567) $) NIL (|has| (-567) (-1040 (-567))))) (-2357 (($ $ $) NIL)) (-1423 (((-690 (-567)) (-690 $)) NIL (|has| (-567) (-640 (-567)))) (((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (|has| (-567) (-640 (-567)))) (((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL) (((-690 (-567)) (-690 $)) NIL)) (-3588 (((-3 $ "failed") $) NIL)) (-1359 (($) NIL (|has| (-567) (-548)))) (-2368 (($ $ $) NIL)) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) NIL)) (-3502 (((-112) $) NIL)) (-3137 (((-112) $) NIL (|has| (-567) (-821)))) (-3193 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (|has| (-567) (-888 (-567)))) (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (|has| (-567) (-888 (-381))))) (-4346 (((-112) $) NIL)) (-1863 (($ $) NIL)) (-1447 (((-567) $) NIL)) (-3067 (((-3 $ "failed") $) NIL (|has| (-567) (-1154)))) (-3465 (((-112) $) NIL (|has| (-567) (-821)))) (-1469 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1365 (($ $ $) NIL (|has| (-567) (-851)))) (-3002 (($ $ $) NIL (|has| (-567) (-851)))) (-3841 (($ (-1 (-567) (-567)) $) NIL)) (-2751 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2516 (((-1161) $) NIL)) (-2949 (($ $) NIL)) (-2694 (($) NIL (|has| (-567) (-1154)) CONST)) (-3437 (((-1122) $) NIL)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-2785 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2554 (($ $) NIL (|has| (-567) (-308))) (((-410 (-567)) $) NIL)) (-3969 (((-567) $) NIL (|has| (-567) (-548)))) (-3551 (((-421 (-1175 $)) (-1175 $)) NIL (|has| (-567) (-911)))) (-2016 (((-421 (-1175 $)) (-1175 $)) NIL (|has| (-567) (-911)))) (-2717 (((-421 $) $) NIL)) (-2905 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2400 (((-3 $ "failed") $ $) NIL)) (-2372 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2642 (($ $ (-645 (-567)) (-645 (-567))) NIL (|has| (-567) (-310 (-567)))) (($ $ (-567) (-567)) NIL (|has| (-567) (-310 (-567)))) (($ $ (-295 (-567))) NIL (|has| (-567) (-310 (-567)))) (($ $ (-645 (-295 (-567)))) NIL (|has| (-567) (-310 (-567)))) (($ $ (-645 (-1179)) (-645 (-567))) NIL (|has| (-567) (-517 (-1179) (-567)))) (($ $ (-1179) (-567)) NIL (|has| (-567) (-517 (-1179) (-567))))) (-2460 (((-772) $) NIL)) (-1801 (($ $ (-567)) NIL (|has| (-567) (-287 (-567) (-567))))) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) NIL)) (-1616 (($ $) NIL (|has| (-567) (-233))) (($ $ (-772)) NIL (|has| (-567) (-233))) (($ $ (-1179)) NIL (|has| (-567) (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| (-567) (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| (-567) (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| (-567) (-902 (-1179)))) (($ $ (-1 (-567) (-567)) (-772)) NIL) (($ $ (-1 (-567) (-567))) NIL)) (-1762 (($ $) NIL)) (-1462 (((-567) $) NIL)) (-1391 (($ (-410 (-567))) 9)) (-3902 (((-894 (-567)) $) NIL (|has| (-567) (-615 (-894 (-567))))) (((-894 (-381)) $) NIL (|has| (-567) (-615 (-894 (-381))))) (((-539) $) NIL (|has| (-567) (-615 (-539)))) (((-381) $) NIL (|has| (-567) (-1024))) (((-225) $) NIL (|has| (-567) (-1024)))) (-2616 (((-3 (-1269 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| (-567) (-911))))) (-4129 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) 8) (($ (-567)) NIL) (($ (-1179)) NIL (|has| (-567) (-1040 (-1179)))) (((-410 (-567)) $) NIL) (((-1006 10) $) 10)) (-2118 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-145)) (|has| (-567) (-911))) (|has| (-567) (-145))))) (-2746 (((-772)) NIL T CONST)) (-1689 (((-567) $) NIL (|has| (-567) (-548)))) (-3357 (((-112) $ $) NIL)) (-3731 (((-112) $ $) NIL)) (-1547 (($ $) NIL (|has| (-567) (-821)))) (-1733 (($) NIL T CONST)) (-1744 (($) NIL T CONST)) (-2647 (($ $) NIL (|has| (-567) (-233))) (($ $ (-772)) NIL (|has| (-567) (-233))) (($ $ (-1179)) NIL (|has| (-567) (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| (-567) (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| (-567) (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| (-567) (-902 (-1179)))) (($ $ (-1 (-567) (-567)) (-772)) NIL) (($ $ (-1 (-567) (-567))) NIL)) (-3004 (((-112) $ $) NIL (|has| (-567) (-851)))) (-2980 (((-112) $ $) NIL (|has| (-567) (-851)))) (-2946 (((-112) $ $) NIL)) (-2993 (((-112) $ $) NIL (|has| (-567) (-851)))) (-2968 (((-112) $ $) NIL (|has| (-567) (-851)))) (-3069 (($ $ $) NIL) (($ (-567) (-567)) NIL)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ (-567) $) NIL) (($ $ (-567)) NIL)))
+(((-217) (-13 (-994 (-567)) (-614 (-410 (-567))) (-614 (-1006 10)) (-10 -8 (-15 -2554 ((-410 (-567)) $)) (-15 -1391 ($ (-410 (-567))))))) (T -217))
+((-2554 (*1 *2 *1) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-217)))) (-1391 (*1 *1 *2) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-217)))))
+(-13 (-994 (-567)) (-614 (-410 (-567))) (-614 (-1006 10)) (-10 -8 (-15 -2554 ((-410 (-567)) $)) (-15 -1391 ($ (-410 (-567))))))
+((-2412 (((-112) $ $) NIL)) (-3394 (((-1120) $) 13)) (-2516 (((-1161) $) NIL)) (-1523 (((-486) $) 10)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) 23) (($ (-1184)) NIL) (((-1184) $) NIL)) (-2017 (((-1137) $) 15)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)))
+(((-218) (-13 (-1085) (-10 -8 (-15 -1523 ((-486) $)) (-15 -3394 ((-1120) $)) (-15 -2017 ((-1137) $))))) (T -218))
+((-1523 (*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-218)))) (-3394 (*1 *2 *1) (-12 (-5 *2 (-1120)) (-5 *1 (-218)))) (-2017 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-218)))))
+(-13 (-1085) (-10 -8 (-15 -1523 ((-486) $)) (-15 -3394 ((-1120) $)) (-15 -2017 ((-1137) $))))
+((-4083 (((-3 (|:| |f1| (-844 |#2|)) (|:| |f2| (-645 (-844 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1094 (-844 |#2|)) (-1161)) 29) (((-3 (|:| |f1| (-844 |#2|)) (|:| |f2| (-645 (-844 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1094 (-844 |#2|))) 25)) (-3744 (((-3 (|:| |f1| (-844 |#2|)) (|:| |f2| (-645 (-844 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1179) (-844 |#2|) (-844 |#2|) (-112)) 17)))
+(((-219 |#1| |#2|) (-10 -7 (-15 -4083 ((-3 (|:| |f1| (-844 |#2|)) (|:| |f2| (-645 (-844 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1094 (-844 |#2|)))) (-15 -4083 ((-3 (|:| |f1| (-844 |#2|)) (|:| |f2| (-645 (-844 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1094 (-844 |#2|)) (-1161))) (-15 -3744 ((-3 (|:| |f1| (-844 |#2|)) (|:| |f2| (-645 (-844 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1179) (-844 |#2|) (-844 |#2|) (-112)))) (-13 (-308) (-147) (-1040 (-567)) (-640 (-567))) (-13 (-1204) (-961) (-29 |#1|))) (T -219))
+((-3744 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1179)) (-5 *6 (-112)) (-4 *7 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) (-4 *3 (-13 (-1204) (-961) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-844 *3)) (|:| |f2| (-645 (-844 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *7 *3)) (-5 *5 (-844 *3)))) (-4083 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1094 (-844 *3))) (-5 *5 (-1161)) (-4 *3 (-13 (-1204) (-961) (-29 *6))) (-4 *6 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-3 (|:| |f1| (-844 *3)) (|:| |f2| (-645 (-844 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *6 *3)))) (-4083 (*1 *2 *3 *4) (-12 (-5 *4 (-1094 (-844 *3))) (-4 *3 (-13 (-1204) (-961) (-29 *5))) (-4 *5 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-3 (|:| |f1| (-844 *3)) (|:| |f2| (-645 (-844 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *5 *3)))))
+(-10 -7 (-15 -4083 ((-3 (|:| |f1| (-844 |#2|)) (|:| |f2| (-645 (-844 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1094 (-844 |#2|)))) (-15 -4083 ((-3 (|:| |f1| (-844 |#2|)) (|:| |f2| (-645 (-844 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1094 (-844 |#2|)) (-1161))) (-15 -3744 ((-3 (|:| |f1| (-844 |#2|)) (|:| |f2| (-645 (-844 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1179) (-844 |#2|) (-844 |#2|) (-112))))
+((-4083 (((-3 (|:| |f1| (-844 (-317 |#1|))) (|:| |f2| (-645 (-844 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-410 (-954 |#1|)) (-1094 (-844 (-410 (-954 |#1|)))) (-1161)) 49) (((-3 (|:| |f1| (-844 (-317 |#1|))) (|:| |f2| (-645 (-844 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-410 (-954 |#1|)) (-1094 (-844 (-410 (-954 |#1|))))) 46) (((-3 (|:| |f1| (-844 (-317 |#1|))) (|:| |f2| (-645 (-844 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-410 (-954 |#1|)) (-1094 (-844 (-317 |#1|))) (-1161)) 50) (((-3 (|:| |f1| (-844 (-317 |#1|))) (|:| |f2| (-645 (-844 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-410 (-954 |#1|)) (-1094 (-844 (-317 |#1|)))) 22)))
+(((-220 |#1|) (-10 -7 (-15 -4083 ((-3 (|:| |f1| (-844 (-317 |#1|))) (|:| |f2| (-645 (-844 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-410 (-954 |#1|)) (-1094 (-844 (-317 |#1|))))) (-15 -4083 ((-3 (|:| |f1| (-844 (-317 |#1|))) (|:| |f2| (-645 (-844 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-410 (-954 |#1|)) (-1094 (-844 (-317 |#1|))) (-1161))) (-15 -4083 ((-3 (|:| |f1| (-844 (-317 |#1|))) (|:| |f2| (-645 (-844 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-410 (-954 |#1|)) (-1094 (-844 (-410 (-954 |#1|)))))) (-15 -4083 ((-3 (|:| |f1| (-844 (-317 |#1|))) (|:| |f2| (-645 (-844 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-410 (-954 |#1|)) (-1094 (-844 (-410 (-954 |#1|)))) (-1161)))) (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) (T -220))
+((-4083 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1094 (-844 (-410 (-954 *6))))) (-5 *5 (-1161)) (-5 *3 (-410 (-954 *6))) (-4 *6 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-3 (|:| |f1| (-844 (-317 *6))) (|:| |f2| (-645 (-844 (-317 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *6)))) (-4083 (*1 *2 *3 *4) (-12 (-5 *4 (-1094 (-844 (-410 (-954 *5))))) (-5 *3 (-410 (-954 *5))) (-4 *5 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-3 (|:| |f1| (-844 (-317 *5))) (|:| |f2| (-645 (-844 (-317 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *5)))) (-4083 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-410 (-954 *6))) (-5 *4 (-1094 (-844 (-317 *6)))) (-5 *5 (-1161)) (-4 *6 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-3 (|:| |f1| (-844 (-317 *6))) (|:| |f2| (-645 (-844 (-317 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *6)))) (-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-1094 (-844 (-317 *5)))) (-4 *5 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-3 (|:| |f1| (-844 (-317 *5))) (|:| |f2| (-645 (-844 (-317 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *5)))))
+(-10 -7 (-15 -4083 ((-3 (|:| |f1| (-844 (-317 |#1|))) (|:| |f2| (-645 (-844 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-410 (-954 |#1|)) (-1094 (-844 (-317 |#1|))))) (-15 -4083 ((-3 (|:| |f1| (-844 (-317 |#1|))) (|:| |f2| (-645 (-844 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-410 (-954 |#1|)) (-1094 (-844 (-317 |#1|))) (-1161))) (-15 -4083 ((-3 (|:| |f1| (-844 (-317 |#1|))) (|:| |f2| (-645 (-844 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-410 (-954 |#1|)) (-1094 (-844 (-410 (-954 |#1|)))))) (-15 -4083 ((-3 (|:| |f1| (-844 (-317 |#1|))) (|:| |f2| (-645 (-844 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-410 (-954 |#1|)) (-1094 (-844 (-410 (-954 |#1|)))) (-1161))))
+((-2494 (((-2 (|:| -1774 (-1175 |#1|)) (|:| |deg| (-923))) (-1175 |#1|)) 26)) (-3326 (((-645 (-317 |#2|)) (-317 |#2|) (-923)) 54)))
+(((-221 |#1| |#2|) (-10 -7 (-15 -2494 ((-2 (|:| -1774 (-1175 |#1|)) (|:| |deg| (-923))) (-1175 |#1|))) (-15 -3326 ((-645 (-317 |#2|)) (-317 |#2|) (-923)))) (-1051) (-559)) (T -221))
+((-3326 (*1 *2 *3 *4) (-12 (-5 *4 (-923)) (-4 *6 (-559)) (-5 *2 (-645 (-317 *6))) (-5 *1 (-221 *5 *6)) (-5 *3 (-317 *6)) (-4 *5 (-1051)))) (-2494 (*1 *2 *3) (-12 (-4 *4 (-1051)) (-5 *2 (-2 (|:| -1774 (-1175 *4)) (|:| |deg| (-923)))) (-5 *1 (-221 *4 *5)) (-5 *3 (-1175 *4)) (-4 *5 (-559)))))
+(-10 -7 (-15 -2494 ((-2 (|:| -1774 (-1175 |#1|)) (|:| |deg| (-923))) (-1175 |#1|))) (-15 -3326 ((-645 (-317 |#2|)) (-317 |#2|) (-923))))
+((-2412 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1581 ((|#1| $) NIL)) (-2270 ((|#1| $) 30)) (-1563 (((-112) $ (-772)) NIL)) (-3647 (($) NIL T CONST)) (-3900 (($ $) NIL)) (-1602 (($ $) 39)) (-1985 ((|#1| |#1| $) NIL)) (-2142 ((|#1| $) NIL)) (-2799 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-4093 (((-112) $ (-772)) NIL)) (-1942 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-3237 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3751 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#1| |#1|) $) NIL)) (-1986 (((-112) $ (-772)) NIL)) (-2334 (((-772) $) NIL)) (-2516 (((-1161) $) NIL (|has| |#1| (-1102)))) (-2706 ((|#1| $) NIL)) (-2826 ((|#1| |#1| $) 35)) (-1387 ((|#1| |#1| $) 37)) (-2646 (($ |#1| $) NIL)) (-4136 (((-772) $) 33)) (-3437 (((-1122) $) NIL (|has| |#1| (-1102)))) (-1595 ((|#1| $) NIL)) (-1806 ((|#1| $) 31)) (-4282 ((|#1| $) 29)) (-3949 ((|#1| $) NIL)) (-4233 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3875 (((-112) $ $) NIL)) (-3254 ((|#1| |#1| $) NIL)) (-3885 (((-112) $) 9)) (-2701 (($) NIL)) (-2852 ((|#1| $) NIL)) (-1425 (($) NIL) (($ (-645 |#1|)) 16)) (-3289 (((-772) $) NIL)) (-3447 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-4309 (($ $) NIL)) (-4129 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-1675 ((|#1| $) 13)) (-3357 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3700 (($ (-645 |#1|)) NIL)) (-1877 ((|#1| $) NIL)) (-3436 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2423 (((-772) $) NIL (|has| $ (-6 -4422)))))
+(((-222 |#1|) (-13 (-255 |#1|) (-10 -8 (-15 -1425 ($ (-645 |#1|))))) (-1102)) (T -222))
+((-1425 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-5 *1 (-222 *3)))))
+(-13 (-255 |#1|) (-10 -8 (-15 -1425 ($ (-645 |#1|)))))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-3399 (($ (-317 |#1|)) 27)) (-2376 (((-3 $ "failed") $ $) NIL)) (-3647 (($) NIL T CONST)) (-1793 (((-112) $) NIL)) (-3765 (((-3 (-317 |#1|) "failed") $) NIL)) (-2051 (((-317 |#1|) $) NIL)) (-3023 (($ $) 35)) (-3588 (((-3 $ "failed") $) NIL)) (-4346 (((-112) $) NIL)) (-3841 (($ (-1 (-317 |#1|) (-317 |#1|)) $) NIL)) (-2996 (((-317 |#1|) $) NIL)) (-2789 (($ $) 34)) (-2516 (((-1161) $) NIL)) (-4348 (((-112) $) NIL)) (-3437 (((-1122) $) NIL)) (-1399 (($ (-772)) NIL)) (-2768 (($ $) 36)) (-3104 (((-567) $) NIL)) (-4129 (((-863) $) 68) (($ (-567)) NIL) (($ (-317 |#1|)) NIL)) (-2558 (((-317 |#1|) $ $) NIL)) (-2746 (((-772)) NIL T CONST)) (-3357 (((-112) $ $) NIL)) (-1733 (($) 29 T CONST)) (-1744 (($) NIL T CONST)) (-2946 (((-112) $ $) 32)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) 23)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 28) (($ (-317 |#1|) $) 22)))
+(((-223 |#1| |#2|) (-13 (-621 (-317 |#1|)) (-1040 (-317 |#1|)) (-10 -8 (-15 -2996 ((-317 |#1|) $)) (-15 -2789 ($ $)) (-15 -3023 ($ $)) (-15 -2558 ((-317 |#1|) $ $)) (-15 -1399 ($ (-772))) (-15 -4348 ((-112) $)) (-15 -1793 ((-112) $)) (-15 -3104 ((-567) $)) (-15 -3841 ($ (-1 (-317 |#1|) (-317 |#1|)) $)) (-15 -3399 ($ (-317 |#1|))) (-15 -2768 ($ $)))) (-13 (-1051) (-851)) (-645 (-1179))) (T -223))
+((-2996 (*1 *2 *1) (-12 (-5 *2 (-317 *3)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1051) (-851))) (-14 *4 (-645 (-1179))))) (-2789 (*1 *1 *1) (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1051) (-851))) (-14 *3 (-645 (-1179))))) (-3023 (*1 *1 *1) (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1051) (-851))) (-14 *3 (-645 (-1179))))) (-2558 (*1 *2 *1 *1) (-12 (-5 *2 (-317 *3)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1051) (-851))) (-14 *4 (-645 (-1179))))) (-1399 (*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1051) (-851))) (-14 *4 (-645 (-1179))))) (-4348 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1051) (-851))) (-14 *4 (-645 (-1179))))) (-1793 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1051) (-851))) (-14 *4 (-645 (-1179))))) (-3104 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1051) (-851))) (-14 *4 (-645 (-1179))))) (-3841 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-317 *3) (-317 *3))) (-4 *3 (-13 (-1051) (-851))) (-5 *1 (-223 *3 *4)) (-14 *4 (-645 (-1179))))) (-3399 (*1 *1 *2) (-12 (-5 *2 (-317 *3)) (-4 *3 (-13 (-1051) (-851))) (-5 *1 (-223 *3 *4)) (-14 *4 (-645 (-1179))))) (-2768 (*1 *1 *1) (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1051) (-851))) (-14 *3 (-645 (-1179))))))
+(-13 (-621 (-317 |#1|)) (-1040 (-317 |#1|)) (-10 -8 (-15 -2996 ((-317 |#1|) $)) (-15 -2789 ($ $)) (-15 -3023 ($ $)) (-15 -2558 ((-317 |#1|) $ $)) (-15 -1399 ($ (-772))) (-15 -4348 ((-112) $)) (-15 -1793 ((-112) $)) (-15 -3104 ((-567) $)) (-15 -3841 ($ (-1 (-317 |#1|) (-317 |#1|)) $)) (-15 -3399 ($ (-317 |#1|))) (-15 -2768 ($ $))))
+((-2657 (((-112) (-1161)) 26)) (-2397 (((-3 (-844 |#2|) "failed") (-613 |#2|) |#2| (-844 |#2|) (-844 |#2|) (-112)) 35)) (-4362 (((-3 (-112) "failed") (-1175 |#2|) (-844 |#2|) (-844 |#2|) (-112)) 84) (((-3 (-112) "failed") (-954 |#1|) (-1179) (-844 |#2|) (-844 |#2|) (-112)) 85)))
+(((-224 |#1| |#2|) (-10 -7 (-15 -2657 ((-112) (-1161))) (-15 -2397 ((-3 (-844 |#2|) "failed") (-613 |#2|) |#2| (-844 |#2|) (-844 |#2|) (-112))) (-15 -4362 ((-3 (-112) "failed") (-954 |#1|) (-1179) (-844 |#2|) (-844 |#2|) (-112))) (-15 -4362 ((-3 (-112) "failed") (-1175 |#2|) (-844 |#2|) (-844 |#2|) (-112)))) (-13 (-455) (-1040 (-567)) (-640 (-567))) (-13 (-1204) (-29 |#1|))) (T -224))
+((-4362 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1175 *6)) (-5 *4 (-844 *6)) (-4 *6 (-13 (-1204) (-29 *5))) (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-224 *5 *6)))) (-4362 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-954 *6)) (-5 *4 (-1179)) (-5 *5 (-844 *7)) (-4 *6 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-4 *7 (-13 (-1204) (-29 *6))) (-5 *1 (-224 *6 *7)))) (-2397 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-844 *4)) (-5 *3 (-613 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1204) (-29 *6))) (-4 *6 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-224 *6 *4)))) (-2657 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-112)) (-5 *1 (-224 *4 *5)) (-4 *5 (-13 (-1204) (-29 *4))))))
+(-10 -7 (-15 -2657 ((-112) (-1161))) (-15 -2397 ((-3 (-844 |#2|) "failed") (-613 |#2|) |#2| (-844 |#2|) (-844 |#2|) (-112))) (-15 -4362 ((-3 (-112) "failed") (-954 |#1|) (-1179) (-844 |#2|) (-844 |#2|) (-112))) (-15 -4362 ((-3 (-112) "failed") (-1175 |#2|) (-844 |#2|) (-844 |#2|) (-112))))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) 100)) (-4014 (((-567) $) 36)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-4287 (($ $) NIL)) (-2286 (((-112) $) NIL)) (-3748 (($ $) NIL)) (-3164 (($ $) 89)) (-3032 (($ $) 77)) (-2376 (((-3 $ "failed") $ $) NIL)) (-3659 (($ $) NIL)) (-3597 (((-421 $) $) NIL)) (-2728 (($ $) 68)) (-3696 (((-112) $ $) NIL)) (-3145 (($ $) 87)) (-3008 (($ $) 75)) (-2677 (((-567) $) 130)) (-3182 (($ $) 92)) (-3057 (($ $) 79)) (-3647 (($) NIL T CONST)) (-3122 (($ $) NIL)) (-3765 (((-3 (-567) "failed") $) 129) (((-3 (-410 (-567)) "failed") $) 126)) (-2051 (((-567) $) 127) (((-410 (-567)) $) 124)) (-2357 (($ $ $) NIL)) (-3588 (((-3 $ "failed") $) 105)) (-1664 (((-410 (-567)) $ (-772)) 119) (((-410 (-567)) $ (-772) (-772)) 118)) (-2368 (($ $ $) NIL)) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) NIL)) (-3502 (((-112) $) NIL)) (-3745 (((-923)) 29) (((-923) (-923)) NIL (|has| $ (-6 -4413)))) (-3137 (((-112) $) NIL)) (-1484 (($) 47)) (-3193 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL)) (-3362 (((-567) $) 43)) (-4346 (((-112) $) 101)) (-3698 (($ $ (-567)) NIL)) (-2724 (($ $) NIL)) (-3465 (((-112) $) 99)) (-1469 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1365 (($ $ $) 65) (($) 39 (-12 (-1673 (|has| $ (-6 -4405))) (-1673 (|has| $ (-6 -4413)))))) (-3002 (($ $ $) 64) (($) 38 (-12 (-1673 (|has| $ (-6 -4405))) (-1673 (|has| $ (-6 -4413)))))) (-2159 (((-567) $) 27)) (-2893 (($ $) 34)) (-1721 (($ $) 69)) (-3072 (($ $) 74)) (-2751 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2516 (((-1161) $) NIL)) (-2949 (($ $) NIL)) (-4301 (((-923) (-567)) NIL (|has| $ (-6 -4413)))) (-3437 (((-1122) $) 103)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-2785 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2554 (($ $) NIL)) (-3969 (($ $) NIL)) (-2335 (($ (-567) (-567)) NIL) (($ (-567) (-567) (-923)) 112)) (-2717 (((-421 $) $) NIL)) (-2905 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2400 (((-3 $ "failed") $ $) NIL)) (-2372 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-3468 (((-567) $) 28)) (-3784 (($) 46)) (-3955 (($ $) 73)) (-2460 (((-772) $) NIL)) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) NIL)) (-2688 (((-923)) NIL) (((-923) (-923)) NIL (|has| $ (-6 -4413)))) (-1616 (($ $ (-772)) NIL) (($ $) 106)) (-2935 (((-923) (-567)) NIL (|has| $ (-6 -4413)))) (-3192 (($ $) 90)) (-3071 (($ $) 80)) (-3173 (($ $) 91)) (-3043 (($ $) 78)) (-3155 (($ $) 88)) (-3021 (($ $) 76)) (-3902 (((-381) $) 115) (((-225) $) 14) (((-894 (-381)) $) NIL) (((-539) $) 53)) (-4129 (((-863) $) 50) (($ (-567)) 72) (($ $) NIL) (($ (-410 (-567))) NIL) (($ (-567)) 72) (($ (-410 (-567))) NIL)) (-2746 (((-772)) NIL T CONST)) (-1689 (($ $) NIL)) (-3766 (((-923)) 37) (((-923) (-923)) NIL (|has| $ (-6 -4413)))) (-3357 (((-112) $ $) NIL)) (-3070 (((-923)) 25)) (-3217 (($ $) 95)) (-3103 (($ $) 83) (($ $ $) 122)) (-3731 (((-112) $ $) NIL)) (-3201 (($ $) 93)) (-3083 (($ $) 81)) (-3238 (($ $) 98)) (-3126 (($ $) 86)) (-3805 (($ $) 96)) (-3138 (($ $) 84)) (-3228 (($ $) 97)) (-3115 (($ $) 85)) (-3208 (($ $) 94)) (-3093 (($ $) 82)) (-1547 (($ $) 121)) (-1733 (($) 23 T CONST)) (-1744 (($) 44 T CONST)) (-1335 (((-1161) $) 18) (((-1161) $ (-112)) 20) (((-1274) (-823) $) 21) (((-1274) (-823) $ (-112)) 22)) (-3290 (($ $) 109)) (-2647 (($ $ (-772)) NIL) (($ $) NIL)) (-3095 (($ $ $) 111)) (-3004 (((-112) $ $) 58)) (-2980 (((-112) $ $) 55)) (-2946 (((-112) $ $) 66)) (-2993 (((-112) $ $) 57)) (-2968 (((-112) $ $) 54)) (-3069 (($ $ $) 45) (($ $ (-567)) 67)) (-3053 (($ $) 59) (($ $ $) 61)) (-3041 (($ $ $) 60)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) 70) (($ $ (-410 (-567))) 154) (($ $ $) 71)) (* (($ (-923) $) 35) (($ (-772) $) NIL) (($ (-567) $) 63) (($ $ $) 62) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL)))
+(((-225) (-13 (-407) (-233) (-829) (-1204) (-615 (-539)) (-10 -8 (-15 -3069 ($ $ (-567))) (-15 ** ($ $ $)) (-15 -3784 ($)) (-15 -2893 ($ $)) (-15 -1721 ($ $)) (-15 -3103 ($ $ $)) (-15 -3290 ($ $)) (-15 -3095 ($ $ $)) (-15 -1664 ((-410 (-567)) $ (-772))) (-15 -1664 ((-410 (-567)) $ (-772) (-772)))))) (T -225))
+((** (*1 *1 *1 *1) (-5 *1 (-225))) (-3069 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-225)))) (-3784 (*1 *1) (-5 *1 (-225))) (-2893 (*1 *1 *1) (-5 *1 (-225))) (-1721 (*1 *1 *1) (-5 *1 (-225))) (-3103 (*1 *1 *1 *1) (-5 *1 (-225))) (-3290 (*1 *1 *1) (-5 *1 (-225))) (-3095 (*1 *1 *1 *1) (-5 *1 (-225))) (-1664 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *2 (-410 (-567))) (-5 *1 (-225)))) (-1664 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-772)) (-5 *2 (-410 (-567))) (-5 *1 (-225)))))
+(-13 (-407) (-233) (-829) (-1204) (-615 (-539)) (-10 -8 (-15 -3069 ($ $ (-567))) (-15 ** ($ $ $)) (-15 -3784 ($)) (-15 -2893 ($ $)) (-15 -1721 ($ $)) (-15 -3103 ($ $ $)) (-15 -3290 ($ $)) (-15 -3095 ($ $ $)) (-15 -1664 ((-410 (-567)) $ (-772))) (-15 -1664 ((-410 (-567)) $ (-772) (-772)))))
+((-1414 (((-169 (-225)) (-772) (-169 (-225))) 11) (((-225) (-772) (-225)) 12)) (-2008 (((-169 (-225)) (-169 (-225))) 13) (((-225) (-225)) 14)) (-2571 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 19) (((-225) (-225) (-225)) 22)) (-3514 (((-169 (-225)) (-169 (-225))) 27) (((-225) (-225)) 26)) (-3534 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 57) (((-225) (-225) (-225)) 49)) (-1713 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 62) (((-225) (-225) (-225)) 60)) (-2704 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 15) (((-225) (-225) (-225)) 16)) (-4126 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 17) (((-225) (-225) (-225)) 18)) (-2219 (((-169 (-225)) (-169 (-225))) 74) (((-225) (-225)) 73)) (-2682 (((-225) (-225)) 68) (((-169 (-225)) (-169 (-225))) 72)) (-3290 (((-169 (-225)) (-169 (-225))) 8) (((-225) (-225)) 9)) (-3095 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 35) (((-225) (-225) (-225)) 31)))
+(((-226) (-10 -7 (-15 -3290 ((-225) (-225))) (-15 -3290 ((-169 (-225)) (-169 (-225)))) (-15 -3095 ((-225) (-225) (-225))) (-15 -3095 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -2008 ((-225) (-225))) (-15 -2008 ((-169 (-225)) (-169 (-225)))) (-15 -3514 ((-225) (-225))) (-15 -3514 ((-169 (-225)) (-169 (-225)))) (-15 -1414 ((-225) (-772) (-225))) (-15 -1414 ((-169 (-225)) (-772) (-169 (-225)))) (-15 -2704 ((-225) (-225) (-225))) (-15 -2704 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3534 ((-225) (-225) (-225))) (-15 -3534 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -4126 ((-225) (-225) (-225))) (-15 -4126 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -1713 ((-225) (-225) (-225))) (-15 -1713 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -2682 ((-169 (-225)) (-169 (-225)))) (-15 -2682 ((-225) (-225))) (-15 -2219 ((-225) (-225))) (-15 -2219 ((-169 (-225)) (-169 (-225)))) (-15 -2571 ((-225) (-225) (-225))) (-15 -2571 ((-169 (-225)) (-169 (-225)) (-169 (-225)))))) (T -226))
+((-2571 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-2571 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-2219 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-2219 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-2682 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-2682 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-1713 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-1713 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-4126 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-4126 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3534 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3534 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-2704 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-2704 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-1414 (*1 *2 *3 *2) (-12 (-5 *2 (-169 (-225))) (-5 *3 (-772)) (-5 *1 (-226)))) (-1414 (*1 *2 *3 *2) (-12 (-5 *2 (-225)) (-5 *3 (-772)) (-5 *1 (-226)))) (-3514 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3514 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-2008 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-2008 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3095 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3095 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3290 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3290 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))))
+(-10 -7 (-15 -3290 ((-225) (-225))) (-15 -3290 ((-169 (-225)) (-169 (-225)))) (-15 -3095 ((-225) (-225) (-225))) (-15 -3095 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -2008 ((-225) (-225))) (-15 -2008 ((-169 (-225)) (-169 (-225)))) (-15 -3514 ((-225) (-225))) (-15 -3514 ((-169 (-225)) (-169 (-225)))) (-15 -1414 ((-225) (-772) (-225))) (-15 -1414 ((-169 (-225)) (-772) (-169 (-225)))) (-15 -2704 ((-225) (-225) (-225))) (-15 -2704 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3534 ((-225) (-225) (-225))) (-15 -3534 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -4126 ((-225) (-225) (-225))) (-15 -4126 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -1713 ((-225) (-225) (-225))) (-15 -1713 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -2682 ((-169 (-225)) (-169 (-225)))) (-15 -2682 ((-225) (-225))) (-15 -2219 ((-225) (-225))) (-15 -2219 ((-169 (-225)) (-169 (-225)))) (-15 -2571 ((-225) (-225) (-225))) (-15 -2571 ((-169 (-225)) (-169 (-225)) (-169 (-225)))))
+((-2412 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1318 (($ (-772) (-772)) NIL)) (-1957 (($ $ $) NIL)) (-4141 (($ (-1269 |#1|)) NIL) (($ $) NIL)) (-2572 (($ |#1| |#1| |#1|) 33)) (-2999 (((-112) $) NIL)) (-3527 (($ $ (-567) (-567)) NIL)) (-1812 (($ $ (-567) (-567)) NIL)) (-1932 (($ $ (-567) (-567) (-567) (-567)) NIL)) (-2154 (($ $) NIL)) (-3507 (((-112) $) NIL)) (-1563 (((-112) $ (-772)) NIL)) (-4298 (($ $ (-567) (-567) $) NIL)) (-4285 ((|#1| $ (-567) (-567) |#1|) NIL) (($ $ (-645 (-567)) (-645 (-567)) $) NIL)) (-3563 (($ $ (-567) (-1269 |#1|)) NIL)) (-2306 (($ $ (-567) (-1269 |#1|)) NIL)) (-2604 (($ |#1| |#1| |#1|) 32)) (-4302 (($ (-772) |#1|) NIL)) (-3647 (($) NIL T CONST)) (-2765 (($ $) NIL (|has| |#1| (-308)))) (-4323 (((-1269 |#1|) $ (-567)) NIL)) (-1570 (($ |#1|) 31)) (-2926 (($ |#1|) 30)) (-3149 (($ |#1|) 29)) (-1976 (((-772) $) NIL (|has| |#1| (-559)))) (-3760 ((|#1| $ (-567) (-567) |#1|) NIL)) (-3703 ((|#1| $ (-567) (-567)) NIL)) (-2799 (((-645 |#1|) $) NIL)) (-1974 (((-772) $) NIL (|has| |#1| (-559)))) (-2064 (((-645 (-1269 |#1|)) $) NIL (|has| |#1| (-559)))) (-4296 (((-772) $) NIL)) (-2858 (($ (-772) (-772) |#1|) NIL)) (-4307 (((-772) $) NIL)) (-4093 (((-112) $ (-772)) NIL)) (-1805 ((|#1| $) NIL (|has| |#1| (-6 (-4424 "*"))))) (-3407 (((-567) $) NIL)) (-4227 (((-567) $) NIL)) (-1942 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-3237 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3393 (((-567) $) NIL)) (-3351 (((-567) $) NIL)) (-2124 (($ (-645 (-645 |#1|))) 11)) (-3751 (($ (-1 |#1| |#1|) $) NIL)) (-3841 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2282 (((-645 (-645 |#1|)) $) NIL)) (-1986 (((-112) $ (-772)) NIL)) (-2516 (((-1161) $) NIL (|has| |#1| (-1102)))) (-2504 (((-3 $ "failed") $) NIL (|has| |#1| (-365)))) (-1956 (($) 12)) (-3810 (($ $ $) NIL)) (-3437 (((-1122) $) NIL (|has| |#1| (-1102)))) (-3823 (($ $ |#1|) NIL)) (-2400 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559)))) (-4233 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3875 (((-112) $ $) NIL)) (-3885 (((-112) $) NIL)) (-2701 (($) NIL)) (-1801 ((|#1| $ (-567) (-567)) NIL) ((|#1| $ (-567) (-567) |#1|) NIL) (($ $ (-645 (-567)) (-645 (-567))) NIL)) (-3391 (($ (-645 |#1|)) NIL) (($ (-645 $)) NIL)) (-4103 (((-112) $) NIL)) (-2790 ((|#1| $) NIL (|has| |#1| (-6 (-4424 "*"))))) (-3447 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-4309 (($ $) NIL)) (-3186 (((-1269 |#1|) $ (-567)) NIL)) (-4129 (($ (-1269 |#1|)) NIL) (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-3357 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3436 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-4050 (((-112) $) NIL)) (-2946 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3069 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3053 (($ $ $) NIL) (($ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-772)) NIL) (($ $ (-567)) NIL (|has| |#1| (-365)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-567) $) NIL) (((-1269 |#1|) $ (-1269 |#1|)) 15) (((-1269 |#1|) (-1269 |#1|) $) NIL) (((-945 |#1|) $ (-945 |#1|)) 21)) (-2423 (((-772) $) NIL (|has| $ (-6 -4422)))))
+(((-227 |#1|) (-13 (-688 |#1| (-1269 |#1|) (-1269 |#1|)) (-10 -8 (-15 * ((-945 |#1|) $ (-945 |#1|))) (-15 -1956 ($)) (-15 -3149 ($ |#1|)) (-15 -2926 ($ |#1|)) (-15 -1570 ($ |#1|)) (-15 -2604 ($ |#1| |#1| |#1|)) (-15 -2572 ($ |#1| |#1| |#1|)))) (-13 (-365) (-1204))) (T -227))
+((* (*1 *2 *1 *2) (-12 (-5 *2 (-945 *3)) (-4 *3 (-13 (-365) (-1204))) (-5 *1 (-227 *3)))) (-1956 (*1 *1) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1204))))) (-3149 (*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1204))))) (-2926 (*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1204))))) (-1570 (*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1204))))) (-2604 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1204))))) (-2572 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1204))))))
+(-13 (-688 |#1| (-1269 |#1|) (-1269 |#1|)) (-10 -8 (-15 * ((-945 |#1|) $ (-945 |#1|))) (-15 -1956 ($)) (-15 -3149 ($ |#1|)) (-15 -2926 ($ |#1|)) (-15 -1570 ($ |#1|)) (-15 -2604 ($ |#1| |#1| |#1|)) (-15 -2572 ($ |#1| |#1| |#1|))))
+((-1494 (($ (-1 (-112) |#2|) $) 16)) (-2247 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 27)) (-4106 (($) NIL) (($ (-645 |#2|)) 11)) (-2946 (((-112) $ $) 25)))
+(((-228 |#1| |#2|) (-10 -8 (-15 -1494 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2247 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2247 (|#1| |#2| |#1|)) (-15 -4106 (|#1| (-645 |#2|))) (-15 -4106 (|#1|)) (-15 -2946 ((-112) |#1| |#1|))) (-229 |#2|) (-1102)) (T -228))
+NIL
+(-10 -8 (-15 -1494 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2247 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2247 (|#1| |#2| |#1|)) (-15 -4106 (|#1| (-645 |#2|))) (-15 -4106 (|#1|)) (-15 -2946 ((-112) |#1| |#1|)))
+((-2412 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-1563 (((-112) $ (-772)) 8)) (-1494 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4422)))) (-3356 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4422)))) (-3647 (($) 7 T CONST)) (-2453 (($ $) 59 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-2247 (($ |#1| $) 48 (|has| $ (-6 -4422))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4422)))) (-3246 (($ |#1| $) 58 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4422)))) (-2494 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4422)))) (-2799 (((-645 |#1|) $) 31 (|has| $ (-6 -4422)))) (-4093 (((-112) $ (-772)) 9)) (-1942 (((-645 |#1|) $) 30 (|has| $ (-6 -4422)))) (-3237 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-3751 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#1| |#1|) $) 36)) (-1986 (((-112) $ (-772)) 10)) (-2516 (((-1161) $) 22 (|has| |#1| (-1102)))) (-2706 ((|#1| $) 40)) (-2646 (($ |#1| $) 41)) (-3437 (((-1122) $) 21 (|has| |#1| (-1102)))) (-3196 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3949 ((|#1| $) 42)) (-4233 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3875 (((-112) $ $) 14)) (-3885 (((-112) $) 11)) (-2701 (($) 12)) (-4106 (($) 50) (($ (-645 |#1|)) 49)) (-3447 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4422))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-4309 (($ $) 13)) (-3902 (((-539) $) 60 (|has| |#1| (-615 (-539))))) (-4145 (($ (-645 |#1|)) 51)) (-4129 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-3357 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-3700 (($ (-645 |#1|)) 43)) (-3436 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4422)))) (-2946 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2423 (((-772) $) 6 (|has| $ (-6 -4422)))))
(((-229 |#1|) (-140) (-1102)) (T -229))
NIL
(-13 (-235 |t#1|))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2800 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-235 |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-1102) |has| |#1| (-1102)) ((-1218) . T))
-((-1593 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-772)) 14) (($ $ (-645 (-1178)) (-645 (-772))) NIL) (($ $ (-1178) (-772)) NIL) (($ $ (-645 (-1178))) NIL) (($ $ (-1178)) 22) (($ $ (-772)) NIL) (($ $) 19)) (-2637 (($ $ (-1 |#2| |#2|)) 15) (($ $ (-1 |#2| |#2|) (-772)) 17) (($ $ (-645 (-1178)) (-645 (-772))) NIL) (($ $ (-1178) (-772)) NIL) (($ $ (-645 (-1178))) NIL) (($ $ (-1178)) NIL) (($ $ (-772)) NIL) (($ $) NIL)))
-(((-230 |#1| |#2|) (-10 -8 (-15 -1593 (|#1| |#1|)) (-15 -2637 (|#1| |#1|)) (-15 -1593 (|#1| |#1| (-772))) (-15 -2637 (|#1| |#1| (-772))) (-15 -1593 (|#1| |#1| (-1178))) (-15 -1593 (|#1| |#1| (-645 (-1178)))) (-15 -1593 (|#1| |#1| (-1178) (-772))) (-15 -1593 (|#1| |#1| (-645 (-1178)) (-645 (-772)))) (-15 -2637 (|#1| |#1| (-1178))) (-15 -2637 (|#1| |#1| (-645 (-1178)))) (-15 -2637 (|#1| |#1| (-1178) (-772))) (-15 -2637 (|#1| |#1| (-645 (-1178)) (-645 (-772)))) (-15 -2637 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -2637 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1593 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -1593 (|#1| |#1| (-1 |#2| |#2|)))) (-231 |#2|) (-1051)) (T -230))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2811 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-235 |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-1102) |has| |#1| (-1102)) ((-1219) . T))
+((-1616 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-772)) 14) (($ $ (-645 (-1179)) (-645 (-772))) NIL) (($ $ (-1179) (-772)) NIL) (($ $ (-645 (-1179))) NIL) (($ $ (-1179)) 22) (($ $ (-772)) NIL) (($ $) 19)) (-2647 (($ $ (-1 |#2| |#2|)) 15) (($ $ (-1 |#2| |#2|) (-772)) 17) (($ $ (-645 (-1179)) (-645 (-772))) NIL) (($ $ (-1179) (-772)) NIL) (($ $ (-645 (-1179))) NIL) (($ $ (-1179)) NIL) (($ $ (-772)) NIL) (($ $) NIL)))
+(((-230 |#1| |#2|) (-10 -8 (-15 -1616 (|#1| |#1|)) (-15 -2647 (|#1| |#1|)) (-15 -1616 (|#1| |#1| (-772))) (-15 -2647 (|#1| |#1| (-772))) (-15 -1616 (|#1| |#1| (-1179))) (-15 -1616 (|#1| |#1| (-645 (-1179)))) (-15 -1616 (|#1| |#1| (-1179) (-772))) (-15 -1616 (|#1| |#1| (-645 (-1179)) (-645 (-772)))) (-15 -2647 (|#1| |#1| (-1179))) (-15 -2647 (|#1| |#1| (-645 (-1179)))) (-15 -2647 (|#1| |#1| (-1179) (-772))) (-15 -2647 (|#1| |#1| (-645 (-1179)) (-645 (-772)))) (-15 -2647 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -2647 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1616 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -1616 (|#1| |#1| (-1 |#2| |#2|)))) (-231 |#2|) (-1051)) (T -230))
NIL
-(-10 -8 (-15 -1593 (|#1| |#1|)) (-15 -2637 (|#1| |#1|)) (-15 -1593 (|#1| |#1| (-772))) (-15 -2637 (|#1| |#1| (-772))) (-15 -1593 (|#1| |#1| (-1178))) (-15 -1593 (|#1| |#1| (-645 (-1178)))) (-15 -1593 (|#1| |#1| (-1178) (-772))) (-15 -1593 (|#1| |#1| (-645 (-1178)) (-645 (-772)))) (-15 -2637 (|#1| |#1| (-1178))) (-15 -2637 (|#1| |#1| (-645 (-1178)))) (-15 -2637 (|#1| |#1| (-1178) (-772))) (-15 -2637 (|#1| |#1| (-645 (-1178)) (-645 (-772)))) (-15 -2637 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -2637 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1593 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -1593 (|#1| |#1| (-1 |#2| |#2|))))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-2109 (((-3 $ "failed") $) 37)) (-1433 (((-112) $) 35)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-1593 (($ $ (-1 |#1| |#1|)) 56) (($ $ (-1 |#1| |#1|) (-772)) 55) (($ $ (-645 (-1178)) (-645 (-772))) 48 (|has| |#1| (-902 (-1178)))) (($ $ (-1178) (-772)) 47 (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178))) 46 (|has| |#1| (-902 (-1178)))) (($ $ (-1178)) 45 (|has| |#1| (-902 (-1178)))) (($ $ (-772)) 43 (|has| |#1| (-233))) (($ $) 41 (|has| |#1| (-233)))) (-4132 (((-863) $) 12) (($ (-567)) 33)) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2637 (($ $ (-1 |#1| |#1|)) 54) (($ $ (-1 |#1| |#1|) (-772)) 53) (($ $ (-645 (-1178)) (-645 (-772))) 52 (|has| |#1| (-902 (-1178)))) (($ $ (-1178) (-772)) 51 (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178))) 50 (|has| |#1| (-902 (-1178)))) (($ $ (-1178)) 49 (|has| |#1| (-902 (-1178)))) (($ $ (-772)) 44 (|has| |#1| (-233))) (($ $) 42 (|has| |#1| (-233)))) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27)))
+(-10 -8 (-15 -1616 (|#1| |#1|)) (-15 -2647 (|#1| |#1|)) (-15 -1616 (|#1| |#1| (-772))) (-15 -2647 (|#1| |#1| (-772))) (-15 -1616 (|#1| |#1| (-1179))) (-15 -1616 (|#1| |#1| (-645 (-1179)))) (-15 -1616 (|#1| |#1| (-1179) (-772))) (-15 -1616 (|#1| |#1| (-645 (-1179)) (-645 (-772)))) (-15 -2647 (|#1| |#1| (-1179))) (-15 -2647 (|#1| |#1| (-645 (-1179)))) (-15 -2647 (|#1| |#1| (-1179) (-772))) (-15 -2647 (|#1| |#1| (-645 (-1179)) (-645 (-772)))) (-15 -2647 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -2647 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1616 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -1616 (|#1| |#1| (-1 |#2| |#2|))))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-2376 (((-3 $ "failed") $ $) 20)) (-3647 (($) 18 T CONST)) (-3588 (((-3 $ "failed") $) 37)) (-4346 (((-112) $) 35)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-1616 (($ $ (-1 |#1| |#1|)) 56) (($ $ (-1 |#1| |#1|) (-772)) 55) (($ $ (-645 (-1179)) (-645 (-772))) 48 (|has| |#1| (-902 (-1179)))) (($ $ (-1179) (-772)) 47 (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179))) 46 (|has| |#1| (-902 (-1179)))) (($ $ (-1179)) 45 (|has| |#1| (-902 (-1179)))) (($ $ (-772)) 43 (|has| |#1| (-233))) (($ $) 41 (|has| |#1| (-233)))) (-4129 (((-863) $) 12) (($ (-567)) 33)) (-2746 (((-772)) 32 T CONST)) (-3357 (((-112) $ $) 9)) (-1733 (($) 19 T CONST)) (-1744 (($) 34 T CONST)) (-2647 (($ $ (-1 |#1| |#1|)) 54) (($ $ (-1 |#1| |#1|) (-772)) 53) (($ $ (-645 (-1179)) (-645 (-772))) 52 (|has| |#1| (-902 (-1179)))) (($ $ (-1179) (-772)) 51 (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179))) 50 (|has| |#1| (-902 (-1179)))) (($ $ (-1179)) 49 (|has| |#1| (-902 (-1179)))) (($ $ (-772)) 44 (|has| |#1| (-233))) (($ $) 42 (|has| |#1| (-233)))) (-2946 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27)))
(((-231 |#1|) (-140) (-1051)) (T -231))
-((-1593 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1051)))) (-1593 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-772)) (-4 *1 (-231 *4)) (-4 *4 (-1051)))) (-2637 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1051)))) (-2637 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-772)) (-4 *1 (-231 *4)) (-4 *4 (-1051)))))
-(-13 (-1051) (-10 -8 (-15 -1593 ($ $ (-1 |t#1| |t#1|))) (-15 -1593 ($ $ (-1 |t#1| |t#1|) (-772))) (-15 -2637 ($ $ (-1 |t#1| |t#1|))) (-15 -2637 ($ $ (-1 |t#1| |t#1|) (-772))) (IF (|has| |t#1| (-233)) (-6 (-233)) |%noBranch|) (IF (|has| |t#1| (-902 (-1178))) (-6 (-902 (-1178))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-617 (-567)) . T) ((-614 (-863)) . T) ((-233) |has| |#1| (-233)) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-727) . T) ((-902 (-1178)) |has| |#1| (-902 (-1178))) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T))
-((-1593 (($ $) NIL) (($ $ (-772)) 13)) (-2637 (($ $) 8) (($ $ (-772)) 15)))
-(((-232 |#1|) (-10 -8 (-15 -2637 (|#1| |#1| (-772))) (-15 -1593 (|#1| |#1| (-772))) (-15 -2637 (|#1| |#1|)) (-15 -1593 (|#1| |#1|))) (-233)) (T -232))
-NIL
-(-10 -8 (-15 -2637 (|#1| |#1| (-772))) (-15 -1593 (|#1| |#1| (-772))) (-15 -2637 (|#1| |#1|)) (-15 -1593 (|#1| |#1|)))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-2109 (((-3 $ "failed") $) 37)) (-1433 (((-112) $) 35)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-1593 (($ $) 42) (($ $ (-772)) 40)) (-4132 (((-863) $) 12) (($ (-567)) 33)) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2637 (($ $) 41) (($ $ (-772)) 39)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27)))
+((-1616 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1051)))) (-1616 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-772)) (-4 *1 (-231 *4)) (-4 *4 (-1051)))) (-2647 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1051)))) (-2647 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-772)) (-4 *1 (-231 *4)) (-4 *4 (-1051)))))
+(-13 (-1051) (-10 -8 (-15 -1616 ($ $ (-1 |t#1| |t#1|))) (-15 -1616 ($ $ (-1 |t#1| |t#1|) (-772))) (-15 -2647 ($ $ (-1 |t#1| |t#1|))) (-15 -2647 ($ $ (-1 |t#1| |t#1|) (-772))) (IF (|has| |t#1| (-233)) (-6 (-233)) |%noBranch|) (IF (|has| |t#1| (-902 (-1179))) (-6 (-902 (-1179))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-617 (-567)) . T) ((-614 (-863)) . T) ((-233) |has| |#1| (-233)) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-727) . T) ((-902 (-1179)) |has| |#1| (-902 (-1179))) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T))
+((-1616 (($ $) NIL) (($ $ (-772)) 13)) (-2647 (($ $) 8) (($ $ (-772)) 15)))
+(((-232 |#1|) (-10 -8 (-15 -2647 (|#1| |#1| (-772))) (-15 -1616 (|#1| |#1| (-772))) (-15 -2647 (|#1| |#1|)) (-15 -1616 (|#1| |#1|))) (-233)) (T -232))
+NIL
+(-10 -8 (-15 -2647 (|#1| |#1| (-772))) (-15 -1616 (|#1| |#1| (-772))) (-15 -2647 (|#1| |#1|)) (-15 -1616 (|#1| |#1|)))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-2376 (((-3 $ "failed") $ $) 20)) (-3647 (($) 18 T CONST)) (-3588 (((-3 $ "failed") $) 37)) (-4346 (((-112) $) 35)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-1616 (($ $) 42) (($ $ (-772)) 40)) (-4129 (((-863) $) 12) (($ (-567)) 33)) (-2746 (((-772)) 32 T CONST)) (-3357 (((-112) $ $) 9)) (-1733 (($) 19 T CONST)) (-1744 (($) 34 T CONST)) (-2647 (($ $) 41) (($ $ (-772)) 39)) (-2946 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27)))
(((-233) (-140)) (T -233))
-((-1593 (*1 *1 *1) (-4 *1 (-233))) (-2637 (*1 *1 *1) (-4 *1 (-233))) (-1593 (*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-772)))) (-2637 (*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-772)))))
-(-13 (-1051) (-10 -8 (-15 -1593 ($ $)) (-15 -2637 ($ $)) (-15 -1593 ($ $ (-772))) (-15 -2637 ($ $ (-772)))))
+((-1616 (*1 *1 *1) (-4 *1 (-233))) (-2647 (*1 *1 *1) (-4 *1 (-233))) (-1616 (*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-772)))) (-2647 (*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-772)))))
+(-13 (-1051) (-10 -8 (-15 -1616 ($ $)) (-15 -2647 ($ $)) (-15 -1616 ($ $ (-772))) (-15 -2647 ($ $ (-772)))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-617 (-567)) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-727) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T))
-((-2718 (($) 12) (($ (-645 |#2|)) NIL)) (-4305 (($ $) 14)) (-4147 (($ (-645 |#2|)) 10)) (-4132 (((-863) $) 21)))
-(((-234 |#1| |#2|) (-10 -8 (-15 -4132 ((-863) |#1|)) (-15 -2718 (|#1| (-645 |#2|))) (-15 -2718 (|#1|)) (-15 -4147 (|#1| (-645 |#2|))) (-15 -4305 (|#1| |#1|))) (-235 |#2|) (-1102)) (T -234))
+((-4106 (($) 12) (($ (-645 |#2|)) NIL)) (-4309 (($ $) 14)) (-4145 (($ (-645 |#2|)) 10)) (-4129 (((-863) $) 21)))
+(((-234 |#1| |#2|) (-10 -8 (-15 -4129 ((-863) |#1|)) (-15 -4106 (|#1| (-645 |#2|))) (-15 -4106 (|#1|)) (-15 -4145 (|#1| (-645 |#2|))) (-15 -4309 (|#1| |#1|))) (-235 |#2|) (-1102)) (T -234))
NIL
-(-10 -8 (-15 -4132 ((-863) |#1|)) (-15 -2718 (|#1| (-645 |#2|))) (-15 -2718 (|#1|)) (-15 -4147 (|#1| (-645 |#2|))) (-15 -4305 (|#1| |#1|)))
-((-2403 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-3445 (((-112) $ (-772)) 8)) (-2839 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4418)))) (-3350 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4418)))) (-2585 (($) 7 T CONST)) (-2444 (($ $) 59 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-2539 (($ |#1| $) 48 (|has| $ (-6 -4418))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4418)))) (-3238 (($ |#1| $) 58 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4418)))) (-2477 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4418)))) (-2777 (((-645 |#1|) $) 31 (|has| $ (-6 -4418)))) (-2077 (((-112) $ (-772)) 9)) (-2279 (((-645 |#1|) $) 30 (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-3731 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) 36)) (-2863 (((-112) $ (-772)) 10)) (-1419 (((-1160) $) 22 (|has| |#1| (-1102)))) (-1566 ((|#1| $) 40)) (-2531 (($ |#1| $) 41)) (-3430 (((-1122) $) 21 (|has| |#1| (-1102)))) (-4128 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1793 ((|#1| $) 42)) (-3025 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) 14)) (-3572 (((-112) $) 11)) (-3498 (($) 12)) (-2718 (($) 50) (($ (-645 |#1|)) 49)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4418))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-4305 (($ $) 13)) (-3893 (((-539) $) 60 (|has| |#1| (-615 (-539))))) (-4147 (($ (-645 |#1|)) 51)) (-4132 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-1745 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-3551 (($ (-645 |#1|)) 43)) (-1853 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2414 (((-772) $) 6 (|has| $ (-6 -4418)))))
+(-10 -8 (-15 -4129 ((-863) |#1|)) (-15 -4106 (|#1| (-645 |#2|))) (-15 -4106 (|#1|)) (-15 -4145 (|#1| (-645 |#2|))) (-15 -4309 (|#1| |#1|)))
+((-2412 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-1563 (((-112) $ (-772)) 8)) (-1494 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4422)))) (-3356 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4422)))) (-3647 (($) 7 T CONST)) (-2453 (($ $) 59 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-2247 (($ |#1| $) 48 (|has| $ (-6 -4422))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4422)))) (-3246 (($ |#1| $) 58 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4422)))) (-2494 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4422)))) (-2799 (((-645 |#1|) $) 31 (|has| $ (-6 -4422)))) (-4093 (((-112) $ (-772)) 9)) (-1942 (((-645 |#1|) $) 30 (|has| $ (-6 -4422)))) (-3237 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-3751 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#1| |#1|) $) 36)) (-1986 (((-112) $ (-772)) 10)) (-2516 (((-1161) $) 22 (|has| |#1| (-1102)))) (-2706 ((|#1| $) 40)) (-2646 (($ |#1| $) 41)) (-3437 (((-1122) $) 21 (|has| |#1| (-1102)))) (-3196 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3949 ((|#1| $) 42)) (-4233 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3875 (((-112) $ $) 14)) (-3885 (((-112) $) 11)) (-2701 (($) 12)) (-4106 (($) 50) (($ (-645 |#1|)) 49)) (-3447 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4422))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-4309 (($ $) 13)) (-3902 (((-539) $) 60 (|has| |#1| (-615 (-539))))) (-4145 (($ (-645 |#1|)) 51)) (-4129 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-3357 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-3700 (($ (-645 |#1|)) 43)) (-3436 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4422)))) (-2946 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2423 (((-772) $) 6 (|has| $ (-6 -4422)))))
(((-235 |#1|) (-140) (-1102)) (T -235))
-((-2718 (*1 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1102)))) (-2718 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-4 *1 (-235 *3)))) (-2539 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4418)) (-4 *1 (-235 *2)) (-4 *2 (-1102)))) (-2539 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4418)) (-4 *1 (-235 *3)) (-4 *3 (-1102)))) (-2839 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4418)) (-4 *1 (-235 *3)) (-4 *3 (-1102)))))
-(-13 (-107 |t#1|) (-151 |t#1|) (-10 -8 (-15 -2718 ($)) (-15 -2718 ($ (-645 |t#1|))) (IF (|has| $ (-6 -4418)) (PROGN (-15 -2539 ($ |t#1| $)) (-15 -2539 ($ (-1 (-112) |t#1|) $)) (-15 -2839 ($ (-1 (-112) |t#1|) $))) |%noBranch|)))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2800 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-1102) |has| |#1| (-1102)) ((-1218) . T))
-((-3201 (((-2 (|:| |varOrder| (-645 (-1178))) (|:| |inhom| (-3 (-645 (-1268 (-772))) "failed")) (|:| |hom| (-645 (-1268 (-772))))) (-295 (-954 (-567)))) 42)))
-(((-236) (-10 -7 (-15 -3201 ((-2 (|:| |varOrder| (-645 (-1178))) (|:| |inhom| (-3 (-645 (-1268 (-772))) "failed")) (|:| |hom| (-645 (-1268 (-772))))) (-295 (-954 (-567))))))) (T -236))
-((-3201 (*1 *2 *3) (-12 (-5 *3 (-295 (-954 (-567)))) (-5 *2 (-2 (|:| |varOrder| (-645 (-1178))) (|:| |inhom| (-3 (-645 (-1268 (-772))) "failed")) (|:| |hom| (-645 (-1268 (-772)))))) (-5 *1 (-236)))))
-(-10 -7 (-15 -3201 ((-2 (|:| |varOrder| (-645 (-1178))) (|:| |inhom| (-3 (-645 (-1268 (-772))) "failed")) (|:| |hom| (-645 (-1268 (-772))))) (-295 (-954 (-567))))))
-((-2375 (((-772)) 56)) (-2630 (((-2 (|:| -2316 (-690 |#3|)) (|:| |vec| (-1268 |#3|))) (-690 $) (-1268 $)) 53) (((-690 |#3|) (-690 $)) 44) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL) (((-690 (-567)) (-690 $)) NIL)) (-1879 (((-134)) 62)) (-1593 (($ $ (-1 |#3| |#3|) (-772)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-645 (-1178)) (-645 (-772))) NIL) (($ $ (-1178) (-772)) NIL) (($ $ (-645 (-1178))) NIL) (($ $ (-1178)) NIL) (($ $ (-772)) NIL) (($ $) NIL)) (-4132 (((-1268 |#3|) $) NIL) (($ |#3|) NIL) (((-863) $) NIL) (($ (-567)) 12) (($ (-410 (-567))) NIL)) (-4221 (((-772)) 15)) (-3060 (($ $ |#3|) 59)))
-(((-237 |#1| |#2| |#3|) (-10 -8 (-15 -4132 (|#1| (-410 (-567)))) (-15 -4132 (|#1| (-567))) (-15 -4132 ((-863) |#1|)) (-15 -4221 ((-772))) (-15 -1593 (|#1| |#1|)) (-15 -1593 (|#1| |#1| (-772))) (-15 -1593 (|#1| |#1| (-1178))) (-15 -1593 (|#1| |#1| (-645 (-1178)))) (-15 -1593 (|#1| |#1| (-1178) (-772))) (-15 -1593 (|#1| |#1| (-645 (-1178)) (-645 (-772)))) (-15 -2630 ((-690 (-567)) (-690 |#1|))) (-15 -2630 ((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 |#1|) (-1268 |#1|))) (-15 -4132 (|#1| |#3|)) (-15 -1593 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1593 (|#1| |#1| (-1 |#3| |#3|) (-772))) (-15 -2630 ((-690 |#3|) (-690 |#1|))) (-15 -2630 ((-2 (|:| -2316 (-690 |#3|)) (|:| |vec| (-1268 |#3|))) (-690 |#1|) (-1268 |#1|))) (-15 -2375 ((-772))) (-15 -3060 (|#1| |#1| |#3|)) (-15 -1879 ((-134))) (-15 -4132 ((-1268 |#3|) |#1|))) (-238 |#2| |#3|) (-772) (-1218)) (T -237))
-((-1879 (*1 *2) (-12 (-14 *4 (-772)) (-4 *5 (-1218)) (-5 *2 (-134)) (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) (-2375 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1218)) (-5 *2 (-772)) (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) (-4221 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1218)) (-5 *2 (-772)) (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))))
-(-10 -8 (-15 -4132 (|#1| (-410 (-567)))) (-15 -4132 (|#1| (-567))) (-15 -4132 ((-863) |#1|)) (-15 -4221 ((-772))) (-15 -1593 (|#1| |#1|)) (-15 -1593 (|#1| |#1| (-772))) (-15 -1593 (|#1| |#1| (-1178))) (-15 -1593 (|#1| |#1| (-645 (-1178)))) (-15 -1593 (|#1| |#1| (-1178) (-772))) (-15 -1593 (|#1| |#1| (-645 (-1178)) (-645 (-772)))) (-15 -2630 ((-690 (-567)) (-690 |#1|))) (-15 -2630 ((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 |#1|) (-1268 |#1|))) (-15 -4132 (|#1| |#3|)) (-15 -1593 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1593 (|#1| |#1| (-1 |#3| |#3|) (-772))) (-15 -2630 ((-690 |#3|) (-690 |#1|))) (-15 -2630 ((-2 (|:| -2316 (-690 |#3|)) (|:| |vec| (-1268 |#3|))) (-690 |#1|) (-1268 |#1|))) (-15 -2375 ((-772))) (-15 -3060 (|#1| |#1| |#3|)) (-15 -1879 ((-134))) (-15 -4132 ((-1268 |#3|) |#1|)))
-((-2403 (((-112) $ $) 19 (|has| |#2| (-1102)))) (-2460 (((-112) $) 73 (|has| |#2| (-131)))) (-4387 (($ (-923)) 126 (|has| |#2| (-1051)))) (-1783 (((-1273) $ (-567) (-567)) 41 (|has| $ (-6 -4419)))) (-4016 (($ $ $) 122 (|has| |#2| (-794)))) (-3472 (((-3 $ "failed") $ $) 75 (|has| |#2| (-131)))) (-3445 (((-112) $ (-772)) 8)) (-2375 (((-772)) 108 (|has| |#2| (-370)))) (-1750 (((-567) $) 120 (|has| |#2| (-849)))) (-4284 ((|#2| $ (-567) |#2|) 53 (|has| $ (-6 -4419)))) (-2585 (($) 7 T CONST)) (-3753 (((-3 (-567) "failed") $) 68 (-1667 (|has| |#2| (-1040 (-567))) (|has| |#2| (-1102)))) (((-3 (-410 (-567)) "failed") $) 65 (-1667 (|has| |#2| (-1040 (-410 (-567)))) (|has| |#2| (-1102)))) (((-3 |#2| "failed") $) 62 (|has| |#2| (-1102)))) (-2038 (((-567) $) 67 (-1667 (|has| |#2| (-1040 (-567))) (|has| |#2| (-1102)))) (((-410 (-567)) $) 64 (-1667 (|has| |#2| (-1040 (-410 (-567)))) (|has| |#2| (-1102)))) ((|#2| $) 63 (|has| |#2| (-1102)))) (-2630 (((-690 (-567)) (-690 $)) 107 (-1667 (|has| |#2| (-640 (-567))) (|has| |#2| (-1051)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) 106 (-1667 (|has| |#2| (-640 (-567))) (|has| |#2| (-1051)))) (((-2 (|:| -2316 (-690 |#2|)) (|:| |vec| (-1268 |#2|))) (-690 $) (-1268 $)) 105 (|has| |#2| (-1051))) (((-690 |#2|) (-690 $)) 104 (|has| |#2| (-1051)))) (-2109 (((-3 $ "failed") $) 80 (|has| |#2| (-727)))) (-1348 (($) 111 (|has| |#2| (-370)))) (-3741 ((|#2| $ (-567) |#2|) 54 (|has| $ (-6 -4419)))) (-3680 ((|#2| $ (-567)) 52)) (-4336 (((-112) $) 118 (|has| |#2| (-849)))) (-2777 (((-645 |#2|) $) 31 (|has| $ (-6 -4418)))) (-1433 (((-112) $) 82 (|has| |#2| (-727)))) (-3494 (((-112) $) 119 (|has| |#2| (-849)))) (-2077 (((-112) $ (-772)) 9)) (-4069 (((-567) $) 44 (|has| (-567) (-851)))) (-1354 (($ $ $) 117 (-2800 (|has| |#2| (-849)) (|has| |#2| (-794))))) (-2279 (((-645 |#2|) $) 30 (|has| $ (-6 -4418)))) (-4337 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1102)) (|has| $ (-6 -4418))))) (-2266 (((-567) $) 45 (|has| (-567) (-851)))) (-2981 (($ $ $) 116 (-2800 (|has| |#2| (-849)) (|has| |#2| (-794))))) (-3731 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#2| |#2|) $) 36)) (-4249 (((-923) $) 110 (|has| |#2| (-370)))) (-2863 (((-112) $ (-772)) 10)) (-1419 (((-1160) $) 22 (|has| |#2| (-1102)))) (-1789 (((-645 (-567)) $) 47)) (-2996 (((-112) (-567) $) 48)) (-3768 (($ (-923)) 109 (|has| |#2| (-370)))) (-3430 (((-1122) $) 21 (|has| |#2| (-1102)))) (-2409 ((|#2| $) 43 (|has| (-567) (-851)))) (-3986 (($ $ |#2|) 42 (|has| $ (-6 -4419)))) (-3025 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#2|))) 27 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-295 |#2|)) 26 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-645 |#2|) (-645 |#2|)) 24 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))))) (-3092 (((-112) $ $) 14)) (-1794 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4418)) (|has| |#2| (-1102))))) (-2339 (((-645 |#2|) $) 49)) (-3572 (((-112) $) 11)) (-3498 (($) 12)) (-1787 ((|#2| $ (-567) |#2|) 51) ((|#2| $ (-567)) 50)) (-3366 ((|#2| $ $) 125 (|has| |#2| (-1051)))) (-2749 (($ (-1268 |#2|)) 127)) (-1879 (((-134)) 124 (|has| |#2| (-365)))) (-1593 (($ $) 99 (-1667 (|has| |#2| (-233)) (|has| |#2| (-1051)))) (($ $ (-772)) 97 (-1667 (|has| |#2| (-233)) (|has| |#2| (-1051)))) (($ $ (-1178)) 95 (-1667 (|has| |#2| (-902 (-1178))) (|has| |#2| (-1051)))) (($ $ (-645 (-1178))) 94 (-1667 (|has| |#2| (-902 (-1178))) (|has| |#2| (-1051)))) (($ $ (-1178) (-772)) 93 (-1667 (|has| |#2| (-902 (-1178))) (|has| |#2| (-1051)))) (($ $ (-645 (-1178)) (-645 (-772))) 92 (-1667 (|has| |#2| (-902 (-1178))) (|has| |#2| (-1051)))) (($ $ (-1 |#2| |#2|) (-772)) 85 (|has| |#2| (-1051))) (($ $ (-1 |#2| |#2|)) 84 (|has| |#2| (-1051)))) (-3439 (((-772) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4418))) (((-772) |#2| $) 29 (-12 (|has| |#2| (-1102)) (|has| $ (-6 -4418))))) (-4305 (($ $) 13)) (-4132 (((-1268 |#2|) $) 128) (($ (-567)) 69 (-2800 (-1667 (|has| |#2| (-1040 (-567))) (|has| |#2| (-1102))) (|has| |#2| (-1051)))) (($ (-410 (-567))) 66 (-1667 (|has| |#2| (-1040 (-410 (-567)))) (|has| |#2| (-1102)))) (($ |#2|) 61 (|has| |#2| (-1102))) (((-863) $) 18 (|has| |#2| (-614 (-863))))) (-4221 (((-772)) 103 (|has| |#2| (-1051)) CONST)) (-1745 (((-112) $ $) 23 (|has| |#2| (-1102)))) (-1853 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4418)))) (-2219 (($ $) 121 (|has| |#2| (-849)))) (-1716 (($) 72 (|has| |#2| (-131)) CONST)) (-1728 (($) 83 (|has| |#2| (-727)) CONST)) (-2637 (($ $) 98 (-1667 (|has| |#2| (-233)) (|has| |#2| (-1051)))) (($ $ (-772)) 96 (-1667 (|has| |#2| (-233)) (|has| |#2| (-1051)))) (($ $ (-1178)) 91 (-1667 (|has| |#2| (-902 (-1178))) (|has| |#2| (-1051)))) (($ $ (-645 (-1178))) 90 (-1667 (|has| |#2| (-902 (-1178))) (|has| |#2| (-1051)))) (($ $ (-1178) (-772)) 89 (-1667 (|has| |#2| (-902 (-1178))) (|has| |#2| (-1051)))) (($ $ (-645 (-1178)) (-645 (-772))) 88 (-1667 (|has| |#2| (-902 (-1178))) (|has| |#2| (-1051)))) (($ $ (-1 |#2| |#2|) (-772)) 87 (|has| |#2| (-1051))) (($ $ (-1 |#2| |#2|)) 86 (|has| |#2| (-1051)))) (-2997 (((-112) $ $) 114 (-2800 (|has| |#2| (-849)) (|has| |#2| (-794))))) (-2971 (((-112) $ $) 113 (-2800 (|has| |#2| (-849)) (|has| |#2| (-794))))) (-2936 (((-112) $ $) 20 (|has| |#2| (-1102)))) (-2984 (((-112) $ $) 115 (-2800 (|has| |#2| (-849)) (|has| |#2| (-794))))) (-2958 (((-112) $ $) 112 (-2800 (|has| |#2| (-849)) (|has| |#2| (-794))))) (-3060 (($ $ |#2|) 123 (|has| |#2| (-365)))) (-3045 (($ $ $) 102 (|has| |#2| (-1051))) (($ $) 101 (|has| |#2| (-1051)))) (-3033 (($ $ $) 70 (|has| |#2| (-25)))) (** (($ $ (-772)) 81 (|has| |#2| (-727))) (($ $ (-923)) 78 (|has| |#2| (-727)))) (* (($ (-567) $) 100 (|has| |#2| (-1051))) (($ $ $) 79 (|has| |#2| (-727))) (($ $ |#2|) 77 (|has| |#2| (-727))) (($ |#2| $) 76 (|has| |#2| (-727))) (($ (-772) $) 74 (|has| |#2| (-131))) (($ (-923) $) 71 (|has| |#2| (-25)))) (-2414 (((-772) $) 6 (|has| $ (-6 -4418)))))
-(((-238 |#1| |#2|) (-140) (-772) (-1218)) (T -238))
-((-2749 (*1 *1 *2) (-12 (-5 *2 (-1268 *4)) (-4 *4 (-1218)) (-4 *1 (-238 *3 *4)))) (-4387 (*1 *1 *2) (-12 (-5 *2 (-923)) (-4 *1 (-238 *3 *4)) (-4 *4 (-1051)) (-4 *4 (-1218)))) (-3366 (*1 *2 *1 *1) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1218)) (-4 *2 (-1051)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1218)) (-4 *2 (-727)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1218)) (-4 *2 (-727)))))
-(-13 (-605 (-567) |t#2|) (-614 (-1268 |t#2|)) (-10 -8 (-6 -4418) (-15 -2749 ($ (-1268 |t#2|))) (IF (|has| |t#2| (-1102)) (-6 (-414 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1051)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-231 |t#2|)) (-6 (-379 |t#2|)) (-15 -4387 ($ (-923))) (-15 -3366 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-131)) (-6 (-131)) |%noBranch|) (IF (|has| |t#2| (-727)) (PROGN (-6 (-727)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-370)) (-6 (-370)) |%noBranch|) (IF (|has| |t#2| (-172)) (PROGN (-6 (-38 |t#2|)) (-6 (-172))) |%noBranch|) (IF (|has| |t#2| (-6 -4415)) (-6 -4415) |%noBranch|) (IF (|has| |t#2| (-849)) (-6 (-849)) |%noBranch|) (IF (|has| |t#2| (-794)) (-6 (-794)) |%noBranch|) (IF (|has| |t#2| (-365)) (-6 (-1275 |t#2|)) |%noBranch|)))
-(((-21) -2800 (|has| |#2| (-1051)) (|has| |#2| (-849)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-23) -2800 (|has| |#2| (-1051)) (|has| |#2| (-849)) (|has| |#2| (-794)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-131))) ((-25) -2800 (|has| |#2| (-1051)) (|has| |#2| (-849)) (|has| |#2| (-794)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-34) . T) ((-38 |#2|) |has| |#2| (-172)) ((-102) -2800 (|has| |#2| (-1102)) (|has| |#2| (-1051)) (|has| |#2| (-849)) (|has| |#2| (-794)) (|has| |#2| (-727)) (|has| |#2| (-370)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-111 |#2| |#2|) -2800 (|has| |#2| (-1051)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-111 $ $) |has| |#2| (-172)) ((-131) -2800 (|has| |#2| (-1051)) (|has| |#2| (-849)) (|has| |#2| (-794)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-131))) ((-617 #0=(-410 (-567))) -12 (|has| |#2| (-1040 (-410 (-567)))) (|has| |#2| (-1102))) ((-617 (-567)) -2800 (|has| |#2| (-1051)) (-12 (|has| |#2| (-1040 (-567))) (|has| |#2| (-1102))) (|has| |#2| (-849)) (|has| |#2| (-172))) ((-617 |#2|) -2800 (|has| |#2| (-1102)) (|has| |#2| (-172))) ((-614 (-863)) -2800 (|has| |#2| (-1102)) (|has| |#2| (-1051)) (|has| |#2| (-849)) (|has| |#2| (-794)) (|has| |#2| (-727)) (|has| |#2| (-370)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-614 (-863))) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-614 (-1268 |#2|)) . T) ((-172) |has| |#2| (-172)) ((-231 |#2|) |has| |#2| (-1051)) ((-233) -12 (|has| |#2| (-233)) (|has| |#2| (-1051))) ((-287 #1=(-567) |#2|) . T) ((-289 #1# |#2|) . T) ((-310 |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) ((-370) |has| |#2| (-370)) ((-379 |#2|) |has| |#2| (-1051)) ((-414 |#2|) |has| |#2| (-1102)) ((-492 |#2|) . T) ((-605 #1# |#2|) . T) ((-517 |#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) ((-647 (-567)) -2800 (|has| |#2| (-1051)) (|has| |#2| (-849)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-647 |#2|) -2800 (|has| |#2| (-1051)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-647 $) -2800 (|has| |#2| (-1051)) (|has| |#2| (-849)) (|has| |#2| (-172))) ((-649 |#2|) -2800 (|has| |#2| (-1051)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-649 $) -2800 (|has| |#2| (-1051)) (|has| |#2| (-849)) (|has| |#2| (-172))) ((-641 |#2|) -2800 (|has| |#2| (-365)) (|has| |#2| (-172))) ((-640 (-567)) -12 (|has| |#2| (-640 (-567))) (|has| |#2| (-1051))) ((-640 |#2|) |has| |#2| (-1051)) ((-718 |#2|) -2800 (|has| |#2| (-365)) (|has| |#2| (-172))) ((-727) -2800 (|has| |#2| (-1051)) (|has| |#2| (-849)) (|has| |#2| (-727)) (|has| |#2| (-172))) ((-792) |has| |#2| (-849)) ((-793) -2800 (|has| |#2| (-849)) (|has| |#2| (-794))) ((-794) |has| |#2| (-794)) ((-795) -2800 (|has| |#2| (-849)) (|has| |#2| (-794))) ((-796) -2800 (|has| |#2| (-849)) (|has| |#2| (-794))) ((-849) |has| |#2| (-849)) ((-851) -2800 (|has| |#2| (-849)) (|has| |#2| (-794))) ((-902 (-1178)) -12 (|has| |#2| (-902 (-1178))) (|has| |#2| (-1051))) ((-1040 #0#) -12 (|has| |#2| (-1040 (-410 (-567)))) (|has| |#2| (-1102))) ((-1040 (-567)) -12 (|has| |#2| (-1040 (-567))) (|has| |#2| (-1102))) ((-1040 |#2|) |has| |#2| (-1102)) ((-1053 |#2|) -2800 (|has| |#2| (-1051)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-1053 $) |has| |#2| (-172)) ((-1058 |#2|) -2800 (|has| |#2| (-1051)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-1058 $) |has| |#2| (-172)) ((-1051) -2800 (|has| |#2| (-1051)) (|has| |#2| (-849)) (|has| |#2| (-172))) ((-1060) -2800 (|has| |#2| (-1051)) (|has| |#2| (-849)) (|has| |#2| (-172))) ((-1114) -2800 (|has| |#2| (-1051)) (|has| |#2| (-849)) (|has| |#2| (-727)) (|has| |#2| (-172))) ((-1102) -2800 (|has| |#2| (-1102)) (|has| |#2| (-1051)) (|has| |#2| (-849)) (|has| |#2| (-794)) (|has| |#2| (-727)) (|has| |#2| (-370)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-1218) . T) ((-1275 |#2|) |has| |#2| (-365)))
-((-2788 (((-240 |#1| |#3|) (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|) 21)) (-2477 ((|#3| (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|) 23)) (-3829 (((-240 |#1| |#3|) (-1 |#3| |#2|) (-240 |#1| |#2|)) 18)))
-(((-239 |#1| |#2| |#3|) (-10 -7 (-15 -2788 ((-240 |#1| |#3|) (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -2477 (|#3| (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -3829 ((-240 |#1| |#3|) (-1 |#3| |#2|) (-240 |#1| |#2|)))) (-772) (-1218) (-1218)) (T -239))
-((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-240 *5 *6)) (-14 *5 (-772)) (-4 *6 (-1218)) (-4 *7 (-1218)) (-5 *2 (-240 *5 *7)) (-5 *1 (-239 *5 *6 *7)))) (-2477 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-240 *5 *6)) (-14 *5 (-772)) (-4 *6 (-1218)) (-4 *2 (-1218)) (-5 *1 (-239 *5 *6 *2)))) (-2788 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-240 *6 *7)) (-14 *6 (-772)) (-4 *7 (-1218)) (-4 *5 (-1218)) (-5 *2 (-240 *6 *5)) (-5 *1 (-239 *6 *7 *5)))))
-(-10 -7 (-15 -2788 ((-240 |#1| |#3|) (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -2477 (|#3| (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -3829 ((-240 |#1| |#3|) (-1 |#3| |#2|) (-240 |#1| |#2|))))
-((-2403 (((-112) $ $) NIL (|has| |#2| (-1102)))) (-2460 (((-112) $) NIL (|has| |#2| (-131)))) (-4387 (($ (-923)) 65 (|has| |#2| (-1051)))) (-1783 (((-1273) $ (-567) (-567)) NIL (|has| $ (-6 -4419)))) (-4016 (($ $ $) 70 (|has| |#2| (-794)))) (-3472 (((-3 $ "failed") $ $) 57 (|has| |#2| (-131)))) (-3445 (((-112) $ (-772)) 17)) (-2375 (((-772)) NIL (|has| |#2| (-370)))) (-1750 (((-567) $) NIL (|has| |#2| (-849)))) (-4284 ((|#2| $ (-567) |#2|) NIL (|has| $ (-6 -4419)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 (-567) "failed") $) NIL (-12 (|has| |#2| (-1040 (-567))) (|has| |#2| (-1102)))) (((-3 (-410 (-567)) "failed") $) NIL (-12 (|has| |#2| (-1040 (-410 (-567)))) (|has| |#2| (-1102)))) (((-3 |#2| "failed") $) 34 (|has| |#2| (-1102)))) (-2038 (((-567) $) NIL (-12 (|has| |#2| (-1040 (-567))) (|has| |#2| (-1102)))) (((-410 (-567)) $) NIL (-12 (|has| |#2| (-1040 (-410 (-567)))) (|has| |#2| (-1102)))) ((|#2| $) 32 (|has| |#2| (-1102)))) (-2630 (((-690 (-567)) (-690 $)) NIL (-12 (|has| |#2| (-640 (-567))) (|has| |#2| (-1051)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (-12 (|has| |#2| (-640 (-567))) (|has| |#2| (-1051)))) (((-2 (|:| -2316 (-690 |#2|)) (|:| |vec| (-1268 |#2|))) (-690 $) (-1268 $)) NIL (|has| |#2| (-1051))) (((-690 |#2|) (-690 $)) NIL (|has| |#2| (-1051)))) (-2109 (((-3 $ "failed") $) 61 (|has| |#2| (-727)))) (-1348 (($) NIL (|has| |#2| (-370)))) (-3741 ((|#2| $ (-567) |#2|) NIL (|has| $ (-6 -4419)))) (-3680 ((|#2| $ (-567)) 59)) (-4336 (((-112) $) NIL (|has| |#2| (-849)))) (-2777 (((-645 |#2|) $) 15 (|has| $ (-6 -4418)))) (-1433 (((-112) $) NIL (|has| |#2| (-727)))) (-3494 (((-112) $) NIL (|has| |#2| (-849)))) (-2077 (((-112) $ (-772)) NIL)) (-4069 (((-567) $) 20 (|has| (-567) (-851)))) (-1354 (($ $ $) NIL (-2800 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-2279 (((-645 |#2|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#2| (-1102))))) (-2266 (((-567) $) 58 (|has| (-567) (-851)))) (-2981 (($ $ $) NIL (-2800 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-3731 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#2| |#2|) $) 47)) (-4249 (((-923) $) NIL (|has| |#2| (-370)))) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL (|has| |#2| (-1102)))) (-1789 (((-645 (-567)) $) NIL)) (-2996 (((-112) (-567) $) NIL)) (-3768 (($ (-923)) NIL (|has| |#2| (-370)))) (-3430 (((-1122) $) NIL (|has| |#2| (-1102)))) (-2409 ((|#2| $) NIL (|has| (-567) (-851)))) (-3986 (($ $ |#2|) NIL (|has| $ (-6 -4419)))) (-3025 (((-112) (-1 (-112) |#2|) $) 24 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))))) (-3092 (((-112) $ $) NIL)) (-1794 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#2| (-1102))))) (-2339 (((-645 |#2|) $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) NIL)) (-1787 ((|#2| $ (-567) |#2|) NIL) ((|#2| $ (-567)) 21)) (-3366 ((|#2| $ $) NIL (|has| |#2| (-1051)))) (-2749 (($ (-1268 |#2|)) 18)) (-1879 (((-134)) NIL (|has| |#2| (-365)))) (-1593 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1051)))) (($ $ (-772)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1051)))) (($ $ (-1178)) NIL (-12 (|has| |#2| (-902 (-1178))) (|has| |#2| (-1051)))) (($ $ (-645 (-1178))) NIL (-12 (|has| |#2| (-902 (-1178))) (|has| |#2| (-1051)))) (($ $ (-1178) (-772)) NIL (-12 (|has| |#2| (-902 (-1178))) (|has| |#2| (-1051)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (-12 (|has| |#2| (-902 (-1178))) (|has| |#2| (-1051)))) (($ $ (-1 |#2| |#2|) (-772)) NIL (|has| |#2| (-1051))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1051)))) (-3439 (((-772) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4418))) (((-772) |#2| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#2| (-1102))))) (-4305 (($ $) NIL)) (-4132 (((-1268 |#2|) $) 10) (($ (-567)) NIL (-2800 (-12 (|has| |#2| (-1040 (-567))) (|has| |#2| (-1102))) (|has| |#2| (-1051)))) (($ (-410 (-567))) NIL (-12 (|has| |#2| (-1040 (-410 (-567)))) (|has| |#2| (-1102)))) (($ |#2|) 13 (|has| |#2| (-1102))) (((-863) $) NIL (|has| |#2| (-614 (-863))))) (-4221 (((-772)) NIL (|has| |#2| (-1051)) CONST)) (-1745 (((-112) $ $) NIL (|has| |#2| (-1102)))) (-1853 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4418)))) (-2219 (($ $) NIL (|has| |#2| (-849)))) (-1716 (($) 40 (|has| |#2| (-131)) CONST)) (-1728 (($) 44 (|has| |#2| (-727)) CONST)) (-2637 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1051)))) (($ $ (-772)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1051)))) (($ $ (-1178)) NIL (-12 (|has| |#2| (-902 (-1178))) (|has| |#2| (-1051)))) (($ $ (-645 (-1178))) NIL (-12 (|has| |#2| (-902 (-1178))) (|has| |#2| (-1051)))) (($ $ (-1178) (-772)) NIL (-12 (|has| |#2| (-902 (-1178))) (|has| |#2| (-1051)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (-12 (|has| |#2| (-902 (-1178))) (|has| |#2| (-1051)))) (($ $ (-1 |#2| |#2|) (-772)) NIL (|has| |#2| (-1051))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1051)))) (-2997 (((-112) $ $) NIL (-2800 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-2971 (((-112) $ $) NIL (-2800 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-2936 (((-112) $ $) 31 (|has| |#2| (-1102)))) (-2984 (((-112) $ $) NIL (-2800 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-2958 (((-112) $ $) 68 (-2800 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-3060 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3045 (($ $ $) NIL (|has| |#2| (-1051))) (($ $) NIL (|has| |#2| (-1051)))) (-3033 (($ $ $) 38 (|has| |#2| (-25)))) (** (($ $ (-772)) NIL (|has| |#2| (-727))) (($ $ (-923)) NIL (|has| |#2| (-727)))) (* (($ (-567) $) NIL (|has| |#2| (-1051))) (($ $ $) 50 (|has| |#2| (-727))) (($ $ |#2|) 48 (|has| |#2| (-727))) (($ |#2| $) 49 (|has| |#2| (-727))) (($ (-772) $) NIL (|has| |#2| (-131))) (($ (-923) $) NIL (|has| |#2| (-25)))) (-2414 (((-772) $) NIL (|has| $ (-6 -4418)))))
-(((-240 |#1| |#2|) (-238 |#1| |#2|) (-772) (-1218)) (T -240))
+((-4106 (*1 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1102)))) (-4106 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-4 *1 (-235 *3)))) (-2247 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4422)) (-4 *1 (-235 *2)) (-4 *2 (-1102)))) (-2247 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4422)) (-4 *1 (-235 *3)) (-4 *3 (-1102)))) (-1494 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4422)) (-4 *1 (-235 *3)) (-4 *3 (-1102)))))
+(-13 (-107 |t#1|) (-151 |t#1|) (-10 -8 (-15 -4106 ($)) (-15 -4106 ($ (-645 |t#1|))) (IF (|has| $ (-6 -4422)) (PROGN (-15 -2247 ($ |t#1| $)) (-15 -2247 ($ (-1 (-112) |t#1|) $)) (-15 -1494 ($ (-1 (-112) |t#1|) $))) |%noBranch|)))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2811 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-1102) |has| |#1| (-1102)) ((-1219) . T))
+((-2593 (((-2 (|:| |varOrder| (-645 (-1179))) (|:| |inhom| (-3 (-645 (-1269 (-772))) "failed")) (|:| |hom| (-645 (-1269 (-772))))) (-295 (-954 (-567)))) 42)))
+(((-236) (-10 -7 (-15 -2593 ((-2 (|:| |varOrder| (-645 (-1179))) (|:| |inhom| (-3 (-645 (-1269 (-772))) "failed")) (|:| |hom| (-645 (-1269 (-772))))) (-295 (-954 (-567))))))) (T -236))
+((-2593 (*1 *2 *3) (-12 (-5 *3 (-295 (-954 (-567)))) (-5 *2 (-2 (|:| |varOrder| (-645 (-1179))) (|:| |inhom| (-3 (-645 (-1269 (-772))) "failed")) (|:| |hom| (-645 (-1269 (-772)))))) (-5 *1 (-236)))))
+(-10 -7 (-15 -2593 ((-2 (|:| |varOrder| (-645 (-1179))) (|:| |inhom| (-3 (-645 (-1269 (-772))) "failed")) (|:| |hom| (-645 (-1269 (-772))))) (-295 (-954 (-567))))))
+((-2384 (((-772)) 56)) (-1423 (((-2 (|:| -4208 (-690 |#3|)) (|:| |vec| (-1269 |#3|))) (-690 $) (-1269 $)) 53) (((-690 |#3|) (-690 $)) 44) (((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL) (((-690 (-567)) (-690 $)) NIL)) (-1412 (((-134)) 62)) (-1616 (($ $ (-1 |#3| |#3|) (-772)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-645 (-1179)) (-645 (-772))) NIL) (($ $ (-1179) (-772)) NIL) (($ $ (-645 (-1179))) NIL) (($ $ (-1179)) NIL) (($ $ (-772)) NIL) (($ $) NIL)) (-4129 (((-1269 |#3|) $) NIL) (($ |#3|) NIL) (((-863) $) NIL) (($ (-567)) 12) (($ (-410 (-567))) NIL)) (-2746 (((-772)) 15)) (-3069 (($ $ |#3|) 59)))
+(((-237 |#1| |#2| |#3|) (-10 -8 (-15 -4129 (|#1| (-410 (-567)))) (-15 -4129 (|#1| (-567))) (-15 -4129 ((-863) |#1|)) (-15 -2746 ((-772))) (-15 -1616 (|#1| |#1|)) (-15 -1616 (|#1| |#1| (-772))) (-15 -1616 (|#1| |#1| (-1179))) (-15 -1616 (|#1| |#1| (-645 (-1179)))) (-15 -1616 (|#1| |#1| (-1179) (-772))) (-15 -1616 (|#1| |#1| (-645 (-1179)) (-645 (-772)))) (-15 -1423 ((-690 (-567)) (-690 |#1|))) (-15 -1423 ((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 |#1|) (-1269 |#1|))) (-15 -4129 (|#1| |#3|)) (-15 -1616 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1616 (|#1| |#1| (-1 |#3| |#3|) (-772))) (-15 -1423 ((-690 |#3|) (-690 |#1|))) (-15 -1423 ((-2 (|:| -4208 (-690 |#3|)) (|:| |vec| (-1269 |#3|))) (-690 |#1|) (-1269 |#1|))) (-15 -2384 ((-772))) (-15 -3069 (|#1| |#1| |#3|)) (-15 -1412 ((-134))) (-15 -4129 ((-1269 |#3|) |#1|))) (-238 |#2| |#3|) (-772) (-1219)) (T -237))
+((-1412 (*1 *2) (-12 (-14 *4 (-772)) (-4 *5 (-1219)) (-5 *2 (-134)) (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) (-2384 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1219)) (-5 *2 (-772)) (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) (-2746 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1219)) (-5 *2 (-772)) (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))))
+(-10 -8 (-15 -4129 (|#1| (-410 (-567)))) (-15 -4129 (|#1| (-567))) (-15 -4129 ((-863) |#1|)) (-15 -2746 ((-772))) (-15 -1616 (|#1| |#1|)) (-15 -1616 (|#1| |#1| (-772))) (-15 -1616 (|#1| |#1| (-1179))) (-15 -1616 (|#1| |#1| (-645 (-1179)))) (-15 -1616 (|#1| |#1| (-1179) (-772))) (-15 -1616 (|#1| |#1| (-645 (-1179)) (-645 (-772)))) (-15 -1423 ((-690 (-567)) (-690 |#1|))) (-15 -1423 ((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 |#1|) (-1269 |#1|))) (-15 -4129 (|#1| |#3|)) (-15 -1616 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1616 (|#1| |#1| (-1 |#3| |#3|) (-772))) (-15 -1423 ((-690 |#3|) (-690 |#1|))) (-15 -1423 ((-2 (|:| -4208 (-690 |#3|)) (|:| |vec| (-1269 |#3|))) (-690 |#1|) (-1269 |#1|))) (-15 -2384 ((-772))) (-15 -3069 (|#1| |#1| |#3|)) (-15 -1412 ((-134))) (-15 -4129 ((-1269 |#3|) |#1|)))
+((-2412 (((-112) $ $) 19 (|has| |#2| (-1102)))) (-3791 (((-112) $) 73 (|has| |#2| (-131)))) (-3624 (($ (-923)) 126 (|has| |#2| (-1051)))) (-3843 (((-1274) $ (-567) (-567)) 41 (|has| $ (-6 -4423)))) (-1325 (($ $ $) 122 (|has| |#2| (-794)))) (-2376 (((-3 $ "failed") $ $) 75 (|has| |#2| (-131)))) (-1563 (((-112) $ (-772)) 8)) (-2384 (((-772)) 108 (|has| |#2| (-370)))) (-2677 (((-567) $) 120 (|has| |#2| (-849)))) (-4285 ((|#2| $ (-567) |#2|) 53 (|has| $ (-6 -4423)))) (-3647 (($) 7 T CONST)) (-3765 (((-3 (-567) "failed") $) 68 (-1686 (|has| |#2| (-1040 (-567))) (|has| |#2| (-1102)))) (((-3 (-410 (-567)) "failed") $) 65 (-1686 (|has| |#2| (-1040 (-410 (-567)))) (|has| |#2| (-1102)))) (((-3 |#2| "failed") $) 62 (|has| |#2| (-1102)))) (-2051 (((-567) $) 67 (-1686 (|has| |#2| (-1040 (-567))) (|has| |#2| (-1102)))) (((-410 (-567)) $) 64 (-1686 (|has| |#2| (-1040 (-410 (-567)))) (|has| |#2| (-1102)))) ((|#2| $) 63 (|has| |#2| (-1102)))) (-1423 (((-690 (-567)) (-690 $)) 107 (-1686 (|has| |#2| (-640 (-567))) (|has| |#2| (-1051)))) (((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) 106 (-1686 (|has| |#2| (-640 (-567))) (|has| |#2| (-1051)))) (((-2 (|:| -4208 (-690 |#2|)) (|:| |vec| (-1269 |#2|))) (-690 $) (-1269 $)) 105 (|has| |#2| (-1051))) (((-690 |#2|) (-690 $)) 104 (|has| |#2| (-1051)))) (-3588 (((-3 $ "failed") $) 80 (|has| |#2| (-727)))) (-1359 (($) 111 (|has| |#2| (-370)))) (-3760 ((|#2| $ (-567) |#2|) 54 (|has| $ (-6 -4423)))) (-3703 ((|#2| $ (-567)) 52)) (-3137 (((-112) $) 118 (|has| |#2| (-849)))) (-2799 (((-645 |#2|) $) 31 (|has| $ (-6 -4422)))) (-4346 (((-112) $) 82 (|has| |#2| (-727)))) (-3465 (((-112) $) 119 (|has| |#2| (-849)))) (-4093 (((-112) $ (-772)) 9)) (-3895 (((-567) $) 44 (|has| (-567) (-851)))) (-1365 (($ $ $) 117 (-2811 (|has| |#2| (-849)) (|has| |#2| (-794))))) (-1942 (((-645 |#2|) $) 30 (|has| $ (-6 -4422)))) (-3237 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1102)) (|has| $ (-6 -4422))))) (-3255 (((-567) $) 45 (|has| (-567) (-851)))) (-3002 (($ $ $) 116 (-2811 (|has| |#2| (-849)) (|has| |#2| (-794))))) (-3751 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#2| |#2|) $) 36)) (-3474 (((-923) $) 110 (|has| |#2| (-370)))) (-1986 (((-112) $ (-772)) 10)) (-2516 (((-1161) $) 22 (|has| |#2| (-1102)))) (-4364 (((-645 (-567)) $) 47)) (-3188 (((-112) (-567) $) 48)) (-3779 (($ (-923)) 109 (|has| |#2| (-370)))) (-3437 (((-1122) $) 21 (|has| |#2| (-1102)))) (-2418 ((|#2| $) 43 (|has| (-567) (-851)))) (-3823 (($ $ |#2|) 42 (|has| $ (-6 -4423)))) (-4233 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 |#2|))) 27 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-295 |#2|)) 26 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-645 |#2|) (-645 |#2|)) 24 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))))) (-3875 (((-112) $ $) 14)) (-4058 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4422)) (|has| |#2| (-1102))))) (-2190 (((-645 |#2|) $) 49)) (-3885 (((-112) $) 11)) (-2701 (($) 12)) (-1801 ((|#2| $ (-567) |#2|) 51) ((|#2| $ (-567)) 50)) (-3917 ((|#2| $ $) 125 (|has| |#2| (-1051)))) (-2760 (($ (-1269 |#2|)) 127)) (-1412 (((-134)) 124 (|has| |#2| (-365)))) (-1616 (($ $) 99 (-1686 (|has| |#2| (-233)) (|has| |#2| (-1051)))) (($ $ (-772)) 97 (-1686 (|has| |#2| (-233)) (|has| |#2| (-1051)))) (($ $ (-1179)) 95 (-1686 (|has| |#2| (-902 (-1179))) (|has| |#2| (-1051)))) (($ $ (-645 (-1179))) 94 (-1686 (|has| |#2| (-902 (-1179))) (|has| |#2| (-1051)))) (($ $ (-1179) (-772)) 93 (-1686 (|has| |#2| (-902 (-1179))) (|has| |#2| (-1051)))) (($ $ (-645 (-1179)) (-645 (-772))) 92 (-1686 (|has| |#2| (-902 (-1179))) (|has| |#2| (-1051)))) (($ $ (-1 |#2| |#2|) (-772)) 85 (|has| |#2| (-1051))) (($ $ (-1 |#2| |#2|)) 84 (|has| |#2| (-1051)))) (-3447 (((-772) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4422))) (((-772) |#2| $) 29 (-12 (|has| |#2| (-1102)) (|has| $ (-6 -4422))))) (-4309 (($ $) 13)) (-4129 (((-1269 |#2|) $) 128) (($ (-567)) 69 (-2811 (-1686 (|has| |#2| (-1040 (-567))) (|has| |#2| (-1102))) (|has| |#2| (-1051)))) (($ (-410 (-567))) 66 (-1686 (|has| |#2| (-1040 (-410 (-567)))) (|has| |#2| (-1102)))) (($ |#2|) 61 (|has| |#2| (-1102))) (((-863) $) 18 (|has| |#2| (-614 (-863))))) (-2746 (((-772)) 103 (|has| |#2| (-1051)) CONST)) (-3357 (((-112) $ $) 23 (|has| |#2| (-1102)))) (-3436 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4422)))) (-1547 (($ $) 121 (|has| |#2| (-849)))) (-1733 (($) 72 (|has| |#2| (-131)) CONST)) (-1744 (($) 83 (|has| |#2| (-727)) CONST)) (-2647 (($ $) 98 (-1686 (|has| |#2| (-233)) (|has| |#2| (-1051)))) (($ $ (-772)) 96 (-1686 (|has| |#2| (-233)) (|has| |#2| (-1051)))) (($ $ (-1179)) 91 (-1686 (|has| |#2| (-902 (-1179))) (|has| |#2| (-1051)))) (($ $ (-645 (-1179))) 90 (-1686 (|has| |#2| (-902 (-1179))) (|has| |#2| (-1051)))) (($ $ (-1179) (-772)) 89 (-1686 (|has| |#2| (-902 (-1179))) (|has| |#2| (-1051)))) (($ $ (-645 (-1179)) (-645 (-772))) 88 (-1686 (|has| |#2| (-902 (-1179))) (|has| |#2| (-1051)))) (($ $ (-1 |#2| |#2|) (-772)) 87 (|has| |#2| (-1051))) (($ $ (-1 |#2| |#2|)) 86 (|has| |#2| (-1051)))) (-3004 (((-112) $ $) 114 (-2811 (|has| |#2| (-849)) (|has| |#2| (-794))))) (-2980 (((-112) $ $) 113 (-2811 (|has| |#2| (-849)) (|has| |#2| (-794))))) (-2946 (((-112) $ $) 20 (|has| |#2| (-1102)))) (-2993 (((-112) $ $) 115 (-2811 (|has| |#2| (-849)) (|has| |#2| (-794))))) (-2968 (((-112) $ $) 112 (-2811 (|has| |#2| (-849)) (|has| |#2| (-794))))) (-3069 (($ $ |#2|) 123 (|has| |#2| (-365)))) (-3053 (($ $ $) 102 (|has| |#2| (-1051))) (($ $) 101 (|has| |#2| (-1051)))) (-3041 (($ $ $) 70 (|has| |#2| (-25)))) (** (($ $ (-772)) 81 (|has| |#2| (-727))) (($ $ (-923)) 78 (|has| |#2| (-727)))) (* (($ (-567) $) 100 (|has| |#2| (-1051))) (($ $ $) 79 (|has| |#2| (-727))) (($ $ |#2|) 77 (|has| |#2| (-727))) (($ |#2| $) 76 (|has| |#2| (-727))) (($ (-772) $) 74 (|has| |#2| (-131))) (($ (-923) $) 71 (|has| |#2| (-25)))) (-2423 (((-772) $) 6 (|has| $ (-6 -4422)))))
+(((-238 |#1| |#2|) (-140) (-772) (-1219)) (T -238))
+((-2760 (*1 *1 *2) (-12 (-5 *2 (-1269 *4)) (-4 *4 (-1219)) (-4 *1 (-238 *3 *4)))) (-3624 (*1 *1 *2) (-12 (-5 *2 (-923)) (-4 *1 (-238 *3 *4)) (-4 *4 (-1051)) (-4 *4 (-1219)))) (-3917 (*1 *2 *1 *1) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1219)) (-4 *2 (-1051)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1219)) (-4 *2 (-727)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1219)) (-4 *2 (-727)))))
+(-13 (-605 (-567) |t#2|) (-614 (-1269 |t#2|)) (-10 -8 (-6 -4422) (-15 -2760 ($ (-1269 |t#2|))) (IF (|has| |t#2| (-1102)) (-6 (-414 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1051)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-231 |t#2|)) (-6 (-379 |t#2|)) (-15 -3624 ($ (-923))) (-15 -3917 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-131)) (-6 (-131)) |%noBranch|) (IF (|has| |t#2| (-727)) (PROGN (-6 (-727)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-370)) (-6 (-370)) |%noBranch|) (IF (|has| |t#2| (-172)) (PROGN (-6 (-38 |t#2|)) (-6 (-172))) |%noBranch|) (IF (|has| |t#2| (-6 -4419)) (-6 -4419) |%noBranch|) (IF (|has| |t#2| (-849)) (-6 (-849)) |%noBranch|) (IF (|has| |t#2| (-794)) (-6 (-794)) |%noBranch|) (IF (|has| |t#2| (-365)) (-6 (-1276 |t#2|)) |%noBranch|)))
+(((-21) -2811 (|has| |#2| (-1051)) (|has| |#2| (-849)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-23) -2811 (|has| |#2| (-1051)) (|has| |#2| (-849)) (|has| |#2| (-794)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-131))) ((-25) -2811 (|has| |#2| (-1051)) (|has| |#2| (-849)) (|has| |#2| (-794)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-34) . T) ((-38 |#2|) |has| |#2| (-172)) ((-102) -2811 (|has| |#2| (-1102)) (|has| |#2| (-1051)) (|has| |#2| (-849)) (|has| |#2| (-794)) (|has| |#2| (-727)) (|has| |#2| (-370)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-111 |#2| |#2|) -2811 (|has| |#2| (-1051)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-111 $ $) |has| |#2| (-172)) ((-131) -2811 (|has| |#2| (-1051)) (|has| |#2| (-849)) (|has| |#2| (-794)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-131))) ((-617 #0=(-410 (-567))) -12 (|has| |#2| (-1040 (-410 (-567)))) (|has| |#2| (-1102))) ((-617 (-567)) -2811 (|has| |#2| (-1051)) (-12 (|has| |#2| (-1040 (-567))) (|has| |#2| (-1102))) (|has| |#2| (-849)) (|has| |#2| (-172))) ((-617 |#2|) -2811 (|has| |#2| (-1102)) (|has| |#2| (-172))) ((-614 (-863)) -2811 (|has| |#2| (-1102)) (|has| |#2| (-1051)) (|has| |#2| (-849)) (|has| |#2| (-794)) (|has| |#2| (-727)) (|has| |#2| (-370)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-614 (-863))) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-614 (-1269 |#2|)) . T) ((-172) |has| |#2| (-172)) ((-231 |#2|) |has| |#2| (-1051)) ((-233) -12 (|has| |#2| (-233)) (|has| |#2| (-1051))) ((-287 #1=(-567) |#2|) . T) ((-289 #1# |#2|) . T) ((-310 |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) ((-370) |has| |#2| (-370)) ((-379 |#2|) |has| |#2| (-1051)) ((-414 |#2|) |has| |#2| (-1102)) ((-492 |#2|) . T) ((-605 #1# |#2|) . T) ((-517 |#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) ((-647 (-567)) -2811 (|has| |#2| (-1051)) (|has| |#2| (-849)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-647 |#2|) -2811 (|has| |#2| (-1051)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-647 $) -2811 (|has| |#2| (-1051)) (|has| |#2| (-849)) (|has| |#2| (-172))) ((-649 |#2|) -2811 (|has| |#2| (-1051)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-649 $) -2811 (|has| |#2| (-1051)) (|has| |#2| (-849)) (|has| |#2| (-172))) ((-641 |#2|) -2811 (|has| |#2| (-365)) (|has| |#2| (-172))) ((-640 (-567)) -12 (|has| |#2| (-640 (-567))) (|has| |#2| (-1051))) ((-640 |#2|) |has| |#2| (-1051)) ((-718 |#2|) -2811 (|has| |#2| (-365)) (|has| |#2| (-172))) ((-727) -2811 (|has| |#2| (-1051)) (|has| |#2| (-849)) (|has| |#2| (-727)) (|has| |#2| (-172))) ((-792) |has| |#2| (-849)) ((-793) -2811 (|has| |#2| (-849)) (|has| |#2| (-794))) ((-794) |has| |#2| (-794)) ((-795) -2811 (|has| |#2| (-849)) (|has| |#2| (-794))) ((-796) -2811 (|has| |#2| (-849)) (|has| |#2| (-794))) ((-849) |has| |#2| (-849)) ((-851) -2811 (|has| |#2| (-849)) (|has| |#2| (-794))) ((-902 (-1179)) -12 (|has| |#2| (-902 (-1179))) (|has| |#2| (-1051))) ((-1040 #0#) -12 (|has| |#2| (-1040 (-410 (-567)))) (|has| |#2| (-1102))) ((-1040 (-567)) -12 (|has| |#2| (-1040 (-567))) (|has| |#2| (-1102))) ((-1040 |#2|) |has| |#2| (-1102)) ((-1053 |#2|) -2811 (|has| |#2| (-1051)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-1053 $) |has| |#2| (-172)) ((-1058 |#2|) -2811 (|has| |#2| (-1051)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-1058 $) |has| |#2| (-172)) ((-1051) -2811 (|has| |#2| (-1051)) (|has| |#2| (-849)) (|has| |#2| (-172))) ((-1060) -2811 (|has| |#2| (-1051)) (|has| |#2| (-849)) (|has| |#2| (-172))) ((-1114) -2811 (|has| |#2| (-1051)) (|has| |#2| (-849)) (|has| |#2| (-727)) (|has| |#2| (-172))) ((-1102) -2811 (|has| |#2| (-1102)) (|has| |#2| (-1051)) (|has| |#2| (-849)) (|has| |#2| (-794)) (|has| |#2| (-727)) (|has| |#2| (-370)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-1219) . T) ((-1276 |#2|) |has| |#2| (-365)))
+((-3400 (((-240 |#1| |#3|) (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|) 21)) (-2494 ((|#3| (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|) 23)) (-3841 (((-240 |#1| |#3|) (-1 |#3| |#2|) (-240 |#1| |#2|)) 18)))
+(((-239 |#1| |#2| |#3|) (-10 -7 (-15 -3400 ((-240 |#1| |#3|) (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -2494 (|#3| (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -3841 ((-240 |#1| |#3|) (-1 |#3| |#2|) (-240 |#1| |#2|)))) (-772) (-1219) (-1219)) (T -239))
+((-3841 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-240 *5 *6)) (-14 *5 (-772)) (-4 *6 (-1219)) (-4 *7 (-1219)) (-5 *2 (-240 *5 *7)) (-5 *1 (-239 *5 *6 *7)))) (-2494 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-240 *5 *6)) (-14 *5 (-772)) (-4 *6 (-1219)) (-4 *2 (-1219)) (-5 *1 (-239 *5 *6 *2)))) (-3400 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-240 *6 *7)) (-14 *6 (-772)) (-4 *7 (-1219)) (-4 *5 (-1219)) (-5 *2 (-240 *6 *5)) (-5 *1 (-239 *6 *7 *5)))))
+(-10 -7 (-15 -3400 ((-240 |#1| |#3|) (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -2494 (|#3| (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -3841 ((-240 |#1| |#3|) (-1 |#3| |#2|) (-240 |#1| |#2|))))
+((-2412 (((-112) $ $) NIL (|has| |#2| (-1102)))) (-3791 (((-112) $) NIL (|has| |#2| (-131)))) (-3624 (($ (-923)) 65 (|has| |#2| (-1051)))) (-3843 (((-1274) $ (-567) (-567)) NIL (|has| $ (-6 -4423)))) (-1325 (($ $ $) 70 (|has| |#2| (-794)))) (-2376 (((-3 $ "failed") $ $) 57 (|has| |#2| (-131)))) (-1563 (((-112) $ (-772)) 17)) (-2384 (((-772)) NIL (|has| |#2| (-370)))) (-2677 (((-567) $) NIL (|has| |#2| (-849)))) (-4285 ((|#2| $ (-567) |#2|) NIL (|has| $ (-6 -4423)))) (-3647 (($) NIL T CONST)) (-3765 (((-3 (-567) "failed") $) NIL (-12 (|has| |#2| (-1040 (-567))) (|has| |#2| (-1102)))) (((-3 (-410 (-567)) "failed") $) NIL (-12 (|has| |#2| (-1040 (-410 (-567)))) (|has| |#2| (-1102)))) (((-3 |#2| "failed") $) 34 (|has| |#2| (-1102)))) (-2051 (((-567) $) NIL (-12 (|has| |#2| (-1040 (-567))) (|has| |#2| (-1102)))) (((-410 (-567)) $) NIL (-12 (|has| |#2| (-1040 (-410 (-567)))) (|has| |#2| (-1102)))) ((|#2| $) 32 (|has| |#2| (-1102)))) (-1423 (((-690 (-567)) (-690 $)) NIL (-12 (|has| |#2| (-640 (-567))) (|has| |#2| (-1051)))) (((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (-12 (|has| |#2| (-640 (-567))) (|has| |#2| (-1051)))) (((-2 (|:| -4208 (-690 |#2|)) (|:| |vec| (-1269 |#2|))) (-690 $) (-1269 $)) NIL (|has| |#2| (-1051))) (((-690 |#2|) (-690 $)) NIL (|has| |#2| (-1051)))) (-3588 (((-3 $ "failed") $) 61 (|has| |#2| (-727)))) (-1359 (($) NIL (|has| |#2| (-370)))) (-3760 ((|#2| $ (-567) |#2|) NIL (|has| $ (-6 -4423)))) (-3703 ((|#2| $ (-567)) 59)) (-3137 (((-112) $) NIL (|has| |#2| (-849)))) (-2799 (((-645 |#2|) $) 15 (|has| $ (-6 -4422)))) (-4346 (((-112) $) NIL (|has| |#2| (-727)))) (-3465 (((-112) $) NIL (|has| |#2| (-849)))) (-4093 (((-112) $ (-772)) NIL)) (-3895 (((-567) $) 20 (|has| (-567) (-851)))) (-1365 (($ $ $) NIL (-2811 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-1942 (((-645 |#2|) $) NIL (|has| $ (-6 -4422)))) (-3237 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#2| (-1102))))) (-3255 (((-567) $) 58 (|has| (-567) (-851)))) (-3002 (($ $ $) NIL (-2811 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-3751 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#2| |#2|) $) 47)) (-3474 (((-923) $) NIL (|has| |#2| (-370)))) (-1986 (((-112) $ (-772)) NIL)) (-2516 (((-1161) $) NIL (|has| |#2| (-1102)))) (-4364 (((-645 (-567)) $) NIL)) (-3188 (((-112) (-567) $) NIL)) (-3779 (($ (-923)) NIL (|has| |#2| (-370)))) (-3437 (((-1122) $) NIL (|has| |#2| (-1102)))) (-2418 ((|#2| $) NIL (|has| (-567) (-851)))) (-3823 (($ $ |#2|) NIL (|has| $ (-6 -4423)))) (-4233 (((-112) (-1 (-112) |#2|) $) 24 (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))))) (-3875 (((-112) $ $) NIL)) (-4058 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#2| (-1102))))) (-2190 (((-645 |#2|) $) NIL)) (-3885 (((-112) $) NIL)) (-2701 (($) NIL)) (-1801 ((|#2| $ (-567) |#2|) NIL) ((|#2| $ (-567)) 21)) (-3917 ((|#2| $ $) NIL (|has| |#2| (-1051)))) (-2760 (($ (-1269 |#2|)) 18)) (-1412 (((-134)) NIL (|has| |#2| (-365)))) (-1616 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1051)))) (($ $ (-772)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1051)))) (($ $ (-1179)) NIL (-12 (|has| |#2| (-902 (-1179))) (|has| |#2| (-1051)))) (($ $ (-645 (-1179))) NIL (-12 (|has| |#2| (-902 (-1179))) (|has| |#2| (-1051)))) (($ $ (-1179) (-772)) NIL (-12 (|has| |#2| (-902 (-1179))) (|has| |#2| (-1051)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (-12 (|has| |#2| (-902 (-1179))) (|has| |#2| (-1051)))) (($ $ (-1 |#2| |#2|) (-772)) NIL (|has| |#2| (-1051))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1051)))) (-3447 (((-772) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4422))) (((-772) |#2| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#2| (-1102))))) (-4309 (($ $) NIL)) (-4129 (((-1269 |#2|) $) 10) (($ (-567)) NIL (-2811 (-12 (|has| |#2| (-1040 (-567))) (|has| |#2| (-1102))) (|has| |#2| (-1051)))) (($ (-410 (-567))) NIL (-12 (|has| |#2| (-1040 (-410 (-567)))) (|has| |#2| (-1102)))) (($ |#2|) 13 (|has| |#2| (-1102))) (((-863) $) NIL (|has| |#2| (-614 (-863))))) (-2746 (((-772)) NIL (|has| |#2| (-1051)) CONST)) (-3357 (((-112) $ $) NIL (|has| |#2| (-1102)))) (-3436 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4422)))) (-1547 (($ $) NIL (|has| |#2| (-849)))) (-1733 (($) 40 (|has| |#2| (-131)) CONST)) (-1744 (($) 44 (|has| |#2| (-727)) CONST)) (-2647 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1051)))) (($ $ (-772)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1051)))) (($ $ (-1179)) NIL (-12 (|has| |#2| (-902 (-1179))) (|has| |#2| (-1051)))) (($ $ (-645 (-1179))) NIL (-12 (|has| |#2| (-902 (-1179))) (|has| |#2| (-1051)))) (($ $ (-1179) (-772)) NIL (-12 (|has| |#2| (-902 (-1179))) (|has| |#2| (-1051)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (-12 (|has| |#2| (-902 (-1179))) (|has| |#2| (-1051)))) (($ $ (-1 |#2| |#2|) (-772)) NIL (|has| |#2| (-1051))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1051)))) (-3004 (((-112) $ $) NIL (-2811 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-2980 (((-112) $ $) NIL (-2811 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-2946 (((-112) $ $) 31 (|has| |#2| (-1102)))) (-2993 (((-112) $ $) NIL (-2811 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-2968 (((-112) $ $) 68 (-2811 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-3069 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3053 (($ $ $) NIL (|has| |#2| (-1051))) (($ $) NIL (|has| |#2| (-1051)))) (-3041 (($ $ $) 38 (|has| |#2| (-25)))) (** (($ $ (-772)) NIL (|has| |#2| (-727))) (($ $ (-923)) NIL (|has| |#2| (-727)))) (* (($ (-567) $) NIL (|has| |#2| (-1051))) (($ $ $) 50 (|has| |#2| (-727))) (($ $ |#2|) 48 (|has| |#2| (-727))) (($ |#2| $) 49 (|has| |#2| (-727))) (($ (-772) $) NIL (|has| |#2| (-131))) (($ (-923) $) NIL (|has| |#2| (-25)))) (-2423 (((-772) $) NIL (|has| $ (-6 -4422)))))
+(((-240 |#1| |#2|) (-238 |#1| |#2|) (-772) (-1219)) (T -240))
NIL
(-238 |#1| |#2|)
-((-2779 (((-567) (-645 (-1160))) 36) (((-567) (-1160)) 29)) (-3113 (((-1273) (-645 (-1160))) 41) (((-1273) (-1160)) 40)) (-3846 (((-1160)) 16)) (-2807 (((-1160) (-567) (-1160)) 23)) (-2166 (((-645 (-1160)) (-645 (-1160)) (-567) (-1160)) 37) (((-1160) (-1160) (-567) (-1160)) 35)) (-2597 (((-645 (-1160)) (-645 (-1160))) 15) (((-645 (-1160)) (-1160)) 11)))
-(((-241) (-10 -7 (-15 -2597 ((-645 (-1160)) (-1160))) (-15 -2597 ((-645 (-1160)) (-645 (-1160)))) (-15 -3846 ((-1160))) (-15 -2807 ((-1160) (-567) (-1160))) (-15 -2166 ((-1160) (-1160) (-567) (-1160))) (-15 -2166 ((-645 (-1160)) (-645 (-1160)) (-567) (-1160))) (-15 -3113 ((-1273) (-1160))) (-15 -3113 ((-1273) (-645 (-1160)))) (-15 -2779 ((-567) (-1160))) (-15 -2779 ((-567) (-645 (-1160)))))) (T -241))
-((-2779 (*1 *2 *3) (-12 (-5 *3 (-645 (-1160))) (-5 *2 (-567)) (-5 *1 (-241)))) (-2779 (*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-567)) (-5 *1 (-241)))) (-3113 (*1 *2 *3) (-12 (-5 *3 (-645 (-1160))) (-5 *2 (-1273)) (-5 *1 (-241)))) (-3113 (*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-241)))) (-2166 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-645 (-1160))) (-5 *3 (-567)) (-5 *4 (-1160)) (-5 *1 (-241)))) (-2166 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1160)) (-5 *3 (-567)) (-5 *1 (-241)))) (-2807 (*1 *2 *3 *2) (-12 (-5 *2 (-1160)) (-5 *3 (-567)) (-5 *1 (-241)))) (-3846 (*1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-241)))) (-2597 (*1 *2 *2) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-241)))) (-2597 (*1 *2 *3) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-241)) (-5 *3 (-1160)))))
-(-10 -7 (-15 -2597 ((-645 (-1160)) (-1160))) (-15 -2597 ((-645 (-1160)) (-645 (-1160)))) (-15 -3846 ((-1160))) (-15 -2807 ((-1160) (-567) (-1160))) (-15 -2166 ((-1160) (-1160) (-567) (-1160))) (-15 -2166 ((-645 (-1160)) (-645 (-1160)) (-567) (-1160))) (-15 -3113 ((-1273) (-1160))) (-15 -3113 ((-1273) (-645 (-1160)))) (-15 -2779 ((-567) (-1160))) (-15 -2779 ((-567) (-645 (-1160)))))
+((-3847 (((-567) (-645 (-1161))) 36) (((-567) (-1161)) 29)) (-3133 (((-1274) (-645 (-1161))) 41) (((-1274) (-1161)) 40)) (-1312 (((-1161)) 16)) (-1419 (((-1161) (-567) (-1161)) 23)) (-2185 (((-645 (-1161)) (-645 (-1161)) (-567) (-1161)) 37) (((-1161) (-1161) (-567) (-1161)) 35)) (-2606 (((-645 (-1161)) (-645 (-1161))) 15) (((-645 (-1161)) (-1161)) 11)))
+(((-241) (-10 -7 (-15 -2606 ((-645 (-1161)) (-1161))) (-15 -2606 ((-645 (-1161)) (-645 (-1161)))) (-15 -1312 ((-1161))) (-15 -1419 ((-1161) (-567) (-1161))) (-15 -2185 ((-1161) (-1161) (-567) (-1161))) (-15 -2185 ((-645 (-1161)) (-645 (-1161)) (-567) (-1161))) (-15 -3133 ((-1274) (-1161))) (-15 -3133 ((-1274) (-645 (-1161)))) (-15 -3847 ((-567) (-1161))) (-15 -3847 ((-567) (-645 (-1161)))))) (T -241))
+((-3847 (*1 *2 *3) (-12 (-5 *3 (-645 (-1161))) (-5 *2 (-567)) (-5 *1 (-241)))) (-3847 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-567)) (-5 *1 (-241)))) (-3133 (*1 *2 *3) (-12 (-5 *3 (-645 (-1161))) (-5 *2 (-1274)) (-5 *1 (-241)))) (-3133 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-241)))) (-2185 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-645 (-1161))) (-5 *3 (-567)) (-5 *4 (-1161)) (-5 *1 (-241)))) (-2185 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1161)) (-5 *3 (-567)) (-5 *1 (-241)))) (-1419 (*1 *2 *3 *2) (-12 (-5 *2 (-1161)) (-5 *3 (-567)) (-5 *1 (-241)))) (-1312 (*1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-241)))) (-2606 (*1 *2 *2) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-241)))) (-2606 (*1 *2 *3) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-241)) (-5 *3 (-1161)))))
+(-10 -7 (-15 -2606 ((-645 (-1161)) (-1161))) (-15 -2606 ((-645 (-1161)) (-645 (-1161)))) (-15 -1312 ((-1161))) (-15 -1419 ((-1161) (-567) (-1161))) (-15 -2185 ((-1161) (-1161) (-567) (-1161))) (-15 -2185 ((-645 (-1161)) (-645 (-1161)) (-567) (-1161))) (-15 -3133 ((-1274) (-1161))) (-15 -3133 ((-1274) (-645 (-1161)))) (-15 -3847 ((-567) (-1161))) (-15 -3847 ((-567) (-645 (-1161)))))
((** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) 20)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ (-410 (-567)) $) 27) (($ $ (-410 (-567))) NIL)))
(((-242 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-567))) (-15 * (|#1| |#1| (-410 (-567)))) (-15 * (|#1| (-410 (-567)) |#1|)) (-15 ** (|#1| |#1| (-772))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-923))) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-923) |#1|))) (-243)) (T -242))
NIL
(-10 -8 (-15 ** (|#1| |#1| (-567))) (-15 * (|#1| |#1| (-410 (-567)))) (-15 * (|#1| (-410 (-567)) |#1|)) (-15 ** (|#1| |#1| (-772))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-923))) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-923) |#1|)))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-2109 (((-3 $ "failed") $) 37)) (-1433 (((-112) $) 35)) (-1419 (((-1160) $) 10)) (-2939 (($ $) 47)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ (-410 (-567))) 51)) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 48)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ (-410 (-567)) $) 50) (($ $ (-410 (-567))) 49)))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-2376 (((-3 $ "failed") $ $) 20)) (-3647 (($) 18 T CONST)) (-3588 (((-3 $ "failed") $) 37)) (-4346 (((-112) $) 35)) (-2516 (((-1161) $) 10)) (-2949 (($ $) 47)) (-3437 (((-1122) $) 11)) (-4129 (((-863) $) 12) (($ (-567)) 33) (($ (-410 (-567))) 51)) (-2746 (((-772)) 32 T CONST)) (-3357 (((-112) $ $) 9)) (-1733 (($) 19 T CONST)) (-1744 (($) 34 T CONST)) (-2946 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 48)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ (-410 (-567)) $) 50) (($ $ (-410 (-567))) 49)))
(((-243) (-140)) (T -243))
-((** (*1 *1 *1 *2) (-12 (-4 *1 (-243)) (-5 *2 (-567)))) (-2939 (*1 *1 *1) (-4 *1 (-243))))
-(-13 (-291) (-38 (-410 (-567))) (-10 -8 (-15 ** ($ $ (-567))) (-15 -2939 ($ $))))
+((** (*1 *1 *1 *2) (-12 (-4 *1 (-243)) (-5 *2 (-567)))) (-2949 (*1 *1 *1) (-4 *1 (-243))))
+(-13 (-291) (-38 (-410 (-567))) (-10 -8 (-15 ** ($ $ (-567))) (-15 -2949 ($ $))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-617 #0#) . T) ((-617 (-567)) . T) ((-614 (-863)) . T) ((-291) . T) ((-647 #0#) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 #0#) . T) ((-649 $) . T) ((-641 #0#) . T) ((-718 #0#) . T) ((-727) . T) ((-1053 #0#) . T) ((-1053 $) . T) ((-1058 #0#) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T))
-((-2403 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-3802 ((|#1| $) 49)) (-4283 (($ $) 58)) (-3445 (((-112) $ (-772)) 8)) (-2138 ((|#1| $ |#1|) 40 (|has| $ (-6 -4419)))) (-2582 (($ $ $) 54 (|has| $ (-6 -4419)))) (-3324 (($ $ $) 53 (|has| $ (-6 -4419)))) (-4284 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4419)))) (-1301 (($ $ (-645 $)) 42 (|has| $ (-6 -4419)))) (-2585 (($) 7 T CONST)) (-3162 (($ $) 57)) (-2777 (((-645 |#1|) $) 31 (|has| $ (-6 -4418)))) (-2182 (((-645 $) $) 51)) (-3512 (((-112) $ $) 43 (|has| |#1| (-1102)))) (-3041 (($ $) 56)) (-2077 (((-112) $ (-772)) 9)) (-2279 (((-645 |#1|) $) 30 (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-3731 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) 36)) (-2863 (((-112) $ (-772)) 10)) (-3773 (((-645 |#1|) $) 46)) (-2769 (((-112) $) 50)) (-1419 (((-1160) $) 22 (|has| |#1| (-1102)))) (-3257 ((|#1| $) 60)) (-2724 (($ $) 59)) (-3430 (((-1122) $) 21 (|has| |#1| (-1102)))) (-3025 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) 14)) (-3572 (((-112) $) 11)) (-3498 (($) 12)) (-1787 ((|#1| $ "value") 48)) (-2658 (((-567) $ $) 45)) (-3900 (((-112) $) 47)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4418))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-4305 (($ $) 13)) (-2484 (($ $ $) 55 (|has| $ (-6 -4419)))) (-4132 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-1531 (((-645 $) $) 52)) (-3606 (((-112) $ $) 44 (|has| |#1| (-1102)))) (-1745 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2414 (((-772) $) 6 (|has| $ (-6 -4418)))))
-(((-244 |#1|) (-140) (-1218)) (T -244))
-((-3257 (*1 *2 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1218)))) (-2724 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1218)))) (-4283 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1218)))) (-3162 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1218)))) (-3041 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1218)))) (-2484 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4419)) (-4 *1 (-244 *2)) (-4 *2 (-1218)))) (-2582 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4419)) (-4 *1 (-244 *2)) (-4 *2 (-1218)))) (-3324 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4419)) (-4 *1 (-244 *2)) (-4 *2 (-1218)))))
-(-13 (-1012 |t#1|) (-10 -8 (-15 -3257 (|t#1| $)) (-15 -2724 ($ $)) (-15 -4283 ($ $)) (-15 -3162 ($ $)) (-15 -3041 ($ $)) (IF (|has| $ (-6 -4419)) (PROGN (-15 -2484 ($ $ $)) (-15 -2582 ($ $ $)) (-15 -3324 ($ $ $))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2800 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-1012 |#1|) . T) ((-1102) |has| |#1| (-1102)) ((-1218) . T))
-((-2403 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3802 ((|#1| $) NIL)) (-3998 ((|#1| $) NIL)) (-4283 (($ $) NIL)) (-1783 (((-1273) $ (-567) (-567)) NIL (|has| $ (-6 -4419)))) (-2366 (($ $ (-567)) NIL (|has| $ (-6 -4419)))) (-2496 (((-112) $) NIL (|has| |#1| (-851))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4419)) (|has| |#1| (-851)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4419)))) (-4396 (($ $) 10 (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3445 (((-112) $ (-772)) NIL)) (-2138 ((|#1| $ |#1|) NIL (|has| $ (-6 -4419)))) (-4209 (($ $ $) NIL (|has| $ (-6 -4419)))) (-2315 ((|#1| $ |#1|) NIL (|has| $ (-6 -4419)))) (-2271 ((|#1| $ |#1|) NIL (|has| $ (-6 -4419)))) (-4284 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4419))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4419))) (($ $ "rest" $) NIL (|has| $ (-6 -4419))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4419))) ((|#1| $ (-1235 (-567)) |#1|) NIL (|has| $ (-6 -4419))) ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4419)))) (-1301 (($ $ (-645 $)) NIL (|has| $ (-6 -4419)))) (-2839 (($ (-1 (-112) |#1|) $) NIL)) (-3350 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-3984 ((|#1| $) NIL)) (-2585 (($) NIL T CONST)) (-1764 (($ $) NIL (|has| $ (-6 -4419)))) (-3584 (($ $) NIL)) (-2421 (($ $) NIL) (($ $ (-772)) NIL)) (-2133 (($ $) NIL (|has| |#1| (-1102)))) (-2444 (($ $) 7 (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2539 (($ |#1| $) NIL (|has| |#1| (-1102))) (($ (-1 (-112) |#1|) $) NIL)) (-3238 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2477 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-3741 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4419)))) (-3680 ((|#1| $ (-567)) NIL)) (-1399 (((-112) $) NIL)) (-2569 (((-567) |#1| $ (-567)) NIL (|has| |#1| (-1102))) (((-567) |#1| $) NIL (|has| |#1| (-1102))) (((-567) (-1 (-112) |#1|) $) NIL)) (-2777 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-2182 (((-645 $) $) NIL)) (-3512 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2846 (($ (-772) |#1|) NIL)) (-2077 (((-112) $ (-772)) NIL)) (-4069 (((-567) $) NIL (|has| (-567) (-851)))) (-1354 (($ $ $) NIL (|has| |#1| (-851)))) (-2966 (($ $ $) NIL (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-4135 (($ $ $) NIL (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2279 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2266 (((-567) $) NIL (|has| (-567) (-851)))) (-2981 (($ $ $) NIL (|has| |#1| (-851)))) (-3731 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2284 (($ |#1|) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-3773 (((-645 |#1|) $) NIL)) (-2769 (((-112) $) NIL)) (-1419 (((-1160) $) NIL (|has| |#1| (-1102)))) (-3257 ((|#1| $) NIL) (($ $ (-772)) NIL)) (-2531 (($ $ $ (-567)) NIL) (($ |#1| $ (-567)) NIL)) (-2845 (($ $ $ (-567)) NIL) (($ |#1| $ (-567)) NIL)) (-1789 (((-645 (-567)) $) NIL)) (-2996 (((-112) (-567) $) NIL)) (-3430 (((-1122) $) NIL (|has| |#1| (-1102)))) (-2409 ((|#1| $) NIL) (($ $ (-772)) NIL)) (-4128 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3986 (($ $ |#1|) NIL (|has| $ (-6 -4419)))) (-3323 (((-112) $) NIL)) (-3025 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) NIL)) (-1794 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2339 (((-645 |#1|) $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) NIL)) (-1787 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1235 (-567))) NIL) ((|#1| $ (-567)) NIL) ((|#1| $ (-567) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-772) $ "count") 16)) (-2658 (((-567) $ $) NIL)) (-3670 (($ $ (-1235 (-567))) NIL) (($ $ (-567)) NIL)) (-1560 (($ $ (-1235 (-567))) NIL) (($ $ (-567)) NIL)) (-1905 (($ (-645 |#1|)) 22)) (-3900 (((-112) $) NIL)) (-1644 (($ $) NIL)) (-3519 (($ $) NIL (|has| $ (-6 -4419)))) (-3344 (((-772) $) NIL)) (-1503 (($ $) NIL)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-1395 (($ $ $ (-567)) NIL (|has| $ (-6 -4419)))) (-4305 (($ $) NIL)) (-3893 (((-539) $) NIL (|has| |#1| (-615 (-539))))) (-4147 (($ (-645 |#1|)) NIL)) (-2484 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2269 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-645 $)) NIL) (($ $ |#1|) NIL)) (-4132 (($ (-645 |#1|)) 17) (((-645 |#1|) $) 18) (((-863) $) 21 (|has| |#1| (-614 (-863))))) (-1531 (((-645 $) $) NIL)) (-3606 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1745 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2997 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2971 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2936 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2984 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2958 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2414 (((-772) $) 14 (|has| $ (-6 -4418)))))
-(((-245 |#1|) (-13 (-667 |#1|) (-493 (-645 |#1|)) (-10 -8 (-15 -1905 ($ (-645 |#1|))) (-15 -1787 ($ $ "unique")) (-15 -1787 ($ $ "sort")) (-15 -1787 ((-772) $ "count")))) (-851)) (T -245))
-((-1905 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-851)) (-5 *1 (-245 *3)))) (-1787 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-245 *3)) (-4 *3 (-851)))) (-1787 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-245 *3)) (-4 *3 (-851)))) (-1787 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-772)) (-5 *1 (-245 *4)) (-4 *4 (-851)))))
-(-13 (-667 |#1|) (-493 (-645 |#1|)) (-10 -8 (-15 -1905 ($ (-645 |#1|))) (-15 -1787 ($ $ "unique")) (-15 -1787 ($ $ "sort")) (-15 -1787 ((-772) $ "count"))))
-((-1988 (((-3 (-772) "failed") |#1| |#1| (-772)) 43)))
-(((-246 |#1|) (-10 -7 (-15 -1988 ((-3 (-772) "failed") |#1| |#1| (-772)))) (-13 (-727) (-370) (-10 -7 (-15 ** (|#1| |#1| (-567)))))) (T -246))
-((-1988 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-772)) (-4 *3 (-13 (-727) (-370) (-10 -7 (-15 ** (*3 *3 (-567)))))) (-5 *1 (-246 *3)))))
-(-10 -7 (-15 -1988 ((-3 (-772) "failed") |#1| |#1| (-772))))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-2847 (((-645 (-865 |#1|)) $) NIL)) (-2675 (((-1174 $) $ (-865 |#1|)) NIL) (((-1174 |#2|) $) NIL)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL (|has| |#2| (-559)))) (-4381 (($ $) NIL (|has| |#2| (-559)))) (-3949 (((-112) $) NIL (|has| |#2| (-559)))) (-1468 (((-772) $) NIL) (((-772) $ (-645 (-865 |#1|))) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-4226 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-911)))) (-3248 (($ $) NIL (|has| |#2| (-455)))) (-2908 (((-421 $) $) NIL (|has| |#2| (-455)))) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-911)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 |#2| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#2| (-1040 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#2| (-1040 (-567)))) (((-3 (-865 |#1|) "failed") $) NIL)) (-2038 ((|#2| $) NIL) (((-410 (-567)) $) NIL (|has| |#2| (-1040 (-410 (-567))))) (((-567) $) NIL (|has| |#2| (-1040 (-567)))) (((-865 |#1|) $) NIL)) (-2951 (($ $ $ (-865 |#1|)) NIL (|has| |#2| (-172)))) (-1464 (($ $ (-645 (-567))) NIL)) (-3014 (($ $) NIL)) (-2630 (((-690 (-567)) (-690 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -2316 (-690 |#2|)) (|:| |vec| (-1268 |#2|))) (-690 $) (-1268 $)) NIL) (((-690 |#2|) (-690 $)) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-3501 (($ $) NIL (|has| |#2| (-455))) (($ $ (-865 |#1|)) NIL (|has| |#2| (-455)))) (-3000 (((-645 $) $) NIL)) (-3184 (((-112) $) NIL (|has| |#2| (-911)))) (-2320 (($ $ |#2| (-240 (-2414 |#1|) (-772)) $) NIL)) (-4303 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (-12 (|has| (-865 |#1|) (-888 (-381))) (|has| |#2| (-888 (-381))))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (-12 (|has| (-865 |#1|) (-888 (-567))) (|has| |#2| (-888 (-567)))))) (-1433 (((-112) $) NIL)) (-2695 (((-772) $) NIL)) (-2836 (($ (-1174 |#2|) (-865 |#1|)) NIL) (($ (-1174 $) (-865 |#1|)) NIL)) (-1709 (((-645 $) $) NIL)) (-2843 (((-112) $) NIL)) (-2824 (($ |#2| (-240 (-2414 |#1|) (-772))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-1621 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $ (-865 |#1|)) NIL)) (-2656 (((-240 (-2414 |#1|) (-772)) $) NIL) (((-772) $ (-865 |#1|)) NIL) (((-645 (-772)) $ (-645 (-865 |#1|))) NIL)) (-3273 (($ (-1 (-240 (-2414 |#1|) (-772)) (-240 (-2414 |#1|) (-772))) $) NIL)) (-3829 (($ (-1 |#2| |#2|) $) NIL)) (-3046 (((-3 (-865 |#1|) "failed") $) NIL)) (-2976 (($ $) NIL)) (-2989 ((|#2| $) NIL)) (-2740 (($ (-645 $)) NIL (|has| |#2| (-455))) (($ $ $) NIL (|has| |#2| (-455)))) (-1419 (((-1160) $) NIL)) (-2056 (((-3 (-645 $) "failed") $) NIL)) (-3671 (((-3 (-645 $) "failed") $) NIL)) (-3798 (((-3 (-2 (|:| |var| (-865 |#1|)) (|:| -3458 (-772))) "failed") $) NIL)) (-3430 (((-1122) $) NIL)) (-2949 (((-112) $) NIL)) (-2962 ((|#2| $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#2| (-455)))) (-2774 (($ (-645 $)) NIL (|has| |#2| (-455))) (($ $ $) NIL (|has| |#2| (-455)))) (-2435 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-911)))) (-3517 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-911)))) (-2706 (((-421 $) $) NIL (|has| |#2| (-911)))) (-2391 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-559))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-559)))) (-2631 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-865 |#1|) |#2|) NIL) (($ $ (-645 (-865 |#1|)) (-645 |#2|)) NIL) (($ $ (-865 |#1|) $) NIL) (($ $ (-645 (-865 |#1|)) (-645 $)) NIL)) (-3788 (($ $ (-865 |#1|)) NIL (|has| |#2| (-172)))) (-1593 (($ $ (-865 |#1|)) NIL) (($ $ (-645 (-865 |#1|))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-3077 (((-240 (-2414 |#1|) (-772)) $) NIL) (((-772) $ (-865 |#1|)) NIL) (((-645 (-772)) $ (-645 (-865 |#1|))) NIL)) (-3893 (((-894 (-381)) $) NIL (-12 (|has| (-865 |#1|) (-615 (-894 (-381)))) (|has| |#2| (-615 (-894 (-381)))))) (((-894 (-567)) $) NIL (-12 (|has| (-865 |#1|) (-615 (-894 (-567)))) (|has| |#2| (-615 (-894 (-567)))))) (((-539) $) NIL (-12 (|has| (-865 |#1|) (-615 (-539))) (|has| |#2| (-615 (-539)))))) (-4358 ((|#2| $) NIL (|has| |#2| (-455))) (($ $ (-865 |#1|)) NIL (|has| |#2| (-455)))) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-911))))) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ |#2|) NIL) (($ (-865 |#1|)) NIL) (($ (-410 (-567))) NIL (-2800 (|has| |#2| (-38 (-410 (-567)))) (|has| |#2| (-1040 (-410 (-567)))))) (($ $) NIL (|has| |#2| (-559)))) (-3032 (((-645 |#2|) $) NIL)) (-4136 ((|#2| $ (-240 (-2414 |#1|) (-772))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-1903 (((-3 $ "failed") $) NIL (-2800 (-12 (|has| $ (-145)) (|has| |#2| (-911))) (|has| |#2| (-145))))) (-4221 (((-772)) NIL T CONST)) (-4176 (($ $ $ (-772)) NIL (|has| |#2| (-172)))) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL (|has| |#2| (-559)))) (-1716 (($) NIL T CONST)) (-1728 (($) NIL T CONST)) (-2637 (($ $ (-865 |#1|)) NIL) (($ $ (-645 (-865 |#1|))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL (|has| |#2| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#2| (-38 (-410 (-567))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-247 |#1| |#2|) (-13 (-951 |#2| (-240 (-2414 |#1|) (-772)) (-865 |#1|)) (-10 -8 (-15 -1464 ($ $ (-645 (-567)))))) (-645 (-1178)) (-1051)) (T -247))
-((-1464 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-247 *3 *4)) (-14 *3 (-645 (-1178))) (-4 *4 (-1051)))))
-(-13 (-951 |#2| (-240 (-2414 |#1|) (-772)) (-865 |#1|)) (-10 -8 (-15 -1464 ($ $ (-645 (-567))))))
-((-2403 (((-112) $ $) NIL)) (-1930 (((-1273) $) 17)) (-2338 (((-183 (-249)) $) 11)) (-3356 (($ (-183 (-249))) 12)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-3230 (((-249) $) 7)) (-4132 (((-863) $) 9)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 15)))
-(((-248) (-13 (-1102) (-10 -8 (-15 -3230 ((-249) $)) (-15 -2338 ((-183 (-249)) $)) (-15 -3356 ($ (-183 (-249)))) (-15 -1930 ((-1273) $))))) (T -248))
-((-3230 (*1 *2 *1) (-12 (-5 *2 (-249)) (-5 *1 (-248)))) (-2338 (*1 *2 *1) (-12 (-5 *2 (-183 (-249))) (-5 *1 (-248)))) (-3356 (*1 *1 *2) (-12 (-5 *2 (-183 (-249))) (-5 *1 (-248)))) (-1930 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-248)))))
-(-13 (-1102) (-10 -8 (-15 -3230 ((-249) $)) (-15 -2338 ((-183 (-249)) $)) (-15 -3356 ($ (-183 (-249)))) (-15 -1930 ((-1273) $))))
-((-2403 (((-112) $ $) NIL)) (-3871 (((-645 (-866)) $) NIL)) (-1996 (((-509) $) NIL)) (-1419 (((-1160) $) NIL)) (-4166 (((-186) $) NIL)) (-1854 (((-112) $ (-509)) NIL)) (-3430 (((-1122) $) NIL)) (-1626 (((-334) $) 7)) (-1722 (((-645 (-112)) $) NIL)) (-4132 (((-863) $) NIL) (((-187) $) 8)) (-1745 (((-112) $ $) NIL)) (-2124 (((-55) $) NIL)) (-2936 (((-112) $ $) NIL)))
-(((-249) (-13 (-185) (-614 (-187)) (-10 -8 (-15 -1626 ((-334) $))))) (T -249))
-((-1626 (*1 *2 *1) (-12 (-5 *2 (-334)) (-5 *1 (-249)))))
-(-13 (-185) (-614 (-187)) (-10 -8 (-15 -1626 ((-334) $))))
-((-2403 (((-112) $ $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-1787 (((-1183) $ (-772)) 13)) (-4132 (((-863) $) 20)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 16)) (-2414 (((-772) $) 9)))
-(((-250) (-13 (-1102) (-10 -8 (-15 -2414 ((-772) $)) (-15 -1787 ((-1183) $ (-772)))))) (T -250))
-((-2414 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-250)))) (-1787 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1183)) (-5 *1 (-250)))))
-(-13 (-1102) (-10 -8 (-15 -2414 ((-772) $)) (-15 -1787 ((-1183) $ (-772)))))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-4387 (($ (-923)) NIL (|has| |#4| (-1051)))) (-1783 (((-1273) $ (-567) (-567)) NIL (|has| $ (-6 -4419)))) (-4016 (($ $ $) NIL (|has| |#4| (-794)))) (-3472 (((-3 $ "failed") $ $) NIL)) (-3445 (((-112) $ (-772)) NIL)) (-2375 (((-772)) NIL (|has| |#4| (-370)))) (-1750 (((-567) $) NIL (|has| |#4| (-849)))) (-4284 ((|#4| $ (-567) |#4|) NIL (|has| $ (-6 -4419)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1102))) (((-3 (-567) "failed") $) NIL (-12 (|has| |#4| (-1040 (-567))) (|has| |#4| (-1102)))) (((-3 (-410 (-567)) "failed") $) NIL (-12 (|has| |#4| (-1040 (-410 (-567)))) (|has| |#4| (-1102))))) (-2038 ((|#4| $) NIL (|has| |#4| (-1102))) (((-567) $) NIL (-12 (|has| |#4| (-1040 (-567))) (|has| |#4| (-1102)))) (((-410 (-567)) $) NIL (-12 (|has| |#4| (-1040 (-410 (-567)))) (|has| |#4| (-1102))))) (-2630 (((-2 (|:| -2316 (-690 |#4|)) (|:| |vec| (-1268 |#4|))) (-690 $) (-1268 $)) NIL (|has| |#4| (-1051))) (((-690 |#4|) (-690 $)) NIL (|has| |#4| (-1051))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (-12 (|has| |#4| (-640 (-567))) (|has| |#4| (-1051)))) (((-690 (-567)) (-690 $)) NIL (-12 (|has| |#4| (-640 (-567))) (|has| |#4| (-1051))))) (-2109 (((-3 $ "failed") $) NIL (-2800 (-12 (|has| |#4| (-233)) (|has| |#4| (-1051))) (-12 (|has| |#4| (-640 (-567))) (|has| |#4| (-1051))) (|has| |#4| (-727)) (-12 (|has| |#4| (-902 (-1178))) (|has| |#4| (-1051)))))) (-1348 (($) NIL (|has| |#4| (-370)))) (-3741 ((|#4| $ (-567) |#4|) NIL (|has| $ (-6 -4419)))) (-3680 ((|#4| $ (-567)) NIL)) (-4336 (((-112) $) NIL (|has| |#4| (-849)))) (-2777 (((-645 |#4|) $) NIL (|has| $ (-6 -4418)))) (-1433 (((-112) $) NIL (-2800 (-12 (|has| |#4| (-233)) (|has| |#4| (-1051))) (-12 (|has| |#4| (-640 (-567))) (|has| |#4| (-1051))) (|has| |#4| (-727)) (-12 (|has| |#4| (-902 (-1178))) (|has| |#4| (-1051)))))) (-3494 (((-112) $) NIL (|has| |#4| (-849)))) (-2077 (((-112) $ (-772)) NIL)) (-4069 (((-567) $) NIL (|has| (-567) (-851)))) (-1354 (($ $ $) NIL (-2800 (|has| |#4| (-794)) (|has| |#4| (-849))))) (-2279 (((-645 |#4|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#4| (-1102))))) (-2266 (((-567) $) NIL (|has| (-567) (-851)))) (-2981 (($ $ $) NIL (-2800 (|has| |#4| (-794)) (|has| |#4| (-849))))) (-3731 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#4| |#4|) $) NIL)) (-4249 (((-923) $) NIL (|has| |#4| (-370)))) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL)) (-1789 (((-645 (-567)) $) NIL)) (-2996 (((-112) (-567) $) NIL)) (-3768 (($ (-923)) NIL (|has| |#4| (-370)))) (-3430 (((-1122) $) NIL)) (-2409 ((|#4| $) NIL (|has| (-567) (-851)))) (-3986 (($ $ |#4|) NIL (|has| $ (-6 -4419)))) (-3025 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#4|))) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-295 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-645 |#4|) (-645 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))))) (-3092 (((-112) $ $) NIL)) (-1794 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#4| (-1102))))) (-2339 (((-645 |#4|) $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) NIL)) (-1787 ((|#4| $ (-567) |#4|) NIL) ((|#4| $ (-567)) 16)) (-3366 ((|#4| $ $) NIL (|has| |#4| (-1051)))) (-2749 (($ (-1268 |#4|)) NIL)) (-1879 (((-134)) NIL (|has| |#4| (-365)))) (-1593 (($ $ (-1 |#4| |#4|) (-772)) NIL (|has| |#4| (-1051))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1051))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (-12 (|has| |#4| (-902 (-1178))) (|has| |#4| (-1051)))) (($ $ (-1178) (-772)) NIL (-12 (|has| |#4| (-902 (-1178))) (|has| |#4| (-1051)))) (($ $ (-645 (-1178))) NIL (-12 (|has| |#4| (-902 (-1178))) (|has| |#4| (-1051)))) (($ $ (-1178)) NIL (-12 (|has| |#4| (-902 (-1178))) (|has| |#4| (-1051)))) (($ $ (-772)) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1051)))) (($ $) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1051))))) (-3439 (((-772) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4418))) (((-772) |#4| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#4| (-1102))))) (-4305 (($ $) NIL)) (-4132 (((-1268 |#4|) $) NIL) (((-863) $) NIL) (($ |#4|) NIL (|has| |#4| (-1102))) (($ (-567)) NIL (-2800 (-12 (|has| |#4| (-1040 (-567))) (|has| |#4| (-1102))) (|has| |#4| (-1051)))) (($ (-410 (-567))) NIL (-12 (|has| |#4| (-1040 (-410 (-567)))) (|has| |#4| (-1102))))) (-4221 (((-772)) NIL (|has| |#4| (-1051)) CONST)) (-1745 (((-112) $ $) NIL)) (-1853 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4418)))) (-2219 (($ $) NIL (|has| |#4| (-849)))) (-1716 (($) NIL T CONST)) (-1728 (($) NIL (-2800 (-12 (|has| |#4| (-233)) (|has| |#4| (-1051))) (-12 (|has| |#4| (-640 (-567))) (|has| |#4| (-1051))) (|has| |#4| (-727)) (-12 (|has| |#4| (-902 (-1178))) (|has| |#4| (-1051)))) CONST)) (-2637 (($ $ (-1 |#4| |#4|) (-772)) NIL (|has| |#4| (-1051))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1051))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (-12 (|has| |#4| (-902 (-1178))) (|has| |#4| (-1051)))) (($ $ (-1178) (-772)) NIL (-12 (|has| |#4| (-902 (-1178))) (|has| |#4| (-1051)))) (($ $ (-645 (-1178))) NIL (-12 (|has| |#4| (-902 (-1178))) (|has| |#4| (-1051)))) (($ $ (-1178)) NIL (-12 (|has| |#4| (-902 (-1178))) (|has| |#4| (-1051)))) (($ $ (-772)) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1051)))) (($ $) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1051))))) (-2997 (((-112) $ $) NIL (-2800 (|has| |#4| (-794)) (|has| |#4| (-849))))) (-2971 (((-112) $ $) NIL (-2800 (|has| |#4| (-794)) (|has| |#4| (-849))))) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL (-2800 (|has| |#4| (-794)) (|has| |#4| (-849))))) (-2958 (((-112) $ $) NIL (-2800 (|has| |#4| (-794)) (|has| |#4| (-849))))) (-3060 (($ $ |#4|) NIL (|has| |#4| (-365)))) (-3045 (($ $ $) NIL) (($ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-772)) NIL (-2800 (-12 (|has| |#4| (-233)) (|has| |#4| (-1051))) (-12 (|has| |#4| (-640 (-567))) (|has| |#4| (-1051))) (|has| |#4| (-727)) (-12 (|has| |#4| (-902 (-1178))) (|has| |#4| (-1051))))) (($ $ (-923)) NIL (-2800 (-12 (|has| |#4| (-233)) (|has| |#4| (-1051))) (-12 (|has| |#4| (-640 (-567))) (|has| |#4| (-1051))) (|has| |#4| (-727)) (-12 (|has| |#4| (-902 (-1178))) (|has| |#4| (-1051)))))) (* (($ |#2| $) 18) (($ (-567) $) NIL) (($ (-772) $) NIL) (($ (-923) $) NIL) (($ |#3| $) 22) (($ $ |#4|) NIL (|has| |#4| (-727))) (($ |#4| $) NIL (|has| |#4| (-727))) (($ $ $) NIL (-2800 (-12 (|has| |#4| (-233)) (|has| |#4| (-1051))) (-12 (|has| |#4| (-640 (-567))) (|has| |#4| (-1051))) (|has| |#4| (-727)) (-12 (|has| |#4| (-902 (-1178))) (|has| |#4| (-1051)))))) (-2414 (((-772) $) NIL (|has| $ (-6 -4418)))))
+((-2412 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-3812 ((|#1| $) 49)) (-4284 (($ $) 58)) (-1563 (((-112) $ (-772)) 8)) (-4392 ((|#1| $ |#1|) 40 (|has| $ (-6 -4423)))) (-1348 (($ $ $) 54 (|has| $ (-6 -4423)))) (-2060 (($ $ $) 53 (|has| $ (-6 -4423)))) (-4285 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4423)))) (-2831 (($ $ (-645 $)) 42 (|has| $ (-6 -4423)))) (-3647 (($) 7 T CONST)) (-3178 (($ $) 57)) (-2799 (((-645 |#1|) $) 31 (|has| $ (-6 -4422)))) (-2070 (((-645 $) $) 51)) (-1520 (((-112) $ $) 43 (|has| |#1| (-1102)))) (-3049 (($ $) 56)) (-4093 (((-112) $ (-772)) 9)) (-1942 (((-645 |#1|) $) 30 (|has| $ (-6 -4422)))) (-3237 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-3751 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#1| |#1|) $) 36)) (-1986 (((-112) $ (-772)) 10)) (-3793 (((-645 |#1|) $) 46)) (-1323 (((-112) $) 50)) (-2516 (((-1161) $) 22 (|has| |#1| (-1102)))) (-3266 ((|#1| $) 60)) (-1523 (($ $) 59)) (-3437 (((-1122) $) 21 (|has| |#1| (-1102)))) (-4233 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3875 (((-112) $ $) 14)) (-3885 (((-112) $) 11)) (-2701 (($) 12)) (-1801 ((|#1| $ "value") 48)) (-3162 (((-567) $ $) 45)) (-3771 (((-112) $) 47)) (-3447 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4422))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-4309 (($ $) 13)) (-2294 (($ $ $) 55 (|has| $ (-6 -4423)))) (-4129 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-3469 (((-645 $) $) 52)) (-3854 (((-112) $ $) 44 (|has| |#1| (-1102)))) (-3357 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-3436 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4422)))) (-2946 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2423 (((-772) $) 6 (|has| $ (-6 -4422)))))
+(((-244 |#1|) (-140) (-1219)) (T -244))
+((-3266 (*1 *2 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1219)))) (-1523 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1219)))) (-4284 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1219)))) (-3178 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1219)))) (-3049 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1219)))) (-2294 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4423)) (-4 *1 (-244 *2)) (-4 *2 (-1219)))) (-1348 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4423)) (-4 *1 (-244 *2)) (-4 *2 (-1219)))) (-2060 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4423)) (-4 *1 (-244 *2)) (-4 *2 (-1219)))))
+(-13 (-1012 |t#1|) (-10 -8 (-15 -3266 (|t#1| $)) (-15 -1523 ($ $)) (-15 -4284 ($ $)) (-15 -3178 ($ $)) (-15 -3049 ($ $)) (IF (|has| $ (-6 -4423)) (PROGN (-15 -2294 ($ $ $)) (-15 -1348 ($ $ $)) (-15 -2060 ($ $ $))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2811 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-1012 |#1|) . T) ((-1102) |has| |#1| (-1102)) ((-1219) . T))
+((-2412 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3812 ((|#1| $) NIL)) (-4003 ((|#1| $) NIL)) (-4284 (($ $) NIL)) (-3843 (((-1274) $ (-567) (-567)) NIL (|has| $ (-6 -4423)))) (-3288 (($ $ (-567)) NIL (|has| $ (-6 -4423)))) (-3531 (((-112) $) NIL (|has| |#1| (-851))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2676 (($ $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-851)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4423)))) (-1311 (($ $) 10 (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1563 (((-112) $ (-772)) NIL)) (-4392 ((|#1| $ |#1|) NIL (|has| $ (-6 -4423)))) (-4017 (($ $ $) NIL (|has| $ (-6 -4423)))) (-4105 ((|#1| $ |#1|) NIL (|has| $ (-6 -4423)))) (-2498 ((|#1| $ |#1|) NIL (|has| $ (-6 -4423)))) (-4285 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4423))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4423))) (($ $ "rest" $) NIL (|has| $ (-6 -4423))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4423))) ((|#1| $ (-1236 (-567)) |#1|) NIL (|has| $ (-6 -4423))) ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4423)))) (-2831 (($ $ (-645 $)) NIL (|has| $ (-6 -4423)))) (-1494 (($ (-1 (-112) |#1|) $) NIL)) (-3356 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-3990 ((|#1| $) NIL)) (-3647 (($) NIL T CONST)) (-1602 (($ $) NIL (|has| $ (-6 -4423)))) (-3592 (($ $) NIL)) (-2430 (($ $) NIL) (($ $ (-772)) NIL)) (-3837 (($ $) NIL (|has| |#1| (-1102)))) (-2453 (($ $) 7 (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-2247 (($ |#1| $) NIL (|has| |#1| (-1102))) (($ (-1 (-112) |#1|) $) NIL)) (-3246 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-2494 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3760 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4423)))) (-3703 ((|#1| $ (-567)) NIL)) (-4085 (((-112) $) NIL)) (-2578 (((-567) |#1| $ (-567)) NIL (|has| |#1| (-1102))) (((-567) |#1| $) NIL (|has| |#1| (-1102))) (((-567) (-1 (-112) |#1|) $) NIL)) (-2799 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-2070 (((-645 $) $) NIL)) (-1520 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2858 (($ (-772) |#1|) NIL)) (-4093 (((-112) $ (-772)) NIL)) (-3895 (((-567) $) NIL (|has| (-567) (-851)))) (-1365 (($ $ $) NIL (|has| |#1| (-851)))) (-1661 (($ $ $) NIL (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2473 (($ $ $) NIL (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1942 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-3237 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3255 (((-567) $) NIL (|has| (-567) (-851)))) (-3002 (($ $ $) NIL (|has| |#1| (-851)))) (-3751 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2291 (($ |#1|) NIL)) (-1986 (((-112) $ (-772)) NIL)) (-3793 (((-645 |#1|) $) NIL)) (-1323 (((-112) $) NIL)) (-2516 (((-1161) $) NIL (|has| |#1| (-1102)))) (-3266 ((|#1| $) NIL) (($ $ (-772)) NIL)) (-2646 (($ $ $ (-567)) NIL) (($ |#1| $ (-567)) NIL)) (-2857 (($ $ $ (-567)) NIL) (($ |#1| $ (-567)) NIL)) (-4364 (((-645 (-567)) $) NIL)) (-3188 (((-112) (-567) $) NIL)) (-3437 (((-1122) $) NIL (|has| |#1| (-1102)))) (-2418 ((|#1| $) NIL) (($ $ (-772)) NIL)) (-3196 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3823 (($ $ |#1|) NIL (|has| $ (-6 -4423)))) (-1971 (((-112) $) NIL)) (-4233 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3875 (((-112) $ $) NIL)) (-4058 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-2190 (((-645 |#1|) $) NIL)) (-3885 (((-112) $) NIL)) (-2701 (($) NIL)) (-1801 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1236 (-567))) NIL) ((|#1| $ (-567)) NIL) ((|#1| $ (-567) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-772) $ "count") 16)) (-3162 (((-567) $ $) NIL)) (-1873 (($ $ (-1236 (-567))) NIL) (($ $ (-567)) NIL)) (-1569 (($ $ (-1236 (-567))) NIL) (($ $ (-567)) NIL)) (-1930 (($ (-645 |#1|)) 22)) (-3771 (((-112) $) NIL)) (-3688 (($ $) NIL)) (-4044 (($ $) NIL (|has| $ (-6 -4423)))) (-3359 (((-772) $) NIL)) (-3640 (($ $) NIL)) (-3447 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-1656 (($ $ $ (-567)) NIL (|has| $ (-6 -4423)))) (-4309 (($ $) NIL)) (-3902 (((-539) $) NIL (|has| |#1| (-615 (-539))))) (-4145 (($ (-645 |#1|)) NIL)) (-2294 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2276 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-645 $)) NIL) (($ $ |#1|) NIL)) (-4129 (($ (-645 |#1|)) 17) (((-645 |#1|) $) 18) (((-863) $) 21 (|has| |#1| (-614 (-863))))) (-3469 (((-645 $) $) NIL)) (-3854 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3357 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3436 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-3004 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2980 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2993 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2968 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2423 (((-772) $) 14 (|has| $ (-6 -4422)))))
+(((-245 |#1|) (-13 (-667 |#1|) (-493 (-645 |#1|)) (-10 -8 (-15 -1930 ($ (-645 |#1|))) (-15 -1801 ($ $ "unique")) (-15 -1801 ($ $ "sort")) (-15 -1801 ((-772) $ "count")))) (-851)) (T -245))
+((-1930 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-851)) (-5 *1 (-245 *3)))) (-1801 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-245 *3)) (-4 *3 (-851)))) (-1801 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-245 *3)) (-4 *3 (-851)))) (-1801 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-772)) (-5 *1 (-245 *4)) (-4 *4 (-851)))))
+(-13 (-667 |#1|) (-493 (-645 |#1|)) (-10 -8 (-15 -1930 ($ (-645 |#1|))) (-15 -1801 ($ $ "unique")) (-15 -1801 ($ $ "sort")) (-15 -1801 ((-772) $ "count"))))
+((-2265 (((-3 (-772) "failed") |#1| |#1| (-772)) 43)))
+(((-246 |#1|) (-10 -7 (-15 -2265 ((-3 (-772) "failed") |#1| |#1| (-772)))) (-13 (-727) (-370) (-10 -7 (-15 ** (|#1| |#1| (-567)))))) (T -246))
+((-2265 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-772)) (-4 *3 (-13 (-727) (-370) (-10 -7 (-15 ** (*3 *3 (-567)))))) (-5 *1 (-246 *3)))))
+(-10 -7 (-15 -2265 ((-3 (-772) "failed") |#1| |#1| (-772))))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-2859 (((-645 (-865 |#1|)) $) NIL)) (-2684 (((-1175 $) $ (-865 |#1|)) NIL) (((-1175 |#2|) $) NIL)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) NIL (|has| |#2| (-559)))) (-4287 (($ $) NIL (|has| |#2| (-559)))) (-2286 (((-112) $) NIL (|has| |#2| (-559)))) (-3849 (((-772) $) NIL) (((-772) $ (-645 (-865 |#1|))) NIL)) (-2376 (((-3 $ "failed") $ $) NIL)) (-2029 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#2| (-911)))) (-3659 (($ $) NIL (|has| |#2| (-455)))) (-3597 (((-421 $) $) NIL (|has| |#2| (-455)))) (-3610 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) NIL (|has| |#2| (-911)))) (-3647 (($) NIL T CONST)) (-3765 (((-3 |#2| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#2| (-1040 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#2| (-1040 (-567)))) (((-3 (-865 |#1|) "failed") $) NIL)) (-2051 ((|#2| $) NIL) (((-410 (-567)) $) NIL (|has| |#2| (-1040 (-410 (-567))))) (((-567) $) NIL (|has| |#2| (-1040 (-567)))) (((-865 |#1|) $) NIL)) (-3554 (($ $ $ (-865 |#1|)) NIL (|has| |#2| (-172)))) (-1644 (($ $ (-645 (-567))) NIL)) (-3023 (($ $) NIL)) (-1423 (((-690 (-567)) (-690 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -4208 (-690 |#2|)) (|:| |vec| (-1269 |#2|))) (-690 $) (-1269 $)) NIL) (((-690 |#2|) (-690 $)) NIL)) (-3588 (((-3 $ "failed") $) NIL)) (-2989 (($ $) NIL (|has| |#2| (-455))) (($ $ (-865 |#1|)) NIL (|has| |#2| (-455)))) (-3010 (((-645 $) $) NIL)) (-3502 (((-112) $) NIL (|has| |#2| (-911)))) (-3214 (($ $ |#2| (-240 (-2423 |#1|) (-772)) $) NIL)) (-3193 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (-12 (|has| (-865 |#1|) (-888 (-381))) (|has| |#2| (-888 (-381))))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (-12 (|has| (-865 |#1|) (-888 (-567))) (|has| |#2| (-888 (-567)))))) (-4346 (((-112) $) NIL)) (-2851 (((-772) $) NIL)) (-2848 (($ (-1175 |#2|) (-865 |#1|)) NIL) (($ (-1175 $) (-865 |#1|)) NIL)) (-2659 (((-645 $) $) NIL)) (-3770 (((-112) $) NIL)) (-2836 (($ |#2| (-240 (-2423 |#1|) (-772))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-2742 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $ (-865 |#1|)) NIL)) (-2955 (((-240 (-2423 |#1|) (-772)) $) NIL) (((-772) $ (-865 |#1|)) NIL) (((-645 (-772)) $ (-645 (-865 |#1|))) NIL)) (-3827 (($ (-1 (-240 (-2423 |#1|) (-772)) (-240 (-2423 |#1|) (-772))) $) NIL)) (-3841 (($ (-1 |#2| |#2|) $) NIL)) (-3221 (((-3 (-865 |#1|) "failed") $) NIL)) (-2985 (($ $) NIL)) (-2996 ((|#2| $) NIL)) (-2751 (($ (-645 $)) NIL (|has| |#2| (-455))) (($ $ $) NIL (|has| |#2| (-455)))) (-2516 (((-1161) $) NIL)) (-3037 (((-3 (-645 $) "failed") $) NIL)) (-3774 (((-3 (-645 $) "failed") $) NIL)) (-3816 (((-3 (-2 (|:| |var| (-865 |#1|)) (|:| -3468 (-772))) "failed") $) NIL)) (-3437 (((-1122) $) NIL)) (-2960 (((-112) $) NIL)) (-2971 ((|#2| $) NIL)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| |#2| (-455)))) (-2785 (($ (-645 $)) NIL (|has| |#2| (-455))) (($ $ $) NIL (|has| |#2| (-455)))) (-3551 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#2| (-911)))) (-2016 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#2| (-911)))) (-2717 (((-421 $) $) NIL (|has| |#2| (-911)))) (-2400 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-559))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-559)))) (-2642 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-865 |#1|) |#2|) NIL) (($ $ (-645 (-865 |#1|)) (-645 |#2|)) NIL) (($ $ (-865 |#1|) $) NIL) (($ $ (-645 (-865 |#1|)) (-645 $)) NIL)) (-2433 (($ $ (-865 |#1|)) NIL (|has| |#2| (-172)))) (-1616 (($ $ (-865 |#1|)) NIL) (($ $ (-645 (-865 |#1|))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-3104 (((-240 (-2423 |#1|) (-772)) $) NIL) (((-772) $ (-865 |#1|)) NIL) (((-645 (-772)) $ (-645 (-865 |#1|))) NIL)) (-3902 (((-894 (-381)) $) NIL (-12 (|has| (-865 |#1|) (-615 (-894 (-381)))) (|has| |#2| (-615 (-894 (-381)))))) (((-894 (-567)) $) NIL (-12 (|has| (-865 |#1|) (-615 (-894 (-567)))) (|has| |#2| (-615 (-894 (-567)))))) (((-539) $) NIL (-12 (|has| (-865 |#1|) (-615 (-539))) (|has| |#2| (-615 (-539)))))) (-1849 ((|#2| $) NIL (|has| |#2| (-455))) (($ $ (-865 |#1|)) NIL (|has| |#2| (-455)))) (-2616 (((-3 (-1269 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-911))))) (-4129 (((-863) $) NIL) (($ (-567)) NIL) (($ |#2|) NIL) (($ (-865 |#1|)) NIL) (($ (-410 (-567))) NIL (-2811 (|has| |#2| (-38 (-410 (-567)))) (|has| |#2| (-1040 (-410 (-567)))))) (($ $) NIL (|has| |#2| (-559)))) (-3601 (((-645 |#2|) $) NIL)) (-2558 ((|#2| $ (-240 (-2423 |#1|) (-772))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-2118 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-145)) (|has| |#2| (-911))) (|has| |#2| (-145))))) (-2746 (((-772)) NIL T CONST)) (-3658 (($ $ $ (-772)) NIL (|has| |#2| (-172)))) (-3357 (((-112) $ $) NIL)) (-3731 (((-112) $ $) NIL (|has| |#2| (-559)))) (-1733 (($) NIL T CONST)) (-1744 (($) NIL T CONST)) (-2647 (($ $ (-865 |#1|)) NIL) (($ $ (-645 (-865 |#1|))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-2946 (((-112) $ $) NIL)) (-3069 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL (|has| |#2| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#2| (-38 (-410 (-567))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-247 |#1| |#2|) (-13 (-951 |#2| (-240 (-2423 |#1|) (-772)) (-865 |#1|)) (-10 -8 (-15 -1644 ($ $ (-645 (-567)))))) (-645 (-1179)) (-1051)) (T -247))
+((-1644 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-247 *3 *4)) (-14 *3 (-645 (-1179))) (-4 *4 (-1051)))))
+(-13 (-951 |#2| (-240 (-2423 |#1|) (-772)) (-865 |#1|)) (-10 -8 (-15 -1644 ($ $ (-645 (-567))))))
+((-2412 (((-112) $ $) NIL)) (-1944 (((-1274) $) 17)) (-2088 (((-183 (-249)) $) 11)) (-2157 (($ (-183 (-249))) 12)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-3239 (((-249) $) 7)) (-4129 (((-863) $) 9)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) 15)))
+(((-248) (-13 (-1102) (-10 -8 (-15 -3239 ((-249) $)) (-15 -2088 ((-183 (-249)) $)) (-15 -2157 ($ (-183 (-249)))) (-15 -1944 ((-1274) $))))) (T -248))
+((-3239 (*1 *2 *1) (-12 (-5 *2 (-249)) (-5 *1 (-248)))) (-2088 (*1 *2 *1) (-12 (-5 *2 (-183 (-249))) (-5 *1 (-248)))) (-2157 (*1 *1 *2) (-12 (-5 *2 (-183 (-249))) (-5 *1 (-248)))) (-1944 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-248)))))
+(-13 (-1102) (-10 -8 (-15 -3239 ((-249) $)) (-15 -2088 ((-183 (-249)) $)) (-15 -2157 ($ (-183 (-249)))) (-15 -1944 ((-1274) $))))
+((-2412 (((-112) $ $) NIL)) (-3882 (((-645 (-866)) $) NIL)) (-2007 (((-509) $) NIL)) (-2516 (((-1161) $) NIL)) (-4164 (((-186) $) NIL)) (-3545 (((-112) $ (-509)) NIL)) (-3437 (((-1122) $) NIL)) (-2073 (((-334) $) 7)) (-2444 (((-645 (-112)) $) NIL)) (-4129 (((-863) $) NIL) (((-187) $) 8)) (-3357 (((-112) $ $) NIL)) (-2336 (((-55) $) NIL)) (-2946 (((-112) $ $) NIL)))
+(((-249) (-13 (-185) (-614 (-187)) (-10 -8 (-15 -2073 ((-334) $))))) (T -249))
+((-2073 (*1 *2 *1) (-12 (-5 *2 (-334)) (-5 *1 (-249)))))
+(-13 (-185) (-614 (-187)) (-10 -8 (-15 -2073 ((-334) $))))
+((-2412 (((-112) $ $) NIL)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-1801 (((-1184) $ (-772)) 13)) (-4129 (((-863) $) 20)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) 16)) (-2423 (((-772) $) 9)))
+(((-250) (-13 (-1102) (-10 -8 (-15 -2423 ((-772) $)) (-15 -1801 ((-1184) $ (-772)))))) (T -250))
+((-2423 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-250)))) (-1801 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1184)) (-5 *1 (-250)))))
+(-13 (-1102) (-10 -8 (-15 -2423 ((-772) $)) (-15 -1801 ((-1184) $ (-772)))))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-3624 (($ (-923)) NIL (|has| |#4| (-1051)))) (-3843 (((-1274) $ (-567) (-567)) NIL (|has| $ (-6 -4423)))) (-1325 (($ $ $) NIL (|has| |#4| (-794)))) (-2376 (((-3 $ "failed") $ $) NIL)) (-1563 (((-112) $ (-772)) NIL)) (-2384 (((-772)) NIL (|has| |#4| (-370)))) (-2677 (((-567) $) NIL (|has| |#4| (-849)))) (-4285 ((|#4| $ (-567) |#4|) NIL (|has| $ (-6 -4423)))) (-3647 (($) NIL T CONST)) (-3765 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1102))) (((-3 (-567) "failed") $) NIL (-12 (|has| |#4| (-1040 (-567))) (|has| |#4| (-1102)))) (((-3 (-410 (-567)) "failed") $) NIL (-12 (|has| |#4| (-1040 (-410 (-567)))) (|has| |#4| (-1102))))) (-2051 ((|#4| $) NIL (|has| |#4| (-1102))) (((-567) $) NIL (-12 (|has| |#4| (-1040 (-567))) (|has| |#4| (-1102)))) (((-410 (-567)) $) NIL (-12 (|has| |#4| (-1040 (-410 (-567)))) (|has| |#4| (-1102))))) (-1423 (((-2 (|:| -4208 (-690 |#4|)) (|:| |vec| (-1269 |#4|))) (-690 $) (-1269 $)) NIL (|has| |#4| (-1051))) (((-690 |#4|) (-690 $)) NIL (|has| |#4| (-1051))) (((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (-12 (|has| |#4| (-640 (-567))) (|has| |#4| (-1051)))) (((-690 (-567)) (-690 $)) NIL (-12 (|has| |#4| (-640 (-567))) (|has| |#4| (-1051))))) (-3588 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| |#4| (-233)) (|has| |#4| (-1051))) (-12 (|has| |#4| (-640 (-567))) (|has| |#4| (-1051))) (|has| |#4| (-727)) (-12 (|has| |#4| (-902 (-1179))) (|has| |#4| (-1051)))))) (-1359 (($) NIL (|has| |#4| (-370)))) (-3760 ((|#4| $ (-567) |#4|) NIL (|has| $ (-6 -4423)))) (-3703 ((|#4| $ (-567)) NIL)) (-3137 (((-112) $) NIL (|has| |#4| (-849)))) (-2799 (((-645 |#4|) $) NIL (|has| $ (-6 -4422)))) (-4346 (((-112) $) NIL (-2811 (-12 (|has| |#4| (-233)) (|has| |#4| (-1051))) (-12 (|has| |#4| (-640 (-567))) (|has| |#4| (-1051))) (|has| |#4| (-727)) (-12 (|has| |#4| (-902 (-1179))) (|has| |#4| (-1051)))))) (-3465 (((-112) $) NIL (|has| |#4| (-849)))) (-4093 (((-112) $ (-772)) NIL)) (-3895 (((-567) $) NIL (|has| (-567) (-851)))) (-1365 (($ $ $) NIL (-2811 (|has| |#4| (-794)) (|has| |#4| (-849))))) (-1942 (((-645 |#4|) $) NIL (|has| $ (-6 -4422)))) (-3237 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#4| (-1102))))) (-3255 (((-567) $) NIL (|has| (-567) (-851)))) (-3002 (($ $ $) NIL (-2811 (|has| |#4| (-794)) (|has| |#4| (-849))))) (-3751 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#4| |#4|) $) NIL)) (-3474 (((-923) $) NIL (|has| |#4| (-370)))) (-1986 (((-112) $ (-772)) NIL)) (-2516 (((-1161) $) NIL)) (-4364 (((-645 (-567)) $) NIL)) (-3188 (((-112) (-567) $) NIL)) (-3779 (($ (-923)) NIL (|has| |#4| (-370)))) (-3437 (((-1122) $) NIL)) (-2418 ((|#4| $) NIL (|has| (-567) (-851)))) (-3823 (($ $ |#4|) NIL (|has| $ (-6 -4423)))) (-4233 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 |#4|))) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-295 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-645 |#4|) (-645 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))))) (-3875 (((-112) $ $) NIL)) (-4058 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#4| (-1102))))) (-2190 (((-645 |#4|) $) NIL)) (-3885 (((-112) $) NIL)) (-2701 (($) NIL)) (-1801 ((|#4| $ (-567) |#4|) NIL) ((|#4| $ (-567)) 16)) (-3917 ((|#4| $ $) NIL (|has| |#4| (-1051)))) (-2760 (($ (-1269 |#4|)) NIL)) (-1412 (((-134)) NIL (|has| |#4| (-365)))) (-1616 (($ $ (-1 |#4| |#4|) (-772)) NIL (|has| |#4| (-1051))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1051))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (-12 (|has| |#4| (-902 (-1179))) (|has| |#4| (-1051)))) (($ $ (-1179) (-772)) NIL (-12 (|has| |#4| (-902 (-1179))) (|has| |#4| (-1051)))) (($ $ (-645 (-1179))) NIL (-12 (|has| |#4| (-902 (-1179))) (|has| |#4| (-1051)))) (($ $ (-1179)) NIL (-12 (|has| |#4| (-902 (-1179))) (|has| |#4| (-1051)))) (($ $ (-772)) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1051)))) (($ $) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1051))))) (-3447 (((-772) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4422))) (((-772) |#4| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#4| (-1102))))) (-4309 (($ $) NIL)) (-4129 (((-1269 |#4|) $) NIL) (((-863) $) NIL) (($ |#4|) NIL (|has| |#4| (-1102))) (($ (-567)) NIL (-2811 (-12 (|has| |#4| (-1040 (-567))) (|has| |#4| (-1102))) (|has| |#4| (-1051)))) (($ (-410 (-567))) NIL (-12 (|has| |#4| (-1040 (-410 (-567)))) (|has| |#4| (-1102))))) (-2746 (((-772)) NIL (|has| |#4| (-1051)) CONST)) (-3357 (((-112) $ $) NIL)) (-3436 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4422)))) (-1547 (($ $) NIL (|has| |#4| (-849)))) (-1733 (($) NIL T CONST)) (-1744 (($) NIL (-2811 (-12 (|has| |#4| (-233)) (|has| |#4| (-1051))) (-12 (|has| |#4| (-640 (-567))) (|has| |#4| (-1051))) (|has| |#4| (-727)) (-12 (|has| |#4| (-902 (-1179))) (|has| |#4| (-1051)))) CONST)) (-2647 (($ $ (-1 |#4| |#4|) (-772)) NIL (|has| |#4| (-1051))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1051))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (-12 (|has| |#4| (-902 (-1179))) (|has| |#4| (-1051)))) (($ $ (-1179) (-772)) NIL (-12 (|has| |#4| (-902 (-1179))) (|has| |#4| (-1051)))) (($ $ (-645 (-1179))) NIL (-12 (|has| |#4| (-902 (-1179))) (|has| |#4| (-1051)))) (($ $ (-1179)) NIL (-12 (|has| |#4| (-902 (-1179))) (|has| |#4| (-1051)))) (($ $ (-772)) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1051)))) (($ $) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1051))))) (-3004 (((-112) $ $) NIL (-2811 (|has| |#4| (-794)) (|has| |#4| (-849))))) (-2980 (((-112) $ $) NIL (-2811 (|has| |#4| (-794)) (|has| |#4| (-849))))) (-2946 (((-112) $ $) NIL)) (-2993 (((-112) $ $) NIL (-2811 (|has| |#4| (-794)) (|has| |#4| (-849))))) (-2968 (((-112) $ $) NIL (-2811 (|has| |#4| (-794)) (|has| |#4| (-849))))) (-3069 (($ $ |#4|) NIL (|has| |#4| (-365)))) (-3053 (($ $ $) NIL) (($ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-772)) NIL (-2811 (-12 (|has| |#4| (-233)) (|has| |#4| (-1051))) (-12 (|has| |#4| (-640 (-567))) (|has| |#4| (-1051))) (|has| |#4| (-727)) (-12 (|has| |#4| (-902 (-1179))) (|has| |#4| (-1051))))) (($ $ (-923)) NIL (-2811 (-12 (|has| |#4| (-233)) (|has| |#4| (-1051))) (-12 (|has| |#4| (-640 (-567))) (|has| |#4| (-1051))) (|has| |#4| (-727)) (-12 (|has| |#4| (-902 (-1179))) (|has| |#4| (-1051)))))) (* (($ |#2| $) 18) (($ (-567) $) NIL) (($ (-772) $) NIL) (($ (-923) $) NIL) (($ |#3| $) 22) (($ $ |#4|) NIL (|has| |#4| (-727))) (($ |#4| $) NIL (|has| |#4| (-727))) (($ $ $) NIL (-2811 (-12 (|has| |#4| (-233)) (|has| |#4| (-1051))) (-12 (|has| |#4| (-640 (-567))) (|has| |#4| (-1051))) (|has| |#4| (-727)) (-12 (|has| |#4| (-902 (-1179))) (|has| |#4| (-1051)))))) (-2423 (((-772) $) NIL (|has| $ (-6 -4422)))))
(((-251 |#1| |#2| |#3| |#4|) (-13 (-238 |#1| |#4|) (-649 |#2|) (-649 |#3|)) (-923) (-1051) (-1125 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-649 |#2|)) (T -251))
NIL
(-13 (-238 |#1| |#4|) (-649 |#2|) (-649 |#3|))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-4387 (($ (-923)) NIL (|has| |#3| (-1051)))) (-1783 (((-1273) $ (-567) (-567)) NIL (|has| $ (-6 -4419)))) (-4016 (($ $ $) NIL (|has| |#3| (-794)))) (-3472 (((-3 $ "failed") $ $) NIL)) (-3445 (((-112) $ (-772)) NIL)) (-2375 (((-772)) NIL (|has| |#3| (-370)))) (-1750 (((-567) $) NIL (|has| |#3| (-849)))) (-4284 ((|#3| $ (-567) |#3|) NIL (|has| $ (-6 -4419)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1102))) (((-3 (-567) "failed") $) NIL (-12 (|has| |#3| (-1040 (-567))) (|has| |#3| (-1102)))) (((-3 (-410 (-567)) "failed") $) NIL (-12 (|has| |#3| (-1040 (-410 (-567)))) (|has| |#3| (-1102))))) (-2038 ((|#3| $) NIL (|has| |#3| (-1102))) (((-567) $) NIL (-12 (|has| |#3| (-1040 (-567))) (|has| |#3| (-1102)))) (((-410 (-567)) $) NIL (-12 (|has| |#3| (-1040 (-410 (-567)))) (|has| |#3| (-1102))))) (-2630 (((-2 (|:| -2316 (-690 |#3|)) (|:| |vec| (-1268 |#3|))) (-690 $) (-1268 $)) NIL (|has| |#3| (-1051))) (((-690 |#3|) (-690 $)) NIL (|has| |#3| (-1051))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (-12 (|has| |#3| (-640 (-567))) (|has| |#3| (-1051)))) (((-690 (-567)) (-690 $)) NIL (-12 (|has| |#3| (-640 (-567))) (|has| |#3| (-1051))))) (-2109 (((-3 $ "failed") $) NIL (-2800 (-12 (|has| |#3| (-233)) (|has| |#3| (-1051))) (-12 (|has| |#3| (-640 (-567))) (|has| |#3| (-1051))) (|has| |#3| (-727)) (-12 (|has| |#3| (-902 (-1178))) (|has| |#3| (-1051)))))) (-1348 (($) NIL (|has| |#3| (-370)))) (-3741 ((|#3| $ (-567) |#3|) NIL (|has| $ (-6 -4419)))) (-3680 ((|#3| $ (-567)) NIL)) (-4336 (((-112) $) NIL (|has| |#3| (-849)))) (-2777 (((-645 |#3|) $) NIL (|has| $ (-6 -4418)))) (-1433 (((-112) $) NIL (-2800 (-12 (|has| |#3| (-233)) (|has| |#3| (-1051))) (-12 (|has| |#3| (-640 (-567))) (|has| |#3| (-1051))) (|has| |#3| (-727)) (-12 (|has| |#3| (-902 (-1178))) (|has| |#3| (-1051)))))) (-3494 (((-112) $) NIL (|has| |#3| (-849)))) (-2077 (((-112) $ (-772)) NIL)) (-4069 (((-567) $) NIL (|has| (-567) (-851)))) (-1354 (($ $ $) NIL (-2800 (|has| |#3| (-794)) (|has| |#3| (-849))))) (-2279 (((-645 |#3|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#3| (-1102))))) (-2266 (((-567) $) NIL (|has| (-567) (-851)))) (-2981 (($ $ $) NIL (-2800 (|has| |#3| (-794)) (|has| |#3| (-849))))) (-3731 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#3| |#3|) $) NIL)) (-4249 (((-923) $) NIL (|has| |#3| (-370)))) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL)) (-1789 (((-645 (-567)) $) NIL)) (-2996 (((-112) (-567) $) NIL)) (-3768 (($ (-923)) NIL (|has| |#3| (-370)))) (-3430 (((-1122) $) NIL)) (-2409 ((|#3| $) NIL (|has| (-567) (-851)))) (-3986 (($ $ |#3|) NIL (|has| $ (-6 -4419)))) (-3025 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#3|))) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102)))) (($ $ (-295 |#3|)) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102)))) (($ $ (-645 |#3|) (-645 |#3|)) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102))))) (-3092 (((-112) $ $) NIL)) (-1794 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#3| (-1102))))) (-2339 (((-645 |#3|) $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) NIL)) (-1787 ((|#3| $ (-567) |#3|) NIL) ((|#3| $ (-567)) 15)) (-3366 ((|#3| $ $) NIL (|has| |#3| (-1051)))) (-2749 (($ (-1268 |#3|)) NIL)) (-1879 (((-134)) NIL (|has| |#3| (-365)))) (-1593 (($ $ (-1 |#3| |#3|) (-772)) NIL (|has| |#3| (-1051))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1051))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (-12 (|has| |#3| (-902 (-1178))) (|has| |#3| (-1051)))) (($ $ (-1178) (-772)) NIL (-12 (|has| |#3| (-902 (-1178))) (|has| |#3| (-1051)))) (($ $ (-645 (-1178))) NIL (-12 (|has| |#3| (-902 (-1178))) (|has| |#3| (-1051)))) (($ $ (-1178)) NIL (-12 (|has| |#3| (-902 (-1178))) (|has| |#3| (-1051)))) (($ $ (-772)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1051)))) (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1051))))) (-3439 (((-772) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4418))) (((-772) |#3| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#3| (-1102))))) (-4305 (($ $) NIL)) (-4132 (((-1268 |#3|) $) NIL) (((-863) $) NIL) (($ |#3|) NIL (|has| |#3| (-1102))) (($ (-567)) NIL (-2800 (-12 (|has| |#3| (-1040 (-567))) (|has| |#3| (-1102))) (|has| |#3| (-1051)))) (($ (-410 (-567))) NIL (-12 (|has| |#3| (-1040 (-410 (-567)))) (|has| |#3| (-1102))))) (-4221 (((-772)) NIL (|has| |#3| (-1051)) CONST)) (-1745 (((-112) $ $) NIL)) (-1853 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4418)))) (-2219 (($ $) NIL (|has| |#3| (-849)))) (-1716 (($) NIL T CONST)) (-1728 (($) NIL (-2800 (-12 (|has| |#3| (-233)) (|has| |#3| (-1051))) (-12 (|has| |#3| (-640 (-567))) (|has| |#3| (-1051))) (|has| |#3| (-727)) (-12 (|has| |#3| (-902 (-1178))) (|has| |#3| (-1051)))) CONST)) (-2637 (($ $ (-1 |#3| |#3|) (-772)) NIL (|has| |#3| (-1051))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1051))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (-12 (|has| |#3| (-902 (-1178))) (|has| |#3| (-1051)))) (($ $ (-1178) (-772)) NIL (-12 (|has| |#3| (-902 (-1178))) (|has| |#3| (-1051)))) (($ $ (-645 (-1178))) NIL (-12 (|has| |#3| (-902 (-1178))) (|has| |#3| (-1051)))) (($ $ (-1178)) NIL (-12 (|has| |#3| (-902 (-1178))) (|has| |#3| (-1051)))) (($ $ (-772)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1051)))) (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1051))))) (-2997 (((-112) $ $) NIL (-2800 (|has| |#3| (-794)) (|has| |#3| (-849))))) (-2971 (((-112) $ $) NIL (-2800 (|has| |#3| (-794)) (|has| |#3| (-849))))) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL (-2800 (|has| |#3| (-794)) (|has| |#3| (-849))))) (-2958 (((-112) $ $) NIL (-2800 (|has| |#3| (-794)) (|has| |#3| (-849))))) (-3060 (($ $ |#3|) NIL (|has| |#3| (-365)))) (-3045 (($ $ $) NIL) (($ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-772)) NIL (-2800 (-12 (|has| |#3| (-233)) (|has| |#3| (-1051))) (-12 (|has| |#3| (-640 (-567))) (|has| |#3| (-1051))) (|has| |#3| (-727)) (-12 (|has| |#3| (-902 (-1178))) (|has| |#3| (-1051))))) (($ $ (-923)) NIL (-2800 (-12 (|has| |#3| (-233)) (|has| |#3| (-1051))) (-12 (|has| |#3| (-640 (-567))) (|has| |#3| (-1051))) (|has| |#3| (-727)) (-12 (|has| |#3| (-902 (-1178))) (|has| |#3| (-1051)))))) (* (($ |#2| $) 17) (($ (-567) $) NIL) (($ (-772) $) NIL) (($ (-923) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-727))) (($ |#3| $) NIL (|has| |#3| (-727))) (($ $ $) NIL (-2800 (-12 (|has| |#3| (-233)) (|has| |#3| (-1051))) (-12 (|has| |#3| (-640 (-567))) (|has| |#3| (-1051))) (|has| |#3| (-727)) (-12 (|has| |#3| (-902 (-1178))) (|has| |#3| (-1051)))))) (-2414 (((-772) $) NIL (|has| $ (-6 -4418)))))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-3624 (($ (-923)) NIL (|has| |#3| (-1051)))) (-3843 (((-1274) $ (-567) (-567)) NIL (|has| $ (-6 -4423)))) (-1325 (($ $ $) NIL (|has| |#3| (-794)))) (-2376 (((-3 $ "failed") $ $) NIL)) (-1563 (((-112) $ (-772)) NIL)) (-2384 (((-772)) NIL (|has| |#3| (-370)))) (-2677 (((-567) $) NIL (|has| |#3| (-849)))) (-4285 ((|#3| $ (-567) |#3|) NIL (|has| $ (-6 -4423)))) (-3647 (($) NIL T CONST)) (-3765 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1102))) (((-3 (-567) "failed") $) NIL (-12 (|has| |#3| (-1040 (-567))) (|has| |#3| (-1102)))) (((-3 (-410 (-567)) "failed") $) NIL (-12 (|has| |#3| (-1040 (-410 (-567)))) (|has| |#3| (-1102))))) (-2051 ((|#3| $) NIL (|has| |#3| (-1102))) (((-567) $) NIL (-12 (|has| |#3| (-1040 (-567))) (|has| |#3| (-1102)))) (((-410 (-567)) $) NIL (-12 (|has| |#3| (-1040 (-410 (-567)))) (|has| |#3| (-1102))))) (-1423 (((-2 (|:| -4208 (-690 |#3|)) (|:| |vec| (-1269 |#3|))) (-690 $) (-1269 $)) NIL (|has| |#3| (-1051))) (((-690 |#3|) (-690 $)) NIL (|has| |#3| (-1051))) (((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (-12 (|has| |#3| (-640 (-567))) (|has| |#3| (-1051)))) (((-690 (-567)) (-690 $)) NIL (-12 (|has| |#3| (-640 (-567))) (|has| |#3| (-1051))))) (-3588 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| |#3| (-233)) (|has| |#3| (-1051))) (-12 (|has| |#3| (-640 (-567))) (|has| |#3| (-1051))) (|has| |#3| (-727)) (-12 (|has| |#3| (-902 (-1179))) (|has| |#3| (-1051)))))) (-1359 (($) NIL (|has| |#3| (-370)))) (-3760 ((|#3| $ (-567) |#3|) NIL (|has| $ (-6 -4423)))) (-3703 ((|#3| $ (-567)) NIL)) (-3137 (((-112) $) NIL (|has| |#3| (-849)))) (-2799 (((-645 |#3|) $) NIL (|has| $ (-6 -4422)))) (-4346 (((-112) $) NIL (-2811 (-12 (|has| |#3| (-233)) (|has| |#3| (-1051))) (-12 (|has| |#3| (-640 (-567))) (|has| |#3| (-1051))) (|has| |#3| (-727)) (-12 (|has| |#3| (-902 (-1179))) (|has| |#3| (-1051)))))) (-3465 (((-112) $) NIL (|has| |#3| (-849)))) (-4093 (((-112) $ (-772)) NIL)) (-3895 (((-567) $) NIL (|has| (-567) (-851)))) (-1365 (($ $ $) NIL (-2811 (|has| |#3| (-794)) (|has| |#3| (-849))))) (-1942 (((-645 |#3|) $) NIL (|has| $ (-6 -4422)))) (-3237 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#3| (-1102))))) (-3255 (((-567) $) NIL (|has| (-567) (-851)))) (-3002 (($ $ $) NIL (-2811 (|has| |#3| (-794)) (|has| |#3| (-849))))) (-3751 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#3| |#3|) $) NIL)) (-3474 (((-923) $) NIL (|has| |#3| (-370)))) (-1986 (((-112) $ (-772)) NIL)) (-2516 (((-1161) $) NIL)) (-4364 (((-645 (-567)) $) NIL)) (-3188 (((-112) (-567) $) NIL)) (-3779 (($ (-923)) NIL (|has| |#3| (-370)))) (-3437 (((-1122) $) NIL)) (-2418 ((|#3| $) NIL (|has| (-567) (-851)))) (-3823 (($ $ |#3|) NIL (|has| $ (-6 -4423)))) (-4233 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 |#3|))) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102)))) (($ $ (-295 |#3|)) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102)))) (($ $ (-645 |#3|) (-645 |#3|)) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102))))) (-3875 (((-112) $ $) NIL)) (-4058 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#3| (-1102))))) (-2190 (((-645 |#3|) $) NIL)) (-3885 (((-112) $) NIL)) (-2701 (($) NIL)) (-1801 ((|#3| $ (-567) |#3|) NIL) ((|#3| $ (-567)) 15)) (-3917 ((|#3| $ $) NIL (|has| |#3| (-1051)))) (-2760 (($ (-1269 |#3|)) NIL)) (-1412 (((-134)) NIL (|has| |#3| (-365)))) (-1616 (($ $ (-1 |#3| |#3|) (-772)) NIL (|has| |#3| (-1051))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1051))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (-12 (|has| |#3| (-902 (-1179))) (|has| |#3| (-1051)))) (($ $ (-1179) (-772)) NIL (-12 (|has| |#3| (-902 (-1179))) (|has| |#3| (-1051)))) (($ $ (-645 (-1179))) NIL (-12 (|has| |#3| (-902 (-1179))) (|has| |#3| (-1051)))) (($ $ (-1179)) NIL (-12 (|has| |#3| (-902 (-1179))) (|has| |#3| (-1051)))) (($ $ (-772)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1051)))) (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1051))))) (-3447 (((-772) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4422))) (((-772) |#3| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#3| (-1102))))) (-4309 (($ $) NIL)) (-4129 (((-1269 |#3|) $) NIL) (((-863) $) NIL) (($ |#3|) NIL (|has| |#3| (-1102))) (($ (-567)) NIL (-2811 (-12 (|has| |#3| (-1040 (-567))) (|has| |#3| (-1102))) (|has| |#3| (-1051)))) (($ (-410 (-567))) NIL (-12 (|has| |#3| (-1040 (-410 (-567)))) (|has| |#3| (-1102))))) (-2746 (((-772)) NIL (|has| |#3| (-1051)) CONST)) (-3357 (((-112) $ $) NIL)) (-3436 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4422)))) (-1547 (($ $) NIL (|has| |#3| (-849)))) (-1733 (($) NIL T CONST)) (-1744 (($) NIL (-2811 (-12 (|has| |#3| (-233)) (|has| |#3| (-1051))) (-12 (|has| |#3| (-640 (-567))) (|has| |#3| (-1051))) (|has| |#3| (-727)) (-12 (|has| |#3| (-902 (-1179))) (|has| |#3| (-1051)))) CONST)) (-2647 (($ $ (-1 |#3| |#3|) (-772)) NIL (|has| |#3| (-1051))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1051))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (-12 (|has| |#3| (-902 (-1179))) (|has| |#3| (-1051)))) (($ $ (-1179) (-772)) NIL (-12 (|has| |#3| (-902 (-1179))) (|has| |#3| (-1051)))) (($ $ (-645 (-1179))) NIL (-12 (|has| |#3| (-902 (-1179))) (|has| |#3| (-1051)))) (($ $ (-1179)) NIL (-12 (|has| |#3| (-902 (-1179))) (|has| |#3| (-1051)))) (($ $ (-772)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1051)))) (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1051))))) (-3004 (((-112) $ $) NIL (-2811 (|has| |#3| (-794)) (|has| |#3| (-849))))) (-2980 (((-112) $ $) NIL (-2811 (|has| |#3| (-794)) (|has| |#3| (-849))))) (-2946 (((-112) $ $) NIL)) (-2993 (((-112) $ $) NIL (-2811 (|has| |#3| (-794)) (|has| |#3| (-849))))) (-2968 (((-112) $ $) NIL (-2811 (|has| |#3| (-794)) (|has| |#3| (-849))))) (-3069 (($ $ |#3|) NIL (|has| |#3| (-365)))) (-3053 (($ $ $) NIL) (($ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-772)) NIL (-2811 (-12 (|has| |#3| (-233)) (|has| |#3| (-1051))) (-12 (|has| |#3| (-640 (-567))) (|has| |#3| (-1051))) (|has| |#3| (-727)) (-12 (|has| |#3| (-902 (-1179))) (|has| |#3| (-1051))))) (($ $ (-923)) NIL (-2811 (-12 (|has| |#3| (-233)) (|has| |#3| (-1051))) (-12 (|has| |#3| (-640 (-567))) (|has| |#3| (-1051))) (|has| |#3| (-727)) (-12 (|has| |#3| (-902 (-1179))) (|has| |#3| (-1051)))))) (* (($ |#2| $) 17) (($ (-567) $) NIL) (($ (-772) $) NIL) (($ (-923) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-727))) (($ |#3| $) NIL (|has| |#3| (-727))) (($ $ $) NIL (-2811 (-12 (|has| |#3| (-233)) (|has| |#3| (-1051))) (-12 (|has| |#3| (-640 (-567))) (|has| |#3| (-1051))) (|has| |#3| (-727)) (-12 (|has| |#3| (-902 (-1179))) (|has| |#3| (-1051)))))) (-2423 (((-772) $) NIL (|has| $ (-6 -4422)))))
(((-252 |#1| |#2| |#3|) (-13 (-238 |#1| |#3|) (-649 |#2|)) (-772) (-1051) (-649 |#2|)) (T -252))
NIL
(-13 (-238 |#1| |#3|) (-649 |#2|))
-((-3335 (((-645 (-772)) $) 56) (((-645 (-772)) $ |#3|) 59)) (-3729 (((-772) $) 58) (((-772) $ |#3|) 61)) (-3634 (($ $) 76)) (-3753 (((-3 |#2| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 (-567) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 83)) (-4384 (((-772) $ |#3|) 43) (((-772) $) 38)) (-1369 (((-1 $ (-772)) |#3|) 15) (((-1 $ (-772)) $) 88)) (-3151 ((|#4| $) 69)) (-1634 (((-112) $) 67)) (-2344 (($ $) 75)) (-2631 (($ $ (-645 (-295 $))) 114) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-645 |#4|) (-645 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-645 |#4|) (-645 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-645 |#3|) (-645 $)) 106) (($ $ |#3| |#2|) NIL) (($ $ (-645 |#3|) (-645 |#2|)) 100)) (-1593 (($ $ |#4|) NIL) (($ $ (-645 |#4|)) NIL) (($ $ |#4| (-772)) NIL) (($ $ (-645 |#4|) (-645 (-772))) NIL) (($ $) NIL) (($ $ (-772)) NIL) (($ $ (-1178)) NIL) (($ $ (-645 (-1178))) NIL) (($ $ (-1178) (-772)) NIL) (($ $ (-645 (-1178)) (-645 (-772))) NIL) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-2395 (((-645 |#3|) $) 86)) (-3077 ((|#5| $) NIL) (((-772) $ |#4|) NIL) (((-645 (-772)) $ (-645 |#4|)) NIL) (((-772) $ |#3|) 49)) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 78) (($ (-410 (-567))) NIL) (($ $) NIL)))
-(((-253 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4132 (|#1| |#1|)) (-15 -4132 (|#1| (-410 (-567)))) (-15 -2631 (|#1| |#1| (-645 |#3|) (-645 |#2|))) (-15 -2631 (|#1| |#1| |#3| |#2|)) (-15 -2631 (|#1| |#1| (-645 |#3|) (-645 |#1|))) (-15 -2631 (|#1| |#1| |#3| |#1|)) (-15 -1369 ((-1 |#1| (-772)) |#1|)) (-15 -3634 (|#1| |#1|)) (-15 -2344 (|#1| |#1|)) (-15 -3151 (|#4| |#1|)) (-15 -1634 ((-112) |#1|)) (-15 -3729 ((-772) |#1| |#3|)) (-15 -3335 ((-645 (-772)) |#1| |#3|)) (-15 -3729 ((-772) |#1|)) (-15 -3335 ((-645 (-772)) |#1|)) (-15 -3077 ((-772) |#1| |#3|)) (-15 -4384 ((-772) |#1|)) (-15 -4384 ((-772) |#1| |#3|)) (-15 -2395 ((-645 |#3|) |#1|)) (-15 -1369 ((-1 |#1| (-772)) |#3|)) (-15 -4132 (|#1| |#3|)) (-15 -3753 ((-3 |#3| "failed") |#1|)) (-15 -1593 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1593 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -1593 (|#1| |#1| (-645 (-1178)) (-645 (-772)))) (-15 -1593 (|#1| |#1| (-1178) (-772))) (-15 -1593 (|#1| |#1| (-645 (-1178)))) (-15 -1593 (|#1| |#1| (-1178))) (-15 -1593 (|#1| |#1| (-772))) (-15 -1593 (|#1| |#1|)) (-15 -3077 ((-645 (-772)) |#1| (-645 |#4|))) (-15 -3077 ((-772) |#1| |#4|)) (-15 -4132 (|#1| |#4|)) (-15 -3753 ((-3 |#4| "failed") |#1|)) (-15 -2631 (|#1| |#1| (-645 |#4|) (-645 |#1|))) (-15 -2631 (|#1| |#1| |#4| |#1|)) (-15 -2631 (|#1| |#1| (-645 |#4|) (-645 |#2|))) (-15 -2631 (|#1| |#1| |#4| |#2|)) (-15 -2631 (|#1| |#1| (-645 |#1|) (-645 |#1|))) (-15 -2631 (|#1| |#1| |#1| |#1|)) (-15 -2631 (|#1| |#1| (-295 |#1|))) (-15 -2631 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -3077 (|#5| |#1|)) (-15 -3753 ((-3 (-567) "failed") |#1|)) (-15 -3753 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -3753 ((-3 |#2| "failed") |#1|)) (-15 -4132 (|#1| |#2|)) (-15 -1593 (|#1| |#1| (-645 |#4|) (-645 (-772)))) (-15 -1593 (|#1| |#1| |#4| (-772))) (-15 -1593 (|#1| |#1| (-645 |#4|))) (-15 -1593 (|#1| |#1| |#4|)) (-15 -4132 (|#1| (-567))) (-15 -4132 ((-863) |#1|))) (-254 |#2| |#3| |#4| |#5|) (-1051) (-851) (-267 |#3|) (-794)) (T -253))
+((-3754 (((-645 (-772)) $) 56) (((-645 (-772)) $ |#3|) 59)) (-1772 (((-772) $) 58) (((-772) $ |#3|) 61)) (-1540 (($ $) 76)) (-3765 (((-3 |#2| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 (-567) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 83)) (-3362 (((-772) $ |#3|) 43) (((-772) $) 38)) (-3029 (((-1 $ (-772)) |#3|) 15) (((-1 $ (-772)) $) 88)) (-3726 ((|#4| $) 69)) (-1901 (((-112) $) 67)) (-2353 (($ $) 75)) (-2642 (($ $ (-645 (-295 $))) 114) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-645 |#4|) (-645 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-645 |#4|) (-645 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-645 |#3|) (-645 $)) 106) (($ $ |#3| |#2|) NIL) (($ $ (-645 |#3|) (-645 |#2|)) 100)) (-1616 (($ $ |#4|) NIL) (($ $ (-645 |#4|)) NIL) (($ $ |#4| (-772)) NIL) (($ $ (-645 |#4|) (-645 (-772))) NIL) (($ $) NIL) (($ $ (-772)) NIL) (($ $ (-1179)) NIL) (($ $ (-645 (-1179))) NIL) (($ $ (-1179) (-772)) NIL) (($ $ (-645 (-1179)) (-645 (-772))) NIL) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-1924 (((-645 |#3|) $) 86)) (-3104 ((|#5| $) NIL) (((-772) $ |#4|) NIL) (((-645 (-772)) $ (-645 |#4|)) NIL) (((-772) $ |#3|) 49)) (-4129 (((-863) $) NIL) (($ (-567)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 78) (($ (-410 (-567))) NIL) (($ $) NIL)))
+(((-253 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4129 (|#1| |#1|)) (-15 -4129 (|#1| (-410 (-567)))) (-15 -2642 (|#1| |#1| (-645 |#3|) (-645 |#2|))) (-15 -2642 (|#1| |#1| |#3| |#2|)) (-15 -2642 (|#1| |#1| (-645 |#3|) (-645 |#1|))) (-15 -2642 (|#1| |#1| |#3| |#1|)) (-15 -3029 ((-1 |#1| (-772)) |#1|)) (-15 -1540 (|#1| |#1|)) (-15 -2353 (|#1| |#1|)) (-15 -3726 (|#4| |#1|)) (-15 -1901 ((-112) |#1|)) (-15 -1772 ((-772) |#1| |#3|)) (-15 -3754 ((-645 (-772)) |#1| |#3|)) (-15 -1772 ((-772) |#1|)) (-15 -3754 ((-645 (-772)) |#1|)) (-15 -3104 ((-772) |#1| |#3|)) (-15 -3362 ((-772) |#1|)) (-15 -3362 ((-772) |#1| |#3|)) (-15 -1924 ((-645 |#3|) |#1|)) (-15 -3029 ((-1 |#1| (-772)) |#3|)) (-15 -4129 (|#1| |#3|)) (-15 -3765 ((-3 |#3| "failed") |#1|)) (-15 -1616 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1616 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -1616 (|#1| |#1| (-645 (-1179)) (-645 (-772)))) (-15 -1616 (|#1| |#1| (-1179) (-772))) (-15 -1616 (|#1| |#1| (-645 (-1179)))) (-15 -1616 (|#1| |#1| (-1179))) (-15 -1616 (|#1| |#1| (-772))) (-15 -1616 (|#1| |#1|)) (-15 -3104 ((-645 (-772)) |#1| (-645 |#4|))) (-15 -3104 ((-772) |#1| |#4|)) (-15 -4129 (|#1| |#4|)) (-15 -3765 ((-3 |#4| "failed") |#1|)) (-15 -2642 (|#1| |#1| (-645 |#4|) (-645 |#1|))) (-15 -2642 (|#1| |#1| |#4| |#1|)) (-15 -2642 (|#1| |#1| (-645 |#4|) (-645 |#2|))) (-15 -2642 (|#1| |#1| |#4| |#2|)) (-15 -2642 (|#1| |#1| (-645 |#1|) (-645 |#1|))) (-15 -2642 (|#1| |#1| |#1| |#1|)) (-15 -2642 (|#1| |#1| (-295 |#1|))) (-15 -2642 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -3104 (|#5| |#1|)) (-15 -3765 ((-3 (-567) "failed") |#1|)) (-15 -3765 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -4129 (|#1| |#2|)) (-15 -1616 (|#1| |#1| (-645 |#4|) (-645 (-772)))) (-15 -1616 (|#1| |#1| |#4| (-772))) (-15 -1616 (|#1| |#1| (-645 |#4|))) (-15 -1616 (|#1| |#1| |#4|)) (-15 -4129 (|#1| (-567))) (-15 -4129 ((-863) |#1|))) (-254 |#2| |#3| |#4| |#5|) (-1051) (-851) (-267 |#3|) (-794)) (T -253))
NIL
-(-10 -8 (-15 -4132 (|#1| |#1|)) (-15 -4132 (|#1| (-410 (-567)))) (-15 -2631 (|#1| |#1| (-645 |#3|) (-645 |#2|))) (-15 -2631 (|#1| |#1| |#3| |#2|)) (-15 -2631 (|#1| |#1| (-645 |#3|) (-645 |#1|))) (-15 -2631 (|#1| |#1| |#3| |#1|)) (-15 -1369 ((-1 |#1| (-772)) |#1|)) (-15 -3634 (|#1| |#1|)) (-15 -2344 (|#1| |#1|)) (-15 -3151 (|#4| |#1|)) (-15 -1634 ((-112) |#1|)) (-15 -3729 ((-772) |#1| |#3|)) (-15 -3335 ((-645 (-772)) |#1| |#3|)) (-15 -3729 ((-772) |#1|)) (-15 -3335 ((-645 (-772)) |#1|)) (-15 -3077 ((-772) |#1| |#3|)) (-15 -4384 ((-772) |#1|)) (-15 -4384 ((-772) |#1| |#3|)) (-15 -2395 ((-645 |#3|) |#1|)) (-15 -1369 ((-1 |#1| (-772)) |#3|)) (-15 -4132 (|#1| |#3|)) (-15 -3753 ((-3 |#3| "failed") |#1|)) (-15 -1593 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1593 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -1593 (|#1| |#1| (-645 (-1178)) (-645 (-772)))) (-15 -1593 (|#1| |#1| (-1178) (-772))) (-15 -1593 (|#1| |#1| (-645 (-1178)))) (-15 -1593 (|#1| |#1| (-1178))) (-15 -1593 (|#1| |#1| (-772))) (-15 -1593 (|#1| |#1|)) (-15 -3077 ((-645 (-772)) |#1| (-645 |#4|))) (-15 -3077 ((-772) |#1| |#4|)) (-15 -4132 (|#1| |#4|)) (-15 -3753 ((-3 |#4| "failed") |#1|)) (-15 -2631 (|#1| |#1| (-645 |#4|) (-645 |#1|))) (-15 -2631 (|#1| |#1| |#4| |#1|)) (-15 -2631 (|#1| |#1| (-645 |#4|) (-645 |#2|))) (-15 -2631 (|#1| |#1| |#4| |#2|)) (-15 -2631 (|#1| |#1| (-645 |#1|) (-645 |#1|))) (-15 -2631 (|#1| |#1| |#1| |#1|)) (-15 -2631 (|#1| |#1| (-295 |#1|))) (-15 -2631 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -3077 (|#5| |#1|)) (-15 -3753 ((-3 (-567) "failed") |#1|)) (-15 -3753 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -3753 ((-3 |#2| "failed") |#1|)) (-15 -4132 (|#1| |#2|)) (-15 -1593 (|#1| |#1| (-645 |#4|) (-645 (-772)))) (-15 -1593 (|#1| |#1| |#4| (-772))) (-15 -1593 (|#1| |#1| (-645 |#4|))) (-15 -1593 (|#1| |#1| |#4|)) (-15 -4132 (|#1| (-567))) (-15 -4132 ((-863) |#1|)))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3335 (((-645 (-772)) $) 216) (((-645 (-772)) $ |#2|) 214)) (-3729 (((-772) $) 215) (((-772) $ |#2|) 213)) (-2847 (((-645 |#3|) $) 112)) (-2675 (((-1174 $) $ |#3|) 127) (((-1174 |#1|) $) 126)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 89 (|has| |#1| (-559)))) (-4381 (($ $) 90 (|has| |#1| (-559)))) (-3949 (((-112) $) 92 (|has| |#1| (-559)))) (-1468 (((-772) $) 114) (((-772) $ (-645 |#3|)) 113)) (-3472 (((-3 $ "failed") $ $) 20)) (-4226 (((-421 (-1174 $)) (-1174 $)) 102 (|has| |#1| (-911)))) (-3248 (($ $) 100 (|has| |#1| (-455)))) (-2908 (((-421 $) $) 99 (|has| |#1| (-455)))) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) 105 (|has| |#1| (-911)))) (-3634 (($ $) 209)) (-2585 (($) 18 T CONST)) (-3753 (((-3 |#1| "failed") $) 166) (((-3 (-410 (-567)) "failed") $) 163 (|has| |#1| (-1040 (-410 (-567))))) (((-3 (-567) "failed") $) 161 (|has| |#1| (-1040 (-567)))) (((-3 |#3| "failed") $) 138) (((-3 |#2| "failed") $) 223)) (-2038 ((|#1| $) 165) (((-410 (-567)) $) 164 (|has| |#1| (-1040 (-410 (-567))))) (((-567) $) 162 (|has| |#1| (-1040 (-567)))) ((|#3| $) 139) ((|#2| $) 224)) (-2951 (($ $ $ |#3|) 110 (|has| |#1| (-172)))) (-3014 (($ $) 156)) (-2630 (((-690 (-567)) (-690 $)) 136 (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) 135 (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 |#1|)) (|:| |vec| (-1268 |#1|))) (-690 $) (-1268 $)) 134) (((-690 |#1|) (-690 $)) 133)) (-2109 (((-3 $ "failed") $) 37)) (-3501 (($ $) 178 (|has| |#1| (-455))) (($ $ |#3|) 107 (|has| |#1| (-455)))) (-3000 (((-645 $) $) 111)) (-3184 (((-112) $) 98 (|has| |#1| (-911)))) (-2320 (($ $ |#1| |#4| $) 174)) (-4303 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) 86 (-12 (|has| |#3| (-888 (-381))) (|has| |#1| (-888 (-381))))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) 85 (-12 (|has| |#3| (-888 (-567))) (|has| |#1| (-888 (-567)))))) (-4384 (((-772) $ |#2|) 219) (((-772) $) 218)) (-1433 (((-112) $) 35)) (-2695 (((-772) $) 171)) (-2836 (($ (-1174 |#1|) |#3|) 119) (($ (-1174 $) |#3|) 118)) (-1709 (((-645 $) $) 128)) (-2843 (((-112) $) 154)) (-2824 (($ |#1| |#4|) 155) (($ $ |#3| (-772)) 121) (($ $ (-645 |#3|) (-645 (-772))) 120)) (-1621 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $ |#3|) 122)) (-2656 ((|#4| $) 172) (((-772) $ |#3|) 124) (((-645 (-772)) $ (-645 |#3|)) 123)) (-3273 (($ (-1 |#4| |#4|) $) 173)) (-3829 (($ (-1 |#1| |#1|) $) 153)) (-1369 (((-1 $ (-772)) |#2|) 221) (((-1 $ (-772)) $) 208 (|has| |#1| (-233)))) (-3046 (((-3 |#3| "failed") $) 125)) (-2976 (($ $) 151)) (-2989 ((|#1| $) 150)) (-3151 ((|#3| $) 211)) (-2740 (($ (-645 $)) 96 (|has| |#1| (-455))) (($ $ $) 95 (|has| |#1| (-455)))) (-1419 (((-1160) $) 10)) (-1634 (((-112) $) 212)) (-2056 (((-3 (-645 $) "failed") $) 116)) (-3671 (((-3 (-645 $) "failed") $) 117)) (-3798 (((-3 (-2 (|:| |var| |#3|) (|:| -3458 (-772))) "failed") $) 115)) (-2344 (($ $) 210)) (-3430 (((-1122) $) 11)) (-2949 (((-112) $) 168)) (-2962 ((|#1| $) 169)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 97 (|has| |#1| (-455)))) (-2774 (($ (-645 $)) 94 (|has| |#1| (-455))) (($ $ $) 93 (|has| |#1| (-455)))) (-2435 (((-421 (-1174 $)) (-1174 $)) 104 (|has| |#1| (-911)))) (-3517 (((-421 (-1174 $)) (-1174 $)) 103 (|has| |#1| (-911)))) (-2706 (((-421 $) $) 101 (|has| |#1| (-911)))) (-2391 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-559))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-559)))) (-2631 (($ $ (-645 (-295 $))) 147) (($ $ (-295 $)) 146) (($ $ $ $) 145) (($ $ (-645 $) (-645 $)) 144) (($ $ |#3| |#1|) 143) (($ $ (-645 |#3|) (-645 |#1|)) 142) (($ $ |#3| $) 141) (($ $ (-645 |#3|) (-645 $)) 140) (($ $ |#2| $) 207 (|has| |#1| (-233))) (($ $ (-645 |#2|) (-645 $)) 206 (|has| |#1| (-233))) (($ $ |#2| |#1|) 205 (|has| |#1| (-233))) (($ $ (-645 |#2|) (-645 |#1|)) 204 (|has| |#1| (-233)))) (-3788 (($ $ |#3|) 109 (|has| |#1| (-172)))) (-1593 (($ $ |#3|) 46) (($ $ (-645 |#3|)) 45) (($ $ |#3| (-772)) 44) (($ $ (-645 |#3|) (-645 (-772))) 43) (($ $) 240 (|has| |#1| (-233))) (($ $ (-772)) 238 (|has| |#1| (-233))) (($ $ (-1178)) 236 (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178))) 235 (|has| |#1| (-902 (-1178)))) (($ $ (-1178) (-772)) 234 (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) 233 (|has| |#1| (-902 (-1178)))) (($ $ (-1 |#1| |#1|) (-772)) 226) (($ $ (-1 |#1| |#1|)) 225)) (-2395 (((-645 |#2|) $) 220)) (-3077 ((|#4| $) 152) (((-772) $ |#3|) 132) (((-645 (-772)) $ (-645 |#3|)) 131) (((-772) $ |#2|) 217)) (-3893 (((-894 (-381)) $) 84 (-12 (|has| |#3| (-615 (-894 (-381)))) (|has| |#1| (-615 (-894 (-381)))))) (((-894 (-567)) $) 83 (-12 (|has| |#3| (-615 (-894 (-567)))) (|has| |#1| (-615 (-894 (-567)))))) (((-539) $) 82 (-12 (|has| |#3| (-615 (-539))) (|has| |#1| (-615 (-539)))))) (-4358 ((|#1| $) 177 (|has| |#1| (-455))) (($ $ |#3|) 108 (|has| |#1| (-455)))) (-1895 (((-3 (-1268 $) "failed") (-690 $)) 106 (-1667 (|has| $ (-145)) (|has| |#1| (-911))))) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 167) (($ |#3|) 137) (($ |#2|) 222) (($ (-410 (-567))) 80 (-2800 (|has| |#1| (-1040 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567)))))) (($ $) 87 (|has| |#1| (-559)))) (-3032 (((-645 |#1|) $) 170)) (-4136 ((|#1| $ |#4|) 157) (($ $ |#3| (-772)) 130) (($ $ (-645 |#3|) (-645 (-772))) 129)) (-1903 (((-3 $ "failed") $) 81 (-2800 (-1667 (|has| $ (-145)) (|has| |#1| (-911))) (|has| |#1| (-145))))) (-4221 (((-772)) 32 T CONST)) (-4176 (($ $ $ (-772)) 175 (|has| |#1| (-172)))) (-1745 (((-112) $ $) 9)) (-3816 (((-112) $ $) 91 (|has| |#1| (-559)))) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2637 (($ $ |#3|) 42) (($ $ (-645 |#3|)) 41) (($ $ |#3| (-772)) 40) (($ $ (-645 |#3|) (-645 (-772))) 39) (($ $) 239 (|has| |#1| (-233))) (($ $ (-772)) 237 (|has| |#1| (-233))) (($ $ (-1178)) 232 (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178))) 231 (|has| |#1| (-902 (-1178)))) (($ $ (-1178) (-772)) 230 (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) 229 (|has| |#1| (-902 (-1178)))) (($ $ (-1 |#1| |#1|) (-772)) 228) (($ $ (-1 |#1| |#1|)) 227)) (-2936 (((-112) $ $) 6)) (-3060 (($ $ |#1|) 158 (|has| |#1| (-365)))) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 160 (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) 159 (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) 149) (($ $ |#1|) 148)))
+(-10 -8 (-15 -4129 (|#1| |#1|)) (-15 -4129 (|#1| (-410 (-567)))) (-15 -2642 (|#1| |#1| (-645 |#3|) (-645 |#2|))) (-15 -2642 (|#1| |#1| |#3| |#2|)) (-15 -2642 (|#1| |#1| (-645 |#3|) (-645 |#1|))) (-15 -2642 (|#1| |#1| |#3| |#1|)) (-15 -3029 ((-1 |#1| (-772)) |#1|)) (-15 -1540 (|#1| |#1|)) (-15 -2353 (|#1| |#1|)) (-15 -3726 (|#4| |#1|)) (-15 -1901 ((-112) |#1|)) (-15 -1772 ((-772) |#1| |#3|)) (-15 -3754 ((-645 (-772)) |#1| |#3|)) (-15 -1772 ((-772) |#1|)) (-15 -3754 ((-645 (-772)) |#1|)) (-15 -3104 ((-772) |#1| |#3|)) (-15 -3362 ((-772) |#1|)) (-15 -3362 ((-772) |#1| |#3|)) (-15 -1924 ((-645 |#3|) |#1|)) (-15 -3029 ((-1 |#1| (-772)) |#3|)) (-15 -4129 (|#1| |#3|)) (-15 -3765 ((-3 |#3| "failed") |#1|)) (-15 -1616 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1616 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -1616 (|#1| |#1| (-645 (-1179)) (-645 (-772)))) (-15 -1616 (|#1| |#1| (-1179) (-772))) (-15 -1616 (|#1| |#1| (-645 (-1179)))) (-15 -1616 (|#1| |#1| (-1179))) (-15 -1616 (|#1| |#1| (-772))) (-15 -1616 (|#1| |#1|)) (-15 -3104 ((-645 (-772)) |#1| (-645 |#4|))) (-15 -3104 ((-772) |#1| |#4|)) (-15 -4129 (|#1| |#4|)) (-15 -3765 ((-3 |#4| "failed") |#1|)) (-15 -2642 (|#1| |#1| (-645 |#4|) (-645 |#1|))) (-15 -2642 (|#1| |#1| |#4| |#1|)) (-15 -2642 (|#1| |#1| (-645 |#4|) (-645 |#2|))) (-15 -2642 (|#1| |#1| |#4| |#2|)) (-15 -2642 (|#1| |#1| (-645 |#1|) (-645 |#1|))) (-15 -2642 (|#1| |#1| |#1| |#1|)) (-15 -2642 (|#1| |#1| (-295 |#1|))) (-15 -2642 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -3104 (|#5| |#1|)) (-15 -3765 ((-3 (-567) "failed") |#1|)) (-15 -3765 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -4129 (|#1| |#2|)) (-15 -1616 (|#1| |#1| (-645 |#4|) (-645 (-772)))) (-15 -1616 (|#1| |#1| |#4| (-772))) (-15 -1616 (|#1| |#1| (-645 |#4|))) (-15 -1616 (|#1| |#1| |#4|)) (-15 -4129 (|#1| (-567))) (-15 -4129 ((-863) |#1|)))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-3754 (((-645 (-772)) $) 216) (((-645 (-772)) $ |#2|) 214)) (-1772 (((-772) $) 215) (((-772) $ |#2|) 213)) (-2859 (((-645 |#3|) $) 112)) (-2684 (((-1175 $) $ |#3|) 127) (((-1175 |#1|) $) 126)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) 89 (|has| |#1| (-559)))) (-4287 (($ $) 90 (|has| |#1| (-559)))) (-2286 (((-112) $) 92 (|has| |#1| (-559)))) (-3849 (((-772) $) 114) (((-772) $ (-645 |#3|)) 113)) (-2376 (((-3 $ "failed") $ $) 20)) (-2029 (((-421 (-1175 $)) (-1175 $)) 102 (|has| |#1| (-911)))) (-3659 (($ $) 100 (|has| |#1| (-455)))) (-3597 (((-421 $) $) 99 (|has| |#1| (-455)))) (-3610 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) 105 (|has| |#1| (-911)))) (-1540 (($ $) 209)) (-3647 (($) 18 T CONST)) (-3765 (((-3 |#1| "failed") $) 166) (((-3 (-410 (-567)) "failed") $) 163 (|has| |#1| (-1040 (-410 (-567))))) (((-3 (-567) "failed") $) 161 (|has| |#1| (-1040 (-567)))) (((-3 |#3| "failed") $) 138) (((-3 |#2| "failed") $) 223)) (-2051 ((|#1| $) 165) (((-410 (-567)) $) 164 (|has| |#1| (-1040 (-410 (-567))))) (((-567) $) 162 (|has| |#1| (-1040 (-567)))) ((|#3| $) 139) ((|#2| $) 224)) (-3554 (($ $ $ |#3|) 110 (|has| |#1| (-172)))) (-3023 (($ $) 156)) (-1423 (((-690 (-567)) (-690 $)) 136 (|has| |#1| (-640 (-567)))) (((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) 135 (|has| |#1| (-640 (-567)))) (((-2 (|:| -4208 (-690 |#1|)) (|:| |vec| (-1269 |#1|))) (-690 $) (-1269 $)) 134) (((-690 |#1|) (-690 $)) 133)) (-3588 (((-3 $ "failed") $) 37)) (-2989 (($ $) 178 (|has| |#1| (-455))) (($ $ |#3|) 107 (|has| |#1| (-455)))) (-3010 (((-645 $) $) 111)) (-3502 (((-112) $) 98 (|has| |#1| (-911)))) (-3214 (($ $ |#1| |#4| $) 174)) (-3193 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) 86 (-12 (|has| |#3| (-888 (-381))) (|has| |#1| (-888 (-381))))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) 85 (-12 (|has| |#3| (-888 (-567))) (|has| |#1| (-888 (-567)))))) (-3362 (((-772) $ |#2|) 219) (((-772) $) 218)) (-4346 (((-112) $) 35)) (-2851 (((-772) $) 171)) (-2848 (($ (-1175 |#1|) |#3|) 119) (($ (-1175 $) |#3|) 118)) (-2659 (((-645 $) $) 128)) (-3770 (((-112) $) 154)) (-2836 (($ |#1| |#4|) 155) (($ $ |#3| (-772)) 121) (($ $ (-645 |#3|) (-645 (-772))) 120)) (-2742 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $ |#3|) 122)) (-2955 ((|#4| $) 172) (((-772) $ |#3|) 124) (((-645 (-772)) $ (-645 |#3|)) 123)) (-3827 (($ (-1 |#4| |#4|) $) 173)) (-3841 (($ (-1 |#1| |#1|) $) 153)) (-3029 (((-1 $ (-772)) |#2|) 221) (((-1 $ (-772)) $) 208 (|has| |#1| (-233)))) (-3221 (((-3 |#3| "failed") $) 125)) (-2985 (($ $) 151)) (-2996 ((|#1| $) 150)) (-3726 ((|#3| $) 211)) (-2751 (($ (-645 $)) 96 (|has| |#1| (-455))) (($ $ $) 95 (|has| |#1| (-455)))) (-2516 (((-1161) $) 10)) (-1901 (((-112) $) 212)) (-3037 (((-3 (-645 $) "failed") $) 116)) (-3774 (((-3 (-645 $) "failed") $) 117)) (-3816 (((-3 (-2 (|:| |var| |#3|) (|:| -3468 (-772))) "failed") $) 115)) (-2353 (($ $) 210)) (-3437 (((-1122) $) 11)) (-2960 (((-112) $) 168)) (-2971 ((|#1| $) 169)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) 97 (|has| |#1| (-455)))) (-2785 (($ (-645 $)) 94 (|has| |#1| (-455))) (($ $ $) 93 (|has| |#1| (-455)))) (-3551 (((-421 (-1175 $)) (-1175 $)) 104 (|has| |#1| (-911)))) (-2016 (((-421 (-1175 $)) (-1175 $)) 103 (|has| |#1| (-911)))) (-2717 (((-421 $) $) 101 (|has| |#1| (-911)))) (-2400 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-559))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-559)))) (-2642 (($ $ (-645 (-295 $))) 147) (($ $ (-295 $)) 146) (($ $ $ $) 145) (($ $ (-645 $) (-645 $)) 144) (($ $ |#3| |#1|) 143) (($ $ (-645 |#3|) (-645 |#1|)) 142) (($ $ |#3| $) 141) (($ $ (-645 |#3|) (-645 $)) 140) (($ $ |#2| $) 207 (|has| |#1| (-233))) (($ $ (-645 |#2|) (-645 $)) 206 (|has| |#1| (-233))) (($ $ |#2| |#1|) 205 (|has| |#1| (-233))) (($ $ (-645 |#2|) (-645 |#1|)) 204 (|has| |#1| (-233)))) (-2433 (($ $ |#3|) 109 (|has| |#1| (-172)))) (-1616 (($ $ |#3|) 46) (($ $ (-645 |#3|)) 45) (($ $ |#3| (-772)) 44) (($ $ (-645 |#3|) (-645 (-772))) 43) (($ $) 240 (|has| |#1| (-233))) (($ $ (-772)) 238 (|has| |#1| (-233))) (($ $ (-1179)) 236 (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179))) 235 (|has| |#1| (-902 (-1179)))) (($ $ (-1179) (-772)) 234 (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) 233 (|has| |#1| (-902 (-1179)))) (($ $ (-1 |#1| |#1|) (-772)) 226) (($ $ (-1 |#1| |#1|)) 225)) (-1924 (((-645 |#2|) $) 220)) (-3104 ((|#4| $) 152) (((-772) $ |#3|) 132) (((-645 (-772)) $ (-645 |#3|)) 131) (((-772) $ |#2|) 217)) (-3902 (((-894 (-381)) $) 84 (-12 (|has| |#3| (-615 (-894 (-381)))) (|has| |#1| (-615 (-894 (-381)))))) (((-894 (-567)) $) 83 (-12 (|has| |#3| (-615 (-894 (-567)))) (|has| |#1| (-615 (-894 (-567)))))) (((-539) $) 82 (-12 (|has| |#3| (-615 (-539))) (|has| |#1| (-615 (-539)))))) (-1849 ((|#1| $) 177 (|has| |#1| (-455))) (($ $ |#3|) 108 (|has| |#1| (-455)))) (-2616 (((-3 (-1269 $) "failed") (-690 $)) 106 (-1686 (|has| $ (-145)) (|has| |#1| (-911))))) (-4129 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 167) (($ |#3|) 137) (($ |#2|) 222) (($ (-410 (-567))) 80 (-2811 (|has| |#1| (-1040 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567)))))) (($ $) 87 (|has| |#1| (-559)))) (-3601 (((-645 |#1|) $) 170)) (-2558 ((|#1| $ |#4|) 157) (($ $ |#3| (-772)) 130) (($ $ (-645 |#3|) (-645 (-772))) 129)) (-2118 (((-3 $ "failed") $) 81 (-2811 (-1686 (|has| $ (-145)) (|has| |#1| (-911))) (|has| |#1| (-145))))) (-2746 (((-772)) 32 T CONST)) (-3658 (($ $ $ (-772)) 175 (|has| |#1| (-172)))) (-3357 (((-112) $ $) 9)) (-3731 (((-112) $ $) 91 (|has| |#1| (-559)))) (-1733 (($) 19 T CONST)) (-1744 (($) 34 T CONST)) (-2647 (($ $ |#3|) 42) (($ $ (-645 |#3|)) 41) (($ $ |#3| (-772)) 40) (($ $ (-645 |#3|) (-645 (-772))) 39) (($ $) 239 (|has| |#1| (-233))) (($ $ (-772)) 237 (|has| |#1| (-233))) (($ $ (-1179)) 232 (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179))) 231 (|has| |#1| (-902 (-1179)))) (($ $ (-1179) (-772)) 230 (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) 229 (|has| |#1| (-902 (-1179)))) (($ $ (-1 |#1| |#1|) (-772)) 228) (($ $ (-1 |#1| |#1|)) 227)) (-2946 (((-112) $ $) 6)) (-3069 (($ $ |#1|) 158 (|has| |#1| (-365)))) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 160 (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) 159 (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) 149) (($ $ |#1|) 148)))
(((-254 |#1| |#2| |#3| |#4|) (-140) (-1051) (-851) (-267 |t#2|) (-794)) (T -254))
-((-1369 (*1 *2 *3) (-12 (-4 *4 (-1051)) (-4 *3 (-851)) (-4 *5 (-267 *3)) (-4 *6 (-794)) (-5 *2 (-1 *1 (-772))) (-4 *1 (-254 *4 *3 *5 *6)))) (-2395 (*1 *2 *1) (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-851)) (-4 *5 (-267 *4)) (-4 *6 (-794)) (-5 *2 (-645 *4)))) (-4384 (*1 *2 *1 *3) (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1051)) (-4 *3 (-851)) (-4 *5 (-267 *3)) (-4 *6 (-794)) (-5 *2 (-772)))) (-4384 (*1 *2 *1) (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-851)) (-4 *5 (-267 *4)) (-4 *6 (-794)) (-5 *2 (-772)))) (-3077 (*1 *2 *1 *3) (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1051)) (-4 *3 (-851)) (-4 *5 (-267 *3)) (-4 *6 (-794)) (-5 *2 (-772)))) (-3335 (*1 *2 *1) (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-851)) (-4 *5 (-267 *4)) (-4 *6 (-794)) (-5 *2 (-645 (-772))))) (-3729 (*1 *2 *1) (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-851)) (-4 *5 (-267 *4)) (-4 *6 (-794)) (-5 *2 (-772)))) (-3335 (*1 *2 *1 *3) (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1051)) (-4 *3 (-851)) (-4 *5 (-267 *3)) (-4 *6 (-794)) (-5 *2 (-645 (-772))))) (-3729 (*1 *2 *1 *3) (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1051)) (-4 *3 (-851)) (-4 *5 (-267 *3)) (-4 *6 (-794)) (-5 *2 (-772)))) (-1634 (*1 *2 *1) (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-851)) (-4 *5 (-267 *4)) (-4 *6 (-794)) (-5 *2 (-112)))) (-3151 (*1 *2 *1) (-12 (-4 *1 (-254 *3 *4 *2 *5)) (-4 *3 (-1051)) (-4 *4 (-851)) (-4 *5 (-794)) (-4 *2 (-267 *4)))) (-2344 (*1 *1 *1) (-12 (-4 *1 (-254 *2 *3 *4 *5)) (-4 *2 (-1051)) (-4 *3 (-851)) (-4 *4 (-267 *3)) (-4 *5 (-794)))) (-3634 (*1 *1 *1) (-12 (-4 *1 (-254 *2 *3 *4 *5)) (-4 *2 (-1051)) (-4 *3 (-851)) (-4 *4 (-267 *3)) (-4 *5 (-794)))) (-1369 (*1 *2 *1) (-12 (-4 *3 (-233)) (-4 *3 (-1051)) (-4 *4 (-851)) (-4 *5 (-267 *4)) (-4 *6 (-794)) (-5 *2 (-1 *1 (-772))) (-4 *1 (-254 *3 *4 *5 *6)))))
-(-13 (-951 |t#1| |t#4| |t#3|) (-231 |t#1|) (-1040 |t#2|) (-10 -8 (-15 -1369 ((-1 $ (-772)) |t#2|)) (-15 -2395 ((-645 |t#2|) $)) (-15 -4384 ((-772) $ |t#2|)) (-15 -4384 ((-772) $)) (-15 -3077 ((-772) $ |t#2|)) (-15 -3335 ((-645 (-772)) $)) (-15 -3729 ((-772) $)) (-15 -3335 ((-645 (-772)) $ |t#2|)) (-15 -3729 ((-772) $ |t#2|)) (-15 -1634 ((-112) $)) (-15 -3151 (|t#3| $)) (-15 -2344 ($ $)) (-15 -3634 ($ $)) (IF (|has| |t#1| (-233)) (PROGN (-6 (-517 |t#2| |t#1|)) (-6 (-517 |t#2| $)) (-6 (-310 $)) (-15 -1369 ((-1 $ (-772)) $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-410 (-567)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #0#) -2800 (|has| |#1| (-1040 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567))))) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-617 |#2|) . T) ((-617 |#3|) . T) ((-617 $) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-614 (-863)) . T) ((-172) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-615 (-539)) -12 (|has| |#1| (-615 (-539))) (|has| |#3| (-615 (-539)))) ((-615 (-894 (-381))) -12 (|has| |#1| (-615 (-894 (-381)))) (|has| |#3| (-615 (-894 (-381))))) ((-615 (-894 (-567))) -12 (|has| |#1| (-615 (-894 (-567)))) (|has| |#3| (-615 (-894 (-567))))) ((-231 |#1|) . T) ((-233) |has| |#1| (-233)) ((-291) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-310 $) . T) ((-327 |#1| |#4|) . T) ((-379 |#1|) . T) ((-414 |#1|) . T) ((-455) -2800 (|has| |#1| (-911)) (|has| |#1| (-455))) ((-517 |#2| |#1|) |has| |#1| (-233)) ((-517 |#2| $) |has| |#1| (-233)) ((-517 |#3| |#1|) . T) ((-517 |#3| $) . T) ((-517 $ $) . T) ((-559) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-647 #0#) |has| |#1| (-38 (-410 (-567)))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) |has| |#1| (-38 (-410 (-567)))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) |has| |#1| (-38 (-410 (-567)))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-640 (-567)) |has| |#1| (-640 (-567))) ((-640 |#1|) . T) ((-718 #0#) |has| |#1| (-38 (-410 (-567)))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-727) . T) ((-902 (-1178)) |has| |#1| (-902 (-1178))) ((-902 |#3|) . T) ((-888 (-381)) -12 (|has| |#1| (-888 (-381))) (|has| |#3| (-888 (-381)))) ((-888 (-567)) -12 (|has| |#1| (-888 (-567))) (|has| |#3| (-888 (-567)))) ((-951 |#1| |#4| |#3|) . T) ((-911) |has| |#1| (-911)) ((-1040 (-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) ((-1040 (-567)) |has| |#1| (-1040 (-567))) ((-1040 |#1|) . T) ((-1040 |#2|) . T) ((-1040 |#3|) . T) ((-1053 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1053 |#1|) . T) ((-1053 $) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-1058 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1058 |#1|) . T) ((-1058 $) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1222) |has| |#1| (-911)))
-((-2403 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-1910 ((|#1| $) 55)) (-2262 ((|#1| $) 45)) (-3445 (((-112) $ (-772)) 8)) (-2585 (($) 7 T CONST)) (-3061 (($ $) 61)) (-1764 (($ $) 49)) (-2576 ((|#1| |#1| $) 47)) (-4338 ((|#1| $) 46)) (-2777 (((-645 |#1|) $) 31 (|has| $ (-6 -4418)))) (-2077 (((-112) $ (-772)) 9)) (-2279 (((-645 |#1|) $) 30 (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-3731 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) 36)) (-2863 (((-112) $ (-772)) 10)) (-1699 (((-772) $) 62)) (-1419 (((-1160) $) 22 (|has| |#1| (-1102)))) (-1566 ((|#1| $) 40)) (-1567 ((|#1| |#1| $) 53)) (-1420 ((|#1| |#1| $) 52)) (-2531 (($ |#1| $) 41)) (-4138 (((-772) $) 56)) (-3430 (((-1122) $) 21 (|has| |#1| (-1102)))) (-3303 ((|#1| $) 63)) (-1660 ((|#1| $) 51)) (-2524 ((|#1| $) 50)) (-1793 ((|#1| $) 42)) (-3025 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) 14)) (-3136 ((|#1| |#1| $) 59)) (-3572 (((-112) $) 11)) (-3498 (($) 12)) (-2234 ((|#1| $) 60)) (-4137 (($) 58) (($ (-645 |#1|)) 57)) (-3272 (((-772) $) 44)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4418))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-4305 (($ $) 13)) (-4132 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-4158 ((|#1| $) 54)) (-1745 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-3551 (($ (-645 |#1|)) 43)) (-3090 ((|#1| $) 64)) (-1853 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2414 (((-772) $) 6 (|has| $ (-6 -4418)))))
-(((-255 |#1|) (-140) (-1218)) (T -255))
-((-4137 (*1 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1218)))) (-4137 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1218)) (-4 *1 (-255 *3)))) (-4138 (*1 *2 *1) (-12 (-4 *1 (-255 *3)) (-4 *3 (-1218)) (-5 *2 (-772)))) (-1910 (*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1218)))) (-4158 (*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1218)))) (-1567 (*1 *2 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1218)))) (-1420 (*1 *2 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1218)))) (-1660 (*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1218)))) (-2524 (*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1218)))) (-1764 (*1 *1 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1218)))))
-(-13 (-1123 |t#1|) (-997 |t#1|) (-10 -8 (-15 -4137 ($)) (-15 -4137 ($ (-645 |t#1|))) (-15 -4138 ((-772) $)) (-15 -1910 (|t#1| $)) (-15 -4158 (|t#1| $)) (-15 -1567 (|t#1| |t#1| $)) (-15 -1420 (|t#1| |t#1| $)) (-15 -1660 (|t#1| $)) (-15 -2524 (|t#1| $)) (-15 -1764 ($ $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2800 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-997 |#1|) . T) ((-1102) |has| |#1| (-1102)) ((-1123 |#1|) . T) ((-1218) . T))
-((-2530 (((-1 (-945 (-225)) (-225) (-225)) (-1 (-945 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225) (-225))) 153)) (-3685 (((-1135 (-225)) (-884 (-1 (-225) (-225) (-225))) (-1096 (-381)) (-1096 (-381))) 173) (((-1135 (-225)) (-884 (-1 (-225) (-225) (-225))) (-1096 (-381)) (-1096 (-381)) (-645 (-264))) 171) (((-1135 (-225)) (-1 (-945 (-225)) (-225) (-225)) (-1096 (-381)) (-1096 (-381))) 176) (((-1135 (-225)) (-1 (-945 (-225)) (-225) (-225)) (-1096 (-381)) (-1096 (-381)) (-645 (-264))) 172) (((-1135 (-225)) (-1 (-225) (-225) (-225)) (-1096 (-381)) (-1096 (-381))) 164) (((-1135 (-225)) (-1 (-225) (-225) (-225)) (-1096 (-381)) (-1096 (-381)) (-645 (-264))) 163) (((-1135 (-225)) (-1 (-945 (-225)) (-225)) (-1096 (-381))) 145) (((-1135 (-225)) (-1 (-945 (-225)) (-225)) (-1096 (-381)) (-645 (-264))) 143) (((-1135 (-225)) (-881 (-1 (-225) (-225))) (-1096 (-381))) 144) (((-1135 (-225)) (-881 (-1 (-225) (-225))) (-1096 (-381)) (-645 (-264))) 141)) (-3638 (((-1270) (-884 (-1 (-225) (-225) (-225))) (-1096 (-381)) (-1096 (-381))) 175) (((-1270) (-884 (-1 (-225) (-225) (-225))) (-1096 (-381)) (-1096 (-381)) (-645 (-264))) 174) (((-1270) (-1 (-945 (-225)) (-225) (-225)) (-1096 (-381)) (-1096 (-381))) 178) (((-1270) (-1 (-945 (-225)) (-225) (-225)) (-1096 (-381)) (-1096 (-381)) (-645 (-264))) 177) (((-1270) (-1 (-225) (-225) (-225)) (-1096 (-381)) (-1096 (-381))) 166) (((-1270) (-1 (-225) (-225) (-225)) (-1096 (-381)) (-1096 (-381)) (-645 (-264))) 165) (((-1270) (-1 (-945 (-225)) (-225)) (-1096 (-381))) 151) (((-1270) (-1 (-945 (-225)) (-225)) (-1096 (-381)) (-645 (-264))) 150) (((-1270) (-881 (-1 (-225) (-225))) (-1096 (-381))) 149) (((-1270) (-881 (-1 (-225) (-225))) (-1096 (-381)) (-645 (-264))) 148) (((-1269) (-879 (-1 (-225) (-225))) (-1096 (-381))) 113) (((-1269) (-879 (-1 (-225) (-225))) (-1096 (-381)) (-645 (-264))) 112) (((-1269) (-1 (-225) (-225)) (-1096 (-381))) 107) (((-1269) (-1 (-225) (-225)) (-1096 (-381)) (-645 (-264))) 105)))
-(((-256) (-10 -7 (-15 -3638 ((-1269) (-1 (-225) (-225)) (-1096 (-381)) (-645 (-264)))) (-15 -3638 ((-1269) (-1 (-225) (-225)) (-1096 (-381)))) (-15 -3638 ((-1269) (-879 (-1 (-225) (-225))) (-1096 (-381)) (-645 (-264)))) (-15 -3638 ((-1269) (-879 (-1 (-225) (-225))) (-1096 (-381)))) (-15 -3638 ((-1270) (-881 (-1 (-225) (-225))) (-1096 (-381)) (-645 (-264)))) (-15 -3638 ((-1270) (-881 (-1 (-225) (-225))) (-1096 (-381)))) (-15 -3638 ((-1270) (-1 (-945 (-225)) (-225)) (-1096 (-381)) (-645 (-264)))) (-15 -3638 ((-1270) (-1 (-945 (-225)) (-225)) (-1096 (-381)))) (-15 -3685 ((-1135 (-225)) (-881 (-1 (-225) (-225))) (-1096 (-381)) (-645 (-264)))) (-15 -3685 ((-1135 (-225)) (-881 (-1 (-225) (-225))) (-1096 (-381)))) (-15 -3685 ((-1135 (-225)) (-1 (-945 (-225)) (-225)) (-1096 (-381)) (-645 (-264)))) (-15 -3685 ((-1135 (-225)) (-1 (-945 (-225)) (-225)) (-1096 (-381)))) (-15 -3638 ((-1270) (-1 (-225) (-225) (-225)) (-1096 (-381)) (-1096 (-381)) (-645 (-264)))) (-15 -3638 ((-1270) (-1 (-225) (-225) (-225)) (-1096 (-381)) (-1096 (-381)))) (-15 -3685 ((-1135 (-225)) (-1 (-225) (-225) (-225)) (-1096 (-381)) (-1096 (-381)) (-645 (-264)))) (-15 -3685 ((-1135 (-225)) (-1 (-225) (-225) (-225)) (-1096 (-381)) (-1096 (-381)))) (-15 -3638 ((-1270) (-1 (-945 (-225)) (-225) (-225)) (-1096 (-381)) (-1096 (-381)) (-645 (-264)))) (-15 -3638 ((-1270) (-1 (-945 (-225)) (-225) (-225)) (-1096 (-381)) (-1096 (-381)))) (-15 -3685 ((-1135 (-225)) (-1 (-945 (-225)) (-225) (-225)) (-1096 (-381)) (-1096 (-381)) (-645 (-264)))) (-15 -3685 ((-1135 (-225)) (-1 (-945 (-225)) (-225) (-225)) (-1096 (-381)) (-1096 (-381)))) (-15 -3638 ((-1270) (-884 (-1 (-225) (-225) (-225))) (-1096 (-381)) (-1096 (-381)) (-645 (-264)))) (-15 -3638 ((-1270) (-884 (-1 (-225) (-225) (-225))) (-1096 (-381)) (-1096 (-381)))) (-15 -3685 ((-1135 (-225)) (-884 (-1 (-225) (-225) (-225))) (-1096 (-381)) (-1096 (-381)) (-645 (-264)))) (-15 -3685 ((-1135 (-225)) (-884 (-1 (-225) (-225) (-225))) (-1096 (-381)) (-1096 (-381)))) (-15 -2530 ((-1 (-945 (-225)) (-225) (-225)) (-1 (-945 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225) (-225)))))) (T -256))
-((-2530 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-945 (-225)) (-225) (-225))) (-5 *3 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-256)))) (-3685 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-884 (-1 (-225) (-225) (-225)))) (-5 *4 (-1096 (-381))) (-5 *2 (-1135 (-225))) (-5 *1 (-256)))) (-3685 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-884 (-1 (-225) (-225) (-225)))) (-5 *4 (-1096 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1135 (-225))) (-5 *1 (-256)))) (-3638 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-884 (-1 (-225) (-225) (-225)))) (-5 *4 (-1096 (-381))) (-5 *2 (-1270)) (-5 *1 (-256)))) (-3638 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-884 (-1 (-225) (-225) (-225)))) (-5 *4 (-1096 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1270)) (-5 *1 (-256)))) (-3685 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-945 (-225)) (-225) (-225))) (-5 *4 (-1096 (-381))) (-5 *2 (-1135 (-225))) (-5 *1 (-256)))) (-3685 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-945 (-225)) (-225) (-225))) (-5 *4 (-1096 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1135 (-225))) (-5 *1 (-256)))) (-3638 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-945 (-225)) (-225) (-225))) (-5 *4 (-1096 (-381))) (-5 *2 (-1270)) (-5 *1 (-256)))) (-3638 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-945 (-225)) (-225) (-225))) (-5 *4 (-1096 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1270)) (-5 *1 (-256)))) (-3685 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1096 (-381))) (-5 *2 (-1135 (-225))) (-5 *1 (-256)))) (-3685 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1096 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1135 (-225))) (-5 *1 (-256)))) (-3638 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1096 (-381))) (-5 *2 (-1270)) (-5 *1 (-256)))) (-3638 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1096 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1270)) (-5 *1 (-256)))) (-3685 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-945 (-225)) (-225))) (-5 *4 (-1096 (-381))) (-5 *2 (-1135 (-225))) (-5 *1 (-256)))) (-3685 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-945 (-225)) (-225))) (-5 *4 (-1096 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1135 (-225))) (-5 *1 (-256)))) (-3685 (*1 *2 *3 *4) (-12 (-5 *3 (-881 (-1 (-225) (-225)))) (-5 *4 (-1096 (-381))) (-5 *2 (-1135 (-225))) (-5 *1 (-256)))) (-3685 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-881 (-1 (-225) (-225)))) (-5 *4 (-1096 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1135 (-225))) (-5 *1 (-256)))) (-3638 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-945 (-225)) (-225))) (-5 *4 (-1096 (-381))) (-5 *2 (-1270)) (-5 *1 (-256)))) (-3638 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-945 (-225)) (-225))) (-5 *4 (-1096 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1270)) (-5 *1 (-256)))) (-3638 (*1 *2 *3 *4) (-12 (-5 *3 (-881 (-1 (-225) (-225)))) (-5 *4 (-1096 (-381))) (-5 *2 (-1270)) (-5 *1 (-256)))) (-3638 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-881 (-1 (-225) (-225)))) (-5 *4 (-1096 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1270)) (-5 *1 (-256)))) (-3638 (*1 *2 *3 *4) (-12 (-5 *3 (-879 (-1 (-225) (-225)))) (-5 *4 (-1096 (-381))) (-5 *2 (-1269)) (-5 *1 (-256)))) (-3638 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-879 (-1 (-225) (-225)))) (-5 *4 (-1096 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1269)) (-5 *1 (-256)))) (-3638 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1096 (-381))) (-5 *2 (-1269)) (-5 *1 (-256)))) (-3638 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1096 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1269)) (-5 *1 (-256)))))
-(-10 -7 (-15 -3638 ((-1269) (-1 (-225) (-225)) (-1096 (-381)) (-645 (-264)))) (-15 -3638 ((-1269) (-1 (-225) (-225)) (-1096 (-381)))) (-15 -3638 ((-1269) (-879 (-1 (-225) (-225))) (-1096 (-381)) (-645 (-264)))) (-15 -3638 ((-1269) (-879 (-1 (-225) (-225))) (-1096 (-381)))) (-15 -3638 ((-1270) (-881 (-1 (-225) (-225))) (-1096 (-381)) (-645 (-264)))) (-15 -3638 ((-1270) (-881 (-1 (-225) (-225))) (-1096 (-381)))) (-15 -3638 ((-1270) (-1 (-945 (-225)) (-225)) (-1096 (-381)) (-645 (-264)))) (-15 -3638 ((-1270) (-1 (-945 (-225)) (-225)) (-1096 (-381)))) (-15 -3685 ((-1135 (-225)) (-881 (-1 (-225) (-225))) (-1096 (-381)) (-645 (-264)))) (-15 -3685 ((-1135 (-225)) (-881 (-1 (-225) (-225))) (-1096 (-381)))) (-15 -3685 ((-1135 (-225)) (-1 (-945 (-225)) (-225)) (-1096 (-381)) (-645 (-264)))) (-15 -3685 ((-1135 (-225)) (-1 (-945 (-225)) (-225)) (-1096 (-381)))) (-15 -3638 ((-1270) (-1 (-225) (-225) (-225)) (-1096 (-381)) (-1096 (-381)) (-645 (-264)))) (-15 -3638 ((-1270) (-1 (-225) (-225) (-225)) (-1096 (-381)) (-1096 (-381)))) (-15 -3685 ((-1135 (-225)) (-1 (-225) (-225) (-225)) (-1096 (-381)) (-1096 (-381)) (-645 (-264)))) (-15 -3685 ((-1135 (-225)) (-1 (-225) (-225) (-225)) (-1096 (-381)) (-1096 (-381)))) (-15 -3638 ((-1270) (-1 (-945 (-225)) (-225) (-225)) (-1096 (-381)) (-1096 (-381)) (-645 (-264)))) (-15 -3638 ((-1270) (-1 (-945 (-225)) (-225) (-225)) (-1096 (-381)) (-1096 (-381)))) (-15 -3685 ((-1135 (-225)) (-1 (-945 (-225)) (-225) (-225)) (-1096 (-381)) (-1096 (-381)) (-645 (-264)))) (-15 -3685 ((-1135 (-225)) (-1 (-945 (-225)) (-225) (-225)) (-1096 (-381)) (-1096 (-381)))) (-15 -3638 ((-1270) (-884 (-1 (-225) (-225) (-225))) (-1096 (-381)) (-1096 (-381)) (-645 (-264)))) (-15 -3638 ((-1270) (-884 (-1 (-225) (-225) (-225))) (-1096 (-381)) (-1096 (-381)))) (-15 -3685 ((-1135 (-225)) (-884 (-1 (-225) (-225) (-225))) (-1096 (-381)) (-1096 (-381)) (-645 (-264)))) (-15 -3685 ((-1135 (-225)) (-884 (-1 (-225) (-225) (-225))) (-1096 (-381)) (-1096 (-381)))) (-15 -2530 ((-1 (-945 (-225)) (-225) (-225)) (-1 (-945 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225) (-225)))))
-((-3638 (((-1269) (-295 |#2|) (-1178) (-1178) (-645 (-264))) 101)))
-(((-257 |#1| |#2|) (-10 -7 (-15 -3638 ((-1269) (-295 |#2|) (-1178) (-1178) (-645 (-264))))) (-13 (-559) (-851) (-1040 (-567))) (-433 |#1|)) (T -257))
-((-3638 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-295 *7)) (-5 *4 (-1178)) (-5 *5 (-645 (-264))) (-4 *7 (-433 *6)) (-4 *6 (-13 (-559) (-851) (-1040 (-567)))) (-5 *2 (-1269)) (-5 *1 (-257 *6 *7)))))
-(-10 -7 (-15 -3638 ((-1269) (-295 |#2|) (-1178) (-1178) (-645 (-264)))))
-((-3132 (((-567) (-567)) 73)) (-4113 (((-567) (-567)) 74)) (-4245 (((-225) (-225)) 75)) (-1803 (((-1270) (-1 (-169 (-225)) (-169 (-225))) (-1096 (-225)) (-1096 (-225))) 72)) (-2929 (((-1270) (-1 (-169 (-225)) (-169 (-225))) (-1096 (-225)) (-1096 (-225)) (-112)) 70)))
-(((-258) (-10 -7 (-15 -2929 ((-1270) (-1 (-169 (-225)) (-169 (-225))) (-1096 (-225)) (-1096 (-225)) (-112))) (-15 -1803 ((-1270) (-1 (-169 (-225)) (-169 (-225))) (-1096 (-225)) (-1096 (-225)))) (-15 -3132 ((-567) (-567))) (-15 -4113 ((-567) (-567))) (-15 -4245 ((-225) (-225))))) (T -258))
-((-4245 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-258)))) (-4113 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-258)))) (-3132 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-258)))) (-1803 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1096 (-225))) (-5 *2 (-1270)) (-5 *1 (-258)))) (-2929 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1096 (-225))) (-5 *5 (-112)) (-5 *2 (-1270)) (-5 *1 (-258)))))
-(-10 -7 (-15 -2929 ((-1270) (-1 (-169 (-225)) (-169 (-225))) (-1096 (-225)) (-1096 (-225)) (-112))) (-15 -1803 ((-1270) (-1 (-169 (-225)) (-169 (-225))) (-1096 (-225)) (-1096 (-225)))) (-15 -3132 ((-567) (-567))) (-15 -4113 ((-567) (-567))) (-15 -4245 ((-225) (-225))))
-((-4132 (((-1094 (-381)) (-1094 (-317 |#1|))) 16)))
-(((-259 |#1|) (-10 -7 (-15 -4132 ((-1094 (-381)) (-1094 (-317 |#1|))))) (-13 (-851) (-559) (-615 (-381)))) (T -259))
-((-4132 (*1 *2 *3) (-12 (-5 *3 (-1094 (-317 *4))) (-4 *4 (-13 (-851) (-559) (-615 (-381)))) (-5 *2 (-1094 (-381))) (-5 *1 (-259 *4)))))
-(-10 -7 (-15 -4132 ((-1094 (-381)) (-1094 (-317 |#1|)))))
-((-3685 (((-1135 (-225)) (-884 |#1|) (-1094 (-381)) (-1094 (-381))) 75) (((-1135 (-225)) (-884 |#1|) (-1094 (-381)) (-1094 (-381)) (-645 (-264))) 74) (((-1135 (-225)) |#1| (-1094 (-381)) (-1094 (-381))) 65) (((-1135 (-225)) |#1| (-1094 (-381)) (-1094 (-381)) (-645 (-264))) 64) (((-1135 (-225)) (-881 |#1|) (-1094 (-381))) 56) (((-1135 (-225)) (-881 |#1|) (-1094 (-381)) (-645 (-264))) 55)) (-3638 (((-1270) (-884 |#1|) (-1094 (-381)) (-1094 (-381))) 78) (((-1270) (-884 |#1|) (-1094 (-381)) (-1094 (-381)) (-645 (-264))) 77) (((-1270) |#1| (-1094 (-381)) (-1094 (-381))) 68) (((-1270) |#1| (-1094 (-381)) (-1094 (-381)) (-645 (-264))) 67) (((-1270) (-881 |#1|) (-1094 (-381))) 60) (((-1270) (-881 |#1|) (-1094 (-381)) (-645 (-264))) 59) (((-1269) (-879 |#1|) (-1094 (-381))) 47) (((-1269) (-879 |#1|) (-1094 (-381)) (-645 (-264))) 46) (((-1269) |#1| (-1094 (-381))) 38) (((-1269) |#1| (-1094 (-381)) (-645 (-264))) 36)))
-(((-260 |#1|) (-10 -7 (-15 -3638 ((-1269) |#1| (-1094 (-381)) (-645 (-264)))) (-15 -3638 ((-1269) |#1| (-1094 (-381)))) (-15 -3638 ((-1269) (-879 |#1|) (-1094 (-381)) (-645 (-264)))) (-15 -3638 ((-1269) (-879 |#1|) (-1094 (-381)))) (-15 -3638 ((-1270) (-881 |#1|) (-1094 (-381)) (-645 (-264)))) (-15 -3638 ((-1270) (-881 |#1|) (-1094 (-381)))) (-15 -3685 ((-1135 (-225)) (-881 |#1|) (-1094 (-381)) (-645 (-264)))) (-15 -3685 ((-1135 (-225)) (-881 |#1|) (-1094 (-381)))) (-15 -3638 ((-1270) |#1| (-1094 (-381)) (-1094 (-381)) (-645 (-264)))) (-15 -3638 ((-1270) |#1| (-1094 (-381)) (-1094 (-381)))) (-15 -3685 ((-1135 (-225)) |#1| (-1094 (-381)) (-1094 (-381)) (-645 (-264)))) (-15 -3685 ((-1135 (-225)) |#1| (-1094 (-381)) (-1094 (-381)))) (-15 -3638 ((-1270) (-884 |#1|) (-1094 (-381)) (-1094 (-381)) (-645 (-264)))) (-15 -3638 ((-1270) (-884 |#1|) (-1094 (-381)) (-1094 (-381)))) (-15 -3685 ((-1135 (-225)) (-884 |#1|) (-1094 (-381)) (-1094 (-381)) (-645 (-264)))) (-15 -3685 ((-1135 (-225)) (-884 |#1|) (-1094 (-381)) (-1094 (-381))))) (-13 (-615 (-539)) (-1102))) (T -260))
-((-3685 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-884 *5)) (-5 *4 (-1094 (-381))) (-4 *5 (-13 (-615 (-539)) (-1102))) (-5 *2 (-1135 (-225))) (-5 *1 (-260 *5)))) (-3685 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-884 *6)) (-5 *4 (-1094 (-381))) (-5 *5 (-645 (-264))) (-4 *6 (-13 (-615 (-539)) (-1102))) (-5 *2 (-1135 (-225))) (-5 *1 (-260 *6)))) (-3638 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-884 *5)) (-5 *4 (-1094 (-381))) (-4 *5 (-13 (-615 (-539)) (-1102))) (-5 *2 (-1270)) (-5 *1 (-260 *5)))) (-3638 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-884 *6)) (-5 *4 (-1094 (-381))) (-5 *5 (-645 (-264))) (-4 *6 (-13 (-615 (-539)) (-1102))) (-5 *2 (-1270)) (-5 *1 (-260 *6)))) (-3685 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1094 (-381))) (-5 *2 (-1135 (-225))) (-5 *1 (-260 *3)) (-4 *3 (-13 (-615 (-539)) (-1102))))) (-3685 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1094 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1135 (-225))) (-5 *1 (-260 *3)) (-4 *3 (-13 (-615 (-539)) (-1102))))) (-3638 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1094 (-381))) (-5 *2 (-1270)) (-5 *1 (-260 *3)) (-4 *3 (-13 (-615 (-539)) (-1102))))) (-3638 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1094 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1270)) (-5 *1 (-260 *3)) (-4 *3 (-13 (-615 (-539)) (-1102))))) (-3685 (*1 *2 *3 *4) (-12 (-5 *3 (-881 *5)) (-5 *4 (-1094 (-381))) (-4 *5 (-13 (-615 (-539)) (-1102))) (-5 *2 (-1135 (-225))) (-5 *1 (-260 *5)))) (-3685 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-881 *6)) (-5 *4 (-1094 (-381))) (-5 *5 (-645 (-264))) (-4 *6 (-13 (-615 (-539)) (-1102))) (-5 *2 (-1135 (-225))) (-5 *1 (-260 *6)))) (-3638 (*1 *2 *3 *4) (-12 (-5 *3 (-881 *5)) (-5 *4 (-1094 (-381))) (-4 *5 (-13 (-615 (-539)) (-1102))) (-5 *2 (-1270)) (-5 *1 (-260 *5)))) (-3638 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-881 *6)) (-5 *4 (-1094 (-381))) (-5 *5 (-645 (-264))) (-4 *6 (-13 (-615 (-539)) (-1102))) (-5 *2 (-1270)) (-5 *1 (-260 *6)))) (-3638 (*1 *2 *3 *4) (-12 (-5 *3 (-879 *5)) (-5 *4 (-1094 (-381))) (-4 *5 (-13 (-615 (-539)) (-1102))) (-5 *2 (-1269)) (-5 *1 (-260 *5)))) (-3638 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-879 *6)) (-5 *4 (-1094 (-381))) (-5 *5 (-645 (-264))) (-4 *6 (-13 (-615 (-539)) (-1102))) (-5 *2 (-1269)) (-5 *1 (-260 *6)))) (-3638 (*1 *2 *3 *4) (-12 (-5 *4 (-1094 (-381))) (-5 *2 (-1269)) (-5 *1 (-260 *3)) (-4 *3 (-13 (-615 (-539)) (-1102))))) (-3638 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1094 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1269)) (-5 *1 (-260 *3)) (-4 *3 (-13 (-615 (-539)) (-1102))))))
-(-10 -7 (-15 -3638 ((-1269) |#1| (-1094 (-381)) (-645 (-264)))) (-15 -3638 ((-1269) |#1| (-1094 (-381)))) (-15 -3638 ((-1269) (-879 |#1|) (-1094 (-381)) (-645 (-264)))) (-15 -3638 ((-1269) (-879 |#1|) (-1094 (-381)))) (-15 -3638 ((-1270) (-881 |#1|) (-1094 (-381)) (-645 (-264)))) (-15 -3638 ((-1270) (-881 |#1|) (-1094 (-381)))) (-15 -3685 ((-1135 (-225)) (-881 |#1|) (-1094 (-381)) (-645 (-264)))) (-15 -3685 ((-1135 (-225)) (-881 |#1|) (-1094 (-381)))) (-15 -3638 ((-1270) |#1| (-1094 (-381)) (-1094 (-381)) (-645 (-264)))) (-15 -3638 ((-1270) |#1| (-1094 (-381)) (-1094 (-381)))) (-15 -3685 ((-1135 (-225)) |#1| (-1094 (-381)) (-1094 (-381)) (-645 (-264)))) (-15 -3685 ((-1135 (-225)) |#1| (-1094 (-381)) (-1094 (-381)))) (-15 -3638 ((-1270) (-884 |#1|) (-1094 (-381)) (-1094 (-381)) (-645 (-264)))) (-15 -3638 ((-1270) (-884 |#1|) (-1094 (-381)) (-1094 (-381)))) (-15 -3685 ((-1135 (-225)) (-884 |#1|) (-1094 (-381)) (-1094 (-381)) (-645 (-264)))) (-15 -3685 ((-1135 (-225)) (-884 |#1|) (-1094 (-381)) (-1094 (-381)))))
-((-3638 (((-1270) (-645 (-225)) (-645 (-225)) (-645 (-225)) (-645 (-264))) 23) (((-1270) (-645 (-225)) (-645 (-225)) (-645 (-225))) 24) (((-1269) (-645 (-945 (-225))) (-645 (-264))) 16) (((-1269) (-645 (-945 (-225)))) 17) (((-1269) (-645 (-225)) (-645 (-225)) (-645 (-264))) 20) (((-1269) (-645 (-225)) (-645 (-225))) 21)))
-(((-261) (-10 -7 (-15 -3638 ((-1269) (-645 (-225)) (-645 (-225)))) (-15 -3638 ((-1269) (-645 (-225)) (-645 (-225)) (-645 (-264)))) (-15 -3638 ((-1269) (-645 (-945 (-225))))) (-15 -3638 ((-1269) (-645 (-945 (-225))) (-645 (-264)))) (-15 -3638 ((-1270) (-645 (-225)) (-645 (-225)) (-645 (-225)))) (-15 -3638 ((-1270) (-645 (-225)) (-645 (-225)) (-645 (-225)) (-645 (-264)))))) (T -261))
-((-3638 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-645 (-225))) (-5 *4 (-645 (-264))) (-5 *2 (-1270)) (-5 *1 (-261)))) (-3638 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-645 (-225))) (-5 *2 (-1270)) (-5 *1 (-261)))) (-3638 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-945 (-225)))) (-5 *4 (-645 (-264))) (-5 *2 (-1269)) (-5 *1 (-261)))) (-3638 (*1 *2 *3) (-12 (-5 *3 (-645 (-945 (-225)))) (-5 *2 (-1269)) (-5 *1 (-261)))) (-3638 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-645 (-225))) (-5 *4 (-645 (-264))) (-5 *2 (-1269)) (-5 *1 (-261)))) (-3638 (*1 *2 *3 *3) (-12 (-5 *3 (-645 (-225))) (-5 *2 (-1269)) (-5 *1 (-261)))))
-(-10 -7 (-15 -3638 ((-1269) (-645 (-225)) (-645 (-225)))) (-15 -3638 ((-1269) (-645 (-225)) (-645 (-225)) (-645 (-264)))) (-15 -3638 ((-1269) (-645 (-945 (-225))))) (-15 -3638 ((-1269) (-645 (-945 (-225))) (-645 (-264)))) (-15 -3638 ((-1270) (-645 (-225)) (-645 (-225)) (-645 (-225)))) (-15 -3638 ((-1270) (-645 (-225)) (-645 (-225)) (-645 (-225)) (-645 (-264)))))
-((-2369 (((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2172 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) (-645 (-264)) (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2172 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) 25)) (-2240 (((-923) (-645 (-264)) (-923)) 52)) (-3813 (((-923) (-645 (-264)) (-923)) 51)) (-1741 (((-645 (-381)) (-645 (-264)) (-645 (-381))) 68)) (-3740 (((-381) (-645 (-264)) (-381)) 57)) (-3627 (((-923) (-645 (-264)) (-923)) 53)) (-2956 (((-112) (-645 (-264)) (-112)) 27)) (-3124 (((-1160) (-645 (-264)) (-1160)) 19)) (-1723 (((-1160) (-645 (-264)) (-1160)) 26)) (-1552 (((-1135 (-225)) (-645 (-264))) 46)) (-3320 (((-645 (-1096 (-381))) (-645 (-264)) (-645 (-1096 (-381)))) 40)) (-3442 (((-875) (-645 (-264)) (-875)) 32)) (-1865 (((-875) (-645 (-264)) (-875)) 33)) (-2225 (((-1 (-945 (-225)) (-945 (-225))) (-645 (-264)) (-1 (-945 (-225)) (-945 (-225)))) 63)) (-3196 (((-112) (-645 (-264)) (-112)) 14)) (-4307 (((-112) (-645 (-264)) (-112)) 13)))
-(((-262) (-10 -7 (-15 -4307 ((-112) (-645 (-264)) (-112))) (-15 -3196 ((-112) (-645 (-264)) (-112))) (-15 -2369 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2172 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) (-645 (-264)) (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2172 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -3124 ((-1160) (-645 (-264)) (-1160))) (-15 -1723 ((-1160) (-645 (-264)) (-1160))) (-15 -2956 ((-112) (-645 (-264)) (-112))) (-15 -3442 ((-875) (-645 (-264)) (-875))) (-15 -1865 ((-875) (-645 (-264)) (-875))) (-15 -3320 ((-645 (-1096 (-381))) (-645 (-264)) (-645 (-1096 (-381))))) (-15 -3813 ((-923) (-645 (-264)) (-923))) (-15 -2240 ((-923) (-645 (-264)) (-923))) (-15 -1552 ((-1135 (-225)) (-645 (-264)))) (-15 -3627 ((-923) (-645 (-264)) (-923))) (-15 -3740 ((-381) (-645 (-264)) (-381))) (-15 -2225 ((-1 (-945 (-225)) (-945 (-225))) (-645 (-264)) (-1 (-945 (-225)) (-945 (-225))))) (-15 -1741 ((-645 (-381)) (-645 (-264)) (-645 (-381)))))) (T -262))
-((-1741 (*1 *2 *3 *2) (-12 (-5 *2 (-645 (-381))) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-2225 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-945 (-225)) (-945 (-225)))) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-3740 (*1 *2 *3 *2) (-12 (-5 *2 (-381)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-3627 (*1 *2 *3 *2) (-12 (-5 *2 (-923)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-1552 (*1 *2 *3) (-12 (-5 *3 (-645 (-264))) (-5 *2 (-1135 (-225))) (-5 *1 (-262)))) (-2240 (*1 *2 *3 *2) (-12 (-5 *2 (-923)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-3813 (*1 *2 *3 *2) (-12 (-5 *2 (-923)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-3320 (*1 *2 *3 *2) (-12 (-5 *2 (-645 (-1096 (-381)))) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-1865 (*1 *2 *3 *2) (-12 (-5 *2 (-875)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-3442 (*1 *2 *3 *2) (-12 (-5 *2 (-875)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-2956 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-1723 (*1 *2 *3 *2) (-12 (-5 *2 (-1160)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-3124 (*1 *2 *3 *2) (-12 (-5 *2 (-1160)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-2369 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2172 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-3196 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-4307 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))))
-(-10 -7 (-15 -4307 ((-112) (-645 (-264)) (-112))) (-15 -3196 ((-112) (-645 (-264)) (-112))) (-15 -2369 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2172 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) (-645 (-264)) (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2172 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -3124 ((-1160) (-645 (-264)) (-1160))) (-15 -1723 ((-1160) (-645 (-264)) (-1160))) (-15 -2956 ((-112) (-645 (-264)) (-112))) (-15 -3442 ((-875) (-645 (-264)) (-875))) (-15 -1865 ((-875) (-645 (-264)) (-875))) (-15 -3320 ((-645 (-1096 (-381))) (-645 (-264)) (-645 (-1096 (-381))))) (-15 -3813 ((-923) (-645 (-264)) (-923))) (-15 -2240 ((-923) (-645 (-264)) (-923))) (-15 -1552 ((-1135 (-225)) (-645 (-264)))) (-15 -3627 ((-923) (-645 (-264)) (-923))) (-15 -3740 ((-381) (-645 (-264)) (-381))) (-15 -2225 ((-1 (-945 (-225)) (-945 (-225))) (-645 (-264)) (-1 (-945 (-225)) (-945 (-225))))) (-15 -1741 ((-645 (-381)) (-645 (-264)) (-645 (-381)))))
-((-3243 (((-3 |#1| "failed") (-645 (-264)) (-1178)) 17)))
-(((-263 |#1|) (-10 -7 (-15 -3243 ((-3 |#1| "failed") (-645 (-264)) (-1178)))) (-1218)) (T -263))
-((-3243 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-645 (-264))) (-5 *4 (-1178)) (-5 *1 (-263 *2)) (-4 *2 (-1218)))))
-(-10 -7 (-15 -3243 ((-3 |#1| "failed") (-645 (-264)) (-1178))))
-((-2403 (((-112) $ $) NIL)) (-2369 (($ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2172 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) 24)) (-2240 (($ (-923)) 81)) (-3813 (($ (-923)) 80)) (-3951 (($ (-645 (-381))) 87)) (-3740 (($ (-381)) 66)) (-3627 (($ (-923)) 82)) (-2956 (($ (-112)) 33)) (-3124 (($ (-1160)) 28)) (-1723 (($ (-1160)) 29)) (-1552 (($ (-1135 (-225))) 76)) (-3320 (($ (-645 (-1096 (-381)))) 72)) (-1604 (($ (-645 (-1096 (-381)))) 68) (($ (-645 (-1096 (-410 (-567))))) 71)) (-2194 (($ (-381)) 38) (($ (-875)) 42)) (-3187 (((-112) (-645 $) (-1178)) 100)) (-3243 (((-3 (-52) "failed") (-645 $) (-1178)) 102)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-3872 (($ (-381)) 43) (($ (-875)) 44)) (-2887 (($ (-1 (-945 (-225)) (-945 (-225)))) 65)) (-2225 (($ (-1 (-945 (-225)) (-945 (-225)))) 83)) (-2449 (($ (-1 (-225) (-225))) 48) (($ (-1 (-225) (-225) (-225))) 52) (($ (-1 (-225) (-225) (-225) (-225))) 56)) (-4132 (((-863) $) 93)) (-4218 (($ (-112)) 34) (($ (-645 (-1096 (-381)))) 60)) (-1745 (((-112) $ $) NIL)) (-4307 (($ (-112)) 35)) (-2936 (((-112) $ $) 97)))
-(((-264) (-13 (-1102) (-10 -8 (-15 -4307 ($ (-112))) (-15 -4218 ($ (-112))) (-15 -2369 ($ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2172 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -3124 ($ (-1160))) (-15 -1723 ($ (-1160))) (-15 -2956 ($ (-112))) (-15 -4218 ($ (-645 (-1096 (-381))))) (-15 -2887 ($ (-1 (-945 (-225)) (-945 (-225))))) (-15 -2194 ($ (-381))) (-15 -2194 ($ (-875))) (-15 -3872 ($ (-381))) (-15 -3872 ($ (-875))) (-15 -2449 ($ (-1 (-225) (-225)))) (-15 -2449 ($ (-1 (-225) (-225) (-225)))) (-15 -2449 ($ (-1 (-225) (-225) (-225) (-225)))) (-15 -3740 ($ (-381))) (-15 -1604 ($ (-645 (-1096 (-381))))) (-15 -1604 ($ (-645 (-1096 (-410 (-567)))))) (-15 -3320 ($ (-645 (-1096 (-381))))) (-15 -1552 ($ (-1135 (-225)))) (-15 -3813 ($ (-923))) (-15 -2240 ($ (-923))) (-15 -3627 ($ (-923))) (-15 -2225 ($ (-1 (-945 (-225)) (-945 (-225))))) (-15 -3951 ($ (-645 (-381)))) (-15 -3243 ((-3 (-52) "failed") (-645 $) (-1178))) (-15 -3187 ((-112) (-645 $) (-1178)))))) (T -264))
-((-4307 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-264)))) (-4218 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-264)))) (-2369 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2172 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *1 (-264)))) (-3124 (*1 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-264)))) (-1723 (*1 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-264)))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-264)))) (-4218 (*1 *1 *2) (-12 (-5 *2 (-645 (-1096 (-381)))) (-5 *1 (-264)))) (-2887 (*1 *1 *2) (-12 (-5 *2 (-1 (-945 (-225)) (-945 (-225)))) (-5 *1 (-264)))) (-2194 (*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-264)))) (-2194 (*1 *1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-264)))) (-3872 (*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-264)))) (-3872 (*1 *1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-264)))) (-2449 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-264)))) (-2449 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225) (-225))) (-5 *1 (-264)))) (-2449 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-264)))) (-3740 (*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-264)))) (-1604 (*1 *1 *2) (-12 (-5 *2 (-645 (-1096 (-381)))) (-5 *1 (-264)))) (-1604 (*1 *1 *2) (-12 (-5 *2 (-645 (-1096 (-410 (-567))))) (-5 *1 (-264)))) (-3320 (*1 *1 *2) (-12 (-5 *2 (-645 (-1096 (-381)))) (-5 *1 (-264)))) (-1552 (*1 *1 *2) (-12 (-5 *2 (-1135 (-225))) (-5 *1 (-264)))) (-3813 (*1 *1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-264)))) (-2240 (*1 *1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-264)))) (-3627 (*1 *1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-264)))) (-2225 (*1 *1 *2) (-12 (-5 *2 (-1 (-945 (-225)) (-945 (-225)))) (-5 *1 (-264)))) (-3951 (*1 *1 *2) (-12 (-5 *2 (-645 (-381))) (-5 *1 (-264)))) (-3243 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-645 (-264))) (-5 *4 (-1178)) (-5 *2 (-52)) (-5 *1 (-264)))) (-3187 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-264))) (-5 *4 (-1178)) (-5 *2 (-112)) (-5 *1 (-264)))))
-(-13 (-1102) (-10 -8 (-15 -4307 ($ (-112))) (-15 -4218 ($ (-112))) (-15 -2369 ($ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2172 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -3124 ($ (-1160))) (-15 -1723 ($ (-1160))) (-15 -2956 ($ (-112))) (-15 -4218 ($ (-645 (-1096 (-381))))) (-15 -2887 ($ (-1 (-945 (-225)) (-945 (-225))))) (-15 -2194 ($ (-381))) (-15 -2194 ($ (-875))) (-15 -3872 ($ (-381))) (-15 -3872 ($ (-875))) (-15 -2449 ($ (-1 (-225) (-225)))) (-15 -2449 ($ (-1 (-225) (-225) (-225)))) (-15 -2449 ($ (-1 (-225) (-225) (-225) (-225)))) (-15 -3740 ($ (-381))) (-15 -1604 ($ (-645 (-1096 (-381))))) (-15 -1604 ($ (-645 (-1096 (-410 (-567)))))) (-15 -3320 ($ (-645 (-1096 (-381))))) (-15 -1552 ($ (-1135 (-225)))) (-15 -3813 ($ (-923))) (-15 -2240 ($ (-923))) (-15 -3627 ($ (-923))) (-15 -2225 ($ (-1 (-945 (-225)) (-945 (-225))))) (-15 -3951 ($ (-645 (-381)))) (-15 -3243 ((-3 (-52) "failed") (-645 $) (-1178))) (-15 -3187 ((-112) (-645 $) (-1178)))))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3335 (((-645 (-772)) $) NIL) (((-645 (-772)) $ |#2|) NIL)) (-3729 (((-772) $) NIL) (((-772) $ |#2|) NIL)) (-2847 (((-645 |#3|) $) NIL)) (-2675 (((-1174 $) $ |#3|) NIL) (((-1174 |#1|) $) NIL)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-4381 (($ $) NIL (|has| |#1| (-559)))) (-3949 (((-112) $) NIL (|has| |#1| (-559)))) (-1468 (((-772) $) NIL) (((-772) $ (-645 |#3|)) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-4226 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-911)))) (-3248 (($ $) NIL (|has| |#1| (-455)))) (-2908 (((-421 $) $) NIL (|has| |#1| (-455)))) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-911)))) (-3634 (($ $) NIL)) (-2585 (($) NIL T CONST)) (-3753 (((-3 |#1| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1127 |#1| |#2|) "failed") $) 23)) (-2038 ((|#1| $) NIL) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-567) $) NIL (|has| |#1| (-1040 (-567)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1127 |#1| |#2|) $) NIL)) (-2951 (($ $ $ |#3|) NIL (|has| |#1| (-172)))) (-3014 (($ $) NIL)) (-2630 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 |#1|)) (|:| |vec| (-1268 |#1|))) (-690 $) (-1268 $)) NIL) (((-690 |#1|) (-690 $)) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-3501 (($ $) NIL (|has| |#1| (-455))) (($ $ |#3|) NIL (|has| |#1| (-455)))) (-3000 (((-645 $) $) NIL)) (-3184 (((-112) $) NIL (|has| |#1| (-911)))) (-2320 (($ $ |#1| (-534 |#3|) $) NIL)) (-4303 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (-12 (|has| |#1| (-888 (-381))) (|has| |#3| (-888 (-381))))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (-12 (|has| |#1| (-888 (-567))) (|has| |#3| (-888 (-567)))))) (-4384 (((-772) $ |#2|) NIL) (((-772) $) 10)) (-1433 (((-112) $) NIL)) (-2695 (((-772) $) NIL)) (-2836 (($ (-1174 |#1|) |#3|) NIL) (($ (-1174 $) |#3|) NIL)) (-1709 (((-645 $) $) NIL)) (-2843 (((-112) $) NIL)) (-2824 (($ |#1| (-534 |#3|)) NIL) (($ $ |#3| (-772)) NIL) (($ $ (-645 |#3|) (-645 (-772))) NIL)) (-1621 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $ |#3|) NIL)) (-2656 (((-534 |#3|) $) NIL) (((-772) $ |#3|) NIL) (((-645 (-772)) $ (-645 |#3|)) NIL)) (-3273 (($ (-1 (-534 |#3|) (-534 |#3|)) $) NIL)) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-1369 (((-1 $ (-772)) |#2|) NIL) (((-1 $ (-772)) $) NIL (|has| |#1| (-233)))) (-3046 (((-3 |#3| "failed") $) NIL)) (-2976 (($ $) NIL)) (-2989 ((|#1| $) NIL)) (-3151 ((|#3| $) NIL)) (-2740 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-1419 (((-1160) $) NIL)) (-1634 (((-112) $) NIL)) (-2056 (((-3 (-645 $) "failed") $) NIL)) (-3671 (((-3 (-645 $) "failed") $) NIL)) (-3798 (((-3 (-2 (|:| |var| |#3|) (|:| -3458 (-772))) "failed") $) NIL)) (-2344 (($ $) NIL)) (-3430 (((-1122) $) NIL)) (-2949 (((-112) $) NIL)) (-2962 ((|#1| $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#1| (-455)))) (-2774 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-2435 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-911)))) (-3517 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-911)))) (-2706 (((-421 $) $) NIL (|has| |#1| (-911)))) (-2391 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-2631 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-645 |#3|) (-645 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-645 |#3|) (-645 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-233))) (($ $ (-645 |#2|) (-645 $)) NIL (|has| |#1| (-233))) (($ $ |#2| |#1|) NIL (|has| |#1| (-233))) (($ $ (-645 |#2|) (-645 |#1|)) NIL (|has| |#1| (-233)))) (-3788 (($ $ |#3|) NIL (|has| |#1| (-172)))) (-1593 (($ $ |#3|) NIL) (($ $ (-645 |#3|)) NIL) (($ $ |#3| (-772)) NIL) (($ $ (-645 |#3|) (-645 (-772))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $ (-1178)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2395 (((-645 |#2|) $) NIL)) (-3077 (((-534 |#3|) $) NIL) (((-772) $ |#3|) NIL) (((-645 (-772)) $ (-645 |#3|)) NIL) (((-772) $ |#2|) NIL)) (-3893 (((-894 (-381)) $) NIL (-12 (|has| |#1| (-615 (-894 (-381)))) (|has| |#3| (-615 (-894 (-381)))))) (((-894 (-567)) $) NIL (-12 (|has| |#1| (-615 (-894 (-567)))) (|has| |#3| (-615 (-894 (-567)))))) (((-539) $) NIL (-12 (|has| |#1| (-615 (-539))) (|has| |#3| (-615 (-539)))))) (-4358 ((|#1| $) NIL (|has| |#1| (-455))) (($ $ |#3|) NIL (|has| |#1| (-455)))) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-911))))) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) 26) (($ |#3|) 25) (($ |#2|) NIL) (($ (-1127 |#1| |#2|)) 32) (($ (-410 (-567))) NIL (-2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567)))))) (($ $) NIL (|has| |#1| (-559)))) (-3032 (((-645 |#1|) $) NIL)) (-4136 ((|#1| $ (-534 |#3|)) NIL) (($ $ |#3| (-772)) NIL) (($ $ (-645 |#3|) (-645 (-772))) NIL)) (-1903 (((-3 $ "failed") $) NIL (-2800 (-12 (|has| $ (-145)) (|has| |#1| (-911))) (|has| |#1| (-145))))) (-4221 (((-772)) NIL T CONST)) (-4176 (($ $ $ (-772)) NIL (|has| |#1| (-172)))) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1716 (($) NIL T CONST)) (-1728 (($) NIL T CONST)) (-2637 (($ $ |#3|) NIL) (($ $ (-645 |#3|)) NIL) (($ $ |#3| (-772)) NIL) (($ $ (-645 |#3|) (-645 (-772))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $ (-1178)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+((-3029 (*1 *2 *3) (-12 (-4 *4 (-1051)) (-4 *3 (-851)) (-4 *5 (-267 *3)) (-4 *6 (-794)) (-5 *2 (-1 *1 (-772))) (-4 *1 (-254 *4 *3 *5 *6)))) (-1924 (*1 *2 *1) (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-851)) (-4 *5 (-267 *4)) (-4 *6 (-794)) (-5 *2 (-645 *4)))) (-3362 (*1 *2 *1 *3) (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1051)) (-4 *3 (-851)) (-4 *5 (-267 *3)) (-4 *6 (-794)) (-5 *2 (-772)))) (-3362 (*1 *2 *1) (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-851)) (-4 *5 (-267 *4)) (-4 *6 (-794)) (-5 *2 (-772)))) (-3104 (*1 *2 *1 *3) (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1051)) (-4 *3 (-851)) (-4 *5 (-267 *3)) (-4 *6 (-794)) (-5 *2 (-772)))) (-3754 (*1 *2 *1) (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-851)) (-4 *5 (-267 *4)) (-4 *6 (-794)) (-5 *2 (-645 (-772))))) (-1772 (*1 *2 *1) (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-851)) (-4 *5 (-267 *4)) (-4 *6 (-794)) (-5 *2 (-772)))) (-3754 (*1 *2 *1 *3) (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1051)) (-4 *3 (-851)) (-4 *5 (-267 *3)) (-4 *6 (-794)) (-5 *2 (-645 (-772))))) (-1772 (*1 *2 *1 *3) (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1051)) (-4 *3 (-851)) (-4 *5 (-267 *3)) (-4 *6 (-794)) (-5 *2 (-772)))) (-1901 (*1 *2 *1) (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-851)) (-4 *5 (-267 *4)) (-4 *6 (-794)) (-5 *2 (-112)))) (-3726 (*1 *2 *1) (-12 (-4 *1 (-254 *3 *4 *2 *5)) (-4 *3 (-1051)) (-4 *4 (-851)) (-4 *5 (-794)) (-4 *2 (-267 *4)))) (-2353 (*1 *1 *1) (-12 (-4 *1 (-254 *2 *3 *4 *5)) (-4 *2 (-1051)) (-4 *3 (-851)) (-4 *4 (-267 *3)) (-4 *5 (-794)))) (-1540 (*1 *1 *1) (-12 (-4 *1 (-254 *2 *3 *4 *5)) (-4 *2 (-1051)) (-4 *3 (-851)) (-4 *4 (-267 *3)) (-4 *5 (-794)))) (-3029 (*1 *2 *1) (-12 (-4 *3 (-233)) (-4 *3 (-1051)) (-4 *4 (-851)) (-4 *5 (-267 *4)) (-4 *6 (-794)) (-5 *2 (-1 *1 (-772))) (-4 *1 (-254 *3 *4 *5 *6)))))
+(-13 (-951 |t#1| |t#4| |t#3|) (-231 |t#1|) (-1040 |t#2|) (-10 -8 (-15 -3029 ((-1 $ (-772)) |t#2|)) (-15 -1924 ((-645 |t#2|) $)) (-15 -3362 ((-772) $ |t#2|)) (-15 -3362 ((-772) $)) (-15 -3104 ((-772) $ |t#2|)) (-15 -3754 ((-645 (-772)) $)) (-15 -1772 ((-772) $)) (-15 -3754 ((-645 (-772)) $ |t#2|)) (-15 -1772 ((-772) $ |t#2|)) (-15 -1901 ((-112) $)) (-15 -3726 (|t#3| $)) (-15 -2353 ($ $)) (-15 -1540 ($ $)) (IF (|has| |t#1| (-233)) (PROGN (-6 (-517 |t#2| |t#1|)) (-6 (-517 |t#2| $)) (-6 (-310 $)) (-15 -3029 ((-1 $ (-772)) $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2811 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-410 (-567)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2811 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #0#) -2811 (|has| |#1| (-1040 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567))))) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-617 |#2|) . T) ((-617 |#3|) . T) ((-617 $) -2811 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-614 (-863)) . T) ((-172) -2811 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-615 (-539)) -12 (|has| |#1| (-615 (-539))) (|has| |#3| (-615 (-539)))) ((-615 (-894 (-381))) -12 (|has| |#1| (-615 (-894 (-381)))) (|has| |#3| (-615 (-894 (-381))))) ((-615 (-894 (-567))) -12 (|has| |#1| (-615 (-894 (-567)))) (|has| |#3| (-615 (-894 (-567))))) ((-231 |#1|) . T) ((-233) |has| |#1| (-233)) ((-291) -2811 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-310 $) . T) ((-327 |#1| |#4|) . T) ((-379 |#1|) . T) ((-414 |#1|) . T) ((-455) -2811 (|has| |#1| (-911)) (|has| |#1| (-455))) ((-517 |#2| |#1|) |has| |#1| (-233)) ((-517 |#2| $) |has| |#1| (-233)) ((-517 |#3| |#1|) . T) ((-517 |#3| $) . T) ((-517 $ $) . T) ((-559) -2811 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-647 #0#) |has| |#1| (-38 (-410 (-567)))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) |has| |#1| (-38 (-410 (-567)))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) |has| |#1| (-38 (-410 (-567)))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) -2811 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-640 (-567)) |has| |#1| (-640 (-567))) ((-640 |#1|) . T) ((-718 #0#) |has| |#1| (-38 (-410 (-567)))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) -2811 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-727) . T) ((-902 (-1179)) |has| |#1| (-902 (-1179))) ((-902 |#3|) . T) ((-888 (-381)) -12 (|has| |#1| (-888 (-381))) (|has| |#3| (-888 (-381)))) ((-888 (-567)) -12 (|has| |#1| (-888 (-567))) (|has| |#3| (-888 (-567)))) ((-951 |#1| |#4| |#3|) . T) ((-911) |has| |#1| (-911)) ((-1040 (-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) ((-1040 (-567)) |has| |#1| (-1040 (-567))) ((-1040 |#1|) . T) ((-1040 |#2|) . T) ((-1040 |#3|) . T) ((-1053 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1053 |#1|) . T) ((-1053 $) -2811 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-1058 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1058 |#1|) . T) ((-1058 $) -2811 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1223) |has| |#1| (-911)))
+((-2412 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-1581 ((|#1| $) 55)) (-2270 ((|#1| $) 45)) (-1563 (((-112) $ (-772)) 8)) (-3647 (($) 7 T CONST)) (-3900 (($ $) 61)) (-1602 (($ $) 49)) (-1985 ((|#1| |#1| $) 47)) (-2142 ((|#1| $) 46)) (-2799 (((-645 |#1|) $) 31 (|has| $ (-6 -4422)))) (-4093 (((-112) $ (-772)) 9)) (-1942 (((-645 |#1|) $) 30 (|has| $ (-6 -4422)))) (-3237 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-3751 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#1| |#1|) $) 36)) (-1986 (((-112) $ (-772)) 10)) (-2334 (((-772) $) 62)) (-2516 (((-1161) $) 22 (|has| |#1| (-1102)))) (-2706 ((|#1| $) 40)) (-2826 ((|#1| |#1| $) 53)) (-1387 ((|#1| |#1| $) 52)) (-2646 (($ |#1| $) 41)) (-4136 (((-772) $) 56)) (-3437 (((-1122) $) 21 (|has| |#1| (-1102)))) (-1595 ((|#1| $) 63)) (-1806 ((|#1| $) 51)) (-4282 ((|#1| $) 50)) (-3949 ((|#1| $) 42)) (-4233 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3875 (((-112) $ $) 14)) (-3254 ((|#1| |#1| $) 59)) (-3885 (((-112) $) 11)) (-2701 (($) 12)) (-2852 ((|#1| $) 60)) (-1425 (($) 58) (($ (-645 |#1|)) 57)) (-3289 (((-772) $) 44)) (-3447 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4422))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-4309 (($ $) 13)) (-4129 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-1675 ((|#1| $) 54)) (-3357 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-3700 (($ (-645 |#1|)) 43)) (-1877 ((|#1| $) 64)) (-3436 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4422)))) (-2946 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2423 (((-772) $) 6 (|has| $ (-6 -4422)))))
+(((-255 |#1|) (-140) (-1219)) (T -255))
+((-1425 (*1 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1219)))) (-1425 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1219)) (-4 *1 (-255 *3)))) (-4136 (*1 *2 *1) (-12 (-4 *1 (-255 *3)) (-4 *3 (-1219)) (-5 *2 (-772)))) (-1581 (*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1219)))) (-1675 (*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1219)))) (-2826 (*1 *2 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1219)))) (-1387 (*1 *2 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1219)))) (-1806 (*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1219)))) (-4282 (*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1219)))) (-1602 (*1 *1 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1219)))))
+(-13 (-1123 |t#1|) (-997 |t#1|) (-10 -8 (-15 -1425 ($)) (-15 -1425 ($ (-645 |t#1|))) (-15 -4136 ((-772) $)) (-15 -1581 (|t#1| $)) (-15 -1675 (|t#1| $)) (-15 -2826 (|t#1| |t#1| $)) (-15 -1387 (|t#1| |t#1| $)) (-15 -1806 (|t#1| $)) (-15 -4282 (|t#1| $)) (-15 -1602 ($ $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2811 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-997 |#1|) . T) ((-1102) |has| |#1| (-1102)) ((-1123 |#1|) . T) ((-1219) . T))
+((-2532 (((-1 (-945 (-225)) (-225) (-225)) (-1 (-945 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225) (-225))) 153)) (-3695 (((-1135 (-225)) (-884 (-1 (-225) (-225) (-225))) (-1096 (-381)) (-1096 (-381))) 173) (((-1135 (-225)) (-884 (-1 (-225) (-225) (-225))) (-1096 (-381)) (-1096 (-381)) (-645 (-264))) 171) (((-1135 (-225)) (-1 (-945 (-225)) (-225) (-225)) (-1096 (-381)) (-1096 (-381))) 176) (((-1135 (-225)) (-1 (-945 (-225)) (-225) (-225)) (-1096 (-381)) (-1096 (-381)) (-645 (-264))) 172) (((-1135 (-225)) (-1 (-225) (-225) (-225)) (-1096 (-381)) (-1096 (-381))) 164) (((-1135 (-225)) (-1 (-225) (-225) (-225)) (-1096 (-381)) (-1096 (-381)) (-645 (-264))) 163) (((-1135 (-225)) (-1 (-945 (-225)) (-225)) (-1096 (-381))) 145) (((-1135 (-225)) (-1 (-945 (-225)) (-225)) (-1096 (-381)) (-645 (-264))) 143) (((-1135 (-225)) (-881 (-1 (-225) (-225))) (-1096 (-381))) 144) (((-1135 (-225)) (-881 (-1 (-225) (-225))) (-1096 (-381)) (-645 (-264))) 141)) (-3652 (((-1271) (-884 (-1 (-225) (-225) (-225))) (-1096 (-381)) (-1096 (-381))) 175) (((-1271) (-884 (-1 (-225) (-225) (-225))) (-1096 (-381)) (-1096 (-381)) (-645 (-264))) 174) (((-1271) (-1 (-945 (-225)) (-225) (-225)) (-1096 (-381)) (-1096 (-381))) 178) (((-1271) (-1 (-945 (-225)) (-225) (-225)) (-1096 (-381)) (-1096 (-381)) (-645 (-264))) 177) (((-1271) (-1 (-225) (-225) (-225)) (-1096 (-381)) (-1096 (-381))) 166) (((-1271) (-1 (-225) (-225) (-225)) (-1096 (-381)) (-1096 (-381)) (-645 (-264))) 165) (((-1271) (-1 (-945 (-225)) (-225)) (-1096 (-381))) 151) (((-1271) (-1 (-945 (-225)) (-225)) (-1096 (-381)) (-645 (-264))) 150) (((-1271) (-881 (-1 (-225) (-225))) (-1096 (-381))) 149) (((-1271) (-881 (-1 (-225) (-225))) (-1096 (-381)) (-645 (-264))) 148) (((-1270) (-879 (-1 (-225) (-225))) (-1096 (-381))) 113) (((-1270) (-879 (-1 (-225) (-225))) (-1096 (-381)) (-645 (-264))) 112) (((-1270) (-1 (-225) (-225)) (-1096 (-381))) 107) (((-1270) (-1 (-225) (-225)) (-1096 (-381)) (-645 (-264))) 105)))
+(((-256) (-10 -7 (-15 -3652 ((-1270) (-1 (-225) (-225)) (-1096 (-381)) (-645 (-264)))) (-15 -3652 ((-1270) (-1 (-225) (-225)) (-1096 (-381)))) (-15 -3652 ((-1270) (-879 (-1 (-225) (-225))) (-1096 (-381)) (-645 (-264)))) (-15 -3652 ((-1270) (-879 (-1 (-225) (-225))) (-1096 (-381)))) (-15 -3652 ((-1271) (-881 (-1 (-225) (-225))) (-1096 (-381)) (-645 (-264)))) (-15 -3652 ((-1271) (-881 (-1 (-225) (-225))) (-1096 (-381)))) (-15 -3652 ((-1271) (-1 (-945 (-225)) (-225)) (-1096 (-381)) (-645 (-264)))) (-15 -3652 ((-1271) (-1 (-945 (-225)) (-225)) (-1096 (-381)))) (-15 -3695 ((-1135 (-225)) (-881 (-1 (-225) (-225))) (-1096 (-381)) (-645 (-264)))) (-15 -3695 ((-1135 (-225)) (-881 (-1 (-225) (-225))) (-1096 (-381)))) (-15 -3695 ((-1135 (-225)) (-1 (-945 (-225)) (-225)) (-1096 (-381)) (-645 (-264)))) (-15 -3695 ((-1135 (-225)) (-1 (-945 (-225)) (-225)) (-1096 (-381)))) (-15 -3652 ((-1271) (-1 (-225) (-225) (-225)) (-1096 (-381)) (-1096 (-381)) (-645 (-264)))) (-15 -3652 ((-1271) (-1 (-225) (-225) (-225)) (-1096 (-381)) (-1096 (-381)))) (-15 -3695 ((-1135 (-225)) (-1 (-225) (-225) (-225)) (-1096 (-381)) (-1096 (-381)) (-645 (-264)))) (-15 -3695 ((-1135 (-225)) (-1 (-225) (-225) (-225)) (-1096 (-381)) (-1096 (-381)))) (-15 -3652 ((-1271) (-1 (-945 (-225)) (-225) (-225)) (-1096 (-381)) (-1096 (-381)) (-645 (-264)))) (-15 -3652 ((-1271) (-1 (-945 (-225)) (-225) (-225)) (-1096 (-381)) (-1096 (-381)))) (-15 -3695 ((-1135 (-225)) (-1 (-945 (-225)) (-225) (-225)) (-1096 (-381)) (-1096 (-381)) (-645 (-264)))) (-15 -3695 ((-1135 (-225)) (-1 (-945 (-225)) (-225) (-225)) (-1096 (-381)) (-1096 (-381)))) (-15 -3652 ((-1271) (-884 (-1 (-225) (-225) (-225))) (-1096 (-381)) (-1096 (-381)) (-645 (-264)))) (-15 -3652 ((-1271) (-884 (-1 (-225) (-225) (-225))) (-1096 (-381)) (-1096 (-381)))) (-15 -3695 ((-1135 (-225)) (-884 (-1 (-225) (-225) (-225))) (-1096 (-381)) (-1096 (-381)) (-645 (-264)))) (-15 -3695 ((-1135 (-225)) (-884 (-1 (-225) (-225) (-225))) (-1096 (-381)) (-1096 (-381)))) (-15 -2532 ((-1 (-945 (-225)) (-225) (-225)) (-1 (-945 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225) (-225)))))) (T -256))
+((-2532 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-945 (-225)) (-225) (-225))) (-5 *3 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-256)))) (-3695 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-884 (-1 (-225) (-225) (-225)))) (-5 *4 (-1096 (-381))) (-5 *2 (-1135 (-225))) (-5 *1 (-256)))) (-3695 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-884 (-1 (-225) (-225) (-225)))) (-5 *4 (-1096 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1135 (-225))) (-5 *1 (-256)))) (-3652 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-884 (-1 (-225) (-225) (-225)))) (-5 *4 (-1096 (-381))) (-5 *2 (-1271)) (-5 *1 (-256)))) (-3652 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-884 (-1 (-225) (-225) (-225)))) (-5 *4 (-1096 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1271)) (-5 *1 (-256)))) (-3695 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-945 (-225)) (-225) (-225))) (-5 *4 (-1096 (-381))) (-5 *2 (-1135 (-225))) (-5 *1 (-256)))) (-3695 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-945 (-225)) (-225) (-225))) (-5 *4 (-1096 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1135 (-225))) (-5 *1 (-256)))) (-3652 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-945 (-225)) (-225) (-225))) (-5 *4 (-1096 (-381))) (-5 *2 (-1271)) (-5 *1 (-256)))) (-3652 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-945 (-225)) (-225) (-225))) (-5 *4 (-1096 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1271)) (-5 *1 (-256)))) (-3695 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1096 (-381))) (-5 *2 (-1135 (-225))) (-5 *1 (-256)))) (-3695 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1096 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1135 (-225))) (-5 *1 (-256)))) (-3652 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1096 (-381))) (-5 *2 (-1271)) (-5 *1 (-256)))) (-3652 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1096 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1271)) (-5 *1 (-256)))) (-3695 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-945 (-225)) (-225))) (-5 *4 (-1096 (-381))) (-5 *2 (-1135 (-225))) (-5 *1 (-256)))) (-3695 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-945 (-225)) (-225))) (-5 *4 (-1096 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1135 (-225))) (-5 *1 (-256)))) (-3695 (*1 *2 *3 *4) (-12 (-5 *3 (-881 (-1 (-225) (-225)))) (-5 *4 (-1096 (-381))) (-5 *2 (-1135 (-225))) (-5 *1 (-256)))) (-3695 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-881 (-1 (-225) (-225)))) (-5 *4 (-1096 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1135 (-225))) (-5 *1 (-256)))) (-3652 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-945 (-225)) (-225))) (-5 *4 (-1096 (-381))) (-5 *2 (-1271)) (-5 *1 (-256)))) (-3652 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-945 (-225)) (-225))) (-5 *4 (-1096 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1271)) (-5 *1 (-256)))) (-3652 (*1 *2 *3 *4) (-12 (-5 *3 (-881 (-1 (-225) (-225)))) (-5 *4 (-1096 (-381))) (-5 *2 (-1271)) (-5 *1 (-256)))) (-3652 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-881 (-1 (-225) (-225)))) (-5 *4 (-1096 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1271)) (-5 *1 (-256)))) (-3652 (*1 *2 *3 *4) (-12 (-5 *3 (-879 (-1 (-225) (-225)))) (-5 *4 (-1096 (-381))) (-5 *2 (-1270)) (-5 *1 (-256)))) (-3652 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-879 (-1 (-225) (-225)))) (-5 *4 (-1096 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1270)) (-5 *1 (-256)))) (-3652 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1096 (-381))) (-5 *2 (-1270)) (-5 *1 (-256)))) (-3652 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1096 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1270)) (-5 *1 (-256)))))
+(-10 -7 (-15 -3652 ((-1270) (-1 (-225) (-225)) (-1096 (-381)) (-645 (-264)))) (-15 -3652 ((-1270) (-1 (-225) (-225)) (-1096 (-381)))) (-15 -3652 ((-1270) (-879 (-1 (-225) (-225))) (-1096 (-381)) (-645 (-264)))) (-15 -3652 ((-1270) (-879 (-1 (-225) (-225))) (-1096 (-381)))) (-15 -3652 ((-1271) (-881 (-1 (-225) (-225))) (-1096 (-381)) (-645 (-264)))) (-15 -3652 ((-1271) (-881 (-1 (-225) (-225))) (-1096 (-381)))) (-15 -3652 ((-1271) (-1 (-945 (-225)) (-225)) (-1096 (-381)) (-645 (-264)))) (-15 -3652 ((-1271) (-1 (-945 (-225)) (-225)) (-1096 (-381)))) (-15 -3695 ((-1135 (-225)) (-881 (-1 (-225) (-225))) (-1096 (-381)) (-645 (-264)))) (-15 -3695 ((-1135 (-225)) (-881 (-1 (-225) (-225))) (-1096 (-381)))) (-15 -3695 ((-1135 (-225)) (-1 (-945 (-225)) (-225)) (-1096 (-381)) (-645 (-264)))) (-15 -3695 ((-1135 (-225)) (-1 (-945 (-225)) (-225)) (-1096 (-381)))) (-15 -3652 ((-1271) (-1 (-225) (-225) (-225)) (-1096 (-381)) (-1096 (-381)) (-645 (-264)))) (-15 -3652 ((-1271) (-1 (-225) (-225) (-225)) (-1096 (-381)) (-1096 (-381)))) (-15 -3695 ((-1135 (-225)) (-1 (-225) (-225) (-225)) (-1096 (-381)) (-1096 (-381)) (-645 (-264)))) (-15 -3695 ((-1135 (-225)) (-1 (-225) (-225) (-225)) (-1096 (-381)) (-1096 (-381)))) (-15 -3652 ((-1271) (-1 (-945 (-225)) (-225) (-225)) (-1096 (-381)) (-1096 (-381)) (-645 (-264)))) (-15 -3652 ((-1271) (-1 (-945 (-225)) (-225) (-225)) (-1096 (-381)) (-1096 (-381)))) (-15 -3695 ((-1135 (-225)) (-1 (-945 (-225)) (-225) (-225)) (-1096 (-381)) (-1096 (-381)) (-645 (-264)))) (-15 -3695 ((-1135 (-225)) (-1 (-945 (-225)) (-225) (-225)) (-1096 (-381)) (-1096 (-381)))) (-15 -3652 ((-1271) (-884 (-1 (-225) (-225) (-225))) (-1096 (-381)) (-1096 (-381)) (-645 (-264)))) (-15 -3652 ((-1271) (-884 (-1 (-225) (-225) (-225))) (-1096 (-381)) (-1096 (-381)))) (-15 -3695 ((-1135 (-225)) (-884 (-1 (-225) (-225) (-225))) (-1096 (-381)) (-1096 (-381)) (-645 (-264)))) (-15 -3695 ((-1135 (-225)) (-884 (-1 (-225) (-225) (-225))) (-1096 (-381)) (-1096 (-381)))) (-15 -2532 ((-1 (-945 (-225)) (-225) (-225)) (-1 (-945 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225) (-225)))))
+((-3652 (((-1270) (-295 |#2|) (-1179) (-1179) (-645 (-264))) 101)))
+(((-257 |#1| |#2|) (-10 -7 (-15 -3652 ((-1270) (-295 |#2|) (-1179) (-1179) (-645 (-264))))) (-13 (-559) (-851) (-1040 (-567))) (-433 |#1|)) (T -257))
+((-3652 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-295 *7)) (-5 *4 (-1179)) (-5 *5 (-645 (-264))) (-4 *7 (-433 *6)) (-4 *6 (-13 (-559) (-851) (-1040 (-567)))) (-5 *2 (-1270)) (-5 *1 (-257 *6 *7)))))
+(-10 -7 (-15 -3652 ((-1270) (-295 |#2|) (-1179) (-1179) (-645 (-264)))))
+((-4016 (((-567) (-567)) 73)) (-3259 (((-567) (-567)) 74)) (-4337 (((-225) (-225)) 75)) (-3528 (((-1271) (-1 (-169 (-225)) (-169 (-225))) (-1096 (-225)) (-1096 (-225))) 72)) (-3976 (((-1271) (-1 (-169 (-225)) (-169 (-225))) (-1096 (-225)) (-1096 (-225)) (-112)) 70)))
+(((-258) (-10 -7 (-15 -3976 ((-1271) (-1 (-169 (-225)) (-169 (-225))) (-1096 (-225)) (-1096 (-225)) (-112))) (-15 -3528 ((-1271) (-1 (-169 (-225)) (-169 (-225))) (-1096 (-225)) (-1096 (-225)))) (-15 -4016 ((-567) (-567))) (-15 -3259 ((-567) (-567))) (-15 -4337 ((-225) (-225))))) (T -258))
+((-4337 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-258)))) (-3259 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-258)))) (-4016 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-258)))) (-3528 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1096 (-225))) (-5 *2 (-1271)) (-5 *1 (-258)))) (-3976 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1096 (-225))) (-5 *5 (-112)) (-5 *2 (-1271)) (-5 *1 (-258)))))
+(-10 -7 (-15 -3976 ((-1271) (-1 (-169 (-225)) (-169 (-225))) (-1096 (-225)) (-1096 (-225)) (-112))) (-15 -3528 ((-1271) (-1 (-169 (-225)) (-169 (-225))) (-1096 (-225)) (-1096 (-225)))) (-15 -4016 ((-567) (-567))) (-15 -3259 ((-567) (-567))) (-15 -4337 ((-225) (-225))))
+((-4129 (((-1094 (-381)) (-1094 (-317 |#1|))) 16)))
+(((-259 |#1|) (-10 -7 (-15 -4129 ((-1094 (-381)) (-1094 (-317 |#1|))))) (-13 (-851) (-559) (-615 (-381)))) (T -259))
+((-4129 (*1 *2 *3) (-12 (-5 *3 (-1094 (-317 *4))) (-4 *4 (-13 (-851) (-559) (-615 (-381)))) (-5 *2 (-1094 (-381))) (-5 *1 (-259 *4)))))
+(-10 -7 (-15 -4129 ((-1094 (-381)) (-1094 (-317 |#1|)))))
+((-3695 (((-1135 (-225)) (-884 |#1|) (-1094 (-381)) (-1094 (-381))) 75) (((-1135 (-225)) (-884 |#1|) (-1094 (-381)) (-1094 (-381)) (-645 (-264))) 74) (((-1135 (-225)) |#1| (-1094 (-381)) (-1094 (-381))) 65) (((-1135 (-225)) |#1| (-1094 (-381)) (-1094 (-381)) (-645 (-264))) 64) (((-1135 (-225)) (-881 |#1|) (-1094 (-381))) 56) (((-1135 (-225)) (-881 |#1|) (-1094 (-381)) (-645 (-264))) 55)) (-3652 (((-1271) (-884 |#1|) (-1094 (-381)) (-1094 (-381))) 78) (((-1271) (-884 |#1|) (-1094 (-381)) (-1094 (-381)) (-645 (-264))) 77) (((-1271) |#1| (-1094 (-381)) (-1094 (-381))) 68) (((-1271) |#1| (-1094 (-381)) (-1094 (-381)) (-645 (-264))) 67) (((-1271) (-881 |#1|) (-1094 (-381))) 60) (((-1271) (-881 |#1|) (-1094 (-381)) (-645 (-264))) 59) (((-1270) (-879 |#1|) (-1094 (-381))) 47) (((-1270) (-879 |#1|) (-1094 (-381)) (-645 (-264))) 46) (((-1270) |#1| (-1094 (-381))) 38) (((-1270) |#1| (-1094 (-381)) (-645 (-264))) 36)))
+(((-260 |#1|) (-10 -7 (-15 -3652 ((-1270) |#1| (-1094 (-381)) (-645 (-264)))) (-15 -3652 ((-1270) |#1| (-1094 (-381)))) (-15 -3652 ((-1270) (-879 |#1|) (-1094 (-381)) (-645 (-264)))) (-15 -3652 ((-1270) (-879 |#1|) (-1094 (-381)))) (-15 -3652 ((-1271) (-881 |#1|) (-1094 (-381)) (-645 (-264)))) (-15 -3652 ((-1271) (-881 |#1|) (-1094 (-381)))) (-15 -3695 ((-1135 (-225)) (-881 |#1|) (-1094 (-381)) (-645 (-264)))) (-15 -3695 ((-1135 (-225)) (-881 |#1|) (-1094 (-381)))) (-15 -3652 ((-1271) |#1| (-1094 (-381)) (-1094 (-381)) (-645 (-264)))) (-15 -3652 ((-1271) |#1| (-1094 (-381)) (-1094 (-381)))) (-15 -3695 ((-1135 (-225)) |#1| (-1094 (-381)) (-1094 (-381)) (-645 (-264)))) (-15 -3695 ((-1135 (-225)) |#1| (-1094 (-381)) (-1094 (-381)))) (-15 -3652 ((-1271) (-884 |#1|) (-1094 (-381)) (-1094 (-381)) (-645 (-264)))) (-15 -3652 ((-1271) (-884 |#1|) (-1094 (-381)) (-1094 (-381)))) (-15 -3695 ((-1135 (-225)) (-884 |#1|) (-1094 (-381)) (-1094 (-381)) (-645 (-264)))) (-15 -3695 ((-1135 (-225)) (-884 |#1|) (-1094 (-381)) (-1094 (-381))))) (-13 (-615 (-539)) (-1102))) (T -260))
+((-3695 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-884 *5)) (-5 *4 (-1094 (-381))) (-4 *5 (-13 (-615 (-539)) (-1102))) (-5 *2 (-1135 (-225))) (-5 *1 (-260 *5)))) (-3695 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-884 *6)) (-5 *4 (-1094 (-381))) (-5 *5 (-645 (-264))) (-4 *6 (-13 (-615 (-539)) (-1102))) (-5 *2 (-1135 (-225))) (-5 *1 (-260 *6)))) (-3652 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-884 *5)) (-5 *4 (-1094 (-381))) (-4 *5 (-13 (-615 (-539)) (-1102))) (-5 *2 (-1271)) (-5 *1 (-260 *5)))) (-3652 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-884 *6)) (-5 *4 (-1094 (-381))) (-5 *5 (-645 (-264))) (-4 *6 (-13 (-615 (-539)) (-1102))) (-5 *2 (-1271)) (-5 *1 (-260 *6)))) (-3695 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1094 (-381))) (-5 *2 (-1135 (-225))) (-5 *1 (-260 *3)) (-4 *3 (-13 (-615 (-539)) (-1102))))) (-3695 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1094 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1135 (-225))) (-5 *1 (-260 *3)) (-4 *3 (-13 (-615 (-539)) (-1102))))) (-3652 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1094 (-381))) (-5 *2 (-1271)) (-5 *1 (-260 *3)) (-4 *3 (-13 (-615 (-539)) (-1102))))) (-3652 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1094 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1271)) (-5 *1 (-260 *3)) (-4 *3 (-13 (-615 (-539)) (-1102))))) (-3695 (*1 *2 *3 *4) (-12 (-5 *3 (-881 *5)) (-5 *4 (-1094 (-381))) (-4 *5 (-13 (-615 (-539)) (-1102))) (-5 *2 (-1135 (-225))) (-5 *1 (-260 *5)))) (-3695 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-881 *6)) (-5 *4 (-1094 (-381))) (-5 *5 (-645 (-264))) (-4 *6 (-13 (-615 (-539)) (-1102))) (-5 *2 (-1135 (-225))) (-5 *1 (-260 *6)))) (-3652 (*1 *2 *3 *4) (-12 (-5 *3 (-881 *5)) (-5 *4 (-1094 (-381))) (-4 *5 (-13 (-615 (-539)) (-1102))) (-5 *2 (-1271)) (-5 *1 (-260 *5)))) (-3652 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-881 *6)) (-5 *4 (-1094 (-381))) (-5 *5 (-645 (-264))) (-4 *6 (-13 (-615 (-539)) (-1102))) (-5 *2 (-1271)) (-5 *1 (-260 *6)))) (-3652 (*1 *2 *3 *4) (-12 (-5 *3 (-879 *5)) (-5 *4 (-1094 (-381))) (-4 *5 (-13 (-615 (-539)) (-1102))) (-5 *2 (-1270)) (-5 *1 (-260 *5)))) (-3652 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-879 *6)) (-5 *4 (-1094 (-381))) (-5 *5 (-645 (-264))) (-4 *6 (-13 (-615 (-539)) (-1102))) (-5 *2 (-1270)) (-5 *1 (-260 *6)))) (-3652 (*1 *2 *3 *4) (-12 (-5 *4 (-1094 (-381))) (-5 *2 (-1270)) (-5 *1 (-260 *3)) (-4 *3 (-13 (-615 (-539)) (-1102))))) (-3652 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1094 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1270)) (-5 *1 (-260 *3)) (-4 *3 (-13 (-615 (-539)) (-1102))))))
+(-10 -7 (-15 -3652 ((-1270) |#1| (-1094 (-381)) (-645 (-264)))) (-15 -3652 ((-1270) |#1| (-1094 (-381)))) (-15 -3652 ((-1270) (-879 |#1|) (-1094 (-381)) (-645 (-264)))) (-15 -3652 ((-1270) (-879 |#1|) (-1094 (-381)))) (-15 -3652 ((-1271) (-881 |#1|) (-1094 (-381)) (-645 (-264)))) (-15 -3652 ((-1271) (-881 |#1|) (-1094 (-381)))) (-15 -3695 ((-1135 (-225)) (-881 |#1|) (-1094 (-381)) (-645 (-264)))) (-15 -3695 ((-1135 (-225)) (-881 |#1|) (-1094 (-381)))) (-15 -3652 ((-1271) |#1| (-1094 (-381)) (-1094 (-381)) (-645 (-264)))) (-15 -3652 ((-1271) |#1| (-1094 (-381)) (-1094 (-381)))) (-15 -3695 ((-1135 (-225)) |#1| (-1094 (-381)) (-1094 (-381)) (-645 (-264)))) (-15 -3695 ((-1135 (-225)) |#1| (-1094 (-381)) (-1094 (-381)))) (-15 -3652 ((-1271) (-884 |#1|) (-1094 (-381)) (-1094 (-381)) (-645 (-264)))) (-15 -3652 ((-1271) (-884 |#1|) (-1094 (-381)) (-1094 (-381)))) (-15 -3695 ((-1135 (-225)) (-884 |#1|) (-1094 (-381)) (-1094 (-381)) (-645 (-264)))) (-15 -3695 ((-1135 (-225)) (-884 |#1|) (-1094 (-381)) (-1094 (-381)))))
+((-3652 (((-1271) (-645 (-225)) (-645 (-225)) (-645 (-225)) (-645 (-264))) 23) (((-1271) (-645 (-225)) (-645 (-225)) (-645 (-225))) 24) (((-1270) (-645 (-945 (-225))) (-645 (-264))) 16) (((-1270) (-645 (-945 (-225)))) 17) (((-1270) (-645 (-225)) (-645 (-225)) (-645 (-264))) 20) (((-1270) (-645 (-225)) (-645 (-225))) 21)))
+(((-261) (-10 -7 (-15 -3652 ((-1270) (-645 (-225)) (-645 (-225)))) (-15 -3652 ((-1270) (-645 (-225)) (-645 (-225)) (-645 (-264)))) (-15 -3652 ((-1270) (-645 (-945 (-225))))) (-15 -3652 ((-1270) (-645 (-945 (-225))) (-645 (-264)))) (-15 -3652 ((-1271) (-645 (-225)) (-645 (-225)) (-645 (-225)))) (-15 -3652 ((-1271) (-645 (-225)) (-645 (-225)) (-645 (-225)) (-645 (-264)))))) (T -261))
+((-3652 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-645 (-225))) (-5 *4 (-645 (-264))) (-5 *2 (-1271)) (-5 *1 (-261)))) (-3652 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-645 (-225))) (-5 *2 (-1271)) (-5 *1 (-261)))) (-3652 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-945 (-225)))) (-5 *4 (-645 (-264))) (-5 *2 (-1270)) (-5 *1 (-261)))) (-3652 (*1 *2 *3) (-12 (-5 *3 (-645 (-945 (-225)))) (-5 *2 (-1270)) (-5 *1 (-261)))) (-3652 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-645 (-225))) (-5 *4 (-645 (-264))) (-5 *2 (-1270)) (-5 *1 (-261)))) (-3652 (*1 *2 *3 *3) (-12 (-5 *3 (-645 (-225))) (-5 *2 (-1270)) (-5 *1 (-261)))))
+(-10 -7 (-15 -3652 ((-1270) (-645 (-225)) (-645 (-225)))) (-15 -3652 ((-1270) (-645 (-225)) (-645 (-225)) (-645 (-264)))) (-15 -3652 ((-1270) (-645 (-945 (-225))))) (-15 -3652 ((-1270) (-645 (-945 (-225))) (-645 (-264)))) (-15 -3652 ((-1271) (-645 (-225)) (-645 (-225)) (-645 (-225)))) (-15 -3652 ((-1271) (-645 (-225)) (-645 (-225)) (-645 (-225)) (-645 (-264)))))
+((-3562 (((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2604 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) (-645 (-264)) (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2604 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) 25)) (-2196 (((-923) (-645 (-264)) (-923)) 52)) (-3426 (((-923) (-645 (-264)) (-923)) 51)) (-1757 (((-645 (-381)) (-645 (-264)) (-645 (-381))) 68)) (-3457 (((-381) (-645 (-264)) (-381)) 57)) (-2330 (((-923) (-645 (-264)) (-923)) 53)) (-4150 (((-112) (-645 (-264)) (-112)) 27)) (-3134 (((-1161) (-645 (-264)) (-1161)) 19)) (-2523 (((-1161) (-645 (-264)) (-1161)) 26)) (-3591 (((-1135 (-225)) (-645 (-264))) 46)) (-2835 (((-645 (-1096 (-381))) (-645 (-264)) (-645 (-1096 (-381)))) 40)) (-2500 (((-875) (-645 (-264)) (-875)) 32)) (-1551 (((-875) (-645 (-264)) (-875)) 33)) (-4022 (((-1 (-945 (-225)) (-945 (-225))) (-645 (-264)) (-1 (-945 (-225)) (-945 (-225)))) 63)) (-2186 (((-112) (-645 (-264)) (-112)) 14)) (-3472 (((-112) (-645 (-264)) (-112)) 13)))
+(((-262) (-10 -7 (-15 -3472 ((-112) (-645 (-264)) (-112))) (-15 -2186 ((-112) (-645 (-264)) (-112))) (-15 -3562 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2604 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) (-645 (-264)) (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2604 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -3134 ((-1161) (-645 (-264)) (-1161))) (-15 -2523 ((-1161) (-645 (-264)) (-1161))) (-15 -4150 ((-112) (-645 (-264)) (-112))) (-15 -2500 ((-875) (-645 (-264)) (-875))) (-15 -1551 ((-875) (-645 (-264)) (-875))) (-15 -2835 ((-645 (-1096 (-381))) (-645 (-264)) (-645 (-1096 (-381))))) (-15 -3426 ((-923) (-645 (-264)) (-923))) (-15 -2196 ((-923) (-645 (-264)) (-923))) (-15 -3591 ((-1135 (-225)) (-645 (-264)))) (-15 -2330 ((-923) (-645 (-264)) (-923))) (-15 -3457 ((-381) (-645 (-264)) (-381))) (-15 -4022 ((-1 (-945 (-225)) (-945 (-225))) (-645 (-264)) (-1 (-945 (-225)) (-945 (-225))))) (-15 -1757 ((-645 (-381)) (-645 (-264)) (-645 (-381)))))) (T -262))
+((-1757 (*1 *2 *3 *2) (-12 (-5 *2 (-645 (-381))) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-4022 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-945 (-225)) (-945 (-225)))) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-3457 (*1 *2 *3 *2) (-12 (-5 *2 (-381)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-2330 (*1 *2 *3 *2) (-12 (-5 *2 (-923)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-3591 (*1 *2 *3) (-12 (-5 *3 (-645 (-264))) (-5 *2 (-1135 (-225))) (-5 *1 (-262)))) (-2196 (*1 *2 *3 *2) (-12 (-5 *2 (-923)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-3426 (*1 *2 *3 *2) (-12 (-5 *2 (-923)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-2835 (*1 *2 *3 *2) (-12 (-5 *2 (-645 (-1096 (-381)))) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-1551 (*1 *2 *3 *2) (-12 (-5 *2 (-875)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-2500 (*1 *2 *3 *2) (-12 (-5 *2 (-875)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-4150 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-2523 (*1 *2 *3 *2) (-12 (-5 *2 (-1161)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-3134 (*1 *2 *3 *2) (-12 (-5 *2 (-1161)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-3562 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2604 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-2186 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-3472 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))))
+(-10 -7 (-15 -3472 ((-112) (-645 (-264)) (-112))) (-15 -2186 ((-112) (-645 (-264)) (-112))) (-15 -3562 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2604 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) (-645 (-264)) (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2604 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -3134 ((-1161) (-645 (-264)) (-1161))) (-15 -2523 ((-1161) (-645 (-264)) (-1161))) (-15 -4150 ((-112) (-645 (-264)) (-112))) (-15 -2500 ((-875) (-645 (-264)) (-875))) (-15 -1551 ((-875) (-645 (-264)) (-875))) (-15 -2835 ((-645 (-1096 (-381))) (-645 (-264)) (-645 (-1096 (-381))))) (-15 -3426 ((-923) (-645 (-264)) (-923))) (-15 -2196 ((-923) (-645 (-264)) (-923))) (-15 -3591 ((-1135 (-225)) (-645 (-264)))) (-15 -2330 ((-923) (-645 (-264)) (-923))) (-15 -3457 ((-381) (-645 (-264)) (-381))) (-15 -4022 ((-1 (-945 (-225)) (-945 (-225))) (-645 (-264)) (-1 (-945 (-225)) (-945 (-225))))) (-15 -1757 ((-645 (-381)) (-645 (-264)) (-645 (-381)))))
+((-3251 (((-3 |#1| "failed") (-645 (-264)) (-1179)) 17)))
+(((-263 |#1|) (-10 -7 (-15 -3251 ((-3 |#1| "failed") (-645 (-264)) (-1179)))) (-1219)) (T -263))
+((-3251 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-645 (-264))) (-5 *4 (-1179)) (-5 *1 (-263 *2)) (-4 *2 (-1219)))))
+(-10 -7 (-15 -3251 ((-3 |#1| "failed") (-645 (-264)) (-1179))))
+((-2412 (((-112) $ $) NIL)) (-3562 (($ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2604 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) 24)) (-2196 (($ (-923)) 81)) (-3426 (($ (-923)) 80)) (-4369 (($ (-645 (-381))) 87)) (-3457 (($ (-381)) 66)) (-2330 (($ (-923)) 82)) (-4150 (($ (-112)) 33)) (-3134 (($ (-1161)) 28)) (-2523 (($ (-1161)) 29)) (-3591 (($ (-1135 (-225))) 76)) (-2835 (($ (-645 (-1096 (-381)))) 72)) (-2408 (($ (-645 (-1096 (-381)))) 68) (($ (-645 (-1096 (-410 (-567))))) 71)) (-3834 (($ (-381)) 38) (($ (-875)) 42)) (-3786 (((-112) (-645 $) (-1179)) 100)) (-3251 (((-3 (-52) "failed") (-645 $) (-1179)) 102)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-2672 (($ (-381)) 43) (($ (-875)) 44)) (-3088 (($ (-1 (-945 (-225)) (-945 (-225)))) 65)) (-4022 (($ (-1 (-945 (-225)) (-945 (-225)))) 83)) (-2277 (($ (-1 (-225) (-225))) 48) (($ (-1 (-225) (-225) (-225))) 52) (($ (-1 (-225) (-225) (-225) (-225))) 56)) (-4129 (((-863) $) 93)) (-3623 (($ (-112)) 34) (($ (-645 (-1096 (-381)))) 60)) (-3357 (((-112) $ $) NIL)) (-3472 (($ (-112)) 35)) (-2946 (((-112) $ $) 97)))
+(((-264) (-13 (-1102) (-10 -8 (-15 -3472 ($ (-112))) (-15 -3623 ($ (-112))) (-15 -3562 ($ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2604 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -3134 ($ (-1161))) (-15 -2523 ($ (-1161))) (-15 -4150 ($ (-112))) (-15 -3623 ($ (-645 (-1096 (-381))))) (-15 -3088 ($ (-1 (-945 (-225)) (-945 (-225))))) (-15 -3834 ($ (-381))) (-15 -3834 ($ (-875))) (-15 -2672 ($ (-381))) (-15 -2672 ($ (-875))) (-15 -2277 ($ (-1 (-225) (-225)))) (-15 -2277 ($ (-1 (-225) (-225) (-225)))) (-15 -2277 ($ (-1 (-225) (-225) (-225) (-225)))) (-15 -3457 ($ (-381))) (-15 -2408 ($ (-645 (-1096 (-381))))) (-15 -2408 ($ (-645 (-1096 (-410 (-567)))))) (-15 -2835 ($ (-645 (-1096 (-381))))) (-15 -3591 ($ (-1135 (-225)))) (-15 -3426 ($ (-923))) (-15 -2196 ($ (-923))) (-15 -2330 ($ (-923))) (-15 -4022 ($ (-1 (-945 (-225)) (-945 (-225))))) (-15 -4369 ($ (-645 (-381)))) (-15 -3251 ((-3 (-52) "failed") (-645 $) (-1179))) (-15 -3786 ((-112) (-645 $) (-1179)))))) (T -264))
+((-3472 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-264)))) (-3623 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-264)))) (-3562 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2604 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *1 (-264)))) (-3134 (*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-264)))) (-2523 (*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-264)))) (-4150 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-264)))) (-3623 (*1 *1 *2) (-12 (-5 *2 (-645 (-1096 (-381)))) (-5 *1 (-264)))) (-3088 (*1 *1 *2) (-12 (-5 *2 (-1 (-945 (-225)) (-945 (-225)))) (-5 *1 (-264)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-264)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-264)))) (-2672 (*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-264)))) (-2672 (*1 *1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-264)))) (-2277 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-264)))) (-2277 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225) (-225))) (-5 *1 (-264)))) (-2277 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-264)))) (-3457 (*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-264)))) (-2408 (*1 *1 *2) (-12 (-5 *2 (-645 (-1096 (-381)))) (-5 *1 (-264)))) (-2408 (*1 *1 *2) (-12 (-5 *2 (-645 (-1096 (-410 (-567))))) (-5 *1 (-264)))) (-2835 (*1 *1 *2) (-12 (-5 *2 (-645 (-1096 (-381)))) (-5 *1 (-264)))) (-3591 (*1 *1 *2) (-12 (-5 *2 (-1135 (-225))) (-5 *1 (-264)))) (-3426 (*1 *1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-264)))) (-2196 (*1 *1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-264)))) (-2330 (*1 *1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-264)))) (-4022 (*1 *1 *2) (-12 (-5 *2 (-1 (-945 (-225)) (-945 (-225)))) (-5 *1 (-264)))) (-4369 (*1 *1 *2) (-12 (-5 *2 (-645 (-381))) (-5 *1 (-264)))) (-3251 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-645 (-264))) (-5 *4 (-1179)) (-5 *2 (-52)) (-5 *1 (-264)))) (-3786 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-264))) (-5 *4 (-1179)) (-5 *2 (-112)) (-5 *1 (-264)))))
+(-13 (-1102) (-10 -8 (-15 -3472 ($ (-112))) (-15 -3623 ($ (-112))) (-15 -3562 ($ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2604 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -3134 ($ (-1161))) (-15 -2523 ($ (-1161))) (-15 -4150 ($ (-112))) (-15 -3623 ($ (-645 (-1096 (-381))))) (-15 -3088 ($ (-1 (-945 (-225)) (-945 (-225))))) (-15 -3834 ($ (-381))) (-15 -3834 ($ (-875))) (-15 -2672 ($ (-381))) (-15 -2672 ($ (-875))) (-15 -2277 ($ (-1 (-225) (-225)))) (-15 -2277 ($ (-1 (-225) (-225) (-225)))) (-15 -2277 ($ (-1 (-225) (-225) (-225) (-225)))) (-15 -3457 ($ (-381))) (-15 -2408 ($ (-645 (-1096 (-381))))) (-15 -2408 ($ (-645 (-1096 (-410 (-567)))))) (-15 -2835 ($ (-645 (-1096 (-381))))) (-15 -3591 ($ (-1135 (-225)))) (-15 -3426 ($ (-923))) (-15 -2196 ($ (-923))) (-15 -2330 ($ (-923))) (-15 -4022 ($ (-1 (-945 (-225)) (-945 (-225))))) (-15 -4369 ($ (-645 (-381)))) (-15 -3251 ((-3 (-52) "failed") (-645 $) (-1179))) (-15 -3786 ((-112) (-645 $) (-1179)))))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-3754 (((-645 (-772)) $) NIL) (((-645 (-772)) $ |#2|) NIL)) (-1772 (((-772) $) NIL) (((-772) $ |#2|) NIL)) (-2859 (((-645 |#3|) $) NIL)) (-2684 (((-1175 $) $ |#3|) NIL) (((-1175 |#1|) $) NIL)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-4287 (($ $) NIL (|has| |#1| (-559)))) (-2286 (((-112) $) NIL (|has| |#1| (-559)))) (-3849 (((-772) $) NIL) (((-772) $ (-645 |#3|)) NIL)) (-2376 (((-3 $ "failed") $ $) NIL)) (-2029 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-911)))) (-3659 (($ $) NIL (|has| |#1| (-455)))) (-3597 (((-421 $) $) NIL (|has| |#1| (-455)))) (-3610 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-911)))) (-1540 (($ $) NIL)) (-3647 (($) NIL T CONST)) (-3765 (((-3 |#1| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1127 |#1| |#2|) "failed") $) 23)) (-2051 ((|#1| $) NIL) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-567) $) NIL (|has| |#1| (-1040 (-567)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1127 |#1| |#2|) $) NIL)) (-3554 (($ $ $ |#3|) NIL (|has| |#1| (-172)))) (-3023 (($ $) NIL)) (-1423 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4208 (-690 |#1|)) (|:| |vec| (-1269 |#1|))) (-690 $) (-1269 $)) NIL) (((-690 |#1|) (-690 $)) NIL)) (-3588 (((-3 $ "failed") $) NIL)) (-2989 (($ $) NIL (|has| |#1| (-455))) (($ $ |#3|) NIL (|has| |#1| (-455)))) (-3010 (((-645 $) $) NIL)) (-3502 (((-112) $) NIL (|has| |#1| (-911)))) (-3214 (($ $ |#1| (-534 |#3|) $) NIL)) (-3193 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (-12 (|has| |#1| (-888 (-381))) (|has| |#3| (-888 (-381))))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (-12 (|has| |#1| (-888 (-567))) (|has| |#3| (-888 (-567)))))) (-3362 (((-772) $ |#2|) NIL) (((-772) $) 10)) (-4346 (((-112) $) NIL)) (-2851 (((-772) $) NIL)) (-2848 (($ (-1175 |#1|) |#3|) NIL) (($ (-1175 $) |#3|) NIL)) (-2659 (((-645 $) $) NIL)) (-3770 (((-112) $) NIL)) (-2836 (($ |#1| (-534 |#3|)) NIL) (($ $ |#3| (-772)) NIL) (($ $ (-645 |#3|) (-645 (-772))) NIL)) (-2742 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $ |#3|) NIL)) (-2955 (((-534 |#3|) $) NIL) (((-772) $ |#3|) NIL) (((-645 (-772)) $ (-645 |#3|)) NIL)) (-3827 (($ (-1 (-534 |#3|) (-534 |#3|)) $) NIL)) (-3841 (($ (-1 |#1| |#1|) $) NIL)) (-3029 (((-1 $ (-772)) |#2|) NIL) (((-1 $ (-772)) $) NIL (|has| |#1| (-233)))) (-3221 (((-3 |#3| "failed") $) NIL)) (-2985 (($ $) NIL)) (-2996 ((|#1| $) NIL)) (-3726 ((|#3| $) NIL)) (-2751 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-2516 (((-1161) $) NIL)) (-1901 (((-112) $) NIL)) (-3037 (((-3 (-645 $) "failed") $) NIL)) (-3774 (((-3 (-645 $) "failed") $) NIL)) (-3816 (((-3 (-2 (|:| |var| |#3|) (|:| -3468 (-772))) "failed") $) NIL)) (-2353 (($ $) NIL)) (-3437 (((-1122) $) NIL)) (-2960 (((-112) $) NIL)) (-2971 ((|#1| $) NIL)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| |#1| (-455)))) (-2785 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-3551 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-911)))) (-2016 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-911)))) (-2717 (((-421 $) $) NIL (|has| |#1| (-911)))) (-2400 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-2642 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-645 |#3|) (-645 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-645 |#3|) (-645 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-233))) (($ $ (-645 |#2|) (-645 $)) NIL (|has| |#1| (-233))) (($ $ |#2| |#1|) NIL (|has| |#1| (-233))) (($ $ (-645 |#2|) (-645 |#1|)) NIL (|has| |#1| (-233)))) (-2433 (($ $ |#3|) NIL (|has| |#1| (-172)))) (-1616 (($ $ |#3|) NIL) (($ $ (-645 |#3|)) NIL) (($ $ |#3| (-772)) NIL) (($ $ (-645 |#3|) (-645 (-772))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $ (-1179)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1924 (((-645 |#2|) $) NIL)) (-3104 (((-534 |#3|) $) NIL) (((-772) $ |#3|) NIL) (((-645 (-772)) $ (-645 |#3|)) NIL) (((-772) $ |#2|) NIL)) (-3902 (((-894 (-381)) $) NIL (-12 (|has| |#1| (-615 (-894 (-381)))) (|has| |#3| (-615 (-894 (-381)))))) (((-894 (-567)) $) NIL (-12 (|has| |#1| (-615 (-894 (-567)))) (|has| |#3| (-615 (-894 (-567)))))) (((-539) $) NIL (-12 (|has| |#1| (-615 (-539))) (|has| |#3| (-615 (-539)))))) (-1849 ((|#1| $) NIL (|has| |#1| (-455))) (($ $ |#3|) NIL (|has| |#1| (-455)))) (-2616 (((-3 (-1269 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-911))))) (-4129 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) 26) (($ |#3|) 25) (($ |#2|) NIL) (($ (-1127 |#1| |#2|)) 32) (($ (-410 (-567))) NIL (-2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567)))))) (($ $) NIL (|has| |#1| (-559)))) (-3601 (((-645 |#1|) $) NIL)) (-2558 ((|#1| $ (-534 |#3|)) NIL) (($ $ |#3| (-772)) NIL) (($ $ (-645 |#3|) (-645 (-772))) NIL)) (-2118 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-145)) (|has| |#1| (-911))) (|has| |#1| (-145))))) (-2746 (((-772)) NIL T CONST)) (-3658 (($ $ $ (-772)) NIL (|has| |#1| (-172)))) (-3357 (((-112) $ $) NIL)) (-3731 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1733 (($) NIL T CONST)) (-1744 (($) NIL T CONST)) (-2647 (($ $ |#3|) NIL) (($ $ (-645 |#3|)) NIL) (($ $ |#3| (-772)) NIL) (($ $ (-645 |#3|) (-645 (-772))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $ (-1179)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2946 (((-112) $ $) NIL)) (-3069 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
(((-265 |#1| |#2| |#3|) (-13 (-254 |#1| |#2| |#3| (-534 |#3|)) (-1040 (-1127 |#1| |#2|))) (-1051) (-851) (-267 |#2|)) (T -265))
NIL
(-13 (-254 |#1| |#2| |#3| (-534 |#3|)) (-1040 (-1127 |#1| |#2|)))
-((-3729 (((-772) $) 37)) (-3753 (((-3 |#2| "failed") $) 22)) (-2038 ((|#2| $) 33)) (-1593 (($ $) 14) (($ $ (-772)) 18)) (-4132 (((-863) $) 32) (($ |#2|) 11)) (-2936 (((-112) $ $) 26)) (-2958 (((-112) $ $) 36)))
-(((-266 |#1| |#2|) (-10 -8 (-15 -1593 (|#1| |#1| (-772))) (-15 -1593 (|#1| |#1|)) (-15 -3729 ((-772) |#1|)) (-15 -4132 (|#1| |#2|)) (-15 -3753 ((-3 |#2| "failed") |#1|)) (-15 -2038 (|#2| |#1|)) (-15 -2958 ((-112) |#1| |#1|)) (-15 -4132 ((-863) |#1|)) (-15 -2936 ((-112) |#1| |#1|))) (-267 |#2|) (-851)) (T -266))
+((-1772 (((-772) $) 37)) (-3765 (((-3 |#2| "failed") $) 22)) (-2051 ((|#2| $) 33)) (-1616 (($ $) 14) (($ $ (-772)) 18)) (-4129 (((-863) $) 32) (($ |#2|) 11)) (-2946 (((-112) $ $) 26)) (-2968 (((-112) $ $) 36)))
+(((-266 |#1| |#2|) (-10 -8 (-15 -1616 (|#1| |#1| (-772))) (-15 -1616 (|#1| |#1|)) (-15 -1772 ((-772) |#1|)) (-15 -4129 (|#1| |#2|)) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -2051 (|#2| |#1|)) (-15 -2968 ((-112) |#1| |#1|)) (-15 -4129 ((-863) |#1|)) (-15 -2946 ((-112) |#1| |#1|))) (-267 |#2|) (-851)) (T -266))
NIL
-(-10 -8 (-15 -1593 (|#1| |#1| (-772))) (-15 -1593 (|#1| |#1|)) (-15 -3729 ((-772) |#1|)) (-15 -4132 (|#1| |#2|)) (-15 -3753 ((-3 |#2| "failed") |#1|)) (-15 -2038 (|#2| |#1|)) (-15 -2958 ((-112) |#1| |#1|)) (-15 -4132 ((-863) |#1|)) (-15 -2936 ((-112) |#1| |#1|)))
-((-2403 (((-112) $ $) 7)) (-3729 (((-772) $) 23)) (-3644 ((|#1| $) 24)) (-3753 (((-3 |#1| "failed") $) 28)) (-2038 ((|#1| $) 29)) (-4384 (((-772) $) 25)) (-1354 (($ $ $) 14)) (-2981 (($ $ $) 15)) (-1369 (($ |#1| (-772)) 26)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-1593 (($ $) 22) (($ $ (-772)) 21)) (-4132 (((-863) $) 12) (($ |#1|) 27)) (-1745 (((-112) $ $) 9)) (-2997 (((-112) $ $) 17)) (-2971 (((-112) $ $) 18)) (-2936 (((-112) $ $) 6)) (-2984 (((-112) $ $) 16)) (-2958 (((-112) $ $) 19)))
+(-10 -8 (-15 -1616 (|#1| |#1| (-772))) (-15 -1616 (|#1| |#1|)) (-15 -1772 ((-772) |#1|)) (-15 -4129 (|#1| |#2|)) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -2051 (|#2| |#1|)) (-15 -2968 ((-112) |#1| |#1|)) (-15 -4129 ((-863) |#1|)) (-15 -2946 ((-112) |#1| |#1|)))
+((-2412 (((-112) $ $) 7)) (-1772 (((-772) $) 23)) (-3653 ((|#1| $) 24)) (-3765 (((-3 |#1| "failed") $) 28)) (-2051 ((|#1| $) 29)) (-3362 (((-772) $) 25)) (-1365 (($ $ $) 14)) (-3002 (($ $ $) 15)) (-3029 (($ |#1| (-772)) 26)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-1616 (($ $) 22) (($ $ (-772)) 21)) (-4129 (((-863) $) 12) (($ |#1|) 27)) (-3357 (((-112) $ $) 9)) (-3004 (((-112) $ $) 17)) (-2980 (((-112) $ $) 18)) (-2946 (((-112) $ $) 6)) (-2993 (((-112) $ $) 16)) (-2968 (((-112) $ $) 19)))
(((-267 |#1|) (-140) (-851)) (T -267))
-((-4132 (*1 *1 *2) (-12 (-4 *1 (-267 *2)) (-4 *2 (-851)))) (-1369 (*1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-267 *2)) (-4 *2 (-851)))) (-4384 (*1 *2 *1) (-12 (-4 *1 (-267 *3)) (-4 *3 (-851)) (-5 *2 (-772)))) (-3644 (*1 *2 *1) (-12 (-4 *1 (-267 *2)) (-4 *2 (-851)))) (-3729 (*1 *2 *1) (-12 (-4 *1 (-267 *3)) (-4 *3 (-851)) (-5 *2 (-772)))) (-1593 (*1 *1 *1) (-12 (-4 *1 (-267 *2)) (-4 *2 (-851)))) (-1593 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-267 *3)) (-4 *3 (-851)))))
-(-13 (-851) (-1040 |t#1|) (-10 -8 (-15 -1369 ($ |t#1| (-772))) (-15 -4384 ((-772) $)) (-15 -3644 (|t#1| $)) (-15 -3729 ((-772) $)) (-15 -1593 ($ $)) (-15 -1593 ($ $ (-772))) (-15 -4132 ($ |t#1|))))
+((-4129 (*1 *1 *2) (-12 (-4 *1 (-267 *2)) (-4 *2 (-851)))) (-3029 (*1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-267 *2)) (-4 *2 (-851)))) (-3362 (*1 *2 *1) (-12 (-4 *1 (-267 *3)) (-4 *3 (-851)) (-5 *2 (-772)))) (-3653 (*1 *2 *1) (-12 (-4 *1 (-267 *2)) (-4 *2 (-851)))) (-1772 (*1 *2 *1) (-12 (-4 *1 (-267 *3)) (-4 *3 (-851)) (-5 *2 (-772)))) (-1616 (*1 *1 *1) (-12 (-4 *1 (-267 *2)) (-4 *2 (-851)))) (-1616 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-267 *3)) (-4 *3 (-851)))))
+(-13 (-851) (-1040 |t#1|) (-10 -8 (-15 -3029 ($ |t#1| (-772))) (-15 -3362 ((-772) $)) (-15 -3653 (|t#1| $)) (-15 -1772 ((-772) $)) (-15 -1616 ($ $)) (-15 -1616 ($ $ (-772))) (-15 -4129 ($ |t#1|))))
(((-102) . T) ((-617 |#1|) . T) ((-614 (-863)) . T) ((-851) . T) ((-1040 |#1|) . T) ((-1102) . T))
-((-2847 (((-645 (-1178)) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225))))) 54)) (-3267 (((-645 (-1178)) (-317 (-225)) (-772)) 96)) (-3903 (((-3 (-317 (-225)) "failed") (-317 (-225))) 64)) (-1966 (((-317 (-225)) (-317 (-225))) 82)) (-2268 (((-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225))))) (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 39)) (-3790 (((-112) (-645 (-317 (-225)))) 106)) (-3172 (((-112) (-317 (-225))) 37)) (-1614 (((-645 (-1160)) (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225))))))) 134)) (-1710 (((-645 (-317 (-225))) (-645 (-317 (-225)))) 110)) (-2390 (((-645 (-317 (-225))) (-645 (-317 (-225)))) 108)) (-2827 (((-690 (-225)) (-645 (-317 (-225))) (-772)) 122)) (-4119 (((-112) (-317 (-225))) 32) (((-112) (-645 (-317 (-225)))) 107)) (-1718 (((-645 (-225)) (-645 (-844 (-225))) (-225)) 15)) (-2202 (((-381) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225))))) 128)) (-2811 (((-1037) (-1178) (-1037)) 47)))
-(((-268) (-10 -7 (-15 -1718 ((-645 (-225)) (-645 (-844 (-225))) (-225))) (-15 -2268 ((-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225))))) (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225))))))) (-15 -3903 ((-3 (-317 (-225)) "failed") (-317 (-225)))) (-15 -1966 ((-317 (-225)) (-317 (-225)))) (-15 -3790 ((-112) (-645 (-317 (-225))))) (-15 -4119 ((-112) (-645 (-317 (-225))))) (-15 -4119 ((-112) (-317 (-225)))) (-15 -2827 ((-690 (-225)) (-645 (-317 (-225))) (-772))) (-15 -2390 ((-645 (-317 (-225))) (-645 (-317 (-225))))) (-15 -1710 ((-645 (-317 (-225))) (-645 (-317 (-225))))) (-15 -3172 ((-112) (-317 (-225)))) (-15 -2847 ((-645 (-1178)) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225)))))) (-15 -3267 ((-645 (-1178)) (-317 (-225)) (-772))) (-15 -2811 ((-1037) (-1178) (-1037))) (-15 -2202 ((-381) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225)))))) (-15 -1614 ((-645 (-1160)) (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225)))))))))) (T -268))
-((-1614 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225))))))) (-5 *2 (-645 (-1160))) (-5 *1 (-268)))) (-2202 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225))))) (-5 *2 (-381)) (-5 *1 (-268)))) (-2811 (*1 *2 *3 *2) (-12 (-5 *2 (-1037)) (-5 *3 (-1178)) (-5 *1 (-268)))) (-3267 (*1 *2 *3 *4) (-12 (-5 *3 (-317 (-225))) (-5 *4 (-772)) (-5 *2 (-645 (-1178))) (-5 *1 (-268)))) (-2847 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225))))) (-5 *2 (-645 (-1178))) (-5 *1 (-268)))) (-3172 (*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-112)) (-5 *1 (-268)))) (-1710 (*1 *2 *2) (-12 (-5 *2 (-645 (-317 (-225)))) (-5 *1 (-268)))) (-2390 (*1 *2 *2) (-12 (-5 *2 (-645 (-317 (-225)))) (-5 *1 (-268)))) (-2827 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-317 (-225)))) (-5 *4 (-772)) (-5 *2 (-690 (-225))) (-5 *1 (-268)))) (-4119 (*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-112)) (-5 *1 (-268)))) (-4119 (*1 *2 *3) (-12 (-5 *3 (-645 (-317 (-225)))) (-5 *2 (-112)) (-5 *1 (-268)))) (-3790 (*1 *2 *3) (-12 (-5 *3 (-645 (-317 (-225)))) (-5 *2 (-112)) (-5 *1 (-268)))) (-1966 (*1 *2 *2) (-12 (-5 *2 (-317 (-225))) (-5 *1 (-268)))) (-3903 (*1 *2 *2) (|partial| -12 (-5 *2 (-317 (-225))) (-5 *1 (-268)))) (-2268 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (-5 *1 (-268)))) (-1718 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-844 (-225)))) (-5 *4 (-225)) (-5 *2 (-645 *4)) (-5 *1 (-268)))))
-(-10 -7 (-15 -1718 ((-645 (-225)) (-645 (-844 (-225))) (-225))) (-15 -2268 ((-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225))))) (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225))))))) (-15 -3903 ((-3 (-317 (-225)) "failed") (-317 (-225)))) (-15 -1966 ((-317 (-225)) (-317 (-225)))) (-15 -3790 ((-112) (-645 (-317 (-225))))) (-15 -4119 ((-112) (-645 (-317 (-225))))) (-15 -4119 ((-112) (-317 (-225)))) (-15 -2827 ((-690 (-225)) (-645 (-317 (-225))) (-772))) (-15 -2390 ((-645 (-317 (-225))) (-645 (-317 (-225))))) (-15 -1710 ((-645 (-317 (-225))) (-645 (-317 (-225))))) (-15 -3172 ((-112) (-317 (-225)))) (-15 -2847 ((-645 (-1178)) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225)))))) (-15 -3267 ((-645 (-1178)) (-317 (-225)) (-772))) (-15 -2811 ((-1037) (-1178) (-1037))) (-15 -2202 ((-381) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225)))))) (-15 -1614 ((-645 (-1160)) (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225)))))))))
-((-2403 (((-112) $ $) NIL)) (-3912 (((-1037) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225))))) NIL) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 56)) (-2264 (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 32) (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160))) (-1065) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225))))) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)))
+((-2859 (((-645 (-1179)) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2694 (-645 (-225))))) 54)) (-3275 (((-645 (-1179)) (-317 (-225)) (-772)) 96)) (-4077 (((-3 (-317 (-225)) "failed") (-317 (-225))) 64)) (-1643 (((-317 (-225)) (-317 (-225))) 82)) (-2262 (((-2 (|:| |fn| (-317 (-225))) (|:| -2694 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225))))) (-2 (|:| |fn| (-317 (-225))) (|:| -2694 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 39)) (-2587 (((-112) (-645 (-317 (-225)))) 106)) (-4072 (((-112) (-317 (-225))) 37)) (-3307 (((-645 (-1161)) (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -2694 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2694 (-645 (-225))))))) 134)) (-2757 (((-645 (-317 (-225))) (-645 (-317 (-225)))) 110)) (-1717 (((-645 (-317 (-225))) (-645 (-317 (-225)))) 108)) (-2959 (((-690 (-225)) (-645 (-317 (-225))) (-772)) 122)) (-3753 (((-112) (-317 (-225))) 32) (((-112) (-645 (-317 (-225)))) 107)) (-2077 (((-645 (-225)) (-645 (-844 (-225))) (-225)) 15)) (-3329 (((-381) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2694 (-645 (-225))))) 128)) (-1725 (((-1037) (-1179) (-1037)) 47)))
+(((-268) (-10 -7 (-15 -2077 ((-645 (-225)) (-645 (-844 (-225))) (-225))) (-15 -2262 ((-2 (|:| |fn| (-317 (-225))) (|:| -2694 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225))))) (-2 (|:| |fn| (-317 (-225))) (|:| -2694 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225))))))) (-15 -4077 ((-3 (-317 (-225)) "failed") (-317 (-225)))) (-15 -1643 ((-317 (-225)) (-317 (-225)))) (-15 -2587 ((-112) (-645 (-317 (-225))))) (-15 -3753 ((-112) (-645 (-317 (-225))))) (-15 -3753 ((-112) (-317 (-225)))) (-15 -2959 ((-690 (-225)) (-645 (-317 (-225))) (-772))) (-15 -1717 ((-645 (-317 (-225))) (-645 (-317 (-225))))) (-15 -2757 ((-645 (-317 (-225))) (-645 (-317 (-225))))) (-15 -4072 ((-112) (-317 (-225)))) (-15 -2859 ((-645 (-1179)) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2694 (-645 (-225)))))) (-15 -3275 ((-645 (-1179)) (-317 (-225)) (-772))) (-15 -1725 ((-1037) (-1179) (-1037))) (-15 -3329 ((-381) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2694 (-645 (-225)))))) (-15 -3307 ((-645 (-1161)) (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -2694 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2694 (-645 (-225)))))))))) (T -268))
+((-3307 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -2694 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2694 (-645 (-225))))))) (-5 *2 (-645 (-1161))) (-5 *1 (-268)))) (-3329 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2694 (-645 (-225))))) (-5 *2 (-381)) (-5 *1 (-268)))) (-1725 (*1 *2 *3 *2) (-12 (-5 *2 (-1037)) (-5 *3 (-1179)) (-5 *1 (-268)))) (-3275 (*1 *2 *3 *4) (-12 (-5 *3 (-317 (-225))) (-5 *4 (-772)) (-5 *2 (-645 (-1179))) (-5 *1 (-268)))) (-2859 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2694 (-645 (-225))))) (-5 *2 (-645 (-1179))) (-5 *1 (-268)))) (-4072 (*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-112)) (-5 *1 (-268)))) (-2757 (*1 *2 *2) (-12 (-5 *2 (-645 (-317 (-225)))) (-5 *1 (-268)))) (-1717 (*1 *2 *2) (-12 (-5 *2 (-645 (-317 (-225)))) (-5 *1 (-268)))) (-2959 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-317 (-225)))) (-5 *4 (-772)) (-5 *2 (-690 (-225))) (-5 *1 (-268)))) (-3753 (*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-112)) (-5 *1 (-268)))) (-3753 (*1 *2 *3) (-12 (-5 *3 (-645 (-317 (-225)))) (-5 *2 (-112)) (-5 *1 (-268)))) (-2587 (*1 *2 *3) (-12 (-5 *3 (-645 (-317 (-225)))) (-5 *2 (-112)) (-5 *1 (-268)))) (-1643 (*1 *2 *2) (-12 (-5 *2 (-317 (-225))) (-5 *1 (-268)))) (-4077 (*1 *2 *2) (|partial| -12 (-5 *2 (-317 (-225))) (-5 *1 (-268)))) (-2262 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-317 (-225))) (|:| -2694 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (-5 *1 (-268)))) (-2077 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-844 (-225)))) (-5 *4 (-225)) (-5 *2 (-645 *4)) (-5 *1 (-268)))))
+(-10 -7 (-15 -2077 ((-645 (-225)) (-645 (-844 (-225))) (-225))) (-15 -2262 ((-2 (|:| |fn| (-317 (-225))) (|:| -2694 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225))))) (-2 (|:| |fn| (-317 (-225))) (|:| -2694 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225))))))) (-15 -4077 ((-3 (-317 (-225)) "failed") (-317 (-225)))) (-15 -1643 ((-317 (-225)) (-317 (-225)))) (-15 -2587 ((-112) (-645 (-317 (-225))))) (-15 -3753 ((-112) (-645 (-317 (-225))))) (-15 -3753 ((-112) (-317 (-225)))) (-15 -2959 ((-690 (-225)) (-645 (-317 (-225))) (-772))) (-15 -1717 ((-645 (-317 (-225))) (-645 (-317 (-225))))) (-15 -2757 ((-645 (-317 (-225))) (-645 (-317 (-225))))) (-15 -4072 ((-112) (-317 (-225)))) (-15 -2859 ((-645 (-1179)) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2694 (-645 (-225)))))) (-15 -3275 ((-645 (-1179)) (-317 (-225)) (-772))) (-15 -1725 ((-1037) (-1179) (-1037))) (-15 -3329 ((-381) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2694 (-645 (-225)))))) (-15 -3307 ((-645 (-1161)) (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -2694 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2694 (-645 (-225)))))))))
+((-2412 (((-112) $ $) NIL)) (-3755 (((-1037) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2694 (-645 (-225))))) NIL) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -2694 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 56)) (-3055 (((-2 (|:| -3055 (-381)) (|:| |explanations| (-1161))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -2694 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 32) (((-2 (|:| -3055 (-381)) (|:| |explanations| (-1161))) (-1065) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2694 (-645 (-225))))) NIL)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) NIL)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)))
(((-269) (-840)) (T -269))
NIL
(-840)
-((-2403 (((-112) $ $) NIL)) (-3912 (((-1037) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225))))) 72) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 63)) (-2264 (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 41) (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160))) (-1065) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225))))) 43)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)))
+((-2412 (((-112) $ $) NIL)) (-3755 (((-1037) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2694 (-645 (-225))))) 72) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -2694 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 63)) (-3055 (((-2 (|:| -3055 (-381)) (|:| |explanations| (-1161))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -2694 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 41) (((-2 (|:| -3055 (-381)) (|:| |explanations| (-1161))) (-1065) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2694 (-645 (-225))))) 43)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) NIL)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)))
(((-270) (-840)) (T -270))
NIL
(-840)
-((-2403 (((-112) $ $) NIL)) (-3912 (((-1037) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225))))) 90) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 85)) (-2264 (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 52) (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160))) (-1065) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225))))) 65)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)))
+((-2412 (((-112) $ $) NIL)) (-3755 (((-1037) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2694 (-645 (-225))))) 90) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -2694 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 85)) (-3055 (((-2 (|:| -3055 (-381)) (|:| |explanations| (-1161))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -2694 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 52) (((-2 (|:| -3055 (-381)) (|:| |explanations| (-1161))) (-1065) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2694 (-645 (-225))))) 65)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) NIL)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)))
(((-271) (-840)) (T -271))
NIL
(-840)
-((-2403 (((-112) $ $) NIL)) (-3912 (((-1037) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225))))) NIL) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 73)) (-2264 (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 45) (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160))) (-1065) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225))))) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)))
+((-2412 (((-112) $ $) NIL)) (-3755 (((-1037) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2694 (-645 (-225))))) NIL) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -2694 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 73)) (-3055 (((-2 (|:| -3055 (-381)) (|:| |explanations| (-1161))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -2694 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 45) (((-2 (|:| -3055 (-381)) (|:| |explanations| (-1161))) (-1065) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2694 (-645 (-225))))) NIL)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) NIL)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)))
(((-272) (-840)) (T -272))
NIL
(-840)
-((-2403 (((-112) $ $) NIL)) (-3912 (((-1037) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225))))) NIL) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 65)) (-2264 (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 31) (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160))) (-1065) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225))))) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)))
+((-2412 (((-112) $ $) NIL)) (-3755 (((-1037) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2694 (-645 (-225))))) NIL) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -2694 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 65)) (-3055 (((-2 (|:| -3055 (-381)) (|:| |explanations| (-1161))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -2694 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 31) (((-2 (|:| -3055 (-381)) (|:| |explanations| (-1161))) (-1065) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2694 (-645 (-225))))) NIL)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) NIL)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)))
(((-273) (-840)) (T -273))
NIL
(-840)
-((-2403 (((-112) $ $) NIL)) (-3912 (((-1037) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225))))) NIL) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 90)) (-2264 (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 33) (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160))) (-1065) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225))))) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)))
+((-2412 (((-112) $ $) NIL)) (-3755 (((-1037) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2694 (-645 (-225))))) NIL) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -2694 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 90)) (-3055 (((-2 (|:| -3055 (-381)) (|:| |explanations| (-1161))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -2694 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 33) (((-2 (|:| -3055 (-381)) (|:| |explanations| (-1161))) (-1065) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2694 (-645 (-225))))) NIL)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) NIL)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)))
(((-274) (-840)) (T -274))
NIL
(-840)
-((-2403 (((-112) $ $) NIL)) (-3912 (((-1037) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225))))) NIL) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 95)) (-2264 (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 32) (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160))) (-1065) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225))))) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)))
+((-2412 (((-112) $ $) NIL)) (-3755 (((-1037) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2694 (-645 (-225))))) NIL) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -2694 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 95)) (-3055 (((-2 (|:| -3055 (-381)) (|:| |explanations| (-1161))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -2694 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 32) (((-2 (|:| -3055 (-381)) (|:| |explanations| (-1161))) (-1065) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2694 (-645 (-225))))) NIL)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) NIL)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)))
(((-275) (-840)) (T -275))
NIL
(-840)
-((-2403 (((-112) $ $) NIL)) (-1354 (($ $ $) NIL)) (-2981 (($ $ $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4239 (((-645 (-567)) $) 29)) (-3077 (((-772) $) 27)) (-4132 (((-863) $) 36) (($ (-645 (-567))) 23)) (-1745 (((-112) $ $) NIL)) (-4124 (($ (-772)) 33)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 9)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) 17)))
-(((-276) (-13 (-851) (-10 -8 (-15 -4132 ($ (-645 (-567)))) (-15 -3077 ((-772) $)) (-15 -4239 ((-645 (-567)) $)) (-15 -4124 ($ (-772)))))) (T -276))
-((-4132 (*1 *1 *2) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-276)))) (-3077 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-276)))) (-4239 (*1 *2 *1) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-276)))) (-4124 (*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-276)))))
-(-13 (-851) (-10 -8 (-15 -4132 ($ (-645 (-567)))) (-15 -3077 ((-772) $)) (-15 -4239 ((-645 (-567)) $)) (-15 -4124 ($ (-772)))))
-((-3146 ((|#2| |#2|) 77)) (-3012 ((|#2| |#2|) 65)) (-4064 (((-3 |#2| "failed") |#2| (-645 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 125)) (-3128 ((|#2| |#2|) 75)) (-2987 ((|#2| |#2|) 63)) (-3166 ((|#2| |#2|) 79)) (-3035 ((|#2| |#2|) 67)) (-1482 ((|#2|) 46)) (-2654 (((-114) (-114)) 100)) (-3063 ((|#2| |#2|) 61)) (-3537 (((-112) |#2|) 147)) (-3985 ((|#2| |#2|) 195)) (-2174 ((|#2| |#2|) 171)) (-3495 ((|#2|) 59)) (-4324 ((|#2|) 58)) (-3455 ((|#2| |#2|) 191)) (-2737 ((|#2| |#2|) 167)) (-2895 ((|#2| |#2|) 199)) (-2736 ((|#2| |#2|) 175)) (-2602 ((|#2| |#2|) 163)) (-2546 ((|#2| |#2|) 165)) (-3486 ((|#2| |#2|) 201)) (-3190 ((|#2| |#2|) 177)) (-3449 ((|#2| |#2|) 197)) (-1622 ((|#2| |#2|) 173)) (-1417 ((|#2| |#2|) 193)) (-3841 ((|#2| |#2|) 169)) (-2294 ((|#2| |#2|) 207)) (-1628 ((|#2| |#2|) 183)) (-2261 ((|#2| |#2|) 203)) (-1887 ((|#2| |#2|) 179)) (-4228 ((|#2| |#2|) 211)) (-2751 ((|#2| |#2|) 187)) (-1926 ((|#2| |#2|) 213)) (-3022 ((|#2| |#2|) 189)) (-3437 ((|#2| |#2|) 209)) (-1976 ((|#2| |#2|) 185)) (-3756 ((|#2| |#2|) 205)) (-1758 ((|#2| |#2|) 181)) (-3946 ((|#2| |#2|) 62)) (-3175 ((|#2| |#2|) 80)) (-3049 ((|#2| |#2|) 68)) (-3156 ((|#2| |#2|) 78)) (-3023 ((|#2| |#2|) 66)) (-3137 ((|#2| |#2|) 76)) (-2999 ((|#2| |#2|) 64)) (-3797 (((-112) (-114)) 98)) (-3200 ((|#2| |#2|) 83)) (-3084 ((|#2| |#2|) 71)) (-3183 ((|#2| |#2|) 81)) (-3062 ((|#2| |#2|) 69)) (-3221 ((|#2| |#2|) 85)) (-3106 ((|#2| |#2|) 73)) (-3785 ((|#2| |#2|) 86)) (-3118 ((|#2| |#2|) 74)) (-3211 ((|#2| |#2|) 84)) (-3095 ((|#2| |#2|) 72)) (-3193 ((|#2| |#2|) 82)) (-3074 ((|#2| |#2|) 70)))
-(((-277 |#1| |#2|) (-10 -7 (-15 -3946 (|#2| |#2|)) (-15 -3063 (|#2| |#2|)) (-15 -2987 (|#2| |#2|)) (-15 -2999 (|#2| |#2|)) (-15 -3012 (|#2| |#2|)) (-15 -3023 (|#2| |#2|)) (-15 -3035 (|#2| |#2|)) (-15 -3049 (|#2| |#2|)) (-15 -3062 (|#2| |#2|)) (-15 -3074 (|#2| |#2|)) (-15 -3084 (|#2| |#2|)) (-15 -3095 (|#2| |#2|)) (-15 -3106 (|#2| |#2|)) (-15 -3118 (|#2| |#2|)) (-15 -3128 (|#2| |#2|)) (-15 -3137 (|#2| |#2|)) (-15 -3146 (|#2| |#2|)) (-15 -3156 (|#2| |#2|)) (-15 -3166 (|#2| |#2|)) (-15 -3175 (|#2| |#2|)) (-15 -3183 (|#2| |#2|)) (-15 -3193 (|#2| |#2|)) (-15 -3200 (|#2| |#2|)) (-15 -3211 (|#2| |#2|)) (-15 -3221 (|#2| |#2|)) (-15 -3785 (|#2| |#2|)) (-15 -1482 (|#2|)) (-15 -3797 ((-112) (-114))) (-15 -2654 ((-114) (-114))) (-15 -4324 (|#2|)) (-15 -3495 (|#2|)) (-15 -2546 (|#2| |#2|)) (-15 -2602 (|#2| |#2|)) (-15 -2737 (|#2| |#2|)) (-15 -3841 (|#2| |#2|)) (-15 -2174 (|#2| |#2|)) (-15 -1622 (|#2| |#2|)) (-15 -2736 (|#2| |#2|)) (-15 -3190 (|#2| |#2|)) (-15 -1887 (|#2| |#2|)) (-15 -1758 (|#2| |#2|)) (-15 -1628 (|#2| |#2|)) (-15 -1976 (|#2| |#2|)) (-15 -2751 (|#2| |#2|)) (-15 -3022 (|#2| |#2|)) (-15 -3455 (|#2| |#2|)) (-15 -1417 (|#2| |#2|)) (-15 -3985 (|#2| |#2|)) (-15 -3449 (|#2| |#2|)) (-15 -2895 (|#2| |#2|)) (-15 -3486 (|#2| |#2|)) (-15 -2261 (|#2| |#2|)) (-15 -3756 (|#2| |#2|)) (-15 -2294 (|#2| |#2|)) (-15 -3437 (|#2| |#2|)) (-15 -4228 (|#2| |#2|)) (-15 -1926 (|#2| |#2|)) (-15 -4064 ((-3 |#2| "failed") |#2| (-645 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -3537 ((-112) |#2|))) (-559) (-13 (-433 |#1|) (-1004))) (T -277))
-((-3537 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-112)) (-5 *1 (-277 *4 *3)) (-4 *3 (-13 (-433 *4) (-1004))))) (-4064 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-645 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-433 *4) (-1004))) (-4 *4 (-559)) (-5 *1 (-277 *4 *2)))) (-1926 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-4228 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3437 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-2294 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3756 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-2261 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3486 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-2895 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3449 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3985 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-1417 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3455 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3022 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-2751 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-1976 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-1628 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-1758 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-1887 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3190 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-2736 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-1622 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-2174 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3841 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-2737 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-2602 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-2546 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3495 (*1 *2) (-12 (-4 *2 (-13 (-433 *3) (-1004))) (-5 *1 (-277 *3 *2)) (-4 *3 (-559)))) (-4324 (*1 *2) (-12 (-4 *2 (-13 (-433 *3) (-1004))) (-5 *1 (-277 *3 *2)) (-4 *3 (-559)))) (-2654 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-559)) (-5 *1 (-277 *3 *4)) (-4 *4 (-13 (-433 *3) (-1004))))) (-3797 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-559)) (-5 *2 (-112)) (-5 *1 (-277 *4 *5)) (-4 *5 (-13 (-433 *4) (-1004))))) (-1482 (*1 *2) (-12 (-4 *2 (-13 (-433 *3) (-1004))) (-5 *1 (-277 *3 *2)) (-4 *3 (-559)))) (-3785 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3221 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3211 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3200 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3193 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3183 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3175 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3166 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3156 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3146 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3137 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3128 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3118 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3106 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3095 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3084 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3074 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3062 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3049 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3035 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3023 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3012 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-2999 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-2987 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3063 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3946 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))))
-(-10 -7 (-15 -3946 (|#2| |#2|)) (-15 -3063 (|#2| |#2|)) (-15 -2987 (|#2| |#2|)) (-15 -2999 (|#2| |#2|)) (-15 -3012 (|#2| |#2|)) (-15 -3023 (|#2| |#2|)) (-15 -3035 (|#2| |#2|)) (-15 -3049 (|#2| |#2|)) (-15 -3062 (|#2| |#2|)) (-15 -3074 (|#2| |#2|)) (-15 -3084 (|#2| |#2|)) (-15 -3095 (|#2| |#2|)) (-15 -3106 (|#2| |#2|)) (-15 -3118 (|#2| |#2|)) (-15 -3128 (|#2| |#2|)) (-15 -3137 (|#2| |#2|)) (-15 -3146 (|#2| |#2|)) (-15 -3156 (|#2| |#2|)) (-15 -3166 (|#2| |#2|)) (-15 -3175 (|#2| |#2|)) (-15 -3183 (|#2| |#2|)) (-15 -3193 (|#2| |#2|)) (-15 -3200 (|#2| |#2|)) (-15 -3211 (|#2| |#2|)) (-15 -3221 (|#2| |#2|)) (-15 -3785 (|#2| |#2|)) (-15 -1482 (|#2|)) (-15 -3797 ((-112) (-114))) (-15 -2654 ((-114) (-114))) (-15 -4324 (|#2|)) (-15 -3495 (|#2|)) (-15 -2546 (|#2| |#2|)) (-15 -2602 (|#2| |#2|)) (-15 -2737 (|#2| |#2|)) (-15 -3841 (|#2| |#2|)) (-15 -2174 (|#2| |#2|)) (-15 -1622 (|#2| |#2|)) (-15 -2736 (|#2| |#2|)) (-15 -3190 (|#2| |#2|)) (-15 -1887 (|#2| |#2|)) (-15 -1758 (|#2| |#2|)) (-15 -1628 (|#2| |#2|)) (-15 -1976 (|#2| |#2|)) (-15 -2751 (|#2| |#2|)) (-15 -3022 (|#2| |#2|)) (-15 -3455 (|#2| |#2|)) (-15 -1417 (|#2| |#2|)) (-15 -3985 (|#2| |#2|)) (-15 -3449 (|#2| |#2|)) (-15 -2895 (|#2| |#2|)) (-15 -3486 (|#2| |#2|)) (-15 -2261 (|#2| |#2|)) (-15 -3756 (|#2| |#2|)) (-15 -2294 (|#2| |#2|)) (-15 -3437 (|#2| |#2|)) (-15 -4228 (|#2| |#2|)) (-15 -1926 (|#2| |#2|)) (-15 -4064 ((-3 |#2| "failed") |#2| (-645 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -3537 ((-112) |#2|)))
-((-1458 (((-3 |#2| "failed") (-645 (-613 |#2|)) |#2| (-1178)) 153)) (-3796 ((|#2| (-410 (-567)) |#2|) 49)) (-3278 ((|#2| |#2| (-613 |#2|)) 146)) (-3330 (((-2 (|:| |func| |#2|) (|:| |kers| (-645 (-613 |#2|))) (|:| |vals| (-645 |#2|))) |#2| (-1178)) 145)) (-3641 ((|#2| |#2| (-1178)) 20) ((|#2| |#2|) 23)) (-3321 ((|#2| |#2| (-1178)) 159) ((|#2| |#2|) 157)))
-(((-278 |#1| |#2|) (-10 -7 (-15 -3321 (|#2| |#2|)) (-15 -3321 (|#2| |#2| (-1178))) (-15 -3330 ((-2 (|:| |func| |#2|) (|:| |kers| (-645 (-613 |#2|))) (|:| |vals| (-645 |#2|))) |#2| (-1178))) (-15 -3641 (|#2| |#2|)) (-15 -3641 (|#2| |#2| (-1178))) (-15 -1458 ((-3 |#2| "failed") (-645 (-613 |#2|)) |#2| (-1178))) (-15 -3278 (|#2| |#2| (-613 |#2|))) (-15 -3796 (|#2| (-410 (-567)) |#2|))) (-13 (-559) (-1040 (-567)) (-640 (-567))) (-13 (-27) (-1203) (-433 |#1|))) (T -278))
-((-3796 (*1 *2 *3 *2) (-12 (-5 *3 (-410 (-567))) (-4 *4 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-278 *4 *2)) (-4 *2 (-13 (-27) (-1203) (-433 *4))))) (-3278 (*1 *2 *2 *3) (-12 (-5 *3 (-613 *2)) (-4 *2 (-13 (-27) (-1203) (-433 *4))) (-4 *4 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-278 *4 *2)))) (-1458 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-645 (-613 *2))) (-5 *4 (-1178)) (-4 *2 (-13 (-27) (-1203) (-433 *5))) (-4 *5 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-278 *5 *2)))) (-3641 (*1 *2 *2 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-278 *4 *2)) (-4 *2 (-13 (-27) (-1203) (-433 *4))))) (-3641 (*1 *2 *2) (-12 (-4 *3 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-27) (-1203) (-433 *3))))) (-3330 (*1 *2 *3 *4) (-12 (-5 *4 (-1178)) (-4 *5 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-645 (-613 *3))) (|:| |vals| (-645 *3)))) (-5 *1 (-278 *5 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *5))))) (-3321 (*1 *2 *2 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-278 *4 *2)) (-4 *2 (-13 (-27) (-1203) (-433 *4))))) (-3321 (*1 *2 *2) (-12 (-4 *3 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-27) (-1203) (-433 *3))))))
-(-10 -7 (-15 -3321 (|#2| |#2|)) (-15 -3321 (|#2| |#2| (-1178))) (-15 -3330 ((-2 (|:| |func| |#2|) (|:| |kers| (-645 (-613 |#2|))) (|:| |vals| (-645 |#2|))) |#2| (-1178))) (-15 -3641 (|#2| |#2|)) (-15 -3641 (|#2| |#2| (-1178))) (-15 -1458 ((-3 |#2| "failed") (-645 (-613 |#2|)) |#2| (-1178))) (-15 -3278 (|#2| |#2| (-613 |#2|))) (-15 -3796 (|#2| (-410 (-567)) |#2|)))
-((-2376 (((-3 |#3| "failed") |#3|) 120)) (-3146 ((|#3| |#3|) 142)) (-3599 (((-3 |#3| "failed") |#3|) 89)) (-3012 ((|#3| |#3|) 132)) (-1649 (((-3 |#3| "failed") |#3|) 65)) (-3128 ((|#3| |#3|) 140)) (-4350 (((-3 |#3| "failed") |#3|) 53)) (-2987 ((|#3| |#3|) 130)) (-1349 (((-3 |#3| "failed") |#3|) 122)) (-3166 ((|#3| |#3|) 144)) (-2305 (((-3 |#3| "failed") |#3|) 91)) (-3035 ((|#3| |#3|) 134)) (-3769 (((-3 |#3| "failed") |#3| (-772)) 41)) (-1557 (((-3 |#3| "failed") |#3|) 81)) (-3063 ((|#3| |#3|) 129)) (-1632 (((-3 |#3| "failed") |#3|) 51)) (-3946 ((|#3| |#3|) 128)) (-1872 (((-3 |#3| "failed") |#3|) 123)) (-3175 ((|#3| |#3|) 145)) (-2874 (((-3 |#3| "failed") |#3|) 92)) (-3049 ((|#3| |#3|) 135)) (-3114 (((-3 |#3| "failed") |#3|) 121)) (-3156 ((|#3| |#3|) 143)) (-2579 (((-3 |#3| "failed") |#3|) 90)) (-3023 ((|#3| |#3|) 133)) (-2136 (((-3 |#3| "failed") |#3|) 67)) (-3137 ((|#3| |#3|) 141)) (-2247 (((-3 |#3| "failed") |#3|) 55)) (-2999 ((|#3| |#3|) 131)) (-4213 (((-3 |#3| "failed") |#3|) 73)) (-3200 ((|#3| |#3|) 148)) (-2363 (((-3 |#3| "failed") |#3|) 114)) (-3084 ((|#3| |#3|) 154)) (-3484 (((-3 |#3| "failed") |#3|) 69)) (-3183 ((|#3| |#3|) 146)) (-2440 (((-3 |#3| "failed") |#3|) 57)) (-3062 ((|#3| |#3|) 136)) (-1886 (((-3 |#3| "failed") |#3|) 77)) (-3221 ((|#3| |#3|) 150)) (-3391 (((-3 |#3| "failed") |#3|) 61)) (-3106 ((|#3| |#3|) 138)) (-2682 (((-3 |#3| "failed") |#3|) 79)) (-3785 ((|#3| |#3|) 151)) (-4109 (((-3 |#3| "failed") |#3|) 63)) (-3118 ((|#3| |#3|) 139)) (-1625 (((-3 |#3| "failed") |#3|) 75)) (-3211 ((|#3| |#3|) 149)) (-1812 (((-3 |#3| "failed") |#3|) 117)) (-3095 ((|#3| |#3|) 155)) (-2287 (((-3 |#3| "failed") |#3|) 71)) (-3193 ((|#3| |#3|) 147)) (-2224 (((-3 |#3| "failed") |#3|) 59)) (-3074 ((|#3| |#3|) 137)) (** ((|#3| |#3| (-410 (-567))) 47 (|has| |#1| (-365)))))
-(((-279 |#1| |#2| |#3|) (-13 (-985 |#3|) (-10 -7 (IF (|has| |#1| (-365)) (-15 ** (|#3| |#3| (-410 (-567)))) |%noBranch|) (-15 -3946 (|#3| |#3|)) (-15 -3063 (|#3| |#3|)) (-15 -2987 (|#3| |#3|)) (-15 -2999 (|#3| |#3|)) (-15 -3012 (|#3| |#3|)) (-15 -3023 (|#3| |#3|)) (-15 -3035 (|#3| |#3|)) (-15 -3049 (|#3| |#3|)) (-15 -3062 (|#3| |#3|)) (-15 -3074 (|#3| |#3|)) (-15 -3084 (|#3| |#3|)) (-15 -3095 (|#3| |#3|)) (-15 -3106 (|#3| |#3|)) (-15 -3118 (|#3| |#3|)) (-15 -3128 (|#3| |#3|)) (-15 -3137 (|#3| |#3|)) (-15 -3146 (|#3| |#3|)) (-15 -3156 (|#3| |#3|)) (-15 -3166 (|#3| |#3|)) (-15 -3175 (|#3| |#3|)) (-15 -3183 (|#3| |#3|)) (-15 -3193 (|#3| |#3|)) (-15 -3200 (|#3| |#3|)) (-15 -3211 (|#3| |#3|)) (-15 -3221 (|#3| |#3|)) (-15 -3785 (|#3| |#3|)))) (-38 (-410 (-567))) (-1259 |#1|) (-1230 |#1| |#2|)) (T -279))
-((** (*1 *2 *2 *3) (-12 (-5 *3 (-410 (-567))) (-4 *4 (-365)) (-4 *4 (-38 *3)) (-4 *5 (-1259 *4)) (-5 *1 (-279 *4 *5 *2)) (-4 *2 (-1230 *4 *5)))) (-3946 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))) (-3063 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))) (-2987 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))) (-2999 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))) (-3012 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))) (-3023 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))) (-3035 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))) (-3049 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))) (-3062 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))) (-3074 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))) (-3084 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))) (-3095 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))) (-3106 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))) (-3118 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))) (-3128 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))) (-3137 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))) (-3146 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))) (-3156 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))) (-3166 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))) (-3175 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))) (-3183 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))) (-3193 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))) (-3200 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))) (-3211 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))) (-3221 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))) (-3785 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4)))))
-(-13 (-985 |#3|) (-10 -7 (IF (|has| |#1| (-365)) (-15 ** (|#3| |#3| (-410 (-567)))) |%noBranch|) (-15 -3946 (|#3| |#3|)) (-15 -3063 (|#3| |#3|)) (-15 -2987 (|#3| |#3|)) (-15 -2999 (|#3| |#3|)) (-15 -3012 (|#3| |#3|)) (-15 -3023 (|#3| |#3|)) (-15 -3035 (|#3| |#3|)) (-15 -3049 (|#3| |#3|)) (-15 -3062 (|#3| |#3|)) (-15 -3074 (|#3| |#3|)) (-15 -3084 (|#3| |#3|)) (-15 -3095 (|#3| |#3|)) (-15 -3106 (|#3| |#3|)) (-15 -3118 (|#3| |#3|)) (-15 -3128 (|#3| |#3|)) (-15 -3137 (|#3| |#3|)) (-15 -3146 (|#3| |#3|)) (-15 -3156 (|#3| |#3|)) (-15 -3166 (|#3| |#3|)) (-15 -3175 (|#3| |#3|)) (-15 -3183 (|#3| |#3|)) (-15 -3193 (|#3| |#3|)) (-15 -3200 (|#3| |#3|)) (-15 -3211 (|#3| |#3|)) (-15 -3221 (|#3| |#3|)) (-15 -3785 (|#3| |#3|))))
-((-2376 (((-3 |#3| "failed") |#3|) 70)) (-3146 ((|#3| |#3|) 137)) (-3599 (((-3 |#3| "failed") |#3|) 54)) (-3012 ((|#3| |#3|) 125)) (-1649 (((-3 |#3| "failed") |#3|) 66)) (-3128 ((|#3| |#3|) 135)) (-4350 (((-3 |#3| "failed") |#3|) 50)) (-2987 ((|#3| |#3|) 123)) (-1349 (((-3 |#3| "failed") |#3|) 74)) (-3166 ((|#3| |#3|) 139)) (-2305 (((-3 |#3| "failed") |#3|) 58)) (-3035 ((|#3| |#3|) 127)) (-3769 (((-3 |#3| "failed") |#3| (-772)) 38)) (-1557 (((-3 |#3| "failed") |#3|) 48)) (-3063 ((|#3| |#3|) 111)) (-1632 (((-3 |#3| "failed") |#3|) 46)) (-3946 ((|#3| |#3|) 122)) (-1872 (((-3 |#3| "failed") |#3|) 76)) (-3175 ((|#3| |#3|) 140)) (-2874 (((-3 |#3| "failed") |#3|) 60)) (-3049 ((|#3| |#3|) 128)) (-3114 (((-3 |#3| "failed") |#3|) 72)) (-3156 ((|#3| |#3|) 138)) (-2579 (((-3 |#3| "failed") |#3|) 56)) (-3023 ((|#3| |#3|) 126)) (-2136 (((-3 |#3| "failed") |#3|) 68)) (-3137 ((|#3| |#3|) 136)) (-2247 (((-3 |#3| "failed") |#3|) 52)) (-2999 ((|#3| |#3|) 124)) (-4213 (((-3 |#3| "failed") |#3|) 78)) (-3200 ((|#3| |#3|) 143)) (-2363 (((-3 |#3| "failed") |#3|) 62)) (-3084 ((|#3| |#3|) 131)) (-3484 (((-3 |#3| "failed") |#3|) 112)) (-3183 ((|#3| |#3|) 141)) (-2440 (((-3 |#3| "failed") |#3|) 100)) (-3062 ((|#3| |#3|) 129)) (-1886 (((-3 |#3| "failed") |#3|) 116)) (-3221 ((|#3| |#3|) 145)) (-3391 (((-3 |#3| "failed") |#3|) 107)) (-3106 ((|#3| |#3|) 133)) (-2682 (((-3 |#3| "failed") |#3|) 117)) (-3785 ((|#3| |#3|) 146)) (-4109 (((-3 |#3| "failed") |#3|) 109)) (-3118 ((|#3| |#3|) 134)) (-1625 (((-3 |#3| "failed") |#3|) 80)) (-3211 ((|#3| |#3|) 144)) (-1812 (((-3 |#3| "failed") |#3|) 64)) (-3095 ((|#3| |#3|) 132)) (-2287 (((-3 |#3| "failed") |#3|) 113)) (-3193 ((|#3| |#3|) 142)) (-2224 (((-3 |#3| "failed") |#3|) 103)) (-3074 ((|#3| |#3|) 130)) (** ((|#3| |#3| (-410 (-567))) 44 (|has| |#1| (-365)))))
-(((-280 |#1| |#2| |#3| |#4|) (-13 (-985 |#3|) (-10 -7 (IF (|has| |#1| (-365)) (-15 ** (|#3| |#3| (-410 (-567)))) |%noBranch|) (-15 -3946 (|#3| |#3|)) (-15 -3063 (|#3| |#3|)) (-15 -2987 (|#3| |#3|)) (-15 -2999 (|#3| |#3|)) (-15 -3012 (|#3| |#3|)) (-15 -3023 (|#3| |#3|)) (-15 -3035 (|#3| |#3|)) (-15 -3049 (|#3| |#3|)) (-15 -3062 (|#3| |#3|)) (-15 -3074 (|#3| |#3|)) (-15 -3084 (|#3| |#3|)) (-15 -3095 (|#3| |#3|)) (-15 -3106 (|#3| |#3|)) (-15 -3118 (|#3| |#3|)) (-15 -3128 (|#3| |#3|)) (-15 -3137 (|#3| |#3|)) (-15 -3146 (|#3| |#3|)) (-15 -3156 (|#3| |#3|)) (-15 -3166 (|#3| |#3|)) (-15 -3175 (|#3| |#3|)) (-15 -3183 (|#3| |#3|)) (-15 -3193 (|#3| |#3|)) (-15 -3200 (|#3| |#3|)) (-15 -3211 (|#3| |#3|)) (-15 -3221 (|#3| |#3|)) (-15 -3785 (|#3| |#3|)))) (-38 (-410 (-567))) (-1228 |#1|) (-1251 |#1| |#2|) (-985 |#2|)) (T -280))
-((** (*1 *2 *2 *3) (-12 (-5 *3 (-410 (-567))) (-4 *4 (-365)) (-4 *4 (-38 *3)) (-4 *5 (-1228 *4)) (-5 *1 (-280 *4 *5 *2 *6)) (-4 *2 (-1251 *4 *5)) (-4 *6 (-985 *5)))) (-3946 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))) (-3063 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))) (-2987 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))) (-2999 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))) (-3012 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))) (-3023 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))) (-3035 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))) (-3049 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))) (-3062 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))) (-3074 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))) (-3084 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))) (-3095 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))) (-3106 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))) (-3118 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))) (-3128 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))) (-3137 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))) (-3146 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))) (-3156 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))) (-3166 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))) (-3175 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))) (-3183 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))) (-3193 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))) (-3200 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))) (-3211 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))) (-3221 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))) (-3785 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4)))))
-(-13 (-985 |#3|) (-10 -7 (IF (|has| |#1| (-365)) (-15 ** (|#3| |#3| (-410 (-567)))) |%noBranch|) (-15 -3946 (|#3| |#3|)) (-15 -3063 (|#3| |#3|)) (-15 -2987 (|#3| |#3|)) (-15 -2999 (|#3| |#3|)) (-15 -3012 (|#3| |#3|)) (-15 -3023 (|#3| |#3|)) (-15 -3035 (|#3| |#3|)) (-15 -3049 (|#3| |#3|)) (-15 -3062 (|#3| |#3|)) (-15 -3074 (|#3| |#3|)) (-15 -3084 (|#3| |#3|)) (-15 -3095 (|#3| |#3|)) (-15 -3106 (|#3| |#3|)) (-15 -3118 (|#3| |#3|)) (-15 -3128 (|#3| |#3|)) (-15 -3137 (|#3| |#3|)) (-15 -3146 (|#3| |#3|)) (-15 -3156 (|#3| |#3|)) (-15 -3166 (|#3| |#3|)) (-15 -3175 (|#3| |#3|)) (-15 -3183 (|#3| |#3|)) (-15 -3193 (|#3| |#3|)) (-15 -3200 (|#3| |#3|)) (-15 -3211 (|#3| |#3|)) (-15 -3221 (|#3| |#3|)) (-15 -3785 (|#3| |#3|))))
-((-1365 (((-112) $) 20)) (-2386 (((-1183) $) 7)) (-3428 (((-3 (-509) "failed") $) 14)) (-2916 (((-3 (-645 $) "failed") $) NIL)) (-1640 (((-3 (-509) "failed") $) 21)) (-4286 (((-3 (-1106) "failed") $) 18)) (-1935 (((-112) $) 16)) (-4132 (((-863) $) NIL)) (-2175 (((-112) $) 9)))
-(((-281) (-13 (-614 (-863)) (-10 -8 (-15 -2386 ((-1183) $)) (-15 -1935 ((-112) $)) (-15 -4286 ((-3 (-1106) "failed") $)) (-15 -1365 ((-112) $)) (-15 -1640 ((-3 (-509) "failed") $)) (-15 -2175 ((-112) $)) (-15 -3428 ((-3 (-509) "failed") $)) (-15 -2916 ((-3 (-645 $) "failed") $))))) (T -281))
-((-2386 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-281)))) (-1935 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-281)))) (-4286 (*1 *2 *1) (|partial| -12 (-5 *2 (-1106)) (-5 *1 (-281)))) (-1365 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-281)))) (-1640 (*1 *2 *1) (|partial| -12 (-5 *2 (-509)) (-5 *1 (-281)))) (-2175 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-281)))) (-3428 (*1 *2 *1) (|partial| -12 (-5 *2 (-509)) (-5 *1 (-281)))) (-2916 (*1 *2 *1) (|partial| -12 (-5 *2 (-645 (-281))) (-5 *1 (-281)))))
-(-13 (-614 (-863)) (-10 -8 (-15 -2386 ((-1183) $)) (-15 -1935 ((-112) $)) (-15 -4286 ((-3 (-1106) "failed") $)) (-15 -1365 ((-112) $)) (-15 -1640 ((-3 (-509) "failed") $)) (-15 -2175 ((-112) $)) (-15 -3428 ((-3 (-509) "failed") $)) (-15 -2916 ((-3 (-645 $) "failed") $))))
-((-3350 (($ (-1 (-112) |#2|) $) 24)) (-2444 (($ $) 38)) (-2539 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 36)) (-3238 (($ |#2| $) 34) (($ (-1 (-112) |#2|) $) 18)) (-2966 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 42)) (-2845 (($ |#2| $ (-567)) 20) (($ $ $ (-567)) 22)) (-1560 (($ $ (-567)) 11) (($ $ (-1235 (-567))) 14)) (-2484 (($ $ |#2|) 32) (($ $ $) NIL)) (-2269 (($ $ |#2|) 31) (($ |#2| $) NIL) (($ $ $) 26) (($ (-645 $)) NIL)))
-(((-282 |#1| |#2|) (-10 -8 (-15 -2966 (|#1| |#1| |#1|)) (-15 -2539 (|#1| |#2| |#1|)) (-15 -2966 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2539 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2484 (|#1| |#1| |#1|)) (-15 -2484 (|#1| |#1| |#2|)) (-15 -2845 (|#1| |#1| |#1| (-567))) (-15 -2845 (|#1| |#2| |#1| (-567))) (-15 -1560 (|#1| |#1| (-1235 (-567)))) (-15 -1560 (|#1| |#1| (-567))) (-15 -2269 (|#1| (-645 |#1|))) (-15 -2269 (|#1| |#1| |#1|)) (-15 -2269 (|#1| |#2| |#1|)) (-15 -2269 (|#1| |#1| |#2|)) (-15 -3238 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3350 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3238 (|#1| |#2| |#1|)) (-15 -2444 (|#1| |#1|))) (-283 |#2|) (-1218)) (T -282))
-NIL
-(-10 -8 (-15 -2966 (|#1| |#1| |#1|)) (-15 -2539 (|#1| |#2| |#1|)) (-15 -2966 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2539 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2484 (|#1| |#1| |#1|)) (-15 -2484 (|#1| |#1| |#2|)) (-15 -2845 (|#1| |#1| |#1| (-567))) (-15 -2845 (|#1| |#2| |#1| (-567))) (-15 -1560 (|#1| |#1| (-1235 (-567)))) (-15 -1560 (|#1| |#1| (-567))) (-15 -2269 (|#1| (-645 |#1|))) (-15 -2269 (|#1| |#1| |#1|)) (-15 -2269 (|#1| |#2| |#1|)) (-15 -2269 (|#1| |#1| |#2|)) (-15 -3238 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3350 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3238 (|#1| |#2| |#1|)) (-15 -2444 (|#1| |#1|)))
-((-2403 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-1783 (((-1273) $ (-567) (-567)) 41 (|has| $ (-6 -4419)))) (-3445 (((-112) $ (-772)) 8)) (-4284 ((|#1| $ (-567) |#1|) 53 (|has| $ (-6 -4419))) ((|#1| $ (-1235 (-567)) |#1|) 59 (|has| $ (-6 -4419)))) (-2839 (($ (-1 (-112) |#1|) $) 86)) (-3350 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4418)))) (-2585 (($) 7 T CONST)) (-2133 (($ $) 84 (|has| |#1| (-1102)))) (-2444 (($ $) 79 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-2539 (($ (-1 (-112) |#1|) $) 90) (($ |#1| $) 85 (|has| |#1| (-1102)))) (-3238 (($ |#1| $) 78 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4418)))) (-2477 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4418)))) (-3741 ((|#1| $ (-567) |#1|) 54 (|has| $ (-6 -4419)))) (-3680 ((|#1| $ (-567)) 52)) (-2777 (((-645 |#1|) $) 31 (|has| $ (-6 -4418)))) (-2846 (($ (-772) |#1|) 70)) (-2077 (((-112) $ (-772)) 9)) (-4069 (((-567) $) 44 (|has| (-567) (-851)))) (-2966 (($ (-1 (-112) |#1| |#1|) $ $) 87) (($ $ $) 83 (|has| |#1| (-851)))) (-2279 (((-645 |#1|) $) 30 (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-2266 (((-567) $) 45 (|has| (-567) (-851)))) (-3731 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2863 (((-112) $ (-772)) 10)) (-1419 (((-1160) $) 22 (|has| |#1| (-1102)))) (-2531 (($ |#1| $ (-567)) 89) (($ $ $ (-567)) 88)) (-2845 (($ |#1| $ (-567)) 61) (($ $ $ (-567)) 60)) (-1789 (((-645 (-567)) $) 47)) (-2996 (((-112) (-567) $) 48)) (-3430 (((-1122) $) 21 (|has| |#1| (-1102)))) (-2409 ((|#1| $) 43 (|has| (-567) (-851)))) (-4128 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-3986 (($ $ |#1|) 42 (|has| $ (-6 -4419)))) (-3025 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) 14)) (-1794 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2339 (((-645 |#1|) $) 49)) (-3572 (((-112) $) 11)) (-3498 (($) 12)) (-1787 ((|#1| $ (-567) |#1|) 51) ((|#1| $ (-567)) 50) (($ $ (-1235 (-567))) 64)) (-3670 (($ $ (-567)) 92) (($ $ (-1235 (-567))) 91)) (-1560 (($ $ (-567)) 63) (($ $ (-1235 (-567))) 62)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4418))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-4305 (($ $) 13)) (-3893 (((-539) $) 80 (|has| |#1| (-615 (-539))))) (-4147 (($ (-645 |#1|)) 71)) (-2484 (($ $ |#1|) 94) (($ $ $) 93)) (-2269 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-645 $)) 66)) (-4132 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-1745 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2414 (((-772) $) 6 (|has| $ (-6 -4418)))))
-(((-283 |#1|) (-140) (-1218)) (T -283))
-((-2484 (*1 *1 *1 *2) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1218)))) (-2484 (*1 *1 *1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1218)))) (-3670 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-283 *3)) (-4 *3 (-1218)))) (-3670 (*1 *1 *1 *2) (-12 (-5 *2 (-1235 (-567))) (-4 *1 (-283 *3)) (-4 *3 (-1218)))) (-2539 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-283 *3)) (-4 *3 (-1218)))) (-2531 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-283 *2)) (-4 *2 (-1218)))) (-2531 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-283 *3)) (-4 *3 (-1218)))) (-2966 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-283 *3)) (-4 *3 (-1218)))) (-2839 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-283 *3)) (-4 *3 (-1218)))) (-2539 (*1 *1 *2 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1218)) (-4 *2 (-1102)))) (-2133 (*1 *1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1218)) (-4 *2 (-1102)))) (-2966 (*1 *1 *1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1218)) (-4 *2 (-851)))))
-(-13 (-652 |t#1|) (-10 -8 (-6 -4419) (-15 -2484 ($ $ |t#1|)) (-15 -2484 ($ $ $)) (-15 -3670 ($ $ (-567))) (-15 -3670 ($ $ (-1235 (-567)))) (-15 -2539 ($ (-1 (-112) |t#1|) $)) (-15 -2531 ($ |t#1| $ (-567))) (-15 -2531 ($ $ $ (-567))) (-15 -2966 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -2839 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1102)) (PROGN (-15 -2539 ($ |t#1| $)) (-15 -2133 ($ $))) |%noBranch|) (IF (|has| |t#1| (-851)) (-15 -2966 ($ $ $)) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2800 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-287 #0=(-567) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-605 #0# |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-652 |#1|) . T) ((-1102) |has| |#1| (-1102)) ((-1218) . T))
+((-2412 (((-112) $ $) NIL)) (-1365 (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-1960 (((-645 (-567)) $) 29)) (-3104 (((-772) $) 27)) (-4129 (((-863) $) 36) (($ (-645 (-567))) 23)) (-3357 (((-112) $ $) NIL)) (-2808 (($ (-772)) 33)) (-3004 (((-112) $ $) NIL)) (-2980 (((-112) $ $) NIL)) (-2946 (((-112) $ $) 9)) (-2993 (((-112) $ $) NIL)) (-2968 (((-112) $ $) 17)))
+(((-276) (-13 (-851) (-10 -8 (-15 -4129 ($ (-645 (-567)))) (-15 -3104 ((-772) $)) (-15 -1960 ((-645 (-567)) $)) (-15 -2808 ($ (-772)))))) (T -276))
+((-4129 (*1 *1 *2) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-276)))) (-3104 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-276)))) (-1960 (*1 *2 *1) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-276)))) (-2808 (*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-276)))))
+(-13 (-851) (-10 -8 (-15 -4129 ($ (-645 (-567)))) (-15 -3104 ((-772) $)) (-15 -1960 ((-645 (-567)) $)) (-15 -2808 ($ (-772)))))
+((-3164 ((|#2| |#2|) 77)) (-3032 ((|#2| |#2|) 65)) (-1693 (((-3 |#2| "failed") |#2| (-645 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 125)) (-3145 ((|#2| |#2|) 75)) (-3008 ((|#2| |#2|) 63)) (-3182 ((|#2| |#2|) 79)) (-3057 ((|#2| |#2|) 67)) (-1484 ((|#2|) 46)) (-2662 (((-114) (-114)) 100)) (-3072 ((|#2| |#2|) 61)) (-3184 (((-112) |#2|) 147)) (-1906 ((|#2| |#2|) 195)) (-2526 ((|#2| |#2|) 171)) (-3543 ((|#2|) 59)) (-3936 ((|#2|) 58)) (-4401 ((|#2| |#2|) 191)) (-3229 ((|#2| |#2|) 167)) (-1610 ((|#2| |#2|) 199)) (-4336 ((|#2| |#2|) 175)) (-1783 ((|#2| |#2|) 163)) (-1862 ((|#2| |#2|) 165)) (-4204 ((|#2| |#2|) 201)) (-2921 ((|#2| |#2|) 177)) (-3781 ((|#2| |#2|) 197)) (-2829 ((|#2| |#2|) 173)) (-3699 ((|#2| |#2|) 193)) (-4118 ((|#2| |#2|) 169)) (-2950 ((|#2| |#2|) 207)) (-2322 ((|#2| |#2|) 183)) (-2780 ((|#2| |#2|) 203)) (-4127 ((|#2| |#2|) 179)) (-2212 ((|#2| |#2|) 211)) (-2827 ((|#2| |#2|) 187)) (-2882 ((|#2| |#2|) 213)) (-1710 ((|#2| |#2|) 189)) (-2163 ((|#2| |#2|) 209)) (-2566 ((|#2| |#2|) 185)) (-1400 ((|#2| |#2|) 205)) (-2236 ((|#2| |#2|) 181)) (-3955 ((|#2| |#2|) 62)) (-3192 ((|#2| |#2|) 80)) (-3071 ((|#2| |#2|) 68)) (-3173 ((|#2| |#2|) 78)) (-3043 ((|#2| |#2|) 66)) (-3155 ((|#2| |#2|) 76)) (-3021 ((|#2| |#2|) 64)) (-1909 (((-112) (-114)) 98)) (-3217 ((|#2| |#2|) 83)) (-3103 ((|#2| |#2|) 71)) (-3201 ((|#2| |#2|) 81)) (-3083 ((|#2| |#2|) 69)) (-3238 ((|#2| |#2|) 85)) (-3126 ((|#2| |#2|) 73)) (-3805 ((|#2| |#2|) 86)) (-3138 ((|#2| |#2|) 74)) (-3228 ((|#2| |#2|) 84)) (-3115 ((|#2| |#2|) 72)) (-3208 ((|#2| |#2|) 82)) (-3093 ((|#2| |#2|) 70)))
+(((-277 |#1| |#2|) (-10 -7 (-15 -3955 (|#2| |#2|)) (-15 -3072 (|#2| |#2|)) (-15 -3008 (|#2| |#2|)) (-15 -3021 (|#2| |#2|)) (-15 -3032 (|#2| |#2|)) (-15 -3043 (|#2| |#2|)) (-15 -3057 (|#2| |#2|)) (-15 -3071 (|#2| |#2|)) (-15 -3083 (|#2| |#2|)) (-15 -3093 (|#2| |#2|)) (-15 -3103 (|#2| |#2|)) (-15 -3115 (|#2| |#2|)) (-15 -3126 (|#2| |#2|)) (-15 -3138 (|#2| |#2|)) (-15 -3145 (|#2| |#2|)) (-15 -3155 (|#2| |#2|)) (-15 -3164 (|#2| |#2|)) (-15 -3173 (|#2| |#2|)) (-15 -3182 (|#2| |#2|)) (-15 -3192 (|#2| |#2|)) (-15 -3201 (|#2| |#2|)) (-15 -3208 (|#2| |#2|)) (-15 -3217 (|#2| |#2|)) (-15 -3228 (|#2| |#2|)) (-15 -3238 (|#2| |#2|)) (-15 -3805 (|#2| |#2|)) (-15 -1484 (|#2|)) (-15 -1909 ((-112) (-114))) (-15 -2662 ((-114) (-114))) (-15 -3936 (|#2|)) (-15 -3543 (|#2|)) (-15 -1862 (|#2| |#2|)) (-15 -1783 (|#2| |#2|)) (-15 -3229 (|#2| |#2|)) (-15 -4118 (|#2| |#2|)) (-15 -2526 (|#2| |#2|)) (-15 -2829 (|#2| |#2|)) (-15 -4336 (|#2| |#2|)) (-15 -2921 (|#2| |#2|)) (-15 -4127 (|#2| |#2|)) (-15 -2236 (|#2| |#2|)) (-15 -2322 (|#2| |#2|)) (-15 -2566 (|#2| |#2|)) (-15 -2827 (|#2| |#2|)) (-15 -1710 (|#2| |#2|)) (-15 -4401 (|#2| |#2|)) (-15 -3699 (|#2| |#2|)) (-15 -1906 (|#2| |#2|)) (-15 -3781 (|#2| |#2|)) (-15 -1610 (|#2| |#2|)) (-15 -4204 (|#2| |#2|)) (-15 -2780 (|#2| |#2|)) (-15 -1400 (|#2| |#2|)) (-15 -2950 (|#2| |#2|)) (-15 -2163 (|#2| |#2|)) (-15 -2212 (|#2| |#2|)) (-15 -2882 (|#2| |#2|)) (-15 -1693 ((-3 |#2| "failed") |#2| (-645 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -3184 ((-112) |#2|))) (-559) (-13 (-433 |#1|) (-1004))) (T -277))
+((-3184 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-112)) (-5 *1 (-277 *4 *3)) (-4 *3 (-13 (-433 *4) (-1004))))) (-1693 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-645 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-433 *4) (-1004))) (-4 *4 (-559)) (-5 *1 (-277 *4 *2)))) (-2882 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-2212 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-2163 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-2950 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-1400 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-2780 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-4204 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-1610 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3781 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-1906 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3699 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-4401 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-1710 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-2827 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-2566 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-2322 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-2236 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-4127 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-2921 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-4336 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-2829 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-2526 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-4118 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3229 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-1783 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-1862 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3543 (*1 *2) (-12 (-4 *2 (-13 (-433 *3) (-1004))) (-5 *1 (-277 *3 *2)) (-4 *3 (-559)))) (-3936 (*1 *2) (-12 (-4 *2 (-13 (-433 *3) (-1004))) (-5 *1 (-277 *3 *2)) (-4 *3 (-559)))) (-2662 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-559)) (-5 *1 (-277 *3 *4)) (-4 *4 (-13 (-433 *3) (-1004))))) (-1909 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-559)) (-5 *2 (-112)) (-5 *1 (-277 *4 *5)) (-4 *5 (-13 (-433 *4) (-1004))))) (-1484 (*1 *2) (-12 (-4 *2 (-13 (-433 *3) (-1004))) (-5 *1 (-277 *3 *2)) (-4 *3 (-559)))) (-3805 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3238 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3228 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3217 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3208 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3201 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3192 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3182 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3173 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3164 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3155 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3145 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3138 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3126 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3115 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3103 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3093 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3083 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3071 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3057 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3043 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3032 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3021 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3008 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3072 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3955 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))))
+(-10 -7 (-15 -3955 (|#2| |#2|)) (-15 -3072 (|#2| |#2|)) (-15 -3008 (|#2| |#2|)) (-15 -3021 (|#2| |#2|)) (-15 -3032 (|#2| |#2|)) (-15 -3043 (|#2| |#2|)) (-15 -3057 (|#2| |#2|)) (-15 -3071 (|#2| |#2|)) (-15 -3083 (|#2| |#2|)) (-15 -3093 (|#2| |#2|)) (-15 -3103 (|#2| |#2|)) (-15 -3115 (|#2| |#2|)) (-15 -3126 (|#2| |#2|)) (-15 -3138 (|#2| |#2|)) (-15 -3145 (|#2| |#2|)) (-15 -3155 (|#2| |#2|)) (-15 -3164 (|#2| |#2|)) (-15 -3173 (|#2| |#2|)) (-15 -3182 (|#2| |#2|)) (-15 -3192 (|#2| |#2|)) (-15 -3201 (|#2| |#2|)) (-15 -3208 (|#2| |#2|)) (-15 -3217 (|#2| |#2|)) (-15 -3228 (|#2| |#2|)) (-15 -3238 (|#2| |#2|)) (-15 -3805 (|#2| |#2|)) (-15 -1484 (|#2|)) (-15 -1909 ((-112) (-114))) (-15 -2662 ((-114) (-114))) (-15 -3936 (|#2|)) (-15 -3543 (|#2|)) (-15 -1862 (|#2| |#2|)) (-15 -1783 (|#2| |#2|)) (-15 -3229 (|#2| |#2|)) (-15 -4118 (|#2| |#2|)) (-15 -2526 (|#2| |#2|)) (-15 -2829 (|#2| |#2|)) (-15 -4336 (|#2| |#2|)) (-15 -2921 (|#2| |#2|)) (-15 -4127 (|#2| |#2|)) (-15 -2236 (|#2| |#2|)) (-15 -2322 (|#2| |#2|)) (-15 -2566 (|#2| |#2|)) (-15 -2827 (|#2| |#2|)) (-15 -1710 (|#2| |#2|)) (-15 -4401 (|#2| |#2|)) (-15 -3699 (|#2| |#2|)) (-15 -1906 (|#2| |#2|)) (-15 -3781 (|#2| |#2|)) (-15 -1610 (|#2| |#2|)) (-15 -4204 (|#2| |#2|)) (-15 -2780 (|#2| |#2|)) (-15 -1400 (|#2| |#2|)) (-15 -2950 (|#2| |#2|)) (-15 -2163 (|#2| |#2|)) (-15 -2212 (|#2| |#2|)) (-15 -2882 (|#2| |#2|)) (-15 -1693 ((-3 |#2| "failed") |#2| (-645 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -3184 ((-112) |#2|)))
+((-2383 (((-3 |#2| "failed") (-645 (-613 |#2|)) |#2| (-1179)) 153)) (-1817 ((|#2| (-410 (-567)) |#2|) 49)) (-4379 ((|#2| |#2| (-613 |#2|)) 146)) (-1356 (((-2 (|:| |func| |#2|) (|:| |kers| (-645 (-613 |#2|))) (|:| |vals| (-645 |#2|))) |#2| (-1179)) 145)) (-4029 ((|#2| |#2| (-1179)) 20) ((|#2| |#2|) 23)) (-2948 ((|#2| |#2| (-1179)) 159) ((|#2| |#2|) 157)))
+(((-278 |#1| |#2|) (-10 -7 (-15 -2948 (|#2| |#2|)) (-15 -2948 (|#2| |#2| (-1179))) (-15 -1356 ((-2 (|:| |func| |#2|) (|:| |kers| (-645 (-613 |#2|))) (|:| |vals| (-645 |#2|))) |#2| (-1179))) (-15 -4029 (|#2| |#2|)) (-15 -4029 (|#2| |#2| (-1179))) (-15 -2383 ((-3 |#2| "failed") (-645 (-613 |#2|)) |#2| (-1179))) (-15 -4379 (|#2| |#2| (-613 |#2|))) (-15 -1817 (|#2| (-410 (-567)) |#2|))) (-13 (-559) (-1040 (-567)) (-640 (-567))) (-13 (-27) (-1204) (-433 |#1|))) (T -278))
+((-1817 (*1 *2 *3 *2) (-12 (-5 *3 (-410 (-567))) (-4 *4 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-278 *4 *2)) (-4 *2 (-13 (-27) (-1204) (-433 *4))))) (-4379 (*1 *2 *2 *3) (-12 (-5 *3 (-613 *2)) (-4 *2 (-13 (-27) (-1204) (-433 *4))) (-4 *4 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-278 *4 *2)))) (-2383 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-645 (-613 *2))) (-5 *4 (-1179)) (-4 *2 (-13 (-27) (-1204) (-433 *5))) (-4 *5 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-278 *5 *2)))) (-4029 (*1 *2 *2 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-278 *4 *2)) (-4 *2 (-13 (-27) (-1204) (-433 *4))))) (-4029 (*1 *2 *2) (-12 (-4 *3 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-27) (-1204) (-433 *3))))) (-1356 (*1 *2 *3 *4) (-12 (-5 *4 (-1179)) (-4 *5 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-645 (-613 *3))) (|:| |vals| (-645 *3)))) (-5 *1 (-278 *5 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *5))))) (-2948 (*1 *2 *2 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-278 *4 *2)) (-4 *2 (-13 (-27) (-1204) (-433 *4))))) (-2948 (*1 *2 *2) (-12 (-4 *3 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-27) (-1204) (-433 *3))))))
+(-10 -7 (-15 -2948 (|#2| |#2|)) (-15 -2948 (|#2| |#2| (-1179))) (-15 -1356 ((-2 (|:| |func| |#2|) (|:| |kers| (-645 (-613 |#2|))) (|:| |vals| (-645 |#2|))) |#2| (-1179))) (-15 -4029 (|#2| |#2|)) (-15 -4029 (|#2| |#2| (-1179))) (-15 -2383 ((-3 |#2| "failed") (-645 (-613 |#2|)) |#2| (-1179))) (-15 -4379 (|#2| |#2| (-613 |#2|))) (-15 -1817 (|#2| (-410 (-567)) |#2|)))
+((-2977 (((-3 |#3| "failed") |#3|) 120)) (-3164 ((|#3| |#3|) 142)) (-1470 (((-3 |#3| "failed") |#3|) 89)) (-3032 ((|#3| |#3|) 132)) (-3154 (((-3 |#3| "failed") |#3|) 65)) (-3145 ((|#3| |#3|) 140)) (-4049 (((-3 |#3| "failed") |#3|) 53)) (-3008 ((|#3| |#3|) 130)) (-2887 (((-3 |#3| "failed") |#3|) 122)) (-3182 ((|#3| |#3|) 144)) (-1371 (((-3 |#3| "failed") |#3|) 91)) (-3057 ((|#3| |#3|) 134)) (-3263 (((-3 |#3| "failed") |#3| (-772)) 41)) (-1340 (((-3 |#3| "failed") |#3|) 81)) (-3072 ((|#3| |#3|) 129)) (-1625 (((-3 |#3| "failed") |#3|) 51)) (-3955 ((|#3| |#3|) 128)) (-1912 (((-3 |#3| "failed") |#3|) 123)) (-3192 ((|#3| |#3|) 145)) (-3830 (((-3 |#3| "failed") |#3|) 92)) (-3071 ((|#3| |#3|) 135)) (-2126 (((-3 |#3| "failed") |#3|) 121)) (-3173 ((|#3| |#3|) 143)) (-4220 (((-3 |#3| "failed") |#3|) 90)) (-3043 ((|#3| |#3|) 133)) (-4173 (((-3 |#3| "failed") |#3|) 67)) (-3155 ((|#3| |#3|) 141)) (-1787 (((-3 |#3| "failed") |#3|) 55)) (-3021 ((|#3| |#3|) 131)) (-3253 (((-3 |#3| "failed") |#3|) 73)) (-3217 ((|#3| |#3|) 148)) (-4225 (((-3 |#3| "failed") |#3|) 114)) (-3103 ((|#3| |#3|) 154)) (-4036 (((-3 |#3| "failed") |#3|) 69)) (-3201 ((|#3| |#3|) 146)) (-2740 (((-3 |#3| "failed") |#3|) 57)) (-3083 ((|#3| |#3|) 136)) (-4004 (((-3 |#3| "failed") |#3|) 77)) (-3238 ((|#3| |#3|) 150)) (-3850 (((-3 |#3| "failed") |#3|) 61)) (-3126 ((|#3| |#3|) 138)) (-1330 (((-3 |#3| "failed") |#3|) 79)) (-3805 ((|#3| |#3|) 151)) (-4226 (((-3 |#3| "failed") |#3|) 63)) (-3138 ((|#3| |#3|) 139)) (-3168 (((-3 |#3| "failed") |#3|) 75)) (-3228 ((|#3| |#3|) 149)) (-3107 (((-3 |#3| "failed") |#3|) 117)) (-3115 ((|#3| |#3|) 155)) (-3318 (((-3 |#3| "failed") |#3|) 71)) (-3208 ((|#3| |#3|) 147)) (-3904 (((-3 |#3| "failed") |#3|) 59)) (-3093 ((|#3| |#3|) 137)) (** ((|#3| |#3| (-410 (-567))) 47 (|has| |#1| (-365)))))
+(((-279 |#1| |#2| |#3|) (-13 (-985 |#3|) (-10 -7 (IF (|has| |#1| (-365)) (-15 ** (|#3| |#3| (-410 (-567)))) |%noBranch|) (-15 -3955 (|#3| |#3|)) (-15 -3072 (|#3| |#3|)) (-15 -3008 (|#3| |#3|)) (-15 -3021 (|#3| |#3|)) (-15 -3032 (|#3| |#3|)) (-15 -3043 (|#3| |#3|)) (-15 -3057 (|#3| |#3|)) (-15 -3071 (|#3| |#3|)) (-15 -3083 (|#3| |#3|)) (-15 -3093 (|#3| |#3|)) (-15 -3103 (|#3| |#3|)) (-15 -3115 (|#3| |#3|)) (-15 -3126 (|#3| |#3|)) (-15 -3138 (|#3| |#3|)) (-15 -3145 (|#3| |#3|)) (-15 -3155 (|#3| |#3|)) (-15 -3164 (|#3| |#3|)) (-15 -3173 (|#3| |#3|)) (-15 -3182 (|#3| |#3|)) (-15 -3192 (|#3| |#3|)) (-15 -3201 (|#3| |#3|)) (-15 -3208 (|#3| |#3|)) (-15 -3217 (|#3| |#3|)) (-15 -3228 (|#3| |#3|)) (-15 -3238 (|#3| |#3|)) (-15 -3805 (|#3| |#3|)))) (-38 (-410 (-567))) (-1260 |#1|) (-1231 |#1| |#2|)) (T -279))
+((** (*1 *2 *2 *3) (-12 (-5 *3 (-410 (-567))) (-4 *4 (-365)) (-4 *4 (-38 *3)) (-4 *5 (-1260 *4)) (-5 *1 (-279 *4 *5 *2)) (-4 *2 (-1231 *4 *5)))) (-3955 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))) (-3072 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))) (-3008 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))) (-3021 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))) (-3032 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))) (-3043 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))) (-3057 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))) (-3071 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))) (-3083 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))) (-3093 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))) (-3103 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))) (-3115 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))) (-3126 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))) (-3138 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))) (-3145 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))) (-3155 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))) (-3164 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))) (-3173 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))) (-3182 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))) (-3192 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))) (-3201 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))) (-3208 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))) (-3217 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))) (-3228 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))) (-3238 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))) (-3805 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))))
+(-13 (-985 |#3|) (-10 -7 (IF (|has| |#1| (-365)) (-15 ** (|#3| |#3| (-410 (-567)))) |%noBranch|) (-15 -3955 (|#3| |#3|)) (-15 -3072 (|#3| |#3|)) (-15 -3008 (|#3| |#3|)) (-15 -3021 (|#3| |#3|)) (-15 -3032 (|#3| |#3|)) (-15 -3043 (|#3| |#3|)) (-15 -3057 (|#3| |#3|)) (-15 -3071 (|#3| |#3|)) (-15 -3083 (|#3| |#3|)) (-15 -3093 (|#3| |#3|)) (-15 -3103 (|#3| |#3|)) (-15 -3115 (|#3| |#3|)) (-15 -3126 (|#3| |#3|)) (-15 -3138 (|#3| |#3|)) (-15 -3145 (|#3| |#3|)) (-15 -3155 (|#3| |#3|)) (-15 -3164 (|#3| |#3|)) (-15 -3173 (|#3| |#3|)) (-15 -3182 (|#3| |#3|)) (-15 -3192 (|#3| |#3|)) (-15 -3201 (|#3| |#3|)) (-15 -3208 (|#3| |#3|)) (-15 -3217 (|#3| |#3|)) (-15 -3228 (|#3| |#3|)) (-15 -3238 (|#3| |#3|)) (-15 -3805 (|#3| |#3|))))
+((-2977 (((-3 |#3| "failed") |#3|) 70)) (-3164 ((|#3| |#3|) 137)) (-1470 (((-3 |#3| "failed") |#3|) 54)) (-3032 ((|#3| |#3|) 125)) (-3154 (((-3 |#3| "failed") |#3|) 66)) (-3145 ((|#3| |#3|) 135)) (-4049 (((-3 |#3| "failed") |#3|) 50)) (-3008 ((|#3| |#3|) 123)) (-2887 (((-3 |#3| "failed") |#3|) 74)) (-3182 ((|#3| |#3|) 139)) (-1371 (((-3 |#3| "failed") |#3|) 58)) (-3057 ((|#3| |#3|) 127)) (-3263 (((-3 |#3| "failed") |#3| (-772)) 38)) (-1340 (((-3 |#3| "failed") |#3|) 48)) (-3072 ((|#3| |#3|) 111)) (-1625 (((-3 |#3| "failed") |#3|) 46)) (-3955 ((|#3| |#3|) 122)) (-1912 (((-3 |#3| "failed") |#3|) 76)) (-3192 ((|#3| |#3|) 140)) (-3830 (((-3 |#3| "failed") |#3|) 60)) (-3071 ((|#3| |#3|) 128)) (-2126 (((-3 |#3| "failed") |#3|) 72)) (-3173 ((|#3| |#3|) 138)) (-4220 (((-3 |#3| "failed") |#3|) 56)) (-3043 ((|#3| |#3|) 126)) (-4173 (((-3 |#3| "failed") |#3|) 68)) (-3155 ((|#3| |#3|) 136)) (-1787 (((-3 |#3| "failed") |#3|) 52)) (-3021 ((|#3| |#3|) 124)) (-3253 (((-3 |#3| "failed") |#3|) 78)) (-3217 ((|#3| |#3|) 143)) (-4225 (((-3 |#3| "failed") |#3|) 62)) (-3103 ((|#3| |#3|) 131)) (-4036 (((-3 |#3| "failed") |#3|) 112)) (-3201 ((|#3| |#3|) 141)) (-2740 (((-3 |#3| "failed") |#3|) 100)) (-3083 ((|#3| |#3|) 129)) (-4004 (((-3 |#3| "failed") |#3|) 116)) (-3238 ((|#3| |#3|) 145)) (-3850 (((-3 |#3| "failed") |#3|) 107)) (-3126 ((|#3| |#3|) 133)) (-1330 (((-3 |#3| "failed") |#3|) 117)) (-3805 ((|#3| |#3|) 146)) (-4226 (((-3 |#3| "failed") |#3|) 109)) (-3138 ((|#3| |#3|) 134)) (-3168 (((-3 |#3| "failed") |#3|) 80)) (-3228 ((|#3| |#3|) 144)) (-3107 (((-3 |#3| "failed") |#3|) 64)) (-3115 ((|#3| |#3|) 132)) (-3318 (((-3 |#3| "failed") |#3|) 113)) (-3208 ((|#3| |#3|) 142)) (-3904 (((-3 |#3| "failed") |#3|) 103)) (-3093 ((|#3| |#3|) 130)) (** ((|#3| |#3| (-410 (-567))) 44 (|has| |#1| (-365)))))
+(((-280 |#1| |#2| |#3| |#4|) (-13 (-985 |#3|) (-10 -7 (IF (|has| |#1| (-365)) (-15 ** (|#3| |#3| (-410 (-567)))) |%noBranch|) (-15 -3955 (|#3| |#3|)) (-15 -3072 (|#3| |#3|)) (-15 -3008 (|#3| |#3|)) (-15 -3021 (|#3| |#3|)) (-15 -3032 (|#3| |#3|)) (-15 -3043 (|#3| |#3|)) (-15 -3057 (|#3| |#3|)) (-15 -3071 (|#3| |#3|)) (-15 -3083 (|#3| |#3|)) (-15 -3093 (|#3| |#3|)) (-15 -3103 (|#3| |#3|)) (-15 -3115 (|#3| |#3|)) (-15 -3126 (|#3| |#3|)) (-15 -3138 (|#3| |#3|)) (-15 -3145 (|#3| |#3|)) (-15 -3155 (|#3| |#3|)) (-15 -3164 (|#3| |#3|)) (-15 -3173 (|#3| |#3|)) (-15 -3182 (|#3| |#3|)) (-15 -3192 (|#3| |#3|)) (-15 -3201 (|#3| |#3|)) (-15 -3208 (|#3| |#3|)) (-15 -3217 (|#3| |#3|)) (-15 -3228 (|#3| |#3|)) (-15 -3238 (|#3| |#3|)) (-15 -3805 (|#3| |#3|)))) (-38 (-410 (-567))) (-1229 |#1|) (-1252 |#1| |#2|) (-985 |#2|)) (T -280))
+((** (*1 *2 *2 *3) (-12 (-5 *3 (-410 (-567))) (-4 *4 (-365)) (-4 *4 (-38 *3)) (-4 *5 (-1229 *4)) (-5 *1 (-280 *4 *5 *2 *6)) (-4 *2 (-1252 *4 *5)) (-4 *6 (-985 *5)))) (-3955 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))) (-3072 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))) (-3008 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))) (-3021 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))) (-3032 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))) (-3043 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))) (-3057 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))) (-3071 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))) (-3083 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))) (-3093 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))) (-3103 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))) (-3115 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))) (-3126 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))) (-3138 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))) (-3145 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))) (-3155 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))) (-3164 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))) (-3173 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))) (-3182 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))) (-3192 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))) (-3201 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))) (-3208 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))) (-3217 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))) (-3228 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))) (-3238 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))) (-3805 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))))
+(-13 (-985 |#3|) (-10 -7 (IF (|has| |#1| (-365)) (-15 ** (|#3| |#3| (-410 (-567)))) |%noBranch|) (-15 -3955 (|#3| |#3|)) (-15 -3072 (|#3| |#3|)) (-15 -3008 (|#3| |#3|)) (-15 -3021 (|#3| |#3|)) (-15 -3032 (|#3| |#3|)) (-15 -3043 (|#3| |#3|)) (-15 -3057 (|#3| |#3|)) (-15 -3071 (|#3| |#3|)) (-15 -3083 (|#3| |#3|)) (-15 -3093 (|#3| |#3|)) (-15 -3103 (|#3| |#3|)) (-15 -3115 (|#3| |#3|)) (-15 -3126 (|#3| |#3|)) (-15 -3138 (|#3| |#3|)) (-15 -3145 (|#3| |#3|)) (-15 -3155 (|#3| |#3|)) (-15 -3164 (|#3| |#3|)) (-15 -3173 (|#3| |#3|)) (-15 -3182 (|#3| |#3|)) (-15 -3192 (|#3| |#3|)) (-15 -3201 (|#3| |#3|)) (-15 -3208 (|#3| |#3|)) (-15 -3217 (|#3| |#3|)) (-15 -3228 (|#3| |#3|)) (-15 -3238 (|#3| |#3|)) (-15 -3805 (|#3| |#3|))))
+((-3570 (((-112) $) 20)) (-2395 (((-1184) $) 7)) (-3513 (((-3 (-509) "failed") $) 14)) (-2090 (((-3 (-645 $) "failed") $) NIL)) (-3322 (((-3 (-509) "failed") $) 21)) (-2035 (((-3 (-1106) "failed") $) 18)) (-1415 (((-112) $) 16)) (-4129 (((-863) $) NIL)) (-2621 (((-112) $) 9)))
+(((-281) (-13 (-614 (-863)) (-10 -8 (-15 -2395 ((-1184) $)) (-15 -1415 ((-112) $)) (-15 -2035 ((-3 (-1106) "failed") $)) (-15 -3570 ((-112) $)) (-15 -3322 ((-3 (-509) "failed") $)) (-15 -2621 ((-112) $)) (-15 -3513 ((-3 (-509) "failed") $)) (-15 -2090 ((-3 (-645 $) "failed") $))))) (T -281))
+((-2395 (*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-281)))) (-1415 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-281)))) (-2035 (*1 *2 *1) (|partial| -12 (-5 *2 (-1106)) (-5 *1 (-281)))) (-3570 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-281)))) (-3322 (*1 *2 *1) (|partial| -12 (-5 *2 (-509)) (-5 *1 (-281)))) (-2621 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-281)))) (-3513 (*1 *2 *1) (|partial| -12 (-5 *2 (-509)) (-5 *1 (-281)))) (-2090 (*1 *2 *1) (|partial| -12 (-5 *2 (-645 (-281))) (-5 *1 (-281)))))
+(-13 (-614 (-863)) (-10 -8 (-15 -2395 ((-1184) $)) (-15 -1415 ((-112) $)) (-15 -2035 ((-3 (-1106) "failed") $)) (-15 -3570 ((-112) $)) (-15 -3322 ((-3 (-509) "failed") $)) (-15 -2621 ((-112) $)) (-15 -3513 ((-3 (-509) "failed") $)) (-15 -2090 ((-3 (-645 $) "failed") $))))
+((-3356 (($ (-1 (-112) |#2|) $) 24)) (-2453 (($ $) 38)) (-2247 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 36)) (-3246 (($ |#2| $) 34) (($ (-1 (-112) |#2|) $) 18)) (-1661 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 42)) (-2857 (($ |#2| $ (-567)) 20) (($ $ $ (-567)) 22)) (-1569 (($ $ (-567)) 11) (($ $ (-1236 (-567))) 14)) (-2294 (($ $ |#2|) 32) (($ $ $) NIL)) (-2276 (($ $ |#2|) 31) (($ |#2| $) NIL) (($ $ $) 26) (($ (-645 $)) NIL)))
+(((-282 |#1| |#2|) (-10 -8 (-15 -1661 (|#1| |#1| |#1|)) (-15 -2247 (|#1| |#2| |#1|)) (-15 -1661 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2247 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2294 (|#1| |#1| |#1|)) (-15 -2294 (|#1| |#1| |#2|)) (-15 -2857 (|#1| |#1| |#1| (-567))) (-15 -2857 (|#1| |#2| |#1| (-567))) (-15 -1569 (|#1| |#1| (-1236 (-567)))) (-15 -1569 (|#1| |#1| (-567))) (-15 -2276 (|#1| (-645 |#1|))) (-15 -2276 (|#1| |#1| |#1|)) (-15 -2276 (|#1| |#2| |#1|)) (-15 -2276 (|#1| |#1| |#2|)) (-15 -3246 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3356 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3246 (|#1| |#2| |#1|)) (-15 -2453 (|#1| |#1|))) (-283 |#2|) (-1219)) (T -282))
+NIL
+(-10 -8 (-15 -1661 (|#1| |#1| |#1|)) (-15 -2247 (|#1| |#2| |#1|)) (-15 -1661 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2247 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2294 (|#1| |#1| |#1|)) (-15 -2294 (|#1| |#1| |#2|)) (-15 -2857 (|#1| |#1| |#1| (-567))) (-15 -2857 (|#1| |#2| |#1| (-567))) (-15 -1569 (|#1| |#1| (-1236 (-567)))) (-15 -1569 (|#1| |#1| (-567))) (-15 -2276 (|#1| (-645 |#1|))) (-15 -2276 (|#1| |#1| |#1|)) (-15 -2276 (|#1| |#2| |#1|)) (-15 -2276 (|#1| |#1| |#2|)) (-15 -3246 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3356 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3246 (|#1| |#2| |#1|)) (-15 -2453 (|#1| |#1|)))
+((-2412 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-3843 (((-1274) $ (-567) (-567)) 41 (|has| $ (-6 -4423)))) (-1563 (((-112) $ (-772)) 8)) (-4285 ((|#1| $ (-567) |#1|) 53 (|has| $ (-6 -4423))) ((|#1| $ (-1236 (-567)) |#1|) 59 (|has| $ (-6 -4423)))) (-1494 (($ (-1 (-112) |#1|) $) 86)) (-3356 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4422)))) (-3647 (($) 7 T CONST)) (-3837 (($ $) 84 (|has| |#1| (-1102)))) (-2453 (($ $) 79 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-2247 (($ (-1 (-112) |#1|) $) 90) (($ |#1| $) 85 (|has| |#1| (-1102)))) (-3246 (($ |#1| $) 78 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4422)))) (-2494 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4422)))) (-3760 ((|#1| $ (-567) |#1|) 54 (|has| $ (-6 -4423)))) (-3703 ((|#1| $ (-567)) 52)) (-2799 (((-645 |#1|) $) 31 (|has| $ (-6 -4422)))) (-2858 (($ (-772) |#1|) 70)) (-4093 (((-112) $ (-772)) 9)) (-3895 (((-567) $) 44 (|has| (-567) (-851)))) (-1661 (($ (-1 (-112) |#1| |#1|) $ $) 87) (($ $ $) 83 (|has| |#1| (-851)))) (-1942 (((-645 |#1|) $) 30 (|has| $ (-6 -4422)))) (-3237 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-3255 (((-567) $) 45 (|has| (-567) (-851)))) (-3751 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-1986 (((-112) $ (-772)) 10)) (-2516 (((-1161) $) 22 (|has| |#1| (-1102)))) (-2646 (($ |#1| $ (-567)) 89) (($ $ $ (-567)) 88)) (-2857 (($ |#1| $ (-567)) 61) (($ $ $ (-567)) 60)) (-4364 (((-645 (-567)) $) 47)) (-3188 (((-112) (-567) $) 48)) (-3437 (((-1122) $) 21 (|has| |#1| (-1102)))) (-2418 ((|#1| $) 43 (|has| (-567) (-851)))) (-3196 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-3823 (($ $ |#1|) 42 (|has| $ (-6 -4423)))) (-4233 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3875 (((-112) $ $) 14)) (-4058 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-2190 (((-645 |#1|) $) 49)) (-3885 (((-112) $) 11)) (-2701 (($) 12)) (-1801 ((|#1| $ (-567) |#1|) 51) ((|#1| $ (-567)) 50) (($ $ (-1236 (-567))) 64)) (-1873 (($ $ (-567)) 92) (($ $ (-1236 (-567))) 91)) (-1569 (($ $ (-567)) 63) (($ $ (-1236 (-567))) 62)) (-3447 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4422))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-4309 (($ $) 13)) (-3902 (((-539) $) 80 (|has| |#1| (-615 (-539))))) (-4145 (($ (-645 |#1|)) 71)) (-2294 (($ $ |#1|) 94) (($ $ $) 93)) (-2276 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-645 $)) 66)) (-4129 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-3357 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-3436 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4422)))) (-2946 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2423 (((-772) $) 6 (|has| $ (-6 -4422)))))
+(((-283 |#1|) (-140) (-1219)) (T -283))
+((-2294 (*1 *1 *1 *2) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1219)))) (-2294 (*1 *1 *1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1219)))) (-1873 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-283 *3)) (-4 *3 (-1219)))) (-1873 (*1 *1 *1 *2) (-12 (-5 *2 (-1236 (-567))) (-4 *1 (-283 *3)) (-4 *3 (-1219)))) (-2247 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-283 *3)) (-4 *3 (-1219)))) (-2646 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-283 *2)) (-4 *2 (-1219)))) (-2646 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-283 *3)) (-4 *3 (-1219)))) (-1661 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-283 *3)) (-4 *3 (-1219)))) (-1494 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-283 *3)) (-4 *3 (-1219)))) (-2247 (*1 *1 *2 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1219)) (-4 *2 (-1102)))) (-3837 (*1 *1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1219)) (-4 *2 (-1102)))) (-1661 (*1 *1 *1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1219)) (-4 *2 (-851)))))
+(-13 (-652 |t#1|) (-10 -8 (-6 -4423) (-15 -2294 ($ $ |t#1|)) (-15 -2294 ($ $ $)) (-15 -1873 ($ $ (-567))) (-15 -1873 ($ $ (-1236 (-567)))) (-15 -2247 ($ (-1 (-112) |t#1|) $)) (-15 -2646 ($ |t#1| $ (-567))) (-15 -2646 ($ $ $ (-567))) (-15 -1661 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -1494 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1102)) (PROGN (-15 -2247 ($ |t#1| $)) (-15 -3837 ($ $))) |%noBranch|) (IF (|has| |t#1| (-851)) (-15 -1661 ($ $ $)) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2811 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-287 #0=(-567) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-605 #0# |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-652 |#1|) . T) ((-1102) |has| |#1| (-1102)) ((-1219) . T))
((** (($ $ $) 10)))
(((-284 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-285)) (T -284))
NIL
(-10 -8 (-15 ** (|#1| |#1| |#1|)))
-((-3063 (($ $) 6)) (-3946 (($ $) 7)) (** (($ $ $) 8)))
+((-3072 (($ $) 6)) (-3955 (($ $) 7)) (** (($ $ $) 8)))
(((-285) (-140)) (T -285))
-((** (*1 *1 *1 *1) (-4 *1 (-285))) (-3946 (*1 *1 *1) (-4 *1 (-285))) (-3063 (*1 *1 *1) (-4 *1 (-285))))
-(-13 (-10 -8 (-15 -3063 ($ $)) (-15 -3946 ($ $)) (-15 ** ($ $ $))))
-((-4296 (((-645 (-1158 |#1|)) (-1158 |#1|) |#1|) 35)) (-3776 ((|#2| |#2| |#1|) 39)) (-3526 ((|#2| |#2| |#1|) 41)) (-1806 ((|#2| |#2| |#1|) 40)))
-(((-286 |#1| |#2|) (-10 -7 (-15 -3776 (|#2| |#2| |#1|)) (-15 -1806 (|#2| |#2| |#1|)) (-15 -3526 (|#2| |#2| |#1|)) (-15 -4296 ((-645 (-1158 |#1|)) (-1158 |#1|) |#1|))) (-365) (-1259 |#1|)) (T -286))
-((-4296 (*1 *2 *3 *4) (-12 (-4 *4 (-365)) (-5 *2 (-645 (-1158 *4))) (-5 *1 (-286 *4 *5)) (-5 *3 (-1158 *4)) (-4 *5 (-1259 *4)))) (-3526 (*1 *2 *2 *3) (-12 (-4 *3 (-365)) (-5 *1 (-286 *3 *2)) (-4 *2 (-1259 *3)))) (-1806 (*1 *2 *2 *3) (-12 (-4 *3 (-365)) (-5 *1 (-286 *3 *2)) (-4 *2 (-1259 *3)))) (-3776 (*1 *2 *2 *3) (-12 (-4 *3 (-365)) (-5 *1 (-286 *3 *2)) (-4 *2 (-1259 *3)))))
-(-10 -7 (-15 -3776 (|#2| |#2| |#1|)) (-15 -1806 (|#2| |#2| |#1|)) (-15 -3526 (|#2| |#2| |#1|)) (-15 -4296 ((-645 (-1158 |#1|)) (-1158 |#1|) |#1|)))
-((-1787 ((|#2| $ |#1|) 6)))
-(((-287 |#1| |#2|) (-140) (-1102) (-1218)) (T -287))
-((-1787 (*1 *2 *1 *3) (-12 (-4 *1 (-287 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1218)))))
-(-13 (-10 -8 (-15 -1787 (|t#2| $ |t#1|))))
-((-3741 ((|#3| $ |#2| |#3|) 12)) (-3680 ((|#3| $ |#2|) 10)))
-(((-288 |#1| |#2| |#3|) (-10 -8 (-15 -3741 (|#3| |#1| |#2| |#3|)) (-15 -3680 (|#3| |#1| |#2|))) (-289 |#2| |#3|) (-1102) (-1218)) (T -288))
-NIL
-(-10 -8 (-15 -3741 (|#3| |#1| |#2| |#3|)) (-15 -3680 (|#3| |#1| |#2|)))
-((-4284 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4419)))) (-3741 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4419)))) (-3680 ((|#2| $ |#1|) 11)) (-1787 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12)))
-(((-289 |#1| |#2|) (-140) (-1102) (-1218)) (T -289))
-((-1787 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-289 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1218)))) (-3680 (*1 *2 *1 *3) (-12 (-4 *1 (-289 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1218)))) (-4284 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4419)) (-4 *1 (-289 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1218)))) (-3741 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4419)) (-4 *1 (-289 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1218)))))
-(-13 (-287 |t#1| |t#2|) (-10 -8 (-15 -1787 (|t#2| $ |t#1| |t#2|)) (-15 -3680 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4419)) (PROGN (-15 -4284 (|t#2| $ |t#1| |t#2|)) (-15 -3741 (|t#2| $ |t#1| |t#2|))) |%noBranch|)))
+((** (*1 *1 *1 *1) (-4 *1 (-285))) (-3955 (*1 *1 *1) (-4 *1 (-285))) (-3072 (*1 *1 *1) (-4 *1 (-285))))
+(-13 (-10 -8 (-15 -3072 ($ $)) (-15 -3955 ($ $)) (-15 ** ($ $ $))))
+((-1885 (((-645 (-1159 |#1|)) (-1159 |#1|) |#1|) 35)) (-3796 ((|#2| |#2| |#1|) 39)) (-1533 ((|#2| |#2| |#1|) 41)) (-1832 ((|#2| |#2| |#1|) 40)))
+(((-286 |#1| |#2|) (-10 -7 (-15 -3796 (|#2| |#2| |#1|)) (-15 -1832 (|#2| |#2| |#1|)) (-15 -1533 (|#2| |#2| |#1|)) (-15 -1885 ((-645 (-1159 |#1|)) (-1159 |#1|) |#1|))) (-365) (-1260 |#1|)) (T -286))
+((-1885 (*1 *2 *3 *4) (-12 (-4 *4 (-365)) (-5 *2 (-645 (-1159 *4))) (-5 *1 (-286 *4 *5)) (-5 *3 (-1159 *4)) (-4 *5 (-1260 *4)))) (-1533 (*1 *2 *2 *3) (-12 (-4 *3 (-365)) (-5 *1 (-286 *3 *2)) (-4 *2 (-1260 *3)))) (-1832 (*1 *2 *2 *3) (-12 (-4 *3 (-365)) (-5 *1 (-286 *3 *2)) (-4 *2 (-1260 *3)))) (-3796 (*1 *2 *2 *3) (-12 (-4 *3 (-365)) (-5 *1 (-286 *3 *2)) (-4 *2 (-1260 *3)))))
+(-10 -7 (-15 -3796 (|#2| |#2| |#1|)) (-15 -1832 (|#2| |#2| |#1|)) (-15 -1533 (|#2| |#2| |#1|)) (-15 -1885 ((-645 (-1159 |#1|)) (-1159 |#1|) |#1|)))
+((-1801 ((|#2| $ |#1|) 6)))
+(((-287 |#1| |#2|) (-140) (-1102) (-1219)) (T -287))
+((-1801 (*1 *2 *1 *3) (-12 (-4 *1 (-287 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1219)))))
+(-13 (-10 -8 (-15 -1801 (|t#2| $ |t#1|))))
+((-3760 ((|#3| $ |#2| |#3|) 12)) (-3703 ((|#3| $ |#2|) 10)))
+(((-288 |#1| |#2| |#3|) (-10 -8 (-15 -3760 (|#3| |#1| |#2| |#3|)) (-15 -3703 (|#3| |#1| |#2|))) (-289 |#2| |#3|) (-1102) (-1219)) (T -288))
+NIL
+(-10 -8 (-15 -3760 (|#3| |#1| |#2| |#3|)) (-15 -3703 (|#3| |#1| |#2|)))
+((-4285 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4423)))) (-3760 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4423)))) (-3703 ((|#2| $ |#1|) 11)) (-1801 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12)))
+(((-289 |#1| |#2|) (-140) (-1102) (-1219)) (T -289))
+((-1801 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-289 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1219)))) (-3703 (*1 *2 *1 *3) (-12 (-4 *1 (-289 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1219)))) (-4285 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4423)) (-4 *1 (-289 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1219)))) (-3760 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4423)) (-4 *1 (-289 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1219)))))
+(-13 (-287 |t#1| |t#2|) (-10 -8 (-15 -1801 (|t#2| $ |t#1| |t#2|)) (-15 -3703 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4423)) (PROGN (-15 -4285 (|t#2| $ |t#1| |t#2|)) (-15 -3760 (|t#2| $ |t#1| |t#2|))) |%noBranch|)))
(((-287 |#1| |#2|) . T))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) 37)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 44)) (-4381 (($ $) 41)) (-3949 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-3609 (((-112) $ $) NIL)) (-2585 (($) NIL T CONST)) (-2349 (($ $ $) 35)) (-2477 (($ |#2| |#3|) 18)) (-2109 (((-3 $ "failed") $) NIL)) (-2360 (($ $ $) NIL)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-1433 (((-112) $) NIL)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2211 ((|#3| $) NIL)) (-2740 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) 19)) (-3430 (((-1122) $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-2774 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2391 (((-3 $ "failed") $ $) NIL)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1771 (((-3 $ "failed") $ $) NIL)) (-1990 (((-772) $) 36)) (-1787 ((|#2| $ |#2|) 46)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 23)) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-4221 (((-772)) NIL T CONST)) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL)) (-1716 (($) 31 T CONST)) (-1728 (($) 39 T CONST)) (-2936 (((-112) $ $) NIL)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 40)))
-(((-290 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-308) (-10 -8 (-15 -2211 (|#3| $)) (-15 -4132 (|#2| $)) (-15 -2477 ($ |#2| |#3|)) (-15 -1771 ((-3 $ "failed") $ $)) (-15 -2109 ((-3 $ "failed") $)) (-15 -2939 ($ $)) (-15 -1787 (|#2| $ |#2|)))) (-172) (-1244 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -290))
-((-2109 (*1 *1 *1) (|partial| -12 (-4 *2 (-172)) (-5 *1 (-290 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1244 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2211 (*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-23)) (-5 *1 (-290 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1244 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-4132 (*1 *2 *1) (-12 (-4 *2 (-1244 *3)) (-5 *1 (-290 *3 *2 *4 *5 *6 *7)) (-4 *3 (-172)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-2477 (*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-290 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1244 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1771 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-172)) (-5 *1 (-290 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1244 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2939 (*1 *1 *1) (-12 (-4 *2 (-172)) (-5 *1 (-290 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1244 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1787 (*1 *2 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-290 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1244 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))))
-(-13 (-308) (-10 -8 (-15 -2211 (|#3| $)) (-15 -4132 (|#2| $)) (-15 -2477 ($ |#2| |#3|)) (-15 -1771 ((-3 $ "failed") $ $)) (-15 -2109 ((-3 $ "failed") $)) (-15 -2939 ($ $)) (-15 -1787 (|#2| $ |#2|))))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-2109 (((-3 $ "failed") $) 37)) (-1433 (((-112) $) 35)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12) (($ (-567)) 33)) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27)))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) 37)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) 44)) (-4287 (($ $) 41)) (-2286 (((-112) $) NIL)) (-2376 (((-3 $ "failed") $ $) NIL)) (-3696 (((-112) $ $) NIL)) (-3647 (($) NIL T CONST)) (-2357 (($ $ $) 35)) (-2494 (($ |#2| |#3|) 18)) (-3588 (((-3 $ "failed") $) NIL)) (-2368 (($ $ $) NIL)) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) NIL)) (-4346 (((-112) $) NIL)) (-1469 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-3054 ((|#3| $) NIL)) (-2751 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2516 (((-1161) $) NIL)) (-2949 (($ $) 19)) (-3437 (((-1122) $) NIL)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-2785 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2905 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2400 (((-3 $ "failed") $ $) NIL)) (-2372 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4133 (((-3 $ "failed") $ $) NIL)) (-2460 (((-772) $) 36)) (-1801 ((|#2| $ |#2|) 46)) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) 23)) (-4129 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-2746 (((-772)) NIL T CONST)) (-3357 (((-112) $ $) NIL)) (-3731 (((-112) $ $) NIL)) (-1733 (($) 31 T CONST)) (-1744 (($) 39 T CONST)) (-2946 (((-112) $ $) NIL)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 40)))
+(((-290 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-308) (-10 -8 (-15 -3054 (|#3| $)) (-15 -4129 (|#2| $)) (-15 -2494 ($ |#2| |#3|)) (-15 -4133 ((-3 $ "failed") $ $)) (-15 -3588 ((-3 $ "failed") $)) (-15 -2949 ($ $)) (-15 -1801 (|#2| $ |#2|)))) (-172) (-1245 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -290))
+((-3588 (*1 *1 *1) (|partial| -12 (-4 *2 (-172)) (-5 *1 (-290 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1245 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3054 (*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-23)) (-5 *1 (-290 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1245 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-4129 (*1 *2 *1) (-12 (-4 *2 (-1245 *3)) (-5 *1 (-290 *3 *2 *4 *5 *6 *7)) (-4 *3 (-172)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-2494 (*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-290 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1245 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-4133 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-172)) (-5 *1 (-290 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1245 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2949 (*1 *1 *1) (-12 (-4 *2 (-172)) (-5 *1 (-290 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1245 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1801 (*1 *2 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-290 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1245 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))))
+(-13 (-308) (-10 -8 (-15 -3054 (|#3| $)) (-15 -4129 (|#2| $)) (-15 -2494 ($ |#2| |#3|)) (-15 -4133 ((-3 $ "failed") $ $)) (-15 -3588 ((-3 $ "failed") $)) (-15 -2949 ($ $)) (-15 -1801 (|#2| $ |#2|))))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-2376 (((-3 $ "failed") $ $) 20)) (-3647 (($) 18 T CONST)) (-3588 (((-3 $ "failed") $) 37)) (-4346 (((-112) $) 35)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-4129 (((-863) $) 12) (($ (-567)) 33)) (-2746 (((-772)) 32 T CONST)) (-3357 (((-112) $ $) 9)) (-1733 (($) 19 T CONST)) (-1744 (($) 34 T CONST)) (-2946 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27)))
(((-291) (-140)) (T -291))
NIL
-(-13 (-1051) (-111 $ $) (-10 -7 (-6 -4411)))
+(-13 (-1051) (-111 $ $) (-10 -7 (-6 -4415)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-617 (-567)) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-727) . T) ((-1053 $) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T))
-((-3637 (($ (-509) (-509) (-1106) $) 19)) (-4038 (($ (-509) (-645 (-967)) $) 23)) (-3679 (((-645 (-1087)) $) 10)) (-1834 (($) 25)) (-4343 (((-692 (-1106)) (-509) (-509) $) 18)) (-2195 (((-645 (-967)) (-509) $) 22)) (-3498 (($) 7)) (-3659 (($) 24)) (-4132 (((-863) $) 29)) (-1383 (($) 26)))
-(((-292) (-13 (-614 (-863)) (-10 -8 (-15 -3498 ($)) (-15 -3679 ((-645 (-1087)) $)) (-15 -4343 ((-692 (-1106)) (-509) (-509) $)) (-15 -3637 ($ (-509) (-509) (-1106) $)) (-15 -2195 ((-645 (-967)) (-509) $)) (-15 -4038 ($ (-509) (-645 (-967)) $)) (-15 -3659 ($)) (-15 -1834 ($)) (-15 -1383 ($))))) (T -292))
-((-3498 (*1 *1) (-5 *1 (-292))) (-3679 (*1 *2 *1) (-12 (-5 *2 (-645 (-1087))) (-5 *1 (-292)))) (-4343 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-509)) (-5 *2 (-692 (-1106))) (-5 *1 (-292)))) (-3637 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-509)) (-5 *3 (-1106)) (-5 *1 (-292)))) (-2195 (*1 *2 *3 *1) (-12 (-5 *3 (-509)) (-5 *2 (-645 (-967))) (-5 *1 (-292)))) (-4038 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-509)) (-5 *3 (-645 (-967))) (-5 *1 (-292)))) (-3659 (*1 *1) (-5 *1 (-292))) (-1834 (*1 *1) (-5 *1 (-292))) (-1383 (*1 *1) (-5 *1 (-292))))
-(-13 (-614 (-863)) (-10 -8 (-15 -3498 ($)) (-15 -3679 ((-645 (-1087)) $)) (-15 -4343 ((-692 (-1106)) (-509) (-509) $)) (-15 -3637 ($ (-509) (-509) (-1106) $)) (-15 -2195 ((-645 (-967)) (-509) $)) (-15 -4038 ($ (-509) (-645 (-967)) $)) (-15 -3659 ($)) (-15 -1834 ($)) (-15 -1383 ($))))
-((-3180 (((-645 (-2 (|:| |eigval| (-3 (-410 (-954 |#1|)) (-1167 (-1178) (-954 |#1|)))) (|:| |geneigvec| (-645 (-690 (-410 (-954 |#1|))))))) (-690 (-410 (-954 |#1|)))) 105)) (-2634 (((-645 (-690 (-410 (-954 |#1|)))) (-2 (|:| |eigval| (-3 (-410 (-954 |#1|)) (-1167 (-1178) (-954 |#1|)))) (|:| |eigmult| (-772)) (|:| |eigvec| (-645 (-690 (-410 (-954 |#1|)))))) (-690 (-410 (-954 |#1|)))) 100) (((-645 (-690 (-410 (-954 |#1|)))) (-3 (-410 (-954 |#1|)) (-1167 (-1178) (-954 |#1|))) (-690 (-410 (-954 |#1|))) (-772) (-772)) 41)) (-3429 (((-645 (-2 (|:| |eigval| (-3 (-410 (-954 |#1|)) (-1167 (-1178) (-954 |#1|)))) (|:| |eigmult| (-772)) (|:| |eigvec| (-645 (-690 (-410 (-954 |#1|))))))) (-690 (-410 (-954 |#1|)))) 102)) (-1899 (((-645 (-690 (-410 (-954 |#1|)))) (-3 (-410 (-954 |#1|)) (-1167 (-1178) (-954 |#1|))) (-690 (-410 (-954 |#1|)))) 77)) (-1550 (((-645 (-3 (-410 (-954 |#1|)) (-1167 (-1178) (-954 |#1|)))) (-690 (-410 (-954 |#1|)))) 76)) (-2155 (((-954 |#1|) (-690 (-410 (-954 |#1|)))) 57) (((-954 |#1|) (-690 (-410 (-954 |#1|))) (-1178)) 58)))
-(((-293 |#1|) (-10 -7 (-15 -2155 ((-954 |#1|) (-690 (-410 (-954 |#1|))) (-1178))) (-15 -2155 ((-954 |#1|) (-690 (-410 (-954 |#1|))))) (-15 -1550 ((-645 (-3 (-410 (-954 |#1|)) (-1167 (-1178) (-954 |#1|)))) (-690 (-410 (-954 |#1|))))) (-15 -1899 ((-645 (-690 (-410 (-954 |#1|)))) (-3 (-410 (-954 |#1|)) (-1167 (-1178) (-954 |#1|))) (-690 (-410 (-954 |#1|))))) (-15 -2634 ((-645 (-690 (-410 (-954 |#1|)))) (-3 (-410 (-954 |#1|)) (-1167 (-1178) (-954 |#1|))) (-690 (-410 (-954 |#1|))) (-772) (-772))) (-15 -2634 ((-645 (-690 (-410 (-954 |#1|)))) (-2 (|:| |eigval| (-3 (-410 (-954 |#1|)) (-1167 (-1178) (-954 |#1|)))) (|:| |eigmult| (-772)) (|:| |eigvec| (-645 (-690 (-410 (-954 |#1|)))))) (-690 (-410 (-954 |#1|))))) (-15 -3180 ((-645 (-2 (|:| |eigval| (-3 (-410 (-954 |#1|)) (-1167 (-1178) (-954 |#1|)))) (|:| |geneigvec| (-645 (-690 (-410 (-954 |#1|))))))) (-690 (-410 (-954 |#1|))))) (-15 -3429 ((-645 (-2 (|:| |eigval| (-3 (-410 (-954 |#1|)) (-1167 (-1178) (-954 |#1|)))) (|:| |eigmult| (-772)) (|:| |eigvec| (-645 (-690 (-410 (-954 |#1|))))))) (-690 (-410 (-954 |#1|)))))) (-455)) (T -293))
-((-3429 (*1 *2 *3) (-12 (-4 *4 (-455)) (-5 *2 (-645 (-2 (|:| |eigval| (-3 (-410 (-954 *4)) (-1167 (-1178) (-954 *4)))) (|:| |eigmult| (-772)) (|:| |eigvec| (-645 (-690 (-410 (-954 *4)))))))) (-5 *1 (-293 *4)) (-5 *3 (-690 (-410 (-954 *4)))))) (-3180 (*1 *2 *3) (-12 (-4 *4 (-455)) (-5 *2 (-645 (-2 (|:| |eigval| (-3 (-410 (-954 *4)) (-1167 (-1178) (-954 *4)))) (|:| |geneigvec| (-645 (-690 (-410 (-954 *4)))))))) (-5 *1 (-293 *4)) (-5 *3 (-690 (-410 (-954 *4)))))) (-2634 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-410 (-954 *5)) (-1167 (-1178) (-954 *5)))) (|:| |eigmult| (-772)) (|:| |eigvec| (-645 *4)))) (-4 *5 (-455)) (-5 *2 (-645 (-690 (-410 (-954 *5))))) (-5 *1 (-293 *5)) (-5 *4 (-690 (-410 (-954 *5)))))) (-2634 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-410 (-954 *6)) (-1167 (-1178) (-954 *6)))) (-5 *5 (-772)) (-4 *6 (-455)) (-5 *2 (-645 (-690 (-410 (-954 *6))))) (-5 *1 (-293 *6)) (-5 *4 (-690 (-410 (-954 *6)))))) (-1899 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-410 (-954 *5)) (-1167 (-1178) (-954 *5)))) (-4 *5 (-455)) (-5 *2 (-645 (-690 (-410 (-954 *5))))) (-5 *1 (-293 *5)) (-5 *4 (-690 (-410 (-954 *5)))))) (-1550 (*1 *2 *3) (-12 (-5 *3 (-690 (-410 (-954 *4)))) (-4 *4 (-455)) (-5 *2 (-645 (-3 (-410 (-954 *4)) (-1167 (-1178) (-954 *4))))) (-5 *1 (-293 *4)))) (-2155 (*1 *2 *3) (-12 (-5 *3 (-690 (-410 (-954 *4)))) (-5 *2 (-954 *4)) (-5 *1 (-293 *4)) (-4 *4 (-455)))) (-2155 (*1 *2 *3 *4) (-12 (-5 *3 (-690 (-410 (-954 *5)))) (-5 *4 (-1178)) (-5 *2 (-954 *5)) (-5 *1 (-293 *5)) (-4 *5 (-455)))))
-(-10 -7 (-15 -2155 ((-954 |#1|) (-690 (-410 (-954 |#1|))) (-1178))) (-15 -2155 ((-954 |#1|) (-690 (-410 (-954 |#1|))))) (-15 -1550 ((-645 (-3 (-410 (-954 |#1|)) (-1167 (-1178) (-954 |#1|)))) (-690 (-410 (-954 |#1|))))) (-15 -1899 ((-645 (-690 (-410 (-954 |#1|)))) (-3 (-410 (-954 |#1|)) (-1167 (-1178) (-954 |#1|))) (-690 (-410 (-954 |#1|))))) (-15 -2634 ((-645 (-690 (-410 (-954 |#1|)))) (-3 (-410 (-954 |#1|)) (-1167 (-1178) (-954 |#1|))) (-690 (-410 (-954 |#1|))) (-772) (-772))) (-15 -2634 ((-645 (-690 (-410 (-954 |#1|)))) (-2 (|:| |eigval| (-3 (-410 (-954 |#1|)) (-1167 (-1178) (-954 |#1|)))) (|:| |eigmult| (-772)) (|:| |eigvec| (-645 (-690 (-410 (-954 |#1|)))))) (-690 (-410 (-954 |#1|))))) (-15 -3180 ((-645 (-2 (|:| |eigval| (-3 (-410 (-954 |#1|)) (-1167 (-1178) (-954 |#1|)))) (|:| |geneigvec| (-645 (-690 (-410 (-954 |#1|))))))) (-690 (-410 (-954 |#1|))))) (-15 -3429 ((-645 (-2 (|:| |eigval| (-3 (-410 (-954 |#1|)) (-1167 (-1178) (-954 |#1|)))) (|:| |eigmult| (-772)) (|:| |eigvec| (-645 (-690 (-410 (-954 |#1|))))))) (-690 (-410 (-954 |#1|))))))
-((-3829 (((-295 |#2|) (-1 |#2| |#1|) (-295 |#1|)) 14)))
-(((-294 |#1| |#2|) (-10 -7 (-15 -3829 ((-295 |#2|) (-1 |#2| |#1|) (-295 |#1|)))) (-1218) (-1218)) (T -294))
-((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-295 *5)) (-4 *5 (-1218)) (-4 *6 (-1218)) (-5 *2 (-295 *6)) (-5 *1 (-294 *5 *6)))))
-(-10 -7 (-15 -3829 ((-295 |#2|) (-1 |#2| |#1|) (-295 |#1|))))
-((-2403 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2460 (((-112) $) NIL (|has| |#1| (-21)))) (-3226 (($ $) 12)) (-3472 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2960 (($ $ $) 95 (|has| |#1| (-303)))) (-2585 (($) NIL (-2800 (|has| |#1| (-21)) (|has| |#1| (-727))) CONST)) (-1807 (($ $) 51 (|has| |#1| (-21)))) (-1513 (((-3 $ "failed") $) 62 (|has| |#1| (-727)))) (-4104 ((|#1| $) 11)) (-2109 (((-3 $ "failed") $) 60 (|has| |#1| (-727)))) (-1433 (((-112) $) NIL (|has| |#1| (-727)))) (-3829 (($ (-1 |#1| |#1|) $) 14)) (-4089 ((|#1| $) 10)) (-4330 (($ $) 50 (|has| |#1| (-21)))) (-3438 (((-3 $ "failed") $) 61 (|has| |#1| (-727)))) (-1419 (((-1160) $) NIL (|has| |#1| (-1102)))) (-2939 (($ $) 64 (-2800 (|has| |#1| (-365)) (|has| |#1| (-476))))) (-3430 (((-1122) $) NIL (|has| |#1| (-1102)))) (-3464 (((-645 $) $) 85 (|has| |#1| (-559)))) (-2631 (($ $ $) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 $)) 28 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-1178) |#1|) 17 (|has| |#1| (-517 (-1178) |#1|))) (($ $ (-645 (-1178)) (-645 |#1|)) 21 (|has| |#1| (-517 (-1178) |#1|)))) (-2537 (($ |#1| |#1|) 9)) (-1879 (((-134)) 90 (|has| |#1| (-365)))) (-1593 (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1178)) 87 (|has| |#1| (-902 (-1178))))) (-1823 (($ $ $) NIL (|has| |#1| (-476)))) (-1485 (($ $ $) NIL (|has| |#1| (-476)))) (-4132 (($ (-567)) NIL (|has| |#1| (-1051))) (((-112) $) 37 (|has| |#1| (-1102))) (((-863) $) 36 (|has| |#1| (-1102)))) (-4221 (((-772)) 67 (|has| |#1| (-1051)) CONST)) (-1745 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1716 (($) 47 (|has| |#1| (-21)) CONST)) (-1728 (($) 57 (|has| |#1| (-727)) CONST)) (-2637 (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1178)) NIL (|has| |#1| (-902 (-1178))))) (-2936 (($ |#1| |#1|) 8) (((-112) $ $) 32 (|has| |#1| (-1102)))) (-3060 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) 92 (-2800 (|has| |#1| (-365)) (|has| |#1| (-476))))) (-3045 (($ |#1| $) 45 (|has| |#1| (-21))) (($ $ |#1|) 46 (|has| |#1| (-21))) (($ $ $) 44 (|has| |#1| (-21))) (($ $) 43 (|has| |#1| (-21)))) (-3033 (($ |#1| $) 40 (|has| |#1| (-25))) (($ $ |#1|) 41 (|has| |#1| (-25))) (($ $ $) 39 (|has| |#1| (-25)))) (** (($ $ (-567)) NIL (|has| |#1| (-476))) (($ $ (-772)) NIL (|has| |#1| (-727))) (($ $ (-923)) NIL (|has| |#1| (-1114)))) (* (($ $ |#1|) 55 (|has| |#1| (-1114))) (($ |#1| $) 54 (|has| |#1| (-1114))) (($ $ $) 53 (|has| |#1| (-1114))) (($ (-567) $) 70 (|has| |#1| (-21))) (($ (-772) $) NIL (|has| |#1| (-21))) (($ (-923) $) NIL (|has| |#1| (-25)))))
-(((-295 |#1|) (-13 (-1218) (-10 -8 (-15 -2936 ($ |#1| |#1|)) (-15 -2537 ($ |#1| |#1|)) (-15 -3226 ($ $)) (-15 -4089 (|#1| $)) (-15 -4104 (|#1| $)) (-15 -3829 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-517 (-1178) |#1|)) (-6 (-517 (-1178) |#1|)) |%noBranch|) (IF (|has| |#1| (-1102)) (PROGN (-6 (-1102)) (-6 (-614 (-112))) (IF (|has| |#1| (-310 |#1|)) (PROGN (-15 -2631 ($ $ $)) (-15 -2631 ($ $ (-645 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3033 ($ |#1| $)) (-15 -3033 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -4330 ($ $)) (-15 -1807 ($ $)) (-15 -3045 ($ |#1| $)) (-15 -3045 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1114)) (PROGN (-6 (-1114)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-727)) (PROGN (-6 (-727)) (-15 -3438 ((-3 $ "failed") $)) (-15 -1513 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-476)) (PROGN (-6 (-476)) (-15 -3438 ((-3 $ "failed") $)) (-15 -1513 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1051)) (PROGN (-6 (-1051)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-718 |#1|)) |%noBranch|) (IF (|has| |#1| (-559)) (-15 -3464 ((-645 $) $)) |%noBranch|) (IF (|has| |#1| (-902 (-1178))) (-6 (-902 (-1178))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-6 (-1275 |#1|)) (-15 -3060 ($ $ $)) (-15 -2939 ($ $))) |%noBranch|) (IF (|has| |#1| (-303)) (-15 -2960 ($ $ $)) |%noBranch|))) (-1218)) (T -295))
-((-2936 (*1 *1 *2 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1218)))) (-2537 (*1 *1 *2 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1218)))) (-3226 (*1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1218)))) (-4089 (*1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1218)))) (-4104 (*1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1218)))) (-3829 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1218)) (-5 *1 (-295 *3)))) (-2631 (*1 *1 *1 *1) (-12 (-4 *2 (-310 *2)) (-4 *2 (-1102)) (-4 *2 (-1218)) (-5 *1 (-295 *2)))) (-2631 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-295 *3))) (-4 *3 (-310 *3)) (-4 *3 (-1102)) (-4 *3 (-1218)) (-5 *1 (-295 *3)))) (-3033 (*1 *1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-25)) (-4 *2 (-1218)))) (-3033 (*1 *1 *1 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-25)) (-4 *2 (-1218)))) (-4330 (*1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1218)))) (-1807 (*1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1218)))) (-3045 (*1 *1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1218)))) (-3045 (*1 *1 *1 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1218)))) (-3438 (*1 *1 *1) (|partial| -12 (-5 *1 (-295 *2)) (-4 *2 (-727)) (-4 *2 (-1218)))) (-1513 (*1 *1 *1) (|partial| -12 (-5 *1 (-295 *2)) (-4 *2 (-727)) (-4 *2 (-1218)))) (-3464 (*1 *2 *1) (-12 (-5 *2 (-645 (-295 *3))) (-5 *1 (-295 *3)) (-4 *3 (-559)) (-4 *3 (-1218)))) (-2960 (*1 *1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-303)) (-4 *2 (-1218)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1114)) (-4 *2 (-1218)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1114)) (-4 *2 (-1218)))) (-3060 (*1 *1 *1 *1) (-2800 (-12 (-5 *1 (-295 *2)) (-4 *2 (-365)) (-4 *2 (-1218))) (-12 (-5 *1 (-295 *2)) (-4 *2 (-476)) (-4 *2 (-1218))))) (-2939 (*1 *1 *1) (-2800 (-12 (-5 *1 (-295 *2)) (-4 *2 (-365)) (-4 *2 (-1218))) (-12 (-5 *1 (-295 *2)) (-4 *2 (-476)) (-4 *2 (-1218))))))
-(-13 (-1218) (-10 -8 (-15 -2936 ($ |#1| |#1|)) (-15 -2537 ($ |#1| |#1|)) (-15 -3226 ($ $)) (-15 -4089 (|#1| $)) (-15 -4104 (|#1| $)) (-15 -3829 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-517 (-1178) |#1|)) (-6 (-517 (-1178) |#1|)) |%noBranch|) (IF (|has| |#1| (-1102)) (PROGN (-6 (-1102)) (-6 (-614 (-112))) (IF (|has| |#1| (-310 |#1|)) (PROGN (-15 -2631 ($ $ $)) (-15 -2631 ($ $ (-645 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3033 ($ |#1| $)) (-15 -3033 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -4330 ($ $)) (-15 -1807 ($ $)) (-15 -3045 ($ |#1| $)) (-15 -3045 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1114)) (PROGN (-6 (-1114)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-727)) (PROGN (-6 (-727)) (-15 -3438 ((-3 $ "failed") $)) (-15 -1513 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-476)) (PROGN (-6 (-476)) (-15 -3438 ((-3 $ "failed") $)) (-15 -1513 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1051)) (PROGN (-6 (-1051)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-718 |#1|)) |%noBranch|) (IF (|has| |#1| (-559)) (-15 -3464 ((-645 $) $)) |%noBranch|) (IF (|has| |#1| (-902 (-1178))) (-6 (-902 (-1178))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-6 (-1275 |#1|)) (-15 -3060 ($ $ $)) (-15 -2939 ($ $))) |%noBranch|) (IF (|has| |#1| (-303)) (-15 -2960 ($ $ $)) |%noBranch|)))
-((-2403 (((-112) $ $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-2835 (($) NIL) (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL)) (-1783 (((-1273) $ |#1| |#1|) NIL (|has| $ (-6 -4419)))) (-3445 (((-112) $ (-772)) NIL)) (-4284 ((|#2| $ |#1| |#2|) NIL)) (-2839 (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-3350 (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-4019 (((-3 |#2| "failed") |#1| $) NIL)) (-2585 (($) NIL T CONST)) (-2444 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102))))) (-2539 (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL (|has| $ (-6 -4418))) (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-3 |#2| "failed") |#1| $) NIL)) (-3238 (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-2477 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) NIL (|has| $ (-6 -4418))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-3741 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4419)))) (-3680 ((|#2| $ |#1|) NIL)) (-2777 (((-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-645 |#2|) $) NIL (|has| $ (-6 -4418)))) (-2077 (((-112) $ (-772)) NIL)) (-4069 ((|#1| $) NIL (|has| |#1| (-851)))) (-2279 (((-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-645 |#2|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#2| (-1102))))) (-2266 ((|#1| $) NIL (|has| |#1| (-851)))) (-3731 (($ (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4419))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-1391 (((-645 |#1|) $) NIL)) (-4251 (((-112) |#1| $) NIL)) (-1566 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL)) (-2531 (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL)) (-1789 (((-645 |#1|) $) NIL)) (-2996 (((-112) |#1| $) NIL)) (-3430 (((-1122) $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-2409 ((|#2| $) NIL (|has| |#1| (-851)))) (-4128 (((-3 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) "failed") (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL)) (-3986 (($ $ |#2|) NIL (|has| $ (-6 -4419)))) (-1793 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL)) (-3025 (((-112) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))))) NIL (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-295 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) NIL (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))))) (-3092 (((-112) $ $) NIL)) (-1794 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#2| (-1102))))) (-2339 (((-645 |#2|) $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) NIL)) (-1787 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2718 (($) NIL) (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL)) (-3439 (((-772) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-772) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (((-772) |#2| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#2| (-1102)))) (((-772) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4418)))) (-4305 (($ $) NIL)) (-3893 (((-539) $) NIL (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-615 (-539))))) (-4147 (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL)) (-4132 (((-863) $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-614 (-863))) (|has| |#2| (-614 (-863)))))) (-1745 (((-112) $ $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-3551 (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL)) (-1853 (((-112) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-2414 (((-772) $) NIL (|has| $ (-6 -4418)))))
-(((-296 |#1| |#2|) (-13 (-1194 |#1| |#2|) (-10 -7 (-6 -4418))) (-1102) (-1102)) (T -296))
-NIL
-(-13 (-1194 |#1| |#2|) (-10 -7 (-6 -4418)))
-((-2058 (((-313) (-1160) (-645 (-1160))) 17) (((-313) (-1160) (-1160)) 16) (((-313) (-645 (-1160))) 15) (((-313) (-1160)) 14)))
-(((-297) (-10 -7 (-15 -2058 ((-313) (-1160))) (-15 -2058 ((-313) (-645 (-1160)))) (-15 -2058 ((-313) (-1160) (-1160))) (-15 -2058 ((-313) (-1160) (-645 (-1160)))))) (T -297))
-((-2058 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-1160))) (-5 *3 (-1160)) (-5 *2 (-313)) (-5 *1 (-297)))) (-2058 (*1 *2 *3 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-313)) (-5 *1 (-297)))) (-2058 (*1 *2 *3) (-12 (-5 *3 (-645 (-1160))) (-5 *2 (-313)) (-5 *1 (-297)))) (-2058 (*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-313)) (-5 *1 (-297)))))
-(-10 -7 (-15 -2058 ((-313) (-1160))) (-15 -2058 ((-313) (-645 (-1160)))) (-15 -2058 ((-313) (-1160) (-1160))) (-15 -2058 ((-313) (-1160) (-645 (-1160)))))
-((-3829 ((|#2| (-1 |#2| |#1|) (-1160) (-613 |#1|)) 18)))
-(((-298 |#1| |#2|) (-10 -7 (-15 -3829 (|#2| (-1 |#2| |#1|) (-1160) (-613 |#1|)))) (-303) (-1218)) (T -298))
-((-3829 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1160)) (-5 *5 (-613 *6)) (-4 *6 (-303)) (-4 *2 (-1218)) (-5 *1 (-298 *6 *2)))))
-(-10 -7 (-15 -3829 (|#2| (-1 |#2| |#1|) (-1160) (-613 |#1|))))
-((-3829 ((|#2| (-1 |#2| |#1|) (-613 |#1|)) 17)))
-(((-299 |#1| |#2|) (-10 -7 (-15 -3829 (|#2| (-1 |#2| |#1|) (-613 |#1|)))) (-303) (-303)) (T -299))
-((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-613 *5)) (-4 *5 (-303)) (-4 *2 (-303)) (-5 *1 (-299 *5 *2)))))
-(-10 -7 (-15 -3829 (|#2| (-1 |#2| |#1|) (-613 |#1|))))
-((-2642 (((-112) (-225)) 12)))
-(((-300 |#1| |#2|) (-10 -7 (-15 -2642 ((-112) (-225)))) (-225) (-225)) (T -300))
-((-2642 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-300 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
-(-10 -7 (-15 -2642 ((-112) (-225))))
-((-3224 (((-1158 (-225)) (-317 (-225)) (-645 (-1178)) (-1096 (-844 (-225)))) 118)) (-2364 (((-1158 (-225)) (-1268 (-317 (-225))) (-645 (-1178)) (-1096 (-844 (-225)))) 135) (((-1158 (-225)) (-317 (-225)) (-645 (-1178)) (-1096 (-844 (-225)))) 72)) (-2308 (((-645 (-1160)) (-1158 (-225))) NIL)) (-3947 (((-645 (-225)) (-317 (-225)) (-1178) (-1096 (-844 (-225)))) 69)) (-2154 (((-645 (-225)) (-954 (-410 (-567))) (-1178) (-1096 (-844 (-225)))) 59)) (-3258 (((-645 (-1160)) (-645 (-225))) NIL)) (-1594 (((-225) (-1096 (-844 (-225)))) 29)) (-2158 (((-225) (-1096 (-844 (-225)))) 30)) (-3336 (((-112) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 64)) (-3905 (((-1160) (-225)) NIL)))
-(((-301) (-10 -7 (-15 -1594 ((-225) (-1096 (-844 (-225))))) (-15 -2158 ((-225) (-1096 (-844 (-225))))) (-15 -3336 ((-112) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3947 ((-645 (-225)) (-317 (-225)) (-1178) (-1096 (-844 (-225))))) (-15 -3224 ((-1158 (-225)) (-317 (-225)) (-645 (-1178)) (-1096 (-844 (-225))))) (-15 -2364 ((-1158 (-225)) (-317 (-225)) (-645 (-1178)) (-1096 (-844 (-225))))) (-15 -2364 ((-1158 (-225)) (-1268 (-317 (-225))) (-645 (-1178)) (-1096 (-844 (-225))))) (-15 -2154 ((-645 (-225)) (-954 (-410 (-567))) (-1178) (-1096 (-844 (-225))))) (-15 -3905 ((-1160) (-225))) (-15 -3258 ((-645 (-1160)) (-645 (-225)))) (-15 -2308 ((-645 (-1160)) (-1158 (-225)))))) (T -301))
-((-2308 (*1 *2 *3) (-12 (-5 *3 (-1158 (-225))) (-5 *2 (-645 (-1160))) (-5 *1 (-301)))) (-3258 (*1 *2 *3) (-12 (-5 *3 (-645 (-225))) (-5 *2 (-645 (-1160))) (-5 *1 (-301)))) (-3905 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1160)) (-5 *1 (-301)))) (-2154 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-954 (-410 (-567)))) (-5 *4 (-1178)) (-5 *5 (-1096 (-844 (-225)))) (-5 *2 (-645 (-225))) (-5 *1 (-301)))) (-2364 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1268 (-317 (-225)))) (-5 *4 (-645 (-1178))) (-5 *5 (-1096 (-844 (-225)))) (-5 *2 (-1158 (-225))) (-5 *1 (-301)))) (-2364 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-317 (-225))) (-5 *4 (-645 (-1178))) (-5 *5 (-1096 (-844 (-225)))) (-5 *2 (-1158 (-225))) (-5 *1 (-301)))) (-3224 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-317 (-225))) (-5 *4 (-645 (-1178))) (-5 *5 (-1096 (-844 (-225)))) (-5 *2 (-1158 (-225))) (-5 *1 (-301)))) (-3947 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-317 (-225))) (-5 *4 (-1178)) (-5 *5 (-1096 (-844 (-225)))) (-5 *2 (-645 (-225))) (-5 *1 (-301)))) (-3336 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-112)) (-5 *1 (-301)))) (-2158 (*1 *2 *3) (-12 (-5 *3 (-1096 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-301)))) (-1594 (*1 *2 *3) (-12 (-5 *3 (-1096 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-301)))))
-(-10 -7 (-15 -1594 ((-225) (-1096 (-844 (-225))))) (-15 -2158 ((-225) (-1096 (-844 (-225))))) (-15 -3336 ((-112) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3947 ((-645 (-225)) (-317 (-225)) (-1178) (-1096 (-844 (-225))))) (-15 -3224 ((-1158 (-225)) (-317 (-225)) (-645 (-1178)) (-1096 (-844 (-225))))) (-15 -2364 ((-1158 (-225)) (-317 (-225)) (-645 (-1178)) (-1096 (-844 (-225))))) (-15 -2364 ((-1158 (-225)) (-1268 (-317 (-225))) (-645 (-1178)) (-1096 (-844 (-225))))) (-15 -2154 ((-645 (-225)) (-954 (-410 (-567))) (-1178) (-1096 (-844 (-225))))) (-15 -3905 ((-1160) (-225))) (-15 -3258 ((-645 (-1160)) (-645 (-225)))) (-15 -2308 ((-645 (-1160)) (-1158 (-225)))))
-((-2566 (((-645 (-613 $)) $) 27)) (-2960 (($ $ (-295 $)) 78) (($ $ (-645 (-295 $))) 139) (($ $ (-645 (-613 $)) (-645 $)) NIL)) (-3753 (((-3 (-613 $) "failed") $) 127)) (-2038 (((-613 $) $) 126)) (-2068 (($ $) 17) (($ (-645 $)) 54)) (-2034 (((-645 (-114)) $) 35)) (-2654 (((-114) (-114)) 88)) (-3837 (((-112) $) 150)) (-3829 (($ (-1 $ $) (-613 $)) 86)) (-2700 (((-3 (-613 $) "failed") $) 94)) (-3632 (($ (-114) $) 59) (($ (-114) (-645 $)) 110)) (-1854 (((-112) $ (-114)) 132) (((-112) $ (-1178)) 131)) (-4138 (((-772) $) 44)) (-3922 (((-112) $ $) 57) (((-112) $ (-1178)) 49)) (-2757 (((-112) $) 148)) (-2631 (($ $ (-613 $) $) NIL) (($ $ (-645 (-613 $)) (-645 $)) NIL) (($ $ (-645 (-295 $))) 137) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-645 (-1178)) (-645 (-1 $ $))) 81) (($ $ (-645 (-1178)) (-645 (-1 $ (-645 $)))) NIL) (($ $ (-1178) (-1 $ (-645 $))) 67) (($ $ (-1178) (-1 $ $)) 72) (($ $ (-645 (-114)) (-645 (-1 $ $))) 80) (($ $ (-645 (-114)) (-645 (-1 $ (-645 $)))) 82) (($ $ (-114) (-1 $ (-645 $))) 68) (($ $ (-114) (-1 $ $)) 74)) (-1787 (($ (-114) $) 60) (($ (-114) $ $) 61) (($ (-114) $ $ $) 62) (($ (-114) $ $ $ $) 63) (($ (-114) (-645 $)) 123)) (-3241 (($ $) 51) (($ $ $) 135)) (-1334 (($ $) 15) (($ (-645 $)) 53)) (-3797 (((-112) (-114)) 21)))
-(((-302 |#1|) (-10 -8 (-15 -3837 ((-112) |#1|)) (-15 -2757 ((-112) |#1|)) (-15 -2631 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2631 (|#1| |#1| (-114) (-1 |#1| (-645 |#1|)))) (-15 -2631 (|#1| |#1| (-645 (-114)) (-645 (-1 |#1| (-645 |#1|))))) (-15 -2631 (|#1| |#1| (-645 (-114)) (-645 (-1 |#1| |#1|)))) (-15 -2631 (|#1| |#1| (-1178) (-1 |#1| |#1|))) (-15 -2631 (|#1| |#1| (-1178) (-1 |#1| (-645 |#1|)))) (-15 -2631 (|#1| |#1| (-645 (-1178)) (-645 (-1 |#1| (-645 |#1|))))) (-15 -2631 (|#1| |#1| (-645 (-1178)) (-645 (-1 |#1| |#1|)))) (-15 -3922 ((-112) |#1| (-1178))) (-15 -3922 ((-112) |#1| |#1|)) (-15 -3829 (|#1| (-1 |#1| |#1|) (-613 |#1|))) (-15 -3632 (|#1| (-114) (-645 |#1|))) (-15 -3632 (|#1| (-114) |#1|)) (-15 -1854 ((-112) |#1| (-1178))) (-15 -1854 ((-112) |#1| (-114))) (-15 -3797 ((-112) (-114))) (-15 -2654 ((-114) (-114))) (-15 -2034 ((-645 (-114)) |#1|)) (-15 -2566 ((-645 (-613 |#1|)) |#1|)) (-15 -2700 ((-3 (-613 |#1|) "failed") |#1|)) (-15 -4138 ((-772) |#1|)) (-15 -3241 (|#1| |#1| |#1|)) (-15 -3241 (|#1| |#1|)) (-15 -2068 (|#1| (-645 |#1|))) (-15 -2068 (|#1| |#1|)) (-15 -1334 (|#1| (-645 |#1|))) (-15 -1334 (|#1| |#1|)) (-15 -2960 (|#1| |#1| (-645 (-613 |#1|)) (-645 |#1|))) (-15 -2960 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -2960 (|#1| |#1| (-295 |#1|))) (-15 -1787 (|#1| (-114) (-645 |#1|))) (-15 -1787 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -1787 (|#1| (-114) |#1| |#1| |#1|)) (-15 -1787 (|#1| (-114) |#1| |#1|)) (-15 -1787 (|#1| (-114) |#1|)) (-15 -2631 (|#1| |#1| (-645 |#1|) (-645 |#1|))) (-15 -2631 (|#1| |#1| |#1| |#1|)) (-15 -2631 (|#1| |#1| (-295 |#1|))) (-15 -2631 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -2631 (|#1| |#1| (-645 (-613 |#1|)) (-645 |#1|))) (-15 -2631 (|#1| |#1| (-613 |#1|) |#1|)) (-15 -3753 ((-3 (-613 |#1|) "failed") |#1|)) (-15 -2038 ((-613 |#1|) |#1|))) (-303)) (T -302))
-((-2654 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-302 *3)) (-4 *3 (-303)))) (-3797 (*1 *2 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-302 *4)) (-4 *4 (-303)))))
-(-10 -8 (-15 -3837 ((-112) |#1|)) (-15 -2757 ((-112) |#1|)) (-15 -2631 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2631 (|#1| |#1| (-114) (-1 |#1| (-645 |#1|)))) (-15 -2631 (|#1| |#1| (-645 (-114)) (-645 (-1 |#1| (-645 |#1|))))) (-15 -2631 (|#1| |#1| (-645 (-114)) (-645 (-1 |#1| |#1|)))) (-15 -2631 (|#1| |#1| (-1178) (-1 |#1| |#1|))) (-15 -2631 (|#1| |#1| (-1178) (-1 |#1| (-645 |#1|)))) (-15 -2631 (|#1| |#1| (-645 (-1178)) (-645 (-1 |#1| (-645 |#1|))))) (-15 -2631 (|#1| |#1| (-645 (-1178)) (-645 (-1 |#1| |#1|)))) (-15 -3922 ((-112) |#1| (-1178))) (-15 -3922 ((-112) |#1| |#1|)) (-15 -3829 (|#1| (-1 |#1| |#1|) (-613 |#1|))) (-15 -3632 (|#1| (-114) (-645 |#1|))) (-15 -3632 (|#1| (-114) |#1|)) (-15 -1854 ((-112) |#1| (-1178))) (-15 -1854 ((-112) |#1| (-114))) (-15 -3797 ((-112) (-114))) (-15 -2654 ((-114) (-114))) (-15 -2034 ((-645 (-114)) |#1|)) (-15 -2566 ((-645 (-613 |#1|)) |#1|)) (-15 -2700 ((-3 (-613 |#1|) "failed") |#1|)) (-15 -4138 ((-772) |#1|)) (-15 -3241 (|#1| |#1| |#1|)) (-15 -3241 (|#1| |#1|)) (-15 -2068 (|#1| (-645 |#1|))) (-15 -2068 (|#1| |#1|)) (-15 -1334 (|#1| (-645 |#1|))) (-15 -1334 (|#1| |#1|)) (-15 -2960 (|#1| |#1| (-645 (-613 |#1|)) (-645 |#1|))) (-15 -2960 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -2960 (|#1| |#1| (-295 |#1|))) (-15 -1787 (|#1| (-114) (-645 |#1|))) (-15 -1787 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -1787 (|#1| (-114) |#1| |#1| |#1|)) (-15 -1787 (|#1| (-114) |#1| |#1|)) (-15 -1787 (|#1| (-114) |#1|)) (-15 -2631 (|#1| |#1| (-645 |#1|) (-645 |#1|))) (-15 -2631 (|#1| |#1| |#1| |#1|)) (-15 -2631 (|#1| |#1| (-295 |#1|))) (-15 -2631 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -2631 (|#1| |#1| (-645 (-613 |#1|)) (-645 |#1|))) (-15 -2631 (|#1| |#1| (-613 |#1|) |#1|)) (-15 -3753 ((-3 (-613 |#1|) "failed") |#1|)) (-15 -2038 ((-613 |#1|) |#1|)))
-((-2403 (((-112) $ $) 7)) (-2566 (((-645 (-613 $)) $) 39)) (-2960 (($ $ (-295 $)) 51) (($ $ (-645 (-295 $))) 50) (($ $ (-645 (-613 $)) (-645 $)) 49)) (-3753 (((-3 (-613 $) "failed") $) 64)) (-2038 (((-613 $) $) 65)) (-2068 (($ $) 46) (($ (-645 $)) 45)) (-2034 (((-645 (-114)) $) 38)) (-2654 (((-114) (-114)) 37)) (-3837 (((-112) $) 17 (|has| $ (-1040 (-567))))) (-3263 (((-1174 $) (-613 $)) 20 (|has| $ (-1051)))) (-3829 (($ (-1 $ $) (-613 $)) 31)) (-2700 (((-3 (-613 $) "failed") $) 41)) (-1419 (((-1160) $) 10)) (-2641 (((-645 (-613 $)) $) 40)) (-3632 (($ (-114) $) 33) (($ (-114) (-645 $)) 32)) (-1854 (((-112) $ (-114)) 35) (((-112) $ (-1178)) 34)) (-4138 (((-772) $) 42)) (-3430 (((-1122) $) 11)) (-3922 (((-112) $ $) 30) (((-112) $ (-1178)) 29)) (-2757 (((-112) $) 18 (|has| $ (-1040 (-567))))) (-2631 (($ $ (-613 $) $) 62) (($ $ (-645 (-613 $)) (-645 $)) 61) (($ $ (-645 (-295 $))) 60) (($ $ (-295 $)) 59) (($ $ $ $) 58) (($ $ (-645 $) (-645 $)) 57) (($ $ (-645 (-1178)) (-645 (-1 $ $))) 28) (($ $ (-645 (-1178)) (-645 (-1 $ (-645 $)))) 27) (($ $ (-1178) (-1 $ (-645 $))) 26) (($ $ (-1178) (-1 $ $)) 25) (($ $ (-645 (-114)) (-645 (-1 $ $))) 24) (($ $ (-645 (-114)) (-645 (-1 $ (-645 $)))) 23) (($ $ (-114) (-1 $ (-645 $))) 22) (($ $ (-114) (-1 $ $)) 21)) (-1787 (($ (-114) $) 56) (($ (-114) $ $) 55) (($ (-114) $ $ $) 54) (($ (-114) $ $ $ $) 53) (($ (-114) (-645 $)) 52)) (-3241 (($ $) 44) (($ $ $) 43)) (-3341 (($ $) 19 (|has| $ (-1051)))) (-4132 (((-863) $) 12) (($ (-613 $)) 63)) (-1334 (($ $) 48) (($ (-645 $)) 47)) (-3797 (((-112) (-114)) 36)) (-1745 (((-112) $ $) 9)) (-2936 (((-112) $ $) 6)))
+((-3706 (($ (-509) (-509) (-1106) $) 19)) (-1843 (($ (-509) (-645 (-967)) $) 23)) (-3701 (((-645 (-1087)) $) 10)) (-3420 (($) 25)) (-1443 (((-692 (-1106)) (-509) (-509) $) 18)) (-3956 (((-645 (-967)) (-509) $) 22)) (-2701 (($) 7)) (-3668 (($) 24)) (-4129 (((-863) $) 29)) (-3074 (($) 26)))
+(((-292) (-13 (-614 (-863)) (-10 -8 (-15 -2701 ($)) (-15 -3701 ((-645 (-1087)) $)) (-15 -1443 ((-692 (-1106)) (-509) (-509) $)) (-15 -3706 ($ (-509) (-509) (-1106) $)) (-15 -3956 ((-645 (-967)) (-509) $)) (-15 -1843 ($ (-509) (-645 (-967)) $)) (-15 -3668 ($)) (-15 -3420 ($)) (-15 -3074 ($))))) (T -292))
+((-2701 (*1 *1) (-5 *1 (-292))) (-3701 (*1 *2 *1) (-12 (-5 *2 (-645 (-1087))) (-5 *1 (-292)))) (-1443 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-509)) (-5 *2 (-692 (-1106))) (-5 *1 (-292)))) (-3706 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-509)) (-5 *3 (-1106)) (-5 *1 (-292)))) (-3956 (*1 *2 *3 *1) (-12 (-5 *3 (-509)) (-5 *2 (-645 (-967))) (-5 *1 (-292)))) (-1843 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-509)) (-5 *3 (-645 (-967))) (-5 *1 (-292)))) (-3668 (*1 *1) (-5 *1 (-292))) (-3420 (*1 *1) (-5 *1 (-292))) (-3074 (*1 *1) (-5 *1 (-292))))
+(-13 (-614 (-863)) (-10 -8 (-15 -2701 ($)) (-15 -3701 ((-645 (-1087)) $)) (-15 -1443 ((-692 (-1106)) (-509) (-509) $)) (-15 -3706 ($ (-509) (-509) (-1106) $)) (-15 -3956 ((-645 (-967)) (-509) $)) (-15 -1843 ($ (-509) (-645 (-967)) $)) (-15 -3668 ($)) (-15 -3420 ($)) (-15 -3074 ($))))
+((-3249 (((-645 (-2 (|:| |eigval| (-3 (-410 (-954 |#1|)) (-1168 (-1179) (-954 |#1|)))) (|:| |geneigvec| (-645 (-690 (-410 (-954 |#1|))))))) (-690 (-410 (-954 |#1|)))) 105)) (-1704 (((-645 (-690 (-410 (-954 |#1|)))) (-2 (|:| |eigval| (-3 (-410 (-954 |#1|)) (-1168 (-1179) (-954 |#1|)))) (|:| |eigmult| (-772)) (|:| |eigvec| (-645 (-690 (-410 (-954 |#1|)))))) (-690 (-410 (-954 |#1|)))) 100) (((-645 (-690 (-410 (-954 |#1|)))) (-3 (-410 (-954 |#1|)) (-1168 (-1179) (-954 |#1|))) (-690 (-410 (-954 |#1|))) (-772) (-772)) 41)) (-3602 (((-645 (-2 (|:| |eigval| (-3 (-410 (-954 |#1|)) (-1168 (-1179) (-954 |#1|)))) (|:| |eigmult| (-772)) (|:| |eigvec| (-645 (-690 (-410 (-954 |#1|))))))) (-690 (-410 (-954 |#1|)))) 102)) (-2954 (((-645 (-690 (-410 (-954 |#1|)))) (-3 (-410 (-954 |#1|)) (-1168 (-1179) (-954 |#1|))) (-690 (-410 (-954 |#1|)))) 77)) (-3387 (((-645 (-3 (-410 (-954 |#1|)) (-1168 (-1179) (-954 |#1|)))) (-690 (-410 (-954 |#1|)))) 76)) (-2231 (((-954 |#1|) (-690 (-410 (-954 |#1|)))) 57) (((-954 |#1|) (-690 (-410 (-954 |#1|))) (-1179)) 58)))
+(((-293 |#1|) (-10 -7 (-15 -2231 ((-954 |#1|) (-690 (-410 (-954 |#1|))) (-1179))) (-15 -2231 ((-954 |#1|) (-690 (-410 (-954 |#1|))))) (-15 -3387 ((-645 (-3 (-410 (-954 |#1|)) (-1168 (-1179) (-954 |#1|)))) (-690 (-410 (-954 |#1|))))) (-15 -2954 ((-645 (-690 (-410 (-954 |#1|)))) (-3 (-410 (-954 |#1|)) (-1168 (-1179) (-954 |#1|))) (-690 (-410 (-954 |#1|))))) (-15 -1704 ((-645 (-690 (-410 (-954 |#1|)))) (-3 (-410 (-954 |#1|)) (-1168 (-1179) (-954 |#1|))) (-690 (-410 (-954 |#1|))) (-772) (-772))) (-15 -1704 ((-645 (-690 (-410 (-954 |#1|)))) (-2 (|:| |eigval| (-3 (-410 (-954 |#1|)) (-1168 (-1179) (-954 |#1|)))) (|:| |eigmult| (-772)) (|:| |eigvec| (-645 (-690 (-410 (-954 |#1|)))))) (-690 (-410 (-954 |#1|))))) (-15 -3249 ((-645 (-2 (|:| |eigval| (-3 (-410 (-954 |#1|)) (-1168 (-1179) (-954 |#1|)))) (|:| |geneigvec| (-645 (-690 (-410 (-954 |#1|))))))) (-690 (-410 (-954 |#1|))))) (-15 -3602 ((-645 (-2 (|:| |eigval| (-3 (-410 (-954 |#1|)) (-1168 (-1179) (-954 |#1|)))) (|:| |eigmult| (-772)) (|:| |eigvec| (-645 (-690 (-410 (-954 |#1|))))))) (-690 (-410 (-954 |#1|)))))) (-455)) (T -293))
+((-3602 (*1 *2 *3) (-12 (-4 *4 (-455)) (-5 *2 (-645 (-2 (|:| |eigval| (-3 (-410 (-954 *4)) (-1168 (-1179) (-954 *4)))) (|:| |eigmult| (-772)) (|:| |eigvec| (-645 (-690 (-410 (-954 *4)))))))) (-5 *1 (-293 *4)) (-5 *3 (-690 (-410 (-954 *4)))))) (-3249 (*1 *2 *3) (-12 (-4 *4 (-455)) (-5 *2 (-645 (-2 (|:| |eigval| (-3 (-410 (-954 *4)) (-1168 (-1179) (-954 *4)))) (|:| |geneigvec| (-645 (-690 (-410 (-954 *4)))))))) (-5 *1 (-293 *4)) (-5 *3 (-690 (-410 (-954 *4)))))) (-1704 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-410 (-954 *5)) (-1168 (-1179) (-954 *5)))) (|:| |eigmult| (-772)) (|:| |eigvec| (-645 *4)))) (-4 *5 (-455)) (-5 *2 (-645 (-690 (-410 (-954 *5))))) (-5 *1 (-293 *5)) (-5 *4 (-690 (-410 (-954 *5)))))) (-1704 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-410 (-954 *6)) (-1168 (-1179) (-954 *6)))) (-5 *5 (-772)) (-4 *6 (-455)) (-5 *2 (-645 (-690 (-410 (-954 *6))))) (-5 *1 (-293 *6)) (-5 *4 (-690 (-410 (-954 *6)))))) (-2954 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-410 (-954 *5)) (-1168 (-1179) (-954 *5)))) (-4 *5 (-455)) (-5 *2 (-645 (-690 (-410 (-954 *5))))) (-5 *1 (-293 *5)) (-5 *4 (-690 (-410 (-954 *5)))))) (-3387 (*1 *2 *3) (-12 (-5 *3 (-690 (-410 (-954 *4)))) (-4 *4 (-455)) (-5 *2 (-645 (-3 (-410 (-954 *4)) (-1168 (-1179) (-954 *4))))) (-5 *1 (-293 *4)))) (-2231 (*1 *2 *3) (-12 (-5 *3 (-690 (-410 (-954 *4)))) (-5 *2 (-954 *4)) (-5 *1 (-293 *4)) (-4 *4 (-455)))) (-2231 (*1 *2 *3 *4) (-12 (-5 *3 (-690 (-410 (-954 *5)))) (-5 *4 (-1179)) (-5 *2 (-954 *5)) (-5 *1 (-293 *5)) (-4 *5 (-455)))))
+(-10 -7 (-15 -2231 ((-954 |#1|) (-690 (-410 (-954 |#1|))) (-1179))) (-15 -2231 ((-954 |#1|) (-690 (-410 (-954 |#1|))))) (-15 -3387 ((-645 (-3 (-410 (-954 |#1|)) (-1168 (-1179) (-954 |#1|)))) (-690 (-410 (-954 |#1|))))) (-15 -2954 ((-645 (-690 (-410 (-954 |#1|)))) (-3 (-410 (-954 |#1|)) (-1168 (-1179) (-954 |#1|))) (-690 (-410 (-954 |#1|))))) (-15 -1704 ((-645 (-690 (-410 (-954 |#1|)))) (-3 (-410 (-954 |#1|)) (-1168 (-1179) (-954 |#1|))) (-690 (-410 (-954 |#1|))) (-772) (-772))) (-15 -1704 ((-645 (-690 (-410 (-954 |#1|)))) (-2 (|:| |eigval| (-3 (-410 (-954 |#1|)) (-1168 (-1179) (-954 |#1|)))) (|:| |eigmult| (-772)) (|:| |eigvec| (-645 (-690 (-410 (-954 |#1|)))))) (-690 (-410 (-954 |#1|))))) (-15 -3249 ((-645 (-2 (|:| |eigval| (-3 (-410 (-954 |#1|)) (-1168 (-1179) (-954 |#1|)))) (|:| |geneigvec| (-645 (-690 (-410 (-954 |#1|))))))) (-690 (-410 (-954 |#1|))))) (-15 -3602 ((-645 (-2 (|:| |eigval| (-3 (-410 (-954 |#1|)) (-1168 (-1179) (-954 |#1|)))) (|:| |eigmult| (-772)) (|:| |eigvec| (-645 (-690 (-410 (-954 |#1|))))))) (-690 (-410 (-954 |#1|))))))
+((-3841 (((-295 |#2|) (-1 |#2| |#1|) (-295 |#1|)) 14)))
+(((-294 |#1| |#2|) (-10 -7 (-15 -3841 ((-295 |#2|) (-1 |#2| |#1|) (-295 |#1|)))) (-1219) (-1219)) (T -294))
+((-3841 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-295 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) (-5 *2 (-295 *6)) (-5 *1 (-294 *5 *6)))))
+(-10 -7 (-15 -3841 ((-295 |#2|) (-1 |#2| |#1|) (-295 |#1|))))
+((-2412 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3791 (((-112) $) NIL (|has| |#1| (-21)))) (-4010 (($ $) 12)) (-2376 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2982 (($ $ $) 95 (|has| |#1| (-303)))) (-3647 (($) NIL (-2811 (|has| |#1| (-21)) (|has| |#1| (-727))) CONST)) (-2623 (($ $) 51 (|has| |#1| (-21)))) (-2216 (((-3 $ "failed") $) 62 (|has| |#1| (-727)))) (-4102 ((|#1| $) 11)) (-3588 (((-3 $ "failed") $) 60 (|has| |#1| (-727)))) (-4346 (((-112) $) NIL (|has| |#1| (-727)))) (-3841 (($ (-1 |#1| |#1|) $) 14)) (-4089 ((|#1| $) 10)) (-3539 (($ $) 50 (|has| |#1| (-21)))) (-2234 (((-3 $ "failed") $) 61 (|has| |#1| (-727)))) (-2516 (((-1161) $) NIL (|has| |#1| (-1102)))) (-2949 (($ $) 64 (-2811 (|has| |#1| (-365)) (|has| |#1| (-476))))) (-3437 (((-1122) $) NIL (|has| |#1| (-1102)))) (-2876 (((-645 $) $) 85 (|has| |#1| (-559)))) (-2642 (($ $ $) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 $)) 28 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-1179) |#1|) 17 (|has| |#1| (-517 (-1179) |#1|))) (($ $ (-645 (-1179)) (-645 |#1|)) 21 (|has| |#1| (-517 (-1179) |#1|)))) (-2547 (($ |#1| |#1|) 9)) (-1412 (((-134)) 90 (|has| |#1| (-365)))) (-1616 (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1179)) 87 (|has| |#1| (-902 (-1179))))) (-1672 (($ $ $) NIL (|has| |#1| (-476)))) (-3997 (($ $ $) NIL (|has| |#1| (-476)))) (-4129 (($ (-567)) NIL (|has| |#1| (-1051))) (((-112) $) 37 (|has| |#1| (-1102))) (((-863) $) 36 (|has| |#1| (-1102)))) (-2746 (((-772)) 67 (|has| |#1| (-1051)) CONST)) (-3357 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1733 (($) 47 (|has| |#1| (-21)) CONST)) (-1744 (($) 57 (|has| |#1| (-727)) CONST)) (-2647 (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1179)) NIL (|has| |#1| (-902 (-1179))))) (-2946 (($ |#1| |#1|) 8) (((-112) $ $) 32 (|has| |#1| (-1102)))) (-3069 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) 92 (-2811 (|has| |#1| (-365)) (|has| |#1| (-476))))) (-3053 (($ |#1| $) 45 (|has| |#1| (-21))) (($ $ |#1|) 46 (|has| |#1| (-21))) (($ $ $) 44 (|has| |#1| (-21))) (($ $) 43 (|has| |#1| (-21)))) (-3041 (($ |#1| $) 40 (|has| |#1| (-25))) (($ $ |#1|) 41 (|has| |#1| (-25))) (($ $ $) 39 (|has| |#1| (-25)))) (** (($ $ (-567)) NIL (|has| |#1| (-476))) (($ $ (-772)) NIL (|has| |#1| (-727))) (($ $ (-923)) NIL (|has| |#1| (-1114)))) (* (($ $ |#1|) 55 (|has| |#1| (-1114))) (($ |#1| $) 54 (|has| |#1| (-1114))) (($ $ $) 53 (|has| |#1| (-1114))) (($ (-567) $) 70 (|has| |#1| (-21))) (($ (-772) $) NIL (|has| |#1| (-21))) (($ (-923) $) NIL (|has| |#1| (-25)))))
+(((-295 |#1|) (-13 (-1219) (-10 -8 (-15 -2946 ($ |#1| |#1|)) (-15 -2547 ($ |#1| |#1|)) (-15 -4010 ($ $)) (-15 -4089 (|#1| $)) (-15 -4102 (|#1| $)) (-15 -3841 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-517 (-1179) |#1|)) (-6 (-517 (-1179) |#1|)) |%noBranch|) (IF (|has| |#1| (-1102)) (PROGN (-6 (-1102)) (-6 (-614 (-112))) (IF (|has| |#1| (-310 |#1|)) (PROGN (-15 -2642 ($ $ $)) (-15 -2642 ($ $ (-645 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3041 ($ |#1| $)) (-15 -3041 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -3539 ($ $)) (-15 -2623 ($ $)) (-15 -3053 ($ |#1| $)) (-15 -3053 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1114)) (PROGN (-6 (-1114)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-727)) (PROGN (-6 (-727)) (-15 -2234 ((-3 $ "failed") $)) (-15 -2216 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-476)) (PROGN (-6 (-476)) (-15 -2234 ((-3 $ "failed") $)) (-15 -2216 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1051)) (PROGN (-6 (-1051)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-718 |#1|)) |%noBranch|) (IF (|has| |#1| (-559)) (-15 -2876 ((-645 $) $)) |%noBranch|) (IF (|has| |#1| (-902 (-1179))) (-6 (-902 (-1179))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-6 (-1276 |#1|)) (-15 -3069 ($ $ $)) (-15 -2949 ($ $))) |%noBranch|) (IF (|has| |#1| (-303)) (-15 -2982 ($ $ $)) |%noBranch|))) (-1219)) (T -295))
+((-2946 (*1 *1 *2 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1219)))) (-2547 (*1 *1 *2 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1219)))) (-4010 (*1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1219)))) (-4089 (*1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1219)))) (-4102 (*1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1219)))) (-3841 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1219)) (-5 *1 (-295 *3)))) (-2642 (*1 *1 *1 *1) (-12 (-4 *2 (-310 *2)) (-4 *2 (-1102)) (-4 *2 (-1219)) (-5 *1 (-295 *2)))) (-2642 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-295 *3))) (-4 *3 (-310 *3)) (-4 *3 (-1102)) (-4 *3 (-1219)) (-5 *1 (-295 *3)))) (-3041 (*1 *1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-25)) (-4 *2 (-1219)))) (-3041 (*1 *1 *1 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-25)) (-4 *2 (-1219)))) (-3539 (*1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1219)))) (-2623 (*1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1219)))) (-3053 (*1 *1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1219)))) (-3053 (*1 *1 *1 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1219)))) (-2234 (*1 *1 *1) (|partial| -12 (-5 *1 (-295 *2)) (-4 *2 (-727)) (-4 *2 (-1219)))) (-2216 (*1 *1 *1) (|partial| -12 (-5 *1 (-295 *2)) (-4 *2 (-727)) (-4 *2 (-1219)))) (-2876 (*1 *2 *1) (-12 (-5 *2 (-645 (-295 *3))) (-5 *1 (-295 *3)) (-4 *3 (-559)) (-4 *3 (-1219)))) (-2982 (*1 *1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-303)) (-4 *2 (-1219)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1114)) (-4 *2 (-1219)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1114)) (-4 *2 (-1219)))) (-3069 (*1 *1 *1 *1) (-2811 (-12 (-5 *1 (-295 *2)) (-4 *2 (-365)) (-4 *2 (-1219))) (-12 (-5 *1 (-295 *2)) (-4 *2 (-476)) (-4 *2 (-1219))))) (-2949 (*1 *1 *1) (-2811 (-12 (-5 *1 (-295 *2)) (-4 *2 (-365)) (-4 *2 (-1219))) (-12 (-5 *1 (-295 *2)) (-4 *2 (-476)) (-4 *2 (-1219))))))
+(-13 (-1219) (-10 -8 (-15 -2946 ($ |#1| |#1|)) (-15 -2547 ($ |#1| |#1|)) (-15 -4010 ($ $)) (-15 -4089 (|#1| $)) (-15 -4102 (|#1| $)) (-15 -3841 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-517 (-1179) |#1|)) (-6 (-517 (-1179) |#1|)) |%noBranch|) (IF (|has| |#1| (-1102)) (PROGN (-6 (-1102)) (-6 (-614 (-112))) (IF (|has| |#1| (-310 |#1|)) (PROGN (-15 -2642 ($ $ $)) (-15 -2642 ($ $ (-645 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3041 ($ |#1| $)) (-15 -3041 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -3539 ($ $)) (-15 -2623 ($ $)) (-15 -3053 ($ |#1| $)) (-15 -3053 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1114)) (PROGN (-6 (-1114)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-727)) (PROGN (-6 (-727)) (-15 -2234 ((-3 $ "failed") $)) (-15 -2216 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-476)) (PROGN (-6 (-476)) (-15 -2234 ((-3 $ "failed") $)) (-15 -2216 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1051)) (PROGN (-6 (-1051)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-718 |#1|)) |%noBranch|) (IF (|has| |#1| (-559)) (-15 -2876 ((-645 $) $)) |%noBranch|) (IF (|has| |#1| (-902 (-1179))) (-6 (-902 (-1179))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-6 (-1276 |#1|)) (-15 -3069 ($ $ $)) (-15 -2949 ($ $))) |%noBranch|) (IF (|has| |#1| (-303)) (-15 -2982 ($ $ $)) |%noBranch|)))
+((-2412 (((-112) $ $) NIL (-2811 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-2847 (($) NIL) (($ (-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) NIL)) (-3843 (((-1274) $ |#1| |#1|) NIL (|has| $ (-6 -4423)))) (-1563 (((-112) $ (-772)) NIL)) (-4285 ((|#2| $ |#1| |#2|) NIL)) (-1494 (($ (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4422)))) (-3356 (($ (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4422)))) (-4021 (((-3 |#2| "failed") |#1| $) NIL)) (-3647 (($) NIL T CONST)) (-2453 (($ $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102))))) (-2247 (($ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) NIL (|has| $ (-6 -4422))) (($ (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-3 |#2| "failed") |#1| $) NIL)) (-3246 (($ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (($ (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4422)))) (-2494 (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) NIL (|has| $ (-6 -4422))) (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4422)))) (-3760 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4423)))) (-3703 ((|#2| $ |#1|) NIL)) (-2799 (((-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-645 |#2|) $) NIL (|has| $ (-6 -4422)))) (-4093 (((-112) $ (-772)) NIL)) (-3895 ((|#1| $) NIL (|has| |#1| (-851)))) (-1942 (((-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-645 |#2|) $) NIL (|has| $ (-6 -4422)))) (-3237 (((-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#2| (-1102))))) (-3255 ((|#1| $) NIL (|has| |#1| (-851)))) (-3751 (($ (-1 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4423))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4423)))) (-3841 (($ (-1 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1986 (((-112) $ (-772)) NIL)) (-2516 (((-1161) $) NIL (-2811 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-1405 (((-645 |#1|) $) NIL)) (-2816 (((-112) |#1| $) NIL)) (-2706 (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) NIL)) (-2646 (($ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) NIL)) (-4364 (((-645 |#1|) $) NIL)) (-3188 (((-112) |#1| $) NIL)) (-3437 (((-1122) $) NIL (-2811 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-2418 ((|#2| $) NIL (|has| |#1| (-851)))) (-3196 (((-3 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) "failed") (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL)) (-3823 (($ $ |#2|) NIL (|has| $ (-6 -4423)))) (-3949 (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) NIL)) (-4233 (((-112) (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))))) NIL (-12 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-310 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (($ $ (-295 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) NIL (-12 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-310 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (($ $ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) NIL (-12 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-310 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (($ $ (-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) (-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) NIL (-12 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-310 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))))) (-3875 (((-112) $ $) NIL)) (-4058 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#2| (-1102))))) (-2190 (((-645 |#2|) $) NIL)) (-3885 (((-112) $) NIL)) (-2701 (($) NIL)) (-1801 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-4106 (($) NIL) (($ (-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) NIL)) (-3447 (((-772) (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-772) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (((-772) |#2| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#2| (-1102)))) (((-772) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4422)))) (-4309 (($ $) NIL)) (-3902 (((-539) $) NIL (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-615 (-539))))) (-4145 (($ (-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) NIL)) (-4129 (((-863) $) NIL (-2811 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-614 (-863))) (|has| |#2| (-614 (-863)))))) (-3357 (((-112) $ $) NIL (-2811 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-3700 (($ (-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) NIL)) (-3436 (((-112) (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4422)))) (-2946 (((-112) $ $) NIL (-2811 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-2423 (((-772) $) NIL (|has| $ (-6 -4422)))))
+(((-296 |#1| |#2|) (-13 (-1195 |#1| |#2|) (-10 -7 (-6 -4422))) (-1102) (-1102)) (T -296))
+NIL
+(-13 (-1195 |#1| |#2|) (-10 -7 (-6 -4422)))
+((-2069 (((-313) (-1161) (-645 (-1161))) 17) (((-313) (-1161) (-1161)) 16) (((-313) (-645 (-1161))) 15) (((-313) (-1161)) 14)))
+(((-297) (-10 -7 (-15 -2069 ((-313) (-1161))) (-15 -2069 ((-313) (-645 (-1161)))) (-15 -2069 ((-313) (-1161) (-1161))) (-15 -2069 ((-313) (-1161) (-645 (-1161)))))) (T -297))
+((-2069 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-1161))) (-5 *3 (-1161)) (-5 *2 (-313)) (-5 *1 (-297)))) (-2069 (*1 *2 *3 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-313)) (-5 *1 (-297)))) (-2069 (*1 *2 *3) (-12 (-5 *3 (-645 (-1161))) (-5 *2 (-313)) (-5 *1 (-297)))) (-2069 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-313)) (-5 *1 (-297)))))
+(-10 -7 (-15 -2069 ((-313) (-1161))) (-15 -2069 ((-313) (-645 (-1161)))) (-15 -2069 ((-313) (-1161) (-1161))) (-15 -2069 ((-313) (-1161) (-645 (-1161)))))
+((-3841 ((|#2| (-1 |#2| |#1|) (-1161) (-613 |#1|)) 18)))
+(((-298 |#1| |#2|) (-10 -7 (-15 -3841 (|#2| (-1 |#2| |#1|) (-1161) (-613 |#1|)))) (-303) (-1219)) (T -298))
+((-3841 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1161)) (-5 *5 (-613 *6)) (-4 *6 (-303)) (-4 *2 (-1219)) (-5 *1 (-298 *6 *2)))))
+(-10 -7 (-15 -3841 (|#2| (-1 |#2| |#1|) (-1161) (-613 |#1|))))
+((-3841 ((|#2| (-1 |#2| |#1|) (-613 |#1|)) 17)))
+(((-299 |#1| |#2|) (-10 -7 (-15 -3841 (|#2| (-1 |#2| |#1|) (-613 |#1|)))) (-303) (-303)) (T -299))
+((-3841 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-613 *5)) (-4 *5 (-303)) (-4 *2 (-303)) (-5 *1 (-299 *5 *2)))))
+(-10 -7 (-15 -3841 (|#2| (-1 |#2| |#1|) (-613 |#1|))))
+((-4172 (((-112) (-225)) 12)))
+(((-300 |#1| |#2|) (-10 -7 (-15 -4172 ((-112) (-225)))) (-225) (-225)) (T -300))
+((-4172 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-300 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
+(-10 -7 (-15 -4172 ((-112) (-225))))
+((-3802 (((-1159 (-225)) (-317 (-225)) (-645 (-1179)) (-1096 (-844 (-225)))) 118)) (-4316 (((-1159 (-225)) (-1269 (-317 (-225))) (-645 (-1179)) (-1096 (-844 (-225)))) 135) (((-1159 (-225)) (-317 (-225)) (-645 (-1179)) (-1096 (-844 (-225)))) 72)) (-1577 (((-645 (-1161)) (-1159 (-225))) NIL)) (-2080 (((-645 (-225)) (-317 (-225)) (-1179) (-1096 (-844 (-225)))) 69)) (-2140 (((-645 (-225)) (-954 (-410 (-567))) (-1179) (-1096 (-844 (-225)))) 59)) (-2135 (((-645 (-1161)) (-645 (-225))) NIL)) (-3622 (((-225) (-1096 (-844 (-225)))) 29)) (-2524 (((-225) (-1096 (-844 (-225)))) 30)) (-3846 (((-112) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 64)) (-4310 (((-1161) (-225)) NIL)))
+(((-301) (-10 -7 (-15 -3622 ((-225) (-1096 (-844 (-225))))) (-15 -2524 ((-225) (-1096 (-844 (-225))))) (-15 -3846 ((-112) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2080 ((-645 (-225)) (-317 (-225)) (-1179) (-1096 (-844 (-225))))) (-15 -3802 ((-1159 (-225)) (-317 (-225)) (-645 (-1179)) (-1096 (-844 (-225))))) (-15 -4316 ((-1159 (-225)) (-317 (-225)) (-645 (-1179)) (-1096 (-844 (-225))))) (-15 -4316 ((-1159 (-225)) (-1269 (-317 (-225))) (-645 (-1179)) (-1096 (-844 (-225))))) (-15 -2140 ((-645 (-225)) (-954 (-410 (-567))) (-1179) (-1096 (-844 (-225))))) (-15 -4310 ((-1161) (-225))) (-15 -2135 ((-645 (-1161)) (-645 (-225)))) (-15 -1577 ((-645 (-1161)) (-1159 (-225)))))) (T -301))
+((-1577 (*1 *2 *3) (-12 (-5 *3 (-1159 (-225))) (-5 *2 (-645 (-1161))) (-5 *1 (-301)))) (-2135 (*1 *2 *3) (-12 (-5 *3 (-645 (-225))) (-5 *2 (-645 (-1161))) (-5 *1 (-301)))) (-4310 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1161)) (-5 *1 (-301)))) (-2140 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-954 (-410 (-567)))) (-5 *4 (-1179)) (-5 *5 (-1096 (-844 (-225)))) (-5 *2 (-645 (-225))) (-5 *1 (-301)))) (-4316 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1269 (-317 (-225)))) (-5 *4 (-645 (-1179))) (-5 *5 (-1096 (-844 (-225)))) (-5 *2 (-1159 (-225))) (-5 *1 (-301)))) (-4316 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-317 (-225))) (-5 *4 (-645 (-1179))) (-5 *5 (-1096 (-844 (-225)))) (-5 *2 (-1159 (-225))) (-5 *1 (-301)))) (-3802 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-317 (-225))) (-5 *4 (-645 (-1179))) (-5 *5 (-1096 (-844 (-225)))) (-5 *2 (-1159 (-225))) (-5 *1 (-301)))) (-2080 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-317 (-225))) (-5 *4 (-1179)) (-5 *5 (-1096 (-844 (-225)))) (-5 *2 (-645 (-225))) (-5 *1 (-301)))) (-3846 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-112)) (-5 *1 (-301)))) (-2524 (*1 *2 *3) (-12 (-5 *3 (-1096 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-301)))) (-3622 (*1 *2 *3) (-12 (-5 *3 (-1096 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-301)))))
+(-10 -7 (-15 -3622 ((-225) (-1096 (-844 (-225))))) (-15 -2524 ((-225) (-1096 (-844 (-225))))) (-15 -3846 ((-112) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2080 ((-645 (-225)) (-317 (-225)) (-1179) (-1096 (-844 (-225))))) (-15 -3802 ((-1159 (-225)) (-317 (-225)) (-645 (-1179)) (-1096 (-844 (-225))))) (-15 -4316 ((-1159 (-225)) (-317 (-225)) (-645 (-1179)) (-1096 (-844 (-225))))) (-15 -4316 ((-1159 (-225)) (-1269 (-317 (-225))) (-645 (-1179)) (-1096 (-844 (-225))))) (-15 -2140 ((-645 (-225)) (-954 (-410 (-567))) (-1179) (-1096 (-844 (-225))))) (-15 -4310 ((-1161) (-225))) (-15 -2135 ((-645 (-1161)) (-645 (-225)))) (-15 -1577 ((-645 (-1161)) (-1159 (-225)))))
+((-2575 (((-645 (-613 $)) $) 27)) (-2982 (($ $ (-295 $)) 78) (($ $ (-645 (-295 $))) 139) (($ $ (-645 (-613 $)) (-645 $)) NIL)) (-3765 (((-3 (-613 $) "failed") $) 127)) (-2051 (((-613 $) $) 126)) (-1464 (($ $) 17) (($ (-645 $)) 54)) (-3863 (((-645 (-114)) $) 35)) (-2662 (((-114) (-114)) 88)) (-1904 (((-112) $) 150)) (-3841 (($ (-1 $ $) (-613 $)) 86)) (-3231 (((-3 (-613 $) "failed") $) 94)) (-3643 (($ (-114) $) 59) (($ (-114) (-645 $)) 110)) (-3545 (((-112) $ (-114)) 132) (((-112) $ (-1179)) 131)) (-4136 (((-772) $) 44)) (-2356 (((-112) $ $) 57) (((-112) $ (-1179)) 49)) (-2795 (((-112) $) 148)) (-2642 (($ $ (-613 $) $) NIL) (($ $ (-645 (-613 $)) (-645 $)) NIL) (($ $ (-645 (-295 $))) 137) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-645 (-1179)) (-645 (-1 $ $))) 81) (($ $ (-645 (-1179)) (-645 (-1 $ (-645 $)))) NIL) (($ $ (-1179) (-1 $ (-645 $))) 67) (($ $ (-1179) (-1 $ $)) 72) (($ $ (-645 (-114)) (-645 (-1 $ $))) 80) (($ $ (-645 (-114)) (-645 (-1 $ (-645 $)))) 82) (($ $ (-114) (-1 $ (-645 $))) 68) (($ $ (-114) (-1 $ $)) 74)) (-1801 (($ (-114) $) 60) (($ (-114) $ $) 61) (($ (-114) $ $ $) 62) (($ (-114) $ $ $ $) 63) (($ (-114) (-645 $)) 123)) (-3209 (($ $) 51) (($ $ $) 135)) (-1372 (($ $) 15) (($ (-645 $)) 53)) (-1909 (((-112) (-114)) 21)))
+(((-302 |#1|) (-10 -8 (-15 -1904 ((-112) |#1|)) (-15 -2795 ((-112) |#1|)) (-15 -2642 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2642 (|#1| |#1| (-114) (-1 |#1| (-645 |#1|)))) (-15 -2642 (|#1| |#1| (-645 (-114)) (-645 (-1 |#1| (-645 |#1|))))) (-15 -2642 (|#1| |#1| (-645 (-114)) (-645 (-1 |#1| |#1|)))) (-15 -2642 (|#1| |#1| (-1179) (-1 |#1| |#1|))) (-15 -2642 (|#1| |#1| (-1179) (-1 |#1| (-645 |#1|)))) (-15 -2642 (|#1| |#1| (-645 (-1179)) (-645 (-1 |#1| (-645 |#1|))))) (-15 -2642 (|#1| |#1| (-645 (-1179)) (-645 (-1 |#1| |#1|)))) (-15 -2356 ((-112) |#1| (-1179))) (-15 -2356 ((-112) |#1| |#1|)) (-15 -3841 (|#1| (-1 |#1| |#1|) (-613 |#1|))) (-15 -3643 (|#1| (-114) (-645 |#1|))) (-15 -3643 (|#1| (-114) |#1|)) (-15 -3545 ((-112) |#1| (-1179))) (-15 -3545 ((-112) |#1| (-114))) (-15 -1909 ((-112) (-114))) (-15 -2662 ((-114) (-114))) (-15 -3863 ((-645 (-114)) |#1|)) (-15 -2575 ((-645 (-613 |#1|)) |#1|)) (-15 -3231 ((-3 (-613 |#1|) "failed") |#1|)) (-15 -4136 ((-772) |#1|)) (-15 -3209 (|#1| |#1| |#1|)) (-15 -3209 (|#1| |#1|)) (-15 -1464 (|#1| (-645 |#1|))) (-15 -1464 (|#1| |#1|)) (-15 -1372 (|#1| (-645 |#1|))) (-15 -1372 (|#1| |#1|)) (-15 -2982 (|#1| |#1| (-645 (-613 |#1|)) (-645 |#1|))) (-15 -2982 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -2982 (|#1| |#1| (-295 |#1|))) (-15 -1801 (|#1| (-114) (-645 |#1|))) (-15 -1801 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -1801 (|#1| (-114) |#1| |#1| |#1|)) (-15 -1801 (|#1| (-114) |#1| |#1|)) (-15 -1801 (|#1| (-114) |#1|)) (-15 -2642 (|#1| |#1| (-645 |#1|) (-645 |#1|))) (-15 -2642 (|#1| |#1| |#1| |#1|)) (-15 -2642 (|#1| |#1| (-295 |#1|))) (-15 -2642 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -2642 (|#1| |#1| (-645 (-613 |#1|)) (-645 |#1|))) (-15 -2642 (|#1| |#1| (-613 |#1|) |#1|)) (-15 -3765 ((-3 (-613 |#1|) "failed") |#1|)) (-15 -2051 ((-613 |#1|) |#1|))) (-303)) (T -302))
+((-2662 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-302 *3)) (-4 *3 (-303)))) (-1909 (*1 *2 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-302 *4)) (-4 *4 (-303)))))
+(-10 -8 (-15 -1904 ((-112) |#1|)) (-15 -2795 ((-112) |#1|)) (-15 -2642 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2642 (|#1| |#1| (-114) (-1 |#1| (-645 |#1|)))) (-15 -2642 (|#1| |#1| (-645 (-114)) (-645 (-1 |#1| (-645 |#1|))))) (-15 -2642 (|#1| |#1| (-645 (-114)) (-645 (-1 |#1| |#1|)))) (-15 -2642 (|#1| |#1| (-1179) (-1 |#1| |#1|))) (-15 -2642 (|#1| |#1| (-1179) (-1 |#1| (-645 |#1|)))) (-15 -2642 (|#1| |#1| (-645 (-1179)) (-645 (-1 |#1| (-645 |#1|))))) (-15 -2642 (|#1| |#1| (-645 (-1179)) (-645 (-1 |#1| |#1|)))) (-15 -2356 ((-112) |#1| (-1179))) (-15 -2356 ((-112) |#1| |#1|)) (-15 -3841 (|#1| (-1 |#1| |#1|) (-613 |#1|))) (-15 -3643 (|#1| (-114) (-645 |#1|))) (-15 -3643 (|#1| (-114) |#1|)) (-15 -3545 ((-112) |#1| (-1179))) (-15 -3545 ((-112) |#1| (-114))) (-15 -1909 ((-112) (-114))) (-15 -2662 ((-114) (-114))) (-15 -3863 ((-645 (-114)) |#1|)) (-15 -2575 ((-645 (-613 |#1|)) |#1|)) (-15 -3231 ((-3 (-613 |#1|) "failed") |#1|)) (-15 -4136 ((-772) |#1|)) (-15 -3209 (|#1| |#1| |#1|)) (-15 -3209 (|#1| |#1|)) (-15 -1464 (|#1| (-645 |#1|))) (-15 -1464 (|#1| |#1|)) (-15 -1372 (|#1| (-645 |#1|))) (-15 -1372 (|#1| |#1|)) (-15 -2982 (|#1| |#1| (-645 (-613 |#1|)) (-645 |#1|))) (-15 -2982 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -2982 (|#1| |#1| (-295 |#1|))) (-15 -1801 (|#1| (-114) (-645 |#1|))) (-15 -1801 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -1801 (|#1| (-114) |#1| |#1| |#1|)) (-15 -1801 (|#1| (-114) |#1| |#1|)) (-15 -1801 (|#1| (-114) |#1|)) (-15 -2642 (|#1| |#1| (-645 |#1|) (-645 |#1|))) (-15 -2642 (|#1| |#1| |#1| |#1|)) (-15 -2642 (|#1| |#1| (-295 |#1|))) (-15 -2642 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -2642 (|#1| |#1| (-645 (-613 |#1|)) (-645 |#1|))) (-15 -2642 (|#1| |#1| (-613 |#1|) |#1|)) (-15 -3765 ((-3 (-613 |#1|) "failed") |#1|)) (-15 -2051 ((-613 |#1|) |#1|)))
+((-2412 (((-112) $ $) 7)) (-2575 (((-645 (-613 $)) $) 39)) (-2982 (($ $ (-295 $)) 51) (($ $ (-645 (-295 $))) 50) (($ $ (-645 (-613 $)) (-645 $)) 49)) (-3765 (((-3 (-613 $) "failed") $) 64)) (-2051 (((-613 $) $) 65)) (-1464 (($ $) 46) (($ (-645 $)) 45)) (-3863 (((-645 (-114)) $) 38)) (-2662 (((-114) (-114)) 37)) (-1904 (((-112) $) 17 (|has| $ (-1040 (-567))))) (-2528 (((-1175 $) (-613 $)) 20 (|has| $ (-1051)))) (-3841 (($ (-1 $ $) (-613 $)) 31)) (-3231 (((-3 (-613 $) "failed") $) 41)) (-2516 (((-1161) $) 10)) (-2651 (((-645 (-613 $)) $) 40)) (-3643 (($ (-114) $) 33) (($ (-114) (-645 $)) 32)) (-3545 (((-112) $ (-114)) 35) (((-112) $ (-1179)) 34)) (-4136 (((-772) $) 42)) (-3437 (((-1122) $) 11)) (-2356 (((-112) $ $) 30) (((-112) $ (-1179)) 29)) (-2795 (((-112) $) 18 (|has| $ (-1040 (-567))))) (-2642 (($ $ (-613 $) $) 62) (($ $ (-645 (-613 $)) (-645 $)) 61) (($ $ (-645 (-295 $))) 60) (($ $ (-295 $)) 59) (($ $ $ $) 58) (($ $ (-645 $) (-645 $)) 57) (($ $ (-645 (-1179)) (-645 (-1 $ $))) 28) (($ $ (-645 (-1179)) (-645 (-1 $ (-645 $)))) 27) (($ $ (-1179) (-1 $ (-645 $))) 26) (($ $ (-1179) (-1 $ $)) 25) (($ $ (-645 (-114)) (-645 (-1 $ $))) 24) (($ $ (-645 (-114)) (-645 (-1 $ (-645 $)))) 23) (($ $ (-114) (-1 $ (-645 $))) 22) (($ $ (-114) (-1 $ $)) 21)) (-1801 (($ (-114) $) 56) (($ (-114) $ $) 55) (($ (-114) $ $ $) 54) (($ (-114) $ $ $ $) 53) (($ (-114) (-645 $)) 52)) (-3209 (($ $) 44) (($ $ $) 43)) (-3169 (($ $) 19 (|has| $ (-1051)))) (-4129 (((-863) $) 12) (($ (-613 $)) 63)) (-1372 (($ $) 48) (($ (-645 $)) 47)) (-1909 (((-112) (-114)) 36)) (-3357 (((-112) $ $) 9)) (-2946 (((-112) $ $) 6)))
(((-303) (-140)) (T -303))
-((-1787 (*1 *1 *2 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) (-1787 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) (-1787 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) (-1787 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) (-1787 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-645 *1)) (-4 *1 (-303)))) (-2960 (*1 *1 *1 *2) (-12 (-5 *2 (-295 *1)) (-4 *1 (-303)))) (-2960 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-295 *1))) (-4 *1 (-303)))) (-2960 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-613 *1))) (-5 *3 (-645 *1)) (-4 *1 (-303)))) (-1334 (*1 *1 *1) (-4 *1 (-303))) (-1334 (*1 *1 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-303)))) (-2068 (*1 *1 *1) (-4 *1 (-303))) (-2068 (*1 *1 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-303)))) (-3241 (*1 *1 *1) (-4 *1 (-303))) (-3241 (*1 *1 *1 *1) (-4 *1 (-303))) (-4138 (*1 *2 *1) (-12 (-4 *1 (-303)) (-5 *2 (-772)))) (-2700 (*1 *2 *1) (|partial| -12 (-5 *2 (-613 *1)) (-4 *1 (-303)))) (-2641 (*1 *2 *1) (-12 (-5 *2 (-645 (-613 *1))) (-4 *1 (-303)))) (-2566 (*1 *2 *1) (-12 (-5 *2 (-645 (-613 *1))) (-4 *1 (-303)))) (-2034 (*1 *2 *1) (-12 (-4 *1 (-303)) (-5 *2 (-645 (-114))))) (-2654 (*1 *2 *2) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) (-3797 (*1 *2 *3) (-12 (-4 *1 (-303)) (-5 *3 (-114)) (-5 *2 (-112)))) (-1854 (*1 *2 *1 *3) (-12 (-4 *1 (-303)) (-5 *3 (-114)) (-5 *2 (-112)))) (-1854 (*1 *2 *1 *3) (-12 (-4 *1 (-303)) (-5 *3 (-1178)) (-5 *2 (-112)))) (-3632 (*1 *1 *2 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) (-3632 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-645 *1)) (-4 *1 (-303)))) (-3829 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-613 *1)) (-4 *1 (-303)))) (-3922 (*1 *2 *1 *1) (-12 (-4 *1 (-303)) (-5 *2 (-112)))) (-3922 (*1 *2 *1 *3) (-12 (-4 *1 (-303)) (-5 *3 (-1178)) (-5 *2 (-112)))) (-2631 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-1178))) (-5 *3 (-645 (-1 *1 *1))) (-4 *1 (-303)))) (-2631 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-1178))) (-5 *3 (-645 (-1 *1 (-645 *1)))) (-4 *1 (-303)))) (-2631 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-1 *1 (-645 *1))) (-4 *1 (-303)))) (-2631 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-1 *1 *1)) (-4 *1 (-303)))) (-2631 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-114))) (-5 *3 (-645 (-1 *1 *1))) (-4 *1 (-303)))) (-2631 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-114))) (-5 *3 (-645 (-1 *1 (-645 *1)))) (-4 *1 (-303)))) (-2631 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-645 *1))) (-4 *1 (-303)))) (-2631 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-303)))) (-3263 (*1 *2 *3) (-12 (-5 *3 (-613 *1)) (-4 *1 (-1051)) (-4 *1 (-303)) (-5 *2 (-1174 *1)))) (-3341 (*1 *1 *1) (-12 (-4 *1 (-1051)) (-4 *1 (-303)))) (-2757 (*1 *2 *1) (-12 (-4 *1 (-1040 (-567))) (-4 *1 (-303)) (-5 *2 (-112)))) (-3837 (*1 *2 *1) (-12 (-4 *1 (-1040 (-567))) (-4 *1 (-303)) (-5 *2 (-112)))))
-(-13 (-1102) (-1040 (-613 $)) (-517 (-613 $) $) (-310 $) (-10 -8 (-15 -1787 ($ (-114) $)) (-15 -1787 ($ (-114) $ $)) (-15 -1787 ($ (-114) $ $ $)) (-15 -1787 ($ (-114) $ $ $ $)) (-15 -1787 ($ (-114) (-645 $))) (-15 -2960 ($ $ (-295 $))) (-15 -2960 ($ $ (-645 (-295 $)))) (-15 -2960 ($ $ (-645 (-613 $)) (-645 $))) (-15 -1334 ($ $)) (-15 -1334 ($ (-645 $))) (-15 -2068 ($ $)) (-15 -2068 ($ (-645 $))) (-15 -3241 ($ $)) (-15 -3241 ($ $ $)) (-15 -4138 ((-772) $)) (-15 -2700 ((-3 (-613 $) "failed") $)) (-15 -2641 ((-645 (-613 $)) $)) (-15 -2566 ((-645 (-613 $)) $)) (-15 -2034 ((-645 (-114)) $)) (-15 -2654 ((-114) (-114))) (-15 -3797 ((-112) (-114))) (-15 -1854 ((-112) $ (-114))) (-15 -1854 ((-112) $ (-1178))) (-15 -3632 ($ (-114) $)) (-15 -3632 ($ (-114) (-645 $))) (-15 -3829 ($ (-1 $ $) (-613 $))) (-15 -3922 ((-112) $ $)) (-15 -3922 ((-112) $ (-1178))) (-15 -2631 ($ $ (-645 (-1178)) (-645 (-1 $ $)))) (-15 -2631 ($ $ (-645 (-1178)) (-645 (-1 $ (-645 $))))) (-15 -2631 ($ $ (-1178) (-1 $ (-645 $)))) (-15 -2631 ($ $ (-1178) (-1 $ $))) (-15 -2631 ($ $ (-645 (-114)) (-645 (-1 $ $)))) (-15 -2631 ($ $ (-645 (-114)) (-645 (-1 $ (-645 $))))) (-15 -2631 ($ $ (-114) (-1 $ (-645 $)))) (-15 -2631 ($ $ (-114) (-1 $ $))) (IF (|has| $ (-1051)) (PROGN (-15 -3263 ((-1174 $) (-613 $))) (-15 -3341 ($ $))) |%noBranch|) (IF (|has| $ (-1040 (-567))) (PROGN (-15 -2757 ((-112) $)) (-15 -3837 ((-112) $))) |%noBranch|)))
+((-1801 (*1 *1 *2 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) (-1801 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) (-1801 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) (-1801 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) (-1801 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-645 *1)) (-4 *1 (-303)))) (-2982 (*1 *1 *1 *2) (-12 (-5 *2 (-295 *1)) (-4 *1 (-303)))) (-2982 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-295 *1))) (-4 *1 (-303)))) (-2982 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-613 *1))) (-5 *3 (-645 *1)) (-4 *1 (-303)))) (-1372 (*1 *1 *1) (-4 *1 (-303))) (-1372 (*1 *1 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-303)))) (-1464 (*1 *1 *1) (-4 *1 (-303))) (-1464 (*1 *1 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-303)))) (-3209 (*1 *1 *1) (-4 *1 (-303))) (-3209 (*1 *1 *1 *1) (-4 *1 (-303))) (-4136 (*1 *2 *1) (-12 (-4 *1 (-303)) (-5 *2 (-772)))) (-3231 (*1 *2 *1) (|partial| -12 (-5 *2 (-613 *1)) (-4 *1 (-303)))) (-2651 (*1 *2 *1) (-12 (-5 *2 (-645 (-613 *1))) (-4 *1 (-303)))) (-2575 (*1 *2 *1) (-12 (-5 *2 (-645 (-613 *1))) (-4 *1 (-303)))) (-3863 (*1 *2 *1) (-12 (-4 *1 (-303)) (-5 *2 (-645 (-114))))) (-2662 (*1 *2 *2) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) (-1909 (*1 *2 *3) (-12 (-4 *1 (-303)) (-5 *3 (-114)) (-5 *2 (-112)))) (-3545 (*1 *2 *1 *3) (-12 (-4 *1 (-303)) (-5 *3 (-114)) (-5 *2 (-112)))) (-3545 (*1 *2 *1 *3) (-12 (-4 *1 (-303)) (-5 *3 (-1179)) (-5 *2 (-112)))) (-3643 (*1 *1 *2 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) (-3643 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-645 *1)) (-4 *1 (-303)))) (-3841 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-613 *1)) (-4 *1 (-303)))) (-2356 (*1 *2 *1 *1) (-12 (-4 *1 (-303)) (-5 *2 (-112)))) (-2356 (*1 *2 *1 *3) (-12 (-4 *1 (-303)) (-5 *3 (-1179)) (-5 *2 (-112)))) (-2642 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-1179))) (-5 *3 (-645 (-1 *1 *1))) (-4 *1 (-303)))) (-2642 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-1179))) (-5 *3 (-645 (-1 *1 (-645 *1)))) (-4 *1 (-303)))) (-2642 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-1 *1 (-645 *1))) (-4 *1 (-303)))) (-2642 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-1 *1 *1)) (-4 *1 (-303)))) (-2642 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-114))) (-5 *3 (-645 (-1 *1 *1))) (-4 *1 (-303)))) (-2642 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-114))) (-5 *3 (-645 (-1 *1 (-645 *1)))) (-4 *1 (-303)))) (-2642 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-645 *1))) (-4 *1 (-303)))) (-2642 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-303)))) (-2528 (*1 *2 *3) (-12 (-5 *3 (-613 *1)) (-4 *1 (-1051)) (-4 *1 (-303)) (-5 *2 (-1175 *1)))) (-3169 (*1 *1 *1) (-12 (-4 *1 (-1051)) (-4 *1 (-303)))) (-2795 (*1 *2 *1) (-12 (-4 *1 (-1040 (-567))) (-4 *1 (-303)) (-5 *2 (-112)))) (-1904 (*1 *2 *1) (-12 (-4 *1 (-1040 (-567))) (-4 *1 (-303)) (-5 *2 (-112)))))
+(-13 (-1102) (-1040 (-613 $)) (-517 (-613 $) $) (-310 $) (-10 -8 (-15 -1801 ($ (-114) $)) (-15 -1801 ($ (-114) $ $)) (-15 -1801 ($ (-114) $ $ $)) (-15 -1801 ($ (-114) $ $ $ $)) (-15 -1801 ($ (-114) (-645 $))) (-15 -2982 ($ $ (-295 $))) (-15 -2982 ($ $ (-645 (-295 $)))) (-15 -2982 ($ $ (-645 (-613 $)) (-645 $))) (-15 -1372 ($ $)) (-15 -1372 ($ (-645 $))) (-15 -1464 ($ $)) (-15 -1464 ($ (-645 $))) (-15 -3209 ($ $)) (-15 -3209 ($ $ $)) (-15 -4136 ((-772) $)) (-15 -3231 ((-3 (-613 $) "failed") $)) (-15 -2651 ((-645 (-613 $)) $)) (-15 -2575 ((-645 (-613 $)) $)) (-15 -3863 ((-645 (-114)) $)) (-15 -2662 ((-114) (-114))) (-15 -1909 ((-112) (-114))) (-15 -3545 ((-112) $ (-114))) (-15 -3545 ((-112) $ (-1179))) (-15 -3643 ($ (-114) $)) (-15 -3643 ($ (-114) (-645 $))) (-15 -3841 ($ (-1 $ $) (-613 $))) (-15 -2356 ((-112) $ $)) (-15 -2356 ((-112) $ (-1179))) (-15 -2642 ($ $ (-645 (-1179)) (-645 (-1 $ $)))) (-15 -2642 ($ $ (-645 (-1179)) (-645 (-1 $ (-645 $))))) (-15 -2642 ($ $ (-1179) (-1 $ (-645 $)))) (-15 -2642 ($ $ (-1179) (-1 $ $))) (-15 -2642 ($ $ (-645 (-114)) (-645 (-1 $ $)))) (-15 -2642 ($ $ (-645 (-114)) (-645 (-1 $ (-645 $))))) (-15 -2642 ($ $ (-114) (-1 $ (-645 $)))) (-15 -2642 ($ $ (-114) (-1 $ $))) (IF (|has| $ (-1051)) (PROGN (-15 -2528 ((-1175 $) (-613 $))) (-15 -3169 ($ $))) |%noBranch|) (IF (|has| $ (-1040 (-567))) (PROGN (-15 -2795 ((-112) $)) (-15 -1904 ((-112) $))) |%noBranch|)))
(((-102) . T) ((-617 #0=(-613 $)) . T) ((-614 (-863)) . T) ((-310 $) . T) ((-517 (-613 $) $) . T) ((-517 $ $) . T) ((-1040 #0#) . T) ((-1102) . T))
-((-2925 (((-645 |#1|) (-645 |#1|)) 10)))
-(((-304 |#1|) (-10 -7 (-15 -2925 ((-645 |#1|) (-645 |#1|)))) (-849)) (T -304))
-((-2925 (*1 *2 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-849)) (-5 *1 (-304 *3)))))
-(-10 -7 (-15 -2925 ((-645 |#1|) (-645 |#1|))))
-((-3829 (((-690 |#2|) (-1 |#2| |#1|) (-690 |#1|)) 17)))
-(((-305 |#1| |#2|) (-10 -7 (-15 -3829 ((-690 |#2|) (-1 |#2| |#1|) (-690 |#1|)))) (-1051) (-1051)) (T -305))
-((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-690 *5)) (-4 *5 (-1051)) (-4 *6 (-1051)) (-5 *2 (-690 *6)) (-5 *1 (-305 *5 *6)))))
-(-10 -7 (-15 -3829 ((-690 |#2|) (-1 |#2| |#1|) (-690 |#1|))))
-((-3091 (((-1268 (-317 (-381))) (-1268 (-317 (-225)))) 112)) (-2618 (((-1096 (-844 (-225))) (-1096 (-844 (-381)))) 45)) (-2308 (((-645 (-1160)) (-1158 (-225))) 94)) (-3552 (((-317 (-381)) (-954 (-225))) 55)) (-2856 (((-225) (-954 (-225))) 51)) (-2868 (((-1160) (-381)) 197)) (-1753 (((-844 (-225)) (-844 (-381))) 39)) (-4046 (((-2 (|:| |additions| (-567)) (|:| |multiplications| (-567)) (|:| |exponentiations| (-567)) (|:| |functionCalls| (-567))) (-1268 (-317 (-225)))) 165)) (-1805 (((-1037) (-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160))) (|:| |extra| (-1037)))) 209) (((-1037) (-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160))))) 207)) (-2316 (((-690 (-225)) (-645 (-225)) (-772)) 21)) (-3726 (((-1268 (-700)) (-645 (-225))) 101)) (-3258 (((-645 (-1160)) (-645 (-225))) 81)) (-4068 (((-3 (-317 (-225)) "failed") (-317 (-225))) 130)) (-2642 (((-112) (-225) (-1096 (-844 (-225)))) 119)) (-3562 (((-1037) (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))) 226)) (-1594 (((-225) (-1096 (-844 (-225)))) 114)) (-2158 (((-225) (-1096 (-844 (-225)))) 115)) (-1432 (((-225) (-410 (-567))) 33)) (-4086 (((-1160) (-381)) 79)) (-2575 (((-225) (-381)) 24)) (-2202 (((-381) (-1268 (-317 (-225)))) 179)) (-3596 (((-317 (-225)) (-317 (-381))) 30)) (-3886 (((-410 (-567)) (-317 (-225))) 58)) (-2180 (((-317 (-410 (-567))) (-317 (-225))) 75)) (-2886 (((-317 (-381)) (-317 (-225))) 105)) (-4028 (((-225) (-317 (-225))) 59)) (-2095 (((-645 (-225)) (-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))))) 70)) (-3404 (((-1096 (-844 (-225))) (-1096 (-844 (-225)))) 67)) (-3905 (((-1160) (-225)) 78)) (-2918 (((-700) (-225)) 97)) (-1317 (((-410 (-567)) (-225)) 60)) (-3490 (((-317 (-381)) (-225)) 54)) (-3893 (((-645 (-1096 (-844 (-225)))) (-645 (-1096 (-844 (-381))))) 48)) (-2269 (((-1037) (-645 (-1037))) 193) (((-1037) (-1037) (-1037)) 187)) (-1696 (((-1037) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1158 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1604 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 223)))
-(((-306) (-10 -7 (-15 -2575 ((-225) (-381))) (-15 -3596 ((-317 (-225)) (-317 (-381)))) (-15 -1753 ((-844 (-225)) (-844 (-381)))) (-15 -2618 ((-1096 (-844 (-225))) (-1096 (-844 (-381))))) (-15 -3893 ((-645 (-1096 (-844 (-225)))) (-645 (-1096 (-844 (-381)))))) (-15 -1317 ((-410 (-567)) (-225))) (-15 -3886 ((-410 (-567)) (-317 (-225)))) (-15 -4028 ((-225) (-317 (-225)))) (-15 -4068 ((-3 (-317 (-225)) "failed") (-317 (-225)))) (-15 -2202 ((-381) (-1268 (-317 (-225))))) (-15 -4046 ((-2 (|:| |additions| (-567)) (|:| |multiplications| (-567)) (|:| |exponentiations| (-567)) (|:| |functionCalls| (-567))) (-1268 (-317 (-225))))) (-15 -2180 ((-317 (-410 (-567))) (-317 (-225)))) (-15 -3404 ((-1096 (-844 (-225))) (-1096 (-844 (-225))))) (-15 -2095 ((-645 (-225)) (-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))))) (-15 -2918 ((-700) (-225))) (-15 -3726 ((-1268 (-700)) (-645 (-225)))) (-15 -2886 ((-317 (-381)) (-317 (-225)))) (-15 -3091 ((-1268 (-317 (-381))) (-1268 (-317 (-225))))) (-15 -2642 ((-112) (-225) (-1096 (-844 (-225))))) (-15 -3905 ((-1160) (-225))) (-15 -4086 ((-1160) (-381))) (-15 -3258 ((-645 (-1160)) (-645 (-225)))) (-15 -2308 ((-645 (-1160)) (-1158 (-225)))) (-15 -1594 ((-225) (-1096 (-844 (-225))))) (-15 -2158 ((-225) (-1096 (-844 (-225))))) (-15 -2269 ((-1037) (-1037) (-1037))) (-15 -2269 ((-1037) (-645 (-1037)))) (-15 -2868 ((-1160) (-381))) (-15 -1805 ((-1037) (-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160)))))) (-15 -1805 ((-1037) (-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160))) (|:| |extra| (-1037))))) (-15 -1696 ((-1037) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1158 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1604 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3562 ((-1037) (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))))) (-15 -3552 ((-317 (-381)) (-954 (-225)))) (-15 -2856 ((-225) (-954 (-225)))) (-15 -3490 ((-317 (-381)) (-225))) (-15 -1432 ((-225) (-410 (-567)))) (-15 -2316 ((-690 (-225)) (-645 (-225)) (-772))))) (T -306))
-((-2316 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-225))) (-5 *4 (-772)) (-5 *2 (-690 (-225))) (-5 *1 (-306)))) (-1432 (*1 *2 *3) (-12 (-5 *3 (-410 (-567))) (-5 *2 (-225)) (-5 *1 (-306)))) (-3490 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-317 (-381))) (-5 *1 (-306)))) (-2856 (*1 *2 *3) (-12 (-5 *3 (-954 (-225))) (-5 *2 (-225)) (-5 *1 (-306)))) (-3552 (*1 *2 *3) (-12 (-5 *3 (-954 (-225))) (-5 *2 (-317 (-381))) (-5 *1 (-306)))) (-3562 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))) (-5 *2 (-1037)) (-5 *1 (-306)))) (-1696 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1158 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1604 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1037)) (-5 *1 (-306)))) (-1805 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160))) (|:| |extra| (-1037)))) (-5 *2 (-1037)) (-5 *1 (-306)))) (-1805 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160))))) (-5 *2 (-1037)) (-5 *1 (-306)))) (-2868 (*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1160)) (-5 *1 (-306)))) (-2269 (*1 *2 *3) (-12 (-5 *3 (-645 (-1037))) (-5 *2 (-1037)) (-5 *1 (-306)))) (-2269 (*1 *2 *2 *2) (-12 (-5 *2 (-1037)) (-5 *1 (-306)))) (-2158 (*1 *2 *3) (-12 (-5 *3 (-1096 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-306)))) (-1594 (*1 *2 *3) (-12 (-5 *3 (-1096 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-306)))) (-2308 (*1 *2 *3) (-12 (-5 *3 (-1158 (-225))) (-5 *2 (-645 (-1160))) (-5 *1 (-306)))) (-3258 (*1 *2 *3) (-12 (-5 *3 (-645 (-225))) (-5 *2 (-645 (-1160))) (-5 *1 (-306)))) (-4086 (*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1160)) (-5 *1 (-306)))) (-3905 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1160)) (-5 *1 (-306)))) (-2642 (*1 *2 *3 *4) (-12 (-5 *4 (-1096 (-844 (-225)))) (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-306)))) (-3091 (*1 *2 *3) (-12 (-5 *3 (-1268 (-317 (-225)))) (-5 *2 (-1268 (-317 (-381)))) (-5 *1 (-306)))) (-2886 (*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-317 (-381))) (-5 *1 (-306)))) (-3726 (*1 *2 *3) (-12 (-5 *3 (-645 (-225))) (-5 *2 (-1268 (-700))) (-5 *1 (-306)))) (-2918 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-700)) (-5 *1 (-306)))) (-2095 (*1 *2 *3) (-12 (-5 *3 (-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))))) (-5 *2 (-645 (-225))) (-5 *1 (-306)))) (-3404 (*1 *2 *2) (-12 (-5 *2 (-1096 (-844 (-225)))) (-5 *1 (-306)))) (-2180 (*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-317 (-410 (-567)))) (-5 *1 (-306)))) (-4046 (*1 *2 *3) (-12 (-5 *3 (-1268 (-317 (-225)))) (-5 *2 (-2 (|:| |additions| (-567)) (|:| |multiplications| (-567)) (|:| |exponentiations| (-567)) (|:| |functionCalls| (-567)))) (-5 *1 (-306)))) (-2202 (*1 *2 *3) (-12 (-5 *3 (-1268 (-317 (-225)))) (-5 *2 (-381)) (-5 *1 (-306)))) (-4068 (*1 *2 *2) (|partial| -12 (-5 *2 (-317 (-225))) (-5 *1 (-306)))) (-4028 (*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-225)) (-5 *1 (-306)))) (-3886 (*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-410 (-567))) (-5 *1 (-306)))) (-1317 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-410 (-567))) (-5 *1 (-306)))) (-3893 (*1 *2 *3) (-12 (-5 *3 (-645 (-1096 (-844 (-381))))) (-5 *2 (-645 (-1096 (-844 (-225))))) (-5 *1 (-306)))) (-2618 (*1 *2 *3) (-12 (-5 *3 (-1096 (-844 (-381)))) (-5 *2 (-1096 (-844 (-225)))) (-5 *1 (-306)))) (-1753 (*1 *2 *3) (-12 (-5 *3 (-844 (-381))) (-5 *2 (-844 (-225))) (-5 *1 (-306)))) (-3596 (*1 *2 *3) (-12 (-5 *3 (-317 (-381))) (-5 *2 (-317 (-225))) (-5 *1 (-306)))) (-2575 (*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-225)) (-5 *1 (-306)))))
-(-10 -7 (-15 -2575 ((-225) (-381))) (-15 -3596 ((-317 (-225)) (-317 (-381)))) (-15 -1753 ((-844 (-225)) (-844 (-381)))) (-15 -2618 ((-1096 (-844 (-225))) (-1096 (-844 (-381))))) (-15 -3893 ((-645 (-1096 (-844 (-225)))) (-645 (-1096 (-844 (-381)))))) (-15 -1317 ((-410 (-567)) (-225))) (-15 -3886 ((-410 (-567)) (-317 (-225)))) (-15 -4028 ((-225) (-317 (-225)))) (-15 -4068 ((-3 (-317 (-225)) "failed") (-317 (-225)))) (-15 -2202 ((-381) (-1268 (-317 (-225))))) (-15 -4046 ((-2 (|:| |additions| (-567)) (|:| |multiplications| (-567)) (|:| |exponentiations| (-567)) (|:| |functionCalls| (-567))) (-1268 (-317 (-225))))) (-15 -2180 ((-317 (-410 (-567))) (-317 (-225)))) (-15 -3404 ((-1096 (-844 (-225))) (-1096 (-844 (-225))))) (-15 -2095 ((-645 (-225)) (-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))))) (-15 -2918 ((-700) (-225))) (-15 -3726 ((-1268 (-700)) (-645 (-225)))) (-15 -2886 ((-317 (-381)) (-317 (-225)))) (-15 -3091 ((-1268 (-317 (-381))) (-1268 (-317 (-225))))) (-15 -2642 ((-112) (-225) (-1096 (-844 (-225))))) (-15 -3905 ((-1160) (-225))) (-15 -4086 ((-1160) (-381))) (-15 -3258 ((-645 (-1160)) (-645 (-225)))) (-15 -2308 ((-645 (-1160)) (-1158 (-225)))) (-15 -1594 ((-225) (-1096 (-844 (-225))))) (-15 -2158 ((-225) (-1096 (-844 (-225))))) (-15 -2269 ((-1037) (-1037) (-1037))) (-15 -2269 ((-1037) (-645 (-1037)))) (-15 -2868 ((-1160) (-381))) (-15 -1805 ((-1037) (-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160)))))) (-15 -1805 ((-1037) (-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160))) (|:| |extra| (-1037))))) (-15 -1696 ((-1037) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1158 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1604 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3562 ((-1037) (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))))) (-15 -3552 ((-317 (-381)) (-954 (-225)))) (-15 -2856 ((-225) (-954 (-225)))) (-15 -3490 ((-317 (-381)) (-225))) (-15 -1432 ((-225) (-410 (-567)))) (-15 -2316 ((-690 (-225)) (-645 (-225)) (-772))))
-((-3609 (((-112) $ $) 14)) (-2349 (($ $ $) 18)) (-2360 (($ $ $) 17)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) 50)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) 65)) (-2774 (($ $ $) 25) (($ (-645 $)) NIL)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) 35) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 40)) (-2391 (((-3 $ "failed") $ $) 21)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) 53)))
-(((-307 |#1|) (-10 -8 (-15 -1725 ((-3 (-645 |#1|) "failed") (-645 |#1|) |#1|)) (-15 -3402 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3402 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1398 |#1|)) |#1| |#1|)) (-15 -2349 (|#1| |#1| |#1|)) (-15 -2360 (|#1| |#1| |#1|)) (-15 -3609 ((-112) |#1| |#1|)) (-15 -3117 ((-3 (-645 |#1|) "failed") (-645 |#1|) |#1|)) (-15 -3179 ((-2 (|:| -3694 (-645 |#1|)) (|:| -1398 |#1|)) (-645 |#1|))) (-15 -2774 (|#1| (-645 |#1|))) (-15 -2774 (|#1| |#1| |#1|)) (-15 -2391 ((-3 |#1| "failed") |#1| |#1|))) (-308)) (T -307))
-NIL
-(-10 -8 (-15 -1725 ((-3 (-645 |#1|) "failed") (-645 |#1|) |#1|)) (-15 -3402 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3402 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1398 |#1|)) |#1| |#1|)) (-15 -2349 (|#1| |#1| |#1|)) (-15 -2360 (|#1| |#1| |#1|)) (-15 -3609 ((-112) |#1| |#1|)) (-15 -3117 ((-3 (-645 |#1|) "failed") (-645 |#1|) |#1|)) (-15 -3179 ((-2 (|:| -3694 (-645 |#1|)) (|:| -1398 |#1|)) (-645 |#1|))) (-15 -2774 (|#1| (-645 |#1|))) (-15 -2774 (|#1| |#1| |#1|)) (-15 -2391 ((-3 |#1| "failed") |#1| |#1|)))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 47)) (-4381 (($ $) 46)) (-3949 (((-112) $) 44)) (-3472 (((-3 $ "failed") $ $) 20)) (-3609 (((-112) $ $) 65)) (-2585 (($) 18 T CONST)) (-2349 (($ $ $) 61)) (-2109 (((-3 $ "failed") $) 37)) (-2360 (($ $ $) 62)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) 57)) (-1433 (((-112) $) 35)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) 58)) (-2740 (($ $ $) 52) (($ (-645 $)) 51)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 50)) (-2774 (($ $ $) 54) (($ (-645 $)) 53)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2391 (((-3 $ "failed") $ $) 48)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-1990 (((-772) $) 64)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 63)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ $) 49)) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-3816 (((-112) $ $) 45)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27)))
+((-1727 (((-645 |#1|) (-645 |#1|)) 10)))
+(((-304 |#1|) (-10 -7 (-15 -1727 ((-645 |#1|) (-645 |#1|)))) (-849)) (T -304))
+((-1727 (*1 *2 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-849)) (-5 *1 (-304 *3)))))
+(-10 -7 (-15 -1727 ((-645 |#1|) (-645 |#1|))))
+((-3841 (((-690 |#2|) (-1 |#2| |#1|) (-690 |#1|)) 17)))
+(((-305 |#1| |#2|) (-10 -7 (-15 -3841 ((-690 |#2|) (-1 |#2| |#1|) (-690 |#1|)))) (-1051) (-1051)) (T -305))
+((-3841 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-690 *5)) (-4 *5 (-1051)) (-4 *6 (-1051)) (-5 *2 (-690 *6)) (-5 *1 (-305 *5 *6)))))
+(-10 -7 (-15 -3841 ((-690 |#2|) (-1 |#2| |#1|) (-690 |#1|))))
+((-1970 (((-1269 (-317 (-381))) (-1269 (-317 (-225)))) 112)) (-3915 (((-1096 (-844 (-225))) (-1096 (-844 (-381)))) 45)) (-1577 (((-645 (-1161)) (-1159 (-225))) 94)) (-2633 (((-317 (-381)) (-954 (-225))) 55)) (-3633 (((-225) (-954 (-225))) 51)) (-1314 (((-1161) (-381)) 197)) (-2964 (((-844 (-225)) (-844 (-381))) 39)) (-3338 (((-2 (|:| |additions| (-567)) (|:| |multiplications| (-567)) (|:| |exponentiations| (-567)) (|:| |functionCalls| (-567))) (-1269 (-317 (-225)))) 165)) (-3689 (((-1037) (-2 (|:| -3055 (-381)) (|:| -2007 (-1161)) (|:| |explanations| (-645 (-1161))) (|:| |extra| (-1037)))) 209) (((-1037) (-2 (|:| -3055 (-381)) (|:| -2007 (-1161)) (|:| |explanations| (-645 (-1161))))) 207)) (-4208 (((-690 (-225)) (-645 (-225)) (-772)) 21)) (-2660 (((-1269 (-700)) (-645 (-225))) 101)) (-2135 (((-645 (-1161)) (-645 (-225))) 81)) (-4069 (((-3 (-317 (-225)) "failed") (-317 (-225))) 130)) (-4172 (((-112) (-225) (-1096 (-844 (-225)))) 119)) (-2391 (((-1037) (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))) 226)) (-3622 (((-225) (-1096 (-844 (-225)))) 114)) (-2524 (((-225) (-1096 (-844 (-225)))) 115)) (-4247 (((-225) (-410 (-567))) 33)) (-3135 (((-1161) (-381)) 79)) (-1858 (((-225) (-381)) 24)) (-3329 (((-381) (-1269 (-317 (-225)))) 179)) (-2386 (((-317 (-225)) (-317 (-381))) 30)) (-1973 (((-410 (-567)) (-317 (-225))) 58)) (-3059 (((-317 (-410 (-567))) (-317 (-225))) 75)) (-2952 (((-317 (-381)) (-317 (-225))) 105)) (-3181 (((-225) (-317 (-225))) 59)) (-4344 (((-645 (-225)) (-645 (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567)))))) 70)) (-3042 (((-1096 (-844 (-225))) (-1096 (-844 (-225)))) 67)) (-4310 (((-1161) (-225)) 78)) (-2285 (((-700) (-225)) 97)) (-1779 (((-410 (-567)) (-225)) 60)) (-4327 (((-317 (-381)) (-225)) 54)) (-3902 (((-645 (-1096 (-844 (-225)))) (-645 (-1096 (-844 (-381))))) 48)) (-2276 (((-1037) (-645 (-1037))) 193) (((-1037) (-1037) (-1037)) 187)) (-4199 (((-1037) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1159 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2408 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 223)))
+(((-306) (-10 -7 (-15 -1858 ((-225) (-381))) (-15 -2386 ((-317 (-225)) (-317 (-381)))) (-15 -2964 ((-844 (-225)) (-844 (-381)))) (-15 -3915 ((-1096 (-844 (-225))) (-1096 (-844 (-381))))) (-15 -3902 ((-645 (-1096 (-844 (-225)))) (-645 (-1096 (-844 (-381)))))) (-15 -1779 ((-410 (-567)) (-225))) (-15 -1973 ((-410 (-567)) (-317 (-225)))) (-15 -3181 ((-225) (-317 (-225)))) (-15 -4069 ((-3 (-317 (-225)) "failed") (-317 (-225)))) (-15 -3329 ((-381) (-1269 (-317 (-225))))) (-15 -3338 ((-2 (|:| |additions| (-567)) (|:| |multiplications| (-567)) (|:| |exponentiations| (-567)) (|:| |functionCalls| (-567))) (-1269 (-317 (-225))))) (-15 -3059 ((-317 (-410 (-567))) (-317 (-225)))) (-15 -3042 ((-1096 (-844 (-225))) (-1096 (-844 (-225))))) (-15 -4344 ((-645 (-225)) (-645 (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567))))))) (-15 -2285 ((-700) (-225))) (-15 -2660 ((-1269 (-700)) (-645 (-225)))) (-15 -2952 ((-317 (-381)) (-317 (-225)))) (-15 -1970 ((-1269 (-317 (-381))) (-1269 (-317 (-225))))) (-15 -4172 ((-112) (-225) (-1096 (-844 (-225))))) (-15 -4310 ((-1161) (-225))) (-15 -3135 ((-1161) (-381))) (-15 -2135 ((-645 (-1161)) (-645 (-225)))) (-15 -1577 ((-645 (-1161)) (-1159 (-225)))) (-15 -3622 ((-225) (-1096 (-844 (-225))))) (-15 -2524 ((-225) (-1096 (-844 (-225))))) (-15 -2276 ((-1037) (-1037) (-1037))) (-15 -2276 ((-1037) (-645 (-1037)))) (-15 -1314 ((-1161) (-381))) (-15 -3689 ((-1037) (-2 (|:| -3055 (-381)) (|:| -2007 (-1161)) (|:| |explanations| (-645 (-1161)))))) (-15 -3689 ((-1037) (-2 (|:| -3055 (-381)) (|:| -2007 (-1161)) (|:| |explanations| (-645 (-1161))) (|:| |extra| (-1037))))) (-15 -4199 ((-1037) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1159 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2408 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -2391 ((-1037) (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))))) (-15 -2633 ((-317 (-381)) (-954 (-225)))) (-15 -3633 ((-225) (-954 (-225)))) (-15 -4327 ((-317 (-381)) (-225))) (-15 -4247 ((-225) (-410 (-567)))) (-15 -4208 ((-690 (-225)) (-645 (-225)) (-772))))) (T -306))
+((-4208 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-225))) (-5 *4 (-772)) (-5 *2 (-690 (-225))) (-5 *1 (-306)))) (-4247 (*1 *2 *3) (-12 (-5 *3 (-410 (-567))) (-5 *2 (-225)) (-5 *1 (-306)))) (-4327 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-317 (-381))) (-5 *1 (-306)))) (-3633 (*1 *2 *3) (-12 (-5 *3 (-954 (-225))) (-5 *2 (-225)) (-5 *1 (-306)))) (-2633 (*1 *2 *3) (-12 (-5 *3 (-954 (-225))) (-5 *2 (-317 (-381))) (-5 *1 (-306)))) (-2391 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))) (-5 *2 (-1037)) (-5 *1 (-306)))) (-4199 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1159 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2408 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1037)) (-5 *1 (-306)))) (-3689 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3055 (-381)) (|:| -2007 (-1161)) (|:| |explanations| (-645 (-1161))) (|:| |extra| (-1037)))) (-5 *2 (-1037)) (-5 *1 (-306)))) (-3689 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3055 (-381)) (|:| -2007 (-1161)) (|:| |explanations| (-645 (-1161))))) (-5 *2 (-1037)) (-5 *1 (-306)))) (-1314 (*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1161)) (-5 *1 (-306)))) (-2276 (*1 *2 *3) (-12 (-5 *3 (-645 (-1037))) (-5 *2 (-1037)) (-5 *1 (-306)))) (-2276 (*1 *2 *2 *2) (-12 (-5 *2 (-1037)) (-5 *1 (-306)))) (-2524 (*1 *2 *3) (-12 (-5 *3 (-1096 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-306)))) (-3622 (*1 *2 *3) (-12 (-5 *3 (-1096 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-306)))) (-1577 (*1 *2 *3) (-12 (-5 *3 (-1159 (-225))) (-5 *2 (-645 (-1161))) (-5 *1 (-306)))) (-2135 (*1 *2 *3) (-12 (-5 *3 (-645 (-225))) (-5 *2 (-645 (-1161))) (-5 *1 (-306)))) (-3135 (*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1161)) (-5 *1 (-306)))) (-4310 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1161)) (-5 *1 (-306)))) (-4172 (*1 *2 *3 *4) (-12 (-5 *4 (-1096 (-844 (-225)))) (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-306)))) (-1970 (*1 *2 *3) (-12 (-5 *3 (-1269 (-317 (-225)))) (-5 *2 (-1269 (-317 (-381)))) (-5 *1 (-306)))) (-2952 (*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-317 (-381))) (-5 *1 (-306)))) (-2660 (*1 *2 *3) (-12 (-5 *3 (-645 (-225))) (-5 *2 (-1269 (-700))) (-5 *1 (-306)))) (-2285 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-700)) (-5 *1 (-306)))) (-4344 (*1 *2 *3) (-12 (-5 *3 (-645 (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567)))))) (-5 *2 (-645 (-225))) (-5 *1 (-306)))) (-3042 (*1 *2 *2) (-12 (-5 *2 (-1096 (-844 (-225)))) (-5 *1 (-306)))) (-3059 (*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-317 (-410 (-567)))) (-5 *1 (-306)))) (-3338 (*1 *2 *3) (-12 (-5 *3 (-1269 (-317 (-225)))) (-5 *2 (-2 (|:| |additions| (-567)) (|:| |multiplications| (-567)) (|:| |exponentiations| (-567)) (|:| |functionCalls| (-567)))) (-5 *1 (-306)))) (-3329 (*1 *2 *3) (-12 (-5 *3 (-1269 (-317 (-225)))) (-5 *2 (-381)) (-5 *1 (-306)))) (-4069 (*1 *2 *2) (|partial| -12 (-5 *2 (-317 (-225))) (-5 *1 (-306)))) (-3181 (*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-225)) (-5 *1 (-306)))) (-1973 (*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-410 (-567))) (-5 *1 (-306)))) (-1779 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-410 (-567))) (-5 *1 (-306)))) (-3902 (*1 *2 *3) (-12 (-5 *3 (-645 (-1096 (-844 (-381))))) (-5 *2 (-645 (-1096 (-844 (-225))))) (-5 *1 (-306)))) (-3915 (*1 *2 *3) (-12 (-5 *3 (-1096 (-844 (-381)))) (-5 *2 (-1096 (-844 (-225)))) (-5 *1 (-306)))) (-2964 (*1 *2 *3) (-12 (-5 *3 (-844 (-381))) (-5 *2 (-844 (-225))) (-5 *1 (-306)))) (-2386 (*1 *2 *3) (-12 (-5 *3 (-317 (-381))) (-5 *2 (-317 (-225))) (-5 *1 (-306)))) (-1858 (*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-225)) (-5 *1 (-306)))))
+(-10 -7 (-15 -1858 ((-225) (-381))) (-15 -2386 ((-317 (-225)) (-317 (-381)))) (-15 -2964 ((-844 (-225)) (-844 (-381)))) (-15 -3915 ((-1096 (-844 (-225))) (-1096 (-844 (-381))))) (-15 -3902 ((-645 (-1096 (-844 (-225)))) (-645 (-1096 (-844 (-381)))))) (-15 -1779 ((-410 (-567)) (-225))) (-15 -1973 ((-410 (-567)) (-317 (-225)))) (-15 -3181 ((-225) (-317 (-225)))) (-15 -4069 ((-3 (-317 (-225)) "failed") (-317 (-225)))) (-15 -3329 ((-381) (-1269 (-317 (-225))))) (-15 -3338 ((-2 (|:| |additions| (-567)) (|:| |multiplications| (-567)) (|:| |exponentiations| (-567)) (|:| |functionCalls| (-567))) (-1269 (-317 (-225))))) (-15 -3059 ((-317 (-410 (-567))) (-317 (-225)))) (-15 -3042 ((-1096 (-844 (-225))) (-1096 (-844 (-225))))) (-15 -4344 ((-645 (-225)) (-645 (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567))))))) (-15 -2285 ((-700) (-225))) (-15 -2660 ((-1269 (-700)) (-645 (-225)))) (-15 -2952 ((-317 (-381)) (-317 (-225)))) (-15 -1970 ((-1269 (-317 (-381))) (-1269 (-317 (-225))))) (-15 -4172 ((-112) (-225) (-1096 (-844 (-225))))) (-15 -4310 ((-1161) (-225))) (-15 -3135 ((-1161) (-381))) (-15 -2135 ((-645 (-1161)) (-645 (-225)))) (-15 -1577 ((-645 (-1161)) (-1159 (-225)))) (-15 -3622 ((-225) (-1096 (-844 (-225))))) (-15 -2524 ((-225) (-1096 (-844 (-225))))) (-15 -2276 ((-1037) (-1037) (-1037))) (-15 -2276 ((-1037) (-645 (-1037)))) (-15 -1314 ((-1161) (-381))) (-15 -3689 ((-1037) (-2 (|:| -3055 (-381)) (|:| -2007 (-1161)) (|:| |explanations| (-645 (-1161)))))) (-15 -3689 ((-1037) (-2 (|:| -3055 (-381)) (|:| -2007 (-1161)) (|:| |explanations| (-645 (-1161))) (|:| |extra| (-1037))))) (-15 -4199 ((-1037) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1159 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2408 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -2391 ((-1037) (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))))) (-15 -2633 ((-317 (-381)) (-954 (-225)))) (-15 -3633 ((-225) (-954 (-225)))) (-15 -4327 ((-317 (-381)) (-225))) (-15 -4247 ((-225) (-410 (-567)))) (-15 -4208 ((-690 (-225)) (-645 (-225)) (-772))))
+((-3696 (((-112) $ $) 14)) (-2357 (($ $ $) 18)) (-2368 (($ $ $) 17)) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) 50)) (-1469 (((-3 (-645 $) "failed") (-645 $) $) 65)) (-2785 (($ $ $) 25) (($ (-645 $)) NIL)) (-2905 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) 35) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 40)) (-2400 (((-3 $ "failed") $ $) 21)) (-2372 (((-3 (-645 $) "failed") (-645 $) $) 53)))
+(((-307 |#1|) (-10 -8 (-15 -1469 ((-3 (-645 |#1|) "failed") (-645 |#1|) |#1|)) (-15 -2905 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -2905 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1399 |#1|)) |#1| |#1|)) (-15 -2357 (|#1| |#1| |#1|)) (-15 -2368 (|#1| |#1| |#1|)) (-15 -3696 ((-112) |#1| |#1|)) (-15 -2372 ((-3 (-645 |#1|) "failed") (-645 |#1|) |#1|)) (-15 -4367 ((-2 (|:| -3705 (-645 |#1|)) (|:| -1399 |#1|)) (-645 |#1|))) (-15 -2785 (|#1| (-645 |#1|))) (-15 -2785 (|#1| |#1| |#1|)) (-15 -2400 ((-3 |#1| "failed") |#1| |#1|))) (-308)) (T -307))
+NIL
+(-10 -8 (-15 -1469 ((-3 (-645 |#1|) "failed") (-645 |#1|) |#1|)) (-15 -2905 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -2905 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1399 |#1|)) |#1| |#1|)) (-15 -2357 (|#1| |#1| |#1|)) (-15 -2368 (|#1| |#1| |#1|)) (-15 -3696 ((-112) |#1| |#1|)) (-15 -2372 ((-3 (-645 |#1|) "failed") (-645 |#1|) |#1|)) (-15 -4367 ((-2 (|:| -3705 (-645 |#1|)) (|:| -1399 |#1|)) (-645 |#1|))) (-15 -2785 (|#1| (-645 |#1|))) (-15 -2785 (|#1| |#1| |#1|)) (-15 -2400 ((-3 |#1| "failed") |#1| |#1|)))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) 47)) (-4287 (($ $) 46)) (-2286 (((-112) $) 44)) (-2376 (((-3 $ "failed") $ $) 20)) (-3696 (((-112) $ $) 65)) (-3647 (($) 18 T CONST)) (-2357 (($ $ $) 61)) (-3588 (((-3 $ "failed") $) 37)) (-2368 (($ $ $) 62)) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) 57)) (-4346 (((-112) $) 35)) (-1469 (((-3 (-645 $) "failed") (-645 $) $) 58)) (-2751 (($ $ $) 52) (($ (-645 $)) 51)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) 50)) (-2785 (($ $ $) 54) (($ (-645 $)) 53)) (-2905 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2400 (((-3 $ "failed") $ $) 48)) (-2372 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-2460 (((-772) $) 64)) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) 63)) (-4129 (((-863) $) 12) (($ (-567)) 33) (($ $) 49)) (-2746 (((-772)) 32 T CONST)) (-3357 (((-112) $ $) 9)) (-3731 (((-112) $ $) 45)) (-1733 (($) 19 T CONST)) (-1744 (($) 34 T CONST)) (-2946 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27)))
(((-308) (-140)) (T -308))
-((-3609 (*1 *2 *1 *1) (-12 (-4 *1 (-308)) (-5 *2 (-112)))) (-1990 (*1 *2 *1) (-12 (-4 *1 (-308)) (-5 *2 (-772)))) (-2384 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3102 *1) (|:| -4194 *1))) (-4 *1 (-308)))) (-2360 (*1 *1 *1 *1) (-4 *1 (-308))) (-2349 (*1 *1 *1 *1) (-4 *1 (-308))) (-3402 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1398 *1))) (-4 *1 (-308)))) (-3402 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-308)))) (-1725 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-645 *1)) (-4 *1 (-308)))))
-(-13 (-922) (-10 -8 (-15 -3609 ((-112) $ $)) (-15 -1990 ((-772) $)) (-15 -2384 ((-2 (|:| -3102 $) (|:| -4194 $)) $ $)) (-15 -2360 ($ $ $)) (-15 -2349 ($ $ $)) (-15 -3402 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $)) (-15 -3402 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1725 ((-3 (-645 $) "failed") (-645 $) $))))
+((-3696 (*1 *2 *1 *1) (-12 (-4 *1 (-308)) (-5 *2 (-112)))) (-2460 (*1 *2 *1) (-12 (-4 *1 (-308)) (-5 *2 (-772)))) (-2452 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2654 *1) (|:| -2023 *1))) (-4 *1 (-308)))) (-2368 (*1 *1 *1 *1) (-4 *1 (-308))) (-2357 (*1 *1 *1 *1) (-4 *1 (-308))) (-2905 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1399 *1))) (-4 *1 (-308)))) (-2905 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-308)))) (-1469 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-645 *1)) (-4 *1 (-308)))))
+(-13 (-922) (-10 -8 (-15 -3696 ((-112) $ $)) (-15 -2460 ((-772) $)) (-15 -2452 ((-2 (|:| -2654 $) (|:| -2023 $)) $ $)) (-15 -2368 ($ $ $)) (-15 -2357 ($ $ $)) (-15 -2905 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $)) (-15 -2905 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1469 ((-3 (-645 $) "failed") (-645 $) $))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-291) . T) ((-455) . T) ((-559) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-641 $) . T) ((-718 $) . T) ((-727) . T) ((-922) . T) ((-1053 $) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T))
-((-2631 (($ $ (-645 |#2|) (-645 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-295 |#2|)) 11) (($ $ (-645 (-295 |#2|))) NIL)))
-(((-309 |#1| |#2|) (-10 -8 (-15 -2631 (|#1| |#1| (-645 (-295 |#2|)))) (-15 -2631 (|#1| |#1| (-295 |#2|))) (-15 -2631 (|#1| |#1| |#2| |#2|)) (-15 -2631 (|#1| |#1| (-645 |#2|) (-645 |#2|)))) (-310 |#2|) (-1102)) (T -309))
+((-2642 (($ $ (-645 |#2|) (-645 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-295 |#2|)) 11) (($ $ (-645 (-295 |#2|))) NIL)))
+(((-309 |#1| |#2|) (-10 -8 (-15 -2642 (|#1| |#1| (-645 (-295 |#2|)))) (-15 -2642 (|#1| |#1| (-295 |#2|))) (-15 -2642 (|#1| |#1| |#2| |#2|)) (-15 -2642 (|#1| |#1| (-645 |#2|) (-645 |#2|)))) (-310 |#2|) (-1102)) (T -309))
NIL
-(-10 -8 (-15 -2631 (|#1| |#1| (-645 (-295 |#2|)))) (-15 -2631 (|#1| |#1| (-295 |#2|))) (-15 -2631 (|#1| |#1| |#2| |#2|)) (-15 -2631 (|#1| |#1| (-645 |#2|) (-645 |#2|))))
-((-2631 (($ $ (-645 |#1|) (-645 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-295 |#1|)) 11) (($ $ (-645 (-295 |#1|))) 10)))
+(-10 -8 (-15 -2642 (|#1| |#1| (-645 (-295 |#2|)))) (-15 -2642 (|#1| |#1| (-295 |#2|))) (-15 -2642 (|#1| |#1| |#2| |#2|)) (-15 -2642 (|#1| |#1| (-645 |#2|) (-645 |#2|))))
+((-2642 (($ $ (-645 |#1|) (-645 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-295 |#1|)) 11) (($ $ (-645 (-295 |#1|))) 10)))
(((-310 |#1|) (-140) (-1102)) (T -310))
-((-2631 (*1 *1 *1 *2) (-12 (-5 *2 (-295 *3)) (-4 *1 (-310 *3)) (-4 *3 (-1102)))) (-2631 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-295 *3))) (-4 *1 (-310 *3)) (-4 *3 (-1102)))))
-(-13 (-517 |t#1| |t#1|) (-10 -8 (-15 -2631 ($ $ (-295 |t#1|))) (-15 -2631 ($ $ (-645 (-295 |t#1|))))))
+((-2642 (*1 *1 *1 *2) (-12 (-5 *2 (-295 *3)) (-4 *1 (-310 *3)) (-4 *3 (-1102)))) (-2642 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-295 *3))) (-4 *1 (-310 *3)) (-4 *3 (-1102)))))
+(-13 (-517 |t#1| |t#1|) (-10 -8 (-15 -2642 ($ $ (-295 |t#1|))) (-15 -2642 ($ $ (-645 (-295 |t#1|))))))
(((-517 |#1| |#1|) . T))
-((-2631 ((|#1| (-1 |#1| (-567)) (-1180 (-410 (-567)))) 25)))
-(((-311 |#1|) (-10 -7 (-15 -2631 (|#1| (-1 |#1| (-567)) (-1180 (-410 (-567)))))) (-38 (-410 (-567)))) (T -311))
-((-2631 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-567))) (-5 *4 (-1180 (-410 (-567)))) (-5 *1 (-311 *2)) (-4 *2 (-38 (-410 (-567)))))))
-(-10 -7 (-15 -2631 (|#1| (-1 |#1| (-567)) (-1180 (-410 (-567))))))
-((-2403 (((-112) $ $) NIL)) (-2684 (((-567) $) 12)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-3097 (((-1137) $) 9)) (-4132 (((-863) $) 19) (($ (-1183)) NIL) (((-1183) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)))
-(((-312) (-13 (-1085) (-10 -8 (-15 -3097 ((-1137) $)) (-15 -2684 ((-567) $))))) (T -312))
-((-3097 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-312)))) (-2684 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-312)))))
-(-13 (-1085) (-10 -8 (-15 -3097 ((-1137) $)) (-15 -2684 ((-567) $))))
-((-2403 (((-112) $ $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 7)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 9)))
+((-2642 ((|#1| (-1 |#1| (-567)) (-1181 (-410 (-567)))) 25)))
+(((-311 |#1|) (-10 -7 (-15 -2642 (|#1| (-1 |#1| (-567)) (-1181 (-410 (-567)))))) (-38 (-410 (-567)))) (T -311))
+((-2642 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-567))) (-5 *4 (-1181 (-410 (-567)))) (-5 *1 (-311 *2)) (-4 *2 (-38 (-410 (-567)))))))
+(-10 -7 (-15 -2642 (|#1| (-1 |#1| (-567)) (-1181 (-410 (-567))))))
+((-2412 (((-112) $ $) NIL)) (-2102 (((-567) $) 12)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-3106 (((-1137) $) 9)) (-4129 (((-863) $) 19) (($ (-1184)) NIL) (((-1184) $) NIL)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)))
+(((-312) (-13 (-1085) (-10 -8 (-15 -3106 ((-1137) $)) (-15 -2102 ((-567) $))))) (T -312))
+((-3106 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-312)))) (-2102 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-312)))))
+(-13 (-1085) (-10 -8 (-15 -3106 ((-1137) $)) (-15 -2102 ((-567) $))))
+((-2412 (((-112) $ $) NIL)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) 7)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) 9)))
(((-313) (-1102)) (T -313))
NIL
(-1102)
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) 60)) (-3093 (((-1254 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-308)))) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-4226 (((-421 (-1174 $)) (-1174 $)) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-911)))) (-3248 (($ $) NIL)) (-2908 (((-421 $) $) NIL)) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-911)))) (-3609 (((-112) $ $) NIL)) (-1750 (((-567) $) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-821)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 (-1254 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1178) "failed") $) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-1040 (-1178)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-1040 (-567)))) (((-3 (-567) "failed") $) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-1040 (-567)))) (((-3 (-1253 |#2| |#3| |#4|) "failed") $) 26)) (-2038 (((-1254 |#1| |#2| |#3| |#4|) $) NIL) (((-1178) $) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-1040 (-1178)))) (((-410 (-567)) $) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-1040 (-567)))) (((-567) $) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-1040 (-567)))) (((-1253 |#2| |#3| |#4|) $) NIL)) (-2349 (($ $ $) NIL)) (-2630 (((-690 (-567)) (-690 $)) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-640 (-567)))) (((-2 (|:| -2316 (-690 (-1254 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1268 (-1254 |#1| |#2| |#3| |#4|)))) (-690 $) (-1268 $)) NIL) (((-690 (-1254 |#1| |#2| |#3| |#4|)) (-690 $)) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-1348 (($) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-548)))) (-2360 (($ $ $) NIL)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-3184 (((-112) $) NIL)) (-4336 (((-112) $) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-821)))) (-4303 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-888 (-567)))) (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-888 (-381))))) (-1433 (((-112) $) NIL)) (-3530 (($ $) NIL)) (-1448 (((-1254 |#1| |#2| |#3| |#4|) $) 22)) (-3972 (((-3 $ "failed") $) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-1153)))) (-3494 (((-112) $) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-821)))) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1354 (($ $ $) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-851)))) (-2981 (($ $ $) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-851)))) (-3829 (($ (-1 (-1254 |#1| |#2| |#3| |#4|) (-1254 |#1| |#2| |#3| |#4|)) $) NIL)) (-1347 (((-3 (-844 |#2|) "failed") $) 80)) (-2740 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) NIL)) (-2672 (($) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-1153)) CONST)) (-3430 (((-1122) $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-2774 (($ $ $) NIL) (($ (-645 $)) NIL)) (-4094 (($ $) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-308)))) (-2780 (((-1254 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-548)))) (-2435 (((-421 (-1174 $)) (-1174 $)) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-911)))) (-3517 (((-421 (-1174 $)) (-1174 $)) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-911)))) (-2706 (((-421 $) $) NIL)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2391 (((-3 $ "failed") $ $) NIL)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2631 (($ $ (-645 (-1254 |#1| |#2| |#3| |#4|)) (-645 (-1254 |#1| |#2| |#3| |#4|))) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-310 (-1254 |#1| |#2| |#3| |#4|)))) (($ $ (-1254 |#1| |#2| |#3| |#4|) (-1254 |#1| |#2| |#3| |#4|)) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-310 (-1254 |#1| |#2| |#3| |#4|)))) (($ $ (-295 (-1254 |#1| |#2| |#3| |#4|))) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-310 (-1254 |#1| |#2| |#3| |#4|)))) (($ $ (-645 (-295 (-1254 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-310 (-1254 |#1| |#2| |#3| |#4|)))) (($ $ (-645 (-1178)) (-645 (-1254 |#1| |#2| |#3| |#4|))) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-517 (-1178) (-1254 |#1| |#2| |#3| |#4|)))) (($ $ (-1178) (-1254 |#1| |#2| |#3| |#4|)) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-517 (-1178) (-1254 |#1| |#2| |#3| |#4|))))) (-1990 (((-772) $) NIL)) (-1787 (($ $ (-1254 |#1| |#2| |#3| |#4|)) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-287 (-1254 |#1| |#2| |#3| |#4|) (-1254 |#1| |#2| |#3| |#4|))))) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL)) (-1593 (($ $) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-772)) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-1178)) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-902 (-1178)))) (($ $ (-1 (-1254 |#1| |#2| |#3| |#4|) (-1254 |#1| |#2| |#3| |#4|)) (-772)) NIL) (($ $ (-1 (-1254 |#1| |#2| |#3| |#4|) (-1254 |#1| |#2| |#3| |#4|))) NIL)) (-1967 (($ $) NIL)) (-1460 (((-1254 |#1| |#2| |#3| |#4|) $) 19)) (-3893 (((-894 (-567)) $) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-615 (-894 (-567))))) (((-894 (-381)) $) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-615 (-894 (-381))))) (((-539) $) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-615 (-539)))) (((-381) $) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-1024))) (((-225) $) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-1024)))) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| (-1254 |#1| |#2| |#3| |#4|) (-911))))) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ (-1254 |#1| |#2| |#3| |#4|)) 30) (($ (-1178)) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-1040 (-1178)))) (($ (-1253 |#2| |#3| |#4|)) 37)) (-1903 (((-3 $ "failed") $) NIL (-2800 (-12 (|has| $ (-145)) (|has| (-1254 |#1| |#2| |#3| |#4|) (-911))) (|has| (-1254 |#1| |#2| |#3| |#4|) (-145))))) (-4221 (((-772)) NIL T CONST)) (-1423 (((-1254 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-548)))) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL)) (-2219 (($ $) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-821)))) (-1716 (($) NIL T CONST)) (-1728 (($) NIL T CONST)) (-2637 (($ $) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-772)) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-1178)) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-902 (-1178)))) (($ $ (-1 (-1254 |#1| |#2| |#3| |#4|) (-1254 |#1| |#2| |#3| |#4|)) (-772)) NIL) (($ $ (-1 (-1254 |#1| |#2| |#3| |#4|) (-1254 |#1| |#2| |#3| |#4|))) NIL)) (-2997 (((-112) $ $) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-851)))) (-2971 (((-112) $ $) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-851)))) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-851)))) (-2958 (((-112) $ $) NIL (|has| (-1254 |#1| |#2| |#3| |#4|) (-851)))) (-3060 (($ $ $) 35) (($ (-1254 |#1| |#2| |#3| |#4|) (-1254 |#1| |#2| |#3| |#4|)) 32)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ (-1254 |#1| |#2| |#3| |#4|) $) 31) (($ $ (-1254 |#1| |#2| |#3| |#4|)) NIL)))
-(((-314 |#1| |#2| |#3| |#4|) (-13 (-994 (-1254 |#1| |#2| |#3| |#4|)) (-1040 (-1253 |#2| |#3| |#4|)) (-10 -8 (-15 -1347 ((-3 (-844 |#2|) "failed") $)) (-15 -4132 ($ (-1253 |#2| |#3| |#4|))))) (-13 (-1040 (-567)) (-640 (-567)) (-455)) (-13 (-27) (-1203) (-433 |#1|)) (-1178) |#2|) (T -314))
-((-4132 (*1 *1 *2) (-12 (-5 *2 (-1253 *4 *5 *6)) (-4 *4 (-13 (-27) (-1203) (-433 *3))) (-14 *5 (-1178)) (-14 *6 *4) (-4 *3 (-13 (-1040 (-567)) (-640 (-567)) (-455))) (-5 *1 (-314 *3 *4 *5 *6)))) (-1347 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1040 (-567)) (-640 (-567)) (-455))) (-5 *2 (-844 *4)) (-5 *1 (-314 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1203) (-433 *3))) (-14 *5 (-1178)) (-14 *6 *4))))
-(-13 (-994 (-1254 |#1| |#2| |#3| |#4|)) (-1040 (-1253 |#2| |#3| |#4|)) (-10 -8 (-15 -1347 ((-3 (-844 |#2|) "failed") $)) (-15 -4132 ($ (-1253 |#2| |#3| |#4|)))))
-((-3829 (((-317 |#2|) (-1 |#2| |#1|) (-317 |#1|)) 13)))
-(((-315 |#1| |#2|) (-10 -7 (-15 -3829 ((-317 |#2|) (-1 |#2| |#1|) (-317 |#1|)))) (-1102) (-1102)) (T -315))
-((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-317 *5)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-5 *2 (-317 *6)) (-5 *1 (-315 *5 *6)))))
-(-10 -7 (-15 -3829 ((-317 |#2|) (-1 |#2| |#1|) (-317 |#1|))))
-((-2896 (((-52) |#2| (-295 |#2|) (-772)) 40) (((-52) |#2| (-295 |#2|)) 32) (((-52) |#2| (-772)) 35) (((-52) |#2|) 33) (((-52) (-1178)) 26)) (-1306 (((-52) |#2| (-295 |#2|) (-410 (-567))) 59) (((-52) |#2| (-295 |#2|)) 56) (((-52) |#2| (-410 (-567))) 58) (((-52) |#2|) 57) (((-52) (-1178)) 55)) (-2919 (((-52) |#2| (-295 |#2|) (-410 (-567))) 54) (((-52) |#2| (-295 |#2|)) 51) (((-52) |#2| (-410 (-567))) 53) (((-52) |#2|) 52) (((-52) (-1178)) 50)) (-2907 (((-52) |#2| (-295 |#2|) (-567)) 47) (((-52) |#2| (-295 |#2|)) 44) (((-52) |#2| (-567)) 46) (((-52) |#2|) 45) (((-52) (-1178)) 43)))
-(((-316 |#1| |#2|) (-10 -7 (-15 -2896 ((-52) (-1178))) (-15 -2896 ((-52) |#2|)) (-15 -2896 ((-52) |#2| (-772))) (-15 -2896 ((-52) |#2| (-295 |#2|))) (-15 -2896 ((-52) |#2| (-295 |#2|) (-772))) (-15 -2907 ((-52) (-1178))) (-15 -2907 ((-52) |#2|)) (-15 -2907 ((-52) |#2| (-567))) (-15 -2907 ((-52) |#2| (-295 |#2|))) (-15 -2907 ((-52) |#2| (-295 |#2|) (-567))) (-15 -2919 ((-52) (-1178))) (-15 -2919 ((-52) |#2|)) (-15 -2919 ((-52) |#2| (-410 (-567)))) (-15 -2919 ((-52) |#2| (-295 |#2|))) (-15 -2919 ((-52) |#2| (-295 |#2|) (-410 (-567)))) (-15 -1306 ((-52) (-1178))) (-15 -1306 ((-52) |#2|)) (-15 -1306 ((-52) |#2| (-410 (-567)))) (-15 -1306 ((-52) |#2| (-295 |#2|))) (-15 -1306 ((-52) |#2| (-295 |#2|) (-410 (-567))))) (-13 (-455) (-1040 (-567)) (-640 (-567))) (-13 (-27) (-1203) (-433 |#1|))) (T -316))
-((-1306 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-295 *3)) (-5 *5 (-410 (-567))) (-4 *3 (-13 (-27) (-1203) (-433 *6))) (-4 *6 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *6 *3)))) (-1306 (*1 *2 *3 *4) (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *5))) (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)))) (-1306 (*1 *2 *3 *4) (-12 (-5 *4 (-410 (-567))) (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *5))))) (-1306 (*1 *2 *3) (-12 (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *4))))) (-1306 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1203) (-433 *4))))) (-2919 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-295 *3)) (-5 *5 (-410 (-567))) (-4 *3 (-13 (-27) (-1203) (-433 *6))) (-4 *6 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *6 *3)))) (-2919 (*1 *2 *3 *4) (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *5))) (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)))) (-2919 (*1 *2 *3 *4) (-12 (-5 *4 (-410 (-567))) (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *5))))) (-2919 (*1 *2 *3) (-12 (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *4))))) (-2919 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1203) (-433 *4))))) (-2907 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *6))) (-4 *6 (-13 (-455) (-1040 *5) (-640 *5))) (-5 *5 (-567)) (-5 *2 (-52)) (-5 *1 (-316 *6 *3)))) (-2907 (*1 *2 *3 *4) (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *5))) (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)))) (-2907 (*1 *2 *3 *4) (-12 (-5 *4 (-567)) (-4 *5 (-13 (-455) (-1040 *4) (-640 *4))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *5))))) (-2907 (*1 *2 *3) (-12 (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *4))))) (-2907 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1203) (-433 *4))))) (-2896 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-295 *3)) (-5 *5 (-772)) (-4 *3 (-13 (-27) (-1203) (-433 *6))) (-4 *6 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *6 *3)))) (-2896 (*1 *2 *3 *4) (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *5))) (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)))) (-2896 (*1 *2 *3 *4) (-12 (-5 *4 (-772)) (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *5))))) (-2896 (*1 *2 *3) (-12 (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *4))))) (-2896 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1203) (-433 *4))))))
-(-10 -7 (-15 -2896 ((-52) (-1178))) (-15 -2896 ((-52) |#2|)) (-15 -2896 ((-52) |#2| (-772))) (-15 -2896 ((-52) |#2| (-295 |#2|))) (-15 -2896 ((-52) |#2| (-295 |#2|) (-772))) (-15 -2907 ((-52) (-1178))) (-15 -2907 ((-52) |#2|)) (-15 -2907 ((-52) |#2| (-567))) (-15 -2907 ((-52) |#2| (-295 |#2|))) (-15 -2907 ((-52) |#2| (-295 |#2|) (-567))) (-15 -2919 ((-52) (-1178))) (-15 -2919 ((-52) |#2|)) (-15 -2919 ((-52) |#2| (-410 (-567)))) (-15 -2919 ((-52) |#2| (-295 |#2|))) (-15 -2919 ((-52) |#2| (-295 |#2|) (-410 (-567)))) (-15 -1306 ((-52) (-1178))) (-15 -1306 ((-52) |#2|)) (-15 -1306 ((-52) |#2| (-410 (-567)))) (-15 -1306 ((-52) |#2| (-295 |#2|))) (-15 -1306 ((-52) |#2| (-295 |#2|) (-410 (-567)))))
-((-2403 (((-112) $ $) NIL)) (-3224 (((-645 $) $ (-1178)) NIL (|has| |#1| (-559))) (((-645 $) $) NIL (|has| |#1| (-559))) (((-645 $) (-1174 $) (-1178)) NIL (|has| |#1| (-559))) (((-645 $) (-1174 $)) NIL (|has| |#1| (-559))) (((-645 $) (-954 $)) NIL (|has| |#1| (-559)))) (-4103 (($ $ (-1178)) NIL (|has| |#1| (-559))) (($ $) NIL (|has| |#1| (-559))) (($ (-1174 $) (-1178)) NIL (|has| |#1| (-559))) (($ (-1174 $)) NIL (|has| |#1| (-559))) (($ (-954 $)) NIL (|has| |#1| (-559)))) (-2460 (((-112) $) 27 (-2800 (|has| |#1| (-25)) (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051)))))) (-2847 (((-645 (-1178)) $) 368)) (-2675 (((-410 (-1174 $)) $ (-613 $)) NIL (|has| |#1| (-559)))) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-4381 (($ $) NIL (|has| |#1| (-559)))) (-3949 (((-112) $) NIL (|has| |#1| (-559)))) (-2566 (((-645 (-613 $)) $) NIL)) (-3146 (($ $) 171 (|has| |#1| (-559)))) (-3012 (($ $) 147 (|has| |#1| (-559)))) (-3220 (($ $ (-1094 $)) 232 (|has| |#1| (-559))) (($ $ (-1178)) 228 (|has| |#1| (-559)))) (-3472 (((-3 $ "failed") $ $) NIL (-2800 (|has| |#1| (-21)) (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051)))))) (-2960 (($ $ (-295 $)) NIL) (($ $ (-645 (-295 $))) 386) (($ $ (-645 (-613 $)) (-645 $)) 430)) (-4226 (((-421 (-1174 $)) (-1174 $)) 308 (-12 (|has| |#1| (-455)) (|has| |#1| (-559))))) (-3248 (($ $) NIL (|has| |#1| (-559)))) (-2908 (((-421 $) $) NIL (|has| |#1| (-559)))) (-2716 (($ $) NIL (|has| |#1| (-559)))) (-3609 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3128 (($ $) 167 (|has| |#1| (-559)))) (-2987 (($ $) 143 (|has| |#1| (-559)))) (-2499 (($ $ (-567)) 73 (|has| |#1| (-559)))) (-3166 (($ $) 175 (|has| |#1| (-559)))) (-3035 (($ $) 151 (|has| |#1| (-559)))) (-2585 (($) NIL (-2800 (|has| |#1| (-25)) (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051))) (|has| |#1| (-1114))) CONST)) (-2005 (((-645 $) $ (-1178)) NIL (|has| |#1| (-559))) (((-645 $) $) NIL (|has| |#1| (-559))) (((-645 $) (-1174 $) (-1178)) NIL (|has| |#1| (-559))) (((-645 $) (-1174 $)) NIL (|has| |#1| (-559))) (((-645 $) (-954 $)) NIL (|has| |#1| (-559)))) (-3483 (($ $ (-1178)) NIL (|has| |#1| (-559))) (($ $) NIL (|has| |#1| (-559))) (($ (-1174 $) (-1178)) 134 (|has| |#1| (-559))) (($ (-1174 $)) NIL (|has| |#1| (-559))) (($ (-954 $)) NIL (|has| |#1| (-559)))) (-3753 (((-3 (-613 $) "failed") $) 18) (((-3 (-1178) "failed") $) NIL) (((-3 |#1| "failed") $) 441) (((-3 (-48) "failed") $) 336 (-12 (|has| |#1| (-559)) (|has| |#1| (-1040 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-954 |#1|)) "failed") $) NIL (|has| |#1| (-559))) (((-3 (-954 |#1|) "failed") $) NIL (|has| |#1| (-1051))) (((-3 (-410 (-567)) "failed") $) 46 (-2800 (-12 (|has| |#1| (-559)) (|has| |#1| (-1040 (-567)))) (|has| |#1| (-1040 (-410 (-567))))))) (-2038 (((-613 $) $) 12) (((-1178) $) NIL) ((|#1| $) 421) (((-48) $) NIL (-12 (|has| |#1| (-559)) (|has| |#1| (-1040 (-567))))) (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-410 (-954 |#1|)) $) NIL (|has| |#1| (-559))) (((-954 |#1|) $) NIL (|has| |#1| (-1051))) (((-410 (-567)) $) 319 (-2800 (-12 (|has| |#1| (-559)) (|has| |#1| (-1040 (-567)))) (|has| |#1| (-1040 (-410 (-567))))))) (-2349 (($ $ $) NIL (|has| |#1| (-559)))) (-2630 (((-2 (|:| -2316 (-690 |#1|)) (|:| |vec| (-1268 |#1|))) (-690 $) (-1268 $)) 125 (|has| |#1| (-1051))) (((-690 |#1|) (-690 $)) 115 (|has| |#1| (-1051))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051)))) (((-690 (-567)) (-690 $)) NIL (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051))))) (-2477 (($ $) 96 (|has| |#1| (-559)))) (-2109 (((-3 $ "failed") $) NIL (-2800 (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051))) (|has| |#1| (-1114))))) (-2360 (($ $ $) NIL (|has| |#1| (-559)))) (-4207 (($ $ (-1094 $)) 236 (|has| |#1| (-559))) (($ $ (-1178)) 234 (|has| |#1| (-559)))) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL (|has| |#1| (-559)))) (-3184 (((-112) $) NIL (|has| |#1| (-559)))) (-2387 (($ $ $) 202 (|has| |#1| (-559)))) (-1482 (($) 137 (|has| |#1| (-559)))) (-2967 (($ $ $) 222 (|has| |#1| (-559)))) (-4303 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) 392 (|has| |#1| (-888 (-567)))) (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) 399 (|has| |#1| (-888 (-381))))) (-2068 (($ $) NIL) (($ (-645 $)) NIL)) (-2034 (((-645 (-114)) $) NIL)) (-2654 (((-114) (-114)) 276)) (-1433 (((-112) $) 25 (-2800 (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051))) (|has| |#1| (-1114))))) (-3837 (((-112) $) NIL (|has| $ (-1040 (-567))))) (-3530 (($ $) 72 (|has| |#1| (-1051)))) (-1448 (((-1127 |#1| (-613 $)) $) 91 (|has| |#1| (-1051)))) (-3423 (((-112) $) 62 (|has| |#1| (-559)))) (-2651 (($ $ (-567)) NIL (|has| |#1| (-559)))) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-559)))) (-3263 (((-1174 $) (-613 $)) 277 (|has| $ (-1051)))) (-3829 (($ (-1 $ $) (-613 $)) 426)) (-2700 (((-3 (-613 $) "failed") $) NIL)) (-3063 (($ $) 141 (|has| |#1| (-559)))) (-1902 (($ $) 247 (|has| |#1| (-559)))) (-2740 (($ (-645 $)) NIL (|has| |#1| (-559))) (($ $ $) NIL (|has| |#1| (-559)))) (-1419 (((-1160) $) NIL)) (-2641 (((-645 (-613 $)) $) 49)) (-3632 (($ (-114) $) NIL) (($ (-114) (-645 $)) 431)) (-2056 (((-3 (-645 $) "failed") $) NIL (|has| |#1| (-1114)))) (-1912 (((-3 (-2 (|:| |val| $) (|:| -3458 (-567))) "failed") $) NIL (|has| |#1| (-1051)))) (-3671 (((-3 (-645 $) "failed") $) 436 (|has| |#1| (-25)))) (-3556 (((-3 (-2 (|:| -3694 (-567)) (|:| |var| (-613 $))) "failed") $) 440 (|has| |#1| (-25)))) (-3798 (((-3 (-2 (|:| |var| (-613 $)) (|:| -3458 (-567))) "failed") $) NIL (|has| |#1| (-1114))) (((-3 (-2 (|:| |var| (-613 $)) (|:| -3458 (-567))) "failed") $ (-114)) NIL (|has| |#1| (-1051))) (((-3 (-2 (|:| |var| (-613 $)) (|:| -3458 (-567))) "failed") $ (-1178)) NIL (|has| |#1| (-1051)))) (-1854 (((-112) $ (-114)) NIL) (((-112) $ (-1178)) 51)) (-2939 (($ $) NIL (-2800 (|has| |#1| (-476)) (|has| |#1| (-559))))) (-2940 (($ $ (-1178)) 251 (|has| |#1| (-559))) (($ $ (-1094 $)) 253 (|has| |#1| (-559)))) (-4138 (((-772) $) NIL)) (-3430 (((-1122) $) NIL)) (-2949 (((-112) $) 43)) (-2962 ((|#1| $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 301 (|has| |#1| (-559)))) (-2774 (($ (-645 $)) NIL (|has| |#1| (-559))) (($ $ $) NIL (|has| |#1| (-559)))) (-3922 (((-112) $ $) NIL) (((-112) $ (-1178)) NIL)) (-1830 (($ $ (-1178)) 226 (|has| |#1| (-559))) (($ $) 224 (|has| |#1| (-559)))) (-1576 (($ $) 218 (|has| |#1| (-559)))) (-3517 (((-421 (-1174 $)) (-1174 $)) 306 (-12 (|has| |#1| (-455)) (|has| |#1| (-559))))) (-2706 (((-421 $) $) NIL (|has| |#1| (-559)))) (-3402 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-559))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL (|has| |#1| (-559)))) (-2391 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-559)))) (-3946 (($ $) 139 (|has| |#1| (-559)))) (-2757 (((-112) $) NIL (|has| $ (-1040 (-567))))) (-2631 (($ $ (-613 $) $) NIL) (($ $ (-645 (-613 $)) (-645 $)) 425) (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-645 (-1178)) (-645 (-1 $ $))) NIL) (($ $ (-645 (-1178)) (-645 (-1 $ (-645 $)))) NIL) (($ $ (-1178) (-1 $ (-645 $))) NIL) (($ $ (-1178) (-1 $ $)) NIL) (($ $ (-645 (-114)) (-645 (-1 $ $))) 379) (($ $ (-645 (-114)) (-645 (-1 $ (-645 $)))) NIL) (($ $ (-114) (-1 $ (-645 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1178)) NIL (|has| |#1| (-615 (-539)))) (($ $ (-645 (-1178))) NIL (|has| |#1| (-615 (-539)))) (($ $) NIL (|has| |#1| (-615 (-539)))) (($ $ (-114) $ (-1178)) 366 (|has| |#1| (-615 (-539)))) (($ $ (-645 (-114)) (-645 $) (-1178)) 365 (|has| |#1| (-615 (-539)))) (($ $ (-645 (-1178)) (-645 (-772)) (-645 (-1 $ $))) NIL (|has| |#1| (-1051))) (($ $ (-645 (-1178)) (-645 (-772)) (-645 (-1 $ (-645 $)))) NIL (|has| |#1| (-1051))) (($ $ (-1178) (-772) (-1 $ (-645 $))) NIL (|has| |#1| (-1051))) (($ $ (-1178) (-772) (-1 $ $)) NIL (|has| |#1| (-1051)))) (-1990 (((-772) $) NIL (|has| |#1| (-559)))) (-2937 (($ $) 239 (|has| |#1| (-559)))) (-1787 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-645 $)) NIL)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL (|has| |#1| (-559)))) (-3241 (($ $) NIL) (($ $ $) NIL)) (-2973 (($ $) 249 (|has| |#1| (-559)))) (-4275 (($ $) 200 (|has| |#1| (-559)))) (-1593 (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| |#1| (-1051))) (($ $ (-1178) (-772)) NIL (|has| |#1| (-1051))) (($ $ (-645 (-1178))) NIL (|has| |#1| (-1051))) (($ $ (-1178)) NIL (|has| |#1| (-1051)))) (-1967 (($ $) 74 (|has| |#1| (-559)))) (-1460 (((-1127 |#1| (-613 $)) $) 93 (|has| |#1| (-559)))) (-3341 (($ $) 317 (|has| $ (-1051)))) (-3175 (($ $) 177 (|has| |#1| (-559)))) (-3049 (($ $) 153 (|has| |#1| (-559)))) (-3156 (($ $) 173 (|has| |#1| (-559)))) (-3023 (($ $) 149 (|has| |#1| (-559)))) (-3137 (($ $) 169 (|has| |#1| (-559)))) (-2999 (($ $) 145 (|has| |#1| (-559)))) (-3893 (((-894 (-567)) $) NIL (|has| |#1| (-615 (-894 (-567))))) (((-894 (-381)) $) NIL (|has| |#1| (-615 (-894 (-381))))) (($ (-421 $)) NIL (|has| |#1| (-559))) (((-539) $) 363 (|has| |#1| (-615 (-539))))) (-1823 (($ $ $) NIL (|has| |#1| (-476)))) (-1485 (($ $ $) NIL (|has| |#1| (-476)))) (-4132 (((-863) $) 424) (($ (-613 $)) 415) (($ (-1178)) 381) (($ |#1|) 337) (($ $) NIL (|has| |#1| (-559))) (($ (-48)) 312 (-12 (|has| |#1| (-559)) (|has| |#1| (-1040 (-567))))) (($ (-1127 |#1| (-613 $))) 95 (|has| |#1| (-1051))) (($ (-410 |#1|)) NIL (|has| |#1| (-559))) (($ (-954 (-410 |#1|))) NIL (|has| |#1| (-559))) (($ (-410 (-954 (-410 |#1|)))) NIL (|has| |#1| (-559))) (($ (-410 (-954 |#1|))) NIL (|has| |#1| (-559))) (($ (-954 |#1|)) NIL (|has| |#1| (-1051))) (($ (-410 (-567))) NIL (-2800 (|has| |#1| (-559)) (|has| |#1| (-1040 (-410 (-567)))))) (($ (-567)) 34 (-2800 (|has| |#1| (-1040 (-567))) (|has| |#1| (-1051))))) (-1903 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-4221 (((-772)) NIL (|has| |#1| (-1051)) CONST)) (-1334 (($ $) NIL) (($ (-645 $)) NIL)) (-3881 (($ $ $) 220 (|has| |#1| (-559)))) (-3031 (($ $ $) 206 (|has| |#1| (-559)))) (-2030 (($ $ $) 210 (|has| |#1| (-559)))) (-3913 (($ $ $) 204 (|has| |#1| (-559)))) (-2944 (($ $ $) 208 (|has| |#1| (-559)))) (-3797 (((-112) (-114)) 10)) (-1745 (((-112) $ $) 86)) (-3200 (($ $) 183 (|has| |#1| (-559)))) (-3084 (($ $) 159 (|has| |#1| (-559)))) (-3816 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3183 (($ $) 179 (|has| |#1| (-559)))) (-3062 (($ $) 155 (|has| |#1| (-559)))) (-3221 (($ $) 187 (|has| |#1| (-559)))) (-3106 (($ $) 163 (|has| |#1| (-559)))) (-3247 (($ (-1178) $) NIL) (($ (-1178) $ $) NIL) (($ (-1178) $ $ $) NIL) (($ (-1178) $ $ $ $) NIL) (($ (-1178) (-645 $)) NIL)) (-3382 (($ $) 214 (|has| |#1| (-559)))) (-4023 (($ $) 212 (|has| |#1| (-559)))) (-3785 (($ $) 189 (|has| |#1| (-559)))) (-3118 (($ $) 165 (|has| |#1| (-559)))) (-3211 (($ $) 185 (|has| |#1| (-559)))) (-3095 (($ $) 161 (|has| |#1| (-559)))) (-3193 (($ $) 181 (|has| |#1| (-559)))) (-3074 (($ $) 157 (|has| |#1| (-559)))) (-2219 (($ $) 192 (|has| |#1| (-559)))) (-1716 (($) 21 (-2800 (|has| |#1| (-25)) (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051)))) CONST)) (-2299 (($ $) 243 (|has| |#1| (-559)))) (-1728 (($) 23 (-2800 (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051))) (|has| |#1| (-1114))) CONST)) (-1890 (($ $) 194 (|has| |#1| (-559))) (($ $ $) 196 (|has| |#1| (-559)))) (-2367 (($ $) 241 (|has| |#1| (-559)))) (-2637 (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| |#1| (-1051))) (($ $ (-1178) (-772)) NIL (|has| |#1| (-1051))) (($ $ (-645 (-1178))) NIL (|has| |#1| (-1051))) (($ $ (-1178)) NIL (|has| |#1| (-1051)))) (-1450 (($ $) 245 (|has| |#1| (-559)))) (-3944 (($ $ $) 198 (|has| |#1| (-559)))) (-2936 (((-112) $ $) 88)) (-3060 (($ (-1127 |#1| (-613 $)) (-1127 |#1| (-613 $))) 106 (|has| |#1| (-559))) (($ $ $) 42 (-2800 (|has| |#1| (-476)) (|has| |#1| (-559))))) (-3045 (($ $ $) 40 (-2800 (|has| |#1| (-21)) (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051))))) (($ $) 29 (-2800 (|has| |#1| (-21)) (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051)))))) (-3033 (($ $ $) 38 (-2800 (|has| |#1| (-25)) (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051)))))) (** (($ $ $) 64 (|has| |#1| (-559))) (($ $ (-410 (-567))) 314 (|has| |#1| (-559))) (($ $ (-567)) 80 (-2800 (|has| |#1| (-476)) (|has| |#1| (-559)))) (($ $ (-772)) 75 (-2800 (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051))) (|has| |#1| (-1114)))) (($ $ (-923)) 84 (-2800 (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051))) (|has| |#1| (-1114))))) (* (($ (-410 (-567)) $) NIL (|has| |#1| (-559))) (($ $ (-410 (-567))) NIL (|has| |#1| (-559))) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))) (($ $ $) 36 (-2800 (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051))) (|has| |#1| (-1114)))) (($ (-567) $) 32 (-2800 (|has| |#1| (-21)) (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051))))) (($ (-772) $) NIL (-2800 (|has| |#1| (-25)) (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051))))) (($ (-923) $) NIL (-2800 (|has| |#1| (-25)) (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051)))))))
-(((-317 |#1|) (-13 (-433 |#1|) (-10 -8 (IF (|has| |#1| (-559)) (PROGN (-6 (-29 |#1|)) (-6 (-1203)) (-6 (-160)) (-6 (-630)) (-6 (-1141)) (-15 -2477 ($ $)) (-15 -3423 ((-112) $)) (-15 -2499 ($ $ (-567))) (IF (|has| |#1| (-455)) (PROGN (-15 -3517 ((-421 (-1174 $)) (-1174 $))) (-15 -4226 ((-421 (-1174 $)) (-1174 $)))) |%noBranch|) (IF (|has| |#1| (-1040 (-567))) (-6 (-1040 (-48))) |%noBranch|)) |%noBranch|))) (-1102)) (T -317))
-((-2477 (*1 *1 *1) (-12 (-5 *1 (-317 *2)) (-4 *2 (-559)) (-4 *2 (-1102)))) (-3423 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-317 *3)) (-4 *3 (-559)) (-4 *3 (-1102)))) (-2499 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-317 *3)) (-4 *3 (-559)) (-4 *3 (-1102)))) (-3517 (*1 *2 *3) (-12 (-5 *2 (-421 (-1174 *1))) (-5 *1 (-317 *4)) (-5 *3 (-1174 *1)) (-4 *4 (-455)) (-4 *4 (-559)) (-4 *4 (-1102)))) (-4226 (*1 *2 *3) (-12 (-5 *2 (-421 (-1174 *1))) (-5 *1 (-317 *4)) (-5 *3 (-1174 *1)) (-4 *4 (-455)) (-4 *4 (-559)) (-4 *4 (-1102)))))
-(-13 (-433 |#1|) (-10 -8 (IF (|has| |#1| (-559)) (PROGN (-6 (-29 |#1|)) (-6 (-1203)) (-6 (-160)) (-6 (-630)) (-6 (-1141)) (-15 -2477 ($ $)) (-15 -3423 ((-112) $)) (-15 -2499 ($ $ (-567))) (IF (|has| |#1| (-455)) (PROGN (-15 -3517 ((-421 (-1174 $)) (-1174 $))) (-15 -4226 ((-421 (-1174 $)) (-1174 $)))) |%noBranch|) (IF (|has| |#1| (-1040 (-567))) (-6 (-1040 (-48))) |%noBranch|)) |%noBranch|)))
-((-4009 (((-52) |#2| (-114) (-295 |#2|) (-645 |#2|)) 89) (((-52) |#2| (-114) (-295 |#2|) (-295 |#2|)) 85) (((-52) |#2| (-114) (-295 |#2|) |#2|) 87) (((-52) (-295 |#2|) (-114) (-295 |#2|) |#2|) 88) (((-52) (-645 |#2|) (-645 (-114)) (-295 |#2|) (-645 (-295 |#2|))) 81) (((-52) (-645 |#2|) (-645 (-114)) (-295 |#2|) (-645 |#2|)) 83) (((-52) (-645 (-295 |#2|)) (-645 (-114)) (-295 |#2|) (-645 |#2|)) 84) (((-52) (-645 (-295 |#2|)) (-645 (-114)) (-295 |#2|) (-645 (-295 |#2|))) 82) (((-52) (-295 |#2|) (-114) (-295 |#2|) (-645 |#2|)) 90) (((-52) (-295 |#2|) (-114) (-295 |#2|) (-295 |#2|)) 86)))
-(((-318 |#1| |#2|) (-10 -7 (-15 -4009 ((-52) (-295 |#2|) (-114) (-295 |#2|) (-295 |#2|))) (-15 -4009 ((-52) (-295 |#2|) (-114) (-295 |#2|) (-645 |#2|))) (-15 -4009 ((-52) (-645 (-295 |#2|)) (-645 (-114)) (-295 |#2|) (-645 (-295 |#2|)))) (-15 -4009 ((-52) (-645 (-295 |#2|)) (-645 (-114)) (-295 |#2|) (-645 |#2|))) (-15 -4009 ((-52) (-645 |#2|) (-645 (-114)) (-295 |#2|) (-645 |#2|))) (-15 -4009 ((-52) (-645 |#2|) (-645 (-114)) (-295 |#2|) (-645 (-295 |#2|)))) (-15 -4009 ((-52) (-295 |#2|) (-114) (-295 |#2|) |#2|)) (-15 -4009 ((-52) |#2| (-114) (-295 |#2|) |#2|)) (-15 -4009 ((-52) |#2| (-114) (-295 |#2|) (-295 |#2|))) (-15 -4009 ((-52) |#2| (-114) (-295 |#2|) (-645 |#2|)))) (-13 (-559) (-615 (-539))) (-433 |#1|)) (T -318))
-((-4009 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-114)) (-5 *5 (-295 *3)) (-5 *6 (-645 *3)) (-4 *3 (-433 *7)) (-4 *7 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) (-5 *1 (-318 *7 *3)))) (-4009 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-114)) (-5 *5 (-295 *3)) (-4 *3 (-433 *6)) (-4 *6 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) (-5 *1 (-318 *6 *3)))) (-4009 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-114)) (-5 *5 (-295 *3)) (-4 *3 (-433 *6)) (-4 *6 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) (-5 *1 (-318 *6 *3)))) (-4009 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-295 *5)) (-5 *4 (-114)) (-4 *5 (-433 *6)) (-4 *6 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) (-5 *1 (-318 *6 *5)))) (-4009 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 (-114))) (-5 *6 (-645 (-295 *8))) (-4 *8 (-433 *7)) (-5 *5 (-295 *8)) (-4 *7 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) (-5 *1 (-318 *7 *8)))) (-4009 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-645 *7)) (-5 *4 (-645 (-114))) (-5 *5 (-295 *7)) (-4 *7 (-433 *6)) (-4 *6 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) (-5 *1 (-318 *6 *7)))) (-4009 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-645 (-295 *8))) (-5 *4 (-645 (-114))) (-5 *5 (-295 *8)) (-5 *6 (-645 *8)) (-4 *8 (-433 *7)) (-4 *7 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) (-5 *1 (-318 *7 *8)))) (-4009 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-645 (-295 *7))) (-5 *4 (-645 (-114))) (-5 *5 (-295 *7)) (-4 *7 (-433 *6)) (-4 *6 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) (-5 *1 (-318 *6 *7)))) (-4009 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-295 *7)) (-5 *4 (-114)) (-5 *5 (-645 *7)) (-4 *7 (-433 *6)) (-4 *6 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) (-5 *1 (-318 *6 *7)))) (-4009 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-295 *6)) (-5 *4 (-114)) (-4 *6 (-433 *5)) (-4 *5 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) (-5 *1 (-318 *5 *6)))))
-(-10 -7 (-15 -4009 ((-52) (-295 |#2|) (-114) (-295 |#2|) (-295 |#2|))) (-15 -4009 ((-52) (-295 |#2|) (-114) (-295 |#2|) (-645 |#2|))) (-15 -4009 ((-52) (-645 (-295 |#2|)) (-645 (-114)) (-295 |#2|) (-645 (-295 |#2|)))) (-15 -4009 ((-52) (-645 (-295 |#2|)) (-645 (-114)) (-295 |#2|) (-645 |#2|))) (-15 -4009 ((-52) (-645 |#2|) (-645 (-114)) (-295 |#2|) (-645 |#2|))) (-15 -4009 ((-52) (-645 |#2|) (-645 (-114)) (-295 |#2|) (-645 (-295 |#2|)))) (-15 -4009 ((-52) (-295 |#2|) (-114) (-295 |#2|) |#2|)) (-15 -4009 ((-52) |#2| (-114) (-295 |#2|) |#2|)) (-15 -4009 ((-52) |#2| (-114) (-295 |#2|) (-295 |#2|))) (-15 -4009 ((-52) |#2| (-114) (-295 |#2|) (-645 |#2|))))
-((-3690 (((-1213 (-928)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1096 (-225)) (-225) (-567) (-1160)) 67) (((-1213 (-928)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1096 (-225)) (-225) (-567)) 68) (((-1213 (-928)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1096 (-225)) (-1 (-225) (-225)) (-567) (-1160)) 64) (((-1213 (-928)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1096 (-225)) (-1 (-225) (-225)) (-567)) 65)) (-1947 (((-1 (-225) (-225)) (-225)) 66)))
-(((-319) (-10 -7 (-15 -1947 ((-1 (-225) (-225)) (-225))) (-15 -3690 ((-1213 (-928)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1096 (-225)) (-1 (-225) (-225)) (-567))) (-15 -3690 ((-1213 (-928)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1096 (-225)) (-1 (-225) (-225)) (-567) (-1160))) (-15 -3690 ((-1213 (-928)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1096 (-225)) (-225) (-567))) (-15 -3690 ((-1213 (-928)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1096 (-225)) (-225) (-567) (-1160))))) (T -319))
-((-3690 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-317 (-567))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1096 (-225))) (-5 *6 (-225)) (-5 *7 (-567)) (-5 *8 (-1160)) (-5 *2 (-1213 (-928))) (-5 *1 (-319)))) (-3690 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-317 (-567))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1096 (-225))) (-5 *6 (-225)) (-5 *7 (-567)) (-5 *2 (-1213 (-928))) (-5 *1 (-319)))) (-3690 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-317 (-567))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1096 (-225))) (-5 *6 (-567)) (-5 *7 (-1160)) (-5 *2 (-1213 (-928))) (-5 *1 (-319)))) (-3690 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-317 (-567))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1096 (-225))) (-5 *6 (-567)) (-5 *2 (-1213 (-928))) (-5 *1 (-319)))) (-1947 (*1 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-319)) (-5 *3 (-225)))))
-(-10 -7 (-15 -1947 ((-1 (-225) (-225)) (-225))) (-15 -3690 ((-1213 (-928)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1096 (-225)) (-1 (-225) (-225)) (-567))) (-15 -3690 ((-1213 (-928)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1096 (-225)) (-1 (-225) (-225)) (-567) (-1160))) (-15 -3690 ((-1213 (-928)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1096 (-225)) (-225) (-567))) (-15 -3690 ((-1213 (-928)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1096 (-225)) (-225) (-567) (-1160))))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) 26)) (-2847 (((-645 (-1084)) $) NIL)) (-3644 (((-1178) $) NIL)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-4381 (($ $) NIL (|has| |#1| (-559)))) (-3949 (((-112) $) NIL (|has| |#1| (-559)))) (-1950 (($ $ (-410 (-567))) NIL) (($ $ (-410 (-567)) (-410 (-567))) NIL)) (-1843 (((-1158 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|))) $) 20)) (-3146 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3012 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3472 (((-3 $ "failed") $ $) NIL)) (-3248 (($ $) NIL (|has| |#1| (-365)))) (-2908 (((-421 $) $) NIL (|has| |#1| (-365)))) (-2716 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3609 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3128 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2987 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1306 (($ (-772) (-1158 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|)))) NIL)) (-3166 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3035 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2585 (($) NIL T CONST)) (-2349 (($ $ $) NIL (|has| |#1| (-365)))) (-3014 (($ $) 36)) (-2109 (((-3 $ "failed") $) NIL)) (-2360 (($ $ $) NIL (|has| |#1| (-365)))) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-3184 (((-112) $) NIL (|has| |#1| (-365)))) (-2762 (((-112) $) NIL)) (-1482 (($) NIL (|has| |#1| (-38 (-410 (-567)))))) (-4384 (((-410 (-567)) $) NIL) (((-410 (-567)) $ (-410 (-567))) 16)) (-1433 (((-112) $) NIL)) (-2651 (($ $ (-567)) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3807 (($ $ (-923)) NIL) (($ $ (-410 (-567))) NIL)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-2843 (((-112) $) NIL)) (-2824 (($ |#1| (-410 (-567))) NIL) (($ $ (-1084) (-410 (-567))) NIL) (($ $ (-645 (-1084)) (-645 (-410 (-567)))) NIL)) (-1354 (($ $ $) NIL)) (-2981 (($ $ $) NIL)) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-3063 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2976 (($ $) NIL)) (-2989 ((|#1| $) NIL)) (-2740 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-1419 (((-1160) $) NIL)) (-2939 (($ $) NIL (|has| |#1| (-365)))) (-2416 (($ $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1178)) NIL (-2800 (-12 (|has| |#1| (-15 -2416 (|#1| |#1| (-1178)))) (|has| |#1| (-15 -2847 ((-645 (-1178)) |#1|))) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-961)) (|has| |#1| (-1203)))))) (-3430 (((-1122) $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#1| (-365)))) (-2774 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2706 (((-421 $) $) NIL (|has| |#1| (-365)))) (-3402 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL (|has| |#1| (-365)))) (-2410 (($ $ (-410 (-567))) NIL)) (-2391 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-4339 (((-410 (-567)) $) 17)) (-1617 (($ (-1253 |#1| |#2| |#3|)) 11)) (-3458 (((-1253 |#1| |#2| |#3|) $) 12)) (-3946 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2631 (((-1158 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))))) (-1990 (((-772) $) NIL (|has| |#1| (-365)))) (-1787 ((|#1| $ (-410 (-567))) NIL) (($ $ $) NIL (|has| (-410 (-567)) (-1114)))) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL (|has| |#1| (-365)))) (-1593 (($ $ (-645 (-1178)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-1178) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-645 (-1178))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-1178)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (-3077 (((-410 (-567)) $) NIL)) (-3175 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3049 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3156 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3023 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3137 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2999 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2192 (($ $) 10)) (-4132 (((-863) $) 42) (($ (-567)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $) NIL (|has| |#1| (-559)))) (-4136 ((|#1| $ (-410 (-567))) 34)) (-1903 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-4221 (((-772)) NIL T CONST)) (-2166 ((|#1| $) NIL)) (-1745 (((-112) $ $) NIL)) (-3200 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3084 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3816 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3183 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3062 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3221 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3106 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3050 ((|#1| $ (-410 (-567))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))) (|has| |#1| (-15 -4132 (|#1| (-1178))))))) (-3785 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3118 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3211 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3095 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3193 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3074 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1716 (($) NIL T CONST)) (-1728 (($) NIL T CONST)) (-2637 (($ $ (-645 (-1178)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-1178) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-645 (-1178))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-1178)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 28)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) 37)) (-3060 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))))
-(((-320 |#1| |#2| |#3|) (-13 (-1249 |#1|) (-793) (-10 -8 (-15 -1617 ($ (-1253 |#1| |#2| |#3|))) (-15 -3458 ((-1253 |#1| |#2| |#3|) $)) (-15 -4339 ((-410 (-567)) $)))) (-365) (-1178) |#1|) (T -320))
-((-1617 (*1 *1 *2) (-12 (-5 *2 (-1253 *3 *4 *5)) (-4 *3 (-365)) (-14 *4 (-1178)) (-14 *5 *3) (-5 *1 (-320 *3 *4 *5)))) (-3458 (*1 *2 *1) (-12 (-5 *2 (-1253 *3 *4 *5)) (-5 *1 (-320 *3 *4 *5)) (-4 *3 (-365)) (-14 *4 (-1178)) (-14 *5 *3))) (-4339 (*1 *2 *1) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-320 *3 *4 *5)) (-4 *3 (-365)) (-14 *4 (-1178)) (-14 *5 *3))))
-(-13 (-1249 |#1|) (-793) (-10 -8 (-15 -1617 ($ (-1253 |#1| |#2| |#3|))) (-15 -3458 ((-1253 |#1| |#2| |#3|) $)) (-15 -4339 ((-410 (-567)) $))))
-((-2651 (((-2 (|:| -3458 (-772)) (|:| -3694 |#1|) (|:| |radicand| (-645 |#1|))) (-421 |#1|) (-772)) 35)) (-3063 (((-645 (-2 (|:| -3694 (-772)) (|:| |logand| |#1|))) (-421 |#1|)) 40)))
-(((-321 |#1|) (-10 -7 (-15 -2651 ((-2 (|:| -3458 (-772)) (|:| -3694 |#1|) (|:| |radicand| (-645 |#1|))) (-421 |#1|) (-772))) (-15 -3063 ((-645 (-2 (|:| -3694 (-772)) (|:| |logand| |#1|))) (-421 |#1|)))) (-559)) (T -321))
-((-3063 (*1 *2 *3) (-12 (-5 *3 (-421 *4)) (-4 *4 (-559)) (-5 *2 (-645 (-2 (|:| -3694 (-772)) (|:| |logand| *4)))) (-5 *1 (-321 *4)))) (-2651 (*1 *2 *3 *4) (-12 (-5 *3 (-421 *5)) (-4 *5 (-559)) (-5 *2 (-2 (|:| -3458 (-772)) (|:| -3694 *5) (|:| |radicand| (-645 *5)))) (-5 *1 (-321 *5)) (-5 *4 (-772)))))
-(-10 -7 (-15 -2651 ((-2 (|:| -3458 (-772)) (|:| -3694 |#1|) (|:| |radicand| (-645 |#1|))) (-421 |#1|) (-772))) (-15 -3063 ((-645 (-2 (|:| -3694 (-772)) (|:| |logand| |#1|))) (-421 |#1|))))
-((-2847 (((-645 |#2|) (-1174 |#4|)) 44)) (-3884 ((|#3| (-567)) 47)) (-2221 (((-1174 |#4|) (-1174 |#3|)) 30)) (-3181 (((-1174 |#4|) (-1174 |#4|) (-567)) 66)) (-3260 (((-1174 |#3|) (-1174 |#4|)) 21)) (-3077 (((-645 (-772)) (-1174 |#4|) (-645 |#2|)) 41)) (-1439 (((-1174 |#3|) (-1174 |#4|) (-645 |#2|) (-645 |#3|)) 35)))
-(((-322 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1439 ((-1174 |#3|) (-1174 |#4|) (-645 |#2|) (-645 |#3|))) (-15 -3077 ((-645 (-772)) (-1174 |#4|) (-645 |#2|))) (-15 -2847 ((-645 |#2|) (-1174 |#4|))) (-15 -3260 ((-1174 |#3|) (-1174 |#4|))) (-15 -2221 ((-1174 |#4|) (-1174 |#3|))) (-15 -3181 ((-1174 |#4|) (-1174 |#4|) (-567))) (-15 -3884 (|#3| (-567)))) (-794) (-851) (-1051) (-951 |#3| |#1| |#2|)) (T -322))
-((-3884 (*1 *2 *3) (-12 (-5 *3 (-567)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1051)) (-5 *1 (-322 *4 *5 *2 *6)) (-4 *6 (-951 *2 *4 *5)))) (-3181 (*1 *2 *2 *3) (-12 (-5 *2 (-1174 *7)) (-5 *3 (-567)) (-4 *7 (-951 *6 *4 *5)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1051)) (-5 *1 (-322 *4 *5 *6 *7)))) (-2221 (*1 *2 *3) (-12 (-5 *3 (-1174 *6)) (-4 *6 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-1174 *7)) (-5 *1 (-322 *4 *5 *6 *7)) (-4 *7 (-951 *6 *4 *5)))) (-3260 (*1 *2 *3) (-12 (-5 *3 (-1174 *7)) (-4 *7 (-951 *6 *4 *5)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1051)) (-5 *2 (-1174 *6)) (-5 *1 (-322 *4 *5 *6 *7)))) (-2847 (*1 *2 *3) (-12 (-5 *3 (-1174 *7)) (-4 *7 (-951 *6 *4 *5)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1051)) (-5 *2 (-645 *5)) (-5 *1 (-322 *4 *5 *6 *7)))) (-3077 (*1 *2 *3 *4) (-12 (-5 *3 (-1174 *8)) (-5 *4 (-645 *6)) (-4 *6 (-851)) (-4 *8 (-951 *7 *5 *6)) (-4 *5 (-794)) (-4 *7 (-1051)) (-5 *2 (-645 (-772))) (-5 *1 (-322 *5 *6 *7 *8)))) (-1439 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1174 *9)) (-5 *4 (-645 *7)) (-5 *5 (-645 *8)) (-4 *7 (-851)) (-4 *8 (-1051)) (-4 *9 (-951 *8 *6 *7)) (-4 *6 (-794)) (-5 *2 (-1174 *8)) (-5 *1 (-322 *6 *7 *8 *9)))))
-(-10 -7 (-15 -1439 ((-1174 |#3|) (-1174 |#4|) (-645 |#2|) (-645 |#3|))) (-15 -3077 ((-645 (-772)) (-1174 |#4|) (-645 |#2|))) (-15 -2847 ((-645 |#2|) (-1174 |#4|))) (-15 -3260 ((-1174 |#3|) (-1174 |#4|))) (-15 -2221 ((-1174 |#4|) (-1174 |#3|))) (-15 -3181 ((-1174 |#4|) (-1174 |#4|) (-567))) (-15 -3884 (|#3| (-567))))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) 19)) (-1843 (((-645 (-2 (|:| |gen| |#1|) (|:| -3946 (-567)))) $) 21)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2375 (((-772) $) NIL)) (-2585 (($) NIL T CONST)) (-3753 (((-3 |#1| "failed") $) NIL)) (-2038 ((|#1| $) NIL)) (-4108 ((|#1| $ (-567)) NIL)) (-1936 (((-567) $ (-567)) NIL)) (-1354 (($ $ $) NIL (|has| |#1| (-851)))) (-2981 (($ $ $) NIL (|has| |#1| (-851)))) (-3496 (($ (-1 |#1| |#1|) $) NIL)) (-3870 (($ (-1 (-567) (-567)) $) 11)) (-1419 (((-1160) $) NIL)) (-1993 (($ $ $) NIL (|has| (-567) (-793)))) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL) (($ |#1|) NIL)) (-4136 (((-567) |#1| $) NIL)) (-1745 (((-112) $ $) NIL)) (-1716 (($) NIL T CONST)) (-2997 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2971 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2958 (((-112) $ $) 29 (|has| |#1| (-851)))) (-3045 (($ $) 12) (($ $ $) 28)) (-3033 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ (-567)) NIL) (($ (-567) |#1|) 27)))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) 60)) (-4014 (((-1255 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-308)))) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-4287 (($ $) NIL)) (-2286 (((-112) $) NIL)) (-2376 (((-3 $ "failed") $ $) NIL)) (-2029 (((-421 (-1175 $)) (-1175 $)) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-911)))) (-3659 (($ $) NIL)) (-3597 (((-421 $) $) NIL)) (-3610 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-911)))) (-3696 (((-112) $ $) NIL)) (-2677 (((-567) $) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-821)))) (-3647 (($) NIL T CONST)) (-3765 (((-3 (-1255 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1179) "failed") $) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-1040 (-1179)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-1040 (-567)))) (((-3 (-567) "failed") $) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-1040 (-567)))) (((-3 (-1254 |#2| |#3| |#4|) "failed") $) 26)) (-2051 (((-1255 |#1| |#2| |#3| |#4|) $) NIL) (((-1179) $) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-1040 (-1179)))) (((-410 (-567)) $) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-1040 (-567)))) (((-567) $) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-1040 (-567)))) (((-1254 |#2| |#3| |#4|) $) NIL)) (-2357 (($ $ $) NIL)) (-1423 (((-690 (-567)) (-690 $)) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-640 (-567)))) (((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-640 (-567)))) (((-2 (|:| -4208 (-690 (-1255 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1269 (-1255 |#1| |#2| |#3| |#4|)))) (-690 $) (-1269 $)) NIL) (((-690 (-1255 |#1| |#2| |#3| |#4|)) (-690 $)) NIL)) (-3588 (((-3 $ "failed") $) NIL)) (-1359 (($) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-548)))) (-2368 (($ $ $) NIL)) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) NIL)) (-3502 (((-112) $) NIL)) (-3137 (((-112) $) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-821)))) (-3193 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-888 (-567)))) (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-888 (-381))))) (-4346 (((-112) $) NIL)) (-1863 (($ $) NIL)) (-1447 (((-1255 |#1| |#2| |#3| |#4|) $) 22)) (-3067 (((-3 $ "failed") $) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-1154)))) (-3465 (((-112) $) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-821)))) (-1469 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1365 (($ $ $) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-851)))) (-3002 (($ $ $) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-851)))) (-3841 (($ (-1 (-1255 |#1| |#2| |#3| |#4|) (-1255 |#1| |#2| |#3| |#4|)) $) NIL)) (-2759 (((-3 (-844 |#2|) "failed") $) 80)) (-2751 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2516 (((-1161) $) NIL)) (-2949 (($ $) NIL)) (-2694 (($) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-1154)) CONST)) (-3437 (((-1122) $) NIL)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-2785 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2554 (($ $) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-308)))) (-3969 (((-1255 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-548)))) (-3551 (((-421 (-1175 $)) (-1175 $)) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-911)))) (-2016 (((-421 (-1175 $)) (-1175 $)) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-911)))) (-2717 (((-421 $) $) NIL)) (-2905 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2400 (((-3 $ "failed") $ $) NIL)) (-2372 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2642 (($ $ (-645 (-1255 |#1| |#2| |#3| |#4|)) (-645 (-1255 |#1| |#2| |#3| |#4|))) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-310 (-1255 |#1| |#2| |#3| |#4|)))) (($ $ (-1255 |#1| |#2| |#3| |#4|) (-1255 |#1| |#2| |#3| |#4|)) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-310 (-1255 |#1| |#2| |#3| |#4|)))) (($ $ (-295 (-1255 |#1| |#2| |#3| |#4|))) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-310 (-1255 |#1| |#2| |#3| |#4|)))) (($ $ (-645 (-295 (-1255 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-310 (-1255 |#1| |#2| |#3| |#4|)))) (($ $ (-645 (-1179)) (-645 (-1255 |#1| |#2| |#3| |#4|))) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-517 (-1179) (-1255 |#1| |#2| |#3| |#4|)))) (($ $ (-1179) (-1255 |#1| |#2| |#3| |#4|)) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-517 (-1179) (-1255 |#1| |#2| |#3| |#4|))))) (-2460 (((-772) $) NIL)) (-1801 (($ $ (-1255 |#1| |#2| |#3| |#4|)) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-287 (-1255 |#1| |#2| |#3| |#4|) (-1255 |#1| |#2| |#3| |#4|))))) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) NIL)) (-1616 (($ $) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-772)) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-1179)) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-902 (-1179)))) (($ $ (-1 (-1255 |#1| |#2| |#3| |#4|) (-1255 |#1| |#2| |#3| |#4|)) (-772)) NIL) (($ $ (-1 (-1255 |#1| |#2| |#3| |#4|) (-1255 |#1| |#2| |#3| |#4|))) NIL)) (-1762 (($ $) NIL)) (-1462 (((-1255 |#1| |#2| |#3| |#4|) $) 19)) (-3902 (((-894 (-567)) $) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-615 (-894 (-567))))) (((-894 (-381)) $) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-615 (-894 (-381))))) (((-539) $) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-615 (-539)))) (((-381) $) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-1024))) (((-225) $) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-1024)))) (-2616 (((-3 (-1269 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| (-1255 |#1| |#2| |#3| |#4|) (-911))))) (-4129 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ (-1255 |#1| |#2| |#3| |#4|)) 30) (($ (-1179)) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-1040 (-1179)))) (($ (-1254 |#2| |#3| |#4|)) 37)) (-2118 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-145)) (|has| (-1255 |#1| |#2| |#3| |#4|) (-911))) (|has| (-1255 |#1| |#2| |#3| |#4|) (-145))))) (-2746 (((-772)) NIL T CONST)) (-1689 (((-1255 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-548)))) (-3357 (((-112) $ $) NIL)) (-3731 (((-112) $ $) NIL)) (-1547 (($ $) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-821)))) (-1733 (($) NIL T CONST)) (-1744 (($) NIL T CONST)) (-2647 (($ $) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-772)) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-1179)) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-902 (-1179)))) (($ $ (-1 (-1255 |#1| |#2| |#3| |#4|) (-1255 |#1| |#2| |#3| |#4|)) (-772)) NIL) (($ $ (-1 (-1255 |#1| |#2| |#3| |#4|) (-1255 |#1| |#2| |#3| |#4|))) NIL)) (-3004 (((-112) $ $) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-851)))) (-2980 (((-112) $ $) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-851)))) (-2946 (((-112) $ $) NIL)) (-2993 (((-112) $ $) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-851)))) (-2968 (((-112) $ $) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-851)))) (-3069 (($ $ $) 35) (($ (-1255 |#1| |#2| |#3| |#4|) (-1255 |#1| |#2| |#3| |#4|)) 32)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ (-1255 |#1| |#2| |#3| |#4|) $) 31) (($ $ (-1255 |#1| |#2| |#3| |#4|)) NIL)))
+(((-314 |#1| |#2| |#3| |#4|) (-13 (-994 (-1255 |#1| |#2| |#3| |#4|)) (-1040 (-1254 |#2| |#3| |#4|)) (-10 -8 (-15 -2759 ((-3 (-844 |#2|) "failed") $)) (-15 -4129 ($ (-1254 |#2| |#3| |#4|))))) (-13 (-1040 (-567)) (-640 (-567)) (-455)) (-13 (-27) (-1204) (-433 |#1|)) (-1179) |#2|) (T -314))
+((-4129 (*1 *1 *2) (-12 (-5 *2 (-1254 *4 *5 *6)) (-4 *4 (-13 (-27) (-1204) (-433 *3))) (-14 *5 (-1179)) (-14 *6 *4) (-4 *3 (-13 (-1040 (-567)) (-640 (-567)) (-455))) (-5 *1 (-314 *3 *4 *5 *6)))) (-2759 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1040 (-567)) (-640 (-567)) (-455))) (-5 *2 (-844 *4)) (-5 *1 (-314 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1204) (-433 *3))) (-14 *5 (-1179)) (-14 *6 *4))))
+(-13 (-994 (-1255 |#1| |#2| |#3| |#4|)) (-1040 (-1254 |#2| |#3| |#4|)) (-10 -8 (-15 -2759 ((-3 (-844 |#2|) "failed") $)) (-15 -4129 ($ (-1254 |#2| |#3| |#4|)))))
+((-3841 (((-317 |#2|) (-1 |#2| |#1|) (-317 |#1|)) 13)))
+(((-315 |#1| |#2|) (-10 -7 (-15 -3841 ((-317 |#2|) (-1 |#2| |#1|) (-317 |#1|)))) (-1102) (-1102)) (T -315))
+((-3841 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-317 *5)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-5 *2 (-317 *6)) (-5 *1 (-315 *5 *6)))))
+(-10 -7 (-15 -3841 ((-317 |#2|) (-1 |#2| |#1|) (-317 |#1|))))
+((-2907 (((-52) |#2| (-295 |#2|) (-772)) 40) (((-52) |#2| (-295 |#2|)) 32) (((-52) |#2| (-772)) 35) (((-52) |#2|) 33) (((-52) (-1179)) 26)) (-1317 (((-52) |#2| (-295 |#2|) (-410 (-567))) 59) (((-52) |#2| (-295 |#2|)) 56) (((-52) |#2| (-410 (-567))) 58) (((-52) |#2|) 57) (((-52) (-1179)) 55)) (-2928 (((-52) |#2| (-295 |#2|) (-410 (-567))) 54) (((-52) |#2| (-295 |#2|)) 51) (((-52) |#2| (-410 (-567))) 53) (((-52) |#2|) 52) (((-52) (-1179)) 50)) (-2917 (((-52) |#2| (-295 |#2|) (-567)) 47) (((-52) |#2| (-295 |#2|)) 44) (((-52) |#2| (-567)) 46) (((-52) |#2|) 45) (((-52) (-1179)) 43)))
+(((-316 |#1| |#2|) (-10 -7 (-15 -2907 ((-52) (-1179))) (-15 -2907 ((-52) |#2|)) (-15 -2907 ((-52) |#2| (-772))) (-15 -2907 ((-52) |#2| (-295 |#2|))) (-15 -2907 ((-52) |#2| (-295 |#2|) (-772))) (-15 -2917 ((-52) (-1179))) (-15 -2917 ((-52) |#2|)) (-15 -2917 ((-52) |#2| (-567))) (-15 -2917 ((-52) |#2| (-295 |#2|))) (-15 -2917 ((-52) |#2| (-295 |#2|) (-567))) (-15 -2928 ((-52) (-1179))) (-15 -2928 ((-52) |#2|)) (-15 -2928 ((-52) |#2| (-410 (-567)))) (-15 -2928 ((-52) |#2| (-295 |#2|))) (-15 -2928 ((-52) |#2| (-295 |#2|) (-410 (-567)))) (-15 -1317 ((-52) (-1179))) (-15 -1317 ((-52) |#2|)) (-15 -1317 ((-52) |#2| (-410 (-567)))) (-15 -1317 ((-52) |#2| (-295 |#2|))) (-15 -1317 ((-52) |#2| (-295 |#2|) (-410 (-567))))) (-13 (-455) (-1040 (-567)) (-640 (-567))) (-13 (-27) (-1204) (-433 |#1|))) (T -316))
+((-1317 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-295 *3)) (-5 *5 (-410 (-567))) (-4 *3 (-13 (-27) (-1204) (-433 *6))) (-4 *6 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *6 *3)))) (-1317 (*1 *2 *3 *4) (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *5))) (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)))) (-1317 (*1 *2 *3 *4) (-12 (-5 *4 (-410 (-567))) (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *5))))) (-1317 (*1 *2 *3) (-12 (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *4))))) (-1317 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1204) (-433 *4))))) (-2928 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-295 *3)) (-5 *5 (-410 (-567))) (-4 *3 (-13 (-27) (-1204) (-433 *6))) (-4 *6 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *6 *3)))) (-2928 (*1 *2 *3 *4) (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *5))) (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)))) (-2928 (*1 *2 *3 *4) (-12 (-5 *4 (-410 (-567))) (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *5))))) (-2928 (*1 *2 *3) (-12 (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *4))))) (-2928 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1204) (-433 *4))))) (-2917 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *6))) (-4 *6 (-13 (-455) (-1040 *5) (-640 *5))) (-5 *5 (-567)) (-5 *2 (-52)) (-5 *1 (-316 *6 *3)))) (-2917 (*1 *2 *3 *4) (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *5))) (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)))) (-2917 (*1 *2 *3 *4) (-12 (-5 *4 (-567)) (-4 *5 (-13 (-455) (-1040 *4) (-640 *4))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *5))))) (-2917 (*1 *2 *3) (-12 (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *4))))) (-2917 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1204) (-433 *4))))) (-2907 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-295 *3)) (-5 *5 (-772)) (-4 *3 (-13 (-27) (-1204) (-433 *6))) (-4 *6 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *6 *3)))) (-2907 (*1 *2 *3 *4) (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *5))) (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)))) (-2907 (*1 *2 *3 *4) (-12 (-5 *4 (-772)) (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *5))))) (-2907 (*1 *2 *3) (-12 (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *4))))) (-2907 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1204) (-433 *4))))))
+(-10 -7 (-15 -2907 ((-52) (-1179))) (-15 -2907 ((-52) |#2|)) (-15 -2907 ((-52) |#2| (-772))) (-15 -2907 ((-52) |#2| (-295 |#2|))) (-15 -2907 ((-52) |#2| (-295 |#2|) (-772))) (-15 -2917 ((-52) (-1179))) (-15 -2917 ((-52) |#2|)) (-15 -2917 ((-52) |#2| (-567))) (-15 -2917 ((-52) |#2| (-295 |#2|))) (-15 -2917 ((-52) |#2| (-295 |#2|) (-567))) (-15 -2928 ((-52) (-1179))) (-15 -2928 ((-52) |#2|)) (-15 -2928 ((-52) |#2| (-410 (-567)))) (-15 -2928 ((-52) |#2| (-295 |#2|))) (-15 -2928 ((-52) |#2| (-295 |#2|) (-410 (-567)))) (-15 -1317 ((-52) (-1179))) (-15 -1317 ((-52) |#2|)) (-15 -1317 ((-52) |#2| (-410 (-567)))) (-15 -1317 ((-52) |#2| (-295 |#2|))) (-15 -1317 ((-52) |#2| (-295 |#2|) (-410 (-567)))))
+((-2412 (((-112) $ $) NIL)) (-3802 (((-645 $) $ (-1179)) NIL (|has| |#1| (-559))) (((-645 $) $) NIL (|has| |#1| (-559))) (((-645 $) (-1175 $) (-1179)) NIL (|has| |#1| (-559))) (((-645 $) (-1175 $)) NIL (|has| |#1| (-559))) (((-645 $) (-954 $)) NIL (|has| |#1| (-559)))) (-1968 (($ $ (-1179)) NIL (|has| |#1| (-559))) (($ $) NIL (|has| |#1| (-559))) (($ (-1175 $) (-1179)) NIL (|has| |#1| (-559))) (($ (-1175 $)) NIL (|has| |#1| (-559))) (($ (-954 $)) NIL (|has| |#1| (-559)))) (-3791 (((-112) $) 27 (-2811 (|has| |#1| (-25)) (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051)))))) (-2859 (((-645 (-1179)) $) 368)) (-2684 (((-410 (-1175 $)) $ (-613 $)) NIL (|has| |#1| (-559)))) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-4287 (($ $) NIL (|has| |#1| (-559)))) (-2286 (((-112) $) NIL (|has| |#1| (-559)))) (-2575 (((-645 (-613 $)) $) NIL)) (-3164 (($ $) 171 (|has| |#1| (-559)))) (-3032 (($ $) 147 (|has| |#1| (-559)))) (-1698 (($ $ (-1094 $)) 232 (|has| |#1| (-559))) (($ $ (-1179)) 228 (|has| |#1| (-559)))) (-2376 (((-3 $ "failed") $ $) NIL (-2811 (|has| |#1| (-21)) (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051)))))) (-2982 (($ $ (-295 $)) NIL) (($ $ (-645 (-295 $))) 386) (($ $ (-645 (-613 $)) (-645 $)) 430)) (-2029 (((-421 (-1175 $)) (-1175 $)) 308 (-12 (|has| |#1| (-455)) (|has| |#1| (-559))))) (-3659 (($ $) NIL (|has| |#1| (-559)))) (-3597 (((-421 $) $) NIL (|has| |#1| (-559)))) (-2728 (($ $) NIL (|has| |#1| (-559)))) (-3696 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3145 (($ $) 167 (|has| |#1| (-559)))) (-3008 (($ $) 143 (|has| |#1| (-559)))) (-2208 (($ $ (-567)) 73 (|has| |#1| (-559)))) (-3182 (($ $) 175 (|has| |#1| (-559)))) (-3057 (($ $) 151 (|has| |#1| (-559)))) (-3647 (($) NIL (-2811 (|has| |#1| (-25)) (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051))) (|has| |#1| (-1114))) CONST)) (-3234 (((-645 $) $ (-1179)) NIL (|has| |#1| (-559))) (((-645 $) $) NIL (|has| |#1| (-559))) (((-645 $) (-1175 $) (-1179)) NIL (|has| |#1| (-559))) (((-645 $) (-1175 $)) NIL (|has| |#1| (-559))) (((-645 $) (-954 $)) NIL (|has| |#1| (-559)))) (-3940 (($ $ (-1179)) NIL (|has| |#1| (-559))) (($ $) NIL (|has| |#1| (-559))) (($ (-1175 $) (-1179)) 134 (|has| |#1| (-559))) (($ (-1175 $)) NIL (|has| |#1| (-559))) (($ (-954 $)) NIL (|has| |#1| (-559)))) (-3765 (((-3 (-613 $) "failed") $) 18) (((-3 (-1179) "failed") $) NIL) (((-3 |#1| "failed") $) 441) (((-3 (-48) "failed") $) 336 (-12 (|has| |#1| (-559)) (|has| |#1| (-1040 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-954 |#1|)) "failed") $) NIL (|has| |#1| (-559))) (((-3 (-954 |#1|) "failed") $) NIL (|has| |#1| (-1051))) (((-3 (-410 (-567)) "failed") $) 46 (-2811 (-12 (|has| |#1| (-559)) (|has| |#1| (-1040 (-567)))) (|has| |#1| (-1040 (-410 (-567))))))) (-2051 (((-613 $) $) 12) (((-1179) $) NIL) ((|#1| $) 421) (((-48) $) NIL (-12 (|has| |#1| (-559)) (|has| |#1| (-1040 (-567))))) (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-410 (-954 |#1|)) $) NIL (|has| |#1| (-559))) (((-954 |#1|) $) NIL (|has| |#1| (-1051))) (((-410 (-567)) $) 319 (-2811 (-12 (|has| |#1| (-559)) (|has| |#1| (-1040 (-567)))) (|has| |#1| (-1040 (-410 (-567))))))) (-2357 (($ $ $) NIL (|has| |#1| (-559)))) (-1423 (((-2 (|:| -4208 (-690 |#1|)) (|:| |vec| (-1269 |#1|))) (-690 $) (-1269 $)) 125 (|has| |#1| (-1051))) (((-690 |#1|) (-690 $)) 115 (|has| |#1| (-1051))) (((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051)))) (((-690 (-567)) (-690 $)) NIL (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051))))) (-2494 (($ $) 96 (|has| |#1| (-559)))) (-3588 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051))) (|has| |#1| (-1114))))) (-2368 (($ $ $) NIL (|has| |#1| (-559)))) (-3809 (($ $ (-1094 $)) 236 (|has| |#1| (-559))) (($ $ (-1179)) 234 (|has| |#1| (-559)))) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) NIL (|has| |#1| (-559)))) (-3502 (((-112) $) NIL (|has| |#1| (-559)))) (-1414 (($ $ $) 202 (|has| |#1| (-559)))) (-1484 (($) 137 (|has| |#1| (-559)))) (-2565 (($ $ $) 222 (|has| |#1| (-559)))) (-3193 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) 392 (|has| |#1| (-888 (-567)))) (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) 399 (|has| |#1| (-888 (-381))))) (-1464 (($ $) NIL) (($ (-645 $)) NIL)) (-3863 (((-645 (-114)) $) NIL)) (-2662 (((-114) (-114)) 276)) (-4346 (((-112) $) 25 (-2811 (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051))) (|has| |#1| (-1114))))) (-1904 (((-112) $) NIL (|has| $ (-1040 (-567))))) (-1863 (($ $) 72 (|has| |#1| (-1051)))) (-1447 (((-1127 |#1| (-613 $)) $) 91 (|has| |#1| (-1051)))) (-4306 (((-112) $) 62 (|has| |#1| (-559)))) (-3698 (($ $ (-567)) NIL (|has| |#1| (-559)))) (-1469 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-559)))) (-2528 (((-1175 $) (-613 $)) 277 (|has| $ (-1051)))) (-3841 (($ (-1 $ $) (-613 $)) 426)) (-3231 (((-3 (-613 $) "failed") $) NIL)) (-3072 (($ $) 141 (|has| |#1| (-559)))) (-1926 (($ $) 247 (|has| |#1| (-559)))) (-2751 (($ (-645 $)) NIL (|has| |#1| (-559))) (($ $ $) NIL (|has| |#1| (-559)))) (-2516 (((-1161) $) NIL)) (-2651 (((-645 (-613 $)) $) 49)) (-3643 (($ (-114) $) NIL) (($ (-114) (-645 $)) 431)) (-3037 (((-3 (-645 $) "failed") $) NIL (|has| |#1| (-1114)))) (-1851 (((-3 (-2 (|:| |val| $) (|:| -3468 (-567))) "failed") $) NIL (|has| |#1| (-1051)))) (-3774 (((-3 (-645 $) "failed") $) 436 (|has| |#1| (-25)))) (-3024 (((-3 (-2 (|:| -3705 (-567)) (|:| |var| (-613 $))) "failed") $) 440 (|has| |#1| (-25)))) (-3816 (((-3 (-2 (|:| |var| (-613 $)) (|:| -3468 (-567))) "failed") $) NIL (|has| |#1| (-1114))) (((-3 (-2 (|:| |var| (-613 $)) (|:| -3468 (-567))) "failed") $ (-114)) NIL (|has| |#1| (-1051))) (((-3 (-2 (|:| |var| (-613 $)) (|:| -3468 (-567))) "failed") $ (-1179)) NIL (|has| |#1| (-1051)))) (-3545 (((-112) $ (-114)) NIL) (((-112) $ (-1179)) 51)) (-2949 (($ $) NIL (-2811 (|has| |#1| (-476)) (|has| |#1| (-559))))) (-1778 (($ $ (-1179)) 251 (|has| |#1| (-559))) (($ $ (-1094 $)) 253 (|has| |#1| (-559)))) (-4136 (((-772) $) NIL)) (-3437 (((-1122) $) NIL)) (-2960 (((-112) $) 43)) (-2971 ((|#1| $) NIL)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) 301 (|has| |#1| (-559)))) (-2785 (($ (-645 $)) NIL (|has| |#1| (-559))) (($ $ $) NIL (|has| |#1| (-559)))) (-2356 (((-112) $ $) NIL) (((-112) $ (-1179)) NIL)) (-4229 (($ $ (-1179)) 226 (|has| |#1| (-559))) (($ $) 224 (|has| |#1| (-559)))) (-1345 (($ $) 218 (|has| |#1| (-559)))) (-2016 (((-421 (-1175 $)) (-1175 $)) 306 (-12 (|has| |#1| (-455)) (|has| |#1| (-559))))) (-2717 (((-421 $) $) NIL (|has| |#1| (-559)))) (-2905 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-559))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) NIL (|has| |#1| (-559)))) (-2400 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-2372 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-559)))) (-3955 (($ $) 139 (|has| |#1| (-559)))) (-2795 (((-112) $) NIL (|has| $ (-1040 (-567))))) (-2642 (($ $ (-613 $) $) NIL) (($ $ (-645 (-613 $)) (-645 $)) 425) (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-645 (-1179)) (-645 (-1 $ $))) NIL) (($ $ (-645 (-1179)) (-645 (-1 $ (-645 $)))) NIL) (($ $ (-1179) (-1 $ (-645 $))) NIL) (($ $ (-1179) (-1 $ $)) NIL) (($ $ (-645 (-114)) (-645 (-1 $ $))) 379) (($ $ (-645 (-114)) (-645 (-1 $ (-645 $)))) NIL) (($ $ (-114) (-1 $ (-645 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1179)) NIL (|has| |#1| (-615 (-539)))) (($ $ (-645 (-1179))) NIL (|has| |#1| (-615 (-539)))) (($ $) NIL (|has| |#1| (-615 (-539)))) (($ $ (-114) $ (-1179)) 366 (|has| |#1| (-615 (-539)))) (($ $ (-645 (-114)) (-645 $) (-1179)) 365 (|has| |#1| (-615 (-539)))) (($ $ (-645 (-1179)) (-645 (-772)) (-645 (-1 $ $))) NIL (|has| |#1| (-1051))) (($ $ (-645 (-1179)) (-645 (-772)) (-645 (-1 $ (-645 $)))) NIL (|has| |#1| (-1051))) (($ $ (-1179) (-772) (-1 $ (-645 $))) NIL (|has| |#1| (-1051))) (($ $ (-1179) (-772) (-1 $ $)) NIL (|has| |#1| (-1051)))) (-2460 (((-772) $) NIL (|has| |#1| (-559)))) (-2958 (($ $) 239 (|has| |#1| (-559)))) (-1801 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-645 $)) NIL)) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) NIL (|has| |#1| (-559)))) (-3209 (($ $) NIL) (($ $ $) NIL)) (-2994 (($ $) 249 (|has| |#1| (-559)))) (-3514 (($ $) 200 (|has| |#1| (-559)))) (-1616 (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| |#1| (-1051))) (($ $ (-1179) (-772)) NIL (|has| |#1| (-1051))) (($ $ (-645 (-1179))) NIL (|has| |#1| (-1051))) (($ $ (-1179)) NIL (|has| |#1| (-1051)))) (-1762 (($ $) 74 (|has| |#1| (-559)))) (-1462 (((-1127 |#1| (-613 $)) $) 93 (|has| |#1| (-559)))) (-3169 (($ $) 317 (|has| $ (-1051)))) (-3192 (($ $) 177 (|has| |#1| (-559)))) (-3071 (($ $) 153 (|has| |#1| (-559)))) (-3173 (($ $) 173 (|has| |#1| (-559)))) (-3043 (($ $) 149 (|has| |#1| (-559)))) (-3155 (($ $) 169 (|has| |#1| (-559)))) (-3021 (($ $) 145 (|has| |#1| (-559)))) (-3902 (((-894 (-567)) $) NIL (|has| |#1| (-615 (-894 (-567))))) (((-894 (-381)) $) NIL (|has| |#1| (-615 (-894 (-381))))) (($ (-421 $)) NIL (|has| |#1| (-559))) (((-539) $) 363 (|has| |#1| (-615 (-539))))) (-1672 (($ $ $) NIL (|has| |#1| (-476)))) (-3997 (($ $ $) NIL (|has| |#1| (-476)))) (-4129 (((-863) $) 424) (($ (-613 $)) 415) (($ (-1179)) 381) (($ |#1|) 337) (($ $) NIL (|has| |#1| (-559))) (($ (-48)) 312 (-12 (|has| |#1| (-559)) (|has| |#1| (-1040 (-567))))) (($ (-1127 |#1| (-613 $))) 95 (|has| |#1| (-1051))) (($ (-410 |#1|)) NIL (|has| |#1| (-559))) (($ (-954 (-410 |#1|))) NIL (|has| |#1| (-559))) (($ (-410 (-954 (-410 |#1|)))) NIL (|has| |#1| (-559))) (($ (-410 (-954 |#1|))) NIL (|has| |#1| (-559))) (($ (-954 |#1|)) NIL (|has| |#1| (-1051))) (($ (-410 (-567))) NIL (-2811 (|has| |#1| (-559)) (|has| |#1| (-1040 (-410 (-567)))))) (($ (-567)) 34 (-2811 (|has| |#1| (-1040 (-567))) (|has| |#1| (-1051))))) (-2118 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2746 (((-772)) NIL (|has| |#1| (-1051)) CONST)) (-1372 (($ $) NIL) (($ (-645 $)) NIL)) (-2708 (($ $ $) 220 (|has| |#1| (-559)))) (-3534 (($ $ $) 206 (|has| |#1| (-559)))) (-1713 (($ $ $) 210 (|has| |#1| (-559)))) (-2704 (($ $ $) 204 (|has| |#1| (-559)))) (-4126 (($ $ $) 208 (|has| |#1| (-559)))) (-1909 (((-112) (-114)) 10)) (-3357 (((-112) $ $) 86)) (-3217 (($ $) 183 (|has| |#1| (-559)))) (-3103 (($ $) 159 (|has| |#1| (-559)))) (-3731 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3201 (($ $) 179 (|has| |#1| (-559)))) (-3083 (($ $) 155 (|has| |#1| (-559)))) (-3238 (($ $) 187 (|has| |#1| (-559)))) (-3126 (($ $) 163 (|has| |#1| (-559)))) (-3264 (($ (-1179) $) NIL) (($ (-1179) $ $) NIL) (($ (-1179) $ $ $) NIL) (($ (-1179) $ $ $ $) NIL) (($ (-1179) (-645 $)) NIL)) (-2219 (($ $) 214 (|has| |#1| (-559)))) (-2682 (($ $) 212 (|has| |#1| (-559)))) (-3805 (($ $) 189 (|has| |#1| (-559)))) (-3138 (($ $) 165 (|has| |#1| (-559)))) (-3228 (($ $) 185 (|has| |#1| (-559)))) (-3115 (($ $) 161 (|has| |#1| (-559)))) (-3208 (($ $) 181 (|has| |#1| (-559)))) (-3093 (($ $) 157 (|has| |#1| (-559)))) (-1547 (($ $) 192 (|has| |#1| (-559)))) (-1733 (($) 21 (-2811 (|has| |#1| (-25)) (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051)))) CONST)) (-2093 (($ $) 243 (|has| |#1| (-559)))) (-1744 (($) 23 (-2811 (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051))) (|has| |#1| (-1114))) CONST)) (-3290 (($ $) 194 (|has| |#1| (-559))) (($ $ $) 196 (|has| |#1| (-559)))) (-3376 (($ $) 241 (|has| |#1| (-559)))) (-2647 (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| |#1| (-1051))) (($ $ (-1179) (-772)) NIL (|has| |#1| (-1051))) (($ $ (-645 (-1179))) NIL (|has| |#1| (-1051))) (($ $ (-1179)) NIL (|has| |#1| (-1051)))) (-2910 (($ $) 245 (|has| |#1| (-559)))) (-3095 (($ $ $) 198 (|has| |#1| (-559)))) (-2946 (((-112) $ $) 88)) (-3069 (($ (-1127 |#1| (-613 $)) (-1127 |#1| (-613 $))) 106 (|has| |#1| (-559))) (($ $ $) 42 (-2811 (|has| |#1| (-476)) (|has| |#1| (-559))))) (-3053 (($ $ $) 40 (-2811 (|has| |#1| (-21)) (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051))))) (($ $) 29 (-2811 (|has| |#1| (-21)) (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051)))))) (-3041 (($ $ $) 38 (-2811 (|has| |#1| (-25)) (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051)))))) (** (($ $ $) 64 (|has| |#1| (-559))) (($ $ (-410 (-567))) 314 (|has| |#1| (-559))) (($ $ (-567)) 80 (-2811 (|has| |#1| (-476)) (|has| |#1| (-559)))) (($ $ (-772)) 75 (-2811 (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051))) (|has| |#1| (-1114)))) (($ $ (-923)) 84 (-2811 (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051))) (|has| |#1| (-1114))))) (* (($ (-410 (-567)) $) NIL (|has| |#1| (-559))) (($ $ (-410 (-567))) NIL (|has| |#1| (-559))) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))) (($ $ $) 36 (-2811 (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051))) (|has| |#1| (-1114)))) (($ (-567) $) 32 (-2811 (|has| |#1| (-21)) (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051))))) (($ (-772) $) NIL (-2811 (|has| |#1| (-25)) (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051))))) (($ (-923) $) NIL (-2811 (|has| |#1| (-25)) (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051)))))))
+(((-317 |#1|) (-13 (-433 |#1|) (-10 -8 (IF (|has| |#1| (-559)) (PROGN (-6 (-29 |#1|)) (-6 (-1204)) (-6 (-160)) (-6 (-630)) (-6 (-1141)) (-15 -2494 ($ $)) (-15 -4306 ((-112) $)) (-15 -2208 ($ $ (-567))) (IF (|has| |#1| (-455)) (PROGN (-15 -2016 ((-421 (-1175 $)) (-1175 $))) (-15 -2029 ((-421 (-1175 $)) (-1175 $)))) |%noBranch|) (IF (|has| |#1| (-1040 (-567))) (-6 (-1040 (-48))) |%noBranch|)) |%noBranch|))) (-1102)) (T -317))
+((-2494 (*1 *1 *1) (-12 (-5 *1 (-317 *2)) (-4 *2 (-559)) (-4 *2 (-1102)))) (-4306 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-317 *3)) (-4 *3 (-559)) (-4 *3 (-1102)))) (-2208 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-317 *3)) (-4 *3 (-559)) (-4 *3 (-1102)))) (-2016 (*1 *2 *3) (-12 (-5 *2 (-421 (-1175 *1))) (-5 *1 (-317 *4)) (-5 *3 (-1175 *1)) (-4 *4 (-455)) (-4 *4 (-559)) (-4 *4 (-1102)))) (-2029 (*1 *2 *3) (-12 (-5 *2 (-421 (-1175 *1))) (-5 *1 (-317 *4)) (-5 *3 (-1175 *1)) (-4 *4 (-455)) (-4 *4 (-559)) (-4 *4 (-1102)))))
+(-13 (-433 |#1|) (-10 -8 (IF (|has| |#1| (-559)) (PROGN (-6 (-29 |#1|)) (-6 (-1204)) (-6 (-160)) (-6 (-630)) (-6 (-1141)) (-15 -2494 ($ $)) (-15 -4306 ((-112) $)) (-15 -2208 ($ $ (-567))) (IF (|has| |#1| (-455)) (PROGN (-15 -2016 ((-421 (-1175 $)) (-1175 $))) (-15 -2029 ((-421 (-1175 $)) (-1175 $)))) |%noBranch|) (IF (|has| |#1| (-1040 (-567))) (-6 (-1040 (-48))) |%noBranch|)) |%noBranch|)))
+((-1655 (((-52) |#2| (-114) (-295 |#2|) (-645 |#2|)) 89) (((-52) |#2| (-114) (-295 |#2|) (-295 |#2|)) 85) (((-52) |#2| (-114) (-295 |#2|) |#2|) 87) (((-52) (-295 |#2|) (-114) (-295 |#2|) |#2|) 88) (((-52) (-645 |#2|) (-645 (-114)) (-295 |#2|) (-645 (-295 |#2|))) 81) (((-52) (-645 |#2|) (-645 (-114)) (-295 |#2|) (-645 |#2|)) 83) (((-52) (-645 (-295 |#2|)) (-645 (-114)) (-295 |#2|) (-645 |#2|)) 84) (((-52) (-645 (-295 |#2|)) (-645 (-114)) (-295 |#2|) (-645 (-295 |#2|))) 82) (((-52) (-295 |#2|) (-114) (-295 |#2|) (-645 |#2|)) 90) (((-52) (-295 |#2|) (-114) (-295 |#2|) (-295 |#2|)) 86)))
+(((-318 |#1| |#2|) (-10 -7 (-15 -1655 ((-52) (-295 |#2|) (-114) (-295 |#2|) (-295 |#2|))) (-15 -1655 ((-52) (-295 |#2|) (-114) (-295 |#2|) (-645 |#2|))) (-15 -1655 ((-52) (-645 (-295 |#2|)) (-645 (-114)) (-295 |#2|) (-645 (-295 |#2|)))) (-15 -1655 ((-52) (-645 (-295 |#2|)) (-645 (-114)) (-295 |#2|) (-645 |#2|))) (-15 -1655 ((-52) (-645 |#2|) (-645 (-114)) (-295 |#2|) (-645 |#2|))) (-15 -1655 ((-52) (-645 |#2|) (-645 (-114)) (-295 |#2|) (-645 (-295 |#2|)))) (-15 -1655 ((-52) (-295 |#2|) (-114) (-295 |#2|) |#2|)) (-15 -1655 ((-52) |#2| (-114) (-295 |#2|) |#2|)) (-15 -1655 ((-52) |#2| (-114) (-295 |#2|) (-295 |#2|))) (-15 -1655 ((-52) |#2| (-114) (-295 |#2|) (-645 |#2|)))) (-13 (-559) (-615 (-539))) (-433 |#1|)) (T -318))
+((-1655 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-114)) (-5 *5 (-295 *3)) (-5 *6 (-645 *3)) (-4 *3 (-433 *7)) (-4 *7 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) (-5 *1 (-318 *7 *3)))) (-1655 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-114)) (-5 *5 (-295 *3)) (-4 *3 (-433 *6)) (-4 *6 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) (-5 *1 (-318 *6 *3)))) (-1655 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-114)) (-5 *5 (-295 *3)) (-4 *3 (-433 *6)) (-4 *6 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) (-5 *1 (-318 *6 *3)))) (-1655 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-295 *5)) (-5 *4 (-114)) (-4 *5 (-433 *6)) (-4 *6 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) (-5 *1 (-318 *6 *5)))) (-1655 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 (-114))) (-5 *6 (-645 (-295 *8))) (-4 *8 (-433 *7)) (-5 *5 (-295 *8)) (-4 *7 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) (-5 *1 (-318 *7 *8)))) (-1655 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-645 *7)) (-5 *4 (-645 (-114))) (-5 *5 (-295 *7)) (-4 *7 (-433 *6)) (-4 *6 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) (-5 *1 (-318 *6 *7)))) (-1655 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-645 (-295 *8))) (-5 *4 (-645 (-114))) (-5 *5 (-295 *8)) (-5 *6 (-645 *8)) (-4 *8 (-433 *7)) (-4 *7 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) (-5 *1 (-318 *7 *8)))) (-1655 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-645 (-295 *7))) (-5 *4 (-645 (-114))) (-5 *5 (-295 *7)) (-4 *7 (-433 *6)) (-4 *6 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) (-5 *1 (-318 *6 *7)))) (-1655 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-295 *7)) (-5 *4 (-114)) (-5 *5 (-645 *7)) (-4 *7 (-433 *6)) (-4 *6 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) (-5 *1 (-318 *6 *7)))) (-1655 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-295 *6)) (-5 *4 (-114)) (-4 *6 (-433 *5)) (-4 *5 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) (-5 *1 (-318 *5 *6)))))
+(-10 -7 (-15 -1655 ((-52) (-295 |#2|) (-114) (-295 |#2|) (-295 |#2|))) (-15 -1655 ((-52) (-295 |#2|) (-114) (-295 |#2|) (-645 |#2|))) (-15 -1655 ((-52) (-645 (-295 |#2|)) (-645 (-114)) (-295 |#2|) (-645 (-295 |#2|)))) (-15 -1655 ((-52) (-645 (-295 |#2|)) (-645 (-114)) (-295 |#2|) (-645 |#2|))) (-15 -1655 ((-52) (-645 |#2|) (-645 (-114)) (-295 |#2|) (-645 |#2|))) (-15 -1655 ((-52) (-645 |#2|) (-645 (-114)) (-295 |#2|) (-645 (-295 |#2|)))) (-15 -1655 ((-52) (-295 |#2|) (-114) (-295 |#2|) |#2|)) (-15 -1655 ((-52) |#2| (-114) (-295 |#2|) |#2|)) (-15 -1655 ((-52) |#2| (-114) (-295 |#2|) (-295 |#2|))) (-15 -1655 ((-52) |#2| (-114) (-295 |#2|) (-645 |#2|))))
+((-3232 (((-1214 (-928)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1096 (-225)) (-225) (-567) (-1161)) 67) (((-1214 (-928)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1096 (-225)) (-225) (-567)) 68) (((-1214 (-928)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1096 (-225)) (-1 (-225) (-225)) (-567) (-1161)) 64) (((-1214 (-928)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1096 (-225)) (-1 (-225) (-225)) (-567)) 65)) (-3372 (((-1 (-225) (-225)) (-225)) 66)))
+(((-319) (-10 -7 (-15 -3372 ((-1 (-225) (-225)) (-225))) (-15 -3232 ((-1214 (-928)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1096 (-225)) (-1 (-225) (-225)) (-567))) (-15 -3232 ((-1214 (-928)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1096 (-225)) (-1 (-225) (-225)) (-567) (-1161))) (-15 -3232 ((-1214 (-928)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1096 (-225)) (-225) (-567))) (-15 -3232 ((-1214 (-928)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1096 (-225)) (-225) (-567) (-1161))))) (T -319))
+((-3232 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-317 (-567))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1096 (-225))) (-5 *6 (-225)) (-5 *7 (-567)) (-5 *8 (-1161)) (-5 *2 (-1214 (-928))) (-5 *1 (-319)))) (-3232 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-317 (-567))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1096 (-225))) (-5 *6 (-225)) (-5 *7 (-567)) (-5 *2 (-1214 (-928))) (-5 *1 (-319)))) (-3232 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-317 (-567))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1096 (-225))) (-5 *6 (-567)) (-5 *7 (-1161)) (-5 *2 (-1214 (-928))) (-5 *1 (-319)))) (-3232 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-317 (-567))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1096 (-225))) (-5 *6 (-567)) (-5 *2 (-1214 (-928))) (-5 *1 (-319)))) (-3372 (*1 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-319)) (-5 *3 (-225)))))
+(-10 -7 (-15 -3372 ((-1 (-225) (-225)) (-225))) (-15 -3232 ((-1214 (-928)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1096 (-225)) (-1 (-225) (-225)) (-567))) (-15 -3232 ((-1214 (-928)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1096 (-225)) (-1 (-225) (-225)) (-567) (-1161))) (-15 -3232 ((-1214 (-928)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1096 (-225)) (-225) (-567))) (-15 -3232 ((-1214 (-928)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1096 (-225)) (-225) (-567) (-1161))))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) 26)) (-2859 (((-645 (-1084)) $) NIL)) (-3653 (((-1179) $) NIL)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-4287 (($ $) NIL (|has| |#1| (-559)))) (-2286 (((-112) $) NIL (|has| |#1| (-559)))) (-3748 (($ $ (-410 (-567))) NIL) (($ $ (-410 (-567)) (-410 (-567))) NIL)) (-3006 (((-1159 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|))) $) 20)) (-3164 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3032 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2376 (((-3 $ "failed") $ $) NIL)) (-3659 (($ $) NIL (|has| |#1| (-365)))) (-3597 (((-421 $) $) NIL (|has| |#1| (-365)))) (-2728 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3696 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3145 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3008 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1317 (($ (-772) (-1159 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|)))) NIL)) (-3182 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3057 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3647 (($) NIL T CONST)) (-2357 (($ $ $) NIL (|has| |#1| (-365)))) (-3023 (($ $) 36)) (-3588 (((-3 $ "failed") $) NIL)) (-2368 (($ $ $) NIL (|has| |#1| (-365)))) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-3502 (((-112) $) NIL (|has| |#1| (-365)))) (-3086 (((-112) $) NIL)) (-1484 (($) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3362 (((-410 (-567)) $) NIL) (((-410 (-567)) $ (-410 (-567))) 16)) (-4346 (((-112) $) NIL)) (-3698 (($ $ (-567)) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1343 (($ $ (-923)) NIL) (($ $ (-410 (-567))) NIL)) (-1469 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-3770 (((-112) $) NIL)) (-2836 (($ |#1| (-410 (-567))) NIL) (($ $ (-1084) (-410 (-567))) NIL) (($ $ (-645 (-1084)) (-645 (-410 (-567)))) NIL)) (-1365 (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (-3841 (($ (-1 |#1| |#1|) $) NIL)) (-3072 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2985 (($ $) NIL)) (-2996 ((|#1| $) NIL)) (-2751 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2516 (((-1161) $) NIL)) (-2949 (($ $) NIL (|has| |#1| (-365)))) (-4083 (($ $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1179)) NIL (-2811 (-12 (|has| |#1| (-15 -4083 (|#1| |#1| (-1179)))) (|has| |#1| (-15 -2859 ((-645 (-1179)) |#1|))) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-961)) (|has| |#1| (-1204)))))) (-3437 (((-1122) $) NIL)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| |#1| (-365)))) (-2785 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2717 (((-421 $) $) NIL (|has| |#1| (-365)))) (-2905 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) NIL (|has| |#1| (-365)))) (-1874 (($ $ (-410 (-567))) NIL)) (-2400 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-2372 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-2241 (((-410 (-567)) $) 17)) (-3544 (($ (-1254 |#1| |#2| |#3|)) 11)) (-3468 (((-1254 |#1| |#2| |#3|) $) 12)) (-3955 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2642 (((-1159 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))))) (-2460 (((-772) $) NIL (|has| |#1| (-365)))) (-1801 ((|#1| $ (-410 (-567))) NIL) (($ $ $) NIL (|has| (-410 (-567)) (-1114)))) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) NIL (|has| |#1| (-365)))) (-1616 (($ $ (-645 (-1179)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-1179) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-645 (-1179))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-1179)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (-3104 (((-410 (-567)) $) NIL)) (-3192 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3071 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3173 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3043 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3155 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3021 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1834 (($ $) 10)) (-4129 (((-863) $) 42) (($ (-567)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $) NIL (|has| |#1| (-559)))) (-2558 ((|#1| $ (-410 (-567))) 34)) (-2118 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2746 (((-772)) NIL T CONST)) (-2185 ((|#1| $) NIL)) (-3357 (((-112) $ $) NIL)) (-3217 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3103 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3731 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3201 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3083 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3238 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3126 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3058 ((|#1| $ (-410 (-567))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))) (|has| |#1| (-15 -4129 (|#1| (-1179))))))) (-3805 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3138 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3228 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3115 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3208 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3093 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1733 (($) NIL T CONST)) (-1744 (($) NIL T CONST)) (-2647 (($ $ (-645 (-1179)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-1179) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-645 (-1179))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-1179)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (-3004 (((-112) $ $) NIL)) (-2980 (((-112) $ $) NIL)) (-2946 (((-112) $ $) 28)) (-2993 (((-112) $ $) NIL)) (-2968 (((-112) $ $) 37)) (-3069 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))))
+(((-320 |#1| |#2| |#3|) (-13 (-1250 |#1|) (-793) (-10 -8 (-15 -3544 ($ (-1254 |#1| |#2| |#3|))) (-15 -3468 ((-1254 |#1| |#2| |#3|) $)) (-15 -2241 ((-410 (-567)) $)))) (-365) (-1179) |#1|) (T -320))
+((-3544 (*1 *1 *2) (-12 (-5 *2 (-1254 *3 *4 *5)) (-4 *3 (-365)) (-14 *4 (-1179)) (-14 *5 *3) (-5 *1 (-320 *3 *4 *5)))) (-3468 (*1 *2 *1) (-12 (-5 *2 (-1254 *3 *4 *5)) (-5 *1 (-320 *3 *4 *5)) (-4 *3 (-365)) (-14 *4 (-1179)) (-14 *5 *3))) (-2241 (*1 *2 *1) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-320 *3 *4 *5)) (-4 *3 (-365)) (-14 *4 (-1179)) (-14 *5 *3))))
+(-13 (-1250 |#1|) (-793) (-10 -8 (-15 -3544 ($ (-1254 |#1| |#2| |#3|))) (-15 -3468 ((-1254 |#1| |#2| |#3|) $)) (-15 -2241 ((-410 (-567)) $))))
+((-3698 (((-2 (|:| -3468 (-772)) (|:| -3705 |#1|) (|:| |radicand| (-645 |#1|))) (-421 |#1|) (-772)) 35)) (-3072 (((-645 (-2 (|:| -3705 (-772)) (|:| |logand| |#1|))) (-421 |#1|)) 40)))
+(((-321 |#1|) (-10 -7 (-15 -3698 ((-2 (|:| -3468 (-772)) (|:| -3705 |#1|) (|:| |radicand| (-645 |#1|))) (-421 |#1|) (-772))) (-15 -3072 ((-645 (-2 (|:| -3705 (-772)) (|:| |logand| |#1|))) (-421 |#1|)))) (-559)) (T -321))
+((-3072 (*1 *2 *3) (-12 (-5 *3 (-421 *4)) (-4 *4 (-559)) (-5 *2 (-645 (-2 (|:| -3705 (-772)) (|:| |logand| *4)))) (-5 *1 (-321 *4)))) (-3698 (*1 *2 *3 *4) (-12 (-5 *3 (-421 *5)) (-4 *5 (-559)) (-5 *2 (-2 (|:| -3468 (-772)) (|:| -3705 *5) (|:| |radicand| (-645 *5)))) (-5 *1 (-321 *5)) (-5 *4 (-772)))))
+(-10 -7 (-15 -3698 ((-2 (|:| -3468 (-772)) (|:| -3705 |#1|) (|:| |radicand| (-645 |#1|))) (-421 |#1|) (-772))) (-15 -3072 ((-645 (-2 (|:| -3705 (-772)) (|:| |logand| |#1|))) (-421 |#1|))))
+((-2859 (((-645 |#2|) (-1175 |#4|)) 44)) (-2974 ((|#3| (-567)) 47)) (-1790 (((-1175 |#4|) (-1175 |#3|)) 30)) (-3308 (((-1175 |#4|) (-1175 |#4|) (-567)) 66)) (-2320 (((-1175 |#3|) (-1175 |#4|)) 21)) (-3104 (((-645 (-772)) (-1175 |#4|) (-645 |#2|)) 41)) (-3483 (((-1175 |#3|) (-1175 |#4|) (-645 |#2|) (-645 |#3|)) 35)))
+(((-322 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3483 ((-1175 |#3|) (-1175 |#4|) (-645 |#2|) (-645 |#3|))) (-15 -3104 ((-645 (-772)) (-1175 |#4|) (-645 |#2|))) (-15 -2859 ((-645 |#2|) (-1175 |#4|))) (-15 -2320 ((-1175 |#3|) (-1175 |#4|))) (-15 -1790 ((-1175 |#4|) (-1175 |#3|))) (-15 -3308 ((-1175 |#4|) (-1175 |#4|) (-567))) (-15 -2974 (|#3| (-567)))) (-794) (-851) (-1051) (-951 |#3| |#1| |#2|)) (T -322))
+((-2974 (*1 *2 *3) (-12 (-5 *3 (-567)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1051)) (-5 *1 (-322 *4 *5 *2 *6)) (-4 *6 (-951 *2 *4 *5)))) (-3308 (*1 *2 *2 *3) (-12 (-5 *2 (-1175 *7)) (-5 *3 (-567)) (-4 *7 (-951 *6 *4 *5)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1051)) (-5 *1 (-322 *4 *5 *6 *7)))) (-1790 (*1 *2 *3) (-12 (-5 *3 (-1175 *6)) (-4 *6 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-1175 *7)) (-5 *1 (-322 *4 *5 *6 *7)) (-4 *7 (-951 *6 *4 *5)))) (-2320 (*1 *2 *3) (-12 (-5 *3 (-1175 *7)) (-4 *7 (-951 *6 *4 *5)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1051)) (-5 *2 (-1175 *6)) (-5 *1 (-322 *4 *5 *6 *7)))) (-2859 (*1 *2 *3) (-12 (-5 *3 (-1175 *7)) (-4 *7 (-951 *6 *4 *5)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1051)) (-5 *2 (-645 *5)) (-5 *1 (-322 *4 *5 *6 *7)))) (-3104 (*1 *2 *3 *4) (-12 (-5 *3 (-1175 *8)) (-5 *4 (-645 *6)) (-4 *6 (-851)) (-4 *8 (-951 *7 *5 *6)) (-4 *5 (-794)) (-4 *7 (-1051)) (-5 *2 (-645 (-772))) (-5 *1 (-322 *5 *6 *7 *8)))) (-3483 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1175 *9)) (-5 *4 (-645 *7)) (-5 *5 (-645 *8)) (-4 *7 (-851)) (-4 *8 (-1051)) (-4 *9 (-951 *8 *6 *7)) (-4 *6 (-794)) (-5 *2 (-1175 *8)) (-5 *1 (-322 *6 *7 *8 *9)))))
+(-10 -7 (-15 -3483 ((-1175 |#3|) (-1175 |#4|) (-645 |#2|) (-645 |#3|))) (-15 -3104 ((-645 (-772)) (-1175 |#4|) (-645 |#2|))) (-15 -2859 ((-645 |#2|) (-1175 |#4|))) (-15 -2320 ((-1175 |#3|) (-1175 |#4|))) (-15 -1790 ((-1175 |#4|) (-1175 |#3|))) (-15 -3308 ((-1175 |#4|) (-1175 |#4|) (-567))) (-15 -2974 (|#3| (-567))))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) 19)) (-3006 (((-645 (-2 (|:| |gen| |#1|) (|:| -3955 (-567)))) $) 21)) (-2376 (((-3 $ "failed") $ $) NIL)) (-2384 (((-772) $) NIL)) (-3647 (($) NIL T CONST)) (-3765 (((-3 |#1| "failed") $) NIL)) (-2051 ((|#1| $) NIL)) (-4152 ((|#1| $ (-567)) NIL)) (-1541 (((-567) $ (-567)) NIL)) (-1365 (($ $ $) NIL (|has| |#1| (-851)))) (-3002 (($ $ $) NIL (|has| |#1| (-851)))) (-3650 (($ (-1 |#1| |#1|) $) NIL)) (-2591 (($ (-1 (-567) (-567)) $) 11)) (-2516 (((-1161) $) NIL)) (-1496 (($ $ $) NIL (|has| (-567) (-793)))) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) NIL) (($ |#1|) NIL)) (-2558 (((-567) |#1| $) NIL)) (-3357 (((-112) $ $) NIL)) (-1733 (($) NIL T CONST)) (-3004 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2980 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2946 (((-112) $ $) NIL)) (-2993 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2968 (((-112) $ $) 29 (|has| |#1| (-851)))) (-3053 (($ $) 12) (($ $ $) 28)) (-3041 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ (-567)) NIL) (($ (-567) |#1|) 27)))
(((-323 |#1|) (-13 (-21) (-718 (-567)) (-324 |#1| (-567)) (-10 -7 (IF (|has| |#1| (-851)) (-6 (-851)) |%noBranch|))) (-1102)) (T -323))
NIL
(-13 (-21) (-718 (-567)) (-324 |#1| (-567)) (-10 -7 (IF (|has| |#1| (-851)) (-6 (-851)) |%noBranch|)))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-1843 (((-645 (-2 (|:| |gen| |#1|) (|:| -3946 |#2|))) $) 28)) (-3472 (((-3 $ "failed") $ $) 20)) (-2375 (((-772) $) 29)) (-2585 (($) 18 T CONST)) (-3753 (((-3 |#1| "failed") $) 33)) (-2038 ((|#1| $) 34)) (-4108 ((|#1| $ (-567)) 26)) (-1936 ((|#2| $ (-567)) 27)) (-3496 (($ (-1 |#1| |#1|) $) 23)) (-3870 (($ (-1 |#2| |#2|) $) 24)) (-1419 (((-1160) $) 10)) (-1993 (($ $ $) 22 (|has| |#2| (-793)))) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12) (($ |#1|) 32)) (-4136 ((|#2| |#1| $) 25)) (-1745 (((-112) $ $) 9)) (-1716 (($) 19 T CONST)) (-2936 (((-112) $ $) 6)) (-3033 (($ $ $) 15) (($ |#1| $) 31)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ |#2| |#1|) 30)))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-3006 (((-645 (-2 (|:| |gen| |#1|) (|:| -3955 |#2|))) $) 28)) (-2376 (((-3 $ "failed") $ $) 20)) (-2384 (((-772) $) 29)) (-3647 (($) 18 T CONST)) (-3765 (((-3 |#1| "failed") $) 33)) (-2051 ((|#1| $) 34)) (-4152 ((|#1| $ (-567)) 26)) (-1541 ((|#2| $ (-567)) 27)) (-3650 (($ (-1 |#1| |#1|) $) 23)) (-2591 (($ (-1 |#2| |#2|) $) 24)) (-2516 (((-1161) $) 10)) (-1496 (($ $ $) 22 (|has| |#2| (-793)))) (-3437 (((-1122) $) 11)) (-4129 (((-863) $) 12) (($ |#1|) 32)) (-2558 ((|#2| |#1| $) 25)) (-3357 (((-112) $ $) 9)) (-1733 (($) 19 T CONST)) (-2946 (((-112) $ $) 6)) (-3041 (($ $ $) 15) (($ |#1| $) 31)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ |#2| |#1|) 30)))
(((-324 |#1| |#2|) (-140) (-1102) (-131)) (T -324))
-((-3033 (*1 *1 *2 *1) (-12 (-4 *1 (-324 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-131)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-324 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-131)))) (-2375 (*1 *2 *1) (-12 (-4 *1 (-324 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-131)) (-5 *2 (-772)))) (-1843 (*1 *2 *1) (-12 (-4 *1 (-324 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-131)) (-5 *2 (-645 (-2 (|:| |gen| *3) (|:| -3946 *4)))))) (-1936 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-324 *4 *2)) (-4 *4 (-1102)) (-4 *2 (-131)))) (-4108 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-324 *2 *4)) (-4 *4 (-131)) (-4 *2 (-1102)))) (-4136 (*1 *2 *3 *1) (-12 (-4 *1 (-324 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-131)))) (-3870 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-324 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-131)))) (-3496 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-324 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-131)))) (-1993 (*1 *1 *1 *1) (-12 (-4 *1 (-324 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-131)) (-4 *3 (-793)))))
-(-13 (-131) (-1040 |t#1|) (-10 -8 (-15 -3033 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -2375 ((-772) $)) (-15 -1843 ((-645 (-2 (|:| |gen| |t#1|) (|:| -3946 |t#2|))) $)) (-15 -1936 (|t#2| $ (-567))) (-15 -4108 (|t#1| $ (-567))) (-15 -4136 (|t#2| |t#1| $)) (-15 -3870 ($ (-1 |t#2| |t#2|) $)) (-15 -3496 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-793)) (-15 -1993 ($ $ $)) |%noBranch|)))
+((-3041 (*1 *1 *2 *1) (-12 (-4 *1 (-324 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-131)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-324 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-131)))) (-2384 (*1 *2 *1) (-12 (-4 *1 (-324 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-131)) (-5 *2 (-772)))) (-3006 (*1 *2 *1) (-12 (-4 *1 (-324 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-131)) (-5 *2 (-645 (-2 (|:| |gen| *3) (|:| -3955 *4)))))) (-1541 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-324 *4 *2)) (-4 *4 (-1102)) (-4 *2 (-131)))) (-4152 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-324 *2 *4)) (-4 *4 (-131)) (-4 *2 (-1102)))) (-2558 (*1 *2 *3 *1) (-12 (-4 *1 (-324 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-131)))) (-2591 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-324 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-131)))) (-3650 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-324 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-131)))) (-1496 (*1 *1 *1 *1) (-12 (-4 *1 (-324 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-131)) (-4 *3 (-793)))))
+(-13 (-131) (-1040 |t#1|) (-10 -8 (-15 -3041 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -2384 ((-772) $)) (-15 -3006 ((-645 (-2 (|:| |gen| |t#1|) (|:| -3955 |t#2|))) $)) (-15 -1541 (|t#2| $ (-567))) (-15 -4152 (|t#1| $ (-567))) (-15 -2558 (|t#2| |t#1| $)) (-15 -2591 ($ (-1 |t#2| |t#2|) $)) (-15 -3650 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-793)) (-15 -1496 ($ $ $)) |%noBranch|)))
(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-617 |#1|) . T) ((-614 (-863)) . T) ((-1040 |#1|) . T) ((-1102) . T))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-1843 (((-645 (-2 (|:| |gen| |#1|) (|:| -3946 (-772)))) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2375 (((-772) $) NIL)) (-2585 (($) NIL T CONST)) (-3753 (((-3 |#1| "failed") $) NIL)) (-2038 ((|#1| $) NIL)) (-4108 ((|#1| $ (-567)) NIL)) (-1936 (((-772) $ (-567)) NIL)) (-3496 (($ (-1 |#1| |#1|) $) NIL)) (-3870 (($ (-1 (-772) (-772)) $) NIL)) (-1419 (((-1160) $) NIL)) (-1993 (($ $ $) NIL (|has| (-772) (-793)))) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL) (($ |#1|) NIL)) (-4136 (((-772) |#1| $) NIL)) (-1745 (((-112) $ $) NIL)) (-1716 (($) NIL T CONST)) (-2936 (((-112) $ $) NIL)) (-3033 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-772) |#1|) NIL)))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-3006 (((-645 (-2 (|:| |gen| |#1|) (|:| -3955 (-772)))) $) NIL)) (-2376 (((-3 $ "failed") $ $) NIL)) (-2384 (((-772) $) NIL)) (-3647 (($) NIL T CONST)) (-3765 (((-3 |#1| "failed") $) NIL)) (-2051 ((|#1| $) NIL)) (-4152 ((|#1| $ (-567)) NIL)) (-1541 (((-772) $ (-567)) NIL)) (-3650 (($ (-1 |#1| |#1|) $) NIL)) (-2591 (($ (-1 (-772) (-772)) $) NIL)) (-2516 (((-1161) $) NIL)) (-1496 (($ $ $) NIL (|has| (-772) (-793)))) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) NIL) (($ |#1|) NIL)) (-2558 (((-772) |#1| $) NIL)) (-3357 (((-112) $ $) NIL)) (-1733 (($) NIL T CONST)) (-2946 (((-112) $ $) NIL)) (-3041 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-772) |#1|) NIL)))
(((-325 |#1|) (-324 |#1| (-772)) (-1102)) (T -325))
NIL
(-324 |#1| (-772))
-((-3501 (($ $) 72)) (-2320 (($ $ |#2| |#3| $) 14)) (-3273 (($ (-1 |#3| |#3|) $) 51)) (-2949 (((-112) $) 42)) (-2962 ((|#2| $) 44)) (-2391 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 64)) (-4358 ((|#2| $) 68)) (-3032 (((-645 |#2|) $) 56)) (-4176 (($ $ $ (-772)) 37)) (-3060 (($ $ |#2|) 60)))
-(((-326 |#1| |#2| |#3|) (-10 -8 (-15 -3501 (|#1| |#1|)) (-15 -4358 (|#2| |#1|)) (-15 -2391 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4176 (|#1| |#1| |#1| (-772))) (-15 -2320 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3273 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3032 ((-645 |#2|) |#1|)) (-15 -2962 (|#2| |#1|)) (-15 -2949 ((-112) |#1|)) (-15 -2391 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3060 (|#1| |#1| |#2|))) (-327 |#2| |#3|) (-1051) (-793)) (T -326))
+((-2989 (($ $) 72)) (-3214 (($ $ |#2| |#3| $) 14)) (-3827 (($ (-1 |#3| |#3|) $) 51)) (-2960 (((-112) $) 42)) (-2971 ((|#2| $) 44)) (-2400 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 64)) (-1849 ((|#2| $) 68)) (-3601 (((-645 |#2|) $) 56)) (-3658 (($ $ $ (-772)) 37)) (-3069 (($ $ |#2|) 60)))
+(((-326 |#1| |#2| |#3|) (-10 -8 (-15 -2989 (|#1| |#1|)) (-15 -1849 (|#2| |#1|)) (-15 -2400 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3658 (|#1| |#1| |#1| (-772))) (-15 -3214 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3827 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3601 ((-645 |#2|) |#1|)) (-15 -2971 (|#2| |#1|)) (-15 -2960 ((-112) |#1|)) (-15 -2400 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3069 (|#1| |#1| |#2|))) (-327 |#2| |#3|) (-1051) (-793)) (T -326))
NIL
-(-10 -8 (-15 -3501 (|#1| |#1|)) (-15 -4358 (|#2| |#1|)) (-15 -2391 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4176 (|#1| |#1| |#1| (-772))) (-15 -2320 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3273 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3032 ((-645 |#2|) |#1|)) (-15 -2962 (|#2| |#1|)) (-15 -2949 ((-112) |#1|)) (-15 -2391 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3060 (|#1| |#1| |#2|)))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 63 (|has| |#1| (-559)))) (-4381 (($ $) 64 (|has| |#1| (-559)))) (-3949 (((-112) $) 66 (|has| |#1| (-559)))) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-3753 (((-3 (-567) "failed") $) 100 (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) 98 (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) 95)) (-2038 (((-567) $) 99 (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) 97 (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) 96)) (-3014 (($ $) 72)) (-2109 (((-3 $ "failed") $) 37)) (-3501 (($ $) 84 (|has| |#1| (-455)))) (-2320 (($ $ |#1| |#2| $) 88)) (-1433 (((-112) $) 35)) (-2695 (((-772) $) 91)) (-2843 (((-112) $) 74)) (-2824 (($ |#1| |#2|) 73)) (-2656 ((|#2| $) 90)) (-3273 (($ (-1 |#2| |#2|) $) 89)) (-3829 (($ (-1 |#1| |#1|) $) 75)) (-2976 (($ $) 77)) (-2989 ((|#1| $) 78)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-2949 (((-112) $) 94)) (-2962 ((|#1| $) 93)) (-2391 (((-3 $ "failed") $ $) 62 (|has| |#1| (-559))) (((-3 $ "failed") $ |#1|) 86 (|has| |#1| (-559)))) (-3077 ((|#2| $) 76)) (-4358 ((|#1| $) 85 (|has| |#1| (-455)))) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ $) 61 (|has| |#1| (-559))) (($ |#1|) 59) (($ (-410 (-567))) 69 (-2800 (|has| |#1| (-1040 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567))))))) (-3032 (((-645 |#1|) $) 92)) (-4136 ((|#1| $ |#2|) 71)) (-1903 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-4221 (((-772)) 32 T CONST)) (-4176 (($ $ $ (-772)) 87 (|has| |#1| (-172)))) (-1745 (((-112) $ $) 9)) (-3816 (((-112) $ $) 65 (|has| |#1| (-559)))) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2936 (((-112) $ $) 6)) (-3060 (($ $ |#1|) 70 (|has| |#1| (-365)))) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-410 (-567)) $) 68 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 67 (|has| |#1| (-38 (-410 (-567)))))))
+(-10 -8 (-15 -2989 (|#1| |#1|)) (-15 -1849 (|#2| |#1|)) (-15 -2400 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3658 (|#1| |#1| |#1| (-772))) (-15 -3214 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3827 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3601 ((-645 |#2|) |#1|)) (-15 -2971 (|#2| |#1|)) (-15 -2960 ((-112) |#1|)) (-15 -2400 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3069 (|#1| |#1| |#2|)))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) 63 (|has| |#1| (-559)))) (-4287 (($ $) 64 (|has| |#1| (-559)))) (-2286 (((-112) $) 66 (|has| |#1| (-559)))) (-2376 (((-3 $ "failed") $ $) 20)) (-3647 (($) 18 T CONST)) (-3765 (((-3 (-567) "failed") $) 100 (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) 98 (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) 95)) (-2051 (((-567) $) 99 (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) 97 (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) 96)) (-3023 (($ $) 72)) (-3588 (((-3 $ "failed") $) 37)) (-2989 (($ $) 84 (|has| |#1| (-455)))) (-3214 (($ $ |#1| |#2| $) 88)) (-4346 (((-112) $) 35)) (-2851 (((-772) $) 91)) (-3770 (((-112) $) 74)) (-2836 (($ |#1| |#2|) 73)) (-2955 ((|#2| $) 90)) (-3827 (($ (-1 |#2| |#2|) $) 89)) (-3841 (($ (-1 |#1| |#1|) $) 75)) (-2985 (($ $) 77)) (-2996 ((|#1| $) 78)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-2960 (((-112) $) 94)) (-2971 ((|#1| $) 93)) (-2400 (((-3 $ "failed") $ $) 62 (|has| |#1| (-559))) (((-3 $ "failed") $ |#1|) 86 (|has| |#1| (-559)))) (-3104 ((|#2| $) 76)) (-1849 ((|#1| $) 85 (|has| |#1| (-455)))) (-4129 (((-863) $) 12) (($ (-567)) 33) (($ $) 61 (|has| |#1| (-559))) (($ |#1|) 59) (($ (-410 (-567))) 69 (-2811 (|has| |#1| (-1040 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567))))))) (-3601 (((-645 |#1|) $) 92)) (-2558 ((|#1| $ |#2|) 71)) (-2118 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-2746 (((-772)) 32 T CONST)) (-3658 (($ $ $ (-772)) 87 (|has| |#1| (-172)))) (-3357 (((-112) $ $) 9)) (-3731 (((-112) $ $) 65 (|has| |#1| (-559)))) (-1733 (($) 19 T CONST)) (-1744 (($) 34 T CONST)) (-2946 (((-112) $ $) 6)) (-3069 (($ $ |#1|) 70 (|has| |#1| (-365)))) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-410 (-567)) $) 68 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 67 (|has| |#1| (-38 (-410 (-567)))))))
(((-327 |#1| |#2|) (-140) (-1051) (-793)) (T -327))
-((-2949 (*1 *2 *1) (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-793)) (-5 *2 (-112)))) (-2962 (*1 *2 *1) (-12 (-4 *1 (-327 *2 *3)) (-4 *3 (-793)) (-4 *2 (-1051)))) (-3032 (*1 *2 *1) (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-793)) (-5 *2 (-645 *3)))) (-2695 (*1 *2 *1) (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-793)) (-5 *2 (-772)))) (-2656 (*1 *2 *1) (-12 (-4 *1 (-327 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-793)))) (-3273 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-327 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-793)))) (-2320 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-327 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-793)))) (-4176 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-327 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-793)) (-4 *3 (-172)))) (-2391 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-327 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-793)) (-4 *2 (-559)))) (-4358 (*1 *2 *1) (-12 (-4 *1 (-327 *2 *3)) (-4 *3 (-793)) (-4 *2 (-1051)) (-4 *2 (-455)))) (-3501 (*1 *1 *1) (-12 (-4 *1 (-327 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-793)) (-4 *2 (-455)))))
-(-13 (-47 |t#1| |t#2|) (-414 |t#1|) (-10 -8 (-15 -2949 ((-112) $)) (-15 -2962 (|t#1| $)) (-15 -3032 ((-645 |t#1|) $)) (-15 -2695 ((-772) $)) (-15 -2656 (|t#2| $)) (-15 -3273 ($ (-1 |t#2| |t#2|) $)) (-15 -2320 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-172)) (-15 -4176 ($ $ $ (-772))) |%noBranch|) (IF (|has| |t#1| (-559)) (-15 -2391 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-455)) (PROGN (-15 -4358 (|t#1| $)) (-15 -3501 ($ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-559)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-410 (-567)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2800 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #0#) -2800 (|has| |#1| (-1040 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567))))) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-617 $) |has| |#1| (-559)) ((-614 (-863)) . T) ((-172) -2800 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-291) |has| |#1| (-559)) ((-414 |#1|) . T) ((-559) |has| |#1| (-559)) ((-647 #0#) |has| |#1| (-38 (-410 (-567)))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) |has| |#1| (-38 (-410 (-567)))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) |has| |#1| (-38 (-410 (-567)))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) |has| |#1| (-559)) ((-718 #0#) |has| |#1| (-38 (-410 (-567)))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) |has| |#1| (-559)) ((-727) . T) ((-1040 (-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) ((-1040 (-567)) |has| |#1| (-1040 (-567))) ((-1040 |#1|) . T) ((-1053 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1053 |#1|) . T) ((-1053 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-1058 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1058 |#1|) . T) ((-1058 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T))
-((-2403 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1783 (((-1273) $ (-567) (-567)) NIL (|has| $ (-6 -4419)))) (-2496 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-851)))) (-1394 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4419))) (($ $) NIL (-12 (|has| $ (-6 -4419)) (|has| |#1| (-851))))) (-4396 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-851)))) (-3445 (((-112) $ (-772)) NIL)) (-3600 (((-112) (-112)) NIL)) (-4284 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4419))) ((|#1| $ (-1235 (-567)) |#1|) NIL (|has| $ (-6 -4419)))) (-2839 (($ (-1 (-112) |#1|) $) NIL)) (-3350 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2585 (($) NIL T CONST)) (-1764 (($ $) NIL (|has| $ (-6 -4419)))) (-3584 (($ $) NIL)) (-2133 (($ $) NIL (|has| |#1| (-1102)))) (-2444 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2539 (($ |#1| $) NIL (|has| |#1| (-1102))) (($ (-1 (-112) |#1|) $) NIL)) (-3238 (($ |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2477 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4418)))) (-3741 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4419)))) (-3680 ((|#1| $ (-567)) NIL)) (-2569 (((-567) (-1 (-112) |#1|) $) NIL) (((-567) |#1| $) NIL (|has| |#1| (-1102))) (((-567) |#1| $ (-567)) NIL (|has| |#1| (-1102)))) (-3459 (($ $ (-567)) NIL)) (-2572 (((-772) $) NIL)) (-2777 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-2846 (($ (-772) |#1|) NIL)) (-2077 (((-112) $ (-772)) NIL)) (-4069 (((-567) $) NIL (|has| (-567) (-851)))) (-1354 (($ $ $) NIL (|has| |#1| (-851)))) (-2966 (($ $ $) NIL (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-4135 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-851)))) (-2279 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2266 (((-567) $) NIL (|has| (-567) (-851)))) (-2981 (($ $ $) NIL (|has| |#1| (-851)))) (-3731 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL (|has| |#1| (-1102)))) (-2531 (($ $ $ (-567)) NIL) (($ |#1| $ (-567)) NIL)) (-2845 (($ |#1| $ (-567)) NIL) (($ $ $ (-567)) NIL)) (-1789 (((-645 (-567)) $) NIL)) (-2996 (((-112) (-567) $) NIL)) (-3430 (((-1122) $) NIL (|has| |#1| (-1102)))) (-2558 (($ (-645 |#1|)) NIL)) (-2409 ((|#1| $) NIL (|has| (-567) (-851)))) (-4128 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3986 (($ $ |#1|) NIL (|has| $ (-6 -4419)))) (-3025 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) NIL)) (-1794 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2339 (((-645 |#1|) $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) NIL)) (-1787 ((|#1| $ (-567) |#1|) NIL) ((|#1| $ (-567)) NIL) (($ $ (-1235 (-567))) NIL)) (-3670 (($ $ (-1235 (-567))) NIL) (($ $ (-567)) NIL)) (-1560 (($ $ (-567)) NIL) (($ $ (-1235 (-567))) NIL)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-1395 (($ $ $ (-567)) NIL (|has| $ (-6 -4419)))) (-4305 (($ $) NIL)) (-3893 (((-539) $) NIL (|has| |#1| (-615 (-539))))) (-4147 (($ (-645 |#1|)) NIL)) (-2484 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2269 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-645 $)) NIL)) (-4132 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-1745 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2997 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2971 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2936 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2984 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2958 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2414 (((-772) $) NIL (|has| $ (-6 -4418)))))
-(((-328 |#1|) (-13 (-19 |#1|) (-283 |#1|) (-10 -8 (-15 -2558 ($ (-645 |#1|))) (-15 -2572 ((-772) $)) (-15 -3459 ($ $ (-567))) (-15 -3600 ((-112) (-112))))) (-1218)) (T -328))
-((-2558 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1218)) (-5 *1 (-328 *3)))) (-2572 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-328 *3)) (-4 *3 (-1218)))) (-3459 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-328 *3)) (-4 *3 (-1218)))) (-3600 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-328 *3)) (-4 *3 (-1218)))))
-(-13 (-19 |#1|) (-283 |#1|) (-10 -8 (-15 -2558 ($ (-645 |#1|))) (-15 -2572 ((-772) $)) (-15 -3459 ($ $ (-567))) (-15 -3600 ((-112) (-112)))))
-((-3419 (((-112) $) 50)) (-3862 (((-772)) 26)) (-4293 ((|#2| $) 54) (($ $ (-923)) 124)) (-2375 (((-772)) 125)) (-3658 (($ (-1268 |#2|)) 23)) (-1426 (((-112) $) 138)) (-2475 ((|#2| $) 56) (($ $ (-923)) 121)) (-4206 (((-1174 |#2|) $) NIL) (((-1174 $) $ (-923)) 112)) (-2016 (((-1174 |#2|) $) 98)) (-2280 (((-1174 |#2|) $) 94) (((-3 (-1174 |#2|) "failed") $ $) 91)) (-2286 (($ $ (-1174 |#2|)) 62)) (-1953 (((-834 (-923))) 33) (((-923)) 51)) (-1879 (((-134)) 30)) (-3077 (((-834 (-923)) $) 35) (((-923) $) 141)) (-2661 (($) 131)) (-2887 (((-1268 |#2|) $) NIL) (((-690 |#2|) (-1268 $)) 45)) (-1903 (($ $) NIL) (((-3 $ "failed") $) 101)) (-2012 (((-112) $) 48)))
-(((-329 |#1| |#2|) (-10 -8 (-15 -1903 ((-3 |#1| "failed") |#1|)) (-15 -2375 ((-772))) (-15 -1903 (|#1| |#1|)) (-15 -2280 ((-3 (-1174 |#2|) "failed") |#1| |#1|)) (-15 -2280 ((-1174 |#2|) |#1|)) (-15 -2016 ((-1174 |#2|) |#1|)) (-15 -2286 (|#1| |#1| (-1174 |#2|))) (-15 -1426 ((-112) |#1|)) (-15 -2661 (|#1|)) (-15 -4293 (|#1| |#1| (-923))) (-15 -2475 (|#1| |#1| (-923))) (-15 -4206 ((-1174 |#1|) |#1| (-923))) (-15 -4293 (|#2| |#1|)) (-15 -2475 (|#2| |#1|)) (-15 -3077 ((-923) |#1|)) (-15 -1953 ((-923))) (-15 -4206 ((-1174 |#2|) |#1|)) (-15 -3658 (|#1| (-1268 |#2|))) (-15 -2887 ((-690 |#2|) (-1268 |#1|))) (-15 -2887 ((-1268 |#2|) |#1|)) (-15 -3862 ((-772))) (-15 -1953 ((-834 (-923)))) (-15 -3077 ((-834 (-923)) |#1|)) (-15 -3419 ((-112) |#1|)) (-15 -2012 ((-112) |#1|)) (-15 -1879 ((-134)))) (-330 |#2|) (-365)) (T -329))
-((-1879 (*1 *2) (-12 (-4 *4 (-365)) (-5 *2 (-134)) (-5 *1 (-329 *3 *4)) (-4 *3 (-330 *4)))) (-1953 (*1 *2) (-12 (-4 *4 (-365)) (-5 *2 (-834 (-923))) (-5 *1 (-329 *3 *4)) (-4 *3 (-330 *4)))) (-3862 (*1 *2) (-12 (-4 *4 (-365)) (-5 *2 (-772)) (-5 *1 (-329 *3 *4)) (-4 *3 (-330 *4)))) (-1953 (*1 *2) (-12 (-4 *4 (-365)) (-5 *2 (-923)) (-5 *1 (-329 *3 *4)) (-4 *3 (-330 *4)))) (-2375 (*1 *2) (-12 (-4 *4 (-365)) (-5 *2 (-772)) (-5 *1 (-329 *3 *4)) (-4 *3 (-330 *4)))))
-(-10 -8 (-15 -1903 ((-3 |#1| "failed") |#1|)) (-15 -2375 ((-772))) (-15 -1903 (|#1| |#1|)) (-15 -2280 ((-3 (-1174 |#2|) "failed") |#1| |#1|)) (-15 -2280 ((-1174 |#2|) |#1|)) (-15 -2016 ((-1174 |#2|) |#1|)) (-15 -2286 (|#1| |#1| (-1174 |#2|))) (-15 -1426 ((-112) |#1|)) (-15 -2661 (|#1|)) (-15 -4293 (|#1| |#1| (-923))) (-15 -2475 (|#1| |#1| (-923))) (-15 -4206 ((-1174 |#1|) |#1| (-923))) (-15 -4293 (|#2| |#1|)) (-15 -2475 (|#2| |#1|)) (-15 -3077 ((-923) |#1|)) (-15 -1953 ((-923))) (-15 -4206 ((-1174 |#2|) |#1|)) (-15 -3658 (|#1| (-1268 |#2|))) (-15 -2887 ((-690 |#2|) (-1268 |#1|))) (-15 -2887 ((-1268 |#2|) |#1|)) (-15 -3862 ((-772))) (-15 -1953 ((-834 (-923)))) (-15 -3077 ((-834 (-923)) |#1|)) (-15 -3419 ((-112) |#1|)) (-15 -2012 ((-112) |#1|)) (-15 -1879 ((-134))))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 47)) (-4381 (($ $) 46)) (-3949 (((-112) $) 44)) (-3419 (((-112) $) 104)) (-3862 (((-772)) 100)) (-4293 ((|#1| $) 150) (($ $ (-923)) 147 (|has| |#1| (-370)))) (-3400 (((-1191 (-923) (-772)) (-567)) 132 (|has| |#1| (-370)))) (-3472 (((-3 $ "failed") $ $) 20)) (-3248 (($ $) 81)) (-2908 (((-421 $) $) 80)) (-3609 (((-112) $ $) 65)) (-2375 (((-772)) 122 (|has| |#1| (-370)))) (-2585 (($) 18 T CONST)) (-3753 (((-3 |#1| "failed") $) 111)) (-2038 ((|#1| $) 112)) (-3658 (($ (-1268 |#1|)) 156)) (-2443 (((-3 "prime" "polynomial" "normal" "cyclic")) 138 (|has| |#1| (-370)))) (-2349 (($ $ $) 61)) (-2109 (((-3 $ "failed") $) 37)) (-1348 (($) 119 (|has| |#1| (-370)))) (-2360 (($ $ $) 62)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) 57)) (-3431 (($) 134 (|has| |#1| (-370)))) (-2722 (((-112) $) 135 (|has| |#1| (-370)))) (-4225 (($ $ (-772)) 97 (-2800 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) 96 (-2800 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3184 (((-112) $) 79)) (-4384 (((-923) $) 137 (|has| |#1| (-370))) (((-834 (-923)) $) 94 (-2800 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1433 (((-112) $) 35)) (-3559 (($) 145 (|has| |#1| (-370)))) (-1426 (((-112) $) 144 (|has| |#1| (-370)))) (-2475 ((|#1| $) 151) (($ $ (-923)) 148 (|has| |#1| (-370)))) (-3972 (((-3 $ "failed") $) 123 (|has| |#1| (-370)))) (-1725 (((-3 (-645 $) "failed") (-645 $) $) 58)) (-4206 (((-1174 |#1|) $) 155) (((-1174 $) $ (-923)) 149 (|has| |#1| (-370)))) (-4249 (((-923) $) 120 (|has| |#1| (-370)))) (-2016 (((-1174 |#1|) $) 141 (|has| |#1| (-370)))) (-2280 (((-1174 |#1|) $) 140 (|has| |#1| (-370))) (((-3 (-1174 |#1|) "failed") $ $) 139 (|has| |#1| (-370)))) (-2286 (($ $ (-1174 |#1|)) 142 (|has| |#1| (-370)))) (-2740 (($ $ $) 52) (($ (-645 $)) 51)) (-1419 (((-1160) $) 10)) (-2939 (($ $) 78)) (-2672 (($) 124 (|has| |#1| (-370)) CONST)) (-3768 (($ (-923)) 121 (|has| |#1| (-370)))) (-2051 (((-112) $) 103)) (-3430 (((-1122) $) 11)) (-1398 (($) 143 (|has| |#1| (-370)))) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 50)) (-2774 (($ $ $) 54) (($ (-645 $)) 53)) (-1796 (((-645 (-2 (|:| -2706 (-567)) (|:| -3458 (-567))))) 131 (|has| |#1| (-370)))) (-2706 (((-421 $) $) 82)) (-1953 (((-834 (-923))) 101) (((-923)) 153)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2391 (((-3 $ "failed") $ $) 48)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-1990 (((-772) $) 64)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 63)) (-2491 (((-772) $) 136 (|has| |#1| (-370))) (((-3 (-772) "failed") $ $) 95 (-2800 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1879 (((-134)) 109)) (-1593 (($ $) 128 (|has| |#1| (-370))) (($ $ (-772)) 126 (|has| |#1| (-370)))) (-3077 (((-834 (-923)) $) 102) (((-923) $) 152)) (-3341 (((-1174 |#1|)) 154)) (-1527 (($) 133 (|has| |#1| (-370)))) (-2661 (($) 146 (|has| |#1| (-370)))) (-2887 (((-1268 |#1|) $) 158) (((-690 |#1|) (-1268 $)) 157)) (-1895 (((-3 (-1268 $) "failed") (-690 $)) 130 (|has| |#1| (-370)))) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-410 (-567))) 74) (($ |#1|) 110)) (-1903 (($ $) 129 (|has| |#1| (-370))) (((-3 $ "failed") $) 93 (-2800 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-2623 (((-1268 $)) 160) (((-1268 $) (-923)) 159)) (-3816 (((-112) $ $) 45)) (-2012 (((-112) $) 105)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-3253 (($ $) 99 (|has| |#1| (-370))) (($ $ (-772)) 98 (|has| |#1| (-370)))) (-2637 (($ $) 127 (|has| |#1| (-370))) (($ $ (-772)) 125 (|has| |#1| (-370)))) (-2936 (((-112) $ $) 6)) (-3060 (($ $ $) 73) (($ $ |#1|) 108)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 77)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 76) (($ (-410 (-567)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106)))
+((-2960 (*1 *2 *1) (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-793)) (-5 *2 (-112)))) (-2971 (*1 *2 *1) (-12 (-4 *1 (-327 *2 *3)) (-4 *3 (-793)) (-4 *2 (-1051)))) (-3601 (*1 *2 *1) (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-793)) (-5 *2 (-645 *3)))) (-2851 (*1 *2 *1) (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-793)) (-5 *2 (-772)))) (-2955 (*1 *2 *1) (-12 (-4 *1 (-327 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-793)))) (-3827 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-327 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-793)))) (-3214 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-327 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-793)))) (-3658 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-327 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-793)) (-4 *3 (-172)))) (-2400 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-327 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-793)) (-4 *2 (-559)))) (-1849 (*1 *2 *1) (-12 (-4 *1 (-327 *2 *3)) (-4 *3 (-793)) (-4 *2 (-1051)) (-4 *2 (-455)))) (-2989 (*1 *1 *1) (-12 (-4 *1 (-327 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-793)) (-4 *2 (-455)))))
+(-13 (-47 |t#1| |t#2|) (-414 |t#1|) (-10 -8 (-15 -2960 ((-112) $)) (-15 -2971 (|t#1| $)) (-15 -3601 ((-645 |t#1|) $)) (-15 -2851 ((-772) $)) (-15 -2955 (|t#2| $)) (-15 -3827 ($ (-1 |t#2| |t#2|) $)) (-15 -3214 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-172)) (-15 -3658 ($ $ $ (-772))) |%noBranch|) (IF (|has| |t#1| (-559)) (-15 -2400 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-455)) (PROGN (-15 -1849 (|t#1| $)) (-15 -2989 ($ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-559)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-410 (-567)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2811 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #0#) -2811 (|has| |#1| (-1040 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567))))) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-617 $) |has| |#1| (-559)) ((-614 (-863)) . T) ((-172) -2811 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-291) |has| |#1| (-559)) ((-414 |#1|) . T) ((-559) |has| |#1| (-559)) ((-647 #0#) |has| |#1| (-38 (-410 (-567)))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) |has| |#1| (-38 (-410 (-567)))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) |has| |#1| (-38 (-410 (-567)))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) |has| |#1| (-559)) ((-718 #0#) |has| |#1| (-38 (-410 (-567)))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) |has| |#1| (-559)) ((-727) . T) ((-1040 (-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) ((-1040 (-567)) |has| |#1| (-1040 (-567))) ((-1040 |#1|) . T) ((-1053 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1053 |#1|) . T) ((-1053 $) -2811 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-1058 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1058 |#1|) . T) ((-1058 $) -2811 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T))
+((-2412 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3843 (((-1274) $ (-567) (-567)) NIL (|has| $ (-6 -4423)))) (-3531 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-851)))) (-2676 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4423))) (($ $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-851))))) (-1311 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-851)))) (-1563 (((-112) $ (-772)) NIL)) (-1548 (((-112) (-112)) NIL)) (-4285 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4423))) ((|#1| $ (-1236 (-567)) |#1|) NIL (|has| $ (-6 -4423)))) (-1494 (($ (-1 (-112) |#1|) $) NIL)) (-3356 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-3647 (($) NIL T CONST)) (-1602 (($ $) NIL (|has| $ (-6 -4423)))) (-3592 (($ $) NIL)) (-3837 (($ $) NIL (|has| |#1| (-1102)))) (-2453 (($ $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-2247 (($ |#1| $) NIL (|has| |#1| (-1102))) (($ (-1 (-112) |#1|) $) NIL)) (-3246 (($ |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2494 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4422)))) (-3760 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4423)))) (-3703 ((|#1| $ (-567)) NIL)) (-2578 (((-567) (-1 (-112) |#1|) $) NIL) (((-567) |#1| $) NIL (|has| |#1| (-1102))) (((-567) |#1| $ (-567)) NIL (|has| |#1| (-1102)))) (-3565 (($ $ (-567)) NIL)) (-1436 (((-772) $) NIL)) (-2799 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-2858 (($ (-772) |#1|) NIL)) (-4093 (((-112) $ (-772)) NIL)) (-3895 (((-567) $) NIL (|has| (-567) (-851)))) (-1365 (($ $ $) NIL (|has| |#1| (-851)))) (-1661 (($ $ $) NIL (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2473 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-851)))) (-1942 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-3237 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3255 (((-567) $) NIL (|has| (-567) (-851)))) (-3002 (($ $ $) NIL (|has| |#1| (-851)))) (-3751 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1986 (((-112) $ (-772)) NIL)) (-2516 (((-1161) $) NIL (|has| |#1| (-1102)))) (-2646 (($ $ $ (-567)) NIL) (($ |#1| $ (-567)) NIL)) (-2857 (($ |#1| $ (-567)) NIL) (($ $ $ (-567)) NIL)) (-4364 (((-645 (-567)) $) NIL)) (-3188 (((-112) (-567) $) NIL)) (-3437 (((-1122) $) NIL (|has| |#1| (-1102)))) (-3777 (($ (-645 |#1|)) NIL)) (-2418 ((|#1| $) NIL (|has| (-567) (-851)))) (-3196 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3823 (($ $ |#1|) NIL (|has| $ (-6 -4423)))) (-4233 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3875 (((-112) $ $) NIL)) (-4058 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-2190 (((-645 |#1|) $) NIL)) (-3885 (((-112) $) NIL)) (-2701 (($) NIL)) (-1801 ((|#1| $ (-567) |#1|) NIL) ((|#1| $ (-567)) NIL) (($ $ (-1236 (-567))) NIL)) (-1873 (($ $ (-1236 (-567))) NIL) (($ $ (-567)) NIL)) (-1569 (($ $ (-567)) NIL) (($ $ (-1236 (-567))) NIL)) (-3447 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-1656 (($ $ $ (-567)) NIL (|has| $ (-6 -4423)))) (-4309 (($ $) NIL)) (-3902 (((-539) $) NIL (|has| |#1| (-615 (-539))))) (-4145 (($ (-645 |#1|)) NIL)) (-2294 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2276 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-645 $)) NIL)) (-4129 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-3357 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3436 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-3004 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2980 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2993 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2968 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2423 (((-772) $) NIL (|has| $ (-6 -4422)))))
+(((-328 |#1|) (-13 (-19 |#1|) (-283 |#1|) (-10 -8 (-15 -3777 ($ (-645 |#1|))) (-15 -1436 ((-772) $)) (-15 -3565 ($ $ (-567))) (-15 -1548 ((-112) (-112))))) (-1219)) (T -328))
+((-3777 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1219)) (-5 *1 (-328 *3)))) (-1436 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-328 *3)) (-4 *3 (-1219)))) (-3565 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-328 *3)) (-4 *3 (-1219)))) (-1548 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-328 *3)) (-4 *3 (-1219)))))
+(-13 (-19 |#1|) (-283 |#1|) (-10 -8 (-15 -3777 ($ (-645 |#1|))) (-15 -1436 ((-772) $)) (-15 -3565 ($ $ (-567))) (-15 -1548 ((-112) (-112)))))
+((-2038 (((-112) $) 50)) (-4355 (((-772)) 26)) (-4293 ((|#2| $) 54) (($ $ (-923)) 124)) (-2384 (((-772)) 125)) (-3111 (($ (-1269 |#2|)) 23)) (-1897 (((-112) $) 138)) (-2724 ((|#2| $) 56) (($ $ (-923)) 121)) (-1914 (((-1175 |#2|) $) NIL) (((-1175 $) $ (-923)) 112)) (-3038 (((-1175 |#2|) $) 98)) (-2030 (((-1175 |#2|) $) 94) (((-3 (-1175 |#2|) "failed") $ $) 91)) (-1321 (($ $ (-1175 |#2|)) 62)) (-2845 (((-834 (-923))) 33) (((-923)) 51)) (-1412 (((-134)) 30)) (-3104 (((-834 (-923)) $) 35) (((-923) $) 141)) (-2230 (($) 131)) (-3088 (((-1269 |#2|) $) NIL) (((-690 |#2|) (-1269 $)) 45)) (-2118 (($ $) NIL) (((-3 $ "failed") $) 101)) (-2618 (((-112) $) 48)))
+(((-329 |#1| |#2|) (-10 -8 (-15 -2118 ((-3 |#1| "failed") |#1|)) (-15 -2384 ((-772))) (-15 -2118 (|#1| |#1|)) (-15 -2030 ((-3 (-1175 |#2|) "failed") |#1| |#1|)) (-15 -2030 ((-1175 |#2|) |#1|)) (-15 -3038 ((-1175 |#2|) |#1|)) (-15 -1321 (|#1| |#1| (-1175 |#2|))) (-15 -1897 ((-112) |#1|)) (-15 -2230 (|#1|)) (-15 -4293 (|#1| |#1| (-923))) (-15 -2724 (|#1| |#1| (-923))) (-15 -1914 ((-1175 |#1|) |#1| (-923))) (-15 -4293 (|#2| |#1|)) (-15 -2724 (|#2| |#1|)) (-15 -3104 ((-923) |#1|)) (-15 -2845 ((-923))) (-15 -1914 ((-1175 |#2|) |#1|)) (-15 -3111 (|#1| (-1269 |#2|))) (-15 -3088 ((-690 |#2|) (-1269 |#1|))) (-15 -3088 ((-1269 |#2|) |#1|)) (-15 -4355 ((-772))) (-15 -2845 ((-834 (-923)))) (-15 -3104 ((-834 (-923)) |#1|)) (-15 -2038 ((-112) |#1|)) (-15 -2618 ((-112) |#1|)) (-15 -1412 ((-134)))) (-330 |#2|) (-365)) (T -329))
+((-1412 (*1 *2) (-12 (-4 *4 (-365)) (-5 *2 (-134)) (-5 *1 (-329 *3 *4)) (-4 *3 (-330 *4)))) (-2845 (*1 *2) (-12 (-4 *4 (-365)) (-5 *2 (-834 (-923))) (-5 *1 (-329 *3 *4)) (-4 *3 (-330 *4)))) (-4355 (*1 *2) (-12 (-4 *4 (-365)) (-5 *2 (-772)) (-5 *1 (-329 *3 *4)) (-4 *3 (-330 *4)))) (-2845 (*1 *2) (-12 (-4 *4 (-365)) (-5 *2 (-923)) (-5 *1 (-329 *3 *4)) (-4 *3 (-330 *4)))) (-2384 (*1 *2) (-12 (-4 *4 (-365)) (-5 *2 (-772)) (-5 *1 (-329 *3 *4)) (-4 *3 (-330 *4)))))
+(-10 -8 (-15 -2118 ((-3 |#1| "failed") |#1|)) (-15 -2384 ((-772))) (-15 -2118 (|#1| |#1|)) (-15 -2030 ((-3 (-1175 |#2|) "failed") |#1| |#1|)) (-15 -2030 ((-1175 |#2|) |#1|)) (-15 -3038 ((-1175 |#2|) |#1|)) (-15 -1321 (|#1| |#1| (-1175 |#2|))) (-15 -1897 ((-112) |#1|)) (-15 -2230 (|#1|)) (-15 -4293 (|#1| |#1| (-923))) (-15 -2724 (|#1| |#1| (-923))) (-15 -1914 ((-1175 |#1|) |#1| (-923))) (-15 -4293 (|#2| |#1|)) (-15 -2724 (|#2| |#1|)) (-15 -3104 ((-923) |#1|)) (-15 -2845 ((-923))) (-15 -1914 ((-1175 |#2|) |#1|)) (-15 -3111 (|#1| (-1269 |#2|))) (-15 -3088 ((-690 |#2|) (-1269 |#1|))) (-15 -3088 ((-1269 |#2|) |#1|)) (-15 -4355 ((-772))) (-15 -2845 ((-834 (-923)))) (-15 -3104 ((-834 (-923)) |#1|)) (-15 -2038 ((-112) |#1|)) (-15 -2618 ((-112) |#1|)) (-15 -1412 ((-134))))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) 47)) (-4287 (($ $) 46)) (-2286 (((-112) $) 44)) (-2038 (((-112) $) 104)) (-4355 (((-772)) 100)) (-4293 ((|#1| $) 150) (($ $ (-923)) 147 (|has| |#1| (-370)))) (-3792 (((-1192 (-923) (-772)) (-567)) 132 (|has| |#1| (-370)))) (-2376 (((-3 $ "failed") $ $) 20)) (-3659 (($ $) 81)) (-3597 (((-421 $) $) 80)) (-3696 (((-112) $ $) 65)) (-2384 (((-772)) 122 (|has| |#1| (-370)))) (-3647 (($) 18 T CONST)) (-3765 (((-3 |#1| "failed") $) 111)) (-2051 ((|#1| $) 112)) (-3111 (($ (-1269 |#1|)) 156)) (-2998 (((-3 "prime" "polynomial" "normal" "cyclic")) 138 (|has| |#1| (-370)))) (-2357 (($ $ $) 61)) (-3588 (((-3 $ "failed") $) 37)) (-1359 (($) 119 (|has| |#1| (-370)))) (-2368 (($ $ $) 62)) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) 57)) (-2870 (($) 134 (|has| |#1| (-370)))) (-1305 (((-112) $) 135 (|has| |#1| (-370)))) (-3144 (($ $ (-772)) 97 (-2811 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) 96 (-2811 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3502 (((-112) $) 79)) (-3362 (((-923) $) 137 (|has| |#1| (-370))) (((-834 (-923)) $) 94 (-2811 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4346 (((-112) $) 35)) (-2092 (($) 145 (|has| |#1| (-370)))) (-1897 (((-112) $) 144 (|has| |#1| (-370)))) (-2724 ((|#1| $) 151) (($ $ (-923)) 148 (|has| |#1| (-370)))) (-3067 (((-3 $ "failed") $) 123 (|has| |#1| (-370)))) (-1469 (((-3 (-645 $) "failed") (-645 $) $) 58)) (-1914 (((-1175 |#1|) $) 155) (((-1175 $) $ (-923)) 149 (|has| |#1| (-370)))) (-3474 (((-923) $) 120 (|has| |#1| (-370)))) (-3038 (((-1175 |#1|) $) 141 (|has| |#1| (-370)))) (-2030 (((-1175 |#1|) $) 140 (|has| |#1| (-370))) (((-3 (-1175 |#1|) "failed") $ $) 139 (|has| |#1| (-370)))) (-1321 (($ $ (-1175 |#1|)) 142 (|has| |#1| (-370)))) (-2751 (($ $ $) 52) (($ (-645 $)) 51)) (-2516 (((-1161) $) 10)) (-2949 (($ $) 78)) (-2694 (($) 124 (|has| |#1| (-370)) CONST)) (-3779 (($ (-923)) 121 (|has| |#1| (-370)))) (-2645 (((-112) $) 103)) (-3437 (((-1122) $) 11)) (-1399 (($) 143 (|has| |#1| (-370)))) (-2217 (((-1175 $) (-1175 $) (-1175 $)) 50)) (-2785 (($ $ $) 54) (($ (-645 $)) 53)) (-4151 (((-645 (-2 (|:| -2717 (-567)) (|:| -3468 (-567))))) 131 (|has| |#1| (-370)))) (-2717 (((-421 $) $) 82)) (-2845 (((-834 (-923))) 101) (((-923)) 153)) (-2905 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2400 (((-3 $ "failed") $ $) 48)) (-2372 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-2460 (((-772) $) 64)) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) 63)) (-1760 (((-772) $) 136 (|has| |#1| (-370))) (((-3 (-772) "failed") $ $) 95 (-2811 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1412 (((-134)) 109)) (-1616 (($ $) 128 (|has| |#1| (-370))) (($ $ (-772)) 126 (|has| |#1| (-370)))) (-3104 (((-834 (-923)) $) 102) (((-923) $) 152)) (-3169 (((-1175 |#1|)) 154)) (-4273 (($) 133 (|has| |#1| (-370)))) (-2230 (($) 146 (|has| |#1| (-370)))) (-3088 (((-1269 |#1|) $) 158) (((-690 |#1|) (-1269 $)) 157)) (-2616 (((-3 (-1269 $) "failed") (-690 $)) 130 (|has| |#1| (-370)))) (-4129 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-410 (-567))) 74) (($ |#1|) 110)) (-2118 (($ $) 129 (|has| |#1| (-370))) (((-3 $ "failed") $) 93 (-2811 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2746 (((-772)) 32 T CONST)) (-3357 (((-112) $ $) 9)) (-2144 (((-1269 $)) 160) (((-1269 $) (-923)) 159)) (-3731 (((-112) $ $) 45)) (-2618 (((-112) $) 105)) (-1733 (($) 19 T CONST)) (-1744 (($) 34 T CONST)) (-2963 (($ $) 99 (|has| |#1| (-370))) (($ $ (-772)) 98 (|has| |#1| (-370)))) (-2647 (($ $) 127 (|has| |#1| (-370))) (($ $ (-772)) 125 (|has| |#1| (-370)))) (-2946 (((-112) $ $) 6)) (-3069 (($ $ $) 73) (($ $ |#1|) 108)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 77)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 76) (($ (-410 (-567)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106)))
(((-330 |#1|) (-140) (-365)) (T -330))
-((-2623 (*1 *2) (-12 (-4 *3 (-365)) (-5 *2 (-1268 *1)) (-4 *1 (-330 *3)))) (-2623 (*1 *2 *3) (-12 (-5 *3 (-923)) (-4 *4 (-365)) (-5 *2 (-1268 *1)) (-4 *1 (-330 *4)))) (-2887 (*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-1268 *3)))) (-2887 (*1 *2 *3) (-12 (-5 *3 (-1268 *1)) (-4 *1 (-330 *4)) (-4 *4 (-365)) (-5 *2 (-690 *4)))) (-3658 (*1 *1 *2) (-12 (-5 *2 (-1268 *3)) (-4 *3 (-365)) (-4 *1 (-330 *3)))) (-4206 (*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-1174 *3)))) (-3341 (*1 *2) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-1174 *3)))) (-1953 (*1 *2) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-923)))) (-3077 (*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-923)))) (-2475 (*1 *2 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-365)))) (-4293 (*1 *2 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-365)))) (-4206 (*1 *2 *1 *3) (-12 (-5 *3 (-923)) (-4 *4 (-370)) (-4 *4 (-365)) (-5 *2 (-1174 *1)) (-4 *1 (-330 *4)))) (-2475 (*1 *1 *1 *2) (-12 (-5 *2 (-923)) (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)))) (-4293 (*1 *1 *1 *2) (-12 (-5 *2 (-923)) (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)))) (-2661 (*1 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-370)) (-4 *2 (-365)))) (-3559 (*1 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-370)) (-4 *2 (-365)))) (-1426 (*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) (-5 *2 (-112)))) (-1398 (*1 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-370)) (-4 *2 (-365)))) (-2286 (*1 *1 *1 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-370)) (-4 *1 (-330 *3)) (-4 *3 (-365)))) (-2016 (*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) (-5 *2 (-1174 *3)))) (-2280 (*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) (-5 *2 (-1174 *3)))) (-2280 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) (-5 *2 (-1174 *3)))))
-(-13 (-1287 |t#1|) (-1040 |t#1|) (-10 -8 (-15 -2623 ((-1268 $))) (-15 -2623 ((-1268 $) (-923))) (-15 -2887 ((-1268 |t#1|) $)) (-15 -2887 ((-690 |t#1|) (-1268 $))) (-15 -3658 ($ (-1268 |t#1|))) (-15 -4206 ((-1174 |t#1|) $)) (-15 -3341 ((-1174 |t#1|))) (-15 -1953 ((-923))) (-15 -3077 ((-923) $)) (-15 -2475 (|t#1| $)) (-15 -4293 (|t#1| $)) (IF (|has| |t#1| (-370)) (PROGN (-6 (-351)) (-15 -4206 ((-1174 $) $ (-923))) (-15 -2475 ($ $ (-923))) (-15 -4293 ($ $ (-923))) (-15 -2661 ($)) (-15 -3559 ($)) (-15 -1426 ((-112) $)) (-15 -1398 ($)) (-15 -2286 ($ $ (-1174 |t#1|))) (-15 -2016 ((-1174 |t#1|) $)) (-15 -2280 ((-1174 |t#1|) $)) (-15 -2280 ((-3 (-1174 |t#1|) "failed") $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2800 (|has| |#1| (-370)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-617 #0#) . T) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-233) |has| |#1| (-370)) ((-243) . T) ((-291) . T) ((-308) . T) ((-1287 |#1|) . T) ((-365) . T) ((-405) -2800 (|has| |#1| (-370)) (|has| |#1| (-145))) ((-370) |has| |#1| (-370)) ((-351) |has| |#1| (-370)) ((-455) . T) ((-559) . T) ((-647 #0#) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) . T) ((-641 |#1|) . T) ((-641 $) . T) ((-718 #0#) . T) ((-718 |#1|) . T) ((-718 $) . T) ((-727) . T) ((-922) . T) ((-1040 |#1|) . T) ((-1053 #0#) . T) ((-1053 |#1|) . T) ((-1053 $) . T) ((-1058 #0#) . T) ((-1058 |#1|) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1153) |has| |#1| (-370)) ((-1222) . T) ((-1275 |#1|) . T))
-((-2403 (((-112) $ $) NIL)) (-1371 (($ (-1177) $) 104)) (-2065 (($) 93)) (-4012 (((-1122) (-1122)) 9)) (-1351 (($) 94)) (-4073 (($) 108) (($ (-317 (-700))) 116) (($ (-317 (-702))) 112) (($ (-317 (-695))) 120) (($ (-317 (-381))) 127) (($ (-317 (-567))) 123) (($ (-317 (-169 (-381)))) 131)) (-3696 (($ (-1177) $) 105)) (-2312 (($ (-645 (-863))) 95)) (-3630 (((-1273) $) 91)) (-2183 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 35)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-3987 (($ (-1122)) 60)) (-1606 (((-1106) $) 32)) (-3502 (($ (-1094 (-954 (-567))) $) 101) (($ (-1094 (-954 (-567))) (-954 (-567)) $) 102)) (-2549 (($ (-1122)) 103)) (-2325 (($ (-1177) $) 133) (($ (-1177) $ $) 134)) (-2324 (($ (-1178) (-645 (-1178))) 92)) (-1586 (($ (-1160)) 98) (($ (-645 (-1160))) 96)) (-4132 (((-863) $) 136)) (-1800 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1178)) (|:| |arrayIndex| (-645 (-954 (-567)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3602 (-863)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1178)) (|:| |rand| (-863)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1177)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3572 (-112)) (|:| -3802 (-2 (|:| |ints2Floats?| (-112)) (|:| -3602 (-863)))))) (|:| |blockBranch| (-645 $)) (|:| |commentBranch| (-645 (-1160))) (|:| |callBranch| (-1160)) (|:| |forBranch| (-2 (|:| -1604 (-1094 (-954 (-567)))) (|:| |span| (-954 (-567))) (|:| -2006 $))) (|:| |labelBranch| (-1122)) (|:| |loopBranch| (-2 (|:| |switch| (-1177)) (|:| -2006 $))) (|:| |commonBranch| (-2 (|:| -1996 (-1178)) (|:| |contents| (-645 (-1178))))) (|:| |printBranch| (-645 (-863)))) $) 51)) (-4281 (($ (-1160)) 205)) (-2812 (($ (-645 $)) 132)) (-1745 (((-112) $ $) NIL)) (-3209 (($ (-1178) (-1160)) 138) (($ (-1178) (-317 (-702))) 178) (($ (-1178) (-317 (-700))) 179) (($ (-1178) (-317 (-695))) 180) (($ (-1178) (-690 (-702))) 141) (($ (-1178) (-690 (-700))) 144) (($ (-1178) (-690 (-695))) 147) (($ (-1178) (-1268 (-702))) 150) (($ (-1178) (-1268 (-700))) 153) (($ (-1178) (-1268 (-695))) 156) (($ (-1178) (-690 (-317 (-702)))) 159) (($ (-1178) (-690 (-317 (-700)))) 162) (($ (-1178) (-690 (-317 (-695)))) 165) (($ (-1178) (-1268 (-317 (-702)))) 168) (($ (-1178) (-1268 (-317 (-700)))) 171) (($ (-1178) (-1268 (-317 (-695)))) 174) (($ (-1178) (-645 (-954 (-567))) (-317 (-702))) 175) (($ (-1178) (-645 (-954 (-567))) (-317 (-700))) 176) (($ (-1178) (-645 (-954 (-567))) (-317 (-695))) 177) (($ (-1178) (-317 (-567))) 202) (($ (-1178) (-317 (-381))) 203) (($ (-1178) (-317 (-169 (-381)))) 204) (($ (-1178) (-690 (-317 (-567)))) 183) (($ (-1178) (-690 (-317 (-381)))) 186) (($ (-1178) (-690 (-317 (-169 (-381))))) 189) (($ (-1178) (-1268 (-317 (-567)))) 192) (($ (-1178) (-1268 (-317 (-381)))) 195) (($ (-1178) (-1268 (-317 (-169 (-381))))) 198) (($ (-1178) (-645 (-954 (-567))) (-317 (-567))) 199) (($ (-1178) (-645 (-954 (-567))) (-317 (-381))) 200) (($ (-1178) (-645 (-954 (-567))) (-317 (-169 (-381)))) 201)) (-2936 (((-112) $ $) NIL)))
-(((-331) (-13 (-1102) (-10 -8 (-15 -3502 ($ (-1094 (-954 (-567))) $)) (-15 -3502 ($ (-1094 (-954 (-567))) (-954 (-567)) $)) (-15 -1371 ($ (-1177) $)) (-15 -3696 ($ (-1177) $)) (-15 -3987 ($ (-1122))) (-15 -2549 ($ (-1122))) (-15 -1586 ($ (-1160))) (-15 -1586 ($ (-645 (-1160)))) (-15 -4281 ($ (-1160))) (-15 -4073 ($)) (-15 -4073 ($ (-317 (-700)))) (-15 -4073 ($ (-317 (-702)))) (-15 -4073 ($ (-317 (-695)))) (-15 -4073 ($ (-317 (-381)))) (-15 -4073 ($ (-317 (-567)))) (-15 -4073 ($ (-317 (-169 (-381))))) (-15 -2325 ($ (-1177) $)) (-15 -2325 ($ (-1177) $ $)) (-15 -3209 ($ (-1178) (-1160))) (-15 -3209 ($ (-1178) (-317 (-702)))) (-15 -3209 ($ (-1178) (-317 (-700)))) (-15 -3209 ($ (-1178) (-317 (-695)))) (-15 -3209 ($ (-1178) (-690 (-702)))) (-15 -3209 ($ (-1178) (-690 (-700)))) (-15 -3209 ($ (-1178) (-690 (-695)))) (-15 -3209 ($ (-1178) (-1268 (-702)))) (-15 -3209 ($ (-1178) (-1268 (-700)))) (-15 -3209 ($ (-1178) (-1268 (-695)))) (-15 -3209 ($ (-1178) (-690 (-317 (-702))))) (-15 -3209 ($ (-1178) (-690 (-317 (-700))))) (-15 -3209 ($ (-1178) (-690 (-317 (-695))))) (-15 -3209 ($ (-1178) (-1268 (-317 (-702))))) (-15 -3209 ($ (-1178) (-1268 (-317 (-700))))) (-15 -3209 ($ (-1178) (-1268 (-317 (-695))))) (-15 -3209 ($ (-1178) (-645 (-954 (-567))) (-317 (-702)))) (-15 -3209 ($ (-1178) (-645 (-954 (-567))) (-317 (-700)))) (-15 -3209 ($ (-1178) (-645 (-954 (-567))) (-317 (-695)))) (-15 -3209 ($ (-1178) (-317 (-567)))) (-15 -3209 ($ (-1178) (-317 (-381)))) (-15 -3209 ($ (-1178) (-317 (-169 (-381))))) (-15 -3209 ($ (-1178) (-690 (-317 (-567))))) (-15 -3209 ($ (-1178) (-690 (-317 (-381))))) (-15 -3209 ($ (-1178) (-690 (-317 (-169 (-381)))))) (-15 -3209 ($ (-1178) (-1268 (-317 (-567))))) (-15 -3209 ($ (-1178) (-1268 (-317 (-381))))) (-15 -3209 ($ (-1178) (-1268 (-317 (-169 (-381)))))) (-15 -3209 ($ (-1178) (-645 (-954 (-567))) (-317 (-567)))) (-15 -3209 ($ (-1178) (-645 (-954 (-567))) (-317 (-381)))) (-15 -3209 ($ (-1178) (-645 (-954 (-567))) (-317 (-169 (-381))))) (-15 -2812 ($ (-645 $))) (-15 -2065 ($)) (-15 -1351 ($)) (-15 -2312 ($ (-645 (-863)))) (-15 -2324 ($ (-1178) (-645 (-1178)))) (-15 -2183 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1800 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1178)) (|:| |arrayIndex| (-645 (-954 (-567)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3602 (-863)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1178)) (|:| |rand| (-863)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1177)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3572 (-112)) (|:| -3802 (-2 (|:| |ints2Floats?| (-112)) (|:| -3602 (-863)))))) (|:| |blockBranch| (-645 $)) (|:| |commentBranch| (-645 (-1160))) (|:| |callBranch| (-1160)) (|:| |forBranch| (-2 (|:| -1604 (-1094 (-954 (-567)))) (|:| |span| (-954 (-567))) (|:| -2006 $))) (|:| |labelBranch| (-1122)) (|:| |loopBranch| (-2 (|:| |switch| (-1177)) (|:| -2006 $))) (|:| |commonBranch| (-2 (|:| -1996 (-1178)) (|:| |contents| (-645 (-1178))))) (|:| |printBranch| (-645 (-863)))) $)) (-15 -3630 ((-1273) $)) (-15 -1606 ((-1106) $)) (-15 -4012 ((-1122) (-1122)))))) (T -331))
-((-3502 (*1 *1 *2 *1) (-12 (-5 *2 (-1094 (-954 (-567)))) (-5 *1 (-331)))) (-3502 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1094 (-954 (-567)))) (-5 *3 (-954 (-567))) (-5 *1 (-331)))) (-1371 (*1 *1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-331)))) (-3696 (*1 *1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-331)))) (-3987 (*1 *1 *2) (-12 (-5 *2 (-1122)) (-5 *1 (-331)))) (-2549 (*1 *1 *2) (-12 (-5 *2 (-1122)) (-5 *1 (-331)))) (-1586 (*1 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-331)))) (-1586 (*1 *1 *2) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-331)))) (-4281 (*1 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-331)))) (-4073 (*1 *1) (-5 *1 (-331))) (-4073 (*1 *1 *2) (-12 (-5 *2 (-317 (-700))) (-5 *1 (-331)))) (-4073 (*1 *1 *2) (-12 (-5 *2 (-317 (-702))) (-5 *1 (-331)))) (-4073 (*1 *1 *2) (-12 (-5 *2 (-317 (-695))) (-5 *1 (-331)))) (-4073 (*1 *1 *2) (-12 (-5 *2 (-317 (-381))) (-5 *1 (-331)))) (-4073 (*1 *1 *2) (-12 (-5 *2 (-317 (-567))) (-5 *1 (-331)))) (-4073 (*1 *1 *2) (-12 (-5 *2 (-317 (-169 (-381)))) (-5 *1 (-331)))) (-2325 (*1 *1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-331)))) (-2325 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-331)))) (-3209 (*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-1160)) (-5 *1 (-331)))) (-3209 (*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-317 (-702))) (-5 *1 (-331)))) (-3209 (*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-317 (-700))) (-5 *1 (-331)))) (-3209 (*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-317 (-695))) (-5 *1 (-331)))) (-3209 (*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-690 (-702))) (-5 *1 (-331)))) (-3209 (*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-690 (-700))) (-5 *1 (-331)))) (-3209 (*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-690 (-695))) (-5 *1 (-331)))) (-3209 (*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-1268 (-702))) (-5 *1 (-331)))) (-3209 (*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-1268 (-700))) (-5 *1 (-331)))) (-3209 (*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-1268 (-695))) (-5 *1 (-331)))) (-3209 (*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-690 (-317 (-702)))) (-5 *1 (-331)))) (-3209 (*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-690 (-317 (-700)))) (-5 *1 (-331)))) (-3209 (*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-690 (-317 (-695)))) (-5 *1 (-331)))) (-3209 (*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-1268 (-317 (-702)))) (-5 *1 (-331)))) (-3209 (*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-1268 (-317 (-700)))) (-5 *1 (-331)))) (-3209 (*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-1268 (-317 (-695)))) (-5 *1 (-331)))) (-3209 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1178)) (-5 *3 (-645 (-954 (-567)))) (-5 *4 (-317 (-702))) (-5 *1 (-331)))) (-3209 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1178)) (-5 *3 (-645 (-954 (-567)))) (-5 *4 (-317 (-700))) (-5 *1 (-331)))) (-3209 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1178)) (-5 *3 (-645 (-954 (-567)))) (-5 *4 (-317 (-695))) (-5 *1 (-331)))) (-3209 (*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-317 (-567))) (-5 *1 (-331)))) (-3209 (*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-317 (-381))) (-5 *1 (-331)))) (-3209 (*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-317 (-169 (-381)))) (-5 *1 (-331)))) (-3209 (*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-690 (-317 (-567)))) (-5 *1 (-331)))) (-3209 (*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-690 (-317 (-381)))) (-5 *1 (-331)))) (-3209 (*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-690 (-317 (-169 (-381))))) (-5 *1 (-331)))) (-3209 (*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-1268 (-317 (-567)))) (-5 *1 (-331)))) (-3209 (*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-1268 (-317 (-381)))) (-5 *1 (-331)))) (-3209 (*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-1268 (-317 (-169 (-381))))) (-5 *1 (-331)))) (-3209 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1178)) (-5 *3 (-645 (-954 (-567)))) (-5 *4 (-317 (-567))) (-5 *1 (-331)))) (-3209 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1178)) (-5 *3 (-645 (-954 (-567)))) (-5 *4 (-317 (-381))) (-5 *1 (-331)))) (-3209 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1178)) (-5 *3 (-645 (-954 (-567)))) (-5 *4 (-317 (-169 (-381)))) (-5 *1 (-331)))) (-2812 (*1 *1 *2) (-12 (-5 *2 (-645 (-331))) (-5 *1 (-331)))) (-2065 (*1 *1) (-5 *1 (-331))) (-1351 (*1 *1) (-5 *1 (-331))) (-2312 (*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-331)))) (-2324 (*1 *1 *2 *3) (-12 (-5 *3 (-645 (-1178))) (-5 *2 (-1178)) (-5 *1 (-331)))) (-2183 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-331)))) (-1800 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1178)) (|:| |arrayIndex| (-645 (-954 (-567)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3602 (-863)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1178)) (|:| |rand| (-863)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1177)) (|:| |thenClause| (-331)) (|:| |elseClause| (-331)))) (|:| |returnBranch| (-2 (|:| -3572 (-112)) (|:| -3802 (-2 (|:| |ints2Floats?| (-112)) (|:| -3602 (-863)))))) (|:| |blockBranch| (-645 (-331))) (|:| |commentBranch| (-645 (-1160))) (|:| |callBranch| (-1160)) (|:| |forBranch| (-2 (|:| -1604 (-1094 (-954 (-567)))) (|:| |span| (-954 (-567))) (|:| -2006 (-331)))) (|:| |labelBranch| (-1122)) (|:| |loopBranch| (-2 (|:| |switch| (-1177)) (|:| -2006 (-331)))) (|:| |commonBranch| (-2 (|:| -1996 (-1178)) (|:| |contents| (-645 (-1178))))) (|:| |printBranch| (-645 (-863))))) (-5 *1 (-331)))) (-3630 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-331)))) (-1606 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-331)))) (-4012 (*1 *2 *2) (-12 (-5 *2 (-1122)) (-5 *1 (-331)))))
-(-13 (-1102) (-10 -8 (-15 -3502 ($ (-1094 (-954 (-567))) $)) (-15 -3502 ($ (-1094 (-954 (-567))) (-954 (-567)) $)) (-15 -1371 ($ (-1177) $)) (-15 -3696 ($ (-1177) $)) (-15 -3987 ($ (-1122))) (-15 -2549 ($ (-1122))) (-15 -1586 ($ (-1160))) (-15 -1586 ($ (-645 (-1160)))) (-15 -4281 ($ (-1160))) (-15 -4073 ($)) (-15 -4073 ($ (-317 (-700)))) (-15 -4073 ($ (-317 (-702)))) (-15 -4073 ($ (-317 (-695)))) (-15 -4073 ($ (-317 (-381)))) (-15 -4073 ($ (-317 (-567)))) (-15 -4073 ($ (-317 (-169 (-381))))) (-15 -2325 ($ (-1177) $)) (-15 -2325 ($ (-1177) $ $)) (-15 -3209 ($ (-1178) (-1160))) (-15 -3209 ($ (-1178) (-317 (-702)))) (-15 -3209 ($ (-1178) (-317 (-700)))) (-15 -3209 ($ (-1178) (-317 (-695)))) (-15 -3209 ($ (-1178) (-690 (-702)))) (-15 -3209 ($ (-1178) (-690 (-700)))) (-15 -3209 ($ (-1178) (-690 (-695)))) (-15 -3209 ($ (-1178) (-1268 (-702)))) (-15 -3209 ($ (-1178) (-1268 (-700)))) (-15 -3209 ($ (-1178) (-1268 (-695)))) (-15 -3209 ($ (-1178) (-690 (-317 (-702))))) (-15 -3209 ($ (-1178) (-690 (-317 (-700))))) (-15 -3209 ($ (-1178) (-690 (-317 (-695))))) (-15 -3209 ($ (-1178) (-1268 (-317 (-702))))) (-15 -3209 ($ (-1178) (-1268 (-317 (-700))))) (-15 -3209 ($ (-1178) (-1268 (-317 (-695))))) (-15 -3209 ($ (-1178) (-645 (-954 (-567))) (-317 (-702)))) (-15 -3209 ($ (-1178) (-645 (-954 (-567))) (-317 (-700)))) (-15 -3209 ($ (-1178) (-645 (-954 (-567))) (-317 (-695)))) (-15 -3209 ($ (-1178) (-317 (-567)))) (-15 -3209 ($ (-1178) (-317 (-381)))) (-15 -3209 ($ (-1178) (-317 (-169 (-381))))) (-15 -3209 ($ (-1178) (-690 (-317 (-567))))) (-15 -3209 ($ (-1178) (-690 (-317 (-381))))) (-15 -3209 ($ (-1178) (-690 (-317 (-169 (-381)))))) (-15 -3209 ($ (-1178) (-1268 (-317 (-567))))) (-15 -3209 ($ (-1178) (-1268 (-317 (-381))))) (-15 -3209 ($ (-1178) (-1268 (-317 (-169 (-381)))))) (-15 -3209 ($ (-1178) (-645 (-954 (-567))) (-317 (-567)))) (-15 -3209 ($ (-1178) (-645 (-954 (-567))) (-317 (-381)))) (-15 -3209 ($ (-1178) (-645 (-954 (-567))) (-317 (-169 (-381))))) (-15 -2812 ($ (-645 $))) (-15 -2065 ($)) (-15 -1351 ($)) (-15 -2312 ($ (-645 (-863)))) (-15 -2324 ($ (-1178) (-645 (-1178)))) (-15 -2183 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1800 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1178)) (|:| |arrayIndex| (-645 (-954 (-567)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3602 (-863)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1178)) (|:| |rand| (-863)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1177)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3572 (-112)) (|:| -3802 (-2 (|:| |ints2Floats?| (-112)) (|:| -3602 (-863)))))) (|:| |blockBranch| (-645 $)) (|:| |commentBranch| (-645 (-1160))) (|:| |callBranch| (-1160)) (|:| |forBranch| (-2 (|:| -1604 (-1094 (-954 (-567)))) (|:| |span| (-954 (-567))) (|:| -2006 $))) (|:| |labelBranch| (-1122)) (|:| |loopBranch| (-2 (|:| |switch| (-1177)) (|:| -2006 $))) (|:| |commonBranch| (-2 (|:| -1996 (-1178)) (|:| |contents| (-645 (-1178))))) (|:| |printBranch| (-645 (-863)))) $)) (-15 -3630 ((-1273) $)) (-15 -1606 ((-1106) $)) (-15 -4012 ((-1122) (-1122)))))
-((-2403 (((-112) $ $) NIL)) (-2701 (((-112) $) 13)) (-2987 (($ |#1|) 10)) (-1354 (($ $ $) NIL)) (-2981 (($ $ $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-2999 (($ |#1|) 12)) (-4132 (((-863) $) 19)) (-1745 (((-112) $ $) NIL)) (-2799 ((|#1| $) 14)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) 21)))
-(((-332 |#1|) (-13 (-851) (-10 -8 (-15 -2987 ($ |#1|)) (-15 -2999 ($ |#1|)) (-15 -2701 ((-112) $)) (-15 -2799 (|#1| $)))) (-851)) (T -332))
-((-2987 (*1 *1 *2) (-12 (-5 *1 (-332 *2)) (-4 *2 (-851)))) (-2999 (*1 *1 *2) (-12 (-5 *1 (-332 *2)) (-4 *2 (-851)))) (-2701 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-332 *3)) (-4 *3 (-851)))) (-2799 (*1 *2 *1) (-12 (-5 *1 (-332 *2)) (-4 *2 (-851)))))
-(-13 (-851) (-10 -8 (-15 -2987 ($ |#1|)) (-15 -2999 ($ |#1|)) (-15 -2701 ((-112) $)) (-15 -2799 (|#1| $))))
-((-1821 (((-331) (-1178) (-954 (-567))) 23)) (-1844 (((-331) (-1178) (-954 (-567))) 27)) (-4117 (((-331) (-1178) (-1094 (-954 (-567))) (-1094 (-954 (-567)))) 26) (((-331) (-1178) (-954 (-567)) (-954 (-567))) 24)) (-1588 (((-331) (-1178) (-954 (-567))) 31)))
-(((-333) (-10 -7 (-15 -1821 ((-331) (-1178) (-954 (-567)))) (-15 -4117 ((-331) (-1178) (-954 (-567)) (-954 (-567)))) (-15 -4117 ((-331) (-1178) (-1094 (-954 (-567))) (-1094 (-954 (-567))))) (-15 -1844 ((-331) (-1178) (-954 (-567)))) (-15 -1588 ((-331) (-1178) (-954 (-567)))))) (T -333))
-((-1588 (*1 *2 *3 *4) (-12 (-5 *3 (-1178)) (-5 *4 (-954 (-567))) (-5 *2 (-331)) (-5 *1 (-333)))) (-1844 (*1 *2 *3 *4) (-12 (-5 *3 (-1178)) (-5 *4 (-954 (-567))) (-5 *2 (-331)) (-5 *1 (-333)))) (-4117 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1178)) (-5 *4 (-1094 (-954 (-567)))) (-5 *2 (-331)) (-5 *1 (-333)))) (-4117 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1178)) (-5 *4 (-954 (-567))) (-5 *2 (-331)) (-5 *1 (-333)))) (-1821 (*1 *2 *3 *4) (-12 (-5 *3 (-1178)) (-5 *4 (-954 (-567))) (-5 *2 (-331)) (-5 *1 (-333)))))
-(-10 -7 (-15 -1821 ((-331) (-1178) (-954 (-567)))) (-15 -4117 ((-331) (-1178) (-954 (-567)) (-954 (-567)))) (-15 -4117 ((-331) (-1178) (-1094 (-954 (-567))) (-1094 (-954 (-567))))) (-15 -1844 ((-331) (-1178) (-954 (-567)))) (-15 -1588 ((-331) (-1178) (-954 (-567)))))
-((-2403 (((-112) $ $) NIL)) (-1568 (((-509) $) 20)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4300 (((-960 (-772)) $) 18)) (-1782 (((-250) $) 7)) (-4132 (((-863) $) 26)) (-1538 (((-960 (-183 (-139))) $) 16)) (-1745 (((-112) $ $) NIL)) (-4111 (((-645 (-874 (-1183) (-772))) $) 12)) (-2936 (((-112) $ $) 22)))
-(((-334) (-13 (-1102) (-10 -8 (-15 -1782 ((-250) $)) (-15 -4111 ((-645 (-874 (-1183) (-772))) $)) (-15 -4300 ((-960 (-772)) $)) (-15 -1538 ((-960 (-183 (-139))) $)) (-15 -1568 ((-509) $))))) (T -334))
-((-1782 (*1 *2 *1) (-12 (-5 *2 (-250)) (-5 *1 (-334)))) (-4111 (*1 *2 *1) (-12 (-5 *2 (-645 (-874 (-1183) (-772)))) (-5 *1 (-334)))) (-4300 (*1 *2 *1) (-12 (-5 *2 (-960 (-772))) (-5 *1 (-334)))) (-1538 (*1 *2 *1) (-12 (-5 *2 (-960 (-183 (-139)))) (-5 *1 (-334)))) (-1568 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-334)))))
-(-13 (-1102) (-10 -8 (-15 -1782 ((-250) $)) (-15 -4111 ((-645 (-874 (-1183) (-772))) $)) (-15 -4300 ((-960 (-772)) $)) (-15 -1538 ((-960 (-183 (-139))) $)) (-15 -1568 ((-509) $))))
-((-3829 (((-338 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-338 |#1| |#2| |#3| |#4|)) 33)))
-(((-335 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3829 ((-338 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-338 |#1| |#2| |#3| |#4|)))) (-365) (-1244 |#1|) (-1244 (-410 |#2|)) (-344 |#1| |#2| |#3|) (-365) (-1244 |#5|) (-1244 (-410 |#6|)) (-344 |#5| |#6| |#7|)) (T -335))
-((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-338 *5 *6 *7 *8)) (-4 *5 (-365)) (-4 *6 (-1244 *5)) (-4 *7 (-1244 (-410 *6))) (-4 *8 (-344 *5 *6 *7)) (-4 *9 (-365)) (-4 *10 (-1244 *9)) (-4 *11 (-1244 (-410 *10))) (-5 *2 (-338 *9 *10 *11 *12)) (-5 *1 (-335 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-344 *9 *10 *11)))))
-(-10 -7 (-15 -3829 ((-338 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-338 |#1| |#2| |#3| |#4|))))
-((-1500 (((-112) $) 14)))
-(((-336 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1500 ((-112) |#1|))) (-337 |#2| |#3| |#4| |#5|) (-365) (-1244 |#2|) (-1244 (-410 |#3|)) (-344 |#2| |#3| |#4|)) (T -336))
-NIL
-(-10 -8 (-15 -1500 ((-112) |#1|)))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-2477 (($ $) 29)) (-1500 (((-112) $) 28)) (-1419 (((-1160) $) 10)) (-1321 (((-416 |#2| (-410 |#2|) |#3| |#4|) $) 35)) (-3430 (((-1122) $) 11)) (-1398 (((-3 |#4| "failed") $) 27)) (-3477 (($ (-416 |#2| (-410 |#2|) |#3| |#4|)) 34) (($ |#4|) 33) (($ |#1| |#1|) 32) (($ |#1| |#1| (-567)) 31) (($ |#4| |#2| |#2| |#2| |#1|) 26)) (-2532 (((-2 (|:| -3979 (-416 |#2| (-410 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 30)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-1716 (($) 19 T CONST)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24)))
-(((-337 |#1| |#2| |#3| |#4|) (-140) (-365) (-1244 |t#1|) (-1244 (-410 |t#2|)) (-344 |t#1| |t#2| |t#3|)) (T -337))
-((-1321 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))) (-4 *6 (-344 *3 *4 *5)) (-5 *2 (-416 *4 (-410 *4) *5 *6)))) (-3477 (*1 *1 *2) (-12 (-5 *2 (-416 *4 (-410 *4) *5 *6)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))) (-4 *6 (-344 *3 *4 *5)) (-4 *3 (-365)) (-4 *1 (-337 *3 *4 *5 *6)))) (-3477 (*1 *1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))) (-4 *1 (-337 *3 *4 *5 *2)) (-4 *2 (-344 *3 *4 *5)))) (-3477 (*1 *1 *2 *2) (-12 (-4 *2 (-365)) (-4 *3 (-1244 *2)) (-4 *4 (-1244 (-410 *3))) (-4 *1 (-337 *2 *3 *4 *5)) (-4 *5 (-344 *2 *3 *4)))) (-3477 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-567)) (-4 *2 (-365)) (-4 *4 (-1244 *2)) (-4 *5 (-1244 (-410 *4))) (-4 *1 (-337 *2 *4 *5 *6)) (-4 *6 (-344 *2 *4 *5)))) (-2532 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))) (-4 *6 (-344 *3 *4 *5)) (-5 *2 (-2 (|:| -3979 (-416 *4 (-410 *4) *5 *6)) (|:| |principalPart| *6))))) (-2477 (*1 *1 *1) (-12 (-4 *1 (-337 *2 *3 *4 *5)) (-4 *2 (-365)) (-4 *3 (-1244 *2)) (-4 *4 (-1244 (-410 *3))) (-4 *5 (-344 *2 *3 *4)))) (-1500 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))) (-4 *6 (-344 *3 *4 *5)) (-5 *2 (-112)))) (-1398 (*1 *2 *1) (|partial| -12 (-4 *1 (-337 *3 *4 *5 *2)) (-4 *3 (-365)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))) (-4 *2 (-344 *3 *4 *5)))) (-3477 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-365)) (-4 *3 (-1244 *4)) (-4 *5 (-1244 (-410 *3))) (-4 *1 (-337 *4 *3 *5 *2)) (-4 *2 (-344 *4 *3 *5)))))
-(-13 (-21) (-10 -8 (-15 -1321 ((-416 |t#2| (-410 |t#2|) |t#3| |t#4|) $)) (-15 -3477 ($ (-416 |t#2| (-410 |t#2|) |t#3| |t#4|))) (-15 -3477 ($ |t#4|)) (-15 -3477 ($ |t#1| |t#1|)) (-15 -3477 ($ |t#1| |t#1| (-567))) (-15 -2532 ((-2 (|:| -3979 (-416 |t#2| (-410 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -2477 ($ $)) (-15 -1500 ((-112) $)) (-15 -1398 ((-3 |t#4| "failed") $)) (-15 -3477 ($ |t#4| |t#2| |t#2| |t#2| |t#1|))))
+((-2144 (*1 *2) (-12 (-4 *3 (-365)) (-5 *2 (-1269 *1)) (-4 *1 (-330 *3)))) (-2144 (*1 *2 *3) (-12 (-5 *3 (-923)) (-4 *4 (-365)) (-5 *2 (-1269 *1)) (-4 *1 (-330 *4)))) (-3088 (*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-1269 *3)))) (-3088 (*1 *2 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-330 *4)) (-4 *4 (-365)) (-5 *2 (-690 *4)))) (-3111 (*1 *1 *2) (-12 (-5 *2 (-1269 *3)) (-4 *3 (-365)) (-4 *1 (-330 *3)))) (-1914 (*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-1175 *3)))) (-3169 (*1 *2) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-1175 *3)))) (-2845 (*1 *2) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-923)))) (-3104 (*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-923)))) (-2724 (*1 *2 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-365)))) (-4293 (*1 *2 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-365)))) (-1914 (*1 *2 *1 *3) (-12 (-5 *3 (-923)) (-4 *4 (-370)) (-4 *4 (-365)) (-5 *2 (-1175 *1)) (-4 *1 (-330 *4)))) (-2724 (*1 *1 *1 *2) (-12 (-5 *2 (-923)) (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)))) (-4293 (*1 *1 *1 *2) (-12 (-5 *2 (-923)) (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)))) (-2230 (*1 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-370)) (-4 *2 (-365)))) (-2092 (*1 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-370)) (-4 *2 (-365)))) (-1897 (*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) (-5 *2 (-112)))) (-1399 (*1 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-370)) (-4 *2 (-365)))) (-1321 (*1 *1 *1 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-370)) (-4 *1 (-330 *3)) (-4 *3 (-365)))) (-3038 (*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) (-5 *2 (-1175 *3)))) (-2030 (*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) (-5 *2 (-1175 *3)))) (-2030 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) (-5 *2 (-1175 *3)))))
+(-13 (-1288 |t#1|) (-1040 |t#1|) (-10 -8 (-15 -2144 ((-1269 $))) (-15 -2144 ((-1269 $) (-923))) (-15 -3088 ((-1269 |t#1|) $)) (-15 -3088 ((-690 |t#1|) (-1269 $))) (-15 -3111 ($ (-1269 |t#1|))) (-15 -1914 ((-1175 |t#1|) $)) (-15 -3169 ((-1175 |t#1|))) (-15 -2845 ((-923))) (-15 -3104 ((-923) $)) (-15 -2724 (|t#1| $)) (-15 -4293 (|t#1| $)) (IF (|has| |t#1| (-370)) (PROGN (-6 (-351)) (-15 -1914 ((-1175 $) $ (-923))) (-15 -2724 ($ $ (-923))) (-15 -4293 ($ $ (-923))) (-15 -2230 ($)) (-15 -2092 ($)) (-15 -1897 ((-112) $)) (-15 -1399 ($)) (-15 -1321 ($ $ (-1175 |t#1|))) (-15 -3038 ((-1175 |t#1|) $)) (-15 -2030 ((-1175 |t#1|) $)) (-15 -2030 ((-3 (-1175 |t#1|) "failed") $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2811 (|has| |#1| (-370)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-617 #0#) . T) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-233) |has| |#1| (-370)) ((-243) . T) ((-291) . T) ((-308) . T) ((-1288 |#1|) . T) ((-365) . T) ((-405) -2811 (|has| |#1| (-370)) (|has| |#1| (-145))) ((-370) |has| |#1| (-370)) ((-351) |has| |#1| (-370)) ((-455) . T) ((-559) . T) ((-647 #0#) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) . T) ((-641 |#1|) . T) ((-641 $) . T) ((-718 #0#) . T) ((-718 |#1|) . T) ((-718 $) . T) ((-727) . T) ((-922) . T) ((-1040 |#1|) . T) ((-1053 #0#) . T) ((-1053 |#1|) . T) ((-1053 $) . T) ((-1058 #0#) . T) ((-1058 |#1|) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1154) |has| |#1| (-370)) ((-1223) . T) ((-1276 |#1|) . T))
+((-2412 (((-112) $ $) NIL)) (-4319 (($ (-1178) $) 104)) (-2086 (($) 93)) (-2014 (((-1122) (-1122)) 9)) (-1350 (($) 94)) (-4331 (($) 108) (($ (-317 (-700))) 116) (($ (-317 (-702))) 112) (($ (-317 (-695))) 120) (($ (-317 (-381))) 127) (($ (-317 (-567))) 123) (($ (-317 (-169 (-381)))) 131)) (-1426 (($ (-1178) $) 105)) (-3790 (($ (-645 (-863))) 95)) (-1310 (((-1274) $) 91)) (-2815 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 35)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-3938 (($ (-1122)) 60)) (-1393 (((-1106) $) 32)) (-3087 (($ (-1094 (-954 (-567))) $) 101) (($ (-1094 (-954 (-567))) (-954 (-567)) $) 102)) (-2559 (($ (-1122)) 103)) (-2333 (($ (-1178) $) 133) (($ (-1178) $ $) 134)) (-2332 (($ (-1179) (-645 (-1179))) 92)) (-1608 (($ (-1161)) 98) (($ (-645 (-1161))) 96)) (-4129 (((-863) $) 136)) (-1814 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1179)) (|:| |arrayIndex| (-645 (-954 (-567)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3612 (-863)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1179)) (|:| |rand| (-863)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1178)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3885 (-112)) (|:| -3812 (-2 (|:| |ints2Floats?| (-112)) (|:| -3612 (-863)))))) (|:| |blockBranch| (-645 $)) (|:| |commentBranch| (-645 (-1161))) (|:| |callBranch| (-1161)) (|:| |forBranch| (-2 (|:| -2408 (-1094 (-954 (-567)))) (|:| |span| (-954 (-567))) (|:| -2017 $))) (|:| |labelBranch| (-1122)) (|:| |loopBranch| (-2 (|:| |switch| (-1178)) (|:| -2017 $))) (|:| |commonBranch| (-2 (|:| -2007 (-1179)) (|:| |contents| (-645 (-1179))))) (|:| |printBranch| (-645 (-863)))) $) 51)) (-4283 (($ (-1161)) 205)) (-1828 (($ (-645 $)) 132)) (-3357 (((-112) $ $) NIL)) (-3873 (($ (-1179) (-1161)) 138) (($ (-1179) (-317 (-702))) 178) (($ (-1179) (-317 (-700))) 179) (($ (-1179) (-317 (-695))) 180) (($ (-1179) (-690 (-702))) 141) (($ (-1179) (-690 (-700))) 144) (($ (-1179) (-690 (-695))) 147) (($ (-1179) (-1269 (-702))) 150) (($ (-1179) (-1269 (-700))) 153) (($ (-1179) (-1269 (-695))) 156) (($ (-1179) (-690 (-317 (-702)))) 159) (($ (-1179) (-690 (-317 (-700)))) 162) (($ (-1179) (-690 (-317 (-695)))) 165) (($ (-1179) (-1269 (-317 (-702)))) 168) (($ (-1179) (-1269 (-317 (-700)))) 171) (($ (-1179) (-1269 (-317 (-695)))) 174) (($ (-1179) (-645 (-954 (-567))) (-317 (-702))) 175) (($ (-1179) (-645 (-954 (-567))) (-317 (-700))) 176) (($ (-1179) (-645 (-954 (-567))) (-317 (-695))) 177) (($ (-1179) (-317 (-567))) 202) (($ (-1179) (-317 (-381))) 203) (($ (-1179) (-317 (-169 (-381)))) 204) (($ (-1179) (-690 (-317 (-567)))) 183) (($ (-1179) (-690 (-317 (-381)))) 186) (($ (-1179) (-690 (-317 (-169 (-381))))) 189) (($ (-1179) (-1269 (-317 (-567)))) 192) (($ (-1179) (-1269 (-317 (-381)))) 195) (($ (-1179) (-1269 (-317 (-169 (-381))))) 198) (($ (-1179) (-645 (-954 (-567))) (-317 (-567))) 199) (($ (-1179) (-645 (-954 (-567))) (-317 (-381))) 200) (($ (-1179) (-645 (-954 (-567))) (-317 (-169 (-381)))) 201)) (-2946 (((-112) $ $) NIL)))
+(((-331) (-13 (-1102) (-10 -8 (-15 -3087 ($ (-1094 (-954 (-567))) $)) (-15 -3087 ($ (-1094 (-954 (-567))) (-954 (-567)) $)) (-15 -4319 ($ (-1178) $)) (-15 -1426 ($ (-1178) $)) (-15 -3938 ($ (-1122))) (-15 -2559 ($ (-1122))) (-15 -1608 ($ (-1161))) (-15 -1608 ($ (-645 (-1161)))) (-15 -4283 ($ (-1161))) (-15 -4331 ($)) (-15 -4331 ($ (-317 (-700)))) (-15 -4331 ($ (-317 (-702)))) (-15 -4331 ($ (-317 (-695)))) (-15 -4331 ($ (-317 (-381)))) (-15 -4331 ($ (-317 (-567)))) (-15 -4331 ($ (-317 (-169 (-381))))) (-15 -2333 ($ (-1178) $)) (-15 -2333 ($ (-1178) $ $)) (-15 -3873 ($ (-1179) (-1161))) (-15 -3873 ($ (-1179) (-317 (-702)))) (-15 -3873 ($ (-1179) (-317 (-700)))) (-15 -3873 ($ (-1179) (-317 (-695)))) (-15 -3873 ($ (-1179) (-690 (-702)))) (-15 -3873 ($ (-1179) (-690 (-700)))) (-15 -3873 ($ (-1179) (-690 (-695)))) (-15 -3873 ($ (-1179) (-1269 (-702)))) (-15 -3873 ($ (-1179) (-1269 (-700)))) (-15 -3873 ($ (-1179) (-1269 (-695)))) (-15 -3873 ($ (-1179) (-690 (-317 (-702))))) (-15 -3873 ($ (-1179) (-690 (-317 (-700))))) (-15 -3873 ($ (-1179) (-690 (-317 (-695))))) (-15 -3873 ($ (-1179) (-1269 (-317 (-702))))) (-15 -3873 ($ (-1179) (-1269 (-317 (-700))))) (-15 -3873 ($ (-1179) (-1269 (-317 (-695))))) (-15 -3873 ($ (-1179) (-645 (-954 (-567))) (-317 (-702)))) (-15 -3873 ($ (-1179) (-645 (-954 (-567))) (-317 (-700)))) (-15 -3873 ($ (-1179) (-645 (-954 (-567))) (-317 (-695)))) (-15 -3873 ($ (-1179) (-317 (-567)))) (-15 -3873 ($ (-1179) (-317 (-381)))) (-15 -3873 ($ (-1179) (-317 (-169 (-381))))) (-15 -3873 ($ (-1179) (-690 (-317 (-567))))) (-15 -3873 ($ (-1179) (-690 (-317 (-381))))) (-15 -3873 ($ (-1179) (-690 (-317 (-169 (-381)))))) (-15 -3873 ($ (-1179) (-1269 (-317 (-567))))) (-15 -3873 ($ (-1179) (-1269 (-317 (-381))))) (-15 -3873 ($ (-1179) (-1269 (-317 (-169 (-381)))))) (-15 -3873 ($ (-1179) (-645 (-954 (-567))) (-317 (-567)))) (-15 -3873 ($ (-1179) (-645 (-954 (-567))) (-317 (-381)))) (-15 -3873 ($ (-1179) (-645 (-954 (-567))) (-317 (-169 (-381))))) (-15 -1828 ($ (-645 $))) (-15 -2086 ($)) (-15 -1350 ($)) (-15 -3790 ($ (-645 (-863)))) (-15 -2332 ($ (-1179) (-645 (-1179)))) (-15 -2815 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1814 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1179)) (|:| |arrayIndex| (-645 (-954 (-567)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3612 (-863)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1179)) (|:| |rand| (-863)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1178)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3885 (-112)) (|:| -3812 (-2 (|:| |ints2Floats?| (-112)) (|:| -3612 (-863)))))) (|:| |blockBranch| (-645 $)) (|:| |commentBranch| (-645 (-1161))) (|:| |callBranch| (-1161)) (|:| |forBranch| (-2 (|:| -2408 (-1094 (-954 (-567)))) (|:| |span| (-954 (-567))) (|:| -2017 $))) (|:| |labelBranch| (-1122)) (|:| |loopBranch| (-2 (|:| |switch| (-1178)) (|:| -2017 $))) (|:| |commonBranch| (-2 (|:| -2007 (-1179)) (|:| |contents| (-645 (-1179))))) (|:| |printBranch| (-645 (-863)))) $)) (-15 -1310 ((-1274) $)) (-15 -1393 ((-1106) $)) (-15 -2014 ((-1122) (-1122)))))) (T -331))
+((-3087 (*1 *1 *2 *1) (-12 (-5 *2 (-1094 (-954 (-567)))) (-5 *1 (-331)))) (-3087 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1094 (-954 (-567)))) (-5 *3 (-954 (-567))) (-5 *1 (-331)))) (-4319 (*1 *1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-331)))) (-1426 (*1 *1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-331)))) (-3938 (*1 *1 *2) (-12 (-5 *2 (-1122)) (-5 *1 (-331)))) (-2559 (*1 *1 *2) (-12 (-5 *2 (-1122)) (-5 *1 (-331)))) (-1608 (*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-331)))) (-1608 (*1 *1 *2) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-331)))) (-4283 (*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-331)))) (-4331 (*1 *1) (-5 *1 (-331))) (-4331 (*1 *1 *2) (-12 (-5 *2 (-317 (-700))) (-5 *1 (-331)))) (-4331 (*1 *1 *2) (-12 (-5 *2 (-317 (-702))) (-5 *1 (-331)))) (-4331 (*1 *1 *2) (-12 (-5 *2 (-317 (-695))) (-5 *1 (-331)))) (-4331 (*1 *1 *2) (-12 (-5 *2 (-317 (-381))) (-5 *1 (-331)))) (-4331 (*1 *1 *2) (-12 (-5 *2 (-317 (-567))) (-5 *1 (-331)))) (-4331 (*1 *1 *2) (-12 (-5 *2 (-317 (-169 (-381)))) (-5 *1 (-331)))) (-2333 (*1 *1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-331)))) (-2333 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-331)))) (-3873 (*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-1161)) (-5 *1 (-331)))) (-3873 (*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-317 (-702))) (-5 *1 (-331)))) (-3873 (*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-317 (-700))) (-5 *1 (-331)))) (-3873 (*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-317 (-695))) (-5 *1 (-331)))) (-3873 (*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-690 (-702))) (-5 *1 (-331)))) (-3873 (*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-690 (-700))) (-5 *1 (-331)))) (-3873 (*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-690 (-695))) (-5 *1 (-331)))) (-3873 (*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-1269 (-702))) (-5 *1 (-331)))) (-3873 (*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-1269 (-700))) (-5 *1 (-331)))) (-3873 (*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-1269 (-695))) (-5 *1 (-331)))) (-3873 (*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-690 (-317 (-702)))) (-5 *1 (-331)))) (-3873 (*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-690 (-317 (-700)))) (-5 *1 (-331)))) (-3873 (*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-690 (-317 (-695)))) (-5 *1 (-331)))) (-3873 (*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-1269 (-317 (-702)))) (-5 *1 (-331)))) (-3873 (*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-1269 (-317 (-700)))) (-5 *1 (-331)))) (-3873 (*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-1269 (-317 (-695)))) (-5 *1 (-331)))) (-3873 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1179)) (-5 *3 (-645 (-954 (-567)))) (-5 *4 (-317 (-702))) (-5 *1 (-331)))) (-3873 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1179)) (-5 *3 (-645 (-954 (-567)))) (-5 *4 (-317 (-700))) (-5 *1 (-331)))) (-3873 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1179)) (-5 *3 (-645 (-954 (-567)))) (-5 *4 (-317 (-695))) (-5 *1 (-331)))) (-3873 (*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-317 (-567))) (-5 *1 (-331)))) (-3873 (*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-317 (-381))) (-5 *1 (-331)))) (-3873 (*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-317 (-169 (-381)))) (-5 *1 (-331)))) (-3873 (*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-690 (-317 (-567)))) (-5 *1 (-331)))) (-3873 (*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-690 (-317 (-381)))) (-5 *1 (-331)))) (-3873 (*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-690 (-317 (-169 (-381))))) (-5 *1 (-331)))) (-3873 (*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-1269 (-317 (-567)))) (-5 *1 (-331)))) (-3873 (*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-1269 (-317 (-381)))) (-5 *1 (-331)))) (-3873 (*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-1269 (-317 (-169 (-381))))) (-5 *1 (-331)))) (-3873 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1179)) (-5 *3 (-645 (-954 (-567)))) (-5 *4 (-317 (-567))) (-5 *1 (-331)))) (-3873 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1179)) (-5 *3 (-645 (-954 (-567)))) (-5 *4 (-317 (-381))) (-5 *1 (-331)))) (-3873 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1179)) (-5 *3 (-645 (-954 (-567)))) (-5 *4 (-317 (-169 (-381)))) (-5 *1 (-331)))) (-1828 (*1 *1 *2) (-12 (-5 *2 (-645 (-331))) (-5 *1 (-331)))) (-2086 (*1 *1) (-5 *1 (-331))) (-1350 (*1 *1) (-5 *1 (-331))) (-3790 (*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-331)))) (-2332 (*1 *1 *2 *3) (-12 (-5 *3 (-645 (-1179))) (-5 *2 (-1179)) (-5 *1 (-331)))) (-2815 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-331)))) (-1814 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1179)) (|:| |arrayIndex| (-645 (-954 (-567)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3612 (-863)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1179)) (|:| |rand| (-863)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1178)) (|:| |thenClause| (-331)) (|:| |elseClause| (-331)))) (|:| |returnBranch| (-2 (|:| -3885 (-112)) (|:| -3812 (-2 (|:| |ints2Floats?| (-112)) (|:| -3612 (-863)))))) (|:| |blockBranch| (-645 (-331))) (|:| |commentBranch| (-645 (-1161))) (|:| |callBranch| (-1161)) (|:| |forBranch| (-2 (|:| -2408 (-1094 (-954 (-567)))) (|:| |span| (-954 (-567))) (|:| -2017 (-331)))) (|:| |labelBranch| (-1122)) (|:| |loopBranch| (-2 (|:| |switch| (-1178)) (|:| -2017 (-331)))) (|:| |commonBranch| (-2 (|:| -2007 (-1179)) (|:| |contents| (-645 (-1179))))) (|:| |printBranch| (-645 (-863))))) (-5 *1 (-331)))) (-1310 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-331)))) (-1393 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-331)))) (-2014 (*1 *2 *2) (-12 (-5 *2 (-1122)) (-5 *1 (-331)))))
+(-13 (-1102) (-10 -8 (-15 -3087 ($ (-1094 (-954 (-567))) $)) (-15 -3087 ($ (-1094 (-954 (-567))) (-954 (-567)) $)) (-15 -4319 ($ (-1178) $)) (-15 -1426 ($ (-1178) $)) (-15 -3938 ($ (-1122))) (-15 -2559 ($ (-1122))) (-15 -1608 ($ (-1161))) (-15 -1608 ($ (-645 (-1161)))) (-15 -4283 ($ (-1161))) (-15 -4331 ($)) (-15 -4331 ($ (-317 (-700)))) (-15 -4331 ($ (-317 (-702)))) (-15 -4331 ($ (-317 (-695)))) (-15 -4331 ($ (-317 (-381)))) (-15 -4331 ($ (-317 (-567)))) (-15 -4331 ($ (-317 (-169 (-381))))) (-15 -2333 ($ (-1178) $)) (-15 -2333 ($ (-1178) $ $)) (-15 -3873 ($ (-1179) (-1161))) (-15 -3873 ($ (-1179) (-317 (-702)))) (-15 -3873 ($ (-1179) (-317 (-700)))) (-15 -3873 ($ (-1179) (-317 (-695)))) (-15 -3873 ($ (-1179) (-690 (-702)))) (-15 -3873 ($ (-1179) (-690 (-700)))) (-15 -3873 ($ (-1179) (-690 (-695)))) (-15 -3873 ($ (-1179) (-1269 (-702)))) (-15 -3873 ($ (-1179) (-1269 (-700)))) (-15 -3873 ($ (-1179) (-1269 (-695)))) (-15 -3873 ($ (-1179) (-690 (-317 (-702))))) (-15 -3873 ($ (-1179) (-690 (-317 (-700))))) (-15 -3873 ($ (-1179) (-690 (-317 (-695))))) (-15 -3873 ($ (-1179) (-1269 (-317 (-702))))) (-15 -3873 ($ (-1179) (-1269 (-317 (-700))))) (-15 -3873 ($ (-1179) (-1269 (-317 (-695))))) (-15 -3873 ($ (-1179) (-645 (-954 (-567))) (-317 (-702)))) (-15 -3873 ($ (-1179) (-645 (-954 (-567))) (-317 (-700)))) (-15 -3873 ($ (-1179) (-645 (-954 (-567))) (-317 (-695)))) (-15 -3873 ($ (-1179) (-317 (-567)))) (-15 -3873 ($ (-1179) (-317 (-381)))) (-15 -3873 ($ (-1179) (-317 (-169 (-381))))) (-15 -3873 ($ (-1179) (-690 (-317 (-567))))) (-15 -3873 ($ (-1179) (-690 (-317 (-381))))) (-15 -3873 ($ (-1179) (-690 (-317 (-169 (-381)))))) (-15 -3873 ($ (-1179) (-1269 (-317 (-567))))) (-15 -3873 ($ (-1179) (-1269 (-317 (-381))))) (-15 -3873 ($ (-1179) (-1269 (-317 (-169 (-381)))))) (-15 -3873 ($ (-1179) (-645 (-954 (-567))) (-317 (-567)))) (-15 -3873 ($ (-1179) (-645 (-954 (-567))) (-317 (-381)))) (-15 -3873 ($ (-1179) (-645 (-954 (-567))) (-317 (-169 (-381))))) (-15 -1828 ($ (-645 $))) (-15 -2086 ($)) (-15 -1350 ($)) (-15 -3790 ($ (-645 (-863)))) (-15 -2332 ($ (-1179) (-645 (-1179)))) (-15 -2815 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1814 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1179)) (|:| |arrayIndex| (-645 (-954 (-567)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3612 (-863)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1179)) (|:| |rand| (-863)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1178)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3885 (-112)) (|:| -3812 (-2 (|:| |ints2Floats?| (-112)) (|:| -3612 (-863)))))) (|:| |blockBranch| (-645 $)) (|:| |commentBranch| (-645 (-1161))) (|:| |callBranch| (-1161)) (|:| |forBranch| (-2 (|:| -2408 (-1094 (-954 (-567)))) (|:| |span| (-954 (-567))) (|:| -2017 $))) (|:| |labelBranch| (-1122)) (|:| |loopBranch| (-2 (|:| |switch| (-1178)) (|:| -2017 $))) (|:| |commonBranch| (-2 (|:| -2007 (-1179)) (|:| |contents| (-645 (-1179))))) (|:| |printBranch| (-645 (-863)))) $)) (-15 -1310 ((-1274) $)) (-15 -1393 ((-1106) $)) (-15 -2014 ((-1122) (-1122)))))
+((-2412 (((-112) $ $) NIL)) (-2127 (((-112) $) 13)) (-3008 (($ |#1|) 10)) (-1365 (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-3021 (($ |#1|) 12)) (-4129 (((-863) $) 19)) (-3357 (((-112) $ $) NIL)) (-3189 ((|#1| $) 14)) (-3004 (((-112) $ $) NIL)) (-2980 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2993 (((-112) $ $) NIL)) (-2968 (((-112) $ $) 21)))
+(((-332 |#1|) (-13 (-851) (-10 -8 (-15 -3008 ($ |#1|)) (-15 -3021 ($ |#1|)) (-15 -2127 ((-112) $)) (-15 -3189 (|#1| $)))) (-851)) (T -332))
+((-3008 (*1 *1 *2) (-12 (-5 *1 (-332 *2)) (-4 *2 (-851)))) (-3021 (*1 *1 *2) (-12 (-5 *1 (-332 *2)) (-4 *2 (-851)))) (-2127 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-332 *3)) (-4 *3 (-851)))) (-3189 (*1 *2 *1) (-12 (-5 *1 (-332 *2)) (-4 *2 (-851)))))
+(-13 (-851) (-10 -8 (-15 -3008 ($ |#1|)) (-15 -3021 ($ |#1|)) (-15 -2127 ((-112) $)) (-15 -3189 (|#1| $))))
+((-1444 (((-331) (-1179) (-954 (-567))) 23)) (-3112 (((-331) (-1179) (-954 (-567))) 27)) (-3571 (((-331) (-1179) (-1094 (-954 (-567))) (-1094 (-954 (-567)))) 26) (((-331) (-1179) (-954 (-567)) (-954 (-567))) 24)) (-4330 (((-331) (-1179) (-954 (-567))) 31)))
+(((-333) (-10 -7 (-15 -1444 ((-331) (-1179) (-954 (-567)))) (-15 -3571 ((-331) (-1179) (-954 (-567)) (-954 (-567)))) (-15 -3571 ((-331) (-1179) (-1094 (-954 (-567))) (-1094 (-954 (-567))))) (-15 -3112 ((-331) (-1179) (-954 (-567)))) (-15 -4330 ((-331) (-1179) (-954 (-567)))))) (T -333))
+((-4330 (*1 *2 *3 *4) (-12 (-5 *3 (-1179)) (-5 *4 (-954 (-567))) (-5 *2 (-331)) (-5 *1 (-333)))) (-3112 (*1 *2 *3 *4) (-12 (-5 *3 (-1179)) (-5 *4 (-954 (-567))) (-5 *2 (-331)) (-5 *1 (-333)))) (-3571 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1179)) (-5 *4 (-1094 (-954 (-567)))) (-5 *2 (-331)) (-5 *1 (-333)))) (-3571 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1179)) (-5 *4 (-954 (-567))) (-5 *2 (-331)) (-5 *1 (-333)))) (-1444 (*1 *2 *3 *4) (-12 (-5 *3 (-1179)) (-5 *4 (-954 (-567))) (-5 *2 (-331)) (-5 *1 (-333)))))
+(-10 -7 (-15 -1444 ((-331) (-1179) (-954 (-567)))) (-15 -3571 ((-331) (-1179) (-954 (-567)) (-954 (-567)))) (-15 -3571 ((-331) (-1179) (-1094 (-954 (-567))) (-1094 (-954 (-567))))) (-15 -3112 ((-331) (-1179) (-954 (-567)))) (-15 -4330 ((-331) (-1179) (-954 (-567)))))
+((-2412 (((-112) $ $) NIL)) (-2927 (((-509) $) 20)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4095 (((-960 (-772)) $) 18)) (-3758 (((-250) $) 7)) (-4129 (((-863) $) 26)) (-1545 (((-960 (-183 (-139))) $) 16)) (-3357 (((-112) $ $) NIL)) (-4317 (((-645 (-874 (-1184) (-772))) $) 12)) (-2946 (((-112) $ $) 22)))
+(((-334) (-13 (-1102) (-10 -8 (-15 -3758 ((-250) $)) (-15 -4317 ((-645 (-874 (-1184) (-772))) $)) (-15 -4095 ((-960 (-772)) $)) (-15 -1545 ((-960 (-183 (-139))) $)) (-15 -2927 ((-509) $))))) (T -334))
+((-3758 (*1 *2 *1) (-12 (-5 *2 (-250)) (-5 *1 (-334)))) (-4317 (*1 *2 *1) (-12 (-5 *2 (-645 (-874 (-1184) (-772)))) (-5 *1 (-334)))) (-4095 (*1 *2 *1) (-12 (-5 *2 (-960 (-772))) (-5 *1 (-334)))) (-1545 (*1 *2 *1) (-12 (-5 *2 (-960 (-183 (-139)))) (-5 *1 (-334)))) (-2927 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-334)))))
+(-13 (-1102) (-10 -8 (-15 -3758 ((-250) $)) (-15 -4317 ((-645 (-874 (-1184) (-772))) $)) (-15 -4095 ((-960 (-772)) $)) (-15 -1545 ((-960 (-183 (-139))) $)) (-15 -2927 ((-509) $))))
+((-3841 (((-338 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-338 |#1| |#2| |#3| |#4|)) 33)))
+(((-335 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3841 ((-338 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-338 |#1| |#2| |#3| |#4|)))) (-365) (-1245 |#1|) (-1245 (-410 |#2|)) (-344 |#1| |#2| |#3|) (-365) (-1245 |#5|) (-1245 (-410 |#6|)) (-344 |#5| |#6| |#7|)) (T -335))
+((-3841 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-338 *5 *6 *7 *8)) (-4 *5 (-365)) (-4 *6 (-1245 *5)) (-4 *7 (-1245 (-410 *6))) (-4 *8 (-344 *5 *6 *7)) (-4 *9 (-365)) (-4 *10 (-1245 *9)) (-4 *11 (-1245 (-410 *10))) (-5 *2 (-338 *9 *10 *11 *12)) (-5 *1 (-335 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-344 *9 *10 *11)))))
+(-10 -7 (-15 -3841 ((-338 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-338 |#1| |#2| |#3| |#4|))))
+((-3384 (((-112) $) 14)))
+(((-336 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3384 ((-112) |#1|))) (-337 |#2| |#3| |#4| |#5|) (-365) (-1245 |#2|) (-1245 (-410 |#3|)) (-344 |#2| |#3| |#4|)) (T -336))
+NIL
+(-10 -8 (-15 -3384 ((-112) |#1|)))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-2376 (((-3 $ "failed") $ $) 20)) (-3647 (($) 18 T CONST)) (-2494 (($ $) 29)) (-3384 (((-112) $) 28)) (-2516 (((-1161) $) 10)) (-4090 (((-416 |#2| (-410 |#2|) |#3| |#4|) $) 35)) (-3437 (((-1122) $) 11)) (-1399 (((-3 |#4| "failed") $) 27)) (-1572 (($ (-416 |#2| (-410 |#2|) |#3| |#4|)) 34) (($ |#4|) 33) (($ |#1| |#1|) 32) (($ |#1| |#1| (-567)) 31) (($ |#4| |#2| |#2| |#2| |#1|) 26)) (-2756 (((-2 (|:| -3983 (-416 |#2| (-410 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 30)) (-4129 (((-863) $) 12)) (-3357 (((-112) $ $) 9)) (-1733 (($) 19 T CONST)) (-2946 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24)))
+(((-337 |#1| |#2| |#3| |#4|) (-140) (-365) (-1245 |t#1|) (-1245 (-410 |t#2|)) (-344 |t#1| |t#2| |t#3|)) (T -337))
+((-4090 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-4 *6 (-344 *3 *4 *5)) (-5 *2 (-416 *4 (-410 *4) *5 *6)))) (-1572 (*1 *1 *2) (-12 (-5 *2 (-416 *4 (-410 *4) *5 *6)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-4 *6 (-344 *3 *4 *5)) (-4 *3 (-365)) (-4 *1 (-337 *3 *4 *5 *6)))) (-1572 (*1 *1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-4 *1 (-337 *3 *4 *5 *2)) (-4 *2 (-344 *3 *4 *5)))) (-1572 (*1 *1 *2 *2) (-12 (-4 *2 (-365)) (-4 *3 (-1245 *2)) (-4 *4 (-1245 (-410 *3))) (-4 *1 (-337 *2 *3 *4 *5)) (-4 *5 (-344 *2 *3 *4)))) (-1572 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-567)) (-4 *2 (-365)) (-4 *4 (-1245 *2)) (-4 *5 (-1245 (-410 *4))) (-4 *1 (-337 *2 *4 *5 *6)) (-4 *6 (-344 *2 *4 *5)))) (-2756 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-4 *6 (-344 *3 *4 *5)) (-5 *2 (-2 (|:| -3983 (-416 *4 (-410 *4) *5 *6)) (|:| |principalPart| *6))))) (-2494 (*1 *1 *1) (-12 (-4 *1 (-337 *2 *3 *4 *5)) (-4 *2 (-365)) (-4 *3 (-1245 *2)) (-4 *4 (-1245 (-410 *3))) (-4 *5 (-344 *2 *3 *4)))) (-3384 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-4 *6 (-344 *3 *4 *5)) (-5 *2 (-112)))) (-1399 (*1 *2 *1) (|partial| -12 (-4 *1 (-337 *3 *4 *5 *2)) (-4 *3 (-365)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-4 *2 (-344 *3 *4 *5)))) (-1572 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-365)) (-4 *3 (-1245 *4)) (-4 *5 (-1245 (-410 *3))) (-4 *1 (-337 *4 *3 *5 *2)) (-4 *2 (-344 *4 *3 *5)))))
+(-13 (-21) (-10 -8 (-15 -4090 ((-416 |t#2| (-410 |t#2|) |t#3| |t#4|) $)) (-15 -1572 ($ (-416 |t#2| (-410 |t#2|) |t#3| |t#4|))) (-15 -1572 ($ |t#4|)) (-15 -1572 ($ |t#1| |t#1|)) (-15 -1572 ($ |t#1| |t#1| (-567))) (-15 -2756 ((-2 (|:| -3983 (-416 |t#2| (-410 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -2494 ($ $)) (-15 -3384 ((-112) $)) (-15 -1399 ((-3 |t#4| "failed") $)) (-15 -1572 ($ |t#4| |t#2| |t#2| |t#2| |t#1|))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-1102) . T))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2585 (($) NIL T CONST)) (-2477 (($ $) 33)) (-1500 (((-112) $) NIL)) (-1419 (((-1160) $) NIL)) (-1881 (((-1268 |#4|) $) 135)) (-1321 (((-416 |#2| (-410 |#2|) |#3| |#4|) $) 31)) (-3430 (((-1122) $) NIL)) (-1398 (((-3 |#4| "failed") $) 36)) (-4374 (((-1268 |#4|) $) 127)) (-3477 (($ (-416 |#2| (-410 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-567)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-2532 (((-2 (|:| -3979 (-416 |#2| (-410 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-4132 (((-863) $) 17)) (-1745 (((-112) $ $) NIL)) (-1716 (($) 14 T CONST)) (-2936 (((-112) $ $) 20)) (-3045 (($ $) 27) (($ $ $) NIL)) (-3033 (($ $ $) 25)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 23)))
-(((-338 |#1| |#2| |#3| |#4|) (-13 (-337 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4374 ((-1268 |#4|) $)) (-15 -1881 ((-1268 |#4|) $)))) (-365) (-1244 |#1|) (-1244 (-410 |#2|)) (-344 |#1| |#2| |#3|)) (T -338))
-((-4374 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))) (-5 *2 (-1268 *6)) (-5 *1 (-338 *3 *4 *5 *6)) (-4 *6 (-344 *3 *4 *5)))) (-1881 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))) (-5 *2 (-1268 *6)) (-5 *1 (-338 *3 *4 *5 *6)) (-4 *6 (-344 *3 *4 *5)))))
-(-13 (-337 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4374 ((-1268 |#4|) $)) (-15 -1881 ((-1268 |#4|) $))))
-((-2631 (($ $ (-1178) |#2|) NIL) (($ $ (-645 (-1178)) (-645 |#2|)) 20) (($ $ (-645 (-295 |#2|))) 15) (($ $ (-295 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-645 |#2|) (-645 |#2|)) NIL)) (-1787 (($ $ |#2|) 11)))
-(((-339 |#1| |#2|) (-10 -8 (-15 -1787 (|#1| |#1| |#2|)) (-15 -2631 (|#1| |#1| (-645 |#2|) (-645 |#2|))) (-15 -2631 (|#1| |#1| |#2| |#2|)) (-15 -2631 (|#1| |#1| (-295 |#2|))) (-15 -2631 (|#1| |#1| (-645 (-295 |#2|)))) (-15 -2631 (|#1| |#1| (-645 (-1178)) (-645 |#2|))) (-15 -2631 (|#1| |#1| (-1178) |#2|))) (-340 |#2|) (-1102)) (T -339))
-NIL
-(-10 -8 (-15 -1787 (|#1| |#1| |#2|)) (-15 -2631 (|#1| |#1| (-645 |#2|) (-645 |#2|))) (-15 -2631 (|#1| |#1| |#2| |#2|)) (-15 -2631 (|#1| |#1| (-295 |#2|))) (-15 -2631 (|#1| |#1| (-645 (-295 |#2|)))) (-15 -2631 (|#1| |#1| (-645 (-1178)) (-645 |#2|))) (-15 -2631 (|#1| |#1| (-1178) |#2|)))
-((-3829 (($ (-1 |#1| |#1|) $) 6)) (-2631 (($ $ (-1178) |#1|) 17 (|has| |#1| (-517 (-1178) |#1|))) (($ $ (-645 (-1178)) (-645 |#1|)) 16 (|has| |#1| (-517 (-1178) |#1|))) (($ $ (-645 (-295 |#1|))) 15 (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) 14 (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-310 |#1|))) (($ $ (-645 |#1|) (-645 |#1|)) 12 (|has| |#1| (-310 |#1|)))) (-1787 (($ $ |#1|) 11 (|has| |#1| (-287 |#1| |#1|)))))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-2376 (((-3 $ "failed") $ $) NIL)) (-3647 (($) NIL T CONST)) (-2494 (($ $) 33)) (-3384 (((-112) $) NIL)) (-2516 (((-1161) $) NIL)) (-1633 (((-1269 |#4|) $) 135)) (-4090 (((-416 |#2| (-410 |#2|) |#3| |#4|) $) 31)) (-3437 (((-1122) $) NIL)) (-1399 (((-3 |#4| "failed") $) 36)) (-1753 (((-1269 |#4|) $) 127)) (-1572 (($ (-416 |#2| (-410 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-567)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-2756 (((-2 (|:| -3983 (-416 |#2| (-410 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-4129 (((-863) $) 17)) (-3357 (((-112) $ $) NIL)) (-1733 (($) 14 T CONST)) (-2946 (((-112) $ $) 20)) (-3053 (($ $) 27) (($ $ $) NIL)) (-3041 (($ $ $) 25)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 23)))
+(((-338 |#1| |#2| |#3| |#4|) (-13 (-337 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1753 ((-1269 |#4|) $)) (-15 -1633 ((-1269 |#4|) $)))) (-365) (-1245 |#1|) (-1245 (-410 |#2|)) (-344 |#1| |#2| |#3|)) (T -338))
+((-1753 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-1269 *6)) (-5 *1 (-338 *3 *4 *5 *6)) (-4 *6 (-344 *3 *4 *5)))) (-1633 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-1269 *6)) (-5 *1 (-338 *3 *4 *5 *6)) (-4 *6 (-344 *3 *4 *5)))))
+(-13 (-337 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1753 ((-1269 |#4|) $)) (-15 -1633 ((-1269 |#4|) $))))
+((-2642 (($ $ (-1179) |#2|) NIL) (($ $ (-645 (-1179)) (-645 |#2|)) 20) (($ $ (-645 (-295 |#2|))) 15) (($ $ (-295 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-645 |#2|) (-645 |#2|)) NIL)) (-1801 (($ $ |#2|) 11)))
+(((-339 |#1| |#2|) (-10 -8 (-15 -1801 (|#1| |#1| |#2|)) (-15 -2642 (|#1| |#1| (-645 |#2|) (-645 |#2|))) (-15 -2642 (|#1| |#1| |#2| |#2|)) (-15 -2642 (|#1| |#1| (-295 |#2|))) (-15 -2642 (|#1| |#1| (-645 (-295 |#2|)))) (-15 -2642 (|#1| |#1| (-645 (-1179)) (-645 |#2|))) (-15 -2642 (|#1| |#1| (-1179) |#2|))) (-340 |#2|) (-1102)) (T -339))
+NIL
+(-10 -8 (-15 -1801 (|#1| |#1| |#2|)) (-15 -2642 (|#1| |#1| (-645 |#2|) (-645 |#2|))) (-15 -2642 (|#1| |#1| |#2| |#2|)) (-15 -2642 (|#1| |#1| (-295 |#2|))) (-15 -2642 (|#1| |#1| (-645 (-295 |#2|)))) (-15 -2642 (|#1| |#1| (-645 (-1179)) (-645 |#2|))) (-15 -2642 (|#1| |#1| (-1179) |#2|)))
+((-3841 (($ (-1 |#1| |#1|) $) 6)) (-2642 (($ $ (-1179) |#1|) 17 (|has| |#1| (-517 (-1179) |#1|))) (($ $ (-645 (-1179)) (-645 |#1|)) 16 (|has| |#1| (-517 (-1179) |#1|))) (($ $ (-645 (-295 |#1|))) 15 (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) 14 (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-310 |#1|))) (($ $ (-645 |#1|) (-645 |#1|)) 12 (|has| |#1| (-310 |#1|)))) (-1801 (($ $ |#1|) 11 (|has| |#1| (-287 |#1| |#1|)))))
(((-340 |#1|) (-140) (-1102)) (T -340))
-((-3829 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-340 *3)) (-4 *3 (-1102)))))
-(-13 (-10 -8 (-15 -3829 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-287 |t#1| |t#1|)) (-6 (-287 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-310 |t#1|)) (-6 (-310 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-517 (-1178) |t#1|)) (-6 (-517 (-1178) |t#1|)) |%noBranch|)))
-(((-287 |#1| $) |has| |#1| (-287 |#1| |#1|)) ((-310 |#1|) |has| |#1| (-310 |#1|)) ((-517 (-1178) |#1|) |has| |#1| (-517 (-1178) |#1|)) ((-517 |#1| |#1|) |has| |#1| (-310 |#1|)))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-2847 (((-645 (-1178)) $) NIL)) (-4015 (((-112)) 99) (((-112) (-112)) 100)) (-2566 (((-645 (-613 $)) $) NIL)) (-3146 (($ $) NIL)) (-3012 (($ $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2960 (($ $ (-295 $)) NIL) (($ $ (-645 (-295 $))) NIL) (($ $ (-645 (-613 $)) (-645 $)) NIL)) (-2716 (($ $) NIL)) (-3128 (($ $) NIL)) (-2987 (($ $) NIL)) (-2585 (($) NIL T CONST)) (-3753 (((-3 (-613 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-317 |#3|)) 79) (((-3 $ "failed") (-1178)) 105) (((-3 $ "failed") (-317 (-567))) 67 (|has| |#3| (-1040 (-567)))) (((-3 $ "failed") (-410 (-954 (-567)))) 73 (|has| |#3| (-1040 (-567)))) (((-3 $ "failed") (-954 (-567))) 68 (|has| |#3| (-1040 (-567)))) (((-3 $ "failed") (-317 (-381))) 97 (|has| |#3| (-1040 (-381)))) (((-3 $ "failed") (-410 (-954 (-381)))) 91 (|has| |#3| (-1040 (-381)))) (((-3 $ "failed") (-954 (-381))) 86 (|has| |#3| (-1040 (-381))))) (-2038 (((-613 $) $) NIL) ((|#3| $) NIL) (($ (-317 |#3|)) 80) (($ (-1178)) 106) (($ (-317 (-567))) 69 (|has| |#3| (-1040 (-567)))) (($ (-410 (-954 (-567)))) 74 (|has| |#3| (-1040 (-567)))) (($ (-954 (-567))) 70 (|has| |#3| (-1040 (-567)))) (($ (-317 (-381))) 98 (|has| |#3| (-1040 (-381)))) (($ (-410 (-954 (-381)))) 92 (|has| |#3| (-1040 (-381)))) (($ (-954 (-381))) 88 (|has| |#3| (-1040 (-381))))) (-2109 (((-3 $ "failed") $) NIL)) (-1482 (($) 10)) (-2068 (($ $) NIL) (($ (-645 $)) NIL)) (-2034 (((-645 (-114)) $) NIL)) (-2654 (((-114) (-114)) NIL)) (-1433 (((-112) $) NIL)) (-3837 (((-112) $) NIL (|has| $ (-1040 (-567))))) (-3263 (((-1174 $) (-613 $)) NIL (|has| $ (-1051)))) (-3829 (($ (-1 $ $) (-613 $)) NIL)) (-2700 (((-3 (-613 $) "failed") $) NIL)) (-1703 (($ $) 102)) (-3063 (($ $) NIL)) (-1419 (((-1160) $) NIL)) (-2641 (((-645 (-613 $)) $) NIL)) (-3632 (($ (-114) $) 101) (($ (-114) (-645 $)) NIL)) (-1854 (((-112) $ (-114)) NIL) (((-112) $ (-1178)) NIL)) (-4138 (((-772) $) NIL)) (-3430 (((-1122) $) NIL)) (-3922 (((-112) $ $) NIL) (((-112) $ (-1178)) NIL)) (-3946 (($ $) NIL)) (-2757 (((-112) $) NIL (|has| $ (-1040 (-567))))) (-2631 (($ $ (-613 $) $) NIL) (($ $ (-645 (-613 $)) (-645 $)) NIL) (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-645 (-1178)) (-645 (-1 $ $))) NIL) (($ $ (-645 (-1178)) (-645 (-1 $ (-645 $)))) NIL) (($ $ (-1178) (-1 $ (-645 $))) NIL) (($ $ (-1178) (-1 $ $)) NIL) (($ $ (-645 (-114)) (-645 (-1 $ $))) NIL) (($ $ (-645 (-114)) (-645 (-1 $ (-645 $)))) NIL) (($ $ (-114) (-1 $ (-645 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-1787 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-645 $)) NIL)) (-3241 (($ $) NIL) (($ $ $) NIL)) (-1593 (($ $ (-645 (-1178)) (-645 (-772))) NIL) (($ $ (-1178) (-772)) NIL) (($ $ (-645 (-1178))) NIL) (($ $ (-1178)) NIL)) (-3341 (($ $) NIL (|has| $ (-1051)))) (-3137 (($ $) NIL)) (-2999 (($ $) NIL)) (-4132 (((-863) $) NIL) (($ (-613 $)) NIL) (($ |#3|) NIL) (($ (-567)) NIL) (((-317 |#3|) $) 104)) (-4221 (((-772)) NIL T CONST)) (-1334 (($ $) NIL) (($ (-645 $)) NIL)) (-3797 (((-112) (-114)) NIL)) (-1745 (((-112) $ $) NIL)) (-3084 (($ $) NIL)) (-3062 (($ $) NIL)) (-3074 (($ $) NIL)) (-2219 (($ $) NIL)) (-1716 (($) 103 T CONST)) (-1728 (($) NIL T CONST)) (-2637 (($ $ (-645 (-1178)) (-645 (-772))) NIL) (($ $ (-1178) (-772)) NIL) (($ $ (-645 (-1178))) NIL) (($ $ (-1178)) NIL)) (-2936 (((-112) $ $) NIL)) (-3045 (($ $ $) NIL) (($ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-772)) NIL) (($ $ (-923)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-567) $) NIL) (($ (-772) $) NIL) (($ (-923) $) NIL)))
-(((-341 |#1| |#2| |#3|) (-13 (-303) (-38 |#3|) (-1040 |#3|) (-902 (-1178)) (-10 -8 (-15 -2038 ($ (-317 |#3|))) (-15 -3753 ((-3 $ "failed") (-317 |#3|))) (-15 -2038 ($ (-1178))) (-15 -3753 ((-3 $ "failed") (-1178))) (-15 -4132 ((-317 |#3|) $)) (IF (|has| |#3| (-1040 (-567))) (PROGN (-15 -2038 ($ (-317 (-567)))) (-15 -3753 ((-3 $ "failed") (-317 (-567)))) (-15 -2038 ($ (-410 (-954 (-567))))) (-15 -3753 ((-3 $ "failed") (-410 (-954 (-567))))) (-15 -2038 ($ (-954 (-567)))) (-15 -3753 ((-3 $ "failed") (-954 (-567))))) |%noBranch|) (IF (|has| |#3| (-1040 (-381))) (PROGN (-15 -2038 ($ (-317 (-381)))) (-15 -3753 ((-3 $ "failed") (-317 (-381)))) (-15 -2038 ($ (-410 (-954 (-381))))) (-15 -3753 ((-3 $ "failed") (-410 (-954 (-381))))) (-15 -2038 ($ (-954 (-381)))) (-15 -3753 ((-3 $ "failed") (-954 (-381))))) |%noBranch|) (-15 -2219 ($ $)) (-15 -2716 ($ $)) (-15 -3946 ($ $)) (-15 -3063 ($ $)) (-15 -1703 ($ $)) (-15 -2987 ($ $)) (-15 -2999 ($ $)) (-15 -3012 ($ $)) (-15 -3062 ($ $)) (-15 -3074 ($ $)) (-15 -3084 ($ $)) (-15 -3128 ($ $)) (-15 -3137 ($ $)) (-15 -3146 ($ $)) (-15 -1482 ($)) (-15 -2847 ((-645 (-1178)) $)) (-15 -4015 ((-112))) (-15 -4015 ((-112) (-112))))) (-645 (-1178)) (-645 (-1178)) (-390)) (T -341))
-((-2038 (*1 *1 *2) (-12 (-5 *2 (-317 *5)) (-4 *5 (-390)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-645 (-1178))) (-14 *4 (-645 (-1178))))) (-3753 (*1 *1 *2) (|partial| -12 (-5 *2 (-317 *5)) (-4 *5 (-390)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-645 (-1178))) (-14 *4 (-645 (-1178))))) (-2038 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-645 *2)) (-14 *4 (-645 *2)) (-4 *5 (-390)))) (-3753 (*1 *1 *2) (|partial| -12 (-5 *2 (-1178)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-645 *2)) (-14 *4 (-645 *2)) (-4 *5 (-390)))) (-4132 (*1 *2 *1) (-12 (-5 *2 (-317 *5)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-645 (-1178))) (-14 *4 (-645 (-1178))) (-4 *5 (-390)))) (-2038 (*1 *1 *2) (-12 (-5 *2 (-317 (-567))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1040 (-567))) (-14 *3 (-645 (-1178))) (-14 *4 (-645 (-1178))) (-4 *5 (-390)))) (-3753 (*1 *1 *2) (|partial| -12 (-5 *2 (-317 (-567))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1040 (-567))) (-14 *3 (-645 (-1178))) (-14 *4 (-645 (-1178))) (-4 *5 (-390)))) (-2038 (*1 *1 *2) (-12 (-5 *2 (-410 (-954 (-567)))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1040 (-567))) (-14 *3 (-645 (-1178))) (-14 *4 (-645 (-1178))) (-4 *5 (-390)))) (-3753 (*1 *1 *2) (|partial| -12 (-5 *2 (-410 (-954 (-567)))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1040 (-567))) (-14 *3 (-645 (-1178))) (-14 *4 (-645 (-1178))) (-4 *5 (-390)))) (-2038 (*1 *1 *2) (-12 (-5 *2 (-954 (-567))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1040 (-567))) (-14 *3 (-645 (-1178))) (-14 *4 (-645 (-1178))) (-4 *5 (-390)))) (-3753 (*1 *1 *2) (|partial| -12 (-5 *2 (-954 (-567))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1040 (-567))) (-14 *3 (-645 (-1178))) (-14 *4 (-645 (-1178))) (-4 *5 (-390)))) (-2038 (*1 *1 *2) (-12 (-5 *2 (-317 (-381))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1040 (-381))) (-14 *3 (-645 (-1178))) (-14 *4 (-645 (-1178))) (-4 *5 (-390)))) (-3753 (*1 *1 *2) (|partial| -12 (-5 *2 (-317 (-381))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1040 (-381))) (-14 *3 (-645 (-1178))) (-14 *4 (-645 (-1178))) (-4 *5 (-390)))) (-2038 (*1 *1 *2) (-12 (-5 *2 (-410 (-954 (-381)))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1040 (-381))) (-14 *3 (-645 (-1178))) (-14 *4 (-645 (-1178))) (-4 *5 (-390)))) (-3753 (*1 *1 *2) (|partial| -12 (-5 *2 (-410 (-954 (-381)))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1040 (-381))) (-14 *3 (-645 (-1178))) (-14 *4 (-645 (-1178))) (-4 *5 (-390)))) (-2038 (*1 *1 *2) (-12 (-5 *2 (-954 (-381))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1040 (-381))) (-14 *3 (-645 (-1178))) (-14 *4 (-645 (-1178))) (-4 *5 (-390)))) (-3753 (*1 *1 *2) (|partial| -12 (-5 *2 (-954 (-381))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1040 (-381))) (-14 *3 (-645 (-1178))) (-14 *4 (-645 (-1178))) (-4 *5 (-390)))) (-2219 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1178))) (-14 *3 (-645 (-1178))) (-4 *4 (-390)))) (-2716 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1178))) (-14 *3 (-645 (-1178))) (-4 *4 (-390)))) (-3946 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1178))) (-14 *3 (-645 (-1178))) (-4 *4 (-390)))) (-3063 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1178))) (-14 *3 (-645 (-1178))) (-4 *4 (-390)))) (-1703 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1178))) (-14 *3 (-645 (-1178))) (-4 *4 (-390)))) (-2987 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1178))) (-14 *3 (-645 (-1178))) (-4 *4 (-390)))) (-2999 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1178))) (-14 *3 (-645 (-1178))) (-4 *4 (-390)))) (-3012 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1178))) (-14 *3 (-645 (-1178))) (-4 *4 (-390)))) (-3062 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1178))) (-14 *3 (-645 (-1178))) (-4 *4 (-390)))) (-3074 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1178))) (-14 *3 (-645 (-1178))) (-4 *4 (-390)))) (-3084 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1178))) (-14 *3 (-645 (-1178))) (-4 *4 (-390)))) (-3128 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1178))) (-14 *3 (-645 (-1178))) (-4 *4 (-390)))) (-3137 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1178))) (-14 *3 (-645 (-1178))) (-4 *4 (-390)))) (-3146 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1178))) (-14 *3 (-645 (-1178))) (-4 *4 (-390)))) (-1482 (*1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1178))) (-14 *3 (-645 (-1178))) (-4 *4 (-390)))) (-2847 (*1 *2 *1) (-12 (-5 *2 (-645 (-1178))) (-5 *1 (-341 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-390)))) (-4015 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-645 (-1178))) (-14 *4 (-645 (-1178))) (-4 *5 (-390)))) (-4015 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-645 (-1178))) (-14 *4 (-645 (-1178))) (-4 *5 (-390)))))
-(-13 (-303) (-38 |#3|) (-1040 |#3|) (-902 (-1178)) (-10 -8 (-15 -2038 ($ (-317 |#3|))) (-15 -3753 ((-3 $ "failed") (-317 |#3|))) (-15 -2038 ($ (-1178))) (-15 -3753 ((-3 $ "failed") (-1178))) (-15 -4132 ((-317 |#3|) $)) (IF (|has| |#3| (-1040 (-567))) (PROGN (-15 -2038 ($ (-317 (-567)))) (-15 -3753 ((-3 $ "failed") (-317 (-567)))) (-15 -2038 ($ (-410 (-954 (-567))))) (-15 -3753 ((-3 $ "failed") (-410 (-954 (-567))))) (-15 -2038 ($ (-954 (-567)))) (-15 -3753 ((-3 $ "failed") (-954 (-567))))) |%noBranch|) (IF (|has| |#3| (-1040 (-381))) (PROGN (-15 -2038 ($ (-317 (-381)))) (-15 -3753 ((-3 $ "failed") (-317 (-381)))) (-15 -2038 ($ (-410 (-954 (-381))))) (-15 -3753 ((-3 $ "failed") (-410 (-954 (-381))))) (-15 -2038 ($ (-954 (-381)))) (-15 -3753 ((-3 $ "failed") (-954 (-381))))) |%noBranch|) (-15 -2219 ($ $)) (-15 -2716 ($ $)) (-15 -3946 ($ $)) (-15 -3063 ($ $)) (-15 -1703 ($ $)) (-15 -2987 ($ $)) (-15 -2999 ($ $)) (-15 -3012 ($ $)) (-15 -3062 ($ $)) (-15 -3074 ($ $)) (-15 -3084 ($ $)) (-15 -3128 ($ $)) (-15 -3137 ($ $)) (-15 -3146 ($ $)) (-15 -1482 ($)) (-15 -2847 ((-645 (-1178)) $)) (-15 -4015 ((-112))) (-15 -4015 ((-112) (-112)))))
-((-3829 ((|#8| (-1 |#5| |#1|) |#4|) 19)))
-(((-342 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3829 (|#8| (-1 |#5| |#1|) |#4|))) (-1222) (-1244 |#1|) (-1244 (-410 |#2|)) (-344 |#1| |#2| |#3|) (-1222) (-1244 |#5|) (-1244 (-410 |#6|)) (-344 |#5| |#6| |#7|)) (T -342))
-((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1222)) (-4 *8 (-1222)) (-4 *6 (-1244 *5)) (-4 *7 (-1244 (-410 *6))) (-4 *9 (-1244 *8)) (-4 *2 (-344 *8 *9 *10)) (-5 *1 (-342 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-344 *5 *6 *7)) (-4 *10 (-1244 (-410 *9))))))
-(-10 -7 (-15 -3829 (|#8| (-1 |#5| |#1|) |#4|)))
-((-3852 (((-2 (|:| |num| (-1268 |#3|)) (|:| |den| |#3|)) $) 40)) (-3658 (($ (-1268 (-410 |#3|)) (-1268 $)) NIL) (($ (-1268 (-410 |#3|))) NIL) (($ (-1268 |#3|) |#3|) 177)) (-1639 (((-1268 $) (-1268 $)) 161)) (-1381 (((-645 (-645 |#2|))) 130)) (-3282 (((-112) |#2| |#2|) 77)) (-3501 (($ $) 152)) (-3663 (((-772)) 33)) (-4126 (((-1268 $) (-1268 $)) 222)) (-4334 (((-645 (-954 |#2|)) (-1178)) 119)) (-1928 (((-112) $) 174)) (-4255 (((-112) $) 27) (((-112) $ |#2|) 31) (((-112) $ |#3|) 226)) (-4050 (((-3 |#3| "failed")) 53)) (-2666 (((-772)) 188)) (-1787 ((|#2| $ |#2| |#2|) 144)) (-3346 (((-3 |#3| "failed")) 72)) (-1593 (($ $ (-1 (-410 |#3|) (-410 |#3|)) (-772)) NIL) (($ $ (-1 (-410 |#3|) (-410 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 230) (($ $ (-645 (-1178)) (-645 (-772))) NIL) (($ $ (-1178) (-772)) NIL) (($ $ (-645 (-1178))) NIL) (($ $ (-1178)) NIL) (($ $ (-772)) NIL) (($ $) NIL)) (-4000 (((-1268 $) (-1268 $)) 167)) (-2250 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 69)) (-1562 (((-112)) 35)))
-(((-343 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1593 (|#1| |#1|)) (-15 -1593 (|#1| |#1| (-772))) (-15 -1593 (|#1| |#1| (-1178))) (-15 -1593 (|#1| |#1| (-645 (-1178)))) (-15 -1593 (|#1| |#1| (-1178) (-772))) (-15 -1593 (|#1| |#1| (-645 (-1178)) (-645 (-772)))) (-15 -1381 ((-645 (-645 |#2|)))) (-15 -4334 ((-645 (-954 |#2|)) (-1178))) (-15 -2250 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -4050 ((-3 |#3| "failed"))) (-15 -3346 ((-3 |#3| "failed"))) (-15 -1787 (|#2| |#1| |#2| |#2|)) (-15 -3501 (|#1| |#1|)) (-15 -1593 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4255 ((-112) |#1| |#3|)) (-15 -4255 ((-112) |#1| |#2|)) (-15 -3658 (|#1| (-1268 |#3|) |#3|)) (-15 -3852 ((-2 (|:| |num| (-1268 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1639 ((-1268 |#1|) (-1268 |#1|))) (-15 -4126 ((-1268 |#1|) (-1268 |#1|))) (-15 -4000 ((-1268 |#1|) (-1268 |#1|))) (-15 -4255 ((-112) |#1|)) (-15 -1928 ((-112) |#1|)) (-15 -3282 ((-112) |#2| |#2|)) (-15 -1562 ((-112))) (-15 -2666 ((-772))) (-15 -3663 ((-772))) (-15 -1593 (|#1| |#1| (-1 (-410 |#3|) (-410 |#3|)))) (-15 -1593 (|#1| |#1| (-1 (-410 |#3|) (-410 |#3|)) (-772))) (-15 -3658 (|#1| (-1268 (-410 |#3|)))) (-15 -3658 (|#1| (-1268 (-410 |#3|)) (-1268 |#1|)))) (-344 |#2| |#3| |#4|) (-1222) (-1244 |#2|) (-1244 (-410 |#3|))) (T -343))
-((-3663 (*1 *2) (-12 (-4 *4 (-1222)) (-4 *5 (-1244 *4)) (-4 *6 (-1244 (-410 *5))) (-5 *2 (-772)) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6)))) (-2666 (*1 *2) (-12 (-4 *4 (-1222)) (-4 *5 (-1244 *4)) (-4 *6 (-1244 (-410 *5))) (-5 *2 (-772)) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6)))) (-1562 (*1 *2) (-12 (-4 *4 (-1222)) (-4 *5 (-1244 *4)) (-4 *6 (-1244 (-410 *5))) (-5 *2 (-112)) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6)))) (-3282 (*1 *2 *3 *3) (-12 (-4 *3 (-1222)) (-4 *5 (-1244 *3)) (-4 *6 (-1244 (-410 *5))) (-5 *2 (-112)) (-5 *1 (-343 *4 *3 *5 *6)) (-4 *4 (-344 *3 *5 *6)))) (-3346 (*1 *2) (|partial| -12 (-4 *4 (-1222)) (-4 *5 (-1244 (-410 *2))) (-4 *2 (-1244 *4)) (-5 *1 (-343 *3 *4 *2 *5)) (-4 *3 (-344 *4 *2 *5)))) (-4050 (*1 *2) (|partial| -12 (-4 *4 (-1222)) (-4 *5 (-1244 (-410 *2))) (-4 *2 (-1244 *4)) (-5 *1 (-343 *3 *4 *2 *5)) (-4 *3 (-344 *4 *2 *5)))) (-4334 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-4 *5 (-1222)) (-4 *6 (-1244 *5)) (-4 *7 (-1244 (-410 *6))) (-5 *2 (-645 (-954 *5))) (-5 *1 (-343 *4 *5 *6 *7)) (-4 *4 (-344 *5 *6 *7)))) (-1381 (*1 *2) (-12 (-4 *4 (-1222)) (-4 *5 (-1244 *4)) (-4 *6 (-1244 (-410 *5))) (-5 *2 (-645 (-645 *4))) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6)))))
-(-10 -8 (-15 -1593 (|#1| |#1|)) (-15 -1593 (|#1| |#1| (-772))) (-15 -1593 (|#1| |#1| (-1178))) (-15 -1593 (|#1| |#1| (-645 (-1178)))) (-15 -1593 (|#1| |#1| (-1178) (-772))) (-15 -1593 (|#1| |#1| (-645 (-1178)) (-645 (-772)))) (-15 -1381 ((-645 (-645 |#2|)))) (-15 -4334 ((-645 (-954 |#2|)) (-1178))) (-15 -2250 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -4050 ((-3 |#3| "failed"))) (-15 -3346 ((-3 |#3| "failed"))) (-15 -1787 (|#2| |#1| |#2| |#2|)) (-15 -3501 (|#1| |#1|)) (-15 -1593 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4255 ((-112) |#1| |#3|)) (-15 -4255 ((-112) |#1| |#2|)) (-15 -3658 (|#1| (-1268 |#3|) |#3|)) (-15 -3852 ((-2 (|:| |num| (-1268 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1639 ((-1268 |#1|) (-1268 |#1|))) (-15 -4126 ((-1268 |#1|) (-1268 |#1|))) (-15 -4000 ((-1268 |#1|) (-1268 |#1|))) (-15 -4255 ((-112) |#1|)) (-15 -1928 ((-112) |#1|)) (-15 -3282 ((-112) |#2| |#2|)) (-15 -1562 ((-112))) (-15 -2666 ((-772))) (-15 -3663 ((-772))) (-15 -1593 (|#1| |#1| (-1 (-410 |#3|) (-410 |#3|)))) (-15 -1593 (|#1| |#1| (-1 (-410 |#3|) (-410 |#3|)) (-772))) (-15 -3658 (|#1| (-1268 (-410 |#3|)))) (-15 -3658 (|#1| (-1268 (-410 |#3|)) (-1268 |#1|))))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3852 (((-2 (|:| |num| (-1268 |#2|)) (|:| |den| |#2|)) $) 204)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 102 (|has| (-410 |#2|) (-365)))) (-4381 (($ $) 103 (|has| (-410 |#2|) (-365)))) (-3949 (((-112) $) 105 (|has| (-410 |#2|) (-365)))) (-2141 (((-690 (-410 |#2|)) (-1268 $)) 53) (((-690 (-410 |#2|))) 68)) (-4293 (((-410 |#2|) $) 59)) (-3400 (((-1191 (-923) (-772)) (-567)) 155 (|has| (-410 |#2|) (-351)))) (-3472 (((-3 $ "failed") $ $) 20)) (-3248 (($ $) 122 (|has| (-410 |#2|) (-365)))) (-2908 (((-421 $) $) 123 (|has| (-410 |#2|) (-365)))) (-3609 (((-112) $ $) 113 (|has| (-410 |#2|) (-365)))) (-2375 (((-772)) 96 (|has| (-410 |#2|) (-370)))) (-1331 (((-112)) 221)) (-1404 (((-112) |#1|) 220) (((-112) |#2|) 219)) (-2585 (($) 18 T CONST)) (-3753 (((-3 (-567) "failed") $) 178 (|has| (-410 |#2|) (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) 176 (|has| (-410 |#2|) (-1040 (-410 (-567))))) (((-3 (-410 |#2|) "failed") $) 173)) (-2038 (((-567) $) 177 (|has| (-410 |#2|) (-1040 (-567)))) (((-410 (-567)) $) 175 (|has| (-410 |#2|) (-1040 (-410 (-567))))) (((-410 |#2|) $) 174)) (-3658 (($ (-1268 (-410 |#2|)) (-1268 $)) 55) (($ (-1268 (-410 |#2|))) 71) (($ (-1268 |#2|) |#2|) 203)) (-2443 (((-3 "prime" "polynomial" "normal" "cyclic")) 161 (|has| (-410 |#2|) (-351)))) (-2349 (($ $ $) 117 (|has| (-410 |#2|) (-365)))) (-1811 (((-690 (-410 |#2|)) $ (-1268 $)) 60) (((-690 (-410 |#2|)) $) 66)) (-2630 (((-690 (-567)) (-690 $)) 172 (|has| (-410 |#2|) (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) 171 (|has| (-410 |#2|) (-640 (-567)))) (((-2 (|:| -2316 (-690 (-410 |#2|))) (|:| |vec| (-1268 (-410 |#2|)))) (-690 $) (-1268 $)) 170) (((-690 (-410 |#2|)) (-690 $)) 169)) (-1639 (((-1268 $) (-1268 $)) 209)) (-2477 (($ |#3|) 166) (((-3 $ "failed") (-410 |#3|)) 163 (|has| (-410 |#2|) (-365)))) (-2109 (((-3 $ "failed") $) 37)) (-1381 (((-645 (-645 |#1|))) 190 (|has| |#1| (-370)))) (-3282 (((-112) |#1| |#1|) 225)) (-1954 (((-923)) 61)) (-1348 (($) 99 (|has| (-410 |#2|) (-370)))) (-3863 (((-112)) 218)) (-3347 (((-112) |#1|) 217) (((-112) |#2|) 216)) (-2360 (($ $ $) 116 (|has| (-410 |#2|) (-365)))) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) 111 (|has| (-410 |#2|) (-365)))) (-3501 (($ $) 196)) (-3431 (($) 157 (|has| (-410 |#2|) (-351)))) (-2722 (((-112) $) 158 (|has| (-410 |#2|) (-351)))) (-4225 (($ $ (-772)) 149 (|has| (-410 |#2|) (-351))) (($ $) 148 (|has| (-410 |#2|) (-351)))) (-3184 (((-112) $) 124 (|has| (-410 |#2|) (-365)))) (-4384 (((-923) $) 160 (|has| (-410 |#2|) (-351))) (((-834 (-923)) $) 146 (|has| (-410 |#2|) (-351)))) (-1433 (((-112) $) 35)) (-3663 (((-772)) 228)) (-4126 (((-1268 $) (-1268 $)) 210)) (-2475 (((-410 |#2|) $) 58)) (-4334 (((-645 (-954 |#1|)) (-1178)) 191 (|has| |#1| (-365)))) (-3972 (((-3 $ "failed") $) 150 (|has| (-410 |#2|) (-351)))) (-1725 (((-3 (-645 $) "failed") (-645 $) $) 120 (|has| (-410 |#2|) (-365)))) (-4206 ((|#3| $) 51 (|has| (-410 |#2|) (-365)))) (-4249 (((-923) $) 98 (|has| (-410 |#2|) (-370)))) (-2465 ((|#3| $) 164)) (-2740 (($ (-645 $)) 109 (|has| (-410 |#2|) (-365))) (($ $ $) 108 (|has| (-410 |#2|) (-365)))) (-1419 (((-1160) $) 10)) (-4143 (((-690 (-410 |#2|))) 205)) (-3264 (((-690 (-410 |#2|))) 207)) (-2939 (($ $) 125 (|has| (-410 |#2|) (-365)))) (-4236 (($ (-1268 |#2|) |#2|) 201)) (-1900 (((-690 (-410 |#2|))) 206)) (-3564 (((-690 (-410 |#2|))) 208)) (-4253 (((-2 (|:| |num| (-690 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 200)) (-3270 (((-2 (|:| |num| (-1268 |#2|)) (|:| |den| |#2|)) $) 202)) (-3992 (((-1268 $)) 214)) (-3675 (((-1268 $)) 215)) (-1928 (((-112) $) 213)) (-4255 (((-112) $) 212) (((-112) $ |#1|) 199) (((-112) $ |#2|) 198)) (-2672 (($) 151 (|has| (-410 |#2|) (-351)) CONST)) (-3768 (($ (-923)) 97 (|has| (-410 |#2|) (-370)))) (-4050 (((-3 |#2| "failed")) 193)) (-3430 (((-1122) $) 11)) (-2666 (((-772)) 227)) (-1398 (($) 168)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 110 (|has| (-410 |#2|) (-365)))) (-2774 (($ (-645 $)) 107 (|has| (-410 |#2|) (-365))) (($ $ $) 106 (|has| (-410 |#2|) (-365)))) (-1796 (((-645 (-2 (|:| -2706 (-567)) (|:| -3458 (-567))))) 154 (|has| (-410 |#2|) (-351)))) (-2706 (((-421 $) $) 121 (|has| (-410 |#2|) (-365)))) (-3402 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119 (|has| (-410 |#2|) (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) 118 (|has| (-410 |#2|) (-365)))) (-2391 (((-3 $ "failed") $ $) 101 (|has| (-410 |#2|) (-365)))) (-3117 (((-3 (-645 $) "failed") (-645 $) $) 112 (|has| (-410 |#2|) (-365)))) (-1990 (((-772) $) 114 (|has| (-410 |#2|) (-365)))) (-1787 ((|#1| $ |#1| |#1|) 195)) (-3346 (((-3 |#2| "failed")) 194)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 115 (|has| (-410 |#2|) (-365)))) (-3788 (((-410 |#2|) (-1268 $)) 54) (((-410 |#2|)) 67)) (-2491 (((-772) $) 159 (|has| (-410 |#2|) (-351))) (((-3 (-772) "failed") $ $) 147 (|has| (-410 |#2|) (-351)))) (-1593 (($ $ (-1 (-410 |#2|) (-410 |#2|)) (-772)) 131 (|has| (-410 |#2|) (-365))) (($ $ (-1 (-410 |#2|) (-410 |#2|))) 130 (|has| (-410 |#2|) (-365))) (($ $ (-1 |#2| |#2|)) 197) (($ $ (-645 (-1178)) (-645 (-772))) 138 (-2800 (-1667 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1178)))) (-1667 (|has| (-410 |#2|) (-902 (-1178))) (|has| (-410 |#2|) (-365))))) (($ $ (-1178) (-772)) 139 (-2800 (-1667 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1178)))) (-1667 (|has| (-410 |#2|) (-902 (-1178))) (|has| (-410 |#2|) (-365))))) (($ $ (-645 (-1178))) 140 (-2800 (-1667 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1178)))) (-1667 (|has| (-410 |#2|) (-902 (-1178))) (|has| (-410 |#2|) (-365))))) (($ $ (-1178)) 141 (-2800 (-1667 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1178)))) (-1667 (|has| (-410 |#2|) (-902 (-1178))) (|has| (-410 |#2|) (-365))))) (($ $ (-772)) 143 (-2800 (-1667 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-233))) (-1667 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-351)))) (($ $) 145 (-2800 (-1667 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-233))) (-1667 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-351))))) (-1866 (((-690 (-410 |#2|)) (-1268 $) (-1 (-410 |#2|) (-410 |#2|))) 162 (|has| (-410 |#2|) (-365)))) (-3341 ((|#3|) 167)) (-1527 (($) 156 (|has| (-410 |#2|) (-351)))) (-2887 (((-1268 (-410 |#2|)) $ (-1268 $)) 57) (((-690 (-410 |#2|)) (-1268 $) (-1268 $)) 56) (((-1268 (-410 |#2|)) $) 73) (((-690 (-410 |#2|)) (-1268 $)) 72)) (-3893 (((-1268 (-410 |#2|)) $) 70) (($ (-1268 (-410 |#2|))) 69) ((|#3| $) 179) (($ |#3|) 165)) (-1895 (((-3 (-1268 $) "failed") (-690 $)) 153 (|has| (-410 |#2|) (-351)))) (-4000 (((-1268 $) (-1268 $)) 211)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ (-410 |#2|)) 44) (($ (-410 (-567))) 95 (-2800 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-1040 (-410 (-567)))))) (($ $) 100 (|has| (-410 |#2|) (-365)))) (-1903 (($ $) 152 (|has| (-410 |#2|) (-351))) (((-3 $ "failed") $) 50 (|has| (-410 |#2|) (-145)))) (-2155 ((|#3| $) 52)) (-4221 (((-772)) 32 T CONST)) (-2104 (((-112)) 224)) (-2542 (((-112) |#1|) 223) (((-112) |#2|) 222)) (-1745 (((-112) $ $) 9)) (-2623 (((-1268 $)) 74)) (-3816 (((-112) $ $) 104 (|has| (-410 |#2|) (-365)))) (-2250 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 192)) (-1562 (((-112)) 226)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2637 (($ $ (-1 (-410 |#2|) (-410 |#2|)) (-772)) 133 (|has| (-410 |#2|) (-365))) (($ $ (-1 (-410 |#2|) (-410 |#2|))) 132 (|has| (-410 |#2|) (-365))) (($ $ (-645 (-1178)) (-645 (-772))) 134 (-2800 (-1667 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1178)))) (-1667 (|has| (-410 |#2|) (-902 (-1178))) (|has| (-410 |#2|) (-365))))) (($ $ (-1178) (-772)) 135 (-2800 (-1667 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1178)))) (-1667 (|has| (-410 |#2|) (-902 (-1178))) (|has| (-410 |#2|) (-365))))) (($ $ (-645 (-1178))) 136 (-2800 (-1667 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1178)))) (-1667 (|has| (-410 |#2|) (-902 (-1178))) (|has| (-410 |#2|) (-365))))) (($ $ (-1178)) 137 (-2800 (-1667 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1178)))) (-1667 (|has| (-410 |#2|) (-902 (-1178))) (|has| (-410 |#2|) (-365))))) (($ $ (-772)) 142 (-2800 (-1667 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-233))) (-1667 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-351)))) (($ $) 144 (-2800 (-1667 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-233))) (-1667 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-351))))) (-2936 (((-112) $ $) 6)) (-3060 (($ $ $) 129 (|has| (-410 |#2|) (-365)))) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 126 (|has| (-410 |#2|) (-365)))) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 |#2|)) 46) (($ (-410 |#2|) $) 45) (($ (-410 (-567)) $) 128 (|has| (-410 |#2|) (-365))) (($ $ (-410 (-567))) 127 (|has| (-410 |#2|) (-365)))))
-(((-344 |#1| |#2| |#3|) (-140) (-1222) (-1244 |t#1|) (-1244 (-410 |t#2|))) (T -344))
-((-3663 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))) (-5 *2 (-772)))) (-2666 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))) (-5 *2 (-772)))) (-1562 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))) (-5 *2 (-112)))) (-3282 (*1 *2 *3 *3) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))) (-5 *2 (-112)))) (-2104 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))) (-5 *2 (-112)))) (-2542 (*1 *2 *3) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))) (-5 *2 (-112)))) (-2542 (*1 *2 *3) (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1222)) (-4 *3 (-1244 *4)) (-4 *5 (-1244 (-410 *3))) (-5 *2 (-112)))) (-1331 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))) (-5 *2 (-112)))) (-1404 (*1 *2 *3) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))) (-5 *2 (-112)))) (-1404 (*1 *2 *3) (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1222)) (-4 *3 (-1244 *4)) (-4 *5 (-1244 (-410 *3))) (-5 *2 (-112)))) (-3863 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))) (-5 *2 (-112)))) (-3347 (*1 *2 *3) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))) (-5 *2 (-112)))) (-3347 (*1 *2 *3) (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1222)) (-4 *3 (-1244 *4)) (-4 *5 (-1244 (-410 *3))) (-5 *2 (-112)))) (-3675 (*1 *2) (-12 (-4 *3 (-1222)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))) (-5 *2 (-1268 *1)) (-4 *1 (-344 *3 *4 *5)))) (-3992 (*1 *2) (-12 (-4 *3 (-1222)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))) (-5 *2 (-1268 *1)) (-4 *1 (-344 *3 *4 *5)))) (-1928 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))) (-5 *2 (-112)))) (-4255 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))) (-5 *2 (-112)))) (-4000 (*1 *2 *2) (-12 (-5 *2 (-1268 *1)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))))) (-4126 (*1 *2 *2) (-12 (-5 *2 (-1268 *1)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))))) (-1639 (*1 *2 *2) (-12 (-5 *2 (-1268 *1)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))))) (-3564 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))) (-5 *2 (-690 (-410 *4))))) (-3264 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))) (-5 *2 (-690 (-410 *4))))) (-1900 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))) (-5 *2 (-690 (-410 *4))))) (-4143 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))) (-5 *2 (-690 (-410 *4))))) (-3852 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))) (-5 *2 (-2 (|:| |num| (-1268 *4)) (|:| |den| *4))))) (-3658 (*1 *1 *2 *3) (-12 (-5 *2 (-1268 *3)) (-4 *3 (-1244 *4)) (-4 *4 (-1222)) (-4 *1 (-344 *4 *3 *5)) (-4 *5 (-1244 (-410 *3))))) (-3270 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))) (-5 *2 (-2 (|:| |num| (-1268 *4)) (|:| |den| *4))))) (-4236 (*1 *1 *2 *3) (-12 (-5 *2 (-1268 *3)) (-4 *3 (-1244 *4)) (-4 *4 (-1222)) (-4 *1 (-344 *4 *3 *5)) (-4 *5 (-1244 (-410 *3))))) (-4253 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-344 *4 *5 *6)) (-4 *4 (-1222)) (-4 *5 (-1244 *4)) (-4 *6 (-1244 (-410 *5))) (-5 *2 (-2 (|:| |num| (-690 *5)) (|:| |den| *5))))) (-4255 (*1 *2 *1 *3) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))) (-5 *2 (-112)))) (-4255 (*1 *2 *1 *3) (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1222)) (-4 *3 (-1244 *4)) (-4 *5 (-1244 (-410 *3))) (-5 *2 (-112)))) (-1593 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))))) (-3501 (*1 *1 *1) (-12 (-4 *1 (-344 *2 *3 *4)) (-4 *2 (-1222)) (-4 *3 (-1244 *2)) (-4 *4 (-1244 (-410 *3))))) (-1787 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-344 *2 *3 *4)) (-4 *2 (-1222)) (-4 *3 (-1244 *2)) (-4 *4 (-1244 (-410 *3))))) (-3346 (*1 *2) (|partial| -12 (-4 *1 (-344 *3 *2 *4)) (-4 *3 (-1222)) (-4 *4 (-1244 (-410 *2))) (-4 *2 (-1244 *3)))) (-4050 (*1 *2) (|partial| -12 (-4 *1 (-344 *3 *2 *4)) (-4 *3 (-1222)) (-4 *4 (-1244 (-410 *2))) (-4 *2 (-1244 *3)))) (-2250 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1244 *4)) (-4 *4 (-1222)) (-4 *6 (-1244 (-410 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-344 *4 *5 *6)))) (-4334 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-4 *1 (-344 *4 *5 *6)) (-4 *4 (-1222)) (-4 *5 (-1244 *4)) (-4 *6 (-1244 (-410 *5))) (-4 *4 (-365)) (-5 *2 (-645 (-954 *4))))) (-1381 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))) (-4 *3 (-370)) (-5 *2 (-645 (-645 *3))))))
-(-13 (-725 (-410 |t#2|) |t#3|) (-10 -8 (-15 -3663 ((-772))) (-15 -2666 ((-772))) (-15 -1562 ((-112))) (-15 -3282 ((-112) |t#1| |t#1|)) (-15 -2104 ((-112))) (-15 -2542 ((-112) |t#1|)) (-15 -2542 ((-112) |t#2|)) (-15 -1331 ((-112))) (-15 -1404 ((-112) |t#1|)) (-15 -1404 ((-112) |t#2|)) (-15 -3863 ((-112))) (-15 -3347 ((-112) |t#1|)) (-15 -3347 ((-112) |t#2|)) (-15 -3675 ((-1268 $))) (-15 -3992 ((-1268 $))) (-15 -1928 ((-112) $)) (-15 -4255 ((-112) $)) (-15 -4000 ((-1268 $) (-1268 $))) (-15 -4126 ((-1268 $) (-1268 $))) (-15 -1639 ((-1268 $) (-1268 $))) (-15 -3564 ((-690 (-410 |t#2|)))) (-15 -3264 ((-690 (-410 |t#2|)))) (-15 -1900 ((-690 (-410 |t#2|)))) (-15 -4143 ((-690 (-410 |t#2|)))) (-15 -3852 ((-2 (|:| |num| (-1268 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -3658 ($ (-1268 |t#2|) |t#2|)) (-15 -3270 ((-2 (|:| |num| (-1268 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -4236 ($ (-1268 |t#2|) |t#2|)) (-15 -4253 ((-2 (|:| |num| (-690 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -4255 ((-112) $ |t#1|)) (-15 -4255 ((-112) $ |t#2|)) (-15 -1593 ($ $ (-1 |t#2| |t#2|))) (-15 -3501 ($ $)) (-15 -1787 (|t#1| $ |t#1| |t#1|)) (-15 -3346 ((-3 |t#2| "failed"))) (-15 -4050 ((-3 |t#2| "failed"))) (-15 -2250 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-365)) (-15 -4334 ((-645 (-954 |t#1|)) (-1178))) |%noBranch|) (IF (|has| |t#1| (-370)) (-15 -1381 ((-645 (-645 |t#1|)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) -2800 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-38 #1=(-410 |#2|)) . T) ((-38 $) -2800 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-102) . T) ((-111 #0# #0#) -2800 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2800 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-145))) ((-147) |has| (-410 |#2|) (-147)) ((-617 #0#) -2800 (|has| (-410 |#2|) (-1040 (-410 (-567)))) (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-617 #1#) . T) ((-617 (-567)) . T) ((-617 $) -2800 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-614 (-863)) . T) ((-172) . T) ((-615 |#3|) . T) ((-231 #1#) |has| (-410 |#2|) (-365)) ((-233) -2800 (|has| (-410 |#2|) (-351)) (-12 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365)))) ((-243) -2800 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-291) -2800 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-308) -2800 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-365) -2800 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-405) |has| (-410 |#2|) (-351)) ((-370) -2800 (|has| (-410 |#2|) (-370)) (|has| (-410 |#2|) (-351))) ((-351) |has| (-410 |#2|) (-351)) ((-372 #1# |#3|) . T) ((-412 #1# |#3|) . T) ((-379 #1#) . T) ((-414 #1#) . T) ((-455) -2800 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-559) -2800 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-647 #0#) -2800 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-647 #1#) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 #0#) -2800 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-649 #1#) . T) ((-649 $) . T) ((-641 #0#) -2800 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-641 #1#) . T) ((-641 $) -2800 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-640 #1#) . T) ((-640 (-567)) |has| (-410 |#2|) (-640 (-567))) ((-718 #0#) -2800 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-718 #1#) . T) ((-718 $) -2800 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-725 #1# |#3|) . T) ((-727) . T) ((-902 (-1178)) -12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1178)))) ((-922) -2800 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-1040 (-410 (-567))) |has| (-410 |#2|) (-1040 (-410 (-567)))) ((-1040 #1#) . T) ((-1040 (-567)) |has| (-410 |#2|) (-1040 (-567))) ((-1053 #0#) -2800 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-1053 #1#) . T) ((-1053 $) . T) ((-1058 #0#) -2800 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-1058 #1#) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1153) |has| (-410 |#2|) (-351)) ((-1222) -2800 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-3419 (((-112) $) NIL)) (-3862 (((-772)) NIL)) (-4293 (((-912 |#1|) $) NIL) (($ $ (-923)) NIL (|has| (-912 |#1|) (-370)))) (-3400 (((-1191 (-923) (-772)) (-567)) NIL (|has| (-912 |#1|) (-370)))) (-3472 (((-3 $ "failed") $ $) NIL)) (-3248 (($ $) NIL)) (-2908 (((-421 $) $) NIL)) (-3609 (((-112) $ $) NIL)) (-2375 (((-772)) NIL (|has| (-912 |#1|) (-370)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 (-912 |#1|) "failed") $) NIL)) (-2038 (((-912 |#1|) $) NIL)) (-3658 (($ (-1268 (-912 |#1|))) NIL)) (-2443 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-912 |#1|) (-370)))) (-2349 (($ $ $) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-1348 (($) NIL (|has| (-912 |#1|) (-370)))) (-2360 (($ $ $) NIL)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-3431 (($) NIL (|has| (-912 |#1|) (-370)))) (-2722 (((-112) $) NIL (|has| (-912 |#1|) (-370)))) (-4225 (($ $ (-772)) NIL (-2800 (|has| (-912 |#1|) (-145)) (|has| (-912 |#1|) (-370)))) (($ $) NIL (-2800 (|has| (-912 |#1|) (-145)) (|has| (-912 |#1|) (-370))))) (-3184 (((-112) $) NIL)) (-4384 (((-923) $) NIL (|has| (-912 |#1|) (-370))) (((-834 (-923)) $) NIL (-2800 (|has| (-912 |#1|) (-145)) (|has| (-912 |#1|) (-370))))) (-1433 (((-112) $) NIL)) (-3559 (($) NIL (|has| (-912 |#1|) (-370)))) (-1426 (((-112) $) NIL (|has| (-912 |#1|) (-370)))) (-2475 (((-912 |#1|) $) NIL) (($ $ (-923)) NIL (|has| (-912 |#1|) (-370)))) (-3972 (((-3 $ "failed") $) NIL (|has| (-912 |#1|) (-370)))) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4206 (((-1174 (-912 |#1|)) $) NIL) (((-1174 $) $ (-923)) NIL (|has| (-912 |#1|) (-370)))) (-4249 (((-923) $) NIL (|has| (-912 |#1|) (-370)))) (-2016 (((-1174 (-912 |#1|)) $) NIL (|has| (-912 |#1|) (-370)))) (-2280 (((-1174 (-912 |#1|)) $) NIL (|has| (-912 |#1|) (-370))) (((-3 (-1174 (-912 |#1|)) "failed") $ $) NIL (|has| (-912 |#1|) (-370)))) (-2286 (($ $ (-1174 (-912 |#1|))) NIL (|has| (-912 |#1|) (-370)))) (-2740 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) NIL)) (-2672 (($) NIL (|has| (-912 |#1|) (-370)) CONST)) (-3768 (($ (-923)) NIL (|has| (-912 |#1|) (-370)))) (-2051 (((-112) $) NIL)) (-3430 (((-1122) $) NIL)) (-2326 (((-960 (-1122))) NIL)) (-1398 (($) NIL (|has| (-912 |#1|) (-370)))) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-2774 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1796 (((-645 (-2 (|:| -2706 (-567)) (|:| -3458 (-567))))) NIL (|has| (-912 |#1|) (-370)))) (-2706 (((-421 $) $) NIL)) (-1953 (((-834 (-923))) NIL) (((-923)) NIL)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2391 (((-3 $ "failed") $ $) NIL)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1990 (((-772) $) NIL)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL)) (-2491 (((-772) $) NIL (|has| (-912 |#1|) (-370))) (((-3 (-772) "failed") $ $) NIL (-2800 (|has| (-912 |#1|) (-145)) (|has| (-912 |#1|) (-370))))) (-1879 (((-134)) NIL)) (-1593 (($ $) NIL (|has| (-912 |#1|) (-370))) (($ $ (-772)) NIL (|has| (-912 |#1|) (-370)))) (-3077 (((-834 (-923)) $) NIL) (((-923) $) NIL)) (-3341 (((-1174 (-912 |#1|))) NIL)) (-1527 (($) NIL (|has| (-912 |#1|) (-370)))) (-2661 (($) NIL (|has| (-912 |#1|) (-370)))) (-2887 (((-1268 (-912 |#1|)) $) NIL) (((-690 (-912 |#1|)) (-1268 $)) NIL)) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (|has| (-912 |#1|) (-370)))) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ (-912 |#1|)) NIL)) (-1903 (($ $) NIL (|has| (-912 |#1|) (-370))) (((-3 $ "failed") $) NIL (-2800 (|has| (-912 |#1|) (-145)) (|has| (-912 |#1|) (-370))))) (-4221 (((-772)) NIL T CONST)) (-1745 (((-112) $ $) NIL)) (-2623 (((-1268 $)) NIL) (((-1268 $) (-923)) NIL)) (-3816 (((-112) $ $) NIL)) (-2012 (((-112) $) NIL)) (-1716 (($) NIL T CONST)) (-1728 (($) NIL T CONST)) (-3253 (($ $) NIL (|has| (-912 |#1|) (-370))) (($ $ (-772)) NIL (|has| (-912 |#1|) (-370)))) (-2637 (($ $) NIL (|has| (-912 |#1|) (-370))) (($ $ (-772)) NIL (|has| (-912 |#1|) (-370)))) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ $) NIL) (($ $ (-912 |#1|)) NIL)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ $ (-912 |#1|)) NIL) (($ (-912 |#1|) $) NIL)))
-(((-345 |#1| |#2|) (-13 (-330 (-912 |#1|)) (-10 -7 (-15 -2326 ((-960 (-1122)))))) (-923) (-923)) (T -345))
-((-2326 (*1 *2) (-12 (-5 *2 (-960 (-1122))) (-5 *1 (-345 *3 *4)) (-14 *3 (-923)) (-14 *4 (-923)))))
-(-13 (-330 (-912 |#1|)) (-10 -7 (-15 -2326 ((-960 (-1122))))))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) 58)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-3419 (((-112) $) NIL)) (-3862 (((-772)) NIL)) (-4293 ((|#1| $) NIL) (($ $ (-923)) NIL (|has| |#1| (-370)))) (-3400 (((-1191 (-923) (-772)) (-567)) 56 (|has| |#1| (-370)))) (-3472 (((-3 $ "failed") $ $) NIL)) (-3248 (($ $) NIL)) (-2908 (((-421 $) $) NIL)) (-3609 (((-112) $ $) NIL)) (-2375 (((-772)) NIL (|has| |#1| (-370)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 |#1| "failed") $) 144)) (-2038 ((|#1| $) 115)) (-3658 (($ (-1268 |#1|)) 132)) (-2443 (((-3 "prime" "polynomial" "normal" "cyclic")) 123 (|has| |#1| (-370)))) (-2349 (($ $ $) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-1348 (($) 126 (|has| |#1| (-370)))) (-2360 (($ $ $) NIL)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-3431 (($) 162 (|has| |#1| (-370)))) (-2722 (((-112) $) 66 (|has| |#1| (-370)))) (-4225 (($ $ (-772)) NIL (-2800 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) NIL (-2800 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3184 (((-112) $) NIL)) (-4384 (((-923) $) 60 (|has| |#1| (-370))) (((-834 (-923)) $) NIL (-2800 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1433 (((-112) $) 62)) (-3559 (($) 164 (|has| |#1| (-370)))) (-1426 (((-112) $) NIL (|has| |#1| (-370)))) (-2475 ((|#1| $) NIL) (($ $ (-923)) NIL (|has| |#1| (-370)))) (-3972 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4206 (((-1174 |#1|) $) 119) (((-1174 $) $ (-923)) NIL (|has| |#1| (-370)))) (-4249 (((-923) $) 173 (|has| |#1| (-370)))) (-2016 (((-1174 |#1|) $) NIL (|has| |#1| (-370)))) (-2280 (((-1174 |#1|) $) NIL (|has| |#1| (-370))) (((-3 (-1174 |#1|) "failed") $ $) NIL (|has| |#1| (-370)))) (-2286 (($ $ (-1174 |#1|)) NIL (|has| |#1| (-370)))) (-2740 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) 180)) (-2672 (($) NIL (|has| |#1| (-370)) CONST)) (-3768 (($ (-923)) 98 (|has| |#1| (-370)))) (-2051 (((-112) $) 149)) (-3430 (((-1122) $) NIL)) (-2326 (((-960 (-1122))) 57)) (-1398 (($) 160 (|has| |#1| (-370)))) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-2774 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1796 (((-645 (-2 (|:| -2706 (-567)) (|:| -3458 (-567))))) 121 (|has| |#1| (-370)))) (-2706 (((-421 $) $) NIL)) (-1953 (((-834 (-923))) 92) (((-923)) 93)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2391 (((-3 $ "failed") $ $) NIL)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1990 (((-772) $) NIL)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL)) (-2491 (((-772) $) 163 (|has| |#1| (-370))) (((-3 (-772) "failed") $ $) 156 (-2800 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1879 (((-134)) NIL)) (-1593 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-3077 (((-834 (-923)) $) NIL) (((-923) $) NIL)) (-3341 (((-1174 |#1|)) 124)) (-1527 (($) 161 (|has| |#1| (-370)))) (-2661 (($) 169 (|has| |#1| (-370)))) (-2887 (((-1268 |#1|) $) 77) (((-690 |#1|) (-1268 $)) NIL)) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (|has| |#1| (-370)))) (-4132 (((-863) $) 176) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ |#1|) 102)) (-1903 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-2800 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4221 (((-772)) 157 T CONST)) (-1745 (((-112) $ $) NIL)) (-2623 (((-1268 $)) 146) (((-1268 $) (-923)) 100)) (-3816 (((-112) $ $) NIL)) (-2012 (((-112) $) NIL)) (-1716 (($) 67 T CONST)) (-1728 (($) 105 T CONST)) (-3253 (($ $) 109 (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-2637 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-2936 (((-112) $ $) 65)) (-3060 (($ $ $) 178) (($ $ |#1|) 179)) (-3045 (($ $) 159) (($ $ $) NIL)) (-3033 (($ $ $) 86)) (** (($ $ (-923)) 182) (($ $ (-772)) 183) (($ $ (-567)) 181)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 104) (($ $ $) 103) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 177)))
-(((-346 |#1| |#2|) (-13 (-330 |#1|) (-10 -7 (-15 -2326 ((-960 (-1122)))))) (-351) (-1174 |#1|)) (T -346))
-((-2326 (*1 *2) (-12 (-5 *2 (-960 (-1122))) (-5 *1 (-346 *3 *4)) (-4 *3 (-351)) (-14 *4 (-1174 *3)))))
-(-13 (-330 |#1|) (-10 -7 (-15 -2326 ((-960 (-1122))))))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-3419 (((-112) $) NIL)) (-3862 (((-772)) NIL)) (-4293 ((|#1| $) NIL) (($ $ (-923)) NIL (|has| |#1| (-370)))) (-3400 (((-1191 (-923) (-772)) (-567)) NIL (|has| |#1| (-370)))) (-3472 (((-3 $ "failed") $ $) NIL)) (-3248 (($ $) NIL)) (-2908 (((-421 $) $) NIL)) (-3609 (((-112) $ $) NIL)) (-2375 (((-772)) NIL (|has| |#1| (-370)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 |#1| "failed") $) NIL)) (-2038 ((|#1| $) NIL)) (-3658 (($ (-1268 |#1|)) NIL)) (-2443 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-370)))) (-2349 (($ $ $) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-1348 (($) NIL (|has| |#1| (-370)))) (-2360 (($ $ $) NIL)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-3431 (($) NIL (|has| |#1| (-370)))) (-2722 (((-112) $) NIL (|has| |#1| (-370)))) (-4225 (($ $ (-772)) NIL (-2800 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) NIL (-2800 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3184 (((-112) $) NIL)) (-4384 (((-923) $) NIL (|has| |#1| (-370))) (((-834 (-923)) $) NIL (-2800 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1433 (((-112) $) NIL)) (-3559 (($) NIL (|has| |#1| (-370)))) (-1426 (((-112) $) NIL (|has| |#1| (-370)))) (-2475 ((|#1| $) NIL) (($ $ (-923)) NIL (|has| |#1| (-370)))) (-3972 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4206 (((-1174 |#1|) $) NIL) (((-1174 $) $ (-923)) NIL (|has| |#1| (-370)))) (-4249 (((-923) $) NIL (|has| |#1| (-370)))) (-2016 (((-1174 |#1|) $) NIL (|has| |#1| (-370)))) (-2280 (((-1174 |#1|) $) NIL (|has| |#1| (-370))) (((-3 (-1174 |#1|) "failed") $ $) NIL (|has| |#1| (-370)))) (-2286 (($ $ (-1174 |#1|)) NIL (|has| |#1| (-370)))) (-2740 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) NIL)) (-2672 (($) NIL (|has| |#1| (-370)) CONST)) (-3768 (($ (-923)) NIL (|has| |#1| (-370)))) (-2051 (((-112) $) NIL)) (-3430 (((-1122) $) NIL)) (-2326 (((-960 (-1122))) NIL)) (-1398 (($) NIL (|has| |#1| (-370)))) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-2774 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1796 (((-645 (-2 (|:| -2706 (-567)) (|:| -3458 (-567))))) NIL (|has| |#1| (-370)))) (-2706 (((-421 $) $) NIL)) (-1953 (((-834 (-923))) NIL) (((-923)) NIL)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2391 (((-3 $ "failed") $ $) NIL)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1990 (((-772) $) NIL)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL)) (-2491 (((-772) $) NIL (|has| |#1| (-370))) (((-3 (-772) "failed") $ $) NIL (-2800 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1879 (((-134)) NIL)) (-1593 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-3077 (((-834 (-923)) $) NIL) (((-923) $) NIL)) (-3341 (((-1174 |#1|)) NIL)) (-1527 (($) NIL (|has| |#1| (-370)))) (-2661 (($) NIL (|has| |#1| (-370)))) (-2887 (((-1268 |#1|) $) NIL) (((-690 |#1|) (-1268 $)) NIL)) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (|has| |#1| (-370)))) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ |#1|) NIL)) (-1903 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-2800 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4221 (((-772)) NIL T CONST)) (-1745 (((-112) $ $) NIL)) (-2623 (((-1268 $)) NIL) (((-1268 $) (-923)) NIL)) (-3816 (((-112) $ $) NIL)) (-2012 (((-112) $) NIL)) (-1716 (($) NIL T CONST)) (-1728 (($) NIL T CONST)) (-3253 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-2637 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-347 |#1| |#2|) (-13 (-330 |#1|) (-10 -7 (-15 -2326 ((-960 (-1122)))))) (-351) (-923)) (T -347))
-((-2326 (*1 *2) (-12 (-5 *2 (-960 (-1122))) (-5 *1 (-347 *3 *4)) (-4 *3 (-351)) (-14 *4 (-923)))))
-(-13 (-330 |#1|) (-10 -7 (-15 -2326 ((-960 (-1122))))))
-((-1592 (((-772) (-1268 (-645 (-2 (|:| -3802 |#1|) (|:| -3768 (-1122)))))) 61)) (-3916 (((-960 (-1122)) (-1174 |#1|)) 113)) (-2730 (((-1268 (-645 (-2 (|:| -3802 |#1|) (|:| -3768 (-1122))))) (-1174 |#1|)) 105)) (-3610 (((-690 |#1|) (-1268 (-645 (-2 (|:| -3802 |#1|) (|:| -3768 (-1122)))))) 115)) (-2361 (((-3 (-1268 (-645 (-2 (|:| -3802 |#1|) (|:| -3768 (-1122))))) "failed") (-923)) 13)) (-3198 (((-3 (-1174 |#1|) (-1268 (-645 (-2 (|:| -3802 |#1|) (|:| -3768 (-1122)))))) (-923)) 18)))
-(((-348 |#1|) (-10 -7 (-15 -3916 ((-960 (-1122)) (-1174 |#1|))) (-15 -2730 ((-1268 (-645 (-2 (|:| -3802 |#1|) (|:| -3768 (-1122))))) (-1174 |#1|))) (-15 -3610 ((-690 |#1|) (-1268 (-645 (-2 (|:| -3802 |#1|) (|:| -3768 (-1122))))))) (-15 -1592 ((-772) (-1268 (-645 (-2 (|:| -3802 |#1|) (|:| -3768 (-1122))))))) (-15 -2361 ((-3 (-1268 (-645 (-2 (|:| -3802 |#1|) (|:| -3768 (-1122))))) "failed") (-923))) (-15 -3198 ((-3 (-1174 |#1|) (-1268 (-645 (-2 (|:| -3802 |#1|) (|:| -3768 (-1122)))))) (-923)))) (-351)) (T -348))
-((-3198 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-3 (-1174 *4) (-1268 (-645 (-2 (|:| -3802 *4) (|:| -3768 (-1122))))))) (-5 *1 (-348 *4)) (-4 *4 (-351)))) (-2361 (*1 *2 *3) (|partial| -12 (-5 *3 (-923)) (-5 *2 (-1268 (-645 (-2 (|:| -3802 *4) (|:| -3768 (-1122)))))) (-5 *1 (-348 *4)) (-4 *4 (-351)))) (-1592 (*1 *2 *3) (-12 (-5 *3 (-1268 (-645 (-2 (|:| -3802 *4) (|:| -3768 (-1122)))))) (-4 *4 (-351)) (-5 *2 (-772)) (-5 *1 (-348 *4)))) (-3610 (*1 *2 *3) (-12 (-5 *3 (-1268 (-645 (-2 (|:| -3802 *4) (|:| -3768 (-1122)))))) (-4 *4 (-351)) (-5 *2 (-690 *4)) (-5 *1 (-348 *4)))) (-2730 (*1 *2 *3) (-12 (-5 *3 (-1174 *4)) (-4 *4 (-351)) (-5 *2 (-1268 (-645 (-2 (|:| -3802 *4) (|:| -3768 (-1122)))))) (-5 *1 (-348 *4)))) (-3916 (*1 *2 *3) (-12 (-5 *3 (-1174 *4)) (-4 *4 (-351)) (-5 *2 (-960 (-1122))) (-5 *1 (-348 *4)))))
-(-10 -7 (-15 -3916 ((-960 (-1122)) (-1174 |#1|))) (-15 -2730 ((-1268 (-645 (-2 (|:| -3802 |#1|) (|:| -3768 (-1122))))) (-1174 |#1|))) (-15 -3610 ((-690 |#1|) (-1268 (-645 (-2 (|:| -3802 |#1|) (|:| -3768 (-1122))))))) (-15 -1592 ((-772) (-1268 (-645 (-2 (|:| -3802 |#1|) (|:| -3768 (-1122))))))) (-15 -2361 ((-3 (-1268 (-645 (-2 (|:| -3802 |#1|) (|:| -3768 (-1122))))) "failed") (-923))) (-15 -3198 ((-3 (-1174 |#1|) (-1268 (-645 (-2 (|:| -3802 |#1|) (|:| -3768 (-1122)))))) (-923))))
-((-4132 ((|#1| |#3|) 108) ((|#3| |#1|) 91)))
-(((-349 |#1| |#2| |#3|) (-10 -7 (-15 -4132 (|#3| |#1|)) (-15 -4132 (|#1| |#3|))) (-330 |#2|) (-351) (-330 |#2|)) (T -349))
-((-4132 (*1 *2 *3) (-12 (-4 *4 (-351)) (-4 *2 (-330 *4)) (-5 *1 (-349 *2 *4 *3)) (-4 *3 (-330 *4)))) (-4132 (*1 *2 *3) (-12 (-4 *4 (-351)) (-4 *2 (-330 *4)) (-5 *1 (-349 *3 *4 *2)) (-4 *3 (-330 *4)))))
-(-10 -7 (-15 -4132 (|#3| |#1|)) (-15 -4132 (|#1| |#3|)))
-((-2722 (((-112) $) 60)) (-4384 (((-834 (-923)) $) 23) (((-923) $) 66)) (-3972 (((-3 $ "failed") $) 18)) (-2672 (($) 9)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 116)) (-2491 (((-3 (-772) "failed") $ $) 94) (((-772) $) 81)) (-1593 (($ $ (-772)) NIL) (($ $) 8)) (-1527 (($) 53)) (-1895 (((-3 (-1268 $) "failed") (-690 $)) 38)) (-1903 (((-3 $ "failed") $) 45) (($ $) 44)))
-(((-350 |#1|) (-10 -8 (-15 -4384 ((-923) |#1|)) (-15 -2491 ((-772) |#1|)) (-15 -2722 ((-112) |#1|)) (-15 -1527 (|#1|)) (-15 -1895 ((-3 (-1268 |#1|) "failed") (-690 |#1|))) (-15 -1903 (|#1| |#1|)) (-15 -1593 (|#1| |#1|)) (-15 -1593 (|#1| |#1| (-772))) (-15 -2672 (|#1|)) (-15 -3972 ((-3 |#1| "failed") |#1|)) (-15 -2491 ((-3 (-772) "failed") |#1| |#1|)) (-15 -4384 ((-834 (-923)) |#1|)) (-15 -1903 ((-3 |#1| "failed") |#1|)) (-15 -3750 ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|)))) (-351)) (T -350))
-NIL
-(-10 -8 (-15 -4384 ((-923) |#1|)) (-15 -2491 ((-772) |#1|)) (-15 -2722 ((-112) |#1|)) (-15 -1527 (|#1|)) (-15 -1895 ((-3 (-1268 |#1|) "failed") (-690 |#1|))) (-15 -1903 (|#1| |#1|)) (-15 -1593 (|#1| |#1|)) (-15 -1593 (|#1| |#1| (-772))) (-15 -2672 (|#1|)) (-15 -3972 ((-3 |#1| "failed") |#1|)) (-15 -2491 ((-3 (-772) "failed") |#1| |#1|)) (-15 -4384 ((-834 (-923)) |#1|)) (-15 -1903 ((-3 |#1| "failed") |#1|)) (-15 -3750 ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 47)) (-4381 (($ $) 46)) (-3949 (((-112) $) 44)) (-3400 (((-1191 (-923) (-772)) (-567)) 101)) (-3472 (((-3 $ "failed") $ $) 20)) (-3248 (($ $) 81)) (-2908 (((-421 $) $) 80)) (-3609 (((-112) $ $) 65)) (-2375 (((-772)) 111)) (-2585 (($) 18 T CONST)) (-2443 (((-3 "prime" "polynomial" "normal" "cyclic")) 95)) (-2349 (($ $ $) 61)) (-2109 (((-3 $ "failed") $) 37)) (-1348 (($) 114)) (-2360 (($ $ $) 62)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) 57)) (-3431 (($) 99)) (-2722 (((-112) $) 98)) (-4225 (($ $) 87) (($ $ (-772)) 86)) (-3184 (((-112) $) 79)) (-4384 (((-834 (-923)) $) 89) (((-923) $) 96)) (-1433 (((-112) $) 35)) (-3972 (((-3 $ "failed") $) 110)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) 58)) (-4249 (((-923) $) 113)) (-2740 (($ $ $) 52) (($ (-645 $)) 51)) (-1419 (((-1160) $) 10)) (-2939 (($ $) 78)) (-2672 (($) 109 T CONST)) (-3768 (($ (-923)) 112)) (-3430 (((-1122) $) 11)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 50)) (-2774 (($ $ $) 54) (($ (-645 $)) 53)) (-1796 (((-645 (-2 (|:| -2706 (-567)) (|:| -3458 (-567))))) 102)) (-2706 (((-421 $) $) 82)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2391 (((-3 $ "failed") $ $) 48)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-1990 (((-772) $) 64)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 63)) (-2491 (((-3 (-772) "failed") $ $) 88) (((-772) $) 97)) (-1593 (($ $ (-772)) 107) (($ $) 105)) (-1527 (($) 100)) (-1895 (((-3 (-1268 $) "failed") (-690 $)) 103)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-410 (-567))) 74)) (-1903 (((-3 $ "failed") $) 90) (($ $) 104)) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-3816 (((-112) $ $) 45)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2637 (($ $ (-772)) 108) (($ $) 106)) (-2936 (((-112) $ $) 6)) (-3060 (($ $ $) 73)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 77)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 76) (($ (-410 (-567)) $) 75)))
+((-3841 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-340 *3)) (-4 *3 (-1102)))))
+(-13 (-10 -8 (-15 -3841 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-287 |t#1| |t#1|)) (-6 (-287 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-310 |t#1|)) (-6 (-310 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-517 (-1179) |t#1|)) (-6 (-517 (-1179) |t#1|)) |%noBranch|)))
+(((-287 |#1| $) |has| |#1| (-287 |#1| |#1|)) ((-310 |#1|) |has| |#1| (-310 |#1|)) ((-517 (-1179) |#1|) |has| |#1| (-517 (-1179) |#1|)) ((-517 |#1| |#1|) |has| |#1| (-310 |#1|)))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-2859 (((-645 (-1179)) $) NIL)) (-4300 (((-112)) 99) (((-112) (-112)) 100)) (-2575 (((-645 (-613 $)) $) NIL)) (-3164 (($ $) NIL)) (-3032 (($ $) NIL)) (-2376 (((-3 $ "failed") $ $) NIL)) (-2982 (($ $ (-295 $)) NIL) (($ $ (-645 (-295 $))) NIL) (($ $ (-645 (-613 $)) (-645 $)) NIL)) (-2728 (($ $) NIL)) (-3145 (($ $) NIL)) (-3008 (($ $) NIL)) (-3647 (($) NIL T CONST)) (-3765 (((-3 (-613 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-317 |#3|)) 79) (((-3 $ "failed") (-1179)) 105) (((-3 $ "failed") (-317 (-567))) 67 (|has| |#3| (-1040 (-567)))) (((-3 $ "failed") (-410 (-954 (-567)))) 73 (|has| |#3| (-1040 (-567)))) (((-3 $ "failed") (-954 (-567))) 68 (|has| |#3| (-1040 (-567)))) (((-3 $ "failed") (-317 (-381))) 97 (|has| |#3| (-1040 (-381)))) (((-3 $ "failed") (-410 (-954 (-381)))) 91 (|has| |#3| (-1040 (-381)))) (((-3 $ "failed") (-954 (-381))) 86 (|has| |#3| (-1040 (-381))))) (-2051 (((-613 $) $) NIL) ((|#3| $) NIL) (($ (-317 |#3|)) 80) (($ (-1179)) 106) (($ (-317 (-567))) 69 (|has| |#3| (-1040 (-567)))) (($ (-410 (-954 (-567)))) 74 (|has| |#3| (-1040 (-567)))) (($ (-954 (-567))) 70 (|has| |#3| (-1040 (-567)))) (($ (-317 (-381))) 98 (|has| |#3| (-1040 (-381)))) (($ (-410 (-954 (-381)))) 92 (|has| |#3| (-1040 (-381)))) (($ (-954 (-381))) 88 (|has| |#3| (-1040 (-381))))) (-3588 (((-3 $ "failed") $) NIL)) (-1484 (($) 10)) (-1464 (($ $) NIL) (($ (-645 $)) NIL)) (-3863 (((-645 (-114)) $) NIL)) (-2662 (((-114) (-114)) NIL)) (-4346 (((-112) $) NIL)) (-1904 (((-112) $) NIL (|has| $ (-1040 (-567))))) (-2528 (((-1175 $) (-613 $)) NIL (|has| $ (-1051)))) (-3841 (($ (-1 $ $) (-613 $)) NIL)) (-3231 (((-3 (-613 $) "failed") $) NIL)) (-1721 (($ $) 102)) (-3072 (($ $) NIL)) (-2516 (((-1161) $) NIL)) (-2651 (((-645 (-613 $)) $) NIL)) (-3643 (($ (-114) $) 101) (($ (-114) (-645 $)) NIL)) (-3545 (((-112) $ (-114)) NIL) (((-112) $ (-1179)) NIL)) (-4136 (((-772) $) NIL)) (-3437 (((-1122) $) NIL)) (-2356 (((-112) $ $) NIL) (((-112) $ (-1179)) NIL)) (-3955 (($ $) NIL)) (-2795 (((-112) $) NIL (|has| $ (-1040 (-567))))) (-2642 (($ $ (-613 $) $) NIL) (($ $ (-645 (-613 $)) (-645 $)) NIL) (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-645 (-1179)) (-645 (-1 $ $))) NIL) (($ $ (-645 (-1179)) (-645 (-1 $ (-645 $)))) NIL) (($ $ (-1179) (-1 $ (-645 $))) NIL) (($ $ (-1179) (-1 $ $)) NIL) (($ $ (-645 (-114)) (-645 (-1 $ $))) NIL) (($ $ (-645 (-114)) (-645 (-1 $ (-645 $)))) NIL) (($ $ (-114) (-1 $ (-645 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-1801 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-645 $)) NIL)) (-3209 (($ $) NIL) (($ $ $) NIL)) (-1616 (($ $ (-645 (-1179)) (-645 (-772))) NIL) (($ $ (-1179) (-772)) NIL) (($ $ (-645 (-1179))) NIL) (($ $ (-1179)) NIL)) (-3169 (($ $) NIL (|has| $ (-1051)))) (-3155 (($ $) NIL)) (-3021 (($ $) NIL)) (-4129 (((-863) $) NIL) (($ (-613 $)) NIL) (($ |#3|) NIL) (($ (-567)) NIL) (((-317 |#3|) $) 104)) (-2746 (((-772)) NIL T CONST)) (-1372 (($ $) NIL) (($ (-645 $)) NIL)) (-1909 (((-112) (-114)) NIL)) (-3357 (((-112) $ $) NIL)) (-3103 (($ $) NIL)) (-3083 (($ $) NIL)) (-3093 (($ $) NIL)) (-1547 (($ $) NIL)) (-1733 (($) 103 T CONST)) (-1744 (($) NIL T CONST)) (-2647 (($ $ (-645 (-1179)) (-645 (-772))) NIL) (($ $ (-1179) (-772)) NIL) (($ $ (-645 (-1179))) NIL) (($ $ (-1179)) NIL)) (-2946 (((-112) $ $) NIL)) (-3053 (($ $ $) NIL) (($ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-772)) NIL) (($ $ (-923)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-567) $) NIL) (($ (-772) $) NIL) (($ (-923) $) NIL)))
+(((-341 |#1| |#2| |#3|) (-13 (-303) (-38 |#3|) (-1040 |#3|) (-902 (-1179)) (-10 -8 (-15 -2051 ($ (-317 |#3|))) (-15 -3765 ((-3 $ "failed") (-317 |#3|))) (-15 -2051 ($ (-1179))) (-15 -3765 ((-3 $ "failed") (-1179))) (-15 -4129 ((-317 |#3|) $)) (IF (|has| |#3| (-1040 (-567))) (PROGN (-15 -2051 ($ (-317 (-567)))) (-15 -3765 ((-3 $ "failed") (-317 (-567)))) (-15 -2051 ($ (-410 (-954 (-567))))) (-15 -3765 ((-3 $ "failed") (-410 (-954 (-567))))) (-15 -2051 ($ (-954 (-567)))) (-15 -3765 ((-3 $ "failed") (-954 (-567))))) |%noBranch|) (IF (|has| |#3| (-1040 (-381))) (PROGN (-15 -2051 ($ (-317 (-381)))) (-15 -3765 ((-3 $ "failed") (-317 (-381)))) (-15 -2051 ($ (-410 (-954 (-381))))) (-15 -3765 ((-3 $ "failed") (-410 (-954 (-381))))) (-15 -2051 ($ (-954 (-381)))) (-15 -3765 ((-3 $ "failed") (-954 (-381))))) |%noBranch|) (-15 -1547 ($ $)) (-15 -2728 ($ $)) (-15 -3955 ($ $)) (-15 -3072 ($ $)) (-15 -1721 ($ $)) (-15 -3008 ($ $)) (-15 -3021 ($ $)) (-15 -3032 ($ $)) (-15 -3083 ($ $)) (-15 -3093 ($ $)) (-15 -3103 ($ $)) (-15 -3145 ($ $)) (-15 -3155 ($ $)) (-15 -3164 ($ $)) (-15 -1484 ($)) (-15 -2859 ((-645 (-1179)) $)) (-15 -4300 ((-112))) (-15 -4300 ((-112) (-112))))) (-645 (-1179)) (-645 (-1179)) (-390)) (T -341))
+((-2051 (*1 *1 *2) (-12 (-5 *2 (-317 *5)) (-4 *5 (-390)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-645 (-1179))) (-14 *4 (-645 (-1179))))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-317 *5)) (-4 *5 (-390)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-645 (-1179))) (-14 *4 (-645 (-1179))))) (-2051 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-645 *2)) (-14 *4 (-645 *2)) (-4 *5 (-390)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-1179)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-645 *2)) (-14 *4 (-645 *2)) (-4 *5 (-390)))) (-4129 (*1 *2 *1) (-12 (-5 *2 (-317 *5)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-645 (-1179))) (-14 *4 (-645 (-1179))) (-4 *5 (-390)))) (-2051 (*1 *1 *2) (-12 (-5 *2 (-317 (-567))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1040 (-567))) (-14 *3 (-645 (-1179))) (-14 *4 (-645 (-1179))) (-4 *5 (-390)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-317 (-567))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1040 (-567))) (-14 *3 (-645 (-1179))) (-14 *4 (-645 (-1179))) (-4 *5 (-390)))) (-2051 (*1 *1 *2) (-12 (-5 *2 (-410 (-954 (-567)))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1040 (-567))) (-14 *3 (-645 (-1179))) (-14 *4 (-645 (-1179))) (-4 *5 (-390)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-410 (-954 (-567)))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1040 (-567))) (-14 *3 (-645 (-1179))) (-14 *4 (-645 (-1179))) (-4 *5 (-390)))) (-2051 (*1 *1 *2) (-12 (-5 *2 (-954 (-567))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1040 (-567))) (-14 *3 (-645 (-1179))) (-14 *4 (-645 (-1179))) (-4 *5 (-390)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-954 (-567))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1040 (-567))) (-14 *3 (-645 (-1179))) (-14 *4 (-645 (-1179))) (-4 *5 (-390)))) (-2051 (*1 *1 *2) (-12 (-5 *2 (-317 (-381))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1040 (-381))) (-14 *3 (-645 (-1179))) (-14 *4 (-645 (-1179))) (-4 *5 (-390)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-317 (-381))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1040 (-381))) (-14 *3 (-645 (-1179))) (-14 *4 (-645 (-1179))) (-4 *5 (-390)))) (-2051 (*1 *1 *2) (-12 (-5 *2 (-410 (-954 (-381)))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1040 (-381))) (-14 *3 (-645 (-1179))) (-14 *4 (-645 (-1179))) (-4 *5 (-390)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-410 (-954 (-381)))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1040 (-381))) (-14 *3 (-645 (-1179))) (-14 *4 (-645 (-1179))) (-4 *5 (-390)))) (-2051 (*1 *1 *2) (-12 (-5 *2 (-954 (-381))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1040 (-381))) (-14 *3 (-645 (-1179))) (-14 *4 (-645 (-1179))) (-4 *5 (-390)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-954 (-381))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1040 (-381))) (-14 *3 (-645 (-1179))) (-14 *4 (-645 (-1179))) (-4 *5 (-390)))) (-1547 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1179))) (-14 *3 (-645 (-1179))) (-4 *4 (-390)))) (-2728 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1179))) (-14 *3 (-645 (-1179))) (-4 *4 (-390)))) (-3955 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1179))) (-14 *3 (-645 (-1179))) (-4 *4 (-390)))) (-3072 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1179))) (-14 *3 (-645 (-1179))) (-4 *4 (-390)))) (-1721 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1179))) (-14 *3 (-645 (-1179))) (-4 *4 (-390)))) (-3008 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1179))) (-14 *3 (-645 (-1179))) (-4 *4 (-390)))) (-3021 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1179))) (-14 *3 (-645 (-1179))) (-4 *4 (-390)))) (-3032 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1179))) (-14 *3 (-645 (-1179))) (-4 *4 (-390)))) (-3083 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1179))) (-14 *3 (-645 (-1179))) (-4 *4 (-390)))) (-3093 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1179))) (-14 *3 (-645 (-1179))) (-4 *4 (-390)))) (-3103 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1179))) (-14 *3 (-645 (-1179))) (-4 *4 (-390)))) (-3145 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1179))) (-14 *3 (-645 (-1179))) (-4 *4 (-390)))) (-3155 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1179))) (-14 *3 (-645 (-1179))) (-4 *4 (-390)))) (-3164 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1179))) (-14 *3 (-645 (-1179))) (-4 *4 (-390)))) (-1484 (*1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1179))) (-14 *3 (-645 (-1179))) (-4 *4 (-390)))) (-2859 (*1 *2 *1) (-12 (-5 *2 (-645 (-1179))) (-5 *1 (-341 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-390)))) (-4300 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-645 (-1179))) (-14 *4 (-645 (-1179))) (-4 *5 (-390)))) (-4300 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-645 (-1179))) (-14 *4 (-645 (-1179))) (-4 *5 (-390)))))
+(-13 (-303) (-38 |#3|) (-1040 |#3|) (-902 (-1179)) (-10 -8 (-15 -2051 ($ (-317 |#3|))) (-15 -3765 ((-3 $ "failed") (-317 |#3|))) (-15 -2051 ($ (-1179))) (-15 -3765 ((-3 $ "failed") (-1179))) (-15 -4129 ((-317 |#3|) $)) (IF (|has| |#3| (-1040 (-567))) (PROGN (-15 -2051 ($ (-317 (-567)))) (-15 -3765 ((-3 $ "failed") (-317 (-567)))) (-15 -2051 ($ (-410 (-954 (-567))))) (-15 -3765 ((-3 $ "failed") (-410 (-954 (-567))))) (-15 -2051 ($ (-954 (-567)))) (-15 -3765 ((-3 $ "failed") (-954 (-567))))) |%noBranch|) (IF (|has| |#3| (-1040 (-381))) (PROGN (-15 -2051 ($ (-317 (-381)))) (-15 -3765 ((-3 $ "failed") (-317 (-381)))) (-15 -2051 ($ (-410 (-954 (-381))))) (-15 -3765 ((-3 $ "failed") (-410 (-954 (-381))))) (-15 -2051 ($ (-954 (-381)))) (-15 -3765 ((-3 $ "failed") (-954 (-381))))) |%noBranch|) (-15 -1547 ($ $)) (-15 -2728 ($ $)) (-15 -3955 ($ $)) (-15 -3072 ($ $)) (-15 -1721 ($ $)) (-15 -3008 ($ $)) (-15 -3021 ($ $)) (-15 -3032 ($ $)) (-15 -3083 ($ $)) (-15 -3093 ($ $)) (-15 -3103 ($ $)) (-15 -3145 ($ $)) (-15 -3155 ($ $)) (-15 -3164 ($ $)) (-15 -1484 ($)) (-15 -2859 ((-645 (-1179)) $)) (-15 -4300 ((-112))) (-15 -4300 ((-112) (-112)))))
+((-3841 ((|#8| (-1 |#5| |#1|) |#4|) 19)))
+(((-342 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3841 (|#8| (-1 |#5| |#1|) |#4|))) (-1223) (-1245 |#1|) (-1245 (-410 |#2|)) (-344 |#1| |#2| |#3|) (-1223) (-1245 |#5|) (-1245 (-410 |#6|)) (-344 |#5| |#6| |#7|)) (T -342))
+((-3841 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1223)) (-4 *8 (-1223)) (-4 *6 (-1245 *5)) (-4 *7 (-1245 (-410 *6))) (-4 *9 (-1245 *8)) (-4 *2 (-344 *8 *9 *10)) (-5 *1 (-342 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-344 *5 *6 *7)) (-4 *10 (-1245 (-410 *9))))))
+(-10 -7 (-15 -3841 (|#8| (-1 |#5| |#1|) |#4|)))
+((-1723 (((-2 (|:| |num| (-1269 |#3|)) (|:| |den| |#3|)) $) 40)) (-3111 (($ (-1269 (-410 |#3|)) (-1269 $)) NIL) (($ (-1269 (-410 |#3|))) NIL) (($ (-1269 |#3|) |#3|) 177)) (-4381 (((-1269 $) (-1269 $)) 161)) (-3476 (((-645 (-645 |#2|))) 130)) (-3459 (((-112) |#2| |#2|) 77)) (-2989 (($ $) 152)) (-2375 (((-772)) 33)) (-3001 (((-1269 $) (-1269 $)) 222)) (-2825 (((-645 (-954 |#2|)) (-1179)) 119)) (-3098 (((-112) $) 174)) (-2039 (((-112) $) 27) (((-112) $ |#2|) 31) (((-112) $ |#3|) 226)) (-1867 (((-3 |#3| "failed")) 53)) (-1438 (((-772)) 188)) (-1801 ((|#2| $ |#2| |#2|) 144)) (-3524 (((-3 |#3| "failed")) 72)) (-1616 (($ $ (-1 (-410 |#3|) (-410 |#3|)) (-772)) NIL) (($ $ (-1 (-410 |#3|) (-410 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 230) (($ $ (-645 (-1179)) (-645 (-772))) NIL) (($ $ (-1179) (-772)) NIL) (($ $ (-645 (-1179))) NIL) (($ $ (-1179)) NIL) (($ $ (-772)) NIL) (($ $) NIL)) (-2965 (((-1269 $) (-1269 $)) 167)) (-3959 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 69)) (-2584 (((-112)) 35)))
+(((-343 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1616 (|#1| |#1|)) (-15 -1616 (|#1| |#1| (-772))) (-15 -1616 (|#1| |#1| (-1179))) (-15 -1616 (|#1| |#1| (-645 (-1179)))) (-15 -1616 (|#1| |#1| (-1179) (-772))) (-15 -1616 (|#1| |#1| (-645 (-1179)) (-645 (-772)))) (-15 -3476 ((-645 (-645 |#2|)))) (-15 -2825 ((-645 (-954 |#2|)) (-1179))) (-15 -3959 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1867 ((-3 |#3| "failed"))) (-15 -3524 ((-3 |#3| "failed"))) (-15 -1801 (|#2| |#1| |#2| |#2|)) (-15 -2989 (|#1| |#1|)) (-15 -1616 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2039 ((-112) |#1| |#3|)) (-15 -2039 ((-112) |#1| |#2|)) (-15 -3111 (|#1| (-1269 |#3|) |#3|)) (-15 -1723 ((-2 (|:| |num| (-1269 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -4381 ((-1269 |#1|) (-1269 |#1|))) (-15 -3001 ((-1269 |#1|) (-1269 |#1|))) (-15 -2965 ((-1269 |#1|) (-1269 |#1|))) (-15 -2039 ((-112) |#1|)) (-15 -3098 ((-112) |#1|)) (-15 -3459 ((-112) |#2| |#2|)) (-15 -2584 ((-112))) (-15 -1438 ((-772))) (-15 -2375 ((-772))) (-15 -1616 (|#1| |#1| (-1 (-410 |#3|) (-410 |#3|)))) (-15 -1616 (|#1| |#1| (-1 (-410 |#3|) (-410 |#3|)) (-772))) (-15 -3111 (|#1| (-1269 (-410 |#3|)))) (-15 -3111 (|#1| (-1269 (-410 |#3|)) (-1269 |#1|)))) (-344 |#2| |#3| |#4|) (-1223) (-1245 |#2|) (-1245 (-410 |#3|))) (T -343))
+((-2375 (*1 *2) (-12 (-4 *4 (-1223)) (-4 *5 (-1245 *4)) (-4 *6 (-1245 (-410 *5))) (-5 *2 (-772)) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6)))) (-1438 (*1 *2) (-12 (-4 *4 (-1223)) (-4 *5 (-1245 *4)) (-4 *6 (-1245 (-410 *5))) (-5 *2 (-772)) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6)))) (-2584 (*1 *2) (-12 (-4 *4 (-1223)) (-4 *5 (-1245 *4)) (-4 *6 (-1245 (-410 *5))) (-5 *2 (-112)) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6)))) (-3459 (*1 *2 *3 *3) (-12 (-4 *3 (-1223)) (-4 *5 (-1245 *3)) (-4 *6 (-1245 (-410 *5))) (-5 *2 (-112)) (-5 *1 (-343 *4 *3 *5 *6)) (-4 *4 (-344 *3 *5 *6)))) (-3524 (*1 *2) (|partial| -12 (-4 *4 (-1223)) (-4 *5 (-1245 (-410 *2))) (-4 *2 (-1245 *4)) (-5 *1 (-343 *3 *4 *2 *5)) (-4 *3 (-344 *4 *2 *5)))) (-1867 (*1 *2) (|partial| -12 (-4 *4 (-1223)) (-4 *5 (-1245 (-410 *2))) (-4 *2 (-1245 *4)) (-5 *1 (-343 *3 *4 *2 *5)) (-4 *3 (-344 *4 *2 *5)))) (-2825 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-4 *5 (-1223)) (-4 *6 (-1245 *5)) (-4 *7 (-1245 (-410 *6))) (-5 *2 (-645 (-954 *5))) (-5 *1 (-343 *4 *5 *6 *7)) (-4 *4 (-344 *5 *6 *7)))) (-3476 (*1 *2) (-12 (-4 *4 (-1223)) (-4 *5 (-1245 *4)) (-4 *6 (-1245 (-410 *5))) (-5 *2 (-645 (-645 *4))) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6)))))
+(-10 -8 (-15 -1616 (|#1| |#1|)) (-15 -1616 (|#1| |#1| (-772))) (-15 -1616 (|#1| |#1| (-1179))) (-15 -1616 (|#1| |#1| (-645 (-1179)))) (-15 -1616 (|#1| |#1| (-1179) (-772))) (-15 -1616 (|#1| |#1| (-645 (-1179)) (-645 (-772)))) (-15 -3476 ((-645 (-645 |#2|)))) (-15 -2825 ((-645 (-954 |#2|)) (-1179))) (-15 -3959 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1867 ((-3 |#3| "failed"))) (-15 -3524 ((-3 |#3| "failed"))) (-15 -1801 (|#2| |#1| |#2| |#2|)) (-15 -2989 (|#1| |#1|)) (-15 -1616 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2039 ((-112) |#1| |#3|)) (-15 -2039 ((-112) |#1| |#2|)) (-15 -3111 (|#1| (-1269 |#3|) |#3|)) (-15 -1723 ((-2 (|:| |num| (-1269 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -4381 ((-1269 |#1|) (-1269 |#1|))) (-15 -3001 ((-1269 |#1|) (-1269 |#1|))) (-15 -2965 ((-1269 |#1|) (-1269 |#1|))) (-15 -2039 ((-112) |#1|)) (-15 -3098 ((-112) |#1|)) (-15 -3459 ((-112) |#2| |#2|)) (-15 -2584 ((-112))) (-15 -1438 ((-772))) (-15 -2375 ((-772))) (-15 -1616 (|#1| |#1| (-1 (-410 |#3|) (-410 |#3|)))) (-15 -1616 (|#1| |#1| (-1 (-410 |#3|) (-410 |#3|)) (-772))) (-15 -3111 (|#1| (-1269 (-410 |#3|)))) (-15 -3111 (|#1| (-1269 (-410 |#3|)) (-1269 |#1|))))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-1723 (((-2 (|:| |num| (-1269 |#2|)) (|:| |den| |#2|)) $) 204)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) 102 (|has| (-410 |#2|) (-365)))) (-4287 (($ $) 103 (|has| (-410 |#2|) (-365)))) (-2286 (((-112) $) 105 (|has| (-410 |#2|) (-365)))) (-3478 (((-690 (-410 |#2|)) (-1269 $)) 53) (((-690 (-410 |#2|))) 68)) (-4293 (((-410 |#2|) $) 59)) (-3792 (((-1192 (-923) (-772)) (-567)) 155 (|has| (-410 |#2|) (-351)))) (-2376 (((-3 $ "failed") $ $) 20)) (-3659 (($ $) 122 (|has| (-410 |#2|) (-365)))) (-3597 (((-421 $) $) 123 (|has| (-410 |#2|) (-365)))) (-3696 (((-112) $ $) 113 (|has| (-410 |#2|) (-365)))) (-2384 (((-772)) 96 (|has| (-410 |#2|) (-370)))) (-1597 (((-112)) 221)) (-1516 (((-112) |#1|) 220) (((-112) |#2|) 219)) (-3647 (($) 18 T CONST)) (-3765 (((-3 (-567) "failed") $) 178 (|has| (-410 |#2|) (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) 176 (|has| (-410 |#2|) (-1040 (-410 (-567))))) (((-3 (-410 |#2|) "failed") $) 173)) (-2051 (((-567) $) 177 (|has| (-410 |#2|) (-1040 (-567)))) (((-410 (-567)) $) 175 (|has| (-410 |#2|) (-1040 (-410 (-567))))) (((-410 |#2|) $) 174)) (-3111 (($ (-1269 (-410 |#2|)) (-1269 $)) 55) (($ (-1269 (-410 |#2|))) 71) (($ (-1269 |#2|) |#2|) 203)) (-2998 (((-3 "prime" "polynomial" "normal" "cyclic")) 161 (|has| (-410 |#2|) (-351)))) (-2357 (($ $ $) 117 (|has| (-410 |#2|) (-365)))) (-3012 (((-690 (-410 |#2|)) $ (-1269 $)) 60) (((-690 (-410 |#2|)) $) 66)) (-1423 (((-690 (-567)) (-690 $)) 172 (|has| (-410 |#2|) (-640 (-567)))) (((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) 171 (|has| (-410 |#2|) (-640 (-567)))) (((-2 (|:| -4208 (-690 (-410 |#2|))) (|:| |vec| (-1269 (-410 |#2|)))) (-690 $) (-1269 $)) 170) (((-690 (-410 |#2|)) (-690 $)) 169)) (-4381 (((-1269 $) (-1269 $)) 209)) (-2494 (($ |#3|) 166) (((-3 $ "failed") (-410 |#3|)) 163 (|has| (-410 |#2|) (-365)))) (-3588 (((-3 $ "failed") $) 37)) (-3476 (((-645 (-645 |#1|))) 190 (|has| |#1| (-370)))) (-3459 (((-112) |#1| |#1|) 225)) (-1976 (((-923)) 61)) (-1359 (($) 99 (|has| (-410 |#2|) (-370)))) (-3240 (((-112)) 218)) (-3644 (((-112) |#1|) 217) (((-112) |#2|) 216)) (-2368 (($ $ $) 116 (|has| (-410 |#2|) (-365)))) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) 111 (|has| (-410 |#2|) (-365)))) (-2989 (($ $) 196)) (-2870 (($) 157 (|has| (-410 |#2|) (-351)))) (-1305 (((-112) $) 158 (|has| (-410 |#2|) (-351)))) (-3144 (($ $ (-772)) 149 (|has| (-410 |#2|) (-351))) (($ $) 148 (|has| (-410 |#2|) (-351)))) (-3502 (((-112) $) 124 (|has| (-410 |#2|) (-365)))) (-3362 (((-923) $) 160 (|has| (-410 |#2|) (-351))) (((-834 (-923)) $) 146 (|has| (-410 |#2|) (-351)))) (-4346 (((-112) $) 35)) (-2375 (((-772)) 228)) (-3001 (((-1269 $) (-1269 $)) 210)) (-2724 (((-410 |#2|) $) 58)) (-2825 (((-645 (-954 |#1|)) (-1179)) 191 (|has| |#1| (-365)))) (-3067 (((-3 $ "failed") $) 150 (|has| (-410 |#2|) (-351)))) (-1469 (((-3 (-645 $) "failed") (-645 $) $) 120 (|has| (-410 |#2|) (-365)))) (-1914 ((|#3| $) 51 (|has| (-410 |#2|) (-365)))) (-3474 (((-923) $) 98 (|has| (-410 |#2|) (-370)))) (-2484 ((|#3| $) 164)) (-2751 (($ (-645 $)) 109 (|has| (-410 |#2|) (-365))) (($ $ $) 108 (|has| (-410 |#2|) (-365)))) (-2516 (((-1161) $) 10)) (-1848 (((-690 (-410 |#2|))) 205)) (-1392 (((-690 (-410 |#2|))) 207)) (-2949 (($ $) 125 (|has| (-410 |#2|) (-365)))) (-1781 (($ (-1269 |#2|) |#2|) 201)) (-3089 (((-690 (-410 |#2|))) 206)) (-1334 (((-690 (-410 |#2|))) 208)) (-3033 (((-2 (|:| |num| (-690 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 200)) (-1835 (((-2 (|:| |num| (-1269 |#2|)) (|:| |den| |#2|)) $) 202)) (-3230 (((-1269 $)) 214)) (-4180 (((-1269 $)) 215)) (-3098 (((-112) $) 213)) (-2039 (((-112) $) 212) (((-112) $ |#1|) 199) (((-112) $ |#2|) 198)) (-2694 (($) 151 (|has| (-410 |#2|) (-351)) CONST)) (-3779 (($ (-923)) 97 (|has| (-410 |#2|) (-370)))) (-1867 (((-3 |#2| "failed")) 193)) (-3437 (((-1122) $) 11)) (-1438 (((-772)) 227)) (-1399 (($) 168)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) 110 (|has| (-410 |#2|) (-365)))) (-2785 (($ (-645 $)) 107 (|has| (-410 |#2|) (-365))) (($ $ $) 106 (|has| (-410 |#2|) (-365)))) (-4151 (((-645 (-2 (|:| -2717 (-567)) (|:| -3468 (-567))))) 154 (|has| (-410 |#2|) (-351)))) (-2717 (((-421 $) $) 121 (|has| (-410 |#2|) (-365)))) (-2905 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119 (|has| (-410 |#2|) (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) 118 (|has| (-410 |#2|) (-365)))) (-2400 (((-3 $ "failed") $ $) 101 (|has| (-410 |#2|) (-365)))) (-2372 (((-3 (-645 $) "failed") (-645 $) $) 112 (|has| (-410 |#2|) (-365)))) (-2460 (((-772) $) 114 (|has| (-410 |#2|) (-365)))) (-1801 ((|#1| $ |#1| |#1|) 195)) (-3524 (((-3 |#2| "failed")) 194)) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) 115 (|has| (-410 |#2|) (-365)))) (-2433 (((-410 |#2|) (-1269 $)) 54) (((-410 |#2|)) 67)) (-1760 (((-772) $) 159 (|has| (-410 |#2|) (-351))) (((-3 (-772) "failed") $ $) 147 (|has| (-410 |#2|) (-351)))) (-1616 (($ $ (-1 (-410 |#2|) (-410 |#2|)) (-772)) 131 (|has| (-410 |#2|) (-365))) (($ $ (-1 (-410 |#2|) (-410 |#2|))) 130 (|has| (-410 |#2|) (-365))) (($ $ (-1 |#2| |#2|)) 197) (($ $ (-645 (-1179)) (-645 (-772))) 138 (-2811 (-1686 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1179)))) (-1686 (|has| (-410 |#2|) (-902 (-1179))) (|has| (-410 |#2|) (-365))))) (($ $ (-1179) (-772)) 139 (-2811 (-1686 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1179)))) (-1686 (|has| (-410 |#2|) (-902 (-1179))) (|has| (-410 |#2|) (-365))))) (($ $ (-645 (-1179))) 140 (-2811 (-1686 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1179)))) (-1686 (|has| (-410 |#2|) (-902 (-1179))) (|has| (-410 |#2|) (-365))))) (($ $ (-1179)) 141 (-2811 (-1686 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1179)))) (-1686 (|has| (-410 |#2|) (-902 (-1179))) (|has| (-410 |#2|) (-365))))) (($ $ (-772)) 143 (-2811 (-1686 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-233))) (-1686 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-351)))) (($ $) 145 (-2811 (-1686 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-233))) (-1686 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-351))))) (-1648 (((-690 (-410 |#2|)) (-1269 $) (-1 (-410 |#2|) (-410 |#2|))) 162 (|has| (-410 |#2|) (-365)))) (-3169 ((|#3|) 167)) (-4273 (($) 156 (|has| (-410 |#2|) (-351)))) (-3088 (((-1269 (-410 |#2|)) $ (-1269 $)) 57) (((-690 (-410 |#2|)) (-1269 $) (-1269 $)) 56) (((-1269 (-410 |#2|)) $) 73) (((-690 (-410 |#2|)) (-1269 $)) 72)) (-3902 (((-1269 (-410 |#2|)) $) 70) (($ (-1269 (-410 |#2|))) 69) ((|#3| $) 179) (($ |#3|) 165)) (-2616 (((-3 (-1269 $) "failed") (-690 $)) 153 (|has| (-410 |#2|) (-351)))) (-2965 (((-1269 $) (-1269 $)) 211)) (-4129 (((-863) $) 12) (($ (-567)) 33) (($ (-410 |#2|)) 44) (($ (-410 (-567))) 95 (-2811 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-1040 (-410 (-567)))))) (($ $) 100 (|has| (-410 |#2|) (-365)))) (-2118 (($ $) 152 (|has| (-410 |#2|) (-351))) (((-3 $ "failed") $) 50 (|has| (-410 |#2|) (-145)))) (-2231 ((|#3| $) 52)) (-2746 (((-772)) 32 T CONST)) (-4315 (((-112)) 224)) (-1362 (((-112) |#1|) 223) (((-112) |#2|) 222)) (-3357 (((-112) $ $) 9)) (-2144 (((-1269 $)) 74)) (-3731 (((-112) $ $) 104 (|has| (-410 |#2|) (-365)))) (-3959 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 192)) (-2584 (((-112)) 226)) (-1733 (($) 19 T CONST)) (-1744 (($) 34 T CONST)) (-2647 (($ $ (-1 (-410 |#2|) (-410 |#2|)) (-772)) 133 (|has| (-410 |#2|) (-365))) (($ $ (-1 (-410 |#2|) (-410 |#2|))) 132 (|has| (-410 |#2|) (-365))) (($ $ (-645 (-1179)) (-645 (-772))) 134 (-2811 (-1686 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1179)))) (-1686 (|has| (-410 |#2|) (-902 (-1179))) (|has| (-410 |#2|) (-365))))) (($ $ (-1179) (-772)) 135 (-2811 (-1686 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1179)))) (-1686 (|has| (-410 |#2|) (-902 (-1179))) (|has| (-410 |#2|) (-365))))) (($ $ (-645 (-1179))) 136 (-2811 (-1686 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1179)))) (-1686 (|has| (-410 |#2|) (-902 (-1179))) (|has| (-410 |#2|) (-365))))) (($ $ (-1179)) 137 (-2811 (-1686 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1179)))) (-1686 (|has| (-410 |#2|) (-902 (-1179))) (|has| (-410 |#2|) (-365))))) (($ $ (-772)) 142 (-2811 (-1686 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-233))) (-1686 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-351)))) (($ $) 144 (-2811 (-1686 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-233))) (-1686 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-351))))) (-2946 (((-112) $ $) 6)) (-3069 (($ $ $) 129 (|has| (-410 |#2|) (-365)))) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 126 (|has| (-410 |#2|) (-365)))) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 |#2|)) 46) (($ (-410 |#2|) $) 45) (($ (-410 (-567)) $) 128 (|has| (-410 |#2|) (-365))) (($ $ (-410 (-567))) 127 (|has| (-410 |#2|) (-365)))))
+(((-344 |#1| |#2| |#3|) (-140) (-1223) (-1245 |t#1|) (-1245 (-410 |t#2|))) (T -344))
+((-2375 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-772)))) (-1438 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-772)))) (-2584 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112)))) (-3459 (*1 *2 *3 *3) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112)))) (-4315 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112)))) (-1362 (*1 *2 *3) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112)))) (-1362 (*1 *2 *3) (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1223)) (-4 *3 (-1245 *4)) (-4 *5 (-1245 (-410 *3))) (-5 *2 (-112)))) (-1597 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112)))) (-1516 (*1 *2 *3) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112)))) (-1516 (*1 *2 *3) (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1223)) (-4 *3 (-1245 *4)) (-4 *5 (-1245 (-410 *3))) (-5 *2 (-112)))) (-3240 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112)))) (-3644 (*1 *2 *3) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112)))) (-3644 (*1 *2 *3) (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1223)) (-4 *3 (-1245 *4)) (-4 *5 (-1245 (-410 *3))) (-5 *2 (-112)))) (-4180 (*1 *2) (-12 (-4 *3 (-1223)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-1269 *1)) (-4 *1 (-344 *3 *4 *5)))) (-3230 (*1 *2) (-12 (-4 *3 (-1223)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-1269 *1)) (-4 *1 (-344 *3 *4 *5)))) (-3098 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112)))) (-2039 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112)))) (-2965 (*1 *2 *2) (-12 (-5 *2 (-1269 *1)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))))) (-3001 (*1 *2 *2) (-12 (-5 *2 (-1269 *1)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))))) (-4381 (*1 *2 *2) (-12 (-5 *2 (-1269 *1)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))))) (-1334 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-690 (-410 *4))))) (-1392 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-690 (-410 *4))))) (-3089 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-690 (-410 *4))))) (-1848 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-690 (-410 *4))))) (-1723 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-2 (|:| |num| (-1269 *4)) (|:| |den| *4))))) (-3111 (*1 *1 *2 *3) (-12 (-5 *2 (-1269 *3)) (-4 *3 (-1245 *4)) (-4 *4 (-1223)) (-4 *1 (-344 *4 *3 *5)) (-4 *5 (-1245 (-410 *3))))) (-1835 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-2 (|:| |num| (-1269 *4)) (|:| |den| *4))))) (-1781 (*1 *1 *2 *3) (-12 (-5 *2 (-1269 *3)) (-4 *3 (-1245 *4)) (-4 *4 (-1223)) (-4 *1 (-344 *4 *3 *5)) (-4 *5 (-1245 (-410 *3))))) (-3033 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-344 *4 *5 *6)) (-4 *4 (-1223)) (-4 *5 (-1245 *4)) (-4 *6 (-1245 (-410 *5))) (-5 *2 (-2 (|:| |num| (-690 *5)) (|:| |den| *5))))) (-2039 (*1 *2 *1 *3) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112)))) (-2039 (*1 *2 *1 *3) (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1223)) (-4 *3 (-1245 *4)) (-4 *5 (-1245 (-410 *3))) (-5 *2 (-112)))) (-1616 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))))) (-2989 (*1 *1 *1) (-12 (-4 *1 (-344 *2 *3 *4)) (-4 *2 (-1223)) (-4 *3 (-1245 *2)) (-4 *4 (-1245 (-410 *3))))) (-1801 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-344 *2 *3 *4)) (-4 *2 (-1223)) (-4 *3 (-1245 *2)) (-4 *4 (-1245 (-410 *3))))) (-3524 (*1 *2) (|partial| -12 (-4 *1 (-344 *3 *2 *4)) (-4 *3 (-1223)) (-4 *4 (-1245 (-410 *2))) (-4 *2 (-1245 *3)))) (-1867 (*1 *2) (|partial| -12 (-4 *1 (-344 *3 *2 *4)) (-4 *3 (-1223)) (-4 *4 (-1245 (-410 *2))) (-4 *2 (-1245 *3)))) (-3959 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1245 *4)) (-4 *4 (-1223)) (-4 *6 (-1245 (-410 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-344 *4 *5 *6)))) (-2825 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-4 *1 (-344 *4 *5 *6)) (-4 *4 (-1223)) (-4 *5 (-1245 *4)) (-4 *6 (-1245 (-410 *5))) (-4 *4 (-365)) (-5 *2 (-645 (-954 *4))))) (-3476 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-4 *3 (-370)) (-5 *2 (-645 (-645 *3))))))
+(-13 (-725 (-410 |t#2|) |t#3|) (-10 -8 (-15 -2375 ((-772))) (-15 -1438 ((-772))) (-15 -2584 ((-112))) (-15 -3459 ((-112) |t#1| |t#1|)) (-15 -4315 ((-112))) (-15 -1362 ((-112) |t#1|)) (-15 -1362 ((-112) |t#2|)) (-15 -1597 ((-112))) (-15 -1516 ((-112) |t#1|)) (-15 -1516 ((-112) |t#2|)) (-15 -3240 ((-112))) (-15 -3644 ((-112) |t#1|)) (-15 -3644 ((-112) |t#2|)) (-15 -4180 ((-1269 $))) (-15 -3230 ((-1269 $))) (-15 -3098 ((-112) $)) (-15 -2039 ((-112) $)) (-15 -2965 ((-1269 $) (-1269 $))) (-15 -3001 ((-1269 $) (-1269 $))) (-15 -4381 ((-1269 $) (-1269 $))) (-15 -1334 ((-690 (-410 |t#2|)))) (-15 -1392 ((-690 (-410 |t#2|)))) (-15 -3089 ((-690 (-410 |t#2|)))) (-15 -1848 ((-690 (-410 |t#2|)))) (-15 -1723 ((-2 (|:| |num| (-1269 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -3111 ($ (-1269 |t#2|) |t#2|)) (-15 -1835 ((-2 (|:| |num| (-1269 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1781 ($ (-1269 |t#2|) |t#2|)) (-15 -3033 ((-2 (|:| |num| (-690 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -2039 ((-112) $ |t#1|)) (-15 -2039 ((-112) $ |t#2|)) (-15 -1616 ($ $ (-1 |t#2| |t#2|))) (-15 -2989 ($ $)) (-15 -1801 (|t#1| $ |t#1| |t#1|)) (-15 -3524 ((-3 |t#2| "failed"))) (-15 -1867 ((-3 |t#2| "failed"))) (-15 -3959 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-365)) (-15 -2825 ((-645 (-954 |t#1|)) (-1179))) |%noBranch|) (IF (|has| |t#1| (-370)) (-15 -3476 ((-645 (-645 |t#1|)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) -2811 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-38 #1=(-410 |#2|)) . T) ((-38 $) -2811 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-102) . T) ((-111 #0# #0#) -2811 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2811 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-145))) ((-147) |has| (-410 |#2|) (-147)) ((-617 #0#) -2811 (|has| (-410 |#2|) (-1040 (-410 (-567)))) (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-617 #1#) . T) ((-617 (-567)) . T) ((-617 $) -2811 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-614 (-863)) . T) ((-172) . T) ((-615 |#3|) . T) ((-231 #1#) |has| (-410 |#2|) (-365)) ((-233) -2811 (|has| (-410 |#2|) (-351)) (-12 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365)))) ((-243) -2811 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-291) -2811 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-308) -2811 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-365) -2811 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-405) |has| (-410 |#2|) (-351)) ((-370) -2811 (|has| (-410 |#2|) (-370)) (|has| (-410 |#2|) (-351))) ((-351) |has| (-410 |#2|) (-351)) ((-372 #1# |#3|) . T) ((-412 #1# |#3|) . T) ((-379 #1#) . T) ((-414 #1#) . T) ((-455) -2811 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-559) -2811 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-647 #0#) -2811 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-647 #1#) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 #0#) -2811 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-649 #1#) . T) ((-649 $) . T) ((-641 #0#) -2811 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-641 #1#) . T) ((-641 $) -2811 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-640 #1#) . T) ((-640 (-567)) |has| (-410 |#2|) (-640 (-567))) ((-718 #0#) -2811 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-718 #1#) . T) ((-718 $) -2811 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-725 #1# |#3|) . T) ((-727) . T) ((-902 (-1179)) -12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1179)))) ((-922) -2811 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-1040 (-410 (-567))) |has| (-410 |#2|) (-1040 (-410 (-567)))) ((-1040 #1#) . T) ((-1040 (-567)) |has| (-410 |#2|) (-1040 (-567))) ((-1053 #0#) -2811 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-1053 #1#) . T) ((-1053 $) . T) ((-1058 #0#) -2811 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-1058 #1#) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1154) |has| (-410 |#2|) (-351)) ((-1223) -2811 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-4287 (($ $) NIL)) (-2286 (((-112) $) NIL)) (-2038 (((-112) $) NIL)) (-4355 (((-772)) NIL)) (-4293 (((-912 |#1|) $) NIL) (($ $ (-923)) NIL (|has| (-912 |#1|) (-370)))) (-3792 (((-1192 (-923) (-772)) (-567)) NIL (|has| (-912 |#1|) (-370)))) (-2376 (((-3 $ "failed") $ $) NIL)) (-3659 (($ $) NIL)) (-3597 (((-421 $) $) NIL)) (-3696 (((-112) $ $) NIL)) (-2384 (((-772)) NIL (|has| (-912 |#1|) (-370)))) (-3647 (($) NIL T CONST)) (-3765 (((-3 (-912 |#1|) "failed") $) NIL)) (-2051 (((-912 |#1|) $) NIL)) (-3111 (($ (-1269 (-912 |#1|))) NIL)) (-2998 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-912 |#1|) (-370)))) (-2357 (($ $ $) NIL)) (-3588 (((-3 $ "failed") $) NIL)) (-1359 (($) NIL (|has| (-912 |#1|) (-370)))) (-2368 (($ $ $) NIL)) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) NIL)) (-2870 (($) NIL (|has| (-912 |#1|) (-370)))) (-1305 (((-112) $) NIL (|has| (-912 |#1|) (-370)))) (-3144 (($ $ (-772)) NIL (-2811 (|has| (-912 |#1|) (-145)) (|has| (-912 |#1|) (-370)))) (($ $) NIL (-2811 (|has| (-912 |#1|) (-145)) (|has| (-912 |#1|) (-370))))) (-3502 (((-112) $) NIL)) (-3362 (((-923) $) NIL (|has| (-912 |#1|) (-370))) (((-834 (-923)) $) NIL (-2811 (|has| (-912 |#1|) (-145)) (|has| (-912 |#1|) (-370))))) (-4346 (((-112) $) NIL)) (-2092 (($) NIL (|has| (-912 |#1|) (-370)))) (-1897 (((-112) $) NIL (|has| (-912 |#1|) (-370)))) (-2724 (((-912 |#1|) $) NIL) (($ $ (-923)) NIL (|has| (-912 |#1|) (-370)))) (-3067 (((-3 $ "failed") $) NIL (|has| (-912 |#1|) (-370)))) (-1469 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1914 (((-1175 (-912 |#1|)) $) NIL) (((-1175 $) $ (-923)) NIL (|has| (-912 |#1|) (-370)))) (-3474 (((-923) $) NIL (|has| (-912 |#1|) (-370)))) (-3038 (((-1175 (-912 |#1|)) $) NIL (|has| (-912 |#1|) (-370)))) (-2030 (((-1175 (-912 |#1|)) $) NIL (|has| (-912 |#1|) (-370))) (((-3 (-1175 (-912 |#1|)) "failed") $ $) NIL (|has| (-912 |#1|) (-370)))) (-1321 (($ $ (-1175 (-912 |#1|))) NIL (|has| (-912 |#1|) (-370)))) (-2751 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2516 (((-1161) $) NIL)) (-2949 (($ $) NIL)) (-2694 (($) NIL (|has| (-912 |#1|) (-370)) CONST)) (-3779 (($ (-923)) NIL (|has| (-912 |#1|) (-370)))) (-2645 (((-112) $) NIL)) (-3437 (((-1122) $) NIL)) (-3556 (((-960 (-1122))) NIL)) (-1399 (($) NIL (|has| (-912 |#1|) (-370)))) (-2217 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-2785 (($ $ $) NIL) (($ (-645 $)) NIL)) (-4151 (((-645 (-2 (|:| -2717 (-567)) (|:| -3468 (-567))))) NIL (|has| (-912 |#1|) (-370)))) (-2717 (((-421 $) $) NIL)) (-2845 (((-834 (-923))) NIL) (((-923)) NIL)) (-2905 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2400 (((-3 $ "failed") $ $) NIL)) (-2372 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2460 (((-772) $) NIL)) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) NIL)) (-1760 (((-772) $) NIL (|has| (-912 |#1|) (-370))) (((-3 (-772) "failed") $ $) NIL (-2811 (|has| (-912 |#1|) (-145)) (|has| (-912 |#1|) (-370))))) (-1412 (((-134)) NIL)) (-1616 (($ $) NIL (|has| (-912 |#1|) (-370))) (($ $ (-772)) NIL (|has| (-912 |#1|) (-370)))) (-3104 (((-834 (-923)) $) NIL) (((-923) $) NIL)) (-3169 (((-1175 (-912 |#1|))) NIL)) (-4273 (($) NIL (|has| (-912 |#1|) (-370)))) (-2230 (($) NIL (|has| (-912 |#1|) (-370)))) (-3088 (((-1269 (-912 |#1|)) $) NIL) (((-690 (-912 |#1|)) (-1269 $)) NIL)) (-2616 (((-3 (-1269 $) "failed") (-690 $)) NIL (|has| (-912 |#1|) (-370)))) (-4129 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ (-912 |#1|)) NIL)) (-2118 (($ $) NIL (|has| (-912 |#1|) (-370))) (((-3 $ "failed") $) NIL (-2811 (|has| (-912 |#1|) (-145)) (|has| (-912 |#1|) (-370))))) (-2746 (((-772)) NIL T CONST)) (-3357 (((-112) $ $) NIL)) (-2144 (((-1269 $)) NIL) (((-1269 $) (-923)) NIL)) (-3731 (((-112) $ $) NIL)) (-2618 (((-112) $) NIL)) (-1733 (($) NIL T CONST)) (-1744 (($) NIL T CONST)) (-2963 (($ $) NIL (|has| (-912 |#1|) (-370))) (($ $ (-772)) NIL (|has| (-912 |#1|) (-370)))) (-2647 (($ $) NIL (|has| (-912 |#1|) (-370))) (($ $ (-772)) NIL (|has| (-912 |#1|) (-370)))) (-2946 (((-112) $ $) NIL)) (-3069 (($ $ $) NIL) (($ $ (-912 |#1|)) NIL)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ $ (-912 |#1|)) NIL) (($ (-912 |#1|) $) NIL)))
+(((-345 |#1| |#2|) (-13 (-330 (-912 |#1|)) (-10 -7 (-15 -3556 ((-960 (-1122)))))) (-923) (-923)) (T -345))
+((-3556 (*1 *2) (-12 (-5 *2 (-960 (-1122))) (-5 *1 (-345 *3 *4)) (-14 *3 (-923)) (-14 *4 (-923)))))
+(-13 (-330 (-912 |#1|)) (-10 -7 (-15 -3556 ((-960 (-1122))))))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) 58)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-4287 (($ $) NIL)) (-2286 (((-112) $) NIL)) (-2038 (((-112) $) NIL)) (-4355 (((-772)) NIL)) (-4293 ((|#1| $) NIL) (($ $ (-923)) NIL (|has| |#1| (-370)))) (-3792 (((-1192 (-923) (-772)) (-567)) 56 (|has| |#1| (-370)))) (-2376 (((-3 $ "failed") $ $) NIL)) (-3659 (($ $) NIL)) (-3597 (((-421 $) $) NIL)) (-3696 (((-112) $ $) NIL)) (-2384 (((-772)) NIL (|has| |#1| (-370)))) (-3647 (($) NIL T CONST)) (-3765 (((-3 |#1| "failed") $) 144)) (-2051 ((|#1| $) 115)) (-3111 (($ (-1269 |#1|)) 132)) (-2998 (((-3 "prime" "polynomial" "normal" "cyclic")) 123 (|has| |#1| (-370)))) (-2357 (($ $ $) NIL)) (-3588 (((-3 $ "failed") $) NIL)) (-1359 (($) 126 (|has| |#1| (-370)))) (-2368 (($ $ $) NIL)) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) NIL)) (-2870 (($) 162 (|has| |#1| (-370)))) (-1305 (((-112) $) 66 (|has| |#1| (-370)))) (-3144 (($ $ (-772)) NIL (-2811 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) NIL (-2811 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3502 (((-112) $) NIL)) (-3362 (((-923) $) 60 (|has| |#1| (-370))) (((-834 (-923)) $) NIL (-2811 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4346 (((-112) $) 62)) (-2092 (($) 164 (|has| |#1| (-370)))) (-1897 (((-112) $) NIL (|has| |#1| (-370)))) (-2724 ((|#1| $) NIL) (($ $ (-923)) NIL (|has| |#1| (-370)))) (-3067 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-1469 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1914 (((-1175 |#1|) $) 119) (((-1175 $) $ (-923)) NIL (|has| |#1| (-370)))) (-3474 (((-923) $) 173 (|has| |#1| (-370)))) (-3038 (((-1175 |#1|) $) NIL (|has| |#1| (-370)))) (-2030 (((-1175 |#1|) $) NIL (|has| |#1| (-370))) (((-3 (-1175 |#1|) "failed") $ $) NIL (|has| |#1| (-370)))) (-1321 (($ $ (-1175 |#1|)) NIL (|has| |#1| (-370)))) (-2751 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2516 (((-1161) $) NIL)) (-2949 (($ $) 180)) (-2694 (($) NIL (|has| |#1| (-370)) CONST)) (-3779 (($ (-923)) 98 (|has| |#1| (-370)))) (-2645 (((-112) $) 149)) (-3437 (((-1122) $) NIL)) (-3556 (((-960 (-1122))) 57)) (-1399 (($) 160 (|has| |#1| (-370)))) (-2217 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-2785 (($ $ $) NIL) (($ (-645 $)) NIL)) (-4151 (((-645 (-2 (|:| -2717 (-567)) (|:| -3468 (-567))))) 121 (|has| |#1| (-370)))) (-2717 (((-421 $) $) NIL)) (-2845 (((-834 (-923))) 92) (((-923)) 93)) (-2905 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2400 (((-3 $ "failed") $ $) NIL)) (-2372 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2460 (((-772) $) NIL)) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) NIL)) (-1760 (((-772) $) 163 (|has| |#1| (-370))) (((-3 (-772) "failed") $ $) 156 (-2811 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1412 (((-134)) NIL)) (-1616 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-3104 (((-834 (-923)) $) NIL) (((-923) $) NIL)) (-3169 (((-1175 |#1|)) 124)) (-4273 (($) 161 (|has| |#1| (-370)))) (-2230 (($) 169 (|has| |#1| (-370)))) (-3088 (((-1269 |#1|) $) 77) (((-690 |#1|) (-1269 $)) NIL)) (-2616 (((-3 (-1269 $) "failed") (-690 $)) NIL (|has| |#1| (-370)))) (-4129 (((-863) $) 176) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ |#1|) 102)) (-2118 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-2811 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2746 (((-772)) 157 T CONST)) (-3357 (((-112) $ $) NIL)) (-2144 (((-1269 $)) 146) (((-1269 $) (-923)) 100)) (-3731 (((-112) $ $) NIL)) (-2618 (((-112) $) NIL)) (-1733 (($) 67 T CONST)) (-1744 (($) 105 T CONST)) (-2963 (($ $) 109 (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-2647 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-2946 (((-112) $ $) 65)) (-3069 (($ $ $) 178) (($ $ |#1|) 179)) (-3053 (($ $) 159) (($ $ $) NIL)) (-3041 (($ $ $) 86)) (** (($ $ (-923)) 182) (($ $ (-772)) 183) (($ $ (-567)) 181)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 104) (($ $ $) 103) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 177)))
+(((-346 |#1| |#2|) (-13 (-330 |#1|) (-10 -7 (-15 -3556 ((-960 (-1122)))))) (-351) (-1175 |#1|)) (T -346))
+((-3556 (*1 *2) (-12 (-5 *2 (-960 (-1122))) (-5 *1 (-346 *3 *4)) (-4 *3 (-351)) (-14 *4 (-1175 *3)))))
+(-13 (-330 |#1|) (-10 -7 (-15 -3556 ((-960 (-1122))))))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-4287 (($ $) NIL)) (-2286 (((-112) $) NIL)) (-2038 (((-112) $) NIL)) (-4355 (((-772)) NIL)) (-4293 ((|#1| $) NIL) (($ $ (-923)) NIL (|has| |#1| (-370)))) (-3792 (((-1192 (-923) (-772)) (-567)) NIL (|has| |#1| (-370)))) (-2376 (((-3 $ "failed") $ $) NIL)) (-3659 (($ $) NIL)) (-3597 (((-421 $) $) NIL)) (-3696 (((-112) $ $) NIL)) (-2384 (((-772)) NIL (|has| |#1| (-370)))) (-3647 (($) NIL T CONST)) (-3765 (((-3 |#1| "failed") $) NIL)) (-2051 ((|#1| $) NIL)) (-3111 (($ (-1269 |#1|)) NIL)) (-2998 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-370)))) (-2357 (($ $ $) NIL)) (-3588 (((-3 $ "failed") $) NIL)) (-1359 (($) NIL (|has| |#1| (-370)))) (-2368 (($ $ $) NIL)) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) NIL)) (-2870 (($) NIL (|has| |#1| (-370)))) (-1305 (((-112) $) NIL (|has| |#1| (-370)))) (-3144 (($ $ (-772)) NIL (-2811 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) NIL (-2811 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3502 (((-112) $) NIL)) (-3362 (((-923) $) NIL (|has| |#1| (-370))) (((-834 (-923)) $) NIL (-2811 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4346 (((-112) $) NIL)) (-2092 (($) NIL (|has| |#1| (-370)))) (-1897 (((-112) $) NIL (|has| |#1| (-370)))) (-2724 ((|#1| $) NIL) (($ $ (-923)) NIL (|has| |#1| (-370)))) (-3067 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-1469 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1914 (((-1175 |#1|) $) NIL) (((-1175 $) $ (-923)) NIL (|has| |#1| (-370)))) (-3474 (((-923) $) NIL (|has| |#1| (-370)))) (-3038 (((-1175 |#1|) $) NIL (|has| |#1| (-370)))) (-2030 (((-1175 |#1|) $) NIL (|has| |#1| (-370))) (((-3 (-1175 |#1|) "failed") $ $) NIL (|has| |#1| (-370)))) (-1321 (($ $ (-1175 |#1|)) NIL (|has| |#1| (-370)))) (-2751 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2516 (((-1161) $) NIL)) (-2949 (($ $) NIL)) (-2694 (($) NIL (|has| |#1| (-370)) CONST)) (-3779 (($ (-923)) NIL (|has| |#1| (-370)))) (-2645 (((-112) $) NIL)) (-3437 (((-1122) $) NIL)) (-3556 (((-960 (-1122))) NIL)) (-1399 (($) NIL (|has| |#1| (-370)))) (-2217 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-2785 (($ $ $) NIL) (($ (-645 $)) NIL)) (-4151 (((-645 (-2 (|:| -2717 (-567)) (|:| -3468 (-567))))) NIL (|has| |#1| (-370)))) (-2717 (((-421 $) $) NIL)) (-2845 (((-834 (-923))) NIL) (((-923)) NIL)) (-2905 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2400 (((-3 $ "failed") $ $) NIL)) (-2372 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2460 (((-772) $) NIL)) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) NIL)) (-1760 (((-772) $) NIL (|has| |#1| (-370))) (((-3 (-772) "failed") $ $) NIL (-2811 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1412 (((-134)) NIL)) (-1616 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-3104 (((-834 (-923)) $) NIL) (((-923) $) NIL)) (-3169 (((-1175 |#1|)) NIL)) (-4273 (($) NIL (|has| |#1| (-370)))) (-2230 (($) NIL (|has| |#1| (-370)))) (-3088 (((-1269 |#1|) $) NIL) (((-690 |#1|) (-1269 $)) NIL)) (-2616 (((-3 (-1269 $) "failed") (-690 $)) NIL (|has| |#1| (-370)))) (-4129 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ |#1|) NIL)) (-2118 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-2811 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2746 (((-772)) NIL T CONST)) (-3357 (((-112) $ $) NIL)) (-2144 (((-1269 $)) NIL) (((-1269 $) (-923)) NIL)) (-3731 (((-112) $ $) NIL)) (-2618 (((-112) $) NIL)) (-1733 (($) NIL T CONST)) (-1744 (($) NIL T CONST)) (-2963 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-2647 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-2946 (((-112) $ $) NIL)) (-3069 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-347 |#1| |#2|) (-13 (-330 |#1|) (-10 -7 (-15 -3556 ((-960 (-1122)))))) (-351) (-923)) (T -347))
+((-3556 (*1 *2) (-12 (-5 *2 (-960 (-1122))) (-5 *1 (-347 *3 *4)) (-4 *3 (-351)) (-14 *4 (-923)))))
+(-13 (-330 |#1|) (-10 -7 (-15 -3556 ((-960 (-1122))))))
+((-3536 (((-772) (-1269 (-645 (-2 (|:| -3812 |#1|) (|:| -3779 (-1122)))))) 61)) (-2990 (((-960 (-1122)) (-1175 |#1|)) 113)) (-3822 (((-1269 (-645 (-2 (|:| -3812 |#1|) (|:| -3779 (-1122))))) (-1175 |#1|)) 105)) (-2501 (((-690 |#1|) (-1269 (-645 (-2 (|:| -3812 |#1|) (|:| -3779 (-1122)))))) 115)) (-4290 (((-3 (-1269 (-645 (-2 (|:| -3812 |#1|) (|:| -3779 (-1122))))) "failed") (-923)) 13)) (-2393 (((-3 (-1175 |#1|) (-1269 (-645 (-2 (|:| -3812 |#1|) (|:| -3779 (-1122)))))) (-923)) 18)))
+(((-348 |#1|) (-10 -7 (-15 -2990 ((-960 (-1122)) (-1175 |#1|))) (-15 -3822 ((-1269 (-645 (-2 (|:| -3812 |#1|) (|:| -3779 (-1122))))) (-1175 |#1|))) (-15 -2501 ((-690 |#1|) (-1269 (-645 (-2 (|:| -3812 |#1|) (|:| -3779 (-1122))))))) (-15 -3536 ((-772) (-1269 (-645 (-2 (|:| -3812 |#1|) (|:| -3779 (-1122))))))) (-15 -4290 ((-3 (-1269 (-645 (-2 (|:| -3812 |#1|) (|:| -3779 (-1122))))) "failed") (-923))) (-15 -2393 ((-3 (-1175 |#1|) (-1269 (-645 (-2 (|:| -3812 |#1|) (|:| -3779 (-1122)))))) (-923)))) (-351)) (T -348))
+((-2393 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-3 (-1175 *4) (-1269 (-645 (-2 (|:| -3812 *4) (|:| -3779 (-1122))))))) (-5 *1 (-348 *4)) (-4 *4 (-351)))) (-4290 (*1 *2 *3) (|partial| -12 (-5 *3 (-923)) (-5 *2 (-1269 (-645 (-2 (|:| -3812 *4) (|:| -3779 (-1122)))))) (-5 *1 (-348 *4)) (-4 *4 (-351)))) (-3536 (*1 *2 *3) (-12 (-5 *3 (-1269 (-645 (-2 (|:| -3812 *4) (|:| -3779 (-1122)))))) (-4 *4 (-351)) (-5 *2 (-772)) (-5 *1 (-348 *4)))) (-2501 (*1 *2 *3) (-12 (-5 *3 (-1269 (-645 (-2 (|:| -3812 *4) (|:| -3779 (-1122)))))) (-4 *4 (-351)) (-5 *2 (-690 *4)) (-5 *1 (-348 *4)))) (-3822 (*1 *2 *3) (-12 (-5 *3 (-1175 *4)) (-4 *4 (-351)) (-5 *2 (-1269 (-645 (-2 (|:| -3812 *4) (|:| -3779 (-1122)))))) (-5 *1 (-348 *4)))) (-2990 (*1 *2 *3) (-12 (-5 *3 (-1175 *4)) (-4 *4 (-351)) (-5 *2 (-960 (-1122))) (-5 *1 (-348 *4)))))
+(-10 -7 (-15 -2990 ((-960 (-1122)) (-1175 |#1|))) (-15 -3822 ((-1269 (-645 (-2 (|:| -3812 |#1|) (|:| -3779 (-1122))))) (-1175 |#1|))) (-15 -2501 ((-690 |#1|) (-1269 (-645 (-2 (|:| -3812 |#1|) (|:| -3779 (-1122))))))) (-15 -3536 ((-772) (-1269 (-645 (-2 (|:| -3812 |#1|) (|:| -3779 (-1122))))))) (-15 -4290 ((-3 (-1269 (-645 (-2 (|:| -3812 |#1|) (|:| -3779 (-1122))))) "failed") (-923))) (-15 -2393 ((-3 (-1175 |#1|) (-1269 (-645 (-2 (|:| -3812 |#1|) (|:| -3779 (-1122)))))) (-923))))
+((-4129 ((|#1| |#3|) 108) ((|#3| |#1|) 91)))
+(((-349 |#1| |#2| |#3|) (-10 -7 (-15 -4129 (|#3| |#1|)) (-15 -4129 (|#1| |#3|))) (-330 |#2|) (-351) (-330 |#2|)) (T -349))
+((-4129 (*1 *2 *3) (-12 (-4 *4 (-351)) (-4 *2 (-330 *4)) (-5 *1 (-349 *2 *4 *3)) (-4 *3 (-330 *4)))) (-4129 (*1 *2 *3) (-12 (-4 *4 (-351)) (-4 *2 (-330 *4)) (-5 *1 (-349 *3 *4 *2)) (-4 *3 (-330 *4)))))
+(-10 -7 (-15 -4129 (|#3| |#1|)) (-15 -4129 (|#1| |#3|)))
+((-1305 (((-112) $) 60)) (-3362 (((-834 (-923)) $) 23) (((-923) $) 66)) (-3067 (((-3 $ "failed") $) 18)) (-2694 (($) 9)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) 116)) (-1760 (((-3 (-772) "failed") $ $) 94) (((-772) $) 81)) (-1616 (($ $ (-772)) NIL) (($ $) 8)) (-4273 (($) 53)) (-2616 (((-3 (-1269 $) "failed") (-690 $)) 38)) (-2118 (((-3 $ "failed") $) 45) (($ $) 44)))
+(((-350 |#1|) (-10 -8 (-15 -3362 ((-923) |#1|)) (-15 -1760 ((-772) |#1|)) (-15 -1305 ((-112) |#1|)) (-15 -4273 (|#1|)) (-15 -2616 ((-3 (-1269 |#1|) "failed") (-690 |#1|))) (-15 -2118 (|#1| |#1|)) (-15 -1616 (|#1| |#1|)) (-15 -1616 (|#1| |#1| (-772))) (-15 -2694 (|#1|)) (-15 -3067 ((-3 |#1| "failed") |#1|)) (-15 -1760 ((-3 (-772) "failed") |#1| |#1|)) (-15 -3362 ((-834 (-923)) |#1|)) (-15 -2118 ((-3 |#1| "failed") |#1|)) (-15 -2217 ((-1175 |#1|) (-1175 |#1|) (-1175 |#1|)))) (-351)) (T -350))
+NIL
+(-10 -8 (-15 -3362 ((-923) |#1|)) (-15 -1760 ((-772) |#1|)) (-15 -1305 ((-112) |#1|)) (-15 -4273 (|#1|)) (-15 -2616 ((-3 (-1269 |#1|) "failed") (-690 |#1|))) (-15 -2118 (|#1| |#1|)) (-15 -1616 (|#1| |#1|)) (-15 -1616 (|#1| |#1| (-772))) (-15 -2694 (|#1|)) (-15 -3067 ((-3 |#1| "failed") |#1|)) (-15 -1760 ((-3 (-772) "failed") |#1| |#1|)) (-15 -3362 ((-834 (-923)) |#1|)) (-15 -2118 ((-3 |#1| "failed") |#1|)) (-15 -2217 ((-1175 |#1|) (-1175 |#1|) (-1175 |#1|))))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) 47)) (-4287 (($ $) 46)) (-2286 (((-112) $) 44)) (-3792 (((-1192 (-923) (-772)) (-567)) 101)) (-2376 (((-3 $ "failed") $ $) 20)) (-3659 (($ $) 81)) (-3597 (((-421 $) $) 80)) (-3696 (((-112) $ $) 65)) (-2384 (((-772)) 111)) (-3647 (($) 18 T CONST)) (-2998 (((-3 "prime" "polynomial" "normal" "cyclic")) 95)) (-2357 (($ $ $) 61)) (-3588 (((-3 $ "failed") $) 37)) (-1359 (($) 114)) (-2368 (($ $ $) 62)) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) 57)) (-2870 (($) 99)) (-1305 (((-112) $) 98)) (-3144 (($ $) 87) (($ $ (-772)) 86)) (-3502 (((-112) $) 79)) (-3362 (((-834 (-923)) $) 89) (((-923) $) 96)) (-4346 (((-112) $) 35)) (-3067 (((-3 $ "failed") $) 110)) (-1469 (((-3 (-645 $) "failed") (-645 $) $) 58)) (-3474 (((-923) $) 113)) (-2751 (($ $ $) 52) (($ (-645 $)) 51)) (-2516 (((-1161) $) 10)) (-2949 (($ $) 78)) (-2694 (($) 109 T CONST)) (-3779 (($ (-923)) 112)) (-3437 (((-1122) $) 11)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) 50)) (-2785 (($ $ $) 54) (($ (-645 $)) 53)) (-4151 (((-645 (-2 (|:| -2717 (-567)) (|:| -3468 (-567))))) 102)) (-2717 (((-421 $) $) 82)) (-2905 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2400 (((-3 $ "failed") $ $) 48)) (-2372 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-2460 (((-772) $) 64)) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) 63)) (-1760 (((-3 (-772) "failed") $ $) 88) (((-772) $) 97)) (-1616 (($ $ (-772)) 107) (($ $) 105)) (-4273 (($) 100)) (-2616 (((-3 (-1269 $) "failed") (-690 $)) 103)) (-4129 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-410 (-567))) 74)) (-2118 (((-3 $ "failed") $) 90) (($ $) 104)) (-2746 (((-772)) 32 T CONST)) (-3357 (((-112) $ $) 9)) (-3731 (((-112) $ $) 45)) (-1733 (($) 19 T CONST)) (-1744 (($) 34 T CONST)) (-2647 (($ $ (-772)) 108) (($ $) 106)) (-2946 (((-112) $ $) 6)) (-3069 (($ $ $) 73)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 77)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 76) (($ (-410 (-567)) $) 75)))
(((-351) (-140)) (T -351))
-((-1903 (*1 *1 *1) (-4 *1 (-351))) (-1895 (*1 *2 *3) (|partial| -12 (-5 *3 (-690 *1)) (-4 *1 (-351)) (-5 *2 (-1268 *1)))) (-1796 (*1 *2) (-12 (-4 *1 (-351)) (-5 *2 (-645 (-2 (|:| -2706 (-567)) (|:| -3458 (-567))))))) (-3400 (*1 *2 *3) (-12 (-4 *1 (-351)) (-5 *3 (-567)) (-5 *2 (-1191 (-923) (-772))))) (-1527 (*1 *1) (-4 *1 (-351))) (-3431 (*1 *1) (-4 *1 (-351))) (-2722 (*1 *2 *1) (-12 (-4 *1 (-351)) (-5 *2 (-112)))) (-2491 (*1 *2 *1) (-12 (-4 *1 (-351)) (-5 *2 (-772)))) (-4384 (*1 *2 *1) (-12 (-4 *1 (-351)) (-5 *2 (-923)))) (-2443 (*1 *2) (-12 (-4 *1 (-351)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
-(-13 (-405) (-370) (-1153) (-233) (-10 -8 (-15 -1903 ($ $)) (-15 -1895 ((-3 (-1268 $) "failed") (-690 $))) (-15 -1796 ((-645 (-2 (|:| -2706 (-567)) (|:| -3458 (-567)))))) (-15 -3400 ((-1191 (-923) (-772)) (-567))) (-15 -1527 ($)) (-15 -3431 ($)) (-15 -2722 ((-112) $)) (-15 -2491 ((-772) $)) (-15 -4384 ((-923) $)) (-15 -2443 ((-3 "prime" "polynomial" "normal" "cyclic")))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) . T) ((-617 #0#) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-233) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-405) . T) ((-370) . T) ((-455) . T) ((-559) . T) ((-647 #0#) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 #0#) . T) ((-649 $) . T) ((-641 #0#) . T) ((-641 $) . T) ((-718 #0#) . T) ((-718 $) . T) ((-727) . T) ((-922) . T) ((-1053 #0#) . T) ((-1053 $) . T) ((-1058 #0#) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1153) . T) ((-1222) . T))
-((-3454 (((-2 (|:| -2623 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|))) |#1|) 55)) (-3675 (((-2 (|:| -2623 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|)))) 53)))
-(((-352 |#1| |#2| |#3|) (-10 -7 (-15 -3675 ((-2 (|:| -2623 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|))))) (-15 -3454 ((-2 (|:| -2623 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|))) |#1|))) (-13 (-308) (-10 -8 (-15 -2908 ((-421 $) $)))) (-1244 |#1|) (-412 |#1| |#2|)) (T -352))
-((-3454 (*1 *2 *3) (-12 (-4 *3 (-13 (-308) (-10 -8 (-15 -2908 ((-421 $) $))))) (-4 *4 (-1244 *3)) (-5 *2 (-2 (|:| -2623 (-690 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-690 *3)))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-412 *3 *4)))) (-3675 (*1 *2) (-12 (-4 *3 (-13 (-308) (-10 -8 (-15 -2908 ((-421 $) $))))) (-4 *4 (-1244 *3)) (-5 *2 (-2 (|:| -2623 (-690 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-690 *3)))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-412 *3 *4)))))
-(-10 -7 (-15 -3675 ((-2 (|:| -2623 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|))))) (-15 -3454 ((-2 (|:| -2623 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|))) |#1|)))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-3419 (((-112) $) NIL)) (-3862 (((-772)) NIL)) (-4293 (((-912 |#1|) $) NIL) (($ $ (-923)) NIL (|has| (-912 |#1|) (-370)))) (-3400 (((-1191 (-923) (-772)) (-567)) NIL (|has| (-912 |#1|) (-370)))) (-3472 (((-3 $ "failed") $ $) NIL)) (-3248 (($ $) NIL)) (-2908 (((-421 $) $) NIL)) (-1592 (((-772)) NIL)) (-3609 (((-112) $ $) NIL)) (-2375 (((-772)) NIL (|has| (-912 |#1|) (-370)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 (-912 |#1|) "failed") $) NIL)) (-2038 (((-912 |#1|) $) NIL)) (-3658 (($ (-1268 (-912 |#1|))) NIL)) (-2443 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-912 |#1|) (-370)))) (-2349 (($ $ $) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-1348 (($) NIL (|has| (-912 |#1|) (-370)))) (-2360 (($ $ $) NIL)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-3431 (($) NIL (|has| (-912 |#1|) (-370)))) (-2722 (((-112) $) NIL (|has| (-912 |#1|) (-370)))) (-4225 (($ $ (-772)) NIL (-2800 (|has| (-912 |#1|) (-145)) (|has| (-912 |#1|) (-370)))) (($ $) NIL (-2800 (|has| (-912 |#1|) (-145)) (|has| (-912 |#1|) (-370))))) (-3184 (((-112) $) NIL)) (-4384 (((-923) $) NIL (|has| (-912 |#1|) (-370))) (((-834 (-923)) $) NIL (-2800 (|has| (-912 |#1|) (-145)) (|has| (-912 |#1|) (-370))))) (-1433 (((-112) $) NIL)) (-3559 (($) NIL (|has| (-912 |#1|) (-370)))) (-1426 (((-112) $) NIL (|has| (-912 |#1|) (-370)))) (-2475 (((-912 |#1|) $) NIL) (($ $ (-923)) NIL (|has| (-912 |#1|) (-370)))) (-3972 (((-3 $ "failed") $) NIL (|has| (-912 |#1|) (-370)))) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4206 (((-1174 (-912 |#1|)) $) NIL) (((-1174 $) $ (-923)) NIL (|has| (-912 |#1|) (-370)))) (-4249 (((-923) $) NIL (|has| (-912 |#1|) (-370)))) (-2016 (((-1174 (-912 |#1|)) $) NIL (|has| (-912 |#1|) (-370)))) (-2280 (((-1174 (-912 |#1|)) $) NIL (|has| (-912 |#1|) (-370))) (((-3 (-1174 (-912 |#1|)) "failed") $ $) NIL (|has| (-912 |#1|) (-370)))) (-2286 (($ $ (-1174 (-912 |#1|))) NIL (|has| (-912 |#1|) (-370)))) (-2740 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) NIL)) (-2672 (($) NIL (|has| (-912 |#1|) (-370)) CONST)) (-3768 (($ (-923)) NIL (|has| (-912 |#1|) (-370)))) (-2051 (((-112) $) NIL)) (-3430 (((-1122) $) NIL)) (-2257 (((-1268 (-645 (-2 (|:| -3802 (-912 |#1|)) (|:| -3768 (-1122)))))) NIL)) (-2969 (((-690 (-912 |#1|))) NIL)) (-1398 (($) NIL (|has| (-912 |#1|) (-370)))) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-2774 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1796 (((-645 (-2 (|:| -2706 (-567)) (|:| -3458 (-567))))) NIL (|has| (-912 |#1|) (-370)))) (-2706 (((-421 $) $) NIL)) (-1953 (((-834 (-923))) NIL) (((-923)) NIL)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2391 (((-3 $ "failed") $ $) NIL)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1990 (((-772) $) NIL)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL)) (-2491 (((-772) $) NIL (|has| (-912 |#1|) (-370))) (((-3 (-772) "failed") $ $) NIL (-2800 (|has| (-912 |#1|) (-145)) (|has| (-912 |#1|) (-370))))) (-1879 (((-134)) NIL)) (-1593 (($ $) NIL (|has| (-912 |#1|) (-370))) (($ $ (-772)) NIL (|has| (-912 |#1|) (-370)))) (-3077 (((-834 (-923)) $) NIL) (((-923) $) NIL)) (-3341 (((-1174 (-912 |#1|))) NIL)) (-1527 (($) NIL (|has| (-912 |#1|) (-370)))) (-2661 (($) NIL (|has| (-912 |#1|) (-370)))) (-2887 (((-1268 (-912 |#1|)) $) NIL) (((-690 (-912 |#1|)) (-1268 $)) NIL)) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (|has| (-912 |#1|) (-370)))) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ (-912 |#1|)) NIL)) (-1903 (($ $) NIL (|has| (-912 |#1|) (-370))) (((-3 $ "failed") $) NIL (-2800 (|has| (-912 |#1|) (-145)) (|has| (-912 |#1|) (-370))))) (-4221 (((-772)) NIL T CONST)) (-1745 (((-112) $ $) NIL)) (-2623 (((-1268 $)) NIL) (((-1268 $) (-923)) NIL)) (-3816 (((-112) $ $) NIL)) (-2012 (((-112) $) NIL)) (-1716 (($) NIL T CONST)) (-1728 (($) NIL T CONST)) (-3253 (($ $) NIL (|has| (-912 |#1|) (-370))) (($ $ (-772)) NIL (|has| (-912 |#1|) (-370)))) (-2637 (($ $) NIL (|has| (-912 |#1|) (-370))) (($ $ (-772)) NIL (|has| (-912 |#1|) (-370)))) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ $) NIL) (($ $ (-912 |#1|)) NIL)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ $ (-912 |#1|)) NIL) (($ (-912 |#1|) $) NIL)))
-(((-353 |#1| |#2|) (-13 (-330 (-912 |#1|)) (-10 -7 (-15 -2257 ((-1268 (-645 (-2 (|:| -3802 (-912 |#1|)) (|:| -3768 (-1122))))))) (-15 -2969 ((-690 (-912 |#1|)))) (-15 -1592 ((-772))))) (-923) (-923)) (T -353))
-((-2257 (*1 *2) (-12 (-5 *2 (-1268 (-645 (-2 (|:| -3802 (-912 *3)) (|:| -3768 (-1122)))))) (-5 *1 (-353 *3 *4)) (-14 *3 (-923)) (-14 *4 (-923)))) (-2969 (*1 *2) (-12 (-5 *2 (-690 (-912 *3))) (-5 *1 (-353 *3 *4)) (-14 *3 (-923)) (-14 *4 (-923)))) (-1592 (*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-353 *3 *4)) (-14 *3 (-923)) (-14 *4 (-923)))))
-(-13 (-330 (-912 |#1|)) (-10 -7 (-15 -2257 ((-1268 (-645 (-2 (|:| -3802 (-912 |#1|)) (|:| -3768 (-1122))))))) (-15 -2969 ((-690 (-912 |#1|)))) (-15 -1592 ((-772)))))
-((-2403 (((-112) $ $) 76)) (-2460 (((-112) $) 90)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-3419 (((-112) $) NIL)) (-3862 (((-772)) NIL)) (-4293 ((|#1| $) 108) (($ $ (-923)) 106 (|has| |#1| (-370)))) (-3400 (((-1191 (-923) (-772)) (-567)) 177 (|has| |#1| (-370)))) (-3472 (((-3 $ "failed") $ $) NIL)) (-3248 (($ $) NIL)) (-2908 (((-421 $) $) NIL)) (-1592 (((-772)) 105)) (-3609 (((-112) $ $) NIL)) (-2375 (((-772)) 193 (|has| |#1| (-370)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 |#1| "failed") $) 130)) (-2038 ((|#1| $) 107)) (-3658 (($ (-1268 |#1|)) 74)) (-2443 (((-3 "prime" "polynomial" "normal" "cyclic")) 219 (|has| |#1| (-370)))) (-2349 (($ $ $) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-1348 (($) 189 (|has| |#1| (-370)))) (-2360 (($ $ $) NIL)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-3431 (($) 178 (|has| |#1| (-370)))) (-2722 (((-112) $) NIL (|has| |#1| (-370)))) (-4225 (($ $ (-772)) NIL (-2800 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) NIL (-2800 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3184 (((-112) $) NIL)) (-4384 (((-923) $) NIL (|has| |#1| (-370))) (((-834 (-923)) $) NIL (-2800 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1433 (((-112) $) NIL)) (-3559 (($) 116 (|has| |#1| (-370)))) (-1426 (((-112) $) 206 (|has| |#1| (-370)))) (-2475 ((|#1| $) 110) (($ $ (-923)) 109 (|has| |#1| (-370)))) (-3972 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4206 (((-1174 |#1|) $) 220) (((-1174 $) $ (-923)) NIL (|has| |#1| (-370)))) (-4249 (((-923) $) 154 (|has| |#1| (-370)))) (-2016 (((-1174 |#1|) $) 89 (|has| |#1| (-370)))) (-2280 (((-1174 |#1|) $) 86 (|has| |#1| (-370))) (((-3 (-1174 |#1|) "failed") $ $) 98 (|has| |#1| (-370)))) (-2286 (($ $ (-1174 |#1|)) 85 (|has| |#1| (-370)))) (-2740 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) 224)) (-2672 (($) NIL (|has| |#1| (-370)) CONST)) (-3768 (($ (-923)) 157 (|has| |#1| (-370)))) (-2051 (((-112) $) 126)) (-3430 (((-1122) $) NIL)) (-2257 (((-1268 (-645 (-2 (|:| -3802 |#1|) (|:| -3768 (-1122)))))) 99)) (-2969 (((-690 |#1|)) 103)) (-1398 (($) 112 (|has| |#1| (-370)))) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-2774 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1796 (((-645 (-2 (|:| -2706 (-567)) (|:| -3458 (-567))))) 180 (|has| |#1| (-370)))) (-2706 (((-421 $) $) NIL)) (-1953 (((-834 (-923))) NIL) (((-923)) 181)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2391 (((-3 $ "failed") $ $) NIL)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1990 (((-772) $) NIL)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL)) (-2491 (((-772) $) NIL (|has| |#1| (-370))) (((-3 (-772) "failed") $ $) NIL (-2800 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1879 (((-134)) NIL)) (-1593 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-3077 (((-834 (-923)) $) NIL) (((-923) $) 78)) (-3341 (((-1174 |#1|)) 182)) (-1527 (($) 153 (|has| |#1| (-370)))) (-2661 (($) NIL (|has| |#1| (-370)))) (-2887 (((-1268 |#1|) $) 124) (((-690 |#1|) (-1268 $)) NIL)) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (|has| |#1| (-370)))) (-4132 (((-863) $) 146) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ |#1|) 73)) (-1903 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-2800 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4221 (((-772)) 187 T CONST)) (-1745 (((-112) $ $) NIL)) (-2623 (((-1268 $)) 203) (((-1268 $) (-923)) 119)) (-3816 (((-112) $ $) NIL)) (-2012 (((-112) $) NIL)) (-1716 (($) 140 T CONST)) (-1728 (($) 44 T CONST)) (-3253 (($ $) 125 (|has| |#1| (-370))) (($ $ (-772)) 117 (|has| |#1| (-370)))) (-2637 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-2936 (((-112) $ $) 214)) (-3060 (($ $ $) 122) (($ $ |#1|) 123)) (-3045 (($ $) 208) (($ $ $) 212)) (-3033 (($ $ $) 210)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) 159)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 217) (($ $ $) 171) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 121)))
-(((-354 |#1| |#2|) (-13 (-330 |#1|) (-10 -7 (-15 -2257 ((-1268 (-645 (-2 (|:| -3802 |#1|) (|:| -3768 (-1122))))))) (-15 -2969 ((-690 |#1|))) (-15 -1592 ((-772))))) (-351) (-3 (-1174 |#1|) (-1268 (-645 (-2 (|:| -3802 |#1|) (|:| -3768 (-1122))))))) (T -354))
-((-2257 (*1 *2) (-12 (-5 *2 (-1268 (-645 (-2 (|:| -3802 *3) (|:| -3768 (-1122)))))) (-5 *1 (-354 *3 *4)) (-4 *3 (-351)) (-14 *4 (-3 (-1174 *3) *2)))) (-2969 (*1 *2) (-12 (-5 *2 (-690 *3)) (-5 *1 (-354 *3 *4)) (-4 *3 (-351)) (-14 *4 (-3 (-1174 *3) (-1268 (-645 (-2 (|:| -3802 *3) (|:| -3768 (-1122))))))))) (-1592 (*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-354 *3 *4)) (-4 *3 (-351)) (-14 *4 (-3 (-1174 *3) (-1268 (-645 (-2 (|:| -3802 *3) (|:| -3768 (-1122))))))))))
-(-13 (-330 |#1|) (-10 -7 (-15 -2257 ((-1268 (-645 (-2 (|:| -3802 |#1|) (|:| -3768 (-1122))))))) (-15 -2969 ((-690 |#1|))) (-15 -1592 ((-772)))))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-3419 (((-112) $) NIL)) (-3862 (((-772)) NIL)) (-4293 ((|#1| $) NIL) (($ $ (-923)) NIL (|has| |#1| (-370)))) (-3400 (((-1191 (-923) (-772)) (-567)) NIL (|has| |#1| (-370)))) (-3472 (((-3 $ "failed") $ $) NIL)) (-3248 (($ $) NIL)) (-2908 (((-421 $) $) NIL)) (-1592 (((-772)) NIL)) (-3609 (((-112) $ $) NIL)) (-2375 (((-772)) NIL (|has| |#1| (-370)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 |#1| "failed") $) NIL)) (-2038 ((|#1| $) NIL)) (-3658 (($ (-1268 |#1|)) NIL)) (-2443 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-370)))) (-2349 (($ $ $) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-1348 (($) NIL (|has| |#1| (-370)))) (-2360 (($ $ $) NIL)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-3431 (($) NIL (|has| |#1| (-370)))) (-2722 (((-112) $) NIL (|has| |#1| (-370)))) (-4225 (($ $ (-772)) NIL (-2800 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) NIL (-2800 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3184 (((-112) $) NIL)) (-4384 (((-923) $) NIL (|has| |#1| (-370))) (((-834 (-923)) $) NIL (-2800 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1433 (((-112) $) NIL)) (-3559 (($) NIL (|has| |#1| (-370)))) (-1426 (((-112) $) NIL (|has| |#1| (-370)))) (-2475 ((|#1| $) NIL) (($ $ (-923)) NIL (|has| |#1| (-370)))) (-3972 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4206 (((-1174 |#1|) $) NIL) (((-1174 $) $ (-923)) NIL (|has| |#1| (-370)))) (-4249 (((-923) $) NIL (|has| |#1| (-370)))) (-2016 (((-1174 |#1|) $) NIL (|has| |#1| (-370)))) (-2280 (((-1174 |#1|) $) NIL (|has| |#1| (-370))) (((-3 (-1174 |#1|) "failed") $ $) NIL (|has| |#1| (-370)))) (-2286 (($ $ (-1174 |#1|)) NIL (|has| |#1| (-370)))) (-2740 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) NIL)) (-2672 (($) NIL (|has| |#1| (-370)) CONST)) (-3768 (($ (-923)) NIL (|has| |#1| (-370)))) (-2051 (((-112) $) NIL)) (-3430 (((-1122) $) NIL)) (-2257 (((-1268 (-645 (-2 (|:| -3802 |#1|) (|:| -3768 (-1122)))))) NIL)) (-2969 (((-690 |#1|)) NIL)) (-1398 (($) NIL (|has| |#1| (-370)))) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-2774 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1796 (((-645 (-2 (|:| -2706 (-567)) (|:| -3458 (-567))))) NIL (|has| |#1| (-370)))) (-2706 (((-421 $) $) NIL)) (-1953 (((-834 (-923))) NIL) (((-923)) NIL)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2391 (((-3 $ "failed") $ $) NIL)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1990 (((-772) $) NIL)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL)) (-2491 (((-772) $) NIL (|has| |#1| (-370))) (((-3 (-772) "failed") $ $) NIL (-2800 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1879 (((-134)) NIL)) (-1593 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-3077 (((-834 (-923)) $) NIL) (((-923) $) NIL)) (-3341 (((-1174 |#1|)) NIL)) (-1527 (($) NIL (|has| |#1| (-370)))) (-2661 (($) NIL (|has| |#1| (-370)))) (-2887 (((-1268 |#1|) $) NIL) (((-690 |#1|) (-1268 $)) NIL)) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (|has| |#1| (-370)))) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ |#1|) NIL)) (-1903 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-2800 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4221 (((-772)) NIL T CONST)) (-1745 (((-112) $ $) NIL)) (-2623 (((-1268 $)) NIL) (((-1268 $) (-923)) NIL)) (-3816 (((-112) $ $) NIL)) (-2012 (((-112) $) NIL)) (-1716 (($) NIL T CONST)) (-1728 (($) NIL T CONST)) (-3253 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-2637 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-355 |#1| |#2|) (-13 (-330 |#1|) (-10 -7 (-15 -2257 ((-1268 (-645 (-2 (|:| -3802 |#1|) (|:| -3768 (-1122))))))) (-15 -2969 ((-690 |#1|))) (-15 -1592 ((-772))))) (-351) (-923)) (T -355))
-((-2257 (*1 *2) (-12 (-5 *2 (-1268 (-645 (-2 (|:| -3802 *3) (|:| -3768 (-1122)))))) (-5 *1 (-355 *3 *4)) (-4 *3 (-351)) (-14 *4 (-923)))) (-2969 (*1 *2) (-12 (-5 *2 (-690 *3)) (-5 *1 (-355 *3 *4)) (-4 *3 (-351)) (-14 *4 (-923)))) (-1592 (*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-355 *3 *4)) (-4 *3 (-351)) (-14 *4 (-923)))))
-(-13 (-330 |#1|) (-10 -7 (-15 -2257 ((-1268 (-645 (-2 (|:| -3802 |#1|) (|:| -3768 (-1122))))))) (-15 -2969 ((-690 |#1|))) (-15 -1592 ((-772)))))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-3419 (((-112) $) NIL)) (-3862 (((-772)) NIL)) (-4293 (((-912 |#1|) $) NIL) (($ $ (-923)) NIL (|has| (-912 |#1|) (-370)))) (-3400 (((-1191 (-923) (-772)) (-567)) NIL (|has| (-912 |#1|) (-370)))) (-3472 (((-3 $ "failed") $ $) NIL)) (-3248 (($ $) NIL)) (-2908 (((-421 $) $) NIL)) (-3609 (((-112) $ $) NIL)) (-2375 (((-772)) NIL (|has| (-912 |#1|) (-370)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 (-912 |#1|) "failed") $) NIL)) (-2038 (((-912 |#1|) $) NIL)) (-3658 (($ (-1268 (-912 |#1|))) NIL)) (-2443 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-912 |#1|) (-370)))) (-2349 (($ $ $) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-1348 (($) NIL (|has| (-912 |#1|) (-370)))) (-2360 (($ $ $) NIL)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-3431 (($) NIL (|has| (-912 |#1|) (-370)))) (-2722 (((-112) $) NIL (|has| (-912 |#1|) (-370)))) (-4225 (($ $ (-772)) NIL (-2800 (|has| (-912 |#1|) (-145)) (|has| (-912 |#1|) (-370)))) (($ $) NIL (-2800 (|has| (-912 |#1|) (-145)) (|has| (-912 |#1|) (-370))))) (-3184 (((-112) $) NIL)) (-4384 (((-923) $) NIL (|has| (-912 |#1|) (-370))) (((-834 (-923)) $) NIL (-2800 (|has| (-912 |#1|) (-145)) (|has| (-912 |#1|) (-370))))) (-1433 (((-112) $) NIL)) (-3559 (($) NIL (|has| (-912 |#1|) (-370)))) (-1426 (((-112) $) NIL (|has| (-912 |#1|) (-370)))) (-2475 (((-912 |#1|) $) NIL) (($ $ (-923)) NIL (|has| (-912 |#1|) (-370)))) (-3972 (((-3 $ "failed") $) NIL (|has| (-912 |#1|) (-370)))) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4206 (((-1174 (-912 |#1|)) $) NIL) (((-1174 $) $ (-923)) NIL (|has| (-912 |#1|) (-370)))) (-4249 (((-923) $) NIL (|has| (-912 |#1|) (-370)))) (-2016 (((-1174 (-912 |#1|)) $) NIL (|has| (-912 |#1|) (-370)))) (-2280 (((-1174 (-912 |#1|)) $) NIL (|has| (-912 |#1|) (-370))) (((-3 (-1174 (-912 |#1|)) "failed") $ $) NIL (|has| (-912 |#1|) (-370)))) (-2286 (($ $ (-1174 (-912 |#1|))) NIL (|has| (-912 |#1|) (-370)))) (-2740 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) NIL)) (-2672 (($) NIL (|has| (-912 |#1|) (-370)) CONST)) (-3768 (($ (-923)) NIL (|has| (-912 |#1|) (-370)))) (-2051 (((-112) $) NIL)) (-3430 (((-1122) $) NIL)) (-1398 (($) NIL (|has| (-912 |#1|) (-370)))) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-2774 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1796 (((-645 (-2 (|:| -2706 (-567)) (|:| -3458 (-567))))) NIL (|has| (-912 |#1|) (-370)))) (-2706 (((-421 $) $) NIL)) (-1953 (((-834 (-923))) NIL) (((-923)) NIL)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2391 (((-3 $ "failed") $ $) NIL)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1990 (((-772) $) NIL)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL)) (-2491 (((-772) $) NIL (|has| (-912 |#1|) (-370))) (((-3 (-772) "failed") $ $) NIL (-2800 (|has| (-912 |#1|) (-145)) (|has| (-912 |#1|) (-370))))) (-1879 (((-134)) NIL)) (-1593 (($ $) NIL (|has| (-912 |#1|) (-370))) (($ $ (-772)) NIL (|has| (-912 |#1|) (-370)))) (-3077 (((-834 (-923)) $) NIL) (((-923) $) NIL)) (-3341 (((-1174 (-912 |#1|))) NIL)) (-1527 (($) NIL (|has| (-912 |#1|) (-370)))) (-2661 (($) NIL (|has| (-912 |#1|) (-370)))) (-2887 (((-1268 (-912 |#1|)) $) NIL) (((-690 (-912 |#1|)) (-1268 $)) NIL)) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (|has| (-912 |#1|) (-370)))) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ (-912 |#1|)) NIL)) (-1903 (($ $) NIL (|has| (-912 |#1|) (-370))) (((-3 $ "failed") $) NIL (-2800 (|has| (-912 |#1|) (-145)) (|has| (-912 |#1|) (-370))))) (-4221 (((-772)) NIL T CONST)) (-1745 (((-112) $ $) NIL)) (-2623 (((-1268 $)) NIL) (((-1268 $) (-923)) NIL)) (-3816 (((-112) $ $) NIL)) (-2012 (((-112) $) NIL)) (-1716 (($) NIL T CONST)) (-1728 (($) NIL T CONST)) (-3253 (($ $) NIL (|has| (-912 |#1|) (-370))) (($ $ (-772)) NIL (|has| (-912 |#1|) (-370)))) (-2637 (($ $) NIL (|has| (-912 |#1|) (-370))) (($ $ (-772)) NIL (|has| (-912 |#1|) (-370)))) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ $) NIL) (($ $ (-912 |#1|)) NIL)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ $ (-912 |#1|)) NIL) (($ (-912 |#1|) $) NIL)))
+((-2118 (*1 *1 *1) (-4 *1 (-351))) (-2616 (*1 *2 *3) (|partial| -12 (-5 *3 (-690 *1)) (-4 *1 (-351)) (-5 *2 (-1269 *1)))) (-4151 (*1 *2) (-12 (-4 *1 (-351)) (-5 *2 (-645 (-2 (|:| -2717 (-567)) (|:| -3468 (-567))))))) (-3792 (*1 *2 *3) (-12 (-4 *1 (-351)) (-5 *3 (-567)) (-5 *2 (-1192 (-923) (-772))))) (-4273 (*1 *1) (-4 *1 (-351))) (-2870 (*1 *1) (-4 *1 (-351))) (-1305 (*1 *2 *1) (-12 (-4 *1 (-351)) (-5 *2 (-112)))) (-1760 (*1 *2 *1) (-12 (-4 *1 (-351)) (-5 *2 (-772)))) (-3362 (*1 *2 *1) (-12 (-4 *1 (-351)) (-5 *2 (-923)))) (-2998 (*1 *2) (-12 (-4 *1 (-351)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
+(-13 (-405) (-370) (-1154) (-233) (-10 -8 (-15 -2118 ($ $)) (-15 -2616 ((-3 (-1269 $) "failed") (-690 $))) (-15 -4151 ((-645 (-2 (|:| -2717 (-567)) (|:| -3468 (-567)))))) (-15 -3792 ((-1192 (-923) (-772)) (-567))) (-15 -4273 ($)) (-15 -2870 ($)) (-15 -1305 ((-112) $)) (-15 -1760 ((-772) $)) (-15 -3362 ((-923) $)) (-15 -2998 ((-3 "prime" "polynomial" "normal" "cyclic")))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) . T) ((-617 #0#) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-233) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-405) . T) ((-370) . T) ((-455) . T) ((-559) . T) ((-647 #0#) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 #0#) . T) ((-649 $) . T) ((-641 #0#) . T) ((-641 $) . T) ((-718 #0#) . T) ((-718 $) . T) ((-727) . T) ((-922) . T) ((-1053 #0#) . T) ((-1053 $) . T) ((-1058 #0#) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1154) . T) ((-1223) . T))
+((-4321 (((-2 (|:| -2144 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|))) |#1|) 55)) (-4180 (((-2 (|:| -2144 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|)))) 53)))
+(((-352 |#1| |#2| |#3|) (-10 -7 (-15 -4180 ((-2 (|:| -2144 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|))))) (-15 -4321 ((-2 (|:| -2144 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|))) |#1|))) (-13 (-308) (-10 -8 (-15 -3597 ((-421 $) $)))) (-1245 |#1|) (-412 |#1| |#2|)) (T -352))
+((-4321 (*1 *2 *3) (-12 (-4 *3 (-13 (-308) (-10 -8 (-15 -3597 ((-421 $) $))))) (-4 *4 (-1245 *3)) (-5 *2 (-2 (|:| -2144 (-690 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-690 *3)))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-412 *3 *4)))) (-4180 (*1 *2) (-12 (-4 *3 (-13 (-308) (-10 -8 (-15 -3597 ((-421 $) $))))) (-4 *4 (-1245 *3)) (-5 *2 (-2 (|:| -2144 (-690 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-690 *3)))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-412 *3 *4)))))
+(-10 -7 (-15 -4180 ((-2 (|:| -2144 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|))))) (-15 -4321 ((-2 (|:| -2144 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|))) |#1|)))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-4287 (($ $) NIL)) (-2286 (((-112) $) NIL)) (-2038 (((-112) $) NIL)) (-4355 (((-772)) NIL)) (-4293 (((-912 |#1|) $) NIL) (($ $ (-923)) NIL (|has| (-912 |#1|) (-370)))) (-3792 (((-1192 (-923) (-772)) (-567)) NIL (|has| (-912 |#1|) (-370)))) (-2376 (((-3 $ "failed") $ $) NIL)) (-3659 (($ $) NIL)) (-3597 (((-421 $) $) NIL)) (-3536 (((-772)) NIL)) (-3696 (((-112) $ $) NIL)) (-2384 (((-772)) NIL (|has| (-912 |#1|) (-370)))) (-3647 (($) NIL T CONST)) (-3765 (((-3 (-912 |#1|) "failed") $) NIL)) (-2051 (((-912 |#1|) $) NIL)) (-3111 (($ (-1269 (-912 |#1|))) NIL)) (-2998 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-912 |#1|) (-370)))) (-2357 (($ $ $) NIL)) (-3588 (((-3 $ "failed") $) NIL)) (-1359 (($) NIL (|has| (-912 |#1|) (-370)))) (-2368 (($ $ $) NIL)) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) NIL)) (-2870 (($) NIL (|has| (-912 |#1|) (-370)))) (-1305 (((-112) $) NIL (|has| (-912 |#1|) (-370)))) (-3144 (($ $ (-772)) NIL (-2811 (|has| (-912 |#1|) (-145)) (|has| (-912 |#1|) (-370)))) (($ $) NIL (-2811 (|has| (-912 |#1|) (-145)) (|has| (-912 |#1|) (-370))))) (-3502 (((-112) $) NIL)) (-3362 (((-923) $) NIL (|has| (-912 |#1|) (-370))) (((-834 (-923)) $) NIL (-2811 (|has| (-912 |#1|) (-145)) (|has| (-912 |#1|) (-370))))) (-4346 (((-112) $) NIL)) (-2092 (($) NIL (|has| (-912 |#1|) (-370)))) (-1897 (((-112) $) NIL (|has| (-912 |#1|) (-370)))) (-2724 (((-912 |#1|) $) NIL) (($ $ (-923)) NIL (|has| (-912 |#1|) (-370)))) (-3067 (((-3 $ "failed") $) NIL (|has| (-912 |#1|) (-370)))) (-1469 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1914 (((-1175 (-912 |#1|)) $) NIL) (((-1175 $) $ (-923)) NIL (|has| (-912 |#1|) (-370)))) (-3474 (((-923) $) NIL (|has| (-912 |#1|) (-370)))) (-3038 (((-1175 (-912 |#1|)) $) NIL (|has| (-912 |#1|) (-370)))) (-2030 (((-1175 (-912 |#1|)) $) NIL (|has| (-912 |#1|) (-370))) (((-3 (-1175 (-912 |#1|)) "failed") $ $) NIL (|has| (-912 |#1|) (-370)))) (-1321 (($ $ (-1175 (-912 |#1|))) NIL (|has| (-912 |#1|) (-370)))) (-2751 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2516 (((-1161) $) NIL)) (-2949 (($ $) NIL)) (-2694 (($) NIL (|has| (-912 |#1|) (-370)) CONST)) (-3779 (($ (-923)) NIL (|has| (-912 |#1|) (-370)))) (-2645 (((-112) $) NIL)) (-3437 (((-1122) $) NIL)) (-3461 (((-1269 (-645 (-2 (|:| -3812 (-912 |#1|)) (|:| -3779 (-1122)))))) NIL)) (-2771 (((-690 (-912 |#1|))) NIL)) (-1399 (($) NIL (|has| (-912 |#1|) (-370)))) (-2217 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-2785 (($ $ $) NIL) (($ (-645 $)) NIL)) (-4151 (((-645 (-2 (|:| -2717 (-567)) (|:| -3468 (-567))))) NIL (|has| (-912 |#1|) (-370)))) (-2717 (((-421 $) $) NIL)) (-2845 (((-834 (-923))) NIL) (((-923)) NIL)) (-2905 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2400 (((-3 $ "failed") $ $) NIL)) (-2372 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2460 (((-772) $) NIL)) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) NIL)) (-1760 (((-772) $) NIL (|has| (-912 |#1|) (-370))) (((-3 (-772) "failed") $ $) NIL (-2811 (|has| (-912 |#1|) (-145)) (|has| (-912 |#1|) (-370))))) (-1412 (((-134)) NIL)) (-1616 (($ $) NIL (|has| (-912 |#1|) (-370))) (($ $ (-772)) NIL (|has| (-912 |#1|) (-370)))) (-3104 (((-834 (-923)) $) NIL) (((-923) $) NIL)) (-3169 (((-1175 (-912 |#1|))) NIL)) (-4273 (($) NIL (|has| (-912 |#1|) (-370)))) (-2230 (($) NIL (|has| (-912 |#1|) (-370)))) (-3088 (((-1269 (-912 |#1|)) $) NIL) (((-690 (-912 |#1|)) (-1269 $)) NIL)) (-2616 (((-3 (-1269 $) "failed") (-690 $)) NIL (|has| (-912 |#1|) (-370)))) (-4129 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ (-912 |#1|)) NIL)) (-2118 (($ $) NIL (|has| (-912 |#1|) (-370))) (((-3 $ "failed") $) NIL (-2811 (|has| (-912 |#1|) (-145)) (|has| (-912 |#1|) (-370))))) (-2746 (((-772)) NIL T CONST)) (-3357 (((-112) $ $) NIL)) (-2144 (((-1269 $)) NIL) (((-1269 $) (-923)) NIL)) (-3731 (((-112) $ $) NIL)) (-2618 (((-112) $) NIL)) (-1733 (($) NIL T CONST)) (-1744 (($) NIL T CONST)) (-2963 (($ $) NIL (|has| (-912 |#1|) (-370))) (($ $ (-772)) NIL (|has| (-912 |#1|) (-370)))) (-2647 (($ $) NIL (|has| (-912 |#1|) (-370))) (($ $ (-772)) NIL (|has| (-912 |#1|) (-370)))) (-2946 (((-112) $ $) NIL)) (-3069 (($ $ $) NIL) (($ $ (-912 |#1|)) NIL)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ $ (-912 |#1|)) NIL) (($ (-912 |#1|) $) NIL)))
+(((-353 |#1| |#2|) (-13 (-330 (-912 |#1|)) (-10 -7 (-15 -3461 ((-1269 (-645 (-2 (|:| -3812 (-912 |#1|)) (|:| -3779 (-1122))))))) (-15 -2771 ((-690 (-912 |#1|)))) (-15 -3536 ((-772))))) (-923) (-923)) (T -353))
+((-3461 (*1 *2) (-12 (-5 *2 (-1269 (-645 (-2 (|:| -3812 (-912 *3)) (|:| -3779 (-1122)))))) (-5 *1 (-353 *3 *4)) (-14 *3 (-923)) (-14 *4 (-923)))) (-2771 (*1 *2) (-12 (-5 *2 (-690 (-912 *3))) (-5 *1 (-353 *3 *4)) (-14 *3 (-923)) (-14 *4 (-923)))) (-3536 (*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-353 *3 *4)) (-14 *3 (-923)) (-14 *4 (-923)))))
+(-13 (-330 (-912 |#1|)) (-10 -7 (-15 -3461 ((-1269 (-645 (-2 (|:| -3812 (-912 |#1|)) (|:| -3779 (-1122))))))) (-15 -2771 ((-690 (-912 |#1|)))) (-15 -3536 ((-772)))))
+((-2412 (((-112) $ $) 76)) (-3791 (((-112) $) 90)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-4287 (($ $) NIL)) (-2286 (((-112) $) NIL)) (-2038 (((-112) $) NIL)) (-4355 (((-772)) NIL)) (-4293 ((|#1| $) 108) (($ $ (-923)) 106 (|has| |#1| (-370)))) (-3792 (((-1192 (-923) (-772)) (-567)) 177 (|has| |#1| (-370)))) (-2376 (((-3 $ "failed") $ $) NIL)) (-3659 (($ $) NIL)) (-3597 (((-421 $) $) NIL)) (-3536 (((-772)) 105)) (-3696 (((-112) $ $) NIL)) (-2384 (((-772)) 193 (|has| |#1| (-370)))) (-3647 (($) NIL T CONST)) (-3765 (((-3 |#1| "failed") $) 130)) (-2051 ((|#1| $) 107)) (-3111 (($ (-1269 |#1|)) 74)) (-2998 (((-3 "prime" "polynomial" "normal" "cyclic")) 219 (|has| |#1| (-370)))) (-2357 (($ $ $) NIL)) (-3588 (((-3 $ "failed") $) NIL)) (-1359 (($) 189 (|has| |#1| (-370)))) (-2368 (($ $ $) NIL)) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) NIL)) (-2870 (($) 178 (|has| |#1| (-370)))) (-1305 (((-112) $) NIL (|has| |#1| (-370)))) (-3144 (($ $ (-772)) NIL (-2811 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) NIL (-2811 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3502 (((-112) $) NIL)) (-3362 (((-923) $) NIL (|has| |#1| (-370))) (((-834 (-923)) $) NIL (-2811 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4346 (((-112) $) NIL)) (-2092 (($) 116 (|has| |#1| (-370)))) (-1897 (((-112) $) 206 (|has| |#1| (-370)))) (-2724 ((|#1| $) 110) (($ $ (-923)) 109 (|has| |#1| (-370)))) (-3067 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-1469 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1914 (((-1175 |#1|) $) 220) (((-1175 $) $ (-923)) NIL (|has| |#1| (-370)))) (-3474 (((-923) $) 154 (|has| |#1| (-370)))) (-3038 (((-1175 |#1|) $) 89 (|has| |#1| (-370)))) (-2030 (((-1175 |#1|) $) 86 (|has| |#1| (-370))) (((-3 (-1175 |#1|) "failed") $ $) 98 (|has| |#1| (-370)))) (-1321 (($ $ (-1175 |#1|)) 85 (|has| |#1| (-370)))) (-2751 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2516 (((-1161) $) NIL)) (-2949 (($ $) 224)) (-2694 (($) NIL (|has| |#1| (-370)) CONST)) (-3779 (($ (-923)) 157 (|has| |#1| (-370)))) (-2645 (((-112) $) 126)) (-3437 (((-1122) $) NIL)) (-3461 (((-1269 (-645 (-2 (|:| -3812 |#1|) (|:| -3779 (-1122)))))) 99)) (-2771 (((-690 |#1|)) 103)) (-1399 (($) 112 (|has| |#1| (-370)))) (-2217 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-2785 (($ $ $) NIL) (($ (-645 $)) NIL)) (-4151 (((-645 (-2 (|:| -2717 (-567)) (|:| -3468 (-567))))) 180 (|has| |#1| (-370)))) (-2717 (((-421 $) $) NIL)) (-2845 (((-834 (-923))) NIL) (((-923)) 181)) (-2905 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2400 (((-3 $ "failed") $ $) NIL)) (-2372 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2460 (((-772) $) NIL)) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) NIL)) (-1760 (((-772) $) NIL (|has| |#1| (-370))) (((-3 (-772) "failed") $ $) NIL (-2811 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1412 (((-134)) NIL)) (-1616 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-3104 (((-834 (-923)) $) NIL) (((-923) $) 78)) (-3169 (((-1175 |#1|)) 182)) (-4273 (($) 153 (|has| |#1| (-370)))) (-2230 (($) NIL (|has| |#1| (-370)))) (-3088 (((-1269 |#1|) $) 124) (((-690 |#1|) (-1269 $)) NIL)) (-2616 (((-3 (-1269 $) "failed") (-690 $)) NIL (|has| |#1| (-370)))) (-4129 (((-863) $) 146) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ |#1|) 73)) (-2118 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-2811 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2746 (((-772)) 187 T CONST)) (-3357 (((-112) $ $) NIL)) (-2144 (((-1269 $)) 203) (((-1269 $) (-923)) 119)) (-3731 (((-112) $ $) NIL)) (-2618 (((-112) $) NIL)) (-1733 (($) 140 T CONST)) (-1744 (($) 44 T CONST)) (-2963 (($ $) 125 (|has| |#1| (-370))) (($ $ (-772)) 117 (|has| |#1| (-370)))) (-2647 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-2946 (((-112) $ $) 214)) (-3069 (($ $ $) 122) (($ $ |#1|) 123)) (-3053 (($ $) 208) (($ $ $) 212)) (-3041 (($ $ $) 210)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) 159)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 217) (($ $ $) 171) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 121)))
+(((-354 |#1| |#2|) (-13 (-330 |#1|) (-10 -7 (-15 -3461 ((-1269 (-645 (-2 (|:| -3812 |#1|) (|:| -3779 (-1122))))))) (-15 -2771 ((-690 |#1|))) (-15 -3536 ((-772))))) (-351) (-3 (-1175 |#1|) (-1269 (-645 (-2 (|:| -3812 |#1|) (|:| -3779 (-1122))))))) (T -354))
+((-3461 (*1 *2) (-12 (-5 *2 (-1269 (-645 (-2 (|:| -3812 *3) (|:| -3779 (-1122)))))) (-5 *1 (-354 *3 *4)) (-4 *3 (-351)) (-14 *4 (-3 (-1175 *3) *2)))) (-2771 (*1 *2) (-12 (-5 *2 (-690 *3)) (-5 *1 (-354 *3 *4)) (-4 *3 (-351)) (-14 *4 (-3 (-1175 *3) (-1269 (-645 (-2 (|:| -3812 *3) (|:| -3779 (-1122))))))))) (-3536 (*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-354 *3 *4)) (-4 *3 (-351)) (-14 *4 (-3 (-1175 *3) (-1269 (-645 (-2 (|:| -3812 *3) (|:| -3779 (-1122))))))))))
+(-13 (-330 |#1|) (-10 -7 (-15 -3461 ((-1269 (-645 (-2 (|:| -3812 |#1|) (|:| -3779 (-1122))))))) (-15 -2771 ((-690 |#1|))) (-15 -3536 ((-772)))))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-4287 (($ $) NIL)) (-2286 (((-112) $) NIL)) (-2038 (((-112) $) NIL)) (-4355 (((-772)) NIL)) (-4293 ((|#1| $) NIL) (($ $ (-923)) NIL (|has| |#1| (-370)))) (-3792 (((-1192 (-923) (-772)) (-567)) NIL (|has| |#1| (-370)))) (-2376 (((-3 $ "failed") $ $) NIL)) (-3659 (($ $) NIL)) (-3597 (((-421 $) $) NIL)) (-3536 (((-772)) NIL)) (-3696 (((-112) $ $) NIL)) (-2384 (((-772)) NIL (|has| |#1| (-370)))) (-3647 (($) NIL T CONST)) (-3765 (((-3 |#1| "failed") $) NIL)) (-2051 ((|#1| $) NIL)) (-3111 (($ (-1269 |#1|)) NIL)) (-2998 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-370)))) (-2357 (($ $ $) NIL)) (-3588 (((-3 $ "failed") $) NIL)) (-1359 (($) NIL (|has| |#1| (-370)))) (-2368 (($ $ $) NIL)) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) NIL)) (-2870 (($) NIL (|has| |#1| (-370)))) (-1305 (((-112) $) NIL (|has| |#1| (-370)))) (-3144 (($ $ (-772)) NIL (-2811 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) NIL (-2811 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3502 (((-112) $) NIL)) (-3362 (((-923) $) NIL (|has| |#1| (-370))) (((-834 (-923)) $) NIL (-2811 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4346 (((-112) $) NIL)) (-2092 (($) NIL (|has| |#1| (-370)))) (-1897 (((-112) $) NIL (|has| |#1| (-370)))) (-2724 ((|#1| $) NIL) (($ $ (-923)) NIL (|has| |#1| (-370)))) (-3067 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-1469 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1914 (((-1175 |#1|) $) NIL) (((-1175 $) $ (-923)) NIL (|has| |#1| (-370)))) (-3474 (((-923) $) NIL (|has| |#1| (-370)))) (-3038 (((-1175 |#1|) $) NIL (|has| |#1| (-370)))) (-2030 (((-1175 |#1|) $) NIL (|has| |#1| (-370))) (((-3 (-1175 |#1|) "failed") $ $) NIL (|has| |#1| (-370)))) (-1321 (($ $ (-1175 |#1|)) NIL (|has| |#1| (-370)))) (-2751 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2516 (((-1161) $) NIL)) (-2949 (($ $) NIL)) (-2694 (($) NIL (|has| |#1| (-370)) CONST)) (-3779 (($ (-923)) NIL (|has| |#1| (-370)))) (-2645 (((-112) $) NIL)) (-3437 (((-1122) $) NIL)) (-3461 (((-1269 (-645 (-2 (|:| -3812 |#1|) (|:| -3779 (-1122)))))) NIL)) (-2771 (((-690 |#1|)) NIL)) (-1399 (($) NIL (|has| |#1| (-370)))) (-2217 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-2785 (($ $ $) NIL) (($ (-645 $)) NIL)) (-4151 (((-645 (-2 (|:| -2717 (-567)) (|:| -3468 (-567))))) NIL (|has| |#1| (-370)))) (-2717 (((-421 $) $) NIL)) (-2845 (((-834 (-923))) NIL) (((-923)) NIL)) (-2905 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2400 (((-3 $ "failed") $ $) NIL)) (-2372 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2460 (((-772) $) NIL)) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) NIL)) (-1760 (((-772) $) NIL (|has| |#1| (-370))) (((-3 (-772) "failed") $ $) NIL (-2811 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1412 (((-134)) NIL)) (-1616 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-3104 (((-834 (-923)) $) NIL) (((-923) $) NIL)) (-3169 (((-1175 |#1|)) NIL)) (-4273 (($) NIL (|has| |#1| (-370)))) (-2230 (($) NIL (|has| |#1| (-370)))) (-3088 (((-1269 |#1|) $) NIL) (((-690 |#1|) (-1269 $)) NIL)) (-2616 (((-3 (-1269 $) "failed") (-690 $)) NIL (|has| |#1| (-370)))) (-4129 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ |#1|) NIL)) (-2118 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-2811 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2746 (((-772)) NIL T CONST)) (-3357 (((-112) $ $) NIL)) (-2144 (((-1269 $)) NIL) (((-1269 $) (-923)) NIL)) (-3731 (((-112) $ $) NIL)) (-2618 (((-112) $) NIL)) (-1733 (($) NIL T CONST)) (-1744 (($) NIL T CONST)) (-2963 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-2647 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-2946 (((-112) $ $) NIL)) (-3069 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-355 |#1| |#2|) (-13 (-330 |#1|) (-10 -7 (-15 -3461 ((-1269 (-645 (-2 (|:| -3812 |#1|) (|:| -3779 (-1122))))))) (-15 -2771 ((-690 |#1|))) (-15 -3536 ((-772))))) (-351) (-923)) (T -355))
+((-3461 (*1 *2) (-12 (-5 *2 (-1269 (-645 (-2 (|:| -3812 *3) (|:| -3779 (-1122)))))) (-5 *1 (-355 *3 *4)) (-4 *3 (-351)) (-14 *4 (-923)))) (-2771 (*1 *2) (-12 (-5 *2 (-690 *3)) (-5 *1 (-355 *3 *4)) (-4 *3 (-351)) (-14 *4 (-923)))) (-3536 (*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-355 *3 *4)) (-4 *3 (-351)) (-14 *4 (-923)))))
+(-13 (-330 |#1|) (-10 -7 (-15 -3461 ((-1269 (-645 (-2 (|:| -3812 |#1|) (|:| -3779 (-1122))))))) (-15 -2771 ((-690 |#1|))) (-15 -3536 ((-772)))))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-4287 (($ $) NIL)) (-2286 (((-112) $) NIL)) (-2038 (((-112) $) NIL)) (-4355 (((-772)) NIL)) (-4293 (((-912 |#1|) $) NIL) (($ $ (-923)) NIL (|has| (-912 |#1|) (-370)))) (-3792 (((-1192 (-923) (-772)) (-567)) NIL (|has| (-912 |#1|) (-370)))) (-2376 (((-3 $ "failed") $ $) NIL)) (-3659 (($ $) NIL)) (-3597 (((-421 $) $) NIL)) (-3696 (((-112) $ $) NIL)) (-2384 (((-772)) NIL (|has| (-912 |#1|) (-370)))) (-3647 (($) NIL T CONST)) (-3765 (((-3 (-912 |#1|) "failed") $) NIL)) (-2051 (((-912 |#1|) $) NIL)) (-3111 (($ (-1269 (-912 |#1|))) NIL)) (-2998 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-912 |#1|) (-370)))) (-2357 (($ $ $) NIL)) (-3588 (((-3 $ "failed") $) NIL)) (-1359 (($) NIL (|has| (-912 |#1|) (-370)))) (-2368 (($ $ $) NIL)) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) NIL)) (-2870 (($) NIL (|has| (-912 |#1|) (-370)))) (-1305 (((-112) $) NIL (|has| (-912 |#1|) (-370)))) (-3144 (($ $ (-772)) NIL (-2811 (|has| (-912 |#1|) (-145)) (|has| (-912 |#1|) (-370)))) (($ $) NIL (-2811 (|has| (-912 |#1|) (-145)) (|has| (-912 |#1|) (-370))))) (-3502 (((-112) $) NIL)) (-3362 (((-923) $) NIL (|has| (-912 |#1|) (-370))) (((-834 (-923)) $) NIL (-2811 (|has| (-912 |#1|) (-145)) (|has| (-912 |#1|) (-370))))) (-4346 (((-112) $) NIL)) (-2092 (($) NIL (|has| (-912 |#1|) (-370)))) (-1897 (((-112) $) NIL (|has| (-912 |#1|) (-370)))) (-2724 (((-912 |#1|) $) NIL) (($ $ (-923)) NIL (|has| (-912 |#1|) (-370)))) (-3067 (((-3 $ "failed") $) NIL (|has| (-912 |#1|) (-370)))) (-1469 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1914 (((-1175 (-912 |#1|)) $) NIL) (((-1175 $) $ (-923)) NIL (|has| (-912 |#1|) (-370)))) (-3474 (((-923) $) NIL (|has| (-912 |#1|) (-370)))) (-3038 (((-1175 (-912 |#1|)) $) NIL (|has| (-912 |#1|) (-370)))) (-2030 (((-1175 (-912 |#1|)) $) NIL (|has| (-912 |#1|) (-370))) (((-3 (-1175 (-912 |#1|)) "failed") $ $) NIL (|has| (-912 |#1|) (-370)))) (-1321 (($ $ (-1175 (-912 |#1|))) NIL (|has| (-912 |#1|) (-370)))) (-2751 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2516 (((-1161) $) NIL)) (-2949 (($ $) NIL)) (-2694 (($) NIL (|has| (-912 |#1|) (-370)) CONST)) (-3779 (($ (-923)) NIL (|has| (-912 |#1|) (-370)))) (-2645 (((-112) $) NIL)) (-3437 (((-1122) $) NIL)) (-1399 (($) NIL (|has| (-912 |#1|) (-370)))) (-2217 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-2785 (($ $ $) NIL) (($ (-645 $)) NIL)) (-4151 (((-645 (-2 (|:| -2717 (-567)) (|:| -3468 (-567))))) NIL (|has| (-912 |#1|) (-370)))) (-2717 (((-421 $) $) NIL)) (-2845 (((-834 (-923))) NIL) (((-923)) NIL)) (-2905 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2400 (((-3 $ "failed") $ $) NIL)) (-2372 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2460 (((-772) $) NIL)) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) NIL)) (-1760 (((-772) $) NIL (|has| (-912 |#1|) (-370))) (((-3 (-772) "failed") $ $) NIL (-2811 (|has| (-912 |#1|) (-145)) (|has| (-912 |#1|) (-370))))) (-1412 (((-134)) NIL)) (-1616 (($ $) NIL (|has| (-912 |#1|) (-370))) (($ $ (-772)) NIL (|has| (-912 |#1|) (-370)))) (-3104 (((-834 (-923)) $) NIL) (((-923) $) NIL)) (-3169 (((-1175 (-912 |#1|))) NIL)) (-4273 (($) NIL (|has| (-912 |#1|) (-370)))) (-2230 (($) NIL (|has| (-912 |#1|) (-370)))) (-3088 (((-1269 (-912 |#1|)) $) NIL) (((-690 (-912 |#1|)) (-1269 $)) NIL)) (-2616 (((-3 (-1269 $) "failed") (-690 $)) NIL (|has| (-912 |#1|) (-370)))) (-4129 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ (-912 |#1|)) NIL)) (-2118 (($ $) NIL (|has| (-912 |#1|) (-370))) (((-3 $ "failed") $) NIL (-2811 (|has| (-912 |#1|) (-145)) (|has| (-912 |#1|) (-370))))) (-2746 (((-772)) NIL T CONST)) (-3357 (((-112) $ $) NIL)) (-2144 (((-1269 $)) NIL) (((-1269 $) (-923)) NIL)) (-3731 (((-112) $ $) NIL)) (-2618 (((-112) $) NIL)) (-1733 (($) NIL T CONST)) (-1744 (($) NIL T CONST)) (-2963 (($ $) NIL (|has| (-912 |#1|) (-370))) (($ $ (-772)) NIL (|has| (-912 |#1|) (-370)))) (-2647 (($ $) NIL (|has| (-912 |#1|) (-370))) (($ $ (-772)) NIL (|has| (-912 |#1|) (-370)))) (-2946 (((-112) $ $) NIL)) (-3069 (($ $ $) NIL) (($ $ (-912 |#1|)) NIL)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ $ (-912 |#1|)) NIL) (($ (-912 |#1|) $) NIL)))
(((-356 |#1| |#2|) (-330 (-912 |#1|)) (-923) (-923)) (T -356))
NIL
(-330 (-912 |#1|))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-3419 (((-112) $) NIL)) (-3862 (((-772)) NIL)) (-4293 ((|#1| $) NIL) (($ $ (-923)) NIL (|has| |#1| (-370)))) (-3400 (((-1191 (-923) (-772)) (-567)) 135 (|has| |#1| (-370)))) (-3472 (((-3 $ "failed") $ $) NIL)) (-3248 (($ $) NIL)) (-2908 (((-421 $) $) NIL)) (-3609 (((-112) $ $) NIL)) (-2375 (((-772)) 165 (|has| |#1| (-370)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 |#1| "failed") $) 109)) (-2038 ((|#1| $) 106)) (-3658 (($ (-1268 |#1|)) 101)) (-2443 (((-3 "prime" "polynomial" "normal" "cyclic")) 132 (|has| |#1| (-370)))) (-2349 (($ $ $) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-1348 (($) 98 (|has| |#1| (-370)))) (-2360 (($ $ $) NIL)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-3431 (($) 51 (|has| |#1| (-370)))) (-2722 (((-112) $) NIL (|has| |#1| (-370)))) (-4225 (($ $ (-772)) NIL (-2800 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) NIL (-2800 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3184 (((-112) $) NIL)) (-4384 (((-923) $) NIL (|has| |#1| (-370))) (((-834 (-923)) $) NIL (-2800 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1433 (((-112) $) NIL)) (-3559 (($) 136 (|has| |#1| (-370)))) (-1426 (((-112) $) 90 (|has| |#1| (-370)))) (-2475 ((|#1| $) 47) (($ $ (-923)) 52 (|has| |#1| (-370)))) (-3972 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4206 (((-1174 |#1|) $) 79) (((-1174 $) $ (-923)) NIL (|has| |#1| (-370)))) (-4249 (((-923) $) 113 (|has| |#1| (-370)))) (-2016 (((-1174 |#1|) $) NIL (|has| |#1| (-370)))) (-2280 (((-1174 |#1|) $) NIL (|has| |#1| (-370))) (((-3 (-1174 |#1|) "failed") $ $) NIL (|has| |#1| (-370)))) (-2286 (($ $ (-1174 |#1|)) NIL (|has| |#1| (-370)))) (-2740 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) NIL)) (-2672 (($) NIL (|has| |#1| (-370)) CONST)) (-3768 (($ (-923)) 111 (|has| |#1| (-370)))) (-2051 (((-112) $) 167)) (-3430 (((-1122) $) NIL)) (-1398 (($) 44 (|has| |#1| (-370)))) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-2774 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1796 (((-645 (-2 (|:| -2706 (-567)) (|:| -3458 (-567))))) 130 (|has| |#1| (-370)))) (-2706 (((-421 $) $) NIL)) (-1953 (((-834 (-923))) NIL) (((-923)) 164)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2391 (((-3 $ "failed") $ $) NIL)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1990 (((-772) $) NIL)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL)) (-2491 (((-772) $) NIL (|has| |#1| (-370))) (((-3 (-772) "failed") $ $) NIL (-2800 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1879 (((-134)) NIL)) (-1593 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-3077 (((-834 (-923)) $) NIL) (((-923) $) 71)) (-3341 (((-1174 |#1|)) 104)) (-1527 (($) 141 (|has| |#1| (-370)))) (-2661 (($) NIL (|has| |#1| (-370)))) (-2887 (((-1268 |#1|) $) 66) (((-690 |#1|) (-1268 $)) NIL)) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (|has| |#1| (-370)))) (-4132 (((-863) $) 163) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ |#1|) 103)) (-1903 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-2800 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4221 (((-772)) 169 T CONST)) (-1745 (((-112) $ $) 171)) (-2623 (((-1268 $)) 125) (((-1268 $) (-923)) 60)) (-3816 (((-112) $ $) NIL)) (-2012 (((-112) $) NIL)) (-1716 (($) 127 T CONST)) (-1728 (($) 40 T CONST)) (-3253 (($ $) 82 (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-2637 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-2936 (((-112) $ $) 123)) (-3060 (($ $ $) 115) (($ $ |#1|) 116)) (-3045 (($ $) 96) (($ $ $) 121)) (-3033 (($ $ $) 119)) (** (($ $ (-923)) NIL) (($ $ (-772)) 55) (($ $ (-567)) 146)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 94) (($ $ $) 68) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 92)))
-(((-357 |#1| |#2|) (-330 |#1|) (-351) (-1174 |#1|)) (T -357))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-4287 (($ $) NIL)) (-2286 (((-112) $) NIL)) (-2038 (((-112) $) NIL)) (-4355 (((-772)) NIL)) (-4293 ((|#1| $) NIL) (($ $ (-923)) NIL (|has| |#1| (-370)))) (-3792 (((-1192 (-923) (-772)) (-567)) 135 (|has| |#1| (-370)))) (-2376 (((-3 $ "failed") $ $) NIL)) (-3659 (($ $) NIL)) (-3597 (((-421 $) $) NIL)) (-3696 (((-112) $ $) NIL)) (-2384 (((-772)) 165 (|has| |#1| (-370)))) (-3647 (($) NIL T CONST)) (-3765 (((-3 |#1| "failed") $) 109)) (-2051 ((|#1| $) 106)) (-3111 (($ (-1269 |#1|)) 101)) (-2998 (((-3 "prime" "polynomial" "normal" "cyclic")) 132 (|has| |#1| (-370)))) (-2357 (($ $ $) NIL)) (-3588 (((-3 $ "failed") $) NIL)) (-1359 (($) 98 (|has| |#1| (-370)))) (-2368 (($ $ $) NIL)) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) NIL)) (-2870 (($) 51 (|has| |#1| (-370)))) (-1305 (((-112) $) NIL (|has| |#1| (-370)))) (-3144 (($ $ (-772)) NIL (-2811 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) NIL (-2811 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3502 (((-112) $) NIL)) (-3362 (((-923) $) NIL (|has| |#1| (-370))) (((-834 (-923)) $) NIL (-2811 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4346 (((-112) $) NIL)) (-2092 (($) 136 (|has| |#1| (-370)))) (-1897 (((-112) $) 90 (|has| |#1| (-370)))) (-2724 ((|#1| $) 47) (($ $ (-923)) 52 (|has| |#1| (-370)))) (-3067 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-1469 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1914 (((-1175 |#1|) $) 79) (((-1175 $) $ (-923)) NIL (|has| |#1| (-370)))) (-3474 (((-923) $) 113 (|has| |#1| (-370)))) (-3038 (((-1175 |#1|) $) NIL (|has| |#1| (-370)))) (-2030 (((-1175 |#1|) $) NIL (|has| |#1| (-370))) (((-3 (-1175 |#1|) "failed") $ $) NIL (|has| |#1| (-370)))) (-1321 (($ $ (-1175 |#1|)) NIL (|has| |#1| (-370)))) (-2751 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2516 (((-1161) $) NIL)) (-2949 (($ $) NIL)) (-2694 (($) NIL (|has| |#1| (-370)) CONST)) (-3779 (($ (-923)) 111 (|has| |#1| (-370)))) (-2645 (((-112) $) 167)) (-3437 (((-1122) $) NIL)) (-1399 (($) 44 (|has| |#1| (-370)))) (-2217 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-2785 (($ $ $) NIL) (($ (-645 $)) NIL)) (-4151 (((-645 (-2 (|:| -2717 (-567)) (|:| -3468 (-567))))) 130 (|has| |#1| (-370)))) (-2717 (((-421 $) $) NIL)) (-2845 (((-834 (-923))) NIL) (((-923)) 164)) (-2905 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2400 (((-3 $ "failed") $ $) NIL)) (-2372 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2460 (((-772) $) NIL)) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) NIL)) (-1760 (((-772) $) NIL (|has| |#1| (-370))) (((-3 (-772) "failed") $ $) NIL (-2811 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1412 (((-134)) NIL)) (-1616 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-3104 (((-834 (-923)) $) NIL) (((-923) $) 71)) (-3169 (((-1175 |#1|)) 104)) (-4273 (($) 141 (|has| |#1| (-370)))) (-2230 (($) NIL (|has| |#1| (-370)))) (-3088 (((-1269 |#1|) $) 66) (((-690 |#1|) (-1269 $)) NIL)) (-2616 (((-3 (-1269 $) "failed") (-690 $)) NIL (|has| |#1| (-370)))) (-4129 (((-863) $) 163) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ |#1|) 103)) (-2118 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-2811 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2746 (((-772)) 169 T CONST)) (-3357 (((-112) $ $) 171)) (-2144 (((-1269 $)) 125) (((-1269 $) (-923)) 60)) (-3731 (((-112) $ $) NIL)) (-2618 (((-112) $) NIL)) (-1733 (($) 127 T CONST)) (-1744 (($) 40 T CONST)) (-2963 (($ $) 82 (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-2647 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-2946 (((-112) $ $) 123)) (-3069 (($ $ $) 115) (($ $ |#1|) 116)) (-3053 (($ $) 96) (($ $ $) 121)) (-3041 (($ $ $) 119)) (** (($ $ (-923)) NIL) (($ $ (-772)) 55) (($ $ (-567)) 146)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 94) (($ $ $) 68) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 92)))
+(((-357 |#1| |#2|) (-330 |#1|) (-351) (-1175 |#1|)) (T -357))
NIL
(-330 |#1|)
-((-4018 ((|#1| (-1174 |#2|)) 63)))
-(((-358 |#1| |#2|) (-10 -7 (-15 -4018 (|#1| (-1174 |#2|)))) (-13 (-405) (-10 -7 (-15 -4132 (|#1| |#2|)) (-15 -4249 ((-923) |#1|)) (-15 -2623 ((-1268 |#1|) (-923))) (-15 -3253 (|#1| |#1|)))) (-351)) (T -358))
-((-4018 (*1 *2 *3) (-12 (-5 *3 (-1174 *4)) (-4 *4 (-351)) (-4 *2 (-13 (-405) (-10 -7 (-15 -4132 (*2 *4)) (-15 -4249 ((-923) *2)) (-15 -2623 ((-1268 *2) (-923))) (-15 -3253 (*2 *2))))) (-5 *1 (-358 *2 *4)))))
-(-10 -7 (-15 -4018 (|#1| (-1174 |#2|))))
-((-3843 (((-960 (-1174 |#1|)) (-1174 |#1|)) 53)) (-1348 (((-1174 |#1|) (-923) (-923)) 168) (((-1174 |#1|) (-923)) 164)) (-2722 (((-112) (-1174 |#1|)) 120)) (-2495 (((-923) (-923)) 98)) (-1770 (((-923) (-923)) 105)) (-1737 (((-923) (-923)) 96)) (-1426 (((-112) (-1174 |#1|)) 124)) (-2405 (((-3 (-1174 |#1|) "failed") (-1174 |#1|)) 149)) (-3882 (((-3 (-1174 |#1|) "failed") (-1174 |#1|)) 154)) (-2928 (((-3 (-1174 |#1|) "failed") (-1174 |#1|)) 153)) (-3821 (((-3 (-1174 |#1|) "failed") (-1174 |#1|)) 152)) (-4382 (((-3 (-1174 |#1|) "failed") (-1174 |#1|)) 144)) (-4010 (((-1174 |#1|) (-1174 |#1|)) 84)) (-4191 (((-1174 |#1|) (-923)) 159)) (-4200 (((-1174 |#1|) (-923)) 162)) (-2482 (((-1174 |#1|) (-923)) 161)) (-3405 (((-1174 |#1|) (-923)) 160)) (-3199 (((-1174 |#1|) (-923)) 157)))
-(((-359 |#1|) (-10 -7 (-15 -2722 ((-112) (-1174 |#1|))) (-15 -1426 ((-112) (-1174 |#1|))) (-15 -1737 ((-923) (-923))) (-15 -2495 ((-923) (-923))) (-15 -1770 ((-923) (-923))) (-15 -3199 ((-1174 |#1|) (-923))) (-15 -4191 ((-1174 |#1|) (-923))) (-15 -3405 ((-1174 |#1|) (-923))) (-15 -2482 ((-1174 |#1|) (-923))) (-15 -4200 ((-1174 |#1|) (-923))) (-15 -4382 ((-3 (-1174 |#1|) "failed") (-1174 |#1|))) (-15 -2405 ((-3 (-1174 |#1|) "failed") (-1174 |#1|))) (-15 -3821 ((-3 (-1174 |#1|) "failed") (-1174 |#1|))) (-15 -2928 ((-3 (-1174 |#1|) "failed") (-1174 |#1|))) (-15 -3882 ((-3 (-1174 |#1|) "failed") (-1174 |#1|))) (-15 -1348 ((-1174 |#1|) (-923))) (-15 -1348 ((-1174 |#1|) (-923) (-923))) (-15 -4010 ((-1174 |#1|) (-1174 |#1|))) (-15 -3843 ((-960 (-1174 |#1|)) (-1174 |#1|)))) (-351)) (T -359))
-((-3843 (*1 *2 *3) (-12 (-4 *4 (-351)) (-5 *2 (-960 (-1174 *4))) (-5 *1 (-359 *4)) (-5 *3 (-1174 *4)))) (-4010 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))) (-1348 (*1 *2 *3 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1174 *4)) (-5 *1 (-359 *4)) (-4 *4 (-351)))) (-1348 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1174 *4)) (-5 *1 (-359 *4)) (-4 *4 (-351)))) (-3882 (*1 *2 *2) (|partial| -12 (-5 *2 (-1174 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))) (-2928 (*1 *2 *2) (|partial| -12 (-5 *2 (-1174 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))) (-3821 (*1 *2 *2) (|partial| -12 (-5 *2 (-1174 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))) (-2405 (*1 *2 *2) (|partial| -12 (-5 *2 (-1174 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))) (-4382 (*1 *2 *2) (|partial| -12 (-5 *2 (-1174 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))) (-4200 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1174 *4)) (-5 *1 (-359 *4)) (-4 *4 (-351)))) (-2482 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1174 *4)) (-5 *1 (-359 *4)) (-4 *4 (-351)))) (-3405 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1174 *4)) (-5 *1 (-359 *4)) (-4 *4 (-351)))) (-4191 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1174 *4)) (-5 *1 (-359 *4)) (-4 *4 (-351)))) (-3199 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1174 *4)) (-5 *1 (-359 *4)) (-4 *4 (-351)))) (-1770 (*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-359 *3)) (-4 *3 (-351)))) (-2495 (*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-359 *3)) (-4 *3 (-351)))) (-1737 (*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-359 *3)) (-4 *3 (-351)))) (-1426 (*1 *2 *3) (-12 (-5 *3 (-1174 *4)) (-4 *4 (-351)) (-5 *2 (-112)) (-5 *1 (-359 *4)))) (-2722 (*1 *2 *3) (-12 (-5 *3 (-1174 *4)) (-4 *4 (-351)) (-5 *2 (-112)) (-5 *1 (-359 *4)))))
-(-10 -7 (-15 -2722 ((-112) (-1174 |#1|))) (-15 -1426 ((-112) (-1174 |#1|))) (-15 -1737 ((-923) (-923))) (-15 -2495 ((-923) (-923))) (-15 -1770 ((-923) (-923))) (-15 -3199 ((-1174 |#1|) (-923))) (-15 -4191 ((-1174 |#1|) (-923))) (-15 -3405 ((-1174 |#1|) (-923))) (-15 -2482 ((-1174 |#1|) (-923))) (-15 -4200 ((-1174 |#1|) (-923))) (-15 -4382 ((-3 (-1174 |#1|) "failed") (-1174 |#1|))) (-15 -2405 ((-3 (-1174 |#1|) "failed") (-1174 |#1|))) (-15 -3821 ((-3 (-1174 |#1|) "failed") (-1174 |#1|))) (-15 -2928 ((-3 (-1174 |#1|) "failed") (-1174 |#1|))) (-15 -3882 ((-3 (-1174 |#1|) "failed") (-1174 |#1|))) (-15 -1348 ((-1174 |#1|) (-923))) (-15 -1348 ((-1174 |#1|) (-923) (-923))) (-15 -4010 ((-1174 |#1|) (-1174 |#1|))) (-15 -3843 ((-960 (-1174 |#1|)) (-1174 |#1|))))
-((-3815 (((-3 (-645 |#3|) "failed") (-645 |#3|) |#3|) 38)))
-(((-360 |#1| |#2| |#3|) (-10 -7 (-15 -3815 ((-3 (-645 |#3|) "failed") (-645 |#3|) |#3|))) (-351) (-1244 |#1|) (-1244 |#2|)) (T -360))
-((-3815 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-645 *3)) (-4 *3 (-1244 *5)) (-4 *5 (-1244 *4)) (-4 *4 (-351)) (-5 *1 (-360 *4 *5 *3)))))
-(-10 -7 (-15 -3815 ((-3 (-645 |#3|) "failed") (-645 |#3|) |#3|)))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-3419 (((-112) $) NIL)) (-3862 (((-772)) NIL)) (-4293 ((|#1| $) NIL) (($ $ (-923)) NIL (|has| |#1| (-370)))) (-3400 (((-1191 (-923) (-772)) (-567)) NIL (|has| |#1| (-370)))) (-3472 (((-3 $ "failed") $ $) NIL)) (-3248 (($ $) NIL)) (-2908 (((-421 $) $) NIL)) (-3609 (((-112) $ $) NIL)) (-2375 (((-772)) NIL (|has| |#1| (-370)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 |#1| "failed") $) NIL)) (-2038 ((|#1| $) NIL)) (-3658 (($ (-1268 |#1|)) NIL)) (-2443 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-370)))) (-2349 (($ $ $) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-1348 (($) NIL (|has| |#1| (-370)))) (-2360 (($ $ $) NIL)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-3431 (($) NIL (|has| |#1| (-370)))) (-2722 (((-112) $) NIL (|has| |#1| (-370)))) (-4225 (($ $ (-772)) NIL (-2800 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) NIL (-2800 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3184 (((-112) $) NIL)) (-4384 (((-923) $) NIL (|has| |#1| (-370))) (((-834 (-923)) $) NIL (-2800 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1433 (((-112) $) NIL)) (-3559 (($) NIL (|has| |#1| (-370)))) (-1426 (((-112) $) NIL (|has| |#1| (-370)))) (-2475 ((|#1| $) NIL) (($ $ (-923)) NIL (|has| |#1| (-370)))) (-3972 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4206 (((-1174 |#1|) $) NIL) (((-1174 $) $ (-923)) NIL (|has| |#1| (-370)))) (-4249 (((-923) $) NIL (|has| |#1| (-370)))) (-2016 (((-1174 |#1|) $) NIL (|has| |#1| (-370)))) (-2280 (((-1174 |#1|) $) NIL (|has| |#1| (-370))) (((-3 (-1174 |#1|) "failed") $ $) NIL (|has| |#1| (-370)))) (-2286 (($ $ (-1174 |#1|)) NIL (|has| |#1| (-370)))) (-2740 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) NIL)) (-2672 (($) NIL (|has| |#1| (-370)) CONST)) (-3768 (($ (-923)) NIL (|has| |#1| (-370)))) (-2051 (((-112) $) NIL)) (-3430 (((-1122) $) NIL)) (-1398 (($) NIL (|has| |#1| (-370)))) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-2774 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1796 (((-645 (-2 (|:| -2706 (-567)) (|:| -3458 (-567))))) NIL (|has| |#1| (-370)))) (-2706 (((-421 $) $) NIL)) (-1953 (((-834 (-923))) NIL) (((-923)) NIL)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2391 (((-3 $ "failed") $ $) NIL)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1990 (((-772) $) NIL)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL)) (-2491 (((-772) $) NIL (|has| |#1| (-370))) (((-3 (-772) "failed") $ $) NIL (-2800 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1879 (((-134)) NIL)) (-1593 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-3077 (((-834 (-923)) $) NIL) (((-923) $) NIL)) (-3341 (((-1174 |#1|)) NIL)) (-1527 (($) NIL (|has| |#1| (-370)))) (-2661 (($) NIL (|has| |#1| (-370)))) (-2887 (((-1268 |#1|) $) NIL) (((-690 |#1|) (-1268 $)) NIL)) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (|has| |#1| (-370)))) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ |#1|) NIL)) (-1903 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-2800 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4221 (((-772)) NIL T CONST)) (-1745 (((-112) $ $) NIL)) (-2623 (((-1268 $)) NIL) (((-1268 $) (-923)) NIL)) (-3816 (((-112) $ $) NIL)) (-2012 (((-112) $) NIL)) (-1716 (($) NIL T CONST)) (-1728 (($) NIL T CONST)) (-3253 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-2637 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+((-3480 ((|#1| (-1175 |#2|)) 63)))
+(((-358 |#1| |#2|) (-10 -7 (-15 -3480 (|#1| (-1175 |#2|)))) (-13 (-405) (-10 -7 (-15 -4129 (|#1| |#2|)) (-15 -3474 ((-923) |#1|)) (-15 -2144 ((-1269 |#1|) (-923))) (-15 -2963 (|#1| |#1|)))) (-351)) (T -358))
+((-3480 (*1 *2 *3) (-12 (-5 *3 (-1175 *4)) (-4 *4 (-351)) (-4 *2 (-13 (-405) (-10 -7 (-15 -4129 (*2 *4)) (-15 -3474 ((-923) *2)) (-15 -2144 ((-1269 *2) (-923))) (-15 -2963 (*2 *2))))) (-5 *1 (-358 *2 *4)))))
+(-10 -7 (-15 -3480 (|#1| (-1175 |#2|))))
+((-4322 (((-960 (-1175 |#1|)) (-1175 |#1|)) 53)) (-1359 (((-1175 |#1|) (-923) (-923)) 168) (((-1175 |#1|) (-923)) 164)) (-1305 (((-112) (-1175 |#1|)) 120)) (-3974 (((-923) (-923)) 98)) (-4018 (((-923) (-923)) 105)) (-3832 (((-923) (-923)) 96)) (-1897 (((-112) (-1175 |#1|)) 124)) (-1453 (((-3 (-1175 |#1|) "failed") (-1175 |#1|)) 149)) (-2781 (((-3 (-1175 |#1|) "failed") (-1175 |#1|)) 154)) (-2048 (((-3 (-1175 |#1|) "failed") (-1175 |#1|)) 153)) (-2941 (((-3 (-1175 |#1|) "failed") (-1175 |#1|)) 152)) (-4380 (((-3 (-1175 |#1|) "failed") (-1175 |#1|)) 144)) (-1773 (((-1175 |#1|) (-1175 |#1|)) 84)) (-2930 (((-1175 |#1|) (-923)) 159)) (-2510 (((-1175 |#1|) (-923)) 162)) (-2096 (((-1175 |#1|) (-923)) 161)) (-3163 (((-1175 |#1|) (-923)) 160)) (-2489 (((-1175 |#1|) (-923)) 157)))
+(((-359 |#1|) (-10 -7 (-15 -1305 ((-112) (-1175 |#1|))) (-15 -1897 ((-112) (-1175 |#1|))) (-15 -3832 ((-923) (-923))) (-15 -3974 ((-923) (-923))) (-15 -4018 ((-923) (-923))) (-15 -2489 ((-1175 |#1|) (-923))) (-15 -2930 ((-1175 |#1|) (-923))) (-15 -3163 ((-1175 |#1|) (-923))) (-15 -2096 ((-1175 |#1|) (-923))) (-15 -2510 ((-1175 |#1|) (-923))) (-15 -4380 ((-3 (-1175 |#1|) "failed") (-1175 |#1|))) (-15 -1453 ((-3 (-1175 |#1|) "failed") (-1175 |#1|))) (-15 -2941 ((-3 (-1175 |#1|) "failed") (-1175 |#1|))) (-15 -2048 ((-3 (-1175 |#1|) "failed") (-1175 |#1|))) (-15 -2781 ((-3 (-1175 |#1|) "failed") (-1175 |#1|))) (-15 -1359 ((-1175 |#1|) (-923))) (-15 -1359 ((-1175 |#1|) (-923) (-923))) (-15 -1773 ((-1175 |#1|) (-1175 |#1|))) (-15 -4322 ((-960 (-1175 |#1|)) (-1175 |#1|)))) (-351)) (T -359))
+((-4322 (*1 *2 *3) (-12 (-4 *4 (-351)) (-5 *2 (-960 (-1175 *4))) (-5 *1 (-359 *4)) (-5 *3 (-1175 *4)))) (-1773 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))) (-1359 (*1 *2 *3 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1175 *4)) (-5 *1 (-359 *4)) (-4 *4 (-351)))) (-1359 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1175 *4)) (-5 *1 (-359 *4)) (-4 *4 (-351)))) (-2781 (*1 *2 *2) (|partial| -12 (-5 *2 (-1175 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))) (-2048 (*1 *2 *2) (|partial| -12 (-5 *2 (-1175 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))) (-2941 (*1 *2 *2) (|partial| -12 (-5 *2 (-1175 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))) (-1453 (*1 *2 *2) (|partial| -12 (-5 *2 (-1175 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))) (-4380 (*1 *2 *2) (|partial| -12 (-5 *2 (-1175 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))) (-2510 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1175 *4)) (-5 *1 (-359 *4)) (-4 *4 (-351)))) (-2096 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1175 *4)) (-5 *1 (-359 *4)) (-4 *4 (-351)))) (-3163 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1175 *4)) (-5 *1 (-359 *4)) (-4 *4 (-351)))) (-2930 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1175 *4)) (-5 *1 (-359 *4)) (-4 *4 (-351)))) (-2489 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1175 *4)) (-5 *1 (-359 *4)) (-4 *4 (-351)))) (-4018 (*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-359 *3)) (-4 *3 (-351)))) (-3974 (*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-359 *3)) (-4 *3 (-351)))) (-3832 (*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-359 *3)) (-4 *3 (-351)))) (-1897 (*1 *2 *3) (-12 (-5 *3 (-1175 *4)) (-4 *4 (-351)) (-5 *2 (-112)) (-5 *1 (-359 *4)))) (-1305 (*1 *2 *3) (-12 (-5 *3 (-1175 *4)) (-4 *4 (-351)) (-5 *2 (-112)) (-5 *1 (-359 *4)))))
+(-10 -7 (-15 -1305 ((-112) (-1175 |#1|))) (-15 -1897 ((-112) (-1175 |#1|))) (-15 -3832 ((-923) (-923))) (-15 -3974 ((-923) (-923))) (-15 -4018 ((-923) (-923))) (-15 -2489 ((-1175 |#1|) (-923))) (-15 -2930 ((-1175 |#1|) (-923))) (-15 -3163 ((-1175 |#1|) (-923))) (-15 -2096 ((-1175 |#1|) (-923))) (-15 -2510 ((-1175 |#1|) (-923))) (-15 -4380 ((-3 (-1175 |#1|) "failed") (-1175 |#1|))) (-15 -1453 ((-3 (-1175 |#1|) "failed") (-1175 |#1|))) (-15 -2941 ((-3 (-1175 |#1|) "failed") (-1175 |#1|))) (-15 -2048 ((-3 (-1175 |#1|) "failed") (-1175 |#1|))) (-15 -2781 ((-3 (-1175 |#1|) "failed") (-1175 |#1|))) (-15 -1359 ((-1175 |#1|) (-923))) (-15 -1359 ((-1175 |#1|) (-923) (-923))) (-15 -1773 ((-1175 |#1|) (-1175 |#1|))) (-15 -4322 ((-960 (-1175 |#1|)) (-1175 |#1|))))
+((-3610 (((-3 (-645 |#3|) "failed") (-645 |#3|) |#3|) 38)))
+(((-360 |#1| |#2| |#3|) (-10 -7 (-15 -3610 ((-3 (-645 |#3|) "failed") (-645 |#3|) |#3|))) (-351) (-1245 |#1|) (-1245 |#2|)) (T -360))
+((-3610 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-645 *3)) (-4 *3 (-1245 *5)) (-4 *5 (-1245 *4)) (-4 *4 (-351)) (-5 *1 (-360 *4 *5 *3)))))
+(-10 -7 (-15 -3610 ((-3 (-645 |#3|) "failed") (-645 |#3|) |#3|)))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-4287 (($ $) NIL)) (-2286 (((-112) $) NIL)) (-2038 (((-112) $) NIL)) (-4355 (((-772)) NIL)) (-4293 ((|#1| $) NIL) (($ $ (-923)) NIL (|has| |#1| (-370)))) (-3792 (((-1192 (-923) (-772)) (-567)) NIL (|has| |#1| (-370)))) (-2376 (((-3 $ "failed") $ $) NIL)) (-3659 (($ $) NIL)) (-3597 (((-421 $) $) NIL)) (-3696 (((-112) $ $) NIL)) (-2384 (((-772)) NIL (|has| |#1| (-370)))) (-3647 (($) NIL T CONST)) (-3765 (((-3 |#1| "failed") $) NIL)) (-2051 ((|#1| $) NIL)) (-3111 (($ (-1269 |#1|)) NIL)) (-2998 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-370)))) (-2357 (($ $ $) NIL)) (-3588 (((-3 $ "failed") $) NIL)) (-1359 (($) NIL (|has| |#1| (-370)))) (-2368 (($ $ $) NIL)) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) NIL)) (-2870 (($) NIL (|has| |#1| (-370)))) (-1305 (((-112) $) NIL (|has| |#1| (-370)))) (-3144 (($ $ (-772)) NIL (-2811 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) NIL (-2811 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3502 (((-112) $) NIL)) (-3362 (((-923) $) NIL (|has| |#1| (-370))) (((-834 (-923)) $) NIL (-2811 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4346 (((-112) $) NIL)) (-2092 (($) NIL (|has| |#1| (-370)))) (-1897 (((-112) $) NIL (|has| |#1| (-370)))) (-2724 ((|#1| $) NIL) (($ $ (-923)) NIL (|has| |#1| (-370)))) (-3067 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-1469 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1914 (((-1175 |#1|) $) NIL) (((-1175 $) $ (-923)) NIL (|has| |#1| (-370)))) (-3474 (((-923) $) NIL (|has| |#1| (-370)))) (-3038 (((-1175 |#1|) $) NIL (|has| |#1| (-370)))) (-2030 (((-1175 |#1|) $) NIL (|has| |#1| (-370))) (((-3 (-1175 |#1|) "failed") $ $) NIL (|has| |#1| (-370)))) (-1321 (($ $ (-1175 |#1|)) NIL (|has| |#1| (-370)))) (-2751 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2516 (((-1161) $) NIL)) (-2949 (($ $) NIL)) (-2694 (($) NIL (|has| |#1| (-370)) CONST)) (-3779 (($ (-923)) NIL (|has| |#1| (-370)))) (-2645 (((-112) $) NIL)) (-3437 (((-1122) $) NIL)) (-1399 (($) NIL (|has| |#1| (-370)))) (-2217 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-2785 (($ $ $) NIL) (($ (-645 $)) NIL)) (-4151 (((-645 (-2 (|:| -2717 (-567)) (|:| -3468 (-567))))) NIL (|has| |#1| (-370)))) (-2717 (((-421 $) $) NIL)) (-2845 (((-834 (-923))) NIL) (((-923)) NIL)) (-2905 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2400 (((-3 $ "failed") $ $) NIL)) (-2372 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2460 (((-772) $) NIL)) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) NIL)) (-1760 (((-772) $) NIL (|has| |#1| (-370))) (((-3 (-772) "failed") $ $) NIL (-2811 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1412 (((-134)) NIL)) (-1616 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-3104 (((-834 (-923)) $) NIL) (((-923) $) NIL)) (-3169 (((-1175 |#1|)) NIL)) (-4273 (($) NIL (|has| |#1| (-370)))) (-2230 (($) NIL (|has| |#1| (-370)))) (-3088 (((-1269 |#1|) $) NIL) (((-690 |#1|) (-1269 $)) NIL)) (-2616 (((-3 (-1269 $) "failed") (-690 $)) NIL (|has| |#1| (-370)))) (-4129 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ |#1|) NIL)) (-2118 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-2811 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2746 (((-772)) NIL T CONST)) (-3357 (((-112) $ $) NIL)) (-2144 (((-1269 $)) NIL) (((-1269 $) (-923)) NIL)) (-3731 (((-112) $ $) NIL)) (-2618 (((-112) $) NIL)) (-1733 (($) NIL T CONST)) (-1744 (($) NIL T CONST)) (-2963 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-2647 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-2946 (((-112) $ $) NIL)) (-3069 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
(((-361 |#1| |#2|) (-330 |#1|) (-351) (-923)) (T -361))
NIL
(-330 |#1|)
-((-2251 (((-112) (-645 (-954 |#1|))) 41)) (-3716 (((-645 (-954 |#1|)) (-645 (-954 |#1|))) 53)) (-2083 (((-3 (-645 (-954 |#1|)) "failed") (-645 (-954 |#1|))) 48)))
-(((-362 |#1| |#2|) (-10 -7 (-15 -2251 ((-112) (-645 (-954 |#1|)))) (-15 -2083 ((-3 (-645 (-954 |#1|)) "failed") (-645 (-954 |#1|)))) (-15 -3716 ((-645 (-954 |#1|)) (-645 (-954 |#1|))))) (-455) (-645 (-1178))) (T -362))
-((-3716 (*1 *2 *2) (-12 (-5 *2 (-645 (-954 *3))) (-4 *3 (-455)) (-5 *1 (-362 *3 *4)) (-14 *4 (-645 (-1178))))) (-2083 (*1 *2 *2) (|partial| -12 (-5 *2 (-645 (-954 *3))) (-4 *3 (-455)) (-5 *1 (-362 *3 *4)) (-14 *4 (-645 (-1178))))) (-2251 (*1 *2 *3) (-12 (-5 *3 (-645 (-954 *4))) (-4 *4 (-455)) (-5 *2 (-112)) (-5 *1 (-362 *4 *5)) (-14 *5 (-645 (-1178))))))
-(-10 -7 (-15 -2251 ((-112) (-645 (-954 |#1|)))) (-15 -2083 ((-3 (-645 (-954 |#1|)) "failed") (-645 (-954 |#1|)))) (-15 -3716 ((-645 (-954 |#1|)) (-645 (-954 |#1|)))))
-((-2403 (((-112) $ $) NIL)) (-2375 (((-772) $) NIL)) (-2585 (($) NIL T CONST)) (-3753 (((-3 |#1| "failed") $) NIL)) (-2038 ((|#1| $) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-1433 (((-112) $) 17)) (-4108 ((|#1| $ (-567)) NIL)) (-3202 (((-567) $ (-567)) NIL)) (-3496 (($ (-1 |#1| |#1|) $) 34)) (-2728 (($ (-1 (-567) (-567)) $) 26)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) 28)) (-3430 (((-1122) $) NIL)) (-3920 (((-645 (-2 (|:| |gen| |#1|) (|:| -3946 (-567)))) $) 30)) (-1823 (($ $ $) NIL)) (-1485 (($ $ $) NIL)) (-4132 (((-863) $) 40) (($ |#1|) NIL)) (-1745 (((-112) $ $) NIL)) (-1728 (($) 11 T CONST)) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL) (($ |#1| (-567)) 19)) (* (($ $ $) 53) (($ |#1| $) 23) (($ $ |#1|) 21)))
-(((-363 |#1|) (-13 (-476) (-1040 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-567))) (-15 -2375 ((-772) $)) (-15 -3202 ((-567) $ (-567))) (-15 -4108 (|#1| $ (-567))) (-15 -2728 ($ (-1 (-567) (-567)) $)) (-15 -3496 ($ (-1 |#1| |#1|) $)) (-15 -3920 ((-645 (-2 (|:| |gen| |#1|) (|:| -3946 (-567)))) $)))) (-1102)) (T -363))
-((* (*1 *1 *2 *1) (-12 (-5 *1 (-363 *2)) (-4 *2 (-1102)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-363 *2)) (-4 *2 (-1102)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-363 *2)) (-4 *2 (-1102)))) (-2375 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-363 *3)) (-4 *3 (-1102)))) (-3202 (*1 *2 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-363 *3)) (-4 *3 (-1102)))) (-4108 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *1 (-363 *2)) (-4 *2 (-1102)))) (-2728 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-567) (-567))) (-5 *1 (-363 *3)) (-4 *3 (-1102)))) (-3496 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1102)) (-5 *1 (-363 *3)))) (-3920 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| |gen| *3) (|:| -3946 (-567))))) (-5 *1 (-363 *3)) (-4 *3 (-1102)))))
-(-13 (-476) (-1040 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-567))) (-15 -2375 ((-772) $)) (-15 -3202 ((-567) $ (-567))) (-15 -4108 (|#1| $ (-567))) (-15 -2728 ($ (-1 (-567) (-567)) $)) (-15 -3496 ($ (-1 |#1| |#1|) $)) (-15 -3920 ((-645 (-2 (|:| |gen| |#1|) (|:| -3946 (-567)))) $))))
-((-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 13)) (-4381 (($ $) 14)) (-2908 (((-421 $) $) 34)) (-3184 (((-112) $) 30)) (-2939 (($ $) 19)) (-2774 (($ $ $) 25) (($ (-645 $)) NIL)) (-2706 (((-421 $) $) 35)) (-2391 (((-3 $ "failed") $ $) 24)) (-1990 (((-772) $) 28)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 39)) (-3816 (((-112) $ $) 16)) (-3060 (($ $ $) 37)))
-(((-364 |#1|) (-10 -8 (-15 -3060 (|#1| |#1| |#1|)) (-15 -2939 (|#1| |#1|)) (-15 -3184 ((-112) |#1|)) (-15 -2908 ((-421 |#1|) |#1|)) (-15 -2706 ((-421 |#1|) |#1|)) (-15 -2384 ((-2 (|:| -3102 |#1|) (|:| -4194 |#1|)) |#1| |#1|)) (-15 -1990 ((-772) |#1|)) (-15 -2774 (|#1| (-645 |#1|))) (-15 -2774 (|#1| |#1| |#1|)) (-15 -3816 ((-112) |#1| |#1|)) (-15 -4381 (|#1| |#1|)) (-15 -3666 ((-2 (|:| -3951 |#1|) (|:| -4405 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2391 ((-3 |#1| "failed") |#1| |#1|))) (-365)) (T -364))
-NIL
-(-10 -8 (-15 -3060 (|#1| |#1| |#1|)) (-15 -2939 (|#1| |#1|)) (-15 -3184 ((-112) |#1|)) (-15 -2908 ((-421 |#1|) |#1|)) (-15 -2706 ((-421 |#1|) |#1|)) (-15 -2384 ((-2 (|:| -3102 |#1|) (|:| -4194 |#1|)) |#1| |#1|)) (-15 -1990 ((-772) |#1|)) (-15 -2774 (|#1| (-645 |#1|))) (-15 -2774 (|#1| |#1| |#1|)) (-15 -3816 ((-112) |#1| |#1|)) (-15 -4381 (|#1| |#1|)) (-15 -3666 ((-2 (|:| -3951 |#1|) (|:| -4405 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2391 ((-3 |#1| "failed") |#1| |#1|)))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 47)) (-4381 (($ $) 46)) (-3949 (((-112) $) 44)) (-3472 (((-3 $ "failed") $ $) 20)) (-3248 (($ $) 81)) (-2908 (((-421 $) $) 80)) (-3609 (((-112) $ $) 65)) (-2585 (($) 18 T CONST)) (-2349 (($ $ $) 61)) (-2109 (((-3 $ "failed") $) 37)) (-2360 (($ $ $) 62)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) 57)) (-3184 (((-112) $) 79)) (-1433 (((-112) $) 35)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) 58)) (-2740 (($ $ $) 52) (($ (-645 $)) 51)) (-1419 (((-1160) $) 10)) (-2939 (($ $) 78)) (-3430 (((-1122) $) 11)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 50)) (-2774 (($ $ $) 54) (($ (-645 $)) 53)) (-2706 (((-421 $) $) 82)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2391 (((-3 $ "failed") $ $) 48)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-1990 (((-772) $) 64)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 63)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-410 (-567))) 74)) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-3816 (((-112) $ $) 45)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2936 (((-112) $ $) 6)) (-3060 (($ $ $) 73)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 77)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 76) (($ (-410 (-567)) $) 75)))
+((-4132 (((-112) (-645 (-954 |#1|))) 41)) (-3125 (((-645 (-954 |#1|)) (-645 (-954 |#1|))) 53)) (-1394 (((-3 (-645 (-954 |#1|)) "failed") (-645 (-954 |#1|))) 48)))
+(((-362 |#1| |#2|) (-10 -7 (-15 -4132 ((-112) (-645 (-954 |#1|)))) (-15 -1394 ((-3 (-645 (-954 |#1|)) "failed") (-645 (-954 |#1|)))) (-15 -3125 ((-645 (-954 |#1|)) (-645 (-954 |#1|))))) (-455) (-645 (-1179))) (T -362))
+((-3125 (*1 *2 *2) (-12 (-5 *2 (-645 (-954 *3))) (-4 *3 (-455)) (-5 *1 (-362 *3 *4)) (-14 *4 (-645 (-1179))))) (-1394 (*1 *2 *2) (|partial| -12 (-5 *2 (-645 (-954 *3))) (-4 *3 (-455)) (-5 *1 (-362 *3 *4)) (-14 *4 (-645 (-1179))))) (-4132 (*1 *2 *3) (-12 (-5 *3 (-645 (-954 *4))) (-4 *4 (-455)) (-5 *2 (-112)) (-5 *1 (-362 *4 *5)) (-14 *5 (-645 (-1179))))))
+(-10 -7 (-15 -4132 ((-112) (-645 (-954 |#1|)))) (-15 -1394 ((-3 (-645 (-954 |#1|)) "failed") (-645 (-954 |#1|)))) (-15 -3125 ((-645 (-954 |#1|)) (-645 (-954 |#1|)))))
+((-2412 (((-112) $ $) NIL)) (-2384 (((-772) $) NIL)) (-3647 (($) NIL T CONST)) (-3765 (((-3 |#1| "failed") $) NIL)) (-2051 ((|#1| $) NIL)) (-3588 (((-3 $ "failed") $) NIL)) (-4346 (((-112) $) 17)) (-4152 ((|#1| $ (-567)) NIL)) (-1449 (((-567) $ (-567)) NIL)) (-3650 (($ (-1 |#1| |#1|) $) 34)) (-1826 (($ (-1 (-567) (-567)) $) 26)) (-2516 (((-1161) $) NIL)) (-2949 (($ $) 28)) (-3437 (((-1122) $) NIL)) (-2158 (((-645 (-2 (|:| |gen| |#1|) (|:| -3955 (-567)))) $) 30)) (-1672 (($ $ $) NIL)) (-3997 (($ $ $) NIL)) (-4129 (((-863) $) 40) (($ |#1|) NIL)) (-3357 (((-112) $ $) NIL)) (-1744 (($) 11 T CONST)) (-2946 (((-112) $ $) NIL)) (-3069 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL) (($ |#1| (-567)) 19)) (* (($ $ $) 53) (($ |#1| $) 23) (($ $ |#1|) 21)))
+(((-363 |#1|) (-13 (-476) (-1040 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-567))) (-15 -2384 ((-772) $)) (-15 -1449 ((-567) $ (-567))) (-15 -4152 (|#1| $ (-567))) (-15 -1826 ($ (-1 (-567) (-567)) $)) (-15 -3650 ($ (-1 |#1| |#1|) $)) (-15 -2158 ((-645 (-2 (|:| |gen| |#1|) (|:| -3955 (-567)))) $)))) (-1102)) (T -363))
+((* (*1 *1 *2 *1) (-12 (-5 *1 (-363 *2)) (-4 *2 (-1102)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-363 *2)) (-4 *2 (-1102)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-363 *2)) (-4 *2 (-1102)))) (-2384 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-363 *3)) (-4 *3 (-1102)))) (-1449 (*1 *2 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-363 *3)) (-4 *3 (-1102)))) (-4152 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *1 (-363 *2)) (-4 *2 (-1102)))) (-1826 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-567) (-567))) (-5 *1 (-363 *3)) (-4 *3 (-1102)))) (-3650 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1102)) (-5 *1 (-363 *3)))) (-2158 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| |gen| *3) (|:| -3955 (-567))))) (-5 *1 (-363 *3)) (-4 *3 (-1102)))))
+(-13 (-476) (-1040 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-567))) (-15 -2384 ((-772) $)) (-15 -1449 ((-567) $ (-567))) (-15 -4152 (|#1| $ (-567))) (-15 -1826 ($ (-1 (-567) (-567)) $)) (-15 -3650 ($ (-1 |#1| |#1|) $)) (-15 -2158 ((-645 (-2 (|:| |gen| |#1|) (|:| -3955 (-567)))) $))))
+((-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) 13)) (-4287 (($ $) 14)) (-3597 (((-421 $) $) 34)) (-3502 (((-112) $) 30)) (-2949 (($ $) 19)) (-2785 (($ $ $) 25) (($ (-645 $)) NIL)) (-2717 (((-421 $) $) 35)) (-2400 (((-3 $ "failed") $ $) 24)) (-2460 (((-772) $) 28)) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) 39)) (-3731 (((-112) $ $) 16)) (-3069 (($ $ $) 37)))
+(((-364 |#1|) (-10 -8 (-15 -3069 (|#1| |#1| |#1|)) (-15 -2949 (|#1| |#1|)) (-15 -3502 ((-112) |#1|)) (-15 -3597 ((-421 |#1|) |#1|)) (-15 -2717 ((-421 |#1|) |#1|)) (-15 -2452 ((-2 (|:| -2654 |#1|) (|:| -2023 |#1|)) |#1| |#1|)) (-15 -2460 ((-772) |#1|)) (-15 -2785 (|#1| (-645 |#1|))) (-15 -2785 (|#1| |#1| |#1|)) (-15 -3731 ((-112) |#1| |#1|)) (-15 -4287 (|#1| |#1|)) (-15 -1489 ((-2 (|:| -4369 |#1|) (|:| -4409 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2400 ((-3 |#1| "failed") |#1| |#1|))) (-365)) (T -364))
+NIL
+(-10 -8 (-15 -3069 (|#1| |#1| |#1|)) (-15 -2949 (|#1| |#1|)) (-15 -3502 ((-112) |#1|)) (-15 -3597 ((-421 |#1|) |#1|)) (-15 -2717 ((-421 |#1|) |#1|)) (-15 -2452 ((-2 (|:| -2654 |#1|) (|:| -2023 |#1|)) |#1| |#1|)) (-15 -2460 ((-772) |#1|)) (-15 -2785 (|#1| (-645 |#1|))) (-15 -2785 (|#1| |#1| |#1|)) (-15 -3731 ((-112) |#1| |#1|)) (-15 -4287 (|#1| |#1|)) (-15 -1489 ((-2 (|:| -4369 |#1|) (|:| -4409 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2400 ((-3 |#1| "failed") |#1| |#1|)))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) 47)) (-4287 (($ $) 46)) (-2286 (((-112) $) 44)) (-2376 (((-3 $ "failed") $ $) 20)) (-3659 (($ $) 81)) (-3597 (((-421 $) $) 80)) (-3696 (((-112) $ $) 65)) (-3647 (($) 18 T CONST)) (-2357 (($ $ $) 61)) (-3588 (((-3 $ "failed") $) 37)) (-2368 (($ $ $) 62)) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) 57)) (-3502 (((-112) $) 79)) (-4346 (((-112) $) 35)) (-1469 (((-3 (-645 $) "failed") (-645 $) $) 58)) (-2751 (($ $ $) 52) (($ (-645 $)) 51)) (-2516 (((-1161) $) 10)) (-2949 (($ $) 78)) (-3437 (((-1122) $) 11)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) 50)) (-2785 (($ $ $) 54) (($ (-645 $)) 53)) (-2717 (((-421 $) $) 82)) (-2905 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2400 (((-3 $ "failed") $ $) 48)) (-2372 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-2460 (((-772) $) 64)) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) 63)) (-4129 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-410 (-567))) 74)) (-2746 (((-772)) 32 T CONST)) (-3357 (((-112) $ $) 9)) (-3731 (((-112) $ $) 45)) (-1733 (($) 19 T CONST)) (-1744 (($) 34 T CONST)) (-2946 (((-112) $ $) 6)) (-3069 (($ $ $) 73)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 77)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 76) (($ (-410 (-567)) $) 75)))
(((-365) (-140)) (T -365))
-((-3060 (*1 *1 *1 *1) (-4 *1 (-365))))
-(-13 (-308) (-1222) (-243) (-10 -8 (-15 -3060 ($ $ $)) (-6 -4416) (-6 -4410)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-617 #0#) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-455) . T) ((-559) . T) ((-647 #0#) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 #0#) . T) ((-649 $) . T) ((-641 #0#) . T) ((-641 $) . T) ((-718 #0#) . T) ((-718 $) . T) ((-727) . T) ((-922) . T) ((-1053 #0#) . T) ((-1053 $) . T) ((-1058 #0#) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1222) . T))
-((-2403 (((-112) $ $) 7)) (-4032 ((|#2| $ |#2|) 14)) (-2828 (($ $ (-1160)) 19)) (-2636 ((|#2| $) 15)) (-3823 (($ |#1|) 21) (($ |#1| (-1160)) 20)) (-1996 ((|#1| $) 17)) (-1419 (((-1160) $) 10)) (-1892 (((-1160) $) 16)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12)) (-1675 (($ $) 18)) (-1745 (((-112) $ $) 9)) (-2936 (((-112) $ $) 6)))
+((-3069 (*1 *1 *1 *1) (-4 *1 (-365))))
+(-13 (-308) (-1223) (-243) (-10 -8 (-15 -3069 ($ $ $)) (-6 -4420) (-6 -4414)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-617 #0#) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-455) . T) ((-559) . T) ((-647 #0#) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 #0#) . T) ((-649 $) . T) ((-641 #0#) . T) ((-641 $) . T) ((-718 #0#) . T) ((-718 $) . T) ((-727) . T) ((-922) . T) ((-1053 #0#) . T) ((-1053 $) . T) ((-1058 #0#) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1223) . T))
+((-2412 (((-112) $ $) 7)) (-2411 ((|#2| $ |#2|) 14)) (-3084 (($ $ (-1161)) 19)) (-1935 ((|#2| $) 15)) (-3835 (($ |#1|) 21) (($ |#1| (-1161)) 20)) (-2007 ((|#1| $) 17)) (-2516 (((-1161) $) 10)) (-3477 (((-1161) $) 16)) (-3437 (((-1122) $) 11)) (-4129 (((-863) $) 12)) (-3034 (($ $) 18)) (-3357 (((-112) $ $) 9)) (-2946 (((-112) $ $) 6)))
(((-366 |#1| |#2|) (-140) (-1102) (-1102)) (T -366))
-((-3823 (*1 *1 *2) (-12 (-4 *1 (-366 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-1102)))) (-3823 (*1 *1 *2 *3) (-12 (-5 *3 (-1160)) (-4 *1 (-366 *2 *4)) (-4 *2 (-1102)) (-4 *4 (-1102)))) (-2828 (*1 *1 *1 *2) (-12 (-5 *2 (-1160)) (-4 *1 (-366 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102)))) (-1675 (*1 *1 *1) (-12 (-4 *1 (-366 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-1102)))) (-1996 (*1 *2 *1) (-12 (-4 *1 (-366 *2 *3)) (-4 *3 (-1102)) (-4 *2 (-1102)))) (-1892 (*1 *2 *1) (-12 (-4 *1 (-366 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-5 *2 (-1160)))) (-2636 (*1 *2 *1) (-12 (-4 *1 (-366 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1102)))) (-4032 (*1 *2 *1 *2) (-12 (-4 *1 (-366 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1102)))))
-(-13 (-1102) (-10 -8 (-15 -3823 ($ |t#1|)) (-15 -3823 ($ |t#1| (-1160))) (-15 -2828 ($ $ (-1160))) (-15 -1675 ($ $)) (-15 -1996 (|t#1| $)) (-15 -1892 ((-1160) $)) (-15 -2636 (|t#2| $)) (-15 -4032 (|t#2| $ |t#2|))))
+((-3835 (*1 *1 *2) (-12 (-4 *1 (-366 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-1102)))) (-3835 (*1 *1 *2 *3) (-12 (-5 *3 (-1161)) (-4 *1 (-366 *2 *4)) (-4 *2 (-1102)) (-4 *4 (-1102)))) (-3084 (*1 *1 *1 *2) (-12 (-5 *2 (-1161)) (-4 *1 (-366 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102)))) (-3034 (*1 *1 *1) (-12 (-4 *1 (-366 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-1102)))) (-2007 (*1 *2 *1) (-12 (-4 *1 (-366 *2 *3)) (-4 *3 (-1102)) (-4 *2 (-1102)))) (-3477 (*1 *2 *1) (-12 (-4 *1 (-366 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-5 *2 (-1161)))) (-1935 (*1 *2 *1) (-12 (-4 *1 (-366 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1102)))) (-2411 (*1 *2 *1 *2) (-12 (-4 *1 (-366 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1102)))))
+(-13 (-1102) (-10 -8 (-15 -3835 ($ |t#1|)) (-15 -3835 ($ |t#1| (-1161))) (-15 -3084 ($ $ (-1161))) (-15 -3034 ($ $)) (-15 -2007 (|t#1| $)) (-15 -3477 ((-1161) $)) (-15 -1935 (|t#2| $)) (-15 -2411 (|t#2| $ |t#2|))))
(((-102) . T) ((-614 (-863)) . T) ((-1102) . T))
-((-2403 (((-112) $ $) NIL)) (-4032 ((|#1| $ |#1|) 31)) (-2828 (($ $ (-1160)) 23)) (-2901 (((-3 |#1| "failed") $) 30)) (-2636 ((|#1| $) 28)) (-3823 (($ (-391)) 22) (($ (-391) (-1160)) 21)) (-1996 (((-391) $) 25)) (-1419 (((-1160) $) NIL)) (-1892 (((-1160) $) 26)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 20)) (-1675 (($ $) 24)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 19)))
-(((-367 |#1|) (-13 (-366 (-391) |#1|) (-10 -8 (-15 -2901 ((-3 |#1| "failed") $)))) (-1102)) (T -367))
-((-2901 (*1 *2 *1) (|partial| -12 (-5 *1 (-367 *2)) (-4 *2 (-1102)))))
-(-13 (-366 (-391) |#1|) (-10 -8 (-15 -2901 ((-3 |#1| "failed") $))))
-((-2189 (((-1268 (-690 |#2|)) (-1268 $)) 70)) (-1735 (((-690 |#2|) (-1268 $)) 141)) (-2583 ((|#2| $) 39)) (-3528 (((-690 |#2|) $ (-1268 $)) 144)) (-2209 (((-3 $ "failed") $) 91)) (-1883 ((|#2| $) 42)) (-1575 (((-1174 |#2|) $) 99)) (-2676 ((|#2| (-1268 $)) 124)) (-1682 (((-1174 |#2|) $) 34)) (-1444 (((-112)) 118)) (-3658 (($ (-1268 |#2|) (-1268 $)) 134)) (-2109 (((-3 $ "failed") $) 95)) (-4353 (((-112)) 112)) (-3375 (((-112)) 107)) (-3154 (((-112)) 61)) (-2119 (((-690 |#2|) (-1268 $)) 139)) (-2726 ((|#2| $) 38)) (-2702 (((-690 |#2|) $ (-1268 $)) 143)) (-3080 (((-3 $ "failed") $) 89)) (-2200 ((|#2| $) 41)) (-3960 (((-1174 |#2|) $) 98)) (-3042 ((|#2| (-1268 $)) 122)) (-3567 (((-1174 |#2|) $) 32)) (-3396 (((-112)) 117)) (-2609 (((-112)) 109)) (-3070 (((-112)) 59)) (-4341 (((-112)) 104)) (-4356 (((-112)) 119)) (-2887 (((-1268 |#2|) $ (-1268 $)) NIL) (((-690 |#2|) (-1268 $) (-1268 $)) 130)) (-1502 (((-112)) 115)) (-2652 (((-645 (-1268 |#2|))) 103)) (-3013 (((-112)) 116)) (-1636 (((-112)) 113)) (-1749 (((-112)) 54)) (-2059 (((-112)) 120)))
-(((-368 |#1| |#2|) (-10 -8 (-15 -1575 ((-1174 |#2|) |#1|)) (-15 -3960 ((-1174 |#2|) |#1|)) (-15 -2652 ((-645 (-1268 |#2|)))) (-15 -2209 ((-3 |#1| "failed") |#1|)) (-15 -3080 ((-3 |#1| "failed") |#1|)) (-15 -2109 ((-3 |#1| "failed") |#1|)) (-15 -3375 ((-112))) (-15 -2609 ((-112))) (-15 -4353 ((-112))) (-15 -3070 ((-112))) (-15 -3154 ((-112))) (-15 -4341 ((-112))) (-15 -2059 ((-112))) (-15 -4356 ((-112))) (-15 -1444 ((-112))) (-15 -3396 ((-112))) (-15 -1749 ((-112))) (-15 -3013 ((-112))) (-15 -1636 ((-112))) (-15 -1502 ((-112))) (-15 -1682 ((-1174 |#2|) |#1|)) (-15 -3567 ((-1174 |#2|) |#1|)) (-15 -1735 ((-690 |#2|) (-1268 |#1|))) (-15 -2119 ((-690 |#2|) (-1268 |#1|))) (-15 -2676 (|#2| (-1268 |#1|))) (-15 -3042 (|#2| (-1268 |#1|))) (-15 -3658 (|#1| (-1268 |#2|) (-1268 |#1|))) (-15 -2887 ((-690 |#2|) (-1268 |#1|) (-1268 |#1|))) (-15 -2887 ((-1268 |#2|) |#1| (-1268 |#1|))) (-15 -1883 (|#2| |#1|)) (-15 -2200 (|#2| |#1|)) (-15 -2583 (|#2| |#1|)) (-15 -2726 (|#2| |#1|)) (-15 -3528 ((-690 |#2|) |#1| (-1268 |#1|))) (-15 -2702 ((-690 |#2|) |#1| (-1268 |#1|))) (-15 -2189 ((-1268 (-690 |#2|)) (-1268 |#1|)))) (-369 |#2|) (-172)) (T -368))
-((-1502 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-1636 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-3013 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-1749 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-3396 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-1444 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-4356 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-2059 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-4341 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-3154 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-3070 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-4353 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-2609 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-3375 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-2652 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-645 (-1268 *4))) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))))
-(-10 -8 (-15 -1575 ((-1174 |#2|) |#1|)) (-15 -3960 ((-1174 |#2|) |#1|)) (-15 -2652 ((-645 (-1268 |#2|)))) (-15 -2209 ((-3 |#1| "failed") |#1|)) (-15 -3080 ((-3 |#1| "failed") |#1|)) (-15 -2109 ((-3 |#1| "failed") |#1|)) (-15 -3375 ((-112))) (-15 -2609 ((-112))) (-15 -4353 ((-112))) (-15 -3070 ((-112))) (-15 -3154 ((-112))) (-15 -4341 ((-112))) (-15 -2059 ((-112))) (-15 -4356 ((-112))) (-15 -1444 ((-112))) (-15 -3396 ((-112))) (-15 -1749 ((-112))) (-15 -3013 ((-112))) (-15 -1636 ((-112))) (-15 -1502 ((-112))) (-15 -1682 ((-1174 |#2|) |#1|)) (-15 -3567 ((-1174 |#2|) |#1|)) (-15 -1735 ((-690 |#2|) (-1268 |#1|))) (-15 -2119 ((-690 |#2|) (-1268 |#1|))) (-15 -2676 (|#2| (-1268 |#1|))) (-15 -3042 (|#2| (-1268 |#1|))) (-15 -3658 (|#1| (-1268 |#2|) (-1268 |#1|))) (-15 -2887 ((-690 |#2|) (-1268 |#1|) (-1268 |#1|))) (-15 -2887 ((-1268 |#2|) |#1| (-1268 |#1|))) (-15 -1883 (|#2| |#1|)) (-15 -2200 (|#2| |#1|)) (-15 -2583 (|#2| |#1|)) (-15 -2726 (|#2| |#1|)) (-15 -3528 ((-690 |#2|) |#1| (-1268 |#1|))) (-15 -2702 ((-690 |#2|) |#1| (-1268 |#1|))) (-15 -2189 ((-1268 (-690 |#2|)) (-1268 |#1|))))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3951 (((-3 $ "failed")) 42 (|has| |#1| (-559)))) (-3472 (((-3 $ "failed") $ $) 20)) (-2189 (((-1268 (-690 |#1|)) (-1268 $)) 83)) (-3337 (((-1268 $)) 86)) (-2585 (($) 18 T CONST)) (-3425 (((-3 (-2 (|:| |particular| $) (|:| -2623 (-645 $))) "failed")) 45 (|has| |#1| (-559)))) (-3645 (((-3 $ "failed")) 43 (|has| |#1| (-559)))) (-1735 (((-690 |#1|) (-1268 $)) 70)) (-2583 ((|#1| $) 79)) (-3528 (((-690 |#1|) $ (-1268 $)) 81)) (-2209 (((-3 $ "failed") $) 50 (|has| |#1| (-559)))) (-2586 (($ $ (-923)) 31)) (-1883 ((|#1| $) 77)) (-1575 (((-1174 |#1|) $) 47 (|has| |#1| (-559)))) (-2676 ((|#1| (-1268 $)) 72)) (-1682 (((-1174 |#1|) $) 68)) (-1444 (((-112)) 62)) (-3658 (($ (-1268 |#1|) (-1268 $)) 74)) (-2109 (((-3 $ "failed") $) 52 (|has| |#1| (-559)))) (-1954 (((-923)) 85)) (-1379 (((-112)) 59)) (-3719 (($ $ (-923)) 38)) (-4353 (((-112)) 55)) (-3375 (((-112)) 53)) (-3154 (((-112)) 57)) (-3412 (((-3 (-2 (|:| |particular| $) (|:| -2623 (-645 $))) "failed")) 46 (|has| |#1| (-559)))) (-3345 (((-3 $ "failed")) 44 (|has| |#1| (-559)))) (-2119 (((-690 |#1|) (-1268 $)) 71)) (-2726 ((|#1| $) 80)) (-2702 (((-690 |#1|) $ (-1268 $)) 82)) (-3080 (((-3 $ "failed") $) 51 (|has| |#1| (-559)))) (-3450 (($ $ (-923)) 32)) (-2200 ((|#1| $) 78)) (-3960 (((-1174 |#1|) $) 48 (|has| |#1| (-559)))) (-3042 ((|#1| (-1268 $)) 73)) (-3567 (((-1174 |#1|) $) 69)) (-3396 (((-112)) 63)) (-1419 (((-1160) $) 10)) (-2609 (((-112)) 54)) (-3070 (((-112)) 56)) (-4341 (((-112)) 58)) (-3430 (((-1122) $) 11)) (-4356 (((-112)) 61)) (-2887 (((-1268 |#1|) $ (-1268 $)) 76) (((-690 |#1|) (-1268 $) (-1268 $)) 75)) (-4013 (((-645 (-954 |#1|)) (-1268 $)) 84)) (-1485 (($ $ $) 28)) (-1502 (((-112)) 67)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-2652 (((-645 (-1268 |#1|))) 49 (|has| |#1| (-559)))) (-2153 (($ $ $ $) 29)) (-3013 (((-112)) 65)) (-2214 (($ $ $) 27)) (-1636 (((-112)) 66)) (-1749 (((-112)) 64)) (-2059 (((-112)) 60)) (-1716 (($) 19 T CONST)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 33)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39)))
+((-2412 (((-112) $ $) NIL)) (-2411 ((|#1| $ |#1|) 31)) (-3084 (($ $ (-1161)) 23)) (-4175 (((-3 |#1| "failed") $) 30)) (-1935 ((|#1| $) 28)) (-3835 (($ (-391)) 22) (($ (-391) (-1161)) 21)) (-2007 (((-391) $) 25)) (-2516 (((-1161) $) NIL)) (-3477 (((-1161) $) 26)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) 20)) (-3034 (($ $) 24)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) 19)))
+(((-367 |#1|) (-13 (-366 (-391) |#1|) (-10 -8 (-15 -4175 ((-3 |#1| "failed") $)))) (-1102)) (T -367))
+((-4175 (*1 *2 *1) (|partial| -12 (-5 *1 (-367 *2)) (-4 *2 (-1102)))))
+(-13 (-366 (-391) |#1|) (-10 -8 (-15 -4175 ((-3 |#1| "failed") $))))
+((-1483 (((-1269 (-690 |#2|)) (-1269 $)) 70)) (-1852 (((-690 |#2|) (-1269 $)) 141)) (-3382 ((|#2| $) 39)) (-1639 (((-690 |#2|) $ (-1269 $)) 144)) (-2810 (((-3 $ "failed") $) 91)) (-1868 ((|#2| $) 42)) (-2479 (((-1175 |#2|) $) 99)) (-3878 ((|#2| (-1269 $)) 124)) (-2309 (((-1175 |#2|) $) 34)) (-2720 (((-112)) 118)) (-3111 (($ (-1269 |#2|) (-1269 $)) 134)) (-3588 (((-3 $ "failed") $) 95)) (-4388 (((-112)) 112)) (-2655 (((-112)) 107)) (-2304 (((-112)) 61)) (-3060 (((-690 |#2|) (-1269 $)) 139)) (-1735 ((|#2| $) 38)) (-2227 (((-690 |#2|) $ (-1269 $)) 143)) (-2213 (((-3 $ "failed") $) 89)) (-3233 ((|#2| $) 41)) (-4063 (((-1175 |#2|) $) 98)) (-2976 ((|#2| (-1269 $)) 122)) (-1694 (((-1175 |#2|) $) 32)) (-3332 (((-112)) 117)) (-4368 (((-112)) 109)) (-3498 (((-112)) 59)) (-2467 (((-112)) 104)) (-3485 (((-112)) 119)) (-3088 (((-1269 |#2|) $ (-1269 $)) NIL) (((-690 |#2|) (-1269 $) (-1269 $)) 130)) (-3568 (((-112)) 115)) (-2628 (((-645 (-1269 |#2|))) 103)) (-1996 (((-112)) 116)) (-3970 (((-112)) 113)) (-3741 (((-112)) 54)) (-3220 (((-112)) 120)))
+(((-368 |#1| |#2|) (-10 -8 (-15 -2479 ((-1175 |#2|) |#1|)) (-15 -4063 ((-1175 |#2|) |#1|)) (-15 -2628 ((-645 (-1269 |#2|)))) (-15 -2810 ((-3 |#1| "failed") |#1|)) (-15 -2213 ((-3 |#1| "failed") |#1|)) (-15 -3588 ((-3 |#1| "failed") |#1|)) (-15 -2655 ((-112))) (-15 -4368 ((-112))) (-15 -4388 ((-112))) (-15 -3498 ((-112))) (-15 -2304 ((-112))) (-15 -2467 ((-112))) (-15 -3220 ((-112))) (-15 -3485 ((-112))) (-15 -2720 ((-112))) (-15 -3332 ((-112))) (-15 -3741 ((-112))) (-15 -1996 ((-112))) (-15 -3970 ((-112))) (-15 -3568 ((-112))) (-15 -2309 ((-1175 |#2|) |#1|)) (-15 -1694 ((-1175 |#2|) |#1|)) (-15 -1852 ((-690 |#2|) (-1269 |#1|))) (-15 -3060 ((-690 |#2|) (-1269 |#1|))) (-15 -3878 (|#2| (-1269 |#1|))) (-15 -2976 (|#2| (-1269 |#1|))) (-15 -3111 (|#1| (-1269 |#2|) (-1269 |#1|))) (-15 -3088 ((-690 |#2|) (-1269 |#1|) (-1269 |#1|))) (-15 -3088 ((-1269 |#2|) |#1| (-1269 |#1|))) (-15 -1868 (|#2| |#1|)) (-15 -3233 (|#2| |#1|)) (-15 -3382 (|#2| |#1|)) (-15 -1735 (|#2| |#1|)) (-15 -1639 ((-690 |#2|) |#1| (-1269 |#1|))) (-15 -2227 ((-690 |#2|) |#1| (-1269 |#1|))) (-15 -1483 ((-1269 (-690 |#2|)) (-1269 |#1|)))) (-369 |#2|) (-172)) (T -368))
+((-3568 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-3970 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-1996 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-3741 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-3332 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-2720 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-3485 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-3220 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-2467 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-2304 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-3498 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-4388 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-4368 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-2655 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-2628 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-645 (-1269 *4))) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))))
+(-10 -8 (-15 -2479 ((-1175 |#2|) |#1|)) (-15 -4063 ((-1175 |#2|) |#1|)) (-15 -2628 ((-645 (-1269 |#2|)))) (-15 -2810 ((-3 |#1| "failed") |#1|)) (-15 -2213 ((-3 |#1| "failed") |#1|)) (-15 -3588 ((-3 |#1| "failed") |#1|)) (-15 -2655 ((-112))) (-15 -4368 ((-112))) (-15 -4388 ((-112))) (-15 -3498 ((-112))) (-15 -2304 ((-112))) (-15 -2467 ((-112))) (-15 -3220 ((-112))) (-15 -3485 ((-112))) (-15 -2720 ((-112))) (-15 -3332 ((-112))) (-15 -3741 ((-112))) (-15 -1996 ((-112))) (-15 -3970 ((-112))) (-15 -3568 ((-112))) (-15 -2309 ((-1175 |#2|) |#1|)) (-15 -1694 ((-1175 |#2|) |#1|)) (-15 -1852 ((-690 |#2|) (-1269 |#1|))) (-15 -3060 ((-690 |#2|) (-1269 |#1|))) (-15 -3878 (|#2| (-1269 |#1|))) (-15 -2976 (|#2| (-1269 |#1|))) (-15 -3111 (|#1| (-1269 |#2|) (-1269 |#1|))) (-15 -3088 ((-690 |#2|) (-1269 |#1|) (-1269 |#1|))) (-15 -3088 ((-1269 |#2|) |#1| (-1269 |#1|))) (-15 -1868 (|#2| |#1|)) (-15 -3233 (|#2| |#1|)) (-15 -3382 (|#2| |#1|)) (-15 -1735 (|#2| |#1|)) (-15 -1639 ((-690 |#2|) |#1| (-1269 |#1|))) (-15 -2227 ((-690 |#2|) |#1| (-1269 |#1|))) (-15 -1483 ((-1269 (-690 |#2|)) (-1269 |#1|))))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-4369 (((-3 $ "failed")) 42 (|has| |#1| (-559)))) (-2376 (((-3 $ "failed") $ $) 20)) (-1483 (((-1269 (-690 |#1|)) (-1269 $)) 83)) (-3967 (((-1269 $)) 86)) (-3647 (($) 18 T CONST)) (-1421 (((-3 (-2 (|:| |particular| $) (|:| -2144 (-645 $))) "failed")) 45 (|has| |#1| (-559)))) (-4297 (((-3 $ "failed")) 43 (|has| |#1| (-559)))) (-1852 (((-690 |#1|) (-1269 $)) 70)) (-3382 ((|#1| $) 79)) (-1639 (((-690 |#1|) $ (-1269 $)) 81)) (-2810 (((-3 $ "failed") $) 50 (|has| |#1| (-559)))) (-3757 (($ $ (-923)) 31)) (-1868 ((|#1| $) 77)) (-2479 (((-1175 |#1|) $) 47 (|has| |#1| (-559)))) (-3878 ((|#1| (-1269 $)) 72)) (-2309 (((-1175 |#1|) $) 68)) (-2720 (((-112)) 62)) (-3111 (($ (-1269 |#1|) (-1269 $)) 74)) (-3588 (((-3 $ "failed") $) 52 (|has| |#1| (-559)))) (-1976 (((-923)) 85)) (-2957 (((-112)) 59)) (-2112 (($ $ (-923)) 38)) (-4388 (((-112)) 55)) (-2655 (((-112)) 53)) (-2304 (((-112)) 57)) (-2488 (((-3 (-2 (|:| |particular| $) (|:| -2144 (-645 $))) "failed")) 46 (|has| |#1| (-559)))) (-3428 (((-3 $ "failed")) 44 (|has| |#1| (-559)))) (-3060 (((-690 |#1|) (-1269 $)) 71)) (-1735 ((|#1| $) 80)) (-2227 (((-690 |#1|) $ (-1269 $)) 82)) (-2213 (((-3 $ "failed") $) 51 (|has| |#1| (-559)))) (-3884 (($ $ (-923)) 32)) (-3233 ((|#1| $) 78)) (-4063 (((-1175 |#1|) $) 48 (|has| |#1| (-559)))) (-2976 ((|#1| (-1269 $)) 73)) (-1694 (((-1175 |#1|) $) 69)) (-3332 (((-112)) 63)) (-2516 (((-1161) $) 10)) (-4368 (((-112)) 54)) (-3498 (((-112)) 56)) (-2467 (((-112)) 58)) (-3437 (((-1122) $) 11)) (-3485 (((-112)) 61)) (-3088 (((-1269 |#1|) $ (-1269 $)) 76) (((-690 |#1|) (-1269 $) (-1269 $)) 75)) (-3981 (((-645 (-954 |#1|)) (-1269 $)) 84)) (-3997 (($ $ $) 28)) (-3568 (((-112)) 67)) (-4129 (((-863) $) 12)) (-3357 (((-112) $ $) 9)) (-2628 (((-645 (-1269 |#1|))) 49 (|has| |#1| (-559)))) (-2047 (($ $ $ $) 29)) (-1996 (((-112)) 65)) (-2188 (($ $ $) 27)) (-3970 (((-112)) 66)) (-3741 (((-112)) 64)) (-3220 (((-112)) 60)) (-1733 (($) 19 T CONST)) (-2946 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-923)) 33)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39)))
(((-369 |#1|) (-140) (-172)) (T -369))
-((-3337 (*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1268 *1)) (-4 *1 (-369 *3)))) (-1954 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-923)))) (-4013 (*1 *2 *3) (-12 (-5 *3 (-1268 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-645 (-954 *4))))) (-2189 (*1 *2 *3) (-12 (-5 *3 (-1268 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-1268 (-690 *4))))) (-2702 (*1 *2 *1 *3) (-12 (-5 *3 (-1268 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-690 *4)))) (-3528 (*1 *2 *1 *3) (-12 (-5 *3 (-1268 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-690 *4)))) (-2726 (*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-2583 (*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-2200 (*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-1883 (*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-2887 (*1 *2 *1 *3) (-12 (-5 *3 (-1268 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-1268 *4)))) (-2887 (*1 *2 *3 *3) (-12 (-5 *3 (-1268 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-690 *4)))) (-3658 (*1 *1 *2 *3) (-12 (-5 *2 (-1268 *4)) (-5 *3 (-1268 *1)) (-4 *4 (-172)) (-4 *1 (-369 *4)))) (-3042 (*1 *2 *3) (-12 (-5 *3 (-1268 *1)) (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-2676 (*1 *2 *3) (-12 (-5 *3 (-1268 *1)) (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-2119 (*1 *2 *3) (-12 (-5 *3 (-1268 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-690 *4)))) (-1735 (*1 *2 *3) (-12 (-5 *3 (-1268 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-690 *4)))) (-3567 (*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-1174 *3)))) (-1682 (*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-1174 *3)))) (-1502 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1636 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3013 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1749 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3396 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1444 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-4356 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2059 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1379 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-4341 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3154 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3070 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-4353 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2609 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3375 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2109 (*1 *1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-559)))) (-3080 (*1 *1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-559)))) (-2209 (*1 *1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-559)))) (-2652 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-559)) (-5 *2 (-645 (-1268 *3))))) (-3960 (*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-559)) (-5 *2 (-1174 *3)))) (-1575 (*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-559)) (-5 *2 (-1174 *3)))) (-3412 (*1 *2) (|partial| -12 (-4 *3 (-559)) (-4 *3 (-172)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2623 (-645 *1)))) (-4 *1 (-369 *3)))) (-3425 (*1 *2) (|partial| -12 (-4 *3 (-559)) (-4 *3 (-172)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2623 (-645 *1)))) (-4 *1 (-369 *3)))) (-3345 (*1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-559)) (-4 *2 (-172)))) (-3645 (*1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-559)) (-4 *2 (-172)))) (-3951 (*1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-559)) (-4 *2 (-172)))))
-(-13 (-745 |t#1|) (-10 -8 (-15 -3337 ((-1268 $))) (-15 -1954 ((-923))) (-15 -4013 ((-645 (-954 |t#1|)) (-1268 $))) (-15 -2189 ((-1268 (-690 |t#1|)) (-1268 $))) (-15 -2702 ((-690 |t#1|) $ (-1268 $))) (-15 -3528 ((-690 |t#1|) $ (-1268 $))) (-15 -2726 (|t#1| $)) (-15 -2583 (|t#1| $)) (-15 -2200 (|t#1| $)) (-15 -1883 (|t#1| $)) (-15 -2887 ((-1268 |t#1|) $ (-1268 $))) (-15 -2887 ((-690 |t#1|) (-1268 $) (-1268 $))) (-15 -3658 ($ (-1268 |t#1|) (-1268 $))) (-15 -3042 (|t#1| (-1268 $))) (-15 -2676 (|t#1| (-1268 $))) (-15 -2119 ((-690 |t#1|) (-1268 $))) (-15 -1735 ((-690 |t#1|) (-1268 $))) (-15 -3567 ((-1174 |t#1|) $)) (-15 -1682 ((-1174 |t#1|) $)) (-15 -1502 ((-112))) (-15 -1636 ((-112))) (-15 -3013 ((-112))) (-15 -1749 ((-112))) (-15 -3396 ((-112))) (-15 -1444 ((-112))) (-15 -4356 ((-112))) (-15 -2059 ((-112))) (-15 -1379 ((-112))) (-15 -4341 ((-112))) (-15 -3154 ((-112))) (-15 -3070 ((-112))) (-15 -4353 ((-112))) (-15 -2609 ((-112))) (-15 -3375 ((-112))) (IF (|has| |t#1| (-559)) (PROGN (-15 -2109 ((-3 $ "failed") $)) (-15 -3080 ((-3 $ "failed") $)) (-15 -2209 ((-3 $ "failed") $)) (-15 -2652 ((-645 (-1268 |t#1|)))) (-15 -3960 ((-1174 |t#1|) $)) (-15 -1575 ((-1174 |t#1|) $)) (-15 -3412 ((-3 (-2 (|:| |particular| $) (|:| -2623 (-645 $))) "failed"))) (-15 -3425 ((-3 (-2 (|:| |particular| $) (|:| -2623 (-645 $))) "failed"))) (-15 -3345 ((-3 $ "failed"))) (-15 -3645 ((-3 $ "failed"))) (-15 -3951 ((-3 $ "failed"))) (-6 -4415)) |%noBranch|)))
+((-3967 (*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1269 *1)) (-4 *1 (-369 *3)))) (-1976 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-923)))) (-3981 (*1 *2 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-645 (-954 *4))))) (-1483 (*1 *2 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-1269 (-690 *4))))) (-2227 (*1 *2 *1 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-690 *4)))) (-1639 (*1 *2 *1 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-690 *4)))) (-1735 (*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-3382 (*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-3233 (*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-1868 (*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-3088 (*1 *2 *1 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-1269 *4)))) (-3088 (*1 *2 *3 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-690 *4)))) (-3111 (*1 *1 *2 *3) (-12 (-5 *2 (-1269 *4)) (-5 *3 (-1269 *1)) (-4 *4 (-172)) (-4 *1 (-369 *4)))) (-2976 (*1 *2 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-3878 (*1 *2 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-3060 (*1 *2 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-690 *4)))) (-1852 (*1 *2 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-690 *4)))) (-1694 (*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-1175 *3)))) (-2309 (*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-1175 *3)))) (-3568 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3970 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1996 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3741 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3332 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2720 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3485 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3220 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2957 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2467 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2304 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3498 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-4388 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-4368 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2655 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3588 (*1 *1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-559)))) (-2213 (*1 *1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-559)))) (-2810 (*1 *1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-559)))) (-2628 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-559)) (-5 *2 (-645 (-1269 *3))))) (-4063 (*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-559)) (-5 *2 (-1175 *3)))) (-2479 (*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-559)) (-5 *2 (-1175 *3)))) (-2488 (*1 *2) (|partial| -12 (-4 *3 (-559)) (-4 *3 (-172)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2144 (-645 *1)))) (-4 *1 (-369 *3)))) (-1421 (*1 *2) (|partial| -12 (-4 *3 (-559)) (-4 *3 (-172)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2144 (-645 *1)))) (-4 *1 (-369 *3)))) (-3428 (*1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-559)) (-4 *2 (-172)))) (-4297 (*1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-559)) (-4 *2 (-172)))) (-4369 (*1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-559)) (-4 *2 (-172)))))
+(-13 (-745 |t#1|) (-10 -8 (-15 -3967 ((-1269 $))) (-15 -1976 ((-923))) (-15 -3981 ((-645 (-954 |t#1|)) (-1269 $))) (-15 -1483 ((-1269 (-690 |t#1|)) (-1269 $))) (-15 -2227 ((-690 |t#1|) $ (-1269 $))) (-15 -1639 ((-690 |t#1|) $ (-1269 $))) (-15 -1735 (|t#1| $)) (-15 -3382 (|t#1| $)) (-15 -3233 (|t#1| $)) (-15 -1868 (|t#1| $)) (-15 -3088 ((-1269 |t#1|) $ (-1269 $))) (-15 -3088 ((-690 |t#1|) (-1269 $) (-1269 $))) (-15 -3111 ($ (-1269 |t#1|) (-1269 $))) (-15 -2976 (|t#1| (-1269 $))) (-15 -3878 (|t#1| (-1269 $))) (-15 -3060 ((-690 |t#1|) (-1269 $))) (-15 -1852 ((-690 |t#1|) (-1269 $))) (-15 -1694 ((-1175 |t#1|) $)) (-15 -2309 ((-1175 |t#1|) $)) (-15 -3568 ((-112))) (-15 -3970 ((-112))) (-15 -1996 ((-112))) (-15 -3741 ((-112))) (-15 -3332 ((-112))) (-15 -2720 ((-112))) (-15 -3485 ((-112))) (-15 -3220 ((-112))) (-15 -2957 ((-112))) (-15 -2467 ((-112))) (-15 -2304 ((-112))) (-15 -3498 ((-112))) (-15 -4388 ((-112))) (-15 -4368 ((-112))) (-15 -2655 ((-112))) (IF (|has| |t#1| (-559)) (PROGN (-15 -3588 ((-3 $ "failed") $)) (-15 -2213 ((-3 $ "failed") $)) (-15 -2810 ((-3 $ "failed") $)) (-15 -2628 ((-645 (-1269 |t#1|)))) (-15 -4063 ((-1175 |t#1|) $)) (-15 -2479 ((-1175 |t#1|) $)) (-15 -2488 ((-3 (-2 (|:| |particular| $) (|:| -2144 (-645 $))) "failed"))) (-15 -1421 ((-3 (-2 (|:| |particular| $) (|:| -2144 (-645 $))) "failed"))) (-15 -3428 ((-3 $ "failed"))) (-15 -4297 ((-3 $ "failed"))) (-15 -4369 ((-3 $ "failed"))) (-6 -4419)) |%noBranch|)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-649 |#1|) . T) ((-641 |#1|) . T) ((-718 |#1|) . T) ((-721) . T) ((-745 |#1|) . T) ((-762) . T) ((-1053 |#1|) . T) ((-1058 |#1|) . T) ((-1102) . T))
-((-2403 (((-112) $ $) 7)) (-2375 (((-772)) 17)) (-1348 (($) 14)) (-4249 (((-923) $) 15)) (-1419 (((-1160) $) 10)) (-3768 (($ (-923)) 16)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-2936 (((-112) $ $) 6)))
+((-2412 (((-112) $ $) 7)) (-2384 (((-772)) 17)) (-1359 (($) 14)) (-3474 (((-923) $) 15)) (-2516 (((-1161) $) 10)) (-3779 (($ (-923)) 16)) (-3437 (((-1122) $) 11)) (-4129 (((-863) $) 12)) (-3357 (((-112) $ $) 9)) (-2946 (((-112) $ $) 6)))
(((-370) (-140)) (T -370))
-((-2375 (*1 *2) (-12 (-4 *1 (-370)) (-5 *2 (-772)))) (-3768 (*1 *1 *2) (-12 (-5 *2 (-923)) (-4 *1 (-370)))) (-4249 (*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-923)))) (-1348 (*1 *1) (-4 *1 (-370))))
-(-13 (-1102) (-10 -8 (-15 -2375 ((-772))) (-15 -3768 ($ (-923))) (-15 -4249 ((-923) $)) (-15 -1348 ($))))
+((-2384 (*1 *2) (-12 (-4 *1 (-370)) (-5 *2 (-772)))) (-3779 (*1 *1 *2) (-12 (-5 *2 (-923)) (-4 *1 (-370)))) (-3474 (*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-923)))) (-1359 (*1 *1) (-4 *1 (-370))))
+(-13 (-1102) (-10 -8 (-15 -2384 ((-772))) (-15 -3779 ($ (-923))) (-15 -3474 ((-923) $)) (-15 -1359 ($))))
(((-102) . T) ((-614 (-863)) . T) ((-1102) . T))
-((-2141 (((-690 |#2|) (-1268 $)) 47)) (-3658 (($ (-1268 |#2|) (-1268 $)) 41)) (-1811 (((-690 |#2|) $ (-1268 $)) 49)) (-3788 ((|#2| (-1268 $)) 13)) (-2887 (((-1268 |#2|) $ (-1268 $)) NIL) (((-690 |#2|) (-1268 $) (-1268 $)) 27)))
-(((-371 |#1| |#2| |#3|) (-10 -8 (-15 -2141 ((-690 |#2|) (-1268 |#1|))) (-15 -3788 (|#2| (-1268 |#1|))) (-15 -3658 (|#1| (-1268 |#2|) (-1268 |#1|))) (-15 -2887 ((-690 |#2|) (-1268 |#1|) (-1268 |#1|))) (-15 -2887 ((-1268 |#2|) |#1| (-1268 |#1|))) (-15 -1811 ((-690 |#2|) |#1| (-1268 |#1|)))) (-372 |#2| |#3|) (-172) (-1244 |#2|)) (T -371))
-NIL
-(-10 -8 (-15 -2141 ((-690 |#2|) (-1268 |#1|))) (-15 -3788 (|#2| (-1268 |#1|))) (-15 -3658 (|#1| (-1268 |#2|) (-1268 |#1|))) (-15 -2887 ((-690 |#2|) (-1268 |#1|) (-1268 |#1|))) (-15 -2887 ((-1268 |#2|) |#1| (-1268 |#1|))) (-15 -1811 ((-690 |#2|) |#1| (-1268 |#1|))))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-2141 (((-690 |#1|) (-1268 $)) 53)) (-4293 ((|#1| $) 59)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-3658 (($ (-1268 |#1|) (-1268 $)) 55)) (-1811 (((-690 |#1|) $ (-1268 $)) 60)) (-2109 (((-3 $ "failed") $) 37)) (-1954 (((-923)) 61)) (-1433 (((-112) $) 35)) (-2475 ((|#1| $) 58)) (-4206 ((|#2| $) 51 (|has| |#1| (-365)))) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-3788 ((|#1| (-1268 $)) 54)) (-2887 (((-1268 |#1|) $ (-1268 $)) 57) (((-690 |#1|) (-1268 $) (-1268 $)) 56)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 44)) (-1903 (((-3 $ "failed") $) 50 (|has| |#1| (-145)))) (-2155 ((|#2| $) 52)) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45)))
-(((-372 |#1| |#2|) (-140) (-172) (-1244 |t#1|)) (T -372))
-((-1954 (*1 *2) (-12 (-4 *1 (-372 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1244 *3)) (-5 *2 (-923)))) (-1811 (*1 *2 *1 *3) (-12 (-5 *3 (-1268 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1244 *4)) (-5 *2 (-690 *4)))) (-4293 (*1 *2 *1) (-12 (-4 *1 (-372 *2 *3)) (-4 *3 (-1244 *2)) (-4 *2 (-172)))) (-2475 (*1 *2 *1) (-12 (-4 *1 (-372 *2 *3)) (-4 *3 (-1244 *2)) (-4 *2 (-172)))) (-2887 (*1 *2 *1 *3) (-12 (-5 *3 (-1268 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1244 *4)) (-5 *2 (-1268 *4)))) (-2887 (*1 *2 *3 *3) (-12 (-5 *3 (-1268 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1244 *4)) (-5 *2 (-690 *4)))) (-3658 (*1 *1 *2 *3) (-12 (-5 *2 (-1268 *4)) (-5 *3 (-1268 *1)) (-4 *4 (-172)) (-4 *1 (-372 *4 *5)) (-4 *5 (-1244 *4)))) (-3788 (*1 *2 *3) (-12 (-5 *3 (-1268 *1)) (-4 *1 (-372 *2 *4)) (-4 *4 (-1244 *2)) (-4 *2 (-172)))) (-2141 (*1 *2 *3) (-12 (-5 *3 (-1268 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1244 *4)) (-5 *2 (-690 *4)))) (-2155 (*1 *2 *1) (-12 (-4 *1 (-372 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1244 *3)))) (-4206 (*1 *2 *1) (-12 (-4 *1 (-372 *3 *2)) (-4 *3 (-172)) (-4 *3 (-365)) (-4 *2 (-1244 *3)))))
-(-13 (-38 |t#1|) (-10 -8 (-15 -1954 ((-923))) (-15 -1811 ((-690 |t#1|) $ (-1268 $))) (-15 -4293 (|t#1| $)) (-15 -2475 (|t#1| $)) (-15 -2887 ((-1268 |t#1|) $ (-1268 $))) (-15 -2887 ((-690 |t#1|) (-1268 $) (-1268 $))) (-15 -3658 ($ (-1268 |t#1|) (-1268 $))) (-15 -3788 (|t#1| (-1268 $))) (-15 -2141 ((-690 |t#1|) (-1268 $))) (-15 -2155 (|t#2| $)) (IF (|has| |t#1| (-365)) (-15 -4206 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|)))
+((-3478 (((-690 |#2|) (-1269 $)) 47)) (-3111 (($ (-1269 |#2|) (-1269 $)) 41)) (-3012 (((-690 |#2|) $ (-1269 $)) 49)) (-2433 ((|#2| (-1269 $)) 13)) (-3088 (((-1269 |#2|) $ (-1269 $)) NIL) (((-690 |#2|) (-1269 $) (-1269 $)) 27)))
+(((-371 |#1| |#2| |#3|) (-10 -8 (-15 -3478 ((-690 |#2|) (-1269 |#1|))) (-15 -2433 (|#2| (-1269 |#1|))) (-15 -3111 (|#1| (-1269 |#2|) (-1269 |#1|))) (-15 -3088 ((-690 |#2|) (-1269 |#1|) (-1269 |#1|))) (-15 -3088 ((-1269 |#2|) |#1| (-1269 |#1|))) (-15 -3012 ((-690 |#2|) |#1| (-1269 |#1|)))) (-372 |#2| |#3|) (-172) (-1245 |#2|)) (T -371))
+NIL
+(-10 -8 (-15 -3478 ((-690 |#2|) (-1269 |#1|))) (-15 -2433 (|#2| (-1269 |#1|))) (-15 -3111 (|#1| (-1269 |#2|) (-1269 |#1|))) (-15 -3088 ((-690 |#2|) (-1269 |#1|) (-1269 |#1|))) (-15 -3088 ((-1269 |#2|) |#1| (-1269 |#1|))) (-15 -3012 ((-690 |#2|) |#1| (-1269 |#1|))))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-3478 (((-690 |#1|) (-1269 $)) 53)) (-4293 ((|#1| $) 59)) (-2376 (((-3 $ "failed") $ $) 20)) (-3647 (($) 18 T CONST)) (-3111 (($ (-1269 |#1|) (-1269 $)) 55)) (-3012 (((-690 |#1|) $ (-1269 $)) 60)) (-3588 (((-3 $ "failed") $) 37)) (-1976 (((-923)) 61)) (-4346 (((-112) $) 35)) (-2724 ((|#1| $) 58)) (-1914 ((|#2| $) 51 (|has| |#1| (-365)))) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-2433 ((|#1| (-1269 $)) 54)) (-3088 (((-1269 |#1|) $ (-1269 $)) 57) (((-690 |#1|) (-1269 $) (-1269 $)) 56)) (-4129 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 44)) (-2118 (((-3 $ "failed") $) 50 (|has| |#1| (-145)))) (-2231 ((|#2| $) 52)) (-2746 (((-772)) 32 T CONST)) (-3357 (((-112) $ $) 9)) (-1733 (($) 19 T CONST)) (-1744 (($) 34 T CONST)) (-2946 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45)))
+(((-372 |#1| |#2|) (-140) (-172) (-1245 |t#1|)) (T -372))
+((-1976 (*1 *2) (-12 (-4 *1 (-372 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1245 *3)) (-5 *2 (-923)))) (-3012 (*1 *2 *1 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1245 *4)) (-5 *2 (-690 *4)))) (-4293 (*1 *2 *1) (-12 (-4 *1 (-372 *2 *3)) (-4 *3 (-1245 *2)) (-4 *2 (-172)))) (-2724 (*1 *2 *1) (-12 (-4 *1 (-372 *2 *3)) (-4 *3 (-1245 *2)) (-4 *2 (-172)))) (-3088 (*1 *2 *1 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1245 *4)) (-5 *2 (-1269 *4)))) (-3088 (*1 *2 *3 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1245 *4)) (-5 *2 (-690 *4)))) (-3111 (*1 *1 *2 *3) (-12 (-5 *2 (-1269 *4)) (-5 *3 (-1269 *1)) (-4 *4 (-172)) (-4 *1 (-372 *4 *5)) (-4 *5 (-1245 *4)))) (-2433 (*1 *2 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-372 *2 *4)) (-4 *4 (-1245 *2)) (-4 *2 (-172)))) (-3478 (*1 *2 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1245 *4)) (-5 *2 (-690 *4)))) (-2231 (*1 *2 *1) (-12 (-4 *1 (-372 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1245 *3)))) (-1914 (*1 *2 *1) (-12 (-4 *1 (-372 *3 *2)) (-4 *3 (-172)) (-4 *3 (-365)) (-4 *2 (-1245 *3)))))
+(-13 (-38 |t#1|) (-10 -8 (-15 -1976 ((-923))) (-15 -3012 ((-690 |t#1|) $ (-1269 $))) (-15 -4293 (|t#1| $)) (-15 -2724 (|t#1| $)) (-15 -3088 ((-1269 |t#1|) $ (-1269 $))) (-15 -3088 ((-690 |t#1|) (-1269 $) (-1269 $))) (-15 -3111 ($ (-1269 |t#1|) (-1269 $))) (-15 -2433 (|t#1| (-1269 $))) (-15 -3478 ((-690 |t#1|) (-1269 $))) (-15 -2231 (|t#2| $)) (IF (|has| |t#1| (-365)) (-15 -1914 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-641 |#1|) . T) ((-718 |#1|) . T) ((-727) . T) ((-1053 |#1|) . T) ((-1058 |#1|) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T))
-((-2788 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25)) (-2477 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17)) (-3829 ((|#4| (-1 |#3| |#1|) |#2|) 23)))
-(((-373 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3829 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2477 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2788 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1218) (-375 |#1|) (-1218) (-375 |#3|)) (T -373))
-((-2788 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1218)) (-4 *5 (-1218)) (-4 *2 (-375 *5)) (-5 *1 (-373 *6 *4 *5 *2)) (-4 *4 (-375 *6)))) (-2477 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1218)) (-4 *2 (-1218)) (-5 *1 (-373 *5 *4 *2 *6)) (-4 *4 (-375 *5)) (-4 *6 (-375 *2)))) (-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1218)) (-4 *6 (-1218)) (-4 *2 (-375 *6)) (-5 *1 (-373 *5 *4 *6 *2)) (-4 *4 (-375 *5)))))
-(-10 -7 (-15 -3829 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2477 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2788 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
-((-2496 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-1394 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-4396 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-3584 (($ $) 25)) (-2569 (((-567) (-1 (-112) |#2|) $) NIL) (((-567) |#2| $) 11) (((-567) |#2| $ (-567)) NIL)) (-4135 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20)))
-(((-374 |#1| |#2|) (-10 -8 (-15 -1394 (|#1| |#1|)) (-15 -1394 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2496 ((-112) |#1|)) (-15 -4396 (|#1| |#1|)) (-15 -4135 (|#1| |#1| |#1|)) (-15 -2569 ((-567) |#2| |#1| (-567))) (-15 -2569 ((-567) |#2| |#1|)) (-15 -2569 ((-567) (-1 (-112) |#2|) |#1|)) (-15 -2496 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -4396 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3584 (|#1| |#1|)) (-15 -4135 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-375 |#2|) (-1218)) (T -374))
-NIL
-(-10 -8 (-15 -1394 (|#1| |#1|)) (-15 -1394 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2496 ((-112) |#1|)) (-15 -4396 (|#1| |#1|)) (-15 -4135 (|#1| |#1| |#1|)) (-15 -2569 ((-567) |#2| |#1| (-567))) (-15 -2569 ((-567) |#2| |#1|)) (-15 -2569 ((-567) (-1 (-112) |#2|) |#1|)) (-15 -2496 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -4396 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3584 (|#1| |#1|)) (-15 -4135 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)))
-((-2403 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-1783 (((-1273) $ (-567) (-567)) 41 (|has| $ (-6 -4419)))) (-2496 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-851)))) (-1394 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4419))) (($ $) 89 (-12 (|has| |#1| (-851)) (|has| $ (-6 -4419))))) (-4396 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-851)))) (-3445 (((-112) $ (-772)) 8)) (-4284 ((|#1| $ (-567) |#1|) 53 (|has| $ (-6 -4419))) ((|#1| $ (-1235 (-567)) |#1|) 59 (|has| $ (-6 -4419)))) (-3350 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4418)))) (-2585 (($) 7 T CONST)) (-1764 (($ $) 91 (|has| $ (-6 -4419)))) (-3584 (($ $) 101)) (-2444 (($ $) 79 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-3238 (($ |#1| $) 78 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4418)))) (-2477 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4418)))) (-3741 ((|#1| $ (-567) |#1|) 54 (|has| $ (-6 -4419)))) (-3680 ((|#1| $ (-567)) 52)) (-2569 (((-567) (-1 (-112) |#1|) $) 98) (((-567) |#1| $) 97 (|has| |#1| (-1102))) (((-567) |#1| $ (-567)) 96 (|has| |#1| (-1102)))) (-2777 (((-645 |#1|) $) 31 (|has| $ (-6 -4418)))) (-2846 (($ (-772) |#1|) 70)) (-2077 (((-112) $ (-772)) 9)) (-4069 (((-567) $) 44 (|has| (-567) (-851)))) (-1354 (($ $ $) 88 (|has| |#1| (-851)))) (-4135 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-851)))) (-2279 (((-645 |#1|) $) 30 (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-2266 (((-567) $) 45 (|has| (-567) (-851)))) (-2981 (($ $ $) 87 (|has| |#1| (-851)))) (-3731 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2863 (((-112) $ (-772)) 10)) (-1419 (((-1160) $) 22 (|has| |#1| (-1102)))) (-2845 (($ |#1| $ (-567)) 61) (($ $ $ (-567)) 60)) (-1789 (((-645 (-567)) $) 47)) (-2996 (((-112) (-567) $) 48)) (-3430 (((-1122) $) 21 (|has| |#1| (-1102)))) (-2409 ((|#1| $) 43 (|has| (-567) (-851)))) (-4128 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-3986 (($ $ |#1|) 42 (|has| $ (-6 -4419)))) (-3025 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) 14)) (-1794 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2339 (((-645 |#1|) $) 49)) (-3572 (((-112) $) 11)) (-3498 (($) 12)) (-1787 ((|#1| $ (-567) |#1|) 51) ((|#1| $ (-567)) 50) (($ $ (-1235 (-567))) 64)) (-1560 (($ $ (-567)) 63) (($ $ (-1235 (-567))) 62)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4418))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-1395 (($ $ $ (-567)) 92 (|has| $ (-6 -4419)))) (-4305 (($ $) 13)) (-3893 (((-539) $) 80 (|has| |#1| (-615 (-539))))) (-4147 (($ (-645 |#1|)) 71)) (-2269 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-645 $)) 66)) (-4132 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-1745 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4418)))) (-2997 (((-112) $ $) 85 (|has| |#1| (-851)))) (-2971 (((-112) $ $) 84 (|has| |#1| (-851)))) (-2936 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2984 (((-112) $ $) 86 (|has| |#1| (-851)))) (-2958 (((-112) $ $) 83 (|has| |#1| (-851)))) (-2414 (((-772) $) 6 (|has| $ (-6 -4418)))))
-(((-375 |#1|) (-140) (-1218)) (T -375))
-((-4135 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-375 *3)) (-4 *3 (-1218)))) (-3584 (*1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1218)))) (-4396 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-375 *3)) (-4 *3 (-1218)))) (-2496 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-375 *4)) (-4 *4 (-1218)) (-5 *2 (-112)))) (-2569 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-375 *4)) (-4 *4 (-1218)) (-5 *2 (-567)))) (-2569 (*1 *2 *3 *1) (-12 (-4 *1 (-375 *3)) (-4 *3 (-1218)) (-4 *3 (-1102)) (-5 *2 (-567)))) (-2569 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-375 *3)) (-4 *3 (-1218)) (-4 *3 (-1102)))) (-4135 (*1 *1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1218)) (-4 *2 (-851)))) (-4396 (*1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1218)) (-4 *2 (-851)))) (-2496 (*1 *2 *1) (-12 (-4 *1 (-375 *3)) (-4 *3 (-1218)) (-4 *3 (-851)) (-5 *2 (-112)))) (-1395 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-567)) (|has| *1 (-6 -4419)) (-4 *1 (-375 *3)) (-4 *3 (-1218)))) (-1764 (*1 *1 *1) (-12 (|has| *1 (-6 -4419)) (-4 *1 (-375 *2)) (-4 *2 (-1218)))) (-1394 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4419)) (-4 *1 (-375 *3)) (-4 *3 (-1218)))) (-1394 (*1 *1 *1) (-12 (|has| *1 (-6 -4419)) (-4 *1 (-375 *2)) (-4 *2 (-1218)) (-4 *2 (-851)))))
-(-13 (-652 |t#1|) (-10 -8 (-6 -4418) (-15 -4135 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -3584 ($ $)) (-15 -4396 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -2496 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -2569 ((-567) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1102)) (PROGN (-15 -2569 ((-567) |t#1| $)) (-15 -2569 ((-567) |t#1| $ (-567)))) |%noBranch|) (IF (|has| |t#1| (-851)) (PROGN (-6 (-851)) (-15 -4135 ($ $ $)) (-15 -4396 ($ $)) (-15 -2496 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4419)) (PROGN (-15 -1395 ($ $ $ (-567))) (-15 -1764 ($ $)) (-15 -1394 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-851)) (-15 -1394 ($ $)) |%noBranch|)) |%noBranch|)))
-(((-34) . T) ((-102) -2800 (|has| |#1| (-1102)) (|has| |#1| (-851))) ((-614 (-863)) -2800 (|has| |#1| (-1102)) (|has| |#1| (-851)) (|has| |#1| (-614 (-863)))) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-287 #0=(-567) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-605 #0# |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-652 |#1|) . T) ((-851) |has| |#1| (-851)) ((-1102) -2800 (|has| |#1| (-1102)) (|has| |#1| (-851))) ((-1218) . T))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3267 (((-645 |#1|) $) 37)) (-2721 (($ $ (-772)) 38)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-2885 (((-1292 |#1| |#2|) (-1292 |#1| |#2|) $) 41)) (-3592 (($ $) 39)) (-2173 (((-1292 |#1| |#2|) (-1292 |#1| |#2|) $) 42)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-2631 (($ $ |#1| $) 36) (($ $ (-645 |#1|) (-645 $)) 35)) (-3077 (((-772) $) 43)) (-4147 (($ $ $) 34)) (-4132 (((-863) $) 12) (($ |#1|) 46) (((-1283 |#1| |#2|) $) 45) (((-1292 |#1| |#2|) $) 44)) (-3694 ((|#2| (-1292 |#1| |#2|) $) 47)) (-1745 (((-112) $ $) 9)) (-1716 (($) 19 T CONST)) (-4363 (($ (-673 |#1|)) 40)) (-2936 (((-112) $ $) 6)) (-3060 (($ $ |#2|) 33 (|has| |#2| (-365)))) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ |#2| $) 27) (($ $ |#2|) 31)))
+((-3400 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25)) (-2494 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17)) (-3841 ((|#4| (-1 |#3| |#1|) |#2|) 23)))
+(((-373 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3841 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2494 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3400 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1219) (-375 |#1|) (-1219) (-375 |#3|)) (T -373))
+((-3400 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1219)) (-4 *5 (-1219)) (-4 *2 (-375 *5)) (-5 *1 (-373 *6 *4 *5 *2)) (-4 *4 (-375 *6)))) (-2494 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1219)) (-4 *2 (-1219)) (-5 *1 (-373 *5 *4 *2 *6)) (-4 *4 (-375 *5)) (-4 *6 (-375 *2)))) (-3841 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) (-4 *2 (-375 *6)) (-5 *1 (-373 *5 *4 *6 *2)) (-4 *4 (-375 *5)))))
+(-10 -7 (-15 -3841 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2494 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3400 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
+((-3531 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-2676 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-1311 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-3592 (($ $) 25)) (-2578 (((-567) (-1 (-112) |#2|) $) NIL) (((-567) |#2| $) 11) (((-567) |#2| $ (-567)) NIL)) (-2473 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20)))
+(((-374 |#1| |#2|) (-10 -8 (-15 -2676 (|#1| |#1|)) (-15 -2676 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3531 ((-112) |#1|)) (-15 -1311 (|#1| |#1|)) (-15 -2473 (|#1| |#1| |#1|)) (-15 -2578 ((-567) |#2| |#1| (-567))) (-15 -2578 ((-567) |#2| |#1|)) (-15 -2578 ((-567) (-1 (-112) |#2|) |#1|)) (-15 -3531 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1311 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3592 (|#1| |#1|)) (-15 -2473 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-375 |#2|) (-1219)) (T -374))
+NIL
+(-10 -8 (-15 -2676 (|#1| |#1|)) (-15 -2676 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3531 ((-112) |#1|)) (-15 -1311 (|#1| |#1|)) (-15 -2473 (|#1| |#1| |#1|)) (-15 -2578 ((-567) |#2| |#1| (-567))) (-15 -2578 ((-567) |#2| |#1|)) (-15 -2578 ((-567) (-1 (-112) |#2|) |#1|)) (-15 -3531 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1311 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3592 (|#1| |#1|)) (-15 -2473 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)))
+((-2412 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-3843 (((-1274) $ (-567) (-567)) 41 (|has| $ (-6 -4423)))) (-3531 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-851)))) (-2676 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4423))) (($ $) 89 (-12 (|has| |#1| (-851)) (|has| $ (-6 -4423))))) (-1311 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-851)))) (-1563 (((-112) $ (-772)) 8)) (-4285 ((|#1| $ (-567) |#1|) 53 (|has| $ (-6 -4423))) ((|#1| $ (-1236 (-567)) |#1|) 59 (|has| $ (-6 -4423)))) (-3356 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4422)))) (-3647 (($) 7 T CONST)) (-1602 (($ $) 91 (|has| $ (-6 -4423)))) (-3592 (($ $) 101)) (-2453 (($ $) 79 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-3246 (($ |#1| $) 78 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4422)))) (-2494 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4422)))) (-3760 ((|#1| $ (-567) |#1|) 54 (|has| $ (-6 -4423)))) (-3703 ((|#1| $ (-567)) 52)) (-2578 (((-567) (-1 (-112) |#1|) $) 98) (((-567) |#1| $) 97 (|has| |#1| (-1102))) (((-567) |#1| $ (-567)) 96 (|has| |#1| (-1102)))) (-2799 (((-645 |#1|) $) 31 (|has| $ (-6 -4422)))) (-2858 (($ (-772) |#1|) 70)) (-4093 (((-112) $ (-772)) 9)) (-3895 (((-567) $) 44 (|has| (-567) (-851)))) (-1365 (($ $ $) 88 (|has| |#1| (-851)))) (-2473 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-851)))) (-1942 (((-645 |#1|) $) 30 (|has| $ (-6 -4422)))) (-3237 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-3255 (((-567) $) 45 (|has| (-567) (-851)))) (-3002 (($ $ $) 87 (|has| |#1| (-851)))) (-3751 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-1986 (((-112) $ (-772)) 10)) (-2516 (((-1161) $) 22 (|has| |#1| (-1102)))) (-2857 (($ |#1| $ (-567)) 61) (($ $ $ (-567)) 60)) (-4364 (((-645 (-567)) $) 47)) (-3188 (((-112) (-567) $) 48)) (-3437 (((-1122) $) 21 (|has| |#1| (-1102)))) (-2418 ((|#1| $) 43 (|has| (-567) (-851)))) (-3196 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-3823 (($ $ |#1|) 42 (|has| $ (-6 -4423)))) (-4233 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3875 (((-112) $ $) 14)) (-4058 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-2190 (((-645 |#1|) $) 49)) (-3885 (((-112) $) 11)) (-2701 (($) 12)) (-1801 ((|#1| $ (-567) |#1|) 51) ((|#1| $ (-567)) 50) (($ $ (-1236 (-567))) 64)) (-1569 (($ $ (-567)) 63) (($ $ (-1236 (-567))) 62)) (-3447 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4422))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-1656 (($ $ $ (-567)) 92 (|has| $ (-6 -4423)))) (-4309 (($ $) 13)) (-3902 (((-539) $) 80 (|has| |#1| (-615 (-539))))) (-4145 (($ (-645 |#1|)) 71)) (-2276 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-645 $)) 66)) (-4129 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-3357 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-3436 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4422)))) (-3004 (((-112) $ $) 85 (|has| |#1| (-851)))) (-2980 (((-112) $ $) 84 (|has| |#1| (-851)))) (-2946 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2993 (((-112) $ $) 86 (|has| |#1| (-851)))) (-2968 (((-112) $ $) 83 (|has| |#1| (-851)))) (-2423 (((-772) $) 6 (|has| $ (-6 -4422)))))
+(((-375 |#1|) (-140) (-1219)) (T -375))
+((-2473 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-375 *3)) (-4 *3 (-1219)))) (-3592 (*1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1219)))) (-1311 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-375 *3)) (-4 *3 (-1219)))) (-3531 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-375 *4)) (-4 *4 (-1219)) (-5 *2 (-112)))) (-2578 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-375 *4)) (-4 *4 (-1219)) (-5 *2 (-567)))) (-2578 (*1 *2 *3 *1) (-12 (-4 *1 (-375 *3)) (-4 *3 (-1219)) (-4 *3 (-1102)) (-5 *2 (-567)))) (-2578 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-375 *3)) (-4 *3 (-1219)) (-4 *3 (-1102)))) (-2473 (*1 *1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1219)) (-4 *2 (-851)))) (-1311 (*1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1219)) (-4 *2 (-851)))) (-3531 (*1 *2 *1) (-12 (-4 *1 (-375 *3)) (-4 *3 (-1219)) (-4 *3 (-851)) (-5 *2 (-112)))) (-1656 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-567)) (|has| *1 (-6 -4423)) (-4 *1 (-375 *3)) (-4 *3 (-1219)))) (-1602 (*1 *1 *1) (-12 (|has| *1 (-6 -4423)) (-4 *1 (-375 *2)) (-4 *2 (-1219)))) (-2676 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4423)) (-4 *1 (-375 *3)) (-4 *3 (-1219)))) (-2676 (*1 *1 *1) (-12 (|has| *1 (-6 -4423)) (-4 *1 (-375 *2)) (-4 *2 (-1219)) (-4 *2 (-851)))))
+(-13 (-652 |t#1|) (-10 -8 (-6 -4422) (-15 -2473 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -3592 ($ $)) (-15 -1311 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -3531 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -2578 ((-567) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1102)) (PROGN (-15 -2578 ((-567) |t#1| $)) (-15 -2578 ((-567) |t#1| $ (-567)))) |%noBranch|) (IF (|has| |t#1| (-851)) (PROGN (-6 (-851)) (-15 -2473 ($ $ $)) (-15 -1311 ($ $)) (-15 -3531 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4423)) (PROGN (-15 -1656 ($ $ $ (-567))) (-15 -1602 ($ $)) (-15 -2676 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-851)) (-15 -2676 ($ $)) |%noBranch|)) |%noBranch|)))
+(((-34) . T) ((-102) -2811 (|has| |#1| (-1102)) (|has| |#1| (-851))) ((-614 (-863)) -2811 (|has| |#1| (-1102)) (|has| |#1| (-851)) (|has| |#1| (-614 (-863)))) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-287 #0=(-567) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-605 #0# |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-652 |#1|) . T) ((-851) |has| |#1| (-851)) ((-1102) -2811 (|has| |#1| (-1102)) (|has| |#1| (-851))) ((-1219) . T))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-3275 (((-645 |#1|) $) 37)) (-1326 (($ $ (-772)) 38)) (-2376 (((-3 $ "failed") $ $) 20)) (-3647 (($) 18 T CONST)) (-2873 (((-1293 |#1| |#2|) (-1293 |#1| |#2|) $) 41)) (-2111 (($ $) 39)) (-1627 (((-1293 |#1| |#2|) (-1293 |#1| |#2|) $) 42)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-2642 (($ $ |#1| $) 36) (($ $ (-645 |#1|) (-645 $)) 35)) (-3104 (((-772) $) 43)) (-4145 (($ $ $) 34)) (-4129 (((-863) $) 12) (($ |#1|) 46) (((-1284 |#1| |#2|) $) 45) (((-1293 |#1| |#2|) $) 44)) (-3705 ((|#2| (-1293 |#1| |#2|) $) 47)) (-3357 (((-112) $ $) 9)) (-1733 (($) 19 T CONST)) (-2683 (($ (-673 |#1|)) 40)) (-2946 (((-112) $ $) 6)) (-3069 (($ $ |#2|) 33 (|has| |#2| (-365)))) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ |#2| $) 27) (($ $ |#2|) 31)))
(((-376 |#1| |#2|) (-140) (-851) (-172)) (T -376))
-((-3694 (*1 *2 *3 *1) (-12 (-5 *3 (-1292 *4 *2)) (-4 *1 (-376 *4 *2)) (-4 *4 (-851)) (-4 *2 (-172)))) (-4132 (*1 *1 *2) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-851)) (-4 *3 (-172)))) (-4132 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)) (-5 *2 (-1283 *3 *4)))) (-4132 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)) (-5 *2 (-1292 *3 *4)))) (-3077 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)) (-5 *2 (-772)))) (-2173 (*1 *2 *2 *1) (-12 (-5 *2 (-1292 *3 *4)) (-4 *1 (-376 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)))) (-2885 (*1 *2 *2 *1) (-12 (-5 *2 (-1292 *3 *4)) (-4 *1 (-376 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)))) (-4363 (*1 *1 *2) (-12 (-5 *2 (-673 *3)) (-4 *3 (-851)) (-4 *1 (-376 *3 *4)) (-4 *4 (-172)))) (-3592 (*1 *1 *1) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-851)) (-4 *3 (-172)))) (-2721 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-376 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)))) (-3267 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)) (-5 *2 (-645 *3)))) (-2631 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-851)) (-4 *3 (-172)))) (-2631 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 *4)) (-5 *3 (-645 *1)) (-4 *1 (-376 *4 *5)) (-4 *4 (-851)) (-4 *5 (-172)))))
-(-13 (-635 |t#2|) (-10 -8 (-15 -3694 (|t#2| (-1292 |t#1| |t#2|) $)) (-15 -4132 ($ |t#1|)) (-15 -4132 ((-1283 |t#1| |t#2|) $)) (-15 -4132 ((-1292 |t#1| |t#2|) $)) (-15 -3077 ((-772) $)) (-15 -2173 ((-1292 |t#1| |t#2|) (-1292 |t#1| |t#2|) $)) (-15 -2885 ((-1292 |t#1| |t#2|) (-1292 |t#1| |t#2|) $)) (-15 -4363 ($ (-673 |t#1|))) (-15 -3592 ($ $)) (-15 -2721 ($ $ (-772))) (-15 -3267 ((-645 |t#1|) $)) (-15 -2631 ($ $ |t#1| $)) (-15 -2631 ($ $ (-645 |t#1|) (-645 $)))))
+((-3705 (*1 *2 *3 *1) (-12 (-5 *3 (-1293 *4 *2)) (-4 *1 (-376 *4 *2)) (-4 *4 (-851)) (-4 *2 (-172)))) (-4129 (*1 *1 *2) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-851)) (-4 *3 (-172)))) (-4129 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)) (-5 *2 (-1284 *3 *4)))) (-4129 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)) (-5 *2 (-1293 *3 *4)))) (-3104 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)) (-5 *2 (-772)))) (-1627 (*1 *2 *2 *1) (-12 (-5 *2 (-1293 *3 *4)) (-4 *1 (-376 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)))) (-2873 (*1 *2 *2 *1) (-12 (-5 *2 (-1293 *3 *4)) (-4 *1 (-376 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)))) (-2683 (*1 *1 *2) (-12 (-5 *2 (-673 *3)) (-4 *3 (-851)) (-4 *1 (-376 *3 *4)) (-4 *4 (-172)))) (-2111 (*1 *1 *1) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-851)) (-4 *3 (-172)))) (-1326 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-376 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)))) (-3275 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)) (-5 *2 (-645 *3)))) (-2642 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-851)) (-4 *3 (-172)))) (-2642 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 *4)) (-5 *3 (-645 *1)) (-4 *1 (-376 *4 *5)) (-4 *4 (-851)) (-4 *5 (-172)))))
+(-13 (-635 |t#2|) (-10 -8 (-15 -3705 (|t#2| (-1293 |t#1| |t#2|) $)) (-15 -4129 ($ |t#1|)) (-15 -4129 ((-1284 |t#1| |t#2|) $)) (-15 -4129 ((-1293 |t#1| |t#2|) $)) (-15 -3104 ((-772) $)) (-15 -1627 ((-1293 |t#1| |t#2|) (-1293 |t#1| |t#2|) $)) (-15 -2873 ((-1293 |t#1| |t#2|) (-1293 |t#1| |t#2|) $)) (-15 -2683 ($ (-673 |t#1|))) (-15 -2111 ($ $)) (-15 -1326 ($ $ (-772))) (-15 -3275 ((-645 |t#1|) $)) (-15 -2642 ($ $ |t#1| $)) (-15 -2642 ($ $ (-645 |t#1|) (-645 $)))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#2|) . T) ((-649 |#2|) . T) ((-635 |#2|) . T) ((-641 |#2|) . T) ((-718 |#2|) . T) ((-1053 |#2|) . T) ((-1058 |#2|) . T) ((-1102) . T))
-((-1546 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 44)) (-1766 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-3029 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 35)))
-(((-377 |#1| |#2|) (-10 -7 (-15 -1766 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3029 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1546 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1218) (-13 (-375 |#1|) (-10 -7 (-6 -4419)))) (T -377))
-((-1546 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1218)) (-5 *1 (-377 *4 *2)) (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4419)))))) (-3029 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1218)) (-5 *1 (-377 *4 *2)) (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4419)))))) (-1766 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1218)) (-5 *1 (-377 *4 *2)) (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4419)))))))
-(-10 -7 (-15 -1766 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3029 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1546 (|#2| (-1 (-112) |#1| |#1|) |#2|)))
-((-2630 (((-690 |#2|) (-690 $)) NIL) (((-2 (|:| -2316 (-690 |#2|)) (|:| |vec| (-1268 |#2|))) (-690 $) (-1268 $)) NIL) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) 22) (((-690 (-567)) (-690 $)) 14)))
-(((-378 |#1| |#2|) (-10 -8 (-15 -2630 ((-690 (-567)) (-690 |#1|))) (-15 -2630 ((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 |#1|) (-1268 |#1|))) (-15 -2630 ((-2 (|:| -2316 (-690 |#2|)) (|:| |vec| (-1268 |#2|))) (-690 |#1|) (-1268 |#1|))) (-15 -2630 ((-690 |#2|) (-690 |#1|)))) (-379 |#2|) (-1051)) (T -378))
-NIL
-(-10 -8 (-15 -2630 ((-690 (-567)) (-690 |#1|))) (-15 -2630 ((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 |#1|) (-1268 |#1|))) (-15 -2630 ((-2 (|:| -2316 (-690 |#2|)) (|:| |vec| (-1268 |#2|))) (-690 |#1|) (-1268 |#1|))) (-15 -2630 ((-690 |#2|) (-690 |#1|))))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-2630 (((-690 |#1|) (-690 $)) 40) (((-2 (|:| -2316 (-690 |#1|)) (|:| |vec| (-1268 |#1|))) (-690 $) (-1268 $)) 39) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) 47 (|has| |#1| (-640 (-567)))) (((-690 (-567)) (-690 $)) 46 (|has| |#1| (-640 (-567))))) (-2109 (((-3 $ "failed") $) 37)) (-1433 (((-112) $) 35)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12) (($ (-567)) 33)) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27)))
+((-2316 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 44)) (-1807 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-3343 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 35)))
+(((-377 |#1| |#2|) (-10 -7 (-15 -1807 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3343 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2316 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1219) (-13 (-375 |#1|) (-10 -7 (-6 -4423)))) (T -377))
+((-2316 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1219)) (-5 *1 (-377 *4 *2)) (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4423)))))) (-3343 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1219)) (-5 *1 (-377 *4 *2)) (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4423)))))) (-1807 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1219)) (-5 *1 (-377 *4 *2)) (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4423)))))))
+(-10 -7 (-15 -1807 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3343 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2316 (|#2| (-1 (-112) |#1| |#1|) |#2|)))
+((-1423 (((-690 |#2|) (-690 $)) NIL) (((-2 (|:| -4208 (-690 |#2|)) (|:| |vec| (-1269 |#2|))) (-690 $) (-1269 $)) NIL) (((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) 22) (((-690 (-567)) (-690 $)) 14)))
+(((-378 |#1| |#2|) (-10 -8 (-15 -1423 ((-690 (-567)) (-690 |#1|))) (-15 -1423 ((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 |#1|) (-1269 |#1|))) (-15 -1423 ((-2 (|:| -4208 (-690 |#2|)) (|:| |vec| (-1269 |#2|))) (-690 |#1|) (-1269 |#1|))) (-15 -1423 ((-690 |#2|) (-690 |#1|)))) (-379 |#2|) (-1051)) (T -378))
+NIL
+(-10 -8 (-15 -1423 ((-690 (-567)) (-690 |#1|))) (-15 -1423 ((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 |#1|) (-1269 |#1|))) (-15 -1423 ((-2 (|:| -4208 (-690 |#2|)) (|:| |vec| (-1269 |#2|))) (-690 |#1|) (-1269 |#1|))) (-15 -1423 ((-690 |#2|) (-690 |#1|))))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-2376 (((-3 $ "failed") $ $) 20)) (-3647 (($) 18 T CONST)) (-1423 (((-690 |#1|) (-690 $)) 40) (((-2 (|:| -4208 (-690 |#1|)) (|:| |vec| (-1269 |#1|))) (-690 $) (-1269 $)) 39) (((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) 47 (|has| |#1| (-640 (-567)))) (((-690 (-567)) (-690 $)) 46 (|has| |#1| (-640 (-567))))) (-3588 (((-3 $ "failed") $) 37)) (-4346 (((-112) $) 35)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-4129 (((-863) $) 12) (($ (-567)) 33)) (-2746 (((-772)) 32 T CONST)) (-3357 (((-112) $ $) 9)) (-1733 (($) 19 T CONST)) (-1744 (($) 34 T CONST)) (-2946 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27)))
(((-379 |#1|) (-140) (-1051)) (T -379))
NIL
(-13 (-640 |t#1|) (-10 -7 (IF (|has| |t#1| (-640 (-567))) (-6 (-640 (-567))) |%noBranch|)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-617 (-567)) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-640 (-567)) |has| |#1| (-640 (-567))) ((-640 |#1|) . T) ((-727) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T))
-((-2000 (((-645 (-295 (-954 (-169 |#1|)))) (-295 (-410 (-954 (-169 (-567))))) |#1|) 51) (((-645 (-295 (-954 (-169 |#1|)))) (-410 (-954 (-169 (-567)))) |#1|) 50) (((-645 (-645 (-295 (-954 (-169 |#1|))))) (-645 (-295 (-410 (-954 (-169 (-567)))))) |#1|) 47) (((-645 (-645 (-295 (-954 (-169 |#1|))))) (-645 (-410 (-954 (-169 (-567))))) |#1|) 41)) (-3892 (((-645 (-645 (-169 |#1|))) (-645 (-410 (-954 (-169 (-567))))) (-645 (-1178)) |#1|) 30) (((-645 (-169 |#1|)) (-410 (-954 (-169 (-567)))) |#1|) 18)))
-(((-380 |#1|) (-10 -7 (-15 -2000 ((-645 (-645 (-295 (-954 (-169 |#1|))))) (-645 (-410 (-954 (-169 (-567))))) |#1|)) (-15 -2000 ((-645 (-645 (-295 (-954 (-169 |#1|))))) (-645 (-295 (-410 (-954 (-169 (-567)))))) |#1|)) (-15 -2000 ((-645 (-295 (-954 (-169 |#1|)))) (-410 (-954 (-169 (-567)))) |#1|)) (-15 -2000 ((-645 (-295 (-954 (-169 |#1|)))) (-295 (-410 (-954 (-169 (-567))))) |#1|)) (-15 -3892 ((-645 (-169 |#1|)) (-410 (-954 (-169 (-567)))) |#1|)) (-15 -3892 ((-645 (-645 (-169 |#1|))) (-645 (-410 (-954 (-169 (-567))))) (-645 (-1178)) |#1|))) (-13 (-365) (-849))) (T -380))
-((-3892 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-645 (-410 (-954 (-169 (-567)))))) (-5 *4 (-645 (-1178))) (-5 *2 (-645 (-645 (-169 *5)))) (-5 *1 (-380 *5)) (-4 *5 (-13 (-365) (-849))))) (-3892 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-954 (-169 (-567))))) (-5 *2 (-645 (-169 *4))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-365) (-849))))) (-2000 (*1 *2 *3 *4) (-12 (-5 *3 (-295 (-410 (-954 (-169 (-567)))))) (-5 *2 (-645 (-295 (-954 (-169 *4))))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-365) (-849))))) (-2000 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-954 (-169 (-567))))) (-5 *2 (-645 (-295 (-954 (-169 *4))))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-365) (-849))))) (-2000 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-295 (-410 (-954 (-169 (-567))))))) (-5 *2 (-645 (-645 (-295 (-954 (-169 *4)))))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-365) (-849))))) (-2000 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-410 (-954 (-169 (-567)))))) (-5 *2 (-645 (-645 (-295 (-954 (-169 *4)))))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-365) (-849))))))
-(-10 -7 (-15 -2000 ((-645 (-645 (-295 (-954 (-169 |#1|))))) (-645 (-410 (-954 (-169 (-567))))) |#1|)) (-15 -2000 ((-645 (-645 (-295 (-954 (-169 |#1|))))) (-645 (-295 (-410 (-954 (-169 (-567)))))) |#1|)) (-15 -2000 ((-645 (-295 (-954 (-169 |#1|)))) (-410 (-954 (-169 (-567)))) |#1|)) (-15 -2000 ((-645 (-295 (-954 (-169 |#1|)))) (-295 (-410 (-954 (-169 (-567))))) |#1|)) (-15 -3892 ((-645 (-169 |#1|)) (-410 (-954 (-169 (-567)))) |#1|)) (-15 -3892 ((-645 (-645 (-169 |#1|))) (-645 (-410 (-954 (-169 (-567))))) (-645 (-1178)) |#1|)))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) 35)) (-3093 (((-567) $) 62)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-1950 (($ $) 144)) (-3146 (($ $) 107)) (-3012 (($ $) 94)) (-3472 (((-3 $ "failed") $ $) NIL)) (-3248 (($ $) NIL)) (-2908 (((-421 $) $) NIL)) (-2716 (($ $) 47)) (-3609 (((-112) $ $) NIL)) (-3128 (($ $) 105)) (-2987 (($ $) 88)) (-1750 (((-567) $) 81)) (-4130 (($ $ (-567)) 76)) (-3166 (($ $) NIL)) (-3035 (($ $) NIL)) (-2585 (($) NIL T CONST)) (-2535 (($ $) 146)) (-3753 (((-3 (-567) "failed") $) 242) (((-3 (-410 (-567)) "failed") $) 238)) (-2038 (((-567) $) 240) (((-410 (-567)) $) 236)) (-2349 (($ $ $) NIL)) (-3015 (((-567) $ $) 133)) (-2109 (((-3 $ "failed") $) 149)) (-2350 (((-410 (-567)) $ (-772)) 243) (((-410 (-567)) $ (-772) (-772)) 235)) (-2360 (($ $ $) NIL)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-3184 (((-112) $) NIL)) (-3725 (((-923)) 96) (((-923) (-923)) 129 (|has| $ (-6 -4409)))) (-4336 (((-112) $) 138)) (-1482 (($) 41)) (-4303 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL)) (-2553 (((-1273) (-772)) 201)) (-2117 (((-1273)) 206) (((-1273) (-772)) 207)) (-1434 (((-1273)) 208) (((-1273) (-772)) 209)) (-2815 (((-1273)) 204) (((-1273) (-772)) 205)) (-4384 (((-567) $) 69)) (-1433 (((-112) $) 40)) (-2651 (($ $ (-567)) NIL)) (-3321 (($ $) 51)) (-2475 (($ $) NIL)) (-3494 (((-112) $) 37)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1354 (($ $ $) NIL) (($) NIL (-12 (-1657 (|has| $ (-6 -4401))) (-1657 (|has| $ (-6 -4409)))))) (-2981 (($ $ $) NIL) (($) 130 (-12 (-1657 (|has| $ (-6 -4401))) (-1657 (|has| $ (-6 -4409)))))) (-2148 (((-567) $) 17)) (-3971 (($) 115) (($ $) 121)) (-1703 (($) 120) (($ $) 122)) (-3063 (($ $) 110)) (-2740 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) 151)) (-3214 (((-923) (-567)) 46 (|has| $ (-6 -4409)))) (-3430 (((-1122) $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-2774 (($ $ $) NIL) (($ (-645 $)) NIL)) (-4094 (($ $) 60)) (-2780 (($ $) 143)) (-2327 (($ (-567) (-567)) 139) (($ (-567) (-567) (-923)) 140)) (-2706 (((-421 $) $) NIL)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2391 (((-3 $ "failed") $ $) NIL)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-3458 (((-567) $) 19)) (-4297 (($) 123)) (-3946 (($ $) 104)) (-1990 (((-772) $) NIL)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL)) (-3038 (((-923)) 131) (((-923) (-923)) 132 (|has| $ (-6 -4409)))) (-1593 (($ $ (-772)) NIL) (($ $) 150)) (-4223 (((-923) (-567)) 50 (|has| $ (-6 -4409)))) (-3175 (($ $) NIL)) (-3049 (($ $) NIL)) (-3156 (($ $) NIL)) (-3023 (($ $) NIL)) (-3137 (($ $) 106)) (-2999 (($ $) 93)) (-3893 (((-381) $) 229) (((-225) $) 230) (((-894 (-381)) $) NIL) (((-1160) $) 212) (((-539) $) 227) (($ (-225)) 234)) (-4132 (((-863) $) 216) (($ (-567)) 239) (($ $) NIL) (($ (-410 (-567))) NIL) (($ (-567)) 239) (($ (-410 (-567))) NIL) (((-225) $) 231)) (-4221 (((-772)) NIL T CONST)) (-1423 (($ $) 145)) (-2547 (((-923)) 61) (((-923) (-923)) 83 (|has| $ (-6 -4409)))) (-1745 (((-112) $ $) NIL)) (-3047 (((-923)) 134)) (-3200 (($ $) 113)) (-3084 (($ $) 49) (($ $ $) 59)) (-3816 (((-112) $ $) NIL)) (-3183 (($ $) 111)) (-3062 (($ $) 39)) (-3221 (($ $) NIL)) (-3106 (($ $) NIL)) (-3785 (($ $) NIL)) (-3118 (($ $) NIL)) (-3211 (($ $) NIL)) (-3095 (($ $) NIL)) (-3193 (($ $) 112)) (-3074 (($ $) 52)) (-2219 (($ $) 58)) (-1716 (($) 36 T CONST)) (-1728 (($) 43 T CONST)) (-2904 (((-1160) $) 27) (((-1160) $ (-112)) 29) (((-1273) (-823) $) 30) (((-1273) (-823) $ (-112)) 31)) (-2637 (($ $ (-772)) NIL) (($ $) NIL)) (-2997 (((-112) $ $) 213)) (-2971 (((-112) $ $) 45)) (-2936 (((-112) $ $) 56)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) 57)) (-3060 (($ $ $) 48) (($ $ (-567)) 42)) (-3045 (($ $) 38) (($ $ $) 53)) (-3033 (($ $ $) 75)) (** (($ $ (-923)) 86) (($ $ (-772)) NIL) (($ $ (-567)) 116) (($ $ (-410 (-567))) 162) (($ $ $) 153)) (* (($ (-923) $) 82) (($ (-772) $) NIL) (($ (-567) $) 87) (($ $ $) 74) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL)))
-(((-381) (-13 (-407) (-233) (-615 (-1160)) (-829) (-614 (-225)) (-1203) (-615 (-539)) (-619 (-225)) (-10 -8 (-15 -3060 ($ $ (-567))) (-15 ** ($ $ $)) (-15 -3321 ($ $)) (-15 -3015 ((-567) $ $)) (-15 -4130 ($ $ (-567))) (-15 -2350 ((-410 (-567)) $ (-772))) (-15 -2350 ((-410 (-567)) $ (-772) (-772))) (-15 -3971 ($)) (-15 -1703 ($)) (-15 -4297 ($)) (-15 -3084 ($ $ $)) (-15 -3971 ($ $)) (-15 -1703 ($ $)) (-15 -1434 ((-1273))) (-15 -1434 ((-1273) (-772))) (-15 -2815 ((-1273))) (-15 -2815 ((-1273) (-772))) (-15 -2117 ((-1273))) (-15 -2117 ((-1273) (-772))) (-15 -2553 ((-1273) (-772))) (-6 -4409) (-6 -4401)))) (T -381))
-((** (*1 *1 *1 *1) (-5 *1 (-381))) (-3060 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-381)))) (-3321 (*1 *1 *1) (-5 *1 (-381))) (-3015 (*1 *2 *1 *1) (-12 (-5 *2 (-567)) (-5 *1 (-381)))) (-4130 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-381)))) (-2350 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *2 (-410 (-567))) (-5 *1 (-381)))) (-2350 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-772)) (-5 *2 (-410 (-567))) (-5 *1 (-381)))) (-3971 (*1 *1) (-5 *1 (-381))) (-1703 (*1 *1) (-5 *1 (-381))) (-4297 (*1 *1) (-5 *1 (-381))) (-3084 (*1 *1 *1 *1) (-5 *1 (-381))) (-3971 (*1 *1 *1) (-5 *1 (-381))) (-1703 (*1 *1 *1) (-5 *1 (-381))) (-1434 (*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-381)))) (-1434 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1273)) (-5 *1 (-381)))) (-2815 (*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-381)))) (-2815 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1273)) (-5 *1 (-381)))) (-2117 (*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-381)))) (-2117 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1273)) (-5 *1 (-381)))) (-2553 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1273)) (-5 *1 (-381)))))
-(-13 (-407) (-233) (-615 (-1160)) (-829) (-614 (-225)) (-1203) (-615 (-539)) (-619 (-225)) (-10 -8 (-15 -3060 ($ $ (-567))) (-15 ** ($ $ $)) (-15 -3321 ($ $)) (-15 -3015 ((-567) $ $)) (-15 -4130 ($ $ (-567))) (-15 -2350 ((-410 (-567)) $ (-772))) (-15 -2350 ((-410 (-567)) $ (-772) (-772))) (-15 -3971 ($)) (-15 -1703 ($)) (-15 -4297 ($)) (-15 -3084 ($ $ $)) (-15 -3971 ($ $)) (-15 -1703 ($ $)) (-15 -1434 ((-1273))) (-15 -1434 ((-1273) (-772))) (-15 -2815 ((-1273))) (-15 -2815 ((-1273) (-772))) (-15 -2117 ((-1273))) (-15 -2117 ((-1273) (-772))) (-15 -2553 ((-1273) (-772))) (-6 -4409) (-6 -4401)))
-((-3018 (((-645 (-295 (-954 |#1|))) (-295 (-410 (-954 (-567)))) |#1|) 46) (((-645 (-295 (-954 |#1|))) (-410 (-954 (-567))) |#1|) 45) (((-645 (-645 (-295 (-954 |#1|)))) (-645 (-295 (-410 (-954 (-567))))) |#1|) 42) (((-645 (-645 (-295 (-954 |#1|)))) (-645 (-410 (-954 (-567)))) |#1|) 36)) (-2514 (((-645 |#1|) (-410 (-954 (-567))) |#1|) 20) (((-645 (-645 |#1|)) (-645 (-410 (-954 (-567)))) (-645 (-1178)) |#1|) 30)))
-(((-382 |#1|) (-10 -7 (-15 -3018 ((-645 (-645 (-295 (-954 |#1|)))) (-645 (-410 (-954 (-567)))) |#1|)) (-15 -3018 ((-645 (-645 (-295 (-954 |#1|)))) (-645 (-295 (-410 (-954 (-567))))) |#1|)) (-15 -3018 ((-645 (-295 (-954 |#1|))) (-410 (-954 (-567))) |#1|)) (-15 -3018 ((-645 (-295 (-954 |#1|))) (-295 (-410 (-954 (-567)))) |#1|)) (-15 -2514 ((-645 (-645 |#1|)) (-645 (-410 (-954 (-567)))) (-645 (-1178)) |#1|)) (-15 -2514 ((-645 |#1|) (-410 (-954 (-567))) |#1|))) (-13 (-849) (-365))) (T -382))
-((-2514 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-954 (-567)))) (-5 *2 (-645 *4)) (-5 *1 (-382 *4)) (-4 *4 (-13 (-849) (-365))))) (-2514 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-645 (-410 (-954 (-567))))) (-5 *4 (-645 (-1178))) (-5 *2 (-645 (-645 *5))) (-5 *1 (-382 *5)) (-4 *5 (-13 (-849) (-365))))) (-3018 (*1 *2 *3 *4) (-12 (-5 *3 (-295 (-410 (-954 (-567))))) (-5 *2 (-645 (-295 (-954 *4)))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-849) (-365))))) (-3018 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-954 (-567)))) (-5 *2 (-645 (-295 (-954 *4)))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-849) (-365))))) (-3018 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-295 (-410 (-954 (-567)))))) (-5 *2 (-645 (-645 (-295 (-954 *4))))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-849) (-365))))) (-3018 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-410 (-954 (-567))))) (-5 *2 (-645 (-645 (-295 (-954 *4))))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-849) (-365))))))
-(-10 -7 (-15 -3018 ((-645 (-645 (-295 (-954 |#1|)))) (-645 (-410 (-954 (-567)))) |#1|)) (-15 -3018 ((-645 (-645 (-295 (-954 |#1|)))) (-645 (-295 (-410 (-954 (-567))))) |#1|)) (-15 -3018 ((-645 (-295 (-954 |#1|))) (-410 (-954 (-567))) |#1|)) (-15 -3018 ((-645 (-295 (-954 |#1|))) (-295 (-410 (-954 (-567)))) |#1|)) (-15 -2514 ((-645 (-645 |#1|)) (-645 (-410 (-954 (-567)))) (-645 (-1178)) |#1|)) (-15 -2514 ((-645 |#1|) (-410 (-954 (-567))) |#1|)))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2585 (($) NIL T CONST)) (-3753 (((-3 |#2| "failed") $) 30)) (-2038 ((|#2| $) 32)) (-3014 (($ $) NIL)) (-2695 (((-772) $) 11)) (-1709 (((-645 $) $) 23)) (-2843 (((-112) $) NIL)) (-2290 (($ |#2| |#1|) 21)) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-1901 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17)) (-2976 ((|#2| $) 18)) (-2989 ((|#1| $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 51) (($ |#2|) 31)) (-3032 (((-645 |#1|) $) 20)) (-4136 ((|#1| $ |#2|) 55)) (-1745 (((-112) $ $) NIL)) (-1716 (($) 33 T CONST)) (-2761 (((-645 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14)) (-2936 (((-112) $ $) NIL)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ |#1| $) 36) (($ $ |#1|) 37) (($ |#1| |#2|) 39) (($ |#2| |#1|) 40)))
+((-3911 (((-645 (-295 (-954 (-169 |#1|)))) (-295 (-410 (-954 (-169 (-567))))) |#1|) 51) (((-645 (-295 (-954 (-169 |#1|)))) (-410 (-954 (-169 (-567)))) |#1|) 50) (((-645 (-645 (-295 (-954 (-169 |#1|))))) (-645 (-295 (-410 (-954 (-169 (-567)))))) |#1|) 47) (((-645 (-645 (-295 (-954 (-169 |#1|))))) (-645 (-410 (-954 (-169 (-567))))) |#1|) 41)) (-2450 (((-645 (-645 (-169 |#1|))) (-645 (-410 (-954 (-169 (-567))))) (-645 (-1179)) |#1|) 30) (((-645 (-169 |#1|)) (-410 (-954 (-169 (-567)))) |#1|) 18)))
+(((-380 |#1|) (-10 -7 (-15 -3911 ((-645 (-645 (-295 (-954 (-169 |#1|))))) (-645 (-410 (-954 (-169 (-567))))) |#1|)) (-15 -3911 ((-645 (-645 (-295 (-954 (-169 |#1|))))) (-645 (-295 (-410 (-954 (-169 (-567)))))) |#1|)) (-15 -3911 ((-645 (-295 (-954 (-169 |#1|)))) (-410 (-954 (-169 (-567)))) |#1|)) (-15 -3911 ((-645 (-295 (-954 (-169 |#1|)))) (-295 (-410 (-954 (-169 (-567))))) |#1|)) (-15 -2450 ((-645 (-169 |#1|)) (-410 (-954 (-169 (-567)))) |#1|)) (-15 -2450 ((-645 (-645 (-169 |#1|))) (-645 (-410 (-954 (-169 (-567))))) (-645 (-1179)) |#1|))) (-13 (-365) (-849))) (T -380))
+((-2450 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-645 (-410 (-954 (-169 (-567)))))) (-5 *4 (-645 (-1179))) (-5 *2 (-645 (-645 (-169 *5)))) (-5 *1 (-380 *5)) (-4 *5 (-13 (-365) (-849))))) (-2450 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-954 (-169 (-567))))) (-5 *2 (-645 (-169 *4))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-365) (-849))))) (-3911 (*1 *2 *3 *4) (-12 (-5 *3 (-295 (-410 (-954 (-169 (-567)))))) (-5 *2 (-645 (-295 (-954 (-169 *4))))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-365) (-849))))) (-3911 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-954 (-169 (-567))))) (-5 *2 (-645 (-295 (-954 (-169 *4))))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-365) (-849))))) (-3911 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-295 (-410 (-954 (-169 (-567))))))) (-5 *2 (-645 (-645 (-295 (-954 (-169 *4)))))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-365) (-849))))) (-3911 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-410 (-954 (-169 (-567)))))) (-5 *2 (-645 (-645 (-295 (-954 (-169 *4)))))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-365) (-849))))))
+(-10 -7 (-15 -3911 ((-645 (-645 (-295 (-954 (-169 |#1|))))) (-645 (-410 (-954 (-169 (-567))))) |#1|)) (-15 -3911 ((-645 (-645 (-295 (-954 (-169 |#1|))))) (-645 (-295 (-410 (-954 (-169 (-567)))))) |#1|)) (-15 -3911 ((-645 (-295 (-954 (-169 |#1|)))) (-410 (-954 (-169 (-567)))) |#1|)) (-15 -3911 ((-645 (-295 (-954 (-169 |#1|)))) (-295 (-410 (-954 (-169 (-567))))) |#1|)) (-15 -2450 ((-645 (-169 |#1|)) (-410 (-954 (-169 (-567)))) |#1|)) (-15 -2450 ((-645 (-645 (-169 |#1|))) (-645 (-410 (-954 (-169 (-567))))) (-645 (-1179)) |#1|)))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) 35)) (-4014 (((-567) $) 62)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-4287 (($ $) NIL)) (-2286 (((-112) $) NIL)) (-3748 (($ $) 144)) (-3164 (($ $) 107)) (-3032 (($ $) 94)) (-2376 (((-3 $ "failed") $ $) NIL)) (-3659 (($ $) NIL)) (-3597 (((-421 $) $) NIL)) (-2728 (($ $) 47)) (-3696 (((-112) $ $) NIL)) (-3145 (($ $) 105)) (-3008 (($ $) 88)) (-2677 (((-567) $) 81)) (-4128 (($ $ (-567)) 76)) (-3182 (($ $) NIL)) (-3057 (($ $) NIL)) (-3647 (($) NIL T CONST)) (-3122 (($ $) 146)) (-3765 (((-3 (-567) "failed") $) 242) (((-3 (-410 (-567)) "failed") $) 238)) (-2051 (((-567) $) 240) (((-410 (-567)) $) 236)) (-2357 (($ $ $) NIL)) (-2108 (((-567) $ $) 133)) (-3588 (((-3 $ "failed") $) 149)) (-1664 (((-410 (-567)) $ (-772)) 243) (((-410 (-567)) $ (-772) (-772)) 235)) (-2368 (($ $ $) NIL)) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) NIL)) (-3502 (((-112) $) NIL)) (-3745 (((-923)) 96) (((-923) (-923)) 129 (|has| $ (-6 -4413)))) (-3137 (((-112) $) 138)) (-1484 (($) 41)) (-3193 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL)) (-4165 (((-1274) (-772)) 201)) (-2849 (((-1274)) 206) (((-1274) (-772)) 207)) (-1342 (((-1274)) 208) (((-1274) (-772)) 209)) (-3918 (((-1274)) 204) (((-1274) (-772)) 205)) (-3362 (((-567) $) 69)) (-4346 (((-112) $) 40)) (-3698 (($ $ (-567)) NIL)) (-2948 (($ $) 51)) (-2724 (($ $) NIL)) (-3465 (((-112) $) 37)) (-1469 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1365 (($ $ $) NIL) (($) NIL (-12 (-1673 (|has| $ (-6 -4405))) (-1673 (|has| $ (-6 -4413)))))) (-3002 (($ $ $) NIL) (($) 130 (-12 (-1673 (|has| $ (-6 -4405))) (-1673 (|has| $ (-6 -4413)))))) (-2159 (((-567) $) 17)) (-2893 (($) 115) (($ $) 121)) (-1721 (($) 120) (($ $) 122)) (-3072 (($ $) 110)) (-2751 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2516 (((-1161) $) NIL)) (-2949 (($ $) 151)) (-4301 (((-923) (-567)) 46 (|has| $ (-6 -4413)))) (-3437 (((-1122) $) NIL)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-2785 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2554 (($ $) 60)) (-3969 (($ $) 143)) (-2335 (($ (-567) (-567)) 139) (($ (-567) (-567) (-923)) 140)) (-2717 (((-421 $) $) NIL)) (-2905 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2400 (((-3 $ "failed") $ $) NIL)) (-2372 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-3468 (((-567) $) 19)) (-3784 (($) 123)) (-3955 (($ $) 104)) (-2460 (((-772) $) NIL)) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) NIL)) (-2688 (((-923)) 131) (((-923) (-923)) 132 (|has| $ (-6 -4413)))) (-1616 (($ $ (-772)) NIL) (($ $) 150)) (-2935 (((-923) (-567)) 50 (|has| $ (-6 -4413)))) (-3192 (($ $) NIL)) (-3071 (($ $) NIL)) (-3173 (($ $) NIL)) (-3043 (($ $) NIL)) (-3155 (($ $) 106)) (-3021 (($ $) 93)) (-3902 (((-381) $) 229) (((-225) $) 230) (((-894 (-381)) $) NIL) (((-1161) $) 212) (((-539) $) 227) (($ (-225)) 234)) (-4129 (((-863) $) 216) (($ (-567)) 239) (($ $) NIL) (($ (-410 (-567))) NIL) (($ (-567)) 239) (($ (-410 (-567))) NIL) (((-225) $) 231)) (-2746 (((-772)) NIL T CONST)) (-1689 (($ $) 145)) (-3766 (((-923)) 61) (((-923) (-923)) 83 (|has| $ (-6 -4413)))) (-3357 (((-112) $ $) NIL)) (-3070 (((-923)) 134)) (-3217 (($ $) 113)) (-3103 (($ $) 49) (($ $ $) 59)) (-3731 (((-112) $ $) NIL)) (-3201 (($ $) 111)) (-3083 (($ $) 39)) (-3238 (($ $) NIL)) (-3126 (($ $) NIL)) (-3805 (($ $) NIL)) (-3138 (($ $) NIL)) (-3228 (($ $) NIL)) (-3115 (($ $) NIL)) (-3208 (($ $) 112)) (-3093 (($ $) 52)) (-1547 (($ $) 58)) (-1733 (($) 36 T CONST)) (-1744 (($) 43 T CONST)) (-1335 (((-1161) $) 27) (((-1161) $ (-112)) 29) (((-1274) (-823) $) 30) (((-1274) (-823) $ (-112)) 31)) (-2647 (($ $ (-772)) NIL) (($ $) NIL)) (-3004 (((-112) $ $) 213)) (-2980 (((-112) $ $) 45)) (-2946 (((-112) $ $) 56)) (-2993 (((-112) $ $) NIL)) (-2968 (((-112) $ $) 57)) (-3069 (($ $ $) 48) (($ $ (-567)) 42)) (-3053 (($ $) 38) (($ $ $) 53)) (-3041 (($ $ $) 75)) (** (($ $ (-923)) 86) (($ $ (-772)) NIL) (($ $ (-567)) 116) (($ $ (-410 (-567))) 162) (($ $ $) 153)) (* (($ (-923) $) 82) (($ (-772) $) NIL) (($ (-567) $) 87) (($ $ $) 74) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL)))
+(((-381) (-13 (-407) (-233) (-615 (-1161)) (-829) (-614 (-225)) (-1204) (-615 (-539)) (-619 (-225)) (-10 -8 (-15 -3069 ($ $ (-567))) (-15 ** ($ $ $)) (-15 -2948 ($ $)) (-15 -2108 ((-567) $ $)) (-15 -4128 ($ $ (-567))) (-15 -1664 ((-410 (-567)) $ (-772))) (-15 -1664 ((-410 (-567)) $ (-772) (-772))) (-15 -2893 ($)) (-15 -1721 ($)) (-15 -3784 ($)) (-15 -3103 ($ $ $)) (-15 -2893 ($ $)) (-15 -1721 ($ $)) (-15 -1342 ((-1274))) (-15 -1342 ((-1274) (-772))) (-15 -3918 ((-1274))) (-15 -3918 ((-1274) (-772))) (-15 -2849 ((-1274))) (-15 -2849 ((-1274) (-772))) (-15 -4165 ((-1274) (-772))) (-6 -4413) (-6 -4405)))) (T -381))
+((** (*1 *1 *1 *1) (-5 *1 (-381))) (-3069 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-381)))) (-2948 (*1 *1 *1) (-5 *1 (-381))) (-2108 (*1 *2 *1 *1) (-12 (-5 *2 (-567)) (-5 *1 (-381)))) (-4128 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-381)))) (-1664 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *2 (-410 (-567))) (-5 *1 (-381)))) (-1664 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-772)) (-5 *2 (-410 (-567))) (-5 *1 (-381)))) (-2893 (*1 *1) (-5 *1 (-381))) (-1721 (*1 *1) (-5 *1 (-381))) (-3784 (*1 *1) (-5 *1 (-381))) (-3103 (*1 *1 *1 *1) (-5 *1 (-381))) (-2893 (*1 *1 *1) (-5 *1 (-381))) (-1721 (*1 *1 *1) (-5 *1 (-381))) (-1342 (*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-381)))) (-1342 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1274)) (-5 *1 (-381)))) (-3918 (*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-381)))) (-3918 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1274)) (-5 *1 (-381)))) (-2849 (*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-381)))) (-2849 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1274)) (-5 *1 (-381)))) (-4165 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1274)) (-5 *1 (-381)))))
+(-13 (-407) (-233) (-615 (-1161)) (-829) (-614 (-225)) (-1204) (-615 (-539)) (-619 (-225)) (-10 -8 (-15 -3069 ($ $ (-567))) (-15 ** ($ $ $)) (-15 -2948 ($ $)) (-15 -2108 ((-567) $ $)) (-15 -4128 ($ $ (-567))) (-15 -1664 ((-410 (-567)) $ (-772))) (-15 -1664 ((-410 (-567)) $ (-772) (-772))) (-15 -2893 ($)) (-15 -1721 ($)) (-15 -3784 ($)) (-15 -3103 ($ $ $)) (-15 -2893 ($ $)) (-15 -1721 ($ $)) (-15 -1342 ((-1274))) (-15 -1342 ((-1274) (-772))) (-15 -3918 ((-1274))) (-15 -3918 ((-1274) (-772))) (-15 -2849 ((-1274))) (-15 -2849 ((-1274) (-772))) (-15 -4165 ((-1274) (-772))) (-6 -4413) (-6 -4405)))
+((-2464 (((-645 (-295 (-954 |#1|))) (-295 (-410 (-954 (-567)))) |#1|) 46) (((-645 (-295 (-954 |#1|))) (-410 (-954 (-567))) |#1|) 45) (((-645 (-645 (-295 (-954 |#1|)))) (-645 (-295 (-410 (-954 (-567))))) |#1|) 42) (((-645 (-645 (-295 (-954 |#1|)))) (-645 (-410 (-954 (-567)))) |#1|) 36)) (-1422 (((-645 |#1|) (-410 (-954 (-567))) |#1|) 20) (((-645 (-645 |#1|)) (-645 (-410 (-954 (-567)))) (-645 (-1179)) |#1|) 30)))
+(((-382 |#1|) (-10 -7 (-15 -2464 ((-645 (-645 (-295 (-954 |#1|)))) (-645 (-410 (-954 (-567)))) |#1|)) (-15 -2464 ((-645 (-645 (-295 (-954 |#1|)))) (-645 (-295 (-410 (-954 (-567))))) |#1|)) (-15 -2464 ((-645 (-295 (-954 |#1|))) (-410 (-954 (-567))) |#1|)) (-15 -2464 ((-645 (-295 (-954 |#1|))) (-295 (-410 (-954 (-567)))) |#1|)) (-15 -1422 ((-645 (-645 |#1|)) (-645 (-410 (-954 (-567)))) (-645 (-1179)) |#1|)) (-15 -1422 ((-645 |#1|) (-410 (-954 (-567))) |#1|))) (-13 (-849) (-365))) (T -382))
+((-1422 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-954 (-567)))) (-5 *2 (-645 *4)) (-5 *1 (-382 *4)) (-4 *4 (-13 (-849) (-365))))) (-1422 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-645 (-410 (-954 (-567))))) (-5 *4 (-645 (-1179))) (-5 *2 (-645 (-645 *5))) (-5 *1 (-382 *5)) (-4 *5 (-13 (-849) (-365))))) (-2464 (*1 *2 *3 *4) (-12 (-5 *3 (-295 (-410 (-954 (-567))))) (-5 *2 (-645 (-295 (-954 *4)))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-849) (-365))))) (-2464 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-954 (-567)))) (-5 *2 (-645 (-295 (-954 *4)))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-849) (-365))))) (-2464 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-295 (-410 (-954 (-567)))))) (-5 *2 (-645 (-645 (-295 (-954 *4))))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-849) (-365))))) (-2464 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-410 (-954 (-567))))) (-5 *2 (-645 (-645 (-295 (-954 *4))))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-849) (-365))))))
+(-10 -7 (-15 -2464 ((-645 (-645 (-295 (-954 |#1|)))) (-645 (-410 (-954 (-567)))) |#1|)) (-15 -2464 ((-645 (-645 (-295 (-954 |#1|)))) (-645 (-295 (-410 (-954 (-567))))) |#1|)) (-15 -2464 ((-645 (-295 (-954 |#1|))) (-410 (-954 (-567))) |#1|)) (-15 -2464 ((-645 (-295 (-954 |#1|))) (-295 (-410 (-954 (-567)))) |#1|)) (-15 -1422 ((-645 (-645 |#1|)) (-645 (-410 (-954 (-567)))) (-645 (-1179)) |#1|)) (-15 -1422 ((-645 |#1|) (-410 (-954 (-567))) |#1|)))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-2376 (((-3 $ "failed") $ $) NIL)) (-3647 (($) NIL T CONST)) (-3765 (((-3 |#2| "failed") $) 30)) (-2051 ((|#2| $) 32)) (-3023 (($ $) NIL)) (-2851 (((-772) $) 11)) (-2659 (((-645 $) $) 23)) (-3770 (((-112) $) NIL)) (-2296 (($ |#2| |#1|) 21)) (-3841 (($ (-1 |#1| |#1|) $) NIL)) (-2006 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17)) (-2985 ((|#2| $) 18)) (-2996 ((|#1| $) NIL)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) 51) (($ |#2|) 31)) (-3601 (((-645 |#1|) $) 20)) (-2558 ((|#1| $ |#2|) 55)) (-3357 (((-112) $ $) NIL)) (-1733 (($) 33 T CONST)) (-2987 (((-645 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14)) (-2946 (((-112) $ $) NIL)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ |#1| $) 36) (($ $ |#1|) 37) (($ |#1| |#2|) 39) (($ |#2| |#1|) 40)))
(((-383 |#1| |#2|) (-13 (-384 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1051) (-851)) (T -383))
((* (*1 *1 *2 *3) (-12 (-5 *1 (-383 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-851)))))
(-13 (-384 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|))))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-3753 (((-3 |#2| "failed") $) 49)) (-2038 ((|#2| $) 50)) (-3014 (($ $) 35)) (-2695 (((-772) $) 39)) (-1709 (((-645 $) $) 40)) (-2843 (((-112) $) 43)) (-2290 (($ |#2| |#1|) 44)) (-3829 (($ (-1 |#1| |#1|) $) 45)) (-1901 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 36)) (-2976 ((|#2| $) 38)) (-2989 ((|#1| $) 37)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12) (($ |#2|) 48)) (-3032 (((-645 |#1|) $) 41)) (-4136 ((|#1| $ |#2|) 46)) (-1745 (((-112) $ $) 9)) (-1716 (($) 19 T CONST)) (-2761 (((-645 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 42)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31) (($ |#1| |#2|) 47)))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-2376 (((-3 $ "failed") $ $) 20)) (-3647 (($) 18 T CONST)) (-3765 (((-3 |#2| "failed") $) 49)) (-2051 ((|#2| $) 50)) (-3023 (($ $) 35)) (-2851 (((-772) $) 39)) (-2659 (((-645 $) $) 40)) (-3770 (((-112) $) 43)) (-2296 (($ |#2| |#1|) 44)) (-3841 (($ (-1 |#1| |#1|) $) 45)) (-2006 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 36)) (-2985 ((|#2| $) 38)) (-2996 ((|#1| $) 37)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-4129 (((-863) $) 12) (($ |#2|) 48)) (-3601 (((-645 |#1|) $) 41)) (-2558 ((|#1| $ |#2|) 46)) (-3357 (((-112) $ $) 9)) (-1733 (($) 19 T CONST)) (-2987 (((-645 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 42)) (-2946 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31) (($ |#1| |#2|) 47)))
(((-384 |#1| |#2|) (-140) (-1051) (-1102)) (T -384))
-((* (*1 *1 *2 *3) (-12 (-4 *1 (-384 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-1102)))) (-4136 (*1 *2 *1 *3) (-12 (-4 *1 (-384 *2 *3)) (-4 *3 (-1102)) (-4 *2 (-1051)))) (-3829 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-384 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-1102)))) (-2290 (*1 *1 *2 *3) (-12 (-4 *1 (-384 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-1102)))) (-2843 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-1102)) (-5 *2 (-112)))) (-2761 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-1102)) (-5 *2 (-645 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3032 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-1102)) (-5 *2 (-645 *3)))) (-1709 (*1 *2 *1) (-12 (-4 *3 (-1051)) (-4 *4 (-1102)) (-5 *2 (-645 *1)) (-4 *1 (-384 *3 *4)))) (-2695 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-1102)) (-5 *2 (-772)))) (-2976 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-1102)))) (-2989 (*1 *2 *1) (-12 (-4 *1 (-384 *2 *3)) (-4 *3 (-1102)) (-4 *2 (-1051)))) (-1901 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-1102)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-3014 (*1 *1 *1) (-12 (-4 *1 (-384 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-1102)))))
-(-13 (-111 |t#1| |t#1|) (-1040 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -4136 (|t#1| $ |t#2|)) (-15 -3829 ($ (-1 |t#1| |t#1|) $)) (-15 -2290 ($ |t#2| |t#1|)) (-15 -2843 ((-112) $)) (-15 -2761 ((-645 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3032 ((-645 |t#1|) $)) (-15 -1709 ((-645 $) $)) (-15 -2695 ((-772) $)) (-15 -2976 (|t#2| $)) (-15 -2989 (|t#1| $)) (-15 -1901 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -3014 ($ $)) (IF (|has| |t#1| (-172)) (-6 (-718 |t#1|)) |%noBranch|)))
+((* (*1 *1 *2 *3) (-12 (-4 *1 (-384 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-1102)))) (-2558 (*1 *2 *1 *3) (-12 (-4 *1 (-384 *2 *3)) (-4 *3 (-1102)) (-4 *2 (-1051)))) (-3841 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-384 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-1102)))) (-2296 (*1 *1 *2 *3) (-12 (-4 *1 (-384 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-1102)))) (-3770 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-1102)) (-5 *2 (-112)))) (-2987 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-1102)) (-5 *2 (-645 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3601 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-1102)) (-5 *2 (-645 *3)))) (-2659 (*1 *2 *1) (-12 (-4 *3 (-1051)) (-4 *4 (-1102)) (-5 *2 (-645 *1)) (-4 *1 (-384 *3 *4)))) (-2851 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-1102)) (-5 *2 (-772)))) (-2985 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-1102)))) (-2996 (*1 *2 *1) (-12 (-4 *1 (-384 *2 *3)) (-4 *3 (-1102)) (-4 *2 (-1051)))) (-2006 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-1102)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-3023 (*1 *1 *1) (-12 (-4 *1 (-384 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-1102)))))
+(-13 (-111 |t#1| |t#1|) (-1040 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -2558 (|t#1| $ |t#2|)) (-15 -3841 ($ (-1 |t#1| |t#1|) $)) (-15 -2296 ($ |t#2| |t#1|)) (-15 -3770 ((-112) $)) (-15 -2987 ((-645 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3601 ((-645 |t#1|) $)) (-15 -2659 ((-645 $) $)) (-15 -2851 ((-772) $)) (-15 -2985 (|t#2| $)) (-15 -2996 (|t#1| $)) (-15 -2006 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -3023 ($ $)) (IF (|has| |t#1| (-172)) (-6 (-718 |t#1|)) |%noBranch|)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-617 |#2|) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-649 |#1|) . T) ((-641 |#1|) |has| |#1| (-172)) ((-718 |#1|) |has| |#1| (-172)) ((-1040 |#2|) . T) ((-1053 |#1|) . T) ((-1058 |#1|) . T) ((-1102) . T))
-((-1453 (((-1273) $) 7)) (-4132 (((-863) $) 8) (($ (-690 (-700))) 14) (($ (-645 (-331))) 13) (($ (-331)) 12) (($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) 11)))
+((-1466 (((-1274) $) 7)) (-4129 (((-863) $) 8) (($ (-690 (-700))) 14) (($ (-645 (-331))) 13) (($ (-331)) 12) (($ (-2 (|:| |localSymbols| (-1183)) (|:| -1814 (-645 (-331))))) 11)))
(((-385) (-140)) (T -385))
-((-4132 (*1 *1 *2) (-12 (-5 *2 (-690 (-700))) (-4 *1 (-385)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-645 (-331))) (-4 *1 (-385)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-385)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) (-4 *1 (-385)))))
-(-13 (-398) (-10 -8 (-15 -4132 ($ (-690 (-700)))) (-15 -4132 ($ (-645 (-331)))) (-15 -4132 ($ (-331))) (-15 -4132 ($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))))))
-(((-614 (-863)) . T) ((-398) . T) ((-1218) . T))
-((-3753 (((-3 $ "failed") (-690 (-317 (-381)))) 21) (((-3 $ "failed") (-690 (-317 (-567)))) 19) (((-3 $ "failed") (-690 (-954 (-381)))) 17) (((-3 $ "failed") (-690 (-954 (-567)))) 15) (((-3 $ "failed") (-690 (-410 (-954 (-381))))) 13) (((-3 $ "failed") (-690 (-410 (-954 (-567))))) 11)) (-2038 (($ (-690 (-317 (-381)))) 22) (($ (-690 (-317 (-567)))) 20) (($ (-690 (-954 (-381)))) 18) (($ (-690 (-954 (-567)))) 16) (($ (-690 (-410 (-954 (-381))))) 14) (($ (-690 (-410 (-954 (-567))))) 12)) (-1453 (((-1273) $) 7)) (-4132 (((-863) $) 8) (($ (-645 (-331))) 25) (($ (-331)) 24) (($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) 23)))
+((-4129 (*1 *1 *2) (-12 (-5 *2 (-690 (-700))) (-4 *1 (-385)))) (-4129 (*1 *1 *2) (-12 (-5 *2 (-645 (-331))) (-4 *1 (-385)))) (-4129 (*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-385)))) (-4129 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1183)) (|:| -1814 (-645 (-331))))) (-4 *1 (-385)))))
+(-13 (-398) (-10 -8 (-15 -4129 ($ (-690 (-700)))) (-15 -4129 ($ (-645 (-331)))) (-15 -4129 ($ (-331))) (-15 -4129 ($ (-2 (|:| |localSymbols| (-1183)) (|:| -1814 (-645 (-331))))))))
+(((-614 (-863)) . T) ((-398) . T) ((-1219) . T))
+((-3765 (((-3 $ "failed") (-690 (-317 (-381)))) 21) (((-3 $ "failed") (-690 (-317 (-567)))) 19) (((-3 $ "failed") (-690 (-954 (-381)))) 17) (((-3 $ "failed") (-690 (-954 (-567)))) 15) (((-3 $ "failed") (-690 (-410 (-954 (-381))))) 13) (((-3 $ "failed") (-690 (-410 (-954 (-567))))) 11)) (-2051 (($ (-690 (-317 (-381)))) 22) (($ (-690 (-317 (-567)))) 20) (($ (-690 (-954 (-381)))) 18) (($ (-690 (-954 (-567)))) 16) (($ (-690 (-410 (-954 (-381))))) 14) (($ (-690 (-410 (-954 (-567))))) 12)) (-1466 (((-1274) $) 7)) (-4129 (((-863) $) 8) (($ (-645 (-331))) 25) (($ (-331)) 24) (($ (-2 (|:| |localSymbols| (-1183)) (|:| -1814 (-645 (-331))))) 23)))
(((-386) (-140)) (T -386))
-((-4132 (*1 *1 *2) (-12 (-5 *2 (-645 (-331))) (-4 *1 (-386)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-386)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) (-4 *1 (-386)))) (-2038 (*1 *1 *2) (-12 (-5 *2 (-690 (-317 (-381)))) (-4 *1 (-386)))) (-3753 (*1 *1 *2) (|partial| -12 (-5 *2 (-690 (-317 (-381)))) (-4 *1 (-386)))) (-2038 (*1 *1 *2) (-12 (-5 *2 (-690 (-317 (-567)))) (-4 *1 (-386)))) (-3753 (*1 *1 *2) (|partial| -12 (-5 *2 (-690 (-317 (-567)))) (-4 *1 (-386)))) (-2038 (*1 *1 *2) (-12 (-5 *2 (-690 (-954 (-381)))) (-4 *1 (-386)))) (-3753 (*1 *1 *2) (|partial| -12 (-5 *2 (-690 (-954 (-381)))) (-4 *1 (-386)))) (-2038 (*1 *1 *2) (-12 (-5 *2 (-690 (-954 (-567)))) (-4 *1 (-386)))) (-3753 (*1 *1 *2) (|partial| -12 (-5 *2 (-690 (-954 (-567)))) (-4 *1 (-386)))) (-2038 (*1 *1 *2) (-12 (-5 *2 (-690 (-410 (-954 (-381))))) (-4 *1 (-386)))) (-3753 (*1 *1 *2) (|partial| -12 (-5 *2 (-690 (-410 (-954 (-381))))) (-4 *1 (-386)))) (-2038 (*1 *1 *2) (-12 (-5 *2 (-690 (-410 (-954 (-567))))) (-4 *1 (-386)))) (-3753 (*1 *1 *2) (|partial| -12 (-5 *2 (-690 (-410 (-954 (-567))))) (-4 *1 (-386)))))
-(-13 (-398) (-10 -8 (-15 -4132 ($ (-645 (-331)))) (-15 -4132 ($ (-331))) (-15 -4132 ($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331)))))) (-15 -2038 ($ (-690 (-317 (-381))))) (-15 -3753 ((-3 $ "failed") (-690 (-317 (-381))))) (-15 -2038 ($ (-690 (-317 (-567))))) (-15 -3753 ((-3 $ "failed") (-690 (-317 (-567))))) (-15 -2038 ($ (-690 (-954 (-381))))) (-15 -3753 ((-3 $ "failed") (-690 (-954 (-381))))) (-15 -2038 ($ (-690 (-954 (-567))))) (-15 -3753 ((-3 $ "failed") (-690 (-954 (-567))))) (-15 -2038 ($ (-690 (-410 (-954 (-381)))))) (-15 -3753 ((-3 $ "failed") (-690 (-410 (-954 (-381)))))) (-15 -2038 ($ (-690 (-410 (-954 (-567)))))) (-15 -3753 ((-3 $ "failed") (-690 (-410 (-954 (-567))))))))
-(((-614 (-863)) . T) ((-398) . T) ((-1218) . T))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2585 (($) NIL T CONST)) (-3014 (($ $) NIL)) (-2824 (($ |#1| |#2|) NIL)) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-3148 ((|#2| $) NIL)) (-2989 ((|#1| $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 34)) (-1745 (((-112) $ $) NIL)) (-1716 (($) 12 T CONST)) (-2936 (((-112) $ $) NIL)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ |#1| $) 15) (($ $ |#1|) 18)))
+((-4129 (*1 *1 *2) (-12 (-5 *2 (-645 (-331))) (-4 *1 (-386)))) (-4129 (*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-386)))) (-4129 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1183)) (|:| -1814 (-645 (-331))))) (-4 *1 (-386)))) (-2051 (*1 *1 *2) (-12 (-5 *2 (-690 (-317 (-381)))) (-4 *1 (-386)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-690 (-317 (-381)))) (-4 *1 (-386)))) (-2051 (*1 *1 *2) (-12 (-5 *2 (-690 (-317 (-567)))) (-4 *1 (-386)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-690 (-317 (-567)))) (-4 *1 (-386)))) (-2051 (*1 *1 *2) (-12 (-5 *2 (-690 (-954 (-381)))) (-4 *1 (-386)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-690 (-954 (-381)))) (-4 *1 (-386)))) (-2051 (*1 *1 *2) (-12 (-5 *2 (-690 (-954 (-567)))) (-4 *1 (-386)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-690 (-954 (-567)))) (-4 *1 (-386)))) (-2051 (*1 *1 *2) (-12 (-5 *2 (-690 (-410 (-954 (-381))))) (-4 *1 (-386)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-690 (-410 (-954 (-381))))) (-4 *1 (-386)))) (-2051 (*1 *1 *2) (-12 (-5 *2 (-690 (-410 (-954 (-567))))) (-4 *1 (-386)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-690 (-410 (-954 (-567))))) (-4 *1 (-386)))))
+(-13 (-398) (-10 -8 (-15 -4129 ($ (-645 (-331)))) (-15 -4129 ($ (-331))) (-15 -4129 ($ (-2 (|:| |localSymbols| (-1183)) (|:| -1814 (-645 (-331)))))) (-15 -2051 ($ (-690 (-317 (-381))))) (-15 -3765 ((-3 $ "failed") (-690 (-317 (-381))))) (-15 -2051 ($ (-690 (-317 (-567))))) (-15 -3765 ((-3 $ "failed") (-690 (-317 (-567))))) (-15 -2051 ($ (-690 (-954 (-381))))) (-15 -3765 ((-3 $ "failed") (-690 (-954 (-381))))) (-15 -2051 ($ (-690 (-954 (-567))))) (-15 -3765 ((-3 $ "failed") (-690 (-954 (-567))))) (-15 -2051 ($ (-690 (-410 (-954 (-381)))))) (-15 -3765 ((-3 $ "failed") (-690 (-410 (-954 (-381)))))) (-15 -2051 ($ (-690 (-410 (-954 (-567)))))) (-15 -3765 ((-3 $ "failed") (-690 (-410 (-954 (-567))))))))
+(((-614 (-863)) . T) ((-398) . T) ((-1219) . T))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-2376 (((-3 $ "failed") $ $) NIL)) (-3647 (($) NIL T CONST)) (-3023 (($ $) NIL)) (-2836 (($ |#1| |#2|) NIL)) (-3841 (($ (-1 |#1| |#1|) $) NIL)) (-3050 ((|#2| $) NIL)) (-2996 ((|#1| $) NIL)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) 34)) (-3357 (((-112) $ $) NIL)) (-1733 (($) 12 T CONST)) (-2946 (((-112) $ $) NIL)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ |#1| $) 15) (($ $ |#1|) 18)))
(((-387 |#1| |#2|) (-13 (-111 |#1| |#1|) (-512 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-172)) (-6 (-718 |#1|)) |%noBranch|))) (-1051) (-851)) (T -387))
NIL
(-13 (-111 |#1| |#1|) (-512 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-172)) (-6 (-718 |#1|)) |%noBranch|)))
-((-2403 (((-112) $ $) 7)) (-2375 (((-772) $) 34)) (-2585 (($) 19 T CONST)) (-2885 (((-3 $ "failed") $ $) 37)) (-3753 (((-3 |#1| "failed") $) 45)) (-2038 ((|#1| $) 46)) (-2109 (((-3 $ "failed") $) 16)) (-1914 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 35)) (-1433 (((-112) $) 18)) (-4108 ((|#1| $ (-567)) 31)) (-3202 (((-772) $ (-567)) 32)) (-1354 (($ $ $) 28 (|has| |#1| (-851)))) (-2981 (($ $ $) 27 (|has| |#1| (-851)))) (-3496 (($ (-1 |#1| |#1|) $) 29)) (-2728 (($ (-1 (-772) (-772)) $) 30)) (-2173 (((-3 $ "failed") $ $) 38)) (-1419 (((-1160) $) 10)) (-3231 (($ $ $) 39)) (-3827 (($ $ $) 40)) (-3430 (((-1122) $) 11)) (-3920 (((-645 (-2 (|:| |gen| |#1|) (|:| -3946 (-772)))) $) 33)) (-2384 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 36)) (-4132 (((-863) $) 12) (($ |#1|) 44)) (-1745 (((-112) $ $) 9)) (-1728 (($) 20 T CONST)) (-2997 (((-112) $ $) 25 (|has| |#1| (-851)))) (-2971 (((-112) $ $) 24 (|has| |#1| (-851)))) (-2936 (((-112) $ $) 6)) (-2984 (((-112) $ $) 26 (|has| |#1| (-851)))) (-2958 (((-112) $ $) 23 (|has| |#1| (-851)))) (** (($ $ (-923)) 14) (($ $ (-772)) 17) (($ |#1| (-772)) 41)) (* (($ $ $) 15) (($ |#1| $) 43) (($ $ |#1|) 42)))
+((-2412 (((-112) $ $) 7)) (-2384 (((-772) $) 34)) (-3647 (($) 19 T CONST)) (-2873 (((-3 $ "failed") $ $) 37)) (-3765 (((-3 |#1| "failed") $) 45)) (-2051 ((|#1| $) 46)) (-3588 (((-3 $ "failed") $) 16)) (-4328 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 35)) (-4346 (((-112) $) 18)) (-4152 ((|#1| $ (-567)) 31)) (-1449 (((-772) $ (-567)) 32)) (-1365 (($ $ $) 28 (|has| |#1| (-851)))) (-3002 (($ $ $) 27 (|has| |#1| (-851)))) (-3650 (($ (-1 |#1| |#1|) $) 29)) (-1826 (($ (-1 (-772) (-772)) $) 30)) (-1627 (((-3 $ "failed") $ $) 38)) (-2516 (((-1161) $) 10)) (-3210 (($ $ $) 39)) (-2218 (($ $ $) 40)) (-3437 (((-1122) $) 11)) (-2158 (((-645 (-2 (|:| |gen| |#1|) (|:| -3955 (-772)))) $) 33)) (-2452 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 36)) (-4129 (((-863) $) 12) (($ |#1|) 44)) (-3357 (((-112) $ $) 9)) (-1744 (($) 20 T CONST)) (-3004 (((-112) $ $) 25 (|has| |#1| (-851)))) (-2980 (((-112) $ $) 24 (|has| |#1| (-851)))) (-2946 (((-112) $ $) 6)) (-2993 (((-112) $ $) 26 (|has| |#1| (-851)))) (-2968 (((-112) $ $) 23 (|has| |#1| (-851)))) (** (($ $ (-923)) 14) (($ $ (-772)) 17) (($ |#1| (-772)) 41)) (* (($ $ $) 15) (($ |#1| $) 43) (($ $ |#1|) 42)))
(((-388 |#1|) (-140) (-1102)) (T -388))
-((* (*1 *1 *2 *1) (-12 (-4 *1 (-388 *2)) (-4 *2 (-1102)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-388 *2)) (-4 *2 (-1102)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-388 *2)) (-4 *2 (-1102)))) (-3827 (*1 *1 *1 *1) (-12 (-4 *1 (-388 *2)) (-4 *2 (-1102)))) (-3231 (*1 *1 *1 *1) (-12 (-4 *1 (-388 *2)) (-4 *2 (-1102)))) (-2173 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-388 *2)) (-4 *2 (-1102)))) (-2885 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-388 *2)) (-4 *2 (-1102)))) (-2384 (*1 *2 *1 *1) (|partial| -12 (-4 *3 (-1102)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-388 *3)))) (-1914 (*1 *2 *1 *1) (-12 (-4 *3 (-1102)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-388 *3)))) (-2375 (*1 *2 *1) (-12 (-4 *1 (-388 *3)) (-4 *3 (-1102)) (-5 *2 (-772)))) (-3920 (*1 *2 *1) (-12 (-4 *1 (-388 *3)) (-4 *3 (-1102)) (-5 *2 (-645 (-2 (|:| |gen| *3) (|:| -3946 (-772))))))) (-3202 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-388 *4)) (-4 *4 (-1102)) (-5 *2 (-772)))) (-4108 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-388 *2)) (-4 *2 (-1102)))) (-2728 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-772) (-772))) (-4 *1 (-388 *3)) (-4 *3 (-1102)))) (-3496 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-388 *3)) (-4 *3 (-1102)))))
-(-13 (-727) (-1040 |t#1|) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 ** ($ |t#1| (-772))) (-15 -3827 ($ $ $)) (-15 -3231 ($ $ $)) (-15 -2173 ((-3 $ "failed") $ $)) (-15 -2885 ((-3 $ "failed") $ $)) (-15 -2384 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1914 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2375 ((-772) $)) (-15 -3920 ((-645 (-2 (|:| |gen| |t#1|) (|:| -3946 (-772)))) $)) (-15 -3202 ((-772) $ (-567))) (-15 -4108 (|t#1| $ (-567))) (-15 -2728 ($ (-1 (-772) (-772)) $)) (-15 -3496 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-851)) (-6 (-851)) |%noBranch|)))
+((* (*1 *1 *2 *1) (-12 (-4 *1 (-388 *2)) (-4 *2 (-1102)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-388 *2)) (-4 *2 (-1102)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-388 *2)) (-4 *2 (-1102)))) (-2218 (*1 *1 *1 *1) (-12 (-4 *1 (-388 *2)) (-4 *2 (-1102)))) (-3210 (*1 *1 *1 *1) (-12 (-4 *1 (-388 *2)) (-4 *2 (-1102)))) (-1627 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-388 *2)) (-4 *2 (-1102)))) (-2873 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-388 *2)) (-4 *2 (-1102)))) (-2452 (*1 *2 *1 *1) (|partial| -12 (-4 *3 (-1102)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-388 *3)))) (-4328 (*1 *2 *1 *1) (-12 (-4 *3 (-1102)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-388 *3)))) (-2384 (*1 *2 *1) (-12 (-4 *1 (-388 *3)) (-4 *3 (-1102)) (-5 *2 (-772)))) (-2158 (*1 *2 *1) (-12 (-4 *1 (-388 *3)) (-4 *3 (-1102)) (-5 *2 (-645 (-2 (|:| |gen| *3) (|:| -3955 (-772))))))) (-1449 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-388 *4)) (-4 *4 (-1102)) (-5 *2 (-772)))) (-4152 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-388 *2)) (-4 *2 (-1102)))) (-1826 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-772) (-772))) (-4 *1 (-388 *3)) (-4 *3 (-1102)))) (-3650 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-388 *3)) (-4 *3 (-1102)))))
+(-13 (-727) (-1040 |t#1|) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 ** ($ |t#1| (-772))) (-15 -2218 ($ $ $)) (-15 -3210 ($ $ $)) (-15 -1627 ((-3 $ "failed") $ $)) (-15 -2873 ((-3 $ "failed") $ $)) (-15 -2452 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4328 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2384 ((-772) $)) (-15 -2158 ((-645 (-2 (|:| |gen| |t#1|) (|:| -3955 (-772)))) $)) (-15 -1449 ((-772) $ (-567))) (-15 -4152 (|t#1| $ (-567))) (-15 -1826 ($ (-1 (-772) (-772)) $)) (-15 -3650 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-851)) (-6 (-851)) |%noBranch|)))
(((-102) . T) ((-617 |#1|) . T) ((-614 (-863)) . T) ((-727) . T) ((-851) |has| |#1| (-851)) ((-1040 |#1|) . T) ((-1114) . T) ((-1102) . T))
-((-2403 (((-112) $ $) NIL)) (-2375 (((-772) $) 74)) (-2585 (($) NIL T CONST)) (-2885 (((-3 $ "failed") $ $) 77)) (-3753 (((-3 |#1| "failed") $) NIL)) (-2038 ((|#1| $) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-1914 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64)) (-1433 (((-112) $) 17)) (-4108 ((|#1| $ (-567)) NIL)) (-3202 (((-772) $ (-567)) NIL)) (-1354 (($ $ $) NIL (|has| |#1| (-851)))) (-2981 (($ $ $) NIL (|has| |#1| (-851)))) (-3496 (($ (-1 |#1| |#1|) $) 40)) (-2728 (($ (-1 (-772) (-772)) $) 37)) (-2173 (((-3 $ "failed") $ $) 60)) (-1419 (((-1160) $) NIL)) (-3231 (($ $ $) 28)) (-3827 (($ $ $) 26)) (-3430 (((-1122) $) NIL)) (-3920 (((-645 (-2 (|:| |gen| |#1|) (|:| -3946 (-772)))) $) 34)) (-2384 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 70)) (-4132 (((-863) $) 24) (($ |#1|) NIL)) (-1745 (((-112) $ $) NIL)) (-1728 (($) 11 T CONST)) (-2997 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2971 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2958 (((-112) $ $) 84 (|has| |#1| (-851)))) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ |#1| (-772)) 42)) (* (($ $ $) 52) (($ |#1| $) 32) (($ $ |#1|) 30)))
+((-2412 (((-112) $ $) NIL)) (-2384 (((-772) $) 74)) (-3647 (($) NIL T CONST)) (-2873 (((-3 $ "failed") $ $) 77)) (-3765 (((-3 |#1| "failed") $) NIL)) (-2051 ((|#1| $) NIL)) (-3588 (((-3 $ "failed") $) NIL)) (-4328 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64)) (-4346 (((-112) $) 17)) (-4152 ((|#1| $ (-567)) NIL)) (-1449 (((-772) $ (-567)) NIL)) (-1365 (($ $ $) NIL (|has| |#1| (-851)))) (-3002 (($ $ $) NIL (|has| |#1| (-851)))) (-3650 (($ (-1 |#1| |#1|) $) 40)) (-1826 (($ (-1 (-772) (-772)) $) 37)) (-1627 (((-3 $ "failed") $ $) 60)) (-2516 (((-1161) $) NIL)) (-3210 (($ $ $) 28)) (-2218 (($ $ $) 26)) (-3437 (((-1122) $) NIL)) (-2158 (((-645 (-2 (|:| |gen| |#1|) (|:| -3955 (-772)))) $) 34)) (-2452 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 70)) (-4129 (((-863) $) 24) (($ |#1|) NIL)) (-3357 (((-112) $ $) NIL)) (-1744 (($) 11 T CONST)) (-3004 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2980 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2946 (((-112) $ $) NIL)) (-2993 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2968 (((-112) $ $) 84 (|has| |#1| (-851)))) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ |#1| (-772)) 42)) (* (($ $ $) 52) (($ |#1| $) 32) (($ $ |#1|) 30)))
(((-389 |#1|) (-388 |#1|) (-1102)) (T -389))
NIL
(-388 |#1|)
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 47)) (-4381 (($ $) 46)) (-3949 (((-112) $) 44)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-3753 (((-3 (-567) "failed") $) 53)) (-2038 (((-567) $) 54)) (-2109 (((-3 $ "failed") $) 37)) (-1433 (((-112) $) 35)) (-1354 (($ $ $) 60)) (-2981 (($ $ $) 59)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-2391 (((-3 $ "failed") $ $) 48)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-567)) 52)) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-3816 (((-112) $ $) 45)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2997 (((-112) $ $) 57)) (-2971 (((-112) $ $) 56)) (-2936 (((-112) $ $) 6)) (-2984 (((-112) $ $) 58)) (-2958 (((-112) $ $) 55)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27)))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) 47)) (-4287 (($ $) 46)) (-2286 (((-112) $) 44)) (-2376 (((-3 $ "failed") $ $) 20)) (-3647 (($) 18 T CONST)) (-3765 (((-3 (-567) "failed") $) 53)) (-2051 (((-567) $) 54)) (-3588 (((-3 $ "failed") $) 37)) (-4346 (((-112) $) 35)) (-1365 (($ $ $) 60)) (-3002 (($ $ $) 59)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-2400 (((-3 $ "failed") $ $) 48)) (-4129 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-567)) 52)) (-2746 (((-772)) 32 T CONST)) (-3357 (((-112) $ $) 9)) (-3731 (((-112) $ $) 45)) (-1733 (($) 19 T CONST)) (-1744 (($) 34 T CONST)) (-3004 (((-112) $ $) 57)) (-2980 (((-112) $ $) 56)) (-2946 (((-112) $ $) 6)) (-2993 (((-112) $ $) 58)) (-2968 (((-112) $ $) 55)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27)))
(((-390) (-140)) (T -390))
NIL
(-13 (-559) (-851) (-1040 (-567)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-291) . T) ((-559) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-641 $) . T) ((-718 $) . T) ((-727) . T) ((-851) . T) ((-1040 (-567)) . T) ((-1053 $) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T))
-((-2403 (((-112) $ $) NIL)) (-2638 (((-112) $) 25)) (-2167 (((-112) $) 22)) (-2846 (($ (-1160) (-1160) (-1160)) 26)) (-1996 (((-1160) $) 16)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-1819 (($ (-1160) (-1160) (-1160)) 14)) (-3751 (((-1160) $) 17)) (-3648 (((-112) $) 18)) (-3818 (((-1160) $) 15)) (-4132 (((-863) $) 12) (($ (-1160)) 13) (((-1160) $) 9)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 7)))
+((-2412 (((-112) $ $) NIL)) (-3828 (((-112) $) 25)) (-4086 (((-112) $) 22)) (-2858 (($ (-1161) (-1161) (-1161)) 26)) (-2007 (((-1161) $) 16)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-1833 (($ (-1161) (-1161) (-1161)) 14)) (-2287 (((-1161) $) 17)) (-3398 (((-112) $) 18)) (-3836 (((-1161) $) 15)) (-4129 (((-863) $) 12) (($ (-1161)) 13) (((-1161) $) 9)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) 7)))
(((-391) (-392)) (T -391))
NIL
(-392)
-((-2403 (((-112) $ $) 7)) (-2638 (((-112) $) 17)) (-2167 (((-112) $) 18)) (-2846 (($ (-1160) (-1160) (-1160)) 16)) (-1996 (((-1160) $) 21)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-1819 (($ (-1160) (-1160) (-1160)) 23)) (-3751 (((-1160) $) 20)) (-3648 (((-112) $) 19)) (-3818 (((-1160) $) 22)) (-4132 (((-863) $) 12) (($ (-1160)) 25) (((-1160) $) 24)) (-1745 (((-112) $ $) 9)) (-2936 (((-112) $ $) 6)))
+((-2412 (((-112) $ $) 7)) (-3828 (((-112) $) 17)) (-4086 (((-112) $) 18)) (-2858 (($ (-1161) (-1161) (-1161)) 16)) (-2007 (((-1161) $) 21)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-1833 (($ (-1161) (-1161) (-1161)) 23)) (-2287 (((-1161) $) 20)) (-3398 (((-112) $) 19)) (-3836 (((-1161) $) 22)) (-4129 (((-863) $) 12) (($ (-1161)) 25) (((-1161) $) 24)) (-3357 (((-112) $ $) 9)) (-2946 (((-112) $ $) 6)))
(((-392) (-140)) (T -392))
-((-1819 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1160)) (-4 *1 (-392)))) (-3818 (*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-1160)))) (-1996 (*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-1160)))) (-3751 (*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-1160)))) (-3648 (*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-112)))) (-2167 (*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-112)))) (-2638 (*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-112)))) (-2846 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1160)) (-4 *1 (-392)))))
-(-13 (-1102) (-493 (-1160)) (-10 -8 (-15 -1819 ($ (-1160) (-1160) (-1160))) (-15 -3818 ((-1160) $)) (-15 -1996 ((-1160) $)) (-15 -3751 ((-1160) $)) (-15 -3648 ((-112) $)) (-15 -2167 ((-112) $)) (-15 -2638 ((-112) $)) (-15 -2846 ($ (-1160) (-1160) (-1160)))))
-(((-102) . T) ((-617 #0=(-1160)) . T) ((-614 (-863)) . T) ((-614 #0#) . T) ((-493 #0#) . T) ((-1102) . T))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2983 (((-863) $) 64)) (-2585 (($) NIL T CONST)) (-2586 (($ $ (-923)) NIL)) (-3719 (($ $ (-923)) NIL)) (-3450 (($ $ (-923)) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-1398 (($ (-772)) 38)) (-1879 (((-772)) 18)) (-3030 (((-863) $) 66)) (-1485 (($ $ $) NIL)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2153 (($ $ $ $) NIL)) (-2214 (($ $ $) NIL)) (-1716 (($) 24 T CONST)) (-2936 (((-112) $ $) 41)) (-3045 (($ $) 48) (($ $ $) 50)) (-3033 (($ $ $) 51)) (** (($ $ (-923)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 52) (($ $ |#3|) NIL) (($ |#3| $) 47)))
-(((-393 |#1| |#2| |#3|) (-13 (-745 |#3|) (-10 -8 (-15 -1879 ((-772))) (-15 -3030 ((-863) $)) (-15 -2983 ((-863) $)) (-15 -1398 ($ (-772))))) (-772) (-772) (-172)) (T -393))
-((-1879 (*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-393 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-172)))) (-3030 (*1 *2 *1) (-12 (-5 *2 (-863)) (-5 *1 (-393 *3 *4 *5)) (-14 *3 (-772)) (-14 *4 (-772)) (-4 *5 (-172)))) (-2983 (*1 *2 *1) (-12 (-5 *2 (-863)) (-5 *1 (-393 *3 *4 *5)) (-14 *3 (-772)) (-14 *4 (-772)) (-4 *5 (-172)))) (-1398 (*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-393 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-172)))))
-(-13 (-745 |#3|) (-10 -8 (-15 -1879 ((-772))) (-15 -3030 ((-863) $)) (-15 -2983 ((-863) $)) (-15 -1398 ($ (-772)))))
-((-2422 (((-1160)) 12)) (-3672 (((-1149 (-1160))) 31)) (-1424 (((-1273) (-1160)) 28) (((-1273) (-391)) 27)) (-1436 (((-1273)) 29)) (-3738 (((-1149 (-1160))) 30)))
-(((-394) (-10 -7 (-15 -3738 ((-1149 (-1160)))) (-15 -3672 ((-1149 (-1160)))) (-15 -1436 ((-1273))) (-15 -1424 ((-1273) (-391))) (-15 -1424 ((-1273) (-1160))) (-15 -2422 ((-1160))))) (T -394))
-((-2422 (*1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-394)))) (-1424 (*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-394)))) (-1424 (*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1273)) (-5 *1 (-394)))) (-1436 (*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-394)))) (-3672 (*1 *2) (-12 (-5 *2 (-1149 (-1160))) (-5 *1 (-394)))) (-3738 (*1 *2) (-12 (-5 *2 (-1149 (-1160))) (-5 *1 (-394)))))
-(-10 -7 (-15 -3738 ((-1149 (-1160)))) (-15 -3672 ((-1149 (-1160)))) (-15 -1436 ((-1273))) (-15 -1424 ((-1273) (-391))) (-15 -1424 ((-1273) (-1160))) (-15 -2422 ((-1160))))
-((-4384 (((-772) (-338 |#1| |#2| |#3| |#4|)) 19)))
-(((-395 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4384 ((-772) (-338 |#1| |#2| |#3| |#4|)))) (-13 (-370) (-365)) (-1244 |#1|) (-1244 (-410 |#2|)) (-344 |#1| |#2| |#3|)) (T -395))
-((-4384 (*1 *2 *3) (-12 (-5 *3 (-338 *4 *5 *6 *7)) (-4 *4 (-13 (-370) (-365))) (-4 *5 (-1244 *4)) (-4 *6 (-1244 (-410 *5))) (-4 *7 (-344 *4 *5 *6)) (-5 *2 (-772)) (-5 *1 (-395 *4 *5 *6 *7)))))
-(-10 -7 (-15 -4384 ((-772) (-338 |#1| |#2| |#3| |#4|))))
-((-4132 (((-397) |#1|) 11)))
-(((-396 |#1|) (-10 -7 (-15 -4132 ((-397) |#1|))) (-1102)) (T -396))
-((-4132 (*1 *2 *3) (-12 (-5 *2 (-397)) (-5 *1 (-396 *3)) (-4 *3 (-1102)))))
-(-10 -7 (-15 -4132 ((-397) |#1|)))
-((-2403 (((-112) $ $) NIL)) (-1631 (((-645 (-1160)) $ (-645 (-1160))) 43)) (-2020 (((-645 (-1160)) $ (-645 (-1160))) 44)) (-2121 (((-645 (-1160)) $ (-645 (-1160))) 45)) (-1499 (((-645 (-1160)) $) 40)) (-2846 (($) 30)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-3593 (((-645 (-1160)) $) 41)) (-3028 (((-645 (-1160)) $) 42)) (-4022 (((-1273) $ (-567)) 38) (((-1273) $) 39)) (-3893 (($ (-863) (-567)) 35)) (-4132 (((-863) $) 54) (($ (-863)) 32)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)))
-(((-397) (-13 (-1102) (-617 (-863)) (-10 -8 (-15 -3893 ($ (-863) (-567))) (-15 -4022 ((-1273) $ (-567))) (-15 -4022 ((-1273) $)) (-15 -3028 ((-645 (-1160)) $)) (-15 -3593 ((-645 (-1160)) $)) (-15 -2846 ($)) (-15 -1499 ((-645 (-1160)) $)) (-15 -2121 ((-645 (-1160)) $ (-645 (-1160)))) (-15 -2020 ((-645 (-1160)) $ (-645 (-1160)))) (-15 -1631 ((-645 (-1160)) $ (-645 (-1160))))))) (T -397))
-((-3893 (*1 *1 *2 *3) (-12 (-5 *2 (-863)) (-5 *3 (-567)) (-5 *1 (-397)))) (-4022 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *2 (-1273)) (-5 *1 (-397)))) (-4022 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-397)))) (-3028 (*1 *2 *1) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-397)))) (-3593 (*1 *2 *1) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-397)))) (-2846 (*1 *1) (-5 *1 (-397))) (-1499 (*1 *2 *1) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-397)))) (-2121 (*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-397)))) (-2020 (*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-397)))) (-1631 (*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-397)))))
-(-13 (-1102) (-617 (-863)) (-10 -8 (-15 -3893 ($ (-863) (-567))) (-15 -4022 ((-1273) $ (-567))) (-15 -4022 ((-1273) $)) (-15 -3028 ((-645 (-1160)) $)) (-15 -3593 ((-645 (-1160)) $)) (-15 -2846 ($)) (-15 -1499 ((-645 (-1160)) $)) (-15 -2121 ((-645 (-1160)) $ (-645 (-1160)))) (-15 -2020 ((-645 (-1160)) $ (-645 (-1160)))) (-15 -1631 ((-645 (-1160)) $ (-645 (-1160))))))
-((-1453 (((-1273) $) 7)) (-4132 (((-863) $) 8)))
+((-1833 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1161)) (-4 *1 (-392)))) (-3836 (*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-1161)))) (-2007 (*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-1161)))) (-2287 (*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-1161)))) (-3398 (*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-112)))) (-4086 (*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-112)))) (-3828 (*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-112)))) (-2858 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1161)) (-4 *1 (-392)))))
+(-13 (-1102) (-493 (-1161)) (-10 -8 (-15 -1833 ($ (-1161) (-1161) (-1161))) (-15 -3836 ((-1161) $)) (-15 -2007 ((-1161) $)) (-15 -2287 ((-1161) $)) (-15 -3398 ((-112) $)) (-15 -4086 ((-112) $)) (-15 -3828 ((-112) $)) (-15 -2858 ($ (-1161) (-1161) (-1161)))))
+(((-102) . T) ((-617 #0=(-1161)) . T) ((-614 (-863)) . T) ((-614 #0#) . T) ((-493 #0#) . T) ((-1102) . T))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-2376 (((-3 $ "failed") $ $) NIL)) (-1398 (((-863) $) 64)) (-3647 (($) NIL T CONST)) (-3757 (($ $ (-923)) NIL)) (-2112 (($ $ (-923)) NIL)) (-3884 (($ $ (-923)) NIL)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-1399 (($ (-772)) 38)) (-1412 (((-772)) 18)) (-3434 (((-863) $) 66)) (-3997 (($ $ $) NIL)) (-4129 (((-863) $) NIL)) (-3357 (((-112) $ $) NIL)) (-2047 (($ $ $ $) NIL)) (-2188 (($ $ $) NIL)) (-1733 (($) 24 T CONST)) (-2946 (((-112) $ $) 41)) (-3053 (($ $) 48) (($ $ $) 50)) (-3041 (($ $ $) 51)) (** (($ $ (-923)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 52) (($ $ |#3|) NIL) (($ |#3| $) 47)))
+(((-393 |#1| |#2| |#3|) (-13 (-745 |#3|) (-10 -8 (-15 -1412 ((-772))) (-15 -3434 ((-863) $)) (-15 -1398 ((-863) $)) (-15 -1399 ($ (-772))))) (-772) (-772) (-172)) (T -393))
+((-1412 (*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-393 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-172)))) (-3434 (*1 *2 *1) (-12 (-5 *2 (-863)) (-5 *1 (-393 *3 *4 *5)) (-14 *3 (-772)) (-14 *4 (-772)) (-4 *5 (-172)))) (-1398 (*1 *2 *1) (-12 (-5 *2 (-863)) (-5 *1 (-393 *3 *4 *5)) (-14 *3 (-772)) (-14 *4 (-772)) (-4 *5 (-172)))) (-1399 (*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-393 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-172)))))
+(-13 (-745 |#3|) (-10 -8 (-15 -1412 ((-772))) (-15 -3434 ((-863) $)) (-15 -1398 ((-863) $)) (-15 -1399 ($ (-772)))))
+((-3333 (((-1161)) 12)) (-3851 (((-1149 (-1161))) 31)) (-1432 (((-1274) (-1161)) 28) (((-1274) (-391)) 27)) (-1445 (((-1274)) 29)) (-1379 (((-1149 (-1161))) 30)))
+(((-394) (-10 -7 (-15 -1379 ((-1149 (-1161)))) (-15 -3851 ((-1149 (-1161)))) (-15 -1445 ((-1274))) (-15 -1432 ((-1274) (-391))) (-15 -1432 ((-1274) (-1161))) (-15 -3333 ((-1161))))) (T -394))
+((-3333 (*1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-394)))) (-1432 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-394)))) (-1432 (*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1274)) (-5 *1 (-394)))) (-1445 (*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-394)))) (-3851 (*1 *2) (-12 (-5 *2 (-1149 (-1161))) (-5 *1 (-394)))) (-1379 (*1 *2) (-12 (-5 *2 (-1149 (-1161))) (-5 *1 (-394)))))
+(-10 -7 (-15 -1379 ((-1149 (-1161)))) (-15 -3851 ((-1149 (-1161)))) (-15 -1445 ((-1274))) (-15 -1432 ((-1274) (-391))) (-15 -1432 ((-1274) (-1161))) (-15 -3333 ((-1161))))
+((-3362 (((-772) (-338 |#1| |#2| |#3| |#4|)) 19)))
+(((-395 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3362 ((-772) (-338 |#1| |#2| |#3| |#4|)))) (-13 (-370) (-365)) (-1245 |#1|) (-1245 (-410 |#2|)) (-344 |#1| |#2| |#3|)) (T -395))
+((-3362 (*1 *2 *3) (-12 (-5 *3 (-338 *4 *5 *6 *7)) (-4 *4 (-13 (-370) (-365))) (-4 *5 (-1245 *4)) (-4 *6 (-1245 (-410 *5))) (-4 *7 (-344 *4 *5 *6)) (-5 *2 (-772)) (-5 *1 (-395 *4 *5 *6 *7)))))
+(-10 -7 (-15 -3362 ((-772) (-338 |#1| |#2| |#3| |#4|))))
+((-4129 (((-397) |#1|) 11)))
+(((-396 |#1|) (-10 -7 (-15 -4129 ((-397) |#1|))) (-1102)) (T -396))
+((-4129 (*1 *2 *3) (-12 (-5 *2 (-397)) (-5 *1 (-396 *3)) (-4 *3 (-1102)))))
+(-10 -7 (-15 -4129 ((-397) |#1|)))
+((-2412 (((-112) $ $) NIL)) (-1488 (((-645 (-1161)) $ (-645 (-1161))) 43)) (-2221 (((-645 (-1161)) $ (-645 (-1161))) 44)) (-2053 (((-645 (-1161)) $ (-645 (-1161))) 45)) (-3277 (((-645 (-1161)) $) 40)) (-2858 (($) 30)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4249 (((-645 (-1161)) $) 41)) (-3279 (((-645 (-1161)) $) 42)) (-4025 (((-1274) $ (-567)) 38) (((-1274) $) 39)) (-3902 (($ (-863) (-567)) 35)) (-4129 (((-863) $) 54) (($ (-863)) 32)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)))
+(((-397) (-13 (-1102) (-617 (-863)) (-10 -8 (-15 -3902 ($ (-863) (-567))) (-15 -4025 ((-1274) $ (-567))) (-15 -4025 ((-1274) $)) (-15 -3279 ((-645 (-1161)) $)) (-15 -4249 ((-645 (-1161)) $)) (-15 -2858 ($)) (-15 -3277 ((-645 (-1161)) $)) (-15 -2053 ((-645 (-1161)) $ (-645 (-1161)))) (-15 -2221 ((-645 (-1161)) $ (-645 (-1161)))) (-15 -1488 ((-645 (-1161)) $ (-645 (-1161))))))) (T -397))
+((-3902 (*1 *1 *2 *3) (-12 (-5 *2 (-863)) (-5 *3 (-567)) (-5 *1 (-397)))) (-4025 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *2 (-1274)) (-5 *1 (-397)))) (-4025 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-397)))) (-3279 (*1 *2 *1) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-397)))) (-4249 (*1 *2 *1) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-397)))) (-2858 (*1 *1) (-5 *1 (-397))) (-3277 (*1 *2 *1) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-397)))) (-2053 (*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-397)))) (-2221 (*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-397)))) (-1488 (*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-397)))))
+(-13 (-1102) (-617 (-863)) (-10 -8 (-15 -3902 ($ (-863) (-567))) (-15 -4025 ((-1274) $ (-567))) (-15 -4025 ((-1274) $)) (-15 -3279 ((-645 (-1161)) $)) (-15 -4249 ((-645 (-1161)) $)) (-15 -2858 ($)) (-15 -3277 ((-645 (-1161)) $)) (-15 -2053 ((-645 (-1161)) $ (-645 (-1161)))) (-15 -2221 ((-645 (-1161)) $ (-645 (-1161)))) (-15 -1488 ((-645 (-1161)) $ (-645 (-1161))))))
+((-1466 (((-1274) $) 7)) (-4129 (((-863) $) 8)))
(((-398) (-140)) (T -398))
-((-1453 (*1 *2 *1) (-12 (-4 *1 (-398)) (-5 *2 (-1273)))))
-(-13 (-1218) (-614 (-863)) (-10 -8 (-15 -1453 ((-1273) $))))
-(((-614 (-863)) . T) ((-1218) . T))
-((-3753 (((-3 $ "failed") (-317 (-381))) 21) (((-3 $ "failed") (-317 (-567))) 19) (((-3 $ "failed") (-954 (-381))) 17) (((-3 $ "failed") (-954 (-567))) 15) (((-3 $ "failed") (-410 (-954 (-381)))) 13) (((-3 $ "failed") (-410 (-954 (-567)))) 11)) (-2038 (($ (-317 (-381))) 22) (($ (-317 (-567))) 20) (($ (-954 (-381))) 18) (($ (-954 (-567))) 16) (($ (-410 (-954 (-381)))) 14) (($ (-410 (-954 (-567)))) 12)) (-1453 (((-1273) $) 7)) (-4132 (((-863) $) 8) (($ (-645 (-331))) 25) (($ (-331)) 24) (($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) 23)))
+((-1466 (*1 *2 *1) (-12 (-4 *1 (-398)) (-5 *2 (-1274)))))
+(-13 (-1219) (-614 (-863)) (-10 -8 (-15 -1466 ((-1274) $))))
+(((-614 (-863)) . T) ((-1219) . T))
+((-3765 (((-3 $ "failed") (-317 (-381))) 21) (((-3 $ "failed") (-317 (-567))) 19) (((-3 $ "failed") (-954 (-381))) 17) (((-3 $ "failed") (-954 (-567))) 15) (((-3 $ "failed") (-410 (-954 (-381)))) 13) (((-3 $ "failed") (-410 (-954 (-567)))) 11)) (-2051 (($ (-317 (-381))) 22) (($ (-317 (-567))) 20) (($ (-954 (-381))) 18) (($ (-954 (-567))) 16) (($ (-410 (-954 (-381)))) 14) (($ (-410 (-954 (-567)))) 12)) (-1466 (((-1274) $) 7)) (-4129 (((-863) $) 8) (($ (-645 (-331))) 25) (($ (-331)) 24) (($ (-2 (|:| |localSymbols| (-1183)) (|:| -1814 (-645 (-331))))) 23)))
(((-399) (-140)) (T -399))
-((-4132 (*1 *1 *2) (-12 (-5 *2 (-645 (-331))) (-4 *1 (-399)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-399)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) (-4 *1 (-399)))) (-2038 (*1 *1 *2) (-12 (-5 *2 (-317 (-381))) (-4 *1 (-399)))) (-3753 (*1 *1 *2) (|partial| -12 (-5 *2 (-317 (-381))) (-4 *1 (-399)))) (-2038 (*1 *1 *2) (-12 (-5 *2 (-317 (-567))) (-4 *1 (-399)))) (-3753 (*1 *1 *2) (|partial| -12 (-5 *2 (-317 (-567))) (-4 *1 (-399)))) (-2038 (*1 *1 *2) (-12 (-5 *2 (-954 (-381))) (-4 *1 (-399)))) (-3753 (*1 *1 *2) (|partial| -12 (-5 *2 (-954 (-381))) (-4 *1 (-399)))) (-2038 (*1 *1 *2) (-12 (-5 *2 (-954 (-567))) (-4 *1 (-399)))) (-3753 (*1 *1 *2) (|partial| -12 (-5 *2 (-954 (-567))) (-4 *1 (-399)))) (-2038 (*1 *1 *2) (-12 (-5 *2 (-410 (-954 (-381)))) (-4 *1 (-399)))) (-3753 (*1 *1 *2) (|partial| -12 (-5 *2 (-410 (-954 (-381)))) (-4 *1 (-399)))) (-2038 (*1 *1 *2) (-12 (-5 *2 (-410 (-954 (-567)))) (-4 *1 (-399)))) (-3753 (*1 *1 *2) (|partial| -12 (-5 *2 (-410 (-954 (-567)))) (-4 *1 (-399)))))
-(-13 (-398) (-10 -8 (-15 -4132 ($ (-645 (-331)))) (-15 -4132 ($ (-331))) (-15 -4132 ($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331)))))) (-15 -2038 ($ (-317 (-381)))) (-15 -3753 ((-3 $ "failed") (-317 (-381)))) (-15 -2038 ($ (-317 (-567)))) (-15 -3753 ((-3 $ "failed") (-317 (-567)))) (-15 -2038 ($ (-954 (-381)))) (-15 -3753 ((-3 $ "failed") (-954 (-381)))) (-15 -2038 ($ (-954 (-567)))) (-15 -3753 ((-3 $ "failed") (-954 (-567)))) (-15 -2038 ($ (-410 (-954 (-381))))) (-15 -3753 ((-3 $ "failed") (-410 (-954 (-381))))) (-15 -2038 ($ (-410 (-954 (-567))))) (-15 -3753 ((-3 $ "failed") (-410 (-954 (-567)))))))
-(((-614 (-863)) . T) ((-398) . T) ((-1218) . T))
-((-3446 (((-645 (-1160)) (-645 (-1160))) 9)) (-1453 (((-1273) (-391)) 27)) (-4152 (((-1106) (-1178) (-645 (-1178)) (-1181) (-645 (-1178))) 60) (((-1106) (-1178) (-645 (-3 (|:| |array| (-645 (-1178))) (|:| |scalar| (-1178)))) (-645 (-645 (-3 (|:| |array| (-645 (-1178))) (|:| |scalar| (-1178))))) (-645 (-1178)) (-1178)) 35) (((-1106) (-1178) (-645 (-3 (|:| |array| (-645 (-1178))) (|:| |scalar| (-1178)))) (-645 (-645 (-3 (|:| |array| (-645 (-1178))) (|:| |scalar| (-1178))))) (-645 (-1178))) 34)))
-(((-400) (-10 -7 (-15 -4152 ((-1106) (-1178) (-645 (-3 (|:| |array| (-645 (-1178))) (|:| |scalar| (-1178)))) (-645 (-645 (-3 (|:| |array| (-645 (-1178))) (|:| |scalar| (-1178))))) (-645 (-1178)))) (-15 -4152 ((-1106) (-1178) (-645 (-3 (|:| |array| (-645 (-1178))) (|:| |scalar| (-1178)))) (-645 (-645 (-3 (|:| |array| (-645 (-1178))) (|:| |scalar| (-1178))))) (-645 (-1178)) (-1178))) (-15 -4152 ((-1106) (-1178) (-645 (-1178)) (-1181) (-645 (-1178)))) (-15 -1453 ((-1273) (-391))) (-15 -3446 ((-645 (-1160)) (-645 (-1160)))))) (T -400))
-((-3446 (*1 *2 *2) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-400)))) (-1453 (*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1273)) (-5 *1 (-400)))) (-4152 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-645 (-1178))) (-5 *5 (-1181)) (-5 *3 (-1178)) (-5 *2 (-1106)) (-5 *1 (-400)))) (-4152 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-645 (-645 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-645 (-3 (|:| |array| (-645 *3)) (|:| |scalar| (-1178))))) (-5 *6 (-645 (-1178))) (-5 *3 (-1178)) (-5 *2 (-1106)) (-5 *1 (-400)))) (-4152 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-645 (-645 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-645 (-3 (|:| |array| (-645 *3)) (|:| |scalar| (-1178))))) (-5 *6 (-645 (-1178))) (-5 *3 (-1178)) (-5 *2 (-1106)) (-5 *1 (-400)))))
-(-10 -7 (-15 -4152 ((-1106) (-1178) (-645 (-3 (|:| |array| (-645 (-1178))) (|:| |scalar| (-1178)))) (-645 (-645 (-3 (|:| |array| (-645 (-1178))) (|:| |scalar| (-1178))))) (-645 (-1178)))) (-15 -4152 ((-1106) (-1178) (-645 (-3 (|:| |array| (-645 (-1178))) (|:| |scalar| (-1178)))) (-645 (-645 (-3 (|:| |array| (-645 (-1178))) (|:| |scalar| (-1178))))) (-645 (-1178)) (-1178))) (-15 -4152 ((-1106) (-1178) (-645 (-1178)) (-1181) (-645 (-1178)))) (-15 -1453 ((-1273) (-391))) (-15 -3446 ((-645 (-1160)) (-645 (-1160)))))
-((-1453 (((-1273) $) 36)) (-4132 (((-863) $) 98) (($ (-331)) 100) (($ (-645 (-331))) 99) (($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) 97) (($ (-317 (-702))) 53) (($ (-317 (-700))) 73) (($ (-317 (-695))) 86) (($ (-295 (-317 (-702)))) 68) (($ (-295 (-317 (-700)))) 81) (($ (-295 (-317 (-695)))) 94) (($ (-317 (-567))) 105) (($ (-317 (-381))) 118) (($ (-317 (-169 (-381)))) 131) (($ (-295 (-317 (-567)))) 113) (($ (-295 (-317 (-381)))) 126) (($ (-295 (-317 (-169 (-381))))) 139)))
-(((-401 |#1| |#2| |#3| |#4|) (-13 (-398) (-10 -8 (-15 -4132 ($ (-331))) (-15 -4132 ($ (-645 (-331)))) (-15 -4132 ($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331)))))) (-15 -4132 ($ (-317 (-702)))) (-15 -4132 ($ (-317 (-700)))) (-15 -4132 ($ (-317 (-695)))) (-15 -4132 ($ (-295 (-317 (-702))))) (-15 -4132 ($ (-295 (-317 (-700))))) (-15 -4132 ($ (-295 (-317 (-695))))) (-15 -4132 ($ (-317 (-567)))) (-15 -4132 ($ (-317 (-381)))) (-15 -4132 ($ (-317 (-169 (-381))))) (-15 -4132 ($ (-295 (-317 (-567))))) (-15 -4132 ($ (-295 (-317 (-381))))) (-15 -4132 ($ (-295 (-317 (-169 (-381)))))))) (-1178) (-3 (|:| |fst| (-437)) (|:| -4321 "void")) (-645 (-1178)) (-1182)) (T -401))
-((-4132 (*1 *1 *2) (-12 (-5 *2 (-331)) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1178)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4321 "void"))) (-14 *5 (-645 (-1178))) (-14 *6 (-1182)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-645 (-331))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1178)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4321 "void"))) (-14 *5 (-645 (-1178))) (-14 *6 (-1182)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1178)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4321 "void"))) (-14 *5 (-645 (-1178))) (-14 *6 (-1182)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-317 (-702))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1178)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4321 "void"))) (-14 *5 (-645 (-1178))) (-14 *6 (-1182)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-317 (-700))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1178)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4321 "void"))) (-14 *5 (-645 (-1178))) (-14 *6 (-1182)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-317 (-695))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1178)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4321 "void"))) (-14 *5 (-645 (-1178))) (-14 *6 (-1182)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-295 (-317 (-702)))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1178)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4321 "void"))) (-14 *5 (-645 (-1178))) (-14 *6 (-1182)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-295 (-317 (-700)))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1178)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4321 "void"))) (-14 *5 (-645 (-1178))) (-14 *6 (-1182)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-295 (-317 (-695)))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1178)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4321 "void"))) (-14 *5 (-645 (-1178))) (-14 *6 (-1182)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-317 (-567))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1178)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4321 "void"))) (-14 *5 (-645 (-1178))) (-14 *6 (-1182)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-317 (-381))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1178)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4321 "void"))) (-14 *5 (-645 (-1178))) (-14 *6 (-1182)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-317 (-169 (-381)))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1178)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4321 "void"))) (-14 *5 (-645 (-1178))) (-14 *6 (-1182)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-295 (-317 (-567)))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1178)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4321 "void"))) (-14 *5 (-645 (-1178))) (-14 *6 (-1182)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-295 (-317 (-381)))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1178)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4321 "void"))) (-14 *5 (-645 (-1178))) (-14 *6 (-1182)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-295 (-317 (-169 (-381))))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1178)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4321 "void"))) (-14 *5 (-645 (-1178))) (-14 *6 (-1182)))))
-(-13 (-398) (-10 -8 (-15 -4132 ($ (-331))) (-15 -4132 ($ (-645 (-331)))) (-15 -4132 ($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331)))))) (-15 -4132 ($ (-317 (-702)))) (-15 -4132 ($ (-317 (-700)))) (-15 -4132 ($ (-317 (-695)))) (-15 -4132 ($ (-295 (-317 (-702))))) (-15 -4132 ($ (-295 (-317 (-700))))) (-15 -4132 ($ (-295 (-317 (-695))))) (-15 -4132 ($ (-317 (-567)))) (-15 -4132 ($ (-317 (-381)))) (-15 -4132 ($ (-317 (-169 (-381))))) (-15 -4132 ($ (-295 (-317 (-567))))) (-15 -4132 ($ (-295 (-317 (-381))))) (-15 -4132 ($ (-295 (-317 (-169 (-381))))))))
-((-2403 (((-112) $ $) NIL)) (-3654 ((|#2| $) 38)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-1387 (($ (-410 |#2|)) 95)) (-4036 (((-645 (-2 (|:| -3458 (-772)) (|:| -2166 |#2|) (|:| |num| |#2|))) $) 39)) (-1593 (($ $) 34) (($ $ (-772)) 36)) (-3893 (((-410 |#2|) $) 51)) (-4147 (($ (-645 (-2 (|:| -3458 (-772)) (|:| -2166 |#2|) (|:| |num| |#2|)))) 33)) (-4132 (((-863) $) 132)) (-1745 (((-112) $ $) NIL)) (-2637 (($ $) 35) (($ $ (-772)) 37)) (-2936 (((-112) $ $) NIL)) (-3033 (($ |#2| $) 41)))
-(((-402 |#1| |#2|) (-13 (-1102) (-615 (-410 |#2|)) (-10 -8 (-15 -3033 ($ |#2| $)) (-15 -1387 ($ (-410 |#2|))) (-15 -3654 (|#2| $)) (-15 -4036 ((-645 (-2 (|:| -3458 (-772)) (|:| -2166 |#2|) (|:| |num| |#2|))) $)) (-15 -4147 ($ (-645 (-2 (|:| -3458 (-772)) (|:| -2166 |#2|) (|:| |num| |#2|))))) (-15 -1593 ($ $)) (-15 -2637 ($ $)) (-15 -1593 ($ $ (-772))) (-15 -2637 ($ $ (-772))))) (-13 (-365) (-147)) (-1244 |#1|)) (T -402))
-((-3033 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-365) (-147))) (-5 *1 (-402 *3 *2)) (-4 *2 (-1244 *3)))) (-1387 (*1 *1 *2) (-12 (-5 *2 (-410 *4)) (-4 *4 (-1244 *3)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-402 *3 *4)))) (-3654 (*1 *2 *1) (-12 (-4 *2 (-1244 *3)) (-5 *1 (-402 *3 *2)) (-4 *3 (-13 (-365) (-147))))) (-4036 (*1 *2 *1) (-12 (-4 *3 (-13 (-365) (-147))) (-5 *2 (-645 (-2 (|:| -3458 (-772)) (|:| -2166 *4) (|:| |num| *4)))) (-5 *1 (-402 *3 *4)) (-4 *4 (-1244 *3)))) (-4147 (*1 *1 *2) (-12 (-5 *2 (-645 (-2 (|:| -3458 (-772)) (|:| -2166 *4) (|:| |num| *4)))) (-4 *4 (-1244 *3)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-402 *3 *4)))) (-1593 (*1 *1 *1) (-12 (-4 *2 (-13 (-365) (-147))) (-5 *1 (-402 *2 *3)) (-4 *3 (-1244 *2)))) (-2637 (*1 *1 *1) (-12 (-4 *2 (-13 (-365) (-147))) (-5 *1 (-402 *2 *3)) (-4 *3 (-1244 *2)))) (-1593 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-402 *3 *4)) (-4 *4 (-1244 *3)))) (-2637 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-402 *3 *4)) (-4 *4 (-1244 *3)))))
-(-13 (-1102) (-615 (-410 |#2|)) (-10 -8 (-15 -3033 ($ |#2| $)) (-15 -1387 ($ (-410 |#2|))) (-15 -3654 (|#2| $)) (-15 -4036 ((-645 (-2 (|:| -3458 (-772)) (|:| -2166 |#2|) (|:| |num| |#2|))) $)) (-15 -4147 ($ (-645 (-2 (|:| -3458 (-772)) (|:| -2166 |#2|) (|:| |num| |#2|))))) (-15 -1593 ($ $)) (-15 -2637 ($ $)) (-15 -1593 ($ $ (-772))) (-15 -2637 ($ $ (-772)))))
-((-2403 (((-112) $ $) 9 (-2800 (|has| |#1| (-888 (-567))) (|has| |#1| (-888 (-381)))))) (-4303 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) 16 (|has| |#1| (-888 (-381)))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) 15 (|has| |#1| (-888 (-567))))) (-1419 (((-1160) $) 13 (-2800 (|has| |#1| (-888 (-567))) (|has| |#1| (-888 (-381)))))) (-3430 (((-1122) $) 12 (-2800 (|has| |#1| (-888 (-567))) (|has| |#1| (-888 (-381)))))) (-4132 (((-863) $) 11 (-2800 (|has| |#1| (-888 (-567))) (|has| |#1| (-888 (-381)))))) (-1745 (((-112) $ $) 14 (-2800 (|has| |#1| (-888 (-567))) (|has| |#1| (-888 (-381)))))) (-2936 (((-112) $ $) 10 (-2800 (|has| |#1| (-888 (-567))) (|has| |#1| (-888 (-381)))))))
-(((-403 |#1|) (-140) (-1218)) (T -403))
-NIL
-(-13 (-1218) (-10 -7 (IF (|has| |t#1| (-888 (-567))) (-6 (-888 (-567))) |%noBranch|) (IF (|has| |t#1| (-888 (-381))) (-6 (-888 (-381))) |%noBranch|)))
-(((-102) -2800 (|has| |#1| (-888 (-567))) (|has| |#1| (-888 (-381)))) ((-614 (-863)) -2800 (|has| |#1| (-888 (-567))) (|has| |#1| (-888 (-381)))) ((-888 (-381)) |has| |#1| (-888 (-381))) ((-888 (-567)) |has| |#1| (-888 (-567))) ((-1102) -2800 (|has| |#1| (-888 (-567))) (|has| |#1| (-888 (-381)))) ((-1218) . T))
-((-4225 (($ $) 10) (($ $ (-772)) 12)))
-(((-404 |#1|) (-10 -8 (-15 -4225 (|#1| |#1| (-772))) (-15 -4225 (|#1| |#1|))) (-405)) (T -404))
-NIL
-(-10 -8 (-15 -4225 (|#1| |#1| (-772))) (-15 -4225 (|#1| |#1|)))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 47)) (-4381 (($ $) 46)) (-3949 (((-112) $) 44)) (-3472 (((-3 $ "failed") $ $) 20)) (-3248 (($ $) 81)) (-2908 (((-421 $) $) 80)) (-3609 (((-112) $ $) 65)) (-2585 (($) 18 T CONST)) (-2349 (($ $ $) 61)) (-2109 (((-3 $ "failed") $) 37)) (-2360 (($ $ $) 62)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) 57)) (-4225 (($ $) 87) (($ $ (-772)) 86)) (-3184 (((-112) $) 79)) (-4384 (((-834 (-923)) $) 89)) (-1433 (((-112) $) 35)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) 58)) (-2740 (($ $ $) 52) (($ (-645 $)) 51)) (-1419 (((-1160) $) 10)) (-2939 (($ $) 78)) (-3430 (((-1122) $) 11)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 50)) (-2774 (($ $ $) 54) (($ (-645 $)) 53)) (-2706 (((-421 $) $) 82)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2391 (((-3 $ "failed") $ $) 48)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-1990 (((-772) $) 64)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 63)) (-2491 (((-3 (-772) "failed") $ $) 88)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-410 (-567))) 74)) (-1903 (((-3 $ "failed") $) 90)) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-3816 (((-112) $ $) 45)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2936 (((-112) $ $) 6)) (-3060 (($ $ $) 73)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 77)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 76) (($ (-410 (-567)) $) 75)))
+((-4129 (*1 *1 *2) (-12 (-5 *2 (-645 (-331))) (-4 *1 (-399)))) (-4129 (*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-399)))) (-4129 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1183)) (|:| -1814 (-645 (-331))))) (-4 *1 (-399)))) (-2051 (*1 *1 *2) (-12 (-5 *2 (-317 (-381))) (-4 *1 (-399)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-317 (-381))) (-4 *1 (-399)))) (-2051 (*1 *1 *2) (-12 (-5 *2 (-317 (-567))) (-4 *1 (-399)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-317 (-567))) (-4 *1 (-399)))) (-2051 (*1 *1 *2) (-12 (-5 *2 (-954 (-381))) (-4 *1 (-399)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-954 (-381))) (-4 *1 (-399)))) (-2051 (*1 *1 *2) (-12 (-5 *2 (-954 (-567))) (-4 *1 (-399)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-954 (-567))) (-4 *1 (-399)))) (-2051 (*1 *1 *2) (-12 (-5 *2 (-410 (-954 (-381)))) (-4 *1 (-399)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-410 (-954 (-381)))) (-4 *1 (-399)))) (-2051 (*1 *1 *2) (-12 (-5 *2 (-410 (-954 (-567)))) (-4 *1 (-399)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-410 (-954 (-567)))) (-4 *1 (-399)))))
+(-13 (-398) (-10 -8 (-15 -4129 ($ (-645 (-331)))) (-15 -4129 ($ (-331))) (-15 -4129 ($ (-2 (|:| |localSymbols| (-1183)) (|:| -1814 (-645 (-331)))))) (-15 -2051 ($ (-317 (-381)))) (-15 -3765 ((-3 $ "failed") (-317 (-381)))) (-15 -2051 ($ (-317 (-567)))) (-15 -3765 ((-3 $ "failed") (-317 (-567)))) (-15 -2051 ($ (-954 (-381)))) (-15 -3765 ((-3 $ "failed") (-954 (-381)))) (-15 -2051 ($ (-954 (-567)))) (-15 -3765 ((-3 $ "failed") (-954 (-567)))) (-15 -2051 ($ (-410 (-954 (-381))))) (-15 -3765 ((-3 $ "failed") (-410 (-954 (-381))))) (-15 -2051 ($ (-410 (-954 (-567))))) (-15 -3765 ((-3 $ "failed") (-410 (-954 (-567)))))))
+(((-614 (-863)) . T) ((-398) . T) ((-1219) . T))
+((-1669 (((-645 (-1161)) (-645 (-1161))) 9)) (-1466 (((-1274) (-391)) 27)) (-4372 (((-1106) (-1179) (-645 (-1179)) (-1182) (-645 (-1179))) 60) (((-1106) (-1179) (-645 (-3 (|:| |array| (-645 (-1179))) (|:| |scalar| (-1179)))) (-645 (-645 (-3 (|:| |array| (-645 (-1179))) (|:| |scalar| (-1179))))) (-645 (-1179)) (-1179)) 35) (((-1106) (-1179) (-645 (-3 (|:| |array| (-645 (-1179))) (|:| |scalar| (-1179)))) (-645 (-645 (-3 (|:| |array| (-645 (-1179))) (|:| |scalar| (-1179))))) (-645 (-1179))) 34)))
+(((-400) (-10 -7 (-15 -4372 ((-1106) (-1179) (-645 (-3 (|:| |array| (-645 (-1179))) (|:| |scalar| (-1179)))) (-645 (-645 (-3 (|:| |array| (-645 (-1179))) (|:| |scalar| (-1179))))) (-645 (-1179)))) (-15 -4372 ((-1106) (-1179) (-645 (-3 (|:| |array| (-645 (-1179))) (|:| |scalar| (-1179)))) (-645 (-645 (-3 (|:| |array| (-645 (-1179))) (|:| |scalar| (-1179))))) (-645 (-1179)) (-1179))) (-15 -4372 ((-1106) (-1179) (-645 (-1179)) (-1182) (-645 (-1179)))) (-15 -1466 ((-1274) (-391))) (-15 -1669 ((-645 (-1161)) (-645 (-1161)))))) (T -400))
+((-1669 (*1 *2 *2) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-400)))) (-1466 (*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1274)) (-5 *1 (-400)))) (-4372 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-645 (-1179))) (-5 *5 (-1182)) (-5 *3 (-1179)) (-5 *2 (-1106)) (-5 *1 (-400)))) (-4372 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-645 (-645 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-645 (-3 (|:| |array| (-645 *3)) (|:| |scalar| (-1179))))) (-5 *6 (-645 (-1179))) (-5 *3 (-1179)) (-5 *2 (-1106)) (-5 *1 (-400)))) (-4372 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-645 (-645 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-645 (-3 (|:| |array| (-645 *3)) (|:| |scalar| (-1179))))) (-5 *6 (-645 (-1179))) (-5 *3 (-1179)) (-5 *2 (-1106)) (-5 *1 (-400)))))
+(-10 -7 (-15 -4372 ((-1106) (-1179) (-645 (-3 (|:| |array| (-645 (-1179))) (|:| |scalar| (-1179)))) (-645 (-645 (-3 (|:| |array| (-645 (-1179))) (|:| |scalar| (-1179))))) (-645 (-1179)))) (-15 -4372 ((-1106) (-1179) (-645 (-3 (|:| |array| (-645 (-1179))) (|:| |scalar| (-1179)))) (-645 (-645 (-3 (|:| |array| (-645 (-1179))) (|:| |scalar| (-1179))))) (-645 (-1179)) (-1179))) (-15 -4372 ((-1106) (-1179) (-645 (-1179)) (-1182) (-645 (-1179)))) (-15 -1466 ((-1274) (-391))) (-15 -1669 ((-645 (-1161)) (-645 (-1161)))))
+((-1466 (((-1274) $) 36)) (-4129 (((-863) $) 98) (($ (-331)) 100) (($ (-645 (-331))) 99) (($ (-2 (|:| |localSymbols| (-1183)) (|:| -1814 (-645 (-331))))) 97) (($ (-317 (-702))) 53) (($ (-317 (-700))) 73) (($ (-317 (-695))) 86) (($ (-295 (-317 (-702)))) 68) (($ (-295 (-317 (-700)))) 81) (($ (-295 (-317 (-695)))) 94) (($ (-317 (-567))) 105) (($ (-317 (-381))) 118) (($ (-317 (-169 (-381)))) 131) (($ (-295 (-317 (-567)))) 113) (($ (-295 (-317 (-381)))) 126) (($ (-295 (-317 (-169 (-381))))) 139)))
+(((-401 |#1| |#2| |#3| |#4|) (-13 (-398) (-10 -8 (-15 -4129 ($ (-331))) (-15 -4129 ($ (-645 (-331)))) (-15 -4129 ($ (-2 (|:| |localSymbols| (-1183)) (|:| -1814 (-645 (-331)))))) (-15 -4129 ($ (-317 (-702)))) (-15 -4129 ($ (-317 (-700)))) (-15 -4129 ($ (-317 (-695)))) (-15 -4129 ($ (-295 (-317 (-702))))) (-15 -4129 ($ (-295 (-317 (-700))))) (-15 -4129 ($ (-295 (-317 (-695))))) (-15 -4129 ($ (-317 (-567)))) (-15 -4129 ($ (-317 (-381)))) (-15 -4129 ($ (-317 (-169 (-381))))) (-15 -4129 ($ (-295 (-317 (-567))))) (-15 -4129 ($ (-295 (-317 (-381))))) (-15 -4129 ($ (-295 (-317 (-169 (-381)))))))) (-1179) (-3 (|:| |fst| (-437)) (|:| -4324 "void")) (-645 (-1179)) (-1183)) (T -401))
+((-4129 (*1 *1 *2) (-12 (-5 *2 (-331)) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1179)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4324 "void"))) (-14 *5 (-645 (-1179))) (-14 *6 (-1183)))) (-4129 (*1 *1 *2) (-12 (-5 *2 (-645 (-331))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1179)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4324 "void"))) (-14 *5 (-645 (-1179))) (-14 *6 (-1183)))) (-4129 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1183)) (|:| -1814 (-645 (-331))))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1179)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4324 "void"))) (-14 *5 (-645 (-1179))) (-14 *6 (-1183)))) (-4129 (*1 *1 *2) (-12 (-5 *2 (-317 (-702))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1179)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4324 "void"))) (-14 *5 (-645 (-1179))) (-14 *6 (-1183)))) (-4129 (*1 *1 *2) (-12 (-5 *2 (-317 (-700))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1179)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4324 "void"))) (-14 *5 (-645 (-1179))) (-14 *6 (-1183)))) (-4129 (*1 *1 *2) (-12 (-5 *2 (-317 (-695))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1179)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4324 "void"))) (-14 *5 (-645 (-1179))) (-14 *6 (-1183)))) (-4129 (*1 *1 *2) (-12 (-5 *2 (-295 (-317 (-702)))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1179)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4324 "void"))) (-14 *5 (-645 (-1179))) (-14 *6 (-1183)))) (-4129 (*1 *1 *2) (-12 (-5 *2 (-295 (-317 (-700)))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1179)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4324 "void"))) (-14 *5 (-645 (-1179))) (-14 *6 (-1183)))) (-4129 (*1 *1 *2) (-12 (-5 *2 (-295 (-317 (-695)))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1179)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4324 "void"))) (-14 *5 (-645 (-1179))) (-14 *6 (-1183)))) (-4129 (*1 *1 *2) (-12 (-5 *2 (-317 (-567))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1179)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4324 "void"))) (-14 *5 (-645 (-1179))) (-14 *6 (-1183)))) (-4129 (*1 *1 *2) (-12 (-5 *2 (-317 (-381))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1179)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4324 "void"))) (-14 *5 (-645 (-1179))) (-14 *6 (-1183)))) (-4129 (*1 *1 *2) (-12 (-5 *2 (-317 (-169 (-381)))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1179)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4324 "void"))) (-14 *5 (-645 (-1179))) (-14 *6 (-1183)))) (-4129 (*1 *1 *2) (-12 (-5 *2 (-295 (-317 (-567)))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1179)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4324 "void"))) (-14 *5 (-645 (-1179))) (-14 *6 (-1183)))) (-4129 (*1 *1 *2) (-12 (-5 *2 (-295 (-317 (-381)))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1179)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4324 "void"))) (-14 *5 (-645 (-1179))) (-14 *6 (-1183)))) (-4129 (*1 *1 *2) (-12 (-5 *2 (-295 (-317 (-169 (-381))))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1179)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4324 "void"))) (-14 *5 (-645 (-1179))) (-14 *6 (-1183)))))
+(-13 (-398) (-10 -8 (-15 -4129 ($ (-331))) (-15 -4129 ($ (-645 (-331)))) (-15 -4129 ($ (-2 (|:| |localSymbols| (-1183)) (|:| -1814 (-645 (-331)))))) (-15 -4129 ($ (-317 (-702)))) (-15 -4129 ($ (-317 (-700)))) (-15 -4129 ($ (-317 (-695)))) (-15 -4129 ($ (-295 (-317 (-702))))) (-15 -4129 ($ (-295 (-317 (-700))))) (-15 -4129 ($ (-295 (-317 (-695))))) (-15 -4129 ($ (-317 (-567)))) (-15 -4129 ($ (-317 (-381)))) (-15 -4129 ($ (-317 (-169 (-381))))) (-15 -4129 ($ (-295 (-317 (-567))))) (-15 -4129 ($ (-295 (-317 (-381))))) (-15 -4129 ($ (-295 (-317 (-169 (-381))))))))
+((-2412 (((-112) $ $) NIL)) (-2743 ((|#2| $) 38)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4047 (($ (-410 |#2|)) 95)) (-1609 (((-645 (-2 (|:| -3468 (-772)) (|:| -2185 |#2|) (|:| |num| |#2|))) $) 39)) (-1616 (($ $) 34) (($ $ (-772)) 36)) (-3902 (((-410 |#2|) $) 51)) (-4145 (($ (-645 (-2 (|:| -3468 (-772)) (|:| -2185 |#2|) (|:| |num| |#2|)))) 33)) (-4129 (((-863) $) 132)) (-3357 (((-112) $ $) NIL)) (-2647 (($ $) 35) (($ $ (-772)) 37)) (-2946 (((-112) $ $) NIL)) (-3041 (($ |#2| $) 41)))
+(((-402 |#1| |#2|) (-13 (-1102) (-615 (-410 |#2|)) (-10 -8 (-15 -3041 ($ |#2| $)) (-15 -4047 ($ (-410 |#2|))) (-15 -2743 (|#2| $)) (-15 -1609 ((-645 (-2 (|:| -3468 (-772)) (|:| -2185 |#2|) (|:| |num| |#2|))) $)) (-15 -4145 ($ (-645 (-2 (|:| -3468 (-772)) (|:| -2185 |#2|) (|:| |num| |#2|))))) (-15 -1616 ($ $)) (-15 -2647 ($ $)) (-15 -1616 ($ $ (-772))) (-15 -2647 ($ $ (-772))))) (-13 (-365) (-147)) (-1245 |#1|)) (T -402))
+((-3041 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-365) (-147))) (-5 *1 (-402 *3 *2)) (-4 *2 (-1245 *3)))) (-4047 (*1 *1 *2) (-12 (-5 *2 (-410 *4)) (-4 *4 (-1245 *3)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-402 *3 *4)))) (-2743 (*1 *2 *1) (-12 (-4 *2 (-1245 *3)) (-5 *1 (-402 *3 *2)) (-4 *3 (-13 (-365) (-147))))) (-1609 (*1 *2 *1) (-12 (-4 *3 (-13 (-365) (-147))) (-5 *2 (-645 (-2 (|:| -3468 (-772)) (|:| -2185 *4) (|:| |num| *4)))) (-5 *1 (-402 *3 *4)) (-4 *4 (-1245 *3)))) (-4145 (*1 *1 *2) (-12 (-5 *2 (-645 (-2 (|:| -3468 (-772)) (|:| -2185 *4) (|:| |num| *4)))) (-4 *4 (-1245 *3)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-402 *3 *4)))) (-1616 (*1 *1 *1) (-12 (-4 *2 (-13 (-365) (-147))) (-5 *1 (-402 *2 *3)) (-4 *3 (-1245 *2)))) (-2647 (*1 *1 *1) (-12 (-4 *2 (-13 (-365) (-147))) (-5 *1 (-402 *2 *3)) (-4 *3 (-1245 *2)))) (-1616 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-402 *3 *4)) (-4 *4 (-1245 *3)))) (-2647 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-402 *3 *4)) (-4 *4 (-1245 *3)))))
+(-13 (-1102) (-615 (-410 |#2|)) (-10 -8 (-15 -3041 ($ |#2| $)) (-15 -4047 ($ (-410 |#2|))) (-15 -2743 (|#2| $)) (-15 -1609 ((-645 (-2 (|:| -3468 (-772)) (|:| -2185 |#2|) (|:| |num| |#2|))) $)) (-15 -4145 ($ (-645 (-2 (|:| -3468 (-772)) (|:| -2185 |#2|) (|:| |num| |#2|))))) (-15 -1616 ($ $)) (-15 -2647 ($ $)) (-15 -1616 ($ $ (-772))) (-15 -2647 ($ $ (-772)))))
+((-2412 (((-112) $ $) 9 (-2811 (|has| |#1| (-888 (-567))) (|has| |#1| (-888 (-381)))))) (-3193 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) 16 (|has| |#1| (-888 (-381)))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) 15 (|has| |#1| (-888 (-567))))) (-2516 (((-1161) $) 13 (-2811 (|has| |#1| (-888 (-567))) (|has| |#1| (-888 (-381)))))) (-3437 (((-1122) $) 12 (-2811 (|has| |#1| (-888 (-567))) (|has| |#1| (-888 (-381)))))) (-4129 (((-863) $) 11 (-2811 (|has| |#1| (-888 (-567))) (|has| |#1| (-888 (-381)))))) (-3357 (((-112) $ $) 14 (-2811 (|has| |#1| (-888 (-567))) (|has| |#1| (-888 (-381)))))) (-2946 (((-112) $ $) 10 (-2811 (|has| |#1| (-888 (-567))) (|has| |#1| (-888 (-381)))))))
+(((-403 |#1|) (-140) (-1219)) (T -403))
+NIL
+(-13 (-1219) (-10 -7 (IF (|has| |t#1| (-888 (-567))) (-6 (-888 (-567))) |%noBranch|) (IF (|has| |t#1| (-888 (-381))) (-6 (-888 (-381))) |%noBranch|)))
+(((-102) -2811 (|has| |#1| (-888 (-567))) (|has| |#1| (-888 (-381)))) ((-614 (-863)) -2811 (|has| |#1| (-888 (-567))) (|has| |#1| (-888 (-381)))) ((-888 (-381)) |has| |#1| (-888 (-381))) ((-888 (-567)) |has| |#1| (-888 (-567))) ((-1102) -2811 (|has| |#1| (-888 (-567))) (|has| |#1| (-888 (-381)))) ((-1219) . T))
+((-3144 (($ $) 10) (($ $ (-772)) 12)))
+(((-404 |#1|) (-10 -8 (-15 -3144 (|#1| |#1| (-772))) (-15 -3144 (|#1| |#1|))) (-405)) (T -404))
+NIL
+(-10 -8 (-15 -3144 (|#1| |#1| (-772))) (-15 -3144 (|#1| |#1|)))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) 47)) (-4287 (($ $) 46)) (-2286 (((-112) $) 44)) (-2376 (((-3 $ "failed") $ $) 20)) (-3659 (($ $) 81)) (-3597 (((-421 $) $) 80)) (-3696 (((-112) $ $) 65)) (-3647 (($) 18 T CONST)) (-2357 (($ $ $) 61)) (-3588 (((-3 $ "failed") $) 37)) (-2368 (($ $ $) 62)) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) 57)) (-3144 (($ $) 87) (($ $ (-772)) 86)) (-3502 (((-112) $) 79)) (-3362 (((-834 (-923)) $) 89)) (-4346 (((-112) $) 35)) (-1469 (((-3 (-645 $) "failed") (-645 $) $) 58)) (-2751 (($ $ $) 52) (($ (-645 $)) 51)) (-2516 (((-1161) $) 10)) (-2949 (($ $) 78)) (-3437 (((-1122) $) 11)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) 50)) (-2785 (($ $ $) 54) (($ (-645 $)) 53)) (-2717 (((-421 $) $) 82)) (-2905 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2400 (((-3 $ "failed") $ $) 48)) (-2372 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-2460 (((-772) $) 64)) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) 63)) (-1760 (((-3 (-772) "failed") $ $) 88)) (-4129 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-410 (-567))) 74)) (-2118 (((-3 $ "failed") $) 90)) (-2746 (((-772)) 32 T CONST)) (-3357 (((-112) $ $) 9)) (-3731 (((-112) $ $) 45)) (-1733 (($) 19 T CONST)) (-1744 (($) 34 T CONST)) (-2946 (((-112) $ $) 6)) (-3069 (($ $ $) 73)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 77)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 76) (($ (-410 (-567)) $) 75)))
(((-405) (-140)) (T -405))
-((-4384 (*1 *2 *1) (-12 (-4 *1 (-405)) (-5 *2 (-834 (-923))))) (-2491 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-405)) (-5 *2 (-772)))) (-4225 (*1 *1 *1) (-4 *1 (-405))) (-4225 (*1 *1 *1 *2) (-12 (-4 *1 (-405)) (-5 *2 (-772)))))
-(-13 (-365) (-145) (-10 -8 (-15 -4384 ((-834 (-923)) $)) (-15 -2491 ((-3 (-772) "failed") $ $)) (-15 -4225 ($ $)) (-15 -4225 ($ $ (-772)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) . T) ((-617 #0#) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-455) . T) ((-559) . T) ((-647 #0#) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 #0#) . T) ((-649 $) . T) ((-641 #0#) . T) ((-641 $) . T) ((-718 #0#) . T) ((-718 $) . T) ((-727) . T) ((-922) . T) ((-1053 #0#) . T) ((-1053 $) . T) ((-1058 #0#) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1222) . T))
-((-2327 (($ (-567) (-567)) 11) (($ (-567) (-567) (-923)) NIL)) (-3038 (((-923)) 20) (((-923) (-923)) NIL)))
-(((-406 |#1|) (-10 -8 (-15 -3038 ((-923) (-923))) (-15 -3038 ((-923))) (-15 -2327 (|#1| (-567) (-567) (-923))) (-15 -2327 (|#1| (-567) (-567)))) (-407)) (T -406))
-((-3038 (*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-406 *3)) (-4 *3 (-407)))) (-3038 (*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-406 *3)) (-4 *3 (-407)))))
-(-10 -8 (-15 -3038 ((-923) (-923))) (-15 -3038 ((-923))) (-15 -2327 (|#1| (-567) (-567) (-923))) (-15 -2327 (|#1| (-567) (-567))))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3093 (((-567) $) 97)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 47)) (-4381 (($ $) 46)) (-3949 (((-112) $) 44)) (-1950 (($ $) 95)) (-3472 (((-3 $ "failed") $ $) 20)) (-3248 (($ $) 81)) (-2908 (((-421 $) $) 80)) (-2716 (($ $) 105)) (-3609 (((-112) $ $) 65)) (-1750 (((-567) $) 122)) (-2585 (($) 18 T CONST)) (-2535 (($ $) 94)) (-3753 (((-3 (-567) "failed") $) 110) (((-3 (-410 (-567)) "failed") $) 107)) (-2038 (((-567) $) 111) (((-410 (-567)) $) 108)) (-2349 (($ $ $) 61)) (-2109 (((-3 $ "failed") $) 37)) (-2360 (($ $ $) 62)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) 57)) (-3184 (((-112) $) 79)) (-3725 (((-923)) 138) (((-923) (-923)) 135 (|has| $ (-6 -4409)))) (-4336 (((-112) $) 120)) (-4303 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) 101)) (-4384 (((-567) $) 144)) (-1433 (((-112) $) 35)) (-2651 (($ $ (-567)) 104)) (-2475 (($ $) 100)) (-3494 (((-112) $) 121)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) 58)) (-1354 (($ $ $) 119) (($) 132 (-12 (-1657 (|has| $ (-6 -4409))) (-1657 (|has| $ (-6 -4401)))))) (-2981 (($ $ $) 118) (($) 131 (-12 (-1657 (|has| $ (-6 -4409))) (-1657 (|has| $ (-6 -4401)))))) (-2148 (((-567) $) 141)) (-2740 (($ $ $) 52) (($ (-645 $)) 51)) (-1419 (((-1160) $) 10)) (-2939 (($ $) 78)) (-3214 (((-923) (-567)) 134 (|has| $ (-6 -4409)))) (-3430 (((-1122) $) 11)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 50)) (-2774 (($ $ $) 54) (($ (-645 $)) 53)) (-4094 (($ $) 96)) (-2780 (($ $) 98)) (-2327 (($ (-567) (-567)) 146) (($ (-567) (-567) (-923)) 145)) (-2706 (((-421 $) $) 82)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2391 (((-3 $ "failed") $ $) 48)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-3458 (((-567) $) 142)) (-1990 (((-772) $) 64)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 63)) (-3038 (((-923)) 139) (((-923) (-923)) 136 (|has| $ (-6 -4409)))) (-4223 (((-923) (-567)) 133 (|has| $ (-6 -4409)))) (-3893 (((-381) $) 113) (((-225) $) 112) (((-894 (-381)) $) 102)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-410 (-567))) 74) (($ (-567)) 109) (($ (-410 (-567))) 106)) (-4221 (((-772)) 32 T CONST)) (-1423 (($ $) 99)) (-2547 (((-923)) 140) (((-923) (-923)) 137 (|has| $ (-6 -4409)))) (-1745 (((-112) $ $) 9)) (-3047 (((-923)) 143)) (-3816 (((-112) $ $) 45)) (-2219 (($ $) 123)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2997 (((-112) $ $) 116)) (-2971 (((-112) $ $) 115)) (-2936 (((-112) $ $) 6)) (-2984 (((-112) $ $) 117)) (-2958 (((-112) $ $) 114)) (-3060 (($ $ $) 73)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 77) (($ $ (-410 (-567))) 103)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 76) (($ (-410 (-567)) $) 75)))
+((-3362 (*1 *2 *1) (-12 (-4 *1 (-405)) (-5 *2 (-834 (-923))))) (-1760 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-405)) (-5 *2 (-772)))) (-3144 (*1 *1 *1) (-4 *1 (-405))) (-3144 (*1 *1 *1 *2) (-12 (-4 *1 (-405)) (-5 *2 (-772)))))
+(-13 (-365) (-145) (-10 -8 (-15 -3362 ((-834 (-923)) $)) (-15 -1760 ((-3 (-772) "failed") $ $)) (-15 -3144 ($ $)) (-15 -3144 ($ $ (-772)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) . T) ((-617 #0#) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-455) . T) ((-559) . T) ((-647 #0#) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 #0#) . T) ((-649 $) . T) ((-641 #0#) . T) ((-641 $) . T) ((-718 #0#) . T) ((-718 $) . T) ((-727) . T) ((-922) . T) ((-1053 #0#) . T) ((-1053 $) . T) ((-1058 #0#) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1223) . T))
+((-2335 (($ (-567) (-567)) 11) (($ (-567) (-567) (-923)) NIL)) (-2688 (((-923)) 20) (((-923) (-923)) NIL)))
+(((-406 |#1|) (-10 -8 (-15 -2688 ((-923) (-923))) (-15 -2688 ((-923))) (-15 -2335 (|#1| (-567) (-567) (-923))) (-15 -2335 (|#1| (-567) (-567)))) (-407)) (T -406))
+((-2688 (*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-406 *3)) (-4 *3 (-407)))) (-2688 (*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-406 *3)) (-4 *3 (-407)))))
+(-10 -8 (-15 -2688 ((-923) (-923))) (-15 -2688 ((-923))) (-15 -2335 (|#1| (-567) (-567) (-923))) (-15 -2335 (|#1| (-567) (-567))))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-4014 (((-567) $) 97)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) 47)) (-4287 (($ $) 46)) (-2286 (((-112) $) 44)) (-3748 (($ $) 95)) (-2376 (((-3 $ "failed") $ $) 20)) (-3659 (($ $) 81)) (-3597 (((-421 $) $) 80)) (-2728 (($ $) 105)) (-3696 (((-112) $ $) 65)) (-2677 (((-567) $) 122)) (-3647 (($) 18 T CONST)) (-3122 (($ $) 94)) (-3765 (((-3 (-567) "failed") $) 110) (((-3 (-410 (-567)) "failed") $) 107)) (-2051 (((-567) $) 111) (((-410 (-567)) $) 108)) (-2357 (($ $ $) 61)) (-3588 (((-3 $ "failed") $) 37)) (-2368 (($ $ $) 62)) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) 57)) (-3502 (((-112) $) 79)) (-3745 (((-923)) 138) (((-923) (-923)) 135 (|has| $ (-6 -4413)))) (-3137 (((-112) $) 120)) (-3193 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) 101)) (-3362 (((-567) $) 144)) (-4346 (((-112) $) 35)) (-3698 (($ $ (-567)) 104)) (-2724 (($ $) 100)) (-3465 (((-112) $) 121)) (-1469 (((-3 (-645 $) "failed") (-645 $) $) 58)) (-1365 (($ $ $) 119) (($) 132 (-12 (-1673 (|has| $ (-6 -4413))) (-1673 (|has| $ (-6 -4405)))))) (-3002 (($ $ $) 118) (($) 131 (-12 (-1673 (|has| $ (-6 -4413))) (-1673 (|has| $ (-6 -4405)))))) (-2159 (((-567) $) 141)) (-2751 (($ $ $) 52) (($ (-645 $)) 51)) (-2516 (((-1161) $) 10)) (-2949 (($ $) 78)) (-4301 (((-923) (-567)) 134 (|has| $ (-6 -4413)))) (-3437 (((-1122) $) 11)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) 50)) (-2785 (($ $ $) 54) (($ (-645 $)) 53)) (-2554 (($ $) 96)) (-3969 (($ $) 98)) (-2335 (($ (-567) (-567)) 146) (($ (-567) (-567) (-923)) 145)) (-2717 (((-421 $) $) 82)) (-2905 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2400 (((-3 $ "failed") $ $) 48)) (-2372 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-3468 (((-567) $) 142)) (-2460 (((-772) $) 64)) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) 63)) (-2688 (((-923)) 139) (((-923) (-923)) 136 (|has| $ (-6 -4413)))) (-2935 (((-923) (-567)) 133 (|has| $ (-6 -4413)))) (-3902 (((-381) $) 113) (((-225) $) 112) (((-894 (-381)) $) 102)) (-4129 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-410 (-567))) 74) (($ (-567)) 109) (($ (-410 (-567))) 106)) (-2746 (((-772)) 32 T CONST)) (-1689 (($ $) 99)) (-3766 (((-923)) 140) (((-923) (-923)) 137 (|has| $ (-6 -4413)))) (-3357 (((-112) $ $) 9)) (-3070 (((-923)) 143)) (-3731 (((-112) $ $) 45)) (-1547 (($ $) 123)) (-1733 (($) 19 T CONST)) (-1744 (($) 34 T CONST)) (-3004 (((-112) $ $) 116)) (-2980 (((-112) $ $) 115)) (-2946 (((-112) $ $) 6)) (-2993 (((-112) $ $) 117)) (-2968 (((-112) $ $) 114)) (-3069 (($ $ $) 73)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 77) (($ $ (-410 (-567))) 103)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 76) (($ (-410 (-567)) $) 75)))
(((-407) (-140)) (T -407))
-((-2327 (*1 *1 *2 *2) (-12 (-5 *2 (-567)) (-4 *1 (-407)))) (-2327 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-567)) (-5 *3 (-923)) (-4 *1 (-407)))) (-4384 (*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-567)))) (-3047 (*1 *2) (-12 (-4 *1 (-407)) (-5 *2 (-923)))) (-3458 (*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-567)))) (-2148 (*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-567)))) (-2547 (*1 *2) (-12 (-4 *1 (-407)) (-5 *2 (-923)))) (-3038 (*1 *2) (-12 (-4 *1 (-407)) (-5 *2 (-923)))) (-3725 (*1 *2) (-12 (-4 *1 (-407)) (-5 *2 (-923)))) (-2547 (*1 *2 *2) (-12 (-5 *2 (-923)) (|has| *1 (-6 -4409)) (-4 *1 (-407)))) (-3038 (*1 *2 *2) (-12 (-5 *2 (-923)) (|has| *1 (-6 -4409)) (-4 *1 (-407)))) (-3725 (*1 *2 *2) (-12 (-5 *2 (-923)) (|has| *1 (-6 -4409)) (-4 *1 (-407)))) (-3214 (*1 *2 *3) (-12 (-5 *3 (-567)) (|has| *1 (-6 -4409)) (-4 *1 (-407)) (-5 *2 (-923)))) (-4223 (*1 *2 *3) (-12 (-5 *3 (-567)) (|has| *1 (-6 -4409)) (-4 *1 (-407)) (-5 *2 (-923)))) (-1354 (*1 *1) (-12 (-4 *1 (-407)) (-1657 (|has| *1 (-6 -4409))) (-1657 (|has| *1 (-6 -4401))))) (-2981 (*1 *1) (-12 (-4 *1 (-407)) (-1657 (|has| *1 (-6 -4409))) (-1657 (|has| *1 (-6 -4401))))))
-(-13 (-1062) (-10 -8 (-6 -3050) (-15 -2327 ($ (-567) (-567))) (-15 -2327 ($ (-567) (-567) (-923))) (-15 -4384 ((-567) $)) (-15 -3047 ((-923))) (-15 -3458 ((-567) $)) (-15 -2148 ((-567) $)) (-15 -2547 ((-923))) (-15 -3038 ((-923))) (-15 -3725 ((-923))) (IF (|has| $ (-6 -4409)) (PROGN (-15 -2547 ((-923) (-923))) (-15 -3038 ((-923) (-923))) (-15 -3725 ((-923) (-923))) (-15 -3214 ((-923) (-567))) (-15 -4223 ((-923) (-567)))) |%noBranch|) (IF (|has| $ (-6 -4401)) |%noBranch| (IF (|has| $ (-6 -4409)) |%noBranch| (PROGN (-15 -1354 ($)) (-15 -2981 ($)))))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-617 #0#) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-615 (-225)) . T) ((-615 (-381)) . T) ((-615 (-894 (-381))) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-455) . T) ((-559) . T) ((-647 #0#) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 #0#) . T) ((-649 $) . T) ((-641 #0#) . T) ((-641 $) . T) ((-718 #0#) . T) ((-718 $) . T) ((-727) . T) ((-792) . T) ((-793) . T) ((-795) . T) ((-796) . T) ((-849) . T) ((-851) . T) ((-888 (-381)) . T) ((-922) . T) ((-1004) . T) ((-1024) . T) ((-1062) . T) ((-1040 (-410 (-567))) . T) ((-1040 (-567)) . T) ((-1053 #0#) . T) ((-1053 $) . T) ((-1058 #0#) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1222) . T))
-((-3829 (((-421 |#2|) (-1 |#2| |#1|) (-421 |#1|)) 20)))
-(((-408 |#1| |#2|) (-10 -7 (-15 -3829 ((-421 |#2|) (-1 |#2| |#1|) (-421 |#1|)))) (-559) (-559)) (T -408))
-((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-421 *5)) (-4 *5 (-559)) (-4 *6 (-559)) (-5 *2 (-421 *6)) (-5 *1 (-408 *5 *6)))))
-(-10 -7 (-15 -3829 ((-421 |#2|) (-1 |#2| |#1|) (-421 |#1|))))
-((-3829 (((-410 |#2|) (-1 |#2| |#1|) (-410 |#1|)) 13)))
-(((-409 |#1| |#2|) (-10 -7 (-15 -3829 ((-410 |#2|) (-1 |#2| |#1|) (-410 |#1|)))) (-559) (-559)) (T -409))
-((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-410 *5)) (-4 *5 (-559)) (-4 *6 (-559)) (-5 *2 (-410 *6)) (-5 *1 (-409 *5 *6)))))
-(-10 -7 (-15 -3829 ((-410 |#2|) (-1 |#2| |#1|) (-410 |#1|))))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) 13)) (-3093 ((|#1| $) 21 (|has| |#1| (-308)))) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-4226 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-911)))) (-3248 (($ $) NIL)) (-2908 (((-421 $) $) NIL)) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-911)))) (-3609 (((-112) $ $) NIL)) (-1750 (((-567) $) NIL (|has| |#1| (-821)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 |#1| "failed") $) 17) (((-3 (-1178) "failed") $) NIL (|has| |#1| (-1040 (-1178)))) (((-3 (-410 (-567)) "failed") $) 72 (|has| |#1| (-1040 (-567)))) (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567))))) (-2038 ((|#1| $) 15) (((-1178) $) NIL (|has| |#1| (-1040 (-1178)))) (((-410 (-567)) $) 69 (|has| |#1| (-1040 (-567)))) (((-567) $) NIL (|has| |#1| (-1040 (-567))))) (-2349 (($ $ $) NIL)) (-2630 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 |#1|)) (|:| |vec| (-1268 |#1|))) (-690 $) (-1268 $)) NIL) (((-690 |#1|) (-690 $)) NIL)) (-2109 (((-3 $ "failed") $) 51)) (-1348 (($) NIL (|has| |#1| (-548)))) (-2360 (($ $ $) NIL)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-3184 (((-112) $) NIL)) (-4336 (((-112) $) NIL (|has| |#1| (-821)))) (-4303 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (|has| |#1| (-888 (-567)))) (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (|has| |#1| (-888 (-381))))) (-1433 (((-112) $) 57)) (-3530 (($ $) NIL)) (-1448 ((|#1| $) 73)) (-3972 (((-3 $ "failed") $) NIL (|has| |#1| (-1153)))) (-3494 (((-112) $) NIL (|has| |#1| (-821)))) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1354 (($ $ $) NIL (|has| |#1| (-851)))) (-2981 (($ $ $) NIL (|has| |#1| (-851)))) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-2740 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) NIL)) (-2672 (($) NIL (|has| |#1| (-1153)) CONST)) (-3430 (((-1122) $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 100)) (-2774 (($ $ $) NIL) (($ (-645 $)) NIL)) (-4094 (($ $) NIL (|has| |#1| (-308)))) (-2780 ((|#1| $) 28 (|has| |#1| (-548)))) (-2435 (((-421 (-1174 $)) (-1174 $)) 148 (|has| |#1| (-911)))) (-3517 (((-421 (-1174 $)) (-1174 $)) 141 (|has| |#1| (-911)))) (-2706 (((-421 $) $) NIL)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2391 (((-3 $ "failed") $ $) NIL)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2631 (($ $ (-645 |#1|) (-645 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ (-645 (-295 |#1|))) NIL (|has| |#1| (-310 |#1|))) (($ $ (-645 (-1178)) (-645 |#1|)) NIL (|has| |#1| (-517 (-1178) |#1|))) (($ $ (-1178) |#1|) NIL (|has| |#1| (-517 (-1178) |#1|)))) (-1990 (((-772) $) NIL)) (-1787 (($ $ |#1|) NIL (|has| |#1| (-287 |#1| |#1|)))) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL)) (-1593 (($ $) NIL (|has| |#1| (-233))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $ (-1178)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) 64)) (-1967 (($ $) NIL)) (-1460 ((|#1| $) 75)) (-3893 (((-894 (-567)) $) NIL (|has| |#1| (-615 (-894 (-567))))) (((-894 (-381)) $) NIL (|has| |#1| (-615 (-894 (-381))))) (((-539) $) NIL (|has| |#1| (-615 (-539)))) (((-381) $) NIL (|has| |#1| (-1024))) (((-225) $) NIL (|has| |#1| (-1024)))) (-1895 (((-3 (-1268 $) "failed") (-690 $)) 125 (-12 (|has| $ (-145)) (|has| |#1| (-911))))) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ |#1|) 10) (($ (-1178)) NIL (|has| |#1| (-1040 (-1178))))) (-1903 (((-3 $ "failed") $) 102 (-2800 (-12 (|has| $ (-145)) (|has| |#1| (-911))) (|has| |#1| (-145))))) (-4221 (((-772)) 103 T CONST)) (-1423 ((|#1| $) 26 (|has| |#1| (-548)))) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL)) (-2219 (($ $) NIL (|has| |#1| (-821)))) (-1716 (($) 22 T CONST)) (-1728 (($) 8 T CONST)) (-2904 (((-1160) $) 44 (-12 (|has| |#1| (-548)) (|has| |#1| (-829)))) (((-1160) $ (-112)) 45 (-12 (|has| |#1| (-548)) (|has| |#1| (-829)))) (((-1273) (-823) $) 46 (-12 (|has| |#1| (-548)) (|has| |#1| (-829)))) (((-1273) (-823) $ (-112)) 47 (-12 (|has| |#1| (-548)) (|has| |#1| (-829))))) (-2637 (($ $) NIL (|has| |#1| (-233))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $ (-1178)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2997 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2971 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2936 (((-112) $ $) 66)) (-2984 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2958 (((-112) $ $) 24 (|has| |#1| (-851)))) (-3060 (($ $ $) 136) (($ |#1| |#1|) 53)) (-3045 (($ $) 25) (($ $ $) 56)) (-3033 (($ $ $) 54)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) 135)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 61) (($ $ $) 58) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ |#1| $) 62) (($ $ |#1|) 88)))
-(((-410 |#1|) (-13 (-994 |#1|) (-10 -7 (IF (|has| |#1| (-548)) (IF (|has| |#1| (-829)) (-6 (-829)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4405)) (IF (|has| |#1| (-455)) (IF (|has| |#1| (-6 -4416)) (-6 -4405) |%noBranch|) |%noBranch|) |%noBranch|))) (-559)) (T -410))
-NIL
-(-13 (-994 |#1|) (-10 -7 (IF (|has| |#1| (-548)) (IF (|has| |#1| (-829)) (-6 (-829)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4405)) (IF (|has| |#1| (-455)) (IF (|has| |#1| (-6 -4416)) (-6 -4405) |%noBranch|) |%noBranch|) |%noBranch|)))
-((-2141 (((-690 |#2|) (-1268 $)) NIL) (((-690 |#2|)) 18)) (-3658 (($ (-1268 |#2|) (-1268 $)) NIL) (($ (-1268 |#2|)) 24)) (-1811 (((-690 |#2|) $ (-1268 $)) NIL) (((-690 |#2|) $) 40)) (-4206 ((|#3| $) 73)) (-3788 ((|#2| (-1268 $)) NIL) ((|#2|) 20)) (-2887 (((-1268 |#2|) $ (-1268 $)) NIL) (((-690 |#2|) (-1268 $) (-1268 $)) NIL) (((-1268 |#2|) $) 22) (((-690 |#2|) (-1268 $)) 38)) (-3893 (((-1268 |#2|) $) 11) (($ (-1268 |#2|)) 13)) (-2155 ((|#3| $) 55)))
-(((-411 |#1| |#2| |#3|) (-10 -8 (-15 -1811 ((-690 |#2|) |#1|)) (-15 -3788 (|#2|)) (-15 -2141 ((-690 |#2|))) (-15 -3893 (|#1| (-1268 |#2|))) (-15 -3893 ((-1268 |#2|) |#1|)) (-15 -3658 (|#1| (-1268 |#2|))) (-15 -2887 ((-690 |#2|) (-1268 |#1|))) (-15 -2887 ((-1268 |#2|) |#1|)) (-15 -4206 (|#3| |#1|)) (-15 -2155 (|#3| |#1|)) (-15 -2141 ((-690 |#2|) (-1268 |#1|))) (-15 -3788 (|#2| (-1268 |#1|))) (-15 -3658 (|#1| (-1268 |#2|) (-1268 |#1|))) (-15 -2887 ((-690 |#2|) (-1268 |#1|) (-1268 |#1|))) (-15 -2887 ((-1268 |#2|) |#1| (-1268 |#1|))) (-15 -1811 ((-690 |#2|) |#1| (-1268 |#1|)))) (-412 |#2| |#3|) (-172) (-1244 |#2|)) (T -411))
-((-2141 (*1 *2) (-12 (-4 *4 (-172)) (-4 *5 (-1244 *4)) (-5 *2 (-690 *4)) (-5 *1 (-411 *3 *4 *5)) (-4 *3 (-412 *4 *5)))) (-3788 (*1 *2) (-12 (-4 *4 (-1244 *2)) (-4 *2 (-172)) (-5 *1 (-411 *3 *2 *4)) (-4 *3 (-412 *2 *4)))))
-(-10 -8 (-15 -1811 ((-690 |#2|) |#1|)) (-15 -3788 (|#2|)) (-15 -2141 ((-690 |#2|))) (-15 -3893 (|#1| (-1268 |#2|))) (-15 -3893 ((-1268 |#2|) |#1|)) (-15 -3658 (|#1| (-1268 |#2|))) (-15 -2887 ((-690 |#2|) (-1268 |#1|))) (-15 -2887 ((-1268 |#2|) |#1|)) (-15 -4206 (|#3| |#1|)) (-15 -2155 (|#3| |#1|)) (-15 -2141 ((-690 |#2|) (-1268 |#1|))) (-15 -3788 (|#2| (-1268 |#1|))) (-15 -3658 (|#1| (-1268 |#2|) (-1268 |#1|))) (-15 -2887 ((-690 |#2|) (-1268 |#1|) (-1268 |#1|))) (-15 -2887 ((-1268 |#2|) |#1| (-1268 |#1|))) (-15 -1811 ((-690 |#2|) |#1| (-1268 |#1|))))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-2141 (((-690 |#1|) (-1268 $)) 53) (((-690 |#1|)) 68)) (-4293 ((|#1| $) 59)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-3658 (($ (-1268 |#1|) (-1268 $)) 55) (($ (-1268 |#1|)) 71)) (-1811 (((-690 |#1|) $ (-1268 $)) 60) (((-690 |#1|) $) 66)) (-2109 (((-3 $ "failed") $) 37)) (-1954 (((-923)) 61)) (-1433 (((-112) $) 35)) (-2475 ((|#1| $) 58)) (-4206 ((|#2| $) 51 (|has| |#1| (-365)))) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-3788 ((|#1| (-1268 $)) 54) ((|#1|) 67)) (-2887 (((-1268 |#1|) $ (-1268 $)) 57) (((-690 |#1|) (-1268 $) (-1268 $)) 56) (((-1268 |#1|) $) 73) (((-690 |#1|) (-1268 $)) 72)) (-3893 (((-1268 |#1|) $) 70) (($ (-1268 |#1|)) 69)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 44)) (-1903 (((-3 $ "failed") $) 50 (|has| |#1| (-145)))) (-2155 ((|#2| $) 52)) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-2623 (((-1268 $)) 74)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45)))
-(((-412 |#1| |#2|) (-140) (-172) (-1244 |t#1|)) (T -412))
-((-2623 (*1 *2) (-12 (-4 *3 (-172)) (-4 *4 (-1244 *3)) (-5 *2 (-1268 *1)) (-4 *1 (-412 *3 *4)))) (-2887 (*1 *2 *1) (-12 (-4 *1 (-412 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1244 *3)) (-5 *2 (-1268 *3)))) (-2887 (*1 *2 *3) (-12 (-5 *3 (-1268 *1)) (-4 *1 (-412 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1244 *4)) (-5 *2 (-690 *4)))) (-3658 (*1 *1 *2) (-12 (-5 *2 (-1268 *3)) (-4 *3 (-172)) (-4 *1 (-412 *3 *4)) (-4 *4 (-1244 *3)))) (-3893 (*1 *2 *1) (-12 (-4 *1 (-412 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1244 *3)) (-5 *2 (-1268 *3)))) (-3893 (*1 *1 *2) (-12 (-5 *2 (-1268 *3)) (-4 *3 (-172)) (-4 *1 (-412 *3 *4)) (-4 *4 (-1244 *3)))) (-2141 (*1 *2) (-12 (-4 *1 (-412 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1244 *3)) (-5 *2 (-690 *3)))) (-3788 (*1 *2) (-12 (-4 *1 (-412 *2 *3)) (-4 *3 (-1244 *2)) (-4 *2 (-172)))) (-1811 (*1 *2 *1) (-12 (-4 *1 (-412 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1244 *3)) (-5 *2 (-690 *3)))))
-(-13 (-372 |t#1| |t#2|) (-10 -8 (-15 -2623 ((-1268 $))) (-15 -2887 ((-1268 |t#1|) $)) (-15 -2887 ((-690 |t#1|) (-1268 $))) (-15 -3658 ($ (-1268 |t#1|))) (-15 -3893 ((-1268 |t#1|) $)) (-15 -3893 ($ (-1268 |t#1|))) (-15 -2141 ((-690 |t#1|))) (-15 -3788 (|t#1|)) (-15 -1811 ((-690 |t#1|) $))))
+((-2335 (*1 *1 *2 *2) (-12 (-5 *2 (-567)) (-4 *1 (-407)))) (-2335 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-567)) (-5 *3 (-923)) (-4 *1 (-407)))) (-3362 (*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-567)))) (-3070 (*1 *2) (-12 (-4 *1 (-407)) (-5 *2 (-923)))) (-3468 (*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-567)))) (-2159 (*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-567)))) (-3766 (*1 *2) (-12 (-4 *1 (-407)) (-5 *2 (-923)))) (-2688 (*1 *2) (-12 (-4 *1 (-407)) (-5 *2 (-923)))) (-3745 (*1 *2) (-12 (-4 *1 (-407)) (-5 *2 (-923)))) (-3766 (*1 *2 *2) (-12 (-5 *2 (-923)) (|has| *1 (-6 -4413)) (-4 *1 (-407)))) (-2688 (*1 *2 *2) (-12 (-5 *2 (-923)) (|has| *1 (-6 -4413)) (-4 *1 (-407)))) (-3745 (*1 *2 *2) (-12 (-5 *2 (-923)) (|has| *1 (-6 -4413)) (-4 *1 (-407)))) (-4301 (*1 *2 *3) (-12 (-5 *3 (-567)) (|has| *1 (-6 -4413)) (-4 *1 (-407)) (-5 *2 (-923)))) (-2935 (*1 *2 *3) (-12 (-5 *3 (-567)) (|has| *1 (-6 -4413)) (-4 *1 (-407)) (-5 *2 (-923)))) (-1365 (*1 *1) (-12 (-4 *1 (-407)) (-1673 (|has| *1 (-6 -4413))) (-1673 (|has| *1 (-6 -4405))))) (-3002 (*1 *1) (-12 (-4 *1 (-407)) (-1673 (|has| *1 (-6 -4413))) (-1673 (|has| *1 (-6 -4405))))))
+(-13 (-1062) (-10 -8 (-6 -3058) (-15 -2335 ($ (-567) (-567))) (-15 -2335 ($ (-567) (-567) (-923))) (-15 -3362 ((-567) $)) (-15 -3070 ((-923))) (-15 -3468 ((-567) $)) (-15 -2159 ((-567) $)) (-15 -3766 ((-923))) (-15 -2688 ((-923))) (-15 -3745 ((-923))) (IF (|has| $ (-6 -4413)) (PROGN (-15 -3766 ((-923) (-923))) (-15 -2688 ((-923) (-923))) (-15 -3745 ((-923) (-923))) (-15 -4301 ((-923) (-567))) (-15 -2935 ((-923) (-567)))) |%noBranch|) (IF (|has| $ (-6 -4405)) |%noBranch| (IF (|has| $ (-6 -4413)) |%noBranch| (PROGN (-15 -1365 ($)) (-15 -3002 ($)))))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-617 #0#) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-615 (-225)) . T) ((-615 (-381)) . T) ((-615 (-894 (-381))) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-455) . T) ((-559) . T) ((-647 #0#) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 #0#) . T) ((-649 $) . T) ((-641 #0#) . T) ((-641 $) . T) ((-718 #0#) . T) ((-718 $) . T) ((-727) . T) ((-792) . T) ((-793) . T) ((-795) . T) ((-796) . T) ((-849) . T) ((-851) . T) ((-888 (-381)) . T) ((-922) . T) ((-1004) . T) ((-1024) . T) ((-1062) . T) ((-1040 (-410 (-567))) . T) ((-1040 (-567)) . T) ((-1053 #0#) . T) ((-1053 $) . T) ((-1058 #0#) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1223) . T))
+((-3841 (((-421 |#2|) (-1 |#2| |#1|) (-421 |#1|)) 20)))
+(((-408 |#1| |#2|) (-10 -7 (-15 -3841 ((-421 |#2|) (-1 |#2| |#1|) (-421 |#1|)))) (-559) (-559)) (T -408))
+((-3841 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-421 *5)) (-4 *5 (-559)) (-4 *6 (-559)) (-5 *2 (-421 *6)) (-5 *1 (-408 *5 *6)))))
+(-10 -7 (-15 -3841 ((-421 |#2|) (-1 |#2| |#1|) (-421 |#1|))))
+((-3841 (((-410 |#2|) (-1 |#2| |#1|) (-410 |#1|)) 13)))
+(((-409 |#1| |#2|) (-10 -7 (-15 -3841 ((-410 |#2|) (-1 |#2| |#1|) (-410 |#1|)))) (-559) (-559)) (T -409))
+((-3841 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-410 *5)) (-4 *5 (-559)) (-4 *6 (-559)) (-5 *2 (-410 *6)) (-5 *1 (-409 *5 *6)))))
+(-10 -7 (-15 -3841 ((-410 |#2|) (-1 |#2| |#1|) (-410 |#1|))))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) 13)) (-4014 ((|#1| $) 21 (|has| |#1| (-308)))) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-4287 (($ $) NIL)) (-2286 (((-112) $) NIL)) (-2376 (((-3 $ "failed") $ $) NIL)) (-2029 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-911)))) (-3659 (($ $) NIL)) (-3597 (((-421 $) $) NIL)) (-3610 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-911)))) (-3696 (((-112) $ $) NIL)) (-2677 (((-567) $) NIL (|has| |#1| (-821)))) (-3647 (($) NIL T CONST)) (-3765 (((-3 |#1| "failed") $) 17) (((-3 (-1179) "failed") $) NIL (|has| |#1| (-1040 (-1179)))) (((-3 (-410 (-567)) "failed") $) 72 (|has| |#1| (-1040 (-567)))) (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567))))) (-2051 ((|#1| $) 15) (((-1179) $) NIL (|has| |#1| (-1040 (-1179)))) (((-410 (-567)) $) 69 (|has| |#1| (-1040 (-567)))) (((-567) $) NIL (|has| |#1| (-1040 (-567))))) (-2357 (($ $ $) NIL)) (-1423 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4208 (-690 |#1|)) (|:| |vec| (-1269 |#1|))) (-690 $) (-1269 $)) NIL) (((-690 |#1|) (-690 $)) NIL)) (-3588 (((-3 $ "failed") $) 51)) (-1359 (($) NIL (|has| |#1| (-548)))) (-2368 (($ $ $) NIL)) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) NIL)) (-3502 (((-112) $) NIL)) (-3137 (((-112) $) NIL (|has| |#1| (-821)))) (-3193 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (|has| |#1| (-888 (-567)))) (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (|has| |#1| (-888 (-381))))) (-4346 (((-112) $) 57)) (-1863 (($ $) NIL)) (-1447 ((|#1| $) 73)) (-3067 (((-3 $ "failed") $) NIL (|has| |#1| (-1154)))) (-3465 (((-112) $) NIL (|has| |#1| (-821)))) (-1469 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1365 (($ $ $) NIL (|has| |#1| (-851)))) (-3002 (($ $ $) NIL (|has| |#1| (-851)))) (-3841 (($ (-1 |#1| |#1|) $) NIL)) (-2751 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2516 (((-1161) $) NIL)) (-2949 (($ $) NIL)) (-2694 (($) NIL (|has| |#1| (-1154)) CONST)) (-3437 (((-1122) $) NIL)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) 100)) (-2785 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2554 (($ $) NIL (|has| |#1| (-308)))) (-3969 ((|#1| $) 28 (|has| |#1| (-548)))) (-3551 (((-421 (-1175 $)) (-1175 $)) 148 (|has| |#1| (-911)))) (-2016 (((-421 (-1175 $)) (-1175 $)) 141 (|has| |#1| (-911)))) (-2717 (((-421 $) $) NIL)) (-2905 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2400 (((-3 $ "failed") $ $) NIL)) (-2372 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2642 (($ $ (-645 |#1|) (-645 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ (-645 (-295 |#1|))) NIL (|has| |#1| (-310 |#1|))) (($ $ (-645 (-1179)) (-645 |#1|)) NIL (|has| |#1| (-517 (-1179) |#1|))) (($ $ (-1179) |#1|) NIL (|has| |#1| (-517 (-1179) |#1|)))) (-2460 (((-772) $) NIL)) (-1801 (($ $ |#1|) NIL (|has| |#1| (-287 |#1| |#1|)))) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) NIL)) (-1616 (($ $) NIL (|has| |#1| (-233))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $ (-1179)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) 64)) (-1762 (($ $) NIL)) (-1462 ((|#1| $) 75)) (-3902 (((-894 (-567)) $) NIL (|has| |#1| (-615 (-894 (-567))))) (((-894 (-381)) $) NIL (|has| |#1| (-615 (-894 (-381))))) (((-539) $) NIL (|has| |#1| (-615 (-539)))) (((-381) $) NIL (|has| |#1| (-1024))) (((-225) $) NIL (|has| |#1| (-1024)))) (-2616 (((-3 (-1269 $) "failed") (-690 $)) 125 (-12 (|has| $ (-145)) (|has| |#1| (-911))))) (-4129 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ |#1|) 10) (($ (-1179)) NIL (|has| |#1| (-1040 (-1179))))) (-2118 (((-3 $ "failed") $) 102 (-2811 (-12 (|has| $ (-145)) (|has| |#1| (-911))) (|has| |#1| (-145))))) (-2746 (((-772)) 103 T CONST)) (-1689 ((|#1| $) 26 (|has| |#1| (-548)))) (-3357 (((-112) $ $) NIL)) (-3731 (((-112) $ $) NIL)) (-1547 (($ $) NIL (|has| |#1| (-821)))) (-1733 (($) 22 T CONST)) (-1744 (($) 8 T CONST)) (-1335 (((-1161) $) 44 (-12 (|has| |#1| (-548)) (|has| |#1| (-829)))) (((-1161) $ (-112)) 45 (-12 (|has| |#1| (-548)) (|has| |#1| (-829)))) (((-1274) (-823) $) 46 (-12 (|has| |#1| (-548)) (|has| |#1| (-829)))) (((-1274) (-823) $ (-112)) 47 (-12 (|has| |#1| (-548)) (|has| |#1| (-829))))) (-2647 (($ $) NIL (|has| |#1| (-233))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $ (-1179)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3004 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2980 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2946 (((-112) $ $) 66)) (-2993 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2968 (((-112) $ $) 24 (|has| |#1| (-851)))) (-3069 (($ $ $) 136) (($ |#1| |#1|) 53)) (-3053 (($ $) 25) (($ $ $) 56)) (-3041 (($ $ $) 54)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) 135)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 61) (($ $ $) 58) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ |#1| $) 62) (($ $ |#1|) 88)))
+(((-410 |#1|) (-13 (-994 |#1|) (-10 -7 (IF (|has| |#1| (-548)) (IF (|has| |#1| (-829)) (-6 (-829)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4409)) (IF (|has| |#1| (-455)) (IF (|has| |#1| (-6 -4420)) (-6 -4409) |%noBranch|) |%noBranch|) |%noBranch|))) (-559)) (T -410))
+NIL
+(-13 (-994 |#1|) (-10 -7 (IF (|has| |#1| (-548)) (IF (|has| |#1| (-829)) (-6 (-829)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4409)) (IF (|has| |#1| (-455)) (IF (|has| |#1| (-6 -4420)) (-6 -4409) |%noBranch|) |%noBranch|) |%noBranch|)))
+((-3478 (((-690 |#2|) (-1269 $)) NIL) (((-690 |#2|)) 18)) (-3111 (($ (-1269 |#2|) (-1269 $)) NIL) (($ (-1269 |#2|)) 24)) (-3012 (((-690 |#2|) $ (-1269 $)) NIL) (((-690 |#2|) $) 40)) (-1914 ((|#3| $) 73)) (-2433 ((|#2| (-1269 $)) NIL) ((|#2|) 20)) (-3088 (((-1269 |#2|) $ (-1269 $)) NIL) (((-690 |#2|) (-1269 $) (-1269 $)) NIL) (((-1269 |#2|) $) 22) (((-690 |#2|) (-1269 $)) 38)) (-3902 (((-1269 |#2|) $) 11) (($ (-1269 |#2|)) 13)) (-2231 ((|#3| $) 55)))
+(((-411 |#1| |#2| |#3|) (-10 -8 (-15 -3012 ((-690 |#2|) |#1|)) (-15 -2433 (|#2|)) (-15 -3478 ((-690 |#2|))) (-15 -3902 (|#1| (-1269 |#2|))) (-15 -3902 ((-1269 |#2|) |#1|)) (-15 -3111 (|#1| (-1269 |#2|))) (-15 -3088 ((-690 |#2|) (-1269 |#1|))) (-15 -3088 ((-1269 |#2|) |#1|)) (-15 -1914 (|#3| |#1|)) (-15 -2231 (|#3| |#1|)) (-15 -3478 ((-690 |#2|) (-1269 |#1|))) (-15 -2433 (|#2| (-1269 |#1|))) (-15 -3111 (|#1| (-1269 |#2|) (-1269 |#1|))) (-15 -3088 ((-690 |#2|) (-1269 |#1|) (-1269 |#1|))) (-15 -3088 ((-1269 |#2|) |#1| (-1269 |#1|))) (-15 -3012 ((-690 |#2|) |#1| (-1269 |#1|)))) (-412 |#2| |#3|) (-172) (-1245 |#2|)) (T -411))
+((-3478 (*1 *2) (-12 (-4 *4 (-172)) (-4 *5 (-1245 *4)) (-5 *2 (-690 *4)) (-5 *1 (-411 *3 *4 *5)) (-4 *3 (-412 *4 *5)))) (-2433 (*1 *2) (-12 (-4 *4 (-1245 *2)) (-4 *2 (-172)) (-5 *1 (-411 *3 *2 *4)) (-4 *3 (-412 *2 *4)))))
+(-10 -8 (-15 -3012 ((-690 |#2|) |#1|)) (-15 -2433 (|#2|)) (-15 -3478 ((-690 |#2|))) (-15 -3902 (|#1| (-1269 |#2|))) (-15 -3902 ((-1269 |#2|) |#1|)) (-15 -3111 (|#1| (-1269 |#2|))) (-15 -3088 ((-690 |#2|) (-1269 |#1|))) (-15 -3088 ((-1269 |#2|) |#1|)) (-15 -1914 (|#3| |#1|)) (-15 -2231 (|#3| |#1|)) (-15 -3478 ((-690 |#2|) (-1269 |#1|))) (-15 -2433 (|#2| (-1269 |#1|))) (-15 -3111 (|#1| (-1269 |#2|) (-1269 |#1|))) (-15 -3088 ((-690 |#2|) (-1269 |#1|) (-1269 |#1|))) (-15 -3088 ((-1269 |#2|) |#1| (-1269 |#1|))) (-15 -3012 ((-690 |#2|) |#1| (-1269 |#1|))))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-3478 (((-690 |#1|) (-1269 $)) 53) (((-690 |#1|)) 68)) (-4293 ((|#1| $) 59)) (-2376 (((-3 $ "failed") $ $) 20)) (-3647 (($) 18 T CONST)) (-3111 (($ (-1269 |#1|) (-1269 $)) 55) (($ (-1269 |#1|)) 71)) (-3012 (((-690 |#1|) $ (-1269 $)) 60) (((-690 |#1|) $) 66)) (-3588 (((-3 $ "failed") $) 37)) (-1976 (((-923)) 61)) (-4346 (((-112) $) 35)) (-2724 ((|#1| $) 58)) (-1914 ((|#2| $) 51 (|has| |#1| (-365)))) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-2433 ((|#1| (-1269 $)) 54) ((|#1|) 67)) (-3088 (((-1269 |#1|) $ (-1269 $)) 57) (((-690 |#1|) (-1269 $) (-1269 $)) 56) (((-1269 |#1|) $) 73) (((-690 |#1|) (-1269 $)) 72)) (-3902 (((-1269 |#1|) $) 70) (($ (-1269 |#1|)) 69)) (-4129 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 44)) (-2118 (((-3 $ "failed") $) 50 (|has| |#1| (-145)))) (-2231 ((|#2| $) 52)) (-2746 (((-772)) 32 T CONST)) (-3357 (((-112) $ $) 9)) (-2144 (((-1269 $)) 74)) (-1733 (($) 19 T CONST)) (-1744 (($) 34 T CONST)) (-2946 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45)))
+(((-412 |#1| |#2|) (-140) (-172) (-1245 |t#1|)) (T -412))
+((-2144 (*1 *2) (-12 (-4 *3 (-172)) (-4 *4 (-1245 *3)) (-5 *2 (-1269 *1)) (-4 *1 (-412 *3 *4)))) (-3088 (*1 *2 *1) (-12 (-4 *1 (-412 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1245 *3)) (-5 *2 (-1269 *3)))) (-3088 (*1 *2 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-412 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1245 *4)) (-5 *2 (-690 *4)))) (-3111 (*1 *1 *2) (-12 (-5 *2 (-1269 *3)) (-4 *3 (-172)) (-4 *1 (-412 *3 *4)) (-4 *4 (-1245 *3)))) (-3902 (*1 *2 *1) (-12 (-4 *1 (-412 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1245 *3)) (-5 *2 (-1269 *3)))) (-3902 (*1 *1 *2) (-12 (-5 *2 (-1269 *3)) (-4 *3 (-172)) (-4 *1 (-412 *3 *4)) (-4 *4 (-1245 *3)))) (-3478 (*1 *2) (-12 (-4 *1 (-412 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1245 *3)) (-5 *2 (-690 *3)))) (-2433 (*1 *2) (-12 (-4 *1 (-412 *2 *3)) (-4 *3 (-1245 *2)) (-4 *2 (-172)))) (-3012 (*1 *2 *1) (-12 (-4 *1 (-412 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1245 *3)) (-5 *2 (-690 *3)))))
+(-13 (-372 |t#1| |t#2|) (-10 -8 (-15 -2144 ((-1269 $))) (-15 -3088 ((-1269 |t#1|) $)) (-15 -3088 ((-690 |t#1|) (-1269 $))) (-15 -3111 ($ (-1269 |t#1|))) (-15 -3902 ((-1269 |t#1|) $)) (-15 -3902 ($ (-1269 |t#1|))) (-15 -3478 ((-690 |t#1|))) (-15 -2433 (|t#1|)) (-15 -3012 ((-690 |t#1|) $))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-614 (-863)) . T) ((-372 |#1| |#2|) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-641 |#1|) . T) ((-718 |#1|) . T) ((-727) . T) ((-1053 |#1|) . T) ((-1058 |#1|) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T))
-((-3753 (((-3 |#2| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) 27) (((-3 (-567) "failed") $) 19)) (-2038 ((|#2| $) NIL) (((-410 (-567)) $) 24) (((-567) $) 14)) (-4132 (($ |#2|) NIL) (($ (-410 (-567))) 22) (($ (-567)) 11)))
-(((-413 |#1| |#2|) (-10 -8 (-15 -4132 (|#1| (-567))) (-15 -3753 ((-3 (-567) "failed") |#1|)) (-15 -2038 ((-567) |#1|)) (-15 -4132 (|#1| (-410 (-567)))) (-15 -3753 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2038 ((-410 (-567)) |#1|)) (-15 -2038 (|#2| |#1|)) (-15 -3753 ((-3 |#2| "failed") |#1|)) (-15 -4132 (|#1| |#2|))) (-414 |#2|) (-1218)) (T -413))
+((-3765 (((-3 |#2| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) 27) (((-3 (-567) "failed") $) 19)) (-2051 ((|#2| $) NIL) (((-410 (-567)) $) 24) (((-567) $) 14)) (-4129 (($ |#2|) NIL) (($ (-410 (-567))) 22) (($ (-567)) 11)))
+(((-413 |#1| |#2|) (-10 -8 (-15 -4129 (|#1| (-567))) (-15 -3765 ((-3 (-567) "failed") |#1|)) (-15 -2051 ((-567) |#1|)) (-15 -4129 (|#1| (-410 (-567)))) (-15 -3765 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2051 ((-410 (-567)) |#1|)) (-15 -2051 (|#2| |#1|)) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -4129 (|#1| |#2|))) (-414 |#2|) (-1219)) (T -413))
NIL
-(-10 -8 (-15 -4132 (|#1| (-567))) (-15 -3753 ((-3 (-567) "failed") |#1|)) (-15 -2038 ((-567) |#1|)) (-15 -4132 (|#1| (-410 (-567)))) (-15 -3753 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2038 ((-410 (-567)) |#1|)) (-15 -2038 (|#2| |#1|)) (-15 -3753 ((-3 |#2| "failed") |#1|)) (-15 -4132 (|#1| |#2|)))
-((-3753 (((-3 |#1| "failed") $) 9) (((-3 (-410 (-567)) "failed") $) 16 (|has| |#1| (-1040 (-410 (-567))))) (((-3 (-567) "failed") $) 13 (|has| |#1| (-1040 (-567))))) (-2038 ((|#1| $) 8) (((-410 (-567)) $) 17 (|has| |#1| (-1040 (-410 (-567))))) (((-567) $) 14 (|has| |#1| (-1040 (-567))))) (-4132 (($ |#1|) 6) (($ (-410 (-567))) 15 (|has| |#1| (-1040 (-410 (-567))))) (($ (-567)) 12 (|has| |#1| (-1040 (-567))))))
-(((-414 |#1|) (-140) (-1218)) (T -414))
+(-10 -8 (-15 -4129 (|#1| (-567))) (-15 -3765 ((-3 (-567) "failed") |#1|)) (-15 -2051 ((-567) |#1|)) (-15 -4129 (|#1| (-410 (-567)))) (-15 -3765 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2051 ((-410 (-567)) |#1|)) (-15 -2051 (|#2| |#1|)) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -4129 (|#1| |#2|)))
+((-3765 (((-3 |#1| "failed") $) 9) (((-3 (-410 (-567)) "failed") $) 16 (|has| |#1| (-1040 (-410 (-567))))) (((-3 (-567) "failed") $) 13 (|has| |#1| (-1040 (-567))))) (-2051 ((|#1| $) 8) (((-410 (-567)) $) 17 (|has| |#1| (-1040 (-410 (-567))))) (((-567) $) 14 (|has| |#1| (-1040 (-567))))) (-4129 (($ |#1|) 6) (($ (-410 (-567))) 15 (|has| |#1| (-1040 (-410 (-567))))) (($ (-567)) 12 (|has| |#1| (-1040 (-567))))))
+(((-414 |#1|) (-140) (-1219)) (T -414))
NIL
(-13 (-1040 |t#1|) (-10 -7 (IF (|has| |t#1| (-1040 (-567))) (-6 (-1040 (-567))) |%noBranch|) (IF (|has| |t#1| (-1040 (-410 (-567)))) (-6 (-1040 (-410 (-567)))) |%noBranch|)))
(((-617 #0=(-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) ((-617 #1=(-567)) |has| |#1| (-1040 (-567))) ((-617 |#1|) . T) ((-1040 #0#) |has| |#1| (-1040 (-410 (-567)))) ((-1040 #1#) |has| |#1| (-1040 (-567))) ((-1040 |#1|) . T))
-((-3829 (((-416 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-416 |#1| |#2| |#3| |#4|)) 35)))
-(((-415 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3829 ((-416 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-416 |#1| |#2| |#3| |#4|)))) (-308) (-994 |#1|) (-1244 |#2|) (-13 (-412 |#2| |#3|) (-1040 |#2|)) (-308) (-994 |#5|) (-1244 |#6|) (-13 (-412 |#6| |#7|) (-1040 |#6|))) (T -415))
-((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-416 *5 *6 *7 *8)) (-4 *5 (-308)) (-4 *6 (-994 *5)) (-4 *7 (-1244 *6)) (-4 *8 (-13 (-412 *6 *7) (-1040 *6))) (-4 *9 (-308)) (-4 *10 (-994 *9)) (-4 *11 (-1244 *10)) (-5 *2 (-416 *9 *10 *11 *12)) (-5 *1 (-415 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-412 *10 *11) (-1040 *10))))))
-(-10 -7 (-15 -3829 ((-416 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-416 |#1| |#2| |#3| |#4|))))
-((-2403 (((-112) $ $) NIL)) (-2585 (($) NIL T CONST)) (-2109 (((-3 $ "failed") $) NIL)) (-3809 ((|#4| (-772) (-1268 |#4|)) 60)) (-1433 (((-112) $) NIL)) (-1448 (((-1268 |#4|) $) 17)) (-2475 ((|#2| $) 55)) (-1571 (($ $) 163)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) 108)) (-1321 (($ (-1268 |#4|)) 107)) (-3430 (((-1122) $) NIL)) (-1460 ((|#1| $) 18)) (-1823 (($ $ $) NIL)) (-1485 (($ $ $) NIL)) (-4132 (((-863) $) 153)) (-1745 (((-112) $ $) NIL)) (-2623 (((-1268 |#4|) $) 146)) (-1728 (($) 11 T CONST)) (-2936 (((-112) $ $) 41)) (-3060 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) 139)) (* (($ $ $) 135)))
-(((-416 |#1| |#2| |#3| |#4|) (-13 (-476) (-10 -8 (-15 -1321 ($ (-1268 |#4|))) (-15 -2623 ((-1268 |#4|) $)) (-15 -2475 (|#2| $)) (-15 -1448 ((-1268 |#4|) $)) (-15 -1460 (|#1| $)) (-15 -1571 ($ $)) (-15 -3809 (|#4| (-772) (-1268 |#4|))))) (-308) (-994 |#1|) (-1244 |#2|) (-13 (-412 |#2| |#3|) (-1040 |#2|))) (T -416))
-((-1321 (*1 *1 *2) (-12 (-5 *2 (-1268 *6)) (-4 *6 (-13 (-412 *4 *5) (-1040 *4))) (-4 *4 (-994 *3)) (-4 *5 (-1244 *4)) (-4 *3 (-308)) (-5 *1 (-416 *3 *4 *5 *6)))) (-2623 (*1 *2 *1) (-12 (-4 *3 (-308)) (-4 *4 (-994 *3)) (-4 *5 (-1244 *4)) (-5 *2 (-1268 *6)) (-5 *1 (-416 *3 *4 *5 *6)) (-4 *6 (-13 (-412 *4 *5) (-1040 *4))))) (-2475 (*1 *2 *1) (-12 (-4 *4 (-1244 *2)) (-4 *2 (-994 *3)) (-5 *1 (-416 *3 *2 *4 *5)) (-4 *3 (-308)) (-4 *5 (-13 (-412 *2 *4) (-1040 *2))))) (-1448 (*1 *2 *1) (-12 (-4 *3 (-308)) (-4 *4 (-994 *3)) (-4 *5 (-1244 *4)) (-5 *2 (-1268 *6)) (-5 *1 (-416 *3 *4 *5 *6)) (-4 *6 (-13 (-412 *4 *5) (-1040 *4))))) (-1460 (*1 *2 *1) (-12 (-4 *3 (-994 *2)) (-4 *4 (-1244 *3)) (-4 *2 (-308)) (-5 *1 (-416 *2 *3 *4 *5)) (-4 *5 (-13 (-412 *3 *4) (-1040 *3))))) (-1571 (*1 *1 *1) (-12 (-4 *2 (-308)) (-4 *3 (-994 *2)) (-4 *4 (-1244 *3)) (-5 *1 (-416 *2 *3 *4 *5)) (-4 *5 (-13 (-412 *3 *4) (-1040 *3))))) (-3809 (*1 *2 *3 *4) (-12 (-5 *3 (-772)) (-5 *4 (-1268 *2)) (-4 *5 (-308)) (-4 *6 (-994 *5)) (-4 *2 (-13 (-412 *6 *7) (-1040 *6))) (-5 *1 (-416 *5 *6 *7 *2)) (-4 *7 (-1244 *6)))))
-(-13 (-476) (-10 -8 (-15 -1321 ($ (-1268 |#4|))) (-15 -2623 ((-1268 |#4|) $)) (-15 -2475 (|#2| $)) (-15 -1448 ((-1268 |#4|) $)) (-15 -1460 (|#1| $)) (-15 -1571 ($ $)) (-15 -3809 (|#4| (-772) (-1268 |#4|)))))
-((-2403 (((-112) $ $) NIL)) (-2585 (($) NIL T CONST)) (-2109 (((-3 $ "failed") $) NIL)) (-1433 (((-112) $) NIL)) (-2475 ((|#2| $) 71)) (-1652 (($ (-1268 |#4|)) 27) (($ (-416 |#1| |#2| |#3| |#4|)) 86 (|has| |#4| (-1040 |#2|)))) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 37)) (-1745 (((-112) $ $) NIL)) (-2623 (((-1268 |#4|) $) 28)) (-1728 (($) 25 T CONST)) (-2936 (((-112) $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ $ $) 82)))
-(((-417 |#1| |#2| |#3| |#4| |#5|) (-13 (-727) (-10 -8 (-15 -2623 ((-1268 |#4|) $)) (-15 -2475 (|#2| $)) (-15 -1652 ($ (-1268 |#4|))) (IF (|has| |#4| (-1040 |#2|)) (-15 -1652 ($ (-416 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-308) (-994 |#1|) (-1244 |#2|) (-412 |#2| |#3|) (-1268 |#4|)) (T -417))
-((-2623 (*1 *2 *1) (-12 (-4 *3 (-308)) (-4 *4 (-994 *3)) (-4 *5 (-1244 *4)) (-5 *2 (-1268 *6)) (-5 *1 (-417 *3 *4 *5 *6 *7)) (-4 *6 (-412 *4 *5)) (-14 *7 *2))) (-2475 (*1 *2 *1) (-12 (-4 *4 (-1244 *2)) (-4 *2 (-994 *3)) (-5 *1 (-417 *3 *2 *4 *5 *6)) (-4 *3 (-308)) (-4 *5 (-412 *2 *4)) (-14 *6 (-1268 *5)))) (-1652 (*1 *1 *2) (-12 (-5 *2 (-1268 *6)) (-4 *6 (-412 *4 *5)) (-4 *4 (-994 *3)) (-4 *5 (-1244 *4)) (-4 *3 (-308)) (-5 *1 (-417 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-1652 (*1 *1 *2) (-12 (-5 *2 (-416 *3 *4 *5 *6)) (-4 *6 (-1040 *4)) (-4 *3 (-308)) (-4 *4 (-994 *3)) (-4 *5 (-1244 *4)) (-4 *6 (-412 *4 *5)) (-14 *7 (-1268 *6)) (-5 *1 (-417 *3 *4 *5 *6 *7)))))
-(-13 (-727) (-10 -8 (-15 -2623 ((-1268 |#4|) $)) (-15 -2475 (|#2| $)) (-15 -1652 ($ (-1268 |#4|))) (IF (|has| |#4| (-1040 |#2|)) (-15 -1652 ($ (-416 |#1| |#2| |#3| |#4|))) |%noBranch|)))
-((-3829 ((|#3| (-1 |#4| |#2|) |#1|) 32)))
-(((-418 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3829 (|#3| (-1 |#4| |#2|) |#1|))) (-420 |#2|) (-172) (-420 |#4|) (-172)) (T -418))
-((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-420 *6)) (-5 *1 (-418 *4 *5 *2 *6)) (-4 *4 (-420 *5)))))
-(-10 -7 (-15 -3829 (|#3| (-1 |#4| |#2|) |#1|)))
-((-3951 (((-3 $ "failed")) 99)) (-2189 (((-1268 (-690 |#2|)) (-1268 $)) NIL) (((-1268 (-690 |#2|))) 104)) (-3425 (((-3 (-2 (|:| |particular| $) (|:| -2623 (-645 $))) "failed")) 97)) (-3645 (((-3 $ "failed")) 96)) (-1735 (((-690 |#2|) (-1268 $)) NIL) (((-690 |#2|)) 115)) (-3528 (((-690 |#2|) $ (-1268 $)) NIL) (((-690 |#2|) $) 123)) (-4063 (((-1174 (-954 |#2|))) 65)) (-2676 ((|#2| (-1268 $)) NIL) ((|#2|) 119)) (-3658 (($ (-1268 |#2|) (-1268 $)) NIL) (($ (-1268 |#2|)) 125)) (-3412 (((-3 (-2 (|:| |particular| $) (|:| -2623 (-645 $))) "failed")) 95)) (-3345 (((-3 $ "failed")) 87)) (-2119 (((-690 |#2|) (-1268 $)) NIL) (((-690 |#2|)) 113)) (-2702 (((-690 |#2|) $ (-1268 $)) NIL) (((-690 |#2|) $) 121)) (-4162 (((-1174 (-954 |#2|))) 64)) (-3042 ((|#2| (-1268 $)) NIL) ((|#2|) 117)) (-2887 (((-1268 |#2|) $ (-1268 $)) NIL) (((-690 |#2|) (-1268 $) (-1268 $)) NIL) (((-1268 |#2|) $) 124) (((-690 |#2|) (-1268 $)) 133)) (-3893 (((-1268 |#2|) $) 109) (($ (-1268 |#2|)) 111)) (-4013 (((-645 (-954 |#2|)) (-1268 $)) NIL) (((-645 (-954 |#2|))) 107)) (-2355 (($ (-690 |#2|) $) 103)))
-(((-419 |#1| |#2|) (-10 -8 (-15 -2355 (|#1| (-690 |#2|) |#1|)) (-15 -4063 ((-1174 (-954 |#2|)))) (-15 -4162 ((-1174 (-954 |#2|)))) (-15 -3528 ((-690 |#2|) |#1|)) (-15 -2702 ((-690 |#2|) |#1|)) (-15 -1735 ((-690 |#2|))) (-15 -2119 ((-690 |#2|))) (-15 -2676 (|#2|)) (-15 -3042 (|#2|)) (-15 -3893 (|#1| (-1268 |#2|))) (-15 -3893 ((-1268 |#2|) |#1|)) (-15 -3658 (|#1| (-1268 |#2|))) (-15 -4013 ((-645 (-954 |#2|)))) (-15 -2189 ((-1268 (-690 |#2|)))) (-15 -2887 ((-690 |#2|) (-1268 |#1|))) (-15 -2887 ((-1268 |#2|) |#1|)) (-15 -3951 ((-3 |#1| "failed"))) (-15 -3645 ((-3 |#1| "failed"))) (-15 -3345 ((-3 |#1| "failed"))) (-15 -3425 ((-3 (-2 (|:| |particular| |#1|) (|:| -2623 (-645 |#1|))) "failed"))) (-15 -3412 ((-3 (-2 (|:| |particular| |#1|) (|:| -2623 (-645 |#1|))) "failed"))) (-15 -1735 ((-690 |#2|) (-1268 |#1|))) (-15 -2119 ((-690 |#2|) (-1268 |#1|))) (-15 -2676 (|#2| (-1268 |#1|))) (-15 -3042 (|#2| (-1268 |#1|))) (-15 -3658 (|#1| (-1268 |#2|) (-1268 |#1|))) (-15 -2887 ((-690 |#2|) (-1268 |#1|) (-1268 |#1|))) (-15 -2887 ((-1268 |#2|) |#1| (-1268 |#1|))) (-15 -3528 ((-690 |#2|) |#1| (-1268 |#1|))) (-15 -2702 ((-690 |#2|) |#1| (-1268 |#1|))) (-15 -2189 ((-1268 (-690 |#2|)) (-1268 |#1|))) (-15 -4013 ((-645 (-954 |#2|)) (-1268 |#1|)))) (-420 |#2|) (-172)) (T -419))
-((-2189 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1268 (-690 *4))) (-5 *1 (-419 *3 *4)) (-4 *3 (-420 *4)))) (-4013 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-645 (-954 *4))) (-5 *1 (-419 *3 *4)) (-4 *3 (-420 *4)))) (-3042 (*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-419 *3 *2)) (-4 *3 (-420 *2)))) (-2676 (*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-419 *3 *2)) (-4 *3 (-420 *2)))) (-2119 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-690 *4)) (-5 *1 (-419 *3 *4)) (-4 *3 (-420 *4)))) (-1735 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-690 *4)) (-5 *1 (-419 *3 *4)) (-4 *3 (-420 *4)))) (-4162 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1174 (-954 *4))) (-5 *1 (-419 *3 *4)) (-4 *3 (-420 *4)))) (-4063 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1174 (-954 *4))) (-5 *1 (-419 *3 *4)) (-4 *3 (-420 *4)))))
-(-10 -8 (-15 -2355 (|#1| (-690 |#2|) |#1|)) (-15 -4063 ((-1174 (-954 |#2|)))) (-15 -4162 ((-1174 (-954 |#2|)))) (-15 -3528 ((-690 |#2|) |#1|)) (-15 -2702 ((-690 |#2|) |#1|)) (-15 -1735 ((-690 |#2|))) (-15 -2119 ((-690 |#2|))) (-15 -2676 (|#2|)) (-15 -3042 (|#2|)) (-15 -3893 (|#1| (-1268 |#2|))) (-15 -3893 ((-1268 |#2|) |#1|)) (-15 -3658 (|#1| (-1268 |#2|))) (-15 -4013 ((-645 (-954 |#2|)))) (-15 -2189 ((-1268 (-690 |#2|)))) (-15 -2887 ((-690 |#2|) (-1268 |#1|))) (-15 -2887 ((-1268 |#2|) |#1|)) (-15 -3951 ((-3 |#1| "failed"))) (-15 -3645 ((-3 |#1| "failed"))) (-15 -3345 ((-3 |#1| "failed"))) (-15 -3425 ((-3 (-2 (|:| |particular| |#1|) (|:| -2623 (-645 |#1|))) "failed"))) (-15 -3412 ((-3 (-2 (|:| |particular| |#1|) (|:| -2623 (-645 |#1|))) "failed"))) (-15 -1735 ((-690 |#2|) (-1268 |#1|))) (-15 -2119 ((-690 |#2|) (-1268 |#1|))) (-15 -2676 (|#2| (-1268 |#1|))) (-15 -3042 (|#2| (-1268 |#1|))) (-15 -3658 (|#1| (-1268 |#2|) (-1268 |#1|))) (-15 -2887 ((-690 |#2|) (-1268 |#1|) (-1268 |#1|))) (-15 -2887 ((-1268 |#2|) |#1| (-1268 |#1|))) (-15 -3528 ((-690 |#2|) |#1| (-1268 |#1|))) (-15 -2702 ((-690 |#2|) |#1| (-1268 |#1|))) (-15 -2189 ((-1268 (-690 |#2|)) (-1268 |#1|))) (-15 -4013 ((-645 (-954 |#2|)) (-1268 |#1|))))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3951 (((-3 $ "failed")) 42 (|has| |#1| (-559)))) (-3472 (((-3 $ "failed") $ $) 20)) (-2189 (((-1268 (-690 |#1|)) (-1268 $)) 83) (((-1268 (-690 |#1|))) 105)) (-3337 (((-1268 $)) 86)) (-2585 (($) 18 T CONST)) (-3425 (((-3 (-2 (|:| |particular| $) (|:| -2623 (-645 $))) "failed")) 45 (|has| |#1| (-559)))) (-3645 (((-3 $ "failed")) 43 (|has| |#1| (-559)))) (-1735 (((-690 |#1|) (-1268 $)) 70) (((-690 |#1|)) 97)) (-2583 ((|#1| $) 79)) (-3528 (((-690 |#1|) $ (-1268 $)) 81) (((-690 |#1|) $) 95)) (-2209 (((-3 $ "failed") $) 50 (|has| |#1| (-559)))) (-4063 (((-1174 (-954 |#1|))) 93 (|has| |#1| (-365)))) (-2586 (($ $ (-923)) 31)) (-1883 ((|#1| $) 77)) (-1575 (((-1174 |#1|) $) 47 (|has| |#1| (-559)))) (-2676 ((|#1| (-1268 $)) 72) ((|#1|) 99)) (-1682 (((-1174 |#1|) $) 68)) (-1444 (((-112)) 62)) (-3658 (($ (-1268 |#1|) (-1268 $)) 74) (($ (-1268 |#1|)) 103)) (-2109 (((-3 $ "failed") $) 52 (|has| |#1| (-559)))) (-1954 (((-923)) 85)) (-1379 (((-112)) 59)) (-3719 (($ $ (-923)) 38)) (-4353 (((-112)) 55)) (-3375 (((-112)) 53)) (-3154 (((-112)) 57)) (-3412 (((-3 (-2 (|:| |particular| $) (|:| -2623 (-645 $))) "failed")) 46 (|has| |#1| (-559)))) (-3345 (((-3 $ "failed")) 44 (|has| |#1| (-559)))) (-2119 (((-690 |#1|) (-1268 $)) 71) (((-690 |#1|)) 98)) (-2726 ((|#1| $) 80)) (-2702 (((-690 |#1|) $ (-1268 $)) 82) (((-690 |#1|) $) 96)) (-3080 (((-3 $ "failed") $) 51 (|has| |#1| (-559)))) (-4162 (((-1174 (-954 |#1|))) 94 (|has| |#1| (-365)))) (-3450 (($ $ (-923)) 32)) (-2200 ((|#1| $) 78)) (-3960 (((-1174 |#1|) $) 48 (|has| |#1| (-559)))) (-3042 ((|#1| (-1268 $)) 73) ((|#1|) 100)) (-3567 (((-1174 |#1|) $) 69)) (-3396 (((-112)) 63)) (-1419 (((-1160) $) 10)) (-2609 (((-112)) 54)) (-3070 (((-112)) 56)) (-4341 (((-112)) 58)) (-3430 (((-1122) $) 11)) (-4356 (((-112)) 61)) (-1787 ((|#1| $ (-567)) 106)) (-2887 (((-1268 |#1|) $ (-1268 $)) 76) (((-690 |#1|) (-1268 $) (-1268 $)) 75) (((-1268 |#1|) $) 108) (((-690 |#1|) (-1268 $)) 107)) (-3893 (((-1268 |#1|) $) 102) (($ (-1268 |#1|)) 101)) (-4013 (((-645 (-954 |#1|)) (-1268 $)) 84) (((-645 (-954 |#1|))) 104)) (-1485 (($ $ $) 28)) (-1502 (((-112)) 67)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-2623 (((-1268 $)) 109)) (-2652 (((-645 (-1268 |#1|))) 49 (|has| |#1| (-559)))) (-2153 (($ $ $ $) 29)) (-3013 (((-112)) 65)) (-2355 (($ (-690 |#1|) $) 92)) (-2214 (($ $ $) 27)) (-1636 (((-112)) 66)) (-1749 (((-112)) 64)) (-2059 (((-112)) 60)) (-1716 (($) 19 T CONST)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 33)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39)))
+((-3841 (((-416 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-416 |#1| |#2| |#3| |#4|)) 35)))
+(((-415 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3841 ((-416 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-416 |#1| |#2| |#3| |#4|)))) (-308) (-994 |#1|) (-1245 |#2|) (-13 (-412 |#2| |#3|) (-1040 |#2|)) (-308) (-994 |#5|) (-1245 |#6|) (-13 (-412 |#6| |#7|) (-1040 |#6|))) (T -415))
+((-3841 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-416 *5 *6 *7 *8)) (-4 *5 (-308)) (-4 *6 (-994 *5)) (-4 *7 (-1245 *6)) (-4 *8 (-13 (-412 *6 *7) (-1040 *6))) (-4 *9 (-308)) (-4 *10 (-994 *9)) (-4 *11 (-1245 *10)) (-5 *2 (-416 *9 *10 *11 *12)) (-5 *1 (-415 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-412 *10 *11) (-1040 *10))))))
+(-10 -7 (-15 -3841 ((-416 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-416 |#1| |#2| |#3| |#4|))))
+((-2412 (((-112) $ $) NIL)) (-3647 (($) NIL T CONST)) (-3588 (((-3 $ "failed") $) NIL)) (-3375 ((|#4| (-772) (-1269 |#4|)) 60)) (-4346 (((-112) $) NIL)) (-1447 (((-1269 |#4|) $) 17)) (-2724 ((|#2| $) 55)) (-2049 (($ $) 163)) (-2516 (((-1161) $) NIL)) (-2949 (($ $) 108)) (-4090 (($ (-1269 |#4|)) 107)) (-3437 (((-1122) $) NIL)) (-1462 ((|#1| $) 18)) (-1672 (($ $ $) NIL)) (-3997 (($ $ $) NIL)) (-4129 (((-863) $) 153)) (-3357 (((-112) $ $) NIL)) (-2144 (((-1269 |#4|) $) 146)) (-1744 (($) 11 T CONST)) (-2946 (((-112) $ $) 41)) (-3069 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) 139)) (* (($ $ $) 135)))
+(((-416 |#1| |#2| |#3| |#4|) (-13 (-476) (-10 -8 (-15 -4090 ($ (-1269 |#4|))) (-15 -2144 ((-1269 |#4|) $)) (-15 -2724 (|#2| $)) (-15 -1447 ((-1269 |#4|) $)) (-15 -1462 (|#1| $)) (-15 -2049 ($ $)) (-15 -3375 (|#4| (-772) (-1269 |#4|))))) (-308) (-994 |#1|) (-1245 |#2|) (-13 (-412 |#2| |#3|) (-1040 |#2|))) (T -416))
+((-4090 (*1 *1 *2) (-12 (-5 *2 (-1269 *6)) (-4 *6 (-13 (-412 *4 *5) (-1040 *4))) (-4 *4 (-994 *3)) (-4 *5 (-1245 *4)) (-4 *3 (-308)) (-5 *1 (-416 *3 *4 *5 *6)))) (-2144 (*1 *2 *1) (-12 (-4 *3 (-308)) (-4 *4 (-994 *3)) (-4 *5 (-1245 *4)) (-5 *2 (-1269 *6)) (-5 *1 (-416 *3 *4 *5 *6)) (-4 *6 (-13 (-412 *4 *5) (-1040 *4))))) (-2724 (*1 *2 *1) (-12 (-4 *4 (-1245 *2)) (-4 *2 (-994 *3)) (-5 *1 (-416 *3 *2 *4 *5)) (-4 *3 (-308)) (-4 *5 (-13 (-412 *2 *4) (-1040 *2))))) (-1447 (*1 *2 *1) (-12 (-4 *3 (-308)) (-4 *4 (-994 *3)) (-4 *5 (-1245 *4)) (-5 *2 (-1269 *6)) (-5 *1 (-416 *3 *4 *5 *6)) (-4 *6 (-13 (-412 *4 *5) (-1040 *4))))) (-1462 (*1 *2 *1) (-12 (-4 *3 (-994 *2)) (-4 *4 (-1245 *3)) (-4 *2 (-308)) (-5 *1 (-416 *2 *3 *4 *5)) (-4 *5 (-13 (-412 *3 *4) (-1040 *3))))) (-2049 (*1 *1 *1) (-12 (-4 *2 (-308)) (-4 *3 (-994 *2)) (-4 *4 (-1245 *3)) (-5 *1 (-416 *2 *3 *4 *5)) (-4 *5 (-13 (-412 *3 *4) (-1040 *3))))) (-3375 (*1 *2 *3 *4) (-12 (-5 *3 (-772)) (-5 *4 (-1269 *2)) (-4 *5 (-308)) (-4 *6 (-994 *5)) (-4 *2 (-13 (-412 *6 *7) (-1040 *6))) (-5 *1 (-416 *5 *6 *7 *2)) (-4 *7 (-1245 *6)))))
+(-13 (-476) (-10 -8 (-15 -4090 ($ (-1269 |#4|))) (-15 -2144 ((-1269 |#4|) $)) (-15 -2724 (|#2| $)) (-15 -1447 ((-1269 |#4|) $)) (-15 -1462 (|#1| $)) (-15 -2049 ($ $)) (-15 -3375 (|#4| (-772) (-1269 |#4|)))))
+((-2412 (((-112) $ $) NIL)) (-3647 (($) NIL T CONST)) (-3588 (((-3 $ "failed") $) NIL)) (-4346 (((-112) $) NIL)) (-2724 ((|#2| $) 71)) (-2250 (($ (-1269 |#4|)) 27) (($ (-416 |#1| |#2| |#3| |#4|)) 86 (|has| |#4| (-1040 |#2|)))) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) 37)) (-3357 (((-112) $ $) NIL)) (-2144 (((-1269 |#4|) $) 28)) (-1744 (($) 25 T CONST)) (-2946 (((-112) $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ $ $) 82)))
+(((-417 |#1| |#2| |#3| |#4| |#5|) (-13 (-727) (-10 -8 (-15 -2144 ((-1269 |#4|) $)) (-15 -2724 (|#2| $)) (-15 -2250 ($ (-1269 |#4|))) (IF (|has| |#4| (-1040 |#2|)) (-15 -2250 ($ (-416 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-308) (-994 |#1|) (-1245 |#2|) (-412 |#2| |#3|) (-1269 |#4|)) (T -417))
+((-2144 (*1 *2 *1) (-12 (-4 *3 (-308)) (-4 *4 (-994 *3)) (-4 *5 (-1245 *4)) (-5 *2 (-1269 *6)) (-5 *1 (-417 *3 *4 *5 *6 *7)) (-4 *6 (-412 *4 *5)) (-14 *7 *2))) (-2724 (*1 *2 *1) (-12 (-4 *4 (-1245 *2)) (-4 *2 (-994 *3)) (-5 *1 (-417 *3 *2 *4 *5 *6)) (-4 *3 (-308)) (-4 *5 (-412 *2 *4)) (-14 *6 (-1269 *5)))) (-2250 (*1 *1 *2) (-12 (-5 *2 (-1269 *6)) (-4 *6 (-412 *4 *5)) (-4 *4 (-994 *3)) (-4 *5 (-1245 *4)) (-4 *3 (-308)) (-5 *1 (-417 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-2250 (*1 *1 *2) (-12 (-5 *2 (-416 *3 *4 *5 *6)) (-4 *6 (-1040 *4)) (-4 *3 (-308)) (-4 *4 (-994 *3)) (-4 *5 (-1245 *4)) (-4 *6 (-412 *4 *5)) (-14 *7 (-1269 *6)) (-5 *1 (-417 *3 *4 *5 *6 *7)))))
+(-13 (-727) (-10 -8 (-15 -2144 ((-1269 |#4|) $)) (-15 -2724 (|#2| $)) (-15 -2250 ($ (-1269 |#4|))) (IF (|has| |#4| (-1040 |#2|)) (-15 -2250 ($ (-416 |#1| |#2| |#3| |#4|))) |%noBranch|)))
+((-3841 ((|#3| (-1 |#4| |#2|) |#1|) 32)))
+(((-418 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3841 (|#3| (-1 |#4| |#2|) |#1|))) (-420 |#2|) (-172) (-420 |#4|) (-172)) (T -418))
+((-3841 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-420 *6)) (-5 *1 (-418 *4 *5 *2 *6)) (-4 *4 (-420 *5)))))
+(-10 -7 (-15 -3841 (|#3| (-1 |#4| |#2|) |#1|)))
+((-4369 (((-3 $ "failed")) 99)) (-1483 (((-1269 (-690 |#2|)) (-1269 $)) NIL) (((-1269 (-690 |#2|))) 104)) (-1421 (((-3 (-2 (|:| |particular| $) (|:| -2144 (-645 $))) "failed")) 97)) (-4297 (((-3 $ "failed")) 96)) (-1852 (((-690 |#2|) (-1269 $)) NIL) (((-690 |#2|)) 115)) (-1639 (((-690 |#2|) $ (-1269 $)) NIL) (((-690 |#2|) $) 123)) (-1588 (((-1175 (-954 |#2|))) 65)) (-3878 ((|#2| (-1269 $)) NIL) ((|#2|) 119)) (-3111 (($ (-1269 |#2|) (-1269 $)) NIL) (($ (-1269 |#2|)) 125)) (-2488 (((-3 (-2 (|:| |particular| $) (|:| -2144 (-645 $))) "failed")) 95)) (-3428 (((-3 $ "failed")) 87)) (-3060 (((-690 |#2|) (-1269 $)) NIL) (((-690 |#2|)) 113)) (-2227 (((-690 |#2|) $ (-1269 $)) NIL) (((-690 |#2|) $) 121)) (-3785 (((-1175 (-954 |#2|))) 64)) (-2976 ((|#2| (-1269 $)) NIL) ((|#2|) 117)) (-3088 (((-1269 |#2|) $ (-1269 $)) NIL) (((-690 |#2|) (-1269 $) (-1269 $)) NIL) (((-1269 |#2|) $) 124) (((-690 |#2|) (-1269 $)) 133)) (-3902 (((-1269 |#2|) $) 109) (($ (-1269 |#2|)) 111)) (-3981 (((-645 (-954 |#2|)) (-1269 $)) NIL) (((-645 (-954 |#2|))) 107)) (-2364 (($ (-690 |#2|) $) 103)))
+(((-419 |#1| |#2|) (-10 -8 (-15 -2364 (|#1| (-690 |#2|) |#1|)) (-15 -1588 ((-1175 (-954 |#2|)))) (-15 -3785 ((-1175 (-954 |#2|)))) (-15 -1639 ((-690 |#2|) |#1|)) (-15 -2227 ((-690 |#2|) |#1|)) (-15 -1852 ((-690 |#2|))) (-15 -3060 ((-690 |#2|))) (-15 -3878 (|#2|)) (-15 -2976 (|#2|)) (-15 -3902 (|#1| (-1269 |#2|))) (-15 -3902 ((-1269 |#2|) |#1|)) (-15 -3111 (|#1| (-1269 |#2|))) (-15 -3981 ((-645 (-954 |#2|)))) (-15 -1483 ((-1269 (-690 |#2|)))) (-15 -3088 ((-690 |#2|) (-1269 |#1|))) (-15 -3088 ((-1269 |#2|) |#1|)) (-15 -4369 ((-3 |#1| "failed"))) (-15 -4297 ((-3 |#1| "failed"))) (-15 -3428 ((-3 |#1| "failed"))) (-15 -1421 ((-3 (-2 (|:| |particular| |#1|) (|:| -2144 (-645 |#1|))) "failed"))) (-15 -2488 ((-3 (-2 (|:| |particular| |#1|) (|:| -2144 (-645 |#1|))) "failed"))) (-15 -1852 ((-690 |#2|) (-1269 |#1|))) (-15 -3060 ((-690 |#2|) (-1269 |#1|))) (-15 -3878 (|#2| (-1269 |#1|))) (-15 -2976 (|#2| (-1269 |#1|))) (-15 -3111 (|#1| (-1269 |#2|) (-1269 |#1|))) (-15 -3088 ((-690 |#2|) (-1269 |#1|) (-1269 |#1|))) (-15 -3088 ((-1269 |#2|) |#1| (-1269 |#1|))) (-15 -1639 ((-690 |#2|) |#1| (-1269 |#1|))) (-15 -2227 ((-690 |#2|) |#1| (-1269 |#1|))) (-15 -1483 ((-1269 (-690 |#2|)) (-1269 |#1|))) (-15 -3981 ((-645 (-954 |#2|)) (-1269 |#1|)))) (-420 |#2|) (-172)) (T -419))
+((-1483 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1269 (-690 *4))) (-5 *1 (-419 *3 *4)) (-4 *3 (-420 *4)))) (-3981 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-645 (-954 *4))) (-5 *1 (-419 *3 *4)) (-4 *3 (-420 *4)))) (-2976 (*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-419 *3 *2)) (-4 *3 (-420 *2)))) (-3878 (*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-419 *3 *2)) (-4 *3 (-420 *2)))) (-3060 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-690 *4)) (-5 *1 (-419 *3 *4)) (-4 *3 (-420 *4)))) (-1852 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-690 *4)) (-5 *1 (-419 *3 *4)) (-4 *3 (-420 *4)))) (-3785 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1175 (-954 *4))) (-5 *1 (-419 *3 *4)) (-4 *3 (-420 *4)))) (-1588 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1175 (-954 *4))) (-5 *1 (-419 *3 *4)) (-4 *3 (-420 *4)))))
+(-10 -8 (-15 -2364 (|#1| (-690 |#2|) |#1|)) (-15 -1588 ((-1175 (-954 |#2|)))) (-15 -3785 ((-1175 (-954 |#2|)))) (-15 -1639 ((-690 |#2|) |#1|)) (-15 -2227 ((-690 |#2|) |#1|)) (-15 -1852 ((-690 |#2|))) (-15 -3060 ((-690 |#2|))) (-15 -3878 (|#2|)) (-15 -2976 (|#2|)) (-15 -3902 (|#1| (-1269 |#2|))) (-15 -3902 ((-1269 |#2|) |#1|)) (-15 -3111 (|#1| (-1269 |#2|))) (-15 -3981 ((-645 (-954 |#2|)))) (-15 -1483 ((-1269 (-690 |#2|)))) (-15 -3088 ((-690 |#2|) (-1269 |#1|))) (-15 -3088 ((-1269 |#2|) |#1|)) (-15 -4369 ((-3 |#1| "failed"))) (-15 -4297 ((-3 |#1| "failed"))) (-15 -3428 ((-3 |#1| "failed"))) (-15 -1421 ((-3 (-2 (|:| |particular| |#1|) (|:| -2144 (-645 |#1|))) "failed"))) (-15 -2488 ((-3 (-2 (|:| |particular| |#1|) (|:| -2144 (-645 |#1|))) "failed"))) (-15 -1852 ((-690 |#2|) (-1269 |#1|))) (-15 -3060 ((-690 |#2|) (-1269 |#1|))) (-15 -3878 (|#2| (-1269 |#1|))) (-15 -2976 (|#2| (-1269 |#1|))) (-15 -3111 (|#1| (-1269 |#2|) (-1269 |#1|))) (-15 -3088 ((-690 |#2|) (-1269 |#1|) (-1269 |#1|))) (-15 -3088 ((-1269 |#2|) |#1| (-1269 |#1|))) (-15 -1639 ((-690 |#2|) |#1| (-1269 |#1|))) (-15 -2227 ((-690 |#2|) |#1| (-1269 |#1|))) (-15 -1483 ((-1269 (-690 |#2|)) (-1269 |#1|))) (-15 -3981 ((-645 (-954 |#2|)) (-1269 |#1|))))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-4369 (((-3 $ "failed")) 42 (|has| |#1| (-559)))) (-2376 (((-3 $ "failed") $ $) 20)) (-1483 (((-1269 (-690 |#1|)) (-1269 $)) 83) (((-1269 (-690 |#1|))) 105)) (-3967 (((-1269 $)) 86)) (-3647 (($) 18 T CONST)) (-1421 (((-3 (-2 (|:| |particular| $) (|:| -2144 (-645 $))) "failed")) 45 (|has| |#1| (-559)))) (-4297 (((-3 $ "failed")) 43 (|has| |#1| (-559)))) (-1852 (((-690 |#1|) (-1269 $)) 70) (((-690 |#1|)) 97)) (-3382 ((|#1| $) 79)) (-1639 (((-690 |#1|) $ (-1269 $)) 81) (((-690 |#1|) $) 95)) (-2810 (((-3 $ "failed") $) 50 (|has| |#1| (-559)))) (-1588 (((-1175 (-954 |#1|))) 93 (|has| |#1| (-365)))) (-3757 (($ $ (-923)) 31)) (-1868 ((|#1| $) 77)) (-2479 (((-1175 |#1|) $) 47 (|has| |#1| (-559)))) (-3878 ((|#1| (-1269 $)) 72) ((|#1|) 99)) (-2309 (((-1175 |#1|) $) 68)) (-2720 (((-112)) 62)) (-3111 (($ (-1269 |#1|) (-1269 $)) 74) (($ (-1269 |#1|)) 103)) (-3588 (((-3 $ "failed") $) 52 (|has| |#1| (-559)))) (-1976 (((-923)) 85)) (-2957 (((-112)) 59)) (-2112 (($ $ (-923)) 38)) (-4388 (((-112)) 55)) (-2655 (((-112)) 53)) (-2304 (((-112)) 57)) (-2488 (((-3 (-2 (|:| |particular| $) (|:| -2144 (-645 $))) "failed")) 46 (|has| |#1| (-559)))) (-3428 (((-3 $ "failed")) 44 (|has| |#1| (-559)))) (-3060 (((-690 |#1|) (-1269 $)) 71) (((-690 |#1|)) 98)) (-1735 ((|#1| $) 80)) (-2227 (((-690 |#1|) $ (-1269 $)) 82) (((-690 |#1|) $) 96)) (-2213 (((-3 $ "failed") $) 51 (|has| |#1| (-559)))) (-3785 (((-1175 (-954 |#1|))) 94 (|has| |#1| (-365)))) (-3884 (($ $ (-923)) 32)) (-3233 ((|#1| $) 78)) (-4063 (((-1175 |#1|) $) 48 (|has| |#1| (-559)))) (-2976 ((|#1| (-1269 $)) 73) ((|#1|) 100)) (-1694 (((-1175 |#1|) $) 69)) (-3332 (((-112)) 63)) (-2516 (((-1161) $) 10)) (-4368 (((-112)) 54)) (-3498 (((-112)) 56)) (-2467 (((-112)) 58)) (-3437 (((-1122) $) 11)) (-3485 (((-112)) 61)) (-1801 ((|#1| $ (-567)) 106)) (-3088 (((-1269 |#1|) $ (-1269 $)) 76) (((-690 |#1|) (-1269 $) (-1269 $)) 75) (((-1269 |#1|) $) 108) (((-690 |#1|) (-1269 $)) 107)) (-3902 (((-1269 |#1|) $) 102) (($ (-1269 |#1|)) 101)) (-3981 (((-645 (-954 |#1|)) (-1269 $)) 84) (((-645 (-954 |#1|))) 104)) (-3997 (($ $ $) 28)) (-3568 (((-112)) 67)) (-4129 (((-863) $) 12)) (-3357 (((-112) $ $) 9)) (-2144 (((-1269 $)) 109)) (-2628 (((-645 (-1269 |#1|))) 49 (|has| |#1| (-559)))) (-2047 (($ $ $ $) 29)) (-1996 (((-112)) 65)) (-2364 (($ (-690 |#1|) $) 92)) (-2188 (($ $ $) 27)) (-3970 (((-112)) 66)) (-3741 (((-112)) 64)) (-3220 (((-112)) 60)) (-1733 (($) 19 T CONST)) (-2946 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-923)) 33)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39)))
(((-420 |#1|) (-140) (-172)) (T -420))
-((-2623 (*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1268 *1)) (-4 *1 (-420 *3)))) (-2887 (*1 *2 *1) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-1268 *3)))) (-2887 (*1 *2 *3) (-12 (-5 *3 (-1268 *1)) (-4 *1 (-420 *4)) (-4 *4 (-172)) (-5 *2 (-690 *4)))) (-1787 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-420 *2)) (-4 *2 (-172)))) (-2189 (*1 *2) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-1268 (-690 *3))))) (-4013 (*1 *2) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-645 (-954 *3))))) (-3658 (*1 *1 *2) (-12 (-5 *2 (-1268 *3)) (-4 *3 (-172)) (-4 *1 (-420 *3)))) (-3893 (*1 *2 *1) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-1268 *3)))) (-3893 (*1 *1 *2) (-12 (-5 *2 (-1268 *3)) (-4 *3 (-172)) (-4 *1 (-420 *3)))) (-3042 (*1 *2) (-12 (-4 *1 (-420 *2)) (-4 *2 (-172)))) (-2676 (*1 *2) (-12 (-4 *1 (-420 *2)) (-4 *2 (-172)))) (-2119 (*1 *2) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-690 *3)))) (-1735 (*1 *2) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-690 *3)))) (-2702 (*1 *2 *1) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-690 *3)))) (-3528 (*1 *2 *1) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-690 *3)))) (-4162 (*1 *2) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-4 *3 (-365)) (-5 *2 (-1174 (-954 *3))))) (-4063 (*1 *2) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-4 *3 (-365)) (-5 *2 (-1174 (-954 *3))))) (-2355 (*1 *1 *2 *1) (-12 (-5 *2 (-690 *3)) (-4 *1 (-420 *3)) (-4 *3 (-172)))))
-(-13 (-369 |t#1|) (-10 -8 (-15 -2623 ((-1268 $))) (-15 -2887 ((-1268 |t#1|) $)) (-15 -2887 ((-690 |t#1|) (-1268 $))) (-15 -1787 (|t#1| $ (-567))) (-15 -2189 ((-1268 (-690 |t#1|)))) (-15 -4013 ((-645 (-954 |t#1|)))) (-15 -3658 ($ (-1268 |t#1|))) (-15 -3893 ((-1268 |t#1|) $)) (-15 -3893 ($ (-1268 |t#1|))) (-15 -3042 (|t#1|)) (-15 -2676 (|t#1|)) (-15 -2119 ((-690 |t#1|))) (-15 -1735 ((-690 |t#1|))) (-15 -2702 ((-690 |t#1|) $)) (-15 -3528 ((-690 |t#1|) $)) (IF (|has| |t#1| (-365)) (PROGN (-15 -4162 ((-1174 (-954 |t#1|)))) (-15 -4063 ((-1174 (-954 |t#1|))))) |%noBranch|) (-15 -2355 ($ (-690 |t#1|) $))))
+((-2144 (*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1269 *1)) (-4 *1 (-420 *3)))) (-3088 (*1 *2 *1) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-1269 *3)))) (-3088 (*1 *2 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-420 *4)) (-4 *4 (-172)) (-5 *2 (-690 *4)))) (-1801 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-420 *2)) (-4 *2 (-172)))) (-1483 (*1 *2) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-1269 (-690 *3))))) (-3981 (*1 *2) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-645 (-954 *3))))) (-3111 (*1 *1 *2) (-12 (-5 *2 (-1269 *3)) (-4 *3 (-172)) (-4 *1 (-420 *3)))) (-3902 (*1 *2 *1) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-1269 *3)))) (-3902 (*1 *1 *2) (-12 (-5 *2 (-1269 *3)) (-4 *3 (-172)) (-4 *1 (-420 *3)))) (-2976 (*1 *2) (-12 (-4 *1 (-420 *2)) (-4 *2 (-172)))) (-3878 (*1 *2) (-12 (-4 *1 (-420 *2)) (-4 *2 (-172)))) (-3060 (*1 *2) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-690 *3)))) (-1852 (*1 *2) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-690 *3)))) (-2227 (*1 *2 *1) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-690 *3)))) (-1639 (*1 *2 *1) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-690 *3)))) (-3785 (*1 *2) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-4 *3 (-365)) (-5 *2 (-1175 (-954 *3))))) (-1588 (*1 *2) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-4 *3 (-365)) (-5 *2 (-1175 (-954 *3))))) (-2364 (*1 *1 *2 *1) (-12 (-5 *2 (-690 *3)) (-4 *1 (-420 *3)) (-4 *3 (-172)))))
+(-13 (-369 |t#1|) (-10 -8 (-15 -2144 ((-1269 $))) (-15 -3088 ((-1269 |t#1|) $)) (-15 -3088 ((-690 |t#1|) (-1269 $))) (-15 -1801 (|t#1| $ (-567))) (-15 -1483 ((-1269 (-690 |t#1|)))) (-15 -3981 ((-645 (-954 |t#1|)))) (-15 -3111 ($ (-1269 |t#1|))) (-15 -3902 ((-1269 |t#1|) $)) (-15 -3902 ($ (-1269 |t#1|))) (-15 -2976 (|t#1|)) (-15 -3878 (|t#1|)) (-15 -3060 ((-690 |t#1|))) (-15 -1852 ((-690 |t#1|))) (-15 -2227 ((-690 |t#1|) $)) (-15 -1639 ((-690 |t#1|) $)) (IF (|has| |t#1| (-365)) (PROGN (-15 -3785 ((-1175 (-954 |t#1|)))) (-15 -1588 ((-1175 (-954 |t#1|))))) |%noBranch|) (-15 -2364 ($ (-690 |t#1|) $))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-614 (-863)) . T) ((-369 |#1|) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-649 |#1|) . T) ((-641 |#1|) . T) ((-718 |#1|) . T) ((-721) . T) ((-745 |#1|) . T) ((-762) . T) ((-1053 |#1|) . T) ((-1058 |#1|) . T) ((-1102) . T))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) 60)) (-3145 (($ $) 78)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 191)) (-4381 (($ $) NIL)) (-3949 (((-112) $) 48)) (-3951 ((|#1| $) 16)) (-3472 (((-3 $ "failed") $ $) NIL)) (-3248 (($ $) NIL (|has| |#1| (-1222)))) (-2908 (((-421 $) $) NIL (|has| |#1| (-1222)))) (-3930 (($ |#1| (-567)) 42)) (-2585 (($) NIL T CONST)) (-3753 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) 148)) (-2038 (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) 74)) (-2109 (((-3 $ "failed") $) 164)) (-2085 (((-3 (-410 (-567)) "failed") $) 84 (|has| |#1| (-548)))) (-1862 (((-112) $) 80 (|has| |#1| (-548)))) (-2331 (((-410 (-567)) $) 91 (|has| |#1| (-548)))) (-4388 (($ |#1| (-567)) 44)) (-3184 (((-112) $) 213 (|has| |#1| (-1222)))) (-1433 (((-112) $) 62)) (-2820 (((-772) $) 51)) (-2915 (((-3 "nil" "sqfr" "irred" "prime") $ (-567)) 175)) (-4108 ((|#1| $ (-567)) 174)) (-1663 (((-567) $ (-567)) 173)) (-1356 (($ |#1| (-567)) 41)) (-3829 (($ (-1 |#1| |#1|) $) 183)) (-2204 (($ |#1| (-645 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-567))))) 79)) (-2740 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-1419 (((-1160) $) NIL)) (-2453 (($ |#1| (-567)) 43)) (-3430 (((-1122) $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#1| (-455)))) (-2774 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) 192 (|has| |#1| (-455)))) (-3173 (($ |#1| (-567) (-3 "nil" "sqfr" "irred" "prime")) 40)) (-3920 (((-645 (-2 (|:| -2706 |#1|) (|:| -3458 (-567)))) $) 73)) (-3792 (((-645 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-567)))) $) 12)) (-2706 (((-421 $) $) NIL (|has| |#1| (-1222)))) (-2391 (((-3 $ "failed") $ $) 176)) (-3458 (((-567) $) 167)) (-3317 ((|#1| $) 75)) (-2631 (($ $ (-645 |#1|) (-645 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ (-645 (-295 |#1|))) 100 (|has| |#1| (-310 |#1|))) (($ $ (-645 (-1178)) (-645 |#1|)) 106 (|has| |#1| (-517 (-1178) |#1|))) (($ $ (-1178) |#1|) NIL (|has| |#1| (-517 (-1178) |#1|))) (($ $ (-1178) $) NIL (|has| |#1| (-517 (-1178) $))) (($ $ (-645 (-1178)) (-645 $)) 107 (|has| |#1| (-517 (-1178) $))) (($ $ (-645 (-295 $))) 103 (|has| |#1| (-310 $))) (($ $ (-295 $)) NIL (|has| |#1| (-310 $))) (($ $ $ $) NIL (|has| |#1| (-310 $))) (($ $ (-645 $) (-645 $)) NIL (|has| |#1| (-310 $)))) (-1787 (($ $ |#1|) 92 (|has| |#1| (-287 |#1| |#1|))) (($ $ $) 93 (|has| |#1| (-287 $ $)))) (-1593 (($ $) NIL (|has| |#1| (-233))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $ (-1178)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) 182)) (-3893 (((-539) $) 39 (|has| |#1| (-615 (-539)))) (((-381) $) 113 (|has| |#1| (-1024))) (((-225) $) 119 (|has| |#1| (-1024)))) (-4132 (((-863) $) 146) (($ (-567)) 65) (($ $) NIL) (($ |#1|) 64) (($ (-410 (-567))) NIL (|has| |#1| (-1040 (-410 (-567)))))) (-4221 (((-772)) 67 T CONST)) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL)) (-1716 (($) 53 T CONST)) (-1728 (($) 52 T CONST)) (-2637 (($ $) NIL (|has| |#1| (-233))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $ (-1178)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2936 (((-112) $ $) 159)) (-3045 (($ $) 161) (($ $ $) NIL)) (-3033 (($ $ $) 180)) (** (($ $ (-923)) NIL) (($ $ (-772)) 125)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 69) (($ $ $) 68) (($ |#1| $) 70) (($ $ |#1|) NIL)))
-(((-421 |#1|) (-13 (-559) (-231 |#1|) (-38 |#1|) (-340 |#1|) (-414 |#1|) (-10 -8 (-15 -3317 (|#1| $)) (-15 -3458 ((-567) $)) (-15 -2204 ($ |#1| (-645 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-567)))))) (-15 -3792 ((-645 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-567)))) $)) (-15 -1356 ($ |#1| (-567))) (-15 -3920 ((-645 (-2 (|:| -2706 |#1|) (|:| -3458 (-567)))) $)) (-15 -2453 ($ |#1| (-567))) (-15 -1663 ((-567) $ (-567))) (-15 -4108 (|#1| $ (-567))) (-15 -2915 ((-3 "nil" "sqfr" "irred" "prime") $ (-567))) (-15 -2820 ((-772) $)) (-15 -4388 ($ |#1| (-567))) (-15 -3930 ($ |#1| (-567))) (-15 -3173 ($ |#1| (-567) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3951 (|#1| $)) (-15 -3145 ($ $)) (-15 -3829 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-455)) (-6 (-455)) |%noBranch|) (IF (|has| |#1| (-1024)) (-6 (-1024)) |%noBranch|) (IF (|has| |#1| (-1222)) (-6 (-1222)) |%noBranch|) (IF (|has| |#1| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|) (IF (|has| |#1| (-548)) (PROGN (-15 -1862 ((-112) $)) (-15 -2331 ((-410 (-567)) $)) (-15 -2085 ((-3 (-410 (-567)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-287 $ $)) (-6 (-287 $ $)) |%noBranch|) (IF (|has| |#1| (-310 $)) (-6 (-310 $)) |%noBranch|) (IF (|has| |#1| (-517 (-1178) $)) (-6 (-517 (-1178) $)) |%noBranch|))) (-559)) (T -421))
-((-3829 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-559)) (-5 *1 (-421 *3)))) (-3317 (*1 *2 *1) (-12 (-5 *1 (-421 *2)) (-4 *2 (-559)))) (-3458 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-421 *3)) (-4 *3 (-559)))) (-2204 (*1 *1 *2 *3) (-12 (-5 *3 (-645 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-567))))) (-4 *2 (-559)) (-5 *1 (-421 *2)))) (-3792 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-567))))) (-5 *1 (-421 *3)) (-4 *3 (-559)))) (-1356 (*1 *1 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-421 *2)) (-4 *2 (-559)))) (-3920 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| -2706 *3) (|:| -3458 (-567))))) (-5 *1 (-421 *3)) (-4 *3 (-559)))) (-2453 (*1 *1 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-421 *2)) (-4 *2 (-559)))) (-1663 (*1 *2 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-421 *3)) (-4 *3 (-559)))) (-4108 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *1 (-421 *2)) (-4 *2 (-559)))) (-2915 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-421 *4)) (-4 *4 (-559)))) (-2820 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-421 *3)) (-4 *3 (-559)))) (-4388 (*1 *1 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-421 *2)) (-4 *2 (-559)))) (-3930 (*1 *1 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-421 *2)) (-4 *2 (-559)))) (-3173 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-567)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-421 *2)) (-4 *2 (-559)))) (-3951 (*1 *2 *1) (-12 (-5 *1 (-421 *2)) (-4 *2 (-559)))) (-3145 (*1 *1 *1) (-12 (-5 *1 (-421 *2)) (-4 *2 (-559)))) (-1862 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-421 *3)) (-4 *3 (-548)) (-4 *3 (-559)))) (-2331 (*1 *2 *1) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-421 *3)) (-4 *3 (-548)) (-4 *3 (-559)))) (-2085 (*1 *2 *1) (|partial| -12 (-5 *2 (-410 (-567))) (-5 *1 (-421 *3)) (-4 *3 (-548)) (-4 *3 (-559)))))
-(-13 (-559) (-231 |#1|) (-38 |#1|) (-340 |#1|) (-414 |#1|) (-10 -8 (-15 -3317 (|#1| $)) (-15 -3458 ((-567) $)) (-15 -2204 ($ |#1| (-645 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-567)))))) (-15 -3792 ((-645 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-567)))) $)) (-15 -1356 ($ |#1| (-567))) (-15 -3920 ((-645 (-2 (|:| -2706 |#1|) (|:| -3458 (-567)))) $)) (-15 -2453 ($ |#1| (-567))) (-15 -1663 ((-567) $ (-567))) (-15 -4108 (|#1| $ (-567))) (-15 -2915 ((-3 "nil" "sqfr" "irred" "prime") $ (-567))) (-15 -2820 ((-772) $)) (-15 -4388 ($ |#1| (-567))) (-15 -3930 ($ |#1| (-567))) (-15 -3173 ($ |#1| (-567) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3951 (|#1| $)) (-15 -3145 ($ $)) (-15 -3829 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-455)) (-6 (-455)) |%noBranch|) (IF (|has| |#1| (-1024)) (-6 (-1024)) |%noBranch|) (IF (|has| |#1| (-1222)) (-6 (-1222)) |%noBranch|) (IF (|has| |#1| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|) (IF (|has| |#1| (-548)) (PROGN (-15 -1862 ((-112) $)) (-15 -2331 ((-410 (-567)) $)) (-15 -2085 ((-3 (-410 (-567)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-287 $ $)) (-6 (-287 $ $)) |%noBranch|) (IF (|has| |#1| (-310 $)) (-6 (-310 $)) |%noBranch|) (IF (|has| |#1| (-517 (-1178) $)) (-6 (-517 (-1178) $)) |%noBranch|)))
-((-2298 (((-421 |#1|) (-421 |#1|) (-1 (-421 |#1|) |#1|)) 28)) (-2990 (((-421 |#1|) (-421 |#1|) (-421 |#1|)) 17)))
-(((-422 |#1|) (-10 -7 (-15 -2298 ((-421 |#1|) (-421 |#1|) (-1 (-421 |#1|) |#1|))) (-15 -2990 ((-421 |#1|) (-421 |#1|) (-421 |#1|)))) (-559)) (T -422))
-((-2990 (*1 *2 *2 *2) (-12 (-5 *2 (-421 *3)) (-4 *3 (-559)) (-5 *1 (-422 *3)))) (-2298 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-421 *4) *4)) (-4 *4 (-559)) (-5 *2 (-421 *4)) (-5 *1 (-422 *4)))))
-(-10 -7 (-15 -2298 ((-421 |#1|) (-421 |#1|) (-1 (-421 |#1|) |#1|))) (-15 -2990 ((-421 |#1|) (-421 |#1|) (-421 |#1|))))
-((-2509 ((|#2| |#2|) 183)) (-3538 (((-3 (|:| |%expansion| (-314 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1160)) (|:| |prob| (-1160))))) |#2| (-112)) 60)))
-(((-423 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3538 ((-3 (|:| |%expansion| (-314 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1160)) (|:| |prob| (-1160))))) |#2| (-112))) (-15 -2509 (|#2| |#2|))) (-13 (-455) (-1040 (-567)) (-640 (-567))) (-13 (-27) (-1203) (-433 |#1|)) (-1178) |#2|) (T -423))
-((-2509 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-423 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1203) (-433 *3))) (-14 *4 (-1178)) (-14 *5 *2))) (-3538 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-3 (|:| |%expansion| (-314 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1160)) (|:| |prob| (-1160)))))) (-5 *1 (-423 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1203) (-433 *5))) (-14 *6 (-1178)) (-14 *7 *3))))
-(-10 -7 (-15 -3538 ((-3 (|:| |%expansion| (-314 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1160)) (|:| |prob| (-1160))))) |#2| (-112))) (-15 -2509 (|#2| |#2|)))
-((-3829 ((|#4| (-1 |#3| |#1|) |#2|) 11)))
-(((-424 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3829 (|#4| (-1 |#3| |#1|) |#2|))) (-1051) (-433 |#1|) (-1051) (-433 |#3|)) (T -424))
-((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1051)) (-4 *6 (-1051)) (-4 *2 (-433 *6)) (-5 *1 (-424 *5 *4 *6 *2)) (-4 *4 (-433 *5)))))
-(-10 -7 (-15 -3829 (|#4| (-1 |#3| |#1|) |#2|)))
-((-2509 ((|#2| |#2|) 106)) (-3163 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1160)) (|:| |prob| (-1160))))) |#2| (-112) (-1160)) 52)) (-2434 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1160)) (|:| |prob| (-1160))))) |#2| (-112) (-1160)) 171)))
-(((-425 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3163 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1160)) (|:| |prob| (-1160))))) |#2| (-112) (-1160))) (-15 -2434 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1160)) (|:| |prob| (-1160))))) |#2| (-112) (-1160))) (-15 -2509 (|#2| |#2|))) (-13 (-455) (-1040 (-567)) (-640 (-567))) (-13 (-27) (-1203) (-433 |#1|) (-10 -8 (-15 -4132 ($ |#3|)))) (-849) (-13 (-1246 |#2| |#3|) (-365) (-1203) (-10 -8 (-15 -1593 ($ $)) (-15 -2416 ($ $)))) (-985 |#4|) (-1178)) (T -425))
-((-2509 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-4 *2 (-13 (-27) (-1203) (-433 *3) (-10 -8 (-15 -4132 ($ *4))))) (-4 *4 (-849)) (-4 *5 (-13 (-1246 *2 *4) (-365) (-1203) (-10 -8 (-15 -1593 ($ $)) (-15 -2416 ($ $))))) (-5 *1 (-425 *3 *2 *4 *5 *6 *7)) (-4 *6 (-985 *5)) (-14 *7 (-1178)))) (-2434 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-4 *3 (-13 (-27) (-1203) (-433 *6) (-10 -8 (-15 -4132 ($ *7))))) (-4 *7 (-849)) (-4 *8 (-13 (-1246 *3 *7) (-365) (-1203) (-10 -8 (-15 -1593 ($ $)) (-15 -2416 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1160)) (|:| |prob| (-1160)))))) (-5 *1 (-425 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1160)) (-4 *9 (-985 *8)) (-14 *10 (-1178)))) (-3163 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-4 *3 (-13 (-27) (-1203) (-433 *6) (-10 -8 (-15 -4132 ($ *7))))) (-4 *7 (-849)) (-4 *8 (-13 (-1246 *3 *7) (-365) (-1203) (-10 -8 (-15 -1593 ($ $)) (-15 -2416 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1160)) (|:| |prob| (-1160)))))) (-5 *1 (-425 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1160)) (-4 *9 (-985 *8)) (-14 *10 (-1178)))))
-(-10 -7 (-15 -3163 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1160)) (|:| |prob| (-1160))))) |#2| (-112) (-1160))) (-15 -2434 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1160)) (|:| |prob| (-1160))))) |#2| (-112) (-1160))) (-15 -2509 (|#2| |#2|)))
-((-2788 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-2477 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-3829 ((|#4| (-1 |#3| |#1|) |#2|) 17)))
-(((-426 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3829 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2477 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2788 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1102) (-428 |#1|) (-1102) (-428 |#3|)) (T -426))
-((-2788 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1102)) (-4 *5 (-1102)) (-4 *2 (-428 *5)) (-5 *1 (-426 *6 *4 *5 *2)) (-4 *4 (-428 *6)))) (-2477 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1102)) (-4 *2 (-1102)) (-5 *1 (-426 *5 *4 *2 *6)) (-4 *4 (-428 *5)) (-4 *6 (-428 *2)))) (-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *2 (-428 *6)) (-5 *1 (-426 *5 *4 *6 *2)) (-4 *4 (-428 *5)))))
-(-10 -7 (-15 -3829 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2477 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2788 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
-((-3533 (($) 52)) (-4244 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 46)) (-4287 (($ $ $) 45)) (-2493 (((-112) $ $) 34)) (-2375 (((-772)) 56)) (-4155 (($ (-645 |#2|)) 23) (($) NIL)) (-1348 (($) 67)) (-2548 (((-112) $ $) 15)) (-1354 ((|#2| $) 78)) (-2981 ((|#2| $) 76)) (-4249 (((-923) $) 71)) (-2370 (($ $ $) 41)) (-3768 (($ (-923)) 61)) (-4071 (($ $ |#2|) NIL) (($ $ $) 44)) (-3439 (((-772) (-1 (-112) |#2|) $) NIL) (((-772) |#2| $) 31)) (-4147 (($ (-645 |#2|)) 27)) (-2099 (($ $) 54)) (-4132 (((-863) $) 39)) (-1480 (((-772) $) 24)) (-2772 (($ (-645 |#2|)) 22) (($) NIL)) (-2936 (((-112) $ $) 19)))
-(((-427 |#1| |#2|) (-10 -8 (-15 -2375 ((-772))) (-15 -3768 (|#1| (-923))) (-15 -4249 ((-923) |#1|)) (-15 -1348 (|#1|)) (-15 -1354 (|#2| |#1|)) (-15 -2981 (|#2| |#1|)) (-15 -3533 (|#1|)) (-15 -2099 (|#1| |#1|)) (-15 -1480 ((-772) |#1|)) (-15 -2936 ((-112) |#1| |#1|)) (-15 -4132 ((-863) |#1|)) (-15 -2548 ((-112) |#1| |#1|)) (-15 -2772 (|#1|)) (-15 -2772 (|#1| (-645 |#2|))) (-15 -4155 (|#1|)) (-15 -4155 (|#1| (-645 |#2|))) (-15 -2370 (|#1| |#1| |#1|)) (-15 -4071 (|#1| |#1| |#1|)) (-15 -4071 (|#1| |#1| |#2|)) (-15 -4287 (|#1| |#1| |#1|)) (-15 -2493 ((-112) |#1| |#1|)) (-15 -4244 (|#1| |#1| |#1|)) (-15 -4244 (|#1| |#1| |#2|)) (-15 -4244 (|#1| |#2| |#1|)) (-15 -4147 (|#1| (-645 |#2|))) (-15 -3439 ((-772) |#2| |#1|)) (-15 -3439 ((-772) (-1 (-112) |#2|) |#1|))) (-428 |#2|) (-1102)) (T -427))
-((-2375 (*1 *2) (-12 (-4 *4 (-1102)) (-5 *2 (-772)) (-5 *1 (-427 *3 *4)) (-4 *3 (-428 *4)))))
-(-10 -8 (-15 -2375 ((-772))) (-15 -3768 (|#1| (-923))) (-15 -4249 ((-923) |#1|)) (-15 -1348 (|#1|)) (-15 -1354 (|#2| |#1|)) (-15 -2981 (|#2| |#1|)) (-15 -3533 (|#1|)) (-15 -2099 (|#1| |#1|)) (-15 -1480 ((-772) |#1|)) (-15 -2936 ((-112) |#1| |#1|)) (-15 -4132 ((-863) |#1|)) (-15 -2548 ((-112) |#1| |#1|)) (-15 -2772 (|#1|)) (-15 -2772 (|#1| (-645 |#2|))) (-15 -4155 (|#1|)) (-15 -4155 (|#1| (-645 |#2|))) (-15 -2370 (|#1| |#1| |#1|)) (-15 -4071 (|#1| |#1| |#1|)) (-15 -4071 (|#1| |#1| |#2|)) (-15 -4287 (|#1| |#1| |#1|)) (-15 -2493 ((-112) |#1| |#1|)) (-15 -4244 (|#1| |#1| |#1|)) (-15 -4244 (|#1| |#1| |#2|)) (-15 -4244 (|#1| |#2| |#1|)) (-15 -4147 (|#1| (-645 |#2|))) (-15 -3439 ((-772) |#2| |#1|)) (-15 -3439 ((-772) (-1 (-112) |#2|) |#1|)))
-((-2403 (((-112) $ $) 19)) (-3533 (($) 68 (|has| |#1| (-370)))) (-4244 (($ |#1| $) 83) (($ $ |#1|) 82) (($ $ $) 81)) (-4287 (($ $ $) 79)) (-2493 (((-112) $ $) 80)) (-3445 (((-112) $ (-772)) 8)) (-2375 (((-772)) 62 (|has| |#1| (-370)))) (-4155 (($ (-645 |#1|)) 75) (($) 74)) (-2839 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4418)))) (-3350 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4418)))) (-2585 (($) 7 T CONST)) (-2444 (($ $) 59 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-2539 (($ |#1| $) 48 (|has| $ (-6 -4418))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4418)))) (-3238 (($ |#1| $) 58 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4418)))) (-2477 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4418)))) (-1348 (($) 65 (|has| |#1| (-370)))) (-2777 (((-645 |#1|) $) 31 (|has| $ (-6 -4418)))) (-2548 (((-112) $ $) 71)) (-2077 (((-112) $ (-772)) 9)) (-1354 ((|#1| $) 66 (|has| |#1| (-851)))) (-2279 (((-645 |#1|) $) 30 (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-2981 ((|#1| $) 67 (|has| |#1| (-851)))) (-3731 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) 36)) (-4249 (((-923) $) 64 (|has| |#1| (-370)))) (-2863 (((-112) $ (-772)) 10)) (-1419 (((-1160) $) 22)) (-2370 (($ $ $) 76)) (-1566 ((|#1| $) 40)) (-2531 (($ |#1| $) 41)) (-3768 (($ (-923)) 63 (|has| |#1| (-370)))) (-3430 (((-1122) $) 21)) (-4128 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1793 ((|#1| $) 42)) (-3025 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) 14)) (-3572 (((-112) $) 11)) (-3498 (($) 12)) (-4071 (($ $ |#1|) 78) (($ $ $) 77)) (-2718 (($) 50) (($ (-645 |#1|)) 49)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4418))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-4305 (($ $) 13)) (-3893 (((-539) $) 60 (|has| |#1| (-615 (-539))))) (-4147 (($ (-645 |#1|)) 51)) (-2099 (($ $) 69 (|has| |#1| (-370)))) (-4132 (((-863) $) 18)) (-1480 (((-772) $) 70)) (-2772 (($ (-645 |#1|)) 73) (($) 72)) (-1745 (((-112) $ $) 23)) (-3551 (($ (-645 |#1|)) 43)) (-1853 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 20)) (-2414 (((-772) $) 6 (|has| $ (-6 -4418)))))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) 60)) (-2802 (($ $) 78)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) 191)) (-4287 (($ $) NIL)) (-2286 (((-112) $) 48)) (-4369 ((|#1| $) 16)) (-2376 (((-3 $ "failed") $ $) NIL)) (-3659 (($ $) NIL (|has| |#1| (-1223)))) (-3597 (((-421 $) $) NIL (|has| |#1| (-1223)))) (-1908 (($ |#1| (-567)) 42)) (-3647 (($) NIL T CONST)) (-3765 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) 148)) (-2051 (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) 74)) (-3588 (((-3 $ "failed") $) 164)) (-1605 (((-3 (-410 (-567)) "failed") $) 84 (|has| |#1| (-548)))) (-2492 (((-112) $) 80 (|has| |#1| (-548)))) (-2778 (((-410 (-567)) $) 91 (|has| |#1| (-548)))) (-3718 (($ |#1| (-567)) 44)) (-3502 (((-112) $) 213 (|has| |#1| (-1223)))) (-4346 (((-112) $) 62)) (-1509 (((-772) $) 51)) (-3191 (((-3 "nil" "sqfr" "irred" "prime") $ (-567)) 175)) (-4152 ((|#1| $ (-567)) 174)) (-3942 (((-567) $ (-567)) 173)) (-1369 (($ |#1| (-567)) 41)) (-3841 (($ (-1 |#1| |#1|) $) 183)) (-3546 (($ |#1| (-645 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-567))))) 79)) (-2751 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-2516 (((-1161) $) NIL)) (-1357 (($ |#1| (-567)) 43)) (-3437 (((-1122) $) NIL)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| |#1| (-455)))) (-2785 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) 192 (|has| |#1| (-455)))) (-1978 (($ |#1| (-567) (-3 "nil" "sqfr" "irred" "prime")) 40)) (-2158 (((-645 (-2 (|:| -2717 |#1|) (|:| -3468 (-567)))) $) 73)) (-1535 (((-645 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-567)))) $) 12)) (-2717 (((-421 $) $) NIL (|has| |#1| (-1223)))) (-2400 (((-3 $ "failed") $ $) 176)) (-3468 (((-567) $) 167)) (-3326 ((|#1| $) 75)) (-2642 (($ $ (-645 |#1|) (-645 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ (-645 (-295 |#1|))) 100 (|has| |#1| (-310 |#1|))) (($ $ (-645 (-1179)) (-645 |#1|)) 106 (|has| |#1| (-517 (-1179) |#1|))) (($ $ (-1179) |#1|) NIL (|has| |#1| (-517 (-1179) |#1|))) (($ $ (-1179) $) NIL (|has| |#1| (-517 (-1179) $))) (($ $ (-645 (-1179)) (-645 $)) 107 (|has| |#1| (-517 (-1179) $))) (($ $ (-645 (-295 $))) 103 (|has| |#1| (-310 $))) (($ $ (-295 $)) NIL (|has| |#1| (-310 $))) (($ $ $ $) NIL (|has| |#1| (-310 $))) (($ $ (-645 $) (-645 $)) NIL (|has| |#1| (-310 $)))) (-1801 (($ $ |#1|) 92 (|has| |#1| (-287 |#1| |#1|))) (($ $ $) 93 (|has| |#1| (-287 $ $)))) (-1616 (($ $) NIL (|has| |#1| (-233))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $ (-1179)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) 182)) (-3902 (((-539) $) 39 (|has| |#1| (-615 (-539)))) (((-381) $) 113 (|has| |#1| (-1024))) (((-225) $) 119 (|has| |#1| (-1024)))) (-4129 (((-863) $) 146) (($ (-567)) 65) (($ $) NIL) (($ |#1|) 64) (($ (-410 (-567))) NIL (|has| |#1| (-1040 (-410 (-567)))))) (-2746 (((-772)) 67 T CONST)) (-3357 (((-112) $ $) NIL)) (-3731 (((-112) $ $) NIL)) (-1733 (($) 53 T CONST)) (-1744 (($) 52 T CONST)) (-2647 (($ $) NIL (|has| |#1| (-233))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $ (-1179)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2946 (((-112) $ $) 159)) (-3053 (($ $) 161) (($ $ $) NIL)) (-3041 (($ $ $) 180)) (** (($ $ (-923)) NIL) (($ $ (-772)) 125)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 69) (($ $ $) 68) (($ |#1| $) 70) (($ $ |#1|) NIL)))
+(((-421 |#1|) (-13 (-559) (-231 |#1|) (-38 |#1|) (-340 |#1|) (-414 |#1|) (-10 -8 (-15 -3326 (|#1| $)) (-15 -3468 ((-567) $)) (-15 -3546 ($ |#1| (-645 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-567)))))) (-15 -1535 ((-645 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-567)))) $)) (-15 -1369 ($ |#1| (-567))) (-15 -2158 ((-645 (-2 (|:| -2717 |#1|) (|:| -3468 (-567)))) $)) (-15 -1357 ($ |#1| (-567))) (-15 -3942 ((-567) $ (-567))) (-15 -4152 (|#1| $ (-567))) (-15 -3191 ((-3 "nil" "sqfr" "irred" "prime") $ (-567))) (-15 -1509 ((-772) $)) (-15 -3718 ($ |#1| (-567))) (-15 -1908 ($ |#1| (-567))) (-15 -1978 ($ |#1| (-567) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -4369 (|#1| $)) (-15 -2802 ($ $)) (-15 -3841 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-455)) (-6 (-455)) |%noBranch|) (IF (|has| |#1| (-1024)) (-6 (-1024)) |%noBranch|) (IF (|has| |#1| (-1223)) (-6 (-1223)) |%noBranch|) (IF (|has| |#1| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|) (IF (|has| |#1| (-548)) (PROGN (-15 -2492 ((-112) $)) (-15 -2778 ((-410 (-567)) $)) (-15 -1605 ((-3 (-410 (-567)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-287 $ $)) (-6 (-287 $ $)) |%noBranch|) (IF (|has| |#1| (-310 $)) (-6 (-310 $)) |%noBranch|) (IF (|has| |#1| (-517 (-1179) $)) (-6 (-517 (-1179) $)) |%noBranch|))) (-559)) (T -421))
+((-3841 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-559)) (-5 *1 (-421 *3)))) (-3326 (*1 *2 *1) (-12 (-5 *1 (-421 *2)) (-4 *2 (-559)))) (-3468 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-421 *3)) (-4 *3 (-559)))) (-3546 (*1 *1 *2 *3) (-12 (-5 *3 (-645 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-567))))) (-4 *2 (-559)) (-5 *1 (-421 *2)))) (-1535 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-567))))) (-5 *1 (-421 *3)) (-4 *3 (-559)))) (-1369 (*1 *1 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-421 *2)) (-4 *2 (-559)))) (-2158 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| -2717 *3) (|:| -3468 (-567))))) (-5 *1 (-421 *3)) (-4 *3 (-559)))) (-1357 (*1 *1 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-421 *2)) (-4 *2 (-559)))) (-3942 (*1 *2 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-421 *3)) (-4 *3 (-559)))) (-4152 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *1 (-421 *2)) (-4 *2 (-559)))) (-3191 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-421 *4)) (-4 *4 (-559)))) (-1509 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-421 *3)) (-4 *3 (-559)))) (-3718 (*1 *1 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-421 *2)) (-4 *2 (-559)))) (-1908 (*1 *1 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-421 *2)) (-4 *2 (-559)))) (-1978 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-567)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-421 *2)) (-4 *2 (-559)))) (-4369 (*1 *2 *1) (-12 (-5 *1 (-421 *2)) (-4 *2 (-559)))) (-2802 (*1 *1 *1) (-12 (-5 *1 (-421 *2)) (-4 *2 (-559)))) (-2492 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-421 *3)) (-4 *3 (-548)) (-4 *3 (-559)))) (-2778 (*1 *2 *1) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-421 *3)) (-4 *3 (-548)) (-4 *3 (-559)))) (-1605 (*1 *2 *1) (|partial| -12 (-5 *2 (-410 (-567))) (-5 *1 (-421 *3)) (-4 *3 (-548)) (-4 *3 (-559)))))
+(-13 (-559) (-231 |#1|) (-38 |#1|) (-340 |#1|) (-414 |#1|) (-10 -8 (-15 -3326 (|#1| $)) (-15 -3468 ((-567) $)) (-15 -3546 ($ |#1| (-645 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-567)))))) (-15 -1535 ((-645 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-567)))) $)) (-15 -1369 ($ |#1| (-567))) (-15 -2158 ((-645 (-2 (|:| -2717 |#1|) (|:| -3468 (-567)))) $)) (-15 -1357 ($ |#1| (-567))) (-15 -3942 ((-567) $ (-567))) (-15 -4152 (|#1| $ (-567))) (-15 -3191 ((-3 "nil" "sqfr" "irred" "prime") $ (-567))) (-15 -1509 ((-772) $)) (-15 -3718 ($ |#1| (-567))) (-15 -1908 ($ |#1| (-567))) (-15 -1978 ($ |#1| (-567) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -4369 (|#1| $)) (-15 -2802 ($ $)) (-15 -3841 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-455)) (-6 (-455)) |%noBranch|) (IF (|has| |#1| (-1024)) (-6 (-1024)) |%noBranch|) (IF (|has| |#1| (-1223)) (-6 (-1223)) |%noBranch|) (IF (|has| |#1| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|) (IF (|has| |#1| (-548)) (PROGN (-15 -2492 ((-112) $)) (-15 -2778 ((-410 (-567)) $)) (-15 -1605 ((-3 (-410 (-567)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-287 $ $)) (-6 (-287 $ $)) |%noBranch|) (IF (|has| |#1| (-310 $)) (-6 (-310 $)) |%noBranch|) (IF (|has| |#1| (-517 (-1179) $)) (-6 (-517 (-1179) $)) |%noBranch|)))
+((-2013 (((-421 |#1|) (-421 |#1|) (-1 (-421 |#1|) |#1|)) 28)) (-1878 (((-421 |#1|) (-421 |#1|) (-421 |#1|)) 17)))
+(((-422 |#1|) (-10 -7 (-15 -2013 ((-421 |#1|) (-421 |#1|) (-1 (-421 |#1|) |#1|))) (-15 -1878 ((-421 |#1|) (-421 |#1|) (-421 |#1|)))) (-559)) (T -422))
+((-1878 (*1 *2 *2 *2) (-12 (-5 *2 (-421 *3)) (-4 *3 (-559)) (-5 *1 (-422 *3)))) (-2013 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-421 *4) *4)) (-4 *4 (-559)) (-5 *2 (-421 *4)) (-5 *1 (-422 *4)))))
+(-10 -7 (-15 -2013 ((-421 |#1|) (-421 |#1|) (-1 (-421 |#1|) |#1|))) (-15 -1878 ((-421 |#1|) (-421 |#1|) (-421 |#1|))))
+((-2122 ((|#2| |#2|) 183)) (-3257 (((-3 (|:| |%expansion| (-314 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1161)) (|:| |prob| (-1161))))) |#2| (-112)) 60)))
+(((-423 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3257 ((-3 (|:| |%expansion| (-314 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1161)) (|:| |prob| (-1161))))) |#2| (-112))) (-15 -2122 (|#2| |#2|))) (-13 (-455) (-1040 (-567)) (-640 (-567))) (-13 (-27) (-1204) (-433 |#1|)) (-1179) |#2|) (T -423))
+((-2122 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-423 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1204) (-433 *3))) (-14 *4 (-1179)) (-14 *5 *2))) (-3257 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-3 (|:| |%expansion| (-314 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1161)) (|:| |prob| (-1161)))))) (-5 *1 (-423 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1204) (-433 *5))) (-14 *6 (-1179)) (-14 *7 *3))))
+(-10 -7 (-15 -3257 ((-3 (|:| |%expansion| (-314 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1161)) (|:| |prob| (-1161))))) |#2| (-112))) (-15 -2122 (|#2| |#2|)))
+((-3841 ((|#4| (-1 |#3| |#1|) |#2|) 11)))
+(((-424 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3841 (|#4| (-1 |#3| |#1|) |#2|))) (-1051) (-433 |#1|) (-1051) (-433 |#3|)) (T -424))
+((-3841 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1051)) (-4 *6 (-1051)) (-4 *2 (-433 *6)) (-5 *1 (-424 *5 *4 *6 *2)) (-4 *4 (-433 *5)))))
+(-10 -7 (-15 -3841 (|#4| (-1 |#3| |#1|) |#2|)))
+((-2122 ((|#2| |#2|) 106)) (-1701 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1161)) (|:| |prob| (-1161))))) |#2| (-112) (-1161)) 52)) (-3453 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1161)) (|:| |prob| (-1161))))) |#2| (-112) (-1161)) 171)))
+(((-425 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1701 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1161)) (|:| |prob| (-1161))))) |#2| (-112) (-1161))) (-15 -3453 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1161)) (|:| |prob| (-1161))))) |#2| (-112) (-1161))) (-15 -2122 (|#2| |#2|))) (-13 (-455) (-1040 (-567)) (-640 (-567))) (-13 (-27) (-1204) (-433 |#1|) (-10 -8 (-15 -4129 ($ |#3|)))) (-849) (-13 (-1247 |#2| |#3|) (-365) (-1204) (-10 -8 (-15 -1616 ($ $)) (-15 -4083 ($ $)))) (-985 |#4|) (-1179)) (T -425))
+((-2122 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-4 *2 (-13 (-27) (-1204) (-433 *3) (-10 -8 (-15 -4129 ($ *4))))) (-4 *4 (-849)) (-4 *5 (-13 (-1247 *2 *4) (-365) (-1204) (-10 -8 (-15 -1616 ($ $)) (-15 -4083 ($ $))))) (-5 *1 (-425 *3 *2 *4 *5 *6 *7)) (-4 *6 (-985 *5)) (-14 *7 (-1179)))) (-3453 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-4 *3 (-13 (-27) (-1204) (-433 *6) (-10 -8 (-15 -4129 ($ *7))))) (-4 *7 (-849)) (-4 *8 (-13 (-1247 *3 *7) (-365) (-1204) (-10 -8 (-15 -1616 ($ $)) (-15 -4083 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1161)) (|:| |prob| (-1161)))))) (-5 *1 (-425 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1161)) (-4 *9 (-985 *8)) (-14 *10 (-1179)))) (-1701 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-4 *3 (-13 (-27) (-1204) (-433 *6) (-10 -8 (-15 -4129 ($ *7))))) (-4 *7 (-849)) (-4 *8 (-13 (-1247 *3 *7) (-365) (-1204) (-10 -8 (-15 -1616 ($ $)) (-15 -4083 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1161)) (|:| |prob| (-1161)))))) (-5 *1 (-425 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1161)) (-4 *9 (-985 *8)) (-14 *10 (-1179)))))
+(-10 -7 (-15 -1701 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1161)) (|:| |prob| (-1161))))) |#2| (-112) (-1161))) (-15 -3453 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1161)) (|:| |prob| (-1161))))) |#2| (-112) (-1161))) (-15 -2122 (|#2| |#2|)))
+((-3400 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-2494 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-3841 ((|#4| (-1 |#3| |#1|) |#2|) 17)))
+(((-426 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3841 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2494 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3400 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1102) (-428 |#1|) (-1102) (-428 |#3|)) (T -426))
+((-3400 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1102)) (-4 *5 (-1102)) (-4 *2 (-428 *5)) (-5 *1 (-426 *6 *4 *5 *2)) (-4 *4 (-428 *6)))) (-2494 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1102)) (-4 *2 (-1102)) (-5 *1 (-426 *5 *4 *2 *6)) (-4 *4 (-428 *5)) (-4 *6 (-428 *2)))) (-3841 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *2 (-428 *6)) (-5 *1 (-426 *5 *4 *6 *2)) (-4 *4 (-428 *5)))))
+(-10 -7 (-15 -3841 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2494 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3400 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
+((-3950 (($) 52)) (-4244 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 46)) (-2148 (($ $ $) 45)) (-1951 (((-112) $ $) 34)) (-2384 (((-772)) 56)) (-4155 (($ (-645 |#2|)) 23) (($) NIL)) (-1359 (($) 67)) (-3862 (((-112) $ $) 15)) (-1365 ((|#2| $) 78)) (-3002 ((|#2| $) 76)) (-3474 (((-923) $) 71)) (-3660 (($ $ $) 41)) (-3779 (($ (-923)) 61)) (-4117 (($ $ |#2|) NIL) (($ $ $) 44)) (-3447 (((-772) (-1 (-112) |#2|) $) NIL) (((-772) |#2| $) 31)) (-4145 (($ (-645 |#2|)) 27)) (-3364 (($ $) 54)) (-4129 (((-863) $) 39)) (-1791 (((-772) $) 24)) (-2782 (($ (-645 |#2|)) 22) (($) NIL)) (-2946 (((-112) $ $) 19)))
+(((-427 |#1| |#2|) (-10 -8 (-15 -2384 ((-772))) (-15 -3779 (|#1| (-923))) (-15 -3474 ((-923) |#1|)) (-15 -1359 (|#1|)) (-15 -1365 (|#2| |#1|)) (-15 -3002 (|#2| |#1|)) (-15 -3950 (|#1|)) (-15 -3364 (|#1| |#1|)) (-15 -1791 ((-772) |#1|)) (-15 -2946 ((-112) |#1| |#1|)) (-15 -4129 ((-863) |#1|)) (-15 -3862 ((-112) |#1| |#1|)) (-15 -2782 (|#1|)) (-15 -2782 (|#1| (-645 |#2|))) (-15 -4155 (|#1|)) (-15 -4155 (|#1| (-645 |#2|))) (-15 -3660 (|#1| |#1| |#1|)) (-15 -4117 (|#1| |#1| |#1|)) (-15 -4117 (|#1| |#1| |#2|)) (-15 -2148 (|#1| |#1| |#1|)) (-15 -1951 ((-112) |#1| |#1|)) (-15 -4244 (|#1| |#1| |#1|)) (-15 -4244 (|#1| |#1| |#2|)) (-15 -4244 (|#1| |#2| |#1|)) (-15 -4145 (|#1| (-645 |#2|))) (-15 -3447 ((-772) |#2| |#1|)) (-15 -3447 ((-772) (-1 (-112) |#2|) |#1|))) (-428 |#2|) (-1102)) (T -427))
+((-2384 (*1 *2) (-12 (-4 *4 (-1102)) (-5 *2 (-772)) (-5 *1 (-427 *3 *4)) (-4 *3 (-428 *4)))))
+(-10 -8 (-15 -2384 ((-772))) (-15 -3779 (|#1| (-923))) (-15 -3474 ((-923) |#1|)) (-15 -1359 (|#1|)) (-15 -1365 (|#2| |#1|)) (-15 -3002 (|#2| |#1|)) (-15 -3950 (|#1|)) (-15 -3364 (|#1| |#1|)) (-15 -1791 ((-772) |#1|)) (-15 -2946 ((-112) |#1| |#1|)) (-15 -4129 ((-863) |#1|)) (-15 -3862 ((-112) |#1| |#1|)) (-15 -2782 (|#1|)) (-15 -2782 (|#1| (-645 |#2|))) (-15 -4155 (|#1|)) (-15 -4155 (|#1| (-645 |#2|))) (-15 -3660 (|#1| |#1| |#1|)) (-15 -4117 (|#1| |#1| |#1|)) (-15 -4117 (|#1| |#1| |#2|)) (-15 -2148 (|#1| |#1| |#1|)) (-15 -1951 ((-112) |#1| |#1|)) (-15 -4244 (|#1| |#1| |#1|)) (-15 -4244 (|#1| |#1| |#2|)) (-15 -4244 (|#1| |#2| |#1|)) (-15 -4145 (|#1| (-645 |#2|))) (-15 -3447 ((-772) |#2| |#1|)) (-15 -3447 ((-772) (-1 (-112) |#2|) |#1|)))
+((-2412 (((-112) $ $) 19)) (-3950 (($) 68 (|has| |#1| (-370)))) (-4244 (($ |#1| $) 83) (($ $ |#1|) 82) (($ $ $) 81)) (-2148 (($ $ $) 79)) (-1951 (((-112) $ $) 80)) (-1563 (((-112) $ (-772)) 8)) (-2384 (((-772)) 62 (|has| |#1| (-370)))) (-4155 (($ (-645 |#1|)) 75) (($) 74)) (-1494 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4422)))) (-3356 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4422)))) (-3647 (($) 7 T CONST)) (-2453 (($ $) 59 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-2247 (($ |#1| $) 48 (|has| $ (-6 -4422))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4422)))) (-3246 (($ |#1| $) 58 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4422)))) (-2494 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4422)))) (-1359 (($) 65 (|has| |#1| (-370)))) (-2799 (((-645 |#1|) $) 31 (|has| $ (-6 -4422)))) (-3862 (((-112) $ $) 71)) (-4093 (((-112) $ (-772)) 9)) (-1365 ((|#1| $) 66 (|has| |#1| (-851)))) (-1942 (((-645 |#1|) $) 30 (|has| $ (-6 -4422)))) (-3237 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-3002 ((|#1| $) 67 (|has| |#1| (-851)))) (-3751 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#1| |#1|) $) 36)) (-3474 (((-923) $) 64 (|has| |#1| (-370)))) (-1986 (((-112) $ (-772)) 10)) (-2516 (((-1161) $) 22)) (-3660 (($ $ $) 76)) (-2706 ((|#1| $) 40)) (-2646 (($ |#1| $) 41)) (-3779 (($ (-923)) 63 (|has| |#1| (-370)))) (-3437 (((-1122) $) 21)) (-3196 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3949 ((|#1| $) 42)) (-4233 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3875 (((-112) $ $) 14)) (-3885 (((-112) $) 11)) (-2701 (($) 12)) (-4117 (($ $ |#1|) 78) (($ $ $) 77)) (-4106 (($) 50) (($ (-645 |#1|)) 49)) (-3447 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4422))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-4309 (($ $) 13)) (-3902 (((-539) $) 60 (|has| |#1| (-615 (-539))))) (-4145 (($ (-645 |#1|)) 51)) (-3364 (($ $) 69 (|has| |#1| (-370)))) (-4129 (((-863) $) 18)) (-1791 (((-772) $) 70)) (-2782 (($ (-645 |#1|)) 73) (($) 72)) (-3357 (((-112) $ $) 23)) (-3700 (($ (-645 |#1|)) 43)) (-3436 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4422)))) (-2946 (((-112) $ $) 20)) (-2423 (((-772) $) 6 (|has| $ (-6 -4422)))))
(((-428 |#1|) (-140) (-1102)) (T -428))
-((-1480 (*1 *2 *1) (-12 (-4 *1 (-428 *3)) (-4 *3 (-1102)) (-5 *2 (-772)))) (-2099 (*1 *1 *1) (-12 (-4 *1 (-428 *2)) (-4 *2 (-1102)) (-4 *2 (-370)))) (-3533 (*1 *1) (-12 (-4 *1 (-428 *2)) (-4 *2 (-370)) (-4 *2 (-1102)))) (-2981 (*1 *2 *1) (-12 (-4 *1 (-428 *2)) (-4 *2 (-1102)) (-4 *2 (-851)))) (-1354 (*1 *2 *1) (-12 (-4 *1 (-428 *2)) (-4 *2 (-1102)) (-4 *2 (-851)))))
-(-13 (-229 |t#1|) (-1100 |t#1|) (-10 -8 (-6 -4418) (-15 -1480 ((-772) $)) (IF (|has| |t#1| (-370)) (PROGN (-6 (-370)) (-15 -2099 ($ $)) (-15 -3533 ($))) |%noBranch|) (IF (|has| |t#1| (-851)) (PROGN (-15 -2981 (|t#1| $)) (-15 -1354 (|t#1| $))) |%noBranch|)))
-(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-614 (-863)) . T) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-229 |#1|) . T) ((-235 |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-370) |has| |#1| (-370)) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-1100 |#1|) . T) ((-1102) . T) ((-1218) . T))
-((-2621 (((-588 |#2|) |#2| (-1178)) 36)) (-3089 (((-588 |#2|) |#2| (-1178)) 21)) (-4393 ((|#2| |#2| (-1178)) 26)))
-(((-429 |#1| |#2|) (-10 -7 (-15 -3089 ((-588 |#2|) |#2| (-1178))) (-15 -2621 ((-588 |#2|) |#2| (-1178))) (-15 -4393 (|#2| |#2| (-1178)))) (-13 (-308) (-147) (-1040 (-567)) (-640 (-567))) (-13 (-1203) (-29 |#1|))) (T -429))
-((-4393 (*1 *2 *2 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-429 *4 *2)) (-4 *2 (-13 (-1203) (-29 *4))))) (-2621 (*1 *2 *3 *4) (-12 (-5 *4 (-1178)) (-4 *5 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-588 *3)) (-5 *1 (-429 *5 *3)) (-4 *3 (-13 (-1203) (-29 *5))))) (-3089 (*1 *2 *3 *4) (-12 (-5 *4 (-1178)) (-4 *5 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-588 *3)) (-5 *1 (-429 *5 *3)) (-4 *3 (-13 (-1203) (-29 *5))))))
-(-10 -7 (-15 -3089 ((-588 |#2|) |#2| (-1178))) (-15 -2621 ((-588 |#2|) |#2| (-1178))) (-15 -4393 (|#2| |#2| (-1178))))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2585 (($) NIL T CONST)) (-2109 (((-3 $ "failed") $) NIL)) (-1433 (((-112) $) NIL)) (-1960 (($ |#2| |#1|) 37)) (-2753 (($ |#2| |#1|) 35)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) NIL) (($ (-332 |#2|)) 25)) (-4221 (((-772)) NIL T CONST)) (-1745 (((-112) $ $) NIL)) (-1716 (($) 10 T CONST)) (-1728 (($) 16 T CONST)) (-2936 (((-112) $ $) NIL)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) 36)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 39) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-430 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4405)) (IF (|has| |#1| (-6 -4405)) (-6 -4405) |%noBranch|) |%noBranch|) (-15 -4132 ($ |#1|)) (-15 -4132 ($ (-332 |#2|))) (-15 -1960 ($ |#2| |#1|)) (-15 -2753 ($ |#2| |#1|)))) (-13 (-172) (-38 (-410 (-567)))) (-13 (-851) (-21))) (T -430))
-((-4132 (*1 *1 *2) (-12 (-5 *1 (-430 *2 *3)) (-4 *2 (-13 (-172) (-38 (-410 (-567))))) (-4 *3 (-13 (-851) (-21))))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-332 *4)) (-4 *4 (-13 (-851) (-21))) (-5 *1 (-430 *3 *4)) (-4 *3 (-13 (-172) (-38 (-410 (-567))))))) (-1960 (*1 *1 *2 *3) (-12 (-5 *1 (-430 *3 *2)) (-4 *3 (-13 (-172) (-38 (-410 (-567))))) (-4 *2 (-13 (-851) (-21))))) (-2753 (*1 *1 *2 *3) (-12 (-5 *1 (-430 *3 *2)) (-4 *3 (-13 (-172) (-38 (-410 (-567))))) (-4 *2 (-13 (-851) (-21))))))
-(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4405)) (IF (|has| |#1| (-6 -4405)) (-6 -4405) |%noBranch|) |%noBranch|) (-15 -4132 ($ |#1|)) (-15 -4132 ($ (-332 |#2|))) (-15 -1960 ($ |#2| |#1|)) (-15 -2753 ($ |#2| |#1|))))
-((-2416 (((-3 |#2| (-645 |#2|)) |#2| (-1178)) 115)))
-(((-431 |#1| |#2|) (-10 -7 (-15 -2416 ((-3 |#2| (-645 |#2|)) |#2| (-1178)))) (-13 (-308) (-147) (-1040 (-567)) (-640 (-567))) (-13 (-1203) (-961) (-29 |#1|))) (T -431))
-((-2416 (*1 *2 *3 *4) (-12 (-5 *4 (-1178)) (-4 *5 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-3 *3 (-645 *3))) (-5 *1 (-431 *5 *3)) (-4 *3 (-13 (-1203) (-961) (-29 *5))))))
-(-10 -7 (-15 -2416 ((-3 |#2| (-645 |#2|)) |#2| (-1178))))
-((-2847 (((-645 (-1178)) $) 81)) (-2675 (((-410 (-1174 $)) $ (-613 $)) 314)) (-2960 (($ $ (-295 $)) NIL) (($ $ (-645 (-295 $))) NIL) (($ $ (-645 (-613 $)) (-645 $)) 278)) (-3753 (((-3 (-613 $) "failed") $) NIL) (((-3 (-1178) "failed") $) 84) (((-3 (-567) "failed") $) NIL) (((-3 |#2| "failed") $) 274) (((-3 (-410 (-954 |#2|)) "failed") $) 364) (((-3 (-954 |#2|) "failed") $) 276) (((-3 (-410 (-567)) "failed") $) NIL)) (-2038 (((-613 $) $) NIL) (((-1178) $) 28) (((-567) $) NIL) ((|#2| $) 272) (((-410 (-954 |#2|)) $) 346) (((-954 |#2|) $) 273) (((-410 (-567)) $) NIL)) (-2654 (((-114) (-114)) 47)) (-3530 (($ $) 99)) (-2700 (((-3 (-613 $) "failed") $) 269)) (-2641 (((-645 (-613 $)) $) 270)) (-2056 (((-3 (-645 $) "failed") $) 288)) (-1912 (((-3 (-2 (|:| |val| $) (|:| -3458 (-567))) "failed") $) 295)) (-3671 (((-3 (-645 $) "failed") $) 286)) (-3556 (((-3 (-2 (|:| -3694 (-567)) (|:| |var| (-613 $))) "failed") $) 305)) (-3798 (((-3 (-2 (|:| |var| (-613 $)) (|:| -3458 (-567))) "failed") $) 292) (((-3 (-2 (|:| |var| (-613 $)) (|:| -3458 (-567))) "failed") $ (-114)) 256) (((-3 (-2 (|:| |var| (-613 $)) (|:| -3458 (-567))) "failed") $ (-1178)) 258)) (-2949 (((-112) $) 17)) (-2962 ((|#2| $) 19)) (-2631 (($ $ (-613 $) $) NIL) (($ $ (-645 (-613 $)) (-645 $)) 277) (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-645 (-1178)) (-645 (-1 $ $))) NIL) (($ $ (-645 (-1178)) (-645 (-1 $ (-645 $)))) 109) (($ $ (-1178) (-1 $ (-645 $))) NIL) (($ $ (-1178) (-1 $ $)) NIL) (($ $ (-645 (-114)) (-645 (-1 $ $))) NIL) (($ $ (-645 (-114)) (-645 (-1 $ (-645 $)))) NIL) (($ $ (-114) (-1 $ (-645 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1178)) 62) (($ $ (-645 (-1178))) 281) (($ $) 282) (($ $ (-114) $ (-1178)) 65) (($ $ (-645 (-114)) (-645 $) (-1178)) 72) (($ $ (-645 (-1178)) (-645 (-772)) (-645 (-1 $ $))) 120) (($ $ (-645 (-1178)) (-645 (-772)) (-645 (-1 $ (-645 $)))) 283) (($ $ (-1178) (-772) (-1 $ (-645 $))) 105) (($ $ (-1178) (-772) (-1 $ $)) 104)) (-1787 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-645 $)) 119)) (-1593 (($ $ (-645 (-1178)) (-645 (-772))) NIL) (($ $ (-1178) (-772)) NIL) (($ $ (-645 (-1178))) NIL) (($ $ (-1178)) 279)) (-1967 (($ $) 325)) (-3893 (((-894 (-567)) $) 298) (((-894 (-381)) $) 302) (($ (-421 $)) 360) (((-539) $) NIL)) (-4132 (((-863) $) 280) (($ (-613 $)) 93) (($ (-1178)) 24) (($ |#2|) NIL) (($ (-1127 |#2| (-613 $))) NIL) (($ (-410 |#2|)) 330) (($ (-954 (-410 |#2|))) 369) (($ (-410 (-954 (-410 |#2|)))) 342) (($ (-410 (-954 |#2|))) 336) (($ $) NIL) (($ (-954 |#2|)) 218) (($ (-410 (-567))) 374) (($ (-567)) NIL)) (-4221 (((-772)) 88)) (-3797 (((-112) (-114)) 42)) (-3247 (($ (-1178) $) 31) (($ (-1178) $ $) 32) (($ (-1178) $ $ $) 33) (($ (-1178) $ $ $ $) 34) (($ (-1178) (-645 $)) 39)) (* (($ (-410 (-567)) $) NIL) (($ $ (-410 (-567))) NIL) (($ |#2| $) 307) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-567) $) NIL) (($ (-772) $) NIL) (($ (-923) $) NIL)))
-(((-432 |#1| |#2|) (-10 -8 (-15 * (|#1| (-923) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4132 (|#1| (-567))) (-15 -4221 ((-772))) (-15 -4132 (|#1| (-410 (-567)))) (-15 -3753 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2038 ((-410 (-567)) |#1|)) (-15 -3893 ((-539) |#1|)) (-15 -4132 (|#1| (-954 |#2|))) (-15 -3753 ((-3 (-954 |#2|) "failed") |#1|)) (-15 -2038 ((-954 |#2|) |#1|)) (-15 -1593 (|#1| |#1| (-1178))) (-15 -1593 (|#1| |#1| (-645 (-1178)))) (-15 -1593 (|#1| |#1| (-1178) (-772))) (-15 -1593 (|#1| |#1| (-645 (-1178)) (-645 (-772)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -4132 (|#1| |#1|)) (-15 * (|#1| |#1| (-410 (-567)))) (-15 * (|#1| (-410 (-567)) |#1|)) (-15 -4132 (|#1| (-410 (-954 |#2|)))) (-15 -3753 ((-3 (-410 (-954 |#2|)) "failed") |#1|)) (-15 -2038 ((-410 (-954 |#2|)) |#1|)) (-15 -2675 ((-410 (-1174 |#1|)) |#1| (-613 |#1|))) (-15 -4132 (|#1| (-410 (-954 (-410 |#2|))))) (-15 -4132 (|#1| (-954 (-410 |#2|)))) (-15 -4132 (|#1| (-410 |#2|))) (-15 -1967 (|#1| |#1|)) (-15 -3893 (|#1| (-421 |#1|))) (-15 -2631 (|#1| |#1| (-1178) (-772) (-1 |#1| |#1|))) (-15 -2631 (|#1| |#1| (-1178) (-772) (-1 |#1| (-645 |#1|)))) (-15 -2631 (|#1| |#1| (-645 (-1178)) (-645 (-772)) (-645 (-1 |#1| (-645 |#1|))))) (-15 -2631 (|#1| |#1| (-645 (-1178)) (-645 (-772)) (-645 (-1 |#1| |#1|)))) (-15 -1912 ((-3 (-2 (|:| |val| |#1|) (|:| -3458 (-567))) "failed") |#1|)) (-15 -3798 ((-3 (-2 (|:| |var| (-613 |#1|)) (|:| -3458 (-567))) "failed") |#1| (-1178))) (-15 -3798 ((-3 (-2 (|:| |var| (-613 |#1|)) (|:| -3458 (-567))) "failed") |#1| (-114))) (-15 -3530 (|#1| |#1|)) (-15 -4132 (|#1| (-1127 |#2| (-613 |#1|)))) (-15 -3556 ((-3 (-2 (|:| -3694 (-567)) (|:| |var| (-613 |#1|))) "failed") |#1|)) (-15 -3671 ((-3 (-645 |#1|) "failed") |#1|)) (-15 -3798 ((-3 (-2 (|:| |var| (-613 |#1|)) (|:| -3458 (-567))) "failed") |#1|)) (-15 -2056 ((-3 (-645 |#1|) "failed") |#1|)) (-15 -2631 (|#1| |#1| (-645 (-114)) (-645 |#1|) (-1178))) (-15 -2631 (|#1| |#1| (-114) |#1| (-1178))) (-15 -2631 (|#1| |#1|)) (-15 -2631 (|#1| |#1| (-645 (-1178)))) (-15 -2631 (|#1| |#1| (-1178))) (-15 -3247 (|#1| (-1178) (-645 |#1|))) (-15 -3247 (|#1| (-1178) |#1| |#1| |#1| |#1|)) (-15 -3247 (|#1| (-1178) |#1| |#1| |#1|)) (-15 -3247 (|#1| (-1178) |#1| |#1|)) (-15 -3247 (|#1| (-1178) |#1|)) (-15 -2847 ((-645 (-1178)) |#1|)) (-15 -2962 (|#2| |#1|)) (-15 -2949 ((-112) |#1|)) (-15 -4132 (|#1| |#2|)) (-15 -3753 ((-3 |#2| "failed") |#1|)) (-15 -2038 (|#2| |#1|)) (-15 -2038 ((-567) |#1|)) (-15 -3753 ((-3 (-567) "failed") |#1|)) (-15 -3893 ((-894 (-381)) |#1|)) (-15 -3893 ((-894 (-567)) |#1|)) (-15 -4132 (|#1| (-1178))) (-15 -3753 ((-3 (-1178) "failed") |#1|)) (-15 -2038 ((-1178) |#1|)) (-15 -2631 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2631 (|#1| |#1| (-114) (-1 |#1| (-645 |#1|)))) (-15 -2631 (|#1| |#1| (-645 (-114)) (-645 (-1 |#1| (-645 |#1|))))) (-15 -2631 (|#1| |#1| (-645 (-114)) (-645 (-1 |#1| |#1|)))) (-15 -2631 (|#1| |#1| (-1178) (-1 |#1| |#1|))) (-15 -2631 (|#1| |#1| (-1178) (-1 |#1| (-645 |#1|)))) (-15 -2631 (|#1| |#1| (-645 (-1178)) (-645 (-1 |#1| (-645 |#1|))))) (-15 -2631 (|#1| |#1| (-645 (-1178)) (-645 (-1 |#1| |#1|)))) (-15 -3797 ((-112) (-114))) (-15 -2654 ((-114) (-114))) (-15 -2641 ((-645 (-613 |#1|)) |#1|)) (-15 -2700 ((-3 (-613 |#1|) "failed") |#1|)) (-15 -2960 (|#1| |#1| (-645 (-613 |#1|)) (-645 |#1|))) (-15 -2960 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -2960 (|#1| |#1| (-295 |#1|))) (-15 -1787 (|#1| (-114) (-645 |#1|))) (-15 -1787 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -1787 (|#1| (-114) |#1| |#1| |#1|)) (-15 -1787 (|#1| (-114) |#1| |#1|)) (-15 -1787 (|#1| (-114) |#1|)) (-15 -2631 (|#1| |#1| (-645 |#1|) (-645 |#1|))) (-15 -2631 (|#1| |#1| |#1| |#1|)) (-15 -2631 (|#1| |#1| (-295 |#1|))) (-15 -2631 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -2631 (|#1| |#1| (-645 (-613 |#1|)) (-645 |#1|))) (-15 -2631 (|#1| |#1| (-613 |#1|) |#1|)) (-15 -4132 (|#1| (-613 |#1|))) (-15 -3753 ((-3 (-613 |#1|) "failed") |#1|)) (-15 -2038 ((-613 |#1|) |#1|)) (-15 -4132 ((-863) |#1|))) (-433 |#2|) (-1102)) (T -432))
-((-2654 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *4 (-1102)) (-5 *1 (-432 *3 *4)) (-4 *3 (-433 *4)))) (-3797 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *5 (-1102)) (-5 *2 (-112)) (-5 *1 (-432 *4 *5)) (-4 *4 (-433 *5)))) (-4221 (*1 *2) (-12 (-4 *4 (-1102)) (-5 *2 (-772)) (-5 *1 (-432 *3 *4)) (-4 *3 (-433 *4)))))
-(-10 -8 (-15 * (|#1| (-923) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4132 (|#1| (-567))) (-15 -4221 ((-772))) (-15 -4132 (|#1| (-410 (-567)))) (-15 -3753 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2038 ((-410 (-567)) |#1|)) (-15 -3893 ((-539) |#1|)) (-15 -4132 (|#1| (-954 |#2|))) (-15 -3753 ((-3 (-954 |#2|) "failed") |#1|)) (-15 -2038 ((-954 |#2|) |#1|)) (-15 -1593 (|#1| |#1| (-1178))) (-15 -1593 (|#1| |#1| (-645 (-1178)))) (-15 -1593 (|#1| |#1| (-1178) (-772))) (-15 -1593 (|#1| |#1| (-645 (-1178)) (-645 (-772)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -4132 (|#1| |#1|)) (-15 * (|#1| |#1| (-410 (-567)))) (-15 * (|#1| (-410 (-567)) |#1|)) (-15 -4132 (|#1| (-410 (-954 |#2|)))) (-15 -3753 ((-3 (-410 (-954 |#2|)) "failed") |#1|)) (-15 -2038 ((-410 (-954 |#2|)) |#1|)) (-15 -2675 ((-410 (-1174 |#1|)) |#1| (-613 |#1|))) (-15 -4132 (|#1| (-410 (-954 (-410 |#2|))))) (-15 -4132 (|#1| (-954 (-410 |#2|)))) (-15 -4132 (|#1| (-410 |#2|))) (-15 -1967 (|#1| |#1|)) (-15 -3893 (|#1| (-421 |#1|))) (-15 -2631 (|#1| |#1| (-1178) (-772) (-1 |#1| |#1|))) (-15 -2631 (|#1| |#1| (-1178) (-772) (-1 |#1| (-645 |#1|)))) (-15 -2631 (|#1| |#1| (-645 (-1178)) (-645 (-772)) (-645 (-1 |#1| (-645 |#1|))))) (-15 -2631 (|#1| |#1| (-645 (-1178)) (-645 (-772)) (-645 (-1 |#1| |#1|)))) (-15 -1912 ((-3 (-2 (|:| |val| |#1|) (|:| -3458 (-567))) "failed") |#1|)) (-15 -3798 ((-3 (-2 (|:| |var| (-613 |#1|)) (|:| -3458 (-567))) "failed") |#1| (-1178))) (-15 -3798 ((-3 (-2 (|:| |var| (-613 |#1|)) (|:| -3458 (-567))) "failed") |#1| (-114))) (-15 -3530 (|#1| |#1|)) (-15 -4132 (|#1| (-1127 |#2| (-613 |#1|)))) (-15 -3556 ((-3 (-2 (|:| -3694 (-567)) (|:| |var| (-613 |#1|))) "failed") |#1|)) (-15 -3671 ((-3 (-645 |#1|) "failed") |#1|)) (-15 -3798 ((-3 (-2 (|:| |var| (-613 |#1|)) (|:| -3458 (-567))) "failed") |#1|)) (-15 -2056 ((-3 (-645 |#1|) "failed") |#1|)) (-15 -2631 (|#1| |#1| (-645 (-114)) (-645 |#1|) (-1178))) (-15 -2631 (|#1| |#1| (-114) |#1| (-1178))) (-15 -2631 (|#1| |#1|)) (-15 -2631 (|#1| |#1| (-645 (-1178)))) (-15 -2631 (|#1| |#1| (-1178))) (-15 -3247 (|#1| (-1178) (-645 |#1|))) (-15 -3247 (|#1| (-1178) |#1| |#1| |#1| |#1|)) (-15 -3247 (|#1| (-1178) |#1| |#1| |#1|)) (-15 -3247 (|#1| (-1178) |#1| |#1|)) (-15 -3247 (|#1| (-1178) |#1|)) (-15 -2847 ((-645 (-1178)) |#1|)) (-15 -2962 (|#2| |#1|)) (-15 -2949 ((-112) |#1|)) (-15 -4132 (|#1| |#2|)) (-15 -3753 ((-3 |#2| "failed") |#1|)) (-15 -2038 (|#2| |#1|)) (-15 -2038 ((-567) |#1|)) (-15 -3753 ((-3 (-567) "failed") |#1|)) (-15 -3893 ((-894 (-381)) |#1|)) (-15 -3893 ((-894 (-567)) |#1|)) (-15 -4132 (|#1| (-1178))) (-15 -3753 ((-3 (-1178) "failed") |#1|)) (-15 -2038 ((-1178) |#1|)) (-15 -2631 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2631 (|#1| |#1| (-114) (-1 |#1| (-645 |#1|)))) (-15 -2631 (|#1| |#1| (-645 (-114)) (-645 (-1 |#1| (-645 |#1|))))) (-15 -2631 (|#1| |#1| (-645 (-114)) (-645 (-1 |#1| |#1|)))) (-15 -2631 (|#1| |#1| (-1178) (-1 |#1| |#1|))) (-15 -2631 (|#1| |#1| (-1178) (-1 |#1| (-645 |#1|)))) (-15 -2631 (|#1| |#1| (-645 (-1178)) (-645 (-1 |#1| (-645 |#1|))))) (-15 -2631 (|#1| |#1| (-645 (-1178)) (-645 (-1 |#1| |#1|)))) (-15 -3797 ((-112) (-114))) (-15 -2654 ((-114) (-114))) (-15 -2641 ((-645 (-613 |#1|)) |#1|)) (-15 -2700 ((-3 (-613 |#1|) "failed") |#1|)) (-15 -2960 (|#1| |#1| (-645 (-613 |#1|)) (-645 |#1|))) (-15 -2960 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -2960 (|#1| |#1| (-295 |#1|))) (-15 -1787 (|#1| (-114) (-645 |#1|))) (-15 -1787 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -1787 (|#1| (-114) |#1| |#1| |#1|)) (-15 -1787 (|#1| (-114) |#1| |#1|)) (-15 -1787 (|#1| (-114) |#1|)) (-15 -2631 (|#1| |#1| (-645 |#1|) (-645 |#1|))) (-15 -2631 (|#1| |#1| |#1| |#1|)) (-15 -2631 (|#1| |#1| (-295 |#1|))) (-15 -2631 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -2631 (|#1| |#1| (-645 (-613 |#1|)) (-645 |#1|))) (-15 -2631 (|#1| |#1| (-613 |#1|) |#1|)) (-15 -4132 (|#1| (-613 |#1|))) (-15 -3753 ((-3 (-613 |#1|) "failed") |#1|)) (-15 -2038 ((-613 |#1|) |#1|)) (-15 -4132 ((-863) |#1|)))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 116 (|has| |#1| (-25)))) (-2847 (((-645 (-1178)) $) 203)) (-2675 (((-410 (-1174 $)) $ (-613 $)) 171 (|has| |#1| (-559)))) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 143 (|has| |#1| (-559)))) (-4381 (($ $) 144 (|has| |#1| (-559)))) (-3949 (((-112) $) 146 (|has| |#1| (-559)))) (-2566 (((-645 (-613 $)) $) 39)) (-3472 (((-3 $ "failed") $ $) 118 (|has| |#1| (-21)))) (-2960 (($ $ (-295 $)) 51) (($ $ (-645 (-295 $))) 50) (($ $ (-645 (-613 $)) (-645 $)) 49)) (-3248 (($ $) 163 (|has| |#1| (-559)))) (-2908 (((-421 $) $) 164 (|has| |#1| (-559)))) (-3609 (((-112) $ $) 154 (|has| |#1| (-559)))) (-2585 (($) 104 (-2800 (|has| |#1| (-1114)) (|has| |#1| (-25))) CONST)) (-3753 (((-3 (-613 $) "failed") $) 64) (((-3 (-1178) "failed") $) 216) (((-3 (-567) "failed") $) 210 (|has| |#1| (-1040 (-567)))) (((-3 |#1| "failed") $) 207) (((-3 (-410 (-954 |#1|)) "failed") $) 169 (|has| |#1| (-559))) (((-3 (-954 |#1|) "failed") $) 123 (|has| |#1| (-1051))) (((-3 (-410 (-567)) "failed") $) 98 (-2800 (-12 (|has| |#1| (-1040 (-567))) (|has| |#1| (-559))) (|has| |#1| (-1040 (-410 (-567))))))) (-2038 (((-613 $) $) 65) (((-1178) $) 217) (((-567) $) 209 (|has| |#1| (-1040 (-567)))) ((|#1| $) 208) (((-410 (-954 |#1|)) $) 170 (|has| |#1| (-559))) (((-954 |#1|) $) 124 (|has| |#1| (-1051))) (((-410 (-567)) $) 99 (-2800 (-12 (|has| |#1| (-1040 (-567))) (|has| |#1| (-559))) (|has| |#1| (-1040 (-410 (-567))))))) (-2349 (($ $ $) 158 (|has| |#1| (-559)))) (-2630 (((-690 (-567)) (-690 $)) 137 (-1667 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) 136 (-1667 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051)))) (((-2 (|:| -2316 (-690 |#1|)) (|:| |vec| (-1268 |#1|))) (-690 $) (-1268 $)) 135 (|has| |#1| (-1051))) (((-690 |#1|) (-690 $)) 134 (|has| |#1| (-1051)))) (-2109 (((-3 $ "failed") $) 106 (|has| |#1| (-1114)))) (-2360 (($ $ $) 157 (|has| |#1| (-559)))) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) 152 (|has| |#1| (-559)))) (-3184 (((-112) $) 165 (|has| |#1| (-559)))) (-4303 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) 212 (|has| |#1| (-888 (-567)))) (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) 211 (|has| |#1| (-888 (-381))))) (-2068 (($ $) 46) (($ (-645 $)) 45)) (-2034 (((-645 (-114)) $) 38)) (-2654 (((-114) (-114)) 37)) (-1433 (((-112) $) 105 (|has| |#1| (-1114)))) (-3837 (((-112) $) 17 (|has| $ (-1040 (-567))))) (-3530 (($ $) 186 (|has| |#1| (-1051)))) (-1448 (((-1127 |#1| (-613 $)) $) 187 (|has| |#1| (-1051)))) (-1725 (((-3 (-645 $) "failed") (-645 $) $) 161 (|has| |#1| (-559)))) (-3263 (((-1174 $) (-613 $)) 20 (|has| $ (-1051)))) (-3829 (($ (-1 $ $) (-613 $)) 31)) (-2700 (((-3 (-613 $) "failed") $) 41)) (-2740 (($ (-645 $)) 150 (|has| |#1| (-559))) (($ $ $) 149 (|has| |#1| (-559)))) (-1419 (((-1160) $) 10)) (-2641 (((-645 (-613 $)) $) 40)) (-3632 (($ (-114) $) 33) (($ (-114) (-645 $)) 32)) (-2056 (((-3 (-645 $) "failed") $) 192 (|has| |#1| (-1114)))) (-1912 (((-3 (-2 (|:| |val| $) (|:| -3458 (-567))) "failed") $) 183 (|has| |#1| (-1051)))) (-3671 (((-3 (-645 $) "failed") $) 190 (|has| |#1| (-25)))) (-3556 (((-3 (-2 (|:| -3694 (-567)) (|:| |var| (-613 $))) "failed") $) 189 (|has| |#1| (-25)))) (-3798 (((-3 (-2 (|:| |var| (-613 $)) (|:| -3458 (-567))) "failed") $) 191 (|has| |#1| (-1114))) (((-3 (-2 (|:| |var| (-613 $)) (|:| -3458 (-567))) "failed") $ (-114)) 185 (|has| |#1| (-1051))) (((-3 (-2 (|:| |var| (-613 $)) (|:| -3458 (-567))) "failed") $ (-1178)) 184 (|has| |#1| (-1051)))) (-1854 (((-112) $ (-114)) 35) (((-112) $ (-1178)) 34)) (-2939 (($ $) 108 (-2800 (|has| |#1| (-476)) (|has| |#1| (-559))))) (-4138 (((-772) $) 42)) (-3430 (((-1122) $) 11)) (-2949 (((-112) $) 205)) (-2962 ((|#1| $) 204)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 151 (|has| |#1| (-559)))) (-2774 (($ (-645 $)) 148 (|has| |#1| (-559))) (($ $ $) 147 (|has| |#1| (-559)))) (-3922 (((-112) $ $) 30) (((-112) $ (-1178)) 29)) (-2706 (((-421 $) $) 162 (|has| |#1| (-559)))) (-3402 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 160 (|has| |#1| (-559))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) 159 (|has| |#1| (-559)))) (-2391 (((-3 $ "failed") $ $) 142 (|has| |#1| (-559)))) (-3117 (((-3 (-645 $) "failed") (-645 $) $) 153 (|has| |#1| (-559)))) (-2757 (((-112) $) 18 (|has| $ (-1040 (-567))))) (-2631 (($ $ (-613 $) $) 62) (($ $ (-645 (-613 $)) (-645 $)) 61) (($ $ (-645 (-295 $))) 60) (($ $ (-295 $)) 59) (($ $ $ $) 58) (($ $ (-645 $) (-645 $)) 57) (($ $ (-645 (-1178)) (-645 (-1 $ $))) 28) (($ $ (-645 (-1178)) (-645 (-1 $ (-645 $)))) 27) (($ $ (-1178) (-1 $ (-645 $))) 26) (($ $ (-1178) (-1 $ $)) 25) (($ $ (-645 (-114)) (-645 (-1 $ $))) 24) (($ $ (-645 (-114)) (-645 (-1 $ (-645 $)))) 23) (($ $ (-114) (-1 $ (-645 $))) 22) (($ $ (-114) (-1 $ $)) 21) (($ $ (-1178)) 197 (|has| |#1| (-615 (-539)))) (($ $ (-645 (-1178))) 196 (|has| |#1| (-615 (-539)))) (($ $) 195 (|has| |#1| (-615 (-539)))) (($ $ (-114) $ (-1178)) 194 (|has| |#1| (-615 (-539)))) (($ $ (-645 (-114)) (-645 $) (-1178)) 193 (|has| |#1| (-615 (-539)))) (($ $ (-645 (-1178)) (-645 (-772)) (-645 (-1 $ $))) 182 (|has| |#1| (-1051))) (($ $ (-645 (-1178)) (-645 (-772)) (-645 (-1 $ (-645 $)))) 181 (|has| |#1| (-1051))) (($ $ (-1178) (-772) (-1 $ (-645 $))) 180 (|has| |#1| (-1051))) (($ $ (-1178) (-772) (-1 $ $)) 179 (|has| |#1| (-1051)))) (-1990 (((-772) $) 155 (|has| |#1| (-559)))) (-1787 (($ (-114) $) 56) (($ (-114) $ $) 55) (($ (-114) $ $ $) 54) (($ (-114) $ $ $ $) 53) (($ (-114) (-645 $)) 52)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 156 (|has| |#1| (-559)))) (-3241 (($ $) 44) (($ $ $) 43)) (-1593 (($ $ (-645 (-1178)) (-645 (-772))) 128 (|has| |#1| (-1051))) (($ $ (-1178) (-772)) 127 (|has| |#1| (-1051))) (($ $ (-645 (-1178))) 126 (|has| |#1| (-1051))) (($ $ (-1178)) 125 (|has| |#1| (-1051)))) (-1967 (($ $) 176 (|has| |#1| (-559)))) (-1460 (((-1127 |#1| (-613 $)) $) 177 (|has| |#1| (-559)))) (-3341 (($ $) 19 (|has| $ (-1051)))) (-3893 (((-894 (-567)) $) 214 (|has| |#1| (-615 (-894 (-567))))) (((-894 (-381)) $) 213 (|has| |#1| (-615 (-894 (-381))))) (($ (-421 $)) 178 (|has| |#1| (-559))) (((-539) $) 100 (|has| |#1| (-615 (-539))))) (-1823 (($ $ $) 111 (|has| |#1| (-476)))) (-1485 (($ $ $) 112 (|has| |#1| (-476)))) (-4132 (((-863) $) 12) (($ (-613 $)) 63) (($ (-1178)) 215) (($ |#1|) 206) (($ (-1127 |#1| (-613 $))) 188 (|has| |#1| (-1051))) (($ (-410 |#1|)) 174 (|has| |#1| (-559))) (($ (-954 (-410 |#1|))) 173 (|has| |#1| (-559))) (($ (-410 (-954 (-410 |#1|)))) 172 (|has| |#1| (-559))) (($ (-410 (-954 |#1|))) 168 (|has| |#1| (-559))) (($ $) 141 (|has| |#1| (-559))) (($ (-954 |#1|)) 122 (|has| |#1| (-1051))) (($ (-410 (-567))) 97 (-2800 (|has| |#1| (-559)) (-12 (|has| |#1| (-1040 (-567))) (|has| |#1| (-559))) (|has| |#1| (-1040 (-410 (-567)))))) (($ (-567)) 96 (-2800 (|has| |#1| (-1051)) (|has| |#1| (-1040 (-567)))))) (-1903 (((-3 $ "failed") $) 138 (|has| |#1| (-145)))) (-4221 (((-772)) 133 (|has| |#1| (-1051)) CONST)) (-1334 (($ $) 48) (($ (-645 $)) 47)) (-3797 (((-112) (-114)) 36)) (-1745 (((-112) $ $) 9)) (-3816 (((-112) $ $) 145 (|has| |#1| (-559)))) (-3247 (($ (-1178) $) 202) (($ (-1178) $ $) 201) (($ (-1178) $ $ $) 200) (($ (-1178) $ $ $ $) 199) (($ (-1178) (-645 $)) 198)) (-1716 (($) 115 (|has| |#1| (-25)) CONST)) (-1728 (($) 103 (|has| |#1| (-1114)) CONST)) (-2637 (($ $ (-645 (-1178)) (-645 (-772))) 132 (|has| |#1| (-1051))) (($ $ (-1178) (-772)) 131 (|has| |#1| (-1051))) (($ $ (-645 (-1178))) 130 (|has| |#1| (-1051))) (($ $ (-1178)) 129 (|has| |#1| (-1051)))) (-2936 (((-112) $ $) 6)) (-3060 (($ (-1127 |#1| (-613 $)) (-1127 |#1| (-613 $))) 175 (|has| |#1| (-559))) (($ $ $) 109 (-2800 (|has| |#1| (-476)) (|has| |#1| (-559))))) (-3045 (($ $ $) 121 (|has| |#1| (-21))) (($ $) 120 (|has| |#1| (-21)))) (-3033 (($ $ $) 113 (|has| |#1| (-25)))) (** (($ $ (-567)) 110 (-2800 (|has| |#1| (-476)) (|has| |#1| (-559)))) (($ $ (-772)) 107 (|has| |#1| (-1114))) (($ $ (-923)) 102 (|has| |#1| (-1114)))) (* (($ (-410 (-567)) $) 167 (|has| |#1| (-559))) (($ $ (-410 (-567))) 166 (|has| |#1| (-559))) (($ |#1| $) 140 (|has| |#1| (-172))) (($ $ |#1|) 139 (|has| |#1| (-172))) (($ (-567) $) 119 (|has| |#1| (-21))) (($ (-772) $) 117 (|has| |#1| (-25))) (($ (-923) $) 114 (|has| |#1| (-25))) (($ $ $) 101 (|has| |#1| (-1114)))))
+((-1791 (*1 *2 *1) (-12 (-4 *1 (-428 *3)) (-4 *3 (-1102)) (-5 *2 (-772)))) (-3364 (*1 *1 *1) (-12 (-4 *1 (-428 *2)) (-4 *2 (-1102)) (-4 *2 (-370)))) (-3950 (*1 *1) (-12 (-4 *1 (-428 *2)) (-4 *2 (-370)) (-4 *2 (-1102)))) (-3002 (*1 *2 *1) (-12 (-4 *1 (-428 *2)) (-4 *2 (-1102)) (-4 *2 (-851)))) (-1365 (*1 *2 *1) (-12 (-4 *1 (-428 *2)) (-4 *2 (-1102)) (-4 *2 (-851)))))
+(-13 (-229 |t#1|) (-1100 |t#1|) (-10 -8 (-6 -4422) (-15 -1791 ((-772) $)) (IF (|has| |t#1| (-370)) (PROGN (-6 (-370)) (-15 -3364 ($ $)) (-15 -3950 ($))) |%noBranch|) (IF (|has| |t#1| (-851)) (PROGN (-15 -3002 (|t#1| $)) (-15 -1365 (|t#1| $))) |%noBranch|)))
+(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-614 (-863)) . T) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-229 |#1|) . T) ((-235 |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-370) |has| |#1| (-370)) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-1100 |#1|) . T) ((-1102) . T) ((-1219) . T))
+((-2050 (((-588 |#2|) |#2| (-1179)) 36)) (-1751 (((-588 |#2|) |#2| (-1179)) 21)) (-3090 ((|#2| |#2| (-1179)) 26)))
+(((-429 |#1| |#2|) (-10 -7 (-15 -1751 ((-588 |#2|) |#2| (-1179))) (-15 -2050 ((-588 |#2|) |#2| (-1179))) (-15 -3090 (|#2| |#2| (-1179)))) (-13 (-308) (-147) (-1040 (-567)) (-640 (-567))) (-13 (-1204) (-29 |#1|))) (T -429))
+((-3090 (*1 *2 *2 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-429 *4 *2)) (-4 *2 (-13 (-1204) (-29 *4))))) (-2050 (*1 *2 *3 *4) (-12 (-5 *4 (-1179)) (-4 *5 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-588 *3)) (-5 *1 (-429 *5 *3)) (-4 *3 (-13 (-1204) (-29 *5))))) (-1751 (*1 *2 *3 *4) (-12 (-5 *4 (-1179)) (-4 *5 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-588 *3)) (-5 *1 (-429 *5 *3)) (-4 *3 (-13 (-1204) (-29 *5))))))
+(-10 -7 (-15 -1751 ((-588 |#2|) |#2| (-1179))) (-15 -2050 ((-588 |#2|) |#2| (-1179))) (-15 -3090 (|#2| |#2| (-1179))))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-2376 (((-3 $ "failed") $ $) NIL)) (-3647 (($) NIL T CONST)) (-3588 (((-3 $ "failed") $) NIL)) (-4346 (((-112) $) NIL)) (-2201 (($ |#2| |#1|) 37)) (-3013 (($ |#2| |#1|) 35)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) NIL) (($ (-332 |#2|)) 25)) (-2746 (((-772)) NIL T CONST)) (-3357 (((-112) $ $) NIL)) (-1733 (($) 10 T CONST)) (-1744 (($) 16 T CONST)) (-2946 (((-112) $ $) NIL)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) 36)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 39) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-430 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4409)) (IF (|has| |#1| (-6 -4409)) (-6 -4409) |%noBranch|) |%noBranch|) (-15 -4129 ($ |#1|)) (-15 -4129 ($ (-332 |#2|))) (-15 -2201 ($ |#2| |#1|)) (-15 -3013 ($ |#2| |#1|)))) (-13 (-172) (-38 (-410 (-567)))) (-13 (-851) (-21))) (T -430))
+((-4129 (*1 *1 *2) (-12 (-5 *1 (-430 *2 *3)) (-4 *2 (-13 (-172) (-38 (-410 (-567))))) (-4 *3 (-13 (-851) (-21))))) (-4129 (*1 *1 *2) (-12 (-5 *2 (-332 *4)) (-4 *4 (-13 (-851) (-21))) (-5 *1 (-430 *3 *4)) (-4 *3 (-13 (-172) (-38 (-410 (-567))))))) (-2201 (*1 *1 *2 *3) (-12 (-5 *1 (-430 *3 *2)) (-4 *3 (-13 (-172) (-38 (-410 (-567))))) (-4 *2 (-13 (-851) (-21))))) (-3013 (*1 *1 *2 *3) (-12 (-5 *1 (-430 *3 *2)) (-4 *3 (-13 (-172) (-38 (-410 (-567))))) (-4 *2 (-13 (-851) (-21))))))
+(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4409)) (IF (|has| |#1| (-6 -4409)) (-6 -4409) |%noBranch|) |%noBranch|) (-15 -4129 ($ |#1|)) (-15 -4129 ($ (-332 |#2|))) (-15 -2201 ($ |#2| |#1|)) (-15 -3013 ($ |#2| |#1|))))
+((-4083 (((-3 |#2| (-645 |#2|)) |#2| (-1179)) 115)))
+(((-431 |#1| |#2|) (-10 -7 (-15 -4083 ((-3 |#2| (-645 |#2|)) |#2| (-1179)))) (-13 (-308) (-147) (-1040 (-567)) (-640 (-567))) (-13 (-1204) (-961) (-29 |#1|))) (T -431))
+((-4083 (*1 *2 *3 *4) (-12 (-5 *4 (-1179)) (-4 *5 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-3 *3 (-645 *3))) (-5 *1 (-431 *5 *3)) (-4 *3 (-13 (-1204) (-961) (-29 *5))))))
+(-10 -7 (-15 -4083 ((-3 |#2| (-645 |#2|)) |#2| (-1179))))
+((-2859 (((-645 (-1179)) $) 81)) (-2684 (((-410 (-1175 $)) $ (-613 $)) 314)) (-2982 (($ $ (-295 $)) NIL) (($ $ (-645 (-295 $))) NIL) (($ $ (-645 (-613 $)) (-645 $)) 278)) (-3765 (((-3 (-613 $) "failed") $) NIL) (((-3 (-1179) "failed") $) 84) (((-3 (-567) "failed") $) NIL) (((-3 |#2| "failed") $) 274) (((-3 (-410 (-954 |#2|)) "failed") $) 364) (((-3 (-954 |#2|) "failed") $) 276) (((-3 (-410 (-567)) "failed") $) NIL)) (-2051 (((-613 $) $) NIL) (((-1179) $) 28) (((-567) $) NIL) ((|#2| $) 272) (((-410 (-954 |#2|)) $) 346) (((-954 |#2|) $) 273) (((-410 (-567)) $) NIL)) (-2662 (((-114) (-114)) 47)) (-1863 (($ $) 99)) (-3231 (((-3 (-613 $) "failed") $) 269)) (-2651 (((-645 (-613 $)) $) 270)) (-3037 (((-3 (-645 $) "failed") $) 288)) (-1851 (((-3 (-2 (|:| |val| $) (|:| -3468 (-567))) "failed") $) 295)) (-3774 (((-3 (-645 $) "failed") $) 286)) (-3024 (((-3 (-2 (|:| -3705 (-567)) (|:| |var| (-613 $))) "failed") $) 305)) (-3816 (((-3 (-2 (|:| |var| (-613 $)) (|:| -3468 (-567))) "failed") $) 292) (((-3 (-2 (|:| |var| (-613 $)) (|:| -3468 (-567))) "failed") $ (-114)) 256) (((-3 (-2 (|:| |var| (-613 $)) (|:| -3468 (-567))) "failed") $ (-1179)) 258)) (-2960 (((-112) $) 17)) (-2971 ((|#2| $) 19)) (-2642 (($ $ (-613 $) $) NIL) (($ $ (-645 (-613 $)) (-645 $)) 277) (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-645 (-1179)) (-645 (-1 $ $))) NIL) (($ $ (-645 (-1179)) (-645 (-1 $ (-645 $)))) 109) (($ $ (-1179) (-1 $ (-645 $))) NIL) (($ $ (-1179) (-1 $ $)) NIL) (($ $ (-645 (-114)) (-645 (-1 $ $))) NIL) (($ $ (-645 (-114)) (-645 (-1 $ (-645 $)))) NIL) (($ $ (-114) (-1 $ (-645 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1179)) 62) (($ $ (-645 (-1179))) 281) (($ $) 282) (($ $ (-114) $ (-1179)) 65) (($ $ (-645 (-114)) (-645 $) (-1179)) 72) (($ $ (-645 (-1179)) (-645 (-772)) (-645 (-1 $ $))) 120) (($ $ (-645 (-1179)) (-645 (-772)) (-645 (-1 $ (-645 $)))) 283) (($ $ (-1179) (-772) (-1 $ (-645 $))) 105) (($ $ (-1179) (-772) (-1 $ $)) 104)) (-1801 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-645 $)) 119)) (-1616 (($ $ (-645 (-1179)) (-645 (-772))) NIL) (($ $ (-1179) (-772)) NIL) (($ $ (-645 (-1179))) NIL) (($ $ (-1179)) 279)) (-1762 (($ $) 325)) (-3902 (((-894 (-567)) $) 298) (((-894 (-381)) $) 302) (($ (-421 $)) 360) (((-539) $) NIL)) (-4129 (((-863) $) 280) (($ (-613 $)) 93) (($ (-1179)) 24) (($ |#2|) NIL) (($ (-1127 |#2| (-613 $))) NIL) (($ (-410 |#2|)) 330) (($ (-954 (-410 |#2|))) 369) (($ (-410 (-954 (-410 |#2|)))) 342) (($ (-410 (-954 |#2|))) 336) (($ $) NIL) (($ (-954 |#2|)) 218) (($ (-410 (-567))) 374) (($ (-567)) NIL)) (-2746 (((-772)) 88)) (-1909 (((-112) (-114)) 42)) (-3264 (($ (-1179) $) 31) (($ (-1179) $ $) 32) (($ (-1179) $ $ $) 33) (($ (-1179) $ $ $ $) 34) (($ (-1179) (-645 $)) 39)) (* (($ (-410 (-567)) $) NIL) (($ $ (-410 (-567))) NIL) (($ |#2| $) 307) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-567) $) NIL) (($ (-772) $) NIL) (($ (-923) $) NIL)))
+(((-432 |#1| |#2|) (-10 -8 (-15 * (|#1| (-923) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4129 (|#1| (-567))) (-15 -2746 ((-772))) (-15 -4129 (|#1| (-410 (-567)))) (-15 -3765 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2051 ((-410 (-567)) |#1|)) (-15 -3902 ((-539) |#1|)) (-15 -4129 (|#1| (-954 |#2|))) (-15 -3765 ((-3 (-954 |#2|) "failed") |#1|)) (-15 -2051 ((-954 |#2|) |#1|)) (-15 -1616 (|#1| |#1| (-1179))) (-15 -1616 (|#1| |#1| (-645 (-1179)))) (-15 -1616 (|#1| |#1| (-1179) (-772))) (-15 -1616 (|#1| |#1| (-645 (-1179)) (-645 (-772)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -4129 (|#1| |#1|)) (-15 * (|#1| |#1| (-410 (-567)))) (-15 * (|#1| (-410 (-567)) |#1|)) (-15 -4129 (|#1| (-410 (-954 |#2|)))) (-15 -3765 ((-3 (-410 (-954 |#2|)) "failed") |#1|)) (-15 -2051 ((-410 (-954 |#2|)) |#1|)) (-15 -2684 ((-410 (-1175 |#1|)) |#1| (-613 |#1|))) (-15 -4129 (|#1| (-410 (-954 (-410 |#2|))))) (-15 -4129 (|#1| (-954 (-410 |#2|)))) (-15 -4129 (|#1| (-410 |#2|))) (-15 -1762 (|#1| |#1|)) (-15 -3902 (|#1| (-421 |#1|))) (-15 -2642 (|#1| |#1| (-1179) (-772) (-1 |#1| |#1|))) (-15 -2642 (|#1| |#1| (-1179) (-772) (-1 |#1| (-645 |#1|)))) (-15 -2642 (|#1| |#1| (-645 (-1179)) (-645 (-772)) (-645 (-1 |#1| (-645 |#1|))))) (-15 -2642 (|#1| |#1| (-645 (-1179)) (-645 (-772)) (-645 (-1 |#1| |#1|)))) (-15 -1851 ((-3 (-2 (|:| |val| |#1|) (|:| -3468 (-567))) "failed") |#1|)) (-15 -3816 ((-3 (-2 (|:| |var| (-613 |#1|)) (|:| -3468 (-567))) "failed") |#1| (-1179))) (-15 -3816 ((-3 (-2 (|:| |var| (-613 |#1|)) (|:| -3468 (-567))) "failed") |#1| (-114))) (-15 -1863 (|#1| |#1|)) (-15 -4129 (|#1| (-1127 |#2| (-613 |#1|)))) (-15 -3024 ((-3 (-2 (|:| -3705 (-567)) (|:| |var| (-613 |#1|))) "failed") |#1|)) (-15 -3774 ((-3 (-645 |#1|) "failed") |#1|)) (-15 -3816 ((-3 (-2 (|:| |var| (-613 |#1|)) (|:| -3468 (-567))) "failed") |#1|)) (-15 -3037 ((-3 (-645 |#1|) "failed") |#1|)) (-15 -2642 (|#1| |#1| (-645 (-114)) (-645 |#1|) (-1179))) (-15 -2642 (|#1| |#1| (-114) |#1| (-1179))) (-15 -2642 (|#1| |#1|)) (-15 -2642 (|#1| |#1| (-645 (-1179)))) (-15 -2642 (|#1| |#1| (-1179))) (-15 -3264 (|#1| (-1179) (-645 |#1|))) (-15 -3264 (|#1| (-1179) |#1| |#1| |#1| |#1|)) (-15 -3264 (|#1| (-1179) |#1| |#1| |#1|)) (-15 -3264 (|#1| (-1179) |#1| |#1|)) (-15 -3264 (|#1| (-1179) |#1|)) (-15 -2859 ((-645 (-1179)) |#1|)) (-15 -2971 (|#2| |#1|)) (-15 -2960 ((-112) |#1|)) (-15 -4129 (|#1| |#2|)) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -2051 (|#2| |#1|)) (-15 -2051 ((-567) |#1|)) (-15 -3765 ((-3 (-567) "failed") |#1|)) (-15 -3902 ((-894 (-381)) |#1|)) (-15 -3902 ((-894 (-567)) |#1|)) (-15 -4129 (|#1| (-1179))) (-15 -3765 ((-3 (-1179) "failed") |#1|)) (-15 -2051 ((-1179) |#1|)) (-15 -2642 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2642 (|#1| |#1| (-114) (-1 |#1| (-645 |#1|)))) (-15 -2642 (|#1| |#1| (-645 (-114)) (-645 (-1 |#1| (-645 |#1|))))) (-15 -2642 (|#1| |#1| (-645 (-114)) (-645 (-1 |#1| |#1|)))) (-15 -2642 (|#1| |#1| (-1179) (-1 |#1| |#1|))) (-15 -2642 (|#1| |#1| (-1179) (-1 |#1| (-645 |#1|)))) (-15 -2642 (|#1| |#1| (-645 (-1179)) (-645 (-1 |#1| (-645 |#1|))))) (-15 -2642 (|#1| |#1| (-645 (-1179)) (-645 (-1 |#1| |#1|)))) (-15 -1909 ((-112) (-114))) (-15 -2662 ((-114) (-114))) (-15 -2651 ((-645 (-613 |#1|)) |#1|)) (-15 -3231 ((-3 (-613 |#1|) "failed") |#1|)) (-15 -2982 (|#1| |#1| (-645 (-613 |#1|)) (-645 |#1|))) (-15 -2982 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -2982 (|#1| |#1| (-295 |#1|))) (-15 -1801 (|#1| (-114) (-645 |#1|))) (-15 -1801 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -1801 (|#1| (-114) |#1| |#1| |#1|)) (-15 -1801 (|#1| (-114) |#1| |#1|)) (-15 -1801 (|#1| (-114) |#1|)) (-15 -2642 (|#1| |#1| (-645 |#1|) (-645 |#1|))) (-15 -2642 (|#1| |#1| |#1| |#1|)) (-15 -2642 (|#1| |#1| (-295 |#1|))) (-15 -2642 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -2642 (|#1| |#1| (-645 (-613 |#1|)) (-645 |#1|))) (-15 -2642 (|#1| |#1| (-613 |#1|) |#1|)) (-15 -4129 (|#1| (-613 |#1|))) (-15 -3765 ((-3 (-613 |#1|) "failed") |#1|)) (-15 -2051 ((-613 |#1|) |#1|)) (-15 -4129 ((-863) |#1|))) (-433 |#2|) (-1102)) (T -432))
+((-2662 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *4 (-1102)) (-5 *1 (-432 *3 *4)) (-4 *3 (-433 *4)))) (-1909 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *5 (-1102)) (-5 *2 (-112)) (-5 *1 (-432 *4 *5)) (-4 *4 (-433 *5)))) (-2746 (*1 *2) (-12 (-4 *4 (-1102)) (-5 *2 (-772)) (-5 *1 (-432 *3 *4)) (-4 *3 (-433 *4)))))
+(-10 -8 (-15 * (|#1| (-923) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4129 (|#1| (-567))) (-15 -2746 ((-772))) (-15 -4129 (|#1| (-410 (-567)))) (-15 -3765 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2051 ((-410 (-567)) |#1|)) (-15 -3902 ((-539) |#1|)) (-15 -4129 (|#1| (-954 |#2|))) (-15 -3765 ((-3 (-954 |#2|) "failed") |#1|)) (-15 -2051 ((-954 |#2|) |#1|)) (-15 -1616 (|#1| |#1| (-1179))) (-15 -1616 (|#1| |#1| (-645 (-1179)))) (-15 -1616 (|#1| |#1| (-1179) (-772))) (-15 -1616 (|#1| |#1| (-645 (-1179)) (-645 (-772)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -4129 (|#1| |#1|)) (-15 * (|#1| |#1| (-410 (-567)))) (-15 * (|#1| (-410 (-567)) |#1|)) (-15 -4129 (|#1| (-410 (-954 |#2|)))) (-15 -3765 ((-3 (-410 (-954 |#2|)) "failed") |#1|)) (-15 -2051 ((-410 (-954 |#2|)) |#1|)) (-15 -2684 ((-410 (-1175 |#1|)) |#1| (-613 |#1|))) (-15 -4129 (|#1| (-410 (-954 (-410 |#2|))))) (-15 -4129 (|#1| (-954 (-410 |#2|)))) (-15 -4129 (|#1| (-410 |#2|))) (-15 -1762 (|#1| |#1|)) (-15 -3902 (|#1| (-421 |#1|))) (-15 -2642 (|#1| |#1| (-1179) (-772) (-1 |#1| |#1|))) (-15 -2642 (|#1| |#1| (-1179) (-772) (-1 |#1| (-645 |#1|)))) (-15 -2642 (|#1| |#1| (-645 (-1179)) (-645 (-772)) (-645 (-1 |#1| (-645 |#1|))))) (-15 -2642 (|#1| |#1| (-645 (-1179)) (-645 (-772)) (-645 (-1 |#1| |#1|)))) (-15 -1851 ((-3 (-2 (|:| |val| |#1|) (|:| -3468 (-567))) "failed") |#1|)) (-15 -3816 ((-3 (-2 (|:| |var| (-613 |#1|)) (|:| -3468 (-567))) "failed") |#1| (-1179))) (-15 -3816 ((-3 (-2 (|:| |var| (-613 |#1|)) (|:| -3468 (-567))) "failed") |#1| (-114))) (-15 -1863 (|#1| |#1|)) (-15 -4129 (|#1| (-1127 |#2| (-613 |#1|)))) (-15 -3024 ((-3 (-2 (|:| -3705 (-567)) (|:| |var| (-613 |#1|))) "failed") |#1|)) (-15 -3774 ((-3 (-645 |#1|) "failed") |#1|)) (-15 -3816 ((-3 (-2 (|:| |var| (-613 |#1|)) (|:| -3468 (-567))) "failed") |#1|)) (-15 -3037 ((-3 (-645 |#1|) "failed") |#1|)) (-15 -2642 (|#1| |#1| (-645 (-114)) (-645 |#1|) (-1179))) (-15 -2642 (|#1| |#1| (-114) |#1| (-1179))) (-15 -2642 (|#1| |#1|)) (-15 -2642 (|#1| |#1| (-645 (-1179)))) (-15 -2642 (|#1| |#1| (-1179))) (-15 -3264 (|#1| (-1179) (-645 |#1|))) (-15 -3264 (|#1| (-1179) |#1| |#1| |#1| |#1|)) (-15 -3264 (|#1| (-1179) |#1| |#1| |#1|)) (-15 -3264 (|#1| (-1179) |#1| |#1|)) (-15 -3264 (|#1| (-1179) |#1|)) (-15 -2859 ((-645 (-1179)) |#1|)) (-15 -2971 (|#2| |#1|)) (-15 -2960 ((-112) |#1|)) (-15 -4129 (|#1| |#2|)) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -2051 (|#2| |#1|)) (-15 -2051 ((-567) |#1|)) (-15 -3765 ((-3 (-567) "failed") |#1|)) (-15 -3902 ((-894 (-381)) |#1|)) (-15 -3902 ((-894 (-567)) |#1|)) (-15 -4129 (|#1| (-1179))) (-15 -3765 ((-3 (-1179) "failed") |#1|)) (-15 -2051 ((-1179) |#1|)) (-15 -2642 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2642 (|#1| |#1| (-114) (-1 |#1| (-645 |#1|)))) (-15 -2642 (|#1| |#1| (-645 (-114)) (-645 (-1 |#1| (-645 |#1|))))) (-15 -2642 (|#1| |#1| (-645 (-114)) (-645 (-1 |#1| |#1|)))) (-15 -2642 (|#1| |#1| (-1179) (-1 |#1| |#1|))) (-15 -2642 (|#1| |#1| (-1179) (-1 |#1| (-645 |#1|)))) (-15 -2642 (|#1| |#1| (-645 (-1179)) (-645 (-1 |#1| (-645 |#1|))))) (-15 -2642 (|#1| |#1| (-645 (-1179)) (-645 (-1 |#1| |#1|)))) (-15 -1909 ((-112) (-114))) (-15 -2662 ((-114) (-114))) (-15 -2651 ((-645 (-613 |#1|)) |#1|)) (-15 -3231 ((-3 (-613 |#1|) "failed") |#1|)) (-15 -2982 (|#1| |#1| (-645 (-613 |#1|)) (-645 |#1|))) (-15 -2982 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -2982 (|#1| |#1| (-295 |#1|))) (-15 -1801 (|#1| (-114) (-645 |#1|))) (-15 -1801 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -1801 (|#1| (-114) |#1| |#1| |#1|)) (-15 -1801 (|#1| (-114) |#1| |#1|)) (-15 -1801 (|#1| (-114) |#1|)) (-15 -2642 (|#1| |#1| (-645 |#1|) (-645 |#1|))) (-15 -2642 (|#1| |#1| |#1| |#1|)) (-15 -2642 (|#1| |#1| (-295 |#1|))) (-15 -2642 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -2642 (|#1| |#1| (-645 (-613 |#1|)) (-645 |#1|))) (-15 -2642 (|#1| |#1| (-613 |#1|) |#1|)) (-15 -4129 (|#1| (-613 |#1|))) (-15 -3765 ((-3 (-613 |#1|) "failed") |#1|)) (-15 -2051 ((-613 |#1|) |#1|)) (-15 -4129 ((-863) |#1|)))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 116 (|has| |#1| (-25)))) (-2859 (((-645 (-1179)) $) 203)) (-2684 (((-410 (-1175 $)) $ (-613 $)) 171 (|has| |#1| (-559)))) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) 143 (|has| |#1| (-559)))) (-4287 (($ $) 144 (|has| |#1| (-559)))) (-2286 (((-112) $) 146 (|has| |#1| (-559)))) (-2575 (((-645 (-613 $)) $) 39)) (-2376 (((-3 $ "failed") $ $) 118 (|has| |#1| (-21)))) (-2982 (($ $ (-295 $)) 51) (($ $ (-645 (-295 $))) 50) (($ $ (-645 (-613 $)) (-645 $)) 49)) (-3659 (($ $) 163 (|has| |#1| (-559)))) (-3597 (((-421 $) $) 164 (|has| |#1| (-559)))) (-3696 (((-112) $ $) 154 (|has| |#1| (-559)))) (-3647 (($) 104 (-2811 (|has| |#1| (-1114)) (|has| |#1| (-25))) CONST)) (-3765 (((-3 (-613 $) "failed") $) 64) (((-3 (-1179) "failed") $) 216) (((-3 (-567) "failed") $) 210 (|has| |#1| (-1040 (-567)))) (((-3 |#1| "failed") $) 207) (((-3 (-410 (-954 |#1|)) "failed") $) 169 (|has| |#1| (-559))) (((-3 (-954 |#1|) "failed") $) 123 (|has| |#1| (-1051))) (((-3 (-410 (-567)) "failed") $) 98 (-2811 (-12 (|has| |#1| (-1040 (-567))) (|has| |#1| (-559))) (|has| |#1| (-1040 (-410 (-567))))))) (-2051 (((-613 $) $) 65) (((-1179) $) 217) (((-567) $) 209 (|has| |#1| (-1040 (-567)))) ((|#1| $) 208) (((-410 (-954 |#1|)) $) 170 (|has| |#1| (-559))) (((-954 |#1|) $) 124 (|has| |#1| (-1051))) (((-410 (-567)) $) 99 (-2811 (-12 (|has| |#1| (-1040 (-567))) (|has| |#1| (-559))) (|has| |#1| (-1040 (-410 (-567))))))) (-2357 (($ $ $) 158 (|has| |#1| (-559)))) (-1423 (((-690 (-567)) (-690 $)) 137 (-1686 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051)))) (((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) 136 (-1686 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051)))) (((-2 (|:| -4208 (-690 |#1|)) (|:| |vec| (-1269 |#1|))) (-690 $) (-1269 $)) 135 (|has| |#1| (-1051))) (((-690 |#1|) (-690 $)) 134 (|has| |#1| (-1051)))) (-3588 (((-3 $ "failed") $) 106 (|has| |#1| (-1114)))) (-2368 (($ $ $) 157 (|has| |#1| (-559)))) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) 152 (|has| |#1| (-559)))) (-3502 (((-112) $) 165 (|has| |#1| (-559)))) (-3193 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) 212 (|has| |#1| (-888 (-567)))) (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) 211 (|has| |#1| (-888 (-381))))) (-1464 (($ $) 46) (($ (-645 $)) 45)) (-3863 (((-645 (-114)) $) 38)) (-2662 (((-114) (-114)) 37)) (-4346 (((-112) $) 105 (|has| |#1| (-1114)))) (-1904 (((-112) $) 17 (|has| $ (-1040 (-567))))) (-1863 (($ $) 186 (|has| |#1| (-1051)))) (-1447 (((-1127 |#1| (-613 $)) $) 187 (|has| |#1| (-1051)))) (-1469 (((-3 (-645 $) "failed") (-645 $) $) 161 (|has| |#1| (-559)))) (-2528 (((-1175 $) (-613 $)) 20 (|has| $ (-1051)))) (-3841 (($ (-1 $ $) (-613 $)) 31)) (-3231 (((-3 (-613 $) "failed") $) 41)) (-2751 (($ (-645 $)) 150 (|has| |#1| (-559))) (($ $ $) 149 (|has| |#1| (-559)))) (-2516 (((-1161) $) 10)) (-2651 (((-645 (-613 $)) $) 40)) (-3643 (($ (-114) $) 33) (($ (-114) (-645 $)) 32)) (-3037 (((-3 (-645 $) "failed") $) 192 (|has| |#1| (-1114)))) (-1851 (((-3 (-2 (|:| |val| $) (|:| -3468 (-567))) "failed") $) 183 (|has| |#1| (-1051)))) (-3774 (((-3 (-645 $) "failed") $) 190 (|has| |#1| (-25)))) (-3024 (((-3 (-2 (|:| -3705 (-567)) (|:| |var| (-613 $))) "failed") $) 189 (|has| |#1| (-25)))) (-3816 (((-3 (-2 (|:| |var| (-613 $)) (|:| -3468 (-567))) "failed") $) 191 (|has| |#1| (-1114))) (((-3 (-2 (|:| |var| (-613 $)) (|:| -3468 (-567))) "failed") $ (-114)) 185 (|has| |#1| (-1051))) (((-3 (-2 (|:| |var| (-613 $)) (|:| -3468 (-567))) "failed") $ (-1179)) 184 (|has| |#1| (-1051)))) (-3545 (((-112) $ (-114)) 35) (((-112) $ (-1179)) 34)) (-2949 (($ $) 108 (-2811 (|has| |#1| (-476)) (|has| |#1| (-559))))) (-4136 (((-772) $) 42)) (-3437 (((-1122) $) 11)) (-2960 (((-112) $) 205)) (-2971 ((|#1| $) 204)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) 151 (|has| |#1| (-559)))) (-2785 (($ (-645 $)) 148 (|has| |#1| (-559))) (($ $ $) 147 (|has| |#1| (-559)))) (-2356 (((-112) $ $) 30) (((-112) $ (-1179)) 29)) (-2717 (((-421 $) $) 162 (|has| |#1| (-559)))) (-2905 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 160 (|has| |#1| (-559))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) 159 (|has| |#1| (-559)))) (-2400 (((-3 $ "failed") $ $) 142 (|has| |#1| (-559)))) (-2372 (((-3 (-645 $) "failed") (-645 $) $) 153 (|has| |#1| (-559)))) (-2795 (((-112) $) 18 (|has| $ (-1040 (-567))))) (-2642 (($ $ (-613 $) $) 62) (($ $ (-645 (-613 $)) (-645 $)) 61) (($ $ (-645 (-295 $))) 60) (($ $ (-295 $)) 59) (($ $ $ $) 58) (($ $ (-645 $) (-645 $)) 57) (($ $ (-645 (-1179)) (-645 (-1 $ $))) 28) (($ $ (-645 (-1179)) (-645 (-1 $ (-645 $)))) 27) (($ $ (-1179) (-1 $ (-645 $))) 26) (($ $ (-1179) (-1 $ $)) 25) (($ $ (-645 (-114)) (-645 (-1 $ $))) 24) (($ $ (-645 (-114)) (-645 (-1 $ (-645 $)))) 23) (($ $ (-114) (-1 $ (-645 $))) 22) (($ $ (-114) (-1 $ $)) 21) (($ $ (-1179)) 197 (|has| |#1| (-615 (-539)))) (($ $ (-645 (-1179))) 196 (|has| |#1| (-615 (-539)))) (($ $) 195 (|has| |#1| (-615 (-539)))) (($ $ (-114) $ (-1179)) 194 (|has| |#1| (-615 (-539)))) (($ $ (-645 (-114)) (-645 $) (-1179)) 193 (|has| |#1| (-615 (-539)))) (($ $ (-645 (-1179)) (-645 (-772)) (-645 (-1 $ $))) 182 (|has| |#1| (-1051))) (($ $ (-645 (-1179)) (-645 (-772)) (-645 (-1 $ (-645 $)))) 181 (|has| |#1| (-1051))) (($ $ (-1179) (-772) (-1 $ (-645 $))) 180 (|has| |#1| (-1051))) (($ $ (-1179) (-772) (-1 $ $)) 179 (|has| |#1| (-1051)))) (-2460 (((-772) $) 155 (|has| |#1| (-559)))) (-1801 (($ (-114) $) 56) (($ (-114) $ $) 55) (($ (-114) $ $ $) 54) (($ (-114) $ $ $ $) 53) (($ (-114) (-645 $)) 52)) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) 156 (|has| |#1| (-559)))) (-3209 (($ $) 44) (($ $ $) 43)) (-1616 (($ $ (-645 (-1179)) (-645 (-772))) 128 (|has| |#1| (-1051))) (($ $ (-1179) (-772)) 127 (|has| |#1| (-1051))) (($ $ (-645 (-1179))) 126 (|has| |#1| (-1051))) (($ $ (-1179)) 125 (|has| |#1| (-1051)))) (-1762 (($ $) 176 (|has| |#1| (-559)))) (-1462 (((-1127 |#1| (-613 $)) $) 177 (|has| |#1| (-559)))) (-3169 (($ $) 19 (|has| $ (-1051)))) (-3902 (((-894 (-567)) $) 214 (|has| |#1| (-615 (-894 (-567))))) (((-894 (-381)) $) 213 (|has| |#1| (-615 (-894 (-381))))) (($ (-421 $)) 178 (|has| |#1| (-559))) (((-539) $) 100 (|has| |#1| (-615 (-539))))) (-1672 (($ $ $) 111 (|has| |#1| (-476)))) (-3997 (($ $ $) 112 (|has| |#1| (-476)))) (-4129 (((-863) $) 12) (($ (-613 $)) 63) (($ (-1179)) 215) (($ |#1|) 206) (($ (-1127 |#1| (-613 $))) 188 (|has| |#1| (-1051))) (($ (-410 |#1|)) 174 (|has| |#1| (-559))) (($ (-954 (-410 |#1|))) 173 (|has| |#1| (-559))) (($ (-410 (-954 (-410 |#1|)))) 172 (|has| |#1| (-559))) (($ (-410 (-954 |#1|))) 168 (|has| |#1| (-559))) (($ $) 141 (|has| |#1| (-559))) (($ (-954 |#1|)) 122 (|has| |#1| (-1051))) (($ (-410 (-567))) 97 (-2811 (|has| |#1| (-559)) (-12 (|has| |#1| (-1040 (-567))) (|has| |#1| (-559))) (|has| |#1| (-1040 (-410 (-567)))))) (($ (-567)) 96 (-2811 (|has| |#1| (-1051)) (|has| |#1| (-1040 (-567)))))) (-2118 (((-3 $ "failed") $) 138 (|has| |#1| (-145)))) (-2746 (((-772)) 133 (|has| |#1| (-1051)) CONST)) (-1372 (($ $) 48) (($ (-645 $)) 47)) (-1909 (((-112) (-114)) 36)) (-3357 (((-112) $ $) 9)) (-3731 (((-112) $ $) 145 (|has| |#1| (-559)))) (-3264 (($ (-1179) $) 202) (($ (-1179) $ $) 201) (($ (-1179) $ $ $) 200) (($ (-1179) $ $ $ $) 199) (($ (-1179) (-645 $)) 198)) (-1733 (($) 115 (|has| |#1| (-25)) CONST)) (-1744 (($) 103 (|has| |#1| (-1114)) CONST)) (-2647 (($ $ (-645 (-1179)) (-645 (-772))) 132 (|has| |#1| (-1051))) (($ $ (-1179) (-772)) 131 (|has| |#1| (-1051))) (($ $ (-645 (-1179))) 130 (|has| |#1| (-1051))) (($ $ (-1179)) 129 (|has| |#1| (-1051)))) (-2946 (((-112) $ $) 6)) (-3069 (($ (-1127 |#1| (-613 $)) (-1127 |#1| (-613 $))) 175 (|has| |#1| (-559))) (($ $ $) 109 (-2811 (|has| |#1| (-476)) (|has| |#1| (-559))))) (-3053 (($ $ $) 121 (|has| |#1| (-21))) (($ $) 120 (|has| |#1| (-21)))) (-3041 (($ $ $) 113 (|has| |#1| (-25)))) (** (($ $ (-567)) 110 (-2811 (|has| |#1| (-476)) (|has| |#1| (-559)))) (($ $ (-772)) 107 (|has| |#1| (-1114))) (($ $ (-923)) 102 (|has| |#1| (-1114)))) (* (($ (-410 (-567)) $) 167 (|has| |#1| (-559))) (($ $ (-410 (-567))) 166 (|has| |#1| (-559))) (($ |#1| $) 140 (|has| |#1| (-172))) (($ $ |#1|) 139 (|has| |#1| (-172))) (($ (-567) $) 119 (|has| |#1| (-21))) (($ (-772) $) 117 (|has| |#1| (-25))) (($ (-923) $) 114 (|has| |#1| (-25))) (($ $ $) 101 (|has| |#1| (-1114)))))
(((-433 |#1|) (-140) (-1102)) (T -433))
-((-2949 (*1 *2 *1) (-12 (-4 *1 (-433 *3)) (-4 *3 (-1102)) (-5 *2 (-112)))) (-2962 (*1 *2 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1102)))) (-2847 (*1 *2 *1) (-12 (-4 *1 (-433 *3)) (-4 *3 (-1102)) (-5 *2 (-645 (-1178))))) (-3247 (*1 *1 *2 *1) (-12 (-5 *2 (-1178)) (-4 *1 (-433 *3)) (-4 *3 (-1102)))) (-3247 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1178)) (-4 *1 (-433 *3)) (-4 *3 (-1102)))) (-3247 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1178)) (-4 *1 (-433 *3)) (-4 *3 (-1102)))) (-3247 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1178)) (-4 *1 (-433 *3)) (-4 *3 (-1102)))) (-3247 (*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-645 *1)) (-4 *1 (-433 *4)) (-4 *4 (-1102)))) (-2631 (*1 *1 *1 *2) (-12 (-5 *2 (-1178)) (-4 *1 (-433 *3)) (-4 *3 (-1102)) (-4 *3 (-615 (-539))))) (-2631 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-1178))) (-4 *1 (-433 *3)) (-4 *3 (-1102)) (-4 *3 (-615 (-539))))) (-2631 (*1 *1 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1102)) (-4 *2 (-615 (-539))))) (-2631 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1178)) (-4 *1 (-433 *4)) (-4 *4 (-1102)) (-4 *4 (-615 (-539))))) (-2631 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-645 (-114))) (-5 *3 (-645 *1)) (-5 *4 (-1178)) (-4 *1 (-433 *5)) (-4 *5 (-1102)) (-4 *5 (-615 (-539))))) (-2056 (*1 *2 *1) (|partial| -12 (-4 *3 (-1114)) (-4 *3 (-1102)) (-5 *2 (-645 *1)) (-4 *1 (-433 *3)))) (-3798 (*1 *2 *1) (|partial| -12 (-4 *3 (-1114)) (-4 *3 (-1102)) (-5 *2 (-2 (|:| |var| (-613 *1)) (|:| -3458 (-567)))) (-4 *1 (-433 *3)))) (-3671 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1102)) (-5 *2 (-645 *1)) (-4 *1 (-433 *3)))) (-3556 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1102)) (-5 *2 (-2 (|:| -3694 (-567)) (|:| |var| (-613 *1)))) (-4 *1 (-433 *3)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-1127 *3 (-613 *1))) (-4 *3 (-1051)) (-4 *3 (-1102)) (-4 *1 (-433 *3)))) (-1448 (*1 *2 *1) (-12 (-4 *3 (-1051)) (-4 *3 (-1102)) (-5 *2 (-1127 *3 (-613 *1))) (-4 *1 (-433 *3)))) (-3530 (*1 *1 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1102)) (-4 *2 (-1051)))) (-3798 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1051)) (-4 *4 (-1102)) (-5 *2 (-2 (|:| |var| (-613 *1)) (|:| -3458 (-567)))) (-4 *1 (-433 *4)))) (-3798 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1178)) (-4 *4 (-1051)) (-4 *4 (-1102)) (-5 *2 (-2 (|:| |var| (-613 *1)) (|:| -3458 (-567)))) (-4 *1 (-433 *4)))) (-1912 (*1 *2 *1) (|partial| -12 (-4 *3 (-1051)) (-4 *3 (-1102)) (-5 *2 (-2 (|:| |val| *1) (|:| -3458 (-567)))) (-4 *1 (-433 *3)))) (-2631 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-645 (-1178))) (-5 *3 (-645 (-772))) (-5 *4 (-645 (-1 *1 *1))) (-4 *1 (-433 *5)) (-4 *5 (-1102)) (-4 *5 (-1051)))) (-2631 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-645 (-1178))) (-5 *3 (-645 (-772))) (-5 *4 (-645 (-1 *1 (-645 *1)))) (-4 *1 (-433 *5)) (-4 *5 (-1102)) (-4 *5 (-1051)))) (-2631 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1178)) (-5 *3 (-772)) (-5 *4 (-1 *1 (-645 *1))) (-4 *1 (-433 *5)) (-4 *5 (-1102)) (-4 *5 (-1051)))) (-2631 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1178)) (-5 *3 (-772)) (-5 *4 (-1 *1 *1)) (-4 *1 (-433 *5)) (-4 *5 (-1102)) (-4 *5 (-1051)))) (-3893 (*1 *1 *2) (-12 (-5 *2 (-421 *1)) (-4 *1 (-433 *3)) (-4 *3 (-559)) (-4 *3 (-1102)))) (-1460 (*1 *2 *1) (-12 (-4 *3 (-559)) (-4 *3 (-1102)) (-5 *2 (-1127 *3 (-613 *1))) (-4 *1 (-433 *3)))) (-1967 (*1 *1 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1102)) (-4 *2 (-559)))) (-3060 (*1 *1 *2 *2) (-12 (-5 *2 (-1127 *3 (-613 *1))) (-4 *3 (-559)) (-4 *3 (-1102)) (-4 *1 (-433 *3)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-410 *3)) (-4 *3 (-559)) (-4 *3 (-1102)) (-4 *1 (-433 *3)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-954 (-410 *3))) (-4 *3 (-559)) (-4 *3 (-1102)) (-4 *1 (-433 *3)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-410 (-954 (-410 *3)))) (-4 *3 (-559)) (-4 *3 (-1102)) (-4 *1 (-433 *3)))) (-2675 (*1 *2 *1 *3) (-12 (-5 *3 (-613 *1)) (-4 *1 (-433 *4)) (-4 *4 (-1102)) (-4 *4 (-559)) (-5 *2 (-410 (-1174 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-433 *3)) (-4 *3 (-1102)) (-4 *3 (-1114)))))
-(-13 (-303) (-1040 (-1178)) (-886 |t#1|) (-403 |t#1|) (-414 |t#1|) (-10 -8 (-15 -2949 ((-112) $)) (-15 -2962 (|t#1| $)) (-15 -2847 ((-645 (-1178)) $)) (-15 -3247 ($ (-1178) $)) (-15 -3247 ($ (-1178) $ $)) (-15 -3247 ($ (-1178) $ $ $)) (-15 -3247 ($ (-1178) $ $ $ $)) (-15 -3247 ($ (-1178) (-645 $))) (IF (|has| |t#1| (-615 (-539))) (PROGN (-6 (-615 (-539))) (-15 -2631 ($ $ (-1178))) (-15 -2631 ($ $ (-645 (-1178)))) (-15 -2631 ($ $)) (-15 -2631 ($ $ (-114) $ (-1178))) (-15 -2631 ($ $ (-645 (-114)) (-645 $) (-1178)))) |%noBranch|) (IF (|has| |t#1| (-1114)) (PROGN (-6 (-727)) (-15 ** ($ $ (-772))) (-15 -2056 ((-3 (-645 $) "failed") $)) (-15 -3798 ((-3 (-2 (|:| |var| (-613 $)) (|:| -3458 (-567))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-476)) (-6 (-476)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -3671 ((-3 (-645 $) "failed") $)) (-15 -3556 ((-3 (-2 (|:| -3694 (-567)) (|:| |var| (-613 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1051)) (PROGN (-6 (-1051)) (-6 (-1040 (-954 |t#1|))) (-6 (-902 (-1178))) (-6 (-379 |t#1|)) (-15 -4132 ($ (-1127 |t#1| (-613 $)))) (-15 -1448 ((-1127 |t#1| (-613 $)) $)) (-15 -3530 ($ $)) (-15 -3798 ((-3 (-2 (|:| |var| (-613 $)) (|:| -3458 (-567))) "failed") $ (-114))) (-15 -3798 ((-3 (-2 (|:| |var| (-613 $)) (|:| -3458 (-567))) "failed") $ (-1178))) (-15 -1912 ((-3 (-2 (|:| |val| $) (|:| -3458 (-567))) "failed") $)) (-15 -2631 ($ $ (-645 (-1178)) (-645 (-772)) (-645 (-1 $ $)))) (-15 -2631 ($ $ (-645 (-1178)) (-645 (-772)) (-645 (-1 $ (-645 $))))) (-15 -2631 ($ $ (-1178) (-772) (-1 $ (-645 $)))) (-15 -2631 ($ $ (-1178) (-772) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-559)) (PROGN (-6 (-365)) (-6 (-1040 (-410 (-954 |t#1|)))) (-15 -3893 ($ (-421 $))) (-15 -1460 ((-1127 |t#1| (-613 $)) $)) (-15 -1967 ($ $)) (-15 -3060 ($ (-1127 |t#1| (-613 $)) (-1127 |t#1| (-613 $)))) (-15 -4132 ($ (-410 |t#1|))) (-15 -4132 ($ (-954 (-410 |t#1|)))) (-15 -4132 ($ (-410 (-954 (-410 |t#1|))))) (-15 -2675 ((-410 (-1174 $)) $ (-613 $))) (IF (|has| |t#1| (-1040 (-567))) (-6 (-1040 (-410 (-567)))) |%noBranch|)) |%noBranch|)))
-(((-21) -2800 (|has| |#1| (-1051)) (|has| |#1| (-559)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-23) -2800 (|has| |#1| (-1051)) (|has| |#1| (-559)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -2800 (|has| |#1| (-1051)) (|has| |#1| (-559)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-410 (-567))) |has| |#1| (-559)) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-559)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-559)) ((-111 |#1| |#1|) |has| |#1| (-172)) ((-111 $ $) |has| |#1| (-559)) ((-131) -2800 (|has| |#1| (-1051)) (|has| |#1| (-559)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #0#) -2800 (|has| |#1| (-1040 (-410 (-567)))) (|has| |#1| (-559))) ((-617 #1=(-410 (-954 |#1|))) |has| |#1| (-559)) ((-617 (-567)) -2800 (|has| |#1| (-1051)) (|has| |#1| (-1040 (-567))) (|has| |#1| (-559)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-617 #2=(-613 $)) . T) ((-617 #3=(-954 |#1|)) |has| |#1| (-1051)) ((-617 #4=(-1178)) . T) ((-617 |#1|) . T) ((-617 $) |has| |#1| (-559)) ((-614 (-863)) . T) ((-172) |has| |#1| (-559)) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-615 (-894 (-381))) |has| |#1| (-615 (-894 (-381)))) ((-615 (-894 (-567))) |has| |#1| (-615 (-894 (-567)))) ((-243) |has| |#1| (-559)) ((-291) |has| |#1| (-559)) ((-308) |has| |#1| (-559)) ((-310 $) . T) ((-303) . T) ((-365) |has| |#1| (-559)) ((-379 |#1|) |has| |#1| (-1051)) ((-403 |#1|) . T) ((-414 |#1|) . T) ((-455) |has| |#1| (-559)) ((-476) |has| |#1| (-476)) ((-517 (-613 $) $) . T) ((-517 $ $) . T) ((-559) |has| |#1| (-559)) ((-647 #0#) |has| |#1| (-559)) ((-647 (-567)) -2800 (|has| |#1| (-1051)) (|has| |#1| (-559)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-647 |#1|) |has| |#1| (-172)) ((-647 $) -2800 (|has| |#1| (-1051)) (|has| |#1| (-559)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-649 #0#) |has| |#1| (-559)) ((-649 |#1|) |has| |#1| (-172)) ((-649 $) -2800 (|has| |#1| (-1051)) (|has| |#1| (-559)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-641 #0#) |has| |#1| (-559)) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) |has| |#1| (-559)) ((-640 (-567)) -12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051))) ((-640 |#1|) |has| |#1| (-1051)) ((-718 #0#) |has| |#1| (-559)) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) |has| |#1| (-559)) ((-727) -2800 (|has| |#1| (-1114)) (|has| |#1| (-1051)) (|has| |#1| (-559)) (|has| |#1| (-476)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-902 (-1178)) |has| |#1| (-1051)) ((-888 (-381)) |has| |#1| (-888 (-381))) ((-888 (-567)) |has| |#1| (-888 (-567))) ((-886 |#1|) . T) ((-922) |has| |#1| (-559)) ((-1040 (-410 (-567))) -2800 (|has| |#1| (-1040 (-410 (-567)))) (-12 (|has| |#1| (-559)) (|has| |#1| (-1040 (-567))))) ((-1040 #1#) |has| |#1| (-559)) ((-1040 (-567)) |has| |#1| (-1040 (-567))) ((-1040 #2#) . T) ((-1040 #3#) |has| |#1| (-1051)) ((-1040 #4#) . T) ((-1040 |#1|) . T) ((-1053 #0#) |has| |#1| (-559)) ((-1053 |#1|) |has| |#1| (-172)) ((-1053 $) |has| |#1| (-559)) ((-1058 #0#) |has| |#1| (-559)) ((-1058 |#1|) |has| |#1| (-172)) ((-1058 $) |has| |#1| (-559)) ((-1051) -2800 (|has| |#1| (-1051)) (|has| |#1| (-559)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1060) -2800 (|has| |#1| (-1051)) (|has| |#1| (-559)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1114) -2800 (|has| |#1| (-1114)) (|has| |#1| (-1051)) (|has| |#1| (-559)) (|has| |#1| (-476)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1102) . T) ((-1218) . T) ((-1222) |has| |#1| (-559)))
-((-2387 ((|#2| |#2| |#2|) 31)) (-2654 (((-114) (-114)) 43)) (-2795 ((|#2| |#2|) 63)) (-4325 ((|#2| |#2|) 66)) (-4275 ((|#2| |#2|) 30)) (-3031 ((|#2| |#2| |#2|) 33)) (-2030 ((|#2| |#2| |#2|) 35)) (-3913 ((|#2| |#2| |#2|) 32)) (-2944 ((|#2| |#2| |#2|) 34)) (-3797 (((-112) (-114)) 41)) (-3382 ((|#2| |#2|) 37)) (-4023 ((|#2| |#2|) 36)) (-2219 ((|#2| |#2|) 25)) (-1890 ((|#2| |#2| |#2|) 28) ((|#2| |#2|) 26)) (-3944 ((|#2| |#2| |#2|) 29)))
-(((-434 |#1| |#2|) (-10 -7 (-15 -3797 ((-112) (-114))) (-15 -2654 ((-114) (-114))) (-15 -2219 (|#2| |#2|)) (-15 -1890 (|#2| |#2|)) (-15 -1890 (|#2| |#2| |#2|)) (-15 -3944 (|#2| |#2| |#2|)) (-15 -4275 (|#2| |#2|)) (-15 -2387 (|#2| |#2| |#2|)) (-15 -3913 (|#2| |#2| |#2|)) (-15 -3031 (|#2| |#2| |#2|)) (-15 -2944 (|#2| |#2| |#2|)) (-15 -2030 (|#2| |#2| |#2|)) (-15 -4023 (|#2| |#2|)) (-15 -3382 (|#2| |#2|)) (-15 -4325 (|#2| |#2|)) (-15 -2795 (|#2| |#2|))) (-559) (-433 |#1|)) (T -434))
-((-2795 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-4325 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-3382 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-4023 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-2030 (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-2944 (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-3031 (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-3913 (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-2387 (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-4275 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-3944 (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-1890 (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-1890 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-2219 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-2654 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-559)) (-5 *1 (-434 *3 *4)) (-4 *4 (-433 *3)))) (-3797 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-559)) (-5 *2 (-112)) (-5 *1 (-434 *4 *5)) (-4 *5 (-433 *4)))))
-(-10 -7 (-15 -3797 ((-112) (-114))) (-15 -2654 ((-114) (-114))) (-15 -2219 (|#2| |#2|)) (-15 -1890 (|#2| |#2|)) (-15 -1890 (|#2| |#2| |#2|)) (-15 -3944 (|#2| |#2| |#2|)) (-15 -4275 (|#2| |#2|)) (-15 -2387 (|#2| |#2| |#2|)) (-15 -3913 (|#2| |#2| |#2|)) (-15 -3031 (|#2| |#2| |#2|)) (-15 -2944 (|#2| |#2| |#2|)) (-15 -2030 (|#2| |#2| |#2|)) (-15 -4023 (|#2| |#2|)) (-15 -3382 (|#2| |#2|)) (-15 -4325 (|#2| |#2|)) (-15 -2795 (|#2| |#2|)))
-((-3431 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1174 |#2|)) (|:| |pol2| (-1174 |#2|)) (|:| |prim| (-1174 |#2|))) |#2| |#2|) 106 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-645 (-1174 |#2|))) (|:| |prim| (-1174 |#2|))) (-645 |#2|)) 68)))
-(((-435 |#1| |#2|) (-10 -7 (-15 -3431 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-645 (-1174 |#2|))) (|:| |prim| (-1174 |#2|))) (-645 |#2|))) (IF (|has| |#2| (-27)) (-15 -3431 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1174 |#2|)) (|:| |pol2| (-1174 |#2|)) (|:| |prim| (-1174 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-559) (-147)) (-433 |#1|)) (T -435))
-((-3431 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-559) (-147))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1174 *3)) (|:| |pol2| (-1174 *3)) (|:| |prim| (-1174 *3)))) (-5 *1 (-435 *4 *3)) (-4 *3 (-27)) (-4 *3 (-433 *4)))) (-3431 (*1 *2 *3) (-12 (-5 *3 (-645 *5)) (-4 *5 (-433 *4)) (-4 *4 (-13 (-559) (-147))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-645 (-1174 *5))) (|:| |prim| (-1174 *5)))) (-5 *1 (-435 *4 *5)))))
-(-10 -7 (-15 -3431 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-645 (-1174 |#2|))) (|:| |prim| (-1174 |#2|))) (-645 |#2|))) (IF (|has| |#2| (-27)) (-15 -3431 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1174 |#2|)) (|:| |pol2| (-1174 |#2|)) (|:| |prim| (-1174 |#2|))) |#2| |#2|)) |%noBranch|))
-((-3481 (((-1273)) 19)) (-2801 (((-1174 (-410 (-567))) |#2| (-613 |#2|)) 41) (((-410 (-567)) |#2|) 25)))
-(((-436 |#1| |#2|) (-10 -7 (-15 -2801 ((-410 (-567)) |#2|)) (-15 -2801 ((-1174 (-410 (-567))) |#2| (-613 |#2|))) (-15 -3481 ((-1273)))) (-13 (-559) (-1040 (-567))) (-433 |#1|)) (T -436))
-((-3481 (*1 *2) (-12 (-4 *3 (-13 (-559) (-1040 (-567)))) (-5 *2 (-1273)) (-5 *1 (-436 *3 *4)) (-4 *4 (-433 *3)))) (-2801 (*1 *2 *3 *4) (-12 (-5 *4 (-613 *3)) (-4 *3 (-433 *5)) (-4 *5 (-13 (-559) (-1040 (-567)))) (-5 *2 (-1174 (-410 (-567)))) (-5 *1 (-436 *5 *3)))) (-2801 (*1 *2 *3) (-12 (-4 *4 (-13 (-559) (-1040 (-567)))) (-5 *2 (-410 (-567))) (-5 *1 (-436 *4 *3)) (-4 *3 (-433 *4)))))
-(-10 -7 (-15 -2801 ((-410 (-567)) |#2|)) (-15 -2801 ((-1174 (-410 (-567))) |#2| (-613 |#2|))) (-15 -3481 ((-1273))))
-((-1684 (((-112) $) 32)) (-3343 (((-112) $) 34)) (-2047 (((-112) $) 35)) (-3542 (((-112) $) 38)) (-1405 (((-112) $) 33)) (-2922 (((-112) $) 37)) (-4132 (((-863) $) 20) (($ (-1160)) 31) (($ (-1178)) 26) (((-1178) $) 24) (((-1106) $) 23)) (-4192 (((-112) $) 36)) (-2936 (((-112) $ $) 17)))
-(((-437) (-13 (-614 (-863)) (-10 -8 (-15 -4132 ($ (-1160))) (-15 -4132 ($ (-1178))) (-15 -4132 ((-1178) $)) (-15 -4132 ((-1106) $)) (-15 -1684 ((-112) $)) (-15 -1405 ((-112) $)) (-15 -2047 ((-112) $)) (-15 -2922 ((-112) $)) (-15 -3542 ((-112) $)) (-15 -4192 ((-112) $)) (-15 -3343 ((-112) $)) (-15 -2936 ((-112) $ $))))) (T -437))
-((-4132 (*1 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-437)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-437)))) (-4132 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-437)))) (-4132 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-437)))) (-1684 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) (-1405 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) (-2047 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) (-2922 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) (-3542 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) (-4192 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) (-3343 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) (-2936 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))))
-(-13 (-614 (-863)) (-10 -8 (-15 -4132 ($ (-1160))) (-15 -4132 ($ (-1178))) (-15 -4132 ((-1178) $)) (-15 -4132 ((-1106) $)) (-15 -1684 ((-112) $)) (-15 -1405 ((-112) $)) (-15 -2047 ((-112) $)) (-15 -2922 ((-112) $)) (-15 -3542 ((-112) $)) (-15 -4192 ((-112) $)) (-15 -3343 ((-112) $)) (-15 -2936 ((-112) $ $))))
-((-2635 (((-3 (-421 (-1174 (-410 (-567)))) "failed") |#3|) 72)) (-3961 (((-421 |#3|) |#3|) 34)) (-3580 (((-3 (-421 (-1174 (-48))) "failed") |#3|) 46 (|has| |#2| (-1040 (-48))))) (-3969 (((-3 (|:| |overq| (-1174 (-410 (-567)))) (|:| |overan| (-1174 (-48))) (|:| -3668 (-112))) |#3|) 37)))
-(((-438 |#1| |#2| |#3|) (-10 -7 (-15 -3961 ((-421 |#3|) |#3|)) (-15 -2635 ((-3 (-421 (-1174 (-410 (-567)))) "failed") |#3|)) (-15 -3969 ((-3 (|:| |overq| (-1174 (-410 (-567)))) (|:| |overan| (-1174 (-48))) (|:| -3668 (-112))) |#3|)) (IF (|has| |#2| (-1040 (-48))) (-15 -3580 ((-3 (-421 (-1174 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-559) (-1040 (-567))) (-433 |#1|) (-1244 |#2|)) (T -438))
-((-3580 (*1 *2 *3) (|partial| -12 (-4 *5 (-1040 (-48))) (-4 *4 (-13 (-559) (-1040 (-567)))) (-4 *5 (-433 *4)) (-5 *2 (-421 (-1174 (-48)))) (-5 *1 (-438 *4 *5 *3)) (-4 *3 (-1244 *5)))) (-3969 (*1 *2 *3) (-12 (-4 *4 (-13 (-559) (-1040 (-567)))) (-4 *5 (-433 *4)) (-5 *2 (-3 (|:| |overq| (-1174 (-410 (-567)))) (|:| |overan| (-1174 (-48))) (|:| -3668 (-112)))) (-5 *1 (-438 *4 *5 *3)) (-4 *3 (-1244 *5)))) (-2635 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-559) (-1040 (-567)))) (-4 *5 (-433 *4)) (-5 *2 (-421 (-1174 (-410 (-567))))) (-5 *1 (-438 *4 *5 *3)) (-4 *3 (-1244 *5)))) (-3961 (*1 *2 *3) (-12 (-4 *4 (-13 (-559) (-1040 (-567)))) (-4 *5 (-433 *4)) (-5 *2 (-421 *3)) (-5 *1 (-438 *4 *5 *3)) (-4 *3 (-1244 *5)))))
-(-10 -7 (-15 -3961 ((-421 |#3|) |#3|)) (-15 -2635 ((-3 (-421 (-1174 (-410 (-567)))) "failed") |#3|)) (-15 -3969 ((-3 (|:| |overq| (-1174 (-410 (-567)))) (|:| |overan| (-1174 (-48))) (|:| -3668 (-112))) |#3|)) (IF (|has| |#2| (-1040 (-48))) (-15 -3580 ((-3 (-421 (-1174 (-48))) "failed") |#3|)) |%noBranch|))
-((-2403 (((-112) $ $) NIL)) (-4032 (((-1160) $ (-1160)) NIL)) (-2828 (($ $ (-1160)) NIL)) (-2636 (((-1160) $) NIL)) (-3678 (((-391) (-391) (-391)) 17) (((-391) (-391)) 15)) (-3823 (($ (-391)) NIL) (($ (-391) (-1160)) NIL)) (-1996 (((-391) $) NIL)) (-1419 (((-1160) $) NIL)) (-1892 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-3935 (((-1273) (-1160)) 9)) (-3039 (((-1273) (-1160)) 10)) (-1956 (((-1273)) 11)) (-4132 (((-863) $) NIL)) (-1675 (($ $) 39)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)))
-(((-439) (-13 (-366 (-391) (-1160)) (-10 -7 (-15 -3678 ((-391) (-391) (-391))) (-15 -3678 ((-391) (-391))) (-15 -3935 ((-1273) (-1160))) (-15 -3039 ((-1273) (-1160))) (-15 -1956 ((-1273)))))) (T -439))
-((-3678 (*1 *2 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-439)))) (-3678 (*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-439)))) (-3935 (*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-439)))) (-3039 (*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-439)))) (-1956 (*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-439)))))
-(-13 (-366 (-391) (-1160)) (-10 -7 (-15 -3678 ((-391) (-391) (-391))) (-15 -3678 ((-391) (-391))) (-15 -3935 ((-1273) (-1160))) (-15 -3039 ((-1273) (-1160))) (-15 -1956 ((-1273)))))
-((-2403 (((-112) $ $) NIL)) (-4317 (((-3 (|:| |fst| (-437)) (|:| -4321 "void")) $) 11)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-1873 (($) 35)) (-1658 (($) 41)) (-2162 (($) 37)) (-3534 (($) 39)) (-3514 (($) 36)) (-3103 (($) 38)) (-3305 (($) 40)) (-3245 (((-112) $) 8)) (-3234 (((-645 (-954 (-567))) $) 19)) (-4147 (($ (-3 (|:| |fst| (-437)) (|:| -4321 "void")) (-645 (-1178)) (-112)) 29) (($ (-3 (|:| |fst| (-437)) (|:| -4321 "void")) (-645 (-954 (-567))) (-112)) 30)) (-4132 (((-863) $) 24) (($ (-437)) 32)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)))
-(((-440) (-13 (-1102) (-10 -8 (-15 -4132 ($ (-437))) (-15 -4317 ((-3 (|:| |fst| (-437)) (|:| -4321 "void")) $)) (-15 -3234 ((-645 (-954 (-567))) $)) (-15 -3245 ((-112) $)) (-15 -4147 ($ (-3 (|:| |fst| (-437)) (|:| -4321 "void")) (-645 (-1178)) (-112))) (-15 -4147 ($ (-3 (|:| |fst| (-437)) (|:| -4321 "void")) (-645 (-954 (-567))) (-112))) (-15 -1873 ($)) (-15 -3514 ($)) (-15 -2162 ($)) (-15 -1658 ($)) (-15 -3103 ($)) (-15 -3534 ($)) (-15 -3305 ($))))) (T -440))
-((-4132 (*1 *1 *2) (-12 (-5 *2 (-437)) (-5 *1 (-440)))) (-4317 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-437)) (|:| -4321 "void"))) (-5 *1 (-440)))) (-3234 (*1 *2 *1) (-12 (-5 *2 (-645 (-954 (-567)))) (-5 *1 (-440)))) (-3245 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-440)))) (-4147 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-437)) (|:| -4321 "void"))) (-5 *3 (-645 (-1178))) (-5 *4 (-112)) (-5 *1 (-440)))) (-4147 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-437)) (|:| -4321 "void"))) (-5 *3 (-645 (-954 (-567)))) (-5 *4 (-112)) (-5 *1 (-440)))) (-1873 (*1 *1) (-5 *1 (-440))) (-3514 (*1 *1) (-5 *1 (-440))) (-2162 (*1 *1) (-5 *1 (-440))) (-1658 (*1 *1) (-5 *1 (-440))) (-3103 (*1 *1) (-5 *1 (-440))) (-3534 (*1 *1) (-5 *1 (-440))) (-3305 (*1 *1) (-5 *1 (-440))))
-(-13 (-1102) (-10 -8 (-15 -4132 ($ (-437))) (-15 -4317 ((-3 (|:| |fst| (-437)) (|:| -4321 "void")) $)) (-15 -3234 ((-645 (-954 (-567))) $)) (-15 -3245 ((-112) $)) (-15 -4147 ($ (-3 (|:| |fst| (-437)) (|:| -4321 "void")) (-645 (-1178)) (-112))) (-15 -4147 ($ (-3 (|:| |fst| (-437)) (|:| -4321 "void")) (-645 (-954 (-567))) (-112))) (-15 -1873 ($)) (-15 -3514 ($)) (-15 -2162 ($)) (-15 -1658 ($)) (-15 -3103 ($)) (-15 -3534 ($)) (-15 -3305 ($))))
-((-2403 (((-112) $ $) NIL)) (-1996 (((-1178) $) 8)) (-1419 (((-1160) $) 17)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 11)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 14)))
-(((-441 |#1|) (-13 (-1102) (-10 -8 (-15 -1996 ((-1178) $)))) (-1178)) (T -441))
-((-1996 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-441 *3)) (-14 *3 *2))))
-(-13 (-1102) (-10 -8 (-15 -1996 ((-1178) $))))
-((-2403 (((-112) $ $) NIL)) (-3386 (((-1120) $) 7)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 13)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 9)))
-(((-442) (-13 (-1102) (-10 -8 (-15 -3386 ((-1120) $))))) (T -442))
-((-3386 (*1 *2 *1) (-12 (-5 *2 (-1120)) (-5 *1 (-442)))))
-(-13 (-1102) (-10 -8 (-15 -3386 ((-1120) $))))
-((-1453 (((-1273) $) 7)) (-4132 (((-863) $) 8) (($ (-1268 (-700))) 14) (($ (-645 (-331))) 13) (($ (-331)) 12) (($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) 11)))
+((-2960 (*1 *2 *1) (-12 (-4 *1 (-433 *3)) (-4 *3 (-1102)) (-5 *2 (-112)))) (-2971 (*1 *2 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1102)))) (-2859 (*1 *2 *1) (-12 (-4 *1 (-433 *3)) (-4 *3 (-1102)) (-5 *2 (-645 (-1179))))) (-3264 (*1 *1 *2 *1) (-12 (-5 *2 (-1179)) (-4 *1 (-433 *3)) (-4 *3 (-1102)))) (-3264 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1179)) (-4 *1 (-433 *3)) (-4 *3 (-1102)))) (-3264 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1179)) (-4 *1 (-433 *3)) (-4 *3 (-1102)))) (-3264 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1179)) (-4 *1 (-433 *3)) (-4 *3 (-1102)))) (-3264 (*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-645 *1)) (-4 *1 (-433 *4)) (-4 *4 (-1102)))) (-2642 (*1 *1 *1 *2) (-12 (-5 *2 (-1179)) (-4 *1 (-433 *3)) (-4 *3 (-1102)) (-4 *3 (-615 (-539))))) (-2642 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-1179))) (-4 *1 (-433 *3)) (-4 *3 (-1102)) (-4 *3 (-615 (-539))))) (-2642 (*1 *1 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1102)) (-4 *2 (-615 (-539))))) (-2642 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1179)) (-4 *1 (-433 *4)) (-4 *4 (-1102)) (-4 *4 (-615 (-539))))) (-2642 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-645 (-114))) (-5 *3 (-645 *1)) (-5 *4 (-1179)) (-4 *1 (-433 *5)) (-4 *5 (-1102)) (-4 *5 (-615 (-539))))) (-3037 (*1 *2 *1) (|partial| -12 (-4 *3 (-1114)) (-4 *3 (-1102)) (-5 *2 (-645 *1)) (-4 *1 (-433 *3)))) (-3816 (*1 *2 *1) (|partial| -12 (-4 *3 (-1114)) (-4 *3 (-1102)) (-5 *2 (-2 (|:| |var| (-613 *1)) (|:| -3468 (-567)))) (-4 *1 (-433 *3)))) (-3774 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1102)) (-5 *2 (-645 *1)) (-4 *1 (-433 *3)))) (-3024 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1102)) (-5 *2 (-2 (|:| -3705 (-567)) (|:| |var| (-613 *1)))) (-4 *1 (-433 *3)))) (-4129 (*1 *1 *2) (-12 (-5 *2 (-1127 *3 (-613 *1))) (-4 *3 (-1051)) (-4 *3 (-1102)) (-4 *1 (-433 *3)))) (-1447 (*1 *2 *1) (-12 (-4 *3 (-1051)) (-4 *3 (-1102)) (-5 *2 (-1127 *3 (-613 *1))) (-4 *1 (-433 *3)))) (-1863 (*1 *1 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1102)) (-4 *2 (-1051)))) (-3816 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1051)) (-4 *4 (-1102)) (-5 *2 (-2 (|:| |var| (-613 *1)) (|:| -3468 (-567)))) (-4 *1 (-433 *4)))) (-3816 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1179)) (-4 *4 (-1051)) (-4 *4 (-1102)) (-5 *2 (-2 (|:| |var| (-613 *1)) (|:| -3468 (-567)))) (-4 *1 (-433 *4)))) (-1851 (*1 *2 *1) (|partial| -12 (-4 *3 (-1051)) (-4 *3 (-1102)) (-5 *2 (-2 (|:| |val| *1) (|:| -3468 (-567)))) (-4 *1 (-433 *3)))) (-2642 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-645 (-1179))) (-5 *3 (-645 (-772))) (-5 *4 (-645 (-1 *1 *1))) (-4 *1 (-433 *5)) (-4 *5 (-1102)) (-4 *5 (-1051)))) (-2642 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-645 (-1179))) (-5 *3 (-645 (-772))) (-5 *4 (-645 (-1 *1 (-645 *1)))) (-4 *1 (-433 *5)) (-4 *5 (-1102)) (-4 *5 (-1051)))) (-2642 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1179)) (-5 *3 (-772)) (-5 *4 (-1 *1 (-645 *1))) (-4 *1 (-433 *5)) (-4 *5 (-1102)) (-4 *5 (-1051)))) (-2642 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1179)) (-5 *3 (-772)) (-5 *4 (-1 *1 *1)) (-4 *1 (-433 *5)) (-4 *5 (-1102)) (-4 *5 (-1051)))) (-3902 (*1 *1 *2) (-12 (-5 *2 (-421 *1)) (-4 *1 (-433 *3)) (-4 *3 (-559)) (-4 *3 (-1102)))) (-1462 (*1 *2 *1) (-12 (-4 *3 (-559)) (-4 *3 (-1102)) (-5 *2 (-1127 *3 (-613 *1))) (-4 *1 (-433 *3)))) (-1762 (*1 *1 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1102)) (-4 *2 (-559)))) (-3069 (*1 *1 *2 *2) (-12 (-5 *2 (-1127 *3 (-613 *1))) (-4 *3 (-559)) (-4 *3 (-1102)) (-4 *1 (-433 *3)))) (-4129 (*1 *1 *2) (-12 (-5 *2 (-410 *3)) (-4 *3 (-559)) (-4 *3 (-1102)) (-4 *1 (-433 *3)))) (-4129 (*1 *1 *2) (-12 (-5 *2 (-954 (-410 *3))) (-4 *3 (-559)) (-4 *3 (-1102)) (-4 *1 (-433 *3)))) (-4129 (*1 *1 *2) (-12 (-5 *2 (-410 (-954 (-410 *3)))) (-4 *3 (-559)) (-4 *3 (-1102)) (-4 *1 (-433 *3)))) (-2684 (*1 *2 *1 *3) (-12 (-5 *3 (-613 *1)) (-4 *1 (-433 *4)) (-4 *4 (-1102)) (-4 *4 (-559)) (-5 *2 (-410 (-1175 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-433 *3)) (-4 *3 (-1102)) (-4 *3 (-1114)))))
+(-13 (-303) (-1040 (-1179)) (-886 |t#1|) (-403 |t#1|) (-414 |t#1|) (-10 -8 (-15 -2960 ((-112) $)) (-15 -2971 (|t#1| $)) (-15 -2859 ((-645 (-1179)) $)) (-15 -3264 ($ (-1179) $)) (-15 -3264 ($ (-1179) $ $)) (-15 -3264 ($ (-1179) $ $ $)) (-15 -3264 ($ (-1179) $ $ $ $)) (-15 -3264 ($ (-1179) (-645 $))) (IF (|has| |t#1| (-615 (-539))) (PROGN (-6 (-615 (-539))) (-15 -2642 ($ $ (-1179))) (-15 -2642 ($ $ (-645 (-1179)))) (-15 -2642 ($ $)) (-15 -2642 ($ $ (-114) $ (-1179))) (-15 -2642 ($ $ (-645 (-114)) (-645 $) (-1179)))) |%noBranch|) (IF (|has| |t#1| (-1114)) (PROGN (-6 (-727)) (-15 ** ($ $ (-772))) (-15 -3037 ((-3 (-645 $) "failed") $)) (-15 -3816 ((-3 (-2 (|:| |var| (-613 $)) (|:| -3468 (-567))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-476)) (-6 (-476)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -3774 ((-3 (-645 $) "failed") $)) (-15 -3024 ((-3 (-2 (|:| -3705 (-567)) (|:| |var| (-613 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1051)) (PROGN (-6 (-1051)) (-6 (-1040 (-954 |t#1|))) (-6 (-902 (-1179))) (-6 (-379 |t#1|)) (-15 -4129 ($ (-1127 |t#1| (-613 $)))) (-15 -1447 ((-1127 |t#1| (-613 $)) $)) (-15 -1863 ($ $)) (-15 -3816 ((-3 (-2 (|:| |var| (-613 $)) (|:| -3468 (-567))) "failed") $ (-114))) (-15 -3816 ((-3 (-2 (|:| |var| (-613 $)) (|:| -3468 (-567))) "failed") $ (-1179))) (-15 -1851 ((-3 (-2 (|:| |val| $) (|:| -3468 (-567))) "failed") $)) (-15 -2642 ($ $ (-645 (-1179)) (-645 (-772)) (-645 (-1 $ $)))) (-15 -2642 ($ $ (-645 (-1179)) (-645 (-772)) (-645 (-1 $ (-645 $))))) (-15 -2642 ($ $ (-1179) (-772) (-1 $ (-645 $)))) (-15 -2642 ($ $ (-1179) (-772) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-559)) (PROGN (-6 (-365)) (-6 (-1040 (-410 (-954 |t#1|)))) (-15 -3902 ($ (-421 $))) (-15 -1462 ((-1127 |t#1| (-613 $)) $)) (-15 -1762 ($ $)) (-15 -3069 ($ (-1127 |t#1| (-613 $)) (-1127 |t#1| (-613 $)))) (-15 -4129 ($ (-410 |t#1|))) (-15 -4129 ($ (-954 (-410 |t#1|)))) (-15 -4129 ($ (-410 (-954 (-410 |t#1|))))) (-15 -2684 ((-410 (-1175 $)) $ (-613 $))) (IF (|has| |t#1| (-1040 (-567))) (-6 (-1040 (-410 (-567)))) |%noBranch|)) |%noBranch|)))
+(((-21) -2811 (|has| |#1| (-1051)) (|has| |#1| (-559)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-23) -2811 (|has| |#1| (-1051)) (|has| |#1| (-559)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -2811 (|has| |#1| (-1051)) (|has| |#1| (-559)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-410 (-567))) |has| |#1| (-559)) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-559)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-559)) ((-111 |#1| |#1|) |has| |#1| (-172)) ((-111 $ $) |has| |#1| (-559)) ((-131) -2811 (|has| |#1| (-1051)) (|has| |#1| (-559)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #0#) -2811 (|has| |#1| (-1040 (-410 (-567)))) (|has| |#1| (-559))) ((-617 #1=(-410 (-954 |#1|))) |has| |#1| (-559)) ((-617 (-567)) -2811 (|has| |#1| (-1051)) (|has| |#1| (-1040 (-567))) (|has| |#1| (-559)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-617 #2=(-613 $)) . T) ((-617 #3=(-954 |#1|)) |has| |#1| (-1051)) ((-617 #4=(-1179)) . T) ((-617 |#1|) . T) ((-617 $) |has| |#1| (-559)) ((-614 (-863)) . T) ((-172) |has| |#1| (-559)) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-615 (-894 (-381))) |has| |#1| (-615 (-894 (-381)))) ((-615 (-894 (-567))) |has| |#1| (-615 (-894 (-567)))) ((-243) |has| |#1| (-559)) ((-291) |has| |#1| (-559)) ((-308) |has| |#1| (-559)) ((-310 $) . T) ((-303) . T) ((-365) |has| |#1| (-559)) ((-379 |#1|) |has| |#1| (-1051)) ((-403 |#1|) . T) ((-414 |#1|) . T) ((-455) |has| |#1| (-559)) ((-476) |has| |#1| (-476)) ((-517 (-613 $) $) . T) ((-517 $ $) . T) ((-559) |has| |#1| (-559)) ((-647 #0#) |has| |#1| (-559)) ((-647 (-567)) -2811 (|has| |#1| (-1051)) (|has| |#1| (-559)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-647 |#1|) |has| |#1| (-172)) ((-647 $) -2811 (|has| |#1| (-1051)) (|has| |#1| (-559)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-649 #0#) |has| |#1| (-559)) ((-649 |#1|) |has| |#1| (-172)) ((-649 $) -2811 (|has| |#1| (-1051)) (|has| |#1| (-559)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-641 #0#) |has| |#1| (-559)) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) |has| |#1| (-559)) ((-640 (-567)) -12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051))) ((-640 |#1|) |has| |#1| (-1051)) ((-718 #0#) |has| |#1| (-559)) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) |has| |#1| (-559)) ((-727) -2811 (|has| |#1| (-1114)) (|has| |#1| (-1051)) (|has| |#1| (-559)) (|has| |#1| (-476)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-902 (-1179)) |has| |#1| (-1051)) ((-888 (-381)) |has| |#1| (-888 (-381))) ((-888 (-567)) |has| |#1| (-888 (-567))) ((-886 |#1|) . T) ((-922) |has| |#1| (-559)) ((-1040 (-410 (-567))) -2811 (|has| |#1| (-1040 (-410 (-567)))) (-12 (|has| |#1| (-559)) (|has| |#1| (-1040 (-567))))) ((-1040 #1#) |has| |#1| (-559)) ((-1040 (-567)) |has| |#1| (-1040 (-567))) ((-1040 #2#) . T) ((-1040 #3#) |has| |#1| (-1051)) ((-1040 #4#) . T) ((-1040 |#1|) . T) ((-1053 #0#) |has| |#1| (-559)) ((-1053 |#1|) |has| |#1| (-172)) ((-1053 $) |has| |#1| (-559)) ((-1058 #0#) |has| |#1| (-559)) ((-1058 |#1|) |has| |#1| (-172)) ((-1058 $) |has| |#1| (-559)) ((-1051) -2811 (|has| |#1| (-1051)) (|has| |#1| (-559)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1060) -2811 (|has| |#1| (-1051)) (|has| |#1| (-559)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1114) -2811 (|has| |#1| (-1114)) (|has| |#1| (-1051)) (|has| |#1| (-559)) (|has| |#1| (-476)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1102) . T) ((-1219) . T) ((-1223) |has| |#1| (-559)))
+((-1414 ((|#2| |#2| |#2|) 31)) (-2662 (((-114) (-114)) 43)) (-2803 ((|#2| |#2|) 63)) (-4092 ((|#2| |#2|) 66)) (-3514 ((|#2| |#2|) 30)) (-3534 ((|#2| |#2| |#2|) 33)) (-1713 ((|#2| |#2| |#2|) 35)) (-2704 ((|#2| |#2| |#2|) 32)) (-4126 ((|#2| |#2| |#2|) 34)) (-1909 (((-112) (-114)) 41)) (-2219 ((|#2| |#2|) 37)) (-2682 ((|#2| |#2|) 36)) (-1547 ((|#2| |#2|) 25)) (-3290 ((|#2| |#2| |#2|) 28) ((|#2| |#2|) 26)) (-3095 ((|#2| |#2| |#2|) 29)))
+(((-434 |#1| |#2|) (-10 -7 (-15 -1909 ((-112) (-114))) (-15 -2662 ((-114) (-114))) (-15 -1547 (|#2| |#2|)) (-15 -3290 (|#2| |#2|)) (-15 -3290 (|#2| |#2| |#2|)) (-15 -3095 (|#2| |#2| |#2|)) (-15 -3514 (|#2| |#2|)) (-15 -1414 (|#2| |#2| |#2|)) (-15 -2704 (|#2| |#2| |#2|)) (-15 -3534 (|#2| |#2| |#2|)) (-15 -4126 (|#2| |#2| |#2|)) (-15 -1713 (|#2| |#2| |#2|)) (-15 -2682 (|#2| |#2|)) (-15 -2219 (|#2| |#2|)) (-15 -4092 (|#2| |#2|)) (-15 -2803 (|#2| |#2|))) (-559) (-433 |#1|)) (T -434))
+((-2803 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-4092 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-2219 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-2682 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-1713 (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-4126 (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-3534 (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-2704 (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-1414 (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-3514 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-3095 (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-3290 (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-3290 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-1547 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-2662 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-559)) (-5 *1 (-434 *3 *4)) (-4 *4 (-433 *3)))) (-1909 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-559)) (-5 *2 (-112)) (-5 *1 (-434 *4 *5)) (-4 *5 (-433 *4)))))
+(-10 -7 (-15 -1909 ((-112) (-114))) (-15 -2662 ((-114) (-114))) (-15 -1547 (|#2| |#2|)) (-15 -3290 (|#2| |#2|)) (-15 -3290 (|#2| |#2| |#2|)) (-15 -3095 (|#2| |#2| |#2|)) (-15 -3514 (|#2| |#2|)) (-15 -1414 (|#2| |#2| |#2|)) (-15 -2704 (|#2| |#2| |#2|)) (-15 -3534 (|#2| |#2| |#2|)) (-15 -4126 (|#2| |#2| |#2|)) (-15 -1713 (|#2| |#2| |#2|)) (-15 -2682 (|#2| |#2|)) (-15 -2219 (|#2| |#2|)) (-15 -4092 (|#2| |#2|)) (-15 -2803 (|#2| |#2|)))
+((-2870 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1175 |#2|)) (|:| |pol2| (-1175 |#2|)) (|:| |prim| (-1175 |#2|))) |#2| |#2|) 106 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-645 (-1175 |#2|))) (|:| |prim| (-1175 |#2|))) (-645 |#2|)) 68)))
+(((-435 |#1| |#2|) (-10 -7 (-15 -2870 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-645 (-1175 |#2|))) (|:| |prim| (-1175 |#2|))) (-645 |#2|))) (IF (|has| |#2| (-27)) (-15 -2870 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1175 |#2|)) (|:| |pol2| (-1175 |#2|)) (|:| |prim| (-1175 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-559) (-147)) (-433 |#1|)) (T -435))
+((-2870 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-559) (-147))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1175 *3)) (|:| |pol2| (-1175 *3)) (|:| |prim| (-1175 *3)))) (-5 *1 (-435 *4 *3)) (-4 *3 (-27)) (-4 *3 (-433 *4)))) (-2870 (*1 *2 *3) (-12 (-5 *3 (-645 *5)) (-4 *5 (-433 *4)) (-4 *4 (-13 (-559) (-147))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-645 (-1175 *5))) (|:| |prim| (-1175 *5)))) (-5 *1 (-435 *4 *5)))))
+(-10 -7 (-15 -2870 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-645 (-1175 |#2|))) (|:| |prim| (-1175 |#2|))) (-645 |#2|))) (IF (|has| |#2| (-27)) (-15 -2870 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1175 |#2|)) (|:| |pol2| (-1175 |#2|)) (|:| |prim| (-1175 |#2|))) |#2| |#2|)) |%noBranch|))
+((-1931 (((-1274)) 19)) (-2068 (((-1175 (-410 (-567))) |#2| (-613 |#2|)) 41) (((-410 (-567)) |#2|) 25)))
+(((-436 |#1| |#2|) (-10 -7 (-15 -2068 ((-410 (-567)) |#2|)) (-15 -2068 ((-1175 (-410 (-567))) |#2| (-613 |#2|))) (-15 -1931 ((-1274)))) (-13 (-559) (-1040 (-567))) (-433 |#1|)) (T -436))
+((-1931 (*1 *2) (-12 (-4 *3 (-13 (-559) (-1040 (-567)))) (-5 *2 (-1274)) (-5 *1 (-436 *3 *4)) (-4 *4 (-433 *3)))) (-2068 (*1 *2 *3 *4) (-12 (-5 *4 (-613 *3)) (-4 *3 (-433 *5)) (-4 *5 (-13 (-559) (-1040 (-567)))) (-5 *2 (-1175 (-410 (-567)))) (-5 *1 (-436 *5 *3)))) (-2068 (*1 *2 *3) (-12 (-4 *4 (-13 (-559) (-1040 (-567)))) (-5 *2 (-410 (-567))) (-5 *1 (-436 *4 *3)) (-4 *3 (-433 *4)))))
+(-10 -7 (-15 -2068 ((-410 (-567)) |#2|)) (-15 -2068 ((-1175 (-410 (-567))) |#2| (-613 |#2|))) (-15 -1931 ((-1274))))
+((-2490 (((-112) $) 32)) (-3252 (((-112) $) 34)) (-3416 (((-112) $) 35)) (-3559 (((-112) $) 38)) (-1671 (((-112) $) 33)) (-2620 (((-112) $) 37)) (-4129 (((-863) $) 20) (($ (-1161)) 31) (($ (-1179)) 26) (((-1179) $) 24) (((-1106) $) 23)) (-3035 (((-112) $) 36)) (-2946 (((-112) $ $) 17)))
+(((-437) (-13 (-614 (-863)) (-10 -8 (-15 -4129 ($ (-1161))) (-15 -4129 ($ (-1179))) (-15 -4129 ((-1179) $)) (-15 -4129 ((-1106) $)) (-15 -2490 ((-112) $)) (-15 -1671 ((-112) $)) (-15 -3416 ((-112) $)) (-15 -2620 ((-112) $)) (-15 -3559 ((-112) $)) (-15 -3035 ((-112) $)) (-15 -3252 ((-112) $)) (-15 -2946 ((-112) $ $))))) (T -437))
+((-4129 (*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-437)))) (-4129 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-437)))) (-4129 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-437)))) (-4129 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-437)))) (-2490 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) (-1671 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) (-3416 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) (-2620 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) (-3559 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) (-3035 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) (-3252 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) (-2946 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))))
+(-13 (-614 (-863)) (-10 -8 (-15 -4129 ($ (-1161))) (-15 -4129 ($ (-1179))) (-15 -4129 ((-1179) $)) (-15 -4129 ((-1106) $)) (-15 -2490 ((-112) $)) (-15 -1671 ((-112) $)) (-15 -3416 ((-112) $)) (-15 -2620 ((-112) $)) (-15 -3559 ((-112) $)) (-15 -3035 ((-112) $)) (-15 -3252 ((-112) $)) (-15 -2946 ((-112) $ $))))
+((-1846 (((-3 (-421 (-1175 (-410 (-567)))) "failed") |#3|) 72)) (-4207 (((-421 |#3|) |#3|) 34)) (-3439 (((-3 (-421 (-1175 (-48))) "failed") |#3|) 46 (|has| |#2| (-1040 (-48))))) (-2702 (((-3 (|:| |overq| (-1175 (-410 (-567)))) (|:| |overan| (-1175 (-48))) (|:| -3678 (-112))) |#3|) 37)))
+(((-438 |#1| |#2| |#3|) (-10 -7 (-15 -4207 ((-421 |#3|) |#3|)) (-15 -1846 ((-3 (-421 (-1175 (-410 (-567)))) "failed") |#3|)) (-15 -2702 ((-3 (|:| |overq| (-1175 (-410 (-567)))) (|:| |overan| (-1175 (-48))) (|:| -3678 (-112))) |#3|)) (IF (|has| |#2| (-1040 (-48))) (-15 -3439 ((-3 (-421 (-1175 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-559) (-1040 (-567))) (-433 |#1|) (-1245 |#2|)) (T -438))
+((-3439 (*1 *2 *3) (|partial| -12 (-4 *5 (-1040 (-48))) (-4 *4 (-13 (-559) (-1040 (-567)))) (-4 *5 (-433 *4)) (-5 *2 (-421 (-1175 (-48)))) (-5 *1 (-438 *4 *5 *3)) (-4 *3 (-1245 *5)))) (-2702 (*1 *2 *3) (-12 (-4 *4 (-13 (-559) (-1040 (-567)))) (-4 *5 (-433 *4)) (-5 *2 (-3 (|:| |overq| (-1175 (-410 (-567)))) (|:| |overan| (-1175 (-48))) (|:| -3678 (-112)))) (-5 *1 (-438 *4 *5 *3)) (-4 *3 (-1245 *5)))) (-1846 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-559) (-1040 (-567)))) (-4 *5 (-433 *4)) (-5 *2 (-421 (-1175 (-410 (-567))))) (-5 *1 (-438 *4 *5 *3)) (-4 *3 (-1245 *5)))) (-4207 (*1 *2 *3) (-12 (-4 *4 (-13 (-559) (-1040 (-567)))) (-4 *5 (-433 *4)) (-5 *2 (-421 *3)) (-5 *1 (-438 *4 *5 *3)) (-4 *3 (-1245 *5)))))
+(-10 -7 (-15 -4207 ((-421 |#3|) |#3|)) (-15 -1846 ((-3 (-421 (-1175 (-410 (-567)))) "failed") |#3|)) (-15 -2702 ((-3 (|:| |overq| (-1175 (-410 (-567)))) (|:| |overan| (-1175 (-48))) (|:| -3678 (-112))) |#3|)) (IF (|has| |#2| (-1040 (-48))) (-15 -3439 ((-3 (-421 (-1175 (-48))) "failed") |#3|)) |%noBranch|))
+((-2412 (((-112) $ $) NIL)) (-2411 (((-1161) $ (-1161)) NIL)) (-3084 (($ $ (-1161)) NIL)) (-1935 (((-1161) $) NIL)) (-3609 (((-391) (-391) (-391)) 17) (((-391) (-391)) 15)) (-3835 (($ (-391)) NIL) (($ (-391) (-1161)) NIL)) (-2007 (((-391) $) NIL)) (-2516 (((-1161) $) NIL)) (-3477 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4279 (((-1274) (-1161)) 9)) (-2786 (((-1274) (-1161)) 10)) (-3092 (((-1274)) 11)) (-4129 (((-863) $) NIL)) (-3034 (($ $) 39)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)))
+(((-439) (-13 (-366 (-391) (-1161)) (-10 -7 (-15 -3609 ((-391) (-391) (-391))) (-15 -3609 ((-391) (-391))) (-15 -4279 ((-1274) (-1161))) (-15 -2786 ((-1274) (-1161))) (-15 -3092 ((-1274)))))) (T -439))
+((-3609 (*1 *2 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-439)))) (-3609 (*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-439)))) (-4279 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-439)))) (-2786 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-439)))) (-3092 (*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-439)))))
+(-13 (-366 (-391) (-1161)) (-10 -7 (-15 -3609 ((-391) (-391) (-391))) (-15 -3609 ((-391) (-391))) (-15 -4279 ((-1274) (-1161))) (-15 -2786 ((-1274) (-1161))) (-15 -3092 ((-1274)))))
+((-2412 (((-112) $ $) NIL)) (-2550 (((-3 (|:| |fst| (-437)) (|:| -4324 "void")) $) 11)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-1999 (($) 35)) (-1574 (($) 41)) (-1702 (($) 37)) (-4071 (($) 39)) (-1728 (($) 36)) (-2748 (($) 38)) (-1804 (($) 40)) (-3490 (((-112) $) 8)) (-3443 (((-645 (-954 (-567))) $) 19)) (-4145 (($ (-3 (|:| |fst| (-437)) (|:| -4324 "void")) (-645 (-1179)) (-112)) 29) (($ (-3 (|:| |fst| (-437)) (|:| -4324 "void")) (-645 (-954 (-567))) (-112)) 30)) (-4129 (((-863) $) 24) (($ (-437)) 32)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)))
+(((-440) (-13 (-1102) (-10 -8 (-15 -4129 ($ (-437))) (-15 -2550 ((-3 (|:| |fst| (-437)) (|:| -4324 "void")) $)) (-15 -3443 ((-645 (-954 (-567))) $)) (-15 -3490 ((-112) $)) (-15 -4145 ($ (-3 (|:| |fst| (-437)) (|:| -4324 "void")) (-645 (-1179)) (-112))) (-15 -4145 ($ (-3 (|:| |fst| (-437)) (|:| -4324 "void")) (-645 (-954 (-567))) (-112))) (-15 -1999 ($)) (-15 -1728 ($)) (-15 -1702 ($)) (-15 -1574 ($)) (-15 -2748 ($)) (-15 -4071 ($)) (-15 -1804 ($))))) (T -440))
+((-4129 (*1 *1 *2) (-12 (-5 *2 (-437)) (-5 *1 (-440)))) (-2550 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-437)) (|:| -4324 "void"))) (-5 *1 (-440)))) (-3443 (*1 *2 *1) (-12 (-5 *2 (-645 (-954 (-567)))) (-5 *1 (-440)))) (-3490 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-440)))) (-4145 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-437)) (|:| -4324 "void"))) (-5 *3 (-645 (-1179))) (-5 *4 (-112)) (-5 *1 (-440)))) (-4145 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-437)) (|:| -4324 "void"))) (-5 *3 (-645 (-954 (-567)))) (-5 *4 (-112)) (-5 *1 (-440)))) (-1999 (*1 *1) (-5 *1 (-440))) (-1728 (*1 *1) (-5 *1 (-440))) (-1702 (*1 *1) (-5 *1 (-440))) (-1574 (*1 *1) (-5 *1 (-440))) (-2748 (*1 *1) (-5 *1 (-440))) (-4071 (*1 *1) (-5 *1 (-440))) (-1804 (*1 *1) (-5 *1 (-440))))
+(-13 (-1102) (-10 -8 (-15 -4129 ($ (-437))) (-15 -2550 ((-3 (|:| |fst| (-437)) (|:| -4324 "void")) $)) (-15 -3443 ((-645 (-954 (-567))) $)) (-15 -3490 ((-112) $)) (-15 -4145 ($ (-3 (|:| |fst| (-437)) (|:| -4324 "void")) (-645 (-1179)) (-112))) (-15 -4145 ($ (-3 (|:| |fst| (-437)) (|:| -4324 "void")) (-645 (-954 (-567))) (-112))) (-15 -1999 ($)) (-15 -1728 ($)) (-15 -1702 ($)) (-15 -1574 ($)) (-15 -2748 ($)) (-15 -4071 ($)) (-15 -1804 ($))))
+((-2412 (((-112) $ $) NIL)) (-2007 (((-1179) $) 8)) (-2516 (((-1161) $) 17)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) 11)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) 14)))
+(((-441 |#1|) (-13 (-1102) (-10 -8 (-15 -2007 ((-1179) $)))) (-1179)) (T -441))
+((-2007 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-441 *3)) (-14 *3 *2))))
+(-13 (-1102) (-10 -8 (-15 -2007 ((-1179) $))))
+((-2412 (((-112) $ $) NIL)) (-3394 (((-1120) $) 7)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) 13)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) 9)))
+(((-442) (-13 (-1102) (-10 -8 (-15 -3394 ((-1120) $))))) (T -442))
+((-3394 (*1 *2 *1) (-12 (-5 *2 (-1120)) (-5 *1 (-442)))))
+(-13 (-1102) (-10 -8 (-15 -3394 ((-1120) $))))
+((-1466 (((-1274) $) 7)) (-4129 (((-863) $) 8) (($ (-1269 (-700))) 14) (($ (-645 (-331))) 13) (($ (-331)) 12) (($ (-2 (|:| |localSymbols| (-1183)) (|:| -1814 (-645 (-331))))) 11)))
(((-443) (-140)) (T -443))
-((-4132 (*1 *1 *2) (-12 (-5 *2 (-1268 (-700))) (-4 *1 (-443)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-645 (-331))) (-4 *1 (-443)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-443)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) (-4 *1 (-443)))))
-(-13 (-398) (-10 -8 (-15 -4132 ($ (-1268 (-700)))) (-15 -4132 ($ (-645 (-331)))) (-15 -4132 ($ (-331))) (-15 -4132 ($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))))))
-(((-614 (-863)) . T) ((-398) . T) ((-1218) . T))
-((-3753 (((-3 $ "failed") (-1268 (-317 (-381)))) 21) (((-3 $ "failed") (-1268 (-317 (-567)))) 19) (((-3 $ "failed") (-1268 (-954 (-381)))) 17) (((-3 $ "failed") (-1268 (-954 (-567)))) 15) (((-3 $ "failed") (-1268 (-410 (-954 (-381))))) 13) (((-3 $ "failed") (-1268 (-410 (-954 (-567))))) 11)) (-2038 (($ (-1268 (-317 (-381)))) 22) (($ (-1268 (-317 (-567)))) 20) (($ (-1268 (-954 (-381)))) 18) (($ (-1268 (-954 (-567)))) 16) (($ (-1268 (-410 (-954 (-381))))) 14) (($ (-1268 (-410 (-954 (-567))))) 12)) (-1453 (((-1273) $) 7)) (-4132 (((-863) $) 8) (($ (-645 (-331))) 25) (($ (-331)) 24) (($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) 23)))
+((-4129 (*1 *1 *2) (-12 (-5 *2 (-1269 (-700))) (-4 *1 (-443)))) (-4129 (*1 *1 *2) (-12 (-5 *2 (-645 (-331))) (-4 *1 (-443)))) (-4129 (*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-443)))) (-4129 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1183)) (|:| -1814 (-645 (-331))))) (-4 *1 (-443)))))
+(-13 (-398) (-10 -8 (-15 -4129 ($ (-1269 (-700)))) (-15 -4129 ($ (-645 (-331)))) (-15 -4129 ($ (-331))) (-15 -4129 ($ (-2 (|:| |localSymbols| (-1183)) (|:| -1814 (-645 (-331))))))))
+(((-614 (-863)) . T) ((-398) . T) ((-1219) . T))
+((-3765 (((-3 $ "failed") (-1269 (-317 (-381)))) 21) (((-3 $ "failed") (-1269 (-317 (-567)))) 19) (((-3 $ "failed") (-1269 (-954 (-381)))) 17) (((-3 $ "failed") (-1269 (-954 (-567)))) 15) (((-3 $ "failed") (-1269 (-410 (-954 (-381))))) 13) (((-3 $ "failed") (-1269 (-410 (-954 (-567))))) 11)) (-2051 (($ (-1269 (-317 (-381)))) 22) (($ (-1269 (-317 (-567)))) 20) (($ (-1269 (-954 (-381)))) 18) (($ (-1269 (-954 (-567)))) 16) (($ (-1269 (-410 (-954 (-381))))) 14) (($ (-1269 (-410 (-954 (-567))))) 12)) (-1466 (((-1274) $) 7)) (-4129 (((-863) $) 8) (($ (-645 (-331))) 25) (($ (-331)) 24) (($ (-2 (|:| |localSymbols| (-1183)) (|:| -1814 (-645 (-331))))) 23)))
(((-444) (-140)) (T -444))
-((-4132 (*1 *1 *2) (-12 (-5 *2 (-645 (-331))) (-4 *1 (-444)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-444)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331))))) (-4 *1 (-444)))) (-2038 (*1 *1 *2) (-12 (-5 *2 (-1268 (-317 (-381)))) (-4 *1 (-444)))) (-3753 (*1 *1 *2) (|partial| -12 (-5 *2 (-1268 (-317 (-381)))) (-4 *1 (-444)))) (-2038 (*1 *1 *2) (-12 (-5 *2 (-1268 (-317 (-567)))) (-4 *1 (-444)))) (-3753 (*1 *1 *2) (|partial| -12 (-5 *2 (-1268 (-317 (-567)))) (-4 *1 (-444)))) (-2038 (*1 *1 *2) (-12 (-5 *2 (-1268 (-954 (-381)))) (-4 *1 (-444)))) (-3753 (*1 *1 *2) (|partial| -12 (-5 *2 (-1268 (-954 (-381)))) (-4 *1 (-444)))) (-2038 (*1 *1 *2) (-12 (-5 *2 (-1268 (-954 (-567)))) (-4 *1 (-444)))) (-3753 (*1 *1 *2) (|partial| -12 (-5 *2 (-1268 (-954 (-567)))) (-4 *1 (-444)))) (-2038 (*1 *1 *2) (-12 (-5 *2 (-1268 (-410 (-954 (-381))))) (-4 *1 (-444)))) (-3753 (*1 *1 *2) (|partial| -12 (-5 *2 (-1268 (-410 (-954 (-381))))) (-4 *1 (-444)))) (-2038 (*1 *1 *2) (-12 (-5 *2 (-1268 (-410 (-954 (-567))))) (-4 *1 (-444)))) (-3753 (*1 *1 *2) (|partial| -12 (-5 *2 (-1268 (-410 (-954 (-567))))) (-4 *1 (-444)))))
-(-13 (-398) (-10 -8 (-15 -4132 ($ (-645 (-331)))) (-15 -4132 ($ (-331))) (-15 -4132 ($ (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331)))))) (-15 -2038 ($ (-1268 (-317 (-381))))) (-15 -3753 ((-3 $ "failed") (-1268 (-317 (-381))))) (-15 -2038 ($ (-1268 (-317 (-567))))) (-15 -3753 ((-3 $ "failed") (-1268 (-317 (-567))))) (-15 -2038 ($ (-1268 (-954 (-381))))) (-15 -3753 ((-3 $ "failed") (-1268 (-954 (-381))))) (-15 -2038 ($ (-1268 (-954 (-567))))) (-15 -3753 ((-3 $ "failed") (-1268 (-954 (-567))))) (-15 -2038 ($ (-1268 (-410 (-954 (-381)))))) (-15 -3753 ((-3 $ "failed") (-1268 (-410 (-954 (-381)))))) (-15 -2038 ($ (-1268 (-410 (-954 (-567)))))) (-15 -3753 ((-3 $ "failed") (-1268 (-410 (-954 (-567))))))))
-(((-614 (-863)) . T) ((-398) . T) ((-1218) . T))
-((-4386 (((-112)) 18)) (-3147 (((-112) (-112)) 19)) (-3433 (((-112)) 14)) (-2853 (((-112) (-112)) 15)) (-3036 (((-112)) 16)) (-2471 (((-112) (-112)) 17)) (-2075 (((-923) (-923)) 22) (((-923)) 21)) (-2820 (((-772) (-645 (-2 (|:| -2706 |#1|) (|:| -3077 (-567))))) 52)) (-2589 (((-923) (-923)) 24) (((-923)) 23)) (-3830 (((-2 (|:| -3950 (-567)) (|:| -3920 (-645 |#1|))) |#1|) 97)) (-2204 (((-421 |#1|) (-2 (|:| |contp| (-567)) (|:| -3920 (-645 (-2 (|:| |irr| |#1|) (|:| -2625 (-567))))))) 178)) (-2033 (((-2 (|:| |contp| (-567)) (|:| -3920 (-645 (-2 (|:| |irr| |#1|) (|:| -2625 (-567)))))) |#1| (-112)) 211)) (-2688 (((-421 |#1|) |#1| (-772) (-772)) 226) (((-421 |#1|) |#1| (-645 (-772)) (-772)) 223) (((-421 |#1|) |#1| (-645 (-772))) 225) (((-421 |#1|) |#1| (-772)) 224) (((-421 |#1|) |#1|) 222)) (-1619 (((-3 |#1| "failed") (-923) |#1| (-645 (-772)) (-772) (-112)) 228) (((-3 |#1| "failed") (-923) |#1| (-645 (-772)) (-772)) 229) (((-3 |#1| "failed") (-923) |#1| (-645 (-772))) 231) (((-3 |#1| "failed") (-923) |#1| (-772)) 230) (((-3 |#1| "failed") (-923) |#1|) 232)) (-2706 (((-421 |#1|) |#1| (-772) (-772)) 221) (((-421 |#1|) |#1| (-645 (-772)) (-772)) 217) (((-421 |#1|) |#1| (-645 (-772))) 219) (((-421 |#1|) |#1| (-772)) 218) (((-421 |#1|) |#1|) 216)) (-2998 (((-112) |#1|) 44)) (-1970 (((-738 (-772)) (-645 (-2 (|:| -2706 |#1|) (|:| -3077 (-567))))) 102)) (-2683 (((-2 (|:| |contp| (-567)) (|:| -3920 (-645 (-2 (|:| |irr| |#1|) (|:| -2625 (-567)))))) |#1| (-112) (-1104 (-772)) (-772)) 215)))
-(((-445 |#1|) (-10 -7 (-15 -2204 ((-421 |#1|) (-2 (|:| |contp| (-567)) (|:| -3920 (-645 (-2 (|:| |irr| |#1|) (|:| -2625 (-567)))))))) (-15 -1970 ((-738 (-772)) (-645 (-2 (|:| -2706 |#1|) (|:| -3077 (-567)))))) (-15 -2589 ((-923))) (-15 -2589 ((-923) (-923))) (-15 -2075 ((-923))) (-15 -2075 ((-923) (-923))) (-15 -2820 ((-772) (-645 (-2 (|:| -2706 |#1|) (|:| -3077 (-567)))))) (-15 -3830 ((-2 (|:| -3950 (-567)) (|:| -3920 (-645 |#1|))) |#1|)) (-15 -4386 ((-112))) (-15 -3147 ((-112) (-112))) (-15 -3433 ((-112))) (-15 -2853 ((-112) (-112))) (-15 -2998 ((-112) |#1|)) (-15 -3036 ((-112))) (-15 -2471 ((-112) (-112))) (-15 -2706 ((-421 |#1|) |#1|)) (-15 -2706 ((-421 |#1|) |#1| (-772))) (-15 -2706 ((-421 |#1|) |#1| (-645 (-772)))) (-15 -2706 ((-421 |#1|) |#1| (-645 (-772)) (-772))) (-15 -2706 ((-421 |#1|) |#1| (-772) (-772))) (-15 -2688 ((-421 |#1|) |#1|)) (-15 -2688 ((-421 |#1|) |#1| (-772))) (-15 -2688 ((-421 |#1|) |#1| (-645 (-772)))) (-15 -2688 ((-421 |#1|) |#1| (-645 (-772)) (-772))) (-15 -2688 ((-421 |#1|) |#1| (-772) (-772))) (-15 -1619 ((-3 |#1| "failed") (-923) |#1|)) (-15 -1619 ((-3 |#1| "failed") (-923) |#1| (-772))) (-15 -1619 ((-3 |#1| "failed") (-923) |#1| (-645 (-772)))) (-15 -1619 ((-3 |#1| "failed") (-923) |#1| (-645 (-772)) (-772))) (-15 -1619 ((-3 |#1| "failed") (-923) |#1| (-645 (-772)) (-772) (-112))) (-15 -2033 ((-2 (|:| |contp| (-567)) (|:| -3920 (-645 (-2 (|:| |irr| |#1|) (|:| -2625 (-567)))))) |#1| (-112))) (-15 -2683 ((-2 (|:| |contp| (-567)) (|:| -3920 (-645 (-2 (|:| |irr| |#1|) (|:| -2625 (-567)))))) |#1| (-112) (-1104 (-772)) (-772)))) (-1244 (-567))) (T -445))
-((-2683 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1104 (-772))) (-5 *6 (-772)) (-5 *2 (-2 (|:| |contp| (-567)) (|:| -3920 (-645 (-2 (|:| |irr| *3) (|:| -2625 (-567))))))) (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567))))) (-2033 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-567)) (|:| -3920 (-645 (-2 (|:| |irr| *3) (|:| -2625 (-567))))))) (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567))))) (-1619 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-923)) (-5 *4 (-645 (-772))) (-5 *5 (-772)) (-5 *6 (-112)) (-5 *1 (-445 *2)) (-4 *2 (-1244 (-567))))) (-1619 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-923)) (-5 *4 (-645 (-772))) (-5 *5 (-772)) (-5 *1 (-445 *2)) (-4 *2 (-1244 (-567))))) (-1619 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-923)) (-5 *4 (-645 (-772))) (-5 *1 (-445 *2)) (-4 *2 (-1244 (-567))))) (-1619 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-923)) (-5 *4 (-772)) (-5 *1 (-445 *2)) (-4 *2 (-1244 (-567))))) (-1619 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-923)) (-5 *1 (-445 *2)) (-4 *2 (-1244 (-567))))) (-2688 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-772)) (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567))))) (-2688 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-645 (-772))) (-5 *5 (-772)) (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567))))) (-2688 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-772))) (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567))))) (-2688 (*1 *2 *3 *4) (-12 (-5 *4 (-772)) (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567))))) (-2688 (*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567))))) (-2706 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-772)) (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567))))) (-2706 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-645 (-772))) (-5 *5 (-772)) (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567))))) (-2706 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-772))) (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567))))) (-2706 (*1 *2 *3 *4) (-12 (-5 *4 (-772)) (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567))))) (-2706 (*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567))))) (-2471 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567))))) (-3036 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567))))) (-2998 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567))))) (-2853 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567))))) (-3433 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567))))) (-3147 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567))))) (-4386 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567))))) (-3830 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3950 (-567)) (|:| -3920 (-645 *3)))) (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567))))) (-2820 (*1 *2 *3) (-12 (-5 *3 (-645 (-2 (|:| -2706 *4) (|:| -3077 (-567))))) (-4 *4 (-1244 (-567))) (-5 *2 (-772)) (-5 *1 (-445 *4)))) (-2075 (*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567))))) (-2075 (*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567))))) (-2589 (*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567))))) (-2589 (*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567))))) (-1970 (*1 *2 *3) (-12 (-5 *3 (-645 (-2 (|:| -2706 *4) (|:| -3077 (-567))))) (-4 *4 (-1244 (-567))) (-5 *2 (-738 (-772))) (-5 *1 (-445 *4)))) (-2204 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-567)) (|:| -3920 (-645 (-2 (|:| |irr| *4) (|:| -2625 (-567))))))) (-4 *4 (-1244 (-567))) (-5 *2 (-421 *4)) (-5 *1 (-445 *4)))))
-(-10 -7 (-15 -2204 ((-421 |#1|) (-2 (|:| |contp| (-567)) (|:| -3920 (-645 (-2 (|:| |irr| |#1|) (|:| -2625 (-567)))))))) (-15 -1970 ((-738 (-772)) (-645 (-2 (|:| -2706 |#1|) (|:| -3077 (-567)))))) (-15 -2589 ((-923))) (-15 -2589 ((-923) (-923))) (-15 -2075 ((-923))) (-15 -2075 ((-923) (-923))) (-15 -2820 ((-772) (-645 (-2 (|:| -2706 |#1|) (|:| -3077 (-567)))))) (-15 -3830 ((-2 (|:| -3950 (-567)) (|:| -3920 (-645 |#1|))) |#1|)) (-15 -4386 ((-112))) (-15 -3147 ((-112) (-112))) (-15 -3433 ((-112))) (-15 -2853 ((-112) (-112))) (-15 -2998 ((-112) |#1|)) (-15 -3036 ((-112))) (-15 -2471 ((-112) (-112))) (-15 -2706 ((-421 |#1|) |#1|)) (-15 -2706 ((-421 |#1|) |#1| (-772))) (-15 -2706 ((-421 |#1|) |#1| (-645 (-772)))) (-15 -2706 ((-421 |#1|) |#1| (-645 (-772)) (-772))) (-15 -2706 ((-421 |#1|) |#1| (-772) (-772))) (-15 -2688 ((-421 |#1|) |#1|)) (-15 -2688 ((-421 |#1|) |#1| (-772))) (-15 -2688 ((-421 |#1|) |#1| (-645 (-772)))) (-15 -2688 ((-421 |#1|) |#1| (-645 (-772)) (-772))) (-15 -2688 ((-421 |#1|) |#1| (-772) (-772))) (-15 -1619 ((-3 |#1| "failed") (-923) |#1|)) (-15 -1619 ((-3 |#1| "failed") (-923) |#1| (-772))) (-15 -1619 ((-3 |#1| "failed") (-923) |#1| (-645 (-772)))) (-15 -1619 ((-3 |#1| "failed") (-923) |#1| (-645 (-772)) (-772))) (-15 -1619 ((-3 |#1| "failed") (-923) |#1| (-645 (-772)) (-772) (-112))) (-15 -2033 ((-2 (|:| |contp| (-567)) (|:| -3920 (-645 (-2 (|:| |irr| |#1|) (|:| -2625 (-567)))))) |#1| (-112))) (-15 -2683 ((-2 (|:| |contp| (-567)) (|:| -3920 (-645 (-2 (|:| |irr| |#1|) (|:| -2625 (-567)))))) |#1| (-112) (-1104 (-772)) (-772))))
-((-3516 (((-567) |#2|) 52) (((-567) |#2| (-772)) 51)) (-4352 (((-567) |#2|) 67)) (-1933 ((|#3| |#2|) 26)) (-2475 ((|#3| |#2| (-923)) 15)) (-1699 ((|#3| |#2|) 16)) (-3351 ((|#3| |#2|) 9)) (-4138 ((|#3| |#2|) 10)) (-2617 ((|#3| |#2| (-923)) 74) ((|#3| |#2|) 34)) (-2873 (((-567) |#2|) 69)))
-(((-446 |#1| |#2| |#3|) (-10 -7 (-15 -2873 ((-567) |#2|)) (-15 -2617 (|#3| |#2|)) (-15 -2617 (|#3| |#2| (-923))) (-15 -4352 ((-567) |#2|)) (-15 -3516 ((-567) |#2| (-772))) (-15 -3516 ((-567) |#2|)) (-15 -2475 (|#3| |#2| (-923))) (-15 -1933 (|#3| |#2|)) (-15 -3351 (|#3| |#2|)) (-15 -4138 (|#3| |#2|)) (-15 -1699 (|#3| |#2|))) (-1051) (-1244 |#1|) (-13 (-407) (-1040 |#1|) (-365) (-1203) (-285))) (T -446))
-((-1699 (*1 *2 *3) (-12 (-4 *4 (-1051)) (-4 *2 (-13 (-407) (-1040 *4) (-365) (-1203) (-285))) (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1244 *4)))) (-4138 (*1 *2 *3) (-12 (-4 *4 (-1051)) (-4 *2 (-13 (-407) (-1040 *4) (-365) (-1203) (-285))) (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1244 *4)))) (-3351 (*1 *2 *3) (-12 (-4 *4 (-1051)) (-4 *2 (-13 (-407) (-1040 *4) (-365) (-1203) (-285))) (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1244 *4)))) (-1933 (*1 *2 *3) (-12 (-4 *4 (-1051)) (-4 *2 (-13 (-407) (-1040 *4) (-365) (-1203) (-285))) (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1244 *4)))) (-2475 (*1 *2 *3 *4) (-12 (-5 *4 (-923)) (-4 *5 (-1051)) (-4 *2 (-13 (-407) (-1040 *5) (-365) (-1203) (-285))) (-5 *1 (-446 *5 *3 *2)) (-4 *3 (-1244 *5)))) (-3516 (*1 *2 *3) (-12 (-4 *4 (-1051)) (-5 *2 (-567)) (-5 *1 (-446 *4 *3 *5)) (-4 *3 (-1244 *4)) (-4 *5 (-13 (-407) (-1040 *4) (-365) (-1203) (-285))))) (-3516 (*1 *2 *3 *4) (-12 (-5 *4 (-772)) (-4 *5 (-1051)) (-5 *2 (-567)) (-5 *1 (-446 *5 *3 *6)) (-4 *3 (-1244 *5)) (-4 *6 (-13 (-407) (-1040 *5) (-365) (-1203) (-285))))) (-4352 (*1 *2 *3) (-12 (-4 *4 (-1051)) (-5 *2 (-567)) (-5 *1 (-446 *4 *3 *5)) (-4 *3 (-1244 *4)) (-4 *5 (-13 (-407) (-1040 *4) (-365) (-1203) (-285))))) (-2617 (*1 *2 *3 *4) (-12 (-5 *4 (-923)) (-4 *5 (-1051)) (-4 *2 (-13 (-407) (-1040 *5) (-365) (-1203) (-285))) (-5 *1 (-446 *5 *3 *2)) (-4 *3 (-1244 *5)))) (-2617 (*1 *2 *3) (-12 (-4 *4 (-1051)) (-4 *2 (-13 (-407) (-1040 *4) (-365) (-1203) (-285))) (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1244 *4)))) (-2873 (*1 *2 *3) (-12 (-4 *4 (-1051)) (-5 *2 (-567)) (-5 *1 (-446 *4 *3 *5)) (-4 *3 (-1244 *4)) (-4 *5 (-13 (-407) (-1040 *4) (-365) (-1203) (-285))))))
-(-10 -7 (-15 -2873 ((-567) |#2|)) (-15 -2617 (|#3| |#2|)) (-15 -2617 (|#3| |#2| (-923))) (-15 -4352 ((-567) |#2|)) (-15 -3516 ((-567) |#2| (-772))) (-15 -3516 ((-567) |#2|)) (-15 -2475 (|#3| |#2| (-923))) (-15 -1933 (|#3| |#2|)) (-15 -3351 (|#3| |#2|)) (-15 -4138 (|#3| |#2|)) (-15 -1699 (|#3| |#2|)))
-((-3480 ((|#2| (-1268 |#1|)) 45)) (-4030 ((|#2| |#2| |#1|) 61)) (-2611 ((|#2| |#2| |#1|) 53)) (-3584 ((|#2| |#2|) 49)) (-1721 (((-112) |#2|) 36)) (-4370 (((-645 |#2|) (-923) (-421 |#2|)) 24)) (-1619 ((|#2| (-923) (-421 |#2|)) 28)) (-1970 (((-738 (-772)) (-421 |#2|)) 33)))
-(((-447 |#1| |#2|) (-10 -7 (-15 -1721 ((-112) |#2|)) (-15 -3480 (|#2| (-1268 |#1|))) (-15 -3584 (|#2| |#2|)) (-15 -2611 (|#2| |#2| |#1|)) (-15 -4030 (|#2| |#2| |#1|)) (-15 -1970 ((-738 (-772)) (-421 |#2|))) (-15 -1619 (|#2| (-923) (-421 |#2|))) (-15 -4370 ((-645 |#2|) (-923) (-421 |#2|)))) (-1051) (-1244 |#1|)) (T -447))
-((-4370 (*1 *2 *3 *4) (-12 (-5 *3 (-923)) (-5 *4 (-421 *6)) (-4 *6 (-1244 *5)) (-4 *5 (-1051)) (-5 *2 (-645 *6)) (-5 *1 (-447 *5 *6)))) (-1619 (*1 *2 *3 *4) (-12 (-5 *3 (-923)) (-5 *4 (-421 *2)) (-4 *2 (-1244 *5)) (-5 *1 (-447 *5 *2)) (-4 *5 (-1051)))) (-1970 (*1 *2 *3) (-12 (-5 *3 (-421 *5)) (-4 *5 (-1244 *4)) (-4 *4 (-1051)) (-5 *2 (-738 (-772))) (-5 *1 (-447 *4 *5)))) (-4030 (*1 *2 *2 *3) (-12 (-4 *3 (-1051)) (-5 *1 (-447 *3 *2)) (-4 *2 (-1244 *3)))) (-2611 (*1 *2 *2 *3) (-12 (-4 *3 (-1051)) (-5 *1 (-447 *3 *2)) (-4 *2 (-1244 *3)))) (-3584 (*1 *2 *2) (-12 (-4 *3 (-1051)) (-5 *1 (-447 *3 *2)) (-4 *2 (-1244 *3)))) (-3480 (*1 *2 *3) (-12 (-5 *3 (-1268 *4)) (-4 *4 (-1051)) (-4 *2 (-1244 *4)) (-5 *1 (-447 *4 *2)))) (-1721 (*1 *2 *3) (-12 (-4 *4 (-1051)) (-5 *2 (-112)) (-5 *1 (-447 *4 *3)) (-4 *3 (-1244 *4)))))
-(-10 -7 (-15 -1721 ((-112) |#2|)) (-15 -3480 (|#2| (-1268 |#1|))) (-15 -3584 (|#2| |#2|)) (-15 -2611 (|#2| |#2| |#1|)) (-15 -4030 (|#2| |#2| |#1|)) (-15 -1970 ((-738 (-772)) (-421 |#2|))) (-15 -1619 (|#2| (-923) (-421 |#2|))) (-15 -4370 ((-645 |#2|) (-923) (-421 |#2|))))
-((-1358 (((-772)) 59)) (-3371 (((-772)) 29 (|has| |#1| (-407))) (((-772) (-772)) 28 (|has| |#1| (-407)))) (-2423 (((-567) |#1|) 25 (|has| |#1| (-407)))) (-2275 (((-567) |#1|) 27 (|has| |#1| (-407)))) (-3362 (((-772)) 58) (((-772) (-772)) 57)) (-4271 ((|#1| (-772) (-567)) 37)) (-1548 (((-1273)) 61)))
-(((-448 |#1|) (-10 -7 (-15 -4271 (|#1| (-772) (-567))) (-15 -3362 ((-772) (-772))) (-15 -3362 ((-772))) (-15 -1358 ((-772))) (-15 -1548 ((-1273))) (IF (|has| |#1| (-407)) (PROGN (-15 -2275 ((-567) |#1|)) (-15 -2423 ((-567) |#1|)) (-15 -3371 ((-772) (-772))) (-15 -3371 ((-772)))) |%noBranch|)) (-1051)) (T -448))
-((-3371 (*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-448 *3)) (-4 *3 (-407)) (-4 *3 (-1051)))) (-3371 (*1 *2 *2) (-12 (-5 *2 (-772)) (-5 *1 (-448 *3)) (-4 *3 (-407)) (-4 *3 (-1051)))) (-2423 (*1 *2 *3) (-12 (-5 *2 (-567)) (-5 *1 (-448 *3)) (-4 *3 (-407)) (-4 *3 (-1051)))) (-2275 (*1 *2 *3) (-12 (-5 *2 (-567)) (-5 *1 (-448 *3)) (-4 *3 (-407)) (-4 *3 (-1051)))) (-1548 (*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-448 *3)) (-4 *3 (-1051)))) (-1358 (*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-448 *3)) (-4 *3 (-1051)))) (-3362 (*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-448 *3)) (-4 *3 (-1051)))) (-3362 (*1 *2 *2) (-12 (-5 *2 (-772)) (-5 *1 (-448 *3)) (-4 *3 (-1051)))) (-4271 (*1 *2 *3 *4) (-12 (-5 *3 (-772)) (-5 *4 (-567)) (-5 *1 (-448 *2)) (-4 *2 (-1051)))))
-(-10 -7 (-15 -4271 (|#1| (-772) (-567))) (-15 -3362 ((-772) (-772))) (-15 -3362 ((-772))) (-15 -1358 ((-772))) (-15 -1548 ((-1273))) (IF (|has| |#1| (-407)) (PROGN (-15 -2275 ((-567) |#1|)) (-15 -2423 ((-567) |#1|)) (-15 -3371 ((-772) (-772))) (-15 -3371 ((-772)))) |%noBranch|))
-((-1553 (((-645 (-567)) (-567)) 76)) (-3184 (((-112) (-169 (-567))) 82)) (-2706 (((-421 (-169 (-567))) (-169 (-567))) 75)))
-(((-449) (-10 -7 (-15 -2706 ((-421 (-169 (-567))) (-169 (-567)))) (-15 -1553 ((-645 (-567)) (-567))) (-15 -3184 ((-112) (-169 (-567)))))) (T -449))
-((-3184 (*1 *2 *3) (-12 (-5 *3 (-169 (-567))) (-5 *2 (-112)) (-5 *1 (-449)))) (-1553 (*1 *2 *3) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-449)) (-5 *3 (-567)))) (-2706 (*1 *2 *3) (-12 (-5 *2 (-421 (-169 (-567)))) (-5 *1 (-449)) (-5 *3 (-169 (-567))))))
-(-10 -7 (-15 -2706 ((-421 (-169 (-567))) (-169 (-567)))) (-15 -1553 ((-645 (-567)) (-567))) (-15 -3184 ((-112) (-169 (-567)))))
-((-4394 ((|#4| |#4| (-645 |#4|)) 82)) (-3256 (((-645 |#4|) (-645 |#4|) (-1160) (-1160)) 22) (((-645 |#4|) (-645 |#4|) (-1160)) 21) (((-645 |#4|) (-645 |#4|)) 13)))
-(((-450 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4394 (|#4| |#4| (-645 |#4|))) (-15 -3256 ((-645 |#4|) (-645 |#4|))) (-15 -3256 ((-645 |#4|) (-645 |#4|) (-1160))) (-15 -3256 ((-645 |#4|) (-645 |#4|) (-1160) (-1160)))) (-308) (-794) (-851) (-951 |#1| |#2| |#3|)) (T -450))
-((-3256 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-645 *7)) (-5 *3 (-1160)) (-4 *7 (-951 *4 *5 *6)) (-4 *4 (-308)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-450 *4 *5 *6 *7)))) (-3256 (*1 *2 *2 *3) (-12 (-5 *2 (-645 *7)) (-5 *3 (-1160)) (-4 *7 (-951 *4 *5 *6)) (-4 *4 (-308)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-450 *4 *5 *6 *7)))) (-3256 (*1 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-951 *3 *4 *5)) (-4 *3 (-308)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-450 *3 *4 *5 *6)))) (-4394 (*1 *2 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-951 *4 *5 *6)) (-4 *4 (-308)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-450 *4 *5 *6 *2)))))
-(-10 -7 (-15 -4394 (|#4| |#4| (-645 |#4|))) (-15 -3256 ((-645 |#4|) (-645 |#4|))) (-15 -3256 ((-645 |#4|) (-645 |#4|) (-1160))) (-15 -3256 ((-645 |#4|) (-645 |#4|) (-1160) (-1160))))
-((-3515 (((-645 (-645 |#4|)) (-645 |#4|) (-112)) 91) (((-645 (-645 |#4|)) (-645 |#4|)) 90) (((-645 (-645 |#4|)) (-645 |#4|) (-645 |#4|) (-112)) 84) (((-645 (-645 |#4|)) (-645 |#4|) (-645 |#4|)) 85)) (-1941 (((-645 (-645 |#4|)) (-645 |#4|) (-112)) 55) (((-645 (-645 |#4|)) (-645 |#4|)) 77)))
-(((-451 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1941 ((-645 (-645 |#4|)) (-645 |#4|))) (-15 -1941 ((-645 (-645 |#4|)) (-645 |#4|) (-112))) (-15 -3515 ((-645 (-645 |#4|)) (-645 |#4|) (-645 |#4|))) (-15 -3515 ((-645 (-645 |#4|)) (-645 |#4|) (-645 |#4|) (-112))) (-15 -3515 ((-645 (-645 |#4|)) (-645 |#4|))) (-15 -3515 ((-645 (-645 |#4|)) (-645 |#4|) (-112)))) (-13 (-308) (-147)) (-794) (-851) (-951 |#1| |#2| |#3|)) (T -451))
-((-3515 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-951 *5 *6 *7)) (-5 *2 (-645 (-645 *8))) (-5 *1 (-451 *5 *6 *7 *8)) (-5 *3 (-645 *8)))) (-3515 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-951 *4 *5 *6)) (-5 *2 (-645 (-645 *7))) (-5 *1 (-451 *4 *5 *6 *7)) (-5 *3 (-645 *7)))) (-3515 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-951 *5 *6 *7)) (-5 *2 (-645 (-645 *8))) (-5 *1 (-451 *5 *6 *7 *8)) (-5 *3 (-645 *8)))) (-3515 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-951 *4 *5 *6)) (-5 *2 (-645 (-645 *7))) (-5 *1 (-451 *4 *5 *6 *7)) (-5 *3 (-645 *7)))) (-1941 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-951 *5 *6 *7)) (-5 *2 (-645 (-645 *8))) (-5 *1 (-451 *5 *6 *7 *8)) (-5 *3 (-645 *8)))) (-1941 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-951 *4 *5 *6)) (-5 *2 (-645 (-645 *7))) (-5 *1 (-451 *4 *5 *6 *7)) (-5 *3 (-645 *7)))))
-(-10 -7 (-15 -1941 ((-645 (-645 |#4|)) (-645 |#4|))) (-15 -1941 ((-645 (-645 |#4|)) (-645 |#4|) (-112))) (-15 -3515 ((-645 (-645 |#4|)) (-645 |#4|) (-645 |#4|))) (-15 -3515 ((-645 (-645 |#4|)) (-645 |#4|) (-645 |#4|) (-112))) (-15 -3515 ((-645 (-645 |#4|)) (-645 |#4|))) (-15 -3515 ((-645 (-645 |#4|)) (-645 |#4|) (-112))))
-((-2639 (((-772) |#4|) 12)) (-4298 (((-645 (-2 (|:| |totdeg| (-772)) (|:| -2517 |#4|))) |#4| (-772) (-645 (-2 (|:| |totdeg| (-772)) (|:| -2517 |#4|)))) 39)) (-3470 (((-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 51)) (-3503 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 54)) (-1760 ((|#4| |#4| (-645 |#4|)) 56)) (-3165 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-645 |#4|)) 98)) (-1475 (((-1273) |#4|) 61)) (-3349 (((-1273) (-645 |#4|)) 71)) (-1720 (((-567) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-567) (-567) (-567)) 68)) (-2070 (((-1273) (-567)) 113)) (-1373 (((-645 |#4|) (-645 |#4|)) 105)) (-1463 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-772)) (|:| -2517 |#4|)) |#4| (-772)) 31)) (-4093 (((-567) |#4|) 110)) (-2487 ((|#4| |#4|) 37)) (-1797 (((-645 |#4|) (-645 |#4|) (-567) (-567)) 76)) (-1939 (((-567) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-567) (-567) (-567) (-567)) 126)) (-2869 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20)) (-2129 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 80)) (-2849 (((-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 78)) (-3340 (((-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49)) (-1747 (((-112) |#2| |#2|) 77)) (-3493 (((-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 50)) (-3665 (((-112) |#2| |#2| |#2| |#2|) 82)) (-1995 ((|#4| |#4| (-645 |#4|)) 99)))
-(((-452 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1995 (|#4| |#4| (-645 |#4|))) (-15 -1760 (|#4| |#4| (-645 |#4|))) (-15 -1797 ((-645 |#4|) (-645 |#4|) (-567) (-567))) (-15 -2129 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1747 ((-112) |#2| |#2|)) (-15 -3665 ((-112) |#2| |#2| |#2| |#2|)) (-15 -3493 ((-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3340 ((-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2849 ((-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3165 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-645 |#4|))) (-15 -2487 (|#4| |#4|)) (-15 -4298 ((-645 (-2 (|:| |totdeg| (-772)) (|:| -2517 |#4|))) |#4| (-772) (-645 (-2 (|:| |totdeg| (-772)) (|:| -2517 |#4|))))) (-15 -3503 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3470 ((-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1373 ((-645 |#4|) (-645 |#4|))) (-15 -4093 ((-567) |#4|)) (-15 -1475 ((-1273) |#4|)) (-15 -1720 ((-567) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-567) (-567) (-567))) (-15 -1939 ((-567) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-567) (-567) (-567) (-567))) (-15 -3349 ((-1273) (-645 |#4|))) (-15 -2070 ((-1273) (-567))) (-15 -2869 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1463 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-772)) (|:| -2517 |#4|)) |#4| (-772))) (-15 -2639 ((-772) |#4|))) (-455) (-794) (-851) (-951 |#1| |#2| |#3|)) (T -452))
-((-2639 (*1 *2 *3) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-772)) (-5 *1 (-452 *4 *5 *6 *3)) (-4 *3 (-951 *4 *5 *6)))) (-1463 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-772)) (|:| -2517 *4))) (-5 *5 (-772)) (-4 *4 (-951 *6 *7 *8)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-452 *6 *7 *8 *4)))) (-2869 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-772)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-794)) (-4 *7 (-951 *4 *5 *6)) (-4 *4 (-455)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-452 *4 *5 *6 *7)))) (-2070 (*1 *2 *3) (-12 (-5 *3 (-567)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-1273)) (-5 *1 (-452 *4 *5 *6 *7)) (-4 *7 (-951 *4 *5 *6)))) (-3349 (*1 *2 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-951 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-1273)) (-5 *1 (-452 *4 *5 *6 *7)))) (-1939 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-772)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-794)) (-4 *4 (-951 *5 *6 *7)) (-4 *5 (-455)) (-4 *7 (-851)) (-5 *1 (-452 *5 *6 *7 *4)))) (-1720 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-772)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-794)) (-4 *4 (-951 *5 *6 *7)) (-4 *5 (-455)) (-4 *7 (-851)) (-5 *1 (-452 *5 *6 *7 *4)))) (-1475 (*1 *2 *3) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-1273)) (-5 *1 (-452 *4 *5 *6 *3)) (-4 *3 (-951 *4 *5 *6)))) (-4093 (*1 *2 *3) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-567)) (-5 *1 (-452 *4 *5 *6 *3)) (-4 *3 (-951 *4 *5 *6)))) (-1373 (*1 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-951 *3 *4 *5)) (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-452 *3 *4 *5 *6)))) (-3470 (*1 *2 *2 *2) (-12 (-5 *2 (-645 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-772)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-794)) (-4 *6 (-951 *3 *4 *5)) (-4 *3 (-455)) (-4 *5 (-851)) (-5 *1 (-452 *3 *4 *5 *6)))) (-3503 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-772)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-794)) (-4 *2 (-951 *4 *5 *6)) (-5 *1 (-452 *4 *5 *6 *2)) (-4 *4 (-455)) (-4 *6 (-851)))) (-4298 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-645 (-2 (|:| |totdeg| (-772)) (|:| -2517 *3)))) (-5 *4 (-772)) (-4 *3 (-951 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-452 *5 *6 *7 *3)))) (-2487 (*1 *2 *2) (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-452 *3 *4 *5 *2)) (-4 *2 (-951 *3 *4 *5)))) (-3165 (*1 *2 *3 *4) (-12 (-5 *4 (-645 *3)) (-4 *3 (-951 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-452 *5 *6 *7 *3)))) (-2849 (*1 *2 *3 *2) (-12 (-5 *2 (-645 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-772)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-794)) (-4 *6 (-951 *4 *3 *5)) (-4 *4 (-455)) (-4 *5 (-851)) (-5 *1 (-452 *4 *3 *5 *6)))) (-3340 (*1 *2 *2) (-12 (-5 *2 (-645 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-772)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-794)) (-4 *6 (-951 *3 *4 *5)) (-4 *3 (-455)) (-4 *5 (-851)) (-5 *1 (-452 *3 *4 *5 *6)))) (-3493 (*1 *2 *3 *2) (-12 (-5 *2 (-645 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-772)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-794)) (-4 *3 (-951 *4 *5 *6)) (-4 *4 (-455)) (-4 *6 (-851)) (-5 *1 (-452 *4 *5 *6 *3)))) (-3665 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-455)) (-4 *3 (-794)) (-4 *5 (-851)) (-5 *2 (-112)) (-5 *1 (-452 *4 *3 *5 *6)) (-4 *6 (-951 *4 *3 *5)))) (-1747 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *3 (-794)) (-4 *5 (-851)) (-5 *2 (-112)) (-5 *1 (-452 *4 *3 *5 *6)) (-4 *6 (-951 *4 *3 *5)))) (-2129 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-772)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-794)) (-4 *7 (-951 *4 *5 *6)) (-4 *4 (-455)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-452 *4 *5 *6 *7)))) (-1797 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-645 *7)) (-5 *3 (-567)) (-4 *7 (-951 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-452 *4 *5 *6 *7)))) (-1760 (*1 *2 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-951 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-452 *4 *5 *6 *2)))) (-1995 (*1 *2 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-951 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-452 *4 *5 *6 *2)))))
-(-10 -7 (-15 -1995 (|#4| |#4| (-645 |#4|))) (-15 -1760 (|#4| |#4| (-645 |#4|))) (-15 -1797 ((-645 |#4|) (-645 |#4|) (-567) (-567))) (-15 -2129 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1747 ((-112) |#2| |#2|)) (-15 -3665 ((-112) |#2| |#2| |#2| |#2|)) (-15 -3493 ((-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3340 ((-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2849 ((-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3165 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-645 |#4|))) (-15 -2487 (|#4| |#4|)) (-15 -4298 ((-645 (-2 (|:| |totdeg| (-772)) (|:| -2517 |#4|))) |#4| (-772) (-645 (-2 (|:| |totdeg| (-772)) (|:| -2517 |#4|))))) (-15 -3503 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3470 ((-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1373 ((-645 |#4|) (-645 |#4|))) (-15 -4093 ((-567) |#4|)) (-15 -1475 ((-1273) |#4|)) (-15 -1720 ((-567) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-567) (-567) (-567))) (-15 -1939 ((-567) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-567) (-567) (-567) (-567))) (-15 -3349 ((-1273) (-645 |#4|))) (-15 -2070 ((-1273) (-567))) (-15 -2869 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1463 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-772)) (|:| -2517 |#4|)) |#4| (-772))) (-15 -2639 ((-772) |#4|)))
-((-4092 ((|#4| |#4| (-645 |#4|)) 20 (|has| |#1| (-365)))) (-3716 (((-645 |#4|) (-645 |#4|) (-1160) (-1160)) 46) (((-645 |#4|) (-645 |#4|) (-1160)) 45) (((-645 |#4|) (-645 |#4|)) 34)))
-(((-453 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3716 ((-645 |#4|) (-645 |#4|))) (-15 -3716 ((-645 |#4|) (-645 |#4|) (-1160))) (-15 -3716 ((-645 |#4|) (-645 |#4|) (-1160) (-1160))) (IF (|has| |#1| (-365)) (-15 -4092 (|#4| |#4| (-645 |#4|))) |%noBranch|)) (-455) (-794) (-851) (-951 |#1| |#2| |#3|)) (T -453))
-((-4092 (*1 *2 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-951 *4 *5 *6)) (-4 *4 (-365)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-453 *4 *5 *6 *2)))) (-3716 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-645 *7)) (-5 *3 (-1160)) (-4 *7 (-951 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-453 *4 *5 *6 *7)))) (-3716 (*1 *2 *2 *3) (-12 (-5 *2 (-645 *7)) (-5 *3 (-1160)) (-4 *7 (-951 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-453 *4 *5 *6 *7)))) (-3716 (*1 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-951 *3 *4 *5)) (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-453 *3 *4 *5 *6)))))
-(-10 -7 (-15 -3716 ((-645 |#4|) (-645 |#4|))) (-15 -3716 ((-645 |#4|) (-645 |#4|) (-1160))) (-15 -3716 ((-645 |#4|) (-645 |#4|) (-1160) (-1160))) (IF (|has| |#1| (-365)) (-15 -4092 (|#4| |#4| (-645 |#4|))) |%noBranch|))
-((-2740 (($ $ $) 14) (($ (-645 $)) 21)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 46)) (-2774 (($ $ $) NIL) (($ (-645 $)) 22)))
-(((-454 |#1|) (-10 -8 (-15 -3750 ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 -2740 (|#1| (-645 |#1|))) (-15 -2740 (|#1| |#1| |#1|)) (-15 -2774 (|#1| (-645 |#1|))) (-15 -2774 (|#1| |#1| |#1|))) (-455)) (T -454))
-NIL
-(-10 -8 (-15 -3750 ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 -2740 (|#1| (-645 |#1|))) (-15 -2740 (|#1| |#1| |#1|)) (-15 -2774 (|#1| (-645 |#1|))) (-15 -2774 (|#1| |#1| |#1|)))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 47)) (-4381 (($ $) 46)) (-3949 (((-112) $) 44)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-2109 (((-3 $ "failed") $) 37)) (-1433 (((-112) $) 35)) (-2740 (($ $ $) 52) (($ (-645 $)) 51)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 50)) (-2774 (($ $ $) 54) (($ (-645 $)) 53)) (-2391 (((-3 $ "failed") $ $) 48)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ $) 49)) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-3816 (((-112) $ $) 45)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27)))
+((-4129 (*1 *1 *2) (-12 (-5 *2 (-645 (-331))) (-4 *1 (-444)))) (-4129 (*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-444)))) (-4129 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1183)) (|:| -1814 (-645 (-331))))) (-4 *1 (-444)))) (-2051 (*1 *1 *2) (-12 (-5 *2 (-1269 (-317 (-381)))) (-4 *1 (-444)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-1269 (-317 (-381)))) (-4 *1 (-444)))) (-2051 (*1 *1 *2) (-12 (-5 *2 (-1269 (-317 (-567)))) (-4 *1 (-444)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-1269 (-317 (-567)))) (-4 *1 (-444)))) (-2051 (*1 *1 *2) (-12 (-5 *2 (-1269 (-954 (-381)))) (-4 *1 (-444)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-1269 (-954 (-381)))) (-4 *1 (-444)))) (-2051 (*1 *1 *2) (-12 (-5 *2 (-1269 (-954 (-567)))) (-4 *1 (-444)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-1269 (-954 (-567)))) (-4 *1 (-444)))) (-2051 (*1 *1 *2) (-12 (-5 *2 (-1269 (-410 (-954 (-381))))) (-4 *1 (-444)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-1269 (-410 (-954 (-381))))) (-4 *1 (-444)))) (-2051 (*1 *1 *2) (-12 (-5 *2 (-1269 (-410 (-954 (-567))))) (-4 *1 (-444)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-1269 (-410 (-954 (-567))))) (-4 *1 (-444)))))
+(-13 (-398) (-10 -8 (-15 -4129 ($ (-645 (-331)))) (-15 -4129 ($ (-331))) (-15 -4129 ($ (-2 (|:| |localSymbols| (-1183)) (|:| -1814 (-645 (-331)))))) (-15 -2051 ($ (-1269 (-317 (-381))))) (-15 -3765 ((-3 $ "failed") (-1269 (-317 (-381))))) (-15 -2051 ($ (-1269 (-317 (-567))))) (-15 -3765 ((-3 $ "failed") (-1269 (-317 (-567))))) (-15 -2051 ($ (-1269 (-954 (-381))))) (-15 -3765 ((-3 $ "failed") (-1269 (-954 (-381))))) (-15 -2051 ($ (-1269 (-954 (-567))))) (-15 -3765 ((-3 $ "failed") (-1269 (-954 (-567))))) (-15 -2051 ($ (-1269 (-410 (-954 (-381)))))) (-15 -3765 ((-3 $ "failed") (-1269 (-410 (-954 (-381)))))) (-15 -2051 ($ (-1269 (-410 (-954 (-567)))))) (-15 -3765 ((-3 $ "failed") (-1269 (-410 (-954 (-567))))))))
+(((-614 (-863)) . T) ((-398) . T) ((-1219) . T))
+((-3537 (((-112)) 18)) (-2936 (((-112) (-112)) 19)) (-3045 (((-112)) 14)) (-3349 (((-112) (-112)) 15)) (-3682 (((-112)) 16)) (-3515 (((-112) (-112)) 17)) (-3859 (((-923) (-923)) 22) (((-923)) 21)) (-1509 (((-772) (-645 (-2 (|:| -2717 |#1|) (|:| -3104 (-567))))) 52)) (-2970 (((-923) (-923)) 24) (((-923)) 23)) (-2416 (((-2 (|:| -2413 (-567)) (|:| -2158 (-645 |#1|))) |#1|) 97)) (-3546 (((-421 |#1|) (-2 (|:| |contp| (-567)) (|:| -2158 (-645 (-2 (|:| |irr| |#1|) (|:| -2298 (-567))))))) 178)) (-1988 (((-2 (|:| |contp| (-567)) (|:| -2158 (-645 (-2 (|:| |irr| |#1|) (|:| -2298 (-567)))))) |#1| (-112)) 211)) (-3347 (((-421 |#1|) |#1| (-772) (-772)) 226) (((-421 |#1|) |#1| (-645 (-772)) (-772)) 223) (((-421 |#1|) |#1| (-645 (-772))) 225) (((-421 |#1|) |#1| (-772)) 224) (((-421 |#1|) |#1|) 222)) (-3724 (((-3 |#1| "failed") (-923) |#1| (-645 (-772)) (-772) (-112)) 228) (((-3 |#1| "failed") (-923) |#1| (-645 (-772)) (-772)) 229) (((-3 |#1| "failed") (-923) |#1| (-645 (-772))) 231) (((-3 |#1| "failed") (-923) |#1| (-772)) 230) (((-3 |#1| "failed") (-923) |#1|) 232)) (-2717 (((-421 |#1|) |#1| (-772) (-772)) 221) (((-421 |#1|) |#1| (-645 (-772)) (-772)) 217) (((-421 |#1|) |#1| (-645 (-772))) 219) (((-421 |#1|) |#1| (-772)) 218) (((-421 |#1|) |#1|) 216)) (-3280 (((-112) |#1|) 44)) (-3894 (((-738 (-772)) (-645 (-2 (|:| -2717 |#1|) (|:| -3104 (-567))))) 102)) (-3298 (((-2 (|:| |contp| (-567)) (|:| -2158 (-645 (-2 (|:| |irr| |#1|) (|:| -2298 (-567)))))) |#1| (-112) (-1104 (-772)) (-772)) 215)))
+(((-445 |#1|) (-10 -7 (-15 -3546 ((-421 |#1|) (-2 (|:| |contp| (-567)) (|:| -2158 (-645 (-2 (|:| |irr| |#1|) (|:| -2298 (-567)))))))) (-15 -3894 ((-738 (-772)) (-645 (-2 (|:| -2717 |#1|) (|:| -3104 (-567)))))) (-15 -2970 ((-923))) (-15 -2970 ((-923) (-923))) (-15 -3859 ((-923))) (-15 -3859 ((-923) (-923))) (-15 -1509 ((-772) (-645 (-2 (|:| -2717 |#1|) (|:| -3104 (-567)))))) (-15 -2416 ((-2 (|:| -2413 (-567)) (|:| -2158 (-645 |#1|))) |#1|)) (-15 -3537 ((-112))) (-15 -2936 ((-112) (-112))) (-15 -3045 ((-112))) (-15 -3349 ((-112) (-112))) (-15 -3280 ((-112) |#1|)) (-15 -3682 ((-112))) (-15 -3515 ((-112) (-112))) (-15 -2717 ((-421 |#1|) |#1|)) (-15 -2717 ((-421 |#1|) |#1| (-772))) (-15 -2717 ((-421 |#1|) |#1| (-645 (-772)))) (-15 -2717 ((-421 |#1|) |#1| (-645 (-772)) (-772))) (-15 -2717 ((-421 |#1|) |#1| (-772) (-772))) (-15 -3347 ((-421 |#1|) |#1|)) (-15 -3347 ((-421 |#1|) |#1| (-772))) (-15 -3347 ((-421 |#1|) |#1| (-645 (-772)))) (-15 -3347 ((-421 |#1|) |#1| (-645 (-772)) (-772))) (-15 -3347 ((-421 |#1|) |#1| (-772) (-772))) (-15 -3724 ((-3 |#1| "failed") (-923) |#1|)) (-15 -3724 ((-3 |#1| "failed") (-923) |#1| (-772))) (-15 -3724 ((-3 |#1| "failed") (-923) |#1| (-645 (-772)))) (-15 -3724 ((-3 |#1| "failed") (-923) |#1| (-645 (-772)) (-772))) (-15 -3724 ((-3 |#1| "failed") (-923) |#1| (-645 (-772)) (-772) (-112))) (-15 -1988 ((-2 (|:| |contp| (-567)) (|:| -2158 (-645 (-2 (|:| |irr| |#1|) (|:| -2298 (-567)))))) |#1| (-112))) (-15 -3298 ((-2 (|:| |contp| (-567)) (|:| -2158 (-645 (-2 (|:| |irr| |#1|) (|:| -2298 (-567)))))) |#1| (-112) (-1104 (-772)) (-772)))) (-1245 (-567))) (T -445))
+((-3298 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1104 (-772))) (-5 *6 (-772)) (-5 *2 (-2 (|:| |contp| (-567)) (|:| -2158 (-645 (-2 (|:| |irr| *3) (|:| -2298 (-567))))))) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567))))) (-1988 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-567)) (|:| -2158 (-645 (-2 (|:| |irr| *3) (|:| -2298 (-567))))))) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567))))) (-3724 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-923)) (-5 *4 (-645 (-772))) (-5 *5 (-772)) (-5 *6 (-112)) (-5 *1 (-445 *2)) (-4 *2 (-1245 (-567))))) (-3724 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-923)) (-5 *4 (-645 (-772))) (-5 *5 (-772)) (-5 *1 (-445 *2)) (-4 *2 (-1245 (-567))))) (-3724 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-923)) (-5 *4 (-645 (-772))) (-5 *1 (-445 *2)) (-4 *2 (-1245 (-567))))) (-3724 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-923)) (-5 *4 (-772)) (-5 *1 (-445 *2)) (-4 *2 (-1245 (-567))))) (-3724 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-923)) (-5 *1 (-445 *2)) (-4 *2 (-1245 (-567))))) (-3347 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-772)) (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567))))) (-3347 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-645 (-772))) (-5 *5 (-772)) (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567))))) (-3347 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-772))) (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567))))) (-3347 (*1 *2 *3 *4) (-12 (-5 *4 (-772)) (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567))))) (-3347 (*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567))))) (-2717 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-772)) (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567))))) (-2717 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-645 (-772))) (-5 *5 (-772)) (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567))))) (-2717 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-772))) (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567))))) (-2717 (*1 *2 *3 *4) (-12 (-5 *4 (-772)) (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567))))) (-2717 (*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567))))) (-3515 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567))))) (-3682 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567))))) (-3280 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567))))) (-3349 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567))))) (-3045 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567))))) (-2936 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567))))) (-3537 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567))))) (-2416 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2413 (-567)) (|:| -2158 (-645 *3)))) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567))))) (-1509 (*1 *2 *3) (-12 (-5 *3 (-645 (-2 (|:| -2717 *4) (|:| -3104 (-567))))) (-4 *4 (-1245 (-567))) (-5 *2 (-772)) (-5 *1 (-445 *4)))) (-3859 (*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567))))) (-3859 (*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567))))) (-2970 (*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567))))) (-2970 (*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567))))) (-3894 (*1 *2 *3) (-12 (-5 *3 (-645 (-2 (|:| -2717 *4) (|:| -3104 (-567))))) (-4 *4 (-1245 (-567))) (-5 *2 (-738 (-772))) (-5 *1 (-445 *4)))) (-3546 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-567)) (|:| -2158 (-645 (-2 (|:| |irr| *4) (|:| -2298 (-567))))))) (-4 *4 (-1245 (-567))) (-5 *2 (-421 *4)) (-5 *1 (-445 *4)))))
+(-10 -7 (-15 -3546 ((-421 |#1|) (-2 (|:| |contp| (-567)) (|:| -2158 (-645 (-2 (|:| |irr| |#1|) (|:| -2298 (-567)))))))) (-15 -3894 ((-738 (-772)) (-645 (-2 (|:| -2717 |#1|) (|:| -3104 (-567)))))) (-15 -2970 ((-923))) (-15 -2970 ((-923) (-923))) (-15 -3859 ((-923))) (-15 -3859 ((-923) (-923))) (-15 -1509 ((-772) (-645 (-2 (|:| -2717 |#1|) (|:| -3104 (-567)))))) (-15 -2416 ((-2 (|:| -2413 (-567)) (|:| -2158 (-645 |#1|))) |#1|)) (-15 -3537 ((-112))) (-15 -2936 ((-112) (-112))) (-15 -3045 ((-112))) (-15 -3349 ((-112) (-112))) (-15 -3280 ((-112) |#1|)) (-15 -3682 ((-112))) (-15 -3515 ((-112) (-112))) (-15 -2717 ((-421 |#1|) |#1|)) (-15 -2717 ((-421 |#1|) |#1| (-772))) (-15 -2717 ((-421 |#1|) |#1| (-645 (-772)))) (-15 -2717 ((-421 |#1|) |#1| (-645 (-772)) (-772))) (-15 -2717 ((-421 |#1|) |#1| (-772) (-772))) (-15 -3347 ((-421 |#1|) |#1|)) (-15 -3347 ((-421 |#1|) |#1| (-772))) (-15 -3347 ((-421 |#1|) |#1| (-645 (-772)))) (-15 -3347 ((-421 |#1|) |#1| (-645 (-772)) (-772))) (-15 -3347 ((-421 |#1|) |#1| (-772) (-772))) (-15 -3724 ((-3 |#1| "failed") (-923) |#1|)) (-15 -3724 ((-3 |#1| "failed") (-923) |#1| (-772))) (-15 -3724 ((-3 |#1| "failed") (-923) |#1| (-645 (-772)))) (-15 -3724 ((-3 |#1| "failed") (-923) |#1| (-645 (-772)) (-772))) (-15 -3724 ((-3 |#1| "failed") (-923) |#1| (-645 (-772)) (-772) (-112))) (-15 -1988 ((-2 (|:| |contp| (-567)) (|:| -2158 (-645 (-2 (|:| |irr| |#1|) (|:| -2298 (-567)))))) |#1| (-112))) (-15 -3298 ((-2 (|:| |contp| (-567)) (|:| -2158 (-645 (-2 (|:| |irr| |#1|) (|:| -2298 (-567)))))) |#1| (-112) (-1104 (-772)) (-772))))
+((-1937 (((-567) |#2|) 52) (((-567) |#2| (-772)) 51)) (-4281 (((-567) |#2|) 67)) (-2394 ((|#3| |#2|) 26)) (-2724 ((|#3| |#2| (-923)) 15)) (-2334 ((|#3| |#2|) 16)) (-2777 ((|#3| |#2|) 9)) (-4136 ((|#3| |#2|) 10)) (-1913 ((|#3| |#2| (-923)) 74) ((|#3| |#2|) 34)) (-3749 (((-567) |#2|) 69)))
+(((-446 |#1| |#2| |#3|) (-10 -7 (-15 -3749 ((-567) |#2|)) (-15 -1913 (|#3| |#2|)) (-15 -1913 (|#3| |#2| (-923))) (-15 -4281 ((-567) |#2|)) (-15 -1937 ((-567) |#2| (-772))) (-15 -1937 ((-567) |#2|)) (-15 -2724 (|#3| |#2| (-923))) (-15 -2394 (|#3| |#2|)) (-15 -2777 (|#3| |#2|)) (-15 -4136 (|#3| |#2|)) (-15 -2334 (|#3| |#2|))) (-1051) (-1245 |#1|) (-13 (-407) (-1040 |#1|) (-365) (-1204) (-285))) (T -446))
+((-2334 (*1 *2 *3) (-12 (-4 *4 (-1051)) (-4 *2 (-13 (-407) (-1040 *4) (-365) (-1204) (-285))) (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1245 *4)))) (-4136 (*1 *2 *3) (-12 (-4 *4 (-1051)) (-4 *2 (-13 (-407) (-1040 *4) (-365) (-1204) (-285))) (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1245 *4)))) (-2777 (*1 *2 *3) (-12 (-4 *4 (-1051)) (-4 *2 (-13 (-407) (-1040 *4) (-365) (-1204) (-285))) (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1245 *4)))) (-2394 (*1 *2 *3) (-12 (-4 *4 (-1051)) (-4 *2 (-13 (-407) (-1040 *4) (-365) (-1204) (-285))) (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1245 *4)))) (-2724 (*1 *2 *3 *4) (-12 (-5 *4 (-923)) (-4 *5 (-1051)) (-4 *2 (-13 (-407) (-1040 *5) (-365) (-1204) (-285))) (-5 *1 (-446 *5 *3 *2)) (-4 *3 (-1245 *5)))) (-1937 (*1 *2 *3) (-12 (-4 *4 (-1051)) (-5 *2 (-567)) (-5 *1 (-446 *4 *3 *5)) (-4 *3 (-1245 *4)) (-4 *5 (-13 (-407) (-1040 *4) (-365) (-1204) (-285))))) (-1937 (*1 *2 *3 *4) (-12 (-5 *4 (-772)) (-4 *5 (-1051)) (-5 *2 (-567)) (-5 *1 (-446 *5 *3 *6)) (-4 *3 (-1245 *5)) (-4 *6 (-13 (-407) (-1040 *5) (-365) (-1204) (-285))))) (-4281 (*1 *2 *3) (-12 (-4 *4 (-1051)) (-5 *2 (-567)) (-5 *1 (-446 *4 *3 *5)) (-4 *3 (-1245 *4)) (-4 *5 (-13 (-407) (-1040 *4) (-365) (-1204) (-285))))) (-1913 (*1 *2 *3 *4) (-12 (-5 *4 (-923)) (-4 *5 (-1051)) (-4 *2 (-13 (-407) (-1040 *5) (-365) (-1204) (-285))) (-5 *1 (-446 *5 *3 *2)) (-4 *3 (-1245 *5)))) (-1913 (*1 *2 *3) (-12 (-4 *4 (-1051)) (-4 *2 (-13 (-407) (-1040 *4) (-365) (-1204) (-285))) (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1245 *4)))) (-3749 (*1 *2 *3) (-12 (-4 *4 (-1051)) (-5 *2 (-567)) (-5 *1 (-446 *4 *3 *5)) (-4 *3 (-1245 *4)) (-4 *5 (-13 (-407) (-1040 *4) (-365) (-1204) (-285))))))
+(-10 -7 (-15 -3749 ((-567) |#2|)) (-15 -1913 (|#3| |#2|)) (-15 -1913 (|#3| |#2| (-923))) (-15 -4281 ((-567) |#2|)) (-15 -1937 ((-567) |#2| (-772))) (-15 -1937 ((-567) |#2|)) (-15 -2724 (|#3| |#2| (-923))) (-15 -2394 (|#3| |#2|)) (-15 -2777 (|#3| |#2|)) (-15 -4136 (|#3| |#2|)) (-15 -2334 (|#3| |#2|)))
+((-1853 ((|#2| (-1269 |#1|)) 45)) (-2181 ((|#2| |#2| |#1|) 61)) (-3348 ((|#2| |#2| |#1|) 53)) (-3592 ((|#2| |#2|) 49)) (-2366 (((-112) |#2|) 36)) (-1434 (((-645 |#2|) (-923) (-421 |#2|)) 24)) (-3724 ((|#2| (-923) (-421 |#2|)) 28)) (-3894 (((-738 (-772)) (-421 |#2|)) 33)))
+(((-447 |#1| |#2|) (-10 -7 (-15 -2366 ((-112) |#2|)) (-15 -1853 (|#2| (-1269 |#1|))) (-15 -3592 (|#2| |#2|)) (-15 -3348 (|#2| |#2| |#1|)) (-15 -2181 (|#2| |#2| |#1|)) (-15 -3894 ((-738 (-772)) (-421 |#2|))) (-15 -3724 (|#2| (-923) (-421 |#2|))) (-15 -1434 ((-645 |#2|) (-923) (-421 |#2|)))) (-1051) (-1245 |#1|)) (T -447))
+((-1434 (*1 *2 *3 *4) (-12 (-5 *3 (-923)) (-5 *4 (-421 *6)) (-4 *6 (-1245 *5)) (-4 *5 (-1051)) (-5 *2 (-645 *6)) (-5 *1 (-447 *5 *6)))) (-3724 (*1 *2 *3 *4) (-12 (-5 *3 (-923)) (-5 *4 (-421 *2)) (-4 *2 (-1245 *5)) (-5 *1 (-447 *5 *2)) (-4 *5 (-1051)))) (-3894 (*1 *2 *3) (-12 (-5 *3 (-421 *5)) (-4 *5 (-1245 *4)) (-4 *4 (-1051)) (-5 *2 (-738 (-772))) (-5 *1 (-447 *4 *5)))) (-2181 (*1 *2 *2 *3) (-12 (-4 *3 (-1051)) (-5 *1 (-447 *3 *2)) (-4 *2 (-1245 *3)))) (-3348 (*1 *2 *2 *3) (-12 (-4 *3 (-1051)) (-5 *1 (-447 *3 *2)) (-4 *2 (-1245 *3)))) (-3592 (*1 *2 *2) (-12 (-4 *3 (-1051)) (-5 *1 (-447 *3 *2)) (-4 *2 (-1245 *3)))) (-1853 (*1 *2 *3) (-12 (-5 *3 (-1269 *4)) (-4 *4 (-1051)) (-4 *2 (-1245 *4)) (-5 *1 (-447 *4 *2)))) (-2366 (*1 *2 *3) (-12 (-4 *4 (-1051)) (-5 *2 (-112)) (-5 *1 (-447 *4 *3)) (-4 *3 (-1245 *4)))))
+(-10 -7 (-15 -2366 ((-112) |#2|)) (-15 -1853 (|#2| (-1269 |#1|))) (-15 -3592 (|#2| |#2|)) (-15 -3348 (|#2| |#2| |#1|)) (-15 -2181 (|#2| |#2| |#1|)) (-15 -3894 ((-738 (-772)) (-421 |#2|))) (-15 -3724 (|#2| (-923) (-421 |#2|))) (-15 -1434 ((-645 |#2|) (-923) (-421 |#2|))))
+((-4169 (((-772)) 59)) (-3492 (((-772)) 29 (|has| |#1| (-407))) (((-772) (-772)) 28 (|has| |#1| (-407)))) (-3402 (((-567) |#1|) 25 (|has| |#1| (-407)))) (-1585 (((-567) |#1|) 27 (|has| |#1| (-407)))) (-1650 (((-772)) 58) (((-772) (-772)) 57)) (-4308 ((|#1| (-772) (-567)) 37)) (-4399 (((-1274)) 61)))
+(((-448 |#1|) (-10 -7 (-15 -4308 (|#1| (-772) (-567))) (-15 -1650 ((-772) (-772))) (-15 -1650 ((-772))) (-15 -4169 ((-772))) (-15 -4399 ((-1274))) (IF (|has| |#1| (-407)) (PROGN (-15 -1585 ((-567) |#1|)) (-15 -3402 ((-567) |#1|)) (-15 -3492 ((-772) (-772))) (-15 -3492 ((-772)))) |%noBranch|)) (-1051)) (T -448))
+((-3492 (*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-448 *3)) (-4 *3 (-407)) (-4 *3 (-1051)))) (-3492 (*1 *2 *2) (-12 (-5 *2 (-772)) (-5 *1 (-448 *3)) (-4 *3 (-407)) (-4 *3 (-1051)))) (-3402 (*1 *2 *3) (-12 (-5 *2 (-567)) (-5 *1 (-448 *3)) (-4 *3 (-407)) (-4 *3 (-1051)))) (-1585 (*1 *2 *3) (-12 (-5 *2 (-567)) (-5 *1 (-448 *3)) (-4 *3 (-407)) (-4 *3 (-1051)))) (-4399 (*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-448 *3)) (-4 *3 (-1051)))) (-4169 (*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-448 *3)) (-4 *3 (-1051)))) (-1650 (*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-448 *3)) (-4 *3 (-1051)))) (-1650 (*1 *2 *2) (-12 (-5 *2 (-772)) (-5 *1 (-448 *3)) (-4 *3 (-1051)))) (-4308 (*1 *2 *3 *4) (-12 (-5 *3 (-772)) (-5 *4 (-567)) (-5 *1 (-448 *2)) (-4 *2 (-1051)))))
+(-10 -7 (-15 -4308 (|#1| (-772) (-567))) (-15 -1650 ((-772) (-772))) (-15 -1650 ((-772))) (-15 -4169 ((-772))) (-15 -4399 ((-1274))) (IF (|has| |#1| (-407)) (PROGN (-15 -1585 ((-567) |#1|)) (-15 -3402 ((-567) |#1|)) (-15 -3492 ((-772) (-772))) (-15 -3492 ((-772)))) |%noBranch|))
+((-1860 (((-645 (-567)) (-567)) 76)) (-3502 (((-112) (-169 (-567))) 82)) (-2717 (((-421 (-169 (-567))) (-169 (-567))) 75)))
+(((-449) (-10 -7 (-15 -2717 ((-421 (-169 (-567))) (-169 (-567)))) (-15 -1860 ((-645 (-567)) (-567))) (-15 -3502 ((-112) (-169 (-567)))))) (T -449))
+((-3502 (*1 *2 *3) (-12 (-5 *3 (-169 (-567))) (-5 *2 (-112)) (-5 *1 (-449)))) (-1860 (*1 *2 *3) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-449)) (-5 *3 (-567)))) (-2717 (*1 *2 *3) (-12 (-5 *2 (-421 (-169 (-567)))) (-5 *1 (-449)) (-5 *3 (-169 (-567))))))
+(-10 -7 (-15 -2717 ((-421 (-169 (-567))) (-169 (-567)))) (-15 -1860 ((-645 (-567)) (-567))) (-15 -3502 ((-112) (-169 (-567)))))
+((-3179 ((|#4| |#4| (-645 |#4|)) 82)) (-2032 (((-645 |#4|) (-645 |#4|) (-1161) (-1161)) 22) (((-645 |#4|) (-645 |#4|) (-1161)) 21) (((-645 |#4|) (-645 |#4|)) 13)))
+(((-450 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3179 (|#4| |#4| (-645 |#4|))) (-15 -2032 ((-645 |#4|) (-645 |#4|))) (-15 -2032 ((-645 |#4|) (-645 |#4|) (-1161))) (-15 -2032 ((-645 |#4|) (-645 |#4|) (-1161) (-1161)))) (-308) (-794) (-851) (-951 |#1| |#2| |#3|)) (T -450))
+((-2032 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-645 *7)) (-5 *3 (-1161)) (-4 *7 (-951 *4 *5 *6)) (-4 *4 (-308)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-450 *4 *5 *6 *7)))) (-2032 (*1 *2 *2 *3) (-12 (-5 *2 (-645 *7)) (-5 *3 (-1161)) (-4 *7 (-951 *4 *5 *6)) (-4 *4 (-308)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-450 *4 *5 *6 *7)))) (-2032 (*1 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-951 *3 *4 *5)) (-4 *3 (-308)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-450 *3 *4 *5 *6)))) (-3179 (*1 *2 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-951 *4 *5 *6)) (-4 *4 (-308)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-450 *4 *5 *6 *2)))))
+(-10 -7 (-15 -3179 (|#4| |#4| (-645 |#4|))) (-15 -2032 ((-645 |#4|) (-645 |#4|))) (-15 -2032 ((-645 |#4|) (-645 |#4|) (-1161))) (-15 -2032 ((-645 |#4|) (-645 |#4|) (-1161) (-1161))))
+((-1824 (((-645 (-645 |#4|)) (-645 |#4|) (-112)) 91) (((-645 (-645 |#4|)) (-645 |#4|)) 90) (((-645 (-645 |#4|)) (-645 |#4|) (-645 |#4|) (-112)) 84) (((-645 (-645 |#4|)) (-645 |#4|) (-645 |#4|)) 85)) (-3886 (((-645 (-645 |#4|)) (-645 |#4|) (-112)) 55) (((-645 (-645 |#4|)) (-645 |#4|)) 77)))
+(((-451 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3886 ((-645 (-645 |#4|)) (-645 |#4|))) (-15 -3886 ((-645 (-645 |#4|)) (-645 |#4|) (-112))) (-15 -1824 ((-645 (-645 |#4|)) (-645 |#4|) (-645 |#4|))) (-15 -1824 ((-645 (-645 |#4|)) (-645 |#4|) (-645 |#4|) (-112))) (-15 -1824 ((-645 (-645 |#4|)) (-645 |#4|))) (-15 -1824 ((-645 (-645 |#4|)) (-645 |#4|) (-112)))) (-13 (-308) (-147)) (-794) (-851) (-951 |#1| |#2| |#3|)) (T -451))
+((-1824 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-951 *5 *6 *7)) (-5 *2 (-645 (-645 *8))) (-5 *1 (-451 *5 *6 *7 *8)) (-5 *3 (-645 *8)))) (-1824 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-951 *4 *5 *6)) (-5 *2 (-645 (-645 *7))) (-5 *1 (-451 *4 *5 *6 *7)) (-5 *3 (-645 *7)))) (-1824 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-951 *5 *6 *7)) (-5 *2 (-645 (-645 *8))) (-5 *1 (-451 *5 *6 *7 *8)) (-5 *3 (-645 *8)))) (-1824 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-951 *4 *5 *6)) (-5 *2 (-645 (-645 *7))) (-5 *1 (-451 *4 *5 *6 *7)) (-5 *3 (-645 *7)))) (-3886 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-951 *5 *6 *7)) (-5 *2 (-645 (-645 *8))) (-5 *1 (-451 *5 *6 *7 *8)) (-5 *3 (-645 *8)))) (-3886 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-951 *4 *5 *6)) (-5 *2 (-645 (-645 *7))) (-5 *1 (-451 *4 *5 *6 *7)) (-5 *3 (-645 *7)))))
+(-10 -7 (-15 -3886 ((-645 (-645 |#4|)) (-645 |#4|))) (-15 -3886 ((-645 (-645 |#4|)) (-645 |#4|) (-112))) (-15 -1824 ((-645 (-645 |#4|)) (-645 |#4|) (-645 |#4|))) (-15 -1824 ((-645 (-645 |#4|)) (-645 |#4|) (-645 |#4|) (-112))) (-15 -1824 ((-645 (-645 |#4|)) (-645 |#4|))) (-15 -1824 ((-645 (-645 |#4|)) (-645 |#4|) (-112))))
+((-3935 (((-772) |#4|) 12)) (-3876 (((-645 (-2 (|:| |totdeg| (-772)) (|:| -1774 |#4|))) |#4| (-772) (-645 (-2 (|:| |totdeg| (-772)) (|:| -1774 |#4|)))) 39)) (-2177 (((-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 51)) (-3174 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 54)) (-2440 ((|#4| |#4| (-645 |#4|)) 56)) (-1886 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-645 |#4|)) 98)) (-1376 (((-1274) |#4|) 61)) (-2679 (((-1274) (-645 |#4|)) 71)) (-2258 (((-567) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-567) (-567) (-567)) 68)) (-1658 (((-1274) (-567)) 113)) (-3629 (((-645 |#4|) (-645 |#4|)) 105)) (-1543 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-772)) (|:| -1774 |#4|)) |#4| (-772)) 31)) (-2476 (((-567) |#4|) 110)) (-1363 ((|#4| |#4|) 37)) (-4256 (((-645 |#4|) (-645 |#4|) (-567) (-567)) 76)) (-1825 (((-567) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-567) (-567) (-567) (-567)) 126)) (-1406 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20)) (-1598 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 80)) (-4115 (((-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 78)) (-4228 (((-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49)) (-3552 (((-112) |#2| |#2|) 77)) (-3367 (((-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 50)) (-1375 (((-112) |#2| |#2| |#2| |#2|) 82)) (-1718 ((|#4| |#4| (-645 |#4|)) 99)))
+(((-452 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1718 (|#4| |#4| (-645 |#4|))) (-15 -2440 (|#4| |#4| (-645 |#4|))) (-15 -4256 ((-645 |#4|) (-645 |#4|) (-567) (-567))) (-15 -1598 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3552 ((-112) |#2| |#2|)) (-15 -1375 ((-112) |#2| |#2| |#2| |#2|)) (-15 -3367 ((-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4228 ((-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4115 ((-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1886 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-645 |#4|))) (-15 -1363 (|#4| |#4|)) (-15 -3876 ((-645 (-2 (|:| |totdeg| (-772)) (|:| -1774 |#4|))) |#4| (-772) (-645 (-2 (|:| |totdeg| (-772)) (|:| -1774 |#4|))))) (-15 -3174 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2177 ((-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3629 ((-645 |#4|) (-645 |#4|))) (-15 -2476 ((-567) |#4|)) (-15 -1376 ((-1274) |#4|)) (-15 -2258 ((-567) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-567) (-567) (-567))) (-15 -1825 ((-567) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-567) (-567) (-567) (-567))) (-15 -2679 ((-1274) (-645 |#4|))) (-15 -1658 ((-1274) (-567))) (-15 -1406 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1543 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-772)) (|:| -1774 |#4|)) |#4| (-772))) (-15 -3935 ((-772) |#4|))) (-455) (-794) (-851) (-951 |#1| |#2| |#3|)) (T -452))
+((-3935 (*1 *2 *3) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-772)) (-5 *1 (-452 *4 *5 *6 *3)) (-4 *3 (-951 *4 *5 *6)))) (-1543 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-772)) (|:| -1774 *4))) (-5 *5 (-772)) (-4 *4 (-951 *6 *7 *8)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-452 *6 *7 *8 *4)))) (-1406 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-772)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-794)) (-4 *7 (-951 *4 *5 *6)) (-4 *4 (-455)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-452 *4 *5 *6 *7)))) (-1658 (*1 *2 *3) (-12 (-5 *3 (-567)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-1274)) (-5 *1 (-452 *4 *5 *6 *7)) (-4 *7 (-951 *4 *5 *6)))) (-2679 (*1 *2 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-951 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-1274)) (-5 *1 (-452 *4 *5 *6 *7)))) (-1825 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-772)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-794)) (-4 *4 (-951 *5 *6 *7)) (-4 *5 (-455)) (-4 *7 (-851)) (-5 *1 (-452 *5 *6 *7 *4)))) (-2258 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-772)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-794)) (-4 *4 (-951 *5 *6 *7)) (-4 *5 (-455)) (-4 *7 (-851)) (-5 *1 (-452 *5 *6 *7 *4)))) (-1376 (*1 *2 *3) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-1274)) (-5 *1 (-452 *4 *5 *6 *3)) (-4 *3 (-951 *4 *5 *6)))) (-2476 (*1 *2 *3) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-567)) (-5 *1 (-452 *4 *5 *6 *3)) (-4 *3 (-951 *4 *5 *6)))) (-3629 (*1 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-951 *3 *4 *5)) (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-452 *3 *4 *5 *6)))) (-2177 (*1 *2 *2 *2) (-12 (-5 *2 (-645 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-772)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-794)) (-4 *6 (-951 *3 *4 *5)) (-4 *3 (-455)) (-4 *5 (-851)) (-5 *1 (-452 *3 *4 *5 *6)))) (-3174 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-772)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-794)) (-4 *2 (-951 *4 *5 *6)) (-5 *1 (-452 *4 *5 *6 *2)) (-4 *4 (-455)) (-4 *6 (-851)))) (-3876 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-645 (-2 (|:| |totdeg| (-772)) (|:| -1774 *3)))) (-5 *4 (-772)) (-4 *3 (-951 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-452 *5 *6 *7 *3)))) (-1363 (*1 *2 *2) (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-452 *3 *4 *5 *2)) (-4 *2 (-951 *3 *4 *5)))) (-1886 (*1 *2 *3 *4) (-12 (-5 *4 (-645 *3)) (-4 *3 (-951 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-452 *5 *6 *7 *3)))) (-4115 (*1 *2 *3 *2) (-12 (-5 *2 (-645 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-772)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-794)) (-4 *6 (-951 *4 *3 *5)) (-4 *4 (-455)) (-4 *5 (-851)) (-5 *1 (-452 *4 *3 *5 *6)))) (-4228 (*1 *2 *2) (-12 (-5 *2 (-645 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-772)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-794)) (-4 *6 (-951 *3 *4 *5)) (-4 *3 (-455)) (-4 *5 (-851)) (-5 *1 (-452 *3 *4 *5 *6)))) (-3367 (*1 *2 *3 *2) (-12 (-5 *2 (-645 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-772)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-794)) (-4 *3 (-951 *4 *5 *6)) (-4 *4 (-455)) (-4 *6 (-851)) (-5 *1 (-452 *4 *5 *6 *3)))) (-1375 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-455)) (-4 *3 (-794)) (-4 *5 (-851)) (-5 *2 (-112)) (-5 *1 (-452 *4 *3 *5 *6)) (-4 *6 (-951 *4 *3 *5)))) (-3552 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *3 (-794)) (-4 *5 (-851)) (-5 *2 (-112)) (-5 *1 (-452 *4 *3 *5 *6)) (-4 *6 (-951 *4 *3 *5)))) (-1598 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-772)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-794)) (-4 *7 (-951 *4 *5 *6)) (-4 *4 (-455)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-452 *4 *5 *6 *7)))) (-4256 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-645 *7)) (-5 *3 (-567)) (-4 *7 (-951 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-452 *4 *5 *6 *7)))) (-2440 (*1 *2 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-951 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-452 *4 *5 *6 *2)))) (-1718 (*1 *2 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-951 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-452 *4 *5 *6 *2)))))
+(-10 -7 (-15 -1718 (|#4| |#4| (-645 |#4|))) (-15 -2440 (|#4| |#4| (-645 |#4|))) (-15 -4256 ((-645 |#4|) (-645 |#4|) (-567) (-567))) (-15 -1598 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3552 ((-112) |#2| |#2|)) (-15 -1375 ((-112) |#2| |#2| |#2| |#2|)) (-15 -3367 ((-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4228 ((-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4115 ((-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1886 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-645 |#4|))) (-15 -1363 (|#4| |#4|)) (-15 -3876 ((-645 (-2 (|:| |totdeg| (-772)) (|:| -1774 |#4|))) |#4| (-772) (-645 (-2 (|:| |totdeg| (-772)) (|:| -1774 |#4|))))) (-15 -3174 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2177 ((-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3629 ((-645 |#4|) (-645 |#4|))) (-15 -2476 ((-567) |#4|)) (-15 -1376 ((-1274) |#4|)) (-15 -2258 ((-567) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-567) (-567) (-567))) (-15 -1825 ((-567) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-567) (-567) (-567) (-567))) (-15 -2679 ((-1274) (-645 |#4|))) (-15 -1658 ((-1274) (-567))) (-15 -1406 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1543 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-772)) (|:| -1774 |#4|)) |#4| (-772))) (-15 -3935 ((-772) |#4|)))
+((-2387 ((|#4| |#4| (-645 |#4|)) 20 (|has| |#1| (-365)))) (-3125 (((-645 |#4|) (-645 |#4|) (-1161) (-1161)) 46) (((-645 |#4|) (-645 |#4|) (-1161)) 45) (((-645 |#4|) (-645 |#4|)) 34)))
+(((-453 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3125 ((-645 |#4|) (-645 |#4|))) (-15 -3125 ((-645 |#4|) (-645 |#4|) (-1161))) (-15 -3125 ((-645 |#4|) (-645 |#4|) (-1161) (-1161))) (IF (|has| |#1| (-365)) (-15 -2387 (|#4| |#4| (-645 |#4|))) |%noBranch|)) (-455) (-794) (-851) (-951 |#1| |#2| |#3|)) (T -453))
+((-2387 (*1 *2 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-951 *4 *5 *6)) (-4 *4 (-365)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-453 *4 *5 *6 *2)))) (-3125 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-645 *7)) (-5 *3 (-1161)) (-4 *7 (-951 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-453 *4 *5 *6 *7)))) (-3125 (*1 *2 *2 *3) (-12 (-5 *2 (-645 *7)) (-5 *3 (-1161)) (-4 *7 (-951 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-453 *4 *5 *6 *7)))) (-3125 (*1 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-951 *3 *4 *5)) (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-453 *3 *4 *5 *6)))))
+(-10 -7 (-15 -3125 ((-645 |#4|) (-645 |#4|))) (-15 -3125 ((-645 |#4|) (-645 |#4|) (-1161))) (-15 -3125 ((-645 |#4|) (-645 |#4|) (-1161) (-1161))) (IF (|has| |#1| (-365)) (-15 -2387 (|#4| |#4| (-645 |#4|))) |%noBranch|))
+((-2751 (($ $ $) 14) (($ (-645 $)) 21)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) 46)) (-2785 (($ $ $) NIL) (($ (-645 $)) 22)))
+(((-454 |#1|) (-10 -8 (-15 -2217 ((-1175 |#1|) (-1175 |#1|) (-1175 |#1|))) (-15 -2751 (|#1| (-645 |#1|))) (-15 -2751 (|#1| |#1| |#1|)) (-15 -2785 (|#1| (-645 |#1|))) (-15 -2785 (|#1| |#1| |#1|))) (-455)) (T -454))
+NIL
+(-10 -8 (-15 -2217 ((-1175 |#1|) (-1175 |#1|) (-1175 |#1|))) (-15 -2751 (|#1| (-645 |#1|))) (-15 -2751 (|#1| |#1| |#1|)) (-15 -2785 (|#1| (-645 |#1|))) (-15 -2785 (|#1| |#1| |#1|)))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) 47)) (-4287 (($ $) 46)) (-2286 (((-112) $) 44)) (-2376 (((-3 $ "failed") $ $) 20)) (-3647 (($) 18 T CONST)) (-3588 (((-3 $ "failed") $) 37)) (-4346 (((-112) $) 35)) (-2751 (($ $ $) 52) (($ (-645 $)) 51)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) 50)) (-2785 (($ $ $) 54) (($ (-645 $)) 53)) (-2400 (((-3 $ "failed") $ $) 48)) (-4129 (((-863) $) 12) (($ (-567)) 33) (($ $) 49)) (-2746 (((-772)) 32 T CONST)) (-3357 (((-112) $ $) 9)) (-3731 (((-112) $ $) 45)) (-1733 (($) 19 T CONST)) (-1744 (($) 34 T CONST)) (-2946 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27)))
(((-455) (-140)) (T -455))
-((-2774 (*1 *1 *1 *1) (-4 *1 (-455))) (-2774 (*1 *1 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-455)))) (-2740 (*1 *1 *1 *1) (-4 *1 (-455))) (-2740 (*1 *1 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-455)))) (-3750 (*1 *2 *2 *2) (-12 (-5 *2 (-1174 *1)) (-4 *1 (-455)))))
-(-13 (-559) (-10 -8 (-15 -2774 ($ $ $)) (-15 -2774 ($ (-645 $))) (-15 -2740 ($ $ $)) (-15 -2740 ($ (-645 $))) (-15 -3750 ((-1174 $) (-1174 $) (-1174 $)))))
+((-2785 (*1 *1 *1 *1) (-4 *1 (-455))) (-2785 (*1 *1 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-455)))) (-2751 (*1 *1 *1 *1) (-4 *1 (-455))) (-2751 (*1 *1 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-455)))) (-2217 (*1 *2 *2 *2) (-12 (-5 *2 (-1175 *1)) (-4 *1 (-455)))))
+(-13 (-559) (-10 -8 (-15 -2785 ($ $ $)) (-15 -2785 ($ (-645 $))) (-15 -2751 ($ $ $)) (-15 -2751 ($ (-645 $))) (-15 -2217 ((-1175 $) (-1175 $) (-1175 $)))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-291) . T) ((-559) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-641 $) . T) ((-718 $) . T) ((-727) . T) ((-1053 $) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3951 (((-3 $ "failed")) NIL (|has| (-410 (-954 |#1|)) (-559)))) (-3472 (((-3 $ "failed") $ $) NIL)) (-2189 (((-1268 (-690 (-410 (-954 |#1|)))) (-1268 $)) NIL) (((-1268 (-690 (-410 (-954 |#1|))))) NIL)) (-3337 (((-1268 $)) NIL)) (-2585 (($) NIL T CONST)) (-3425 (((-3 (-2 (|:| |particular| $) (|:| -2623 (-645 $))) "failed")) NIL)) (-3645 (((-3 $ "failed")) NIL (|has| (-410 (-954 |#1|)) (-559)))) (-1735 (((-690 (-410 (-954 |#1|))) (-1268 $)) NIL) (((-690 (-410 (-954 |#1|)))) NIL)) (-2583 (((-410 (-954 |#1|)) $) NIL)) (-3528 (((-690 (-410 (-954 |#1|))) $ (-1268 $)) NIL) (((-690 (-410 (-954 |#1|))) $) NIL)) (-2209 (((-3 $ "failed") $) NIL (|has| (-410 (-954 |#1|)) (-559)))) (-4063 (((-1174 (-954 (-410 (-954 |#1|))))) NIL (|has| (-410 (-954 |#1|)) (-365))) (((-1174 (-410 (-954 |#1|)))) 94 (|has| |#1| (-559)))) (-2586 (($ $ (-923)) NIL)) (-1883 (((-410 (-954 |#1|)) $) NIL)) (-1575 (((-1174 (-410 (-954 |#1|))) $) 92 (|has| (-410 (-954 |#1|)) (-559)))) (-2676 (((-410 (-954 |#1|)) (-1268 $)) NIL) (((-410 (-954 |#1|))) NIL)) (-1682 (((-1174 (-410 (-954 |#1|))) $) NIL)) (-1444 (((-112)) NIL)) (-3658 (($ (-1268 (-410 (-954 |#1|))) (-1268 $)) 118) (($ (-1268 (-410 (-954 |#1|)))) NIL)) (-2109 (((-3 $ "failed") $) NIL (|has| (-410 (-954 |#1|)) (-559)))) (-1954 (((-923)) NIL)) (-1379 (((-112)) NIL)) (-3719 (($ $ (-923)) NIL)) (-4353 (((-112)) NIL)) (-3375 (((-112)) NIL)) (-3154 (((-112)) NIL)) (-3412 (((-3 (-2 (|:| |particular| $) (|:| -2623 (-645 $))) "failed")) NIL)) (-3345 (((-3 $ "failed")) NIL (|has| (-410 (-954 |#1|)) (-559)))) (-2119 (((-690 (-410 (-954 |#1|))) (-1268 $)) NIL) (((-690 (-410 (-954 |#1|)))) NIL)) (-2726 (((-410 (-954 |#1|)) $) NIL)) (-2702 (((-690 (-410 (-954 |#1|))) $ (-1268 $)) NIL) (((-690 (-410 (-954 |#1|))) $) NIL)) (-3080 (((-3 $ "failed") $) NIL (|has| (-410 (-954 |#1|)) (-559)))) (-4162 (((-1174 (-954 (-410 (-954 |#1|))))) NIL (|has| (-410 (-954 |#1|)) (-365))) (((-1174 (-410 (-954 |#1|)))) 93 (|has| |#1| (-559)))) (-3450 (($ $ (-923)) NIL)) (-2200 (((-410 (-954 |#1|)) $) NIL)) (-3960 (((-1174 (-410 (-954 |#1|))) $) 87 (|has| (-410 (-954 |#1|)) (-559)))) (-3042 (((-410 (-954 |#1|)) (-1268 $)) NIL) (((-410 (-954 |#1|))) NIL)) (-3567 (((-1174 (-410 (-954 |#1|))) $) NIL)) (-3396 (((-112)) NIL)) (-1419 (((-1160) $) NIL)) (-2609 (((-112)) NIL)) (-3070 (((-112)) NIL)) (-4341 (((-112)) NIL)) (-3430 (((-1122) $) NIL)) (-3325 (((-410 (-954 |#1|)) $ $) 78 (|has| |#1| (-559)))) (-3152 (((-410 (-954 |#1|)) $) 104 (|has| |#1| (-559)))) (-3492 (((-410 (-954 |#1|)) $) 108 (|has| |#1| (-559)))) (-2712 (((-1174 (-410 (-954 |#1|))) $) 98 (|has| |#1| (-559)))) (-4058 (((-410 (-954 |#1|))) 79 (|has| |#1| (-559)))) (-1589 (((-410 (-954 |#1|)) $ $) 71 (|has| |#1| (-559)))) (-1364 (((-410 (-954 |#1|)) $) 103 (|has| |#1| (-559)))) (-3134 (((-410 (-954 |#1|)) $) 107 (|has| |#1| (-559)))) (-1522 (((-1174 (-410 (-954 |#1|))) $) 97 (|has| |#1| (-559)))) (-3880 (((-410 (-954 |#1|))) 75 (|has| |#1| (-559)))) (-3742 (($) 114) (($ (-1178)) 122) (($ (-1268 (-1178))) 121) (($ (-1268 $)) 109) (($ (-1178) (-1268 $)) 120) (($ (-1268 (-1178)) (-1268 $)) 119)) (-4356 (((-112)) NIL)) (-1787 (((-410 (-954 |#1|)) $ (-567)) NIL)) (-2887 (((-1268 (-410 (-954 |#1|))) $ (-1268 $)) 111) (((-690 (-410 (-954 |#1|))) (-1268 $) (-1268 $)) NIL) (((-1268 (-410 (-954 |#1|))) $) 45) (((-690 (-410 (-954 |#1|))) (-1268 $)) NIL)) (-3893 (((-1268 (-410 (-954 |#1|))) $) NIL) (($ (-1268 (-410 (-954 |#1|)))) 42)) (-4013 (((-645 (-954 (-410 (-954 |#1|)))) (-1268 $)) NIL) (((-645 (-954 (-410 (-954 |#1|))))) NIL) (((-645 (-954 |#1|)) (-1268 $)) 112 (|has| |#1| (-559))) (((-645 (-954 |#1|))) 113 (|has| |#1| (-559)))) (-1485 (($ $ $) NIL)) (-1502 (((-112)) NIL)) (-4132 (((-863) $) NIL) (($ (-1268 (-410 (-954 |#1|)))) NIL)) (-1745 (((-112) $ $) NIL)) (-2623 (((-1268 $)) 67)) (-2652 (((-645 (-1268 (-410 (-954 |#1|))))) NIL (|has| (-410 (-954 |#1|)) (-559)))) (-2153 (($ $ $ $) NIL)) (-3013 (((-112)) NIL)) (-2355 (($ (-690 (-410 (-954 |#1|))) $) NIL)) (-2214 (($ $ $) NIL)) (-1636 (((-112)) NIL)) (-1749 (((-112)) NIL)) (-2059 (((-112)) NIL)) (-1716 (($) NIL T CONST)) (-2936 (((-112) $ $) NIL)) (-3045 (($ $) NIL) (($ $ $) 110)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 63) (($ $ (-410 (-954 |#1|))) NIL) (($ (-410 (-954 |#1|)) $) NIL) (($ (-1144 |#2| (-410 (-954 |#1|))) $) NIL)))
-(((-456 |#1| |#2| |#3| |#4|) (-13 (-420 (-410 (-954 |#1|))) (-649 (-1144 |#2| (-410 (-954 |#1|)))) (-10 -8 (-15 -4132 ($ (-1268 (-410 (-954 |#1|))))) (-15 -3412 ((-3 (-2 (|:| |particular| $) (|:| -2623 (-645 $))) "failed"))) (-15 -3425 ((-3 (-2 (|:| |particular| $) (|:| -2623 (-645 $))) "failed"))) (-15 -3742 ($)) (-15 -3742 ($ (-1178))) (-15 -3742 ($ (-1268 (-1178)))) (-15 -3742 ($ (-1268 $))) (-15 -3742 ($ (-1178) (-1268 $))) (-15 -3742 ($ (-1268 (-1178)) (-1268 $))) (IF (|has| |#1| (-559)) (PROGN (-15 -4162 ((-1174 (-410 (-954 |#1|))))) (-15 -1522 ((-1174 (-410 (-954 |#1|))) $)) (-15 -1364 ((-410 (-954 |#1|)) $)) (-15 -3134 ((-410 (-954 |#1|)) $)) (-15 -4063 ((-1174 (-410 (-954 |#1|))))) (-15 -2712 ((-1174 (-410 (-954 |#1|))) $)) (-15 -3152 ((-410 (-954 |#1|)) $)) (-15 -3492 ((-410 (-954 |#1|)) $)) (-15 -1589 ((-410 (-954 |#1|)) $ $)) (-15 -3880 ((-410 (-954 |#1|)))) (-15 -3325 ((-410 (-954 |#1|)) $ $)) (-15 -4058 ((-410 (-954 |#1|)))) (-15 -4013 ((-645 (-954 |#1|)) (-1268 $))) (-15 -4013 ((-645 (-954 |#1|))))) |%noBranch|))) (-172) (-923) (-645 (-1178)) (-1268 (-690 |#1|))) (T -456))
-((-4132 (*1 *1 *2) (-12 (-5 *2 (-1268 (-410 (-954 *3)))) (-4 *3 (-172)) (-14 *6 (-1268 (-690 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-14 *4 (-923)) (-14 *5 (-645 (-1178))))) (-3412 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-456 *3 *4 *5 *6)) (|:| -2623 (-645 (-456 *3 *4 *5 *6))))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 (-1178))) (-14 *6 (-1268 (-690 *3))))) (-3425 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-456 *3 *4 *5 *6)) (|:| -2623 (-645 (-456 *3 *4 *5 *6))))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 (-1178))) (-14 *6 (-1268 (-690 *3))))) (-3742 (*1 *1) (-12 (-5 *1 (-456 *2 *3 *4 *5)) (-4 *2 (-172)) (-14 *3 (-923)) (-14 *4 (-645 (-1178))) (-14 *5 (-1268 (-690 *2))))) (-3742 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 *2)) (-14 *6 (-1268 (-690 *3))))) (-3742 (*1 *1 *2) (-12 (-5 *2 (-1268 (-1178))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 (-1178))) (-14 *6 (-1268 (-690 *3))))) (-3742 (*1 *1 *2) (-12 (-5 *2 (-1268 (-456 *3 *4 *5 *6))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 (-1178))) (-14 *6 (-1268 (-690 *3))))) (-3742 (*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-1268 (-456 *4 *5 *6 *7))) (-5 *1 (-456 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-923)) (-14 *6 (-645 *2)) (-14 *7 (-1268 (-690 *4))))) (-3742 (*1 *1 *2 *3) (-12 (-5 *2 (-1268 (-1178))) (-5 *3 (-1268 (-456 *4 *5 *6 *7))) (-5 *1 (-456 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-923)) (-14 *6 (-645 (-1178))) (-14 *7 (-1268 (-690 *4))))) (-4162 (*1 *2) (-12 (-5 *2 (-1174 (-410 (-954 *3)))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 (-1178))) (-14 *6 (-1268 (-690 *3))))) (-1522 (*1 *2 *1) (-12 (-5 *2 (-1174 (-410 (-954 *3)))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 (-1178))) (-14 *6 (-1268 (-690 *3))))) (-1364 (*1 *2 *1) (-12 (-5 *2 (-410 (-954 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 (-1178))) (-14 *6 (-1268 (-690 *3))))) (-3134 (*1 *2 *1) (-12 (-5 *2 (-410 (-954 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 (-1178))) (-14 *6 (-1268 (-690 *3))))) (-4063 (*1 *2) (-12 (-5 *2 (-1174 (-410 (-954 *3)))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 (-1178))) (-14 *6 (-1268 (-690 *3))))) (-2712 (*1 *2 *1) (-12 (-5 *2 (-1174 (-410 (-954 *3)))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 (-1178))) (-14 *6 (-1268 (-690 *3))))) (-3152 (*1 *2 *1) (-12 (-5 *2 (-410 (-954 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 (-1178))) (-14 *6 (-1268 (-690 *3))))) (-3492 (*1 *2 *1) (-12 (-5 *2 (-410 (-954 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 (-1178))) (-14 *6 (-1268 (-690 *3))))) (-1589 (*1 *2 *1 *1) (-12 (-5 *2 (-410 (-954 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 (-1178))) (-14 *6 (-1268 (-690 *3))))) (-3880 (*1 *2) (-12 (-5 *2 (-410 (-954 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 (-1178))) (-14 *6 (-1268 (-690 *3))))) (-3325 (*1 *2 *1 *1) (-12 (-5 *2 (-410 (-954 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 (-1178))) (-14 *6 (-1268 (-690 *3))))) (-4058 (*1 *2) (-12 (-5 *2 (-410 (-954 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 (-1178))) (-14 *6 (-1268 (-690 *3))))) (-4013 (*1 *2 *3) (-12 (-5 *3 (-1268 (-456 *4 *5 *6 *7))) (-5 *2 (-645 (-954 *4))) (-5 *1 (-456 *4 *5 *6 *7)) (-4 *4 (-559)) (-4 *4 (-172)) (-14 *5 (-923)) (-14 *6 (-645 (-1178))) (-14 *7 (-1268 (-690 *4))))) (-4013 (*1 *2) (-12 (-5 *2 (-645 (-954 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 (-1178))) (-14 *6 (-1268 (-690 *3))))))
-(-13 (-420 (-410 (-954 |#1|))) (-649 (-1144 |#2| (-410 (-954 |#1|)))) (-10 -8 (-15 -4132 ($ (-1268 (-410 (-954 |#1|))))) (-15 -3412 ((-3 (-2 (|:| |particular| $) (|:| -2623 (-645 $))) "failed"))) (-15 -3425 ((-3 (-2 (|:| |particular| $) (|:| -2623 (-645 $))) "failed"))) (-15 -3742 ($)) (-15 -3742 ($ (-1178))) (-15 -3742 ($ (-1268 (-1178)))) (-15 -3742 ($ (-1268 $))) (-15 -3742 ($ (-1178) (-1268 $))) (-15 -3742 ($ (-1268 (-1178)) (-1268 $))) (IF (|has| |#1| (-559)) (PROGN (-15 -4162 ((-1174 (-410 (-954 |#1|))))) (-15 -1522 ((-1174 (-410 (-954 |#1|))) $)) (-15 -1364 ((-410 (-954 |#1|)) $)) (-15 -3134 ((-410 (-954 |#1|)) $)) (-15 -4063 ((-1174 (-410 (-954 |#1|))))) (-15 -2712 ((-1174 (-410 (-954 |#1|))) $)) (-15 -3152 ((-410 (-954 |#1|)) $)) (-15 -3492 ((-410 (-954 |#1|)) $)) (-15 -1589 ((-410 (-954 |#1|)) $ $)) (-15 -3880 ((-410 (-954 |#1|)))) (-15 -3325 ((-410 (-954 |#1|)) $ $)) (-15 -4058 ((-410 (-954 |#1|)))) (-15 -4013 ((-645 (-954 |#1|)) (-1268 $))) (-15 -4013 ((-645 (-954 |#1|))))) |%noBranch|)))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) 18)) (-2847 (((-645 (-865 |#1|)) $) 92)) (-2675 (((-1174 $) $ (-865 |#1|)) 55) (((-1174 |#2|) $) 143)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL (|has| |#2| (-559)))) (-4381 (($ $) NIL (|has| |#2| (-559)))) (-3949 (((-112) $) NIL (|has| |#2| (-559)))) (-1468 (((-772) $) 27) (((-772) $ (-645 (-865 |#1|))) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-4226 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-911)))) (-3248 (($ $) NIL (|has| |#2| (-455)))) (-2908 (((-421 $) $) NIL (|has| |#2| (-455)))) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-911)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 |#2| "failed") $) 53) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#2| (-1040 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#2| (-1040 (-567)))) (((-3 (-865 |#1|) "failed") $) NIL)) (-2038 ((|#2| $) 51) (((-410 (-567)) $) NIL (|has| |#2| (-1040 (-410 (-567))))) (((-567) $) NIL (|has| |#2| (-1040 (-567)))) (((-865 |#1|) $) NIL)) (-2951 (($ $ $ (-865 |#1|)) NIL (|has| |#2| (-172)))) (-1464 (($ $ (-645 (-567))) 98)) (-3014 (($ $) 85)) (-2630 (((-690 (-567)) (-690 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -2316 (-690 |#2|)) (|:| |vec| (-1268 |#2|))) (-690 $) (-1268 $)) NIL) (((-690 |#2|) (-690 $)) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-3501 (($ $) NIL (|has| |#2| (-455))) (($ $ (-865 |#1|)) NIL (|has| |#2| (-455)))) (-3000 (((-645 $) $) NIL)) (-3184 (((-112) $) NIL (|has| |#2| (-911)))) (-2320 (($ $ |#2| |#3| $) NIL)) (-4303 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (-12 (|has| (-865 |#1|) (-888 (-381))) (|has| |#2| (-888 (-381))))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (-12 (|has| (-865 |#1|) (-888 (-567))) (|has| |#2| (-888 (-567)))))) (-1433 (((-112) $) NIL)) (-2695 (((-772) $) 68)) (-2836 (($ (-1174 |#2|) (-865 |#1|)) 148) (($ (-1174 $) (-865 |#1|)) 61)) (-1709 (((-645 $) $) NIL)) (-2843 (((-112) $) 71)) (-2824 (($ |#2| |#3|) 38) (($ $ (-865 |#1|) (-772)) 40) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-1621 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $ (-865 |#1|)) NIL)) (-2656 ((|#3| $) NIL) (((-772) $ (-865 |#1|)) 59) (((-645 (-772)) $ (-645 (-865 |#1|))) 66)) (-3273 (($ (-1 |#3| |#3|) $) NIL)) (-3829 (($ (-1 |#2| |#2|) $) NIL)) (-3046 (((-3 (-865 |#1|) "failed") $) 48)) (-2976 (($ $) NIL)) (-2989 ((|#2| $) 50)) (-2740 (($ (-645 $)) NIL (|has| |#2| (-455))) (($ $ $) NIL (|has| |#2| (-455)))) (-1419 (((-1160) $) NIL)) (-2056 (((-3 (-645 $) "failed") $) NIL)) (-3671 (((-3 (-645 $) "failed") $) NIL)) (-3798 (((-3 (-2 (|:| |var| (-865 |#1|)) (|:| -3458 (-772))) "failed") $) NIL)) (-3430 (((-1122) $) NIL)) (-2949 (((-112) $) 49)) (-2962 ((|#2| $) 141)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#2| (-455)))) (-2774 (($ (-645 $)) NIL (|has| |#2| (-455))) (($ $ $) 154 (|has| |#2| (-455)))) (-2435 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-911)))) (-3517 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-911)))) (-2706 (((-421 $) $) NIL (|has| |#2| (-911)))) (-2391 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-559))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-559)))) (-2631 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-865 |#1|) |#2|) 105) (($ $ (-645 (-865 |#1|)) (-645 |#2|)) 111) (($ $ (-865 |#1|) $) 103) (($ $ (-645 (-865 |#1|)) (-645 $)) 129)) (-3788 (($ $ (-865 |#1|)) NIL (|has| |#2| (-172)))) (-1593 (($ $ (-865 |#1|)) 62) (($ $ (-645 (-865 |#1|))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-3077 ((|#3| $) 84) (((-772) $ (-865 |#1|)) 45) (((-645 (-772)) $ (-645 (-865 |#1|))) 65)) (-3893 (((-894 (-381)) $) NIL (-12 (|has| (-865 |#1|) (-615 (-894 (-381)))) (|has| |#2| (-615 (-894 (-381)))))) (((-894 (-567)) $) NIL (-12 (|has| (-865 |#1|) (-615 (-894 (-567)))) (|has| |#2| (-615 (-894 (-567)))))) (((-539) $) NIL (-12 (|has| (-865 |#1|) (-615 (-539))) (|has| |#2| (-615 (-539)))))) (-4358 ((|#2| $) 150 (|has| |#2| (-455))) (($ $ (-865 |#1|)) NIL (|has| |#2| (-455)))) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-911))))) (-4132 (((-863) $) 179) (($ (-567)) NIL) (($ |#2|) 104) (($ (-865 |#1|)) 42) (($ (-410 (-567))) NIL (-2800 (|has| |#2| (-38 (-410 (-567)))) (|has| |#2| (-1040 (-410 (-567)))))) (($ $) NIL (|has| |#2| (-559)))) (-3032 (((-645 |#2|) $) NIL)) (-4136 ((|#2| $ |#3|) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-1903 (((-3 $ "failed") $) NIL (-2800 (-12 (|has| $ (-145)) (|has| |#2| (-911))) (|has| |#2| (-145))))) (-4221 (((-772)) NIL T CONST)) (-4176 (($ $ $ (-772)) NIL (|has| |#2| (-172)))) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL (|has| |#2| (-559)))) (-1716 (($) 22 T CONST)) (-1728 (($) 31 T CONST)) (-2637 (($ $ (-865 |#1|)) NIL) (($ $ (-645 (-865 |#1|))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ |#2|) 81 (|has| |#2| (-365)))) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) 136)) (** (($ $ (-923)) NIL) (($ $ (-772)) 134)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 39) (($ $ (-410 (-567))) NIL (|has| |#2| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#2| (-38 (-410 (-567))))) (($ |#2| $) 80) (($ $ |#2|) NIL)))
-(((-457 |#1| |#2| |#3|) (-13 (-951 |#2| |#3| (-865 |#1|)) (-10 -8 (-15 -1464 ($ $ (-645 (-567)))))) (-645 (-1178)) (-1051) (-238 (-2414 |#1|) (-772))) (T -457))
-((-1464 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-567))) (-14 *3 (-645 (-1178))) (-5 *1 (-457 *3 *4 *5)) (-4 *4 (-1051)) (-4 *5 (-238 (-2414 *3) (-772))))))
-(-13 (-951 |#2| |#3| (-865 |#1|)) (-10 -8 (-15 -1464 ($ $ (-645 (-567))))))
-((-3435 (((-112) |#1| (-645 |#2|)) 94)) (-3749 (((-3 (-1268 (-645 |#2|)) "failed") (-772) |#1| (-645 |#2|)) 103)) (-2850 (((-3 (-645 |#2|) "failed") |#2| |#1| (-1268 (-645 |#2|))) 105)) (-1591 ((|#2| |#2| |#1|) 35)) (-1885 (((-772) |#2| (-645 |#2|)) 26)))
-(((-458 |#1| |#2|) (-10 -7 (-15 -1591 (|#2| |#2| |#1|)) (-15 -1885 ((-772) |#2| (-645 |#2|))) (-15 -3749 ((-3 (-1268 (-645 |#2|)) "failed") (-772) |#1| (-645 |#2|))) (-15 -2850 ((-3 (-645 |#2|) "failed") |#2| |#1| (-1268 (-645 |#2|)))) (-15 -3435 ((-112) |#1| (-645 |#2|)))) (-308) (-1244 |#1|)) (T -458))
-((-3435 (*1 *2 *3 *4) (-12 (-5 *4 (-645 *5)) (-4 *5 (-1244 *3)) (-4 *3 (-308)) (-5 *2 (-112)) (-5 *1 (-458 *3 *5)))) (-2850 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1268 (-645 *3))) (-4 *4 (-308)) (-5 *2 (-645 *3)) (-5 *1 (-458 *4 *3)) (-4 *3 (-1244 *4)))) (-3749 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-772)) (-4 *4 (-308)) (-4 *6 (-1244 *4)) (-5 *2 (-1268 (-645 *6))) (-5 *1 (-458 *4 *6)) (-5 *5 (-645 *6)))) (-1885 (*1 *2 *3 *4) (-12 (-5 *4 (-645 *3)) (-4 *3 (-1244 *5)) (-4 *5 (-308)) (-5 *2 (-772)) (-5 *1 (-458 *5 *3)))) (-1591 (*1 *2 *2 *3) (-12 (-4 *3 (-308)) (-5 *1 (-458 *3 *2)) (-4 *2 (-1244 *3)))))
-(-10 -7 (-15 -1591 (|#2| |#2| |#1|)) (-15 -1885 ((-772) |#2| (-645 |#2|))) (-15 -3749 ((-3 (-1268 (-645 |#2|)) "failed") (-772) |#1| (-645 |#2|))) (-15 -2850 ((-3 (-645 |#2|) "failed") |#2| |#1| (-1268 (-645 |#2|)))) (-15 -3435 ((-112) |#1| (-645 |#2|))))
-((-2706 (((-421 |#5|) |#5|) 24)))
-(((-459 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2706 ((-421 |#5|) |#5|))) (-13 (-851) (-10 -8 (-15 -3893 ((-1178) $)) (-15 -3644 ((-3 $ "failed") (-1178))))) (-794) (-559) (-559) (-951 |#4| |#2| |#1|)) (T -459))
-((-2706 (*1 *2 *3) (-12 (-4 *4 (-13 (-851) (-10 -8 (-15 -3893 ((-1178) $)) (-15 -3644 ((-3 $ "failed") (-1178)))))) (-4 *5 (-794)) (-4 *7 (-559)) (-5 *2 (-421 *3)) (-5 *1 (-459 *4 *5 *6 *7 *3)) (-4 *6 (-559)) (-4 *3 (-951 *7 *5 *4)))))
-(-10 -7 (-15 -2706 ((-421 |#5|) |#5|)))
-((-1422 ((|#3|) 40)) (-3750 (((-1174 |#4|) (-1174 |#4|) (-1174 |#4|)) 36)))
-(((-460 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3750 ((-1174 |#4|) (-1174 |#4|) (-1174 |#4|))) (-15 -1422 (|#3|))) (-794) (-851) (-911) (-951 |#3| |#1| |#2|)) (T -460))
-((-1422 (*1 *2) (-12 (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-911)) (-5 *1 (-460 *3 *4 *2 *5)) (-4 *5 (-951 *2 *3 *4)))) (-3750 (*1 *2 *2 *2) (-12 (-5 *2 (-1174 *6)) (-4 *6 (-951 *5 *3 *4)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *5 (-911)) (-5 *1 (-460 *3 *4 *5 *6)))))
-(-10 -7 (-15 -3750 ((-1174 |#4|) (-1174 |#4|) (-1174 |#4|))) (-15 -1422 (|#3|)))
-((-2706 (((-421 (-1174 |#1|)) (-1174 |#1|)) 43)))
-(((-461 |#1|) (-10 -7 (-15 -2706 ((-421 (-1174 |#1|)) (-1174 |#1|)))) (-308)) (T -461))
-((-2706 (*1 *2 *3) (-12 (-4 *4 (-308)) (-5 *2 (-421 (-1174 *4))) (-5 *1 (-461 *4)) (-5 *3 (-1174 *4)))))
-(-10 -7 (-15 -2706 ((-421 (-1174 |#1|)) (-1174 |#1|))))
-((-2896 (((-52) |#2| (-1178) (-295 |#2|) (-1235 (-772))) 44) (((-52) (-1 |#2| (-567)) (-295 |#2|) (-1235 (-772))) 43) (((-52) |#2| (-1178) (-295 |#2|)) 36) (((-52) (-1 |#2| (-567)) (-295 |#2|)) 29)) (-1306 (((-52) |#2| (-1178) (-295 |#2|) (-1235 (-410 (-567))) (-410 (-567))) 88) (((-52) (-1 |#2| (-410 (-567))) (-295 |#2|) (-1235 (-410 (-567))) (-410 (-567))) 87) (((-52) |#2| (-1178) (-295 |#2|) (-1235 (-567))) 86) (((-52) (-1 |#2| (-567)) (-295 |#2|) (-1235 (-567))) 85) (((-52) |#2| (-1178) (-295 |#2|)) 80) (((-52) (-1 |#2| (-567)) (-295 |#2|)) 79)) (-2919 (((-52) |#2| (-1178) (-295 |#2|) (-1235 (-410 (-567))) (-410 (-567))) 74) (((-52) (-1 |#2| (-410 (-567))) (-295 |#2|) (-1235 (-410 (-567))) (-410 (-567))) 72)) (-2907 (((-52) |#2| (-1178) (-295 |#2|) (-1235 (-567))) 51) (((-52) (-1 |#2| (-567)) (-295 |#2|) (-1235 (-567))) 50)))
-(((-462 |#1| |#2|) (-10 -7 (-15 -2896 ((-52) (-1 |#2| (-567)) (-295 |#2|))) (-15 -2896 ((-52) |#2| (-1178) (-295 |#2|))) (-15 -2896 ((-52) (-1 |#2| (-567)) (-295 |#2|) (-1235 (-772)))) (-15 -2896 ((-52) |#2| (-1178) (-295 |#2|) (-1235 (-772)))) (-15 -2907 ((-52) (-1 |#2| (-567)) (-295 |#2|) (-1235 (-567)))) (-15 -2907 ((-52) |#2| (-1178) (-295 |#2|) (-1235 (-567)))) (-15 -2919 ((-52) (-1 |#2| (-410 (-567))) (-295 |#2|) (-1235 (-410 (-567))) (-410 (-567)))) (-15 -2919 ((-52) |#2| (-1178) (-295 |#2|) (-1235 (-410 (-567))) (-410 (-567)))) (-15 -1306 ((-52) (-1 |#2| (-567)) (-295 |#2|))) (-15 -1306 ((-52) |#2| (-1178) (-295 |#2|))) (-15 -1306 ((-52) (-1 |#2| (-567)) (-295 |#2|) (-1235 (-567)))) (-15 -1306 ((-52) |#2| (-1178) (-295 |#2|) (-1235 (-567)))) (-15 -1306 ((-52) (-1 |#2| (-410 (-567))) (-295 |#2|) (-1235 (-410 (-567))) (-410 (-567)))) (-15 -1306 ((-52) |#2| (-1178) (-295 |#2|) (-1235 (-410 (-567))) (-410 (-567))))) (-13 (-559) (-1040 (-567)) (-640 (-567))) (-13 (-27) (-1203) (-433 |#1|))) (T -462))
-((-1306 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1178)) (-5 *5 (-295 *3)) (-5 *6 (-1235 (-410 (-567)))) (-5 *7 (-410 (-567))) (-4 *3 (-13 (-27) (-1203) (-433 *8))) (-4 *8 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *8 *3)))) (-1306 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-410 (-567)))) (-5 *4 (-295 *8)) (-5 *5 (-1235 (-410 (-567)))) (-5 *6 (-410 (-567))) (-4 *8 (-13 (-27) (-1203) (-433 *7))) (-4 *7 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *7 *8)))) (-1306 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1178)) (-5 *5 (-295 *3)) (-5 *6 (-1235 (-567))) (-4 *3 (-13 (-27) (-1203) (-433 *7))) (-4 *7 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *7 *3)))) (-1306 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-567))) (-5 *4 (-295 *7)) (-5 *5 (-1235 (-567))) (-4 *7 (-13 (-27) (-1203) (-433 *6))) (-4 *6 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *6 *7)))) (-1306 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1178)) (-5 *5 (-295 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *6))) (-4 *6 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *6 *3)))) (-1306 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-567))) (-5 *4 (-295 *6)) (-4 *6 (-13 (-27) (-1203) (-433 *5))) (-4 *5 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *5 *6)))) (-2919 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1178)) (-5 *5 (-295 *3)) (-5 *6 (-1235 (-410 (-567)))) (-5 *7 (-410 (-567))) (-4 *3 (-13 (-27) (-1203) (-433 *8))) (-4 *8 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *8 *3)))) (-2919 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-410 (-567)))) (-5 *4 (-295 *8)) (-5 *5 (-1235 (-410 (-567)))) (-5 *6 (-410 (-567))) (-4 *8 (-13 (-27) (-1203) (-433 *7))) (-4 *7 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *7 *8)))) (-2907 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1178)) (-5 *5 (-295 *3)) (-5 *6 (-1235 (-567))) (-4 *3 (-13 (-27) (-1203) (-433 *7))) (-4 *7 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *7 *3)))) (-2907 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-567))) (-5 *4 (-295 *7)) (-5 *5 (-1235 (-567))) (-4 *7 (-13 (-27) (-1203) (-433 *6))) (-4 *6 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *6 *7)))) (-2896 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1178)) (-5 *5 (-295 *3)) (-5 *6 (-1235 (-772))) (-4 *3 (-13 (-27) (-1203) (-433 *7))) (-4 *7 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *7 *3)))) (-2896 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-567))) (-5 *4 (-295 *7)) (-5 *5 (-1235 (-772))) (-4 *7 (-13 (-27) (-1203) (-433 *6))) (-4 *6 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *6 *7)))) (-2896 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1178)) (-5 *5 (-295 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *6))) (-4 *6 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *6 *3)))) (-2896 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-567))) (-5 *4 (-295 *6)) (-4 *6 (-13 (-27) (-1203) (-433 *5))) (-4 *5 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *5 *6)))))
-(-10 -7 (-15 -2896 ((-52) (-1 |#2| (-567)) (-295 |#2|))) (-15 -2896 ((-52) |#2| (-1178) (-295 |#2|))) (-15 -2896 ((-52) (-1 |#2| (-567)) (-295 |#2|) (-1235 (-772)))) (-15 -2896 ((-52) |#2| (-1178) (-295 |#2|) (-1235 (-772)))) (-15 -2907 ((-52) (-1 |#2| (-567)) (-295 |#2|) (-1235 (-567)))) (-15 -2907 ((-52) |#2| (-1178) (-295 |#2|) (-1235 (-567)))) (-15 -2919 ((-52) (-1 |#2| (-410 (-567))) (-295 |#2|) (-1235 (-410 (-567))) (-410 (-567)))) (-15 -2919 ((-52) |#2| (-1178) (-295 |#2|) (-1235 (-410 (-567))) (-410 (-567)))) (-15 -1306 ((-52) (-1 |#2| (-567)) (-295 |#2|))) (-15 -1306 ((-52) |#2| (-1178) (-295 |#2|))) (-15 -1306 ((-52) (-1 |#2| (-567)) (-295 |#2|) (-1235 (-567)))) (-15 -1306 ((-52) |#2| (-1178) (-295 |#2|) (-1235 (-567)))) (-15 -1306 ((-52) (-1 |#2| (-410 (-567))) (-295 |#2|) (-1235 (-410 (-567))) (-410 (-567)))) (-15 -1306 ((-52) |#2| (-1178) (-295 |#2|) (-1235 (-410 (-567))) (-410 (-567)))))
-((-1591 ((|#2| |#2| |#1|) 15)) (-1707 (((-645 |#2|) |#2| (-645 |#2|) |#1| (-923)) 82)) (-1980 (((-2 (|:| |plist| (-645 |#2|)) (|:| |modulo| |#1|)) |#2| (-645 |#2|) |#1| (-923)) 72)))
-(((-463 |#1| |#2|) (-10 -7 (-15 -1980 ((-2 (|:| |plist| (-645 |#2|)) (|:| |modulo| |#1|)) |#2| (-645 |#2|) |#1| (-923))) (-15 -1707 ((-645 |#2|) |#2| (-645 |#2|) |#1| (-923))) (-15 -1591 (|#2| |#2| |#1|))) (-308) (-1244 |#1|)) (T -463))
-((-1591 (*1 *2 *2 *3) (-12 (-4 *3 (-308)) (-5 *1 (-463 *3 *2)) (-4 *2 (-1244 *3)))) (-1707 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-645 *3)) (-5 *5 (-923)) (-4 *3 (-1244 *4)) (-4 *4 (-308)) (-5 *1 (-463 *4 *3)))) (-1980 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-923)) (-4 *5 (-308)) (-4 *3 (-1244 *5)) (-5 *2 (-2 (|:| |plist| (-645 *3)) (|:| |modulo| *5))) (-5 *1 (-463 *5 *3)) (-5 *4 (-645 *3)))))
-(-10 -7 (-15 -1980 ((-2 (|:| |plist| (-645 |#2|)) (|:| |modulo| |#1|)) |#2| (-645 |#2|) |#1| (-923))) (-15 -1707 ((-645 |#2|) |#2| (-645 |#2|) |#1| (-923))) (-15 -1591 (|#2| |#2| |#1|)))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) 28)) (-4387 (($ |#3|) 25)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2585 (($) NIL T CONST)) (-3014 (($ $) 32)) (-3358 (($ |#2| |#4| $) 33)) (-2824 (($ |#2| (-714 |#3| |#4| |#5|)) 24)) (-2976 (((-714 |#3| |#4| |#5|) $) 15)) (-4357 ((|#3| $) 19)) (-3617 ((|#4| $) 17)) (-2989 ((|#2| $) 29)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-2867 (($ |#2| |#3| |#4|) 26)) (-1745 (((-112) $ $) NIL)) (-1716 (($) 36 T CONST)) (-2936 (((-112) $ $) NIL)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) 34)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-464 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-718 |#6|) (-718 |#2|) (-10 -8 (-15 -2989 (|#2| $)) (-15 -2976 ((-714 |#3| |#4| |#5|) $)) (-15 -3617 (|#4| $)) (-15 -4357 (|#3| $)) (-15 -3014 ($ $)) (-15 -2824 ($ |#2| (-714 |#3| |#4| |#5|))) (-15 -4387 ($ |#3|)) (-15 -2867 ($ |#2| |#3| |#4|)) (-15 -3358 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-645 (-1178)) (-172) (-851) (-238 (-2414 |#1|) (-772)) (-1 (-112) (-2 (|:| -3768 |#3|) (|:| -3458 |#4|)) (-2 (|:| -3768 |#3|) (|:| -3458 |#4|))) (-951 |#2| |#4| (-865 |#1|))) (T -464))
-((* (*1 *1 *2 *1) (-12 (-14 *3 (-645 (-1178))) (-4 *4 (-172)) (-4 *6 (-238 (-2414 *3) (-772))) (-14 *7 (-1 (-112) (-2 (|:| -3768 *5) (|:| -3458 *6)) (-2 (|:| -3768 *5) (|:| -3458 *6)))) (-5 *1 (-464 *3 *4 *5 *6 *7 *2)) (-4 *5 (-851)) (-4 *2 (-951 *4 *6 (-865 *3))))) (-2989 (*1 *2 *1) (-12 (-14 *3 (-645 (-1178))) (-4 *5 (-238 (-2414 *3) (-772))) (-14 *6 (-1 (-112) (-2 (|:| -3768 *4) (|:| -3458 *5)) (-2 (|:| -3768 *4) (|:| -3458 *5)))) (-4 *2 (-172)) (-5 *1 (-464 *3 *2 *4 *5 *6 *7)) (-4 *4 (-851)) (-4 *7 (-951 *2 *5 (-865 *3))))) (-2976 (*1 *2 *1) (-12 (-14 *3 (-645 (-1178))) (-4 *4 (-172)) (-4 *6 (-238 (-2414 *3) (-772))) (-14 *7 (-1 (-112) (-2 (|:| -3768 *5) (|:| -3458 *6)) (-2 (|:| -3768 *5) (|:| -3458 *6)))) (-5 *2 (-714 *5 *6 *7)) (-5 *1 (-464 *3 *4 *5 *6 *7 *8)) (-4 *5 (-851)) (-4 *8 (-951 *4 *6 (-865 *3))))) (-3617 (*1 *2 *1) (-12 (-14 *3 (-645 (-1178))) (-4 *4 (-172)) (-14 *6 (-1 (-112) (-2 (|:| -3768 *5) (|:| -3458 *2)) (-2 (|:| -3768 *5) (|:| -3458 *2)))) (-4 *2 (-238 (-2414 *3) (-772))) (-5 *1 (-464 *3 *4 *5 *2 *6 *7)) (-4 *5 (-851)) (-4 *7 (-951 *4 *2 (-865 *3))))) (-4357 (*1 *2 *1) (-12 (-14 *3 (-645 (-1178))) (-4 *4 (-172)) (-4 *5 (-238 (-2414 *3) (-772))) (-14 *6 (-1 (-112) (-2 (|:| -3768 *2) (|:| -3458 *5)) (-2 (|:| -3768 *2) (|:| -3458 *5)))) (-4 *2 (-851)) (-5 *1 (-464 *3 *4 *2 *5 *6 *7)) (-4 *7 (-951 *4 *5 (-865 *3))))) (-3014 (*1 *1 *1) (-12 (-14 *2 (-645 (-1178))) (-4 *3 (-172)) (-4 *5 (-238 (-2414 *2) (-772))) (-14 *6 (-1 (-112) (-2 (|:| -3768 *4) (|:| -3458 *5)) (-2 (|:| -3768 *4) (|:| -3458 *5)))) (-5 *1 (-464 *2 *3 *4 *5 *6 *7)) (-4 *4 (-851)) (-4 *7 (-951 *3 *5 (-865 *2))))) (-2824 (*1 *1 *2 *3) (-12 (-5 *3 (-714 *5 *6 *7)) (-4 *5 (-851)) (-4 *6 (-238 (-2414 *4) (-772))) (-14 *7 (-1 (-112) (-2 (|:| -3768 *5) (|:| -3458 *6)) (-2 (|:| -3768 *5) (|:| -3458 *6)))) (-14 *4 (-645 (-1178))) (-4 *2 (-172)) (-5 *1 (-464 *4 *2 *5 *6 *7 *8)) (-4 *8 (-951 *2 *6 (-865 *4))))) (-4387 (*1 *1 *2) (-12 (-14 *3 (-645 (-1178))) (-4 *4 (-172)) (-4 *5 (-238 (-2414 *3) (-772))) (-14 *6 (-1 (-112) (-2 (|:| -3768 *2) (|:| -3458 *5)) (-2 (|:| -3768 *2) (|:| -3458 *5)))) (-5 *1 (-464 *3 *4 *2 *5 *6 *7)) (-4 *2 (-851)) (-4 *7 (-951 *4 *5 (-865 *3))))) (-2867 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-645 (-1178))) (-4 *2 (-172)) (-4 *4 (-238 (-2414 *5) (-772))) (-14 *6 (-1 (-112) (-2 (|:| -3768 *3) (|:| -3458 *4)) (-2 (|:| -3768 *3) (|:| -3458 *4)))) (-5 *1 (-464 *5 *2 *3 *4 *6 *7)) (-4 *3 (-851)) (-4 *7 (-951 *2 *4 (-865 *5))))) (-3358 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-645 (-1178))) (-4 *2 (-172)) (-4 *3 (-238 (-2414 *4) (-772))) (-14 *6 (-1 (-112) (-2 (|:| -3768 *5) (|:| -3458 *3)) (-2 (|:| -3768 *5) (|:| -3458 *3)))) (-5 *1 (-464 *4 *2 *5 *3 *6 *7)) (-4 *5 (-851)) (-4 *7 (-951 *2 *3 (-865 *4))))))
-(-13 (-718 |#6|) (-718 |#2|) (-10 -8 (-15 -2989 (|#2| $)) (-15 -2976 ((-714 |#3| |#4| |#5|) $)) (-15 -3617 (|#4| $)) (-15 -4357 (|#3| $)) (-15 -3014 ($ $)) (-15 -2824 ($ |#2| (-714 |#3| |#4| |#5|))) (-15 -4387 ($ |#3|)) (-15 -2867 ($ |#2| |#3| |#4|)) (-15 -3358 ($ |#2| |#4| $)) (-15 * ($ |#6| $))))
-((-4208 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39)))
-(((-465 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4208 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-794) (-851) (-559) (-951 |#3| |#1| |#2|) (-13 (-1040 (-410 (-567))) (-365) (-10 -8 (-15 -4132 ($ |#4|)) (-15 -1448 (|#4| $)) (-15 -1460 (|#4| $))))) (T -465))
-((-4208 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-851)) (-4 *5 (-794)) (-4 *6 (-559)) (-4 *7 (-951 *6 *5 *3)) (-5 *1 (-465 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1040 (-410 (-567))) (-365) (-10 -8 (-15 -4132 ($ *7)) (-15 -1448 (*7 $)) (-15 -1460 (*7 $))))))))
-(-10 -7 (-15 -4208 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|))))
-((-2403 (((-112) $ $) NIL)) (-2847 (((-645 |#3|) $) 41)) (-2017 (((-112) $) NIL)) (-3623 (((-112) $) NIL (|has| |#1| (-559)))) (-4396 (((-2 (|:| |under| $) (|:| -2780 $) (|:| |upper| $)) $ |#3|) NIL)) (-3445 (((-112) $ (-772)) NIL)) (-3350 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4418)))) (-2585 (($) NIL T CONST)) (-1490 (((-112) $) NIL (|has| |#1| (-559)))) (-2752 (((-112) $ $) NIL (|has| |#1| (-559)))) (-4224 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3547 (((-112) $) NIL (|has| |#1| (-559)))) (-1724 (((-645 |#4|) (-645 |#4|) $) NIL (|has| |#1| (-559)))) (-3197 (((-645 |#4|) (-645 |#4|) $) NIL (|has| |#1| (-559)))) (-3753 (((-3 $ "failed") (-645 |#4|)) 49)) (-2038 (($ (-645 |#4|)) NIL)) (-2444 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#4| (-1102))))) (-3238 (($ |#4| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#4| (-1102)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4418)))) (-4194 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-559)))) (-2477 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4418)) (|has| |#4| (-1102)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4418))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4418)))) (-2777 (((-645 |#4|) $) 18 (|has| $ (-6 -4418)))) (-1679 ((|#3| $) 47)) (-2077 (((-112) $ (-772)) NIL)) (-2279 (((-645 |#4|) $) 14 (|has| $ (-6 -4418)))) (-4337 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4418)) (|has| |#4| (-1102))))) (-3731 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#4| |#4|) $) 21)) (-2826 (((-645 |#3|) $) NIL)) (-2808 (((-112) |#3| $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL)) (-2430 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-559)))) (-3430 (((-1122) $) NIL)) (-4128 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3025 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 |#4|) (-645 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-295 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-645 (-295 |#4|))) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))))) (-3092 (((-112) $ $) NIL)) (-3572 (((-112) $) 39)) (-3498 (($) 17)) (-3439 (((-772) |#4| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#4| (-1102)))) (((-772) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4418)))) (-4305 (($ $) 16)) (-3893 (((-539) $) NIL (|has| |#4| (-615 (-539)))) (($ (-645 |#4|)) 51)) (-4147 (($ (-645 |#4|)) 13)) (-2397 (($ $ |#3|) NIL)) (-2120 (($ $ |#3|) NIL)) (-2813 (($ $ |#3|) NIL)) (-4132 (((-863) $) 38) (((-645 |#4|) $) 50)) (-1745 (((-112) $ $) NIL)) (-1853 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 30)) (-2414 (((-772) $) NIL (|has| $ (-6 -4418)))))
-(((-466 |#1| |#2| |#3| |#4|) (-13 (-978 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3893 ($ (-645 |#4|))) (-6 -4418) (-6 -4419))) (-1051) (-794) (-851) (-1067 |#1| |#2| |#3|)) (T -466))
-((-3893 (*1 *1 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-466 *3 *4 *5 *6)))))
-(-13 (-978 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3893 ($ (-645 |#4|))) (-6 -4418) (-6 -4419)))
-((-1716 (($) 11)) (-1728 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16)))
-(((-467 |#1| |#2| |#3|) (-10 -8 (-15 -1728 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1716 (|#1|))) (-468 |#2| |#3|) (-172) (-23)) (T -467))
-NIL
-(-10 -8 (-15 -1728 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1716 (|#1|)))
-((-2403 (((-112) $ $) 7)) (-3753 (((-3 |#1| "failed") $) 27)) (-2038 ((|#1| $) 28)) (-4207 (($ $ $) 24)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-3077 ((|#2| $) 20)) (-4132 (((-863) $) 12) (($ |#1|) 26)) (-1745 (((-112) $ $) 9)) (-1716 (($) 19 T CONST)) (-1728 (($) 25 T CONST)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 16) (($ $ $) 14)) (-3033 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17)))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-4369 (((-3 $ "failed")) NIL (|has| (-410 (-954 |#1|)) (-559)))) (-2376 (((-3 $ "failed") $ $) NIL)) (-1483 (((-1269 (-690 (-410 (-954 |#1|)))) (-1269 $)) NIL) (((-1269 (-690 (-410 (-954 |#1|))))) NIL)) (-3967 (((-1269 $)) NIL)) (-3647 (($) NIL T CONST)) (-1421 (((-3 (-2 (|:| |particular| $) (|:| -2144 (-645 $))) "failed")) NIL)) (-4297 (((-3 $ "failed")) NIL (|has| (-410 (-954 |#1|)) (-559)))) (-1852 (((-690 (-410 (-954 |#1|))) (-1269 $)) NIL) (((-690 (-410 (-954 |#1|)))) NIL)) (-3382 (((-410 (-954 |#1|)) $) NIL)) (-1639 (((-690 (-410 (-954 |#1|))) $ (-1269 $)) NIL) (((-690 (-410 (-954 |#1|))) $) NIL)) (-2810 (((-3 $ "failed") $) NIL (|has| (-410 (-954 |#1|)) (-559)))) (-1588 (((-1175 (-954 (-410 (-954 |#1|))))) NIL (|has| (-410 (-954 |#1|)) (-365))) (((-1175 (-410 (-954 |#1|)))) 94 (|has| |#1| (-559)))) (-3757 (($ $ (-923)) NIL)) (-1868 (((-410 (-954 |#1|)) $) NIL)) (-2479 (((-1175 (-410 (-954 |#1|))) $) 92 (|has| (-410 (-954 |#1|)) (-559)))) (-3878 (((-410 (-954 |#1|)) (-1269 $)) NIL) (((-410 (-954 |#1|))) NIL)) (-2309 (((-1175 (-410 (-954 |#1|))) $) NIL)) (-2720 (((-112)) NIL)) (-3111 (($ (-1269 (-410 (-954 |#1|))) (-1269 $)) 118) (($ (-1269 (-410 (-954 |#1|)))) NIL)) (-3588 (((-3 $ "failed") $) NIL (|has| (-410 (-954 |#1|)) (-559)))) (-1976 (((-923)) NIL)) (-2957 (((-112)) NIL)) (-2112 (($ $ (-923)) NIL)) (-4388 (((-112)) NIL)) (-2655 (((-112)) NIL)) (-2304 (((-112)) NIL)) (-2488 (((-3 (-2 (|:| |particular| $) (|:| -2144 (-645 $))) "failed")) NIL)) (-3428 (((-3 $ "failed")) NIL (|has| (-410 (-954 |#1|)) (-559)))) (-3060 (((-690 (-410 (-954 |#1|))) (-1269 $)) NIL) (((-690 (-410 (-954 |#1|)))) NIL)) (-1735 (((-410 (-954 |#1|)) $) NIL)) (-2227 (((-690 (-410 (-954 |#1|))) $ (-1269 $)) NIL) (((-690 (-410 (-954 |#1|))) $) NIL)) (-2213 (((-3 $ "failed") $) NIL (|has| (-410 (-954 |#1|)) (-559)))) (-3785 (((-1175 (-954 (-410 (-954 |#1|))))) NIL (|has| (-410 (-954 |#1|)) (-365))) (((-1175 (-410 (-954 |#1|)))) 93 (|has| |#1| (-559)))) (-3884 (($ $ (-923)) NIL)) (-3233 (((-410 (-954 |#1|)) $) NIL)) (-4063 (((-1175 (-410 (-954 |#1|))) $) 87 (|has| (-410 (-954 |#1|)) (-559)))) (-2976 (((-410 (-954 |#1|)) (-1269 $)) NIL) (((-410 (-954 |#1|))) NIL)) (-1694 (((-1175 (-410 (-954 |#1|))) $) NIL)) (-3332 (((-112)) NIL)) (-2516 (((-1161) $) NIL)) (-4368 (((-112)) NIL)) (-3498 (((-112)) NIL)) (-2467 (((-112)) NIL)) (-3437 (((-1122) $) NIL)) (-2162 (((-410 (-954 |#1|)) $ $) 78 (|has| |#1| (-559)))) (-2130 (((-410 (-954 |#1|)) $) 104 (|has| |#1| (-559)))) (-3278 (((-410 (-954 |#1|)) $) 108 (|has| |#1| (-559)))) (-1893 (((-1175 (-410 (-954 |#1|))) $) 98 (|has| |#1| (-559)))) (-2346 (((-410 (-954 |#1|))) 79 (|has| |#1| (-559)))) (-3242 (((-410 (-954 |#1|)) $ $) 71 (|has| |#1| (-559)))) (-3455 (((-410 (-954 |#1|)) $) 103 (|has| |#1| (-559)))) (-4240 (((-410 (-954 |#1|)) $) 107 (|has| |#1| (-559)))) (-1925 (((-1175 (-410 (-954 |#1|))) $) 97 (|has| |#1| (-559)))) (-2611 (((-410 (-954 |#1|))) 75 (|has| |#1| (-559)))) (-3572 (($) 114) (($ (-1179)) 122) (($ (-1269 (-1179))) 121) (($ (-1269 $)) 109) (($ (-1179) (-1269 $)) 120) (($ (-1269 (-1179)) (-1269 $)) 119)) (-3485 (((-112)) NIL)) (-1801 (((-410 (-954 |#1|)) $ (-567)) NIL)) (-3088 (((-1269 (-410 (-954 |#1|))) $ (-1269 $)) 111) (((-690 (-410 (-954 |#1|))) (-1269 $) (-1269 $)) NIL) (((-1269 (-410 (-954 |#1|))) $) 45) (((-690 (-410 (-954 |#1|))) (-1269 $)) NIL)) (-3902 (((-1269 (-410 (-954 |#1|))) $) NIL) (($ (-1269 (-410 (-954 |#1|)))) 42)) (-3981 (((-645 (-954 (-410 (-954 |#1|)))) (-1269 $)) NIL) (((-645 (-954 (-410 (-954 |#1|))))) NIL) (((-645 (-954 |#1|)) (-1269 $)) 112 (|has| |#1| (-559))) (((-645 (-954 |#1|))) 113 (|has| |#1| (-559)))) (-3997 (($ $ $) NIL)) (-3568 (((-112)) NIL)) (-4129 (((-863) $) NIL) (($ (-1269 (-410 (-954 |#1|)))) NIL)) (-3357 (((-112) $ $) NIL)) (-2144 (((-1269 $)) 67)) (-2628 (((-645 (-1269 (-410 (-954 |#1|))))) NIL (|has| (-410 (-954 |#1|)) (-559)))) (-2047 (($ $ $ $) NIL)) (-1996 (((-112)) NIL)) (-2364 (($ (-690 (-410 (-954 |#1|))) $) NIL)) (-2188 (($ $ $) NIL)) (-3970 (((-112)) NIL)) (-3741 (((-112)) NIL)) (-3220 (((-112)) NIL)) (-1733 (($) NIL T CONST)) (-2946 (((-112) $ $) NIL)) (-3053 (($ $) NIL) (($ $ $) 110)) (-3041 (($ $ $) NIL)) (** (($ $ (-923)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 63) (($ $ (-410 (-954 |#1|))) NIL) (($ (-410 (-954 |#1|)) $) NIL) (($ (-1144 |#2| (-410 (-954 |#1|))) $) NIL)))
+(((-456 |#1| |#2| |#3| |#4|) (-13 (-420 (-410 (-954 |#1|))) (-649 (-1144 |#2| (-410 (-954 |#1|)))) (-10 -8 (-15 -4129 ($ (-1269 (-410 (-954 |#1|))))) (-15 -2488 ((-3 (-2 (|:| |particular| $) (|:| -2144 (-645 $))) "failed"))) (-15 -1421 ((-3 (-2 (|:| |particular| $) (|:| -2144 (-645 $))) "failed"))) (-15 -3572 ($)) (-15 -3572 ($ (-1179))) (-15 -3572 ($ (-1269 (-1179)))) (-15 -3572 ($ (-1269 $))) (-15 -3572 ($ (-1179) (-1269 $))) (-15 -3572 ($ (-1269 (-1179)) (-1269 $))) (IF (|has| |#1| (-559)) (PROGN (-15 -3785 ((-1175 (-410 (-954 |#1|))))) (-15 -1925 ((-1175 (-410 (-954 |#1|))) $)) (-15 -3455 ((-410 (-954 |#1|)) $)) (-15 -4240 ((-410 (-954 |#1|)) $)) (-15 -1588 ((-1175 (-410 (-954 |#1|))))) (-15 -1893 ((-1175 (-410 (-954 |#1|))) $)) (-15 -2130 ((-410 (-954 |#1|)) $)) (-15 -3278 ((-410 (-954 |#1|)) $)) (-15 -3242 ((-410 (-954 |#1|)) $ $)) (-15 -2611 ((-410 (-954 |#1|)))) (-15 -2162 ((-410 (-954 |#1|)) $ $)) (-15 -2346 ((-410 (-954 |#1|)))) (-15 -3981 ((-645 (-954 |#1|)) (-1269 $))) (-15 -3981 ((-645 (-954 |#1|))))) |%noBranch|))) (-172) (-923) (-645 (-1179)) (-1269 (-690 |#1|))) (T -456))
+((-4129 (*1 *1 *2) (-12 (-5 *2 (-1269 (-410 (-954 *3)))) (-4 *3 (-172)) (-14 *6 (-1269 (-690 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-14 *4 (-923)) (-14 *5 (-645 (-1179))))) (-2488 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-456 *3 *4 *5 *6)) (|:| -2144 (-645 (-456 *3 *4 *5 *6))))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 (-1179))) (-14 *6 (-1269 (-690 *3))))) (-1421 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-456 *3 *4 *5 *6)) (|:| -2144 (-645 (-456 *3 *4 *5 *6))))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 (-1179))) (-14 *6 (-1269 (-690 *3))))) (-3572 (*1 *1) (-12 (-5 *1 (-456 *2 *3 *4 *5)) (-4 *2 (-172)) (-14 *3 (-923)) (-14 *4 (-645 (-1179))) (-14 *5 (-1269 (-690 *2))))) (-3572 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 *2)) (-14 *6 (-1269 (-690 *3))))) (-3572 (*1 *1 *2) (-12 (-5 *2 (-1269 (-1179))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 (-1179))) (-14 *6 (-1269 (-690 *3))))) (-3572 (*1 *1 *2) (-12 (-5 *2 (-1269 (-456 *3 *4 *5 *6))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 (-1179))) (-14 *6 (-1269 (-690 *3))))) (-3572 (*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-1269 (-456 *4 *5 *6 *7))) (-5 *1 (-456 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-923)) (-14 *6 (-645 *2)) (-14 *7 (-1269 (-690 *4))))) (-3572 (*1 *1 *2 *3) (-12 (-5 *2 (-1269 (-1179))) (-5 *3 (-1269 (-456 *4 *5 *6 *7))) (-5 *1 (-456 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-923)) (-14 *6 (-645 (-1179))) (-14 *7 (-1269 (-690 *4))))) (-3785 (*1 *2) (-12 (-5 *2 (-1175 (-410 (-954 *3)))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 (-1179))) (-14 *6 (-1269 (-690 *3))))) (-1925 (*1 *2 *1) (-12 (-5 *2 (-1175 (-410 (-954 *3)))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 (-1179))) (-14 *6 (-1269 (-690 *3))))) (-3455 (*1 *2 *1) (-12 (-5 *2 (-410 (-954 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 (-1179))) (-14 *6 (-1269 (-690 *3))))) (-4240 (*1 *2 *1) (-12 (-5 *2 (-410 (-954 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 (-1179))) (-14 *6 (-1269 (-690 *3))))) (-1588 (*1 *2) (-12 (-5 *2 (-1175 (-410 (-954 *3)))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 (-1179))) (-14 *6 (-1269 (-690 *3))))) (-1893 (*1 *2 *1) (-12 (-5 *2 (-1175 (-410 (-954 *3)))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 (-1179))) (-14 *6 (-1269 (-690 *3))))) (-2130 (*1 *2 *1) (-12 (-5 *2 (-410 (-954 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 (-1179))) (-14 *6 (-1269 (-690 *3))))) (-3278 (*1 *2 *1) (-12 (-5 *2 (-410 (-954 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 (-1179))) (-14 *6 (-1269 (-690 *3))))) (-3242 (*1 *2 *1 *1) (-12 (-5 *2 (-410 (-954 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 (-1179))) (-14 *6 (-1269 (-690 *3))))) (-2611 (*1 *2) (-12 (-5 *2 (-410 (-954 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 (-1179))) (-14 *6 (-1269 (-690 *3))))) (-2162 (*1 *2 *1 *1) (-12 (-5 *2 (-410 (-954 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 (-1179))) (-14 *6 (-1269 (-690 *3))))) (-2346 (*1 *2) (-12 (-5 *2 (-410 (-954 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 (-1179))) (-14 *6 (-1269 (-690 *3))))) (-3981 (*1 *2 *3) (-12 (-5 *3 (-1269 (-456 *4 *5 *6 *7))) (-5 *2 (-645 (-954 *4))) (-5 *1 (-456 *4 *5 *6 *7)) (-4 *4 (-559)) (-4 *4 (-172)) (-14 *5 (-923)) (-14 *6 (-645 (-1179))) (-14 *7 (-1269 (-690 *4))))) (-3981 (*1 *2) (-12 (-5 *2 (-645 (-954 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 (-1179))) (-14 *6 (-1269 (-690 *3))))))
+(-13 (-420 (-410 (-954 |#1|))) (-649 (-1144 |#2| (-410 (-954 |#1|)))) (-10 -8 (-15 -4129 ($ (-1269 (-410 (-954 |#1|))))) (-15 -2488 ((-3 (-2 (|:| |particular| $) (|:| -2144 (-645 $))) "failed"))) (-15 -1421 ((-3 (-2 (|:| |particular| $) (|:| -2144 (-645 $))) "failed"))) (-15 -3572 ($)) (-15 -3572 ($ (-1179))) (-15 -3572 ($ (-1269 (-1179)))) (-15 -3572 ($ (-1269 $))) (-15 -3572 ($ (-1179) (-1269 $))) (-15 -3572 ($ (-1269 (-1179)) (-1269 $))) (IF (|has| |#1| (-559)) (PROGN (-15 -3785 ((-1175 (-410 (-954 |#1|))))) (-15 -1925 ((-1175 (-410 (-954 |#1|))) $)) (-15 -3455 ((-410 (-954 |#1|)) $)) (-15 -4240 ((-410 (-954 |#1|)) $)) (-15 -1588 ((-1175 (-410 (-954 |#1|))))) (-15 -1893 ((-1175 (-410 (-954 |#1|))) $)) (-15 -2130 ((-410 (-954 |#1|)) $)) (-15 -3278 ((-410 (-954 |#1|)) $)) (-15 -3242 ((-410 (-954 |#1|)) $ $)) (-15 -2611 ((-410 (-954 |#1|)))) (-15 -2162 ((-410 (-954 |#1|)) $ $)) (-15 -2346 ((-410 (-954 |#1|)))) (-15 -3981 ((-645 (-954 |#1|)) (-1269 $))) (-15 -3981 ((-645 (-954 |#1|))))) |%noBranch|)))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) 18)) (-2859 (((-645 (-865 |#1|)) $) 92)) (-2684 (((-1175 $) $ (-865 |#1|)) 55) (((-1175 |#2|) $) 143)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) NIL (|has| |#2| (-559)))) (-4287 (($ $) NIL (|has| |#2| (-559)))) (-2286 (((-112) $) NIL (|has| |#2| (-559)))) (-3849 (((-772) $) 27) (((-772) $ (-645 (-865 |#1|))) NIL)) (-2376 (((-3 $ "failed") $ $) NIL)) (-2029 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#2| (-911)))) (-3659 (($ $) NIL (|has| |#2| (-455)))) (-3597 (((-421 $) $) NIL (|has| |#2| (-455)))) (-3610 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) NIL (|has| |#2| (-911)))) (-3647 (($) NIL T CONST)) (-3765 (((-3 |#2| "failed") $) 53) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#2| (-1040 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#2| (-1040 (-567)))) (((-3 (-865 |#1|) "failed") $) NIL)) (-2051 ((|#2| $) 51) (((-410 (-567)) $) NIL (|has| |#2| (-1040 (-410 (-567))))) (((-567) $) NIL (|has| |#2| (-1040 (-567)))) (((-865 |#1|) $) NIL)) (-3554 (($ $ $ (-865 |#1|)) NIL (|has| |#2| (-172)))) (-1644 (($ $ (-645 (-567))) 98)) (-3023 (($ $) 85)) (-1423 (((-690 (-567)) (-690 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -4208 (-690 |#2|)) (|:| |vec| (-1269 |#2|))) (-690 $) (-1269 $)) NIL) (((-690 |#2|) (-690 $)) NIL)) (-3588 (((-3 $ "failed") $) NIL)) (-2989 (($ $) NIL (|has| |#2| (-455))) (($ $ (-865 |#1|)) NIL (|has| |#2| (-455)))) (-3010 (((-645 $) $) NIL)) (-3502 (((-112) $) NIL (|has| |#2| (-911)))) (-3214 (($ $ |#2| |#3| $) NIL)) (-3193 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (-12 (|has| (-865 |#1|) (-888 (-381))) (|has| |#2| (-888 (-381))))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (-12 (|has| (-865 |#1|) (-888 (-567))) (|has| |#2| (-888 (-567)))))) (-4346 (((-112) $) NIL)) (-2851 (((-772) $) 68)) (-2848 (($ (-1175 |#2|) (-865 |#1|)) 148) (($ (-1175 $) (-865 |#1|)) 61)) (-2659 (((-645 $) $) NIL)) (-3770 (((-112) $) 71)) (-2836 (($ |#2| |#3|) 38) (($ $ (-865 |#1|) (-772)) 40) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-2742 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $ (-865 |#1|)) NIL)) (-2955 ((|#3| $) NIL) (((-772) $ (-865 |#1|)) 59) (((-645 (-772)) $ (-645 (-865 |#1|))) 66)) (-3827 (($ (-1 |#3| |#3|) $) NIL)) (-3841 (($ (-1 |#2| |#2|) $) NIL)) (-3221 (((-3 (-865 |#1|) "failed") $) 48)) (-2985 (($ $) NIL)) (-2996 ((|#2| $) 50)) (-2751 (($ (-645 $)) NIL (|has| |#2| (-455))) (($ $ $) NIL (|has| |#2| (-455)))) (-2516 (((-1161) $) NIL)) (-3037 (((-3 (-645 $) "failed") $) NIL)) (-3774 (((-3 (-645 $) "failed") $) NIL)) (-3816 (((-3 (-2 (|:| |var| (-865 |#1|)) (|:| -3468 (-772))) "failed") $) NIL)) (-3437 (((-1122) $) NIL)) (-2960 (((-112) $) 49)) (-2971 ((|#2| $) 141)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| |#2| (-455)))) (-2785 (($ (-645 $)) NIL (|has| |#2| (-455))) (($ $ $) 154 (|has| |#2| (-455)))) (-3551 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#2| (-911)))) (-2016 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#2| (-911)))) (-2717 (((-421 $) $) NIL (|has| |#2| (-911)))) (-2400 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-559))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-559)))) (-2642 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-865 |#1|) |#2|) 105) (($ $ (-645 (-865 |#1|)) (-645 |#2|)) 111) (($ $ (-865 |#1|) $) 103) (($ $ (-645 (-865 |#1|)) (-645 $)) 129)) (-2433 (($ $ (-865 |#1|)) NIL (|has| |#2| (-172)))) (-1616 (($ $ (-865 |#1|)) 62) (($ $ (-645 (-865 |#1|))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-3104 ((|#3| $) 84) (((-772) $ (-865 |#1|)) 45) (((-645 (-772)) $ (-645 (-865 |#1|))) 65)) (-3902 (((-894 (-381)) $) NIL (-12 (|has| (-865 |#1|) (-615 (-894 (-381)))) (|has| |#2| (-615 (-894 (-381)))))) (((-894 (-567)) $) NIL (-12 (|has| (-865 |#1|) (-615 (-894 (-567)))) (|has| |#2| (-615 (-894 (-567)))))) (((-539) $) NIL (-12 (|has| (-865 |#1|) (-615 (-539))) (|has| |#2| (-615 (-539)))))) (-1849 ((|#2| $) 150 (|has| |#2| (-455))) (($ $ (-865 |#1|)) NIL (|has| |#2| (-455)))) (-2616 (((-3 (-1269 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-911))))) (-4129 (((-863) $) 179) (($ (-567)) NIL) (($ |#2|) 104) (($ (-865 |#1|)) 42) (($ (-410 (-567))) NIL (-2811 (|has| |#2| (-38 (-410 (-567)))) (|has| |#2| (-1040 (-410 (-567)))))) (($ $) NIL (|has| |#2| (-559)))) (-3601 (((-645 |#2|) $) NIL)) (-2558 ((|#2| $ |#3|) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-2118 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-145)) (|has| |#2| (-911))) (|has| |#2| (-145))))) (-2746 (((-772)) NIL T CONST)) (-3658 (($ $ $ (-772)) NIL (|has| |#2| (-172)))) (-3357 (((-112) $ $) NIL)) (-3731 (((-112) $ $) NIL (|has| |#2| (-559)))) (-1733 (($) 22 T CONST)) (-1744 (($) 31 T CONST)) (-2647 (($ $ (-865 |#1|)) NIL) (($ $ (-645 (-865 |#1|))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-2946 (((-112) $ $) NIL)) (-3069 (($ $ |#2|) 81 (|has| |#2| (-365)))) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) 136)) (** (($ $ (-923)) NIL) (($ $ (-772)) 134)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 39) (($ $ (-410 (-567))) NIL (|has| |#2| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#2| (-38 (-410 (-567))))) (($ |#2| $) 80) (($ $ |#2|) NIL)))
+(((-457 |#1| |#2| |#3|) (-13 (-951 |#2| |#3| (-865 |#1|)) (-10 -8 (-15 -1644 ($ $ (-645 (-567)))))) (-645 (-1179)) (-1051) (-238 (-2423 |#1|) (-772))) (T -457))
+((-1644 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-567))) (-14 *3 (-645 (-1179))) (-5 *1 (-457 *3 *4 *5)) (-4 *4 (-1051)) (-4 *5 (-238 (-2423 *3) (-772))))))
+(-13 (-951 |#2| |#3| (-865 |#1|)) (-10 -8 (-15 -1644 ($ $ (-645 (-567))))))
+((-2000 (((-112) |#1| (-645 |#2|)) 94)) (-2136 (((-3 (-1269 (-645 |#2|)) "failed") (-772) |#1| (-645 |#2|)) 103)) (-4251 (((-3 (-645 |#2|) "failed") |#2| |#1| (-1269 (-645 |#2|))) 105)) (-3438 ((|#2| |#2| |#1|) 35)) (-3883 (((-772) |#2| (-645 |#2|)) 26)))
+(((-458 |#1| |#2|) (-10 -7 (-15 -3438 (|#2| |#2| |#1|)) (-15 -3883 ((-772) |#2| (-645 |#2|))) (-15 -2136 ((-3 (-1269 (-645 |#2|)) "failed") (-772) |#1| (-645 |#2|))) (-15 -4251 ((-3 (-645 |#2|) "failed") |#2| |#1| (-1269 (-645 |#2|)))) (-15 -2000 ((-112) |#1| (-645 |#2|)))) (-308) (-1245 |#1|)) (T -458))
+((-2000 (*1 *2 *3 *4) (-12 (-5 *4 (-645 *5)) (-4 *5 (-1245 *3)) (-4 *3 (-308)) (-5 *2 (-112)) (-5 *1 (-458 *3 *5)))) (-4251 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1269 (-645 *3))) (-4 *4 (-308)) (-5 *2 (-645 *3)) (-5 *1 (-458 *4 *3)) (-4 *3 (-1245 *4)))) (-2136 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-772)) (-4 *4 (-308)) (-4 *6 (-1245 *4)) (-5 *2 (-1269 (-645 *6))) (-5 *1 (-458 *4 *6)) (-5 *5 (-645 *6)))) (-3883 (*1 *2 *3 *4) (-12 (-5 *4 (-645 *3)) (-4 *3 (-1245 *5)) (-4 *5 (-308)) (-5 *2 (-772)) (-5 *1 (-458 *5 *3)))) (-3438 (*1 *2 *2 *3) (-12 (-4 *3 (-308)) (-5 *1 (-458 *3 *2)) (-4 *2 (-1245 *3)))))
+(-10 -7 (-15 -3438 (|#2| |#2| |#1|)) (-15 -3883 ((-772) |#2| (-645 |#2|))) (-15 -2136 ((-3 (-1269 (-645 |#2|)) "failed") (-772) |#1| (-645 |#2|))) (-15 -4251 ((-3 (-645 |#2|) "failed") |#2| |#1| (-1269 (-645 |#2|)))) (-15 -2000 ((-112) |#1| (-645 |#2|))))
+((-2717 (((-421 |#5|) |#5|) 24)))
+(((-459 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2717 ((-421 |#5|) |#5|))) (-13 (-851) (-10 -8 (-15 -3902 ((-1179) $)) (-15 -3653 ((-3 $ "failed") (-1179))))) (-794) (-559) (-559) (-951 |#4| |#2| |#1|)) (T -459))
+((-2717 (*1 *2 *3) (-12 (-4 *4 (-13 (-851) (-10 -8 (-15 -3902 ((-1179) $)) (-15 -3653 ((-3 $ "failed") (-1179)))))) (-4 *5 (-794)) (-4 *7 (-559)) (-5 *2 (-421 *3)) (-5 *1 (-459 *4 *5 *6 *7 *3)) (-4 *6 (-559)) (-4 *3 (-951 *7 *5 *4)))))
+(-10 -7 (-15 -2717 ((-421 |#5|) |#5|)))
+((-1584 ((|#3|) 40)) (-2217 (((-1175 |#4|) (-1175 |#4|) (-1175 |#4|)) 36)))
+(((-460 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2217 ((-1175 |#4|) (-1175 |#4|) (-1175 |#4|))) (-15 -1584 (|#3|))) (-794) (-851) (-911) (-951 |#3| |#1| |#2|)) (T -460))
+((-1584 (*1 *2) (-12 (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-911)) (-5 *1 (-460 *3 *4 *2 *5)) (-4 *5 (-951 *2 *3 *4)))) (-2217 (*1 *2 *2 *2) (-12 (-5 *2 (-1175 *6)) (-4 *6 (-951 *5 *3 *4)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *5 (-911)) (-5 *1 (-460 *3 *4 *5 *6)))))
+(-10 -7 (-15 -2217 ((-1175 |#4|) (-1175 |#4|) (-1175 |#4|))) (-15 -1584 (|#3|)))
+((-2717 (((-421 (-1175 |#1|)) (-1175 |#1|)) 43)))
+(((-461 |#1|) (-10 -7 (-15 -2717 ((-421 (-1175 |#1|)) (-1175 |#1|)))) (-308)) (T -461))
+((-2717 (*1 *2 *3) (-12 (-4 *4 (-308)) (-5 *2 (-421 (-1175 *4))) (-5 *1 (-461 *4)) (-5 *3 (-1175 *4)))))
+(-10 -7 (-15 -2717 ((-421 (-1175 |#1|)) (-1175 |#1|))))
+((-2907 (((-52) |#2| (-1179) (-295 |#2|) (-1236 (-772))) 44) (((-52) (-1 |#2| (-567)) (-295 |#2|) (-1236 (-772))) 43) (((-52) |#2| (-1179) (-295 |#2|)) 36) (((-52) (-1 |#2| (-567)) (-295 |#2|)) 29)) (-1317 (((-52) |#2| (-1179) (-295 |#2|) (-1236 (-410 (-567))) (-410 (-567))) 88) (((-52) (-1 |#2| (-410 (-567))) (-295 |#2|) (-1236 (-410 (-567))) (-410 (-567))) 87) (((-52) |#2| (-1179) (-295 |#2|) (-1236 (-567))) 86) (((-52) (-1 |#2| (-567)) (-295 |#2|) (-1236 (-567))) 85) (((-52) |#2| (-1179) (-295 |#2|)) 80) (((-52) (-1 |#2| (-567)) (-295 |#2|)) 79)) (-2928 (((-52) |#2| (-1179) (-295 |#2|) (-1236 (-410 (-567))) (-410 (-567))) 74) (((-52) (-1 |#2| (-410 (-567))) (-295 |#2|) (-1236 (-410 (-567))) (-410 (-567))) 72)) (-2917 (((-52) |#2| (-1179) (-295 |#2|) (-1236 (-567))) 51) (((-52) (-1 |#2| (-567)) (-295 |#2|) (-1236 (-567))) 50)))
+(((-462 |#1| |#2|) (-10 -7 (-15 -2907 ((-52) (-1 |#2| (-567)) (-295 |#2|))) (-15 -2907 ((-52) |#2| (-1179) (-295 |#2|))) (-15 -2907 ((-52) (-1 |#2| (-567)) (-295 |#2|) (-1236 (-772)))) (-15 -2907 ((-52) |#2| (-1179) (-295 |#2|) (-1236 (-772)))) (-15 -2917 ((-52) (-1 |#2| (-567)) (-295 |#2|) (-1236 (-567)))) (-15 -2917 ((-52) |#2| (-1179) (-295 |#2|) (-1236 (-567)))) (-15 -2928 ((-52) (-1 |#2| (-410 (-567))) (-295 |#2|) (-1236 (-410 (-567))) (-410 (-567)))) (-15 -2928 ((-52) |#2| (-1179) (-295 |#2|) (-1236 (-410 (-567))) (-410 (-567)))) (-15 -1317 ((-52) (-1 |#2| (-567)) (-295 |#2|))) (-15 -1317 ((-52) |#2| (-1179) (-295 |#2|))) (-15 -1317 ((-52) (-1 |#2| (-567)) (-295 |#2|) (-1236 (-567)))) (-15 -1317 ((-52) |#2| (-1179) (-295 |#2|) (-1236 (-567)))) (-15 -1317 ((-52) (-1 |#2| (-410 (-567))) (-295 |#2|) (-1236 (-410 (-567))) (-410 (-567)))) (-15 -1317 ((-52) |#2| (-1179) (-295 |#2|) (-1236 (-410 (-567))) (-410 (-567))))) (-13 (-559) (-1040 (-567)) (-640 (-567))) (-13 (-27) (-1204) (-433 |#1|))) (T -462))
+((-1317 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1179)) (-5 *5 (-295 *3)) (-5 *6 (-1236 (-410 (-567)))) (-5 *7 (-410 (-567))) (-4 *3 (-13 (-27) (-1204) (-433 *8))) (-4 *8 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *8 *3)))) (-1317 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-410 (-567)))) (-5 *4 (-295 *8)) (-5 *5 (-1236 (-410 (-567)))) (-5 *6 (-410 (-567))) (-4 *8 (-13 (-27) (-1204) (-433 *7))) (-4 *7 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *7 *8)))) (-1317 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1179)) (-5 *5 (-295 *3)) (-5 *6 (-1236 (-567))) (-4 *3 (-13 (-27) (-1204) (-433 *7))) (-4 *7 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *7 *3)))) (-1317 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-567))) (-5 *4 (-295 *7)) (-5 *5 (-1236 (-567))) (-4 *7 (-13 (-27) (-1204) (-433 *6))) (-4 *6 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *6 *7)))) (-1317 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1179)) (-5 *5 (-295 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *6))) (-4 *6 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *6 *3)))) (-1317 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-567))) (-5 *4 (-295 *6)) (-4 *6 (-13 (-27) (-1204) (-433 *5))) (-4 *5 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *5 *6)))) (-2928 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1179)) (-5 *5 (-295 *3)) (-5 *6 (-1236 (-410 (-567)))) (-5 *7 (-410 (-567))) (-4 *3 (-13 (-27) (-1204) (-433 *8))) (-4 *8 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *8 *3)))) (-2928 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-410 (-567)))) (-5 *4 (-295 *8)) (-5 *5 (-1236 (-410 (-567)))) (-5 *6 (-410 (-567))) (-4 *8 (-13 (-27) (-1204) (-433 *7))) (-4 *7 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *7 *8)))) (-2917 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1179)) (-5 *5 (-295 *3)) (-5 *6 (-1236 (-567))) (-4 *3 (-13 (-27) (-1204) (-433 *7))) (-4 *7 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *7 *3)))) (-2917 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-567))) (-5 *4 (-295 *7)) (-5 *5 (-1236 (-567))) (-4 *7 (-13 (-27) (-1204) (-433 *6))) (-4 *6 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *6 *7)))) (-2907 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1179)) (-5 *5 (-295 *3)) (-5 *6 (-1236 (-772))) (-4 *3 (-13 (-27) (-1204) (-433 *7))) (-4 *7 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *7 *3)))) (-2907 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-567))) (-5 *4 (-295 *7)) (-5 *5 (-1236 (-772))) (-4 *7 (-13 (-27) (-1204) (-433 *6))) (-4 *6 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *6 *7)))) (-2907 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1179)) (-5 *5 (-295 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *6))) (-4 *6 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *6 *3)))) (-2907 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-567))) (-5 *4 (-295 *6)) (-4 *6 (-13 (-27) (-1204) (-433 *5))) (-4 *5 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *5 *6)))))
+(-10 -7 (-15 -2907 ((-52) (-1 |#2| (-567)) (-295 |#2|))) (-15 -2907 ((-52) |#2| (-1179) (-295 |#2|))) (-15 -2907 ((-52) (-1 |#2| (-567)) (-295 |#2|) (-1236 (-772)))) (-15 -2907 ((-52) |#2| (-1179) (-295 |#2|) (-1236 (-772)))) (-15 -2917 ((-52) (-1 |#2| (-567)) (-295 |#2|) (-1236 (-567)))) (-15 -2917 ((-52) |#2| (-1179) (-295 |#2|) (-1236 (-567)))) (-15 -2928 ((-52) (-1 |#2| (-410 (-567))) (-295 |#2|) (-1236 (-410 (-567))) (-410 (-567)))) (-15 -2928 ((-52) |#2| (-1179) (-295 |#2|) (-1236 (-410 (-567))) (-410 (-567)))) (-15 -1317 ((-52) (-1 |#2| (-567)) (-295 |#2|))) (-15 -1317 ((-52) |#2| (-1179) (-295 |#2|))) (-15 -1317 ((-52) (-1 |#2| (-567)) (-295 |#2|) (-1236 (-567)))) (-15 -1317 ((-52) |#2| (-1179) (-295 |#2|) (-1236 (-567)))) (-15 -1317 ((-52) (-1 |#2| (-410 (-567))) (-295 |#2|) (-1236 (-410 (-567))) (-410 (-567)))) (-15 -1317 ((-52) |#2| (-1179) (-295 |#2|) (-1236 (-410 (-567))) (-410 (-567)))))
+((-3438 ((|#2| |#2| |#1|) 15)) (-3634 (((-645 |#2|) |#2| (-645 |#2|) |#1| (-923)) 82)) (-2898 (((-2 (|:| |plist| (-645 |#2|)) (|:| |modulo| |#1|)) |#2| (-645 |#2|) |#1| (-923)) 72)))
+(((-463 |#1| |#2|) (-10 -7 (-15 -2898 ((-2 (|:| |plist| (-645 |#2|)) (|:| |modulo| |#1|)) |#2| (-645 |#2|) |#1| (-923))) (-15 -3634 ((-645 |#2|) |#2| (-645 |#2|) |#1| (-923))) (-15 -3438 (|#2| |#2| |#1|))) (-308) (-1245 |#1|)) (T -463))
+((-3438 (*1 *2 *2 *3) (-12 (-4 *3 (-308)) (-5 *1 (-463 *3 *2)) (-4 *2 (-1245 *3)))) (-3634 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-645 *3)) (-5 *5 (-923)) (-4 *3 (-1245 *4)) (-4 *4 (-308)) (-5 *1 (-463 *4 *3)))) (-2898 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-923)) (-4 *5 (-308)) (-4 *3 (-1245 *5)) (-5 *2 (-2 (|:| |plist| (-645 *3)) (|:| |modulo| *5))) (-5 *1 (-463 *5 *3)) (-5 *4 (-645 *3)))))
+(-10 -7 (-15 -2898 ((-2 (|:| |plist| (-645 |#2|)) (|:| |modulo| |#1|)) |#2| (-645 |#2|) |#1| (-923))) (-15 -3634 ((-645 |#2|) |#2| (-645 |#2|) |#1| (-923))) (-15 -3438 (|#2| |#2| |#1|)))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) 28)) (-3624 (($ |#3|) 25)) (-2376 (((-3 $ "failed") $ $) NIL)) (-3647 (($) NIL T CONST)) (-3023 (($ $) 32)) (-2419 (($ |#2| |#4| $) 33)) (-2836 (($ |#2| (-714 |#3| |#4| |#5|)) 24)) (-2985 (((-714 |#3| |#4| |#5|) $) 15)) (-3582 ((|#3| $) 19)) (-2661 ((|#4| $) 17)) (-2996 ((|#2| $) 29)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) NIL)) (-2443 (($ |#2| |#3| |#4|) 26)) (-3357 (((-112) $ $) NIL)) (-1733 (($) 36 T CONST)) (-2946 (((-112) $ $) NIL)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) 34)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-464 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-718 |#6|) (-718 |#2|) (-10 -8 (-15 -2996 (|#2| $)) (-15 -2985 ((-714 |#3| |#4| |#5|) $)) (-15 -2661 (|#4| $)) (-15 -3582 (|#3| $)) (-15 -3023 ($ $)) (-15 -2836 ($ |#2| (-714 |#3| |#4| |#5|))) (-15 -3624 ($ |#3|)) (-15 -2443 ($ |#2| |#3| |#4|)) (-15 -2419 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-645 (-1179)) (-172) (-851) (-238 (-2423 |#1|) (-772)) (-1 (-112) (-2 (|:| -3779 |#3|) (|:| -3468 |#4|)) (-2 (|:| -3779 |#3|) (|:| -3468 |#4|))) (-951 |#2| |#4| (-865 |#1|))) (T -464))
+((* (*1 *1 *2 *1) (-12 (-14 *3 (-645 (-1179))) (-4 *4 (-172)) (-4 *6 (-238 (-2423 *3) (-772))) (-14 *7 (-1 (-112) (-2 (|:| -3779 *5) (|:| -3468 *6)) (-2 (|:| -3779 *5) (|:| -3468 *6)))) (-5 *1 (-464 *3 *4 *5 *6 *7 *2)) (-4 *5 (-851)) (-4 *2 (-951 *4 *6 (-865 *3))))) (-2996 (*1 *2 *1) (-12 (-14 *3 (-645 (-1179))) (-4 *5 (-238 (-2423 *3) (-772))) (-14 *6 (-1 (-112) (-2 (|:| -3779 *4) (|:| -3468 *5)) (-2 (|:| -3779 *4) (|:| -3468 *5)))) (-4 *2 (-172)) (-5 *1 (-464 *3 *2 *4 *5 *6 *7)) (-4 *4 (-851)) (-4 *7 (-951 *2 *5 (-865 *3))))) (-2985 (*1 *2 *1) (-12 (-14 *3 (-645 (-1179))) (-4 *4 (-172)) (-4 *6 (-238 (-2423 *3) (-772))) (-14 *7 (-1 (-112) (-2 (|:| -3779 *5) (|:| -3468 *6)) (-2 (|:| -3779 *5) (|:| -3468 *6)))) (-5 *2 (-714 *5 *6 *7)) (-5 *1 (-464 *3 *4 *5 *6 *7 *8)) (-4 *5 (-851)) (-4 *8 (-951 *4 *6 (-865 *3))))) (-2661 (*1 *2 *1) (-12 (-14 *3 (-645 (-1179))) (-4 *4 (-172)) (-14 *6 (-1 (-112) (-2 (|:| -3779 *5) (|:| -3468 *2)) (-2 (|:| -3779 *5) (|:| -3468 *2)))) (-4 *2 (-238 (-2423 *3) (-772))) (-5 *1 (-464 *3 *4 *5 *2 *6 *7)) (-4 *5 (-851)) (-4 *7 (-951 *4 *2 (-865 *3))))) (-3582 (*1 *2 *1) (-12 (-14 *3 (-645 (-1179))) (-4 *4 (-172)) (-4 *5 (-238 (-2423 *3) (-772))) (-14 *6 (-1 (-112) (-2 (|:| -3779 *2) (|:| -3468 *5)) (-2 (|:| -3779 *2) (|:| -3468 *5)))) (-4 *2 (-851)) (-5 *1 (-464 *3 *4 *2 *5 *6 *7)) (-4 *7 (-951 *4 *5 (-865 *3))))) (-3023 (*1 *1 *1) (-12 (-14 *2 (-645 (-1179))) (-4 *3 (-172)) (-4 *5 (-238 (-2423 *2) (-772))) (-14 *6 (-1 (-112) (-2 (|:| -3779 *4) (|:| -3468 *5)) (-2 (|:| -3779 *4) (|:| -3468 *5)))) (-5 *1 (-464 *2 *3 *4 *5 *6 *7)) (-4 *4 (-851)) (-4 *7 (-951 *3 *5 (-865 *2))))) (-2836 (*1 *1 *2 *3) (-12 (-5 *3 (-714 *5 *6 *7)) (-4 *5 (-851)) (-4 *6 (-238 (-2423 *4) (-772))) (-14 *7 (-1 (-112) (-2 (|:| -3779 *5) (|:| -3468 *6)) (-2 (|:| -3779 *5) (|:| -3468 *6)))) (-14 *4 (-645 (-1179))) (-4 *2 (-172)) (-5 *1 (-464 *4 *2 *5 *6 *7 *8)) (-4 *8 (-951 *2 *6 (-865 *4))))) (-3624 (*1 *1 *2) (-12 (-14 *3 (-645 (-1179))) (-4 *4 (-172)) (-4 *5 (-238 (-2423 *3) (-772))) (-14 *6 (-1 (-112) (-2 (|:| -3779 *2) (|:| -3468 *5)) (-2 (|:| -3779 *2) (|:| -3468 *5)))) (-5 *1 (-464 *3 *4 *2 *5 *6 *7)) (-4 *2 (-851)) (-4 *7 (-951 *4 *5 (-865 *3))))) (-2443 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-645 (-1179))) (-4 *2 (-172)) (-4 *4 (-238 (-2423 *5) (-772))) (-14 *6 (-1 (-112) (-2 (|:| -3779 *3) (|:| -3468 *4)) (-2 (|:| -3779 *3) (|:| -3468 *4)))) (-5 *1 (-464 *5 *2 *3 *4 *6 *7)) (-4 *3 (-851)) (-4 *7 (-951 *2 *4 (-865 *5))))) (-2419 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-645 (-1179))) (-4 *2 (-172)) (-4 *3 (-238 (-2423 *4) (-772))) (-14 *6 (-1 (-112) (-2 (|:| -3779 *5) (|:| -3468 *3)) (-2 (|:| -3779 *5) (|:| -3468 *3)))) (-5 *1 (-464 *4 *2 *5 *3 *6 *7)) (-4 *5 (-851)) (-4 *7 (-951 *2 *3 (-865 *4))))))
+(-13 (-718 |#6|) (-718 |#2|) (-10 -8 (-15 -2996 (|#2| $)) (-15 -2985 ((-714 |#3| |#4| |#5|) $)) (-15 -2661 (|#4| $)) (-15 -3582 (|#3| $)) (-15 -3023 ($ $)) (-15 -2836 ($ |#2| (-714 |#3| |#4| |#5|))) (-15 -3624 ($ |#3|)) (-15 -2443 ($ |#2| |#3| |#4|)) (-15 -2419 ($ |#2| |#4| $)) (-15 * ($ |#6| $))))
+((-3912 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39)))
+(((-465 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3912 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-794) (-851) (-559) (-951 |#3| |#1| |#2|) (-13 (-1040 (-410 (-567))) (-365) (-10 -8 (-15 -4129 ($ |#4|)) (-15 -1447 (|#4| $)) (-15 -1462 (|#4| $))))) (T -465))
+((-3912 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-851)) (-4 *5 (-794)) (-4 *6 (-559)) (-4 *7 (-951 *6 *5 *3)) (-5 *1 (-465 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1040 (-410 (-567))) (-365) (-10 -8 (-15 -4129 ($ *7)) (-15 -1447 (*7 $)) (-15 -1462 (*7 $))))))))
+(-10 -7 (-15 -3912 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|))))
+((-2412 (((-112) $ $) NIL)) (-2859 (((-645 |#3|) $) 41)) (-3153 (((-112) $) NIL)) (-2031 (((-112) $) NIL (|has| |#1| (-559)))) (-1311 (((-2 (|:| |under| $) (|:| -3969 $) (|:| |upper| $)) $ |#3|) NIL)) (-1563 (((-112) $ (-772)) NIL)) (-3356 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4422)))) (-3647 (($) NIL T CONST)) (-1896 (((-112) $) NIL (|has| |#1| (-559)))) (-2909 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3040 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3365 (((-112) $) NIL (|has| |#1| (-559)))) (-1377 (((-645 |#4|) (-645 |#4|) $) NIL (|has| |#1| (-559)))) (-2279 (((-645 |#4|) (-645 |#4|) $) NIL (|has| |#1| (-559)))) (-3765 (((-3 $ "failed") (-645 |#4|)) 49)) (-2051 (($ (-645 |#4|)) NIL)) (-2453 (($ $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#4| (-1102))))) (-3246 (($ |#4| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#4| (-1102)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4422)))) (-2023 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-559)))) (-2494 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4422)) (|has| |#4| (-1102)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4422))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4422)))) (-2799 (((-645 |#4|) $) 18 (|has| $ (-6 -4422)))) (-2072 ((|#3| $) 47)) (-4093 (((-112) $ (-772)) NIL)) (-1942 (((-645 |#4|) $) 14 (|has| $ (-6 -4422)))) (-3237 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4422)) (|has| |#4| (-1102))))) (-3751 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#4| |#4|) $) 21)) (-2869 (((-645 |#3|) $) NIL)) (-1524 (((-112) |#3| $) NIL)) (-1986 (((-112) $ (-772)) NIL)) (-2516 (((-1161) $) NIL)) (-2634 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-559)))) (-3437 (((-1122) $) NIL)) (-3196 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4233 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 |#4|) (-645 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-295 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-645 (-295 |#4|))) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))))) (-3875 (((-112) $ $) NIL)) (-3885 (((-112) $) 39)) (-2701 (($) 17)) (-3447 (((-772) |#4| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#4| (-1102)))) (((-772) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4422)))) (-4309 (($ $) 16)) (-3902 (((-539) $) NIL (|has| |#4| (-615 (-539)))) (($ (-645 |#4|)) 51)) (-4145 (($ (-645 |#4|)) 13)) (-3937 (($ $ |#3|) NIL)) (-3165 (($ $ |#3|) NIL)) (-1920 (($ $ |#3|) NIL)) (-4129 (((-863) $) 38) (((-645 |#4|) $) 50)) (-3357 (((-112) $ $) NIL)) (-3436 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4422)))) (-2946 (((-112) $ $) 30)) (-2423 (((-772) $) NIL (|has| $ (-6 -4422)))))
+(((-466 |#1| |#2| |#3| |#4|) (-13 (-978 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3902 ($ (-645 |#4|))) (-6 -4422) (-6 -4423))) (-1051) (-794) (-851) (-1067 |#1| |#2| |#3|)) (T -466))
+((-3902 (*1 *1 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-466 *3 *4 *5 *6)))))
+(-13 (-978 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3902 ($ (-645 |#4|))) (-6 -4422) (-6 -4423)))
+((-1733 (($) 11)) (-1744 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16)))
+(((-467 |#1| |#2| |#3|) (-10 -8 (-15 -1744 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1733 (|#1|))) (-468 |#2| |#3|) (-172) (-23)) (T -467))
+NIL
+(-10 -8 (-15 -1744 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1733 (|#1|)))
+((-2412 (((-112) $ $) 7)) (-3765 (((-3 |#1| "failed") $) 27)) (-2051 ((|#1| $) 28)) (-3809 (($ $ $) 24)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-3104 ((|#2| $) 20)) (-4129 (((-863) $) 12) (($ |#1|) 26)) (-3357 (((-112) $ $) 9)) (-1733 (($) 19 T CONST)) (-1744 (($) 25 T CONST)) (-2946 (((-112) $ $) 6)) (-3053 (($ $) 16) (($ $ $) 14)) (-3041 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17)))
(((-468 |#1| |#2|) (-140) (-172) (-23)) (T -468))
-((-1728 (*1 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-4207 (*1 *1 *1 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))))
-(-13 (-473 |t#1| |t#2|) (-1040 |t#1|) (-10 -8 (-15 (-1728) ($) -3286) (-15 -4207 ($ $ $))))
+((-1744 (*1 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-3809 (*1 *1 *1 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))))
+(-13 (-473 |t#1| |t#2|) (-1040 |t#1|) (-10 -8 (-15 (-1744) ($) -3304) (-15 -3809 ($ $ $))))
(((-102) . T) ((-617 |#1|) . T) ((-614 (-863)) . T) ((-473 |#1| |#2|) . T) ((-1040 |#1|) . T) ((-1102) . T))
-((-1523 (((-1268 (-1268 (-567))) (-1268 (-1268 (-567))) (-923)) 29)) (-2616 (((-1268 (-1268 (-567))) (-923)) 24)))
-(((-469) (-10 -7 (-15 -1523 ((-1268 (-1268 (-567))) (-1268 (-1268 (-567))) (-923))) (-15 -2616 ((-1268 (-1268 (-567))) (-923))))) (T -469))
-((-2616 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1268 (-1268 (-567)))) (-5 *1 (-469)))) (-1523 (*1 *2 *2 *3) (-12 (-5 *2 (-1268 (-1268 (-567)))) (-5 *3 (-923)) (-5 *1 (-469)))))
-(-10 -7 (-15 -1523 ((-1268 (-1268 (-567))) (-1268 (-1268 (-567))) (-923))) (-15 -2616 ((-1268 (-1268 (-567))) (-923))))
-((-2959 (((-567) (-567)) 32) (((-567)) 24)) (-3467 (((-567) (-567)) 28) (((-567)) 20)) (-3213 (((-567) (-567)) 30) (((-567)) 22)) (-4059 (((-112) (-112)) 14) (((-112)) 12)) (-4079 (((-112) (-112)) 13) (((-112)) 11)) (-4307 (((-112) (-112)) 26) (((-112)) 17)))
-(((-470) (-10 -7 (-15 -4079 ((-112))) (-15 -4059 ((-112))) (-15 -4079 ((-112) (-112))) (-15 -4059 ((-112) (-112))) (-15 -4307 ((-112))) (-15 -3213 ((-567))) (-15 -3467 ((-567))) (-15 -2959 ((-567))) (-15 -4307 ((-112) (-112))) (-15 -3213 ((-567) (-567))) (-15 -3467 ((-567) (-567))) (-15 -2959 ((-567) (-567))))) (T -470))
-((-2959 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-470)))) (-3467 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-470)))) (-3213 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-470)))) (-4307 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470)))) (-2959 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-470)))) (-3467 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-470)))) (-3213 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-470)))) (-4307 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470)))) (-4059 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470)))) (-4079 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470)))) (-4059 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470)))) (-4079 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470)))))
-(-10 -7 (-15 -4079 ((-112))) (-15 -4059 ((-112))) (-15 -4079 ((-112) (-112))) (-15 -4059 ((-112) (-112))) (-15 -4307 ((-112))) (-15 -3213 ((-567))) (-15 -3467 ((-567))) (-15 -2959 ((-567))) (-15 -4307 ((-112) (-112))) (-15 -3213 ((-567) (-567))) (-15 -3467 ((-567) (-567))) (-15 -2959 ((-567) (-567))))
-((-2403 (((-112) $ $) NIL)) (-1741 (((-645 (-381)) $) 34) (((-645 (-381)) $ (-645 (-381))) 146)) (-3320 (((-645 (-1096 (-381))) $) 16) (((-645 (-1096 (-381))) $ (-645 (-1096 (-381)))) 142)) (-4290 (((-645 (-645 (-945 (-225)))) (-645 (-645 (-945 (-225)))) (-645 (-875))) 58)) (-4311 (((-645 (-645 (-945 (-225)))) $) 137)) (-4371 (((-1273) $ (-945 (-225)) (-875)) 163)) (-2170 (($ $) 136) (($ (-645 (-645 (-945 (-225))))) 149) (($ (-645 (-645 (-945 (-225)))) (-645 (-875)) (-645 (-875)) (-645 (-923))) 148) (($ (-645 (-645 (-945 (-225)))) (-645 (-875)) (-645 (-875)) (-645 (-923)) (-645 (-264))) 150)) (-1419 (((-1160) $) NIL)) (-1795 (((-567) $) 110)) (-3430 (((-1122) $) NIL)) (-2230 (($) 147)) (-2704 (((-645 (-225)) (-645 (-645 (-945 (-225))))) 89)) (-1859 (((-1273) $ (-645 (-945 (-225))) (-875) (-875) (-923)) 155) (((-1273) $ (-945 (-225))) 157) (((-1273) $ (-945 (-225)) (-875) (-875) (-923)) 156)) (-4132 (((-863) $) 169) (($ (-645 (-645 (-945 (-225))))) 164)) (-1745 (((-112) $ $) NIL)) (-2653 (((-1273) $ (-945 (-225))) 162)) (-2936 (((-112) $ $) NIL)))
-(((-471) (-13 (-1102) (-10 -8 (-15 -2230 ($)) (-15 -2170 ($ $)) (-15 -2170 ($ (-645 (-645 (-945 (-225)))))) (-15 -2170 ($ (-645 (-645 (-945 (-225)))) (-645 (-875)) (-645 (-875)) (-645 (-923)))) (-15 -2170 ($ (-645 (-645 (-945 (-225)))) (-645 (-875)) (-645 (-875)) (-645 (-923)) (-645 (-264)))) (-15 -4311 ((-645 (-645 (-945 (-225)))) $)) (-15 -1795 ((-567) $)) (-15 -3320 ((-645 (-1096 (-381))) $)) (-15 -3320 ((-645 (-1096 (-381))) $ (-645 (-1096 (-381))))) (-15 -1741 ((-645 (-381)) $)) (-15 -1741 ((-645 (-381)) $ (-645 (-381)))) (-15 -1859 ((-1273) $ (-645 (-945 (-225))) (-875) (-875) (-923))) (-15 -1859 ((-1273) $ (-945 (-225)))) (-15 -1859 ((-1273) $ (-945 (-225)) (-875) (-875) (-923))) (-15 -2653 ((-1273) $ (-945 (-225)))) (-15 -4371 ((-1273) $ (-945 (-225)) (-875))) (-15 -4132 ($ (-645 (-645 (-945 (-225)))))) (-15 -4132 ((-863) $)) (-15 -4290 ((-645 (-645 (-945 (-225)))) (-645 (-645 (-945 (-225)))) (-645 (-875)))) (-15 -2704 ((-645 (-225)) (-645 (-645 (-945 (-225))))))))) (T -471))
-((-4132 (*1 *2 *1) (-12 (-5 *2 (-863)) (-5 *1 (-471)))) (-2230 (*1 *1) (-5 *1 (-471))) (-2170 (*1 *1 *1) (-5 *1 (-471))) (-2170 (*1 *1 *2) (-12 (-5 *2 (-645 (-645 (-945 (-225))))) (-5 *1 (-471)))) (-2170 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-645 (-645 (-945 (-225))))) (-5 *3 (-645 (-875))) (-5 *4 (-645 (-923))) (-5 *1 (-471)))) (-2170 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-645 (-645 (-945 (-225))))) (-5 *3 (-645 (-875))) (-5 *4 (-645 (-923))) (-5 *5 (-645 (-264))) (-5 *1 (-471)))) (-4311 (*1 *2 *1) (-12 (-5 *2 (-645 (-645 (-945 (-225))))) (-5 *1 (-471)))) (-1795 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-471)))) (-3320 (*1 *2 *1) (-12 (-5 *2 (-645 (-1096 (-381)))) (-5 *1 (-471)))) (-3320 (*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1096 (-381)))) (-5 *1 (-471)))) (-1741 (*1 *2 *1) (-12 (-5 *2 (-645 (-381))) (-5 *1 (-471)))) (-1741 (*1 *2 *1 *2) (-12 (-5 *2 (-645 (-381))) (-5 *1 (-471)))) (-1859 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-645 (-945 (-225)))) (-5 *4 (-875)) (-5 *5 (-923)) (-5 *2 (-1273)) (-5 *1 (-471)))) (-1859 (*1 *2 *1 *3) (-12 (-5 *3 (-945 (-225))) (-5 *2 (-1273)) (-5 *1 (-471)))) (-1859 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-945 (-225))) (-5 *4 (-875)) (-5 *5 (-923)) (-5 *2 (-1273)) (-5 *1 (-471)))) (-2653 (*1 *2 *1 *3) (-12 (-5 *3 (-945 (-225))) (-5 *2 (-1273)) (-5 *1 (-471)))) (-4371 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-945 (-225))) (-5 *4 (-875)) (-5 *2 (-1273)) (-5 *1 (-471)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-645 (-645 (-945 (-225))))) (-5 *1 (-471)))) (-4290 (*1 *2 *2 *3) (-12 (-5 *2 (-645 (-645 (-945 (-225))))) (-5 *3 (-645 (-875))) (-5 *1 (-471)))) (-2704 (*1 *2 *3) (-12 (-5 *3 (-645 (-645 (-945 (-225))))) (-5 *2 (-645 (-225))) (-5 *1 (-471)))))
-(-13 (-1102) (-10 -8 (-15 -2230 ($)) (-15 -2170 ($ $)) (-15 -2170 ($ (-645 (-645 (-945 (-225)))))) (-15 -2170 ($ (-645 (-645 (-945 (-225)))) (-645 (-875)) (-645 (-875)) (-645 (-923)))) (-15 -2170 ($ (-645 (-645 (-945 (-225)))) (-645 (-875)) (-645 (-875)) (-645 (-923)) (-645 (-264)))) (-15 -4311 ((-645 (-645 (-945 (-225)))) $)) (-15 -1795 ((-567) $)) (-15 -3320 ((-645 (-1096 (-381))) $)) (-15 -3320 ((-645 (-1096 (-381))) $ (-645 (-1096 (-381))))) (-15 -1741 ((-645 (-381)) $)) (-15 -1741 ((-645 (-381)) $ (-645 (-381)))) (-15 -1859 ((-1273) $ (-645 (-945 (-225))) (-875) (-875) (-923))) (-15 -1859 ((-1273) $ (-945 (-225)))) (-15 -1859 ((-1273) $ (-945 (-225)) (-875) (-875) (-923))) (-15 -2653 ((-1273) $ (-945 (-225)))) (-15 -4371 ((-1273) $ (-945 (-225)) (-875))) (-15 -4132 ($ (-645 (-645 (-945 (-225)))))) (-15 -4132 ((-863) $)) (-15 -4290 ((-645 (-645 (-945 (-225)))) (-645 (-645 (-945 (-225)))) (-645 (-875)))) (-15 -2704 ((-645 (-225)) (-645 (-645 (-945 (-225))))))))
-((-3045 (($ $) NIL) (($ $ $) 11)))
-(((-472 |#1| |#2| |#3|) (-10 -8 (-15 -3045 (|#1| |#1| |#1|)) (-15 -3045 (|#1| |#1|))) (-473 |#2| |#3|) (-172) (-23)) (T -472))
-NIL
-(-10 -8 (-15 -3045 (|#1| |#1| |#1|)) (-15 -3045 (|#1| |#1|)))
-((-2403 (((-112) $ $) 7)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-3077 ((|#2| $) 20)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-1716 (($) 19 T CONST)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 16) (($ $ $) 14)) (-3033 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17)))
+((-3818 (((-1269 (-1269 (-567))) (-1269 (-1269 (-567))) (-923)) 29)) (-1836 (((-1269 (-1269 (-567))) (-923)) 24)))
+(((-469) (-10 -7 (-15 -3818 ((-1269 (-1269 (-567))) (-1269 (-1269 (-567))) (-923))) (-15 -1836 ((-1269 (-1269 (-567))) (-923))))) (T -469))
+((-1836 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1269 (-1269 (-567)))) (-5 *1 (-469)))) (-3818 (*1 *2 *2 *3) (-12 (-5 *2 (-1269 (-1269 (-567)))) (-5 *3 (-923)) (-5 *1 (-469)))))
+(-10 -7 (-15 -3818 ((-1269 (-1269 (-567))) (-1269 (-1269 (-567))) (-923))) (-15 -1836 ((-1269 (-1269 (-567))) (-923))))
+((-3684 (((-567) (-567)) 32) (((-567)) 24)) (-3124 (((-567) (-567)) 28) (((-567)) 20)) (-4211 (((-567) (-567)) 30) (((-567)) 22)) (-2438 (((-112) (-112)) 14) (((-112)) 12)) (-3665 (((-112) (-112)) 13) (((-112)) 11)) (-3472 (((-112) (-112)) 26) (((-112)) 17)))
+(((-470) (-10 -7 (-15 -3665 ((-112))) (-15 -2438 ((-112))) (-15 -3665 ((-112) (-112))) (-15 -2438 ((-112) (-112))) (-15 -3472 ((-112))) (-15 -4211 ((-567))) (-15 -3124 ((-567))) (-15 -3684 ((-567))) (-15 -3472 ((-112) (-112))) (-15 -4211 ((-567) (-567))) (-15 -3124 ((-567) (-567))) (-15 -3684 ((-567) (-567))))) (T -470))
+((-3684 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-470)))) (-3124 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-470)))) (-4211 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-470)))) (-3472 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470)))) (-3684 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-470)))) (-3124 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-470)))) (-4211 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-470)))) (-3472 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470)))) (-2438 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470)))) (-3665 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470)))) (-2438 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470)))) (-3665 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470)))))
+(-10 -7 (-15 -3665 ((-112))) (-15 -2438 ((-112))) (-15 -3665 ((-112) (-112))) (-15 -2438 ((-112) (-112))) (-15 -3472 ((-112))) (-15 -4211 ((-567))) (-15 -3124 ((-567))) (-15 -3684 ((-567))) (-15 -3472 ((-112) (-112))) (-15 -4211 ((-567) (-567))) (-15 -3124 ((-567) (-567))) (-15 -3684 ((-567) (-567))))
+((-2412 (((-112) $ $) NIL)) (-1757 (((-645 (-381)) $) 34) (((-645 (-381)) $ (-645 (-381))) 146)) (-2835 (((-645 (-1096 (-381))) $) 16) (((-645 (-1096 (-381))) $ (-645 (-1096 (-381)))) 142)) (-2505 (((-645 (-645 (-945 (-225)))) (-645 (-645 (-945 (-225)))) (-645 (-875))) 58)) (-2653 (((-645 (-645 (-945 (-225)))) $) 137)) (-4385 (((-1274) $ (-945 (-225)) (-875)) 163)) (-4156 (($ $) 136) (($ (-645 (-645 (-945 (-225))))) 149) (($ (-645 (-645 (-945 (-225)))) (-645 (-875)) (-645 (-875)) (-645 (-923))) 148) (($ (-645 (-645 (-945 (-225)))) (-645 (-875)) (-645 (-875)) (-645 (-923)) (-645 (-264))) 150)) (-2516 (((-1161) $) NIL)) (-1809 (((-567) $) 110)) (-3437 (((-1122) $) NIL)) (-3641 (($) 147)) (-2428 (((-645 (-225)) (-645 (-645 (-945 (-225))))) 89)) (-2167 (((-1274) $ (-645 (-945 (-225))) (-875) (-875) (-923)) 155) (((-1274) $ (-945 (-225))) 157) (((-1274) $ (-945 (-225)) (-875) (-875) (-923)) 156)) (-4129 (((-863) $) 169) (($ (-645 (-645 (-945 (-225))))) 164)) (-3357 (((-112) $ $) NIL)) (-2723 (((-1274) $ (-945 (-225))) 162)) (-2946 (((-112) $ $) NIL)))
+(((-471) (-13 (-1102) (-10 -8 (-15 -3641 ($)) (-15 -4156 ($ $)) (-15 -4156 ($ (-645 (-645 (-945 (-225)))))) (-15 -4156 ($ (-645 (-645 (-945 (-225)))) (-645 (-875)) (-645 (-875)) (-645 (-923)))) (-15 -4156 ($ (-645 (-645 (-945 (-225)))) (-645 (-875)) (-645 (-875)) (-645 (-923)) (-645 (-264)))) (-15 -2653 ((-645 (-645 (-945 (-225)))) $)) (-15 -1809 ((-567) $)) (-15 -2835 ((-645 (-1096 (-381))) $)) (-15 -2835 ((-645 (-1096 (-381))) $ (-645 (-1096 (-381))))) (-15 -1757 ((-645 (-381)) $)) (-15 -1757 ((-645 (-381)) $ (-645 (-381)))) (-15 -2167 ((-1274) $ (-645 (-945 (-225))) (-875) (-875) (-923))) (-15 -2167 ((-1274) $ (-945 (-225)))) (-15 -2167 ((-1274) $ (-945 (-225)) (-875) (-875) (-923))) (-15 -2723 ((-1274) $ (-945 (-225)))) (-15 -4385 ((-1274) $ (-945 (-225)) (-875))) (-15 -4129 ($ (-645 (-645 (-945 (-225)))))) (-15 -4129 ((-863) $)) (-15 -2505 ((-645 (-645 (-945 (-225)))) (-645 (-645 (-945 (-225)))) (-645 (-875)))) (-15 -2428 ((-645 (-225)) (-645 (-645 (-945 (-225))))))))) (T -471))
+((-4129 (*1 *2 *1) (-12 (-5 *2 (-863)) (-5 *1 (-471)))) (-3641 (*1 *1) (-5 *1 (-471))) (-4156 (*1 *1 *1) (-5 *1 (-471))) (-4156 (*1 *1 *2) (-12 (-5 *2 (-645 (-645 (-945 (-225))))) (-5 *1 (-471)))) (-4156 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-645 (-645 (-945 (-225))))) (-5 *3 (-645 (-875))) (-5 *4 (-645 (-923))) (-5 *1 (-471)))) (-4156 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-645 (-645 (-945 (-225))))) (-5 *3 (-645 (-875))) (-5 *4 (-645 (-923))) (-5 *5 (-645 (-264))) (-5 *1 (-471)))) (-2653 (*1 *2 *1) (-12 (-5 *2 (-645 (-645 (-945 (-225))))) (-5 *1 (-471)))) (-1809 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-471)))) (-2835 (*1 *2 *1) (-12 (-5 *2 (-645 (-1096 (-381)))) (-5 *1 (-471)))) (-2835 (*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1096 (-381)))) (-5 *1 (-471)))) (-1757 (*1 *2 *1) (-12 (-5 *2 (-645 (-381))) (-5 *1 (-471)))) (-1757 (*1 *2 *1 *2) (-12 (-5 *2 (-645 (-381))) (-5 *1 (-471)))) (-2167 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-645 (-945 (-225)))) (-5 *4 (-875)) (-5 *5 (-923)) (-5 *2 (-1274)) (-5 *1 (-471)))) (-2167 (*1 *2 *1 *3) (-12 (-5 *3 (-945 (-225))) (-5 *2 (-1274)) (-5 *1 (-471)))) (-2167 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-945 (-225))) (-5 *4 (-875)) (-5 *5 (-923)) (-5 *2 (-1274)) (-5 *1 (-471)))) (-2723 (*1 *2 *1 *3) (-12 (-5 *3 (-945 (-225))) (-5 *2 (-1274)) (-5 *1 (-471)))) (-4385 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-945 (-225))) (-5 *4 (-875)) (-5 *2 (-1274)) (-5 *1 (-471)))) (-4129 (*1 *1 *2) (-12 (-5 *2 (-645 (-645 (-945 (-225))))) (-5 *1 (-471)))) (-2505 (*1 *2 *2 *3) (-12 (-5 *2 (-645 (-645 (-945 (-225))))) (-5 *3 (-645 (-875))) (-5 *1 (-471)))) (-2428 (*1 *2 *3) (-12 (-5 *3 (-645 (-645 (-945 (-225))))) (-5 *2 (-645 (-225))) (-5 *1 (-471)))))
+(-13 (-1102) (-10 -8 (-15 -3641 ($)) (-15 -4156 ($ $)) (-15 -4156 ($ (-645 (-645 (-945 (-225)))))) (-15 -4156 ($ (-645 (-645 (-945 (-225)))) (-645 (-875)) (-645 (-875)) (-645 (-923)))) (-15 -4156 ($ (-645 (-645 (-945 (-225)))) (-645 (-875)) (-645 (-875)) (-645 (-923)) (-645 (-264)))) (-15 -2653 ((-645 (-645 (-945 (-225)))) $)) (-15 -1809 ((-567) $)) (-15 -2835 ((-645 (-1096 (-381))) $)) (-15 -2835 ((-645 (-1096 (-381))) $ (-645 (-1096 (-381))))) (-15 -1757 ((-645 (-381)) $)) (-15 -1757 ((-645 (-381)) $ (-645 (-381)))) (-15 -2167 ((-1274) $ (-645 (-945 (-225))) (-875) (-875) (-923))) (-15 -2167 ((-1274) $ (-945 (-225)))) (-15 -2167 ((-1274) $ (-945 (-225)) (-875) (-875) (-923))) (-15 -2723 ((-1274) $ (-945 (-225)))) (-15 -4385 ((-1274) $ (-945 (-225)) (-875))) (-15 -4129 ($ (-645 (-645 (-945 (-225)))))) (-15 -4129 ((-863) $)) (-15 -2505 ((-645 (-645 (-945 (-225)))) (-645 (-645 (-945 (-225)))) (-645 (-875)))) (-15 -2428 ((-645 (-225)) (-645 (-645 (-945 (-225))))))))
+((-3053 (($ $) NIL) (($ $ $) 11)))
+(((-472 |#1| |#2| |#3|) (-10 -8 (-15 -3053 (|#1| |#1| |#1|)) (-15 -3053 (|#1| |#1|))) (-473 |#2| |#3|) (-172) (-23)) (T -472))
+NIL
+(-10 -8 (-15 -3053 (|#1| |#1| |#1|)) (-15 -3053 (|#1| |#1|)))
+((-2412 (((-112) $ $) 7)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-3104 ((|#2| $) 20)) (-4129 (((-863) $) 12)) (-3357 (((-112) $ $) 9)) (-1733 (($) 19 T CONST)) (-2946 (((-112) $ $) 6)) (-3053 (($ $) 16) (($ $ $) 14)) (-3041 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17)))
(((-473 |#1| |#2|) (-140) (-172) (-23)) (T -473))
-((-3077 (*1 *2 *1) (-12 (-4 *1 (-473 *3 *2)) (-4 *3 (-172)) (-4 *2 (-23)))) (-1716 (*1 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-3045 (*1 *1 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-3033 (*1 *1 *1 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-3045 (*1 *1 *1 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))))
-(-13 (-1102) (-10 -8 (-15 -3077 (|t#2| $)) (-15 (-1716) ($) -3286) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -3045 ($ $)) (-15 -3033 ($ $ $)) (-15 -3045 ($ $ $))))
+((-3104 (*1 *2 *1) (-12 (-4 *1 (-473 *3 *2)) (-4 *3 (-172)) (-4 *2 (-23)))) (-1733 (*1 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-3053 (*1 *1 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-3041 (*1 *1 *1 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-3053 (*1 *1 *1 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))))
+(-13 (-1102) (-10 -8 (-15 -3104 (|t#2| $)) (-15 (-1733) ($) -3304) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -3053 ($ $)) (-15 -3041 ($ $ $)) (-15 -3053 ($ $ $))))
(((-102) . T) ((-614 (-863)) . T) ((-1102) . T))
-((-4367 (((-3 (-645 (-484 |#1| |#2|)) "failed") (-645 (-484 |#1| |#2|)) (-645 (-865 |#1|))) 137)) (-3901 (((-645 (-645 (-247 |#1| |#2|))) (-645 (-247 |#1| |#2|)) (-645 (-865 |#1|))) 134)) (-3081 (((-2 (|:| |dpolys| (-645 (-247 |#1| |#2|))) (|:| |coords| (-645 (-567)))) (-645 (-247 |#1| |#2|)) (-645 (-865 |#1|))) 86)))
-(((-474 |#1| |#2| |#3|) (-10 -7 (-15 -3901 ((-645 (-645 (-247 |#1| |#2|))) (-645 (-247 |#1| |#2|)) (-645 (-865 |#1|)))) (-15 -4367 ((-3 (-645 (-484 |#1| |#2|)) "failed") (-645 (-484 |#1| |#2|)) (-645 (-865 |#1|)))) (-15 -3081 ((-2 (|:| |dpolys| (-645 (-247 |#1| |#2|))) (|:| |coords| (-645 (-567)))) (-645 (-247 |#1| |#2|)) (-645 (-865 |#1|))))) (-645 (-1178)) (-455) (-455)) (T -474))
-((-3081 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-865 *5))) (-14 *5 (-645 (-1178))) (-4 *6 (-455)) (-5 *2 (-2 (|:| |dpolys| (-645 (-247 *5 *6))) (|:| |coords| (-645 (-567))))) (-5 *1 (-474 *5 *6 *7)) (-5 *3 (-645 (-247 *5 *6))) (-4 *7 (-455)))) (-4367 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-645 (-484 *4 *5))) (-5 *3 (-645 (-865 *4))) (-14 *4 (-645 (-1178))) (-4 *5 (-455)) (-5 *1 (-474 *4 *5 *6)) (-4 *6 (-455)))) (-3901 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-865 *5))) (-14 *5 (-645 (-1178))) (-4 *6 (-455)) (-5 *2 (-645 (-645 (-247 *5 *6)))) (-5 *1 (-474 *5 *6 *7)) (-5 *3 (-645 (-247 *5 *6))) (-4 *7 (-455)))))
-(-10 -7 (-15 -3901 ((-645 (-645 (-247 |#1| |#2|))) (-645 (-247 |#1| |#2|)) (-645 (-865 |#1|)))) (-15 -4367 ((-3 (-645 (-484 |#1| |#2|)) "failed") (-645 (-484 |#1| |#2|)) (-645 (-865 |#1|)))) (-15 -3081 ((-2 (|:| |dpolys| (-645 (-247 |#1| |#2|))) (|:| |coords| (-645 (-567)))) (-645 (-247 |#1| |#2|)) (-645 (-865 |#1|)))))
-((-2109 (((-3 $ "failed") $) 11)) (-1823 (($ $ $) 23)) (-1485 (($ $ $) 24)) (-3060 (($ $ $) 9)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) 22)))
-(((-475 |#1|) (-10 -8 (-15 -1485 (|#1| |#1| |#1|)) (-15 -1823 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-567))) (-15 -3060 (|#1| |#1| |#1|)) (-15 -2109 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-772))) (-15 ** (|#1| |#1| (-923)))) (-476)) (T -475))
-NIL
-(-10 -8 (-15 -1485 (|#1| |#1| |#1|)) (-15 -1823 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-567))) (-15 -3060 (|#1| |#1| |#1|)) (-15 -2109 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-772))) (-15 ** (|#1| |#1| (-923))))
-((-2403 (((-112) $ $) 7)) (-2585 (($) 19 T CONST)) (-2109 (((-3 $ "failed") $) 16)) (-1433 (((-112) $) 18)) (-1419 (((-1160) $) 10)) (-2939 (($ $) 25)) (-3430 (((-1122) $) 11)) (-1823 (($ $ $) 22)) (-1485 (($ $ $) 21)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-1728 (($) 20 T CONST)) (-2936 (((-112) $ $) 6)) (-3060 (($ $ $) 24)) (** (($ $ (-923)) 14) (($ $ (-772)) 17) (($ $ (-567)) 23)) (* (($ $ $) 15)))
+((-1579 (((-3 (-645 (-484 |#1| |#2|)) "failed") (-645 (-484 |#1| |#2|)) (-645 (-865 |#1|))) 137)) (-3857 (((-645 (-645 (-247 |#1| |#2|))) (-645 (-247 |#1| |#2|)) (-645 (-865 |#1|))) 134)) (-2318 (((-2 (|:| |dpolys| (-645 (-247 |#1| |#2|))) (|:| |coords| (-645 (-567)))) (-645 (-247 |#1| |#2|)) (-645 (-865 |#1|))) 86)))
+(((-474 |#1| |#2| |#3|) (-10 -7 (-15 -3857 ((-645 (-645 (-247 |#1| |#2|))) (-645 (-247 |#1| |#2|)) (-645 (-865 |#1|)))) (-15 -1579 ((-3 (-645 (-484 |#1| |#2|)) "failed") (-645 (-484 |#1| |#2|)) (-645 (-865 |#1|)))) (-15 -2318 ((-2 (|:| |dpolys| (-645 (-247 |#1| |#2|))) (|:| |coords| (-645 (-567)))) (-645 (-247 |#1| |#2|)) (-645 (-865 |#1|))))) (-645 (-1179)) (-455) (-455)) (T -474))
+((-2318 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-865 *5))) (-14 *5 (-645 (-1179))) (-4 *6 (-455)) (-5 *2 (-2 (|:| |dpolys| (-645 (-247 *5 *6))) (|:| |coords| (-645 (-567))))) (-5 *1 (-474 *5 *6 *7)) (-5 *3 (-645 (-247 *5 *6))) (-4 *7 (-455)))) (-1579 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-645 (-484 *4 *5))) (-5 *3 (-645 (-865 *4))) (-14 *4 (-645 (-1179))) (-4 *5 (-455)) (-5 *1 (-474 *4 *5 *6)) (-4 *6 (-455)))) (-3857 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-865 *5))) (-14 *5 (-645 (-1179))) (-4 *6 (-455)) (-5 *2 (-645 (-645 (-247 *5 *6)))) (-5 *1 (-474 *5 *6 *7)) (-5 *3 (-645 (-247 *5 *6))) (-4 *7 (-455)))))
+(-10 -7 (-15 -3857 ((-645 (-645 (-247 |#1| |#2|))) (-645 (-247 |#1| |#2|)) (-645 (-865 |#1|)))) (-15 -1579 ((-3 (-645 (-484 |#1| |#2|)) "failed") (-645 (-484 |#1| |#2|)) (-645 (-865 |#1|)))) (-15 -2318 ((-2 (|:| |dpolys| (-645 (-247 |#1| |#2|))) (|:| |coords| (-645 (-567)))) (-645 (-247 |#1| |#2|)) (-645 (-865 |#1|)))))
+((-3588 (((-3 $ "failed") $) 11)) (-1672 (($ $ $) 23)) (-3997 (($ $ $) 24)) (-3069 (($ $ $) 9)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) 22)))
+(((-475 |#1|) (-10 -8 (-15 -3997 (|#1| |#1| |#1|)) (-15 -1672 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-567))) (-15 -3069 (|#1| |#1| |#1|)) (-15 -3588 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-772))) (-15 ** (|#1| |#1| (-923)))) (-476)) (T -475))
+NIL
+(-10 -8 (-15 -3997 (|#1| |#1| |#1|)) (-15 -1672 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-567))) (-15 -3069 (|#1| |#1| |#1|)) (-15 -3588 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-772))) (-15 ** (|#1| |#1| (-923))))
+((-2412 (((-112) $ $) 7)) (-3647 (($) 19 T CONST)) (-3588 (((-3 $ "failed") $) 16)) (-4346 (((-112) $) 18)) (-2516 (((-1161) $) 10)) (-2949 (($ $) 25)) (-3437 (((-1122) $) 11)) (-1672 (($ $ $) 22)) (-3997 (($ $ $) 21)) (-4129 (((-863) $) 12)) (-3357 (((-112) $ $) 9)) (-1744 (($) 20 T CONST)) (-2946 (((-112) $ $) 6)) (-3069 (($ $ $) 24)) (** (($ $ (-923)) 14) (($ $ (-772)) 17) (($ $ (-567)) 23)) (* (($ $ $) 15)))
(((-476) (-140)) (T -476))
-((-2939 (*1 *1 *1) (-4 *1 (-476))) (-3060 (*1 *1 *1 *1) (-4 *1 (-476))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-476)) (-5 *2 (-567)))) (-1823 (*1 *1 *1 *1) (-4 *1 (-476))) (-1485 (*1 *1 *1 *1) (-4 *1 (-476))))
-(-13 (-727) (-10 -8 (-15 -2939 ($ $)) (-15 -3060 ($ $ $)) (-15 ** ($ $ (-567))) (-6 -4415) (-15 -1823 ($ $ $)) (-15 -1485 ($ $ $))))
+((-2949 (*1 *1 *1) (-4 *1 (-476))) (-3069 (*1 *1 *1 *1) (-4 *1 (-476))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-476)) (-5 *2 (-567)))) (-1672 (*1 *1 *1 *1) (-4 *1 (-476))) (-3997 (*1 *1 *1 *1) (-4 *1 (-476))))
+(-13 (-727) (-10 -8 (-15 -2949 ($ $)) (-15 -3069 ($ $ $)) (-15 ** ($ $ (-567))) (-6 -4419) (-15 -1672 ($ $ $)) (-15 -3997 ($ $ $))))
(((-102) . T) ((-614 (-863)) . T) ((-727) . T) ((-1114) . T) ((-1102) . T))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-2847 (((-645 (-1084)) $) NIL)) (-3644 (((-1178) $) 18)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-4381 (($ $) NIL (|has| |#1| (-559)))) (-3949 (((-112) $) NIL (|has| |#1| (-559)))) (-1950 (($ $ (-410 (-567))) NIL) (($ $ (-410 (-567)) (-410 (-567))) NIL)) (-1843 (((-1158 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|))) $) NIL)) (-3146 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3012 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3472 (((-3 $ "failed") $ $) NIL)) (-3248 (($ $) NIL (|has| |#1| (-365)))) (-2908 (((-421 $) $) NIL (|has| |#1| (-365)))) (-2716 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3609 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3128 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2987 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1306 (($ (-772) (-1158 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|)))) NIL)) (-3166 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3035 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2585 (($) NIL T CONST)) (-2349 (($ $ $) NIL (|has| |#1| (-365)))) (-3014 (($ $) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-2360 (($ $ $) NIL (|has| |#1| (-365)))) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-3184 (((-112) $) NIL (|has| |#1| (-365)))) (-2762 (((-112) $) NIL)) (-1482 (($) NIL (|has| |#1| (-38 (-410 (-567)))))) (-4384 (((-410 (-567)) $) NIL) (((-410 (-567)) $ (-410 (-567))) NIL)) (-1433 (((-112) $) NIL)) (-2651 (($ $ (-567)) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3807 (($ $ (-923)) NIL) (($ $ (-410 (-567))) NIL)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-2843 (((-112) $) NIL)) (-2824 (($ |#1| (-410 (-567))) NIL) (($ $ (-1084) (-410 (-567))) NIL) (($ $ (-645 (-1084)) (-645 (-410 (-567)))) NIL)) (-3829 (($ (-1 |#1| |#1|) $) 25)) (-3063 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2976 (($ $) NIL)) (-2989 ((|#1| $) NIL)) (-2740 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-1419 (((-1160) $) NIL)) (-2939 (($ $) NIL (|has| |#1| (-365)))) (-2416 (($ $) 29 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1178)) 35 (-2800 (-12 (|has| |#1| (-15 -2416 (|#1| |#1| (-1178)))) (|has| |#1| (-15 -2847 ((-645 (-1178)) |#1|))) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-961)) (|has| |#1| (-1203))))) (($ $ (-1264 |#2|)) 30 (|has| |#1| (-38 (-410 (-567)))))) (-3430 (((-1122) $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#1| (-365)))) (-2774 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2706 (((-421 $) $) NIL (|has| |#1| (-365)))) (-3402 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL (|has| |#1| (-365)))) (-2410 (($ $ (-410 (-567))) NIL)) (-2391 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-3946 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2631 (((-1158 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))))) (-1990 (((-772) $) NIL (|has| |#1| (-365)))) (-1787 ((|#1| $ (-410 (-567))) NIL) (($ $ $) NIL (|has| (-410 (-567)) (-1114)))) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL (|has| |#1| (-365)))) (-1593 (($ $ (-645 (-1178)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-1178) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-645 (-1178))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-1178)) 28 (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) 14 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $ (-1264 |#2|)) 16)) (-3077 (((-410 (-567)) $) NIL)) (-3175 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3049 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3156 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3023 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3137 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2999 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2192 (($ $) NIL)) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1264 |#2|)) NIL) (($ (-1253 |#1| |#2| |#3|)) 9) (($ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $) NIL (|has| |#1| (-559)))) (-4136 ((|#1| $ (-410 (-567))) NIL)) (-1903 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-4221 (((-772)) NIL T CONST)) (-2166 ((|#1| $) 21)) (-1745 (((-112) $ $) NIL)) (-3200 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3084 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3816 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3183 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3062 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3221 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3106 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3050 ((|#1| $ (-410 (-567))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))) (|has| |#1| (-15 -4132 (|#1| (-1178))))))) (-3785 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3118 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3211 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3095 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3193 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3074 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1716 (($) NIL T CONST)) (-1728 (($) NIL T CONST)) (-2637 (($ $ (-645 (-1178)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-1178) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-645 (-1178))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-1178)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3045 (($ $) NIL) (($ $ $) 27)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 26) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))))
-(((-477 |#1| |#2| |#3|) (-13 (-1249 |#1|) (-10 -8 (-15 -4132 ($ (-1264 |#2|))) (-15 -4132 ($ (-1253 |#1| |#2| |#3|))) (-15 -1593 ($ $ (-1264 |#2|))) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -2416 ($ $ (-1264 |#2|))) |%noBranch|))) (-1051) (-1178) |#1|) (T -477))
-((-4132 (*1 *1 *2) (-12 (-5 *2 (-1264 *4)) (-14 *4 (-1178)) (-5 *1 (-477 *3 *4 *5)) (-4 *3 (-1051)) (-14 *5 *3))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-1253 *3 *4 *5)) (-4 *3 (-1051)) (-14 *4 (-1178)) (-14 *5 *3) (-5 *1 (-477 *3 *4 *5)))) (-1593 (*1 *1 *1 *2) (-12 (-5 *2 (-1264 *4)) (-14 *4 (-1178)) (-5 *1 (-477 *3 *4 *5)) (-4 *3 (-1051)) (-14 *5 *3))) (-2416 (*1 *1 *1 *2) (-12 (-5 *2 (-1264 *4)) (-14 *4 (-1178)) (-5 *1 (-477 *3 *4 *5)) (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)) (-14 *5 *3))))
-(-13 (-1249 |#1|) (-10 -8 (-15 -4132 ($ (-1264 |#2|))) (-15 -4132 ($ (-1253 |#1| |#2| |#3|))) (-15 -1593 ($ $ (-1264 |#2|))) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -2416 ($ $ (-1264 |#2|))) |%noBranch|)))
-((-2403 (((-112) $ $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-2835 (($) NIL) (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL)) (-1783 (((-1273) $ |#1| |#1|) NIL (|has| $ (-6 -4419)))) (-3445 (((-112) $ (-772)) NIL)) (-4284 ((|#2| $ |#1| |#2|) 18)) (-2839 (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-3350 (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-4019 (((-3 |#2| "failed") |#1| $) 19)) (-2585 (($) NIL T CONST)) (-2444 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102))))) (-2539 (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL (|has| $ (-6 -4418))) (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-3 |#2| "failed") |#1| $) 16)) (-3238 (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-2477 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) NIL (|has| $ (-6 -4418))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-3741 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4419)))) (-3680 ((|#2| $ |#1|) NIL)) (-2777 (((-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-645 |#2|) $) NIL (|has| $ (-6 -4418)))) (-2077 (((-112) $ (-772)) NIL)) (-4069 ((|#1| $) NIL (|has| |#1| (-851)))) (-2279 (((-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-645 |#2|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#2| (-1102))))) (-2266 ((|#1| $) NIL (|has| |#1| (-851)))) (-3731 (($ (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4419))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-1391 (((-645 |#1|) $) NIL)) (-4251 (((-112) |#1| $) NIL)) (-1566 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL)) (-2531 (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL)) (-1789 (((-645 |#1|) $) NIL)) (-2996 (((-112) |#1| $) NIL)) (-3430 (((-1122) $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-2409 ((|#2| $) NIL (|has| |#1| (-851)))) (-4128 (((-3 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) "failed") (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL)) (-3986 (($ $ |#2|) NIL (|has| $ (-6 -4419)))) (-1793 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL)) (-3025 (((-112) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))))) NIL (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-295 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) NIL (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))))) (-3092 (((-112) $ $) NIL)) (-1794 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#2| (-1102))))) (-2339 (((-645 |#2|) $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) NIL)) (-1787 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-2718 (($) NIL) (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL)) (-3439 (((-772) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-772) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (((-772) |#2| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#2| (-1102)))) (((-772) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4418)))) (-4305 (($ $) NIL)) (-3893 (((-539) $) NIL (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-615 (-539))))) (-4147 (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL)) (-4132 (((-863) $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-614 (-863))) (|has| |#2| (-614 (-863)))))) (-1745 (((-112) $ $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-3551 (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL)) (-1853 (((-112) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-2414 (((-772) $) NIL (|has| $ (-6 -4418)))))
-(((-478 |#1| |#2| |#3| |#4|) (-1194 |#1| |#2|) (-1102) (-1102) (-1194 |#1| |#2|) |#2|) (T -478))
-NIL
-(-1194 |#1| |#2|)
-((-2403 (((-112) $ $) NIL)) (-3487 (((-645 (-2 (|:| -3995 $) (|:| -3823 (-645 |#4|)))) (-645 |#4|)) NIL)) (-3244 (((-645 $) (-645 |#4|)) NIL)) (-2847 (((-645 |#3|) $) NIL)) (-2017 (((-112) $) NIL)) (-3623 (((-112) $) NIL (|has| |#1| (-559)))) (-1326 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3722 ((|#4| |#4| $) NIL)) (-4396 (((-2 (|:| |under| $) (|:| -2780 $) (|:| |upper| $)) $ |#3|) NIL)) (-3445 (((-112) $ (-772)) NIL)) (-3350 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4418))) (((-3 |#4| "failed") $ |#3|) NIL)) (-2585 (($) NIL T CONST)) (-1490 (((-112) $) 29 (|has| |#1| (-559)))) (-2752 (((-112) $ $) NIL (|has| |#1| (-559)))) (-4224 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3547 (((-112) $) NIL (|has| |#1| (-559)))) (-1441 (((-645 |#4|) (-645 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1724 (((-645 |#4|) (-645 |#4|) $) NIL (|has| |#1| (-559)))) (-3197 (((-645 |#4|) (-645 |#4|) $) NIL (|has| |#1| (-559)))) (-3753 (((-3 $ "failed") (-645 |#4|)) NIL)) (-2038 (($ (-645 |#4|)) NIL)) (-2421 (((-3 $ "failed") $) 45)) (-1999 ((|#4| |#4| $) NIL)) (-2444 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#4| (-1102))))) (-3238 (($ |#4| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#4| (-1102)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4418)))) (-4194 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-559)))) (-3786 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3730 ((|#4| |#4| $) NIL)) (-2477 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4418)) (|has| |#4| (-1102)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4418))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4418))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1585 (((-2 (|:| -3995 (-645 |#4|)) (|:| -3823 (-645 |#4|))) $) NIL)) (-2777 (((-645 |#4|) $) 18 (|has| $ (-6 -4418)))) (-1664 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1679 ((|#3| $) 38)) (-2077 (((-112) $ (-772)) NIL)) (-2279 (((-645 |#4|) $) 19 (|has| $ (-6 -4418)))) (-4337 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4418)) (|has| |#4| (-1102))))) (-3731 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#4| |#4|) $) 23)) (-2826 (((-645 |#3|) $) NIL)) (-2808 (((-112) |#3| $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL)) (-3257 (((-3 |#4| "failed") $) 42)) (-4051 (((-645 |#4|) $) NIL)) (-1791 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3159 ((|#4| |#4| $) NIL)) (-3392 (((-112) $ $) NIL)) (-2430 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-559)))) (-2554 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4164 ((|#4| |#4| $) NIL)) (-3430 (((-1122) $) NIL)) (-2409 (((-3 |#4| "failed") $) 40)) (-4128 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4077 (((-3 $ "failed") $ |#4|) 58)) (-2410 (($ $ |#4|) NIL)) (-3025 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 |#4|) (-645 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-295 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-645 (-295 |#4|))) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))))) (-3092 (((-112) $ $) NIL)) (-3572 (((-112) $) 17)) (-3498 (($) 14)) (-3077 (((-772) $) NIL)) (-3439 (((-772) |#4| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#4| (-1102)))) (((-772) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4418)))) (-4305 (($ $) 13)) (-3893 (((-539) $) NIL (|has| |#4| (-615 (-539))))) (-4147 (($ (-645 |#4|)) 22)) (-2397 (($ $ |#3|) 52)) (-2120 (($ $ |#3|) 54)) (-4129 (($ $) NIL)) (-2813 (($ $ |#3|) NIL)) (-4132 (((-863) $) 35) (((-645 |#4|) $) 46)) (-2073 (((-772) $) NIL (|has| |#3| (-370)))) (-1745 (((-112) $ $) NIL)) (-2220 (((-3 (-2 (|:| |bas| $) (|:| -2262 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2262 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2668 (((-112) $ (-1 (-112) |#4| (-645 |#4|))) NIL)) (-1853 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4418)))) (-2385 (((-645 |#3|) $) NIL)) (-2012 (((-112) |#3| $) NIL)) (-2936 (((-112) $ $) NIL)) (-2414 (((-772) $) NIL (|has| $ (-6 -4418)))))
-(((-479 |#1| |#2| |#3| |#4|) (-1211 |#1| |#2| |#3| |#4|) (-559) (-794) (-851) (-1067 |#1| |#2| |#3|)) (T -479))
-NIL
-(-1211 |#1| |#2| |#3| |#4|)
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-3248 (($ $) NIL)) (-2908 (((-421 $) $) NIL)) (-3609 (((-112) $ $) NIL)) (-2585 (($) NIL T CONST)) (-3753 (((-3 (-567) "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL)) (-2038 (((-567) $) NIL) (((-410 (-567)) $) NIL)) (-2349 (($ $ $) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-2360 (($ $ $) NIL)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-3184 (((-112) $) NIL)) (-1482 (($) 17)) (-1433 (((-112) $) NIL)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2740 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) NIL)) (-3430 (((-1122) $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-2774 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2706 (((-421 $) $) NIL)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2391 (((-3 $ "failed") $ $) NIL)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1990 (((-772) $) NIL)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL)) (-3893 (((-381) $) 21) (((-225) $) 24) (((-410 (-1174 (-567))) $) 18) (((-539) $) 53)) (-4132 (((-863) $) 51) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (((-225) $) 23) (((-381) $) 20)) (-4221 (((-772)) NIL T CONST)) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL)) (-1716 (($) 37 T CONST)) (-1728 (($) 8 T CONST)) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ $) NIL)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL)))
-(((-480) (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))) (-1024) (-614 (-225)) (-614 (-381)) (-615 (-410 (-1174 (-567)))) (-615 (-539)) (-10 -8 (-15 -1482 ($))))) (T -480))
-((-1482 (*1 *1) (-5 *1 (-480))))
-(-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))) (-1024) (-614 (-225)) (-614 (-381)) (-615 (-410 (-1174 (-567)))) (-615 (-539)) (-10 -8 (-15 -1482 ($))))
-((-2403 (((-112) $ $) NIL)) (-4104 (((-1137) $) 11)) (-4089 (((-1137) $) 9)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 17) (($ (-1183)) NIL) (((-1183) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)))
-(((-481) (-13 (-1085) (-10 -8 (-15 -4089 ((-1137) $)) (-15 -4104 ((-1137) $))))) (T -481))
-((-4089 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-481)))) (-4104 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-481)))))
-(-13 (-1085) (-10 -8 (-15 -4089 ((-1137) $)) (-15 -4104 ((-1137) $))))
-((-2403 (((-112) $ $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-2835 (($) NIL) (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL)) (-1783 (((-1273) $ |#1| |#1|) NIL (|has| $ (-6 -4419)))) (-3445 (((-112) $ (-772)) NIL)) (-4284 ((|#2| $ |#1| |#2|) 16)) (-2839 (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-3350 (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-4019 (((-3 |#2| "failed") |#1| $) 20)) (-2585 (($) NIL T CONST)) (-2444 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102))))) (-2539 (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL (|has| $ (-6 -4418))) (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-3 |#2| "failed") |#1| $) 18)) (-3238 (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-2477 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) NIL (|has| $ (-6 -4418))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-3741 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4419)))) (-3680 ((|#2| $ |#1|) NIL)) (-2777 (((-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-645 |#2|) $) NIL (|has| $ (-6 -4418)))) (-2077 (((-112) $ (-772)) NIL)) (-4069 ((|#1| $) NIL (|has| |#1| (-851)))) (-2279 (((-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-645 |#2|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#2| (-1102))))) (-2266 ((|#1| $) NIL (|has| |#1| (-851)))) (-3731 (($ (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4419))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-1391 (((-645 |#1|) $) 13)) (-4251 (((-112) |#1| $) NIL)) (-1566 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL)) (-2531 (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL)) (-1789 (((-645 |#1|) $) NIL)) (-2996 (((-112) |#1| $) NIL)) (-3430 (((-1122) $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-2409 ((|#2| $) NIL (|has| |#1| (-851)))) (-4128 (((-3 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) "failed") (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL)) (-3986 (($ $ |#2|) NIL (|has| $ (-6 -4419)))) (-1793 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL)) (-3025 (((-112) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))))) NIL (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-295 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) NIL (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))))) (-3092 (((-112) $ $) NIL)) (-1794 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#2| (-1102))))) (-2339 (((-645 |#2|) $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) 19)) (-1787 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2718 (($) NIL) (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL)) (-3439 (((-772) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-772) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (((-772) |#2| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#2| (-1102)))) (((-772) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4418)))) (-4305 (($ $) NIL)) (-3893 (((-539) $) NIL (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-615 (-539))))) (-4147 (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL)) (-4132 (((-863) $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-614 (-863))) (|has| |#2| (-614 (-863)))))) (-1745 (((-112) $ $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-3551 (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL)) (-1853 (((-112) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 11 (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-2414 (((-772) $) 15 (|has| $ (-6 -4418)))))
-(((-482 |#1| |#2| |#3|) (-13 (-1194 |#1| |#2|) (-10 -7 (-6 -4418))) (-1102) (-1102) (-1160)) (T -482))
-NIL
-(-13 (-1194 |#1| |#2|) (-10 -7 (-6 -4418)))
-((-3511 (((-567) (-567) (-567)) 19)) (-2756 (((-112) (-567) (-567) (-567) (-567)) 28)) (-3291 (((-1268 (-645 (-567))) (-772) (-772)) 44)))
-(((-483) (-10 -7 (-15 -3511 ((-567) (-567) (-567))) (-15 -2756 ((-112) (-567) (-567) (-567) (-567))) (-15 -3291 ((-1268 (-645 (-567))) (-772) (-772))))) (T -483))
-((-3291 (*1 *2 *3 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1268 (-645 (-567)))) (-5 *1 (-483)))) (-2756 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-567)) (-5 *2 (-112)) (-5 *1 (-483)))) (-3511 (*1 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-483)))))
-(-10 -7 (-15 -3511 ((-567) (-567) (-567))) (-15 -2756 ((-112) (-567) (-567) (-567) (-567))) (-15 -3291 ((-1268 (-645 (-567))) (-772) (-772))))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-2847 (((-645 (-865 |#1|)) $) NIL)) (-2675 (((-1174 $) $ (-865 |#1|)) NIL) (((-1174 |#2|) $) NIL)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL (|has| |#2| (-559)))) (-4381 (($ $) NIL (|has| |#2| (-559)))) (-3949 (((-112) $) NIL (|has| |#2| (-559)))) (-1468 (((-772) $) NIL) (((-772) $ (-645 (-865 |#1|))) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-4226 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-911)))) (-3248 (($ $) NIL (|has| |#2| (-455)))) (-2908 (((-421 $) $) NIL (|has| |#2| (-455)))) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-911)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 |#2| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#2| (-1040 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#2| (-1040 (-567)))) (((-3 (-865 |#1|) "failed") $) NIL)) (-2038 ((|#2| $) NIL) (((-410 (-567)) $) NIL (|has| |#2| (-1040 (-410 (-567))))) (((-567) $) NIL (|has| |#2| (-1040 (-567)))) (((-865 |#1|) $) NIL)) (-2951 (($ $ $ (-865 |#1|)) NIL (|has| |#2| (-172)))) (-1464 (($ $ (-645 (-567))) NIL)) (-3014 (($ $) NIL)) (-2630 (((-690 (-567)) (-690 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -2316 (-690 |#2|)) (|:| |vec| (-1268 |#2|))) (-690 $) (-1268 $)) NIL) (((-690 |#2|) (-690 $)) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-3501 (($ $) NIL (|has| |#2| (-455))) (($ $ (-865 |#1|)) NIL (|has| |#2| (-455)))) (-3000 (((-645 $) $) NIL)) (-3184 (((-112) $) NIL (|has| |#2| (-911)))) (-2320 (($ $ |#2| (-485 (-2414 |#1|) (-772)) $) NIL)) (-4303 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (-12 (|has| (-865 |#1|) (-888 (-381))) (|has| |#2| (-888 (-381))))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (-12 (|has| (-865 |#1|) (-888 (-567))) (|has| |#2| (-888 (-567)))))) (-1433 (((-112) $) NIL)) (-2695 (((-772) $) NIL)) (-2836 (($ (-1174 |#2|) (-865 |#1|)) NIL) (($ (-1174 $) (-865 |#1|)) NIL)) (-1709 (((-645 $) $) NIL)) (-2843 (((-112) $) NIL)) (-2824 (($ |#2| (-485 (-2414 |#1|) (-772))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-1621 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $ (-865 |#1|)) NIL)) (-2656 (((-485 (-2414 |#1|) (-772)) $) NIL) (((-772) $ (-865 |#1|)) NIL) (((-645 (-772)) $ (-645 (-865 |#1|))) NIL)) (-3273 (($ (-1 (-485 (-2414 |#1|) (-772)) (-485 (-2414 |#1|) (-772))) $) NIL)) (-3829 (($ (-1 |#2| |#2|) $) NIL)) (-3046 (((-3 (-865 |#1|) "failed") $) NIL)) (-2976 (($ $) NIL)) (-2989 ((|#2| $) NIL)) (-2740 (($ (-645 $)) NIL (|has| |#2| (-455))) (($ $ $) NIL (|has| |#2| (-455)))) (-1419 (((-1160) $) NIL)) (-2056 (((-3 (-645 $) "failed") $) NIL)) (-3671 (((-3 (-645 $) "failed") $) NIL)) (-3798 (((-3 (-2 (|:| |var| (-865 |#1|)) (|:| -3458 (-772))) "failed") $) NIL)) (-3430 (((-1122) $) NIL)) (-2949 (((-112) $) NIL)) (-2962 ((|#2| $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#2| (-455)))) (-2774 (($ (-645 $)) NIL (|has| |#2| (-455))) (($ $ $) NIL (|has| |#2| (-455)))) (-2435 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-911)))) (-3517 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-911)))) (-2706 (((-421 $) $) NIL (|has| |#2| (-911)))) (-2391 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-559))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-559)))) (-2631 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-865 |#1|) |#2|) NIL) (($ $ (-645 (-865 |#1|)) (-645 |#2|)) NIL) (($ $ (-865 |#1|) $) NIL) (($ $ (-645 (-865 |#1|)) (-645 $)) NIL)) (-3788 (($ $ (-865 |#1|)) NIL (|has| |#2| (-172)))) (-1593 (($ $ (-865 |#1|)) NIL) (($ $ (-645 (-865 |#1|))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-3077 (((-485 (-2414 |#1|) (-772)) $) NIL) (((-772) $ (-865 |#1|)) NIL) (((-645 (-772)) $ (-645 (-865 |#1|))) NIL)) (-3893 (((-894 (-381)) $) NIL (-12 (|has| (-865 |#1|) (-615 (-894 (-381)))) (|has| |#2| (-615 (-894 (-381)))))) (((-894 (-567)) $) NIL (-12 (|has| (-865 |#1|) (-615 (-894 (-567)))) (|has| |#2| (-615 (-894 (-567)))))) (((-539) $) NIL (-12 (|has| (-865 |#1|) (-615 (-539))) (|has| |#2| (-615 (-539)))))) (-4358 ((|#2| $) NIL (|has| |#2| (-455))) (($ $ (-865 |#1|)) NIL (|has| |#2| (-455)))) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-911))))) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ |#2|) NIL) (($ (-865 |#1|)) NIL) (($ (-410 (-567))) NIL (-2800 (|has| |#2| (-38 (-410 (-567)))) (|has| |#2| (-1040 (-410 (-567)))))) (($ $) NIL (|has| |#2| (-559)))) (-3032 (((-645 |#2|) $) NIL)) (-4136 ((|#2| $ (-485 (-2414 |#1|) (-772))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-1903 (((-3 $ "failed") $) NIL (-2800 (-12 (|has| $ (-145)) (|has| |#2| (-911))) (|has| |#2| (-145))))) (-4221 (((-772)) NIL T CONST)) (-4176 (($ $ $ (-772)) NIL (|has| |#2| (-172)))) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL (|has| |#2| (-559)))) (-1716 (($) NIL T CONST)) (-1728 (($) NIL T CONST)) (-2637 (($ $ (-865 |#1|)) NIL) (($ $ (-645 (-865 |#1|))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL (|has| |#2| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#2| (-38 (-410 (-567))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-484 |#1| |#2|) (-13 (-951 |#2| (-485 (-2414 |#1|) (-772)) (-865 |#1|)) (-10 -8 (-15 -1464 ($ $ (-645 (-567)))))) (-645 (-1178)) (-1051)) (T -484))
-((-1464 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-484 *3 *4)) (-14 *3 (-645 (-1178))) (-4 *4 (-1051)))))
-(-13 (-951 |#2| (-485 (-2414 |#1|) (-772)) (-865 |#1|)) (-10 -8 (-15 -1464 ($ $ (-645 (-567))))))
-((-2403 (((-112) $ $) NIL (|has| |#2| (-1102)))) (-2460 (((-112) $) NIL (|has| |#2| (-131)))) (-4387 (($ (-923)) NIL (|has| |#2| (-1051)))) (-1783 (((-1273) $ (-567) (-567)) NIL (|has| $ (-6 -4419)))) (-4016 (($ $ $) NIL (|has| |#2| (-794)))) (-3472 (((-3 $ "failed") $ $) NIL (|has| |#2| (-131)))) (-3445 (((-112) $ (-772)) NIL)) (-2375 (((-772)) NIL (|has| |#2| (-370)))) (-1750 (((-567) $) NIL (|has| |#2| (-849)))) (-4284 ((|#2| $ (-567) |#2|) NIL (|has| $ (-6 -4419)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 (-567) "failed") $) NIL (-12 (|has| |#2| (-1040 (-567))) (|has| |#2| (-1102)))) (((-3 (-410 (-567)) "failed") $) NIL (-12 (|has| |#2| (-1040 (-410 (-567)))) (|has| |#2| (-1102)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1102)))) (-2038 (((-567) $) NIL (-12 (|has| |#2| (-1040 (-567))) (|has| |#2| (-1102)))) (((-410 (-567)) $) NIL (-12 (|has| |#2| (-1040 (-410 (-567)))) (|has| |#2| (-1102)))) ((|#2| $) NIL (|has| |#2| (-1102)))) (-2630 (((-690 (-567)) (-690 $)) NIL (-12 (|has| |#2| (-640 (-567))) (|has| |#2| (-1051)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (-12 (|has| |#2| (-640 (-567))) (|has| |#2| (-1051)))) (((-2 (|:| -2316 (-690 |#2|)) (|:| |vec| (-1268 |#2|))) (-690 $) (-1268 $)) NIL (|has| |#2| (-1051))) (((-690 |#2|) (-690 $)) NIL (|has| |#2| (-1051)))) (-2109 (((-3 $ "failed") $) NIL (|has| |#2| (-727)))) (-1348 (($) NIL (|has| |#2| (-370)))) (-3741 ((|#2| $ (-567) |#2|) NIL (|has| $ (-6 -4419)))) (-3680 ((|#2| $ (-567)) 15)) (-4336 (((-112) $) NIL (|has| |#2| (-849)))) (-2777 (((-645 |#2|) $) NIL (|has| $ (-6 -4418)))) (-1433 (((-112) $) NIL (|has| |#2| (-727)))) (-3494 (((-112) $) NIL (|has| |#2| (-849)))) (-2077 (((-112) $ (-772)) NIL)) (-4069 (((-567) $) NIL (|has| (-567) (-851)))) (-1354 (($ $ $) NIL (-2800 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-2279 (((-645 |#2|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#2| (-1102))))) (-2266 (((-567) $) NIL (|has| (-567) (-851)))) (-2981 (($ $ $) NIL (-2800 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-3731 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#2| |#2|) $) NIL)) (-4249 (((-923) $) NIL (|has| |#2| (-370)))) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL (|has| |#2| (-1102)))) (-1789 (((-645 (-567)) $) NIL)) (-2996 (((-112) (-567) $) NIL)) (-3768 (($ (-923)) NIL (|has| |#2| (-370)))) (-3430 (((-1122) $) NIL (|has| |#2| (-1102)))) (-2409 ((|#2| $) NIL (|has| (-567) (-851)))) (-3986 (($ $ |#2|) NIL (|has| $ (-6 -4419)))) (-3025 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))))) (-3092 (((-112) $ $) NIL)) (-1794 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#2| (-1102))))) (-2339 (((-645 |#2|) $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) NIL)) (-1787 ((|#2| $ (-567) |#2|) NIL) ((|#2| $ (-567)) NIL)) (-3366 ((|#2| $ $) NIL (|has| |#2| (-1051)))) (-2749 (($ (-1268 |#2|)) NIL)) (-1879 (((-134)) NIL (|has| |#2| (-365)))) (-1593 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1051)))) (($ $ (-772)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1051)))) (($ $ (-1178)) NIL (-12 (|has| |#2| (-902 (-1178))) (|has| |#2| (-1051)))) (($ $ (-645 (-1178))) NIL (-12 (|has| |#2| (-902 (-1178))) (|has| |#2| (-1051)))) (($ $ (-1178) (-772)) NIL (-12 (|has| |#2| (-902 (-1178))) (|has| |#2| (-1051)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (-12 (|has| |#2| (-902 (-1178))) (|has| |#2| (-1051)))) (($ $ (-1 |#2| |#2|) (-772)) NIL (|has| |#2| (-1051))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1051)))) (-3439 (((-772) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4418))) (((-772) |#2| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#2| (-1102))))) (-4305 (($ $) NIL)) (-4132 (((-1268 |#2|) $) NIL) (($ (-567)) NIL (-2800 (-12 (|has| |#2| (-1040 (-567))) (|has| |#2| (-1102))) (|has| |#2| (-1051)))) (($ (-410 (-567))) NIL (-12 (|has| |#2| (-1040 (-410 (-567)))) (|has| |#2| (-1102)))) (($ |#2|) NIL (|has| |#2| (-1102))) (((-863) $) NIL (|has| |#2| (-614 (-863))))) (-4221 (((-772)) NIL (|has| |#2| (-1051)) CONST)) (-1745 (((-112) $ $) NIL (|has| |#2| (-1102)))) (-1853 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4418)))) (-2219 (($ $) NIL (|has| |#2| (-849)))) (-1716 (($) NIL (|has| |#2| (-131)) CONST)) (-1728 (($) NIL (|has| |#2| (-727)) CONST)) (-2637 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1051)))) (($ $ (-772)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1051)))) (($ $ (-1178)) NIL (-12 (|has| |#2| (-902 (-1178))) (|has| |#2| (-1051)))) (($ $ (-645 (-1178))) NIL (-12 (|has| |#2| (-902 (-1178))) (|has| |#2| (-1051)))) (($ $ (-1178) (-772)) NIL (-12 (|has| |#2| (-902 (-1178))) (|has| |#2| (-1051)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (-12 (|has| |#2| (-902 (-1178))) (|has| |#2| (-1051)))) (($ $ (-1 |#2| |#2|) (-772)) NIL (|has| |#2| (-1051))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1051)))) (-2997 (((-112) $ $) NIL (-2800 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-2971 (((-112) $ $) NIL (-2800 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-2936 (((-112) $ $) NIL (|has| |#2| (-1102)))) (-2984 (((-112) $ $) NIL (-2800 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-2958 (((-112) $ $) 21 (-2800 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-3060 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3045 (($ $ $) NIL (|has| |#2| (-1051))) (($ $) NIL (|has| |#2| (-1051)))) (-3033 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-772)) NIL (|has| |#2| (-727))) (($ $ (-923)) NIL (|has| |#2| (-727)))) (* (($ (-567) $) NIL (|has| |#2| (-1051))) (($ $ $) NIL (|has| |#2| (-727))) (($ $ |#2|) NIL (|has| |#2| (-727))) (($ |#2| $) NIL (|has| |#2| (-727))) (($ (-772) $) NIL (|has| |#2| (-131))) (($ (-923) $) NIL (|has| |#2| (-25)))) (-2414 (((-772) $) NIL (|has| $ (-6 -4418)))))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-2859 (((-645 (-1084)) $) NIL)) (-3653 (((-1179) $) 18)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-4287 (($ $) NIL (|has| |#1| (-559)))) (-2286 (((-112) $) NIL (|has| |#1| (-559)))) (-3748 (($ $ (-410 (-567))) NIL) (($ $ (-410 (-567)) (-410 (-567))) NIL)) (-3006 (((-1159 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|))) $) NIL)) (-3164 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3032 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2376 (((-3 $ "failed") $ $) NIL)) (-3659 (($ $) NIL (|has| |#1| (-365)))) (-3597 (((-421 $) $) NIL (|has| |#1| (-365)))) (-2728 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3696 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3145 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3008 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1317 (($ (-772) (-1159 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|)))) NIL)) (-3182 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3057 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3647 (($) NIL T CONST)) (-2357 (($ $ $) NIL (|has| |#1| (-365)))) (-3023 (($ $) NIL)) (-3588 (((-3 $ "failed") $) NIL)) (-2368 (($ $ $) NIL (|has| |#1| (-365)))) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-3502 (((-112) $) NIL (|has| |#1| (-365)))) (-3086 (((-112) $) NIL)) (-1484 (($) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3362 (((-410 (-567)) $) NIL) (((-410 (-567)) $ (-410 (-567))) NIL)) (-4346 (((-112) $) NIL)) (-3698 (($ $ (-567)) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1343 (($ $ (-923)) NIL) (($ $ (-410 (-567))) NIL)) (-1469 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-3770 (((-112) $) NIL)) (-2836 (($ |#1| (-410 (-567))) NIL) (($ $ (-1084) (-410 (-567))) NIL) (($ $ (-645 (-1084)) (-645 (-410 (-567)))) NIL)) (-3841 (($ (-1 |#1| |#1|) $) 25)) (-3072 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2985 (($ $) NIL)) (-2996 ((|#1| $) NIL)) (-2751 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2516 (((-1161) $) NIL)) (-2949 (($ $) NIL (|has| |#1| (-365)))) (-4083 (($ $) 29 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1179)) 35 (-2811 (-12 (|has| |#1| (-15 -4083 (|#1| |#1| (-1179)))) (|has| |#1| (-15 -2859 ((-645 (-1179)) |#1|))) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-961)) (|has| |#1| (-1204))))) (($ $ (-1265 |#2|)) 30 (|has| |#1| (-38 (-410 (-567)))))) (-3437 (((-1122) $) NIL)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| |#1| (-365)))) (-2785 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2717 (((-421 $) $) NIL (|has| |#1| (-365)))) (-2905 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) NIL (|has| |#1| (-365)))) (-1874 (($ $ (-410 (-567))) NIL)) (-2400 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-2372 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-3955 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2642 (((-1159 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))))) (-2460 (((-772) $) NIL (|has| |#1| (-365)))) (-1801 ((|#1| $ (-410 (-567))) NIL) (($ $ $) NIL (|has| (-410 (-567)) (-1114)))) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) NIL (|has| |#1| (-365)))) (-1616 (($ $ (-645 (-1179)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-1179) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-645 (-1179))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-1179)) 28 (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) 14 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $ (-1265 |#2|)) 16)) (-3104 (((-410 (-567)) $) NIL)) (-3192 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3071 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3173 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3043 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3155 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3021 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1834 (($ $) NIL)) (-4129 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1265 |#2|)) NIL) (($ (-1254 |#1| |#2| |#3|)) 9) (($ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $) NIL (|has| |#1| (-559)))) (-2558 ((|#1| $ (-410 (-567))) NIL)) (-2118 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2746 (((-772)) NIL T CONST)) (-2185 ((|#1| $) 21)) (-3357 (((-112) $ $) NIL)) (-3217 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3103 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3731 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3201 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3083 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3238 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3126 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3058 ((|#1| $ (-410 (-567))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))) (|has| |#1| (-15 -4129 (|#1| (-1179))))))) (-3805 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3138 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3228 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3115 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3208 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3093 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1733 (($) NIL T CONST)) (-1744 (($) NIL T CONST)) (-2647 (($ $ (-645 (-1179)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-1179) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-645 (-1179))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-1179)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (-2946 (((-112) $ $) NIL)) (-3069 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3053 (($ $) NIL) (($ $ $) 27)) (-3041 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 26) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))))
+(((-477 |#1| |#2| |#3|) (-13 (-1250 |#1|) (-10 -8 (-15 -4129 ($ (-1265 |#2|))) (-15 -4129 ($ (-1254 |#1| |#2| |#3|))) (-15 -1616 ($ $ (-1265 |#2|))) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -4083 ($ $ (-1265 |#2|))) |%noBranch|))) (-1051) (-1179) |#1|) (T -477))
+((-4129 (*1 *1 *2) (-12 (-5 *2 (-1265 *4)) (-14 *4 (-1179)) (-5 *1 (-477 *3 *4 *5)) (-4 *3 (-1051)) (-14 *5 *3))) (-4129 (*1 *1 *2) (-12 (-5 *2 (-1254 *3 *4 *5)) (-4 *3 (-1051)) (-14 *4 (-1179)) (-14 *5 *3) (-5 *1 (-477 *3 *4 *5)))) (-1616 (*1 *1 *1 *2) (-12 (-5 *2 (-1265 *4)) (-14 *4 (-1179)) (-5 *1 (-477 *3 *4 *5)) (-4 *3 (-1051)) (-14 *5 *3))) (-4083 (*1 *1 *1 *2) (-12 (-5 *2 (-1265 *4)) (-14 *4 (-1179)) (-5 *1 (-477 *3 *4 *5)) (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)) (-14 *5 *3))))
+(-13 (-1250 |#1|) (-10 -8 (-15 -4129 ($ (-1265 |#2|))) (-15 -4129 ($ (-1254 |#1| |#2| |#3|))) (-15 -1616 ($ $ (-1265 |#2|))) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -4083 ($ $ (-1265 |#2|))) |%noBranch|)))
+((-2412 (((-112) $ $) NIL (-2811 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-2847 (($) NIL) (($ (-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) NIL)) (-3843 (((-1274) $ |#1| |#1|) NIL (|has| $ (-6 -4423)))) (-1563 (((-112) $ (-772)) NIL)) (-4285 ((|#2| $ |#1| |#2|) 18)) (-1494 (($ (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4422)))) (-3356 (($ (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4422)))) (-4021 (((-3 |#2| "failed") |#1| $) 19)) (-3647 (($) NIL T CONST)) (-2453 (($ $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102))))) (-2247 (($ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) NIL (|has| $ (-6 -4422))) (($ (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-3 |#2| "failed") |#1| $) 16)) (-3246 (($ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (($ (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4422)))) (-2494 (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) NIL (|has| $ (-6 -4422))) (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4422)))) (-3760 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4423)))) (-3703 ((|#2| $ |#1|) NIL)) (-2799 (((-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-645 |#2|) $) NIL (|has| $ (-6 -4422)))) (-4093 (((-112) $ (-772)) NIL)) (-3895 ((|#1| $) NIL (|has| |#1| (-851)))) (-1942 (((-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-645 |#2|) $) NIL (|has| $ (-6 -4422)))) (-3237 (((-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#2| (-1102))))) (-3255 ((|#1| $) NIL (|has| |#1| (-851)))) (-3751 (($ (-1 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4423))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4423)))) (-3841 (($ (-1 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1986 (((-112) $ (-772)) NIL)) (-2516 (((-1161) $) NIL (-2811 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-1405 (((-645 |#1|) $) NIL)) (-2816 (((-112) |#1| $) NIL)) (-2706 (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) NIL)) (-2646 (($ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) NIL)) (-4364 (((-645 |#1|) $) NIL)) (-3188 (((-112) |#1| $) NIL)) (-3437 (((-1122) $) NIL (-2811 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-2418 ((|#2| $) NIL (|has| |#1| (-851)))) (-3196 (((-3 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) "failed") (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL)) (-3823 (($ $ |#2|) NIL (|has| $ (-6 -4423)))) (-3949 (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) NIL)) (-4233 (((-112) (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))))) NIL (-12 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-310 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (($ $ (-295 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) NIL (-12 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-310 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (($ $ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) NIL (-12 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-310 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (($ $ (-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) (-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) NIL (-12 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-310 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))))) (-3875 (((-112) $ $) NIL)) (-4058 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#2| (-1102))))) (-2190 (((-645 |#2|) $) NIL)) (-3885 (((-112) $) NIL)) (-2701 (($) NIL)) (-1801 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-4106 (($) NIL) (($ (-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) NIL)) (-3447 (((-772) (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-772) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (((-772) |#2| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#2| (-1102)))) (((-772) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4422)))) (-4309 (($ $) NIL)) (-3902 (((-539) $) NIL (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-615 (-539))))) (-4145 (($ (-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) NIL)) (-4129 (((-863) $) NIL (-2811 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-614 (-863))) (|has| |#2| (-614 (-863)))))) (-3357 (((-112) $ $) NIL (-2811 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-3700 (($ (-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) NIL)) (-3436 (((-112) (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4422)))) (-2946 (((-112) $ $) NIL (-2811 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-2423 (((-772) $) NIL (|has| $ (-6 -4422)))))
+(((-478 |#1| |#2| |#3| |#4|) (-1195 |#1| |#2|) (-1102) (-1102) (-1195 |#1| |#2|) |#2|) (T -478))
+NIL
+(-1195 |#1| |#2|)
+((-2412 (((-112) $ $) NIL)) (-4305 (((-645 (-2 (|:| -4000 $) (|:| -3835 (-645 |#4|)))) (-645 |#4|)) NIL)) (-3403 (((-645 $) (-645 |#4|)) NIL)) (-2859 (((-645 |#3|) $) NIL)) (-3153 (((-112) $) NIL)) (-2031 (((-112) $) NIL (|has| |#1| (-559)))) (-2176 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2345 ((|#4| |#4| $) NIL)) (-1311 (((-2 (|:| |under| $) (|:| -3969 $) (|:| |upper| $)) $ |#3|) NIL)) (-1563 (((-112) $ (-772)) NIL)) (-3356 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4422))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3647 (($) NIL T CONST)) (-1896 (((-112) $) 29 (|has| |#1| (-559)))) (-2909 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3040 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3365 (((-112) $) NIL (|has| |#1| (-559)))) (-3683 (((-645 |#4|) (-645 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1377 (((-645 |#4|) (-645 |#4|) $) NIL (|has| |#1| (-559)))) (-2279 (((-645 |#4|) (-645 |#4|) $) NIL (|has| |#1| (-559)))) (-3765 (((-3 $ "failed") (-645 |#4|)) NIL)) (-2051 (($ (-645 |#4|)) NIL)) (-2430 (((-3 $ "failed") $) 45)) (-3819 ((|#4| |#4| $) NIL)) (-2453 (($ $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#4| (-1102))))) (-3246 (($ |#4| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#4| (-1102)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4422)))) (-2023 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-559)))) (-2240 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-1889 ((|#4| |#4| $) NIL)) (-2494 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4422)) (|has| |#4| (-1102)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4422))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4422))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4076 (((-2 (|:| -4000 (-645 |#4|)) (|:| -3835 (-645 |#4|))) $) NIL)) (-2799 (((-645 |#4|) $) 18 (|has| $ (-6 -4422)))) (-4061 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2072 ((|#3| $) 38)) (-4093 (((-112) $ (-772)) NIL)) (-1942 (((-645 |#4|) $) 19 (|has| $ (-6 -4422)))) (-3237 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4422)) (|has| |#4| (-1102))))) (-3751 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#4| |#4|) $) 23)) (-2869 (((-645 |#3|) $) NIL)) (-1524 (((-112) |#3| $) NIL)) (-1986 (((-112) $ (-772)) NIL)) (-2516 (((-1161) $) NIL)) (-3266 (((-3 |#4| "failed") $) 42)) (-3881 (((-645 |#4|) $) NIL)) (-3324 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1431 ((|#4| |#4| $) NIL)) (-3995 (((-112) $ $) NIL)) (-2634 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-559)))) (-4278 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3984 ((|#4| |#4| $) NIL)) (-3437 (((-1122) $) NIL)) (-2418 (((-3 |#4| "failed") $) 40)) (-3196 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3488 (((-3 $ "failed") $ |#4|) 58)) (-1874 (($ $ |#4|) NIL)) (-4233 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 |#4|) (-645 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-295 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-645 (-295 |#4|))) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))))) (-3875 (((-112) $ $) NIL)) (-3885 (((-112) $) 17)) (-2701 (($) 14)) (-3104 (((-772) $) NIL)) (-3447 (((-772) |#4| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#4| (-1102)))) (((-772) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4422)))) (-4309 (($ $) 13)) (-3902 (((-539) $) NIL (|has| |#4| (-615 (-539))))) (-4145 (($ (-645 |#4|)) 22)) (-3937 (($ $ |#3|) 52)) (-3165 (($ $ |#3|) 54)) (-2085 (($ $) NIL)) (-1920 (($ $ |#3|) NIL)) (-4129 (((-863) $) 35) (((-645 |#4|) $) 46)) (-1975 (((-772) $) NIL (|has| |#3| (-370)))) (-3357 (((-112) $ $) NIL)) (-1676 (((-3 (-2 (|:| |bas| $) (|:| -2270 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2270 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1642 (((-112) $ (-1 (-112) |#4| (-645 |#4|))) NIL)) (-3436 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4422)))) (-2551 (((-645 |#3|) $) NIL)) (-2618 (((-112) |#3| $) NIL)) (-2946 (((-112) $ $) NIL)) (-2423 (((-772) $) NIL (|has| $ (-6 -4422)))))
+(((-479 |#1| |#2| |#3| |#4|) (-1212 |#1| |#2| |#3| |#4|) (-559) (-794) (-851) (-1067 |#1| |#2| |#3|)) (T -479))
+NIL
+(-1212 |#1| |#2| |#3| |#4|)
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-4287 (($ $) NIL)) (-2286 (((-112) $) NIL)) (-2376 (((-3 $ "failed") $ $) NIL)) (-3659 (($ $) NIL)) (-3597 (((-421 $) $) NIL)) (-3696 (((-112) $ $) NIL)) (-3647 (($) NIL T CONST)) (-3765 (((-3 (-567) "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL)) (-2051 (((-567) $) NIL) (((-410 (-567)) $) NIL)) (-2357 (($ $ $) NIL)) (-3588 (((-3 $ "failed") $) NIL)) (-2368 (($ $ $) NIL)) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) NIL)) (-3502 (((-112) $) NIL)) (-1484 (($) 17)) (-4346 (((-112) $) NIL)) (-1469 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2751 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2516 (((-1161) $) NIL)) (-2949 (($ $) NIL)) (-3437 (((-1122) $) NIL)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-2785 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2717 (((-421 $) $) NIL)) (-2905 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2400 (((-3 $ "failed") $ $) NIL)) (-2372 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2460 (((-772) $) NIL)) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) NIL)) (-3902 (((-381) $) 21) (((-225) $) 24) (((-410 (-1175 (-567))) $) 18) (((-539) $) 53)) (-4129 (((-863) $) 51) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (((-225) $) 23) (((-381) $) 20)) (-2746 (((-772)) NIL T CONST)) (-3357 (((-112) $ $) NIL)) (-3731 (((-112) $ $) NIL)) (-1733 (($) 37 T CONST)) (-1744 (($) 8 T CONST)) (-2946 (((-112) $ $) NIL)) (-3069 (($ $ $) NIL)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL)))
+(((-480) (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))) (-1024) (-614 (-225)) (-614 (-381)) (-615 (-410 (-1175 (-567)))) (-615 (-539)) (-10 -8 (-15 -1484 ($))))) (T -480))
+((-1484 (*1 *1) (-5 *1 (-480))))
+(-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))) (-1024) (-614 (-225)) (-614 (-381)) (-615 (-410 (-1175 (-567)))) (-615 (-539)) (-10 -8 (-15 -1484 ($))))
+((-2412 (((-112) $ $) NIL)) (-4102 (((-1137) $) 11)) (-4089 (((-1137) $) 9)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) 17) (($ (-1184)) NIL) (((-1184) $) NIL)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)))
+(((-481) (-13 (-1085) (-10 -8 (-15 -4089 ((-1137) $)) (-15 -4102 ((-1137) $))))) (T -481))
+((-4089 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-481)))) (-4102 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-481)))))
+(-13 (-1085) (-10 -8 (-15 -4089 ((-1137) $)) (-15 -4102 ((-1137) $))))
+((-2412 (((-112) $ $) NIL (-2811 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-2847 (($) NIL) (($ (-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) NIL)) (-3843 (((-1274) $ |#1| |#1|) NIL (|has| $ (-6 -4423)))) (-1563 (((-112) $ (-772)) NIL)) (-4285 ((|#2| $ |#1| |#2|) 16)) (-1494 (($ (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4422)))) (-3356 (($ (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4422)))) (-4021 (((-3 |#2| "failed") |#1| $) 20)) (-3647 (($) NIL T CONST)) (-2453 (($ $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102))))) (-2247 (($ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) NIL (|has| $ (-6 -4422))) (($ (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-3 |#2| "failed") |#1| $) 18)) (-3246 (($ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (($ (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4422)))) (-2494 (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) NIL (|has| $ (-6 -4422))) (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4422)))) (-3760 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4423)))) (-3703 ((|#2| $ |#1|) NIL)) (-2799 (((-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-645 |#2|) $) NIL (|has| $ (-6 -4422)))) (-4093 (((-112) $ (-772)) NIL)) (-3895 ((|#1| $) NIL (|has| |#1| (-851)))) (-1942 (((-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-645 |#2|) $) NIL (|has| $ (-6 -4422)))) (-3237 (((-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#2| (-1102))))) (-3255 ((|#1| $) NIL (|has| |#1| (-851)))) (-3751 (($ (-1 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4423))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4423)))) (-3841 (($ (-1 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1986 (((-112) $ (-772)) NIL)) (-2516 (((-1161) $) NIL (-2811 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-1405 (((-645 |#1|) $) 13)) (-2816 (((-112) |#1| $) NIL)) (-2706 (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) NIL)) (-2646 (($ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) NIL)) (-4364 (((-645 |#1|) $) NIL)) (-3188 (((-112) |#1| $) NIL)) (-3437 (((-1122) $) NIL (-2811 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-2418 ((|#2| $) NIL (|has| |#1| (-851)))) (-3196 (((-3 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) "failed") (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL)) (-3823 (($ $ |#2|) NIL (|has| $ (-6 -4423)))) (-3949 (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) NIL)) (-4233 (((-112) (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))))) NIL (-12 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-310 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (($ $ (-295 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) NIL (-12 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-310 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (($ $ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) NIL (-12 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-310 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (($ $ (-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) (-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) NIL (-12 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-310 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))))) (-3875 (((-112) $ $) NIL)) (-4058 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#2| (-1102))))) (-2190 (((-645 |#2|) $) NIL)) (-3885 (((-112) $) NIL)) (-2701 (($) 19)) (-1801 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-4106 (($) NIL) (($ (-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) NIL)) (-3447 (((-772) (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-772) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (((-772) |#2| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#2| (-1102)))) (((-772) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4422)))) (-4309 (($ $) NIL)) (-3902 (((-539) $) NIL (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-615 (-539))))) (-4145 (($ (-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) NIL)) (-4129 (((-863) $) NIL (-2811 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-614 (-863))) (|has| |#2| (-614 (-863)))))) (-3357 (((-112) $ $) NIL (-2811 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-3700 (($ (-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) NIL)) (-3436 (((-112) (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4422)))) (-2946 (((-112) $ $) 11 (-2811 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-2423 (((-772) $) 15 (|has| $ (-6 -4422)))))
+(((-482 |#1| |#2| |#3|) (-13 (-1195 |#1| |#2|) (-10 -7 (-6 -4422))) (-1102) (-1102) (-1161)) (T -482))
+NIL
+(-13 (-1195 |#1| |#2|) (-10 -7 (-6 -4422)))
+((-1402 (((-567) (-567) (-567)) 19)) (-2698 (((-112) (-567) (-567) (-567) (-567)) 28)) (-3299 (((-1269 (-645 (-567))) (-772) (-772)) 44)))
+(((-483) (-10 -7 (-15 -1402 ((-567) (-567) (-567))) (-15 -2698 ((-112) (-567) (-567) (-567) (-567))) (-15 -3299 ((-1269 (-645 (-567))) (-772) (-772))))) (T -483))
+((-3299 (*1 *2 *3 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1269 (-645 (-567)))) (-5 *1 (-483)))) (-2698 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-567)) (-5 *2 (-112)) (-5 *1 (-483)))) (-1402 (*1 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-483)))))
+(-10 -7 (-15 -1402 ((-567) (-567) (-567))) (-15 -2698 ((-112) (-567) (-567) (-567) (-567))) (-15 -3299 ((-1269 (-645 (-567))) (-772) (-772))))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-2859 (((-645 (-865 |#1|)) $) NIL)) (-2684 (((-1175 $) $ (-865 |#1|)) NIL) (((-1175 |#2|) $) NIL)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) NIL (|has| |#2| (-559)))) (-4287 (($ $) NIL (|has| |#2| (-559)))) (-2286 (((-112) $) NIL (|has| |#2| (-559)))) (-3849 (((-772) $) NIL) (((-772) $ (-645 (-865 |#1|))) NIL)) (-2376 (((-3 $ "failed") $ $) NIL)) (-2029 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#2| (-911)))) (-3659 (($ $) NIL (|has| |#2| (-455)))) (-3597 (((-421 $) $) NIL (|has| |#2| (-455)))) (-3610 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) NIL (|has| |#2| (-911)))) (-3647 (($) NIL T CONST)) (-3765 (((-3 |#2| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#2| (-1040 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#2| (-1040 (-567)))) (((-3 (-865 |#1|) "failed") $) NIL)) (-2051 ((|#2| $) NIL) (((-410 (-567)) $) NIL (|has| |#2| (-1040 (-410 (-567))))) (((-567) $) NIL (|has| |#2| (-1040 (-567)))) (((-865 |#1|) $) NIL)) (-3554 (($ $ $ (-865 |#1|)) NIL (|has| |#2| (-172)))) (-1644 (($ $ (-645 (-567))) NIL)) (-3023 (($ $) NIL)) (-1423 (((-690 (-567)) (-690 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -4208 (-690 |#2|)) (|:| |vec| (-1269 |#2|))) (-690 $) (-1269 $)) NIL) (((-690 |#2|) (-690 $)) NIL)) (-3588 (((-3 $ "failed") $) NIL)) (-2989 (($ $) NIL (|has| |#2| (-455))) (($ $ (-865 |#1|)) NIL (|has| |#2| (-455)))) (-3010 (((-645 $) $) NIL)) (-3502 (((-112) $) NIL (|has| |#2| (-911)))) (-3214 (($ $ |#2| (-485 (-2423 |#1|) (-772)) $) NIL)) (-3193 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (-12 (|has| (-865 |#1|) (-888 (-381))) (|has| |#2| (-888 (-381))))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (-12 (|has| (-865 |#1|) (-888 (-567))) (|has| |#2| (-888 (-567)))))) (-4346 (((-112) $) NIL)) (-2851 (((-772) $) NIL)) (-2848 (($ (-1175 |#2|) (-865 |#1|)) NIL) (($ (-1175 $) (-865 |#1|)) NIL)) (-2659 (((-645 $) $) NIL)) (-3770 (((-112) $) NIL)) (-2836 (($ |#2| (-485 (-2423 |#1|) (-772))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-2742 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $ (-865 |#1|)) NIL)) (-2955 (((-485 (-2423 |#1|) (-772)) $) NIL) (((-772) $ (-865 |#1|)) NIL) (((-645 (-772)) $ (-645 (-865 |#1|))) NIL)) (-3827 (($ (-1 (-485 (-2423 |#1|) (-772)) (-485 (-2423 |#1|) (-772))) $) NIL)) (-3841 (($ (-1 |#2| |#2|) $) NIL)) (-3221 (((-3 (-865 |#1|) "failed") $) NIL)) (-2985 (($ $) NIL)) (-2996 ((|#2| $) NIL)) (-2751 (($ (-645 $)) NIL (|has| |#2| (-455))) (($ $ $) NIL (|has| |#2| (-455)))) (-2516 (((-1161) $) NIL)) (-3037 (((-3 (-645 $) "failed") $) NIL)) (-3774 (((-3 (-645 $) "failed") $) NIL)) (-3816 (((-3 (-2 (|:| |var| (-865 |#1|)) (|:| -3468 (-772))) "failed") $) NIL)) (-3437 (((-1122) $) NIL)) (-2960 (((-112) $) NIL)) (-2971 ((|#2| $) NIL)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| |#2| (-455)))) (-2785 (($ (-645 $)) NIL (|has| |#2| (-455))) (($ $ $) NIL (|has| |#2| (-455)))) (-3551 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#2| (-911)))) (-2016 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#2| (-911)))) (-2717 (((-421 $) $) NIL (|has| |#2| (-911)))) (-2400 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-559))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-559)))) (-2642 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-865 |#1|) |#2|) NIL) (($ $ (-645 (-865 |#1|)) (-645 |#2|)) NIL) (($ $ (-865 |#1|) $) NIL) (($ $ (-645 (-865 |#1|)) (-645 $)) NIL)) (-2433 (($ $ (-865 |#1|)) NIL (|has| |#2| (-172)))) (-1616 (($ $ (-865 |#1|)) NIL) (($ $ (-645 (-865 |#1|))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-3104 (((-485 (-2423 |#1|) (-772)) $) NIL) (((-772) $ (-865 |#1|)) NIL) (((-645 (-772)) $ (-645 (-865 |#1|))) NIL)) (-3902 (((-894 (-381)) $) NIL (-12 (|has| (-865 |#1|) (-615 (-894 (-381)))) (|has| |#2| (-615 (-894 (-381)))))) (((-894 (-567)) $) NIL (-12 (|has| (-865 |#1|) (-615 (-894 (-567)))) (|has| |#2| (-615 (-894 (-567)))))) (((-539) $) NIL (-12 (|has| (-865 |#1|) (-615 (-539))) (|has| |#2| (-615 (-539)))))) (-1849 ((|#2| $) NIL (|has| |#2| (-455))) (($ $ (-865 |#1|)) NIL (|has| |#2| (-455)))) (-2616 (((-3 (-1269 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-911))))) (-4129 (((-863) $) NIL) (($ (-567)) NIL) (($ |#2|) NIL) (($ (-865 |#1|)) NIL) (($ (-410 (-567))) NIL (-2811 (|has| |#2| (-38 (-410 (-567)))) (|has| |#2| (-1040 (-410 (-567)))))) (($ $) NIL (|has| |#2| (-559)))) (-3601 (((-645 |#2|) $) NIL)) (-2558 ((|#2| $ (-485 (-2423 |#1|) (-772))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-2118 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-145)) (|has| |#2| (-911))) (|has| |#2| (-145))))) (-2746 (((-772)) NIL T CONST)) (-3658 (($ $ $ (-772)) NIL (|has| |#2| (-172)))) (-3357 (((-112) $ $) NIL)) (-3731 (((-112) $ $) NIL (|has| |#2| (-559)))) (-1733 (($) NIL T CONST)) (-1744 (($) NIL T CONST)) (-2647 (($ $ (-865 |#1|)) NIL) (($ $ (-645 (-865 |#1|))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-2946 (((-112) $ $) NIL)) (-3069 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL (|has| |#2| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#2| (-38 (-410 (-567))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-484 |#1| |#2|) (-13 (-951 |#2| (-485 (-2423 |#1|) (-772)) (-865 |#1|)) (-10 -8 (-15 -1644 ($ $ (-645 (-567)))))) (-645 (-1179)) (-1051)) (T -484))
+((-1644 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-484 *3 *4)) (-14 *3 (-645 (-1179))) (-4 *4 (-1051)))))
+(-13 (-951 |#2| (-485 (-2423 |#1|) (-772)) (-865 |#1|)) (-10 -8 (-15 -1644 ($ $ (-645 (-567))))))
+((-2412 (((-112) $ $) NIL (|has| |#2| (-1102)))) (-3791 (((-112) $) NIL (|has| |#2| (-131)))) (-3624 (($ (-923)) NIL (|has| |#2| (-1051)))) (-3843 (((-1274) $ (-567) (-567)) NIL (|has| $ (-6 -4423)))) (-1325 (($ $ $) NIL (|has| |#2| (-794)))) (-2376 (((-3 $ "failed") $ $) NIL (|has| |#2| (-131)))) (-1563 (((-112) $ (-772)) NIL)) (-2384 (((-772)) NIL (|has| |#2| (-370)))) (-2677 (((-567) $) NIL (|has| |#2| (-849)))) (-4285 ((|#2| $ (-567) |#2|) NIL (|has| $ (-6 -4423)))) (-3647 (($) NIL T CONST)) (-3765 (((-3 (-567) "failed") $) NIL (-12 (|has| |#2| (-1040 (-567))) (|has| |#2| (-1102)))) (((-3 (-410 (-567)) "failed") $) NIL (-12 (|has| |#2| (-1040 (-410 (-567)))) (|has| |#2| (-1102)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1102)))) (-2051 (((-567) $) NIL (-12 (|has| |#2| (-1040 (-567))) (|has| |#2| (-1102)))) (((-410 (-567)) $) NIL (-12 (|has| |#2| (-1040 (-410 (-567)))) (|has| |#2| (-1102)))) ((|#2| $) NIL (|has| |#2| (-1102)))) (-1423 (((-690 (-567)) (-690 $)) NIL (-12 (|has| |#2| (-640 (-567))) (|has| |#2| (-1051)))) (((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (-12 (|has| |#2| (-640 (-567))) (|has| |#2| (-1051)))) (((-2 (|:| -4208 (-690 |#2|)) (|:| |vec| (-1269 |#2|))) (-690 $) (-1269 $)) NIL (|has| |#2| (-1051))) (((-690 |#2|) (-690 $)) NIL (|has| |#2| (-1051)))) (-3588 (((-3 $ "failed") $) NIL (|has| |#2| (-727)))) (-1359 (($) NIL (|has| |#2| (-370)))) (-3760 ((|#2| $ (-567) |#2|) NIL (|has| $ (-6 -4423)))) (-3703 ((|#2| $ (-567)) 15)) (-3137 (((-112) $) NIL (|has| |#2| (-849)))) (-2799 (((-645 |#2|) $) NIL (|has| $ (-6 -4422)))) (-4346 (((-112) $) NIL (|has| |#2| (-727)))) (-3465 (((-112) $) NIL (|has| |#2| (-849)))) (-4093 (((-112) $ (-772)) NIL)) (-3895 (((-567) $) NIL (|has| (-567) (-851)))) (-1365 (($ $ $) NIL (-2811 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-1942 (((-645 |#2|) $) NIL (|has| $ (-6 -4422)))) (-3237 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#2| (-1102))))) (-3255 (((-567) $) NIL (|has| (-567) (-851)))) (-3002 (($ $ $) NIL (-2811 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-3751 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#2| |#2|) $) NIL)) (-3474 (((-923) $) NIL (|has| |#2| (-370)))) (-1986 (((-112) $ (-772)) NIL)) (-2516 (((-1161) $) NIL (|has| |#2| (-1102)))) (-4364 (((-645 (-567)) $) NIL)) (-3188 (((-112) (-567) $) NIL)) (-3779 (($ (-923)) NIL (|has| |#2| (-370)))) (-3437 (((-1122) $) NIL (|has| |#2| (-1102)))) (-2418 ((|#2| $) NIL (|has| (-567) (-851)))) (-3823 (($ $ |#2|) NIL (|has| $ (-6 -4423)))) (-4233 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))))) (-3875 (((-112) $ $) NIL)) (-4058 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#2| (-1102))))) (-2190 (((-645 |#2|) $) NIL)) (-3885 (((-112) $) NIL)) (-2701 (($) NIL)) (-1801 ((|#2| $ (-567) |#2|) NIL) ((|#2| $ (-567)) NIL)) (-3917 ((|#2| $ $) NIL (|has| |#2| (-1051)))) (-2760 (($ (-1269 |#2|)) NIL)) (-1412 (((-134)) NIL (|has| |#2| (-365)))) (-1616 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1051)))) (($ $ (-772)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1051)))) (($ $ (-1179)) NIL (-12 (|has| |#2| (-902 (-1179))) (|has| |#2| (-1051)))) (($ $ (-645 (-1179))) NIL (-12 (|has| |#2| (-902 (-1179))) (|has| |#2| (-1051)))) (($ $ (-1179) (-772)) NIL (-12 (|has| |#2| (-902 (-1179))) (|has| |#2| (-1051)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (-12 (|has| |#2| (-902 (-1179))) (|has| |#2| (-1051)))) (($ $ (-1 |#2| |#2|) (-772)) NIL (|has| |#2| (-1051))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1051)))) (-3447 (((-772) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4422))) (((-772) |#2| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#2| (-1102))))) (-4309 (($ $) NIL)) (-4129 (((-1269 |#2|) $) NIL) (($ (-567)) NIL (-2811 (-12 (|has| |#2| (-1040 (-567))) (|has| |#2| (-1102))) (|has| |#2| (-1051)))) (($ (-410 (-567))) NIL (-12 (|has| |#2| (-1040 (-410 (-567)))) (|has| |#2| (-1102)))) (($ |#2|) NIL (|has| |#2| (-1102))) (((-863) $) NIL (|has| |#2| (-614 (-863))))) (-2746 (((-772)) NIL (|has| |#2| (-1051)) CONST)) (-3357 (((-112) $ $) NIL (|has| |#2| (-1102)))) (-3436 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4422)))) (-1547 (($ $) NIL (|has| |#2| (-849)))) (-1733 (($) NIL (|has| |#2| (-131)) CONST)) (-1744 (($) NIL (|has| |#2| (-727)) CONST)) (-2647 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1051)))) (($ $ (-772)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1051)))) (($ $ (-1179)) NIL (-12 (|has| |#2| (-902 (-1179))) (|has| |#2| (-1051)))) (($ $ (-645 (-1179))) NIL (-12 (|has| |#2| (-902 (-1179))) (|has| |#2| (-1051)))) (($ $ (-1179) (-772)) NIL (-12 (|has| |#2| (-902 (-1179))) (|has| |#2| (-1051)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (-12 (|has| |#2| (-902 (-1179))) (|has| |#2| (-1051)))) (($ $ (-1 |#2| |#2|) (-772)) NIL (|has| |#2| (-1051))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1051)))) (-3004 (((-112) $ $) NIL (-2811 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-2980 (((-112) $ $) NIL (-2811 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-2946 (((-112) $ $) NIL (|has| |#2| (-1102)))) (-2993 (((-112) $ $) NIL (-2811 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-2968 (((-112) $ $) 21 (-2811 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-3069 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3053 (($ $ $) NIL (|has| |#2| (-1051))) (($ $) NIL (|has| |#2| (-1051)))) (-3041 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-772)) NIL (|has| |#2| (-727))) (($ $ (-923)) NIL (|has| |#2| (-727)))) (* (($ (-567) $) NIL (|has| |#2| (-1051))) (($ $ $) NIL (|has| |#2| (-727))) (($ $ |#2|) NIL (|has| |#2| (-727))) (($ |#2| $) NIL (|has| |#2| (-727))) (($ (-772) $) NIL (|has| |#2| (-131))) (($ (-923) $) NIL (|has| |#2| (-25)))) (-2423 (((-772) $) NIL (|has| $ (-6 -4422)))))
(((-485 |#1| |#2|) (-238 |#1| |#2|) (-772) (-794)) (T -485))
NIL
(-238 |#1| |#2|)
-((-2403 (((-112) $ $) NIL)) (-2238 (((-645 (-877)) $) 15)) (-1996 (((-509) $) 13)) (-1419 (((-1160) $) NIL)) (-2029 (($ (-509) (-645 (-877))) 11)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 22) (($ (-1183)) NIL) (((-1183) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)))
-(((-486) (-13 (-1085) (-10 -8 (-15 -2029 ($ (-509) (-645 (-877)))) (-15 -1996 ((-509) $)) (-15 -2238 ((-645 (-877)) $))))) (T -486))
-((-2029 (*1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-645 (-877))) (-5 *1 (-486)))) (-1996 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-486)))) (-2238 (*1 *2 *1) (-12 (-5 *2 (-645 (-877))) (-5 *1 (-486)))))
-(-13 (-1085) (-10 -8 (-15 -2029 ($ (-509) (-645 (-877)))) (-15 -1996 ((-509) $)) (-15 -2238 ((-645 (-877)) $))))
-((-2403 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3445 (((-112) $ (-772)) NIL)) (-2585 (($) NIL T CONST)) (-2777 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-2077 (((-112) $ (-772)) NIL)) (-2966 (($ $ $) 50)) (-4135 (($ $ $) 49)) (-2279 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2981 ((|#1| $) 40)) (-3731 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL (|has| |#1| (-1102)))) (-1566 ((|#1| $) 41)) (-2531 (($ |#1| $) 18)) (-3655 (($ (-645 |#1|)) 19)) (-3430 (((-1122) $) NIL (|has| |#1| (-1102)))) (-1793 ((|#1| $) 34)) (-3025 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) 11)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-4305 (($ $) NIL)) (-4132 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-1745 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3551 (($ (-645 |#1|)) 47)) (-1853 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2414 (((-772) $) 29 (|has| $ (-6 -4418)))))
-(((-487 |#1|) (-13 (-970 |#1|) (-10 -8 (-15 -3655 ($ (-645 |#1|))))) (-851)) (T -487))
-((-3655 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-851)) (-5 *1 (-487 *3)))))
-(-13 (-970 |#1|) (-10 -8 (-15 -3655 ($ (-645 |#1|)))))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2585 (($) NIL T CONST)) (-2477 (($ $) 72)) (-1500 (((-112) $) NIL)) (-1419 (((-1160) $) NIL)) (-1321 (((-416 |#2| (-410 |#2|) |#3| |#4|) $) 45)) (-3430 (((-1122) $) NIL)) (-1398 (((-3 |#4| "failed") $) 118)) (-3477 (($ (-416 |#2| (-410 |#2|) |#3| |#4|)) 82) (($ |#4|) 31) (($ |#1| |#1|) 128) (($ |#1| |#1| (-567)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 141)) (-2532 (((-2 (|:| -3979 (-416 |#2| (-410 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47)) (-4132 (((-863) $) 111)) (-1745 (((-112) $ $) NIL)) (-1716 (($) 32 T CONST)) (-2936 (((-112) $ $) 122)) (-3045 (($ $) 78) (($ $ $) NIL)) (-3033 (($ $ $) 73)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 79)))
-(((-488 |#1| |#2| |#3| |#4|) (-337 |#1| |#2| |#3| |#4|) (-365) (-1244 |#1|) (-1244 (-410 |#2|)) (-344 |#1| |#2| |#3|)) (T -488))
+((-2412 (((-112) $ $) NIL)) (-2257 (((-645 (-877)) $) 15)) (-2007 (((-509) $) 13)) (-2516 (((-1161) $) NIL)) (-1606 (($ (-509) (-645 (-877))) 11)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) 22) (($ (-1184)) NIL) (((-1184) $) NIL)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)))
+(((-486) (-13 (-1085) (-10 -8 (-15 -1606 ($ (-509) (-645 (-877)))) (-15 -2007 ((-509) $)) (-15 -2257 ((-645 (-877)) $))))) (T -486))
+((-1606 (*1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-645 (-877))) (-5 *1 (-486)))) (-2007 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-486)))) (-2257 (*1 *2 *1) (-12 (-5 *2 (-645 (-877))) (-5 *1 (-486)))))
+(-13 (-1085) (-10 -8 (-15 -1606 ($ (-509) (-645 (-877)))) (-15 -2007 ((-509) $)) (-15 -2257 ((-645 (-877)) $))))
+((-2412 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1563 (((-112) $ (-772)) NIL)) (-3647 (($) NIL T CONST)) (-2799 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-4093 (((-112) $ (-772)) NIL)) (-1661 (($ $ $) 50)) (-2473 (($ $ $) 49)) (-1942 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-3237 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3002 ((|#1| $) 40)) (-3751 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#1| |#1|) $) NIL)) (-1986 (((-112) $ (-772)) NIL)) (-2516 (((-1161) $) NIL (|has| |#1| (-1102)))) (-2706 ((|#1| $) 41)) (-2646 (($ |#1| $) 18)) (-2865 (($ (-645 |#1|)) 19)) (-3437 (((-1122) $) NIL (|has| |#1| (-1102)))) (-3949 ((|#1| $) 34)) (-4233 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3875 (((-112) $ $) NIL)) (-3885 (((-112) $) NIL)) (-2701 (($) 11)) (-3447 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-4309 (($ $) NIL)) (-4129 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-3357 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3700 (($ (-645 |#1|)) 47)) (-3436 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2423 (((-772) $) 29 (|has| $ (-6 -4422)))))
+(((-487 |#1|) (-13 (-970 |#1|) (-10 -8 (-15 -2865 ($ (-645 |#1|))))) (-851)) (T -487))
+((-2865 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-851)) (-5 *1 (-487 *3)))))
+(-13 (-970 |#1|) (-10 -8 (-15 -2865 ($ (-645 |#1|)))))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-2376 (((-3 $ "failed") $ $) NIL)) (-3647 (($) NIL T CONST)) (-2494 (($ $) 72)) (-3384 (((-112) $) NIL)) (-2516 (((-1161) $) NIL)) (-4090 (((-416 |#2| (-410 |#2|) |#3| |#4|) $) 45)) (-3437 (((-1122) $) NIL)) (-1399 (((-3 |#4| "failed") $) 118)) (-1572 (($ (-416 |#2| (-410 |#2|) |#3| |#4|)) 82) (($ |#4|) 31) (($ |#1| |#1|) 128) (($ |#1| |#1| (-567)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 141)) (-2756 (((-2 (|:| -3983 (-416 |#2| (-410 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47)) (-4129 (((-863) $) 111)) (-3357 (((-112) $ $) NIL)) (-1733 (($) 32 T CONST)) (-2946 (((-112) $ $) 122)) (-3053 (($ $) 78) (($ $ $) NIL)) (-3041 (($ $ $) 73)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 79)))
+(((-488 |#1| |#2| |#3| |#4|) (-337 |#1| |#2| |#3| |#4|) (-365) (-1245 |#1|) (-1245 (-410 |#2|)) (-344 |#1| |#2| |#3|)) (T -488))
NIL
(-337 |#1| |#2| |#3| |#4|)
-((-1815 (((-567) (-645 (-567))) 55)) (-1584 ((|#1| (-645 |#1|)) 97)) (-3478 (((-645 |#1|) (-645 |#1|)) 98)) (-4392 (((-645 |#1|) (-645 |#1|)) 100)) (-2774 ((|#1| (-645 |#1|)) 99)) (-4358 (((-645 (-567)) (-645 |#1|)) 58)))
-(((-489 |#1|) (-10 -7 (-15 -2774 (|#1| (-645 |#1|))) (-15 -1584 (|#1| (-645 |#1|))) (-15 -4392 ((-645 |#1|) (-645 |#1|))) (-15 -3478 ((-645 |#1|) (-645 |#1|))) (-15 -4358 ((-645 (-567)) (-645 |#1|))) (-15 -1815 ((-567) (-645 (-567))))) (-1244 (-567))) (T -489))
-((-1815 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-567)) (-5 *1 (-489 *4)) (-4 *4 (-1244 *2)))) (-4358 (*1 *2 *3) (-12 (-5 *3 (-645 *4)) (-4 *4 (-1244 (-567))) (-5 *2 (-645 (-567))) (-5 *1 (-489 *4)))) (-3478 (*1 *2 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1244 (-567))) (-5 *1 (-489 *3)))) (-4392 (*1 *2 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1244 (-567))) (-5 *1 (-489 *3)))) (-1584 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-5 *1 (-489 *2)) (-4 *2 (-1244 (-567))))) (-2774 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-5 *1 (-489 *2)) (-4 *2 (-1244 (-567))))))
-(-10 -7 (-15 -2774 (|#1| (-645 |#1|))) (-15 -1584 (|#1| (-645 |#1|))) (-15 -4392 ((-645 |#1|) (-645 |#1|))) (-15 -3478 ((-645 |#1|) (-645 |#1|))) (-15 -4358 ((-645 (-567)) (-645 |#1|))) (-15 -1815 ((-567) (-645 (-567)))))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3093 (((-567) $) NIL (|has| (-567) (-308)))) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-4226 (((-421 (-1174 $)) (-1174 $)) NIL (|has| (-567) (-911)))) (-3248 (($ $) NIL)) (-2908 (((-421 $) $) NIL)) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) NIL (|has| (-567) (-911)))) (-3609 (((-112) $ $) NIL)) (-1750 (((-567) $) NIL (|has| (-567) (-821)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 (-567) "failed") $) NIL) (((-3 (-1178) "failed") $) NIL (|has| (-567) (-1040 (-1178)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| (-567) (-1040 (-567)))) (((-3 (-567) "failed") $) NIL (|has| (-567) (-1040 (-567))))) (-2038 (((-567) $) NIL) (((-1178) $) NIL (|has| (-567) (-1040 (-1178)))) (((-410 (-567)) $) NIL (|has| (-567) (-1040 (-567)))) (((-567) $) NIL (|has| (-567) (-1040 (-567))))) (-2349 (($ $ $) NIL)) (-2630 (((-690 (-567)) (-690 $)) NIL (|has| (-567) (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (|has| (-567) (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL) (((-690 (-567)) (-690 $)) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-1348 (($) NIL (|has| (-567) (-548)))) (-2360 (($ $ $) NIL)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-3184 (((-112) $) NIL)) (-4336 (((-112) $) NIL (|has| (-567) (-821)))) (-4303 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (|has| (-567) (-888 (-567)))) (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (|has| (-567) (-888 (-381))))) (-1433 (((-112) $) NIL)) (-3530 (($ $) NIL)) (-1448 (((-567) $) NIL)) (-3972 (((-3 $ "failed") $) NIL (|has| (-567) (-1153)))) (-3494 (((-112) $) NIL (|has| (-567) (-821)))) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1354 (($ $ $) NIL (|has| (-567) (-851)))) (-2981 (($ $ $) NIL (|has| (-567) (-851)))) (-3829 (($ (-1 (-567) (-567)) $) NIL)) (-2740 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) NIL)) (-2672 (($) NIL (|has| (-567) (-1153)) CONST)) (-2342 (($ (-410 (-567))) 9)) (-3430 (((-1122) $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-2774 (($ $ $) NIL) (($ (-645 $)) NIL)) (-4094 (($ $) NIL (|has| (-567) (-308))) (((-410 (-567)) $) NIL)) (-2780 (((-567) $) NIL (|has| (-567) (-548)))) (-2435 (((-421 (-1174 $)) (-1174 $)) NIL (|has| (-567) (-911)))) (-3517 (((-421 (-1174 $)) (-1174 $)) NIL (|has| (-567) (-911)))) (-2706 (((-421 $) $) NIL)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2391 (((-3 $ "failed") $ $) NIL)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2631 (($ $ (-645 (-567)) (-645 (-567))) NIL (|has| (-567) (-310 (-567)))) (($ $ (-567) (-567)) NIL (|has| (-567) (-310 (-567)))) (($ $ (-295 (-567))) NIL (|has| (-567) (-310 (-567)))) (($ $ (-645 (-295 (-567)))) NIL (|has| (-567) (-310 (-567)))) (($ $ (-645 (-1178)) (-645 (-567))) NIL (|has| (-567) (-517 (-1178) (-567)))) (($ $ (-1178) (-567)) NIL (|has| (-567) (-517 (-1178) (-567))))) (-1990 (((-772) $) NIL)) (-1787 (($ $ (-567)) NIL (|has| (-567) (-287 (-567) (-567))))) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL)) (-1593 (($ $) NIL (|has| (-567) (-233))) (($ $ (-772)) NIL (|has| (-567) (-233))) (($ $ (-1178)) NIL (|has| (-567) (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| (-567) (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| (-567) (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| (-567) (-902 (-1178)))) (($ $ (-1 (-567) (-567)) (-772)) NIL) (($ $ (-1 (-567) (-567))) NIL)) (-1967 (($ $) NIL)) (-1460 (((-567) $) NIL)) (-3893 (((-894 (-567)) $) NIL (|has| (-567) (-615 (-894 (-567))))) (((-894 (-381)) $) NIL (|has| (-567) (-615 (-894 (-381))))) (((-539) $) NIL (|has| (-567) (-615 (-539)))) (((-381) $) NIL (|has| (-567) (-1024))) (((-225) $) NIL (|has| (-567) (-1024)))) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| (-567) (-911))))) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) 8) (($ (-567)) NIL) (($ (-1178)) NIL (|has| (-567) (-1040 (-1178)))) (((-410 (-567)) $) NIL) (((-1006 16) $) 10)) (-1903 (((-3 $ "failed") $) NIL (-2800 (-12 (|has| $ (-145)) (|has| (-567) (-911))) (|has| (-567) (-145))))) (-4221 (((-772)) NIL T CONST)) (-1423 (((-567) $) NIL (|has| (-567) (-548)))) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL)) (-2219 (($ $) NIL (|has| (-567) (-821)))) (-1716 (($) NIL T CONST)) (-1728 (($) NIL T CONST)) (-2637 (($ $) NIL (|has| (-567) (-233))) (($ $ (-772)) NIL (|has| (-567) (-233))) (($ $ (-1178)) NIL (|has| (-567) (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| (-567) (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| (-567) (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| (-567) (-902 (-1178)))) (($ $ (-1 (-567) (-567)) (-772)) NIL) (($ $ (-1 (-567) (-567))) NIL)) (-2997 (((-112) $ $) NIL (|has| (-567) (-851)))) (-2971 (((-112) $ $) NIL (|has| (-567) (-851)))) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL (|has| (-567) (-851)))) (-2958 (((-112) $ $) NIL (|has| (-567) (-851)))) (-3060 (($ $ $) NIL) (($ (-567) (-567)) NIL)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ (-567) $) NIL) (($ $ (-567)) NIL)))
-(((-490) (-13 (-994 (-567)) (-614 (-410 (-567))) (-614 (-1006 16)) (-10 -8 (-15 -4094 ((-410 (-567)) $)) (-15 -2342 ($ (-410 (-567))))))) (T -490))
-((-4094 (*1 *2 *1) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-490)))) (-2342 (*1 *1 *2) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-490)))))
-(-13 (-994 (-567)) (-614 (-410 (-567))) (-614 (-1006 16)) (-10 -8 (-15 -4094 ((-410 (-567)) $)) (-15 -2342 ($ (-410 (-567))))))
-((-2279 (((-645 |#2|) $) 29)) (-4337 (((-112) |#2| $) 34)) (-3025 (((-112) (-1 (-112) |#2|) $) 24)) (-2631 (($ $ (-645 (-295 |#2|))) 13) (($ $ (-295 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-645 |#2|) (-645 |#2|)) NIL)) (-3439 (((-772) (-1 (-112) |#2|) $) 28) (((-772) |#2| $) 32)) (-4132 (((-863) $) 43)) (-1853 (((-112) (-1 (-112) |#2|) $) 23)) (-2936 (((-112) $ $) 37)) (-2414 (((-772) $) 18)))
-(((-491 |#1| |#2|) (-10 -8 (-15 -4132 ((-863) |#1|)) (-15 -2936 ((-112) |#1| |#1|)) (-15 -2631 (|#1| |#1| (-645 |#2|) (-645 |#2|))) (-15 -2631 (|#1| |#1| |#2| |#2|)) (-15 -2631 (|#1| |#1| (-295 |#2|))) (-15 -2631 (|#1| |#1| (-645 (-295 |#2|)))) (-15 -4337 ((-112) |#2| |#1|)) (-15 -3439 ((-772) |#2| |#1|)) (-15 -2279 ((-645 |#2|) |#1|)) (-15 -3439 ((-772) (-1 (-112) |#2|) |#1|)) (-15 -3025 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1853 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2414 ((-772) |#1|))) (-492 |#2|) (-1218)) (T -491))
-NIL
-(-10 -8 (-15 -4132 ((-863) |#1|)) (-15 -2936 ((-112) |#1| |#1|)) (-15 -2631 (|#1| |#1| (-645 |#2|) (-645 |#2|))) (-15 -2631 (|#1| |#1| |#2| |#2|)) (-15 -2631 (|#1| |#1| (-295 |#2|))) (-15 -2631 (|#1| |#1| (-645 (-295 |#2|)))) (-15 -4337 ((-112) |#2| |#1|)) (-15 -3439 ((-772) |#2| |#1|)) (-15 -2279 ((-645 |#2|) |#1|)) (-15 -3439 ((-772) (-1 (-112) |#2|) |#1|)) (-15 -3025 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1853 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2414 ((-772) |#1|)))
-((-2403 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-3445 (((-112) $ (-772)) 8)) (-2585 (($) 7 T CONST)) (-2777 (((-645 |#1|) $) 31 (|has| $ (-6 -4418)))) (-2077 (((-112) $ (-772)) 9)) (-2279 (((-645 |#1|) $) 30 (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-3731 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) 36)) (-2863 (((-112) $ (-772)) 10)) (-1419 (((-1160) $) 22 (|has| |#1| (-1102)))) (-3430 (((-1122) $) 21 (|has| |#1| (-1102)))) (-3025 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) 14)) (-3572 (((-112) $) 11)) (-3498 (($) 12)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4418))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-4305 (($ $) 13)) (-4132 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-1745 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2414 (((-772) $) 6 (|has| $ (-6 -4418)))))
-(((-492 |#1|) (-140) (-1218)) (T -492))
-((-3829 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-492 *3)) (-4 *3 (-1218)))) (-3731 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4419)) (-4 *1 (-492 *3)) (-4 *3 (-1218)))) (-1853 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4418)) (-4 *1 (-492 *4)) (-4 *4 (-1218)) (-5 *2 (-112)))) (-3025 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4418)) (-4 *1 (-492 *4)) (-4 *4 (-1218)) (-5 *2 (-112)))) (-3439 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4418)) (-4 *1 (-492 *4)) (-4 *4 (-1218)) (-5 *2 (-772)))) (-2777 (*1 *2 *1) (-12 (|has| *1 (-6 -4418)) (-4 *1 (-492 *3)) (-4 *3 (-1218)) (-5 *2 (-645 *3)))) (-2279 (*1 *2 *1) (-12 (|has| *1 (-6 -4418)) (-4 *1 (-492 *3)) (-4 *3 (-1218)) (-5 *2 (-645 *3)))) (-3439 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4418)) (-4 *1 (-492 *3)) (-4 *3 (-1218)) (-4 *3 (-1102)) (-5 *2 (-772)))) (-4337 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4418)) (-4 *1 (-492 *3)) (-4 *3 (-1218)) (-4 *3 (-1102)) (-5 *2 (-112)))))
-(-13 (-34) (-10 -8 (IF (|has| |t#1| (-614 (-863))) (-6 (-614 (-863))) |%noBranch|) (IF (|has| |t#1| (-1102)) (-6 (-1102)) |%noBranch|) (IF (|has| |t#1| (-1102)) (IF (|has| |t#1| (-310 |t#1|)) (-6 (-310 |t#1|)) |%noBranch|) |%noBranch|) (-15 -3829 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4419)) (-15 -3731 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4418)) (PROGN (-15 -1853 ((-112) (-1 (-112) |t#1|) $)) (-15 -3025 ((-112) (-1 (-112) |t#1|) $)) (-15 -3439 ((-772) (-1 (-112) |t#1|) $)) (-15 -2777 ((-645 |t#1|) $)) (-15 -2279 ((-645 |t#1|) $)) (IF (|has| |t#1| (-1102)) (PROGN (-15 -3439 ((-772) |t#1| $)) (-15 -4337 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2800 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-1102) |has| |#1| (-1102)) ((-1218) . T))
-((-4132 ((|#1| $) 6) (($ |#1|) 9)))
-(((-493 |#1|) (-140) (-1218)) (T -493))
+((-2173 (((-567) (-645 (-567))) 55)) (-3944 ((|#1| (-645 |#1|)) 97)) (-1677 (((-645 |#1|) (-645 |#1|)) 98)) (-2966 (((-645 |#1|) (-645 |#1|)) 100)) (-2785 ((|#1| (-645 |#1|)) 99)) (-1849 (((-645 (-567)) (-645 |#1|)) 58)))
+(((-489 |#1|) (-10 -7 (-15 -2785 (|#1| (-645 |#1|))) (-15 -3944 (|#1| (-645 |#1|))) (-15 -2966 ((-645 |#1|) (-645 |#1|))) (-15 -1677 ((-645 |#1|) (-645 |#1|))) (-15 -1849 ((-645 (-567)) (-645 |#1|))) (-15 -2173 ((-567) (-645 (-567))))) (-1245 (-567))) (T -489))
+((-2173 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-567)) (-5 *1 (-489 *4)) (-4 *4 (-1245 *2)))) (-1849 (*1 *2 *3) (-12 (-5 *3 (-645 *4)) (-4 *4 (-1245 (-567))) (-5 *2 (-645 (-567))) (-5 *1 (-489 *4)))) (-1677 (*1 *2 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1245 (-567))) (-5 *1 (-489 *3)))) (-2966 (*1 *2 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1245 (-567))) (-5 *1 (-489 *3)))) (-3944 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-5 *1 (-489 *2)) (-4 *2 (-1245 (-567))))) (-2785 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-5 *1 (-489 *2)) (-4 *2 (-1245 (-567))))))
+(-10 -7 (-15 -2785 (|#1| (-645 |#1|))) (-15 -3944 (|#1| (-645 |#1|))) (-15 -2966 ((-645 |#1|) (-645 |#1|))) (-15 -1677 ((-645 |#1|) (-645 |#1|))) (-15 -1849 ((-645 (-567)) (-645 |#1|))) (-15 -2173 ((-567) (-645 (-567)))))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-4014 (((-567) $) NIL (|has| (-567) (-308)))) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-4287 (($ $) NIL)) (-2286 (((-112) $) NIL)) (-2376 (((-3 $ "failed") $ $) NIL)) (-2029 (((-421 (-1175 $)) (-1175 $)) NIL (|has| (-567) (-911)))) (-3659 (($ $) NIL)) (-3597 (((-421 $) $) NIL)) (-3610 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) NIL (|has| (-567) (-911)))) (-3696 (((-112) $ $) NIL)) (-2677 (((-567) $) NIL (|has| (-567) (-821)))) (-3647 (($) NIL T CONST)) (-3765 (((-3 (-567) "failed") $) NIL) (((-3 (-1179) "failed") $) NIL (|has| (-567) (-1040 (-1179)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| (-567) (-1040 (-567)))) (((-3 (-567) "failed") $) NIL (|has| (-567) (-1040 (-567))))) (-2051 (((-567) $) NIL) (((-1179) $) NIL (|has| (-567) (-1040 (-1179)))) (((-410 (-567)) $) NIL (|has| (-567) (-1040 (-567)))) (((-567) $) NIL (|has| (-567) (-1040 (-567))))) (-2357 (($ $ $) NIL)) (-1423 (((-690 (-567)) (-690 $)) NIL (|has| (-567) (-640 (-567)))) (((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (|has| (-567) (-640 (-567)))) (((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL) (((-690 (-567)) (-690 $)) NIL)) (-3588 (((-3 $ "failed") $) NIL)) (-1359 (($) NIL (|has| (-567) (-548)))) (-2368 (($ $ $) NIL)) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) NIL)) (-3502 (((-112) $) NIL)) (-3137 (((-112) $) NIL (|has| (-567) (-821)))) (-3193 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (|has| (-567) (-888 (-567)))) (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (|has| (-567) (-888 (-381))))) (-4346 (((-112) $) NIL)) (-1863 (($ $) NIL)) (-1447 (((-567) $) NIL)) (-3067 (((-3 $ "failed") $) NIL (|has| (-567) (-1154)))) (-3465 (((-112) $) NIL (|has| (-567) (-821)))) (-1469 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1365 (($ $ $) NIL (|has| (-567) (-851)))) (-3002 (($ $ $) NIL (|has| (-567) (-851)))) (-3841 (($ (-1 (-567) (-567)) $) NIL)) (-2751 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2516 (((-1161) $) NIL)) (-2949 (($ $) NIL)) (-2694 (($) NIL (|has| (-567) (-1154)) CONST)) (-2455 (($ (-410 (-567))) 9)) (-3437 (((-1122) $) NIL)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-2785 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2554 (($ $) NIL (|has| (-567) (-308))) (((-410 (-567)) $) NIL)) (-3969 (((-567) $) NIL (|has| (-567) (-548)))) (-3551 (((-421 (-1175 $)) (-1175 $)) NIL (|has| (-567) (-911)))) (-2016 (((-421 (-1175 $)) (-1175 $)) NIL (|has| (-567) (-911)))) (-2717 (((-421 $) $) NIL)) (-2905 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2400 (((-3 $ "failed") $ $) NIL)) (-2372 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2642 (($ $ (-645 (-567)) (-645 (-567))) NIL (|has| (-567) (-310 (-567)))) (($ $ (-567) (-567)) NIL (|has| (-567) (-310 (-567)))) (($ $ (-295 (-567))) NIL (|has| (-567) (-310 (-567)))) (($ $ (-645 (-295 (-567)))) NIL (|has| (-567) (-310 (-567)))) (($ $ (-645 (-1179)) (-645 (-567))) NIL (|has| (-567) (-517 (-1179) (-567)))) (($ $ (-1179) (-567)) NIL (|has| (-567) (-517 (-1179) (-567))))) (-2460 (((-772) $) NIL)) (-1801 (($ $ (-567)) NIL (|has| (-567) (-287 (-567) (-567))))) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) NIL)) (-1616 (($ $) NIL (|has| (-567) (-233))) (($ $ (-772)) NIL (|has| (-567) (-233))) (($ $ (-1179)) NIL (|has| (-567) (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| (-567) (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| (-567) (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| (-567) (-902 (-1179)))) (($ $ (-1 (-567) (-567)) (-772)) NIL) (($ $ (-1 (-567) (-567))) NIL)) (-1762 (($ $) NIL)) (-1462 (((-567) $) NIL)) (-3902 (((-894 (-567)) $) NIL (|has| (-567) (-615 (-894 (-567))))) (((-894 (-381)) $) NIL (|has| (-567) (-615 (-894 (-381))))) (((-539) $) NIL (|has| (-567) (-615 (-539)))) (((-381) $) NIL (|has| (-567) (-1024))) (((-225) $) NIL (|has| (-567) (-1024)))) (-2616 (((-3 (-1269 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| (-567) (-911))))) (-4129 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) 8) (($ (-567)) NIL) (($ (-1179)) NIL (|has| (-567) (-1040 (-1179)))) (((-410 (-567)) $) NIL) (((-1006 16) $) 10)) (-2118 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-145)) (|has| (-567) (-911))) (|has| (-567) (-145))))) (-2746 (((-772)) NIL T CONST)) (-1689 (((-567) $) NIL (|has| (-567) (-548)))) (-3357 (((-112) $ $) NIL)) (-3731 (((-112) $ $) NIL)) (-1547 (($ $) NIL (|has| (-567) (-821)))) (-1733 (($) NIL T CONST)) (-1744 (($) NIL T CONST)) (-2647 (($ $) NIL (|has| (-567) (-233))) (($ $ (-772)) NIL (|has| (-567) (-233))) (($ $ (-1179)) NIL (|has| (-567) (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| (-567) (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| (-567) (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| (-567) (-902 (-1179)))) (($ $ (-1 (-567) (-567)) (-772)) NIL) (($ $ (-1 (-567) (-567))) NIL)) (-3004 (((-112) $ $) NIL (|has| (-567) (-851)))) (-2980 (((-112) $ $) NIL (|has| (-567) (-851)))) (-2946 (((-112) $ $) NIL)) (-2993 (((-112) $ $) NIL (|has| (-567) (-851)))) (-2968 (((-112) $ $) NIL (|has| (-567) (-851)))) (-3069 (($ $ $) NIL) (($ (-567) (-567)) NIL)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ (-567) $) NIL) (($ $ (-567)) NIL)))
+(((-490) (-13 (-994 (-567)) (-614 (-410 (-567))) (-614 (-1006 16)) (-10 -8 (-15 -2554 ((-410 (-567)) $)) (-15 -2455 ($ (-410 (-567))))))) (T -490))
+((-2554 (*1 *2 *1) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-490)))) (-2455 (*1 *1 *2) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-490)))))
+(-13 (-994 (-567)) (-614 (-410 (-567))) (-614 (-1006 16)) (-10 -8 (-15 -2554 ((-410 (-567)) $)) (-15 -2455 ($ (-410 (-567))))))
+((-1942 (((-645 |#2|) $) 29)) (-3237 (((-112) |#2| $) 34)) (-4233 (((-112) (-1 (-112) |#2|) $) 24)) (-2642 (($ $ (-645 (-295 |#2|))) 13) (($ $ (-295 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-645 |#2|) (-645 |#2|)) NIL)) (-3447 (((-772) (-1 (-112) |#2|) $) 28) (((-772) |#2| $) 32)) (-4129 (((-863) $) 43)) (-3436 (((-112) (-1 (-112) |#2|) $) 23)) (-2946 (((-112) $ $) 37)) (-2423 (((-772) $) 18)))
+(((-491 |#1| |#2|) (-10 -8 (-15 -4129 ((-863) |#1|)) (-15 -2946 ((-112) |#1| |#1|)) (-15 -2642 (|#1| |#1| (-645 |#2|) (-645 |#2|))) (-15 -2642 (|#1| |#1| |#2| |#2|)) (-15 -2642 (|#1| |#1| (-295 |#2|))) (-15 -2642 (|#1| |#1| (-645 (-295 |#2|)))) (-15 -3237 ((-112) |#2| |#1|)) (-15 -3447 ((-772) |#2| |#1|)) (-15 -1942 ((-645 |#2|) |#1|)) (-15 -3447 ((-772) (-1 (-112) |#2|) |#1|)) (-15 -4233 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3436 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2423 ((-772) |#1|))) (-492 |#2|) (-1219)) (T -491))
+NIL
+(-10 -8 (-15 -4129 ((-863) |#1|)) (-15 -2946 ((-112) |#1| |#1|)) (-15 -2642 (|#1| |#1| (-645 |#2|) (-645 |#2|))) (-15 -2642 (|#1| |#1| |#2| |#2|)) (-15 -2642 (|#1| |#1| (-295 |#2|))) (-15 -2642 (|#1| |#1| (-645 (-295 |#2|)))) (-15 -3237 ((-112) |#2| |#1|)) (-15 -3447 ((-772) |#2| |#1|)) (-15 -1942 ((-645 |#2|) |#1|)) (-15 -3447 ((-772) (-1 (-112) |#2|) |#1|)) (-15 -4233 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3436 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2423 ((-772) |#1|)))
+((-2412 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-1563 (((-112) $ (-772)) 8)) (-3647 (($) 7 T CONST)) (-2799 (((-645 |#1|) $) 31 (|has| $ (-6 -4422)))) (-4093 (((-112) $ (-772)) 9)) (-1942 (((-645 |#1|) $) 30 (|has| $ (-6 -4422)))) (-3237 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-3751 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#1| |#1|) $) 36)) (-1986 (((-112) $ (-772)) 10)) (-2516 (((-1161) $) 22 (|has| |#1| (-1102)))) (-3437 (((-1122) $) 21 (|has| |#1| (-1102)))) (-4233 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3875 (((-112) $ $) 14)) (-3885 (((-112) $) 11)) (-2701 (($) 12)) (-3447 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4422))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-4309 (($ $) 13)) (-4129 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-3357 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-3436 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4422)))) (-2946 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2423 (((-772) $) 6 (|has| $ (-6 -4422)))))
+(((-492 |#1|) (-140) (-1219)) (T -492))
+((-3841 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-492 *3)) (-4 *3 (-1219)))) (-3751 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4423)) (-4 *1 (-492 *3)) (-4 *3 (-1219)))) (-3436 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4422)) (-4 *1 (-492 *4)) (-4 *4 (-1219)) (-5 *2 (-112)))) (-4233 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4422)) (-4 *1 (-492 *4)) (-4 *4 (-1219)) (-5 *2 (-112)))) (-3447 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4422)) (-4 *1 (-492 *4)) (-4 *4 (-1219)) (-5 *2 (-772)))) (-2799 (*1 *2 *1) (-12 (|has| *1 (-6 -4422)) (-4 *1 (-492 *3)) (-4 *3 (-1219)) (-5 *2 (-645 *3)))) (-1942 (*1 *2 *1) (-12 (|has| *1 (-6 -4422)) (-4 *1 (-492 *3)) (-4 *3 (-1219)) (-5 *2 (-645 *3)))) (-3447 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4422)) (-4 *1 (-492 *3)) (-4 *3 (-1219)) (-4 *3 (-1102)) (-5 *2 (-772)))) (-3237 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4422)) (-4 *1 (-492 *3)) (-4 *3 (-1219)) (-4 *3 (-1102)) (-5 *2 (-112)))))
+(-13 (-34) (-10 -8 (IF (|has| |t#1| (-614 (-863))) (-6 (-614 (-863))) |%noBranch|) (IF (|has| |t#1| (-1102)) (-6 (-1102)) |%noBranch|) (IF (|has| |t#1| (-1102)) (IF (|has| |t#1| (-310 |t#1|)) (-6 (-310 |t#1|)) |%noBranch|) |%noBranch|) (-15 -3841 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4423)) (-15 -3751 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4422)) (PROGN (-15 -3436 ((-112) (-1 (-112) |t#1|) $)) (-15 -4233 ((-112) (-1 (-112) |t#1|) $)) (-15 -3447 ((-772) (-1 (-112) |t#1|) $)) (-15 -2799 ((-645 |t#1|) $)) (-15 -1942 ((-645 |t#1|) $)) (IF (|has| |t#1| (-1102)) (PROGN (-15 -3447 ((-772) |t#1| $)) (-15 -3237 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2811 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-1102) |has| |#1| (-1102)) ((-1219) . T))
+((-4129 ((|#1| $) 6) (($ |#1|) 9)))
+(((-493 |#1|) (-140) (-1219)) (T -493))
NIL
(-13 (-614 |t#1|) (-617 |t#1|))
(((-617 |#1|) . T) ((-614 |#1|) . T))
-((-2403 (((-112) $ $) NIL)) (-1419 (((-1160) $) NIL)) (-1481 (($ (-1160)) 8)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 15) (((-1160) $) 12)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 11)))
-(((-494) (-13 (-1102) (-614 (-1160)) (-10 -8 (-15 -1481 ($ (-1160)))))) (T -494))
-((-1481 (*1 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-494)))))
-(-13 (-1102) (-614 (-1160)) (-10 -8 (-15 -1481 ($ (-1160)))))
-((-3146 (($ $) 15)) (-3128 (($ $) 24)) (-3166 (($ $) 12)) (-3175 (($ $) 10)) (-3156 (($ $) 17)) (-3137 (($ $) 22)))
-(((-495 |#1|) (-10 -8 (-15 -3137 (|#1| |#1|)) (-15 -3156 (|#1| |#1|)) (-15 -3175 (|#1| |#1|)) (-15 -3166 (|#1| |#1|)) (-15 -3128 (|#1| |#1|)) (-15 -3146 (|#1| |#1|))) (-496)) (T -495))
-NIL
-(-10 -8 (-15 -3137 (|#1| |#1|)) (-15 -3156 (|#1| |#1|)) (-15 -3175 (|#1| |#1|)) (-15 -3166 (|#1| |#1|)) (-15 -3128 (|#1| |#1|)) (-15 -3146 (|#1| |#1|)))
-((-3146 (($ $) 11)) (-3128 (($ $) 10)) (-3166 (($ $) 9)) (-3175 (($ $) 8)) (-3156 (($ $) 7)) (-3137 (($ $) 6)))
+((-2412 (((-112) $ $) NIL)) (-2516 (((-1161) $) NIL)) (-1895 (($ (-1161)) 8)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) 15) (((-1161) $) 12)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) 11)))
+(((-494) (-13 (-1102) (-614 (-1161)) (-10 -8 (-15 -1895 ($ (-1161)))))) (T -494))
+((-1895 (*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-494)))))
+(-13 (-1102) (-614 (-1161)) (-10 -8 (-15 -1895 ($ (-1161)))))
+((-3164 (($ $) 15)) (-3145 (($ $) 24)) (-3182 (($ $) 12)) (-3192 (($ $) 10)) (-3173 (($ $) 17)) (-3155 (($ $) 22)))
+(((-495 |#1|) (-10 -8 (-15 -3155 (|#1| |#1|)) (-15 -3173 (|#1| |#1|)) (-15 -3192 (|#1| |#1|)) (-15 -3182 (|#1| |#1|)) (-15 -3145 (|#1| |#1|)) (-15 -3164 (|#1| |#1|))) (-496)) (T -495))
+NIL
+(-10 -8 (-15 -3155 (|#1| |#1|)) (-15 -3173 (|#1| |#1|)) (-15 -3192 (|#1| |#1|)) (-15 -3182 (|#1| |#1|)) (-15 -3145 (|#1| |#1|)) (-15 -3164 (|#1| |#1|)))
+((-3164 (($ $) 11)) (-3145 (($ $) 10)) (-3182 (($ $) 9)) (-3192 (($ $) 8)) (-3173 (($ $) 7)) (-3155 (($ $) 6)))
(((-496) (-140)) (T -496))
-((-3146 (*1 *1 *1) (-4 *1 (-496))) (-3128 (*1 *1 *1) (-4 *1 (-496))) (-3166 (*1 *1 *1) (-4 *1 (-496))) (-3175 (*1 *1 *1) (-4 *1 (-496))) (-3156 (*1 *1 *1) (-4 *1 (-496))) (-3137 (*1 *1 *1) (-4 *1 (-496))))
-(-13 (-10 -8 (-15 -3137 ($ $)) (-15 -3156 ($ $)) (-15 -3175 ($ $)) (-15 -3166 ($ $)) (-15 -3128 ($ $)) (-15 -3146 ($ $))))
-((-2706 (((-421 |#4|) |#4| (-1 (-421 |#2|) |#2|)) 54)))
-(((-497 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2706 ((-421 |#4|) |#4| (-1 (-421 |#2|) |#2|)))) (-365) (-1244 |#1|) (-13 (-365) (-147) (-725 |#1| |#2|)) (-1244 |#3|)) (T -497))
-((-2706 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-421 *6) *6)) (-4 *6 (-1244 *5)) (-4 *5 (-365)) (-4 *7 (-13 (-365) (-147) (-725 *5 *6))) (-5 *2 (-421 *3)) (-5 *1 (-497 *5 *6 *7 *3)) (-4 *3 (-1244 *7)))))
-(-10 -7 (-15 -2706 ((-421 |#4|) |#4| (-1 (-421 |#2|) |#2|))))
-((-2403 (((-112) $ $) NIL)) (-3224 (((-645 $) (-1174 $) (-1178)) NIL) (((-645 $) (-1174 $)) NIL) (((-645 $) (-954 $)) NIL)) (-4103 (($ (-1174 $) (-1178)) NIL) (($ (-1174 $)) NIL) (($ (-954 $)) NIL)) (-2460 (((-112) $) 39)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-3520 (((-112) $ $) 73)) (-2566 (((-645 (-613 $)) $) 50)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2960 (($ $ (-295 $)) NIL) (($ $ (-645 (-295 $))) NIL) (($ $ (-645 (-613 $)) (-645 $)) NIL)) (-3248 (($ $) NIL)) (-2908 (((-421 $) $) NIL)) (-2716 (($ $) NIL)) (-3609 (((-112) $ $) NIL)) (-2585 (($) NIL T CONST)) (-2005 (((-645 $) (-1174 $) (-1178)) NIL) (((-645 $) (-1174 $)) NIL) (((-645 $) (-954 $)) NIL)) (-3483 (($ (-1174 $) (-1178)) NIL) (($ (-1174 $)) NIL) (($ (-954 $)) NIL)) (-3753 (((-3 (-613 $) "failed") $) NIL) (((-3 (-567) "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL)) (-2038 (((-613 $) $) NIL) (((-567) $) NIL) (((-410 (-567)) $) 55)) (-2349 (($ $ $) NIL)) (-2630 (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL) (((-690 (-567)) (-690 $)) NIL) (((-2 (|:| -2316 (-690 (-410 (-567)))) (|:| |vec| (-1268 (-410 (-567))))) (-690 $) (-1268 $)) NIL) (((-690 (-410 (-567))) (-690 $)) NIL)) (-2477 (($ $) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-2360 (($ $ $) NIL)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-3184 (((-112) $) NIL)) (-2068 (($ $) NIL) (($ (-645 $)) NIL)) (-2034 (((-645 (-114)) $) NIL)) (-2654 (((-114) (-114)) NIL)) (-1433 (((-112) $) 42)) (-3837 (((-112) $) NIL (|has| $ (-1040 (-567))))) (-1448 (((-1127 (-567) (-613 $)) $) 37)) (-2651 (($ $ (-567)) NIL)) (-2475 (((-1174 $) (-1174 $) (-613 $)) 87) (((-1174 $) (-1174 $) (-645 (-613 $))) 62) (($ $ (-613 $)) 76) (($ $ (-645 (-613 $))) 77)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-3263 (((-1174 $) (-613 $)) 74 (|has| $ (-1051)))) (-3829 (($ (-1 $ $) (-613 $)) NIL)) (-2700 (((-3 (-613 $) "failed") $) NIL)) (-2740 (($ (-645 $)) NIL) (($ $ $) NIL)) (-1419 (((-1160) $) NIL)) (-2641 (((-645 (-613 $)) $) NIL)) (-3632 (($ (-114) $) NIL) (($ (-114) (-645 $)) NIL)) (-1854 (((-112) $ (-114)) NIL) (((-112) $ (-1178)) NIL)) (-2939 (($ $) NIL)) (-4138 (((-772) $) NIL)) (-3430 (((-1122) $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-2774 (($ (-645 $)) NIL) (($ $ $) NIL)) (-3922 (((-112) $ $) NIL) (((-112) $ (-1178)) NIL)) (-2706 (((-421 $) $) NIL)) (-3402 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL)) (-2391 (((-3 $ "failed") $ $) NIL)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2757 (((-112) $) NIL (|has| $ (-1040 (-567))))) (-2631 (($ $ (-613 $) $) NIL) (($ $ (-645 (-613 $)) (-645 $)) NIL) (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-645 (-1178)) (-645 (-1 $ $))) NIL) (($ $ (-645 (-1178)) (-645 (-1 $ (-645 $)))) NIL) (($ $ (-1178) (-1 $ (-645 $))) NIL) (($ $ (-1178) (-1 $ $)) NIL) (($ $ (-645 (-114)) (-645 (-1 $ $))) NIL) (($ $ (-645 (-114)) (-645 (-1 $ (-645 $)))) NIL) (($ $ (-114) (-1 $ (-645 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-1990 (((-772) $) NIL)) (-1787 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-645 $)) NIL)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL)) (-3241 (($ $) NIL) (($ $ $) NIL)) (-1593 (($ $ (-772)) NIL) (($ $) 36)) (-1460 (((-1127 (-567) (-613 $)) $) 20)) (-3341 (($ $) NIL (|has| $ (-1051)))) (-3893 (((-381) $) 101) (((-225) $) 109) (((-169 (-381)) $) 117)) (-4132 (((-863) $) NIL) (($ (-613 $)) NIL) (($ (-410 (-567))) NIL) (($ $) NIL) (($ (-567)) NIL) (($ (-1127 (-567) (-613 $))) 21)) (-4221 (((-772)) NIL T CONST)) (-1334 (($ $) NIL) (($ (-645 $)) NIL)) (-3797 (((-112) (-114)) 93)) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL)) (-1716 (($) 10 T CONST)) (-1728 (($) 22 T CONST)) (-2637 (($ $ (-772)) NIL) (($ $) NIL)) (-2936 (((-112) $ $) 24)) (-3060 (($ $ $) 44)) (-3045 (($ $ $) NIL) (($ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-410 (-567))) NIL) (($ $ (-567)) 48) (($ $ (-772)) NIL) (($ $ (-923)) NIL)) (* (($ (-410 (-567)) $) NIL) (($ $ (-410 (-567))) NIL) (($ $ $) 27) (($ (-567) $) NIL) (($ (-772) $) NIL) (($ (-923) $) NIL)))
-(((-498) (-13 (-303) (-27) (-1040 (-567)) (-1040 (-410 (-567))) (-640 (-567)) (-1024) (-640 (-410 (-567))) (-147) (-615 (-169 (-381))) (-233) (-10 -8 (-15 -4132 ($ (-1127 (-567) (-613 $)))) (-15 -1448 ((-1127 (-567) (-613 $)) $)) (-15 -1460 ((-1127 (-567) (-613 $)) $)) (-15 -2477 ($ $)) (-15 -3520 ((-112) $ $)) (-15 -2475 ((-1174 $) (-1174 $) (-613 $))) (-15 -2475 ((-1174 $) (-1174 $) (-645 (-613 $)))) (-15 -2475 ($ $ (-613 $))) (-15 -2475 ($ $ (-645 (-613 $))))))) (T -498))
-((-4132 (*1 *1 *2) (-12 (-5 *2 (-1127 (-567) (-613 (-498)))) (-5 *1 (-498)))) (-1448 (*1 *2 *1) (-12 (-5 *2 (-1127 (-567) (-613 (-498)))) (-5 *1 (-498)))) (-1460 (*1 *2 *1) (-12 (-5 *2 (-1127 (-567) (-613 (-498)))) (-5 *1 (-498)))) (-2477 (*1 *1 *1) (-5 *1 (-498))) (-3520 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-498)))) (-2475 (*1 *2 *2 *3) (-12 (-5 *2 (-1174 (-498))) (-5 *3 (-613 (-498))) (-5 *1 (-498)))) (-2475 (*1 *2 *2 *3) (-12 (-5 *2 (-1174 (-498))) (-5 *3 (-645 (-613 (-498)))) (-5 *1 (-498)))) (-2475 (*1 *1 *1 *2) (-12 (-5 *2 (-613 (-498))) (-5 *1 (-498)))) (-2475 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-613 (-498)))) (-5 *1 (-498)))))
-(-13 (-303) (-27) (-1040 (-567)) (-1040 (-410 (-567))) (-640 (-567)) (-1024) (-640 (-410 (-567))) (-147) (-615 (-169 (-381))) (-233) (-10 -8 (-15 -4132 ($ (-1127 (-567) (-613 $)))) (-15 -1448 ((-1127 (-567) (-613 $)) $)) (-15 -1460 ((-1127 (-567) (-613 $)) $)) (-15 -2477 ($ $)) (-15 -3520 ((-112) $ $)) (-15 -2475 ((-1174 $) (-1174 $) (-613 $))) (-15 -2475 ((-1174 $) (-1174 $) (-645 (-613 $)))) (-15 -2475 ($ $ (-613 $))) (-15 -2475 ($ $ (-645 (-613 $))))))
-((-2403 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1783 (((-1273) $ (-567) (-567)) NIL (|has| $ (-6 -4419)))) (-2496 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-851)))) (-1394 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4419))) (($ $) NIL (-12 (|has| $ (-6 -4419)) (|has| |#1| (-851))))) (-4396 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-851)))) (-3445 (((-112) $ (-772)) NIL)) (-4284 ((|#1| $ (-567) |#1|) 47 (|has| $ (-6 -4419))) ((|#1| $ (-1235 (-567)) |#1|) NIL (|has| $ (-6 -4419)))) (-3350 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2585 (($) NIL T CONST)) (-1764 (($ $) NIL (|has| $ (-6 -4419)))) (-3584 (($ $) NIL)) (-2444 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-3238 (($ |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2477 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4418)))) (-3741 ((|#1| $ (-567) |#1|) 42 (|has| $ (-6 -4419)))) (-3680 ((|#1| $ (-567)) 41)) (-2569 (((-567) (-1 (-112) |#1|) $) NIL) (((-567) |#1| $) NIL (|has| |#1| (-1102))) (((-567) |#1| $ (-567)) NIL (|has| |#1| (-1102)))) (-2777 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-2846 (($ (-772) |#1|) 21)) (-2077 (((-112) $ (-772)) NIL)) (-4069 (((-567) $) 17 (|has| (-567) (-851)))) (-1354 (($ $ $) NIL (|has| |#1| (-851)))) (-4135 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-851)))) (-2279 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2266 (((-567) $) 44 (|has| (-567) (-851)))) (-2981 (($ $ $) NIL (|has| |#1| (-851)))) (-3731 (($ (-1 |#1| |#1|) $) 32 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 38)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL (|has| |#1| (-1102)))) (-2845 (($ |#1| $ (-567)) NIL) (($ $ $ (-567)) NIL)) (-1789 (((-645 (-567)) $) NIL)) (-2996 (((-112) (-567) $) NIL)) (-3430 (((-1122) $) NIL (|has| |#1| (-1102)))) (-2409 ((|#1| $) NIL (|has| (-567) (-851)))) (-4128 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3986 (($ $ |#1|) 15 (|has| $ (-6 -4419)))) (-3025 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) NIL)) (-1794 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2339 (((-645 |#1|) $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) 19)) (-1787 ((|#1| $ (-567) |#1|) NIL) ((|#1| $ (-567)) 46) (($ $ (-1235 (-567))) NIL)) (-1560 (($ $ (-567)) NIL) (($ $ (-1235 (-567))) NIL)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-1395 (($ $ $ (-567)) NIL (|has| $ (-6 -4419)))) (-4305 (($ $) 13)) (-3893 (((-539) $) NIL (|has| |#1| (-615 (-539))))) (-4147 (($ (-645 |#1|)) 24)) (-2269 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-645 $)) NIL)) (-4132 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-1745 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2997 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2971 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2936 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2984 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2958 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2414 (((-772) $) 11 (|has| $ (-6 -4418)))))
-(((-499 |#1| |#2|) (-19 |#1|) (-1218) (-567)) (T -499))
+((-3164 (*1 *1 *1) (-4 *1 (-496))) (-3145 (*1 *1 *1) (-4 *1 (-496))) (-3182 (*1 *1 *1) (-4 *1 (-496))) (-3192 (*1 *1 *1) (-4 *1 (-496))) (-3173 (*1 *1 *1) (-4 *1 (-496))) (-3155 (*1 *1 *1) (-4 *1 (-496))))
+(-13 (-10 -8 (-15 -3155 ($ $)) (-15 -3173 ($ $)) (-15 -3192 ($ $)) (-15 -3182 ($ $)) (-15 -3145 ($ $)) (-15 -3164 ($ $))))
+((-2717 (((-421 |#4|) |#4| (-1 (-421 |#2|) |#2|)) 54)))
+(((-497 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2717 ((-421 |#4|) |#4| (-1 (-421 |#2|) |#2|)))) (-365) (-1245 |#1|) (-13 (-365) (-147) (-725 |#1| |#2|)) (-1245 |#3|)) (T -497))
+((-2717 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-421 *6) *6)) (-4 *6 (-1245 *5)) (-4 *5 (-365)) (-4 *7 (-13 (-365) (-147) (-725 *5 *6))) (-5 *2 (-421 *3)) (-5 *1 (-497 *5 *6 *7 *3)) (-4 *3 (-1245 *7)))))
+(-10 -7 (-15 -2717 ((-421 |#4|) |#4| (-1 (-421 |#2|) |#2|))))
+((-2412 (((-112) $ $) NIL)) (-3802 (((-645 $) (-1175 $) (-1179)) NIL) (((-645 $) (-1175 $)) NIL) (((-645 $) (-954 $)) NIL)) (-1968 (($ (-1175 $) (-1179)) NIL) (($ (-1175 $)) NIL) (($ (-954 $)) NIL)) (-3791 (((-112) $) 39)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-4287 (($ $) NIL)) (-2286 (((-112) $) NIL)) (-4162 (((-112) $ $) 73)) (-2575 (((-645 (-613 $)) $) 50)) (-2376 (((-3 $ "failed") $ $) NIL)) (-2982 (($ $ (-295 $)) NIL) (($ $ (-645 (-295 $))) NIL) (($ $ (-645 (-613 $)) (-645 $)) NIL)) (-3659 (($ $) NIL)) (-3597 (((-421 $) $) NIL)) (-2728 (($ $) NIL)) (-3696 (((-112) $ $) NIL)) (-3647 (($) NIL T CONST)) (-3234 (((-645 $) (-1175 $) (-1179)) NIL) (((-645 $) (-1175 $)) NIL) (((-645 $) (-954 $)) NIL)) (-3940 (($ (-1175 $) (-1179)) NIL) (($ (-1175 $)) NIL) (($ (-954 $)) NIL)) (-3765 (((-3 (-613 $) "failed") $) NIL) (((-3 (-567) "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL)) (-2051 (((-613 $) $) NIL) (((-567) $) NIL) (((-410 (-567)) $) 55)) (-2357 (($ $ $) NIL)) (-1423 (((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL) (((-690 (-567)) (-690 $)) NIL) (((-2 (|:| -4208 (-690 (-410 (-567)))) (|:| |vec| (-1269 (-410 (-567))))) (-690 $) (-1269 $)) NIL) (((-690 (-410 (-567))) (-690 $)) NIL)) (-2494 (($ $) NIL)) (-3588 (((-3 $ "failed") $) NIL)) (-2368 (($ $ $) NIL)) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) NIL)) (-3502 (((-112) $) NIL)) (-1464 (($ $) NIL) (($ (-645 $)) NIL)) (-3863 (((-645 (-114)) $) NIL)) (-2662 (((-114) (-114)) NIL)) (-4346 (((-112) $) 42)) (-1904 (((-112) $) NIL (|has| $ (-1040 (-567))))) (-1447 (((-1127 (-567) (-613 $)) $) 37)) (-3698 (($ $ (-567)) NIL)) (-2724 (((-1175 $) (-1175 $) (-613 $)) 87) (((-1175 $) (-1175 $) (-645 (-613 $))) 62) (($ $ (-613 $)) 76) (($ $ (-645 (-613 $))) 77)) (-1469 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2528 (((-1175 $) (-613 $)) 74 (|has| $ (-1051)))) (-3841 (($ (-1 $ $) (-613 $)) NIL)) (-3231 (((-3 (-613 $) "failed") $) NIL)) (-2751 (($ (-645 $)) NIL) (($ $ $) NIL)) (-2516 (((-1161) $) NIL)) (-2651 (((-645 (-613 $)) $) NIL)) (-3643 (($ (-114) $) NIL) (($ (-114) (-645 $)) NIL)) (-3545 (((-112) $ (-114)) NIL) (((-112) $ (-1179)) NIL)) (-2949 (($ $) NIL)) (-4136 (((-772) $) NIL)) (-3437 (((-1122) $) NIL)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-2785 (($ (-645 $)) NIL) (($ $ $) NIL)) (-2356 (((-112) $ $) NIL) (((-112) $ (-1179)) NIL)) (-2717 (((-421 $) $) NIL)) (-2905 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) NIL)) (-2400 (((-3 $ "failed") $ $) NIL)) (-2372 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2795 (((-112) $) NIL (|has| $ (-1040 (-567))))) (-2642 (($ $ (-613 $) $) NIL) (($ $ (-645 (-613 $)) (-645 $)) NIL) (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-645 (-1179)) (-645 (-1 $ $))) NIL) (($ $ (-645 (-1179)) (-645 (-1 $ (-645 $)))) NIL) (($ $ (-1179) (-1 $ (-645 $))) NIL) (($ $ (-1179) (-1 $ $)) NIL) (($ $ (-645 (-114)) (-645 (-1 $ $))) NIL) (($ $ (-645 (-114)) (-645 (-1 $ (-645 $)))) NIL) (($ $ (-114) (-1 $ (-645 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-2460 (((-772) $) NIL)) (-1801 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-645 $)) NIL)) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) NIL)) (-3209 (($ $) NIL) (($ $ $) NIL)) (-1616 (($ $ (-772)) NIL) (($ $) 36)) (-1462 (((-1127 (-567) (-613 $)) $) 20)) (-3169 (($ $) NIL (|has| $ (-1051)))) (-3902 (((-381) $) 101) (((-225) $) 109) (((-169 (-381)) $) 117)) (-4129 (((-863) $) NIL) (($ (-613 $)) NIL) (($ (-410 (-567))) NIL) (($ $) NIL) (($ (-567)) NIL) (($ (-1127 (-567) (-613 $))) 21)) (-2746 (((-772)) NIL T CONST)) (-1372 (($ $) NIL) (($ (-645 $)) NIL)) (-1909 (((-112) (-114)) 93)) (-3357 (((-112) $ $) NIL)) (-3731 (((-112) $ $) NIL)) (-1733 (($) 10 T CONST)) (-1744 (($) 22 T CONST)) (-2647 (($ $ (-772)) NIL) (($ $) NIL)) (-2946 (((-112) $ $) 24)) (-3069 (($ $ $) 44)) (-3053 (($ $ $) NIL) (($ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-410 (-567))) NIL) (($ $ (-567)) 48) (($ $ (-772)) NIL) (($ $ (-923)) NIL)) (* (($ (-410 (-567)) $) NIL) (($ $ (-410 (-567))) NIL) (($ $ $) 27) (($ (-567) $) NIL) (($ (-772) $) NIL) (($ (-923) $) NIL)))
+(((-498) (-13 (-303) (-27) (-1040 (-567)) (-1040 (-410 (-567))) (-640 (-567)) (-1024) (-640 (-410 (-567))) (-147) (-615 (-169 (-381))) (-233) (-10 -8 (-15 -4129 ($ (-1127 (-567) (-613 $)))) (-15 -1447 ((-1127 (-567) (-613 $)) $)) (-15 -1462 ((-1127 (-567) (-613 $)) $)) (-15 -2494 ($ $)) (-15 -4162 ((-112) $ $)) (-15 -2724 ((-1175 $) (-1175 $) (-613 $))) (-15 -2724 ((-1175 $) (-1175 $) (-645 (-613 $)))) (-15 -2724 ($ $ (-613 $))) (-15 -2724 ($ $ (-645 (-613 $))))))) (T -498))
+((-4129 (*1 *1 *2) (-12 (-5 *2 (-1127 (-567) (-613 (-498)))) (-5 *1 (-498)))) (-1447 (*1 *2 *1) (-12 (-5 *2 (-1127 (-567) (-613 (-498)))) (-5 *1 (-498)))) (-1462 (*1 *2 *1) (-12 (-5 *2 (-1127 (-567) (-613 (-498)))) (-5 *1 (-498)))) (-2494 (*1 *1 *1) (-5 *1 (-498))) (-4162 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-498)))) (-2724 (*1 *2 *2 *3) (-12 (-5 *2 (-1175 (-498))) (-5 *3 (-613 (-498))) (-5 *1 (-498)))) (-2724 (*1 *2 *2 *3) (-12 (-5 *2 (-1175 (-498))) (-5 *3 (-645 (-613 (-498)))) (-5 *1 (-498)))) (-2724 (*1 *1 *1 *2) (-12 (-5 *2 (-613 (-498))) (-5 *1 (-498)))) (-2724 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-613 (-498)))) (-5 *1 (-498)))))
+(-13 (-303) (-27) (-1040 (-567)) (-1040 (-410 (-567))) (-640 (-567)) (-1024) (-640 (-410 (-567))) (-147) (-615 (-169 (-381))) (-233) (-10 -8 (-15 -4129 ($ (-1127 (-567) (-613 $)))) (-15 -1447 ((-1127 (-567) (-613 $)) $)) (-15 -1462 ((-1127 (-567) (-613 $)) $)) (-15 -2494 ($ $)) (-15 -4162 ((-112) $ $)) (-15 -2724 ((-1175 $) (-1175 $) (-613 $))) (-15 -2724 ((-1175 $) (-1175 $) (-645 (-613 $)))) (-15 -2724 ($ $ (-613 $))) (-15 -2724 ($ $ (-645 (-613 $))))))
+((-2412 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3843 (((-1274) $ (-567) (-567)) NIL (|has| $ (-6 -4423)))) (-3531 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-851)))) (-2676 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4423))) (($ $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-851))))) (-1311 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-851)))) (-1563 (((-112) $ (-772)) NIL)) (-4285 ((|#1| $ (-567) |#1|) 47 (|has| $ (-6 -4423))) ((|#1| $ (-1236 (-567)) |#1|) NIL (|has| $ (-6 -4423)))) (-3356 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-3647 (($) NIL T CONST)) (-1602 (($ $) NIL (|has| $ (-6 -4423)))) (-3592 (($ $) NIL)) (-2453 (($ $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3246 (($ |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2494 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4422)))) (-3760 ((|#1| $ (-567) |#1|) 42 (|has| $ (-6 -4423)))) (-3703 ((|#1| $ (-567)) 41)) (-2578 (((-567) (-1 (-112) |#1|) $) NIL) (((-567) |#1| $) NIL (|has| |#1| (-1102))) (((-567) |#1| $ (-567)) NIL (|has| |#1| (-1102)))) (-2799 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-2858 (($ (-772) |#1|) 21)) (-4093 (((-112) $ (-772)) NIL)) (-3895 (((-567) $) 17 (|has| (-567) (-851)))) (-1365 (($ $ $) NIL (|has| |#1| (-851)))) (-2473 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-851)))) (-1942 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-3237 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3255 (((-567) $) 44 (|has| (-567) (-851)))) (-3002 (($ $ $) NIL (|has| |#1| (-851)))) (-3751 (($ (-1 |#1| |#1|) $) 32 (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 38)) (-1986 (((-112) $ (-772)) NIL)) (-2516 (((-1161) $) NIL (|has| |#1| (-1102)))) (-2857 (($ |#1| $ (-567)) NIL) (($ $ $ (-567)) NIL)) (-4364 (((-645 (-567)) $) NIL)) (-3188 (((-112) (-567) $) NIL)) (-3437 (((-1122) $) NIL (|has| |#1| (-1102)))) (-2418 ((|#1| $) NIL (|has| (-567) (-851)))) (-3196 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3823 (($ $ |#1|) 15 (|has| $ (-6 -4423)))) (-4233 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3875 (((-112) $ $) NIL)) (-4058 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-2190 (((-645 |#1|) $) NIL)) (-3885 (((-112) $) NIL)) (-2701 (($) 19)) (-1801 ((|#1| $ (-567) |#1|) NIL) ((|#1| $ (-567)) 46) (($ $ (-1236 (-567))) NIL)) (-1569 (($ $ (-567)) NIL) (($ $ (-1236 (-567))) NIL)) (-3447 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-1656 (($ $ $ (-567)) NIL (|has| $ (-6 -4423)))) (-4309 (($ $) 13)) (-3902 (((-539) $) NIL (|has| |#1| (-615 (-539))))) (-4145 (($ (-645 |#1|)) 24)) (-2276 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-645 $)) NIL)) (-4129 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-3357 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3436 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-3004 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2980 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2993 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2968 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2423 (((-772) $) 11 (|has| $ (-6 -4422)))))
+(((-499 |#1| |#2|) (-19 |#1|) (-1219) (-567)) (T -499))
NIL
(-19 |#1|)
-((-2403 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3445 (((-112) $ (-772)) NIL)) (-4284 ((|#1| $ (-567) (-567) |#1|) NIL)) (-2615 (($ $ (-567) (-499 |#1| |#3|)) NIL)) (-1961 (($ $ (-567) (-499 |#1| |#2|)) NIL)) (-2585 (($) NIL T CONST)) (-1944 (((-499 |#1| |#3|) $ (-567)) NIL)) (-3741 ((|#1| $ (-567) (-567) |#1|) NIL)) (-3680 ((|#1| $ (-567) (-567)) NIL)) (-2777 (((-645 |#1|) $) NIL)) (-3633 (((-772) $) NIL)) (-2846 (($ (-772) (-772) |#1|) NIL)) (-3643 (((-772) $) NIL)) (-2077 (((-112) $ (-772)) NIL)) (-2527 (((-567) $) NIL)) (-4043 (((-567) $) NIL)) (-2279 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2107 (((-567) $) NIL)) (-2646 (((-567) $) NIL)) (-3731 (($ (-1 |#1| |#1|) $) NIL)) (-3829 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL (|has| |#1| (-1102)))) (-3430 (((-1122) $) NIL (|has| |#1| (-1102)))) (-3986 (($ $ |#1|) NIL)) (-3025 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) NIL)) (-1787 ((|#1| $ (-567) (-567)) NIL) ((|#1| $ (-567) (-567) |#1|) NIL)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-4305 (($ $) NIL)) (-2237 (((-499 |#1| |#2|) $ (-567)) NIL)) (-4132 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-1745 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2414 (((-772) $) NIL (|has| $ (-6 -4418)))))
-(((-500 |#1| |#2| |#3|) (-57 |#1| (-499 |#1| |#3|) (-499 |#1| |#2|)) (-1218) (-567) (-567)) (T -500))
+((-2412 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1563 (((-112) $ (-772)) NIL)) (-4285 ((|#1| $ (-567) (-567) |#1|) NIL)) (-3563 (($ $ (-567) (-499 |#1| |#3|)) NIL)) (-2306 (($ $ (-567) (-499 |#1| |#2|)) NIL)) (-3647 (($) NIL T CONST)) (-4323 (((-499 |#1| |#3|) $ (-567)) NIL)) (-3760 ((|#1| $ (-567) (-567) |#1|) NIL)) (-3703 ((|#1| $ (-567) (-567)) NIL)) (-2799 (((-645 |#1|) $) NIL)) (-4296 (((-772) $) NIL)) (-2858 (($ (-772) (-772) |#1|) NIL)) (-4307 (((-772) $) NIL)) (-4093 (((-112) $ (-772)) NIL)) (-3407 (((-567) $) NIL)) (-4227 (((-567) $) NIL)) (-1942 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-3237 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3393 (((-567) $) NIL)) (-3351 (((-567) $) NIL)) (-3751 (($ (-1 |#1| |#1|) $) NIL)) (-3841 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1986 (((-112) $ (-772)) NIL)) (-2516 (((-1161) $) NIL (|has| |#1| (-1102)))) (-3437 (((-1122) $) NIL (|has| |#1| (-1102)))) (-3823 (($ $ |#1|) NIL)) (-4233 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3875 (((-112) $ $) NIL)) (-3885 (((-112) $) NIL)) (-2701 (($) NIL)) (-1801 ((|#1| $ (-567) (-567)) NIL) ((|#1| $ (-567) (-567) |#1|) NIL)) (-3447 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-4309 (($ $) NIL)) (-3186 (((-499 |#1| |#2|) $ (-567)) NIL)) (-4129 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-3357 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3436 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2423 (((-772) $) NIL (|has| $ (-6 -4422)))))
+(((-500 |#1| |#2| |#3|) (-57 |#1| (-499 |#1| |#3|) (-499 |#1| |#2|)) (-1219) (-567) (-567)) (T -500))
NIL
(-57 |#1| (-499 |#1| |#3|) (-499 |#1| |#2|))
-((-1867 (((-645 (-2 (|:| -2623 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|)))) (-2 (|:| -2623 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))) (-772) (-772)) 33)) (-3792 (((-645 (-1174 |#1|)) |#1| (-772) (-772) (-772)) 43)) (-2876 (((-2 (|:| -2623 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))) (-645 |#3|) (-645 (-2 (|:| -2623 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|)))) (-772)) 111)))
-(((-501 |#1| |#2| |#3|) (-10 -7 (-15 -3792 ((-645 (-1174 |#1|)) |#1| (-772) (-772) (-772))) (-15 -1867 ((-645 (-2 (|:| -2623 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|)))) (-2 (|:| -2623 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))) (-772) (-772))) (-15 -2876 ((-2 (|:| -2623 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))) (-645 |#3|) (-645 (-2 (|:| -2623 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|)))) (-772)))) (-351) (-1244 |#1|) (-1244 |#2|)) (T -501))
-((-2876 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 (-2 (|:| -2623 (-690 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-690 *7))))) (-5 *5 (-772)) (-4 *8 (-1244 *7)) (-4 *7 (-1244 *6)) (-4 *6 (-351)) (-5 *2 (-2 (|:| -2623 (-690 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-690 *7)))) (-5 *1 (-501 *6 *7 *8)))) (-1867 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-772)) (-4 *5 (-351)) (-4 *6 (-1244 *5)) (-5 *2 (-645 (-2 (|:| -2623 (-690 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-690 *6))))) (-5 *1 (-501 *5 *6 *7)) (-5 *3 (-2 (|:| -2623 (-690 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-690 *6)))) (-4 *7 (-1244 *6)))) (-3792 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-772)) (-4 *3 (-351)) (-4 *5 (-1244 *3)) (-5 *2 (-645 (-1174 *3))) (-5 *1 (-501 *3 *5 *6)) (-4 *6 (-1244 *5)))))
-(-10 -7 (-15 -3792 ((-645 (-1174 |#1|)) |#1| (-772) (-772) (-772))) (-15 -1867 ((-645 (-2 (|:| -2623 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|)))) (-2 (|:| -2623 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))) (-772) (-772))) (-15 -2876 ((-2 (|:| -2623 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))) (-645 |#3|) (-645 (-2 (|:| -2623 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|)))) (-772))))
-((-4349 (((-2 (|:| -2623 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|))) (-2 (|:| -2623 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|))) (-2 (|:| -2623 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|)))) 74)) (-1388 ((|#1| (-690 |#1|) |#1| (-772)) 27)) (-2957 (((-772) (-772) (-772)) 36)) (-2063 (((-690 |#1|) (-690 |#1|) (-690 |#1|)) 54)) (-2979 (((-690 |#1|) (-690 |#1|) (-690 |#1|) |#1|) 62) (((-690 |#1|) (-690 |#1|) (-690 |#1|)) 59)) (-3185 ((|#1| (-690 |#1|) (-690 |#1|) |#1| (-567)) 31)) (-1877 ((|#1| (-690 |#1|)) 18)))
-(((-502 |#1| |#2| |#3|) (-10 -7 (-15 -1877 (|#1| (-690 |#1|))) (-15 -1388 (|#1| (-690 |#1|) |#1| (-772))) (-15 -3185 (|#1| (-690 |#1|) (-690 |#1|) |#1| (-567))) (-15 -2957 ((-772) (-772) (-772))) (-15 -2979 ((-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -2979 ((-690 |#1|) (-690 |#1|) (-690 |#1|) |#1|)) (-15 -2063 ((-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -4349 ((-2 (|:| -2623 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|))) (-2 (|:| -2623 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|))) (-2 (|:| -2623 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|)))))) (-13 (-308) (-10 -8 (-15 -2908 ((-421 $) $)))) (-1244 |#1|) (-412 |#1| |#2|)) (T -502))
-((-4349 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2623 (-690 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-690 *3)))) (-4 *3 (-13 (-308) (-10 -8 (-15 -2908 ((-421 $) $))))) (-4 *4 (-1244 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-412 *3 *4)))) (-2063 (*1 *2 *2 *2) (-12 (-5 *2 (-690 *3)) (-4 *3 (-13 (-308) (-10 -8 (-15 -2908 ((-421 $) $))))) (-4 *4 (-1244 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-412 *3 *4)))) (-2979 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-690 *3)) (-4 *3 (-13 (-308) (-10 -8 (-15 -2908 ((-421 $) $))))) (-4 *4 (-1244 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-412 *3 *4)))) (-2979 (*1 *2 *2 *2) (-12 (-5 *2 (-690 *3)) (-4 *3 (-13 (-308) (-10 -8 (-15 -2908 ((-421 $) $))))) (-4 *4 (-1244 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-412 *3 *4)))) (-2957 (*1 *2 *2 *2) (-12 (-5 *2 (-772)) (-4 *3 (-13 (-308) (-10 -8 (-15 -2908 ((-421 $) $))))) (-4 *4 (-1244 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-412 *3 *4)))) (-3185 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-690 *2)) (-5 *4 (-567)) (-4 *2 (-13 (-308) (-10 -8 (-15 -2908 ((-421 $) $))))) (-4 *5 (-1244 *2)) (-5 *1 (-502 *2 *5 *6)) (-4 *6 (-412 *2 *5)))) (-1388 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-690 *2)) (-5 *4 (-772)) (-4 *2 (-13 (-308) (-10 -8 (-15 -2908 ((-421 $) $))))) (-4 *5 (-1244 *2)) (-5 *1 (-502 *2 *5 *6)) (-4 *6 (-412 *2 *5)))) (-1877 (*1 *2 *3) (-12 (-5 *3 (-690 *2)) (-4 *4 (-1244 *2)) (-4 *2 (-13 (-308) (-10 -8 (-15 -2908 ((-421 $) $))))) (-5 *1 (-502 *2 *4 *5)) (-4 *5 (-412 *2 *4)))))
-(-10 -7 (-15 -1877 (|#1| (-690 |#1|))) (-15 -1388 (|#1| (-690 |#1|) |#1| (-772))) (-15 -3185 (|#1| (-690 |#1|) (-690 |#1|) |#1| (-567))) (-15 -2957 ((-772) (-772) (-772))) (-15 -2979 ((-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -2979 ((-690 |#1|) (-690 |#1|) (-690 |#1|) |#1|)) (-15 -2063 ((-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -4349 ((-2 (|:| -2623 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|))) (-2 (|:| -2623 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|))) (-2 (|:| -2623 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|))))))
-((-2403 (((-112) $ $) NIL)) (-2425 (($ $) NIL)) (-1689 (($ $ $) 40)) (-1783 (((-1273) $ (-567) (-567)) NIL (|has| $ (-6 -4419)))) (-2496 (((-112) $) NIL (|has| (-112) (-851))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4419)) (|has| (-112) (-851)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4419)))) (-4396 (($ $) NIL (|has| (-112) (-851))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-3445 (((-112) $ (-772)) NIL)) (-4284 (((-112) $ (-1235 (-567)) (-112)) NIL (|has| $ (-6 -4419))) (((-112) $ (-567) (-112)) 42 (|has| $ (-6 -4419)))) (-3350 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4418)))) (-2585 (($) NIL T CONST)) (-1764 (($ $) NIL (|has| $ (-6 -4419)))) (-3584 (($ $) NIL)) (-2444 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-112) (-1102))))) (-3238 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4418))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-112) (-1102))))) (-2477 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4418))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4418))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4418)) (|has| (-112) (-1102))))) (-3741 (((-112) $ (-567) (-112)) NIL (|has| $ (-6 -4419)))) (-3680 (((-112) $ (-567)) NIL)) (-2569 (((-567) (-112) $ (-567)) NIL (|has| (-112) (-1102))) (((-567) (-112) $) NIL (|has| (-112) (-1102))) (((-567) (-1 (-112) (-112)) $) NIL)) (-2777 (((-645 (-112)) $) NIL (|has| $ (-6 -4418)))) (-1677 (($ $ $) 38)) (-1657 (($ $) NIL)) (-4005 (($ $ $) NIL)) (-2846 (($ (-772) (-112)) 27)) (-3107 (($ $ $) NIL)) (-2077 (((-112) $ (-772)) NIL)) (-4069 (((-567) $) 8 (|has| (-567) (-851)))) (-1354 (($ $ $) NIL)) (-4135 (($ $ $) NIL (|has| (-112) (-851))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2279 (((-645 (-112)) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-112) (-1102))))) (-2266 (((-567) $) NIL (|has| (-567) (-851)))) (-2981 (($ $ $) NIL)) (-3731 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 (-112) (-112) (-112)) $ $) 35) (($ (-1 (-112) (-112)) $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL)) (-2845 (($ $ $ (-567)) NIL) (($ (-112) $ (-567)) NIL)) (-1789 (((-645 (-567)) $) NIL)) (-2996 (((-112) (-567) $) NIL)) (-3430 (((-1122) $) NIL)) (-2409 (((-112) $) NIL (|has| (-567) (-851)))) (-4128 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-3986 (($ $ (-112)) NIL (|has| $ (-6 -4419)))) (-3025 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-112)) (-645 (-112))) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1102)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1102)))) (($ $ (-295 (-112))) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1102)))) (($ $ (-645 (-295 (-112)))) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1102))))) (-3092 (((-112) $ $) NIL)) (-1794 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-112) (-1102))))) (-2339 (((-645 (-112)) $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) 28)) (-1787 (($ $ (-1235 (-567))) NIL) (((-112) $ (-567)) 22) (((-112) $ (-567) (-112)) NIL)) (-1560 (($ $ (-1235 (-567))) NIL) (($ $ (-567)) NIL)) (-3439 (((-772) (-112) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-112) (-1102)))) (((-772) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4418)))) (-1395 (($ $ $ (-567)) NIL (|has| $ (-6 -4419)))) (-4305 (($ $) 29)) (-3893 (((-539) $) NIL (|has| (-112) (-615 (-539))))) (-4147 (($ (-645 (-112))) NIL)) (-2269 (($ (-645 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-4132 (((-863) $) 26)) (-1745 (((-112) $ $) NIL)) (-1853 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4418)))) (-1667 (($ $ $) 36)) (-2470 (($ $ $) NIL)) (-1355 (($ $ $) 45)) (-1366 (($ $) 43)) (-1341 (($ $ $) 44)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 30)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) 31)) (-2458 (($ $ $) NIL)) (-2414 (((-772) $) 13 (|has| $ (-6 -4418)))))
-(((-503 |#1|) (-13 (-123) (-10 -8 (-15 -1366 ($ $)) (-15 -1355 ($ $ $)) (-15 -1341 ($ $ $)))) (-567)) (T -503))
-((-1366 (*1 *1 *1) (-12 (-5 *1 (-503 *2)) (-14 *2 (-567)))) (-1355 (*1 *1 *1 *1) (-12 (-5 *1 (-503 *2)) (-14 *2 (-567)))) (-1341 (*1 *1 *1 *1) (-12 (-5 *1 (-503 *2)) (-14 *2 (-567)))))
-(-13 (-123) (-10 -8 (-15 -1366 ($ $)) (-15 -1355 ($ $ $)) (-15 -1341 ($ $ $))))
-((-2663 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1174 |#4|)) 35)) (-3963 (((-1174 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1174 |#4|)) 22)) (-2607 (((-3 (-690 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-690 (-1174 |#4|))) 49)) (-3765 (((-1174 (-1174 |#4|)) (-1 |#4| |#1|) |#3|) 58)))
-(((-504 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3963 (|#2| (-1 |#1| |#4|) (-1174 |#4|))) (-15 -3963 ((-1174 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2663 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1174 |#4|))) (-15 -2607 ((-3 (-690 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-690 (-1174 |#4|)))) (-15 -3765 ((-1174 (-1174 |#4|)) (-1 |#4| |#1|) |#3|))) (-1051) (-1244 |#1|) (-1244 |#2|) (-1051)) (T -504))
-((-3765 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1051)) (-4 *7 (-1051)) (-4 *6 (-1244 *5)) (-5 *2 (-1174 (-1174 *7))) (-5 *1 (-504 *5 *6 *4 *7)) (-4 *4 (-1244 *6)))) (-2607 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-690 (-1174 *8))) (-4 *5 (-1051)) (-4 *8 (-1051)) (-4 *6 (-1244 *5)) (-5 *2 (-690 *6)) (-5 *1 (-504 *5 *6 *7 *8)) (-4 *7 (-1244 *6)))) (-2663 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1174 *7)) (-4 *5 (-1051)) (-4 *7 (-1051)) (-4 *2 (-1244 *5)) (-5 *1 (-504 *5 *2 *6 *7)) (-4 *6 (-1244 *2)))) (-3963 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1051)) (-4 *7 (-1051)) (-4 *4 (-1244 *5)) (-5 *2 (-1174 *7)) (-5 *1 (-504 *5 *4 *6 *7)) (-4 *6 (-1244 *4)))) (-3963 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1174 *7)) (-4 *5 (-1051)) (-4 *7 (-1051)) (-4 *2 (-1244 *5)) (-5 *1 (-504 *5 *2 *6 *7)) (-4 *6 (-1244 *2)))))
-(-10 -7 (-15 -3963 (|#2| (-1 |#1| |#4|) (-1174 |#4|))) (-15 -3963 ((-1174 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2663 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1174 |#4|))) (-15 -2607 ((-3 (-690 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-690 (-1174 |#4|)))) (-15 -3765 ((-1174 (-1174 |#4|)) (-1 |#4| |#1|) |#3|)))
-((-2403 (((-112) $ $) NIL)) (-1354 (($ $ $) NIL)) (-2981 (($ $ $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-1345 (((-1273) $) 25)) (-1787 (((-1160) $ (-1178)) 30)) (-4022 (((-1273) $) 17)) (-4132 (((-863) $) 27) (($ (-1160)) 26)) (-1745 (((-112) $ $) NIL)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 11)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) 9)))
-(((-505) (-13 (-851) (-10 -8 (-15 -1787 ((-1160) $ (-1178))) (-15 -4022 ((-1273) $)) (-15 -1345 ((-1273) $)) (-15 -4132 ($ (-1160)))))) (T -505))
-((-1787 (*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1160)) (-5 *1 (-505)))) (-4022 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-505)))) (-1345 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-505)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-505)))))
-(-13 (-851) (-10 -8 (-15 -1787 ((-1160) $ (-1178))) (-15 -4022 ((-1273) $)) (-15 -1345 ((-1273) $)) (-15 -4132 ($ (-1160)))))
-((-1989 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-3354 ((|#1| |#4|) 10)) (-4304 ((|#3| |#4|) 17)))
-(((-506 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3354 (|#1| |#4|)) (-15 -4304 (|#3| |#4|)) (-15 -1989 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-559) (-994 |#1|) (-375 |#1|) (-375 |#2|)) (T -506))
-((-1989 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-994 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-506 *4 *5 *6 *3)) (-4 *6 (-375 *4)) (-4 *3 (-375 *5)))) (-4304 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-994 *4)) (-4 *2 (-375 *4)) (-5 *1 (-506 *4 *5 *2 *3)) (-4 *3 (-375 *5)))) (-3354 (*1 *2 *3) (-12 (-4 *4 (-994 *2)) (-4 *2 (-559)) (-5 *1 (-506 *2 *4 *5 *3)) (-4 *5 (-375 *2)) (-4 *3 (-375 *4)))))
-(-10 -7 (-15 -3354 (|#1| |#4|)) (-15 -4304 (|#3| |#4|)) (-15 -1989 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|)))
-((-2403 (((-112) $ $) NIL)) (-3249 (((-112) $ (-645 |#3|)) 126) (((-112) $) 127)) (-2460 (((-112) $) 178)) (-3651 (($ $ |#4|) 117) (($ $ |#4| (-645 |#3|)) 121)) (-2007 (((-1167 (-645 (-954 |#1|)) (-645 (-295 (-954 |#1|)))) (-645 |#4|)) 171 (|has| |#3| (-615 (-1178))))) (-3102 (($ $ $) 105) (($ $ |#4|) 103)) (-1433 (((-112) $) 177)) (-1835 (($ $) 131)) (-1419 (((-1160) $) NIL)) (-2370 (($ $ $) 97) (($ (-645 $)) 99)) (-3825 (((-112) |#4| $) 129)) (-2642 (((-112) $ $) 82)) (-1321 (($ (-645 |#4|)) 104)) (-3430 (((-1122) $) NIL)) (-2365 (($ (-645 |#4|)) 175)) (-2775 (((-112) $) 176)) (-3716 (($ $) 85)) (-1587 (((-645 |#4|) $) 73)) (-2994 (((-2 (|:| |mval| (-690 |#1|)) (|:| |invmval| (-690 |#1|)) (|:| |genIdeal| $)) $ (-645 |#3|)) NIL)) (-2648 (((-112) |#4| $) 89)) (-1879 (((-567) $ (-645 |#3|)) 133) (((-567) $) 134)) (-4132 (((-863) $) 174) (($ (-645 |#4|)) 100)) (-1745 (((-112) $ $) NIL)) (-4184 (($ (-2 (|:| |mval| (-690 |#1|)) (|:| |invmval| (-690 |#1|)) (|:| |genIdeal| $))) NIL)) (-2936 (((-112) $ $) 84)) (-3033 (($ $ $) 107)) (** (($ $ (-772)) 115)) (* (($ $ $) 113)))
-(((-507 |#1| |#2| |#3| |#4|) (-13 (-1102) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-772))) (-15 -3033 ($ $ $)) (-15 -1433 ((-112) $)) (-15 -2460 ((-112) $)) (-15 -2648 ((-112) |#4| $)) (-15 -2642 ((-112) $ $)) (-15 -3825 ((-112) |#4| $)) (-15 -3249 ((-112) $ (-645 |#3|))) (-15 -3249 ((-112) $)) (-15 -2370 ($ $ $)) (-15 -2370 ($ (-645 $))) (-15 -3102 ($ $ $)) (-15 -3102 ($ $ |#4|)) (-15 -3716 ($ $)) (-15 -2994 ((-2 (|:| |mval| (-690 |#1|)) (|:| |invmval| (-690 |#1|)) (|:| |genIdeal| $)) $ (-645 |#3|))) (-15 -4184 ($ (-2 (|:| |mval| (-690 |#1|)) (|:| |invmval| (-690 |#1|)) (|:| |genIdeal| $)))) (-15 -1879 ((-567) $ (-645 |#3|))) (-15 -1879 ((-567) $)) (-15 -1835 ($ $)) (-15 -1321 ($ (-645 |#4|))) (-15 -2365 ($ (-645 |#4|))) (-15 -2775 ((-112) $)) (-15 -1587 ((-645 |#4|) $)) (-15 -4132 ($ (-645 |#4|))) (-15 -3651 ($ $ |#4|)) (-15 -3651 ($ $ |#4| (-645 |#3|))) (IF (|has| |#3| (-615 (-1178))) (-15 -2007 ((-1167 (-645 (-954 |#1|)) (-645 (-295 (-954 |#1|)))) (-645 |#4|))) |%noBranch|))) (-365) (-794) (-851) (-951 |#1| |#2| |#3|)) (T -507))
-((* (*1 *1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-794)) (-4 *4 (-851)) (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-951 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5)))) (-3033 (*1 *1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-794)) (-4 *4 (-851)) (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-951 *2 *3 *4)))) (-1433 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5)))) (-2460 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5)))) (-2648 (*1 *2 *3 *1) (-12 (-4 *4 (-365)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-507 *4 *5 *6 *3)) (-4 *3 (-951 *4 *5 *6)))) (-2642 (*1 *2 *1 *1) (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5)))) (-3825 (*1 *2 *3 *1) (-12 (-4 *4 (-365)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-507 *4 *5 *6 *3)) (-4 *3 (-951 *4 *5 *6)))) (-3249 (*1 *2 *1 *3) (-12 (-5 *3 (-645 *6)) (-4 *6 (-851)) (-4 *4 (-365)) (-4 *5 (-794)) (-5 *2 (-112)) (-5 *1 (-507 *4 *5 *6 *7)) (-4 *7 (-951 *4 *5 *6)))) (-3249 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5)))) (-2370 (*1 *1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-794)) (-4 *4 (-851)) (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-951 *2 *3 *4)))) (-2370 (*1 *1 *2) (-12 (-5 *2 (-645 (-507 *3 *4 *5 *6))) (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5)))) (-3102 (*1 *1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-794)) (-4 *4 (-851)) (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-951 *2 *3 *4)))) (-3102 (*1 *1 *1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-507 *3 *4 *5 *2)) (-4 *2 (-951 *3 *4 *5)))) (-3716 (*1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-794)) (-4 *4 (-851)) (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-951 *2 *3 *4)))) (-2994 (*1 *2 *1 *3) (-12 (-5 *3 (-645 *6)) (-4 *6 (-851)) (-4 *4 (-365)) (-4 *5 (-794)) (-5 *2 (-2 (|:| |mval| (-690 *4)) (|:| |invmval| (-690 *4)) (|:| |genIdeal| (-507 *4 *5 *6 *7)))) (-5 *1 (-507 *4 *5 *6 *7)) (-4 *7 (-951 *4 *5 *6)))) (-4184 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-690 *3)) (|:| |invmval| (-690 *3)) (|:| |genIdeal| (-507 *3 *4 *5 *6)))) (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5)))) (-1879 (*1 *2 *1 *3) (-12 (-5 *3 (-645 *6)) (-4 *6 (-851)) (-4 *4 (-365)) (-4 *5 (-794)) (-5 *2 (-567)) (-5 *1 (-507 *4 *5 *6 *7)) (-4 *7 (-951 *4 *5 *6)))) (-1879 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-567)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5)))) (-1835 (*1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-794)) (-4 *4 (-851)) (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-951 *2 *3 *4)))) (-1321 (*1 *1 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-951 *3 *4 *5)) (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-507 *3 *4 *5 *6)))) (-2365 (*1 *1 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-951 *3 *4 *5)) (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-507 *3 *4 *5 *6)))) (-2775 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5)))) (-1587 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *6)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-951 *3 *4 *5)) (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-507 *3 *4 *5 *6)))) (-3651 (*1 *1 *1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-507 *3 *4 *5 *2)) (-4 *2 (-951 *3 *4 *5)))) (-3651 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-645 *6)) (-4 *6 (-851)) (-4 *4 (-365)) (-4 *5 (-794)) (-5 *1 (-507 *4 *5 *6 *2)) (-4 *2 (-951 *4 *5 *6)))) (-2007 (*1 *2 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-951 *4 *5 *6)) (-4 *6 (-615 (-1178))) (-4 *4 (-365)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-1167 (-645 (-954 *4)) (-645 (-295 (-954 *4))))) (-5 *1 (-507 *4 *5 *6 *7)))))
-(-13 (-1102) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-772))) (-15 -3033 ($ $ $)) (-15 -1433 ((-112) $)) (-15 -2460 ((-112) $)) (-15 -2648 ((-112) |#4| $)) (-15 -2642 ((-112) $ $)) (-15 -3825 ((-112) |#4| $)) (-15 -3249 ((-112) $ (-645 |#3|))) (-15 -3249 ((-112) $)) (-15 -2370 ($ $ $)) (-15 -2370 ($ (-645 $))) (-15 -3102 ($ $ $)) (-15 -3102 ($ $ |#4|)) (-15 -3716 ($ $)) (-15 -2994 ((-2 (|:| |mval| (-690 |#1|)) (|:| |invmval| (-690 |#1|)) (|:| |genIdeal| $)) $ (-645 |#3|))) (-15 -4184 ($ (-2 (|:| |mval| (-690 |#1|)) (|:| |invmval| (-690 |#1|)) (|:| |genIdeal| $)))) (-15 -1879 ((-567) $ (-645 |#3|))) (-15 -1879 ((-567) $)) (-15 -1835 ($ $)) (-15 -1321 ($ (-645 |#4|))) (-15 -2365 ($ (-645 |#4|))) (-15 -2775 ((-112) $)) (-15 -1587 ((-645 |#4|) $)) (-15 -4132 ($ (-645 |#4|))) (-15 -3651 ($ $ |#4|)) (-15 -3651 ($ $ |#4| (-645 |#3|))) (IF (|has| |#3| (-615 (-1178))) (-15 -2007 ((-1167 (-645 (-954 |#1|)) (-645 (-295 (-954 |#1|)))) (-645 |#4|))) |%noBranch|)))
-((-3397 (((-112) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567))))) 176)) (-4266 (((-112) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567))))) 177)) (-3890 (((-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567))))) 129)) (-3184 (((-112) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567))))) NIL)) (-1751 (((-645 (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567))))) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567))))) 179)) (-1971 (((-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))) (-645 (-865 |#1|))) 195)))
-(((-508 |#1| |#2|) (-10 -7 (-15 -3397 ((-112) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))))) (-15 -4266 ((-112) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))))) (-15 -3184 ((-112) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))))) (-15 -3890 ((-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))))) (-15 -1751 ((-645 (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567))))) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))))) (-15 -1971 ((-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))) (-645 (-865 |#1|))))) (-645 (-1178)) (-772)) (T -508))
-((-1971 (*1 *2 *2 *3) (-12 (-5 *2 (-507 (-410 (-567)) (-240 *5 (-772)) (-865 *4) (-247 *4 (-410 (-567))))) (-5 *3 (-645 (-865 *4))) (-14 *4 (-645 (-1178))) (-14 *5 (-772)) (-5 *1 (-508 *4 *5)))) (-1751 (*1 *2 *3) (-12 (-14 *4 (-645 (-1178))) (-14 *5 (-772)) (-5 *2 (-645 (-507 (-410 (-567)) (-240 *5 (-772)) (-865 *4) (-247 *4 (-410 (-567)))))) (-5 *1 (-508 *4 *5)) (-5 *3 (-507 (-410 (-567)) (-240 *5 (-772)) (-865 *4) (-247 *4 (-410 (-567))))))) (-3890 (*1 *2 *2) (-12 (-5 *2 (-507 (-410 (-567)) (-240 *4 (-772)) (-865 *3) (-247 *3 (-410 (-567))))) (-14 *3 (-645 (-1178))) (-14 *4 (-772)) (-5 *1 (-508 *3 *4)))) (-3184 (*1 *2 *3) (-12 (-5 *3 (-507 (-410 (-567)) (-240 *5 (-772)) (-865 *4) (-247 *4 (-410 (-567))))) (-14 *4 (-645 (-1178))) (-14 *5 (-772)) (-5 *2 (-112)) (-5 *1 (-508 *4 *5)))) (-4266 (*1 *2 *3) (-12 (-5 *3 (-507 (-410 (-567)) (-240 *5 (-772)) (-865 *4) (-247 *4 (-410 (-567))))) (-14 *4 (-645 (-1178))) (-14 *5 (-772)) (-5 *2 (-112)) (-5 *1 (-508 *4 *5)))) (-3397 (*1 *2 *3) (-12 (-5 *3 (-507 (-410 (-567)) (-240 *5 (-772)) (-865 *4) (-247 *4 (-410 (-567))))) (-14 *4 (-645 (-1178))) (-14 *5 (-772)) (-5 *2 (-112)) (-5 *1 (-508 *4 *5)))))
-(-10 -7 (-15 -3397 ((-112) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))))) (-15 -4266 ((-112) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))))) (-15 -3184 ((-112) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))))) (-15 -3890 ((-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))))) (-15 -1751 ((-645 (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567))))) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))))) (-15 -1971 ((-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))) (-645 (-865 |#1|)))))
-((-2403 (((-112) $ $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4167 (($) 6)) (-4132 (((-863) $) 12) (((-1178) $) 10)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 8)))
-(((-509) (-13 (-1102) (-614 (-1178)) (-10 -8 (-15 -4167 ($))))) (T -509))
-((-4167 (*1 *1) (-5 *1 (-509))))
-(-13 (-1102) (-614 (-1178)) (-10 -8 (-15 -4167 ($))))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2585 (($) NIL T CONST)) (-3014 (($ $) NIL)) (-2824 (($ |#1| |#2|) NIL)) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-3148 ((|#2| $) NIL)) (-2989 ((|#1| $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-1716 (($) 12 T CONST)) (-2936 (((-112) $ $) NIL)) (-3045 (($ $) 11) (($ $ $) 35)) (-3033 (($ $ $) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 21)))
+((-2577 (((-645 (-2 (|:| -2144 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|)))) (-2 (|:| -2144 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))) (-772) (-772)) 33)) (-1535 (((-645 (-1175 |#1|)) |#1| (-772) (-772) (-772)) 43)) (-4035 (((-2 (|:| -2144 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))) (-645 |#3|) (-645 (-2 (|:| -2144 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|)))) (-772)) 111)))
+(((-501 |#1| |#2| |#3|) (-10 -7 (-15 -1535 ((-645 (-1175 |#1|)) |#1| (-772) (-772) (-772))) (-15 -2577 ((-645 (-2 (|:| -2144 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|)))) (-2 (|:| -2144 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))) (-772) (-772))) (-15 -4035 ((-2 (|:| -2144 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))) (-645 |#3|) (-645 (-2 (|:| -2144 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|)))) (-772)))) (-351) (-1245 |#1|) (-1245 |#2|)) (T -501))
+((-4035 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 (-2 (|:| -2144 (-690 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-690 *7))))) (-5 *5 (-772)) (-4 *8 (-1245 *7)) (-4 *7 (-1245 *6)) (-4 *6 (-351)) (-5 *2 (-2 (|:| -2144 (-690 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-690 *7)))) (-5 *1 (-501 *6 *7 *8)))) (-2577 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-772)) (-4 *5 (-351)) (-4 *6 (-1245 *5)) (-5 *2 (-645 (-2 (|:| -2144 (-690 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-690 *6))))) (-5 *1 (-501 *5 *6 *7)) (-5 *3 (-2 (|:| -2144 (-690 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-690 *6)))) (-4 *7 (-1245 *6)))) (-1535 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-772)) (-4 *3 (-351)) (-4 *5 (-1245 *3)) (-5 *2 (-645 (-1175 *3))) (-5 *1 (-501 *3 *5 *6)) (-4 *6 (-1245 *5)))))
+(-10 -7 (-15 -1535 ((-645 (-1175 |#1|)) |#1| (-772) (-772) (-772))) (-15 -2577 ((-645 (-2 (|:| -2144 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|)))) (-2 (|:| -2144 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))) (-772) (-772))) (-15 -4035 ((-2 (|:| -2144 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))) (-645 |#3|) (-645 (-2 (|:| -2144 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|)))) (-772))))
+((-3931 (((-2 (|:| -2144 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|))) (-2 (|:| -2144 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|))) (-2 (|:| -2144 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|)))) 74)) (-3105 ((|#1| (-690 |#1|) |#1| (-772)) 27)) (-3776 (((-772) (-772) (-772)) 36)) (-2406 (((-690 |#1|) (-690 |#1|) (-690 |#1|)) 54)) (-2308 (((-690 |#1|) (-690 |#1|) (-690 |#1|) |#1|) 62) (((-690 |#1|) (-690 |#1|) (-690 |#1|)) 59)) (-3589 ((|#1| (-690 |#1|) (-690 |#1|) |#1| (-567)) 31)) (-2437 ((|#1| (-690 |#1|)) 18)))
+(((-502 |#1| |#2| |#3|) (-10 -7 (-15 -2437 (|#1| (-690 |#1|))) (-15 -3105 (|#1| (-690 |#1|) |#1| (-772))) (-15 -3589 (|#1| (-690 |#1|) (-690 |#1|) |#1| (-567))) (-15 -3776 ((-772) (-772) (-772))) (-15 -2308 ((-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -2308 ((-690 |#1|) (-690 |#1|) (-690 |#1|) |#1|)) (-15 -2406 ((-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -3931 ((-2 (|:| -2144 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|))) (-2 (|:| -2144 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|))) (-2 (|:| -2144 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|)))))) (-13 (-308) (-10 -8 (-15 -3597 ((-421 $) $)))) (-1245 |#1|) (-412 |#1| |#2|)) (T -502))
+((-3931 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2144 (-690 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-690 *3)))) (-4 *3 (-13 (-308) (-10 -8 (-15 -3597 ((-421 $) $))))) (-4 *4 (-1245 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-412 *3 *4)))) (-2406 (*1 *2 *2 *2) (-12 (-5 *2 (-690 *3)) (-4 *3 (-13 (-308) (-10 -8 (-15 -3597 ((-421 $) $))))) (-4 *4 (-1245 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-412 *3 *4)))) (-2308 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-690 *3)) (-4 *3 (-13 (-308) (-10 -8 (-15 -3597 ((-421 $) $))))) (-4 *4 (-1245 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-412 *3 *4)))) (-2308 (*1 *2 *2 *2) (-12 (-5 *2 (-690 *3)) (-4 *3 (-13 (-308) (-10 -8 (-15 -3597 ((-421 $) $))))) (-4 *4 (-1245 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-412 *3 *4)))) (-3776 (*1 *2 *2 *2) (-12 (-5 *2 (-772)) (-4 *3 (-13 (-308) (-10 -8 (-15 -3597 ((-421 $) $))))) (-4 *4 (-1245 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-412 *3 *4)))) (-3589 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-690 *2)) (-5 *4 (-567)) (-4 *2 (-13 (-308) (-10 -8 (-15 -3597 ((-421 $) $))))) (-4 *5 (-1245 *2)) (-5 *1 (-502 *2 *5 *6)) (-4 *6 (-412 *2 *5)))) (-3105 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-690 *2)) (-5 *4 (-772)) (-4 *2 (-13 (-308) (-10 -8 (-15 -3597 ((-421 $) $))))) (-4 *5 (-1245 *2)) (-5 *1 (-502 *2 *5 *6)) (-4 *6 (-412 *2 *5)))) (-2437 (*1 *2 *3) (-12 (-5 *3 (-690 *2)) (-4 *4 (-1245 *2)) (-4 *2 (-13 (-308) (-10 -8 (-15 -3597 ((-421 $) $))))) (-5 *1 (-502 *2 *4 *5)) (-4 *5 (-412 *2 *4)))))
+(-10 -7 (-15 -2437 (|#1| (-690 |#1|))) (-15 -3105 (|#1| (-690 |#1|) |#1| (-772))) (-15 -3589 (|#1| (-690 |#1|) (-690 |#1|) |#1| (-567))) (-15 -3776 ((-772) (-772) (-772))) (-15 -2308 ((-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -2308 ((-690 |#1|) (-690 |#1|) (-690 |#1|) |#1|)) (-15 -2406 ((-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -3931 ((-2 (|:| -2144 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|))) (-2 (|:| -2144 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|))) (-2 (|:| -2144 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|))))))
+((-2412 (((-112) $ $) NIL)) (-2434 (($ $) NIL)) (-1709 (($ $ $) 40)) (-3843 (((-1274) $ (-567) (-567)) NIL (|has| $ (-6 -4423)))) (-3531 (((-112) $) NIL (|has| (-112) (-851))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-2676 (($ $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-112) (-851)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4423)))) (-1311 (($ $) NIL (|has| (-112) (-851))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-1563 (((-112) $ (-772)) NIL)) (-4285 (((-112) $ (-1236 (-567)) (-112)) NIL (|has| $ (-6 -4423))) (((-112) $ (-567) (-112)) 42 (|has| $ (-6 -4423)))) (-3356 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4422)))) (-3647 (($) NIL T CONST)) (-1602 (($ $) NIL (|has| $ (-6 -4423)))) (-3592 (($ $) NIL)) (-2453 (($ $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-112) (-1102))))) (-3246 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4422))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-112) (-1102))))) (-2494 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4422))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4422))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4422)) (|has| (-112) (-1102))))) (-3760 (((-112) $ (-567) (-112)) NIL (|has| $ (-6 -4423)))) (-3703 (((-112) $ (-567)) NIL)) (-2578 (((-567) (-112) $ (-567)) NIL (|has| (-112) (-1102))) (((-567) (-112) $) NIL (|has| (-112) (-1102))) (((-567) (-1 (-112) (-112)) $) NIL)) (-2799 (((-645 (-112)) $) NIL (|has| $ (-6 -4422)))) (-1696 (($ $ $) 38)) (-1673 (($ $) NIL)) (-2362 (($ $ $) NIL)) (-2858 (($ (-772) (-112)) 27)) (-2986 (($ $ $) NIL)) (-4093 (((-112) $ (-772)) NIL)) (-3895 (((-567) $) 8 (|has| (-567) (-851)))) (-1365 (($ $ $) NIL)) (-2473 (($ $ $) NIL (|has| (-112) (-851))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-1942 (((-645 (-112)) $) NIL (|has| $ (-6 -4422)))) (-3237 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-112) (-1102))))) (-3255 (((-567) $) NIL (|has| (-567) (-851)))) (-3002 (($ $ $) NIL)) (-3751 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4423)))) (-3841 (($ (-1 (-112) (-112) (-112)) $ $) 35) (($ (-1 (-112) (-112)) $) NIL)) (-1986 (((-112) $ (-772)) NIL)) (-2516 (((-1161) $) NIL)) (-2857 (($ $ $ (-567)) NIL) (($ (-112) $ (-567)) NIL)) (-4364 (((-645 (-567)) $) NIL)) (-3188 (((-112) (-567) $) NIL)) (-3437 (((-1122) $) NIL)) (-2418 (((-112) $) NIL (|has| (-567) (-851)))) (-3196 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-3823 (($ $ (-112)) NIL (|has| $ (-6 -4423)))) (-4233 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-112)) (-645 (-112))) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1102)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1102)))) (($ $ (-295 (-112))) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1102)))) (($ $ (-645 (-295 (-112)))) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1102))))) (-3875 (((-112) $ $) NIL)) (-4058 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-112) (-1102))))) (-2190 (((-645 (-112)) $) NIL)) (-3885 (((-112) $) NIL)) (-2701 (($) 28)) (-1801 (($ $ (-1236 (-567))) NIL) (((-112) $ (-567)) 22) (((-112) $ (-567) (-112)) NIL)) (-1569 (($ $ (-1236 (-567))) NIL) (($ $ (-567)) NIL)) (-3447 (((-772) (-112) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-112) (-1102)))) (((-772) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4422)))) (-1656 (($ $ $ (-567)) NIL (|has| $ (-6 -4423)))) (-4309 (($ $) 29)) (-3902 (((-539) $) NIL (|has| (-112) (-615 (-539))))) (-4145 (($ (-645 (-112))) NIL)) (-2276 (($ (-645 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-4129 (((-863) $) 26)) (-3357 (((-112) $ $) NIL)) (-3436 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4422)))) (-1686 (($ $ $) 36)) (-2477 (($ $ $) NIL)) (-1354 (($ $ $) 45)) (-1366 (($ $) 43)) (-1341 (($ $ $) 44)) (-3004 (((-112) $ $) NIL)) (-2980 (((-112) $ $) NIL)) (-2946 (((-112) $ $) 30)) (-2993 (((-112) $ $) NIL)) (-2968 (((-112) $ $) 31)) (-2468 (($ $ $) NIL)) (-2423 (((-772) $) 13 (|has| $ (-6 -4422)))))
+(((-503 |#1|) (-13 (-123) (-10 -8 (-15 -1366 ($ $)) (-15 -1354 ($ $ $)) (-15 -1341 ($ $ $)))) (-567)) (T -503))
+((-1366 (*1 *1 *1) (-12 (-5 *1 (-503 *2)) (-14 *2 (-567)))) (-1354 (*1 *1 *1 *1) (-12 (-5 *1 (-503 *2)) (-14 *2 (-567)))) (-1341 (*1 *1 *1 *1) (-12 (-5 *1 (-503 *2)) (-14 *2 (-567)))))
+(-13 (-123) (-10 -8 (-15 -1366 ($ $)) (-15 -1354 ($ $ $)) (-15 -1341 ($ $ $))))
+((-2420 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1175 |#4|)) 35)) (-3261 (((-1175 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1175 |#4|)) 22)) (-4157 (((-3 (-690 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-690 (-1175 |#4|))) 49)) (-4130 (((-1175 (-1175 |#4|)) (-1 |#4| |#1|) |#3|) 58)))
+(((-504 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3261 (|#2| (-1 |#1| |#4|) (-1175 |#4|))) (-15 -3261 ((-1175 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2420 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1175 |#4|))) (-15 -4157 ((-3 (-690 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-690 (-1175 |#4|)))) (-15 -4130 ((-1175 (-1175 |#4|)) (-1 |#4| |#1|) |#3|))) (-1051) (-1245 |#1|) (-1245 |#2|) (-1051)) (T -504))
+((-4130 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1051)) (-4 *7 (-1051)) (-4 *6 (-1245 *5)) (-5 *2 (-1175 (-1175 *7))) (-5 *1 (-504 *5 *6 *4 *7)) (-4 *4 (-1245 *6)))) (-4157 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-690 (-1175 *8))) (-4 *5 (-1051)) (-4 *8 (-1051)) (-4 *6 (-1245 *5)) (-5 *2 (-690 *6)) (-5 *1 (-504 *5 *6 *7 *8)) (-4 *7 (-1245 *6)))) (-2420 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1175 *7)) (-4 *5 (-1051)) (-4 *7 (-1051)) (-4 *2 (-1245 *5)) (-5 *1 (-504 *5 *2 *6 *7)) (-4 *6 (-1245 *2)))) (-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1051)) (-4 *7 (-1051)) (-4 *4 (-1245 *5)) (-5 *2 (-1175 *7)) (-5 *1 (-504 *5 *4 *6 *7)) (-4 *6 (-1245 *4)))) (-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1175 *7)) (-4 *5 (-1051)) (-4 *7 (-1051)) (-4 *2 (-1245 *5)) (-5 *1 (-504 *5 *2 *6 *7)) (-4 *6 (-1245 *2)))))
+(-10 -7 (-15 -3261 (|#2| (-1 |#1| |#4|) (-1175 |#4|))) (-15 -3261 ((-1175 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2420 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1175 |#4|))) (-15 -4157 ((-3 (-690 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-690 (-1175 |#4|)))) (-15 -4130 ((-1175 (-1175 |#4|)) (-1 |#4| |#1|) |#3|)))
+((-2412 (((-112) $ $) NIL)) (-1365 (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-3657 (((-1274) $) 25)) (-1801 (((-1161) $ (-1179)) 30)) (-4025 (((-1274) $) 17)) (-4129 (((-863) $) 27) (($ (-1161)) 26)) (-3357 (((-112) $ $) NIL)) (-3004 (((-112) $ $) NIL)) (-2980 (((-112) $ $) NIL)) (-2946 (((-112) $ $) 11)) (-2993 (((-112) $ $) NIL)) (-2968 (((-112) $ $) 9)))
+(((-505) (-13 (-851) (-10 -8 (-15 -1801 ((-1161) $ (-1179))) (-15 -4025 ((-1274) $)) (-15 -3657 ((-1274) $)) (-15 -4129 ($ (-1161)))))) (T -505))
+((-1801 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1161)) (-5 *1 (-505)))) (-4025 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-505)))) (-3657 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-505)))) (-4129 (*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-505)))))
+(-13 (-851) (-10 -8 (-15 -1801 ((-1161) $ (-1179))) (-15 -4025 ((-1274) $)) (-15 -3657 ((-1274) $)) (-15 -4129 ($ (-1161)))))
+((-2381 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-1967 ((|#1| |#4|) 10)) (-3268 ((|#3| |#4|) 17)))
+(((-506 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1967 (|#1| |#4|)) (-15 -3268 (|#3| |#4|)) (-15 -2381 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-559) (-994 |#1|) (-375 |#1|) (-375 |#2|)) (T -506))
+((-2381 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-994 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-506 *4 *5 *6 *3)) (-4 *6 (-375 *4)) (-4 *3 (-375 *5)))) (-3268 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-994 *4)) (-4 *2 (-375 *4)) (-5 *1 (-506 *4 *5 *2 *3)) (-4 *3 (-375 *5)))) (-1967 (*1 *2 *3) (-12 (-4 *4 (-994 *2)) (-4 *2 (-559)) (-5 *1 (-506 *2 *4 *5 *3)) (-4 *5 (-375 *2)) (-4 *3 (-375 *4)))))
+(-10 -7 (-15 -1967 (|#1| |#4|)) (-15 -3268 (|#3| |#4|)) (-15 -2381 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|)))
+((-2412 (((-112) $ $) NIL)) (-3722 (((-112) $ (-645 |#3|)) 126) (((-112) $) 127)) (-3791 (((-112) $) 178)) (-2542 (($ $ |#4|) 117) (($ $ |#4| (-645 |#3|)) 121)) (-3320 (((-1168 (-645 (-954 |#1|)) (-645 (-295 (-954 |#1|)))) (-645 |#4|)) 171 (|has| |#3| (-615 (-1179))))) (-2654 (($ $ $) 105) (($ $ |#4|) 103)) (-4346 (((-112) $) 177)) (-3505 (($ $) 131)) (-2516 (((-1161) $) NIL)) (-3660 (($ $ $) 97) (($ (-645 $)) 99)) (-2042 (((-112) |#4| $) 129)) (-4172 (((-112) $ $) 82)) (-4090 (($ (-645 |#4|)) 104)) (-3437 (((-1122) $) NIL)) (-1308 (($ (-645 |#4|)) 175)) (-1754 (((-112) $) 176)) (-3125 (($ $) 85)) (-4217 (((-645 |#4|) $) 73)) (-4143 (((-2 (|:| |mval| (-690 |#1|)) (|:| |invmval| (-690 |#1|)) (|:| |genIdeal| $)) $ (-645 |#3|)) NIL)) (-3516 (((-112) |#4| $) 89)) (-1412 (((-567) $ (-645 |#3|)) 133) (((-567) $) 134)) (-4129 (((-863) $) 174) (($ (-645 |#4|)) 100)) (-3357 (((-112) $ $) NIL)) (-2962 (($ (-2 (|:| |mval| (-690 |#1|)) (|:| |invmval| (-690 |#1|)) (|:| |genIdeal| $))) NIL)) (-2946 (((-112) $ $) 84)) (-3041 (($ $ $) 107)) (** (($ $ (-772)) 115)) (* (($ $ $) 113)))
+(((-507 |#1| |#2| |#3| |#4|) (-13 (-1102) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-772))) (-15 -3041 ($ $ $)) (-15 -4346 ((-112) $)) (-15 -3791 ((-112) $)) (-15 -3516 ((-112) |#4| $)) (-15 -4172 ((-112) $ $)) (-15 -2042 ((-112) |#4| $)) (-15 -3722 ((-112) $ (-645 |#3|))) (-15 -3722 ((-112) $)) (-15 -3660 ($ $ $)) (-15 -3660 ($ (-645 $))) (-15 -2654 ($ $ $)) (-15 -2654 ($ $ |#4|)) (-15 -3125 ($ $)) (-15 -4143 ((-2 (|:| |mval| (-690 |#1|)) (|:| |invmval| (-690 |#1|)) (|:| |genIdeal| $)) $ (-645 |#3|))) (-15 -2962 ($ (-2 (|:| |mval| (-690 |#1|)) (|:| |invmval| (-690 |#1|)) (|:| |genIdeal| $)))) (-15 -1412 ((-567) $ (-645 |#3|))) (-15 -1412 ((-567) $)) (-15 -3505 ($ $)) (-15 -4090 ($ (-645 |#4|))) (-15 -1308 ($ (-645 |#4|))) (-15 -1754 ((-112) $)) (-15 -4217 ((-645 |#4|) $)) (-15 -4129 ($ (-645 |#4|))) (-15 -2542 ($ $ |#4|)) (-15 -2542 ($ $ |#4| (-645 |#3|))) (IF (|has| |#3| (-615 (-1179))) (-15 -3320 ((-1168 (-645 (-954 |#1|)) (-645 (-295 (-954 |#1|)))) (-645 |#4|))) |%noBranch|))) (-365) (-794) (-851) (-951 |#1| |#2| |#3|)) (T -507))
+((* (*1 *1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-794)) (-4 *4 (-851)) (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-951 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5)))) (-3041 (*1 *1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-794)) (-4 *4 (-851)) (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-951 *2 *3 *4)))) (-4346 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5)))) (-3791 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5)))) (-3516 (*1 *2 *3 *1) (-12 (-4 *4 (-365)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-507 *4 *5 *6 *3)) (-4 *3 (-951 *4 *5 *6)))) (-4172 (*1 *2 *1 *1) (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5)))) (-2042 (*1 *2 *3 *1) (-12 (-4 *4 (-365)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-507 *4 *5 *6 *3)) (-4 *3 (-951 *4 *5 *6)))) (-3722 (*1 *2 *1 *3) (-12 (-5 *3 (-645 *6)) (-4 *6 (-851)) (-4 *4 (-365)) (-4 *5 (-794)) (-5 *2 (-112)) (-5 *1 (-507 *4 *5 *6 *7)) (-4 *7 (-951 *4 *5 *6)))) (-3722 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5)))) (-3660 (*1 *1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-794)) (-4 *4 (-851)) (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-951 *2 *3 *4)))) (-3660 (*1 *1 *2) (-12 (-5 *2 (-645 (-507 *3 *4 *5 *6))) (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5)))) (-2654 (*1 *1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-794)) (-4 *4 (-851)) (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-951 *2 *3 *4)))) (-2654 (*1 *1 *1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-507 *3 *4 *5 *2)) (-4 *2 (-951 *3 *4 *5)))) (-3125 (*1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-794)) (-4 *4 (-851)) (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-951 *2 *3 *4)))) (-4143 (*1 *2 *1 *3) (-12 (-5 *3 (-645 *6)) (-4 *6 (-851)) (-4 *4 (-365)) (-4 *5 (-794)) (-5 *2 (-2 (|:| |mval| (-690 *4)) (|:| |invmval| (-690 *4)) (|:| |genIdeal| (-507 *4 *5 *6 *7)))) (-5 *1 (-507 *4 *5 *6 *7)) (-4 *7 (-951 *4 *5 *6)))) (-2962 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-690 *3)) (|:| |invmval| (-690 *3)) (|:| |genIdeal| (-507 *3 *4 *5 *6)))) (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5)))) (-1412 (*1 *2 *1 *3) (-12 (-5 *3 (-645 *6)) (-4 *6 (-851)) (-4 *4 (-365)) (-4 *5 (-794)) (-5 *2 (-567)) (-5 *1 (-507 *4 *5 *6 *7)) (-4 *7 (-951 *4 *5 *6)))) (-1412 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-567)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5)))) (-3505 (*1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-794)) (-4 *4 (-851)) (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-951 *2 *3 *4)))) (-4090 (*1 *1 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-951 *3 *4 *5)) (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-507 *3 *4 *5 *6)))) (-1308 (*1 *1 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-951 *3 *4 *5)) (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-507 *3 *4 *5 *6)))) (-1754 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5)))) (-4217 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *6)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5)))) (-4129 (*1 *1 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-951 *3 *4 *5)) (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-507 *3 *4 *5 *6)))) (-2542 (*1 *1 *1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-507 *3 *4 *5 *2)) (-4 *2 (-951 *3 *4 *5)))) (-2542 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-645 *6)) (-4 *6 (-851)) (-4 *4 (-365)) (-4 *5 (-794)) (-5 *1 (-507 *4 *5 *6 *2)) (-4 *2 (-951 *4 *5 *6)))) (-3320 (*1 *2 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-951 *4 *5 *6)) (-4 *6 (-615 (-1179))) (-4 *4 (-365)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-1168 (-645 (-954 *4)) (-645 (-295 (-954 *4))))) (-5 *1 (-507 *4 *5 *6 *7)))))
+(-13 (-1102) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-772))) (-15 -3041 ($ $ $)) (-15 -4346 ((-112) $)) (-15 -3791 ((-112) $)) (-15 -3516 ((-112) |#4| $)) (-15 -4172 ((-112) $ $)) (-15 -2042 ((-112) |#4| $)) (-15 -3722 ((-112) $ (-645 |#3|))) (-15 -3722 ((-112) $)) (-15 -3660 ($ $ $)) (-15 -3660 ($ (-645 $))) (-15 -2654 ($ $ $)) (-15 -2654 ($ $ |#4|)) (-15 -3125 ($ $)) (-15 -4143 ((-2 (|:| |mval| (-690 |#1|)) (|:| |invmval| (-690 |#1|)) (|:| |genIdeal| $)) $ (-645 |#3|))) (-15 -2962 ($ (-2 (|:| |mval| (-690 |#1|)) (|:| |invmval| (-690 |#1|)) (|:| |genIdeal| $)))) (-15 -1412 ((-567) $ (-645 |#3|))) (-15 -1412 ((-567) $)) (-15 -3505 ($ $)) (-15 -4090 ($ (-645 |#4|))) (-15 -1308 ($ (-645 |#4|))) (-15 -1754 ((-112) $)) (-15 -4217 ((-645 |#4|) $)) (-15 -4129 ($ (-645 |#4|))) (-15 -2542 ($ $ |#4|)) (-15 -2542 ($ $ |#4| (-645 |#3|))) (IF (|has| |#3| (-615 (-1179))) (-15 -3320 ((-1168 (-645 (-954 |#1|)) (-645 (-295 (-954 |#1|)))) (-645 |#4|))) |%noBranch|)))
+((-3470 (((-112) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567))))) 176)) (-3817 (((-112) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567))))) 177)) (-3913 (((-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567))))) 129)) (-3502 (((-112) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567))))) NIL)) (-2775 (((-645 (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567))))) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567))))) 179)) (-4001 (((-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))) (-645 (-865 |#1|))) 195)))
+(((-508 |#1| |#2|) (-10 -7 (-15 -3470 ((-112) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))))) (-15 -3817 ((-112) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))))) (-15 -3502 ((-112) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))))) (-15 -3913 ((-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))))) (-15 -2775 ((-645 (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567))))) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))))) (-15 -4001 ((-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))) (-645 (-865 |#1|))))) (-645 (-1179)) (-772)) (T -508))
+((-4001 (*1 *2 *2 *3) (-12 (-5 *2 (-507 (-410 (-567)) (-240 *5 (-772)) (-865 *4) (-247 *4 (-410 (-567))))) (-5 *3 (-645 (-865 *4))) (-14 *4 (-645 (-1179))) (-14 *5 (-772)) (-5 *1 (-508 *4 *5)))) (-2775 (*1 *2 *3) (-12 (-14 *4 (-645 (-1179))) (-14 *5 (-772)) (-5 *2 (-645 (-507 (-410 (-567)) (-240 *5 (-772)) (-865 *4) (-247 *4 (-410 (-567)))))) (-5 *1 (-508 *4 *5)) (-5 *3 (-507 (-410 (-567)) (-240 *5 (-772)) (-865 *4) (-247 *4 (-410 (-567))))))) (-3913 (*1 *2 *2) (-12 (-5 *2 (-507 (-410 (-567)) (-240 *4 (-772)) (-865 *3) (-247 *3 (-410 (-567))))) (-14 *3 (-645 (-1179))) (-14 *4 (-772)) (-5 *1 (-508 *3 *4)))) (-3502 (*1 *2 *3) (-12 (-5 *3 (-507 (-410 (-567)) (-240 *5 (-772)) (-865 *4) (-247 *4 (-410 (-567))))) (-14 *4 (-645 (-1179))) (-14 *5 (-772)) (-5 *2 (-112)) (-5 *1 (-508 *4 *5)))) (-3817 (*1 *2 *3) (-12 (-5 *3 (-507 (-410 (-567)) (-240 *5 (-772)) (-865 *4) (-247 *4 (-410 (-567))))) (-14 *4 (-645 (-1179))) (-14 *5 (-772)) (-5 *2 (-112)) (-5 *1 (-508 *4 *5)))) (-3470 (*1 *2 *3) (-12 (-5 *3 (-507 (-410 (-567)) (-240 *5 (-772)) (-865 *4) (-247 *4 (-410 (-567))))) (-14 *4 (-645 (-1179))) (-14 *5 (-772)) (-5 *2 (-112)) (-5 *1 (-508 *4 *5)))))
+(-10 -7 (-15 -3470 ((-112) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))))) (-15 -3817 ((-112) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))))) (-15 -3502 ((-112) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))))) (-15 -3913 ((-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))))) (-15 -2775 ((-645 (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567))))) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))))) (-15 -4001 ((-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))) (-645 (-865 |#1|)))))
+((-2412 (((-112) $ $) NIL)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4096 (($) 6)) (-4129 (((-863) $) 12) (((-1179) $) 10)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) 8)))
+(((-509) (-13 (-1102) (-614 (-1179)) (-10 -8 (-15 -4096 ($))))) (T -509))
+((-4096 (*1 *1) (-5 *1 (-509))))
+(-13 (-1102) (-614 (-1179)) (-10 -8 (-15 -4096 ($))))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-2376 (((-3 $ "failed") $ $) NIL)) (-3647 (($) NIL T CONST)) (-3023 (($ $) NIL)) (-2836 (($ |#1| |#2|) NIL)) (-3841 (($ (-1 |#1| |#1|) $) NIL)) (-3050 ((|#2| $) NIL)) (-2996 ((|#1| $) NIL)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) NIL)) (-3357 (((-112) $ $) NIL)) (-1733 (($) 12 T CONST)) (-2946 (((-112) $ $) NIL)) (-3053 (($ $) 11) (($ $ $) 35)) (-3041 (($ $ $) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 21)))
(((-510 |#1| |#2|) (-13 (-21) (-512 |#1| |#2|)) (-21) (-851)) (T -510))
NIL
(-13 (-21) (-512 |#1| |#2|))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) 13)) (-2585 (($) NIL T CONST)) (-3014 (($ $) 41)) (-2824 (($ |#1| |#2|) 38)) (-3829 (($ (-1 |#1| |#1|) $) 40)) (-3148 ((|#2| $) NIL)) (-2989 ((|#1| $) 42)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-1716 (($) 10 T CONST)) (-2936 (((-112) $ $) NIL)) (-3033 (($ $ $) 26)) (* (($ (-923) $) NIL) (($ (-772) $) 36)))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) 13)) (-3647 (($) NIL T CONST)) (-3023 (($ $) 41)) (-2836 (($ |#1| |#2|) 38)) (-3841 (($ (-1 |#1| |#1|) $) 40)) (-3050 ((|#2| $) NIL)) (-2996 ((|#1| $) 42)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) NIL)) (-3357 (((-112) $ $) NIL)) (-1733 (($) 10 T CONST)) (-2946 (((-112) $ $) NIL)) (-3041 (($ $ $) 26)) (* (($ (-923) $) NIL) (($ (-772) $) 36)))
(((-511 |#1| |#2|) (-13 (-23) (-512 |#1| |#2|)) (-23) (-851)) (T -511))
NIL
(-13 (-23) (-512 |#1| |#2|))
-((-2403 (((-112) $ $) 7)) (-3014 (($ $) 14)) (-2824 (($ |#1| |#2|) 17)) (-3829 (($ (-1 |#1| |#1|) $) 18)) (-3148 ((|#2| $) 15)) (-2989 ((|#1| $) 16)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-2936 (((-112) $ $) 6)))
+((-2412 (((-112) $ $) 7)) (-3023 (($ $) 14)) (-2836 (($ |#1| |#2|) 17)) (-3841 (($ (-1 |#1| |#1|) $) 18)) (-3050 ((|#2| $) 15)) (-2996 ((|#1| $) 16)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-4129 (((-863) $) 12)) (-3357 (((-112) $ $) 9)) (-2946 (((-112) $ $) 6)))
(((-512 |#1| |#2|) (-140) (-1102) (-851)) (T -512))
-((-3829 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-512 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-851)))) (-2824 (*1 *1 *2 *3) (-12 (-4 *1 (-512 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-851)))) (-2989 (*1 *2 *1) (-12 (-4 *1 (-512 *2 *3)) (-4 *3 (-851)) (-4 *2 (-1102)))) (-3148 (*1 *2 *1) (-12 (-4 *1 (-512 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-851)))) (-3014 (*1 *1 *1) (-12 (-4 *1 (-512 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-851)))))
-(-13 (-1102) (-10 -8 (-15 -3829 ($ (-1 |t#1| |t#1|) $)) (-15 -2824 ($ |t#1| |t#2|)) (-15 -2989 (|t#1| $)) (-15 -3148 (|t#2| $)) (-15 -3014 ($ $))))
+((-3841 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-512 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-851)))) (-2836 (*1 *1 *2 *3) (-12 (-4 *1 (-512 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-851)))) (-2996 (*1 *2 *1) (-12 (-4 *1 (-512 *2 *3)) (-4 *3 (-851)) (-4 *2 (-1102)))) (-3050 (*1 *2 *1) (-12 (-4 *1 (-512 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-851)))) (-3023 (*1 *1 *1) (-12 (-4 *1 (-512 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-851)))))
+(-13 (-1102) (-10 -8 (-15 -3841 ($ (-1 |t#1| |t#1|) $)) (-15 -2836 ($ |t#1| |t#2|)) (-15 -2996 (|t#1| $)) (-15 -3050 (|t#2| $)) (-15 -3023 ($ $))))
(((-102) . T) ((-614 (-863)) . T) ((-1102) . T))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-2585 (($) NIL T CONST)) (-3014 (($ $) NIL)) (-2824 (($ |#1| |#2|) NIL)) (-1354 (($ $ $) NIL)) (-2981 (($ $ $) NIL)) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-3148 ((|#2| $) NIL)) (-2989 ((|#1| $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-1716 (($) NIL T CONST)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) 22)) (-3033 (($ $ $) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL)))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-3647 (($) NIL T CONST)) (-3023 (($ $) NIL)) (-2836 (($ |#1| |#2|) NIL)) (-1365 (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (-3841 (($ (-1 |#1| |#1|) $) NIL)) (-3050 ((|#2| $) NIL)) (-2996 ((|#1| $) NIL)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) NIL)) (-3357 (((-112) $ $) NIL)) (-1733 (($) NIL T CONST)) (-3004 (((-112) $ $) NIL)) (-2980 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2993 (((-112) $ $) NIL)) (-2968 (((-112) $ $) 22)) (-3041 (($ $ $) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL)))
(((-513 |#1| |#2|) (-13 (-793) (-512 |#1| |#2|)) (-793) (-851)) (T -513))
NIL
(-13 (-793) (-512 |#1| |#2|))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-4016 (($ $ $) 23)) (-3472 (((-3 $ "failed") $ $) 19)) (-2585 (($) NIL T CONST)) (-3014 (($ $) NIL)) (-2824 (($ |#1| |#2|) NIL)) (-1354 (($ $ $) NIL)) (-2981 (($ $ $) NIL)) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-3148 ((|#2| $) NIL)) (-2989 ((|#1| $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-1716 (($) NIL T CONST)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) NIL)) (-3033 (($ $ $) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL)))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-1325 (($ $ $) 23)) (-2376 (((-3 $ "failed") $ $) 19)) (-3647 (($) NIL T CONST)) (-3023 (($ $) NIL)) (-2836 (($ |#1| |#2|) NIL)) (-1365 (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (-3841 (($ (-1 |#1| |#1|) $) NIL)) (-3050 ((|#2| $) NIL)) (-2996 ((|#1| $) NIL)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) NIL)) (-3357 (((-112) $ $) NIL)) (-1733 (($) NIL T CONST)) (-3004 (((-112) $ $) NIL)) (-2980 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2993 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)) (-3041 (($ $ $) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL)))
(((-514 |#1| |#2|) (-13 (-794) (-512 |#1| |#2|)) (-794) (-851)) (T -514))
NIL
(-13 (-794) (-512 |#1| |#2|))
-((-2403 (((-112) $ $) NIL)) (-3014 (($ $) 32)) (-2824 (($ |#1| |#2|) 28)) (-3829 (($ (-1 |#1| |#1|) $) 30)) (-3148 ((|#2| $) 34)) (-2989 ((|#1| $) 33)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 27)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 20)))
+((-2412 (((-112) $ $) NIL)) (-3023 (($ $) 32)) (-2836 (($ |#1| |#2|) 28)) (-3841 (($ (-1 |#1| |#1|) $) 30)) (-3050 ((|#2| $) 34)) (-2996 ((|#1| $) 33)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) 27)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) 20)))
(((-515 |#1| |#2|) (-512 |#1| |#2|) (-1102) (-851)) (T -515))
NIL
(-512 |#1| |#2|)
-((-2631 (($ $ (-645 |#2|) (-645 |#3|)) NIL) (($ $ |#2| |#3|) 12)))
-(((-516 |#1| |#2| |#3|) (-10 -8 (-15 -2631 (|#1| |#1| |#2| |#3|)) (-15 -2631 (|#1| |#1| (-645 |#2|) (-645 |#3|)))) (-517 |#2| |#3|) (-1102) (-1218)) (T -516))
-NIL
-(-10 -8 (-15 -2631 (|#1| |#1| |#2| |#3|)) (-15 -2631 (|#1| |#1| (-645 |#2|) (-645 |#3|))))
-((-2631 (($ $ (-645 |#1|) (-645 |#2|)) 7) (($ $ |#1| |#2|) 6)))
-(((-517 |#1| |#2|) (-140) (-1102) (-1218)) (T -517))
-((-2631 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 *4)) (-5 *3 (-645 *5)) (-4 *1 (-517 *4 *5)) (-4 *4 (-1102)) (-4 *5 (-1218)))) (-2631 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-517 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-1218)))))
-(-13 (-10 -8 (-15 -2631 ($ $ |t#1| |t#2|)) (-15 -2631 ($ $ (-645 |t#1|) (-645 |t#2|)))))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) 17)) (-1843 (((-645 (-2 (|:| |gen| |#1|) (|:| -3946 |#2|))) $) 19)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2375 (((-772) $) NIL)) (-2585 (($) NIL T CONST)) (-3753 (((-3 |#1| "failed") $) NIL)) (-2038 ((|#1| $) NIL)) (-4108 ((|#1| $ (-567)) 24)) (-1936 ((|#2| $ (-567)) 22)) (-3496 (($ (-1 |#1| |#1|) $) 48)) (-3870 (($ (-1 |#2| |#2|) $) 45)) (-1419 (((-1160) $) NIL)) (-1993 (($ $ $) 55 (|has| |#2| (-793)))) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 44) (($ |#1|) NIL)) (-4136 ((|#2| |#1| $) 51)) (-1745 (((-112) $ $) NIL)) (-1716 (($) 11 T CONST)) (-2936 (((-112) $ $) 30)) (-3033 (($ $ $) 28) (($ |#1| $) 26)) (* (($ (-923) $) NIL) (($ (-772) $) 37) (($ |#2| |#1|) 32)))
+((-2642 (($ $ (-645 |#2|) (-645 |#3|)) NIL) (($ $ |#2| |#3|) 12)))
+(((-516 |#1| |#2| |#3|) (-10 -8 (-15 -2642 (|#1| |#1| |#2| |#3|)) (-15 -2642 (|#1| |#1| (-645 |#2|) (-645 |#3|)))) (-517 |#2| |#3|) (-1102) (-1219)) (T -516))
+NIL
+(-10 -8 (-15 -2642 (|#1| |#1| |#2| |#3|)) (-15 -2642 (|#1| |#1| (-645 |#2|) (-645 |#3|))))
+((-2642 (($ $ (-645 |#1|) (-645 |#2|)) 7) (($ $ |#1| |#2|) 6)))
+(((-517 |#1| |#2|) (-140) (-1102) (-1219)) (T -517))
+((-2642 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 *4)) (-5 *3 (-645 *5)) (-4 *1 (-517 *4 *5)) (-4 *4 (-1102)) (-4 *5 (-1219)))) (-2642 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-517 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-1219)))))
+(-13 (-10 -8 (-15 -2642 ($ $ |t#1| |t#2|)) (-15 -2642 ($ $ (-645 |t#1|) (-645 |t#2|)))))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) 17)) (-3006 (((-645 (-2 (|:| |gen| |#1|) (|:| -3955 |#2|))) $) 19)) (-2376 (((-3 $ "failed") $ $) NIL)) (-2384 (((-772) $) NIL)) (-3647 (($) NIL T CONST)) (-3765 (((-3 |#1| "failed") $) NIL)) (-2051 ((|#1| $) NIL)) (-4152 ((|#1| $ (-567)) 24)) (-1541 ((|#2| $ (-567)) 22)) (-3650 (($ (-1 |#1| |#1|) $) 48)) (-2591 (($ (-1 |#2| |#2|) $) 45)) (-2516 (((-1161) $) NIL)) (-1496 (($ $ $) 55 (|has| |#2| (-793)))) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) 44) (($ |#1|) NIL)) (-2558 ((|#2| |#1| $) 51)) (-3357 (((-112) $ $) NIL)) (-1733 (($) 11 T CONST)) (-2946 (((-112) $ $) 30)) (-3041 (($ $ $) 28) (($ |#1| $) 26)) (* (($ (-923) $) NIL) (($ (-772) $) 37) (($ |#2| |#1|) 32)))
(((-518 |#1| |#2| |#3|) (-324 |#1| |#2|) (-1102) (-131) |#2|) (T -518))
NIL
(-324 |#1| |#2|)
-((-2403 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1783 (((-1273) $ (-567) (-567)) NIL (|has| $ (-6 -4419)))) (-2496 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-851)))) (-1394 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4419))) (($ $) NIL (-12 (|has| $ (-6 -4419)) (|has| |#1| (-851))))) (-4396 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-851)))) (-3445 (((-112) $ (-772)) NIL)) (-3600 (((-112) (-112)) 32)) (-4284 ((|#1| $ (-567) |#1|) 42 (|has| $ (-6 -4419))) ((|#1| $ (-1235 (-567)) |#1|) NIL (|has| $ (-6 -4419)))) (-2839 (($ (-1 (-112) |#1|) $) 80)) (-3350 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2585 (($) NIL T CONST)) (-1764 (($ $) NIL (|has| $ (-6 -4419)))) (-3584 (($ $) NIL)) (-2133 (($ $) 84 (|has| |#1| (-1102)))) (-2444 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2539 (($ |#1| $) NIL (|has| |#1| (-1102))) (($ (-1 (-112) |#1|) $) 67)) (-3238 (($ |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2477 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4418)))) (-3741 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4419)))) (-3680 ((|#1| $ (-567)) NIL)) (-2569 (((-567) (-1 (-112) |#1|) $) NIL) (((-567) |#1| $) NIL (|has| |#1| (-1102))) (((-567) |#1| $ (-567)) NIL (|has| |#1| (-1102)))) (-3459 (($ $ (-567)) 19)) (-2572 (((-772) $) 13)) (-2777 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-2846 (($ (-772) |#1|) 31)) (-2077 (((-112) $ (-772)) NIL)) (-4069 (((-567) $) 29 (|has| (-567) (-851)))) (-1354 (($ $ $) NIL (|has| |#1| (-851)))) (-2966 (($ $ $) NIL (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $ $) 58)) (-4135 (($ (-1 (-112) |#1| |#1|) $ $) 59) (($ $ $) NIL (|has| |#1| (-851)))) (-2279 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2266 (((-567) $) 28 (|has| (-567) (-851)))) (-2981 (($ $ $) NIL (|has| |#1| (-851)))) (-3731 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL (|has| |#1| (-1102)))) (-2531 (($ $ $ (-567)) 76) (($ |#1| $ (-567)) 60)) (-2845 (($ |#1| $ (-567)) NIL) (($ $ $ (-567)) NIL)) (-1789 (((-645 (-567)) $) NIL)) (-2996 (((-112) (-567) $) NIL)) (-3430 (((-1122) $) NIL (|has| |#1| (-1102)))) (-2558 (($ (-645 |#1|)) 43)) (-2409 ((|#1| $) NIL (|has| (-567) (-851)))) (-4128 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3986 (($ $ |#1|) 24 (|has| $ (-6 -4419)))) (-3025 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) 63)) (-1794 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2339 (((-645 |#1|) $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) 21)) (-1787 ((|#1| $ (-567) |#1|) NIL) ((|#1| $ (-567)) 56) (($ $ (-1235 (-567))) NIL)) (-3670 (($ $ (-1235 (-567))) 74) (($ $ (-567)) 68)) (-1560 (($ $ (-567)) NIL) (($ $ (-1235 (-567))) NIL)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-1395 (($ $ $ (-567)) 64 (|has| $ (-6 -4419)))) (-4305 (($ $) 54)) (-3893 (((-539) $) NIL (|has| |#1| (-615 (-539))))) (-4147 (($ (-645 |#1|)) NIL)) (-2484 (($ $ $) 65) (($ $ |#1|) 62)) (-2269 (($ $ |#1|) NIL) (($ |#1| $) 61) (($ $ $) NIL) (($ (-645 $)) NIL)) (-4132 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-1745 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2997 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2971 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2936 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2984 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2958 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2414 (((-772) $) 22 (|has| $ (-6 -4418)))))
-(((-519 |#1| |#2|) (-13 (-19 |#1|) (-283 |#1|) (-10 -8 (-15 -2558 ($ (-645 |#1|))) (-15 -2572 ((-772) $)) (-15 -3459 ($ $ (-567))) (-15 -3600 ((-112) (-112))))) (-1218) (-567)) (T -519))
-((-2558 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1218)) (-5 *1 (-519 *3 *4)) (-14 *4 (-567)))) (-2572 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-519 *3 *4)) (-4 *3 (-1218)) (-14 *4 (-567)))) (-3459 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-519 *3 *4)) (-4 *3 (-1218)) (-14 *4 *2))) (-3600 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-519 *3 *4)) (-4 *3 (-1218)) (-14 *4 (-567)))))
-(-13 (-19 |#1|) (-283 |#1|) (-10 -8 (-15 -2558 ($ (-645 |#1|))) (-15 -2572 ((-772) $)) (-15 -3459 ($ $ (-567))) (-15 -3600 ((-112) (-112)))))
-((-2403 (((-112) $ $) NIL)) (-1997 (((-1137) $) 11)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-3133 (((-1137) $) 13)) (-2055 (((-1137) $) 9)) (-4132 (((-863) $) 19) (($ (-1183)) NIL) (((-1183) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)))
-(((-520) (-13 (-1085) (-10 -8 (-15 -2055 ((-1137) $)) (-15 -1997 ((-1137) $)) (-15 -3133 ((-1137) $))))) (T -520))
-((-2055 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-520)))) (-1997 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-520)))) (-3133 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-520)))))
-(-13 (-1085) (-10 -8 (-15 -2055 ((-1137) $)) (-15 -1997 ((-1137) $)) (-15 -3133 ((-1137) $))))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-3419 (((-112) $) NIL)) (-3862 (((-772)) NIL)) (-4293 (((-584 |#1|) $) NIL) (($ $ (-923)) NIL (|has| (-584 |#1|) (-370)))) (-3400 (((-1191 (-923) (-772)) (-567)) NIL (|has| (-584 |#1|) (-370)))) (-3472 (((-3 $ "failed") $ $) NIL)) (-3248 (($ $) NIL)) (-2908 (((-421 $) $) NIL)) (-3609 (((-112) $ $) NIL)) (-2375 (((-772)) NIL (|has| (-584 |#1|) (-370)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 (-584 |#1|) "failed") $) NIL)) (-2038 (((-584 |#1|) $) NIL)) (-3658 (($ (-1268 (-584 |#1|))) NIL)) (-2443 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-584 |#1|) (-370)))) (-2349 (($ $ $) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-1348 (($) NIL (|has| (-584 |#1|) (-370)))) (-2360 (($ $ $) NIL)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-3431 (($) NIL (|has| (-584 |#1|) (-370)))) (-2722 (((-112) $) NIL (|has| (-584 |#1|) (-370)))) (-4225 (($ $ (-772)) NIL (-2800 (|has| (-584 |#1|) (-145)) (|has| (-584 |#1|) (-370)))) (($ $) NIL (-2800 (|has| (-584 |#1|) (-145)) (|has| (-584 |#1|) (-370))))) (-3184 (((-112) $) NIL)) (-4384 (((-923) $) NIL (|has| (-584 |#1|) (-370))) (((-834 (-923)) $) NIL (-2800 (|has| (-584 |#1|) (-145)) (|has| (-584 |#1|) (-370))))) (-1433 (((-112) $) NIL)) (-3559 (($) NIL (|has| (-584 |#1|) (-370)))) (-1426 (((-112) $) NIL (|has| (-584 |#1|) (-370)))) (-2475 (((-584 |#1|) $) NIL) (($ $ (-923)) NIL (|has| (-584 |#1|) (-370)))) (-3972 (((-3 $ "failed") $) NIL (|has| (-584 |#1|) (-370)))) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4206 (((-1174 (-584 |#1|)) $) NIL) (((-1174 $) $ (-923)) NIL (|has| (-584 |#1|) (-370)))) (-4249 (((-923) $) NIL (|has| (-584 |#1|) (-370)))) (-2016 (((-1174 (-584 |#1|)) $) NIL (|has| (-584 |#1|) (-370)))) (-2280 (((-1174 (-584 |#1|)) $) NIL (|has| (-584 |#1|) (-370))) (((-3 (-1174 (-584 |#1|)) "failed") $ $) NIL (|has| (-584 |#1|) (-370)))) (-2286 (($ $ (-1174 (-584 |#1|))) NIL (|has| (-584 |#1|) (-370)))) (-2740 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) NIL)) (-2672 (($) NIL (|has| (-584 |#1|) (-370)) CONST)) (-3768 (($ (-923)) NIL (|has| (-584 |#1|) (-370)))) (-2051 (((-112) $) NIL)) (-3430 (((-1122) $) NIL)) (-1398 (($) NIL (|has| (-584 |#1|) (-370)))) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-2774 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1796 (((-645 (-2 (|:| -2706 (-567)) (|:| -3458 (-567))))) NIL (|has| (-584 |#1|) (-370)))) (-2706 (((-421 $) $) NIL)) (-1953 (((-834 (-923))) NIL) (((-923)) NIL)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2391 (((-3 $ "failed") $ $) NIL)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1990 (((-772) $) NIL)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL)) (-2491 (((-772) $) NIL (|has| (-584 |#1|) (-370))) (((-3 (-772) "failed") $ $) NIL (-2800 (|has| (-584 |#1|) (-145)) (|has| (-584 |#1|) (-370))))) (-1879 (((-134)) NIL)) (-1593 (($ $) NIL (|has| (-584 |#1|) (-370))) (($ $ (-772)) NIL (|has| (-584 |#1|) (-370)))) (-3077 (((-834 (-923)) $) NIL) (((-923) $) NIL)) (-3341 (((-1174 (-584 |#1|))) NIL)) (-1527 (($) NIL (|has| (-584 |#1|) (-370)))) (-2661 (($) NIL (|has| (-584 |#1|) (-370)))) (-2887 (((-1268 (-584 |#1|)) $) NIL) (((-690 (-584 |#1|)) (-1268 $)) NIL)) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (|has| (-584 |#1|) (-370)))) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ (-584 |#1|)) NIL)) (-1903 (($ $) NIL (|has| (-584 |#1|) (-370))) (((-3 $ "failed") $) NIL (-2800 (|has| (-584 |#1|) (-145)) (|has| (-584 |#1|) (-370))))) (-4221 (((-772)) NIL T CONST)) (-1745 (((-112) $ $) NIL)) (-2623 (((-1268 $)) NIL) (((-1268 $) (-923)) NIL)) (-3816 (((-112) $ $) NIL)) (-2012 (((-112) $) NIL)) (-1716 (($) NIL T CONST)) (-1728 (($) NIL T CONST)) (-3253 (($ $) NIL (|has| (-584 |#1|) (-370))) (($ $ (-772)) NIL (|has| (-584 |#1|) (-370)))) (-2637 (($ $) NIL (|has| (-584 |#1|) (-370))) (($ $ (-772)) NIL (|has| (-584 |#1|) (-370)))) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ $) NIL) (($ $ (-584 |#1|)) NIL)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ $ (-584 |#1|)) NIL) (($ (-584 |#1|) $) NIL)))
+((-2412 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3843 (((-1274) $ (-567) (-567)) NIL (|has| $ (-6 -4423)))) (-3531 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-851)))) (-2676 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4423))) (($ $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-851))))) (-1311 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-851)))) (-1563 (((-112) $ (-772)) NIL)) (-1548 (((-112) (-112)) 32)) (-4285 ((|#1| $ (-567) |#1|) 42 (|has| $ (-6 -4423))) ((|#1| $ (-1236 (-567)) |#1|) NIL (|has| $ (-6 -4423)))) (-1494 (($ (-1 (-112) |#1|) $) 80)) (-3356 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-3647 (($) NIL T CONST)) (-1602 (($ $) NIL (|has| $ (-6 -4423)))) (-3592 (($ $) NIL)) (-3837 (($ $) 84 (|has| |#1| (-1102)))) (-2453 (($ $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-2247 (($ |#1| $) NIL (|has| |#1| (-1102))) (($ (-1 (-112) |#1|) $) 67)) (-3246 (($ |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2494 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4422)))) (-3760 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4423)))) (-3703 ((|#1| $ (-567)) NIL)) (-2578 (((-567) (-1 (-112) |#1|) $) NIL) (((-567) |#1| $) NIL (|has| |#1| (-1102))) (((-567) |#1| $ (-567)) NIL (|has| |#1| (-1102)))) (-3565 (($ $ (-567)) 19)) (-1436 (((-772) $) 13)) (-2799 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-2858 (($ (-772) |#1|) 31)) (-4093 (((-112) $ (-772)) NIL)) (-3895 (((-567) $) 29 (|has| (-567) (-851)))) (-1365 (($ $ $) NIL (|has| |#1| (-851)))) (-1661 (($ $ $) NIL (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $ $) 58)) (-2473 (($ (-1 (-112) |#1| |#1|) $ $) 59) (($ $ $) NIL (|has| |#1| (-851)))) (-1942 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-3237 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3255 (((-567) $) 28 (|has| (-567) (-851)))) (-3002 (($ $ $) NIL (|has| |#1| (-851)))) (-3751 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1986 (((-112) $ (-772)) NIL)) (-2516 (((-1161) $) NIL (|has| |#1| (-1102)))) (-2646 (($ $ $ (-567)) 76) (($ |#1| $ (-567)) 60)) (-2857 (($ |#1| $ (-567)) NIL) (($ $ $ (-567)) NIL)) (-4364 (((-645 (-567)) $) NIL)) (-3188 (((-112) (-567) $) NIL)) (-3437 (((-1122) $) NIL (|has| |#1| (-1102)))) (-3777 (($ (-645 |#1|)) 43)) (-2418 ((|#1| $) NIL (|has| (-567) (-851)))) (-3196 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3823 (($ $ |#1|) 24 (|has| $ (-6 -4423)))) (-4233 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3875 (((-112) $ $) 63)) (-4058 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-2190 (((-645 |#1|) $) NIL)) (-3885 (((-112) $) NIL)) (-2701 (($) 21)) (-1801 ((|#1| $ (-567) |#1|) NIL) ((|#1| $ (-567)) 56) (($ $ (-1236 (-567))) NIL)) (-1873 (($ $ (-1236 (-567))) 74) (($ $ (-567)) 68)) (-1569 (($ $ (-567)) NIL) (($ $ (-1236 (-567))) NIL)) (-3447 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-1656 (($ $ $ (-567)) 64 (|has| $ (-6 -4423)))) (-4309 (($ $) 54)) (-3902 (((-539) $) NIL (|has| |#1| (-615 (-539))))) (-4145 (($ (-645 |#1|)) NIL)) (-2294 (($ $ $) 65) (($ $ |#1|) 62)) (-2276 (($ $ |#1|) NIL) (($ |#1| $) 61) (($ $ $) NIL) (($ (-645 $)) NIL)) (-4129 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-3357 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3436 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-3004 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2980 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2993 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2968 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2423 (((-772) $) 22 (|has| $ (-6 -4422)))))
+(((-519 |#1| |#2|) (-13 (-19 |#1|) (-283 |#1|) (-10 -8 (-15 -3777 ($ (-645 |#1|))) (-15 -1436 ((-772) $)) (-15 -3565 ($ $ (-567))) (-15 -1548 ((-112) (-112))))) (-1219) (-567)) (T -519))
+((-3777 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1219)) (-5 *1 (-519 *3 *4)) (-14 *4 (-567)))) (-1436 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-519 *3 *4)) (-4 *3 (-1219)) (-14 *4 (-567)))) (-3565 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-519 *3 *4)) (-4 *3 (-1219)) (-14 *4 *2))) (-1548 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-519 *3 *4)) (-4 *3 (-1219)) (-14 *4 (-567)))))
+(-13 (-19 |#1|) (-283 |#1|) (-10 -8 (-15 -3777 ($ (-645 |#1|))) (-15 -1436 ((-772) $)) (-15 -3565 ($ $ (-567))) (-15 -1548 ((-112) (-112)))))
+((-2412 (((-112) $ $) NIL)) (-1810 (((-1137) $) 11)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4146 (((-1137) $) 13)) (-2066 (((-1137) $) 9)) (-4129 (((-863) $) 19) (($ (-1184)) NIL) (((-1184) $) NIL)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)))
+(((-520) (-13 (-1085) (-10 -8 (-15 -2066 ((-1137) $)) (-15 -1810 ((-1137) $)) (-15 -4146 ((-1137) $))))) (T -520))
+((-2066 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-520)))) (-1810 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-520)))) (-4146 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-520)))))
+(-13 (-1085) (-10 -8 (-15 -2066 ((-1137) $)) (-15 -1810 ((-1137) $)) (-15 -4146 ((-1137) $))))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-4287 (($ $) NIL)) (-2286 (((-112) $) NIL)) (-2038 (((-112) $) NIL)) (-4355 (((-772)) NIL)) (-4293 (((-584 |#1|) $) NIL) (($ $ (-923)) NIL (|has| (-584 |#1|) (-370)))) (-3792 (((-1192 (-923) (-772)) (-567)) NIL (|has| (-584 |#1|) (-370)))) (-2376 (((-3 $ "failed") $ $) NIL)) (-3659 (($ $) NIL)) (-3597 (((-421 $) $) NIL)) (-3696 (((-112) $ $) NIL)) (-2384 (((-772)) NIL (|has| (-584 |#1|) (-370)))) (-3647 (($) NIL T CONST)) (-3765 (((-3 (-584 |#1|) "failed") $) NIL)) (-2051 (((-584 |#1|) $) NIL)) (-3111 (($ (-1269 (-584 |#1|))) NIL)) (-2998 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-584 |#1|) (-370)))) (-2357 (($ $ $) NIL)) (-3588 (((-3 $ "failed") $) NIL)) (-1359 (($) NIL (|has| (-584 |#1|) (-370)))) (-2368 (($ $ $) NIL)) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) NIL)) (-2870 (($) NIL (|has| (-584 |#1|) (-370)))) (-1305 (((-112) $) NIL (|has| (-584 |#1|) (-370)))) (-3144 (($ $ (-772)) NIL (-2811 (|has| (-584 |#1|) (-145)) (|has| (-584 |#1|) (-370)))) (($ $) NIL (-2811 (|has| (-584 |#1|) (-145)) (|has| (-584 |#1|) (-370))))) (-3502 (((-112) $) NIL)) (-3362 (((-923) $) NIL (|has| (-584 |#1|) (-370))) (((-834 (-923)) $) NIL (-2811 (|has| (-584 |#1|) (-145)) (|has| (-584 |#1|) (-370))))) (-4346 (((-112) $) NIL)) (-2092 (($) NIL (|has| (-584 |#1|) (-370)))) (-1897 (((-112) $) NIL (|has| (-584 |#1|) (-370)))) (-2724 (((-584 |#1|) $) NIL) (($ $ (-923)) NIL (|has| (-584 |#1|) (-370)))) (-3067 (((-3 $ "failed") $) NIL (|has| (-584 |#1|) (-370)))) (-1469 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1914 (((-1175 (-584 |#1|)) $) NIL) (((-1175 $) $ (-923)) NIL (|has| (-584 |#1|) (-370)))) (-3474 (((-923) $) NIL (|has| (-584 |#1|) (-370)))) (-3038 (((-1175 (-584 |#1|)) $) NIL (|has| (-584 |#1|) (-370)))) (-2030 (((-1175 (-584 |#1|)) $) NIL (|has| (-584 |#1|) (-370))) (((-3 (-1175 (-584 |#1|)) "failed") $ $) NIL (|has| (-584 |#1|) (-370)))) (-1321 (($ $ (-1175 (-584 |#1|))) NIL (|has| (-584 |#1|) (-370)))) (-2751 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2516 (((-1161) $) NIL)) (-2949 (($ $) NIL)) (-2694 (($) NIL (|has| (-584 |#1|) (-370)) CONST)) (-3779 (($ (-923)) NIL (|has| (-584 |#1|) (-370)))) (-2645 (((-112) $) NIL)) (-3437 (((-1122) $) NIL)) (-1399 (($) NIL (|has| (-584 |#1|) (-370)))) (-2217 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-2785 (($ $ $) NIL) (($ (-645 $)) NIL)) (-4151 (((-645 (-2 (|:| -2717 (-567)) (|:| -3468 (-567))))) NIL (|has| (-584 |#1|) (-370)))) (-2717 (((-421 $) $) NIL)) (-2845 (((-834 (-923))) NIL) (((-923)) NIL)) (-2905 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2400 (((-3 $ "failed") $ $) NIL)) (-2372 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2460 (((-772) $) NIL)) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) NIL)) (-1760 (((-772) $) NIL (|has| (-584 |#1|) (-370))) (((-3 (-772) "failed") $ $) NIL (-2811 (|has| (-584 |#1|) (-145)) (|has| (-584 |#1|) (-370))))) (-1412 (((-134)) NIL)) (-1616 (($ $) NIL (|has| (-584 |#1|) (-370))) (($ $ (-772)) NIL (|has| (-584 |#1|) (-370)))) (-3104 (((-834 (-923)) $) NIL) (((-923) $) NIL)) (-3169 (((-1175 (-584 |#1|))) NIL)) (-4273 (($) NIL (|has| (-584 |#1|) (-370)))) (-2230 (($) NIL (|has| (-584 |#1|) (-370)))) (-3088 (((-1269 (-584 |#1|)) $) NIL) (((-690 (-584 |#1|)) (-1269 $)) NIL)) (-2616 (((-3 (-1269 $) "failed") (-690 $)) NIL (|has| (-584 |#1|) (-370)))) (-4129 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ (-584 |#1|)) NIL)) (-2118 (($ $) NIL (|has| (-584 |#1|) (-370))) (((-3 $ "failed") $) NIL (-2811 (|has| (-584 |#1|) (-145)) (|has| (-584 |#1|) (-370))))) (-2746 (((-772)) NIL T CONST)) (-3357 (((-112) $ $) NIL)) (-2144 (((-1269 $)) NIL) (((-1269 $) (-923)) NIL)) (-3731 (((-112) $ $) NIL)) (-2618 (((-112) $) NIL)) (-1733 (($) NIL T CONST)) (-1744 (($) NIL T CONST)) (-2963 (($ $) NIL (|has| (-584 |#1|) (-370))) (($ $ (-772)) NIL (|has| (-584 |#1|) (-370)))) (-2647 (($ $) NIL (|has| (-584 |#1|) (-370))) (($ $ (-772)) NIL (|has| (-584 |#1|) (-370)))) (-2946 (((-112) $ $) NIL)) (-3069 (($ $ $) NIL) (($ $ (-584 |#1|)) NIL)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ $ (-584 |#1|)) NIL) (($ (-584 |#1|) $) NIL)))
(((-521 |#1| |#2|) (-330 (-584 |#1|)) (-923) (-923)) (T -521))
NIL
(-330 (-584 |#1|))
-((-2403 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3445 (((-112) $ (-772)) NIL)) (-4284 ((|#1| $ (-567) (-567) |#1|) 51)) (-2615 (($ $ (-567) |#4|) NIL)) (-1961 (($ $ (-567) |#5|) NIL)) (-2585 (($) NIL T CONST)) (-1944 ((|#4| $ (-567)) NIL)) (-3741 ((|#1| $ (-567) (-567) |#1|) 50)) (-3680 ((|#1| $ (-567) (-567)) 45)) (-2777 (((-645 |#1|) $) NIL)) (-3633 (((-772) $) 33)) (-2846 (($ (-772) (-772) |#1|) 30)) (-3643 (((-772) $) 38)) (-2077 (((-112) $ (-772)) NIL)) (-2527 (((-567) $) 31)) (-4043 (((-567) $) 32)) (-2279 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2107 (((-567) $) 37)) (-2646 (((-567) $) 39)) (-3731 (($ (-1 |#1| |#1|) $) NIL)) (-3829 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) 55 (|has| |#1| (-1102)))) (-3430 (((-1122) $) NIL (|has| |#1| (-1102)))) (-3986 (($ $ |#1|) NIL)) (-3025 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) NIL)) (-3572 (((-112) $) 14)) (-3498 (($) 16)) (-1787 ((|#1| $ (-567) (-567)) 48) ((|#1| $ (-567) (-567) |#1|) NIL)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-4305 (($ $) NIL)) (-2237 ((|#5| $ (-567)) NIL)) (-4132 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-1745 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2414 (((-772) $) NIL (|has| $ (-6 -4418)))))
-(((-522 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1218) (-567) (-567) (-375 |#1|) (-375 |#1|)) (T -522))
+((-2412 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1563 (((-112) $ (-772)) NIL)) (-4285 ((|#1| $ (-567) (-567) |#1|) 51)) (-3563 (($ $ (-567) |#4|) NIL)) (-2306 (($ $ (-567) |#5|) NIL)) (-3647 (($) NIL T CONST)) (-4323 ((|#4| $ (-567)) NIL)) (-3760 ((|#1| $ (-567) (-567) |#1|) 50)) (-3703 ((|#1| $ (-567) (-567)) 45)) (-2799 (((-645 |#1|) $) NIL)) (-4296 (((-772) $) 33)) (-2858 (($ (-772) (-772) |#1|) 30)) (-4307 (((-772) $) 38)) (-4093 (((-112) $ (-772)) NIL)) (-3407 (((-567) $) 31)) (-4227 (((-567) $) 32)) (-1942 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-3237 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3393 (((-567) $) 37)) (-3351 (((-567) $) 39)) (-3751 (($ (-1 |#1| |#1|) $) NIL)) (-3841 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1986 (((-112) $ (-772)) NIL)) (-2516 (((-1161) $) 55 (|has| |#1| (-1102)))) (-3437 (((-1122) $) NIL (|has| |#1| (-1102)))) (-3823 (($ $ |#1|) NIL)) (-4233 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3875 (((-112) $ $) NIL)) (-3885 (((-112) $) 14)) (-2701 (($) 16)) (-1801 ((|#1| $ (-567) (-567)) 48) ((|#1| $ (-567) (-567) |#1|) NIL)) (-3447 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-4309 (($ $) NIL)) (-3186 ((|#5| $ (-567)) NIL)) (-4129 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-3357 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3436 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2423 (((-772) $) NIL (|has| $ (-6 -4422)))))
+(((-522 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1219) (-567) (-567) (-375 |#1|) (-375 |#1|)) (T -522))
NIL
(-57 |#1| |#4| |#5|)
-((-2403 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3802 ((|#1| $) NIL)) (-3998 ((|#1| $) NIL)) (-4283 (($ $) NIL)) (-1783 (((-1273) $ (-567) (-567)) NIL (|has| $ (-6 -4419)))) (-2366 (($ $ (-567)) 73 (|has| $ (-6 -4419)))) (-2496 (((-112) $) NIL (|has| |#1| (-851))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4419)) (|has| |#1| (-851)))) (($ (-1 (-112) |#1| |#1|) $) 68 (|has| $ (-6 -4419)))) (-4396 (($ $) NIL (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3445 (((-112) $ (-772)) NIL)) (-2138 ((|#1| $ |#1|) NIL (|has| $ (-6 -4419)))) (-4209 (($ $ $) 23 (|has| $ (-6 -4419)))) (-2315 ((|#1| $ |#1|) NIL (|has| $ (-6 -4419)))) (-2271 ((|#1| $ |#1|) 21 (|has| $ (-6 -4419)))) (-4284 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4419))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4419))) (($ $ "rest" $) 24 (|has| $ (-6 -4419))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4419))) ((|#1| $ (-1235 (-567)) |#1|) NIL (|has| $ (-6 -4419))) ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4419)))) (-1301 (($ $ (-645 $)) NIL (|has| $ (-6 -4419)))) (-2839 (($ (-1 (-112) |#1|) $) NIL)) (-3350 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-3984 ((|#1| $) NIL)) (-2585 (($) NIL T CONST)) (-1764 (($ $) 28 (|has| $ (-6 -4419)))) (-3584 (($ $) 29)) (-2421 (($ $) 18) (($ $ (-772)) 35)) (-2133 (($ $) 66 (|has| |#1| (-1102)))) (-2444 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2539 (($ |#1| $) NIL (|has| |#1| (-1102))) (($ (-1 (-112) |#1|) $) NIL)) (-3238 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2477 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-3741 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4419)))) (-3680 ((|#1| $ (-567)) NIL)) (-1399 (((-112) $) NIL)) (-2569 (((-567) |#1| $ (-567)) NIL (|has| |#1| (-1102))) (((-567) |#1| $) NIL (|has| |#1| (-1102))) (((-567) (-1 (-112) |#1|) $) NIL)) (-2777 (((-645 |#1|) $) 27 (|has| $ (-6 -4418)))) (-2182 (((-645 $) $) NIL)) (-3512 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2846 (($ (-772) |#1|) NIL)) (-2077 (((-112) $ (-772)) NIL)) (-4069 (((-567) $) 31 (|has| (-567) (-851)))) (-1354 (($ $ $) NIL (|has| |#1| (-851)))) (-2966 (($ $ $) NIL (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $ $) 69)) (-4135 (($ $ $) NIL (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2279 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) 64 (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2266 (((-567) $) NIL (|has| (-567) (-851)))) (-2981 (($ $ $) NIL (|has| |#1| (-851)))) (-3731 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2284 (($ |#1|) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-3773 (((-645 |#1|) $) NIL)) (-2769 (((-112) $) NIL)) (-1419 (((-1160) $) 62 (|has| |#1| (-1102)))) (-3257 ((|#1| $) NIL) (($ $ (-772)) NIL)) (-2531 (($ $ $ (-567)) NIL) (($ |#1| $ (-567)) NIL)) (-2845 (($ $ $ (-567)) NIL) (($ |#1| $ (-567)) NIL)) (-1789 (((-645 (-567)) $) NIL)) (-2996 (((-112) (-567) $) NIL)) (-3430 (((-1122) $) NIL (|has| |#1| (-1102)))) (-2409 ((|#1| $) 13) (($ $ (-772)) NIL)) (-4128 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3986 (($ $ |#1|) NIL (|has| $ (-6 -4419)))) (-3323 (((-112) $) NIL)) (-3025 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) 12)) (-1794 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2339 (((-645 |#1|) $) NIL)) (-3572 (((-112) $) 17)) (-3498 (($) 16)) (-1787 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1235 (-567))) NIL) ((|#1| $ (-567)) NIL) ((|#1| $ (-567) |#1|) NIL)) (-2658 (((-567) $ $) NIL)) (-3670 (($ $ (-1235 (-567))) NIL) (($ $ (-567)) NIL)) (-1560 (($ $ (-1235 (-567))) NIL) (($ $ (-567)) NIL)) (-3900 (((-112) $) 39)) (-1644 (($ $) NIL)) (-3519 (($ $) NIL (|has| $ (-6 -4419)))) (-3344 (((-772) $) NIL)) (-1503 (($ $) 44)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-1395 (($ $ $ (-567)) NIL (|has| $ (-6 -4419)))) (-4305 (($ $) 40)) (-3893 (((-539) $) NIL (|has| |#1| (-615 (-539))))) (-4147 (($ (-645 |#1|)) 26)) (-2484 (($ $ $) 65) (($ $ |#1|) NIL)) (-2269 (($ $ $) NIL) (($ |#1| $) 10) (($ (-645 $)) NIL) (($ $ |#1|) NIL)) (-4132 (((-863) $) 54 (|has| |#1| (-614 (-863))))) (-1531 (((-645 $) $) NIL)) (-3606 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1745 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2997 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2971 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2936 (((-112) $ $) 58 (|has| |#1| (-1102)))) (-2984 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2958 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2414 (((-772) $) 9 (|has| $ (-6 -4418)))))
-(((-523 |#1| |#2|) (-667 |#1|) (-1218) (-567)) (T -523))
+((-2412 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3812 ((|#1| $) NIL)) (-4003 ((|#1| $) NIL)) (-4284 (($ $) NIL)) (-3843 (((-1274) $ (-567) (-567)) NIL (|has| $ (-6 -4423)))) (-3288 (($ $ (-567)) 73 (|has| $ (-6 -4423)))) (-3531 (((-112) $) NIL (|has| |#1| (-851))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2676 (($ $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-851)))) (($ (-1 (-112) |#1| |#1|) $) 68 (|has| $ (-6 -4423)))) (-1311 (($ $) NIL (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1563 (((-112) $ (-772)) NIL)) (-4392 ((|#1| $ |#1|) NIL (|has| $ (-6 -4423)))) (-4017 (($ $ $) 23 (|has| $ (-6 -4423)))) (-4105 ((|#1| $ |#1|) NIL (|has| $ (-6 -4423)))) (-2498 ((|#1| $ |#1|) 21 (|has| $ (-6 -4423)))) (-4285 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4423))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4423))) (($ $ "rest" $) 24 (|has| $ (-6 -4423))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4423))) ((|#1| $ (-1236 (-567)) |#1|) NIL (|has| $ (-6 -4423))) ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4423)))) (-2831 (($ $ (-645 $)) NIL (|has| $ (-6 -4423)))) (-1494 (($ (-1 (-112) |#1|) $) NIL)) (-3356 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-3990 ((|#1| $) NIL)) (-3647 (($) NIL T CONST)) (-1602 (($ $) 28 (|has| $ (-6 -4423)))) (-3592 (($ $) 29)) (-2430 (($ $) 18) (($ $ (-772)) 35)) (-3837 (($ $) 66 (|has| |#1| (-1102)))) (-2453 (($ $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-2247 (($ |#1| $) NIL (|has| |#1| (-1102))) (($ (-1 (-112) |#1|) $) NIL)) (-3246 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-2494 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3760 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4423)))) (-3703 ((|#1| $ (-567)) NIL)) (-4085 (((-112) $) NIL)) (-2578 (((-567) |#1| $ (-567)) NIL (|has| |#1| (-1102))) (((-567) |#1| $) NIL (|has| |#1| (-1102))) (((-567) (-1 (-112) |#1|) $) NIL)) (-2799 (((-645 |#1|) $) 27 (|has| $ (-6 -4422)))) (-2070 (((-645 $) $) NIL)) (-1520 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2858 (($ (-772) |#1|) NIL)) (-4093 (((-112) $ (-772)) NIL)) (-3895 (((-567) $) 31 (|has| (-567) (-851)))) (-1365 (($ $ $) NIL (|has| |#1| (-851)))) (-1661 (($ $ $) NIL (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $ $) 69)) (-2473 (($ $ $) NIL (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1942 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-3237 (((-112) |#1| $) 64 (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3255 (((-567) $) NIL (|has| (-567) (-851)))) (-3002 (($ $ $) NIL (|has| |#1| (-851)))) (-3751 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2291 (($ |#1|) NIL)) (-1986 (((-112) $ (-772)) NIL)) (-3793 (((-645 |#1|) $) NIL)) (-1323 (((-112) $) NIL)) (-2516 (((-1161) $) 62 (|has| |#1| (-1102)))) (-3266 ((|#1| $) NIL) (($ $ (-772)) NIL)) (-2646 (($ $ $ (-567)) NIL) (($ |#1| $ (-567)) NIL)) (-2857 (($ $ $ (-567)) NIL) (($ |#1| $ (-567)) NIL)) (-4364 (((-645 (-567)) $) NIL)) (-3188 (((-112) (-567) $) NIL)) (-3437 (((-1122) $) NIL (|has| |#1| (-1102)))) (-2418 ((|#1| $) 13) (($ $ (-772)) NIL)) (-3196 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3823 (($ $ |#1|) NIL (|has| $ (-6 -4423)))) (-1971 (((-112) $) NIL)) (-4233 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3875 (((-112) $ $) 12)) (-4058 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-2190 (((-645 |#1|) $) NIL)) (-3885 (((-112) $) 17)) (-2701 (($) 16)) (-1801 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1236 (-567))) NIL) ((|#1| $ (-567)) NIL) ((|#1| $ (-567) |#1|) NIL)) (-3162 (((-567) $ $) NIL)) (-1873 (($ $ (-1236 (-567))) NIL) (($ $ (-567)) NIL)) (-1569 (($ $ (-1236 (-567))) NIL) (($ $ (-567)) NIL)) (-3771 (((-112) $) 39)) (-3688 (($ $) NIL)) (-4044 (($ $) NIL (|has| $ (-6 -4423)))) (-3359 (((-772) $) NIL)) (-3640 (($ $) 44)) (-3447 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-1656 (($ $ $ (-567)) NIL (|has| $ (-6 -4423)))) (-4309 (($ $) 40)) (-3902 (((-539) $) NIL (|has| |#1| (-615 (-539))))) (-4145 (($ (-645 |#1|)) 26)) (-2294 (($ $ $) 65) (($ $ |#1|) NIL)) (-2276 (($ $ $) NIL) (($ |#1| $) 10) (($ (-645 $)) NIL) (($ $ |#1|) NIL)) (-4129 (((-863) $) 54 (|has| |#1| (-614 (-863))))) (-3469 (((-645 $) $) NIL)) (-3854 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3357 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3436 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-3004 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2980 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2946 (((-112) $ $) 58 (|has| |#1| (-1102)))) (-2993 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2968 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2423 (((-772) $) 9 (|has| $ (-6 -4422)))))
+(((-523 |#1| |#2|) (-667 |#1|) (-1219) (-567)) (T -523))
NIL
(-667 |#1|)
-((-2233 ((|#4| |#4|) 37)) (-1954 (((-772) |#4|) 45)) (-1940 (((-772) |#4|) 46)) (-1325 (((-645 |#3|) |#4|) 56 (|has| |#3| (-6 -4419)))) (-1401 (((-3 |#4| "failed") |#4|) 70)) (-1767 ((|#4| |#4|) 62)) (-4083 ((|#1| |#4|) 61)))
-(((-524 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2233 (|#4| |#4|)) (-15 -1954 ((-772) |#4|)) (-15 -1940 ((-772) |#4|)) (IF (|has| |#3| (-6 -4419)) (-15 -1325 ((-645 |#3|) |#4|)) |%noBranch|) (-15 -4083 (|#1| |#4|)) (-15 -1767 (|#4| |#4|)) (-15 -1401 ((-3 |#4| "failed") |#4|))) (-365) (-375 |#1|) (-375 |#1|) (-688 |#1| |#2| |#3|)) (T -524))
-((-1401 (*1 *2 *2) (|partial| -12 (-4 *3 (-365)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-524 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) (-1767 (*1 *2 *2) (-12 (-4 *3 (-365)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-524 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) (-4083 (*1 *2 *3) (-12 (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-365)) (-5 *1 (-524 *2 *4 *5 *3)) (-4 *3 (-688 *2 *4 *5)))) (-1325 (*1 *2 *3) (-12 (|has| *6 (-6 -4419)) (-4 *4 (-365)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-645 *6)) (-5 *1 (-524 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) (-1940 (*1 *2 *3) (-12 (-4 *4 (-365)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-772)) (-5 *1 (-524 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) (-1954 (*1 *2 *3) (-12 (-4 *4 (-365)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-772)) (-5 *1 (-524 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) (-2233 (*1 *2 *2) (-12 (-4 *3 (-365)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-524 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))))
-(-10 -7 (-15 -2233 (|#4| |#4|)) (-15 -1954 ((-772) |#4|)) (-15 -1940 ((-772) |#4|)) (IF (|has| |#3| (-6 -4419)) (-15 -1325 ((-645 |#3|) |#4|)) |%noBranch|) (-15 -4083 (|#1| |#4|)) (-15 -1767 (|#4| |#4|)) (-15 -1401 ((-3 |#4| "failed") |#4|)))
-((-2233 ((|#8| |#4|) 20)) (-1325 (((-645 |#3|) |#4|) 29 (|has| |#7| (-6 -4419)))) (-1401 (((-3 |#8| "failed") |#4|) 23)))
-(((-525 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2233 (|#8| |#4|)) (-15 -1401 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4419)) (-15 -1325 ((-645 |#3|) |#4|)) |%noBranch|)) (-559) (-375 |#1|) (-375 |#1|) (-688 |#1| |#2| |#3|) (-994 |#1|) (-375 |#5|) (-375 |#5|) (-688 |#5| |#6| |#7|)) (T -525))
-((-1325 (*1 *2 *3) (-12 (|has| *9 (-6 -4419)) (-4 *4 (-559)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-4 *7 (-994 *4)) (-4 *8 (-375 *7)) (-4 *9 (-375 *7)) (-5 *2 (-645 *6)) (-5 *1 (-525 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-688 *4 *5 *6)) (-4 *10 (-688 *7 *8 *9)))) (-1401 (*1 *2 *3) (|partial| -12 (-4 *4 (-559)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-4 *7 (-994 *4)) (-4 *2 (-688 *7 *8 *9)) (-5 *1 (-525 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-688 *4 *5 *6)) (-4 *8 (-375 *7)) (-4 *9 (-375 *7)))) (-2233 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-4 *7 (-994 *4)) (-4 *2 (-688 *7 *8 *9)) (-5 *1 (-525 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-688 *4 *5 *6)) (-4 *8 (-375 *7)) (-4 *9 (-375 *7)))))
-(-10 -7 (-15 -2233 (|#8| |#4|)) (-15 -1401 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4419)) (-15 -1325 ((-645 |#3|) |#4|)) |%noBranch|))
-((-2403 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1316 (($ (-772) (-772)) NIL)) (-1467 (($ $ $) NIL)) (-3094 (($ (-603 |#1| |#3|)) NIL) (($ $) NIL)) (-1981 (((-112) $) NIL)) (-3709 (($ $ (-567) (-567)) 21)) (-2897 (($ $ (-567) (-567)) NIL)) (-1736 (($ $ (-567) (-567) (-567) (-567)) NIL)) (-3888 (($ $) NIL)) (-1948 (((-112) $) NIL)) (-3445 (((-112) $ (-772)) NIL)) (-1697 (($ $ (-567) (-567) $) NIL)) (-4284 ((|#1| $ (-567) (-567) |#1|) NIL) (($ $ (-645 (-567)) (-645 (-567)) $) NIL)) (-2615 (($ $ (-567) (-603 |#1| |#3|)) NIL)) (-1961 (($ $ (-567) (-603 |#1| |#2|)) NIL)) (-3536 (($ (-772) |#1|) NIL)) (-2585 (($) NIL T CONST)) (-2233 (($ $) 30 (|has| |#1| (-308)))) (-1944 (((-603 |#1| |#3|) $ (-567)) NIL)) (-1954 (((-772) $) 33 (|has| |#1| (-559)))) (-3741 ((|#1| $ (-567) (-567) |#1|) NIL)) (-3680 ((|#1| $ (-567) (-567)) NIL)) (-2777 (((-645 |#1|) $) NIL)) (-1940 (((-772) $) 35 (|has| |#1| (-559)))) (-1325 (((-645 (-603 |#1| |#2|)) $) 38 (|has| |#1| (-559)))) (-3633 (((-772) $) NIL)) (-2846 (($ (-772) (-772) |#1|) NIL)) (-3643 (((-772) $) NIL)) (-2077 (((-112) $ (-772)) NIL)) (-2031 ((|#1| $) 28 (|has| |#1| (-6 (-4420 "*"))))) (-2527 (((-567) $) 10)) (-4043 (((-567) $) NIL)) (-2279 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2107 (((-567) $) 13)) (-2646 (((-567) $) NIL)) (-2114 (($ (-645 (-645 |#1|))) NIL)) (-3731 (($ (-1 |#1| |#1|) $) NIL)) (-3829 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1603 (((-645 (-645 |#1|)) $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL (|has| |#1| (-1102)))) (-1401 (((-3 $ "failed") $) 42 (|has| |#1| (-365)))) (-1418 (($ $ $) NIL)) (-3430 (((-1122) $) NIL (|has| |#1| (-1102)))) (-3986 (($ $ |#1|) NIL)) (-2391 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559)))) (-3025 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) NIL)) (-1787 ((|#1| $ (-567) (-567)) NIL) ((|#1| $ (-567) (-567) |#1|) NIL) (($ $ (-645 (-567)) (-645 (-567))) NIL)) (-3068 (($ (-645 |#1|)) NIL) (($ (-645 $)) NIL)) (-3339 (((-112) $) NIL)) (-4083 ((|#1| $) 26 (|has| |#1| (-6 (-4420 "*"))))) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-4305 (($ $) NIL)) (-2237 (((-603 |#1| |#2|) $ (-567)) NIL)) (-4132 (($ (-603 |#1| |#2|)) NIL) (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-1745 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2619 (((-112) $) NIL)) (-2936 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3060 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3045 (($ $ $) NIL) (($ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-772)) NIL) (($ $ (-567)) NIL (|has| |#1| (-365)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-567) $) NIL) (((-603 |#1| |#2|) $ (-603 |#1| |#2|)) NIL) (((-603 |#1| |#3|) (-603 |#1| |#3|) $) NIL)) (-2414 (((-772) $) NIL (|has| $ (-6 -4418)))))
+((-2765 ((|#4| |#4|) 37)) (-1976 (((-772) |#4|) 45)) (-1974 (((-772) |#4|) 46)) (-2064 (((-645 |#3|) |#4|) 56 (|has| |#3| (-6 -4423)))) (-2504 (((-3 |#4| "failed") |#4|) 70)) (-1916 ((|#4| |#4|) 62)) (-2790 ((|#1| |#4|) 61)))
+(((-524 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2765 (|#4| |#4|)) (-15 -1976 ((-772) |#4|)) (-15 -1974 ((-772) |#4|)) (IF (|has| |#3| (-6 -4423)) (-15 -2064 ((-645 |#3|) |#4|)) |%noBranch|) (-15 -2790 (|#1| |#4|)) (-15 -1916 (|#4| |#4|)) (-15 -2504 ((-3 |#4| "failed") |#4|))) (-365) (-375 |#1|) (-375 |#1|) (-688 |#1| |#2| |#3|)) (T -524))
+((-2504 (*1 *2 *2) (|partial| -12 (-4 *3 (-365)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-524 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) (-1916 (*1 *2 *2) (-12 (-4 *3 (-365)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-524 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) (-2790 (*1 *2 *3) (-12 (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-365)) (-5 *1 (-524 *2 *4 *5 *3)) (-4 *3 (-688 *2 *4 *5)))) (-2064 (*1 *2 *3) (-12 (|has| *6 (-6 -4423)) (-4 *4 (-365)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-645 *6)) (-5 *1 (-524 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) (-1974 (*1 *2 *3) (-12 (-4 *4 (-365)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-772)) (-5 *1 (-524 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) (-1976 (*1 *2 *3) (-12 (-4 *4 (-365)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-772)) (-5 *1 (-524 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) (-2765 (*1 *2 *2) (-12 (-4 *3 (-365)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-524 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))))
+(-10 -7 (-15 -2765 (|#4| |#4|)) (-15 -1976 ((-772) |#4|)) (-15 -1974 ((-772) |#4|)) (IF (|has| |#3| (-6 -4423)) (-15 -2064 ((-645 |#3|) |#4|)) |%noBranch|) (-15 -2790 (|#1| |#4|)) (-15 -1916 (|#4| |#4|)) (-15 -2504 ((-3 |#4| "failed") |#4|)))
+((-2765 ((|#8| |#4|) 20)) (-2064 (((-645 |#3|) |#4|) 29 (|has| |#7| (-6 -4423)))) (-2504 (((-3 |#8| "failed") |#4|) 23)))
+(((-525 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2765 (|#8| |#4|)) (-15 -2504 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4423)) (-15 -2064 ((-645 |#3|) |#4|)) |%noBranch|)) (-559) (-375 |#1|) (-375 |#1|) (-688 |#1| |#2| |#3|) (-994 |#1|) (-375 |#5|) (-375 |#5|) (-688 |#5| |#6| |#7|)) (T -525))
+((-2064 (*1 *2 *3) (-12 (|has| *9 (-6 -4423)) (-4 *4 (-559)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-4 *7 (-994 *4)) (-4 *8 (-375 *7)) (-4 *9 (-375 *7)) (-5 *2 (-645 *6)) (-5 *1 (-525 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-688 *4 *5 *6)) (-4 *10 (-688 *7 *8 *9)))) (-2504 (*1 *2 *3) (|partial| -12 (-4 *4 (-559)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-4 *7 (-994 *4)) (-4 *2 (-688 *7 *8 *9)) (-5 *1 (-525 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-688 *4 *5 *6)) (-4 *8 (-375 *7)) (-4 *9 (-375 *7)))) (-2765 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-4 *7 (-994 *4)) (-4 *2 (-688 *7 *8 *9)) (-5 *1 (-525 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-688 *4 *5 *6)) (-4 *8 (-375 *7)) (-4 *9 (-375 *7)))))
+(-10 -7 (-15 -2765 (|#8| |#4|)) (-15 -2504 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4423)) (-15 -2064 ((-645 |#3|) |#4|)) |%noBranch|))
+((-2412 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1318 (($ (-772) (-772)) NIL)) (-1957 (($ $ $) NIL)) (-4141 (($ (-603 |#1| |#3|)) NIL) (($ $) NIL)) (-2999 (((-112) $) NIL)) (-3527 (($ $ (-567) (-567)) 21)) (-1812 (($ $ (-567) (-567)) NIL)) (-1932 (($ $ (-567) (-567) (-567) (-567)) NIL)) (-2154 (($ $) NIL)) (-3507 (((-112) $) NIL)) (-1563 (((-112) $ (-772)) NIL)) (-4298 (($ $ (-567) (-567) $) NIL)) (-4285 ((|#1| $ (-567) (-567) |#1|) NIL) (($ $ (-645 (-567)) (-645 (-567)) $) NIL)) (-3563 (($ $ (-567) (-603 |#1| |#3|)) NIL)) (-2306 (($ $ (-567) (-603 |#1| |#2|)) NIL)) (-4302 (($ (-772) |#1|) NIL)) (-3647 (($) NIL T CONST)) (-2765 (($ $) 30 (|has| |#1| (-308)))) (-4323 (((-603 |#1| |#3|) $ (-567)) NIL)) (-1976 (((-772) $) 33 (|has| |#1| (-559)))) (-3760 ((|#1| $ (-567) (-567) |#1|) NIL)) (-3703 ((|#1| $ (-567) (-567)) NIL)) (-2799 (((-645 |#1|) $) NIL)) (-1974 (((-772) $) 35 (|has| |#1| (-559)))) (-2064 (((-645 (-603 |#1| |#2|)) $) 38 (|has| |#1| (-559)))) (-4296 (((-772) $) NIL)) (-2858 (($ (-772) (-772) |#1|) NIL)) (-4307 (((-772) $) NIL)) (-4093 (((-112) $ (-772)) NIL)) (-1805 ((|#1| $) 28 (|has| |#1| (-6 (-4424 "*"))))) (-3407 (((-567) $) 10)) (-4227 (((-567) $) NIL)) (-1942 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-3237 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3393 (((-567) $) 13)) (-3351 (((-567) $) NIL)) (-2124 (($ (-645 (-645 |#1|))) NIL)) (-3751 (($ (-1 |#1| |#1|) $) NIL)) (-3841 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2282 (((-645 (-645 |#1|)) $) NIL)) (-1986 (((-112) $ (-772)) NIL)) (-2516 (((-1161) $) NIL (|has| |#1| (-1102)))) (-2504 (((-3 $ "failed") $) 42 (|has| |#1| (-365)))) (-3810 (($ $ $) NIL)) (-3437 (((-1122) $) NIL (|has| |#1| (-1102)))) (-3823 (($ $ |#1|) NIL)) (-2400 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559)))) (-4233 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3875 (((-112) $ $) NIL)) (-3885 (((-112) $) NIL)) (-2701 (($) NIL)) (-1801 ((|#1| $ (-567) (-567)) NIL) ((|#1| $ (-567) (-567) |#1|) NIL) (($ $ (-645 (-567)) (-645 (-567))) NIL)) (-3391 (($ (-645 |#1|)) NIL) (($ (-645 $)) NIL)) (-4103 (((-112) $) NIL)) (-2790 ((|#1| $) 26 (|has| |#1| (-6 (-4424 "*"))))) (-3447 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-4309 (($ $) NIL)) (-3186 (((-603 |#1| |#2|) $ (-567)) NIL)) (-4129 (($ (-603 |#1| |#2|)) NIL) (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-3357 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3436 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-4050 (((-112) $) NIL)) (-2946 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3069 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3053 (($ $ $) NIL) (($ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-772)) NIL) (($ $ (-567)) NIL (|has| |#1| (-365)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-567) $) NIL) (((-603 |#1| |#2|) $ (-603 |#1| |#2|)) NIL) (((-603 |#1| |#3|) (-603 |#1| |#3|) $) NIL)) (-2423 (((-772) $) NIL (|has| $ (-6 -4422)))))
(((-526 |#1| |#2| |#3|) (-688 |#1| (-603 |#1| |#3|) (-603 |#1| |#2|)) (-1051) (-567) (-567)) (T -526))
NIL
(-688 |#1| (-603 |#1| |#3|) (-603 |#1| |#2|))
-((-2403 (((-112) $ $) NIL)) (-1419 (((-1160) $) NIL)) (-3800 (((-645 (-1217)) $) 13)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 19) (($ (-1183)) NIL) (((-1183) $) NIL) (($ (-645 (-1217))) 11)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)))
-(((-527) (-13 (-1085) (-10 -8 (-15 -4132 ($ (-645 (-1217)))) (-15 -3800 ((-645 (-1217)) $))))) (T -527))
-((-4132 (*1 *1 *2) (-12 (-5 *2 (-645 (-1217))) (-5 *1 (-527)))) (-3800 (*1 *2 *1) (-12 (-5 *2 (-645 (-1217))) (-5 *1 (-527)))))
-(-13 (-1085) (-10 -8 (-15 -4132 ($ (-645 (-1217)))) (-15 -3800 ((-645 (-1217)) $))))
-((-2403 (((-112) $ $) NIL)) (-1982 (((-1137) $) 14)) (-1419 (((-1160) $) NIL)) (-3488 (((-509) $) 11)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 21) (($ (-1183)) NIL) (((-1183) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)))
-(((-528) (-13 (-1085) (-10 -8 (-15 -3488 ((-509) $)) (-15 -1982 ((-1137) $))))) (T -528))
-((-3488 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-528)))) (-1982 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-528)))))
-(-13 (-1085) (-10 -8 (-15 -3488 ((-509) $)) (-15 -1982 ((-1137) $))))
-((-2168 (((-692 (-1226)) $) 15)) (-1612 (((-692 (-1224)) $) 39)) (-2105 (((-692 (-1223)) $) 30)) (-1578 (((-692 (-552)) $) 12)) (-1784 (((-692 (-550)) $) 43)) (-3057 (((-692 (-549)) $) 34)) (-3176 (((-772) $ (-128)) 55)))
-(((-529 |#1|) (-10 -8 (-15 -3176 ((-772) |#1| (-128))) (-15 -1612 ((-692 (-1224)) |#1|)) (-15 -1784 ((-692 (-550)) |#1|)) (-15 -2105 ((-692 (-1223)) |#1|)) (-15 -3057 ((-692 (-549)) |#1|)) (-15 -2168 ((-692 (-1226)) |#1|)) (-15 -1578 ((-692 (-552)) |#1|))) (-530)) (T -529))
-NIL
-(-10 -8 (-15 -3176 ((-772) |#1| (-128))) (-15 -1612 ((-692 (-1224)) |#1|)) (-15 -1784 ((-692 (-550)) |#1|)) (-15 -2105 ((-692 (-1223)) |#1|)) (-15 -3057 ((-692 (-549)) |#1|)) (-15 -2168 ((-692 (-1226)) |#1|)) (-15 -1578 ((-692 (-552)) |#1|)))
-((-2168 (((-692 (-1226)) $) 12)) (-1612 (((-692 (-1224)) $) 8)) (-2105 (((-692 (-1223)) $) 10)) (-1578 (((-692 (-552)) $) 13)) (-1784 (((-692 (-550)) $) 9)) (-3057 (((-692 (-549)) $) 11)) (-3176 (((-772) $ (-128)) 7)) (-3706 (((-692 (-129)) $) 14)) (-1675 (($ $) 6)))
+((-2412 (((-112) $ $) NIL)) (-2516 (((-1161) $) NIL)) (-3901 (((-645 (-1218)) $) 13)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) 19) (($ (-1184)) NIL) (((-1184) $) NIL) (($ (-645 (-1218))) 11)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)))
+(((-527) (-13 (-1085) (-10 -8 (-15 -4129 ($ (-645 (-1218)))) (-15 -3901 ((-645 (-1218)) $))))) (T -527))
+((-4129 (*1 *1 *2) (-12 (-5 *2 (-645 (-1218))) (-5 *1 (-527)))) (-3901 (*1 *2 *1) (-12 (-5 *2 (-645 (-1218))) (-5 *1 (-527)))))
+(-13 (-1085) (-10 -8 (-15 -4129 ($ (-645 (-1218)))) (-15 -3901 ((-645 (-1218)) $))))
+((-2412 (((-112) $ $) NIL)) (-3096 (((-1137) $) 14)) (-2516 (((-1161) $) NIL)) (-4387 (((-509) $) 11)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) 21) (($ (-1184)) NIL) (((-1184) $) NIL)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)))
+(((-528) (-13 (-1085) (-10 -8 (-15 -4387 ((-509) $)) (-15 -3096 ((-1137) $))))) (T -528))
+((-4387 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-528)))) (-3096 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-528)))))
+(-13 (-1085) (-10 -8 (-15 -4387 ((-509) $)) (-15 -3096 ((-1137) $))))
+((-1351 (((-692 (-1227)) $) 15)) (-4366 (((-692 (-1225)) $) 39)) (-3218 (((-692 (-1224)) $) 30)) (-1576 (((-692 (-552)) $) 12)) (-3961 (((-692 (-550)) $) 43)) (-1683 (((-692 (-549)) $) 34)) (-4020 (((-772) $ (-128)) 55)))
+(((-529 |#1|) (-10 -8 (-15 -4020 ((-772) |#1| (-128))) (-15 -4366 ((-692 (-1225)) |#1|)) (-15 -3961 ((-692 (-550)) |#1|)) (-15 -3218 ((-692 (-1224)) |#1|)) (-15 -1683 ((-692 (-549)) |#1|)) (-15 -1351 ((-692 (-1227)) |#1|)) (-15 -1576 ((-692 (-552)) |#1|))) (-530)) (T -529))
+NIL
+(-10 -8 (-15 -4020 ((-772) |#1| (-128))) (-15 -4366 ((-692 (-1225)) |#1|)) (-15 -3961 ((-692 (-550)) |#1|)) (-15 -3218 ((-692 (-1224)) |#1|)) (-15 -1683 ((-692 (-549)) |#1|)) (-15 -1351 ((-692 (-1227)) |#1|)) (-15 -1576 ((-692 (-552)) |#1|)))
+((-1351 (((-692 (-1227)) $) 12)) (-4366 (((-692 (-1225)) $) 8)) (-3218 (((-692 (-1224)) $) 10)) (-1576 (((-692 (-552)) $) 13)) (-3961 (((-692 (-550)) $) 9)) (-1683 (((-692 (-549)) $) 11)) (-4020 (((-772) $ (-128)) 7)) (-4343 (((-692 (-129)) $) 14)) (-3034 (($ $) 6)))
(((-530) (-140)) (T -530))
-((-3706 (*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-129))))) (-1578 (*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-552))))) (-2168 (*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-1226))))) (-3057 (*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-549))))) (-2105 (*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-1223))))) (-1784 (*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-550))))) (-1612 (*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-1224))))) (-3176 (*1 *2 *1 *3) (-12 (-4 *1 (-530)) (-5 *3 (-128)) (-5 *2 (-772)))))
-(-13 (-173) (-10 -8 (-15 -3706 ((-692 (-129)) $)) (-15 -1578 ((-692 (-552)) $)) (-15 -2168 ((-692 (-1226)) $)) (-15 -3057 ((-692 (-549)) $)) (-15 -2105 ((-692 (-1223)) $)) (-15 -1784 ((-692 (-550)) $)) (-15 -1612 ((-692 (-1224)) $)) (-15 -3176 ((-772) $ (-128)))))
+((-4343 (*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-129))))) (-1576 (*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-552))))) (-1351 (*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-1227))))) (-1683 (*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-549))))) (-3218 (*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-1224))))) (-3961 (*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-550))))) (-4366 (*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-1225))))) (-4020 (*1 *2 *1 *3) (-12 (-4 *1 (-530)) (-5 *3 (-128)) (-5 *2 (-772)))))
+(-13 (-173) (-10 -8 (-15 -4343 ((-692 (-129)) $)) (-15 -1576 ((-692 (-552)) $)) (-15 -1351 ((-692 (-1227)) $)) (-15 -1683 ((-692 (-549)) $)) (-15 -3218 ((-692 (-1224)) $)) (-15 -3961 ((-692 (-550)) $)) (-15 -4366 ((-692 (-1225)) $)) (-15 -4020 ((-772) $ (-128)))))
(((-173) . T))
-((-3819 (((-1174 |#1|) (-772)) 115)) (-4293 (((-1268 |#1|) (-1268 |#1|) (-923)) 108)) (-2613 (((-1273) (-1268 (-645 (-2 (|:| -3802 |#1|) (|:| -3768 (-1122))))) |#1|) 124)) (-1762 (((-1268 |#1|) (-1268 |#1|) (-772)) 53)) (-1348 (((-1268 |#1|) (-923)) 110)) (-1385 (((-1268 |#1|) (-1268 |#1|) (-567)) 30)) (-2517 (((-1174 |#1|) (-1268 |#1|)) 116)) (-3559 (((-1268 |#1|) (-923)) 137)) (-1426 (((-112) (-1268 |#1|)) 120)) (-2475 (((-1268 |#1|) (-1268 |#1|) (-923)) 100)) (-4206 (((-1174 |#1|) (-1268 |#1|)) 131)) (-4249 (((-923) (-1268 |#1|)) 96)) (-2939 (((-1268 |#1|) (-1268 |#1|)) 38)) (-3768 (((-1268 |#1|) (-923) (-923)) 140)) (-1307 (((-1268 |#1|) (-1268 |#1|) (-1122) (-1122)) 29)) (-3378 (((-1268 |#1|) (-1268 |#1|) (-772) (-1122)) 54)) (-2623 (((-1268 (-1268 |#1|)) (-923)) 136)) (-3060 (((-1268 |#1|) (-1268 |#1|) (-1268 |#1|)) 121)) (** (((-1268 |#1|) (-1268 |#1|) (-567)) 67)) (* (((-1268 |#1|) (-1268 |#1|) (-1268 |#1|)) 31)))
-(((-531 |#1|) (-10 -7 (-15 -2613 ((-1273) (-1268 (-645 (-2 (|:| -3802 |#1|) (|:| -3768 (-1122))))) |#1|)) (-15 -1348 ((-1268 |#1|) (-923))) (-15 -3768 ((-1268 |#1|) (-923) (-923))) (-15 -2517 ((-1174 |#1|) (-1268 |#1|))) (-15 -3819 ((-1174 |#1|) (-772))) (-15 -3378 ((-1268 |#1|) (-1268 |#1|) (-772) (-1122))) (-15 -1762 ((-1268 |#1|) (-1268 |#1|) (-772))) (-15 -1307 ((-1268 |#1|) (-1268 |#1|) (-1122) (-1122))) (-15 -1385 ((-1268 |#1|) (-1268 |#1|) (-567))) (-15 ** ((-1268 |#1|) (-1268 |#1|) (-567))) (-15 * ((-1268 |#1|) (-1268 |#1|) (-1268 |#1|))) (-15 -3060 ((-1268 |#1|) (-1268 |#1|) (-1268 |#1|))) (-15 -2475 ((-1268 |#1|) (-1268 |#1|) (-923))) (-15 -4293 ((-1268 |#1|) (-1268 |#1|) (-923))) (-15 -2939 ((-1268 |#1|) (-1268 |#1|))) (-15 -4249 ((-923) (-1268 |#1|))) (-15 -1426 ((-112) (-1268 |#1|))) (-15 -2623 ((-1268 (-1268 |#1|)) (-923))) (-15 -3559 ((-1268 |#1|) (-923))) (-15 -4206 ((-1174 |#1|) (-1268 |#1|)))) (-351)) (T -531))
-((-4206 (*1 *2 *3) (-12 (-5 *3 (-1268 *4)) (-4 *4 (-351)) (-5 *2 (-1174 *4)) (-5 *1 (-531 *4)))) (-3559 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1268 *4)) (-5 *1 (-531 *4)) (-4 *4 (-351)))) (-2623 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1268 (-1268 *4))) (-5 *1 (-531 *4)) (-4 *4 (-351)))) (-1426 (*1 *2 *3) (-12 (-5 *3 (-1268 *4)) (-4 *4 (-351)) (-5 *2 (-112)) (-5 *1 (-531 *4)))) (-4249 (*1 *2 *3) (-12 (-5 *3 (-1268 *4)) (-4 *4 (-351)) (-5 *2 (-923)) (-5 *1 (-531 *4)))) (-2939 (*1 *2 *2) (-12 (-5 *2 (-1268 *3)) (-4 *3 (-351)) (-5 *1 (-531 *3)))) (-4293 (*1 *2 *2 *3) (-12 (-5 *2 (-1268 *4)) (-5 *3 (-923)) (-4 *4 (-351)) (-5 *1 (-531 *4)))) (-2475 (*1 *2 *2 *3) (-12 (-5 *2 (-1268 *4)) (-5 *3 (-923)) (-4 *4 (-351)) (-5 *1 (-531 *4)))) (-3060 (*1 *2 *2 *2) (-12 (-5 *2 (-1268 *3)) (-4 *3 (-351)) (-5 *1 (-531 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1268 *3)) (-4 *3 (-351)) (-5 *1 (-531 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1268 *4)) (-5 *3 (-567)) (-4 *4 (-351)) (-5 *1 (-531 *4)))) (-1385 (*1 *2 *2 *3) (-12 (-5 *2 (-1268 *4)) (-5 *3 (-567)) (-4 *4 (-351)) (-5 *1 (-531 *4)))) (-1307 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1268 *4)) (-5 *3 (-1122)) (-4 *4 (-351)) (-5 *1 (-531 *4)))) (-1762 (*1 *2 *2 *3) (-12 (-5 *2 (-1268 *4)) (-5 *3 (-772)) (-4 *4 (-351)) (-5 *1 (-531 *4)))) (-3378 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1268 *5)) (-5 *3 (-772)) (-5 *4 (-1122)) (-4 *5 (-351)) (-5 *1 (-531 *5)))) (-3819 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1174 *4)) (-5 *1 (-531 *4)) (-4 *4 (-351)))) (-2517 (*1 *2 *3) (-12 (-5 *3 (-1268 *4)) (-4 *4 (-351)) (-5 *2 (-1174 *4)) (-5 *1 (-531 *4)))) (-3768 (*1 *2 *3 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1268 *4)) (-5 *1 (-531 *4)) (-4 *4 (-351)))) (-1348 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1268 *4)) (-5 *1 (-531 *4)) (-4 *4 (-351)))) (-2613 (*1 *2 *3 *4) (-12 (-5 *3 (-1268 (-645 (-2 (|:| -3802 *4) (|:| -3768 (-1122)))))) (-4 *4 (-351)) (-5 *2 (-1273)) (-5 *1 (-531 *4)))))
-(-10 -7 (-15 -2613 ((-1273) (-1268 (-645 (-2 (|:| -3802 |#1|) (|:| -3768 (-1122))))) |#1|)) (-15 -1348 ((-1268 |#1|) (-923))) (-15 -3768 ((-1268 |#1|) (-923) (-923))) (-15 -2517 ((-1174 |#1|) (-1268 |#1|))) (-15 -3819 ((-1174 |#1|) (-772))) (-15 -3378 ((-1268 |#1|) (-1268 |#1|) (-772) (-1122))) (-15 -1762 ((-1268 |#1|) (-1268 |#1|) (-772))) (-15 -1307 ((-1268 |#1|) (-1268 |#1|) (-1122) (-1122))) (-15 -1385 ((-1268 |#1|) (-1268 |#1|) (-567))) (-15 ** ((-1268 |#1|) (-1268 |#1|) (-567))) (-15 * ((-1268 |#1|) (-1268 |#1|) (-1268 |#1|))) (-15 -3060 ((-1268 |#1|) (-1268 |#1|) (-1268 |#1|))) (-15 -2475 ((-1268 |#1|) (-1268 |#1|) (-923))) (-15 -4293 ((-1268 |#1|) (-1268 |#1|) (-923))) (-15 -2939 ((-1268 |#1|) (-1268 |#1|))) (-15 -4249 ((-923) (-1268 |#1|))) (-15 -1426 ((-112) (-1268 |#1|))) (-15 -2623 ((-1268 (-1268 |#1|)) (-923))) (-15 -3559 ((-1268 |#1|) (-923))) (-15 -4206 ((-1174 |#1|) (-1268 |#1|))))
-((-2168 (((-692 (-1226)) $) NIL)) (-1612 (((-692 (-1224)) $) NIL)) (-2105 (((-692 (-1223)) $) NIL)) (-1578 (((-692 (-552)) $) NIL)) (-1784 (((-692 (-550)) $) NIL)) (-3057 (((-692 (-549)) $) NIL)) (-3176 (((-772) $ (-128)) NIL)) (-3706 (((-692 (-129)) $) 26)) (-3953 (((-1122) $ (-1122)) 31)) (-2569 (((-1122) $) 30)) (-3254 (((-112) $) 20)) (-4258 (($ (-391)) 14) (($ (-1160)) 16)) (-2402 (((-112) $) 27)) (-4132 (((-863) $) 34)) (-1675 (($ $) 28)))
-(((-532) (-13 (-530) (-614 (-863)) (-10 -8 (-15 -4258 ($ (-391))) (-15 -4258 ($ (-1160))) (-15 -2402 ((-112) $)) (-15 -3254 ((-112) $)) (-15 -2569 ((-1122) $)) (-15 -3953 ((-1122) $ (-1122)))))) (T -532))
-((-4258 (*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-532)))) (-4258 (*1 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-532)))) (-2402 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-532)))) (-3254 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-532)))) (-2569 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-532)))) (-3953 (*1 *2 *1 *2) (-12 (-5 *2 (-1122)) (-5 *1 (-532)))))
-(-13 (-530) (-614 (-863)) (-10 -8 (-15 -4258 ($ (-391))) (-15 -4258 ($ (-1160))) (-15 -2402 ((-112) $)) (-15 -3254 ((-112) $)) (-15 -2569 ((-1122) $)) (-15 -3953 ((-1122) $ (-1122)))))
-((-3306 (((-1 |#1| |#1|) |#1|) 11)) (-3543 (((-1 |#1| |#1|)) 10)))
-(((-533 |#1|) (-10 -7 (-15 -3543 ((-1 |#1| |#1|))) (-15 -3306 ((-1 |#1| |#1|) |#1|))) (-13 (-727) (-25))) (T -533))
-((-3306 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-533 *3)) (-4 *3 (-13 (-727) (-25))))) (-3543 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-533 *3)) (-4 *3 (-13 (-727) (-25))))))
-(-10 -7 (-15 -3543 ((-1 |#1| |#1|))) (-15 -3306 ((-1 |#1| |#1|) |#1|)))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-4016 (($ $ $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2585 (($) NIL T CONST)) (-3014 (($ $) NIL)) (-2824 (($ (-772) |#1|) NIL)) (-1354 (($ $ $) NIL)) (-2981 (($ $ $) NIL)) (-3829 (($ (-1 (-772) (-772)) $) NIL)) (-3148 ((|#1| $) NIL)) (-2989 (((-772) $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 27)) (-1745 (((-112) $ $) NIL)) (-1716 (($) NIL T CONST)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) NIL)) (-3033 (($ $ $) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL)))
+((-2753 (((-1175 |#1|) (-772)) 115)) (-4293 (((-1269 |#1|) (-1269 |#1|) (-923)) 108)) (-3466 (((-1274) (-1269 (-645 (-2 (|:| -3812 |#1|) (|:| -3779 (-1122))))) |#1|) 124)) (-2625 (((-1269 |#1|) (-1269 |#1|) (-772)) 53)) (-1359 (((-1269 |#1|) (-923)) 110)) (-2534 (((-1269 |#1|) (-1269 |#1|) (-567)) 30)) (-1774 (((-1175 |#1|) (-1269 |#1|)) 116)) (-2092 (((-1269 |#1|) (-923)) 137)) (-1897 (((-112) (-1269 |#1|)) 120)) (-2724 (((-1269 |#1|) (-1269 |#1|) (-923)) 100)) (-1914 (((-1175 |#1|) (-1269 |#1|)) 131)) (-3474 (((-923) (-1269 |#1|)) 96)) (-2949 (((-1269 |#1|) (-1269 |#1|)) 38)) (-3779 (((-1269 |#1|) (-923) (-923)) 140)) (-2045 (((-1269 |#1|) (-1269 |#1|) (-1122) (-1122)) 29)) (-2931 (((-1269 |#1|) (-1269 |#1|) (-772) (-1122)) 54)) (-2144 (((-1269 (-1269 |#1|)) (-923)) 136)) (-3069 (((-1269 |#1|) (-1269 |#1|) (-1269 |#1|)) 121)) (** (((-1269 |#1|) (-1269 |#1|) (-567)) 67)) (* (((-1269 |#1|) (-1269 |#1|) (-1269 |#1|)) 31)))
+(((-531 |#1|) (-10 -7 (-15 -3466 ((-1274) (-1269 (-645 (-2 (|:| -3812 |#1|) (|:| -3779 (-1122))))) |#1|)) (-15 -1359 ((-1269 |#1|) (-923))) (-15 -3779 ((-1269 |#1|) (-923) (-923))) (-15 -1774 ((-1175 |#1|) (-1269 |#1|))) (-15 -2753 ((-1175 |#1|) (-772))) (-15 -2931 ((-1269 |#1|) (-1269 |#1|) (-772) (-1122))) (-15 -2625 ((-1269 |#1|) (-1269 |#1|) (-772))) (-15 -2045 ((-1269 |#1|) (-1269 |#1|) (-1122) (-1122))) (-15 -2534 ((-1269 |#1|) (-1269 |#1|) (-567))) (-15 ** ((-1269 |#1|) (-1269 |#1|) (-567))) (-15 * ((-1269 |#1|) (-1269 |#1|) (-1269 |#1|))) (-15 -3069 ((-1269 |#1|) (-1269 |#1|) (-1269 |#1|))) (-15 -2724 ((-1269 |#1|) (-1269 |#1|) (-923))) (-15 -4293 ((-1269 |#1|) (-1269 |#1|) (-923))) (-15 -2949 ((-1269 |#1|) (-1269 |#1|))) (-15 -3474 ((-923) (-1269 |#1|))) (-15 -1897 ((-112) (-1269 |#1|))) (-15 -2144 ((-1269 (-1269 |#1|)) (-923))) (-15 -2092 ((-1269 |#1|) (-923))) (-15 -1914 ((-1175 |#1|) (-1269 |#1|)))) (-351)) (T -531))
+((-1914 (*1 *2 *3) (-12 (-5 *3 (-1269 *4)) (-4 *4 (-351)) (-5 *2 (-1175 *4)) (-5 *1 (-531 *4)))) (-2092 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1269 *4)) (-5 *1 (-531 *4)) (-4 *4 (-351)))) (-2144 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1269 (-1269 *4))) (-5 *1 (-531 *4)) (-4 *4 (-351)))) (-1897 (*1 *2 *3) (-12 (-5 *3 (-1269 *4)) (-4 *4 (-351)) (-5 *2 (-112)) (-5 *1 (-531 *4)))) (-3474 (*1 *2 *3) (-12 (-5 *3 (-1269 *4)) (-4 *4 (-351)) (-5 *2 (-923)) (-5 *1 (-531 *4)))) (-2949 (*1 *2 *2) (-12 (-5 *2 (-1269 *3)) (-4 *3 (-351)) (-5 *1 (-531 *3)))) (-4293 (*1 *2 *2 *3) (-12 (-5 *2 (-1269 *4)) (-5 *3 (-923)) (-4 *4 (-351)) (-5 *1 (-531 *4)))) (-2724 (*1 *2 *2 *3) (-12 (-5 *2 (-1269 *4)) (-5 *3 (-923)) (-4 *4 (-351)) (-5 *1 (-531 *4)))) (-3069 (*1 *2 *2 *2) (-12 (-5 *2 (-1269 *3)) (-4 *3 (-351)) (-5 *1 (-531 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1269 *3)) (-4 *3 (-351)) (-5 *1 (-531 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1269 *4)) (-5 *3 (-567)) (-4 *4 (-351)) (-5 *1 (-531 *4)))) (-2534 (*1 *2 *2 *3) (-12 (-5 *2 (-1269 *4)) (-5 *3 (-567)) (-4 *4 (-351)) (-5 *1 (-531 *4)))) (-2045 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1269 *4)) (-5 *3 (-1122)) (-4 *4 (-351)) (-5 *1 (-531 *4)))) (-2625 (*1 *2 *2 *3) (-12 (-5 *2 (-1269 *4)) (-5 *3 (-772)) (-4 *4 (-351)) (-5 *1 (-531 *4)))) (-2931 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1269 *5)) (-5 *3 (-772)) (-5 *4 (-1122)) (-4 *5 (-351)) (-5 *1 (-531 *5)))) (-2753 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1175 *4)) (-5 *1 (-531 *4)) (-4 *4 (-351)))) (-1774 (*1 *2 *3) (-12 (-5 *3 (-1269 *4)) (-4 *4 (-351)) (-5 *2 (-1175 *4)) (-5 *1 (-531 *4)))) (-3779 (*1 *2 *3 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1269 *4)) (-5 *1 (-531 *4)) (-4 *4 (-351)))) (-1359 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1269 *4)) (-5 *1 (-531 *4)) (-4 *4 (-351)))) (-3466 (*1 *2 *3 *4) (-12 (-5 *3 (-1269 (-645 (-2 (|:| -3812 *4) (|:| -3779 (-1122)))))) (-4 *4 (-351)) (-5 *2 (-1274)) (-5 *1 (-531 *4)))))
+(-10 -7 (-15 -3466 ((-1274) (-1269 (-645 (-2 (|:| -3812 |#1|) (|:| -3779 (-1122))))) |#1|)) (-15 -1359 ((-1269 |#1|) (-923))) (-15 -3779 ((-1269 |#1|) (-923) (-923))) (-15 -1774 ((-1175 |#1|) (-1269 |#1|))) (-15 -2753 ((-1175 |#1|) (-772))) (-15 -2931 ((-1269 |#1|) (-1269 |#1|) (-772) (-1122))) (-15 -2625 ((-1269 |#1|) (-1269 |#1|) (-772))) (-15 -2045 ((-1269 |#1|) (-1269 |#1|) (-1122) (-1122))) (-15 -2534 ((-1269 |#1|) (-1269 |#1|) (-567))) (-15 ** ((-1269 |#1|) (-1269 |#1|) (-567))) (-15 * ((-1269 |#1|) (-1269 |#1|) (-1269 |#1|))) (-15 -3069 ((-1269 |#1|) (-1269 |#1|) (-1269 |#1|))) (-15 -2724 ((-1269 |#1|) (-1269 |#1|) (-923))) (-15 -4293 ((-1269 |#1|) (-1269 |#1|) (-923))) (-15 -2949 ((-1269 |#1|) (-1269 |#1|))) (-15 -3474 ((-923) (-1269 |#1|))) (-15 -1897 ((-112) (-1269 |#1|))) (-15 -2144 ((-1269 (-1269 |#1|)) (-923))) (-15 -2092 ((-1269 |#1|) (-923))) (-15 -1914 ((-1175 |#1|) (-1269 |#1|))))
+((-1351 (((-692 (-1227)) $) NIL)) (-4366 (((-692 (-1225)) $) NIL)) (-3218 (((-692 (-1224)) $) NIL)) (-1576 (((-692 (-552)) $) NIL)) (-3961 (((-692 (-550)) $) NIL)) (-1683 (((-692 (-549)) $) NIL)) (-4020 (((-772) $ (-128)) NIL)) (-4343 (((-692 (-129)) $) 26)) (-1506 (((-1122) $ (-1122)) 31)) (-2578 (((-1122) $) 30)) (-3075 (((-112) $) 20)) (-2359 (($ (-391)) 14) (($ (-1161)) 16)) (-1349 (((-112) $) 27)) (-4129 (((-863) $) 34)) (-3034 (($ $) 28)))
+(((-532) (-13 (-530) (-614 (-863)) (-10 -8 (-15 -2359 ($ (-391))) (-15 -2359 ($ (-1161))) (-15 -1349 ((-112) $)) (-15 -3075 ((-112) $)) (-15 -2578 ((-1122) $)) (-15 -1506 ((-1122) $ (-1122)))))) (T -532))
+((-2359 (*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-532)))) (-2359 (*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-532)))) (-1349 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-532)))) (-3075 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-532)))) (-2578 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-532)))) (-1506 (*1 *2 *1 *2) (-12 (-5 *2 (-1122)) (-5 *1 (-532)))))
+(-13 (-530) (-614 (-863)) (-10 -8 (-15 -2359 ($ (-391))) (-15 -2359 ($ (-1161))) (-15 -1349 ((-112) $)) (-15 -3075 ((-112) $)) (-15 -2578 ((-1122) $)) (-15 -1506 ((-1122) $ (-1122)))))
+((-3313 (((-1 |#1| |#1|) |#1|) 11)) (-3638 (((-1 |#1| |#1|)) 10)))
+(((-533 |#1|) (-10 -7 (-15 -3638 ((-1 |#1| |#1|))) (-15 -3313 ((-1 |#1| |#1|) |#1|))) (-13 (-727) (-25))) (T -533))
+((-3313 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-533 *3)) (-4 *3 (-13 (-727) (-25))))) (-3638 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-533 *3)) (-4 *3 (-13 (-727) (-25))))))
+(-10 -7 (-15 -3638 ((-1 |#1| |#1|))) (-15 -3313 ((-1 |#1| |#1|) |#1|)))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-1325 (($ $ $) NIL)) (-2376 (((-3 $ "failed") $ $) NIL)) (-3647 (($) NIL T CONST)) (-3023 (($ $) NIL)) (-2836 (($ (-772) |#1|) NIL)) (-1365 (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (-3841 (($ (-1 (-772) (-772)) $) NIL)) (-3050 ((|#1| $) NIL)) (-2996 (((-772) $) NIL)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) 27)) (-3357 (((-112) $ $) NIL)) (-1733 (($) NIL T CONST)) (-3004 (((-112) $ $) NIL)) (-2980 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2993 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)) (-3041 (($ $ $) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL)))
(((-534 |#1|) (-13 (-794) (-512 (-772) |#1|)) (-851)) (T -534))
NIL
(-13 (-794) (-512 (-772) |#1|))
-((-1305 (((-645 |#2|) (-1174 |#1|) |#3|) 98)) (-2392 (((-645 (-2 (|:| |outval| |#2|) (|:| |outmult| (-567)) (|:| |outvect| (-645 (-690 |#2|))))) (-690 |#1|) |#3| (-1 (-421 (-1174 |#1|)) (-1174 |#1|))) 114)) (-3372 (((-1174 |#1|) (-690 |#1|)) 110)))
-(((-535 |#1| |#2| |#3|) (-10 -7 (-15 -3372 ((-1174 |#1|) (-690 |#1|))) (-15 -1305 ((-645 |#2|) (-1174 |#1|) |#3|)) (-15 -2392 ((-645 (-2 (|:| |outval| |#2|) (|:| |outmult| (-567)) (|:| |outvect| (-645 (-690 |#2|))))) (-690 |#1|) |#3| (-1 (-421 (-1174 |#1|)) (-1174 |#1|))))) (-365) (-365) (-13 (-365) (-849))) (T -535))
-((-2392 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-690 *6)) (-5 *5 (-1 (-421 (-1174 *6)) (-1174 *6))) (-4 *6 (-365)) (-5 *2 (-645 (-2 (|:| |outval| *7) (|:| |outmult| (-567)) (|:| |outvect| (-645 (-690 *7)))))) (-5 *1 (-535 *6 *7 *4)) (-4 *7 (-365)) (-4 *4 (-13 (-365) (-849))))) (-1305 (*1 *2 *3 *4) (-12 (-5 *3 (-1174 *5)) (-4 *5 (-365)) (-5 *2 (-645 *6)) (-5 *1 (-535 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-849))))) (-3372 (*1 *2 *3) (-12 (-5 *3 (-690 *4)) (-4 *4 (-365)) (-5 *2 (-1174 *4)) (-5 *1 (-535 *4 *5 *6)) (-4 *5 (-365)) (-4 *6 (-13 (-365) (-849))))))
-(-10 -7 (-15 -3372 ((-1174 |#1|) (-690 |#1|))) (-15 -1305 ((-645 |#2|) (-1174 |#1|) |#3|)) (-15 -2392 ((-645 (-2 (|:| |outval| |#2|) (|:| |outmult| (-567)) (|:| |outvect| (-645 (-690 |#2|))))) (-690 |#1|) |#3| (-1 (-421 (-1174 |#1|)) (-1174 |#1|)))))
-((-3835 (((-692 (-1226)) $ (-1226)) NIL)) (-2841 (((-692 (-552)) $ (-552)) NIL)) (-3597 (((-772) $ (-128)) 41)) (-3887 (((-692 (-129)) $ (-129)) 42)) (-2168 (((-692 (-1226)) $) NIL)) (-1612 (((-692 (-1224)) $) NIL)) (-2105 (((-692 (-1223)) $) NIL)) (-1578 (((-692 (-552)) $) NIL)) (-1784 (((-692 (-550)) $) NIL)) (-3057 (((-692 (-549)) $) NIL)) (-3176 (((-772) $ (-128)) 37)) (-3706 (((-692 (-129)) $) 39)) (-3157 (((-112) $) 29)) (-1476 (((-692 $) (-582) (-956)) 19) (((-692 $) (-494) (-956)) 26)) (-4132 (((-863) $) 49)) (-1675 (($ $) 43)))
-(((-536) (-13 (-768 (-582)) (-614 (-863)) (-10 -8 (-15 -1476 ((-692 $) (-494) (-956)))))) (T -536))
-((-1476 (*1 *2 *3 *4) (-12 (-5 *3 (-494)) (-5 *4 (-956)) (-5 *2 (-692 (-536))) (-5 *1 (-536)))))
-(-13 (-768 (-582)) (-614 (-863)) (-10 -8 (-15 -1476 ((-692 $) (-494) (-956)))))
-((-2319 (((-844 (-567))) 12)) (-2333 (((-844 (-567))) 14)) (-1493 (((-834 (-567))) 9)))
-(((-537) (-10 -7 (-15 -1493 ((-834 (-567)))) (-15 -2319 ((-844 (-567)))) (-15 -2333 ((-844 (-567)))))) (T -537))
-((-2333 (*1 *2) (-12 (-5 *2 (-844 (-567))) (-5 *1 (-537)))) (-2319 (*1 *2) (-12 (-5 *2 (-844 (-567))) (-5 *1 (-537)))) (-1493 (*1 *2) (-12 (-5 *2 (-834 (-567))) (-5 *1 (-537)))))
-(-10 -7 (-15 -1493 ((-834 (-567)))) (-15 -2319 ((-844 (-567)))) (-15 -2333 ((-844 (-567)))))
-((-4204 (((-539) (-1178)) 15)) (-2649 ((|#1| (-539)) 20)))
-(((-538 |#1|) (-10 -7 (-15 -4204 ((-539) (-1178))) (-15 -2649 (|#1| (-539)))) (-1218)) (T -538))
-((-2649 (*1 *2 *3) (-12 (-5 *3 (-539)) (-5 *1 (-538 *2)) (-4 *2 (-1218)))) (-4204 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-539)) (-5 *1 (-538 *4)) (-4 *4 (-1218)))))
-(-10 -7 (-15 -4204 ((-539) (-1178))) (-15 -2649 (|#1| (-539))))
-((-2403 (((-112) $ $) NIL)) (-2270 (((-1160) $) 55)) (-1765 (((-112) $) 51)) (-3085 (((-1178) $) 52)) (-1583 (((-112) $) 49)) (-3657 (((-1160) $) 50)) (-2142 (($ (-1160)) 56)) (-2181 (((-112) $) NIL)) (-3582 (((-112) $) NIL)) (-2968 (((-112) $) NIL)) (-1419 (((-1160) $) NIL)) (-3167 (($ $ (-645 (-1178))) 21)) (-2649 (((-52) $) 23)) (-2047 (((-112) $) NIL)) (-3108 (((-567) $) NIL)) (-3430 (((-1122) $) NIL)) (-2614 (($ $ (-645 (-1178)) (-1178)) 73)) (-2660 (((-112) $) NIL)) (-2327 (((-225) $) NIL)) (-1445 (($ $) 44)) (-3602 (((-863) $) NIL)) (-3845 (((-112) $ $) NIL)) (-1787 (($ $ (-567)) NIL) (($ $ (-645 (-567))) NIL)) (-2784 (((-645 $) $) 30)) (-3621 (((-1178) (-645 $)) 57)) (-3893 (($ (-1160)) NIL) (($ (-1178)) 19) (($ (-567)) 8) (($ (-225)) 28) (($ (-863)) NIL) (($ (-645 $)) 65) (((-1106) $) 12) (($ (-1106)) 13)) (-2201 (((-1178) (-1178) (-645 $)) 60)) (-4132 (((-863) $) 54)) (-2307 (($ $) 59)) (-2296 (($ $) 58)) (-4227 (($ $ (-645 $)) 66)) (-1745 (((-112) $ $) NIL)) (-2633 (((-112) $) 29)) (-1716 (($) 9 T CONST)) (-1728 (($) 11 T CONST)) (-2936 (((-112) $ $) 74)) (-3060 (($ $ $) 82)) (-3033 (($ $ $) 75)) (** (($ $ (-772)) 81) (($ $ (-567)) 80)) (* (($ $ $) 76)) (-2414 (((-567) $) NIL)))
-(((-539) (-13 (-1105 (-1160) (-1178) (-567) (-225) (-863)) (-615 (-1106)) (-10 -8 (-15 -2649 ((-52) $)) (-15 -3893 ($ (-1106))) (-15 -4227 ($ $ (-645 $))) (-15 -2614 ($ $ (-645 (-1178)) (-1178))) (-15 -3167 ($ $ (-645 (-1178)))) (-15 -3033 ($ $ $)) (-15 * ($ $ $)) (-15 -3060 ($ $ $)) (-15 ** ($ $ (-772))) (-15 ** ($ $ (-567))) (-15 0 ($) -3286) (-15 1 ($) -3286) (-15 -1445 ($ $)) (-15 -2270 ((-1160) $)) (-15 -2142 ($ (-1160))) (-15 -3621 ((-1178) (-645 $))) (-15 -2201 ((-1178) (-1178) (-645 $)))))) (T -539))
-((-2649 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-539)))) (-3893 (*1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-539)))) (-4227 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-539))) (-5 *1 (-539)))) (-2614 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-1178))) (-5 *3 (-1178)) (-5 *1 (-539)))) (-3167 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-1178))) (-5 *1 (-539)))) (-3033 (*1 *1 *1 *1) (-5 *1 (-539))) (* (*1 *1 *1 *1) (-5 *1 (-539))) (-3060 (*1 *1 *1 *1) (-5 *1 (-539))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-539)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-539)))) (-1716 (*1 *1) (-5 *1 (-539))) (-1728 (*1 *1) (-5 *1 (-539))) (-1445 (*1 *1 *1) (-5 *1 (-539))) (-2270 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-539)))) (-2142 (*1 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-539)))) (-3621 (*1 *2 *3) (-12 (-5 *3 (-645 (-539))) (-5 *2 (-1178)) (-5 *1 (-539)))) (-2201 (*1 *2 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-645 (-539))) (-5 *1 (-539)))))
-(-13 (-1105 (-1160) (-1178) (-567) (-225) (-863)) (-615 (-1106)) (-10 -8 (-15 -2649 ((-52) $)) (-15 -3893 ($ (-1106))) (-15 -4227 ($ $ (-645 $))) (-15 -2614 ($ $ (-645 (-1178)) (-1178))) (-15 -3167 ($ $ (-645 (-1178)))) (-15 -3033 ($ $ $)) (-15 * ($ $ $)) (-15 -3060 ($ $ $)) (-15 ** ($ $ (-772))) (-15 ** ($ $ (-567))) (-15 (-1716) ($) -3286) (-15 (-1728) ($) -3286) (-15 -1445 ($ $)) (-15 -2270 ((-1160) $)) (-15 -2142 ($ (-1160))) (-15 -3621 ((-1178) (-645 $))) (-15 -2201 ((-1178) (-1178) (-645 $)))))
-((-3509 ((|#2| |#2|) 17)) (-3513 ((|#2| |#2|) 13)) (-3833 ((|#2| |#2| (-567) (-567)) 20)) (-4277 ((|#2| |#2|) 15)))
-(((-540 |#1| |#2|) (-10 -7 (-15 -3513 (|#2| |#2|)) (-15 -4277 (|#2| |#2|)) (-15 -3509 (|#2| |#2|)) (-15 -3833 (|#2| |#2| (-567) (-567)))) (-13 (-559) (-147)) (-1259 |#1|)) (T -540))
-((-3833 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-567)) (-4 *4 (-13 (-559) (-147))) (-5 *1 (-540 *4 *2)) (-4 *2 (-1259 *4)))) (-3509 (*1 *2 *2) (-12 (-4 *3 (-13 (-559) (-147))) (-5 *1 (-540 *3 *2)) (-4 *2 (-1259 *3)))) (-4277 (*1 *2 *2) (-12 (-4 *3 (-13 (-559) (-147))) (-5 *1 (-540 *3 *2)) (-4 *2 (-1259 *3)))) (-3513 (*1 *2 *2) (-12 (-4 *3 (-13 (-559) (-147))) (-5 *1 (-540 *3 *2)) (-4 *2 (-1259 *3)))))
-(-10 -7 (-15 -3513 (|#2| |#2|)) (-15 -4277 (|#2| |#2|)) (-15 -3509 (|#2| |#2|)) (-15 -3833 (|#2| |#2| (-567) (-567))))
-((-1360 (((-645 (-295 (-954 |#2|))) (-645 |#2|) (-645 (-1178))) 32)) (-1590 (((-645 |#2|) (-954 |#1|) |#3|) 54) (((-645 |#2|) (-1174 |#1|) |#3|) 53)) (-1934 (((-645 (-645 |#2|)) (-645 (-954 |#1|)) (-645 (-954 |#1|)) (-645 (-1178)) |#3|) 106)))
-(((-541 |#1| |#2| |#3|) (-10 -7 (-15 -1590 ((-645 |#2|) (-1174 |#1|) |#3|)) (-15 -1590 ((-645 |#2|) (-954 |#1|) |#3|)) (-15 -1934 ((-645 (-645 |#2|)) (-645 (-954 |#1|)) (-645 (-954 |#1|)) (-645 (-1178)) |#3|)) (-15 -1360 ((-645 (-295 (-954 |#2|))) (-645 |#2|) (-645 (-1178))))) (-455) (-365) (-13 (-365) (-849))) (T -541))
-((-1360 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *6)) (-5 *4 (-645 (-1178))) (-4 *6 (-365)) (-5 *2 (-645 (-295 (-954 *6)))) (-5 *1 (-541 *5 *6 *7)) (-4 *5 (-455)) (-4 *7 (-13 (-365) (-849))))) (-1934 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-645 (-954 *6))) (-5 *4 (-645 (-1178))) (-4 *6 (-455)) (-5 *2 (-645 (-645 *7))) (-5 *1 (-541 *6 *7 *5)) (-4 *7 (-365)) (-4 *5 (-13 (-365) (-849))))) (-1590 (*1 *2 *3 *4) (-12 (-5 *3 (-954 *5)) (-4 *5 (-455)) (-5 *2 (-645 *6)) (-5 *1 (-541 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-849))))) (-1590 (*1 *2 *3 *4) (-12 (-5 *3 (-1174 *5)) (-4 *5 (-455)) (-5 *2 (-645 *6)) (-5 *1 (-541 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-849))))))
-(-10 -7 (-15 -1590 ((-645 |#2|) (-1174 |#1|) |#3|)) (-15 -1590 ((-645 |#2|) (-954 |#1|) |#3|)) (-15 -1934 ((-645 (-645 |#2|)) (-645 (-954 |#1|)) (-645 (-954 |#1|)) (-645 (-1178)) |#3|)) (-15 -1360 ((-645 (-295 (-954 |#2|))) (-645 |#2|) (-645 (-1178)))))
-((-1591 ((|#2| |#2| |#1|) 17)) (-3904 ((|#2| (-645 |#2|)) 31)) (-4242 ((|#2| (-645 |#2|)) 52)))
-(((-542 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3904 (|#2| (-645 |#2|))) (-15 -4242 (|#2| (-645 |#2|))) (-15 -1591 (|#2| |#2| |#1|))) (-308) (-1244 |#1|) |#1| (-1 |#1| |#1| (-772))) (T -542))
-((-1591 (*1 *2 *2 *3) (-12 (-4 *3 (-308)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-772))) (-5 *1 (-542 *3 *2 *4 *5)) (-4 *2 (-1244 *3)))) (-4242 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-1244 *4)) (-5 *1 (-542 *4 *2 *5 *6)) (-4 *4 (-308)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-772))))) (-3904 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-1244 *4)) (-5 *1 (-542 *4 *2 *5 *6)) (-4 *4 (-308)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-772))))))
-(-10 -7 (-15 -3904 (|#2| (-645 |#2|))) (-15 -4242 (|#2| (-645 |#2|))) (-15 -1591 (|#2| |#2| |#1|)))
-((-2706 (((-421 (-1174 |#4|)) (-1174 |#4|) (-1 (-421 (-1174 |#3|)) (-1174 |#3|))) 89) (((-421 |#4|) |#4| (-1 (-421 (-1174 |#3|)) (-1174 |#3|))) 218)))
-(((-543 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2706 ((-421 |#4|) |#4| (-1 (-421 (-1174 |#3|)) (-1174 |#3|)))) (-15 -2706 ((-421 (-1174 |#4|)) (-1174 |#4|) (-1 (-421 (-1174 |#3|)) (-1174 |#3|))))) (-851) (-794) (-13 (-308) (-147)) (-951 |#3| |#2| |#1|)) (T -543))
-((-2706 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-421 (-1174 *7)) (-1174 *7))) (-4 *7 (-13 (-308) (-147))) (-4 *5 (-851)) (-4 *6 (-794)) (-4 *8 (-951 *7 *6 *5)) (-5 *2 (-421 (-1174 *8))) (-5 *1 (-543 *5 *6 *7 *8)) (-5 *3 (-1174 *8)))) (-2706 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-421 (-1174 *7)) (-1174 *7))) (-4 *7 (-13 (-308) (-147))) (-4 *5 (-851)) (-4 *6 (-794)) (-5 *2 (-421 *3)) (-5 *1 (-543 *5 *6 *7 *3)) (-4 *3 (-951 *7 *6 *5)))))
-(-10 -7 (-15 -2706 ((-421 |#4|) |#4| (-1 (-421 (-1174 |#3|)) (-1174 |#3|)))) (-15 -2706 ((-421 (-1174 |#4|)) (-1174 |#4|) (-1 (-421 (-1174 |#3|)) (-1174 |#3|)))))
-((-3509 ((|#4| |#4|) 74)) (-3513 ((|#4| |#4|) 70)) (-3833 ((|#4| |#4| (-567) (-567)) 76)) (-4277 ((|#4| |#4|) 72)))
-(((-544 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3513 (|#4| |#4|)) (-15 -4277 (|#4| |#4|)) (-15 -3509 (|#4| |#4|)) (-15 -3833 (|#4| |#4| (-567) (-567)))) (-13 (-365) (-370) (-615 (-567))) (-1244 |#1|) (-725 |#1| |#2|) (-1259 |#3|)) (T -544))
-((-3833 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-567)) (-4 *4 (-13 (-365) (-370) (-615 *3))) (-4 *5 (-1244 *4)) (-4 *6 (-725 *4 *5)) (-5 *1 (-544 *4 *5 *6 *2)) (-4 *2 (-1259 *6)))) (-3509 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-615 (-567)))) (-4 *4 (-1244 *3)) (-4 *5 (-725 *3 *4)) (-5 *1 (-544 *3 *4 *5 *2)) (-4 *2 (-1259 *5)))) (-4277 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-615 (-567)))) (-4 *4 (-1244 *3)) (-4 *5 (-725 *3 *4)) (-5 *1 (-544 *3 *4 *5 *2)) (-4 *2 (-1259 *5)))) (-3513 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-615 (-567)))) (-4 *4 (-1244 *3)) (-4 *5 (-725 *3 *4)) (-5 *1 (-544 *3 *4 *5 *2)) (-4 *2 (-1259 *5)))))
-(-10 -7 (-15 -3513 (|#4| |#4|)) (-15 -4277 (|#4| |#4|)) (-15 -3509 (|#4| |#4|)) (-15 -3833 (|#4| |#4| (-567) (-567))))
-((-3509 ((|#2| |#2|) 27)) (-3513 ((|#2| |#2|) 23)) (-3833 ((|#2| |#2| (-567) (-567)) 29)) (-4277 ((|#2| |#2|) 25)))
-(((-545 |#1| |#2|) (-10 -7 (-15 -3513 (|#2| |#2|)) (-15 -4277 (|#2| |#2|)) (-15 -3509 (|#2| |#2|)) (-15 -3833 (|#2| |#2| (-567) (-567)))) (-13 (-365) (-370) (-615 (-567))) (-1259 |#1|)) (T -545))
-((-3833 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-567)) (-4 *4 (-13 (-365) (-370) (-615 *3))) (-5 *1 (-545 *4 *2)) (-4 *2 (-1259 *4)))) (-3509 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-615 (-567)))) (-5 *1 (-545 *3 *2)) (-4 *2 (-1259 *3)))) (-4277 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-615 (-567)))) (-5 *1 (-545 *3 *2)) (-4 *2 (-1259 *3)))) (-3513 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-615 (-567)))) (-5 *1 (-545 *3 *2)) (-4 *2 (-1259 *3)))))
-(-10 -7 (-15 -3513 (|#2| |#2|)) (-15 -4277 (|#2| |#2|)) (-15 -3509 (|#2| |#2|)) (-15 -3833 (|#2| |#2| (-567) (-567))))
-((-2254 (((-3 (-567) "failed") |#2| |#1| (-1 (-3 (-567) "failed") |#1|)) 18) (((-3 (-567) "failed") |#2| |#1| (-567) (-1 (-3 (-567) "failed") |#1|)) 14) (((-3 (-567) "failed") |#2| (-567) (-1 (-3 (-567) "failed") |#1|)) 32)))
-(((-546 |#1| |#2|) (-10 -7 (-15 -2254 ((-3 (-567) "failed") |#2| (-567) (-1 (-3 (-567) "failed") |#1|))) (-15 -2254 ((-3 (-567) "failed") |#2| |#1| (-567) (-1 (-3 (-567) "failed") |#1|))) (-15 -2254 ((-3 (-567) "failed") |#2| |#1| (-1 (-3 (-567) "failed") |#1|)))) (-1051) (-1244 |#1|)) (T -546))
-((-2254 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-567) "failed") *4)) (-4 *4 (-1051)) (-5 *2 (-567)) (-5 *1 (-546 *4 *3)) (-4 *3 (-1244 *4)))) (-2254 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-567) "failed") *4)) (-4 *4 (-1051)) (-5 *2 (-567)) (-5 *1 (-546 *4 *3)) (-4 *3 (-1244 *4)))) (-2254 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-567) "failed") *5)) (-4 *5 (-1051)) (-5 *2 (-567)) (-5 *1 (-546 *5 *3)) (-4 *3 (-1244 *5)))))
-(-10 -7 (-15 -2254 ((-3 (-567) "failed") |#2| (-567) (-1 (-3 (-567) "failed") |#1|))) (-15 -2254 ((-3 (-567) "failed") |#2| |#1| (-567) (-1 (-3 (-567) "failed") |#1|))) (-15 -2254 ((-3 (-567) "failed") |#2| |#1| (-1 (-3 (-567) "failed") |#1|))))
-((-2882 (($ $ $) 84)) (-2908 (((-421 $) $) 52)) (-3753 (((-3 (-567) "failed") $) 64)) (-2038 (((-567) $) 42)) (-2085 (((-3 (-410 (-567)) "failed") $) 79)) (-1862 (((-112) $) 26)) (-2331 (((-410 (-567)) $) 77)) (-3184 (((-112) $) 55)) (-3407 (($ $ $ $) 92)) (-4336 (((-112) $) 17)) (-2967 (($ $ $) 62)) (-4303 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) 74)) (-3972 (((-3 $ "failed") $) 69)) (-1446 (($ $) 24)) (-2196 (($ $ $) 90)) (-2672 (($) 65)) (-1576 (($ $) 58)) (-2706 (((-421 $) $) 50)) (-2757 (((-112) $) 15)) (-1990 (((-772) $) 32)) (-1593 (($ $ (-772)) NIL) (($ $) 11)) (-4305 (($ $) 18)) (-3893 (((-567) $) NIL) (((-539) $) 41) (((-894 (-567)) $) 45) (((-381) $) 35) (((-225) $) 38)) (-4221 (((-772)) 9)) (-4210 (((-112) $ $) 21)) (-3881 (($ $ $) 60)))
-(((-547 |#1|) (-10 -8 (-15 -2196 (|#1| |#1| |#1|)) (-15 -3407 (|#1| |#1| |#1| |#1|)) (-15 -1446 (|#1| |#1|)) (-15 -4305 (|#1| |#1|)) (-15 -2085 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2331 ((-410 (-567)) |#1|)) (-15 -1862 ((-112) |#1|)) (-15 -2882 (|#1| |#1| |#1|)) (-15 -4210 ((-112) |#1| |#1|)) (-15 -2757 ((-112) |#1|)) (-15 -2672 (|#1|)) (-15 -3972 ((-3 |#1| "failed") |#1|)) (-15 -3893 ((-225) |#1|)) (-15 -3893 ((-381) |#1|)) (-15 -2967 (|#1| |#1| |#1|)) (-15 -1576 (|#1| |#1|)) (-15 -3881 (|#1| |#1| |#1|)) (-15 -4303 ((-891 (-567) |#1|) |#1| (-894 (-567)) (-891 (-567) |#1|))) (-15 -3893 ((-894 (-567)) |#1|)) (-15 -3893 ((-539) |#1|)) (-15 -3753 ((-3 (-567) "failed") |#1|)) (-15 -2038 ((-567) |#1|)) (-15 -3893 ((-567) |#1|)) (-15 -1593 (|#1| |#1|)) (-15 -1593 (|#1| |#1| (-772))) (-15 -4336 ((-112) |#1|)) (-15 -1990 ((-772) |#1|)) (-15 -2706 ((-421 |#1|) |#1|)) (-15 -2908 ((-421 |#1|) |#1|)) (-15 -3184 ((-112) |#1|)) (-15 -4221 ((-772)))) (-548)) (T -547))
-((-4221 (*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-547 *3)) (-4 *3 (-548)))))
-(-10 -8 (-15 -2196 (|#1| |#1| |#1|)) (-15 -3407 (|#1| |#1| |#1| |#1|)) (-15 -1446 (|#1| |#1|)) (-15 -4305 (|#1| |#1|)) (-15 -2085 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2331 ((-410 (-567)) |#1|)) (-15 -1862 ((-112) |#1|)) (-15 -2882 (|#1| |#1| |#1|)) (-15 -4210 ((-112) |#1| |#1|)) (-15 -2757 ((-112) |#1|)) (-15 -2672 (|#1|)) (-15 -3972 ((-3 |#1| "failed") |#1|)) (-15 -3893 ((-225) |#1|)) (-15 -3893 ((-381) |#1|)) (-15 -2967 (|#1| |#1| |#1|)) (-15 -1576 (|#1| |#1|)) (-15 -3881 (|#1| |#1| |#1|)) (-15 -4303 ((-891 (-567) |#1|) |#1| (-894 (-567)) (-891 (-567) |#1|))) (-15 -3893 ((-894 (-567)) |#1|)) (-15 -3893 ((-539) |#1|)) (-15 -3753 ((-3 (-567) "failed") |#1|)) (-15 -2038 ((-567) |#1|)) (-15 -3893 ((-567) |#1|)) (-15 -1593 (|#1| |#1|)) (-15 -1593 (|#1| |#1| (-772))) (-15 -4336 ((-112) |#1|)) (-15 -1990 ((-772) |#1|)) (-15 -2706 ((-421 |#1|) |#1|)) (-15 -2908 ((-421 |#1|) |#1|)) (-15 -3184 ((-112) |#1|)) (-15 -4221 ((-772))))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 47)) (-4381 (($ $) 46)) (-3949 (((-112) $) 44)) (-2882 (($ $ $) 90)) (-3472 (((-3 $ "failed") $ $) 20)) (-2208 (($ $ $ $) 79)) (-3248 (($ $) 57)) (-2908 (((-421 $) $) 58)) (-3609 (((-112) $ $) 130)) (-1750 (((-567) $) 119)) (-4130 (($ $ $) 93)) (-2585 (($) 18 T CONST)) (-3753 (((-3 (-567) "failed") $) 111)) (-2038 (((-567) $) 112)) (-2349 (($ $ $) 134)) (-2630 (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) 109) (((-690 (-567)) (-690 $)) 108)) (-2109 (((-3 $ "failed") $) 37)) (-2085 (((-3 (-410 (-567)) "failed") $) 87)) (-1862 (((-112) $) 89)) (-2331 (((-410 (-567)) $) 88)) (-1348 (($) 86) (($ $) 85)) (-2360 (($ $ $) 133)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) 128)) (-3184 (((-112) $) 59)) (-3407 (($ $ $ $) 77)) (-4254 (($ $ $) 91)) (-4336 (((-112) $) 121)) (-2967 (($ $ $) 102)) (-4303 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) 105)) (-1433 (((-112) $) 35)) (-3837 (((-112) $) 97)) (-3972 (((-3 $ "failed") $) 99)) (-3494 (((-112) $) 120)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) 137)) (-2317 (($ $ $ $) 78)) (-1354 (($ $ $) 122)) (-2981 (($ $ $) 123)) (-1446 (($ $) 81)) (-1699 (($ $) 94)) (-2740 (($ $ $) 52) (($ (-645 $)) 51)) (-1419 (((-1160) $) 10)) (-2196 (($ $ $) 76)) (-2672 (($) 98 T CONST)) (-2289 (($ $) 83)) (-3430 (((-1122) $) 11)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 50)) (-2774 (($ $ $) 54) (($ (-645 $)) 53)) (-1576 (($ $) 103)) (-2706 (((-421 $) $) 56)) (-3402 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 136) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) 135)) (-2391 (((-3 $ "failed") $ $) 48)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) 129)) (-2757 (((-112) $) 96)) (-1990 (((-772) $) 131)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 132)) (-1593 (($ $ (-772)) 116) (($ $) 114)) (-2277 (($ $) 82)) (-4305 (($ $) 84)) (-3893 (((-567) $) 113) (((-539) $) 107) (((-894 (-567)) $) 106) (((-381) $) 101) (((-225) $) 100)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-567)) 110)) (-4221 (((-772)) 32 T CONST)) (-4210 (((-112) $ $) 92)) (-3881 (($ $ $) 104)) (-1745 (((-112) $ $) 9)) (-3047 (($) 95)) (-3816 (((-112) $ $) 45)) (-4309 (($ $ $ $) 80)) (-2219 (($ $) 118)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2637 (($ $ (-772)) 117) (($ $) 115)) (-2997 (((-112) $ $) 125)) (-2971 (((-112) $ $) 126)) (-2936 (((-112) $ $) 6)) (-2984 (((-112) $ $) 124)) (-2958 (((-112) $ $) 127)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27)))
+((-1939 (((-645 |#2|) (-1175 |#1|) |#3|) 98)) (-1837 (((-645 (-2 (|:| |outval| |#2|) (|:| |outmult| (-567)) (|:| |outvect| (-645 (-690 |#2|))))) (-690 |#1|) |#3| (-1 (-421 (-1175 |#1|)) (-1175 |#1|))) 114)) (-3553 (((-1175 |#1|) (-690 |#1|)) 110)))
+(((-535 |#1| |#2| |#3|) (-10 -7 (-15 -3553 ((-1175 |#1|) (-690 |#1|))) (-15 -1939 ((-645 |#2|) (-1175 |#1|) |#3|)) (-15 -1837 ((-645 (-2 (|:| |outval| |#2|) (|:| |outmult| (-567)) (|:| |outvect| (-645 (-690 |#2|))))) (-690 |#1|) |#3| (-1 (-421 (-1175 |#1|)) (-1175 |#1|))))) (-365) (-365) (-13 (-365) (-849))) (T -535))
+((-1837 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-690 *6)) (-5 *5 (-1 (-421 (-1175 *6)) (-1175 *6))) (-4 *6 (-365)) (-5 *2 (-645 (-2 (|:| |outval| *7) (|:| |outmult| (-567)) (|:| |outvect| (-645 (-690 *7)))))) (-5 *1 (-535 *6 *7 *4)) (-4 *7 (-365)) (-4 *4 (-13 (-365) (-849))))) (-1939 (*1 *2 *3 *4) (-12 (-5 *3 (-1175 *5)) (-4 *5 (-365)) (-5 *2 (-645 *6)) (-5 *1 (-535 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-849))))) (-3553 (*1 *2 *3) (-12 (-5 *3 (-690 *4)) (-4 *4 (-365)) (-5 *2 (-1175 *4)) (-5 *1 (-535 *4 *5 *6)) (-4 *5 (-365)) (-4 *6 (-13 (-365) (-849))))))
+(-10 -7 (-15 -3553 ((-1175 |#1|) (-690 |#1|))) (-15 -1939 ((-645 |#2|) (-1175 |#1|) |#3|)) (-15 -1837 ((-645 (-2 (|:| |outval| |#2|) (|:| |outmult| (-567)) (|:| |outvect| (-645 (-690 |#2|))))) (-690 |#1|) |#3| (-1 (-421 (-1175 |#1|)) (-1175 |#1|)))))
+((-1695 (((-692 (-1227)) $ (-1227)) NIL)) (-1741 (((-692 (-552)) $ (-552)) NIL)) (-2487 (((-772) $ (-128)) 41)) (-2061 (((-692 (-129)) $ (-129)) 42)) (-1351 (((-692 (-1227)) $) NIL)) (-4366 (((-692 (-1225)) $) NIL)) (-3218 (((-692 (-1224)) $) NIL)) (-1576 (((-692 (-552)) $) NIL)) (-3961 (((-692 (-550)) $) NIL)) (-1683 (((-692 (-549)) $) NIL)) (-4020 (((-772) $ (-128)) 37)) (-4343 (((-692 (-129)) $) 39)) (-2486 (((-112) $) 29)) (-1478 (((-692 $) (-582) (-956)) 19) (((-692 $) (-494) (-956)) 26)) (-4129 (((-863) $) 49)) (-3034 (($ $) 43)))
+(((-536) (-13 (-768 (-582)) (-614 (-863)) (-10 -8 (-15 -1478 ((-692 $) (-494) (-956)))))) (T -536))
+((-1478 (*1 *2 *3 *4) (-12 (-5 *3 (-494)) (-5 *4 (-956)) (-5 *2 (-692 (-536))) (-5 *1 (-536)))))
+(-13 (-768 (-582)) (-614 (-863)) (-10 -8 (-15 -1478 ((-692 $) (-494) (-956)))))
+((-2325 (((-844 (-567))) 12)) (-2341 (((-844 (-567))) 14)) (-1495 (((-834 (-567))) 9)))
+(((-537) (-10 -7 (-15 -1495 ((-834 (-567)))) (-15 -2325 ((-844 (-567)))) (-15 -2341 ((-844 (-567)))))) (T -537))
+((-2341 (*1 *2) (-12 (-5 *2 (-844 (-567))) (-5 *1 (-537)))) (-2325 (*1 *2) (-12 (-5 *2 (-844 (-567))) (-5 *1 (-537)))) (-1495 (*1 *2) (-12 (-5 *2 (-834 (-567))) (-5 *1 (-537)))))
+(-10 -7 (-15 -1495 ((-834 (-567)))) (-15 -2325 ((-844 (-567)))) (-15 -2341 ((-844 (-567)))))
+((-1706 (((-539) (-1179)) 15)) (-2670 ((|#1| (-539)) 20)))
+(((-538 |#1|) (-10 -7 (-15 -1706 ((-539) (-1179))) (-15 -2670 (|#1| (-539)))) (-1219)) (T -538))
+((-2670 (*1 *2 *3) (-12 (-5 *3 (-539)) (-5 *1 (-538 *2)) (-4 *2 (-1219)))) (-1706 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-539)) (-5 *1 (-538 *4)) (-4 *4 (-1219)))))
+(-10 -7 (-15 -1706 ((-539) (-1179))) (-15 -2670 (|#1| (-539))))
+((-2412 (((-112) $ $) NIL)) (-2378 (((-1161) $) 55)) (-1708 (((-112) $) 51)) (-3094 (((-1179) $) 52)) (-3826 (((-112) $) 49)) (-3666 (((-1161) $) 50)) (-3547 (($ (-1161)) 56)) (-1963 (((-112) $) NIL)) (-3615 (((-112) $) NIL)) (-2673 (((-112) $) NIL)) (-2516 (((-1161) $) NIL)) (-3183 (($ $ (-645 (-1179))) 21)) (-2670 (((-52) $) 23)) (-3416 (((-112) $) NIL)) (-3117 (((-567) $) NIL)) (-3437 (((-1122) $) NIL)) (-2624 (($ $ (-645 (-1179)) (-1179)) 73)) (-2141 (((-112) $) NIL)) (-2335 (((-225) $) NIL)) (-1457 (($ $) 44)) (-3612 (((-863) $) NIL)) (-3855 (((-112) $ $) NIL)) (-1801 (($ $ (-567)) NIL) (($ $ (-645 (-567))) NIL)) (-2794 (((-645 $) $) 30)) (-3631 (((-1179) (-645 $)) 57)) (-3902 (($ (-1161)) NIL) (($ (-1179)) 19) (($ (-567)) 8) (($ (-225)) 28) (($ (-863)) NIL) (($ (-645 $)) 65) (((-1106) $) 12) (($ (-1106)) 13)) (-2209 (((-1179) (-1179) (-645 $)) 60)) (-4129 (((-863) $) 54)) (-2313 (($ $) 59)) (-2302 (($ $) 58)) (-2120 (($ $ (-645 $)) 66)) (-3357 (((-112) $ $) NIL)) (-1624 (((-112) $) 29)) (-1733 (($) 9 T CONST)) (-1744 (($) 11 T CONST)) (-2946 (((-112) $ $) 74)) (-3069 (($ $ $) 82)) (-3041 (($ $ $) 75)) (** (($ $ (-772)) 81) (($ $ (-567)) 80)) (* (($ $ $) 76)) (-2423 (((-567) $) NIL)))
+(((-539) (-13 (-1105 (-1161) (-1179) (-567) (-225) (-863)) (-615 (-1106)) (-10 -8 (-15 -2670 ((-52) $)) (-15 -3902 ($ (-1106))) (-15 -2120 ($ $ (-645 $))) (-15 -2624 ($ $ (-645 (-1179)) (-1179))) (-15 -3183 ($ $ (-645 (-1179)))) (-15 -3041 ($ $ $)) (-15 * ($ $ $)) (-15 -3069 ($ $ $)) (-15 ** ($ $ (-772))) (-15 ** ($ $ (-567))) (-15 0 ($) -3304) (-15 1 ($) -3304) (-15 -1457 ($ $)) (-15 -2378 ((-1161) $)) (-15 -3547 ($ (-1161))) (-15 -3631 ((-1179) (-645 $))) (-15 -2209 ((-1179) (-1179) (-645 $)))))) (T -539))
+((-2670 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-539)))) (-3902 (*1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-539)))) (-2120 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-539))) (-5 *1 (-539)))) (-2624 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-1179))) (-5 *3 (-1179)) (-5 *1 (-539)))) (-3183 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-1179))) (-5 *1 (-539)))) (-3041 (*1 *1 *1 *1) (-5 *1 (-539))) (* (*1 *1 *1 *1) (-5 *1 (-539))) (-3069 (*1 *1 *1 *1) (-5 *1 (-539))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-539)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-539)))) (-1733 (*1 *1) (-5 *1 (-539))) (-1744 (*1 *1) (-5 *1 (-539))) (-1457 (*1 *1 *1) (-5 *1 (-539))) (-2378 (*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-539)))) (-3547 (*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-539)))) (-3631 (*1 *2 *3) (-12 (-5 *3 (-645 (-539))) (-5 *2 (-1179)) (-5 *1 (-539)))) (-2209 (*1 *2 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-645 (-539))) (-5 *1 (-539)))))
+(-13 (-1105 (-1161) (-1179) (-567) (-225) (-863)) (-615 (-1106)) (-10 -8 (-15 -2670 ((-52) $)) (-15 -3902 ($ (-1106))) (-15 -2120 ($ $ (-645 $))) (-15 -2624 ($ $ (-645 (-1179)) (-1179))) (-15 -3183 ($ $ (-645 (-1179)))) (-15 -3041 ($ $ $)) (-15 * ($ $ $)) (-15 -3069 ($ $ $)) (-15 ** ($ $ (-772))) (-15 ** ($ $ (-567))) (-15 (-1733) ($) -3304) (-15 (-1744) ($) -3304) (-15 -1457 ($ $)) (-15 -2378 ((-1161) $)) (-15 -3547 ($ (-1161))) (-15 -3631 ((-1179) (-645 $))) (-15 -2209 ((-1179) (-1179) (-645 $)))))
+((-2462 ((|#2| |#2|) 17)) (-1626 ((|#2| |#2|) 13)) (-1487 ((|#2| |#2| (-567) (-567)) 20)) (-2552 ((|#2| |#2|) 15)))
+(((-540 |#1| |#2|) (-10 -7 (-15 -1626 (|#2| |#2|)) (-15 -2552 (|#2| |#2|)) (-15 -2462 (|#2| |#2|)) (-15 -1487 (|#2| |#2| (-567) (-567)))) (-13 (-559) (-147)) (-1260 |#1|)) (T -540))
+((-1487 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-567)) (-4 *4 (-13 (-559) (-147))) (-5 *1 (-540 *4 *2)) (-4 *2 (-1260 *4)))) (-2462 (*1 *2 *2) (-12 (-4 *3 (-13 (-559) (-147))) (-5 *1 (-540 *3 *2)) (-4 *2 (-1260 *3)))) (-2552 (*1 *2 *2) (-12 (-4 *3 (-13 (-559) (-147))) (-5 *1 (-540 *3 *2)) (-4 *2 (-1260 *3)))) (-1626 (*1 *2 *2) (-12 (-4 *3 (-13 (-559) (-147))) (-5 *1 (-540 *3 *2)) (-4 *2 (-1260 *3)))))
+(-10 -7 (-15 -1626 (|#2| |#2|)) (-15 -2552 (|#2| |#2|)) (-15 -2462 (|#2| |#2|)) (-15 -1487 (|#2| |#2| (-567) (-567))))
+((-3334 (((-645 (-295 (-954 |#2|))) (-645 |#2|) (-645 (-1179))) 32)) (-3339 (((-645 |#2|) (-954 |#1|) |#3|) 54) (((-645 |#2|) (-1175 |#1|) |#3|) 53)) (-2512 (((-645 (-645 |#2|)) (-645 (-954 |#1|)) (-645 (-954 |#1|)) (-645 (-1179)) |#3|) 106)))
+(((-541 |#1| |#2| |#3|) (-10 -7 (-15 -3339 ((-645 |#2|) (-1175 |#1|) |#3|)) (-15 -3339 ((-645 |#2|) (-954 |#1|) |#3|)) (-15 -2512 ((-645 (-645 |#2|)) (-645 (-954 |#1|)) (-645 (-954 |#1|)) (-645 (-1179)) |#3|)) (-15 -3334 ((-645 (-295 (-954 |#2|))) (-645 |#2|) (-645 (-1179))))) (-455) (-365) (-13 (-365) (-849))) (T -541))
+((-3334 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *6)) (-5 *4 (-645 (-1179))) (-4 *6 (-365)) (-5 *2 (-645 (-295 (-954 *6)))) (-5 *1 (-541 *5 *6 *7)) (-4 *5 (-455)) (-4 *7 (-13 (-365) (-849))))) (-2512 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-645 (-954 *6))) (-5 *4 (-645 (-1179))) (-4 *6 (-455)) (-5 *2 (-645 (-645 *7))) (-5 *1 (-541 *6 *7 *5)) (-4 *7 (-365)) (-4 *5 (-13 (-365) (-849))))) (-3339 (*1 *2 *3 *4) (-12 (-5 *3 (-954 *5)) (-4 *5 (-455)) (-5 *2 (-645 *6)) (-5 *1 (-541 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-849))))) (-3339 (*1 *2 *3 *4) (-12 (-5 *3 (-1175 *5)) (-4 *5 (-455)) (-5 *2 (-645 *6)) (-5 *1 (-541 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-849))))))
+(-10 -7 (-15 -3339 ((-645 |#2|) (-1175 |#1|) |#3|)) (-15 -3339 ((-645 |#2|) (-954 |#1|) |#3|)) (-15 -2512 ((-645 (-645 |#2|)) (-645 (-954 |#1|)) (-645 (-954 |#1|)) (-645 (-1179)) |#3|)) (-15 -3334 ((-645 (-295 (-954 |#2|))) (-645 |#2|) (-645 (-1179)))))
+((-3438 ((|#2| |#2| |#1|) 17)) (-4209 ((|#2| (-645 |#2|)) 31)) (-4111 ((|#2| (-645 |#2|)) 52)))
+(((-542 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4209 (|#2| (-645 |#2|))) (-15 -4111 (|#2| (-645 |#2|))) (-15 -3438 (|#2| |#2| |#1|))) (-308) (-1245 |#1|) |#1| (-1 |#1| |#1| (-772))) (T -542))
+((-3438 (*1 *2 *2 *3) (-12 (-4 *3 (-308)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-772))) (-5 *1 (-542 *3 *2 *4 *5)) (-4 *2 (-1245 *3)))) (-4111 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-1245 *4)) (-5 *1 (-542 *4 *2 *5 *6)) (-4 *4 (-308)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-772))))) (-4209 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-1245 *4)) (-5 *1 (-542 *4 *2 *5 *6)) (-4 *4 (-308)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-772))))))
+(-10 -7 (-15 -4209 (|#2| (-645 |#2|))) (-15 -4111 (|#2| (-645 |#2|))) (-15 -3438 (|#2| |#2| |#1|)))
+((-2717 (((-421 (-1175 |#4|)) (-1175 |#4|) (-1 (-421 (-1175 |#3|)) (-1175 |#3|))) 89) (((-421 |#4|) |#4| (-1 (-421 (-1175 |#3|)) (-1175 |#3|))) 218)))
+(((-543 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2717 ((-421 |#4|) |#4| (-1 (-421 (-1175 |#3|)) (-1175 |#3|)))) (-15 -2717 ((-421 (-1175 |#4|)) (-1175 |#4|) (-1 (-421 (-1175 |#3|)) (-1175 |#3|))))) (-851) (-794) (-13 (-308) (-147)) (-951 |#3| |#2| |#1|)) (T -543))
+((-2717 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-421 (-1175 *7)) (-1175 *7))) (-4 *7 (-13 (-308) (-147))) (-4 *5 (-851)) (-4 *6 (-794)) (-4 *8 (-951 *7 *6 *5)) (-5 *2 (-421 (-1175 *8))) (-5 *1 (-543 *5 *6 *7 *8)) (-5 *3 (-1175 *8)))) (-2717 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-421 (-1175 *7)) (-1175 *7))) (-4 *7 (-13 (-308) (-147))) (-4 *5 (-851)) (-4 *6 (-794)) (-5 *2 (-421 *3)) (-5 *1 (-543 *5 *6 *7 *3)) (-4 *3 (-951 *7 *6 *5)))))
+(-10 -7 (-15 -2717 ((-421 |#4|) |#4| (-1 (-421 (-1175 |#3|)) (-1175 |#3|)))) (-15 -2717 ((-421 (-1175 |#4|)) (-1175 |#4|) (-1 (-421 (-1175 |#3|)) (-1175 |#3|)))))
+((-2462 ((|#4| |#4|) 74)) (-1626 ((|#4| |#4|) 70)) (-1487 ((|#4| |#4| (-567) (-567)) 76)) (-2552 ((|#4| |#4|) 72)))
+(((-544 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1626 (|#4| |#4|)) (-15 -2552 (|#4| |#4|)) (-15 -2462 (|#4| |#4|)) (-15 -1487 (|#4| |#4| (-567) (-567)))) (-13 (-365) (-370) (-615 (-567))) (-1245 |#1|) (-725 |#1| |#2|) (-1260 |#3|)) (T -544))
+((-1487 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-567)) (-4 *4 (-13 (-365) (-370) (-615 *3))) (-4 *5 (-1245 *4)) (-4 *6 (-725 *4 *5)) (-5 *1 (-544 *4 *5 *6 *2)) (-4 *2 (-1260 *6)))) (-2462 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-615 (-567)))) (-4 *4 (-1245 *3)) (-4 *5 (-725 *3 *4)) (-5 *1 (-544 *3 *4 *5 *2)) (-4 *2 (-1260 *5)))) (-2552 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-615 (-567)))) (-4 *4 (-1245 *3)) (-4 *5 (-725 *3 *4)) (-5 *1 (-544 *3 *4 *5 *2)) (-4 *2 (-1260 *5)))) (-1626 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-615 (-567)))) (-4 *4 (-1245 *3)) (-4 *5 (-725 *3 *4)) (-5 *1 (-544 *3 *4 *5 *2)) (-4 *2 (-1260 *5)))))
+(-10 -7 (-15 -1626 (|#4| |#4|)) (-15 -2552 (|#4| |#4|)) (-15 -2462 (|#4| |#4|)) (-15 -1487 (|#4| |#4| (-567) (-567))))
+((-2462 ((|#2| |#2|) 27)) (-1626 ((|#2| |#2|) 23)) (-1487 ((|#2| |#2| (-567) (-567)) 29)) (-2552 ((|#2| |#2|) 25)))
+(((-545 |#1| |#2|) (-10 -7 (-15 -1626 (|#2| |#2|)) (-15 -2552 (|#2| |#2|)) (-15 -2462 (|#2| |#2|)) (-15 -1487 (|#2| |#2| (-567) (-567)))) (-13 (-365) (-370) (-615 (-567))) (-1260 |#1|)) (T -545))
+((-1487 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-567)) (-4 *4 (-13 (-365) (-370) (-615 *3))) (-5 *1 (-545 *4 *2)) (-4 *2 (-1260 *4)))) (-2462 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-615 (-567)))) (-5 *1 (-545 *3 *2)) (-4 *2 (-1260 *3)))) (-2552 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-615 (-567)))) (-5 *1 (-545 *3 *2)) (-4 *2 (-1260 *3)))) (-1626 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-615 (-567)))) (-5 *1 (-545 *3 *2)) (-4 *2 (-1260 *3)))))
+(-10 -7 (-15 -1626 (|#2| |#2|)) (-15 -2552 (|#2| |#2|)) (-15 -2462 (|#2| |#2|)) (-15 -1487 (|#2| |#2| (-567) (-567))))
+((-4393 (((-3 (-567) "failed") |#2| |#1| (-1 (-3 (-567) "failed") |#1|)) 18) (((-3 (-567) "failed") |#2| |#1| (-567) (-1 (-3 (-567) "failed") |#1|)) 14) (((-3 (-567) "failed") |#2| (-567) (-1 (-3 (-567) "failed") |#1|)) 32)))
+(((-546 |#1| |#2|) (-10 -7 (-15 -4393 ((-3 (-567) "failed") |#2| (-567) (-1 (-3 (-567) "failed") |#1|))) (-15 -4393 ((-3 (-567) "failed") |#2| |#1| (-567) (-1 (-3 (-567) "failed") |#1|))) (-15 -4393 ((-3 (-567) "failed") |#2| |#1| (-1 (-3 (-567) "failed") |#1|)))) (-1051) (-1245 |#1|)) (T -546))
+((-4393 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-567) "failed") *4)) (-4 *4 (-1051)) (-5 *2 (-567)) (-5 *1 (-546 *4 *3)) (-4 *3 (-1245 *4)))) (-4393 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-567) "failed") *4)) (-4 *4 (-1051)) (-5 *2 (-567)) (-5 *1 (-546 *4 *3)) (-4 *3 (-1245 *4)))) (-4393 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-567) "failed") *5)) (-4 *5 (-1051)) (-5 *2 (-567)) (-5 *1 (-546 *5 *3)) (-4 *3 (-1245 *5)))))
+(-10 -7 (-15 -4393 ((-3 (-567) "failed") |#2| (-567) (-1 (-3 (-567) "failed") |#1|))) (-15 -4393 ((-3 (-567) "failed") |#2| |#1| (-567) (-1 (-3 (-567) "failed") |#1|))) (-15 -4393 ((-3 (-567) "failed") |#2| |#1| (-1 (-3 (-567) "failed") |#1|))))
+((-3423 (($ $ $) 84)) (-3597 (((-421 $) $) 52)) (-3765 (((-3 (-567) "failed") $) 64)) (-2051 (((-567) $) 42)) (-1605 (((-3 (-410 (-567)) "failed") $) 79)) (-2492 (((-112) $) 26)) (-2778 (((-410 (-567)) $) 77)) (-3502 (((-112) $) 55)) (-2171 (($ $ $ $) 92)) (-3137 (((-112) $) 17)) (-2565 (($ $ $) 62)) (-3193 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) 74)) (-3067 (((-3 $ "failed") $) 69)) (-1459 (($ $) 24)) (-4088 (($ $ $) 90)) (-2694 (($) 65)) (-1345 (($ $) 58)) (-2717 (((-421 $) $) 50)) (-2795 (((-112) $) 15)) (-2460 (((-772) $) 32)) (-1616 (($ $ (-772)) NIL) (($ $) 11)) (-4309 (($ $) 18)) (-3902 (((-567) $) NIL) (((-539) $) 41) (((-894 (-567)) $) 45) (((-381) $) 35) (((-225) $) 38)) (-2746 (((-772)) 9)) (-4147 (((-112) $ $) 21)) (-2708 (($ $ $) 60)))
+(((-547 |#1|) (-10 -8 (-15 -4088 (|#1| |#1| |#1|)) (-15 -2171 (|#1| |#1| |#1| |#1|)) (-15 -1459 (|#1| |#1|)) (-15 -4309 (|#1| |#1|)) (-15 -1605 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2778 ((-410 (-567)) |#1|)) (-15 -2492 ((-112) |#1|)) (-15 -3423 (|#1| |#1| |#1|)) (-15 -4147 ((-112) |#1| |#1|)) (-15 -2795 ((-112) |#1|)) (-15 -2694 (|#1|)) (-15 -3067 ((-3 |#1| "failed") |#1|)) (-15 -3902 ((-225) |#1|)) (-15 -3902 ((-381) |#1|)) (-15 -2565 (|#1| |#1| |#1|)) (-15 -1345 (|#1| |#1|)) (-15 -2708 (|#1| |#1| |#1|)) (-15 -3193 ((-891 (-567) |#1|) |#1| (-894 (-567)) (-891 (-567) |#1|))) (-15 -3902 ((-894 (-567)) |#1|)) (-15 -3902 ((-539) |#1|)) (-15 -3765 ((-3 (-567) "failed") |#1|)) (-15 -2051 ((-567) |#1|)) (-15 -3902 ((-567) |#1|)) (-15 -1616 (|#1| |#1|)) (-15 -1616 (|#1| |#1| (-772))) (-15 -3137 ((-112) |#1|)) (-15 -2460 ((-772) |#1|)) (-15 -2717 ((-421 |#1|) |#1|)) (-15 -3597 ((-421 |#1|) |#1|)) (-15 -3502 ((-112) |#1|)) (-15 -2746 ((-772)))) (-548)) (T -547))
+((-2746 (*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-547 *3)) (-4 *3 (-548)))))
+(-10 -8 (-15 -4088 (|#1| |#1| |#1|)) (-15 -2171 (|#1| |#1| |#1| |#1|)) (-15 -1459 (|#1| |#1|)) (-15 -4309 (|#1| |#1|)) (-15 -1605 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2778 ((-410 (-567)) |#1|)) (-15 -2492 ((-112) |#1|)) (-15 -3423 (|#1| |#1| |#1|)) (-15 -4147 ((-112) |#1| |#1|)) (-15 -2795 ((-112) |#1|)) (-15 -2694 (|#1|)) (-15 -3067 ((-3 |#1| "failed") |#1|)) (-15 -3902 ((-225) |#1|)) (-15 -3902 ((-381) |#1|)) (-15 -2565 (|#1| |#1| |#1|)) (-15 -1345 (|#1| |#1|)) (-15 -2708 (|#1| |#1| |#1|)) (-15 -3193 ((-891 (-567) |#1|) |#1| (-894 (-567)) (-891 (-567) |#1|))) (-15 -3902 ((-894 (-567)) |#1|)) (-15 -3902 ((-539) |#1|)) (-15 -3765 ((-3 (-567) "failed") |#1|)) (-15 -2051 ((-567) |#1|)) (-15 -3902 ((-567) |#1|)) (-15 -1616 (|#1| |#1|)) (-15 -1616 (|#1| |#1| (-772))) (-15 -3137 ((-112) |#1|)) (-15 -2460 ((-772) |#1|)) (-15 -2717 ((-421 |#1|) |#1|)) (-15 -3597 ((-421 |#1|) |#1|)) (-15 -3502 ((-112) |#1|)) (-15 -2746 ((-772))))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) 47)) (-4287 (($ $) 46)) (-2286 (((-112) $) 44)) (-3423 (($ $ $) 90)) (-2376 (((-3 $ "failed") $ $) 20)) (-2690 (($ $ $ $) 79)) (-3659 (($ $) 57)) (-3597 (((-421 $) $) 58)) (-3696 (((-112) $ $) 130)) (-2677 (((-567) $) 119)) (-4128 (($ $ $) 93)) (-3647 (($) 18 T CONST)) (-3765 (((-3 (-567) "failed") $) 111)) (-2051 (((-567) $) 112)) (-2357 (($ $ $) 134)) (-1423 (((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) 109) (((-690 (-567)) (-690 $)) 108)) (-3588 (((-3 $ "failed") $) 37)) (-1605 (((-3 (-410 (-567)) "failed") $) 87)) (-2492 (((-112) $) 89)) (-2778 (((-410 (-567)) $) 88)) (-1359 (($) 86) (($ $) 85)) (-2368 (($ $ $) 133)) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) 128)) (-3502 (((-112) $) 59)) (-2171 (($ $ $ $) 77)) (-1943 (($ $ $) 91)) (-3137 (((-112) $) 121)) (-2565 (($ $ $) 102)) (-3193 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) 105)) (-4346 (((-112) $) 35)) (-1904 (((-112) $) 97)) (-3067 (((-3 $ "failed") $) 99)) (-3465 (((-112) $) 120)) (-1469 (((-3 (-645 $) "failed") (-645 $) $) 137)) (-4311 (($ $ $ $) 78)) (-1365 (($ $ $) 122)) (-3002 (($ $ $) 123)) (-1459 (($ $) 81)) (-2334 (($ $) 94)) (-2751 (($ $ $) 52) (($ (-645 $)) 51)) (-2516 (((-1161) $) 10)) (-4088 (($ $ $) 76)) (-2694 (($) 98 T CONST)) (-2307 (($ $) 83)) (-3437 (((-1122) $) 11)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) 50)) (-2785 (($ $ $) 54) (($ (-645 $)) 53)) (-1345 (($ $) 103)) (-2717 (((-421 $) $) 56)) (-2905 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 136) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) 135)) (-2400 (((-3 $ "failed") $ $) 48)) (-2372 (((-3 (-645 $) "failed") (-645 $) $) 129)) (-2795 (((-112) $) 96)) (-2460 (((-772) $) 131)) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) 132)) (-1616 (($ $ (-772)) 116) (($ $) 114)) (-1699 (($ $) 82)) (-4309 (($ $) 84)) (-3902 (((-567) $) 113) (((-539) $) 107) (((-894 (-567)) $) 106) (((-381) $) 101) (((-225) $) 100)) (-4129 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-567)) 110)) (-2746 (((-772)) 32 T CONST)) (-4147 (((-112) $ $) 92)) (-2708 (($ $ $) 104)) (-3357 (((-112) $ $) 9)) (-3070 (($) 95)) (-3731 (((-112) $ $) 45)) (-3627 (($ $ $ $) 80)) (-1547 (($ $) 118)) (-1733 (($) 19 T CONST)) (-1744 (($) 34 T CONST)) (-2647 (($ $ (-772)) 117) (($ $) 115)) (-3004 (((-112) $ $) 125)) (-2980 (((-112) $ $) 126)) (-2946 (((-112) $ $) 6)) (-2993 (((-112) $ $) 124)) (-2968 (((-112) $ $) 127)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27)))
(((-548) (-140)) (T -548))
-((-3837 (*1 *2 *1) (-12 (-4 *1 (-548)) (-5 *2 (-112)))) (-2757 (*1 *2 *1) (-12 (-4 *1 (-548)) (-5 *2 (-112)))) (-3047 (*1 *1) (-4 *1 (-548))) (-1699 (*1 *1 *1) (-4 *1 (-548))) (-4130 (*1 *1 *1 *1) (-4 *1 (-548))) (-4210 (*1 *2 *1 *1) (-12 (-4 *1 (-548)) (-5 *2 (-112)))) (-4254 (*1 *1 *1 *1) (-4 *1 (-548))) (-2882 (*1 *1 *1 *1) (-4 *1 (-548))) (-1862 (*1 *2 *1) (-12 (-4 *1 (-548)) (-5 *2 (-112)))) (-2331 (*1 *2 *1) (-12 (-4 *1 (-548)) (-5 *2 (-410 (-567))))) (-2085 (*1 *2 *1) (|partial| -12 (-4 *1 (-548)) (-5 *2 (-410 (-567))))) (-1348 (*1 *1) (-4 *1 (-548))) (-1348 (*1 *1 *1) (-4 *1 (-548))) (-4305 (*1 *1 *1) (-4 *1 (-548))) (-2289 (*1 *1 *1) (-4 *1 (-548))) (-2277 (*1 *1 *1) (-4 *1 (-548))) (-1446 (*1 *1 *1) (-4 *1 (-548))) (-4309 (*1 *1 *1 *1 *1) (-4 *1 (-548))) (-2208 (*1 *1 *1 *1 *1) (-4 *1 (-548))) (-2317 (*1 *1 *1 *1 *1) (-4 *1 (-548))) (-3407 (*1 *1 *1 *1 *1) (-4 *1 (-548))) (-2196 (*1 *1 *1 *1) (-4 *1 (-548))))
-(-13 (-1222) (-308) (-821) (-233) (-615 (-567)) (-1040 (-567)) (-640 (-567)) (-615 (-539)) (-615 (-894 (-567))) (-888 (-567)) (-143) (-1024) (-147) (-1153) (-10 -8 (-15 -3837 ((-112) $)) (-15 -2757 ((-112) $)) (-6 -4417) (-15 -3047 ($)) (-15 -1699 ($ $)) (-15 -4130 ($ $ $)) (-15 -4210 ((-112) $ $)) (-15 -4254 ($ $ $)) (-15 -2882 ($ $ $)) (-15 -1862 ((-112) $)) (-15 -2331 ((-410 (-567)) $)) (-15 -2085 ((-3 (-410 (-567)) "failed") $)) (-15 -1348 ($)) (-15 -1348 ($ $)) (-15 -4305 ($ $)) (-15 -2289 ($ $)) (-15 -2277 ($ $)) (-15 -1446 ($ $)) (-15 -4309 ($ $ $ $)) (-15 -2208 ($ $ $ $)) (-15 -2317 ($ $ $ $)) (-15 -3407 ($ $ $ $)) (-15 -2196 ($ $ $)) (-6 -4416)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-143) . T) ((-172) . T) ((-615 (-225)) . T) ((-615 (-381)) . T) ((-615 (-539)) . T) ((-615 (-567)) . T) ((-615 (-894 (-567))) . T) ((-233) . T) ((-291) . T) ((-308) . T) ((-455) . T) ((-559) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-641 $) . T) ((-640 (-567)) . T) ((-718 $) . T) ((-727) . T) ((-792) . T) ((-793) . T) ((-795) . T) ((-796) . T) ((-821) . T) ((-849) . T) ((-851) . T) ((-888 (-567)) . T) ((-922) . T) ((-1024) . T) ((-1040 (-567)) . T) ((-1053 $) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1153) . T) ((-1222) . T))
-((-2403 (((-112) $ $) NIL)) (-2375 (((-772)) NIL)) (-2585 (($) NIL T CONST)) (-1348 (($) NIL)) (-1354 (($ $ $) NIL) (($) NIL T CONST)) (-2981 (($ $ $) NIL) (($) NIL T CONST)) (-4249 (((-923) $) NIL)) (-1419 (((-1160) $) NIL)) (-3768 (($ (-923)) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) NIL)))
-(((-549) (-13 (-845) (-10 -8 (-15 -2585 ($) -3286)))) (T -549))
-((-2585 (*1 *1) (-5 *1 (-549))))
-(-13 (-845) (-10 -8 (-15 -2585 ($) -3286)))
+((-1904 (*1 *2 *1) (-12 (-4 *1 (-548)) (-5 *2 (-112)))) (-2795 (*1 *2 *1) (-12 (-4 *1 (-548)) (-5 *2 (-112)))) (-3070 (*1 *1) (-4 *1 (-548))) (-2334 (*1 *1 *1) (-4 *1 (-548))) (-4128 (*1 *1 *1 *1) (-4 *1 (-548))) (-4147 (*1 *2 *1 *1) (-12 (-4 *1 (-548)) (-5 *2 (-112)))) (-1943 (*1 *1 *1 *1) (-4 *1 (-548))) (-3423 (*1 *1 *1 *1) (-4 *1 (-548))) (-2492 (*1 *2 *1) (-12 (-4 *1 (-548)) (-5 *2 (-112)))) (-2778 (*1 *2 *1) (-12 (-4 *1 (-548)) (-5 *2 (-410 (-567))))) (-1605 (*1 *2 *1) (|partial| -12 (-4 *1 (-548)) (-5 *2 (-410 (-567))))) (-1359 (*1 *1) (-4 *1 (-548))) (-1359 (*1 *1 *1) (-4 *1 (-548))) (-4309 (*1 *1 *1) (-4 *1 (-548))) (-2307 (*1 *1 *1) (-4 *1 (-548))) (-1699 (*1 *1 *1) (-4 *1 (-548))) (-1459 (*1 *1 *1) (-4 *1 (-548))) (-3627 (*1 *1 *1 *1 *1) (-4 *1 (-548))) (-2690 (*1 *1 *1 *1 *1) (-4 *1 (-548))) (-4311 (*1 *1 *1 *1 *1) (-4 *1 (-548))) (-2171 (*1 *1 *1 *1 *1) (-4 *1 (-548))) (-4088 (*1 *1 *1 *1) (-4 *1 (-548))))
+(-13 (-1223) (-308) (-821) (-233) (-615 (-567)) (-1040 (-567)) (-640 (-567)) (-615 (-539)) (-615 (-894 (-567))) (-888 (-567)) (-143) (-1024) (-147) (-1154) (-10 -8 (-15 -1904 ((-112) $)) (-15 -2795 ((-112) $)) (-6 -4421) (-15 -3070 ($)) (-15 -2334 ($ $)) (-15 -4128 ($ $ $)) (-15 -4147 ((-112) $ $)) (-15 -1943 ($ $ $)) (-15 -3423 ($ $ $)) (-15 -2492 ((-112) $)) (-15 -2778 ((-410 (-567)) $)) (-15 -1605 ((-3 (-410 (-567)) "failed") $)) (-15 -1359 ($)) (-15 -1359 ($ $)) (-15 -4309 ($ $)) (-15 -2307 ($ $)) (-15 -1699 ($ $)) (-15 -1459 ($ $)) (-15 -3627 ($ $ $ $)) (-15 -2690 ($ $ $ $)) (-15 -4311 ($ $ $ $)) (-15 -2171 ($ $ $ $)) (-15 -4088 ($ $ $)) (-6 -4420)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-143) . T) ((-172) . T) ((-615 (-225)) . T) ((-615 (-381)) . T) ((-615 (-539)) . T) ((-615 (-567)) . T) ((-615 (-894 (-567))) . T) ((-233) . T) ((-291) . T) ((-308) . T) ((-455) . T) ((-559) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-641 $) . T) ((-640 (-567)) . T) ((-718 $) . T) ((-727) . T) ((-792) . T) ((-793) . T) ((-795) . T) ((-796) . T) ((-821) . T) ((-849) . T) ((-851) . T) ((-888 (-567)) . T) ((-922) . T) ((-1024) . T) ((-1040 (-567)) . T) ((-1053 $) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1154) . T) ((-1223) . T))
+((-2412 (((-112) $ $) NIL)) (-2384 (((-772)) NIL)) (-3647 (($) NIL T CONST)) (-1359 (($) NIL)) (-1365 (($ $ $) NIL) (($) NIL T CONST)) (-3002 (($ $ $) NIL) (($) NIL T CONST)) (-3474 (((-923) $) NIL)) (-2516 (((-1161) $) NIL)) (-3779 (($ (-923)) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) NIL)) (-3357 (((-112) $ $) NIL)) (-3004 (((-112) $ $) NIL)) (-2980 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2993 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)))
+(((-549) (-13 (-845) (-10 -8 (-15 -3647 ($) -3304)))) (T -549))
+((-3647 (*1 *1) (-5 *1 (-549))))
+(-13 (-845) (-10 -8 (-15 -3647 ($) -3304)))
((|Integer|) (NOT (> (INTEGER-LENGTH |#1|) 16)))
-((-2403 (((-112) $ $) NIL)) (-2375 (((-772)) NIL)) (-2585 (($) NIL T CONST)) (-1348 (($) NIL)) (-1354 (($ $ $) NIL) (($) NIL T CONST)) (-2981 (($ $ $) NIL) (($) NIL T CONST)) (-4249 (((-923) $) NIL)) (-1419 (((-1160) $) NIL)) (-3768 (($ (-923)) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) NIL)))
-(((-550) (-13 (-845) (-10 -8 (-15 -2585 ($) -3286)))) (T -550))
-((-2585 (*1 *1) (-5 *1 (-550))))
-(-13 (-845) (-10 -8 (-15 -2585 ($) -3286)))
+((-2412 (((-112) $ $) NIL)) (-2384 (((-772)) NIL)) (-3647 (($) NIL T CONST)) (-1359 (($) NIL)) (-1365 (($ $ $) NIL) (($) NIL T CONST)) (-3002 (($ $ $) NIL) (($) NIL T CONST)) (-3474 (((-923) $) NIL)) (-2516 (((-1161) $) NIL)) (-3779 (($ (-923)) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) NIL)) (-3357 (((-112) $ $) NIL)) (-3004 (((-112) $ $) NIL)) (-2980 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2993 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)))
+(((-550) (-13 (-845) (-10 -8 (-15 -3647 ($) -3304)))) (T -550))
+((-3647 (*1 *1) (-5 *1 (-550))))
+(-13 (-845) (-10 -8 (-15 -3647 ($) -3304)))
((|Integer|) (NOT (> (INTEGER-LENGTH |#1|) 32)))
-((-2403 (((-112) $ $) NIL)) (-2375 (((-772)) NIL)) (-2585 (($) NIL T CONST)) (-1348 (($) NIL)) (-1354 (($ $ $) NIL) (($) NIL T CONST)) (-2981 (($ $ $) NIL) (($) NIL T CONST)) (-4249 (((-923) $) NIL)) (-1419 (((-1160) $) NIL)) (-3768 (($ (-923)) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) NIL)))
-(((-551) (-13 (-845) (-10 -8 (-15 -2585 ($) -3286)))) (T -551))
-((-2585 (*1 *1) (-5 *1 (-551))))
-(-13 (-845) (-10 -8 (-15 -2585 ($) -3286)))
+((-2412 (((-112) $ $) NIL)) (-2384 (((-772)) NIL)) (-3647 (($) NIL T CONST)) (-1359 (($) NIL)) (-1365 (($ $ $) NIL) (($) NIL T CONST)) (-3002 (($ $ $) NIL) (($) NIL T CONST)) (-3474 (((-923) $) NIL)) (-2516 (((-1161) $) NIL)) (-3779 (($ (-923)) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) NIL)) (-3357 (((-112) $ $) NIL)) (-3004 (((-112) $ $) NIL)) (-2980 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2993 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)))
+(((-551) (-13 (-845) (-10 -8 (-15 -3647 ($) -3304)))) (T -551))
+((-3647 (*1 *1) (-5 *1 (-551))))
+(-13 (-845) (-10 -8 (-15 -3647 ($) -3304)))
((|Integer|) (NOT (> (INTEGER-LENGTH |#1|) 64)))
-((-2403 (((-112) $ $) NIL)) (-2375 (((-772)) NIL)) (-2585 (($) NIL T CONST)) (-1348 (($) NIL)) (-1354 (($ $ $) NIL) (($) NIL T CONST)) (-2981 (($ $ $) NIL) (($) NIL T CONST)) (-4249 (((-923) $) NIL)) (-1419 (((-1160) $) NIL)) (-3768 (($ (-923)) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) NIL)))
-(((-552) (-13 (-845) (-10 -8 (-15 -2585 ($) -3286)))) (T -552))
-((-2585 (*1 *1) (-5 *1 (-552))))
-(-13 (-845) (-10 -8 (-15 -2585 ($) -3286)))
+((-2412 (((-112) $ $) NIL)) (-2384 (((-772)) NIL)) (-3647 (($) NIL T CONST)) (-1359 (($) NIL)) (-1365 (($ $ $) NIL) (($) NIL T CONST)) (-3002 (($ $ $) NIL) (($) NIL T CONST)) (-3474 (((-923) $) NIL)) (-2516 (((-1161) $) NIL)) (-3779 (($ (-923)) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) NIL)) (-3357 (((-112) $ $) NIL)) (-3004 (((-112) $ $) NIL)) (-2980 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2993 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)))
+(((-552) (-13 (-845) (-10 -8 (-15 -3647 ($) -3304)))) (T -552))
+((-3647 (*1 *1) (-5 *1 (-552))))
+(-13 (-845) (-10 -8 (-15 -3647 ($) -3304)))
((|Integer|) (NOT (> (INTEGER-LENGTH |#1|) 8)))
-((-2403 (((-112) $ $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-2835 (($) NIL) (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL)) (-1783 (((-1273) $ |#1| |#1|) NIL (|has| $ (-6 -4419)))) (-3445 (((-112) $ (-772)) NIL)) (-4284 ((|#2| $ |#1| |#2|) NIL)) (-2839 (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-3350 (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-4019 (((-3 |#2| "failed") |#1| $) NIL)) (-2585 (($) NIL T CONST)) (-2444 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102))))) (-2539 (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL (|has| $ (-6 -4418))) (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-3 |#2| "failed") |#1| $) NIL)) (-3238 (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-2477 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) NIL (|has| $ (-6 -4418))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-3741 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4419)))) (-3680 ((|#2| $ |#1|) NIL)) (-2777 (((-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-645 |#2|) $) NIL (|has| $ (-6 -4418)))) (-2077 (((-112) $ (-772)) NIL)) (-4069 ((|#1| $) NIL (|has| |#1| (-851)))) (-2279 (((-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-645 |#2|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#2| (-1102))))) (-2266 ((|#1| $) NIL (|has| |#1| (-851)))) (-3731 (($ (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4419))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-1391 (((-645 |#1|) $) NIL)) (-4251 (((-112) |#1| $) NIL)) (-1566 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL)) (-2531 (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL)) (-1789 (((-645 |#1|) $) NIL)) (-2996 (((-112) |#1| $) NIL)) (-3430 (((-1122) $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-2409 ((|#2| $) NIL (|has| |#1| (-851)))) (-4128 (((-3 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) "failed") (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL)) (-3986 (($ $ |#2|) NIL (|has| $ (-6 -4419)))) (-1793 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL)) (-3025 (((-112) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))))) NIL (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-295 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) NIL (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))))) (-3092 (((-112) $ $) NIL)) (-1794 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#2| (-1102))))) (-2339 (((-645 |#2|) $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) NIL)) (-1787 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2718 (($) NIL) (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL)) (-3439 (((-772) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-772) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (((-772) |#2| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#2| (-1102)))) (((-772) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4418)))) (-4305 (($ $) NIL)) (-3893 (((-539) $) NIL (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-615 (-539))))) (-4147 (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL)) (-4132 (((-863) $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-614 (-863))) (|has| |#2| (-614 (-863)))))) (-1745 (((-112) $ $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-3551 (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL)) (-1853 (((-112) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-2414 (((-772) $) NIL (|has| $ (-6 -4418)))))
-(((-553 |#1| |#2| |#3|) (-13 (-1194 |#1| |#2|) (-10 -7 (-6 -4418))) (-1102) (-1102) (-13 (-1194 |#1| |#2|) (-10 -7 (-6 -4418)))) (T -553))
-NIL
-(-13 (-1194 |#1| |#2|) (-10 -7 (-6 -4418)))
-((-3639 (((-588 |#2|) |#2| (-613 |#2|) (-613 |#2|) (-1 (-1174 |#2|) (-1174 |#2|))) 50)))
-(((-554 |#1| |#2|) (-10 -7 (-15 -3639 ((-588 |#2|) |#2| (-613 |#2|) (-613 |#2|) (-1 (-1174 |#2|) (-1174 |#2|))))) (-559) (-13 (-27) (-433 |#1|))) (T -554))
-((-3639 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-613 *3)) (-5 *5 (-1 (-1174 *3) (-1174 *3))) (-4 *3 (-13 (-27) (-433 *6))) (-4 *6 (-559)) (-5 *2 (-588 *3)) (-5 *1 (-554 *6 *3)))))
-(-10 -7 (-15 -3639 ((-588 |#2|) |#2| (-613 |#2|) (-613 |#2|) (-1 (-1174 |#2|) (-1174 |#2|)))))
-((-1483 (((-588 |#5|) |#5| (-1 |#3| |#3|)) 218)) (-4333 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 214)) (-4170 (((-588 |#5|) |#5| (-1 |#3| |#3|)) 222)))
-(((-555 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4170 ((-588 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1483 ((-588 |#5|) |#5| (-1 |#3| |#3|))) (-15 -4333 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-559) (-1040 (-567))) (-13 (-27) (-433 |#1|)) (-1244 |#2|) (-1244 (-410 |#3|)) (-344 |#2| |#3| |#4|)) (T -555))
-((-4333 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1244 *5)) (-4 *5 (-13 (-27) (-433 *4))) (-4 *4 (-13 (-559) (-1040 (-567)))) (-4 *7 (-1244 (-410 *6))) (-5 *1 (-555 *4 *5 *6 *7 *2)) (-4 *2 (-344 *5 *6 *7)))) (-1483 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1244 *6)) (-4 *6 (-13 (-27) (-433 *5))) (-4 *5 (-13 (-559) (-1040 (-567)))) (-4 *8 (-1244 (-410 *7))) (-5 *2 (-588 *3)) (-5 *1 (-555 *5 *6 *7 *8 *3)) (-4 *3 (-344 *6 *7 *8)))) (-4170 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1244 *6)) (-4 *6 (-13 (-27) (-433 *5))) (-4 *5 (-13 (-559) (-1040 (-567)))) (-4 *8 (-1244 (-410 *7))) (-5 *2 (-588 *3)) (-5 *1 (-555 *5 *6 *7 *8 *3)) (-4 *3 (-344 *6 *7 *8)))))
-(-10 -7 (-15 -4170 ((-588 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1483 ((-588 |#5|) |#5| (-1 |#3| |#3|))) (-15 -4333 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|))))
-((-3457 (((-112) (-567) (-567)) 12)) (-2406 (((-567) (-567)) 7)) (-1563 (((-567) (-567) (-567)) 10)))
-(((-556) (-10 -7 (-15 -2406 ((-567) (-567))) (-15 -1563 ((-567) (-567) (-567))) (-15 -3457 ((-112) (-567) (-567))))) (T -556))
-((-3457 (*1 *2 *3 *3) (-12 (-5 *3 (-567)) (-5 *2 (-112)) (-5 *1 (-556)))) (-1563 (*1 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-556)))) (-2406 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-556)))))
-(-10 -7 (-15 -2406 ((-567) (-567))) (-15 -1563 ((-567) (-567) (-567))) (-15 -3457 ((-112) (-567) (-567))))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-2039 ((|#1| $) 67)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 47)) (-4381 (($ $) 46)) (-3949 (((-112) $) 44)) (-3146 (($ $) 97)) (-3012 (($ $) 80)) (-4016 ((|#1| $) 68)) (-3472 (((-3 $ "failed") $ $) 20)) (-2716 (($ $) 79)) (-3128 (($ $) 96)) (-2987 (($ $) 81)) (-3166 (($ $) 95)) (-3035 (($ $) 82)) (-2585 (($) 18 T CONST)) (-3753 (((-3 (-567) "failed") $) 75)) (-2038 (((-567) $) 76)) (-2109 (((-3 $ "failed") $) 37)) (-3471 (($ |#1| |#1|) 72)) (-4336 (((-112) $) 66)) (-1482 (($) 107)) (-1433 (((-112) $) 35)) (-2651 (($ $ (-567)) 78)) (-3494 (((-112) $) 65)) (-1354 (($ $ $) 113)) (-2981 (($ $ $) 112)) (-3063 (($ $) 104)) (-2740 (($ $ $) 52) (($ (-645 $)) 51)) (-1419 (((-1160) $) 10)) (-2467 (($ |#1| |#1|) 73) (($ |#1|) 71) (($ (-410 (-567))) 70)) (-3589 ((|#1| $) 69)) (-3430 (((-1122) $) 11)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 50)) (-2774 (($ $ $) 54) (($ (-645 $)) 53)) (-2391 (((-3 $ "failed") $ $) 48)) (-3946 (($ $) 105)) (-3175 (($ $) 94)) (-3049 (($ $) 83)) (-3156 (($ $) 93)) (-3023 (($ $) 84)) (-3137 (($ $) 92)) (-2999 (($ $) 85)) (-2218 (((-112) $ |#1|) 64)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-567)) 74)) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-3200 (($ $) 103)) (-3084 (($ $) 91)) (-3816 (((-112) $ $) 45)) (-3183 (($ $) 102)) (-3062 (($ $) 90)) (-3221 (($ $) 101)) (-3106 (($ $) 89)) (-3785 (($ $) 100)) (-3118 (($ $) 88)) (-3211 (($ $) 99)) (-3095 (($ $) 87)) (-3193 (($ $) 98)) (-3074 (($ $) 86)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2997 (((-112) $ $) 110)) (-2971 (((-112) $ $) 109)) (-2936 (((-112) $ $) 6)) (-2984 (((-112) $ $) 111)) (-2958 (((-112) $ $) 108)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ $) 106) (($ $ (-410 (-567))) 77)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27)))
-(((-557 |#1|) (-140) (-13 (-407) (-1203))) (T -557))
-((-2467 (*1 *1 *2 *2) (-12 (-4 *1 (-557 *2)) (-4 *2 (-13 (-407) (-1203))))) (-3471 (*1 *1 *2 *2) (-12 (-4 *1 (-557 *2)) (-4 *2 (-13 (-407) (-1203))))) (-2467 (*1 *1 *2) (-12 (-4 *1 (-557 *2)) (-4 *2 (-13 (-407) (-1203))))) (-2467 (*1 *1 *2) (-12 (-5 *2 (-410 (-567))) (-4 *1 (-557 *3)) (-4 *3 (-13 (-407) (-1203))))) (-3589 (*1 *2 *1) (-12 (-4 *1 (-557 *2)) (-4 *2 (-13 (-407) (-1203))))) (-4016 (*1 *2 *1) (-12 (-4 *1 (-557 *2)) (-4 *2 (-13 (-407) (-1203))))) (-2039 (*1 *2 *1) (-12 (-4 *1 (-557 *2)) (-4 *2 (-13 (-407) (-1203))))) (-4336 (*1 *2 *1) (-12 (-4 *1 (-557 *3)) (-4 *3 (-13 (-407) (-1203))) (-5 *2 (-112)))) (-3494 (*1 *2 *1) (-12 (-4 *1 (-557 *3)) (-4 *3 (-13 (-407) (-1203))) (-5 *2 (-112)))) (-2218 (*1 *2 *1 *3) (-12 (-4 *1 (-557 *3)) (-4 *3 (-13 (-407) (-1203))) (-5 *2 (-112)))))
-(-13 (-455) (-851) (-1203) (-1004) (-1040 (-567)) (-10 -8 (-6 -3050) (-15 -2467 ($ |t#1| |t#1|)) (-15 -3471 ($ |t#1| |t#1|)) (-15 -2467 ($ |t#1|)) (-15 -2467 ($ (-410 (-567)))) (-15 -3589 (|t#1| $)) (-15 -4016 (|t#1| $)) (-15 -2039 (|t#1| $)) (-15 -4336 ((-112) $)) (-15 -3494 ((-112) $)) (-15 -2218 ((-112) $ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-95) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-285) . T) ((-291) . T) ((-455) . T) ((-496) . T) ((-559) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-641 $) . T) ((-718 $) . T) ((-727) . T) ((-851) . T) ((-1004) . T) ((-1040 (-567)) . T) ((-1053 $) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1203) . T) ((-1206) . T))
-((-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 9)) (-4381 (($ $) 11)) (-3949 (((-112) $) 20)) (-2109 (((-3 $ "failed") $) 16)) (-3816 (((-112) $ $) 22)))
-(((-558 |#1|) (-10 -8 (-15 -3949 ((-112) |#1|)) (-15 -3816 ((-112) |#1| |#1|)) (-15 -4381 (|#1| |#1|)) (-15 -3666 ((-2 (|:| -3951 |#1|) (|:| -4405 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2109 ((-3 |#1| "failed") |#1|))) (-559)) (T -558))
-NIL
-(-10 -8 (-15 -3949 ((-112) |#1|)) (-15 -3816 ((-112) |#1| |#1|)) (-15 -4381 (|#1| |#1|)) (-15 -3666 ((-2 (|:| -3951 |#1|) (|:| -4405 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2109 ((-3 |#1| "failed") |#1|)))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 47)) (-4381 (($ $) 46)) (-3949 (((-112) $) 44)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-2109 (((-3 $ "failed") $) 37)) (-1433 (((-112) $) 35)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-2391 (((-3 $ "failed") $ $) 48)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ $) 49)) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-3816 (((-112) $ $) 45)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27)))
+((-2412 (((-112) $ $) NIL (-2811 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-2847 (($) NIL) (($ (-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) NIL)) (-3843 (((-1274) $ |#1| |#1|) NIL (|has| $ (-6 -4423)))) (-1563 (((-112) $ (-772)) NIL)) (-4285 ((|#2| $ |#1| |#2|) NIL)) (-1494 (($ (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4422)))) (-3356 (($ (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4422)))) (-4021 (((-3 |#2| "failed") |#1| $) NIL)) (-3647 (($) NIL T CONST)) (-2453 (($ $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102))))) (-2247 (($ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) NIL (|has| $ (-6 -4422))) (($ (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-3 |#2| "failed") |#1| $) NIL)) (-3246 (($ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (($ (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4422)))) (-2494 (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) NIL (|has| $ (-6 -4422))) (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4422)))) (-3760 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4423)))) (-3703 ((|#2| $ |#1|) NIL)) (-2799 (((-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-645 |#2|) $) NIL (|has| $ (-6 -4422)))) (-4093 (((-112) $ (-772)) NIL)) (-3895 ((|#1| $) NIL (|has| |#1| (-851)))) (-1942 (((-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-645 |#2|) $) NIL (|has| $ (-6 -4422)))) (-3237 (((-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#2| (-1102))))) (-3255 ((|#1| $) NIL (|has| |#1| (-851)))) (-3751 (($ (-1 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4423))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4423)))) (-3841 (($ (-1 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1986 (((-112) $ (-772)) NIL)) (-2516 (((-1161) $) NIL (-2811 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-1405 (((-645 |#1|) $) NIL)) (-2816 (((-112) |#1| $) NIL)) (-2706 (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) NIL)) (-2646 (($ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) NIL)) (-4364 (((-645 |#1|) $) NIL)) (-3188 (((-112) |#1| $) NIL)) (-3437 (((-1122) $) NIL (-2811 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-2418 ((|#2| $) NIL (|has| |#1| (-851)))) (-3196 (((-3 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) "failed") (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL)) (-3823 (($ $ |#2|) NIL (|has| $ (-6 -4423)))) (-3949 (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) NIL)) (-4233 (((-112) (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))))) NIL (-12 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-310 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (($ $ (-295 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) NIL (-12 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-310 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (($ $ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) NIL (-12 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-310 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (($ $ (-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) (-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) NIL (-12 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-310 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))))) (-3875 (((-112) $ $) NIL)) (-4058 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#2| (-1102))))) (-2190 (((-645 |#2|) $) NIL)) (-3885 (((-112) $) NIL)) (-2701 (($) NIL)) (-1801 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-4106 (($) NIL) (($ (-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) NIL)) (-3447 (((-772) (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-772) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (((-772) |#2| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#2| (-1102)))) (((-772) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4422)))) (-4309 (($ $) NIL)) (-3902 (((-539) $) NIL (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-615 (-539))))) (-4145 (($ (-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) NIL)) (-4129 (((-863) $) NIL (-2811 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-614 (-863))) (|has| |#2| (-614 (-863)))))) (-3357 (((-112) $ $) NIL (-2811 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-3700 (($ (-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) NIL)) (-3436 (((-112) (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4422)))) (-2946 (((-112) $ $) NIL (-2811 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-2423 (((-772) $) NIL (|has| $ (-6 -4422)))))
+(((-553 |#1| |#2| |#3|) (-13 (-1195 |#1| |#2|) (-10 -7 (-6 -4422))) (-1102) (-1102) (-13 (-1195 |#1| |#2|) (-10 -7 (-6 -4422)))) (T -553))
+NIL
+(-13 (-1195 |#1| |#2|) (-10 -7 (-6 -4422)))
+((-3797 (((-588 |#2|) |#2| (-613 |#2|) (-613 |#2|) (-1 (-1175 |#2|) (-1175 |#2|))) 50)))
+(((-554 |#1| |#2|) (-10 -7 (-15 -3797 ((-588 |#2|) |#2| (-613 |#2|) (-613 |#2|) (-1 (-1175 |#2|) (-1175 |#2|))))) (-559) (-13 (-27) (-433 |#1|))) (T -554))
+((-3797 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-613 *3)) (-5 *5 (-1 (-1175 *3) (-1175 *3))) (-4 *3 (-13 (-27) (-433 *6))) (-4 *6 (-559)) (-5 *2 (-588 *3)) (-5 *1 (-554 *6 *3)))))
+(-10 -7 (-15 -3797 ((-588 |#2|) |#2| (-613 |#2|) (-613 |#2|) (-1 (-1175 |#2|) (-1175 |#2|)))))
+((-3794 (((-588 |#5|) |#5| (-1 |#3| |#3|)) 218)) (-2747 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 214)) (-3203 (((-588 |#5|) |#5| (-1 |#3| |#3|)) 222)))
+(((-555 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3203 ((-588 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3794 ((-588 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2747 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-559) (-1040 (-567))) (-13 (-27) (-433 |#1|)) (-1245 |#2|) (-1245 (-410 |#3|)) (-344 |#2| |#3| |#4|)) (T -555))
+((-2747 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1245 *5)) (-4 *5 (-13 (-27) (-433 *4))) (-4 *4 (-13 (-559) (-1040 (-567)))) (-4 *7 (-1245 (-410 *6))) (-5 *1 (-555 *4 *5 *6 *7 *2)) (-4 *2 (-344 *5 *6 *7)))) (-3794 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1245 *6)) (-4 *6 (-13 (-27) (-433 *5))) (-4 *5 (-13 (-559) (-1040 (-567)))) (-4 *8 (-1245 (-410 *7))) (-5 *2 (-588 *3)) (-5 *1 (-555 *5 *6 *7 *8 *3)) (-4 *3 (-344 *6 *7 *8)))) (-3203 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1245 *6)) (-4 *6 (-13 (-27) (-433 *5))) (-4 *5 (-13 (-559) (-1040 (-567)))) (-4 *8 (-1245 (-410 *7))) (-5 *2 (-588 *3)) (-5 *1 (-555 *5 *6 *7 *8 *3)) (-4 *3 (-344 *6 *7 *8)))))
+(-10 -7 (-15 -3203 ((-588 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3794 ((-588 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2747 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|))))
+((-3380 (((-112) (-567) (-567)) 12)) (-1557 (((-567) (-567)) 7)) (-1590 (((-567) (-567) (-567)) 10)))
+(((-556) (-10 -7 (-15 -1557 ((-567) (-567))) (-15 -1590 ((-567) (-567) (-567))) (-15 -3380 ((-112) (-567) (-567))))) (T -556))
+((-3380 (*1 *2 *3 *3) (-12 (-5 *3 (-567)) (-5 *2 (-112)) (-5 *1 (-556)))) (-1590 (*1 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-556)))) (-1557 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-556)))))
+(-10 -7 (-15 -1557 ((-567) (-567))) (-15 -1590 ((-567) (-567) (-567))) (-15 -3380 ((-112) (-567) (-567))))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-2052 ((|#1| $) 67)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) 47)) (-4287 (($ $) 46)) (-2286 (((-112) $) 44)) (-3164 (($ $) 97)) (-3032 (($ $) 80)) (-1325 ((|#1| $) 68)) (-2376 (((-3 $ "failed") $ $) 20)) (-2728 (($ $) 79)) (-3145 (($ $) 96)) (-3008 (($ $) 81)) (-3182 (($ $) 95)) (-3057 (($ $) 82)) (-3647 (($) 18 T CONST)) (-3765 (((-3 (-567) "failed") $) 75)) (-2051 (((-567) $) 76)) (-3588 (((-3 $ "failed") $) 37)) (-2273 (($ |#1| |#1|) 72)) (-3137 (((-112) $) 66)) (-1484 (($) 107)) (-4346 (((-112) $) 35)) (-3698 (($ $ (-567)) 78)) (-3465 (((-112) $) 65)) (-1365 (($ $ $) 113)) (-3002 (($ $ $) 112)) (-3072 (($ $) 104)) (-2751 (($ $ $) 52) (($ (-645 $)) 51)) (-2516 (((-1161) $) 10)) (-3235 (($ |#1| |#1|) 73) (($ |#1|) 71) (($ (-410 (-567))) 70)) (-3017 ((|#1| $) 69)) (-3437 (((-1122) $) 11)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) 50)) (-2785 (($ $ $) 54) (($ (-645 $)) 53)) (-2400 (((-3 $ "failed") $ $) 48)) (-3955 (($ $) 105)) (-3192 (($ $) 94)) (-3071 (($ $) 83)) (-3173 (($ $) 93)) (-3043 (($ $) 84)) (-3155 (($ $) 92)) (-3021 (($ $) 85)) (-1417 (((-112) $ |#1|) 64)) (-4129 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-567)) 74)) (-2746 (((-772)) 32 T CONST)) (-3357 (((-112) $ $) 9)) (-3217 (($ $) 103)) (-3103 (($ $) 91)) (-3731 (((-112) $ $) 45)) (-3201 (($ $) 102)) (-3083 (($ $) 90)) (-3238 (($ $) 101)) (-3126 (($ $) 89)) (-3805 (($ $) 100)) (-3138 (($ $) 88)) (-3228 (($ $) 99)) (-3115 (($ $) 87)) (-3208 (($ $) 98)) (-3093 (($ $) 86)) (-1733 (($) 19 T CONST)) (-1744 (($) 34 T CONST)) (-3004 (((-112) $ $) 110)) (-2980 (((-112) $ $) 109)) (-2946 (((-112) $ $) 6)) (-2993 (((-112) $ $) 111)) (-2968 (((-112) $ $) 108)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ $) 106) (($ $ (-410 (-567))) 77)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27)))
+(((-557 |#1|) (-140) (-13 (-407) (-1204))) (T -557))
+((-3235 (*1 *1 *2 *2) (-12 (-4 *1 (-557 *2)) (-4 *2 (-13 (-407) (-1204))))) (-2273 (*1 *1 *2 *2) (-12 (-4 *1 (-557 *2)) (-4 *2 (-13 (-407) (-1204))))) (-3235 (*1 *1 *2) (-12 (-4 *1 (-557 *2)) (-4 *2 (-13 (-407) (-1204))))) (-3235 (*1 *1 *2) (-12 (-5 *2 (-410 (-567))) (-4 *1 (-557 *3)) (-4 *3 (-13 (-407) (-1204))))) (-3017 (*1 *2 *1) (-12 (-4 *1 (-557 *2)) (-4 *2 (-13 (-407) (-1204))))) (-1325 (*1 *2 *1) (-12 (-4 *1 (-557 *2)) (-4 *2 (-13 (-407) (-1204))))) (-2052 (*1 *2 *1) (-12 (-4 *1 (-557 *2)) (-4 *2 (-13 (-407) (-1204))))) (-3137 (*1 *2 *1) (-12 (-4 *1 (-557 *3)) (-4 *3 (-13 (-407) (-1204))) (-5 *2 (-112)))) (-3465 (*1 *2 *1) (-12 (-4 *1 (-557 *3)) (-4 *3 (-13 (-407) (-1204))) (-5 *2 (-112)))) (-1417 (*1 *2 *1 *3) (-12 (-4 *1 (-557 *3)) (-4 *3 (-13 (-407) (-1204))) (-5 *2 (-112)))))
+(-13 (-455) (-851) (-1204) (-1004) (-1040 (-567)) (-10 -8 (-6 -3058) (-15 -3235 ($ |t#1| |t#1|)) (-15 -2273 ($ |t#1| |t#1|)) (-15 -3235 ($ |t#1|)) (-15 -3235 ($ (-410 (-567)))) (-15 -3017 (|t#1| $)) (-15 -1325 (|t#1| $)) (-15 -2052 (|t#1| $)) (-15 -3137 ((-112) $)) (-15 -3465 ((-112) $)) (-15 -1417 ((-112) $ |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-95) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-285) . T) ((-291) . T) ((-455) . T) ((-496) . T) ((-559) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-641 $) . T) ((-718 $) . T) ((-727) . T) ((-851) . T) ((-1004) . T) ((-1040 (-567)) . T) ((-1053 $) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1204) . T) ((-1207) . T))
+((-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) 9)) (-4287 (($ $) 11)) (-2286 (((-112) $) 20)) (-3588 (((-3 $ "failed") $) 16)) (-3731 (((-112) $ $) 22)))
+(((-558 |#1|) (-10 -8 (-15 -2286 ((-112) |#1|)) (-15 -3731 ((-112) |#1| |#1|)) (-15 -4287 (|#1| |#1|)) (-15 -1489 ((-2 (|:| -4369 |#1|) (|:| -4409 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3588 ((-3 |#1| "failed") |#1|))) (-559)) (T -558))
+NIL
+(-10 -8 (-15 -2286 ((-112) |#1|)) (-15 -3731 ((-112) |#1| |#1|)) (-15 -4287 (|#1| |#1|)) (-15 -1489 ((-2 (|:| -4369 |#1|) (|:| -4409 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3588 ((-3 |#1| "failed") |#1|)))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) 47)) (-4287 (($ $) 46)) (-2286 (((-112) $) 44)) (-2376 (((-3 $ "failed") $ $) 20)) (-3647 (($) 18 T CONST)) (-3588 (((-3 $ "failed") $) 37)) (-4346 (((-112) $) 35)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-2400 (((-3 $ "failed") $ $) 48)) (-4129 (((-863) $) 12) (($ (-567)) 33) (($ $) 49)) (-2746 (((-772)) 32 T CONST)) (-3357 (((-112) $ $) 9)) (-3731 (((-112) $ $) 45)) (-1733 (($) 19 T CONST)) (-1744 (($) 34 T CONST)) (-2946 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27)))
(((-559) (-140)) (T -559))
-((-2391 (*1 *1 *1 *1) (|partial| -4 *1 (-559))) (-3666 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3951 *1) (|:| -4405 *1) (|:| |associate| *1))) (-4 *1 (-559)))) (-4381 (*1 *1 *1) (-4 *1 (-559))) (-3816 (*1 *2 *1 *1) (-12 (-4 *1 (-559)) (-5 *2 (-112)))) (-3949 (*1 *2 *1) (-12 (-4 *1 (-559)) (-5 *2 (-112)))))
-(-13 (-172) (-38 $) (-291) (-10 -8 (-15 -2391 ((-3 $ "failed") $ $)) (-15 -3666 ((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $)) (-15 -4381 ($ $)) (-15 -3816 ((-112) $ $)) (-15 -3949 ((-112) $))))
+((-2400 (*1 *1 *1 *1) (|partial| -4 *1 (-559))) (-1489 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -4369 *1) (|:| -4409 *1) (|:| |associate| *1))) (-4 *1 (-559)))) (-4287 (*1 *1 *1) (-4 *1 (-559))) (-3731 (*1 *2 *1 *1) (-12 (-4 *1 (-559)) (-5 *2 (-112)))) (-2286 (*1 *2 *1) (-12 (-4 *1 (-559)) (-5 *2 (-112)))))
+(-13 (-172) (-38 $) (-291) (-10 -8 (-15 -2400 ((-3 $ "failed") $ $)) (-15 -1489 ((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $)) (-15 -4287 ($ $)) (-15 -3731 ((-112) $ $)) (-15 -2286 ((-112) $))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-291) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-641 $) . T) ((-718 $) . T) ((-727) . T) ((-1053 $) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T))
-((-3980 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1178) (-645 |#2|)) 38)) (-1665 (((-588 |#2|) |#2| (-1178)) 63)) (-3539 (((-3 |#2| "failed") |#2| (-1178)) 156)) (-1411 (((-3 (-2 (|:| -1752 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1178) (-613 |#2|) (-645 (-613 |#2|))) 159)) (-1555 (((-3 (-2 (|:| -1752 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1178) |#2|) 41)))
-(((-560 |#1| |#2|) (-10 -7 (-15 -1555 ((-3 (-2 (|:| -1752 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1178) |#2|)) (-15 -3980 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1178) (-645 |#2|))) (-15 -3539 ((-3 |#2| "failed") |#2| (-1178))) (-15 -1665 ((-588 |#2|) |#2| (-1178))) (-15 -1411 ((-3 (-2 (|:| -1752 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1178) (-613 |#2|) (-645 (-613 |#2|))))) (-13 (-455) (-147) (-1040 (-567)) (-640 (-567))) (-13 (-27) (-1203) (-433 |#1|))) (T -560))
-((-1411 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1178)) (-5 *6 (-645 (-613 *3))) (-5 *5 (-613 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *7))) (-4 *7 (-13 (-455) (-147) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-2 (|:| -1752 *3) (|:| |coeff| *3))) (-5 *1 (-560 *7 *3)))) (-1665 (*1 *2 *3 *4) (-12 (-5 *4 (-1178)) (-4 *5 (-13 (-455) (-147) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-588 *3)) (-5 *1 (-560 *5 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *5))))) (-3539 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1178)) (-4 *4 (-13 (-455) (-147) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-560 *4 *2)) (-4 *2 (-13 (-27) (-1203) (-433 *4))))) (-3980 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1178)) (-5 *5 (-645 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *6))) (-4 *6 (-13 (-455) (-147) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-560 *6 *3)))) (-1555 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1178)) (-4 *5 (-13 (-455) (-147) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-2 (|:| -1752 *3) (|:| |coeff| *3))) (-5 *1 (-560 *5 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *5))))))
-(-10 -7 (-15 -1555 ((-3 (-2 (|:| -1752 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1178) |#2|)) (-15 -3980 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1178) (-645 |#2|))) (-15 -3539 ((-3 |#2| "failed") |#2| (-1178))) (-15 -1665 ((-588 |#2|) |#2| (-1178))) (-15 -1411 ((-3 (-2 (|:| -1752 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1178) (-613 |#2|) (-645 (-613 |#2|)))))
-((-2908 (((-421 |#1|) |#1|) 19)) (-2706 (((-421 |#1|) |#1|) 34)) (-3921 (((-3 |#1| "failed") |#1|) 51)) (-3942 (((-421 |#1|) |#1|) 64)))
-(((-561 |#1|) (-10 -7 (-15 -2706 ((-421 |#1|) |#1|)) (-15 -2908 ((-421 |#1|) |#1|)) (-15 -3942 ((-421 |#1|) |#1|)) (-15 -3921 ((-3 |#1| "failed") |#1|))) (-548)) (T -561))
-((-3921 (*1 *2 *2) (|partial| -12 (-5 *1 (-561 *2)) (-4 *2 (-548)))) (-3942 (*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-561 *3)) (-4 *3 (-548)))) (-2908 (*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-561 *3)) (-4 *3 (-548)))) (-2706 (*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-561 *3)) (-4 *3 (-548)))))
-(-10 -7 (-15 -2706 ((-421 |#1|) |#1|)) (-15 -2908 ((-421 |#1|) |#1|)) (-15 -3942 ((-421 |#1|) |#1|)) (-15 -3921 ((-3 |#1| "failed") |#1|)))
-((-1909 (($) 9)) (-1951 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1158 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1604 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 35)) (-1391 (((-645 (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $) 32)) (-2531 (($ (-2 (|:| -1795 (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4237 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1158 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1604 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 29)) (-3822 (($ (-645 (-2 (|:| -1795 (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4237 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1158 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1604 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 27)) (-4237 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1158 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1604 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 39)) (-2339 (((-645 (-2 (|:| -1795 (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4237 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1158 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1604 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 37)) (-1370 (((-1273)) 12)))
-(((-562) (-10 -8 (-15 -1909 ($)) (-15 -1370 ((-1273))) (-15 -1391 ((-645 (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -3822 ($ (-645 (-2 (|:| -1795 (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4237 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1158 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1604 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -2531 ($ (-2 (|:| -1795 (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4237 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1158 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1604 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1951 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1158 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1604 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2339 ((-645 (-2 (|:| -1795 (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4237 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1158 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1604 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -4237 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1158 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1604 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -562))
-((-4237 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1158 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1604 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-562)))) (-2339 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| -1795 (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4237 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1158 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1604 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-562)))) (-1951 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1158 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1604 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-562)))) (-2531 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -1795 (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4237 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1158 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1604 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-562)))) (-3822 (*1 *1 *2) (-12 (-5 *2 (-645 (-2 (|:| -1795 (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4237 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1158 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1604 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-562)))) (-1391 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-5 *1 (-562)))) (-1370 (*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-562)))) (-1909 (*1 *1) (-5 *1 (-562))))
-(-10 -8 (-15 -1909 ($)) (-15 -1370 ((-1273))) (-15 -1391 ((-645 (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -3822 ($ (-645 (-2 (|:| -1795 (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4237 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1158 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1604 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -2531 ($ (-2 (|:| -1795 (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4237 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1158 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1604 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1951 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1158 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1604 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2339 ((-645 (-2 (|:| -1795 (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4237 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1158 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1604 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -4237 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1158 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1604 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))
-((-2675 (((-1174 (-410 (-1174 |#2|))) |#2| (-613 |#2|) (-613 |#2|) (-1174 |#2|)) 35)) (-3590 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-613 |#2|) (-613 |#2|) (-645 |#2|) (-613 |#2|) |#2| (-410 (-1174 |#2|))) 105) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-613 |#2|) (-613 |#2|) (-645 |#2|) |#2| (-1174 |#2|)) 115)) (-2082 (((-588 |#2|) |#2| (-613 |#2|) (-613 |#2|) (-613 |#2|) |#2| (-410 (-1174 |#2|))) 85) (((-588 |#2|) |#2| (-613 |#2|) (-613 |#2|) |#2| (-1174 |#2|)) 55)) (-3315 (((-3 (-2 (|:| -1752 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-613 |#2|) (-613 |#2|) |#2| (-613 |#2|) |#2| (-410 (-1174 |#2|))) 92) (((-3 (-2 (|:| -1752 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-613 |#2|) (-613 |#2|) |#2| |#2| (-1174 |#2|)) 114)) (-3436 (((-3 |#2| "failed") |#2| |#2| (-613 |#2|) (-613 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1178)) (-613 |#2|) |#2| (-410 (-1174 |#2|))) 110) (((-3 |#2| "failed") |#2| |#2| (-613 |#2|) (-613 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1178)) |#2| (-1174 |#2|)) 116)) (-3918 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2623 (-645 |#2|))) |#3| |#2| (-613 |#2|) (-613 |#2|) (-613 |#2|) |#2| (-410 (-1174 |#2|))) 135 (|has| |#3| (-657 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2623 (-645 |#2|))) |#3| |#2| (-613 |#2|) (-613 |#2|) |#2| (-1174 |#2|)) 134 (|has| |#3| (-657 |#2|)))) (-2836 ((|#2| (-1174 (-410 (-1174 |#2|))) (-613 |#2|) |#2|) 53)) (-2465 (((-1174 (-410 (-1174 |#2|))) (-1174 |#2|) (-613 |#2|)) 34)))
-(((-563 |#1| |#2| |#3|) (-10 -7 (-15 -2082 ((-588 |#2|) |#2| (-613 |#2|) (-613 |#2|) |#2| (-1174 |#2|))) (-15 -2082 ((-588 |#2|) |#2| (-613 |#2|) (-613 |#2|) (-613 |#2|) |#2| (-410 (-1174 |#2|)))) (-15 -3315 ((-3 (-2 (|:| -1752 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-613 |#2|) (-613 |#2|) |#2| |#2| (-1174 |#2|))) (-15 -3315 ((-3 (-2 (|:| -1752 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-613 |#2|) (-613 |#2|) |#2| (-613 |#2|) |#2| (-410 (-1174 |#2|)))) (-15 -3590 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-613 |#2|) (-613 |#2|) (-645 |#2|) |#2| (-1174 |#2|))) (-15 -3590 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-613 |#2|) (-613 |#2|) (-645 |#2|) (-613 |#2|) |#2| (-410 (-1174 |#2|)))) (-15 -3436 ((-3 |#2| "failed") |#2| |#2| (-613 |#2|) (-613 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1178)) |#2| (-1174 |#2|))) (-15 -3436 ((-3 |#2| "failed") |#2| |#2| (-613 |#2|) (-613 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1178)) (-613 |#2|) |#2| (-410 (-1174 |#2|)))) (-15 -2675 ((-1174 (-410 (-1174 |#2|))) |#2| (-613 |#2|) (-613 |#2|) (-1174 |#2|))) (-15 -2836 (|#2| (-1174 (-410 (-1174 |#2|))) (-613 |#2|) |#2|)) (-15 -2465 ((-1174 (-410 (-1174 |#2|))) (-1174 |#2|) (-613 |#2|))) (IF (|has| |#3| (-657 |#2|)) (PROGN (-15 -3918 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2623 (-645 |#2|))) |#3| |#2| (-613 |#2|) (-613 |#2|) |#2| (-1174 |#2|))) (-15 -3918 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2623 (-645 |#2|))) |#3| |#2| (-613 |#2|) (-613 |#2|) (-613 |#2|) |#2| (-410 (-1174 |#2|))))) |%noBranch|)) (-13 (-455) (-1040 (-567)) (-147) (-640 (-567))) (-13 (-433 |#1|) (-27) (-1203)) (-1102)) (T -563))
-((-3918 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-613 *4)) (-5 *6 (-410 (-1174 *4))) (-4 *4 (-13 (-433 *7) (-27) (-1203))) (-4 *7 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2623 (-645 *4)))) (-5 *1 (-563 *7 *4 *3)) (-4 *3 (-657 *4)) (-4 *3 (-1102)))) (-3918 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-613 *4)) (-5 *6 (-1174 *4)) (-4 *4 (-13 (-433 *7) (-27) (-1203))) (-4 *7 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2623 (-645 *4)))) (-5 *1 (-563 *7 *4 *3)) (-4 *3 (-657 *4)) (-4 *3 (-1102)))) (-2465 (*1 *2 *3 *4) (-12 (-5 *4 (-613 *6)) (-4 *6 (-13 (-433 *5) (-27) (-1203))) (-4 *5 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) (-5 *2 (-1174 (-410 (-1174 *6)))) (-5 *1 (-563 *5 *6 *7)) (-5 *3 (-1174 *6)) (-4 *7 (-1102)))) (-2836 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1174 (-410 (-1174 *2)))) (-5 *4 (-613 *2)) (-4 *2 (-13 (-433 *5) (-27) (-1203))) (-4 *5 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) (-5 *1 (-563 *5 *2 *6)) (-4 *6 (-1102)))) (-2675 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-613 *3)) (-4 *3 (-13 (-433 *6) (-27) (-1203))) (-4 *6 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) (-5 *2 (-1174 (-410 (-1174 *3)))) (-5 *1 (-563 *6 *3 *7)) (-5 *5 (-1174 *3)) (-4 *7 (-1102)))) (-3436 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-613 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1178))) (-5 *5 (-410 (-1174 *2))) (-4 *2 (-13 (-433 *6) (-27) (-1203))) (-4 *6 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) (-5 *1 (-563 *6 *2 *7)) (-4 *7 (-1102)))) (-3436 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-613 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1178))) (-5 *5 (-1174 *2)) (-4 *2 (-13 (-433 *6) (-27) (-1203))) (-4 *6 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) (-5 *1 (-563 *6 *2 *7)) (-4 *7 (-1102)))) (-3590 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-645 *3)) (-5 *6 (-410 (-1174 *3))) (-4 *3 (-13 (-433 *7) (-27) (-1203))) (-4 *7 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-563 *7 *3 *8)) (-4 *8 (-1102)))) (-3590 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-645 *3)) (-5 *6 (-1174 *3)) (-4 *3 (-13 (-433 *7) (-27) (-1203))) (-4 *7 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-563 *7 *3 *8)) (-4 *8 (-1102)))) (-3315 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-410 (-1174 *3))) (-4 *3 (-13 (-433 *6) (-27) (-1203))) (-4 *6 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) (-5 *2 (-2 (|:| -1752 *3) (|:| |coeff| *3))) (-5 *1 (-563 *6 *3 *7)) (-4 *7 (-1102)))) (-3315 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-1174 *3)) (-4 *3 (-13 (-433 *6) (-27) (-1203))) (-4 *6 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) (-5 *2 (-2 (|:| -1752 *3) (|:| |coeff| *3))) (-5 *1 (-563 *6 *3 *7)) (-4 *7 (-1102)))) (-2082 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-613 *3)) (-5 *5 (-410 (-1174 *3))) (-4 *3 (-13 (-433 *6) (-27) (-1203))) (-4 *6 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) (-5 *2 (-588 *3)) (-5 *1 (-563 *6 *3 *7)) (-4 *7 (-1102)))) (-2082 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-613 *3)) (-5 *5 (-1174 *3)) (-4 *3 (-13 (-433 *6) (-27) (-1203))) (-4 *6 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) (-5 *2 (-588 *3)) (-5 *1 (-563 *6 *3 *7)) (-4 *7 (-1102)))))
-(-10 -7 (-15 -2082 ((-588 |#2|) |#2| (-613 |#2|) (-613 |#2|) |#2| (-1174 |#2|))) (-15 -2082 ((-588 |#2|) |#2| (-613 |#2|) (-613 |#2|) (-613 |#2|) |#2| (-410 (-1174 |#2|)))) (-15 -3315 ((-3 (-2 (|:| -1752 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-613 |#2|) (-613 |#2|) |#2| |#2| (-1174 |#2|))) (-15 -3315 ((-3 (-2 (|:| -1752 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-613 |#2|) (-613 |#2|) |#2| (-613 |#2|) |#2| (-410 (-1174 |#2|)))) (-15 -3590 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-613 |#2|) (-613 |#2|) (-645 |#2|) |#2| (-1174 |#2|))) (-15 -3590 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-613 |#2|) (-613 |#2|) (-645 |#2|) (-613 |#2|) |#2| (-410 (-1174 |#2|)))) (-15 -3436 ((-3 |#2| "failed") |#2| |#2| (-613 |#2|) (-613 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1178)) |#2| (-1174 |#2|))) (-15 -3436 ((-3 |#2| "failed") |#2| |#2| (-613 |#2|) (-613 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1178)) (-613 |#2|) |#2| (-410 (-1174 |#2|)))) (-15 -2675 ((-1174 (-410 (-1174 |#2|))) |#2| (-613 |#2|) (-613 |#2|) (-1174 |#2|))) (-15 -2836 (|#2| (-1174 (-410 (-1174 |#2|))) (-613 |#2|) |#2|)) (-15 -2465 ((-1174 (-410 (-1174 |#2|))) (-1174 |#2|) (-613 |#2|))) (IF (|has| |#3| (-657 |#2|)) (PROGN (-15 -3918 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2623 (-645 |#2|))) |#3| |#2| (-613 |#2|) (-613 |#2|) |#2| (-1174 |#2|))) (-15 -3918 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2623 (-645 |#2|))) |#3| |#2| (-613 |#2|) (-613 |#2|) (-613 |#2|) |#2| (-410 (-1174 |#2|))))) |%noBranch|))
-((-1333 (((-567) (-567) (-772)) 90)) (-3957 (((-567) (-567)) 88)) (-1488 (((-567) (-567)) 86)) (-2229 (((-567) (-567)) 92)) (-1408 (((-567) (-567) (-567)) 70)) (-2624 (((-567) (-567) (-567)) 67)) (-2003 (((-410 (-567)) (-567)) 30)) (-2328 (((-567) (-567)) 36)) (-3251 (((-567) (-567)) 79)) (-3840 (((-567) (-567)) 51)) (-1599 (((-645 (-567)) (-567)) 85)) (-2876 (((-567) (-567) (-567) (-567) (-567)) 63)) (-2346 (((-410 (-567)) (-567)) 60)))
-(((-564) (-10 -7 (-15 -2346 ((-410 (-567)) (-567))) (-15 -2876 ((-567) (-567) (-567) (-567) (-567))) (-15 -1599 ((-645 (-567)) (-567))) (-15 -3840 ((-567) (-567))) (-15 -3251 ((-567) (-567))) (-15 -2328 ((-567) (-567))) (-15 -2003 ((-410 (-567)) (-567))) (-15 -2624 ((-567) (-567) (-567))) (-15 -1408 ((-567) (-567) (-567))) (-15 -2229 ((-567) (-567))) (-15 -1488 ((-567) (-567))) (-15 -3957 ((-567) (-567))) (-15 -1333 ((-567) (-567) (-772))))) (T -564))
-((-1333 (*1 *2 *2 *3) (-12 (-5 *2 (-567)) (-5 *3 (-772)) (-5 *1 (-564)))) (-3957 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))) (-1488 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))) (-2229 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))) (-1408 (*1 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))) (-2624 (*1 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))) (-2003 (*1 *2 *3) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-564)) (-5 *3 (-567)))) (-2328 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))) (-3251 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))) (-3840 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))) (-1599 (*1 *2 *3) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-564)) (-5 *3 (-567)))) (-2876 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))) (-2346 (*1 *2 *3) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-564)) (-5 *3 (-567)))))
-(-10 -7 (-15 -2346 ((-410 (-567)) (-567))) (-15 -2876 ((-567) (-567) (-567) (-567) (-567))) (-15 -1599 ((-645 (-567)) (-567))) (-15 -3840 ((-567) (-567))) (-15 -3251 ((-567) (-567))) (-15 -2328 ((-567) (-567))) (-15 -2003 ((-410 (-567)) (-567))) (-15 -2624 ((-567) (-567) (-567))) (-15 -1408 ((-567) (-567) (-567))) (-15 -2229 ((-567) (-567))) (-15 -1488 ((-567) (-567))) (-15 -3957 ((-567) (-567))) (-15 -1333 ((-567) (-567) (-772))))
-((-4377 (((-2 (|:| |answer| |#4|) (|:| -1382 |#4|)) |#4| (-1 |#2| |#2|)) 56)))
-(((-565 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4377 ((-2 (|:| |answer| |#4|) (|:| -1382 |#4|)) |#4| (-1 |#2| |#2|)))) (-365) (-1244 |#1|) (-1244 (-410 |#2|)) (-344 |#1| |#2| |#3|)) (T -565))
-((-4377 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1244 *5)) (-4 *5 (-365)) (-4 *7 (-1244 (-410 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -1382 *3))) (-5 *1 (-565 *5 *6 *7 *3)) (-4 *3 (-344 *5 *6 *7)))))
-(-10 -7 (-15 -4377 ((-2 (|:| |answer| |#4|) (|:| -1382 |#4|)) |#4| (-1 |#2| |#2|))))
-((-4377 (((-2 (|:| |answer| (-410 |#2|)) (|:| -1382 (-410 |#2|)) (|:| |specpart| (-410 |#2|)) (|:| |polypart| |#2|)) (-410 |#2|) (-1 |#2| |#2|)) 18)))
-(((-566 |#1| |#2|) (-10 -7 (-15 -4377 ((-2 (|:| |answer| (-410 |#2|)) (|:| -1382 (-410 |#2|)) (|:| |specpart| (-410 |#2|)) (|:| |polypart| |#2|)) (-410 |#2|) (-1 |#2| |#2|)))) (-365) (-1244 |#1|)) (T -566))
-((-4377 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1244 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| |answer| (-410 *6)) (|:| -1382 (-410 *6)) (|:| |specpart| (-410 *6)) (|:| |polypart| *6))) (-5 *1 (-566 *5 *6)) (-5 *3 (-410 *6)))))
-(-10 -7 (-15 -4377 ((-2 (|:| |answer| (-410 |#2|)) (|:| -1382 (-410 |#2|)) (|:| |specpart| (-410 |#2|)) (|:| |polypart| |#2|)) (-410 |#2|) (-1 |#2| |#2|))))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) 30)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 97)) (-4381 (($ $) 98)) (-3949 (((-112) $) NIL)) (-2882 (($ $ $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2208 (($ $ $ $) 52)) (-3248 (($ $) NIL)) (-2908 (((-421 $) $) NIL)) (-3609 (((-112) $ $) NIL)) (-1750 (((-567) $) NIL)) (-4130 (($ $ $) 92)) (-2585 (($) NIL T CONST)) (-3753 (((-3 (-567) "failed") $) NIL)) (-2038 (((-567) $) NIL)) (-2349 (($ $ $) 54)) (-2630 (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) 77) (((-690 (-567)) (-690 $)) 73)) (-2109 (((-3 $ "failed") $) 94)) (-2085 (((-3 (-410 (-567)) "failed") $) NIL)) (-1862 (((-112) $) NIL)) (-2331 (((-410 (-567)) $) NIL)) (-1348 (($) 79) (($ $) 80)) (-2360 (($ $ $) 91)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-3184 (((-112) $) NIL)) (-3407 (($ $ $ $) NIL)) (-4254 (($ $ $) 70)) (-4336 (((-112) $) NIL)) (-2967 (($ $ $) NIL)) (-4303 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL)) (-1433 (((-112) $) 34)) (-3837 (((-112) $) 86)) (-3972 (((-3 $ "failed") $) NIL)) (-3494 (((-112) $) 43)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2317 (($ $ $ $) 55)) (-1354 (($ $ $) 88)) (-2981 (($ $ $) 87)) (-1446 (($ $) NIL)) (-1699 (($ $) 49)) (-2740 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1419 (((-1160) $) 69)) (-2196 (($ $ $) NIL)) (-2672 (($) NIL T CONST)) (-2289 (($ $) 38)) (-3430 (((-1122) $) 42)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 129)) (-2774 (($ $ $) 95) (($ (-645 $)) NIL)) (-1576 (($ $) NIL)) (-2706 (((-421 $) $) 115)) (-3402 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL)) (-2391 (((-3 $ "failed") $ $) 113)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2757 (((-112) $) NIL)) (-1990 (((-772) $) NIL)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 90)) (-1593 (($ $ (-772)) NIL) (($ $) NIL)) (-2277 (($ $) 40)) (-4305 (($ $) 36)) (-3893 (((-567) $) 48) (((-539) $) 64) (((-894 (-567)) $) NIL) (((-381) $) 58) (((-225) $) 61) (((-1160) $) 66)) (-4132 (((-863) $) 46) (($ (-567)) 47) (($ $) NIL) (($ (-567)) 47)) (-4221 (((-772)) NIL T CONST)) (-4210 (((-112) $ $) NIL)) (-3881 (($ $ $) NIL)) (-1745 (((-112) $ $) NIL)) (-3047 (($) 35)) (-3816 (((-112) $ $) NIL)) (-4309 (($ $ $ $) 51)) (-2219 (($ $) 78)) (-1716 (($) 6 T CONST)) (-1728 (($) 31 T CONST)) (-2904 (((-1160) $) 26) (((-1160) $ (-112)) 27) (((-1273) (-823) $) 28) (((-1273) (-823) $ (-112)) 29)) (-2637 (($ $ (-772)) NIL) (($ $) NIL)) (-2997 (((-112) $ $) 50)) (-2971 (((-112) $ $) 81)) (-2936 (((-112) $ $) 33)) (-2984 (((-112) $ $) 83)) (-2958 (((-112) $ $) 10)) (-3045 (($ $) 16) (($ $ $) 39)) (-3033 (($ $ $) 37)) (** (($ $ (-923)) NIL) (($ $ (-772)) 85)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 84) (($ $ $) 53)))
-(((-567) (-13 (-548) (-615 (-1160)) (-829) (-10 -7 (-6 -4405) (-6 -4410) (-6 -4406) (-6 -4400)))) (T -567))
-NIL
-(-13 (-548) (-615 (-1160)) (-829) (-10 -7 (-6 -4405) (-6 -4410) (-6 -4406) (-6 -4400)))
-((-2264 (((-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160))) (|:| |extra| (-1037))) (-770) (-1065)) 119) (((-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160))) (|:| |extra| (-1037))) (-770)) 121)) (-2416 (((-3 (-1037) "failed") (-317 (-381)) (-1094 (-844 (-381))) (-1178)) 197) (((-3 (-1037) "failed") (-317 (-381)) (-1094 (-844 (-381))) (-1160)) 196) (((-1037) (-317 (-381)) (-645 (-1096 (-844 (-381)))) (-381) (-381) (-1065)) 201) (((-1037) (-317 (-381)) (-645 (-1096 (-844 (-381)))) (-381) (-381)) 202) (((-1037) (-317 (-381)) (-645 (-1096 (-844 (-381)))) (-381)) 203) (((-1037) (-317 (-381)) (-645 (-1096 (-844 (-381))))) 204) (((-1037) (-317 (-381)) (-1096 (-844 (-381)))) 192) (((-1037) (-317 (-381)) (-1096 (-844 (-381))) (-381)) 191) (((-1037) (-317 (-381)) (-1096 (-844 (-381))) (-381) (-381)) 187) (((-1037) (-770)) 179) (((-1037) (-317 (-381)) (-1096 (-844 (-381))) (-381) (-381) (-1065)) 186)))
-(((-568) (-10 -7 (-15 -2416 ((-1037) (-317 (-381)) (-1096 (-844 (-381))) (-381) (-381) (-1065))) (-15 -2416 ((-1037) (-770))) (-15 -2416 ((-1037) (-317 (-381)) (-1096 (-844 (-381))) (-381) (-381))) (-15 -2416 ((-1037) (-317 (-381)) (-1096 (-844 (-381))) (-381))) (-15 -2416 ((-1037) (-317 (-381)) (-1096 (-844 (-381))))) (-15 -2416 ((-1037) (-317 (-381)) (-645 (-1096 (-844 (-381)))))) (-15 -2416 ((-1037) (-317 (-381)) (-645 (-1096 (-844 (-381)))) (-381))) (-15 -2416 ((-1037) (-317 (-381)) (-645 (-1096 (-844 (-381)))) (-381) (-381))) (-15 -2416 ((-1037) (-317 (-381)) (-645 (-1096 (-844 (-381)))) (-381) (-381) (-1065))) (-15 -2264 ((-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160))) (|:| |extra| (-1037))) (-770))) (-15 -2264 ((-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160))) (|:| |extra| (-1037))) (-770) (-1065))) (-15 -2416 ((-3 (-1037) "failed") (-317 (-381)) (-1094 (-844 (-381))) (-1160))) (-15 -2416 ((-3 (-1037) "failed") (-317 (-381)) (-1094 (-844 (-381))) (-1178))))) (T -568))
-((-2416 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-317 (-381))) (-5 *4 (-1094 (-844 (-381)))) (-5 *5 (-1178)) (-5 *2 (-1037)) (-5 *1 (-568)))) (-2416 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-317 (-381))) (-5 *4 (-1094 (-844 (-381)))) (-5 *5 (-1160)) (-5 *2 (-1037)) (-5 *1 (-568)))) (-2264 (*1 *2 *3 *4) (-12 (-5 *3 (-770)) (-5 *4 (-1065)) (-5 *2 (-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160))) (|:| |extra| (-1037)))) (-5 *1 (-568)))) (-2264 (*1 *2 *3) (-12 (-5 *3 (-770)) (-5 *2 (-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160))) (|:| |extra| (-1037)))) (-5 *1 (-568)))) (-2416 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-645 (-1096 (-844 (-381))))) (-5 *5 (-381)) (-5 *6 (-1065)) (-5 *2 (-1037)) (-5 *1 (-568)))) (-2416 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-645 (-1096 (-844 (-381))))) (-5 *5 (-381)) (-5 *2 (-1037)) (-5 *1 (-568)))) (-2416 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-645 (-1096 (-844 (-381))))) (-5 *5 (-381)) (-5 *2 (-1037)) (-5 *1 (-568)))) (-2416 (*1 *2 *3 *4) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-645 (-1096 (-844 (-381))))) (-5 *2 (-1037)) (-5 *1 (-568)))) (-2416 (*1 *2 *3 *4) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1096 (-844 (-381)))) (-5 *2 (-1037)) (-5 *1 (-568)))) (-2416 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1096 (-844 (-381)))) (-5 *5 (-381)) (-5 *2 (-1037)) (-5 *1 (-568)))) (-2416 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1096 (-844 (-381)))) (-5 *5 (-381)) (-5 *2 (-1037)) (-5 *1 (-568)))) (-2416 (*1 *2 *3) (-12 (-5 *3 (-770)) (-5 *2 (-1037)) (-5 *1 (-568)))) (-2416 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1096 (-844 (-381)))) (-5 *5 (-381)) (-5 *6 (-1065)) (-5 *2 (-1037)) (-5 *1 (-568)))))
-(-10 -7 (-15 -2416 ((-1037) (-317 (-381)) (-1096 (-844 (-381))) (-381) (-381) (-1065))) (-15 -2416 ((-1037) (-770))) (-15 -2416 ((-1037) (-317 (-381)) (-1096 (-844 (-381))) (-381) (-381))) (-15 -2416 ((-1037) (-317 (-381)) (-1096 (-844 (-381))) (-381))) (-15 -2416 ((-1037) (-317 (-381)) (-1096 (-844 (-381))))) (-15 -2416 ((-1037) (-317 (-381)) (-645 (-1096 (-844 (-381)))))) (-15 -2416 ((-1037) (-317 (-381)) (-645 (-1096 (-844 (-381)))) (-381))) (-15 -2416 ((-1037) (-317 (-381)) (-645 (-1096 (-844 (-381)))) (-381) (-381))) (-15 -2416 ((-1037) (-317 (-381)) (-645 (-1096 (-844 (-381)))) (-381) (-381) (-1065))) (-15 -2264 ((-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160))) (|:| |extra| (-1037))) (-770))) (-15 -2264 ((-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160))) (|:| |extra| (-1037))) (-770) (-1065))) (-15 -2416 ((-3 (-1037) "failed") (-317 (-381)) (-1094 (-844 (-381))) (-1160))) (-15 -2416 ((-3 (-1037) "failed") (-317 (-381)) (-1094 (-844 (-381))) (-1178))))
-((-1942 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-613 |#2|) (-613 |#2|) (-645 |#2|)) 198)) (-4201 (((-588 |#2|) |#2| (-613 |#2|) (-613 |#2|)) 99)) (-1748 (((-3 (-2 (|:| -1752 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-613 |#2|) (-613 |#2|) |#2|) 194)) (-2604 (((-3 |#2| "failed") |#2| |#2| |#2| (-613 |#2|) (-613 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1178))) 203)) (-3417 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2623 (-645 |#2|))) |#3| |#2| (-613 |#2|) (-613 |#2|) (-1178)) 212 (|has| |#3| (-657 |#2|)))))
-(((-569 |#1| |#2| |#3|) (-10 -7 (-15 -4201 ((-588 |#2|) |#2| (-613 |#2|) (-613 |#2|))) (-15 -1748 ((-3 (-2 (|:| -1752 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-613 |#2|) (-613 |#2|) |#2|)) (-15 -1942 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-613 |#2|) (-613 |#2|) (-645 |#2|))) (-15 -2604 ((-3 |#2| "failed") |#2| |#2| |#2| (-613 |#2|) (-613 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1178)))) (IF (|has| |#3| (-657 |#2|)) (-15 -3417 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2623 (-645 |#2|))) |#3| |#2| (-613 |#2|) (-613 |#2|) (-1178))) |%noBranch|)) (-13 (-455) (-1040 (-567)) (-147) (-640 (-567))) (-13 (-433 |#1|) (-27) (-1203)) (-1102)) (T -569))
-((-3417 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-613 *4)) (-5 *6 (-1178)) (-4 *4 (-13 (-433 *7) (-27) (-1203))) (-4 *7 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2623 (-645 *4)))) (-5 *1 (-569 *7 *4 *3)) (-4 *3 (-657 *4)) (-4 *3 (-1102)))) (-2604 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-613 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1178))) (-4 *2 (-13 (-433 *5) (-27) (-1203))) (-4 *5 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) (-5 *1 (-569 *5 *2 *6)) (-4 *6 (-1102)))) (-1942 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-645 *3)) (-4 *3 (-13 (-433 *6) (-27) (-1203))) (-4 *6 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-569 *6 *3 *7)) (-4 *7 (-1102)))) (-1748 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-613 *3)) (-4 *3 (-13 (-433 *5) (-27) (-1203))) (-4 *5 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) (-5 *2 (-2 (|:| -1752 *3) (|:| |coeff| *3))) (-5 *1 (-569 *5 *3 *6)) (-4 *6 (-1102)))) (-4201 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-613 *3)) (-4 *3 (-13 (-433 *5) (-27) (-1203))) (-4 *5 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) (-5 *2 (-588 *3)) (-5 *1 (-569 *5 *3 *6)) (-4 *6 (-1102)))))
-(-10 -7 (-15 -4201 ((-588 |#2|) |#2| (-613 |#2|) (-613 |#2|))) (-15 -1748 ((-3 (-2 (|:| -1752 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-613 |#2|) (-613 |#2|) |#2|)) (-15 -1942 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-613 |#2|) (-613 |#2|) (-645 |#2|))) (-15 -2604 ((-3 |#2| "failed") |#2| |#2| |#2| (-613 |#2|) (-613 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1178)))) (IF (|has| |#3| (-657 |#2|)) (-15 -3417 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2623 (-645 |#2|))) |#3| |#2| (-613 |#2|) (-613 |#2|) (-1178))) |%noBranch|))
-((-3656 (((-2 (|:| -1959 |#2|) (|:| |nconst| |#2|)) |#2| (-1178)) 64)) (-1569 (((-3 |#2| "failed") |#2| (-1178) (-844 |#2|) (-844 |#2|)) 175 (-12 (|has| |#2| (-1141)) (|has| |#1| (-615 (-894 (-567)))) (|has| |#1| (-888 (-567))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1178)) 154 (-12 (|has| |#2| (-630)) (|has| |#1| (-615 (-894 (-567)))) (|has| |#1| (-888 (-567)))))) (-2805 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1178)) 156 (-12 (|has| |#2| (-630)) (|has| |#1| (-615 (-894 (-567)))) (|has| |#1| (-888 (-567)))))))
-(((-570 |#1| |#2|) (-10 -7 (-15 -3656 ((-2 (|:| -1959 |#2|) (|:| |nconst| |#2|)) |#2| (-1178))) (IF (|has| |#1| (-615 (-894 (-567)))) (IF (|has| |#1| (-888 (-567))) (PROGN (IF (|has| |#2| (-630)) (PROGN (-15 -2805 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1178))) (-15 -1569 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1178)))) |%noBranch|) (IF (|has| |#2| (-1141)) (-15 -1569 ((-3 |#2| "failed") |#2| (-1178) (-844 |#2|) (-844 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-1040 (-567)) (-455) (-640 (-567))) (-13 (-27) (-1203) (-433 |#1|))) (T -570))
-((-1569 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1178)) (-5 *4 (-844 *2)) (-4 *2 (-1141)) (-4 *2 (-13 (-27) (-1203) (-433 *5))) (-4 *5 (-615 (-894 (-567)))) (-4 *5 (-888 (-567))) (-4 *5 (-13 (-1040 (-567)) (-455) (-640 (-567)))) (-5 *1 (-570 *5 *2)))) (-1569 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1178)) (-4 *5 (-615 (-894 (-567)))) (-4 *5 (-888 (-567))) (-4 *5 (-13 (-1040 (-567)) (-455) (-640 (-567)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-570 *5 *3)) (-4 *3 (-630)) (-4 *3 (-13 (-27) (-1203) (-433 *5))))) (-2805 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1178)) (-4 *5 (-615 (-894 (-567)))) (-4 *5 (-888 (-567))) (-4 *5 (-13 (-1040 (-567)) (-455) (-640 (-567)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-570 *5 *3)) (-4 *3 (-630)) (-4 *3 (-13 (-27) (-1203) (-433 *5))))) (-3656 (*1 *2 *3 *4) (-12 (-5 *4 (-1178)) (-4 *5 (-13 (-1040 (-567)) (-455) (-640 (-567)))) (-5 *2 (-2 (|:| -1959 *3) (|:| |nconst| *3))) (-5 *1 (-570 *5 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *5))))))
-(-10 -7 (-15 -3656 ((-2 (|:| -1959 |#2|) (|:| |nconst| |#2|)) |#2| (-1178))) (IF (|has| |#1| (-615 (-894 (-567)))) (IF (|has| |#1| (-888 (-567))) (PROGN (IF (|has| |#2| (-630)) (PROGN (-15 -2805 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1178))) (-15 -1569 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1178)))) |%noBranch|) (IF (|has| |#2| (-1141)) (-15 -1569 ((-3 |#2| "failed") |#2| (-1178) (-844 |#2|) (-844 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|))
-((-3130 (((-3 (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|)))))) "failed") (-410 |#2|) (-645 (-410 |#2|))) 41)) (-2416 (((-588 (-410 |#2|)) (-410 |#2|)) 28)) (-3601 (((-3 (-410 |#2|) "failed") (-410 |#2|)) 17)) (-2995 (((-3 (-2 (|:| -1752 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-410 |#2|)) 48)))
-(((-571 |#1| |#2|) (-10 -7 (-15 -2416 ((-588 (-410 |#2|)) (-410 |#2|))) (-15 -3601 ((-3 (-410 |#2|) "failed") (-410 |#2|))) (-15 -2995 ((-3 (-2 (|:| -1752 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-410 |#2|))) (-15 -3130 ((-3 (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|)))))) "failed") (-410 |#2|) (-645 (-410 |#2|))))) (-13 (-365) (-147) (-1040 (-567))) (-1244 |#1|)) (T -571))
-((-3130 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-645 (-410 *6))) (-5 *3 (-410 *6)) (-4 *6 (-1244 *5)) (-4 *5 (-13 (-365) (-147) (-1040 (-567)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-571 *5 *6)))) (-2995 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-365) (-147) (-1040 (-567)))) (-4 *5 (-1244 *4)) (-5 *2 (-2 (|:| -1752 (-410 *5)) (|:| |coeff| (-410 *5)))) (-5 *1 (-571 *4 *5)) (-5 *3 (-410 *5)))) (-3601 (*1 *2 *2) (|partial| -12 (-5 *2 (-410 *4)) (-4 *4 (-1244 *3)) (-4 *3 (-13 (-365) (-147) (-1040 (-567)))) (-5 *1 (-571 *3 *4)))) (-2416 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-147) (-1040 (-567)))) (-4 *5 (-1244 *4)) (-5 *2 (-588 (-410 *5))) (-5 *1 (-571 *4 *5)) (-5 *3 (-410 *5)))))
-(-10 -7 (-15 -2416 ((-588 (-410 |#2|)) (-410 |#2|))) (-15 -3601 ((-3 (-410 |#2|) "failed") (-410 |#2|))) (-15 -2995 ((-3 (-2 (|:| -1752 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-410 |#2|))) (-15 -3130 ((-3 (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|)))))) "failed") (-410 |#2|) (-645 (-410 |#2|)))))
-((-2831 (((-3 (-567) "failed") |#1|) 14)) (-2047 (((-112) |#1|) 13)) (-3108 (((-567) |#1|) 9)))
-(((-572 |#1|) (-10 -7 (-15 -3108 ((-567) |#1|)) (-15 -2047 ((-112) |#1|)) (-15 -2831 ((-3 (-567) "failed") |#1|))) (-1040 (-567))) (T -572))
-((-2831 (*1 *2 *3) (|partial| -12 (-5 *2 (-567)) (-5 *1 (-572 *3)) (-4 *3 (-1040 *2)))) (-2047 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-572 *3)) (-4 *3 (-1040 (-567))))) (-3108 (*1 *2 *3) (-12 (-5 *2 (-567)) (-5 *1 (-572 *3)) (-4 *3 (-1040 *2)))))
-(-10 -7 (-15 -3108 ((-567) |#1|)) (-15 -2047 ((-112) |#1|)) (-15 -2831 ((-3 (-567) "failed") |#1|)))
-((-2227 (((-3 (-2 (|:| |mainpart| (-410 (-954 |#1|))) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 (-954 |#1|))) (|:| |logand| (-410 (-954 |#1|))))))) "failed") (-410 (-954 |#1|)) (-1178) (-645 (-410 (-954 |#1|)))) 48)) (-3089 (((-588 (-410 (-954 |#1|))) (-410 (-954 |#1|)) (-1178)) 28)) (-2216 (((-3 (-410 (-954 |#1|)) "failed") (-410 (-954 |#1|)) (-1178)) 23)) (-3504 (((-3 (-2 (|:| -1752 (-410 (-954 |#1|))) (|:| |coeff| (-410 (-954 |#1|)))) "failed") (-410 (-954 |#1|)) (-1178) (-410 (-954 |#1|))) 35)))
-(((-573 |#1|) (-10 -7 (-15 -3089 ((-588 (-410 (-954 |#1|))) (-410 (-954 |#1|)) (-1178))) (-15 -2216 ((-3 (-410 (-954 |#1|)) "failed") (-410 (-954 |#1|)) (-1178))) (-15 -2227 ((-3 (-2 (|:| |mainpart| (-410 (-954 |#1|))) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 (-954 |#1|))) (|:| |logand| (-410 (-954 |#1|))))))) "failed") (-410 (-954 |#1|)) (-1178) (-645 (-410 (-954 |#1|))))) (-15 -3504 ((-3 (-2 (|:| -1752 (-410 (-954 |#1|))) (|:| |coeff| (-410 (-954 |#1|)))) "failed") (-410 (-954 |#1|)) (-1178) (-410 (-954 |#1|))))) (-13 (-559) (-1040 (-567)) (-147))) (T -573))
-((-3504 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1178)) (-4 *5 (-13 (-559) (-1040 (-567)) (-147))) (-5 *2 (-2 (|:| -1752 (-410 (-954 *5))) (|:| |coeff| (-410 (-954 *5))))) (-5 *1 (-573 *5)) (-5 *3 (-410 (-954 *5))))) (-2227 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1178)) (-5 *5 (-645 (-410 (-954 *6)))) (-5 *3 (-410 (-954 *6))) (-4 *6 (-13 (-559) (-1040 (-567)) (-147))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-573 *6)))) (-2216 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-410 (-954 *4))) (-5 *3 (-1178)) (-4 *4 (-13 (-559) (-1040 (-567)) (-147))) (-5 *1 (-573 *4)))) (-3089 (*1 *2 *3 *4) (-12 (-5 *4 (-1178)) (-4 *5 (-13 (-559) (-1040 (-567)) (-147))) (-5 *2 (-588 (-410 (-954 *5)))) (-5 *1 (-573 *5)) (-5 *3 (-410 (-954 *5))))))
-(-10 -7 (-15 -3089 ((-588 (-410 (-954 |#1|))) (-410 (-954 |#1|)) (-1178))) (-15 -2216 ((-3 (-410 (-954 |#1|)) "failed") (-410 (-954 |#1|)) (-1178))) (-15 -2227 ((-3 (-2 (|:| |mainpart| (-410 (-954 |#1|))) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 (-954 |#1|))) (|:| |logand| (-410 (-954 |#1|))))))) "failed") (-410 (-954 |#1|)) (-1178) (-645 (-410 (-954 |#1|))))) (-15 -3504 ((-3 (-2 (|:| -1752 (-410 (-954 |#1|))) (|:| |coeff| (-410 (-954 |#1|)))) "failed") (-410 (-954 |#1|)) (-1178) (-410 (-954 |#1|)))))
-((-2403 (((-112) $ $) 75)) (-2460 (((-112) $) 48)) (-2039 ((|#1| $) 39)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) 79)) (-3146 (($ $) 140)) (-3012 (($ $) 119)) (-4016 ((|#1| $) 37)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2716 (($ $) NIL)) (-3128 (($ $) 142)) (-2987 (($ $) 115)) (-3166 (($ $) 144)) (-3035 (($ $) 123)) (-2585 (($) NIL T CONST)) (-3753 (((-3 (-567) "failed") $) 94)) (-2038 (((-567) $) 96)) (-2109 (((-3 $ "failed") $) 78)) (-3471 (($ |#1| |#1|) 35)) (-4336 (((-112) $) 44)) (-1482 (($) 105)) (-1433 (((-112) $) 55)) (-2651 (($ $ (-567)) NIL)) (-3494 (((-112) $) 45)) (-1354 (($ $ $) NIL)) (-2981 (($ $ $) NIL)) (-3063 (($ $) 107)) (-2740 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1419 (((-1160) $) NIL)) (-2467 (($ |#1| |#1|) 29) (($ |#1|) 34) (($ (-410 (-567))) 93)) (-3589 ((|#1| $) 36)) (-3430 (((-1122) $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-2774 (($ $ $) 81) (($ (-645 $)) NIL)) (-2391 (((-3 $ "failed") $ $) 80)) (-3946 (($ $) 109)) (-3175 (($ $) 148)) (-3049 (($ $) 121)) (-3156 (($ $) 150)) (-3023 (($ $) 125)) (-3137 (($ $) 146)) (-2999 (($ $) 117)) (-2218 (((-112) $ |#1|) 42)) (-4132 (((-863) $) 101) (($ (-567)) 83) (($ $) NIL) (($ (-567)) 83)) (-4221 (((-772)) 103 T CONST)) (-1745 (((-112) $ $) NIL)) (-3200 (($ $) 162)) (-3084 (($ $) 131)) (-3816 (((-112) $ $) NIL)) (-3183 (($ $) 160)) (-3062 (($ $) 127)) (-3221 (($ $) 158)) (-3106 (($ $) 138)) (-3785 (($ $) 156)) (-3118 (($ $) 136)) (-3211 (($ $) 154)) (-3095 (($ $) 133)) (-3193 (($ $) 152)) (-3074 (($ $) 129)) (-1716 (($) 30 T CONST)) (-1728 (($) 10 T CONST)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 49)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) 47)) (-3045 (($ $) 53) (($ $ $) 54)) (-3033 (($ $ $) 52)) (** (($ $ (-923)) 71) (($ $ (-772)) NIL) (($ $ $) 111) (($ $ (-410 (-567))) 164)) (* (($ (-923) $) 66) (($ (-772) $) NIL) (($ (-567) $) 65) (($ $ $) 61)))
-(((-574 |#1|) (-557 |#1|) (-13 (-407) (-1203))) (T -574))
+((-1439 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1179) (-645 |#2|)) 38)) (-3473 (((-588 |#2|) |#2| (-1179)) 63)) (-3344 (((-3 |#2| "failed") |#2| (-1179)) 156)) (-4107 (((-3 (-2 (|:| -2872 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1179) (-613 |#2|) (-645 (-613 |#2|))) 159)) (-3953 (((-3 (-2 (|:| -2872 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1179) |#2|) 41)))
+(((-560 |#1| |#2|) (-10 -7 (-15 -3953 ((-3 (-2 (|:| -2872 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1179) |#2|)) (-15 -1439 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1179) (-645 |#2|))) (-15 -3344 ((-3 |#2| "failed") |#2| (-1179))) (-15 -3473 ((-588 |#2|) |#2| (-1179))) (-15 -4107 ((-3 (-2 (|:| -2872 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1179) (-613 |#2|) (-645 (-613 |#2|))))) (-13 (-455) (-147) (-1040 (-567)) (-640 (-567))) (-13 (-27) (-1204) (-433 |#1|))) (T -560))
+((-4107 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1179)) (-5 *6 (-645 (-613 *3))) (-5 *5 (-613 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *7))) (-4 *7 (-13 (-455) (-147) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-2 (|:| -2872 *3) (|:| |coeff| *3))) (-5 *1 (-560 *7 *3)))) (-3473 (*1 *2 *3 *4) (-12 (-5 *4 (-1179)) (-4 *5 (-13 (-455) (-147) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-588 *3)) (-5 *1 (-560 *5 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *5))))) (-3344 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1179)) (-4 *4 (-13 (-455) (-147) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-560 *4 *2)) (-4 *2 (-13 (-27) (-1204) (-433 *4))))) (-1439 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1179)) (-5 *5 (-645 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *6))) (-4 *6 (-13 (-455) (-147) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-560 *6 *3)))) (-3953 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1179)) (-4 *5 (-13 (-455) (-147) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-2 (|:| -2872 *3) (|:| |coeff| *3))) (-5 *1 (-560 *5 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *5))))))
+(-10 -7 (-15 -3953 ((-3 (-2 (|:| -2872 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1179) |#2|)) (-15 -1439 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1179) (-645 |#2|))) (-15 -3344 ((-3 |#2| "failed") |#2| (-1179))) (-15 -3473 ((-588 |#2|) |#2| (-1179))) (-15 -4107 ((-3 (-2 (|:| -2872 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1179) (-613 |#2|) (-645 (-613 |#2|)))))
+((-3597 (((-421 |#1|) |#1|) 19)) (-2717 (((-421 |#1|) |#1|) 34)) (-2248 (((-3 |#1| "failed") |#1|) 51)) (-2846 (((-421 |#1|) |#1|) 64)))
+(((-561 |#1|) (-10 -7 (-15 -2717 ((-421 |#1|) |#1|)) (-15 -3597 ((-421 |#1|) |#1|)) (-15 -2846 ((-421 |#1|) |#1|)) (-15 -2248 ((-3 |#1| "failed") |#1|))) (-548)) (T -561))
+((-2248 (*1 *2 *2) (|partial| -12 (-5 *1 (-561 *2)) (-4 *2 (-548)))) (-2846 (*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-561 *3)) (-4 *3 (-548)))) (-3597 (*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-561 *3)) (-4 *3 (-548)))) (-2717 (*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-561 *3)) (-4 *3 (-548)))))
+(-10 -7 (-15 -2717 ((-421 |#1|) |#1|)) (-15 -3597 ((-421 |#1|) |#1|)) (-15 -2846 ((-421 |#1|) |#1|)) (-15 -2248 ((-3 |#1| "failed") |#1|)))
+((-1467 (($) 9)) (-1964 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1159 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2408 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 35)) (-1405 (((-645 (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $) 32)) (-2646 (($ (-2 (|:| -1809 (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4236 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1159 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2408 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 29)) (-3047 (($ (-645 (-2 (|:| -1809 (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4236 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1159 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2408 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 27)) (-4236 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1159 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2408 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 39)) (-2190 (((-645 (-2 (|:| -1809 (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4236 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1159 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2408 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 37)) (-4196 (((-1274)) 12)))
+(((-562) (-10 -8 (-15 -1467 ($)) (-15 -4196 ((-1274))) (-15 -1405 ((-645 (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -3047 ($ (-645 (-2 (|:| -1809 (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4236 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1159 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2408 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -2646 ($ (-2 (|:| -1809 (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4236 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1159 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2408 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1964 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1159 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2408 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2190 ((-645 (-2 (|:| -1809 (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4236 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1159 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2408 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -4236 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1159 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2408 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -562))
+((-4236 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1159 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2408 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-562)))) (-2190 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| -1809 (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4236 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1159 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2408 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-562)))) (-1964 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1159 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2408 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-562)))) (-2646 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -1809 (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4236 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1159 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2408 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-562)))) (-3047 (*1 *1 *2) (-12 (-5 *2 (-645 (-2 (|:| -1809 (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4236 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1159 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2408 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-562)))) (-1405 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-5 *1 (-562)))) (-4196 (*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-562)))) (-1467 (*1 *1) (-5 *1 (-562))))
+(-10 -8 (-15 -1467 ($)) (-15 -4196 ((-1274))) (-15 -1405 ((-645 (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -3047 ($ (-645 (-2 (|:| -1809 (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4236 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1159 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2408 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -2646 ($ (-2 (|:| -1809 (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4236 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1159 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2408 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1964 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1159 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2408 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2190 ((-645 (-2 (|:| -1809 (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4236 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1159 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2408 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -4236 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1159 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2408 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))
+((-2684 (((-1175 (-410 (-1175 |#2|))) |#2| (-613 |#2|) (-613 |#2|) (-1175 |#2|)) 35)) (-3123 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-613 |#2|) (-613 |#2|) (-645 |#2|) (-613 |#2|) |#2| (-410 (-1175 |#2|))) 105) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-613 |#2|) (-613 |#2|) (-645 |#2|) |#2| (-1175 |#2|)) 115)) (-4383 (((-588 |#2|) |#2| (-613 |#2|) (-613 |#2|) (-613 |#2|) |#2| (-410 (-1175 |#2|))) 85) (((-588 |#2|) |#2| (-613 |#2|) (-613 |#2|) |#2| (-1175 |#2|)) 55)) (-1600 (((-3 (-2 (|:| -2872 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-613 |#2|) (-613 |#2|) |#2| (-613 |#2|) |#2| (-410 (-1175 |#2|))) 92) (((-3 (-2 (|:| -2872 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-613 |#2|) (-613 |#2|) |#2| |#2| (-1175 |#2|)) 114)) (-2081 (((-3 |#2| "failed") |#2| |#2| (-613 |#2|) (-613 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1179)) (-613 |#2|) |#2| (-410 (-1175 |#2|))) 110) (((-3 |#2| "failed") |#2| |#2| (-613 |#2|) (-613 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1179)) |#2| (-1175 |#2|)) 116)) (-3180 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2144 (-645 |#2|))) |#3| |#2| (-613 |#2|) (-613 |#2|) (-613 |#2|) |#2| (-410 (-1175 |#2|))) 135 (|has| |#3| (-657 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2144 (-645 |#2|))) |#3| |#2| (-613 |#2|) (-613 |#2|) |#2| (-1175 |#2|)) 134 (|has| |#3| (-657 |#2|)))) (-2848 ((|#2| (-1175 (-410 (-1175 |#2|))) (-613 |#2|) |#2|) 53)) (-2484 (((-1175 (-410 (-1175 |#2|))) (-1175 |#2|) (-613 |#2|)) 34)))
+(((-563 |#1| |#2| |#3|) (-10 -7 (-15 -4383 ((-588 |#2|) |#2| (-613 |#2|) (-613 |#2|) |#2| (-1175 |#2|))) (-15 -4383 ((-588 |#2|) |#2| (-613 |#2|) (-613 |#2|) (-613 |#2|) |#2| (-410 (-1175 |#2|)))) (-15 -1600 ((-3 (-2 (|:| -2872 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-613 |#2|) (-613 |#2|) |#2| |#2| (-1175 |#2|))) (-15 -1600 ((-3 (-2 (|:| -2872 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-613 |#2|) (-613 |#2|) |#2| (-613 |#2|) |#2| (-410 (-1175 |#2|)))) (-15 -3123 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-613 |#2|) (-613 |#2|) (-645 |#2|) |#2| (-1175 |#2|))) (-15 -3123 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-613 |#2|) (-613 |#2|) (-645 |#2|) (-613 |#2|) |#2| (-410 (-1175 |#2|)))) (-15 -2081 ((-3 |#2| "failed") |#2| |#2| (-613 |#2|) (-613 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1179)) |#2| (-1175 |#2|))) (-15 -2081 ((-3 |#2| "failed") |#2| |#2| (-613 |#2|) (-613 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1179)) (-613 |#2|) |#2| (-410 (-1175 |#2|)))) (-15 -2684 ((-1175 (-410 (-1175 |#2|))) |#2| (-613 |#2|) (-613 |#2|) (-1175 |#2|))) (-15 -2848 (|#2| (-1175 (-410 (-1175 |#2|))) (-613 |#2|) |#2|)) (-15 -2484 ((-1175 (-410 (-1175 |#2|))) (-1175 |#2|) (-613 |#2|))) (IF (|has| |#3| (-657 |#2|)) (PROGN (-15 -3180 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2144 (-645 |#2|))) |#3| |#2| (-613 |#2|) (-613 |#2|) |#2| (-1175 |#2|))) (-15 -3180 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2144 (-645 |#2|))) |#3| |#2| (-613 |#2|) (-613 |#2|) (-613 |#2|) |#2| (-410 (-1175 |#2|))))) |%noBranch|)) (-13 (-455) (-1040 (-567)) (-147) (-640 (-567))) (-13 (-433 |#1|) (-27) (-1204)) (-1102)) (T -563))
+((-3180 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-613 *4)) (-5 *6 (-410 (-1175 *4))) (-4 *4 (-13 (-433 *7) (-27) (-1204))) (-4 *7 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2144 (-645 *4)))) (-5 *1 (-563 *7 *4 *3)) (-4 *3 (-657 *4)) (-4 *3 (-1102)))) (-3180 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-613 *4)) (-5 *6 (-1175 *4)) (-4 *4 (-13 (-433 *7) (-27) (-1204))) (-4 *7 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2144 (-645 *4)))) (-5 *1 (-563 *7 *4 *3)) (-4 *3 (-657 *4)) (-4 *3 (-1102)))) (-2484 (*1 *2 *3 *4) (-12 (-5 *4 (-613 *6)) (-4 *6 (-13 (-433 *5) (-27) (-1204))) (-4 *5 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) (-5 *2 (-1175 (-410 (-1175 *6)))) (-5 *1 (-563 *5 *6 *7)) (-5 *3 (-1175 *6)) (-4 *7 (-1102)))) (-2848 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1175 (-410 (-1175 *2)))) (-5 *4 (-613 *2)) (-4 *2 (-13 (-433 *5) (-27) (-1204))) (-4 *5 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) (-5 *1 (-563 *5 *2 *6)) (-4 *6 (-1102)))) (-2684 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-613 *3)) (-4 *3 (-13 (-433 *6) (-27) (-1204))) (-4 *6 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) (-5 *2 (-1175 (-410 (-1175 *3)))) (-5 *1 (-563 *6 *3 *7)) (-5 *5 (-1175 *3)) (-4 *7 (-1102)))) (-2081 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-613 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1179))) (-5 *5 (-410 (-1175 *2))) (-4 *2 (-13 (-433 *6) (-27) (-1204))) (-4 *6 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) (-5 *1 (-563 *6 *2 *7)) (-4 *7 (-1102)))) (-2081 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-613 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1179))) (-5 *5 (-1175 *2)) (-4 *2 (-13 (-433 *6) (-27) (-1204))) (-4 *6 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) (-5 *1 (-563 *6 *2 *7)) (-4 *7 (-1102)))) (-3123 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-645 *3)) (-5 *6 (-410 (-1175 *3))) (-4 *3 (-13 (-433 *7) (-27) (-1204))) (-4 *7 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-563 *7 *3 *8)) (-4 *8 (-1102)))) (-3123 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-645 *3)) (-5 *6 (-1175 *3)) (-4 *3 (-13 (-433 *7) (-27) (-1204))) (-4 *7 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-563 *7 *3 *8)) (-4 *8 (-1102)))) (-1600 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-410 (-1175 *3))) (-4 *3 (-13 (-433 *6) (-27) (-1204))) (-4 *6 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) (-5 *2 (-2 (|:| -2872 *3) (|:| |coeff| *3))) (-5 *1 (-563 *6 *3 *7)) (-4 *7 (-1102)))) (-1600 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-1175 *3)) (-4 *3 (-13 (-433 *6) (-27) (-1204))) (-4 *6 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) (-5 *2 (-2 (|:| -2872 *3) (|:| |coeff| *3))) (-5 *1 (-563 *6 *3 *7)) (-4 *7 (-1102)))) (-4383 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-613 *3)) (-5 *5 (-410 (-1175 *3))) (-4 *3 (-13 (-433 *6) (-27) (-1204))) (-4 *6 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) (-5 *2 (-588 *3)) (-5 *1 (-563 *6 *3 *7)) (-4 *7 (-1102)))) (-4383 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-613 *3)) (-5 *5 (-1175 *3)) (-4 *3 (-13 (-433 *6) (-27) (-1204))) (-4 *6 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) (-5 *2 (-588 *3)) (-5 *1 (-563 *6 *3 *7)) (-4 *7 (-1102)))))
+(-10 -7 (-15 -4383 ((-588 |#2|) |#2| (-613 |#2|) (-613 |#2|) |#2| (-1175 |#2|))) (-15 -4383 ((-588 |#2|) |#2| (-613 |#2|) (-613 |#2|) (-613 |#2|) |#2| (-410 (-1175 |#2|)))) (-15 -1600 ((-3 (-2 (|:| -2872 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-613 |#2|) (-613 |#2|) |#2| |#2| (-1175 |#2|))) (-15 -1600 ((-3 (-2 (|:| -2872 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-613 |#2|) (-613 |#2|) |#2| (-613 |#2|) |#2| (-410 (-1175 |#2|)))) (-15 -3123 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-613 |#2|) (-613 |#2|) (-645 |#2|) |#2| (-1175 |#2|))) (-15 -3123 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-613 |#2|) (-613 |#2|) (-645 |#2|) (-613 |#2|) |#2| (-410 (-1175 |#2|)))) (-15 -2081 ((-3 |#2| "failed") |#2| |#2| (-613 |#2|) (-613 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1179)) |#2| (-1175 |#2|))) (-15 -2081 ((-3 |#2| "failed") |#2| |#2| (-613 |#2|) (-613 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1179)) (-613 |#2|) |#2| (-410 (-1175 |#2|)))) (-15 -2684 ((-1175 (-410 (-1175 |#2|))) |#2| (-613 |#2|) (-613 |#2|) (-1175 |#2|))) (-15 -2848 (|#2| (-1175 (-410 (-1175 |#2|))) (-613 |#2|) |#2|)) (-15 -2484 ((-1175 (-410 (-1175 |#2|))) (-1175 |#2|) (-613 |#2|))) (IF (|has| |#3| (-657 |#2|)) (PROGN (-15 -3180 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2144 (-645 |#2|))) |#3| |#2| (-613 |#2|) (-613 |#2|) |#2| (-1175 |#2|))) (-15 -3180 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2144 (-645 |#2|))) |#3| |#2| (-613 |#2|) (-613 |#2|) (-613 |#2|) |#2| (-410 (-1175 |#2|))))) |%noBranch|))
+((-1871 (((-567) (-567) (-772)) 90)) (-3763 (((-567) (-567)) 88)) (-1640 (((-567) (-567)) 86)) (-3561 (((-567) (-567)) 92)) (-1947 (((-567) (-567) (-567)) 70)) (-2202 (((-567) (-567) (-567)) 67)) (-4252 (((-410 (-567)) (-567)) 30)) (-3645 (((-567) (-567)) 36)) (-2762 (((-567) (-567)) 79)) (-3994 (((-567) (-567)) 51)) (-3039 (((-645 (-567)) (-567)) 85)) (-4035 (((-567) (-567) (-567) (-567) (-567)) 63)) (-1396 (((-410 (-567)) (-567)) 60)))
+(((-564) (-10 -7 (-15 -1396 ((-410 (-567)) (-567))) (-15 -4035 ((-567) (-567) (-567) (-567) (-567))) (-15 -3039 ((-645 (-567)) (-567))) (-15 -3994 ((-567) (-567))) (-15 -2762 ((-567) (-567))) (-15 -3645 ((-567) (-567))) (-15 -4252 ((-410 (-567)) (-567))) (-15 -2202 ((-567) (-567) (-567))) (-15 -1947 ((-567) (-567) (-567))) (-15 -3561 ((-567) (-567))) (-15 -1640 ((-567) (-567))) (-15 -3763 ((-567) (-567))) (-15 -1871 ((-567) (-567) (-772))))) (T -564))
+((-1871 (*1 *2 *2 *3) (-12 (-5 *2 (-567)) (-5 *3 (-772)) (-5 *1 (-564)))) (-3763 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))) (-1640 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))) (-3561 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))) (-1947 (*1 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))) (-2202 (*1 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))) (-4252 (*1 *2 *3) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-564)) (-5 *3 (-567)))) (-3645 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))) (-2762 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))) (-3994 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))) (-3039 (*1 *2 *3) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-564)) (-5 *3 (-567)))) (-4035 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))) (-1396 (*1 *2 *3) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-564)) (-5 *3 (-567)))))
+(-10 -7 (-15 -1396 ((-410 (-567)) (-567))) (-15 -4035 ((-567) (-567) (-567) (-567) (-567))) (-15 -3039 ((-645 (-567)) (-567))) (-15 -3994 ((-567) (-567))) (-15 -2762 ((-567) (-567))) (-15 -3645 ((-567) (-567))) (-15 -4252 ((-410 (-567)) (-567))) (-15 -2202 ((-567) (-567) (-567))) (-15 -1947 ((-567) (-567) (-567))) (-15 -3561 ((-567) (-567))) (-15 -1640 ((-567) (-567))) (-15 -3763 ((-567) (-567))) (-15 -1871 ((-567) (-567) (-772))))
+((-3848 (((-2 (|:| |answer| |#4|) (|:| -2975 |#4|)) |#4| (-1 |#2| |#2|)) 56)))
+(((-565 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3848 ((-2 (|:| |answer| |#4|) (|:| -2975 |#4|)) |#4| (-1 |#2| |#2|)))) (-365) (-1245 |#1|) (-1245 (-410 |#2|)) (-344 |#1| |#2| |#3|)) (T -565))
+((-3848 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1245 *5)) (-4 *5 (-365)) (-4 *7 (-1245 (-410 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2975 *3))) (-5 *1 (-565 *5 *6 *7 *3)) (-4 *3 (-344 *5 *6 *7)))))
+(-10 -7 (-15 -3848 ((-2 (|:| |answer| |#4|) (|:| -2975 |#4|)) |#4| (-1 |#2| |#2|))))
+((-3848 (((-2 (|:| |answer| (-410 |#2|)) (|:| -2975 (-410 |#2|)) (|:| |specpart| (-410 |#2|)) (|:| |polypart| |#2|)) (-410 |#2|) (-1 |#2| |#2|)) 18)))
+(((-566 |#1| |#2|) (-10 -7 (-15 -3848 ((-2 (|:| |answer| (-410 |#2|)) (|:| -2975 (-410 |#2|)) (|:| |specpart| (-410 |#2|)) (|:| |polypart| |#2|)) (-410 |#2|) (-1 |#2| |#2|)))) (-365) (-1245 |#1|)) (T -566))
+((-3848 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1245 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| |answer| (-410 *6)) (|:| -2975 (-410 *6)) (|:| |specpart| (-410 *6)) (|:| |polypart| *6))) (-5 *1 (-566 *5 *6)) (-5 *3 (-410 *6)))))
+(-10 -7 (-15 -3848 ((-2 (|:| |answer| (-410 |#2|)) (|:| -2975 (-410 |#2|)) (|:| |specpart| (-410 |#2|)) (|:| |polypart| |#2|)) (-410 |#2|) (-1 |#2| |#2|))))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) 30)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) 97)) (-4287 (($ $) 98)) (-2286 (((-112) $) NIL)) (-3423 (($ $ $) NIL)) (-2376 (((-3 $ "failed") $ $) NIL)) (-2690 (($ $ $ $) 52)) (-3659 (($ $) NIL)) (-3597 (((-421 $) $) NIL)) (-3696 (((-112) $ $) NIL)) (-2677 (((-567) $) NIL)) (-4128 (($ $ $) 92)) (-3647 (($) NIL T CONST)) (-3765 (((-3 (-567) "failed") $) NIL)) (-2051 (((-567) $) NIL)) (-2357 (($ $ $) 54)) (-1423 (((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) 77) (((-690 (-567)) (-690 $)) 73)) (-3588 (((-3 $ "failed") $) 94)) (-1605 (((-3 (-410 (-567)) "failed") $) NIL)) (-2492 (((-112) $) NIL)) (-2778 (((-410 (-567)) $) NIL)) (-1359 (($) 79) (($ $) 80)) (-2368 (($ $ $) 91)) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) NIL)) (-3502 (((-112) $) NIL)) (-2171 (($ $ $ $) NIL)) (-1943 (($ $ $) 70)) (-3137 (((-112) $) NIL)) (-2565 (($ $ $) NIL)) (-3193 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL)) (-4346 (((-112) $) 34)) (-1904 (((-112) $) 86)) (-3067 (((-3 $ "failed") $) NIL)) (-3465 (((-112) $) 43)) (-1469 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4311 (($ $ $ $) 55)) (-1365 (($ $ $) 88)) (-3002 (($ $ $) 87)) (-1459 (($ $) NIL)) (-2334 (($ $) 49)) (-2751 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2516 (((-1161) $) 69)) (-4088 (($ $ $) NIL)) (-2694 (($) NIL T CONST)) (-2307 (($ $) 38)) (-3437 (((-1122) $) 42)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) 129)) (-2785 (($ $ $) 95) (($ (-645 $)) NIL)) (-1345 (($ $) NIL)) (-2717 (((-421 $) $) 115)) (-2905 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) NIL)) (-2400 (((-3 $ "failed") $ $) 113)) (-2372 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2795 (((-112) $) NIL)) (-2460 (((-772) $) NIL)) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) 90)) (-1616 (($ $ (-772)) NIL) (($ $) NIL)) (-1699 (($ $) 40)) (-4309 (($ $) 36)) (-3902 (((-567) $) 48) (((-539) $) 64) (((-894 (-567)) $) NIL) (((-381) $) 58) (((-225) $) 61) (((-1161) $) 66)) (-4129 (((-863) $) 46) (($ (-567)) 47) (($ $) NIL) (($ (-567)) 47)) (-2746 (((-772)) NIL T CONST)) (-4147 (((-112) $ $) NIL)) (-2708 (($ $ $) NIL)) (-3357 (((-112) $ $) NIL)) (-3070 (($) 35)) (-3731 (((-112) $ $) NIL)) (-3627 (($ $ $ $) 51)) (-1547 (($ $) 78)) (-1733 (($) 6 T CONST)) (-1744 (($) 31 T CONST)) (-1335 (((-1161) $) 26) (((-1161) $ (-112)) 27) (((-1274) (-823) $) 28) (((-1274) (-823) $ (-112)) 29)) (-2647 (($ $ (-772)) NIL) (($ $) NIL)) (-3004 (((-112) $ $) 50)) (-2980 (((-112) $ $) 81)) (-2946 (((-112) $ $) 33)) (-2993 (((-112) $ $) 83)) (-2968 (((-112) $ $) 10)) (-3053 (($ $) 16) (($ $ $) 39)) (-3041 (($ $ $) 37)) (** (($ $ (-923)) NIL) (($ $ (-772)) 85)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 84) (($ $ $) 53)))
+(((-567) (-13 (-548) (-615 (-1161)) (-829) (-10 -7 (-6 -4409) (-6 -4414) (-6 -4410) (-6 -4404)))) (T -567))
+NIL
+(-13 (-548) (-615 (-1161)) (-829) (-10 -7 (-6 -4409) (-6 -4414) (-6 -4410) (-6 -4404)))
+((-3055 (((-2 (|:| -3055 (-381)) (|:| -2007 (-1161)) (|:| |explanations| (-645 (-1161))) (|:| |extra| (-1037))) (-770) (-1065)) 119) (((-2 (|:| -3055 (-381)) (|:| -2007 (-1161)) (|:| |explanations| (-645 (-1161))) (|:| |extra| (-1037))) (-770)) 121)) (-4083 (((-3 (-1037) "failed") (-317 (-381)) (-1094 (-844 (-381))) (-1179)) 197) (((-3 (-1037) "failed") (-317 (-381)) (-1094 (-844 (-381))) (-1161)) 196) (((-1037) (-317 (-381)) (-645 (-1096 (-844 (-381)))) (-381) (-381) (-1065)) 201) (((-1037) (-317 (-381)) (-645 (-1096 (-844 (-381)))) (-381) (-381)) 202) (((-1037) (-317 (-381)) (-645 (-1096 (-844 (-381)))) (-381)) 203) (((-1037) (-317 (-381)) (-645 (-1096 (-844 (-381))))) 204) (((-1037) (-317 (-381)) (-1096 (-844 (-381)))) 192) (((-1037) (-317 (-381)) (-1096 (-844 (-381))) (-381)) 191) (((-1037) (-317 (-381)) (-1096 (-844 (-381))) (-381) (-381)) 187) (((-1037) (-770)) 179) (((-1037) (-317 (-381)) (-1096 (-844 (-381))) (-381) (-381) (-1065)) 186)))
+(((-568) (-10 -7 (-15 -4083 ((-1037) (-317 (-381)) (-1096 (-844 (-381))) (-381) (-381) (-1065))) (-15 -4083 ((-1037) (-770))) (-15 -4083 ((-1037) (-317 (-381)) (-1096 (-844 (-381))) (-381) (-381))) (-15 -4083 ((-1037) (-317 (-381)) (-1096 (-844 (-381))) (-381))) (-15 -4083 ((-1037) (-317 (-381)) (-1096 (-844 (-381))))) (-15 -4083 ((-1037) (-317 (-381)) (-645 (-1096 (-844 (-381)))))) (-15 -4083 ((-1037) (-317 (-381)) (-645 (-1096 (-844 (-381)))) (-381))) (-15 -4083 ((-1037) (-317 (-381)) (-645 (-1096 (-844 (-381)))) (-381) (-381))) (-15 -4083 ((-1037) (-317 (-381)) (-645 (-1096 (-844 (-381)))) (-381) (-381) (-1065))) (-15 -3055 ((-2 (|:| -3055 (-381)) (|:| -2007 (-1161)) (|:| |explanations| (-645 (-1161))) (|:| |extra| (-1037))) (-770))) (-15 -3055 ((-2 (|:| -3055 (-381)) (|:| -2007 (-1161)) (|:| |explanations| (-645 (-1161))) (|:| |extra| (-1037))) (-770) (-1065))) (-15 -4083 ((-3 (-1037) "failed") (-317 (-381)) (-1094 (-844 (-381))) (-1161))) (-15 -4083 ((-3 (-1037) "failed") (-317 (-381)) (-1094 (-844 (-381))) (-1179))))) (T -568))
+((-4083 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-317 (-381))) (-5 *4 (-1094 (-844 (-381)))) (-5 *5 (-1179)) (-5 *2 (-1037)) (-5 *1 (-568)))) (-4083 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-317 (-381))) (-5 *4 (-1094 (-844 (-381)))) (-5 *5 (-1161)) (-5 *2 (-1037)) (-5 *1 (-568)))) (-3055 (*1 *2 *3 *4) (-12 (-5 *3 (-770)) (-5 *4 (-1065)) (-5 *2 (-2 (|:| -3055 (-381)) (|:| -2007 (-1161)) (|:| |explanations| (-645 (-1161))) (|:| |extra| (-1037)))) (-5 *1 (-568)))) (-3055 (*1 *2 *3) (-12 (-5 *3 (-770)) (-5 *2 (-2 (|:| -3055 (-381)) (|:| -2007 (-1161)) (|:| |explanations| (-645 (-1161))) (|:| |extra| (-1037)))) (-5 *1 (-568)))) (-4083 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-645 (-1096 (-844 (-381))))) (-5 *5 (-381)) (-5 *6 (-1065)) (-5 *2 (-1037)) (-5 *1 (-568)))) (-4083 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-645 (-1096 (-844 (-381))))) (-5 *5 (-381)) (-5 *2 (-1037)) (-5 *1 (-568)))) (-4083 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-645 (-1096 (-844 (-381))))) (-5 *5 (-381)) (-5 *2 (-1037)) (-5 *1 (-568)))) (-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-645 (-1096 (-844 (-381))))) (-5 *2 (-1037)) (-5 *1 (-568)))) (-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1096 (-844 (-381)))) (-5 *2 (-1037)) (-5 *1 (-568)))) (-4083 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1096 (-844 (-381)))) (-5 *5 (-381)) (-5 *2 (-1037)) (-5 *1 (-568)))) (-4083 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1096 (-844 (-381)))) (-5 *5 (-381)) (-5 *2 (-1037)) (-5 *1 (-568)))) (-4083 (*1 *2 *3) (-12 (-5 *3 (-770)) (-5 *2 (-1037)) (-5 *1 (-568)))) (-4083 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1096 (-844 (-381)))) (-5 *5 (-381)) (-5 *6 (-1065)) (-5 *2 (-1037)) (-5 *1 (-568)))))
+(-10 -7 (-15 -4083 ((-1037) (-317 (-381)) (-1096 (-844 (-381))) (-381) (-381) (-1065))) (-15 -4083 ((-1037) (-770))) (-15 -4083 ((-1037) (-317 (-381)) (-1096 (-844 (-381))) (-381) (-381))) (-15 -4083 ((-1037) (-317 (-381)) (-1096 (-844 (-381))) (-381))) (-15 -4083 ((-1037) (-317 (-381)) (-1096 (-844 (-381))))) (-15 -4083 ((-1037) (-317 (-381)) (-645 (-1096 (-844 (-381)))))) (-15 -4083 ((-1037) (-317 (-381)) (-645 (-1096 (-844 (-381)))) (-381))) (-15 -4083 ((-1037) (-317 (-381)) (-645 (-1096 (-844 (-381)))) (-381) (-381))) (-15 -4083 ((-1037) (-317 (-381)) (-645 (-1096 (-844 (-381)))) (-381) (-381) (-1065))) (-15 -3055 ((-2 (|:| -3055 (-381)) (|:| -2007 (-1161)) (|:| |explanations| (-645 (-1161))) (|:| |extra| (-1037))) (-770))) (-15 -3055 ((-2 (|:| -3055 (-381)) (|:| -2007 (-1161)) (|:| |explanations| (-645 (-1161))) (|:| |extra| (-1037))) (-770) (-1065))) (-15 -4083 ((-3 (-1037) "failed") (-317 (-381)) (-1094 (-844 (-381))) (-1161))) (-15 -4083 ((-3 (-1037) "failed") (-317 (-381)) (-1094 (-844 (-381))) (-1179))))
+((-4032 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-613 |#2|) (-613 |#2|) (-645 |#2|)) 198)) (-1381 (((-588 |#2|) |#2| (-613 |#2|) (-613 |#2|)) 99)) (-3642 (((-3 (-2 (|:| -2872 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-613 |#2|) (-613 |#2|) |#2|) 194)) (-1989 (((-3 |#2| "failed") |#2| |#2| |#2| (-613 |#2|) (-613 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1179))) 203)) (-1819 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2144 (-645 |#2|))) |#3| |#2| (-613 |#2|) (-613 |#2|) (-1179)) 212 (|has| |#3| (-657 |#2|)))))
+(((-569 |#1| |#2| |#3|) (-10 -7 (-15 -1381 ((-588 |#2|) |#2| (-613 |#2|) (-613 |#2|))) (-15 -3642 ((-3 (-2 (|:| -2872 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-613 |#2|) (-613 |#2|) |#2|)) (-15 -4032 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-613 |#2|) (-613 |#2|) (-645 |#2|))) (-15 -1989 ((-3 |#2| "failed") |#2| |#2| |#2| (-613 |#2|) (-613 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1179)))) (IF (|has| |#3| (-657 |#2|)) (-15 -1819 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2144 (-645 |#2|))) |#3| |#2| (-613 |#2|) (-613 |#2|) (-1179))) |%noBranch|)) (-13 (-455) (-1040 (-567)) (-147) (-640 (-567))) (-13 (-433 |#1|) (-27) (-1204)) (-1102)) (T -569))
+((-1819 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-613 *4)) (-5 *6 (-1179)) (-4 *4 (-13 (-433 *7) (-27) (-1204))) (-4 *7 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2144 (-645 *4)))) (-5 *1 (-569 *7 *4 *3)) (-4 *3 (-657 *4)) (-4 *3 (-1102)))) (-1989 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-613 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1179))) (-4 *2 (-13 (-433 *5) (-27) (-1204))) (-4 *5 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) (-5 *1 (-569 *5 *2 *6)) (-4 *6 (-1102)))) (-4032 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-645 *3)) (-4 *3 (-13 (-433 *6) (-27) (-1204))) (-4 *6 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-569 *6 *3 *7)) (-4 *7 (-1102)))) (-3642 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-613 *3)) (-4 *3 (-13 (-433 *5) (-27) (-1204))) (-4 *5 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) (-5 *2 (-2 (|:| -2872 *3) (|:| |coeff| *3))) (-5 *1 (-569 *5 *3 *6)) (-4 *6 (-1102)))) (-1381 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-613 *3)) (-4 *3 (-13 (-433 *5) (-27) (-1204))) (-4 *5 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) (-5 *2 (-588 *3)) (-5 *1 (-569 *5 *3 *6)) (-4 *6 (-1102)))))
+(-10 -7 (-15 -1381 ((-588 |#2|) |#2| (-613 |#2|) (-613 |#2|))) (-15 -3642 ((-3 (-2 (|:| -2872 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-613 |#2|) (-613 |#2|) |#2|)) (-15 -4032 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-613 |#2|) (-613 |#2|) (-645 |#2|))) (-15 -1989 ((-3 |#2| "failed") |#2| |#2| |#2| (-613 |#2|) (-613 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1179)))) (IF (|has| |#3| (-657 |#2|)) (-15 -1819 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2144 (-645 |#2|))) |#3| |#2| (-613 |#2|) (-613 |#2|) (-1179))) |%noBranch|))
+((-2979 (((-2 (|:| -2099 |#2|) (|:| |nconst| |#2|)) |#2| (-1179)) 64)) (-3044 (((-3 |#2| "failed") |#2| (-1179) (-844 |#2|) (-844 |#2|)) 175 (-12 (|has| |#2| (-1141)) (|has| |#1| (-615 (-894 (-567)))) (|has| |#1| (-888 (-567))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1179)) 154 (-12 (|has| |#2| (-630)) (|has| |#1| (-615 (-894 (-567)))) (|has| |#1| (-888 (-567)))))) (-2421 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1179)) 156 (-12 (|has| |#2| (-630)) (|has| |#1| (-615 (-894 (-567)))) (|has| |#1| (-888 (-567)))))))
+(((-570 |#1| |#2|) (-10 -7 (-15 -2979 ((-2 (|:| -2099 |#2|) (|:| |nconst| |#2|)) |#2| (-1179))) (IF (|has| |#1| (-615 (-894 (-567)))) (IF (|has| |#1| (-888 (-567))) (PROGN (IF (|has| |#2| (-630)) (PROGN (-15 -2421 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1179))) (-15 -3044 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1179)))) |%noBranch|) (IF (|has| |#2| (-1141)) (-15 -3044 ((-3 |#2| "failed") |#2| (-1179) (-844 |#2|) (-844 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-1040 (-567)) (-455) (-640 (-567))) (-13 (-27) (-1204) (-433 |#1|))) (T -570))
+((-3044 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1179)) (-5 *4 (-844 *2)) (-4 *2 (-1141)) (-4 *2 (-13 (-27) (-1204) (-433 *5))) (-4 *5 (-615 (-894 (-567)))) (-4 *5 (-888 (-567))) (-4 *5 (-13 (-1040 (-567)) (-455) (-640 (-567)))) (-5 *1 (-570 *5 *2)))) (-3044 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1179)) (-4 *5 (-615 (-894 (-567)))) (-4 *5 (-888 (-567))) (-4 *5 (-13 (-1040 (-567)) (-455) (-640 (-567)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-570 *5 *3)) (-4 *3 (-630)) (-4 *3 (-13 (-27) (-1204) (-433 *5))))) (-2421 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1179)) (-4 *5 (-615 (-894 (-567)))) (-4 *5 (-888 (-567))) (-4 *5 (-13 (-1040 (-567)) (-455) (-640 (-567)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-570 *5 *3)) (-4 *3 (-630)) (-4 *3 (-13 (-27) (-1204) (-433 *5))))) (-2979 (*1 *2 *3 *4) (-12 (-5 *4 (-1179)) (-4 *5 (-13 (-1040 (-567)) (-455) (-640 (-567)))) (-5 *2 (-2 (|:| -2099 *3) (|:| |nconst| *3))) (-5 *1 (-570 *5 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *5))))))
+(-10 -7 (-15 -2979 ((-2 (|:| -2099 |#2|) (|:| |nconst| |#2|)) |#2| (-1179))) (IF (|has| |#1| (-615 (-894 (-567)))) (IF (|has| |#1| (-888 (-567))) (PROGN (IF (|has| |#2| (-630)) (PROGN (-15 -2421 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1179))) (-15 -3044 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1179)))) |%noBranch|) (IF (|has| |#2| (-1141)) (-15 -3044 ((-3 |#2| "failed") |#2| (-1179) (-844 |#2|) (-844 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|))
+((-3808 (((-3 (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|)))))) "failed") (-410 |#2|) (-645 (-410 |#2|))) 41)) (-4083 (((-588 (-410 |#2|)) (-410 |#2|)) 28)) (-1652 (((-3 (-410 |#2|) "failed") (-410 |#2|)) 17)) (-4261 (((-3 (-2 (|:| -2872 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-410 |#2|)) 48)))
+(((-571 |#1| |#2|) (-10 -7 (-15 -4083 ((-588 (-410 |#2|)) (-410 |#2|))) (-15 -1652 ((-3 (-410 |#2|) "failed") (-410 |#2|))) (-15 -4261 ((-3 (-2 (|:| -2872 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-410 |#2|))) (-15 -3808 ((-3 (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|)))))) "failed") (-410 |#2|) (-645 (-410 |#2|))))) (-13 (-365) (-147) (-1040 (-567))) (-1245 |#1|)) (T -571))
+((-3808 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-645 (-410 *6))) (-5 *3 (-410 *6)) (-4 *6 (-1245 *5)) (-4 *5 (-13 (-365) (-147) (-1040 (-567)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-571 *5 *6)))) (-4261 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-365) (-147) (-1040 (-567)))) (-4 *5 (-1245 *4)) (-5 *2 (-2 (|:| -2872 (-410 *5)) (|:| |coeff| (-410 *5)))) (-5 *1 (-571 *4 *5)) (-5 *3 (-410 *5)))) (-1652 (*1 *2 *2) (|partial| -12 (-5 *2 (-410 *4)) (-4 *4 (-1245 *3)) (-4 *3 (-13 (-365) (-147) (-1040 (-567)))) (-5 *1 (-571 *3 *4)))) (-4083 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-147) (-1040 (-567)))) (-4 *5 (-1245 *4)) (-5 *2 (-588 (-410 *5))) (-5 *1 (-571 *4 *5)) (-5 *3 (-410 *5)))))
+(-10 -7 (-15 -4083 ((-588 (-410 |#2|)) (-410 |#2|))) (-15 -1652 ((-3 (-410 |#2|) "failed") (-410 |#2|))) (-15 -4261 ((-3 (-2 (|:| -2872 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-410 |#2|))) (-15 -3808 ((-3 (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|)))))) "failed") (-410 |#2|) (-645 (-410 |#2|)))))
+((-2091 (((-3 (-567) "failed") |#1|) 14)) (-3416 (((-112) |#1|) 13)) (-3117 (((-567) |#1|) 9)))
+(((-572 |#1|) (-10 -7 (-15 -3117 ((-567) |#1|)) (-15 -3416 ((-112) |#1|)) (-15 -2091 ((-3 (-567) "failed") |#1|))) (-1040 (-567))) (T -572))
+((-2091 (*1 *2 *3) (|partial| -12 (-5 *2 (-567)) (-5 *1 (-572 *3)) (-4 *3 (-1040 *2)))) (-3416 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-572 *3)) (-4 *3 (-1040 (-567))))) (-3117 (*1 *2 *3) (-12 (-5 *2 (-567)) (-5 *1 (-572 *3)) (-4 *3 (-1040 *2)))))
+(-10 -7 (-15 -3117 ((-567) |#1|)) (-15 -3416 ((-112) |#1|)) (-15 -2091 ((-3 (-567) "failed") |#1|)))
+((-3404 (((-3 (-2 (|:| |mainpart| (-410 (-954 |#1|))) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 (-954 |#1|))) (|:| |logand| (-410 (-954 |#1|))))))) "failed") (-410 (-954 |#1|)) (-1179) (-645 (-410 (-954 |#1|)))) 48)) (-1751 (((-588 (-410 (-954 |#1|))) (-410 (-954 |#1|)) (-1179)) 28)) (-2431 (((-3 (-410 (-954 |#1|)) "failed") (-410 (-954 |#1|)) (-1179)) 23)) (-2074 (((-3 (-2 (|:| -2872 (-410 (-954 |#1|))) (|:| |coeff| (-410 (-954 |#1|)))) "failed") (-410 (-954 |#1|)) (-1179) (-410 (-954 |#1|))) 35)))
+(((-573 |#1|) (-10 -7 (-15 -1751 ((-588 (-410 (-954 |#1|))) (-410 (-954 |#1|)) (-1179))) (-15 -2431 ((-3 (-410 (-954 |#1|)) "failed") (-410 (-954 |#1|)) (-1179))) (-15 -3404 ((-3 (-2 (|:| |mainpart| (-410 (-954 |#1|))) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 (-954 |#1|))) (|:| |logand| (-410 (-954 |#1|))))))) "failed") (-410 (-954 |#1|)) (-1179) (-645 (-410 (-954 |#1|))))) (-15 -2074 ((-3 (-2 (|:| -2872 (-410 (-954 |#1|))) (|:| |coeff| (-410 (-954 |#1|)))) "failed") (-410 (-954 |#1|)) (-1179) (-410 (-954 |#1|))))) (-13 (-559) (-1040 (-567)) (-147))) (T -573))
+((-2074 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1179)) (-4 *5 (-13 (-559) (-1040 (-567)) (-147))) (-5 *2 (-2 (|:| -2872 (-410 (-954 *5))) (|:| |coeff| (-410 (-954 *5))))) (-5 *1 (-573 *5)) (-5 *3 (-410 (-954 *5))))) (-3404 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1179)) (-5 *5 (-645 (-410 (-954 *6)))) (-5 *3 (-410 (-954 *6))) (-4 *6 (-13 (-559) (-1040 (-567)) (-147))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-573 *6)))) (-2431 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-410 (-954 *4))) (-5 *3 (-1179)) (-4 *4 (-13 (-559) (-1040 (-567)) (-147))) (-5 *1 (-573 *4)))) (-1751 (*1 *2 *3 *4) (-12 (-5 *4 (-1179)) (-4 *5 (-13 (-559) (-1040 (-567)) (-147))) (-5 *2 (-588 (-410 (-954 *5)))) (-5 *1 (-573 *5)) (-5 *3 (-410 (-954 *5))))))
+(-10 -7 (-15 -1751 ((-588 (-410 (-954 |#1|))) (-410 (-954 |#1|)) (-1179))) (-15 -2431 ((-3 (-410 (-954 |#1|)) "failed") (-410 (-954 |#1|)) (-1179))) (-15 -3404 ((-3 (-2 (|:| |mainpart| (-410 (-954 |#1|))) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 (-954 |#1|))) (|:| |logand| (-410 (-954 |#1|))))))) "failed") (-410 (-954 |#1|)) (-1179) (-645 (-410 (-954 |#1|))))) (-15 -2074 ((-3 (-2 (|:| -2872 (-410 (-954 |#1|))) (|:| |coeff| (-410 (-954 |#1|)))) "failed") (-410 (-954 |#1|)) (-1179) (-410 (-954 |#1|)))))
+((-2412 (((-112) $ $) 75)) (-3791 (((-112) $) 48)) (-2052 ((|#1| $) 39)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-4287 (($ $) NIL)) (-2286 (((-112) $) 79)) (-3164 (($ $) 140)) (-3032 (($ $) 119)) (-1325 ((|#1| $) 37)) (-2376 (((-3 $ "failed") $ $) NIL)) (-2728 (($ $) NIL)) (-3145 (($ $) 142)) (-3008 (($ $) 115)) (-3182 (($ $) 144)) (-3057 (($ $) 123)) (-3647 (($) NIL T CONST)) (-3765 (((-3 (-567) "failed") $) 94)) (-2051 (((-567) $) 96)) (-3588 (((-3 $ "failed") $) 78)) (-2273 (($ |#1| |#1|) 35)) (-3137 (((-112) $) 44)) (-1484 (($) 105)) (-4346 (((-112) $) 55)) (-3698 (($ $ (-567)) NIL)) (-3465 (((-112) $) 45)) (-1365 (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (-3072 (($ $) 107)) (-2751 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2516 (((-1161) $) NIL)) (-3235 (($ |#1| |#1|) 29) (($ |#1|) 34) (($ (-410 (-567))) 93)) (-3017 ((|#1| $) 36)) (-3437 (((-1122) $) NIL)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-2785 (($ $ $) 81) (($ (-645 $)) NIL)) (-2400 (((-3 $ "failed") $ $) 80)) (-3955 (($ $) 109)) (-3192 (($ $) 148)) (-3071 (($ $) 121)) (-3173 (($ $) 150)) (-3043 (($ $) 125)) (-3155 (($ $) 146)) (-3021 (($ $) 117)) (-1417 (((-112) $ |#1|) 42)) (-4129 (((-863) $) 101) (($ (-567)) 83) (($ $) NIL) (($ (-567)) 83)) (-2746 (((-772)) 103 T CONST)) (-3357 (((-112) $ $) NIL)) (-3217 (($ $) 162)) (-3103 (($ $) 131)) (-3731 (((-112) $ $) NIL)) (-3201 (($ $) 160)) (-3083 (($ $) 127)) (-3238 (($ $) 158)) (-3126 (($ $) 138)) (-3805 (($ $) 156)) (-3138 (($ $) 136)) (-3228 (($ $) 154)) (-3115 (($ $) 133)) (-3208 (($ $) 152)) (-3093 (($ $) 129)) (-1733 (($) 30 T CONST)) (-1744 (($) 10 T CONST)) (-3004 (((-112) $ $) NIL)) (-2980 (((-112) $ $) NIL)) (-2946 (((-112) $ $) 49)) (-2993 (((-112) $ $) NIL)) (-2968 (((-112) $ $) 47)) (-3053 (($ $) 53) (($ $ $) 54)) (-3041 (($ $ $) 52)) (** (($ $ (-923)) 71) (($ $ (-772)) NIL) (($ $ $) 111) (($ $ (-410 (-567))) 164)) (* (($ (-923) $) 66) (($ (-772) $) NIL) (($ (-567) $) 65) (($ $ $) 61)))
+(((-574 |#1|) (-557 |#1|) (-13 (-407) (-1204))) (T -574))
NIL
(-557 |#1|)
-((-3815 (((-3 (-645 (-1174 (-567))) "failed") (-645 (-1174 (-567))) (-1174 (-567))) 27)))
-(((-575) (-10 -7 (-15 -3815 ((-3 (-645 (-1174 (-567))) "failed") (-645 (-1174 (-567))) (-1174 (-567)))))) (T -575))
-((-3815 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-645 (-1174 (-567)))) (-5 *3 (-1174 (-567))) (-5 *1 (-575)))))
-(-10 -7 (-15 -3815 ((-3 (-645 (-1174 (-567))) "failed") (-645 (-1174 (-567))) (-1174 (-567)))))
-((-4027 (((-645 (-613 |#2|)) (-645 (-613 |#2|)) (-1178)) 19)) (-3635 (((-645 (-613 |#2|)) (-645 |#2|) (-1178)) 23)) (-4244 (((-645 (-613 |#2|)) (-645 (-613 |#2|)) (-645 (-613 |#2|))) 11)) (-2292 ((|#2| |#2| (-1178)) 59 (|has| |#1| (-559)))) (-3955 ((|#2| |#2| (-1178)) 87 (-12 (|has| |#2| (-285)) (|has| |#1| (-455))))) (-3009 (((-613 |#2|) (-613 |#2|) (-645 (-613 |#2|)) (-1178)) 25)) (-2373 (((-613 |#2|) (-645 (-613 |#2|))) 24)) (-2400 (((-588 |#2|) |#2| (-1178) (-1 (-588 |#2|) |#2| (-1178)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1178))) 115 (-12 (|has| |#2| (-285)) (|has| |#2| (-630)) (|has| |#2| (-1040 (-1178))) (|has| |#1| (-615 (-894 (-567)))) (|has| |#1| (-455)) (|has| |#1| (-888 (-567)))))))
-(((-576 |#1| |#2|) (-10 -7 (-15 -4027 ((-645 (-613 |#2|)) (-645 (-613 |#2|)) (-1178))) (-15 -2373 ((-613 |#2|) (-645 (-613 |#2|)))) (-15 -3009 ((-613 |#2|) (-613 |#2|) (-645 (-613 |#2|)) (-1178))) (-15 -4244 ((-645 (-613 |#2|)) (-645 (-613 |#2|)) (-645 (-613 |#2|)))) (-15 -3635 ((-645 (-613 |#2|)) (-645 |#2|) (-1178))) (IF (|has| |#1| (-559)) (-15 -2292 (|#2| |#2| (-1178))) |%noBranch|) (IF (|has| |#1| (-455)) (IF (|has| |#2| (-285)) (PROGN (-15 -3955 (|#2| |#2| (-1178))) (IF (|has| |#1| (-615 (-894 (-567)))) (IF (|has| |#1| (-888 (-567))) (IF (|has| |#2| (-630)) (IF (|has| |#2| (-1040 (-1178))) (-15 -2400 ((-588 |#2|) |#2| (-1178) (-1 (-588 |#2|) |#2| (-1178)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1178)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1102) (-433 |#1|)) (T -576))
-((-2400 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-588 *3) *3 (-1178))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1178))) (-4 *3 (-285)) (-4 *3 (-630)) (-4 *3 (-1040 *4)) (-4 *3 (-433 *7)) (-5 *4 (-1178)) (-4 *7 (-615 (-894 (-567)))) (-4 *7 (-455)) (-4 *7 (-888 (-567))) (-4 *7 (-1102)) (-5 *2 (-588 *3)) (-5 *1 (-576 *7 *3)))) (-3955 (*1 *2 *2 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-455)) (-4 *4 (-1102)) (-5 *1 (-576 *4 *2)) (-4 *2 (-285)) (-4 *2 (-433 *4)))) (-2292 (*1 *2 *2 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-559)) (-4 *4 (-1102)) (-5 *1 (-576 *4 *2)) (-4 *2 (-433 *4)))) (-3635 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *6)) (-5 *4 (-1178)) (-4 *6 (-433 *5)) (-4 *5 (-1102)) (-5 *2 (-645 (-613 *6))) (-5 *1 (-576 *5 *6)))) (-4244 (*1 *2 *2 *2) (-12 (-5 *2 (-645 (-613 *4))) (-4 *4 (-433 *3)) (-4 *3 (-1102)) (-5 *1 (-576 *3 *4)))) (-3009 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-645 (-613 *6))) (-5 *4 (-1178)) (-5 *2 (-613 *6)) (-4 *6 (-433 *5)) (-4 *5 (-1102)) (-5 *1 (-576 *5 *6)))) (-2373 (*1 *2 *3) (-12 (-5 *3 (-645 (-613 *5))) (-4 *4 (-1102)) (-5 *2 (-613 *5)) (-5 *1 (-576 *4 *5)) (-4 *5 (-433 *4)))) (-4027 (*1 *2 *2 *3) (-12 (-5 *2 (-645 (-613 *5))) (-5 *3 (-1178)) (-4 *5 (-433 *4)) (-4 *4 (-1102)) (-5 *1 (-576 *4 *5)))))
-(-10 -7 (-15 -4027 ((-645 (-613 |#2|)) (-645 (-613 |#2|)) (-1178))) (-15 -2373 ((-613 |#2|) (-645 (-613 |#2|)))) (-15 -3009 ((-613 |#2|) (-613 |#2|) (-645 (-613 |#2|)) (-1178))) (-15 -4244 ((-645 (-613 |#2|)) (-645 (-613 |#2|)) (-645 (-613 |#2|)))) (-15 -3635 ((-645 (-613 |#2|)) (-645 |#2|) (-1178))) (IF (|has| |#1| (-559)) (-15 -2292 (|#2| |#2| (-1178))) |%noBranch|) (IF (|has| |#1| (-455)) (IF (|has| |#2| (-285)) (PROGN (-15 -3955 (|#2| |#2| (-1178))) (IF (|has| |#1| (-615 (-894 (-567)))) (IF (|has| |#1| (-888 (-567))) (IF (|has| |#2| (-630)) (IF (|has| |#2| (-1040 (-1178))) (-15 -2400 ((-588 |#2|) |#2| (-1178) (-1 (-588 |#2|) |#2| (-1178)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1178)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|))
-((-2860 (((-2 (|:| |answer| (-588 (-410 |#2|))) (|:| |a0| |#1|)) (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-645 |#1|) "failed") (-567) |#1| |#1|)) 202)) (-2870 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|))))))) (|:| |a0| |#1|)) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1752 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-645 (-410 |#2|))) 178)) (-1540 (((-3 (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|)))))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-645 (-410 |#2|))) 175)) (-3307 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1752 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 166)) (-3619 (((-2 (|:| |answer| (-588 (-410 |#2|))) (|:| |a0| |#1|)) (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1752 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 189)) (-3418 (((-3 (-2 (|:| -1752 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-410 |#2|)) 205)) (-3010 (((-3 (-2 (|:| |answer| (-410 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1752 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1752 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-410 |#2|)) 208)) (-2228 (((-2 (|:| |ir| (-588 (-410 |#2|))) (|:| |specpart| (-410 |#2|)) (|:| |polypart| |#2|)) (-410 |#2|) (-1 |#2| |#2|)) 90)) (-1435 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 102)) (-3188 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|))))))) (|:| |a0| |#1|)) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2963 |#1|) (|:| |sol?| (-112))) (-567) |#1|) (-645 (-410 |#2|))) 182)) (-4097 (((-3 (-624 |#1| |#2|) "failed") (-624 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2963 |#1|) (|:| |sol?| (-112))) (-567) |#1|)) 170)) (-3770 (((-2 (|:| |answer| (-588 (-410 |#2|))) (|:| |a0| |#1|)) (-410 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2963 |#1|) (|:| |sol?| (-112))) (-567) |#1|)) 193)) (-3142 (((-3 (-2 (|:| |answer| (-410 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1752 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2963 |#1|) (|:| |sol?| (-112))) (-567) |#1|) (-410 |#2|)) 213)))
-(((-577 |#1| |#2|) (-10 -7 (-15 -3619 ((-2 (|:| |answer| (-588 (-410 |#2|))) (|:| |a0| |#1|)) (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1752 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -3770 ((-2 (|:| |answer| (-588 (-410 |#2|))) (|:| |a0| |#1|)) (-410 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2963 |#1|) (|:| |sol?| (-112))) (-567) |#1|))) (-15 -2860 ((-2 (|:| |answer| (-588 (-410 |#2|))) (|:| |a0| |#1|)) (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-645 |#1|) "failed") (-567) |#1| |#1|))) (-15 -3010 ((-3 (-2 (|:| |answer| (-410 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1752 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1752 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-410 |#2|))) (-15 -3142 ((-3 (-2 (|:| |answer| (-410 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1752 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2963 |#1|) (|:| |sol?| (-112))) (-567) |#1|) (-410 |#2|))) (-15 -2870 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|))))))) (|:| |a0| |#1|)) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1752 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-645 (-410 |#2|)))) (-15 -3188 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|))))))) (|:| |a0| |#1|)) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2963 |#1|) (|:| |sol?| (-112))) (-567) |#1|) (-645 (-410 |#2|)))) (-15 -3418 ((-3 (-2 (|:| -1752 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-410 |#2|))) (-15 -1540 ((-3 (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|)))))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-645 (-410 |#2|)))) (-15 -3307 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1752 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -4097 ((-3 (-624 |#1| |#2|) "failed") (-624 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2963 |#1|) (|:| |sol?| (-112))) (-567) |#1|))) (-15 -2228 ((-2 (|:| |ir| (-588 (-410 |#2|))) (|:| |specpart| (-410 |#2|)) (|:| |polypart| |#2|)) (-410 |#2|) (-1 |#2| |#2|))) (-15 -1435 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-365) (-1244 |#1|)) (T -577))
-((-1435 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1244 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-577 *5 *3)))) (-2228 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1244 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| |ir| (-588 (-410 *6))) (|:| |specpart| (-410 *6)) (|:| |polypart| *6))) (-5 *1 (-577 *5 *6)) (-5 *3 (-410 *6)))) (-4097 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-624 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -2963 *4) (|:| |sol?| (-112))) (-567) *4)) (-4 *4 (-365)) (-4 *5 (-1244 *4)) (-5 *1 (-577 *4 *5)))) (-3307 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -1752 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-365)) (-5 *1 (-577 *4 *2)) (-4 *2 (-1244 *4)))) (-1540 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-645 (-410 *7))) (-4 *7 (-1244 *6)) (-5 *3 (-410 *7)) (-4 *6 (-365)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-577 *6 *7)))) (-3418 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1244 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| -1752 (-410 *6)) (|:| |coeff| (-410 *6)))) (-5 *1 (-577 *5 *6)) (-5 *3 (-410 *6)))) (-3188 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -2963 *7) (|:| |sol?| (-112))) (-567) *7)) (-5 *6 (-645 (-410 *8))) (-4 *7 (-365)) (-4 *8 (-1244 *7)) (-5 *3 (-410 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-577 *7 *8)))) (-2870 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -1752 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-645 (-410 *8))) (-4 *7 (-365)) (-4 *8 (-1244 *7)) (-5 *3 (-410 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-577 *7 *8)))) (-3142 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -2963 *6) (|:| |sol?| (-112))) (-567) *6)) (-4 *6 (-365)) (-4 *7 (-1244 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-410 *7)) (|:| |a0| *6)) (-2 (|:| -1752 (-410 *7)) (|:| |coeff| (-410 *7))) "failed")) (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7)))) (-3010 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -1752 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-365)) (-4 *7 (-1244 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-410 *7)) (|:| |a0| *6)) (-2 (|:| -1752 (-410 *7)) (|:| |coeff| (-410 *7))) "failed")) (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7)))) (-2860 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-645 *6) "failed") (-567) *6 *6)) (-4 *6 (-365)) (-4 *7 (-1244 *6)) (-5 *2 (-2 (|:| |answer| (-588 (-410 *7))) (|:| |a0| *6))) (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7)))) (-3770 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -2963 *6) (|:| |sol?| (-112))) (-567) *6)) (-4 *6 (-365)) (-4 *7 (-1244 *6)) (-5 *2 (-2 (|:| |answer| (-588 (-410 *7))) (|:| |a0| *6))) (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7)))) (-3619 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -1752 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-365)) (-4 *7 (-1244 *6)) (-5 *2 (-2 (|:| |answer| (-588 (-410 *7))) (|:| |a0| *6))) (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7)))))
-(-10 -7 (-15 -3619 ((-2 (|:| |answer| (-588 (-410 |#2|))) (|:| |a0| |#1|)) (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1752 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -3770 ((-2 (|:| |answer| (-588 (-410 |#2|))) (|:| |a0| |#1|)) (-410 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2963 |#1|) (|:| |sol?| (-112))) (-567) |#1|))) (-15 -2860 ((-2 (|:| |answer| (-588 (-410 |#2|))) (|:| |a0| |#1|)) (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-645 |#1|) "failed") (-567) |#1| |#1|))) (-15 -3010 ((-3 (-2 (|:| |answer| (-410 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1752 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1752 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-410 |#2|))) (-15 -3142 ((-3 (-2 (|:| |answer| (-410 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1752 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2963 |#1|) (|:| |sol?| (-112))) (-567) |#1|) (-410 |#2|))) (-15 -2870 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|))))))) (|:| |a0| |#1|)) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1752 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-645 (-410 |#2|)))) (-15 -3188 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|))))))) (|:| |a0| |#1|)) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2963 |#1|) (|:| |sol?| (-112))) (-567) |#1|) (-645 (-410 |#2|)))) (-15 -3418 ((-3 (-2 (|:| -1752 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-410 |#2|))) (-15 -1540 ((-3 (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|)))))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-645 (-410 |#2|)))) (-15 -3307 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1752 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -4097 ((-3 (-624 |#1| |#2|) "failed") (-624 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2963 |#1|) (|:| |sol?| (-112))) (-567) |#1|))) (-15 -2228 ((-2 (|:| |ir| (-588 (-410 |#2|))) (|:| |specpart| (-410 |#2|)) (|:| |polypart| |#2|)) (-410 |#2|) (-1 |#2| |#2|))) (-15 -1435 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|))))
-((-3088 (((-3 |#2| "failed") |#2| (-1178) (-1178)) 10)))
-(((-578 |#1| |#2|) (-10 -7 (-15 -3088 ((-3 |#2| "failed") |#2| (-1178) (-1178)))) (-13 (-308) (-147) (-1040 (-567)) (-640 (-567))) (-13 (-1203) (-961) (-1141) (-29 |#1|))) (T -578))
-((-3088 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1178)) (-4 *4 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-578 *4 *2)) (-4 *2 (-13 (-1203) (-961) (-1141) (-29 *4))))))
-(-10 -7 (-15 -3088 ((-3 |#2| "failed") |#2| (-1178) (-1178))))
-((-3835 (((-692 (-1226)) $ (-1226)) 26)) (-2841 (((-692 (-552)) $ (-552)) 25)) (-3597 (((-772) $ (-128)) 27)) (-3887 (((-692 (-129)) $ (-129)) 24)) (-2168 (((-692 (-1226)) $) 12)) (-1612 (((-692 (-1224)) $) 8)) (-2105 (((-692 (-1223)) $) 10)) (-1578 (((-692 (-552)) $) 13)) (-1784 (((-692 (-550)) $) 9)) (-3057 (((-692 (-549)) $) 11)) (-3176 (((-772) $ (-128)) 7)) (-3706 (((-692 (-129)) $) 14)) (-1675 (($ $) 6)))
+((-3610 (((-3 (-645 (-1175 (-567))) "failed") (-645 (-1175 (-567))) (-1175 (-567))) 27)))
+(((-575) (-10 -7 (-15 -3610 ((-3 (-645 (-1175 (-567))) "failed") (-645 (-1175 (-567))) (-1175 (-567)))))) (T -575))
+((-3610 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-645 (-1175 (-567)))) (-5 *3 (-1175 (-567))) (-5 *1 (-575)))))
+(-10 -7 (-15 -3610 ((-3 (-645 (-1175 (-567))) "failed") (-645 (-1175 (-567))) (-1175 (-567)))))
+((-3082 (((-645 (-613 |#2|)) (-645 (-613 |#2|)) (-1179)) 19)) (-1657 (((-645 (-613 |#2|)) (-645 |#2|) (-1179)) 23)) (-4244 (((-645 (-613 |#2|)) (-645 (-613 |#2|)) (-645 (-613 |#2|))) 11)) (-3611 ((|#2| |#2| (-1179)) 59 (|has| |#1| (-559)))) (-1716 ((|#2| |#2| (-1179)) 87 (-12 (|has| |#2| (-285)) (|has| |#1| (-455))))) (-2967 (((-613 |#2|) (-613 |#2|) (-645 (-613 |#2|)) (-1179)) 25)) (-2787 (((-613 |#2|) (-645 (-613 |#2|))) 24)) (-4255 (((-588 |#2|) |#2| (-1179) (-1 (-588 |#2|) |#2| (-1179)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1179))) 115 (-12 (|has| |#2| (-285)) (|has| |#2| (-630)) (|has| |#2| (-1040 (-1179))) (|has| |#1| (-615 (-894 (-567)))) (|has| |#1| (-455)) (|has| |#1| (-888 (-567)))))))
+(((-576 |#1| |#2|) (-10 -7 (-15 -3082 ((-645 (-613 |#2|)) (-645 (-613 |#2|)) (-1179))) (-15 -2787 ((-613 |#2|) (-645 (-613 |#2|)))) (-15 -2967 ((-613 |#2|) (-613 |#2|) (-645 (-613 |#2|)) (-1179))) (-15 -4244 ((-645 (-613 |#2|)) (-645 (-613 |#2|)) (-645 (-613 |#2|)))) (-15 -1657 ((-645 (-613 |#2|)) (-645 |#2|) (-1179))) (IF (|has| |#1| (-559)) (-15 -3611 (|#2| |#2| (-1179))) |%noBranch|) (IF (|has| |#1| (-455)) (IF (|has| |#2| (-285)) (PROGN (-15 -1716 (|#2| |#2| (-1179))) (IF (|has| |#1| (-615 (-894 (-567)))) (IF (|has| |#1| (-888 (-567))) (IF (|has| |#2| (-630)) (IF (|has| |#2| (-1040 (-1179))) (-15 -4255 ((-588 |#2|) |#2| (-1179) (-1 (-588 |#2|) |#2| (-1179)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1179)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1102) (-433 |#1|)) (T -576))
+((-4255 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-588 *3) *3 (-1179))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1179))) (-4 *3 (-285)) (-4 *3 (-630)) (-4 *3 (-1040 *4)) (-4 *3 (-433 *7)) (-5 *4 (-1179)) (-4 *7 (-615 (-894 (-567)))) (-4 *7 (-455)) (-4 *7 (-888 (-567))) (-4 *7 (-1102)) (-5 *2 (-588 *3)) (-5 *1 (-576 *7 *3)))) (-1716 (*1 *2 *2 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-455)) (-4 *4 (-1102)) (-5 *1 (-576 *4 *2)) (-4 *2 (-285)) (-4 *2 (-433 *4)))) (-3611 (*1 *2 *2 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-559)) (-4 *4 (-1102)) (-5 *1 (-576 *4 *2)) (-4 *2 (-433 *4)))) (-1657 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *6)) (-5 *4 (-1179)) (-4 *6 (-433 *5)) (-4 *5 (-1102)) (-5 *2 (-645 (-613 *6))) (-5 *1 (-576 *5 *6)))) (-4244 (*1 *2 *2 *2) (-12 (-5 *2 (-645 (-613 *4))) (-4 *4 (-433 *3)) (-4 *3 (-1102)) (-5 *1 (-576 *3 *4)))) (-2967 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-645 (-613 *6))) (-5 *4 (-1179)) (-5 *2 (-613 *6)) (-4 *6 (-433 *5)) (-4 *5 (-1102)) (-5 *1 (-576 *5 *6)))) (-2787 (*1 *2 *3) (-12 (-5 *3 (-645 (-613 *5))) (-4 *4 (-1102)) (-5 *2 (-613 *5)) (-5 *1 (-576 *4 *5)) (-4 *5 (-433 *4)))) (-3082 (*1 *2 *2 *3) (-12 (-5 *2 (-645 (-613 *5))) (-5 *3 (-1179)) (-4 *5 (-433 *4)) (-4 *4 (-1102)) (-5 *1 (-576 *4 *5)))))
+(-10 -7 (-15 -3082 ((-645 (-613 |#2|)) (-645 (-613 |#2|)) (-1179))) (-15 -2787 ((-613 |#2|) (-645 (-613 |#2|)))) (-15 -2967 ((-613 |#2|) (-613 |#2|) (-645 (-613 |#2|)) (-1179))) (-15 -4244 ((-645 (-613 |#2|)) (-645 (-613 |#2|)) (-645 (-613 |#2|)))) (-15 -1657 ((-645 (-613 |#2|)) (-645 |#2|) (-1179))) (IF (|has| |#1| (-559)) (-15 -3611 (|#2| |#2| (-1179))) |%noBranch|) (IF (|has| |#1| (-455)) (IF (|has| |#2| (-285)) (PROGN (-15 -1716 (|#2| |#2| (-1179))) (IF (|has| |#1| (-615 (-894 (-567)))) (IF (|has| |#1| (-888 (-567))) (IF (|has| |#2| (-630)) (IF (|has| |#2| (-1040 (-1179))) (-15 -4255 ((-588 |#2|) |#2| (-1179) (-1 (-588 |#2|) |#2| (-1179)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1179)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|))
+((-2934 (((-2 (|:| |answer| (-588 (-410 |#2|))) (|:| |a0| |#1|)) (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-645 |#1|) "failed") (-567) |#1| |#1|)) 202)) (-1522 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|))))))) (|:| |a0| |#1|)) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2872 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-645 (-410 |#2|))) 178)) (-3051 (((-3 (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|)))))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-645 (-410 |#2|))) 175)) (-2269 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2872 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 166)) (-2897 (((-2 (|:| |answer| (-588 (-410 |#2|))) (|:| |a0| |#1|)) (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2872 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 189)) (-1933 (((-3 (-2 (|:| -2872 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-410 |#2|)) 205)) (-3100 (((-3 (-2 (|:| |answer| (-410 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2872 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2872 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-410 |#2|)) 208)) (-3501 (((-2 (|:| |ir| (-588 (-410 |#2|))) (|:| |specpart| (-410 |#2|)) (|:| |polypart| |#2|)) (-410 |#2|) (-1 |#2| |#2|)) 90)) (-3316 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 102)) (-2732 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|))))))) (|:| |a0| |#1|)) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2973 |#1|) (|:| |sol?| (-112))) (-567) |#1|) (-645 (-410 |#2|))) 182)) (-1502 (((-3 (-624 |#1| |#2|) "failed") (-624 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2973 |#1|) (|:| |sol?| (-112))) (-567) |#1|)) 170)) (-3340 (((-2 (|:| |answer| (-588 (-410 |#2|))) (|:| |a0| |#1|)) (-410 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2973 |#1|) (|:| |sol?| (-112))) (-567) |#1|)) 193)) (-3676 (((-3 (-2 (|:| |answer| (-410 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2872 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2973 |#1|) (|:| |sol?| (-112))) (-567) |#1|) (-410 |#2|)) 213)))
+(((-577 |#1| |#2|) (-10 -7 (-15 -2897 ((-2 (|:| |answer| (-588 (-410 |#2|))) (|:| |a0| |#1|)) (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2872 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -3340 ((-2 (|:| |answer| (-588 (-410 |#2|))) (|:| |a0| |#1|)) (-410 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2973 |#1|) (|:| |sol?| (-112))) (-567) |#1|))) (-15 -2934 ((-2 (|:| |answer| (-588 (-410 |#2|))) (|:| |a0| |#1|)) (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-645 |#1|) "failed") (-567) |#1| |#1|))) (-15 -3100 ((-3 (-2 (|:| |answer| (-410 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2872 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2872 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-410 |#2|))) (-15 -3676 ((-3 (-2 (|:| |answer| (-410 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2872 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2973 |#1|) (|:| |sol?| (-112))) (-567) |#1|) (-410 |#2|))) (-15 -1522 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|))))))) (|:| |a0| |#1|)) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2872 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-645 (-410 |#2|)))) (-15 -2732 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|))))))) (|:| |a0| |#1|)) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2973 |#1|) (|:| |sol?| (-112))) (-567) |#1|) (-645 (-410 |#2|)))) (-15 -1933 ((-3 (-2 (|:| -2872 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-410 |#2|))) (-15 -3051 ((-3 (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|)))))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-645 (-410 |#2|)))) (-15 -2269 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2872 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -1502 ((-3 (-624 |#1| |#2|) "failed") (-624 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2973 |#1|) (|:| |sol?| (-112))) (-567) |#1|))) (-15 -3501 ((-2 (|:| |ir| (-588 (-410 |#2|))) (|:| |specpart| (-410 |#2|)) (|:| |polypart| |#2|)) (-410 |#2|) (-1 |#2| |#2|))) (-15 -3316 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-365) (-1245 |#1|)) (T -577))
+((-3316 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1245 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-577 *5 *3)))) (-3501 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1245 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| |ir| (-588 (-410 *6))) (|:| |specpart| (-410 *6)) (|:| |polypart| *6))) (-5 *1 (-577 *5 *6)) (-5 *3 (-410 *6)))) (-1502 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-624 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -2973 *4) (|:| |sol?| (-112))) (-567) *4)) (-4 *4 (-365)) (-4 *5 (-1245 *4)) (-5 *1 (-577 *4 *5)))) (-2269 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2872 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-365)) (-5 *1 (-577 *4 *2)) (-4 *2 (-1245 *4)))) (-3051 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-645 (-410 *7))) (-4 *7 (-1245 *6)) (-5 *3 (-410 *7)) (-4 *6 (-365)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-577 *6 *7)))) (-1933 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1245 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| -2872 (-410 *6)) (|:| |coeff| (-410 *6)))) (-5 *1 (-577 *5 *6)) (-5 *3 (-410 *6)))) (-2732 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -2973 *7) (|:| |sol?| (-112))) (-567) *7)) (-5 *6 (-645 (-410 *8))) (-4 *7 (-365)) (-4 *8 (-1245 *7)) (-5 *3 (-410 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-577 *7 *8)))) (-1522 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2872 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-645 (-410 *8))) (-4 *7 (-365)) (-4 *8 (-1245 *7)) (-5 *3 (-410 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-577 *7 *8)))) (-3676 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -2973 *6) (|:| |sol?| (-112))) (-567) *6)) (-4 *6 (-365)) (-4 *7 (-1245 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-410 *7)) (|:| |a0| *6)) (-2 (|:| -2872 (-410 *7)) (|:| |coeff| (-410 *7))) "failed")) (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7)))) (-3100 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2872 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-365)) (-4 *7 (-1245 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-410 *7)) (|:| |a0| *6)) (-2 (|:| -2872 (-410 *7)) (|:| |coeff| (-410 *7))) "failed")) (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7)))) (-2934 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-645 *6) "failed") (-567) *6 *6)) (-4 *6 (-365)) (-4 *7 (-1245 *6)) (-5 *2 (-2 (|:| |answer| (-588 (-410 *7))) (|:| |a0| *6))) (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7)))) (-3340 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -2973 *6) (|:| |sol?| (-112))) (-567) *6)) (-4 *6 (-365)) (-4 *7 (-1245 *6)) (-5 *2 (-2 (|:| |answer| (-588 (-410 *7))) (|:| |a0| *6))) (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7)))) (-2897 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2872 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-365)) (-4 *7 (-1245 *6)) (-5 *2 (-2 (|:| |answer| (-588 (-410 *7))) (|:| |a0| *6))) (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7)))))
+(-10 -7 (-15 -2897 ((-2 (|:| |answer| (-588 (-410 |#2|))) (|:| |a0| |#1|)) (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2872 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -3340 ((-2 (|:| |answer| (-588 (-410 |#2|))) (|:| |a0| |#1|)) (-410 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2973 |#1|) (|:| |sol?| (-112))) (-567) |#1|))) (-15 -2934 ((-2 (|:| |answer| (-588 (-410 |#2|))) (|:| |a0| |#1|)) (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-645 |#1|) "failed") (-567) |#1| |#1|))) (-15 -3100 ((-3 (-2 (|:| |answer| (-410 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2872 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2872 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-410 |#2|))) (-15 -3676 ((-3 (-2 (|:| |answer| (-410 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2872 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2973 |#1|) (|:| |sol?| (-112))) (-567) |#1|) (-410 |#2|))) (-15 -1522 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|))))))) (|:| |a0| |#1|)) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2872 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-645 (-410 |#2|)))) (-15 -2732 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|))))))) (|:| |a0| |#1|)) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2973 |#1|) (|:| |sol?| (-112))) (-567) |#1|) (-645 (-410 |#2|)))) (-15 -1933 ((-3 (-2 (|:| -2872 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-410 |#2|))) (-15 -3051 ((-3 (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|)))))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-645 (-410 |#2|)))) (-15 -2269 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2872 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -1502 ((-3 (-624 |#1| |#2|) "failed") (-624 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2973 |#1|) (|:| |sol?| (-112))) (-567) |#1|))) (-15 -3501 ((-2 (|:| |ir| (-588 (-410 |#2|))) (|:| |specpart| (-410 |#2|)) (|:| |polypart| |#2|)) (-410 |#2|) (-1 |#2| |#2|))) (-15 -3316 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|))))
+((-1654 (((-3 |#2| "failed") |#2| (-1179) (-1179)) 10)))
+(((-578 |#1| |#2|) (-10 -7 (-15 -1654 ((-3 |#2| "failed") |#2| (-1179) (-1179)))) (-13 (-308) (-147) (-1040 (-567)) (-640 (-567))) (-13 (-1204) (-961) (-1141) (-29 |#1|))) (T -578))
+((-1654 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1179)) (-4 *4 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-578 *4 *2)) (-4 *2 (-13 (-1204) (-961) (-1141) (-29 *4))))))
+(-10 -7 (-15 -1654 ((-3 |#2| "failed") |#2| (-1179) (-1179))))
+((-1695 (((-692 (-1227)) $ (-1227)) 26)) (-1741 (((-692 (-552)) $ (-552)) 25)) (-2487 (((-772) $ (-128)) 27)) (-2061 (((-692 (-129)) $ (-129)) 24)) (-1351 (((-692 (-1227)) $) 12)) (-4366 (((-692 (-1225)) $) 8)) (-3218 (((-692 (-1224)) $) 10)) (-1576 (((-692 (-552)) $) 13)) (-3961 (((-692 (-550)) $) 9)) (-1683 (((-692 (-549)) $) 11)) (-4020 (((-772) $ (-128)) 7)) (-4343 (((-692 (-129)) $) 14)) (-3034 (($ $) 6)))
(((-579) (-140)) (T -579))
NIL
(-13 (-530) (-861))
(((-173) . T) ((-530) . T) ((-861) . T))
-((-3835 (((-692 (-1226)) $ (-1226)) NIL)) (-2841 (((-692 (-552)) $ (-552)) NIL)) (-3597 (((-772) $ (-128)) NIL)) (-3887 (((-692 (-129)) $ (-129)) NIL)) (-2168 (((-692 (-1226)) $) NIL)) (-1612 (((-692 (-1224)) $) NIL)) (-2105 (((-692 (-1223)) $) NIL)) (-1578 (((-692 (-552)) $) NIL)) (-1784 (((-692 (-550)) $) NIL)) (-3057 (((-692 (-549)) $) NIL)) (-3176 (((-772) $ (-128)) NIL)) (-3706 (((-692 (-129)) $) NIL)) (-3254 (((-112) $) NIL)) (-2411 (($ (-391)) 14) (($ (-1160)) 16)) (-4132 (((-863) $) NIL)) (-1675 (($ $) NIL)))
-(((-580) (-13 (-579) (-614 (-863)) (-10 -8 (-15 -2411 ($ (-391))) (-15 -2411 ($ (-1160))) (-15 -3254 ((-112) $))))) (T -580))
-((-2411 (*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-580)))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-580)))) (-3254 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-580)))))
-(-13 (-579) (-614 (-863)) (-10 -8 (-15 -2411 ($ (-391))) (-15 -2411 ($ (-1160))) (-15 -3254 ((-112) $))))
-((-2403 (((-112) $ $) NIL)) (-2393 (($) 7 T CONST)) (-1419 (((-1160) $) NIL)) (-4081 (($) 6 T CONST)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 14)) (-2627 (($) 8 T CONST)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 10)))
-(((-581) (-13 (-1102) (-10 -8 (-15 -4081 ($) -3286) (-15 -2393 ($) -3286) (-15 -2627 ($) -3286)))) (T -581))
-((-4081 (*1 *1) (-5 *1 (-581))) (-2393 (*1 *1) (-5 *1 (-581))) (-2627 (*1 *1) (-5 *1 (-581))))
-(-13 (-1102) (-10 -8 (-15 -4081 ($) -3286) (-15 -2393 ($) -3286) (-15 -2627 ($) -3286)))
-((-2403 (((-112) $ $) NIL)) (-2744 (((-692 $) (-494)) 21)) (-1419 (((-1160) $) NIL)) (-1845 (($ (-1160)) 14)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 34)) (-2891 (((-213 4 (-129)) $) 24)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 26)))
-(((-582) (-13 (-1102) (-10 -8 (-15 -1845 ($ (-1160))) (-15 -2891 ((-213 4 (-129)) $)) (-15 -2744 ((-692 $) (-494)))))) (T -582))
-((-1845 (*1 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-582)))) (-2891 (*1 *2 *1) (-12 (-5 *2 (-213 4 (-129))) (-5 *1 (-582)))) (-2744 (*1 *2 *3) (-12 (-5 *3 (-494)) (-5 *2 (-692 (-582))) (-5 *1 (-582)))))
-(-13 (-1102) (-10 -8 (-15 -1845 ($ (-1160))) (-15 -2891 ((-213 4 (-129)) $)) (-15 -2744 ((-692 $) (-494)))))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2716 (($ $ (-567)) 77)) (-3609 (((-112) $ $) NIL)) (-2585 (($) NIL T CONST)) (-2236 (($ (-1174 (-567)) (-567)) 83)) (-2349 (($ $ $) NIL)) (-2109 (((-3 $ "failed") $) 68)) (-1648 (($ $) 43)) (-2360 (($ $ $) NIL)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-4384 (((-772) $) 16)) (-1433 (((-112) $) NIL)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2211 (((-567)) 37)) (-3297 (((-567) $) 41)) (-2740 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-2774 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2410 (($ $ (-567)) 24)) (-2391 (((-3 $ "failed") $ $) 73)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1990 (((-772) $) 17)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 74)) (-3038 (((-1158 (-567)) $) 19)) (-2192 (($ $) 26)) (-4132 (((-863) $) 104) (($ (-567)) 63) (($ $) NIL)) (-4221 (((-772)) 15 T CONST)) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL)) (-3050 (((-567) $ (-567)) 46)) (-1716 (($) 44 T CONST)) (-1728 (($) 21 T CONST)) (-2936 (((-112) $ $) 54)) (-3045 (($ $) 62) (($ $ $) 48)) (-3033 (($ $ $) 61)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 64) (($ $ $) 65)))
+((-1695 (((-692 (-1227)) $ (-1227)) NIL)) (-1741 (((-692 (-552)) $ (-552)) NIL)) (-2487 (((-772) $ (-128)) NIL)) (-2061 (((-692 (-129)) $ (-129)) NIL)) (-1351 (((-692 (-1227)) $) NIL)) (-4366 (((-692 (-1225)) $) NIL)) (-3218 (((-692 (-1224)) $) NIL)) (-1576 (((-692 (-552)) $) NIL)) (-3961 (((-692 (-550)) $) NIL)) (-1683 (((-692 (-549)) $) NIL)) (-4020 (((-772) $ (-128)) NIL)) (-4343 (((-692 (-129)) $) NIL)) (-3075 (((-112) $) NIL)) (-3767 (($ (-391)) 14) (($ (-1161)) 16)) (-4129 (((-863) $) NIL)) (-3034 (($ $) NIL)))
+(((-580) (-13 (-579) (-614 (-863)) (-10 -8 (-15 -3767 ($ (-391))) (-15 -3767 ($ (-1161))) (-15 -3075 ((-112) $))))) (T -580))
+((-3767 (*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-580)))) (-3767 (*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-580)))) (-3075 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-580)))))
+(-13 (-579) (-614 (-863)) (-10 -8 (-15 -3767 ($ (-391))) (-15 -3767 ($ (-1161))) (-15 -3075 ((-112) $))))
+((-2412 (((-112) $ $) NIL)) (-2402 (($) 7 T CONST)) (-2516 (((-1161) $) NIL)) (-4082 (($) 6 T CONST)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) 14)) (-2392 (($) 8 T CONST)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) 10)))
+(((-581) (-13 (-1102) (-10 -8 (-15 -4082 ($) -3304) (-15 -2402 ($) -3304) (-15 -2392 ($) -3304)))) (T -581))
+((-4082 (*1 *1) (-5 *1 (-581))) (-2402 (*1 *1) (-5 *1 (-581))) (-2392 (*1 *1) (-5 *1 (-581))))
+(-13 (-1102) (-10 -8 (-15 -4082 ($) -3304) (-15 -2402 ($) -3304) (-15 -2392 ($) -3304)))
+((-2412 (((-112) $ $) NIL)) (-2755 (((-692 $) (-494)) 21)) (-2516 (((-1161) $) NIL)) (-3198 (($ (-1161)) 14)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) 34)) (-2373 (((-213 4 (-129)) $) 24)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) 26)))
+(((-582) (-13 (-1102) (-10 -8 (-15 -3198 ($ (-1161))) (-15 -2373 ((-213 4 (-129)) $)) (-15 -2755 ((-692 $) (-494)))))) (T -582))
+((-3198 (*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-582)))) (-2373 (*1 *2 *1) (-12 (-5 *2 (-213 4 (-129))) (-5 *1 (-582)))) (-2755 (*1 *2 *3) (-12 (-5 *3 (-494)) (-5 *2 (-692 (-582))) (-5 *1 (-582)))))
+(-13 (-1102) (-10 -8 (-15 -3198 ($ (-1161))) (-15 -2373 ((-213 4 (-129)) $)) (-15 -2755 ((-692 $) (-494)))))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-4287 (($ $) NIL)) (-2286 (((-112) $) NIL)) (-2376 (((-3 $ "failed") $ $) NIL)) (-2728 (($ $ (-567)) 77)) (-3696 (((-112) $ $) NIL)) (-3647 (($) NIL T CONST)) (-3048 (($ (-1175 (-567)) (-567)) 83)) (-2357 (($ $ $) NIL)) (-3588 (((-3 $ "failed") $) 68)) (-3031 (($ $) 43)) (-2368 (($ $ $) NIL)) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) NIL)) (-3362 (((-772) $) 16)) (-4346 (((-112) $) NIL)) (-1469 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-3054 (((-567)) 37)) (-2239 (((-567) $) 41)) (-2751 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-2785 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2905 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1874 (($ $ (-567)) 24)) (-2400 (((-3 $ "failed") $ $) 73)) (-2372 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2460 (((-772) $) 17)) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) 74)) (-2688 (((-1159 (-567)) $) 19)) (-1834 (($ $) 26)) (-4129 (((-863) $) 104) (($ (-567)) 63) (($ $) NIL)) (-2746 (((-772)) 15 T CONST)) (-3357 (((-112) $ $) NIL)) (-3731 (((-112) $ $) NIL)) (-3058 (((-567) $ (-567)) 46)) (-1733 (($) 44 T CONST)) (-1744 (($) 21 T CONST)) (-2946 (((-112) $ $) 54)) (-3053 (($ $) 62) (($ $ $) 48)) (-3041 (($ $ $) 61)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 64) (($ $ $) 65)))
(((-583 |#1| |#2|) (-870 |#1|) (-567) (-112)) (T -583))
NIL
(-870 |#1|)
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) 30)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-3419 (((-112) $) NIL)) (-3862 (((-772)) NIL)) (-4293 (($ $ (-923)) NIL (|has| $ (-370))) (($ $) NIL)) (-3400 (((-1191 (-923) (-772)) (-567)) 59)) (-3472 (((-3 $ "failed") $ $) NIL)) (-3248 (($ $) NIL)) (-2908 (((-421 $) $) NIL)) (-3609 (((-112) $ $) NIL)) (-2375 (((-772)) NIL)) (-2585 (($) NIL T CONST)) (-3753 (((-3 $ "failed") $) 97)) (-2038 (($ $) 96)) (-3658 (($ (-1268 $)) 95)) (-2443 (((-3 "prime" "polynomial" "normal" "cyclic")) 56)) (-2349 (($ $ $) NIL)) (-2109 (((-3 $ "failed") $) 44)) (-1348 (($) NIL)) (-2360 (($ $ $) NIL)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-3431 (($) 61)) (-2722 (((-112) $) NIL)) (-4225 (($ $) NIL) (($ $ (-772)) NIL)) (-3184 (((-112) $) NIL)) (-4384 (((-834 (-923)) $) NIL) (((-923) $) NIL)) (-1433 (((-112) $) NIL)) (-3559 (($) 49 (|has| $ (-370)))) (-1426 (((-112) $) NIL (|has| $ (-370)))) (-2475 (($ $ (-923)) NIL (|has| $ (-370))) (($ $) NIL)) (-3972 (((-3 $ "failed") $) NIL)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4206 (((-1174 $) $ (-923)) NIL (|has| $ (-370))) (((-1174 $) $) 106)) (-4249 (((-923) $) 67)) (-2016 (((-1174 $) $) NIL (|has| $ (-370)))) (-2280 (((-3 (-1174 $) "failed") $ $) NIL (|has| $ (-370))) (((-1174 $) $) NIL (|has| $ (-370)))) (-2286 (($ $ (-1174 $)) NIL (|has| $ (-370)))) (-2740 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) NIL)) (-2672 (($) NIL T CONST)) (-3768 (($ (-923)) 60)) (-2051 (((-112) $) 89)) (-3430 (((-1122) $) NIL)) (-1398 (($) 28 (|has| $ (-370)))) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-2774 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1796 (((-645 (-2 (|:| -2706 (-567)) (|:| -3458 (-567))))) 54)) (-2706 (((-421 $) $) NIL)) (-1953 (((-923)) 88) (((-834 (-923))) NIL)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2391 (((-3 $ "failed") $ $) NIL)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1990 (((-772) $) NIL)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL)) (-2491 (((-3 (-772) "failed") $ $) NIL) (((-772) $) NIL)) (-1879 (((-134)) NIL)) (-1593 (($ $ (-772)) NIL) (($ $) NIL)) (-3077 (((-923) $) 87) (((-834 (-923)) $) NIL)) (-3341 (((-1174 $)) 104)) (-1527 (($) 66)) (-2661 (($) 50 (|has| $ (-370)))) (-2887 (((-690 $) (-1268 $)) NIL) (((-1268 $) $) 93)) (-3893 (((-567) $) 40)) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL)) (-4132 (((-863) $) NIL) (($ (-567)) 42) (($ $) NIL) (($ (-410 (-567))) NIL)) (-1903 (((-3 $ "failed") $) NIL) (($ $) 107)) (-4221 (((-772)) 51 T CONST)) (-1745 (((-112) $ $) 109)) (-2623 (((-1268 $) (-923)) 99) (((-1268 $)) 98)) (-3816 (((-112) $ $) NIL)) (-2012 (((-112) $) NIL)) (-1716 (($) 31 T CONST)) (-1728 (($) 27 T CONST)) (-3253 (($ $ (-772)) NIL (|has| $ (-370))) (($ $) NIL (|has| $ (-370)))) (-2637 (($ $ (-772)) NIL) (($ $) NIL)) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ $) NIL)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) 34)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 83) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL)))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) 30)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-4287 (($ $) NIL)) (-2286 (((-112) $) NIL)) (-2038 (((-112) $) NIL)) (-4355 (((-772)) NIL)) (-4293 (($ $ (-923)) NIL (|has| $ (-370))) (($ $) NIL)) (-3792 (((-1192 (-923) (-772)) (-567)) 59)) (-2376 (((-3 $ "failed") $ $) NIL)) (-3659 (($ $) NIL)) (-3597 (((-421 $) $) NIL)) (-3696 (((-112) $ $) NIL)) (-2384 (((-772)) NIL)) (-3647 (($) NIL T CONST)) (-3765 (((-3 $ "failed") $) 97)) (-2051 (($ $) 96)) (-3111 (($ (-1269 $)) 95)) (-2998 (((-3 "prime" "polynomial" "normal" "cyclic")) 56)) (-2357 (($ $ $) NIL)) (-3588 (((-3 $ "failed") $) 44)) (-1359 (($) NIL)) (-2368 (($ $ $) NIL)) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) NIL)) (-2870 (($) 61)) (-1305 (((-112) $) NIL)) (-3144 (($ $) NIL) (($ $ (-772)) NIL)) (-3502 (((-112) $) NIL)) (-3362 (((-834 (-923)) $) NIL) (((-923) $) NIL)) (-4346 (((-112) $) NIL)) (-2092 (($) 49 (|has| $ (-370)))) (-1897 (((-112) $) NIL (|has| $ (-370)))) (-2724 (($ $ (-923)) NIL (|has| $ (-370))) (($ $) NIL)) (-3067 (((-3 $ "failed") $) NIL)) (-1469 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1914 (((-1175 $) $ (-923)) NIL (|has| $ (-370))) (((-1175 $) $) 106)) (-3474 (((-923) $) 67)) (-3038 (((-1175 $) $) NIL (|has| $ (-370)))) (-2030 (((-3 (-1175 $) "failed") $ $) NIL (|has| $ (-370))) (((-1175 $) $) NIL (|has| $ (-370)))) (-1321 (($ $ (-1175 $)) NIL (|has| $ (-370)))) (-2751 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2516 (((-1161) $) NIL)) (-2949 (($ $) NIL)) (-2694 (($) NIL T CONST)) (-3779 (($ (-923)) 60)) (-2645 (((-112) $) 89)) (-3437 (((-1122) $) NIL)) (-1399 (($) 28 (|has| $ (-370)))) (-2217 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-2785 (($ $ $) NIL) (($ (-645 $)) NIL)) (-4151 (((-645 (-2 (|:| -2717 (-567)) (|:| -3468 (-567))))) 54)) (-2717 (((-421 $) $) NIL)) (-2845 (((-923)) 88) (((-834 (-923))) NIL)) (-2905 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2400 (((-3 $ "failed") $ $) NIL)) (-2372 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2460 (((-772) $) NIL)) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) NIL)) (-1760 (((-3 (-772) "failed") $ $) NIL) (((-772) $) NIL)) (-1412 (((-134)) NIL)) (-1616 (($ $ (-772)) NIL) (($ $) NIL)) (-3104 (((-923) $) 87) (((-834 (-923)) $) NIL)) (-3169 (((-1175 $)) 104)) (-4273 (($) 66)) (-2230 (($) 50 (|has| $ (-370)))) (-3088 (((-690 $) (-1269 $)) NIL) (((-1269 $) $) 93)) (-3902 (((-567) $) 40)) (-2616 (((-3 (-1269 $) "failed") (-690 $)) NIL)) (-4129 (((-863) $) NIL) (($ (-567)) 42) (($ $) NIL) (($ (-410 (-567))) NIL)) (-2118 (((-3 $ "failed") $) NIL) (($ $) 107)) (-2746 (((-772)) 51 T CONST)) (-3357 (((-112) $ $) 109)) (-2144 (((-1269 $) (-923)) 99) (((-1269 $)) 98)) (-3731 (((-112) $ $) NIL)) (-2618 (((-112) $) NIL)) (-1733 (($) 31 T CONST)) (-1744 (($) 27 T CONST)) (-2963 (($ $ (-772)) NIL (|has| $ (-370))) (($ $) NIL (|has| $ (-370)))) (-2647 (($ $ (-772)) NIL) (($ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3069 (($ $ $) NIL)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) 34)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 83) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL)))
(((-584 |#1|) (-13 (-351) (-330 $) (-615 (-567))) (-923)) (T -584))
NIL
(-13 (-351) (-330 $) (-615 (-567)))
-((-2018 (((-1273) (-1160)) 10)))
-(((-585) (-10 -7 (-15 -2018 ((-1273) (-1160))))) (T -585))
-((-2018 (*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-585)))))
-(-10 -7 (-15 -2018 ((-1273) (-1160))))
-((-4323 (((-588 |#2|) (-588 |#2|)) 42)) (-3317 (((-645 |#2|) (-588 |#2|)) 44)) (-2502 ((|#2| (-588 |#2|)) 50)))
-(((-586 |#1| |#2|) (-10 -7 (-15 -4323 ((-588 |#2|) (-588 |#2|))) (-15 -3317 ((-645 |#2|) (-588 |#2|))) (-15 -2502 (|#2| (-588 |#2|)))) (-13 (-455) (-1040 (-567)) (-640 (-567))) (-13 (-29 |#1|) (-1203))) (T -586))
-((-2502 (*1 *2 *3) (-12 (-5 *3 (-588 *2)) (-4 *2 (-13 (-29 *4) (-1203))) (-5 *1 (-586 *4 *2)) (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))))) (-3317 (*1 *2 *3) (-12 (-5 *3 (-588 *5)) (-4 *5 (-13 (-29 *4) (-1203))) (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-645 *5)) (-5 *1 (-586 *4 *5)))) (-4323 (*1 *2 *2) (-12 (-5 *2 (-588 *4)) (-4 *4 (-13 (-29 *3) (-1203))) (-4 *3 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-586 *3 *4)))))
-(-10 -7 (-15 -4323 ((-588 |#2|) (-588 |#2|))) (-15 -3317 ((-645 |#2|) (-588 |#2|))) (-15 -2502 (|#2| (-588 |#2|))))
-((-3829 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -1752 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1752 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-588 |#2|) (-1 |#2| |#1|) (-588 |#1|)) 30)))
-(((-587 |#1| |#2|) (-10 -7 (-15 -3829 ((-588 |#2|) (-1 |#2| |#1|) (-588 |#1|))) (-15 -3829 ((-3 (-2 (|:| -1752 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1752 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -3829 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -3829 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-365) (-365)) (T -587))
-((-3829 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-365)) (-4 *6 (-365)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-587 *5 *6)))) (-3829 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-365)) (-4 *2 (-365)) (-5 *1 (-587 *5 *2)))) (-3829 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -1752 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-365)) (-4 *6 (-365)) (-5 *2 (-2 (|:| -1752 *6) (|:| |coeff| *6))) (-5 *1 (-587 *5 *6)))) (-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-588 *5)) (-4 *5 (-365)) (-4 *6 (-365)) (-5 *2 (-588 *6)) (-5 *1 (-587 *5 *6)))))
-(-10 -7 (-15 -3829 ((-588 |#2|) (-1 |#2| |#1|) (-588 |#1|))) (-15 -3829 ((-3 (-2 (|:| -1752 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1752 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -3829 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -3829 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed"))))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2585 (($) NIL T CONST)) (-3753 (((-3 |#1| "failed") $) 76)) (-2038 ((|#1| $) NIL)) (-1752 ((|#1| $) 30)) (-2357 (((-645 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32)) (-1328 (($ |#1| (-645 (-2 (|:| |scalar| (-410 (-567))) (|:| |coeff| (-1174 |#1|)) (|:| |logand| (-1174 |#1|)))) (-645 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28)) (-1382 (((-645 (-2 (|:| |scalar| (-410 (-567))) (|:| |coeff| (-1174 |#1|)) (|:| |logand| (-1174 |#1|)))) $) 31)) (-1419 (((-1160) $) NIL)) (-2940 (($ |#1| |#1|) 38) (($ |#1| (-1178)) 49 (|has| |#1| (-1040 (-1178))))) (-3430 (((-1122) $) NIL)) (-4159 (((-112) $) 35)) (-1593 ((|#1| $ (-1 |#1| |#1|)) 88) ((|#1| $ (-1178)) 89 (|has| |#1| (-902 (-1178))))) (-4132 (((-863) $) 112) (($ |#1|) 29)) (-1745 (((-112) $ $) NIL)) (-1716 (($) 18 T CONST)) (-2936 (((-112) $ $) NIL)) (-3045 (($ $) 17) (($ $ $) NIL)) (-3033 (($ $ $) 85)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 16) (($ (-410 (-567)) $) 41) (($ $ (-410 (-567))) NIL)))
-(((-588 |#1|) (-13 (-718 (-410 (-567))) (-1040 |#1|) (-10 -8 (-15 -1328 ($ |#1| (-645 (-2 (|:| |scalar| (-410 (-567))) (|:| |coeff| (-1174 |#1|)) (|:| |logand| (-1174 |#1|)))) (-645 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -1752 (|#1| $)) (-15 -1382 ((-645 (-2 (|:| |scalar| (-410 (-567))) (|:| |coeff| (-1174 |#1|)) (|:| |logand| (-1174 |#1|)))) $)) (-15 -2357 ((-645 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -4159 ((-112) $)) (-15 -2940 ($ |#1| |#1|)) (-15 -1593 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-902 (-1178))) (-15 -1593 (|#1| $ (-1178))) |%noBranch|) (IF (|has| |#1| (-1040 (-1178))) (-15 -2940 ($ |#1| (-1178))) |%noBranch|))) (-365)) (T -588))
-((-1328 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-645 (-2 (|:| |scalar| (-410 (-567))) (|:| |coeff| (-1174 *2)) (|:| |logand| (-1174 *2))))) (-5 *4 (-645 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-365)) (-5 *1 (-588 *2)))) (-1752 (*1 *2 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-365)))) (-1382 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| |scalar| (-410 (-567))) (|:| |coeff| (-1174 *3)) (|:| |logand| (-1174 *3))))) (-5 *1 (-588 *3)) (-4 *3 (-365)))) (-2357 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-588 *3)) (-4 *3 (-365)))) (-4159 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-588 *3)) (-4 *3 (-365)))) (-2940 (*1 *1 *2 *2) (-12 (-5 *1 (-588 *2)) (-4 *2 (-365)))) (-1593 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-588 *2)) (-4 *2 (-365)))) (-1593 (*1 *2 *1 *3) (-12 (-4 *2 (-365)) (-4 *2 (-902 *3)) (-5 *1 (-588 *2)) (-5 *3 (-1178)))) (-2940 (*1 *1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *1 (-588 *2)) (-4 *2 (-1040 *3)) (-4 *2 (-365)))))
-(-13 (-718 (-410 (-567))) (-1040 |#1|) (-10 -8 (-15 -1328 ($ |#1| (-645 (-2 (|:| |scalar| (-410 (-567))) (|:| |coeff| (-1174 |#1|)) (|:| |logand| (-1174 |#1|)))) (-645 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -1752 (|#1| $)) (-15 -1382 ((-645 (-2 (|:| |scalar| (-410 (-567))) (|:| |coeff| (-1174 |#1|)) (|:| |logand| (-1174 |#1|)))) $)) (-15 -2357 ((-645 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -4159 ((-112) $)) (-15 -2940 ($ |#1| |#1|)) (-15 -1593 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-902 (-1178))) (-15 -1593 (|#1| $ (-1178))) |%noBranch|) (IF (|has| |#1| (-1040 (-1178))) (-15 -2940 ($ |#1| (-1178))) |%noBranch|)))
-((-3308 (((-112) |#1|) 16)) (-2407 (((-3 |#1| "failed") |#1|) 14)) (-1600 (((-2 (|:| -3047 |#1|) (|:| -3458 (-772))) |#1|) 39) (((-3 |#1| "failed") |#1| (-772)) 18)) (-1375 (((-112) |#1| (-772)) 19)) (-2310 ((|#1| |#1|) 43)) (-3561 ((|#1| |#1| (-772)) 46)))
-(((-589 |#1|) (-10 -7 (-15 -1375 ((-112) |#1| (-772))) (-15 -1600 ((-3 |#1| "failed") |#1| (-772))) (-15 -1600 ((-2 (|:| -3047 |#1|) (|:| -3458 (-772))) |#1|)) (-15 -3561 (|#1| |#1| (-772))) (-15 -3308 ((-112) |#1|)) (-15 -2407 ((-3 |#1| "failed") |#1|)) (-15 -2310 (|#1| |#1|))) (-548)) (T -589))
-((-2310 (*1 *2 *2) (-12 (-5 *1 (-589 *2)) (-4 *2 (-548)))) (-2407 (*1 *2 *2) (|partial| -12 (-5 *1 (-589 *2)) (-4 *2 (-548)))) (-3308 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-589 *3)) (-4 *3 (-548)))) (-3561 (*1 *2 *2 *3) (-12 (-5 *3 (-772)) (-5 *1 (-589 *2)) (-4 *2 (-548)))) (-1600 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3047 *3) (|:| -3458 (-772)))) (-5 *1 (-589 *3)) (-4 *3 (-548)))) (-1600 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-772)) (-5 *1 (-589 *2)) (-4 *2 (-548)))) (-1375 (*1 *2 *3 *4) (-12 (-5 *4 (-772)) (-5 *2 (-112)) (-5 *1 (-589 *3)) (-4 *3 (-548)))))
-(-10 -7 (-15 -1375 ((-112) |#1| (-772))) (-15 -1600 ((-3 |#1| "failed") |#1| (-772))) (-15 -1600 ((-2 (|:| -3047 |#1|) (|:| -3458 (-772))) |#1|)) (-15 -3561 (|#1| |#1| (-772))) (-15 -3308 ((-112) |#1|)) (-15 -2407 ((-3 |#1| "failed") |#1|)) (-15 -2310 (|#1| |#1|)))
-((-2657 (((-1174 |#1|) (-923)) 44)))
-(((-590 |#1|) (-10 -7 (-15 -2657 ((-1174 |#1|) (-923)))) (-351)) (T -590))
-((-2657 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1174 *4)) (-5 *1 (-590 *4)) (-4 *4 (-351)))))
-(-10 -7 (-15 -2657 ((-1174 |#1|) (-923))))
-((-4323 (((-588 (-410 (-954 |#1|))) (-588 (-410 (-954 |#1|)))) 27)) (-2416 (((-3 (-317 |#1|) (-645 (-317 |#1|))) (-410 (-954 |#1|)) (-1178)) 34 (|has| |#1| (-147)))) (-3317 (((-645 (-317 |#1|)) (-588 (-410 (-954 |#1|)))) 19)) (-4393 (((-317 |#1|) (-410 (-954 |#1|)) (-1178)) 32 (|has| |#1| (-147)))) (-2502 (((-317 |#1|) (-588 (-410 (-954 |#1|)))) 21)))
-(((-591 |#1|) (-10 -7 (-15 -4323 ((-588 (-410 (-954 |#1|))) (-588 (-410 (-954 |#1|))))) (-15 -3317 ((-645 (-317 |#1|)) (-588 (-410 (-954 |#1|))))) (-15 -2502 ((-317 |#1|) (-588 (-410 (-954 |#1|))))) (IF (|has| |#1| (-147)) (PROGN (-15 -2416 ((-3 (-317 |#1|) (-645 (-317 |#1|))) (-410 (-954 |#1|)) (-1178))) (-15 -4393 ((-317 |#1|) (-410 (-954 |#1|)) (-1178)))) |%noBranch|)) (-13 (-455) (-1040 (-567)) (-640 (-567)))) (T -591))
-((-4393 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-1178)) (-4 *5 (-147)) (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-317 *5)) (-5 *1 (-591 *5)))) (-2416 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-1178)) (-4 *5 (-147)) (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-3 (-317 *5) (-645 (-317 *5)))) (-5 *1 (-591 *5)))) (-2502 (*1 *2 *3) (-12 (-5 *3 (-588 (-410 (-954 *4)))) (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-317 *4)) (-5 *1 (-591 *4)))) (-3317 (*1 *2 *3) (-12 (-5 *3 (-588 (-410 (-954 *4)))) (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-645 (-317 *4))) (-5 *1 (-591 *4)))) (-4323 (*1 *2 *2) (-12 (-5 *2 (-588 (-410 (-954 *3)))) (-4 *3 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-591 *3)))))
-(-10 -7 (-15 -4323 ((-588 (-410 (-954 |#1|))) (-588 (-410 (-954 |#1|))))) (-15 -3317 ((-645 (-317 |#1|)) (-588 (-410 (-954 |#1|))))) (-15 -2502 ((-317 |#1|) (-588 (-410 (-954 |#1|))))) (IF (|has| |#1| (-147)) (PROGN (-15 -2416 ((-3 (-317 |#1|) (-645 (-317 |#1|))) (-410 (-954 |#1|)) (-1178))) (-15 -4393 ((-317 |#1|) (-410 (-954 |#1|)) (-1178)))) |%noBranch|))
-((-1691 (((-645 (-690 (-567))) (-645 (-567)) (-645 (-907 (-567)))) 78) (((-645 (-690 (-567))) (-645 (-567))) 79) (((-690 (-567)) (-645 (-567)) (-907 (-567))) 72)) (-2427 (((-772) (-645 (-567))) 69)))
-(((-592) (-10 -7 (-15 -2427 ((-772) (-645 (-567)))) (-15 -1691 ((-690 (-567)) (-645 (-567)) (-907 (-567)))) (-15 -1691 ((-645 (-690 (-567))) (-645 (-567)))) (-15 -1691 ((-645 (-690 (-567))) (-645 (-567)) (-645 (-907 (-567))))))) (T -592))
-((-1691 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-567))) (-5 *4 (-645 (-907 (-567)))) (-5 *2 (-645 (-690 (-567)))) (-5 *1 (-592)))) (-1691 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-645 (-690 (-567)))) (-5 *1 (-592)))) (-1691 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-567))) (-5 *4 (-907 (-567))) (-5 *2 (-690 (-567))) (-5 *1 (-592)))) (-2427 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-772)) (-5 *1 (-592)))))
-(-10 -7 (-15 -2427 ((-772) (-645 (-567)))) (-15 -1691 ((-690 (-567)) (-645 (-567)) (-907 (-567)))) (-15 -1691 ((-645 (-690 (-567))) (-645 (-567)))) (-15 -1691 ((-645 (-690 (-567))) (-645 (-567)) (-645 (-907 (-567))))))
-((-1839 (((-645 |#5|) |#5| (-112)) 100)) (-1459 (((-112) |#5| (-645 |#5|)) 34)))
-(((-593 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1839 ((-645 |#5|) |#5| (-112))) (-15 -1459 ((-112) |#5| (-645 |#5|)))) (-13 (-308) (-147)) (-794) (-851) (-1067 |#1| |#2| |#3|) (-1111 |#1| |#2| |#3| |#4|)) (T -593))
-((-1459 (*1 *2 *3 *4) (-12 (-5 *4 (-645 *3)) (-4 *3 (-1111 *5 *6 *7 *8)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-1067 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-593 *5 *6 *7 *8 *3)))) (-1839 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-1067 *5 *6 *7)) (-5 *2 (-645 *3)) (-5 *1 (-593 *5 *6 *7 *8 *3)) (-4 *3 (-1111 *5 *6 *7 *8)))))
-(-10 -7 (-15 -1839 ((-645 |#5|) |#5| (-112))) (-15 -1459 ((-112) |#5| (-645 |#5|))))
-((-2403 (((-112) $ $) NIL)) (-4104 (((-1137) $) 11)) (-4089 (((-1137) $) 9)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 17) (($ (-1183)) NIL) (((-1183) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)))
-(((-594) (-13 (-1085) (-10 -8 (-15 -4089 ((-1137) $)) (-15 -4104 ((-1137) $))))) (T -594))
-((-4089 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-594)))) (-4104 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-594)))))
-(-13 (-1085) (-10 -8 (-15 -4089 ((-1137) $)) (-15 -4104 ((-1137) $))))
-((-2403 (((-112) $ $) NIL (|has| (-144) (-1102)))) (-4172 (($ $) 38)) (-3714 (($ $) NIL)) (-1757 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-1783 (((-1273) $ (-567) (-567)) NIL (|has| $ (-6 -4419)))) (-1938 (((-112) $ $) 68)) (-1918 (((-112) $ $ (-567)) 62)) (-4323 (((-645 $) $ (-144)) 76) (((-645 $) $ (-141)) 77)) (-2496 (((-112) (-1 (-112) (-144) (-144)) $) NIL) (((-112) $) NIL (|has| (-144) (-851)))) (-1394 (($ (-1 (-112) (-144) (-144)) $) NIL (|has| $ (-6 -4419))) (($ $) NIL (-12 (|has| $ (-6 -4419)) (|has| (-144) (-851))))) (-4396 (($ (-1 (-112) (-144) (-144)) $) NIL) (($ $) NIL (|has| (-144) (-851)))) (-3445 (((-112) $ (-772)) NIL)) (-4284 (((-144) $ (-567) (-144)) 59 (|has| $ (-6 -4419))) (((-144) $ (-1235 (-567)) (-144)) NIL (|has| $ (-6 -4419)))) (-3350 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4418)))) (-2585 (($) NIL T CONST)) (-3279 (($ $ (-144)) 81) (($ $ (-141)) 82)) (-1764 (($ $) NIL (|has| $ (-6 -4419)))) (-3584 (($ $) NIL)) (-3364 (($ $ (-1235 (-567)) $) 57)) (-2444 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-144) (-1102))))) (-3238 (($ (-144) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-144) (-1102)))) (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4418)))) (-2477 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4418)) (|has| (-144) (-1102)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4418))) (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4418)))) (-3741 (((-144) $ (-567) (-144)) NIL (|has| $ (-6 -4419)))) (-3680 (((-144) $ (-567)) NIL)) (-1958 (((-112) $ $) 90)) (-2569 (((-567) (-1 (-112) (-144)) $) NIL) (((-567) (-144) $) NIL (|has| (-144) (-1102))) (((-567) (-144) $ (-567)) 65 (|has| (-144) (-1102))) (((-567) $ $ (-567)) 63) (((-567) (-141) $ (-567)) 67)) (-2777 (((-645 (-144)) $) NIL (|has| $ (-6 -4418)))) (-2846 (($ (-772) (-144)) 9)) (-2077 (((-112) $ (-772)) NIL)) (-4069 (((-567) $) 32 (|has| (-567) (-851)))) (-1354 (($ $ $) NIL (|has| (-144) (-851)))) (-4135 (($ (-1 (-112) (-144) (-144)) $ $) NIL) (($ $ $) NIL (|has| (-144) (-851)))) (-2279 (((-645 (-144)) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-144) (-1102))))) (-2266 (((-567) $) 47 (|has| (-567) (-851)))) (-2981 (($ $ $) NIL (|has| (-144) (-851)))) (-2580 (((-112) $ $ (-144)) 91)) (-4197 (((-772) $ $ (-144)) 88)) (-3731 (($ (-1 (-144) (-144)) $) 37 (|has| $ (-6 -4419)))) (-3829 (($ (-1 (-144) (-144)) $) NIL) (($ (-1 (-144) (-144) (-144)) $ $) NIL)) (-3240 (($ $) 41)) (-3677 (($ $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-3289 (($ $ (-144)) 78) (($ $ (-141)) 79)) (-1419 (((-1160) $) 43 (|has| (-144) (-1102)))) (-2845 (($ (-144) $ (-567)) NIL) (($ $ $ (-567)) 27)) (-1789 (((-645 (-567)) $) NIL)) (-2996 (((-112) (-567) $) NIL)) (-3430 (((-1122) $) 87 (|has| (-144) (-1102)))) (-2409 (((-144) $) NIL (|has| (-567) (-851)))) (-4128 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-3986 (($ $ (-144)) NIL (|has| $ (-6 -4419)))) (-3025 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 (-144)))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102)))) (($ $ (-295 (-144))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102)))) (($ $ (-645 (-144)) (-645 (-144))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102))))) (-3092 (((-112) $ $) NIL)) (-1794 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-144) (-1102))))) (-2339 (((-645 (-144)) $) NIL)) (-3572 (((-112) $) 15)) (-3498 (($) 10)) (-1787 (((-144) $ (-567) (-144)) NIL) (((-144) $ (-567)) 69) (($ $ (-1235 (-567))) 25) (($ $ $) NIL)) (-1560 (($ $ (-567)) NIL) (($ $ (-1235 (-567))) NIL)) (-3439 (((-772) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4418))) (((-772) (-144) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-144) (-1102))))) (-1395 (($ $ $ (-567)) 84 (|has| $ (-6 -4419)))) (-4305 (($ $) 20)) (-3893 (((-539) $) NIL (|has| (-144) (-615 (-539))))) (-4147 (($ (-645 (-144))) NIL)) (-2269 (($ $ (-144)) NIL) (($ (-144) $) NIL) (($ $ $) 19) (($ (-645 $)) 85)) (-4132 (($ (-144)) NIL) (((-863) $) 31 (|has| (-144) (-614 (-863))))) (-1745 (((-112) $ $) NIL (|has| (-144) (-1102)))) (-1853 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4418)))) (-2997 (((-112) $ $) NIL (|has| (-144) (-851)))) (-2971 (((-112) $ $) NIL (|has| (-144) (-851)))) (-2936 (((-112) $ $) 17 (|has| (-144) (-1102)))) (-2984 (((-112) $ $) NIL (|has| (-144) (-851)))) (-2958 (((-112) $ $) 18 (|has| (-144) (-851)))) (-2414 (((-772) $) 16 (|has| $ (-6 -4418)))))
+((-2028 (((-1274) (-1161)) 10)))
+(((-585) (-10 -7 (-15 -2028 ((-1274) (-1161))))) (T -585))
+((-2028 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-585)))))
+(-10 -7 (-15 -2028 ((-1274) (-1161))))
+((-2004 (((-588 |#2|) (-588 |#2|)) 42)) (-3326 (((-645 |#2|) (-588 |#2|)) 44)) (-2589 ((|#2| (-588 |#2|)) 50)))
+(((-586 |#1| |#2|) (-10 -7 (-15 -2004 ((-588 |#2|) (-588 |#2|))) (-15 -3326 ((-645 |#2|) (-588 |#2|))) (-15 -2589 (|#2| (-588 |#2|)))) (-13 (-455) (-1040 (-567)) (-640 (-567))) (-13 (-29 |#1|) (-1204))) (T -586))
+((-2589 (*1 *2 *3) (-12 (-5 *3 (-588 *2)) (-4 *2 (-13 (-29 *4) (-1204))) (-5 *1 (-586 *4 *2)) (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))))) (-3326 (*1 *2 *3) (-12 (-5 *3 (-588 *5)) (-4 *5 (-13 (-29 *4) (-1204))) (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-645 *5)) (-5 *1 (-586 *4 *5)))) (-2004 (*1 *2 *2) (-12 (-5 *2 (-588 *4)) (-4 *4 (-13 (-29 *3) (-1204))) (-4 *3 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-586 *3 *4)))))
+(-10 -7 (-15 -2004 ((-588 |#2|) (-588 |#2|))) (-15 -3326 ((-645 |#2|) (-588 |#2|))) (-15 -2589 (|#2| (-588 |#2|))))
+((-3841 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -2872 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2872 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-588 |#2|) (-1 |#2| |#1|) (-588 |#1|)) 30)))
+(((-587 |#1| |#2|) (-10 -7 (-15 -3841 ((-588 |#2|) (-1 |#2| |#1|) (-588 |#1|))) (-15 -3841 ((-3 (-2 (|:| -2872 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2872 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -3841 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -3841 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-365) (-365)) (T -587))
+((-3841 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-365)) (-4 *6 (-365)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-587 *5 *6)))) (-3841 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-365)) (-4 *2 (-365)) (-5 *1 (-587 *5 *2)))) (-3841 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2872 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-365)) (-4 *6 (-365)) (-5 *2 (-2 (|:| -2872 *6) (|:| |coeff| *6))) (-5 *1 (-587 *5 *6)))) (-3841 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-588 *5)) (-4 *5 (-365)) (-4 *6 (-365)) (-5 *2 (-588 *6)) (-5 *1 (-587 *5 *6)))))
+(-10 -7 (-15 -3841 ((-588 |#2|) (-1 |#2| |#1|) (-588 |#1|))) (-15 -3841 ((-3 (-2 (|:| -2872 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2872 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -3841 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -3841 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed"))))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-2376 (((-3 $ "failed") $ $) NIL)) (-3647 (($) NIL T CONST)) (-3765 (((-3 |#1| "failed") $) 76)) (-2051 ((|#1| $) NIL)) (-2872 ((|#1| $) 30)) (-4024 (((-645 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32)) (-2429 (($ |#1| (-645 (-2 (|:| |scalar| (-410 (-567))) (|:| |coeff| (-1175 |#1|)) (|:| |logand| (-1175 |#1|)))) (-645 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28)) (-2975 (((-645 (-2 (|:| |scalar| (-410 (-567))) (|:| |coeff| (-1175 |#1|)) (|:| |logand| (-1175 |#1|)))) $) 31)) (-2516 (((-1161) $) NIL)) (-1778 (($ |#1| |#1|) 38) (($ |#1| (-1179)) 49 (|has| |#1| (-1040 (-1179))))) (-3437 (((-1122) $) NIL)) (-1747 (((-112) $) 35)) (-1616 ((|#1| $ (-1 |#1| |#1|)) 88) ((|#1| $ (-1179)) 89 (|has| |#1| (-902 (-1179))))) (-4129 (((-863) $) 112) (($ |#1|) 29)) (-3357 (((-112) $ $) NIL)) (-1733 (($) 18 T CONST)) (-2946 (((-112) $ $) NIL)) (-3053 (($ $) 17) (($ $ $) NIL)) (-3041 (($ $ $) 85)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 16) (($ (-410 (-567)) $) 41) (($ $ (-410 (-567))) NIL)))
+(((-588 |#1|) (-13 (-718 (-410 (-567))) (-1040 |#1|) (-10 -8 (-15 -2429 ($ |#1| (-645 (-2 (|:| |scalar| (-410 (-567))) (|:| |coeff| (-1175 |#1|)) (|:| |logand| (-1175 |#1|)))) (-645 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2872 (|#1| $)) (-15 -2975 ((-645 (-2 (|:| |scalar| (-410 (-567))) (|:| |coeff| (-1175 |#1|)) (|:| |logand| (-1175 |#1|)))) $)) (-15 -4024 ((-645 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -1747 ((-112) $)) (-15 -1778 ($ |#1| |#1|)) (-15 -1616 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-902 (-1179))) (-15 -1616 (|#1| $ (-1179))) |%noBranch|) (IF (|has| |#1| (-1040 (-1179))) (-15 -1778 ($ |#1| (-1179))) |%noBranch|))) (-365)) (T -588))
+((-2429 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-645 (-2 (|:| |scalar| (-410 (-567))) (|:| |coeff| (-1175 *2)) (|:| |logand| (-1175 *2))))) (-5 *4 (-645 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-365)) (-5 *1 (-588 *2)))) (-2872 (*1 *2 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-365)))) (-2975 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| |scalar| (-410 (-567))) (|:| |coeff| (-1175 *3)) (|:| |logand| (-1175 *3))))) (-5 *1 (-588 *3)) (-4 *3 (-365)))) (-4024 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-588 *3)) (-4 *3 (-365)))) (-1747 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-588 *3)) (-4 *3 (-365)))) (-1778 (*1 *1 *2 *2) (-12 (-5 *1 (-588 *2)) (-4 *2 (-365)))) (-1616 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-588 *2)) (-4 *2 (-365)))) (-1616 (*1 *2 *1 *3) (-12 (-4 *2 (-365)) (-4 *2 (-902 *3)) (-5 *1 (-588 *2)) (-5 *3 (-1179)))) (-1778 (*1 *1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *1 (-588 *2)) (-4 *2 (-1040 *3)) (-4 *2 (-365)))))
+(-13 (-718 (-410 (-567))) (-1040 |#1|) (-10 -8 (-15 -2429 ($ |#1| (-645 (-2 (|:| |scalar| (-410 (-567))) (|:| |coeff| (-1175 |#1|)) (|:| |logand| (-1175 |#1|)))) (-645 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2872 (|#1| $)) (-15 -2975 ((-645 (-2 (|:| |scalar| (-410 (-567))) (|:| |coeff| (-1175 |#1|)) (|:| |logand| (-1175 |#1|)))) $)) (-15 -4024 ((-645 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -1747 ((-112) $)) (-15 -1778 ($ |#1| |#1|)) (-15 -1616 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-902 (-1179))) (-15 -1616 (|#1| $ (-1179))) |%noBranch|) (IF (|has| |#1| (-1040 (-1179))) (-15 -1778 ($ |#1| (-1179))) |%noBranch|)))
+((-3965 (((-112) |#1|) 16)) (-1662 (((-3 |#1| "failed") |#1|) 14)) (-1949 (((-2 (|:| -3070 |#1|) (|:| -3468 (-772))) |#1|) 39) (((-3 |#1| "failed") |#1| (-772)) 18)) (-3824 (((-112) |#1| (-772)) 19)) (-1775 ((|#1| |#1|) 43)) (-2288 ((|#1| |#1| (-772)) 46)))
+(((-589 |#1|) (-10 -7 (-15 -3824 ((-112) |#1| (-772))) (-15 -1949 ((-3 |#1| "failed") |#1| (-772))) (-15 -1949 ((-2 (|:| -3070 |#1|) (|:| -3468 (-772))) |#1|)) (-15 -2288 (|#1| |#1| (-772))) (-15 -3965 ((-112) |#1|)) (-15 -1662 ((-3 |#1| "failed") |#1|)) (-15 -1775 (|#1| |#1|))) (-548)) (T -589))
+((-1775 (*1 *2 *2) (-12 (-5 *1 (-589 *2)) (-4 *2 (-548)))) (-1662 (*1 *2 *2) (|partial| -12 (-5 *1 (-589 *2)) (-4 *2 (-548)))) (-3965 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-589 *3)) (-4 *3 (-548)))) (-2288 (*1 *2 *2 *3) (-12 (-5 *3 (-772)) (-5 *1 (-589 *2)) (-4 *2 (-548)))) (-1949 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3070 *3) (|:| -3468 (-772)))) (-5 *1 (-589 *3)) (-4 *3 (-548)))) (-1949 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-772)) (-5 *1 (-589 *2)) (-4 *2 (-548)))) (-3824 (*1 *2 *3 *4) (-12 (-5 *4 (-772)) (-5 *2 (-112)) (-5 *1 (-589 *3)) (-4 *3 (-548)))))
+(-10 -7 (-15 -3824 ((-112) |#1| (-772))) (-15 -1949 ((-3 |#1| "failed") |#1| (-772))) (-15 -1949 ((-2 (|:| -3070 |#1|) (|:| -3468 (-772))) |#1|)) (-15 -2288 (|#1| |#1| (-772))) (-15 -3965 ((-112) |#1|)) (-15 -1662 ((-3 |#1| "failed") |#1|)) (-15 -1775 (|#1| |#1|)))
+((-3066 (((-1175 |#1|) (-923)) 44)))
+(((-590 |#1|) (-10 -7 (-15 -3066 ((-1175 |#1|) (-923)))) (-351)) (T -590))
+((-3066 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1175 *4)) (-5 *1 (-590 *4)) (-4 *4 (-351)))))
+(-10 -7 (-15 -3066 ((-1175 |#1|) (-923))))
+((-2004 (((-588 (-410 (-954 |#1|))) (-588 (-410 (-954 |#1|)))) 27)) (-4083 (((-3 (-317 |#1|) (-645 (-317 |#1|))) (-410 (-954 |#1|)) (-1179)) 34 (|has| |#1| (-147)))) (-3326 (((-645 (-317 |#1|)) (-588 (-410 (-954 |#1|)))) 19)) (-3090 (((-317 |#1|) (-410 (-954 |#1|)) (-1179)) 32 (|has| |#1| (-147)))) (-2589 (((-317 |#1|) (-588 (-410 (-954 |#1|)))) 21)))
+(((-591 |#1|) (-10 -7 (-15 -2004 ((-588 (-410 (-954 |#1|))) (-588 (-410 (-954 |#1|))))) (-15 -3326 ((-645 (-317 |#1|)) (-588 (-410 (-954 |#1|))))) (-15 -2589 ((-317 |#1|) (-588 (-410 (-954 |#1|))))) (IF (|has| |#1| (-147)) (PROGN (-15 -4083 ((-3 (-317 |#1|) (-645 (-317 |#1|))) (-410 (-954 |#1|)) (-1179))) (-15 -3090 ((-317 |#1|) (-410 (-954 |#1|)) (-1179)))) |%noBranch|)) (-13 (-455) (-1040 (-567)) (-640 (-567)))) (T -591))
+((-3090 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-1179)) (-4 *5 (-147)) (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-317 *5)) (-5 *1 (-591 *5)))) (-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-1179)) (-4 *5 (-147)) (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-3 (-317 *5) (-645 (-317 *5)))) (-5 *1 (-591 *5)))) (-2589 (*1 *2 *3) (-12 (-5 *3 (-588 (-410 (-954 *4)))) (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-317 *4)) (-5 *1 (-591 *4)))) (-3326 (*1 *2 *3) (-12 (-5 *3 (-588 (-410 (-954 *4)))) (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-645 (-317 *4))) (-5 *1 (-591 *4)))) (-2004 (*1 *2 *2) (-12 (-5 *2 (-588 (-410 (-954 *3)))) (-4 *3 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-591 *3)))))
+(-10 -7 (-15 -2004 ((-588 (-410 (-954 |#1|))) (-588 (-410 (-954 |#1|))))) (-15 -3326 ((-645 (-317 |#1|)) (-588 (-410 (-954 |#1|))))) (-15 -2589 ((-317 |#1|) (-588 (-410 (-954 |#1|))))) (IF (|has| |#1| (-147)) (PROGN (-15 -4083 ((-3 (-317 |#1|) (-645 (-317 |#1|))) (-410 (-954 |#1|)) (-1179))) (-15 -3090 ((-317 |#1|) (-410 (-954 |#1|)) (-1179)))) |%noBranch|))
+((-1869 (((-645 (-690 (-567))) (-645 (-567)) (-645 (-907 (-567)))) 78) (((-645 (-690 (-567))) (-645 (-567))) 79) (((-690 (-567)) (-645 (-567)) (-907 (-567))) 72)) (-3648 (((-772) (-645 (-567))) 69)))
+(((-592) (-10 -7 (-15 -3648 ((-772) (-645 (-567)))) (-15 -1869 ((-690 (-567)) (-645 (-567)) (-907 (-567)))) (-15 -1869 ((-645 (-690 (-567))) (-645 (-567)))) (-15 -1869 ((-645 (-690 (-567))) (-645 (-567)) (-645 (-907 (-567))))))) (T -592))
+((-1869 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-567))) (-5 *4 (-645 (-907 (-567)))) (-5 *2 (-645 (-690 (-567)))) (-5 *1 (-592)))) (-1869 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-645 (-690 (-567)))) (-5 *1 (-592)))) (-1869 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-567))) (-5 *4 (-907 (-567))) (-5 *2 (-690 (-567))) (-5 *1 (-592)))) (-3648 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-772)) (-5 *1 (-592)))))
+(-10 -7 (-15 -3648 ((-772) (-645 (-567)))) (-15 -1869 ((-690 (-567)) (-645 (-567)) (-907 (-567)))) (-15 -1869 ((-645 (-690 (-567))) (-645 (-567)))) (-15 -1869 ((-645 (-690 (-567))) (-645 (-567)) (-645 (-907 (-567))))))
+((-2714 (((-645 |#5|) |#5| (-112)) 100)) (-2482 (((-112) |#5| (-645 |#5|)) 34)))
+(((-593 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2714 ((-645 |#5|) |#5| (-112))) (-15 -2482 ((-112) |#5| (-645 |#5|)))) (-13 (-308) (-147)) (-794) (-851) (-1067 |#1| |#2| |#3|) (-1111 |#1| |#2| |#3| |#4|)) (T -593))
+((-2482 (*1 *2 *3 *4) (-12 (-5 *4 (-645 *3)) (-4 *3 (-1111 *5 *6 *7 *8)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-1067 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-593 *5 *6 *7 *8 *3)))) (-2714 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-1067 *5 *6 *7)) (-5 *2 (-645 *3)) (-5 *1 (-593 *5 *6 *7 *8 *3)) (-4 *3 (-1111 *5 *6 *7 *8)))))
+(-10 -7 (-15 -2714 ((-645 |#5|) |#5| (-112))) (-15 -2482 ((-112) |#5| (-645 |#5|))))
+((-2412 (((-112) $ $) NIL)) (-4102 (((-1137) $) 11)) (-4089 (((-1137) $) 9)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) 17) (($ (-1184)) NIL) (((-1184) $) NIL)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)))
+(((-594) (-13 (-1085) (-10 -8 (-15 -4089 ((-1137) $)) (-15 -4102 ((-1137) $))))) (T -594))
+((-4089 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-594)))) (-4102 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-594)))))
+(-13 (-1085) (-10 -8 (-15 -4089 ((-1137) $)) (-15 -4102 ((-1137) $))))
+((-2412 (((-112) $ $) NIL (|has| (-144) (-1102)))) (-3355 (($ $) 38)) (-2868 (($ $) NIL)) (-2147 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-3843 (((-1274) $ (-567) (-567)) NIL (|has| $ (-6 -4423)))) (-3691 (((-112) $ $) 68)) (-3671 (((-112) $ $ (-567)) 62)) (-2004 (((-645 $) $ (-144)) 76) (((-645 $) $ (-141)) 77)) (-3531 (((-112) (-1 (-112) (-144) (-144)) $) NIL) (((-112) $) NIL (|has| (-144) (-851)))) (-2676 (($ (-1 (-112) (-144) (-144)) $) NIL (|has| $ (-6 -4423))) (($ $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-144) (-851))))) (-1311 (($ (-1 (-112) (-144) (-144)) $) NIL) (($ $) NIL (|has| (-144) (-851)))) (-1563 (((-112) $ (-772)) NIL)) (-4285 (((-144) $ (-567) (-144)) 59 (|has| $ (-6 -4423))) (((-144) $ (-1236 (-567)) (-144)) NIL (|has| $ (-6 -4423)))) (-3356 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4422)))) (-3647 (($) NIL T CONST)) (-3286 (($ $ (-144)) 81) (($ $ (-141)) 82)) (-1602 (($ $) NIL (|has| $ (-6 -4423)))) (-3592 (($ $) NIL)) (-1919 (($ $ (-1236 (-567)) $) 57)) (-2453 (($ $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-144) (-1102))))) (-3246 (($ (-144) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-144) (-1102)))) (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4422)))) (-2494 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4422)) (|has| (-144) (-1102)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4422))) (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4422)))) (-3760 (((-144) $ (-567) (-144)) NIL (|has| $ (-6 -4423)))) (-3703 (((-144) $ (-567)) NIL)) (-3712 (((-112) $ $) 90)) (-2578 (((-567) (-1 (-112) (-144)) $) NIL) (((-567) (-144) $) NIL (|has| (-144) (-1102))) (((-567) (-144) $ (-567)) 65 (|has| (-144) (-1102))) (((-567) $ $ (-567)) 63) (((-567) (-141) $ (-567)) 67)) (-2799 (((-645 (-144)) $) NIL (|has| $ (-6 -4422)))) (-2858 (($ (-772) (-144)) 9)) (-4093 (((-112) $ (-772)) NIL)) (-3895 (((-567) $) 32 (|has| (-567) (-851)))) (-1365 (($ $ $) NIL (|has| (-144) (-851)))) (-2473 (($ (-1 (-112) (-144) (-144)) $ $) NIL) (($ $ $) NIL (|has| (-144) (-851)))) (-1942 (((-645 (-144)) $) NIL (|has| $ (-6 -4422)))) (-3237 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-144) (-1102))))) (-3255 (((-567) $) 47 (|has| (-567) (-851)))) (-3002 (($ $ $) NIL (|has| (-144) (-851)))) (-2590 (((-112) $ $ (-144)) 91)) (-4197 (((-772) $ $ (-144)) 88)) (-3751 (($ (-1 (-144) (-144)) $) 37 (|has| $ (-6 -4423)))) (-3841 (($ (-1 (-144) (-144)) $) NIL) (($ (-1 (-144) (-144) (-144)) $ $) NIL)) (-4326 (($ $) 41)) (-4365 (($ $) NIL)) (-1986 (((-112) $ (-772)) NIL)) (-3296 (($ $ (-144)) 78) (($ $ (-141)) 79)) (-2516 (((-1161) $) 43 (|has| (-144) (-1102)))) (-2857 (($ (-144) $ (-567)) NIL) (($ $ $ (-567)) 27)) (-4364 (((-645 (-567)) $) NIL)) (-3188 (((-112) (-567) $) NIL)) (-3437 (((-1122) $) 87 (|has| (-144) (-1102)))) (-2418 (((-144) $) NIL (|has| (-567) (-851)))) (-3196 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-3823 (($ $ (-144)) NIL (|has| $ (-6 -4423)))) (-4233 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 (-144)))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102)))) (($ $ (-295 (-144))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102)))) (($ $ (-645 (-144)) (-645 (-144))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102))))) (-3875 (((-112) $ $) NIL)) (-4058 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-144) (-1102))))) (-2190 (((-645 (-144)) $) NIL)) (-3885 (((-112) $) 15)) (-2701 (($) 10)) (-1801 (((-144) $ (-567) (-144)) NIL) (((-144) $ (-567)) 69) (($ $ (-1236 (-567))) 25) (($ $ $) NIL)) (-1569 (($ $ (-567)) NIL) (($ $ (-1236 (-567))) NIL)) (-3447 (((-772) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4422))) (((-772) (-144) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-144) (-1102))))) (-1656 (($ $ $ (-567)) 84 (|has| $ (-6 -4423)))) (-4309 (($ $) 20)) (-3902 (((-539) $) NIL (|has| (-144) (-615 (-539))))) (-4145 (($ (-645 (-144))) NIL)) (-2276 (($ $ (-144)) NIL) (($ (-144) $) NIL) (($ $ $) 19) (($ (-645 $)) 85)) (-4129 (($ (-144)) NIL) (((-863) $) 31 (|has| (-144) (-614 (-863))))) (-3357 (((-112) $ $) NIL (|has| (-144) (-1102)))) (-3436 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4422)))) (-3004 (((-112) $ $) NIL (|has| (-144) (-851)))) (-2980 (((-112) $ $) NIL (|has| (-144) (-851)))) (-2946 (((-112) $ $) 17 (|has| (-144) (-1102)))) (-2993 (((-112) $ $) NIL (|has| (-144) (-851)))) (-2968 (((-112) $ $) 18 (|has| (-144) (-851)))) (-2423 (((-772) $) 16 (|has| $ (-6 -4422)))))
(((-595 |#1|) (-1146) (-567)) (T -595))
NIL
(-1146)
-((-3579 (((-2 (|:| |num| |#4|) (|:| |den| (-567))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-567))) |#4| |#2| (-1096 |#4|)) 32)))
-(((-596 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3579 ((-2 (|:| |num| |#4|) (|:| |den| (-567))) |#4| |#2| (-1096 |#4|))) (-15 -3579 ((-2 (|:| |num| |#4|) (|:| |den| (-567))) |#4| |#2|))) (-794) (-851) (-559) (-951 |#3| |#1| |#2|)) (T -596))
-((-3579 (*1 *2 *3 *4) (-12 (-4 *5 (-794)) (-4 *4 (-851)) (-4 *6 (-559)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-567)))) (-5 *1 (-596 *5 *4 *6 *3)) (-4 *3 (-951 *6 *5 *4)))) (-3579 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1096 *3)) (-4 *3 (-951 *7 *6 *4)) (-4 *6 (-794)) (-4 *4 (-851)) (-4 *7 (-559)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-567)))) (-5 *1 (-596 *6 *4 *7 *3)))))
-(-10 -7 (-15 -3579 ((-2 (|:| |num| |#4|) (|:| |den| (-567))) |#4| |#2| (-1096 |#4|))) (-15 -3579 ((-2 (|:| |num| |#4|) (|:| |den| (-567))) |#4| |#2|)))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) 72)) (-2847 (((-645 (-1084)) $) NIL)) (-3644 (((-1178) $) NIL)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-4381 (($ $) NIL (|has| |#1| (-559)))) (-3949 (((-112) $) NIL (|has| |#1| (-559)))) (-1950 (($ $ (-567)) 58) (($ $ (-567) (-567)) 59)) (-1843 (((-1158 (-2 (|:| |k| (-567)) (|:| |c| |#1|))) $) 65)) (-3615 (($ $) 110)) (-3472 (((-3 $ "failed") $ $) NIL)) (-3640 (((-863) (-1158 (-2 (|:| |k| (-567)) (|:| |c| |#1|))) (-1028 (-844 (-567))) (-1178) |#1| (-410 (-567))) 243)) (-1306 (($ (-1158 (-2 (|:| |k| (-567)) (|:| |c| |#1|)))) 36)) (-2585 (($) NIL T CONST)) (-3014 (($ $) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-2762 (((-112) $) NIL)) (-4384 (((-567) $) 63) (((-567) $ (-567)) 64)) (-1433 (((-112) $) NIL)) (-3807 (($ $ (-923)) 84)) (-2288 (($ (-1 |#1| (-567)) $) 81)) (-2843 (((-112) $) 26)) (-2824 (($ |#1| (-567)) 22) (($ $ (-1084) (-567)) NIL) (($ $ (-645 (-1084)) (-645 (-567))) NIL)) (-3829 (($ (-1 |#1| |#1|) $) 76)) (-2564 (($ (-1028 (-844 (-567))) (-1158 (-2 (|:| |k| (-567)) (|:| |c| |#1|)))) 13)) (-2976 (($ $) NIL)) (-2989 ((|#1| $) NIL)) (-1419 (((-1160) $) NIL)) (-2416 (($ $) 163 (|has| |#1| (-38 (-410 (-567)))))) (-3724 (((-3 $ "failed") $ $ (-112)) 109)) (-3667 (($ $ $) 117)) (-3430 (((-1122) $) NIL)) (-4125 (((-1158 (-2 (|:| |k| (-567)) (|:| |c| |#1|))) $) 15)) (-3293 (((-1028 (-844 (-567))) $) 14)) (-2410 (($ $ (-567)) 47)) (-2391 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-2631 (((-1158 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-567)))))) (-1787 ((|#1| $ (-567)) 62) (($ $ $) NIL (|has| (-567) (-1114)))) (-1593 (($ $ (-645 (-1178)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-1178) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-645 (-1178))) NIL (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-1178)) NIL (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-567) |#1|)))) (($ $) 78 (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (-3077 (((-567) $) NIL)) (-2192 (($ $) 48)) (-4132 (((-863) $) NIL) (($ (-567)) 29) (($ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $) NIL (|has| |#1| (-559))) (($ |#1|) 28 (|has| |#1| (-172)))) (-4136 ((|#1| $ (-567)) 61)) (-1903 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-4221 (((-772)) 39 T CONST)) (-2166 ((|#1| $) NIL)) (-3017 (($ $) 201 (|has| |#1| (-38 (-410 (-567)))))) (-3287 (($ $) 171 (|has| |#1| (-38 (-410 (-567)))))) (-2674 (($ $) 205 (|has| |#1| (-38 (-410 (-567)))))) (-2417 (($ $) 176 (|has| |#1| (-38 (-410 (-567)))))) (-2923 (($ $) 204 (|has| |#1| (-38 (-410 (-567)))))) (-4389 (($ $) 175 (|has| |#1| (-38 (-410 (-567)))))) (-2337 (($ $ (-410 (-567))) 179 (|has| |#1| (-38 (-410 (-567)))))) (-3642 (($ $ |#1|) 159 (|has| |#1| (-38 (-410 (-567)))))) (-4182 (($ $) 207 (|has| |#1| (-38 (-410 (-567)))))) (-1427 (($ $) 162 (|has| |#1| (-38 (-410 (-567)))))) (-4003 (($ $) 206 (|has| |#1| (-38 (-410 (-567)))))) (-2185 (($ $) 177 (|has| |#1| (-38 (-410 (-567)))))) (-2819 (($ $) 202 (|has| |#1| (-38 (-410 (-567)))))) (-3548 (($ $) 173 (|has| |#1| (-38 (-410 (-567)))))) (-2045 (($ $) 203 (|has| |#1| (-38 (-410 (-567)))))) (-2100 (($ $) 174 (|has| |#1| (-38 (-410 (-567)))))) (-2135 (($ $) 212 (|has| |#1| (-38 (-410 (-567)))))) (-2454 (($ $) 188 (|has| |#1| (-38 (-410 (-567)))))) (-2931 (($ $) 209 (|has| |#1| (-38 (-410 (-567)))))) (-2518 (($ $) 183 (|has| |#1| (-38 (-410 (-567)))))) (-2822 (($ $) 216 (|has| |#1| (-38 (-410 (-567)))))) (-1916 (($ $) 192 (|has| |#1| (-38 (-410 (-567)))))) (-2513 (($ $) 218 (|has| |#1| (-38 (-410 (-567)))))) (-1785 (($ $) 194 (|has| |#1| (-38 (-410 (-567)))))) (-2359 (($ $) 214 (|has| |#1| (-38 (-410 (-567)))))) (-3168 (($ $) 190 (|has| |#1| (-38 (-410 (-567)))))) (-4106 (($ $) 211 (|has| |#1| (-38 (-410 (-567)))))) (-3727 (($ $) 186 (|has| |#1| (-38 (-410 (-567)))))) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3050 ((|#1| $ (-567)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-567)))) (|has| |#1| (-15 -4132 (|#1| (-1178))))))) (-1716 (($) 30 T CONST)) (-1728 (($) 40 T CONST)) (-2637 (($ $ (-645 (-1178)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-1178) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-645 (-1178))) NIL (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-1178)) NIL (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-567) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (-2936 (((-112) $ $) 74)) (-3060 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3045 (($ $) 92) (($ $ $) 73)) (-3033 (($ $ $) 89)) (** (($ $ (-923)) NIL) (($ $ (-772)) 112)) (* (($ (-923) $) 99) (($ (-772) $) 97) (($ (-567) $) 94) (($ $ $) 105) (($ $ |#1|) NIL) (($ |#1| $) 124) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))))
-(((-597 |#1|) (-13 (-1246 |#1| (-567)) (-10 -8 (-15 -2564 ($ (-1028 (-844 (-567))) (-1158 (-2 (|:| |k| (-567)) (|:| |c| |#1|))))) (-15 -3293 ((-1028 (-844 (-567))) $)) (-15 -4125 ((-1158 (-2 (|:| |k| (-567)) (|:| |c| |#1|))) $)) (-15 -1306 ($ (-1158 (-2 (|:| |k| (-567)) (|:| |c| |#1|))))) (-15 -2843 ((-112) $)) (-15 -2288 ($ (-1 |#1| (-567)) $)) (-15 -3724 ((-3 $ "failed") $ $ (-112))) (-15 -3615 ($ $)) (-15 -3667 ($ $ $)) (-15 -3640 ((-863) (-1158 (-2 (|:| |k| (-567)) (|:| |c| |#1|))) (-1028 (-844 (-567))) (-1178) |#1| (-410 (-567)))) (IF (|has| |#1| (-38 (-410 (-567)))) (PROGN (-15 -2416 ($ $)) (-15 -3642 ($ $ |#1|)) (-15 -2337 ($ $ (-410 (-567)))) (-15 -1427 ($ $)) (-15 -4182 ($ $)) (-15 -2417 ($ $)) (-15 -2100 ($ $)) (-15 -3287 ($ $)) (-15 -3548 ($ $)) (-15 -4389 ($ $)) (-15 -2185 ($ $)) (-15 -2518 ($ $)) (-15 -3727 ($ $)) (-15 -2454 ($ $)) (-15 -3168 ($ $)) (-15 -1916 ($ $)) (-15 -1785 ($ $)) (-15 -2674 ($ $)) (-15 -2045 ($ $)) (-15 -3017 ($ $)) (-15 -2819 ($ $)) (-15 -2923 ($ $)) (-15 -4003 ($ $)) (-15 -2931 ($ $)) (-15 -4106 ($ $)) (-15 -2135 ($ $)) (-15 -2359 ($ $)) (-15 -2822 ($ $)) (-15 -2513 ($ $))) |%noBranch|))) (-1051)) (T -597))
-((-2843 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-597 *3)) (-4 *3 (-1051)))) (-2564 (*1 *1 *2 *3) (-12 (-5 *2 (-1028 (-844 (-567)))) (-5 *3 (-1158 (-2 (|:| |k| (-567)) (|:| |c| *4)))) (-4 *4 (-1051)) (-5 *1 (-597 *4)))) (-3293 (*1 *2 *1) (-12 (-5 *2 (-1028 (-844 (-567)))) (-5 *1 (-597 *3)) (-4 *3 (-1051)))) (-4125 (*1 *2 *1) (-12 (-5 *2 (-1158 (-2 (|:| |k| (-567)) (|:| |c| *3)))) (-5 *1 (-597 *3)) (-4 *3 (-1051)))) (-1306 (*1 *1 *2) (-12 (-5 *2 (-1158 (-2 (|:| |k| (-567)) (|:| |c| *3)))) (-4 *3 (-1051)) (-5 *1 (-597 *3)))) (-2288 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-567))) (-4 *3 (-1051)) (-5 *1 (-597 *3)))) (-3724 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-597 *3)) (-4 *3 (-1051)))) (-3615 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-1051)))) (-3667 (*1 *1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-1051)))) (-3640 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1158 (-2 (|:| |k| (-567)) (|:| |c| *6)))) (-5 *4 (-1028 (-844 (-567)))) (-5 *5 (-1178)) (-5 *7 (-410 (-567))) (-4 *6 (-1051)) (-5 *2 (-863)) (-5 *1 (-597 *6)))) (-2416 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-3642 (*1 *1 *1 *2) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-2337 (*1 *1 *1 *2) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-597 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1051)))) (-1427 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-4182 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-2417 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-2100 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-3287 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-3548 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-4389 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-2185 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-2518 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-3727 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-2454 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-3168 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-1916 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-1785 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-2674 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-2045 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-3017 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-2819 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-2923 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-4003 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-2931 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-4106 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-2135 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-2359 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-2822 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-2513 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))))
-(-13 (-1246 |#1| (-567)) (-10 -8 (-15 -2564 ($ (-1028 (-844 (-567))) (-1158 (-2 (|:| |k| (-567)) (|:| |c| |#1|))))) (-15 -3293 ((-1028 (-844 (-567))) $)) (-15 -4125 ((-1158 (-2 (|:| |k| (-567)) (|:| |c| |#1|))) $)) (-15 -1306 ($ (-1158 (-2 (|:| |k| (-567)) (|:| |c| |#1|))))) (-15 -2843 ((-112) $)) (-15 -2288 ($ (-1 |#1| (-567)) $)) (-15 -3724 ((-3 $ "failed") $ $ (-112))) (-15 -3615 ($ $)) (-15 -3667 ($ $ $)) (-15 -3640 ((-863) (-1158 (-2 (|:| |k| (-567)) (|:| |c| |#1|))) (-1028 (-844 (-567))) (-1178) |#1| (-410 (-567)))) (IF (|has| |#1| (-38 (-410 (-567)))) (PROGN (-15 -2416 ($ $)) (-15 -3642 ($ $ |#1|)) (-15 -2337 ($ $ (-410 (-567)))) (-15 -1427 ($ $)) (-15 -4182 ($ $)) (-15 -2417 ($ $)) (-15 -2100 ($ $)) (-15 -3287 ($ $)) (-15 -3548 ($ $)) (-15 -4389 ($ $)) (-15 -2185 ($ $)) (-15 -2518 ($ $)) (-15 -3727 ($ $)) (-15 -2454 ($ $)) (-15 -3168 ($ $)) (-15 -1916 ($ $)) (-15 -1785 ($ $)) (-15 -2674 ($ $)) (-15 -2045 ($ $)) (-15 -3017 ($ $)) (-15 -2819 ($ $)) (-15 -2923 ($ $)) (-15 -4003 ($ $)) (-15 -2931 ($ $)) (-15 -4106 ($ $)) (-15 -2135 ($ $)) (-15 -2359 ($ $)) (-15 -2822 ($ $)) (-15 -2513 ($ $))) |%noBranch|)))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) 65)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-4381 (($ $) NIL (|has| |#1| (-559)))) (-3949 (((-112) $) NIL (|has| |#1| (-559)))) (-3472 (((-3 $ "failed") $ $) NIL)) (-1306 (($ (-1158 |#1|)) 9)) (-2585 (($) NIL T CONST)) (-2109 (((-3 $ "failed") $) 48)) (-2762 (((-112) $) 58)) (-4384 (((-772) $) 63) (((-772) $ (-772)) 62)) (-1433 (((-112) $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-2391 (((-3 $ "failed") $ $) 50 (|has| |#1| (-559)))) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL (|has| |#1| (-559)))) (-3032 (((-1158 |#1|) $) 29)) (-4221 (((-772)) 57 T CONST)) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1716 (($) 10 T CONST)) (-1728 (($) 14 T CONST)) (-2936 (((-112) $ $) 28)) (-3045 (($ $) 36) (($ $ $) 16)) (-3033 (($ $ $) 31)) (** (($ $ (-923)) NIL) (($ $ (-772)) 55)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 40) (($ $ $) 34) (($ $ |#1|) 44) (($ |#1| $) 43) (($ $ (-567)) 42)))
-(((-598 |#1|) (-13 (-1051) (-111 |#1| |#1|) (-10 -8 (-15 -3032 ((-1158 |#1|) $)) (-15 -1306 ($ (-1158 |#1|))) (-15 -2762 ((-112) $)) (-15 -4384 ((-772) $)) (-15 -4384 ((-772) $ (-772))) (-15 * ($ $ (-567))) (IF (|has| |#1| (-559)) (-6 (-559)) |%noBranch|))) (-1051)) (T -598))
-((-3032 (*1 *2 *1) (-12 (-5 *2 (-1158 *3)) (-5 *1 (-598 *3)) (-4 *3 (-1051)))) (-1306 (*1 *1 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-5 *1 (-598 *3)))) (-2762 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-598 *3)) (-4 *3 (-1051)))) (-4384 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-598 *3)) (-4 *3 (-1051)))) (-4384 (*1 *2 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-598 *3)) (-4 *3 (-1051)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-598 *3)) (-4 *3 (-1051)))))
-(-13 (-1051) (-111 |#1| |#1|) (-10 -8 (-15 -3032 ((-1158 |#1|) $)) (-15 -1306 ($ (-1158 |#1|))) (-15 -2762 ((-112) $)) (-15 -4384 ((-772) $)) (-15 -4384 ((-772) $ (-772))) (-15 * ($ $ (-567))) (IF (|has| |#1| (-559)) (-6 (-559)) |%noBranch|)))
-((-3829 (((-602 |#2|) (-1 |#2| |#1|) (-602 |#1|)) 15)))
-(((-599 |#1| |#2|) (-10 -7 (-15 -3829 ((-602 |#2|) (-1 |#2| |#1|) (-602 |#1|)))) (-1218) (-1218)) (T -599))
-((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-602 *5)) (-4 *5 (-1218)) (-4 *6 (-1218)) (-5 *2 (-602 *6)) (-5 *1 (-599 *5 *6)))))
-(-10 -7 (-15 -3829 ((-602 |#2|) (-1 |#2| |#1|) (-602 |#1|))))
-((-3829 (((-1158 |#3|) (-1 |#3| |#1| |#2|) (-602 |#1|) (-1158 |#2|)) 20) (((-1158 |#3|) (-1 |#3| |#1| |#2|) (-1158 |#1|) (-602 |#2|)) 19) (((-602 |#3|) (-1 |#3| |#1| |#2|) (-602 |#1|) (-602 |#2|)) 18)))
-(((-600 |#1| |#2| |#3|) (-10 -7 (-15 -3829 ((-602 |#3|) (-1 |#3| |#1| |#2|) (-602 |#1|) (-602 |#2|))) (-15 -3829 ((-1158 |#3|) (-1 |#3| |#1| |#2|) (-1158 |#1|) (-602 |#2|))) (-15 -3829 ((-1158 |#3|) (-1 |#3| |#1| |#2|) (-602 |#1|) (-1158 |#2|)))) (-1218) (-1218) (-1218)) (T -600))
-((-3829 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-602 *6)) (-5 *5 (-1158 *7)) (-4 *6 (-1218)) (-4 *7 (-1218)) (-4 *8 (-1218)) (-5 *2 (-1158 *8)) (-5 *1 (-600 *6 *7 *8)))) (-3829 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1158 *6)) (-5 *5 (-602 *7)) (-4 *6 (-1218)) (-4 *7 (-1218)) (-4 *8 (-1218)) (-5 *2 (-1158 *8)) (-5 *1 (-600 *6 *7 *8)))) (-3829 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-602 *6)) (-5 *5 (-602 *7)) (-4 *6 (-1218)) (-4 *7 (-1218)) (-4 *8 (-1218)) (-5 *2 (-602 *8)) (-5 *1 (-600 *6 *7 *8)))))
-(-10 -7 (-15 -3829 ((-602 |#3|) (-1 |#3| |#1| |#2|) (-602 |#1|) (-602 |#2|))) (-15 -3829 ((-1158 |#3|) (-1 |#3| |#1| |#2|) (-1158 |#1|) (-602 |#2|))) (-15 -3829 ((-1158 |#3|) (-1 |#3| |#1| |#2|) (-602 |#1|) (-1158 |#2|))))
-((-2198 ((|#3| |#3| (-645 (-613 |#3|)) (-645 (-1178))) 57)) (-3894 (((-169 |#2|) |#3|) 121)) (-1656 ((|#3| (-169 |#2|)) 46)) (-1332 ((|#2| |#3|) 21)) (-2975 ((|#3| |#2|) 35)))
-(((-601 |#1| |#2| |#3|) (-10 -7 (-15 -1656 (|#3| (-169 |#2|))) (-15 -1332 (|#2| |#3|)) (-15 -2975 (|#3| |#2|)) (-15 -3894 ((-169 |#2|) |#3|)) (-15 -2198 (|#3| |#3| (-645 (-613 |#3|)) (-645 (-1178))))) (-559) (-13 (-433 |#1|) (-1004) (-1203)) (-13 (-433 (-169 |#1|)) (-1004) (-1203))) (T -601))
-((-2198 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-645 (-613 *2))) (-5 *4 (-645 (-1178))) (-4 *2 (-13 (-433 (-169 *5)) (-1004) (-1203))) (-4 *5 (-559)) (-5 *1 (-601 *5 *6 *2)) (-4 *6 (-13 (-433 *5) (-1004) (-1203))))) (-3894 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-169 *5)) (-5 *1 (-601 *4 *5 *3)) (-4 *5 (-13 (-433 *4) (-1004) (-1203))) (-4 *3 (-13 (-433 (-169 *4)) (-1004) (-1203))))) (-2975 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *2 (-13 (-433 (-169 *4)) (-1004) (-1203))) (-5 *1 (-601 *4 *3 *2)) (-4 *3 (-13 (-433 *4) (-1004) (-1203))))) (-1332 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *2 (-13 (-433 *4) (-1004) (-1203))) (-5 *1 (-601 *4 *2 *3)) (-4 *3 (-13 (-433 (-169 *4)) (-1004) (-1203))))) (-1656 (*1 *2 *3) (-12 (-5 *3 (-169 *5)) (-4 *5 (-13 (-433 *4) (-1004) (-1203))) (-4 *4 (-559)) (-4 *2 (-13 (-433 (-169 *4)) (-1004) (-1203))) (-5 *1 (-601 *4 *5 *2)))))
-(-10 -7 (-15 -1656 (|#3| (-169 |#2|))) (-15 -1332 (|#2| |#3|)) (-15 -2975 (|#3| |#2|)) (-15 -3894 ((-169 |#2|) |#3|)) (-15 -2198 (|#3| |#3| (-645 (-613 |#3|)) (-645 (-1178)))))
-((-3350 (($ (-1 (-112) |#1|) $) 17)) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-3291 (($ (-1 |#1| |#1|) |#1|) 9)) (-3326 (($ (-1 (-112) |#1|) $) 13)) (-3338 (($ (-1 (-112) |#1|) $) 15)) (-4147 (((-1158 |#1|) $) 18)) (-4132 (((-863) $) NIL)))
-(((-602 |#1|) (-13 (-614 (-863)) (-10 -8 (-15 -3829 ($ (-1 |#1| |#1|) $)) (-15 -3326 ($ (-1 (-112) |#1|) $)) (-15 -3338 ($ (-1 (-112) |#1|) $)) (-15 -3350 ($ (-1 (-112) |#1|) $)) (-15 -3291 ($ (-1 |#1| |#1|) |#1|)) (-15 -4147 ((-1158 |#1|) $)))) (-1218)) (T -602))
-((-3829 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1218)) (-5 *1 (-602 *3)))) (-3326 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1218)) (-5 *1 (-602 *3)))) (-3338 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1218)) (-5 *1 (-602 *3)))) (-3350 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1218)) (-5 *1 (-602 *3)))) (-3291 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1218)) (-5 *1 (-602 *3)))) (-4147 (*1 *2 *1) (-12 (-5 *2 (-1158 *3)) (-5 *1 (-602 *3)) (-4 *3 (-1218)))))
-(-13 (-614 (-863)) (-10 -8 (-15 -3829 ($ (-1 |#1| |#1|) $)) (-15 -3326 ($ (-1 (-112) |#1|) $)) (-15 -3338 ($ (-1 (-112) |#1|) $)) (-15 -3350 ($ (-1 (-112) |#1|) $)) (-15 -3291 ($ (-1 |#1| |#1|) |#1|)) (-15 -4147 ((-1158 |#1|) $))))
-((-2403 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1316 (($ (-772)) NIL (|has| |#1| (-23)))) (-1783 (((-1273) $ (-567) (-567)) NIL (|has| $ (-6 -4419)))) (-2496 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-851)))) (-1394 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4419))) (($ $) NIL (-12 (|has| $ (-6 -4419)) (|has| |#1| (-851))))) (-4396 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-851)))) (-3445 (((-112) $ (-772)) NIL)) (-4284 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4419))) ((|#1| $ (-1235 (-567)) |#1|) NIL (|has| $ (-6 -4419)))) (-3350 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2585 (($) NIL T CONST)) (-1764 (($ $) NIL (|has| $ (-6 -4419)))) (-3584 (($ $) NIL)) (-2444 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-3238 (($ |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2477 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4418)))) (-3741 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4419)))) (-3680 ((|#1| $ (-567)) NIL)) (-2569 (((-567) (-1 (-112) |#1|) $) NIL) (((-567) |#1| $) NIL (|has| |#1| (-1102))) (((-567) |#1| $ (-567)) NIL (|has| |#1| (-1102)))) (-2777 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-1544 (((-690 |#1|) $ $) NIL (|has| |#1| (-1051)))) (-2846 (($ (-772) |#1|) NIL)) (-2077 (((-112) $ (-772)) NIL)) (-4069 (((-567) $) NIL (|has| (-567) (-851)))) (-1354 (($ $ $) NIL (|has| |#1| (-851)))) (-4135 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-851)))) (-2279 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2266 (((-567) $) NIL (|has| (-567) (-851)))) (-2981 (($ $ $) NIL (|has| |#1| (-851)))) (-3731 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3908 ((|#1| $) NIL (-12 (|has| |#1| (-1004)) (|has| |#1| (-1051))))) (-2863 (((-112) $ (-772)) NIL)) (-1699 ((|#1| $) NIL (-12 (|has| |#1| (-1004)) (|has| |#1| (-1051))))) (-1419 (((-1160) $) NIL (|has| |#1| (-1102)))) (-2845 (($ |#1| $ (-567)) NIL) (($ $ $ (-567)) NIL)) (-1789 (((-645 (-567)) $) NIL)) (-2996 (((-112) (-567) $) NIL)) (-3430 (((-1122) $) NIL (|has| |#1| (-1102)))) (-2409 ((|#1| $) NIL (|has| (-567) (-851)))) (-4128 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3986 (($ $ |#1|) NIL (|has| $ (-6 -4419)))) (-3025 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) NIL)) (-1794 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2339 (((-645 |#1|) $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) NIL)) (-1787 ((|#1| $ (-567) |#1|) NIL) ((|#1| $ (-567)) NIL) (($ $ (-1235 (-567))) NIL)) (-3366 ((|#1| $ $) NIL (|has| |#1| (-1051)))) (-1560 (($ $ (-567)) NIL) (($ $ (-1235 (-567))) NIL)) (-4295 (($ $ $) NIL (|has| |#1| (-1051)))) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-1395 (($ $ $ (-567)) NIL (|has| $ (-6 -4419)))) (-4305 (($ $) NIL)) (-3893 (((-539) $) NIL (|has| |#1| (-615 (-539))))) (-4147 (($ (-645 |#1|)) NIL)) (-2269 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-645 $)) NIL)) (-4132 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-1745 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2997 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2971 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2936 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2984 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2958 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3045 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3033 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-567) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-727))) (($ $ |#1|) NIL (|has| |#1| (-727)))) (-2414 (((-772) $) NIL (|has| $ (-6 -4418)))))
-(((-603 |#1| |#2|) (-1266 |#1|) (-1218) (-567)) (T -603))
-NIL
-(-1266 |#1|)
-((-1783 (((-1273) $ |#2| |#2|) 36)) (-4069 ((|#2| $) 23)) (-2266 ((|#2| $) 21)) (-3731 (($ (-1 |#3| |#3|) $) 32)) (-3829 (($ (-1 |#3| |#3|) $) 30)) (-2409 ((|#3| $) 26)) (-3986 (($ $ |#3|) 33)) (-1794 (((-112) |#3| $) 17)) (-2339 (((-645 |#3|) $) 15)) (-1787 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL)))
-(((-604 |#1| |#2| |#3|) (-10 -8 (-15 -1783 ((-1273) |#1| |#2| |#2|)) (-15 -3986 (|#1| |#1| |#3|)) (-15 -2409 (|#3| |#1|)) (-15 -4069 (|#2| |#1|)) (-15 -2266 (|#2| |#1|)) (-15 -1794 ((-112) |#3| |#1|)) (-15 -2339 ((-645 |#3|) |#1|)) (-15 -1787 (|#3| |#1| |#2|)) (-15 -1787 (|#3| |#1| |#2| |#3|)) (-15 -3731 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3829 (|#1| (-1 |#3| |#3|) |#1|))) (-605 |#2| |#3|) (-1102) (-1218)) (T -604))
-NIL
-(-10 -8 (-15 -1783 ((-1273) |#1| |#2| |#2|)) (-15 -3986 (|#1| |#1| |#3|)) (-15 -2409 (|#3| |#1|)) (-15 -4069 (|#2| |#1|)) (-15 -2266 (|#2| |#1|)) (-15 -1794 ((-112) |#3| |#1|)) (-15 -2339 ((-645 |#3|) |#1|)) (-15 -1787 (|#3| |#1| |#2|)) (-15 -1787 (|#3| |#1| |#2| |#3|)) (-15 -3731 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3829 (|#1| (-1 |#3| |#3|) |#1|)))
-((-2403 (((-112) $ $) 19 (|has| |#2| (-1102)))) (-1783 (((-1273) $ |#1| |#1|) 41 (|has| $ (-6 -4419)))) (-3445 (((-112) $ (-772)) 8)) (-4284 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4419)))) (-2585 (($) 7 T CONST)) (-3741 ((|#2| $ |#1| |#2|) 54 (|has| $ (-6 -4419)))) (-3680 ((|#2| $ |#1|) 52)) (-2777 (((-645 |#2|) $) 31 (|has| $ (-6 -4418)))) (-2077 (((-112) $ (-772)) 9)) (-4069 ((|#1| $) 44 (|has| |#1| (-851)))) (-2279 (((-645 |#2|) $) 30 (|has| $ (-6 -4418)))) (-4337 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1102)) (|has| $ (-6 -4418))))) (-2266 ((|#1| $) 45 (|has| |#1| (-851)))) (-3731 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#2| |#2|) $) 36)) (-2863 (((-112) $ (-772)) 10)) (-1419 (((-1160) $) 22 (|has| |#2| (-1102)))) (-1789 (((-645 |#1|) $) 47)) (-2996 (((-112) |#1| $) 48)) (-3430 (((-1122) $) 21 (|has| |#2| (-1102)))) (-2409 ((|#2| $) 43 (|has| |#1| (-851)))) (-3986 (($ $ |#2|) 42 (|has| $ (-6 -4419)))) (-3025 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#2|))) 27 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-295 |#2|)) 26 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-645 |#2|) (-645 |#2|)) 24 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))))) (-3092 (((-112) $ $) 14)) (-1794 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4418)) (|has| |#2| (-1102))))) (-2339 (((-645 |#2|) $) 49)) (-3572 (((-112) $) 11)) (-3498 (($) 12)) (-1787 ((|#2| $ |#1| |#2|) 51) ((|#2| $ |#1|) 50)) (-3439 (((-772) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4418))) (((-772) |#2| $) 29 (-12 (|has| |#2| (-1102)) (|has| $ (-6 -4418))))) (-4305 (($ $) 13)) (-4132 (((-863) $) 18 (|has| |#2| (-614 (-863))))) (-1745 (((-112) $ $) 23 (|has| |#2| (-1102)))) (-1853 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 20 (|has| |#2| (-1102)))) (-2414 (((-772) $) 6 (|has| $ (-6 -4418)))))
-(((-605 |#1| |#2|) (-140) (-1102) (-1218)) (T -605))
-((-2339 (*1 *2 *1) (-12 (-4 *1 (-605 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1218)) (-5 *2 (-645 *4)))) (-2996 (*1 *2 *3 *1) (-12 (-4 *1 (-605 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1218)) (-5 *2 (-112)))) (-1789 (*1 *2 *1) (-12 (-4 *1 (-605 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1218)) (-5 *2 (-645 *3)))) (-1794 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4418)) (-4 *1 (-605 *4 *3)) (-4 *4 (-1102)) (-4 *3 (-1218)) (-4 *3 (-1102)) (-5 *2 (-112)))) (-2266 (*1 *2 *1) (-12 (-4 *1 (-605 *2 *3)) (-4 *3 (-1218)) (-4 *2 (-1102)) (-4 *2 (-851)))) (-4069 (*1 *2 *1) (-12 (-4 *1 (-605 *2 *3)) (-4 *3 (-1218)) (-4 *2 (-1102)) (-4 *2 (-851)))) (-2409 (*1 *2 *1) (-12 (-4 *1 (-605 *3 *2)) (-4 *3 (-1102)) (-4 *3 (-851)) (-4 *2 (-1218)))) (-3986 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4419)) (-4 *1 (-605 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1218)))) (-1783 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4419)) (-4 *1 (-605 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1218)) (-5 *2 (-1273)))))
-(-13 (-492 |t#2|) (-289 |t#1| |t#2|) (-10 -8 (-15 -2339 ((-645 |t#2|) $)) (-15 -2996 ((-112) |t#1| $)) (-15 -1789 ((-645 |t#1|) $)) (IF (|has| |t#2| (-1102)) (IF (|has| $ (-6 -4418)) (-15 -1794 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-851)) (PROGN (-15 -2266 (|t#1| $)) (-15 -4069 (|t#1| $)) (-15 -2409 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4419)) (PROGN (-15 -3986 ($ $ |t#2|)) (-15 -1783 ((-1273) $ |t#1| |t#1|))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#2| (-1102)) ((-614 (-863)) -2800 (|has| |#2| (-1102)) (|has| |#2| (-614 (-863)))) ((-287 |#1| |#2|) . T) ((-289 |#1| |#2|) . T) ((-310 |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) ((-492 |#2|) . T) ((-517 |#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) ((-1102) |has| |#2| (-1102)) ((-1218) . T))
-((-4132 (((-863) $) 19) (($ (-129)) 13) (((-129) $) 14)))
+((-3596 (((-2 (|:| |num| |#4|) (|:| |den| (-567))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-567))) |#4| |#2| (-1096 |#4|)) 32)))
+(((-596 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3596 ((-2 (|:| |num| |#4|) (|:| |den| (-567))) |#4| |#2| (-1096 |#4|))) (-15 -3596 ((-2 (|:| |num| |#4|) (|:| |den| (-567))) |#4| |#2|))) (-794) (-851) (-559) (-951 |#3| |#1| |#2|)) (T -596))
+((-3596 (*1 *2 *3 *4) (-12 (-4 *5 (-794)) (-4 *4 (-851)) (-4 *6 (-559)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-567)))) (-5 *1 (-596 *5 *4 *6 *3)) (-4 *3 (-951 *6 *5 *4)))) (-3596 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1096 *3)) (-4 *3 (-951 *7 *6 *4)) (-4 *6 (-794)) (-4 *4 (-851)) (-4 *7 (-559)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-567)))) (-5 *1 (-596 *6 *4 *7 *3)))))
+(-10 -7 (-15 -3596 ((-2 (|:| |num| |#4|) (|:| |den| (-567))) |#4| |#2| (-1096 |#4|))) (-15 -3596 ((-2 (|:| |num| |#4|) (|:| |den| (-567))) |#4| |#2|)))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) 72)) (-2859 (((-645 (-1084)) $) NIL)) (-3653 (((-1179) $) NIL)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-4287 (($ $) NIL (|has| |#1| (-559)))) (-2286 (((-112) $) NIL (|has| |#1| (-559)))) (-3748 (($ $ (-567)) 58) (($ $ (-567) (-567)) 59)) (-3006 (((-1159 (-2 (|:| |k| (-567)) (|:| |c| |#1|))) $) 65)) (-2599 (($ $) 110)) (-2376 (((-3 $ "failed") $ $) NIL)) (-3910 (((-863) (-1159 (-2 (|:| |k| (-567)) (|:| |c| |#1|))) (-1028 (-844 (-567))) (-1179) |#1| (-410 (-567))) 243)) (-1317 (($ (-1159 (-2 (|:| |k| (-567)) (|:| |c| |#1|)))) 36)) (-3647 (($) NIL T CONST)) (-3023 (($ $) NIL)) (-3588 (((-3 $ "failed") $) NIL)) (-3086 (((-112) $) NIL)) (-3362 (((-567) $) 63) (((-567) $ (-567)) 64)) (-4346 (((-112) $) NIL)) (-1343 (($ $ (-923)) 84)) (-3406 (($ (-1 |#1| (-567)) $) 81)) (-3770 (((-112) $) 26)) (-2836 (($ |#1| (-567)) 22) (($ $ (-1084) (-567)) NIL) (($ $ (-645 (-1084)) (-645 (-567))) NIL)) (-3841 (($ (-1 |#1| |#1|) $) 76)) (-3130 (($ (-1028 (-844 (-567))) (-1159 (-2 (|:| |k| (-567)) (|:| |c| |#1|)))) 13)) (-2985 (($ $) NIL)) (-2996 ((|#1| $) NIL)) (-2516 (((-1161) $) NIL)) (-4083 (($ $) 163 (|has| |#1| (-38 (-410 (-567)))))) (-2555 (((-3 $ "failed") $ $ (-112)) 109)) (-1604 (($ $ $) 117)) (-3437 (((-1122) $) NIL)) (-2900 (((-1159 (-2 (|:| |k| (-567)) (|:| |c| |#1|))) $) 15)) (-3068 (((-1028 (-844 (-567))) $) 14)) (-1874 (($ $ (-567)) 47)) (-2400 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-2642 (((-1159 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-567)))))) (-1801 ((|#1| $ (-567)) 62) (($ $ $) NIL (|has| (-567) (-1114)))) (-1616 (($ $ (-645 (-1179)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-1179) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-645 (-1179))) NIL (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-1179)) NIL (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-567) |#1|)))) (($ $) 78 (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (-3104 (((-567) $) NIL)) (-1834 (($ $) 48)) (-4129 (((-863) $) NIL) (($ (-567)) 29) (($ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $) NIL (|has| |#1| (-559))) (($ |#1|) 28 (|has| |#1| (-172)))) (-2558 ((|#1| $ (-567)) 61)) (-2118 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2746 (((-772)) 39 T CONST)) (-2185 ((|#1| $) NIL)) (-2342 (($ $) 201 (|has| |#1| (-38 (-410 (-567)))))) (-2671 (($ $) 171 (|has| |#1| (-38 (-410 (-567)))))) (-3804 (($ $) 205 (|has| |#1| (-38 (-410 (-567)))))) (-4190 (($ $) 176 (|has| |#1| (-38 (-410 (-567)))))) (-1493 (($ $) 204 (|has| |#1| (-38 (-410 (-567)))))) (-2648 (($ $) 175 (|has| |#1| (-38 (-410 (-567)))))) (-3199 (($ $ (-410 (-567))) 179 (|has| |#1| (-38 (-410 (-567)))))) (-4158 (($ $ |#1|) 159 (|has| |#1| (-38 (-410 (-567)))))) (-2792 (($ $) 207 (|has| |#1| (-38 (-410 (-567)))))) (-1969 (($ $) 162 (|has| |#1| (-38 (-410 (-567)))))) (-2084 (($ $) 206 (|has| |#1| (-38 (-410 (-567)))))) (-2264 (($ $) 177 (|has| |#1| (-38 (-410 (-567)))))) (-4374 (($ $) 202 (|has| |#1| (-38 (-410 (-567)))))) (-3462 (($ $) 173 (|has| |#1| (-38 (-410 (-567)))))) (-3260 (($ $) 203 (|has| |#1| (-38 (-410 (-567)))))) (-3432 (($ $) 174 (|has| |#1| (-38 (-410 (-567)))))) (-4041 (($ $) 212 (|has| |#1| (-38 (-410 (-567)))))) (-1460 (($ $) 188 (|has| |#1| (-38 (-410 (-567)))))) (-4216 (($ $) 209 (|has| |#1| (-38 (-410 (-567)))))) (-3716 (($ $) 183 (|has| |#1| (-38 (-410 (-567)))))) (-2546 (($ $) 216 (|has| |#1| (-38 (-410 (-567)))))) (-3269 (($ $) 192 (|has| |#1| (-38 (-410 (-567)))))) (-1322 (($ $) 218 (|has| |#1| (-38 (-410 (-567)))))) (-4057 (($ $) 194 (|has| |#1| (-38 (-410 (-567)))))) (-4214 (($ $) 214 (|has| |#1| (-38 (-410 (-567)))))) (-1979 (($ $) 190 (|has| |#1| (-38 (-410 (-567)))))) (-3951 (($ $) 211 (|has| |#1| (-38 (-410 (-567)))))) (-1537 (($ $) 186 (|has| |#1| (-38 (-410 (-567)))))) (-3357 (((-112) $ $) NIL)) (-3731 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3058 ((|#1| $ (-567)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-567)))) (|has| |#1| (-15 -4129 (|#1| (-1179))))))) (-1733 (($) 30 T CONST)) (-1744 (($) 40 T CONST)) (-2647 (($ $ (-645 (-1179)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-1179) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-645 (-1179))) NIL (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-1179)) NIL (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-567) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (-2946 (((-112) $ $) 74)) (-3069 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3053 (($ $) 92) (($ $ $) 73)) (-3041 (($ $ $) 89)) (** (($ $ (-923)) NIL) (($ $ (-772)) 112)) (* (($ (-923) $) 99) (($ (-772) $) 97) (($ (-567) $) 94) (($ $ $) 105) (($ $ |#1|) NIL) (($ |#1| $) 124) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))))
+(((-597 |#1|) (-13 (-1247 |#1| (-567)) (-10 -8 (-15 -3130 ($ (-1028 (-844 (-567))) (-1159 (-2 (|:| |k| (-567)) (|:| |c| |#1|))))) (-15 -3068 ((-1028 (-844 (-567))) $)) (-15 -2900 ((-1159 (-2 (|:| |k| (-567)) (|:| |c| |#1|))) $)) (-15 -1317 ($ (-1159 (-2 (|:| |k| (-567)) (|:| |c| |#1|))))) (-15 -3770 ((-112) $)) (-15 -3406 ($ (-1 |#1| (-567)) $)) (-15 -2555 ((-3 $ "failed") $ $ (-112))) (-15 -2599 ($ $)) (-15 -1604 ($ $ $)) (-15 -3910 ((-863) (-1159 (-2 (|:| |k| (-567)) (|:| |c| |#1|))) (-1028 (-844 (-567))) (-1179) |#1| (-410 (-567)))) (IF (|has| |#1| (-38 (-410 (-567)))) (PROGN (-15 -4083 ($ $)) (-15 -4158 ($ $ |#1|)) (-15 -3199 ($ $ (-410 (-567)))) (-15 -1969 ($ $)) (-15 -2792 ($ $)) (-15 -4190 ($ $)) (-15 -3432 ($ $)) (-15 -2671 ($ $)) (-15 -3462 ($ $)) (-15 -2648 ($ $)) (-15 -2264 ($ $)) (-15 -3716 ($ $)) (-15 -1537 ($ $)) (-15 -1460 ($ $)) (-15 -1979 ($ $)) (-15 -3269 ($ $)) (-15 -4057 ($ $)) (-15 -3804 ($ $)) (-15 -3260 ($ $)) (-15 -2342 ($ $)) (-15 -4374 ($ $)) (-15 -1493 ($ $)) (-15 -2084 ($ $)) (-15 -4216 ($ $)) (-15 -3951 ($ $)) (-15 -4041 ($ $)) (-15 -4214 ($ $)) (-15 -2546 ($ $)) (-15 -1322 ($ $))) |%noBranch|))) (-1051)) (T -597))
+((-3770 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-597 *3)) (-4 *3 (-1051)))) (-3130 (*1 *1 *2 *3) (-12 (-5 *2 (-1028 (-844 (-567)))) (-5 *3 (-1159 (-2 (|:| |k| (-567)) (|:| |c| *4)))) (-4 *4 (-1051)) (-5 *1 (-597 *4)))) (-3068 (*1 *2 *1) (-12 (-5 *2 (-1028 (-844 (-567)))) (-5 *1 (-597 *3)) (-4 *3 (-1051)))) (-2900 (*1 *2 *1) (-12 (-5 *2 (-1159 (-2 (|:| |k| (-567)) (|:| |c| *3)))) (-5 *1 (-597 *3)) (-4 *3 (-1051)))) (-1317 (*1 *1 *2) (-12 (-5 *2 (-1159 (-2 (|:| |k| (-567)) (|:| |c| *3)))) (-4 *3 (-1051)) (-5 *1 (-597 *3)))) (-3406 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-567))) (-4 *3 (-1051)) (-5 *1 (-597 *3)))) (-2555 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-597 *3)) (-4 *3 (-1051)))) (-2599 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-1051)))) (-1604 (*1 *1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-1051)))) (-3910 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1159 (-2 (|:| |k| (-567)) (|:| |c| *6)))) (-5 *4 (-1028 (-844 (-567)))) (-5 *5 (-1179)) (-5 *7 (-410 (-567))) (-4 *6 (-1051)) (-5 *2 (-863)) (-5 *1 (-597 *6)))) (-4083 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-4158 (*1 *1 *1 *2) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-3199 (*1 *1 *1 *2) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-597 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1051)))) (-1969 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-2792 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-4190 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-3432 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-2671 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-3462 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-2648 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-2264 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-3716 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-1537 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-1460 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-1979 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-3269 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-4057 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-3804 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-3260 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-2342 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-4374 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-1493 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-2084 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-4216 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-3951 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-4041 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-4214 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-2546 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-1322 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))))
+(-13 (-1247 |#1| (-567)) (-10 -8 (-15 -3130 ($ (-1028 (-844 (-567))) (-1159 (-2 (|:| |k| (-567)) (|:| |c| |#1|))))) (-15 -3068 ((-1028 (-844 (-567))) $)) (-15 -2900 ((-1159 (-2 (|:| |k| (-567)) (|:| |c| |#1|))) $)) (-15 -1317 ($ (-1159 (-2 (|:| |k| (-567)) (|:| |c| |#1|))))) (-15 -3770 ((-112) $)) (-15 -3406 ($ (-1 |#1| (-567)) $)) (-15 -2555 ((-3 $ "failed") $ $ (-112))) (-15 -2599 ($ $)) (-15 -1604 ($ $ $)) (-15 -3910 ((-863) (-1159 (-2 (|:| |k| (-567)) (|:| |c| |#1|))) (-1028 (-844 (-567))) (-1179) |#1| (-410 (-567)))) (IF (|has| |#1| (-38 (-410 (-567)))) (PROGN (-15 -4083 ($ $)) (-15 -4158 ($ $ |#1|)) (-15 -3199 ($ $ (-410 (-567)))) (-15 -1969 ($ $)) (-15 -2792 ($ $)) (-15 -4190 ($ $)) (-15 -3432 ($ $)) (-15 -2671 ($ $)) (-15 -3462 ($ $)) (-15 -2648 ($ $)) (-15 -2264 ($ $)) (-15 -3716 ($ $)) (-15 -1537 ($ $)) (-15 -1460 ($ $)) (-15 -1979 ($ $)) (-15 -3269 ($ $)) (-15 -4057 ($ $)) (-15 -3804 ($ $)) (-15 -3260 ($ $)) (-15 -2342 ($ $)) (-15 -4374 ($ $)) (-15 -1493 ($ $)) (-15 -2084 ($ $)) (-15 -4216 ($ $)) (-15 -3951 ($ $)) (-15 -4041 ($ $)) (-15 -4214 ($ $)) (-15 -2546 ($ $)) (-15 -1322 ($ $))) |%noBranch|)))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) 65)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-4287 (($ $) NIL (|has| |#1| (-559)))) (-2286 (((-112) $) NIL (|has| |#1| (-559)))) (-2376 (((-3 $ "failed") $ $) NIL)) (-1317 (($ (-1159 |#1|)) 9)) (-3647 (($) NIL T CONST)) (-3588 (((-3 $ "failed") $) 48)) (-3086 (((-112) $) 58)) (-3362 (((-772) $) 63) (((-772) $ (-772)) 62)) (-4346 (((-112) $) NIL)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-2400 (((-3 $ "failed") $ $) 50 (|has| |#1| (-559)))) (-4129 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL (|has| |#1| (-559)))) (-3601 (((-1159 |#1|) $) 29)) (-2746 (((-772)) 57 T CONST)) (-3357 (((-112) $ $) NIL)) (-3731 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1733 (($) 10 T CONST)) (-1744 (($) 14 T CONST)) (-2946 (((-112) $ $) 28)) (-3053 (($ $) 36) (($ $ $) 16)) (-3041 (($ $ $) 31)) (** (($ $ (-923)) NIL) (($ $ (-772)) 55)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 40) (($ $ $) 34) (($ $ |#1|) 44) (($ |#1| $) 43) (($ $ (-567)) 42)))
+(((-598 |#1|) (-13 (-1051) (-111 |#1| |#1|) (-10 -8 (-15 -3601 ((-1159 |#1|) $)) (-15 -1317 ($ (-1159 |#1|))) (-15 -3086 ((-112) $)) (-15 -3362 ((-772) $)) (-15 -3362 ((-772) $ (-772))) (-15 * ($ $ (-567))) (IF (|has| |#1| (-559)) (-6 (-559)) |%noBranch|))) (-1051)) (T -598))
+((-3601 (*1 *2 *1) (-12 (-5 *2 (-1159 *3)) (-5 *1 (-598 *3)) (-4 *3 (-1051)))) (-1317 (*1 *1 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-5 *1 (-598 *3)))) (-3086 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-598 *3)) (-4 *3 (-1051)))) (-3362 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-598 *3)) (-4 *3 (-1051)))) (-3362 (*1 *2 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-598 *3)) (-4 *3 (-1051)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-598 *3)) (-4 *3 (-1051)))))
+(-13 (-1051) (-111 |#1| |#1|) (-10 -8 (-15 -3601 ((-1159 |#1|) $)) (-15 -1317 ($ (-1159 |#1|))) (-15 -3086 ((-112) $)) (-15 -3362 ((-772) $)) (-15 -3362 ((-772) $ (-772))) (-15 * ($ $ (-567))) (IF (|has| |#1| (-559)) (-6 (-559)) |%noBranch|)))
+((-3841 (((-602 |#2|) (-1 |#2| |#1|) (-602 |#1|)) 15)))
+(((-599 |#1| |#2|) (-10 -7 (-15 -3841 ((-602 |#2|) (-1 |#2| |#1|) (-602 |#1|)))) (-1219) (-1219)) (T -599))
+((-3841 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-602 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) (-5 *2 (-602 *6)) (-5 *1 (-599 *5 *6)))))
+(-10 -7 (-15 -3841 ((-602 |#2|) (-1 |#2| |#1|) (-602 |#1|))))
+((-3841 (((-1159 |#3|) (-1 |#3| |#1| |#2|) (-602 |#1|) (-1159 |#2|)) 20) (((-1159 |#3|) (-1 |#3| |#1| |#2|) (-1159 |#1|) (-602 |#2|)) 19) (((-602 |#3|) (-1 |#3| |#1| |#2|) (-602 |#1|) (-602 |#2|)) 18)))
+(((-600 |#1| |#2| |#3|) (-10 -7 (-15 -3841 ((-602 |#3|) (-1 |#3| |#1| |#2|) (-602 |#1|) (-602 |#2|))) (-15 -3841 ((-1159 |#3|) (-1 |#3| |#1| |#2|) (-1159 |#1|) (-602 |#2|))) (-15 -3841 ((-1159 |#3|) (-1 |#3| |#1| |#2|) (-602 |#1|) (-1159 |#2|)))) (-1219) (-1219) (-1219)) (T -600))
+((-3841 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-602 *6)) (-5 *5 (-1159 *7)) (-4 *6 (-1219)) (-4 *7 (-1219)) (-4 *8 (-1219)) (-5 *2 (-1159 *8)) (-5 *1 (-600 *6 *7 *8)))) (-3841 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1159 *6)) (-5 *5 (-602 *7)) (-4 *6 (-1219)) (-4 *7 (-1219)) (-4 *8 (-1219)) (-5 *2 (-1159 *8)) (-5 *1 (-600 *6 *7 *8)))) (-3841 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-602 *6)) (-5 *5 (-602 *7)) (-4 *6 (-1219)) (-4 *7 (-1219)) (-4 *8 (-1219)) (-5 *2 (-602 *8)) (-5 *1 (-600 *6 *7 *8)))))
+(-10 -7 (-15 -3841 ((-602 |#3|) (-1 |#3| |#1| |#2|) (-602 |#1|) (-602 |#2|))) (-15 -3841 ((-1159 |#3|) (-1 |#3| |#1| |#2|) (-1159 |#1|) (-602 |#2|))) (-15 -3841 ((-1159 |#3|) (-1 |#3| |#1| |#2|) (-602 |#1|) (-1159 |#2|))))
+((-3151 ((|#3| |#3| (-645 (-613 |#3|)) (-645 (-1179))) 57)) (-2548 (((-169 |#2|) |#3|) 121)) (-1458 ((|#3| (-169 |#2|)) 46)) (-1732 ((|#2| |#3|) 21)) (-2011 ((|#3| |#2|) 35)))
+(((-601 |#1| |#2| |#3|) (-10 -7 (-15 -1458 (|#3| (-169 |#2|))) (-15 -1732 (|#2| |#3|)) (-15 -2011 (|#3| |#2|)) (-15 -2548 ((-169 |#2|) |#3|)) (-15 -3151 (|#3| |#3| (-645 (-613 |#3|)) (-645 (-1179))))) (-559) (-13 (-433 |#1|) (-1004) (-1204)) (-13 (-433 (-169 |#1|)) (-1004) (-1204))) (T -601))
+((-3151 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-645 (-613 *2))) (-5 *4 (-645 (-1179))) (-4 *2 (-13 (-433 (-169 *5)) (-1004) (-1204))) (-4 *5 (-559)) (-5 *1 (-601 *5 *6 *2)) (-4 *6 (-13 (-433 *5) (-1004) (-1204))))) (-2548 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-169 *5)) (-5 *1 (-601 *4 *5 *3)) (-4 *5 (-13 (-433 *4) (-1004) (-1204))) (-4 *3 (-13 (-433 (-169 *4)) (-1004) (-1204))))) (-2011 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *2 (-13 (-433 (-169 *4)) (-1004) (-1204))) (-5 *1 (-601 *4 *3 *2)) (-4 *3 (-13 (-433 *4) (-1004) (-1204))))) (-1732 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *2 (-13 (-433 *4) (-1004) (-1204))) (-5 *1 (-601 *4 *2 *3)) (-4 *3 (-13 (-433 (-169 *4)) (-1004) (-1204))))) (-1458 (*1 *2 *3) (-12 (-5 *3 (-169 *5)) (-4 *5 (-13 (-433 *4) (-1004) (-1204))) (-4 *4 (-559)) (-4 *2 (-13 (-433 (-169 *4)) (-1004) (-1204))) (-5 *1 (-601 *4 *5 *2)))))
+(-10 -7 (-15 -1458 (|#3| (-169 |#2|))) (-15 -1732 (|#2| |#3|)) (-15 -2011 (|#3| |#2|)) (-15 -2548 ((-169 |#2|) |#3|)) (-15 -3151 (|#3| |#3| (-645 (-613 |#3|)) (-645 (-1179)))))
+((-3356 (($ (-1 (-112) |#1|) $) 17)) (-3841 (($ (-1 |#1| |#1|) $) NIL)) (-3299 (($ (-1 |#1| |#1|) |#1|) 9)) (-3335 (($ (-1 (-112) |#1|) $) 13)) (-3346 (($ (-1 (-112) |#1|) $) 15)) (-4145 (((-1159 |#1|) $) 18)) (-4129 (((-863) $) NIL)))
+(((-602 |#1|) (-13 (-614 (-863)) (-10 -8 (-15 -3841 ($ (-1 |#1| |#1|) $)) (-15 -3335 ($ (-1 (-112) |#1|) $)) (-15 -3346 ($ (-1 (-112) |#1|) $)) (-15 -3356 ($ (-1 (-112) |#1|) $)) (-15 -3299 ($ (-1 |#1| |#1|) |#1|)) (-15 -4145 ((-1159 |#1|) $)))) (-1219)) (T -602))
+((-3841 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1219)) (-5 *1 (-602 *3)))) (-3335 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1219)) (-5 *1 (-602 *3)))) (-3346 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1219)) (-5 *1 (-602 *3)))) (-3356 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1219)) (-5 *1 (-602 *3)))) (-3299 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1219)) (-5 *1 (-602 *3)))) (-4145 (*1 *2 *1) (-12 (-5 *2 (-1159 *3)) (-5 *1 (-602 *3)) (-4 *3 (-1219)))))
+(-13 (-614 (-863)) (-10 -8 (-15 -3841 ($ (-1 |#1| |#1|) $)) (-15 -3335 ($ (-1 (-112) |#1|) $)) (-15 -3346 ($ (-1 (-112) |#1|) $)) (-15 -3356 ($ (-1 (-112) |#1|) $)) (-15 -3299 ($ (-1 |#1| |#1|) |#1|)) (-15 -4145 ((-1159 |#1|) $))))
+((-2412 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1318 (($ (-772)) NIL (|has| |#1| (-23)))) (-3843 (((-1274) $ (-567) (-567)) NIL (|has| $ (-6 -4423)))) (-3531 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-851)))) (-2676 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4423))) (($ $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-851))))) (-1311 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-851)))) (-1563 (((-112) $ (-772)) NIL)) (-4285 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4423))) ((|#1| $ (-1236 (-567)) |#1|) NIL (|has| $ (-6 -4423)))) (-3356 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-3647 (($) NIL T CONST)) (-1602 (($ $) NIL (|has| $ (-6 -4423)))) (-3592 (($ $) NIL)) (-2453 (($ $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3246 (($ |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2494 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4422)))) (-3760 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4423)))) (-3703 ((|#1| $ (-567)) NIL)) (-2578 (((-567) (-1 (-112) |#1|) $) NIL) (((-567) |#1| $) NIL (|has| |#1| (-1102))) (((-567) |#1| $ (-567)) NIL (|has| |#1| (-1102)))) (-2799 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-1562 (((-690 |#1|) $ $) NIL (|has| |#1| (-1051)))) (-2858 (($ (-772) |#1|) NIL)) (-4093 (((-112) $ (-772)) NIL)) (-3895 (((-567) $) NIL (|has| (-567) (-851)))) (-1365 (($ $ $) NIL (|has| |#1| (-851)))) (-2473 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-851)))) (-1942 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-3237 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3255 (((-567) $) NIL (|has| (-567) (-851)))) (-3002 (($ $ $) NIL (|has| |#1| (-851)))) (-3751 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3390 ((|#1| $) NIL (-12 (|has| |#1| (-1004)) (|has| |#1| (-1051))))) (-1986 (((-112) $ (-772)) NIL)) (-2334 ((|#1| $) NIL (-12 (|has| |#1| (-1004)) (|has| |#1| (-1051))))) (-2516 (((-1161) $) NIL (|has| |#1| (-1102)))) (-2857 (($ |#1| $ (-567)) NIL) (($ $ $ (-567)) NIL)) (-4364 (((-645 (-567)) $) NIL)) (-3188 (((-112) (-567) $) NIL)) (-3437 (((-1122) $) NIL (|has| |#1| (-1102)))) (-2418 ((|#1| $) NIL (|has| (-567) (-851)))) (-3196 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3823 (($ $ |#1|) NIL (|has| $ (-6 -4423)))) (-4233 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3875 (((-112) $ $) NIL)) (-4058 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-2190 (((-645 |#1|) $) NIL)) (-3885 (((-112) $) NIL)) (-2701 (($) NIL)) (-1801 ((|#1| $ (-567) |#1|) NIL) ((|#1| $ (-567)) NIL) (($ $ (-1236 (-567))) NIL)) (-3917 ((|#1| $ $) NIL (|has| |#1| (-1051)))) (-1569 (($ $ (-567)) NIL) (($ $ (-1236 (-567))) NIL)) (-1759 (($ $ $) NIL (|has| |#1| (-1051)))) (-3447 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-1656 (($ $ $ (-567)) NIL (|has| $ (-6 -4423)))) (-4309 (($ $) NIL)) (-3902 (((-539) $) NIL (|has| |#1| (-615 (-539))))) (-4145 (($ (-645 |#1|)) NIL)) (-2276 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-645 $)) NIL)) (-4129 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-3357 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3436 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-3004 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2980 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2993 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2968 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3053 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3041 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-567) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-727))) (($ $ |#1|) NIL (|has| |#1| (-727)))) (-2423 (((-772) $) NIL (|has| $ (-6 -4422)))))
+(((-603 |#1| |#2|) (-1267 |#1|) (-1219) (-567)) (T -603))
+NIL
+(-1267 |#1|)
+((-3843 (((-1274) $ |#2| |#2|) 36)) (-3895 ((|#2| $) 23)) (-3255 ((|#2| $) 21)) (-3751 (($ (-1 |#3| |#3|) $) 32)) (-3841 (($ (-1 |#3| |#3|) $) 30)) (-2418 ((|#3| $) 26)) (-3823 (($ $ |#3|) 33)) (-4058 (((-112) |#3| $) 17)) (-2190 (((-645 |#3|) $) 15)) (-1801 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL)))
+(((-604 |#1| |#2| |#3|) (-10 -8 (-15 -3843 ((-1274) |#1| |#2| |#2|)) (-15 -3823 (|#1| |#1| |#3|)) (-15 -2418 (|#3| |#1|)) (-15 -3895 (|#2| |#1|)) (-15 -3255 (|#2| |#1|)) (-15 -4058 ((-112) |#3| |#1|)) (-15 -2190 ((-645 |#3|) |#1|)) (-15 -1801 (|#3| |#1| |#2|)) (-15 -1801 (|#3| |#1| |#2| |#3|)) (-15 -3751 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3841 (|#1| (-1 |#3| |#3|) |#1|))) (-605 |#2| |#3|) (-1102) (-1219)) (T -604))
+NIL
+(-10 -8 (-15 -3843 ((-1274) |#1| |#2| |#2|)) (-15 -3823 (|#1| |#1| |#3|)) (-15 -2418 (|#3| |#1|)) (-15 -3895 (|#2| |#1|)) (-15 -3255 (|#2| |#1|)) (-15 -4058 ((-112) |#3| |#1|)) (-15 -2190 ((-645 |#3|) |#1|)) (-15 -1801 (|#3| |#1| |#2|)) (-15 -1801 (|#3| |#1| |#2| |#3|)) (-15 -3751 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3841 (|#1| (-1 |#3| |#3|) |#1|)))
+((-2412 (((-112) $ $) 19 (|has| |#2| (-1102)))) (-3843 (((-1274) $ |#1| |#1|) 41 (|has| $ (-6 -4423)))) (-1563 (((-112) $ (-772)) 8)) (-4285 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4423)))) (-3647 (($) 7 T CONST)) (-3760 ((|#2| $ |#1| |#2|) 54 (|has| $ (-6 -4423)))) (-3703 ((|#2| $ |#1|) 52)) (-2799 (((-645 |#2|) $) 31 (|has| $ (-6 -4422)))) (-4093 (((-112) $ (-772)) 9)) (-3895 ((|#1| $) 44 (|has| |#1| (-851)))) (-1942 (((-645 |#2|) $) 30 (|has| $ (-6 -4422)))) (-3237 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1102)) (|has| $ (-6 -4422))))) (-3255 ((|#1| $) 45 (|has| |#1| (-851)))) (-3751 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#2| |#2|) $) 36)) (-1986 (((-112) $ (-772)) 10)) (-2516 (((-1161) $) 22 (|has| |#2| (-1102)))) (-4364 (((-645 |#1|) $) 47)) (-3188 (((-112) |#1| $) 48)) (-3437 (((-1122) $) 21 (|has| |#2| (-1102)))) (-2418 ((|#2| $) 43 (|has| |#1| (-851)))) (-3823 (($ $ |#2|) 42 (|has| $ (-6 -4423)))) (-4233 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 |#2|))) 27 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-295 |#2|)) 26 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-645 |#2|) (-645 |#2|)) 24 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))))) (-3875 (((-112) $ $) 14)) (-4058 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4422)) (|has| |#2| (-1102))))) (-2190 (((-645 |#2|) $) 49)) (-3885 (((-112) $) 11)) (-2701 (($) 12)) (-1801 ((|#2| $ |#1| |#2|) 51) ((|#2| $ |#1|) 50)) (-3447 (((-772) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4422))) (((-772) |#2| $) 29 (-12 (|has| |#2| (-1102)) (|has| $ (-6 -4422))))) (-4309 (($ $) 13)) (-4129 (((-863) $) 18 (|has| |#2| (-614 (-863))))) (-3357 (((-112) $ $) 23 (|has| |#2| (-1102)))) (-3436 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4422)))) (-2946 (((-112) $ $) 20 (|has| |#2| (-1102)))) (-2423 (((-772) $) 6 (|has| $ (-6 -4422)))))
+(((-605 |#1| |#2|) (-140) (-1102) (-1219)) (T -605))
+((-2190 (*1 *2 *1) (-12 (-4 *1 (-605 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1219)) (-5 *2 (-645 *4)))) (-3188 (*1 *2 *3 *1) (-12 (-4 *1 (-605 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1219)) (-5 *2 (-112)))) (-4364 (*1 *2 *1) (-12 (-4 *1 (-605 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1219)) (-5 *2 (-645 *3)))) (-4058 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4422)) (-4 *1 (-605 *4 *3)) (-4 *4 (-1102)) (-4 *3 (-1219)) (-4 *3 (-1102)) (-5 *2 (-112)))) (-3255 (*1 *2 *1) (-12 (-4 *1 (-605 *2 *3)) (-4 *3 (-1219)) (-4 *2 (-1102)) (-4 *2 (-851)))) (-3895 (*1 *2 *1) (-12 (-4 *1 (-605 *2 *3)) (-4 *3 (-1219)) (-4 *2 (-1102)) (-4 *2 (-851)))) (-2418 (*1 *2 *1) (-12 (-4 *1 (-605 *3 *2)) (-4 *3 (-1102)) (-4 *3 (-851)) (-4 *2 (-1219)))) (-3823 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4423)) (-4 *1 (-605 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1219)))) (-3843 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4423)) (-4 *1 (-605 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1219)) (-5 *2 (-1274)))))
+(-13 (-492 |t#2|) (-289 |t#1| |t#2|) (-10 -8 (-15 -2190 ((-645 |t#2|) $)) (-15 -3188 ((-112) |t#1| $)) (-15 -4364 ((-645 |t#1|) $)) (IF (|has| |t#2| (-1102)) (IF (|has| $ (-6 -4422)) (-15 -4058 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-851)) (PROGN (-15 -3255 (|t#1| $)) (-15 -3895 (|t#1| $)) (-15 -2418 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4423)) (PROGN (-15 -3823 ($ $ |t#2|)) (-15 -3843 ((-1274) $ |t#1| |t#1|))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#2| (-1102)) ((-614 (-863)) -2811 (|has| |#2| (-1102)) (|has| |#2| (-614 (-863)))) ((-287 |#1| |#2|) . T) ((-289 |#1| |#2|) . T) ((-310 |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) ((-492 |#2|) . T) ((-517 |#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) ((-1102) |has| |#2| (-1102)) ((-1219) . T))
+((-4129 (((-863) $) 19) (($ (-129)) 13) (((-129) $) 14)))
(((-606) (-13 (-614 (-863)) (-493 (-129)))) (T -606))
NIL
(-13 (-614 (-863)) (-493 (-129)))
-((-2403 (((-112) $ $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL) (($ (-1183)) NIL) (((-1183) $) NIL) (((-1217) $) 14) (($ (-645 (-1217))) 13)) (-1538 (((-645 (-1217)) $) 10)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)))
-(((-607) (-13 (-1085) (-614 (-1217)) (-10 -8 (-15 -4132 ($ (-645 (-1217)))) (-15 -1538 ((-645 (-1217)) $))))) (T -607))
-((-4132 (*1 *1 *2) (-12 (-5 *2 (-645 (-1217))) (-5 *1 (-607)))) (-1538 (*1 *2 *1) (-12 (-5 *2 (-645 (-1217))) (-5 *1 (-607)))))
-(-13 (-1085) (-614 (-1217)) (-10 -8 (-15 -4132 ($ (-645 (-1217)))) (-15 -1538 ((-645 (-1217)) $))))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3951 (((-3 $ "failed")) NIL (-2800 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-3472 (((-3 $ "failed") $ $) NIL)) (-2189 (((-1268 (-690 |#1|))) NIL (|has| |#2| (-420 |#1|))) (((-1268 (-690 |#1|)) (-1268 $)) NIL (|has| |#2| (-369 |#1|)))) (-3337 (((-1268 $)) NIL (|has| |#2| (-369 |#1|)))) (-2585 (($) NIL T CONST)) (-3425 (((-3 (-2 (|:| |particular| $) (|:| -2623 (-645 $))) "failed")) NIL (-2800 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-3645 (((-3 $ "failed")) NIL (-2800 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-1735 (((-690 |#1|)) NIL (|has| |#2| (-420 |#1|))) (((-690 |#1|) (-1268 $)) NIL (|has| |#2| (-369 |#1|)))) (-2583 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-3528 (((-690 |#1|) $) NIL (|has| |#2| (-420 |#1|))) (((-690 |#1|) $ (-1268 $)) NIL (|has| |#2| (-369 |#1|)))) (-2209 (((-3 $ "failed") $) NIL (-2800 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-4063 (((-1174 (-954 |#1|))) NIL (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-365))))) (-2586 (($ $ (-923)) NIL)) (-1883 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-1575 (((-1174 |#1|) $) NIL (-2800 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-2676 ((|#1|) NIL (|has| |#2| (-420 |#1|))) ((|#1| (-1268 $)) NIL (|has| |#2| (-369 |#1|)))) (-1682 (((-1174 |#1|) $) NIL (|has| |#2| (-369 |#1|)))) (-1444 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3658 (($ (-1268 |#1|)) NIL (|has| |#2| (-420 |#1|))) (($ (-1268 |#1|) (-1268 $)) NIL (|has| |#2| (-369 |#1|)))) (-2109 (((-3 $ "failed") $) NIL (-2800 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-1954 (((-923)) NIL (|has| |#2| (-369 |#1|)))) (-1379 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3719 (($ $ (-923)) NIL)) (-4353 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3375 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3154 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3412 (((-3 (-2 (|:| |particular| $) (|:| -2623 (-645 $))) "failed")) NIL (-2800 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-3345 (((-3 $ "failed")) NIL (-2800 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-2119 (((-690 |#1|)) NIL (|has| |#2| (-420 |#1|))) (((-690 |#1|) (-1268 $)) NIL (|has| |#2| (-369 |#1|)))) (-2726 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-2702 (((-690 |#1|) $) NIL (|has| |#2| (-420 |#1|))) (((-690 |#1|) $ (-1268 $)) NIL (|has| |#2| (-369 |#1|)))) (-3080 (((-3 $ "failed") $) NIL (-2800 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-4162 (((-1174 (-954 |#1|))) NIL (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-365))))) (-3450 (($ $ (-923)) NIL)) (-2200 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-3960 (((-1174 |#1|) $) NIL (-2800 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-3042 ((|#1|) NIL (|has| |#2| (-420 |#1|))) ((|#1| (-1268 $)) NIL (|has| |#2| (-369 |#1|)))) (-3567 (((-1174 |#1|) $) NIL (|has| |#2| (-369 |#1|)))) (-3396 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1419 (((-1160) $) NIL)) (-2609 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3070 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-4341 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3430 (((-1122) $) NIL)) (-4356 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1787 ((|#1| $ (-567)) NIL (|has| |#2| (-420 |#1|)))) (-2887 (((-690 |#1|) (-1268 $)) NIL (|has| |#2| (-420 |#1|))) (((-1268 |#1|) $) NIL (|has| |#2| (-420 |#1|))) (((-690 |#1|) (-1268 $) (-1268 $)) NIL (|has| |#2| (-369 |#1|))) (((-1268 |#1|) $ (-1268 $)) NIL (|has| |#2| (-369 |#1|)))) (-3893 (($ (-1268 |#1|)) NIL (|has| |#2| (-420 |#1|))) (((-1268 |#1|) $) NIL (|has| |#2| (-420 |#1|)))) (-4013 (((-645 (-954 |#1|))) NIL (|has| |#2| (-420 |#1|))) (((-645 (-954 |#1|)) (-1268 $)) NIL (|has| |#2| (-369 |#1|)))) (-1485 (($ $ $) NIL)) (-1502 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-4132 (((-863) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-1745 (((-112) $ $) NIL)) (-2623 (((-1268 $)) NIL (|has| |#2| (-420 |#1|)))) (-2652 (((-645 (-1268 |#1|))) NIL (-2800 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-2153 (($ $ $ $) NIL)) (-3013 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2355 (($ (-690 |#1|) $) NIL (|has| |#2| (-420 |#1|)))) (-2214 (($ $ $) NIL)) (-1636 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1749 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2059 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1716 (($) NIL T CONST)) (-2936 (((-112) $ $) NIL)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) 24)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL)))
-(((-608 |#1| |#2|) (-13 (-745 |#1|) (-614 |#2|) (-10 -8 (-15 -4132 ($ |#2|)) (IF (|has| |#2| (-420 |#1|)) (-6 (-420 |#1|)) |%noBranch|) (IF (|has| |#2| (-369 |#1|)) (-6 (-369 |#1|)) |%noBranch|))) (-172) (-745 |#1|)) (T -608))
-((-4132 (*1 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-608 *3 *2)) (-4 *2 (-745 *3)))))
-(-13 (-745 |#1|) (-614 |#2|) (-10 -8 (-15 -4132 ($ |#2|)) (IF (|has| |#2| (-420 |#1|)) (-6 (-420 |#1|)) |%noBranch|) (IF (|has| |#2| (-369 |#1|)) (-6 (-369 |#1|)) |%noBranch|)))
-((-2403 (((-112) $ $) NIL)) (-4032 (((-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) $ (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) 39)) (-2835 (($ (-645 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)))) NIL) (($) NIL)) (-1783 (((-1273) $ (-1160) (-1160)) NIL (|has| $ (-6 -4419)))) (-3445 (((-112) $ (-772)) NIL)) (-4284 ((|#1| $ (-1160) |#1|) 49)) (-2839 (($ (-1 (-112) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) $) NIL (|has| $ (-6 -4418)))) (-3350 (($ (-1 (-112) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) $) NIL (|has| $ (-6 -4418)))) (-4019 (((-3 |#1| "failed") (-1160) $) 52)) (-2585 (($) NIL T CONST)) (-2828 (($ $ (-1160)) 25)) (-2444 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-1102))))) (-2539 (((-3 |#1| "failed") (-1160) $) 53) (($ (-1 (-112) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) $) NIL (|has| $ (-6 -4418))) (($ (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) $) NIL (|has| $ (-6 -4418)))) (-3238 (($ (-1 (-112) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) $) NIL (|has| $ (-6 -4418))) (($ (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-1102))))) (-2477 (((-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-1 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) $) NIL (|has| $ (-6 -4418))) (((-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-1 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) $ (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) NIL (|has| $ (-6 -4418))) (((-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-1 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) $ (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-1102))))) (-2636 (((-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) $) 38)) (-3741 ((|#1| $ (-1160) |#1|) NIL (|has| $ (-6 -4419)))) (-3680 ((|#1| $ (-1160)) NIL)) (-2777 (((-645 |#1|) $) NIL (|has| $ (-6 -4418))) (((-645 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) $) NIL (|has| $ (-6 -4418)))) (-3222 (($ $) 54)) (-3823 (($ (-391)) 23) (($ (-391) (-1160)) 22)) (-1996 (((-391) $) 40)) (-2077 (((-112) $ (-772)) NIL)) (-4069 (((-1160) $) NIL (|has| (-1160) (-851)))) (-2279 (((-645 |#1|) $) NIL (|has| $ (-6 -4418))) (((-645 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102)))) (((-112) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-1102))))) (-2266 (((-1160) $) NIL (|has| (-1160) (-851)))) (-3731 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4419))) (($ (-1 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL)) (-1391 (((-645 (-1160)) $) 45)) (-4251 (((-112) (-1160) $) NIL)) (-1892 (((-1160) $) 41)) (-1566 (((-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) $) NIL)) (-2531 (($ (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) $) NIL)) (-1789 (((-645 (-1160)) $) NIL)) (-2996 (((-112) (-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-2409 ((|#1| $) NIL (|has| (-1160) (-851)))) (-4128 (((-3 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) "failed") (-1 (-112) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) $) NIL)) (-3986 (($ $ |#1|) NIL (|has| $ (-6 -4419)))) (-1793 (((-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) $) NIL)) (-3025 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (((-112) (-1 (-112) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) (-645 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)))) NIL (-12 (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-310 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)))) (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-1102)))) (($ $ (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) NIL (-12 (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-310 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)))) (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-1102)))) (($ $ (-295 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)))) NIL (-12 (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-310 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)))) (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-1102)))) (($ $ (-645 (-295 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))))) NIL (-12 (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-310 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)))) (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-1102))))) (-3092 (((-112) $ $) NIL)) (-1794 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2339 (((-645 |#1|) $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) 43)) (-1787 ((|#1| $ (-1160) |#1|) NIL) ((|#1| $ (-1160)) 48)) (-2718 (($ (-645 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)))) NIL) (($) NIL)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102)))) (((-772) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-1102)))) (((-772) (-1 (-112) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) $) NIL (|has| $ (-6 -4418)))) (-4305 (($ $) NIL)) (-3893 (((-539) $) NIL (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-615 (-539))))) (-4147 (($ (-645 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)))) NIL)) (-4132 (((-863) $) 21)) (-1675 (($ $) 26)) (-1745 (((-112) $ $) NIL)) (-3551 (($ (-645 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)))) NIL)) (-1853 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (((-112) (-1 (-112) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) $) NIL (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 20)) (-2414 (((-772) $) 47 (|has| $ (-6 -4418)))))
-(((-609 |#1|) (-13 (-366 (-391) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) (-1194 (-1160) |#1|) (-10 -8 (-6 -4418) (-15 -3222 ($ $)))) (-1102)) (T -609))
-((-3222 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-1102)))))
-(-13 (-366 (-391) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) (-1194 (-1160) |#1|) (-10 -8 (-6 -4418) (-15 -3222 ($ $))))
-((-4337 (((-112) (-2 (|:| -1795 |#2|) (|:| -4237 |#3|)) $) 16)) (-1391 (((-645 |#2|) $) 20)) (-4251 (((-112) |#2| $) 12)))
-(((-610 |#1| |#2| |#3|) (-10 -8 (-15 -1391 ((-645 |#2|) |#1|)) (-15 -4251 ((-112) |#2| |#1|)) (-15 -4337 ((-112) (-2 (|:| -1795 |#2|) (|:| -4237 |#3|)) |#1|))) (-611 |#2| |#3|) (-1102) (-1102)) (T -610))
-NIL
-(-10 -8 (-15 -1391 ((-645 |#2|) |#1|)) (-15 -4251 ((-112) |#2| |#1|)) (-15 -4337 ((-112) (-2 (|:| -1795 |#2|) (|:| -4237 |#3|)) |#1|)))
-((-2403 (((-112) $ $) 19 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (-3445 (((-112) $ (-772)) 8)) (-2839 (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 46 (|has| $ (-6 -4418)))) (-3350 (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 56 (|has| $ (-6 -4418)))) (-4019 (((-3 |#2| "failed") |#1| $) 62)) (-2585 (($) 7 T CONST)) (-2444 (($ $) 59 (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| $ (-6 -4418))))) (-2539 (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) 48 (|has| $ (-6 -4418))) (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 47 (|has| $ (-6 -4418))) (((-3 |#2| "failed") |#1| $) 63)) (-3238 (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) 58 (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| $ (-6 -4418)))) (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 55 (|has| $ (-6 -4418)))) (-2477 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) 57 (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| $ (-6 -4418)))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) 54 (|has| $ (-6 -4418))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 53 (|has| $ (-6 -4418)))) (-2777 (((-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 31 (|has| $ (-6 -4418)))) (-2077 (((-112) $ (-772)) 9)) (-2279 (((-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 30 (|has| $ (-6 -4418)))) (-4337 (((-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) 28 (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| $ (-6 -4418))))) (-3731 (($ (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 35 (|has| $ (-6 -4419)))) (-3829 (($ (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 36)) (-2863 (((-112) $ (-772)) 10)) (-1419 (((-1160) $) 22 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (-1391 (((-645 |#1|) $) 64)) (-4251 (((-112) |#1| $) 65)) (-1566 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) 40)) (-2531 (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) 41)) (-3430 (((-1122) $) 21 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (-4128 (((-3 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) "failed") (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 52)) (-1793 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) 42)) (-3025 (((-112) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 33 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))))) 27 (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-295 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) 26 (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) 25 (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) 24 (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102))))) (-3092 (((-112) $ $) 14)) (-3572 (((-112) $) 11)) (-3498 (($) 12)) (-2718 (($) 50) (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) 49)) (-3439 (((-772) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 32 (|has| $ (-6 -4418))) (((-772) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) 29 (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| $ (-6 -4418))))) (-4305 (($ $) 13)) (-3893 (((-539) $) 60 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-615 (-539))))) (-4147 (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) 51)) (-4132 (((-863) $) 18 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-614 (-863))))) (-1745 (((-112) $ $) 23 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (-3551 (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) 43)) (-1853 (((-112) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 34 (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 20 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (-2414 (((-772) $) 6 (|has| $ (-6 -4418)))))
+((-2412 (((-112) $ $) NIL)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) NIL) (($ (-1184)) NIL) (((-1184) $) NIL) (((-1218) $) 14) (($ (-645 (-1218))) 13)) (-1545 (((-645 (-1218)) $) 10)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)))
+(((-607) (-13 (-1085) (-614 (-1218)) (-10 -8 (-15 -4129 ($ (-645 (-1218)))) (-15 -1545 ((-645 (-1218)) $))))) (T -607))
+((-4129 (*1 *1 *2) (-12 (-5 *2 (-645 (-1218))) (-5 *1 (-607)))) (-1545 (*1 *2 *1) (-12 (-5 *2 (-645 (-1218))) (-5 *1 (-607)))))
+(-13 (-1085) (-614 (-1218)) (-10 -8 (-15 -4129 ($ (-645 (-1218)))) (-15 -1545 ((-645 (-1218)) $))))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-4369 (((-3 $ "failed")) NIL (-2811 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-2376 (((-3 $ "failed") $ $) NIL)) (-1483 (((-1269 (-690 |#1|))) NIL (|has| |#2| (-420 |#1|))) (((-1269 (-690 |#1|)) (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-3967 (((-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-3647 (($) NIL T CONST)) (-1421 (((-3 (-2 (|:| |particular| $) (|:| -2144 (-645 $))) "failed")) NIL (-2811 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-4297 (((-3 $ "failed")) NIL (-2811 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-1852 (((-690 |#1|)) NIL (|has| |#2| (-420 |#1|))) (((-690 |#1|) (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-3382 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-1639 (((-690 |#1|) $) NIL (|has| |#2| (-420 |#1|))) (((-690 |#1|) $ (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-2810 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-1588 (((-1175 (-954 |#1|))) NIL (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-365))))) (-3757 (($ $ (-923)) NIL)) (-1868 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-2479 (((-1175 |#1|) $) NIL (-2811 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-3878 ((|#1|) NIL (|has| |#2| (-420 |#1|))) ((|#1| (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-2309 (((-1175 |#1|) $) NIL (|has| |#2| (-369 |#1|)))) (-2720 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3111 (($ (-1269 |#1|)) NIL (|has| |#2| (-420 |#1|))) (($ (-1269 |#1|) (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-3588 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-1976 (((-923)) NIL (|has| |#2| (-369 |#1|)))) (-2957 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2112 (($ $ (-923)) NIL)) (-4388 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2655 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2304 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2488 (((-3 (-2 (|:| |particular| $) (|:| -2144 (-645 $))) "failed")) NIL (-2811 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-3428 (((-3 $ "failed")) NIL (-2811 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-3060 (((-690 |#1|)) NIL (|has| |#2| (-420 |#1|))) (((-690 |#1|) (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-1735 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-2227 (((-690 |#1|) $) NIL (|has| |#2| (-420 |#1|))) (((-690 |#1|) $ (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-2213 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-3785 (((-1175 (-954 |#1|))) NIL (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-365))))) (-3884 (($ $ (-923)) NIL)) (-3233 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-4063 (((-1175 |#1|) $) NIL (-2811 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-2976 ((|#1|) NIL (|has| |#2| (-420 |#1|))) ((|#1| (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-1694 (((-1175 |#1|) $) NIL (|has| |#2| (-369 |#1|)))) (-3332 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2516 (((-1161) $) NIL)) (-4368 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3498 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2467 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3437 (((-1122) $) NIL)) (-3485 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1801 ((|#1| $ (-567)) NIL (|has| |#2| (-420 |#1|)))) (-3088 (((-690 |#1|) (-1269 $)) NIL (|has| |#2| (-420 |#1|))) (((-1269 |#1|) $) NIL (|has| |#2| (-420 |#1|))) (((-690 |#1|) (-1269 $) (-1269 $)) NIL (|has| |#2| (-369 |#1|))) (((-1269 |#1|) $ (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-3902 (($ (-1269 |#1|)) NIL (|has| |#2| (-420 |#1|))) (((-1269 |#1|) $) NIL (|has| |#2| (-420 |#1|)))) (-3981 (((-645 (-954 |#1|))) NIL (|has| |#2| (-420 |#1|))) (((-645 (-954 |#1|)) (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-3997 (($ $ $) NIL)) (-3568 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-4129 (((-863) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-3357 (((-112) $ $) NIL)) (-2144 (((-1269 $)) NIL (|has| |#2| (-420 |#1|)))) (-2628 (((-645 (-1269 |#1|))) NIL (-2811 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-2047 (($ $ $ $) NIL)) (-1996 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2364 (($ (-690 |#1|) $) NIL (|has| |#2| (-420 |#1|)))) (-2188 (($ $ $) NIL)) (-3970 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3741 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3220 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1733 (($) NIL T CONST)) (-2946 (((-112) $ $) NIL)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-923)) 24)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL)))
+(((-608 |#1| |#2|) (-13 (-745 |#1|) (-614 |#2|) (-10 -8 (-15 -4129 ($ |#2|)) (IF (|has| |#2| (-420 |#1|)) (-6 (-420 |#1|)) |%noBranch|) (IF (|has| |#2| (-369 |#1|)) (-6 (-369 |#1|)) |%noBranch|))) (-172) (-745 |#1|)) (T -608))
+((-4129 (*1 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-608 *3 *2)) (-4 *2 (-745 *3)))))
+(-13 (-745 |#1|) (-614 |#2|) (-10 -8 (-15 -4129 ($ |#2|)) (IF (|has| |#2| (-420 |#1|)) (-6 (-420 |#1|)) |%noBranch|) (IF (|has| |#2| (-369 |#1|)) (-6 (-369 |#1|)) |%noBranch|)))
+((-2412 (((-112) $ $) NIL)) (-2411 (((-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) $ (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|))) 39)) (-2847 (($ (-645 (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)))) NIL) (($) NIL)) (-3843 (((-1274) $ (-1161) (-1161)) NIL (|has| $ (-6 -4423)))) (-1563 (((-112) $ (-772)) NIL)) (-4285 ((|#1| $ (-1161) |#1|) 49)) (-1494 (($ (-1 (-112) (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|))) $) NIL (|has| $ (-6 -4422)))) (-3356 (($ (-1 (-112) (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|))) $) NIL (|has| $ (-6 -4422)))) (-4021 (((-3 |#1| "failed") (-1161) $) 52)) (-3647 (($) NIL T CONST)) (-3084 (($ $ (-1161)) 25)) (-2453 (($ $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (-1102))))) (-2247 (((-3 |#1| "failed") (-1161) $) 53) (($ (-1 (-112) (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|))) $) NIL (|has| $ (-6 -4422))) (($ (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) $) NIL (|has| $ (-6 -4422)))) (-3246 (($ (-1 (-112) (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|))) $) NIL (|has| $ (-6 -4422))) (($ (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (-1102))))) (-2494 (((-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (-1 (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|))) $) NIL (|has| $ (-6 -4422))) (((-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (-1 (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|))) $ (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|))) NIL (|has| $ (-6 -4422))) (((-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (-1 (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|))) $ (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|))) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (-1102))))) (-1935 (((-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) $) 38)) (-3760 ((|#1| $ (-1161) |#1|) NIL (|has| $ (-6 -4423)))) (-3703 ((|#1| $ (-1161)) NIL)) (-2799 (((-645 |#1|) $) NIL (|has| $ (-6 -4422))) (((-645 (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|))) $) NIL (|has| $ (-6 -4422)))) (-1802 (($ $) 54)) (-3835 (($ (-391)) 23) (($ (-391) (-1161)) 22)) (-2007 (((-391) $) 40)) (-4093 (((-112) $ (-772)) NIL)) (-3895 (((-1161) $) NIL (|has| (-1161) (-851)))) (-1942 (((-645 |#1|) $) NIL (|has| $ (-6 -4422))) (((-645 (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|))) $) NIL (|has| $ (-6 -4422)))) (-3237 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102)))) (((-112) (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (-1102))))) (-3255 (((-1161) $) NIL (|has| (-1161) (-851)))) (-3751 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4423))) (($ (-1 (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|))) $) NIL (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|))) $) NIL)) (-1986 (((-112) $ (-772)) NIL)) (-2516 (((-1161) $) NIL)) (-1405 (((-645 (-1161)) $) 45)) (-2816 (((-112) (-1161) $) NIL)) (-3477 (((-1161) $) 41)) (-2706 (((-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) $) NIL)) (-2646 (($ (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) $) NIL)) (-4364 (((-645 (-1161)) $) NIL)) (-3188 (((-112) (-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-2418 ((|#1| $) NIL (|has| (-1161) (-851)))) (-3196 (((-3 (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) "failed") (-1 (-112) (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|))) $) NIL)) (-3823 (($ $ |#1|) NIL (|has| $ (-6 -4423)))) (-3949 (((-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) $) NIL)) (-4233 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (((-112) (-1 (-112) (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|))) $) NIL (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|))) (-645 (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)))) NIL (-12 (|has| (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (-310 (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)))) (|has| (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (-1102)))) (($ $ (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|))) NIL (-12 (|has| (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (-310 (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)))) (|has| (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (-1102)))) (($ $ (-295 (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)))) NIL (-12 (|has| (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (-310 (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)))) (|has| (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (-1102)))) (($ $ (-645 (-295 (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|))))) NIL (-12 (|has| (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (-310 (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)))) (|has| (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (-1102))))) (-3875 (((-112) $ $) NIL)) (-4058 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-2190 (((-645 |#1|) $) NIL)) (-3885 (((-112) $) NIL)) (-2701 (($) 43)) (-1801 ((|#1| $ (-1161) |#1|) NIL) ((|#1| $ (-1161)) 48)) (-4106 (($ (-645 (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)))) NIL) (($) NIL)) (-3447 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102)))) (((-772) (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (-1102)))) (((-772) (-1 (-112) (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|))) $) NIL (|has| $ (-6 -4422)))) (-4309 (($ $) NIL)) (-3902 (((-539) $) NIL (|has| (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (-615 (-539))))) (-4145 (($ (-645 (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)))) NIL)) (-4129 (((-863) $) 21)) (-3034 (($ $) 26)) (-3357 (((-112) $ $) NIL)) (-3700 (($ (-645 (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)))) NIL)) (-3436 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (((-112) (-1 (-112) (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|))) $) NIL (|has| $ (-6 -4422)))) (-2946 (((-112) $ $) 20)) (-2423 (((-772) $) 47 (|has| $ (-6 -4422)))))
+(((-609 |#1|) (-13 (-366 (-391) (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|))) (-1195 (-1161) |#1|) (-10 -8 (-6 -4422) (-15 -1802 ($ $)))) (-1102)) (T -609))
+((-1802 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-1102)))))
+(-13 (-366 (-391) (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|))) (-1195 (-1161) |#1|) (-10 -8 (-6 -4422) (-15 -1802 ($ $))))
+((-3237 (((-112) (-2 (|:| -1809 |#2|) (|:| -4236 |#3|)) $) 16)) (-1405 (((-645 |#2|) $) 20)) (-2816 (((-112) |#2| $) 12)))
+(((-610 |#1| |#2| |#3|) (-10 -8 (-15 -1405 ((-645 |#2|) |#1|)) (-15 -2816 ((-112) |#2| |#1|)) (-15 -3237 ((-112) (-2 (|:| -1809 |#2|) (|:| -4236 |#3|)) |#1|))) (-611 |#2| |#3|) (-1102) (-1102)) (T -610))
+NIL
+(-10 -8 (-15 -1405 ((-645 |#2|) |#1|)) (-15 -2816 ((-112) |#2| |#1|)) (-15 -3237 ((-112) (-2 (|:| -1809 |#2|) (|:| -4236 |#3|)) |#1|)))
+((-2412 (((-112) $ $) 19 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (-1563 (((-112) $ (-772)) 8)) (-1494 (($ (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) 46 (|has| $ (-6 -4422)))) (-3356 (($ (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) 56 (|has| $ (-6 -4422)))) (-4021 (((-3 |#2| "failed") |#1| $) 62)) (-3647 (($) 7 T CONST)) (-2453 (($ $) 59 (-12 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)) (|has| $ (-6 -4422))))) (-2247 (($ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) 48 (|has| $ (-6 -4422))) (($ (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) 47 (|has| $ (-6 -4422))) (((-3 |#2| "failed") |#1| $) 63)) (-3246 (($ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) 58 (-12 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)) (|has| $ (-6 -4422)))) (($ (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) 55 (|has| $ (-6 -4422)))) (-2494 (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) 57 (-12 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)) (|has| $ (-6 -4422)))) (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) 54 (|has| $ (-6 -4422))) (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) 53 (|has| $ (-6 -4422)))) (-2799 (((-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) 31 (|has| $ (-6 -4422)))) (-4093 (((-112) $ (-772)) 9)) (-1942 (((-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) 30 (|has| $ (-6 -4422)))) (-3237 (((-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) 28 (-12 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)) (|has| $ (-6 -4422))))) (-3751 (($ (-1 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) 35 (|has| $ (-6 -4423)))) (-3841 (($ (-1 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) 36)) (-1986 (((-112) $ (-772)) 10)) (-2516 (((-1161) $) 22 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (-1405 (((-645 |#1|) $) 64)) (-2816 (((-112) |#1| $) 65)) (-2706 (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) 40)) (-2646 (($ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) 41)) (-3437 (((-1122) $) 21 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (-3196 (((-3 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) "failed") (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) 52)) (-3949 (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) 42)) (-4233 (((-112) (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) 33 (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))))) 27 (-12 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-310 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (($ $ (-295 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) 26 (-12 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-310 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (($ $ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) 25 (-12 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-310 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (($ $ (-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) (-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) 24 (-12 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-310 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102))))) (-3875 (((-112) $ $) 14)) (-3885 (((-112) $) 11)) (-2701 (($) 12)) (-4106 (($) 50) (($ (-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) 49)) (-3447 (((-772) (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) 32 (|has| $ (-6 -4422))) (((-772) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) 29 (-12 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)) (|has| $ (-6 -4422))))) (-4309 (($ $) 13)) (-3902 (((-539) $) 60 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-615 (-539))))) (-4145 (($ (-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) 51)) (-4129 (((-863) $) 18 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-614 (-863))))) (-3357 (((-112) $ $) 23 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (-3700 (($ (-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) 43)) (-3436 (((-112) (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) 34 (|has| $ (-6 -4422)))) (-2946 (((-112) $ $) 20 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (-2423 (((-772) $) 6 (|has| $ (-6 -4422)))))
(((-611 |#1| |#2|) (-140) (-1102) (-1102)) (T -611))
-((-4251 (*1 *2 *3 *1) (-12 (-4 *1 (-611 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-5 *2 (-112)))) (-1391 (*1 *2 *1) (-12 (-4 *1 (-611 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-5 *2 (-645 *3)))) (-2539 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-611 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1102)))) (-4019 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-611 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1102)))))
-(-13 (-229 (-2 (|:| -1795 |t#1|) (|:| -4237 |t#2|))) (-10 -8 (-15 -4251 ((-112) |t#1| $)) (-15 -1391 ((-645 |t#1|) $)) (-15 -2539 ((-3 |t#2| "failed") |t#1| $)) (-15 -4019 ((-3 |t#2| "failed") |t#1| $))))
-(((-34) . T) ((-107 #0=(-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T) ((-102) |has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) ((-614 (-863)) -2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-614 (-863)))) ((-151 #0#) . T) ((-615 (-539)) |has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-615 (-539))) ((-229 #0#) . T) ((-235 #0#) . T) ((-310 #0#) -12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102))) ((-492 #0#) . T) ((-517 #0# #0#) -12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102))) ((-1102) |has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) ((-1218) . T))
-((-3793 (((-613 |#2|) |#1|) 17)) (-1319 (((-3 |#1| "failed") (-613 |#2|)) 21)))
-(((-612 |#1| |#2|) (-10 -7 (-15 -3793 ((-613 |#2|) |#1|)) (-15 -1319 ((-3 |#1| "failed") (-613 |#2|)))) (-1102) (-1102)) (T -612))
-((-1319 (*1 *2 *3) (|partial| -12 (-5 *3 (-613 *4)) (-4 *4 (-1102)) (-4 *2 (-1102)) (-5 *1 (-612 *2 *4)))) (-3793 (*1 *2 *3) (-12 (-5 *2 (-613 *4)) (-5 *1 (-612 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102)))))
-(-10 -7 (-15 -3793 ((-613 |#2|) |#1|)) (-15 -1319 ((-3 |#1| "failed") (-613 |#2|))))
-((-2403 (((-112) $ $) NIL)) (-1991 (((-3 (-1178) "failed") $) 48)) (-1526 (((-1273) $ (-772)) 24)) (-2569 (((-772) $) 23)) (-2654 (((-114) $) 12)) (-1354 (($ $ $) NIL)) (-2981 (($ $ $) NIL)) (-1419 (((-1160) $) NIL)) (-3632 (($ (-114) (-645 |#1|) (-772)) 34) (($ (-1178)) 35)) (-1854 (((-112) $ (-114)) 18) (((-112) $ (-1178)) 16)) (-4138 (((-772) $) 20)) (-3430 (((-1122) $) NIL)) (-3893 (((-894 (-567)) $) 96 (|has| |#1| (-615 (-894 (-567))))) (((-894 (-381)) $) 103 (|has| |#1| (-615 (-894 (-381))))) (((-539) $) 89 (|has| |#1| (-615 (-539))))) (-4132 (((-863) $) 73)) (-1745 (((-112) $ $) NIL)) (-2799 (((-645 |#1|) $) 22)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 52)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) 54)))
-(((-613 |#1|) (-13 (-132) (-851) (-886 |#1|) (-10 -8 (-15 -2654 ((-114) $)) (-15 -2799 ((-645 |#1|) $)) (-15 -4138 ((-772) $)) (-15 -3632 ($ (-114) (-645 |#1|) (-772))) (-15 -3632 ($ (-1178))) (-15 -1991 ((-3 (-1178) "failed") $)) (-15 -1854 ((-112) $ (-114))) (-15 -1854 ((-112) $ (-1178))) (IF (|has| |#1| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|))) (-1102)) (T -613))
-((-2654 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-613 *3)) (-4 *3 (-1102)))) (-2799 (*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-613 *3)) (-4 *3 (-1102)))) (-4138 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-613 *3)) (-4 *3 (-1102)))) (-3632 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-114)) (-5 *3 (-645 *5)) (-5 *4 (-772)) (-4 *5 (-1102)) (-5 *1 (-613 *5)))) (-3632 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-613 *3)) (-4 *3 (-1102)))) (-1991 (*1 *2 *1) (|partial| -12 (-5 *2 (-1178)) (-5 *1 (-613 *3)) (-4 *3 (-1102)))) (-1854 (*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-613 *4)) (-4 *4 (-1102)))) (-1854 (*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-112)) (-5 *1 (-613 *4)) (-4 *4 (-1102)))))
-(-13 (-132) (-851) (-886 |#1|) (-10 -8 (-15 -2654 ((-114) $)) (-15 -2799 ((-645 |#1|) $)) (-15 -4138 ((-772) $)) (-15 -3632 ($ (-114) (-645 |#1|) (-772))) (-15 -3632 ($ (-1178))) (-15 -1991 ((-3 (-1178) "failed") $)) (-15 -1854 ((-112) $ (-114))) (-15 -1854 ((-112) $ (-1178))) (IF (|has| |#1| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|)))
-((-4132 ((|#1| $) 6)))
-(((-614 |#1|) (-140) (-1218)) (T -614))
-((-4132 (*1 *2 *1) (-12 (-4 *1 (-614 *2)) (-4 *2 (-1218)))))
-(-13 (-10 -8 (-15 -4132 (|t#1| $))))
-((-3893 ((|#1| $) 6)))
-(((-615 |#1|) (-140) (-1218)) (T -615))
-((-3893 (*1 *2 *1) (-12 (-4 *1 (-615 *2)) (-4 *2 (-1218)))))
-(-13 (-10 -8 (-15 -3893 (|t#1| $))))
-((-4282 (((-3 (-1174 (-410 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|) (-1 (-421 |#2|) |#2|)) 15) (((-3 (-1174 (-410 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|)) 16)))
-(((-616 |#1| |#2|) (-10 -7 (-15 -4282 ((-3 (-1174 (-410 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|))) (-15 -4282 ((-3 (-1174 (-410 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|) (-1 (-421 |#2|) |#2|)))) (-13 (-147) (-27) (-1040 (-567)) (-1040 (-410 (-567)))) (-1244 |#1|)) (T -616))
-((-4282 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-421 *6) *6)) (-4 *6 (-1244 *5)) (-4 *5 (-13 (-147) (-27) (-1040 (-567)) (-1040 (-410 (-567))))) (-5 *2 (-1174 (-410 *6))) (-5 *1 (-616 *5 *6)) (-5 *3 (-410 *6)))) (-4282 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-147) (-27) (-1040 (-567)) (-1040 (-410 (-567))))) (-4 *5 (-1244 *4)) (-5 *2 (-1174 (-410 *5))) (-5 *1 (-616 *4 *5)) (-5 *3 (-410 *5)))))
-(-10 -7 (-15 -4282 ((-3 (-1174 (-410 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|))) (-15 -4282 ((-3 (-1174 (-410 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|) (-1 (-421 |#2|) |#2|))))
-((-4132 (($ |#1|) 6)))
-(((-617 |#1|) (-140) (-1218)) (T -617))
-((-4132 (*1 *1 *2) (-12 (-4 *1 (-617 *2)) (-4 *2 (-1218)))))
-(-13 (-10 -8 (-15 -4132 ($ |t#1|))))
-((-2403 (((-112) $ $) NIL)) (-3858 (($) 14 T CONST)) (-1477 (($) 15 T CONST)) (-1677 (($ $ $) 29)) (-1657 (($ $) 27)) (-1419 (((-1160) $) NIL)) (-3661 (($ $ $) 30)) (-3430 (((-1122) $) NIL)) (-2786 (($) 11 T CONST)) (-1983 (($ $ $) 31)) (-4132 (((-863) $) 35)) (-1702 (((-112) $ (|[\|\|]| -2786)) 24) (((-112) $ (|[\|\|]| -3858)) 26) (((-112) $ (|[\|\|]| -1477)) 21)) (-1745 (((-112) $ $) NIL)) (-1667 (($ $ $) 28)) (-2936 (((-112) $ $) 18)))
-(((-618) (-13 (-969) (-10 -8 (-15 -3858 ($) -3286) (-15 -1702 ((-112) $ (|[\|\|]| -2786))) (-15 -1702 ((-112) $ (|[\|\|]| -3858))) (-15 -1702 ((-112) $ (|[\|\|]| -1477)))))) (T -618))
-((-3858 (*1 *1) (-5 *1 (-618))) (-1702 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2786)) (-5 *2 (-112)) (-5 *1 (-618)))) (-1702 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3858)) (-5 *2 (-112)) (-5 *1 (-618)))) (-1702 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1477)) (-5 *2 (-112)) (-5 *1 (-618)))))
-(-13 (-969) (-10 -8 (-15 -3858 ($) -3286) (-15 -1702 ((-112) $ (|[\|\|]| -2786))) (-15 -1702 ((-112) $ (|[\|\|]| -3858))) (-15 -1702 ((-112) $ (|[\|\|]| -1477)))))
-((-3893 (($ |#1|) 6)))
-(((-619 |#1|) (-140) (-1218)) (T -619))
-((-3893 (*1 *1 *2) (-12 (-4 *1 (-619 *2)) (-4 *2 (-1218)))))
-(-13 (-10 -8 (-15 -3893 ($ |t#1|))))
-((-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ |#2|) 10)))
-(((-620 |#1| |#2|) (-10 -8 (-15 -4132 (|#1| |#2|)) (-15 -4132 (|#1| (-567))) (-15 -4132 ((-863) |#1|))) (-621 |#2|) (-1051)) (T -620))
-NIL
-(-10 -8 (-15 -4132 (|#1| |#2|)) (-15 -4132 (|#1| (-567))) (-15 -4132 ((-863) |#1|)))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-2109 (((-3 $ "failed") $) 37)) (-1433 (((-112) $) 35)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 41)) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ |#1| $) 42)))
+((-2816 (*1 *2 *3 *1) (-12 (-4 *1 (-611 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-5 *2 (-112)))) (-1405 (*1 *2 *1) (-12 (-4 *1 (-611 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-5 *2 (-645 *3)))) (-2247 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-611 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1102)))) (-4021 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-611 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1102)))))
+(-13 (-229 (-2 (|:| -1809 |t#1|) (|:| -4236 |t#2|))) (-10 -8 (-15 -2816 ((-112) |t#1| $)) (-15 -1405 ((-645 |t#1|) $)) (-15 -2247 ((-3 |t#2| "failed") |t#1| $)) (-15 -4021 ((-3 |t#2| "failed") |t#1| $))))
+(((-34) . T) ((-107 #0=(-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) . T) ((-102) |has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)) ((-614 (-863)) -2811 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-614 (-863)))) ((-151 #0#) . T) ((-615 (-539)) |has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-615 (-539))) ((-229 #0#) . T) ((-235 #0#) . T) ((-310 #0#) -12 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-310 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102))) ((-492 #0#) . T) ((-517 #0# #0#) -12 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-310 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102))) ((-1102) |has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)) ((-1219) . T))
+((-1630 (((-613 |#2|) |#1|) 17)) (-3305 (((-3 |#1| "failed") (-613 |#2|)) 21)))
+(((-612 |#1| |#2|) (-10 -7 (-15 -1630 ((-613 |#2|) |#1|)) (-15 -3305 ((-3 |#1| "failed") (-613 |#2|)))) (-1102) (-1102)) (T -612))
+((-3305 (*1 *2 *3) (|partial| -12 (-5 *3 (-613 *4)) (-4 *4 (-1102)) (-4 *2 (-1102)) (-5 *1 (-612 *2 *4)))) (-1630 (*1 *2 *3) (-12 (-5 *2 (-613 *4)) (-5 *1 (-612 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102)))))
+(-10 -7 (-15 -1630 ((-613 |#2|) |#1|)) (-15 -3305 ((-3 |#1| "failed") (-613 |#2|))))
+((-2412 (((-112) $ $) NIL)) (-2529 (((-3 (-1179) "failed") $) 48)) (-4160 (((-1274) $ (-772)) 24)) (-2578 (((-772) $) 23)) (-2662 (((-114) $) 12)) (-1365 (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (-2516 (((-1161) $) NIL)) (-3643 (($ (-114) (-645 |#1|) (-772)) 34) (($ (-1179)) 35)) (-3545 (((-112) $ (-114)) 18) (((-112) $ (-1179)) 16)) (-4136 (((-772) $) 20)) (-3437 (((-1122) $) NIL)) (-3902 (((-894 (-567)) $) 96 (|has| |#1| (-615 (-894 (-567))))) (((-894 (-381)) $) 103 (|has| |#1| (-615 (-894 (-381))))) (((-539) $) 89 (|has| |#1| (-615 (-539))))) (-4129 (((-863) $) 73)) (-3357 (((-112) $ $) NIL)) (-3189 (((-645 |#1|) $) 22)) (-3004 (((-112) $ $) NIL)) (-2980 (((-112) $ $) NIL)) (-2946 (((-112) $ $) 52)) (-2993 (((-112) $ $) NIL)) (-2968 (((-112) $ $) 54)))
+(((-613 |#1|) (-13 (-132) (-851) (-886 |#1|) (-10 -8 (-15 -2662 ((-114) $)) (-15 -3189 ((-645 |#1|) $)) (-15 -4136 ((-772) $)) (-15 -3643 ($ (-114) (-645 |#1|) (-772))) (-15 -3643 ($ (-1179))) (-15 -2529 ((-3 (-1179) "failed") $)) (-15 -3545 ((-112) $ (-114))) (-15 -3545 ((-112) $ (-1179))) (IF (|has| |#1| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|))) (-1102)) (T -613))
+((-2662 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-613 *3)) (-4 *3 (-1102)))) (-3189 (*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-613 *3)) (-4 *3 (-1102)))) (-4136 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-613 *3)) (-4 *3 (-1102)))) (-3643 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-114)) (-5 *3 (-645 *5)) (-5 *4 (-772)) (-4 *5 (-1102)) (-5 *1 (-613 *5)))) (-3643 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-613 *3)) (-4 *3 (-1102)))) (-2529 (*1 *2 *1) (|partial| -12 (-5 *2 (-1179)) (-5 *1 (-613 *3)) (-4 *3 (-1102)))) (-3545 (*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-613 *4)) (-4 *4 (-1102)))) (-3545 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-112)) (-5 *1 (-613 *4)) (-4 *4 (-1102)))))
+(-13 (-132) (-851) (-886 |#1|) (-10 -8 (-15 -2662 ((-114) $)) (-15 -3189 ((-645 |#1|) $)) (-15 -4136 ((-772) $)) (-15 -3643 ($ (-114) (-645 |#1|) (-772))) (-15 -3643 ($ (-1179))) (-15 -2529 ((-3 (-1179) "failed") $)) (-15 -3545 ((-112) $ (-114))) (-15 -3545 ((-112) $ (-1179))) (IF (|has| |#1| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|)))
+((-4129 ((|#1| $) 6)))
+(((-614 |#1|) (-140) (-1219)) (T -614))
+((-4129 (*1 *2 *1) (-12 (-4 *1 (-614 *2)) (-4 *2 (-1219)))))
+(-13 (-10 -8 (-15 -4129 (|t#1| $))))
+((-3902 ((|#1| $) 6)))
+(((-615 |#1|) (-140) (-1219)) (T -615))
+((-3902 (*1 *2 *1) (-12 (-4 *1 (-615 *2)) (-4 *2 (-1219)))))
+(-13 (-10 -8 (-15 -3902 (|t#1| $))))
+((-3003 (((-3 (-1175 (-410 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|) (-1 (-421 |#2|) |#2|)) 15) (((-3 (-1175 (-410 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|)) 16)))
+(((-616 |#1| |#2|) (-10 -7 (-15 -3003 ((-3 (-1175 (-410 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|))) (-15 -3003 ((-3 (-1175 (-410 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|) (-1 (-421 |#2|) |#2|)))) (-13 (-147) (-27) (-1040 (-567)) (-1040 (-410 (-567)))) (-1245 |#1|)) (T -616))
+((-3003 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-421 *6) *6)) (-4 *6 (-1245 *5)) (-4 *5 (-13 (-147) (-27) (-1040 (-567)) (-1040 (-410 (-567))))) (-5 *2 (-1175 (-410 *6))) (-5 *1 (-616 *5 *6)) (-5 *3 (-410 *6)))) (-3003 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-147) (-27) (-1040 (-567)) (-1040 (-410 (-567))))) (-4 *5 (-1245 *4)) (-5 *2 (-1175 (-410 *5))) (-5 *1 (-616 *4 *5)) (-5 *3 (-410 *5)))))
+(-10 -7 (-15 -3003 ((-3 (-1175 (-410 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|))) (-15 -3003 ((-3 (-1175 (-410 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|) (-1 (-421 |#2|) |#2|))))
+((-4129 (($ |#1|) 6)))
+(((-617 |#1|) (-140) (-1219)) (T -617))
+((-4129 (*1 *1 *2) (-12 (-4 *1 (-617 *2)) (-4 *2 (-1219)))))
+(-13 (-10 -8 (-15 -4129 ($ |t#1|))))
+((-2412 (((-112) $ $) NIL)) (-3867 (($) 14 T CONST)) (-1479 (($) 15 T CONST)) (-1696 (($ $ $) 29)) (-1673 (($ $) 27)) (-2516 (((-1161) $) NIL)) (-2129 (($ $ $) 30)) (-3437 (((-1122) $) NIL)) (-2796 (($) 11 T CONST)) (-3156 (($ $ $) 31)) (-4129 (((-863) $) 35)) (-1719 (((-112) $ (|[\|\|]| -2796)) 24) (((-112) $ (|[\|\|]| -3867)) 26) (((-112) $ (|[\|\|]| -1479)) 21)) (-3357 (((-112) $ $) NIL)) (-1686 (($ $ $) 28)) (-2946 (((-112) $ $) 18)))
+(((-618) (-13 (-969) (-10 -8 (-15 -3867 ($) -3304) (-15 -1719 ((-112) $ (|[\|\|]| -2796))) (-15 -1719 ((-112) $ (|[\|\|]| -3867))) (-15 -1719 ((-112) $ (|[\|\|]| -1479)))))) (T -618))
+((-3867 (*1 *1) (-5 *1 (-618))) (-1719 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2796)) (-5 *2 (-112)) (-5 *1 (-618)))) (-1719 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3867)) (-5 *2 (-112)) (-5 *1 (-618)))) (-1719 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1479)) (-5 *2 (-112)) (-5 *1 (-618)))))
+(-13 (-969) (-10 -8 (-15 -3867 ($) -3304) (-15 -1719 ((-112) $ (|[\|\|]| -2796))) (-15 -1719 ((-112) $ (|[\|\|]| -3867))) (-15 -1719 ((-112) $ (|[\|\|]| -1479)))))
+((-3902 (($ |#1|) 6)))
+(((-619 |#1|) (-140) (-1219)) (T -619))
+((-3902 (*1 *1 *2) (-12 (-4 *1 (-619 *2)) (-4 *2 (-1219)))))
+(-13 (-10 -8 (-15 -3902 ($ |t#1|))))
+((-4129 (((-863) $) NIL) (($ (-567)) NIL) (($ |#2|) 10)))
+(((-620 |#1| |#2|) (-10 -8 (-15 -4129 (|#1| |#2|)) (-15 -4129 (|#1| (-567))) (-15 -4129 ((-863) |#1|))) (-621 |#2|) (-1051)) (T -620))
+NIL
+(-10 -8 (-15 -4129 (|#1| |#2|)) (-15 -4129 (|#1| (-567))) (-15 -4129 ((-863) |#1|)))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-2376 (((-3 $ "failed") $ $) 20)) (-3647 (($) 18 T CONST)) (-3588 (((-3 $ "failed") $) 37)) (-4346 (((-112) $) 35)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-4129 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 41)) (-2746 (((-772)) 32 T CONST)) (-3357 (((-112) $ $) 9)) (-1733 (($) 19 T CONST)) (-1744 (($) 34 T CONST)) (-2946 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ |#1| $) 42)))
(((-621 |#1|) (-140) (-1051)) (T -621))
-((-4132 (*1 *1 *2) (-12 (-4 *1 (-621 *2)) (-4 *2 (-1051)))))
-(-13 (-1051) (-649 |t#1|) (-10 -8 (-15 -4132 ($ |t#1|))))
+((-4129 (*1 *1 *2) (-12 (-4 *1 (-621 *2)) (-4 *2 (-1051)))))
+(-13 (-1051) (-649 |t#1|) (-10 -8 (-15 -4129 ($ |t#1|))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-617 (-567)) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-727) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-1750 (((-567) $) NIL (|has| |#1| (-849)))) (-2585 (($) NIL T CONST)) (-2109 (((-3 $ "failed") $) NIL)) (-4336 (((-112) $) NIL (|has| |#1| (-849)))) (-1433 (((-112) $) NIL)) (-1448 ((|#1| $) 13)) (-3494 (((-112) $) NIL (|has| |#1| (-849)))) (-1354 (($ $ $) NIL (|has| |#1| (-849)))) (-2981 (($ $ $) NIL (|has| |#1| (-849)))) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-1460 ((|#3| $) 15)) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ |#2|) NIL)) (-4221 (((-772)) 20 T CONST)) (-1745 (((-112) $ $) NIL)) (-2219 (($ $) NIL (|has| |#1| (-849)))) (-1716 (($) NIL T CONST)) (-1728 (($) 12 T CONST)) (-2997 (((-112) $ $) NIL (|has| |#1| (-849)))) (-2971 (((-112) $ $) NIL (|has| |#1| (-849)))) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL (|has| |#1| (-849)))) (-2958 (((-112) $ $) NIL (|has| |#1| (-849)))) (-3060 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-622 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-849)) (-6 (-849)) |%noBranch|) (-15 -3060 ($ $ |#3|)) (-15 -3060 ($ |#1| |#3|)) (-15 -1448 (|#1| $)) (-15 -1460 (|#3| $)))) (-38 |#2|) (-172) (|SubsetCategory| (-727) |#2|)) (T -622))
-((-3060 (*1 *1 *1 *2) (-12 (-4 *4 (-172)) (-5 *1 (-622 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-727) *4)))) (-3060 (*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-622 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-727) *4)))) (-1448 (*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-38 *3)) (-5 *1 (-622 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-727) *3)))) (-1460 (*1 *2 *1) (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-727) *4)) (-5 *1 (-622 *3 *4 *2)) (-4 *3 (-38 *4)))))
-(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-849)) (-6 (-849)) |%noBranch|) (-15 -3060 ($ $ |#3|)) (-15 -3060 ($ |#1| |#3|)) (-15 -1448 (|#1| $)) (-15 -1460 (|#3| $))))
-((-2935 ((|#2| |#2| (-1178) (-1178)) 16)))
-(((-623 |#1| |#2|) (-10 -7 (-15 -2935 (|#2| |#2| (-1178) (-1178)))) (-13 (-308) (-147) (-1040 (-567)) (-640 (-567))) (-13 (-1203) (-961) (-29 |#1|))) (T -623))
-((-2935 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-623 *4 *2)) (-4 *2 (-13 (-1203) (-961) (-29 *4))))))
-(-10 -7 (-15 -2935 (|#2| |#2| (-1178) (-1178))))
-((-2403 (((-112) $ $) 64)) (-2460 (((-112) $) 58)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-2178 ((|#1| $) 55)) (-3472 (((-3 $ "failed") $ $) NIL)) (-3609 (((-112) $ $) NIL (|has| |#1| (-365)))) (-2743 (((-2 (|:| -3654 $) (|:| -4036 (-410 |#2|))) (-410 |#2|)) 111 (|has| |#1| (-365)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) 99) (((-3 |#2| "failed") $) 95)) (-2038 (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-2349 (($ $ $) NIL (|has| |#1| (-365)))) (-3014 (($ $) 27)) (-2109 (((-3 $ "failed") $) 88)) (-2360 (($ $ $) NIL (|has| |#1| (-365)))) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-4384 (((-567) $) 22)) (-1433 (((-112) $) NIL)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-2843 (((-112) $) 40)) (-2824 (($ |#1| (-567)) 24)) (-2989 ((|#1| $) 57)) (-2740 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#1| (-365)))) (-2774 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) 101 (|has| |#1| (-365)))) (-3402 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 116 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL (|has| |#1| (-365)))) (-2391 (((-3 $ "failed") $ $) 93)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-1990 (((-772) $) 115 (|has| |#1| (-365)))) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 114 (|has| |#1| (-365)))) (-1593 (($ $ (-1 |#2| |#2|)) 75) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-1178)) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-772)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-3077 (((-567) $) 38)) (-3893 (((-410 |#2|) $) 47)) (-4132 (((-863) $) 69) (($ (-567)) 35) (($ $) NIL) (($ (-410 (-567))) NIL (|has| |#1| (-1040 (-410 (-567))))) (($ |#1|) 34) (($ |#2|) 25)) (-4136 ((|#1| $ (-567)) 72)) (-1903 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL)) (-1716 (($) 9 T CONST)) (-1728 (($) 14 T CONST)) (-2637 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-1178)) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-772)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-2936 (((-112) $ $) 21)) (-3045 (($ $) 51) (($ $ $) NIL)) (-3033 (($ $ $) 90)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 29) (($ $ $) 49)))
-(((-624 |#1| |#2|) (-13 (-231 |#2|) (-559) (-615 (-410 |#2|)) (-414 |#1|) (-1040 |#2|) (-10 -8 (-15 -2843 ((-112) $)) (-15 -3077 ((-567) $)) (-15 -4384 ((-567) $)) (-15 -3014 ($ $)) (-15 -2989 (|#1| $)) (-15 -2178 (|#1| $)) (-15 -4136 (|#1| $ (-567))) (-15 -2824 ($ |#1| (-567))) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-6 (-308)) (-15 -2743 ((-2 (|:| -3654 $) (|:| -4036 (-410 |#2|))) (-410 |#2|)))) |%noBranch|))) (-559) (-1244 |#1|)) (T -624))
-((-2843 (*1 *2 *1) (-12 (-4 *3 (-559)) (-5 *2 (-112)) (-5 *1 (-624 *3 *4)) (-4 *4 (-1244 *3)))) (-3077 (*1 *2 *1) (-12 (-4 *3 (-559)) (-5 *2 (-567)) (-5 *1 (-624 *3 *4)) (-4 *4 (-1244 *3)))) (-4384 (*1 *2 *1) (-12 (-4 *3 (-559)) (-5 *2 (-567)) (-5 *1 (-624 *3 *4)) (-4 *4 (-1244 *3)))) (-3014 (*1 *1 *1) (-12 (-4 *2 (-559)) (-5 *1 (-624 *2 *3)) (-4 *3 (-1244 *2)))) (-2989 (*1 *2 *1) (-12 (-4 *2 (-559)) (-5 *1 (-624 *2 *3)) (-4 *3 (-1244 *2)))) (-2178 (*1 *2 *1) (-12 (-4 *2 (-559)) (-5 *1 (-624 *2 *3)) (-4 *3 (-1244 *2)))) (-4136 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *2 (-559)) (-5 *1 (-624 *2 *4)) (-4 *4 (-1244 *2)))) (-2824 (*1 *1 *2 *3) (-12 (-5 *3 (-567)) (-4 *2 (-559)) (-5 *1 (-624 *2 *4)) (-4 *4 (-1244 *2)))) (-2743 (*1 *2 *3) (-12 (-4 *4 (-365)) (-4 *4 (-559)) (-4 *5 (-1244 *4)) (-5 *2 (-2 (|:| -3654 (-624 *4 *5)) (|:| -4036 (-410 *5)))) (-5 *1 (-624 *4 *5)) (-5 *3 (-410 *5)))))
-(-13 (-231 |#2|) (-559) (-615 (-410 |#2|)) (-414 |#1|) (-1040 |#2|) (-10 -8 (-15 -2843 ((-112) $)) (-15 -3077 ((-567) $)) (-15 -4384 ((-567) $)) (-15 -3014 ($ $)) (-15 -2989 (|#1| $)) (-15 -2178 (|#1| $)) (-15 -4136 (|#1| $ (-567))) (-15 -2824 ($ |#1| (-567))) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-6 (-308)) (-15 -2743 ((-2 (|:| -3654 $) (|:| -4036 (-410 |#2|))) (-410 |#2|)))) |%noBranch|)))
-((-3244 (((-645 |#6|) (-645 |#4|) (-112)) 54)) (-1368 ((|#6| |#6|) 48)))
-(((-625 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1368 (|#6| |#6|)) (-15 -3244 ((-645 |#6|) (-645 |#4|) (-112)))) (-455) (-794) (-851) (-1067 |#1| |#2| |#3|) (-1073 |#1| |#2| |#3| |#4|) (-1111 |#1| |#2| |#3| |#4|)) (T -625))
-((-3244 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-645 *10)) (-5 *1 (-625 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1073 *5 *6 *7 *8)) (-4 *10 (-1111 *5 *6 *7 *8)))) (-1368 (*1 *2 *2) (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *1 (-625 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1073 *3 *4 *5 *6)) (-4 *2 (-1111 *3 *4 *5 *6)))))
-(-10 -7 (-15 -1368 (|#6| |#6|)) (-15 -3244 ((-645 |#6|) (-645 |#4|) (-112))))
-((-3896 (((-112) |#3| (-772) (-645 |#3|)) 32)) (-3906 (((-3 (-2 (|:| |polfac| (-645 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-645 (-1174 |#3|)))) "failed") |#3| (-645 (-1174 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3920 (-645 (-2 (|:| |irr| |#4|) (|:| -2625 (-567)))))) (-645 |#3|) (-645 |#1|) (-645 |#3|)) 73)))
-(((-626 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3896 ((-112) |#3| (-772) (-645 |#3|))) (-15 -3906 ((-3 (-2 (|:| |polfac| (-645 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-645 (-1174 |#3|)))) "failed") |#3| (-645 (-1174 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3920 (-645 (-2 (|:| |irr| |#4|) (|:| -2625 (-567)))))) (-645 |#3|) (-645 |#1|) (-645 |#3|)))) (-851) (-794) (-308) (-951 |#3| |#2| |#1|)) (T -626))
-((-3906 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -3920 (-645 (-2 (|:| |irr| *10) (|:| -2625 (-567))))))) (-5 *6 (-645 *3)) (-5 *7 (-645 *8)) (-4 *8 (-851)) (-4 *3 (-308)) (-4 *10 (-951 *3 *9 *8)) (-4 *9 (-794)) (-5 *2 (-2 (|:| |polfac| (-645 *10)) (|:| |correct| *3) (|:| |corrfact| (-645 (-1174 *3))))) (-5 *1 (-626 *8 *9 *3 *10)) (-5 *4 (-645 (-1174 *3))))) (-3896 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-772)) (-5 *5 (-645 *3)) (-4 *3 (-308)) (-4 *6 (-851)) (-4 *7 (-794)) (-5 *2 (-112)) (-5 *1 (-626 *6 *7 *3 *8)) (-4 *8 (-951 *3 *7 *6)))))
-(-10 -7 (-15 -3896 ((-112) |#3| (-772) (-645 |#3|))) (-15 -3906 ((-3 (-2 (|:| |polfac| (-645 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-645 (-1174 |#3|)))) "failed") |#3| (-645 (-1174 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3920 (-645 (-2 (|:| |irr| |#4|) (|:| -2625 (-567)))))) (-645 |#3|) (-645 |#1|) (-645 |#3|))))
-((-2403 (((-112) $ $) NIL)) (-4104 (((-1137) $) 11)) (-4089 (((-1137) $) 9)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 17) (($ (-1183)) NIL) (((-1183) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)))
-(((-627) (-13 (-1085) (-10 -8 (-15 -4089 ((-1137) $)) (-15 -4104 ((-1137) $))))) (T -627))
-((-4089 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-627)))) (-4104 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-627)))))
-(-13 (-1085) (-10 -8 (-15 -4089 ((-1137) $)) (-15 -4104 ((-1137) $))))
-((-2403 (((-112) $ $) NIL)) (-3267 (((-645 |#1|) $) NIL)) (-2585 (($) NIL T CONST)) (-2109 (((-3 $ "failed") $) NIL)) (-1433 (((-112) $) NIL)) (-3592 (($ $) 77)) (-3063 (((-665 |#1| |#2|) $) 60)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) 81)) (-3607 (((-645 (-295 |#2|)) $ $) 42)) (-3430 (((-1122) $) NIL)) (-3946 (($ (-665 |#1| |#2|)) 56)) (-1823 (($ $ $) NIL)) (-1485 (($ $ $) NIL)) (-4132 (((-863) $) 66) (((-1283 |#1| |#2|) $) NIL) (((-1288 |#1| |#2|) $) 74)) (-1745 (((-112) $ $) NIL)) (-1728 (($) 61 T CONST)) (-3588 (((-645 (-2 (|:| |k| (-673 |#1|)) (|:| |c| |#2|))) $) 41)) (-2382 (((-645 (-665 |#1| |#2|)) (-645 |#1|)) 73)) (-2761 (((-645 (-2 (|:| |k| (-895 |#1|)) (|:| |c| |#2|))) $) 46)) (-2936 (((-112) $ $) 62)) (-3060 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ $ $) 52)))
-(((-628 |#1| |#2| |#3|) (-13 (-476) (-10 -8 (-15 -3946 ($ (-665 |#1| |#2|))) (-15 -3063 ((-665 |#1| |#2|) $)) (-15 -2761 ((-645 (-2 (|:| |k| (-895 |#1|)) (|:| |c| |#2|))) $)) (-15 -4132 ((-1283 |#1| |#2|) $)) (-15 -4132 ((-1288 |#1| |#2|) $)) (-15 -3592 ($ $)) (-15 -3267 ((-645 |#1|) $)) (-15 -2382 ((-645 (-665 |#1| |#2|)) (-645 |#1|))) (-15 -3588 ((-645 (-2 (|:| |k| (-673 |#1|)) (|:| |c| |#2|))) $)) (-15 -3607 ((-645 (-295 |#2|)) $ $)))) (-851) (-13 (-172) (-718 (-410 (-567)))) (-923)) (T -628))
-((-3946 (*1 *1 *2) (-12 (-5 *2 (-665 *3 *4)) (-4 *3 (-851)) (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-5 *1 (-628 *3 *4 *5)) (-14 *5 (-923)))) (-3063 (*1 *2 *1) (-12 (-5 *2 (-665 *3 *4)) (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851)) (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-923)))) (-2761 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| |k| (-895 *3)) (|:| |c| *4)))) (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851)) (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-923)))) (-4132 (*1 *2 *1) (-12 (-5 *2 (-1283 *3 *4)) (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851)) (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-923)))) (-4132 (*1 *2 *1) (-12 (-5 *2 (-1288 *3 *4)) (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851)) (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-923)))) (-3592 (*1 *1 *1) (-12 (-5 *1 (-628 *2 *3 *4)) (-4 *2 (-851)) (-4 *3 (-13 (-172) (-718 (-410 (-567))))) (-14 *4 (-923)))) (-3267 (*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851)) (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-923)))) (-2382 (*1 *2 *3) (-12 (-5 *3 (-645 *4)) (-4 *4 (-851)) (-5 *2 (-645 (-665 *4 *5))) (-5 *1 (-628 *4 *5 *6)) (-4 *5 (-13 (-172) (-718 (-410 (-567))))) (-14 *6 (-923)))) (-3588 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| |k| (-673 *3)) (|:| |c| *4)))) (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851)) (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-923)))) (-3607 (*1 *2 *1 *1) (-12 (-5 *2 (-645 (-295 *4))) (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851)) (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-923)))))
-(-13 (-476) (-10 -8 (-15 -3946 ($ (-665 |#1| |#2|))) (-15 -3063 ((-665 |#1| |#2|) $)) (-15 -2761 ((-645 (-2 (|:| |k| (-895 |#1|)) (|:| |c| |#2|))) $)) (-15 -4132 ((-1283 |#1| |#2|) $)) (-15 -4132 ((-1288 |#1| |#2|) $)) (-15 -3592 ($ $)) (-15 -3267 ((-645 |#1|) $)) (-15 -2382 ((-645 (-665 |#1| |#2|)) (-645 |#1|))) (-15 -3588 ((-645 (-2 (|:| |k| (-673 |#1|)) (|:| |c| |#2|))) $)) (-15 -3607 ((-645 (-295 |#2|)) $ $))))
-((-3244 (((-645 (-1148 |#1| (-534 (-865 |#2|)) (-865 |#2|) (-781 |#1| (-865 |#2|)))) (-645 (-781 |#1| (-865 |#2|))) (-112)) 103) (((-645 (-1048 |#1| |#2|)) (-645 (-781 |#1| (-865 |#2|))) (-112)) 77)) (-2251 (((-112) (-645 (-781 |#1| (-865 |#2|)))) 26)) (-1506 (((-645 (-1148 |#1| (-534 (-865 |#2|)) (-865 |#2|) (-781 |#1| (-865 |#2|)))) (-645 (-781 |#1| (-865 |#2|))) (-112)) 102)) (-4359 (((-645 (-1048 |#1| |#2|)) (-645 (-781 |#1| (-865 |#2|))) (-112)) 76)) (-3716 (((-645 (-781 |#1| (-865 |#2|))) (-645 (-781 |#1| (-865 |#2|)))) 30)) (-2083 (((-3 (-645 (-781 |#1| (-865 |#2|))) "failed") (-645 (-781 |#1| (-865 |#2|)))) 29)))
-(((-629 |#1| |#2|) (-10 -7 (-15 -2251 ((-112) (-645 (-781 |#1| (-865 |#2|))))) (-15 -2083 ((-3 (-645 (-781 |#1| (-865 |#2|))) "failed") (-645 (-781 |#1| (-865 |#2|))))) (-15 -3716 ((-645 (-781 |#1| (-865 |#2|))) (-645 (-781 |#1| (-865 |#2|))))) (-15 -4359 ((-645 (-1048 |#1| |#2|)) (-645 (-781 |#1| (-865 |#2|))) (-112))) (-15 -1506 ((-645 (-1148 |#1| (-534 (-865 |#2|)) (-865 |#2|) (-781 |#1| (-865 |#2|)))) (-645 (-781 |#1| (-865 |#2|))) (-112))) (-15 -3244 ((-645 (-1048 |#1| |#2|)) (-645 (-781 |#1| (-865 |#2|))) (-112))) (-15 -3244 ((-645 (-1148 |#1| (-534 (-865 |#2|)) (-865 |#2|) (-781 |#1| (-865 |#2|)))) (-645 (-781 |#1| (-865 |#2|))) (-112)))) (-455) (-645 (-1178))) (T -629))
-((-3244 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-781 *5 (-865 *6)))) (-5 *4 (-112)) (-4 *5 (-455)) (-14 *6 (-645 (-1178))) (-5 *2 (-645 (-1148 *5 (-534 (-865 *6)) (-865 *6) (-781 *5 (-865 *6))))) (-5 *1 (-629 *5 *6)))) (-3244 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-781 *5 (-865 *6)))) (-5 *4 (-112)) (-4 *5 (-455)) (-14 *6 (-645 (-1178))) (-5 *2 (-645 (-1048 *5 *6))) (-5 *1 (-629 *5 *6)))) (-1506 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-781 *5 (-865 *6)))) (-5 *4 (-112)) (-4 *5 (-455)) (-14 *6 (-645 (-1178))) (-5 *2 (-645 (-1148 *5 (-534 (-865 *6)) (-865 *6) (-781 *5 (-865 *6))))) (-5 *1 (-629 *5 *6)))) (-4359 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-781 *5 (-865 *6)))) (-5 *4 (-112)) (-4 *5 (-455)) (-14 *6 (-645 (-1178))) (-5 *2 (-645 (-1048 *5 *6))) (-5 *1 (-629 *5 *6)))) (-3716 (*1 *2 *2) (-12 (-5 *2 (-645 (-781 *3 (-865 *4)))) (-4 *3 (-455)) (-14 *4 (-645 (-1178))) (-5 *1 (-629 *3 *4)))) (-2083 (*1 *2 *2) (|partial| -12 (-5 *2 (-645 (-781 *3 (-865 *4)))) (-4 *3 (-455)) (-14 *4 (-645 (-1178))) (-5 *1 (-629 *3 *4)))) (-2251 (*1 *2 *3) (-12 (-5 *3 (-645 (-781 *4 (-865 *5)))) (-4 *4 (-455)) (-14 *5 (-645 (-1178))) (-5 *2 (-112)) (-5 *1 (-629 *4 *5)))))
-(-10 -7 (-15 -2251 ((-112) (-645 (-781 |#1| (-865 |#2|))))) (-15 -2083 ((-3 (-645 (-781 |#1| (-865 |#2|))) "failed") (-645 (-781 |#1| (-865 |#2|))))) (-15 -3716 ((-645 (-781 |#1| (-865 |#2|))) (-645 (-781 |#1| (-865 |#2|))))) (-15 -4359 ((-645 (-1048 |#1| |#2|)) (-645 (-781 |#1| (-865 |#2|))) (-112))) (-15 -1506 ((-645 (-1148 |#1| (-534 (-865 |#2|)) (-865 |#2|) (-781 |#1| (-865 |#2|)))) (-645 (-781 |#1| (-865 |#2|))) (-112))) (-15 -3244 ((-645 (-1048 |#1| |#2|)) (-645 (-781 |#1| (-865 |#2|))) (-112))) (-15 -3244 ((-645 (-1148 |#1| (-534 (-865 |#2|)) (-865 |#2|) (-781 |#1| (-865 |#2|)))) (-645 (-781 |#1| (-865 |#2|))) (-112))))
-((-3146 (($ $) 38)) (-3012 (($ $) 21)) (-3128 (($ $) 37)) (-2987 (($ $) 22)) (-3166 (($ $) 36)) (-3035 (($ $) 23)) (-1482 (($) 48)) (-3063 (($ $) 45)) (-1902 (($ $) 17)) (-2940 (($ $ (-1094 $)) 7) (($ $ (-1178)) 6)) (-3946 (($ $) 46)) (-2937 (($ $) 15)) (-2973 (($ $) 16)) (-3175 (($ $) 35)) (-3049 (($ $) 24)) (-3156 (($ $) 34)) (-3023 (($ $) 25)) (-3137 (($ $) 33)) (-2999 (($ $) 26)) (-3200 (($ $) 44)) (-3084 (($ $) 32)) (-3183 (($ $) 43)) (-3062 (($ $) 31)) (-3221 (($ $) 42)) (-3106 (($ $) 30)) (-3785 (($ $) 41)) (-3118 (($ $) 29)) (-3211 (($ $) 40)) (-3095 (($ $) 28)) (-3193 (($ $) 39)) (-3074 (($ $) 27)) (-2299 (($ $) 19)) (-2367 (($ $) 20)) (-1450 (($ $) 18)) (** (($ $ $) 47)))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-2376 (((-3 $ "failed") $ $) NIL)) (-2677 (((-567) $) NIL (|has| |#1| (-849)))) (-3647 (($) NIL T CONST)) (-3588 (((-3 $ "failed") $) NIL)) (-3137 (((-112) $) NIL (|has| |#1| (-849)))) (-4346 (((-112) $) NIL)) (-1447 ((|#1| $) 13)) (-3465 (((-112) $) NIL (|has| |#1| (-849)))) (-1365 (($ $ $) NIL (|has| |#1| (-849)))) (-3002 (($ $ $) NIL (|has| |#1| (-849)))) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-1462 ((|#3| $) 15)) (-4129 (((-863) $) NIL) (($ (-567)) NIL) (($ |#2|) NIL)) (-2746 (((-772)) 20 T CONST)) (-3357 (((-112) $ $) NIL)) (-1547 (($ $) NIL (|has| |#1| (-849)))) (-1733 (($) NIL T CONST)) (-1744 (($) 12 T CONST)) (-3004 (((-112) $ $) NIL (|has| |#1| (-849)))) (-2980 (((-112) $ $) NIL (|has| |#1| (-849)))) (-2946 (((-112) $ $) NIL)) (-2993 (((-112) $ $) NIL (|has| |#1| (-849)))) (-2968 (((-112) $ $) NIL (|has| |#1| (-849)))) (-3069 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-622 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-849)) (-6 (-849)) |%noBranch|) (-15 -3069 ($ $ |#3|)) (-15 -3069 ($ |#1| |#3|)) (-15 -1447 (|#1| $)) (-15 -1462 (|#3| $)))) (-38 |#2|) (-172) (|SubsetCategory| (-727) |#2|)) (T -622))
+((-3069 (*1 *1 *1 *2) (-12 (-4 *4 (-172)) (-5 *1 (-622 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-727) *4)))) (-3069 (*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-622 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-727) *4)))) (-1447 (*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-38 *3)) (-5 *1 (-622 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-727) *3)))) (-1462 (*1 *2 *1) (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-727) *4)) (-5 *1 (-622 *3 *4 *2)) (-4 *3 (-38 *4)))))
+(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-849)) (-6 (-849)) |%noBranch|) (-15 -3069 ($ $ |#3|)) (-15 -3069 ($ |#1| |#3|)) (-15 -1447 (|#1| $)) (-15 -1462 (|#3| $))))
+((-3417 ((|#2| |#2| (-1179) (-1179)) 16)))
+(((-623 |#1| |#2|) (-10 -7 (-15 -3417 (|#2| |#2| (-1179) (-1179)))) (-13 (-308) (-147) (-1040 (-567)) (-640 (-567))) (-13 (-1204) (-961) (-29 |#1|))) (T -623))
+((-3417 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-623 *4 *2)) (-4 *2 (-13 (-1204) (-961) (-29 *4))))))
+(-10 -7 (-15 -3417 (|#2| |#2| (-1179) (-1179))))
+((-2412 (((-112) $ $) 64)) (-3791 (((-112) $) 58)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-4287 (($ $) NIL)) (-2286 (((-112) $) NIL)) (-2938 ((|#1| $) 55)) (-2376 (((-3 $ "failed") $ $) NIL)) (-3696 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3542 (((-2 (|:| -2743 $) (|:| -1609 (-410 |#2|))) (-410 |#2|)) 111 (|has| |#1| (-365)))) (-3647 (($) NIL T CONST)) (-3765 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) 99) (((-3 |#2| "failed") $) 95)) (-2051 (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-2357 (($ $ $) NIL (|has| |#1| (-365)))) (-3023 (($ $) 27)) (-3588 (((-3 $ "failed") $) 88)) (-2368 (($ $ $) NIL (|has| |#1| (-365)))) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-3362 (((-567) $) 22)) (-4346 (((-112) $) NIL)) (-1469 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-3770 (((-112) $) 40)) (-2836 (($ |#1| (-567)) 24)) (-2996 ((|#1| $) 57)) (-2751 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| |#1| (-365)))) (-2785 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) 101 (|has| |#1| (-365)))) (-2905 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 116 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) NIL (|has| |#1| (-365)))) (-2400 (((-3 $ "failed") $ $) 93)) (-2372 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-2460 (((-772) $) 115 (|has| |#1| (-365)))) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) 114 (|has| |#1| (-365)))) (-1616 (($ $ (-1 |#2| |#2|)) 75) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-1179)) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-772)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-3104 (((-567) $) 38)) (-3902 (((-410 |#2|) $) 47)) (-4129 (((-863) $) 69) (($ (-567)) 35) (($ $) NIL) (($ (-410 (-567))) NIL (|has| |#1| (-1040 (-410 (-567))))) (($ |#1|) 34) (($ |#2|) 25)) (-2558 ((|#1| $ (-567)) 72)) (-2118 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2746 (((-772)) 32 T CONST)) (-3357 (((-112) $ $) NIL)) (-3731 (((-112) $ $) NIL)) (-1733 (($) 9 T CONST)) (-1744 (($) 14 T CONST)) (-2647 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-1179)) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-772)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-2946 (((-112) $ $) 21)) (-3053 (($ $) 51) (($ $ $) NIL)) (-3041 (($ $ $) 90)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 29) (($ $ $) 49)))
+(((-624 |#1| |#2|) (-13 (-231 |#2|) (-559) (-615 (-410 |#2|)) (-414 |#1|) (-1040 |#2|) (-10 -8 (-15 -3770 ((-112) $)) (-15 -3104 ((-567) $)) (-15 -3362 ((-567) $)) (-15 -3023 ($ $)) (-15 -2996 (|#1| $)) (-15 -2938 (|#1| $)) (-15 -2558 (|#1| $ (-567))) (-15 -2836 ($ |#1| (-567))) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-6 (-308)) (-15 -3542 ((-2 (|:| -2743 $) (|:| -1609 (-410 |#2|))) (-410 |#2|)))) |%noBranch|))) (-559) (-1245 |#1|)) (T -624))
+((-3770 (*1 *2 *1) (-12 (-4 *3 (-559)) (-5 *2 (-112)) (-5 *1 (-624 *3 *4)) (-4 *4 (-1245 *3)))) (-3104 (*1 *2 *1) (-12 (-4 *3 (-559)) (-5 *2 (-567)) (-5 *1 (-624 *3 *4)) (-4 *4 (-1245 *3)))) (-3362 (*1 *2 *1) (-12 (-4 *3 (-559)) (-5 *2 (-567)) (-5 *1 (-624 *3 *4)) (-4 *4 (-1245 *3)))) (-3023 (*1 *1 *1) (-12 (-4 *2 (-559)) (-5 *1 (-624 *2 *3)) (-4 *3 (-1245 *2)))) (-2996 (*1 *2 *1) (-12 (-4 *2 (-559)) (-5 *1 (-624 *2 *3)) (-4 *3 (-1245 *2)))) (-2938 (*1 *2 *1) (-12 (-4 *2 (-559)) (-5 *1 (-624 *2 *3)) (-4 *3 (-1245 *2)))) (-2558 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *2 (-559)) (-5 *1 (-624 *2 *4)) (-4 *4 (-1245 *2)))) (-2836 (*1 *1 *2 *3) (-12 (-5 *3 (-567)) (-4 *2 (-559)) (-5 *1 (-624 *2 *4)) (-4 *4 (-1245 *2)))) (-3542 (*1 *2 *3) (-12 (-4 *4 (-365)) (-4 *4 (-559)) (-4 *5 (-1245 *4)) (-5 *2 (-2 (|:| -2743 (-624 *4 *5)) (|:| -1609 (-410 *5)))) (-5 *1 (-624 *4 *5)) (-5 *3 (-410 *5)))))
+(-13 (-231 |#2|) (-559) (-615 (-410 |#2|)) (-414 |#1|) (-1040 |#2|) (-10 -8 (-15 -3770 ((-112) $)) (-15 -3104 ((-567) $)) (-15 -3362 ((-567) $)) (-15 -3023 ($ $)) (-15 -2996 (|#1| $)) (-15 -2938 (|#1| $)) (-15 -2558 (|#1| $ (-567))) (-15 -2836 ($ |#1| (-567))) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-6 (-308)) (-15 -3542 ((-2 (|:| -2743 $) (|:| -1609 (-410 |#2|))) (-410 |#2|)))) |%noBranch|)))
+((-3403 (((-645 |#6|) (-645 |#4|) (-112)) 54)) (-2915 ((|#6| |#6|) 48)))
+(((-625 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2915 (|#6| |#6|)) (-15 -3403 ((-645 |#6|) (-645 |#4|) (-112)))) (-455) (-794) (-851) (-1067 |#1| |#2| |#3|) (-1073 |#1| |#2| |#3| |#4|) (-1111 |#1| |#2| |#3| |#4|)) (T -625))
+((-3403 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-645 *10)) (-5 *1 (-625 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1073 *5 *6 *7 *8)) (-4 *10 (-1111 *5 *6 *7 *8)))) (-2915 (*1 *2 *2) (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *1 (-625 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1073 *3 *4 *5 *6)) (-4 *2 (-1111 *3 *4 *5 *6)))))
+(-10 -7 (-15 -2915 (|#6| |#6|)) (-15 -3403 ((-645 |#6|) (-645 |#4|) (-112))))
+((-1529 (((-112) |#3| (-772) (-645 |#3|)) 32)) (-4402 (((-3 (-2 (|:| |polfac| (-645 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-645 (-1175 |#3|)))) "failed") |#3| (-645 (-1175 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2158 (-645 (-2 (|:| |irr| |#4|) (|:| -2298 (-567)))))) (-645 |#3|) (-645 |#1|) (-645 |#3|)) 73)))
+(((-626 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1529 ((-112) |#3| (-772) (-645 |#3|))) (-15 -4402 ((-3 (-2 (|:| |polfac| (-645 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-645 (-1175 |#3|)))) "failed") |#3| (-645 (-1175 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2158 (-645 (-2 (|:| |irr| |#4|) (|:| -2298 (-567)))))) (-645 |#3|) (-645 |#1|) (-645 |#3|)))) (-851) (-794) (-308) (-951 |#3| |#2| |#1|)) (T -626))
+((-4402 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -2158 (-645 (-2 (|:| |irr| *10) (|:| -2298 (-567))))))) (-5 *6 (-645 *3)) (-5 *7 (-645 *8)) (-4 *8 (-851)) (-4 *3 (-308)) (-4 *10 (-951 *3 *9 *8)) (-4 *9 (-794)) (-5 *2 (-2 (|:| |polfac| (-645 *10)) (|:| |correct| *3) (|:| |corrfact| (-645 (-1175 *3))))) (-5 *1 (-626 *8 *9 *3 *10)) (-5 *4 (-645 (-1175 *3))))) (-1529 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-772)) (-5 *5 (-645 *3)) (-4 *3 (-308)) (-4 *6 (-851)) (-4 *7 (-794)) (-5 *2 (-112)) (-5 *1 (-626 *6 *7 *3 *8)) (-4 *8 (-951 *3 *7 *6)))))
+(-10 -7 (-15 -1529 ((-112) |#3| (-772) (-645 |#3|))) (-15 -4402 ((-3 (-2 (|:| |polfac| (-645 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-645 (-1175 |#3|)))) "failed") |#3| (-645 (-1175 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2158 (-645 (-2 (|:| |irr| |#4|) (|:| -2298 (-567)))))) (-645 |#3|) (-645 |#1|) (-645 |#3|))))
+((-2412 (((-112) $ $) NIL)) (-4102 (((-1137) $) 11)) (-4089 (((-1137) $) 9)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) 17) (($ (-1184)) NIL) (((-1184) $) NIL)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)))
+(((-627) (-13 (-1085) (-10 -8 (-15 -4089 ((-1137) $)) (-15 -4102 ((-1137) $))))) (T -627))
+((-4089 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-627)))) (-4102 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-627)))))
+(-13 (-1085) (-10 -8 (-15 -4089 ((-1137) $)) (-15 -4102 ((-1137) $))))
+((-2412 (((-112) $ $) NIL)) (-3275 (((-645 |#1|) $) NIL)) (-3647 (($) NIL T CONST)) (-3588 (((-3 $ "failed") $) NIL)) (-4346 (((-112) $) NIL)) (-2111 (($ $) 77)) (-3072 (((-665 |#1| |#2|) $) 60)) (-2516 (((-1161) $) NIL)) (-2949 (($ $) 81)) (-3986 (((-645 (-295 |#2|)) $ $) 42)) (-3437 (((-1122) $) NIL)) (-3955 (($ (-665 |#1| |#2|)) 56)) (-1672 (($ $ $) NIL)) (-3997 (($ $ $) NIL)) (-4129 (((-863) $) 66) (((-1284 |#1| |#2|) $) NIL) (((-1289 |#1| |#2|) $) 74)) (-3357 (((-112) $ $) NIL)) (-1744 (($) 61 T CONST)) (-2925 (((-645 (-2 (|:| |k| (-673 |#1|)) (|:| |c| |#2|))) $) 41)) (-2245 (((-645 (-665 |#1| |#2|)) (-645 |#1|)) 73)) (-2987 (((-645 (-2 (|:| |k| (-895 |#1|)) (|:| |c| |#2|))) $) 46)) (-2946 (((-112) $ $) 62)) (-3069 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ $ $) 52)))
+(((-628 |#1| |#2| |#3|) (-13 (-476) (-10 -8 (-15 -3955 ($ (-665 |#1| |#2|))) (-15 -3072 ((-665 |#1| |#2|) $)) (-15 -2987 ((-645 (-2 (|:| |k| (-895 |#1|)) (|:| |c| |#2|))) $)) (-15 -4129 ((-1284 |#1| |#2|) $)) (-15 -4129 ((-1289 |#1| |#2|) $)) (-15 -2111 ($ $)) (-15 -3275 ((-645 |#1|) $)) (-15 -2245 ((-645 (-665 |#1| |#2|)) (-645 |#1|))) (-15 -2925 ((-645 (-2 (|:| |k| (-673 |#1|)) (|:| |c| |#2|))) $)) (-15 -3986 ((-645 (-295 |#2|)) $ $)))) (-851) (-13 (-172) (-718 (-410 (-567)))) (-923)) (T -628))
+((-3955 (*1 *1 *2) (-12 (-5 *2 (-665 *3 *4)) (-4 *3 (-851)) (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-5 *1 (-628 *3 *4 *5)) (-14 *5 (-923)))) (-3072 (*1 *2 *1) (-12 (-5 *2 (-665 *3 *4)) (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851)) (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-923)))) (-2987 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| |k| (-895 *3)) (|:| |c| *4)))) (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851)) (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-923)))) (-4129 (*1 *2 *1) (-12 (-5 *2 (-1284 *3 *4)) (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851)) (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-923)))) (-4129 (*1 *2 *1) (-12 (-5 *2 (-1289 *3 *4)) (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851)) (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-923)))) (-2111 (*1 *1 *1) (-12 (-5 *1 (-628 *2 *3 *4)) (-4 *2 (-851)) (-4 *3 (-13 (-172) (-718 (-410 (-567))))) (-14 *4 (-923)))) (-3275 (*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851)) (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-923)))) (-2245 (*1 *2 *3) (-12 (-5 *3 (-645 *4)) (-4 *4 (-851)) (-5 *2 (-645 (-665 *4 *5))) (-5 *1 (-628 *4 *5 *6)) (-4 *5 (-13 (-172) (-718 (-410 (-567))))) (-14 *6 (-923)))) (-2925 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| |k| (-673 *3)) (|:| |c| *4)))) (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851)) (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-923)))) (-3986 (*1 *2 *1 *1) (-12 (-5 *2 (-645 (-295 *4))) (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851)) (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-923)))))
+(-13 (-476) (-10 -8 (-15 -3955 ($ (-665 |#1| |#2|))) (-15 -3072 ((-665 |#1| |#2|) $)) (-15 -2987 ((-645 (-2 (|:| |k| (-895 |#1|)) (|:| |c| |#2|))) $)) (-15 -4129 ((-1284 |#1| |#2|) $)) (-15 -4129 ((-1289 |#1| |#2|) $)) (-15 -2111 ($ $)) (-15 -3275 ((-645 |#1|) $)) (-15 -2245 ((-645 (-665 |#1| |#2|)) (-645 |#1|))) (-15 -2925 ((-645 (-2 (|:| |k| (-673 |#1|)) (|:| |c| |#2|))) $)) (-15 -3986 ((-645 (-295 |#2|)) $ $))))
+((-3403 (((-645 (-1148 |#1| (-534 (-865 |#2|)) (-865 |#2|) (-781 |#1| (-865 |#2|)))) (-645 (-781 |#1| (-865 |#2|))) (-112)) 103) (((-645 (-1048 |#1| |#2|)) (-645 (-781 |#1| (-865 |#2|))) (-112)) 77)) (-4132 (((-112) (-645 (-781 |#1| (-865 |#2|)))) 26)) (-2752 (((-645 (-1148 |#1| (-534 (-865 |#2|)) (-865 |#2|) (-781 |#1| (-865 |#2|)))) (-645 (-781 |#1| (-865 |#2|))) (-112)) 102)) (-2002 (((-645 (-1048 |#1| |#2|)) (-645 (-781 |#1| (-865 |#2|))) (-112)) 76)) (-3125 (((-645 (-781 |#1| (-865 |#2|))) (-645 (-781 |#1| (-865 |#2|)))) 30)) (-1394 (((-3 (-645 (-781 |#1| (-865 |#2|))) "failed") (-645 (-781 |#1| (-865 |#2|)))) 29)))
+(((-629 |#1| |#2|) (-10 -7 (-15 -4132 ((-112) (-645 (-781 |#1| (-865 |#2|))))) (-15 -1394 ((-3 (-645 (-781 |#1| (-865 |#2|))) "failed") (-645 (-781 |#1| (-865 |#2|))))) (-15 -3125 ((-645 (-781 |#1| (-865 |#2|))) (-645 (-781 |#1| (-865 |#2|))))) (-15 -2002 ((-645 (-1048 |#1| |#2|)) (-645 (-781 |#1| (-865 |#2|))) (-112))) (-15 -2752 ((-645 (-1148 |#1| (-534 (-865 |#2|)) (-865 |#2|) (-781 |#1| (-865 |#2|)))) (-645 (-781 |#1| (-865 |#2|))) (-112))) (-15 -3403 ((-645 (-1048 |#1| |#2|)) (-645 (-781 |#1| (-865 |#2|))) (-112))) (-15 -3403 ((-645 (-1148 |#1| (-534 (-865 |#2|)) (-865 |#2|) (-781 |#1| (-865 |#2|)))) (-645 (-781 |#1| (-865 |#2|))) (-112)))) (-455) (-645 (-1179))) (T -629))
+((-3403 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-781 *5 (-865 *6)))) (-5 *4 (-112)) (-4 *5 (-455)) (-14 *6 (-645 (-1179))) (-5 *2 (-645 (-1148 *5 (-534 (-865 *6)) (-865 *6) (-781 *5 (-865 *6))))) (-5 *1 (-629 *5 *6)))) (-3403 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-781 *5 (-865 *6)))) (-5 *4 (-112)) (-4 *5 (-455)) (-14 *6 (-645 (-1179))) (-5 *2 (-645 (-1048 *5 *6))) (-5 *1 (-629 *5 *6)))) (-2752 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-781 *5 (-865 *6)))) (-5 *4 (-112)) (-4 *5 (-455)) (-14 *6 (-645 (-1179))) (-5 *2 (-645 (-1148 *5 (-534 (-865 *6)) (-865 *6) (-781 *5 (-865 *6))))) (-5 *1 (-629 *5 *6)))) (-2002 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-781 *5 (-865 *6)))) (-5 *4 (-112)) (-4 *5 (-455)) (-14 *6 (-645 (-1179))) (-5 *2 (-645 (-1048 *5 *6))) (-5 *1 (-629 *5 *6)))) (-3125 (*1 *2 *2) (-12 (-5 *2 (-645 (-781 *3 (-865 *4)))) (-4 *3 (-455)) (-14 *4 (-645 (-1179))) (-5 *1 (-629 *3 *4)))) (-1394 (*1 *2 *2) (|partial| -12 (-5 *2 (-645 (-781 *3 (-865 *4)))) (-4 *3 (-455)) (-14 *4 (-645 (-1179))) (-5 *1 (-629 *3 *4)))) (-4132 (*1 *2 *3) (-12 (-5 *3 (-645 (-781 *4 (-865 *5)))) (-4 *4 (-455)) (-14 *5 (-645 (-1179))) (-5 *2 (-112)) (-5 *1 (-629 *4 *5)))))
+(-10 -7 (-15 -4132 ((-112) (-645 (-781 |#1| (-865 |#2|))))) (-15 -1394 ((-3 (-645 (-781 |#1| (-865 |#2|))) "failed") (-645 (-781 |#1| (-865 |#2|))))) (-15 -3125 ((-645 (-781 |#1| (-865 |#2|))) (-645 (-781 |#1| (-865 |#2|))))) (-15 -2002 ((-645 (-1048 |#1| |#2|)) (-645 (-781 |#1| (-865 |#2|))) (-112))) (-15 -2752 ((-645 (-1148 |#1| (-534 (-865 |#2|)) (-865 |#2|) (-781 |#1| (-865 |#2|)))) (-645 (-781 |#1| (-865 |#2|))) (-112))) (-15 -3403 ((-645 (-1048 |#1| |#2|)) (-645 (-781 |#1| (-865 |#2|))) (-112))) (-15 -3403 ((-645 (-1148 |#1| (-534 (-865 |#2|)) (-865 |#2|) (-781 |#1| (-865 |#2|)))) (-645 (-781 |#1| (-865 |#2|))) (-112))))
+((-3164 (($ $) 38)) (-3032 (($ $) 21)) (-3145 (($ $) 37)) (-3008 (($ $) 22)) (-3182 (($ $) 36)) (-3057 (($ $) 23)) (-1484 (($) 48)) (-3072 (($ $) 45)) (-1926 (($ $) 17)) (-1778 (($ $ (-1094 $)) 7) (($ $ (-1179)) 6)) (-3955 (($ $) 46)) (-2958 (($ $) 15)) (-2994 (($ $) 16)) (-3192 (($ $) 35)) (-3071 (($ $) 24)) (-3173 (($ $) 34)) (-3043 (($ $) 25)) (-3155 (($ $) 33)) (-3021 (($ $) 26)) (-3217 (($ $) 44)) (-3103 (($ $) 32)) (-3201 (($ $) 43)) (-3083 (($ $) 31)) (-3238 (($ $) 42)) (-3126 (($ $) 30)) (-3805 (($ $) 41)) (-3138 (($ $) 29)) (-3228 (($ $) 40)) (-3115 (($ $) 28)) (-3208 (($ $) 39)) (-3093 (($ $) 27)) (-2093 (($ $) 19)) (-3376 (($ $) 20)) (-2910 (($ $) 18)) (** (($ $ $) 47)))
(((-630) (-140)) (T -630))
-((-2367 (*1 *1 *1) (-4 *1 (-630))) (-2299 (*1 *1 *1) (-4 *1 (-630))) (-1450 (*1 *1 *1) (-4 *1 (-630))) (-1902 (*1 *1 *1) (-4 *1 (-630))) (-2973 (*1 *1 *1) (-4 *1 (-630))) (-2937 (*1 *1 *1) (-4 *1 (-630))))
-(-13 (-961) (-1203) (-10 -8 (-15 -2367 ($ $)) (-15 -2299 ($ $)) (-15 -1450 ($ $)) (-15 -1902 ($ $)) (-15 -2973 ($ $)) (-15 -2937 ($ $))))
-(((-35) . T) ((-95) . T) ((-285) . T) ((-496) . T) ((-961) . T) ((-1203) . T) ((-1206) . T))
-((-2654 (((-114) (-114)) 88)) (-1902 ((|#2| |#2|) 28)) (-2940 ((|#2| |#2| (-1094 |#2|)) 84) ((|#2| |#2| (-1178)) 50)) (-2937 ((|#2| |#2|) 27)) (-2973 ((|#2| |#2|) 29)) (-3797 (((-112) (-114)) 33)) (-2299 ((|#2| |#2|) 24)) (-2367 ((|#2| |#2|) 26)) (-1450 ((|#2| |#2|) 25)))
-(((-631 |#1| |#2|) (-10 -7 (-15 -3797 ((-112) (-114))) (-15 -2654 ((-114) (-114))) (-15 -2367 (|#2| |#2|)) (-15 -2299 (|#2| |#2|)) (-15 -1450 (|#2| |#2|)) (-15 -1902 (|#2| |#2|)) (-15 -2937 (|#2| |#2|)) (-15 -2973 (|#2| |#2|)) (-15 -2940 (|#2| |#2| (-1178))) (-15 -2940 (|#2| |#2| (-1094 |#2|)))) (-559) (-13 (-433 |#1|) (-1004) (-1203))) (T -631))
-((-2940 (*1 *2 *2 *3) (-12 (-5 *3 (-1094 *2)) (-4 *2 (-13 (-433 *4) (-1004) (-1203))) (-4 *4 (-559)) (-5 *1 (-631 *4 *2)))) (-2940 (*1 *2 *2 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-559)) (-5 *1 (-631 *4 *2)) (-4 *2 (-13 (-433 *4) (-1004) (-1203))))) (-2973 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-631 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004) (-1203))))) (-2937 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-631 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004) (-1203))))) (-1902 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-631 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004) (-1203))))) (-1450 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-631 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004) (-1203))))) (-2299 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-631 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004) (-1203))))) (-2367 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-631 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004) (-1203))))) (-2654 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-559)) (-5 *1 (-631 *3 *4)) (-4 *4 (-13 (-433 *3) (-1004) (-1203))))) (-3797 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-559)) (-5 *2 (-112)) (-5 *1 (-631 *4 *5)) (-4 *5 (-13 (-433 *4) (-1004) (-1203))))))
-(-10 -7 (-15 -3797 ((-112) (-114))) (-15 -2654 ((-114) (-114))) (-15 -2367 (|#2| |#2|)) (-15 -2299 (|#2| |#2|)) (-15 -1450 (|#2| |#2|)) (-15 -1902 (|#2| |#2|)) (-15 -2937 (|#2| |#2|)) (-15 -2973 (|#2| |#2|)) (-15 -2940 (|#2| |#2| (-1178))) (-15 -2940 (|#2| |#2| (-1094 |#2|))))
-((-1429 (((-484 |#1| |#2|) (-247 |#1| |#2|)) 67)) (-4177 (((-645 (-247 |#1| |#2|)) (-645 (-484 |#1| |#2|))) 93)) (-3360 (((-484 |#1| |#2|) (-645 (-484 |#1| |#2|)) (-865 |#1|)) 95) (((-484 |#1| |#2|) (-645 (-484 |#1| |#2|)) (-645 (-484 |#1| |#2|)) (-865 |#1|)) 94)) (-3982 (((-2 (|:| |gblist| (-645 (-247 |#1| |#2|))) (|:| |gvlist| (-645 (-567)))) (-645 (-484 |#1| |#2|))) 138)) (-3125 (((-645 (-484 |#1| |#2|)) (-865 |#1|) (-645 (-484 |#1| |#2|)) (-645 (-484 |#1| |#2|))) 108)) (-2348 (((-2 (|:| |glbase| (-645 (-247 |#1| |#2|))) (|:| |glval| (-645 (-567)))) (-645 (-247 |#1| |#2|))) 148)) (-2225 (((-1268 |#2|) (-484 |#1| |#2|) (-645 (-484 |#1| |#2|))) 72)) (-3024 (((-645 (-484 |#1| |#2|)) (-645 (-484 |#1| |#2|))) 48)) (-1512 (((-247 |#1| |#2|) (-247 |#1| |#2|) (-645 (-247 |#1| |#2|))) 64)) (-2851 (((-247 |#1| |#2|) (-645 |#2|) (-247 |#1| |#2|) (-645 (-247 |#1| |#2|))) 116)))
-(((-632 |#1| |#2|) (-10 -7 (-15 -3982 ((-2 (|:| |gblist| (-645 (-247 |#1| |#2|))) (|:| |gvlist| (-645 (-567)))) (-645 (-484 |#1| |#2|)))) (-15 -2348 ((-2 (|:| |glbase| (-645 (-247 |#1| |#2|))) (|:| |glval| (-645 (-567)))) (-645 (-247 |#1| |#2|)))) (-15 -4177 ((-645 (-247 |#1| |#2|)) (-645 (-484 |#1| |#2|)))) (-15 -3360 ((-484 |#1| |#2|) (-645 (-484 |#1| |#2|)) (-645 (-484 |#1| |#2|)) (-865 |#1|))) (-15 -3360 ((-484 |#1| |#2|) (-645 (-484 |#1| |#2|)) (-865 |#1|))) (-15 -3024 ((-645 (-484 |#1| |#2|)) (-645 (-484 |#1| |#2|)))) (-15 -2225 ((-1268 |#2|) (-484 |#1| |#2|) (-645 (-484 |#1| |#2|)))) (-15 -2851 ((-247 |#1| |#2|) (-645 |#2|) (-247 |#1| |#2|) (-645 (-247 |#1| |#2|)))) (-15 -3125 ((-645 (-484 |#1| |#2|)) (-865 |#1|) (-645 (-484 |#1| |#2|)) (-645 (-484 |#1| |#2|)))) (-15 -1512 ((-247 |#1| |#2|) (-247 |#1| |#2|) (-645 (-247 |#1| |#2|)))) (-15 -1429 ((-484 |#1| |#2|) (-247 |#1| |#2|)))) (-645 (-1178)) (-455)) (T -632))
-((-1429 (*1 *2 *3) (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-645 (-1178))) (-4 *5 (-455)) (-5 *2 (-484 *4 *5)) (-5 *1 (-632 *4 *5)))) (-1512 (*1 *2 *2 *3) (-12 (-5 *3 (-645 (-247 *4 *5))) (-5 *2 (-247 *4 *5)) (-14 *4 (-645 (-1178))) (-4 *5 (-455)) (-5 *1 (-632 *4 *5)))) (-3125 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-645 (-484 *4 *5))) (-5 *3 (-865 *4)) (-14 *4 (-645 (-1178))) (-4 *5 (-455)) (-5 *1 (-632 *4 *5)))) (-2851 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-645 *6)) (-5 *4 (-645 (-247 *5 *6))) (-4 *6 (-455)) (-5 *2 (-247 *5 *6)) (-14 *5 (-645 (-1178))) (-5 *1 (-632 *5 *6)))) (-2225 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-484 *5 *6))) (-5 *3 (-484 *5 *6)) (-14 *5 (-645 (-1178))) (-4 *6 (-455)) (-5 *2 (-1268 *6)) (-5 *1 (-632 *5 *6)))) (-3024 (*1 *2 *2) (-12 (-5 *2 (-645 (-484 *3 *4))) (-14 *3 (-645 (-1178))) (-4 *4 (-455)) (-5 *1 (-632 *3 *4)))) (-3360 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-484 *5 *6))) (-5 *4 (-865 *5)) (-14 *5 (-645 (-1178))) (-5 *2 (-484 *5 *6)) (-5 *1 (-632 *5 *6)) (-4 *6 (-455)))) (-3360 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-645 (-484 *5 *6))) (-5 *4 (-865 *5)) (-14 *5 (-645 (-1178))) (-5 *2 (-484 *5 *6)) (-5 *1 (-632 *5 *6)) (-4 *6 (-455)))) (-4177 (*1 *2 *3) (-12 (-5 *3 (-645 (-484 *4 *5))) (-14 *4 (-645 (-1178))) (-4 *5 (-455)) (-5 *2 (-645 (-247 *4 *5))) (-5 *1 (-632 *4 *5)))) (-2348 (*1 *2 *3) (-12 (-14 *4 (-645 (-1178))) (-4 *5 (-455)) (-5 *2 (-2 (|:| |glbase| (-645 (-247 *4 *5))) (|:| |glval| (-645 (-567))))) (-5 *1 (-632 *4 *5)) (-5 *3 (-645 (-247 *4 *5))))) (-3982 (*1 *2 *3) (-12 (-5 *3 (-645 (-484 *4 *5))) (-14 *4 (-645 (-1178))) (-4 *5 (-455)) (-5 *2 (-2 (|:| |gblist| (-645 (-247 *4 *5))) (|:| |gvlist| (-645 (-567))))) (-5 *1 (-632 *4 *5)))))
-(-10 -7 (-15 -3982 ((-2 (|:| |gblist| (-645 (-247 |#1| |#2|))) (|:| |gvlist| (-645 (-567)))) (-645 (-484 |#1| |#2|)))) (-15 -2348 ((-2 (|:| |glbase| (-645 (-247 |#1| |#2|))) (|:| |glval| (-645 (-567)))) (-645 (-247 |#1| |#2|)))) (-15 -4177 ((-645 (-247 |#1| |#2|)) (-645 (-484 |#1| |#2|)))) (-15 -3360 ((-484 |#1| |#2|) (-645 (-484 |#1| |#2|)) (-645 (-484 |#1| |#2|)) (-865 |#1|))) (-15 -3360 ((-484 |#1| |#2|) (-645 (-484 |#1| |#2|)) (-865 |#1|))) (-15 -3024 ((-645 (-484 |#1| |#2|)) (-645 (-484 |#1| |#2|)))) (-15 -2225 ((-1268 |#2|) (-484 |#1| |#2|) (-645 (-484 |#1| |#2|)))) (-15 -2851 ((-247 |#1| |#2|) (-645 |#2|) (-247 |#1| |#2|) (-645 (-247 |#1| |#2|)))) (-15 -3125 ((-645 (-484 |#1| |#2|)) (-865 |#1|) (-645 (-484 |#1| |#2|)) (-645 (-484 |#1| |#2|)))) (-15 -1512 ((-247 |#1| |#2|) (-247 |#1| |#2|) (-645 (-247 |#1| |#2|)))) (-15 -1429 ((-484 |#1| |#2|) (-247 |#1| |#2|))))
-((-2403 (((-112) $ $) NIL (-2800 (|has| (-52) (-1102)) (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (-1102))))) (-2835 (($) NIL) (($ (-645 (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))))) NIL)) (-1783 (((-1273) $ (-1160) (-1160)) NIL (|has| $ (-6 -4419)))) (-3445 (((-112) $ (-772)) NIL)) (-4284 (((-52) $ (-1160) (-52)) 16) (((-52) $ (-1178) (-52)) 17)) (-2839 (($ (-1 (-112) (-2 (|:| -1795 (-1160)) (|:| -4237 (-52)))) $) NIL (|has| $ (-6 -4418)))) (-3350 (($ (-1 (-112) (-2 (|:| -1795 (-1160)) (|:| -4237 (-52)))) $) NIL (|has| $ (-6 -4418)))) (-4019 (((-3 (-52) "failed") (-1160) $) NIL)) (-2585 (($) NIL T CONST)) (-2444 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (-1102))))) (-2539 (($ (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) $) NIL (|has| $ (-6 -4418))) (($ (-1 (-112) (-2 (|:| -1795 (-1160)) (|:| -4237 (-52)))) $) NIL (|has| $ (-6 -4418))) (((-3 (-52) "failed") (-1160) $) NIL)) (-3238 (($ (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (-1102)))) (($ (-1 (-112) (-2 (|:| -1795 (-1160)) (|:| -4237 (-52)))) $) NIL (|has| $ (-6 -4418)))) (-2477 (((-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (-1 (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (-2 (|:| -1795 (-1160)) (|:| -4237 (-52)))) $ (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (-2 (|:| -1795 (-1160)) (|:| -4237 (-52)))) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (-1102)))) (((-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (-1 (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (-2 (|:| -1795 (-1160)) (|:| -4237 (-52)))) $ (-2 (|:| -1795 (-1160)) (|:| -4237 (-52)))) NIL (|has| $ (-6 -4418))) (((-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (-1 (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (-2 (|:| -1795 (-1160)) (|:| -4237 (-52)))) $) NIL (|has| $ (-6 -4418)))) (-3741 (((-52) $ (-1160) (-52)) NIL (|has| $ (-6 -4419)))) (-3680 (((-52) $ (-1160)) NIL)) (-2777 (((-645 (-2 (|:| -1795 (-1160)) (|:| -4237 (-52)))) $) NIL (|has| $ (-6 -4418))) (((-645 (-52)) $) NIL (|has| $ (-6 -4418)))) (-3222 (($ $) NIL)) (-2077 (((-112) $ (-772)) NIL)) (-4069 (((-1160) $) NIL (|has| (-1160) (-851)))) (-2279 (((-645 (-2 (|:| -1795 (-1160)) (|:| -4237 (-52)))) $) NIL (|has| $ (-6 -4418))) (((-645 (-52)) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (-1102)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-52) (-1102))))) (-2266 (((-1160) $) NIL (|has| (-1160) (-851)))) (-3731 (($ (-1 (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (-2 (|:| -1795 (-1160)) (|:| -4237 (-52)))) $) NIL (|has| $ (-6 -4419))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (-2 (|:| -1795 (-1160)) (|:| -4237 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-4098 (($ (-391)) 9)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL (-2800 (|has| (-52) (-1102)) (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (-1102))))) (-1391 (((-645 (-1160)) $) NIL)) (-4251 (((-112) (-1160) $) NIL)) (-1566 (((-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) $) NIL)) (-2531 (($ (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) $) NIL)) (-1789 (((-645 (-1160)) $) NIL)) (-2996 (((-112) (-1160) $) NIL)) (-3430 (((-1122) $) NIL (-2800 (|has| (-52) (-1102)) (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (-1102))))) (-2409 (((-52) $) NIL (|has| (-1160) (-851)))) (-4128 (((-3 (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) "failed") (-1 (-112) (-2 (|:| -1795 (-1160)) (|:| -4237 (-52)))) $) NIL)) (-3986 (($ $ (-52)) NIL (|has| $ (-6 -4419)))) (-1793 (((-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) $) NIL)) (-3025 (((-112) (-1 (-112) (-2 (|:| -1795 (-1160)) (|:| -4237 (-52)))) $) NIL (|has| $ (-6 -4418))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 (-2 (|:| -1795 (-1160)) (|:| -4237 (-52)))))) NIL (-12 (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (-310 (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))))) (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (-1102)))) (($ $ (-295 (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))))) NIL (-12 (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (-310 (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))))) (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (-1102)))) (($ $ (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (-2 (|:| -1795 (-1160)) (|:| -4237 (-52)))) NIL (-12 (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (-310 (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))))) (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (-1102)))) (($ $ (-645 (-2 (|:| -1795 (-1160)) (|:| -4237 (-52)))) (-645 (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))))) NIL (-12 (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (-310 (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))))) (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (-1102)))) (($ $ (-645 (-52)) (-645 (-52))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1102)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1102)))) (($ $ (-295 (-52))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1102)))) (($ $ (-645 (-295 (-52)))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1102))))) (-3092 (((-112) $ $) NIL)) (-1794 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-52) (-1102))))) (-2339 (((-645 (-52)) $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) NIL)) (-1787 (((-52) $ (-1160)) 14) (((-52) $ (-1160) (-52)) NIL) (((-52) $ (-1178)) 15)) (-2718 (($) NIL) (($ (-645 (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))))) NIL)) (-3439 (((-772) (-1 (-112) (-2 (|:| -1795 (-1160)) (|:| -4237 (-52)))) $) NIL (|has| $ (-6 -4418))) (((-772) (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (-1102)))) (((-772) (-52) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-52) (-1102)))) (((-772) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4418)))) (-4305 (($ $) NIL)) (-3893 (((-539) $) NIL (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (-615 (-539))))) (-4147 (($ (-645 (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))))) NIL)) (-4132 (((-863) $) NIL (-2800 (|has| (-52) (-614 (-863))) (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (-614 (-863)))))) (-1745 (((-112) $ $) NIL (-2800 (|has| (-52) (-1102)) (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (-1102))))) (-3551 (($ (-645 (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))))) NIL)) (-1853 (((-112) (-1 (-112) (-2 (|:| -1795 (-1160)) (|:| -4237 (-52)))) $) NIL (|has| $ (-6 -4418))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) NIL (-2800 (|has| (-52) (-1102)) (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 (-52))) (-1102))))) (-2414 (((-772) $) NIL (|has| $ (-6 -4418)))))
-(((-633) (-13 (-1194 (-1160) (-52)) (-10 -8 (-15 -4098 ($ (-391))) (-15 -3222 ($ $)) (-15 -1787 ((-52) $ (-1178))) (-15 -4284 ((-52) $ (-1178) (-52)))))) (T -633))
-((-4098 (*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-633)))) (-3222 (*1 *1 *1) (-5 *1 (-633))) (-1787 (*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-52)) (-5 *1 (-633)))) (-4284 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1178)) (-5 *1 (-633)))))
-(-13 (-1194 (-1160) (-52)) (-10 -8 (-15 -4098 ($ (-391))) (-15 -3222 ($ $)) (-15 -1787 ((-52) $ (-1178))) (-15 -4284 ((-52) $ (-1178) (-52)))))
-((-3060 (($ $ |#2|) 10)))
-(((-634 |#1| |#2|) (-10 -8 (-15 -3060 (|#1| |#1| |#2|))) (-635 |#2|) (-172)) (T -634))
-NIL
-(-10 -8 (-15 -3060 (|#1| |#1| |#2|)))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4147 (($ $ $) 34)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-1716 (($) 19 T CONST)) (-2936 (((-112) $ $) 6)) (-3060 (($ $ |#1|) 33 (|has| |#1| (-365)))) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31)))
+((-3376 (*1 *1 *1) (-4 *1 (-630))) (-2093 (*1 *1 *1) (-4 *1 (-630))) (-2910 (*1 *1 *1) (-4 *1 (-630))) (-1926 (*1 *1 *1) (-4 *1 (-630))) (-2994 (*1 *1 *1) (-4 *1 (-630))) (-2958 (*1 *1 *1) (-4 *1 (-630))))
+(-13 (-961) (-1204) (-10 -8 (-15 -3376 ($ $)) (-15 -2093 ($ $)) (-15 -2910 ($ $)) (-15 -1926 ($ $)) (-15 -2994 ($ $)) (-15 -2958 ($ $))))
+(((-35) . T) ((-95) . T) ((-285) . T) ((-496) . T) ((-961) . T) ((-1204) . T) ((-1207) . T))
+((-2662 (((-114) (-114)) 88)) (-1926 ((|#2| |#2|) 28)) (-1778 ((|#2| |#2| (-1094 |#2|)) 84) ((|#2| |#2| (-1179)) 50)) (-2958 ((|#2| |#2|) 27)) (-2994 ((|#2| |#2|) 29)) (-1909 (((-112) (-114)) 33)) (-2093 ((|#2| |#2|) 24)) (-3376 ((|#2| |#2|) 26)) (-2910 ((|#2| |#2|) 25)))
+(((-631 |#1| |#2|) (-10 -7 (-15 -1909 ((-112) (-114))) (-15 -2662 ((-114) (-114))) (-15 -3376 (|#2| |#2|)) (-15 -2093 (|#2| |#2|)) (-15 -2910 (|#2| |#2|)) (-15 -1926 (|#2| |#2|)) (-15 -2958 (|#2| |#2|)) (-15 -2994 (|#2| |#2|)) (-15 -1778 (|#2| |#2| (-1179))) (-15 -1778 (|#2| |#2| (-1094 |#2|)))) (-559) (-13 (-433 |#1|) (-1004) (-1204))) (T -631))
+((-1778 (*1 *2 *2 *3) (-12 (-5 *3 (-1094 *2)) (-4 *2 (-13 (-433 *4) (-1004) (-1204))) (-4 *4 (-559)) (-5 *1 (-631 *4 *2)))) (-1778 (*1 *2 *2 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-559)) (-5 *1 (-631 *4 *2)) (-4 *2 (-13 (-433 *4) (-1004) (-1204))))) (-2994 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-631 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004) (-1204))))) (-2958 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-631 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004) (-1204))))) (-1926 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-631 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004) (-1204))))) (-2910 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-631 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004) (-1204))))) (-2093 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-631 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004) (-1204))))) (-3376 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-631 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004) (-1204))))) (-2662 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-559)) (-5 *1 (-631 *3 *4)) (-4 *4 (-13 (-433 *3) (-1004) (-1204))))) (-1909 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-559)) (-5 *2 (-112)) (-5 *1 (-631 *4 *5)) (-4 *5 (-13 (-433 *4) (-1004) (-1204))))))
+(-10 -7 (-15 -1909 ((-112) (-114))) (-15 -2662 ((-114) (-114))) (-15 -3376 (|#2| |#2|)) (-15 -2093 (|#2| |#2|)) (-15 -2910 (|#2| |#2|)) (-15 -1926 (|#2| |#2|)) (-15 -2958 (|#2| |#2|)) (-15 -2994 (|#2| |#2|)) (-15 -1778 (|#2| |#2| (-1179))) (-15 -1778 (|#2| |#2| (-1094 |#2|))))
+((-4011 (((-484 |#1| |#2|) (-247 |#1| |#2|)) 67)) (-3723 (((-645 (-247 |#1| |#2|)) (-645 (-484 |#1| |#2|))) 93)) (-1428 (((-484 |#1| |#2|) (-645 (-484 |#1| |#2|)) (-865 |#1|)) 95) (((-484 |#1| |#2|) (-645 (-484 |#1| |#2|)) (-645 (-484 |#1| |#2|)) (-865 |#1|)) 94)) (-1663 (((-2 (|:| |gblist| (-645 (-247 |#1| |#2|))) (|:| |gvlist| (-645 (-567)))) (-645 (-484 |#1| |#2|))) 138)) (-1730 (((-645 (-484 |#1| |#2|)) (-865 |#1|) (-645 (-484 |#1| |#2|)) (-645 (-484 |#1| |#2|))) 108)) (-1583 (((-2 (|:| |glbase| (-645 (-247 |#1| |#2|))) (|:| |glval| (-645 (-567)))) (-645 (-247 |#1| |#2|))) 148)) (-4022 (((-1269 |#2|) (-484 |#1| |#2|) (-645 (-484 |#1| |#2|))) 72)) (-1839 (((-645 (-484 |#1| |#2|)) (-645 (-484 |#1| |#2|))) 48)) (-2123 (((-247 |#1| |#2|) (-247 |#1| |#2|) (-645 (-247 |#1| |#2|))) 64)) (-3160 (((-247 |#1| |#2|) (-645 |#2|) (-247 |#1| |#2|) (-645 (-247 |#1| |#2|))) 116)))
+(((-632 |#1| |#2|) (-10 -7 (-15 -1663 ((-2 (|:| |gblist| (-645 (-247 |#1| |#2|))) (|:| |gvlist| (-645 (-567)))) (-645 (-484 |#1| |#2|)))) (-15 -1583 ((-2 (|:| |glbase| (-645 (-247 |#1| |#2|))) (|:| |glval| (-645 (-567)))) (-645 (-247 |#1| |#2|)))) (-15 -3723 ((-645 (-247 |#1| |#2|)) (-645 (-484 |#1| |#2|)))) (-15 -1428 ((-484 |#1| |#2|) (-645 (-484 |#1| |#2|)) (-645 (-484 |#1| |#2|)) (-865 |#1|))) (-15 -1428 ((-484 |#1| |#2|) (-645 (-484 |#1| |#2|)) (-865 |#1|))) (-15 -1839 ((-645 (-484 |#1| |#2|)) (-645 (-484 |#1| |#2|)))) (-15 -4022 ((-1269 |#2|) (-484 |#1| |#2|) (-645 (-484 |#1| |#2|)))) (-15 -3160 ((-247 |#1| |#2|) (-645 |#2|) (-247 |#1| |#2|) (-645 (-247 |#1| |#2|)))) (-15 -1730 ((-645 (-484 |#1| |#2|)) (-865 |#1|) (-645 (-484 |#1| |#2|)) (-645 (-484 |#1| |#2|)))) (-15 -2123 ((-247 |#1| |#2|) (-247 |#1| |#2|) (-645 (-247 |#1| |#2|)))) (-15 -4011 ((-484 |#1| |#2|) (-247 |#1| |#2|)))) (-645 (-1179)) (-455)) (T -632))
+((-4011 (*1 *2 *3) (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-645 (-1179))) (-4 *5 (-455)) (-5 *2 (-484 *4 *5)) (-5 *1 (-632 *4 *5)))) (-2123 (*1 *2 *2 *3) (-12 (-5 *3 (-645 (-247 *4 *5))) (-5 *2 (-247 *4 *5)) (-14 *4 (-645 (-1179))) (-4 *5 (-455)) (-5 *1 (-632 *4 *5)))) (-1730 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-645 (-484 *4 *5))) (-5 *3 (-865 *4)) (-14 *4 (-645 (-1179))) (-4 *5 (-455)) (-5 *1 (-632 *4 *5)))) (-3160 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-645 *6)) (-5 *4 (-645 (-247 *5 *6))) (-4 *6 (-455)) (-5 *2 (-247 *5 *6)) (-14 *5 (-645 (-1179))) (-5 *1 (-632 *5 *6)))) (-4022 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-484 *5 *6))) (-5 *3 (-484 *5 *6)) (-14 *5 (-645 (-1179))) (-4 *6 (-455)) (-5 *2 (-1269 *6)) (-5 *1 (-632 *5 *6)))) (-1839 (*1 *2 *2) (-12 (-5 *2 (-645 (-484 *3 *4))) (-14 *3 (-645 (-1179))) (-4 *4 (-455)) (-5 *1 (-632 *3 *4)))) (-1428 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-484 *5 *6))) (-5 *4 (-865 *5)) (-14 *5 (-645 (-1179))) (-5 *2 (-484 *5 *6)) (-5 *1 (-632 *5 *6)) (-4 *6 (-455)))) (-1428 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-645 (-484 *5 *6))) (-5 *4 (-865 *5)) (-14 *5 (-645 (-1179))) (-5 *2 (-484 *5 *6)) (-5 *1 (-632 *5 *6)) (-4 *6 (-455)))) (-3723 (*1 *2 *3) (-12 (-5 *3 (-645 (-484 *4 *5))) (-14 *4 (-645 (-1179))) (-4 *5 (-455)) (-5 *2 (-645 (-247 *4 *5))) (-5 *1 (-632 *4 *5)))) (-1583 (*1 *2 *3) (-12 (-14 *4 (-645 (-1179))) (-4 *5 (-455)) (-5 *2 (-2 (|:| |glbase| (-645 (-247 *4 *5))) (|:| |glval| (-645 (-567))))) (-5 *1 (-632 *4 *5)) (-5 *3 (-645 (-247 *4 *5))))) (-1663 (*1 *2 *3) (-12 (-5 *3 (-645 (-484 *4 *5))) (-14 *4 (-645 (-1179))) (-4 *5 (-455)) (-5 *2 (-2 (|:| |gblist| (-645 (-247 *4 *5))) (|:| |gvlist| (-645 (-567))))) (-5 *1 (-632 *4 *5)))))
+(-10 -7 (-15 -1663 ((-2 (|:| |gblist| (-645 (-247 |#1| |#2|))) (|:| |gvlist| (-645 (-567)))) (-645 (-484 |#1| |#2|)))) (-15 -1583 ((-2 (|:| |glbase| (-645 (-247 |#1| |#2|))) (|:| |glval| (-645 (-567)))) (-645 (-247 |#1| |#2|)))) (-15 -3723 ((-645 (-247 |#1| |#2|)) (-645 (-484 |#1| |#2|)))) (-15 -1428 ((-484 |#1| |#2|) (-645 (-484 |#1| |#2|)) (-645 (-484 |#1| |#2|)) (-865 |#1|))) (-15 -1428 ((-484 |#1| |#2|) (-645 (-484 |#1| |#2|)) (-865 |#1|))) (-15 -1839 ((-645 (-484 |#1| |#2|)) (-645 (-484 |#1| |#2|)))) (-15 -4022 ((-1269 |#2|) (-484 |#1| |#2|) (-645 (-484 |#1| |#2|)))) (-15 -3160 ((-247 |#1| |#2|) (-645 |#2|) (-247 |#1| |#2|) (-645 (-247 |#1| |#2|)))) (-15 -1730 ((-645 (-484 |#1| |#2|)) (-865 |#1|) (-645 (-484 |#1| |#2|)) (-645 (-484 |#1| |#2|)))) (-15 -2123 ((-247 |#1| |#2|) (-247 |#1| |#2|) (-645 (-247 |#1| |#2|)))) (-15 -4011 ((-484 |#1| |#2|) (-247 |#1| |#2|))))
+((-2412 (((-112) $ $) NIL (-2811 (|has| (-52) (-1102)) (|has| (-2 (|:| -1809 (-1161)) (|:| -4236 (-52))) (-1102))))) (-2847 (($) NIL) (($ (-645 (-2 (|:| -1809 (-1161)) (|:| -4236 (-52))))) NIL)) (-3843 (((-1274) $ (-1161) (-1161)) NIL (|has| $ (-6 -4423)))) (-1563 (((-112) $ (-772)) NIL)) (-4285 (((-52) $ (-1161) (-52)) 16) (((-52) $ (-1179) (-52)) 17)) (-1494 (($ (-1 (-112) (-2 (|:| -1809 (-1161)) (|:| -4236 (-52)))) $) NIL (|has| $ (-6 -4422)))) (-3356 (($ (-1 (-112) (-2 (|:| -1809 (-1161)) (|:| -4236 (-52)))) $) NIL (|has| $ (-6 -4422)))) (-4021 (((-3 (-52) "failed") (-1161) $) NIL)) (-3647 (($) NIL T CONST)) (-2453 (($ $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -1809 (-1161)) (|:| -4236 (-52))) (-1102))))) (-2247 (($ (-2 (|:| -1809 (-1161)) (|:| -4236 (-52))) $) NIL (|has| $ (-6 -4422))) (($ (-1 (-112) (-2 (|:| -1809 (-1161)) (|:| -4236 (-52)))) $) NIL (|has| $ (-6 -4422))) (((-3 (-52) "failed") (-1161) $) NIL)) (-3246 (($ (-2 (|:| -1809 (-1161)) (|:| -4236 (-52))) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -1809 (-1161)) (|:| -4236 (-52))) (-1102)))) (($ (-1 (-112) (-2 (|:| -1809 (-1161)) (|:| -4236 (-52)))) $) NIL (|has| $ (-6 -4422)))) (-2494 (((-2 (|:| -1809 (-1161)) (|:| -4236 (-52))) (-1 (-2 (|:| -1809 (-1161)) (|:| -4236 (-52))) (-2 (|:| -1809 (-1161)) (|:| -4236 (-52))) (-2 (|:| -1809 (-1161)) (|:| -4236 (-52)))) $ (-2 (|:| -1809 (-1161)) (|:| -4236 (-52))) (-2 (|:| -1809 (-1161)) (|:| -4236 (-52)))) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -1809 (-1161)) (|:| -4236 (-52))) (-1102)))) (((-2 (|:| -1809 (-1161)) (|:| -4236 (-52))) (-1 (-2 (|:| -1809 (-1161)) (|:| -4236 (-52))) (-2 (|:| -1809 (-1161)) (|:| -4236 (-52))) (-2 (|:| -1809 (-1161)) (|:| -4236 (-52)))) $ (-2 (|:| -1809 (-1161)) (|:| -4236 (-52)))) NIL (|has| $ (-6 -4422))) (((-2 (|:| -1809 (-1161)) (|:| -4236 (-52))) (-1 (-2 (|:| -1809 (-1161)) (|:| -4236 (-52))) (-2 (|:| -1809 (-1161)) (|:| -4236 (-52))) (-2 (|:| -1809 (-1161)) (|:| -4236 (-52)))) $) NIL (|has| $ (-6 -4422)))) (-3760 (((-52) $ (-1161) (-52)) NIL (|has| $ (-6 -4423)))) (-3703 (((-52) $ (-1161)) NIL)) (-2799 (((-645 (-2 (|:| -1809 (-1161)) (|:| -4236 (-52)))) $) NIL (|has| $ (-6 -4422))) (((-645 (-52)) $) NIL (|has| $ (-6 -4422)))) (-1802 (($ $) NIL)) (-4093 (((-112) $ (-772)) NIL)) (-3895 (((-1161) $) NIL (|has| (-1161) (-851)))) (-1942 (((-645 (-2 (|:| -1809 (-1161)) (|:| -4236 (-52)))) $) NIL (|has| $ (-6 -4422))) (((-645 (-52)) $) NIL (|has| $ (-6 -4422)))) (-3237 (((-112) (-2 (|:| -1809 (-1161)) (|:| -4236 (-52))) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -1809 (-1161)) (|:| -4236 (-52))) (-1102)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-52) (-1102))))) (-3255 (((-1161) $) NIL (|has| (-1161) (-851)))) (-3751 (($ (-1 (-2 (|:| -1809 (-1161)) (|:| -4236 (-52))) (-2 (|:| -1809 (-1161)) (|:| -4236 (-52)))) $) NIL (|has| $ (-6 -4423))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4423)))) (-3841 (($ (-1 (-2 (|:| -1809 (-1161)) (|:| -4236 (-52))) (-2 (|:| -1809 (-1161)) (|:| -4236 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-4097 (($ (-391)) 9)) (-1986 (((-112) $ (-772)) NIL)) (-2516 (((-1161) $) NIL (-2811 (|has| (-52) (-1102)) (|has| (-2 (|:| -1809 (-1161)) (|:| -4236 (-52))) (-1102))))) (-1405 (((-645 (-1161)) $) NIL)) (-2816 (((-112) (-1161) $) NIL)) (-2706 (((-2 (|:| -1809 (-1161)) (|:| -4236 (-52))) $) NIL)) (-2646 (($ (-2 (|:| -1809 (-1161)) (|:| -4236 (-52))) $) NIL)) (-4364 (((-645 (-1161)) $) NIL)) (-3188 (((-112) (-1161) $) NIL)) (-3437 (((-1122) $) NIL (-2811 (|has| (-52) (-1102)) (|has| (-2 (|:| -1809 (-1161)) (|:| -4236 (-52))) (-1102))))) (-2418 (((-52) $) NIL (|has| (-1161) (-851)))) (-3196 (((-3 (-2 (|:| -1809 (-1161)) (|:| -4236 (-52))) "failed") (-1 (-112) (-2 (|:| -1809 (-1161)) (|:| -4236 (-52)))) $) NIL)) (-3823 (($ $ (-52)) NIL (|has| $ (-6 -4423)))) (-3949 (((-2 (|:| -1809 (-1161)) (|:| -4236 (-52))) $) NIL)) (-4233 (((-112) (-1 (-112) (-2 (|:| -1809 (-1161)) (|:| -4236 (-52)))) $) NIL (|has| $ (-6 -4422))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 (-2 (|:| -1809 (-1161)) (|:| -4236 (-52)))))) NIL (-12 (|has| (-2 (|:| -1809 (-1161)) (|:| -4236 (-52))) (-310 (-2 (|:| -1809 (-1161)) (|:| -4236 (-52))))) (|has| (-2 (|:| -1809 (-1161)) (|:| -4236 (-52))) (-1102)))) (($ $ (-295 (-2 (|:| -1809 (-1161)) (|:| -4236 (-52))))) NIL (-12 (|has| (-2 (|:| -1809 (-1161)) (|:| -4236 (-52))) (-310 (-2 (|:| -1809 (-1161)) (|:| -4236 (-52))))) (|has| (-2 (|:| -1809 (-1161)) (|:| -4236 (-52))) (-1102)))) (($ $ (-2 (|:| -1809 (-1161)) (|:| -4236 (-52))) (-2 (|:| -1809 (-1161)) (|:| -4236 (-52)))) NIL (-12 (|has| (-2 (|:| -1809 (-1161)) (|:| -4236 (-52))) (-310 (-2 (|:| -1809 (-1161)) (|:| -4236 (-52))))) (|has| (-2 (|:| -1809 (-1161)) (|:| -4236 (-52))) (-1102)))) (($ $ (-645 (-2 (|:| -1809 (-1161)) (|:| -4236 (-52)))) (-645 (-2 (|:| -1809 (-1161)) (|:| -4236 (-52))))) NIL (-12 (|has| (-2 (|:| -1809 (-1161)) (|:| -4236 (-52))) (-310 (-2 (|:| -1809 (-1161)) (|:| -4236 (-52))))) (|has| (-2 (|:| -1809 (-1161)) (|:| -4236 (-52))) (-1102)))) (($ $ (-645 (-52)) (-645 (-52))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1102)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1102)))) (($ $ (-295 (-52))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1102)))) (($ $ (-645 (-295 (-52)))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1102))))) (-3875 (((-112) $ $) NIL)) (-4058 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-52) (-1102))))) (-2190 (((-645 (-52)) $) NIL)) (-3885 (((-112) $) NIL)) (-2701 (($) NIL)) (-1801 (((-52) $ (-1161)) 14) (((-52) $ (-1161) (-52)) NIL) (((-52) $ (-1179)) 15)) (-4106 (($) NIL) (($ (-645 (-2 (|:| -1809 (-1161)) (|:| -4236 (-52))))) NIL)) (-3447 (((-772) (-1 (-112) (-2 (|:| -1809 (-1161)) (|:| -4236 (-52)))) $) NIL (|has| $ (-6 -4422))) (((-772) (-2 (|:| -1809 (-1161)) (|:| -4236 (-52))) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -1809 (-1161)) (|:| -4236 (-52))) (-1102)))) (((-772) (-52) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-52) (-1102)))) (((-772) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4422)))) (-4309 (($ $) NIL)) (-3902 (((-539) $) NIL (|has| (-2 (|:| -1809 (-1161)) (|:| -4236 (-52))) (-615 (-539))))) (-4145 (($ (-645 (-2 (|:| -1809 (-1161)) (|:| -4236 (-52))))) NIL)) (-4129 (((-863) $) NIL (-2811 (|has| (-52) (-614 (-863))) (|has| (-2 (|:| -1809 (-1161)) (|:| -4236 (-52))) (-614 (-863)))))) (-3357 (((-112) $ $) NIL (-2811 (|has| (-52) (-1102)) (|has| (-2 (|:| -1809 (-1161)) (|:| -4236 (-52))) (-1102))))) (-3700 (($ (-645 (-2 (|:| -1809 (-1161)) (|:| -4236 (-52))))) NIL)) (-3436 (((-112) (-1 (-112) (-2 (|:| -1809 (-1161)) (|:| -4236 (-52)))) $) NIL (|has| $ (-6 -4422))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4422)))) (-2946 (((-112) $ $) NIL (-2811 (|has| (-52) (-1102)) (|has| (-2 (|:| -1809 (-1161)) (|:| -4236 (-52))) (-1102))))) (-2423 (((-772) $) NIL (|has| $ (-6 -4422)))))
+(((-633) (-13 (-1195 (-1161) (-52)) (-10 -8 (-15 -4097 ($ (-391))) (-15 -1802 ($ $)) (-15 -1801 ((-52) $ (-1179))) (-15 -4285 ((-52) $ (-1179) (-52)))))) (T -633))
+((-4097 (*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-633)))) (-1802 (*1 *1 *1) (-5 *1 (-633))) (-1801 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-52)) (-5 *1 (-633)))) (-4285 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1179)) (-5 *1 (-633)))))
+(-13 (-1195 (-1161) (-52)) (-10 -8 (-15 -4097 ($ (-391))) (-15 -1802 ($ $)) (-15 -1801 ((-52) $ (-1179))) (-15 -4285 ((-52) $ (-1179) (-52)))))
+((-3069 (($ $ |#2|) 10)))
+(((-634 |#1| |#2|) (-10 -8 (-15 -3069 (|#1| |#1| |#2|))) (-635 |#2|) (-172)) (T -634))
+NIL
+(-10 -8 (-15 -3069 (|#1| |#1| |#2|)))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-2376 (((-3 $ "failed") $ $) 20)) (-3647 (($) 18 T CONST)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-4145 (($ $ $) 34)) (-4129 (((-863) $) 12)) (-3357 (((-112) $ $) 9)) (-1733 (($) 19 T CONST)) (-2946 (((-112) $ $) 6)) (-3069 (($ $ |#1|) 33 (|has| |#1| (-365)))) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31)))
(((-635 |#1|) (-140) (-172)) (T -635))
-((-4147 (*1 *1 *1 *1) (-12 (-4 *1 (-635 *2)) (-4 *2 (-172)))) (-3060 (*1 *1 *1 *2) (-12 (-4 *1 (-635 *2)) (-4 *2 (-172)) (-4 *2 (-365)))))
-(-13 (-718 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -4147 ($ $ $)) (IF (|has| |t#1| (-365)) (-15 -3060 ($ $ |t#1|)) |%noBranch|)))
+((-4145 (*1 *1 *1 *1) (-12 (-4 *1 (-635 *2)) (-4 *2 (-172)))) (-3069 (*1 *1 *1 *2) (-12 (-4 *1 (-635 *2)) (-4 *2 (-172)) (-4 *2 (-365)))))
+(-13 (-718 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -4145 ($ $ $)) (IF (|has| |t#1| (-365)) (-15 -3069 ($ $ |t#1|)) |%noBranch|)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-649 |#1|) . T) ((-641 |#1|) . T) ((-718 |#1|) . T) ((-1053 |#1|) . T) ((-1058 |#1|) . T) ((-1102) . T))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3951 (((-3 $ "failed")) NIL (-2800 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-3472 (((-3 $ "failed") $ $) NIL)) (-2189 (((-1268 (-690 |#1|))) NIL (|has| |#2| (-420 |#1|))) (((-1268 (-690 |#1|)) (-1268 $)) NIL (|has| |#2| (-369 |#1|)))) (-3337 (((-1268 $)) NIL (|has| |#2| (-369 |#1|)))) (-2585 (($) NIL T CONST)) (-3425 (((-3 (-2 (|:| |particular| $) (|:| -2623 (-645 $))) "failed")) NIL (-2800 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-3645 (((-3 $ "failed")) NIL (-2800 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-1735 (((-690 |#1|)) NIL (|has| |#2| (-420 |#1|))) (((-690 |#1|) (-1268 $)) NIL (|has| |#2| (-369 |#1|)))) (-2583 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-3528 (((-690 |#1|) $) NIL (|has| |#2| (-420 |#1|))) (((-690 |#1|) $ (-1268 $)) NIL (|has| |#2| (-369 |#1|)))) (-2209 (((-3 $ "failed") $) NIL (-2800 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-4063 (((-1174 (-954 |#1|))) NIL (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-365))))) (-2586 (($ $ (-923)) NIL)) (-1883 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-1575 (((-1174 |#1|) $) NIL (-2800 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-2676 ((|#1|) NIL (|has| |#2| (-420 |#1|))) ((|#1| (-1268 $)) NIL (|has| |#2| (-369 |#1|)))) (-1682 (((-1174 |#1|) $) NIL (|has| |#2| (-369 |#1|)))) (-1444 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3658 (($ (-1268 |#1|)) NIL (|has| |#2| (-420 |#1|))) (($ (-1268 |#1|) (-1268 $)) NIL (|has| |#2| (-369 |#1|)))) (-2109 (((-3 $ "failed") $) NIL (-2800 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-1954 (((-923)) NIL (|has| |#2| (-369 |#1|)))) (-1379 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3719 (($ $ (-923)) NIL)) (-4353 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3375 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3154 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3412 (((-3 (-2 (|:| |particular| $) (|:| -2623 (-645 $))) "failed")) NIL (-2800 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-3345 (((-3 $ "failed")) NIL (-2800 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-2119 (((-690 |#1|)) NIL (|has| |#2| (-420 |#1|))) (((-690 |#1|) (-1268 $)) NIL (|has| |#2| (-369 |#1|)))) (-2726 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-2702 (((-690 |#1|) $) NIL (|has| |#2| (-420 |#1|))) (((-690 |#1|) $ (-1268 $)) NIL (|has| |#2| (-369 |#1|)))) (-3080 (((-3 $ "failed") $) NIL (-2800 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-4162 (((-1174 (-954 |#1|))) NIL (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-365))))) (-3450 (($ $ (-923)) NIL)) (-2200 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-3960 (((-1174 |#1|) $) NIL (-2800 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-3042 ((|#1|) NIL (|has| |#2| (-420 |#1|))) ((|#1| (-1268 $)) NIL (|has| |#2| (-369 |#1|)))) (-3567 (((-1174 |#1|) $) NIL (|has| |#2| (-369 |#1|)))) (-3396 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1419 (((-1160) $) NIL)) (-2609 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3070 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-4341 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3430 (((-1122) $) NIL)) (-4356 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1787 ((|#1| $ (-567)) NIL (|has| |#2| (-420 |#1|)))) (-2887 (((-690 |#1|) (-1268 $)) NIL (|has| |#2| (-420 |#1|))) (((-1268 |#1|) $) NIL (|has| |#2| (-420 |#1|))) (((-690 |#1|) (-1268 $) (-1268 $)) NIL (|has| |#2| (-369 |#1|))) (((-1268 |#1|) $ (-1268 $)) NIL (|has| |#2| (-369 |#1|)))) (-3893 (($ (-1268 |#1|)) NIL (|has| |#2| (-420 |#1|))) (((-1268 |#1|) $) NIL (|has| |#2| (-420 |#1|)))) (-4013 (((-645 (-954 |#1|))) NIL (|has| |#2| (-420 |#1|))) (((-645 (-954 |#1|)) (-1268 $)) NIL (|has| |#2| (-369 |#1|)))) (-1485 (($ $ $) NIL)) (-1502 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-4132 (((-863) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-1745 (((-112) $ $) NIL)) (-2623 (((-1268 $)) NIL (|has| |#2| (-420 |#1|)))) (-2652 (((-645 (-1268 |#1|))) NIL (-2800 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-2153 (($ $ $ $) NIL)) (-3013 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2355 (($ (-690 |#1|) $) NIL (|has| |#2| (-420 |#1|)))) (-2214 (($ $ $) NIL)) (-1636 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1749 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2059 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1716 (($) 19 T CONST)) (-2936 (((-112) $ $) NIL)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) 20)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-636 |#1| |#2|) (-13 (-745 |#1|) (-614 |#2|) (-10 -8 (-15 -4132 ($ |#2|)) (IF (|has| |#2| (-420 |#1|)) (-6 (-420 |#1|)) |%noBranch|) (IF (|has| |#2| (-369 |#1|)) (-6 (-369 |#1|)) |%noBranch|))) (-172) (-745 |#1|)) (T -636))
-((-4132 (*1 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-636 *3 *2)) (-4 *2 (-745 *3)))))
-(-13 (-745 |#1|) (-614 |#2|) (-10 -8 (-15 -4132 ($ |#2|)) (IF (|has| |#2| (-420 |#1|)) (-6 (-420 |#1|)) |%noBranch|) (IF (|has| |#2| (-369 |#1|)) (-6 (-369 |#1|)) |%noBranch|)))
-((-2677 (((-3 (-844 |#2|) "failed") |#2| (-295 |#2|) (-1160)) 106) (((-3 (-844 |#2|) (-2 (|:| |leftHandLimit| (-3 (-844 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-844 |#2|) "failed"))) "failed") |#2| (-295 (-844 |#2|))) 131)) (-1777 (((-3 (-834 |#2|) "failed") |#2| (-295 (-834 |#2|))) 136)))
-(((-637 |#1| |#2|) (-10 -7 (-15 -2677 ((-3 (-844 |#2|) (-2 (|:| |leftHandLimit| (-3 (-844 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-844 |#2|) "failed"))) "failed") |#2| (-295 (-844 |#2|)))) (-15 -1777 ((-3 (-834 |#2|) "failed") |#2| (-295 (-834 |#2|)))) (-15 -2677 ((-3 (-844 |#2|) "failed") |#2| (-295 |#2|) (-1160)))) (-13 (-455) (-1040 (-567)) (-640 (-567))) (-13 (-27) (-1203) (-433 |#1|))) (T -637))
-((-2677 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-295 *3)) (-5 *5 (-1160)) (-4 *3 (-13 (-27) (-1203) (-433 *6))) (-4 *6 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-844 *3)) (-5 *1 (-637 *6 *3)))) (-1777 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-295 (-834 *3))) (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-834 *3)) (-5 *1 (-637 *5 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *5))))) (-2677 (*1 *2 *3 *4) (-12 (-5 *4 (-295 (-844 *3))) (-4 *3 (-13 (-27) (-1203) (-433 *5))) (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-3 (-844 *3) (-2 (|:| |leftHandLimit| (-3 (-844 *3) "failed")) (|:| |rightHandLimit| (-3 (-844 *3) "failed"))) "failed")) (-5 *1 (-637 *5 *3)))))
-(-10 -7 (-15 -2677 ((-3 (-844 |#2|) (-2 (|:| |leftHandLimit| (-3 (-844 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-844 |#2|) "failed"))) "failed") |#2| (-295 (-844 |#2|)))) (-15 -1777 ((-3 (-834 |#2|) "failed") |#2| (-295 (-834 |#2|)))) (-15 -2677 ((-3 (-844 |#2|) "failed") |#2| (-295 |#2|) (-1160))))
-((-2677 (((-3 (-844 (-410 (-954 |#1|))) "failed") (-410 (-954 |#1|)) (-295 (-410 (-954 |#1|))) (-1160)) 86) (((-3 (-844 (-410 (-954 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-844 (-410 (-954 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-844 (-410 (-954 |#1|))) "failed"))) "failed") (-410 (-954 |#1|)) (-295 (-410 (-954 |#1|)))) 20) (((-3 (-844 (-410 (-954 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-844 (-410 (-954 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-844 (-410 (-954 |#1|))) "failed"))) "failed") (-410 (-954 |#1|)) (-295 (-844 (-954 |#1|)))) 35)) (-1777 (((-834 (-410 (-954 |#1|))) (-410 (-954 |#1|)) (-295 (-410 (-954 |#1|)))) 23) (((-834 (-410 (-954 |#1|))) (-410 (-954 |#1|)) (-295 (-834 (-954 |#1|)))) 43)))
-(((-638 |#1|) (-10 -7 (-15 -2677 ((-3 (-844 (-410 (-954 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-844 (-410 (-954 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-844 (-410 (-954 |#1|))) "failed"))) "failed") (-410 (-954 |#1|)) (-295 (-844 (-954 |#1|))))) (-15 -2677 ((-3 (-844 (-410 (-954 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-844 (-410 (-954 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-844 (-410 (-954 |#1|))) "failed"))) "failed") (-410 (-954 |#1|)) (-295 (-410 (-954 |#1|))))) (-15 -1777 ((-834 (-410 (-954 |#1|))) (-410 (-954 |#1|)) (-295 (-834 (-954 |#1|))))) (-15 -1777 ((-834 (-410 (-954 |#1|))) (-410 (-954 |#1|)) (-295 (-410 (-954 |#1|))))) (-15 -2677 ((-3 (-844 (-410 (-954 |#1|))) "failed") (-410 (-954 |#1|)) (-295 (-410 (-954 |#1|))) (-1160)))) (-455)) (T -638))
-((-2677 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-295 (-410 (-954 *6)))) (-5 *5 (-1160)) (-5 *3 (-410 (-954 *6))) (-4 *6 (-455)) (-5 *2 (-844 *3)) (-5 *1 (-638 *6)))) (-1777 (*1 *2 *3 *4) (-12 (-5 *4 (-295 (-410 (-954 *5)))) (-5 *3 (-410 (-954 *5))) (-4 *5 (-455)) (-5 *2 (-834 *3)) (-5 *1 (-638 *5)))) (-1777 (*1 *2 *3 *4) (-12 (-5 *4 (-295 (-834 (-954 *5)))) (-4 *5 (-455)) (-5 *2 (-834 (-410 (-954 *5)))) (-5 *1 (-638 *5)) (-5 *3 (-410 (-954 *5))))) (-2677 (*1 *2 *3 *4) (-12 (-5 *4 (-295 (-410 (-954 *5)))) (-5 *3 (-410 (-954 *5))) (-4 *5 (-455)) (-5 *2 (-3 (-844 *3) (-2 (|:| |leftHandLimit| (-3 (-844 *3) "failed")) (|:| |rightHandLimit| (-3 (-844 *3) "failed"))) "failed")) (-5 *1 (-638 *5)))) (-2677 (*1 *2 *3 *4) (-12 (-5 *4 (-295 (-844 (-954 *5)))) (-4 *5 (-455)) (-5 *2 (-3 (-844 (-410 (-954 *5))) (-2 (|:| |leftHandLimit| (-3 (-844 (-410 (-954 *5))) "failed")) (|:| |rightHandLimit| (-3 (-844 (-410 (-954 *5))) "failed"))) "failed")) (-5 *1 (-638 *5)) (-5 *3 (-410 (-954 *5))))))
-(-10 -7 (-15 -2677 ((-3 (-844 (-410 (-954 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-844 (-410 (-954 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-844 (-410 (-954 |#1|))) "failed"))) "failed") (-410 (-954 |#1|)) (-295 (-844 (-954 |#1|))))) (-15 -2677 ((-3 (-844 (-410 (-954 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-844 (-410 (-954 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-844 (-410 (-954 |#1|))) "failed"))) "failed") (-410 (-954 |#1|)) (-295 (-410 (-954 |#1|))))) (-15 -1777 ((-834 (-410 (-954 |#1|))) (-410 (-954 |#1|)) (-295 (-834 (-954 |#1|))))) (-15 -1777 ((-834 (-410 (-954 |#1|))) (-410 (-954 |#1|)) (-295 (-410 (-954 |#1|))))) (-15 -2677 ((-3 (-844 (-410 (-954 |#1|))) "failed") (-410 (-954 |#1|)) (-295 (-410 (-954 |#1|))) (-1160))))
-((-4008 (((-3 (-1268 (-410 |#1|)) "failed") (-1268 |#2|) |#2|) 64 (-1657 (|has| |#1| (-365)))) (((-3 (-1268 |#1|) "failed") (-1268 |#2|) |#2|) 49 (|has| |#1| (-365)))) (-4217 (((-112) (-1268 |#2|)) 33)) (-2241 (((-3 (-1268 |#1|) "failed") (-1268 |#2|)) 40)))
-(((-639 |#1| |#2|) (-10 -7 (-15 -4217 ((-112) (-1268 |#2|))) (-15 -2241 ((-3 (-1268 |#1|) "failed") (-1268 |#2|))) (IF (|has| |#1| (-365)) (-15 -4008 ((-3 (-1268 |#1|) "failed") (-1268 |#2|) |#2|)) (-15 -4008 ((-3 (-1268 (-410 |#1|)) "failed") (-1268 |#2|) |#2|)))) (-559) (-640 |#1|)) (T -639))
-((-4008 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1268 *4)) (-4 *4 (-640 *5)) (-1657 (-4 *5 (-365))) (-4 *5 (-559)) (-5 *2 (-1268 (-410 *5))) (-5 *1 (-639 *5 *4)))) (-4008 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1268 *4)) (-4 *4 (-640 *5)) (-4 *5 (-365)) (-4 *5 (-559)) (-5 *2 (-1268 *5)) (-5 *1 (-639 *5 *4)))) (-2241 (*1 *2 *3) (|partial| -12 (-5 *3 (-1268 *5)) (-4 *5 (-640 *4)) (-4 *4 (-559)) (-5 *2 (-1268 *4)) (-5 *1 (-639 *4 *5)))) (-4217 (*1 *2 *3) (-12 (-5 *3 (-1268 *5)) (-4 *5 (-640 *4)) (-4 *4 (-559)) (-5 *2 (-112)) (-5 *1 (-639 *4 *5)))))
-(-10 -7 (-15 -4217 ((-112) (-1268 |#2|))) (-15 -2241 ((-3 (-1268 |#1|) "failed") (-1268 |#2|))) (IF (|has| |#1| (-365)) (-15 -4008 ((-3 (-1268 |#1|) "failed") (-1268 |#2|) |#2|)) (-15 -4008 ((-3 (-1268 (-410 |#1|)) "failed") (-1268 |#2|) |#2|))))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-2630 (((-690 |#1|) (-690 $)) 40) (((-2 (|:| -2316 (-690 |#1|)) (|:| |vec| (-1268 |#1|))) (-690 $) (-1268 $)) 39)) (-2109 (((-3 $ "failed") $) 37)) (-1433 (((-112) $) 35)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12) (($ (-567)) 33)) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27)))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-4369 (((-3 $ "failed")) NIL (-2811 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-2376 (((-3 $ "failed") $ $) NIL)) (-1483 (((-1269 (-690 |#1|))) NIL (|has| |#2| (-420 |#1|))) (((-1269 (-690 |#1|)) (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-3967 (((-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-3647 (($) NIL T CONST)) (-1421 (((-3 (-2 (|:| |particular| $) (|:| -2144 (-645 $))) "failed")) NIL (-2811 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-4297 (((-3 $ "failed")) NIL (-2811 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-1852 (((-690 |#1|)) NIL (|has| |#2| (-420 |#1|))) (((-690 |#1|) (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-3382 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-1639 (((-690 |#1|) $) NIL (|has| |#2| (-420 |#1|))) (((-690 |#1|) $ (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-2810 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-1588 (((-1175 (-954 |#1|))) NIL (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-365))))) (-3757 (($ $ (-923)) NIL)) (-1868 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-2479 (((-1175 |#1|) $) NIL (-2811 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-3878 ((|#1|) NIL (|has| |#2| (-420 |#1|))) ((|#1| (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-2309 (((-1175 |#1|) $) NIL (|has| |#2| (-369 |#1|)))) (-2720 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3111 (($ (-1269 |#1|)) NIL (|has| |#2| (-420 |#1|))) (($ (-1269 |#1|) (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-3588 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-1976 (((-923)) NIL (|has| |#2| (-369 |#1|)))) (-2957 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2112 (($ $ (-923)) NIL)) (-4388 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2655 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2304 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2488 (((-3 (-2 (|:| |particular| $) (|:| -2144 (-645 $))) "failed")) NIL (-2811 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-3428 (((-3 $ "failed")) NIL (-2811 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-3060 (((-690 |#1|)) NIL (|has| |#2| (-420 |#1|))) (((-690 |#1|) (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-1735 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-2227 (((-690 |#1|) $) NIL (|has| |#2| (-420 |#1|))) (((-690 |#1|) $ (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-2213 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-3785 (((-1175 (-954 |#1|))) NIL (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-365))))) (-3884 (($ $ (-923)) NIL)) (-3233 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-4063 (((-1175 |#1|) $) NIL (-2811 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-2976 ((|#1|) NIL (|has| |#2| (-420 |#1|))) ((|#1| (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-1694 (((-1175 |#1|) $) NIL (|has| |#2| (-369 |#1|)))) (-3332 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2516 (((-1161) $) NIL)) (-4368 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3498 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2467 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3437 (((-1122) $) NIL)) (-3485 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1801 ((|#1| $ (-567)) NIL (|has| |#2| (-420 |#1|)))) (-3088 (((-690 |#1|) (-1269 $)) NIL (|has| |#2| (-420 |#1|))) (((-1269 |#1|) $) NIL (|has| |#2| (-420 |#1|))) (((-690 |#1|) (-1269 $) (-1269 $)) NIL (|has| |#2| (-369 |#1|))) (((-1269 |#1|) $ (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-3902 (($ (-1269 |#1|)) NIL (|has| |#2| (-420 |#1|))) (((-1269 |#1|) $) NIL (|has| |#2| (-420 |#1|)))) (-3981 (((-645 (-954 |#1|))) NIL (|has| |#2| (-420 |#1|))) (((-645 (-954 |#1|)) (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-3997 (($ $ $) NIL)) (-3568 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-4129 (((-863) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-3357 (((-112) $ $) NIL)) (-2144 (((-1269 $)) NIL (|has| |#2| (-420 |#1|)))) (-2628 (((-645 (-1269 |#1|))) NIL (-2811 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-2047 (($ $ $ $) NIL)) (-1996 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2364 (($ (-690 |#1|) $) NIL (|has| |#2| (-420 |#1|)))) (-2188 (($ $ $) NIL)) (-3970 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3741 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3220 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1733 (($) 19 T CONST)) (-2946 (((-112) $ $) NIL)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-923)) 20)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-636 |#1| |#2|) (-13 (-745 |#1|) (-614 |#2|) (-10 -8 (-15 -4129 ($ |#2|)) (IF (|has| |#2| (-420 |#1|)) (-6 (-420 |#1|)) |%noBranch|) (IF (|has| |#2| (-369 |#1|)) (-6 (-369 |#1|)) |%noBranch|))) (-172) (-745 |#1|)) (T -636))
+((-4129 (*1 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-636 *3 *2)) (-4 *2 (-745 *3)))))
+(-13 (-745 |#1|) (-614 |#2|) (-10 -8 (-15 -4129 ($ |#2|)) (IF (|has| |#2| (-420 |#1|)) (-6 (-420 |#1|)) |%noBranch|) (IF (|has| |#2| (-369 |#1|)) (-6 (-369 |#1|)) |%noBranch|)))
+((-3987 (((-3 (-844 |#2|) "failed") |#2| (-295 |#2|) (-1161)) 106) (((-3 (-844 |#2|) (-2 (|:| |leftHandLimit| (-3 (-844 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-844 |#2|) "failed"))) "failed") |#2| (-295 (-844 |#2|))) 131)) (-1546 (((-3 (-834 |#2|) "failed") |#2| (-295 (-834 |#2|))) 136)))
+(((-637 |#1| |#2|) (-10 -7 (-15 -3987 ((-3 (-844 |#2|) (-2 (|:| |leftHandLimit| (-3 (-844 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-844 |#2|) "failed"))) "failed") |#2| (-295 (-844 |#2|)))) (-15 -1546 ((-3 (-834 |#2|) "failed") |#2| (-295 (-834 |#2|)))) (-15 -3987 ((-3 (-844 |#2|) "failed") |#2| (-295 |#2|) (-1161)))) (-13 (-455) (-1040 (-567)) (-640 (-567))) (-13 (-27) (-1204) (-433 |#1|))) (T -637))
+((-3987 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-295 *3)) (-5 *5 (-1161)) (-4 *3 (-13 (-27) (-1204) (-433 *6))) (-4 *6 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-844 *3)) (-5 *1 (-637 *6 *3)))) (-1546 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-295 (-834 *3))) (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-834 *3)) (-5 *1 (-637 *5 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *5))))) (-3987 (*1 *2 *3 *4) (-12 (-5 *4 (-295 (-844 *3))) (-4 *3 (-13 (-27) (-1204) (-433 *5))) (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-3 (-844 *3) (-2 (|:| |leftHandLimit| (-3 (-844 *3) "failed")) (|:| |rightHandLimit| (-3 (-844 *3) "failed"))) "failed")) (-5 *1 (-637 *5 *3)))))
+(-10 -7 (-15 -3987 ((-3 (-844 |#2|) (-2 (|:| |leftHandLimit| (-3 (-844 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-844 |#2|) "failed"))) "failed") |#2| (-295 (-844 |#2|)))) (-15 -1546 ((-3 (-834 |#2|) "failed") |#2| (-295 (-834 |#2|)))) (-15 -3987 ((-3 (-844 |#2|) "failed") |#2| (-295 |#2|) (-1161))))
+((-3987 (((-3 (-844 (-410 (-954 |#1|))) "failed") (-410 (-954 |#1|)) (-295 (-410 (-954 |#1|))) (-1161)) 86) (((-3 (-844 (-410 (-954 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-844 (-410 (-954 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-844 (-410 (-954 |#1|))) "failed"))) "failed") (-410 (-954 |#1|)) (-295 (-410 (-954 |#1|)))) 20) (((-3 (-844 (-410 (-954 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-844 (-410 (-954 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-844 (-410 (-954 |#1|))) "failed"))) "failed") (-410 (-954 |#1|)) (-295 (-844 (-954 |#1|)))) 35)) (-1546 (((-834 (-410 (-954 |#1|))) (-410 (-954 |#1|)) (-295 (-410 (-954 |#1|)))) 23) (((-834 (-410 (-954 |#1|))) (-410 (-954 |#1|)) (-295 (-834 (-954 |#1|)))) 43)))
+(((-638 |#1|) (-10 -7 (-15 -3987 ((-3 (-844 (-410 (-954 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-844 (-410 (-954 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-844 (-410 (-954 |#1|))) "failed"))) "failed") (-410 (-954 |#1|)) (-295 (-844 (-954 |#1|))))) (-15 -3987 ((-3 (-844 (-410 (-954 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-844 (-410 (-954 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-844 (-410 (-954 |#1|))) "failed"))) "failed") (-410 (-954 |#1|)) (-295 (-410 (-954 |#1|))))) (-15 -1546 ((-834 (-410 (-954 |#1|))) (-410 (-954 |#1|)) (-295 (-834 (-954 |#1|))))) (-15 -1546 ((-834 (-410 (-954 |#1|))) (-410 (-954 |#1|)) (-295 (-410 (-954 |#1|))))) (-15 -3987 ((-3 (-844 (-410 (-954 |#1|))) "failed") (-410 (-954 |#1|)) (-295 (-410 (-954 |#1|))) (-1161)))) (-455)) (T -638))
+((-3987 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-295 (-410 (-954 *6)))) (-5 *5 (-1161)) (-5 *3 (-410 (-954 *6))) (-4 *6 (-455)) (-5 *2 (-844 *3)) (-5 *1 (-638 *6)))) (-1546 (*1 *2 *3 *4) (-12 (-5 *4 (-295 (-410 (-954 *5)))) (-5 *3 (-410 (-954 *5))) (-4 *5 (-455)) (-5 *2 (-834 *3)) (-5 *1 (-638 *5)))) (-1546 (*1 *2 *3 *4) (-12 (-5 *4 (-295 (-834 (-954 *5)))) (-4 *5 (-455)) (-5 *2 (-834 (-410 (-954 *5)))) (-5 *1 (-638 *5)) (-5 *3 (-410 (-954 *5))))) (-3987 (*1 *2 *3 *4) (-12 (-5 *4 (-295 (-410 (-954 *5)))) (-5 *3 (-410 (-954 *5))) (-4 *5 (-455)) (-5 *2 (-3 (-844 *3) (-2 (|:| |leftHandLimit| (-3 (-844 *3) "failed")) (|:| |rightHandLimit| (-3 (-844 *3) "failed"))) "failed")) (-5 *1 (-638 *5)))) (-3987 (*1 *2 *3 *4) (-12 (-5 *4 (-295 (-844 (-954 *5)))) (-4 *5 (-455)) (-5 *2 (-3 (-844 (-410 (-954 *5))) (-2 (|:| |leftHandLimit| (-3 (-844 (-410 (-954 *5))) "failed")) (|:| |rightHandLimit| (-3 (-844 (-410 (-954 *5))) "failed"))) "failed")) (-5 *1 (-638 *5)) (-5 *3 (-410 (-954 *5))))))
+(-10 -7 (-15 -3987 ((-3 (-844 (-410 (-954 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-844 (-410 (-954 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-844 (-410 (-954 |#1|))) "failed"))) "failed") (-410 (-954 |#1|)) (-295 (-844 (-954 |#1|))))) (-15 -3987 ((-3 (-844 (-410 (-954 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-844 (-410 (-954 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-844 (-410 (-954 |#1|))) "failed"))) "failed") (-410 (-954 |#1|)) (-295 (-410 (-954 |#1|))))) (-15 -1546 ((-834 (-410 (-954 |#1|))) (-410 (-954 |#1|)) (-295 (-834 (-954 |#1|))))) (-15 -1546 ((-834 (-410 (-954 |#1|))) (-410 (-954 |#1|)) (-295 (-410 (-954 |#1|))))) (-15 -3987 ((-3 (-844 (-410 (-954 |#1|))) "failed") (-410 (-954 |#1|)) (-295 (-410 (-954 |#1|))) (-1161))))
+((-1531 (((-3 (-1269 (-410 |#1|)) "failed") (-1269 |#2|) |#2|) 64 (-1673 (|has| |#1| (-365)))) (((-3 (-1269 |#1|) "failed") (-1269 |#2|) |#2|) 49 (|has| |#1| (-365)))) (-3538 (((-112) (-1269 |#2|)) 33)) (-2338 (((-3 (-1269 |#1|) "failed") (-1269 |#2|)) 40)))
+(((-639 |#1| |#2|) (-10 -7 (-15 -3538 ((-112) (-1269 |#2|))) (-15 -2338 ((-3 (-1269 |#1|) "failed") (-1269 |#2|))) (IF (|has| |#1| (-365)) (-15 -1531 ((-3 (-1269 |#1|) "failed") (-1269 |#2|) |#2|)) (-15 -1531 ((-3 (-1269 (-410 |#1|)) "failed") (-1269 |#2|) |#2|)))) (-559) (-640 |#1|)) (T -639))
+((-1531 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1269 *4)) (-4 *4 (-640 *5)) (-1673 (-4 *5 (-365))) (-4 *5 (-559)) (-5 *2 (-1269 (-410 *5))) (-5 *1 (-639 *5 *4)))) (-1531 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1269 *4)) (-4 *4 (-640 *5)) (-4 *5 (-365)) (-4 *5 (-559)) (-5 *2 (-1269 *5)) (-5 *1 (-639 *5 *4)))) (-2338 (*1 *2 *3) (|partial| -12 (-5 *3 (-1269 *5)) (-4 *5 (-640 *4)) (-4 *4 (-559)) (-5 *2 (-1269 *4)) (-5 *1 (-639 *4 *5)))) (-3538 (*1 *2 *3) (-12 (-5 *3 (-1269 *5)) (-4 *5 (-640 *4)) (-4 *4 (-559)) (-5 *2 (-112)) (-5 *1 (-639 *4 *5)))))
+(-10 -7 (-15 -3538 ((-112) (-1269 |#2|))) (-15 -2338 ((-3 (-1269 |#1|) "failed") (-1269 |#2|))) (IF (|has| |#1| (-365)) (-15 -1531 ((-3 (-1269 |#1|) "failed") (-1269 |#2|) |#2|)) (-15 -1531 ((-3 (-1269 (-410 |#1|)) "failed") (-1269 |#2|) |#2|))))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-2376 (((-3 $ "failed") $ $) 20)) (-3647 (($) 18 T CONST)) (-1423 (((-690 |#1|) (-690 $)) 40) (((-2 (|:| -4208 (-690 |#1|)) (|:| |vec| (-1269 |#1|))) (-690 $) (-1269 $)) 39)) (-3588 (((-3 $ "failed") $) 37)) (-4346 (((-112) $) 35)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-4129 (((-863) $) 12) (($ (-567)) 33)) (-2746 (((-772)) 32 T CONST)) (-3357 (((-112) $ $) 9)) (-1733 (($) 19 T CONST)) (-1744 (($) 34 T CONST)) (-2946 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27)))
(((-640 |#1|) (-140) (-1051)) (T -640))
-((-2630 (*1 *2 *3) (-12 (-5 *3 (-690 *1)) (-4 *1 (-640 *4)) (-4 *4 (-1051)) (-5 *2 (-690 *4)))) (-2630 (*1 *2 *3 *4) (-12 (-5 *3 (-690 *1)) (-5 *4 (-1268 *1)) (-4 *1 (-640 *5)) (-4 *5 (-1051)) (-5 *2 (-2 (|:| -2316 (-690 *5)) (|:| |vec| (-1268 *5)))))))
-(-13 (-1051) (-10 -8 (-15 -2630 ((-690 |t#1|) (-690 $))) (-15 -2630 ((-2 (|:| -2316 (-690 |t#1|)) (|:| |vec| (-1268 |t#1|))) (-690 $) (-1268 $)))))
+((-1423 (*1 *2 *3) (-12 (-5 *3 (-690 *1)) (-4 *1 (-640 *4)) (-4 *4 (-1051)) (-5 *2 (-690 *4)))) (-1423 (*1 *2 *3 *4) (-12 (-5 *3 (-690 *1)) (-5 *4 (-1269 *1)) (-4 *1 (-640 *5)) (-4 *5 (-1051)) (-5 *2 (-2 (|:| -4208 (-690 *5)) (|:| |vec| (-1269 *5)))))))
+(-13 (-1051) (-10 -8 (-15 -1423 ((-690 |t#1|) (-690 $))) (-15 -1423 ((-2 (|:| -4208 (-690 |t#1|)) (|:| |vec| (-1269 |t#1|))) (-690 $) (-1269 $)))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-617 (-567)) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-727) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 15)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-1716 (($) 16 T CONST)) (-2936 (((-112) $ $) 6)) (* (($ |#1| $) 14) (($ $ |#1|) 19)))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 15)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-4129 (((-863) $) 12)) (-3357 (((-112) $ $) 9)) (-1733 (($) 16 T CONST)) (-2946 (((-112) $ $) 6)) (* (($ |#1| $) 14) (($ $ |#1|) 19)))
(((-641 |#1|) (-140) (-1060)) (T -641))
NIL
(-13 (-647 |t#1|) (-1053 |t#1|))
(((-102) . T) ((-614 (-863)) . T) ((-647 |#1|) . T) ((-1053 |#1|) . T) ((-1102) . T))
((-4197 ((|#2| (-645 |#1|) (-645 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-645 |#1|) (-645 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-645 |#1|) (-645 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-645 |#1|) (-645 |#2|) |#2|) 17) ((|#2| (-645 |#1|) (-645 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-645 |#1|) (-645 |#2|)) 12)))
-(((-642 |#1| |#2|) (-10 -7 (-15 -4197 ((-1 |#2| |#1|) (-645 |#1|) (-645 |#2|))) (-15 -4197 (|#2| (-645 |#1|) (-645 |#2|) |#1|)) (-15 -4197 ((-1 |#2| |#1|) (-645 |#1|) (-645 |#2|) |#2|)) (-15 -4197 (|#2| (-645 |#1|) (-645 |#2|) |#1| |#2|)) (-15 -4197 ((-1 |#2| |#1|) (-645 |#1|) (-645 |#2|) (-1 |#2| |#1|))) (-15 -4197 (|#2| (-645 |#1|) (-645 |#2|) |#1| (-1 |#2| |#1|)))) (-1102) (-1218)) (T -642))
-((-4197 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-645 *5)) (-5 *4 (-645 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1102)) (-4 *2 (-1218)) (-5 *1 (-642 *5 *2)))) (-4197 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-645 *5)) (-5 *4 (-645 *6)) (-4 *5 (-1102)) (-4 *6 (-1218)) (-5 *1 (-642 *5 *6)))) (-4197 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-645 *5)) (-5 *4 (-645 *2)) (-4 *5 (-1102)) (-4 *2 (-1218)) (-5 *1 (-642 *5 *2)))) (-4197 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-645 *6)) (-5 *4 (-645 *5)) (-4 *6 (-1102)) (-4 *5 (-1218)) (-5 *2 (-1 *5 *6)) (-5 *1 (-642 *6 *5)))) (-4197 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-645 *5)) (-5 *4 (-645 *2)) (-4 *5 (-1102)) (-4 *2 (-1218)) (-5 *1 (-642 *5 *2)))) (-4197 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *5)) (-5 *4 (-645 *6)) (-4 *5 (-1102)) (-4 *6 (-1218)) (-5 *2 (-1 *6 *5)) (-5 *1 (-642 *5 *6)))))
+(((-642 |#1| |#2|) (-10 -7 (-15 -4197 ((-1 |#2| |#1|) (-645 |#1|) (-645 |#2|))) (-15 -4197 (|#2| (-645 |#1|) (-645 |#2|) |#1|)) (-15 -4197 ((-1 |#2| |#1|) (-645 |#1|) (-645 |#2|) |#2|)) (-15 -4197 (|#2| (-645 |#1|) (-645 |#2|) |#1| |#2|)) (-15 -4197 ((-1 |#2| |#1|) (-645 |#1|) (-645 |#2|) (-1 |#2| |#1|))) (-15 -4197 (|#2| (-645 |#1|) (-645 |#2|) |#1| (-1 |#2| |#1|)))) (-1102) (-1219)) (T -642))
+((-4197 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-645 *5)) (-5 *4 (-645 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1102)) (-4 *2 (-1219)) (-5 *1 (-642 *5 *2)))) (-4197 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-645 *5)) (-5 *4 (-645 *6)) (-4 *5 (-1102)) (-4 *6 (-1219)) (-5 *1 (-642 *5 *6)))) (-4197 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-645 *5)) (-5 *4 (-645 *2)) (-4 *5 (-1102)) (-4 *2 (-1219)) (-5 *1 (-642 *5 *2)))) (-4197 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-645 *6)) (-5 *4 (-645 *5)) (-4 *6 (-1102)) (-4 *5 (-1219)) (-5 *2 (-1 *5 *6)) (-5 *1 (-642 *6 *5)))) (-4197 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-645 *5)) (-5 *4 (-645 *2)) (-4 *5 (-1102)) (-4 *2 (-1219)) (-5 *1 (-642 *5 *2)))) (-4197 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *5)) (-5 *4 (-645 *6)) (-4 *5 (-1102)) (-4 *6 (-1219)) (-5 *2 (-1 *6 *5)) (-5 *1 (-642 *5 *6)))))
(-10 -7 (-15 -4197 ((-1 |#2| |#1|) (-645 |#1|) (-645 |#2|))) (-15 -4197 (|#2| (-645 |#1|) (-645 |#2|) |#1|)) (-15 -4197 ((-1 |#2| |#1|) (-645 |#1|) (-645 |#2|) |#2|)) (-15 -4197 (|#2| (-645 |#1|) (-645 |#2|) |#1| |#2|)) (-15 -4197 ((-1 |#2| |#1|) (-645 |#1|) (-645 |#2|) (-1 |#2| |#1|))) (-15 -4197 (|#2| (-645 |#1|) (-645 |#2|) |#1| (-1 |#2| |#1|))))
-((-2788 (((-645 |#2|) (-1 |#2| |#1| |#2|) (-645 |#1|) |#2|) 16)) (-2477 ((|#2| (-1 |#2| |#1| |#2|) (-645 |#1|) |#2|) 18)) (-3829 (((-645 |#2|) (-1 |#2| |#1|) (-645 |#1|)) 13)))
-(((-643 |#1| |#2|) (-10 -7 (-15 -2788 ((-645 |#2|) (-1 |#2| |#1| |#2|) (-645 |#1|) |#2|)) (-15 -2477 (|#2| (-1 |#2| |#1| |#2|) (-645 |#1|) |#2|)) (-15 -3829 ((-645 |#2|) (-1 |#2| |#1|) (-645 |#1|)))) (-1218) (-1218)) (T -643))
-((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-645 *5)) (-4 *5 (-1218)) (-4 *6 (-1218)) (-5 *2 (-645 *6)) (-5 *1 (-643 *5 *6)))) (-2477 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-645 *5)) (-4 *5 (-1218)) (-4 *2 (-1218)) (-5 *1 (-643 *5 *2)))) (-2788 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-645 *6)) (-4 *6 (-1218)) (-4 *5 (-1218)) (-5 *2 (-645 *5)) (-5 *1 (-643 *6 *5)))))
-(-10 -7 (-15 -2788 ((-645 |#2|) (-1 |#2| |#1| |#2|) (-645 |#1|) |#2|)) (-15 -2477 (|#2| (-1 |#2| |#1| |#2|) (-645 |#1|) |#2|)) (-15 -3829 ((-645 |#2|) (-1 |#2| |#1|) (-645 |#1|))))
-((-3829 (((-645 |#3|) (-1 |#3| |#1| |#2|) (-645 |#1|) (-645 |#2|)) 21)))
-(((-644 |#1| |#2| |#3|) (-10 -7 (-15 -3829 ((-645 |#3|) (-1 |#3| |#1| |#2|) (-645 |#1|) (-645 |#2|)))) (-1218) (-1218) (-1218)) (T -644))
-((-3829 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-645 *6)) (-5 *5 (-645 *7)) (-4 *6 (-1218)) (-4 *7 (-1218)) (-4 *8 (-1218)) (-5 *2 (-645 *8)) (-5 *1 (-644 *6 *7 *8)))))
-(-10 -7 (-15 -3829 ((-645 |#3|) (-1 |#3| |#1| |#2|) (-645 |#1|) (-645 |#2|))))
-((-2403 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3802 ((|#1| $) NIL)) (-3998 ((|#1| $) NIL)) (-4283 (($ $) NIL)) (-1783 (((-1273) $ (-567) (-567)) NIL (|has| $ (-6 -4419)))) (-2366 (($ $ (-567)) NIL (|has| $ (-6 -4419)))) (-2496 (((-112) $) NIL (|has| |#1| (-851))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4419)) (|has| |#1| (-851)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4419)))) (-4396 (($ $) NIL (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3445 (((-112) $ (-772)) NIL)) (-2138 ((|#1| $ |#1|) NIL (|has| $ (-6 -4419)))) (-4209 (($ $ $) NIL (|has| $ (-6 -4419)))) (-2315 ((|#1| $ |#1|) NIL (|has| $ (-6 -4419)))) (-2271 ((|#1| $ |#1|) NIL (|has| $ (-6 -4419)))) (-4284 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4419))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4419))) (($ $ "rest" $) NIL (|has| $ (-6 -4419))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4419))) ((|#1| $ (-1235 (-567)) |#1|) NIL (|has| $ (-6 -4419))) ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4419)))) (-1301 (($ $ (-645 $)) NIL (|has| $ (-6 -4419)))) (-2343 (($ $ $) 37 (|has| |#1| (-1102)))) (-2332 (($ $ $) 41 (|has| |#1| (-1102)))) (-2318 (($ $ $) 44 (|has| |#1| (-1102)))) (-2839 (($ (-1 (-112) |#1|) $) NIL)) (-3350 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-3984 ((|#1| $) NIL)) (-2585 (($) NIL T CONST)) (-1764 (($ $) NIL (|has| $ (-6 -4419)))) (-3584 (($ $) NIL)) (-2421 (($ $) 23) (($ $ (-772)) NIL)) (-2133 (($ $) NIL (|has| |#1| (-1102)))) (-2444 (($ $) 36 (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2539 (($ |#1| $) NIL (|has| |#1| (-1102))) (($ (-1 (-112) |#1|) $) NIL)) (-3238 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2477 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-3741 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4419)))) (-3680 ((|#1| $ (-567)) NIL)) (-1399 (((-112) $) NIL)) (-2569 (((-567) |#1| $ (-567)) NIL (|has| |#1| (-1102))) (((-567) |#1| $) NIL (|has| |#1| (-1102))) (((-567) (-1 (-112) |#1|) $) NIL)) (-2777 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-1642 (((-112) $) 11)) (-2182 (((-645 $) $) NIL)) (-3512 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3011 (($) 9 T CONST)) (-2846 (($ (-772) |#1|) NIL)) (-2077 (((-112) $ (-772)) NIL)) (-4069 (((-567) $) NIL (|has| (-567) (-851)))) (-1354 (($ $ $) NIL (|has| |#1| (-851)))) (-2966 (($ $ $) NIL (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-4135 (($ $ $) NIL (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2279 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) 40 (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2266 (((-567) $) NIL (|has| (-567) (-851)))) (-2981 (($ $ $) NIL (|has| |#1| (-851)))) (-3731 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2284 (($ |#1|) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-3773 (((-645 |#1|) $) NIL)) (-2769 (((-112) $) NIL)) (-1419 (((-1160) $) NIL (|has| |#1| (-1102)))) (-3257 ((|#1| $) NIL) (($ $ (-772)) NIL)) (-2531 (($ $ $ (-567)) NIL) (($ |#1| $ (-567)) NIL)) (-2845 (($ $ $ (-567)) NIL) (($ |#1| $ (-567)) NIL)) (-1789 (((-645 (-567)) $) NIL)) (-2996 (((-112) (-567) $) NIL)) (-3430 (((-1122) $) NIL (|has| |#1| (-1102)))) (-2409 ((|#1| $) 20) (($ $ (-772)) NIL)) (-4128 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3986 (($ $ |#1|) NIL (|has| $ (-6 -4419)))) (-3323 (((-112) $) NIL)) (-3025 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) NIL)) (-1794 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2339 (((-645 |#1|) $) NIL)) (-3572 (((-112) $) 39)) (-3498 (($) 38)) (-1787 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1235 (-567))) NIL) ((|#1| $ (-567)) 42) ((|#1| $ (-567) |#1|) NIL)) (-2658 (((-567) $ $) NIL)) (-3670 (($ $ (-1235 (-567))) NIL) (($ $ (-567)) NIL)) (-1560 (($ $ (-1235 (-567))) NIL) (($ $ (-567)) NIL)) (-3900 (((-112) $) NIL)) (-1644 (($ $) NIL)) (-3519 (($ $) NIL (|has| $ (-6 -4419)))) (-3344 (((-772) $) NIL)) (-1503 (($ $) NIL)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-1395 (($ $ $ (-567)) NIL (|has| $ (-6 -4419)))) (-4305 (($ $) NIL)) (-3893 (((-539) $) 53 (|has| |#1| (-615 (-539))))) (-4147 (($ (-645 |#1|)) NIL)) (-3465 (($ |#1| $) 12)) (-2484 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2269 (($ $ $) 35) (($ |#1| $) 43) (($ (-645 $)) NIL) (($ $ |#1|) NIL)) (-4132 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-1531 (((-645 $) $) NIL)) (-3606 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1745 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2760 (($ $ $) 13)) (-1853 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2904 (((-1160) $) 31 (|has| |#1| (-829))) (((-1160) $ (-112)) 32 (|has| |#1| (-829))) (((-1273) (-823) $) 33 (|has| |#1| (-829))) (((-1273) (-823) $ (-112)) 34 (|has| |#1| (-829)))) (-2997 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2971 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2936 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2984 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2958 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2414 (((-772) $) NIL (|has| $ (-6 -4418)))))
-(((-645 |#1|) (-13 (-667 |#1|) (-10 -8 (-15 -3011 ($) -3286) (-15 -1642 ((-112) $)) (-15 -3465 ($ |#1| $)) (-15 -2760 ($ $ $)) (IF (|has| |#1| (-1102)) (PROGN (-15 -2343 ($ $ $)) (-15 -2332 ($ $ $)) (-15 -2318 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-829)) (-6 (-829)) |%noBranch|))) (-1218)) (T -645))
-((-3011 (*1 *1) (-12 (-5 *1 (-645 *2)) (-4 *2 (-1218)))) (-1642 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-645 *3)) (-4 *3 (-1218)))) (-3465 (*1 *1 *2 *1) (-12 (-5 *1 (-645 *2)) (-4 *2 (-1218)))) (-2760 (*1 *1 *1 *1) (-12 (-5 *1 (-645 *2)) (-4 *2 (-1218)))) (-2343 (*1 *1 *1 *1) (-12 (-5 *1 (-645 *2)) (-4 *2 (-1102)) (-4 *2 (-1218)))) (-2332 (*1 *1 *1 *1) (-12 (-5 *1 (-645 *2)) (-4 *2 (-1102)) (-4 *2 (-1218)))) (-2318 (*1 *1 *1 *1) (-12 (-5 *1 (-645 *2)) (-4 *2 (-1102)) (-4 *2 (-1218)))))
-(-13 (-667 |#1|) (-10 -8 (-15 -3011 ($) -3286) (-15 -1642 ((-112) $)) (-15 -3465 ($ |#1| $)) (-15 -2760 ($ $ $)) (IF (|has| |#1| (-1102)) (PROGN (-15 -2343 ($ $ $)) (-15 -2332 ($ $ $)) (-15 -2318 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-829)) (-6 (-829)) |%noBranch|)))
-((-2403 (((-112) $ $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 11) (($ (-1183)) NIL) (((-1183) $) NIL) ((|#1| $) 8)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)))
+((-3400 (((-645 |#2|) (-1 |#2| |#1| |#2|) (-645 |#1|) |#2|) 16)) (-2494 ((|#2| (-1 |#2| |#1| |#2|) (-645 |#1|) |#2|) 18)) (-3841 (((-645 |#2|) (-1 |#2| |#1|) (-645 |#1|)) 13)))
+(((-643 |#1| |#2|) (-10 -7 (-15 -3400 ((-645 |#2|) (-1 |#2| |#1| |#2|) (-645 |#1|) |#2|)) (-15 -2494 (|#2| (-1 |#2| |#1| |#2|) (-645 |#1|) |#2|)) (-15 -3841 ((-645 |#2|) (-1 |#2| |#1|) (-645 |#1|)))) (-1219) (-1219)) (T -643))
+((-3841 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-645 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) (-5 *2 (-645 *6)) (-5 *1 (-643 *5 *6)))) (-2494 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-645 *5)) (-4 *5 (-1219)) (-4 *2 (-1219)) (-5 *1 (-643 *5 *2)))) (-3400 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-645 *6)) (-4 *6 (-1219)) (-4 *5 (-1219)) (-5 *2 (-645 *5)) (-5 *1 (-643 *6 *5)))))
+(-10 -7 (-15 -3400 ((-645 |#2|) (-1 |#2| |#1| |#2|) (-645 |#1|) |#2|)) (-15 -2494 (|#2| (-1 |#2| |#1| |#2|) (-645 |#1|) |#2|)) (-15 -3841 ((-645 |#2|) (-1 |#2| |#1|) (-645 |#1|))))
+((-3841 (((-645 |#3|) (-1 |#3| |#1| |#2|) (-645 |#1|) (-645 |#2|)) 21)))
+(((-644 |#1| |#2| |#3|) (-10 -7 (-15 -3841 ((-645 |#3|) (-1 |#3| |#1| |#2|) (-645 |#1|) (-645 |#2|)))) (-1219) (-1219) (-1219)) (T -644))
+((-3841 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-645 *6)) (-5 *5 (-645 *7)) (-4 *6 (-1219)) (-4 *7 (-1219)) (-4 *8 (-1219)) (-5 *2 (-645 *8)) (-5 *1 (-644 *6 *7 *8)))))
+(-10 -7 (-15 -3841 ((-645 |#3|) (-1 |#3| |#1| |#2|) (-645 |#1|) (-645 |#2|))))
+((-2412 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3812 ((|#1| $) NIL)) (-4003 ((|#1| $) NIL)) (-4284 (($ $) NIL)) (-3843 (((-1274) $ (-567) (-567)) NIL (|has| $ (-6 -4423)))) (-3288 (($ $ (-567)) NIL (|has| $ (-6 -4423)))) (-3531 (((-112) $) NIL (|has| |#1| (-851))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2676 (($ $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-851)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4423)))) (-1311 (($ $) NIL (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1563 (((-112) $ (-772)) NIL)) (-4392 ((|#1| $ |#1|) NIL (|has| $ (-6 -4423)))) (-4017 (($ $ $) NIL (|has| $ (-6 -4423)))) (-4105 ((|#1| $ |#1|) NIL (|has| $ (-6 -4423)))) (-2498 ((|#1| $ |#1|) NIL (|has| $ (-6 -4423)))) (-4285 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4423))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4423))) (($ $ "rest" $) NIL (|has| $ (-6 -4423))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4423))) ((|#1| $ (-1236 (-567)) |#1|) NIL (|has| $ (-6 -4423))) ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4423)))) (-2831 (($ $ (-645 $)) NIL (|has| $ (-6 -4423)))) (-2352 (($ $ $) 37 (|has| |#1| (-1102)))) (-2340 (($ $ $) 41 (|has| |#1| (-1102)))) (-2324 (($ $ $) 44 (|has| |#1| (-1102)))) (-1494 (($ (-1 (-112) |#1|) $) NIL)) (-3356 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-3990 ((|#1| $) NIL)) (-3647 (($) NIL T CONST)) (-1602 (($ $) NIL (|has| $ (-6 -4423)))) (-3592 (($ $) NIL)) (-2430 (($ $) 23) (($ $ (-772)) NIL)) (-3837 (($ $) NIL (|has| |#1| (-1102)))) (-2453 (($ $) 36 (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-2247 (($ |#1| $) NIL (|has| |#1| (-1102))) (($ (-1 (-112) |#1|) $) NIL)) (-3246 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-2494 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3760 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4423)))) (-3703 ((|#1| $ (-567)) NIL)) (-4085 (((-112) $) NIL)) (-2578 (((-567) |#1| $ (-567)) NIL (|has| |#1| (-1102))) (((-567) |#1| $) NIL (|has| |#1| (-1102))) (((-567) (-1 (-112) |#1|) $) NIL)) (-2799 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-1660 (((-112) $) 11)) (-2070 (((-645 $) $) NIL)) (-1520 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3018 (($) 9 T CONST)) (-2858 (($ (-772) |#1|) NIL)) (-4093 (((-112) $ (-772)) NIL)) (-3895 (((-567) $) NIL (|has| (-567) (-851)))) (-1365 (($ $ $) NIL (|has| |#1| (-851)))) (-1661 (($ $ $) NIL (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2473 (($ $ $) NIL (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1942 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-3237 (((-112) |#1| $) 40 (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3255 (((-567) $) NIL (|has| (-567) (-851)))) (-3002 (($ $ $) NIL (|has| |#1| (-851)))) (-3751 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2291 (($ |#1|) NIL)) (-1986 (((-112) $ (-772)) NIL)) (-3793 (((-645 |#1|) $) NIL)) (-1323 (((-112) $) NIL)) (-2516 (((-1161) $) NIL (|has| |#1| (-1102)))) (-3266 ((|#1| $) NIL) (($ $ (-772)) NIL)) (-2646 (($ $ $ (-567)) NIL) (($ |#1| $ (-567)) NIL)) (-2857 (($ $ $ (-567)) NIL) (($ |#1| $ (-567)) NIL)) (-4364 (((-645 (-567)) $) NIL)) (-3188 (((-112) (-567) $) NIL)) (-3437 (((-1122) $) NIL (|has| |#1| (-1102)))) (-2418 ((|#1| $) 20) (($ $ (-772)) NIL)) (-3196 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3823 (($ $ |#1|) NIL (|has| $ (-6 -4423)))) (-1971 (((-112) $) NIL)) (-4233 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3875 (((-112) $ $) NIL)) (-4058 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-2190 (((-645 |#1|) $) NIL)) (-3885 (((-112) $) 39)) (-2701 (($) 38)) (-1801 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1236 (-567))) NIL) ((|#1| $ (-567)) 42) ((|#1| $ (-567) |#1|) NIL)) (-3162 (((-567) $ $) NIL)) (-1873 (($ $ (-1236 (-567))) NIL) (($ $ (-567)) NIL)) (-1569 (($ $ (-1236 (-567))) NIL) (($ $ (-567)) NIL)) (-3771 (((-112) $) NIL)) (-3688 (($ $) NIL)) (-4044 (($ $) NIL (|has| $ (-6 -4423)))) (-3359 (((-772) $) NIL)) (-3640 (($ $) NIL)) (-3447 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-1656 (($ $ $ (-567)) NIL (|has| $ (-6 -4423)))) (-4309 (($ $) NIL)) (-3902 (((-539) $) 53 (|has| |#1| (-615 (-539))))) (-4145 (($ (-645 |#1|)) NIL)) (-3471 (($ |#1| $) 12)) (-2294 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2276 (($ $ $) 35) (($ |#1| $) 43) (($ (-645 $)) NIL) (($ $ |#1|) NIL)) (-4129 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-3469 (((-645 $) $) NIL)) (-3854 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3357 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2772 (($ $ $) 13)) (-3436 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-1335 (((-1161) $) 31 (|has| |#1| (-829))) (((-1161) $ (-112)) 32 (|has| |#1| (-829))) (((-1274) (-823) $) 33 (|has| |#1| (-829))) (((-1274) (-823) $ (-112)) 34 (|has| |#1| (-829)))) (-3004 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2980 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2993 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2968 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2423 (((-772) $) NIL (|has| $ (-6 -4422)))))
+(((-645 |#1|) (-13 (-667 |#1|) (-10 -8 (-15 -3018 ($) -3304) (-15 -1660 ((-112) $)) (-15 -3471 ($ |#1| $)) (-15 -2772 ($ $ $)) (IF (|has| |#1| (-1102)) (PROGN (-15 -2352 ($ $ $)) (-15 -2340 ($ $ $)) (-15 -2324 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-829)) (-6 (-829)) |%noBranch|))) (-1219)) (T -645))
+((-3018 (*1 *1) (-12 (-5 *1 (-645 *2)) (-4 *2 (-1219)))) (-1660 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-645 *3)) (-4 *3 (-1219)))) (-3471 (*1 *1 *2 *1) (-12 (-5 *1 (-645 *2)) (-4 *2 (-1219)))) (-2772 (*1 *1 *1 *1) (-12 (-5 *1 (-645 *2)) (-4 *2 (-1219)))) (-2352 (*1 *1 *1 *1) (-12 (-5 *1 (-645 *2)) (-4 *2 (-1102)) (-4 *2 (-1219)))) (-2340 (*1 *1 *1 *1) (-12 (-5 *1 (-645 *2)) (-4 *2 (-1102)) (-4 *2 (-1219)))) (-2324 (*1 *1 *1 *1) (-12 (-5 *1 (-645 *2)) (-4 *2 (-1102)) (-4 *2 (-1219)))))
+(-13 (-667 |#1|) (-10 -8 (-15 -3018 ($) -3304) (-15 -1660 ((-112) $)) (-15 -3471 ($ |#1| $)) (-15 -2772 ($ $ $)) (IF (|has| |#1| (-1102)) (PROGN (-15 -2352 ($ $ $)) (-15 -2340 ($ $ $)) (-15 -2324 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-829)) (-6 (-829)) |%noBranch|)))
+((-2412 (((-112) $ $) NIL)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) 11) (($ (-1184)) NIL) (((-1184) $) NIL) ((|#1| $) 8)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)))
(((-646 |#1|) (-13 (-1085) (-614 |#1|)) (-1102)) (T -646))
NIL
(-13 (-1085) (-614 |#1|))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 15)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-1716 (($) 16 T CONST)) (-2936 (((-112) $ $) 6)) (* (($ |#1| $) 14)))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 15)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-4129 (((-863) $) 12)) (-3357 (((-112) $ $) 9)) (-1733 (($) 16 T CONST)) (-2946 (((-112) $ $) 6)) (* (($ |#1| $) 14)))
(((-647 |#1|) (-140) (-1060)) (T -647))
-((-1716 (*1 *1) (-12 (-4 *1 (-647 *2)) (-4 *2 (-1060)))) (-2460 (*1 *2 *1) (-12 (-4 *1 (-647 *3)) (-4 *3 (-1060)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-647 *2)) (-4 *2 (-1060)))))
-(-13 (-1102) (-10 -8 (-15 (-1716) ($) -3286) (-15 -2460 ((-112) $)) (-15 * ($ |t#1| $))))
+((-1733 (*1 *1) (-12 (-4 *1 (-647 *2)) (-4 *2 (-1060)))) (-3791 (*1 *2 *1) (-12 (-4 *1 (-647 *3)) (-4 *3 (-1060)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-647 *2)) (-4 *2 (-1060)))))
+(-13 (-1102) (-10 -8 (-15 (-1733) ($) -3304) (-15 -3791 ((-112) $)) (-15 * ($ |t#1| $))))
(((-102) . T) ((-614 (-863)) . T) ((-1102) . T))
-((-2403 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2433 (($ |#1| |#1| $) 46)) (-3445 (((-112) $ (-772)) NIL)) (-2839 (($ (-1 (-112) |#1|) $) 62 (|has| $ (-6 -4418)))) (-3350 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2585 (($) NIL T CONST)) (-2133 (($ $) 48)) (-2444 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2539 (($ |#1| $) 59 (|has| $ (-6 -4418))) (($ (-1 (-112) |#1|) $) 61 (|has| $ (-6 -4418)))) (-3238 (($ |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2477 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4418)))) (-2777 (((-645 |#1|) $) 9 (|has| $ (-6 -4418)))) (-2077 (((-112) $ (-772)) NIL)) (-2279 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-3731 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) 37)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL (|has| |#1| (-1102)))) (-1566 ((|#1| $) 50)) (-2531 (($ |#1| $) 29) (($ |#1| $ (-772)) 45)) (-3430 (((-1122) $) NIL (|has| |#1| (-1102)))) (-4128 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1793 ((|#1| $) 53)) (-3025 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) NIL)) (-3572 (((-112) $) 23)) (-3498 (($) 28)) (-4084 (((-112) $) 57)) (-2334 (((-645 (-2 (|:| -4237 |#1|) (|:| -3439 (-772)))) $) 69)) (-2718 (($) 26) (($ (-645 |#1|)) 19)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (((-772) |#1| $) 66 (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-4305 (($ $) 20)) (-3893 (((-539) $) 34 (|has| |#1| (-615 (-539))))) (-4147 (($ (-645 |#1|)) NIL)) (-4132 (((-863) $) 14 (|has| |#1| (-614 (-863))))) (-1745 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3551 (($ (-645 |#1|)) 24)) (-1853 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 71 (|has| |#1| (-1102)))) (-2414 (((-772) $) 17 (|has| $ (-6 -4418)))))
-(((-648 |#1|) (-13 (-696 |#1|) (-10 -8 (-6 -4418) (-15 -4084 ((-112) $)) (-15 -2433 ($ |#1| |#1| $)))) (-1102)) (T -648))
-((-4084 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-648 *3)) (-4 *3 (-1102)))) (-2433 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-648 *2)) (-4 *2 (-1102)))))
-(-13 (-696 |#1|) (-10 -8 (-6 -4418) (-15 -4084 ((-112) $)) (-15 -2433 ($ |#1| |#1| $))))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-1716 (($) 19 T CONST)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ |#1| $) 27)))
+((-2412 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2442 (($ |#1| |#1| $) 46)) (-1563 (((-112) $ (-772)) NIL)) (-1494 (($ (-1 (-112) |#1|) $) 62 (|has| $ (-6 -4422)))) (-3356 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-3647 (($) NIL T CONST)) (-3837 (($ $) 48)) (-2453 (($ $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-2247 (($ |#1| $) 59 (|has| $ (-6 -4422))) (($ (-1 (-112) |#1|) $) 61 (|has| $ (-6 -4422)))) (-3246 (($ |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2494 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4422)))) (-2799 (((-645 |#1|) $) 9 (|has| $ (-6 -4422)))) (-4093 (((-112) $ (-772)) NIL)) (-1942 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-3237 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3751 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#1| |#1|) $) 37)) (-1986 (((-112) $ (-772)) NIL)) (-2516 (((-1161) $) NIL (|has| |#1| (-1102)))) (-2706 ((|#1| $) 50)) (-2646 (($ |#1| $) 29) (($ |#1| $ (-772)) 45)) (-3437 (((-1122) $) NIL (|has| |#1| (-1102)))) (-3196 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3949 ((|#1| $) 53)) (-4233 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3875 (((-112) $ $) NIL)) (-3885 (((-112) $) 23)) (-2701 (($) 28)) (-2894 (((-112) $) 57)) (-2885 (((-645 (-2 (|:| -4236 |#1|) (|:| -3447 (-772)))) $) 69)) (-4106 (($) 26) (($ (-645 |#1|)) 19)) (-3447 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (((-772) |#1| $) 66 (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-4309 (($ $) 20)) (-3902 (((-539) $) 34 (|has| |#1| (-615 (-539))))) (-4145 (($ (-645 |#1|)) NIL)) (-4129 (((-863) $) 14 (|has| |#1| (-614 (-863))))) (-3357 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3700 (($ (-645 |#1|)) 24)) (-3436 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2946 (((-112) $ $) 71 (|has| |#1| (-1102)))) (-2423 (((-772) $) 17 (|has| $ (-6 -4422)))))
+(((-648 |#1|) (-13 (-696 |#1|) (-10 -8 (-6 -4422) (-15 -2894 ((-112) $)) (-15 -2442 ($ |#1| |#1| $)))) (-1102)) (T -648))
+((-2894 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-648 *3)) (-4 *3 (-1102)))) (-2442 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-648 *2)) (-4 *2 (-1102)))))
+(-13 (-696 |#1|) (-10 -8 (-6 -4422) (-15 -2894 ((-112) $)) (-15 -2442 ($ |#1| |#1| $))))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-2376 (((-3 $ "failed") $ $) 20)) (-3647 (($) 18 T CONST)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-4129 (((-863) $) 12)) (-3357 (((-112) $ $) 9)) (-1733 (($) 19 T CONST)) (-2946 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ |#1| $) 27)))
(((-649 |#1|) (-140) (-1060)) (T -649))
NIL
(-13 (-21) (-647 |t#1|))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-1102) . T))
-((-2403 (((-112) $ $) NIL)) (-2375 (((-772) $) 17)) (-1669 (($ $ |#1|) 69)) (-1764 (($ $) 39)) (-3584 (($ $) 37)) (-3753 (((-3 |#1| "failed") $) 61)) (-2038 ((|#1| $) NIL)) (-2205 (($ |#1| |#2| $) 79) (($ $ $) 81)) (-2570 (((-863) $ (-1 (-863) (-863) (-863)) (-1 (-863) (-863) (-863)) (-567)) 56)) (-4108 ((|#1| $ (-567)) 35)) (-3202 ((|#2| $ (-567)) 34)) (-3496 (($ (-1 |#1| |#1|) $) 41)) (-2728 (($ (-1 |#2| |#2|) $) 47)) (-2004 (($) 11)) (-3940 (($ |#1| |#2|) 24)) (-2943 (($ (-645 (-2 (|:| |gen| |#1|) (|:| -3946 |#2|)))) 25)) (-3938 (((-645 (-2 (|:| |gen| |#1|) (|:| -3946 |#2|))) $) 14)) (-1601 (($ |#1| $) 71)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-1846 (((-112) $ $) 76)) (-4132 (((-863) $) 21) (($ |#1|) 18)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 27)))
-(((-650 |#1| |#2| |#3|) (-13 (-1102) (-1040 |#1|) (-10 -8 (-15 -2570 ((-863) $ (-1 (-863) (-863) (-863)) (-1 (-863) (-863) (-863)) (-567))) (-15 -3938 ((-645 (-2 (|:| |gen| |#1|) (|:| -3946 |#2|))) $)) (-15 -3940 ($ |#1| |#2|)) (-15 -2943 ($ (-645 (-2 (|:| |gen| |#1|) (|:| -3946 |#2|))))) (-15 -3202 (|#2| $ (-567))) (-15 -4108 (|#1| $ (-567))) (-15 -3584 ($ $)) (-15 -1764 ($ $)) (-15 -2375 ((-772) $)) (-15 -2004 ($)) (-15 -1669 ($ $ |#1|)) (-15 -1601 ($ |#1| $)) (-15 -2205 ($ |#1| |#2| $)) (-15 -2205 ($ $ $)) (-15 -1846 ((-112) $ $)) (-15 -2728 ($ (-1 |#2| |#2|) $)) (-15 -3496 ($ (-1 |#1| |#1|) $)))) (-1102) (-23) |#2|) (T -650))
-((-2570 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-863) (-863) (-863))) (-5 *4 (-567)) (-5 *2 (-863)) (-5 *1 (-650 *5 *6 *7)) (-4 *5 (-1102)) (-4 *6 (-23)) (-14 *7 *6))) (-3938 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| |gen| *3) (|:| -3946 *4)))) (-5 *1 (-650 *3 *4 *5)) (-4 *3 (-1102)) (-4 *4 (-23)) (-14 *5 *4))) (-3940 (*1 *1 *2 *3) (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1102)) (-4 *3 (-23)) (-14 *4 *3))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-645 (-2 (|:| |gen| *3) (|:| -3946 *4)))) (-4 *3 (-1102)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-650 *3 *4 *5)))) (-3202 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *2 (-23)) (-5 *1 (-650 *4 *2 *5)) (-4 *4 (-1102)) (-14 *5 *2))) (-4108 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *2 (-1102)) (-5 *1 (-650 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-3584 (*1 *1 *1) (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1102)) (-4 *3 (-23)) (-14 *4 *3))) (-1764 (*1 *1 *1) (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1102)) (-4 *3 (-23)) (-14 *4 *3))) (-2375 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-650 *3 *4 *5)) (-4 *3 (-1102)) (-4 *4 (-23)) (-14 *5 *4))) (-2004 (*1 *1) (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1102)) (-4 *3 (-23)) (-14 *4 *3))) (-1669 (*1 *1 *1 *2) (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1102)) (-4 *3 (-23)) (-14 *4 *3))) (-1601 (*1 *1 *2 *1) (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1102)) (-4 *3 (-23)) (-14 *4 *3))) (-2205 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1102)) (-4 *3 (-23)) (-14 *4 *3))) (-2205 (*1 *1 *1 *1) (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1102)) (-4 *3 (-23)) (-14 *4 *3))) (-1846 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-650 *3 *4 *5)) (-4 *3 (-1102)) (-4 *4 (-23)) (-14 *5 *4))) (-2728 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-650 *3 *4 *5)) (-4 *3 (-1102)))) (-3496 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1102)) (-5 *1 (-650 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))))
-(-13 (-1102) (-1040 |#1|) (-10 -8 (-15 -2570 ((-863) $ (-1 (-863) (-863) (-863)) (-1 (-863) (-863) (-863)) (-567))) (-15 -3938 ((-645 (-2 (|:| |gen| |#1|) (|:| -3946 |#2|))) $)) (-15 -3940 ($ |#1| |#2|)) (-15 -2943 ($ (-645 (-2 (|:| |gen| |#1|) (|:| -3946 |#2|))))) (-15 -3202 (|#2| $ (-567))) (-15 -4108 (|#1| $ (-567))) (-15 -3584 ($ $)) (-15 -1764 ($ $)) (-15 -2375 ((-772) $)) (-15 -2004 ($)) (-15 -1669 ($ $ |#1|)) (-15 -1601 ($ |#1| $)) (-15 -2205 ($ |#1| |#2| $)) (-15 -2205 ($ $ $)) (-15 -1846 ((-112) $ $)) (-15 -2728 ($ (-1 |#2| |#2|) $)) (-15 -3496 ($ (-1 |#1| |#1|) $))))
-((-2266 (((-567) $) 31)) (-2845 (($ |#2| $ (-567)) 27) (($ $ $ (-567)) NIL)) (-1789 (((-645 (-567)) $) 12)) (-2996 (((-112) (-567) $) 18)) (-2269 (($ $ |#2|) 24) (($ |#2| $) 25) (($ $ $) NIL) (($ (-645 $)) NIL)))
-(((-651 |#1| |#2|) (-10 -8 (-15 -2845 (|#1| |#1| |#1| (-567))) (-15 -2845 (|#1| |#2| |#1| (-567))) (-15 -2269 (|#1| (-645 |#1|))) (-15 -2269 (|#1| |#1| |#1|)) (-15 -2269 (|#1| |#2| |#1|)) (-15 -2269 (|#1| |#1| |#2|)) (-15 -2266 ((-567) |#1|)) (-15 -1789 ((-645 (-567)) |#1|)) (-15 -2996 ((-112) (-567) |#1|))) (-652 |#2|) (-1218)) (T -651))
-NIL
-(-10 -8 (-15 -2845 (|#1| |#1| |#1| (-567))) (-15 -2845 (|#1| |#2| |#1| (-567))) (-15 -2269 (|#1| (-645 |#1|))) (-15 -2269 (|#1| |#1| |#1|)) (-15 -2269 (|#1| |#2| |#1|)) (-15 -2269 (|#1| |#1| |#2|)) (-15 -2266 ((-567) |#1|)) (-15 -1789 ((-645 (-567)) |#1|)) (-15 -2996 ((-112) (-567) |#1|)))
-((-2403 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-1783 (((-1273) $ (-567) (-567)) 41 (|has| $ (-6 -4419)))) (-3445 (((-112) $ (-772)) 8)) (-4284 ((|#1| $ (-567) |#1|) 53 (|has| $ (-6 -4419))) ((|#1| $ (-1235 (-567)) |#1|) 59 (|has| $ (-6 -4419)))) (-3350 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4418)))) (-2585 (($) 7 T CONST)) (-2444 (($ $) 79 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-3238 (($ |#1| $) 78 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4418)))) (-2477 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4418)))) (-3741 ((|#1| $ (-567) |#1|) 54 (|has| $ (-6 -4419)))) (-3680 ((|#1| $ (-567)) 52)) (-2777 (((-645 |#1|) $) 31 (|has| $ (-6 -4418)))) (-2846 (($ (-772) |#1|) 70)) (-2077 (((-112) $ (-772)) 9)) (-4069 (((-567) $) 44 (|has| (-567) (-851)))) (-2279 (((-645 |#1|) $) 30 (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-2266 (((-567) $) 45 (|has| (-567) (-851)))) (-3731 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2863 (((-112) $ (-772)) 10)) (-1419 (((-1160) $) 22 (|has| |#1| (-1102)))) (-2845 (($ |#1| $ (-567)) 61) (($ $ $ (-567)) 60)) (-1789 (((-645 (-567)) $) 47)) (-2996 (((-112) (-567) $) 48)) (-3430 (((-1122) $) 21 (|has| |#1| (-1102)))) (-2409 ((|#1| $) 43 (|has| (-567) (-851)))) (-4128 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-3986 (($ $ |#1|) 42 (|has| $ (-6 -4419)))) (-3025 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) 14)) (-1794 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2339 (((-645 |#1|) $) 49)) (-3572 (((-112) $) 11)) (-3498 (($) 12)) (-1787 ((|#1| $ (-567) |#1|) 51) ((|#1| $ (-567)) 50) (($ $ (-1235 (-567))) 64)) (-1560 (($ $ (-567)) 63) (($ $ (-1235 (-567))) 62)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4418))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-4305 (($ $) 13)) (-3893 (((-539) $) 80 (|has| |#1| (-615 (-539))))) (-4147 (($ (-645 |#1|)) 71)) (-2269 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-645 $)) 66)) (-4132 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-1745 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2414 (((-772) $) 6 (|has| $ (-6 -4418)))))
-(((-652 |#1|) (-140) (-1218)) (T -652))
-((-2846 (*1 *1 *2 *3) (-12 (-5 *2 (-772)) (-4 *1 (-652 *3)) (-4 *3 (-1218)))) (-2269 (*1 *1 *1 *2) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1218)))) (-2269 (*1 *1 *2 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1218)))) (-2269 (*1 *1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1218)))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-652 *3)) (-4 *3 (-1218)))) (-3829 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-652 *3)) (-4 *3 (-1218)))) (-1787 (*1 *1 *1 *2) (-12 (-5 *2 (-1235 (-567))) (-4 *1 (-652 *3)) (-4 *3 (-1218)))) (-1560 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-652 *3)) (-4 *3 (-1218)))) (-1560 (*1 *1 *1 *2) (-12 (-5 *2 (-1235 (-567))) (-4 *1 (-652 *3)) (-4 *3 (-1218)))) (-2845 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-652 *2)) (-4 *2 (-1218)))) (-2845 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-652 *3)) (-4 *3 (-1218)))) (-4284 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1235 (-567))) (|has| *1 (-6 -4419)) (-4 *1 (-652 *2)) (-4 *2 (-1218)))))
-(-13 (-605 (-567) |t#1|) (-151 |t#1|) (-10 -8 (-15 -2846 ($ (-772) |t#1|)) (-15 -2269 ($ $ |t#1|)) (-15 -2269 ($ |t#1| $)) (-15 -2269 ($ $ $)) (-15 -2269 ($ (-645 $))) (-15 -3829 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -1787 ($ $ (-1235 (-567)))) (-15 -1560 ($ $ (-567))) (-15 -1560 ($ $ (-1235 (-567)))) (-15 -2845 ($ |t#1| $ (-567))) (-15 -2845 ($ $ $ (-567))) (IF (|has| $ (-6 -4419)) (-15 -4284 (|t#1| $ (-1235 (-567)) |t#1|)) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2800 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-287 #0=(-567) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-605 #0# |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-1102) |has| |#1| (-1102)) ((-1218) . T))
-((-3018 (((-3 |#2| "failed") |#3| |#2| (-1178) |#2| (-645 |#2|)) 174) (((-3 (-2 (|:| |particular| |#2|) (|:| -2623 (-645 |#2|))) "failed") |#3| |#2| (-1178)) 44)))
-(((-653 |#1| |#2| |#3|) (-10 -7 (-15 -3018 ((-3 (-2 (|:| |particular| |#2|) (|:| -2623 (-645 |#2|))) "failed") |#3| |#2| (-1178))) (-15 -3018 ((-3 |#2| "failed") |#3| |#2| (-1178) |#2| (-645 |#2|)))) (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147)) (-13 (-29 |#1|) (-1203) (-961)) (-657 |#2|)) (T -653))
-((-3018 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1178)) (-5 *5 (-645 *2)) (-4 *2 (-13 (-29 *6) (-1203) (-961))) (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (-5 *1 (-653 *6 *2 *3)) (-4 *3 (-657 *2)))) (-3018 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1178)) (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (-4 *4 (-13 (-29 *6) (-1203) (-961))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2623 (-645 *4)))) (-5 *1 (-653 *6 *4 *3)) (-4 *3 (-657 *4)))))
-(-10 -7 (-15 -3018 ((-3 (-2 (|:| |particular| |#2|) (|:| -2623 (-645 |#2|))) "failed") |#3| |#2| (-1178))) (-15 -3018 ((-3 |#2| "failed") |#3| |#2| (-1178) |#2| (-645 |#2|))))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-1676 (($ $) NIL (|has| |#1| (-365)))) (-4014 (($ $ $) NIL (|has| |#1| (-365)))) (-3931 (($ $ (-772)) NIL (|has| |#1| (-365)))) (-3472 (((-3 $ "failed") $ $) NIL)) (-2585 (($) NIL T CONST)) (-2336 (($ $ $) NIL (|has| |#1| (-365)))) (-2210 (($ $ $) NIL (|has| |#1| (-365)))) (-2785 (($ $ $) NIL (|has| |#1| (-365)))) (-2680 (($ $ $) NIL (|has| |#1| (-365)))) (-3037 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL (|has| |#1| (-365)))) (-2080 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-3327 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL (|has| |#1| (-365)))) (-3753 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) NIL)) (-2038 (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) NIL)) (-3014 (($ $) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-3501 (($ $) NIL (|has| |#1| (-455)))) (-1433 (((-112) $) NIL)) (-2824 (($ |#1| (-772)) NIL)) (-1701 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL (|has| |#1| (-559)))) (-1624 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL (|has| |#1| (-559)))) (-2656 (((-772) $) NIL)) (-1778 (($ $ $) NIL (|has| |#1| (-365)))) (-3683 (($ $ $) NIL (|has| |#1| (-365)))) (-1739 (($ $ $) NIL (|has| |#1| (-365)))) (-3053 (($ $ $) NIL (|has| |#1| (-365)))) (-2285 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL (|has| |#1| (-365)))) (-2446 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-2720 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL (|has| |#1| (-365)))) (-2989 ((|#1| $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-2391 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559)))) (-1787 ((|#1| $ |#1|) NIL)) (-4116 (($ $ $) NIL (|has| |#1| (-365)))) (-3077 (((-772) $) NIL)) (-4358 ((|#1| $) NIL (|has| |#1| (-455)))) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ (-410 (-567))) NIL (|has| |#1| (-1040 (-410 (-567))))) (($ |#1|) NIL)) (-3032 (((-645 |#1|) $) NIL)) (-4136 ((|#1| $ (-772)) NIL)) (-4221 (((-772)) NIL T CONST)) (-1745 (((-112) $ $) NIL)) (-2355 ((|#1| $ |#1| |#1|) NIL)) (-2974 (($ $) NIL)) (-1716 (($) NIL T CONST)) (-1728 (($) NIL T CONST)) (-2637 (($) NIL)) (-2936 (((-112) $ $) NIL)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+((-2412 (((-112) $ $) NIL)) (-2384 (((-772) $) 17)) (-3690 (($ $ |#1|) 69)) (-1602 (($ $) 39)) (-3592 (($ $) 37)) (-3765 (((-3 |#1| "failed") $) 61)) (-2051 ((|#1| $) NIL)) (-2214 (($ |#1| |#2| $) 79) (($ $ $) 81)) (-2417 (((-863) $ (-1 (-863) (-863) (-863)) (-1 (-863) (-863) (-863)) (-567)) 56)) (-4152 ((|#1| $ (-567)) 35)) (-1449 ((|#2| $ (-567)) 34)) (-3650 (($ (-1 |#1| |#1|) $) 41)) (-1826 (($ (-1 |#2| |#2|) $) 47)) (-4341 (($) 11)) (-2640 (($ |#1| |#2|) 24)) (-3988 (($ (-645 (-2 (|:| |gen| |#1|) (|:| -3955 |#2|)))) 25)) (-1611 (((-645 (-2 (|:| |gen| |#1|) (|:| -3955 |#2|))) $) 14)) (-2056 (($ |#1| $) 71)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-2089 (((-112) $ $) 76)) (-4129 (((-863) $) 21) (($ |#1|) 18)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) 27)))
+(((-650 |#1| |#2| |#3|) (-13 (-1102) (-1040 |#1|) (-10 -8 (-15 -2417 ((-863) $ (-1 (-863) (-863) (-863)) (-1 (-863) (-863) (-863)) (-567))) (-15 -1611 ((-645 (-2 (|:| |gen| |#1|) (|:| -3955 |#2|))) $)) (-15 -2640 ($ |#1| |#2|)) (-15 -3988 ($ (-645 (-2 (|:| |gen| |#1|) (|:| -3955 |#2|))))) (-15 -1449 (|#2| $ (-567))) (-15 -4152 (|#1| $ (-567))) (-15 -3592 ($ $)) (-15 -1602 ($ $)) (-15 -2384 ((-772) $)) (-15 -4341 ($)) (-15 -3690 ($ $ |#1|)) (-15 -2056 ($ |#1| $)) (-15 -2214 ($ |#1| |#2| $)) (-15 -2214 ($ $ $)) (-15 -2089 ((-112) $ $)) (-15 -1826 ($ (-1 |#2| |#2|) $)) (-15 -3650 ($ (-1 |#1| |#1|) $)))) (-1102) (-23) |#2|) (T -650))
+((-2417 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-863) (-863) (-863))) (-5 *4 (-567)) (-5 *2 (-863)) (-5 *1 (-650 *5 *6 *7)) (-4 *5 (-1102)) (-4 *6 (-23)) (-14 *7 *6))) (-1611 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| |gen| *3) (|:| -3955 *4)))) (-5 *1 (-650 *3 *4 *5)) (-4 *3 (-1102)) (-4 *4 (-23)) (-14 *5 *4))) (-2640 (*1 *1 *2 *3) (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1102)) (-4 *3 (-23)) (-14 *4 *3))) (-3988 (*1 *1 *2) (-12 (-5 *2 (-645 (-2 (|:| |gen| *3) (|:| -3955 *4)))) (-4 *3 (-1102)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-650 *3 *4 *5)))) (-1449 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *2 (-23)) (-5 *1 (-650 *4 *2 *5)) (-4 *4 (-1102)) (-14 *5 *2))) (-4152 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *2 (-1102)) (-5 *1 (-650 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-3592 (*1 *1 *1) (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1102)) (-4 *3 (-23)) (-14 *4 *3))) (-1602 (*1 *1 *1) (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1102)) (-4 *3 (-23)) (-14 *4 *3))) (-2384 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-650 *3 *4 *5)) (-4 *3 (-1102)) (-4 *4 (-23)) (-14 *5 *4))) (-4341 (*1 *1) (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1102)) (-4 *3 (-23)) (-14 *4 *3))) (-3690 (*1 *1 *1 *2) (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1102)) (-4 *3 (-23)) (-14 *4 *3))) (-2056 (*1 *1 *2 *1) (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1102)) (-4 *3 (-23)) (-14 *4 *3))) (-2214 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1102)) (-4 *3 (-23)) (-14 *4 *3))) (-2214 (*1 *1 *1 *1) (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1102)) (-4 *3 (-23)) (-14 *4 *3))) (-2089 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-650 *3 *4 *5)) (-4 *3 (-1102)) (-4 *4 (-23)) (-14 *5 *4))) (-1826 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-650 *3 *4 *5)) (-4 *3 (-1102)))) (-3650 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1102)) (-5 *1 (-650 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))))
+(-13 (-1102) (-1040 |#1|) (-10 -8 (-15 -2417 ((-863) $ (-1 (-863) (-863) (-863)) (-1 (-863) (-863) (-863)) (-567))) (-15 -1611 ((-645 (-2 (|:| |gen| |#1|) (|:| -3955 |#2|))) $)) (-15 -2640 ($ |#1| |#2|)) (-15 -3988 ($ (-645 (-2 (|:| |gen| |#1|) (|:| -3955 |#2|))))) (-15 -1449 (|#2| $ (-567))) (-15 -4152 (|#1| $ (-567))) (-15 -3592 ($ $)) (-15 -1602 ($ $)) (-15 -2384 ((-772) $)) (-15 -4341 ($)) (-15 -3690 ($ $ |#1|)) (-15 -2056 ($ |#1| $)) (-15 -2214 ($ |#1| |#2| $)) (-15 -2214 ($ $ $)) (-15 -2089 ((-112) $ $)) (-15 -1826 ($ (-1 |#2| |#2|) $)) (-15 -3650 ($ (-1 |#1| |#1|) $))))
+((-3255 (((-567) $) 31)) (-2857 (($ |#2| $ (-567)) 27) (($ $ $ (-567)) NIL)) (-4364 (((-645 (-567)) $) 12)) (-3188 (((-112) (-567) $) 18)) (-2276 (($ $ |#2|) 24) (($ |#2| $) 25) (($ $ $) NIL) (($ (-645 $)) NIL)))
+(((-651 |#1| |#2|) (-10 -8 (-15 -2857 (|#1| |#1| |#1| (-567))) (-15 -2857 (|#1| |#2| |#1| (-567))) (-15 -2276 (|#1| (-645 |#1|))) (-15 -2276 (|#1| |#1| |#1|)) (-15 -2276 (|#1| |#2| |#1|)) (-15 -2276 (|#1| |#1| |#2|)) (-15 -3255 ((-567) |#1|)) (-15 -4364 ((-645 (-567)) |#1|)) (-15 -3188 ((-112) (-567) |#1|))) (-652 |#2|) (-1219)) (T -651))
+NIL
+(-10 -8 (-15 -2857 (|#1| |#1| |#1| (-567))) (-15 -2857 (|#1| |#2| |#1| (-567))) (-15 -2276 (|#1| (-645 |#1|))) (-15 -2276 (|#1| |#1| |#1|)) (-15 -2276 (|#1| |#2| |#1|)) (-15 -2276 (|#1| |#1| |#2|)) (-15 -3255 ((-567) |#1|)) (-15 -4364 ((-645 (-567)) |#1|)) (-15 -3188 ((-112) (-567) |#1|)))
+((-2412 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-3843 (((-1274) $ (-567) (-567)) 41 (|has| $ (-6 -4423)))) (-1563 (((-112) $ (-772)) 8)) (-4285 ((|#1| $ (-567) |#1|) 53 (|has| $ (-6 -4423))) ((|#1| $ (-1236 (-567)) |#1|) 59 (|has| $ (-6 -4423)))) (-3356 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4422)))) (-3647 (($) 7 T CONST)) (-2453 (($ $) 79 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-3246 (($ |#1| $) 78 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4422)))) (-2494 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4422)))) (-3760 ((|#1| $ (-567) |#1|) 54 (|has| $ (-6 -4423)))) (-3703 ((|#1| $ (-567)) 52)) (-2799 (((-645 |#1|) $) 31 (|has| $ (-6 -4422)))) (-2858 (($ (-772) |#1|) 70)) (-4093 (((-112) $ (-772)) 9)) (-3895 (((-567) $) 44 (|has| (-567) (-851)))) (-1942 (((-645 |#1|) $) 30 (|has| $ (-6 -4422)))) (-3237 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-3255 (((-567) $) 45 (|has| (-567) (-851)))) (-3751 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-1986 (((-112) $ (-772)) 10)) (-2516 (((-1161) $) 22 (|has| |#1| (-1102)))) (-2857 (($ |#1| $ (-567)) 61) (($ $ $ (-567)) 60)) (-4364 (((-645 (-567)) $) 47)) (-3188 (((-112) (-567) $) 48)) (-3437 (((-1122) $) 21 (|has| |#1| (-1102)))) (-2418 ((|#1| $) 43 (|has| (-567) (-851)))) (-3196 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-3823 (($ $ |#1|) 42 (|has| $ (-6 -4423)))) (-4233 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3875 (((-112) $ $) 14)) (-4058 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-2190 (((-645 |#1|) $) 49)) (-3885 (((-112) $) 11)) (-2701 (($) 12)) (-1801 ((|#1| $ (-567) |#1|) 51) ((|#1| $ (-567)) 50) (($ $ (-1236 (-567))) 64)) (-1569 (($ $ (-567)) 63) (($ $ (-1236 (-567))) 62)) (-3447 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4422))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-4309 (($ $) 13)) (-3902 (((-539) $) 80 (|has| |#1| (-615 (-539))))) (-4145 (($ (-645 |#1|)) 71)) (-2276 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-645 $)) 66)) (-4129 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-3357 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-3436 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4422)))) (-2946 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2423 (((-772) $) 6 (|has| $ (-6 -4422)))))
+(((-652 |#1|) (-140) (-1219)) (T -652))
+((-2858 (*1 *1 *2 *3) (-12 (-5 *2 (-772)) (-4 *1 (-652 *3)) (-4 *3 (-1219)))) (-2276 (*1 *1 *1 *2) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1219)))) (-2276 (*1 *1 *2 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1219)))) (-2276 (*1 *1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1219)))) (-2276 (*1 *1 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-652 *3)) (-4 *3 (-1219)))) (-3841 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-652 *3)) (-4 *3 (-1219)))) (-1801 (*1 *1 *1 *2) (-12 (-5 *2 (-1236 (-567))) (-4 *1 (-652 *3)) (-4 *3 (-1219)))) (-1569 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-652 *3)) (-4 *3 (-1219)))) (-1569 (*1 *1 *1 *2) (-12 (-5 *2 (-1236 (-567))) (-4 *1 (-652 *3)) (-4 *3 (-1219)))) (-2857 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-652 *2)) (-4 *2 (-1219)))) (-2857 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-652 *3)) (-4 *3 (-1219)))) (-4285 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1236 (-567))) (|has| *1 (-6 -4423)) (-4 *1 (-652 *2)) (-4 *2 (-1219)))))
+(-13 (-605 (-567) |t#1|) (-151 |t#1|) (-10 -8 (-15 -2858 ($ (-772) |t#1|)) (-15 -2276 ($ $ |t#1|)) (-15 -2276 ($ |t#1| $)) (-15 -2276 ($ $ $)) (-15 -2276 ($ (-645 $))) (-15 -3841 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -1801 ($ $ (-1236 (-567)))) (-15 -1569 ($ $ (-567))) (-15 -1569 ($ $ (-1236 (-567)))) (-15 -2857 ($ |t#1| $ (-567))) (-15 -2857 ($ $ $ (-567))) (IF (|has| $ (-6 -4423)) (-15 -4285 (|t#1| $ (-1236 (-567)) |t#1|)) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2811 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-287 #0=(-567) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-605 #0# |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-1102) |has| |#1| (-1102)) ((-1219) . T))
+((-2464 (((-3 |#2| "failed") |#3| |#2| (-1179) |#2| (-645 |#2|)) 174) (((-3 (-2 (|:| |particular| |#2|) (|:| -2144 (-645 |#2|))) "failed") |#3| |#2| (-1179)) 44)))
+(((-653 |#1| |#2| |#3|) (-10 -7 (-15 -2464 ((-3 (-2 (|:| |particular| |#2|) (|:| -2144 (-645 |#2|))) "failed") |#3| |#2| (-1179))) (-15 -2464 ((-3 |#2| "failed") |#3| |#2| (-1179) |#2| (-645 |#2|)))) (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147)) (-13 (-29 |#1|) (-1204) (-961)) (-657 |#2|)) (T -653))
+((-2464 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1179)) (-5 *5 (-645 *2)) (-4 *2 (-13 (-29 *6) (-1204) (-961))) (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (-5 *1 (-653 *6 *2 *3)) (-4 *3 (-657 *2)))) (-2464 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1179)) (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (-4 *4 (-13 (-29 *6) (-1204) (-961))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2144 (-645 *4)))) (-5 *1 (-653 *6 *4 *3)) (-4 *3 (-657 *4)))))
+(-10 -7 (-15 -2464 ((-3 (-2 (|:| |particular| |#2|) (|:| -2144 (-645 |#2|))) "failed") |#3| |#2| (-1179))) (-15 -2464 ((-3 |#2| "failed") |#3| |#2| (-1179) |#2| (-645 |#2|))))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-3119 (($ $) NIL (|has| |#1| (-365)))) (-4163 (($ $ $) NIL (|has| |#1| (-365)))) (-3815 (($ $ (-772)) NIL (|has| |#1| (-365)))) (-2376 (((-3 $ "failed") $ $) NIL)) (-3647 (($) NIL T CONST)) (-3113 (($ $ $) NIL (|has| |#1| (-365)))) (-2912 (($ $ $) NIL (|has| |#1| (-365)))) (-3215 (($ $ $) NIL (|has| |#1| (-365)))) (-4259 (($ $ $) NIL (|has| |#1| (-365)))) (-3762 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) NIL (|has| |#1| (-365)))) (-4394 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-2275 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) NIL (|has| |#1| (-365)))) (-3765 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) NIL)) (-2051 (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) NIL)) (-3023 (($ $) NIL)) (-3588 (((-3 $ "failed") $) NIL)) (-2989 (($ $) NIL (|has| |#1| (-455)))) (-4346 (((-112) $) NIL)) (-2836 (($ |#1| (-772)) NIL)) (-3371 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) NIL (|has| |#1| (-559)))) (-3036 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) NIL (|has| |#1| (-559)))) (-2955 (((-772) $) NIL)) (-1651 (($ $ $) NIL (|has| |#1| (-365)))) (-2710 (($ $ $) NIL (|has| |#1| (-365)))) (-4099 (($ $ $) NIL (|has| |#1| (-365)))) (-2521 (($ $ $) NIL (|has| |#1| (-365)))) (-4318 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) NIL (|has| |#1| (-365)))) (-2012 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-4333 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) NIL (|has| |#1| (-365)))) (-2996 ((|#1| $) NIL)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-2400 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559)))) (-1801 ((|#1| $ |#1|) NIL)) (-3510 (($ $ $) NIL (|has| |#1| (-365)))) (-3104 (((-772) $) NIL)) (-1849 ((|#1| $) NIL (|has| |#1| (-455)))) (-4129 (((-863) $) NIL) (($ (-567)) NIL) (($ (-410 (-567))) NIL (|has| |#1| (-1040 (-410 (-567))))) (($ |#1|) NIL)) (-3601 (((-645 |#1|) $) NIL)) (-2558 ((|#1| $ (-772)) NIL)) (-2746 (((-772)) NIL T CONST)) (-3357 (((-112) $ $) NIL)) (-2364 ((|#1| $ |#1| |#1|) NIL)) (-1900 (($ $) NIL)) (-1733 (($) NIL T CONST)) (-1744 (($) NIL T CONST)) (-2647 (($) NIL)) (-2946 (((-112) $ $) NIL)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
(((-654 |#1|) (-657 |#1|) (-233)) (T -654))
NIL
(-657 |#1|)
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-1676 (($ $) NIL (|has| |#1| (-365)))) (-4014 (($ $ $) NIL (|has| |#1| (-365)))) (-3931 (($ $ (-772)) NIL (|has| |#1| (-365)))) (-3472 (((-3 $ "failed") $ $) NIL)) (-2585 (($) NIL T CONST)) (-2336 (($ $ $) NIL (|has| |#1| (-365)))) (-2210 (($ $ $) NIL (|has| |#1| (-365)))) (-2785 (($ $ $) NIL (|has| |#1| (-365)))) (-2680 (($ $ $) NIL (|has| |#1| (-365)))) (-3037 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL (|has| |#1| (-365)))) (-2080 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-3327 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL (|has| |#1| (-365)))) (-3753 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) NIL)) (-2038 (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) NIL)) (-3014 (($ $) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-3501 (($ $) NIL (|has| |#1| (-455)))) (-1433 (((-112) $) NIL)) (-2824 (($ |#1| (-772)) NIL)) (-1701 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL (|has| |#1| (-559)))) (-1624 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL (|has| |#1| (-559)))) (-2656 (((-772) $) NIL)) (-1778 (($ $ $) NIL (|has| |#1| (-365)))) (-3683 (($ $ $) NIL (|has| |#1| (-365)))) (-1739 (($ $ $) NIL (|has| |#1| (-365)))) (-3053 (($ $ $) NIL (|has| |#1| (-365)))) (-2285 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL (|has| |#1| (-365)))) (-2446 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-2720 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL (|has| |#1| (-365)))) (-2989 ((|#1| $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-2391 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559)))) (-1787 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-4116 (($ $ $) NIL (|has| |#1| (-365)))) (-3077 (((-772) $) NIL)) (-4358 ((|#1| $) NIL (|has| |#1| (-455)))) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ (-410 (-567))) NIL (|has| |#1| (-1040 (-410 (-567))))) (($ |#1|) NIL)) (-3032 (((-645 |#1|) $) NIL)) (-4136 ((|#1| $ (-772)) NIL)) (-4221 (((-772)) NIL T CONST)) (-1745 (((-112) $ $) NIL)) (-2355 ((|#1| $ |#1| |#1|) NIL)) (-2974 (($ $) NIL)) (-1716 (($) NIL T CONST)) (-1728 (($) NIL T CONST)) (-2637 (($) NIL)) (-2936 (((-112) $ $) NIL)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-655 |#1| |#2|) (-13 (-657 |#1|) (-287 |#2| |#2|)) (-233) (-13 (-649 |#1|) (-10 -8 (-15 -1593 ($ $))))) (T -655))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-3119 (($ $) NIL (|has| |#1| (-365)))) (-4163 (($ $ $) NIL (|has| |#1| (-365)))) (-3815 (($ $ (-772)) NIL (|has| |#1| (-365)))) (-2376 (((-3 $ "failed") $ $) NIL)) (-3647 (($) NIL T CONST)) (-3113 (($ $ $) NIL (|has| |#1| (-365)))) (-2912 (($ $ $) NIL (|has| |#1| (-365)))) (-3215 (($ $ $) NIL (|has| |#1| (-365)))) (-4259 (($ $ $) NIL (|has| |#1| (-365)))) (-3762 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) NIL (|has| |#1| (-365)))) (-4394 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-2275 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) NIL (|has| |#1| (-365)))) (-3765 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) NIL)) (-2051 (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) NIL)) (-3023 (($ $) NIL)) (-3588 (((-3 $ "failed") $) NIL)) (-2989 (($ $) NIL (|has| |#1| (-455)))) (-4346 (((-112) $) NIL)) (-2836 (($ |#1| (-772)) NIL)) (-3371 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) NIL (|has| |#1| (-559)))) (-3036 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) NIL (|has| |#1| (-559)))) (-2955 (((-772) $) NIL)) (-1651 (($ $ $) NIL (|has| |#1| (-365)))) (-2710 (($ $ $) NIL (|has| |#1| (-365)))) (-4099 (($ $ $) NIL (|has| |#1| (-365)))) (-2521 (($ $ $) NIL (|has| |#1| (-365)))) (-4318 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) NIL (|has| |#1| (-365)))) (-2012 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-4333 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) NIL (|has| |#1| (-365)))) (-2996 ((|#1| $) NIL)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-2400 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559)))) (-1801 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-3510 (($ $ $) NIL (|has| |#1| (-365)))) (-3104 (((-772) $) NIL)) (-1849 ((|#1| $) NIL (|has| |#1| (-455)))) (-4129 (((-863) $) NIL) (($ (-567)) NIL) (($ (-410 (-567))) NIL (|has| |#1| (-1040 (-410 (-567))))) (($ |#1|) NIL)) (-3601 (((-645 |#1|) $) NIL)) (-2558 ((|#1| $ (-772)) NIL)) (-2746 (((-772)) NIL T CONST)) (-3357 (((-112) $ $) NIL)) (-2364 ((|#1| $ |#1| |#1|) NIL)) (-1900 (($ $) NIL)) (-1733 (($) NIL T CONST)) (-1744 (($) NIL T CONST)) (-2647 (($) NIL)) (-2946 (((-112) $ $) NIL)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-655 |#1| |#2|) (-13 (-657 |#1|) (-287 |#2| |#2|)) (-233) (-13 (-649 |#1|) (-10 -8 (-15 -1616 ($ $))))) (T -655))
NIL
(-13 (-657 |#1|) (-287 |#2| |#2|))
-((-1676 (($ $) 29)) (-2974 (($ $) 27)) (-2637 (($) 13)))
-(((-656 |#1| |#2|) (-10 -8 (-15 -1676 (|#1| |#1|)) (-15 -2974 (|#1| |#1|)) (-15 -2637 (|#1|))) (-657 |#2|) (-1051)) (T -656))
+((-3119 (($ $) 29)) (-1900 (($ $) 27)) (-2647 (($) 13)))
+(((-656 |#1| |#2|) (-10 -8 (-15 -3119 (|#1| |#1|)) (-15 -1900 (|#1| |#1|)) (-15 -2647 (|#1|))) (-657 |#2|) (-1051)) (T -656))
NIL
-(-10 -8 (-15 -1676 (|#1| |#1|)) (-15 -2974 (|#1| |#1|)) (-15 -2637 (|#1|)))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-1676 (($ $) 87 (|has| |#1| (-365)))) (-4014 (($ $ $) 89 (|has| |#1| (-365)))) (-3931 (($ $ (-772)) 88 (|has| |#1| (-365)))) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-2336 (($ $ $) 50 (|has| |#1| (-365)))) (-2210 (($ $ $) 51 (|has| |#1| (-365)))) (-2785 (($ $ $) 53 (|has| |#1| (-365)))) (-2680 (($ $ $) 48 (|has| |#1| (-365)))) (-3037 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) 47 (|has| |#1| (-365)))) (-2080 (((-3 $ "failed") $ $) 49 (|has| |#1| (-365)))) (-3327 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 52 (|has| |#1| (-365)))) (-3753 (((-3 (-567) "failed") $) 80 (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) 77 (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) 74)) (-2038 (((-567) $) 79 (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) 76 (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) 75)) (-3014 (($ $) 69)) (-2109 (((-3 $ "failed") $) 37)) (-3501 (($ $) 60 (|has| |#1| (-455)))) (-1433 (((-112) $) 35)) (-2824 (($ |#1| (-772)) 67)) (-1701 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 62 (|has| |#1| (-559)))) (-1624 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 63 (|has| |#1| (-559)))) (-2656 (((-772) $) 71)) (-1778 (($ $ $) 57 (|has| |#1| (-365)))) (-3683 (($ $ $) 58 (|has| |#1| (-365)))) (-1739 (($ $ $) 46 (|has| |#1| (-365)))) (-3053 (($ $ $) 55 (|has| |#1| (-365)))) (-2285 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) 54 (|has| |#1| (-365)))) (-2446 (((-3 $ "failed") $ $) 56 (|has| |#1| (-365)))) (-2720 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 59 (|has| |#1| (-365)))) (-2989 ((|#1| $) 70)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-2391 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-559)))) (-1787 ((|#1| $ |#1|) 92)) (-4116 (($ $ $) 86 (|has| |#1| (-365)))) (-3077 (((-772) $) 72)) (-4358 ((|#1| $) 61 (|has| |#1| (-455)))) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ (-410 (-567))) 78 (|has| |#1| (-1040 (-410 (-567))))) (($ |#1|) 73)) (-3032 (((-645 |#1|) $) 66)) (-4136 ((|#1| $ (-772)) 68)) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-2355 ((|#1| $ |#1| |#1|) 65)) (-2974 (($ $) 90)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2637 (($) 91)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81)))
+(-10 -8 (-15 -3119 (|#1| |#1|)) (-15 -1900 (|#1| |#1|)) (-15 -2647 (|#1|)))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-3119 (($ $) 87 (|has| |#1| (-365)))) (-4163 (($ $ $) 89 (|has| |#1| (-365)))) (-3815 (($ $ (-772)) 88 (|has| |#1| (-365)))) (-2376 (((-3 $ "failed") $ $) 20)) (-3647 (($) 18 T CONST)) (-3113 (($ $ $) 50 (|has| |#1| (-365)))) (-2912 (($ $ $) 51 (|has| |#1| (-365)))) (-3215 (($ $ $) 53 (|has| |#1| (-365)))) (-4259 (($ $ $) 48 (|has| |#1| (-365)))) (-3762 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) 47 (|has| |#1| (-365)))) (-4394 (((-3 $ "failed") $ $) 49 (|has| |#1| (-365)))) (-2275 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) 52 (|has| |#1| (-365)))) (-3765 (((-3 (-567) "failed") $) 80 (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) 77 (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) 74)) (-2051 (((-567) $) 79 (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) 76 (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) 75)) (-3023 (($ $) 69)) (-3588 (((-3 $ "failed") $) 37)) (-2989 (($ $) 60 (|has| |#1| (-455)))) (-4346 (((-112) $) 35)) (-2836 (($ |#1| (-772)) 67)) (-3371 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) 62 (|has| |#1| (-559)))) (-3036 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) 63 (|has| |#1| (-559)))) (-2955 (((-772) $) 71)) (-1651 (($ $ $) 57 (|has| |#1| (-365)))) (-2710 (($ $ $) 58 (|has| |#1| (-365)))) (-4099 (($ $ $) 46 (|has| |#1| (-365)))) (-2521 (($ $ $) 55 (|has| |#1| (-365)))) (-4318 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) 54 (|has| |#1| (-365)))) (-2012 (((-3 $ "failed") $ $) 56 (|has| |#1| (-365)))) (-4333 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) 59 (|has| |#1| (-365)))) (-2996 ((|#1| $) 70)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-2400 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-559)))) (-1801 ((|#1| $ |#1|) 92)) (-3510 (($ $ $) 86 (|has| |#1| (-365)))) (-3104 (((-772) $) 72)) (-1849 ((|#1| $) 61 (|has| |#1| (-455)))) (-4129 (((-863) $) 12) (($ (-567)) 33) (($ (-410 (-567))) 78 (|has| |#1| (-1040 (-410 (-567))))) (($ |#1|) 73)) (-3601 (((-645 |#1|) $) 66)) (-2558 ((|#1| $ (-772)) 68)) (-2746 (((-772)) 32 T CONST)) (-3357 (((-112) $ $) 9)) (-2364 ((|#1| $ |#1| |#1|) 65)) (-1900 (($ $) 90)) (-1733 (($) 19 T CONST)) (-1744 (($) 34 T CONST)) (-2647 (($) 91)) (-2946 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81)))
(((-657 |#1|) (-140) (-1051)) (T -657))
-((-2637 (*1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1051)))) (-2974 (*1 *1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1051)))) (-4014 (*1 *1 *1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))) (-3931 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-657 *3)) (-4 *3 (-1051)) (-4 *3 (-365)))) (-1676 (*1 *1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))) (-4116 (*1 *1 *1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))))
-(-13 (-853 |t#1|) (-287 |t#1| |t#1|) (-10 -8 (-15 -2637 ($)) (-15 -2974 ($ $)) (IF (|has| |t#1| (-365)) (PROGN (-15 -4014 ($ $ $)) (-15 -3931 ($ $ (-772))) (-15 -1676 ($ $)) (-15 -4116 ($ $ $))) |%noBranch|)))
+((-2647 (*1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1051)))) (-1900 (*1 *1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1051)))) (-4163 (*1 *1 *1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))) (-3815 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-657 *3)) (-4 *3 (-1051)) (-4 *3 (-365)))) (-3119 (*1 *1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))) (-3510 (*1 *1 *1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))))
+(-13 (-853 |t#1|) (-287 |t#1| |t#1|) (-10 -8 (-15 -2647 ($)) (-15 -1900 ($ $)) (IF (|has| |t#1| (-365)) (PROGN (-15 -4163 ($ $ $)) (-15 -3815 ($ $ (-772))) (-15 -3119 ($ $)) (-15 -3510 ($ $ $))) |%noBranch|)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-617 #0=(-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-614 (-863)) . T) ((-287 |#1| |#1|) . T) ((-414 |#1|) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-641 |#1|) |has| |#1| (-172)) ((-718 |#1|) |has| |#1| (-172)) ((-727) . T) ((-1040 #0#) |has| |#1| (-1040 (-410 (-567)))) ((-1040 (-567)) |has| |#1| (-1040 (-567))) ((-1040 |#1|) . T) ((-1053 |#1|) . T) ((-1058 |#1|) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-853 |#1|) . T))
-((-3744 (((-645 (-654 (-410 |#2|))) (-654 (-410 |#2|))) 87 (|has| |#1| (-27)))) (-2706 (((-645 (-654 (-410 |#2|))) (-654 (-410 |#2|))) 86 (|has| |#1| (-27))) (((-645 (-654 (-410 |#2|))) (-654 (-410 |#2|)) (-1 (-645 |#1|) |#2|)) 19)))
-(((-658 |#1| |#2|) (-10 -7 (-15 -2706 ((-645 (-654 (-410 |#2|))) (-654 (-410 |#2|)) (-1 (-645 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2706 ((-645 (-654 (-410 |#2|))) (-654 (-410 |#2|)))) (-15 -3744 ((-645 (-654 (-410 |#2|))) (-654 (-410 |#2|))))) |%noBranch|)) (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567)))) (-1244 |#1|)) (T -658))
-((-3744 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) (-4 *5 (-1244 *4)) (-5 *2 (-645 (-654 (-410 *5)))) (-5 *1 (-658 *4 *5)) (-5 *3 (-654 (-410 *5))))) (-2706 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) (-4 *5 (-1244 *4)) (-5 *2 (-645 (-654 (-410 *5)))) (-5 *1 (-658 *4 *5)) (-5 *3 (-654 (-410 *5))))) (-2706 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-645 *5) *6)) (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) (-4 *6 (-1244 *5)) (-5 *2 (-645 (-654 (-410 *6)))) (-5 *1 (-658 *5 *6)) (-5 *3 (-654 (-410 *6))))))
-(-10 -7 (-15 -2706 ((-645 (-654 (-410 |#2|))) (-654 (-410 |#2|)) (-1 (-645 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2706 ((-645 (-654 (-410 |#2|))) (-654 (-410 |#2|)))) (-15 -3744 ((-645 (-654 (-410 |#2|))) (-654 (-410 |#2|))))) |%noBranch|))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-1676 (($ $) NIL (|has| |#1| (-365)))) (-4014 (($ $ $) 28 (|has| |#1| (-365)))) (-3931 (($ $ (-772)) 31 (|has| |#1| (-365)))) (-3472 (((-3 $ "failed") $ $) NIL)) (-2585 (($) NIL T CONST)) (-2336 (($ $ $) NIL (|has| |#1| (-365)))) (-2210 (($ $ $) NIL (|has| |#1| (-365)))) (-2785 (($ $ $) NIL (|has| |#1| (-365)))) (-2680 (($ $ $) NIL (|has| |#1| (-365)))) (-3037 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL (|has| |#1| (-365)))) (-2080 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-3327 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL (|has| |#1| (-365)))) (-3753 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) NIL)) (-2038 (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) NIL)) (-3014 (($ $) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-3501 (($ $) NIL (|has| |#1| (-455)))) (-1433 (((-112) $) NIL)) (-2824 (($ |#1| (-772)) NIL)) (-1701 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL (|has| |#1| (-559)))) (-1624 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL (|has| |#1| (-559)))) (-2656 (((-772) $) NIL)) (-1778 (($ $ $) NIL (|has| |#1| (-365)))) (-3683 (($ $ $) NIL (|has| |#1| (-365)))) (-1739 (($ $ $) NIL (|has| |#1| (-365)))) (-3053 (($ $ $) NIL (|has| |#1| (-365)))) (-2285 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL (|has| |#1| (-365)))) (-2446 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-2720 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL (|has| |#1| (-365)))) (-2989 ((|#1| $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-2391 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559)))) (-1787 ((|#1| $ |#1|) 24)) (-4116 (($ $ $) 33 (|has| |#1| (-365)))) (-3077 (((-772) $) NIL)) (-4358 ((|#1| $) NIL (|has| |#1| (-455)))) (-4132 (((-863) $) 20) (($ (-567)) NIL) (($ (-410 (-567))) NIL (|has| |#1| (-1040 (-410 (-567))))) (($ |#1|) NIL)) (-3032 (((-645 |#1|) $) NIL)) (-4136 ((|#1| $ (-772)) NIL)) (-4221 (((-772)) NIL T CONST)) (-1745 (((-112) $ $) NIL)) (-2355 ((|#1| $ |#1| |#1|) 23)) (-2974 (($ $) NIL)) (-1716 (($) 21 T CONST)) (-1728 (($) 8 T CONST)) (-2637 (($) NIL)) (-2936 (((-112) $ $) NIL)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+((-1928 (((-645 (-654 (-410 |#2|))) (-654 (-410 |#2|))) 87 (|has| |#1| (-27)))) (-2717 (((-645 (-654 (-410 |#2|))) (-654 (-410 |#2|))) 86 (|has| |#1| (-27))) (((-645 (-654 (-410 |#2|))) (-654 (-410 |#2|)) (-1 (-645 |#1|) |#2|)) 19)))
+(((-658 |#1| |#2|) (-10 -7 (-15 -2717 ((-645 (-654 (-410 |#2|))) (-654 (-410 |#2|)) (-1 (-645 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2717 ((-645 (-654 (-410 |#2|))) (-654 (-410 |#2|)))) (-15 -1928 ((-645 (-654 (-410 |#2|))) (-654 (-410 |#2|))))) |%noBranch|)) (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567)))) (-1245 |#1|)) (T -658))
+((-1928 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) (-4 *5 (-1245 *4)) (-5 *2 (-645 (-654 (-410 *5)))) (-5 *1 (-658 *4 *5)) (-5 *3 (-654 (-410 *5))))) (-2717 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) (-4 *5 (-1245 *4)) (-5 *2 (-645 (-654 (-410 *5)))) (-5 *1 (-658 *4 *5)) (-5 *3 (-654 (-410 *5))))) (-2717 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-645 *5) *6)) (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) (-4 *6 (-1245 *5)) (-5 *2 (-645 (-654 (-410 *6)))) (-5 *1 (-658 *5 *6)) (-5 *3 (-654 (-410 *6))))))
+(-10 -7 (-15 -2717 ((-645 (-654 (-410 |#2|))) (-654 (-410 |#2|)) (-1 (-645 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2717 ((-645 (-654 (-410 |#2|))) (-654 (-410 |#2|)))) (-15 -1928 ((-645 (-654 (-410 |#2|))) (-654 (-410 |#2|))))) |%noBranch|))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-3119 (($ $) NIL (|has| |#1| (-365)))) (-4163 (($ $ $) 28 (|has| |#1| (-365)))) (-3815 (($ $ (-772)) 31 (|has| |#1| (-365)))) (-2376 (((-3 $ "failed") $ $) NIL)) (-3647 (($) NIL T CONST)) (-3113 (($ $ $) NIL (|has| |#1| (-365)))) (-2912 (($ $ $) NIL (|has| |#1| (-365)))) (-3215 (($ $ $) NIL (|has| |#1| (-365)))) (-4259 (($ $ $) NIL (|has| |#1| (-365)))) (-3762 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) NIL (|has| |#1| (-365)))) (-4394 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-2275 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) NIL (|has| |#1| (-365)))) (-3765 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) NIL)) (-2051 (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) NIL)) (-3023 (($ $) NIL)) (-3588 (((-3 $ "failed") $) NIL)) (-2989 (($ $) NIL (|has| |#1| (-455)))) (-4346 (((-112) $) NIL)) (-2836 (($ |#1| (-772)) NIL)) (-3371 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) NIL (|has| |#1| (-559)))) (-3036 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) NIL (|has| |#1| (-559)))) (-2955 (((-772) $) NIL)) (-1651 (($ $ $) NIL (|has| |#1| (-365)))) (-2710 (($ $ $) NIL (|has| |#1| (-365)))) (-4099 (($ $ $) NIL (|has| |#1| (-365)))) (-2521 (($ $ $) NIL (|has| |#1| (-365)))) (-4318 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) NIL (|has| |#1| (-365)))) (-2012 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-4333 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) NIL (|has| |#1| (-365)))) (-2996 ((|#1| $) NIL)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-2400 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559)))) (-1801 ((|#1| $ |#1|) 24)) (-3510 (($ $ $) 33 (|has| |#1| (-365)))) (-3104 (((-772) $) NIL)) (-1849 ((|#1| $) NIL (|has| |#1| (-455)))) (-4129 (((-863) $) 20) (($ (-567)) NIL) (($ (-410 (-567))) NIL (|has| |#1| (-1040 (-410 (-567))))) (($ |#1|) NIL)) (-3601 (((-645 |#1|) $) NIL)) (-2558 ((|#1| $ (-772)) NIL)) (-2746 (((-772)) NIL T CONST)) (-3357 (((-112) $ $) NIL)) (-2364 ((|#1| $ |#1| |#1|) 23)) (-1900 (($ $) NIL)) (-1733 (($) 21 T CONST)) (-1744 (($) 8 T CONST)) (-2647 (($) NIL)) (-2946 (((-112) $ $) NIL)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
(((-659 |#1| |#2|) (-657 |#1|) (-1051) (-1 |#1| |#1|)) (T -659))
NIL
(-657 |#1|)
-((-4014 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 70)) (-3931 ((|#2| |#2| (-772) (-1 |#1| |#1|)) 48)) (-4116 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 72)))
-(((-660 |#1| |#2|) (-10 -7 (-15 -4014 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3931 (|#2| |#2| (-772) (-1 |#1| |#1|))) (-15 -4116 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-365) (-657 |#1|)) (T -660))
-((-4116 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-365)) (-5 *1 (-660 *4 *2)) (-4 *2 (-657 *4)))) (-3931 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-772)) (-5 *4 (-1 *5 *5)) (-4 *5 (-365)) (-5 *1 (-660 *5 *2)) (-4 *2 (-657 *5)))) (-4014 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-365)) (-5 *1 (-660 *4 *2)) (-4 *2 (-657 *4)))))
-(-10 -7 (-15 -4014 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3931 (|#2| |#2| (-772) (-1 |#1| |#1|))) (-15 -4116 (|#2| |#2| |#2| (-1 |#1| |#1|))))
-((-2470 (($ $ $) 9)))
-(((-661 |#1|) (-10 -8 (-15 -2470 (|#1| |#1| |#1|))) (-662)) (T -661))
-NIL
-(-10 -8 (-15 -2470 (|#1| |#1| |#1|)))
-((-2403 (((-112) $ $) 7)) (-2425 (($ $) 10)) (-2470 (($ $ $) 8)) (-2936 (((-112) $ $) 6)) (-2458 (($ $ $) 9)))
+((-4163 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 70)) (-3815 ((|#2| |#2| (-772) (-1 |#1| |#1|)) 48)) (-3510 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 72)))
+(((-660 |#1| |#2|) (-10 -7 (-15 -4163 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3815 (|#2| |#2| (-772) (-1 |#1| |#1|))) (-15 -3510 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-365) (-657 |#1|)) (T -660))
+((-3510 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-365)) (-5 *1 (-660 *4 *2)) (-4 *2 (-657 *4)))) (-3815 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-772)) (-5 *4 (-1 *5 *5)) (-4 *5 (-365)) (-5 *1 (-660 *5 *2)) (-4 *2 (-657 *5)))) (-4163 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-365)) (-5 *1 (-660 *4 *2)) (-4 *2 (-657 *4)))))
+(-10 -7 (-15 -4163 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3815 (|#2| |#2| (-772) (-1 |#1| |#1|))) (-15 -3510 (|#2| |#2| |#2| (-1 |#1| |#1|))))
+((-2477 (($ $ $) 9)))
+(((-661 |#1|) (-10 -8 (-15 -2477 (|#1| |#1| |#1|))) (-662)) (T -661))
+NIL
+(-10 -8 (-15 -2477 (|#1| |#1| |#1|)))
+((-2412 (((-112) $ $) 7)) (-2434 (($ $) 10)) (-2477 (($ $ $) 8)) (-2946 (((-112) $ $) 6)) (-2468 (($ $ $) 9)))
(((-662) (-140)) (T -662))
-((-2425 (*1 *1 *1) (-4 *1 (-662))) (-2458 (*1 *1 *1 *1) (-4 *1 (-662))) (-2470 (*1 *1 *1 *1) (-4 *1 (-662))))
-(-13 (-102) (-10 -8 (-15 -2425 ($ $)) (-15 -2458 ($ $ $)) (-15 -2470 ($ $ $))))
+((-2434 (*1 *1 *1) (-4 *1 (-662))) (-2468 (*1 *1 *1 *1) (-4 *1 (-662))) (-2477 (*1 *1 *1 *1) (-4 *1 (-662))))
+(-13 (-102) (-10 -8 (-15 -2434 ($ $)) (-15 -2468 ($ $ $)) (-15 -2477 ($ $ $))))
(((-102) . T))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) 15)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2585 (($) NIL T CONST)) (-1448 ((|#1| $) 23)) (-1354 (($ $ $) NIL (|has| |#1| (-792)))) (-2981 (($ $ $) NIL (|has| |#1| (-792)))) (-1419 (((-1160) $) 48)) (-3430 (((-1122) $) NIL)) (-1460 ((|#3| $) 24)) (-4132 (((-863) $) 43)) (-1745 (((-112) $ $) 22)) (-1716 (($) 10 T CONST)) (-2997 (((-112) $ $) NIL (|has| |#1| (-792)))) (-2971 (((-112) $ $) NIL (|has| |#1| (-792)))) (-2936 (((-112) $ $) 20)) (-2984 (((-112) $ $) NIL (|has| |#1| (-792)))) (-2958 (((-112) $ $) 26 (|has| |#1| (-792)))) (-3060 (($ $ |#3|) 36) (($ |#1| |#3|) 37)) (-3045 (($ $) 17) (($ $ $) NIL)) (-3033 (($ $ $) 29)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 32) (($ |#2| $) 34) (($ $ |#2|) NIL)))
-(((-663 |#1| |#2| |#3|) (-13 (-718 |#2|) (-10 -8 (IF (|has| |#1| (-792)) (-6 (-792)) |%noBranch|) (-15 -3060 ($ $ |#3|)) (-15 -3060 ($ |#1| |#3|)) (-15 -1448 (|#1| $)) (-15 -1460 (|#3| $)))) (-718 |#2|) (-172) (|SubsetCategory| (-727) |#2|)) (T -663))
-((-3060 (*1 *1 *1 *2) (-12 (-4 *4 (-172)) (-5 *1 (-663 *3 *4 *2)) (-4 *3 (-718 *4)) (-4 *2 (|SubsetCategory| (-727) *4)))) (-3060 (*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-663 *2 *4 *3)) (-4 *2 (-718 *4)) (-4 *3 (|SubsetCategory| (-727) *4)))) (-1448 (*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-718 *3)) (-5 *1 (-663 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-727) *3)))) (-1460 (*1 *2 *1) (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-727) *4)) (-5 *1 (-663 *3 *4 *2)) (-4 *3 (-718 *4)))))
-(-13 (-718 |#2|) (-10 -8 (IF (|has| |#1| (-792)) (-6 (-792)) |%noBranch|) (-15 -3060 ($ $ |#3|)) (-15 -3060 ($ |#1| |#3|)) (-15 -1448 (|#1| $)) (-15 -1460 (|#3| $))))
-((-2832 (((-3 (-645 (-1174 |#1|)) "failed") (-645 (-1174 |#1|)) (-1174 |#1|)) 33)))
-(((-664 |#1|) (-10 -7 (-15 -2832 ((-3 (-645 (-1174 |#1|)) "failed") (-645 (-1174 |#1|)) (-1174 |#1|)))) (-911)) (T -664))
-((-2832 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-645 (-1174 *4))) (-5 *3 (-1174 *4)) (-4 *4 (-911)) (-5 *1 (-664 *4)))))
-(-10 -7 (-15 -2832 ((-3 (-645 (-1174 |#1|)) "failed") (-645 (-1174 |#1|)) (-1174 |#1|))))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3267 (((-645 |#1|) $) 84)) (-2721 (($ $ (-772)) 94)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2585 (($) NIL T CONST)) (-2885 (((-1292 |#1| |#2|) (-1292 |#1| |#2|) $) 50)) (-3753 (((-3 (-673 |#1|) "failed") $) NIL)) (-2038 (((-673 |#1|) $) NIL)) (-3014 (($ $) 93)) (-2695 (((-772) $) NIL)) (-1709 (((-645 $) $) NIL)) (-2843 (((-112) $) NIL)) (-2290 (($ (-673 |#1|) |#2|) 70)) (-3592 (($ $) 89)) (-3829 (($ (-1 |#2| |#2|) $) NIL)) (-2173 (((-1292 |#1| |#2|) (-1292 |#1| |#2|) $) 49)) (-1901 (((-2 (|:| |k| (-673 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2976 (((-673 |#1|) $) NIL)) (-2989 ((|#2| $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-2631 (($ $ |#1| $) 32) (($ $ (-645 |#1|) (-645 $)) 34)) (-3077 (((-772) $) 91)) (-4147 (($ $ $) 20) (($ (-673 |#1|) (-673 |#1|)) 79) (($ (-673 |#1|) $) 77) (($ $ (-673 |#1|)) 78)) (-4132 (((-863) $) NIL) (($ |#1|) 76) (((-1283 |#1| |#2|) $) 60) (((-1292 |#1| |#2|) $) 43) (($ (-673 |#1|)) 27)) (-3032 (((-645 |#2|) $) NIL)) (-4136 ((|#2| $ (-673 |#1|)) NIL)) (-3694 ((|#2| (-1292 |#1| |#2|) $) 45)) (-1745 (((-112) $ $) NIL)) (-1716 (($) 23 T CONST)) (-2761 (((-645 (-2 (|:| |k| (-673 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1428 (((-3 $ "failed") (-1283 |#1| |#2|)) 62)) (-4363 (($ (-673 |#1|)) 14)) (-2936 (((-112) $ $) 46)) (-3060 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3045 (($ $) 68) (($ $ $) NIL)) (-3033 (($ $ $) 31)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ |#2| $) 30) (($ $ |#2|) NIL) (($ |#2| (-673 |#1|)) NIL)))
-(((-665 |#1| |#2|) (-13 (-376 |#1| |#2|) (-384 |#2| (-673 |#1|)) (-10 -8 (-15 -1428 ((-3 $ "failed") (-1283 |#1| |#2|))) (-15 -4147 ($ (-673 |#1|) (-673 |#1|))) (-15 -4147 ($ (-673 |#1|) $)) (-15 -4147 ($ $ (-673 |#1|))))) (-851) (-172)) (T -665))
-((-1428 (*1 *1 *2) (|partial| -12 (-5 *2 (-1283 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)) (-5 *1 (-665 *3 *4)))) (-4147 (*1 *1 *2 *2) (-12 (-5 *2 (-673 *3)) (-4 *3 (-851)) (-5 *1 (-665 *3 *4)) (-4 *4 (-172)))) (-4147 (*1 *1 *2 *1) (-12 (-5 *2 (-673 *3)) (-4 *3 (-851)) (-5 *1 (-665 *3 *4)) (-4 *4 (-172)))) (-4147 (*1 *1 *1 *2) (-12 (-5 *2 (-673 *3)) (-4 *3 (-851)) (-5 *1 (-665 *3 *4)) (-4 *4 (-172)))))
-(-13 (-376 |#1| |#2|) (-384 |#2| (-673 |#1|)) (-10 -8 (-15 -1428 ((-3 $ "failed") (-1283 |#1| |#2|))) (-15 -4147 ($ (-673 |#1|) (-673 |#1|))) (-15 -4147 ($ (-673 |#1|) $)) (-15 -4147 ($ $ (-673 |#1|)))))
-((-2496 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 61)) (-1394 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-2839 (($ (-1 (-112) |#2|) $) 29)) (-1764 (($ $) 67)) (-2133 (($ $) 78)) (-2539 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 43)) (-2477 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 62) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 64)) (-2569 (((-567) |#2| $ (-567)) 75) (((-567) |#2| $) NIL) (((-567) (-1 (-112) |#2|) $) 56)) (-2846 (($ (-772) |#2|) 65)) (-2966 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 31)) (-4135 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-3829 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 66)) (-2284 (($ |#2|) 15)) (-2531 (($ $ $ (-567)) 42) (($ |#2| $ (-567)) 40)) (-4128 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 53)) (-3670 (($ $ (-1235 (-567))) 51) (($ $ (-567)) 44)) (-1395 (($ $ $ (-567)) 74)) (-4305 (($ $) 72)) (-2958 (((-112) $ $) 80)))
-(((-666 |#1| |#2|) (-10 -8 (-15 -2284 (|#1| |#2|)) (-15 -3670 (|#1| |#1| (-567))) (-15 -3670 (|#1| |#1| (-1235 (-567)))) (-15 -2539 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2531 (|#1| |#2| |#1| (-567))) (-15 -2531 (|#1| |#1| |#1| (-567))) (-15 -2966 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2839 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2539 (|#1| |#2| |#1|)) (-15 -2133 (|#1| |#1|)) (-15 -2966 (|#1| |#1| |#1|)) (-15 -4135 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2496 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2569 ((-567) (-1 (-112) |#2|) |#1|)) (-15 -2569 ((-567) |#2| |#1|)) (-15 -2569 ((-567) |#2| |#1| (-567))) (-15 -4135 (|#1| |#1| |#1|)) (-15 -2496 ((-112) |#1|)) (-15 -1395 (|#1| |#1| |#1| (-567))) (-15 -1764 (|#1| |#1|)) (-15 -1394 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1394 (|#1| |#1|)) (-15 -2958 ((-112) |#1| |#1|)) (-15 -2477 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2477 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2477 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4128 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2846 (|#1| (-772) |#2|)) (-15 -3829 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3829 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4305 (|#1| |#1|))) (-667 |#2|) (-1218)) (T -666))
-NIL
-(-10 -8 (-15 -2284 (|#1| |#2|)) (-15 -3670 (|#1| |#1| (-567))) (-15 -3670 (|#1| |#1| (-1235 (-567)))) (-15 -2539 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2531 (|#1| |#2| |#1| (-567))) (-15 -2531 (|#1| |#1| |#1| (-567))) (-15 -2966 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2839 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2539 (|#1| |#2| |#1|)) (-15 -2133 (|#1| |#1|)) (-15 -2966 (|#1| |#1| |#1|)) (-15 -4135 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2496 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2569 ((-567) (-1 (-112) |#2|) |#1|)) (-15 -2569 ((-567) |#2| |#1|)) (-15 -2569 ((-567) |#2| |#1| (-567))) (-15 -4135 (|#1| |#1| |#1|)) (-15 -2496 ((-112) |#1|)) (-15 -1395 (|#1| |#1| |#1| (-567))) (-15 -1764 (|#1| |#1|)) (-15 -1394 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1394 (|#1| |#1|)) (-15 -2958 ((-112) |#1| |#1|)) (-15 -2477 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2477 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2477 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4128 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2846 (|#1| (-772) |#2|)) (-15 -3829 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3829 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4305 (|#1| |#1|)))
-((-2403 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-3802 ((|#1| $) 49)) (-3998 ((|#1| $) 66)) (-4283 (($ $) 68)) (-1783 (((-1273) $ (-567) (-567)) 98 (|has| $ (-6 -4419)))) (-2366 (($ $ (-567)) 53 (|has| $ (-6 -4419)))) (-2496 (((-112) $) 143 (|has| |#1| (-851))) (((-112) (-1 (-112) |#1| |#1|) $) 137)) (-1394 (($ $) 147 (-12 (|has| |#1| (-851)) (|has| $ (-6 -4419)))) (($ (-1 (-112) |#1| |#1|) $) 146 (|has| $ (-6 -4419)))) (-4396 (($ $) 142 (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $) 136)) (-3445 (((-112) $ (-772)) 8)) (-2138 ((|#1| $ |#1|) 40 (|has| $ (-6 -4419)))) (-4209 (($ $ $) 57 (|has| $ (-6 -4419)))) (-2315 ((|#1| $ |#1|) 55 (|has| $ (-6 -4419)))) (-2271 ((|#1| $ |#1|) 59 (|has| $ (-6 -4419)))) (-4284 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4419))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4419))) (($ $ "rest" $) 56 (|has| $ (-6 -4419))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4419))) ((|#1| $ (-1235 (-567)) |#1|) 118 (|has| $ (-6 -4419))) ((|#1| $ (-567) |#1|) 87 (|has| $ (-6 -4419)))) (-1301 (($ $ (-645 $)) 42 (|has| $ (-6 -4419)))) (-2839 (($ (-1 (-112) |#1|) $) 130)) (-3350 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4418)))) (-3984 ((|#1| $) 67)) (-2585 (($) 7 T CONST)) (-1764 (($ $) 145 (|has| $ (-6 -4419)))) (-3584 (($ $) 135)) (-2421 (($ $) 74) (($ $ (-772)) 72)) (-2133 (($ $) 132 (|has| |#1| (-1102)))) (-2444 (($ $) 100 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-2539 (($ |#1| $) 131 (|has| |#1| (-1102))) (($ (-1 (-112) |#1|) $) 126)) (-3238 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4418))) (($ |#1| $) 101 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-2477 ((|#1| (-1 |#1| |#1| |#1|) $) 106 (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 105 (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 102 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-3741 ((|#1| $ (-567) |#1|) 86 (|has| $ (-6 -4419)))) (-3680 ((|#1| $ (-567)) 88)) (-1399 (((-112) $) 84)) (-2569 (((-567) |#1| $ (-567)) 140 (|has| |#1| (-1102))) (((-567) |#1| $) 139 (|has| |#1| (-1102))) (((-567) (-1 (-112) |#1|) $) 138)) (-2777 (((-645 |#1|) $) 31 (|has| $ (-6 -4418)))) (-2182 (((-645 $) $) 51)) (-3512 (((-112) $ $) 43 (|has| |#1| (-1102)))) (-2846 (($ (-772) |#1|) 109)) (-2077 (((-112) $ (-772)) 9)) (-4069 (((-567) $) 96 (|has| (-567) (-851)))) (-1354 (($ $ $) 148 (|has| |#1| (-851)))) (-2966 (($ $ $) 133 (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $ $) 129)) (-4135 (($ $ $) 141 (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $ $) 134)) (-2279 (((-645 |#1|) $) 30 (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-2266 (((-567) $) 95 (|has| (-567) (-851)))) (-2981 (($ $ $) 149 (|has| |#1| (-851)))) (-3731 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 112)) (-2284 (($ |#1|) 123)) (-2863 (((-112) $ (-772)) 10)) (-3773 (((-645 |#1|) $) 46)) (-2769 (((-112) $) 50)) (-1419 (((-1160) $) 22 (|has| |#1| (-1102)))) (-3257 ((|#1| $) 71) (($ $ (-772)) 69)) (-2531 (($ $ $ (-567)) 128) (($ |#1| $ (-567)) 127)) (-2845 (($ $ $ (-567)) 117) (($ |#1| $ (-567)) 116)) (-1789 (((-645 (-567)) $) 93)) (-2996 (((-112) (-567) $) 92)) (-3430 (((-1122) $) 21 (|has| |#1| (-1102)))) (-2409 ((|#1| $) 77) (($ $ (-772)) 75)) (-4128 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 107)) (-3986 (($ $ |#1|) 97 (|has| $ (-6 -4419)))) (-3323 (((-112) $) 85)) (-3025 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) 14)) (-1794 (((-112) |#1| $) 94 (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2339 (((-645 |#1|) $) 91)) (-3572 (((-112) $) 11)) (-3498 (($) 12)) (-1787 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1235 (-567))) 113) ((|#1| $ (-567)) 90) ((|#1| $ (-567) |#1|) 89)) (-2658 (((-567) $ $) 45)) (-3670 (($ $ (-1235 (-567))) 125) (($ $ (-567)) 124)) (-1560 (($ $ (-1235 (-567))) 115) (($ $ (-567)) 114)) (-3900 (((-112) $) 47)) (-1644 (($ $) 63)) (-3519 (($ $) 60 (|has| $ (-6 -4419)))) (-3344 (((-772) $) 64)) (-1503 (($ $) 65)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4418))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-1395 (($ $ $ (-567)) 144 (|has| $ (-6 -4419)))) (-4305 (($ $) 13)) (-3893 (((-539) $) 99 (|has| |#1| (-615 (-539))))) (-4147 (($ (-645 |#1|)) 108)) (-2484 (($ $ $) 62) (($ $ |#1|) 61)) (-2269 (($ $ $) 79) (($ |#1| $) 78) (($ (-645 $)) 111) (($ $ |#1|) 110)) (-4132 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-1531 (((-645 $) $) 52)) (-3606 (((-112) $ $) 44 (|has| |#1| (-1102)))) (-1745 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4418)))) (-2997 (((-112) $ $) 151 (|has| |#1| (-851)))) (-2971 (((-112) $ $) 152 (|has| |#1| (-851)))) (-2936 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2984 (((-112) $ $) 150 (|has| |#1| (-851)))) (-2958 (((-112) $ $) 153 (|has| |#1| (-851)))) (-2414 (((-772) $) 6 (|has| $ (-6 -4418)))))
-(((-667 |#1|) (-140) (-1218)) (T -667))
-((-2284 (*1 *1 *2) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1218)))))
-(-13 (-1151 |t#1|) (-375 |t#1|) (-283 |t#1|) (-10 -8 (-15 -2284 ($ |t#1|))))
-(((-34) . T) ((-102) -2800 (|has| |#1| (-1102)) (|has| |#1| (-851))) ((-614 (-863)) -2800 (|has| |#1| (-1102)) (|has| |#1| (-851)) (|has| |#1| (-614 (-863)))) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-287 #0=(-567) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-283 |#1|) . T) ((-375 |#1|) . T) ((-492 |#1|) . T) ((-605 #0# |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-652 |#1|) . T) ((-851) |has| |#1| (-851)) ((-1012 |#1|) . T) ((-1102) -2800 (|has| |#1| (-1102)) (|has| |#1| (-851))) ((-1151 |#1|) . T) ((-1218) . T) ((-1256 |#1|) . T))
-((-3018 (((-645 (-2 (|:| |particular| (-3 (-1268 |#1|) "failed")) (|:| -2623 (-645 (-1268 |#1|))))) (-645 (-645 |#1|)) (-645 (-1268 |#1|))) 22) (((-645 (-2 (|:| |particular| (-3 (-1268 |#1|) "failed")) (|:| -2623 (-645 (-1268 |#1|))))) (-690 |#1|) (-645 (-1268 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1268 |#1|) "failed")) (|:| -2623 (-645 (-1268 |#1|)))) (-645 (-645 |#1|)) (-1268 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1268 |#1|) "failed")) (|:| -2623 (-645 (-1268 |#1|)))) (-690 |#1|) (-1268 |#1|)) 14)) (-1954 (((-772) (-690 |#1|) (-1268 |#1|)) 30)) (-3141 (((-3 (-1268 |#1|) "failed") (-690 |#1|) (-1268 |#1|)) 24)) (-2879 (((-112) (-690 |#1|) (-1268 |#1|)) 27)))
-(((-668 |#1|) (-10 -7 (-15 -3018 ((-2 (|:| |particular| (-3 (-1268 |#1|) "failed")) (|:| -2623 (-645 (-1268 |#1|)))) (-690 |#1|) (-1268 |#1|))) (-15 -3018 ((-2 (|:| |particular| (-3 (-1268 |#1|) "failed")) (|:| -2623 (-645 (-1268 |#1|)))) (-645 (-645 |#1|)) (-1268 |#1|))) (-15 -3018 ((-645 (-2 (|:| |particular| (-3 (-1268 |#1|) "failed")) (|:| -2623 (-645 (-1268 |#1|))))) (-690 |#1|) (-645 (-1268 |#1|)))) (-15 -3018 ((-645 (-2 (|:| |particular| (-3 (-1268 |#1|) "failed")) (|:| -2623 (-645 (-1268 |#1|))))) (-645 (-645 |#1|)) (-645 (-1268 |#1|)))) (-15 -3141 ((-3 (-1268 |#1|) "failed") (-690 |#1|) (-1268 |#1|))) (-15 -2879 ((-112) (-690 |#1|) (-1268 |#1|))) (-15 -1954 ((-772) (-690 |#1|) (-1268 |#1|)))) (-365)) (T -668))
-((-1954 (*1 *2 *3 *4) (-12 (-5 *3 (-690 *5)) (-5 *4 (-1268 *5)) (-4 *5 (-365)) (-5 *2 (-772)) (-5 *1 (-668 *5)))) (-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-690 *5)) (-5 *4 (-1268 *5)) (-4 *5 (-365)) (-5 *2 (-112)) (-5 *1 (-668 *5)))) (-3141 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1268 *4)) (-5 *3 (-690 *4)) (-4 *4 (-365)) (-5 *1 (-668 *4)))) (-3018 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-645 *5))) (-4 *5 (-365)) (-5 *2 (-645 (-2 (|:| |particular| (-3 (-1268 *5) "failed")) (|:| -2623 (-645 (-1268 *5)))))) (-5 *1 (-668 *5)) (-5 *4 (-645 (-1268 *5))))) (-3018 (*1 *2 *3 *4) (-12 (-5 *3 (-690 *5)) (-4 *5 (-365)) (-5 *2 (-645 (-2 (|:| |particular| (-3 (-1268 *5) "failed")) (|:| -2623 (-645 (-1268 *5)))))) (-5 *1 (-668 *5)) (-5 *4 (-645 (-1268 *5))))) (-3018 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-645 *5))) (-4 *5 (-365)) (-5 *2 (-2 (|:| |particular| (-3 (-1268 *5) "failed")) (|:| -2623 (-645 (-1268 *5))))) (-5 *1 (-668 *5)) (-5 *4 (-1268 *5)))) (-3018 (*1 *2 *3 *4) (-12 (-5 *3 (-690 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| |particular| (-3 (-1268 *5) "failed")) (|:| -2623 (-645 (-1268 *5))))) (-5 *1 (-668 *5)) (-5 *4 (-1268 *5)))))
-(-10 -7 (-15 -3018 ((-2 (|:| |particular| (-3 (-1268 |#1|) "failed")) (|:| -2623 (-645 (-1268 |#1|)))) (-690 |#1|) (-1268 |#1|))) (-15 -3018 ((-2 (|:| |particular| (-3 (-1268 |#1|) "failed")) (|:| -2623 (-645 (-1268 |#1|)))) (-645 (-645 |#1|)) (-1268 |#1|))) (-15 -3018 ((-645 (-2 (|:| |particular| (-3 (-1268 |#1|) "failed")) (|:| -2623 (-645 (-1268 |#1|))))) (-690 |#1|) (-645 (-1268 |#1|)))) (-15 -3018 ((-645 (-2 (|:| |particular| (-3 (-1268 |#1|) "failed")) (|:| -2623 (-645 (-1268 |#1|))))) (-645 (-645 |#1|)) (-645 (-1268 |#1|)))) (-15 -3141 ((-3 (-1268 |#1|) "failed") (-690 |#1|) (-1268 |#1|))) (-15 -2879 ((-112) (-690 |#1|) (-1268 |#1|))) (-15 -1954 ((-772) (-690 |#1|) (-1268 |#1|))))
-((-3018 (((-645 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2623 (-645 |#3|)))) |#4| (-645 |#3|)) 66) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2623 (-645 |#3|))) |#4| |#3|) 60)) (-1954 (((-772) |#4| |#3|) 18)) (-3141 (((-3 |#3| "failed") |#4| |#3|) 21)) (-2879 (((-112) |#4| |#3|) 14)))
-(((-669 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3018 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2623 (-645 |#3|))) |#4| |#3|)) (-15 -3018 ((-645 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2623 (-645 |#3|)))) |#4| (-645 |#3|))) (-15 -3141 ((-3 |#3| "failed") |#4| |#3|)) (-15 -2879 ((-112) |#4| |#3|)) (-15 -1954 ((-772) |#4| |#3|))) (-365) (-13 (-375 |#1|) (-10 -7 (-6 -4419))) (-13 (-375 |#1|) (-10 -7 (-6 -4419))) (-688 |#1| |#2| |#3|)) (T -669))
-((-1954 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4419)))) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4419)))) (-5 *2 (-772)) (-5 *1 (-669 *5 *6 *4 *3)) (-4 *3 (-688 *5 *6 *4)))) (-2879 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4419)))) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4419)))) (-5 *2 (-112)) (-5 *1 (-669 *5 *6 *4 *3)) (-4 *3 (-688 *5 *6 *4)))) (-3141 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-365)) (-4 *5 (-13 (-375 *4) (-10 -7 (-6 -4419)))) (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4419)))) (-5 *1 (-669 *4 *5 *2 *3)) (-4 *3 (-688 *4 *5 *2)))) (-3018 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4419)))) (-4 *7 (-13 (-375 *5) (-10 -7 (-6 -4419)))) (-5 *2 (-645 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2623 (-645 *7))))) (-5 *1 (-669 *5 *6 *7 *3)) (-5 *4 (-645 *7)) (-4 *3 (-688 *5 *6 *7)))) (-3018 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4419)))) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4419)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2623 (-645 *4)))) (-5 *1 (-669 *5 *6 *4 *3)) (-4 *3 (-688 *5 *6 *4)))))
-(-10 -7 (-15 -3018 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2623 (-645 |#3|))) |#4| |#3|)) (-15 -3018 ((-645 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2623 (-645 |#3|)))) |#4| (-645 |#3|))) (-15 -3141 ((-3 |#3| "failed") |#4| |#3|)) (-15 -2879 ((-112) |#4| |#3|)) (-15 -1954 ((-772) |#4| |#3|)))
-((-2770 (((-2 (|:| |particular| (-3 (-1268 (-410 |#4|)) "failed")) (|:| -2623 (-645 (-1268 (-410 |#4|))))) (-645 |#4|) (-645 |#3|)) 52)))
-(((-670 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2770 ((-2 (|:| |particular| (-3 (-1268 (-410 |#4|)) "failed")) (|:| -2623 (-645 (-1268 (-410 |#4|))))) (-645 |#4|) (-645 |#3|)))) (-559) (-794) (-851) (-951 |#1| |#2| |#3|)) (T -670))
-((-2770 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 *7)) (-4 *7 (-851)) (-4 *8 (-951 *5 *6 *7)) (-4 *5 (-559)) (-4 *6 (-794)) (-5 *2 (-2 (|:| |particular| (-3 (-1268 (-410 *8)) "failed")) (|:| -2623 (-645 (-1268 (-410 *8)))))) (-5 *1 (-670 *5 *6 *7 *8)))))
-(-10 -7 (-15 -2770 ((-2 (|:| |particular| (-3 (-1268 (-410 |#4|)) "failed")) (|:| -2623 (-645 (-1268 (-410 |#4|))))) (-645 |#4|) (-645 |#3|))))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3951 (((-3 $ "failed")) NIL (|has| |#2| (-559)))) (-4293 ((|#2| $) NIL)) (-1981 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2189 (((-1268 (-690 |#2|))) NIL) (((-1268 (-690 |#2|)) (-1268 $)) NIL)) (-1948 (((-112) $) NIL)) (-3337 (((-1268 $)) 44)) (-3445 (((-112) $ (-772)) NIL)) (-3536 (($ |#2|) NIL)) (-2585 (($) NIL T CONST)) (-2233 (($ $) NIL (|has| |#2| (-308)))) (-1944 (((-240 |#1| |#2|) $ (-567)) NIL)) (-3425 (((-3 (-2 (|:| |particular| $) (|:| -2623 (-645 $))) "failed")) NIL (|has| |#2| (-559)))) (-3645 (((-3 $ "failed")) NIL (|has| |#2| (-559)))) (-1735 (((-690 |#2|)) NIL) (((-690 |#2|) (-1268 $)) NIL)) (-2583 ((|#2| $) NIL)) (-3528 (((-690 |#2|) $) NIL) (((-690 |#2|) $ (-1268 $)) NIL)) (-2209 (((-3 $ "failed") $) NIL (|has| |#2| (-559)))) (-4063 (((-1174 (-954 |#2|))) NIL (|has| |#2| (-365)))) (-2586 (($ $ (-923)) NIL)) (-1883 ((|#2| $) NIL)) (-1575 (((-1174 |#2|) $) NIL (|has| |#2| (-559)))) (-2676 ((|#2|) NIL) ((|#2| (-1268 $)) NIL)) (-1682 (((-1174 |#2|) $) NIL)) (-1444 (((-112)) NIL)) (-3753 (((-3 (-567) "failed") $) NIL (|has| |#2| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#2| (-1040 (-410 (-567))))) (((-3 |#2| "failed") $) NIL)) (-2038 (((-567) $) NIL (|has| |#2| (-1040 (-567)))) (((-410 (-567)) $) NIL (|has| |#2| (-1040 (-410 (-567))))) ((|#2| $) NIL)) (-3658 (($ (-1268 |#2|)) NIL) (($ (-1268 |#2|) (-1268 $)) NIL)) (-2630 (((-690 (-567)) (-690 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -2316 (-690 |#2|)) (|:| |vec| (-1268 |#2|))) (-690 $) (-1268 $)) NIL) (((-690 |#2|) (-690 $)) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-1954 (((-772) $) NIL (|has| |#2| (-559))) (((-923)) 45)) (-3680 ((|#2| $ (-567) (-567)) NIL)) (-1379 (((-112)) NIL)) (-3719 (($ $ (-923)) NIL)) (-2777 (((-645 |#2|) $) NIL (|has| $ (-6 -4418)))) (-1433 (((-112) $) NIL)) (-1940 (((-772) $) NIL (|has| |#2| (-559)))) (-1325 (((-645 (-240 |#1| |#2|)) $) NIL (|has| |#2| (-559)))) (-3633 (((-772) $) NIL)) (-4353 (((-112)) NIL)) (-3643 (((-772) $) NIL)) (-2077 (((-112) $ (-772)) NIL)) (-2031 ((|#2| $) NIL (|has| |#2| (-6 (-4420 "*"))))) (-2527 (((-567) $) NIL)) (-4043 (((-567) $) NIL)) (-2279 (((-645 |#2|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#2| (-1102))))) (-2107 (((-567) $) NIL)) (-2646 (((-567) $) NIL)) (-2114 (($ (-645 (-645 |#2|))) NIL)) (-3731 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-1603 (((-645 (-645 |#2|)) $) NIL)) (-3375 (((-112)) NIL)) (-3154 (((-112)) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-3412 (((-3 (-2 (|:| |particular| $) (|:| -2623 (-645 $))) "failed")) NIL (|has| |#2| (-559)))) (-3345 (((-3 $ "failed")) NIL (|has| |#2| (-559)))) (-2119 (((-690 |#2|)) NIL) (((-690 |#2|) (-1268 $)) NIL)) (-2726 ((|#2| $) NIL)) (-2702 (((-690 |#2|) $) NIL) (((-690 |#2|) $ (-1268 $)) NIL)) (-3080 (((-3 $ "failed") $) NIL (|has| |#2| (-559)))) (-4162 (((-1174 (-954 |#2|))) NIL (|has| |#2| (-365)))) (-3450 (($ $ (-923)) NIL)) (-2200 ((|#2| $) NIL)) (-3960 (((-1174 |#2|) $) NIL (|has| |#2| (-559)))) (-3042 ((|#2|) NIL) ((|#2| (-1268 $)) NIL)) (-3567 (((-1174 |#2|) $) NIL)) (-3396 (((-112)) NIL)) (-1419 (((-1160) $) NIL)) (-2609 (((-112)) NIL)) (-3070 (((-112)) NIL)) (-4341 (((-112)) NIL)) (-1401 (((-3 $ "failed") $) NIL (|has| |#2| (-365)))) (-3430 (((-1122) $) NIL)) (-4356 (((-112)) NIL)) (-2391 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-559)))) (-3025 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))))) (-3092 (((-112) $ $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) NIL)) (-1787 ((|#2| $ (-567) (-567) |#2|) NIL) ((|#2| $ (-567) (-567)) 30) ((|#2| $ (-567)) NIL)) (-1593 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-1178)) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-772)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-1877 ((|#2| $) NIL)) (-3068 (($ (-645 |#2|)) NIL)) (-3339 (((-112) $) NIL)) (-2213 (((-240 |#1| |#2|) $) NIL)) (-4083 ((|#2| $) NIL (|has| |#2| (-6 (-4420 "*"))))) (-3439 (((-772) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4418))) (((-772) |#2| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#2| (-1102))))) (-4305 (($ $) NIL)) (-2887 (((-690 |#2|) (-1268 $)) NIL) (((-1268 |#2|) $) NIL) (((-690 |#2|) (-1268 $) (-1268 $)) NIL) (((-1268 |#2|) $ (-1268 $)) 33)) (-3893 (($ (-1268 |#2|)) NIL) (((-1268 |#2|) $) NIL)) (-4013 (((-645 (-954 |#2|))) NIL) (((-645 (-954 |#2|)) (-1268 $)) NIL)) (-1485 (($ $ $) NIL)) (-1502 (((-112)) NIL)) (-2237 (((-240 |#1| |#2|) $ (-567)) NIL)) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ (-410 (-567))) NIL (|has| |#2| (-1040 (-410 (-567))))) (($ |#2|) NIL) (((-690 |#2|) $) NIL)) (-4221 (((-772)) NIL T CONST)) (-1745 (((-112) $ $) NIL)) (-2623 (((-1268 $)) 43)) (-2652 (((-645 (-1268 |#2|))) NIL (|has| |#2| (-559)))) (-2153 (($ $ $ $) NIL)) (-3013 (((-112)) NIL)) (-2355 (($ (-690 |#2|) $) NIL)) (-1853 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4418)))) (-2619 (((-112) $) NIL)) (-2214 (($ $ $) NIL)) (-1636 (((-112)) NIL)) (-1749 (((-112)) NIL)) (-2059 (((-112)) NIL)) (-1716 (($) NIL T CONST)) (-1728 (($) NIL T CONST)) (-2637 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-1178)) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-772)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL (|has| |#2| (-365)))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-240 |#1| |#2|) $ (-240 |#1| |#2|)) NIL) (((-240 |#1| |#2|) (-240 |#1| |#2|) $) NIL)) (-2414 (((-772) $) NIL (|has| $ (-6 -4418)))))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) 15)) (-2376 (((-3 $ "failed") $ $) NIL)) (-3647 (($) NIL T CONST)) (-1447 ((|#1| $) 23)) (-1365 (($ $ $) NIL (|has| |#1| (-792)))) (-3002 (($ $ $) NIL (|has| |#1| (-792)))) (-2516 (((-1161) $) 48)) (-3437 (((-1122) $) NIL)) (-1462 ((|#3| $) 24)) (-4129 (((-863) $) 43)) (-3357 (((-112) $ $) 22)) (-1733 (($) 10 T CONST)) (-3004 (((-112) $ $) NIL (|has| |#1| (-792)))) (-2980 (((-112) $ $) NIL (|has| |#1| (-792)))) (-2946 (((-112) $ $) 20)) (-2993 (((-112) $ $) NIL (|has| |#1| (-792)))) (-2968 (((-112) $ $) 26 (|has| |#1| (-792)))) (-3069 (($ $ |#3|) 36) (($ |#1| |#3|) 37)) (-3053 (($ $) 17) (($ $ $) NIL)) (-3041 (($ $ $) 29)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 32) (($ |#2| $) 34) (($ $ |#2|) NIL)))
+(((-663 |#1| |#2| |#3|) (-13 (-718 |#2|) (-10 -8 (IF (|has| |#1| (-792)) (-6 (-792)) |%noBranch|) (-15 -3069 ($ $ |#3|)) (-15 -3069 ($ |#1| |#3|)) (-15 -1447 (|#1| $)) (-15 -1462 (|#3| $)))) (-718 |#2|) (-172) (|SubsetCategory| (-727) |#2|)) (T -663))
+((-3069 (*1 *1 *1 *2) (-12 (-4 *4 (-172)) (-5 *1 (-663 *3 *4 *2)) (-4 *3 (-718 *4)) (-4 *2 (|SubsetCategory| (-727) *4)))) (-3069 (*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-663 *2 *4 *3)) (-4 *2 (-718 *4)) (-4 *3 (|SubsetCategory| (-727) *4)))) (-1447 (*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-718 *3)) (-5 *1 (-663 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-727) *3)))) (-1462 (*1 *2 *1) (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-727) *4)) (-5 *1 (-663 *3 *4 *2)) (-4 *3 (-718 *4)))))
+(-13 (-718 |#2|) (-10 -8 (IF (|has| |#1| (-792)) (-6 (-792)) |%noBranch|) (-15 -3069 ($ $ |#3|)) (-15 -3069 ($ |#1| |#3|)) (-15 -1447 (|#1| $)) (-15 -1462 (|#3| $))))
+((-2182 (((-3 (-645 (-1175 |#1|)) "failed") (-645 (-1175 |#1|)) (-1175 |#1|)) 33)))
+(((-664 |#1|) (-10 -7 (-15 -2182 ((-3 (-645 (-1175 |#1|)) "failed") (-645 (-1175 |#1|)) (-1175 |#1|)))) (-911)) (T -664))
+((-2182 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-645 (-1175 *4))) (-5 *3 (-1175 *4)) (-4 *4 (-911)) (-5 *1 (-664 *4)))))
+(-10 -7 (-15 -2182 ((-3 (-645 (-1175 |#1|)) "failed") (-645 (-1175 |#1|)) (-1175 |#1|))))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-3275 (((-645 |#1|) $) 84)) (-1326 (($ $ (-772)) 94)) (-2376 (((-3 $ "failed") $ $) NIL)) (-3647 (($) NIL T CONST)) (-2873 (((-1293 |#1| |#2|) (-1293 |#1| |#2|) $) 50)) (-3765 (((-3 (-673 |#1|) "failed") $) NIL)) (-2051 (((-673 |#1|) $) NIL)) (-3023 (($ $) 93)) (-2851 (((-772) $) NIL)) (-2659 (((-645 $) $) NIL)) (-3770 (((-112) $) NIL)) (-2296 (($ (-673 |#1|) |#2|) 70)) (-2111 (($ $) 89)) (-3841 (($ (-1 |#2| |#2|) $) NIL)) (-1627 (((-1293 |#1| |#2|) (-1293 |#1| |#2|) $) 49)) (-2006 (((-2 (|:| |k| (-673 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2985 (((-673 |#1|) $) NIL)) (-2996 ((|#2| $) NIL)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-2642 (($ $ |#1| $) 32) (($ $ (-645 |#1|) (-645 $)) 34)) (-3104 (((-772) $) 91)) (-4145 (($ $ $) 20) (($ (-673 |#1|) (-673 |#1|)) 79) (($ (-673 |#1|) $) 77) (($ $ (-673 |#1|)) 78)) (-4129 (((-863) $) NIL) (($ |#1|) 76) (((-1284 |#1| |#2|) $) 60) (((-1293 |#1| |#2|) $) 43) (($ (-673 |#1|)) 27)) (-3601 (((-645 |#2|) $) NIL)) (-2558 ((|#2| $ (-673 |#1|)) NIL)) (-3705 ((|#2| (-1293 |#1| |#2|) $) 45)) (-3357 (((-112) $ $) NIL)) (-1733 (($) 23 T CONST)) (-2987 (((-645 (-2 (|:| |k| (-673 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3879 (((-3 $ "failed") (-1284 |#1| |#2|)) 62)) (-2683 (($ (-673 |#1|)) 14)) (-2946 (((-112) $ $) 46)) (-3069 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3053 (($ $) 68) (($ $ $) NIL)) (-3041 (($ $ $) 31)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ |#2| $) 30) (($ $ |#2|) NIL) (($ |#2| (-673 |#1|)) NIL)))
+(((-665 |#1| |#2|) (-13 (-376 |#1| |#2|) (-384 |#2| (-673 |#1|)) (-10 -8 (-15 -3879 ((-3 $ "failed") (-1284 |#1| |#2|))) (-15 -4145 ($ (-673 |#1|) (-673 |#1|))) (-15 -4145 ($ (-673 |#1|) $)) (-15 -4145 ($ $ (-673 |#1|))))) (-851) (-172)) (T -665))
+((-3879 (*1 *1 *2) (|partial| -12 (-5 *2 (-1284 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)) (-5 *1 (-665 *3 *4)))) (-4145 (*1 *1 *2 *2) (-12 (-5 *2 (-673 *3)) (-4 *3 (-851)) (-5 *1 (-665 *3 *4)) (-4 *4 (-172)))) (-4145 (*1 *1 *2 *1) (-12 (-5 *2 (-673 *3)) (-4 *3 (-851)) (-5 *1 (-665 *3 *4)) (-4 *4 (-172)))) (-4145 (*1 *1 *1 *2) (-12 (-5 *2 (-673 *3)) (-4 *3 (-851)) (-5 *1 (-665 *3 *4)) (-4 *4 (-172)))))
+(-13 (-376 |#1| |#2|) (-384 |#2| (-673 |#1|)) (-10 -8 (-15 -3879 ((-3 $ "failed") (-1284 |#1| |#2|))) (-15 -4145 ($ (-673 |#1|) (-673 |#1|))) (-15 -4145 ($ (-673 |#1|) $)) (-15 -4145 ($ $ (-673 |#1|)))))
+((-3531 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 61)) (-2676 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-1494 (($ (-1 (-112) |#2|) $) 29)) (-1602 (($ $) 67)) (-3837 (($ $) 78)) (-2247 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 43)) (-2494 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 62) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 64)) (-2578 (((-567) |#2| $ (-567)) 75) (((-567) |#2| $) NIL) (((-567) (-1 (-112) |#2|) $) 56)) (-2858 (($ (-772) |#2|) 65)) (-1661 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 31)) (-2473 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-3841 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 66)) (-2291 (($ |#2|) 15)) (-2646 (($ $ $ (-567)) 42) (($ |#2| $ (-567)) 40)) (-3196 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 53)) (-1873 (($ $ (-1236 (-567))) 51) (($ $ (-567)) 44)) (-1656 (($ $ $ (-567)) 74)) (-4309 (($ $) 72)) (-2968 (((-112) $ $) 80)))
+(((-666 |#1| |#2|) (-10 -8 (-15 -2291 (|#1| |#2|)) (-15 -1873 (|#1| |#1| (-567))) (-15 -1873 (|#1| |#1| (-1236 (-567)))) (-15 -2247 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2646 (|#1| |#2| |#1| (-567))) (-15 -2646 (|#1| |#1| |#1| (-567))) (-15 -1661 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1494 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2247 (|#1| |#2| |#1|)) (-15 -3837 (|#1| |#1|)) (-15 -1661 (|#1| |#1| |#1|)) (-15 -2473 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3531 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2578 ((-567) (-1 (-112) |#2|) |#1|)) (-15 -2578 ((-567) |#2| |#1|)) (-15 -2578 ((-567) |#2| |#1| (-567))) (-15 -2473 (|#1| |#1| |#1|)) (-15 -3531 ((-112) |#1|)) (-15 -1656 (|#1| |#1| |#1| (-567))) (-15 -1602 (|#1| |#1|)) (-15 -2676 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2676 (|#1| |#1|)) (-15 -2968 ((-112) |#1| |#1|)) (-15 -2494 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2494 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2494 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3196 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2858 (|#1| (-772) |#2|)) (-15 -3841 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3841 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4309 (|#1| |#1|))) (-667 |#2|) (-1219)) (T -666))
+NIL
+(-10 -8 (-15 -2291 (|#1| |#2|)) (-15 -1873 (|#1| |#1| (-567))) (-15 -1873 (|#1| |#1| (-1236 (-567)))) (-15 -2247 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2646 (|#1| |#2| |#1| (-567))) (-15 -2646 (|#1| |#1| |#1| (-567))) (-15 -1661 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1494 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2247 (|#1| |#2| |#1|)) (-15 -3837 (|#1| |#1|)) (-15 -1661 (|#1| |#1| |#1|)) (-15 -2473 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3531 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2578 ((-567) (-1 (-112) |#2|) |#1|)) (-15 -2578 ((-567) |#2| |#1|)) (-15 -2578 ((-567) |#2| |#1| (-567))) (-15 -2473 (|#1| |#1| |#1|)) (-15 -3531 ((-112) |#1|)) (-15 -1656 (|#1| |#1| |#1| (-567))) (-15 -1602 (|#1| |#1|)) (-15 -2676 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2676 (|#1| |#1|)) (-15 -2968 ((-112) |#1| |#1|)) (-15 -2494 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2494 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2494 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3196 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2858 (|#1| (-772) |#2|)) (-15 -3841 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3841 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4309 (|#1| |#1|)))
+((-2412 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-3812 ((|#1| $) 49)) (-4003 ((|#1| $) 66)) (-4284 (($ $) 68)) (-3843 (((-1274) $ (-567) (-567)) 98 (|has| $ (-6 -4423)))) (-3288 (($ $ (-567)) 53 (|has| $ (-6 -4423)))) (-3531 (((-112) $) 143 (|has| |#1| (-851))) (((-112) (-1 (-112) |#1| |#1|) $) 137)) (-2676 (($ $) 147 (-12 (|has| |#1| (-851)) (|has| $ (-6 -4423)))) (($ (-1 (-112) |#1| |#1|) $) 146 (|has| $ (-6 -4423)))) (-1311 (($ $) 142 (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $) 136)) (-1563 (((-112) $ (-772)) 8)) (-4392 ((|#1| $ |#1|) 40 (|has| $ (-6 -4423)))) (-4017 (($ $ $) 57 (|has| $ (-6 -4423)))) (-4105 ((|#1| $ |#1|) 55 (|has| $ (-6 -4423)))) (-2498 ((|#1| $ |#1|) 59 (|has| $ (-6 -4423)))) (-4285 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4423))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4423))) (($ $ "rest" $) 56 (|has| $ (-6 -4423))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4423))) ((|#1| $ (-1236 (-567)) |#1|) 118 (|has| $ (-6 -4423))) ((|#1| $ (-567) |#1|) 87 (|has| $ (-6 -4423)))) (-2831 (($ $ (-645 $)) 42 (|has| $ (-6 -4423)))) (-1494 (($ (-1 (-112) |#1|) $) 130)) (-3356 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4422)))) (-3990 ((|#1| $) 67)) (-3647 (($) 7 T CONST)) (-1602 (($ $) 145 (|has| $ (-6 -4423)))) (-3592 (($ $) 135)) (-2430 (($ $) 74) (($ $ (-772)) 72)) (-3837 (($ $) 132 (|has| |#1| (-1102)))) (-2453 (($ $) 100 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-2247 (($ |#1| $) 131 (|has| |#1| (-1102))) (($ (-1 (-112) |#1|) $) 126)) (-3246 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4422))) (($ |#1| $) 101 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-2494 ((|#1| (-1 |#1| |#1| |#1|) $) 106 (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 105 (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 102 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-3760 ((|#1| $ (-567) |#1|) 86 (|has| $ (-6 -4423)))) (-3703 ((|#1| $ (-567)) 88)) (-4085 (((-112) $) 84)) (-2578 (((-567) |#1| $ (-567)) 140 (|has| |#1| (-1102))) (((-567) |#1| $) 139 (|has| |#1| (-1102))) (((-567) (-1 (-112) |#1|) $) 138)) (-2799 (((-645 |#1|) $) 31 (|has| $ (-6 -4422)))) (-2070 (((-645 $) $) 51)) (-1520 (((-112) $ $) 43 (|has| |#1| (-1102)))) (-2858 (($ (-772) |#1|) 109)) (-4093 (((-112) $ (-772)) 9)) (-3895 (((-567) $) 96 (|has| (-567) (-851)))) (-1365 (($ $ $) 148 (|has| |#1| (-851)))) (-1661 (($ $ $) 133 (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $ $) 129)) (-2473 (($ $ $) 141 (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $ $) 134)) (-1942 (((-645 |#1|) $) 30 (|has| $ (-6 -4422)))) (-3237 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-3255 (((-567) $) 95 (|has| (-567) (-851)))) (-3002 (($ $ $) 149 (|has| |#1| (-851)))) (-3751 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 112)) (-2291 (($ |#1|) 123)) (-1986 (((-112) $ (-772)) 10)) (-3793 (((-645 |#1|) $) 46)) (-1323 (((-112) $) 50)) (-2516 (((-1161) $) 22 (|has| |#1| (-1102)))) (-3266 ((|#1| $) 71) (($ $ (-772)) 69)) (-2646 (($ $ $ (-567)) 128) (($ |#1| $ (-567)) 127)) (-2857 (($ $ $ (-567)) 117) (($ |#1| $ (-567)) 116)) (-4364 (((-645 (-567)) $) 93)) (-3188 (((-112) (-567) $) 92)) (-3437 (((-1122) $) 21 (|has| |#1| (-1102)))) (-2418 ((|#1| $) 77) (($ $ (-772)) 75)) (-3196 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 107)) (-3823 (($ $ |#1|) 97 (|has| $ (-6 -4423)))) (-1971 (((-112) $) 85)) (-4233 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3875 (((-112) $ $) 14)) (-4058 (((-112) |#1| $) 94 (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-2190 (((-645 |#1|) $) 91)) (-3885 (((-112) $) 11)) (-2701 (($) 12)) (-1801 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1236 (-567))) 113) ((|#1| $ (-567)) 90) ((|#1| $ (-567) |#1|) 89)) (-3162 (((-567) $ $) 45)) (-1873 (($ $ (-1236 (-567))) 125) (($ $ (-567)) 124)) (-1569 (($ $ (-1236 (-567))) 115) (($ $ (-567)) 114)) (-3771 (((-112) $) 47)) (-3688 (($ $) 63)) (-4044 (($ $) 60 (|has| $ (-6 -4423)))) (-3359 (((-772) $) 64)) (-3640 (($ $) 65)) (-3447 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4422))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-1656 (($ $ $ (-567)) 144 (|has| $ (-6 -4423)))) (-4309 (($ $) 13)) (-3902 (((-539) $) 99 (|has| |#1| (-615 (-539))))) (-4145 (($ (-645 |#1|)) 108)) (-2294 (($ $ $) 62) (($ $ |#1|) 61)) (-2276 (($ $ $) 79) (($ |#1| $) 78) (($ (-645 $)) 111) (($ $ |#1|) 110)) (-4129 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-3469 (((-645 $) $) 52)) (-3854 (((-112) $ $) 44 (|has| |#1| (-1102)))) (-3357 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-3436 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4422)))) (-3004 (((-112) $ $) 151 (|has| |#1| (-851)))) (-2980 (((-112) $ $) 152 (|has| |#1| (-851)))) (-2946 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2993 (((-112) $ $) 150 (|has| |#1| (-851)))) (-2968 (((-112) $ $) 153 (|has| |#1| (-851)))) (-2423 (((-772) $) 6 (|has| $ (-6 -4422)))))
+(((-667 |#1|) (-140) (-1219)) (T -667))
+((-2291 (*1 *1 *2) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1219)))))
+(-13 (-1151 |t#1|) (-375 |t#1|) (-283 |t#1|) (-10 -8 (-15 -2291 ($ |t#1|))))
+(((-34) . T) ((-102) -2811 (|has| |#1| (-1102)) (|has| |#1| (-851))) ((-614 (-863)) -2811 (|has| |#1| (-1102)) (|has| |#1| (-851)) (|has| |#1| (-614 (-863)))) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-287 #0=(-567) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-283 |#1|) . T) ((-375 |#1|) . T) ((-492 |#1|) . T) ((-605 #0# |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-652 |#1|) . T) ((-851) |has| |#1| (-851)) ((-1012 |#1|) . T) ((-1102) -2811 (|has| |#1| (-1102)) (|has| |#1| (-851))) ((-1151 |#1|) . T) ((-1219) . T) ((-1257 |#1|) . T))
+((-2464 (((-645 (-2 (|:| |particular| (-3 (-1269 |#1|) "failed")) (|:| -2144 (-645 (-1269 |#1|))))) (-645 (-645 |#1|)) (-645 (-1269 |#1|))) 22) (((-645 (-2 (|:| |particular| (-3 (-1269 |#1|) "failed")) (|:| -2144 (-645 (-1269 |#1|))))) (-690 |#1|) (-645 (-1269 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1269 |#1|) "failed")) (|:| -2144 (-645 (-1269 |#1|)))) (-645 (-645 |#1|)) (-1269 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1269 |#1|) "failed")) (|:| -2144 (-645 (-1269 |#1|)))) (-690 |#1|) (-1269 |#1|)) 14)) (-1976 (((-772) (-690 |#1|) (-1269 |#1|)) 30)) (-3585 (((-3 (-1269 |#1|) "failed") (-690 |#1|) (-1269 |#1|)) 24)) (-4345 (((-112) (-690 |#1|) (-1269 |#1|)) 27)))
+(((-668 |#1|) (-10 -7 (-15 -2464 ((-2 (|:| |particular| (-3 (-1269 |#1|) "failed")) (|:| -2144 (-645 (-1269 |#1|)))) (-690 |#1|) (-1269 |#1|))) (-15 -2464 ((-2 (|:| |particular| (-3 (-1269 |#1|) "failed")) (|:| -2144 (-645 (-1269 |#1|)))) (-645 (-645 |#1|)) (-1269 |#1|))) (-15 -2464 ((-645 (-2 (|:| |particular| (-3 (-1269 |#1|) "failed")) (|:| -2144 (-645 (-1269 |#1|))))) (-690 |#1|) (-645 (-1269 |#1|)))) (-15 -2464 ((-645 (-2 (|:| |particular| (-3 (-1269 |#1|) "failed")) (|:| -2144 (-645 (-1269 |#1|))))) (-645 (-645 |#1|)) (-645 (-1269 |#1|)))) (-15 -3585 ((-3 (-1269 |#1|) "failed") (-690 |#1|) (-1269 |#1|))) (-15 -4345 ((-112) (-690 |#1|) (-1269 |#1|))) (-15 -1976 ((-772) (-690 |#1|) (-1269 |#1|)))) (-365)) (T -668))
+((-1976 (*1 *2 *3 *4) (-12 (-5 *3 (-690 *5)) (-5 *4 (-1269 *5)) (-4 *5 (-365)) (-5 *2 (-772)) (-5 *1 (-668 *5)))) (-4345 (*1 *2 *3 *4) (-12 (-5 *3 (-690 *5)) (-5 *4 (-1269 *5)) (-4 *5 (-365)) (-5 *2 (-112)) (-5 *1 (-668 *5)))) (-3585 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1269 *4)) (-5 *3 (-690 *4)) (-4 *4 (-365)) (-5 *1 (-668 *4)))) (-2464 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-645 *5))) (-4 *5 (-365)) (-5 *2 (-645 (-2 (|:| |particular| (-3 (-1269 *5) "failed")) (|:| -2144 (-645 (-1269 *5)))))) (-5 *1 (-668 *5)) (-5 *4 (-645 (-1269 *5))))) (-2464 (*1 *2 *3 *4) (-12 (-5 *3 (-690 *5)) (-4 *5 (-365)) (-5 *2 (-645 (-2 (|:| |particular| (-3 (-1269 *5) "failed")) (|:| -2144 (-645 (-1269 *5)))))) (-5 *1 (-668 *5)) (-5 *4 (-645 (-1269 *5))))) (-2464 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-645 *5))) (-4 *5 (-365)) (-5 *2 (-2 (|:| |particular| (-3 (-1269 *5) "failed")) (|:| -2144 (-645 (-1269 *5))))) (-5 *1 (-668 *5)) (-5 *4 (-1269 *5)))) (-2464 (*1 *2 *3 *4) (-12 (-5 *3 (-690 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| |particular| (-3 (-1269 *5) "failed")) (|:| -2144 (-645 (-1269 *5))))) (-5 *1 (-668 *5)) (-5 *4 (-1269 *5)))))
+(-10 -7 (-15 -2464 ((-2 (|:| |particular| (-3 (-1269 |#1|) "failed")) (|:| -2144 (-645 (-1269 |#1|)))) (-690 |#1|) (-1269 |#1|))) (-15 -2464 ((-2 (|:| |particular| (-3 (-1269 |#1|) "failed")) (|:| -2144 (-645 (-1269 |#1|)))) (-645 (-645 |#1|)) (-1269 |#1|))) (-15 -2464 ((-645 (-2 (|:| |particular| (-3 (-1269 |#1|) "failed")) (|:| -2144 (-645 (-1269 |#1|))))) (-690 |#1|) (-645 (-1269 |#1|)))) (-15 -2464 ((-645 (-2 (|:| |particular| (-3 (-1269 |#1|) "failed")) (|:| -2144 (-645 (-1269 |#1|))))) (-645 (-645 |#1|)) (-645 (-1269 |#1|)))) (-15 -3585 ((-3 (-1269 |#1|) "failed") (-690 |#1|) (-1269 |#1|))) (-15 -4345 ((-112) (-690 |#1|) (-1269 |#1|))) (-15 -1976 ((-772) (-690 |#1|) (-1269 |#1|))))
+((-2464 (((-645 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2144 (-645 |#3|)))) |#4| (-645 |#3|)) 66) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2144 (-645 |#3|))) |#4| |#3|) 60)) (-1976 (((-772) |#4| |#3|) 18)) (-3585 (((-3 |#3| "failed") |#4| |#3|) 21)) (-4345 (((-112) |#4| |#3|) 14)))
+(((-669 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2464 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2144 (-645 |#3|))) |#4| |#3|)) (-15 -2464 ((-645 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2144 (-645 |#3|)))) |#4| (-645 |#3|))) (-15 -3585 ((-3 |#3| "failed") |#4| |#3|)) (-15 -4345 ((-112) |#4| |#3|)) (-15 -1976 ((-772) |#4| |#3|))) (-365) (-13 (-375 |#1|) (-10 -7 (-6 -4423))) (-13 (-375 |#1|) (-10 -7 (-6 -4423))) (-688 |#1| |#2| |#3|)) (T -669))
+((-1976 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4423)))) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4423)))) (-5 *2 (-772)) (-5 *1 (-669 *5 *6 *4 *3)) (-4 *3 (-688 *5 *6 *4)))) (-4345 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4423)))) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4423)))) (-5 *2 (-112)) (-5 *1 (-669 *5 *6 *4 *3)) (-4 *3 (-688 *5 *6 *4)))) (-3585 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-365)) (-4 *5 (-13 (-375 *4) (-10 -7 (-6 -4423)))) (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4423)))) (-5 *1 (-669 *4 *5 *2 *3)) (-4 *3 (-688 *4 *5 *2)))) (-2464 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4423)))) (-4 *7 (-13 (-375 *5) (-10 -7 (-6 -4423)))) (-5 *2 (-645 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2144 (-645 *7))))) (-5 *1 (-669 *5 *6 *7 *3)) (-5 *4 (-645 *7)) (-4 *3 (-688 *5 *6 *7)))) (-2464 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4423)))) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4423)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2144 (-645 *4)))) (-5 *1 (-669 *5 *6 *4 *3)) (-4 *3 (-688 *5 *6 *4)))))
+(-10 -7 (-15 -2464 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2144 (-645 |#3|))) |#4| |#3|)) (-15 -2464 ((-645 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2144 (-645 |#3|)))) |#4| (-645 |#3|))) (-15 -3585 ((-3 |#3| "failed") |#4| |#3|)) (-15 -4345 ((-112) |#4| |#3|)) (-15 -1976 ((-772) |#4| |#3|)))
+((-1424 (((-2 (|:| |particular| (-3 (-1269 (-410 |#4|)) "failed")) (|:| -2144 (-645 (-1269 (-410 |#4|))))) (-645 |#4|) (-645 |#3|)) 52)))
+(((-670 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1424 ((-2 (|:| |particular| (-3 (-1269 (-410 |#4|)) "failed")) (|:| -2144 (-645 (-1269 (-410 |#4|))))) (-645 |#4|) (-645 |#3|)))) (-559) (-794) (-851) (-951 |#1| |#2| |#3|)) (T -670))
+((-1424 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 *7)) (-4 *7 (-851)) (-4 *8 (-951 *5 *6 *7)) (-4 *5 (-559)) (-4 *6 (-794)) (-5 *2 (-2 (|:| |particular| (-3 (-1269 (-410 *8)) "failed")) (|:| -2144 (-645 (-1269 (-410 *8)))))) (-5 *1 (-670 *5 *6 *7 *8)))))
+(-10 -7 (-15 -1424 ((-2 (|:| |particular| (-3 (-1269 (-410 |#4|)) "failed")) (|:| -2144 (-645 (-1269 (-410 |#4|))))) (-645 |#4|) (-645 |#3|))))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-4369 (((-3 $ "failed")) NIL (|has| |#2| (-559)))) (-4293 ((|#2| $) NIL)) (-2999 (((-112) $) NIL)) (-2376 (((-3 $ "failed") $ $) NIL)) (-1483 (((-1269 (-690 |#2|))) NIL) (((-1269 (-690 |#2|)) (-1269 $)) NIL)) (-3507 (((-112) $) NIL)) (-3967 (((-1269 $)) 44)) (-1563 (((-112) $ (-772)) NIL)) (-4302 (($ |#2|) NIL)) (-3647 (($) NIL T CONST)) (-2765 (($ $) NIL (|has| |#2| (-308)))) (-4323 (((-240 |#1| |#2|) $ (-567)) NIL)) (-1421 (((-3 (-2 (|:| |particular| $) (|:| -2144 (-645 $))) "failed")) NIL (|has| |#2| (-559)))) (-4297 (((-3 $ "failed")) NIL (|has| |#2| (-559)))) (-1852 (((-690 |#2|)) NIL) (((-690 |#2|) (-1269 $)) NIL)) (-3382 ((|#2| $) NIL)) (-1639 (((-690 |#2|) $) NIL) (((-690 |#2|) $ (-1269 $)) NIL)) (-2810 (((-3 $ "failed") $) NIL (|has| |#2| (-559)))) (-1588 (((-1175 (-954 |#2|))) NIL (|has| |#2| (-365)))) (-3757 (($ $ (-923)) NIL)) (-1868 ((|#2| $) NIL)) (-2479 (((-1175 |#2|) $) NIL (|has| |#2| (-559)))) (-3878 ((|#2|) NIL) ((|#2| (-1269 $)) NIL)) (-2309 (((-1175 |#2|) $) NIL)) (-2720 (((-112)) NIL)) (-3765 (((-3 (-567) "failed") $) NIL (|has| |#2| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#2| (-1040 (-410 (-567))))) (((-3 |#2| "failed") $) NIL)) (-2051 (((-567) $) NIL (|has| |#2| (-1040 (-567)))) (((-410 (-567)) $) NIL (|has| |#2| (-1040 (-410 (-567))))) ((|#2| $) NIL)) (-3111 (($ (-1269 |#2|)) NIL) (($ (-1269 |#2|) (-1269 $)) NIL)) (-1423 (((-690 (-567)) (-690 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -4208 (-690 |#2|)) (|:| |vec| (-1269 |#2|))) (-690 $) (-1269 $)) NIL) (((-690 |#2|) (-690 $)) NIL)) (-3588 (((-3 $ "failed") $) NIL)) (-1976 (((-772) $) NIL (|has| |#2| (-559))) (((-923)) 45)) (-3703 ((|#2| $ (-567) (-567)) NIL)) (-2957 (((-112)) NIL)) (-2112 (($ $ (-923)) NIL)) (-2799 (((-645 |#2|) $) NIL (|has| $ (-6 -4422)))) (-4346 (((-112) $) NIL)) (-1974 (((-772) $) NIL (|has| |#2| (-559)))) (-2064 (((-645 (-240 |#1| |#2|)) $) NIL (|has| |#2| (-559)))) (-4296 (((-772) $) NIL)) (-4388 (((-112)) NIL)) (-4307 (((-772) $) NIL)) (-4093 (((-112) $ (-772)) NIL)) (-1805 ((|#2| $) NIL (|has| |#2| (-6 (-4424 "*"))))) (-3407 (((-567) $) NIL)) (-4227 (((-567) $) NIL)) (-1942 (((-645 |#2|) $) NIL (|has| $ (-6 -4422)))) (-3237 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#2| (-1102))))) (-3393 (((-567) $) NIL)) (-3351 (((-567) $) NIL)) (-2124 (($ (-645 (-645 |#2|))) NIL)) (-3751 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-2282 (((-645 (-645 |#2|)) $) NIL)) (-2655 (((-112)) NIL)) (-2304 (((-112)) NIL)) (-1986 (((-112) $ (-772)) NIL)) (-2488 (((-3 (-2 (|:| |particular| $) (|:| -2144 (-645 $))) "failed")) NIL (|has| |#2| (-559)))) (-3428 (((-3 $ "failed")) NIL (|has| |#2| (-559)))) (-3060 (((-690 |#2|)) NIL) (((-690 |#2|) (-1269 $)) NIL)) (-1735 ((|#2| $) NIL)) (-2227 (((-690 |#2|) $) NIL) (((-690 |#2|) $ (-1269 $)) NIL)) (-2213 (((-3 $ "failed") $) NIL (|has| |#2| (-559)))) (-3785 (((-1175 (-954 |#2|))) NIL (|has| |#2| (-365)))) (-3884 (($ $ (-923)) NIL)) (-3233 ((|#2| $) NIL)) (-4063 (((-1175 |#2|) $) NIL (|has| |#2| (-559)))) (-2976 ((|#2|) NIL) ((|#2| (-1269 $)) NIL)) (-1694 (((-1175 |#2|) $) NIL)) (-3332 (((-112)) NIL)) (-2516 (((-1161) $) NIL)) (-4368 (((-112)) NIL)) (-3498 (((-112)) NIL)) (-2467 (((-112)) NIL)) (-2504 (((-3 $ "failed") $) NIL (|has| |#2| (-365)))) (-3437 (((-1122) $) NIL)) (-3485 (((-112)) NIL)) (-2400 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-559)))) (-4233 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))))) (-3875 (((-112) $ $) NIL)) (-3885 (((-112) $) NIL)) (-2701 (($) NIL)) (-1801 ((|#2| $ (-567) (-567) |#2|) NIL) ((|#2| $ (-567) (-567)) 30) ((|#2| $ (-567)) NIL)) (-1616 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-1179)) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-772)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-2437 ((|#2| $) NIL)) (-3391 (($ (-645 |#2|)) NIL)) (-4103 (((-112) $) NIL)) (-2076 (((-240 |#1| |#2|) $) NIL)) (-2790 ((|#2| $) NIL (|has| |#2| (-6 (-4424 "*"))))) (-3447 (((-772) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4422))) (((-772) |#2| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#2| (-1102))))) (-4309 (($ $) NIL)) (-3088 (((-690 |#2|) (-1269 $)) NIL) (((-1269 |#2|) $) NIL) (((-690 |#2|) (-1269 $) (-1269 $)) NIL) (((-1269 |#2|) $ (-1269 $)) 33)) (-3902 (($ (-1269 |#2|)) NIL) (((-1269 |#2|) $) NIL)) (-3981 (((-645 (-954 |#2|))) NIL) (((-645 (-954 |#2|)) (-1269 $)) NIL)) (-3997 (($ $ $) NIL)) (-3568 (((-112)) NIL)) (-3186 (((-240 |#1| |#2|) $ (-567)) NIL)) (-4129 (((-863) $) NIL) (($ (-567)) NIL) (($ (-410 (-567))) NIL (|has| |#2| (-1040 (-410 (-567))))) (($ |#2|) NIL) (((-690 |#2|) $) NIL)) (-2746 (((-772)) NIL T CONST)) (-3357 (((-112) $ $) NIL)) (-2144 (((-1269 $)) 43)) (-2628 (((-645 (-1269 |#2|))) NIL (|has| |#2| (-559)))) (-2047 (($ $ $ $) NIL)) (-1996 (((-112)) NIL)) (-2364 (($ (-690 |#2|) $) NIL)) (-3436 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4422)))) (-4050 (((-112) $) NIL)) (-2188 (($ $ $) NIL)) (-3970 (((-112)) NIL)) (-3741 (((-112)) NIL)) (-3220 (((-112)) NIL)) (-1733 (($) NIL T CONST)) (-1744 (($) NIL T CONST)) (-2647 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-1179)) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-772)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-2946 (((-112) $ $) NIL)) (-3069 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL (|has| |#2| (-365)))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-240 |#1| |#2|) $ (-240 |#1| |#2|)) NIL) (((-240 |#1| |#2|) (-240 |#1| |#2|) $) NIL)) (-2423 (((-772) $) NIL (|has| $ (-6 -4422)))))
(((-671 |#1| |#2|) (-13 (-1125 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-614 (-690 |#2|)) (-420 |#2|)) (-923) (-172)) (T -671))
NIL
(-13 (-1125 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-614 (-690 |#2|)) (-420 |#2|))
-((-2403 (((-112) $ $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-2559 (((-645 (-1137)) $) 10)) (-4132 (((-863) $) 16) (($ (-1183)) NIL) (((-1183) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)))
-(((-672) (-13 (-1085) (-10 -8 (-15 -2559 ((-645 (-1137)) $))))) (T -672))
-((-2559 (*1 *2 *1) (-12 (-5 *2 (-645 (-1137))) (-5 *1 (-672)))))
-(-13 (-1085) (-10 -8 (-15 -2559 ((-645 (-1137)) $))))
-((-2403 (((-112) $ $) NIL)) (-3267 (((-645 |#1|) $) NIL)) (-2963 (($ $) 67)) (-3164 (((-112) $) NIL)) (-3753 (((-3 |#1| "failed") $) NIL)) (-2038 ((|#1| $) NIL)) (-1354 (($ $ $) NIL)) (-2981 (($ $ $) NIL)) (-2708 (((-3 $ "failed") (-820 |#1|)) 27)) (-1638 (((-112) (-820 |#1|)) 17)) (-4347 (($ (-820 |#1|)) 28)) (-4175 (((-112) $ $) 36)) (-1699 (((-923) $) 43)) (-2950 (($ $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-2706 (((-645 $) (-820 |#1|)) 19)) (-4132 (((-863) $) 51) (($ |#1|) 40) (((-820 |#1|) $) 47) (((-678 |#1|) $) 52)) (-1745 (((-112) $ $) NIL)) (-1396 (((-59 (-645 $)) (-645 |#1|) (-923)) 72)) (-1605 (((-645 $) (-645 |#1|) (-923)) 76)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 68)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) 46)))
-(((-673 |#1|) (-13 (-851) (-1040 |#1|) (-10 -8 (-15 -3164 ((-112) $)) (-15 -2950 ($ $)) (-15 -2963 ($ $)) (-15 -1699 ((-923) $)) (-15 -4175 ((-112) $ $)) (-15 -4132 ((-820 |#1|) $)) (-15 -4132 ((-678 |#1|) $)) (-15 -2706 ((-645 $) (-820 |#1|))) (-15 -1638 ((-112) (-820 |#1|))) (-15 -4347 ($ (-820 |#1|))) (-15 -2708 ((-3 $ "failed") (-820 |#1|))) (-15 -3267 ((-645 |#1|) $)) (-15 -1396 ((-59 (-645 $)) (-645 |#1|) (-923))) (-15 -1605 ((-645 $) (-645 |#1|) (-923))))) (-851)) (T -673))
-((-3164 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-673 *3)) (-4 *3 (-851)))) (-2950 (*1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-851)))) (-2963 (*1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-851)))) (-1699 (*1 *2 *1) (-12 (-5 *2 (-923)) (-5 *1 (-673 *3)) (-4 *3 (-851)))) (-4175 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-673 *3)) (-4 *3 (-851)))) (-4132 (*1 *2 *1) (-12 (-5 *2 (-820 *3)) (-5 *1 (-673 *3)) (-4 *3 (-851)))) (-4132 (*1 *2 *1) (-12 (-5 *2 (-678 *3)) (-5 *1 (-673 *3)) (-4 *3 (-851)))) (-2706 (*1 *2 *3) (-12 (-5 *3 (-820 *4)) (-4 *4 (-851)) (-5 *2 (-645 (-673 *4))) (-5 *1 (-673 *4)))) (-1638 (*1 *2 *3) (-12 (-5 *3 (-820 *4)) (-4 *4 (-851)) (-5 *2 (-112)) (-5 *1 (-673 *4)))) (-4347 (*1 *1 *2) (-12 (-5 *2 (-820 *3)) (-4 *3 (-851)) (-5 *1 (-673 *3)))) (-2708 (*1 *1 *2) (|partial| -12 (-5 *2 (-820 *3)) (-4 *3 (-851)) (-5 *1 (-673 *3)))) (-3267 (*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-673 *3)) (-4 *3 (-851)))) (-1396 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *5)) (-5 *4 (-923)) (-4 *5 (-851)) (-5 *2 (-59 (-645 (-673 *5)))) (-5 *1 (-673 *5)))) (-1605 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *5)) (-5 *4 (-923)) (-4 *5 (-851)) (-5 *2 (-645 (-673 *5))) (-5 *1 (-673 *5)))))
-(-13 (-851) (-1040 |#1|) (-10 -8 (-15 -3164 ((-112) $)) (-15 -2950 ($ $)) (-15 -2963 ($ $)) (-15 -1699 ((-923) $)) (-15 -4175 ((-112) $ $)) (-15 -4132 ((-820 |#1|) $)) (-15 -4132 ((-678 |#1|) $)) (-15 -2706 ((-645 $) (-820 |#1|))) (-15 -1638 ((-112) (-820 |#1|))) (-15 -4347 ($ (-820 |#1|))) (-15 -2708 ((-3 $ "failed") (-820 |#1|))) (-15 -3267 ((-645 |#1|) $)) (-15 -1396 ((-59 (-645 $)) (-645 |#1|) (-923))) (-15 -1605 ((-645 $) (-645 |#1|) (-923)))))
-((-3802 ((|#2| $) 103)) (-4283 (($ $) 124)) (-3445 (((-112) $ (-772)) 35)) (-2421 (($ $) 112) (($ $ (-772)) 115)) (-1399 (((-112) $) 125)) (-2182 (((-645 $) $) 99)) (-3512 (((-112) $ $) 95)) (-2077 (((-112) $ (-772)) 33)) (-4069 (((-567) $) 69)) (-2266 (((-567) $) 68)) (-2863 (((-112) $ (-772)) 31)) (-2769 (((-112) $) 101)) (-3257 ((|#2| $) 116) (($ $ (-772)) 120)) (-2845 (($ $ $ (-567)) 86) (($ |#2| $ (-567)) 85)) (-1789 (((-645 (-567)) $) 67)) (-2996 (((-112) (-567) $) 61)) (-2409 ((|#2| $) NIL) (($ $ (-772)) 111)) (-2410 (($ $ (-567)) 128)) (-3323 (((-112) $) 127)) (-3025 (((-112) (-1 (-112) |#2|) $) 44)) (-2339 (((-645 |#2|) $) 48)) (-1787 ((|#2| $ "value") NIL) ((|#2| $ "first") 110) (($ $ "rest") 114) ((|#2| $ "last") 123) (($ $ (-1235 (-567))) 82) ((|#2| $ (-567)) 59) ((|#2| $ (-567) |#2|) 60)) (-2658 (((-567) $ $) 94)) (-1560 (($ $ (-1235 (-567))) 81) (($ $ (-567)) 75)) (-3900 (((-112) $) 90)) (-1644 (($ $) 108)) (-3344 (((-772) $) 107)) (-1503 (($ $) 106)) (-4147 (($ (-645 |#2|)) 55)) (-2192 (($ $) 129)) (-1531 (((-645 $) $) 93)) (-3606 (((-112) $ $) 92)) (-1853 (((-112) (-1 (-112) |#2|) $) 43)) (-2936 (((-112) $ $) 20)) (-2414 (((-772) $) 41)))
-(((-674 |#1| |#2|) (-10 -8 (-15 -2192 (|#1| |#1|)) (-15 -2410 (|#1| |#1| (-567))) (-15 -1399 ((-112) |#1|)) (-15 -3323 ((-112) |#1|)) (-15 -1787 (|#2| |#1| (-567) |#2|)) (-15 -1787 (|#2| |#1| (-567))) (-15 -2339 ((-645 |#2|) |#1|)) (-15 -2996 ((-112) (-567) |#1|)) (-15 -1789 ((-645 (-567)) |#1|)) (-15 -2266 ((-567) |#1|)) (-15 -4069 ((-567) |#1|)) (-15 -4147 (|#1| (-645 |#2|))) (-15 -1787 (|#1| |#1| (-1235 (-567)))) (-15 -1560 (|#1| |#1| (-567))) (-15 -1560 (|#1| |#1| (-1235 (-567)))) (-15 -2845 (|#1| |#2| |#1| (-567))) (-15 -2845 (|#1| |#1| |#1| (-567))) (-15 -1644 (|#1| |#1|)) (-15 -3344 ((-772) |#1|)) (-15 -1503 (|#1| |#1|)) (-15 -4283 (|#1| |#1|)) (-15 -3257 (|#1| |#1| (-772))) (-15 -1787 (|#2| |#1| "last")) (-15 -3257 (|#2| |#1|)) (-15 -2421 (|#1| |#1| (-772))) (-15 -1787 (|#1| |#1| "rest")) (-15 -2421 (|#1| |#1|)) (-15 -2409 (|#1| |#1| (-772))) (-15 -1787 (|#2| |#1| "first")) (-15 -2409 (|#2| |#1|)) (-15 -3512 ((-112) |#1| |#1|)) (-15 -3606 ((-112) |#1| |#1|)) (-15 -2658 ((-567) |#1| |#1|)) (-15 -3900 ((-112) |#1|)) (-15 -1787 (|#2| |#1| "value")) (-15 -3802 (|#2| |#1|)) (-15 -2769 ((-112) |#1|)) (-15 -2182 ((-645 |#1|) |#1|)) (-15 -1531 ((-645 |#1|) |#1|)) (-15 -2936 ((-112) |#1| |#1|)) (-15 -3025 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1853 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2414 ((-772) |#1|)) (-15 -3445 ((-112) |#1| (-772))) (-15 -2077 ((-112) |#1| (-772))) (-15 -2863 ((-112) |#1| (-772)))) (-675 |#2|) (-1218)) (T -674))
-NIL
-(-10 -8 (-15 -2192 (|#1| |#1|)) (-15 -2410 (|#1| |#1| (-567))) (-15 -1399 ((-112) |#1|)) (-15 -3323 ((-112) |#1|)) (-15 -1787 (|#2| |#1| (-567) |#2|)) (-15 -1787 (|#2| |#1| (-567))) (-15 -2339 ((-645 |#2|) |#1|)) (-15 -2996 ((-112) (-567) |#1|)) (-15 -1789 ((-645 (-567)) |#1|)) (-15 -2266 ((-567) |#1|)) (-15 -4069 ((-567) |#1|)) (-15 -4147 (|#1| (-645 |#2|))) (-15 -1787 (|#1| |#1| (-1235 (-567)))) (-15 -1560 (|#1| |#1| (-567))) (-15 -1560 (|#1| |#1| (-1235 (-567)))) (-15 -2845 (|#1| |#2| |#1| (-567))) (-15 -2845 (|#1| |#1| |#1| (-567))) (-15 -1644 (|#1| |#1|)) (-15 -3344 ((-772) |#1|)) (-15 -1503 (|#1| |#1|)) (-15 -4283 (|#1| |#1|)) (-15 -3257 (|#1| |#1| (-772))) (-15 -1787 (|#2| |#1| "last")) (-15 -3257 (|#2| |#1|)) (-15 -2421 (|#1| |#1| (-772))) (-15 -1787 (|#1| |#1| "rest")) (-15 -2421 (|#1| |#1|)) (-15 -2409 (|#1| |#1| (-772))) (-15 -1787 (|#2| |#1| "first")) (-15 -2409 (|#2| |#1|)) (-15 -3512 ((-112) |#1| |#1|)) (-15 -3606 ((-112) |#1| |#1|)) (-15 -2658 ((-567) |#1| |#1|)) (-15 -3900 ((-112) |#1|)) (-15 -1787 (|#2| |#1| "value")) (-15 -3802 (|#2| |#1|)) (-15 -2769 ((-112) |#1|)) (-15 -2182 ((-645 |#1|) |#1|)) (-15 -1531 ((-645 |#1|) |#1|)) (-15 -2936 ((-112) |#1| |#1|)) (-15 -3025 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1853 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2414 ((-772) |#1|)) (-15 -3445 ((-112) |#1| (-772))) (-15 -2077 ((-112) |#1| (-772))) (-15 -2863 ((-112) |#1| (-772))))
-((-2403 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-3802 ((|#1| $) 49)) (-3998 ((|#1| $) 66)) (-4283 (($ $) 68)) (-1783 (((-1273) $ (-567) (-567)) 98 (|has| $ (-6 -4419)))) (-2366 (($ $ (-567)) 53 (|has| $ (-6 -4419)))) (-3445 (((-112) $ (-772)) 8)) (-2138 ((|#1| $ |#1|) 40 (|has| $ (-6 -4419)))) (-4209 (($ $ $) 57 (|has| $ (-6 -4419)))) (-2315 ((|#1| $ |#1|) 55 (|has| $ (-6 -4419)))) (-2271 ((|#1| $ |#1|) 59 (|has| $ (-6 -4419)))) (-4284 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4419))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4419))) (($ $ "rest" $) 56 (|has| $ (-6 -4419))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4419))) ((|#1| $ (-1235 (-567)) |#1|) 118 (|has| $ (-6 -4419))) ((|#1| $ (-567) |#1|) 87 (|has| $ (-6 -4419)))) (-1301 (($ $ (-645 $)) 42 (|has| $ (-6 -4419)))) (-3350 (($ (-1 (-112) |#1|) $) 103)) (-3984 ((|#1| $) 67)) (-2585 (($) 7 T CONST)) (-2584 (($ $) 125)) (-2421 (($ $) 74) (($ $ (-772)) 72)) (-2444 (($ $) 100 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-3238 (($ |#1| $) 101 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418)))) (($ (-1 (-112) |#1|) $) 104)) (-2477 ((|#1| (-1 |#1| |#1| |#1|) $) 106 (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 105 (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 102 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-3741 ((|#1| $ (-567) |#1|) 86 (|has| $ (-6 -4419)))) (-3680 ((|#1| $ (-567)) 88)) (-1399 (((-112) $) 84)) (-2777 (((-645 |#1|) $) 31 (|has| $ (-6 -4418)))) (-3532 (((-772) $) 124)) (-2182 (((-645 $) $) 51)) (-3512 (((-112) $ $) 43 (|has| |#1| (-1102)))) (-2846 (($ (-772) |#1|) 109)) (-2077 (((-112) $ (-772)) 9)) (-4069 (((-567) $) 96 (|has| (-567) (-851)))) (-2279 (((-645 |#1|) $) 30 (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-2266 (((-567) $) 95 (|has| (-567) (-851)))) (-3731 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 112)) (-2863 (((-112) $ (-772)) 10)) (-3773 (((-645 |#1|) $) 46)) (-2769 (((-112) $) 50)) (-3381 (($ $) 127)) (-1406 (((-112) $) 128)) (-1419 (((-1160) $) 22 (|has| |#1| (-1102)))) (-3257 ((|#1| $) 71) (($ $ (-772)) 69)) (-2845 (($ $ $ (-567)) 117) (($ |#1| $ (-567)) 116)) (-1789 (((-645 (-567)) $) 93)) (-2996 (((-112) (-567) $) 92)) (-3430 (((-1122) $) 21 (|has| |#1| (-1102)))) (-2249 ((|#1| $) 126)) (-2409 ((|#1| $) 77) (($ $ (-772)) 75)) (-4128 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 107)) (-3986 (($ $ |#1|) 97 (|has| $ (-6 -4419)))) (-2410 (($ $ (-567)) 123)) (-3323 (((-112) $) 85)) (-2418 (((-112) $) 129)) (-4320 (((-112) $) 130)) (-3025 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) 14)) (-1794 (((-112) |#1| $) 94 (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2339 (((-645 |#1|) $) 91)) (-3572 (((-112) $) 11)) (-3498 (($) 12)) (-1787 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1235 (-567))) 113) ((|#1| $ (-567)) 90) ((|#1| $ (-567) |#1|) 89)) (-2658 (((-567) $ $) 45)) (-1560 (($ $ (-1235 (-567))) 115) (($ $ (-567)) 114)) (-3900 (((-112) $) 47)) (-1644 (($ $) 63)) (-3519 (($ $) 60 (|has| $ (-6 -4419)))) (-3344 (((-772) $) 64)) (-1503 (($ $) 65)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4418))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-4305 (($ $) 13)) (-3893 (((-539) $) 99 (|has| |#1| (-615 (-539))))) (-4147 (($ (-645 |#1|)) 108)) (-2484 (($ $ $) 62 (|has| $ (-6 -4419))) (($ $ |#1|) 61 (|has| $ (-6 -4419)))) (-2269 (($ $ $) 79) (($ |#1| $) 78) (($ (-645 $)) 111) (($ $ |#1|) 110)) (-2192 (($ $) 122)) (-4132 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-1531 (((-645 $) $) 52)) (-3606 (((-112) $ $) 44 (|has| |#1| (-1102)))) (-1745 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2414 (((-772) $) 6 (|has| $ (-6 -4418)))))
-(((-675 |#1|) (-140) (-1218)) (T -675))
-((-3238 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-675 *3)) (-4 *3 (-1218)))) (-3350 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-675 *3)) (-4 *3 (-1218)))) (-4320 (*1 *2 *1) (-12 (-4 *1 (-675 *3)) (-4 *3 (-1218)) (-5 *2 (-112)))) (-2418 (*1 *2 *1) (-12 (-4 *1 (-675 *3)) (-4 *3 (-1218)) (-5 *2 (-112)))) (-1406 (*1 *2 *1) (-12 (-4 *1 (-675 *3)) (-4 *3 (-1218)) (-5 *2 (-112)))) (-3381 (*1 *1 *1) (-12 (-4 *1 (-675 *2)) (-4 *2 (-1218)))) (-2249 (*1 *2 *1) (-12 (-4 *1 (-675 *2)) (-4 *2 (-1218)))) (-2584 (*1 *1 *1) (-12 (-4 *1 (-675 *2)) (-4 *2 (-1218)))) (-3532 (*1 *2 *1) (-12 (-4 *1 (-675 *3)) (-4 *3 (-1218)) (-5 *2 (-772)))) (-2410 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-675 *3)) (-4 *3 (-1218)))) (-2192 (*1 *1 *1) (-12 (-4 *1 (-675 *2)) (-4 *2 (-1218)))))
-(-13 (-1151 |t#1|) (-10 -8 (-15 -3238 ($ (-1 (-112) |t#1|) $)) (-15 -3350 ($ (-1 (-112) |t#1|) $)) (-15 -4320 ((-112) $)) (-15 -2418 ((-112) $)) (-15 -1406 ((-112) $)) (-15 -3381 ($ $)) (-15 -2249 (|t#1| $)) (-15 -2584 ($ $)) (-15 -3532 ((-772) $)) (-15 -2410 ($ $ (-567))) (-15 -2192 ($ $))))
-(((-34) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2800 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-287 #0=(-567) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-605 #0# |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-652 |#1|) . T) ((-1012 |#1|) . T) ((-1102) |has| |#1| (-1102)) ((-1151 |#1|) . T) ((-1218) . T) ((-1256 |#1|) . T))
-((-2403 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-4117 (($ (-772) (-772) (-772)) 55 (|has| |#1| (-1051)))) (-3445 (((-112) $ (-772)) NIL)) (-4234 ((|#1| $ (-772) (-772) (-772) |#1|) 49)) (-2585 (($) NIL T CONST)) (-2205 (($ $ $) 60 (|has| |#1| (-1051)))) (-2777 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-2077 (((-112) $ (-772)) NIL)) (-2279 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-4178 (((-1268 (-772)) $) 12)) (-3780 (($ (-1178) $ $) 37)) (-3731 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL (|has| |#1| (-1102)))) (-2001 (($ (-772)) 57 (|has| |#1| (-1051)))) (-3430 (((-1122) $) NIL (|has| |#1| (-1102)))) (-3025 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) NIL)) (-1787 ((|#1| $ (-772) (-772) (-772)) 46)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-4305 (($ $) NIL)) (-4147 (($ (-645 (-645 (-645 |#1|)))) 70)) (-4132 (($ (-960 (-960 (-960 |#1|)))) 23) (((-960 (-960 (-960 |#1|))) $) 19) (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-1745 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2414 (((-772) $) NIL (|has| $ (-6 -4418)))))
-(((-676 |#1|) (-13 (-492 |#1|) (-10 -8 (IF (|has| |#1| (-1051)) (PROGN (-15 -4117 ($ (-772) (-772) (-772))) (-15 -2001 ($ (-772))) (-15 -2205 ($ $ $))) |%noBranch|) (-15 -4147 ($ (-645 (-645 (-645 |#1|))))) (-15 -1787 (|#1| $ (-772) (-772) (-772))) (-15 -4234 (|#1| $ (-772) (-772) (-772) |#1|)) (-15 -4132 ($ (-960 (-960 (-960 |#1|))))) (-15 -4132 ((-960 (-960 (-960 |#1|))) $)) (-15 -3780 ($ (-1178) $ $)) (-15 -4178 ((-1268 (-772)) $)))) (-1102)) (T -676))
-((-4117 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-772)) (-5 *1 (-676 *3)) (-4 *3 (-1051)) (-4 *3 (-1102)))) (-2001 (*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-676 *3)) (-4 *3 (-1051)) (-4 *3 (-1102)))) (-2205 (*1 *1 *1 *1) (-12 (-5 *1 (-676 *2)) (-4 *2 (-1051)) (-4 *2 (-1102)))) (-4147 (*1 *1 *2) (-12 (-5 *2 (-645 (-645 (-645 *3)))) (-4 *3 (-1102)) (-5 *1 (-676 *3)))) (-1787 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-772)) (-5 *1 (-676 *2)) (-4 *2 (-1102)))) (-4234 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-676 *2)) (-4 *2 (-1102)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-960 (-960 (-960 *3)))) (-4 *3 (-1102)) (-5 *1 (-676 *3)))) (-4132 (*1 *2 *1) (-12 (-5 *2 (-960 (-960 (-960 *3)))) (-5 *1 (-676 *3)) (-4 *3 (-1102)))) (-3780 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-676 *3)) (-4 *3 (-1102)))) (-4178 (*1 *2 *1) (-12 (-5 *2 (-1268 (-772))) (-5 *1 (-676 *3)) (-4 *3 (-1102)))))
-(-13 (-492 |#1|) (-10 -8 (IF (|has| |#1| (-1051)) (PROGN (-15 -4117 ($ (-772) (-772) (-772))) (-15 -2001 ($ (-772))) (-15 -2205 ($ $ $))) |%noBranch|) (-15 -4147 ($ (-645 (-645 (-645 |#1|))))) (-15 -1787 (|#1| $ (-772) (-772) (-772))) (-15 -4234 (|#1| $ (-772) (-772) (-772) |#1|)) (-15 -4132 ($ (-960 (-960 (-960 |#1|))))) (-15 -4132 ((-960 (-960 (-960 |#1|))) $)) (-15 -3780 ($ (-1178) $ $)) (-15 -4178 ((-1268 (-772)) $))))
-((-2403 (((-112) $ $) NIL)) (-1419 (((-1160) $) NIL)) (-2724 (((-486) $) 10)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 19) (($ (-1183)) NIL) (((-1183) $) NIL)) (-2006 (((-1137) $) 12)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)))
-(((-677) (-13 (-1085) (-10 -8 (-15 -2724 ((-486) $)) (-15 -2006 ((-1137) $))))) (T -677))
-((-2724 (*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-677)))) (-2006 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-677)))))
-(-13 (-1085) (-10 -8 (-15 -2724 ((-486) $)) (-15 -2006 ((-1137) $))))
-((-2403 (((-112) $ $) NIL)) (-3267 (((-645 |#1|) $) 15)) (-2963 (($ $) 19)) (-3164 (((-112) $) 20)) (-3753 (((-3 |#1| "failed") $) 23)) (-2038 ((|#1| $) 21)) (-2421 (($ $) 37)) (-3592 (($ $) 25)) (-1354 (($ $ $) NIL)) (-2981 (($ $ $) NIL)) (-4175 (((-112) $ $) 47)) (-1699 (((-923) $) 40)) (-2950 (($ $) 18)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-2409 ((|#1| $) 36)) (-4132 (((-863) $) 32) (($ |#1|) 24) (((-820 |#1|) $) 28)) (-1745 (((-112) $ $) NIL)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 13)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) 44)) (* (($ $ $) 35)))
-(((-678 |#1|) (-13 (-851) (-1040 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -4132 ((-820 |#1|) $)) (-15 -2409 (|#1| $)) (-15 -2950 ($ $)) (-15 -1699 ((-923) $)) (-15 -4175 ((-112) $ $)) (-15 -3592 ($ $)) (-15 -2421 ($ $)) (-15 -3164 ((-112) $)) (-15 -2963 ($ $)) (-15 -3267 ((-645 |#1|) $)))) (-851)) (T -678))
-((* (*1 *1 *1 *1) (-12 (-5 *1 (-678 *2)) (-4 *2 (-851)))) (-4132 (*1 *2 *1) (-12 (-5 *2 (-820 *3)) (-5 *1 (-678 *3)) (-4 *3 (-851)))) (-2409 (*1 *2 *1) (-12 (-5 *1 (-678 *2)) (-4 *2 (-851)))) (-2950 (*1 *1 *1) (-12 (-5 *1 (-678 *2)) (-4 *2 (-851)))) (-1699 (*1 *2 *1) (-12 (-5 *2 (-923)) (-5 *1 (-678 *3)) (-4 *3 (-851)))) (-4175 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-678 *3)) (-4 *3 (-851)))) (-3592 (*1 *1 *1) (-12 (-5 *1 (-678 *2)) (-4 *2 (-851)))) (-2421 (*1 *1 *1) (-12 (-5 *1 (-678 *2)) (-4 *2 (-851)))) (-3164 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-678 *3)) (-4 *3 (-851)))) (-2963 (*1 *1 *1) (-12 (-5 *1 (-678 *2)) (-4 *2 (-851)))) (-3267 (*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-678 *3)) (-4 *3 (-851)))))
-(-13 (-851) (-1040 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -4132 ((-820 |#1|) $)) (-15 -2409 (|#1| $)) (-15 -2950 ($ $)) (-15 -1699 ((-923) $)) (-15 -4175 ((-112) $ $)) (-15 -3592 ($ $)) (-15 -2421 ($ $)) (-15 -3164 ((-112) $)) (-15 -2963 ($ $)) (-15 -3267 ((-645 |#1|) $))))
-((-3140 ((|#1| (-1 |#1| (-772) |#1|) (-772) |#1|) 14)) (-3859 ((|#1| (-1 |#1| |#1|) (-772) |#1|) 12)))
-(((-679 |#1|) (-10 -7 (-15 -3859 (|#1| (-1 |#1| |#1|) (-772) |#1|)) (-15 -3140 (|#1| (-1 |#1| (-772) |#1|) (-772) |#1|))) (-1102)) (T -679))
-((-3140 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-772) *2)) (-5 *4 (-772)) (-4 *2 (-1102)) (-5 *1 (-679 *2)))) (-3859 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-772)) (-4 *2 (-1102)) (-5 *1 (-679 *2)))))
-(-10 -7 (-15 -3859 (|#1| (-1 |#1| |#1|) (-772) |#1|)) (-15 -3140 (|#1| (-1 |#1| (-772) |#1|) (-772) |#1|)))
-((-4160 ((|#2| |#1| |#2|) 9)) (-4145 ((|#1| |#1| |#2|) 8)))
-(((-680 |#1| |#2|) (-10 -7 (-15 -4145 (|#1| |#1| |#2|)) (-15 -4160 (|#2| |#1| |#2|))) (-1102) (-1102)) (T -680))
-((-4160 (*1 *2 *3 *2) (-12 (-5 *1 (-680 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1102)))) (-4145 (*1 *2 *2 *3) (-12 (-5 *1 (-680 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-1102)))))
-(-10 -7 (-15 -4145 (|#1| |#1| |#2|)) (-15 -4160 (|#2| |#1| |#2|)))
-((-2199 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11)))
-(((-681 |#1| |#2| |#3|) (-10 -7 (-15 -2199 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1102) (-1102) (-1102)) (T -681))
-((-2199 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *2 (-1102)) (-5 *1 (-681 *5 *6 *2)))))
-(-10 -7 (-15 -2199 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|)))
-((-2403 (((-112) $ $) NIL)) (-3570 (((-1217) $) 21)) (-3527 (((-645 (-1217)) $) 19)) (-3003 (($ (-645 (-1217)) (-1217)) 14)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 29) (($ (-1183)) NIL) (((-1183) $) NIL) (((-1217) $) 22) (($ (-1120)) 10)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)))
-(((-682) (-13 (-1085) (-614 (-1217)) (-10 -8 (-15 -4132 ($ (-1120))) (-15 -3003 ($ (-645 (-1217)) (-1217))) (-15 -3527 ((-645 (-1217)) $)) (-15 -3570 ((-1217) $))))) (T -682))
-((-4132 (*1 *1 *2) (-12 (-5 *2 (-1120)) (-5 *1 (-682)))) (-3003 (*1 *1 *2 *3) (-12 (-5 *2 (-645 (-1217))) (-5 *3 (-1217)) (-5 *1 (-682)))) (-3527 (*1 *2 *1) (-12 (-5 *2 (-645 (-1217))) (-5 *1 (-682)))) (-3570 (*1 *2 *1) (-12 (-5 *2 (-1217)) (-5 *1 (-682)))))
-(-13 (-1085) (-614 (-1217)) (-10 -8 (-15 -4132 ($ (-1120))) (-15 -3003 ($ (-645 (-1217)) (-1217))) (-15 -3527 ((-645 (-1217)) $)) (-15 -3570 ((-1217) $))))
-((-3140 (((-1 |#1| (-772) |#1|) (-1 |#1| (-772) |#1|)) 29)) (-3928 (((-1 |#1|) |#1|) 8)) (-3979 ((|#1| |#1|) 23)) (-1344 (((-645 |#1|) (-1 (-645 |#1|) (-645 |#1|)) (-567)) 22) ((|#1| (-1 |#1| |#1|)) 11)) (-4132 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-772)) 26)))
-(((-683 |#1|) (-10 -7 (-15 -3928 ((-1 |#1|) |#1|)) (-15 -4132 ((-1 |#1|) |#1|)) (-15 -1344 (|#1| (-1 |#1| |#1|))) (-15 -1344 ((-645 |#1|) (-1 (-645 |#1|) (-645 |#1|)) (-567))) (-15 -3979 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-772))) (-15 -3140 ((-1 |#1| (-772) |#1|) (-1 |#1| (-772) |#1|)))) (-1102)) (T -683))
-((-3140 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-772) *3)) (-4 *3 (-1102)) (-5 *1 (-683 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-772)) (-4 *4 (-1102)) (-5 *1 (-683 *4)))) (-3979 (*1 *2 *2) (-12 (-5 *1 (-683 *2)) (-4 *2 (-1102)))) (-1344 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-645 *5) (-645 *5))) (-5 *4 (-567)) (-5 *2 (-645 *5)) (-5 *1 (-683 *5)) (-4 *5 (-1102)))) (-1344 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-683 *2)) (-4 *2 (-1102)))) (-4132 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-683 *3)) (-4 *3 (-1102)))) (-3928 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-683 *3)) (-4 *3 (-1102)))))
-(-10 -7 (-15 -3928 ((-1 |#1|) |#1|)) (-15 -4132 ((-1 |#1|) |#1|)) (-15 -1344 (|#1| (-1 |#1| |#1|))) (-15 -1344 ((-645 |#1|) (-1 (-645 |#1|) (-645 |#1|)) (-567))) (-15 -3979 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-772))) (-15 -3140 ((-1 |#1| (-772) |#1|) (-1 |#1| (-772) |#1|))))
-((-4202 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-2662 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-3286 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-1959 (((-1 |#2| |#1|) |#2|) 11)))
-(((-684 |#1| |#2|) (-10 -7 (-15 -1959 ((-1 |#2| |#1|) |#2|)) (-15 -2662 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3286 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -4202 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1102) (-1102)) (T -684))
-((-4202 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-5 *2 (-1 *5 *4)) (-5 *1 (-684 *4 *5)))) (-3286 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1102)) (-5 *2 (-1 *5 *4)) (-5 *1 (-684 *4 *5)) (-4 *4 (-1102)))) (-2662 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-5 *2 (-1 *5)) (-5 *1 (-684 *4 *5)))) (-1959 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-684 *4 *3)) (-4 *4 (-1102)) (-4 *3 (-1102)))))
-(-10 -7 (-15 -1959 ((-1 |#2| |#1|) |#2|)) (-15 -2662 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3286 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -4202 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|))))
-((-2303 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-3874 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-1547 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-2823 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-3628 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21)))
-(((-685 |#1| |#2| |#3|) (-10 -7 (-15 -3874 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -1547 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2823 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -3628 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2303 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1102) (-1102) (-1102)) (T -685))
-((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-1 *7 *5)) (-5 *1 (-685 *5 *6 *7)))) (-2303 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-685 *4 *5 *6)))) (-3628 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-685 *4 *5 *6)) (-4 *4 (-1102)))) (-2823 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1102)) (-4 *6 (-1102)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-685 *4 *5 *6)) (-4 *5 (-1102)))) (-1547 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-5 *2 (-1 *6 *5)) (-5 *1 (-685 *4 *5 *6)))) (-3874 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1102)) (-4 *4 (-1102)) (-4 *6 (-1102)) (-5 *2 (-1 *6 *5)) (-5 *1 (-685 *5 *4 *6)))))
-(-10 -7 (-15 -3874 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -1547 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2823 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -3628 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2303 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|))))
-((-2477 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-3829 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31)))
-(((-686 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3829 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3829 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2477 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1051) (-375 |#1|) (-375 |#1|) (-688 |#1| |#2| |#3|) (-1051) (-375 |#5|) (-375 |#5|) (-688 |#5| |#6| |#7|)) (T -686))
-((-2477 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1051)) (-4 *2 (-1051)) (-4 *6 (-375 *5)) (-4 *7 (-375 *5)) (-4 *8 (-375 *2)) (-4 *9 (-375 *2)) (-5 *1 (-686 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-688 *5 *6 *7)) (-4 *10 (-688 *2 *8 *9)))) (-3829 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1051)) (-4 *8 (-1051)) (-4 *6 (-375 *5)) (-4 *7 (-375 *5)) (-4 *2 (-688 *8 *9 *10)) (-5 *1 (-686 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-688 *5 *6 *7)) (-4 *9 (-375 *8)) (-4 *10 (-375 *8)))) (-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1051)) (-4 *8 (-1051)) (-4 *6 (-375 *5)) (-4 *7 (-375 *5)) (-4 *2 (-688 *8 *9 *10)) (-5 *1 (-686 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-688 *5 *6 *7)) (-4 *9 (-375 *8)) (-4 *10 (-375 *8)))))
-(-10 -7 (-15 -3829 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3829 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2477 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|)))
-((-1316 (($ (-772) (-772)) 43)) (-1467 (($ $ $) 71)) (-3094 (($ |#3|) 66) (($ $) 67)) (-1981 (((-112) $) 38)) (-3709 (($ $ (-567) (-567)) 82)) (-2897 (($ $ (-567) (-567)) 83)) (-1736 (($ $ (-567) (-567) (-567) (-567)) 88)) (-3888 (($ $) 69)) (-1948 (((-112) $) 15)) (-1697 (($ $ (-567) (-567) $) 89)) (-4284 ((|#2| $ (-567) (-567) |#2|) NIL) (($ $ (-645 (-567)) (-645 (-567)) $) 87)) (-3536 (($ (-772) |#2|) 53)) (-2114 (($ (-645 (-645 |#2|))) 51)) (-1603 (((-645 (-645 |#2|)) $) 78)) (-1418 (($ $ $) 70)) (-2391 (((-3 $ "failed") $ |#2|) 121)) (-1787 ((|#2| $ (-567) (-567)) NIL) ((|#2| $ (-567) (-567) |#2|) NIL) (($ $ (-645 (-567)) (-645 (-567))) 86)) (-3068 (($ (-645 |#2|)) 54) (($ (-645 $)) 56)) (-3339 (((-112) $) 28)) (-4132 (($ |#4|) 61) (((-863) $) NIL)) (-2619 (((-112) $) 40)) (-3060 (($ $ |#2|) 123)) (-3045 (($ $ $) 93) (($ $) 96)) (-3033 (($ $ $) 91)) (** (($ $ (-772)) 110) (($ $ (-567)) 128)) (* (($ $ $) 102) (($ |#2| $) 98) (($ $ |#2|) 99) (($ (-567) $) 101) ((|#4| $ |#4|) 114) ((|#3| |#3| $) 118)))
-(((-687 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4132 ((-863) |#1|)) (-15 ** (|#1| |#1| (-567))) (-15 -3060 (|#1| |#1| |#2|)) (-15 -2391 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-772))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3045 (|#1| |#1|)) (-15 -3045 (|#1| |#1| |#1|)) (-15 -3033 (|#1| |#1| |#1|)) (-15 -1697 (|#1| |#1| (-567) (-567) |#1|)) (-15 -1736 (|#1| |#1| (-567) (-567) (-567) (-567))) (-15 -2897 (|#1| |#1| (-567) (-567))) (-15 -3709 (|#1| |#1| (-567) (-567))) (-15 -4284 (|#1| |#1| (-645 (-567)) (-645 (-567)) |#1|)) (-15 -1787 (|#1| |#1| (-645 (-567)) (-645 (-567)))) (-15 -1603 ((-645 (-645 |#2|)) |#1|)) (-15 -1467 (|#1| |#1| |#1|)) (-15 -1418 (|#1| |#1| |#1|)) (-15 -3888 (|#1| |#1|)) (-15 -3094 (|#1| |#1|)) (-15 -3094 (|#1| |#3|)) (-15 -4132 (|#1| |#4|)) (-15 -3068 (|#1| (-645 |#1|))) (-15 -3068 (|#1| (-645 |#2|))) (-15 -3536 (|#1| (-772) |#2|)) (-15 -2114 (|#1| (-645 (-645 |#2|)))) (-15 -1316 (|#1| (-772) (-772))) (-15 -2619 ((-112) |#1|)) (-15 -1981 ((-112) |#1|)) (-15 -3339 ((-112) |#1|)) (-15 -1948 ((-112) |#1|)) (-15 -4284 (|#2| |#1| (-567) (-567) |#2|)) (-15 -1787 (|#2| |#1| (-567) (-567) |#2|)) (-15 -1787 (|#2| |#1| (-567) (-567)))) (-688 |#2| |#3| |#4|) (-1051) (-375 |#2|) (-375 |#2|)) (T -687))
-NIL
-(-10 -8 (-15 -4132 ((-863) |#1|)) (-15 ** (|#1| |#1| (-567))) (-15 -3060 (|#1| |#1| |#2|)) (-15 -2391 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-772))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3045 (|#1| |#1|)) (-15 -3045 (|#1| |#1| |#1|)) (-15 -3033 (|#1| |#1| |#1|)) (-15 -1697 (|#1| |#1| (-567) (-567) |#1|)) (-15 -1736 (|#1| |#1| (-567) (-567) (-567) (-567))) (-15 -2897 (|#1| |#1| (-567) (-567))) (-15 -3709 (|#1| |#1| (-567) (-567))) (-15 -4284 (|#1| |#1| (-645 (-567)) (-645 (-567)) |#1|)) (-15 -1787 (|#1| |#1| (-645 (-567)) (-645 (-567)))) (-15 -1603 ((-645 (-645 |#2|)) |#1|)) (-15 -1467 (|#1| |#1| |#1|)) (-15 -1418 (|#1| |#1| |#1|)) (-15 -3888 (|#1| |#1|)) (-15 -3094 (|#1| |#1|)) (-15 -3094 (|#1| |#3|)) (-15 -4132 (|#1| |#4|)) (-15 -3068 (|#1| (-645 |#1|))) (-15 -3068 (|#1| (-645 |#2|))) (-15 -3536 (|#1| (-772) |#2|)) (-15 -2114 (|#1| (-645 (-645 |#2|)))) (-15 -1316 (|#1| (-772) (-772))) (-15 -2619 ((-112) |#1|)) (-15 -1981 ((-112) |#1|)) (-15 -3339 ((-112) |#1|)) (-15 -1948 ((-112) |#1|)) (-15 -4284 (|#2| |#1| (-567) (-567) |#2|)) (-15 -1787 (|#2| |#1| (-567) (-567) |#2|)) (-15 -1787 (|#2| |#1| (-567) (-567))))
-((-2403 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-1316 (($ (-772) (-772)) 98)) (-1467 (($ $ $) 88)) (-3094 (($ |#2|) 92) (($ $) 91)) (-1981 (((-112) $) 100)) (-3709 (($ $ (-567) (-567)) 84)) (-2897 (($ $ (-567) (-567)) 83)) (-1736 (($ $ (-567) (-567) (-567) (-567)) 82)) (-3888 (($ $) 90)) (-1948 (((-112) $) 102)) (-3445 (((-112) $ (-772)) 8)) (-1697 (($ $ (-567) (-567) $) 81)) (-4284 ((|#1| $ (-567) (-567) |#1|) 45) (($ $ (-645 (-567)) (-645 (-567)) $) 85)) (-2615 (($ $ (-567) |#2|) 43)) (-1961 (($ $ (-567) |#3|) 42)) (-3536 (($ (-772) |#1|) 96)) (-2585 (($) 7 T CONST)) (-2233 (($ $) 68 (|has| |#1| (-308)))) (-1944 ((|#2| $ (-567)) 47)) (-1954 (((-772) $) 67 (|has| |#1| (-559)))) (-3741 ((|#1| $ (-567) (-567) |#1|) 44)) (-3680 ((|#1| $ (-567) (-567)) 49)) (-2777 (((-645 |#1|) $) 31)) (-1940 (((-772) $) 66 (|has| |#1| (-559)))) (-1325 (((-645 |#3|) $) 65 (|has| |#1| (-559)))) (-3633 (((-772) $) 52)) (-2846 (($ (-772) (-772) |#1|) 58)) (-3643 (((-772) $) 51)) (-2077 (((-112) $ (-772)) 9)) (-2031 ((|#1| $) 63 (|has| |#1| (-6 (-4420 "*"))))) (-2527 (((-567) $) 56)) (-4043 (((-567) $) 54)) (-2279 (((-645 |#1|) $) 30 (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-2107 (((-567) $) 55)) (-2646 (((-567) $) 53)) (-2114 (($ (-645 (-645 |#1|))) 97)) (-3731 (($ (-1 |#1| |#1|) $) 35)) (-3829 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-1603 (((-645 (-645 |#1|)) $) 87)) (-2863 (((-112) $ (-772)) 10)) (-1419 (((-1160) $) 22 (|has| |#1| (-1102)))) (-1401 (((-3 $ "failed") $) 62 (|has| |#1| (-365)))) (-1418 (($ $ $) 89)) (-3430 (((-1122) $) 21 (|has| |#1| (-1102)))) (-3986 (($ $ |#1|) 57)) (-2391 (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-559)))) (-3025 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) 14)) (-3572 (((-112) $) 11)) (-3498 (($) 12)) (-1787 ((|#1| $ (-567) (-567)) 50) ((|#1| $ (-567) (-567) |#1|) 48) (($ $ (-645 (-567)) (-645 (-567))) 86)) (-3068 (($ (-645 |#1|)) 95) (($ (-645 $)) 94)) (-3339 (((-112) $) 101)) (-4083 ((|#1| $) 64 (|has| |#1| (-6 (-4420 "*"))))) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4418))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-4305 (($ $) 13)) (-2237 ((|#3| $ (-567)) 46)) (-4132 (($ |#3|) 93) (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-1745 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4418)))) (-2619 (((-112) $) 99)) (-2936 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-3060 (($ $ |#1|) 69 (|has| |#1| (-365)))) (-3045 (($ $ $) 79) (($ $) 78)) (-3033 (($ $ $) 80)) (** (($ $ (-772)) 71) (($ $ (-567)) 61 (|has| |#1| (-365)))) (* (($ $ $) 77) (($ |#1| $) 76) (($ $ |#1|) 75) (($ (-567) $) 74) ((|#3| $ |#3|) 73) ((|#2| |#2| $) 72)) (-2414 (((-772) $) 6 (|has| $ (-6 -4418)))))
+((-2412 (((-112) $ $) NIL)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-2721 (((-645 (-1137)) $) 10)) (-4129 (((-863) $) 16) (($ (-1184)) NIL) (((-1184) $) NIL)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)))
+(((-672) (-13 (-1085) (-10 -8 (-15 -2721 ((-645 (-1137)) $))))) (T -672))
+((-2721 (*1 *2 *1) (-12 (-5 *2 (-645 (-1137))) (-5 *1 (-672)))))
+(-13 (-1085) (-10 -8 (-15 -2721 ((-645 (-1137)) $))))
+((-2412 (((-112) $ $) NIL)) (-3275 (((-645 |#1|) $) NIL)) (-2973 (($ $) 67)) (-1793 (((-112) $) NIL)) (-3765 (((-3 |#1| "failed") $) NIL)) (-2051 ((|#1| $) NIL)) (-1365 (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (-1476 (((-3 $ "failed") (-820 |#1|)) 27)) (-4264 (((-112) (-820 |#1|)) 17)) (-1910 (($ (-820 |#1|)) 28)) (-3579 (((-112) $ $) 36)) (-2334 (((-923) $) 43)) (-2961 (($ $) NIL)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-2717 (((-645 $) (-820 |#1|)) 19)) (-4129 (((-863) $) 51) (($ |#1|) 40) (((-820 |#1|) $) 47) (((-678 |#1|) $) 52)) (-3357 (((-112) $ $) NIL)) (-3825 (((-59 (-645 $)) (-645 |#1|) (-923)) 72)) (-4384 (((-645 $) (-645 |#1|) (-923)) 76)) (-3004 (((-112) $ $) NIL)) (-2980 (((-112) $ $) NIL)) (-2946 (((-112) $ $) 68)) (-2993 (((-112) $ $) NIL)) (-2968 (((-112) $ $) 46)))
+(((-673 |#1|) (-13 (-851) (-1040 |#1|) (-10 -8 (-15 -1793 ((-112) $)) (-15 -2961 ($ $)) (-15 -2973 ($ $)) (-15 -2334 ((-923) $)) (-15 -3579 ((-112) $ $)) (-15 -4129 ((-820 |#1|) $)) (-15 -4129 ((-678 |#1|) $)) (-15 -2717 ((-645 $) (-820 |#1|))) (-15 -4264 ((-112) (-820 |#1|))) (-15 -1910 ($ (-820 |#1|))) (-15 -1476 ((-3 $ "failed") (-820 |#1|))) (-15 -3275 ((-645 |#1|) $)) (-15 -3825 ((-59 (-645 $)) (-645 |#1|) (-923))) (-15 -4384 ((-645 $) (-645 |#1|) (-923))))) (-851)) (T -673))
+((-1793 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-673 *3)) (-4 *3 (-851)))) (-2961 (*1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-851)))) (-2973 (*1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-851)))) (-2334 (*1 *2 *1) (-12 (-5 *2 (-923)) (-5 *1 (-673 *3)) (-4 *3 (-851)))) (-3579 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-673 *3)) (-4 *3 (-851)))) (-4129 (*1 *2 *1) (-12 (-5 *2 (-820 *3)) (-5 *1 (-673 *3)) (-4 *3 (-851)))) (-4129 (*1 *2 *1) (-12 (-5 *2 (-678 *3)) (-5 *1 (-673 *3)) (-4 *3 (-851)))) (-2717 (*1 *2 *3) (-12 (-5 *3 (-820 *4)) (-4 *4 (-851)) (-5 *2 (-645 (-673 *4))) (-5 *1 (-673 *4)))) (-4264 (*1 *2 *3) (-12 (-5 *3 (-820 *4)) (-4 *4 (-851)) (-5 *2 (-112)) (-5 *1 (-673 *4)))) (-1910 (*1 *1 *2) (-12 (-5 *2 (-820 *3)) (-4 *3 (-851)) (-5 *1 (-673 *3)))) (-1476 (*1 *1 *2) (|partial| -12 (-5 *2 (-820 *3)) (-4 *3 (-851)) (-5 *1 (-673 *3)))) (-3275 (*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-673 *3)) (-4 *3 (-851)))) (-3825 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *5)) (-5 *4 (-923)) (-4 *5 (-851)) (-5 *2 (-59 (-645 (-673 *5)))) (-5 *1 (-673 *5)))) (-4384 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *5)) (-5 *4 (-923)) (-4 *5 (-851)) (-5 *2 (-645 (-673 *5))) (-5 *1 (-673 *5)))))
+(-13 (-851) (-1040 |#1|) (-10 -8 (-15 -1793 ((-112) $)) (-15 -2961 ($ $)) (-15 -2973 ($ $)) (-15 -2334 ((-923) $)) (-15 -3579 ((-112) $ $)) (-15 -4129 ((-820 |#1|) $)) (-15 -4129 ((-678 |#1|) $)) (-15 -2717 ((-645 $) (-820 |#1|))) (-15 -4264 ((-112) (-820 |#1|))) (-15 -1910 ($ (-820 |#1|))) (-15 -1476 ((-3 $ "failed") (-820 |#1|))) (-15 -3275 ((-645 |#1|) $)) (-15 -3825 ((-59 (-645 $)) (-645 |#1|) (-923))) (-15 -4384 ((-645 $) (-645 |#1|) (-923)))))
+((-3812 ((|#2| $) 103)) (-4284 (($ $) 124)) (-1563 (((-112) $ (-772)) 35)) (-2430 (($ $) 112) (($ $ (-772)) 115)) (-4085 (((-112) $) 125)) (-2070 (((-645 $) $) 99)) (-1520 (((-112) $ $) 95)) (-4093 (((-112) $ (-772)) 33)) (-3895 (((-567) $) 69)) (-3255 (((-567) $) 68)) (-1986 (((-112) $ (-772)) 31)) (-1323 (((-112) $) 101)) (-3266 ((|#2| $) 116) (($ $ (-772)) 120)) (-2857 (($ $ $ (-567)) 86) (($ |#2| $ (-567)) 85)) (-4364 (((-645 (-567)) $) 67)) (-3188 (((-112) (-567) $) 61)) (-2418 ((|#2| $) NIL) (($ $ (-772)) 111)) (-1874 (($ $ (-567)) 128)) (-1971 (((-112) $) 127)) (-4233 (((-112) (-1 (-112) |#2|) $) 44)) (-2190 (((-645 |#2|) $) 48)) (-1801 ((|#2| $ "value") NIL) ((|#2| $ "first") 110) (($ $ "rest") 114) ((|#2| $ "last") 123) (($ $ (-1236 (-567))) 82) ((|#2| $ (-567)) 59) ((|#2| $ (-567) |#2|) 60)) (-3162 (((-567) $ $) 94)) (-1569 (($ $ (-1236 (-567))) 81) (($ $ (-567)) 75)) (-3771 (((-112) $) 90)) (-3688 (($ $) 108)) (-3359 (((-772) $) 107)) (-3640 (($ $) 106)) (-4145 (($ (-645 |#2|)) 55)) (-1834 (($ $) 129)) (-3469 (((-645 $) $) 93)) (-3854 (((-112) $ $) 92)) (-3436 (((-112) (-1 (-112) |#2|) $) 43)) (-2946 (((-112) $ $) 20)) (-2423 (((-772) $) 41)))
+(((-674 |#1| |#2|) (-10 -8 (-15 -1834 (|#1| |#1|)) (-15 -1874 (|#1| |#1| (-567))) (-15 -4085 ((-112) |#1|)) (-15 -1971 ((-112) |#1|)) (-15 -1801 (|#2| |#1| (-567) |#2|)) (-15 -1801 (|#2| |#1| (-567))) (-15 -2190 ((-645 |#2|) |#1|)) (-15 -3188 ((-112) (-567) |#1|)) (-15 -4364 ((-645 (-567)) |#1|)) (-15 -3255 ((-567) |#1|)) (-15 -3895 ((-567) |#1|)) (-15 -4145 (|#1| (-645 |#2|))) (-15 -1801 (|#1| |#1| (-1236 (-567)))) (-15 -1569 (|#1| |#1| (-567))) (-15 -1569 (|#1| |#1| (-1236 (-567)))) (-15 -2857 (|#1| |#2| |#1| (-567))) (-15 -2857 (|#1| |#1| |#1| (-567))) (-15 -3688 (|#1| |#1|)) (-15 -3359 ((-772) |#1|)) (-15 -3640 (|#1| |#1|)) (-15 -4284 (|#1| |#1|)) (-15 -3266 (|#1| |#1| (-772))) (-15 -1801 (|#2| |#1| "last")) (-15 -3266 (|#2| |#1|)) (-15 -2430 (|#1| |#1| (-772))) (-15 -1801 (|#1| |#1| "rest")) (-15 -2430 (|#1| |#1|)) (-15 -2418 (|#1| |#1| (-772))) (-15 -1801 (|#2| |#1| "first")) (-15 -2418 (|#2| |#1|)) (-15 -1520 ((-112) |#1| |#1|)) (-15 -3854 ((-112) |#1| |#1|)) (-15 -3162 ((-567) |#1| |#1|)) (-15 -3771 ((-112) |#1|)) (-15 -1801 (|#2| |#1| "value")) (-15 -3812 (|#2| |#1|)) (-15 -1323 ((-112) |#1|)) (-15 -2070 ((-645 |#1|) |#1|)) (-15 -3469 ((-645 |#1|) |#1|)) (-15 -2946 ((-112) |#1| |#1|)) (-15 -4233 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3436 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2423 ((-772) |#1|)) (-15 -1563 ((-112) |#1| (-772))) (-15 -4093 ((-112) |#1| (-772))) (-15 -1986 ((-112) |#1| (-772)))) (-675 |#2|) (-1219)) (T -674))
+NIL
+(-10 -8 (-15 -1834 (|#1| |#1|)) (-15 -1874 (|#1| |#1| (-567))) (-15 -4085 ((-112) |#1|)) (-15 -1971 ((-112) |#1|)) (-15 -1801 (|#2| |#1| (-567) |#2|)) (-15 -1801 (|#2| |#1| (-567))) (-15 -2190 ((-645 |#2|) |#1|)) (-15 -3188 ((-112) (-567) |#1|)) (-15 -4364 ((-645 (-567)) |#1|)) (-15 -3255 ((-567) |#1|)) (-15 -3895 ((-567) |#1|)) (-15 -4145 (|#1| (-645 |#2|))) (-15 -1801 (|#1| |#1| (-1236 (-567)))) (-15 -1569 (|#1| |#1| (-567))) (-15 -1569 (|#1| |#1| (-1236 (-567)))) (-15 -2857 (|#1| |#2| |#1| (-567))) (-15 -2857 (|#1| |#1| |#1| (-567))) (-15 -3688 (|#1| |#1|)) (-15 -3359 ((-772) |#1|)) (-15 -3640 (|#1| |#1|)) (-15 -4284 (|#1| |#1|)) (-15 -3266 (|#1| |#1| (-772))) (-15 -1801 (|#2| |#1| "last")) (-15 -3266 (|#2| |#1|)) (-15 -2430 (|#1| |#1| (-772))) (-15 -1801 (|#1| |#1| "rest")) (-15 -2430 (|#1| |#1|)) (-15 -2418 (|#1| |#1| (-772))) (-15 -1801 (|#2| |#1| "first")) (-15 -2418 (|#2| |#1|)) (-15 -1520 ((-112) |#1| |#1|)) (-15 -3854 ((-112) |#1| |#1|)) (-15 -3162 ((-567) |#1| |#1|)) (-15 -3771 ((-112) |#1|)) (-15 -1801 (|#2| |#1| "value")) (-15 -3812 (|#2| |#1|)) (-15 -1323 ((-112) |#1|)) (-15 -2070 ((-645 |#1|) |#1|)) (-15 -3469 ((-645 |#1|) |#1|)) (-15 -2946 ((-112) |#1| |#1|)) (-15 -4233 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3436 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2423 ((-772) |#1|)) (-15 -1563 ((-112) |#1| (-772))) (-15 -4093 ((-112) |#1| (-772))) (-15 -1986 ((-112) |#1| (-772))))
+((-2412 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-3812 ((|#1| $) 49)) (-4003 ((|#1| $) 66)) (-4284 (($ $) 68)) (-3843 (((-1274) $ (-567) (-567)) 98 (|has| $ (-6 -4423)))) (-3288 (($ $ (-567)) 53 (|has| $ (-6 -4423)))) (-1563 (((-112) $ (-772)) 8)) (-4392 ((|#1| $ |#1|) 40 (|has| $ (-6 -4423)))) (-4017 (($ $ $) 57 (|has| $ (-6 -4423)))) (-4105 ((|#1| $ |#1|) 55 (|has| $ (-6 -4423)))) (-2498 ((|#1| $ |#1|) 59 (|has| $ (-6 -4423)))) (-4285 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4423))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4423))) (($ $ "rest" $) 56 (|has| $ (-6 -4423))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4423))) ((|#1| $ (-1236 (-567)) |#1|) 118 (|has| $ (-6 -4423))) ((|#1| $ (-567) |#1|) 87 (|has| $ (-6 -4423)))) (-2831 (($ $ (-645 $)) 42 (|has| $ (-6 -4423)))) (-3356 (($ (-1 (-112) |#1|) $) 103)) (-3990 ((|#1| $) 67)) (-3647 (($) 7 T CONST)) (-3517 (($ $) 125)) (-2430 (($ $) 74) (($ $ (-772)) 72)) (-2453 (($ $) 100 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-3246 (($ |#1| $) 101 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422)))) (($ (-1 (-112) |#1|) $) 104)) (-2494 ((|#1| (-1 |#1| |#1| |#1|) $) 106 (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 105 (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 102 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-3760 ((|#1| $ (-567) |#1|) 86 (|has| $ (-6 -4423)))) (-3703 ((|#1| $ (-567)) 88)) (-4085 (((-112) $) 84)) (-2799 (((-645 |#1|) $) 31 (|has| $ (-6 -4422)))) (-3852 (((-772) $) 124)) (-2070 (((-645 $) $) 51)) (-1520 (((-112) $ $) 43 (|has| |#1| (-1102)))) (-2858 (($ (-772) |#1|) 109)) (-4093 (((-112) $ (-772)) 9)) (-3895 (((-567) $) 96 (|has| (-567) (-851)))) (-1942 (((-645 |#1|) $) 30 (|has| $ (-6 -4422)))) (-3237 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-3255 (((-567) $) 95 (|has| (-567) (-851)))) (-3751 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 112)) (-1986 (((-112) $ (-772)) 10)) (-3793 (((-645 |#1|) $) 46)) (-1323 (((-112) $) 50)) (-2094 (($ $) 127)) (-1795 (((-112) $) 128)) (-2516 (((-1161) $) 22 (|has| |#1| (-1102)))) (-3266 ((|#1| $) 71) (($ $ (-772)) 69)) (-2857 (($ $ $ (-567)) 117) (($ |#1| $ (-567)) 116)) (-4364 (((-645 (-567)) $) 93)) (-3188 (((-112) (-567) $) 92)) (-3437 (((-1122) $) 21 (|has| |#1| (-1102)))) (-3839 ((|#1| $) 126)) (-2418 ((|#1| $) 77) (($ $ (-772)) 75)) (-3196 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 107)) (-3823 (($ $ |#1|) 97 (|has| $ (-6 -4423)))) (-1874 (($ $ (-567)) 123)) (-1971 (((-112) $) 85)) (-4291 (((-112) $) 129)) (-1740 (((-112) $) 130)) (-4233 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3875 (((-112) $ $) 14)) (-4058 (((-112) |#1| $) 94 (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-2190 (((-645 |#1|) $) 91)) (-3885 (((-112) $) 11)) (-2701 (($) 12)) (-1801 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1236 (-567))) 113) ((|#1| $ (-567)) 90) ((|#1| $ (-567) |#1|) 89)) (-3162 (((-567) $ $) 45)) (-1569 (($ $ (-1236 (-567))) 115) (($ $ (-567)) 114)) (-3771 (((-112) $) 47)) (-3688 (($ $) 63)) (-4044 (($ $) 60 (|has| $ (-6 -4423)))) (-3359 (((-772) $) 64)) (-3640 (($ $) 65)) (-3447 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4422))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-4309 (($ $) 13)) (-3902 (((-539) $) 99 (|has| |#1| (-615 (-539))))) (-4145 (($ (-645 |#1|)) 108)) (-2294 (($ $ $) 62 (|has| $ (-6 -4423))) (($ $ |#1|) 61 (|has| $ (-6 -4423)))) (-2276 (($ $ $) 79) (($ |#1| $) 78) (($ (-645 $)) 111) (($ $ |#1|) 110)) (-1834 (($ $) 122)) (-4129 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-3469 (((-645 $) $) 52)) (-3854 (((-112) $ $) 44 (|has| |#1| (-1102)))) (-3357 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-3436 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4422)))) (-2946 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2423 (((-772) $) 6 (|has| $ (-6 -4422)))))
+(((-675 |#1|) (-140) (-1219)) (T -675))
+((-3246 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-675 *3)) (-4 *3 (-1219)))) (-3356 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-675 *3)) (-4 *3 (-1219)))) (-1740 (*1 *2 *1) (-12 (-4 *1 (-675 *3)) (-4 *3 (-1219)) (-5 *2 (-112)))) (-4291 (*1 *2 *1) (-12 (-4 *1 (-675 *3)) (-4 *3 (-1219)) (-5 *2 (-112)))) (-1795 (*1 *2 *1) (-12 (-4 *1 (-675 *3)) (-4 *3 (-1219)) (-5 *2 (-112)))) (-2094 (*1 *1 *1) (-12 (-4 *1 (-675 *2)) (-4 *2 (-1219)))) (-3839 (*1 *2 *1) (-12 (-4 *1 (-675 *2)) (-4 *2 (-1219)))) (-3517 (*1 *1 *1) (-12 (-4 *1 (-675 *2)) (-4 *2 (-1219)))) (-3852 (*1 *2 *1) (-12 (-4 *1 (-675 *3)) (-4 *3 (-1219)) (-5 *2 (-772)))) (-1874 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-675 *3)) (-4 *3 (-1219)))) (-1834 (*1 *1 *1) (-12 (-4 *1 (-675 *2)) (-4 *2 (-1219)))))
+(-13 (-1151 |t#1|) (-10 -8 (-15 -3246 ($ (-1 (-112) |t#1|) $)) (-15 -3356 ($ (-1 (-112) |t#1|) $)) (-15 -1740 ((-112) $)) (-15 -4291 ((-112) $)) (-15 -1795 ((-112) $)) (-15 -2094 ($ $)) (-15 -3839 (|t#1| $)) (-15 -3517 ($ $)) (-15 -3852 ((-772) $)) (-15 -1874 ($ $ (-567))) (-15 -1834 ($ $))))
+(((-34) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2811 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-287 #0=(-567) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-605 #0# |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-652 |#1|) . T) ((-1012 |#1|) . T) ((-1102) |has| |#1| (-1102)) ((-1151 |#1|) . T) ((-1219) . T) ((-1257 |#1|) . T))
+((-2412 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3571 (($ (-772) (-772) (-772)) 55 (|has| |#1| (-1051)))) (-1563 (((-112) $ (-772)) NIL)) (-1573 ((|#1| $ (-772) (-772) (-772) |#1|) 49)) (-3647 (($) NIL T CONST)) (-2214 (($ $ $) 60 (|has| |#1| (-1051)))) (-2799 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-4093 (((-112) $ (-772)) NIL)) (-1942 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-3237 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-2641 (((-1269 (-772)) $) 12)) (-2945 (($ (-1179) $ $) 37)) (-3751 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#1| |#1|) $) NIL)) (-1986 (((-112) $ (-772)) NIL)) (-2516 (((-1161) $) NIL (|has| |#1| (-1102)))) (-4030 (($ (-772)) 57 (|has| |#1| (-1051)))) (-3437 (((-1122) $) NIL (|has| |#1| (-1102)))) (-4233 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3875 (((-112) $ $) NIL)) (-3885 (((-112) $) NIL)) (-2701 (($) NIL)) (-1801 ((|#1| $ (-772) (-772) (-772)) 46)) (-3447 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-4309 (($ $) NIL)) (-4145 (($ (-645 (-645 (-645 |#1|)))) 70)) (-4129 (($ (-960 (-960 (-960 |#1|)))) 23) (((-960 (-960 (-960 |#1|))) $) 19) (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-3357 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3436 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2423 (((-772) $) NIL (|has| $ (-6 -4422)))))
+(((-676 |#1|) (-13 (-492 |#1|) (-10 -8 (IF (|has| |#1| (-1051)) (PROGN (-15 -3571 ($ (-772) (-772) (-772))) (-15 -4030 ($ (-772))) (-15 -2214 ($ $ $))) |%noBranch|) (-15 -4145 ($ (-645 (-645 (-645 |#1|))))) (-15 -1801 (|#1| $ (-772) (-772) (-772))) (-15 -1573 (|#1| $ (-772) (-772) (-772) |#1|)) (-15 -4129 ($ (-960 (-960 (-960 |#1|))))) (-15 -4129 ((-960 (-960 (-960 |#1|))) $)) (-15 -2945 ($ (-1179) $ $)) (-15 -2641 ((-1269 (-772)) $)))) (-1102)) (T -676))
+((-3571 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-772)) (-5 *1 (-676 *3)) (-4 *3 (-1051)) (-4 *3 (-1102)))) (-4030 (*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-676 *3)) (-4 *3 (-1051)) (-4 *3 (-1102)))) (-2214 (*1 *1 *1 *1) (-12 (-5 *1 (-676 *2)) (-4 *2 (-1051)) (-4 *2 (-1102)))) (-4145 (*1 *1 *2) (-12 (-5 *2 (-645 (-645 (-645 *3)))) (-4 *3 (-1102)) (-5 *1 (-676 *3)))) (-1801 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-772)) (-5 *1 (-676 *2)) (-4 *2 (-1102)))) (-1573 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-676 *2)) (-4 *2 (-1102)))) (-4129 (*1 *1 *2) (-12 (-5 *2 (-960 (-960 (-960 *3)))) (-4 *3 (-1102)) (-5 *1 (-676 *3)))) (-4129 (*1 *2 *1) (-12 (-5 *2 (-960 (-960 (-960 *3)))) (-5 *1 (-676 *3)) (-4 *3 (-1102)))) (-2945 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-676 *3)) (-4 *3 (-1102)))) (-2641 (*1 *2 *1) (-12 (-5 *2 (-1269 (-772))) (-5 *1 (-676 *3)) (-4 *3 (-1102)))))
+(-13 (-492 |#1|) (-10 -8 (IF (|has| |#1| (-1051)) (PROGN (-15 -3571 ($ (-772) (-772) (-772))) (-15 -4030 ($ (-772))) (-15 -2214 ($ $ $))) |%noBranch|) (-15 -4145 ($ (-645 (-645 (-645 |#1|))))) (-15 -1801 (|#1| $ (-772) (-772) (-772))) (-15 -1573 (|#1| $ (-772) (-772) (-772) |#1|)) (-15 -4129 ($ (-960 (-960 (-960 |#1|))))) (-15 -4129 ((-960 (-960 (-960 |#1|))) $)) (-15 -2945 ($ (-1179) $ $)) (-15 -2641 ((-1269 (-772)) $))))
+((-2412 (((-112) $ $) NIL)) (-2516 (((-1161) $) NIL)) (-1523 (((-486) $) 10)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) 19) (($ (-1184)) NIL) (((-1184) $) NIL)) (-2017 (((-1137) $) 12)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)))
+(((-677) (-13 (-1085) (-10 -8 (-15 -1523 ((-486) $)) (-15 -2017 ((-1137) $))))) (T -677))
+((-1523 (*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-677)))) (-2017 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-677)))))
+(-13 (-1085) (-10 -8 (-15 -1523 ((-486) $)) (-15 -2017 ((-1137) $))))
+((-2412 (((-112) $ $) NIL)) (-3275 (((-645 |#1|) $) 15)) (-2973 (($ $) 19)) (-1793 (((-112) $) 20)) (-3765 (((-3 |#1| "failed") $) 23)) (-2051 ((|#1| $) 21)) (-2430 (($ $) 37)) (-2111 (($ $) 25)) (-1365 (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (-3579 (((-112) $ $) 47)) (-2334 (((-923) $) 40)) (-2961 (($ $) 18)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-2418 ((|#1| $) 36)) (-4129 (((-863) $) 32) (($ |#1|) 24) (((-820 |#1|) $) 28)) (-3357 (((-112) $ $) NIL)) (-3004 (((-112) $ $) NIL)) (-2980 (((-112) $ $) NIL)) (-2946 (((-112) $ $) 13)) (-2993 (((-112) $ $) NIL)) (-2968 (((-112) $ $) 44)) (* (($ $ $) 35)))
+(((-678 |#1|) (-13 (-851) (-1040 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -4129 ((-820 |#1|) $)) (-15 -2418 (|#1| $)) (-15 -2961 ($ $)) (-15 -2334 ((-923) $)) (-15 -3579 ((-112) $ $)) (-15 -2111 ($ $)) (-15 -2430 ($ $)) (-15 -1793 ((-112) $)) (-15 -2973 ($ $)) (-15 -3275 ((-645 |#1|) $)))) (-851)) (T -678))
+((* (*1 *1 *1 *1) (-12 (-5 *1 (-678 *2)) (-4 *2 (-851)))) (-4129 (*1 *2 *1) (-12 (-5 *2 (-820 *3)) (-5 *1 (-678 *3)) (-4 *3 (-851)))) (-2418 (*1 *2 *1) (-12 (-5 *1 (-678 *2)) (-4 *2 (-851)))) (-2961 (*1 *1 *1) (-12 (-5 *1 (-678 *2)) (-4 *2 (-851)))) (-2334 (*1 *2 *1) (-12 (-5 *2 (-923)) (-5 *1 (-678 *3)) (-4 *3 (-851)))) (-3579 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-678 *3)) (-4 *3 (-851)))) (-2111 (*1 *1 *1) (-12 (-5 *1 (-678 *2)) (-4 *2 (-851)))) (-2430 (*1 *1 *1) (-12 (-5 *1 (-678 *2)) (-4 *2 (-851)))) (-1793 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-678 *3)) (-4 *3 (-851)))) (-2973 (*1 *1 *1) (-12 (-5 *1 (-678 *2)) (-4 *2 (-851)))) (-3275 (*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-678 *3)) (-4 *3 (-851)))))
+(-13 (-851) (-1040 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -4129 ((-820 |#1|) $)) (-15 -2418 (|#1| $)) (-15 -2961 ($ $)) (-15 -2334 ((-923) $)) (-15 -3579 ((-112) $ $)) (-15 -2111 ($ $)) (-15 -2430 ($ $)) (-15 -1793 ((-112) $)) (-15 -2973 ($ $)) (-15 -3275 ((-645 |#1|) $))))
+((-3506 ((|#1| (-1 |#1| (-772) |#1|) (-772) |#1|) 14)) (-3868 ((|#1| (-1 |#1| |#1|) (-772) |#1|) 12)))
+(((-679 |#1|) (-10 -7 (-15 -3868 (|#1| (-1 |#1| |#1|) (-772) |#1|)) (-15 -3506 (|#1| (-1 |#1| (-772) |#1|) (-772) |#1|))) (-1102)) (T -679))
+((-3506 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-772) *2)) (-5 *4 (-772)) (-4 *2 (-1102)) (-5 *1 (-679 *2)))) (-3868 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-772)) (-4 *2 (-1102)) (-5 *1 (-679 *2)))))
+(-10 -7 (-15 -3868 (|#1| (-1 |#1| |#1|) (-772) |#1|)) (-15 -3506 (|#1| (-1 |#1| (-772) |#1|) (-772) |#1|)))
+((-4159 ((|#2| |#1| |#2|) 9)) (-4144 ((|#1| |#1| |#2|) 8)))
+(((-680 |#1| |#2|) (-10 -7 (-15 -4144 (|#1| |#1| |#2|)) (-15 -4159 (|#2| |#1| |#2|))) (-1102) (-1102)) (T -680))
+((-4159 (*1 *2 *3 *2) (-12 (-5 *1 (-680 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1102)))) (-4144 (*1 *2 *2 *3) (-12 (-5 *1 (-680 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-1102)))))
+(-10 -7 (-15 -4144 (|#1| |#1| |#2|)) (-15 -4159 (|#2| |#1| |#2|)))
+((-2204 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11)))
+(((-681 |#1| |#2| |#3|) (-10 -7 (-15 -2204 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1102) (-1102) (-1102)) (T -681))
+((-2204 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *2 (-1102)) (-5 *1 (-681 *5 *6 *2)))))
+(-10 -7 (-15 -2204 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|)))
+((-2412 (((-112) $ $) NIL)) (-3577 (((-1218) $) 21)) (-3530 (((-645 (-1218)) $) 19)) (-3486 (($ (-645 (-1218)) (-1218)) 14)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) 29) (($ (-1184)) NIL) (((-1184) $) NIL) (((-1218) $) 22) (($ (-1120)) 10)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)))
+(((-682) (-13 (-1085) (-614 (-1218)) (-10 -8 (-15 -4129 ($ (-1120))) (-15 -3486 ($ (-645 (-1218)) (-1218))) (-15 -3530 ((-645 (-1218)) $)) (-15 -3577 ((-1218) $))))) (T -682))
+((-4129 (*1 *1 *2) (-12 (-5 *2 (-1120)) (-5 *1 (-682)))) (-3486 (*1 *1 *2 *3) (-12 (-5 *2 (-645 (-1218))) (-5 *3 (-1218)) (-5 *1 (-682)))) (-3530 (*1 *2 *1) (-12 (-5 *2 (-645 (-1218))) (-5 *1 (-682)))) (-3577 (*1 *2 *1) (-12 (-5 *2 (-1218)) (-5 *1 (-682)))))
+(-13 (-1085) (-614 (-1218)) (-10 -8 (-15 -4129 ($ (-1120))) (-15 -3486 ($ (-645 (-1218)) (-1218))) (-15 -3530 ((-645 (-1218)) $)) (-15 -3577 ((-1218) $))))
+((-3506 (((-1 |#1| (-772) |#1|) (-1 |#1| (-772) |#1|)) 29)) (-1737 (((-1 |#1|) |#1|) 8)) (-3983 ((|#1| |#1|) 23)) (-3549 (((-645 |#1|) (-1 (-645 |#1|) (-645 |#1|)) (-567)) 22) ((|#1| (-1 |#1| |#1|)) 11)) (-4129 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-772)) 26)))
+(((-683 |#1|) (-10 -7 (-15 -1737 ((-1 |#1|) |#1|)) (-15 -4129 ((-1 |#1|) |#1|)) (-15 -3549 (|#1| (-1 |#1| |#1|))) (-15 -3549 ((-645 |#1|) (-1 (-645 |#1|) (-645 |#1|)) (-567))) (-15 -3983 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-772))) (-15 -3506 ((-1 |#1| (-772) |#1|) (-1 |#1| (-772) |#1|)))) (-1102)) (T -683))
+((-3506 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-772) *3)) (-4 *3 (-1102)) (-5 *1 (-683 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-772)) (-4 *4 (-1102)) (-5 *1 (-683 *4)))) (-3983 (*1 *2 *2) (-12 (-5 *1 (-683 *2)) (-4 *2 (-1102)))) (-3549 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-645 *5) (-645 *5))) (-5 *4 (-567)) (-5 *2 (-645 *5)) (-5 *1 (-683 *5)) (-4 *5 (-1102)))) (-3549 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-683 *2)) (-4 *2 (-1102)))) (-4129 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-683 *3)) (-4 *3 (-1102)))) (-1737 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-683 *3)) (-4 *3 (-1102)))))
+(-10 -7 (-15 -1737 ((-1 |#1|) |#1|)) (-15 -4129 ((-1 |#1|) |#1|)) (-15 -3549 (|#1| (-1 |#1| |#1|))) (-15 -3549 ((-645 |#1|) (-1 (-645 |#1|) (-645 |#1|)) (-567))) (-15 -3983 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-772))) (-15 -3506 ((-1 |#1| (-772) |#1|) (-1 |#1| (-772) |#1|))))
+((-1486 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-2328 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-3304 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-2099 (((-1 |#2| |#1|) |#2|) 11)))
+(((-684 |#1| |#2|) (-10 -7 (-15 -2099 ((-1 |#2| |#1|) |#2|)) (-15 -2328 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3304 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -1486 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1102) (-1102)) (T -684))
+((-1486 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-5 *2 (-1 *5 *4)) (-5 *1 (-684 *4 *5)))) (-3304 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1102)) (-5 *2 (-1 *5 *4)) (-5 *1 (-684 *4 *5)) (-4 *4 (-1102)))) (-2328 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-5 *2 (-1 *5)) (-5 *1 (-684 *4 *5)))) (-2099 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-684 *4 *3)) (-4 *4 (-1102)) (-4 *3 (-1102)))))
+(-10 -7 (-15 -2099 ((-1 |#2| |#1|) |#2|)) (-15 -2328 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3304 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -1486 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|))))
+((-2426 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-2837 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-4295 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-2652 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-2458 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21)))
+(((-685 |#1| |#2| |#3|) (-10 -7 (-15 -2837 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -4295 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2652 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2458 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2426 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1102) (-1102) (-1102)) (T -685))
+((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-1 *7 *5)) (-5 *1 (-685 *5 *6 *7)))) (-2426 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-685 *4 *5 *6)))) (-2458 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-685 *4 *5 *6)) (-4 *4 (-1102)))) (-2652 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1102)) (-4 *6 (-1102)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-685 *4 *5 *6)) (-4 *5 (-1102)))) (-4295 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-5 *2 (-1 *6 *5)) (-5 *1 (-685 *4 *5 *6)))) (-2837 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1102)) (-4 *4 (-1102)) (-4 *6 (-1102)) (-5 *2 (-1 *6 *5)) (-5 *1 (-685 *5 *4 *6)))))
+(-10 -7 (-15 -2837 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -4295 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2652 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2458 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2426 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|))))
+((-2494 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-3841 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31)))
+(((-686 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3841 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3841 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2494 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1051) (-375 |#1|) (-375 |#1|) (-688 |#1| |#2| |#3|) (-1051) (-375 |#5|) (-375 |#5|) (-688 |#5| |#6| |#7|)) (T -686))
+((-2494 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1051)) (-4 *2 (-1051)) (-4 *6 (-375 *5)) (-4 *7 (-375 *5)) (-4 *8 (-375 *2)) (-4 *9 (-375 *2)) (-5 *1 (-686 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-688 *5 *6 *7)) (-4 *10 (-688 *2 *8 *9)))) (-3841 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1051)) (-4 *8 (-1051)) (-4 *6 (-375 *5)) (-4 *7 (-375 *5)) (-4 *2 (-688 *8 *9 *10)) (-5 *1 (-686 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-688 *5 *6 *7)) (-4 *9 (-375 *8)) (-4 *10 (-375 *8)))) (-3841 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1051)) (-4 *8 (-1051)) (-4 *6 (-375 *5)) (-4 *7 (-375 *5)) (-4 *2 (-688 *8 *9 *10)) (-5 *1 (-686 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-688 *5 *6 *7)) (-4 *9 (-375 *8)) (-4 *10 (-375 *8)))))
+(-10 -7 (-15 -3841 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3841 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2494 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|)))
+((-1318 (($ (-772) (-772)) 43)) (-1957 (($ $ $) 71)) (-4141 (($ |#3|) 66) (($ $) 67)) (-2999 (((-112) $) 38)) (-3527 (($ $ (-567) (-567)) 82)) (-1812 (($ $ (-567) (-567)) 83)) (-1932 (($ $ (-567) (-567) (-567) (-567)) 88)) (-2154 (($ $) 69)) (-3507 (((-112) $) 15)) (-4298 (($ $ (-567) (-567) $) 89)) (-4285 ((|#2| $ (-567) (-567) |#2|) NIL) (($ $ (-645 (-567)) (-645 (-567)) $) 87)) (-4302 (($ (-772) |#2|) 53)) (-2124 (($ (-645 (-645 |#2|))) 51)) (-2282 (((-645 (-645 |#2|)) $) 78)) (-3810 (($ $ $) 70)) (-2400 (((-3 $ "failed") $ |#2|) 121)) (-1801 ((|#2| $ (-567) (-567)) NIL) ((|#2| $ (-567) (-567) |#2|) NIL) (($ $ (-645 (-567)) (-645 (-567))) 86)) (-3391 (($ (-645 |#2|)) 54) (($ (-645 $)) 56)) (-4103 (((-112) $) 28)) (-4129 (($ |#4|) 61) (((-863) $) NIL)) (-4050 (((-112) $) 40)) (-3069 (($ $ |#2|) 123)) (-3053 (($ $ $) 93) (($ $) 96)) (-3041 (($ $ $) 91)) (** (($ $ (-772)) 110) (($ $ (-567)) 128)) (* (($ $ $) 102) (($ |#2| $) 98) (($ $ |#2|) 99) (($ (-567) $) 101) ((|#4| $ |#4|) 114) ((|#3| |#3| $) 118)))
+(((-687 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4129 ((-863) |#1|)) (-15 ** (|#1| |#1| (-567))) (-15 -3069 (|#1| |#1| |#2|)) (-15 -2400 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-772))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3053 (|#1| |#1|)) (-15 -3053 (|#1| |#1| |#1|)) (-15 -3041 (|#1| |#1| |#1|)) (-15 -4298 (|#1| |#1| (-567) (-567) |#1|)) (-15 -1932 (|#1| |#1| (-567) (-567) (-567) (-567))) (-15 -1812 (|#1| |#1| (-567) (-567))) (-15 -3527 (|#1| |#1| (-567) (-567))) (-15 -4285 (|#1| |#1| (-645 (-567)) (-645 (-567)) |#1|)) (-15 -1801 (|#1| |#1| (-645 (-567)) (-645 (-567)))) (-15 -2282 ((-645 (-645 |#2|)) |#1|)) (-15 -1957 (|#1| |#1| |#1|)) (-15 -3810 (|#1| |#1| |#1|)) (-15 -2154 (|#1| |#1|)) (-15 -4141 (|#1| |#1|)) (-15 -4141 (|#1| |#3|)) (-15 -4129 (|#1| |#4|)) (-15 -3391 (|#1| (-645 |#1|))) (-15 -3391 (|#1| (-645 |#2|))) (-15 -4302 (|#1| (-772) |#2|)) (-15 -2124 (|#1| (-645 (-645 |#2|)))) (-15 -1318 (|#1| (-772) (-772))) (-15 -4050 ((-112) |#1|)) (-15 -2999 ((-112) |#1|)) (-15 -4103 ((-112) |#1|)) (-15 -3507 ((-112) |#1|)) (-15 -4285 (|#2| |#1| (-567) (-567) |#2|)) (-15 -1801 (|#2| |#1| (-567) (-567) |#2|)) (-15 -1801 (|#2| |#1| (-567) (-567)))) (-688 |#2| |#3| |#4|) (-1051) (-375 |#2|) (-375 |#2|)) (T -687))
+NIL
+(-10 -8 (-15 -4129 ((-863) |#1|)) (-15 ** (|#1| |#1| (-567))) (-15 -3069 (|#1| |#1| |#2|)) (-15 -2400 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-772))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3053 (|#1| |#1|)) (-15 -3053 (|#1| |#1| |#1|)) (-15 -3041 (|#1| |#1| |#1|)) (-15 -4298 (|#1| |#1| (-567) (-567) |#1|)) (-15 -1932 (|#1| |#1| (-567) (-567) (-567) (-567))) (-15 -1812 (|#1| |#1| (-567) (-567))) (-15 -3527 (|#1| |#1| (-567) (-567))) (-15 -4285 (|#1| |#1| (-645 (-567)) (-645 (-567)) |#1|)) (-15 -1801 (|#1| |#1| (-645 (-567)) (-645 (-567)))) (-15 -2282 ((-645 (-645 |#2|)) |#1|)) (-15 -1957 (|#1| |#1| |#1|)) (-15 -3810 (|#1| |#1| |#1|)) (-15 -2154 (|#1| |#1|)) (-15 -4141 (|#1| |#1|)) (-15 -4141 (|#1| |#3|)) (-15 -4129 (|#1| |#4|)) (-15 -3391 (|#1| (-645 |#1|))) (-15 -3391 (|#1| (-645 |#2|))) (-15 -4302 (|#1| (-772) |#2|)) (-15 -2124 (|#1| (-645 (-645 |#2|)))) (-15 -1318 (|#1| (-772) (-772))) (-15 -4050 ((-112) |#1|)) (-15 -2999 ((-112) |#1|)) (-15 -4103 ((-112) |#1|)) (-15 -3507 ((-112) |#1|)) (-15 -4285 (|#2| |#1| (-567) (-567) |#2|)) (-15 -1801 (|#2| |#1| (-567) (-567) |#2|)) (-15 -1801 (|#2| |#1| (-567) (-567))))
+((-2412 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-1318 (($ (-772) (-772)) 98)) (-1957 (($ $ $) 88)) (-4141 (($ |#2|) 92) (($ $) 91)) (-2999 (((-112) $) 100)) (-3527 (($ $ (-567) (-567)) 84)) (-1812 (($ $ (-567) (-567)) 83)) (-1932 (($ $ (-567) (-567) (-567) (-567)) 82)) (-2154 (($ $) 90)) (-3507 (((-112) $) 102)) (-1563 (((-112) $ (-772)) 8)) (-4298 (($ $ (-567) (-567) $) 81)) (-4285 ((|#1| $ (-567) (-567) |#1|) 45) (($ $ (-645 (-567)) (-645 (-567)) $) 85)) (-3563 (($ $ (-567) |#2|) 43)) (-2306 (($ $ (-567) |#3|) 42)) (-4302 (($ (-772) |#1|) 96)) (-3647 (($) 7 T CONST)) (-2765 (($ $) 68 (|has| |#1| (-308)))) (-4323 ((|#2| $ (-567)) 47)) (-1976 (((-772) $) 67 (|has| |#1| (-559)))) (-3760 ((|#1| $ (-567) (-567) |#1|) 44)) (-3703 ((|#1| $ (-567) (-567)) 49)) (-2799 (((-645 |#1|) $) 31)) (-1974 (((-772) $) 66 (|has| |#1| (-559)))) (-2064 (((-645 |#3|) $) 65 (|has| |#1| (-559)))) (-4296 (((-772) $) 52)) (-2858 (($ (-772) (-772) |#1|) 58)) (-4307 (((-772) $) 51)) (-4093 (((-112) $ (-772)) 9)) (-1805 ((|#1| $) 63 (|has| |#1| (-6 (-4424 "*"))))) (-3407 (((-567) $) 56)) (-4227 (((-567) $) 54)) (-1942 (((-645 |#1|) $) 30 (|has| $ (-6 -4422)))) (-3237 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-3393 (((-567) $) 55)) (-3351 (((-567) $) 53)) (-2124 (($ (-645 (-645 |#1|))) 97)) (-3751 (($ (-1 |#1| |#1|) $) 35)) (-3841 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-2282 (((-645 (-645 |#1|)) $) 87)) (-1986 (((-112) $ (-772)) 10)) (-2516 (((-1161) $) 22 (|has| |#1| (-1102)))) (-2504 (((-3 $ "failed") $) 62 (|has| |#1| (-365)))) (-3810 (($ $ $) 89)) (-3437 (((-1122) $) 21 (|has| |#1| (-1102)))) (-3823 (($ $ |#1|) 57)) (-2400 (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-559)))) (-4233 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3875 (((-112) $ $) 14)) (-3885 (((-112) $) 11)) (-2701 (($) 12)) (-1801 ((|#1| $ (-567) (-567)) 50) ((|#1| $ (-567) (-567) |#1|) 48) (($ $ (-645 (-567)) (-645 (-567))) 86)) (-3391 (($ (-645 |#1|)) 95) (($ (-645 $)) 94)) (-4103 (((-112) $) 101)) (-2790 ((|#1| $) 64 (|has| |#1| (-6 (-4424 "*"))))) (-3447 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4422))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-4309 (($ $) 13)) (-3186 ((|#3| $ (-567)) 46)) (-4129 (($ |#3|) 93) (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-3357 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-3436 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4422)))) (-4050 (((-112) $) 99)) (-2946 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-3069 (($ $ |#1|) 69 (|has| |#1| (-365)))) (-3053 (($ $ $) 79) (($ $) 78)) (-3041 (($ $ $) 80)) (** (($ $ (-772)) 71) (($ $ (-567)) 61 (|has| |#1| (-365)))) (* (($ $ $) 77) (($ |#1| $) 76) (($ $ |#1|) 75) (($ (-567) $) 74) ((|#3| $ |#3|) 73) ((|#2| |#2| $) 72)) (-2423 (((-772) $) 6 (|has| $ (-6 -4422)))))
(((-688 |#1| |#2| |#3|) (-140) (-1051) (-375 |t#1|) (-375 |t#1|)) (T -688))
-((-1948 (*1 *2 *1) (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-112)))) (-3339 (*1 *2 *1) (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-112)))) (-1981 (*1 *2 *1) (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-112)))) (-2619 (*1 *2 *1) (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-112)))) (-1316 (*1 *1 *2 *2) (-12 (-5 *2 (-772)) (-4 *3 (-1051)) (-4 *1 (-688 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-2114 (*1 *1 *2) (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-1051)) (-4 *1 (-688 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-3536 (*1 *1 *2 *3) (-12 (-5 *2 (-772)) (-4 *3 (-1051)) (-4 *1 (-688 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-3068 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1051)) (-4 *1 (-688 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-3068 (*1 *1 *2) (-12 (-5 *2 (-645 *1)) (-4 *3 (-1051)) (-4 *1 (-688 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-4132 (*1 *1 *2) (-12 (-4 *3 (-1051)) (-4 *1 (-688 *3 *4 *2)) (-4 *4 (-375 *3)) (-4 *2 (-375 *3)))) (-3094 (*1 *1 *2) (-12 (-4 *3 (-1051)) (-4 *1 (-688 *3 *2 *4)) (-4 *2 (-375 *3)) (-4 *4 (-375 *3)))) (-3094 (*1 *1 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-3888 (*1 *1 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-1418 (*1 *1 *1 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-1467 (*1 *1 *1 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-1603 (*1 *2 *1) (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-645 (-645 *3))))) (-1787 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-645 (-567))) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-4284 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-645 (-567))) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-3709 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-567)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-2897 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-567)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-1736 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-567)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-1697 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-567)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-3033 (*1 *1 *1 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-3045 (*1 *1 *1 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-3045 (*1 *1 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-567)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-688 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *2 (-375 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-688 *3 *2 *4)) (-4 *3 (-1051)) (-4 *2 (-375 *3)) (-4 *4 (-375 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-2391 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (-4 *2 (-559)))) (-3060 (*1 *1 *1 *2) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (-4 *2 (-365)))) (-2233 (*1 *1 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (-4 *2 (-308)))) (-1954 (*1 *2 *1) (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-4 *3 (-559)) (-5 *2 (-772)))) (-1940 (*1 *2 *1) (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-4 *3 (-559)) (-5 *2 (-772)))) (-1325 (*1 *2 *1) (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-4 *3 (-559)) (-5 *2 (-645 *5)))) (-4083 (*1 *2 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (|has| *2 (-6 (-4420 "*"))) (-4 *2 (-1051)))) (-2031 (*1 *2 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (|has| *2 (-6 (-4420 "*"))) (-4 *2 (-1051)))) (-1401 (*1 *1 *1) (|partial| -12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (-4 *2 (-365)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-4 *3 (-365)))))
-(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4419) (-6 -4418) (-15 -1948 ((-112) $)) (-15 -3339 ((-112) $)) (-15 -1981 ((-112) $)) (-15 -2619 ((-112) $)) (-15 -1316 ($ (-772) (-772))) (-15 -2114 ($ (-645 (-645 |t#1|)))) (-15 -3536 ($ (-772) |t#1|)) (-15 -3068 ($ (-645 |t#1|))) (-15 -3068 ($ (-645 $))) (-15 -4132 ($ |t#3|)) (-15 -3094 ($ |t#2|)) (-15 -3094 ($ $)) (-15 -3888 ($ $)) (-15 -1418 ($ $ $)) (-15 -1467 ($ $ $)) (-15 -1603 ((-645 (-645 |t#1|)) $)) (-15 -1787 ($ $ (-645 (-567)) (-645 (-567)))) (-15 -4284 ($ $ (-645 (-567)) (-645 (-567)) $)) (-15 -3709 ($ $ (-567) (-567))) (-15 -2897 ($ $ (-567) (-567))) (-15 -1736 ($ $ (-567) (-567) (-567) (-567))) (-15 -1697 ($ $ (-567) (-567) $)) (-15 -3033 ($ $ $)) (-15 -3045 ($ $ $)) (-15 -3045 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-567) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-772))) (IF (|has| |t#1| (-559)) (-15 -2391 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-365)) (-15 -3060 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-308)) (-15 -2233 ($ $)) |%noBranch|) (IF (|has| |t#1| (-559)) (PROGN (-15 -1954 ((-772) $)) (-15 -1940 ((-772) $)) (-15 -1325 ((-645 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4420 "*"))) (PROGN (-15 -4083 (|t#1| $)) (-15 -2031 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-365)) (PROGN (-15 -1401 ((-3 $ "failed") $)) (-15 ** ($ $ (-567)))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2800 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-1102) |has| |#1| (-1102)) ((-57 |#1| |#2| |#3|) . T) ((-1218) . T))
-((-2233 ((|#4| |#4|) 97 (|has| |#1| (-308)))) (-1954 (((-772) |#4|) 125 (|has| |#1| (-559)))) (-1940 (((-772) |#4|) 101 (|has| |#1| (-559)))) (-1325 (((-645 |#3|) |#4|) 108 (|has| |#1| (-559)))) (-2500 (((-2 (|:| -3102 |#1|) (|:| -4194 |#1|)) |#1| |#1|) 140 (|has| |#1| (-308)))) (-2031 ((|#1| |#4|) 57)) (-3692 (((-3 |#4| "failed") |#4|) 89 (|has| |#1| (-559)))) (-1401 (((-3 |#4| "failed") |#4|) 105 (|has| |#1| (-365)))) (-3216 ((|#4| |#4|) 93 (|has| |#1| (-559)))) (-4112 ((|#4| |#4| |#1| (-567) (-567)) 65)) (-3310 ((|#4| |#4| (-567) (-567)) 60)) (-2857 ((|#4| |#4| |#1| (-567) (-567)) 70)) (-4083 ((|#1| |#4|) 103)) (-2974 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 94 (|has| |#1| (-559)))))
-(((-689 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4083 (|#1| |#4|)) (-15 -2031 (|#1| |#4|)) (-15 -3310 (|#4| |#4| (-567) (-567))) (-15 -4112 (|#4| |#4| |#1| (-567) (-567))) (-15 -2857 (|#4| |#4| |#1| (-567) (-567))) (IF (|has| |#1| (-559)) (PROGN (-15 -1954 ((-772) |#4|)) (-15 -1940 ((-772) |#4|)) (-15 -1325 ((-645 |#3|) |#4|)) (-15 -3216 (|#4| |#4|)) (-15 -3692 ((-3 |#4| "failed") |#4|)) (-15 -2974 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-308)) (PROGN (-15 -2233 (|#4| |#4|)) (-15 -2500 ((-2 (|:| -3102 |#1|) (|:| -4194 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -1401 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-172) (-375 |#1|) (-375 |#1|) (-688 |#1| |#2| |#3|)) (T -689))
-((-1401 (*1 *2 *2) (|partial| -12 (-4 *3 (-365)) (-4 *3 (-172)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-689 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) (-2500 (*1 *2 *3 *3) (-12 (-4 *3 (-308)) (-4 *3 (-172)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-2 (|:| -3102 *3) (|:| -4194 *3))) (-5 *1 (-689 *3 *4 *5 *6)) (-4 *6 (-688 *3 *4 *5)))) (-2233 (*1 *2 *2) (-12 (-4 *3 (-308)) (-4 *3 (-172)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-689 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) (-2974 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *4 (-172)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-689 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) (-3692 (*1 *2 *2) (|partial| -12 (-4 *3 (-559)) (-4 *3 (-172)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-689 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) (-3216 (*1 *2 *2) (-12 (-4 *3 (-559)) (-4 *3 (-172)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-689 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) (-1325 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *4 (-172)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-645 *6)) (-5 *1 (-689 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) (-1940 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *4 (-172)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-772)) (-5 *1 (-689 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) (-1954 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *4 (-172)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-772)) (-5 *1 (-689 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) (-2857 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-567)) (-4 *3 (-172)) (-4 *5 (-375 *3)) (-4 *6 (-375 *3)) (-5 *1 (-689 *3 *5 *6 *2)) (-4 *2 (-688 *3 *5 *6)))) (-4112 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-567)) (-4 *3 (-172)) (-4 *5 (-375 *3)) (-4 *6 (-375 *3)) (-5 *1 (-689 *3 *5 *6 *2)) (-4 *2 (-688 *3 *5 *6)))) (-3310 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-567)) (-4 *4 (-172)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *1 (-689 *4 *5 *6 *2)) (-4 *2 (-688 *4 *5 *6)))) (-2031 (*1 *2 *3) (-12 (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-172)) (-5 *1 (-689 *2 *4 *5 *3)) (-4 *3 (-688 *2 *4 *5)))) (-4083 (*1 *2 *3) (-12 (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-172)) (-5 *1 (-689 *2 *4 *5 *3)) (-4 *3 (-688 *2 *4 *5)))))
-(-10 -7 (-15 -4083 (|#1| |#4|)) (-15 -2031 (|#1| |#4|)) (-15 -3310 (|#4| |#4| (-567) (-567))) (-15 -4112 (|#4| |#4| |#1| (-567) (-567))) (-15 -2857 (|#4| |#4| |#1| (-567) (-567))) (IF (|has| |#1| (-559)) (PROGN (-15 -1954 ((-772) |#4|)) (-15 -1940 ((-772) |#4|)) (-15 -1325 ((-645 |#3|) |#4|)) (-15 -3216 (|#4| |#4|)) (-15 -3692 ((-3 |#4| "failed") |#4|)) (-15 -2974 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-308)) (PROGN (-15 -2233 (|#4| |#4|)) (-15 -2500 ((-2 (|:| -3102 |#1|) (|:| -4194 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -1401 ((-3 |#4| "failed") |#4|)) |%noBranch|))
-((-2403 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1316 (($ (-772) (-772)) 64)) (-1467 (($ $ $) NIL)) (-3094 (($ (-1268 |#1|)) NIL) (($ $) NIL)) (-1981 (((-112) $) NIL)) (-3709 (($ $ (-567) (-567)) 22)) (-2897 (($ $ (-567) (-567)) NIL)) (-1736 (($ $ (-567) (-567) (-567) (-567)) NIL)) (-3888 (($ $) NIL)) (-1948 (((-112) $) NIL)) (-3445 (((-112) $ (-772)) NIL)) (-1697 (($ $ (-567) (-567) $) NIL)) (-4284 ((|#1| $ (-567) (-567) |#1|) NIL) (($ $ (-645 (-567)) (-645 (-567)) $) NIL)) (-2615 (($ $ (-567) (-1268 |#1|)) NIL)) (-1961 (($ $ (-567) (-1268 |#1|)) NIL)) (-3536 (($ (-772) |#1|) 37)) (-2585 (($) NIL T CONST)) (-2233 (($ $) 46 (|has| |#1| (-308)))) (-1944 (((-1268 |#1|) $ (-567)) NIL)) (-1954 (((-772) $) 48 (|has| |#1| (-559)))) (-3741 ((|#1| $ (-567) (-567) |#1|) 69)) (-3680 ((|#1| $ (-567) (-567)) NIL)) (-2777 (((-645 |#1|) $) NIL)) (-1940 (((-772) $) 50 (|has| |#1| (-559)))) (-1325 (((-645 (-1268 |#1|)) $) 53 (|has| |#1| (-559)))) (-3633 (((-772) $) 32)) (-2846 (($ (-772) (-772) |#1|) 28)) (-3643 (((-772) $) 33)) (-2077 (((-112) $ (-772)) NIL)) (-2031 ((|#1| $) 44 (|has| |#1| (-6 (-4420 "*"))))) (-2527 (((-567) $) 10)) (-4043 (((-567) $) 11)) (-2279 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2107 (((-567) $) 14)) (-2646 (((-567) $) 65)) (-2114 (($ (-645 (-645 |#1|))) NIL)) (-3731 (($ (-1 |#1| |#1|) $) NIL)) (-3829 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1603 (((-645 (-645 |#1|)) $) 76)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL (|has| |#1| (-1102)))) (-1401 (((-3 $ "failed") $) 60 (|has| |#1| (-365)))) (-1418 (($ $ $) NIL)) (-3430 (((-1122) $) NIL (|has| |#1| (-1102)))) (-3986 (($ $ |#1|) NIL)) (-2391 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559)))) (-3025 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) NIL)) (-1787 ((|#1| $ (-567) (-567)) NIL) ((|#1| $ (-567) (-567) |#1|) NIL) (($ $ (-645 (-567)) (-645 (-567))) NIL)) (-3068 (($ (-645 |#1|)) NIL) (($ (-645 $)) NIL) (($ (-1268 |#1|)) 70)) (-3339 (((-112) $) NIL)) (-4083 ((|#1| $) 42 (|has| |#1| (-6 (-4420 "*"))))) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-4305 (($ $) NIL)) (-3893 (((-539) $) 80 (|has| |#1| (-615 (-539))))) (-2237 (((-1268 |#1|) $ (-567)) NIL)) (-4132 (($ (-1268 |#1|)) NIL) (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-1745 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2619 (((-112) $) NIL)) (-2936 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3060 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3045 (($ $ $) NIL) (($ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-772)) 38) (($ $ (-567)) 62 (|has| |#1| (-365)))) (* (($ $ $) 24) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-567) $) NIL) (((-1268 |#1|) $ (-1268 |#1|)) NIL) (((-1268 |#1|) (-1268 |#1|) $) NIL)) (-2414 (((-772) $) NIL (|has| $ (-6 -4418)))))
-(((-690 |#1|) (-13 (-688 |#1| (-1268 |#1|) (-1268 |#1|)) (-10 -8 (-15 -3068 ($ (-1268 |#1|))) (IF (|has| |#1| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -1401 ((-3 $ "failed") $)) |%noBranch|))) (-1051)) (T -690))
-((-1401 (*1 *1 *1) (|partial| -12 (-5 *1 (-690 *2)) (-4 *2 (-365)) (-4 *2 (-1051)))) (-3068 (*1 *1 *2) (-12 (-5 *2 (-1268 *3)) (-4 *3 (-1051)) (-5 *1 (-690 *3)))))
-(-13 (-688 |#1| (-1268 |#1|) (-1268 |#1|)) (-10 -8 (-15 -3068 ($ (-1268 |#1|))) (IF (|has| |#1| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -1401 ((-3 $ "failed") $)) |%noBranch|)))
-((-2278 (((-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|)) 37)) (-1732 (((-690 |#1|) (-690 |#1|) (-690 |#1|) |#1|) 34)) (-4248 (((-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|) (-772)) 43)) (-2122 (((-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|)) 27)) (-4344 (((-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|)) 31) (((-690 |#1|) (-690 |#1|) (-690 |#1|)) 29)) (-3239 (((-690 |#1|) (-690 |#1|) |#1| (-690 |#1|)) 33)) (-3544 (((-690 |#1|) (-690 |#1|) (-690 |#1|)) 25)) (** (((-690 |#1|) (-690 |#1|) (-772)) 46)))
-(((-691 |#1|) (-10 -7 (-15 -3544 ((-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -2122 ((-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -4344 ((-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -4344 ((-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -3239 ((-690 |#1|) (-690 |#1|) |#1| (-690 |#1|))) (-15 -1732 ((-690 |#1|) (-690 |#1|) (-690 |#1|) |#1|)) (-15 -2278 ((-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -4248 ((-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|) (-772))) (-15 ** ((-690 |#1|) (-690 |#1|) (-772)))) (-1051)) (T -691))
-((** (*1 *2 *2 *3) (-12 (-5 *2 (-690 *4)) (-5 *3 (-772)) (-4 *4 (-1051)) (-5 *1 (-691 *4)))) (-4248 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-690 *4)) (-5 *3 (-772)) (-4 *4 (-1051)) (-5 *1 (-691 *4)))) (-2278 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-690 *3)) (-4 *3 (-1051)) (-5 *1 (-691 *3)))) (-1732 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-690 *3)) (-4 *3 (-1051)) (-5 *1 (-691 *3)))) (-3239 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-690 *3)) (-4 *3 (-1051)) (-5 *1 (-691 *3)))) (-4344 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-690 *3)) (-4 *3 (-1051)) (-5 *1 (-691 *3)))) (-4344 (*1 *2 *2 *2) (-12 (-5 *2 (-690 *3)) (-4 *3 (-1051)) (-5 *1 (-691 *3)))) (-2122 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-690 *3)) (-4 *3 (-1051)) (-5 *1 (-691 *3)))) (-3544 (*1 *2 *2 *2) (-12 (-5 *2 (-690 *3)) (-4 *3 (-1051)) (-5 *1 (-691 *3)))))
-(-10 -7 (-15 -3544 ((-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -2122 ((-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -4344 ((-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -4344 ((-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -3239 ((-690 |#1|) (-690 |#1|) |#1| (-690 |#1|))) (-15 -1732 ((-690 |#1|) (-690 |#1|) (-690 |#1|) |#1|)) (-15 -2278 ((-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -4248 ((-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|) (-772))) (-15 ** ((-690 |#1|) (-690 |#1|) (-772))))
-((-3753 (((-3 |#1| "failed") $) 18)) (-2038 ((|#1| $) NIL)) (-1986 (($) 7 T CONST)) (-2844 (($ |#1|) 8)) (-4132 (($ |#1|) 16) (((-863) $) 23)) (-1702 (((-112) $ (|[\|\|]| |#1|)) 14) (((-112) $ (|[\|\|]| -1986)) 11)) (-2523 ((|#1| $) 15)))
-(((-692 |#1|) (-13 (-1263) (-1040 |#1|) (-614 (-863)) (-10 -8 (-15 -2844 ($ |#1|)) (-15 -1702 ((-112) $ (|[\|\|]| |#1|))) (-15 -1702 ((-112) $ (|[\|\|]| -1986))) (-15 -2523 (|#1| $)) (-15 -1986 ($) -3286))) (-614 (-863))) (T -692))
-((-2844 (*1 *1 *2) (-12 (-5 *1 (-692 *2)) (-4 *2 (-614 (-863))))) (-1702 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-614 (-863))) (-5 *2 (-112)) (-5 *1 (-692 *4)))) (-1702 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1986)) (-5 *2 (-112)) (-5 *1 (-692 *4)) (-4 *4 (-614 (-863))))) (-2523 (*1 *2 *1) (-12 (-5 *1 (-692 *2)) (-4 *2 (-614 (-863))))) (-1986 (*1 *1) (-12 (-5 *1 (-692 *2)) (-4 *2 (-614 (-863))))))
-(-13 (-1263) (-1040 |#1|) (-614 (-863)) (-10 -8 (-15 -2844 ($ |#1|)) (-15 -1702 ((-112) $ (|[\|\|]| |#1|))) (-15 -1702 ((-112) $ (|[\|\|]| -1986))) (-15 -2523 (|#1| $)) (-15 -1986 ($) -3286)))
-((-1998 ((|#2| |#2| |#4|) 33)) (-1816 (((-690 |#2|) |#3| |#4|) 39)) (-3499 (((-690 |#2|) |#2| |#4|) 38)) (-4141 (((-1268 |#2|) |#2| |#4|) 16)) (-3283 ((|#2| |#3| |#4|) 32)) (-3383 (((-690 |#2|) |#3| |#4| (-772) (-772)) 50)) (-1906 (((-690 |#2|) |#2| |#4| (-772)) 49)))
-(((-693 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4141 ((-1268 |#2|) |#2| |#4|)) (-15 -3283 (|#2| |#3| |#4|)) (-15 -1998 (|#2| |#2| |#4|)) (-15 -3499 ((-690 |#2|) |#2| |#4|)) (-15 -1906 ((-690 |#2|) |#2| |#4| (-772))) (-15 -1816 ((-690 |#2|) |#3| |#4|)) (-15 -3383 ((-690 |#2|) |#3| |#4| (-772) (-772)))) (-1102) (-902 |#1|) (-375 |#2|) (-13 (-375 |#1|) (-10 -7 (-6 -4418)))) (T -693))
-((-3383 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-772)) (-4 *6 (-1102)) (-4 *7 (-902 *6)) (-5 *2 (-690 *7)) (-5 *1 (-693 *6 *7 *3 *4)) (-4 *3 (-375 *7)) (-4 *4 (-13 (-375 *6) (-10 -7 (-6 -4418)))))) (-1816 (*1 *2 *3 *4) (-12 (-4 *5 (-1102)) (-4 *6 (-902 *5)) (-5 *2 (-690 *6)) (-5 *1 (-693 *5 *6 *3 *4)) (-4 *3 (-375 *6)) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4418)))))) (-1906 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-772)) (-4 *6 (-1102)) (-4 *3 (-902 *6)) (-5 *2 (-690 *3)) (-5 *1 (-693 *6 *3 *7 *4)) (-4 *7 (-375 *3)) (-4 *4 (-13 (-375 *6) (-10 -7 (-6 -4418)))))) (-3499 (*1 *2 *3 *4) (-12 (-4 *5 (-1102)) (-4 *3 (-902 *5)) (-5 *2 (-690 *3)) (-5 *1 (-693 *5 *3 *6 *4)) (-4 *6 (-375 *3)) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4418)))))) (-1998 (*1 *2 *2 *3) (-12 (-4 *4 (-1102)) (-4 *2 (-902 *4)) (-5 *1 (-693 *4 *2 *5 *3)) (-4 *5 (-375 *2)) (-4 *3 (-13 (-375 *4) (-10 -7 (-6 -4418)))))) (-3283 (*1 *2 *3 *4) (-12 (-4 *5 (-1102)) (-4 *2 (-902 *5)) (-5 *1 (-693 *5 *2 *3 *4)) (-4 *3 (-375 *2)) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4418)))))) (-4141 (*1 *2 *3 *4) (-12 (-4 *5 (-1102)) (-4 *3 (-902 *5)) (-5 *2 (-1268 *3)) (-5 *1 (-693 *5 *3 *6 *4)) (-4 *6 (-375 *3)) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4418)))))))
-(-10 -7 (-15 -4141 ((-1268 |#2|) |#2| |#4|)) (-15 -3283 (|#2| |#3| |#4|)) (-15 -1998 (|#2| |#2| |#4|)) (-15 -3499 ((-690 |#2|) |#2| |#4|)) (-15 -1906 ((-690 |#2|) |#2| |#4| (-772))) (-15 -1816 ((-690 |#2|) |#3| |#4|)) (-15 -3383 ((-690 |#2|) |#3| |#4| (-772) (-772))))
-((-1989 (((-2 (|:| |num| (-690 |#1|)) (|:| |den| |#1|)) (-690 |#2|)) 20)) (-3354 ((|#1| (-690 |#2|)) 9)) (-4304 (((-690 |#1|) (-690 |#2|)) 18)))
-(((-694 |#1| |#2|) (-10 -7 (-15 -3354 (|#1| (-690 |#2|))) (-15 -4304 ((-690 |#1|) (-690 |#2|))) (-15 -1989 ((-2 (|:| |num| (-690 |#1|)) (|:| |den| |#1|)) (-690 |#2|)))) (-559) (-994 |#1|)) (T -694))
-((-1989 (*1 *2 *3) (-12 (-5 *3 (-690 *5)) (-4 *5 (-994 *4)) (-4 *4 (-559)) (-5 *2 (-2 (|:| |num| (-690 *4)) (|:| |den| *4))) (-5 *1 (-694 *4 *5)))) (-4304 (*1 *2 *3) (-12 (-5 *3 (-690 *5)) (-4 *5 (-994 *4)) (-4 *4 (-559)) (-5 *2 (-690 *4)) (-5 *1 (-694 *4 *5)))) (-3354 (*1 *2 *3) (-12 (-5 *3 (-690 *4)) (-4 *4 (-994 *2)) (-4 *2 (-559)) (-5 *1 (-694 *2 *4)))))
-(-10 -7 (-15 -3354 (|#1| (-690 |#2|))) (-15 -4304 ((-690 |#1|) (-690 |#2|))) (-15 -1989 ((-2 (|:| |num| (-690 |#1|)) (|:| |den| |#1|)) (-690 |#2|))))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-2141 (((-690 (-700))) NIL) (((-690 (-700)) (-1268 $)) NIL)) (-4293 (((-700) $) NIL)) (-3146 (($ $) NIL (|has| (-700) (-1203)))) (-3012 (($ $) NIL (|has| (-700) (-1203)))) (-3400 (((-1191 (-923) (-772)) (-567)) NIL (|has| (-700) (-351)))) (-3472 (((-3 $ "failed") $ $) NIL)) (-4226 (((-421 (-1174 $)) (-1174 $)) NIL (-12 (|has| (-700) (-308)) (|has| (-700) (-911))))) (-3248 (($ $) NIL (-2800 (-12 (|has| (-700) (-308)) (|has| (-700) (-911))) (|has| (-700) (-365))))) (-2908 (((-421 $) $) NIL (-2800 (-12 (|has| (-700) (-308)) (|has| (-700) (-911))) (|has| (-700) (-365))))) (-2716 (($ $) NIL (-12 (|has| (-700) (-1004)) (|has| (-700) (-1203))))) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) NIL (-12 (|has| (-700) (-308)) (|has| (-700) (-911))))) (-3609 (((-112) $ $) NIL (|has| (-700) (-308)))) (-2375 (((-772)) NIL (|has| (-700) (-370)))) (-3128 (($ $) NIL (|has| (-700) (-1203)))) (-2987 (($ $) NIL (|has| (-700) (-1203)))) (-3166 (($ $) NIL (|has| (-700) (-1203)))) (-3035 (($ $) NIL (|has| (-700) (-1203)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 (-567) "failed") $) NIL) (((-3 (-700) "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL (|has| (-700) (-1040 (-410 (-567)))))) (-2038 (((-567) $) NIL) (((-700) $) NIL) (((-410 (-567)) $) NIL (|has| (-700) (-1040 (-410 (-567)))))) (-3658 (($ (-1268 (-700))) NIL) (($ (-1268 (-700)) (-1268 $)) NIL)) (-2443 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-700) (-351)))) (-2349 (($ $ $) NIL (|has| (-700) (-308)))) (-1811 (((-690 (-700)) $) NIL) (((-690 (-700)) $ (-1268 $)) NIL)) (-2630 (((-690 (-700)) (-690 $)) NIL) (((-2 (|:| -2316 (-690 (-700))) (|:| |vec| (-1268 (-700)))) (-690 $) (-1268 $)) NIL) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (|has| (-700) (-640 (-567)))) (((-690 (-567)) (-690 $)) NIL (|has| (-700) (-640 (-567))))) (-2477 (((-3 $ "failed") (-410 (-1174 (-700)))) NIL (|has| (-700) (-365))) (($ (-1174 (-700))) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-2727 (((-700) $) 29)) (-2085 (((-3 (-410 (-567)) "failed") $) NIL (|has| (-700) (-548)))) (-1862 (((-112) $) NIL (|has| (-700) (-548)))) (-2331 (((-410 (-567)) $) NIL (|has| (-700) (-548)))) (-1954 (((-923)) NIL)) (-1348 (($) NIL (|has| (-700) (-370)))) (-2360 (($ $ $) NIL (|has| (-700) (-308)))) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL (|has| (-700) (-308)))) (-3431 (($) NIL (|has| (-700) (-351)))) (-2722 (((-112) $) NIL (|has| (-700) (-351)))) (-4225 (($ $) NIL (|has| (-700) (-351))) (($ $ (-772)) NIL (|has| (-700) (-351)))) (-3184 (((-112) $) NIL (-2800 (-12 (|has| (-700) (-308)) (|has| (-700) (-911))) (|has| (-700) (-365))))) (-4351 (((-2 (|:| |r| (-700)) (|:| |phi| (-700))) $) NIL (-12 (|has| (-700) (-1062)) (|has| (-700) (-1203))))) (-1482 (($) NIL (|has| (-700) (-1203)))) (-4303 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (|has| (-700) (-888 (-381)))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (|has| (-700) (-888 (-567))))) (-4384 (((-834 (-923)) $) NIL (|has| (-700) (-351))) (((-923) $) NIL (|has| (-700) (-351)))) (-1433 (((-112) $) NIL)) (-2651 (($ $ (-567)) NIL (-12 (|has| (-700) (-1004)) (|has| (-700) (-1203))))) (-2475 (((-700) $) NIL)) (-3972 (((-3 $ "failed") $) NIL (|has| (-700) (-351)))) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| (-700) (-308)))) (-4206 (((-1174 (-700)) $) NIL (|has| (-700) (-365)))) (-1354 (($ $ $) NIL)) (-2981 (($ $ $) NIL)) (-3829 (($ (-1 (-700) (-700)) $) NIL)) (-4249 (((-923) $) NIL (|has| (-700) (-370)))) (-3063 (($ $) NIL (|has| (-700) (-1203)))) (-2465 (((-1174 (-700)) $) NIL)) (-2740 (($ (-645 $)) NIL (|has| (-700) (-308))) (($ $ $) NIL (|has| (-700) (-308)))) (-1419 (((-1160) $) NIL)) (-2939 (($ $) NIL (|has| (-700) (-365)))) (-2672 (($) NIL (|has| (-700) (-351)) CONST)) (-3768 (($ (-923)) NIL (|has| (-700) (-370)))) (-2825 (($) NIL)) (-2739 (((-700) $) 31)) (-3430 (((-1122) $) NIL)) (-1398 (($) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| (-700) (-308)))) (-2774 (($ (-645 $)) NIL (|has| (-700) (-308))) (($ $ $) NIL (|has| (-700) (-308)))) (-1796 (((-645 (-2 (|:| -2706 (-567)) (|:| -3458 (-567))))) NIL (|has| (-700) (-351)))) (-2435 (((-421 (-1174 $)) (-1174 $)) NIL (-12 (|has| (-700) (-308)) (|has| (-700) (-911))))) (-3517 (((-421 (-1174 $)) (-1174 $)) NIL (-12 (|has| (-700) (-308)) (|has| (-700) (-911))))) (-2706 (((-421 $) $) NIL (-2800 (-12 (|has| (-700) (-308)) (|has| (-700) (-911))) (|has| (-700) (-365))))) (-3402 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-700) (-308))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL (|has| (-700) (-308)))) (-2391 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-700)) NIL (|has| (-700) (-559)))) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| (-700) (-308)))) (-3946 (($ $) NIL (|has| (-700) (-1203)))) (-2631 (($ $ (-1178) (-700)) NIL (|has| (-700) (-517 (-1178) (-700)))) (($ $ (-645 (-1178)) (-645 (-700))) NIL (|has| (-700) (-517 (-1178) (-700)))) (($ $ (-645 (-295 (-700)))) NIL (|has| (-700) (-310 (-700)))) (($ $ (-295 (-700))) NIL (|has| (-700) (-310 (-700)))) (($ $ (-700) (-700)) NIL (|has| (-700) (-310 (-700)))) (($ $ (-645 (-700)) (-645 (-700))) NIL (|has| (-700) (-310 (-700))))) (-1990 (((-772) $) NIL (|has| (-700) (-308)))) (-1787 (($ $ (-700)) NIL (|has| (-700) (-287 (-700) (-700))))) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL (|has| (-700) (-308)))) (-3788 (((-700)) NIL) (((-700) (-1268 $)) NIL)) (-2491 (((-3 (-772) "failed") $ $) NIL (|has| (-700) (-351))) (((-772) $) NIL (|has| (-700) (-351)))) (-1593 (($ $ (-1 (-700) (-700))) NIL) (($ $ (-1 (-700) (-700)) (-772)) NIL) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| (-700) (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| (-700) (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| (-700) (-902 (-1178)))) (($ $ (-1178)) NIL (|has| (-700) (-902 (-1178)))) (($ $ (-772)) NIL (|has| (-700) (-233))) (($ $) NIL (|has| (-700) (-233)))) (-1866 (((-690 (-700)) (-1268 $) (-1 (-700) (-700))) NIL (|has| (-700) (-365)))) (-3341 (((-1174 (-700))) NIL)) (-3175 (($ $) NIL (|has| (-700) (-1203)))) (-3049 (($ $) NIL (|has| (-700) (-1203)))) (-1527 (($) NIL (|has| (-700) (-351)))) (-3156 (($ $) NIL (|has| (-700) (-1203)))) (-3023 (($ $) NIL (|has| (-700) (-1203)))) (-3137 (($ $) NIL (|has| (-700) (-1203)))) (-2999 (($ $) NIL (|has| (-700) (-1203)))) (-2887 (((-690 (-700)) (-1268 $)) NIL) (((-1268 (-700)) $) NIL) (((-690 (-700)) (-1268 $) (-1268 $)) NIL) (((-1268 (-700)) $ (-1268 $)) NIL)) (-3893 (((-539) $) NIL (|has| (-700) (-615 (-539)))) (((-169 (-225)) $) NIL (|has| (-700) (-1024))) (((-169 (-381)) $) NIL (|has| (-700) (-1024))) (((-894 (-381)) $) NIL (|has| (-700) (-615 (-894 (-381))))) (((-894 (-567)) $) NIL (|has| (-700) (-615 (-894 (-567))))) (($ (-1174 (-700))) NIL) (((-1174 (-700)) $) NIL) (($ (-1268 (-700))) NIL) (((-1268 (-700)) $) NIL)) (-1823 (($ $) NIL)) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (-2800 (-12 (|has| (-700) (-308)) (|has| $ (-145)) (|has| (-700) (-911))) (|has| (-700) (-351))))) (-3056 (($ (-700) (-700)) 12)) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-567)) NIL) (($ (-700)) NIL) (($ (-169 (-381))) 13) (($ (-169 (-567))) 19) (($ (-169 (-700))) 28) (($ (-169 (-702))) 25) (((-169 (-381)) $) 33) (($ (-410 (-567))) NIL (-2800 (|has| (-700) (-1040 (-410 (-567)))) (|has| (-700) (-365))))) (-1903 (($ $) NIL (|has| (-700) (-351))) (((-3 $ "failed") $) NIL (-2800 (-12 (|has| (-700) (-308)) (|has| $ (-145)) (|has| (-700) (-911))) (|has| (-700) (-145))))) (-2155 (((-1174 (-700)) $) NIL)) (-4221 (((-772)) NIL T CONST)) (-1745 (((-112) $ $) NIL)) (-2623 (((-1268 $)) NIL)) (-3200 (($ $) NIL (|has| (-700) (-1203)))) (-3084 (($ $) NIL (|has| (-700) (-1203)))) (-3816 (((-112) $ $) NIL)) (-3183 (($ $) NIL (|has| (-700) (-1203)))) (-3062 (($ $) NIL (|has| (-700) (-1203)))) (-3221 (($ $) NIL (|has| (-700) (-1203)))) (-3106 (($ $) NIL (|has| (-700) (-1203)))) (-2799 (((-700) $) NIL (|has| (-700) (-1203)))) (-3785 (($ $) NIL (|has| (-700) (-1203)))) (-3118 (($ $) NIL (|has| (-700) (-1203)))) (-3211 (($ $) NIL (|has| (-700) (-1203)))) (-3095 (($ $) NIL (|has| (-700) (-1203)))) (-3193 (($ $) NIL (|has| (-700) (-1203)))) (-3074 (($ $) NIL (|has| (-700) (-1203)))) (-2219 (($ $) NIL (|has| (-700) (-1062)))) (-1716 (($) NIL T CONST)) (-1728 (($) NIL T CONST)) (-2637 (($ $ (-1 (-700) (-700))) NIL) (($ $ (-1 (-700) (-700)) (-772)) NIL) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| (-700) (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| (-700) (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| (-700) (-902 (-1178)))) (($ $ (-1178)) NIL (|has| (-700) (-902 (-1178)))) (($ $ (-772)) NIL (|has| (-700) (-233))) (($ $) NIL (|has| (-700) (-233)))) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) NIL)) (-3060 (($ $ $) NIL (|has| (-700) (-365)))) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ $) NIL (|has| (-700) (-1203))) (($ $ (-410 (-567))) NIL (-12 (|has| (-700) (-1004)) (|has| (-700) (-1203)))) (($ $ (-567)) NIL (|has| (-700) (-365)))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ (-700) $) NIL) (($ $ (-700)) NIL) (($ (-410 (-567)) $) NIL (|has| (-700) (-365))) (($ $ (-410 (-567))) NIL (|has| (-700) (-365)))))
-(((-695) (-13 (-390) (-166 (-700)) (-10 -8 (-15 -4132 ($ (-169 (-381)))) (-15 -4132 ($ (-169 (-567)))) (-15 -4132 ($ (-169 (-700)))) (-15 -4132 ($ (-169 (-702)))) (-15 -4132 ((-169 (-381)) $))))) (T -695))
-((-4132 (*1 *1 *2) (-12 (-5 *2 (-169 (-381))) (-5 *1 (-695)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-169 (-567))) (-5 *1 (-695)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-169 (-700))) (-5 *1 (-695)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-169 (-702))) (-5 *1 (-695)))) (-4132 (*1 *2 *1) (-12 (-5 *2 (-169 (-381))) (-5 *1 (-695)))))
-(-13 (-390) (-166 (-700)) (-10 -8 (-15 -4132 ($ (-169 (-381)))) (-15 -4132 ($ (-169 (-567)))) (-15 -4132 ($ (-169 (-700)))) (-15 -4132 ($ (-169 (-702)))) (-15 -4132 ((-169 (-381)) $))))
-((-2403 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-3445 (((-112) $ (-772)) 8)) (-2839 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4418)))) (-3350 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4418)))) (-2585 (($) 7 T CONST)) (-2133 (($ $) 63)) (-2444 (($ $) 59 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-2539 (($ |#1| $) 48 (|has| $ (-6 -4418))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4418)))) (-3238 (($ |#1| $) 58 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4418)))) (-2477 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4418)))) (-2777 (((-645 |#1|) $) 31 (|has| $ (-6 -4418)))) (-2077 (((-112) $ (-772)) 9)) (-2279 (((-645 |#1|) $) 30 (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-3731 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) 36)) (-2863 (((-112) $ (-772)) 10)) (-1419 (((-1160) $) 22 (|has| |#1| (-1102)))) (-1566 ((|#1| $) 40)) (-2531 (($ |#1| $) 41) (($ |#1| $ (-772)) 64)) (-3430 (((-1122) $) 21 (|has| |#1| (-1102)))) (-4128 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1793 ((|#1| $) 42)) (-3025 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) 14)) (-3572 (((-112) $) 11)) (-3498 (($) 12)) (-2334 (((-645 (-2 (|:| -4237 |#1|) (|:| -3439 (-772)))) $) 62)) (-2718 (($) 50) (($ (-645 |#1|)) 49)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4418))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-4305 (($ $) 13)) (-3893 (((-539) $) 60 (|has| |#1| (-615 (-539))))) (-4147 (($ (-645 |#1|)) 51)) (-4132 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-1745 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-3551 (($ (-645 |#1|)) 43)) (-1853 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2414 (((-772) $) 6 (|has| $ (-6 -4418)))))
+((-3507 (*1 *2 *1) (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-112)))) (-4103 (*1 *2 *1) (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-112)))) (-2999 (*1 *2 *1) (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-112)))) (-4050 (*1 *2 *1) (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-112)))) (-1318 (*1 *1 *2 *2) (-12 (-5 *2 (-772)) (-4 *3 (-1051)) (-4 *1 (-688 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-2124 (*1 *1 *2) (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-1051)) (-4 *1 (-688 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-4302 (*1 *1 *2 *3) (-12 (-5 *2 (-772)) (-4 *3 (-1051)) (-4 *1 (-688 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-3391 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1051)) (-4 *1 (-688 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-3391 (*1 *1 *2) (-12 (-5 *2 (-645 *1)) (-4 *3 (-1051)) (-4 *1 (-688 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-4129 (*1 *1 *2) (-12 (-4 *3 (-1051)) (-4 *1 (-688 *3 *4 *2)) (-4 *4 (-375 *3)) (-4 *2 (-375 *3)))) (-4141 (*1 *1 *2) (-12 (-4 *3 (-1051)) (-4 *1 (-688 *3 *2 *4)) (-4 *2 (-375 *3)) (-4 *4 (-375 *3)))) (-4141 (*1 *1 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-2154 (*1 *1 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-3810 (*1 *1 *1 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-1957 (*1 *1 *1 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-2282 (*1 *2 *1) (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-645 (-645 *3))))) (-1801 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-645 (-567))) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-4285 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-645 (-567))) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-3527 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-567)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-1812 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-567)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-1932 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-567)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-4298 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-567)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-3041 (*1 *1 *1 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-3053 (*1 *1 *1 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-3053 (*1 *1 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-567)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-688 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *2 (-375 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-688 *3 *2 *4)) (-4 *3 (-1051)) (-4 *2 (-375 *3)) (-4 *4 (-375 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-2400 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (-4 *2 (-559)))) (-3069 (*1 *1 *1 *2) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (-4 *2 (-365)))) (-2765 (*1 *1 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (-4 *2 (-308)))) (-1976 (*1 *2 *1) (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-4 *3 (-559)) (-5 *2 (-772)))) (-1974 (*1 *2 *1) (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-4 *3 (-559)) (-5 *2 (-772)))) (-2064 (*1 *2 *1) (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-4 *3 (-559)) (-5 *2 (-645 *5)))) (-2790 (*1 *2 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (|has| *2 (-6 (-4424 "*"))) (-4 *2 (-1051)))) (-1805 (*1 *2 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (|has| *2 (-6 (-4424 "*"))) (-4 *2 (-1051)))) (-2504 (*1 *1 *1) (|partial| -12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (-4 *2 (-365)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-4 *3 (-365)))))
+(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4423) (-6 -4422) (-15 -3507 ((-112) $)) (-15 -4103 ((-112) $)) (-15 -2999 ((-112) $)) (-15 -4050 ((-112) $)) (-15 -1318 ($ (-772) (-772))) (-15 -2124 ($ (-645 (-645 |t#1|)))) (-15 -4302 ($ (-772) |t#1|)) (-15 -3391 ($ (-645 |t#1|))) (-15 -3391 ($ (-645 $))) (-15 -4129 ($ |t#3|)) (-15 -4141 ($ |t#2|)) (-15 -4141 ($ $)) (-15 -2154 ($ $)) (-15 -3810 ($ $ $)) (-15 -1957 ($ $ $)) (-15 -2282 ((-645 (-645 |t#1|)) $)) (-15 -1801 ($ $ (-645 (-567)) (-645 (-567)))) (-15 -4285 ($ $ (-645 (-567)) (-645 (-567)) $)) (-15 -3527 ($ $ (-567) (-567))) (-15 -1812 ($ $ (-567) (-567))) (-15 -1932 ($ $ (-567) (-567) (-567) (-567))) (-15 -4298 ($ $ (-567) (-567) $)) (-15 -3041 ($ $ $)) (-15 -3053 ($ $ $)) (-15 -3053 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-567) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-772))) (IF (|has| |t#1| (-559)) (-15 -2400 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-365)) (-15 -3069 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-308)) (-15 -2765 ($ $)) |%noBranch|) (IF (|has| |t#1| (-559)) (PROGN (-15 -1976 ((-772) $)) (-15 -1974 ((-772) $)) (-15 -2064 ((-645 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4424 "*"))) (PROGN (-15 -2790 (|t#1| $)) (-15 -1805 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-365)) (PROGN (-15 -2504 ((-3 $ "failed") $)) (-15 ** ($ $ (-567)))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2811 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-1102) |has| |#1| (-1102)) ((-57 |#1| |#2| |#3|) . T) ((-1219) . T))
+((-2765 ((|#4| |#4|) 97 (|has| |#1| (-308)))) (-1976 (((-772) |#4|) 125 (|has| |#1| (-559)))) (-1974 (((-772) |#4|) 101 (|has| |#1| (-559)))) (-2064 (((-645 |#3|) |#4|) 108 (|has| |#1| (-559)))) (-1565 (((-2 (|:| -2654 |#1|) (|:| -2023 |#1|)) |#1| |#1|) 140 (|has| |#1| (-308)))) (-1805 ((|#1| |#4|) 57)) (-2246 (((-3 |#4| "failed") |#4|) 89 (|has| |#1| (-559)))) (-2504 (((-3 |#4| "failed") |#4|) 105 (|has| |#1| (-365)))) (-4395 ((|#4| |#4|) 93 (|has| |#1| (-559)))) (-4397 ((|#4| |#4| |#1| (-567) (-567)) 65)) (-1995 ((|#4| |#4| (-567) (-567)) 60)) (-2597 ((|#4| |#4| |#1| (-567) (-567)) 70)) (-2790 ((|#1| |#4|) 103)) (-1900 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 94 (|has| |#1| (-559)))))
+(((-689 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2790 (|#1| |#4|)) (-15 -1805 (|#1| |#4|)) (-15 -1995 (|#4| |#4| (-567) (-567))) (-15 -4397 (|#4| |#4| |#1| (-567) (-567))) (-15 -2597 (|#4| |#4| |#1| (-567) (-567))) (IF (|has| |#1| (-559)) (PROGN (-15 -1976 ((-772) |#4|)) (-15 -1974 ((-772) |#4|)) (-15 -2064 ((-645 |#3|) |#4|)) (-15 -4395 (|#4| |#4|)) (-15 -2246 ((-3 |#4| "failed") |#4|)) (-15 -1900 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-308)) (PROGN (-15 -2765 (|#4| |#4|)) (-15 -1565 ((-2 (|:| -2654 |#1|) (|:| -2023 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -2504 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-172) (-375 |#1|) (-375 |#1|) (-688 |#1| |#2| |#3|)) (T -689))
+((-2504 (*1 *2 *2) (|partial| -12 (-4 *3 (-365)) (-4 *3 (-172)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-689 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) (-1565 (*1 *2 *3 *3) (-12 (-4 *3 (-308)) (-4 *3 (-172)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-2 (|:| -2654 *3) (|:| -2023 *3))) (-5 *1 (-689 *3 *4 *5 *6)) (-4 *6 (-688 *3 *4 *5)))) (-2765 (*1 *2 *2) (-12 (-4 *3 (-308)) (-4 *3 (-172)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-689 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) (-1900 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *4 (-172)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-689 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) (-2246 (*1 *2 *2) (|partial| -12 (-4 *3 (-559)) (-4 *3 (-172)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-689 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) (-4395 (*1 *2 *2) (-12 (-4 *3 (-559)) (-4 *3 (-172)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-689 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) (-2064 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *4 (-172)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-645 *6)) (-5 *1 (-689 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) (-1974 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *4 (-172)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-772)) (-5 *1 (-689 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) (-1976 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *4 (-172)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-772)) (-5 *1 (-689 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) (-2597 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-567)) (-4 *3 (-172)) (-4 *5 (-375 *3)) (-4 *6 (-375 *3)) (-5 *1 (-689 *3 *5 *6 *2)) (-4 *2 (-688 *3 *5 *6)))) (-4397 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-567)) (-4 *3 (-172)) (-4 *5 (-375 *3)) (-4 *6 (-375 *3)) (-5 *1 (-689 *3 *5 *6 *2)) (-4 *2 (-688 *3 *5 *6)))) (-1995 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-567)) (-4 *4 (-172)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *1 (-689 *4 *5 *6 *2)) (-4 *2 (-688 *4 *5 *6)))) (-1805 (*1 *2 *3) (-12 (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-172)) (-5 *1 (-689 *2 *4 *5 *3)) (-4 *3 (-688 *2 *4 *5)))) (-2790 (*1 *2 *3) (-12 (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-172)) (-5 *1 (-689 *2 *4 *5 *3)) (-4 *3 (-688 *2 *4 *5)))))
+(-10 -7 (-15 -2790 (|#1| |#4|)) (-15 -1805 (|#1| |#4|)) (-15 -1995 (|#4| |#4| (-567) (-567))) (-15 -4397 (|#4| |#4| |#1| (-567) (-567))) (-15 -2597 (|#4| |#4| |#1| (-567) (-567))) (IF (|has| |#1| (-559)) (PROGN (-15 -1976 ((-772) |#4|)) (-15 -1974 ((-772) |#4|)) (-15 -2064 ((-645 |#3|) |#4|)) (-15 -4395 (|#4| |#4|)) (-15 -2246 ((-3 |#4| "failed") |#4|)) (-15 -1900 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-308)) (PROGN (-15 -2765 (|#4| |#4|)) (-15 -1565 ((-2 (|:| -2654 |#1|) (|:| -2023 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -2504 ((-3 |#4| "failed") |#4|)) |%noBranch|))
+((-2412 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1318 (($ (-772) (-772)) 64)) (-1957 (($ $ $) NIL)) (-4141 (($ (-1269 |#1|)) NIL) (($ $) NIL)) (-2999 (((-112) $) NIL)) (-3527 (($ $ (-567) (-567)) 22)) (-1812 (($ $ (-567) (-567)) NIL)) (-1932 (($ $ (-567) (-567) (-567) (-567)) NIL)) (-2154 (($ $) NIL)) (-3507 (((-112) $) NIL)) (-1563 (((-112) $ (-772)) NIL)) (-4298 (($ $ (-567) (-567) $) NIL)) (-4285 ((|#1| $ (-567) (-567) |#1|) NIL) (($ $ (-645 (-567)) (-645 (-567)) $) NIL)) (-3563 (($ $ (-567) (-1269 |#1|)) NIL)) (-2306 (($ $ (-567) (-1269 |#1|)) NIL)) (-4302 (($ (-772) |#1|) 37)) (-3647 (($) NIL T CONST)) (-2765 (($ $) 46 (|has| |#1| (-308)))) (-4323 (((-1269 |#1|) $ (-567)) NIL)) (-1976 (((-772) $) 48 (|has| |#1| (-559)))) (-3760 ((|#1| $ (-567) (-567) |#1|) 69)) (-3703 ((|#1| $ (-567) (-567)) NIL)) (-2799 (((-645 |#1|) $) NIL)) (-1974 (((-772) $) 50 (|has| |#1| (-559)))) (-2064 (((-645 (-1269 |#1|)) $) 53 (|has| |#1| (-559)))) (-4296 (((-772) $) 32)) (-2858 (($ (-772) (-772) |#1|) 28)) (-4307 (((-772) $) 33)) (-4093 (((-112) $ (-772)) NIL)) (-1805 ((|#1| $) 44 (|has| |#1| (-6 (-4424 "*"))))) (-3407 (((-567) $) 10)) (-4227 (((-567) $) 11)) (-1942 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-3237 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3393 (((-567) $) 14)) (-3351 (((-567) $) 65)) (-2124 (($ (-645 (-645 |#1|))) NIL)) (-3751 (($ (-1 |#1| |#1|) $) NIL)) (-3841 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2282 (((-645 (-645 |#1|)) $) 76)) (-1986 (((-112) $ (-772)) NIL)) (-2516 (((-1161) $) NIL (|has| |#1| (-1102)))) (-2504 (((-3 $ "failed") $) 60 (|has| |#1| (-365)))) (-3810 (($ $ $) NIL)) (-3437 (((-1122) $) NIL (|has| |#1| (-1102)))) (-3823 (($ $ |#1|) NIL)) (-2400 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559)))) (-4233 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3875 (((-112) $ $) NIL)) (-3885 (((-112) $) NIL)) (-2701 (($) NIL)) (-1801 ((|#1| $ (-567) (-567)) NIL) ((|#1| $ (-567) (-567) |#1|) NIL) (($ $ (-645 (-567)) (-645 (-567))) NIL)) (-3391 (($ (-645 |#1|)) NIL) (($ (-645 $)) NIL) (($ (-1269 |#1|)) 70)) (-4103 (((-112) $) NIL)) (-2790 ((|#1| $) 42 (|has| |#1| (-6 (-4424 "*"))))) (-3447 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-4309 (($ $) NIL)) (-3902 (((-539) $) 80 (|has| |#1| (-615 (-539))))) (-3186 (((-1269 |#1|) $ (-567)) NIL)) (-4129 (($ (-1269 |#1|)) NIL) (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-3357 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3436 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-4050 (((-112) $) NIL)) (-2946 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3069 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3053 (($ $ $) NIL) (($ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-772)) 38) (($ $ (-567)) 62 (|has| |#1| (-365)))) (* (($ $ $) 24) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-567) $) NIL) (((-1269 |#1|) $ (-1269 |#1|)) NIL) (((-1269 |#1|) (-1269 |#1|) $) NIL)) (-2423 (((-772) $) NIL (|has| $ (-6 -4422)))))
+(((-690 |#1|) (-13 (-688 |#1| (-1269 |#1|) (-1269 |#1|)) (-10 -8 (-15 -3391 ($ (-1269 |#1|))) (IF (|has| |#1| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -2504 ((-3 $ "failed") $)) |%noBranch|))) (-1051)) (T -690))
+((-2504 (*1 *1 *1) (|partial| -12 (-5 *1 (-690 *2)) (-4 *2 (-365)) (-4 *2 (-1051)))) (-3391 (*1 *1 *2) (-12 (-5 *2 (-1269 *3)) (-4 *3 (-1051)) (-5 *1 (-690 *3)))))
+(-13 (-688 |#1| (-1269 |#1|) (-1269 |#1|)) (-10 -8 (-15 -3391 ($ (-1269 |#1|))) (IF (|has| |#1| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -2504 ((-3 $ "failed") $)) |%noBranch|)))
+((-1830 (((-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|)) 37)) (-1940 (((-690 |#1|) (-690 |#1|) (-690 |#1|) |#1|) 34)) (-3385 (((-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|) (-772)) 43)) (-2145 (((-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|)) 27)) (-1561 (((-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|)) 31) (((-690 |#1|) (-690 |#1|) (-690 |#1|)) 29)) (-4223 (((-690 |#1|) (-690 |#1|) |#1| (-690 |#1|)) 33)) (-3702 (((-690 |#1|) (-690 |#1|) (-690 |#1|)) 25)) (** (((-690 |#1|) (-690 |#1|) (-772)) 46)))
+(((-691 |#1|) (-10 -7 (-15 -3702 ((-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -2145 ((-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -1561 ((-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -1561 ((-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -4223 ((-690 |#1|) (-690 |#1|) |#1| (-690 |#1|))) (-15 -1940 ((-690 |#1|) (-690 |#1|) (-690 |#1|) |#1|)) (-15 -1830 ((-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -3385 ((-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|) (-772))) (-15 ** ((-690 |#1|) (-690 |#1|) (-772)))) (-1051)) (T -691))
+((** (*1 *2 *2 *3) (-12 (-5 *2 (-690 *4)) (-5 *3 (-772)) (-4 *4 (-1051)) (-5 *1 (-691 *4)))) (-3385 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-690 *4)) (-5 *3 (-772)) (-4 *4 (-1051)) (-5 *1 (-691 *4)))) (-1830 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-690 *3)) (-4 *3 (-1051)) (-5 *1 (-691 *3)))) (-1940 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-690 *3)) (-4 *3 (-1051)) (-5 *1 (-691 *3)))) (-4223 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-690 *3)) (-4 *3 (-1051)) (-5 *1 (-691 *3)))) (-1561 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-690 *3)) (-4 *3 (-1051)) (-5 *1 (-691 *3)))) (-1561 (*1 *2 *2 *2) (-12 (-5 *2 (-690 *3)) (-4 *3 (-1051)) (-5 *1 (-691 *3)))) (-2145 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-690 *3)) (-4 *3 (-1051)) (-5 *1 (-691 *3)))) (-3702 (*1 *2 *2 *2) (-12 (-5 *2 (-690 *3)) (-4 *3 (-1051)) (-5 *1 (-691 *3)))))
+(-10 -7 (-15 -3702 ((-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -2145 ((-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -1561 ((-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -1561 ((-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -4223 ((-690 |#1|) (-690 |#1|) |#1| (-690 |#1|))) (-15 -1940 ((-690 |#1|) (-690 |#1|) (-690 |#1|) |#1|)) (-15 -1830 ((-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -3385 ((-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|) (-772))) (-15 ** ((-690 |#1|) (-690 |#1|) (-772))))
+((-3765 (((-3 |#1| "failed") $) 18)) (-2051 ((|#1| $) NIL)) (-1997 (($) 7 T CONST)) (-3856 (($ |#1|) 8)) (-4129 (($ |#1|) 16) (((-863) $) 23)) (-1719 (((-112) $ (|[\|\|]| |#1|)) 14) (((-112) $ (|[\|\|]| -1997)) 11)) (-2533 ((|#1| $) 15)))
+(((-692 |#1|) (-13 (-1264) (-1040 |#1|) (-614 (-863)) (-10 -8 (-15 -3856 ($ |#1|)) (-15 -1719 ((-112) $ (|[\|\|]| |#1|))) (-15 -1719 ((-112) $ (|[\|\|]| -1997))) (-15 -2533 (|#1| $)) (-15 -1997 ($) -3304))) (-614 (-863))) (T -692))
+((-3856 (*1 *1 *2) (-12 (-5 *1 (-692 *2)) (-4 *2 (-614 (-863))))) (-1719 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-614 (-863))) (-5 *2 (-112)) (-5 *1 (-692 *4)))) (-1719 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1997)) (-5 *2 (-112)) (-5 *1 (-692 *4)) (-4 *4 (-614 (-863))))) (-2533 (*1 *2 *1) (-12 (-5 *1 (-692 *2)) (-4 *2 (-614 (-863))))) (-1997 (*1 *1) (-12 (-5 *1 (-692 *2)) (-4 *2 (-614 (-863))))))
+(-13 (-1264) (-1040 |#1|) (-614 (-863)) (-10 -8 (-15 -3856 ($ |#1|)) (-15 -1719 ((-112) $ (|[\|\|]| |#1|))) (-15 -1719 ((-112) $ (|[\|\|]| -1997))) (-15 -2533 (|#1| $)) (-15 -1997 ($) -3304)))
+((-1915 ((|#2| |#2| |#4|) 33)) (-2266 (((-690 |#2|) |#3| |#4|) 39)) (-2797 (((-690 |#2|) |#2| |#4|) 38)) (-1634 (((-1269 |#2|) |#2| |#4|) 16)) (-3566 ((|#2| |#3| |#4|) 32)) (-2350 (((-690 |#2|) |#3| |#4| (-772) (-772)) 50)) (-2354 (((-690 |#2|) |#2| |#4| (-772)) 49)))
+(((-693 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1634 ((-1269 |#2|) |#2| |#4|)) (-15 -3566 (|#2| |#3| |#4|)) (-15 -1915 (|#2| |#2| |#4|)) (-15 -2797 ((-690 |#2|) |#2| |#4|)) (-15 -2354 ((-690 |#2|) |#2| |#4| (-772))) (-15 -2266 ((-690 |#2|) |#3| |#4|)) (-15 -2350 ((-690 |#2|) |#3| |#4| (-772) (-772)))) (-1102) (-902 |#1|) (-375 |#2|) (-13 (-375 |#1|) (-10 -7 (-6 -4422)))) (T -693))
+((-2350 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-772)) (-4 *6 (-1102)) (-4 *7 (-902 *6)) (-5 *2 (-690 *7)) (-5 *1 (-693 *6 *7 *3 *4)) (-4 *3 (-375 *7)) (-4 *4 (-13 (-375 *6) (-10 -7 (-6 -4422)))))) (-2266 (*1 *2 *3 *4) (-12 (-4 *5 (-1102)) (-4 *6 (-902 *5)) (-5 *2 (-690 *6)) (-5 *1 (-693 *5 *6 *3 *4)) (-4 *3 (-375 *6)) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4422)))))) (-2354 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-772)) (-4 *6 (-1102)) (-4 *3 (-902 *6)) (-5 *2 (-690 *3)) (-5 *1 (-693 *6 *3 *7 *4)) (-4 *7 (-375 *3)) (-4 *4 (-13 (-375 *6) (-10 -7 (-6 -4422)))))) (-2797 (*1 *2 *3 *4) (-12 (-4 *5 (-1102)) (-4 *3 (-902 *5)) (-5 *2 (-690 *3)) (-5 *1 (-693 *5 *3 *6 *4)) (-4 *6 (-375 *3)) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4422)))))) (-1915 (*1 *2 *2 *3) (-12 (-4 *4 (-1102)) (-4 *2 (-902 *4)) (-5 *1 (-693 *4 *2 *5 *3)) (-4 *5 (-375 *2)) (-4 *3 (-13 (-375 *4) (-10 -7 (-6 -4422)))))) (-3566 (*1 *2 *3 *4) (-12 (-4 *5 (-1102)) (-4 *2 (-902 *5)) (-5 *1 (-693 *5 *2 *3 *4)) (-4 *3 (-375 *2)) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4422)))))) (-1634 (*1 *2 *3 *4) (-12 (-4 *5 (-1102)) (-4 *3 (-902 *5)) (-5 *2 (-1269 *3)) (-5 *1 (-693 *5 *3 *6 *4)) (-4 *6 (-375 *3)) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4422)))))))
+(-10 -7 (-15 -1634 ((-1269 |#2|) |#2| |#4|)) (-15 -3566 (|#2| |#3| |#4|)) (-15 -1915 (|#2| |#2| |#4|)) (-15 -2797 ((-690 |#2|) |#2| |#4|)) (-15 -2354 ((-690 |#2|) |#2| |#4| (-772))) (-15 -2266 ((-690 |#2|) |#3| |#4|)) (-15 -2350 ((-690 |#2|) |#3| |#4| (-772) (-772))))
+((-2381 (((-2 (|:| |num| (-690 |#1|)) (|:| |den| |#1|)) (-690 |#2|)) 20)) (-1967 ((|#1| (-690 |#2|)) 9)) (-3268 (((-690 |#1|) (-690 |#2|)) 18)))
+(((-694 |#1| |#2|) (-10 -7 (-15 -1967 (|#1| (-690 |#2|))) (-15 -3268 ((-690 |#1|) (-690 |#2|))) (-15 -2381 ((-2 (|:| |num| (-690 |#1|)) (|:| |den| |#1|)) (-690 |#2|)))) (-559) (-994 |#1|)) (T -694))
+((-2381 (*1 *2 *3) (-12 (-5 *3 (-690 *5)) (-4 *5 (-994 *4)) (-4 *4 (-559)) (-5 *2 (-2 (|:| |num| (-690 *4)) (|:| |den| *4))) (-5 *1 (-694 *4 *5)))) (-3268 (*1 *2 *3) (-12 (-5 *3 (-690 *5)) (-4 *5 (-994 *4)) (-4 *4 (-559)) (-5 *2 (-690 *4)) (-5 *1 (-694 *4 *5)))) (-1967 (*1 *2 *3) (-12 (-5 *3 (-690 *4)) (-4 *4 (-994 *2)) (-4 *2 (-559)) (-5 *1 (-694 *2 *4)))))
+(-10 -7 (-15 -1967 (|#1| (-690 |#2|))) (-15 -3268 ((-690 |#1|) (-690 |#2|))) (-15 -2381 ((-2 (|:| |num| (-690 |#1|)) (|:| |den| |#1|)) (-690 |#2|))))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-4287 (($ $) NIL)) (-2286 (((-112) $) NIL)) (-3478 (((-690 (-700))) NIL) (((-690 (-700)) (-1269 $)) NIL)) (-4293 (((-700) $) NIL)) (-3164 (($ $) NIL (|has| (-700) (-1204)))) (-3032 (($ $) NIL (|has| (-700) (-1204)))) (-3792 (((-1192 (-923) (-772)) (-567)) NIL (|has| (-700) (-351)))) (-2376 (((-3 $ "failed") $ $) NIL)) (-2029 (((-421 (-1175 $)) (-1175 $)) NIL (-12 (|has| (-700) (-308)) (|has| (-700) (-911))))) (-3659 (($ $) NIL (-2811 (-12 (|has| (-700) (-308)) (|has| (-700) (-911))) (|has| (-700) (-365))))) (-3597 (((-421 $) $) NIL (-2811 (-12 (|has| (-700) (-308)) (|has| (-700) (-911))) (|has| (-700) (-365))))) (-2728 (($ $) NIL (-12 (|has| (-700) (-1004)) (|has| (-700) (-1204))))) (-3610 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) NIL (-12 (|has| (-700) (-308)) (|has| (-700) (-911))))) (-3696 (((-112) $ $) NIL (|has| (-700) (-308)))) (-2384 (((-772)) NIL (|has| (-700) (-370)))) (-3145 (($ $) NIL (|has| (-700) (-1204)))) (-3008 (($ $) NIL (|has| (-700) (-1204)))) (-3182 (($ $) NIL (|has| (-700) (-1204)))) (-3057 (($ $) NIL (|has| (-700) (-1204)))) (-3647 (($) NIL T CONST)) (-3765 (((-3 (-567) "failed") $) NIL) (((-3 (-700) "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL (|has| (-700) (-1040 (-410 (-567)))))) (-2051 (((-567) $) NIL) (((-700) $) NIL) (((-410 (-567)) $) NIL (|has| (-700) (-1040 (-410 (-567)))))) (-3111 (($ (-1269 (-700))) NIL) (($ (-1269 (-700)) (-1269 $)) NIL)) (-2998 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-700) (-351)))) (-2357 (($ $ $) NIL (|has| (-700) (-308)))) (-3012 (((-690 (-700)) $) NIL) (((-690 (-700)) $ (-1269 $)) NIL)) (-1423 (((-690 (-700)) (-690 $)) NIL) (((-2 (|:| -4208 (-690 (-700))) (|:| |vec| (-1269 (-700)))) (-690 $) (-1269 $)) NIL) (((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (|has| (-700) (-640 (-567)))) (((-690 (-567)) (-690 $)) NIL (|has| (-700) (-640 (-567))))) (-2494 (((-3 $ "failed") (-410 (-1175 (-700)))) NIL (|has| (-700) (-365))) (($ (-1175 (-700))) NIL)) (-3588 (((-3 $ "failed") $) NIL)) (-2738 (((-700) $) 29)) (-1605 (((-3 (-410 (-567)) "failed") $) NIL (|has| (-700) (-548)))) (-2492 (((-112) $) NIL (|has| (-700) (-548)))) (-2778 (((-410 (-567)) $) NIL (|has| (-700) (-548)))) (-1976 (((-923)) NIL)) (-1359 (($) NIL (|has| (-700) (-370)))) (-2368 (($ $ $) NIL (|has| (-700) (-308)))) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) NIL (|has| (-700) (-308)))) (-2870 (($) NIL (|has| (-700) (-351)))) (-1305 (((-112) $) NIL (|has| (-700) (-351)))) (-3144 (($ $) NIL (|has| (-700) (-351))) (($ $ (-772)) NIL (|has| (-700) (-351)))) (-3502 (((-112) $) NIL (-2811 (-12 (|has| (-700) (-308)) (|has| (-700) (-911))) (|has| (-700) (-365))))) (-4183 (((-2 (|:| |r| (-700)) (|:| |phi| (-700))) $) NIL (-12 (|has| (-700) (-1062)) (|has| (-700) (-1204))))) (-1484 (($) NIL (|has| (-700) (-1204)))) (-3193 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (|has| (-700) (-888 (-381)))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (|has| (-700) (-888 (-567))))) (-3362 (((-834 (-923)) $) NIL (|has| (-700) (-351))) (((-923) $) NIL (|has| (-700) (-351)))) (-4346 (((-112) $) NIL)) (-3698 (($ $ (-567)) NIL (-12 (|has| (-700) (-1004)) (|has| (-700) (-1204))))) (-2724 (((-700) $) NIL)) (-3067 (((-3 $ "failed") $) NIL (|has| (-700) (-351)))) (-1469 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| (-700) (-308)))) (-1914 (((-1175 (-700)) $) NIL (|has| (-700) (-365)))) (-1365 (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (-3841 (($ (-1 (-700) (-700)) $) NIL)) (-3474 (((-923) $) NIL (|has| (-700) (-370)))) (-3072 (($ $) NIL (|has| (-700) (-1204)))) (-2484 (((-1175 (-700)) $) NIL)) (-2751 (($ (-645 $)) NIL (|has| (-700) (-308))) (($ $ $) NIL (|has| (-700) (-308)))) (-2516 (((-1161) $) NIL)) (-2949 (($ $) NIL (|has| (-700) (-365)))) (-2694 (($) NIL (|has| (-700) (-351)) CONST)) (-3779 (($ (-923)) NIL (|has| (-700) (-370)))) (-2726 (($) NIL)) (-2750 (((-700) $) 31)) (-3437 (((-1122) $) NIL)) (-1399 (($) NIL)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| (-700) (-308)))) (-2785 (($ (-645 $)) NIL (|has| (-700) (-308))) (($ $ $) NIL (|has| (-700) (-308)))) (-4151 (((-645 (-2 (|:| -2717 (-567)) (|:| -3468 (-567))))) NIL (|has| (-700) (-351)))) (-3551 (((-421 (-1175 $)) (-1175 $)) NIL (-12 (|has| (-700) (-308)) (|has| (-700) (-911))))) (-2016 (((-421 (-1175 $)) (-1175 $)) NIL (-12 (|has| (-700) (-308)) (|has| (-700) (-911))))) (-2717 (((-421 $) $) NIL (-2811 (-12 (|has| (-700) (-308)) (|has| (-700) (-911))) (|has| (-700) (-365))))) (-2905 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-700) (-308))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) NIL (|has| (-700) (-308)))) (-2400 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-700)) NIL (|has| (-700) (-559)))) (-2372 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| (-700) (-308)))) (-3955 (($ $) NIL (|has| (-700) (-1204)))) (-2642 (($ $ (-1179) (-700)) NIL (|has| (-700) (-517 (-1179) (-700)))) (($ $ (-645 (-1179)) (-645 (-700))) NIL (|has| (-700) (-517 (-1179) (-700)))) (($ $ (-645 (-295 (-700)))) NIL (|has| (-700) (-310 (-700)))) (($ $ (-295 (-700))) NIL (|has| (-700) (-310 (-700)))) (($ $ (-700) (-700)) NIL (|has| (-700) (-310 (-700)))) (($ $ (-645 (-700)) (-645 (-700))) NIL (|has| (-700) (-310 (-700))))) (-2460 (((-772) $) NIL (|has| (-700) (-308)))) (-1801 (($ $ (-700)) NIL (|has| (-700) (-287 (-700) (-700))))) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) NIL (|has| (-700) (-308)))) (-2433 (((-700)) NIL) (((-700) (-1269 $)) NIL)) (-1760 (((-3 (-772) "failed") $ $) NIL (|has| (-700) (-351))) (((-772) $) NIL (|has| (-700) (-351)))) (-1616 (($ $ (-1 (-700) (-700))) NIL) (($ $ (-1 (-700) (-700)) (-772)) NIL) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| (-700) (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| (-700) (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| (-700) (-902 (-1179)))) (($ $ (-1179)) NIL (|has| (-700) (-902 (-1179)))) (($ $ (-772)) NIL (|has| (-700) (-233))) (($ $) NIL (|has| (-700) (-233)))) (-1648 (((-690 (-700)) (-1269 $) (-1 (-700) (-700))) NIL (|has| (-700) (-365)))) (-3169 (((-1175 (-700))) NIL)) (-3192 (($ $) NIL (|has| (-700) (-1204)))) (-3071 (($ $) NIL (|has| (-700) (-1204)))) (-4273 (($) NIL (|has| (-700) (-351)))) (-3173 (($ $) NIL (|has| (-700) (-1204)))) (-3043 (($ $) NIL (|has| (-700) (-1204)))) (-3155 (($ $) NIL (|has| (-700) (-1204)))) (-3021 (($ $) NIL (|has| (-700) (-1204)))) (-3088 (((-690 (-700)) (-1269 $)) NIL) (((-1269 (-700)) $) NIL) (((-690 (-700)) (-1269 $) (-1269 $)) NIL) (((-1269 (-700)) $ (-1269 $)) NIL)) (-3902 (((-539) $) NIL (|has| (-700) (-615 (-539)))) (((-169 (-225)) $) NIL (|has| (-700) (-1024))) (((-169 (-381)) $) NIL (|has| (-700) (-1024))) (((-894 (-381)) $) NIL (|has| (-700) (-615 (-894 (-381))))) (((-894 (-567)) $) NIL (|has| (-700) (-615 (-894 (-567))))) (($ (-1175 (-700))) NIL) (((-1175 (-700)) $) NIL) (($ (-1269 (-700))) NIL) (((-1269 (-700)) $) NIL)) (-1672 (($ $) NIL)) (-2616 (((-3 (-1269 $) "failed") (-690 $)) NIL (-2811 (-12 (|has| (-700) (-308)) (|has| $ (-145)) (|has| (-700) (-911))) (|has| (-700) (-351))))) (-3065 (($ (-700) (-700)) 12)) (-4129 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-567)) NIL) (($ (-700)) NIL) (($ (-169 (-381))) 13) (($ (-169 (-567))) 19) (($ (-169 (-700))) 28) (($ (-169 (-702))) 25) (((-169 (-381)) $) 33) (($ (-410 (-567))) NIL (-2811 (|has| (-700) (-1040 (-410 (-567)))) (|has| (-700) (-365))))) (-2118 (($ $) NIL (|has| (-700) (-351))) (((-3 $ "failed") $) NIL (-2811 (-12 (|has| (-700) (-308)) (|has| $ (-145)) (|has| (-700) (-911))) (|has| (-700) (-145))))) (-2231 (((-1175 (-700)) $) NIL)) (-2746 (((-772)) NIL T CONST)) (-3357 (((-112) $ $) NIL)) (-2144 (((-1269 $)) NIL)) (-3217 (($ $) NIL (|has| (-700) (-1204)))) (-3103 (($ $) NIL (|has| (-700) (-1204)))) (-3731 (((-112) $ $) NIL)) (-3201 (($ $) NIL (|has| (-700) (-1204)))) (-3083 (($ $) NIL (|has| (-700) (-1204)))) (-3238 (($ $) NIL (|has| (-700) (-1204)))) (-3126 (($ $) NIL (|has| (-700) (-1204)))) (-3189 (((-700) $) NIL (|has| (-700) (-1204)))) (-3805 (($ $) NIL (|has| (-700) (-1204)))) (-3138 (($ $) NIL (|has| (-700) (-1204)))) (-3228 (($ $) NIL (|has| (-700) (-1204)))) (-3115 (($ $) NIL (|has| (-700) (-1204)))) (-3208 (($ $) NIL (|has| (-700) (-1204)))) (-3093 (($ $) NIL (|has| (-700) (-1204)))) (-1547 (($ $) NIL (|has| (-700) (-1062)))) (-1733 (($) NIL T CONST)) (-1744 (($) NIL T CONST)) (-2647 (($ $ (-1 (-700) (-700))) NIL) (($ $ (-1 (-700) (-700)) (-772)) NIL) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| (-700) (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| (-700) (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| (-700) (-902 (-1179)))) (($ $ (-1179)) NIL (|has| (-700) (-902 (-1179)))) (($ $ (-772)) NIL (|has| (-700) (-233))) (($ $) NIL (|has| (-700) (-233)))) (-3004 (((-112) $ $) NIL)) (-2980 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2993 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)) (-3069 (($ $ $) NIL (|has| (-700) (-365)))) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ $) NIL (|has| (-700) (-1204))) (($ $ (-410 (-567))) NIL (-12 (|has| (-700) (-1004)) (|has| (-700) (-1204)))) (($ $ (-567)) NIL (|has| (-700) (-365)))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ (-700) $) NIL) (($ $ (-700)) NIL) (($ (-410 (-567)) $) NIL (|has| (-700) (-365))) (($ $ (-410 (-567))) NIL (|has| (-700) (-365)))))
+(((-695) (-13 (-390) (-166 (-700)) (-10 -8 (-15 -4129 ($ (-169 (-381)))) (-15 -4129 ($ (-169 (-567)))) (-15 -4129 ($ (-169 (-700)))) (-15 -4129 ($ (-169 (-702)))) (-15 -4129 ((-169 (-381)) $))))) (T -695))
+((-4129 (*1 *1 *2) (-12 (-5 *2 (-169 (-381))) (-5 *1 (-695)))) (-4129 (*1 *1 *2) (-12 (-5 *2 (-169 (-567))) (-5 *1 (-695)))) (-4129 (*1 *1 *2) (-12 (-5 *2 (-169 (-700))) (-5 *1 (-695)))) (-4129 (*1 *1 *2) (-12 (-5 *2 (-169 (-702))) (-5 *1 (-695)))) (-4129 (*1 *2 *1) (-12 (-5 *2 (-169 (-381))) (-5 *1 (-695)))))
+(-13 (-390) (-166 (-700)) (-10 -8 (-15 -4129 ($ (-169 (-381)))) (-15 -4129 ($ (-169 (-567)))) (-15 -4129 ($ (-169 (-700)))) (-15 -4129 ($ (-169 (-702)))) (-15 -4129 ((-169 (-381)) $))))
+((-2412 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-1563 (((-112) $ (-772)) 8)) (-1494 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4422)))) (-3356 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4422)))) (-3647 (($) 7 T CONST)) (-3837 (($ $) 63)) (-2453 (($ $) 59 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-2247 (($ |#1| $) 48 (|has| $ (-6 -4422))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4422)))) (-3246 (($ |#1| $) 58 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4422)))) (-2494 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4422)))) (-2799 (((-645 |#1|) $) 31 (|has| $ (-6 -4422)))) (-4093 (((-112) $ (-772)) 9)) (-1942 (((-645 |#1|) $) 30 (|has| $ (-6 -4422)))) (-3237 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-3751 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#1| |#1|) $) 36)) (-1986 (((-112) $ (-772)) 10)) (-2516 (((-1161) $) 22 (|has| |#1| (-1102)))) (-2706 ((|#1| $) 40)) (-2646 (($ |#1| $) 41) (($ |#1| $ (-772)) 64)) (-3437 (((-1122) $) 21 (|has| |#1| (-1102)))) (-3196 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3949 ((|#1| $) 42)) (-4233 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3875 (((-112) $ $) 14)) (-3885 (((-112) $) 11)) (-2701 (($) 12)) (-2885 (((-645 (-2 (|:| -4236 |#1|) (|:| -3447 (-772)))) $) 62)) (-4106 (($) 50) (($ (-645 |#1|)) 49)) (-3447 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4422))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-4309 (($ $) 13)) (-3902 (((-539) $) 60 (|has| |#1| (-615 (-539))))) (-4145 (($ (-645 |#1|)) 51)) (-4129 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-3357 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-3700 (($ (-645 |#1|)) 43)) (-3436 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4422)))) (-2946 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2423 (((-772) $) 6 (|has| $ (-6 -4422)))))
(((-696 |#1|) (-140) (-1102)) (T -696))
-((-2531 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-772)) (-4 *1 (-696 *2)) (-4 *2 (-1102)))) (-2133 (*1 *1 *1) (-12 (-4 *1 (-696 *2)) (-4 *2 (-1102)))) (-2334 (*1 *2 *1) (-12 (-4 *1 (-696 *3)) (-4 *3 (-1102)) (-5 *2 (-645 (-2 (|:| -4237 *3) (|:| -3439 (-772))))))))
-(-13 (-235 |t#1|) (-10 -8 (-15 -2531 ($ |t#1| $ (-772))) (-15 -2133 ($ $)) (-15 -2334 ((-645 (-2 (|:| -4237 |t#1|) (|:| -3439 (-772)))) $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2800 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-235 |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-1102) |has| |#1| (-1102)) ((-1218) . T))
-((-3970 (((-645 |#1|) (-645 (-2 (|:| -2706 |#1|) (|:| -3077 (-567)))) (-567)) 66)) (-1380 ((|#1| |#1| (-567)) 62)) (-2774 ((|#1| |#1| |#1| (-567)) 46)) (-2706 (((-645 |#1|) |#1| (-567)) 49)) (-1454 ((|#1| |#1| (-567) |#1| (-567)) 40)) (-2244 (((-645 (-2 (|:| -2706 |#1|) (|:| -3077 (-567)))) |#1| (-567)) 61)))
-(((-697 |#1|) (-10 -7 (-15 -2774 (|#1| |#1| |#1| (-567))) (-15 -1380 (|#1| |#1| (-567))) (-15 -2706 ((-645 |#1|) |#1| (-567))) (-15 -2244 ((-645 (-2 (|:| -2706 |#1|) (|:| -3077 (-567)))) |#1| (-567))) (-15 -3970 ((-645 |#1|) (-645 (-2 (|:| -2706 |#1|) (|:| -3077 (-567)))) (-567))) (-15 -1454 (|#1| |#1| (-567) |#1| (-567)))) (-1244 (-567))) (T -697))
-((-1454 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-697 *2)) (-4 *2 (-1244 *3)))) (-3970 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-2 (|:| -2706 *5) (|:| -3077 (-567))))) (-5 *4 (-567)) (-4 *5 (-1244 *4)) (-5 *2 (-645 *5)) (-5 *1 (-697 *5)))) (-2244 (*1 *2 *3 *4) (-12 (-5 *4 (-567)) (-5 *2 (-645 (-2 (|:| -2706 *3) (|:| -3077 *4)))) (-5 *1 (-697 *3)) (-4 *3 (-1244 *4)))) (-2706 (*1 *2 *3 *4) (-12 (-5 *4 (-567)) (-5 *2 (-645 *3)) (-5 *1 (-697 *3)) (-4 *3 (-1244 *4)))) (-1380 (*1 *2 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-697 *2)) (-4 *2 (-1244 *3)))) (-2774 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-697 *2)) (-4 *2 (-1244 *3)))))
-(-10 -7 (-15 -2774 (|#1| |#1| |#1| (-567))) (-15 -1380 (|#1| |#1| (-567))) (-15 -2706 ((-645 |#1|) |#1| (-567))) (-15 -2244 ((-645 (-2 (|:| -2706 |#1|) (|:| -3077 (-567)))) |#1| (-567))) (-15 -3970 ((-645 |#1|) (-645 (-2 (|:| -2706 |#1|) (|:| -3077 (-567)))) (-567))) (-15 -1454 (|#1| |#1| (-567) |#1| (-567))))
-((-3554 (((-1 (-945 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225) (-225))) 17)) (-3964 (((-1135 (-225)) (-1135 (-225)) (-1 (-945 (-225)) (-225) (-225)) (-1096 (-225)) (-1096 (-225)) (-645 (-264))) 56) (((-1135 (-225)) (-1 (-945 (-225)) (-225) (-225)) (-1096 (-225)) (-1096 (-225)) (-645 (-264))) 58) (((-1135 (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1096 (-225)) (-1096 (-225)) (-645 (-264))) 60)) (-2092 (((-1135 (-225)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1096 (-225)) (-645 (-264))) NIL)) (-3207 (((-1135 (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1096 (-225)) (-1096 (-225)) (-645 (-264))) 61)))
-(((-698) (-10 -7 (-15 -3964 ((-1135 (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1096 (-225)) (-1096 (-225)) (-645 (-264)))) (-15 -3964 ((-1135 (-225)) (-1 (-945 (-225)) (-225) (-225)) (-1096 (-225)) (-1096 (-225)) (-645 (-264)))) (-15 -3964 ((-1135 (-225)) (-1135 (-225)) (-1 (-945 (-225)) (-225) (-225)) (-1096 (-225)) (-1096 (-225)) (-645 (-264)))) (-15 -3207 ((-1135 (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1096 (-225)) (-1096 (-225)) (-645 (-264)))) (-15 -2092 ((-1135 (-225)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1096 (-225)) (-645 (-264)))) (-15 -3554 ((-1 (-945 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225) (-225)))))) (T -698))
-((-3554 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1 (-225) (-225) (-225) (-225))) (-5 *2 (-1 (-945 (-225)) (-225) (-225))) (-5 *1 (-698)))) (-2092 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-317 (-567))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1096 (-225))) (-5 *6 (-645 (-264))) (-5 *2 (-1135 (-225))) (-5 *1 (-698)))) (-3207 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined")) (-5 *5 (-1096 (-225))) (-5 *6 (-645 (-264))) (-5 *2 (-1135 (-225))) (-5 *1 (-698)))) (-3964 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1135 (-225))) (-5 *3 (-1 (-945 (-225)) (-225) (-225))) (-5 *4 (-1096 (-225))) (-5 *5 (-645 (-264))) (-5 *1 (-698)))) (-3964 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-945 (-225)) (-225) (-225))) (-5 *4 (-1096 (-225))) (-5 *5 (-645 (-264))) (-5 *2 (-1135 (-225))) (-5 *1 (-698)))) (-3964 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined")) (-5 *5 (-1096 (-225))) (-5 *6 (-645 (-264))) (-5 *2 (-1135 (-225))) (-5 *1 (-698)))))
-(-10 -7 (-15 -3964 ((-1135 (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1096 (-225)) (-1096 (-225)) (-645 (-264)))) (-15 -3964 ((-1135 (-225)) (-1 (-945 (-225)) (-225) (-225)) (-1096 (-225)) (-1096 (-225)) (-645 (-264)))) (-15 -3964 ((-1135 (-225)) (-1135 (-225)) (-1 (-945 (-225)) (-225) (-225)) (-1096 (-225)) (-1096 (-225)) (-645 (-264)))) (-15 -3207 ((-1135 (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1096 (-225)) (-1096 (-225)) (-645 (-264)))) (-15 -2092 ((-1135 (-225)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1096 (-225)) (-645 (-264)))) (-15 -3554 ((-1 (-945 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225) (-225)))))
-((-2706 (((-421 (-1174 |#4|)) (-1174 |#4|)) 86) (((-421 |#4|) |#4|) 270)))
-(((-699 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2706 ((-421 |#4|) |#4|)) (-15 -2706 ((-421 (-1174 |#4|)) (-1174 |#4|)))) (-851) (-794) (-351) (-951 |#3| |#2| |#1|)) (T -699))
-((-2706 (*1 *2 *3) (-12 (-4 *4 (-851)) (-4 *5 (-794)) (-4 *6 (-351)) (-4 *7 (-951 *6 *5 *4)) (-5 *2 (-421 (-1174 *7))) (-5 *1 (-699 *4 *5 *6 *7)) (-5 *3 (-1174 *7)))) (-2706 (*1 *2 *3) (-12 (-4 *4 (-851)) (-4 *5 (-794)) (-4 *6 (-351)) (-5 *2 (-421 *3)) (-5 *1 (-699 *4 *5 *6 *3)) (-4 *3 (-951 *6 *5 *4)))))
-(-10 -7 (-15 -2706 ((-421 |#4|) |#4|)) (-15 -2706 ((-421 (-1174 |#4|)) (-1174 |#4|))))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) 100)) (-3093 (((-567) $) 34)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-1950 (($ $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-3248 (($ $) NIL)) (-2908 (((-421 $) $) NIL)) (-2716 (($ $) NIL)) (-3609 (((-112) $ $) NIL)) (-1750 (((-567) $) NIL)) (-2585 (($) NIL T CONST)) (-2535 (($ $) NIL)) (-3753 (((-3 (-567) "failed") $) 89) (((-3 (-410 (-567)) "failed") $) 28) (((-3 (-381) "failed") $) 86)) (-2038 (((-567) $) 91) (((-410 (-567)) $) 83) (((-381) $) 84)) (-2349 (($ $ $) 112)) (-2109 (((-3 $ "failed") $) 103)) (-2360 (($ $ $) 111)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-3184 (((-112) $) NIL)) (-3725 (((-923)) 93) (((-923) (-923)) 92)) (-4336 (((-112) $) NIL)) (-4303 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL)) (-4384 (((-567) $) NIL)) (-1433 (((-112) $) NIL)) (-2651 (($ $ (-567)) NIL)) (-2475 (($ $) NIL)) (-3494 (((-112) $) NIL)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4048 (((-567) (-567)) 97) (((-567)) 98)) (-1354 (($ $ $) NIL) (($) NIL (-12 (-1657 (|has| $ (-6 -4401))) (-1657 (|has| $ (-6 -4409)))))) (-2645 (((-567) (-567)) 95) (((-567)) 96)) (-2981 (($ $ $) NIL) (($) NIL (-12 (-1657 (|has| $ (-6 -4401))) (-1657 (|has| $ (-6 -4409)))))) (-2148 (((-567) $) 17)) (-2740 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) 107)) (-3214 (((-923) (-567)) NIL (|has| $ (-6 -4409)))) (-3430 (((-1122) $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-2774 (($ $ $) NIL) (($ (-645 $)) NIL)) (-4094 (($ $) NIL)) (-2780 (($ $) NIL)) (-2327 (($ (-567) (-567)) NIL) (($ (-567) (-567) (-923)) NIL)) (-2706 (((-421 $) $) NIL)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2391 (((-3 $ "failed") $ $) 108)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-3458 (((-567) $) 24)) (-1990 (((-772) $) NIL)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 110)) (-3038 (((-923)) NIL) (((-923) (-923)) NIL (|has| $ (-6 -4409)))) (-4223 (((-923) (-567)) NIL (|has| $ (-6 -4409)))) (-3893 (((-381) $) NIL) (((-225) $) NIL) (((-894 (-381)) $) NIL)) (-4132 (((-863) $) 68) (($ (-567)) 79) (($ $) NIL) (($ (-410 (-567))) 82) (($ (-567)) 79) (($ (-410 (-567))) 82) (($ (-381)) 76) (((-381) $) 66) (($ (-702)) 71)) (-4221 (((-772)) 122 T CONST)) (-2057 (($ (-567) (-567) (-923)) 59)) (-1423 (($ $) NIL)) (-2547 (((-923)) NIL) (((-923) (-923)) NIL (|has| $ (-6 -4409)))) (-1745 (((-112) $ $) NIL)) (-3047 (((-923)) 46) (((-923) (-923)) 94)) (-3816 (((-112) $ $) NIL)) (-2219 (($ $) NIL)) (-1716 (($) 37 T CONST)) (-1728 (($) 18 T CONST)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 99)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) 121)) (-3060 (($ $ $) 81)) (-3045 (($ $) 118) (($ $ $) 119)) (-3033 (($ $ $) 117)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL) (($ $ (-410 (-567))) 106)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 113) (($ $ $) 104) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL)))
-(((-700) (-13 (-407) (-390) (-365) (-1040 (-381)) (-1040 (-410 (-567))) (-147) (-10 -8 (-15 -3725 ((-923) (-923))) (-15 -3725 ((-923))) (-15 -3047 ((-923) (-923))) (-15 -2645 ((-567) (-567))) (-15 -2645 ((-567))) (-15 -4048 ((-567) (-567))) (-15 -4048 ((-567))) (-15 -4132 ((-381) $)) (-15 -4132 ($ (-702))) (-15 -2148 ((-567) $)) (-15 -3458 ((-567) $)) (-15 -2057 ($ (-567) (-567) (-923)))))) (T -700))
-((-3458 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-700)))) (-2148 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-700)))) (-3725 (*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-700)))) (-3725 (*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-700)))) (-3047 (*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-700)))) (-2645 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-700)))) (-2645 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-700)))) (-4048 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-700)))) (-4048 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-700)))) (-4132 (*1 *2 *1) (-12 (-5 *2 (-381)) (-5 *1 (-700)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-702)) (-5 *1 (-700)))) (-2057 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-567)) (-5 *3 (-923)) (-5 *1 (-700)))))
-(-13 (-407) (-390) (-365) (-1040 (-381)) (-1040 (-410 (-567))) (-147) (-10 -8 (-15 -3725 ((-923) (-923))) (-15 -3725 ((-923))) (-15 -3047 ((-923) (-923))) (-15 -2645 ((-567) (-567))) (-15 -2645 ((-567))) (-15 -4048 ((-567) (-567))) (-15 -4048 ((-567))) (-15 -4132 ((-381) $)) (-15 -4132 ($ (-702))) (-15 -2148 ((-567) $)) (-15 -3458 ((-567) $)) (-15 -2057 ($ (-567) (-567) (-923)))))
-((-3832 (((-690 |#1|) (-690 |#1|) |#1| |#1|) 88)) (-2233 (((-690 |#1|) (-690 |#1|) |#1|) 67)) (-2924 (((-690 |#1|) (-690 |#1|) |#1|) 89)) (-4061 (((-690 |#1|) (-690 |#1|)) 68)) (-2500 (((-2 (|:| -3102 |#1|) (|:| -4194 |#1|)) |#1| |#1|) 87)))
-(((-701 |#1|) (-10 -7 (-15 -4061 ((-690 |#1|) (-690 |#1|))) (-15 -2233 ((-690 |#1|) (-690 |#1|) |#1|)) (-15 -2924 ((-690 |#1|) (-690 |#1|) |#1|)) (-15 -3832 ((-690 |#1|) (-690 |#1|) |#1| |#1|)) (-15 -2500 ((-2 (|:| -3102 |#1|) (|:| -4194 |#1|)) |#1| |#1|))) (-308)) (T -701))
-((-2500 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -3102 *3) (|:| -4194 *3))) (-5 *1 (-701 *3)) (-4 *3 (-308)))) (-3832 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-690 *3)) (-4 *3 (-308)) (-5 *1 (-701 *3)))) (-2924 (*1 *2 *2 *3) (-12 (-5 *2 (-690 *3)) (-4 *3 (-308)) (-5 *1 (-701 *3)))) (-2233 (*1 *2 *2 *3) (-12 (-5 *2 (-690 *3)) (-4 *3 (-308)) (-5 *1 (-701 *3)))) (-4061 (*1 *2 *2) (-12 (-5 *2 (-690 *3)) (-4 *3 (-308)) (-5 *1 (-701 *3)))))
-(-10 -7 (-15 -4061 ((-690 |#1|) (-690 |#1|))) (-15 -2233 ((-690 |#1|) (-690 |#1|) |#1|)) (-15 -2924 ((-690 |#1|) (-690 |#1|) |#1|)) (-15 -3832 ((-690 |#1|) (-690 |#1|) |#1| |#1|)) (-15 -2500 ((-2 (|:| -3102 |#1|) (|:| -4194 |#1|)) |#1| |#1|)))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-2882 (($ $ $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2208 (($ $ $ $) NIL)) (-3248 (($ $) NIL)) (-2908 (((-421 $) $) NIL)) (-3609 (((-112) $ $) NIL)) (-1750 (((-567) $) NIL)) (-4130 (($ $ $) NIL)) (-2585 (($) NIL T CONST)) (-3753 (((-3 (-567) "failed") $) 31)) (-2038 (((-567) $) 29)) (-2349 (($ $ $) NIL)) (-2630 (((-690 (-567)) (-690 $)) NIL) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-2085 (((-3 (-410 (-567)) "failed") $) NIL)) (-1862 (((-112) $) NIL)) (-2331 (((-410 (-567)) $) NIL)) (-1348 (($ $) NIL) (($) NIL)) (-2360 (($ $ $) NIL)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-3184 (((-112) $) NIL)) (-3407 (($ $ $ $) NIL)) (-4254 (($ $ $) NIL)) (-4336 (((-112) $) NIL)) (-2967 (($ $ $) NIL)) (-4303 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL)) (-1433 (((-112) $) NIL)) (-3837 (((-112) $) NIL)) (-3972 (((-3 $ "failed") $) NIL)) (-3494 (((-112) $) NIL)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2317 (($ $ $ $) NIL)) (-1354 (($ $ $) NIL)) (-2911 (((-923) (-923)) 10) (((-923)) 9)) (-2981 (($ $ $) NIL)) (-1446 (($ $) NIL)) (-1699 (($ $) NIL)) (-2740 (($ (-645 $)) NIL) (($ $ $) NIL)) (-1419 (((-1160) $) NIL)) (-2196 (($ $ $) NIL)) (-2672 (($) NIL T CONST)) (-2289 (($ $) NIL)) (-3430 (((-1122) $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-2774 (($ (-645 $)) NIL) (($ $ $) NIL)) (-1576 (($ $) NIL)) (-2706 (((-421 $) $) NIL)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2391 (((-3 $ "failed") $ $) NIL)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2757 (((-112) $) NIL)) (-1990 (((-772) $) NIL)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL)) (-1593 (($ $) NIL) (($ $ (-772)) NIL)) (-2277 (($ $) NIL)) (-4305 (($ $) NIL)) (-3893 (((-225) $) NIL) (((-381) $) NIL) (((-894 (-567)) $) NIL) (((-539) $) NIL) (((-567) $) NIL)) (-4132 (((-863) $) NIL) (($ (-567)) 28) (($ $) NIL) (($ (-567)) 28) (((-317 $) (-317 (-567))) 18)) (-4221 (((-772)) NIL T CONST)) (-4210 (((-112) $ $) NIL)) (-3881 (($ $ $) NIL)) (-1745 (((-112) $ $) NIL)) (-3047 (($) NIL)) (-3816 (((-112) $ $) NIL)) (-4309 (($ $ $ $) NIL)) (-2219 (($ $) NIL)) (-1716 (($) NIL T CONST)) (-1728 (($) NIL T CONST)) (-2637 (($ $) NIL) (($ $ (-772)) NIL)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) NIL)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL)))
-(((-702) (-13 (-390) (-548) (-10 -8 (-15 -2911 ((-923) (-923))) (-15 -2911 ((-923))) (-15 -4132 ((-317 $) (-317 (-567))))))) (T -702))
-((-2911 (*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-702)))) (-2911 (*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-702)))) (-4132 (*1 *2 *3) (-12 (-5 *3 (-317 (-567))) (-5 *2 (-317 (-702))) (-5 *1 (-702)))))
-(-13 (-390) (-548) (-10 -8 (-15 -2911 ((-923) (-923))) (-15 -2911 ((-923))) (-15 -4132 ((-317 $) (-317 (-567))))))
-((-2245 (((-1 |#4| |#2| |#3|) |#1| (-1178) (-1178)) 19)) (-3178 (((-1 |#4| |#2| |#3|) (-1178)) 12)))
-(((-703 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3178 ((-1 |#4| |#2| |#3|) (-1178))) (-15 -2245 ((-1 |#4| |#2| |#3|) |#1| (-1178) (-1178)))) (-615 (-539)) (-1218) (-1218) (-1218)) (T -703))
-((-2245 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1178)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-703 *3 *5 *6 *7)) (-4 *3 (-615 (-539))) (-4 *5 (-1218)) (-4 *6 (-1218)) (-4 *7 (-1218)))) (-3178 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-703 *4 *5 *6 *7)) (-4 *4 (-615 (-539))) (-4 *5 (-1218)) (-4 *6 (-1218)) (-4 *7 (-1218)))))
-(-10 -7 (-15 -3178 ((-1 |#4| |#2| |#3|) (-1178))) (-15 -2245 ((-1 |#4| |#2| |#3|) |#1| (-1178) (-1178))))
-((-1338 (((-1 (-225) (-225) (-225)) |#1| (-1178) (-1178)) 43) (((-1 (-225) (-225)) |#1| (-1178)) 48)))
-(((-704 |#1|) (-10 -7 (-15 -1338 ((-1 (-225) (-225)) |#1| (-1178))) (-15 -1338 ((-1 (-225) (-225) (-225)) |#1| (-1178) (-1178)))) (-615 (-539))) (T -704))
-((-1338 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1178)) (-5 *2 (-1 (-225) (-225) (-225))) (-5 *1 (-704 *3)) (-4 *3 (-615 (-539))))) (-1338 (*1 *2 *3 *4) (-12 (-5 *4 (-1178)) (-5 *2 (-1 (-225) (-225))) (-5 *1 (-704 *3)) (-4 *3 (-615 (-539))))))
-(-10 -7 (-15 -1338 ((-1 (-225) (-225)) |#1| (-1178))) (-15 -1338 ((-1 (-225) (-225) (-225)) |#1| (-1178) (-1178))))
-((-2614 (((-1178) |#1| (-1178) (-645 (-1178))) 10) (((-1178) |#1| (-1178) (-1178) (-1178)) 13) (((-1178) |#1| (-1178) (-1178)) 12) (((-1178) |#1| (-1178)) 11)))
-(((-705 |#1|) (-10 -7 (-15 -2614 ((-1178) |#1| (-1178))) (-15 -2614 ((-1178) |#1| (-1178) (-1178))) (-15 -2614 ((-1178) |#1| (-1178) (-1178) (-1178))) (-15 -2614 ((-1178) |#1| (-1178) (-645 (-1178))))) (-615 (-539))) (T -705))
-((-2614 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-645 (-1178))) (-5 *2 (-1178)) (-5 *1 (-705 *3)) (-4 *3 (-615 (-539))))) (-2614 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-705 *3)) (-4 *3 (-615 (-539))))) (-2614 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-705 *3)) (-4 *3 (-615 (-539))))) (-2614 (*1 *2 *3 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-705 *3)) (-4 *3 (-615 (-539))))))
-(-10 -7 (-15 -2614 ((-1178) |#1| (-1178))) (-15 -2614 ((-1178) |#1| (-1178) (-1178))) (-15 -2614 ((-1178) |#1| (-1178) (-1178) (-1178))) (-15 -2614 ((-1178) |#1| (-1178) (-645 (-1178)))))
-((-3408 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9)))
-(((-706 |#1| |#2|) (-10 -7 (-15 -3408 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1218) (-1218)) (T -706))
-((-3408 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-706 *3 *4)) (-4 *3 (-1218)) (-4 *4 (-1218)))))
-(-10 -7 (-15 -3408 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|)))
-((-3739 (((-1 |#3| |#2|) (-1178)) 11)) (-2245 (((-1 |#3| |#2|) |#1| (-1178)) 21)))
-(((-707 |#1| |#2| |#3|) (-10 -7 (-15 -3739 ((-1 |#3| |#2|) (-1178))) (-15 -2245 ((-1 |#3| |#2|) |#1| (-1178)))) (-615 (-539)) (-1218) (-1218)) (T -707))
-((-2245 (*1 *2 *3 *4) (-12 (-5 *4 (-1178)) (-5 *2 (-1 *6 *5)) (-5 *1 (-707 *3 *5 *6)) (-4 *3 (-615 (-539))) (-4 *5 (-1218)) (-4 *6 (-1218)))) (-3739 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1 *6 *5)) (-5 *1 (-707 *4 *5 *6)) (-4 *4 (-615 (-539))) (-4 *5 (-1218)) (-4 *6 (-1218)))))
-(-10 -7 (-15 -3739 ((-1 |#3| |#2|) (-1178))) (-15 -2245 ((-1 |#3| |#2|) |#1| (-1178))))
-((-4292 (((-3 (-645 (-1174 |#4|)) "failed") (-1174 |#4|) (-645 |#2|) (-645 (-1174 |#4|)) (-645 |#3|) (-645 |#4|) (-645 (-645 (-2 (|:| -1922 (-772)) (|:| |pcoef| |#4|)))) (-645 (-772)) (-1268 (-645 (-1174 |#3|))) |#3|) 95)) (-2383 (((-3 (-645 (-1174 |#4|)) "failed") (-1174 |#4|) (-645 |#2|) (-645 (-1174 |#3|)) (-645 |#3|) (-645 |#4|) (-645 (-772)) |#3|) 113)) (-2368 (((-3 (-645 (-1174 |#4|)) "failed") (-1174 |#4|) (-645 |#2|) (-645 |#3|) (-645 (-772)) (-645 (-1174 |#4|)) (-1268 (-645 (-1174 |#3|))) |#3|) 47)))
-(((-708 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2368 ((-3 (-645 (-1174 |#4|)) "failed") (-1174 |#4|) (-645 |#2|) (-645 |#3|) (-645 (-772)) (-645 (-1174 |#4|)) (-1268 (-645 (-1174 |#3|))) |#3|)) (-15 -2383 ((-3 (-645 (-1174 |#4|)) "failed") (-1174 |#4|) (-645 |#2|) (-645 (-1174 |#3|)) (-645 |#3|) (-645 |#4|) (-645 (-772)) |#3|)) (-15 -4292 ((-3 (-645 (-1174 |#4|)) "failed") (-1174 |#4|) (-645 |#2|) (-645 (-1174 |#4|)) (-645 |#3|) (-645 |#4|) (-645 (-645 (-2 (|:| -1922 (-772)) (|:| |pcoef| |#4|)))) (-645 (-772)) (-1268 (-645 (-1174 |#3|))) |#3|))) (-794) (-851) (-308) (-951 |#3| |#1| |#2|)) (T -708))
-((-4292 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-645 (-1174 *13))) (-5 *3 (-1174 *13)) (-5 *4 (-645 *12)) (-5 *5 (-645 *10)) (-5 *6 (-645 *13)) (-5 *7 (-645 (-645 (-2 (|:| -1922 (-772)) (|:| |pcoef| *13))))) (-5 *8 (-645 (-772))) (-5 *9 (-1268 (-645 (-1174 *10)))) (-4 *12 (-851)) (-4 *10 (-308)) (-4 *13 (-951 *10 *11 *12)) (-4 *11 (-794)) (-5 *1 (-708 *11 *12 *10 *13)))) (-2383 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-645 *11)) (-5 *5 (-645 (-1174 *9))) (-5 *6 (-645 *9)) (-5 *7 (-645 *12)) (-5 *8 (-645 (-772))) (-4 *11 (-851)) (-4 *9 (-308)) (-4 *12 (-951 *9 *10 *11)) (-4 *10 (-794)) (-5 *2 (-645 (-1174 *12))) (-5 *1 (-708 *10 *11 *9 *12)) (-5 *3 (-1174 *12)))) (-2368 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-645 (-1174 *11))) (-5 *3 (-1174 *11)) (-5 *4 (-645 *10)) (-5 *5 (-645 *8)) (-5 *6 (-645 (-772))) (-5 *7 (-1268 (-645 (-1174 *8)))) (-4 *10 (-851)) (-4 *8 (-308)) (-4 *11 (-951 *8 *9 *10)) (-4 *9 (-794)) (-5 *1 (-708 *9 *10 *8 *11)))))
-(-10 -7 (-15 -2368 ((-3 (-645 (-1174 |#4|)) "failed") (-1174 |#4|) (-645 |#2|) (-645 |#3|) (-645 (-772)) (-645 (-1174 |#4|)) (-1268 (-645 (-1174 |#3|))) |#3|)) (-15 -2383 ((-3 (-645 (-1174 |#4|)) "failed") (-1174 |#4|) (-645 |#2|) (-645 (-1174 |#3|)) (-645 |#3|) (-645 |#4|) (-645 (-772)) |#3|)) (-15 -4292 ((-3 (-645 (-1174 |#4|)) "failed") (-1174 |#4|) (-645 |#2|) (-645 (-1174 |#4|)) (-645 |#3|) (-645 |#4|) (-645 (-645 (-2 (|:| -1922 (-772)) (|:| |pcoef| |#4|)))) (-645 (-772)) (-1268 (-645 (-1174 |#3|))) |#3|)))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-3014 (($ $) 48)) (-2109 (((-3 $ "failed") $) 37)) (-1433 (((-112) $) 35)) (-2824 (($ |#1| (-772)) 46)) (-2656 (((-772) $) 50)) (-2989 ((|#1| $) 49)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-3077 (((-772) $) 51)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 45 (|has| |#1| (-172)))) (-4136 ((|#1| $ (-772)) 47)) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 53) (($ |#1| $) 52)))
+((-2646 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-772)) (-4 *1 (-696 *2)) (-4 *2 (-1102)))) (-3837 (*1 *1 *1) (-12 (-4 *1 (-696 *2)) (-4 *2 (-1102)))) (-2885 (*1 *2 *1) (-12 (-4 *1 (-696 *3)) (-4 *3 (-1102)) (-5 *2 (-645 (-2 (|:| -4236 *3) (|:| -3447 (-772))))))))
+(-13 (-235 |t#1|) (-10 -8 (-15 -2646 ($ |t#1| $ (-772))) (-15 -3837 ($ $)) (-15 -2885 ((-645 (-2 (|:| -4236 |t#1|) (|:| -3447 (-772)))) $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2811 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-235 |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-1102) |has| |#1| (-1102)) ((-1219) . T))
+((-2800 (((-645 |#1|) (-645 (-2 (|:| -2717 |#1|) (|:| -3104 (-567)))) (-567)) 66)) (-3368 ((|#1| |#1| (-567)) 62)) (-2785 ((|#1| |#1| |#1| (-567)) 46)) (-2717 (((-645 |#1|) |#1| (-567)) 49)) (-3204 ((|#1| |#1| (-567) |#1| (-567)) 40)) (-2594 (((-645 (-2 (|:| -2717 |#1|) (|:| -3104 (-567)))) |#1| (-567)) 61)))
+(((-697 |#1|) (-10 -7 (-15 -2785 (|#1| |#1| |#1| (-567))) (-15 -3368 (|#1| |#1| (-567))) (-15 -2717 ((-645 |#1|) |#1| (-567))) (-15 -2594 ((-645 (-2 (|:| -2717 |#1|) (|:| -3104 (-567)))) |#1| (-567))) (-15 -2800 ((-645 |#1|) (-645 (-2 (|:| -2717 |#1|) (|:| -3104 (-567)))) (-567))) (-15 -3204 (|#1| |#1| (-567) |#1| (-567)))) (-1245 (-567))) (T -697))
+((-3204 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-697 *2)) (-4 *2 (-1245 *3)))) (-2800 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-2 (|:| -2717 *5) (|:| -3104 (-567))))) (-5 *4 (-567)) (-4 *5 (-1245 *4)) (-5 *2 (-645 *5)) (-5 *1 (-697 *5)))) (-2594 (*1 *2 *3 *4) (-12 (-5 *4 (-567)) (-5 *2 (-645 (-2 (|:| -2717 *3) (|:| -3104 *4)))) (-5 *1 (-697 *3)) (-4 *3 (-1245 *4)))) (-2717 (*1 *2 *3 *4) (-12 (-5 *4 (-567)) (-5 *2 (-645 *3)) (-5 *1 (-697 *3)) (-4 *3 (-1245 *4)))) (-3368 (*1 *2 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-697 *2)) (-4 *2 (-1245 *3)))) (-2785 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-697 *2)) (-4 *2 (-1245 *3)))))
+(-10 -7 (-15 -2785 (|#1| |#1| |#1| (-567))) (-15 -3368 (|#1| |#1| (-567))) (-15 -2717 ((-645 |#1|) |#1| (-567))) (-15 -2594 ((-645 (-2 (|:| -2717 |#1|) (|:| -3104 (-567)))) |#1| (-567))) (-15 -2800 ((-645 |#1|) (-645 (-2 (|:| -2717 |#1|) (|:| -3104 (-567)))) (-567))) (-15 -3204 (|#1| |#1| (-567) |#1| (-567))))
+((-2817 (((-1 (-945 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225) (-225))) 17)) (-3369 (((-1135 (-225)) (-1135 (-225)) (-1 (-945 (-225)) (-225) (-225)) (-1096 (-225)) (-1096 (-225)) (-645 (-264))) 56) (((-1135 (-225)) (-1 (-945 (-225)) (-225) (-225)) (-1096 (-225)) (-1096 (-225)) (-645 (-264))) 58) (((-1135 (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1096 (-225)) (-1096 (-225)) (-645 (-264))) 60)) (-4023 (((-1135 (-225)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1096 (-225)) (-645 (-264))) NIL)) (-1872 (((-1135 (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1096 (-225)) (-1096 (-225)) (-645 (-264))) 61)))
+(((-698) (-10 -7 (-15 -3369 ((-1135 (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1096 (-225)) (-1096 (-225)) (-645 (-264)))) (-15 -3369 ((-1135 (-225)) (-1 (-945 (-225)) (-225) (-225)) (-1096 (-225)) (-1096 (-225)) (-645 (-264)))) (-15 -3369 ((-1135 (-225)) (-1135 (-225)) (-1 (-945 (-225)) (-225) (-225)) (-1096 (-225)) (-1096 (-225)) (-645 (-264)))) (-15 -1872 ((-1135 (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1096 (-225)) (-1096 (-225)) (-645 (-264)))) (-15 -4023 ((-1135 (-225)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1096 (-225)) (-645 (-264)))) (-15 -2817 ((-1 (-945 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225) (-225)))))) (T -698))
+((-2817 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1 (-225) (-225) (-225) (-225))) (-5 *2 (-1 (-945 (-225)) (-225) (-225))) (-5 *1 (-698)))) (-4023 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-317 (-567))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1096 (-225))) (-5 *6 (-645 (-264))) (-5 *2 (-1135 (-225))) (-5 *1 (-698)))) (-1872 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined")) (-5 *5 (-1096 (-225))) (-5 *6 (-645 (-264))) (-5 *2 (-1135 (-225))) (-5 *1 (-698)))) (-3369 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1135 (-225))) (-5 *3 (-1 (-945 (-225)) (-225) (-225))) (-5 *4 (-1096 (-225))) (-5 *5 (-645 (-264))) (-5 *1 (-698)))) (-3369 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-945 (-225)) (-225) (-225))) (-5 *4 (-1096 (-225))) (-5 *5 (-645 (-264))) (-5 *2 (-1135 (-225))) (-5 *1 (-698)))) (-3369 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined")) (-5 *5 (-1096 (-225))) (-5 *6 (-645 (-264))) (-5 *2 (-1135 (-225))) (-5 *1 (-698)))))
+(-10 -7 (-15 -3369 ((-1135 (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1096 (-225)) (-1096 (-225)) (-645 (-264)))) (-15 -3369 ((-1135 (-225)) (-1 (-945 (-225)) (-225) (-225)) (-1096 (-225)) (-1096 (-225)) (-645 (-264)))) (-15 -3369 ((-1135 (-225)) (-1135 (-225)) (-1 (-945 (-225)) (-225) (-225)) (-1096 (-225)) (-1096 (-225)) (-645 (-264)))) (-15 -1872 ((-1135 (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1096 (-225)) (-1096 (-225)) (-645 (-264)))) (-15 -4023 ((-1135 (-225)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1096 (-225)) (-645 (-264)))) (-15 -2817 ((-1 (-945 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225) (-225)))))
+((-2717 (((-421 (-1175 |#4|)) (-1175 |#4|)) 86) (((-421 |#4|) |#4|) 270)))
+(((-699 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2717 ((-421 |#4|) |#4|)) (-15 -2717 ((-421 (-1175 |#4|)) (-1175 |#4|)))) (-851) (-794) (-351) (-951 |#3| |#2| |#1|)) (T -699))
+((-2717 (*1 *2 *3) (-12 (-4 *4 (-851)) (-4 *5 (-794)) (-4 *6 (-351)) (-4 *7 (-951 *6 *5 *4)) (-5 *2 (-421 (-1175 *7))) (-5 *1 (-699 *4 *5 *6 *7)) (-5 *3 (-1175 *7)))) (-2717 (*1 *2 *3) (-12 (-4 *4 (-851)) (-4 *5 (-794)) (-4 *6 (-351)) (-5 *2 (-421 *3)) (-5 *1 (-699 *4 *5 *6 *3)) (-4 *3 (-951 *6 *5 *4)))))
+(-10 -7 (-15 -2717 ((-421 |#4|) |#4|)) (-15 -2717 ((-421 (-1175 |#4|)) (-1175 |#4|))))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) 100)) (-4014 (((-567) $) 34)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-4287 (($ $) NIL)) (-2286 (((-112) $) NIL)) (-3748 (($ $) NIL)) (-2376 (((-3 $ "failed") $ $) NIL)) (-3659 (($ $) NIL)) (-3597 (((-421 $) $) NIL)) (-2728 (($ $) NIL)) (-3696 (((-112) $ $) NIL)) (-2677 (((-567) $) NIL)) (-3647 (($) NIL T CONST)) (-3122 (($ $) NIL)) (-3765 (((-3 (-567) "failed") $) 89) (((-3 (-410 (-567)) "failed") $) 28) (((-3 (-381) "failed") $) 86)) (-2051 (((-567) $) 91) (((-410 (-567)) $) 83) (((-381) $) 84)) (-2357 (($ $ $) 112)) (-3588 (((-3 $ "failed") $) 103)) (-2368 (($ $ $) 111)) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) NIL)) (-3502 (((-112) $) NIL)) (-3745 (((-923)) 93) (((-923) (-923)) 92)) (-3137 (((-112) $) NIL)) (-3193 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL)) (-3362 (((-567) $) NIL)) (-4346 (((-112) $) NIL)) (-3698 (($ $ (-567)) NIL)) (-2724 (($ $) NIL)) (-3465 (((-112) $) NIL)) (-1469 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-3523 (((-567) (-567)) 97) (((-567)) 98)) (-1365 (($ $ $) NIL) (($) NIL (-12 (-1673 (|has| $ (-6 -4405))) (-1673 (|has| $ (-6 -4413)))))) (-3243 (((-567) (-567)) 95) (((-567)) 96)) (-3002 (($ $ $) NIL) (($) NIL (-12 (-1673 (|has| $ (-6 -4405))) (-1673 (|has| $ (-6 -4413)))))) (-2159 (((-567) $) 17)) (-2751 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2516 (((-1161) $) NIL)) (-2949 (($ $) 107)) (-4301 (((-923) (-567)) NIL (|has| $ (-6 -4413)))) (-3437 (((-1122) $) NIL)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-2785 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2554 (($ $) NIL)) (-3969 (($ $) NIL)) (-2335 (($ (-567) (-567)) NIL) (($ (-567) (-567) (-923)) NIL)) (-2717 (((-421 $) $) NIL)) (-2905 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2400 (((-3 $ "failed") $ $) 108)) (-2372 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-3468 (((-567) $) 24)) (-2460 (((-772) $) NIL)) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) 110)) (-2688 (((-923)) NIL) (((-923) (-923)) NIL (|has| $ (-6 -4413)))) (-2935 (((-923) (-567)) NIL (|has| $ (-6 -4413)))) (-3902 (((-381) $) NIL) (((-225) $) NIL) (((-894 (-381)) $) NIL)) (-4129 (((-863) $) 68) (($ (-567)) 79) (($ $) NIL) (($ (-410 (-567))) 82) (($ (-567)) 79) (($ (-410 (-567))) 82) (($ (-381)) 76) (((-381) $) 66) (($ (-702)) 71)) (-2746 (((-772)) 122 T CONST)) (-3131 (($ (-567) (-567) (-923)) 59)) (-1689 (($ $) NIL)) (-3766 (((-923)) NIL) (((-923) (-923)) NIL (|has| $ (-6 -4413)))) (-3357 (((-112) $ $) NIL)) (-3070 (((-923)) 46) (((-923) (-923)) 94)) (-3731 (((-112) $ $) NIL)) (-1547 (($ $) NIL)) (-1733 (($) 37 T CONST)) (-1744 (($) 18 T CONST)) (-3004 (((-112) $ $) NIL)) (-2980 (((-112) $ $) NIL)) (-2946 (((-112) $ $) 99)) (-2993 (((-112) $ $) NIL)) (-2968 (((-112) $ $) 121)) (-3069 (($ $ $) 81)) (-3053 (($ $) 118) (($ $ $) 119)) (-3041 (($ $ $) 117)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL) (($ $ (-410 (-567))) 106)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 113) (($ $ $) 104) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL)))
+(((-700) (-13 (-407) (-390) (-365) (-1040 (-381)) (-1040 (-410 (-567))) (-147) (-10 -8 (-15 -3745 ((-923) (-923))) (-15 -3745 ((-923))) (-15 -3070 ((-923) (-923))) (-15 -3243 ((-567) (-567))) (-15 -3243 ((-567))) (-15 -3523 ((-567) (-567))) (-15 -3523 ((-567))) (-15 -4129 ((-381) $)) (-15 -4129 ($ (-702))) (-15 -2159 ((-567) $)) (-15 -3468 ((-567) $)) (-15 -3131 ($ (-567) (-567) (-923)))))) (T -700))
+((-3468 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-700)))) (-2159 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-700)))) (-3745 (*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-700)))) (-3745 (*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-700)))) (-3070 (*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-700)))) (-3243 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-700)))) (-3243 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-700)))) (-3523 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-700)))) (-3523 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-700)))) (-4129 (*1 *2 *1) (-12 (-5 *2 (-381)) (-5 *1 (-700)))) (-4129 (*1 *1 *2) (-12 (-5 *2 (-702)) (-5 *1 (-700)))) (-3131 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-567)) (-5 *3 (-923)) (-5 *1 (-700)))))
+(-13 (-407) (-390) (-365) (-1040 (-381)) (-1040 (-410 (-567))) (-147) (-10 -8 (-15 -3745 ((-923) (-923))) (-15 -3745 ((-923))) (-15 -3070 ((-923) (-923))) (-15 -3243 ((-567) (-567))) (-15 -3243 ((-567))) (-15 -3523 ((-567) (-567))) (-15 -3523 ((-567))) (-15 -4129 ((-381) $)) (-15 -4129 ($ (-702))) (-15 -2159 ((-567) $)) (-15 -3468 ((-567) $)) (-15 -3131 ($ (-567) (-567) (-923)))))
+((-2613 (((-690 |#1|) (-690 |#1|) |#1| |#1|) 88)) (-2765 (((-690 |#1|) (-690 |#1|) |#1|) 67)) (-1621 (((-690 |#1|) (-690 |#1|) |#1|) 89)) (-1382 (((-690 |#1|) (-690 |#1|)) 68)) (-1565 (((-2 (|:| -2654 |#1|) (|:| -2023 |#1|)) |#1| |#1|) 87)))
+(((-701 |#1|) (-10 -7 (-15 -1382 ((-690 |#1|) (-690 |#1|))) (-15 -2765 ((-690 |#1|) (-690 |#1|) |#1|)) (-15 -1621 ((-690 |#1|) (-690 |#1|) |#1|)) (-15 -2613 ((-690 |#1|) (-690 |#1|) |#1| |#1|)) (-15 -1565 ((-2 (|:| -2654 |#1|) (|:| -2023 |#1|)) |#1| |#1|))) (-308)) (T -701))
+((-1565 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -2654 *3) (|:| -2023 *3))) (-5 *1 (-701 *3)) (-4 *3 (-308)))) (-2613 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-690 *3)) (-4 *3 (-308)) (-5 *1 (-701 *3)))) (-1621 (*1 *2 *2 *3) (-12 (-5 *2 (-690 *3)) (-4 *3 (-308)) (-5 *1 (-701 *3)))) (-2765 (*1 *2 *2 *3) (-12 (-5 *2 (-690 *3)) (-4 *3 (-308)) (-5 *1 (-701 *3)))) (-1382 (*1 *2 *2) (-12 (-5 *2 (-690 *3)) (-4 *3 (-308)) (-5 *1 (-701 *3)))))
+(-10 -7 (-15 -1382 ((-690 |#1|) (-690 |#1|))) (-15 -2765 ((-690 |#1|) (-690 |#1|) |#1|)) (-15 -1621 ((-690 |#1|) (-690 |#1|) |#1|)) (-15 -2613 ((-690 |#1|) (-690 |#1|) |#1| |#1|)) (-15 -1565 ((-2 (|:| -2654 |#1|) (|:| -2023 |#1|)) |#1| |#1|)))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-4287 (($ $) NIL)) (-2286 (((-112) $) NIL)) (-3423 (($ $ $) NIL)) (-2376 (((-3 $ "failed") $ $) NIL)) (-2690 (($ $ $ $) NIL)) (-3659 (($ $) NIL)) (-3597 (((-421 $) $) NIL)) (-3696 (((-112) $ $) NIL)) (-2677 (((-567) $) NIL)) (-4128 (($ $ $) NIL)) (-3647 (($) NIL T CONST)) (-3765 (((-3 (-567) "failed") $) 31)) (-2051 (((-567) $) 29)) (-2357 (($ $ $) NIL)) (-1423 (((-690 (-567)) (-690 $)) NIL) (((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL)) (-3588 (((-3 $ "failed") $) NIL)) (-1605 (((-3 (-410 (-567)) "failed") $) NIL)) (-2492 (((-112) $) NIL)) (-2778 (((-410 (-567)) $) NIL)) (-1359 (($ $) NIL) (($) NIL)) (-2368 (($ $ $) NIL)) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) NIL)) (-3502 (((-112) $) NIL)) (-2171 (($ $ $ $) NIL)) (-1943 (($ $ $) NIL)) (-3137 (((-112) $) NIL)) (-2565 (($ $ $) NIL)) (-3193 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL)) (-4346 (((-112) $) NIL)) (-1904 (((-112) $) NIL)) (-3067 (((-3 $ "failed") $) NIL)) (-3465 (((-112) $) NIL)) (-1469 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4311 (($ $ $ $) NIL)) (-1365 (($ $ $) NIL)) (-2804 (((-923) (-923)) 10) (((-923)) 9)) (-3002 (($ $ $) NIL)) (-1459 (($ $) NIL)) (-2334 (($ $) NIL)) (-2751 (($ (-645 $)) NIL) (($ $ $) NIL)) (-2516 (((-1161) $) NIL)) (-4088 (($ $ $) NIL)) (-2694 (($) NIL T CONST)) (-2307 (($ $) NIL)) (-3437 (((-1122) $) NIL)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-2785 (($ (-645 $)) NIL) (($ $ $) NIL)) (-1345 (($ $) NIL)) (-2717 (((-421 $) $) NIL)) (-2905 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2400 (((-3 $ "failed") $ $) NIL)) (-2372 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2795 (((-112) $) NIL)) (-2460 (((-772) $) NIL)) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) NIL)) (-1616 (($ $) NIL) (($ $ (-772)) NIL)) (-1699 (($ $) NIL)) (-4309 (($ $) NIL)) (-3902 (((-225) $) NIL) (((-381) $) NIL) (((-894 (-567)) $) NIL) (((-539) $) NIL) (((-567) $) NIL)) (-4129 (((-863) $) NIL) (($ (-567)) 28) (($ $) NIL) (($ (-567)) 28) (((-317 $) (-317 (-567))) 18)) (-2746 (((-772)) NIL T CONST)) (-4147 (((-112) $ $) NIL)) (-2708 (($ $ $) NIL)) (-3357 (((-112) $ $) NIL)) (-3070 (($) NIL)) (-3731 (((-112) $ $) NIL)) (-3627 (($ $ $ $) NIL)) (-1547 (($ $) NIL)) (-1733 (($) NIL T CONST)) (-1744 (($) NIL T CONST)) (-2647 (($ $) NIL) (($ $ (-772)) NIL)) (-3004 (((-112) $ $) NIL)) (-2980 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2993 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL)))
+(((-702) (-13 (-390) (-548) (-10 -8 (-15 -2804 ((-923) (-923))) (-15 -2804 ((-923))) (-15 -4129 ((-317 $) (-317 (-567))))))) (T -702))
+((-2804 (*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-702)))) (-2804 (*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-702)))) (-4129 (*1 *2 *3) (-12 (-5 *3 (-317 (-567))) (-5 *2 (-317 (-702))) (-5 *1 (-702)))))
+(-13 (-390) (-548) (-10 -8 (-15 -2804 ((-923) (-923))) (-15 -2804 ((-923))) (-15 -4129 ((-317 $) (-317 (-567))))))
+((-1498 (((-1 |#4| |#2| |#3|) |#1| (-1179) (-1179)) 19)) (-4258 (((-1 |#4| |#2| |#3|) (-1179)) 12)))
+(((-703 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4258 ((-1 |#4| |#2| |#3|) (-1179))) (-15 -1498 ((-1 |#4| |#2| |#3|) |#1| (-1179) (-1179)))) (-615 (-539)) (-1219) (-1219) (-1219)) (T -703))
+((-1498 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1179)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-703 *3 *5 *6 *7)) (-4 *3 (-615 (-539))) (-4 *5 (-1219)) (-4 *6 (-1219)) (-4 *7 (-1219)))) (-4258 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-703 *4 *5 *6 *7)) (-4 *4 (-615 (-539))) (-4 *5 (-1219)) (-4 *6 (-1219)) (-4 *7 (-1219)))))
+(-10 -7 (-15 -4258 ((-1 |#4| |#2| |#3|) (-1179))) (-15 -1498 ((-1 |#4| |#2| |#3|) |#1| (-1179) (-1179))))
+((-4231 (((-1 (-225) (-225) (-225)) |#1| (-1179) (-1179)) 43) (((-1 (-225) (-225)) |#1| (-1179)) 48)))
+(((-704 |#1|) (-10 -7 (-15 -4231 ((-1 (-225) (-225)) |#1| (-1179))) (-15 -4231 ((-1 (-225) (-225) (-225)) |#1| (-1179) (-1179)))) (-615 (-539))) (T -704))
+((-4231 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1179)) (-5 *2 (-1 (-225) (-225) (-225))) (-5 *1 (-704 *3)) (-4 *3 (-615 (-539))))) (-4231 (*1 *2 *3 *4) (-12 (-5 *4 (-1179)) (-5 *2 (-1 (-225) (-225))) (-5 *1 (-704 *3)) (-4 *3 (-615 (-539))))))
+(-10 -7 (-15 -4231 ((-1 (-225) (-225)) |#1| (-1179))) (-15 -4231 ((-1 (-225) (-225) (-225)) |#1| (-1179) (-1179))))
+((-2624 (((-1179) |#1| (-1179) (-645 (-1179))) 10) (((-1179) |#1| (-1179) (-1179) (-1179)) 13) (((-1179) |#1| (-1179) (-1179)) 12) (((-1179) |#1| (-1179)) 11)))
+(((-705 |#1|) (-10 -7 (-15 -2624 ((-1179) |#1| (-1179))) (-15 -2624 ((-1179) |#1| (-1179) (-1179))) (-15 -2624 ((-1179) |#1| (-1179) (-1179) (-1179))) (-15 -2624 ((-1179) |#1| (-1179) (-645 (-1179))))) (-615 (-539))) (T -705))
+((-2624 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-645 (-1179))) (-5 *2 (-1179)) (-5 *1 (-705 *3)) (-4 *3 (-615 (-539))))) (-2624 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-705 *3)) (-4 *3 (-615 (-539))))) (-2624 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-705 *3)) (-4 *3 (-615 (-539))))) (-2624 (*1 *2 *3 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-705 *3)) (-4 *3 (-615 (-539))))))
+(-10 -7 (-15 -2624 ((-1179) |#1| (-1179))) (-15 -2624 ((-1179) |#1| (-1179) (-1179))) (-15 -2624 ((-1179) |#1| (-1179) (-1179) (-1179))) (-15 -2624 ((-1179) |#1| (-1179) (-645 (-1179)))))
+((-3413 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9)))
+(((-706 |#1| |#2|) (-10 -7 (-15 -3413 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1219) (-1219)) (T -706))
+((-3413 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-706 *3 *4)) (-4 *3 (-1219)) (-4 *4 (-1219)))))
+(-10 -7 (-15 -3413 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|)))
+((-3358 (((-1 |#3| |#2|) (-1179)) 11)) (-1498 (((-1 |#3| |#2|) |#1| (-1179)) 21)))
+(((-707 |#1| |#2| |#3|) (-10 -7 (-15 -3358 ((-1 |#3| |#2|) (-1179))) (-15 -1498 ((-1 |#3| |#2|) |#1| (-1179)))) (-615 (-539)) (-1219) (-1219)) (T -707))
+((-1498 (*1 *2 *3 *4) (-12 (-5 *4 (-1179)) (-5 *2 (-1 *6 *5)) (-5 *1 (-707 *3 *5 *6)) (-4 *3 (-615 (-539))) (-4 *5 (-1219)) (-4 *6 (-1219)))) (-3358 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1 *6 *5)) (-5 *1 (-707 *4 *5 *6)) (-4 *4 (-615 (-539))) (-4 *5 (-1219)) (-4 *6 (-1219)))))
+(-10 -7 (-15 -3358 ((-1 |#3| |#2|) (-1179))) (-15 -1498 ((-1 |#3| |#2|) |#1| (-1179))))
+((-1511 (((-3 (-645 (-1175 |#4|)) "failed") (-1175 |#4|) (-645 |#2|) (-645 (-1175 |#4|)) (-645 |#3|) (-645 |#4|) (-645 (-645 (-2 (|:| -3694 (-772)) (|:| |pcoef| |#4|)))) (-645 (-772)) (-1269 (-645 (-1175 |#3|))) |#3|) 95)) (-2351 (((-3 (-645 (-1175 |#4|)) "failed") (-1175 |#4|) (-645 |#2|) (-645 (-1175 |#3|)) (-645 |#3|) (-645 |#4|) (-645 (-772)) |#3|) 113)) (-3456 (((-3 (-645 (-1175 |#4|)) "failed") (-1175 |#4|) (-645 |#2|) (-645 |#3|) (-645 (-772)) (-645 (-1175 |#4|)) (-1269 (-645 (-1175 |#3|))) |#3|) 47)))
+(((-708 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3456 ((-3 (-645 (-1175 |#4|)) "failed") (-1175 |#4|) (-645 |#2|) (-645 |#3|) (-645 (-772)) (-645 (-1175 |#4|)) (-1269 (-645 (-1175 |#3|))) |#3|)) (-15 -2351 ((-3 (-645 (-1175 |#4|)) "failed") (-1175 |#4|) (-645 |#2|) (-645 (-1175 |#3|)) (-645 |#3|) (-645 |#4|) (-645 (-772)) |#3|)) (-15 -1511 ((-3 (-645 (-1175 |#4|)) "failed") (-1175 |#4|) (-645 |#2|) (-645 (-1175 |#4|)) (-645 |#3|) (-645 |#4|) (-645 (-645 (-2 (|:| -3694 (-772)) (|:| |pcoef| |#4|)))) (-645 (-772)) (-1269 (-645 (-1175 |#3|))) |#3|))) (-794) (-851) (-308) (-951 |#3| |#1| |#2|)) (T -708))
+((-1511 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-645 (-1175 *13))) (-5 *3 (-1175 *13)) (-5 *4 (-645 *12)) (-5 *5 (-645 *10)) (-5 *6 (-645 *13)) (-5 *7 (-645 (-645 (-2 (|:| -3694 (-772)) (|:| |pcoef| *13))))) (-5 *8 (-645 (-772))) (-5 *9 (-1269 (-645 (-1175 *10)))) (-4 *12 (-851)) (-4 *10 (-308)) (-4 *13 (-951 *10 *11 *12)) (-4 *11 (-794)) (-5 *1 (-708 *11 *12 *10 *13)))) (-2351 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-645 *11)) (-5 *5 (-645 (-1175 *9))) (-5 *6 (-645 *9)) (-5 *7 (-645 *12)) (-5 *8 (-645 (-772))) (-4 *11 (-851)) (-4 *9 (-308)) (-4 *12 (-951 *9 *10 *11)) (-4 *10 (-794)) (-5 *2 (-645 (-1175 *12))) (-5 *1 (-708 *10 *11 *9 *12)) (-5 *3 (-1175 *12)))) (-3456 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-645 (-1175 *11))) (-5 *3 (-1175 *11)) (-5 *4 (-645 *10)) (-5 *5 (-645 *8)) (-5 *6 (-645 (-772))) (-5 *7 (-1269 (-645 (-1175 *8)))) (-4 *10 (-851)) (-4 *8 (-308)) (-4 *11 (-951 *8 *9 *10)) (-4 *9 (-794)) (-5 *1 (-708 *9 *10 *8 *11)))))
+(-10 -7 (-15 -3456 ((-3 (-645 (-1175 |#4|)) "failed") (-1175 |#4|) (-645 |#2|) (-645 |#3|) (-645 (-772)) (-645 (-1175 |#4|)) (-1269 (-645 (-1175 |#3|))) |#3|)) (-15 -2351 ((-3 (-645 (-1175 |#4|)) "failed") (-1175 |#4|) (-645 |#2|) (-645 (-1175 |#3|)) (-645 |#3|) (-645 |#4|) (-645 (-772)) |#3|)) (-15 -1511 ((-3 (-645 (-1175 |#4|)) "failed") (-1175 |#4|) (-645 |#2|) (-645 (-1175 |#4|)) (-645 |#3|) (-645 |#4|) (-645 (-645 (-2 (|:| -3694 (-772)) (|:| |pcoef| |#4|)))) (-645 (-772)) (-1269 (-645 (-1175 |#3|))) |#3|)))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-2376 (((-3 $ "failed") $ $) 20)) (-3647 (($) 18 T CONST)) (-3023 (($ $) 48)) (-3588 (((-3 $ "failed") $) 37)) (-4346 (((-112) $) 35)) (-2836 (($ |#1| (-772)) 46)) (-2955 (((-772) $) 50)) (-2996 ((|#1| $) 49)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-3104 (((-772) $) 51)) (-4129 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 45 (|has| |#1| (-172)))) (-2558 ((|#1| $ (-772)) 47)) (-2746 (((-772)) 32 T CONST)) (-3357 (((-112) $ $) 9)) (-1733 (($) 19 T CONST)) (-1744 (($) 34 T CONST)) (-2946 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 53) (($ |#1| $) 52)))
(((-709 |#1|) (-140) (-1051)) (T -709))
-((-3077 (*1 *2 *1) (-12 (-4 *1 (-709 *3)) (-4 *3 (-1051)) (-5 *2 (-772)))) (-2656 (*1 *2 *1) (-12 (-4 *1 (-709 *3)) (-4 *3 (-1051)) (-5 *2 (-772)))) (-2989 (*1 *2 *1) (-12 (-4 *1 (-709 *2)) (-4 *2 (-1051)))) (-3014 (*1 *1 *1) (-12 (-4 *1 (-709 *2)) (-4 *2 (-1051)))) (-4136 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-4 *1 (-709 *2)) (-4 *2 (-1051)))) (-2824 (*1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-709 *2)) (-4 *2 (-1051)))))
-(-13 (-1051) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -3077 ((-772) $)) (-15 -2656 ((-772) $)) (-15 -2989 (|t#1| $)) (-15 -3014 ($ $)) (-15 -4136 (|t#1| $ (-772))) (-15 -2824 ($ |t#1| (-772)))))
+((-3104 (*1 *2 *1) (-12 (-4 *1 (-709 *3)) (-4 *3 (-1051)) (-5 *2 (-772)))) (-2955 (*1 *2 *1) (-12 (-4 *1 (-709 *3)) (-4 *3 (-1051)) (-5 *2 (-772)))) (-2996 (*1 *2 *1) (-12 (-4 *1 (-709 *2)) (-4 *2 (-1051)))) (-3023 (*1 *1 *1) (-12 (-4 *1 (-709 *2)) (-4 *2 (-1051)))) (-2558 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-4 *1 (-709 *2)) (-4 *2 (-1051)))) (-2836 (*1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-709 *2)) (-4 *2 (-1051)))))
+(-13 (-1051) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -3104 ((-772) $)) (-15 -2955 ((-772) $)) (-15 -2996 (|t#1| $)) (-15 -3023 ($ $)) (-15 -2558 (|t#1| $ (-772))) (-15 -2836 ($ |t#1| (-772)))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-617 (-567)) . T) ((-617 |#1|) |has| |#1| (-172)) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-641 |#1|) |has| |#1| (-172)) ((-718 |#1|) |has| |#1| (-172)) ((-727) . T) ((-1053 |#1|) . T) ((-1058 |#1|) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T))
-((-3829 ((|#6| (-1 |#4| |#1|) |#3|) 23)))
-(((-710 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3829 (|#6| (-1 |#4| |#1|) |#3|))) (-559) (-1244 |#1|) (-1244 (-410 |#2|)) (-559) (-1244 |#4|) (-1244 (-410 |#5|))) (T -710))
-((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-559)) (-4 *7 (-559)) (-4 *6 (-1244 *5)) (-4 *2 (-1244 (-410 *8))) (-5 *1 (-710 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1244 (-410 *6))) (-4 *8 (-1244 *7)))))
-(-10 -7 (-15 -3829 (|#6| (-1 |#4| |#1|) |#3|)))
-((-2403 (((-112) $ $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-1730 (((-1160) (-863)) 39)) (-4022 (((-1273) (-1160)) 32)) (-1378 (((-1160) (-863)) 28)) (-2362 (((-1160) (-863)) 29)) (-4132 (((-863) $) NIL) (((-1160) (-863)) 27)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)))
-(((-711) (-13 (-1102) (-10 -7 (-15 -4132 ((-1160) (-863))) (-15 -1378 ((-1160) (-863))) (-15 -2362 ((-1160) (-863))) (-15 -1730 ((-1160) (-863))) (-15 -4022 ((-1273) (-1160)))))) (T -711))
-((-4132 (*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1160)) (-5 *1 (-711)))) (-1378 (*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1160)) (-5 *1 (-711)))) (-2362 (*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1160)) (-5 *1 (-711)))) (-1730 (*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1160)) (-5 *1 (-711)))) (-4022 (*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-711)))))
-(-13 (-1102) (-10 -7 (-15 -4132 ((-1160) (-863))) (-15 -1378 ((-1160) (-863))) (-15 -2362 ((-1160) (-863))) (-15 -1730 ((-1160) (-863))) (-15 -4022 ((-1273) (-1160)))))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-3248 (($ $) NIL)) (-2908 (((-421 $) $) NIL)) (-3609 (((-112) $ $) NIL)) (-2585 (($) NIL T CONST)) (-2349 (($ $ $) NIL)) (-2477 (($ |#1| |#2|) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-2360 (($ $ $) NIL)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-3184 (((-112) $) NIL)) (-1433 (((-112) $) NIL)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2211 ((|#2| $) NIL)) (-2740 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) NIL)) (-3430 (((-1122) $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-2774 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2706 (((-421 $) $) NIL)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2391 (((-3 $ "failed") $ $) NIL)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1771 (((-3 $ "failed") $ $) NIL)) (-1990 (((-772) $) NIL)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL)) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) ((|#1| $) NIL)) (-4221 (((-772)) NIL T CONST)) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL)) (-1716 (($) NIL T CONST)) (-1728 (($) NIL T CONST)) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ $) NIL)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL)))
-(((-712 |#1| |#2| |#3| |#4| |#5|) (-13 (-365) (-10 -8 (-15 -2211 (|#2| $)) (-15 -4132 (|#1| $)) (-15 -2477 ($ |#1| |#2|)) (-15 -1771 ((-3 $ "failed") $ $)))) (-172) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -712))
-((-2211 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-712 *3 *2 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-4132 (*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-712 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2477 (*1 *1 *2 *3) (-12 (-5 *1 (-712 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1771 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-712 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(-13 (-365) (-10 -8 (-15 -2211 (|#2| $)) (-15 -4132 (|#1| $)) (-15 -2477 ($ |#1| |#2|)) (-15 -1771 ((-3 $ "failed") $ $))))
-((-2403 (((-112) $ $) 92)) (-2460 (((-112) $) 36)) (-4199 (((-1268 |#1|) $ (-772)) NIL)) (-2847 (((-645 (-1084)) $) NIL)) (-2703 (($ (-1174 |#1|)) NIL)) (-2675 (((-1174 $) $ (-1084)) NIL) (((-1174 |#1|) $) NIL)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-4381 (($ $) NIL (|has| |#1| (-559)))) (-3949 (((-112) $) NIL (|has| |#1| (-559)))) (-1468 (((-772) $) NIL) (((-772) $ (-645 (-1084))) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2323 (($ $ $) NIL (|has| |#1| (-559)))) (-4226 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-911)))) (-3248 (($ $) NIL (|has| |#1| (-455)))) (-2908 (((-421 $) $) NIL (|has| |#1| (-455)))) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-911)))) (-3609 (((-112) $ $) NIL (|has| |#1| (-365)))) (-2375 (((-772)) 56 (|has| |#1| (-370)))) (-1516 (($ $ (-772)) NIL)) (-3993 (($ $ (-772)) NIL)) (-2126 ((|#2| |#2|) 52)) (-2743 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-455)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 |#1| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-1084) "failed") $) NIL)) (-2038 ((|#1| $) NIL) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-1084) $) NIL)) (-2951 (($ $ $ (-1084)) NIL (|has| |#1| (-172))) ((|#1| $ $) NIL (|has| |#1| (-172)))) (-2349 (($ $ $) NIL (|has| |#1| (-365)))) (-3014 (($ $) 40)) (-2630 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 |#1|)) (|:| |vec| (-1268 |#1|))) (-690 $) (-1268 $)) NIL) (((-690 |#1|) (-690 $)) NIL)) (-2477 (($ |#2|) 50)) (-2109 (((-3 $ "failed") $) 102)) (-1348 (($) 61 (|has| |#1| (-370)))) (-2360 (($ $ $) NIL (|has| |#1| (-365)))) (-1629 (($ $ $) NIL)) (-1946 (($ $ $) NIL (|has| |#1| (-559)))) (-3708 (((-2 (|:| -3694 |#1|) (|:| -3102 $) (|:| -4194 $)) $ $) NIL (|has| |#1| (-559)))) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-3501 (($ $) NIL (|has| |#1| (-455))) (($ $ (-1084)) NIL (|has| |#1| (-455)))) (-3000 (((-645 $) $) NIL)) (-3184 (((-112) $) NIL (|has| |#1| (-911)))) (-2625 (((-960 $)) 94)) (-2320 (($ $ |#1| (-772) $) NIL)) (-4303 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (-12 (|has| (-1084) (-888 (-381))) (|has| |#1| (-888 (-381))))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (-12 (|has| (-1084) (-888 (-567))) (|has| |#1| (-888 (-567)))))) (-4384 (((-772) $ $) NIL (|has| |#1| (-559)))) (-1433 (((-112) $) NIL)) (-2695 (((-772) $) NIL)) (-3972 (((-3 $ "failed") $) NIL (|has| |#1| (-1153)))) (-2836 (($ (-1174 |#1|) (-1084)) NIL) (($ (-1174 $) (-1084)) NIL)) (-3807 (($ $ (-772)) NIL)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-1709 (((-645 $) $) NIL)) (-2843 (((-112) $) NIL)) (-2824 (($ |#1| (-772)) 88) (($ $ (-1084) (-772)) NIL) (($ $ (-645 (-1084)) (-645 (-772))) NIL)) (-1621 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $ (-1084)) NIL) (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL)) (-2211 ((|#2|) 53)) (-2656 (((-772) $) NIL) (((-772) $ (-1084)) NIL) (((-645 (-772)) $ (-645 (-1084))) NIL)) (-3273 (($ (-1 (-772) (-772)) $) NIL)) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-1647 (((-1174 |#1|) $) NIL)) (-3046 (((-3 (-1084) "failed") $) NIL)) (-4249 (((-923) $) NIL (|has| |#1| (-370)))) (-2465 ((|#2| $) 49)) (-2976 (($ $) NIL)) (-2989 ((|#1| $) 34)) (-2740 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-1419 (((-1160) $) NIL)) (-3139 (((-2 (|:| -3102 $) (|:| -4194 $)) $ (-772)) NIL)) (-2056 (((-3 (-645 $) "failed") $) NIL)) (-3671 (((-3 (-645 $) "failed") $) NIL)) (-3798 (((-3 (-2 (|:| |var| (-1084)) (|:| -3458 (-772))) "failed") $) NIL)) (-2416 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2672 (($) NIL (|has| |#1| (-1153)) CONST)) (-3768 (($ (-923)) NIL (|has| |#1| (-370)))) (-3430 (((-1122) $) NIL)) (-2949 (((-112) $) NIL)) (-2962 ((|#1| $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#1| (-455)))) (-2774 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-4031 (($ $) 93 (|has| |#1| (-351)))) (-2435 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-911)))) (-3517 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-911)))) (-2706 (((-421 $) $) NIL (|has| |#1| (-911)))) (-3402 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL (|has| |#1| (-365)))) (-2391 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559))) (((-3 $ "failed") $ $) 101 (|has| |#1| (-559)))) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-2631 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-1084) |#1|) NIL) (($ $ (-645 (-1084)) (-645 |#1|)) NIL) (($ $ (-1084) $) NIL) (($ $ (-645 (-1084)) (-645 $)) NIL)) (-1990 (((-772) $) NIL (|has| |#1| (-365)))) (-1787 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-410 $) (-410 $) (-410 $)) NIL (|has| |#1| (-559))) ((|#1| (-410 $) |#1|) NIL (|has| |#1| (-365))) (((-410 $) $ (-410 $)) NIL (|has| |#1| (-559)))) (-3997 (((-3 $ "failed") $ (-772)) NIL)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 103 (|has| |#1| (-365)))) (-3788 (($ $ (-1084)) NIL (|has| |#1| (-172))) ((|#1| $) NIL (|has| |#1| (-172)))) (-1593 (($ $ (-1084)) NIL) (($ $ (-645 (-1084))) NIL) (($ $ (-1084) (-772)) NIL) (($ $ (-645 (-1084)) (-645 (-772))) NIL) (($ $ (-772)) NIL) (($ $) NIL) (($ $ (-1178)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3077 (((-772) $) 38) (((-772) $ (-1084)) NIL) (((-645 (-772)) $ (-645 (-1084))) NIL)) (-3893 (((-894 (-381)) $) NIL (-12 (|has| (-1084) (-615 (-894 (-381)))) (|has| |#1| (-615 (-894 (-381)))))) (((-894 (-567)) $) NIL (-12 (|has| (-1084) (-615 (-894 (-567)))) (|has| |#1| (-615 (-894 (-567)))))) (((-539) $) NIL (-12 (|has| (-1084) (-615 (-539))) (|has| |#1| (-615 (-539)))))) (-4358 ((|#1| $) NIL (|has| |#1| (-455))) (($ $ (-1084)) NIL (|has| |#1| (-455)))) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-911))))) (-3791 (((-960 $)) 42)) (-2159 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559))) (((-3 (-410 $) "failed") (-410 $) $) NIL (|has| |#1| (-559)))) (-4132 (((-863) $) 71) (($ (-567)) NIL) (($ |#1|) 68) (($ (-1084)) NIL) (($ |#2|) 78) (($ (-410 (-567))) NIL (-2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567)))))) (($ $) NIL (|has| |#1| (-559)))) (-3032 (((-645 |#1|) $) NIL)) (-4136 ((|#1| $ (-772)) 73) (($ $ (-1084) (-772)) NIL) (($ $ (-645 (-1084)) (-645 (-772))) NIL)) (-1903 (((-3 $ "failed") $) NIL (-2800 (-12 (|has| $ (-145)) (|has| |#1| (-911))) (|has| |#1| (-145))))) (-4221 (((-772)) NIL T CONST)) (-4176 (($ $ $ (-772)) NIL (|has| |#1| (-172)))) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1716 (($) 25 T CONST)) (-1871 (((-1268 |#1|) $) 86)) (-3965 (($ (-1268 |#1|)) 60)) (-1728 (($) 8 T CONST)) (-2637 (($ $ (-1084)) NIL) (($ $ (-645 (-1084))) NIL) (($ $ (-1084) (-772)) NIL) (($ $ (-645 (-1084)) (-645 (-772))) NIL) (($ $ (-772)) NIL) (($ $) NIL) (($ $ (-1178)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3710 (((-1268 |#1|) $) NIL)) (-2936 (((-112) $ $) 79)) (-3060 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3045 (($ $) 82) (($ $ $) NIL)) (-3033 (($ $ $) 39)) (** (($ $ (-923)) NIL) (($ $ (-772)) 97)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 67) (($ $ $) 85) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) 65) (($ $ |#1|) NIL)))
-(((-713 |#1| |#2|) (-13 (-1244 |#1|) (-617 |#2|) (-10 -8 (-15 -2126 (|#2| |#2|)) (-15 -2211 (|#2|)) (-15 -2477 ($ |#2|)) (-15 -2465 (|#2| $)) (-15 -1871 ((-1268 |#1|) $)) (-15 -3965 ($ (-1268 |#1|))) (-15 -3710 ((-1268 |#1|) $)) (-15 -2625 ((-960 $))) (-15 -3791 ((-960 $))) (IF (|has| |#1| (-351)) (-15 -4031 ($ $)) |%noBranch|) (IF (|has| |#1| (-370)) (-6 (-370)) |%noBranch|))) (-1051) (-1244 |#1|)) (T -713))
-((-2126 (*1 *2 *2) (-12 (-4 *3 (-1051)) (-5 *1 (-713 *3 *2)) (-4 *2 (-1244 *3)))) (-2211 (*1 *2) (-12 (-4 *2 (-1244 *3)) (-5 *1 (-713 *3 *2)) (-4 *3 (-1051)))) (-2477 (*1 *1 *2) (-12 (-4 *3 (-1051)) (-5 *1 (-713 *3 *2)) (-4 *2 (-1244 *3)))) (-2465 (*1 *2 *1) (-12 (-4 *2 (-1244 *3)) (-5 *1 (-713 *3 *2)) (-4 *3 (-1051)))) (-1871 (*1 *2 *1) (-12 (-4 *3 (-1051)) (-5 *2 (-1268 *3)) (-5 *1 (-713 *3 *4)) (-4 *4 (-1244 *3)))) (-3965 (*1 *1 *2) (-12 (-5 *2 (-1268 *3)) (-4 *3 (-1051)) (-5 *1 (-713 *3 *4)) (-4 *4 (-1244 *3)))) (-3710 (*1 *2 *1) (-12 (-4 *3 (-1051)) (-5 *2 (-1268 *3)) (-5 *1 (-713 *3 *4)) (-4 *4 (-1244 *3)))) (-2625 (*1 *2) (-12 (-4 *3 (-1051)) (-5 *2 (-960 (-713 *3 *4))) (-5 *1 (-713 *3 *4)) (-4 *4 (-1244 *3)))) (-3791 (*1 *2) (-12 (-4 *3 (-1051)) (-5 *2 (-960 (-713 *3 *4))) (-5 *1 (-713 *3 *4)) (-4 *4 (-1244 *3)))) (-4031 (*1 *1 *1) (-12 (-4 *2 (-351)) (-4 *2 (-1051)) (-5 *1 (-713 *2 *3)) (-4 *3 (-1244 *2)))))
-(-13 (-1244 |#1|) (-617 |#2|) (-10 -8 (-15 -2126 (|#2| |#2|)) (-15 -2211 (|#2|)) (-15 -2477 ($ |#2|)) (-15 -2465 (|#2| $)) (-15 -1871 ((-1268 |#1|) $)) (-15 -3965 ($ (-1268 |#1|))) (-15 -3710 ((-1268 |#1|) $)) (-15 -2625 ((-960 $))) (-15 -3791 ((-960 $))) (IF (|has| |#1| (-351)) (-15 -4031 ($ $)) |%noBranch|) (IF (|has| |#1| (-370)) (-6 (-370)) |%noBranch|)))
-((-2403 (((-112) $ $) NIL)) (-1354 (($ $ $) NIL)) (-2981 (($ $ $) NIL)) (-1419 (((-1160) $) NIL)) (-3768 ((|#1| $) 13)) (-3430 (((-1122) $) NIL)) (-3458 ((|#2| $) 12)) (-4147 (($ |#1| |#2|) 16)) (-4132 (((-863) $) NIL) (($ (-2 (|:| -3768 |#1|) (|:| -3458 |#2|))) 15) (((-2 (|:| -3768 |#1|) (|:| -3458 |#2|)) $) 14)) (-1745 (((-112) $ $) NIL)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) 11)))
-(((-714 |#1| |#2| |#3|) (-13 (-851) (-493 (-2 (|:| -3768 |#1|) (|:| -3458 |#2|))) (-10 -8 (-15 -3458 (|#2| $)) (-15 -3768 (|#1| $)) (-15 -4147 ($ |#1| |#2|)))) (-851) (-1102) (-1 (-112) (-2 (|:| -3768 |#1|) (|:| -3458 |#2|)) (-2 (|:| -3768 |#1|) (|:| -3458 |#2|)))) (T -714))
-((-3458 (*1 *2 *1) (-12 (-4 *2 (-1102)) (-5 *1 (-714 *3 *2 *4)) (-4 *3 (-851)) (-14 *4 (-1 (-112) (-2 (|:| -3768 *3) (|:| -3458 *2)) (-2 (|:| -3768 *3) (|:| -3458 *2)))))) (-3768 (*1 *2 *1) (-12 (-4 *2 (-851)) (-5 *1 (-714 *2 *3 *4)) (-4 *3 (-1102)) (-14 *4 (-1 (-112) (-2 (|:| -3768 *2) (|:| -3458 *3)) (-2 (|:| -3768 *2) (|:| -3458 *3)))))) (-4147 (*1 *1 *2 *3) (-12 (-5 *1 (-714 *2 *3 *4)) (-4 *2 (-851)) (-4 *3 (-1102)) (-14 *4 (-1 (-112) (-2 (|:| -3768 *2) (|:| -3458 *3)) (-2 (|:| -3768 *2) (|:| -3458 *3)))))))
-(-13 (-851) (-493 (-2 (|:| -3768 |#1|) (|:| -3458 |#2|))) (-10 -8 (-15 -3458 (|#2| $)) (-15 -3768 (|#1| $)) (-15 -4147 ($ |#1| |#2|))))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) 66)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2585 (($) NIL T CONST)) (-3753 (((-3 |#1| "failed") $) 105) (((-3 (-114) "failed") $) 111)) (-2038 ((|#1| $) NIL) (((-114) $) 39)) (-2109 (((-3 $ "failed") $) 106)) (-1929 ((|#2| (-114) |#2|) 93)) (-1433 (((-112) $) NIL)) (-2371 (($ |#1| (-363 (-114))) 14)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-1361 (($ $ (-1 |#2| |#2|)) 65)) (-3456 (($ $ (-1 |#2| |#2|)) 44)) (-1787 ((|#2| $ |#2|) 33)) (-2665 ((|#1| |#1|) 121 (|has| |#1| (-172)))) (-4132 (((-863) $) 73) (($ (-567)) 18) (($ |#1|) 17) (($ (-114)) 23)) (-1903 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-4221 (((-772)) 37 T CONST)) (-1745 (((-112) $ $) NIL)) (-2974 (($ $) 115 (|has| |#1| (-172))) (($ $ $) 119 (|has| |#1| (-172)))) (-1716 (($) 21 T CONST)) (-1728 (($) 9 T CONST)) (-2936 (((-112) $ $) NIL)) (-3045 (($ $) 48) (($ $ $) NIL)) (-3033 (($ $ $) 83)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ (-114) (-567)) NIL) (($ $ (-567)) 64)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 114) (($ $ $) 53) (($ |#1| $) 112 (|has| |#1| (-172))) (($ $ |#1|) 113 (|has| |#1| (-172)))))
-(((-715 |#1| |#2|) (-13 (-1051) (-1040 |#1|) (-1040 (-114)) (-287 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -2974 ($ $)) (-15 -2974 ($ $ $)) (-15 -2665 (|#1| |#1|))) |%noBranch|) (-15 -3456 ($ $ (-1 |#2| |#2|))) (-15 -1361 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-567))) (-15 ** ($ $ (-567))) (-15 -1929 (|#2| (-114) |#2|)) (-15 -2371 ($ |#1| (-363 (-114)))))) (-1051) (-649 |#1|)) (T -715))
-((-2974 (*1 *1 *1) (-12 (-4 *2 (-172)) (-4 *2 (-1051)) (-5 *1 (-715 *2 *3)) (-4 *3 (-649 *2)))) (-2974 (*1 *1 *1 *1) (-12 (-4 *2 (-172)) (-4 *2 (-1051)) (-5 *1 (-715 *2 *3)) (-4 *3 (-649 *2)))) (-2665 (*1 *2 *2) (-12 (-4 *2 (-172)) (-4 *2 (-1051)) (-5 *1 (-715 *2 *3)) (-4 *3 (-649 *2)))) (-3456 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-649 *3)) (-4 *3 (-1051)) (-5 *1 (-715 *3 *4)))) (-1361 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-649 *3)) (-4 *3 (-1051)) (-5 *1 (-715 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-567)) (-4 *4 (-1051)) (-5 *1 (-715 *4 *5)) (-4 *5 (-649 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *3 (-1051)) (-5 *1 (-715 *3 *4)) (-4 *4 (-649 *3)))) (-1929 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-4 *4 (-1051)) (-5 *1 (-715 *4 *2)) (-4 *2 (-649 *4)))) (-2371 (*1 *1 *2 *3) (-12 (-5 *3 (-363 (-114))) (-4 *2 (-1051)) (-5 *1 (-715 *2 *4)) (-4 *4 (-649 *2)))))
-(-13 (-1051) (-1040 |#1|) (-1040 (-114)) (-287 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -2974 ($ $)) (-15 -2974 ($ $ $)) (-15 -2665 (|#1| |#1|))) |%noBranch|) (-15 -3456 ($ $ (-1 |#2| |#2|))) (-15 -1361 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-567))) (-15 ** ($ $ (-567))) (-15 -1929 (|#2| (-114) |#2|)) (-15 -2371 ($ |#1| (-363 (-114))))))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) 33)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2585 (($) NIL T CONST)) (-2477 (($ |#1| |#2|) 25)) (-2109 (((-3 $ "failed") $) 51)) (-1433 (((-112) $) 35)) (-2211 ((|#2| $) 12)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) 52)) (-3430 (((-1122) $) NIL)) (-1771 (((-3 $ "failed") $ $) 50)) (-4132 (((-863) $) 24) (($ (-567)) 19) ((|#1| $) 13)) (-4221 (((-772)) 28 T CONST)) (-1745 (((-112) $ $) NIL)) (-1716 (($) 16 T CONST)) (-1728 (($) 30 T CONST)) (-2936 (((-112) $ $) 41)) (-3045 (($ $) 46) (($ $ $) 40)) (-3033 (($ $ $) 43)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 21) (($ $ $) 20)))
-(((-716 |#1| |#2| |#3| |#4| |#5|) (-13 (-1051) (-10 -8 (-15 -2211 (|#2| $)) (-15 -4132 (|#1| $)) (-15 -2477 ($ |#1| |#2|)) (-15 -1771 ((-3 $ "failed") $ $)) (-15 -2109 ((-3 $ "failed") $)) (-15 -2939 ($ $)))) (-172) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -716))
-((-2109 (*1 *1 *1) (|partial| -12 (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2211 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-716 *3 *2 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-4132 (*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2477 (*1 *1 *2 *3) (-12 (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1771 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2939 (*1 *1 *1) (-12 (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(-13 (-1051) (-10 -8 (-15 -2211 (|#2| $)) (-15 -4132 (|#1| $)) (-15 -2477 ($ |#1| |#2|)) (-15 -1771 ((-3 $ "failed") $ $)) (-15 -2109 ((-3 $ "failed") $)) (-15 -2939 ($ $))))
+((-3841 ((|#6| (-1 |#4| |#1|) |#3|) 23)))
+(((-710 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3841 (|#6| (-1 |#4| |#1|) |#3|))) (-559) (-1245 |#1|) (-1245 (-410 |#2|)) (-559) (-1245 |#4|) (-1245 (-410 |#5|))) (T -710))
+((-3841 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-559)) (-4 *7 (-559)) (-4 *6 (-1245 *5)) (-4 *2 (-1245 (-410 *8))) (-5 *1 (-710 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1245 (-410 *6))) (-4 *8 (-1245 *7)))))
+(-10 -7 (-15 -3841 (|#6| (-1 |#4| |#1|) |#3|)))
+((-2412 (((-112) $ $) NIL)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-1749 (((-1161) (-863)) 39)) (-4025 (((-1274) (-1161)) 32)) (-2878 (((-1161) (-863)) 28)) (-4375 (((-1161) (-863)) 29)) (-4129 (((-863) $) NIL) (((-1161) (-863)) 27)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)))
+(((-711) (-13 (-1102) (-10 -7 (-15 -4129 ((-1161) (-863))) (-15 -2878 ((-1161) (-863))) (-15 -4375 ((-1161) (-863))) (-15 -1749 ((-1161) (-863))) (-15 -4025 ((-1274) (-1161)))))) (T -711))
+((-4129 (*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1161)) (-5 *1 (-711)))) (-2878 (*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1161)) (-5 *1 (-711)))) (-4375 (*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1161)) (-5 *1 (-711)))) (-1749 (*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1161)) (-5 *1 (-711)))) (-4025 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-711)))))
+(-13 (-1102) (-10 -7 (-15 -4129 ((-1161) (-863))) (-15 -2878 ((-1161) (-863))) (-15 -4375 ((-1161) (-863))) (-15 -1749 ((-1161) (-863))) (-15 -4025 ((-1274) (-1161)))))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-4287 (($ $) NIL)) (-2286 (((-112) $) NIL)) (-2376 (((-3 $ "failed") $ $) NIL)) (-3659 (($ $) NIL)) (-3597 (((-421 $) $) NIL)) (-3696 (((-112) $ $) NIL)) (-3647 (($) NIL T CONST)) (-2357 (($ $ $) NIL)) (-2494 (($ |#1| |#2|) NIL)) (-3588 (((-3 $ "failed") $) NIL)) (-2368 (($ $ $) NIL)) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) NIL)) (-3502 (((-112) $) NIL)) (-4346 (((-112) $) NIL)) (-1469 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-3054 ((|#2| $) NIL)) (-2751 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2516 (((-1161) $) NIL)) (-2949 (($ $) NIL)) (-3437 (((-1122) $) NIL)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-2785 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2717 (((-421 $) $) NIL)) (-2905 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2400 (((-3 $ "failed") $ $) NIL)) (-2372 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4133 (((-3 $ "failed") $ $) NIL)) (-2460 (((-772) $) NIL)) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) NIL)) (-4129 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) ((|#1| $) NIL)) (-2746 (((-772)) NIL T CONST)) (-3357 (((-112) $ $) NIL)) (-3731 (((-112) $ $) NIL)) (-1733 (($) NIL T CONST)) (-1744 (($) NIL T CONST)) (-2946 (((-112) $ $) NIL)) (-3069 (($ $ $) NIL)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL)))
+(((-712 |#1| |#2| |#3| |#4| |#5|) (-13 (-365) (-10 -8 (-15 -3054 (|#2| $)) (-15 -4129 (|#1| $)) (-15 -2494 ($ |#1| |#2|)) (-15 -4133 ((-3 $ "failed") $ $)))) (-172) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -712))
+((-3054 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-712 *3 *2 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-4129 (*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-712 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2494 (*1 *1 *2 *3) (-12 (-5 *1 (-712 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-4133 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-712 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
+(-13 (-365) (-10 -8 (-15 -3054 (|#2| $)) (-15 -4129 (|#1| $)) (-15 -2494 ($ |#1| |#2|)) (-15 -4133 ((-3 $ "failed") $ $))))
+((-2412 (((-112) $ $) 92)) (-3791 (((-112) $) 36)) (-2405 (((-1269 |#1|) $ (-772)) NIL)) (-2859 (((-645 (-1084)) $) NIL)) (-2323 (($ (-1175 |#1|)) NIL)) (-2684 (((-1175 $) $ (-1084)) NIL) (((-1175 |#1|) $) NIL)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-4287 (($ $) NIL (|has| |#1| (-559)))) (-2286 (((-112) $) NIL (|has| |#1| (-559)))) (-3849 (((-772) $) NIL) (((-772) $ (-645 (-1084))) NIL)) (-2376 (((-3 $ "failed") $ $) NIL)) (-3479 (($ $ $) NIL (|has| |#1| (-559)))) (-2029 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-911)))) (-3659 (($ $) NIL (|has| |#1| (-455)))) (-3597 (((-421 $) $) NIL (|has| |#1| (-455)))) (-3610 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-911)))) (-3696 (((-112) $ $) NIL (|has| |#1| (-365)))) (-2384 (((-772)) 56 (|has| |#1| (-370)))) (-2520 (($ $ (-772)) NIL)) (-3325 (($ $ (-772)) NIL)) (-2538 ((|#2| |#2|) 52)) (-3542 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-455)))) (-3647 (($) NIL T CONST)) (-3765 (((-3 |#1| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-1084) "failed") $) NIL)) (-2051 ((|#1| $) NIL) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-1084) $) NIL)) (-3554 (($ $ $ (-1084)) NIL (|has| |#1| (-172))) ((|#1| $ $) NIL (|has| |#1| (-172)))) (-2357 (($ $ $) NIL (|has| |#1| (-365)))) (-3023 (($ $) 40)) (-1423 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4208 (-690 |#1|)) (|:| |vec| (-1269 |#1|))) (-690 $) (-1269 $)) NIL) (((-690 |#1|) (-690 $)) NIL)) (-2494 (($ |#2|) 50)) (-3588 (((-3 $ "failed") $) 102)) (-1359 (($) 61 (|has| |#1| (-370)))) (-2368 (($ $ $) NIL (|has| |#1| (-365)))) (-2463 (($ $ $) NIL)) (-1374 (($ $ $) NIL (|has| |#1| (-559)))) (-3410 (((-2 (|:| -3705 |#1|) (|:| -2654 $) (|:| -2023 $)) $ $) NIL (|has| |#1| (-559)))) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-2989 (($ $) NIL (|has| |#1| (-455))) (($ $ (-1084)) NIL (|has| |#1| (-455)))) (-3010 (((-645 $) $) NIL)) (-3502 (((-112) $) NIL (|has| |#1| (-911)))) (-2298 (((-960 $)) 94)) (-3214 (($ $ |#1| (-772) $) NIL)) (-3193 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (-12 (|has| (-1084) (-888 (-381))) (|has| |#1| (-888 (-381))))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (-12 (|has| (-1084) (-888 (-567))) (|has| |#1| (-888 (-567)))))) (-3362 (((-772) $ $) NIL (|has| |#1| (-559)))) (-4346 (((-112) $) NIL)) (-2851 (((-772) $) NIL)) (-3067 (((-3 $ "failed") $) NIL (|has| |#1| (-1154)))) (-2848 (($ (-1175 |#1|) (-1084)) NIL) (($ (-1175 $) (-1084)) NIL)) (-1343 (($ $ (-772)) NIL)) (-1469 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-2659 (((-645 $) $) NIL)) (-3770 (((-112) $) NIL)) (-2836 (($ |#1| (-772)) 88) (($ $ (-1084) (-772)) NIL) (($ $ (-645 (-1084)) (-645 (-772))) NIL)) (-2742 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $ (-1084)) NIL) (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) NIL)) (-3054 ((|#2|) 53)) (-2955 (((-772) $) NIL) (((-772) $ (-1084)) NIL) (((-645 (-772)) $ (-645 (-1084))) NIL)) (-3827 (($ (-1 (-772) (-772)) $) NIL)) (-3841 (($ (-1 |#1| |#1|) $) NIL)) (-2896 (((-1175 |#1|) $) NIL)) (-3221 (((-3 (-1084) "failed") $) NIL)) (-3474 (((-923) $) NIL (|has| |#1| (-370)))) (-2484 ((|#2| $) 49)) (-2985 (($ $) NIL)) (-2996 ((|#1| $) 34)) (-2751 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-2516 (((-1161) $) NIL)) (-3421 (((-2 (|:| -2654 $) (|:| -2023 $)) $ (-772)) NIL)) (-3037 (((-3 (-645 $) "failed") $) NIL)) (-3774 (((-3 (-645 $) "failed") $) NIL)) (-3816 (((-3 (-2 (|:| |var| (-1084)) (|:| -3468 (-772))) "failed") $) NIL)) (-4083 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2694 (($) NIL (|has| |#1| (-1154)) CONST)) (-3779 (($ (-923)) NIL (|has| |#1| (-370)))) (-3437 (((-1122) $) NIL)) (-2960 (((-112) $) NIL)) (-2971 ((|#1| $) NIL)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| |#1| (-455)))) (-2785 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-2295 (($ $) 93 (|has| |#1| (-351)))) (-3551 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-911)))) (-2016 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-911)))) (-2717 (((-421 $) $) NIL (|has| |#1| (-911)))) (-2905 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) NIL (|has| |#1| (-365)))) (-2400 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559))) (((-3 $ "failed") $ $) 101 (|has| |#1| (-559)))) (-2372 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-2642 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-1084) |#1|) NIL) (($ $ (-645 (-1084)) (-645 |#1|)) NIL) (($ $ (-1084) $) NIL) (($ $ (-645 (-1084)) (-645 $)) NIL)) (-2460 (((-772) $) NIL (|has| |#1| (-365)))) (-1801 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-410 $) (-410 $) (-410 $)) NIL (|has| |#1| (-559))) ((|#1| (-410 $) |#1|) NIL (|has| |#1| (-365))) (((-410 $) $ (-410 $)) NIL (|has| |#1| (-559)))) (-2776 (((-3 $ "failed") $ (-772)) NIL)) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) 103 (|has| |#1| (-365)))) (-2433 (($ $ (-1084)) NIL (|has| |#1| (-172))) ((|#1| $) NIL (|has| |#1| (-172)))) (-1616 (($ $ (-1084)) NIL) (($ $ (-645 (-1084))) NIL) (($ $ (-1084) (-772)) NIL) (($ $ (-645 (-1084)) (-645 (-772))) NIL) (($ $ (-772)) NIL) (($ $) NIL) (($ $ (-1179)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3104 (((-772) $) 38) (((-772) $ (-1084)) NIL) (((-645 (-772)) $ (-645 (-1084))) NIL)) (-3902 (((-894 (-381)) $) NIL (-12 (|has| (-1084) (-615 (-894 (-381)))) (|has| |#1| (-615 (-894 (-381)))))) (((-894 (-567)) $) NIL (-12 (|has| (-1084) (-615 (-894 (-567)))) (|has| |#1| (-615 (-894 (-567)))))) (((-539) $) NIL (-12 (|has| (-1084) (-615 (-539))) (|has| |#1| (-615 (-539)))))) (-1849 ((|#1| $) NIL (|has| |#1| (-455))) (($ $ (-1084)) NIL (|has| |#1| (-455)))) (-2616 (((-3 (-1269 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-911))))) (-1455 (((-960 $)) 42)) (-1409 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559))) (((-3 (-410 $) "failed") (-410 $) $) NIL (|has| |#1| (-559)))) (-4129 (((-863) $) 71) (($ (-567)) NIL) (($ |#1|) 68) (($ (-1084)) NIL) (($ |#2|) 78) (($ (-410 (-567))) NIL (-2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567)))))) (($ $) NIL (|has| |#1| (-559)))) (-3601 (((-645 |#1|) $) NIL)) (-2558 ((|#1| $ (-772)) 73) (($ $ (-1084) (-772)) NIL) (($ $ (-645 (-1084)) (-645 (-772))) NIL)) (-2118 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-145)) (|has| |#1| (-911))) (|has| |#1| (-145))))) (-2746 (((-772)) NIL T CONST)) (-3658 (($ $ $ (-772)) NIL (|has| |#1| (-172)))) (-3357 (((-112) $ $) NIL)) (-3731 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1733 (($) 25 T CONST)) (-2984 (((-1269 |#1|) $) 86)) (-3449 (($ (-1269 |#1|)) 60)) (-1744 (($) 8 T CONST)) (-2647 (($ $ (-1084)) NIL) (($ $ (-645 (-1084))) NIL) (($ $ (-1084) (-772)) NIL) (($ $ (-645 (-1084)) (-645 (-772))) NIL) (($ $ (-772)) NIL) (($ $) NIL) (($ $ (-1179)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3637 (((-1269 |#1|) $) NIL)) (-2946 (((-112) $ $) 79)) (-3069 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3053 (($ $) 82) (($ $ $) NIL)) (-3041 (($ $ $) 39)) (** (($ $ (-923)) NIL) (($ $ (-772)) 97)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 67) (($ $ $) 85) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) 65) (($ $ |#1|) NIL)))
+(((-713 |#1| |#2|) (-13 (-1245 |#1|) (-617 |#2|) (-10 -8 (-15 -2538 (|#2| |#2|)) (-15 -3054 (|#2|)) (-15 -2494 ($ |#2|)) (-15 -2484 (|#2| $)) (-15 -2984 ((-1269 |#1|) $)) (-15 -3449 ($ (-1269 |#1|))) (-15 -3637 ((-1269 |#1|) $)) (-15 -2298 ((-960 $))) (-15 -1455 ((-960 $))) (IF (|has| |#1| (-351)) (-15 -2295 ($ $)) |%noBranch|) (IF (|has| |#1| (-370)) (-6 (-370)) |%noBranch|))) (-1051) (-1245 |#1|)) (T -713))
+((-2538 (*1 *2 *2) (-12 (-4 *3 (-1051)) (-5 *1 (-713 *3 *2)) (-4 *2 (-1245 *3)))) (-3054 (*1 *2) (-12 (-4 *2 (-1245 *3)) (-5 *1 (-713 *3 *2)) (-4 *3 (-1051)))) (-2494 (*1 *1 *2) (-12 (-4 *3 (-1051)) (-5 *1 (-713 *3 *2)) (-4 *2 (-1245 *3)))) (-2484 (*1 *2 *1) (-12 (-4 *2 (-1245 *3)) (-5 *1 (-713 *3 *2)) (-4 *3 (-1051)))) (-2984 (*1 *2 *1) (-12 (-4 *3 (-1051)) (-5 *2 (-1269 *3)) (-5 *1 (-713 *3 *4)) (-4 *4 (-1245 *3)))) (-3449 (*1 *1 *2) (-12 (-5 *2 (-1269 *3)) (-4 *3 (-1051)) (-5 *1 (-713 *3 *4)) (-4 *4 (-1245 *3)))) (-3637 (*1 *2 *1) (-12 (-4 *3 (-1051)) (-5 *2 (-1269 *3)) (-5 *1 (-713 *3 *4)) (-4 *4 (-1245 *3)))) (-2298 (*1 *2) (-12 (-4 *3 (-1051)) (-5 *2 (-960 (-713 *3 *4))) (-5 *1 (-713 *3 *4)) (-4 *4 (-1245 *3)))) (-1455 (*1 *2) (-12 (-4 *3 (-1051)) (-5 *2 (-960 (-713 *3 *4))) (-5 *1 (-713 *3 *4)) (-4 *4 (-1245 *3)))) (-2295 (*1 *1 *1) (-12 (-4 *2 (-351)) (-4 *2 (-1051)) (-5 *1 (-713 *2 *3)) (-4 *3 (-1245 *2)))))
+(-13 (-1245 |#1|) (-617 |#2|) (-10 -8 (-15 -2538 (|#2| |#2|)) (-15 -3054 (|#2|)) (-15 -2494 ($ |#2|)) (-15 -2484 (|#2| $)) (-15 -2984 ((-1269 |#1|) $)) (-15 -3449 ($ (-1269 |#1|))) (-15 -3637 ((-1269 |#1|) $)) (-15 -2298 ((-960 $))) (-15 -1455 ((-960 $))) (IF (|has| |#1| (-351)) (-15 -2295 ($ $)) |%noBranch|) (IF (|has| |#1| (-370)) (-6 (-370)) |%noBranch|)))
+((-2412 (((-112) $ $) NIL)) (-1365 (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (-2516 (((-1161) $) NIL)) (-3779 ((|#1| $) 13)) (-3437 (((-1122) $) NIL)) (-3468 ((|#2| $) 12)) (-4145 (($ |#1| |#2|) 16)) (-4129 (((-863) $) NIL) (($ (-2 (|:| -3779 |#1|) (|:| -3468 |#2|))) 15) (((-2 (|:| -3779 |#1|) (|:| -3468 |#2|)) $) 14)) (-3357 (((-112) $ $) NIL)) (-3004 (((-112) $ $) NIL)) (-2980 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2993 (((-112) $ $) NIL)) (-2968 (((-112) $ $) 11)))
+(((-714 |#1| |#2| |#3|) (-13 (-851) (-493 (-2 (|:| -3779 |#1|) (|:| -3468 |#2|))) (-10 -8 (-15 -3468 (|#2| $)) (-15 -3779 (|#1| $)) (-15 -4145 ($ |#1| |#2|)))) (-851) (-1102) (-1 (-112) (-2 (|:| -3779 |#1|) (|:| -3468 |#2|)) (-2 (|:| -3779 |#1|) (|:| -3468 |#2|)))) (T -714))
+((-3468 (*1 *2 *1) (-12 (-4 *2 (-1102)) (-5 *1 (-714 *3 *2 *4)) (-4 *3 (-851)) (-14 *4 (-1 (-112) (-2 (|:| -3779 *3) (|:| -3468 *2)) (-2 (|:| -3779 *3) (|:| -3468 *2)))))) (-3779 (*1 *2 *1) (-12 (-4 *2 (-851)) (-5 *1 (-714 *2 *3 *4)) (-4 *3 (-1102)) (-14 *4 (-1 (-112) (-2 (|:| -3779 *2) (|:| -3468 *3)) (-2 (|:| -3779 *2) (|:| -3468 *3)))))) (-4145 (*1 *1 *2 *3) (-12 (-5 *1 (-714 *2 *3 *4)) (-4 *2 (-851)) (-4 *3 (-1102)) (-14 *4 (-1 (-112) (-2 (|:| -3779 *2) (|:| -3468 *3)) (-2 (|:| -3779 *2) (|:| -3468 *3)))))))
+(-13 (-851) (-493 (-2 (|:| -3779 |#1|) (|:| -3468 |#2|))) (-10 -8 (-15 -3468 (|#2| $)) (-15 -3779 (|#1| $)) (-15 -4145 ($ |#1| |#2|))))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) 66)) (-2376 (((-3 $ "failed") $ $) NIL)) (-3647 (($) NIL T CONST)) (-3765 (((-3 |#1| "failed") $) 105) (((-3 (-114) "failed") $) 111)) (-2051 ((|#1| $) NIL) (((-114) $) 39)) (-3588 (((-3 $ "failed") $) 106)) (-3212 ((|#2| (-114) |#2|) 93)) (-4346 (((-112) $) NIL)) (-3761 (($ |#1| (-363 (-114))) 14)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-2832 (($ $ (-1 |#2| |#2|)) 65)) (-3301 (($ $ (-1 |#2| |#2|)) 44)) (-1801 ((|#2| $ |#2|) 33)) (-1367 ((|#1| |#1|) 121 (|has| |#1| (-172)))) (-4129 (((-863) $) 73) (($ (-567)) 18) (($ |#1|) 17) (($ (-114)) 23)) (-2118 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2746 (((-772)) 37 T CONST)) (-3357 (((-112) $ $) NIL)) (-1900 (($ $) 115 (|has| |#1| (-172))) (($ $ $) 119 (|has| |#1| (-172)))) (-1733 (($) 21 T CONST)) (-1744 (($) 9 T CONST)) (-2946 (((-112) $ $) NIL)) (-3053 (($ $) 48) (($ $ $) NIL)) (-3041 (($ $ $) 83)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ (-114) (-567)) NIL) (($ $ (-567)) 64)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 114) (($ $ $) 53) (($ |#1| $) 112 (|has| |#1| (-172))) (($ $ |#1|) 113 (|has| |#1| (-172)))))
+(((-715 |#1| |#2|) (-13 (-1051) (-1040 |#1|) (-1040 (-114)) (-287 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -1900 ($ $)) (-15 -1900 ($ $ $)) (-15 -1367 (|#1| |#1|))) |%noBranch|) (-15 -3301 ($ $ (-1 |#2| |#2|))) (-15 -2832 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-567))) (-15 ** ($ $ (-567))) (-15 -3212 (|#2| (-114) |#2|)) (-15 -3761 ($ |#1| (-363 (-114)))))) (-1051) (-649 |#1|)) (T -715))
+((-1900 (*1 *1 *1) (-12 (-4 *2 (-172)) (-4 *2 (-1051)) (-5 *1 (-715 *2 *3)) (-4 *3 (-649 *2)))) (-1900 (*1 *1 *1 *1) (-12 (-4 *2 (-172)) (-4 *2 (-1051)) (-5 *1 (-715 *2 *3)) (-4 *3 (-649 *2)))) (-1367 (*1 *2 *2) (-12 (-4 *2 (-172)) (-4 *2 (-1051)) (-5 *1 (-715 *2 *3)) (-4 *3 (-649 *2)))) (-3301 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-649 *3)) (-4 *3 (-1051)) (-5 *1 (-715 *3 *4)))) (-2832 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-649 *3)) (-4 *3 (-1051)) (-5 *1 (-715 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-567)) (-4 *4 (-1051)) (-5 *1 (-715 *4 *5)) (-4 *5 (-649 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *3 (-1051)) (-5 *1 (-715 *3 *4)) (-4 *4 (-649 *3)))) (-3212 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-4 *4 (-1051)) (-5 *1 (-715 *4 *2)) (-4 *2 (-649 *4)))) (-3761 (*1 *1 *2 *3) (-12 (-5 *3 (-363 (-114))) (-4 *2 (-1051)) (-5 *1 (-715 *2 *4)) (-4 *4 (-649 *2)))))
+(-13 (-1051) (-1040 |#1|) (-1040 (-114)) (-287 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -1900 ($ $)) (-15 -1900 ($ $ $)) (-15 -1367 (|#1| |#1|))) |%noBranch|) (-15 -3301 ($ $ (-1 |#2| |#2|))) (-15 -2832 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-567))) (-15 ** ($ $ (-567))) (-15 -3212 (|#2| (-114) |#2|)) (-15 -3761 ($ |#1| (-363 (-114))))))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) 33)) (-2376 (((-3 $ "failed") $ $) NIL)) (-3647 (($) NIL T CONST)) (-2494 (($ |#1| |#2|) 25)) (-3588 (((-3 $ "failed") $) 51)) (-4346 (((-112) $) 35)) (-3054 ((|#2| $) 12)) (-2516 (((-1161) $) NIL)) (-2949 (($ $) 52)) (-3437 (((-1122) $) NIL)) (-4133 (((-3 $ "failed") $ $) 50)) (-4129 (((-863) $) 24) (($ (-567)) 19) ((|#1| $) 13)) (-2746 (((-772)) 28 T CONST)) (-3357 (((-112) $ $) NIL)) (-1733 (($) 16 T CONST)) (-1744 (($) 30 T CONST)) (-2946 (((-112) $ $) 41)) (-3053 (($ $) 46) (($ $ $) 40)) (-3041 (($ $ $) 43)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 21) (($ $ $) 20)))
+(((-716 |#1| |#2| |#3| |#4| |#5|) (-13 (-1051) (-10 -8 (-15 -3054 (|#2| $)) (-15 -4129 (|#1| $)) (-15 -2494 ($ |#1| |#2|)) (-15 -4133 ((-3 $ "failed") $ $)) (-15 -3588 ((-3 $ "failed") $)) (-15 -2949 ($ $)))) (-172) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -716))
+((-3588 (*1 *1 *1) (|partial| -12 (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3054 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-716 *3 *2 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-4129 (*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2494 (*1 *1 *2 *3) (-12 (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-4133 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2949 (*1 *1 *1) (-12 (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
+(-13 (-1051) (-10 -8 (-15 -3054 (|#2| $)) (-15 -4129 (|#1| $)) (-15 -2494 ($ |#1| |#2|)) (-15 -4133 ((-3 $ "failed") $ $)) (-15 -3588 ((-3 $ "failed") $)) (-15 -2949 ($ $))))
((* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9)))
(((-717 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-923) |#1|))) (-718 |#2|) (-172)) (T -717))
NIL
(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-923) |#1|)))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-1716 (($) 19 T CONST)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31)))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-2376 (((-3 $ "failed") $ $) 20)) (-3647 (($) 18 T CONST)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-4129 (((-863) $) 12)) (-3357 (((-112) $ $) 9)) (-1733 (($) 19 T CONST)) (-2946 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31)))
(((-718 |#1|) (-140) (-172)) (T -718))
NIL
(-13 (-111 |t#1| |t#1|) (-641 |t#1|))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-649 |#1|) . T) ((-641 |#1|) . T) ((-1053 |#1|) . T) ((-1058 |#1|) . T) ((-1102) . T))
-((-2403 (((-112) $ $) NIL)) (-4130 (($ |#1|) 17) (($ $ |#1|) 20)) (-2172 (($ |#1|) 18) (($ $ |#1|) 21)) (-2585 (($) NIL T CONST)) (-2109 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-1433 (((-112) $) NIL)) (-3705 (($ |#1| |#1| |#1| |#1|) 8)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) 16)) (-3430 (((-1122) $) NIL)) (-2631 ((|#1| $ |#1|) 24) (((-834 |#1|) $ (-834 |#1|)) 32)) (-1823 (($ $ $) NIL)) (-1485 (($ $ $) NIL)) (-4132 (((-863) $) 39)) (-1745 (((-112) $ $) NIL)) (-1728 (($) 9 T CONST)) (-2936 (((-112) $ $) 48)) (-3060 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ $ $) 14)))
-(((-719 |#1|) (-13 (-476) (-10 -8 (-15 -3705 ($ |#1| |#1| |#1| |#1|)) (-15 -4130 ($ |#1|)) (-15 -2172 ($ |#1|)) (-15 -2109 ($)) (-15 -4130 ($ $ |#1|)) (-15 -2172 ($ $ |#1|)) (-15 -2109 ($ $)) (-15 -2631 (|#1| $ |#1|)) (-15 -2631 ((-834 |#1|) $ (-834 |#1|))))) (-365)) (T -719))
-((-3705 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365)))) (-4130 (*1 *1 *2) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365)))) (-2172 (*1 *1 *2) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365)))) (-2109 (*1 *1) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365)))) (-4130 (*1 *1 *1 *2) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365)))) (-2172 (*1 *1 *1 *2) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365)))) (-2109 (*1 *1 *1) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365)))) (-2631 (*1 *2 *1 *2) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365)))) (-2631 (*1 *2 *1 *2) (-12 (-5 *2 (-834 *3)) (-4 *3 (-365)) (-5 *1 (-719 *3)))))
-(-13 (-476) (-10 -8 (-15 -3705 ($ |#1| |#1| |#1| |#1|)) (-15 -4130 ($ |#1|)) (-15 -2172 ($ |#1|)) (-15 -2109 ($)) (-15 -4130 ($ $ |#1|)) (-15 -2172 ($ $ |#1|)) (-15 -2109 ($ $)) (-15 -2631 (|#1| $ |#1|)) (-15 -2631 ((-834 |#1|) $ (-834 |#1|)))))
-((-2586 (($ $ (-923)) 21)) (-3450 (($ $ (-923)) 22)) (** (($ $ (-923)) 10)))
-(((-720 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-923))) (-15 -3450 (|#1| |#1| (-923))) (-15 -2586 (|#1| |#1| (-923)))) (-721)) (T -720))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-923))) (-15 -3450 (|#1| |#1| (-923))) (-15 -2586 (|#1| |#1| (-923))))
-((-2403 (((-112) $ $) 7)) (-2586 (($ $ (-923)) 16)) (-3450 (($ $ (-923)) 15)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-2936 (((-112) $ $) 6)) (** (($ $ (-923)) 14)) (* (($ $ $) 17)))
+((-2412 (((-112) $ $) NIL)) (-4128 (($ |#1|) 17) (($ $ |#1|) 20)) (-2604 (($ |#1|) 18) (($ $ |#1|) 21)) (-3647 (($) NIL T CONST)) (-3588 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-4346 (((-112) $) NIL)) (-4210 (($ |#1| |#1| |#1| |#1|) 8)) (-2516 (((-1161) $) NIL)) (-2949 (($ $) 16)) (-3437 (((-1122) $) NIL)) (-2642 ((|#1| $ |#1|) 24) (((-834 |#1|) $ (-834 |#1|)) 32)) (-1672 (($ $ $) NIL)) (-3997 (($ $ $) NIL)) (-4129 (((-863) $) 39)) (-3357 (((-112) $ $) NIL)) (-1744 (($) 9 T CONST)) (-2946 (((-112) $ $) 48)) (-3069 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ $ $) 14)))
+(((-719 |#1|) (-13 (-476) (-10 -8 (-15 -4210 ($ |#1| |#1| |#1| |#1|)) (-15 -4128 ($ |#1|)) (-15 -2604 ($ |#1|)) (-15 -3588 ($)) (-15 -4128 ($ $ |#1|)) (-15 -2604 ($ $ |#1|)) (-15 -3588 ($ $)) (-15 -2642 (|#1| $ |#1|)) (-15 -2642 ((-834 |#1|) $ (-834 |#1|))))) (-365)) (T -719))
+((-4210 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365)))) (-4128 (*1 *1 *2) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365)))) (-2604 (*1 *1 *2) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365)))) (-3588 (*1 *1) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365)))) (-4128 (*1 *1 *1 *2) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365)))) (-2604 (*1 *1 *1 *2) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365)))) (-3588 (*1 *1 *1) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365)))) (-2642 (*1 *2 *1 *2) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365)))) (-2642 (*1 *2 *1 *2) (-12 (-5 *2 (-834 *3)) (-4 *3 (-365)) (-5 *1 (-719 *3)))))
+(-13 (-476) (-10 -8 (-15 -4210 ($ |#1| |#1| |#1| |#1|)) (-15 -4128 ($ |#1|)) (-15 -2604 ($ |#1|)) (-15 -3588 ($)) (-15 -4128 ($ $ |#1|)) (-15 -2604 ($ $ |#1|)) (-15 -3588 ($ $)) (-15 -2642 (|#1| $ |#1|)) (-15 -2642 ((-834 |#1|) $ (-834 |#1|)))))
+((-3757 (($ $ (-923)) 21)) (-3884 (($ $ (-923)) 22)) (** (($ $ (-923)) 10)))
+(((-720 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-923))) (-15 -3884 (|#1| |#1| (-923))) (-15 -3757 (|#1| |#1| (-923)))) (-721)) (T -720))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-923))) (-15 -3884 (|#1| |#1| (-923))) (-15 -3757 (|#1| |#1| (-923))))
+((-2412 (((-112) $ $) 7)) (-3757 (($ $ (-923)) 16)) (-3884 (($ $ (-923)) 15)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-4129 (((-863) $) 12)) (-3357 (((-112) $ $) 9)) (-2946 (((-112) $ $) 6)) (** (($ $ (-923)) 14)) (* (($ $ $) 17)))
(((-721) (-140)) (T -721))
-((* (*1 *1 *1 *1) (-4 *1 (-721))) (-2586 (*1 *1 *1 *2) (-12 (-4 *1 (-721)) (-5 *2 (-923)))) (-3450 (*1 *1 *1 *2) (-12 (-4 *1 (-721)) (-5 *2 (-923)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-721)) (-5 *2 (-923)))))
-(-13 (-1102) (-10 -8 (-15 * ($ $ $)) (-15 -2586 ($ $ (-923))) (-15 -3450 ($ $ (-923))) (-15 ** ($ $ (-923)))))
+((* (*1 *1 *1 *1) (-4 *1 (-721))) (-3757 (*1 *1 *1 *2) (-12 (-4 *1 (-721)) (-5 *2 (-923)))) (-3884 (*1 *1 *1 *2) (-12 (-4 *1 (-721)) (-5 *2 (-923)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-721)) (-5 *2 (-923)))))
+(-13 (-1102) (-10 -8 (-15 * ($ $ $)) (-15 -3757 ($ $ (-923))) (-15 -3884 ($ $ (-923))) (-15 ** ($ $ (-923)))))
(((-102) . T) ((-614 (-863)) . T) ((-1102) . T))
-((-2586 (($ $ (-923)) NIL) (($ $ (-772)) 21)) (-1433 (((-112) $) 10)) (-3450 (($ $ (-923)) NIL) (($ $ (-772)) 22)) (** (($ $ (-923)) NIL) (($ $ (-772)) 16)))
-(((-722 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-772))) (-15 -3450 (|#1| |#1| (-772))) (-15 -2586 (|#1| |#1| (-772))) (-15 -1433 ((-112) |#1|)) (-15 ** (|#1| |#1| (-923))) (-15 -3450 (|#1| |#1| (-923))) (-15 -2586 (|#1| |#1| (-923)))) (-723)) (T -722))
+((-3757 (($ $ (-923)) NIL) (($ $ (-772)) 21)) (-4346 (((-112) $) 10)) (-3884 (($ $ (-923)) NIL) (($ $ (-772)) 22)) (** (($ $ (-923)) NIL) (($ $ (-772)) 16)))
+(((-722 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-772))) (-15 -3884 (|#1| |#1| (-772))) (-15 -3757 (|#1| |#1| (-772))) (-15 -4346 ((-112) |#1|)) (-15 ** (|#1| |#1| (-923))) (-15 -3884 (|#1| |#1| (-923))) (-15 -3757 (|#1| |#1| (-923)))) (-723)) (T -722))
NIL
-(-10 -8 (-15 ** (|#1| |#1| (-772))) (-15 -3450 (|#1| |#1| (-772))) (-15 -2586 (|#1| |#1| (-772))) (-15 -1433 ((-112) |#1|)) (-15 ** (|#1| |#1| (-923))) (-15 -3450 (|#1| |#1| (-923))) (-15 -2586 (|#1| |#1| (-923))))
-((-2403 (((-112) $ $) 7)) (-2209 (((-3 $ "failed") $) 18)) (-2586 (($ $ (-923)) 16) (($ $ (-772)) 23)) (-2109 (((-3 $ "failed") $) 20)) (-1433 (((-112) $) 24)) (-3080 (((-3 $ "failed") $) 19)) (-3450 (($ $ (-923)) 15) (($ $ (-772)) 22)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-1728 (($) 25 T CONST)) (-2936 (((-112) $ $) 6)) (** (($ $ (-923)) 14) (($ $ (-772)) 21)) (* (($ $ $) 17)))
+(-10 -8 (-15 ** (|#1| |#1| (-772))) (-15 -3884 (|#1| |#1| (-772))) (-15 -3757 (|#1| |#1| (-772))) (-15 -4346 ((-112) |#1|)) (-15 ** (|#1| |#1| (-923))) (-15 -3884 (|#1| |#1| (-923))) (-15 -3757 (|#1| |#1| (-923))))
+((-2412 (((-112) $ $) 7)) (-2810 (((-3 $ "failed") $) 18)) (-3757 (($ $ (-923)) 16) (($ $ (-772)) 23)) (-3588 (((-3 $ "failed") $) 20)) (-4346 (((-112) $) 24)) (-2213 (((-3 $ "failed") $) 19)) (-3884 (($ $ (-923)) 15) (($ $ (-772)) 22)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-4129 (((-863) $) 12)) (-3357 (((-112) $ $) 9)) (-1744 (($) 25 T CONST)) (-2946 (((-112) $ $) 6)) (** (($ $ (-923)) 14) (($ $ (-772)) 21)) (* (($ $ $) 17)))
(((-723) (-140)) (T -723))
-((-1728 (*1 *1) (-4 *1 (-723))) (-1433 (*1 *2 *1) (-12 (-4 *1 (-723)) (-5 *2 (-112)))) (-2586 (*1 *1 *1 *2) (-12 (-4 *1 (-723)) (-5 *2 (-772)))) (-3450 (*1 *1 *1 *2) (-12 (-4 *1 (-723)) (-5 *2 (-772)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-723)) (-5 *2 (-772)))) (-2109 (*1 *1 *1) (|partial| -4 *1 (-723))) (-3080 (*1 *1 *1) (|partial| -4 *1 (-723))) (-2209 (*1 *1 *1) (|partial| -4 *1 (-723))))
-(-13 (-721) (-10 -8 (-15 (-1728) ($) -3286) (-15 -1433 ((-112) $)) (-15 -2586 ($ $ (-772))) (-15 -3450 ($ $ (-772))) (-15 ** ($ $ (-772))) (-15 -2109 ((-3 $ "failed") $)) (-15 -3080 ((-3 $ "failed") $)) (-15 -2209 ((-3 $ "failed") $))))
+((-1744 (*1 *1) (-4 *1 (-723))) (-4346 (*1 *2 *1) (-12 (-4 *1 (-723)) (-5 *2 (-112)))) (-3757 (*1 *1 *1 *2) (-12 (-4 *1 (-723)) (-5 *2 (-772)))) (-3884 (*1 *1 *1 *2) (-12 (-4 *1 (-723)) (-5 *2 (-772)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-723)) (-5 *2 (-772)))) (-3588 (*1 *1 *1) (|partial| -4 *1 (-723))) (-2213 (*1 *1 *1) (|partial| -4 *1 (-723))) (-2810 (*1 *1 *1) (|partial| -4 *1 (-723))))
+(-13 (-721) (-10 -8 (-15 (-1744) ($) -3304) (-15 -4346 ((-112) $)) (-15 -3757 ($ $ (-772))) (-15 -3884 ($ $ (-772))) (-15 ** ($ $ (-772))) (-15 -3588 ((-3 $ "failed") $)) (-15 -2213 ((-3 $ "failed") $)) (-15 -2810 ((-3 $ "failed") $))))
(((-102) . T) ((-614 (-863)) . T) ((-721) . T) ((-1102) . T))
-((-2375 (((-772)) 42)) (-3753 (((-3 (-567) "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 |#2| "failed") $) 26)) (-2038 (((-567) $) NIL) (((-410 (-567)) $) NIL) ((|#2| $) 23)) (-2477 (($ |#3|) NIL) (((-3 $ "failed") (-410 |#3|)) 53)) (-2109 (((-3 $ "failed") $) 73)) (-1348 (($) 47)) (-2475 ((|#2| $) 21)) (-1398 (($) 18)) (-1593 (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-1 |#2| |#2|)) 61) (($ $ (-645 (-1178)) (-645 (-772))) NIL) (($ $ (-1178) (-772)) NIL) (($ $ (-645 (-1178))) NIL) (($ $ (-1178)) NIL) (($ $ (-772)) NIL) (($ $) NIL)) (-1866 (((-690 |#2|) (-1268 $) (-1 |#2| |#2|)) 68)) (-3893 (((-1268 |#2|) $) NIL) (($ (-1268 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-2155 ((|#3| $) 39)) (-2623 (((-1268 $)) 36)))
-(((-724 |#1| |#2| |#3|) (-10 -8 (-15 -1593 (|#1| |#1|)) (-15 -1593 (|#1| |#1| (-772))) (-15 -1593 (|#1| |#1| (-1178))) (-15 -1593 (|#1| |#1| (-645 (-1178)))) (-15 -1593 (|#1| |#1| (-1178) (-772))) (-15 -1593 (|#1| |#1| (-645 (-1178)) (-645 (-772)))) (-15 -1348 (|#1|)) (-15 -2375 ((-772))) (-15 -1593 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1593 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -1866 ((-690 |#2|) (-1268 |#1|) (-1 |#2| |#2|))) (-15 -2477 ((-3 |#1| "failed") (-410 |#3|))) (-15 -3893 (|#1| |#3|)) (-15 -2477 (|#1| |#3|)) (-15 -1398 (|#1|)) (-15 -3753 ((-3 |#2| "failed") |#1|)) (-15 -2038 (|#2| |#1|)) (-15 -2038 ((-410 (-567)) |#1|)) (-15 -3753 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2038 ((-567) |#1|)) (-15 -3753 ((-3 (-567) "failed") |#1|)) (-15 -3893 (|#3| |#1|)) (-15 -3893 (|#1| (-1268 |#2|))) (-15 -3893 ((-1268 |#2|) |#1|)) (-15 -2623 ((-1268 |#1|))) (-15 -2155 (|#3| |#1|)) (-15 -2475 (|#2| |#1|)) (-15 -2109 ((-3 |#1| "failed") |#1|))) (-725 |#2| |#3|) (-172) (-1244 |#2|)) (T -724))
-((-2375 (*1 *2) (-12 (-4 *4 (-172)) (-4 *5 (-1244 *4)) (-5 *2 (-772)) (-5 *1 (-724 *3 *4 *5)) (-4 *3 (-725 *4 *5)))))
-(-10 -8 (-15 -1593 (|#1| |#1|)) (-15 -1593 (|#1| |#1| (-772))) (-15 -1593 (|#1| |#1| (-1178))) (-15 -1593 (|#1| |#1| (-645 (-1178)))) (-15 -1593 (|#1| |#1| (-1178) (-772))) (-15 -1593 (|#1| |#1| (-645 (-1178)) (-645 (-772)))) (-15 -1348 (|#1|)) (-15 -2375 ((-772))) (-15 -1593 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1593 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -1866 ((-690 |#2|) (-1268 |#1|) (-1 |#2| |#2|))) (-15 -2477 ((-3 |#1| "failed") (-410 |#3|))) (-15 -3893 (|#1| |#3|)) (-15 -2477 (|#1| |#3|)) (-15 -1398 (|#1|)) (-15 -3753 ((-3 |#2| "failed") |#1|)) (-15 -2038 (|#2| |#1|)) (-15 -2038 ((-410 (-567)) |#1|)) (-15 -3753 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2038 ((-567) |#1|)) (-15 -3753 ((-3 (-567) "failed") |#1|)) (-15 -3893 (|#3| |#1|)) (-15 -3893 (|#1| (-1268 |#2|))) (-15 -3893 ((-1268 |#2|) |#1|)) (-15 -2623 ((-1268 |#1|))) (-15 -2155 (|#3| |#1|)) (-15 -2475 (|#2| |#1|)) (-15 -2109 ((-3 |#1| "failed") |#1|)))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 102 (|has| |#1| (-365)))) (-4381 (($ $) 103 (|has| |#1| (-365)))) (-3949 (((-112) $) 105 (|has| |#1| (-365)))) (-2141 (((-690 |#1|) (-1268 $)) 53) (((-690 |#1|)) 68)) (-4293 ((|#1| $) 59)) (-3400 (((-1191 (-923) (-772)) (-567)) 155 (|has| |#1| (-351)))) (-3472 (((-3 $ "failed") $ $) 20)) (-3248 (($ $) 122 (|has| |#1| (-365)))) (-2908 (((-421 $) $) 123 (|has| |#1| (-365)))) (-3609 (((-112) $ $) 113 (|has| |#1| (-365)))) (-2375 (((-772)) 96 (|has| |#1| (-370)))) (-2585 (($) 18 T CONST)) (-3753 (((-3 (-567) "failed") $) 178 (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) 176 (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) 173)) (-2038 (((-567) $) 177 (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) 175 (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) 174)) (-3658 (($ (-1268 |#1|) (-1268 $)) 55) (($ (-1268 |#1|)) 71)) (-2443 (((-3 "prime" "polynomial" "normal" "cyclic")) 161 (|has| |#1| (-351)))) (-2349 (($ $ $) 117 (|has| |#1| (-365)))) (-1811 (((-690 |#1|) $ (-1268 $)) 60) (((-690 |#1|) $) 66)) (-2630 (((-690 (-567)) (-690 $)) 172 (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) 171 (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 |#1|)) (|:| |vec| (-1268 |#1|))) (-690 $) (-1268 $)) 170) (((-690 |#1|) (-690 $)) 169)) (-2477 (($ |#2|) 166) (((-3 $ "failed") (-410 |#2|)) 163 (|has| |#1| (-365)))) (-2109 (((-3 $ "failed") $) 37)) (-1954 (((-923)) 61)) (-1348 (($) 99 (|has| |#1| (-370)))) (-2360 (($ $ $) 116 (|has| |#1| (-365)))) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) 111 (|has| |#1| (-365)))) (-3431 (($) 157 (|has| |#1| (-351)))) (-2722 (((-112) $) 158 (|has| |#1| (-351)))) (-4225 (($ $ (-772)) 149 (|has| |#1| (-351))) (($ $) 148 (|has| |#1| (-351)))) (-3184 (((-112) $) 124 (|has| |#1| (-365)))) (-4384 (((-923) $) 160 (|has| |#1| (-351))) (((-834 (-923)) $) 146 (|has| |#1| (-351)))) (-1433 (((-112) $) 35)) (-2475 ((|#1| $) 58)) (-3972 (((-3 $ "failed") $) 150 (|has| |#1| (-351)))) (-1725 (((-3 (-645 $) "failed") (-645 $) $) 120 (|has| |#1| (-365)))) (-4206 ((|#2| $) 51 (|has| |#1| (-365)))) (-4249 (((-923) $) 98 (|has| |#1| (-370)))) (-2465 ((|#2| $) 164)) (-2740 (($ (-645 $)) 109 (|has| |#1| (-365))) (($ $ $) 108 (|has| |#1| (-365)))) (-1419 (((-1160) $) 10)) (-2939 (($ $) 125 (|has| |#1| (-365)))) (-2672 (($) 151 (|has| |#1| (-351)) CONST)) (-3768 (($ (-923)) 97 (|has| |#1| (-370)))) (-3430 (((-1122) $) 11)) (-1398 (($) 168)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 110 (|has| |#1| (-365)))) (-2774 (($ (-645 $)) 107 (|has| |#1| (-365))) (($ $ $) 106 (|has| |#1| (-365)))) (-1796 (((-645 (-2 (|:| -2706 (-567)) (|:| -3458 (-567))))) 154 (|has| |#1| (-351)))) (-2706 (((-421 $) $) 121 (|has| |#1| (-365)))) (-3402 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) 118 (|has| |#1| (-365)))) (-2391 (((-3 $ "failed") $ $) 101 (|has| |#1| (-365)))) (-3117 (((-3 (-645 $) "failed") (-645 $) $) 112 (|has| |#1| (-365)))) (-1990 (((-772) $) 114 (|has| |#1| (-365)))) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 115 (|has| |#1| (-365)))) (-3788 ((|#1| (-1268 $)) 54) ((|#1|) 67)) (-2491 (((-772) $) 159 (|has| |#1| (-351))) (((-3 (-772) "failed") $ $) 147 (|has| |#1| (-351)))) (-1593 (($ $) 145 (-2800 (-1667 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-772)) 143 (-2800 (-1667 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-1178)) 141 (-1667 (|has| |#1| (-902 (-1178))) (|has| |#1| (-365)))) (($ $ (-645 (-1178))) 140 (-1667 (|has| |#1| (-902 (-1178))) (|has| |#1| (-365)))) (($ $ (-1178) (-772)) 139 (-1667 (|has| |#1| (-902 (-1178))) (|has| |#1| (-365)))) (($ $ (-645 (-1178)) (-645 (-772))) 138 (-1667 (|has| |#1| (-902 (-1178))) (|has| |#1| (-365)))) (($ $ (-1 |#1| |#1|) (-772)) 131 (|has| |#1| (-365))) (($ $ (-1 |#1| |#1|)) 130 (|has| |#1| (-365)))) (-1866 (((-690 |#1|) (-1268 $) (-1 |#1| |#1|)) 162 (|has| |#1| (-365)))) (-3341 ((|#2|) 167)) (-1527 (($) 156 (|has| |#1| (-351)))) (-2887 (((-1268 |#1|) $ (-1268 $)) 57) (((-690 |#1|) (-1268 $) (-1268 $)) 56) (((-1268 |#1|) $) 73) (((-690 |#1|) (-1268 $)) 72)) (-3893 (((-1268 |#1|) $) 70) (($ (-1268 |#1|)) 69) ((|#2| $) 179) (($ |#2|) 165)) (-1895 (((-3 (-1268 $) "failed") (-690 $)) 153 (|has| |#1| (-351)))) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 44) (($ $) 100 (|has| |#1| (-365))) (($ (-410 (-567))) 95 (-2800 (|has| |#1| (-365)) (|has| |#1| (-1040 (-410 (-567))))))) (-1903 (($ $) 152 (|has| |#1| (-351))) (((-3 $ "failed") $) 50 (|has| |#1| (-145)))) (-2155 ((|#2| $) 52)) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-2623 (((-1268 $)) 74)) (-3816 (((-112) $ $) 104 (|has| |#1| (-365)))) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2637 (($ $) 144 (-2800 (-1667 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-772)) 142 (-2800 (-1667 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-1178)) 137 (-1667 (|has| |#1| (-902 (-1178))) (|has| |#1| (-365)))) (($ $ (-645 (-1178))) 136 (-1667 (|has| |#1| (-902 (-1178))) (|has| |#1| (-365)))) (($ $ (-1178) (-772)) 135 (-1667 (|has| |#1| (-902 (-1178))) (|has| |#1| (-365)))) (($ $ (-645 (-1178)) (-645 (-772))) 134 (-1667 (|has| |#1| (-902 (-1178))) (|has| |#1| (-365)))) (($ $ (-1 |#1| |#1|) (-772)) 133 (|has| |#1| (-365))) (($ $ (-1 |#1| |#1|)) 132 (|has| |#1| (-365)))) (-2936 (((-112) $ $) 6)) (-3060 (($ $ $) 129 (|has| |#1| (-365)))) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 126 (|has| |#1| (-365)))) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-410 (-567)) $) 128 (|has| |#1| (-365))) (($ $ (-410 (-567))) 127 (|has| |#1| (-365)))))
-(((-725 |#1| |#2|) (-140) (-172) (-1244 |t#1|)) (T -725))
-((-1398 (*1 *1) (-12 (-4 *2 (-172)) (-4 *1 (-725 *2 *3)) (-4 *3 (-1244 *2)))) (-3341 (*1 *2) (-12 (-4 *1 (-725 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1244 *3)))) (-2477 (*1 *1 *2) (-12 (-4 *3 (-172)) (-4 *1 (-725 *3 *2)) (-4 *2 (-1244 *3)))) (-3893 (*1 *1 *2) (-12 (-4 *3 (-172)) (-4 *1 (-725 *3 *2)) (-4 *2 (-1244 *3)))) (-2465 (*1 *2 *1) (-12 (-4 *1 (-725 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1244 *3)))) (-2477 (*1 *1 *2) (|partial| -12 (-5 *2 (-410 *4)) (-4 *4 (-1244 *3)) (-4 *3 (-365)) (-4 *3 (-172)) (-4 *1 (-725 *3 *4)))) (-1866 (*1 *2 *3 *4) (-12 (-5 *3 (-1268 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-365)) (-4 *1 (-725 *5 *6)) (-4 *5 (-172)) (-4 *6 (-1244 *5)) (-5 *2 (-690 *5)))))
-(-13 (-412 |t#1| |t#2|) (-172) (-615 |t#2|) (-414 |t#1|) (-379 |t#1|) (-10 -8 (-15 -1398 ($)) (-15 -3341 (|t#2|)) (-15 -2477 ($ |t#2|)) (-15 -3893 ($ |t#2|)) (-15 -2465 (|t#2| $)) (IF (|has| |t#1| (-370)) (-6 (-370)) |%noBranch|) (IF (|has| |t#1| (-365)) (PROGN (-6 (-365)) (-6 (-231 |t#1|)) (-15 -2477 ((-3 $ "failed") (-410 |t#2|))) (-15 -1866 ((-690 |t#1|) (-1268 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-351)) (-6 (-351)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) -2800 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-38 |#1|) . T) ((-38 $) -2800 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-102) . T) ((-111 #0# #0#) -2800 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2800 (|has| |#1| (-351)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-617 #0#) -2800 (|has| |#1| (-1040 (-410 (-567)))) (|has| |#1| (-351)) (|has| |#1| (-365))) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-617 $) -2800 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-614 (-863)) . T) ((-172) . T) ((-615 |#2|) . T) ((-231 |#1|) |has| |#1| (-365)) ((-233) -2800 (|has| |#1| (-351)) (-12 (|has| |#1| (-233)) (|has| |#1| (-365)))) ((-243) -2800 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-291) -2800 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-308) -2800 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-365) -2800 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-405) |has| |#1| (-351)) ((-370) -2800 (|has| |#1| (-370)) (|has| |#1| (-351))) ((-351) |has| |#1| (-351)) ((-372 |#1| |#2|) . T) ((-412 |#1| |#2|) . T) ((-379 |#1|) . T) ((-414 |#1|) . T) ((-455) -2800 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-559) -2800 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-647 #0#) -2800 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) -2800 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) -2800 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-641 |#1|) . T) ((-641 $) -2800 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-640 (-567)) |has| |#1| (-640 (-567))) ((-640 |#1|) . T) ((-718 #0#) -2800 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-718 |#1|) . T) ((-718 $) -2800 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-727) . T) ((-902 (-1178)) -12 (|has| |#1| (-365)) (|has| |#1| (-902 (-1178)))) ((-922) -2800 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-1040 (-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) ((-1040 (-567)) |has| |#1| (-1040 (-567))) ((-1040 |#1|) . T) ((-1053 #0#) -2800 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-1053 |#1|) . T) ((-1053 $) . T) ((-1058 #0#) -2800 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-1058 |#1|) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1153) |has| |#1| (-351)) ((-1222) -2800 (|has| |#1| (-351)) (|has| |#1| (-365))))
-((-2585 (($) 11)) (-2109 (((-3 $ "failed") $) 14)) (-1433 (((-112) $) 10)) (** (($ $ (-923)) NIL) (($ $ (-772)) 20)))
-(((-726 |#1|) (-10 -8 (-15 -2109 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-772))) (-15 -1433 ((-112) |#1|)) (-15 -2585 (|#1|)) (-15 ** (|#1| |#1| (-923)))) (-727)) (T -726))
-NIL
-(-10 -8 (-15 -2109 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-772))) (-15 -1433 ((-112) |#1|)) (-15 -2585 (|#1|)) (-15 ** (|#1| |#1| (-923))))
-((-2403 (((-112) $ $) 7)) (-2585 (($) 19 T CONST)) (-2109 (((-3 $ "failed") $) 16)) (-1433 (((-112) $) 18)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-1728 (($) 20 T CONST)) (-2936 (((-112) $ $) 6)) (** (($ $ (-923)) 14) (($ $ (-772)) 17)) (* (($ $ $) 15)))
+((-2384 (((-772)) 42)) (-3765 (((-3 (-567) "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 |#2| "failed") $) 26)) (-2051 (((-567) $) NIL) (((-410 (-567)) $) NIL) ((|#2| $) 23)) (-2494 (($ |#3|) NIL) (((-3 $ "failed") (-410 |#3|)) 53)) (-3588 (((-3 $ "failed") $) 73)) (-1359 (($) 47)) (-2724 ((|#2| $) 21)) (-1399 (($) 18)) (-1616 (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-1 |#2| |#2|)) 61) (($ $ (-645 (-1179)) (-645 (-772))) NIL) (($ $ (-1179) (-772)) NIL) (($ $ (-645 (-1179))) NIL) (($ $ (-1179)) NIL) (($ $ (-772)) NIL) (($ $) NIL)) (-1648 (((-690 |#2|) (-1269 $) (-1 |#2| |#2|)) 68)) (-3902 (((-1269 |#2|) $) NIL) (($ (-1269 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-2231 ((|#3| $) 39)) (-2144 (((-1269 $)) 36)))
+(((-724 |#1| |#2| |#3|) (-10 -8 (-15 -1616 (|#1| |#1|)) (-15 -1616 (|#1| |#1| (-772))) (-15 -1616 (|#1| |#1| (-1179))) (-15 -1616 (|#1| |#1| (-645 (-1179)))) (-15 -1616 (|#1| |#1| (-1179) (-772))) (-15 -1616 (|#1| |#1| (-645 (-1179)) (-645 (-772)))) (-15 -1359 (|#1|)) (-15 -2384 ((-772))) (-15 -1616 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1616 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -1648 ((-690 |#2|) (-1269 |#1|) (-1 |#2| |#2|))) (-15 -2494 ((-3 |#1| "failed") (-410 |#3|))) (-15 -3902 (|#1| |#3|)) (-15 -2494 (|#1| |#3|)) (-15 -1399 (|#1|)) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -2051 (|#2| |#1|)) (-15 -2051 ((-410 (-567)) |#1|)) (-15 -3765 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2051 ((-567) |#1|)) (-15 -3765 ((-3 (-567) "failed") |#1|)) (-15 -3902 (|#3| |#1|)) (-15 -3902 (|#1| (-1269 |#2|))) (-15 -3902 ((-1269 |#2|) |#1|)) (-15 -2144 ((-1269 |#1|))) (-15 -2231 (|#3| |#1|)) (-15 -2724 (|#2| |#1|)) (-15 -3588 ((-3 |#1| "failed") |#1|))) (-725 |#2| |#3|) (-172) (-1245 |#2|)) (T -724))
+((-2384 (*1 *2) (-12 (-4 *4 (-172)) (-4 *5 (-1245 *4)) (-5 *2 (-772)) (-5 *1 (-724 *3 *4 *5)) (-4 *3 (-725 *4 *5)))))
+(-10 -8 (-15 -1616 (|#1| |#1|)) (-15 -1616 (|#1| |#1| (-772))) (-15 -1616 (|#1| |#1| (-1179))) (-15 -1616 (|#1| |#1| (-645 (-1179)))) (-15 -1616 (|#1| |#1| (-1179) (-772))) (-15 -1616 (|#1| |#1| (-645 (-1179)) (-645 (-772)))) (-15 -1359 (|#1|)) (-15 -2384 ((-772))) (-15 -1616 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1616 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -1648 ((-690 |#2|) (-1269 |#1|) (-1 |#2| |#2|))) (-15 -2494 ((-3 |#1| "failed") (-410 |#3|))) (-15 -3902 (|#1| |#3|)) (-15 -2494 (|#1| |#3|)) (-15 -1399 (|#1|)) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -2051 (|#2| |#1|)) (-15 -2051 ((-410 (-567)) |#1|)) (-15 -3765 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2051 ((-567) |#1|)) (-15 -3765 ((-3 (-567) "failed") |#1|)) (-15 -3902 (|#3| |#1|)) (-15 -3902 (|#1| (-1269 |#2|))) (-15 -3902 ((-1269 |#2|) |#1|)) (-15 -2144 ((-1269 |#1|))) (-15 -2231 (|#3| |#1|)) (-15 -2724 (|#2| |#1|)) (-15 -3588 ((-3 |#1| "failed") |#1|)))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) 102 (|has| |#1| (-365)))) (-4287 (($ $) 103 (|has| |#1| (-365)))) (-2286 (((-112) $) 105 (|has| |#1| (-365)))) (-3478 (((-690 |#1|) (-1269 $)) 53) (((-690 |#1|)) 68)) (-4293 ((|#1| $) 59)) (-3792 (((-1192 (-923) (-772)) (-567)) 155 (|has| |#1| (-351)))) (-2376 (((-3 $ "failed") $ $) 20)) (-3659 (($ $) 122 (|has| |#1| (-365)))) (-3597 (((-421 $) $) 123 (|has| |#1| (-365)))) (-3696 (((-112) $ $) 113 (|has| |#1| (-365)))) (-2384 (((-772)) 96 (|has| |#1| (-370)))) (-3647 (($) 18 T CONST)) (-3765 (((-3 (-567) "failed") $) 178 (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) 176 (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) 173)) (-2051 (((-567) $) 177 (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) 175 (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) 174)) (-3111 (($ (-1269 |#1|) (-1269 $)) 55) (($ (-1269 |#1|)) 71)) (-2998 (((-3 "prime" "polynomial" "normal" "cyclic")) 161 (|has| |#1| (-351)))) (-2357 (($ $ $) 117 (|has| |#1| (-365)))) (-3012 (((-690 |#1|) $ (-1269 $)) 60) (((-690 |#1|) $) 66)) (-1423 (((-690 (-567)) (-690 $)) 172 (|has| |#1| (-640 (-567)))) (((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) 171 (|has| |#1| (-640 (-567)))) (((-2 (|:| -4208 (-690 |#1|)) (|:| |vec| (-1269 |#1|))) (-690 $) (-1269 $)) 170) (((-690 |#1|) (-690 $)) 169)) (-2494 (($ |#2|) 166) (((-3 $ "failed") (-410 |#2|)) 163 (|has| |#1| (-365)))) (-3588 (((-3 $ "failed") $) 37)) (-1976 (((-923)) 61)) (-1359 (($) 99 (|has| |#1| (-370)))) (-2368 (($ $ $) 116 (|has| |#1| (-365)))) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) 111 (|has| |#1| (-365)))) (-2870 (($) 157 (|has| |#1| (-351)))) (-1305 (((-112) $) 158 (|has| |#1| (-351)))) (-3144 (($ $ (-772)) 149 (|has| |#1| (-351))) (($ $) 148 (|has| |#1| (-351)))) (-3502 (((-112) $) 124 (|has| |#1| (-365)))) (-3362 (((-923) $) 160 (|has| |#1| (-351))) (((-834 (-923)) $) 146 (|has| |#1| (-351)))) (-4346 (((-112) $) 35)) (-2724 ((|#1| $) 58)) (-3067 (((-3 $ "failed") $) 150 (|has| |#1| (-351)))) (-1469 (((-3 (-645 $) "failed") (-645 $) $) 120 (|has| |#1| (-365)))) (-1914 ((|#2| $) 51 (|has| |#1| (-365)))) (-3474 (((-923) $) 98 (|has| |#1| (-370)))) (-2484 ((|#2| $) 164)) (-2751 (($ (-645 $)) 109 (|has| |#1| (-365))) (($ $ $) 108 (|has| |#1| (-365)))) (-2516 (((-1161) $) 10)) (-2949 (($ $) 125 (|has| |#1| (-365)))) (-2694 (($) 151 (|has| |#1| (-351)) CONST)) (-3779 (($ (-923)) 97 (|has| |#1| (-370)))) (-3437 (((-1122) $) 11)) (-1399 (($) 168)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) 110 (|has| |#1| (-365)))) (-2785 (($ (-645 $)) 107 (|has| |#1| (-365))) (($ $ $) 106 (|has| |#1| (-365)))) (-4151 (((-645 (-2 (|:| -2717 (-567)) (|:| -3468 (-567))))) 154 (|has| |#1| (-351)))) (-2717 (((-421 $) $) 121 (|has| |#1| (-365)))) (-2905 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) 118 (|has| |#1| (-365)))) (-2400 (((-3 $ "failed") $ $) 101 (|has| |#1| (-365)))) (-2372 (((-3 (-645 $) "failed") (-645 $) $) 112 (|has| |#1| (-365)))) (-2460 (((-772) $) 114 (|has| |#1| (-365)))) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) 115 (|has| |#1| (-365)))) (-2433 ((|#1| (-1269 $)) 54) ((|#1|) 67)) (-1760 (((-772) $) 159 (|has| |#1| (-351))) (((-3 (-772) "failed") $ $) 147 (|has| |#1| (-351)))) (-1616 (($ $) 145 (-2811 (-1686 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-772)) 143 (-2811 (-1686 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-1179)) 141 (-1686 (|has| |#1| (-902 (-1179))) (|has| |#1| (-365)))) (($ $ (-645 (-1179))) 140 (-1686 (|has| |#1| (-902 (-1179))) (|has| |#1| (-365)))) (($ $ (-1179) (-772)) 139 (-1686 (|has| |#1| (-902 (-1179))) (|has| |#1| (-365)))) (($ $ (-645 (-1179)) (-645 (-772))) 138 (-1686 (|has| |#1| (-902 (-1179))) (|has| |#1| (-365)))) (($ $ (-1 |#1| |#1|) (-772)) 131 (|has| |#1| (-365))) (($ $ (-1 |#1| |#1|)) 130 (|has| |#1| (-365)))) (-1648 (((-690 |#1|) (-1269 $) (-1 |#1| |#1|)) 162 (|has| |#1| (-365)))) (-3169 ((|#2|) 167)) (-4273 (($) 156 (|has| |#1| (-351)))) (-3088 (((-1269 |#1|) $ (-1269 $)) 57) (((-690 |#1|) (-1269 $) (-1269 $)) 56) (((-1269 |#1|) $) 73) (((-690 |#1|) (-1269 $)) 72)) (-3902 (((-1269 |#1|) $) 70) (($ (-1269 |#1|)) 69) ((|#2| $) 179) (($ |#2|) 165)) (-2616 (((-3 (-1269 $) "failed") (-690 $)) 153 (|has| |#1| (-351)))) (-4129 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 44) (($ $) 100 (|has| |#1| (-365))) (($ (-410 (-567))) 95 (-2811 (|has| |#1| (-365)) (|has| |#1| (-1040 (-410 (-567))))))) (-2118 (($ $) 152 (|has| |#1| (-351))) (((-3 $ "failed") $) 50 (|has| |#1| (-145)))) (-2231 ((|#2| $) 52)) (-2746 (((-772)) 32 T CONST)) (-3357 (((-112) $ $) 9)) (-2144 (((-1269 $)) 74)) (-3731 (((-112) $ $) 104 (|has| |#1| (-365)))) (-1733 (($) 19 T CONST)) (-1744 (($) 34 T CONST)) (-2647 (($ $) 144 (-2811 (-1686 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-772)) 142 (-2811 (-1686 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-1179)) 137 (-1686 (|has| |#1| (-902 (-1179))) (|has| |#1| (-365)))) (($ $ (-645 (-1179))) 136 (-1686 (|has| |#1| (-902 (-1179))) (|has| |#1| (-365)))) (($ $ (-1179) (-772)) 135 (-1686 (|has| |#1| (-902 (-1179))) (|has| |#1| (-365)))) (($ $ (-645 (-1179)) (-645 (-772))) 134 (-1686 (|has| |#1| (-902 (-1179))) (|has| |#1| (-365)))) (($ $ (-1 |#1| |#1|) (-772)) 133 (|has| |#1| (-365))) (($ $ (-1 |#1| |#1|)) 132 (|has| |#1| (-365)))) (-2946 (((-112) $ $) 6)) (-3069 (($ $ $) 129 (|has| |#1| (-365)))) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 126 (|has| |#1| (-365)))) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-410 (-567)) $) 128 (|has| |#1| (-365))) (($ $ (-410 (-567))) 127 (|has| |#1| (-365)))))
+(((-725 |#1| |#2|) (-140) (-172) (-1245 |t#1|)) (T -725))
+((-1399 (*1 *1) (-12 (-4 *2 (-172)) (-4 *1 (-725 *2 *3)) (-4 *3 (-1245 *2)))) (-3169 (*1 *2) (-12 (-4 *1 (-725 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1245 *3)))) (-2494 (*1 *1 *2) (-12 (-4 *3 (-172)) (-4 *1 (-725 *3 *2)) (-4 *2 (-1245 *3)))) (-3902 (*1 *1 *2) (-12 (-4 *3 (-172)) (-4 *1 (-725 *3 *2)) (-4 *2 (-1245 *3)))) (-2484 (*1 *2 *1) (-12 (-4 *1 (-725 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1245 *3)))) (-2494 (*1 *1 *2) (|partial| -12 (-5 *2 (-410 *4)) (-4 *4 (-1245 *3)) (-4 *3 (-365)) (-4 *3 (-172)) (-4 *1 (-725 *3 *4)))) (-1648 (*1 *2 *3 *4) (-12 (-5 *3 (-1269 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-365)) (-4 *1 (-725 *5 *6)) (-4 *5 (-172)) (-4 *6 (-1245 *5)) (-5 *2 (-690 *5)))))
+(-13 (-412 |t#1| |t#2|) (-172) (-615 |t#2|) (-414 |t#1|) (-379 |t#1|) (-10 -8 (-15 -1399 ($)) (-15 -3169 (|t#2|)) (-15 -2494 ($ |t#2|)) (-15 -3902 ($ |t#2|)) (-15 -2484 (|t#2| $)) (IF (|has| |t#1| (-370)) (-6 (-370)) |%noBranch|) (IF (|has| |t#1| (-365)) (PROGN (-6 (-365)) (-6 (-231 |t#1|)) (-15 -2494 ((-3 $ "failed") (-410 |t#2|))) (-15 -1648 ((-690 |t#1|) (-1269 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-351)) (-6 (-351)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) -2811 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-38 |#1|) . T) ((-38 $) -2811 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-102) . T) ((-111 #0# #0#) -2811 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2811 (|has| |#1| (-351)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-617 #0#) -2811 (|has| |#1| (-1040 (-410 (-567)))) (|has| |#1| (-351)) (|has| |#1| (-365))) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-617 $) -2811 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-614 (-863)) . T) ((-172) . T) ((-615 |#2|) . T) ((-231 |#1|) |has| |#1| (-365)) ((-233) -2811 (|has| |#1| (-351)) (-12 (|has| |#1| (-233)) (|has| |#1| (-365)))) ((-243) -2811 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-291) -2811 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-308) -2811 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-365) -2811 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-405) |has| |#1| (-351)) ((-370) -2811 (|has| |#1| (-370)) (|has| |#1| (-351))) ((-351) |has| |#1| (-351)) ((-372 |#1| |#2|) . T) ((-412 |#1| |#2|) . T) ((-379 |#1|) . T) ((-414 |#1|) . T) ((-455) -2811 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-559) -2811 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-647 #0#) -2811 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) -2811 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) -2811 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-641 |#1|) . T) ((-641 $) -2811 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-640 (-567)) |has| |#1| (-640 (-567))) ((-640 |#1|) . T) ((-718 #0#) -2811 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-718 |#1|) . T) ((-718 $) -2811 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-727) . T) ((-902 (-1179)) -12 (|has| |#1| (-365)) (|has| |#1| (-902 (-1179)))) ((-922) -2811 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-1040 (-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) ((-1040 (-567)) |has| |#1| (-1040 (-567))) ((-1040 |#1|) . T) ((-1053 #0#) -2811 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-1053 |#1|) . T) ((-1053 $) . T) ((-1058 #0#) -2811 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-1058 |#1|) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1154) |has| |#1| (-351)) ((-1223) -2811 (|has| |#1| (-351)) (|has| |#1| (-365))))
+((-3647 (($) 11)) (-3588 (((-3 $ "failed") $) 14)) (-4346 (((-112) $) 10)) (** (($ $ (-923)) NIL) (($ $ (-772)) 20)))
+(((-726 |#1|) (-10 -8 (-15 -3588 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-772))) (-15 -4346 ((-112) |#1|)) (-15 -3647 (|#1|)) (-15 ** (|#1| |#1| (-923)))) (-727)) (T -726))
+NIL
+(-10 -8 (-15 -3588 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-772))) (-15 -4346 ((-112) |#1|)) (-15 -3647 (|#1|)) (-15 ** (|#1| |#1| (-923))))
+((-2412 (((-112) $ $) 7)) (-3647 (($) 19 T CONST)) (-3588 (((-3 $ "failed") $) 16)) (-4346 (((-112) $) 18)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-4129 (((-863) $) 12)) (-3357 (((-112) $ $) 9)) (-1744 (($) 20 T CONST)) (-2946 (((-112) $ $) 6)) (** (($ $ (-923)) 14) (($ $ (-772)) 17)) (* (($ $ $) 15)))
(((-727) (-140)) (T -727))
-((-1728 (*1 *1) (-4 *1 (-727))) (-2585 (*1 *1) (-4 *1 (-727))) (-1433 (*1 *2 *1) (-12 (-4 *1 (-727)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-727)) (-5 *2 (-772)))) (-2109 (*1 *1 *1) (|partial| -4 *1 (-727))))
-(-13 (-1114) (-10 -8 (-15 (-1728) ($) -3286) (-15 -2585 ($) -3286) (-15 -1433 ((-112) $)) (-15 ** ($ $ (-772))) (-15 -2109 ((-3 $ "failed") $))))
+((-1744 (*1 *1) (-4 *1 (-727))) (-3647 (*1 *1) (-4 *1 (-727))) (-4346 (*1 *2 *1) (-12 (-4 *1 (-727)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-727)) (-5 *2 (-772)))) (-3588 (*1 *1 *1) (|partial| -4 *1 (-727))))
+(-13 (-1114) (-10 -8 (-15 (-1744) ($) -3304) (-15 -3647 ($) -3304) (-15 -4346 ((-112) $)) (-15 ** ($ $ (-772))) (-15 -3588 ((-3 $ "failed") $))))
(((-102) . T) ((-614 (-863)) . T) ((-1114) . T) ((-1102) . T))
-((-4250 (((-2 (|:| -4180 (-421 |#2|)) (|:| |special| (-421 |#2|))) |#2| (-1 |#2| |#2|)) 39)) (-4323 (((-2 (|:| -4180 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-3737 ((|#2| (-410 |#2|) (-1 |#2| |#2|)) 13)) (-2532 (((-2 (|:| |poly| |#2|) (|:| -4180 (-410 |#2|)) (|:| |special| (-410 |#2|))) (-410 |#2|) (-1 |#2| |#2|)) 48)))
-(((-728 |#1| |#2|) (-10 -7 (-15 -4323 ((-2 (|:| -4180 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -4250 ((-2 (|:| -4180 (-421 |#2|)) (|:| |special| (-421 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -3737 (|#2| (-410 |#2|) (-1 |#2| |#2|))) (-15 -2532 ((-2 (|:| |poly| |#2|) (|:| -4180 (-410 |#2|)) (|:| |special| (-410 |#2|))) (-410 |#2|) (-1 |#2| |#2|)))) (-365) (-1244 |#1|)) (T -728))
-((-2532 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1244 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| |poly| *6) (|:| -4180 (-410 *6)) (|:| |special| (-410 *6)))) (-5 *1 (-728 *5 *6)) (-5 *3 (-410 *6)))) (-3737 (*1 *2 *3 *4) (-12 (-5 *3 (-410 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1244 *5)) (-5 *1 (-728 *5 *2)) (-4 *5 (-365)))) (-4250 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1244 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| -4180 (-421 *3)) (|:| |special| (-421 *3)))) (-5 *1 (-728 *5 *3)))) (-4323 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1244 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| -4180 *3) (|:| |special| *3))) (-5 *1 (-728 *5 *3)))))
-(-10 -7 (-15 -4323 ((-2 (|:| -4180 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -4250 ((-2 (|:| -4180 (-421 |#2|)) (|:| |special| (-421 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -3737 (|#2| (-410 |#2|) (-1 |#2| |#2|))) (-15 -2532 ((-2 (|:| |poly| |#2|) (|:| -4180 (-410 |#2|)) (|:| |special| (-410 |#2|))) (-410 |#2|) (-1 |#2| |#2|))))
-((-3629 ((|#7| (-645 |#5|) |#6|) NIL)) (-3829 ((|#7| (-1 |#5| |#4|) |#6|) 27)))
-(((-729 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3829 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3629 (|#7| (-645 |#5|) |#6|))) (-851) (-794) (-794) (-1051) (-1051) (-951 |#4| |#2| |#1|) (-951 |#5| |#3| |#1|)) (T -729))
-((-3629 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *9)) (-4 *9 (-1051)) (-4 *5 (-851)) (-4 *6 (-794)) (-4 *8 (-1051)) (-4 *2 (-951 *9 *7 *5)) (-5 *1 (-729 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-794)) (-4 *4 (-951 *8 *6 *5)))) (-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1051)) (-4 *9 (-1051)) (-4 *5 (-851)) (-4 *6 (-794)) (-4 *2 (-951 *9 *7 *5)) (-5 *1 (-729 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-794)) (-4 *4 (-951 *8 *6 *5)))))
-(-10 -7 (-15 -3829 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3629 (|#7| (-645 |#5|) |#6|)))
-((-3829 ((|#7| (-1 |#2| |#1|) |#6|) 28)))
-(((-730 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3829 (|#7| (-1 |#2| |#1|) |#6|))) (-851) (-851) (-794) (-794) (-1051) (-951 |#5| |#3| |#1|) (-951 |#5| |#4| |#2|)) (T -730))
-((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-851)) (-4 *6 (-851)) (-4 *7 (-794)) (-4 *9 (-1051)) (-4 *2 (-951 *9 *8 *6)) (-5 *1 (-730 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-794)) (-4 *4 (-951 *9 *7 *5)))))
-(-10 -7 (-15 -3829 (|#7| (-1 |#2| |#1|) |#6|)))
-((-2706 (((-421 |#4|) |#4|) 42)))
-(((-731 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2706 ((-421 |#4|) |#4|))) (-794) (-13 (-851) (-10 -8 (-15 -3893 ((-1178) $)) (-15 -3644 ((-3 $ "failed") (-1178))))) (-308) (-951 (-954 |#3|) |#1| |#2|)) (T -731))
-((-2706 (*1 *2 *3) (-12 (-4 *4 (-794)) (-4 *5 (-13 (-851) (-10 -8 (-15 -3893 ((-1178) $)) (-15 -3644 ((-3 $ "failed") (-1178)))))) (-4 *6 (-308)) (-5 *2 (-421 *3)) (-5 *1 (-731 *4 *5 *6 *3)) (-4 *3 (-951 (-954 *6) *4 *5)))))
-(-10 -7 (-15 -2706 ((-421 |#4|) |#4|)))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-2847 (((-645 (-865 |#1|)) $) NIL)) (-2675 (((-1174 $) $ (-865 |#1|)) NIL) (((-1174 |#2|) $) NIL)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL (|has| |#2| (-559)))) (-4381 (($ $) NIL (|has| |#2| (-559)))) (-3949 (((-112) $) NIL (|has| |#2| (-559)))) (-1468 (((-772) $) NIL) (((-772) $ (-645 (-865 |#1|))) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-4226 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-911)))) (-3248 (($ $) NIL (|has| |#2| (-455)))) (-2908 (((-421 $) $) NIL (|has| |#2| (-455)))) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-911)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 |#2| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#2| (-1040 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#2| (-1040 (-567)))) (((-3 (-865 |#1|) "failed") $) NIL)) (-2038 ((|#2| $) NIL) (((-410 (-567)) $) NIL (|has| |#2| (-1040 (-410 (-567))))) (((-567) $) NIL (|has| |#2| (-1040 (-567)))) (((-865 |#1|) $) NIL)) (-2951 (($ $ $ (-865 |#1|)) NIL (|has| |#2| (-172)))) (-3014 (($ $) NIL)) (-2630 (((-690 (-567)) (-690 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -2316 (-690 |#2|)) (|:| |vec| (-1268 |#2|))) (-690 $) (-1268 $)) NIL) (((-690 |#2|) (-690 $)) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-3501 (($ $) NIL (|has| |#2| (-455))) (($ $ (-865 |#1|)) NIL (|has| |#2| (-455)))) (-3000 (((-645 $) $) NIL)) (-3184 (((-112) $) NIL (|has| |#2| (-911)))) (-2320 (($ $ |#2| (-534 (-865 |#1|)) $) NIL)) (-4303 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (-12 (|has| (-865 |#1|) (-888 (-381))) (|has| |#2| (-888 (-381))))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (-12 (|has| (-865 |#1|) (-888 (-567))) (|has| |#2| (-888 (-567)))))) (-1433 (((-112) $) NIL)) (-2695 (((-772) $) NIL)) (-2836 (($ (-1174 |#2|) (-865 |#1|)) NIL) (($ (-1174 $) (-865 |#1|)) NIL)) (-1709 (((-645 $) $) NIL)) (-2843 (((-112) $) NIL)) (-2824 (($ |#2| (-534 (-865 |#1|))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-1621 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $ (-865 |#1|)) NIL)) (-2656 (((-534 (-865 |#1|)) $) NIL) (((-772) $ (-865 |#1|)) NIL) (((-645 (-772)) $ (-645 (-865 |#1|))) NIL)) (-3273 (($ (-1 (-534 (-865 |#1|)) (-534 (-865 |#1|))) $) NIL)) (-3829 (($ (-1 |#2| |#2|) $) NIL)) (-3046 (((-3 (-865 |#1|) "failed") $) NIL)) (-2976 (($ $) NIL)) (-2989 ((|#2| $) NIL)) (-2740 (($ (-645 $)) NIL (|has| |#2| (-455))) (($ $ $) NIL (|has| |#2| (-455)))) (-1419 (((-1160) $) NIL)) (-2056 (((-3 (-645 $) "failed") $) NIL)) (-3671 (((-3 (-645 $) "failed") $) NIL)) (-3798 (((-3 (-2 (|:| |var| (-865 |#1|)) (|:| -3458 (-772))) "failed") $) NIL)) (-3430 (((-1122) $) NIL)) (-2949 (((-112) $) NIL)) (-2962 ((|#2| $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#2| (-455)))) (-2774 (($ (-645 $)) NIL (|has| |#2| (-455))) (($ $ $) NIL (|has| |#2| (-455)))) (-2435 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-911)))) (-3517 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-911)))) (-2706 (((-421 $) $) NIL (|has| |#2| (-911)))) (-2391 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-559))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-559)))) (-2631 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-865 |#1|) |#2|) NIL) (($ $ (-645 (-865 |#1|)) (-645 |#2|)) NIL) (($ $ (-865 |#1|) $) NIL) (($ $ (-645 (-865 |#1|)) (-645 $)) NIL)) (-3788 (($ $ (-865 |#1|)) NIL (|has| |#2| (-172)))) (-1593 (($ $ (-865 |#1|)) NIL) (($ $ (-645 (-865 |#1|))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-3077 (((-534 (-865 |#1|)) $) NIL) (((-772) $ (-865 |#1|)) NIL) (((-645 (-772)) $ (-645 (-865 |#1|))) NIL)) (-3893 (((-894 (-381)) $) NIL (-12 (|has| (-865 |#1|) (-615 (-894 (-381)))) (|has| |#2| (-615 (-894 (-381)))))) (((-894 (-567)) $) NIL (-12 (|has| (-865 |#1|) (-615 (-894 (-567)))) (|has| |#2| (-615 (-894 (-567)))))) (((-539) $) NIL (-12 (|has| (-865 |#1|) (-615 (-539))) (|has| |#2| (-615 (-539)))))) (-4358 ((|#2| $) NIL (|has| |#2| (-455))) (($ $ (-865 |#1|)) NIL (|has| |#2| (-455)))) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-911))))) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ |#2|) NIL) (($ (-865 |#1|)) NIL) (($ $) NIL (|has| |#2| (-559))) (($ (-410 (-567))) NIL (-2800 (|has| |#2| (-38 (-410 (-567)))) (|has| |#2| (-1040 (-410 (-567))))))) (-3032 (((-645 |#2|) $) NIL)) (-4136 ((|#2| $ (-534 (-865 |#1|))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-1903 (((-3 $ "failed") $) NIL (-2800 (-12 (|has| $ (-145)) (|has| |#2| (-911))) (|has| |#2| (-145))))) (-4221 (((-772)) NIL T CONST)) (-4176 (($ $ $ (-772)) NIL (|has| |#2| (-172)))) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL (|has| |#2| (-559)))) (-1716 (($) NIL T CONST)) (-1728 (($) NIL T CONST)) (-2637 (($ $ (-865 |#1|)) NIL) (($ $ (-645 (-865 |#1|))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL (|has| |#2| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#2| (-38 (-410 (-567))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-732 |#1| |#2|) (-951 |#2| (-534 (-865 |#1|)) (-865 |#1|)) (-645 (-1178)) (-1051)) (T -732))
+((-2716 (((-2 (|:| -4179 (-421 |#2|)) (|:| |special| (-421 |#2|))) |#2| (-1 |#2| |#2|)) 39)) (-2004 (((-2 (|:| -4179 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-4376 ((|#2| (-410 |#2|) (-1 |#2| |#2|)) 13)) (-2756 (((-2 (|:| |poly| |#2|) (|:| -4179 (-410 |#2|)) (|:| |special| (-410 |#2|))) (-410 |#2|) (-1 |#2| |#2|)) 48)))
+(((-728 |#1| |#2|) (-10 -7 (-15 -2004 ((-2 (|:| -4179 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2716 ((-2 (|:| -4179 (-421 |#2|)) (|:| |special| (-421 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -4376 (|#2| (-410 |#2|) (-1 |#2| |#2|))) (-15 -2756 ((-2 (|:| |poly| |#2|) (|:| -4179 (-410 |#2|)) (|:| |special| (-410 |#2|))) (-410 |#2|) (-1 |#2| |#2|)))) (-365) (-1245 |#1|)) (T -728))
+((-2756 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1245 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| |poly| *6) (|:| -4179 (-410 *6)) (|:| |special| (-410 *6)))) (-5 *1 (-728 *5 *6)) (-5 *3 (-410 *6)))) (-4376 (*1 *2 *3 *4) (-12 (-5 *3 (-410 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1245 *5)) (-5 *1 (-728 *5 *2)) (-4 *5 (-365)))) (-2716 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1245 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| -4179 (-421 *3)) (|:| |special| (-421 *3)))) (-5 *1 (-728 *5 *3)))) (-2004 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1245 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| -4179 *3) (|:| |special| *3))) (-5 *1 (-728 *5 *3)))))
+(-10 -7 (-15 -2004 ((-2 (|:| -4179 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2716 ((-2 (|:| -4179 (-421 |#2|)) (|:| |special| (-421 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -4376 (|#2| (-410 |#2|) (-1 |#2| |#2|))) (-15 -2756 ((-2 (|:| |poly| |#2|) (|:| -4179 (-410 |#2|)) (|:| |special| (-410 |#2|))) (-410 |#2|) (-1 |#2| |#2|))))
+((-3639 ((|#7| (-645 |#5|) |#6|) NIL)) (-3841 ((|#7| (-1 |#5| |#4|) |#6|) 27)))
+(((-729 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3841 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3639 (|#7| (-645 |#5|) |#6|))) (-851) (-794) (-794) (-1051) (-1051) (-951 |#4| |#2| |#1|) (-951 |#5| |#3| |#1|)) (T -729))
+((-3639 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *9)) (-4 *9 (-1051)) (-4 *5 (-851)) (-4 *6 (-794)) (-4 *8 (-1051)) (-4 *2 (-951 *9 *7 *5)) (-5 *1 (-729 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-794)) (-4 *4 (-951 *8 *6 *5)))) (-3841 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1051)) (-4 *9 (-1051)) (-4 *5 (-851)) (-4 *6 (-794)) (-4 *2 (-951 *9 *7 *5)) (-5 *1 (-729 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-794)) (-4 *4 (-951 *8 *6 *5)))))
+(-10 -7 (-15 -3841 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3639 (|#7| (-645 |#5|) |#6|)))
+((-3841 ((|#7| (-1 |#2| |#1|) |#6|) 28)))
+(((-730 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3841 (|#7| (-1 |#2| |#1|) |#6|))) (-851) (-851) (-794) (-794) (-1051) (-951 |#5| |#3| |#1|) (-951 |#5| |#4| |#2|)) (T -730))
+((-3841 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-851)) (-4 *6 (-851)) (-4 *7 (-794)) (-4 *9 (-1051)) (-4 *2 (-951 *9 *8 *6)) (-5 *1 (-730 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-794)) (-4 *4 (-951 *9 *7 *5)))))
+(-10 -7 (-15 -3841 (|#7| (-1 |#2| |#1|) |#6|)))
+((-2717 (((-421 |#4|) |#4|) 42)))
+(((-731 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2717 ((-421 |#4|) |#4|))) (-794) (-13 (-851) (-10 -8 (-15 -3902 ((-1179) $)) (-15 -3653 ((-3 $ "failed") (-1179))))) (-308) (-951 (-954 |#3|) |#1| |#2|)) (T -731))
+((-2717 (*1 *2 *3) (-12 (-4 *4 (-794)) (-4 *5 (-13 (-851) (-10 -8 (-15 -3902 ((-1179) $)) (-15 -3653 ((-3 $ "failed") (-1179)))))) (-4 *6 (-308)) (-5 *2 (-421 *3)) (-5 *1 (-731 *4 *5 *6 *3)) (-4 *3 (-951 (-954 *6) *4 *5)))))
+(-10 -7 (-15 -2717 ((-421 |#4|) |#4|)))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-2859 (((-645 (-865 |#1|)) $) NIL)) (-2684 (((-1175 $) $ (-865 |#1|)) NIL) (((-1175 |#2|) $) NIL)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) NIL (|has| |#2| (-559)))) (-4287 (($ $) NIL (|has| |#2| (-559)))) (-2286 (((-112) $) NIL (|has| |#2| (-559)))) (-3849 (((-772) $) NIL) (((-772) $ (-645 (-865 |#1|))) NIL)) (-2376 (((-3 $ "failed") $ $) NIL)) (-2029 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#2| (-911)))) (-3659 (($ $) NIL (|has| |#2| (-455)))) (-3597 (((-421 $) $) NIL (|has| |#2| (-455)))) (-3610 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) NIL (|has| |#2| (-911)))) (-3647 (($) NIL T CONST)) (-3765 (((-3 |#2| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#2| (-1040 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#2| (-1040 (-567)))) (((-3 (-865 |#1|) "failed") $) NIL)) (-2051 ((|#2| $) NIL) (((-410 (-567)) $) NIL (|has| |#2| (-1040 (-410 (-567))))) (((-567) $) NIL (|has| |#2| (-1040 (-567)))) (((-865 |#1|) $) NIL)) (-3554 (($ $ $ (-865 |#1|)) NIL (|has| |#2| (-172)))) (-3023 (($ $) NIL)) (-1423 (((-690 (-567)) (-690 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -4208 (-690 |#2|)) (|:| |vec| (-1269 |#2|))) (-690 $) (-1269 $)) NIL) (((-690 |#2|) (-690 $)) NIL)) (-3588 (((-3 $ "failed") $) NIL)) (-2989 (($ $) NIL (|has| |#2| (-455))) (($ $ (-865 |#1|)) NIL (|has| |#2| (-455)))) (-3010 (((-645 $) $) NIL)) (-3502 (((-112) $) NIL (|has| |#2| (-911)))) (-3214 (($ $ |#2| (-534 (-865 |#1|)) $) NIL)) (-3193 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (-12 (|has| (-865 |#1|) (-888 (-381))) (|has| |#2| (-888 (-381))))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (-12 (|has| (-865 |#1|) (-888 (-567))) (|has| |#2| (-888 (-567)))))) (-4346 (((-112) $) NIL)) (-2851 (((-772) $) NIL)) (-2848 (($ (-1175 |#2|) (-865 |#1|)) NIL) (($ (-1175 $) (-865 |#1|)) NIL)) (-2659 (((-645 $) $) NIL)) (-3770 (((-112) $) NIL)) (-2836 (($ |#2| (-534 (-865 |#1|))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-2742 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $ (-865 |#1|)) NIL)) (-2955 (((-534 (-865 |#1|)) $) NIL) (((-772) $ (-865 |#1|)) NIL) (((-645 (-772)) $ (-645 (-865 |#1|))) NIL)) (-3827 (($ (-1 (-534 (-865 |#1|)) (-534 (-865 |#1|))) $) NIL)) (-3841 (($ (-1 |#2| |#2|) $) NIL)) (-3221 (((-3 (-865 |#1|) "failed") $) NIL)) (-2985 (($ $) NIL)) (-2996 ((|#2| $) NIL)) (-2751 (($ (-645 $)) NIL (|has| |#2| (-455))) (($ $ $) NIL (|has| |#2| (-455)))) (-2516 (((-1161) $) NIL)) (-3037 (((-3 (-645 $) "failed") $) NIL)) (-3774 (((-3 (-645 $) "failed") $) NIL)) (-3816 (((-3 (-2 (|:| |var| (-865 |#1|)) (|:| -3468 (-772))) "failed") $) NIL)) (-3437 (((-1122) $) NIL)) (-2960 (((-112) $) NIL)) (-2971 ((|#2| $) NIL)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| |#2| (-455)))) (-2785 (($ (-645 $)) NIL (|has| |#2| (-455))) (($ $ $) NIL (|has| |#2| (-455)))) (-3551 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#2| (-911)))) (-2016 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#2| (-911)))) (-2717 (((-421 $) $) NIL (|has| |#2| (-911)))) (-2400 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-559))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-559)))) (-2642 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-865 |#1|) |#2|) NIL) (($ $ (-645 (-865 |#1|)) (-645 |#2|)) NIL) (($ $ (-865 |#1|) $) NIL) (($ $ (-645 (-865 |#1|)) (-645 $)) NIL)) (-2433 (($ $ (-865 |#1|)) NIL (|has| |#2| (-172)))) (-1616 (($ $ (-865 |#1|)) NIL) (($ $ (-645 (-865 |#1|))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-3104 (((-534 (-865 |#1|)) $) NIL) (((-772) $ (-865 |#1|)) NIL) (((-645 (-772)) $ (-645 (-865 |#1|))) NIL)) (-3902 (((-894 (-381)) $) NIL (-12 (|has| (-865 |#1|) (-615 (-894 (-381)))) (|has| |#2| (-615 (-894 (-381)))))) (((-894 (-567)) $) NIL (-12 (|has| (-865 |#1|) (-615 (-894 (-567)))) (|has| |#2| (-615 (-894 (-567)))))) (((-539) $) NIL (-12 (|has| (-865 |#1|) (-615 (-539))) (|has| |#2| (-615 (-539)))))) (-1849 ((|#2| $) NIL (|has| |#2| (-455))) (($ $ (-865 |#1|)) NIL (|has| |#2| (-455)))) (-2616 (((-3 (-1269 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-911))))) (-4129 (((-863) $) NIL) (($ (-567)) NIL) (($ |#2|) NIL) (($ (-865 |#1|)) NIL) (($ $) NIL (|has| |#2| (-559))) (($ (-410 (-567))) NIL (-2811 (|has| |#2| (-38 (-410 (-567)))) (|has| |#2| (-1040 (-410 (-567))))))) (-3601 (((-645 |#2|) $) NIL)) (-2558 ((|#2| $ (-534 (-865 |#1|))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-2118 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-145)) (|has| |#2| (-911))) (|has| |#2| (-145))))) (-2746 (((-772)) NIL T CONST)) (-3658 (($ $ $ (-772)) NIL (|has| |#2| (-172)))) (-3357 (((-112) $ $) NIL)) (-3731 (((-112) $ $) NIL (|has| |#2| (-559)))) (-1733 (($) NIL T CONST)) (-1744 (($) NIL T CONST)) (-2647 (($ $ (-865 |#1|)) NIL) (($ $ (-645 (-865 |#1|))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-2946 (((-112) $ $) NIL)) (-3069 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL (|has| |#2| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#2| (-38 (-410 (-567))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-732 |#1| |#2|) (-951 |#2| (-534 (-865 |#1|)) (-865 |#1|)) (-645 (-1179)) (-1051)) (T -732))
NIL
(-951 |#2| (-534 (-865 |#1|)) (-865 |#1|))
-((-1518 (((-2 (|:| -4016 (-954 |#3|)) (|:| -3589 (-954 |#3|))) |#4|) 14)) (-3876 ((|#4| |#4| |#2|) 33)) (-3250 ((|#4| (-410 (-954 |#3|)) |#2|) 64)) (-2508 ((|#4| (-1174 (-954 |#3|)) |#2|) 77)) (-3275 ((|#4| (-1174 |#4|) |#2|) 51)) (-2802 ((|#4| |#4| |#2|) 54)) (-2706 (((-421 |#4|) |#4|) 40)))
-(((-733 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1518 ((-2 (|:| -4016 (-954 |#3|)) (|:| -3589 (-954 |#3|))) |#4|)) (-15 -2802 (|#4| |#4| |#2|)) (-15 -3275 (|#4| (-1174 |#4|) |#2|)) (-15 -3876 (|#4| |#4| |#2|)) (-15 -2508 (|#4| (-1174 (-954 |#3|)) |#2|)) (-15 -3250 (|#4| (-410 (-954 |#3|)) |#2|)) (-15 -2706 ((-421 |#4|) |#4|))) (-794) (-13 (-851) (-10 -8 (-15 -3893 ((-1178) $)))) (-559) (-951 (-410 (-954 |#3|)) |#1| |#2|)) (T -733))
-((-2706 (*1 *2 *3) (-12 (-4 *4 (-794)) (-4 *5 (-13 (-851) (-10 -8 (-15 -3893 ((-1178) $))))) (-4 *6 (-559)) (-5 *2 (-421 *3)) (-5 *1 (-733 *4 *5 *6 *3)) (-4 *3 (-951 (-410 (-954 *6)) *4 *5)))) (-3250 (*1 *2 *3 *4) (-12 (-4 *6 (-559)) (-4 *2 (-951 *3 *5 *4)) (-5 *1 (-733 *5 *4 *6 *2)) (-5 *3 (-410 (-954 *6))) (-4 *5 (-794)) (-4 *4 (-13 (-851) (-10 -8 (-15 -3893 ((-1178) $))))))) (-2508 (*1 *2 *3 *4) (-12 (-5 *3 (-1174 (-954 *6))) (-4 *6 (-559)) (-4 *2 (-951 (-410 (-954 *6)) *5 *4)) (-5 *1 (-733 *5 *4 *6 *2)) (-4 *5 (-794)) (-4 *4 (-13 (-851) (-10 -8 (-15 -3893 ((-1178) $))))))) (-3876 (*1 *2 *2 *3) (-12 (-4 *4 (-794)) (-4 *3 (-13 (-851) (-10 -8 (-15 -3893 ((-1178) $))))) (-4 *5 (-559)) (-5 *1 (-733 *4 *3 *5 *2)) (-4 *2 (-951 (-410 (-954 *5)) *4 *3)))) (-3275 (*1 *2 *3 *4) (-12 (-5 *3 (-1174 *2)) (-4 *2 (-951 (-410 (-954 *6)) *5 *4)) (-5 *1 (-733 *5 *4 *6 *2)) (-4 *5 (-794)) (-4 *4 (-13 (-851) (-10 -8 (-15 -3893 ((-1178) $))))) (-4 *6 (-559)))) (-2802 (*1 *2 *2 *3) (-12 (-4 *4 (-794)) (-4 *3 (-13 (-851) (-10 -8 (-15 -3893 ((-1178) $))))) (-4 *5 (-559)) (-5 *1 (-733 *4 *3 *5 *2)) (-4 *2 (-951 (-410 (-954 *5)) *4 *3)))) (-1518 (*1 *2 *3) (-12 (-4 *4 (-794)) (-4 *5 (-13 (-851) (-10 -8 (-15 -3893 ((-1178) $))))) (-4 *6 (-559)) (-5 *2 (-2 (|:| -4016 (-954 *6)) (|:| -3589 (-954 *6)))) (-5 *1 (-733 *4 *5 *6 *3)) (-4 *3 (-951 (-410 (-954 *6)) *4 *5)))))
-(-10 -7 (-15 -1518 ((-2 (|:| -4016 (-954 |#3|)) (|:| -3589 (-954 |#3|))) |#4|)) (-15 -2802 (|#4| |#4| |#2|)) (-15 -3275 (|#4| (-1174 |#4|) |#2|)) (-15 -3876 (|#4| |#4| |#2|)) (-15 -2508 (|#4| (-1174 (-954 |#3|)) |#2|)) (-15 -3250 (|#4| (-410 (-954 |#3|)) |#2|)) (-15 -2706 ((-421 |#4|) |#4|)))
-((-2706 (((-421 |#4|) |#4|) 54)))
-(((-734 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2706 ((-421 |#4|) |#4|))) (-794) (-851) (-13 (-308) (-147)) (-951 (-410 |#3|) |#1| |#2|)) (T -734))
-((-2706 (*1 *2 *3) (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-13 (-308) (-147))) (-5 *2 (-421 *3)) (-5 *1 (-734 *4 *5 *6 *3)) (-4 *3 (-951 (-410 *6) *4 *5)))))
-(-10 -7 (-15 -2706 ((-421 |#4|) |#4|)))
-((-3829 (((-736 |#2| |#3|) (-1 |#2| |#1|) (-736 |#1| |#3|)) 18)))
-(((-735 |#1| |#2| |#3|) (-10 -7 (-15 -3829 ((-736 |#2| |#3|) (-1 |#2| |#1|) (-736 |#1| |#3|)))) (-1051) (-1051) (-727)) (T -735))
-((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-736 *5 *7)) (-4 *5 (-1051)) (-4 *6 (-1051)) (-4 *7 (-727)) (-5 *2 (-736 *6 *7)) (-5 *1 (-735 *5 *6 *7)))))
-(-10 -7 (-15 -3829 ((-736 |#2| |#3|) (-1 |#2| |#1|) (-736 |#1| |#3|))))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) 38)) (-1843 (((-645 (-2 (|:| -3694 |#1|) (|:| -2290 |#2|))) $) 39)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2375 (((-772)) 22 (-12 (|has| |#2| (-370)) (|has| |#1| (-370))))) (-2585 (($) NIL T CONST)) (-3753 (((-3 |#2| "failed") $) 78) (((-3 |#1| "failed") $) 81)) (-2038 ((|#2| $) NIL) ((|#1| $) NIL)) (-3014 (($ $) 104 (|has| |#2| (-851)))) (-2109 (((-3 $ "failed") $) 87)) (-1348 (($) 50 (-12 (|has| |#2| (-370)) (|has| |#1| (-370))))) (-1433 (((-112) $) NIL)) (-2695 (((-772) $) 72)) (-1709 (((-645 $) $) 54)) (-2843 (((-112) $) NIL)) (-2824 (($ |#1| |#2|) 17)) (-3829 (($ (-1 |#1| |#1|) $) 70)) (-4249 (((-923) $) 45 (-12 (|has| |#2| (-370)) (|has| |#1| (-370))))) (-2976 ((|#2| $) 103 (|has| |#2| (-851)))) (-2989 ((|#1| $) 102 (|has| |#2| (-851)))) (-1419 (((-1160) $) NIL)) (-3768 (($ (-923)) 37 (-12 (|has| |#2| (-370)) (|has| |#1| (-370))))) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 101) (($ (-567)) 61) (($ |#2|) 57) (($ |#1|) 58) (($ (-645 (-2 (|:| -3694 |#1|) (|:| -2290 |#2|)))) 11)) (-3032 (((-645 |#1|) $) 56)) (-4136 ((|#1| $ |#2|) 117)) (-1903 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-4221 (((-772)) NIL T CONST)) (-1745 (((-112) $ $) NIL)) (-1716 (($) 12 T CONST)) (-1728 (($) 46 T CONST)) (-2936 (((-112) $ $) 107)) (-3045 (($ $) 63) (($ $ $) NIL)) (-3033 (($ $ $) 35)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 68) (($ $ $) 120) (($ |#1| $) 65 (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172)))))
-(((-736 |#1| |#2|) (-13 (-1051) (-1040 |#2|) (-1040 |#1|) (-10 -8 (-15 -2824 ($ |#1| |#2|)) (-15 -4136 (|#1| $ |#2|)) (-15 -4132 ($ (-645 (-2 (|:| -3694 |#1|) (|:| -2290 |#2|))))) (-15 -1843 ((-645 (-2 (|:| -3694 |#1|) (|:| -2290 |#2|))) $)) (-15 -3829 ($ (-1 |#1| |#1|) $)) (-15 -2843 ((-112) $)) (-15 -3032 ((-645 |#1|) $)) (-15 -1709 ((-645 $) $)) (-15 -2695 ((-772) $)) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-370)) (IF (|has| |#2| (-370)) (-6 (-370)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-851)) (PROGN (-15 -2976 (|#2| $)) (-15 -2989 (|#1| $)) (-15 -3014 ($ $))) |%noBranch|))) (-1051) (-727)) (T -736))
-((-2824 (*1 *1 *2 *3) (-12 (-5 *1 (-736 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-727)))) (-4136 (*1 *2 *1 *3) (-12 (-4 *2 (-1051)) (-5 *1 (-736 *2 *3)) (-4 *3 (-727)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-645 (-2 (|:| -3694 *3) (|:| -2290 *4)))) (-4 *3 (-1051)) (-4 *4 (-727)) (-5 *1 (-736 *3 *4)))) (-1843 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| -3694 *3) (|:| -2290 *4)))) (-5 *1 (-736 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-727)))) (-3829 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1051)) (-5 *1 (-736 *3 *4)) (-4 *4 (-727)))) (-2843 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-736 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-727)))) (-3032 (*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-736 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-727)))) (-1709 (*1 *2 *1) (-12 (-5 *2 (-645 (-736 *3 *4))) (-5 *1 (-736 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-727)))) (-2695 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-736 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-727)))) (-2976 (*1 *2 *1) (-12 (-4 *2 (-727)) (-4 *2 (-851)) (-5 *1 (-736 *3 *2)) (-4 *3 (-1051)))) (-2989 (*1 *2 *1) (-12 (-4 *2 (-1051)) (-5 *1 (-736 *2 *3)) (-4 *3 (-851)) (-4 *3 (-727)))) (-3014 (*1 *1 *1) (-12 (-5 *1 (-736 *2 *3)) (-4 *3 (-851)) (-4 *2 (-1051)) (-4 *3 (-727)))))
-(-13 (-1051) (-1040 |#2|) (-1040 |#1|) (-10 -8 (-15 -2824 ($ |#1| |#2|)) (-15 -4136 (|#1| $ |#2|)) (-15 -4132 ($ (-645 (-2 (|:| -3694 |#1|) (|:| -2290 |#2|))))) (-15 -1843 ((-645 (-2 (|:| -3694 |#1|) (|:| -2290 |#2|))) $)) (-15 -3829 ($ (-1 |#1| |#1|) $)) (-15 -2843 ((-112) $)) (-15 -3032 ((-645 |#1|) $)) (-15 -1709 ((-645 $) $)) (-15 -2695 ((-772) $)) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-370)) (IF (|has| |#2| (-370)) (-6 (-370)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-851)) (PROGN (-15 -2976 (|#2| $)) (-15 -2989 (|#1| $)) (-15 -3014 ($ $))) |%noBranch|)))
-((-2403 (((-112) $ $) 19)) (-4244 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-4287 (($ $ $) 73)) (-2493 (((-112) $ $) 74)) (-3445 (((-112) $ (-772)) 8)) (-4155 (($ (-645 |#1|)) 69) (($) 68)) (-2839 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4418)))) (-3350 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4418)))) (-2585 (($) 7 T CONST)) (-2133 (($ $) 63)) (-2444 (($ $) 59 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-2539 (($ |#1| $) 48 (|has| $ (-6 -4418))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4418)))) (-3238 (($ |#1| $) 58 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4418)))) (-2477 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4418)))) (-2777 (((-645 |#1|) $) 31 (|has| $ (-6 -4418)))) (-2548 (((-112) $ $) 65)) (-2077 (((-112) $ (-772)) 9)) (-2279 (((-645 |#1|) $) 30 (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-3731 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) 36)) (-2863 (((-112) $ (-772)) 10)) (-1419 (((-1160) $) 22)) (-2370 (($ $ $) 70)) (-1566 ((|#1| $) 40)) (-2531 (($ |#1| $) 41) (($ |#1| $ (-772)) 64)) (-3430 (((-1122) $) 21)) (-4128 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1793 ((|#1| $) 42)) (-3025 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) 14)) (-3572 (((-112) $) 11)) (-3498 (($) 12)) (-2334 (((-645 (-2 (|:| -4237 |#1|) (|:| -3439 (-772)))) $) 62)) (-4071 (($ $ |#1|) 72) (($ $ $) 71)) (-2718 (($) 50) (($ (-645 |#1|)) 49)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4418))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-4305 (($ $) 13)) (-3893 (((-539) $) 60 (|has| |#1| (-615 (-539))))) (-4147 (($ (-645 |#1|)) 51)) (-4132 (((-863) $) 18)) (-2772 (($ (-645 |#1|)) 67) (($) 66)) (-1745 (((-112) $ $) 23)) (-3551 (($ (-645 |#1|)) 43)) (-1853 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 20)) (-2414 (((-772) $) 6 (|has| $ (-6 -4418)))))
+((-1497 (((-2 (|:| -1325 (-954 |#3|)) (|:| -3017 (-954 |#3|))) |#4|) 14)) (-2920 ((|#4| |#4| |#2|) 33)) (-2674 ((|#4| (-410 (-954 |#3|)) |#2|) 64)) (-2022 ((|#4| (-1175 (-954 |#3|)) |#2|) 77)) (-4052 ((|#4| (-1175 |#4|) |#2|) 51)) (-2170 ((|#4| |#4| |#2|) 54)) (-2717 (((-421 |#4|) |#4|) 40)))
+(((-733 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1497 ((-2 (|:| -1325 (-954 |#3|)) (|:| -3017 (-954 |#3|))) |#4|)) (-15 -2170 (|#4| |#4| |#2|)) (-15 -4052 (|#4| (-1175 |#4|) |#2|)) (-15 -2920 (|#4| |#4| |#2|)) (-15 -2022 (|#4| (-1175 (-954 |#3|)) |#2|)) (-15 -2674 (|#4| (-410 (-954 |#3|)) |#2|)) (-15 -2717 ((-421 |#4|) |#4|))) (-794) (-13 (-851) (-10 -8 (-15 -3902 ((-1179) $)))) (-559) (-951 (-410 (-954 |#3|)) |#1| |#2|)) (T -733))
+((-2717 (*1 *2 *3) (-12 (-4 *4 (-794)) (-4 *5 (-13 (-851) (-10 -8 (-15 -3902 ((-1179) $))))) (-4 *6 (-559)) (-5 *2 (-421 *3)) (-5 *1 (-733 *4 *5 *6 *3)) (-4 *3 (-951 (-410 (-954 *6)) *4 *5)))) (-2674 (*1 *2 *3 *4) (-12 (-4 *6 (-559)) (-4 *2 (-951 *3 *5 *4)) (-5 *1 (-733 *5 *4 *6 *2)) (-5 *3 (-410 (-954 *6))) (-4 *5 (-794)) (-4 *4 (-13 (-851) (-10 -8 (-15 -3902 ((-1179) $))))))) (-2022 (*1 *2 *3 *4) (-12 (-5 *3 (-1175 (-954 *6))) (-4 *6 (-559)) (-4 *2 (-951 (-410 (-954 *6)) *5 *4)) (-5 *1 (-733 *5 *4 *6 *2)) (-4 *5 (-794)) (-4 *4 (-13 (-851) (-10 -8 (-15 -3902 ((-1179) $))))))) (-2920 (*1 *2 *2 *3) (-12 (-4 *4 (-794)) (-4 *3 (-13 (-851) (-10 -8 (-15 -3902 ((-1179) $))))) (-4 *5 (-559)) (-5 *1 (-733 *4 *3 *5 *2)) (-4 *2 (-951 (-410 (-954 *5)) *4 *3)))) (-4052 (*1 *2 *3 *4) (-12 (-5 *3 (-1175 *2)) (-4 *2 (-951 (-410 (-954 *6)) *5 *4)) (-5 *1 (-733 *5 *4 *6 *2)) (-4 *5 (-794)) (-4 *4 (-13 (-851) (-10 -8 (-15 -3902 ((-1179) $))))) (-4 *6 (-559)))) (-2170 (*1 *2 *2 *3) (-12 (-4 *4 (-794)) (-4 *3 (-13 (-851) (-10 -8 (-15 -3902 ((-1179) $))))) (-4 *5 (-559)) (-5 *1 (-733 *4 *3 *5 *2)) (-4 *2 (-951 (-410 (-954 *5)) *4 *3)))) (-1497 (*1 *2 *3) (-12 (-4 *4 (-794)) (-4 *5 (-13 (-851) (-10 -8 (-15 -3902 ((-1179) $))))) (-4 *6 (-559)) (-5 *2 (-2 (|:| -1325 (-954 *6)) (|:| -3017 (-954 *6)))) (-5 *1 (-733 *4 *5 *6 *3)) (-4 *3 (-951 (-410 (-954 *6)) *4 *5)))))
+(-10 -7 (-15 -1497 ((-2 (|:| -1325 (-954 |#3|)) (|:| -3017 (-954 |#3|))) |#4|)) (-15 -2170 (|#4| |#4| |#2|)) (-15 -4052 (|#4| (-1175 |#4|) |#2|)) (-15 -2920 (|#4| |#4| |#2|)) (-15 -2022 (|#4| (-1175 (-954 |#3|)) |#2|)) (-15 -2674 (|#4| (-410 (-954 |#3|)) |#2|)) (-15 -2717 ((-421 |#4|) |#4|)))
+((-2717 (((-421 |#4|) |#4|) 54)))
+(((-734 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2717 ((-421 |#4|) |#4|))) (-794) (-851) (-13 (-308) (-147)) (-951 (-410 |#3|) |#1| |#2|)) (T -734))
+((-2717 (*1 *2 *3) (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-13 (-308) (-147))) (-5 *2 (-421 *3)) (-5 *1 (-734 *4 *5 *6 *3)) (-4 *3 (-951 (-410 *6) *4 *5)))))
+(-10 -7 (-15 -2717 ((-421 |#4|) |#4|)))
+((-3841 (((-736 |#2| |#3|) (-1 |#2| |#1|) (-736 |#1| |#3|)) 18)))
+(((-735 |#1| |#2| |#3|) (-10 -7 (-15 -3841 ((-736 |#2| |#3|) (-1 |#2| |#1|) (-736 |#1| |#3|)))) (-1051) (-1051) (-727)) (T -735))
+((-3841 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-736 *5 *7)) (-4 *5 (-1051)) (-4 *6 (-1051)) (-4 *7 (-727)) (-5 *2 (-736 *6 *7)) (-5 *1 (-735 *5 *6 *7)))))
+(-10 -7 (-15 -3841 ((-736 |#2| |#3|) (-1 |#2| |#1|) (-736 |#1| |#3|))))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) 38)) (-3006 (((-645 (-2 (|:| -3705 |#1|) (|:| -2296 |#2|))) $) 39)) (-2376 (((-3 $ "failed") $ $) NIL)) (-2384 (((-772)) 22 (-12 (|has| |#2| (-370)) (|has| |#1| (-370))))) (-3647 (($) NIL T CONST)) (-3765 (((-3 |#2| "failed") $) 78) (((-3 |#1| "failed") $) 81)) (-2051 ((|#2| $) NIL) ((|#1| $) NIL)) (-3023 (($ $) 104 (|has| |#2| (-851)))) (-3588 (((-3 $ "failed") $) 87)) (-1359 (($) 50 (-12 (|has| |#2| (-370)) (|has| |#1| (-370))))) (-4346 (((-112) $) NIL)) (-2851 (((-772) $) 72)) (-2659 (((-645 $) $) 54)) (-3770 (((-112) $) NIL)) (-2836 (($ |#1| |#2|) 17)) (-3841 (($ (-1 |#1| |#1|) $) 70)) (-3474 (((-923) $) 45 (-12 (|has| |#2| (-370)) (|has| |#1| (-370))))) (-2985 ((|#2| $) 103 (|has| |#2| (-851)))) (-2996 ((|#1| $) 102 (|has| |#2| (-851)))) (-2516 (((-1161) $) NIL)) (-3779 (($ (-923)) 37 (-12 (|has| |#2| (-370)) (|has| |#1| (-370))))) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) 101) (($ (-567)) 61) (($ |#2|) 57) (($ |#1|) 58) (($ (-645 (-2 (|:| -3705 |#1|) (|:| -2296 |#2|)))) 11)) (-3601 (((-645 |#1|) $) 56)) (-2558 ((|#1| $ |#2|) 117)) (-2118 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2746 (((-772)) NIL T CONST)) (-3357 (((-112) $ $) NIL)) (-1733 (($) 12 T CONST)) (-1744 (($) 46 T CONST)) (-2946 (((-112) $ $) 107)) (-3053 (($ $) 63) (($ $ $) NIL)) (-3041 (($ $ $) 35)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 68) (($ $ $) 120) (($ |#1| $) 65 (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172)))))
+(((-736 |#1| |#2|) (-13 (-1051) (-1040 |#2|) (-1040 |#1|) (-10 -8 (-15 -2836 ($ |#1| |#2|)) (-15 -2558 (|#1| $ |#2|)) (-15 -4129 ($ (-645 (-2 (|:| -3705 |#1|) (|:| -2296 |#2|))))) (-15 -3006 ((-645 (-2 (|:| -3705 |#1|) (|:| -2296 |#2|))) $)) (-15 -3841 ($ (-1 |#1| |#1|) $)) (-15 -3770 ((-112) $)) (-15 -3601 ((-645 |#1|) $)) (-15 -2659 ((-645 $) $)) (-15 -2851 ((-772) $)) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-370)) (IF (|has| |#2| (-370)) (-6 (-370)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-851)) (PROGN (-15 -2985 (|#2| $)) (-15 -2996 (|#1| $)) (-15 -3023 ($ $))) |%noBranch|))) (-1051) (-727)) (T -736))
+((-2836 (*1 *1 *2 *3) (-12 (-5 *1 (-736 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-727)))) (-2558 (*1 *2 *1 *3) (-12 (-4 *2 (-1051)) (-5 *1 (-736 *2 *3)) (-4 *3 (-727)))) (-4129 (*1 *1 *2) (-12 (-5 *2 (-645 (-2 (|:| -3705 *3) (|:| -2296 *4)))) (-4 *3 (-1051)) (-4 *4 (-727)) (-5 *1 (-736 *3 *4)))) (-3006 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| -3705 *3) (|:| -2296 *4)))) (-5 *1 (-736 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-727)))) (-3841 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1051)) (-5 *1 (-736 *3 *4)) (-4 *4 (-727)))) (-3770 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-736 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-727)))) (-3601 (*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-736 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-727)))) (-2659 (*1 *2 *1) (-12 (-5 *2 (-645 (-736 *3 *4))) (-5 *1 (-736 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-727)))) (-2851 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-736 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-727)))) (-2985 (*1 *2 *1) (-12 (-4 *2 (-727)) (-4 *2 (-851)) (-5 *1 (-736 *3 *2)) (-4 *3 (-1051)))) (-2996 (*1 *2 *1) (-12 (-4 *2 (-1051)) (-5 *1 (-736 *2 *3)) (-4 *3 (-851)) (-4 *3 (-727)))) (-3023 (*1 *1 *1) (-12 (-5 *1 (-736 *2 *3)) (-4 *3 (-851)) (-4 *2 (-1051)) (-4 *3 (-727)))))
+(-13 (-1051) (-1040 |#2|) (-1040 |#1|) (-10 -8 (-15 -2836 ($ |#1| |#2|)) (-15 -2558 (|#1| $ |#2|)) (-15 -4129 ($ (-645 (-2 (|:| -3705 |#1|) (|:| -2296 |#2|))))) (-15 -3006 ((-645 (-2 (|:| -3705 |#1|) (|:| -2296 |#2|))) $)) (-15 -3841 ($ (-1 |#1| |#1|) $)) (-15 -3770 ((-112) $)) (-15 -3601 ((-645 |#1|) $)) (-15 -2659 ((-645 $) $)) (-15 -2851 ((-772) $)) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-370)) (IF (|has| |#2| (-370)) (-6 (-370)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-851)) (PROGN (-15 -2985 (|#2| $)) (-15 -2996 (|#1| $)) (-15 -3023 ($ $))) |%noBranch|)))
+((-2412 (((-112) $ $) 19)) (-4244 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-2148 (($ $ $) 73)) (-1951 (((-112) $ $) 74)) (-1563 (((-112) $ (-772)) 8)) (-4155 (($ (-645 |#1|)) 69) (($) 68)) (-1494 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4422)))) (-3356 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4422)))) (-3647 (($) 7 T CONST)) (-3837 (($ $) 63)) (-2453 (($ $) 59 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-2247 (($ |#1| $) 48 (|has| $ (-6 -4422))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4422)))) (-3246 (($ |#1| $) 58 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4422)))) (-2494 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4422)))) (-2799 (((-645 |#1|) $) 31 (|has| $ (-6 -4422)))) (-3862 (((-112) $ $) 65)) (-4093 (((-112) $ (-772)) 9)) (-1942 (((-645 |#1|) $) 30 (|has| $ (-6 -4422)))) (-3237 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-3751 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#1| |#1|) $) 36)) (-1986 (((-112) $ (-772)) 10)) (-2516 (((-1161) $) 22)) (-3660 (($ $ $) 70)) (-2706 ((|#1| $) 40)) (-2646 (($ |#1| $) 41) (($ |#1| $ (-772)) 64)) (-3437 (((-1122) $) 21)) (-3196 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3949 ((|#1| $) 42)) (-4233 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3875 (((-112) $ $) 14)) (-3885 (((-112) $) 11)) (-2701 (($) 12)) (-2885 (((-645 (-2 (|:| -4236 |#1|) (|:| -3447 (-772)))) $) 62)) (-4117 (($ $ |#1|) 72) (($ $ $) 71)) (-4106 (($) 50) (($ (-645 |#1|)) 49)) (-3447 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4422))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-4309 (($ $) 13)) (-3902 (((-539) $) 60 (|has| |#1| (-615 (-539))))) (-4145 (($ (-645 |#1|)) 51)) (-4129 (((-863) $) 18)) (-2782 (($ (-645 |#1|)) 67) (($) 66)) (-3357 (((-112) $ $) 23)) (-3700 (($ (-645 |#1|)) 43)) (-3436 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4422)))) (-2946 (((-112) $ $) 20)) (-2423 (((-772) $) 6 (|has| $ (-6 -4422)))))
(((-737 |#1|) (-140) (-1102)) (T -737))
NIL
(-13 (-696 |t#1|) (-1100 |t#1|))
-(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-614 (-863)) . T) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-235 |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-696 |#1|) . T) ((-1100 |#1|) . T) ((-1102) . T) ((-1218) . T))
-((-2403 (((-112) $ $) NIL)) (-4244 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 95)) (-4287 (($ $ $) 99)) (-2493 (((-112) $ $) 107)) (-3445 (((-112) $ (-772)) NIL)) (-4155 (($ (-645 |#1|)) 26) (($) 17)) (-2839 (($ (-1 (-112) |#1|) $) 83 (|has| $ (-6 -4418)))) (-3350 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2585 (($) NIL T CONST)) (-2133 (($ $) 85)) (-2444 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2539 (($ |#1| $) 70 (|has| $ (-6 -4418))) (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4418))) (($ |#1| $ (-567)) 75) (($ (-1 (-112) |#1|) $ (-567)) 78)) (-3238 (($ |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (($ |#1| $ (-567)) 80) (($ (-1 (-112) |#1|) $ (-567)) 81)) (-2477 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4418)))) (-2777 (((-645 |#1|) $) 32 (|has| $ (-6 -4418)))) (-2548 (((-112) $ $) 106)) (-4082 (($) 15) (($ |#1|) 28) (($ (-645 |#1|)) 23)) (-2077 (((-112) $ (-772)) NIL)) (-2279 (((-645 |#1|) $) 38)) (-4337 (((-112) |#1| $) 65 (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-3731 (($ (-1 |#1| |#1|) $) 88 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) 89)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL)) (-2370 (($ $ $) 97)) (-1566 ((|#1| $) 62)) (-2531 (($ |#1| $) 63) (($ |#1| $ (-772)) 86)) (-3430 (((-1122) $) NIL)) (-4128 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1793 ((|#1| $) 61)) (-3025 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) NIL)) (-3572 (((-112) $) 56)) (-3498 (($) 14)) (-2334 (((-645 (-2 (|:| -4237 |#1|) (|:| -3439 (-772)))) $) 55)) (-4071 (($ $ |#1|) NIL) (($ $ $) 98)) (-2718 (($) 16) (($ (-645 |#1|)) 25)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (((-772) |#1| $) 68 (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-4305 (($ $) 79)) (-3893 (((-539) $) 36 (|has| |#1| (-615 (-539))))) (-4147 (($ (-645 |#1|)) 22)) (-4132 (((-863) $) 49)) (-2772 (($ (-645 |#1|)) 27) (($) 18)) (-1745 (((-112) $ $) NIL)) (-3551 (($ (-645 |#1|)) 24)) (-1853 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 103)) (-2414 (((-772) $) 67 (|has| $ (-6 -4418)))))
-(((-738 |#1|) (-13 (-737 |#1|) (-10 -8 (-6 -4418) (-6 -4419) (-15 -4082 ($)) (-15 -4082 ($ |#1|)) (-15 -4082 ($ (-645 |#1|))) (-15 -2279 ((-645 |#1|) $)) (-15 -3238 ($ |#1| $ (-567))) (-15 -3238 ($ (-1 (-112) |#1|) $ (-567))) (-15 -2539 ($ |#1| $ (-567))) (-15 -2539 ($ (-1 (-112) |#1|) $ (-567))))) (-1102)) (T -738))
-((-4082 (*1 *1) (-12 (-5 *1 (-738 *2)) (-4 *2 (-1102)))) (-4082 (*1 *1 *2) (-12 (-5 *1 (-738 *2)) (-4 *2 (-1102)))) (-4082 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-5 *1 (-738 *3)))) (-2279 (*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-738 *3)) (-4 *3 (-1102)))) (-3238 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *1 (-738 *2)) (-4 *2 (-1102)))) (-3238 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-567)) (-4 *4 (-1102)) (-5 *1 (-738 *4)))) (-2539 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *1 (-738 *2)) (-4 *2 (-1102)))) (-2539 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-567)) (-4 *4 (-1102)) (-5 *1 (-738 *4)))))
-(-13 (-737 |#1|) (-10 -8 (-6 -4418) (-6 -4419) (-15 -4082 ($)) (-15 -4082 ($ |#1|)) (-15 -4082 ($ (-645 |#1|))) (-15 -2279 ((-645 |#1|) $)) (-15 -3238 ($ |#1| $ (-567))) (-15 -3238 ($ (-1 (-112) |#1|) $ (-567))) (-15 -2539 ($ |#1| $ (-567))) (-15 -2539 ($ (-1 (-112) |#1|) $ (-567)))))
-((-4139 (((-1273) (-1160)) 8)))
-(((-739) (-10 -7 (-15 -4139 ((-1273) (-1160))))) (T -739))
-((-4139 (*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-739)))))
-(-10 -7 (-15 -4139 ((-1273) (-1160))))
-((-1389 (((-645 |#1|) (-645 |#1|) (-645 |#1|)) 15)))
-(((-740 |#1|) (-10 -7 (-15 -1389 ((-645 |#1|) (-645 |#1|) (-645 |#1|)))) (-851)) (T -740))
-((-1389 (*1 *2 *2 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-851)) (-5 *1 (-740 *3)))))
-(-10 -7 (-15 -1389 ((-645 |#1|) (-645 |#1|) (-645 |#1|))))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-2847 (((-645 |#2|) $) 148)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 141 (|has| |#1| (-559)))) (-4381 (($ $) 140 (|has| |#1| (-559)))) (-3949 (((-112) $) 138 (|has| |#1| (-559)))) (-3146 (($ $) 97 (|has| |#1| (-38 (-410 (-567)))))) (-3012 (($ $) 80 (|has| |#1| (-38 (-410 (-567)))))) (-3472 (((-3 $ "failed") $ $) 20)) (-2716 (($ $) 79 (|has| |#1| (-38 (-410 (-567)))))) (-3128 (($ $) 96 (|has| |#1| (-38 (-410 (-567)))))) (-2987 (($ $) 81 (|has| |#1| (-38 (-410 (-567)))))) (-3166 (($ $) 95 (|has| |#1| (-38 (-410 (-567)))))) (-3035 (($ $) 82 (|has| |#1| (-38 (-410 (-567)))))) (-2585 (($) 18 T CONST)) (-3014 (($ $) 132)) (-2109 (((-3 $ "failed") $) 37)) (-3717 (((-954 |#1|) $ (-772)) 110) (((-954 |#1|) $ (-772) (-772)) 109)) (-2762 (((-112) $) 149)) (-1482 (($) 107 (|has| |#1| (-38 (-410 (-567)))))) (-4384 (((-772) $ |#2|) 112) (((-772) $ |#2| (-772)) 111)) (-1433 (((-112) $) 35)) (-2651 (($ $ (-567)) 78 (|has| |#1| (-38 (-410 (-567)))))) (-2843 (((-112) $) 130)) (-2824 (($ $ (-645 |#2|) (-645 (-534 |#2|))) 147) (($ $ |#2| (-534 |#2|)) 146) (($ |#1| (-534 |#2|)) 131) (($ $ |#2| (-772)) 114) (($ $ (-645 |#2|) (-645 (-772))) 113)) (-3829 (($ (-1 |#1| |#1|) $) 129)) (-3063 (($ $) 104 (|has| |#1| (-38 (-410 (-567)))))) (-2976 (($ $) 127)) (-2989 ((|#1| $) 126)) (-1419 (((-1160) $) 10)) (-2416 (($ $ |#2|) 108 (|has| |#1| (-38 (-410 (-567)))))) (-3430 (((-1122) $) 11)) (-2410 (($ $ (-772)) 115)) (-2391 (((-3 $ "failed") $ $) 142 (|has| |#1| (-559)))) (-3946 (($ $) 105 (|has| |#1| (-38 (-410 (-567)))))) (-2631 (($ $ |#2| $) 123) (($ $ (-645 |#2|) (-645 $)) 122) (($ $ (-645 (-295 $))) 121) (($ $ (-295 $)) 120) (($ $ $ $) 119) (($ $ (-645 $) (-645 $)) 118)) (-1593 (($ $ |#2|) 46) (($ $ (-645 |#2|)) 45) (($ $ |#2| (-772)) 44) (($ $ (-645 |#2|) (-645 (-772))) 43)) (-3077 (((-534 |#2|) $) 128)) (-3175 (($ $) 94 (|has| |#1| (-38 (-410 (-567)))))) (-3049 (($ $) 83 (|has| |#1| (-38 (-410 (-567)))))) (-3156 (($ $) 93 (|has| |#1| (-38 (-410 (-567)))))) (-3023 (($ $) 84 (|has| |#1| (-38 (-410 (-567)))))) (-3137 (($ $) 92 (|has| |#1| (-38 (-410 (-567)))))) (-2999 (($ $) 85 (|has| |#1| (-38 (-410 (-567)))))) (-2192 (($ $) 150)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 145 (|has| |#1| (-172))) (($ $) 143 (|has| |#1| (-559))) (($ (-410 (-567))) 135 (|has| |#1| (-38 (-410 (-567)))))) (-4136 ((|#1| $ (-534 |#2|)) 133) (($ $ |#2| (-772)) 117) (($ $ (-645 |#2|) (-645 (-772))) 116)) (-1903 (((-3 $ "failed") $) 144 (|has| |#1| (-145)))) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-3200 (($ $) 103 (|has| |#1| (-38 (-410 (-567)))))) (-3084 (($ $) 91 (|has| |#1| (-38 (-410 (-567)))))) (-3816 (((-112) $ $) 139 (|has| |#1| (-559)))) (-3183 (($ $) 102 (|has| |#1| (-38 (-410 (-567)))))) (-3062 (($ $) 90 (|has| |#1| (-38 (-410 (-567)))))) (-3221 (($ $) 101 (|has| |#1| (-38 (-410 (-567)))))) (-3106 (($ $) 89 (|has| |#1| (-38 (-410 (-567)))))) (-3785 (($ $) 100 (|has| |#1| (-38 (-410 (-567)))))) (-3118 (($ $) 88 (|has| |#1| (-38 (-410 (-567)))))) (-3211 (($ $) 99 (|has| |#1| (-38 (-410 (-567)))))) (-3095 (($ $) 87 (|has| |#1| (-38 (-410 (-567)))))) (-3193 (($ $) 98 (|has| |#1| (-38 (-410 (-567)))))) (-3074 (($ $) 86 (|has| |#1| (-38 (-410 (-567)))))) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2637 (($ $ |#2|) 42) (($ $ (-645 |#2|)) 41) (($ $ |#2| (-772)) 40) (($ $ (-645 |#2|) (-645 (-772))) 39)) (-2936 (((-112) $ $) 6)) (-3060 (($ $ |#1|) 134 (|has| |#1| (-365)))) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ $) 106 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 77 (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 137 (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) 136 (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) 125) (($ $ |#1|) 124)))
+(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-614 (-863)) . T) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-235 |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-696 |#1|) . T) ((-1100 |#1|) . T) ((-1102) . T) ((-1219) . T))
+((-2412 (((-112) $ $) NIL)) (-4244 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 95)) (-2148 (($ $ $) 99)) (-1951 (((-112) $ $) 107)) (-1563 (((-112) $ (-772)) NIL)) (-4155 (($ (-645 |#1|)) 26) (($) 17)) (-1494 (($ (-1 (-112) |#1|) $) 83 (|has| $ (-6 -4422)))) (-3356 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-3647 (($) NIL T CONST)) (-3837 (($ $) 85)) (-2453 (($ $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-2247 (($ |#1| $) 70 (|has| $ (-6 -4422))) (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4422))) (($ |#1| $ (-567)) 75) (($ (-1 (-112) |#1|) $ (-567)) 78)) (-3246 (($ |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (($ |#1| $ (-567)) 80) (($ (-1 (-112) |#1|) $ (-567)) 81)) (-2494 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4422)))) (-2799 (((-645 |#1|) $) 32 (|has| $ (-6 -4422)))) (-3862 (((-112) $ $) 106)) (-2692 (($) 15) (($ |#1|) 28) (($ (-645 |#1|)) 23)) (-4093 (((-112) $ (-772)) NIL)) (-1942 (((-645 |#1|) $) 38)) (-3237 (((-112) |#1| $) 65 (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3751 (($ (-1 |#1| |#1|) $) 88 (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#1| |#1|) $) 89)) (-1986 (((-112) $ (-772)) NIL)) (-2516 (((-1161) $) NIL)) (-3660 (($ $ $) 97)) (-2706 ((|#1| $) 62)) (-2646 (($ |#1| $) 63) (($ |#1| $ (-772)) 86)) (-3437 (((-1122) $) NIL)) (-3196 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3949 ((|#1| $) 61)) (-4233 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3875 (((-112) $ $) NIL)) (-3885 (((-112) $) 56)) (-2701 (($) 14)) (-2885 (((-645 (-2 (|:| -4236 |#1|) (|:| -3447 (-772)))) $) 55)) (-4117 (($ $ |#1|) NIL) (($ $ $) 98)) (-4106 (($) 16) (($ (-645 |#1|)) 25)) (-3447 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (((-772) |#1| $) 68 (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-4309 (($ $) 79)) (-3902 (((-539) $) 36 (|has| |#1| (-615 (-539))))) (-4145 (($ (-645 |#1|)) 22)) (-4129 (((-863) $) 49)) (-2782 (($ (-645 |#1|)) 27) (($) 18)) (-3357 (((-112) $ $) NIL)) (-3700 (($ (-645 |#1|)) 24)) (-3436 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2946 (((-112) $ $) 103)) (-2423 (((-772) $) 67 (|has| $ (-6 -4422)))))
+(((-738 |#1|) (-13 (-737 |#1|) (-10 -8 (-6 -4422) (-6 -4423) (-15 -2692 ($)) (-15 -2692 ($ |#1|)) (-15 -2692 ($ (-645 |#1|))) (-15 -1942 ((-645 |#1|) $)) (-15 -3246 ($ |#1| $ (-567))) (-15 -3246 ($ (-1 (-112) |#1|) $ (-567))) (-15 -2247 ($ |#1| $ (-567))) (-15 -2247 ($ (-1 (-112) |#1|) $ (-567))))) (-1102)) (T -738))
+((-2692 (*1 *1) (-12 (-5 *1 (-738 *2)) (-4 *2 (-1102)))) (-2692 (*1 *1 *2) (-12 (-5 *1 (-738 *2)) (-4 *2 (-1102)))) (-2692 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-5 *1 (-738 *3)))) (-1942 (*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-738 *3)) (-4 *3 (-1102)))) (-3246 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *1 (-738 *2)) (-4 *2 (-1102)))) (-3246 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-567)) (-4 *4 (-1102)) (-5 *1 (-738 *4)))) (-2247 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *1 (-738 *2)) (-4 *2 (-1102)))) (-2247 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-567)) (-4 *4 (-1102)) (-5 *1 (-738 *4)))))
+(-13 (-737 |#1|) (-10 -8 (-6 -4422) (-6 -4423) (-15 -2692 ($)) (-15 -2692 ($ |#1|)) (-15 -2692 ($ (-645 |#1|))) (-15 -1942 ((-645 |#1|) $)) (-15 -3246 ($ |#1| $ (-567))) (-15 -3246 ($ (-1 (-112) |#1|) $ (-567))) (-15 -2247 ($ |#1| $ (-567))) (-15 -2247 ($ (-1 (-112) |#1|) $ (-567)))))
+((-4134 (((-1274) (-1161)) 8)))
+(((-739) (-10 -7 (-15 -4134 ((-1274) (-1161))))) (T -739))
+((-4134 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-739)))))
+(-10 -7 (-15 -4134 ((-1274) (-1161))))
+((-2128 (((-645 |#1|) (-645 |#1|) (-645 |#1|)) 15)))
+(((-740 |#1|) (-10 -7 (-15 -2128 ((-645 |#1|) (-645 |#1|) (-645 |#1|)))) (-851)) (T -740))
+((-2128 (*1 *2 *2 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-851)) (-5 *1 (-740 *3)))))
+(-10 -7 (-15 -2128 ((-645 |#1|) (-645 |#1|) (-645 |#1|))))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-2859 (((-645 |#2|) $) 148)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) 141 (|has| |#1| (-559)))) (-4287 (($ $) 140 (|has| |#1| (-559)))) (-2286 (((-112) $) 138 (|has| |#1| (-559)))) (-3164 (($ $) 97 (|has| |#1| (-38 (-410 (-567)))))) (-3032 (($ $) 80 (|has| |#1| (-38 (-410 (-567)))))) (-2376 (((-3 $ "failed") $ $) 20)) (-2728 (($ $) 79 (|has| |#1| (-38 (-410 (-567)))))) (-3145 (($ $) 96 (|has| |#1| (-38 (-410 (-567)))))) (-3008 (($ $) 81 (|has| |#1| (-38 (-410 (-567)))))) (-3182 (($ $) 95 (|has| |#1| (-38 (-410 (-567)))))) (-3057 (($ $) 82 (|has| |#1| (-38 (-410 (-567)))))) (-3647 (($) 18 T CONST)) (-3023 (($ $) 132)) (-3588 (((-3 $ "failed") $) 37)) (-3736 (((-954 |#1|) $ (-772)) 110) (((-954 |#1|) $ (-772) (-772)) 109)) (-3086 (((-112) $) 149)) (-1484 (($) 107 (|has| |#1| (-38 (-410 (-567)))))) (-3362 (((-772) $ |#2|) 112) (((-772) $ |#2| (-772)) 111)) (-4346 (((-112) $) 35)) (-3698 (($ $ (-567)) 78 (|has| |#1| (-38 (-410 (-567)))))) (-3770 (((-112) $) 130)) (-2836 (($ $ (-645 |#2|) (-645 (-534 |#2|))) 147) (($ $ |#2| (-534 |#2|)) 146) (($ |#1| (-534 |#2|)) 131) (($ $ |#2| (-772)) 114) (($ $ (-645 |#2|) (-645 (-772))) 113)) (-3841 (($ (-1 |#1| |#1|) $) 129)) (-3072 (($ $) 104 (|has| |#1| (-38 (-410 (-567)))))) (-2985 (($ $) 127)) (-2996 ((|#1| $) 126)) (-2516 (((-1161) $) 10)) (-4083 (($ $ |#2|) 108 (|has| |#1| (-38 (-410 (-567)))))) (-3437 (((-1122) $) 11)) (-1874 (($ $ (-772)) 115)) (-2400 (((-3 $ "failed") $ $) 142 (|has| |#1| (-559)))) (-3955 (($ $) 105 (|has| |#1| (-38 (-410 (-567)))))) (-2642 (($ $ |#2| $) 123) (($ $ (-645 |#2|) (-645 $)) 122) (($ $ (-645 (-295 $))) 121) (($ $ (-295 $)) 120) (($ $ $ $) 119) (($ $ (-645 $) (-645 $)) 118)) (-1616 (($ $ |#2|) 46) (($ $ (-645 |#2|)) 45) (($ $ |#2| (-772)) 44) (($ $ (-645 |#2|) (-645 (-772))) 43)) (-3104 (((-534 |#2|) $) 128)) (-3192 (($ $) 94 (|has| |#1| (-38 (-410 (-567)))))) (-3071 (($ $) 83 (|has| |#1| (-38 (-410 (-567)))))) (-3173 (($ $) 93 (|has| |#1| (-38 (-410 (-567)))))) (-3043 (($ $) 84 (|has| |#1| (-38 (-410 (-567)))))) (-3155 (($ $) 92 (|has| |#1| (-38 (-410 (-567)))))) (-3021 (($ $) 85 (|has| |#1| (-38 (-410 (-567)))))) (-1834 (($ $) 150)) (-4129 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 145 (|has| |#1| (-172))) (($ $) 143 (|has| |#1| (-559))) (($ (-410 (-567))) 135 (|has| |#1| (-38 (-410 (-567)))))) (-2558 ((|#1| $ (-534 |#2|)) 133) (($ $ |#2| (-772)) 117) (($ $ (-645 |#2|) (-645 (-772))) 116)) (-2118 (((-3 $ "failed") $) 144 (|has| |#1| (-145)))) (-2746 (((-772)) 32 T CONST)) (-3357 (((-112) $ $) 9)) (-3217 (($ $) 103 (|has| |#1| (-38 (-410 (-567)))))) (-3103 (($ $) 91 (|has| |#1| (-38 (-410 (-567)))))) (-3731 (((-112) $ $) 139 (|has| |#1| (-559)))) (-3201 (($ $) 102 (|has| |#1| (-38 (-410 (-567)))))) (-3083 (($ $) 90 (|has| |#1| (-38 (-410 (-567)))))) (-3238 (($ $) 101 (|has| |#1| (-38 (-410 (-567)))))) (-3126 (($ $) 89 (|has| |#1| (-38 (-410 (-567)))))) (-3805 (($ $) 100 (|has| |#1| (-38 (-410 (-567)))))) (-3138 (($ $) 88 (|has| |#1| (-38 (-410 (-567)))))) (-3228 (($ $) 99 (|has| |#1| (-38 (-410 (-567)))))) (-3115 (($ $) 87 (|has| |#1| (-38 (-410 (-567)))))) (-3208 (($ $) 98 (|has| |#1| (-38 (-410 (-567)))))) (-3093 (($ $) 86 (|has| |#1| (-38 (-410 (-567)))))) (-1733 (($) 19 T CONST)) (-1744 (($) 34 T CONST)) (-2647 (($ $ |#2|) 42) (($ $ (-645 |#2|)) 41) (($ $ |#2| (-772)) 40) (($ $ (-645 |#2|) (-645 (-772))) 39)) (-2946 (((-112) $ $) 6)) (-3069 (($ $ |#1|) 134 (|has| |#1| (-365)))) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ $) 106 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 77 (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 137 (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) 136 (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) 125) (($ $ |#1|) 124)))
(((-741 |#1| |#2|) (-140) (-1051) (-851)) (T -741))
-((-4136 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-741 *4 *2)) (-4 *4 (-1051)) (-4 *2 (-851)))) (-4136 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 *5)) (-5 *3 (-645 (-772))) (-4 *1 (-741 *4 *5)) (-4 *4 (-1051)) (-4 *5 (-851)))) (-2410 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-741 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-851)))) (-2824 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-741 *4 *2)) (-4 *4 (-1051)) (-4 *2 (-851)))) (-2824 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 *5)) (-5 *3 (-645 (-772))) (-4 *1 (-741 *4 *5)) (-4 *4 (-1051)) (-4 *5 (-851)))) (-4384 (*1 *2 *1 *3) (-12 (-4 *1 (-741 *4 *3)) (-4 *4 (-1051)) (-4 *3 (-851)) (-5 *2 (-772)))) (-4384 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-772)) (-4 *1 (-741 *4 *3)) (-4 *4 (-1051)) (-4 *3 (-851)))) (-3717 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-4 *1 (-741 *4 *5)) (-4 *4 (-1051)) (-4 *5 (-851)) (-5 *2 (-954 *4)))) (-3717 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-772)) (-4 *1 (-741 *4 *5)) (-4 *4 (-1051)) (-4 *5 (-851)) (-5 *2 (-954 *4)))) (-2416 (*1 *1 *1 *2) (-12 (-4 *1 (-741 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-851)) (-4 *3 (-38 (-410 (-567)))))))
-(-13 (-902 |t#2|) (-975 |t#1| (-534 |t#2|) |t#2|) (-517 |t#2| $) (-310 $) (-10 -8 (-15 -4136 ($ $ |t#2| (-772))) (-15 -4136 ($ $ (-645 |t#2|) (-645 (-772)))) (-15 -2410 ($ $ (-772))) (-15 -2824 ($ $ |t#2| (-772))) (-15 -2824 ($ $ (-645 |t#2|) (-645 (-772)))) (-15 -4384 ((-772) $ |t#2|)) (-15 -4384 ((-772) $ |t#2| (-772))) (-15 -3717 ((-954 |t#1|) $ (-772))) (-15 -3717 ((-954 |t#1|) $ (-772) (-772))) (IF (|has| |t#1| (-38 (-410 (-567)))) (PROGN (-15 -2416 ($ $ |t#2|)) (-6 (-1004)) (-6 (-1203))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-534 |#2|)) . T) ((-25) . T) ((-38 #1=(-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-559)) ((-35) |has| |#1| (-38 (-410 (-567)))) ((-95) |has| |#1| (-38 (-410 (-567)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-410 (-567)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2800 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #1#) |has| |#1| (-38 (-410 (-567)))) ((-617 (-567)) . T) ((-617 |#1|) |has| |#1| (-172)) ((-617 $) |has| |#1| (-559)) ((-614 (-863)) . T) ((-172) -2800 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-285) |has| |#1| (-38 (-410 (-567)))) ((-291) |has| |#1| (-559)) ((-310 $) . T) ((-496) |has| |#1| (-38 (-410 (-567)))) ((-517 |#2| $) . T) ((-517 $ $) . T) ((-559) |has| |#1| (-559)) ((-647 #1#) |has| |#1| (-38 (-410 (-567)))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #1#) |has| |#1| (-38 (-410 (-567)))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #1#) |has| |#1| (-38 (-410 (-567)))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) |has| |#1| (-559)) ((-718 #1#) |has| |#1| (-38 (-410 (-567)))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) |has| |#1| (-559)) ((-727) . T) ((-902 |#2|) . T) ((-975 |#1| #0# |#2|) . T) ((-1004) |has| |#1| (-38 (-410 (-567)))) ((-1053 #1#) |has| |#1| (-38 (-410 (-567)))) ((-1053 |#1|) . T) ((-1053 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-1058 #1#) |has| |#1| (-38 (-410 (-567)))) ((-1058 |#1|) . T) ((-1058 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1203) |has| |#1| (-38 (-410 (-567)))) ((-1206) |has| |#1| (-38 (-410 (-567)))))
-((-2706 (((-421 (-1174 |#4|)) (-1174 |#4|)) 30) (((-421 |#4|) |#4|) 26)))
-(((-742 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2706 ((-421 |#4|) |#4|)) (-15 -2706 ((-421 (-1174 |#4|)) (-1174 |#4|)))) (-851) (-794) (-13 (-308) (-147)) (-951 |#3| |#2| |#1|)) (T -742))
-((-2706 (*1 *2 *3) (-12 (-4 *4 (-851)) (-4 *5 (-794)) (-4 *6 (-13 (-308) (-147))) (-4 *7 (-951 *6 *5 *4)) (-5 *2 (-421 (-1174 *7))) (-5 *1 (-742 *4 *5 *6 *7)) (-5 *3 (-1174 *7)))) (-2706 (*1 *2 *3) (-12 (-4 *4 (-851)) (-4 *5 (-794)) (-4 *6 (-13 (-308) (-147))) (-5 *2 (-421 *3)) (-5 *1 (-742 *4 *5 *6 *3)) (-4 *3 (-951 *6 *5 *4)))))
-(-10 -7 (-15 -2706 ((-421 |#4|) |#4|)) (-15 -2706 ((-421 (-1174 |#4|)) (-1174 |#4|))))
-((-3309 (((-421 |#4|) |#4| |#2|) 142)) (-1478 (((-421 |#4|) |#4|) NIL)) (-2908 (((-421 (-1174 |#4|)) (-1174 |#4|)) 127) (((-421 |#4|) |#4|) 52)) (-3558 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-645 (-2 (|:| -2706 (-1174 |#4|)) (|:| -3458 (-567)))))) (-1174 |#4|) (-645 |#2|) (-645 (-645 |#3|))) 81)) (-1524 (((-1174 |#3|) (-1174 |#3|) (-567)) 168)) (-3191 (((-645 (-772)) (-1174 |#4|) (-645 |#2|) (-772)) 75)) (-2465 (((-3 (-645 (-1174 |#4|)) "failed") (-1174 |#4|) (-1174 |#3|) (-1174 |#3|) |#4| (-645 |#2|) (-645 (-772)) (-645 |#3|)) 79)) (-1532 (((-2 (|:| |upol| (-1174 |#3|)) (|:| |Lval| (-645 |#3|)) (|:| |Lfact| (-645 (-2 (|:| -2706 (-1174 |#3|)) (|:| -3458 (-567))))) (|:| |ctpol| |#3|)) (-1174 |#4|) (-645 |#2|) (-645 (-645 |#3|))) 27)) (-3115 (((-2 (|:| -2517 (-1174 |#4|)) (|:| |polval| (-1174 |#3|))) (-1174 |#4|) (-1174 |#3|) (-567)) 72)) (-1943 (((-567) (-645 (-2 (|:| -2706 (-1174 |#3|)) (|:| -3458 (-567))))) 164)) (-2714 ((|#4| (-567) (-421 |#4|)) 73)) (-2177 (((-112) (-645 (-2 (|:| -2706 (-1174 |#3|)) (|:| -3458 (-567)))) (-645 (-2 (|:| -2706 (-1174 |#3|)) (|:| -3458 (-567))))) NIL)))
-(((-743 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2908 ((-421 |#4|) |#4|)) (-15 -2908 ((-421 (-1174 |#4|)) (-1174 |#4|))) (-15 -1478 ((-421 |#4|) |#4|)) (-15 -1943 ((-567) (-645 (-2 (|:| -2706 (-1174 |#3|)) (|:| -3458 (-567)))))) (-15 -3309 ((-421 |#4|) |#4| |#2|)) (-15 -3115 ((-2 (|:| -2517 (-1174 |#4|)) (|:| |polval| (-1174 |#3|))) (-1174 |#4|) (-1174 |#3|) (-567))) (-15 -3558 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-645 (-2 (|:| -2706 (-1174 |#4|)) (|:| -3458 (-567)))))) (-1174 |#4|) (-645 |#2|) (-645 (-645 |#3|)))) (-15 -1532 ((-2 (|:| |upol| (-1174 |#3|)) (|:| |Lval| (-645 |#3|)) (|:| |Lfact| (-645 (-2 (|:| -2706 (-1174 |#3|)) (|:| -3458 (-567))))) (|:| |ctpol| |#3|)) (-1174 |#4|) (-645 |#2|) (-645 (-645 |#3|)))) (-15 -2714 (|#4| (-567) (-421 |#4|))) (-15 -2177 ((-112) (-645 (-2 (|:| -2706 (-1174 |#3|)) (|:| -3458 (-567)))) (-645 (-2 (|:| -2706 (-1174 |#3|)) (|:| -3458 (-567)))))) (-15 -2465 ((-3 (-645 (-1174 |#4|)) "failed") (-1174 |#4|) (-1174 |#3|) (-1174 |#3|) |#4| (-645 |#2|) (-645 (-772)) (-645 |#3|))) (-15 -3191 ((-645 (-772)) (-1174 |#4|) (-645 |#2|) (-772))) (-15 -1524 ((-1174 |#3|) (-1174 |#3|) (-567)))) (-794) (-851) (-308) (-951 |#3| |#1| |#2|)) (T -743))
-((-1524 (*1 *2 *2 *3) (-12 (-5 *2 (-1174 *6)) (-5 *3 (-567)) (-4 *6 (-308)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-743 *4 *5 *6 *7)) (-4 *7 (-951 *6 *4 *5)))) (-3191 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1174 *9)) (-5 *4 (-645 *7)) (-4 *7 (-851)) (-4 *9 (-951 *8 *6 *7)) (-4 *6 (-794)) (-4 *8 (-308)) (-5 *2 (-645 (-772))) (-5 *1 (-743 *6 *7 *8 *9)) (-5 *5 (-772)))) (-2465 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1174 *11)) (-5 *6 (-645 *10)) (-5 *7 (-645 (-772))) (-5 *8 (-645 *11)) (-4 *10 (-851)) (-4 *11 (-308)) (-4 *9 (-794)) (-4 *5 (-951 *11 *9 *10)) (-5 *2 (-645 (-1174 *5))) (-5 *1 (-743 *9 *10 *11 *5)) (-5 *3 (-1174 *5)))) (-2177 (*1 *2 *3 *3) (-12 (-5 *3 (-645 (-2 (|:| -2706 (-1174 *6)) (|:| -3458 (-567))))) (-4 *6 (-308)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)) (-5 *1 (-743 *4 *5 *6 *7)) (-4 *7 (-951 *6 *4 *5)))) (-2714 (*1 *2 *3 *4) (-12 (-5 *3 (-567)) (-5 *4 (-421 *2)) (-4 *2 (-951 *7 *5 *6)) (-5 *1 (-743 *5 *6 *7 *2)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-308)))) (-1532 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1174 *9)) (-5 *4 (-645 *7)) (-5 *5 (-645 (-645 *8))) (-4 *7 (-851)) (-4 *8 (-308)) (-4 *9 (-951 *8 *6 *7)) (-4 *6 (-794)) (-5 *2 (-2 (|:| |upol| (-1174 *8)) (|:| |Lval| (-645 *8)) (|:| |Lfact| (-645 (-2 (|:| -2706 (-1174 *8)) (|:| -3458 (-567))))) (|:| |ctpol| *8))) (-5 *1 (-743 *6 *7 *8 *9)))) (-3558 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-645 *7)) (-5 *5 (-645 (-645 *8))) (-4 *7 (-851)) (-4 *8 (-308)) (-4 *6 (-794)) (-4 *9 (-951 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-645 (-2 (|:| -2706 (-1174 *9)) (|:| -3458 (-567))))))) (-5 *1 (-743 *6 *7 *8 *9)) (-5 *3 (-1174 *9)))) (-3115 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-567)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-308)) (-4 *9 (-951 *8 *6 *7)) (-5 *2 (-2 (|:| -2517 (-1174 *9)) (|:| |polval| (-1174 *8)))) (-5 *1 (-743 *6 *7 *8 *9)) (-5 *3 (-1174 *9)) (-5 *4 (-1174 *8)))) (-3309 (*1 *2 *3 *4) (-12 (-4 *5 (-794)) (-4 *4 (-851)) (-4 *6 (-308)) (-5 *2 (-421 *3)) (-5 *1 (-743 *5 *4 *6 *3)) (-4 *3 (-951 *6 *5 *4)))) (-1943 (*1 *2 *3) (-12 (-5 *3 (-645 (-2 (|:| -2706 (-1174 *6)) (|:| -3458 (-567))))) (-4 *6 (-308)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-567)) (-5 *1 (-743 *4 *5 *6 *7)) (-4 *7 (-951 *6 *4 *5)))) (-1478 (*1 *2 *3) (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-308)) (-5 *2 (-421 *3)) (-5 *1 (-743 *4 *5 *6 *3)) (-4 *3 (-951 *6 *4 *5)))) (-2908 (*1 *2 *3) (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-308)) (-4 *7 (-951 *6 *4 *5)) (-5 *2 (-421 (-1174 *7))) (-5 *1 (-743 *4 *5 *6 *7)) (-5 *3 (-1174 *7)))) (-2908 (*1 *2 *3) (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-308)) (-5 *2 (-421 *3)) (-5 *1 (-743 *4 *5 *6 *3)) (-4 *3 (-951 *6 *4 *5)))))
-(-10 -7 (-15 -2908 ((-421 |#4|) |#4|)) (-15 -2908 ((-421 (-1174 |#4|)) (-1174 |#4|))) (-15 -1478 ((-421 |#4|) |#4|)) (-15 -1943 ((-567) (-645 (-2 (|:| -2706 (-1174 |#3|)) (|:| -3458 (-567)))))) (-15 -3309 ((-421 |#4|) |#4| |#2|)) (-15 -3115 ((-2 (|:| -2517 (-1174 |#4|)) (|:| |polval| (-1174 |#3|))) (-1174 |#4|) (-1174 |#3|) (-567))) (-15 -3558 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-645 (-2 (|:| -2706 (-1174 |#4|)) (|:| -3458 (-567)))))) (-1174 |#4|) (-645 |#2|) (-645 (-645 |#3|)))) (-15 -1532 ((-2 (|:| |upol| (-1174 |#3|)) (|:| |Lval| (-645 |#3|)) (|:| |Lfact| (-645 (-2 (|:| -2706 (-1174 |#3|)) (|:| -3458 (-567))))) (|:| |ctpol| |#3|)) (-1174 |#4|) (-645 |#2|) (-645 (-645 |#3|)))) (-15 -2714 (|#4| (-567) (-421 |#4|))) (-15 -2177 ((-112) (-645 (-2 (|:| -2706 (-1174 |#3|)) (|:| -3458 (-567)))) (-645 (-2 (|:| -2706 (-1174 |#3|)) (|:| -3458 (-567)))))) (-15 -2465 ((-3 (-645 (-1174 |#4|)) "failed") (-1174 |#4|) (-1174 |#3|) (-1174 |#3|) |#4| (-645 |#2|) (-645 (-772)) (-645 |#3|))) (-15 -3191 ((-645 (-772)) (-1174 |#4|) (-645 |#2|) (-772))) (-15 -1524 ((-1174 |#3|) (-1174 |#3|) (-567))))
-((-3719 (($ $ (-923)) 17)))
-(((-744 |#1| |#2|) (-10 -8 (-15 -3719 (|#1| |#1| (-923)))) (-745 |#2|) (-172)) (T -744))
-NIL
-(-10 -8 (-15 -3719 (|#1| |#1| (-923))))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-2586 (($ $ (-923)) 31)) (-3719 (($ $ (-923)) 38)) (-3450 (($ $ (-923)) 32)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-1485 (($ $ $) 28)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-2153 (($ $ $ $) 29)) (-2214 (($ $ $) 27)) (-1716 (($) 19 T CONST)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 33)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39)))
+((-2558 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-741 *4 *2)) (-4 *4 (-1051)) (-4 *2 (-851)))) (-2558 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 *5)) (-5 *3 (-645 (-772))) (-4 *1 (-741 *4 *5)) (-4 *4 (-1051)) (-4 *5 (-851)))) (-1874 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-741 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-851)))) (-2836 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-741 *4 *2)) (-4 *4 (-1051)) (-4 *2 (-851)))) (-2836 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 *5)) (-5 *3 (-645 (-772))) (-4 *1 (-741 *4 *5)) (-4 *4 (-1051)) (-4 *5 (-851)))) (-3362 (*1 *2 *1 *3) (-12 (-4 *1 (-741 *4 *3)) (-4 *4 (-1051)) (-4 *3 (-851)) (-5 *2 (-772)))) (-3362 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-772)) (-4 *1 (-741 *4 *3)) (-4 *4 (-1051)) (-4 *3 (-851)))) (-3736 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-4 *1 (-741 *4 *5)) (-4 *4 (-1051)) (-4 *5 (-851)) (-5 *2 (-954 *4)))) (-3736 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-772)) (-4 *1 (-741 *4 *5)) (-4 *4 (-1051)) (-4 *5 (-851)) (-5 *2 (-954 *4)))) (-4083 (*1 *1 *1 *2) (-12 (-4 *1 (-741 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-851)) (-4 *3 (-38 (-410 (-567)))))))
+(-13 (-902 |t#2|) (-975 |t#1| (-534 |t#2|) |t#2|) (-517 |t#2| $) (-310 $) (-10 -8 (-15 -2558 ($ $ |t#2| (-772))) (-15 -2558 ($ $ (-645 |t#2|) (-645 (-772)))) (-15 -1874 ($ $ (-772))) (-15 -2836 ($ $ |t#2| (-772))) (-15 -2836 ($ $ (-645 |t#2|) (-645 (-772)))) (-15 -3362 ((-772) $ |t#2|)) (-15 -3362 ((-772) $ |t#2| (-772))) (-15 -3736 ((-954 |t#1|) $ (-772))) (-15 -3736 ((-954 |t#1|) $ (-772) (-772))) (IF (|has| |t#1| (-38 (-410 (-567)))) (PROGN (-15 -4083 ($ $ |t#2|)) (-6 (-1004)) (-6 (-1204))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-534 |#2|)) . T) ((-25) . T) ((-38 #1=(-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-559)) ((-35) |has| |#1| (-38 (-410 (-567)))) ((-95) |has| |#1| (-38 (-410 (-567)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-410 (-567)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2811 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #1#) |has| |#1| (-38 (-410 (-567)))) ((-617 (-567)) . T) ((-617 |#1|) |has| |#1| (-172)) ((-617 $) |has| |#1| (-559)) ((-614 (-863)) . T) ((-172) -2811 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-285) |has| |#1| (-38 (-410 (-567)))) ((-291) |has| |#1| (-559)) ((-310 $) . T) ((-496) |has| |#1| (-38 (-410 (-567)))) ((-517 |#2| $) . T) ((-517 $ $) . T) ((-559) |has| |#1| (-559)) ((-647 #1#) |has| |#1| (-38 (-410 (-567)))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #1#) |has| |#1| (-38 (-410 (-567)))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #1#) |has| |#1| (-38 (-410 (-567)))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) |has| |#1| (-559)) ((-718 #1#) |has| |#1| (-38 (-410 (-567)))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) |has| |#1| (-559)) ((-727) . T) ((-902 |#2|) . T) ((-975 |#1| #0# |#2|) . T) ((-1004) |has| |#1| (-38 (-410 (-567)))) ((-1053 #1#) |has| |#1| (-38 (-410 (-567)))) ((-1053 |#1|) . T) ((-1053 $) -2811 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-1058 #1#) |has| |#1| (-38 (-410 (-567)))) ((-1058 |#1|) . T) ((-1058 $) -2811 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1204) |has| |#1| (-38 (-410 (-567)))) ((-1207) |has| |#1| (-38 (-410 (-567)))))
+((-2717 (((-421 (-1175 |#4|)) (-1175 |#4|)) 30) (((-421 |#4|) |#4|) 26)))
+(((-742 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2717 ((-421 |#4|) |#4|)) (-15 -2717 ((-421 (-1175 |#4|)) (-1175 |#4|)))) (-851) (-794) (-13 (-308) (-147)) (-951 |#3| |#2| |#1|)) (T -742))
+((-2717 (*1 *2 *3) (-12 (-4 *4 (-851)) (-4 *5 (-794)) (-4 *6 (-13 (-308) (-147))) (-4 *7 (-951 *6 *5 *4)) (-5 *2 (-421 (-1175 *7))) (-5 *1 (-742 *4 *5 *6 *7)) (-5 *3 (-1175 *7)))) (-2717 (*1 *2 *3) (-12 (-4 *4 (-851)) (-4 *5 (-794)) (-4 *6 (-13 (-308) (-147))) (-5 *2 (-421 *3)) (-5 *1 (-742 *4 *5 *6 *3)) (-4 *3 (-951 *6 *5 *4)))))
+(-10 -7 (-15 -2717 ((-421 |#4|) |#4|)) (-15 -2717 ((-421 (-1175 |#4|)) (-1175 |#4|))))
+((-4113 (((-421 |#4|) |#4| |#2|) 142)) (-1582 (((-421 |#4|) |#4|) NIL)) (-3597 (((-421 (-1175 |#4|)) (-1175 |#4|)) 127) (((-421 |#4|) |#4|) 52)) (-2001 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-645 (-2 (|:| -2717 (-1175 |#4|)) (|:| -3468 (-567)))))) (-1175 |#4|) (-645 |#2|) (-645 (-645 |#3|))) 81)) (-3923 (((-1175 |#3|) (-1175 |#3|) (-567)) 168)) (-3027 (((-645 (-772)) (-1175 |#4|) (-645 |#2|) (-772)) 75)) (-2484 (((-3 (-645 (-1175 |#4|)) "failed") (-1175 |#4|) (-1175 |#3|) (-1175 |#3|) |#4| (-645 |#2|) (-645 (-772)) (-645 |#3|)) 79)) (-3557 (((-2 (|:| |upol| (-1175 |#3|)) (|:| |Lval| (-645 |#3|)) (|:| |Lfact| (-645 (-2 (|:| -2717 (-1175 |#3|)) (|:| -3468 (-567))))) (|:| |ctpol| |#3|)) (-1175 |#4|) (-645 |#2|) (-645 (-645 |#3|))) 27)) (-2183 (((-2 (|:| -1774 (-1175 |#4|)) (|:| |polval| (-1175 |#3|))) (-1175 |#4|) (-1175 |#3|) (-567)) 72)) (-4188 (((-567) (-645 (-2 (|:| -2717 (-1175 |#3|)) (|:| -3468 (-567))))) 164)) (-3887 ((|#4| (-567) (-421 |#4|)) 73)) (-2860 (((-112) (-645 (-2 (|:| -2717 (-1175 |#3|)) (|:| -3468 (-567)))) (-645 (-2 (|:| -2717 (-1175 |#3|)) (|:| -3468 (-567))))) NIL)))
+(((-743 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3597 ((-421 |#4|) |#4|)) (-15 -3597 ((-421 (-1175 |#4|)) (-1175 |#4|))) (-15 -1582 ((-421 |#4|) |#4|)) (-15 -4188 ((-567) (-645 (-2 (|:| -2717 (-1175 |#3|)) (|:| -3468 (-567)))))) (-15 -4113 ((-421 |#4|) |#4| |#2|)) (-15 -2183 ((-2 (|:| -1774 (-1175 |#4|)) (|:| |polval| (-1175 |#3|))) (-1175 |#4|) (-1175 |#3|) (-567))) (-15 -2001 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-645 (-2 (|:| -2717 (-1175 |#4|)) (|:| -3468 (-567)))))) (-1175 |#4|) (-645 |#2|) (-645 (-645 |#3|)))) (-15 -3557 ((-2 (|:| |upol| (-1175 |#3|)) (|:| |Lval| (-645 |#3|)) (|:| |Lfact| (-645 (-2 (|:| -2717 (-1175 |#3|)) (|:| -3468 (-567))))) (|:| |ctpol| |#3|)) (-1175 |#4|) (-645 |#2|) (-645 (-645 |#3|)))) (-15 -3887 (|#4| (-567) (-421 |#4|))) (-15 -2860 ((-112) (-645 (-2 (|:| -2717 (-1175 |#3|)) (|:| -3468 (-567)))) (-645 (-2 (|:| -2717 (-1175 |#3|)) (|:| -3468 (-567)))))) (-15 -2484 ((-3 (-645 (-1175 |#4|)) "failed") (-1175 |#4|) (-1175 |#3|) (-1175 |#3|) |#4| (-645 |#2|) (-645 (-772)) (-645 |#3|))) (-15 -3027 ((-645 (-772)) (-1175 |#4|) (-645 |#2|) (-772))) (-15 -3923 ((-1175 |#3|) (-1175 |#3|) (-567)))) (-794) (-851) (-308) (-951 |#3| |#1| |#2|)) (T -743))
+((-3923 (*1 *2 *2 *3) (-12 (-5 *2 (-1175 *6)) (-5 *3 (-567)) (-4 *6 (-308)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-743 *4 *5 *6 *7)) (-4 *7 (-951 *6 *4 *5)))) (-3027 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1175 *9)) (-5 *4 (-645 *7)) (-4 *7 (-851)) (-4 *9 (-951 *8 *6 *7)) (-4 *6 (-794)) (-4 *8 (-308)) (-5 *2 (-645 (-772))) (-5 *1 (-743 *6 *7 *8 *9)) (-5 *5 (-772)))) (-2484 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1175 *11)) (-5 *6 (-645 *10)) (-5 *7 (-645 (-772))) (-5 *8 (-645 *11)) (-4 *10 (-851)) (-4 *11 (-308)) (-4 *9 (-794)) (-4 *5 (-951 *11 *9 *10)) (-5 *2 (-645 (-1175 *5))) (-5 *1 (-743 *9 *10 *11 *5)) (-5 *3 (-1175 *5)))) (-2860 (*1 *2 *3 *3) (-12 (-5 *3 (-645 (-2 (|:| -2717 (-1175 *6)) (|:| -3468 (-567))))) (-4 *6 (-308)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)) (-5 *1 (-743 *4 *5 *6 *7)) (-4 *7 (-951 *6 *4 *5)))) (-3887 (*1 *2 *3 *4) (-12 (-5 *3 (-567)) (-5 *4 (-421 *2)) (-4 *2 (-951 *7 *5 *6)) (-5 *1 (-743 *5 *6 *7 *2)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-308)))) (-3557 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1175 *9)) (-5 *4 (-645 *7)) (-5 *5 (-645 (-645 *8))) (-4 *7 (-851)) (-4 *8 (-308)) (-4 *9 (-951 *8 *6 *7)) (-4 *6 (-794)) (-5 *2 (-2 (|:| |upol| (-1175 *8)) (|:| |Lval| (-645 *8)) (|:| |Lfact| (-645 (-2 (|:| -2717 (-1175 *8)) (|:| -3468 (-567))))) (|:| |ctpol| *8))) (-5 *1 (-743 *6 *7 *8 *9)))) (-2001 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-645 *7)) (-5 *5 (-645 (-645 *8))) (-4 *7 (-851)) (-4 *8 (-308)) (-4 *6 (-794)) (-4 *9 (-951 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-645 (-2 (|:| -2717 (-1175 *9)) (|:| -3468 (-567))))))) (-5 *1 (-743 *6 *7 *8 *9)) (-5 *3 (-1175 *9)))) (-2183 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-567)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-308)) (-4 *9 (-951 *8 *6 *7)) (-5 *2 (-2 (|:| -1774 (-1175 *9)) (|:| |polval| (-1175 *8)))) (-5 *1 (-743 *6 *7 *8 *9)) (-5 *3 (-1175 *9)) (-5 *4 (-1175 *8)))) (-4113 (*1 *2 *3 *4) (-12 (-4 *5 (-794)) (-4 *4 (-851)) (-4 *6 (-308)) (-5 *2 (-421 *3)) (-5 *1 (-743 *5 *4 *6 *3)) (-4 *3 (-951 *6 *5 *4)))) (-4188 (*1 *2 *3) (-12 (-5 *3 (-645 (-2 (|:| -2717 (-1175 *6)) (|:| -3468 (-567))))) (-4 *6 (-308)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-567)) (-5 *1 (-743 *4 *5 *6 *7)) (-4 *7 (-951 *6 *4 *5)))) (-1582 (*1 *2 *3) (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-308)) (-5 *2 (-421 *3)) (-5 *1 (-743 *4 *5 *6 *3)) (-4 *3 (-951 *6 *4 *5)))) (-3597 (*1 *2 *3) (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-308)) (-4 *7 (-951 *6 *4 *5)) (-5 *2 (-421 (-1175 *7))) (-5 *1 (-743 *4 *5 *6 *7)) (-5 *3 (-1175 *7)))) (-3597 (*1 *2 *3) (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-308)) (-5 *2 (-421 *3)) (-5 *1 (-743 *4 *5 *6 *3)) (-4 *3 (-951 *6 *4 *5)))))
+(-10 -7 (-15 -3597 ((-421 |#4|) |#4|)) (-15 -3597 ((-421 (-1175 |#4|)) (-1175 |#4|))) (-15 -1582 ((-421 |#4|) |#4|)) (-15 -4188 ((-567) (-645 (-2 (|:| -2717 (-1175 |#3|)) (|:| -3468 (-567)))))) (-15 -4113 ((-421 |#4|) |#4| |#2|)) (-15 -2183 ((-2 (|:| -1774 (-1175 |#4|)) (|:| |polval| (-1175 |#3|))) (-1175 |#4|) (-1175 |#3|) (-567))) (-15 -2001 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-645 (-2 (|:| -2717 (-1175 |#4|)) (|:| -3468 (-567)))))) (-1175 |#4|) (-645 |#2|) (-645 (-645 |#3|)))) (-15 -3557 ((-2 (|:| |upol| (-1175 |#3|)) (|:| |Lval| (-645 |#3|)) (|:| |Lfact| (-645 (-2 (|:| -2717 (-1175 |#3|)) (|:| -3468 (-567))))) (|:| |ctpol| |#3|)) (-1175 |#4|) (-645 |#2|) (-645 (-645 |#3|)))) (-15 -3887 (|#4| (-567) (-421 |#4|))) (-15 -2860 ((-112) (-645 (-2 (|:| -2717 (-1175 |#3|)) (|:| -3468 (-567)))) (-645 (-2 (|:| -2717 (-1175 |#3|)) (|:| -3468 (-567)))))) (-15 -2484 ((-3 (-645 (-1175 |#4|)) "failed") (-1175 |#4|) (-1175 |#3|) (-1175 |#3|) |#4| (-645 |#2|) (-645 (-772)) (-645 |#3|))) (-15 -3027 ((-645 (-772)) (-1175 |#4|) (-645 |#2|) (-772))) (-15 -3923 ((-1175 |#3|) (-1175 |#3|) (-567))))
+((-2112 (($ $ (-923)) 17)))
+(((-744 |#1| |#2|) (-10 -8 (-15 -2112 (|#1| |#1| (-923)))) (-745 |#2|) (-172)) (T -744))
+NIL
+(-10 -8 (-15 -2112 (|#1| |#1| (-923))))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-2376 (((-3 $ "failed") $ $) 20)) (-3647 (($) 18 T CONST)) (-3757 (($ $ (-923)) 31)) (-2112 (($ $ (-923)) 38)) (-3884 (($ $ (-923)) 32)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-3997 (($ $ $) 28)) (-4129 (((-863) $) 12)) (-3357 (((-112) $ $) 9)) (-2047 (($ $ $ $) 29)) (-2188 (($ $ $) 27)) (-1733 (($) 19 T CONST)) (-2946 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-923)) 33)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39)))
(((-745 |#1|) (-140) (-172)) (T -745))
-((-3719 (*1 *1 *1 *2) (-12 (-5 *2 (-923)) (-4 *1 (-745 *3)) (-4 *3 (-172)))))
-(-13 (-762) (-718 |t#1|) (-10 -8 (-15 -3719 ($ $ (-923)))))
+((-2112 (*1 *1 *1 *2) (-12 (-5 *2 (-923)) (-4 *1 (-745 *3)) (-4 *3 (-172)))))
+(-13 (-762) (-718 |t#1|) (-10 -8 (-15 -2112 ($ $ (-923)))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-649 |#1|) . T) ((-641 |#1|) . T) ((-718 |#1|) . T) ((-721) . T) ((-762) . T) ((-1053 |#1|) . T) ((-1058 |#1|) . T) ((-1102) . T))
-((-2404 (((-1037) (-690 (-225)) (-567) (-112) (-567)) 25)) (-3116 (((-1037) (-690 (-225)) (-567) (-112) (-567)) 24)))
-(((-746) (-10 -7 (-15 -3116 ((-1037) (-690 (-225)) (-567) (-112) (-567))) (-15 -2404 ((-1037) (-690 (-225)) (-567) (-112) (-567))))) (T -746))
-((-2404 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *5 (-112)) (-5 *2 (-1037)) (-5 *1 (-746)))) (-3116 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *5 (-112)) (-5 *2 (-1037)) (-5 *1 (-746)))))
-(-10 -7 (-15 -3116 ((-1037) (-690 (-225)) (-567) (-112) (-567))) (-15 -2404 ((-1037) (-690 (-225)) (-567) (-112) (-567))))
-((-1620 (((-1037) (-567) (-567) (-567) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-74 FCN)))) 43)) (-1825 (((-1037) (-567) (-567) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-81 FCN)))) 39)) (-3004 (((-1037) (-225) (-225) (-225) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3879)))) 32)))
-(((-747) (-10 -7 (-15 -3004 ((-1037) (-225) (-225) (-225) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3879))))) (-15 -1825 ((-1037) (-567) (-567) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-81 FCN))))) (-15 -1620 ((-1037) (-567) (-567) (-567) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-74 FCN))))))) (T -747))
-((-1620 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1037)) (-5 *1 (-747)))) (-1825 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1037)) (-5 *1 (-747)))) (-3004 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3879)))) (-5 *2 (-1037)) (-5 *1 (-747)))))
-(-10 -7 (-15 -3004 ((-1037) (-225) (-225) (-225) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3879))))) (-15 -1825 ((-1037) (-567) (-567) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-81 FCN))))) (-15 -1620 ((-1037) (-567) (-567) (-567) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-74 FCN))))))
-((-3398 (((-1037) (-567) (-567) (-690 (-225)) (-567)) 34)) (-3673 (((-1037) (-567) (-567) (-690 (-225)) (-567)) 33)) (-3631 (((-1037) (-567) (-690 (-225)) (-567)) 32)) (-1313 (((-1037) (-567) (-690 (-225)) (-567)) 31)) (-1801 (((-1037) (-567) (-567) (-1160) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567)) 30)) (-1473 (((-1037) (-567) (-567) (-1160) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567)) 29)) (-1384 (((-1037) (-567) (-567) (-1160) (-690 (-225)) (-690 (-225)) (-567)) 28)) (-3546 (((-1037) (-567) (-567) (-1160) (-690 (-225)) (-690 (-225)) (-567)) 27)) (-2044 (((-1037) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567)) 24)) (-3177 (((-1037) (-567) (-690 (-225)) (-690 (-225)) (-567)) 23)) (-1847 (((-1037) (-567) (-690 (-225)) (-567)) 22)) (-2212 (((-1037) (-567) (-690 (-225)) (-567)) 21)))
-(((-748) (-10 -7 (-15 -2212 ((-1037) (-567) (-690 (-225)) (-567))) (-15 -1847 ((-1037) (-567) (-690 (-225)) (-567))) (-15 -3177 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2044 ((-1037) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3546 ((-1037) (-567) (-567) (-1160) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1384 ((-1037) (-567) (-567) (-1160) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1473 ((-1037) (-567) (-567) (-1160) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1801 ((-1037) (-567) (-567) (-1160) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1313 ((-1037) (-567) (-690 (-225)) (-567))) (-15 -3631 ((-1037) (-567) (-690 (-225)) (-567))) (-15 -3673 ((-1037) (-567) (-567) (-690 (-225)) (-567))) (-15 -3398 ((-1037) (-567) (-567) (-690 (-225)) (-567))))) (T -748))
-((-3398 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-748)))) (-3673 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-748)))) (-3631 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-748)))) (-1313 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-748)))) (-1801 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-567)) (-5 *4 (-1160)) (-5 *5 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-748)))) (-1473 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-567)) (-5 *4 (-1160)) (-5 *5 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-748)))) (-1384 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-567)) (-5 *4 (-1160)) (-5 *5 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-748)))) (-3546 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-567)) (-5 *4 (-1160)) (-5 *5 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-748)))) (-2044 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-748)))) (-3177 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-748)))) (-1847 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-748)))) (-2212 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-748)))))
-(-10 -7 (-15 -2212 ((-1037) (-567) (-690 (-225)) (-567))) (-15 -1847 ((-1037) (-567) (-690 (-225)) (-567))) (-15 -3177 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2044 ((-1037) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3546 ((-1037) (-567) (-567) (-1160) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1384 ((-1037) (-567) (-567) (-1160) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1473 ((-1037) (-567) (-567) (-1160) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1801 ((-1037) (-567) (-567) (-1160) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1313 ((-1037) (-567) (-690 (-225)) (-567))) (-15 -3631 ((-1037) (-567) (-690 (-225)) (-567))) (-15 -3673 ((-1037) (-567) (-567) (-690 (-225)) (-567))) (-15 -3398 ((-1037) (-567) (-567) (-690 (-225)) (-567))))
-((-3766 (((-1037) (-567) (-690 (-225)) (-690 (-225)) (-567) (-225) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-78 FUNCTN)))) 52)) (-1654 (((-1037) (-690 (-225)) (-690 (-225)) (-567) (-567)) 51)) (-4354 (((-1037) (-567) (-690 (-225)) (-690 (-225)) (-567) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-78 FUNCTN)))) 50)) (-2893 (((-1037) (-225) (-225) (-567) (-567) (-567) (-567)) 46)) (-1963 (((-1037) (-225) (-225) (-567) (-225) (-567) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G)))) 45)) (-1662 (((-1037) (-225) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G)))) 44)) (-2734 (((-1037) (-225) (-225) (-225) (-225) (-567) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G)))) 43)) (-4173 (((-1037) (-225) (-225) (-225) (-567) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G)))) 42)) (-3440 (((-1037) (-225) (-567) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3879)))) 38)) (-2231 (((-1037) (-225) (-225) (-567) (-690 (-225)) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3879)))) 37)) (-1510 (((-1037) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3879)))) 33)) (-3636 (((-1037) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3879)))) 32)))
-(((-749) (-10 -7 (-15 -3636 ((-1037) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3879))))) (-15 -1510 ((-1037) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3879))))) (-15 -2231 ((-1037) (-225) (-225) (-567) (-690 (-225)) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3879))))) (-15 -3440 ((-1037) (-225) (-567) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3879))))) (-15 -4173 ((-1037) (-225) (-225) (-225) (-567) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G))))) (-15 -2734 ((-1037) (-225) (-225) (-225) (-225) (-567) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G))))) (-15 -1662 ((-1037) (-225) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G))))) (-15 -1963 ((-1037) (-225) (-225) (-567) (-225) (-567) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G))))) (-15 -2893 ((-1037) (-225) (-225) (-567) (-567) (-567) (-567))) (-15 -4354 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-567) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-78 FUNCTN))))) (-15 -1654 ((-1037) (-690 (-225)) (-690 (-225)) (-567) (-567))) (-15 -3766 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-567) (-225) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-78 FUNCTN))))))) (T -749))
-((-3766 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1037)) (-5 *1 (-749)))) (-1654 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-749)))) (-4354 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1037)) (-5 *1 (-749)))) (-2893 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-749)))) (-1963 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G)))) (-5 *2 (-1037)) (-5 *1 (-749)))) (-1662 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G)))) (-5 *2 (-1037)) (-5 *1 (-749)))) (-2734 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G)))) (-5 *2 (-1037)) (-5 *1 (-749)))) (-4173 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G)))) (-5 *2 (-1037)) (-5 *1 (-749)))) (-3440 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3879)))) (-5 *2 (-1037)) (-5 *1 (-749)))) (-2231 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-567)) (-5 *5 (-690 (-225))) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3879)))) (-5 *3 (-225)) (-5 *2 (-1037)) (-5 *1 (-749)))) (-1510 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3879)))) (-5 *2 (-1037)) (-5 *1 (-749)))) (-3636 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3879)))) (-5 *2 (-1037)) (-5 *1 (-749)))))
-(-10 -7 (-15 -3636 ((-1037) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3879))))) (-15 -1510 ((-1037) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3879))))) (-15 -2231 ((-1037) (-225) (-225) (-567) (-690 (-225)) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3879))))) (-15 -3440 ((-1037) (-225) (-567) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3879))))) (-15 -4173 ((-1037) (-225) (-225) (-225) (-567) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G))))) (-15 -2734 ((-1037) (-225) (-225) (-225) (-225) (-567) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G))))) (-15 -1662 ((-1037) (-225) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G))))) (-15 -1963 ((-1037) (-225) (-225) (-567) (-225) (-567) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G))))) (-15 -2893 ((-1037) (-225) (-225) (-567) (-567) (-567) (-567))) (-15 -4354 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-567) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-78 FUNCTN))))) (-15 -1654 ((-1037) (-690 (-225)) (-690 (-225)) (-567) (-567))) (-15 -3766 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-567) (-225) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-78 FUNCTN))))))
-((-1832 (((-1037) (-567) (-567) (-567) (-567) (-225) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-391)) (|:| |fp| (-76 G JACOBG JACGEP)))) 76)) (-4342 (((-1037) (-690 (-225)) (-567) (-567) (-225) (-567) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-87 BDYVAL))) (-391) (-391)) 69) (((-1037) (-690 (-225)) (-567) (-567) (-225) (-567) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-87 BDYVAL)))) 68)) (-2587 (((-1037) (-225) (-225) (-567) (-225) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-391)) (|:| |fp| (-85 FCNG)))) 57)) (-3952 (((-1037) (-690 (-225)) (-690 (-225)) (-567) (-225) (-225) (-225) (-567) (-567) (-567) (-690 (-225)) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN)))) 50)) (-4091 (((-1037) (-225) (-567) (-567) (-1160) (-567) (-225) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT)))) 49)) (-1742 (((-1037) (-225) (-567) (-567) (-225) (-1160) (-225) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT)))) 45)) (-3468 (((-1037) (-225) (-567) (-567) (-225) (-225) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN)))) 42)) (-2905 (((-1037) (-225) (-567) (-567) (-567) (-225) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT)))) 38)))
-(((-750) (-10 -7 (-15 -2905 ((-1037) (-225) (-567) (-567) (-567) (-225) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT))))) (-15 -3468 ((-1037) (-225) (-567) (-567) (-225) (-225) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))))) (-15 -1742 ((-1037) (-225) (-567) (-567) (-225) (-1160) (-225) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT))))) (-15 -4091 ((-1037) (-225) (-567) (-567) (-1160) (-567) (-225) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT))))) (-15 -3952 ((-1037) (-690 (-225)) (-690 (-225)) (-567) (-225) (-225) (-225) (-567) (-567) (-567) (-690 (-225)) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))))) (-15 -2587 ((-1037) (-225) (-225) (-567) (-225) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-391)) (|:| |fp| (-85 FCNG))))) (-15 -4342 ((-1037) (-690 (-225)) (-567) (-567) (-225) (-567) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-87 BDYVAL))))) (-15 -4342 ((-1037) (-690 (-225)) (-567) (-567) (-225) (-567) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-87 BDYVAL))) (-391) (-391))) (-15 -1832 ((-1037) (-567) (-567) (-567) (-567) (-225) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-391)) (|:| |fp| (-76 G JACOBG JACGEP))))))) (T -750))
-((-1832 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-76 G JACOBG JACGEP)))) (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-750)))) (-4342 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-87 BDYVAL)))) (-5 *8 (-391)) (-5 *2 (-1037)) (-5 *1 (-750)))) (-4342 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-87 BDYVAL)))) (-5 *2 (-1037)) (-5 *1 (-750)))) (-2587 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-567)) (-5 *5 (-690 (-225))) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-84 FCNF)))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-225)) (-5 *2 (-1037)) (-5 *1 (-750)))) (-3952 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1037)) (-5 *1 (-750)))) (-4091 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-567)) (-5 *5 (-1160)) (-5 *6 (-690 (-225))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-391)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-225)) (-5 *2 (-1037)) (-5 *1 (-750)))) (-1742 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-567)) (-5 *5 (-1160)) (-5 *6 (-690 (-225))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-225)) (-5 *2 (-1037)) (-5 *1 (-750)))) (-3468 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-567)) (-5 *5 (-690 (-225))) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN)))) (-5 *3 (-225)) (-5 *2 (-1037)) (-5 *1 (-750)))) (-2905 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-567)) (-5 *5 (-690 (-225))) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN)))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-225)) (-5 *2 (-1037)) (-5 *1 (-750)))))
-(-10 -7 (-15 -2905 ((-1037) (-225) (-567) (-567) (-567) (-225) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT))))) (-15 -3468 ((-1037) (-225) (-567) (-567) (-225) (-225) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))))) (-15 -1742 ((-1037) (-225) (-567) (-567) (-225) (-1160) (-225) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT))))) (-15 -4091 ((-1037) (-225) (-567) (-567) (-1160) (-567) (-225) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT))))) (-15 -3952 ((-1037) (-690 (-225)) (-690 (-225)) (-567) (-225) (-225) (-225) (-567) (-567) (-567) (-690 (-225)) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))))) (-15 -2587 ((-1037) (-225) (-225) (-567) (-225) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-391)) (|:| |fp| (-85 FCNG))))) (-15 -4342 ((-1037) (-690 (-225)) (-567) (-567) (-225) (-567) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-87 BDYVAL))))) (-15 -4342 ((-1037) (-690 (-225)) (-567) (-567) (-225) (-567) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-87 BDYVAL))) (-391) (-391))) (-15 -1832 ((-1037) (-567) (-567) (-567) (-567) (-225) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-391)) (|:| |fp| (-76 G JACOBG JACGEP))))))
-((-3040 (((-1037) (-225) (-225) (-567) (-567) (-690 (-225)) (-690 (-225)) (-225) (-225) (-567) (-567) (-690 (-225)) (-690 (-225)) (-225) (-225) (-567) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567) (-567) (-676 (-225)) (-567)) 45)) (-3981 (((-1037) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-1160) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-391)) (|:| |fp| (-83 BNDY)))) 41)) (-3560 (((-1037) (-567) (-567) (-567) (-567) (-225) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567)) 23)))
-(((-751) (-10 -7 (-15 -3560 ((-1037) (-567) (-567) (-567) (-567) (-225) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3981 ((-1037) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-1160) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-391)) (|:| |fp| (-83 BNDY))))) (-15 -3040 ((-1037) (-225) (-225) (-567) (-567) (-690 (-225)) (-690 (-225)) (-225) (-225) (-567) (-567) (-690 (-225)) (-690 (-225)) (-225) (-225) (-567) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567) (-567) (-676 (-225)) (-567))))) (T -751))
-((-3040 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-567)) (-5 *5 (-690 (-225))) (-5 *6 (-676 (-225))) (-5 *3 (-225)) (-5 *2 (-1037)) (-5 *1 (-751)))) (-3981 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *5 (-1160)) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-82 PDEF)))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1037)) (-5 *1 (-751)))) (-3560 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-751)))))
-(-10 -7 (-15 -3560 ((-1037) (-567) (-567) (-567) (-567) (-225) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3981 ((-1037) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-1160) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-391)) (|:| |fp| (-83 BNDY))))) (-15 -3040 ((-1037) (-225) (-225) (-567) (-567) (-690 (-225)) (-690 (-225)) (-225) (-225) (-567) (-567) (-690 (-225)) (-690 (-225)) (-225) (-225) (-567) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567) (-567) (-676 (-225)) (-567))))
-((-4189 (((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-225) (-690 (-225)) (-225) (-225) (-567)) 35)) (-3883 (((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-567) (-225) (-225) (-567)) 34)) (-3676 (((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-567)) (-690 (-225)) (-225) (-225) (-567)) 33)) (-3316 (((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567)) 29)) (-2060 (((-1037) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567)) 28)) (-3943 (((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-225) (-225) (-567)) 27)) (-1855 (((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-690 (-225)) (-567)) 24)) (-3649 (((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-690 (-225)) (-567)) 23)) (-1985 (((-1037) (-567) (-690 (-225)) (-690 (-225)) (-567)) 22)) (-2713 (((-1037) (-567) (-690 (-225)) (-690 (-225)) (-567) (-567) (-567)) 21)))
-(((-752) (-10 -7 (-15 -2713 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-567) (-567) (-567))) (-15 -1985 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3649 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-690 (-225)) (-567))) (-15 -1855 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-690 (-225)) (-567))) (-15 -3943 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-225) (-225) (-567))) (-15 -2060 ((-1037) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3316 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3676 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-567)) (-690 (-225)) (-225) (-225) (-567))) (-15 -3883 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-567) (-225) (-225) (-567))) (-15 -4189 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-225) (-690 (-225)) (-225) (-225) (-567))))) (T -752))
-((-4189 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) (-5 *2 (-1037)) (-5 *1 (-752)))) (-3883 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) (-5 *2 (-1037)) (-5 *1 (-752)))) (-3676 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-690 (-225))) (-5 *5 (-690 (-567))) (-5 *6 (-225)) (-5 *3 (-567)) (-5 *2 (-1037)) (-5 *1 (-752)))) (-3316 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-752)))) (-2060 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-752)))) (-3943 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) (-5 *2 (-1037)) (-5 *1 (-752)))) (-1855 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-752)))) (-3649 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-752)))) (-1985 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-752)))) (-2713 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-752)))))
-(-10 -7 (-15 -2713 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-567) (-567) (-567))) (-15 -1985 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3649 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-690 (-225)) (-567))) (-15 -1855 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-690 (-225)) (-567))) (-15 -3943 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-225) (-225) (-567))) (-15 -2060 ((-1037) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3316 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3676 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-567)) (-690 (-225)) (-225) (-225) (-567))) (-15 -3883 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-567) (-225) (-225) (-567))) (-15 -4189 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-225) (-690 (-225)) (-225) (-225) (-567))))
-((-1618 (((-1037) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-567) (-567) (-567)) 45)) (-3506 (((-1037) (-567) (-567) (-567) (-225) (-690 (-225)) (-690 (-225)) (-567)) 44)) (-1882 (((-1037) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-567) (-567)) 43)) (-1329 (((-1037) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567)) 42)) (-1409 (((-1037) (-1160) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-567)) 41)) (-2036 (((-1037) (-1160) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-690 (-567)) (-567)) 40)) (-3996 (((-1037) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-567)) (-567) (-567) (-567) (-225) (-690 (-225)) (-567)) 39)) (-2137 (((-1037) (-1160) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-567))) 38)) (-1596 (((-1037) (-567) (-690 (-225)) (-690 (-225)) (-567)) 35)) (-3225 (((-1037) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567)) 34)) (-4056 (((-1037) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567)) 33)) (-1543 (((-1037) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567)) 32)) (-4390 (((-1037) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-225) (-567)) 31)) (-2488 (((-1037) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-225) (-567) (-567) (-567)) 30)) (-3294 (((-1037) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-567) (-567) (-567)) 29)) (-4001 (((-1037) (-567) (-567) (-567) (-225) (-225) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-567) (-690 (-567)) (-567) (-567) (-567)) 28)) (-1917 (((-1037) (-567) (-690 (-225)) (-225) (-567)) 24)) (-3361 (((-1037) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567)) 21)))
-(((-753) (-10 -7 (-15 -3361 ((-1037) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1917 ((-1037) (-567) (-690 (-225)) (-225) (-567))) (-15 -4001 ((-1037) (-567) (-567) (-567) (-225) (-225) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-567) (-690 (-567)) (-567) (-567) (-567))) (-15 -3294 ((-1037) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-567) (-567) (-567))) (-15 -2488 ((-1037) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-225) (-567) (-567) (-567))) (-15 -4390 ((-1037) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-225) (-567))) (-15 -1543 ((-1037) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -4056 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567))) (-15 -3225 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567))) (-15 -1596 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2137 ((-1037) (-1160) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-567)))) (-15 -3996 ((-1037) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-567)) (-567) (-567) (-567) (-225) (-690 (-225)) (-567))) (-15 -2036 ((-1037) (-1160) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-690 (-567)) (-567))) (-15 -1409 ((-1037) (-1160) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1329 ((-1037) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1882 ((-1037) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-567) (-567))) (-15 -3506 ((-1037) (-567) (-567) (-567) (-225) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1618 ((-1037) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-567) (-567) (-567))))) (T -753))
-((-1618 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-753)))) (-3506 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-753)))) (-1882 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-753)))) (-1329 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-753)))) (-1409 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1160)) (-5 *4 (-567)) (-5 *5 (-690 (-225))) (-5 *6 (-225)) (-5 *2 (-1037)) (-5 *1 (-753)))) (-2036 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1160)) (-5 *5 (-690 (-225))) (-5 *6 (-225)) (-5 *7 (-690 (-567))) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-753)))) (-3996 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-690 (-225))) (-5 *5 (-690 (-567))) (-5 *6 (-225)) (-5 *3 (-567)) (-5 *2 (-1037)) (-5 *1 (-753)))) (-2137 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1160)) (-5 *5 (-690 (-225))) (-5 *6 (-225)) (-5 *7 (-690 (-567))) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-753)))) (-1596 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-753)))) (-3225 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) (-5 *2 (-1037)) (-5 *1 (-753)))) (-4056 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) (-5 *2 (-1037)) (-5 *1 (-753)))) (-1543 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-753)))) (-4390 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-753)))) (-2488 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-753)))) (-3294 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-753)))) (-4001 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-690 (-225))) (-5 *6 (-690 (-567))) (-5 *3 (-567)) (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-753)))) (-1917 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) (-5 *2 (-1037)) (-5 *1 (-753)))) (-3361 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-753)))))
-(-10 -7 (-15 -3361 ((-1037) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1917 ((-1037) (-567) (-690 (-225)) (-225) (-567))) (-15 -4001 ((-1037) (-567) (-567) (-567) (-225) (-225) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-567) (-690 (-567)) (-567) (-567) (-567))) (-15 -3294 ((-1037) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-567) (-567) (-567))) (-15 -2488 ((-1037) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-225) (-567) (-567) (-567))) (-15 -4390 ((-1037) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-225) (-567))) (-15 -1543 ((-1037) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -4056 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567))) (-15 -3225 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567))) (-15 -1596 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2137 ((-1037) (-1160) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-567)))) (-15 -3996 ((-1037) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-567)) (-567) (-567) (-567) (-225) (-690 (-225)) (-567))) (-15 -2036 ((-1037) (-1160) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-690 (-567)) (-567))) (-15 -1409 ((-1037) (-1160) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1329 ((-1037) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1882 ((-1037) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-567) (-567))) (-15 -3506 ((-1037) (-567) (-567) (-567) (-225) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1618 ((-1037) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-567) (-567) (-567))))
-((-3233 (((-1037) (-567) (-567) (-567) (-225) (-690 (-225)) (-567) (-690 (-225)) (-567)) 63)) (-2112 (((-1037) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-567) (-112) (-225) (-567) (-225) (-225) (-112) (-225) (-225) (-225) (-225) (-112) (-567) (-567) (-567) (-567) (-567) (-225) (-225) (-225) (-567) (-567) (-567) (-567) (-567) (-690 (-567)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-77 OBJFUN)))) 62)) (-4318 (((-1037) (-567) (-567) (-567) (-567) (-567) (-567) (-567) (-567) (-225) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-112) (-112) (-112) (-567) (-567) (-690 (-225)) (-690 (-567)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-65 QPHESS)))) 58)) (-4029 (((-1037) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-112) (-567) (-567) (-690 (-225)) (-567)) 51)) (-2930 (((-1037) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-66 FUNCT1)))) 50)) (-2123 (((-1037) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-63 LSFUN2)))) 46)) (-3169 (((-1037) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-79 LSFUN1)))) 42)) (-2731 (((-1037) (-567) (-225) (-225) (-567) (-225) (-112) (-225) (-225) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-77 OBJFUN)))) 38)))
-(((-754) (-10 -7 (-15 -2731 ((-1037) (-567) (-225) (-225) (-567) (-225) (-112) (-225) (-225) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-77 OBJFUN))))) (-15 -3169 ((-1037) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-79 LSFUN1))))) (-15 -2123 ((-1037) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-63 LSFUN2))))) (-15 -2930 ((-1037) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-66 FUNCT1))))) (-15 -4029 ((-1037) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-112) (-567) (-567) (-690 (-225)) (-567))) (-15 -4318 ((-1037) (-567) (-567) (-567) (-567) (-567) (-567) (-567) (-567) (-225) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-112) (-112) (-112) (-567) (-567) (-690 (-225)) (-690 (-567)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-65 QPHESS))))) (-15 -2112 ((-1037) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-567) (-112) (-225) (-567) (-225) (-225) (-112) (-225) (-225) (-225) (-225) (-112) (-567) (-567) (-567) (-567) (-567) (-225) (-225) (-225) (-567) (-567) (-567) (-567) (-567) (-690 (-567)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-77 OBJFUN))))) (-15 -3233 ((-1037) (-567) (-567) (-567) (-225) (-690 (-225)) (-567) (-690 (-225)) (-567))))) (T -754))
-((-3233 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-754)))) (-2112 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-690 (-225))) (-5 *5 (-112)) (-5 *6 (-225)) (-5 *7 (-690 (-567))) (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-391)) (|:| |fp| (-77 OBJFUN)))) (-5 *3 (-567)) (-5 *2 (-1037)) (-5 *1 (-754)))) (-4318 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-690 (-225))) (-5 *6 (-112)) (-5 *7 (-690 (-567))) (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-567)) (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-754)))) (-4029 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-112)) (-5 *2 (-1037)) (-5 *1 (-754)))) (-2930 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1037)) (-5 *1 (-754)))) (-2123 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-63 LSFUN2)))) (-5 *2 (-1037)) (-5 *1 (-754)))) (-3169 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1037)) (-5 *1 (-754)))) (-2731 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-567)) (-5 *5 (-112)) (-5 *6 (-690 (-225))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-77 OBJFUN)))) (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-754)))))
-(-10 -7 (-15 -2731 ((-1037) (-567) (-225) (-225) (-567) (-225) (-112) (-225) (-225) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-77 OBJFUN))))) (-15 -3169 ((-1037) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-79 LSFUN1))))) (-15 -2123 ((-1037) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-63 LSFUN2))))) (-15 -2930 ((-1037) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-66 FUNCT1))))) (-15 -4029 ((-1037) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-112) (-567) (-567) (-690 (-225)) (-567))) (-15 -4318 ((-1037) (-567) (-567) (-567) (-567) (-567) (-567) (-567) (-567) (-225) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-112) (-112) (-112) (-567) (-567) (-690 (-225)) (-690 (-567)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-65 QPHESS))))) (-15 -2112 ((-1037) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-567) (-112) (-225) (-567) (-225) (-225) (-112) (-225) (-225) (-225) (-225) (-112) (-567) (-567) (-567) (-567) (-567) (-225) (-225) (-225) (-567) (-567) (-567) (-567) (-567) (-690 (-567)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-77 OBJFUN))))) (-15 -3233 ((-1037) (-567) (-567) (-567) (-225) (-690 (-225)) (-567) (-690 (-225)) (-567))))
-((-4238 (((-1037) (-1160) (-567) (-567) (-567) (-567) (-690 (-169 (-225))) (-690 (-169 (-225))) (-567)) 47)) (-2746 (((-1037) (-1160) (-1160) (-567) (-567) (-690 (-169 (-225))) (-567) (-690 (-169 (-225))) (-567) (-567) (-690 (-169 (-225))) (-567)) 46)) (-2735 (((-1037) (-567) (-567) (-567) (-690 (-169 (-225))) (-567)) 45)) (-3854 (((-1037) (-1160) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567)) 40)) (-2263 (((-1037) (-1160) (-1160) (-567) (-567) (-690 (-225)) (-567) (-690 (-225)) (-567) (-567) (-690 (-225)) (-567)) 39)) (-1496 (((-1037) (-567) (-567) (-567) (-690 (-225)) (-567)) 36)) (-2485 (((-1037) (-567) (-690 (-225)) (-567) (-690 (-567)) (-567)) 35)) (-1964 (((-1037) (-567) (-567) (-567) (-567) (-645 (-112)) (-690 (-225)) (-690 (-567)) (-690 (-567)) (-225) (-225) (-567)) 34)) (-3020 (((-1037) (-567) (-567) (-567) (-690 (-567)) (-690 (-567)) (-690 (-567)) (-690 (-567)) (-112) (-225) (-112) (-690 (-567)) (-690 (-225)) (-567)) 33)) (-1759 (((-1037) (-567) (-567) (-567) (-567) (-225) (-112) (-112) (-645 (-112)) (-690 (-225)) (-690 (-567)) (-690 (-567)) (-567)) 32)))
-(((-755) (-10 -7 (-15 -1759 ((-1037) (-567) (-567) (-567) (-567) (-225) (-112) (-112) (-645 (-112)) (-690 (-225)) (-690 (-567)) (-690 (-567)) (-567))) (-15 -3020 ((-1037) (-567) (-567) (-567) (-690 (-567)) (-690 (-567)) (-690 (-567)) (-690 (-567)) (-112) (-225) (-112) (-690 (-567)) (-690 (-225)) (-567))) (-15 -1964 ((-1037) (-567) (-567) (-567) (-567) (-645 (-112)) (-690 (-225)) (-690 (-567)) (-690 (-567)) (-225) (-225) (-567))) (-15 -2485 ((-1037) (-567) (-690 (-225)) (-567) (-690 (-567)) (-567))) (-15 -1496 ((-1037) (-567) (-567) (-567) (-690 (-225)) (-567))) (-15 -2263 ((-1037) (-1160) (-1160) (-567) (-567) (-690 (-225)) (-567) (-690 (-225)) (-567) (-567) (-690 (-225)) (-567))) (-15 -3854 ((-1037) (-1160) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2735 ((-1037) (-567) (-567) (-567) (-690 (-169 (-225))) (-567))) (-15 -2746 ((-1037) (-1160) (-1160) (-567) (-567) (-690 (-169 (-225))) (-567) (-690 (-169 (-225))) (-567) (-567) (-690 (-169 (-225))) (-567))) (-15 -4238 ((-1037) (-1160) (-567) (-567) (-567) (-567) (-690 (-169 (-225))) (-690 (-169 (-225))) (-567))))) (T -755))
-((-4238 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1160)) (-5 *4 (-567)) (-5 *5 (-690 (-169 (-225)))) (-5 *2 (-1037)) (-5 *1 (-755)))) (-2746 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1160)) (-5 *4 (-567)) (-5 *5 (-690 (-169 (-225)))) (-5 *2 (-1037)) (-5 *1 (-755)))) (-2735 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-169 (-225)))) (-5 *2 (-1037)) (-5 *1 (-755)))) (-3854 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1160)) (-5 *4 (-567)) (-5 *5 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-755)))) (-2263 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1160)) (-5 *4 (-567)) (-5 *5 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-755)))) (-1496 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-755)))) (-2485 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-690 (-225))) (-5 *5 (-690 (-567))) (-5 *3 (-567)) (-5 *2 (-1037)) (-5 *1 (-755)))) (-1964 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-645 (-112))) (-5 *5 (-690 (-225))) (-5 *6 (-690 (-567))) (-5 *7 (-225)) (-5 *3 (-567)) (-5 *2 (-1037)) (-5 *1 (-755)))) (-3020 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-690 (-567))) (-5 *5 (-112)) (-5 *7 (-690 (-225))) (-5 *3 (-567)) (-5 *6 (-225)) (-5 *2 (-1037)) (-5 *1 (-755)))) (-1759 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-645 (-112))) (-5 *7 (-690 (-225))) (-5 *8 (-690 (-567))) (-5 *3 (-567)) (-5 *4 (-225)) (-5 *5 (-112)) (-5 *2 (-1037)) (-5 *1 (-755)))))
-(-10 -7 (-15 -1759 ((-1037) (-567) (-567) (-567) (-567) (-225) (-112) (-112) (-645 (-112)) (-690 (-225)) (-690 (-567)) (-690 (-567)) (-567))) (-15 -3020 ((-1037) (-567) (-567) (-567) (-690 (-567)) (-690 (-567)) (-690 (-567)) (-690 (-567)) (-112) (-225) (-112) (-690 (-567)) (-690 (-225)) (-567))) (-15 -1964 ((-1037) (-567) (-567) (-567) (-567) (-645 (-112)) (-690 (-225)) (-690 (-567)) (-690 (-567)) (-225) (-225) (-567))) (-15 -2485 ((-1037) (-567) (-690 (-225)) (-567) (-690 (-567)) (-567))) (-15 -1496 ((-1037) (-567) (-567) (-567) (-690 (-225)) (-567))) (-15 -2263 ((-1037) (-1160) (-1160) (-567) (-567) (-690 (-225)) (-567) (-690 (-225)) (-567) (-567) (-690 (-225)) (-567))) (-15 -3854 ((-1037) (-1160) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2735 ((-1037) (-567) (-567) (-567) (-690 (-169 (-225))) (-567))) (-15 -2746 ((-1037) (-1160) (-1160) (-567) (-567) (-690 (-169 (-225))) (-567) (-690 (-169 (-225))) (-567) (-567) (-690 (-169 (-225))) (-567))) (-15 -4238 ((-1037) (-1160) (-567) (-567) (-567) (-567) (-690 (-169 (-225))) (-690 (-169 (-225))) (-567))))
-((-3975 (((-1037) (-567) (-567) (-567) (-567) (-567) (-112) (-567) (-112) (-567) (-690 (-169 (-225))) (-690 (-169 (-225))) (-567)) 80)) (-2206 (((-1037) (-567) (-567) (-567) (-567) (-567) (-112) (-567) (-112) (-567) (-690 (-225)) (-690 (-225)) (-567)) 69)) (-2938 (((-1037) (-567) (-567) (-225) (-567) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE))) (-391)) 56) (((-1037) (-567) (-567) (-225) (-567) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE)))) 55)) (-3376 (((-1037) (-567) (-567) (-567) (-225) (-112) (-567) (-690 (-225)) (-690 (-225)) (-567)) 37)) (-3691 (((-1037) (-567) (-567) (-225) (-225) (-567) (-567) (-690 (-225)) (-567)) 33)) (-2276 (((-1037) (-690 (-225)) (-567) (-690 (-225)) (-567) (-567) (-567) (-567) (-567)) 30)) (-2681 (((-1037) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567)) 29)) (-2592 (((-1037) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567)) 28)) (-3016 (((-1037) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567)) 27)) (-2816 (((-1037) (-567) (-567) (-567) (-567) (-690 (-225)) (-567)) 26)) (-2556 (((-1037) (-567) (-567) (-690 (-225)) (-567)) 25)) (-3801 (((-1037) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567)) 24)) (-2054 (((-1037) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567)) 23)) (-3420 (((-1037) (-690 (-225)) (-567) (-567) (-567) (-567)) 22)) (-3497 (((-1037) (-567) (-567) (-690 (-225)) (-567)) 21)))
-(((-756) (-10 -7 (-15 -3497 ((-1037) (-567) (-567) (-690 (-225)) (-567))) (-15 -3420 ((-1037) (-690 (-225)) (-567) (-567) (-567) (-567))) (-15 -2054 ((-1037) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3801 ((-1037) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2556 ((-1037) (-567) (-567) (-690 (-225)) (-567))) (-15 -2816 ((-1037) (-567) (-567) (-567) (-567) (-690 (-225)) (-567))) (-15 -3016 ((-1037) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2592 ((-1037) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2681 ((-1037) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2276 ((-1037) (-690 (-225)) (-567) (-690 (-225)) (-567) (-567) (-567) (-567) (-567))) (-15 -3691 ((-1037) (-567) (-567) (-225) (-225) (-567) (-567) (-690 (-225)) (-567))) (-15 -3376 ((-1037) (-567) (-567) (-567) (-225) (-112) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2938 ((-1037) (-567) (-567) (-225) (-567) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE))))) (-15 -2938 ((-1037) (-567) (-567) (-225) (-567) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE))) (-391))) (-15 -2206 ((-1037) (-567) (-567) (-567) (-567) (-567) (-112) (-567) (-112) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3975 ((-1037) (-567) (-567) (-567) (-567) (-567) (-112) (-567) (-112) (-567) (-690 (-169 (-225))) (-690 (-169 (-225))) (-567))))) (T -756))
-((-3975 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-567)) (-5 *4 (-112)) (-5 *5 (-690 (-169 (-225)))) (-5 *2 (-1037)) (-5 *1 (-756)))) (-2206 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-567)) (-5 *4 (-112)) (-5 *5 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-756)))) (-2938 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-391)) (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-756)))) (-2938 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-756)))) (-3376 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-567)) (-5 *5 (-112)) (-5 *6 (-690 (-225))) (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-756)))) (-3691 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-756)))) (-2276 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-756)))) (-2681 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-756)))) (-2592 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-756)))) (-3016 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-756)))) (-2816 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-756)))) (-2556 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-756)))) (-3801 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-756)))) (-2054 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-756)))) (-3420 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-756)))) (-3497 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-756)))))
-(-10 -7 (-15 -3497 ((-1037) (-567) (-567) (-690 (-225)) (-567))) (-15 -3420 ((-1037) (-690 (-225)) (-567) (-567) (-567) (-567))) (-15 -2054 ((-1037) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3801 ((-1037) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2556 ((-1037) (-567) (-567) (-690 (-225)) (-567))) (-15 -2816 ((-1037) (-567) (-567) (-567) (-567) (-690 (-225)) (-567))) (-15 -3016 ((-1037) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2592 ((-1037) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2681 ((-1037) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2276 ((-1037) (-690 (-225)) (-567) (-690 (-225)) (-567) (-567) (-567) (-567) (-567))) (-15 -3691 ((-1037) (-567) (-567) (-225) (-225) (-567) (-567) (-690 (-225)) (-567))) (-15 -3376 ((-1037) (-567) (-567) (-567) (-225) (-112) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2938 ((-1037) (-567) (-567) (-225) (-567) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE))))) (-15 -2938 ((-1037) (-567) (-567) (-225) (-567) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE))) (-391))) (-15 -2206 ((-1037) (-567) (-567) (-567) (-567) (-567) (-112) (-567) (-112) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3975 ((-1037) (-567) (-567) (-567) (-567) (-567) (-112) (-567) (-112) (-567) (-690 (-169 (-225))) (-690 (-169 (-225))) (-567))))
-((-3301 (((-1037) (-567) (-567) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-70 APROD)))) 64)) (-2834 (((-1037) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-567)) (-567) (-690 (-225)) (-567) (-567) (-567) (-567)) 60)) (-1577 (((-1037) (-567) (-690 (-225)) (-112) (-225) (-567) (-567) (-567) (-567) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-391)) (|:| |fp| (-73 MSOLVE)))) 59)) (-3622 (((-1037) (-567) (-567) (-690 (-225)) (-567) (-690 (-567)) (-567) (-690 (-567)) (-690 (-225)) (-690 (-567)) (-690 (-567)) (-690 (-225)) (-690 (-225)) (-690 (-567)) (-567)) 37)) (-2046 (((-1037) (-567) (-567) (-567) (-225) (-567) (-690 (-225)) (-690 (-225)) (-567)) 36)) (-2792 (((-1037) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567)) 33)) (-2745 (((-1037) (-567) (-690 (-225)) (-567) (-690 (-567)) (-690 (-567)) (-567) (-690 (-567)) (-690 (-225))) 32)) (-2980 (((-1037) (-690 (-225)) (-567) (-690 (-225)) (-567) (-567) (-567)) 28)) (-4190 (((-1037) (-567) (-690 (-225)) (-567) (-690 (-225)) (-567)) 27)) (-3723 (((-1037) (-567) (-690 (-225)) (-567) (-690 (-225)) (-567)) 26)) (-2909 (((-1037) (-567) (-690 (-169 (-225))) (-567) (-567) (-567) (-567) (-690 (-169 (-225))) (-567)) 22)))
-(((-757) (-10 -7 (-15 -2909 ((-1037) (-567) (-690 (-169 (-225))) (-567) (-567) (-567) (-567) (-690 (-169 (-225))) (-567))) (-15 -3723 ((-1037) (-567) (-690 (-225)) (-567) (-690 (-225)) (-567))) (-15 -4190 ((-1037) (-567) (-690 (-225)) (-567) (-690 (-225)) (-567))) (-15 -2980 ((-1037) (-690 (-225)) (-567) (-690 (-225)) (-567) (-567) (-567))) (-15 -2745 ((-1037) (-567) (-690 (-225)) (-567) (-690 (-567)) (-690 (-567)) (-567) (-690 (-567)) (-690 (-225)))) (-15 -2792 ((-1037) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2046 ((-1037) (-567) (-567) (-567) (-225) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3622 ((-1037) (-567) (-567) (-690 (-225)) (-567) (-690 (-567)) (-567) (-690 (-567)) (-690 (-225)) (-690 (-567)) (-690 (-567)) (-690 (-225)) (-690 (-225)) (-690 (-567)) (-567))) (-15 -1577 ((-1037) (-567) (-690 (-225)) (-112) (-225) (-567) (-567) (-567) (-567) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-391)) (|:| |fp| (-73 MSOLVE))))) (-15 -2834 ((-1037) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-567)) (-567) (-690 (-225)) (-567) (-567) (-567) (-567))) (-15 -3301 ((-1037) (-567) (-567) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-70 APROD))))))) (T -757))
-((-3301 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-70 APROD)))) (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-757)))) (-2834 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-690 (-225))) (-5 *5 (-690 (-567))) (-5 *3 (-567)) (-5 *2 (-1037)) (-5 *1 (-757)))) (-1577 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-112)) (-5 *6 (-225)) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1037)) (-5 *1 (-757)))) (-3622 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-690 (-225))) (-5 *5 (-690 (-567))) (-5 *3 (-567)) (-5 *2 (-1037)) (-5 *1 (-757)))) (-2046 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-757)))) (-2792 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-757)))) (-2745 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-690 (-225))) (-5 *5 (-690 (-567))) (-5 *3 (-567)) (-5 *2 (-1037)) (-5 *1 (-757)))) (-2980 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-757)))) (-4190 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-757)))) (-3723 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-757)))) (-2909 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-169 (-225)))) (-5 *2 (-1037)) (-5 *1 (-757)))))
-(-10 -7 (-15 -2909 ((-1037) (-567) (-690 (-169 (-225))) (-567) (-567) (-567) (-567) (-690 (-169 (-225))) (-567))) (-15 -3723 ((-1037) (-567) (-690 (-225)) (-567) (-690 (-225)) (-567))) (-15 -4190 ((-1037) (-567) (-690 (-225)) (-567) (-690 (-225)) (-567))) (-15 -2980 ((-1037) (-690 (-225)) (-567) (-690 (-225)) (-567) (-567) (-567))) (-15 -2745 ((-1037) (-567) (-690 (-225)) (-567) (-690 (-567)) (-690 (-567)) (-567) (-690 (-567)) (-690 (-225)))) (-15 -2792 ((-1037) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2046 ((-1037) (-567) (-567) (-567) (-225) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3622 ((-1037) (-567) (-567) (-690 (-225)) (-567) (-690 (-567)) (-567) (-690 (-567)) (-690 (-225)) (-690 (-567)) (-690 (-567)) (-690 (-225)) (-690 (-225)) (-690 (-567)) (-567))) (-15 -1577 ((-1037) (-567) (-690 (-225)) (-112) (-225) (-567) (-567) (-567) (-567) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-391)) (|:| |fp| (-73 MSOLVE))))) (-15 -2834 ((-1037) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-567)) (-567) (-690 (-225)) (-567) (-567) (-567) (-567))) (-15 -3301 ((-1037) (-567) (-567) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-70 APROD))))))
-((-1549 (((-1037) (-1160) (-567) (-567) (-690 (-225)) (-567) (-567) (-690 (-225))) 29)) (-2102 (((-1037) (-1160) (-567) (-567) (-690 (-225))) 28)) (-4171 (((-1037) (-1160) (-567) (-567) (-690 (-225)) (-567) (-690 (-567)) (-567) (-690 (-225))) 27)) (-2833 (((-1037) (-567) (-567) (-567) (-690 (-225))) 21)))
-(((-758) (-10 -7 (-15 -2833 ((-1037) (-567) (-567) (-567) (-690 (-225)))) (-15 -4171 ((-1037) (-1160) (-567) (-567) (-690 (-225)) (-567) (-690 (-567)) (-567) (-690 (-225)))) (-15 -2102 ((-1037) (-1160) (-567) (-567) (-690 (-225)))) (-15 -1549 ((-1037) (-1160) (-567) (-567) (-690 (-225)) (-567) (-567) (-690 (-225)))))) (T -758))
-((-1549 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1160)) (-5 *4 (-567)) (-5 *5 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-758)))) (-2102 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1160)) (-5 *4 (-567)) (-5 *5 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-758)))) (-4171 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1160)) (-5 *5 (-690 (-225))) (-5 *6 (-690 (-567))) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-758)))) (-2833 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-758)))))
-(-10 -7 (-15 -2833 ((-1037) (-567) (-567) (-567) (-690 (-225)))) (-15 -4171 ((-1037) (-1160) (-567) (-567) (-690 (-225)) (-567) (-690 (-567)) (-567) (-690 (-225)))) (-15 -2102 ((-1037) (-1160) (-567) (-567) (-690 (-225)))) (-15 -1549 ((-1037) (-1160) (-567) (-567) (-690 (-225)) (-567) (-567) (-690 (-225)))))
-((-4302 (((-1037) (-225) (-225) (-225) (-225) (-567)) 62)) (-2028 (((-1037) (-225) (-225) (-225) (-567)) 61)) (-4316 (((-1037) (-225) (-225) (-225) (-567)) 60)) (-2479 (((-1037) (-225) (-225) (-567)) 59)) (-2970 (((-1037) (-225) (-567)) 58)) (-4368 (((-1037) (-225) (-567)) 57)) (-2002 (((-1037) (-225) (-567)) 56)) (-4211 (((-1037) (-225) (-567)) 55)) (-1474 (((-1037) (-225) (-567)) 54)) (-1994 (((-1037) (-225) (-567)) 53)) (-3311 (((-1037) (-225) (-169 (-225)) (-567) (-1160) (-567)) 52)) (-1962 (((-1037) (-225) (-169 (-225)) (-567) (-1160) (-567)) 51)) (-2858 (((-1037) (-225) (-567)) 50)) (-1535 (((-1037) (-225) (-567)) 49)) (-3976 (((-1037) (-225) (-567)) 48)) (-2176 (((-1037) (-225) (-567)) 47)) (-1744 (((-1037) (-567) (-225) (-169 (-225)) (-567) (-1160) (-567)) 46)) (-2013 (((-1037) (-1160) (-169 (-225)) (-1160) (-567)) 45)) (-1554 (((-1037) (-1160) (-169 (-225)) (-1160) (-567)) 44)) (-1827 (((-1037) (-225) (-169 (-225)) (-567) (-1160) (-567)) 43)) (-2978 (((-1037) (-225) (-169 (-225)) (-567) (-1160) (-567)) 42)) (-4037 (((-1037) (-225) (-567)) 39)) (-1876 (((-1037) (-225) (-567)) 38)) (-3806 (((-1037) (-225) (-567)) 37)) (-1392 (((-1037) (-225) (-567)) 36)) (-2670 (((-1037) (-225) (-567)) 35)) (-1635 (((-1037) (-225) (-567)) 34)) (-2008 (((-1037) (-225) (-567)) 33)) (-2696 (((-1037) (-225) (-567)) 32)) (-4185 (((-1037) (-225) (-567)) 31)) (-3847 (((-1037) (-225) (-567)) 30)) (-1746 (((-1037) (-225) (-225) (-225) (-567)) 29)) (-2335 (((-1037) (-225) (-567)) 28)) (-1826 (((-1037) (-225) (-567)) 27)) (-1920 (((-1037) (-225) (-567)) 26)) (-1447 (((-1037) (-225) (-567)) 25)) (-2557 (((-1037) (-225) (-567)) 24)) (-1719 (((-1037) (-169 (-225)) (-567)) 21)))
-(((-759) (-10 -7 (-15 -1719 ((-1037) (-169 (-225)) (-567))) (-15 -2557 ((-1037) (-225) (-567))) (-15 -1447 ((-1037) (-225) (-567))) (-15 -1920 ((-1037) (-225) (-567))) (-15 -1826 ((-1037) (-225) (-567))) (-15 -2335 ((-1037) (-225) (-567))) (-15 -1746 ((-1037) (-225) (-225) (-225) (-567))) (-15 -3847 ((-1037) (-225) (-567))) (-15 -4185 ((-1037) (-225) (-567))) (-15 -2696 ((-1037) (-225) (-567))) (-15 -2008 ((-1037) (-225) (-567))) (-15 -1635 ((-1037) (-225) (-567))) (-15 -2670 ((-1037) (-225) (-567))) (-15 -1392 ((-1037) (-225) (-567))) (-15 -3806 ((-1037) (-225) (-567))) (-15 -1876 ((-1037) (-225) (-567))) (-15 -4037 ((-1037) (-225) (-567))) (-15 -2978 ((-1037) (-225) (-169 (-225)) (-567) (-1160) (-567))) (-15 -1827 ((-1037) (-225) (-169 (-225)) (-567) (-1160) (-567))) (-15 -1554 ((-1037) (-1160) (-169 (-225)) (-1160) (-567))) (-15 -2013 ((-1037) (-1160) (-169 (-225)) (-1160) (-567))) (-15 -1744 ((-1037) (-567) (-225) (-169 (-225)) (-567) (-1160) (-567))) (-15 -2176 ((-1037) (-225) (-567))) (-15 -3976 ((-1037) (-225) (-567))) (-15 -1535 ((-1037) (-225) (-567))) (-15 -2858 ((-1037) (-225) (-567))) (-15 -1962 ((-1037) (-225) (-169 (-225)) (-567) (-1160) (-567))) (-15 -3311 ((-1037) (-225) (-169 (-225)) (-567) (-1160) (-567))) (-15 -1994 ((-1037) (-225) (-567))) (-15 -1474 ((-1037) (-225) (-567))) (-15 -4211 ((-1037) (-225) (-567))) (-15 -2002 ((-1037) (-225) (-567))) (-15 -4368 ((-1037) (-225) (-567))) (-15 -2970 ((-1037) (-225) (-567))) (-15 -2479 ((-1037) (-225) (-225) (-567))) (-15 -4316 ((-1037) (-225) (-225) (-225) (-567))) (-15 -2028 ((-1037) (-225) (-225) (-225) (-567))) (-15 -4302 ((-1037) (-225) (-225) (-225) (-225) (-567))))) (T -759))
-((-4302 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-2028 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-4316 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-2479 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-2970 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-4368 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-2002 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-4211 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-1474 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-1994 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-3311 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-567)) (-5 *6 (-1160)) (-5 *3 (-225)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-1962 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-567)) (-5 *6 (-1160)) (-5 *3 (-225)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-2858 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-1535 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-3976 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-2176 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-1744 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-567)) (-5 *5 (-169 (-225))) (-5 *6 (-1160)) (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-2013 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1160)) (-5 *4 (-169 (-225))) (-5 *5 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-1554 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1160)) (-5 *4 (-169 (-225))) (-5 *5 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-1827 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-567)) (-5 *6 (-1160)) (-5 *3 (-225)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-2978 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-567)) (-5 *6 (-1160)) (-5 *3 (-225)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-4037 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-1876 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-3806 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-1392 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-2670 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-1635 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-2008 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-2696 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-4185 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-3847 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-1746 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-2335 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-1826 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-1920 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-1447 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-2557 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-1719 (*1 *2 *3 *4) (-12 (-5 *3 (-169 (-225))) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))))
-(-10 -7 (-15 -1719 ((-1037) (-169 (-225)) (-567))) (-15 -2557 ((-1037) (-225) (-567))) (-15 -1447 ((-1037) (-225) (-567))) (-15 -1920 ((-1037) (-225) (-567))) (-15 -1826 ((-1037) (-225) (-567))) (-15 -2335 ((-1037) (-225) (-567))) (-15 -1746 ((-1037) (-225) (-225) (-225) (-567))) (-15 -3847 ((-1037) (-225) (-567))) (-15 -4185 ((-1037) (-225) (-567))) (-15 -2696 ((-1037) (-225) (-567))) (-15 -2008 ((-1037) (-225) (-567))) (-15 -1635 ((-1037) (-225) (-567))) (-15 -2670 ((-1037) (-225) (-567))) (-15 -1392 ((-1037) (-225) (-567))) (-15 -3806 ((-1037) (-225) (-567))) (-15 -1876 ((-1037) (-225) (-567))) (-15 -4037 ((-1037) (-225) (-567))) (-15 -2978 ((-1037) (-225) (-169 (-225)) (-567) (-1160) (-567))) (-15 -1827 ((-1037) (-225) (-169 (-225)) (-567) (-1160) (-567))) (-15 -1554 ((-1037) (-1160) (-169 (-225)) (-1160) (-567))) (-15 -2013 ((-1037) (-1160) (-169 (-225)) (-1160) (-567))) (-15 -1744 ((-1037) (-567) (-225) (-169 (-225)) (-567) (-1160) (-567))) (-15 -2176 ((-1037) (-225) (-567))) (-15 -3976 ((-1037) (-225) (-567))) (-15 -1535 ((-1037) (-225) (-567))) (-15 -2858 ((-1037) (-225) (-567))) (-15 -1962 ((-1037) (-225) (-169 (-225)) (-567) (-1160) (-567))) (-15 -3311 ((-1037) (-225) (-169 (-225)) (-567) (-1160) (-567))) (-15 -1994 ((-1037) (-225) (-567))) (-15 -1474 ((-1037) (-225) (-567))) (-15 -4211 ((-1037) (-225) (-567))) (-15 -2002 ((-1037) (-225) (-567))) (-15 -4368 ((-1037) (-225) (-567))) (-15 -2970 ((-1037) (-225) (-567))) (-15 -2479 ((-1037) (-225) (-225) (-567))) (-15 -4316 ((-1037) (-225) (-225) (-225) (-567))) (-15 -2028 ((-1037) (-225) (-225) (-225) (-567))) (-15 -4302 ((-1037) (-225) (-225) (-225) (-225) (-567))))
-((-2143 (((-1273)) 21)) (-2567 (((-1160)) 32)) (-1927 (((-1160)) 31)) (-3234 (((-1106) (-1178) (-690 (-567))) 46) (((-1106) (-1178) (-690 (-225))) 42)) (-3508 (((-112)) 19)) (-3299 (((-1160) (-1160)) 35)))
-(((-760) (-10 -7 (-15 -1927 ((-1160))) (-15 -2567 ((-1160))) (-15 -3299 ((-1160) (-1160))) (-15 -3234 ((-1106) (-1178) (-690 (-225)))) (-15 -3234 ((-1106) (-1178) (-690 (-567)))) (-15 -3508 ((-112))) (-15 -2143 ((-1273))))) (T -760))
-((-2143 (*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-760)))) (-3508 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-760)))) (-3234 (*1 *2 *3 *4) (-12 (-5 *3 (-1178)) (-5 *4 (-690 (-567))) (-5 *2 (-1106)) (-5 *1 (-760)))) (-3234 (*1 *2 *3 *4) (-12 (-5 *3 (-1178)) (-5 *4 (-690 (-225))) (-5 *2 (-1106)) (-5 *1 (-760)))) (-3299 (*1 *2 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-760)))) (-2567 (*1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-760)))) (-1927 (*1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-760)))))
-(-10 -7 (-15 -1927 ((-1160))) (-15 -2567 ((-1160))) (-15 -3299 ((-1160) (-1160))) (-15 -3234 ((-1106) (-1178) (-690 (-225)))) (-15 -3234 ((-1106) (-1178) (-690 (-567)))) (-15 -3508 ((-112))) (-15 -2143 ((-1273))))
-((-1485 (($ $ $) 10)) (-2153 (($ $ $ $) 9)) (-2214 (($ $ $) 12)))
-(((-761 |#1|) (-10 -8 (-15 -2214 (|#1| |#1| |#1|)) (-15 -1485 (|#1| |#1| |#1|)) (-15 -2153 (|#1| |#1| |#1| |#1|))) (-762)) (T -761))
-NIL
-(-10 -8 (-15 -2214 (|#1| |#1| |#1|)) (-15 -1485 (|#1| |#1| |#1|)) (-15 -2153 (|#1| |#1| |#1| |#1|)))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-2586 (($ $ (-923)) 31)) (-3450 (($ $ (-923)) 32)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-1485 (($ $ $) 28)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-2153 (($ $ $ $) 29)) (-2214 (($ $ $) 27)) (-1716 (($) 19 T CONST)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 33)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 30)))
+((-1327 (((-1037) (-690 (-225)) (-567) (-112) (-567)) 25)) (-2278 (((-1037) (-690 (-225)) (-567) (-112) (-567)) 24)))
+(((-746) (-10 -7 (-15 -2278 ((-1037) (-690 (-225)) (-567) (-112) (-567))) (-15 -1327 ((-1037) (-690 (-225)) (-567) (-112) (-567))))) (T -746))
+((-1327 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *5 (-112)) (-5 *2 (-1037)) (-5 *1 (-746)))) (-2278 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *5 (-112)) (-5 *2 (-1037)) (-5 *1 (-746)))))
+(-10 -7 (-15 -2278 ((-1037) (-690 (-225)) (-567) (-112) (-567))) (-15 -1327 ((-1037) (-690 (-225)) (-567) (-112) (-567))))
+((-2644 (((-1037) (-567) (-567) (-567) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-74 FCN)))) 43)) (-1879 (((-1037) (-567) (-567) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-81 FCN)))) 39)) (-3573 (((-1037) (-225) (-225) (-225) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3888)))) 32)))
+(((-747) (-10 -7 (-15 -3573 ((-1037) (-225) (-225) (-225) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3888))))) (-15 -1879 ((-1037) (-567) (-567) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-81 FCN))))) (-15 -2644 ((-1037) (-567) (-567) (-567) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-74 FCN))))))) (T -747))
+((-2644 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1037)) (-5 *1 (-747)))) (-1879 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1037)) (-5 *1 (-747)))) (-3573 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3888)))) (-5 *2 (-1037)) (-5 *1 (-747)))))
+(-10 -7 (-15 -3573 ((-1037) (-225) (-225) (-225) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3888))))) (-15 -1879 ((-1037) (-567) (-567) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-81 FCN))))) (-15 -2644 ((-1037) (-567) (-567) (-567) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-74 FCN))))))
+((-3558 (((-1037) (-567) (-567) (-690 (-225)) (-567)) 34)) (-3962 (((-1037) (-567) (-567) (-690 (-225)) (-567)) 33)) (-1433 (((-1037) (-567) (-690 (-225)) (-567)) 32)) (-1558 (((-1037) (-567) (-690 (-225)) (-567)) 31)) (-3345 (((-1037) (-567) (-567) (-1161) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567)) 30)) (-4382 (((-1037) (-567) (-567) (-1161) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567)) 29)) (-2456 (((-1037) (-567) (-567) (-1161) (-690 (-225)) (-690 (-225)) (-567)) 28)) (-2718 (((-1037) (-567) (-567) (-1161) (-690 (-225)) (-690 (-225)) (-567)) 27)) (-4356 (((-1037) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567)) 24)) (-4135 (((-1037) (-567) (-690 (-225)) (-690 (-225)) (-567)) 23)) (-2179 (((-1037) (-567) (-690 (-225)) (-567)) 22)) (-1959 (((-1037) (-567) (-690 (-225)) (-567)) 21)))
+(((-748) (-10 -7 (-15 -1959 ((-1037) (-567) (-690 (-225)) (-567))) (-15 -2179 ((-1037) (-567) (-690 (-225)) (-567))) (-15 -4135 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -4356 ((-1037) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2718 ((-1037) (-567) (-567) (-1161) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2456 ((-1037) (-567) (-567) (-1161) (-690 (-225)) (-690 (-225)) (-567))) (-15 -4382 ((-1037) (-567) (-567) (-1161) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3345 ((-1037) (-567) (-567) (-1161) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1558 ((-1037) (-567) (-690 (-225)) (-567))) (-15 -1433 ((-1037) (-567) (-690 (-225)) (-567))) (-15 -3962 ((-1037) (-567) (-567) (-690 (-225)) (-567))) (-15 -3558 ((-1037) (-567) (-567) (-690 (-225)) (-567))))) (T -748))
+((-3558 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-748)))) (-3962 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-748)))) (-1433 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-748)))) (-1558 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-748)))) (-3345 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-567)) (-5 *4 (-1161)) (-5 *5 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-748)))) (-4382 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-567)) (-5 *4 (-1161)) (-5 *5 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-748)))) (-2456 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-567)) (-5 *4 (-1161)) (-5 *5 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-748)))) (-2718 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-567)) (-5 *4 (-1161)) (-5 *5 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-748)))) (-4356 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-748)))) (-4135 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-748)))) (-2179 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-748)))) (-1959 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-748)))))
+(-10 -7 (-15 -1959 ((-1037) (-567) (-690 (-225)) (-567))) (-15 -2179 ((-1037) (-567) (-690 (-225)) (-567))) (-15 -4135 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -4356 ((-1037) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2718 ((-1037) (-567) (-567) (-1161) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2456 ((-1037) (-567) (-567) (-1161) (-690 (-225)) (-690 (-225)) (-567))) (-15 -4382 ((-1037) (-567) (-567) (-1161) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3345 ((-1037) (-567) (-567) (-1161) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1558 ((-1037) (-567) (-690 (-225)) (-567))) (-15 -1433 ((-1037) (-567) (-690 (-225)) (-567))) (-15 -3962 ((-1037) (-567) (-567) (-690 (-225)) (-567))) (-15 -3558 ((-1037) (-567) (-567) (-690 (-225)) (-567))))
+((-4274 (((-1037) (-567) (-690 (-225)) (-690 (-225)) (-567) (-225) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-78 FUNCTN)))) 52)) (-2478 (((-1037) (-690 (-225)) (-690 (-225)) (-567) (-567)) 51)) (-1397 (((-1037) (-567) (-690 (-225)) (-690 (-225)) (-567) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-78 FUNCTN)))) 50)) (-2614 (((-1037) (-225) (-225) (-567) (-567) (-567) (-567)) 46)) (-2536 (((-1037) (-225) (-225) (-567) (-225) (-567) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G)))) 45)) (-2021 (((-1037) (-225) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G)))) 44)) (-4153 (((-1037) (-225) (-225) (-225) (-225) (-567) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G)))) 43)) (-3424 (((-1037) (-225) (-225) (-225) (-567) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G)))) 42)) (-2321 (((-1037) (-225) (-567) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3888)))) 38)) (-3732 (((-1037) (-225) (-225) (-567) (-690 (-225)) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3888)))) 37)) (-3147 (((-1037) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3888)))) 33)) (-1784 (((-1037) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3888)))) 32)))
+(((-749) (-10 -7 (-15 -1784 ((-1037) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3888))))) (-15 -3147 ((-1037) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3888))))) (-15 -3732 ((-1037) (-225) (-225) (-567) (-690 (-225)) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3888))))) (-15 -2321 ((-1037) (-225) (-567) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3888))))) (-15 -3424 ((-1037) (-225) (-225) (-225) (-567) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G))))) (-15 -4153 ((-1037) (-225) (-225) (-225) (-225) (-567) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G))))) (-15 -2021 ((-1037) (-225) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G))))) (-15 -2536 ((-1037) (-225) (-225) (-567) (-225) (-567) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G))))) (-15 -2614 ((-1037) (-225) (-225) (-567) (-567) (-567) (-567))) (-15 -1397 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-567) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-78 FUNCTN))))) (-15 -2478 ((-1037) (-690 (-225)) (-690 (-225)) (-567) (-567))) (-15 -4274 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-567) (-225) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-78 FUNCTN))))))) (T -749))
+((-4274 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1037)) (-5 *1 (-749)))) (-2478 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-749)))) (-1397 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1037)) (-5 *1 (-749)))) (-2614 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-749)))) (-2536 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G)))) (-5 *2 (-1037)) (-5 *1 (-749)))) (-2021 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G)))) (-5 *2 (-1037)) (-5 *1 (-749)))) (-4153 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G)))) (-5 *2 (-1037)) (-5 *1 (-749)))) (-3424 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G)))) (-5 *2 (-1037)) (-5 *1 (-749)))) (-2321 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3888)))) (-5 *2 (-1037)) (-5 *1 (-749)))) (-3732 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-567)) (-5 *5 (-690 (-225))) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3888)))) (-5 *3 (-225)) (-5 *2 (-1037)) (-5 *1 (-749)))) (-3147 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3888)))) (-5 *2 (-1037)) (-5 *1 (-749)))) (-1784 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3888)))) (-5 *2 (-1037)) (-5 *1 (-749)))))
+(-10 -7 (-15 -1784 ((-1037) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3888))))) (-15 -3147 ((-1037) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3888))))) (-15 -3732 ((-1037) (-225) (-225) (-567) (-690 (-225)) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3888))))) (-15 -2321 ((-1037) (-225) (-567) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3888))))) (-15 -3424 ((-1037) (-225) (-225) (-225) (-567) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G))))) (-15 -4153 ((-1037) (-225) (-225) (-225) (-225) (-567) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G))))) (-15 -2021 ((-1037) (-225) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G))))) (-15 -2536 ((-1037) (-225) (-225) (-567) (-225) (-567) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G))))) (-15 -2614 ((-1037) (-225) (-225) (-567) (-567) (-567) (-567))) (-15 -1397 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-567) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-78 FUNCTN))))) (-15 -2478 ((-1037) (-690 (-225)) (-690 (-225)) (-567) (-567))) (-15 -4274 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-567) (-225) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-78 FUNCTN))))))
+((-3224 (((-1037) (-567) (-567) (-567) (-567) (-225) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-391)) (|:| |fp| (-76 G JACOBG JACGEP)))) 76)) (-2564 (((-1037) (-690 (-225)) (-567) (-567) (-225) (-567) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-87 BDYVAL))) (-391) (-391)) 69) (((-1037) (-690 (-225)) (-567) (-567) (-225) (-567) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-87 BDYVAL)))) 68)) (-2725 (((-1037) (-225) (-225) (-567) (-225) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-391)) (|:| |fp| (-85 FCNG)))) 57)) (-1380 (((-1037) (-690 (-225)) (-690 (-225)) (-567) (-225) (-225) (-225) (-567) (-567) (-567) (-690 (-225)) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN)))) 50)) (-2293 (((-1037) (-225) (-567) (-567) (-1161) (-567) (-225) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT)))) 49)) (-4304 (((-1037) (-225) (-567) (-567) (-225) (-1161) (-225) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT)))) 45)) (-2009 (((-1037) (-225) (-567) (-567) (-225) (-225) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN)))) 42)) (-3352 (((-1037) (-225) (-567) (-567) (-567) (-225) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT)))) 38)))
+(((-750) (-10 -7 (-15 -3352 ((-1037) (-225) (-567) (-567) (-567) (-225) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT))))) (-15 -2009 ((-1037) (-225) (-567) (-567) (-225) (-225) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))))) (-15 -4304 ((-1037) (-225) (-567) (-567) (-225) (-1161) (-225) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT))))) (-15 -2293 ((-1037) (-225) (-567) (-567) (-1161) (-567) (-225) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT))))) (-15 -1380 ((-1037) (-690 (-225)) (-690 (-225)) (-567) (-225) (-225) (-225) (-567) (-567) (-567) (-690 (-225)) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))))) (-15 -2725 ((-1037) (-225) (-225) (-567) (-225) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-391)) (|:| |fp| (-85 FCNG))))) (-15 -2564 ((-1037) (-690 (-225)) (-567) (-567) (-225) (-567) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-87 BDYVAL))))) (-15 -2564 ((-1037) (-690 (-225)) (-567) (-567) (-225) (-567) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-87 BDYVAL))) (-391) (-391))) (-15 -3224 ((-1037) (-567) (-567) (-567) (-567) (-225) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-391)) (|:| |fp| (-76 G JACOBG JACGEP))))))) (T -750))
+((-3224 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-76 G JACOBG JACGEP)))) (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-750)))) (-2564 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-87 BDYVAL)))) (-5 *8 (-391)) (-5 *2 (-1037)) (-5 *1 (-750)))) (-2564 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-87 BDYVAL)))) (-5 *2 (-1037)) (-5 *1 (-750)))) (-2725 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-567)) (-5 *5 (-690 (-225))) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-84 FCNF)))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-225)) (-5 *2 (-1037)) (-5 *1 (-750)))) (-1380 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1037)) (-5 *1 (-750)))) (-2293 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-567)) (-5 *5 (-1161)) (-5 *6 (-690 (-225))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-391)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-225)) (-5 *2 (-1037)) (-5 *1 (-750)))) (-4304 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-567)) (-5 *5 (-1161)) (-5 *6 (-690 (-225))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-225)) (-5 *2 (-1037)) (-5 *1 (-750)))) (-2009 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-567)) (-5 *5 (-690 (-225))) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN)))) (-5 *3 (-225)) (-5 *2 (-1037)) (-5 *1 (-750)))) (-3352 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-567)) (-5 *5 (-690 (-225))) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN)))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-225)) (-5 *2 (-1037)) (-5 *1 (-750)))))
+(-10 -7 (-15 -3352 ((-1037) (-225) (-567) (-567) (-567) (-225) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT))))) (-15 -2009 ((-1037) (-225) (-567) (-567) (-225) (-225) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))))) (-15 -4304 ((-1037) (-225) (-567) (-567) (-225) (-1161) (-225) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT))))) (-15 -2293 ((-1037) (-225) (-567) (-567) (-1161) (-567) (-225) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT))))) (-15 -1380 ((-1037) (-690 (-225)) (-690 (-225)) (-567) (-225) (-225) (-225) (-567) (-567) (-567) (-690 (-225)) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))))) (-15 -2725 ((-1037) (-225) (-225) (-567) (-225) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-391)) (|:| |fp| (-85 FCNG))))) (-15 -2564 ((-1037) (-690 (-225)) (-567) (-567) (-225) (-567) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-87 BDYVAL))))) (-15 -2564 ((-1037) (-690 (-225)) (-567) (-567) (-225) (-567) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-87 BDYVAL))) (-391) (-391))) (-15 -3224 ((-1037) (-567) (-567) (-567) (-567) (-225) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-391)) (|:| |fp| (-76 G JACOBG JACGEP))))))
+((-2891 (((-1037) (-225) (-225) (-567) (-567) (-690 (-225)) (-690 (-225)) (-225) (-225) (-567) (-567) (-690 (-225)) (-690 (-225)) (-225) (-225) (-567) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567) (-567) (-676 (-225)) (-567)) 45)) (-1571 (((-1037) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-1161) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-391)) (|:| |fp| (-83 BNDY)))) 41)) (-2184 (((-1037) (-567) (-567) (-567) (-567) (-225) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567)) 23)))
+(((-751) (-10 -7 (-15 -2184 ((-1037) (-567) (-567) (-567) (-567) (-225) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1571 ((-1037) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-1161) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-391)) (|:| |fp| (-83 BNDY))))) (-15 -2891 ((-1037) (-225) (-225) (-567) (-567) (-690 (-225)) (-690 (-225)) (-225) (-225) (-567) (-567) (-690 (-225)) (-690 (-225)) (-225) (-225) (-567) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567) (-567) (-676 (-225)) (-567))))) (T -751))
+((-2891 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-567)) (-5 *5 (-690 (-225))) (-5 *6 (-676 (-225))) (-5 *3 (-225)) (-5 *2 (-1037)) (-5 *1 (-751)))) (-1571 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *5 (-1161)) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-82 PDEF)))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1037)) (-5 *1 (-751)))) (-2184 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-751)))))
+(-10 -7 (-15 -2184 ((-1037) (-567) (-567) (-567) (-567) (-225) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1571 ((-1037) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-1161) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-391)) (|:| |fp| (-83 BNDY))))) (-15 -2891 ((-1037) (-225) (-225) (-567) (-567) (-690 (-225)) (-690 (-225)) (-225) (-225) (-567) (-567) (-690 (-225)) (-690 (-225)) (-225) (-225) (-567) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567) (-567) (-676 (-225)) (-567))))
+((-2104 (((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-225) (-690 (-225)) (-225) (-225) (-567)) 35)) (-2890 (((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-567) (-225) (-225) (-567)) 34)) (-4266 (((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-567)) (-690 (-225)) (-225) (-225) (-567)) 33)) (-2537 (((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567)) 29)) (-2106 (((-1037) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567)) 28)) (-2972 (((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-225) (-225) (-567)) 27)) (-1796 (((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-690 (-225)) (-567)) 24)) (-3504 (((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-690 (-225)) (-567)) 23)) (-2114 (((-1037) (-567) (-690 (-225)) (-690 (-225)) (-567)) 22)) (-1984 (((-1037) (-567) (-690 (-225)) (-690 (-225)) (-567) (-567) (-567)) 21)))
+(((-752) (-10 -7 (-15 -1984 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-567) (-567) (-567))) (-15 -2114 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3504 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-690 (-225)) (-567))) (-15 -1796 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-690 (-225)) (-567))) (-15 -2972 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-225) (-225) (-567))) (-15 -2106 ((-1037) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2537 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -4266 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-567)) (-690 (-225)) (-225) (-225) (-567))) (-15 -2890 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-567) (-225) (-225) (-567))) (-15 -2104 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-225) (-690 (-225)) (-225) (-225) (-567))))) (T -752))
+((-2104 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) (-5 *2 (-1037)) (-5 *1 (-752)))) (-2890 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) (-5 *2 (-1037)) (-5 *1 (-752)))) (-4266 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-690 (-225))) (-5 *5 (-690 (-567))) (-5 *6 (-225)) (-5 *3 (-567)) (-5 *2 (-1037)) (-5 *1 (-752)))) (-2537 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-752)))) (-2106 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-752)))) (-2972 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) (-5 *2 (-1037)) (-5 *1 (-752)))) (-1796 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-752)))) (-3504 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-752)))) (-2114 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-752)))) (-1984 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-752)))))
+(-10 -7 (-15 -1984 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-567) (-567) (-567))) (-15 -2114 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3504 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-690 (-225)) (-567))) (-15 -1796 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-690 (-225)) (-567))) (-15 -2972 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-225) (-225) (-567))) (-15 -2106 ((-1037) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2537 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -4266 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-567)) (-690 (-225)) (-225) (-225) (-567))) (-15 -2890 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-567) (-225) (-225) (-567))) (-15 -2104 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-225) (-690 (-225)) (-225) (-225) (-567))))
+((-3630 (((-1037) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-567) (-567) (-567)) 45)) (-2255 (((-1037) (-567) (-567) (-567) (-225) (-690 (-225)) (-690 (-225)) (-567)) 44)) (-1752 (((-1037) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-567) (-567)) 43)) (-2557 (((-1037) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567)) 42)) (-3860 (((-1037) (-1161) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-567)) 41)) (-4084 (((-1037) (-1161) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-690 (-567)) (-567)) 40)) (-3509 (((-1037) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-567)) (-567) (-567) (-567) (-225) (-690 (-225)) (-567)) 39)) (-4299 (((-1037) (-1161) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-567))) 38)) (-2669 (((-1037) (-567) (-690 (-225)) (-690 (-225)) (-567)) 35)) (-3903 (((-1037) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567)) 34)) (-4389 (((-1037) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567)) 33)) (-2131 (((-1037) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567)) 32)) (-2745 (((-1037) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-225) (-567)) 31)) (-1456 (((-1037) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-225) (-567) (-567) (-567)) 30)) (-3161 (((-1037) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-567) (-567) (-567)) 29)) (-3076 (((-1037) (-567) (-567) (-567) (-225) (-225) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-567) (-690 (-567)) (-567) (-567) (-567)) 28)) (-3353 (((-1037) (-567) (-690 (-225)) (-225) (-567)) 24)) (-1534 (((-1037) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567)) 21)))
+(((-753) (-10 -7 (-15 -1534 ((-1037) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3353 ((-1037) (-567) (-690 (-225)) (-225) (-567))) (-15 -3076 ((-1037) (-567) (-567) (-567) (-225) (-225) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-567) (-690 (-567)) (-567) (-567) (-567))) (-15 -3161 ((-1037) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-567) (-567) (-567))) (-15 -1456 ((-1037) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-225) (-567) (-567) (-567))) (-15 -2745 ((-1037) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-225) (-567))) (-15 -2131 ((-1037) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -4389 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567))) (-15 -3903 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567))) (-15 -2669 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -4299 ((-1037) (-1161) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-567)))) (-15 -3509 ((-1037) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-567)) (-567) (-567) (-567) (-225) (-690 (-225)) (-567))) (-15 -4084 ((-1037) (-1161) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-690 (-567)) (-567))) (-15 -3860 ((-1037) (-1161) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2557 ((-1037) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1752 ((-1037) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-567) (-567))) (-15 -2255 ((-1037) (-567) (-567) (-567) (-225) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3630 ((-1037) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-567) (-567) (-567))))) (T -753))
+((-3630 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-753)))) (-2255 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-753)))) (-1752 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-753)))) (-2557 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-753)))) (-3860 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1161)) (-5 *4 (-567)) (-5 *5 (-690 (-225))) (-5 *6 (-225)) (-5 *2 (-1037)) (-5 *1 (-753)))) (-4084 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1161)) (-5 *5 (-690 (-225))) (-5 *6 (-225)) (-5 *7 (-690 (-567))) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-753)))) (-3509 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-690 (-225))) (-5 *5 (-690 (-567))) (-5 *6 (-225)) (-5 *3 (-567)) (-5 *2 (-1037)) (-5 *1 (-753)))) (-4299 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1161)) (-5 *5 (-690 (-225))) (-5 *6 (-225)) (-5 *7 (-690 (-567))) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-753)))) (-2669 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-753)))) (-3903 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) (-5 *2 (-1037)) (-5 *1 (-753)))) (-4389 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) (-5 *2 (-1037)) (-5 *1 (-753)))) (-2131 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-753)))) (-2745 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-753)))) (-1456 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-753)))) (-3161 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-753)))) (-3076 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-690 (-225))) (-5 *6 (-690 (-567))) (-5 *3 (-567)) (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-753)))) (-3353 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) (-5 *2 (-1037)) (-5 *1 (-753)))) (-1534 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-753)))))
+(-10 -7 (-15 -1534 ((-1037) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3353 ((-1037) (-567) (-690 (-225)) (-225) (-567))) (-15 -3076 ((-1037) (-567) (-567) (-567) (-225) (-225) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-567) (-690 (-567)) (-567) (-567) (-567))) (-15 -3161 ((-1037) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-567) (-567) (-567))) (-15 -1456 ((-1037) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-225) (-567) (-567) (-567))) (-15 -2745 ((-1037) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-225) (-567))) (-15 -2131 ((-1037) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -4389 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567))) (-15 -3903 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567))) (-15 -2669 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -4299 ((-1037) (-1161) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-567)))) (-15 -3509 ((-1037) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-567)) (-567) (-567) (-567) (-225) (-690 (-225)) (-567))) (-15 -4084 ((-1037) (-1161) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-690 (-567)) (-567))) (-15 -3860 ((-1037) (-1161) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2557 ((-1037) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1752 ((-1037) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-567) (-567))) (-15 -2255 ((-1037) (-567) (-567) (-567) (-225) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3630 ((-1037) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-567) (-567) (-567))))
+((-3373 (((-1037) (-567) (-567) (-567) (-225) (-690 (-225)) (-567) (-690 (-225)) (-567)) 63)) (-2592 (((-1037) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-567) (-112) (-225) (-567) (-225) (-225) (-112) (-225) (-225) (-225) (-225) (-112) (-567) (-567) (-567) (-567) (-567) (-225) (-225) (-225) (-567) (-567) (-567) (-567) (-567) (-690 (-567)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-77 OBJFUN)))) 62)) (-1451 (((-1037) (-567) (-567) (-567) (-567) (-567) (-567) (-567) (-567) (-225) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-112) (-112) (-112) (-567) (-567) (-690 (-225)) (-690 (-567)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-65 QPHESS)))) 58)) (-2079 (((-1037) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-112) (-567) (-567) (-690 (-225)) (-567)) 51)) (-4100 (((-1037) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-66 FUNCT1)))) 50)) (-2225 (((-1037) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-63 LSFUN2)))) 46)) (-3891 (((-1037) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-79 LSFUN1)))) 42)) (-3928 (((-1037) (-567) (-225) (-225) (-567) (-225) (-112) (-225) (-225) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-77 OBJFUN)))) 38)))
+(((-754) (-10 -7 (-15 -3928 ((-1037) (-567) (-225) (-225) (-567) (-225) (-112) (-225) (-225) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-77 OBJFUN))))) (-15 -3891 ((-1037) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-79 LSFUN1))))) (-15 -2225 ((-1037) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-63 LSFUN2))))) (-15 -4100 ((-1037) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-66 FUNCT1))))) (-15 -2079 ((-1037) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-112) (-567) (-567) (-690 (-225)) (-567))) (-15 -1451 ((-1037) (-567) (-567) (-567) (-567) (-567) (-567) (-567) (-567) (-225) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-112) (-112) (-112) (-567) (-567) (-690 (-225)) (-690 (-567)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-65 QPHESS))))) (-15 -2592 ((-1037) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-567) (-112) (-225) (-567) (-225) (-225) (-112) (-225) (-225) (-225) (-225) (-112) (-567) (-567) (-567) (-567) (-567) (-225) (-225) (-225) (-567) (-567) (-567) (-567) (-567) (-690 (-567)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-77 OBJFUN))))) (-15 -3373 ((-1037) (-567) (-567) (-567) (-225) (-690 (-225)) (-567) (-690 (-225)) (-567))))) (T -754))
+((-3373 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-754)))) (-2592 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-690 (-225))) (-5 *5 (-112)) (-5 *6 (-225)) (-5 *7 (-690 (-567))) (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-391)) (|:| |fp| (-77 OBJFUN)))) (-5 *3 (-567)) (-5 *2 (-1037)) (-5 *1 (-754)))) (-1451 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-690 (-225))) (-5 *6 (-112)) (-5 *7 (-690 (-567))) (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-567)) (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-754)))) (-2079 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-112)) (-5 *2 (-1037)) (-5 *1 (-754)))) (-4100 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1037)) (-5 *1 (-754)))) (-2225 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-63 LSFUN2)))) (-5 *2 (-1037)) (-5 *1 (-754)))) (-3891 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1037)) (-5 *1 (-754)))) (-3928 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-567)) (-5 *5 (-112)) (-5 *6 (-690 (-225))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-77 OBJFUN)))) (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-754)))))
+(-10 -7 (-15 -3928 ((-1037) (-567) (-225) (-225) (-567) (-225) (-112) (-225) (-225) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-77 OBJFUN))))) (-15 -3891 ((-1037) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-79 LSFUN1))))) (-15 -2225 ((-1037) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-63 LSFUN2))))) (-15 -4100 ((-1037) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-66 FUNCT1))))) (-15 -2079 ((-1037) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-112) (-567) (-567) (-690 (-225)) (-567))) (-15 -1451 ((-1037) (-567) (-567) (-567) (-567) (-567) (-567) (-567) (-567) (-225) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-112) (-112) (-112) (-567) (-567) (-690 (-225)) (-690 (-567)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-65 QPHESS))))) (-15 -2592 ((-1037) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-567) (-112) (-225) (-567) (-225) (-225) (-112) (-225) (-225) (-225) (-225) (-112) (-567) (-567) (-567) (-567) (-567) (-225) (-225) (-225) (-567) (-567) (-567) (-567) (-567) (-690 (-567)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-77 OBJFUN))))) (-15 -3373 ((-1037) (-567) (-567) (-567) (-225) (-690 (-225)) (-567) (-690 (-225)) (-567))))
+((-1887 (((-1037) (-1161) (-567) (-567) (-567) (-567) (-690 (-169 (-225))) (-690 (-169 (-225))) (-567)) 47)) (-3680 (((-1037) (-1161) (-1161) (-567) (-567) (-690 (-169 (-225))) (-567) (-690 (-169 (-225))) (-567) (-567) (-690 (-169 (-225))) (-567)) 46)) (-4257 (((-1037) (-567) (-567) (-567) (-690 (-169 (-225))) (-567)) 45)) (-3739 (((-1037) (-1161) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567)) 40)) (-2916 (((-1037) (-1161) (-1161) (-567) (-567) (-690 (-225)) (-567) (-690 (-225)) (-567) (-567) (-690 (-225)) (-567)) 39)) (-4202 (((-1037) (-567) (-567) (-567) (-690 (-225)) (-567)) 36)) (-2398 (((-1037) (-567) (-690 (-225)) (-567) (-690 (-567)) (-567)) 35)) (-2630 (((-1037) (-567) (-567) (-567) (-567) (-645 (-112)) (-690 (-225)) (-690 (-567)) (-690 (-567)) (-225) (-225) (-567)) 34)) (-1477 (((-1037) (-567) (-567) (-567) (-690 (-567)) (-690 (-567)) (-690 (-567)) (-690 (-567)) (-112) (-225) (-112) (-690 (-567)) (-690 (-225)) (-567)) 33)) (-2339 (((-1037) (-567) (-567) (-567) (-567) (-225) (-112) (-112) (-645 (-112)) (-690 (-225)) (-690 (-567)) (-690 (-567)) (-567)) 32)))
+(((-755) (-10 -7 (-15 -2339 ((-1037) (-567) (-567) (-567) (-567) (-225) (-112) (-112) (-645 (-112)) (-690 (-225)) (-690 (-567)) (-690 (-567)) (-567))) (-15 -1477 ((-1037) (-567) (-567) (-567) (-690 (-567)) (-690 (-567)) (-690 (-567)) (-690 (-567)) (-112) (-225) (-112) (-690 (-567)) (-690 (-225)) (-567))) (-15 -2630 ((-1037) (-567) (-567) (-567) (-567) (-645 (-112)) (-690 (-225)) (-690 (-567)) (-690 (-567)) (-225) (-225) (-567))) (-15 -2398 ((-1037) (-567) (-690 (-225)) (-567) (-690 (-567)) (-567))) (-15 -4202 ((-1037) (-567) (-567) (-567) (-690 (-225)) (-567))) (-15 -2916 ((-1037) (-1161) (-1161) (-567) (-567) (-690 (-225)) (-567) (-690 (-225)) (-567) (-567) (-690 (-225)) (-567))) (-15 -3739 ((-1037) (-1161) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -4257 ((-1037) (-567) (-567) (-567) (-690 (-169 (-225))) (-567))) (-15 -3680 ((-1037) (-1161) (-1161) (-567) (-567) (-690 (-169 (-225))) (-567) (-690 (-169 (-225))) (-567) (-567) (-690 (-169 (-225))) (-567))) (-15 -1887 ((-1037) (-1161) (-567) (-567) (-567) (-567) (-690 (-169 (-225))) (-690 (-169 (-225))) (-567))))) (T -755))
+((-1887 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1161)) (-5 *4 (-567)) (-5 *5 (-690 (-169 (-225)))) (-5 *2 (-1037)) (-5 *1 (-755)))) (-3680 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1161)) (-5 *4 (-567)) (-5 *5 (-690 (-169 (-225)))) (-5 *2 (-1037)) (-5 *1 (-755)))) (-4257 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-169 (-225)))) (-5 *2 (-1037)) (-5 *1 (-755)))) (-3739 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1161)) (-5 *4 (-567)) (-5 *5 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-755)))) (-2916 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1161)) (-5 *4 (-567)) (-5 *5 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-755)))) (-4202 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-755)))) (-2398 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-690 (-225))) (-5 *5 (-690 (-567))) (-5 *3 (-567)) (-5 *2 (-1037)) (-5 *1 (-755)))) (-2630 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-645 (-112))) (-5 *5 (-690 (-225))) (-5 *6 (-690 (-567))) (-5 *7 (-225)) (-5 *3 (-567)) (-5 *2 (-1037)) (-5 *1 (-755)))) (-1477 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-690 (-567))) (-5 *5 (-112)) (-5 *7 (-690 (-225))) (-5 *3 (-567)) (-5 *6 (-225)) (-5 *2 (-1037)) (-5 *1 (-755)))) (-2339 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-645 (-112))) (-5 *7 (-690 (-225))) (-5 *8 (-690 (-567))) (-5 *3 (-567)) (-5 *4 (-225)) (-5 *5 (-112)) (-5 *2 (-1037)) (-5 *1 (-755)))))
+(-10 -7 (-15 -2339 ((-1037) (-567) (-567) (-567) (-567) (-225) (-112) (-112) (-645 (-112)) (-690 (-225)) (-690 (-567)) (-690 (-567)) (-567))) (-15 -1477 ((-1037) (-567) (-567) (-567) (-690 (-567)) (-690 (-567)) (-690 (-567)) (-690 (-567)) (-112) (-225) (-112) (-690 (-567)) (-690 (-225)) (-567))) (-15 -2630 ((-1037) (-567) (-567) (-567) (-567) (-645 (-112)) (-690 (-225)) (-690 (-567)) (-690 (-567)) (-225) (-225) (-567))) (-15 -2398 ((-1037) (-567) (-690 (-225)) (-567) (-690 (-567)) (-567))) (-15 -4202 ((-1037) (-567) (-567) (-567) (-690 (-225)) (-567))) (-15 -2916 ((-1037) (-1161) (-1161) (-567) (-567) (-690 (-225)) (-567) (-690 (-225)) (-567) (-567) (-690 (-225)) (-567))) (-15 -3739 ((-1037) (-1161) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -4257 ((-1037) (-567) (-567) (-567) (-690 (-169 (-225))) (-567))) (-15 -3680 ((-1037) (-1161) (-1161) (-567) (-567) (-690 (-169 (-225))) (-567) (-690 (-169 (-225))) (-567) (-567) (-690 (-169 (-225))) (-567))) (-15 -1887 ((-1037) (-1161) (-567) (-567) (-567) (-567) (-690 (-169 (-225))) (-690 (-169 (-225))) (-567))))
+((-2178 (((-1037) (-567) (-567) (-567) (-567) (-567) (-112) (-567) (-112) (-567) (-690 (-169 (-225))) (-690 (-169 (-225))) (-567)) 80)) (-3654 (((-1037) (-567) (-567) (-567) (-567) (-567) (-112) (-567) (-112) (-567) (-690 (-225)) (-690 (-225)) (-567)) 69)) (-3535 (((-1037) (-567) (-567) (-225) (-567) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE))) (-391)) 56) (((-1037) (-567) (-567) (-225) (-567) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE)))) 55)) (-2754 (((-1037) (-567) (-567) (-567) (-225) (-112) (-567) (-690 (-225)) (-690 (-225)) (-567)) 37)) (-2156 (((-1037) (-567) (-567) (-225) (-225) (-567) (-567) (-690 (-225)) (-567)) 33)) (-1703 (((-1037) (-690 (-225)) (-567) (-690 (-225)) (-567) (-567) (-567) (-567) (-567)) 30)) (-4347 (((-1037) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567)) 29)) (-2132 (((-1037) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567)) 28)) (-2220 (((-1037) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567)) 27)) (-4059 (((-1037) (-567) (-567) (-567) (-567) (-690 (-225)) (-567)) 26)) (-3619 (((-1037) (-567) (-567) (-690 (-225)) (-567)) 25)) (-3996 (((-1037) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567)) 24)) (-2932 (((-1037) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567)) 23)) (-3954 (((-1037) (-690 (-225)) (-567) (-567) (-567) (-567)) 22)) (-3752 (((-1037) (-567) (-567) (-690 (-225)) (-567)) 21)))
+(((-756) (-10 -7 (-15 -3752 ((-1037) (-567) (-567) (-690 (-225)) (-567))) (-15 -3954 ((-1037) (-690 (-225)) (-567) (-567) (-567) (-567))) (-15 -2932 ((-1037) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3996 ((-1037) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3619 ((-1037) (-567) (-567) (-690 (-225)) (-567))) (-15 -4059 ((-1037) (-567) (-567) (-567) (-567) (-690 (-225)) (-567))) (-15 -2220 ((-1037) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2132 ((-1037) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -4347 ((-1037) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1703 ((-1037) (-690 (-225)) (-567) (-690 (-225)) (-567) (-567) (-567) (-567) (-567))) (-15 -2156 ((-1037) (-567) (-567) (-225) (-225) (-567) (-567) (-690 (-225)) (-567))) (-15 -2754 ((-1037) (-567) (-567) (-567) (-225) (-112) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3535 ((-1037) (-567) (-567) (-225) (-567) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE))))) (-15 -3535 ((-1037) (-567) (-567) (-225) (-567) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE))) (-391))) (-15 -3654 ((-1037) (-567) (-567) (-567) (-567) (-567) (-112) (-567) (-112) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2178 ((-1037) (-567) (-567) (-567) (-567) (-567) (-112) (-567) (-112) (-567) (-690 (-169 (-225))) (-690 (-169 (-225))) (-567))))) (T -756))
+((-2178 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-567)) (-5 *4 (-112)) (-5 *5 (-690 (-169 (-225)))) (-5 *2 (-1037)) (-5 *1 (-756)))) (-3654 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-567)) (-5 *4 (-112)) (-5 *5 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-756)))) (-3535 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-391)) (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-756)))) (-3535 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-756)))) (-2754 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-567)) (-5 *5 (-112)) (-5 *6 (-690 (-225))) (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-756)))) (-2156 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-756)))) (-1703 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-756)))) (-4347 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-756)))) (-2132 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-756)))) (-2220 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-756)))) (-4059 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-756)))) (-3619 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-756)))) (-3996 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-756)))) (-2932 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-756)))) (-3954 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-756)))) (-3752 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-756)))))
+(-10 -7 (-15 -3752 ((-1037) (-567) (-567) (-690 (-225)) (-567))) (-15 -3954 ((-1037) (-690 (-225)) (-567) (-567) (-567) (-567))) (-15 -2932 ((-1037) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3996 ((-1037) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3619 ((-1037) (-567) (-567) (-690 (-225)) (-567))) (-15 -4059 ((-1037) (-567) (-567) (-567) (-567) (-690 (-225)) (-567))) (-15 -2220 ((-1037) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2132 ((-1037) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -4347 ((-1037) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1703 ((-1037) (-690 (-225)) (-567) (-690 (-225)) (-567) (-567) (-567) (-567) (-567))) (-15 -2156 ((-1037) (-567) (-567) (-225) (-225) (-567) (-567) (-690 (-225)) (-567))) (-15 -2754 ((-1037) (-567) (-567) (-567) (-225) (-112) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3535 ((-1037) (-567) (-567) (-225) (-567) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE))))) (-15 -3535 ((-1037) (-567) (-567) (-225) (-567) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE))) (-391))) (-15 -3654 ((-1037) (-567) (-567) (-567) (-567) (-567) (-112) (-567) (-112) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2178 ((-1037) (-567) (-567) (-567) (-567) (-567) (-112) (-567) (-112) (-567) (-690 (-169 (-225))) (-690 (-169 (-225))) (-567))))
+((-1395 (((-1037) (-567) (-567) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-70 APROD)))) 64)) (-2370 (((-1037) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-567)) (-567) (-690 (-225)) (-567) (-567) (-567) (-567)) 60)) (-1461 (((-1037) (-567) (-690 (-225)) (-112) (-225) (-567) (-567) (-567) (-567) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-391)) (|:| |fp| (-73 MSOLVE)))) 59)) (-1923 (((-1037) (-567) (-567) (-690 (-225)) (-567) (-690 (-567)) (-567) (-690 (-567)) (-690 (-225)) (-690 (-567)) (-690 (-567)) (-690 (-225)) (-690 (-225)) (-690 (-567)) (-567)) 37)) (-3323 (((-1037) (-567) (-567) (-567) (-225) (-567) (-690 (-225)) (-690 (-225)) (-567)) 36)) (-3677 (((-1037) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567)) 33)) (-3607 (((-1037) (-567) (-690 (-225)) (-567) (-690 (-567)) (-690 (-567)) (-567) (-690 (-567)) (-690 (-225))) 32)) (-2424 (((-1037) (-690 (-225)) (-567) (-690 (-225)) (-567) (-567) (-567)) 28)) (-2838 (((-1037) (-567) (-690 (-225)) (-567) (-690 (-225)) (-567)) 27)) (-2422 (((-1037) (-567) (-690 (-225)) (-567) (-690 (-225)) (-567)) 26)) (-3720 (((-1037) (-567) (-690 (-169 (-225))) (-567) (-567) (-567) (-567) (-690 (-169 (-225))) (-567)) 22)))
+(((-757) (-10 -7 (-15 -3720 ((-1037) (-567) (-690 (-169 (-225))) (-567) (-567) (-567) (-567) (-690 (-169 (-225))) (-567))) (-15 -2422 ((-1037) (-567) (-690 (-225)) (-567) (-690 (-225)) (-567))) (-15 -2838 ((-1037) (-567) (-690 (-225)) (-567) (-690 (-225)) (-567))) (-15 -2424 ((-1037) (-690 (-225)) (-567) (-690 (-225)) (-567) (-567) (-567))) (-15 -3607 ((-1037) (-567) (-690 (-225)) (-567) (-690 (-567)) (-690 (-567)) (-567) (-690 (-567)) (-690 (-225)))) (-15 -3677 ((-1037) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3323 ((-1037) (-567) (-567) (-567) (-225) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1923 ((-1037) (-567) (-567) (-690 (-225)) (-567) (-690 (-567)) (-567) (-690 (-567)) (-690 (-225)) (-690 (-567)) (-690 (-567)) (-690 (-225)) (-690 (-225)) (-690 (-567)) (-567))) (-15 -1461 ((-1037) (-567) (-690 (-225)) (-112) (-225) (-567) (-567) (-567) (-567) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-391)) (|:| |fp| (-73 MSOLVE))))) (-15 -2370 ((-1037) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-567)) (-567) (-690 (-225)) (-567) (-567) (-567) (-567))) (-15 -1395 ((-1037) (-567) (-567) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-70 APROD))))))) (T -757))
+((-1395 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-70 APROD)))) (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-757)))) (-2370 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-690 (-225))) (-5 *5 (-690 (-567))) (-5 *3 (-567)) (-5 *2 (-1037)) (-5 *1 (-757)))) (-1461 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-112)) (-5 *6 (-225)) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1037)) (-5 *1 (-757)))) (-1923 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-690 (-225))) (-5 *5 (-690 (-567))) (-5 *3 (-567)) (-5 *2 (-1037)) (-5 *1 (-757)))) (-3323 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-757)))) (-3677 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-757)))) (-3607 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-690 (-225))) (-5 *5 (-690 (-567))) (-5 *3 (-567)) (-5 *2 (-1037)) (-5 *1 (-757)))) (-2424 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-757)))) (-2838 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-757)))) (-2422 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-757)))) (-3720 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-169 (-225)))) (-5 *2 (-1037)) (-5 *1 (-757)))))
+(-10 -7 (-15 -3720 ((-1037) (-567) (-690 (-169 (-225))) (-567) (-567) (-567) (-567) (-690 (-169 (-225))) (-567))) (-15 -2422 ((-1037) (-567) (-690 (-225)) (-567) (-690 (-225)) (-567))) (-15 -2838 ((-1037) (-567) (-690 (-225)) (-567) (-690 (-225)) (-567))) (-15 -2424 ((-1037) (-690 (-225)) (-567) (-690 (-225)) (-567) (-567) (-567))) (-15 -3607 ((-1037) (-567) (-690 (-225)) (-567) (-690 (-567)) (-690 (-567)) (-567) (-690 (-567)) (-690 (-225)))) (-15 -3677 ((-1037) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3323 ((-1037) (-567) (-567) (-567) (-225) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1923 ((-1037) (-567) (-567) (-690 (-225)) (-567) (-690 (-567)) (-567) (-690 (-567)) (-690 (-225)) (-690 (-567)) (-690 (-567)) (-690 (-225)) (-690 (-225)) (-690 (-567)) (-567))) (-15 -1461 ((-1037) (-567) (-690 (-225)) (-112) (-225) (-567) (-567) (-567) (-567) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-391)) (|:| |fp| (-73 MSOLVE))))) (-15 -2370 ((-1037) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-567)) (-567) (-690 (-225)) (-567) (-567) (-567) (-567))) (-15 -1395 ((-1037) (-567) (-567) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-70 APROD))))))
+((-1410 (((-1037) (-1161) (-567) (-567) (-690 (-225)) (-567) (-567) (-690 (-225))) 29)) (-3587 (((-1037) (-1161) (-567) (-567) (-690 (-225))) 28)) (-3276 (((-1037) (-1161) (-567) (-567) (-690 (-225)) (-567) (-690 (-567)) (-567) (-690 (-225))) 27)) (-2297 (((-1037) (-567) (-567) (-567) (-690 (-225))) 21)))
+(((-758) (-10 -7 (-15 -2297 ((-1037) (-567) (-567) (-567) (-690 (-225)))) (-15 -3276 ((-1037) (-1161) (-567) (-567) (-690 (-225)) (-567) (-690 (-567)) (-567) (-690 (-225)))) (-15 -3587 ((-1037) (-1161) (-567) (-567) (-690 (-225)))) (-15 -1410 ((-1037) (-1161) (-567) (-567) (-690 (-225)) (-567) (-567) (-690 (-225)))))) (T -758))
+((-1410 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1161)) (-5 *4 (-567)) (-5 *5 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-758)))) (-3587 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1161)) (-5 *4 (-567)) (-5 *5 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-758)))) (-3276 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1161)) (-5 *5 (-690 (-225))) (-5 *6 (-690 (-567))) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-758)))) (-2297 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-758)))))
+(-10 -7 (-15 -2297 ((-1037) (-567) (-567) (-567) (-690 (-225)))) (-15 -3276 ((-1037) (-1161) (-567) (-567) (-690 (-225)) (-567) (-690 (-567)) (-567) (-690 (-225)))) (-15 -3587 ((-1037) (-1161) (-567) (-567) (-690 (-225)))) (-15 -1410 ((-1037) (-1161) (-567) (-567) (-690 (-225)) (-567) (-567) (-690 (-225)))))
+((-4292 (((-1037) (-225) (-225) (-225) (-225) (-567)) 62)) (-1513 (((-1037) (-225) (-225) (-225) (-567)) 61)) (-2441 (((-1037) (-225) (-225) (-225) (-567)) 60)) (-3030 (((-1037) (-225) (-225) (-567)) 59)) (-2879 (((-1037) (-225) (-567)) 58)) (-2509 (((-1037) (-225) (-567)) 57)) (-4161 (((-1037) (-225) (-567)) 56)) (-4263 (((-1037) (-225) (-567)) 55)) (-1383 (((-1037) (-225) (-567)) 54)) (-1601 (((-1037) (-225) (-567)) 53)) (-3540 (((-1037) (-225) (-169 (-225)) (-567) (-1161) (-567)) 52)) (-2435 (((-1037) (-225) (-169 (-225)) (-567) (-1161) (-567)) 51)) (-2712 (((-1037) (-225) (-567)) 50)) (-2658 (((-1037) (-225) (-567)) 49)) (-2271 (((-1037) (-225) (-567)) 48)) (-2737 (((-1037) (-225) (-567)) 47)) (-3270 (((-1037) (-567) (-225) (-169 (-225)) (-567) (-1161) (-567)) 46)) (-2703 (((-1037) (-1161) (-169 (-225)) (-1161) (-567)) 45)) (-2015 (((-1037) (-1161) (-169 (-225)) (-1161) (-567)) 44)) (-3871 (((-1037) (-225) (-169 (-225)) (-567) (-1161) (-567)) 43)) (-2203 (((-1037) (-225) (-169 (-225)) (-567) (-1161) (-567)) 42)) (-1739 (((-1037) (-225) (-567)) 39)) (-2319 (((-1037) (-225) (-567)) 38)) (-4357 (((-1037) (-225) (-567)) 37)) (-3311 (((-1037) (-225) (-567)) 36)) (-1726 (((-1037) (-225) (-567)) 35)) (-2025 (((-1037) (-225) (-567)) 34)) (-3408 (((-1037) (-225) (-567)) 33)) (-2953 (((-1037) (-225) (-567)) 32)) (-3085 (((-1037) (-225) (-567)) 31)) (-1315 (((-1037) (-225) (-567)) 30)) (-3442 (((-1037) (-225) (-225) (-225) (-567)) 29)) (-2992 (((-1037) (-225) (-567)) 28)) (-3782 (((-1037) (-225) (-567)) 27)) (-3518 (((-1037) (-225) (-567)) 26)) (-2819 (((-1037) (-225) (-567)) 25)) (-3714 (((-1037) (-225) (-567)) 24)) (-2169 (((-1037) (-169 (-225)) (-567)) 21)))
+(((-759) (-10 -7 (-15 -2169 ((-1037) (-169 (-225)) (-567))) (-15 -3714 ((-1037) (-225) (-567))) (-15 -2819 ((-1037) (-225) (-567))) (-15 -3518 ((-1037) (-225) (-567))) (-15 -3782 ((-1037) (-225) (-567))) (-15 -2992 ((-1037) (-225) (-567))) (-15 -3442 ((-1037) (-225) (-225) (-225) (-567))) (-15 -1315 ((-1037) (-225) (-567))) (-15 -3085 ((-1037) (-225) (-567))) (-15 -2953 ((-1037) (-225) (-567))) (-15 -3408 ((-1037) (-225) (-567))) (-15 -2025 ((-1037) (-225) (-567))) (-15 -1726 ((-1037) (-225) (-567))) (-15 -3311 ((-1037) (-225) (-567))) (-15 -4357 ((-1037) (-225) (-567))) (-15 -2319 ((-1037) (-225) (-567))) (-15 -1739 ((-1037) (-225) (-567))) (-15 -2203 ((-1037) (-225) (-169 (-225)) (-567) (-1161) (-567))) (-15 -3871 ((-1037) (-225) (-169 (-225)) (-567) (-1161) (-567))) (-15 -2015 ((-1037) (-1161) (-169 (-225)) (-1161) (-567))) (-15 -2703 ((-1037) (-1161) (-169 (-225)) (-1161) (-567))) (-15 -3270 ((-1037) (-567) (-225) (-169 (-225)) (-567) (-1161) (-567))) (-15 -2737 ((-1037) (-225) (-567))) (-15 -2271 ((-1037) (-225) (-567))) (-15 -2658 ((-1037) (-225) (-567))) (-15 -2712 ((-1037) (-225) (-567))) (-15 -2435 ((-1037) (-225) (-169 (-225)) (-567) (-1161) (-567))) (-15 -3540 ((-1037) (-225) (-169 (-225)) (-567) (-1161) (-567))) (-15 -1601 ((-1037) (-225) (-567))) (-15 -1383 ((-1037) (-225) (-567))) (-15 -4263 ((-1037) (-225) (-567))) (-15 -4161 ((-1037) (-225) (-567))) (-15 -2509 ((-1037) (-225) (-567))) (-15 -2879 ((-1037) (-225) (-567))) (-15 -3030 ((-1037) (-225) (-225) (-567))) (-15 -2441 ((-1037) (-225) (-225) (-225) (-567))) (-15 -1513 ((-1037) (-225) (-225) (-225) (-567))) (-15 -4292 ((-1037) (-225) (-225) (-225) (-225) (-567))))) (T -759))
+((-4292 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-1513 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-2441 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-3030 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-2509 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-4161 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-4263 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-1383 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-1601 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-3540 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-567)) (-5 *6 (-1161)) (-5 *3 (-225)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-2435 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-567)) (-5 *6 (-1161)) (-5 *3 (-225)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-2712 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-2658 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-2271 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-2737 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-3270 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-567)) (-5 *5 (-169 (-225))) (-5 *6 (-1161)) (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-2703 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1161)) (-5 *4 (-169 (-225))) (-5 *5 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-2015 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1161)) (-5 *4 (-169 (-225))) (-5 *5 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-3871 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-567)) (-5 *6 (-1161)) (-5 *3 (-225)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-2203 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-567)) (-5 *6 (-1161)) (-5 *3 (-225)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-1739 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-4357 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-3311 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-1726 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-2025 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-3408 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-2953 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-3085 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-1315 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-3442 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-2992 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-3782 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-3518 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-2819 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-3714 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-2169 (*1 *2 *3 *4) (-12 (-5 *3 (-169 (-225))) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))))
+(-10 -7 (-15 -2169 ((-1037) (-169 (-225)) (-567))) (-15 -3714 ((-1037) (-225) (-567))) (-15 -2819 ((-1037) (-225) (-567))) (-15 -3518 ((-1037) (-225) (-567))) (-15 -3782 ((-1037) (-225) (-567))) (-15 -2992 ((-1037) (-225) (-567))) (-15 -3442 ((-1037) (-225) (-225) (-225) (-567))) (-15 -1315 ((-1037) (-225) (-567))) (-15 -3085 ((-1037) (-225) (-567))) (-15 -2953 ((-1037) (-225) (-567))) (-15 -3408 ((-1037) (-225) (-567))) (-15 -2025 ((-1037) (-225) (-567))) (-15 -1726 ((-1037) (-225) (-567))) (-15 -3311 ((-1037) (-225) (-567))) (-15 -4357 ((-1037) (-225) (-567))) (-15 -2319 ((-1037) (-225) (-567))) (-15 -1739 ((-1037) (-225) (-567))) (-15 -2203 ((-1037) (-225) (-169 (-225)) (-567) (-1161) (-567))) (-15 -3871 ((-1037) (-225) (-169 (-225)) (-567) (-1161) (-567))) (-15 -2015 ((-1037) (-1161) (-169 (-225)) (-1161) (-567))) (-15 -2703 ((-1037) (-1161) (-169 (-225)) (-1161) (-567))) (-15 -3270 ((-1037) (-567) (-225) (-169 (-225)) (-567) (-1161) (-567))) (-15 -2737 ((-1037) (-225) (-567))) (-15 -2271 ((-1037) (-225) (-567))) (-15 -2658 ((-1037) (-225) (-567))) (-15 -2712 ((-1037) (-225) (-567))) (-15 -2435 ((-1037) (-225) (-169 (-225)) (-567) (-1161) (-567))) (-15 -3540 ((-1037) (-225) (-169 (-225)) (-567) (-1161) (-567))) (-15 -1601 ((-1037) (-225) (-567))) (-15 -1383 ((-1037) (-225) (-567))) (-15 -4263 ((-1037) (-225) (-567))) (-15 -4161 ((-1037) (-225) (-567))) (-15 -2509 ((-1037) (-225) (-567))) (-15 -2879 ((-1037) (-225) (-567))) (-15 -3030 ((-1037) (-225) (-225) (-567))) (-15 -2441 ((-1037) (-225) (-225) (-225) (-567))) (-15 -1513 ((-1037) (-225) (-225) (-225) (-567))) (-15 -4292 ((-1037) (-225) (-225) (-225) (-225) (-567))))
+((-3646 (((-1274)) 21)) (-2165 (((-1161)) 32)) (-2988 (((-1161)) 31)) (-3443 (((-1106) (-1179) (-690 (-567))) 46) (((-1106) (-1179) (-690 (-225))) 42)) (-3512 (((-112)) 19)) (-2432 (((-1161) (-1161)) 35)))
+(((-760) (-10 -7 (-15 -2988 ((-1161))) (-15 -2165 ((-1161))) (-15 -2432 ((-1161) (-1161))) (-15 -3443 ((-1106) (-1179) (-690 (-225)))) (-15 -3443 ((-1106) (-1179) (-690 (-567)))) (-15 -3512 ((-112))) (-15 -3646 ((-1274))))) (T -760))
+((-3646 (*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-760)))) (-3512 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-760)))) (-3443 (*1 *2 *3 *4) (-12 (-5 *3 (-1179)) (-5 *4 (-690 (-567))) (-5 *2 (-1106)) (-5 *1 (-760)))) (-3443 (*1 *2 *3 *4) (-12 (-5 *3 (-1179)) (-5 *4 (-690 (-225))) (-5 *2 (-1106)) (-5 *1 (-760)))) (-2432 (*1 *2 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-760)))) (-2165 (*1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-760)))) (-2988 (*1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-760)))))
+(-10 -7 (-15 -2988 ((-1161))) (-15 -2165 ((-1161))) (-15 -2432 ((-1161) (-1161))) (-15 -3443 ((-1106) (-1179) (-690 (-225)))) (-15 -3443 ((-1106) (-1179) (-690 (-567)))) (-15 -3512 ((-112))) (-15 -3646 ((-1274))))
+((-3997 (($ $ $) 10)) (-2047 (($ $ $ $) 9)) (-2188 (($ $ $) 12)))
+(((-761 |#1|) (-10 -8 (-15 -2188 (|#1| |#1| |#1|)) (-15 -3997 (|#1| |#1| |#1|)) (-15 -2047 (|#1| |#1| |#1| |#1|))) (-762)) (T -761))
+NIL
+(-10 -8 (-15 -2188 (|#1| |#1| |#1|)) (-15 -3997 (|#1| |#1| |#1|)) (-15 -2047 (|#1| |#1| |#1| |#1|)))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-2376 (((-3 $ "failed") $ $) 20)) (-3647 (($) 18 T CONST)) (-3757 (($ $ (-923)) 31)) (-3884 (($ $ (-923)) 32)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-3997 (($ $ $) 28)) (-4129 (((-863) $) 12)) (-3357 (((-112) $ $) 9)) (-2047 (($ $ $ $) 29)) (-2188 (($ $ $) 27)) (-1733 (($) 19 T CONST)) (-2946 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-923)) 33)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 30)))
(((-762) (-140)) (T -762))
-((-2153 (*1 *1 *1 *1 *1) (-4 *1 (-762))) (-1485 (*1 *1 *1 *1) (-4 *1 (-762))) (-2214 (*1 *1 *1 *1) (-4 *1 (-762))))
-(-13 (-21) (-721) (-10 -8 (-15 -2153 ($ $ $ $)) (-15 -1485 ($ $ $)) (-15 -2214 ($ $ $))))
+((-2047 (*1 *1 *1 *1 *1) (-4 *1 (-762))) (-3997 (*1 *1 *1 *1) (-4 *1 (-762))) (-2188 (*1 *1 *1 *1) (-4 *1 (-762))))
+(-13 (-21) (-721) (-10 -8 (-15 -2047 ($ $ $ $)) (-15 -3997 ($ $ $)) (-15 -2188 ($ $ $))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-721) . T) ((-1102) . T))
-((-4132 (((-863) $) NIL) (($ (-567)) 10)))
-(((-763 |#1|) (-10 -8 (-15 -4132 (|#1| (-567))) (-15 -4132 ((-863) |#1|))) (-764)) (T -763))
+((-4129 (((-863) $) NIL) (($ (-567)) 10)))
+(((-763 |#1|) (-10 -8 (-15 -4129 (|#1| (-567))) (-15 -4129 ((-863) |#1|))) (-764)) (T -763))
NIL
-(-10 -8 (-15 -4132 (|#1| (-567))) (-15 -4132 ((-863) |#1|)))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-2209 (((-3 $ "failed") $) 43)) (-2586 (($ $ (-923)) 31) (($ $ (-772)) 38)) (-2109 (((-3 $ "failed") $) 41)) (-1433 (((-112) $) 37)) (-3080 (((-3 $ "failed") $) 42)) (-3450 (($ $ (-923)) 32) (($ $ (-772)) 39)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-1485 (($ $ $) 28)) (-4132 (((-863) $) 12) (($ (-567)) 34)) (-4221 (((-772)) 35 T CONST)) (-1745 (((-112) $ $) 9)) (-2153 (($ $ $ $) 29)) (-2214 (($ $ $) 27)) (-1716 (($) 19 T CONST)) (-1728 (($) 36 T CONST)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 33) (($ $ (-772)) 40)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 30)))
+(-10 -8 (-15 -4129 (|#1| (-567))) (-15 -4129 ((-863) |#1|)))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-2376 (((-3 $ "failed") $ $) 20)) (-3647 (($) 18 T CONST)) (-2810 (((-3 $ "failed") $) 43)) (-3757 (($ $ (-923)) 31) (($ $ (-772)) 38)) (-3588 (((-3 $ "failed") $) 41)) (-4346 (((-112) $) 37)) (-2213 (((-3 $ "failed") $) 42)) (-3884 (($ $ (-923)) 32) (($ $ (-772)) 39)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-3997 (($ $ $) 28)) (-4129 (((-863) $) 12) (($ (-567)) 34)) (-2746 (((-772)) 35 T CONST)) (-3357 (((-112) $ $) 9)) (-2047 (($ $ $ $) 29)) (-2188 (($ $ $) 27)) (-1733 (($) 19 T CONST)) (-1744 (($) 36 T CONST)) (-2946 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-923)) 33) (($ $ (-772)) 40)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 30)))
(((-764) (-140)) (T -764))
-((-4221 (*1 *2) (-12 (-4 *1 (-764)) (-5 *2 (-772)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-764)))))
-(-13 (-762) (-723) (-10 -8 (-15 -4221 ((-772)) -3286) (-15 -4132 ($ (-567)))))
+((-2746 (*1 *2) (-12 (-4 *1 (-764)) (-5 *2 (-772)))) (-4129 (*1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-764)))))
+(-13 (-762) (-723) (-10 -8 (-15 -2746 ((-772)) -3304) (-15 -4129 ($ (-567)))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-721) . T) ((-723) . T) ((-762) . T) ((-1102) . T))
-((-1393 (((-645 (-2 (|:| |outval| (-169 |#1|)) (|:| |outmult| (-567)) (|:| |outvect| (-645 (-690 (-169 |#1|)))))) (-690 (-169 (-410 (-567)))) |#1|) 33)) (-2330 (((-645 (-169 |#1|)) (-690 (-169 (-410 (-567)))) |#1|) 23)) (-2155 (((-954 (-169 (-410 (-567)))) (-690 (-169 (-410 (-567)))) (-1178)) 20) (((-954 (-169 (-410 (-567)))) (-690 (-169 (-410 (-567))))) 19)))
-(((-765 |#1|) (-10 -7 (-15 -2155 ((-954 (-169 (-410 (-567)))) (-690 (-169 (-410 (-567)))))) (-15 -2155 ((-954 (-169 (-410 (-567)))) (-690 (-169 (-410 (-567)))) (-1178))) (-15 -2330 ((-645 (-169 |#1|)) (-690 (-169 (-410 (-567)))) |#1|)) (-15 -1393 ((-645 (-2 (|:| |outval| (-169 |#1|)) (|:| |outmult| (-567)) (|:| |outvect| (-645 (-690 (-169 |#1|)))))) (-690 (-169 (-410 (-567)))) |#1|))) (-13 (-365) (-849))) (T -765))
-((-1393 (*1 *2 *3 *4) (-12 (-5 *3 (-690 (-169 (-410 (-567))))) (-5 *2 (-645 (-2 (|:| |outval| (-169 *4)) (|:| |outmult| (-567)) (|:| |outvect| (-645 (-690 (-169 *4))))))) (-5 *1 (-765 *4)) (-4 *4 (-13 (-365) (-849))))) (-2330 (*1 *2 *3 *4) (-12 (-5 *3 (-690 (-169 (-410 (-567))))) (-5 *2 (-645 (-169 *4))) (-5 *1 (-765 *4)) (-4 *4 (-13 (-365) (-849))))) (-2155 (*1 *2 *3 *4) (-12 (-5 *3 (-690 (-169 (-410 (-567))))) (-5 *4 (-1178)) (-5 *2 (-954 (-169 (-410 (-567))))) (-5 *1 (-765 *5)) (-4 *5 (-13 (-365) (-849))))) (-2155 (*1 *2 *3) (-12 (-5 *3 (-690 (-169 (-410 (-567))))) (-5 *2 (-954 (-169 (-410 (-567))))) (-5 *1 (-765 *4)) (-4 *4 (-13 (-365) (-849))))))
-(-10 -7 (-15 -2155 ((-954 (-169 (-410 (-567)))) (-690 (-169 (-410 (-567)))))) (-15 -2155 ((-954 (-169 (-410 (-567)))) (-690 (-169 (-410 (-567)))) (-1178))) (-15 -2330 ((-645 (-169 |#1|)) (-690 (-169 (-410 (-567)))) |#1|)) (-15 -1393 ((-645 (-2 (|:| |outval| (-169 |#1|)) (|:| |outmult| (-567)) (|:| |outvect| (-645 (-690 (-169 |#1|)))))) (-690 (-169 (-410 (-567)))) |#1|)))
-((-1579 (((-174 (-567)) |#1|) 27)))
-(((-766 |#1|) (-10 -7 (-15 -1579 ((-174 (-567)) |#1|))) (-407)) (T -766))
-((-1579 (*1 *2 *3) (-12 (-5 *2 (-174 (-567))) (-5 *1 (-766 *3)) (-4 *3 (-407)))))
-(-10 -7 (-15 -1579 ((-174 (-567)) |#1|)))
-((-1778 ((|#1| |#1| |#1|) 28)) (-3683 ((|#1| |#1| |#1|) 27)) (-1739 ((|#1| |#1| |#1|) 38)) (-3053 ((|#1| |#1| |#1|) 34)) (-2446 (((-3 |#1| "failed") |#1| |#1|) 31)) (-2720 (((-2 (|:| -3102 |#1|) (|:| -4194 |#1|)) |#1| |#1|) 26)))
-(((-767 |#1| |#2|) (-10 -7 (-15 -2720 ((-2 (|:| -3102 |#1|) (|:| -4194 |#1|)) |#1| |#1|)) (-15 -3683 (|#1| |#1| |#1|)) (-15 -1778 (|#1| |#1| |#1|)) (-15 -2446 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3053 (|#1| |#1| |#1|)) (-15 -1739 (|#1| |#1| |#1|))) (-709 |#2|) (-365)) (T -767))
-((-1739 (*1 *2 *2 *2) (-12 (-4 *3 (-365)) (-5 *1 (-767 *2 *3)) (-4 *2 (-709 *3)))) (-3053 (*1 *2 *2 *2) (-12 (-4 *3 (-365)) (-5 *1 (-767 *2 *3)) (-4 *2 (-709 *3)))) (-2446 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-365)) (-5 *1 (-767 *2 *3)) (-4 *2 (-709 *3)))) (-1778 (*1 *2 *2 *2) (-12 (-4 *3 (-365)) (-5 *1 (-767 *2 *3)) (-4 *2 (-709 *3)))) (-3683 (*1 *2 *2 *2) (-12 (-4 *3 (-365)) (-5 *1 (-767 *2 *3)) (-4 *2 (-709 *3)))) (-2720 (*1 *2 *3 *3) (-12 (-4 *4 (-365)) (-5 *2 (-2 (|:| -3102 *3) (|:| -4194 *3))) (-5 *1 (-767 *3 *4)) (-4 *3 (-709 *4)))))
-(-10 -7 (-15 -2720 ((-2 (|:| -3102 |#1|) (|:| -4194 |#1|)) |#1| |#1|)) (-15 -3683 (|#1| |#1| |#1|)) (-15 -1778 (|#1| |#1| |#1|)) (-15 -2446 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3053 (|#1| |#1| |#1|)) (-15 -1739 (|#1| |#1| |#1|)))
-((-3835 (((-692 (-1226)) $ (-1226)) 26)) (-2841 (((-692 (-552)) $ (-552)) 25)) (-3597 (((-772) $ (-128)) 27)) (-3887 (((-692 (-129)) $ (-129)) 24)) (-2168 (((-692 (-1226)) $) 12)) (-1612 (((-692 (-1224)) $) 8)) (-2105 (((-692 (-1223)) $) 10)) (-1578 (((-692 (-552)) $) 13)) (-1784 (((-692 (-550)) $) 9)) (-3057 (((-692 (-549)) $) 11)) (-3176 (((-772) $ (-128)) 7)) (-3706 (((-692 (-129)) $) 14)) (-3157 (((-112) $) 31)) (-1476 (((-692 $) |#1| (-956)) 32)) (-1675 (($ $) 6)))
+((-3409 (((-645 (-2 (|:| |outval| (-169 |#1|)) (|:| |outmult| (-567)) (|:| |outvect| (-645 (-690 (-169 |#1|)))))) (-690 (-169 (-410 (-567)))) |#1|) 33)) (-2680 (((-645 (-169 |#1|)) (-690 (-169 (-410 (-567)))) |#1|) 23)) (-2231 (((-954 (-169 (-410 (-567)))) (-690 (-169 (-410 (-567)))) (-1179)) 20) (((-954 (-169 (-410 (-567)))) (-690 (-169 (-410 (-567))))) 19)))
+(((-765 |#1|) (-10 -7 (-15 -2231 ((-954 (-169 (-410 (-567)))) (-690 (-169 (-410 (-567)))))) (-15 -2231 ((-954 (-169 (-410 (-567)))) (-690 (-169 (-410 (-567)))) (-1179))) (-15 -2680 ((-645 (-169 |#1|)) (-690 (-169 (-410 (-567)))) |#1|)) (-15 -3409 ((-645 (-2 (|:| |outval| (-169 |#1|)) (|:| |outmult| (-567)) (|:| |outvect| (-645 (-690 (-169 |#1|)))))) (-690 (-169 (-410 (-567)))) |#1|))) (-13 (-365) (-849))) (T -765))
+((-3409 (*1 *2 *3 *4) (-12 (-5 *3 (-690 (-169 (-410 (-567))))) (-5 *2 (-645 (-2 (|:| |outval| (-169 *4)) (|:| |outmult| (-567)) (|:| |outvect| (-645 (-690 (-169 *4))))))) (-5 *1 (-765 *4)) (-4 *4 (-13 (-365) (-849))))) (-2680 (*1 *2 *3 *4) (-12 (-5 *3 (-690 (-169 (-410 (-567))))) (-5 *2 (-645 (-169 *4))) (-5 *1 (-765 *4)) (-4 *4 (-13 (-365) (-849))))) (-2231 (*1 *2 *3 *4) (-12 (-5 *3 (-690 (-169 (-410 (-567))))) (-5 *4 (-1179)) (-5 *2 (-954 (-169 (-410 (-567))))) (-5 *1 (-765 *5)) (-4 *5 (-13 (-365) (-849))))) (-2231 (*1 *2 *3) (-12 (-5 *3 (-690 (-169 (-410 (-567))))) (-5 *2 (-954 (-169 (-410 (-567))))) (-5 *1 (-765 *4)) (-4 *4 (-13 (-365) (-849))))))
+(-10 -7 (-15 -2231 ((-954 (-169 (-410 (-567)))) (-690 (-169 (-410 (-567)))))) (-15 -2231 ((-954 (-169 (-410 (-567)))) (-690 (-169 (-410 (-567)))) (-1179))) (-15 -2680 ((-645 (-169 |#1|)) (-690 (-169 (-410 (-567)))) |#1|)) (-15 -3409 ((-645 (-2 (|:| |outval| (-169 |#1|)) (|:| |outmult| (-567)) (|:| |outvect| (-645 (-690 (-169 |#1|)))))) (-690 (-169 (-410 (-567)))) |#1|)))
+((-1705 (((-174 (-567)) |#1|) 27)))
+(((-766 |#1|) (-10 -7 (-15 -1705 ((-174 (-567)) |#1|))) (-407)) (T -766))
+((-1705 (*1 *2 *3) (-12 (-5 *2 (-174 (-567))) (-5 *1 (-766 *3)) (-4 *3 (-407)))))
+(-10 -7 (-15 -1705 ((-174 (-567)) |#1|)))
+((-1651 ((|#1| |#1| |#1|) 28)) (-2710 ((|#1| |#1| |#1|) 27)) (-4099 ((|#1| |#1| |#1|) 38)) (-2521 ((|#1| |#1| |#1|) 34)) (-2012 (((-3 |#1| "failed") |#1| |#1|) 31)) (-4333 (((-2 (|:| -2654 |#1|) (|:| -2023 |#1|)) |#1| |#1|) 26)))
+(((-767 |#1| |#2|) (-10 -7 (-15 -4333 ((-2 (|:| -2654 |#1|) (|:| -2023 |#1|)) |#1| |#1|)) (-15 -2710 (|#1| |#1| |#1|)) (-15 -1651 (|#1| |#1| |#1|)) (-15 -2012 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2521 (|#1| |#1| |#1|)) (-15 -4099 (|#1| |#1| |#1|))) (-709 |#2|) (-365)) (T -767))
+((-4099 (*1 *2 *2 *2) (-12 (-4 *3 (-365)) (-5 *1 (-767 *2 *3)) (-4 *2 (-709 *3)))) (-2521 (*1 *2 *2 *2) (-12 (-4 *3 (-365)) (-5 *1 (-767 *2 *3)) (-4 *2 (-709 *3)))) (-2012 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-365)) (-5 *1 (-767 *2 *3)) (-4 *2 (-709 *3)))) (-1651 (*1 *2 *2 *2) (-12 (-4 *3 (-365)) (-5 *1 (-767 *2 *3)) (-4 *2 (-709 *3)))) (-2710 (*1 *2 *2 *2) (-12 (-4 *3 (-365)) (-5 *1 (-767 *2 *3)) (-4 *2 (-709 *3)))) (-4333 (*1 *2 *3 *3) (-12 (-4 *4 (-365)) (-5 *2 (-2 (|:| -2654 *3) (|:| -2023 *3))) (-5 *1 (-767 *3 *4)) (-4 *3 (-709 *4)))))
+(-10 -7 (-15 -4333 ((-2 (|:| -2654 |#1|) (|:| -2023 |#1|)) |#1| |#1|)) (-15 -2710 (|#1| |#1| |#1|)) (-15 -1651 (|#1| |#1| |#1|)) (-15 -2012 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2521 (|#1| |#1| |#1|)) (-15 -4099 (|#1| |#1| |#1|)))
+((-1695 (((-692 (-1227)) $ (-1227)) 26)) (-1741 (((-692 (-552)) $ (-552)) 25)) (-2487 (((-772) $ (-128)) 27)) (-2061 (((-692 (-129)) $ (-129)) 24)) (-1351 (((-692 (-1227)) $) 12)) (-4366 (((-692 (-1225)) $) 8)) (-3218 (((-692 (-1224)) $) 10)) (-1576 (((-692 (-552)) $) 13)) (-3961 (((-692 (-550)) $) 9)) (-1683 (((-692 (-549)) $) 11)) (-4020 (((-772) $ (-128)) 7)) (-4343 (((-692 (-129)) $) 14)) (-2486 (((-112) $) 31)) (-1478 (((-692 $) |#1| (-956)) 32)) (-3034 (($ $) 6)))
(((-768 |#1|) (-140) (-1102)) (T -768))
-((-1476 (*1 *2 *3 *4) (-12 (-5 *4 (-956)) (-4 *3 (-1102)) (-5 *2 (-692 *1)) (-4 *1 (-768 *3)))) (-3157 (*1 *2 *1) (-12 (-4 *1 (-768 *3)) (-4 *3 (-1102)) (-5 *2 (-112)))))
-(-13 (-579) (-10 -8 (-15 -1476 ((-692 $) |t#1| (-956))) (-15 -3157 ((-112) $))))
+((-1478 (*1 *2 *3 *4) (-12 (-5 *4 (-956)) (-4 *3 (-1102)) (-5 *2 (-692 *1)) (-4 *1 (-768 *3)))) (-2486 (*1 *2 *1) (-12 (-4 *1 (-768 *3)) (-4 *3 (-1102)) (-5 *2 (-112)))))
+(-13 (-579) (-10 -8 (-15 -1478 ((-692 $) |t#1| (-956))) (-15 -2486 ((-112) $))))
(((-173) . T) ((-530) . T) ((-579) . T) ((-861) . T))
-((-3454 (((-2 (|:| -2623 (-690 (-567))) (|:| |basisDen| (-567)) (|:| |basisInv| (-690 (-567)))) (-567)) 71)) (-3675 (((-2 (|:| -2623 (-690 (-567))) (|:| |basisDen| (-567)) (|:| |basisInv| (-690 (-567))))) 69)) (-3788 (((-567)) 85)))
-(((-769 |#1| |#2|) (-10 -7 (-15 -3788 ((-567))) (-15 -3675 ((-2 (|:| -2623 (-690 (-567))) (|:| |basisDen| (-567)) (|:| |basisInv| (-690 (-567)))))) (-15 -3454 ((-2 (|:| -2623 (-690 (-567))) (|:| |basisDen| (-567)) (|:| |basisInv| (-690 (-567)))) (-567)))) (-1244 (-567)) (-412 (-567) |#1|)) (T -769))
-((-3454 (*1 *2 *3) (-12 (-5 *3 (-567)) (-4 *4 (-1244 *3)) (-5 *2 (-2 (|:| -2623 (-690 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-690 *3)))) (-5 *1 (-769 *4 *5)) (-4 *5 (-412 *3 *4)))) (-3675 (*1 *2) (-12 (-4 *3 (-1244 (-567))) (-5 *2 (-2 (|:| -2623 (-690 (-567))) (|:| |basisDen| (-567)) (|:| |basisInv| (-690 (-567))))) (-5 *1 (-769 *3 *4)) (-4 *4 (-412 (-567) *3)))) (-3788 (*1 *2) (-12 (-4 *3 (-1244 *2)) (-5 *2 (-567)) (-5 *1 (-769 *3 *4)) (-4 *4 (-412 *2 *3)))))
-(-10 -7 (-15 -3788 ((-567))) (-15 -3675 ((-2 (|:| -2623 (-690 (-567))) (|:| |basisDen| (-567)) (|:| |basisInv| (-690 (-567)))))) (-15 -3454 ((-2 (|:| -2623 (-690 (-567))) (|:| |basisDen| (-567)) (|:| |basisInv| (-690 (-567)))) (-567))))
-((-2403 (((-112) $ $) NIL)) (-2038 (((-3 (|:| |nia| (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) $) 21)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 20) (($ (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 13) (($ (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) 18)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)))
-(((-770) (-13 (-1102) (-10 -8 (-15 -4132 ($ (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4132 ($ (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4132 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (-15 -2038 ((-3 (|:| |nia| (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) $))))) (T -770))
-((-4132 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-770)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-770)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) (-5 *1 (-770)))) (-2038 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) (-5 *1 (-770)))))
-(-13 (-1102) (-10 -8 (-15 -4132 ($ (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4132 ($ (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4132 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (-15 -2038 ((-3 (|:| |nia| (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) $))))
-((-3549 (((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-954 |#1|))) 18) (((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-954 |#1|)) (-645 (-1178))) 17)) (-3018 (((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-954 |#1|))) 20) (((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-954 |#1|)) (-645 (-1178))) 19)))
-(((-771 |#1|) (-10 -7 (-15 -3549 ((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-954 |#1|)) (-645 (-1178)))) (-15 -3549 ((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-954 |#1|)))) (-15 -3018 ((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-954 |#1|)) (-645 (-1178)))) (-15 -3018 ((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-954 |#1|))))) (-559)) (T -771))
-((-3018 (*1 *2 *3) (-12 (-5 *3 (-645 (-954 *4))) (-4 *4 (-559)) (-5 *2 (-645 (-645 (-295 (-410 (-954 *4)))))) (-5 *1 (-771 *4)))) (-3018 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-645 (-1178))) (-4 *5 (-559)) (-5 *2 (-645 (-645 (-295 (-410 (-954 *5)))))) (-5 *1 (-771 *5)))) (-3549 (*1 *2 *3) (-12 (-5 *3 (-645 (-954 *4))) (-4 *4 (-559)) (-5 *2 (-645 (-645 (-295 (-410 (-954 *4)))))) (-5 *1 (-771 *4)))) (-3549 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-645 (-1178))) (-4 *5 (-559)) (-5 *2 (-645 (-645 (-295 (-410 (-954 *5)))))) (-5 *1 (-771 *5)))))
-(-10 -7 (-15 -3549 ((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-954 |#1|)) (-645 (-1178)))) (-15 -3549 ((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-954 |#1|)))) (-15 -3018 ((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-954 |#1|)) (-645 (-1178)))) (-15 -3018 ((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-954 |#1|)))))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-4016 (($ $ $) 10)) (-3472 (((-3 $ "failed") $ $) 15)) (-4130 (($ $ (-567)) 11)) (-2585 (($) NIL T CONST)) (-2349 (($ $ $) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-1348 (($ $) NIL)) (-2360 (($ $ $) NIL)) (-1433 (((-112) $) NIL)) (-1354 (($ $ $) NIL)) (-2981 (($ $ $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-2774 (($ $ $) NIL)) (-2391 (((-3 $ "failed") $ $) NIL)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-1716 (($) 6 T CONST)) (-1728 (($) NIL T CONST)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-772)) NIL) (($ $ (-923)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ $ $) NIL)))
-(((-772) (-13 (-794) (-727) (-10 -8 (-15 -2360 ($ $ $)) (-15 -2349 ($ $ $)) (-15 -2774 ($ $ $)) (-15 -2384 ((-2 (|:| -3102 $) (|:| -4194 $)) $ $)) (-15 -2391 ((-3 $ "failed") $ $)) (-15 -4130 ($ $ (-567))) (-15 -1348 ($ $)) (-6 (-4420 "*"))))) (T -772))
-((-2360 (*1 *1 *1 *1) (-5 *1 (-772))) (-2349 (*1 *1 *1 *1) (-5 *1 (-772))) (-2774 (*1 *1 *1 *1) (-5 *1 (-772))) (-2384 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3102 (-772)) (|:| -4194 (-772)))) (-5 *1 (-772)))) (-2391 (*1 *1 *1 *1) (|partial| -5 *1 (-772))) (-4130 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-772)))) (-1348 (*1 *1 *1) (-5 *1 (-772))))
-(-13 (-794) (-727) (-10 -8 (-15 -2360 ($ $ $)) (-15 -2349 ($ $ $)) (-15 -2774 ($ $ $)) (-15 -2384 ((-2 (|:| -3102 $) (|:| -4194 $)) $ $)) (-15 -2391 ((-3 $ "failed") $ $)) (-15 -4130 ($ $ (-567))) (-15 -1348 ($ $)) (-6 (-4420 "*"))))
+((-4321 (((-2 (|:| -2144 (-690 (-567))) (|:| |basisDen| (-567)) (|:| |basisInv| (-690 (-567)))) (-567)) 71)) (-4180 (((-2 (|:| -2144 (-690 (-567))) (|:| |basisDen| (-567)) (|:| |basisInv| (-690 (-567))))) 69)) (-2433 (((-567)) 85)))
+(((-769 |#1| |#2|) (-10 -7 (-15 -2433 ((-567))) (-15 -4180 ((-2 (|:| -2144 (-690 (-567))) (|:| |basisDen| (-567)) (|:| |basisInv| (-690 (-567)))))) (-15 -4321 ((-2 (|:| -2144 (-690 (-567))) (|:| |basisDen| (-567)) (|:| |basisInv| (-690 (-567)))) (-567)))) (-1245 (-567)) (-412 (-567) |#1|)) (T -769))
+((-4321 (*1 *2 *3) (-12 (-5 *3 (-567)) (-4 *4 (-1245 *3)) (-5 *2 (-2 (|:| -2144 (-690 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-690 *3)))) (-5 *1 (-769 *4 *5)) (-4 *5 (-412 *3 *4)))) (-4180 (*1 *2) (-12 (-4 *3 (-1245 (-567))) (-5 *2 (-2 (|:| -2144 (-690 (-567))) (|:| |basisDen| (-567)) (|:| |basisInv| (-690 (-567))))) (-5 *1 (-769 *3 *4)) (-4 *4 (-412 (-567) *3)))) (-2433 (*1 *2) (-12 (-4 *3 (-1245 *2)) (-5 *2 (-567)) (-5 *1 (-769 *3 *4)) (-4 *4 (-412 *2 *3)))))
+(-10 -7 (-15 -2433 ((-567))) (-15 -4180 ((-2 (|:| -2144 (-690 (-567))) (|:| |basisDen| (-567)) (|:| |basisInv| (-690 (-567)))))) (-15 -4321 ((-2 (|:| -2144 (-690 (-567))) (|:| |basisDen| (-567)) (|:| |basisInv| (-690 (-567)))) (-567))))
+((-2412 (((-112) $ $) NIL)) (-2051 (((-3 (|:| |nia| (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -2408 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) $) 21)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) 20) (($ (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 13) (($ (-2 (|:| |fn| (-317 (-225))) (|:| -2408 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -2408 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) 18)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)))
+(((-770) (-13 (-1102) (-10 -8 (-15 -4129 ($ (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4129 ($ (-2 (|:| |fn| (-317 (-225))) (|:| -2408 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4129 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -2408 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (-15 -2051 ((-3 (|:| |nia| (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -2408 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) $))))) (T -770))
+((-4129 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-770)))) (-4129 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-317 (-225))) (|:| -2408 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-770)))) (-4129 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -2408 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) (-5 *1 (-770)))) (-2051 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -2408 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) (-5 *1 (-770)))))
+(-13 (-1102) (-10 -8 (-15 -4129 ($ (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4129 ($ (-2 (|:| |fn| (-317 (-225))) (|:| -2408 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4129 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -2408 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (-15 -2051 ((-3 (|:| |nia| (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -2408 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) $))))
+((-3541 (((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-954 |#1|))) 18) (((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-954 |#1|)) (-645 (-1179))) 17)) (-2464 (((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-954 |#1|))) 20) (((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-954 |#1|)) (-645 (-1179))) 19)))
+(((-771 |#1|) (-10 -7 (-15 -3541 ((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-954 |#1|)) (-645 (-1179)))) (-15 -3541 ((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-954 |#1|)))) (-15 -2464 ((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-954 |#1|)) (-645 (-1179)))) (-15 -2464 ((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-954 |#1|))))) (-559)) (T -771))
+((-2464 (*1 *2 *3) (-12 (-5 *3 (-645 (-954 *4))) (-4 *4 (-559)) (-5 *2 (-645 (-645 (-295 (-410 (-954 *4)))))) (-5 *1 (-771 *4)))) (-2464 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-645 (-1179))) (-4 *5 (-559)) (-5 *2 (-645 (-645 (-295 (-410 (-954 *5)))))) (-5 *1 (-771 *5)))) (-3541 (*1 *2 *3) (-12 (-5 *3 (-645 (-954 *4))) (-4 *4 (-559)) (-5 *2 (-645 (-645 (-295 (-410 (-954 *4)))))) (-5 *1 (-771 *4)))) (-3541 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-645 (-1179))) (-4 *5 (-559)) (-5 *2 (-645 (-645 (-295 (-410 (-954 *5)))))) (-5 *1 (-771 *5)))))
+(-10 -7 (-15 -3541 ((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-954 |#1|)) (-645 (-1179)))) (-15 -3541 ((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-954 |#1|)))) (-15 -2464 ((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-954 |#1|)) (-645 (-1179)))) (-15 -2464 ((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-954 |#1|)))))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-1325 (($ $ $) 10)) (-2376 (((-3 $ "failed") $ $) 15)) (-4128 (($ $ (-567)) 11)) (-3647 (($) NIL T CONST)) (-2357 (($ $ $) NIL)) (-3588 (((-3 $ "failed") $) NIL)) (-1359 (($ $) NIL)) (-2368 (($ $ $) NIL)) (-4346 (((-112) $) NIL)) (-1365 (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-2785 (($ $ $) NIL)) (-2400 (((-3 $ "failed") $ $) NIL)) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) NIL)) (-4129 (((-863) $) NIL)) (-3357 (((-112) $ $) NIL)) (-1733 (($) 6 T CONST)) (-1744 (($) NIL T CONST)) (-3004 (((-112) $ $) NIL)) (-2980 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2993 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-772)) NIL) (($ $ (-923)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ $ $) NIL)))
+(((-772) (-13 (-794) (-727) (-10 -8 (-15 -2368 ($ $ $)) (-15 -2357 ($ $ $)) (-15 -2785 ($ $ $)) (-15 -2452 ((-2 (|:| -2654 $) (|:| -2023 $)) $ $)) (-15 -2400 ((-3 $ "failed") $ $)) (-15 -4128 ($ $ (-567))) (-15 -1359 ($ $)) (-6 (-4424 "*"))))) (T -772))
+((-2368 (*1 *1 *1 *1) (-5 *1 (-772))) (-2357 (*1 *1 *1 *1) (-5 *1 (-772))) (-2785 (*1 *1 *1 *1) (-5 *1 (-772))) (-2452 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2654 (-772)) (|:| -2023 (-772)))) (-5 *1 (-772)))) (-2400 (*1 *1 *1 *1) (|partial| -5 *1 (-772))) (-4128 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-772)))) (-1359 (*1 *1 *1) (-5 *1 (-772))))
+(-13 (-794) (-727) (-10 -8 (-15 -2368 ($ $ $)) (-15 -2357 ($ $ $)) (-15 -2785 ($ $ $)) (-15 -2452 ((-2 (|:| -2654 $) (|:| -2023 $)) $ $)) (-15 -2400 ((-3 $ "failed") $ $)) (-15 -4128 ($ $ (-567))) (-15 -1359 ($ $)) (-6 (-4424 "*"))))
((|Integer|) (>= |#1| 0))
-((-3018 (((-3 |#2| "failed") |#2| |#2| (-114) (-1178)) 37)))
-(((-773 |#1| |#2|) (-10 -7 (-15 -3018 ((-3 |#2| "failed") |#2| |#2| (-114) (-1178)))) (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147)) (-13 (-29 |#1|) (-1203) (-961))) (T -773))
-((-3018 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1178)) (-4 *5 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (-5 *1 (-773 *5 *2)) (-4 *2 (-13 (-29 *5) (-1203) (-961))))))
-(-10 -7 (-15 -3018 ((-3 |#2| "failed") |#2| |#2| (-114) (-1178))))
-((-4132 (((-775) |#1|) 8)))
-(((-774 |#1|) (-10 -7 (-15 -4132 ((-775) |#1|))) (-1218)) (T -774))
-((-4132 (*1 *2 *3) (-12 (-5 *2 (-775)) (-5 *1 (-774 *3)) (-4 *3 (-1218)))))
-(-10 -7 (-15 -4132 ((-775) |#1|)))
-((-2403 (((-112) $ $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 7)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 9)))
+((-2464 (((-3 |#2| "failed") |#2| |#2| (-114) (-1179)) 37)))
+(((-773 |#1| |#2|) (-10 -7 (-15 -2464 ((-3 |#2| "failed") |#2| |#2| (-114) (-1179)))) (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147)) (-13 (-29 |#1|) (-1204) (-961))) (T -773))
+((-2464 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1179)) (-4 *5 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (-5 *1 (-773 *5 *2)) (-4 *2 (-13 (-29 *5) (-1204) (-961))))))
+(-10 -7 (-15 -2464 ((-3 |#2| "failed") |#2| |#2| (-114) (-1179))))
+((-4129 (((-775) |#1|) 8)))
+(((-774 |#1|) (-10 -7 (-15 -4129 ((-775) |#1|))) (-1219)) (T -774))
+((-4129 (*1 *2 *3) (-12 (-5 *2 (-775)) (-5 *1 (-774 *3)) (-4 *3 (-1219)))))
+(-10 -7 (-15 -4129 ((-775) |#1|)))
+((-2412 (((-112) $ $) NIL)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) 7)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) 9)))
(((-775) (-1102)) (T -775))
NIL
(-1102)
-((-2475 ((|#2| |#4|) 35)))
-(((-776 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2475 (|#2| |#4|))) (-455) (-1244 |#1|) (-725 |#1| |#2|) (-1244 |#3|)) (T -776))
-((-2475 (*1 *2 *3) (-12 (-4 *4 (-455)) (-4 *5 (-725 *4 *2)) (-4 *2 (-1244 *4)) (-5 *1 (-776 *4 *2 *5 *3)) (-4 *3 (-1244 *5)))))
-(-10 -7 (-15 -2475 (|#2| |#4|)))
-((-2109 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57)) (-2217 (((-1273) (-1160) (-1160) |#4| |#5|) 33)) (-3762 ((|#4| |#4| |#5|) 74)) (-3321 (((-645 (-2 (|:| |val| |#4|) (|:| -2566 |#5|))) |#4| |#5|) 79)) (-1413 (((-645 (-2 (|:| |val| (-112)) (|:| -2566 |#5|))) |#4| |#5|) 16)))
-(((-777 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2109 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3762 (|#4| |#4| |#5|)) (-15 -3321 ((-645 (-2 (|:| |val| |#4|) (|:| -2566 |#5|))) |#4| |#5|)) (-15 -2217 ((-1273) (-1160) (-1160) |#4| |#5|)) (-15 -1413 ((-645 (-2 (|:| |val| (-112)) (|:| -2566 |#5|))) |#4| |#5|))) (-455) (-794) (-851) (-1067 |#1| |#2| |#3|) (-1073 |#1| |#2| |#3| |#4|)) (T -777))
-((-1413 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| (-112)) (|:| -2566 *4)))) (-5 *1 (-777 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-2217 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1160)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *4 (-1067 *6 *7 *8)) (-5 *2 (-1273)) (-5 *1 (-777 *6 *7 *8 *4 *5)) (-4 *5 (-1073 *6 *7 *8 *4)))) (-3321 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2566 *4)))) (-5 *1 (-777 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-3762 (*1 *2 *2 *3) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *2 (-1067 *4 *5 *6)) (-5 *1 (-777 *4 *5 *6 *2 *3)) (-4 *3 (-1073 *4 *5 *6 *2)))) (-2109 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-777 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))))
-(-10 -7 (-15 -2109 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3762 (|#4| |#4| |#5|)) (-15 -3321 ((-645 (-2 (|:| |val| |#4|) (|:| -2566 |#5|))) |#4| |#5|)) (-15 -2217 ((-1273) (-1160) (-1160) |#4| |#5|)) (-15 -1413 ((-645 (-2 (|:| |val| (-112)) (|:| -2566 |#5|))) |#4| |#5|)))
-((-3753 (((-3 (-1174 (-1174 |#1|)) "failed") |#4|) 53)) (-3518 (((-645 |#4|) |#4|) 24)) (-3253 ((|#4| |#4|) 19)))
-(((-778 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3518 ((-645 |#4|) |#4|)) (-15 -3753 ((-3 (-1174 (-1174 |#1|)) "failed") |#4|)) (-15 -3253 (|#4| |#4|))) (-351) (-330 |#1|) (-1244 |#2|) (-1244 |#3|) (-923)) (T -778))
-((-3253 (*1 *2 *2) (-12 (-4 *3 (-351)) (-4 *4 (-330 *3)) (-4 *5 (-1244 *4)) (-5 *1 (-778 *3 *4 *5 *2 *6)) (-4 *2 (-1244 *5)) (-14 *6 (-923)))) (-3753 (*1 *2 *3) (|partial| -12 (-4 *4 (-351)) (-4 *5 (-330 *4)) (-4 *6 (-1244 *5)) (-5 *2 (-1174 (-1174 *4))) (-5 *1 (-778 *4 *5 *6 *3 *7)) (-4 *3 (-1244 *6)) (-14 *7 (-923)))) (-3518 (*1 *2 *3) (-12 (-4 *4 (-351)) (-4 *5 (-330 *4)) (-4 *6 (-1244 *5)) (-5 *2 (-645 *3)) (-5 *1 (-778 *4 *5 *6 *3 *7)) (-4 *3 (-1244 *6)) (-14 *7 (-923)))))
-(-10 -7 (-15 -3518 ((-645 |#4|) |#4|)) (-15 -3753 ((-3 (-1174 (-1174 |#1|)) "failed") |#4|)) (-15 -3253 (|#4| |#4|)))
-((-1572 (((-2 (|:| |deter| (-645 (-1174 |#5|))) (|:| |dterm| (-645 (-645 (-2 (|:| -1922 (-772)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-645 |#1|)) (|:| |nlead| (-645 |#5|))) (-1174 |#5|) (-645 |#1|) (-645 |#5|)) 75)) (-3817 (((-645 (-772)) |#1|) 20)))
-(((-779 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1572 ((-2 (|:| |deter| (-645 (-1174 |#5|))) (|:| |dterm| (-645 (-645 (-2 (|:| -1922 (-772)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-645 |#1|)) (|:| |nlead| (-645 |#5|))) (-1174 |#5|) (-645 |#1|) (-645 |#5|))) (-15 -3817 ((-645 (-772)) |#1|))) (-1244 |#4|) (-794) (-851) (-308) (-951 |#4| |#2| |#3|)) (T -779))
-((-3817 (*1 *2 *3) (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-308)) (-5 *2 (-645 (-772))) (-5 *1 (-779 *3 *4 *5 *6 *7)) (-4 *3 (-1244 *6)) (-4 *7 (-951 *6 *4 *5)))) (-1572 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1244 *9)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *9 (-308)) (-4 *10 (-951 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-645 (-1174 *10))) (|:| |dterm| (-645 (-645 (-2 (|:| -1922 (-772)) (|:| |pcoef| *10))))) (|:| |nfacts| (-645 *6)) (|:| |nlead| (-645 *10)))) (-5 *1 (-779 *6 *7 *8 *9 *10)) (-5 *3 (-1174 *10)) (-5 *4 (-645 *6)) (-5 *5 (-645 *10)))))
-(-10 -7 (-15 -1572 ((-2 (|:| |deter| (-645 (-1174 |#5|))) (|:| |dterm| (-645 (-645 (-2 (|:| -1922 (-772)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-645 |#1|)) (|:| |nlead| (-645 |#5|))) (-1174 |#5|) (-645 |#1|) (-645 |#5|))) (-15 -3817 ((-645 (-772)) |#1|)))
-((-3064 (((-645 (-2 (|:| |outval| |#1|) (|:| |outmult| (-567)) (|:| |outvect| (-645 (-690 |#1|))))) (-690 (-410 (-567))) |#1|) 31)) (-1442 (((-645 |#1|) (-690 (-410 (-567))) |#1|) 21)) (-2155 (((-954 (-410 (-567))) (-690 (-410 (-567))) (-1178)) 18) (((-954 (-410 (-567))) (-690 (-410 (-567)))) 17)))
-(((-780 |#1|) (-10 -7 (-15 -2155 ((-954 (-410 (-567))) (-690 (-410 (-567))))) (-15 -2155 ((-954 (-410 (-567))) (-690 (-410 (-567))) (-1178))) (-15 -1442 ((-645 |#1|) (-690 (-410 (-567))) |#1|)) (-15 -3064 ((-645 (-2 (|:| |outval| |#1|) (|:| |outmult| (-567)) (|:| |outvect| (-645 (-690 |#1|))))) (-690 (-410 (-567))) |#1|))) (-13 (-365) (-849))) (T -780))
-((-3064 (*1 *2 *3 *4) (-12 (-5 *3 (-690 (-410 (-567)))) (-5 *2 (-645 (-2 (|:| |outval| *4) (|:| |outmult| (-567)) (|:| |outvect| (-645 (-690 *4)))))) (-5 *1 (-780 *4)) (-4 *4 (-13 (-365) (-849))))) (-1442 (*1 *2 *3 *4) (-12 (-5 *3 (-690 (-410 (-567)))) (-5 *2 (-645 *4)) (-5 *1 (-780 *4)) (-4 *4 (-13 (-365) (-849))))) (-2155 (*1 *2 *3 *4) (-12 (-5 *3 (-690 (-410 (-567)))) (-5 *4 (-1178)) (-5 *2 (-954 (-410 (-567)))) (-5 *1 (-780 *5)) (-4 *5 (-13 (-365) (-849))))) (-2155 (*1 *2 *3) (-12 (-5 *3 (-690 (-410 (-567)))) (-5 *2 (-954 (-410 (-567)))) (-5 *1 (-780 *4)) (-4 *4 (-13 (-365) (-849))))))
-(-10 -7 (-15 -2155 ((-954 (-410 (-567))) (-690 (-410 (-567))))) (-15 -2155 ((-954 (-410 (-567))) (-690 (-410 (-567))) (-1178))) (-15 -1442 ((-645 |#1|) (-690 (-410 (-567))) |#1|)) (-15 -3064 ((-645 (-2 (|:| |outval| |#1|) (|:| |outmult| (-567)) (|:| |outvect| (-645 (-690 |#1|))))) (-690 (-410 (-567))) |#1|)))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) 36)) (-2847 (((-645 |#2|) $) NIL)) (-2675 (((-1174 $) $ |#2|) NIL) (((-1174 |#1|) $) NIL)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-4381 (($ $) NIL (|has| |#1| (-559)))) (-3949 (((-112) $) NIL (|has| |#1| (-559)))) (-1468 (((-772) $) NIL) (((-772) $ (-645 |#2|)) NIL)) (-4283 (($ $) 30)) (-2061 (((-112) $ $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2323 (($ $ $) 110 (|has| |#1| (-559)))) (-1734 (((-645 $) $ $) 123 (|has| |#1| (-559)))) (-4226 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-911)))) (-3248 (($ $) NIL (|has| |#1| (-455)))) (-2908 (((-421 $) $) NIL (|has| |#1| (-455)))) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-911)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 |#1| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-954 (-410 (-567)))) NIL (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#2| (-615 (-1178))))) (((-3 $ "failed") (-954 (-567))) NIL (-2800 (-12 (|has| |#1| (-38 (-567))) (|has| |#2| (-615 (-1178))) (-1657 (|has| |#1| (-38 (-410 (-567)))))) (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#2| (-615 (-1178)))))) (((-3 $ "failed") (-954 |#1|)) NIL (-2800 (-12 (|has| |#2| (-615 (-1178))) (-1657 (|has| |#1| (-38 (-410 (-567))))) (-1657 (|has| |#1| (-38 (-567))))) (-12 (|has| |#1| (-38 (-567))) (|has| |#2| (-615 (-1178))) (-1657 (|has| |#1| (-38 (-410 (-567))))) (-1657 (|has| |#1| (-548)))) (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#2| (-615 (-1178))) (-1657 (|has| |#1| (-994 (-567))))))) (((-3 (-1127 |#1| |#2|) "failed") $) 21)) (-2038 ((|#1| $) NIL) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-567) $) NIL (|has| |#1| (-1040 (-567)))) ((|#2| $) NIL) (($ (-954 (-410 (-567)))) NIL (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#2| (-615 (-1178))))) (($ (-954 (-567))) NIL (-2800 (-12 (|has| |#1| (-38 (-567))) (|has| |#2| (-615 (-1178))) (-1657 (|has| |#1| (-38 (-410 (-567)))))) (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#2| (-615 (-1178)))))) (($ (-954 |#1|)) NIL (-2800 (-12 (|has| |#2| (-615 (-1178))) (-1657 (|has| |#1| (-38 (-410 (-567))))) (-1657 (|has| |#1| (-38 (-567))))) (-12 (|has| |#1| (-38 (-567))) (|has| |#2| (-615 (-1178))) (-1657 (|has| |#1| (-38 (-410 (-567))))) (-1657 (|has| |#1| (-548)))) (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#2| (-615 (-1178))) (-1657 (|has| |#1| (-994 (-567))))))) (((-1127 |#1| |#2|) $) NIL)) (-2951 (($ $ $ |#2|) NIL (|has| |#1| (-172))) (($ $ $) 121 (|has| |#1| (-559)))) (-3014 (($ $) NIL) (($ $ |#2|) NIL)) (-2630 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 |#1|)) (|:| |vec| (-1268 |#1|))) (-690 $) (-1268 $)) NIL) (((-690 |#1|) (-690 $)) NIL)) (-3786 (((-112) $ $) NIL) (((-112) $ (-645 $)) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-1479 (((-112) $) NIL)) (-3708 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 81)) (-2872 (($ $) 136 (|has| |#1| (-455)))) (-3501 (($ $) NIL (|has| |#1| (-455))) (($ $ |#2|) NIL (|has| |#1| (-455)))) (-3000 (((-645 $) $) NIL)) (-3184 (((-112) $) NIL (|has| |#1| (-911)))) (-3411 (($ $) NIL (|has| |#1| (-559)))) (-3395 (($ $) NIL (|has| |#1| (-559)))) (-4205 (($ $ $) 76) (($ $ $ |#2|) NIL)) (-1824 (($ $ $) 79) (($ $ $ |#2|) NIL)) (-2320 (($ $ |#1| (-534 |#2|) $) NIL)) (-4303 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (-12 (|has| |#1| (-888 (-381))) (|has| |#2| (-888 (-381))))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (-12 (|has| |#1| (-888 (-567))) (|has| |#2| (-888 (-567)))))) (-1433 (((-112) $) 57)) (-2695 (((-772) $) NIL)) (-1664 (((-112) $ $) NIL) (((-112) $ (-645 $)) NIL)) (-2689 (($ $ $ $ $) 107 (|has| |#1| (-559)))) (-1679 ((|#2| $) 22)) (-2836 (($ (-1174 |#1|) |#2|) NIL) (($ (-1174 $) |#2|) NIL)) (-1709 (((-645 $) $) NIL)) (-2843 (((-112) $) NIL)) (-2824 (($ |#1| (-534 |#2|)) NIL) (($ $ |#2| (-772)) 38) (($ $ (-645 |#2|) (-645 (-772))) NIL)) (-1838 (($ $ $) 63)) (-1621 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $ |#2|) NIL)) (-1721 (((-112) $) NIL)) (-2656 (((-534 |#2|) $) NIL) (((-772) $ |#2|) NIL) (((-645 (-772)) $ (-645 |#2|)) NIL)) (-2991 (((-772) $) 23)) (-3273 (($ (-1 (-534 |#2|) (-534 |#2|)) $) NIL)) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-3046 (((-3 |#2| "failed") $) NIL)) (-2964 (($ $) NIL (|has| |#1| (-455)))) (-4146 (($ $) NIL (|has| |#1| (-455)))) (-3388 (((-645 $) $) NIL)) (-4040 (($ $) 39)) (-2091 (($ $) NIL (|has| |#1| (-455)))) (-2719 (((-645 $) $) 43)) (-1359 (($ $) 41)) (-2976 (($ $) NIL)) (-2989 ((|#1| $) NIL) (($ $ |#2|) 48)) (-2740 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-1451 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2673 (-772))) $ $) 96)) (-2521 (((-2 (|:| -3694 $) (|:| |gap| (-772)) (|:| -3102 $) (|:| -4194 $)) $ $) 78) (((-2 (|:| -3694 $) (|:| |gap| (-772)) (|:| -3102 $) (|:| -4194 $)) $ $ |#2|) NIL)) (-3983 (((-2 (|:| -3694 $) (|:| |gap| (-772)) (|:| -4194 $)) $ $) NIL) (((-2 (|:| -3694 $) (|:| |gap| (-772)) (|:| -4194 $)) $ $ |#2|) NIL)) (-1491 (($ $ $) 83) (($ $ $ |#2|) NIL)) (-2767 (($ $ $) 86) (($ $ $ |#2|) NIL)) (-1419 (((-1160) $) NIL)) (-2272 (($ $ $) 125 (|has| |#1| (-559)))) (-2300 (((-645 $) $) 32)) (-2056 (((-3 (-645 $) "failed") $) NIL)) (-3671 (((-3 (-645 $) "failed") $) NIL)) (-3798 (((-3 (-2 (|:| |var| |#2|) (|:| -3458 (-772))) "failed") $) NIL)) (-1791 (((-112) $ $) NIL) (((-112) $ (-645 $)) NIL)) (-3159 (($ $ $) NIL)) (-2672 (($ $) 24)) (-3392 (((-112) $ $) NIL)) (-2554 (((-112) $ $) NIL) (((-112) $ (-645 $)) NIL)) (-4164 (($ $ $) NIL)) (-2724 (($ $) 26)) (-3430 (((-1122) $) NIL)) (-3521 (((-2 (|:| -2774 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-559)))) (-4348 (((-2 (|:| -2774 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-559)))) (-2949 (((-112) $) 56)) (-2962 ((|#1| $) 58)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#1| (-455)))) (-2774 ((|#1| |#1| $) 133 (|has| |#1| (-455))) (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-2435 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-911)))) (-3517 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-911)))) (-2706 (((-421 $) $) NIL (|has| |#1| (-911)))) (-1893 (((-2 (|:| -2774 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-559)))) (-2391 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559))) (((-3 $ "failed") $ $) 98 (|has| |#1| (-559)))) (-1772 (($ $ |#1|) 129 (|has| |#1| (-559))) (($ $ $) NIL (|has| |#1| (-559)))) (-3288 (($ $ |#1|) 128 (|has| |#1| (-559))) (($ $ $) NIL (|has| |#1| (-559)))) (-2631 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-645 |#2|) (-645 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-645 |#2|) (-645 $)) NIL)) (-3788 (($ $ |#2|) NIL (|has| |#1| (-172)))) (-1593 (($ $ |#2|) NIL) (($ $ (-645 |#2|)) NIL) (($ $ |#2| (-772)) NIL) (($ $ (-645 |#2|) (-645 (-772))) NIL)) (-3077 (((-534 |#2|) $) NIL) (((-772) $ |#2|) 45) (((-645 (-772)) $ (-645 |#2|)) NIL)) (-2804 (($ $) NIL)) (-2606 (($ $) 35)) (-3893 (((-894 (-381)) $) NIL (-12 (|has| |#1| (-615 (-894 (-381)))) (|has| |#2| (-615 (-894 (-381)))))) (((-894 (-567)) $) NIL (-12 (|has| |#1| (-615 (-894 (-567)))) (|has| |#2| (-615 (-894 (-567)))))) (((-539) $) NIL (-12 (|has| |#1| (-615 (-539))) (|has| |#2| (-615 (-539))))) (($ (-954 (-410 (-567)))) NIL (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#2| (-615 (-1178))))) (($ (-954 (-567))) NIL (-2800 (-12 (|has| |#1| (-38 (-567))) (|has| |#2| (-615 (-1178))) (-1657 (|has| |#1| (-38 (-410 (-567)))))) (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#2| (-615 (-1178)))))) (($ (-954 |#1|)) NIL (|has| |#2| (-615 (-1178)))) (((-1160) $) NIL (-12 (|has| |#1| (-1040 (-567))) (|has| |#2| (-615 (-1178))))) (((-954 |#1|) $) NIL (|has| |#2| (-615 (-1178))))) (-4358 ((|#1| $) 132 (|has| |#1| (-455))) (($ $ |#2|) NIL (|has| |#1| (-455)))) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-911))))) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-954 |#1|) $) NIL (|has| |#2| (-615 (-1178)))) (((-1127 |#1| |#2|) $) 18) (($ (-1127 |#1| |#2|)) 19) (($ (-410 (-567))) NIL (-2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567)))))) (($ $) NIL (|has| |#1| (-559)))) (-3032 (((-645 |#1|) $) NIL)) (-4136 ((|#1| $ (-534 |#2|)) NIL) (($ $ |#2| (-772)) 47) (($ $ (-645 |#2|) (-645 (-772))) NIL)) (-1903 (((-3 $ "failed") $) NIL (-2800 (-12 (|has| $ (-145)) (|has| |#1| (-911))) (|has| |#1| (-145))))) (-4221 (((-772)) NIL T CONST)) (-4176 (($ $ $ (-772)) NIL (|has| |#1| (-172)))) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1716 (($) 13 T CONST)) (-4222 (((-3 (-112) "failed") $ $) NIL)) (-1728 (($) 37 T CONST)) (-2097 (($ $ $ $ (-772)) 105 (|has| |#1| (-559)))) (-1875 (($ $ $ (-772)) 104 (|has| |#1| (-559)))) (-2637 (($ $ |#2|) NIL) (($ $ (-645 |#2|)) NIL) (($ $ |#2| (-772)) NIL) (($ $ (-645 |#2|) (-645 (-772))) NIL)) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3045 (($ $) NIL) (($ $ $) 75)) (-3033 (($ $ $) 85)) (** (($ $ (-923)) NIL) (($ $ (-772)) 70)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 62) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) 61) (($ $ |#1|) NIL)))
+((-2724 ((|#2| |#4|) 35)))
+(((-776 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2724 (|#2| |#4|))) (-455) (-1245 |#1|) (-725 |#1| |#2|) (-1245 |#3|)) (T -776))
+((-2724 (*1 *2 *3) (-12 (-4 *4 (-455)) (-4 *5 (-725 *4 *2)) (-4 *2 (-1245 *4)) (-5 *1 (-776 *4 *2 *5 *3)) (-4 *3 (-1245 *5)))))
+(-10 -7 (-15 -2724 (|#2| |#4|)))
+((-3588 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57)) (-4396 (((-1274) (-1161) (-1161) |#4| |#5|) 33)) (-3838 ((|#4| |#4| |#5|) 74)) (-2948 (((-645 (-2 (|:| |val| |#4|) (|:| -2575 |#5|))) |#4| |#5|) 79)) (-1302 (((-645 (-2 (|:| |val| (-112)) (|:| -2575 |#5|))) |#4| |#5|) 16)))
+(((-777 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3588 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3838 (|#4| |#4| |#5|)) (-15 -2948 ((-645 (-2 (|:| |val| |#4|) (|:| -2575 |#5|))) |#4| |#5|)) (-15 -4396 ((-1274) (-1161) (-1161) |#4| |#5|)) (-15 -1302 ((-645 (-2 (|:| |val| (-112)) (|:| -2575 |#5|))) |#4| |#5|))) (-455) (-794) (-851) (-1067 |#1| |#2| |#3|) (-1073 |#1| |#2| |#3| |#4|)) (T -777))
+((-1302 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| (-112)) (|:| -2575 *4)))) (-5 *1 (-777 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-4396 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1161)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *4 (-1067 *6 *7 *8)) (-5 *2 (-1274)) (-5 *1 (-777 *6 *7 *8 *4 *5)) (-4 *5 (-1073 *6 *7 *8 *4)))) (-2948 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2575 *4)))) (-5 *1 (-777 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-3838 (*1 *2 *2 *3) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *2 (-1067 *4 *5 *6)) (-5 *1 (-777 *4 *5 *6 *2 *3)) (-4 *3 (-1073 *4 *5 *6 *2)))) (-3588 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-777 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))))
+(-10 -7 (-15 -3588 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3838 (|#4| |#4| |#5|)) (-15 -2948 ((-645 (-2 (|:| |val| |#4|) (|:| -2575 |#5|))) |#4| |#5|)) (-15 -4396 ((-1274) (-1161) (-1161) |#4| |#5|)) (-15 -1302 ((-645 (-2 (|:| |val| (-112)) (|:| -2575 |#5|))) |#4| |#5|)))
+((-3765 (((-3 (-1175 (-1175 |#1|)) "failed") |#4|) 53)) (-3925 (((-645 |#4|) |#4|) 24)) (-2963 ((|#4| |#4|) 19)))
+(((-778 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3925 ((-645 |#4|) |#4|)) (-15 -3765 ((-3 (-1175 (-1175 |#1|)) "failed") |#4|)) (-15 -2963 (|#4| |#4|))) (-351) (-330 |#1|) (-1245 |#2|) (-1245 |#3|) (-923)) (T -778))
+((-2963 (*1 *2 *2) (-12 (-4 *3 (-351)) (-4 *4 (-330 *3)) (-4 *5 (-1245 *4)) (-5 *1 (-778 *3 *4 *5 *2 *6)) (-4 *2 (-1245 *5)) (-14 *6 (-923)))) (-3765 (*1 *2 *3) (|partial| -12 (-4 *4 (-351)) (-4 *5 (-330 *4)) (-4 *6 (-1245 *5)) (-5 *2 (-1175 (-1175 *4))) (-5 *1 (-778 *4 *5 *6 *3 *7)) (-4 *3 (-1245 *6)) (-14 *7 (-923)))) (-3925 (*1 *2 *3) (-12 (-4 *4 (-351)) (-4 *5 (-330 *4)) (-4 *6 (-1245 *5)) (-5 *2 (-645 *3)) (-5 *1 (-778 *4 *5 *6 *3 *7)) (-4 *3 (-1245 *6)) (-14 *7 (-923)))))
+(-10 -7 (-15 -3925 ((-645 |#4|) |#4|)) (-15 -3765 ((-3 (-1175 (-1175 |#1|)) "failed") |#4|)) (-15 -2963 (|#4| |#4|)))
+((-2152 (((-2 (|:| |deter| (-645 (-1175 |#5|))) (|:| |dterm| (-645 (-645 (-2 (|:| -3694 (-772)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-645 |#1|)) (|:| |nlead| (-645 |#5|))) (-1175 |#5|) (-645 |#1|) (-645 |#5|)) 75)) (-2656 (((-645 (-772)) |#1|) 20)))
+(((-779 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2152 ((-2 (|:| |deter| (-645 (-1175 |#5|))) (|:| |dterm| (-645 (-645 (-2 (|:| -3694 (-772)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-645 |#1|)) (|:| |nlead| (-645 |#5|))) (-1175 |#5|) (-645 |#1|) (-645 |#5|))) (-15 -2656 ((-645 (-772)) |#1|))) (-1245 |#4|) (-794) (-851) (-308) (-951 |#4| |#2| |#3|)) (T -779))
+((-2656 (*1 *2 *3) (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-308)) (-5 *2 (-645 (-772))) (-5 *1 (-779 *3 *4 *5 *6 *7)) (-4 *3 (-1245 *6)) (-4 *7 (-951 *6 *4 *5)))) (-2152 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1245 *9)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *9 (-308)) (-4 *10 (-951 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-645 (-1175 *10))) (|:| |dterm| (-645 (-645 (-2 (|:| -3694 (-772)) (|:| |pcoef| *10))))) (|:| |nfacts| (-645 *6)) (|:| |nlead| (-645 *10)))) (-5 *1 (-779 *6 *7 *8 *9 *10)) (-5 *3 (-1175 *10)) (-5 *4 (-645 *6)) (-5 *5 (-645 *10)))))
+(-10 -7 (-15 -2152 ((-2 (|:| |deter| (-645 (-1175 |#5|))) (|:| |dterm| (-645 (-645 (-2 (|:| -3694 (-772)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-645 |#1|)) (|:| |nlead| (-645 |#5|))) (-1175 |#5|) (-645 |#1|) (-645 |#5|))) (-15 -2656 ((-645 (-772)) |#1|)))
+((-4043 (((-645 (-2 (|:| |outval| |#1|) (|:| |outmult| (-567)) (|:| |outvect| (-645 (-690 |#1|))))) (-690 (-410 (-567))) |#1|) 31)) (-3778 (((-645 |#1|) (-690 (-410 (-567))) |#1|) 21)) (-2231 (((-954 (-410 (-567))) (-690 (-410 (-567))) (-1179)) 18) (((-954 (-410 (-567))) (-690 (-410 (-567)))) 17)))
+(((-780 |#1|) (-10 -7 (-15 -2231 ((-954 (-410 (-567))) (-690 (-410 (-567))))) (-15 -2231 ((-954 (-410 (-567))) (-690 (-410 (-567))) (-1179))) (-15 -3778 ((-645 |#1|) (-690 (-410 (-567))) |#1|)) (-15 -4043 ((-645 (-2 (|:| |outval| |#1|) (|:| |outmult| (-567)) (|:| |outvect| (-645 (-690 |#1|))))) (-690 (-410 (-567))) |#1|))) (-13 (-365) (-849))) (T -780))
+((-4043 (*1 *2 *3 *4) (-12 (-5 *3 (-690 (-410 (-567)))) (-5 *2 (-645 (-2 (|:| |outval| *4) (|:| |outmult| (-567)) (|:| |outvect| (-645 (-690 *4)))))) (-5 *1 (-780 *4)) (-4 *4 (-13 (-365) (-849))))) (-3778 (*1 *2 *3 *4) (-12 (-5 *3 (-690 (-410 (-567)))) (-5 *2 (-645 *4)) (-5 *1 (-780 *4)) (-4 *4 (-13 (-365) (-849))))) (-2231 (*1 *2 *3 *4) (-12 (-5 *3 (-690 (-410 (-567)))) (-5 *4 (-1179)) (-5 *2 (-954 (-410 (-567)))) (-5 *1 (-780 *5)) (-4 *5 (-13 (-365) (-849))))) (-2231 (*1 *2 *3) (-12 (-5 *3 (-690 (-410 (-567)))) (-5 *2 (-954 (-410 (-567)))) (-5 *1 (-780 *4)) (-4 *4 (-13 (-365) (-849))))))
+(-10 -7 (-15 -2231 ((-954 (-410 (-567))) (-690 (-410 (-567))))) (-15 -2231 ((-954 (-410 (-567))) (-690 (-410 (-567))) (-1179))) (-15 -3778 ((-645 |#1|) (-690 (-410 (-567))) |#1|)) (-15 -4043 ((-645 (-2 (|:| |outval| |#1|) (|:| |outmult| (-567)) (|:| |outvect| (-645 (-690 |#1|))))) (-690 (-410 (-567))) |#1|)))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) 36)) (-2859 (((-645 |#2|) $) NIL)) (-2684 (((-1175 $) $ |#2|) NIL) (((-1175 |#1|) $) NIL)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-4287 (($ $) NIL (|has| |#1| (-559)))) (-2286 (((-112) $) NIL (|has| |#1| (-559)))) (-3849 (((-772) $) NIL) (((-772) $ (-645 |#2|)) NIL)) (-4284 (($ $) 30)) (-2206 (((-112) $ $) NIL)) (-2376 (((-3 $ "failed") $ $) NIL)) (-3479 (($ $ $) 110 (|has| |#1| (-559)))) (-1750 (((-645 $) $ $) 123 (|has| |#1| (-559)))) (-2029 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-911)))) (-3659 (($ $) NIL (|has| |#1| (-455)))) (-3597 (((-421 $) $) NIL (|has| |#1| (-455)))) (-3610 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-911)))) (-3647 (($) NIL T CONST)) (-3765 (((-3 |#1| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-954 (-410 (-567)))) NIL (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#2| (-615 (-1179))))) (((-3 $ "failed") (-954 (-567))) NIL (-2811 (-12 (|has| |#1| (-38 (-567))) (|has| |#2| (-615 (-1179))) (-1673 (|has| |#1| (-38 (-410 (-567)))))) (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#2| (-615 (-1179)))))) (((-3 $ "failed") (-954 |#1|)) NIL (-2811 (-12 (|has| |#2| (-615 (-1179))) (-1673 (|has| |#1| (-38 (-410 (-567))))) (-1673 (|has| |#1| (-38 (-567))))) (-12 (|has| |#1| (-38 (-567))) (|has| |#2| (-615 (-1179))) (-1673 (|has| |#1| (-38 (-410 (-567))))) (-1673 (|has| |#1| (-548)))) (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#2| (-615 (-1179))) (-1673 (|has| |#1| (-994 (-567))))))) (((-3 (-1127 |#1| |#2|) "failed") $) 21)) (-2051 ((|#1| $) NIL) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-567) $) NIL (|has| |#1| (-1040 (-567)))) ((|#2| $) NIL) (($ (-954 (-410 (-567)))) NIL (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#2| (-615 (-1179))))) (($ (-954 (-567))) NIL (-2811 (-12 (|has| |#1| (-38 (-567))) (|has| |#2| (-615 (-1179))) (-1673 (|has| |#1| (-38 (-410 (-567)))))) (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#2| (-615 (-1179)))))) (($ (-954 |#1|)) NIL (-2811 (-12 (|has| |#2| (-615 (-1179))) (-1673 (|has| |#1| (-38 (-410 (-567))))) (-1673 (|has| |#1| (-38 (-567))))) (-12 (|has| |#1| (-38 (-567))) (|has| |#2| (-615 (-1179))) (-1673 (|has| |#1| (-38 (-410 (-567))))) (-1673 (|has| |#1| (-548)))) (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#2| (-615 (-1179))) (-1673 (|has| |#1| (-994 (-567))))))) (((-1127 |#1| |#2|) $) NIL)) (-3554 (($ $ $ |#2|) NIL (|has| |#1| (-172))) (($ $ $) 121 (|has| |#1| (-559)))) (-3023 (($ $) NIL) (($ $ |#2|) NIL)) (-1423 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4208 (-690 |#1|)) (|:| |vec| (-1269 |#1|))) (-690 $) (-1269 $)) NIL) (((-690 |#1|) (-690 $)) NIL)) (-2240 (((-112) $ $) NIL) (((-112) $ (-645 $)) NIL)) (-3588 (((-3 $ "failed") $) NIL)) (-1688 (((-112) $) NIL)) (-3410 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) 81)) (-1816 (($ $) 136 (|has| |#1| (-455)))) (-2989 (($ $) NIL (|has| |#1| (-455))) (($ $ |#2|) NIL (|has| |#1| (-455)))) (-3010 (((-645 $) $) NIL)) (-3502 (((-112) $) NIL (|has| |#1| (-911)))) (-2389 (($ $) NIL (|has| |#1| (-559)))) (-1313 (($ $) NIL (|has| |#1| (-559)))) (-1811 (($ $ $) 76) (($ $ $ |#2|) NIL)) (-1776 (($ $ $) 79) (($ $ $ |#2|) NIL)) (-3214 (($ $ |#1| (-534 |#2|) $) NIL)) (-3193 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (-12 (|has| |#1| (-888 (-381))) (|has| |#2| (-888 (-381))))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (-12 (|has| |#1| (-888 (-567))) (|has| |#2| (-888 (-567)))))) (-4346 (((-112) $) 57)) (-2851 (((-772) $) NIL)) (-4061 (((-112) $ $) NIL) (((-112) $ (-645 $)) NIL)) (-3435 (($ $ $ $ $) 107 (|has| |#1| (-559)))) (-2072 ((|#2| $) 22)) (-2848 (($ (-1175 |#1|) |#2|) NIL) (($ (-1175 $) |#2|) NIL)) (-2659 (((-645 $) $) NIL)) (-3770 (((-112) $) NIL)) (-2836 (($ |#1| (-534 |#2|)) NIL) (($ $ |#2| (-772)) 38) (($ $ (-645 |#2|) (-645 (-772))) NIL)) (-2617 (($ $ $) 63)) (-2742 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $ |#2|) NIL)) (-2366 (((-112) $) NIL)) (-2955 (((-534 |#2|) $) NIL) (((-772) $ |#2|) NIL) (((-645 (-772)) $ (-645 |#2|)) NIL)) (-3780 (((-772) $) 23)) (-3827 (($ (-1 (-534 |#2|) (-534 |#2|)) $) NIL)) (-3841 (($ (-1 |#1| |#1|) $) NIL)) (-3221 (((-3 |#2| "failed") $) NIL)) (-2326 (($ $) NIL (|has| |#1| (-455)))) (-3840 (($ $) NIL (|has| |#1| (-455)))) (-1637 (((-645 $) $) NIL)) (-2059 (($ $) 39)) (-3916 (($ $) NIL (|has| |#1| (-455)))) (-4221 (((-645 $) $) 43)) (-3248 (($ $) 41)) (-2985 (($ $) NIL)) (-2996 ((|#1| $) NIL) (($ $ |#2|) 48)) (-2751 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-3014 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1921 (-772))) $ $) 96)) (-4040 (((-2 (|:| -3705 $) (|:| |gap| (-772)) (|:| -2654 $) (|:| -2023 $)) $ $) 78) (((-2 (|:| -3705 $) (|:| |gap| (-772)) (|:| -2654 $) (|:| -2023 $)) $ $ |#2|) NIL)) (-1827 (((-2 (|:| -3705 $) (|:| |gap| (-772)) (|:| -2023 $)) $ $) NIL) (((-2 (|:| -3705 $) (|:| |gap| (-772)) (|:| -2023 $)) $ $ |#2|) NIL)) (-3795 (($ $ $) 83) (($ $ $ |#2|) NIL)) (-2349 (($ $ $) 86) (($ $ $ |#2|) NIL)) (-2516 (((-1161) $) NIL)) (-2588 (($ $ $) 125 (|has| |#1| (-559)))) (-2174 (((-645 $) $) 32)) (-3037 (((-3 (-645 $) "failed") $) NIL)) (-3774 (((-3 (-645 $) "failed") $) NIL)) (-3816 (((-3 (-2 (|:| |var| |#2|) (|:| -3468 (-772))) "failed") $) NIL)) (-3324 (((-112) $ $) NIL) (((-112) $ (-645 $)) NIL)) (-1431 (($ $ $) NIL)) (-2694 (($ $) 24)) (-3995 (((-112) $ $) NIL)) (-4278 (((-112) $ $) NIL) (((-112) $ (-645 $)) NIL)) (-3984 (($ $ $) NIL)) (-1523 (($ $) 26)) (-3437 (((-1122) $) NIL)) (-4265 (((-2 (|:| -2785 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-559)))) (-2010 (((-2 (|:| -2785 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-559)))) (-2960 (((-112) $) 56)) (-2971 ((|#1| $) 58)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| |#1| (-455)))) (-2785 ((|#1| |#1| $) 133 (|has| |#1| (-455))) (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-3551 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-911)))) (-2016 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-911)))) (-2717 (((-421 $) $) NIL (|has| |#1| (-911)))) (-3583 (((-2 (|:| -2785 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-559)))) (-2400 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559))) (((-3 $ "failed") $ $) 98 (|has| |#1| (-559)))) (-4242 (($ $ |#1|) 129 (|has| |#1| (-559))) (($ $ $) NIL (|has| |#1| (-559)))) (-2779 (($ $ |#1|) 128 (|has| |#1| (-559))) (($ $ $) NIL (|has| |#1| (-559)))) (-2642 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-645 |#2|) (-645 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-645 |#2|) (-645 $)) NIL)) (-2433 (($ $ |#2|) NIL (|has| |#1| (-172)))) (-1616 (($ $ |#2|) NIL) (($ $ (-645 |#2|)) NIL) (($ $ |#2| (-772)) NIL) (($ $ (-645 |#2|) (-645 (-772))) NIL)) (-3104 (((-534 |#2|) $) NIL) (((-772) $ |#2|) 45) (((-645 (-772)) $ (-645 |#2|)) NIL)) (-2367 (($ $) NIL)) (-4038 (($ $) 35)) (-3902 (((-894 (-381)) $) NIL (-12 (|has| |#1| (-615 (-894 (-381)))) (|has| |#2| (-615 (-894 (-381)))))) (((-894 (-567)) $) NIL (-12 (|has| |#1| (-615 (-894 (-567)))) (|has| |#2| (-615 (-894 (-567)))))) (((-539) $) NIL (-12 (|has| |#1| (-615 (-539))) (|has| |#2| (-615 (-539))))) (($ (-954 (-410 (-567)))) NIL (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#2| (-615 (-1179))))) (($ (-954 (-567))) NIL (-2811 (-12 (|has| |#1| (-38 (-567))) (|has| |#2| (-615 (-1179))) (-1673 (|has| |#1| (-38 (-410 (-567)))))) (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#2| (-615 (-1179)))))) (($ (-954 |#1|)) NIL (|has| |#2| (-615 (-1179)))) (((-1161) $) NIL (-12 (|has| |#1| (-1040 (-567))) (|has| |#2| (-615 (-1179))))) (((-954 |#1|) $) NIL (|has| |#2| (-615 (-1179))))) (-1849 ((|#1| $) 132 (|has| |#1| (-455))) (($ $ |#2|) NIL (|has| |#1| (-455)))) (-2616 (((-3 (-1269 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-911))))) (-4129 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-954 |#1|) $) NIL (|has| |#2| (-615 (-1179)))) (((-1127 |#1| |#2|) $) 18) (($ (-1127 |#1| |#2|)) 19) (($ (-410 (-567))) NIL (-2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567)))))) (($ $) NIL (|has| |#1| (-559)))) (-3601 (((-645 |#1|) $) NIL)) (-2558 ((|#1| $ (-534 |#2|)) NIL) (($ $ |#2| (-772)) 47) (($ $ (-645 |#2|) (-645 (-772))) NIL)) (-2118 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-145)) (|has| |#1| (-911))) (|has| |#1| (-145))))) (-2746 (((-772)) NIL T CONST)) (-3658 (($ $ $ (-772)) NIL (|has| |#1| (-172)))) (-3357 (((-112) $ $) NIL)) (-3731 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1733 (($) 13 T CONST)) (-2843 (((-3 (-112) "failed") $ $) NIL)) (-1744 (($) 37 T CONST)) (-3285 (($ $ $ $ (-772)) 105 (|has| |#1| (-559)))) (-2215 (($ $ $ (-772)) 104 (|has| |#1| (-559)))) (-2647 (($ $ |#2|) NIL) (($ $ (-645 |#2|)) NIL) (($ $ |#2| (-772)) NIL) (($ $ (-645 |#2|) (-645 (-772))) NIL)) (-2946 (((-112) $ $) NIL)) (-3069 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3053 (($ $) NIL) (($ $ $) 75)) (-3041 (($ $ $) 85)) (** (($ $ (-923)) NIL) (($ $ (-772)) 70)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 62) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) 61) (($ $ |#1|) NIL)))
(((-781 |#1| |#2|) (-13 (-1067 |#1| (-534 |#2|) |#2|) (-614 (-1127 |#1| |#2|)) (-1040 (-1127 |#1| |#2|))) (-1051) (-851)) (T -781))
NIL
(-13 (-1067 |#1| (-534 |#2|) |#2|) (-614 (-1127 |#1| |#2|)) (-1040 (-1127 |#1| |#2|)))
-((-3829 (((-783 |#2|) (-1 |#2| |#1|) (-783 |#1|)) 13)))
-(((-782 |#1| |#2|) (-10 -7 (-15 -3829 ((-783 |#2|) (-1 |#2| |#1|) (-783 |#1|)))) (-1051) (-1051)) (T -782))
-((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-783 *5)) (-4 *5 (-1051)) (-4 *6 (-1051)) (-5 *2 (-783 *6)) (-5 *1 (-782 *5 *6)))))
-(-10 -7 (-15 -3829 ((-783 |#2|) (-1 |#2| |#1|) (-783 |#1|))))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) 12)) (-4199 (((-1268 |#1|) $ (-772)) NIL)) (-2847 (((-645 (-1084)) $) NIL)) (-2703 (($ (-1174 |#1|)) NIL)) (-2675 (((-1174 $) $ (-1084)) NIL) (((-1174 |#1|) $) NIL)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-4381 (($ $) NIL (|has| |#1| (-559)))) (-3949 (((-112) $) NIL (|has| |#1| (-559)))) (-1468 (((-772) $) NIL) (((-772) $ (-645 (-1084))) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-1623 (((-645 $) $ $) 54 (|has| |#1| (-559)))) (-2323 (($ $ $) 50 (|has| |#1| (-559)))) (-4226 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-911)))) (-3248 (($ $) NIL (|has| |#1| (-455)))) (-2908 (((-421 $) $) NIL (|has| |#1| (-455)))) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-911)))) (-3609 (((-112) $ $) NIL (|has| |#1| (-365)))) (-1516 (($ $ (-772)) NIL)) (-3993 (($ $ (-772)) NIL)) (-2743 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-455)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 |#1| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-1084) "failed") $) NIL) (((-3 (-1174 |#1|) "failed") $) 10)) (-2038 ((|#1| $) NIL) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-1084) $) NIL) (((-1174 |#1|) $) NIL)) (-2951 (($ $ $ (-1084)) NIL (|has| |#1| (-172))) ((|#1| $ $) 58 (|has| |#1| (-172)))) (-2349 (($ $ $) NIL (|has| |#1| (-365)))) (-3014 (($ $) NIL)) (-2630 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 |#1|)) (|:| |vec| (-1268 |#1|))) (-690 $) (-1268 $)) NIL) (((-690 |#1|) (-690 $)) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-2360 (($ $ $) NIL (|has| |#1| (-365)))) (-1629 (($ $ $) NIL)) (-1946 (($ $ $) 87 (|has| |#1| (-559)))) (-3708 (((-2 (|:| -3694 |#1|) (|:| -3102 $) (|:| -4194 $)) $ $) 86 (|has| |#1| (-559)))) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-3501 (($ $) NIL (|has| |#1| (-455))) (($ $ (-1084)) NIL (|has| |#1| (-455)))) (-3000 (((-645 $) $) NIL)) (-3184 (((-112) $) NIL (|has| |#1| (-911)))) (-2320 (($ $ |#1| (-772) $) NIL)) (-4303 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (-12 (|has| (-1084) (-888 (-381))) (|has| |#1| (-888 (-381))))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (-12 (|has| (-1084) (-888 (-567))) (|has| |#1| (-888 (-567)))))) (-4384 (((-772) $ $) NIL (|has| |#1| (-559)))) (-1433 (((-112) $) NIL)) (-2695 (((-772) $) NIL)) (-3972 (((-3 $ "failed") $) NIL (|has| |#1| (-1153)))) (-2836 (($ (-1174 |#1|) (-1084)) NIL) (($ (-1174 $) (-1084)) NIL)) (-3807 (($ $ (-772)) NIL)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-1709 (((-645 $) $) NIL)) (-2843 (((-112) $) NIL)) (-2824 (($ |#1| (-772)) NIL) (($ $ (-1084) (-772)) NIL) (($ $ (-645 (-1084)) (-645 (-772))) NIL)) (-1838 (($ $ $) 27)) (-1621 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $ (-1084)) NIL) (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL)) (-2656 (((-772) $) NIL) (((-772) $ (-1084)) NIL) (((-645 (-772)) $ (-645 (-1084))) NIL)) (-3273 (($ (-1 (-772) (-772)) $) NIL)) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-1647 (((-1174 |#1|) $) NIL)) (-3046 (((-3 (-1084) "failed") $) NIL)) (-2976 (($ $) NIL)) (-2989 ((|#1| $) NIL)) (-2740 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-1451 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2673 (-772))) $ $) 37)) (-1860 (($ $ $) 41)) (-3304 (($ $ $) 47)) (-2521 (((-2 (|:| -3694 |#1|) (|:| |gap| (-772)) (|:| -3102 $) (|:| -4194 $)) $ $) 46)) (-1419 (((-1160) $) NIL)) (-2272 (($ $ $) 56 (|has| |#1| (-559)))) (-3139 (((-2 (|:| -3102 $) (|:| -4194 $)) $ (-772)) NIL)) (-2056 (((-3 (-645 $) "failed") $) NIL)) (-3671 (((-3 (-645 $) "failed") $) NIL)) (-3798 (((-3 (-2 (|:| |var| (-1084)) (|:| -3458 (-772))) "failed") $) NIL)) (-2416 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2672 (($) NIL (|has| |#1| (-1153)) CONST)) (-3430 (((-1122) $) NIL)) (-3521 (((-2 (|:| -2774 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-559)))) (-4348 (((-2 (|:| -2774 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-559)))) (-3475 (((-2 (|:| -2951 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-559)))) (-2076 (((-2 (|:| -2951 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-559)))) (-2949 (((-112) $) 13)) (-2962 ((|#1| $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#1| (-455)))) (-2774 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-3110 (($ $ (-772) |#1| $) 26)) (-2435 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-911)))) (-3517 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-911)))) (-2706 (((-421 $) $) NIL (|has| |#1| (-911)))) (-1893 (((-2 (|:| -2774 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-559)))) (-4107 (((-2 (|:| -2951 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-559)))) (-3402 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL (|has| |#1| (-365)))) (-2391 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-2631 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-1084) |#1|) NIL) (($ $ (-645 (-1084)) (-645 |#1|)) NIL) (($ $ (-1084) $) NIL) (($ $ (-645 (-1084)) (-645 $)) NIL)) (-1990 (((-772) $) NIL (|has| |#1| (-365)))) (-1787 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-410 $) (-410 $) (-410 $)) NIL (|has| |#1| (-559))) ((|#1| (-410 $) |#1|) NIL (|has| |#1| (-365))) (((-410 $) $ (-410 $)) NIL (|has| |#1| (-559)))) (-3997 (((-3 $ "failed") $ (-772)) NIL)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL (|has| |#1| (-365)))) (-3788 (($ $ (-1084)) NIL (|has| |#1| (-172))) ((|#1| $) NIL (|has| |#1| (-172)))) (-1593 (($ $ (-1084)) NIL) (($ $ (-645 (-1084))) NIL) (($ $ (-1084) (-772)) NIL) (($ $ (-645 (-1084)) (-645 (-772))) NIL) (($ $ (-772)) NIL) (($ $) NIL) (($ $ (-1178)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3077 (((-772) $) NIL) (((-772) $ (-1084)) NIL) (((-645 (-772)) $ (-645 (-1084))) NIL)) (-3893 (((-894 (-381)) $) NIL (-12 (|has| (-1084) (-615 (-894 (-381)))) (|has| |#1| (-615 (-894 (-381)))))) (((-894 (-567)) $) NIL (-12 (|has| (-1084) (-615 (-894 (-567)))) (|has| |#1| (-615 (-894 (-567)))))) (((-539) $) NIL (-12 (|has| (-1084) (-615 (-539))) (|has| |#1| (-615 (-539)))))) (-4358 ((|#1| $) NIL (|has| |#1| (-455))) (($ $ (-1084)) NIL (|has| |#1| (-455)))) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-911))))) (-2159 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559))) (((-3 (-410 $) "failed") (-410 $) $) NIL (|has| |#1| (-559)))) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) NIL) (($ (-1084)) NIL) (((-1174 |#1|) $) 7) (($ (-1174 |#1|)) 8) (($ (-410 (-567))) NIL (-2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567)))))) (($ $) NIL (|has| |#1| (-559)))) (-3032 (((-645 |#1|) $) NIL)) (-4136 ((|#1| $ (-772)) NIL) (($ $ (-1084) (-772)) NIL) (($ $ (-645 (-1084)) (-645 (-772))) NIL)) (-1903 (((-3 $ "failed") $) NIL (-2800 (-12 (|has| $ (-145)) (|has| |#1| (-911))) (|has| |#1| (-145))))) (-4221 (((-772)) NIL T CONST)) (-4176 (($ $ $ (-772)) NIL (|has| |#1| (-172)))) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1716 (($) 28 T CONST)) (-1728 (($) 32 T CONST)) (-2637 (($ $ (-1084)) NIL) (($ $ (-645 (-1084))) NIL) (($ $ (-1084) (-772)) NIL) (($ $ (-645 (-1084)) (-645 (-772))) NIL) (($ $ (-772)) NIL) (($ $) NIL) (($ $ (-1178)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3045 (($ $) 40) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) 31) (($ $ |#1|) NIL)))
-(((-783 |#1|) (-13 (-1244 |#1|) (-614 (-1174 |#1|)) (-1040 (-1174 |#1|)) (-10 -8 (-15 -3110 ($ $ (-772) |#1| $)) (-15 -1838 ($ $ $)) (-15 -1451 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2673 (-772))) $ $)) (-15 -1860 ($ $ $)) (-15 -2521 ((-2 (|:| -3694 |#1|) (|:| |gap| (-772)) (|:| -3102 $) (|:| -4194 $)) $ $)) (-15 -3304 ($ $ $)) (IF (|has| |#1| (-559)) (PROGN (-15 -1623 ((-645 $) $ $)) (-15 -2272 ($ $ $)) (-15 -1893 ((-2 (|:| -2774 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -4348 ((-2 (|:| -2774 $) (|:| |coef1| $)) $ $)) (-15 -3521 ((-2 (|:| -2774 $) (|:| |coef2| $)) $ $)) (-15 -4107 ((-2 (|:| -2951 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2076 ((-2 (|:| -2951 |#1|) (|:| |coef1| $)) $ $)) (-15 -3475 ((-2 (|:| -2951 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1051)) (T -783))
-((-3110 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-772)) (-5 *1 (-783 *3)) (-4 *3 (-1051)))) (-1838 (*1 *1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-1051)))) (-1451 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-783 *3)) (|:| |polden| *3) (|:| -2673 (-772)))) (-5 *1 (-783 *3)) (-4 *3 (-1051)))) (-1860 (*1 *1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-1051)))) (-2521 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3694 *3) (|:| |gap| (-772)) (|:| -3102 (-783 *3)) (|:| -4194 (-783 *3)))) (-5 *1 (-783 *3)) (-4 *3 (-1051)))) (-3304 (*1 *1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-1051)))) (-1623 (*1 *2 *1 *1) (-12 (-5 *2 (-645 (-783 *3))) (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1051)))) (-2272 (*1 *1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-559)) (-4 *2 (-1051)))) (-1893 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2774 (-783 *3)) (|:| |coef1| (-783 *3)) (|:| |coef2| (-783 *3)))) (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1051)))) (-4348 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2774 (-783 *3)) (|:| |coef1| (-783 *3)))) (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1051)))) (-3521 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2774 (-783 *3)) (|:| |coef2| (-783 *3)))) (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1051)))) (-4107 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2951 *3) (|:| |coef1| (-783 *3)) (|:| |coef2| (-783 *3)))) (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1051)))) (-2076 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2951 *3) (|:| |coef1| (-783 *3)))) (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1051)))) (-3475 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2951 *3) (|:| |coef2| (-783 *3)))) (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1051)))))
-(-13 (-1244 |#1|) (-614 (-1174 |#1|)) (-1040 (-1174 |#1|)) (-10 -8 (-15 -3110 ($ $ (-772) |#1| $)) (-15 -1838 ($ $ $)) (-15 -1451 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2673 (-772))) $ $)) (-15 -1860 ($ $ $)) (-15 -2521 ((-2 (|:| -3694 |#1|) (|:| |gap| (-772)) (|:| -3102 $) (|:| -4194 $)) $ $)) (-15 -3304 ($ $ $)) (IF (|has| |#1| (-559)) (PROGN (-15 -1623 ((-645 $) $ $)) (-15 -2272 ($ $ $)) (-15 -1893 ((-2 (|:| -2774 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -4348 ((-2 (|:| -2774 $) (|:| |coef1| $)) $ $)) (-15 -3521 ((-2 (|:| -2774 $) (|:| |coef2| $)) $ $)) (-15 -4107 ((-2 (|:| -2951 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2076 ((-2 (|:| -2951 |#1|) (|:| |coef1| $)) $ $)) (-15 -3475 ((-2 (|:| -2951 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|)))
-((-1440 ((|#1| (-772) |#1|) 33 (|has| |#1| (-38 (-410 (-567)))))) (-3444 ((|#1| (-772) |#1|) 23)) (-3227 ((|#1| (-772) |#1|) 35 (|has| |#1| (-38 (-410 (-567)))))))
-(((-784 |#1|) (-10 -7 (-15 -3444 (|#1| (-772) |#1|)) (IF (|has| |#1| (-38 (-410 (-567)))) (PROGN (-15 -3227 (|#1| (-772) |#1|)) (-15 -1440 (|#1| (-772) |#1|))) |%noBranch|)) (-172)) (T -784))
-((-1440 (*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-784 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-172)))) (-3227 (*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-784 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-172)))) (-3444 (*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-784 *2)) (-4 *2 (-172)))))
-(-10 -7 (-15 -3444 (|#1| (-772) |#1|)) (IF (|has| |#1| (-38 (-410 (-567)))) (PROGN (-15 -3227 (|#1| (-772) |#1|)) (-15 -1440 (|#1| (-772) |#1|))) |%noBranch|))
-((-2403 (((-112) $ $) 7)) (-3487 (((-645 (-2 (|:| -3995 $) (|:| -3823 (-645 |#4|)))) (-645 |#4|)) 86)) (-3244 (((-645 $) (-645 |#4|)) 87) (((-645 $) (-645 |#4|) (-112)) 112)) (-2847 (((-645 |#3|) $) 34)) (-2017 (((-112) $) 27)) (-3623 (((-112) $) 18 (|has| |#1| (-559)))) (-1326 (((-112) |#4| $) 102) (((-112) $) 98)) (-3722 ((|#4| |#4| $) 93)) (-3248 (((-645 (-2 (|:| |val| |#4|) (|:| -2566 $))) |#4| $) 127)) (-4396 (((-2 (|:| |under| $) (|:| -2780 $) (|:| |upper| $)) $ |#3|) 28)) (-3445 (((-112) $ (-772)) 45)) (-3350 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4418))) (((-3 |#4| "failed") $ |#3|) 80)) (-2585 (($) 46 T CONST)) (-1490 (((-112) $) 23 (|has| |#1| (-559)))) (-2752 (((-112) $ $) 25 (|has| |#1| (-559)))) (-4224 (((-112) $ $) 24 (|has| |#1| (-559)))) (-3547 (((-112) $) 26 (|has| |#1| (-559)))) (-1441 (((-645 |#4|) (-645 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1724 (((-645 |#4|) (-645 |#4|) $) 19 (|has| |#1| (-559)))) (-3197 (((-645 |#4|) (-645 |#4|) $) 20 (|has| |#1| (-559)))) (-3753 (((-3 $ "failed") (-645 |#4|)) 37)) (-2038 (($ (-645 |#4|)) 36)) (-2421 (((-3 $ "failed") $) 83)) (-1999 ((|#4| |#4| $) 90)) (-2444 (($ $) 69 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4418))))) (-3238 (($ |#4| $) 68 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4418)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4418)))) (-4194 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-559)))) (-3786 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3730 ((|#4| |#4| $) 88)) (-2477 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4418)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4418))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4418))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1585 (((-2 (|:| -3995 (-645 |#4|)) (|:| -3823 (-645 |#4|))) $) 106)) (-3783 (((-112) |#4| $) 137)) (-1829 (((-112) |#4| $) 134)) (-2127 (((-112) |#4| $) 138) (((-112) $) 135)) (-2777 (((-645 |#4|) $) 53 (|has| $ (-6 -4418)))) (-1664 (((-112) |#4| $) 105) (((-112) $) 104)) (-1679 ((|#3| $) 35)) (-2077 (((-112) $ (-772)) 44)) (-2279 (((-645 |#4|) $) 54 (|has| $ (-6 -4418)))) (-4337 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4418))))) (-3731 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#4| |#4|) $) 48)) (-2826 (((-645 |#3|) $) 33)) (-2808 (((-112) |#3| $) 32)) (-2863 (((-112) $ (-772)) 43)) (-1419 (((-1160) $) 10)) (-3232 (((-3 |#4| (-645 $)) |#4| |#4| $) 129)) (-2272 (((-645 (-2 (|:| |val| |#4|) (|:| -2566 $))) |#4| |#4| $) 128)) (-3257 (((-3 |#4| "failed") $) 84)) (-1756 (((-645 $) |#4| $) 130)) (-4057 (((-3 (-112) (-645 $)) |#4| $) 133)) (-3573 (((-645 (-2 (|:| |val| (-112)) (|:| -2566 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-2370 (((-645 $) |#4| $) 126) (((-645 $) (-645 |#4|) $) 125) (((-645 $) (-645 |#4|) (-645 $)) 124) (((-645 $) |#4| (-645 $)) 123)) (-3101 (($ |#4| $) 118) (($ (-645 |#4|) $) 117)) (-4051 (((-645 |#4|) $) 108)) (-1791 (((-112) |#4| $) 100) (((-112) $) 96)) (-3159 ((|#4| |#4| $) 91)) (-3392 (((-112) $ $) 111)) (-2430 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-559)))) (-2554 (((-112) |#4| $) 101) (((-112) $) 97)) (-4164 ((|#4| |#4| $) 92)) (-3430 (((-1122) $) 11)) (-2409 (((-3 |#4| "failed") $) 85)) (-4128 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-4077 (((-3 $ "failed") $ |#4|) 79)) (-2410 (($ $ |#4|) 78) (((-645 $) |#4| $) 116) (((-645 $) |#4| (-645 $)) 115) (((-645 $) (-645 |#4|) $) 114) (((-645 $) (-645 |#4|) (-645 $)) 113)) (-3025 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 |#4|) (-645 |#4|)) 60 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-295 |#4|)) 58 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-645 (-295 |#4|))) 57 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))))) (-3092 (((-112) $ $) 39)) (-3572 (((-112) $) 42)) (-3498 (($) 41)) (-3077 (((-772) $) 107)) (-3439 (((-772) |#4| $) 55 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4418)))) (((-772) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4418)))) (-4305 (($ $) 40)) (-3893 (((-539) $) 70 (|has| |#4| (-615 (-539))))) (-4147 (($ (-645 |#4|)) 61)) (-2397 (($ $ |#3|) 29)) (-2120 (($ $ |#3|) 31)) (-4129 (($ $) 89)) (-2813 (($ $ |#3|) 30)) (-4132 (((-863) $) 12) (((-645 |#4|) $) 38)) (-2073 (((-772) $) 77 (|has| |#3| (-370)))) (-1745 (((-112) $ $) 9)) (-2220 (((-3 (-2 (|:| |bas| $) (|:| -2262 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2262 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-2668 (((-112) $ (-1 (-112) |#4| (-645 |#4|))) 99)) (-4021 (((-645 $) |#4| $) 122) (((-645 $) |#4| (-645 $)) 121) (((-645 $) (-645 |#4|) $) 120) (((-645 $) (-645 |#4|) (-645 $)) 119)) (-1853 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4418)))) (-2385 (((-645 |#3|) $) 82)) (-2848 (((-112) |#4| $) 136)) (-2012 (((-112) |#3| $) 81)) (-2936 (((-112) $ $) 6)) (-2414 (((-772) $) 47 (|has| $ (-6 -4418)))))
+((-3841 (((-783 |#2|) (-1 |#2| |#1|) (-783 |#1|)) 13)))
+(((-782 |#1| |#2|) (-10 -7 (-15 -3841 ((-783 |#2|) (-1 |#2| |#1|) (-783 |#1|)))) (-1051) (-1051)) (T -782))
+((-3841 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-783 *5)) (-4 *5 (-1051)) (-4 *6 (-1051)) (-5 *2 (-783 *6)) (-5 *1 (-782 *5 *6)))))
+(-10 -7 (-15 -3841 ((-783 |#2|) (-1 |#2| |#1|) (-783 |#1|))))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) 12)) (-2405 (((-1269 |#1|) $ (-772)) NIL)) (-2859 (((-645 (-1084)) $) NIL)) (-2323 (($ (-1175 |#1|)) NIL)) (-2684 (((-1175 $) $ (-1084)) NIL) (((-1175 |#1|) $) NIL)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-4287 (($ $) NIL (|has| |#1| (-559)))) (-2286 (((-112) $) NIL (|has| |#1| (-559)))) (-3849 (((-772) $) NIL) (((-772) $ (-645 (-1084))) NIL)) (-2376 (((-3 $ "failed") $ $) NIL)) (-2922 (((-645 $) $ $) 54 (|has| |#1| (-559)))) (-3479 (($ $ $) 50 (|has| |#1| (-559)))) (-2029 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-911)))) (-3659 (($ $) NIL (|has| |#1| (-455)))) (-3597 (((-421 $) $) NIL (|has| |#1| (-455)))) (-3610 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-911)))) (-3696 (((-112) $ $) NIL (|has| |#1| (-365)))) (-2520 (($ $ (-772)) NIL)) (-3325 (($ $ (-772)) NIL)) (-3542 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-455)))) (-3647 (($) NIL T CONST)) (-3765 (((-3 |#1| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-1084) "failed") $) NIL) (((-3 (-1175 |#1|) "failed") $) 10)) (-2051 ((|#1| $) NIL) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-1084) $) NIL) (((-1175 |#1|) $) NIL)) (-3554 (($ $ $ (-1084)) NIL (|has| |#1| (-172))) ((|#1| $ $) 58 (|has| |#1| (-172)))) (-2357 (($ $ $) NIL (|has| |#1| (-365)))) (-3023 (($ $) NIL)) (-1423 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4208 (-690 |#1|)) (|:| |vec| (-1269 |#1|))) (-690 $) (-1269 $)) NIL) (((-690 |#1|) (-690 $)) NIL)) (-3588 (((-3 $ "failed") $) NIL)) (-2368 (($ $ $) NIL (|has| |#1| (-365)))) (-2463 (($ $ $) NIL)) (-1374 (($ $ $) 87 (|has| |#1| (-559)))) (-3410 (((-2 (|:| -3705 |#1|) (|:| -2654 $) (|:| -2023 $)) $ $) 86 (|has| |#1| (-559)))) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-2989 (($ $) NIL (|has| |#1| (-455))) (($ $ (-1084)) NIL (|has| |#1| (-455)))) (-3010 (((-645 $) $) NIL)) (-3502 (((-112) $) NIL (|has| |#1| (-911)))) (-3214 (($ $ |#1| (-772) $) NIL)) (-3193 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (-12 (|has| (-1084) (-888 (-381))) (|has| |#1| (-888 (-381))))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (-12 (|has| (-1084) (-888 (-567))) (|has| |#1| (-888 (-567)))))) (-3362 (((-772) $ $) NIL (|has| |#1| (-559)))) (-4346 (((-112) $) NIL)) (-2851 (((-772) $) NIL)) (-3067 (((-3 $ "failed") $) NIL (|has| |#1| (-1154)))) (-2848 (($ (-1175 |#1|) (-1084)) NIL) (($ (-1175 $) (-1084)) NIL)) (-1343 (($ $ (-772)) NIL)) (-1469 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-2659 (((-645 $) $) NIL)) (-3770 (((-112) $) NIL)) (-2836 (($ |#1| (-772)) NIL) (($ $ (-1084) (-772)) NIL) (($ $ (-645 (-1084)) (-645 (-772))) NIL)) (-2617 (($ $ $) 27)) (-2742 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $ (-1084)) NIL) (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) NIL)) (-2955 (((-772) $) NIL) (((-772) $ (-1084)) NIL) (((-645 (-772)) $ (-645 (-1084))) NIL)) (-3827 (($ (-1 (-772) (-772)) $) NIL)) (-3841 (($ (-1 |#1| |#1|) $) NIL)) (-2896 (((-1175 |#1|) $) NIL)) (-3221 (((-3 (-1084) "failed") $) NIL)) (-2985 (($ $) NIL)) (-2996 ((|#1| $) NIL)) (-2751 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-3014 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -1921 (-772))) $ $) 37)) (-3787 (($ $ $) 41)) (-1712 (($ $ $) 47)) (-4040 (((-2 (|:| -3705 |#1|) (|:| |gap| (-772)) (|:| -2654 $) (|:| -2023 $)) $ $) 46)) (-2516 (((-1161) $) NIL)) (-2588 (($ $ $) 56 (|has| |#1| (-559)))) (-3421 (((-2 (|:| -2654 $) (|:| -2023 $)) $ (-772)) NIL)) (-3037 (((-3 (-645 $) "failed") $) NIL)) (-3774 (((-3 (-645 $) "failed") $) NIL)) (-3816 (((-3 (-2 (|:| |var| (-1084)) (|:| -3468 (-772))) "failed") $) NIL)) (-4083 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2694 (($) NIL (|has| |#1| (-1154)) CONST)) (-3437 (((-1122) $) NIL)) (-4265 (((-2 (|:| -2785 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-559)))) (-2010 (((-2 (|:| -2785 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-559)))) (-1388 (((-2 (|:| -3554 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-559)))) (-3971 (((-2 (|:| -3554 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-559)))) (-2960 (((-112) $) 13)) (-2971 ((|#1| $) NIL)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| |#1| (-455)))) (-2785 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-3166 (($ $ (-772) |#1| $) 26)) (-3551 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-911)))) (-2016 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-911)))) (-2717 (((-421 $) $) NIL (|has| |#1| (-911)))) (-3583 (((-2 (|:| -2785 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-559)))) (-4048 (((-2 (|:| -3554 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-559)))) (-2905 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) NIL (|has| |#1| (-365)))) (-2400 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-2372 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-2642 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-1084) |#1|) NIL) (($ $ (-645 (-1084)) (-645 |#1|)) NIL) (($ $ (-1084) $) NIL) (($ $ (-645 (-1084)) (-645 $)) NIL)) (-2460 (((-772) $) NIL (|has| |#1| (-365)))) (-1801 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-410 $) (-410 $) (-410 $)) NIL (|has| |#1| (-559))) ((|#1| (-410 $) |#1|) NIL (|has| |#1| (-365))) (((-410 $) $ (-410 $)) NIL (|has| |#1| (-559)))) (-2776 (((-3 $ "failed") $ (-772)) NIL)) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) NIL (|has| |#1| (-365)))) (-2433 (($ $ (-1084)) NIL (|has| |#1| (-172))) ((|#1| $) NIL (|has| |#1| (-172)))) (-1616 (($ $ (-1084)) NIL) (($ $ (-645 (-1084))) NIL) (($ $ (-1084) (-772)) NIL) (($ $ (-645 (-1084)) (-645 (-772))) NIL) (($ $ (-772)) NIL) (($ $) NIL) (($ $ (-1179)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3104 (((-772) $) NIL) (((-772) $ (-1084)) NIL) (((-645 (-772)) $ (-645 (-1084))) NIL)) (-3902 (((-894 (-381)) $) NIL (-12 (|has| (-1084) (-615 (-894 (-381)))) (|has| |#1| (-615 (-894 (-381)))))) (((-894 (-567)) $) NIL (-12 (|has| (-1084) (-615 (-894 (-567)))) (|has| |#1| (-615 (-894 (-567)))))) (((-539) $) NIL (-12 (|has| (-1084) (-615 (-539))) (|has| |#1| (-615 (-539)))))) (-1849 ((|#1| $) NIL (|has| |#1| (-455))) (($ $ (-1084)) NIL (|has| |#1| (-455)))) (-2616 (((-3 (-1269 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-911))))) (-1409 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559))) (((-3 (-410 $) "failed") (-410 $) $) NIL (|has| |#1| (-559)))) (-4129 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) NIL) (($ (-1084)) NIL) (((-1175 |#1|) $) 7) (($ (-1175 |#1|)) 8) (($ (-410 (-567))) NIL (-2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567)))))) (($ $) NIL (|has| |#1| (-559)))) (-3601 (((-645 |#1|) $) NIL)) (-2558 ((|#1| $ (-772)) NIL) (($ $ (-1084) (-772)) NIL) (($ $ (-645 (-1084)) (-645 (-772))) NIL)) (-2118 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-145)) (|has| |#1| (-911))) (|has| |#1| (-145))))) (-2746 (((-772)) NIL T CONST)) (-3658 (($ $ $ (-772)) NIL (|has| |#1| (-172)))) (-3357 (((-112) $ $) NIL)) (-3731 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1733 (($) 28 T CONST)) (-1744 (($) 32 T CONST)) (-2647 (($ $ (-1084)) NIL) (($ $ (-645 (-1084))) NIL) (($ $ (-1084) (-772)) NIL) (($ $ (-645 (-1084)) (-645 (-772))) NIL) (($ $ (-772)) NIL) (($ $) NIL) (($ $ (-1179)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2946 (((-112) $ $) NIL)) (-3069 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3053 (($ $) 40) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) 31) (($ $ |#1|) NIL)))
+(((-783 |#1|) (-13 (-1245 |#1|) (-614 (-1175 |#1|)) (-1040 (-1175 |#1|)) (-10 -8 (-15 -3166 ($ $ (-772) |#1| $)) (-15 -2617 ($ $ $)) (-15 -3014 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -1921 (-772))) $ $)) (-15 -3787 ($ $ $)) (-15 -4040 ((-2 (|:| -3705 |#1|) (|:| |gap| (-772)) (|:| -2654 $) (|:| -2023 $)) $ $)) (-15 -1712 ($ $ $)) (IF (|has| |#1| (-559)) (PROGN (-15 -2922 ((-645 $) $ $)) (-15 -2588 ($ $ $)) (-15 -3583 ((-2 (|:| -2785 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2010 ((-2 (|:| -2785 $) (|:| |coef1| $)) $ $)) (-15 -4265 ((-2 (|:| -2785 $) (|:| |coef2| $)) $ $)) (-15 -4048 ((-2 (|:| -3554 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3971 ((-2 (|:| -3554 |#1|) (|:| |coef1| $)) $ $)) (-15 -1388 ((-2 (|:| -3554 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1051)) (T -783))
+((-3166 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-772)) (-5 *1 (-783 *3)) (-4 *3 (-1051)))) (-2617 (*1 *1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-1051)))) (-3014 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-783 *3)) (|:| |polden| *3) (|:| -1921 (-772)))) (-5 *1 (-783 *3)) (-4 *3 (-1051)))) (-3787 (*1 *1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-1051)))) (-4040 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3705 *3) (|:| |gap| (-772)) (|:| -2654 (-783 *3)) (|:| -2023 (-783 *3)))) (-5 *1 (-783 *3)) (-4 *3 (-1051)))) (-1712 (*1 *1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-1051)))) (-2922 (*1 *2 *1 *1) (-12 (-5 *2 (-645 (-783 *3))) (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1051)))) (-2588 (*1 *1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-559)) (-4 *2 (-1051)))) (-3583 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2785 (-783 *3)) (|:| |coef1| (-783 *3)) (|:| |coef2| (-783 *3)))) (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1051)))) (-2010 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2785 (-783 *3)) (|:| |coef1| (-783 *3)))) (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1051)))) (-4265 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2785 (-783 *3)) (|:| |coef2| (-783 *3)))) (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1051)))) (-4048 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3554 *3) (|:| |coef1| (-783 *3)) (|:| |coef2| (-783 *3)))) (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1051)))) (-3971 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3554 *3) (|:| |coef1| (-783 *3)))) (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1051)))) (-1388 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3554 *3) (|:| |coef2| (-783 *3)))) (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1051)))))
+(-13 (-1245 |#1|) (-614 (-1175 |#1|)) (-1040 (-1175 |#1|)) (-10 -8 (-15 -3166 ($ $ (-772) |#1| $)) (-15 -2617 ($ $ $)) (-15 -3014 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -1921 (-772))) $ $)) (-15 -3787 ($ $ $)) (-15 -4040 ((-2 (|:| -3705 |#1|) (|:| |gap| (-772)) (|:| -2654 $) (|:| -2023 $)) $ $)) (-15 -1712 ($ $ $)) (IF (|has| |#1| (-559)) (PROGN (-15 -2922 ((-645 $) $ $)) (-15 -2588 ($ $ $)) (-15 -3583 ((-2 (|:| -2785 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2010 ((-2 (|:| -2785 $) (|:| |coef1| $)) $ $)) (-15 -4265 ((-2 (|:| -2785 $) (|:| |coef2| $)) $ $)) (-15 -4048 ((-2 (|:| -3554 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3971 ((-2 (|:| -3554 |#1|) (|:| |coef1| $)) $ $)) (-15 -1388 ((-2 (|:| -3554 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|)))
+((-3580 ((|#1| (-772) |#1|) 33 (|has| |#1| (-38 (-410 (-567)))))) (-1463 ((|#1| (-772) |#1|) 23)) (-4121 ((|#1| (-772) |#1|) 35 (|has| |#1| (-38 (-410 (-567)))))))
+(((-784 |#1|) (-10 -7 (-15 -1463 (|#1| (-772) |#1|)) (IF (|has| |#1| (-38 (-410 (-567)))) (PROGN (-15 -4121 (|#1| (-772) |#1|)) (-15 -3580 (|#1| (-772) |#1|))) |%noBranch|)) (-172)) (T -784))
+((-3580 (*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-784 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-172)))) (-4121 (*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-784 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-172)))) (-1463 (*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-784 *2)) (-4 *2 (-172)))))
+(-10 -7 (-15 -1463 (|#1| (-772) |#1|)) (IF (|has| |#1| (-38 (-410 (-567)))) (PROGN (-15 -4121 (|#1| (-772) |#1|)) (-15 -3580 (|#1| (-772) |#1|))) |%noBranch|))
+((-2412 (((-112) $ $) 7)) (-4305 (((-645 (-2 (|:| -4000 $) (|:| -3835 (-645 |#4|)))) (-645 |#4|)) 86)) (-3403 (((-645 $) (-645 |#4|)) 87) (((-645 $) (-645 |#4|) (-112)) 112)) (-2859 (((-645 |#3|) $) 34)) (-3153 (((-112) $) 27)) (-2031 (((-112) $) 18 (|has| |#1| (-559)))) (-2176 (((-112) |#4| $) 102) (((-112) $) 98)) (-2345 ((|#4| |#4| $) 93)) (-3659 (((-645 (-2 (|:| |val| |#4|) (|:| -2575 $))) |#4| $) 127)) (-1311 (((-2 (|:| |under| $) (|:| -3969 $) (|:| |upper| $)) $ |#3|) 28)) (-1563 (((-112) $ (-772)) 45)) (-3356 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4422))) (((-3 |#4| "failed") $ |#3|) 80)) (-3647 (($) 46 T CONST)) (-1896 (((-112) $) 23 (|has| |#1| (-559)))) (-2909 (((-112) $ $) 25 (|has| |#1| (-559)))) (-3040 (((-112) $ $) 24 (|has| |#1| (-559)))) (-3365 (((-112) $) 26 (|has| |#1| (-559)))) (-3683 (((-645 |#4|) (-645 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1377 (((-645 |#4|) (-645 |#4|) $) 19 (|has| |#1| (-559)))) (-2279 (((-645 |#4|) (-645 |#4|) $) 20 (|has| |#1| (-559)))) (-3765 (((-3 $ "failed") (-645 |#4|)) 37)) (-2051 (($ (-645 |#4|)) 36)) (-2430 (((-3 $ "failed") $) 83)) (-3819 ((|#4| |#4| $) 90)) (-2453 (($ $) 69 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4422))))) (-3246 (($ |#4| $) 68 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4422)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4422)))) (-2023 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-559)))) (-2240 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-1889 ((|#4| |#4| $) 88)) (-2494 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4422)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4422))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4422))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-4076 (((-2 (|:| -4000 (-645 |#4|)) (|:| -3835 (-645 |#4|))) $) 106)) (-2057 (((-112) |#4| $) 137)) (-4104 (((-112) |#4| $) 134)) (-1413 (((-112) |#4| $) 138) (((-112) $) 135)) (-2799 (((-645 |#4|) $) 53 (|has| $ (-6 -4422)))) (-4061 (((-112) |#4| $) 105) (((-112) $) 104)) (-2072 ((|#3| $) 35)) (-4093 (((-112) $ (-772)) 44)) (-1942 (((-645 |#4|) $) 54 (|has| $ (-6 -4422)))) (-3237 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4422))))) (-3751 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#4| |#4|) $) 48)) (-2869 (((-645 |#3|) $) 33)) (-1524 (((-112) |#3| $) 32)) (-1986 (((-112) $ (-772)) 43)) (-2516 (((-1161) $) 10)) (-3295 (((-3 |#4| (-645 $)) |#4| |#4| $) 129)) (-2588 (((-645 (-2 (|:| |val| |#4|) (|:| -2575 $))) |#4| |#4| $) 128)) (-3266 (((-3 |#4| "failed") $) 84)) (-2055 (((-645 $) |#4| $) 130)) (-2254 (((-3 (-112) (-645 $)) |#4| $) 133)) (-3992 (((-645 (-2 (|:| |val| (-112)) (|:| -2575 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3660 (((-645 $) |#4| $) 126) (((-645 $) (-645 |#4|) $) 125) (((-645 $) (-645 |#4|) (-645 $)) 124) (((-645 $) |#4| (-645 $)) 123)) (-2579 (($ |#4| $) 118) (($ (-645 |#4|) $) 117)) (-3881 (((-645 |#4|) $) 108)) (-3324 (((-112) |#4| $) 100) (((-112) $) 96)) (-1431 ((|#4| |#4| $) 91)) (-3995 (((-112) $ $) 111)) (-2634 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-559)))) (-4278 (((-112) |#4| $) 101) (((-112) $) 97)) (-3984 ((|#4| |#4| $) 92)) (-3437 (((-1122) $) 11)) (-2418 (((-3 |#4| "failed") $) 85)) (-3196 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3488 (((-3 $ "failed") $ |#4|) 79)) (-1874 (($ $ |#4|) 78) (((-645 $) |#4| $) 116) (((-645 $) |#4| (-645 $)) 115) (((-645 $) (-645 |#4|) $) 114) (((-645 $) (-645 |#4|) (-645 $)) 113)) (-4233 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 |#4|) (-645 |#4|)) 60 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-295 |#4|)) 58 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-645 (-295 |#4|))) 57 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))))) (-3875 (((-112) $ $) 39)) (-3885 (((-112) $) 42)) (-2701 (($) 41)) (-3104 (((-772) $) 107)) (-3447 (((-772) |#4| $) 55 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4422)))) (((-772) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4422)))) (-4309 (($ $) 40)) (-3902 (((-539) $) 70 (|has| |#4| (-615 (-539))))) (-4145 (($ (-645 |#4|)) 61)) (-3937 (($ $ |#3|) 29)) (-3165 (($ $ |#3|) 31)) (-2085 (($ $) 89)) (-1920 (($ $ |#3|) 30)) (-4129 (((-863) $) 12) (((-645 |#4|) $) 38)) (-1975 (((-772) $) 77 (|has| |#3| (-370)))) (-3357 (((-112) $ $) 9)) (-1676 (((-3 (-2 (|:| |bas| $) (|:| -2270 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2270 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-1642 (((-112) $ (-1 (-112) |#4| (-645 |#4|))) 99)) (-3730 (((-645 $) |#4| $) 122) (((-645 $) |#4| (-645 $)) 121) (((-645 $) (-645 |#4|) $) 120) (((-645 $) (-645 |#4|) (-645 $)) 119)) (-3436 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4422)))) (-2551 (((-645 |#3|) $) 82)) (-3991 (((-112) |#4| $) 136)) (-2618 (((-112) |#3| $) 81)) (-2946 (((-112) $ $) 6)) (-2423 (((-772) $) 47 (|has| $ (-6 -4422)))))
(((-785 |#1| |#2| |#3| |#4|) (-140) (-455) (-794) (-851) (-1067 |t#1| |t#2| |t#3|)) (T -785))
NIL
(-13 (-1073 |t#1| |t#2| |t#3| |t#4|))
-(((-34) . T) ((-102) . T) ((-614 (-645 |#4|)) . T) ((-614 (-863)) . T) ((-151 |#4|) . T) ((-615 (-539)) |has| |#4| (-615 (-539))) ((-310 |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))) ((-492 |#4|) . T) ((-517 |#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))) ((-978 |#1| |#2| |#3| |#4|) . T) ((-1073 |#1| |#2| |#3| |#4|) . T) ((-1102) . T) ((-1211 |#1| |#2| |#3| |#4|) . T) ((-1218) . T))
-((-3794 (((-3 (-381) "failed") (-317 |#1|) (-923)) 62 (-12 (|has| |#1| (-559)) (|has| |#1| (-851)))) (((-3 (-381) "failed") (-317 |#1|)) 54 (-12 (|has| |#1| (-559)) (|has| |#1| (-851)))) (((-3 (-381) "failed") (-410 (-954 |#1|)) (-923)) 41 (|has| |#1| (-559))) (((-3 (-381) "failed") (-410 (-954 |#1|))) 40 (|has| |#1| (-559))) (((-3 (-381) "failed") (-954 |#1|) (-923)) 31 (|has| |#1| (-1051))) (((-3 (-381) "failed") (-954 |#1|)) 30 (|has| |#1| (-1051)))) (-3875 (((-381) (-317 |#1|) (-923)) 99 (-12 (|has| |#1| (-559)) (|has| |#1| (-851)))) (((-381) (-317 |#1|)) 94 (-12 (|has| |#1| (-559)) (|has| |#1| (-851)))) (((-381) (-410 (-954 |#1|)) (-923)) 91 (|has| |#1| (-559))) (((-381) (-410 (-954 |#1|))) 90 (|has| |#1| (-559))) (((-381) (-954 |#1|) (-923)) 86 (|has| |#1| (-1051))) (((-381) (-954 |#1|)) 85 (|has| |#1| (-1051))) (((-381) |#1| (-923)) 76) (((-381) |#1|) 22)) (-4328 (((-3 (-169 (-381)) "failed") (-317 (-169 |#1|)) (-923)) 71 (-12 (|has| |#1| (-559)) (|has| |#1| (-851)))) (((-3 (-169 (-381)) "failed") (-317 (-169 |#1|))) 70 (-12 (|has| |#1| (-559)) (|has| |#1| (-851)))) (((-3 (-169 (-381)) "failed") (-317 |#1|) (-923)) 63 (-12 (|has| |#1| (-559)) (|has| |#1| (-851)))) (((-3 (-169 (-381)) "failed") (-317 |#1|)) 61 (-12 (|has| |#1| (-559)) (|has| |#1| (-851)))) (((-3 (-169 (-381)) "failed") (-410 (-954 (-169 |#1|))) (-923)) 46 (|has| |#1| (-559))) (((-3 (-169 (-381)) "failed") (-410 (-954 (-169 |#1|)))) 45 (|has| |#1| (-559))) (((-3 (-169 (-381)) "failed") (-410 (-954 |#1|)) (-923)) 39 (|has| |#1| (-559))) (((-3 (-169 (-381)) "failed") (-410 (-954 |#1|))) 38 (|has| |#1| (-559))) (((-3 (-169 (-381)) "failed") (-954 |#1|) (-923)) 28 (|has| |#1| (-1051))) (((-3 (-169 (-381)) "failed") (-954 |#1|)) 26 (|has| |#1| (-1051))) (((-3 (-169 (-381)) "failed") (-954 (-169 |#1|)) (-923)) 18 (|has| |#1| (-172))) (((-3 (-169 (-381)) "failed") (-954 (-169 |#1|))) 15 (|has| |#1| (-172)))) (-2622 (((-169 (-381)) (-317 (-169 |#1|)) (-923)) 102 (-12 (|has| |#1| (-559)) (|has| |#1| (-851)))) (((-169 (-381)) (-317 (-169 |#1|))) 101 (-12 (|has| |#1| (-559)) (|has| |#1| (-851)))) (((-169 (-381)) (-317 |#1|) (-923)) 100 (-12 (|has| |#1| (-559)) (|has| |#1| (-851)))) (((-169 (-381)) (-317 |#1|)) 98 (-12 (|has| |#1| (-559)) (|has| |#1| (-851)))) (((-169 (-381)) (-410 (-954 (-169 |#1|))) (-923)) 93 (|has| |#1| (-559))) (((-169 (-381)) (-410 (-954 (-169 |#1|)))) 92 (|has| |#1| (-559))) (((-169 (-381)) (-410 (-954 |#1|)) (-923)) 89 (|has| |#1| (-559))) (((-169 (-381)) (-410 (-954 |#1|))) 88 (|has| |#1| (-559))) (((-169 (-381)) (-954 |#1|) (-923)) 84 (|has| |#1| (-1051))) (((-169 (-381)) (-954 |#1|)) 83 (|has| |#1| (-1051))) (((-169 (-381)) (-954 (-169 |#1|)) (-923)) 78 (|has| |#1| (-172))) (((-169 (-381)) (-954 (-169 |#1|))) 77 (|has| |#1| (-172))) (((-169 (-381)) (-169 |#1|) (-923)) 80 (|has| |#1| (-172))) (((-169 (-381)) (-169 |#1|)) 79 (|has| |#1| (-172))) (((-169 (-381)) |#1| (-923)) 27) (((-169 (-381)) |#1|) 25)))
-(((-786 |#1|) (-10 -7 (-15 -3875 ((-381) |#1|)) (-15 -3875 ((-381) |#1| (-923))) (-15 -2622 ((-169 (-381)) |#1|)) (-15 -2622 ((-169 (-381)) |#1| (-923))) (IF (|has| |#1| (-172)) (PROGN (-15 -2622 ((-169 (-381)) (-169 |#1|))) (-15 -2622 ((-169 (-381)) (-169 |#1|) (-923))) (-15 -2622 ((-169 (-381)) (-954 (-169 |#1|)))) (-15 -2622 ((-169 (-381)) (-954 (-169 |#1|)) (-923)))) |%noBranch|) (IF (|has| |#1| (-1051)) (PROGN (-15 -3875 ((-381) (-954 |#1|))) (-15 -3875 ((-381) (-954 |#1|) (-923))) (-15 -2622 ((-169 (-381)) (-954 |#1|))) (-15 -2622 ((-169 (-381)) (-954 |#1|) (-923)))) |%noBranch|) (IF (|has| |#1| (-559)) (PROGN (-15 -3875 ((-381) (-410 (-954 |#1|)))) (-15 -3875 ((-381) (-410 (-954 |#1|)) (-923))) (-15 -2622 ((-169 (-381)) (-410 (-954 |#1|)))) (-15 -2622 ((-169 (-381)) (-410 (-954 |#1|)) (-923))) (-15 -2622 ((-169 (-381)) (-410 (-954 (-169 |#1|))))) (-15 -2622 ((-169 (-381)) (-410 (-954 (-169 |#1|))) (-923))) (IF (|has| |#1| (-851)) (PROGN (-15 -3875 ((-381) (-317 |#1|))) (-15 -3875 ((-381) (-317 |#1|) (-923))) (-15 -2622 ((-169 (-381)) (-317 |#1|))) (-15 -2622 ((-169 (-381)) (-317 |#1|) (-923))) (-15 -2622 ((-169 (-381)) (-317 (-169 |#1|)))) (-15 -2622 ((-169 (-381)) (-317 (-169 |#1|)) (-923)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-15 -4328 ((-3 (-169 (-381)) "failed") (-954 (-169 |#1|)))) (-15 -4328 ((-3 (-169 (-381)) "failed") (-954 (-169 |#1|)) (-923)))) |%noBranch|) (IF (|has| |#1| (-1051)) (PROGN (-15 -3794 ((-3 (-381) "failed") (-954 |#1|))) (-15 -3794 ((-3 (-381) "failed") (-954 |#1|) (-923))) (-15 -4328 ((-3 (-169 (-381)) "failed") (-954 |#1|))) (-15 -4328 ((-3 (-169 (-381)) "failed") (-954 |#1|) (-923)))) |%noBranch|) (IF (|has| |#1| (-559)) (PROGN (-15 -3794 ((-3 (-381) "failed") (-410 (-954 |#1|)))) (-15 -3794 ((-3 (-381) "failed") (-410 (-954 |#1|)) (-923))) (-15 -4328 ((-3 (-169 (-381)) "failed") (-410 (-954 |#1|)))) (-15 -4328 ((-3 (-169 (-381)) "failed") (-410 (-954 |#1|)) (-923))) (-15 -4328 ((-3 (-169 (-381)) "failed") (-410 (-954 (-169 |#1|))))) (-15 -4328 ((-3 (-169 (-381)) "failed") (-410 (-954 (-169 |#1|))) (-923))) (IF (|has| |#1| (-851)) (PROGN (-15 -3794 ((-3 (-381) "failed") (-317 |#1|))) (-15 -3794 ((-3 (-381) "failed") (-317 |#1|) (-923))) (-15 -4328 ((-3 (-169 (-381)) "failed") (-317 |#1|))) (-15 -4328 ((-3 (-169 (-381)) "failed") (-317 |#1|) (-923))) (-15 -4328 ((-3 (-169 (-381)) "failed") (-317 (-169 |#1|)))) (-15 -4328 ((-3 (-169 (-381)) "failed") (-317 (-169 |#1|)) (-923)))) |%noBranch|)) |%noBranch|)) (-615 (-381))) (T -786))
-((-4328 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-317 (-169 *5))) (-5 *4 (-923)) (-4 *5 (-559)) (-4 *5 (-851)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-4328 (*1 *2 *3) (|partial| -12 (-5 *3 (-317 (-169 *4))) (-4 *4 (-559)) (-4 *4 (-851)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-4328 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-317 *5)) (-5 *4 (-923)) (-4 *5 (-559)) (-4 *5 (-851)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-4328 (*1 *2 *3) (|partial| -12 (-5 *3 (-317 *4)) (-4 *4 (-559)) (-4 *4 (-851)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-3794 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-317 *5)) (-5 *4 (-923)) (-4 *5 (-559)) (-4 *5 (-851)) (-4 *5 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *5)))) (-3794 (*1 *2 *3) (|partial| -12 (-5 *3 (-317 *4)) (-4 *4 (-559)) (-4 *4 (-851)) (-4 *4 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *4)))) (-4328 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-410 (-954 (-169 *5)))) (-5 *4 (-923)) (-4 *5 (-559)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-4328 (*1 *2 *3) (|partial| -12 (-5 *3 (-410 (-954 (-169 *4)))) (-4 *4 (-559)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-4328 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-923)) (-4 *5 (-559)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-4328 (*1 *2 *3) (|partial| -12 (-5 *3 (-410 (-954 *4))) (-4 *4 (-559)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-3794 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-923)) (-4 *5 (-559)) (-4 *5 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *5)))) (-3794 (*1 *2 *3) (|partial| -12 (-5 *3 (-410 (-954 *4))) (-4 *4 (-559)) (-4 *4 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *4)))) (-4328 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-954 *5)) (-5 *4 (-923)) (-4 *5 (-1051)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-4328 (*1 *2 *3) (|partial| -12 (-5 *3 (-954 *4)) (-4 *4 (-1051)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-3794 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-954 *5)) (-5 *4 (-923)) (-4 *5 (-1051)) (-4 *5 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *5)))) (-3794 (*1 *2 *3) (|partial| -12 (-5 *3 (-954 *4)) (-4 *4 (-1051)) (-4 *4 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *4)))) (-4328 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-954 (-169 *5))) (-5 *4 (-923)) (-4 *5 (-172)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-4328 (*1 *2 *3) (|partial| -12 (-5 *3 (-954 (-169 *4))) (-4 *4 (-172)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-2622 (*1 *2 *3 *4) (-12 (-5 *3 (-317 (-169 *5))) (-5 *4 (-923)) (-4 *5 (-559)) (-4 *5 (-851)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-2622 (*1 *2 *3) (-12 (-5 *3 (-317 (-169 *4))) (-4 *4 (-559)) (-4 *4 (-851)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-2622 (*1 *2 *3 *4) (-12 (-5 *3 (-317 *5)) (-5 *4 (-923)) (-4 *5 (-559)) (-4 *5 (-851)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-2622 (*1 *2 *3) (-12 (-5 *3 (-317 *4)) (-4 *4 (-559)) (-4 *4 (-851)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-3875 (*1 *2 *3 *4) (-12 (-5 *3 (-317 *5)) (-5 *4 (-923)) (-4 *5 (-559)) (-4 *5 (-851)) (-4 *5 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *5)))) (-3875 (*1 *2 *3) (-12 (-5 *3 (-317 *4)) (-4 *4 (-559)) (-4 *4 (-851)) (-4 *4 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *4)))) (-2622 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-954 (-169 *5)))) (-5 *4 (-923)) (-4 *5 (-559)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-2622 (*1 *2 *3) (-12 (-5 *3 (-410 (-954 (-169 *4)))) (-4 *4 (-559)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-2622 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-923)) (-4 *5 (-559)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-2622 (*1 *2 *3) (-12 (-5 *3 (-410 (-954 *4))) (-4 *4 (-559)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-3875 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-923)) (-4 *5 (-559)) (-4 *5 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *5)))) (-3875 (*1 *2 *3) (-12 (-5 *3 (-410 (-954 *4))) (-4 *4 (-559)) (-4 *4 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *4)))) (-2622 (*1 *2 *3 *4) (-12 (-5 *3 (-954 *5)) (-5 *4 (-923)) (-4 *5 (-1051)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-2622 (*1 *2 *3) (-12 (-5 *3 (-954 *4)) (-4 *4 (-1051)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-3875 (*1 *2 *3 *4) (-12 (-5 *3 (-954 *5)) (-5 *4 (-923)) (-4 *5 (-1051)) (-4 *5 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *5)))) (-3875 (*1 *2 *3) (-12 (-5 *3 (-954 *4)) (-4 *4 (-1051)) (-4 *4 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *4)))) (-2622 (*1 *2 *3 *4) (-12 (-5 *3 (-954 (-169 *5))) (-5 *4 (-923)) (-4 *5 (-172)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-2622 (*1 *2 *3) (-12 (-5 *3 (-954 (-169 *4))) (-4 *4 (-172)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-2622 (*1 *2 *3 *4) (-12 (-5 *3 (-169 *5)) (-5 *4 (-923)) (-4 *5 (-172)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-2622 (*1 *2 *3) (-12 (-5 *3 (-169 *4)) (-4 *4 (-172)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-2622 (*1 *2 *3 *4) (-12 (-5 *4 (-923)) (-5 *2 (-169 (-381))) (-5 *1 (-786 *3)) (-4 *3 (-615 (-381))))) (-2622 (*1 *2 *3) (-12 (-5 *2 (-169 (-381))) (-5 *1 (-786 *3)) (-4 *3 (-615 (-381))))) (-3875 (*1 *2 *3 *4) (-12 (-5 *4 (-923)) (-5 *2 (-381)) (-5 *1 (-786 *3)) (-4 *3 (-615 *2)))) (-3875 (*1 *2 *3) (-12 (-5 *2 (-381)) (-5 *1 (-786 *3)) (-4 *3 (-615 *2)))))
-(-10 -7 (-15 -3875 ((-381) |#1|)) (-15 -3875 ((-381) |#1| (-923))) (-15 -2622 ((-169 (-381)) |#1|)) (-15 -2622 ((-169 (-381)) |#1| (-923))) (IF (|has| |#1| (-172)) (PROGN (-15 -2622 ((-169 (-381)) (-169 |#1|))) (-15 -2622 ((-169 (-381)) (-169 |#1|) (-923))) (-15 -2622 ((-169 (-381)) (-954 (-169 |#1|)))) (-15 -2622 ((-169 (-381)) (-954 (-169 |#1|)) (-923)))) |%noBranch|) (IF (|has| |#1| (-1051)) (PROGN (-15 -3875 ((-381) (-954 |#1|))) (-15 -3875 ((-381) (-954 |#1|) (-923))) (-15 -2622 ((-169 (-381)) (-954 |#1|))) (-15 -2622 ((-169 (-381)) (-954 |#1|) (-923)))) |%noBranch|) (IF (|has| |#1| (-559)) (PROGN (-15 -3875 ((-381) (-410 (-954 |#1|)))) (-15 -3875 ((-381) (-410 (-954 |#1|)) (-923))) (-15 -2622 ((-169 (-381)) (-410 (-954 |#1|)))) (-15 -2622 ((-169 (-381)) (-410 (-954 |#1|)) (-923))) (-15 -2622 ((-169 (-381)) (-410 (-954 (-169 |#1|))))) (-15 -2622 ((-169 (-381)) (-410 (-954 (-169 |#1|))) (-923))) (IF (|has| |#1| (-851)) (PROGN (-15 -3875 ((-381) (-317 |#1|))) (-15 -3875 ((-381) (-317 |#1|) (-923))) (-15 -2622 ((-169 (-381)) (-317 |#1|))) (-15 -2622 ((-169 (-381)) (-317 |#1|) (-923))) (-15 -2622 ((-169 (-381)) (-317 (-169 |#1|)))) (-15 -2622 ((-169 (-381)) (-317 (-169 |#1|)) (-923)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-15 -4328 ((-3 (-169 (-381)) "failed") (-954 (-169 |#1|)))) (-15 -4328 ((-3 (-169 (-381)) "failed") (-954 (-169 |#1|)) (-923)))) |%noBranch|) (IF (|has| |#1| (-1051)) (PROGN (-15 -3794 ((-3 (-381) "failed") (-954 |#1|))) (-15 -3794 ((-3 (-381) "failed") (-954 |#1|) (-923))) (-15 -4328 ((-3 (-169 (-381)) "failed") (-954 |#1|))) (-15 -4328 ((-3 (-169 (-381)) "failed") (-954 |#1|) (-923)))) |%noBranch|) (IF (|has| |#1| (-559)) (PROGN (-15 -3794 ((-3 (-381) "failed") (-410 (-954 |#1|)))) (-15 -3794 ((-3 (-381) "failed") (-410 (-954 |#1|)) (-923))) (-15 -4328 ((-3 (-169 (-381)) "failed") (-410 (-954 |#1|)))) (-15 -4328 ((-3 (-169 (-381)) "failed") (-410 (-954 |#1|)) (-923))) (-15 -4328 ((-3 (-169 (-381)) "failed") (-410 (-954 (-169 |#1|))))) (-15 -4328 ((-3 (-169 (-381)) "failed") (-410 (-954 (-169 |#1|))) (-923))) (IF (|has| |#1| (-851)) (PROGN (-15 -3794 ((-3 (-381) "failed") (-317 |#1|))) (-15 -3794 ((-3 (-381) "failed") (-317 |#1|) (-923))) (-15 -4328 ((-3 (-169 (-381)) "failed") (-317 |#1|))) (-15 -4328 ((-3 (-169 (-381)) "failed") (-317 |#1|) (-923))) (-15 -4328 ((-3 (-169 (-381)) "failed") (-317 (-169 |#1|)))) (-15 -4328 ((-3 (-169 (-381)) "failed") (-317 (-169 |#1|)) (-923)))) |%noBranch|)) |%noBranch|))
-((-1809 (((-923) (-1160)) 92)) (-4240 (((-3 (-381) "failed") (-1160)) 36)) (-4099 (((-381) (-1160)) 34)) (-2588 (((-923) (-1160)) 63)) (-2947 (((-1160) (-923)) 75)) (-2480 (((-1160) (-923)) 62)))
-(((-787) (-10 -7 (-15 -2480 ((-1160) (-923))) (-15 -2588 ((-923) (-1160))) (-15 -2947 ((-1160) (-923))) (-15 -1809 ((-923) (-1160))) (-15 -4099 ((-381) (-1160))) (-15 -4240 ((-3 (-381) "failed") (-1160))))) (T -787))
-((-4240 (*1 *2 *3) (|partial| -12 (-5 *3 (-1160)) (-5 *2 (-381)) (-5 *1 (-787)))) (-4099 (*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-381)) (-5 *1 (-787)))) (-1809 (*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-923)) (-5 *1 (-787)))) (-2947 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1160)) (-5 *1 (-787)))) (-2588 (*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-923)) (-5 *1 (-787)))) (-2480 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1160)) (-5 *1 (-787)))))
-(-10 -7 (-15 -2480 ((-1160) (-923))) (-15 -2588 ((-923) (-1160))) (-15 -2947 ((-1160) (-923))) (-15 -1809 ((-923) (-1160))) (-15 -4099 ((-381) (-1160))) (-15 -4240 ((-3 (-381) "failed") (-1160))))
-((-2403 (((-112) $ $) 7)) (-3355 (((-1037) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) 16) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) 14)) (-2264 (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 17) (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 15)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-2936 (((-112) $ $) 6)))
+(((-34) . T) ((-102) . T) ((-614 (-645 |#4|)) . T) ((-614 (-863)) . T) ((-151 |#4|) . T) ((-615 (-539)) |has| |#4| (-615 (-539))) ((-310 |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))) ((-492 |#4|) . T) ((-517 |#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))) ((-978 |#1| |#2| |#3| |#4|) . T) ((-1073 |#1| |#2| |#3| |#4|) . T) ((-1102) . T) ((-1212 |#1| |#2| |#3| |#4|) . T) ((-1219) . T))
+((-1738 (((-3 (-381) "failed") (-317 |#1|) (-923)) 62 (-12 (|has| |#1| (-559)) (|has| |#1| (-851)))) (((-3 (-381) "failed") (-317 |#1|)) 54 (-12 (|has| |#1| (-559)) (|has| |#1| (-851)))) (((-3 (-381) "failed") (-410 (-954 |#1|)) (-923)) 41 (|has| |#1| (-559))) (((-3 (-381) "failed") (-410 (-954 |#1|))) 40 (|has| |#1| (-559))) (((-3 (-381) "failed") (-954 |#1|) (-923)) 31 (|has| |#1| (-1051))) (((-3 (-381) "failed") (-954 |#1|)) 30 (|has| |#1| (-1051)))) (-3897 (((-381) (-317 |#1|) (-923)) 99 (-12 (|has| |#1| (-559)) (|has| |#1| (-851)))) (((-381) (-317 |#1|)) 94 (-12 (|has| |#1| (-559)) (|has| |#1| (-851)))) (((-381) (-410 (-954 |#1|)) (-923)) 91 (|has| |#1| (-559))) (((-381) (-410 (-954 |#1|))) 90 (|has| |#1| (-559))) (((-381) (-954 |#1|) (-923)) 86 (|has| |#1| (-1051))) (((-381) (-954 |#1|)) 85 (|has| |#1| (-1051))) (((-381) |#1| (-923)) 76) (((-381) |#1|) 22)) (-1384 (((-3 (-169 (-381)) "failed") (-317 (-169 |#1|)) (-923)) 71 (-12 (|has| |#1| (-559)) (|has| |#1| (-851)))) (((-3 (-169 (-381)) "failed") (-317 (-169 |#1|))) 70 (-12 (|has| |#1| (-559)) (|has| |#1| (-851)))) (((-3 (-169 (-381)) "failed") (-317 |#1|) (-923)) 63 (-12 (|has| |#1| (-559)) (|has| |#1| (-851)))) (((-3 (-169 (-381)) "failed") (-317 |#1|)) 61 (-12 (|has| |#1| (-559)) (|has| |#1| (-851)))) (((-3 (-169 (-381)) "failed") (-410 (-954 (-169 |#1|))) (-923)) 46 (|has| |#1| (-559))) (((-3 (-169 (-381)) "failed") (-410 (-954 (-169 |#1|)))) 45 (|has| |#1| (-559))) (((-3 (-169 (-381)) "failed") (-410 (-954 |#1|)) (-923)) 39 (|has| |#1| (-559))) (((-3 (-169 (-381)) "failed") (-410 (-954 |#1|))) 38 (|has| |#1| (-559))) (((-3 (-169 (-381)) "failed") (-954 |#1|) (-923)) 28 (|has| |#1| (-1051))) (((-3 (-169 (-381)) "failed") (-954 |#1|)) 26 (|has| |#1| (-1051))) (((-3 (-169 (-381)) "failed") (-954 (-169 |#1|)) (-923)) 18 (|has| |#1| (-172))) (((-3 (-169 (-381)) "failed") (-954 (-169 |#1|))) 15 (|has| |#1| (-172)))) (-2631 (((-169 (-381)) (-317 (-169 |#1|)) (-923)) 102 (-12 (|has| |#1| (-559)) (|has| |#1| (-851)))) (((-169 (-381)) (-317 (-169 |#1|))) 101 (-12 (|has| |#1| (-559)) (|has| |#1| (-851)))) (((-169 (-381)) (-317 |#1|) (-923)) 100 (-12 (|has| |#1| (-559)) (|has| |#1| (-851)))) (((-169 (-381)) (-317 |#1|)) 98 (-12 (|has| |#1| (-559)) (|has| |#1| (-851)))) (((-169 (-381)) (-410 (-954 (-169 |#1|))) (-923)) 93 (|has| |#1| (-559))) (((-169 (-381)) (-410 (-954 (-169 |#1|)))) 92 (|has| |#1| (-559))) (((-169 (-381)) (-410 (-954 |#1|)) (-923)) 89 (|has| |#1| (-559))) (((-169 (-381)) (-410 (-954 |#1|))) 88 (|has| |#1| (-559))) (((-169 (-381)) (-954 |#1|) (-923)) 84 (|has| |#1| (-1051))) (((-169 (-381)) (-954 |#1|)) 83 (|has| |#1| (-1051))) (((-169 (-381)) (-954 (-169 |#1|)) (-923)) 78 (|has| |#1| (-172))) (((-169 (-381)) (-954 (-169 |#1|))) 77 (|has| |#1| (-172))) (((-169 (-381)) (-169 |#1|) (-923)) 80 (|has| |#1| (-172))) (((-169 (-381)) (-169 |#1|)) 79 (|has| |#1| (-172))) (((-169 (-381)) |#1| (-923)) 27) (((-169 (-381)) |#1|) 25)))
+(((-786 |#1|) (-10 -7 (-15 -3897 ((-381) |#1|)) (-15 -3897 ((-381) |#1| (-923))) (-15 -2631 ((-169 (-381)) |#1|)) (-15 -2631 ((-169 (-381)) |#1| (-923))) (IF (|has| |#1| (-172)) (PROGN (-15 -2631 ((-169 (-381)) (-169 |#1|))) (-15 -2631 ((-169 (-381)) (-169 |#1|) (-923))) (-15 -2631 ((-169 (-381)) (-954 (-169 |#1|)))) (-15 -2631 ((-169 (-381)) (-954 (-169 |#1|)) (-923)))) |%noBranch|) (IF (|has| |#1| (-1051)) (PROGN (-15 -3897 ((-381) (-954 |#1|))) (-15 -3897 ((-381) (-954 |#1|) (-923))) (-15 -2631 ((-169 (-381)) (-954 |#1|))) (-15 -2631 ((-169 (-381)) (-954 |#1|) (-923)))) |%noBranch|) (IF (|has| |#1| (-559)) (PROGN (-15 -3897 ((-381) (-410 (-954 |#1|)))) (-15 -3897 ((-381) (-410 (-954 |#1|)) (-923))) (-15 -2631 ((-169 (-381)) (-410 (-954 |#1|)))) (-15 -2631 ((-169 (-381)) (-410 (-954 |#1|)) (-923))) (-15 -2631 ((-169 (-381)) (-410 (-954 (-169 |#1|))))) (-15 -2631 ((-169 (-381)) (-410 (-954 (-169 |#1|))) (-923))) (IF (|has| |#1| (-851)) (PROGN (-15 -3897 ((-381) (-317 |#1|))) (-15 -3897 ((-381) (-317 |#1|) (-923))) (-15 -2631 ((-169 (-381)) (-317 |#1|))) (-15 -2631 ((-169 (-381)) (-317 |#1|) (-923))) (-15 -2631 ((-169 (-381)) (-317 (-169 |#1|)))) (-15 -2631 ((-169 (-381)) (-317 (-169 |#1|)) (-923)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-15 -1384 ((-3 (-169 (-381)) "failed") (-954 (-169 |#1|)))) (-15 -1384 ((-3 (-169 (-381)) "failed") (-954 (-169 |#1|)) (-923)))) |%noBranch|) (IF (|has| |#1| (-1051)) (PROGN (-15 -1738 ((-3 (-381) "failed") (-954 |#1|))) (-15 -1738 ((-3 (-381) "failed") (-954 |#1|) (-923))) (-15 -1384 ((-3 (-169 (-381)) "failed") (-954 |#1|))) (-15 -1384 ((-3 (-169 (-381)) "failed") (-954 |#1|) (-923)))) |%noBranch|) (IF (|has| |#1| (-559)) (PROGN (-15 -1738 ((-3 (-381) "failed") (-410 (-954 |#1|)))) (-15 -1738 ((-3 (-381) "failed") (-410 (-954 |#1|)) (-923))) (-15 -1384 ((-3 (-169 (-381)) "failed") (-410 (-954 |#1|)))) (-15 -1384 ((-3 (-169 (-381)) "failed") (-410 (-954 |#1|)) (-923))) (-15 -1384 ((-3 (-169 (-381)) "failed") (-410 (-954 (-169 |#1|))))) (-15 -1384 ((-3 (-169 (-381)) "failed") (-410 (-954 (-169 |#1|))) (-923))) (IF (|has| |#1| (-851)) (PROGN (-15 -1738 ((-3 (-381) "failed") (-317 |#1|))) (-15 -1738 ((-3 (-381) "failed") (-317 |#1|) (-923))) (-15 -1384 ((-3 (-169 (-381)) "failed") (-317 |#1|))) (-15 -1384 ((-3 (-169 (-381)) "failed") (-317 |#1|) (-923))) (-15 -1384 ((-3 (-169 (-381)) "failed") (-317 (-169 |#1|)))) (-15 -1384 ((-3 (-169 (-381)) "failed") (-317 (-169 |#1|)) (-923)))) |%noBranch|)) |%noBranch|)) (-615 (-381))) (T -786))
+((-1384 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-317 (-169 *5))) (-5 *4 (-923)) (-4 *5 (-559)) (-4 *5 (-851)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-1384 (*1 *2 *3) (|partial| -12 (-5 *3 (-317 (-169 *4))) (-4 *4 (-559)) (-4 *4 (-851)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-1384 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-317 *5)) (-5 *4 (-923)) (-4 *5 (-559)) (-4 *5 (-851)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-1384 (*1 *2 *3) (|partial| -12 (-5 *3 (-317 *4)) (-4 *4 (-559)) (-4 *4 (-851)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-1738 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-317 *5)) (-5 *4 (-923)) (-4 *5 (-559)) (-4 *5 (-851)) (-4 *5 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *5)))) (-1738 (*1 *2 *3) (|partial| -12 (-5 *3 (-317 *4)) (-4 *4 (-559)) (-4 *4 (-851)) (-4 *4 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *4)))) (-1384 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-410 (-954 (-169 *5)))) (-5 *4 (-923)) (-4 *5 (-559)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-1384 (*1 *2 *3) (|partial| -12 (-5 *3 (-410 (-954 (-169 *4)))) (-4 *4 (-559)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-1384 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-923)) (-4 *5 (-559)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-1384 (*1 *2 *3) (|partial| -12 (-5 *3 (-410 (-954 *4))) (-4 *4 (-559)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-1738 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-923)) (-4 *5 (-559)) (-4 *5 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *5)))) (-1738 (*1 *2 *3) (|partial| -12 (-5 *3 (-410 (-954 *4))) (-4 *4 (-559)) (-4 *4 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *4)))) (-1384 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-954 *5)) (-5 *4 (-923)) (-4 *5 (-1051)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-1384 (*1 *2 *3) (|partial| -12 (-5 *3 (-954 *4)) (-4 *4 (-1051)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-1738 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-954 *5)) (-5 *4 (-923)) (-4 *5 (-1051)) (-4 *5 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *5)))) (-1738 (*1 *2 *3) (|partial| -12 (-5 *3 (-954 *4)) (-4 *4 (-1051)) (-4 *4 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *4)))) (-1384 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-954 (-169 *5))) (-5 *4 (-923)) (-4 *5 (-172)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-1384 (*1 *2 *3) (|partial| -12 (-5 *3 (-954 (-169 *4))) (-4 *4 (-172)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-2631 (*1 *2 *3 *4) (-12 (-5 *3 (-317 (-169 *5))) (-5 *4 (-923)) (-4 *5 (-559)) (-4 *5 (-851)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-2631 (*1 *2 *3) (-12 (-5 *3 (-317 (-169 *4))) (-4 *4 (-559)) (-4 *4 (-851)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-2631 (*1 *2 *3 *4) (-12 (-5 *3 (-317 *5)) (-5 *4 (-923)) (-4 *5 (-559)) (-4 *5 (-851)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-2631 (*1 *2 *3) (-12 (-5 *3 (-317 *4)) (-4 *4 (-559)) (-4 *4 (-851)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-3897 (*1 *2 *3 *4) (-12 (-5 *3 (-317 *5)) (-5 *4 (-923)) (-4 *5 (-559)) (-4 *5 (-851)) (-4 *5 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *5)))) (-3897 (*1 *2 *3) (-12 (-5 *3 (-317 *4)) (-4 *4 (-559)) (-4 *4 (-851)) (-4 *4 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *4)))) (-2631 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-954 (-169 *5)))) (-5 *4 (-923)) (-4 *5 (-559)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-2631 (*1 *2 *3) (-12 (-5 *3 (-410 (-954 (-169 *4)))) (-4 *4 (-559)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-2631 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-923)) (-4 *5 (-559)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-2631 (*1 *2 *3) (-12 (-5 *3 (-410 (-954 *4))) (-4 *4 (-559)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-3897 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-923)) (-4 *5 (-559)) (-4 *5 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *5)))) (-3897 (*1 *2 *3) (-12 (-5 *3 (-410 (-954 *4))) (-4 *4 (-559)) (-4 *4 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *4)))) (-2631 (*1 *2 *3 *4) (-12 (-5 *3 (-954 *5)) (-5 *4 (-923)) (-4 *5 (-1051)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-2631 (*1 *2 *3) (-12 (-5 *3 (-954 *4)) (-4 *4 (-1051)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-3897 (*1 *2 *3 *4) (-12 (-5 *3 (-954 *5)) (-5 *4 (-923)) (-4 *5 (-1051)) (-4 *5 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *5)))) (-3897 (*1 *2 *3) (-12 (-5 *3 (-954 *4)) (-4 *4 (-1051)) (-4 *4 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *4)))) (-2631 (*1 *2 *3 *4) (-12 (-5 *3 (-954 (-169 *5))) (-5 *4 (-923)) (-4 *5 (-172)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-2631 (*1 *2 *3) (-12 (-5 *3 (-954 (-169 *4))) (-4 *4 (-172)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-2631 (*1 *2 *3 *4) (-12 (-5 *3 (-169 *5)) (-5 *4 (-923)) (-4 *5 (-172)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-2631 (*1 *2 *3) (-12 (-5 *3 (-169 *4)) (-4 *4 (-172)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-2631 (*1 *2 *3 *4) (-12 (-5 *4 (-923)) (-5 *2 (-169 (-381))) (-5 *1 (-786 *3)) (-4 *3 (-615 (-381))))) (-2631 (*1 *2 *3) (-12 (-5 *2 (-169 (-381))) (-5 *1 (-786 *3)) (-4 *3 (-615 (-381))))) (-3897 (*1 *2 *3 *4) (-12 (-5 *4 (-923)) (-5 *2 (-381)) (-5 *1 (-786 *3)) (-4 *3 (-615 *2)))) (-3897 (*1 *2 *3) (-12 (-5 *2 (-381)) (-5 *1 (-786 *3)) (-4 *3 (-615 *2)))))
+(-10 -7 (-15 -3897 ((-381) |#1|)) (-15 -3897 ((-381) |#1| (-923))) (-15 -2631 ((-169 (-381)) |#1|)) (-15 -2631 ((-169 (-381)) |#1| (-923))) (IF (|has| |#1| (-172)) (PROGN (-15 -2631 ((-169 (-381)) (-169 |#1|))) (-15 -2631 ((-169 (-381)) (-169 |#1|) (-923))) (-15 -2631 ((-169 (-381)) (-954 (-169 |#1|)))) (-15 -2631 ((-169 (-381)) (-954 (-169 |#1|)) (-923)))) |%noBranch|) (IF (|has| |#1| (-1051)) (PROGN (-15 -3897 ((-381) (-954 |#1|))) (-15 -3897 ((-381) (-954 |#1|) (-923))) (-15 -2631 ((-169 (-381)) (-954 |#1|))) (-15 -2631 ((-169 (-381)) (-954 |#1|) (-923)))) |%noBranch|) (IF (|has| |#1| (-559)) (PROGN (-15 -3897 ((-381) (-410 (-954 |#1|)))) (-15 -3897 ((-381) (-410 (-954 |#1|)) (-923))) (-15 -2631 ((-169 (-381)) (-410 (-954 |#1|)))) (-15 -2631 ((-169 (-381)) (-410 (-954 |#1|)) (-923))) (-15 -2631 ((-169 (-381)) (-410 (-954 (-169 |#1|))))) (-15 -2631 ((-169 (-381)) (-410 (-954 (-169 |#1|))) (-923))) (IF (|has| |#1| (-851)) (PROGN (-15 -3897 ((-381) (-317 |#1|))) (-15 -3897 ((-381) (-317 |#1|) (-923))) (-15 -2631 ((-169 (-381)) (-317 |#1|))) (-15 -2631 ((-169 (-381)) (-317 |#1|) (-923))) (-15 -2631 ((-169 (-381)) (-317 (-169 |#1|)))) (-15 -2631 ((-169 (-381)) (-317 (-169 |#1|)) (-923)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-15 -1384 ((-3 (-169 (-381)) "failed") (-954 (-169 |#1|)))) (-15 -1384 ((-3 (-169 (-381)) "failed") (-954 (-169 |#1|)) (-923)))) |%noBranch|) (IF (|has| |#1| (-1051)) (PROGN (-15 -1738 ((-3 (-381) "failed") (-954 |#1|))) (-15 -1738 ((-3 (-381) "failed") (-954 |#1|) (-923))) (-15 -1384 ((-3 (-169 (-381)) "failed") (-954 |#1|))) (-15 -1384 ((-3 (-169 (-381)) "failed") (-954 |#1|) (-923)))) |%noBranch|) (IF (|has| |#1| (-559)) (PROGN (-15 -1738 ((-3 (-381) "failed") (-410 (-954 |#1|)))) (-15 -1738 ((-3 (-381) "failed") (-410 (-954 |#1|)) (-923))) (-15 -1384 ((-3 (-169 (-381)) "failed") (-410 (-954 |#1|)))) (-15 -1384 ((-3 (-169 (-381)) "failed") (-410 (-954 |#1|)) (-923))) (-15 -1384 ((-3 (-169 (-381)) "failed") (-410 (-954 (-169 |#1|))))) (-15 -1384 ((-3 (-169 (-381)) "failed") (-410 (-954 (-169 |#1|))) (-923))) (IF (|has| |#1| (-851)) (PROGN (-15 -1738 ((-3 (-381) "failed") (-317 |#1|))) (-15 -1738 ((-3 (-381) "failed") (-317 |#1|) (-923))) (-15 -1384 ((-3 (-169 (-381)) "failed") (-317 |#1|))) (-15 -1384 ((-3 (-169 (-381)) "failed") (-317 |#1|) (-923))) (-15 -1384 ((-3 (-169 (-381)) "failed") (-317 (-169 |#1|)))) (-15 -1384 ((-3 (-169 (-381)) "failed") (-317 (-169 |#1|)) (-923)))) |%noBranch|)) |%noBranch|))
+((-2806 (((-923) (-1161)) 92)) (-3864 (((-3 (-381) "failed") (-1161)) 36)) (-1594 (((-381) (-1161)) 34)) (-2856 (((-923) (-1161)) 63)) (-3226 (((-1161) (-923)) 75)) (-3136 (((-1161) (-923)) 62)))
+(((-787) (-10 -7 (-15 -3136 ((-1161) (-923))) (-15 -2856 ((-923) (-1161))) (-15 -3226 ((-1161) (-923))) (-15 -2806 ((-923) (-1161))) (-15 -1594 ((-381) (-1161))) (-15 -3864 ((-3 (-381) "failed") (-1161))))) (T -787))
+((-3864 (*1 *2 *3) (|partial| -12 (-5 *3 (-1161)) (-5 *2 (-381)) (-5 *1 (-787)))) (-1594 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-381)) (-5 *1 (-787)))) (-2806 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-923)) (-5 *1 (-787)))) (-3226 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1161)) (-5 *1 (-787)))) (-2856 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-923)) (-5 *1 (-787)))) (-3136 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1161)) (-5 *1 (-787)))))
+(-10 -7 (-15 -3136 ((-1161) (-923))) (-15 -2856 ((-923) (-1161))) (-15 -3226 ((-1161) (-923))) (-15 -2806 ((-923) (-1161))) (-15 -1594 ((-381) (-1161))) (-15 -3864 ((-3 (-381) "failed") (-1161))))
+((-2412 (((-112) $ $) 7)) (-2065 (((-1037) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) 16) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -2408 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) 14)) (-3055 (((-2 (|:| -3055 (-381)) (|:| |explanations| (-1161)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 17) (((-2 (|:| -3055 (-381)) (|:| |explanations| (-1161)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -2408 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 15)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-4129 (((-863) $) 12)) (-3357 (((-112) $ $) 9)) (-2946 (((-112) $ $) 6)))
(((-788) (-140)) (T -788))
-((-2264 (*1 *2 *3 *4) (-12 (-4 *1 (-788)) (-5 *3 (-1065)) (-5 *4 (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -2264 (-381)) (|:| |explanations| (-1160)) (|:| |extra| (-1037)))))) (-3355 (*1 *2 *3 *2) (-12 (-4 *1 (-788)) (-5 *2 (-1037)) (-5 *3 (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) (-2264 (*1 *2 *3 *4) (-12 (-4 *1 (-788)) (-5 *3 (-1065)) (-5 *4 (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -2264 (-381)) (|:| |explanations| (-1160)) (|:| |extra| (-1037)))))) (-3355 (*1 *2 *3 *2) (-12 (-4 *1 (-788)) (-5 *2 (-1037)) (-5 *3 (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))))
-(-13 (-1102) (-10 -7 (-15 -2264 ((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3355 ((-1037) (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225))) (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037))) (-15 -2264 ((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3355 ((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)))))
+((-3055 (*1 *2 *3 *4) (-12 (-4 *1 (-788)) (-5 *3 (-1065)) (-5 *4 (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -3055 (-381)) (|:| |explanations| (-1161)) (|:| |extra| (-1037)))))) (-2065 (*1 *2 *3 *2) (-12 (-4 *1 (-788)) (-5 *2 (-1037)) (-5 *3 (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) (-3055 (*1 *2 *3 *4) (-12 (-4 *1 (-788)) (-5 *3 (-1065)) (-5 *4 (-2 (|:| |fn| (-317 (-225))) (|:| -2408 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -3055 (-381)) (|:| |explanations| (-1161)) (|:| |extra| (-1037)))))) (-2065 (*1 *2 *3 *2) (-12 (-4 *1 (-788)) (-5 *2 (-1037)) (-5 *3 (-2 (|:| |fn| (-317 (-225))) (|:| -2408 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))))
+(-13 (-1102) (-10 -7 (-15 -3055 ((-2 (|:| -3055 (-381)) (|:| |explanations| (-1161)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2065 ((-1037) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037))) (-15 -3055 ((-2 (|:| -3055 (-381)) (|:| |explanations| (-1161)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -2408 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2065 ((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -2408 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)))))
(((-102) . T) ((-614 (-863)) . T) ((-1102) . T))
-((-2455 (((-1273) (-1268 (-381)) (-567) (-381) (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3041 (-381))) (-381) (-1268 (-381)) (-1 (-1273) (-1268 (-381)) (-1268 (-381)) (-381)) (-1268 (-381)) (-1268 (-381)) (-1268 (-381)) (-1268 (-381)) (-1268 (-381)) (-1268 (-381)) (-1268 (-381))) 55) (((-1273) (-1268 (-381)) (-567) (-381) (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3041 (-381))) (-381) (-1268 (-381)) (-1 (-1273) (-1268 (-381)) (-1268 (-381)) (-381))) 52)) (-2778 (((-1273) (-1268 (-381)) (-567) (-381) (-381) (-567) (-1 (-1273) (-1268 (-381)) (-1268 (-381)) (-381))) 61)) (-3777 (((-1273) (-1268 (-381)) (-567) (-381) (-381) (-381) (-381) (-567) (-1 (-1273) (-1268 (-381)) (-1268 (-381)) (-381))) 50)) (-4054 (((-1273) (-1268 (-381)) (-567) (-381) (-381) (-1 (-1273) (-1268 (-381)) (-1268 (-381)) (-381)) (-1268 (-381)) (-1268 (-381)) (-1268 (-381)) (-1268 (-381))) 63) (((-1273) (-1268 (-381)) (-567) (-381) (-381) (-1 (-1273) (-1268 (-381)) (-1268 (-381)) (-381))) 62)))
-(((-789) (-10 -7 (-15 -4054 ((-1273) (-1268 (-381)) (-567) (-381) (-381) (-1 (-1273) (-1268 (-381)) (-1268 (-381)) (-381)))) (-15 -4054 ((-1273) (-1268 (-381)) (-567) (-381) (-381) (-1 (-1273) (-1268 (-381)) (-1268 (-381)) (-381)) (-1268 (-381)) (-1268 (-381)) (-1268 (-381)) (-1268 (-381)))) (-15 -3777 ((-1273) (-1268 (-381)) (-567) (-381) (-381) (-381) (-381) (-567) (-1 (-1273) (-1268 (-381)) (-1268 (-381)) (-381)))) (-15 -2455 ((-1273) (-1268 (-381)) (-567) (-381) (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3041 (-381))) (-381) (-1268 (-381)) (-1 (-1273) (-1268 (-381)) (-1268 (-381)) (-381)))) (-15 -2455 ((-1273) (-1268 (-381)) (-567) (-381) (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3041 (-381))) (-381) (-1268 (-381)) (-1 (-1273) (-1268 (-381)) (-1268 (-381)) (-381)) (-1268 (-381)) (-1268 (-381)) (-1268 (-381)) (-1268 (-381)) (-1268 (-381)) (-1268 (-381)) (-1268 (-381)))) (-15 -2778 ((-1273) (-1268 (-381)) (-567) (-381) (-381) (-567) (-1 (-1273) (-1268 (-381)) (-1268 (-381)) (-381)))))) (T -789))
-((-2778 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-567)) (-5 *6 (-1 (-1273) (-1268 *5) (-1268 *5) (-381))) (-5 *3 (-1268 (-381))) (-5 *5 (-381)) (-5 *2 (-1273)) (-5 *1 (-789)))) (-2455 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-567)) (-5 *6 (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3041 (-381)))) (-5 *7 (-1 (-1273) (-1268 *5) (-1268 *5) (-381))) (-5 *3 (-1268 (-381))) (-5 *5 (-381)) (-5 *2 (-1273)) (-5 *1 (-789)))) (-2455 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-567)) (-5 *6 (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3041 (-381)))) (-5 *7 (-1 (-1273) (-1268 *5) (-1268 *5) (-381))) (-5 *3 (-1268 (-381))) (-5 *5 (-381)) (-5 *2 (-1273)) (-5 *1 (-789)))) (-3777 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-567)) (-5 *6 (-1 (-1273) (-1268 *5) (-1268 *5) (-381))) (-5 *3 (-1268 (-381))) (-5 *5 (-381)) (-5 *2 (-1273)) (-5 *1 (-789)))) (-4054 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-567)) (-5 *6 (-1 (-1273) (-1268 *5) (-1268 *5) (-381))) (-5 *3 (-1268 (-381))) (-5 *5 (-381)) (-5 *2 (-1273)) (-5 *1 (-789)))) (-4054 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-567)) (-5 *6 (-1 (-1273) (-1268 *5) (-1268 *5) (-381))) (-5 *3 (-1268 (-381))) (-5 *5 (-381)) (-5 *2 (-1273)) (-5 *1 (-789)))))
-(-10 -7 (-15 -4054 ((-1273) (-1268 (-381)) (-567) (-381) (-381) (-1 (-1273) (-1268 (-381)) (-1268 (-381)) (-381)))) (-15 -4054 ((-1273) (-1268 (-381)) (-567) (-381) (-381) (-1 (-1273) (-1268 (-381)) (-1268 (-381)) (-381)) (-1268 (-381)) (-1268 (-381)) (-1268 (-381)) (-1268 (-381)))) (-15 -3777 ((-1273) (-1268 (-381)) (-567) (-381) (-381) (-381) (-381) (-567) (-1 (-1273) (-1268 (-381)) (-1268 (-381)) (-381)))) (-15 -2455 ((-1273) (-1268 (-381)) (-567) (-381) (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3041 (-381))) (-381) (-1268 (-381)) (-1 (-1273) (-1268 (-381)) (-1268 (-381)) (-381)))) (-15 -2455 ((-1273) (-1268 (-381)) (-567) (-381) (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3041 (-381))) (-381) (-1268 (-381)) (-1 (-1273) (-1268 (-381)) (-1268 (-381)) (-381)) (-1268 (-381)) (-1268 (-381)) (-1268 (-381)) (-1268 (-381)) (-1268 (-381)) (-1268 (-381)) (-1268 (-381)))) (-15 -2778 ((-1273) (-1268 (-381)) (-567) (-381) (-381) (-567) (-1 (-1273) (-1268 (-381)) (-1268 (-381)) (-381)))))
-((-4035 (((-2 (|:| -3802 (-381)) (|:| -2058 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567)) 66)) (-2709 (((-2 (|:| -3802 (-381)) (|:| -2058 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567)) 42)) (-3734 (((-2 (|:| -3802 (-381)) (|:| -2058 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567)) 65)) (-3662 (((-2 (|:| -3802 (-381)) (|:| -2058 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567)) 40)) (-1456 (((-2 (|:| -3802 (-381)) (|:| -2058 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567)) 64)) (-4133 (((-2 (|:| -3802 (-381)) (|:| -2058 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567)) 26)) (-1671 (((-2 (|:| -3802 (-381)) (|:| -2058 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567) (-567)) 43)) (-3394 (((-2 (|:| -3802 (-381)) (|:| -2058 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567) (-567)) 41)) (-3100 (((-2 (|:| -3802 (-381)) (|:| -2058 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567) (-567)) 39)))
-(((-790) (-10 -7 (-15 -3100 ((-2 (|:| -3802 (-381)) (|:| -2058 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567) (-567))) (-15 -3394 ((-2 (|:| -3802 (-381)) (|:| -2058 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567) (-567))) (-15 -1671 ((-2 (|:| -3802 (-381)) (|:| -2058 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567) (-567))) (-15 -4133 ((-2 (|:| -3802 (-381)) (|:| -2058 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567))) (-15 -3662 ((-2 (|:| -3802 (-381)) (|:| -2058 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567))) (-15 -2709 ((-2 (|:| -3802 (-381)) (|:| -2058 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567))) (-15 -1456 ((-2 (|:| -3802 (-381)) (|:| -2058 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567))) (-15 -3734 ((-2 (|:| -3802 (-381)) (|:| -2058 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567))) (-15 -4035 ((-2 (|:| -3802 (-381)) (|:| -2058 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567))))) (T -790))
-((-4035 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -3802 *4) (|:| -2058 *4) (|:| |totalpts| (-567)) (|:| |success| (-112)))) (-5 *1 (-790)) (-5 *5 (-567)))) (-3734 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -3802 *4) (|:| -2058 *4) (|:| |totalpts| (-567)) (|:| |success| (-112)))) (-5 *1 (-790)) (-5 *5 (-567)))) (-1456 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -3802 *4) (|:| -2058 *4) (|:| |totalpts| (-567)) (|:| |success| (-112)))) (-5 *1 (-790)) (-5 *5 (-567)))) (-2709 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -3802 *4) (|:| -2058 *4) (|:| |totalpts| (-567)) (|:| |success| (-112)))) (-5 *1 (-790)) (-5 *5 (-567)))) (-3662 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -3802 *4) (|:| -2058 *4) (|:| |totalpts| (-567)) (|:| |success| (-112)))) (-5 *1 (-790)) (-5 *5 (-567)))) (-4133 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -3802 *4) (|:| -2058 *4) (|:| |totalpts| (-567)) (|:| |success| (-112)))) (-5 *1 (-790)) (-5 *5 (-567)))) (-1671 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -3802 *4) (|:| -2058 *4) (|:| |totalpts| (-567)) (|:| |success| (-112)))) (-5 *1 (-790)) (-5 *5 (-567)))) (-3394 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -3802 *4) (|:| -2058 *4) (|:| |totalpts| (-567)) (|:| |success| (-112)))) (-5 *1 (-790)) (-5 *5 (-567)))) (-3100 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -3802 *4) (|:| -2058 *4) (|:| |totalpts| (-567)) (|:| |success| (-112)))) (-5 *1 (-790)) (-5 *5 (-567)))))
-(-10 -7 (-15 -3100 ((-2 (|:| -3802 (-381)) (|:| -2058 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567) (-567))) (-15 -3394 ((-2 (|:| -3802 (-381)) (|:| -2058 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567) (-567))) (-15 -1671 ((-2 (|:| -3802 (-381)) (|:| -2058 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567) (-567))) (-15 -4133 ((-2 (|:| -3802 (-381)) (|:| -2058 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567))) (-15 -3662 ((-2 (|:| -3802 (-381)) (|:| -2058 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567))) (-15 -2709 ((-2 (|:| -3802 (-381)) (|:| -2058 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567))) (-15 -1456 ((-2 (|:| -3802 (-381)) (|:| -2058 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567))) (-15 -3734 ((-2 (|:| -3802 (-381)) (|:| -2058 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567))) (-15 -4035 ((-2 (|:| -3802 (-381)) (|:| -2058 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567))))
-((-1692 (((-1213 |#1|) |#1| (-225) (-567)) 69)))
-(((-791 |#1|) (-10 -7 (-15 -1692 ((-1213 |#1|) |#1| (-225) (-567)))) (-976)) (T -791))
-((-1692 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-225)) (-5 *5 (-567)) (-5 *2 (-1213 *3)) (-5 *1 (-791 *3)) (-4 *3 (-976)))))
-(-10 -7 (-15 -1692 ((-1213 |#1|) |#1| (-225) (-567))))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 25)) (-3472 (((-3 $ "failed") $ $) 27)) (-2585 (($) 24 T CONST)) (-1354 (($ $ $) 14)) (-2981 (($ $ $) 15)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-1716 (($) 23 T CONST)) (-2997 (((-112) $ $) 17)) (-2971 (((-112) $ $) 18)) (-2936 (((-112) $ $) 6)) (-2984 (((-112) $ $) 16)) (-2958 (((-112) $ $) 19)) (-3045 (($ $ $) 31) (($ $) 30)) (-3033 (($ $ $) 21)) (* (($ (-923) $) 22) (($ (-772) $) 26) (($ (-567) $) 29)))
+((-1566 (((-1274) (-1269 (-381)) (-567) (-381) (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3049 (-381))) (-381) (-1269 (-381)) (-1 (-1274) (-1269 (-381)) (-1269 (-381)) (-381)) (-1269 (-381)) (-1269 (-381)) (-1269 (-381)) (-1269 (-381)) (-1269 (-381)) (-1269 (-381)) (-1269 (-381))) 55) (((-1274) (-1269 (-381)) (-567) (-381) (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3049 (-381))) (-381) (-1269 (-381)) (-1 (-1274) (-1269 (-381)) (-1269 (-381)) (-381))) 52)) (-1955 (((-1274) (-1269 (-381)) (-567) (-381) (-381) (-567) (-1 (-1274) (-1269 (-381)) (-1269 (-381)) (-381))) 61)) (-2637 (((-1274) (-1269 (-381)) (-567) (-381) (-381) (-381) (-381) (-567) (-1 (-1274) (-1269 (-381)) (-1269 (-381)) (-381))) 50)) (-2005 (((-1274) (-1269 (-381)) (-567) (-381) (-381) (-1 (-1274) (-1269 (-381)) (-1269 (-381)) (-381)) (-1269 (-381)) (-1269 (-381)) (-1269 (-381)) (-1269 (-381))) 63) (((-1274) (-1269 (-381)) (-567) (-381) (-381) (-1 (-1274) (-1269 (-381)) (-1269 (-381)) (-381))) 62)))
+(((-789) (-10 -7 (-15 -2005 ((-1274) (-1269 (-381)) (-567) (-381) (-381) (-1 (-1274) (-1269 (-381)) (-1269 (-381)) (-381)))) (-15 -2005 ((-1274) (-1269 (-381)) (-567) (-381) (-381) (-1 (-1274) (-1269 (-381)) (-1269 (-381)) (-381)) (-1269 (-381)) (-1269 (-381)) (-1269 (-381)) (-1269 (-381)))) (-15 -2637 ((-1274) (-1269 (-381)) (-567) (-381) (-381) (-381) (-381) (-567) (-1 (-1274) (-1269 (-381)) (-1269 (-381)) (-381)))) (-15 -1566 ((-1274) (-1269 (-381)) (-567) (-381) (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3049 (-381))) (-381) (-1269 (-381)) (-1 (-1274) (-1269 (-381)) (-1269 (-381)) (-381)))) (-15 -1566 ((-1274) (-1269 (-381)) (-567) (-381) (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3049 (-381))) (-381) (-1269 (-381)) (-1 (-1274) (-1269 (-381)) (-1269 (-381)) (-381)) (-1269 (-381)) (-1269 (-381)) (-1269 (-381)) (-1269 (-381)) (-1269 (-381)) (-1269 (-381)) (-1269 (-381)))) (-15 -1955 ((-1274) (-1269 (-381)) (-567) (-381) (-381) (-567) (-1 (-1274) (-1269 (-381)) (-1269 (-381)) (-381)))))) (T -789))
+((-1955 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-567)) (-5 *6 (-1 (-1274) (-1269 *5) (-1269 *5) (-381))) (-5 *3 (-1269 (-381))) (-5 *5 (-381)) (-5 *2 (-1274)) (-5 *1 (-789)))) (-1566 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-567)) (-5 *6 (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3049 (-381)))) (-5 *7 (-1 (-1274) (-1269 *5) (-1269 *5) (-381))) (-5 *3 (-1269 (-381))) (-5 *5 (-381)) (-5 *2 (-1274)) (-5 *1 (-789)))) (-1566 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-567)) (-5 *6 (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3049 (-381)))) (-5 *7 (-1 (-1274) (-1269 *5) (-1269 *5) (-381))) (-5 *3 (-1269 (-381))) (-5 *5 (-381)) (-5 *2 (-1274)) (-5 *1 (-789)))) (-2637 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-567)) (-5 *6 (-1 (-1274) (-1269 *5) (-1269 *5) (-381))) (-5 *3 (-1269 (-381))) (-5 *5 (-381)) (-5 *2 (-1274)) (-5 *1 (-789)))) (-2005 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-567)) (-5 *6 (-1 (-1274) (-1269 *5) (-1269 *5) (-381))) (-5 *3 (-1269 (-381))) (-5 *5 (-381)) (-5 *2 (-1274)) (-5 *1 (-789)))) (-2005 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-567)) (-5 *6 (-1 (-1274) (-1269 *5) (-1269 *5) (-381))) (-5 *3 (-1269 (-381))) (-5 *5 (-381)) (-5 *2 (-1274)) (-5 *1 (-789)))))
+(-10 -7 (-15 -2005 ((-1274) (-1269 (-381)) (-567) (-381) (-381) (-1 (-1274) (-1269 (-381)) (-1269 (-381)) (-381)))) (-15 -2005 ((-1274) (-1269 (-381)) (-567) (-381) (-381) (-1 (-1274) (-1269 (-381)) (-1269 (-381)) (-381)) (-1269 (-381)) (-1269 (-381)) (-1269 (-381)) (-1269 (-381)))) (-15 -2637 ((-1274) (-1269 (-381)) (-567) (-381) (-381) (-381) (-381) (-567) (-1 (-1274) (-1269 (-381)) (-1269 (-381)) (-381)))) (-15 -1566 ((-1274) (-1269 (-381)) (-567) (-381) (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3049 (-381))) (-381) (-1269 (-381)) (-1 (-1274) (-1269 (-381)) (-1269 (-381)) (-381)))) (-15 -1566 ((-1274) (-1269 (-381)) (-567) (-381) (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3049 (-381))) (-381) (-1269 (-381)) (-1 (-1274) (-1269 (-381)) (-1269 (-381)) (-381)) (-1269 (-381)) (-1269 (-381)) (-1269 (-381)) (-1269 (-381)) (-1269 (-381)) (-1269 (-381)) (-1269 (-381)))) (-15 -1955 ((-1274) (-1269 (-381)) (-567) (-381) (-381) (-567) (-1 (-1274) (-1269 (-381)) (-1269 (-381)) (-381)))))
+((-1504 (((-2 (|:| -3812 (-381)) (|:| -2069 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567)) 66)) (-1591 (((-2 (|:| -3812 (-381)) (|:| -2069 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567)) 42)) (-4027 (((-2 (|:| -3812 (-381)) (|:| -2069 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567)) 65)) (-2238 (((-2 (|:| -3812 (-381)) (|:| -2069 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567)) 40)) (-2197 (((-2 (|:| -3812 (-381)) (|:| -2069 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567)) 64)) (-2267 (((-2 (|:| -3812 (-381)) (|:| -2069 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567)) 26)) (-2699 (((-2 (|:| -3812 (-381)) (|:| -2069 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567) (-567)) 43)) (-4275 (((-2 (|:| -3812 (-381)) (|:| -2069 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567) (-567)) 41)) (-1368 (((-2 (|:| -3812 (-381)) (|:| -2069 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567) (-567)) 39)))
+(((-790) (-10 -7 (-15 -1368 ((-2 (|:| -3812 (-381)) (|:| -2069 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567) (-567))) (-15 -4275 ((-2 (|:| -3812 (-381)) (|:| -2069 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567) (-567))) (-15 -2699 ((-2 (|:| -3812 (-381)) (|:| -2069 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567) (-567))) (-15 -2267 ((-2 (|:| -3812 (-381)) (|:| -2069 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567))) (-15 -2238 ((-2 (|:| -3812 (-381)) (|:| -2069 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567))) (-15 -1591 ((-2 (|:| -3812 (-381)) (|:| -2069 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567))) (-15 -2197 ((-2 (|:| -3812 (-381)) (|:| -2069 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567))) (-15 -4027 ((-2 (|:| -3812 (-381)) (|:| -2069 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567))) (-15 -1504 ((-2 (|:| -3812 (-381)) (|:| -2069 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567))))) (T -790))
+((-1504 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -3812 *4) (|:| -2069 *4) (|:| |totalpts| (-567)) (|:| |success| (-112)))) (-5 *1 (-790)) (-5 *5 (-567)))) (-4027 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -3812 *4) (|:| -2069 *4) (|:| |totalpts| (-567)) (|:| |success| (-112)))) (-5 *1 (-790)) (-5 *5 (-567)))) (-2197 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -3812 *4) (|:| -2069 *4) (|:| |totalpts| (-567)) (|:| |success| (-112)))) (-5 *1 (-790)) (-5 *5 (-567)))) (-1591 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -3812 *4) (|:| -2069 *4) (|:| |totalpts| (-567)) (|:| |success| (-112)))) (-5 *1 (-790)) (-5 *5 (-567)))) (-2238 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -3812 *4) (|:| -2069 *4) (|:| |totalpts| (-567)) (|:| |success| (-112)))) (-5 *1 (-790)) (-5 *5 (-567)))) (-2267 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -3812 *4) (|:| -2069 *4) (|:| |totalpts| (-567)) (|:| |success| (-112)))) (-5 *1 (-790)) (-5 *5 (-567)))) (-2699 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -3812 *4) (|:| -2069 *4) (|:| |totalpts| (-567)) (|:| |success| (-112)))) (-5 *1 (-790)) (-5 *5 (-567)))) (-4275 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -3812 *4) (|:| -2069 *4) (|:| |totalpts| (-567)) (|:| |success| (-112)))) (-5 *1 (-790)) (-5 *5 (-567)))) (-1368 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -3812 *4) (|:| -2069 *4) (|:| |totalpts| (-567)) (|:| |success| (-112)))) (-5 *1 (-790)) (-5 *5 (-567)))))
+(-10 -7 (-15 -1368 ((-2 (|:| -3812 (-381)) (|:| -2069 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567) (-567))) (-15 -4275 ((-2 (|:| -3812 (-381)) (|:| -2069 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567) (-567))) (-15 -2699 ((-2 (|:| -3812 (-381)) (|:| -2069 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567) (-567))) (-15 -2267 ((-2 (|:| -3812 (-381)) (|:| -2069 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567))) (-15 -2238 ((-2 (|:| -3812 (-381)) (|:| -2069 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567))) (-15 -1591 ((-2 (|:| -3812 (-381)) (|:| -2069 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567))) (-15 -2197 ((-2 (|:| -3812 (-381)) (|:| -2069 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567))) (-15 -4027 ((-2 (|:| -3812 (-381)) (|:| -2069 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567))) (-15 -1504 ((-2 (|:| -3812 (-381)) (|:| -2069 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567))))
+((-3772 (((-1214 |#1|) |#1| (-225) (-567)) 69)))
+(((-791 |#1|) (-10 -7 (-15 -3772 ((-1214 |#1|) |#1| (-225) (-567)))) (-976)) (T -791))
+((-3772 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-225)) (-5 *5 (-567)) (-5 *2 (-1214 *3)) (-5 *1 (-791 *3)) (-4 *3 (-976)))))
+(-10 -7 (-15 -3772 ((-1214 |#1|) |#1| (-225) (-567))))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 25)) (-2376 (((-3 $ "failed") $ $) 27)) (-3647 (($) 24 T CONST)) (-1365 (($ $ $) 14)) (-3002 (($ $ $) 15)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-4129 (((-863) $) 12)) (-3357 (((-112) $ $) 9)) (-1733 (($) 23 T CONST)) (-3004 (((-112) $ $) 17)) (-2980 (((-112) $ $) 18)) (-2946 (((-112) $ $) 6)) (-2993 (((-112) $ $) 16)) (-2968 (((-112) $ $) 19)) (-3053 (($ $ $) 31) (($ $) 30)) (-3041 (($ $ $) 21)) (* (($ (-923) $) 22) (($ (-772) $) 26) (($ (-567) $) 29)))
(((-792) (-140)) (T -792))
NIL
(-13 (-796) (-21))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-793) . T) ((-795) . T) ((-796) . T) ((-851) . T) ((-1102) . T))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 25)) (-2585 (($) 24 T CONST)) (-1354 (($ $ $) 14)) (-2981 (($ $ $) 15)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-1716 (($) 23 T CONST)) (-2997 (((-112) $ $) 17)) (-2971 (((-112) $ $) 18)) (-2936 (((-112) $ $) 6)) (-2984 (((-112) $ $) 16)) (-2958 (((-112) $ $) 19)) (-3033 (($ $ $) 21)) (* (($ (-923) $) 22) (($ (-772) $) 26)))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 25)) (-3647 (($) 24 T CONST)) (-1365 (($ $ $) 14)) (-3002 (($ $ $) 15)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-4129 (((-863) $) 12)) (-3357 (((-112) $ $) 9)) (-1733 (($) 23 T CONST)) (-3004 (((-112) $ $) 17)) (-2980 (((-112) $ $) 18)) (-2946 (((-112) $ $) 6)) (-2993 (((-112) $ $) 16)) (-2968 (((-112) $ $) 19)) (-3041 (($ $ $) 21)) (* (($ (-923) $) 22) (($ (-772) $) 26)))
(((-793) (-140)) (T -793))
NIL
(-13 (-795) (-23))
(((-23) . T) ((-25) . T) ((-102) . T) ((-614 (-863)) . T) ((-795) . T) ((-851) . T) ((-1102) . T))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 25)) (-4016 (($ $ $) 28)) (-3472 (((-3 $ "failed") $ $) 27)) (-2585 (($) 24 T CONST)) (-1354 (($ $ $) 14)) (-2981 (($ $ $) 15)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-1716 (($) 23 T CONST)) (-2997 (((-112) $ $) 17)) (-2971 (((-112) $ $) 18)) (-2936 (((-112) $ $) 6)) (-2984 (((-112) $ $) 16)) (-2958 (((-112) $ $) 19)) (-3033 (($ $ $) 21)) (* (($ (-923) $) 22) (($ (-772) $) 26)))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 25)) (-1325 (($ $ $) 28)) (-2376 (((-3 $ "failed") $ $) 27)) (-3647 (($) 24 T CONST)) (-1365 (($ $ $) 14)) (-3002 (($ $ $) 15)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-4129 (((-863) $) 12)) (-3357 (((-112) $ $) 9)) (-1733 (($) 23 T CONST)) (-3004 (((-112) $ $) 17)) (-2980 (((-112) $ $) 18)) (-2946 (((-112) $ $) 6)) (-2993 (((-112) $ $) 16)) (-2968 (((-112) $ $) 19)) (-3041 (($ $ $) 21)) (* (($ (-923) $) 22) (($ (-772) $) 26)))
(((-794) (-140)) (T -794))
-((-4016 (*1 *1 *1 *1) (-4 *1 (-794))))
-(-13 (-796) (-10 -8 (-15 -4016 ($ $ $))))
+((-1325 (*1 *1 *1 *1) (-4 *1 (-794))))
+(-13 (-796) (-10 -8 (-15 -1325 ($ $ $))))
(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-863)) . T) ((-793) . T) ((-795) . T) ((-796) . T) ((-851) . T) ((-1102) . T))
-((-2403 (((-112) $ $) 7)) (-1354 (($ $ $) 14)) (-2981 (($ $ $) 15)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-2997 (((-112) $ $) 17)) (-2971 (((-112) $ $) 18)) (-2936 (((-112) $ $) 6)) (-2984 (((-112) $ $) 16)) (-2958 (((-112) $ $) 19)) (-3033 (($ $ $) 21)) (* (($ (-923) $) 22)))
+((-2412 (((-112) $ $) 7)) (-1365 (($ $ $) 14)) (-3002 (($ $ $) 15)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-4129 (((-863) $) 12)) (-3357 (((-112) $ $) 9)) (-3004 (((-112) $ $) 17)) (-2980 (((-112) $ $) 18)) (-2946 (((-112) $ $) 6)) (-2993 (((-112) $ $) 16)) (-2968 (((-112) $ $) 19)) (-3041 (($ $ $) 21)) (* (($ (-923) $) 22)))
(((-795) (-140)) (T -795))
NIL
(-13 (-851) (-25))
(((-25) . T) ((-102) . T) ((-614 (-863)) . T) ((-851) . T) ((-1102) . T))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 25)) (-3472 (((-3 $ "failed") $ $) 27)) (-2585 (($) 24 T CONST)) (-1354 (($ $ $) 14)) (-2981 (($ $ $) 15)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-1716 (($) 23 T CONST)) (-2997 (((-112) $ $) 17)) (-2971 (((-112) $ $) 18)) (-2936 (((-112) $ $) 6)) (-2984 (((-112) $ $) 16)) (-2958 (((-112) $ $) 19)) (-3033 (($ $ $) 21)) (* (($ (-923) $) 22) (($ (-772) $) 26)))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 25)) (-2376 (((-3 $ "failed") $ $) 27)) (-3647 (($) 24 T CONST)) (-1365 (($ $ $) 14)) (-3002 (($ $ $) 15)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-4129 (((-863) $) 12)) (-3357 (((-112) $ $) 9)) (-1733 (($) 23 T CONST)) (-3004 (((-112) $ $) 17)) (-2980 (((-112) $ $) 18)) (-2946 (((-112) $ $) 6)) (-2993 (((-112) $ $) 16)) (-2968 (((-112) $ $) 19)) (-3041 (($ $ $) 21)) (* (($ (-923) $) 22) (($ (-772) $) 26)))
(((-796) (-140)) (T -796))
NIL
(-13 (-793) (-131))
(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-863)) . T) ((-793) . T) ((-795) . T) ((-851) . T) ((-1102) . T))
-((-2460 (((-112) $) 42)) (-3753 (((-3 (-567) "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-2038 (((-567) $) NIL) (((-410 (-567)) $) NIL) ((|#2| $) 43)) (-2085 (((-3 (-410 (-567)) "failed") $) 78)) (-1862 (((-112) $) 72)) (-2331 (((-410 (-567)) $) 76)) (-2475 ((|#2| $) 26)) (-3829 (($ (-1 |#2| |#2|) $) 23)) (-2939 (($ $) 58)) (-3893 (((-539) $) 67)) (-1823 (($ $) 21)) (-4132 (((-863) $) 53) (($ (-567)) 40) (($ |#2|) 38) (($ (-410 (-567))) NIL)) (-4221 (((-772)) 10)) (-2219 ((|#2| $) 71)) (-2936 (((-112) $ $) 30)) (-2958 (((-112) $ $) 69)) (-3045 (($ $) 32) (($ $ $) NIL)) (-3033 (($ $ $) 31)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 36) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 33)))
-(((-797 |#1| |#2|) (-10 -8 (-15 -2958 ((-112) |#1| |#1|)) (-15 -3893 ((-539) |#1|)) (-15 -2939 (|#1| |#1|)) (-15 -2085 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2331 ((-410 (-567)) |#1|)) (-15 -1862 ((-112) |#1|)) (-15 -2219 (|#2| |#1|)) (-15 -2475 (|#2| |#1|)) (-15 -1823 (|#1| |#1|)) (-15 -3829 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3753 ((-3 |#2| "failed") |#1|)) (-15 -2038 (|#2| |#1|)) (-15 -2038 ((-410 (-567)) |#1|)) (-15 -3753 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -4132 (|#1| (-410 (-567)))) (-15 -2038 ((-567) |#1|)) (-15 -3753 ((-3 (-567) "failed") |#1|)) (-15 -4132 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4221 ((-772))) (-15 -4132 (|#1| (-567))) (-15 * (|#1| |#1| |#1|)) (-15 -3045 (|#1| |#1| |#1|)) (-15 -3045 (|#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 -2460 ((-112) |#1|)) (-15 * (|#1| (-923) |#1|)) (-15 -3033 (|#1| |#1| |#1|)) (-15 -4132 ((-863) |#1|)) (-15 -2936 ((-112) |#1| |#1|))) (-798 |#2|) (-172)) (T -797))
-((-4221 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-772)) (-5 *1 (-797 *3 *4)) (-4 *3 (-798 *4)))))
-(-10 -8 (-15 -2958 ((-112) |#1| |#1|)) (-15 -3893 ((-539) |#1|)) (-15 -2939 (|#1| |#1|)) (-15 -2085 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2331 ((-410 (-567)) |#1|)) (-15 -1862 ((-112) |#1|)) (-15 -2219 (|#2| |#1|)) (-15 -2475 (|#2| |#1|)) (-15 -1823 (|#1| |#1|)) (-15 -3829 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3753 ((-3 |#2| "failed") |#1|)) (-15 -2038 (|#2| |#1|)) (-15 -2038 ((-410 (-567)) |#1|)) (-15 -3753 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -4132 (|#1| (-410 (-567)))) (-15 -2038 ((-567) |#1|)) (-15 -3753 ((-3 (-567) "failed") |#1|)) (-15 -4132 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4221 ((-772))) (-15 -4132 (|#1| (-567))) (-15 * (|#1| |#1| |#1|)) (-15 -3045 (|#1| |#1| |#1|)) (-15 -3045 (|#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 -2460 ((-112) |#1|)) (-15 * (|#1| (-923) |#1|)) (-15 -3033 (|#1| |#1| |#1|)) (-15 -4132 ((-863) |#1|)) (-15 -2936 ((-112) |#1| |#1|)))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3472 (((-3 $ "failed") $ $) 20)) (-2375 (((-772)) 58 (|has| |#1| (-370)))) (-2585 (($) 18 T CONST)) (-3753 (((-3 (-567) "failed") $) 100 (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) 97 (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) 94)) (-2038 (((-567) $) 99 (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) 96 (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) 95)) (-2109 (((-3 $ "failed") $) 37)) (-2727 ((|#1| $) 84)) (-2085 (((-3 (-410 (-567)) "failed") $) 71 (|has| |#1| (-548)))) (-1862 (((-112) $) 73 (|has| |#1| (-548)))) (-2331 (((-410 (-567)) $) 72 (|has| |#1| (-548)))) (-1348 (($) 61 (|has| |#1| (-370)))) (-1433 (((-112) $) 35)) (-3899 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 75)) (-2475 ((|#1| $) 76)) (-1354 (($ $ $) 67 (|has| |#1| (-851)))) (-2981 (($ $ $) 66 (|has| |#1| (-851)))) (-3829 (($ (-1 |#1| |#1|) $) 86)) (-4249 (((-923) $) 60 (|has| |#1| (-370)))) (-1419 (((-1160) $) 10)) (-2939 (($ $) 70 (|has| |#1| (-365)))) (-3768 (($ (-923)) 59 (|has| |#1| (-370)))) (-1536 ((|#1| $) 81)) (-3721 ((|#1| $) 82)) (-1714 ((|#1| $) 83)) (-2048 ((|#1| $) 77)) (-3926 ((|#1| $) 78)) (-3421 ((|#1| $) 79)) (-1894 ((|#1| $) 80)) (-3430 (((-1122) $) 11)) (-2631 (($ $ (-645 |#1|) (-645 |#1|)) 92 (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) 91 (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) 90 (|has| |#1| (-310 |#1|))) (($ $ (-645 (-295 |#1|))) 89 (|has| |#1| (-310 |#1|))) (($ $ (-645 (-1178)) (-645 |#1|)) 88 (|has| |#1| (-517 (-1178) |#1|))) (($ $ (-1178) |#1|) 87 (|has| |#1| (-517 (-1178) |#1|)))) (-1787 (($ $ |#1|) 93 (|has| |#1| (-287 |#1| |#1|)))) (-3893 (((-539) $) 68 (|has| |#1| (-615 (-539))))) (-1823 (($ $) 85)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 44) (($ (-410 (-567))) 98 (|has| |#1| (-1040 (-410 (-567)))))) (-1903 (((-3 $ "failed") $) 69 (|has| |#1| (-145)))) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-2219 ((|#1| $) 74 (|has| |#1| (-1062)))) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2997 (((-112) $ $) 64 (|has| |#1| (-851)))) (-2971 (((-112) $ $) 63 (|has| |#1| (-851)))) (-2936 (((-112) $ $) 6)) (-2984 (((-112) $ $) 65 (|has| |#1| (-851)))) (-2958 (((-112) $ $) 62 (|has| |#1| (-851)))) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45)))
+((-3791 (((-112) $) 42)) (-3765 (((-3 (-567) "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-2051 (((-567) $) NIL) (((-410 (-567)) $) NIL) ((|#2| $) 43)) (-1605 (((-3 (-410 (-567)) "failed") $) 78)) (-2492 (((-112) $) 72)) (-2778 (((-410 (-567)) $) 76)) (-2724 ((|#2| $) 26)) (-3841 (($ (-1 |#2| |#2|) $) 23)) (-2949 (($ $) 58)) (-3902 (((-539) $) 67)) (-1672 (($ $) 21)) (-4129 (((-863) $) 53) (($ (-567)) 40) (($ |#2|) 38) (($ (-410 (-567))) NIL)) (-2746 (((-772)) 10)) (-1547 ((|#2| $) 71)) (-2946 (((-112) $ $) 30)) (-2968 (((-112) $ $) 69)) (-3053 (($ $) 32) (($ $ $) NIL)) (-3041 (($ $ $) 31)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 36) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 33)))
+(((-797 |#1| |#2|) (-10 -8 (-15 -2968 ((-112) |#1| |#1|)) (-15 -3902 ((-539) |#1|)) (-15 -2949 (|#1| |#1|)) (-15 -1605 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2778 ((-410 (-567)) |#1|)) (-15 -2492 ((-112) |#1|)) (-15 -1547 (|#2| |#1|)) (-15 -2724 (|#2| |#1|)) (-15 -1672 (|#1| |#1|)) (-15 -3841 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -2051 (|#2| |#1|)) (-15 -2051 ((-410 (-567)) |#1|)) (-15 -3765 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -4129 (|#1| (-410 (-567)))) (-15 -2051 ((-567) |#1|)) (-15 -3765 ((-3 (-567) "failed") |#1|)) (-15 -4129 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2746 ((-772))) (-15 -4129 (|#1| (-567))) (-15 * (|#1| |#1| |#1|)) (-15 -3053 (|#1| |#1| |#1|)) (-15 -3053 (|#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 -3791 ((-112) |#1|)) (-15 * (|#1| (-923) |#1|)) (-15 -3041 (|#1| |#1| |#1|)) (-15 -4129 ((-863) |#1|)) (-15 -2946 ((-112) |#1| |#1|))) (-798 |#2|) (-172)) (T -797))
+((-2746 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-772)) (-5 *1 (-797 *3 *4)) (-4 *3 (-798 *4)))))
+(-10 -8 (-15 -2968 ((-112) |#1| |#1|)) (-15 -3902 ((-539) |#1|)) (-15 -2949 (|#1| |#1|)) (-15 -1605 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2778 ((-410 (-567)) |#1|)) (-15 -2492 ((-112) |#1|)) (-15 -1547 (|#2| |#1|)) (-15 -2724 (|#2| |#1|)) (-15 -1672 (|#1| |#1|)) (-15 -3841 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -2051 (|#2| |#1|)) (-15 -2051 ((-410 (-567)) |#1|)) (-15 -3765 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -4129 (|#1| (-410 (-567)))) (-15 -2051 ((-567) |#1|)) (-15 -3765 ((-3 (-567) "failed") |#1|)) (-15 -4129 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2746 ((-772))) (-15 -4129 (|#1| (-567))) (-15 * (|#1| |#1| |#1|)) (-15 -3053 (|#1| |#1| |#1|)) (-15 -3053 (|#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 -3791 ((-112) |#1|)) (-15 * (|#1| (-923) |#1|)) (-15 -3041 (|#1| |#1| |#1|)) (-15 -4129 ((-863) |#1|)) (-15 -2946 ((-112) |#1| |#1|)))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-2376 (((-3 $ "failed") $ $) 20)) (-2384 (((-772)) 58 (|has| |#1| (-370)))) (-3647 (($) 18 T CONST)) (-3765 (((-3 (-567) "failed") $) 100 (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) 97 (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) 94)) (-2051 (((-567) $) 99 (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) 96 (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) 95)) (-3588 (((-3 $ "failed") $) 37)) (-2738 ((|#1| $) 84)) (-1605 (((-3 (-410 (-567)) "failed") $) 71 (|has| |#1| (-548)))) (-2492 (((-112) $) 73 (|has| |#1| (-548)))) (-2778 (((-410 (-567)) $) 72 (|has| |#1| (-548)))) (-1359 (($) 61 (|has| |#1| (-370)))) (-4346 (((-112) $) 35)) (-1859 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 75)) (-2724 ((|#1| $) 76)) (-1365 (($ $ $) 67 (|has| |#1| (-851)))) (-3002 (($ $ $) 66 (|has| |#1| (-851)))) (-3841 (($ (-1 |#1| |#1|) $) 86)) (-3474 (((-923) $) 60 (|has| |#1| (-370)))) (-2516 (((-1161) $) 10)) (-2949 (($ $) 70 (|has| |#1| (-365)))) (-3779 (($ (-923)) 59 (|has| |#1| (-370)))) (-2758 ((|#1| $) 81)) (-2223 ((|#1| $) 82)) (-3101 ((|#1| $) 83)) (-3493 ((|#1| $) 77)) (-1536 ((|#1| $) 78)) (-4087 ((|#1| $) 79)) (-3685 ((|#1| $) 80)) (-3437 (((-1122) $) 11)) (-2642 (($ $ (-645 |#1|) (-645 |#1|)) 92 (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) 91 (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) 90 (|has| |#1| (-310 |#1|))) (($ $ (-645 (-295 |#1|))) 89 (|has| |#1| (-310 |#1|))) (($ $ (-645 (-1179)) (-645 |#1|)) 88 (|has| |#1| (-517 (-1179) |#1|))) (($ $ (-1179) |#1|) 87 (|has| |#1| (-517 (-1179) |#1|)))) (-1801 (($ $ |#1|) 93 (|has| |#1| (-287 |#1| |#1|)))) (-3902 (((-539) $) 68 (|has| |#1| (-615 (-539))))) (-1672 (($ $) 85)) (-4129 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 44) (($ (-410 (-567))) 98 (|has| |#1| (-1040 (-410 (-567)))))) (-2118 (((-3 $ "failed") $) 69 (|has| |#1| (-145)))) (-2746 (((-772)) 32 T CONST)) (-3357 (((-112) $ $) 9)) (-1547 ((|#1| $) 74 (|has| |#1| (-1062)))) (-1733 (($) 19 T CONST)) (-1744 (($) 34 T CONST)) (-3004 (((-112) $ $) 64 (|has| |#1| (-851)))) (-2980 (((-112) $ $) 63 (|has| |#1| (-851)))) (-2946 (((-112) $ $) 6)) (-2993 (((-112) $ $) 65 (|has| |#1| (-851)))) (-2968 (((-112) $ $) 62 (|has| |#1| (-851)))) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45)))
(((-798 |#1|) (-140) (-172)) (T -798))
-((-1823 (*1 *1 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-2727 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-1714 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-3721 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-1536 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-1894 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-3421 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-3926 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-2048 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-2475 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-3899 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-2219 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)) (-4 *2 (-1062)))) (-1862 (*1 *2 *1) (-12 (-4 *1 (-798 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-112)))) (-2331 (*1 *2 *1) (-12 (-4 *1 (-798 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-410 (-567))))) (-2085 (*1 *2 *1) (|partial| -12 (-4 *1 (-798 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-410 (-567))))) (-2939 (*1 *1 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)) (-4 *2 (-365)))))
-(-13 (-38 |t#1|) (-414 |t#1|) (-340 |t#1|) (-10 -8 (-15 -1823 ($ $)) (-15 -2727 (|t#1| $)) (-15 -1714 (|t#1| $)) (-15 -3721 (|t#1| $)) (-15 -1536 (|t#1| $)) (-15 -1894 (|t#1| $)) (-15 -3421 (|t#1| $)) (-15 -3926 (|t#1| $)) (-15 -2048 (|t#1| $)) (-15 -2475 (|t#1| $)) (-15 -3899 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-370)) (-6 (-370)) |%noBranch|) (IF (|has| |t#1| (-851)) (-6 (-851)) |%noBranch|) (IF (|has| |t#1| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1062)) (-15 -2219 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-548)) (PROGN (-15 -1862 ((-112) $)) (-15 -2331 ((-410 (-567)) $)) (-15 -2085 ((-3 (-410 (-567)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-365)) (-15 -2939 ($ $)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #0=(-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-614 (-863)) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-287 |#1| $) |has| |#1| (-287 |#1| |#1|)) ((-310 |#1|) |has| |#1| (-310 |#1|)) ((-370) |has| |#1| (-370)) ((-340 |#1|) . T) ((-414 |#1|) . T) ((-517 (-1178) |#1|) |has| |#1| (-517 (-1178) |#1|)) ((-517 |#1| |#1|) |has| |#1| (-310 |#1|)) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-641 |#1|) . T) ((-718 |#1|) . T) ((-727) . T) ((-851) |has| |#1| (-851)) ((-1040 #0#) |has| |#1| (-1040 (-410 (-567)))) ((-1040 (-567)) |has| |#1| (-1040 (-567))) ((-1040 |#1|) . T) ((-1053 |#1|) . T) ((-1058 |#1|) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T))
-((-3829 ((|#3| (-1 |#4| |#2|) |#1|) 20)))
-(((-799 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3829 (|#3| (-1 |#4| |#2|) |#1|))) (-798 |#2|) (-172) (-798 |#4|) (-172)) (T -799))
-((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-798 *6)) (-5 *1 (-799 *4 *5 *2 *6)) (-4 *4 (-798 *5)))))
-(-10 -7 (-15 -3829 (|#3| (-1 |#4| |#2|) |#1|)))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2375 (((-772)) NIL (|has| |#1| (-370)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 |#1| "failed") $) NIL) (((-3 (-1001 |#1|) "failed") $) 35) (((-3 (-567) "failed") $) NIL (-2800 (|has| (-1001 |#1|) (-1040 (-567))) (|has| |#1| (-1040 (-567))))) (((-3 (-410 (-567)) "failed") $) NIL (-2800 (|has| (-1001 |#1|) (-1040 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567))))))) (-2038 ((|#1| $) NIL) (((-1001 |#1|) $) 33) (((-567) $) NIL (-2800 (|has| (-1001 |#1|) (-1040 (-567))) (|has| |#1| (-1040 (-567))))) (((-410 (-567)) $) NIL (-2800 (|has| (-1001 |#1|) (-1040 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567))))))) (-2109 (((-3 $ "failed") $) NIL)) (-2727 ((|#1| $) 16)) (-2085 (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-548)))) (-1862 (((-112) $) NIL (|has| |#1| (-548)))) (-2331 (((-410 (-567)) $) NIL (|has| |#1| (-548)))) (-1348 (($) NIL (|has| |#1| (-370)))) (-1433 (((-112) $) NIL)) (-3899 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-1001 |#1|) (-1001 |#1|)) 29)) (-2475 ((|#1| $) NIL)) (-1354 (($ $ $) NIL (|has| |#1| (-851)))) (-2981 (($ $ $) NIL (|has| |#1| (-851)))) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-4249 (((-923) $) NIL (|has| |#1| (-370)))) (-1419 (((-1160) $) NIL)) (-2939 (($ $) NIL (|has| |#1| (-365)))) (-3768 (($ (-923)) NIL (|has| |#1| (-370)))) (-1536 ((|#1| $) 22)) (-3721 ((|#1| $) 20)) (-1714 ((|#1| $) 18)) (-2048 ((|#1| $) 26)) (-3926 ((|#1| $) 25)) (-3421 ((|#1| $) 24)) (-1894 ((|#1| $) 23)) (-3430 (((-1122) $) NIL)) (-2631 (($ $ (-645 |#1|) (-645 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ (-645 (-295 |#1|))) NIL (|has| |#1| (-310 |#1|))) (($ $ (-645 (-1178)) (-645 |#1|)) NIL (|has| |#1| (-517 (-1178) |#1|))) (($ $ (-1178) |#1|) NIL (|has| |#1| (-517 (-1178) |#1|)))) (-1787 (($ $ |#1|) NIL (|has| |#1| (-287 |#1| |#1|)))) (-3893 (((-539) $) NIL (|has| |#1| (-615 (-539))))) (-1823 (($ $) NIL)) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) NIL) (($ (-1001 |#1|)) 30) (($ (-410 (-567))) NIL (-2800 (|has| (-1001 |#1|) (-1040 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567))))))) (-1903 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-4221 (((-772)) NIL T CONST)) (-1745 (((-112) $ $) NIL)) (-2219 ((|#1| $) NIL (|has| |#1| (-1062)))) (-1716 (($) 8 T CONST)) (-1728 (($) 12 T CONST)) (-2997 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2971 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2958 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-800 |#1|) (-13 (-798 |#1|) (-414 (-1001 |#1|)) (-10 -8 (-15 -3899 ($ (-1001 |#1|) (-1001 |#1|))))) (-172)) (T -800))
-((-3899 (*1 *1 *2 *2) (-12 (-5 *2 (-1001 *3)) (-4 *3 (-172)) (-5 *1 (-800 *3)))))
-(-13 (-798 |#1|) (-414 (-1001 |#1|)) (-10 -8 (-15 -3899 ($ (-1001 |#1|) (-1001 |#1|)))))
-((-2403 (((-112) $ $) 7)) (-2264 (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160))) (-1065) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 15)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-3393 (((-1037) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 14)) (-2936 (((-112) $ $) 6)))
+((-1672 (*1 *1 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-2738 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-3101 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-2223 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-2758 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-3685 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-4087 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-1536 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-3493 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-2724 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-1859 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-1547 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)) (-4 *2 (-1062)))) (-2492 (*1 *2 *1) (-12 (-4 *1 (-798 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-112)))) (-2778 (*1 *2 *1) (-12 (-4 *1 (-798 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-410 (-567))))) (-1605 (*1 *2 *1) (|partial| -12 (-4 *1 (-798 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-410 (-567))))) (-2949 (*1 *1 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)) (-4 *2 (-365)))))
+(-13 (-38 |t#1|) (-414 |t#1|) (-340 |t#1|) (-10 -8 (-15 -1672 ($ $)) (-15 -2738 (|t#1| $)) (-15 -3101 (|t#1| $)) (-15 -2223 (|t#1| $)) (-15 -2758 (|t#1| $)) (-15 -3685 (|t#1| $)) (-15 -4087 (|t#1| $)) (-15 -1536 (|t#1| $)) (-15 -3493 (|t#1| $)) (-15 -2724 (|t#1| $)) (-15 -1859 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-370)) (-6 (-370)) |%noBranch|) (IF (|has| |t#1| (-851)) (-6 (-851)) |%noBranch|) (IF (|has| |t#1| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1062)) (-15 -1547 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-548)) (PROGN (-15 -2492 ((-112) $)) (-15 -2778 ((-410 (-567)) $)) (-15 -1605 ((-3 (-410 (-567)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-365)) (-15 -2949 ($ $)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #0=(-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-614 (-863)) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-287 |#1| $) |has| |#1| (-287 |#1| |#1|)) ((-310 |#1|) |has| |#1| (-310 |#1|)) ((-370) |has| |#1| (-370)) ((-340 |#1|) . T) ((-414 |#1|) . T) ((-517 (-1179) |#1|) |has| |#1| (-517 (-1179) |#1|)) ((-517 |#1| |#1|) |has| |#1| (-310 |#1|)) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-641 |#1|) . T) ((-718 |#1|) . T) ((-727) . T) ((-851) |has| |#1| (-851)) ((-1040 #0#) |has| |#1| (-1040 (-410 (-567)))) ((-1040 (-567)) |has| |#1| (-1040 (-567))) ((-1040 |#1|) . T) ((-1053 |#1|) . T) ((-1058 |#1|) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T))
+((-3841 ((|#3| (-1 |#4| |#2|) |#1|) 20)))
+(((-799 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3841 (|#3| (-1 |#4| |#2|) |#1|))) (-798 |#2|) (-172) (-798 |#4|) (-172)) (T -799))
+((-3841 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-798 *6)) (-5 *1 (-799 *4 *5 *2 *6)) (-4 *4 (-798 *5)))))
+(-10 -7 (-15 -3841 (|#3| (-1 |#4| |#2|) |#1|)))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-2376 (((-3 $ "failed") $ $) NIL)) (-2384 (((-772)) NIL (|has| |#1| (-370)))) (-3647 (($) NIL T CONST)) (-3765 (((-3 |#1| "failed") $) NIL) (((-3 (-1001 |#1|) "failed") $) 35) (((-3 (-567) "failed") $) NIL (-2811 (|has| (-1001 |#1|) (-1040 (-567))) (|has| |#1| (-1040 (-567))))) (((-3 (-410 (-567)) "failed") $) NIL (-2811 (|has| (-1001 |#1|) (-1040 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567))))))) (-2051 ((|#1| $) NIL) (((-1001 |#1|) $) 33) (((-567) $) NIL (-2811 (|has| (-1001 |#1|) (-1040 (-567))) (|has| |#1| (-1040 (-567))))) (((-410 (-567)) $) NIL (-2811 (|has| (-1001 |#1|) (-1040 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567))))))) (-3588 (((-3 $ "failed") $) NIL)) (-2738 ((|#1| $) 16)) (-1605 (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-548)))) (-2492 (((-112) $) NIL (|has| |#1| (-548)))) (-2778 (((-410 (-567)) $) NIL (|has| |#1| (-548)))) (-1359 (($) NIL (|has| |#1| (-370)))) (-4346 (((-112) $) NIL)) (-1859 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-1001 |#1|) (-1001 |#1|)) 29)) (-2724 ((|#1| $) NIL)) (-1365 (($ $ $) NIL (|has| |#1| (-851)))) (-3002 (($ $ $) NIL (|has| |#1| (-851)))) (-3841 (($ (-1 |#1| |#1|) $) NIL)) (-3474 (((-923) $) NIL (|has| |#1| (-370)))) (-2516 (((-1161) $) NIL)) (-2949 (($ $) NIL (|has| |#1| (-365)))) (-3779 (($ (-923)) NIL (|has| |#1| (-370)))) (-2758 ((|#1| $) 22)) (-2223 ((|#1| $) 20)) (-3101 ((|#1| $) 18)) (-3493 ((|#1| $) 26)) (-1536 ((|#1| $) 25)) (-4087 ((|#1| $) 24)) (-3685 ((|#1| $) 23)) (-3437 (((-1122) $) NIL)) (-2642 (($ $ (-645 |#1|) (-645 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ (-645 (-295 |#1|))) NIL (|has| |#1| (-310 |#1|))) (($ $ (-645 (-1179)) (-645 |#1|)) NIL (|has| |#1| (-517 (-1179) |#1|))) (($ $ (-1179) |#1|) NIL (|has| |#1| (-517 (-1179) |#1|)))) (-1801 (($ $ |#1|) NIL (|has| |#1| (-287 |#1| |#1|)))) (-3902 (((-539) $) NIL (|has| |#1| (-615 (-539))))) (-1672 (($ $) NIL)) (-4129 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) NIL) (($ (-1001 |#1|)) 30) (($ (-410 (-567))) NIL (-2811 (|has| (-1001 |#1|) (-1040 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567))))))) (-2118 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2746 (((-772)) NIL T CONST)) (-3357 (((-112) $ $) NIL)) (-1547 ((|#1| $) NIL (|has| |#1| (-1062)))) (-1733 (($) 8 T CONST)) (-1744 (($) 12 T CONST)) (-3004 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2980 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2946 (((-112) $ $) NIL)) (-2993 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2968 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-800 |#1|) (-13 (-798 |#1|) (-414 (-1001 |#1|)) (-10 -8 (-15 -1859 ($ (-1001 |#1|) (-1001 |#1|))))) (-172)) (T -800))
+((-1859 (*1 *1 *2 *2) (-12 (-5 *2 (-1001 *3)) (-4 *3 (-172)) (-5 *1 (-800 *3)))))
+(-13 (-798 |#1|) (-414 (-1001 |#1|)) (-10 -8 (-15 -1859 ($ (-1001 |#1|) (-1001 |#1|)))))
+((-2412 (((-112) $ $) 7)) (-3055 (((-2 (|:| -3055 (-381)) (|:| |explanations| (-1161))) (-1065) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 15)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-4129 (((-863) $) 12)) (-3357 (((-112) $ $) 9)) (-4149 (((-1037) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 14)) (-2946 (((-112) $ $) 6)))
(((-801) (-140)) (T -801))
-((-2264 (*1 *2 *3 *4) (-12 (-4 *1 (-801)) (-5 *3 (-1065)) (-5 *4 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -2264 (-381)) (|:| |explanations| (-1160)))))) (-3393 (*1 *2 *3) (-12 (-4 *1 (-801)) (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-1037)))))
-(-13 (-1102) (-10 -7 (-15 -2264 ((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160))) (-1065) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3393 ((-1037) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))))
+((-3055 (*1 *2 *3 *4) (-12 (-4 *1 (-801)) (-5 *3 (-1065)) (-5 *4 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -3055 (-381)) (|:| |explanations| (-1161)))))) (-4149 (*1 *2 *3) (-12 (-4 *1 (-801)) (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-1037)))))
+(-13 (-1102) (-10 -7 (-15 -3055 ((-2 (|:| -3055 (-381)) (|:| |explanations| (-1161))) (-1065) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4149 ((-1037) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))))
(((-102) . T) ((-614 (-863)) . T) ((-1102) . T))
-((-3626 (((-2 (|:| |particular| |#2|) (|:| -2623 (-645 |#2|))) |#3| |#2| (-1178)) 19)))
-(((-802 |#1| |#2| |#3|) (-10 -7 (-15 -3626 ((-2 (|:| |particular| |#2|) (|:| -2623 (-645 |#2|))) |#3| |#2| (-1178)))) (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147)) (-13 (-29 |#1|) (-1203) (-961)) (-657 |#2|)) (T -802))
-((-3626 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1178)) (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (-4 *4 (-13 (-29 *6) (-1203) (-961))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2623 (-645 *4)))) (-5 *1 (-802 *6 *4 *3)) (-4 *3 (-657 *4)))))
-(-10 -7 (-15 -3626 ((-2 (|:| |particular| |#2|) (|:| -2623 (-645 |#2|))) |#3| |#2| (-1178))))
-((-3018 (((-3 |#2| "failed") |#2| (-114) (-295 |#2|) (-645 |#2|)) 28) (((-3 |#2| "failed") (-295 |#2|) (-114) (-295 |#2|) (-645 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -2623 (-645 |#2|))) |#2| "failed") |#2| (-114) (-1178)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -2623 (-645 |#2|))) |#2| "failed") (-295 |#2|) (-114) (-1178)) 18) (((-3 (-2 (|:| |particular| (-1268 |#2|)) (|:| -2623 (-645 (-1268 |#2|)))) "failed") (-645 |#2|) (-645 (-114)) (-1178)) 24) (((-3 (-2 (|:| |particular| (-1268 |#2|)) (|:| -2623 (-645 (-1268 |#2|)))) "failed") (-645 (-295 |#2|)) (-645 (-114)) (-1178)) 26) (((-3 (-645 (-1268 |#2|)) "failed") (-690 |#2|) (-1178)) 37) (((-3 (-2 (|:| |particular| (-1268 |#2|)) (|:| -2623 (-645 (-1268 |#2|)))) "failed") (-690 |#2|) (-1268 |#2|) (-1178)) 35)))
-(((-803 |#1| |#2|) (-10 -7 (-15 -3018 ((-3 (-2 (|:| |particular| (-1268 |#2|)) (|:| -2623 (-645 (-1268 |#2|)))) "failed") (-690 |#2|) (-1268 |#2|) (-1178))) (-15 -3018 ((-3 (-645 (-1268 |#2|)) "failed") (-690 |#2|) (-1178))) (-15 -3018 ((-3 (-2 (|:| |particular| (-1268 |#2|)) (|:| -2623 (-645 (-1268 |#2|)))) "failed") (-645 (-295 |#2|)) (-645 (-114)) (-1178))) (-15 -3018 ((-3 (-2 (|:| |particular| (-1268 |#2|)) (|:| -2623 (-645 (-1268 |#2|)))) "failed") (-645 |#2|) (-645 (-114)) (-1178))) (-15 -3018 ((-3 (-2 (|:| |particular| |#2|) (|:| -2623 (-645 |#2|))) |#2| "failed") (-295 |#2|) (-114) (-1178))) (-15 -3018 ((-3 (-2 (|:| |particular| |#2|) (|:| -2623 (-645 |#2|))) |#2| "failed") |#2| (-114) (-1178))) (-15 -3018 ((-3 |#2| "failed") (-295 |#2|) (-114) (-295 |#2|) (-645 |#2|))) (-15 -3018 ((-3 |#2| "failed") |#2| (-114) (-295 |#2|) (-645 |#2|)))) (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147)) (-13 (-29 |#1|) (-1203) (-961))) (T -803))
-((-3018 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-295 *2)) (-5 *5 (-645 *2)) (-4 *2 (-13 (-29 *6) (-1203) (-961))) (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (-5 *1 (-803 *6 *2)))) (-3018 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-295 *2)) (-5 *4 (-114)) (-5 *5 (-645 *2)) (-4 *2 (-13 (-29 *6) (-1203) (-961))) (-5 *1 (-803 *6 *2)) (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))))) (-3018 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-114)) (-5 *5 (-1178)) (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2623 (-645 *3))) *3 "failed")) (-5 *1 (-803 *6 *3)) (-4 *3 (-13 (-29 *6) (-1203) (-961))))) (-3018 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-295 *7)) (-5 *4 (-114)) (-5 *5 (-1178)) (-4 *7 (-13 (-29 *6) (-1203) (-961))) (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2623 (-645 *7))) *7 "failed")) (-5 *1 (-803 *6 *7)))) (-3018 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-645 *7)) (-5 *4 (-645 (-114))) (-5 *5 (-1178)) (-4 *7 (-13 (-29 *6) (-1203) (-961))) (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (-5 *2 (-2 (|:| |particular| (-1268 *7)) (|:| -2623 (-645 (-1268 *7))))) (-5 *1 (-803 *6 *7)))) (-3018 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-645 (-295 *7))) (-5 *4 (-645 (-114))) (-5 *5 (-1178)) (-4 *7 (-13 (-29 *6) (-1203) (-961))) (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (-5 *2 (-2 (|:| |particular| (-1268 *7)) (|:| -2623 (-645 (-1268 *7))))) (-5 *1 (-803 *6 *7)))) (-3018 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-690 *6)) (-5 *4 (-1178)) (-4 *6 (-13 (-29 *5) (-1203) (-961))) (-4 *5 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (-5 *2 (-645 (-1268 *6))) (-5 *1 (-803 *5 *6)))) (-3018 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-690 *7)) (-5 *5 (-1178)) (-4 *7 (-13 (-29 *6) (-1203) (-961))) (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (-5 *2 (-2 (|:| |particular| (-1268 *7)) (|:| -2623 (-645 (-1268 *7))))) (-5 *1 (-803 *6 *7)) (-5 *4 (-1268 *7)))))
-(-10 -7 (-15 -3018 ((-3 (-2 (|:| |particular| (-1268 |#2|)) (|:| -2623 (-645 (-1268 |#2|)))) "failed") (-690 |#2|) (-1268 |#2|) (-1178))) (-15 -3018 ((-3 (-645 (-1268 |#2|)) "failed") (-690 |#2|) (-1178))) (-15 -3018 ((-3 (-2 (|:| |particular| (-1268 |#2|)) (|:| -2623 (-645 (-1268 |#2|)))) "failed") (-645 (-295 |#2|)) (-645 (-114)) (-1178))) (-15 -3018 ((-3 (-2 (|:| |particular| (-1268 |#2|)) (|:| -2623 (-645 (-1268 |#2|)))) "failed") (-645 |#2|) (-645 (-114)) (-1178))) (-15 -3018 ((-3 (-2 (|:| |particular| |#2|) (|:| -2623 (-645 |#2|))) |#2| "failed") (-295 |#2|) (-114) (-1178))) (-15 -3018 ((-3 (-2 (|:| |particular| |#2|) (|:| -2623 (-645 |#2|))) |#2| "failed") |#2| (-114) (-1178))) (-15 -3018 ((-3 |#2| "failed") (-295 |#2|) (-114) (-295 |#2|) (-645 |#2|))) (-15 -3018 ((-3 |#2| "failed") |#2| (-114) (-295 |#2|) (-645 |#2|))))
-((-3246 (($) 9)) (-2776 (((-3 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))) "failed") (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 31)) (-1391 (((-645 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $) 28)) (-2531 (($ (-2 (|:| -1795 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4237 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))))) 25)) (-1973 (($ (-645 (-2 (|:| -1795 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4237 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))))))) 23)) (-3083 (((-1273)) 12)))
-(((-804) (-10 -8 (-15 -3246 ($)) (-15 -3083 ((-1273))) (-15 -1391 ((-645 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -1973 ($ (-645 (-2 (|:| -1795 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4237 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))))))) (-15 -2531 ($ (-2 (|:| -1795 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4237 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))))))) (-15 -2776 ((-3 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))) "failed") (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -804))
-((-2776 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))) (-5 *1 (-804)))) (-2531 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -1795 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4237 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))))) (-5 *1 (-804)))) (-1973 (*1 *1 *2) (-12 (-5 *2 (-645 (-2 (|:| -1795 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4237 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))))))) (-5 *1 (-804)))) (-1391 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-5 *1 (-804)))) (-3083 (*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-804)))) (-3246 (*1 *1) (-5 *1 (-804))))
-(-10 -8 (-15 -3246 ($)) (-15 -3083 ((-1273))) (-15 -1391 ((-645 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -1973 ($ (-645 (-2 (|:| -1795 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4237 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))))))) (-15 -2531 ($ (-2 (|:| -1795 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4237 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))))))) (-15 -2776 ((-3 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))) "failed") (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))
-((-2669 ((|#2| |#2| (-1178)) 17)) (-4140 ((|#2| |#2| (-1178)) 56)) (-4074 (((-1 |#2| |#2|) (-1178)) 11)))
-(((-805 |#1| |#2|) (-10 -7 (-15 -2669 (|#2| |#2| (-1178))) (-15 -4140 (|#2| |#2| (-1178))) (-15 -4074 ((-1 |#2| |#2|) (-1178)))) (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147)) (-13 (-29 |#1|) (-1203) (-961))) (T -805))
-((-4074 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (-5 *2 (-1 *5 *5)) (-5 *1 (-805 *4 *5)) (-4 *5 (-13 (-29 *4) (-1203) (-961))))) (-4140 (*1 *2 *2 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (-5 *1 (-805 *4 *2)) (-4 *2 (-13 (-29 *4) (-1203) (-961))))) (-2669 (*1 *2 *2 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (-5 *1 (-805 *4 *2)) (-4 *2 (-13 (-29 *4) (-1203) (-961))))))
-(-10 -7 (-15 -2669 (|#2| |#2| (-1178))) (-15 -4140 (|#2| |#2| (-1178))) (-15 -4074 ((-1 |#2| |#2|) (-1178))))
-((-3018 (((-1037) (-1268 (-317 (-381))) (-381) (-381) (-645 (-381)) (-317 (-381)) (-645 (-381)) (-381) (-381)) 131) (((-1037) (-1268 (-317 (-381))) (-381) (-381) (-645 (-381)) (-317 (-381)) (-645 (-381)) (-381)) 132) (((-1037) (-1268 (-317 (-381))) (-381) (-381) (-645 (-381)) (-645 (-381)) (-381)) 134) (((-1037) (-1268 (-317 (-381))) (-381) (-381) (-645 (-381)) (-317 (-381)) (-381)) 136) (((-1037) (-1268 (-317 (-381))) (-381) (-381) (-645 (-381)) (-381)) 137) (((-1037) (-1268 (-317 (-381))) (-381) (-381) (-645 (-381))) 139) (((-1037) (-809) (-1065)) 123) (((-1037) (-809)) 124)) (-2264 (((-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160)))) (-809) (-1065)) 83) (((-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160)))) (-809)) 85)))
-(((-806) (-10 -7 (-15 -3018 ((-1037) (-809))) (-15 -3018 ((-1037) (-809) (-1065))) (-15 -3018 ((-1037) (-1268 (-317 (-381))) (-381) (-381) (-645 (-381)))) (-15 -3018 ((-1037) (-1268 (-317 (-381))) (-381) (-381) (-645 (-381)) (-381))) (-15 -3018 ((-1037) (-1268 (-317 (-381))) (-381) (-381) (-645 (-381)) (-317 (-381)) (-381))) (-15 -3018 ((-1037) (-1268 (-317 (-381))) (-381) (-381) (-645 (-381)) (-645 (-381)) (-381))) (-15 -3018 ((-1037) (-1268 (-317 (-381))) (-381) (-381) (-645 (-381)) (-317 (-381)) (-645 (-381)) (-381))) (-15 -3018 ((-1037) (-1268 (-317 (-381))) (-381) (-381) (-645 (-381)) (-317 (-381)) (-645 (-381)) (-381) (-381))) (-15 -2264 ((-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160)))) (-809))) (-15 -2264 ((-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160)))) (-809) (-1065))))) (T -806))
-((-2264 (*1 *2 *3 *4) (-12 (-5 *3 (-809)) (-5 *4 (-1065)) (-5 *2 (-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160))))) (-5 *1 (-806)))) (-2264 (*1 *2 *3) (-12 (-5 *3 (-809)) (-5 *2 (-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160))))) (-5 *1 (-806)))) (-3018 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1268 (-317 *4))) (-5 *5 (-645 (-381))) (-5 *6 (-317 (-381))) (-5 *4 (-381)) (-5 *2 (-1037)) (-5 *1 (-806)))) (-3018 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1268 (-317 *4))) (-5 *5 (-645 (-381))) (-5 *6 (-317 (-381))) (-5 *4 (-381)) (-5 *2 (-1037)) (-5 *1 (-806)))) (-3018 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1268 (-317 (-381)))) (-5 *4 (-381)) (-5 *5 (-645 *4)) (-5 *2 (-1037)) (-5 *1 (-806)))) (-3018 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1268 (-317 *4))) (-5 *5 (-645 (-381))) (-5 *6 (-317 (-381))) (-5 *4 (-381)) (-5 *2 (-1037)) (-5 *1 (-806)))) (-3018 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1268 (-317 (-381)))) (-5 *4 (-381)) (-5 *5 (-645 *4)) (-5 *2 (-1037)) (-5 *1 (-806)))) (-3018 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1268 (-317 (-381)))) (-5 *4 (-381)) (-5 *5 (-645 *4)) (-5 *2 (-1037)) (-5 *1 (-806)))) (-3018 (*1 *2 *3 *4) (-12 (-5 *3 (-809)) (-5 *4 (-1065)) (-5 *2 (-1037)) (-5 *1 (-806)))) (-3018 (*1 *2 *3) (-12 (-5 *3 (-809)) (-5 *2 (-1037)) (-5 *1 (-806)))))
-(-10 -7 (-15 -3018 ((-1037) (-809))) (-15 -3018 ((-1037) (-809) (-1065))) (-15 -3018 ((-1037) (-1268 (-317 (-381))) (-381) (-381) (-645 (-381)))) (-15 -3018 ((-1037) (-1268 (-317 (-381))) (-381) (-381) (-645 (-381)) (-381))) (-15 -3018 ((-1037) (-1268 (-317 (-381))) (-381) (-381) (-645 (-381)) (-317 (-381)) (-381))) (-15 -3018 ((-1037) (-1268 (-317 (-381))) (-381) (-381) (-645 (-381)) (-645 (-381)) (-381))) (-15 -3018 ((-1037) (-1268 (-317 (-381))) (-381) (-381) (-645 (-381)) (-317 (-381)) (-645 (-381)) (-381))) (-15 -3018 ((-1037) (-1268 (-317 (-381))) (-381) (-381) (-645 (-381)) (-317 (-381)) (-645 (-381)) (-381) (-381))) (-15 -2264 ((-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160)))) (-809))) (-15 -2264 ((-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160)))) (-809) (-1065))))
-((-2678 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2623 (-645 |#4|))) (-654 |#4|) |#4|) 35)))
-(((-807 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2678 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2623 (-645 |#4|))) (-654 |#4|) |#4|))) (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567)))) (-1244 |#1|) (-1244 (-410 |#2|)) (-344 |#1| |#2| |#3|)) (T -807))
-((-2678 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *4)) (-4 *4 (-344 *5 *6 *7)) (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) (-4 *6 (-1244 *5)) (-4 *7 (-1244 (-410 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2623 (-645 *4)))) (-5 *1 (-807 *5 *6 *7 *4)))))
-(-10 -7 (-15 -2678 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2623 (-645 |#4|))) (-654 |#4|) |#4|)))
-((-1989 (((-2 (|:| -3845 |#3|) (|:| |rh| (-645 (-410 |#2|)))) |#4| (-645 (-410 |#2|))) 53)) (-2883 (((-645 (-2 (|:| -2166 |#2|) (|:| -2537 |#2|))) |#4| |#2|) 62) (((-645 (-2 (|:| -2166 |#2|) (|:| -2537 |#2|))) |#4|) 61) (((-645 (-2 (|:| -2166 |#2|) (|:| -2537 |#2|))) |#3| |#2|) 20) (((-645 (-2 (|:| -2166 |#2|) (|:| -2537 |#2|))) |#3|) 21)) (-2655 ((|#2| |#4| |#1|) 63) ((|#2| |#3| |#1|) 28)) (-3839 ((|#2| |#3| (-645 (-410 |#2|))) 113) (((-3 |#2| "failed") |#3| (-410 |#2|)) 109)))
-(((-808 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3839 ((-3 |#2| "failed") |#3| (-410 |#2|))) (-15 -3839 (|#2| |#3| (-645 (-410 |#2|)))) (-15 -2883 ((-645 (-2 (|:| -2166 |#2|) (|:| -2537 |#2|))) |#3|)) (-15 -2883 ((-645 (-2 (|:| -2166 |#2|) (|:| -2537 |#2|))) |#3| |#2|)) (-15 -2655 (|#2| |#3| |#1|)) (-15 -2883 ((-645 (-2 (|:| -2166 |#2|) (|:| -2537 |#2|))) |#4|)) (-15 -2883 ((-645 (-2 (|:| -2166 |#2|) (|:| -2537 |#2|))) |#4| |#2|)) (-15 -2655 (|#2| |#4| |#1|)) (-15 -1989 ((-2 (|:| -3845 |#3|) (|:| |rh| (-645 (-410 |#2|)))) |#4| (-645 (-410 |#2|))))) (-13 (-365) (-147) (-1040 (-410 (-567)))) (-1244 |#1|) (-657 |#2|) (-657 (-410 |#2|))) (T -808))
-((-1989 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *6 (-1244 *5)) (-5 *2 (-2 (|:| -3845 *7) (|:| |rh| (-645 (-410 *6))))) (-5 *1 (-808 *5 *6 *7 *3)) (-5 *4 (-645 (-410 *6))) (-4 *7 (-657 *6)) (-4 *3 (-657 (-410 *6))))) (-2655 (*1 *2 *3 *4) (-12 (-4 *2 (-1244 *4)) (-5 *1 (-808 *4 *2 *5 *3)) (-4 *4 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *5 (-657 *2)) (-4 *3 (-657 (-410 *2))))) (-2883 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *4 (-1244 *5)) (-5 *2 (-645 (-2 (|:| -2166 *4) (|:| -2537 *4)))) (-5 *1 (-808 *5 *4 *6 *3)) (-4 *6 (-657 *4)) (-4 *3 (-657 (-410 *4))))) (-2883 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *5 (-1244 *4)) (-5 *2 (-645 (-2 (|:| -2166 *5) (|:| -2537 *5)))) (-5 *1 (-808 *4 *5 *6 *3)) (-4 *6 (-657 *5)) (-4 *3 (-657 (-410 *5))))) (-2655 (*1 *2 *3 *4) (-12 (-4 *2 (-1244 *4)) (-5 *1 (-808 *4 *2 *3 *5)) (-4 *4 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *3 (-657 *2)) (-4 *5 (-657 (-410 *2))))) (-2883 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *4 (-1244 *5)) (-5 *2 (-645 (-2 (|:| -2166 *4) (|:| -2537 *4)))) (-5 *1 (-808 *5 *4 *3 *6)) (-4 *3 (-657 *4)) (-4 *6 (-657 (-410 *4))))) (-2883 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *5 (-1244 *4)) (-5 *2 (-645 (-2 (|:| -2166 *5) (|:| -2537 *5)))) (-5 *1 (-808 *4 *5 *3 *6)) (-4 *3 (-657 *5)) (-4 *6 (-657 (-410 *5))))) (-3839 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-410 *2))) (-4 *2 (-1244 *5)) (-5 *1 (-808 *5 *2 *3 *6)) (-4 *5 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *3 (-657 *2)) (-4 *6 (-657 (-410 *2))))) (-3839 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-410 *2)) (-4 *2 (-1244 *5)) (-5 *1 (-808 *5 *2 *3 *6)) (-4 *5 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *3 (-657 *2)) (-4 *6 (-657 *4)))))
-(-10 -7 (-15 -3839 ((-3 |#2| "failed") |#3| (-410 |#2|))) (-15 -3839 (|#2| |#3| (-645 (-410 |#2|)))) (-15 -2883 ((-645 (-2 (|:| -2166 |#2|) (|:| -2537 |#2|))) |#3|)) (-15 -2883 ((-645 (-2 (|:| -2166 |#2|) (|:| -2537 |#2|))) |#3| |#2|)) (-15 -2655 (|#2| |#3| |#1|)) (-15 -2883 ((-645 (-2 (|:| -2166 |#2|) (|:| -2537 |#2|))) |#4|)) (-15 -2883 ((-645 (-2 (|:| -2166 |#2|) (|:| -2537 |#2|))) |#4| |#2|)) (-15 -2655 (|#2| |#4| |#1|)) (-15 -1989 ((-2 (|:| -3845 |#3|) (|:| |rh| (-645 (-410 |#2|)))) |#4| (-645 (-410 |#2|)))))
-((-2403 (((-112) $ $) NIL)) (-2038 (((-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) $) 13)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 15) (($ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 12)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)))
-(((-809) (-13 (-1102) (-10 -8 (-15 -4132 ($ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2038 ((-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) $))))) (T -809))
-((-4132 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-809)))) (-2038 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-809)))))
-(-13 (-1102) (-10 -8 (-15 -4132 ($ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2038 ((-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) $))))
-((-3732 (((-645 (-2 (|:| |frac| (-410 |#2|)) (|:| -3845 |#3|))) |#3| (-1 (-645 |#2|) |#2| (-1174 |#2|)) (-1 (-421 |#2|) |#2|)) 157)) (-3067 (((-645 (-2 (|:| |poly| |#2|) (|:| -3845 |#3|))) |#3| (-1 (-645 |#1|) |#2|)) 56)) (-3927 (((-645 (-2 (|:| |deg| (-772)) (|:| -3845 |#2|))) |#3|) 127)) (-4033 ((|#2| |#3|) 45)) (-2941 (((-645 (-2 (|:| -3286 |#1|) (|:| -3845 |#3|))) |#3| (-1 (-645 |#1|) |#2|)) 105)) (-2877 ((|#3| |#3| (-410 |#2|)) 76) ((|#3| |#3| |#2|) 102)))
-(((-810 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4033 (|#2| |#3|)) (-15 -3927 ((-645 (-2 (|:| |deg| (-772)) (|:| -3845 |#2|))) |#3|)) (-15 -2941 ((-645 (-2 (|:| -3286 |#1|) (|:| -3845 |#3|))) |#3| (-1 (-645 |#1|) |#2|))) (-15 -3067 ((-645 (-2 (|:| |poly| |#2|) (|:| -3845 |#3|))) |#3| (-1 (-645 |#1|) |#2|))) (-15 -3732 ((-645 (-2 (|:| |frac| (-410 |#2|)) (|:| -3845 |#3|))) |#3| (-1 (-645 |#2|) |#2| (-1174 |#2|)) (-1 (-421 |#2|) |#2|))) (-15 -2877 (|#3| |#3| |#2|)) (-15 -2877 (|#3| |#3| (-410 |#2|)))) (-13 (-365) (-147) (-1040 (-410 (-567)))) (-1244 |#1|) (-657 |#2|) (-657 (-410 |#2|))) (T -810))
-((-2877 (*1 *2 *2 *3) (-12 (-5 *3 (-410 *5)) (-4 *4 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *5 (-1244 *4)) (-5 *1 (-810 *4 *5 *2 *6)) (-4 *2 (-657 *5)) (-4 *6 (-657 *3)))) (-2877 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *3 (-1244 *4)) (-5 *1 (-810 *4 *3 *2 *5)) (-4 *2 (-657 *3)) (-4 *5 (-657 (-410 *3))))) (-3732 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-645 *7) *7 (-1174 *7))) (-5 *5 (-1 (-421 *7) *7)) (-4 *7 (-1244 *6)) (-4 *6 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-5 *2 (-645 (-2 (|:| |frac| (-410 *7)) (|:| -3845 *3)))) (-5 *1 (-810 *6 *7 *3 *8)) (-4 *3 (-657 *7)) (-4 *8 (-657 (-410 *7))))) (-3067 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-645 *5) *6)) (-4 *5 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *6 (-1244 *5)) (-5 *2 (-645 (-2 (|:| |poly| *6) (|:| -3845 *3)))) (-5 *1 (-810 *5 *6 *3 *7)) (-4 *3 (-657 *6)) (-4 *7 (-657 (-410 *6))))) (-2941 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-645 *5) *6)) (-4 *5 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *6 (-1244 *5)) (-5 *2 (-645 (-2 (|:| -3286 *5) (|:| -3845 *3)))) (-5 *1 (-810 *5 *6 *3 *7)) (-4 *3 (-657 *6)) (-4 *7 (-657 (-410 *6))))) (-3927 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *5 (-1244 *4)) (-5 *2 (-645 (-2 (|:| |deg| (-772)) (|:| -3845 *5)))) (-5 *1 (-810 *4 *5 *3 *6)) (-4 *3 (-657 *5)) (-4 *6 (-657 (-410 *5))))) (-4033 (*1 *2 *3) (-12 (-4 *2 (-1244 *4)) (-5 *1 (-810 *4 *2 *3 *5)) (-4 *4 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *3 (-657 *2)) (-4 *5 (-657 (-410 *2))))))
-(-10 -7 (-15 -4033 (|#2| |#3|)) (-15 -3927 ((-645 (-2 (|:| |deg| (-772)) (|:| -3845 |#2|))) |#3|)) (-15 -2941 ((-645 (-2 (|:| -3286 |#1|) (|:| -3845 |#3|))) |#3| (-1 (-645 |#1|) |#2|))) (-15 -3067 ((-645 (-2 (|:| |poly| |#2|) (|:| -3845 |#3|))) |#3| (-1 (-645 |#1|) |#2|))) (-15 -3732 ((-645 (-2 (|:| |frac| (-410 |#2|)) (|:| -3845 |#3|))) |#3| (-1 (-645 |#2|) |#2| (-1174 |#2|)) (-1 (-421 |#2|) |#2|))) (-15 -2877 (|#3| |#3| |#2|)) (-15 -2877 (|#3| |#3| (-410 |#2|))))
-((-3071 (((-2 (|:| -2623 (-645 (-410 |#2|))) (|:| -2316 (-690 |#1|))) (-655 |#2| (-410 |#2|)) (-645 (-410 |#2|))) 149) (((-2 (|:| |particular| (-3 (-410 |#2|) "failed")) (|:| -2623 (-645 (-410 |#2|)))) (-655 |#2| (-410 |#2|)) (-410 |#2|)) 148) (((-2 (|:| -2623 (-645 (-410 |#2|))) (|:| -2316 (-690 |#1|))) (-654 (-410 |#2|)) (-645 (-410 |#2|))) 143) (((-2 (|:| |particular| (-3 (-410 |#2|) "failed")) (|:| -2623 (-645 (-410 |#2|)))) (-654 (-410 |#2|)) (-410 |#2|)) 141)) (-1425 ((|#2| (-655 |#2| (-410 |#2|))) 89) ((|#2| (-654 (-410 |#2|))) 92)))
-(((-811 |#1| |#2|) (-10 -7 (-15 -3071 ((-2 (|:| |particular| (-3 (-410 |#2|) "failed")) (|:| -2623 (-645 (-410 |#2|)))) (-654 (-410 |#2|)) (-410 |#2|))) (-15 -3071 ((-2 (|:| -2623 (-645 (-410 |#2|))) (|:| -2316 (-690 |#1|))) (-654 (-410 |#2|)) (-645 (-410 |#2|)))) (-15 -3071 ((-2 (|:| |particular| (-3 (-410 |#2|) "failed")) (|:| -2623 (-645 (-410 |#2|)))) (-655 |#2| (-410 |#2|)) (-410 |#2|))) (-15 -3071 ((-2 (|:| -2623 (-645 (-410 |#2|))) (|:| -2316 (-690 |#1|))) (-655 |#2| (-410 |#2|)) (-645 (-410 |#2|)))) (-15 -1425 (|#2| (-654 (-410 |#2|)))) (-15 -1425 (|#2| (-655 |#2| (-410 |#2|))))) (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567)))) (-1244 |#1|)) (T -811))
-((-1425 (*1 *2 *3) (-12 (-5 *3 (-655 *2 (-410 *2))) (-4 *2 (-1244 *4)) (-5 *1 (-811 *4 *2)) (-4 *4 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))))) (-1425 (*1 *2 *3) (-12 (-5 *3 (-654 (-410 *2))) (-4 *2 (-1244 *4)) (-5 *1 (-811 *4 *2)) (-4 *4 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))))) (-3071 (*1 *2 *3 *4) (-12 (-5 *3 (-655 *6 (-410 *6))) (-4 *6 (-1244 *5)) (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) (-5 *2 (-2 (|:| -2623 (-645 (-410 *6))) (|:| -2316 (-690 *5)))) (-5 *1 (-811 *5 *6)) (-5 *4 (-645 (-410 *6))))) (-3071 (*1 *2 *3 *4) (-12 (-5 *3 (-655 *6 (-410 *6))) (-5 *4 (-410 *6)) (-4 *6 (-1244 *5)) (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2623 (-645 *4)))) (-5 *1 (-811 *5 *6)))) (-3071 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-410 *6))) (-4 *6 (-1244 *5)) (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) (-5 *2 (-2 (|:| -2623 (-645 (-410 *6))) (|:| -2316 (-690 *5)))) (-5 *1 (-811 *5 *6)) (-5 *4 (-645 (-410 *6))))) (-3071 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-410 *6))) (-5 *4 (-410 *6)) (-4 *6 (-1244 *5)) (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2623 (-645 *4)))) (-5 *1 (-811 *5 *6)))))
-(-10 -7 (-15 -3071 ((-2 (|:| |particular| (-3 (-410 |#2|) "failed")) (|:| -2623 (-645 (-410 |#2|)))) (-654 (-410 |#2|)) (-410 |#2|))) (-15 -3071 ((-2 (|:| -2623 (-645 (-410 |#2|))) (|:| -2316 (-690 |#1|))) (-654 (-410 |#2|)) (-645 (-410 |#2|)))) (-15 -3071 ((-2 (|:| |particular| (-3 (-410 |#2|) "failed")) (|:| -2623 (-645 (-410 |#2|)))) (-655 |#2| (-410 |#2|)) (-410 |#2|))) (-15 -3071 ((-2 (|:| -2623 (-645 (-410 |#2|))) (|:| -2316 (-690 |#1|))) (-655 |#2| (-410 |#2|)) (-645 (-410 |#2|)))) (-15 -1425 (|#2| (-654 (-410 |#2|)))) (-15 -1425 (|#2| (-655 |#2| (-410 |#2|)))))
-((-2789 (((-2 (|:| -2316 (-690 |#2|)) (|:| |vec| (-1268 |#1|))) |#5| |#4|) 52)))
-(((-812 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2789 ((-2 (|:| -2316 (-690 |#2|)) (|:| |vec| (-1268 |#1|))) |#5| |#4|))) (-365) (-657 |#1|) (-1244 |#1|) (-725 |#1| |#3|) (-657 |#4|)) (T -812))
-((-2789 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *7 (-1244 *5)) (-4 *4 (-725 *5 *7)) (-5 *2 (-2 (|:| -2316 (-690 *6)) (|:| |vec| (-1268 *5)))) (-5 *1 (-812 *5 *6 *7 *4 *3)) (-4 *6 (-657 *5)) (-4 *3 (-657 *4)))))
-(-10 -7 (-15 -2789 ((-2 (|:| -2316 (-690 |#2|)) (|:| |vec| (-1268 |#1|))) |#5| |#4|)))
-((-3732 (((-645 (-2 (|:| |frac| (-410 |#2|)) (|:| -3845 (-655 |#2| (-410 |#2|))))) (-655 |#2| (-410 |#2|)) (-1 (-421 |#2|) |#2|)) 47)) (-3302 (((-645 (-410 |#2|)) (-655 |#2| (-410 |#2|)) (-1 (-421 |#2|) |#2|)) 171 (|has| |#1| (-27))) (((-645 (-410 |#2|)) (-655 |#2| (-410 |#2|))) 168 (|has| |#1| (-27))) (((-645 (-410 |#2|)) (-654 (-410 |#2|)) (-1 (-421 |#2|) |#2|)) 172 (|has| |#1| (-27))) (((-645 (-410 |#2|)) (-654 (-410 |#2|))) 170 (|has| |#1| (-27))) (((-645 (-410 |#2|)) (-655 |#2| (-410 |#2|)) (-1 (-645 |#1|) |#2|) (-1 (-421 |#2|) |#2|)) 38) (((-645 (-410 |#2|)) (-655 |#2| (-410 |#2|)) (-1 (-645 |#1|) |#2|)) 39) (((-645 (-410 |#2|)) (-654 (-410 |#2|)) (-1 (-645 |#1|) |#2|) (-1 (-421 |#2|) |#2|)) 36) (((-645 (-410 |#2|)) (-654 (-410 |#2|)) (-1 (-645 |#1|) |#2|)) 37)) (-3067 (((-645 (-2 (|:| |poly| |#2|) (|:| -3845 (-655 |#2| (-410 |#2|))))) (-655 |#2| (-410 |#2|)) (-1 (-645 |#1|) |#2|)) 99)))
-(((-813 |#1| |#2|) (-10 -7 (-15 -3302 ((-645 (-410 |#2|)) (-654 (-410 |#2|)) (-1 (-645 |#1|) |#2|))) (-15 -3302 ((-645 (-410 |#2|)) (-654 (-410 |#2|)) (-1 (-645 |#1|) |#2|) (-1 (-421 |#2|) |#2|))) (-15 -3302 ((-645 (-410 |#2|)) (-655 |#2| (-410 |#2|)) (-1 (-645 |#1|) |#2|))) (-15 -3302 ((-645 (-410 |#2|)) (-655 |#2| (-410 |#2|)) (-1 (-645 |#1|) |#2|) (-1 (-421 |#2|) |#2|))) (-15 -3732 ((-645 (-2 (|:| |frac| (-410 |#2|)) (|:| -3845 (-655 |#2| (-410 |#2|))))) (-655 |#2| (-410 |#2|)) (-1 (-421 |#2|) |#2|))) (-15 -3067 ((-645 (-2 (|:| |poly| |#2|) (|:| -3845 (-655 |#2| (-410 |#2|))))) (-655 |#2| (-410 |#2|)) (-1 (-645 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3302 ((-645 (-410 |#2|)) (-654 (-410 |#2|)))) (-15 -3302 ((-645 (-410 |#2|)) (-654 (-410 |#2|)) (-1 (-421 |#2|) |#2|))) (-15 -3302 ((-645 (-410 |#2|)) (-655 |#2| (-410 |#2|)))) (-15 -3302 ((-645 (-410 |#2|)) (-655 |#2| (-410 |#2|)) (-1 (-421 |#2|) |#2|)))) |%noBranch|)) (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567)))) (-1244 |#1|)) (T -813))
-((-3302 (*1 *2 *3 *4) (-12 (-5 *3 (-655 *6 (-410 *6))) (-5 *4 (-1 (-421 *6) *6)) (-4 *6 (-1244 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) (-5 *2 (-645 (-410 *6))) (-5 *1 (-813 *5 *6)))) (-3302 (*1 *2 *3) (-12 (-5 *3 (-655 *5 (-410 *5))) (-4 *5 (-1244 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) (-5 *2 (-645 (-410 *5))) (-5 *1 (-813 *4 *5)))) (-3302 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-410 *6))) (-5 *4 (-1 (-421 *6) *6)) (-4 *6 (-1244 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) (-5 *2 (-645 (-410 *6))) (-5 *1 (-813 *5 *6)))) (-3302 (*1 *2 *3) (-12 (-5 *3 (-654 (-410 *5))) (-4 *5 (-1244 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) (-5 *2 (-645 (-410 *5))) (-5 *1 (-813 *4 *5)))) (-3067 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-645 *5) *6)) (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) (-4 *6 (-1244 *5)) (-5 *2 (-645 (-2 (|:| |poly| *6) (|:| -3845 (-655 *6 (-410 *6)))))) (-5 *1 (-813 *5 *6)) (-5 *3 (-655 *6 (-410 *6))))) (-3732 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-421 *6) *6)) (-4 *6 (-1244 *5)) (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) (-5 *2 (-645 (-2 (|:| |frac| (-410 *6)) (|:| -3845 (-655 *6 (-410 *6)))))) (-5 *1 (-813 *5 *6)) (-5 *3 (-655 *6 (-410 *6))))) (-3302 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-655 *7 (-410 *7))) (-5 *4 (-1 (-645 *6) *7)) (-5 *5 (-1 (-421 *7) *7)) (-4 *6 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) (-4 *7 (-1244 *6)) (-5 *2 (-645 (-410 *7))) (-5 *1 (-813 *6 *7)))) (-3302 (*1 *2 *3 *4) (-12 (-5 *3 (-655 *6 (-410 *6))) (-5 *4 (-1 (-645 *5) *6)) (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) (-4 *6 (-1244 *5)) (-5 *2 (-645 (-410 *6))) (-5 *1 (-813 *5 *6)))) (-3302 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-654 (-410 *7))) (-5 *4 (-1 (-645 *6) *7)) (-5 *5 (-1 (-421 *7) *7)) (-4 *6 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) (-4 *7 (-1244 *6)) (-5 *2 (-645 (-410 *7))) (-5 *1 (-813 *6 *7)))) (-3302 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-410 *6))) (-5 *4 (-1 (-645 *5) *6)) (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) (-4 *6 (-1244 *5)) (-5 *2 (-645 (-410 *6))) (-5 *1 (-813 *5 *6)))))
-(-10 -7 (-15 -3302 ((-645 (-410 |#2|)) (-654 (-410 |#2|)) (-1 (-645 |#1|) |#2|))) (-15 -3302 ((-645 (-410 |#2|)) (-654 (-410 |#2|)) (-1 (-645 |#1|) |#2|) (-1 (-421 |#2|) |#2|))) (-15 -3302 ((-645 (-410 |#2|)) (-655 |#2| (-410 |#2|)) (-1 (-645 |#1|) |#2|))) (-15 -3302 ((-645 (-410 |#2|)) (-655 |#2| (-410 |#2|)) (-1 (-645 |#1|) |#2|) (-1 (-421 |#2|) |#2|))) (-15 -3732 ((-645 (-2 (|:| |frac| (-410 |#2|)) (|:| -3845 (-655 |#2| (-410 |#2|))))) (-655 |#2| (-410 |#2|)) (-1 (-421 |#2|) |#2|))) (-15 -3067 ((-645 (-2 (|:| |poly| |#2|) (|:| -3845 (-655 |#2| (-410 |#2|))))) (-655 |#2| (-410 |#2|)) (-1 (-645 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3302 ((-645 (-410 |#2|)) (-654 (-410 |#2|)))) (-15 -3302 ((-645 (-410 |#2|)) (-654 (-410 |#2|)) (-1 (-421 |#2|) |#2|))) (-15 -3302 ((-645 (-410 |#2|)) (-655 |#2| (-410 |#2|)))) (-15 -3302 ((-645 (-410 |#2|)) (-655 |#2| (-410 |#2|)) (-1 (-421 |#2|) |#2|)))) |%noBranch|))
-((-4006 (((-2 (|:| -2316 (-690 |#2|)) (|:| |vec| (-1268 |#1|))) (-690 |#2|) (-1268 |#1|)) 110) (((-2 (|:| A (-690 |#1|)) (|:| |eqs| (-645 (-2 (|:| C (-690 |#1|)) (|:| |g| (-1268 |#1|)) (|:| -3845 |#2|) (|:| |rh| |#1|))))) (-690 |#1|) (-1268 |#1|)) 15)) (-3549 (((-2 (|:| |particular| (-3 (-1268 |#1|) "failed")) (|:| -2623 (-645 (-1268 |#1|)))) (-690 |#2|) (-1268 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2623 (-645 |#1|))) |#2| |#1|)) 116)) (-3018 (((-3 (-2 (|:| |particular| (-1268 |#1|)) (|:| -2623 (-690 |#1|))) "failed") (-690 |#1|) (-1268 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2623 (-645 |#1|))) "failed") |#2| |#1|)) 52)))
-(((-814 |#1| |#2|) (-10 -7 (-15 -4006 ((-2 (|:| A (-690 |#1|)) (|:| |eqs| (-645 (-2 (|:| C (-690 |#1|)) (|:| |g| (-1268 |#1|)) (|:| -3845 |#2|) (|:| |rh| |#1|))))) (-690 |#1|) (-1268 |#1|))) (-15 -4006 ((-2 (|:| -2316 (-690 |#2|)) (|:| |vec| (-1268 |#1|))) (-690 |#2|) (-1268 |#1|))) (-15 -3018 ((-3 (-2 (|:| |particular| (-1268 |#1|)) (|:| -2623 (-690 |#1|))) "failed") (-690 |#1|) (-1268 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2623 (-645 |#1|))) "failed") |#2| |#1|))) (-15 -3549 ((-2 (|:| |particular| (-3 (-1268 |#1|) "failed")) (|:| -2623 (-645 (-1268 |#1|)))) (-690 |#2|) (-1268 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2623 (-645 |#1|))) |#2| |#1|)))) (-365) (-657 |#1|)) (T -814))
-((-3549 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-690 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2623 (-645 *6))) *7 *6)) (-4 *6 (-365)) (-4 *7 (-657 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1268 *6) "failed")) (|:| -2623 (-645 (-1268 *6))))) (-5 *1 (-814 *6 *7)) (-5 *4 (-1268 *6)))) (-3018 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2623 (-645 *6))) "failed") *7 *6)) (-4 *6 (-365)) (-4 *7 (-657 *6)) (-5 *2 (-2 (|:| |particular| (-1268 *6)) (|:| -2623 (-690 *6)))) (-5 *1 (-814 *6 *7)) (-5 *3 (-690 *6)) (-5 *4 (-1268 *6)))) (-4006 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *6 (-657 *5)) (-5 *2 (-2 (|:| -2316 (-690 *6)) (|:| |vec| (-1268 *5)))) (-5 *1 (-814 *5 *6)) (-5 *3 (-690 *6)) (-5 *4 (-1268 *5)))) (-4006 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-5 *2 (-2 (|:| A (-690 *5)) (|:| |eqs| (-645 (-2 (|:| C (-690 *5)) (|:| |g| (-1268 *5)) (|:| -3845 *6) (|:| |rh| *5)))))) (-5 *1 (-814 *5 *6)) (-5 *3 (-690 *5)) (-5 *4 (-1268 *5)) (-4 *6 (-657 *5)))))
-(-10 -7 (-15 -4006 ((-2 (|:| A (-690 |#1|)) (|:| |eqs| (-645 (-2 (|:| C (-690 |#1|)) (|:| |g| (-1268 |#1|)) (|:| -3845 |#2|) (|:| |rh| |#1|))))) (-690 |#1|) (-1268 |#1|))) (-15 -4006 ((-2 (|:| -2316 (-690 |#2|)) (|:| |vec| (-1268 |#1|))) (-690 |#2|) (-1268 |#1|))) (-15 -3018 ((-3 (-2 (|:| |particular| (-1268 |#1|)) (|:| -2623 (-690 |#1|))) "failed") (-690 |#1|) (-1268 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2623 (-645 |#1|))) "failed") |#2| |#1|))) (-15 -3549 ((-2 (|:| |particular| (-3 (-1268 |#1|) "failed")) (|:| -2623 (-645 (-1268 |#1|)))) (-690 |#2|) (-1268 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2623 (-645 |#1|))) |#2| |#1|))))
-((-3026 (((-690 |#1|) (-645 |#1|) (-772)) 14) (((-690 |#1|) (-645 |#1|)) 15)) (-1768 (((-3 (-1268 |#1|) "failed") |#2| |#1| (-645 |#1|)) 39)) (-3141 (((-3 |#1| "failed") |#2| |#1| (-645 |#1|) (-1 |#1| |#1|)) 46)))
-(((-815 |#1| |#2|) (-10 -7 (-15 -3026 ((-690 |#1|) (-645 |#1|))) (-15 -3026 ((-690 |#1|) (-645 |#1|) (-772))) (-15 -1768 ((-3 (-1268 |#1|) "failed") |#2| |#1| (-645 |#1|))) (-15 -3141 ((-3 |#1| "failed") |#2| |#1| (-645 |#1|) (-1 |#1| |#1|)))) (-365) (-657 |#1|)) (T -815))
-((-3141 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-645 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-365)) (-5 *1 (-815 *2 *3)) (-4 *3 (-657 *2)))) (-1768 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-645 *4)) (-4 *4 (-365)) (-5 *2 (-1268 *4)) (-5 *1 (-815 *4 *3)) (-4 *3 (-657 *4)))) (-3026 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *5)) (-5 *4 (-772)) (-4 *5 (-365)) (-5 *2 (-690 *5)) (-5 *1 (-815 *5 *6)) (-4 *6 (-657 *5)))) (-3026 (*1 *2 *3) (-12 (-5 *3 (-645 *4)) (-4 *4 (-365)) (-5 *2 (-690 *4)) (-5 *1 (-815 *4 *5)) (-4 *5 (-657 *4)))))
-(-10 -7 (-15 -3026 ((-690 |#1|) (-645 |#1|))) (-15 -3026 ((-690 |#1|) (-645 |#1|) (-772))) (-15 -1768 ((-3 (-1268 |#1|) "failed") |#2| |#1| (-645 |#1|))) (-15 -3141 ((-3 |#1| "failed") |#2| |#1| (-645 |#1|) (-1 |#1| |#1|))))
-((-2403 (((-112) $ $) NIL (|has| |#2| (-1102)))) (-2460 (((-112) $) NIL (|has| |#2| (-131)))) (-4387 (($ (-923)) NIL (|has| |#2| (-1051)))) (-1783 (((-1273) $ (-567) (-567)) NIL (|has| $ (-6 -4419)))) (-4016 (($ $ $) NIL (|has| |#2| (-794)))) (-3472 (((-3 $ "failed") $ $) NIL (|has| |#2| (-131)))) (-3445 (((-112) $ (-772)) NIL)) (-2375 (((-772)) NIL (|has| |#2| (-370)))) (-1750 (((-567) $) NIL (|has| |#2| (-849)))) (-4284 ((|#2| $ (-567) |#2|) NIL (|has| $ (-6 -4419)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 (-567) "failed") $) NIL (-12 (|has| |#2| (-1040 (-567))) (|has| |#2| (-1102)))) (((-3 (-410 (-567)) "failed") $) NIL (-12 (|has| |#2| (-1040 (-410 (-567)))) (|has| |#2| (-1102)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1102)))) (-2038 (((-567) $) NIL (-12 (|has| |#2| (-1040 (-567))) (|has| |#2| (-1102)))) (((-410 (-567)) $) NIL (-12 (|has| |#2| (-1040 (-410 (-567)))) (|has| |#2| (-1102)))) ((|#2| $) NIL (|has| |#2| (-1102)))) (-2630 (((-690 (-567)) (-690 $)) NIL (-12 (|has| |#2| (-640 (-567))) (|has| |#2| (-1051)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (-12 (|has| |#2| (-640 (-567))) (|has| |#2| (-1051)))) (((-2 (|:| -2316 (-690 |#2|)) (|:| |vec| (-1268 |#2|))) (-690 $) (-1268 $)) NIL (|has| |#2| (-1051))) (((-690 |#2|) (-690 $)) NIL (|has| |#2| (-1051)))) (-2109 (((-3 $ "failed") $) NIL (|has| |#2| (-727)))) (-1348 (($) NIL (|has| |#2| (-370)))) (-3741 ((|#2| $ (-567) |#2|) NIL (|has| $ (-6 -4419)))) (-3680 ((|#2| $ (-567)) NIL)) (-4336 (((-112) $) NIL (|has| |#2| (-849)))) (-2777 (((-645 |#2|) $) NIL (|has| $ (-6 -4418)))) (-1433 (((-112) $) NIL (|has| |#2| (-727)))) (-3494 (((-112) $) NIL (|has| |#2| (-849)))) (-2077 (((-112) $ (-772)) NIL)) (-4069 (((-567) $) NIL (|has| (-567) (-851)))) (-1354 (($ $ $) NIL (-2800 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-2279 (((-645 |#2|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#2| (-1102))))) (-2266 (((-567) $) NIL (|has| (-567) (-851)))) (-2981 (($ $ $) NIL (-2800 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-3731 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#2| |#2|) $) NIL)) (-4249 (((-923) $) NIL (|has| |#2| (-370)))) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL (|has| |#2| (-1102)))) (-1789 (((-645 (-567)) $) NIL)) (-2996 (((-112) (-567) $) NIL)) (-3768 (($ (-923)) NIL (|has| |#2| (-370)))) (-3430 (((-1122) $) NIL (|has| |#2| (-1102)))) (-2409 ((|#2| $) NIL (|has| (-567) (-851)))) (-3986 (($ $ |#2|) NIL (|has| $ (-6 -4419)))) (-3025 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))))) (-3092 (((-112) $ $) NIL)) (-1794 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#2| (-1102))))) (-2339 (((-645 |#2|) $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) NIL)) (-1787 ((|#2| $ (-567) |#2|) NIL) ((|#2| $ (-567)) NIL)) (-3366 ((|#2| $ $) NIL (|has| |#2| (-1051)))) (-2749 (($ (-1268 |#2|)) NIL)) (-1879 (((-134)) NIL (|has| |#2| (-365)))) (-1593 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1051)))) (($ $ (-772)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1051)))) (($ $ (-1178)) NIL (-12 (|has| |#2| (-902 (-1178))) (|has| |#2| (-1051)))) (($ $ (-645 (-1178))) NIL (-12 (|has| |#2| (-902 (-1178))) (|has| |#2| (-1051)))) (($ $ (-1178) (-772)) NIL (-12 (|has| |#2| (-902 (-1178))) (|has| |#2| (-1051)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (-12 (|has| |#2| (-902 (-1178))) (|has| |#2| (-1051)))) (($ $ (-1 |#2| |#2|) (-772)) NIL (|has| |#2| (-1051))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1051)))) (-3439 (((-772) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4418))) (((-772) |#2| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#2| (-1102))))) (-4305 (($ $) NIL)) (-4132 (((-1268 |#2|) $) NIL) (($ (-567)) NIL (-2800 (-12 (|has| |#2| (-1040 (-567))) (|has| |#2| (-1102))) (|has| |#2| (-1051)))) (($ (-410 (-567))) NIL (-12 (|has| |#2| (-1040 (-410 (-567)))) (|has| |#2| (-1102)))) (($ |#2|) NIL (|has| |#2| (-1102))) (((-863) $) NIL (|has| |#2| (-614 (-863))))) (-4221 (((-772)) NIL (|has| |#2| (-1051)) CONST)) (-1745 (((-112) $ $) NIL (|has| |#2| (-1102)))) (-1853 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4418)))) (-2219 (($ $) NIL (|has| |#2| (-849)))) (-1716 (($) NIL (|has| |#2| (-131)) CONST)) (-1728 (($) NIL (|has| |#2| (-727)) CONST)) (-2637 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1051)))) (($ $ (-772)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1051)))) (($ $ (-1178)) NIL (-12 (|has| |#2| (-902 (-1178))) (|has| |#2| (-1051)))) (($ $ (-645 (-1178))) NIL (-12 (|has| |#2| (-902 (-1178))) (|has| |#2| (-1051)))) (($ $ (-1178) (-772)) NIL (-12 (|has| |#2| (-902 (-1178))) (|has| |#2| (-1051)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (-12 (|has| |#2| (-902 (-1178))) (|has| |#2| (-1051)))) (($ $ (-1 |#2| |#2|) (-772)) NIL (|has| |#2| (-1051))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1051)))) (-2997 (((-112) $ $) NIL (-2800 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-2971 (((-112) $ $) NIL (-2800 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-2936 (((-112) $ $) NIL (|has| |#2| (-1102)))) (-2984 (((-112) $ $) NIL (-2800 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-2958 (((-112) $ $) 11 (-2800 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-3060 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3045 (($ $ $) NIL (|has| |#2| (-1051))) (($ $) NIL (|has| |#2| (-1051)))) (-3033 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-772)) NIL (|has| |#2| (-727))) (($ $ (-923)) NIL (|has| |#2| (-727)))) (* (($ (-567) $) NIL (|has| |#2| (-1051))) (($ $ $) NIL (|has| |#2| (-727))) (($ $ |#2|) NIL (|has| |#2| (-727))) (($ |#2| $) NIL (|has| |#2| (-727))) (($ (-772) $) NIL (|has| |#2| (-131))) (($ (-923) $) NIL (|has| |#2| (-25)))) (-2414 (((-772) $) NIL (|has| $ (-6 -4418)))))
-(((-816 |#1| |#2| |#3|) (-238 |#1| |#2|) (-772) (-794) (-1 (-112) (-1268 |#2|) (-1268 |#2|))) (T -816))
+((-2224 (((-2 (|:| |particular| |#2|) (|:| -2144 (-645 |#2|))) |#3| |#2| (-1179)) 19)))
+(((-802 |#1| |#2| |#3|) (-10 -7 (-15 -2224 ((-2 (|:| |particular| |#2|) (|:| -2144 (-645 |#2|))) |#3| |#2| (-1179)))) (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147)) (-13 (-29 |#1|) (-1204) (-961)) (-657 |#2|)) (T -802))
+((-2224 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1179)) (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (-4 *4 (-13 (-29 *6) (-1204) (-961))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2144 (-645 *4)))) (-5 *1 (-802 *6 *4 *3)) (-4 *3 (-657 *4)))))
+(-10 -7 (-15 -2224 ((-2 (|:| |particular| |#2|) (|:| -2144 (-645 |#2|))) |#3| |#2| (-1179))))
+((-2464 (((-3 |#2| "failed") |#2| (-114) (-295 |#2|) (-645 |#2|)) 28) (((-3 |#2| "failed") (-295 |#2|) (-114) (-295 |#2|) (-645 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -2144 (-645 |#2|))) |#2| "failed") |#2| (-114) (-1179)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -2144 (-645 |#2|))) |#2| "failed") (-295 |#2|) (-114) (-1179)) 18) (((-3 (-2 (|:| |particular| (-1269 |#2|)) (|:| -2144 (-645 (-1269 |#2|)))) "failed") (-645 |#2|) (-645 (-114)) (-1179)) 24) (((-3 (-2 (|:| |particular| (-1269 |#2|)) (|:| -2144 (-645 (-1269 |#2|)))) "failed") (-645 (-295 |#2|)) (-645 (-114)) (-1179)) 26) (((-3 (-645 (-1269 |#2|)) "failed") (-690 |#2|) (-1179)) 37) (((-3 (-2 (|:| |particular| (-1269 |#2|)) (|:| -2144 (-645 (-1269 |#2|)))) "failed") (-690 |#2|) (-1269 |#2|) (-1179)) 35)))
+(((-803 |#1| |#2|) (-10 -7 (-15 -2464 ((-3 (-2 (|:| |particular| (-1269 |#2|)) (|:| -2144 (-645 (-1269 |#2|)))) "failed") (-690 |#2|) (-1269 |#2|) (-1179))) (-15 -2464 ((-3 (-645 (-1269 |#2|)) "failed") (-690 |#2|) (-1179))) (-15 -2464 ((-3 (-2 (|:| |particular| (-1269 |#2|)) (|:| -2144 (-645 (-1269 |#2|)))) "failed") (-645 (-295 |#2|)) (-645 (-114)) (-1179))) (-15 -2464 ((-3 (-2 (|:| |particular| (-1269 |#2|)) (|:| -2144 (-645 (-1269 |#2|)))) "failed") (-645 |#2|) (-645 (-114)) (-1179))) (-15 -2464 ((-3 (-2 (|:| |particular| |#2|) (|:| -2144 (-645 |#2|))) |#2| "failed") (-295 |#2|) (-114) (-1179))) (-15 -2464 ((-3 (-2 (|:| |particular| |#2|) (|:| -2144 (-645 |#2|))) |#2| "failed") |#2| (-114) (-1179))) (-15 -2464 ((-3 |#2| "failed") (-295 |#2|) (-114) (-295 |#2|) (-645 |#2|))) (-15 -2464 ((-3 |#2| "failed") |#2| (-114) (-295 |#2|) (-645 |#2|)))) (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147)) (-13 (-29 |#1|) (-1204) (-961))) (T -803))
+((-2464 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-295 *2)) (-5 *5 (-645 *2)) (-4 *2 (-13 (-29 *6) (-1204) (-961))) (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (-5 *1 (-803 *6 *2)))) (-2464 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-295 *2)) (-5 *4 (-114)) (-5 *5 (-645 *2)) (-4 *2 (-13 (-29 *6) (-1204) (-961))) (-5 *1 (-803 *6 *2)) (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))))) (-2464 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-114)) (-5 *5 (-1179)) (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2144 (-645 *3))) *3 "failed")) (-5 *1 (-803 *6 *3)) (-4 *3 (-13 (-29 *6) (-1204) (-961))))) (-2464 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-295 *7)) (-5 *4 (-114)) (-5 *5 (-1179)) (-4 *7 (-13 (-29 *6) (-1204) (-961))) (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2144 (-645 *7))) *7 "failed")) (-5 *1 (-803 *6 *7)))) (-2464 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-645 *7)) (-5 *4 (-645 (-114))) (-5 *5 (-1179)) (-4 *7 (-13 (-29 *6) (-1204) (-961))) (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (-5 *2 (-2 (|:| |particular| (-1269 *7)) (|:| -2144 (-645 (-1269 *7))))) (-5 *1 (-803 *6 *7)))) (-2464 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-645 (-295 *7))) (-5 *4 (-645 (-114))) (-5 *5 (-1179)) (-4 *7 (-13 (-29 *6) (-1204) (-961))) (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (-5 *2 (-2 (|:| |particular| (-1269 *7)) (|:| -2144 (-645 (-1269 *7))))) (-5 *1 (-803 *6 *7)))) (-2464 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-690 *6)) (-5 *4 (-1179)) (-4 *6 (-13 (-29 *5) (-1204) (-961))) (-4 *5 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (-5 *2 (-645 (-1269 *6))) (-5 *1 (-803 *5 *6)))) (-2464 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-690 *7)) (-5 *5 (-1179)) (-4 *7 (-13 (-29 *6) (-1204) (-961))) (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (-5 *2 (-2 (|:| |particular| (-1269 *7)) (|:| -2144 (-645 (-1269 *7))))) (-5 *1 (-803 *6 *7)) (-5 *4 (-1269 *7)))))
+(-10 -7 (-15 -2464 ((-3 (-2 (|:| |particular| (-1269 |#2|)) (|:| -2144 (-645 (-1269 |#2|)))) "failed") (-690 |#2|) (-1269 |#2|) (-1179))) (-15 -2464 ((-3 (-645 (-1269 |#2|)) "failed") (-690 |#2|) (-1179))) (-15 -2464 ((-3 (-2 (|:| |particular| (-1269 |#2|)) (|:| -2144 (-645 (-1269 |#2|)))) "failed") (-645 (-295 |#2|)) (-645 (-114)) (-1179))) (-15 -2464 ((-3 (-2 (|:| |particular| (-1269 |#2|)) (|:| -2144 (-645 (-1269 |#2|)))) "failed") (-645 |#2|) (-645 (-114)) (-1179))) (-15 -2464 ((-3 (-2 (|:| |particular| |#2|) (|:| -2144 (-645 |#2|))) |#2| "failed") (-295 |#2|) (-114) (-1179))) (-15 -2464 ((-3 (-2 (|:| |particular| |#2|) (|:| -2144 (-645 |#2|))) |#2| "failed") |#2| (-114) (-1179))) (-15 -2464 ((-3 |#2| "failed") (-295 |#2|) (-114) (-295 |#2|) (-645 |#2|))) (-15 -2464 ((-3 |#2| "failed") |#2| (-114) (-295 |#2|) (-645 |#2|))))
+((-3578 (($) 9)) (-1870 (((-3 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))) "failed") (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 31)) (-1405 (((-645 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $) 28)) (-2646 (($ (-2 (|:| -1809 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4236 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))))) 25)) (-4238 (($ (-645 (-2 (|:| -1809 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4236 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))))))) 23)) (-2545 (((-1274)) 12)))
+(((-804) (-10 -8 (-15 -3578 ($)) (-15 -2545 ((-1274))) (-15 -1405 ((-645 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -4238 ($ (-645 (-2 (|:| -1809 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4236 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))))))) (-15 -2646 ($ (-2 (|:| -1809 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4236 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))))))) (-15 -1870 ((-3 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))) "failed") (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -804))
+((-1870 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))) (-5 *1 (-804)))) (-2646 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -1809 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4236 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))))) (-5 *1 (-804)))) (-4238 (*1 *1 *2) (-12 (-5 *2 (-645 (-2 (|:| -1809 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4236 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))))))) (-5 *1 (-804)))) (-1405 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-5 *1 (-804)))) (-2545 (*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-804)))) (-3578 (*1 *1) (-5 *1 (-804))))
+(-10 -8 (-15 -3578 ($)) (-15 -2545 ((-1274))) (-15 -1405 ((-645 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -4238 ($ (-645 (-2 (|:| -1809 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4236 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))))))) (-15 -2646 ($ (-2 (|:| -1809 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -4236 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))))))) (-15 -1870 ((-3 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))) "failed") (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))
+((-2691 ((|#2| |#2| (-1179)) 17)) (-1532 ((|#2| |#2| (-1179)) 56)) (-3225 (((-1 |#2| |#2|) (-1179)) 11)))
+(((-805 |#1| |#2|) (-10 -7 (-15 -2691 (|#2| |#2| (-1179))) (-15 -1532 (|#2| |#2| (-1179))) (-15 -3225 ((-1 |#2| |#2|) (-1179)))) (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147)) (-13 (-29 |#1|) (-1204) (-961))) (T -805))
+((-3225 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (-5 *2 (-1 *5 *5)) (-5 *1 (-805 *4 *5)) (-4 *5 (-13 (-29 *4) (-1204) (-961))))) (-1532 (*1 *2 *2 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (-5 *1 (-805 *4 *2)) (-4 *2 (-13 (-29 *4) (-1204) (-961))))) (-2691 (*1 *2 *2 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (-5 *1 (-805 *4 *2)) (-4 *2 (-13 (-29 *4) (-1204) (-961))))))
+(-10 -7 (-15 -2691 (|#2| |#2| (-1179))) (-15 -1532 (|#2| |#2| (-1179))) (-15 -3225 ((-1 |#2| |#2|) (-1179))))
+((-2464 (((-1037) (-1269 (-317 (-381))) (-381) (-381) (-645 (-381)) (-317 (-381)) (-645 (-381)) (-381) (-381)) 131) (((-1037) (-1269 (-317 (-381))) (-381) (-381) (-645 (-381)) (-317 (-381)) (-645 (-381)) (-381)) 132) (((-1037) (-1269 (-317 (-381))) (-381) (-381) (-645 (-381)) (-645 (-381)) (-381)) 134) (((-1037) (-1269 (-317 (-381))) (-381) (-381) (-645 (-381)) (-317 (-381)) (-381)) 136) (((-1037) (-1269 (-317 (-381))) (-381) (-381) (-645 (-381)) (-381)) 137) (((-1037) (-1269 (-317 (-381))) (-381) (-381) (-645 (-381))) 139) (((-1037) (-809) (-1065)) 123) (((-1037) (-809)) 124)) (-3055 (((-2 (|:| -3055 (-381)) (|:| -2007 (-1161)) (|:| |explanations| (-645 (-1161)))) (-809) (-1065)) 83) (((-2 (|:| -3055 (-381)) (|:| -2007 (-1161)) (|:| |explanations| (-645 (-1161)))) (-809)) 85)))
+(((-806) (-10 -7 (-15 -2464 ((-1037) (-809))) (-15 -2464 ((-1037) (-809) (-1065))) (-15 -2464 ((-1037) (-1269 (-317 (-381))) (-381) (-381) (-645 (-381)))) (-15 -2464 ((-1037) (-1269 (-317 (-381))) (-381) (-381) (-645 (-381)) (-381))) (-15 -2464 ((-1037) (-1269 (-317 (-381))) (-381) (-381) (-645 (-381)) (-317 (-381)) (-381))) (-15 -2464 ((-1037) (-1269 (-317 (-381))) (-381) (-381) (-645 (-381)) (-645 (-381)) (-381))) (-15 -2464 ((-1037) (-1269 (-317 (-381))) (-381) (-381) (-645 (-381)) (-317 (-381)) (-645 (-381)) (-381))) (-15 -2464 ((-1037) (-1269 (-317 (-381))) (-381) (-381) (-645 (-381)) (-317 (-381)) (-645 (-381)) (-381) (-381))) (-15 -3055 ((-2 (|:| -3055 (-381)) (|:| -2007 (-1161)) (|:| |explanations| (-645 (-1161)))) (-809))) (-15 -3055 ((-2 (|:| -3055 (-381)) (|:| -2007 (-1161)) (|:| |explanations| (-645 (-1161)))) (-809) (-1065))))) (T -806))
+((-3055 (*1 *2 *3 *4) (-12 (-5 *3 (-809)) (-5 *4 (-1065)) (-5 *2 (-2 (|:| -3055 (-381)) (|:| -2007 (-1161)) (|:| |explanations| (-645 (-1161))))) (-5 *1 (-806)))) (-3055 (*1 *2 *3) (-12 (-5 *3 (-809)) (-5 *2 (-2 (|:| -3055 (-381)) (|:| -2007 (-1161)) (|:| |explanations| (-645 (-1161))))) (-5 *1 (-806)))) (-2464 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1269 (-317 *4))) (-5 *5 (-645 (-381))) (-5 *6 (-317 (-381))) (-5 *4 (-381)) (-5 *2 (-1037)) (-5 *1 (-806)))) (-2464 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1269 (-317 *4))) (-5 *5 (-645 (-381))) (-5 *6 (-317 (-381))) (-5 *4 (-381)) (-5 *2 (-1037)) (-5 *1 (-806)))) (-2464 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1269 (-317 (-381)))) (-5 *4 (-381)) (-5 *5 (-645 *4)) (-5 *2 (-1037)) (-5 *1 (-806)))) (-2464 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1269 (-317 *4))) (-5 *5 (-645 (-381))) (-5 *6 (-317 (-381))) (-5 *4 (-381)) (-5 *2 (-1037)) (-5 *1 (-806)))) (-2464 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1269 (-317 (-381)))) (-5 *4 (-381)) (-5 *5 (-645 *4)) (-5 *2 (-1037)) (-5 *1 (-806)))) (-2464 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1269 (-317 (-381)))) (-5 *4 (-381)) (-5 *5 (-645 *4)) (-5 *2 (-1037)) (-5 *1 (-806)))) (-2464 (*1 *2 *3 *4) (-12 (-5 *3 (-809)) (-5 *4 (-1065)) (-5 *2 (-1037)) (-5 *1 (-806)))) (-2464 (*1 *2 *3) (-12 (-5 *3 (-809)) (-5 *2 (-1037)) (-5 *1 (-806)))))
+(-10 -7 (-15 -2464 ((-1037) (-809))) (-15 -2464 ((-1037) (-809) (-1065))) (-15 -2464 ((-1037) (-1269 (-317 (-381))) (-381) (-381) (-645 (-381)))) (-15 -2464 ((-1037) (-1269 (-317 (-381))) (-381) (-381) (-645 (-381)) (-381))) (-15 -2464 ((-1037) (-1269 (-317 (-381))) (-381) (-381) (-645 (-381)) (-317 (-381)) (-381))) (-15 -2464 ((-1037) (-1269 (-317 (-381))) (-381) (-381) (-645 (-381)) (-645 (-381)) (-381))) (-15 -2464 ((-1037) (-1269 (-317 (-381))) (-381) (-381) (-645 (-381)) (-317 (-381)) (-645 (-381)) (-381))) (-15 -2464 ((-1037) (-1269 (-317 (-381))) (-381) (-381) (-645 (-381)) (-317 (-381)) (-645 (-381)) (-381) (-381))) (-15 -3055 ((-2 (|:| -3055 (-381)) (|:| -2007 (-1161)) (|:| |explanations| (-645 (-1161)))) (-809))) (-15 -3055 ((-2 (|:| -3055 (-381)) (|:| -2007 (-1161)) (|:| |explanations| (-645 (-1161)))) (-809) (-1065))))
+((-4098 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2144 (-645 |#4|))) (-654 |#4|) |#4|) 35)))
+(((-807 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4098 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2144 (-645 |#4|))) (-654 |#4|) |#4|))) (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567)))) (-1245 |#1|) (-1245 (-410 |#2|)) (-344 |#1| |#2| |#3|)) (T -807))
+((-4098 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *4)) (-4 *4 (-344 *5 *6 *7)) (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) (-4 *6 (-1245 *5)) (-4 *7 (-1245 (-410 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2144 (-645 *4)))) (-5 *1 (-807 *5 *6 *7 *4)))))
+(-10 -7 (-15 -4098 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2144 (-645 |#4|))) (-654 |#4|) |#4|)))
+((-2381 (((-2 (|:| -3855 |#3|) (|:| |rh| (-645 (-410 |#2|)))) |#4| (-645 (-410 |#2|))) 53)) (-3519 (((-645 (-2 (|:| -2185 |#2|) (|:| -2547 |#2|))) |#4| |#2|) 62) (((-645 (-2 (|:| -2185 |#2|) (|:| -2547 |#2|))) |#4|) 61) (((-645 (-2 (|:| -2185 |#2|) (|:| -2547 |#2|))) |#3| |#2|) 20) (((-645 (-2 (|:| -2185 |#2|) (|:| -2547 |#2|))) |#3|) 21)) (-2812 ((|#2| |#4| |#1|) 63) ((|#2| |#3| |#1|) 28)) (-3899 ((|#2| |#3| (-645 (-410 |#2|))) 113) (((-3 |#2| "failed") |#3| (-410 |#2|)) 109)))
+(((-808 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3899 ((-3 |#2| "failed") |#3| (-410 |#2|))) (-15 -3899 (|#2| |#3| (-645 (-410 |#2|)))) (-15 -3519 ((-645 (-2 (|:| -2185 |#2|) (|:| -2547 |#2|))) |#3|)) (-15 -3519 ((-645 (-2 (|:| -2185 |#2|) (|:| -2547 |#2|))) |#3| |#2|)) (-15 -2812 (|#2| |#3| |#1|)) (-15 -3519 ((-645 (-2 (|:| -2185 |#2|) (|:| -2547 |#2|))) |#4|)) (-15 -3519 ((-645 (-2 (|:| -2185 |#2|) (|:| -2547 |#2|))) |#4| |#2|)) (-15 -2812 (|#2| |#4| |#1|)) (-15 -2381 ((-2 (|:| -3855 |#3|) (|:| |rh| (-645 (-410 |#2|)))) |#4| (-645 (-410 |#2|))))) (-13 (-365) (-147) (-1040 (-410 (-567)))) (-1245 |#1|) (-657 |#2|) (-657 (-410 |#2|))) (T -808))
+((-2381 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *6 (-1245 *5)) (-5 *2 (-2 (|:| -3855 *7) (|:| |rh| (-645 (-410 *6))))) (-5 *1 (-808 *5 *6 *7 *3)) (-5 *4 (-645 (-410 *6))) (-4 *7 (-657 *6)) (-4 *3 (-657 (-410 *6))))) (-2812 (*1 *2 *3 *4) (-12 (-4 *2 (-1245 *4)) (-5 *1 (-808 *4 *2 *5 *3)) (-4 *4 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *5 (-657 *2)) (-4 *3 (-657 (-410 *2))))) (-3519 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *4 (-1245 *5)) (-5 *2 (-645 (-2 (|:| -2185 *4) (|:| -2547 *4)))) (-5 *1 (-808 *5 *4 *6 *3)) (-4 *6 (-657 *4)) (-4 *3 (-657 (-410 *4))))) (-3519 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *5 (-1245 *4)) (-5 *2 (-645 (-2 (|:| -2185 *5) (|:| -2547 *5)))) (-5 *1 (-808 *4 *5 *6 *3)) (-4 *6 (-657 *5)) (-4 *3 (-657 (-410 *5))))) (-2812 (*1 *2 *3 *4) (-12 (-4 *2 (-1245 *4)) (-5 *1 (-808 *4 *2 *3 *5)) (-4 *4 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *3 (-657 *2)) (-4 *5 (-657 (-410 *2))))) (-3519 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *4 (-1245 *5)) (-5 *2 (-645 (-2 (|:| -2185 *4) (|:| -2547 *4)))) (-5 *1 (-808 *5 *4 *3 *6)) (-4 *3 (-657 *4)) (-4 *6 (-657 (-410 *4))))) (-3519 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *5 (-1245 *4)) (-5 *2 (-645 (-2 (|:| -2185 *5) (|:| -2547 *5)))) (-5 *1 (-808 *4 *5 *3 *6)) (-4 *3 (-657 *5)) (-4 *6 (-657 (-410 *5))))) (-3899 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-410 *2))) (-4 *2 (-1245 *5)) (-5 *1 (-808 *5 *2 *3 *6)) (-4 *5 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *3 (-657 *2)) (-4 *6 (-657 (-410 *2))))) (-3899 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-410 *2)) (-4 *2 (-1245 *5)) (-5 *1 (-808 *5 *2 *3 *6)) (-4 *5 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *3 (-657 *2)) (-4 *6 (-657 *4)))))
+(-10 -7 (-15 -3899 ((-3 |#2| "failed") |#3| (-410 |#2|))) (-15 -3899 (|#2| |#3| (-645 (-410 |#2|)))) (-15 -3519 ((-645 (-2 (|:| -2185 |#2|) (|:| -2547 |#2|))) |#3|)) (-15 -3519 ((-645 (-2 (|:| -2185 |#2|) (|:| -2547 |#2|))) |#3| |#2|)) (-15 -2812 (|#2| |#3| |#1|)) (-15 -3519 ((-645 (-2 (|:| -2185 |#2|) (|:| -2547 |#2|))) |#4|)) (-15 -3519 ((-645 (-2 (|:| -2185 |#2|) (|:| -2547 |#2|))) |#4| |#2|)) (-15 -2812 (|#2| |#4| |#1|)) (-15 -2381 ((-2 (|:| -3855 |#3|) (|:| |rh| (-645 (-410 |#2|)))) |#4| (-645 (-410 |#2|)))))
+((-2412 (((-112) $ $) NIL)) (-2051 (((-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) $) 13)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) 15) (($ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 12)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)))
+(((-809) (-13 (-1102) (-10 -8 (-15 -4129 ($ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2051 ((-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) $))))) (T -809))
+((-4129 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-809)))) (-2051 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-809)))))
+(-13 (-1102) (-10 -8 (-15 -4129 ($ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2051 ((-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) $))))
+((-1998 (((-645 (-2 (|:| |frac| (-410 |#2|)) (|:| -3855 |#3|))) |#3| (-1 (-645 |#2|) |#2| (-1175 |#2|)) (-1 (-421 |#2|) |#2|)) 157)) (-1360 (((-645 (-2 (|:| |poly| |#2|) (|:| -3855 |#3|))) |#3| (-1 (-645 |#1|) |#2|)) 56)) (-1619 (((-645 (-2 (|:| |deg| (-772)) (|:| -3855 |#2|))) |#3|) 127)) (-2517 ((|#2| |#3|) 45)) (-1883 (((-645 (-2 (|:| -3304 |#1|) (|:| -3855 |#3|))) |#3| (-1 (-645 |#1|) |#2|)) 105)) (-4122 ((|#3| |#3| (-410 |#2|)) 76) ((|#3| |#3| |#2|) 102)))
+(((-810 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2517 (|#2| |#3|)) (-15 -1619 ((-645 (-2 (|:| |deg| (-772)) (|:| -3855 |#2|))) |#3|)) (-15 -1883 ((-645 (-2 (|:| -3304 |#1|) (|:| -3855 |#3|))) |#3| (-1 (-645 |#1|) |#2|))) (-15 -1360 ((-645 (-2 (|:| |poly| |#2|) (|:| -3855 |#3|))) |#3| (-1 (-645 |#1|) |#2|))) (-15 -1998 ((-645 (-2 (|:| |frac| (-410 |#2|)) (|:| -3855 |#3|))) |#3| (-1 (-645 |#2|) |#2| (-1175 |#2|)) (-1 (-421 |#2|) |#2|))) (-15 -4122 (|#3| |#3| |#2|)) (-15 -4122 (|#3| |#3| (-410 |#2|)))) (-13 (-365) (-147) (-1040 (-410 (-567)))) (-1245 |#1|) (-657 |#2|) (-657 (-410 |#2|))) (T -810))
+((-4122 (*1 *2 *2 *3) (-12 (-5 *3 (-410 *5)) (-4 *4 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *5 (-1245 *4)) (-5 *1 (-810 *4 *5 *2 *6)) (-4 *2 (-657 *5)) (-4 *6 (-657 *3)))) (-4122 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *3 (-1245 *4)) (-5 *1 (-810 *4 *3 *2 *5)) (-4 *2 (-657 *3)) (-4 *5 (-657 (-410 *3))))) (-1998 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-645 *7) *7 (-1175 *7))) (-5 *5 (-1 (-421 *7) *7)) (-4 *7 (-1245 *6)) (-4 *6 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-5 *2 (-645 (-2 (|:| |frac| (-410 *7)) (|:| -3855 *3)))) (-5 *1 (-810 *6 *7 *3 *8)) (-4 *3 (-657 *7)) (-4 *8 (-657 (-410 *7))))) (-1360 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-645 *5) *6)) (-4 *5 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *6 (-1245 *5)) (-5 *2 (-645 (-2 (|:| |poly| *6) (|:| -3855 *3)))) (-5 *1 (-810 *5 *6 *3 *7)) (-4 *3 (-657 *6)) (-4 *7 (-657 (-410 *6))))) (-1883 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-645 *5) *6)) (-4 *5 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *6 (-1245 *5)) (-5 *2 (-645 (-2 (|:| -3304 *5) (|:| -3855 *3)))) (-5 *1 (-810 *5 *6 *3 *7)) (-4 *3 (-657 *6)) (-4 *7 (-657 (-410 *6))))) (-1619 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *5 (-1245 *4)) (-5 *2 (-645 (-2 (|:| |deg| (-772)) (|:| -3855 *5)))) (-5 *1 (-810 *4 *5 *3 *6)) (-4 *3 (-657 *5)) (-4 *6 (-657 (-410 *5))))) (-2517 (*1 *2 *3) (-12 (-4 *2 (-1245 *4)) (-5 *1 (-810 *4 *2 *3 *5)) (-4 *4 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *3 (-657 *2)) (-4 *5 (-657 (-410 *2))))))
+(-10 -7 (-15 -2517 (|#2| |#3|)) (-15 -1619 ((-645 (-2 (|:| |deg| (-772)) (|:| -3855 |#2|))) |#3|)) (-15 -1883 ((-645 (-2 (|:| -3304 |#1|) (|:| -3855 |#3|))) |#3| (-1 (-645 |#1|) |#2|))) (-15 -1360 ((-645 (-2 (|:| |poly| |#2|) (|:| -3855 |#3|))) |#3| (-1 (-645 |#1|) |#2|))) (-15 -1998 ((-645 (-2 (|:| |frac| (-410 |#2|)) (|:| -3855 |#3|))) |#3| (-1 (-645 |#2|) |#2| (-1175 |#2|)) (-1 (-421 |#2|) |#2|))) (-15 -4122 (|#3| |#3| |#2|)) (-15 -4122 (|#3| |#3| (-410 |#2|))))
+((-3625 (((-2 (|:| -2144 (-645 (-410 |#2|))) (|:| -4208 (-690 |#1|))) (-655 |#2| (-410 |#2|)) (-645 (-410 |#2|))) 149) (((-2 (|:| |particular| (-3 (-410 |#2|) "failed")) (|:| -2144 (-645 (-410 |#2|)))) (-655 |#2| (-410 |#2|)) (-410 |#2|)) 148) (((-2 (|:| -2144 (-645 (-410 |#2|))) (|:| -4208 (-690 |#1|))) (-654 (-410 |#2|)) (-645 (-410 |#2|))) 143) (((-2 (|:| |particular| (-3 (-410 |#2|) "failed")) (|:| -2144 (-645 (-410 |#2|)))) (-654 (-410 |#2|)) (-410 |#2|)) 141)) (-1792 ((|#2| (-655 |#2| (-410 |#2|))) 89) ((|#2| (-654 (-410 |#2|))) 92)))
+(((-811 |#1| |#2|) (-10 -7 (-15 -3625 ((-2 (|:| |particular| (-3 (-410 |#2|) "failed")) (|:| -2144 (-645 (-410 |#2|)))) (-654 (-410 |#2|)) (-410 |#2|))) (-15 -3625 ((-2 (|:| -2144 (-645 (-410 |#2|))) (|:| -4208 (-690 |#1|))) (-654 (-410 |#2|)) (-645 (-410 |#2|)))) (-15 -3625 ((-2 (|:| |particular| (-3 (-410 |#2|) "failed")) (|:| -2144 (-645 (-410 |#2|)))) (-655 |#2| (-410 |#2|)) (-410 |#2|))) (-15 -3625 ((-2 (|:| -2144 (-645 (-410 |#2|))) (|:| -4208 (-690 |#1|))) (-655 |#2| (-410 |#2|)) (-645 (-410 |#2|)))) (-15 -1792 (|#2| (-654 (-410 |#2|)))) (-15 -1792 (|#2| (-655 |#2| (-410 |#2|))))) (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567)))) (-1245 |#1|)) (T -811))
+((-1792 (*1 *2 *3) (-12 (-5 *3 (-655 *2 (-410 *2))) (-4 *2 (-1245 *4)) (-5 *1 (-811 *4 *2)) (-4 *4 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))))) (-1792 (*1 *2 *3) (-12 (-5 *3 (-654 (-410 *2))) (-4 *2 (-1245 *4)) (-5 *1 (-811 *4 *2)) (-4 *4 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))))) (-3625 (*1 *2 *3 *4) (-12 (-5 *3 (-655 *6 (-410 *6))) (-4 *6 (-1245 *5)) (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) (-5 *2 (-2 (|:| -2144 (-645 (-410 *6))) (|:| -4208 (-690 *5)))) (-5 *1 (-811 *5 *6)) (-5 *4 (-645 (-410 *6))))) (-3625 (*1 *2 *3 *4) (-12 (-5 *3 (-655 *6 (-410 *6))) (-5 *4 (-410 *6)) (-4 *6 (-1245 *5)) (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2144 (-645 *4)))) (-5 *1 (-811 *5 *6)))) (-3625 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-410 *6))) (-4 *6 (-1245 *5)) (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) (-5 *2 (-2 (|:| -2144 (-645 (-410 *6))) (|:| -4208 (-690 *5)))) (-5 *1 (-811 *5 *6)) (-5 *4 (-645 (-410 *6))))) (-3625 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-410 *6))) (-5 *4 (-410 *6)) (-4 *6 (-1245 *5)) (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2144 (-645 *4)))) (-5 *1 (-811 *5 *6)))))
+(-10 -7 (-15 -3625 ((-2 (|:| |particular| (-3 (-410 |#2|) "failed")) (|:| -2144 (-645 (-410 |#2|)))) (-654 (-410 |#2|)) (-410 |#2|))) (-15 -3625 ((-2 (|:| -2144 (-645 (-410 |#2|))) (|:| -4208 (-690 |#1|))) (-654 (-410 |#2|)) (-645 (-410 |#2|)))) (-15 -3625 ((-2 (|:| |particular| (-3 (-410 |#2|) "failed")) (|:| -2144 (-645 (-410 |#2|)))) (-655 |#2| (-410 |#2|)) (-410 |#2|))) (-15 -3625 ((-2 (|:| -2144 (-645 (-410 |#2|))) (|:| -4208 (-690 |#1|))) (-655 |#2| (-410 |#2|)) (-645 (-410 |#2|)))) (-15 -1792 (|#2| (-654 (-410 |#2|)))) (-15 -1792 (|#2| (-655 |#2| (-410 |#2|)))))
+((-3497 (((-2 (|:| -4208 (-690 |#2|)) (|:| |vec| (-1269 |#1|))) |#5| |#4|) 52)))
+(((-812 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3497 ((-2 (|:| -4208 (-690 |#2|)) (|:| |vec| (-1269 |#1|))) |#5| |#4|))) (-365) (-657 |#1|) (-1245 |#1|) (-725 |#1| |#3|) (-657 |#4|)) (T -812))
+((-3497 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *7 (-1245 *5)) (-4 *4 (-725 *5 *7)) (-5 *2 (-2 (|:| -4208 (-690 *6)) (|:| |vec| (-1269 *5)))) (-5 *1 (-812 *5 *6 *7 *4 *3)) (-4 *6 (-657 *5)) (-4 *3 (-657 *4)))))
+(-10 -7 (-15 -3497 ((-2 (|:| -4208 (-690 |#2|)) (|:| |vec| (-1269 |#1|))) |#5| |#4|)))
+((-1998 (((-645 (-2 (|:| |frac| (-410 |#2|)) (|:| -3855 (-655 |#2| (-410 |#2|))))) (-655 |#2| (-410 |#2|)) (-1 (-421 |#2|) |#2|)) 47)) (-1503 (((-645 (-410 |#2|)) (-655 |#2| (-410 |#2|)) (-1 (-421 |#2|) |#2|)) 171 (|has| |#1| (-27))) (((-645 (-410 |#2|)) (-655 |#2| (-410 |#2|))) 168 (|has| |#1| (-27))) (((-645 (-410 |#2|)) (-654 (-410 |#2|)) (-1 (-421 |#2|) |#2|)) 172 (|has| |#1| (-27))) (((-645 (-410 |#2|)) (-654 (-410 |#2|))) 170 (|has| |#1| (-27))) (((-645 (-410 |#2|)) (-655 |#2| (-410 |#2|)) (-1 (-645 |#1|) |#2|) (-1 (-421 |#2|) |#2|)) 38) (((-645 (-410 |#2|)) (-655 |#2| (-410 |#2|)) (-1 (-645 |#1|) |#2|)) 39) (((-645 (-410 |#2|)) (-654 (-410 |#2|)) (-1 (-645 |#1|) |#2|) (-1 (-421 |#2|) |#2|)) 36) (((-645 (-410 |#2|)) (-654 (-410 |#2|)) (-1 (-645 |#1|) |#2|)) 37)) (-1360 (((-645 (-2 (|:| |poly| |#2|) (|:| -3855 (-655 |#2| (-410 |#2|))))) (-655 |#2| (-410 |#2|)) (-1 (-645 |#1|) |#2|)) 99)))
+(((-813 |#1| |#2|) (-10 -7 (-15 -1503 ((-645 (-410 |#2|)) (-654 (-410 |#2|)) (-1 (-645 |#1|) |#2|))) (-15 -1503 ((-645 (-410 |#2|)) (-654 (-410 |#2|)) (-1 (-645 |#1|) |#2|) (-1 (-421 |#2|) |#2|))) (-15 -1503 ((-645 (-410 |#2|)) (-655 |#2| (-410 |#2|)) (-1 (-645 |#1|) |#2|))) (-15 -1503 ((-645 (-410 |#2|)) (-655 |#2| (-410 |#2|)) (-1 (-645 |#1|) |#2|) (-1 (-421 |#2|) |#2|))) (-15 -1998 ((-645 (-2 (|:| |frac| (-410 |#2|)) (|:| -3855 (-655 |#2| (-410 |#2|))))) (-655 |#2| (-410 |#2|)) (-1 (-421 |#2|) |#2|))) (-15 -1360 ((-645 (-2 (|:| |poly| |#2|) (|:| -3855 (-655 |#2| (-410 |#2|))))) (-655 |#2| (-410 |#2|)) (-1 (-645 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1503 ((-645 (-410 |#2|)) (-654 (-410 |#2|)))) (-15 -1503 ((-645 (-410 |#2|)) (-654 (-410 |#2|)) (-1 (-421 |#2|) |#2|))) (-15 -1503 ((-645 (-410 |#2|)) (-655 |#2| (-410 |#2|)))) (-15 -1503 ((-645 (-410 |#2|)) (-655 |#2| (-410 |#2|)) (-1 (-421 |#2|) |#2|)))) |%noBranch|)) (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567)))) (-1245 |#1|)) (T -813))
+((-1503 (*1 *2 *3 *4) (-12 (-5 *3 (-655 *6 (-410 *6))) (-5 *4 (-1 (-421 *6) *6)) (-4 *6 (-1245 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) (-5 *2 (-645 (-410 *6))) (-5 *1 (-813 *5 *6)))) (-1503 (*1 *2 *3) (-12 (-5 *3 (-655 *5 (-410 *5))) (-4 *5 (-1245 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) (-5 *2 (-645 (-410 *5))) (-5 *1 (-813 *4 *5)))) (-1503 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-410 *6))) (-5 *4 (-1 (-421 *6) *6)) (-4 *6 (-1245 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) (-5 *2 (-645 (-410 *6))) (-5 *1 (-813 *5 *6)))) (-1503 (*1 *2 *3) (-12 (-5 *3 (-654 (-410 *5))) (-4 *5 (-1245 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) (-5 *2 (-645 (-410 *5))) (-5 *1 (-813 *4 *5)))) (-1360 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-645 *5) *6)) (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) (-4 *6 (-1245 *5)) (-5 *2 (-645 (-2 (|:| |poly| *6) (|:| -3855 (-655 *6 (-410 *6)))))) (-5 *1 (-813 *5 *6)) (-5 *3 (-655 *6 (-410 *6))))) (-1998 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-421 *6) *6)) (-4 *6 (-1245 *5)) (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) (-5 *2 (-645 (-2 (|:| |frac| (-410 *6)) (|:| -3855 (-655 *6 (-410 *6)))))) (-5 *1 (-813 *5 *6)) (-5 *3 (-655 *6 (-410 *6))))) (-1503 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-655 *7 (-410 *7))) (-5 *4 (-1 (-645 *6) *7)) (-5 *5 (-1 (-421 *7) *7)) (-4 *6 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) (-4 *7 (-1245 *6)) (-5 *2 (-645 (-410 *7))) (-5 *1 (-813 *6 *7)))) (-1503 (*1 *2 *3 *4) (-12 (-5 *3 (-655 *6 (-410 *6))) (-5 *4 (-1 (-645 *5) *6)) (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) (-4 *6 (-1245 *5)) (-5 *2 (-645 (-410 *6))) (-5 *1 (-813 *5 *6)))) (-1503 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-654 (-410 *7))) (-5 *4 (-1 (-645 *6) *7)) (-5 *5 (-1 (-421 *7) *7)) (-4 *6 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) (-4 *7 (-1245 *6)) (-5 *2 (-645 (-410 *7))) (-5 *1 (-813 *6 *7)))) (-1503 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-410 *6))) (-5 *4 (-1 (-645 *5) *6)) (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) (-4 *6 (-1245 *5)) (-5 *2 (-645 (-410 *6))) (-5 *1 (-813 *5 *6)))))
+(-10 -7 (-15 -1503 ((-645 (-410 |#2|)) (-654 (-410 |#2|)) (-1 (-645 |#1|) |#2|))) (-15 -1503 ((-645 (-410 |#2|)) (-654 (-410 |#2|)) (-1 (-645 |#1|) |#2|) (-1 (-421 |#2|) |#2|))) (-15 -1503 ((-645 (-410 |#2|)) (-655 |#2| (-410 |#2|)) (-1 (-645 |#1|) |#2|))) (-15 -1503 ((-645 (-410 |#2|)) (-655 |#2| (-410 |#2|)) (-1 (-645 |#1|) |#2|) (-1 (-421 |#2|) |#2|))) (-15 -1998 ((-645 (-2 (|:| |frac| (-410 |#2|)) (|:| -3855 (-655 |#2| (-410 |#2|))))) (-655 |#2| (-410 |#2|)) (-1 (-421 |#2|) |#2|))) (-15 -1360 ((-645 (-2 (|:| |poly| |#2|) (|:| -3855 (-655 |#2| (-410 |#2|))))) (-655 |#2| (-410 |#2|)) (-1 (-645 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1503 ((-645 (-410 |#2|)) (-654 (-410 |#2|)))) (-15 -1503 ((-645 (-410 |#2|)) (-654 (-410 |#2|)) (-1 (-421 |#2|) |#2|))) (-15 -1503 ((-645 (-410 |#2|)) (-655 |#2| (-410 |#2|)))) (-15 -1503 ((-645 (-410 |#2|)) (-655 |#2| (-410 |#2|)) (-1 (-421 |#2|) |#2|)))) |%noBranch|))
+((-2472 (((-2 (|:| -4208 (-690 |#2|)) (|:| |vec| (-1269 |#1|))) (-690 |#2|) (-1269 |#1|)) 110) (((-2 (|:| A (-690 |#1|)) (|:| |eqs| (-645 (-2 (|:| C (-690 |#1|)) (|:| |g| (-1269 |#1|)) (|:| -3855 |#2|) (|:| |rh| |#1|))))) (-690 |#1|) (-1269 |#1|)) 15)) (-3541 (((-2 (|:| |particular| (-3 (-1269 |#1|) "failed")) (|:| -2144 (-645 (-1269 |#1|)))) (-690 |#2|) (-1269 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2144 (-645 |#1|))) |#2| |#1|)) 116)) (-2464 (((-3 (-2 (|:| |particular| (-1269 |#1|)) (|:| -2144 (-690 |#1|))) "failed") (-690 |#1|) (-1269 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2144 (-645 |#1|))) "failed") |#2| |#1|)) 52)))
+(((-814 |#1| |#2|) (-10 -7 (-15 -2472 ((-2 (|:| A (-690 |#1|)) (|:| |eqs| (-645 (-2 (|:| C (-690 |#1|)) (|:| |g| (-1269 |#1|)) (|:| -3855 |#2|) (|:| |rh| |#1|))))) (-690 |#1|) (-1269 |#1|))) (-15 -2472 ((-2 (|:| -4208 (-690 |#2|)) (|:| |vec| (-1269 |#1|))) (-690 |#2|) (-1269 |#1|))) (-15 -2464 ((-3 (-2 (|:| |particular| (-1269 |#1|)) (|:| -2144 (-690 |#1|))) "failed") (-690 |#1|) (-1269 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2144 (-645 |#1|))) "failed") |#2| |#1|))) (-15 -3541 ((-2 (|:| |particular| (-3 (-1269 |#1|) "failed")) (|:| -2144 (-645 (-1269 |#1|)))) (-690 |#2|) (-1269 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2144 (-645 |#1|))) |#2| |#1|)))) (-365) (-657 |#1|)) (T -814))
+((-3541 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-690 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2144 (-645 *6))) *7 *6)) (-4 *6 (-365)) (-4 *7 (-657 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1269 *6) "failed")) (|:| -2144 (-645 (-1269 *6))))) (-5 *1 (-814 *6 *7)) (-5 *4 (-1269 *6)))) (-2464 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2144 (-645 *6))) "failed") *7 *6)) (-4 *6 (-365)) (-4 *7 (-657 *6)) (-5 *2 (-2 (|:| |particular| (-1269 *6)) (|:| -2144 (-690 *6)))) (-5 *1 (-814 *6 *7)) (-5 *3 (-690 *6)) (-5 *4 (-1269 *6)))) (-2472 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *6 (-657 *5)) (-5 *2 (-2 (|:| -4208 (-690 *6)) (|:| |vec| (-1269 *5)))) (-5 *1 (-814 *5 *6)) (-5 *3 (-690 *6)) (-5 *4 (-1269 *5)))) (-2472 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-5 *2 (-2 (|:| A (-690 *5)) (|:| |eqs| (-645 (-2 (|:| C (-690 *5)) (|:| |g| (-1269 *5)) (|:| -3855 *6) (|:| |rh| *5)))))) (-5 *1 (-814 *5 *6)) (-5 *3 (-690 *5)) (-5 *4 (-1269 *5)) (-4 *6 (-657 *5)))))
+(-10 -7 (-15 -2472 ((-2 (|:| A (-690 |#1|)) (|:| |eqs| (-645 (-2 (|:| C (-690 |#1|)) (|:| |g| (-1269 |#1|)) (|:| -3855 |#2|) (|:| |rh| |#1|))))) (-690 |#1|) (-1269 |#1|))) (-15 -2472 ((-2 (|:| -4208 (-690 |#2|)) (|:| |vec| (-1269 |#1|))) (-690 |#2|) (-1269 |#1|))) (-15 -2464 ((-3 (-2 (|:| |particular| (-1269 |#1|)) (|:| -2144 (-690 |#1|))) "failed") (-690 |#1|) (-1269 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2144 (-645 |#1|))) "failed") |#2| |#1|))) (-15 -3541 ((-2 (|:| |particular| (-3 (-1269 |#1|) "failed")) (|:| -2144 (-645 (-1269 |#1|)))) (-690 |#2|) (-1269 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2144 (-645 |#1|))) |#2| |#1|))))
+((-4338 (((-690 |#1|) (-645 |#1|) (-772)) 14) (((-690 |#1|) (-645 |#1|)) 15)) (-2003 (((-3 (-1269 |#1|) "failed") |#2| |#1| (-645 |#1|)) 39)) (-3585 (((-3 |#1| "failed") |#2| |#1| (-645 |#1|) (-1 |#1| |#1|)) 46)))
+(((-815 |#1| |#2|) (-10 -7 (-15 -4338 ((-690 |#1|) (-645 |#1|))) (-15 -4338 ((-690 |#1|) (-645 |#1|) (-772))) (-15 -2003 ((-3 (-1269 |#1|) "failed") |#2| |#1| (-645 |#1|))) (-15 -3585 ((-3 |#1| "failed") |#2| |#1| (-645 |#1|) (-1 |#1| |#1|)))) (-365) (-657 |#1|)) (T -815))
+((-3585 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-645 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-365)) (-5 *1 (-815 *2 *3)) (-4 *3 (-657 *2)))) (-2003 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-645 *4)) (-4 *4 (-365)) (-5 *2 (-1269 *4)) (-5 *1 (-815 *4 *3)) (-4 *3 (-657 *4)))) (-4338 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *5)) (-5 *4 (-772)) (-4 *5 (-365)) (-5 *2 (-690 *5)) (-5 *1 (-815 *5 *6)) (-4 *6 (-657 *5)))) (-4338 (*1 *2 *3) (-12 (-5 *3 (-645 *4)) (-4 *4 (-365)) (-5 *2 (-690 *4)) (-5 *1 (-815 *4 *5)) (-4 *5 (-657 *4)))))
+(-10 -7 (-15 -4338 ((-690 |#1|) (-645 |#1|))) (-15 -4338 ((-690 |#1|) (-645 |#1|) (-772))) (-15 -2003 ((-3 (-1269 |#1|) "failed") |#2| |#1| (-645 |#1|))) (-15 -3585 ((-3 |#1| "failed") |#2| |#1| (-645 |#1|) (-1 |#1| |#1|))))
+((-2412 (((-112) $ $) NIL (|has| |#2| (-1102)))) (-3791 (((-112) $) NIL (|has| |#2| (-131)))) (-3624 (($ (-923)) NIL (|has| |#2| (-1051)))) (-3843 (((-1274) $ (-567) (-567)) NIL (|has| $ (-6 -4423)))) (-1325 (($ $ $) NIL (|has| |#2| (-794)))) (-2376 (((-3 $ "failed") $ $) NIL (|has| |#2| (-131)))) (-1563 (((-112) $ (-772)) NIL)) (-2384 (((-772)) NIL (|has| |#2| (-370)))) (-2677 (((-567) $) NIL (|has| |#2| (-849)))) (-4285 ((|#2| $ (-567) |#2|) NIL (|has| $ (-6 -4423)))) (-3647 (($) NIL T CONST)) (-3765 (((-3 (-567) "failed") $) NIL (-12 (|has| |#2| (-1040 (-567))) (|has| |#2| (-1102)))) (((-3 (-410 (-567)) "failed") $) NIL (-12 (|has| |#2| (-1040 (-410 (-567)))) (|has| |#2| (-1102)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1102)))) (-2051 (((-567) $) NIL (-12 (|has| |#2| (-1040 (-567))) (|has| |#2| (-1102)))) (((-410 (-567)) $) NIL (-12 (|has| |#2| (-1040 (-410 (-567)))) (|has| |#2| (-1102)))) ((|#2| $) NIL (|has| |#2| (-1102)))) (-1423 (((-690 (-567)) (-690 $)) NIL (-12 (|has| |#2| (-640 (-567))) (|has| |#2| (-1051)))) (((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (-12 (|has| |#2| (-640 (-567))) (|has| |#2| (-1051)))) (((-2 (|:| -4208 (-690 |#2|)) (|:| |vec| (-1269 |#2|))) (-690 $) (-1269 $)) NIL (|has| |#2| (-1051))) (((-690 |#2|) (-690 $)) NIL (|has| |#2| (-1051)))) (-3588 (((-3 $ "failed") $) NIL (|has| |#2| (-727)))) (-1359 (($) NIL (|has| |#2| (-370)))) (-3760 ((|#2| $ (-567) |#2|) NIL (|has| $ (-6 -4423)))) (-3703 ((|#2| $ (-567)) NIL)) (-3137 (((-112) $) NIL (|has| |#2| (-849)))) (-2799 (((-645 |#2|) $) NIL (|has| $ (-6 -4422)))) (-4346 (((-112) $) NIL (|has| |#2| (-727)))) (-3465 (((-112) $) NIL (|has| |#2| (-849)))) (-4093 (((-112) $ (-772)) NIL)) (-3895 (((-567) $) NIL (|has| (-567) (-851)))) (-1365 (($ $ $) NIL (-2811 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-1942 (((-645 |#2|) $) NIL (|has| $ (-6 -4422)))) (-3237 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#2| (-1102))))) (-3255 (((-567) $) NIL (|has| (-567) (-851)))) (-3002 (($ $ $) NIL (-2811 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-3751 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#2| |#2|) $) NIL)) (-3474 (((-923) $) NIL (|has| |#2| (-370)))) (-1986 (((-112) $ (-772)) NIL)) (-2516 (((-1161) $) NIL (|has| |#2| (-1102)))) (-4364 (((-645 (-567)) $) NIL)) (-3188 (((-112) (-567) $) NIL)) (-3779 (($ (-923)) NIL (|has| |#2| (-370)))) (-3437 (((-1122) $) NIL (|has| |#2| (-1102)))) (-2418 ((|#2| $) NIL (|has| (-567) (-851)))) (-3823 (($ $ |#2|) NIL (|has| $ (-6 -4423)))) (-4233 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))))) (-3875 (((-112) $ $) NIL)) (-4058 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#2| (-1102))))) (-2190 (((-645 |#2|) $) NIL)) (-3885 (((-112) $) NIL)) (-2701 (($) NIL)) (-1801 ((|#2| $ (-567) |#2|) NIL) ((|#2| $ (-567)) NIL)) (-3917 ((|#2| $ $) NIL (|has| |#2| (-1051)))) (-2760 (($ (-1269 |#2|)) NIL)) (-1412 (((-134)) NIL (|has| |#2| (-365)))) (-1616 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1051)))) (($ $ (-772)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1051)))) (($ $ (-1179)) NIL (-12 (|has| |#2| (-902 (-1179))) (|has| |#2| (-1051)))) (($ $ (-645 (-1179))) NIL (-12 (|has| |#2| (-902 (-1179))) (|has| |#2| (-1051)))) (($ $ (-1179) (-772)) NIL (-12 (|has| |#2| (-902 (-1179))) (|has| |#2| (-1051)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (-12 (|has| |#2| (-902 (-1179))) (|has| |#2| (-1051)))) (($ $ (-1 |#2| |#2|) (-772)) NIL (|has| |#2| (-1051))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1051)))) (-3447 (((-772) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4422))) (((-772) |#2| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#2| (-1102))))) (-4309 (($ $) NIL)) (-4129 (((-1269 |#2|) $) NIL) (($ (-567)) NIL (-2811 (-12 (|has| |#2| (-1040 (-567))) (|has| |#2| (-1102))) (|has| |#2| (-1051)))) (($ (-410 (-567))) NIL (-12 (|has| |#2| (-1040 (-410 (-567)))) (|has| |#2| (-1102)))) (($ |#2|) NIL (|has| |#2| (-1102))) (((-863) $) NIL (|has| |#2| (-614 (-863))))) (-2746 (((-772)) NIL (|has| |#2| (-1051)) CONST)) (-3357 (((-112) $ $) NIL (|has| |#2| (-1102)))) (-3436 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4422)))) (-1547 (($ $) NIL (|has| |#2| (-849)))) (-1733 (($) NIL (|has| |#2| (-131)) CONST)) (-1744 (($) NIL (|has| |#2| (-727)) CONST)) (-2647 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1051)))) (($ $ (-772)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1051)))) (($ $ (-1179)) NIL (-12 (|has| |#2| (-902 (-1179))) (|has| |#2| (-1051)))) (($ $ (-645 (-1179))) NIL (-12 (|has| |#2| (-902 (-1179))) (|has| |#2| (-1051)))) (($ $ (-1179) (-772)) NIL (-12 (|has| |#2| (-902 (-1179))) (|has| |#2| (-1051)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (-12 (|has| |#2| (-902 (-1179))) (|has| |#2| (-1051)))) (($ $ (-1 |#2| |#2|) (-772)) NIL (|has| |#2| (-1051))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1051)))) (-3004 (((-112) $ $) NIL (-2811 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-2980 (((-112) $ $) NIL (-2811 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-2946 (((-112) $ $) NIL (|has| |#2| (-1102)))) (-2993 (((-112) $ $) NIL (-2811 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-2968 (((-112) $ $) 11 (-2811 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-3069 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3053 (($ $ $) NIL (|has| |#2| (-1051))) (($ $) NIL (|has| |#2| (-1051)))) (-3041 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-772)) NIL (|has| |#2| (-727))) (($ $ (-923)) NIL (|has| |#2| (-727)))) (* (($ (-567) $) NIL (|has| |#2| (-1051))) (($ $ $) NIL (|has| |#2| (-727))) (($ $ |#2|) NIL (|has| |#2| (-727))) (($ |#2| $) NIL (|has| |#2| (-727))) (($ (-772) $) NIL (|has| |#2| (-131))) (($ (-923) $) NIL (|has| |#2| (-25)))) (-2423 (((-772) $) NIL (|has| $ (-6 -4422)))))
+(((-816 |#1| |#2| |#3|) (-238 |#1| |#2|) (-772) (-794) (-1 (-112) (-1269 |#2|) (-1269 |#2|))) (T -816))
NIL
(-238 |#1| |#2|)
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3335 (((-645 (-772)) $) NIL) (((-645 (-772)) $ (-1178)) NIL)) (-3729 (((-772) $) NIL) (((-772) $ (-1178)) NIL)) (-2847 (((-645 (-819 (-1178))) $) NIL)) (-2675 (((-1174 $) $ (-819 (-1178))) NIL) (((-1174 |#1|) $) NIL)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-4381 (($ $) NIL (|has| |#1| (-559)))) (-3949 (((-112) $) NIL (|has| |#1| (-559)))) (-1468 (((-772) $) NIL) (((-772) $ (-645 (-819 (-1178)))) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-4226 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-911)))) (-3248 (($ $) NIL (|has| |#1| (-455)))) (-2908 (((-421 $) $) NIL (|has| |#1| (-455)))) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-911)))) (-3634 (($ $) NIL)) (-2585 (($) NIL T CONST)) (-3753 (((-3 |#1| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-819 (-1178)) "failed") $) NIL) (((-3 (-1178) "failed") $) NIL) (((-3 (-1127 |#1| (-1178)) "failed") $) NIL)) (-2038 ((|#1| $) NIL) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-819 (-1178)) $) NIL) (((-1178) $) NIL) (((-1127 |#1| (-1178)) $) NIL)) (-2951 (($ $ $ (-819 (-1178))) NIL (|has| |#1| (-172)))) (-3014 (($ $) NIL)) (-2630 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 |#1|)) (|:| |vec| (-1268 |#1|))) (-690 $) (-1268 $)) NIL) (((-690 |#1|) (-690 $)) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-3501 (($ $) NIL (|has| |#1| (-455))) (($ $ (-819 (-1178))) NIL (|has| |#1| (-455)))) (-3000 (((-645 $) $) NIL)) (-3184 (((-112) $) NIL (|has| |#1| (-911)))) (-2320 (($ $ |#1| (-534 (-819 (-1178))) $) NIL)) (-4303 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (-12 (|has| (-819 (-1178)) (-888 (-381))) (|has| |#1| (-888 (-381))))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (-12 (|has| (-819 (-1178)) (-888 (-567))) (|has| |#1| (-888 (-567)))))) (-4384 (((-772) $ (-1178)) NIL) (((-772) $) NIL)) (-1433 (((-112) $) NIL)) (-2695 (((-772) $) NIL)) (-2836 (($ (-1174 |#1|) (-819 (-1178))) NIL) (($ (-1174 $) (-819 (-1178))) NIL)) (-1709 (((-645 $) $) NIL)) (-2843 (((-112) $) NIL)) (-2824 (($ |#1| (-534 (-819 (-1178)))) NIL) (($ $ (-819 (-1178)) (-772)) NIL) (($ $ (-645 (-819 (-1178))) (-645 (-772))) NIL)) (-1621 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $ (-819 (-1178))) NIL)) (-2656 (((-534 (-819 (-1178))) $) NIL) (((-772) $ (-819 (-1178))) NIL) (((-645 (-772)) $ (-645 (-819 (-1178)))) NIL)) (-3273 (($ (-1 (-534 (-819 (-1178))) (-534 (-819 (-1178)))) $) NIL)) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-1369 (((-1 $ (-772)) (-1178)) NIL) (((-1 $ (-772)) $) NIL (|has| |#1| (-233)))) (-3046 (((-3 (-819 (-1178)) "failed") $) NIL)) (-2976 (($ $) NIL)) (-2989 ((|#1| $) NIL)) (-3151 (((-819 (-1178)) $) NIL)) (-2740 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-1419 (((-1160) $) NIL)) (-1634 (((-112) $) NIL)) (-2056 (((-3 (-645 $) "failed") $) NIL)) (-3671 (((-3 (-645 $) "failed") $) NIL)) (-3798 (((-3 (-2 (|:| |var| (-819 (-1178))) (|:| -3458 (-772))) "failed") $) NIL)) (-2344 (($ $) NIL)) (-3430 (((-1122) $) NIL)) (-2949 (((-112) $) NIL)) (-2962 ((|#1| $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#1| (-455)))) (-2774 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-2435 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-911)))) (-3517 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-911)))) (-2706 (((-421 $) $) NIL (|has| |#1| (-911)))) (-2391 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-2631 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-819 (-1178)) |#1|) NIL) (($ $ (-645 (-819 (-1178))) (-645 |#1|)) NIL) (($ $ (-819 (-1178)) $) NIL) (($ $ (-645 (-819 (-1178))) (-645 $)) NIL) (($ $ (-1178) $) NIL (|has| |#1| (-233))) (($ $ (-645 (-1178)) (-645 $)) NIL (|has| |#1| (-233))) (($ $ (-1178) |#1|) NIL (|has| |#1| (-233))) (($ $ (-645 (-1178)) (-645 |#1|)) NIL (|has| |#1| (-233)))) (-3788 (($ $ (-819 (-1178))) NIL (|has| |#1| (-172)))) (-1593 (($ $ (-819 (-1178))) NIL) (($ $ (-645 (-819 (-1178)))) NIL) (($ $ (-819 (-1178)) (-772)) NIL) (($ $ (-645 (-819 (-1178))) (-645 (-772))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $ (-1178)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2395 (((-645 (-1178)) $) NIL)) (-3077 (((-534 (-819 (-1178))) $) NIL) (((-772) $ (-819 (-1178))) NIL) (((-645 (-772)) $ (-645 (-819 (-1178)))) NIL) (((-772) $ (-1178)) NIL)) (-3893 (((-894 (-381)) $) NIL (-12 (|has| (-819 (-1178)) (-615 (-894 (-381)))) (|has| |#1| (-615 (-894 (-381)))))) (((-894 (-567)) $) NIL (-12 (|has| (-819 (-1178)) (-615 (-894 (-567)))) (|has| |#1| (-615 (-894 (-567)))))) (((-539) $) NIL (-12 (|has| (-819 (-1178)) (-615 (-539))) (|has| |#1| (-615 (-539)))))) (-4358 ((|#1| $) NIL (|has| |#1| (-455))) (($ $ (-819 (-1178))) NIL (|has| |#1| (-455)))) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-911))))) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) NIL) (($ (-819 (-1178))) NIL) (($ (-1178)) NIL) (($ (-1127 |#1| (-1178))) NIL) (($ (-410 (-567))) NIL (-2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567)))))) (($ $) NIL (|has| |#1| (-559)))) (-3032 (((-645 |#1|) $) NIL)) (-4136 ((|#1| $ (-534 (-819 (-1178)))) NIL) (($ $ (-819 (-1178)) (-772)) NIL) (($ $ (-645 (-819 (-1178))) (-645 (-772))) NIL)) (-1903 (((-3 $ "failed") $) NIL (-2800 (-12 (|has| $ (-145)) (|has| |#1| (-911))) (|has| |#1| (-145))))) (-4221 (((-772)) NIL T CONST)) (-4176 (($ $ $ (-772)) NIL (|has| |#1| (-172)))) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1716 (($) NIL T CONST)) (-1728 (($) NIL T CONST)) (-2637 (($ $ (-819 (-1178))) NIL) (($ $ (-645 (-819 (-1178)))) NIL) (($ $ (-819 (-1178)) (-772)) NIL) (($ $ (-645 (-819 (-1178))) (-645 (-772))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $ (-1178)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-817 |#1|) (-13 (-254 |#1| (-1178) (-819 (-1178)) (-534 (-819 (-1178)))) (-1040 (-1127 |#1| (-1178)))) (-1051)) (T -817))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-3754 (((-645 (-772)) $) NIL) (((-645 (-772)) $ (-1179)) NIL)) (-1772 (((-772) $) NIL) (((-772) $ (-1179)) NIL)) (-2859 (((-645 (-819 (-1179))) $) NIL)) (-2684 (((-1175 $) $ (-819 (-1179))) NIL) (((-1175 |#1|) $) NIL)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-4287 (($ $) NIL (|has| |#1| (-559)))) (-2286 (((-112) $) NIL (|has| |#1| (-559)))) (-3849 (((-772) $) NIL) (((-772) $ (-645 (-819 (-1179)))) NIL)) (-2376 (((-3 $ "failed") $ $) NIL)) (-2029 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-911)))) (-3659 (($ $) NIL (|has| |#1| (-455)))) (-3597 (((-421 $) $) NIL (|has| |#1| (-455)))) (-3610 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-911)))) (-1540 (($ $) NIL)) (-3647 (($) NIL T CONST)) (-3765 (((-3 |#1| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-819 (-1179)) "failed") $) NIL) (((-3 (-1179) "failed") $) NIL) (((-3 (-1127 |#1| (-1179)) "failed") $) NIL)) (-2051 ((|#1| $) NIL) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-819 (-1179)) $) NIL) (((-1179) $) NIL) (((-1127 |#1| (-1179)) $) NIL)) (-3554 (($ $ $ (-819 (-1179))) NIL (|has| |#1| (-172)))) (-3023 (($ $) NIL)) (-1423 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4208 (-690 |#1|)) (|:| |vec| (-1269 |#1|))) (-690 $) (-1269 $)) NIL) (((-690 |#1|) (-690 $)) NIL)) (-3588 (((-3 $ "failed") $) NIL)) (-2989 (($ $) NIL (|has| |#1| (-455))) (($ $ (-819 (-1179))) NIL (|has| |#1| (-455)))) (-3010 (((-645 $) $) NIL)) (-3502 (((-112) $) NIL (|has| |#1| (-911)))) (-3214 (($ $ |#1| (-534 (-819 (-1179))) $) NIL)) (-3193 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (-12 (|has| (-819 (-1179)) (-888 (-381))) (|has| |#1| (-888 (-381))))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (-12 (|has| (-819 (-1179)) (-888 (-567))) (|has| |#1| (-888 (-567)))))) (-3362 (((-772) $ (-1179)) NIL) (((-772) $) NIL)) (-4346 (((-112) $) NIL)) (-2851 (((-772) $) NIL)) (-2848 (($ (-1175 |#1|) (-819 (-1179))) NIL) (($ (-1175 $) (-819 (-1179))) NIL)) (-2659 (((-645 $) $) NIL)) (-3770 (((-112) $) NIL)) (-2836 (($ |#1| (-534 (-819 (-1179)))) NIL) (($ $ (-819 (-1179)) (-772)) NIL) (($ $ (-645 (-819 (-1179))) (-645 (-772))) NIL)) (-2742 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $ (-819 (-1179))) NIL)) (-2955 (((-534 (-819 (-1179))) $) NIL) (((-772) $ (-819 (-1179))) NIL) (((-645 (-772)) $ (-645 (-819 (-1179)))) NIL)) (-3827 (($ (-1 (-534 (-819 (-1179))) (-534 (-819 (-1179)))) $) NIL)) (-3841 (($ (-1 |#1| |#1|) $) NIL)) (-3029 (((-1 $ (-772)) (-1179)) NIL) (((-1 $ (-772)) $) NIL (|has| |#1| (-233)))) (-3221 (((-3 (-819 (-1179)) "failed") $) NIL)) (-2985 (($ $) NIL)) (-2996 ((|#1| $) NIL)) (-3726 (((-819 (-1179)) $) NIL)) (-2751 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-2516 (((-1161) $) NIL)) (-1901 (((-112) $) NIL)) (-3037 (((-3 (-645 $) "failed") $) NIL)) (-3774 (((-3 (-645 $) "failed") $) NIL)) (-3816 (((-3 (-2 (|:| |var| (-819 (-1179))) (|:| -3468 (-772))) "failed") $) NIL)) (-2353 (($ $) NIL)) (-3437 (((-1122) $) NIL)) (-2960 (((-112) $) NIL)) (-2971 ((|#1| $) NIL)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| |#1| (-455)))) (-2785 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-3551 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-911)))) (-2016 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-911)))) (-2717 (((-421 $) $) NIL (|has| |#1| (-911)))) (-2400 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-2642 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-819 (-1179)) |#1|) NIL) (($ $ (-645 (-819 (-1179))) (-645 |#1|)) NIL) (($ $ (-819 (-1179)) $) NIL) (($ $ (-645 (-819 (-1179))) (-645 $)) NIL) (($ $ (-1179) $) NIL (|has| |#1| (-233))) (($ $ (-645 (-1179)) (-645 $)) NIL (|has| |#1| (-233))) (($ $ (-1179) |#1|) NIL (|has| |#1| (-233))) (($ $ (-645 (-1179)) (-645 |#1|)) NIL (|has| |#1| (-233)))) (-2433 (($ $ (-819 (-1179))) NIL (|has| |#1| (-172)))) (-1616 (($ $ (-819 (-1179))) NIL) (($ $ (-645 (-819 (-1179)))) NIL) (($ $ (-819 (-1179)) (-772)) NIL) (($ $ (-645 (-819 (-1179))) (-645 (-772))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $ (-1179)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1924 (((-645 (-1179)) $) NIL)) (-3104 (((-534 (-819 (-1179))) $) NIL) (((-772) $ (-819 (-1179))) NIL) (((-645 (-772)) $ (-645 (-819 (-1179)))) NIL) (((-772) $ (-1179)) NIL)) (-3902 (((-894 (-381)) $) NIL (-12 (|has| (-819 (-1179)) (-615 (-894 (-381)))) (|has| |#1| (-615 (-894 (-381)))))) (((-894 (-567)) $) NIL (-12 (|has| (-819 (-1179)) (-615 (-894 (-567)))) (|has| |#1| (-615 (-894 (-567)))))) (((-539) $) NIL (-12 (|has| (-819 (-1179)) (-615 (-539))) (|has| |#1| (-615 (-539)))))) (-1849 ((|#1| $) NIL (|has| |#1| (-455))) (($ $ (-819 (-1179))) NIL (|has| |#1| (-455)))) (-2616 (((-3 (-1269 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-911))))) (-4129 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) NIL) (($ (-819 (-1179))) NIL) (($ (-1179)) NIL) (($ (-1127 |#1| (-1179))) NIL) (($ (-410 (-567))) NIL (-2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567)))))) (($ $) NIL (|has| |#1| (-559)))) (-3601 (((-645 |#1|) $) NIL)) (-2558 ((|#1| $ (-534 (-819 (-1179)))) NIL) (($ $ (-819 (-1179)) (-772)) NIL) (($ $ (-645 (-819 (-1179))) (-645 (-772))) NIL)) (-2118 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-145)) (|has| |#1| (-911))) (|has| |#1| (-145))))) (-2746 (((-772)) NIL T CONST)) (-3658 (($ $ $ (-772)) NIL (|has| |#1| (-172)))) (-3357 (((-112) $ $) NIL)) (-3731 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1733 (($) NIL T CONST)) (-1744 (($) NIL T CONST)) (-2647 (($ $ (-819 (-1179))) NIL) (($ $ (-645 (-819 (-1179)))) NIL) (($ $ (-819 (-1179)) (-772)) NIL) (($ $ (-645 (-819 (-1179))) (-645 (-772))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $ (-1179)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2946 (((-112) $ $) NIL)) (-3069 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-817 |#1|) (-13 (-254 |#1| (-1179) (-819 (-1179)) (-534 (-819 (-1179)))) (-1040 (-1127 |#1| (-1179)))) (-1051)) (T -817))
NIL
-(-13 (-254 |#1| (-1178) (-819 (-1178)) (-534 (-819 (-1178)))) (-1040 (-1127 |#1| (-1178))))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL (|has| |#2| (-365)))) (-4381 (($ $) NIL (|has| |#2| (-365)))) (-3949 (((-112) $) NIL (|has| |#2| (-365)))) (-3472 (((-3 $ "failed") $ $) NIL)) (-3248 (($ $) NIL (|has| |#2| (-365)))) (-2908 (((-421 $) $) NIL (|has| |#2| (-365)))) (-3609 (((-112) $ $) NIL (|has| |#2| (-365)))) (-2585 (($) NIL T CONST)) (-2349 (($ $ $) NIL (|has| |#2| (-365)))) (-2109 (((-3 $ "failed") $) NIL)) (-2360 (($ $ $) NIL (|has| |#2| (-365)))) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL (|has| |#2| (-365)))) (-3184 (((-112) $) NIL (|has| |#2| (-365)))) (-1433 (((-112) $) NIL)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#2| (-365)))) (-2740 (($ (-645 $)) NIL (|has| |#2| (-365))) (($ $ $) NIL (|has| |#2| (-365)))) (-1419 (((-1160) $) NIL)) (-2939 (($ $) 20 (|has| |#2| (-365)))) (-3430 (((-1122) $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#2| (-365)))) (-2774 (($ (-645 $)) NIL (|has| |#2| (-365))) (($ $ $) NIL (|has| |#2| (-365)))) (-2706 (((-421 $) $) NIL (|has| |#2| (-365)))) (-3402 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL (|has| |#2| (-365)))) (-2391 (((-3 $ "failed") $ $) NIL (|has| |#2| (-365)))) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#2| (-365)))) (-1990 (((-772) $) NIL (|has| |#2| (-365)))) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL (|has| |#2| (-365)))) (-1593 (($ $ (-772)) NIL) (($ $) 13)) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-410 (-567))) NIL (|has| |#2| (-365))) (($ $) NIL (|has| |#2| (-365)))) (-4221 (((-772)) NIL T CONST)) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL (|has| |#2| (-365)))) (-1716 (($) NIL T CONST)) (-1728 (($) NIL T CONST)) (-2637 (($ $ (-772)) NIL) (($ $) NIL)) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ $) 15 (|has| |#2| (-365)))) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-772)) NIL) (($ $ (-923)) NIL) (($ $ (-567)) 18 (|has| |#2| (-365)))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-410 (-567)) $) NIL (|has| |#2| (-365))) (($ $ (-410 (-567))) NIL (|has| |#2| (-365)))))
+(-13 (-254 |#1| (-1179) (-819 (-1179)) (-534 (-819 (-1179)))) (-1040 (-1127 |#1| (-1179))))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) NIL (|has| |#2| (-365)))) (-4287 (($ $) NIL (|has| |#2| (-365)))) (-2286 (((-112) $) NIL (|has| |#2| (-365)))) (-2376 (((-3 $ "failed") $ $) NIL)) (-3659 (($ $) NIL (|has| |#2| (-365)))) (-3597 (((-421 $) $) NIL (|has| |#2| (-365)))) (-3696 (((-112) $ $) NIL (|has| |#2| (-365)))) (-3647 (($) NIL T CONST)) (-2357 (($ $ $) NIL (|has| |#2| (-365)))) (-3588 (((-3 $ "failed") $) NIL)) (-2368 (($ $ $) NIL (|has| |#2| (-365)))) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) NIL (|has| |#2| (-365)))) (-3502 (((-112) $) NIL (|has| |#2| (-365)))) (-4346 (((-112) $) NIL)) (-1469 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#2| (-365)))) (-2751 (($ (-645 $)) NIL (|has| |#2| (-365))) (($ $ $) NIL (|has| |#2| (-365)))) (-2516 (((-1161) $) NIL)) (-2949 (($ $) 20 (|has| |#2| (-365)))) (-3437 (((-1122) $) NIL)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| |#2| (-365)))) (-2785 (($ (-645 $)) NIL (|has| |#2| (-365))) (($ $ $) NIL (|has| |#2| (-365)))) (-2717 (((-421 $) $) NIL (|has| |#2| (-365)))) (-2905 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) NIL (|has| |#2| (-365)))) (-2400 (((-3 $ "failed") $ $) NIL (|has| |#2| (-365)))) (-2372 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#2| (-365)))) (-2460 (((-772) $) NIL (|has| |#2| (-365)))) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) NIL (|has| |#2| (-365)))) (-1616 (($ $ (-772)) NIL) (($ $) 13)) (-4129 (((-863) $) NIL) (($ (-567)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-410 (-567))) NIL (|has| |#2| (-365))) (($ $) NIL (|has| |#2| (-365)))) (-2746 (((-772)) NIL T CONST)) (-3357 (((-112) $ $) NIL)) (-3731 (((-112) $ $) NIL (|has| |#2| (-365)))) (-1733 (($) NIL T CONST)) (-1744 (($) NIL T CONST)) (-2647 (($ $ (-772)) NIL) (($ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3069 (($ $ $) 15 (|has| |#2| (-365)))) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-772)) NIL) (($ $ (-923)) NIL) (($ $ (-567)) 18 (|has| |#2| (-365)))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-410 (-567)) $) NIL (|has| |#2| (-365))) (($ $ (-410 (-567))) NIL (|has| |#2| (-365)))))
(((-818 |#1| |#2| |#3|) (-13 (-111 $ $) (-233) (-493 |#2|) (-10 -7 (IF (|has| |#2| (-365)) (-6 (-365)) |%noBranch|))) (-1102) (-902 |#1|) |#1|) (T -818))
NIL
(-13 (-111 $ $) (-233) (-493 |#2|) (-10 -7 (IF (|has| |#2| (-365)) (-6 (-365)) |%noBranch|)))
-((-2403 (((-112) $ $) NIL)) (-3729 (((-772) $) NIL)) (-3644 ((|#1| $) 10)) (-3753 (((-3 |#1| "failed") $) NIL)) (-2038 ((|#1| $) NIL)) (-4384 (((-772) $) 11)) (-1354 (($ $ $) NIL)) (-2981 (($ $ $) NIL)) (-1369 (($ |#1| (-772)) 9)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-1593 (($ $) NIL) (($ $ (-772)) NIL)) (-4132 (((-863) $) NIL) (($ |#1|) NIL)) (-1745 (((-112) $ $) NIL)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) NIL)))
+((-2412 (((-112) $ $) NIL)) (-1772 (((-772) $) NIL)) (-3653 ((|#1| $) 10)) (-3765 (((-3 |#1| "failed") $) NIL)) (-2051 ((|#1| $) NIL)) (-3362 (((-772) $) 11)) (-1365 (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (-3029 (($ |#1| (-772)) 9)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-1616 (($ $) NIL) (($ $ (-772)) NIL)) (-4129 (((-863) $) NIL) (($ |#1|) NIL)) (-3357 (((-112) $ $) NIL)) (-3004 (((-112) $ $) NIL)) (-2980 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2993 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)))
(((-819 |#1|) (-267 |#1|) (-851)) (T -819))
NIL
(-267 |#1|)
-((-2403 (((-112) $ $) NIL)) (-3267 (((-645 |#1|) $) 38)) (-2375 (((-772) $) NIL)) (-2585 (($) NIL T CONST)) (-2885 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 28)) (-3753 (((-3 |#1| "failed") $) NIL)) (-2038 ((|#1| $) NIL)) (-2421 (($ $) 42)) (-2109 (((-3 $ "failed") $) NIL)) (-1914 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-1433 (((-112) $) NIL)) (-4108 ((|#1| $ (-567)) NIL)) (-3202 (((-772) $ (-567)) NIL)) (-3592 (($ $) 54)) (-1354 (($ $ $) NIL)) (-2981 (($ $ $) NIL)) (-3496 (($ (-1 |#1| |#1|) $) NIL)) (-2728 (($ (-1 (-772) (-772)) $) NIL)) (-2173 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 25)) (-4175 (((-112) $ $) 51)) (-1699 (((-772) $) 34)) (-1419 (((-1160) $) NIL)) (-3231 (($ $ $) NIL)) (-3827 (($ $ $) NIL)) (-3430 (((-1122) $) NIL)) (-2409 ((|#1| $) 41)) (-3920 (((-645 (-2 (|:| |gen| |#1|) (|:| -3946 (-772)))) $) NIL)) (-2384 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-2380 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-4132 (((-863) $) NIL) (($ |#1|) NIL)) (-1745 (((-112) $ $) NIL)) (-1728 (($) 20 T CONST)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) 53)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ |#1| (-772)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-820 |#1|) (-13 (-388 |#1|) (-847) (-10 -8 (-15 -2409 (|#1| $)) (-15 -2421 ($ $)) (-15 -3592 ($ $)) (-15 -4175 ((-112) $ $)) (-15 -2173 ((-3 $ "failed") $ |#1|)) (-15 -2885 ((-3 $ "failed") $ |#1|)) (-15 -2380 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1699 ((-772) $)) (-15 -3267 ((-645 |#1|) $)))) (-851)) (T -820))
-((-2409 (*1 *2 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-851)))) (-2421 (*1 *1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-851)))) (-3592 (*1 *1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-851)))) (-4175 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820 *3)) (-4 *3 (-851)))) (-2173 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-820 *2)) (-4 *2 (-851)))) (-2885 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-820 *2)) (-4 *2 (-851)))) (-2380 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-820 *3)) (|:| |rm| (-820 *3)))) (-5 *1 (-820 *3)) (-4 *3 (-851)))) (-1699 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-820 *3)) (-4 *3 (-851)))) (-3267 (*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-820 *3)) (-4 *3 (-851)))))
-(-13 (-388 |#1|) (-847) (-10 -8 (-15 -2409 (|#1| $)) (-15 -2421 ($ $)) (-15 -3592 ($ $)) (-15 -4175 ((-112) $ $)) (-15 -2173 ((-3 $ "failed") $ |#1|)) (-15 -2885 ((-3 $ "failed") $ |#1|)) (-15 -2380 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1699 ((-772) $)) (-15 -3267 ((-645 |#1|) $))))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 47)) (-4381 (($ $) 46)) (-3949 (((-112) $) 44)) (-3472 (((-3 $ "failed") $ $) 20)) (-1750 (((-567) $) 59)) (-2585 (($) 18 T CONST)) (-2109 (((-3 $ "failed") $) 37)) (-4336 (((-112) $) 57)) (-1433 (((-112) $) 35)) (-3494 (((-112) $) 58)) (-1354 (($ $ $) 56)) (-2981 (($ $ $) 55)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-2391 (((-3 $ "failed") $ $) 48)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ $) 49)) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-3816 (((-112) $ $) 45)) (-2219 (($ $) 60)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2997 (((-112) $ $) 53)) (-2971 (((-112) $ $) 52)) (-2936 (((-112) $ $) 6)) (-2984 (((-112) $ $) 54)) (-2958 (((-112) $ $) 51)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27)))
+((-2412 (((-112) $ $) NIL)) (-3275 (((-645 |#1|) $) 38)) (-2384 (((-772) $) NIL)) (-3647 (($) NIL T CONST)) (-2873 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 28)) (-3765 (((-3 |#1| "failed") $) NIL)) (-2051 ((|#1| $) NIL)) (-2430 (($ $) 42)) (-3588 (((-3 $ "failed") $) NIL)) (-4328 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-4346 (((-112) $) NIL)) (-4152 ((|#1| $ (-567)) NIL)) (-1449 (((-772) $ (-567)) NIL)) (-2111 (($ $) 54)) (-1365 (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (-3650 (($ (-1 |#1| |#1|) $) NIL)) (-1826 (($ (-1 (-772) (-772)) $) NIL)) (-1627 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 25)) (-3579 (((-112) $ $) 51)) (-2334 (((-772) $) 34)) (-2516 (((-1161) $) NIL)) (-3210 (($ $ $) NIL)) (-2218 (($ $ $) NIL)) (-3437 (((-1122) $) NIL)) (-2418 ((|#1| $) 41)) (-2158 (((-645 (-2 (|:| |gen| |#1|) (|:| -3955 (-772)))) $) NIL)) (-2452 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-2388 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-4129 (((-863) $) NIL) (($ |#1|) NIL)) (-3357 (((-112) $ $) NIL)) (-1744 (($) 20 T CONST)) (-3004 (((-112) $ $) NIL)) (-2980 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2993 (((-112) $ $) NIL)) (-2968 (((-112) $ $) 53)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ |#1| (-772)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-820 |#1|) (-13 (-388 |#1|) (-847) (-10 -8 (-15 -2418 (|#1| $)) (-15 -2430 ($ $)) (-15 -2111 ($ $)) (-15 -3579 ((-112) $ $)) (-15 -1627 ((-3 $ "failed") $ |#1|)) (-15 -2873 ((-3 $ "failed") $ |#1|)) (-15 -2388 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2334 ((-772) $)) (-15 -3275 ((-645 |#1|) $)))) (-851)) (T -820))
+((-2418 (*1 *2 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-851)))) (-2430 (*1 *1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-851)))) (-2111 (*1 *1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-851)))) (-3579 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820 *3)) (-4 *3 (-851)))) (-1627 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-820 *2)) (-4 *2 (-851)))) (-2873 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-820 *2)) (-4 *2 (-851)))) (-2388 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-820 *3)) (|:| |rm| (-820 *3)))) (-5 *1 (-820 *3)) (-4 *3 (-851)))) (-2334 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-820 *3)) (-4 *3 (-851)))) (-3275 (*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-820 *3)) (-4 *3 (-851)))))
+(-13 (-388 |#1|) (-847) (-10 -8 (-15 -2418 (|#1| $)) (-15 -2430 ($ $)) (-15 -2111 ($ $)) (-15 -3579 ((-112) $ $)) (-15 -1627 ((-3 $ "failed") $ |#1|)) (-15 -2873 ((-3 $ "failed") $ |#1|)) (-15 -2388 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2334 ((-772) $)) (-15 -3275 ((-645 |#1|) $))))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) 47)) (-4287 (($ $) 46)) (-2286 (((-112) $) 44)) (-2376 (((-3 $ "failed") $ $) 20)) (-2677 (((-567) $) 59)) (-3647 (($) 18 T CONST)) (-3588 (((-3 $ "failed") $) 37)) (-3137 (((-112) $) 57)) (-4346 (((-112) $) 35)) (-3465 (((-112) $) 58)) (-1365 (($ $ $) 56)) (-3002 (($ $ $) 55)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-2400 (((-3 $ "failed") $ $) 48)) (-4129 (((-863) $) 12) (($ (-567)) 33) (($ $) 49)) (-2746 (((-772)) 32 T CONST)) (-3357 (((-112) $ $) 9)) (-3731 (((-112) $ $) 45)) (-1547 (($ $) 60)) (-1733 (($) 19 T CONST)) (-1744 (($) 34 T CONST)) (-3004 (((-112) $ $) 53)) (-2980 (((-112) $ $) 52)) (-2946 (((-112) $ $) 6)) (-2993 (((-112) $ $) 54)) (-2968 (((-112) $ $) 51)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27)))
(((-821) (-140)) (T -821))
NIL
(-13 (-559) (-849))
(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-291) . T) ((-559) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-641 $) . T) ((-718 $) . T) ((-727) . T) ((-792) . T) ((-793) . T) ((-795) . T) ((-796) . T) ((-849) . T) ((-851) . T) ((-1053 $) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T))
-((-2468 (($ (-1122)) 7)) (-2952 (((-112) $ (-1160) (-1122)) 15)) (-4364 (((-823) $) 12)) (-2311 (((-823) $) 11)) (-1705 (((-1273) $) 9)) (-2187 (((-112) $ (-1122)) 16)))
-(((-822) (-10 -8 (-15 -2468 ($ (-1122))) (-15 -1705 ((-1273) $)) (-15 -2311 ((-823) $)) (-15 -4364 ((-823) $)) (-15 -2952 ((-112) $ (-1160) (-1122))) (-15 -2187 ((-112) $ (-1122))))) (T -822))
-((-2187 (*1 *2 *1 *3) (-12 (-5 *3 (-1122)) (-5 *2 (-112)) (-5 *1 (-822)))) (-2952 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1160)) (-5 *4 (-1122)) (-5 *2 (-112)) (-5 *1 (-822)))) (-4364 (*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-822)))) (-2311 (*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-822)))) (-1705 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-822)))) (-2468 (*1 *1 *2) (-12 (-5 *2 (-1122)) (-5 *1 (-822)))))
-(-10 -8 (-15 -2468 ($ (-1122))) (-15 -1705 ((-1273) $)) (-15 -2311 ((-823) $)) (-15 -4364 ((-823) $)) (-15 -2952 ((-112) $ (-1160) (-1122))) (-15 -2187 ((-112) $ (-1122))))
-((-4322 (((-1273) $ (-824)) 12)) (-4267 (((-1273) $ (-1178)) 32)) (-3203 (((-1273) $ (-1160) (-1160)) 34)) (-2260 (((-1273) $ (-1160)) 33)) (-1602 (((-1273) $) 19)) (-4243 (((-1273) $ (-567)) 28)) (-1530 (((-1273) $ (-225)) 30)) (-3019 (((-1273) $) 18)) (-2725 (((-1273) $) 26)) (-4263 (((-1273) $) 25)) (-2215 (((-1273) $) 23)) (-1494 (((-1273) $) 24)) (-1659 (((-1273) $) 22)) (-3771 (((-1273) $) 21)) (-1856 (((-1273) $) 20)) (-1637 (((-1273) $) 16)) (-2322 (((-1273) $) 17)) (-2027 (((-1273) $) 15)) (-3334 (((-1273) $) 14)) (-1342 (((-1273) $) 13)) (-2492 (($ (-1160) (-824)) 9)) (-1630 (($ (-1160) (-1160) (-824)) 8)) (-2412 (((-1178) $) 51)) (-2132 (((-1178) $) 55)) (-2854 (((-2 (|:| |cd| (-1160)) (|:| -1996 (-1160))) $) 54)) (-3856 (((-1160) $) 52)) (-3735 (((-1273) $) 41)) (-3212 (((-567) $) 49)) (-2917 (((-225) $) 50)) (-3242 (((-1273) $) 40)) (-3660 (((-1273) $) 48)) (-2011 (((-1273) $) 47)) (-3332 (((-1273) $) 45)) (-3948 (((-1273) $) 46)) (-1556 (((-1273) $) 44)) (-3318 (((-1273) $) 43)) (-3331 (((-1273) $) 42)) (-3384 (((-1273) $) 38)) (-3581 (((-1273) $) 39)) (-2568 (((-1273) $) 37)) (-4215 (((-1273) $) 36)) (-2889 (((-1273) $) 35)) (-4196 (((-1273) $) 11)))
-(((-823) (-10 -8 (-15 -1630 ($ (-1160) (-1160) (-824))) (-15 -2492 ($ (-1160) (-824))) (-15 -4196 ((-1273) $)) (-15 -4322 ((-1273) $ (-824))) (-15 -1342 ((-1273) $)) (-15 -3334 ((-1273) $)) (-15 -2027 ((-1273) $)) (-15 -1637 ((-1273) $)) (-15 -2322 ((-1273) $)) (-15 -3019 ((-1273) $)) (-15 -1602 ((-1273) $)) (-15 -1856 ((-1273) $)) (-15 -3771 ((-1273) $)) (-15 -1659 ((-1273) $)) (-15 -2215 ((-1273) $)) (-15 -1494 ((-1273) $)) (-15 -4263 ((-1273) $)) (-15 -2725 ((-1273) $)) (-15 -4243 ((-1273) $ (-567))) (-15 -1530 ((-1273) $ (-225))) (-15 -4267 ((-1273) $ (-1178))) (-15 -2260 ((-1273) $ (-1160))) (-15 -3203 ((-1273) $ (-1160) (-1160))) (-15 -2889 ((-1273) $)) (-15 -4215 ((-1273) $)) (-15 -2568 ((-1273) $)) (-15 -3384 ((-1273) $)) (-15 -3581 ((-1273) $)) (-15 -3242 ((-1273) $)) (-15 -3735 ((-1273) $)) (-15 -3331 ((-1273) $)) (-15 -3318 ((-1273) $)) (-15 -1556 ((-1273) $)) (-15 -3332 ((-1273) $)) (-15 -3948 ((-1273) $)) (-15 -2011 ((-1273) $)) (-15 -3660 ((-1273) $)) (-15 -3212 ((-567) $)) (-15 -2917 ((-225) $)) (-15 -2412 ((-1178) $)) (-15 -3856 ((-1160) $)) (-15 -2854 ((-2 (|:| |cd| (-1160)) (|:| -1996 (-1160))) $)) (-15 -2132 ((-1178) $)))) (T -823))
-((-2132 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-823)))) (-2854 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1160)) (|:| -1996 (-1160)))) (-5 *1 (-823)))) (-3856 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-823)))) (-2412 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-823)))) (-2917 (*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-823)))) (-3212 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-823)))) (-3660 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))) (-2011 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))) (-3948 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))) (-3332 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))) (-1556 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))) (-3318 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))) (-3331 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))) (-3735 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))) (-3242 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))) (-3581 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))) (-3384 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))) (-2568 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))) (-4215 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))) (-2889 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))) (-3203 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-823)))) (-2260 (*1 *2 *1 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-823)))) (-4267 (*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1273)) (-5 *1 (-823)))) (-1530 (*1 *2 *1 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1273)) (-5 *1 (-823)))) (-4243 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *2 (-1273)) (-5 *1 (-823)))) (-2725 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))) (-4263 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))) (-1494 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))) (-2215 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))) (-1659 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))) (-3771 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))) (-1856 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))) (-1602 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))) (-3019 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))) (-2322 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))) (-1637 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))) (-2027 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))) (-3334 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))) (-1342 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))) (-4322 (*1 *2 *1 *3) (-12 (-5 *3 (-824)) (-5 *2 (-1273)) (-5 *1 (-823)))) (-4196 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))) (-2492 (*1 *1 *2 *3) (-12 (-5 *2 (-1160)) (-5 *3 (-824)) (-5 *1 (-823)))) (-1630 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1160)) (-5 *3 (-824)) (-5 *1 (-823)))))
-(-10 -8 (-15 -1630 ($ (-1160) (-1160) (-824))) (-15 -2492 ($ (-1160) (-824))) (-15 -4196 ((-1273) $)) (-15 -4322 ((-1273) $ (-824))) (-15 -1342 ((-1273) $)) (-15 -3334 ((-1273) $)) (-15 -2027 ((-1273) $)) (-15 -1637 ((-1273) $)) (-15 -2322 ((-1273) $)) (-15 -3019 ((-1273) $)) (-15 -1602 ((-1273) $)) (-15 -1856 ((-1273) $)) (-15 -3771 ((-1273) $)) (-15 -1659 ((-1273) $)) (-15 -2215 ((-1273) $)) (-15 -1494 ((-1273) $)) (-15 -4263 ((-1273) $)) (-15 -2725 ((-1273) $)) (-15 -4243 ((-1273) $ (-567))) (-15 -1530 ((-1273) $ (-225))) (-15 -4267 ((-1273) $ (-1178))) (-15 -2260 ((-1273) $ (-1160))) (-15 -3203 ((-1273) $ (-1160) (-1160))) (-15 -2889 ((-1273) $)) (-15 -4215 ((-1273) $)) (-15 -2568 ((-1273) $)) (-15 -3384 ((-1273) $)) (-15 -3581 ((-1273) $)) (-15 -3242 ((-1273) $)) (-15 -3735 ((-1273) $)) (-15 -3331 ((-1273) $)) (-15 -3318 ((-1273) $)) (-15 -1556 ((-1273) $)) (-15 -3332 ((-1273) $)) (-15 -3948 ((-1273) $)) (-15 -2011 ((-1273) $)) (-15 -3660 ((-1273) $)) (-15 -3212 ((-567) $)) (-15 -2917 ((-225) $)) (-15 -2412 ((-1178) $)) (-15 -3856 ((-1160) $)) (-15 -2854 ((-2 (|:| |cd| (-1160)) (|:| -1996 (-1160))) $)) (-15 -2132 ((-1178) $)))
-((-2403 (((-112) $ $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 13)) (-1745 (((-112) $ $) NIL)) (-4259 (($) 16)) (-2710 (($) 14)) (-3507 (($) 17)) (-2686 (($) 15)) (-2936 (((-112) $ $) 9)))
-(((-824) (-13 (-1102) (-10 -8 (-15 -2710 ($)) (-15 -4259 ($)) (-15 -3507 ($)) (-15 -2686 ($))))) (T -824))
-((-2710 (*1 *1) (-5 *1 (-824))) (-4259 (*1 *1) (-5 *1 (-824))) (-3507 (*1 *1) (-5 *1 (-824))) (-2686 (*1 *1) (-5 *1 (-824))))
-(-13 (-1102) (-10 -8 (-15 -2710 ($)) (-15 -4259 ($)) (-15 -3507 ($)) (-15 -2686 ($))))
-((-2403 (((-112) $ $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 23) (($ (-1178)) 19)) (-1745 (((-112) $ $) NIL)) (-1851 (((-112) $) 10)) (-2473 (((-112) $) 9)) (-3414 (((-112) $) 11)) (-1889 (((-112) $) 8)) (-2936 (((-112) $ $) 21)))
-(((-825) (-13 (-1102) (-10 -8 (-15 -4132 ($ (-1178))) (-15 -1889 ((-112) $)) (-15 -2473 ((-112) $)) (-15 -1851 ((-112) $)) (-15 -3414 ((-112) $))))) (T -825))
-((-4132 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-825)))) (-1889 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-825)))) (-2473 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-825)))) (-1851 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-825)))) (-3414 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-825)))))
-(-13 (-1102) (-10 -8 (-15 -4132 ($ (-1178))) (-15 -1889 ((-112) $)) (-15 -2473 ((-112) $)) (-15 -1851 ((-112) $)) (-15 -3414 ((-112) $))))
-((-2403 (((-112) $ $) NIL)) (-1911 (($ (-825) (-645 (-1178))) 32)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-2118 (((-825) $) 33)) (-4044 (((-645 (-1178)) $) 34)) (-4132 (((-863) $) 31)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)))
-(((-826) (-13 (-1102) (-10 -8 (-15 -2118 ((-825) $)) (-15 -4044 ((-645 (-1178)) $)) (-15 -1911 ($ (-825) (-645 (-1178))))))) (T -826))
-((-2118 (*1 *2 *1) (-12 (-5 *2 (-825)) (-5 *1 (-826)))) (-4044 (*1 *2 *1) (-12 (-5 *2 (-645 (-1178))) (-5 *1 (-826)))) (-1911 (*1 *1 *2 *3) (-12 (-5 *2 (-825)) (-5 *3 (-645 (-1178))) (-5 *1 (-826)))))
-(-13 (-1102) (-10 -8 (-15 -2118 ((-825) $)) (-15 -4044 ((-645 (-1178)) $)) (-15 -1911 ($ (-825) (-645 (-1178))))))
-((-2904 (((-1273) (-823) (-317 |#1|) (-112)) 24) (((-1273) (-823) (-317 |#1|)) 90) (((-1160) (-317 |#1|) (-112)) 89) (((-1160) (-317 |#1|)) 88)))
-(((-827 |#1|) (-10 -7 (-15 -2904 ((-1160) (-317 |#1|))) (-15 -2904 ((-1160) (-317 |#1|) (-112))) (-15 -2904 ((-1273) (-823) (-317 |#1|))) (-15 -2904 ((-1273) (-823) (-317 |#1|) (-112)))) (-13 (-829) (-1051))) (T -827))
-((-2904 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-823)) (-5 *4 (-317 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-829) (-1051))) (-5 *2 (-1273)) (-5 *1 (-827 *6)))) (-2904 (*1 *2 *3 *4) (-12 (-5 *3 (-823)) (-5 *4 (-317 *5)) (-4 *5 (-13 (-829) (-1051))) (-5 *2 (-1273)) (-5 *1 (-827 *5)))) (-2904 (*1 *2 *3 *4) (-12 (-5 *3 (-317 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-829) (-1051))) (-5 *2 (-1160)) (-5 *1 (-827 *5)))) (-2904 (*1 *2 *3) (-12 (-5 *3 (-317 *4)) (-4 *4 (-13 (-829) (-1051))) (-5 *2 (-1160)) (-5 *1 (-827 *4)))))
-(-10 -7 (-15 -2904 ((-1160) (-317 |#1|))) (-15 -2904 ((-1160) (-317 |#1|) (-112))) (-15 -2904 ((-1273) (-823) (-317 |#1|))) (-15 -2904 ((-1273) (-823) (-317 |#1|) (-112))))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2585 (($) NIL T CONST)) (-3014 (($ $) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-2859 ((|#1| $) 10)) (-4179 (($ |#1|) 9)) (-1433 (((-112) $) NIL)) (-2824 (($ |#2| (-772)) NIL)) (-2656 (((-772) $) NIL)) (-2989 ((|#2| $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-1593 (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-3077 (((-772) $) NIL)) (-4132 (((-863) $) 17) (($ (-567)) NIL) (($ |#2|) NIL (|has| |#2| (-172)))) (-4136 ((|#2| $ (-772)) NIL)) (-4221 (((-772)) NIL T CONST)) (-1745 (((-112) $ $) NIL)) (-1716 (($) NIL T CONST)) (-1728 (($) NIL T CONST)) (-2637 (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-2936 (((-112) $ $) NIL)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-828 |#1| |#2|) (-13 (-709 |#2|) (-10 -8 (IF (|has| |#1| (-233)) (-6 (-233)) |%noBranch|) (-15 -4179 ($ |#1|)) (-15 -2859 (|#1| $)))) (-709 |#2|) (-1051)) (T -828))
-((-4179 (*1 *1 *2) (-12 (-4 *3 (-1051)) (-5 *1 (-828 *2 *3)) (-4 *2 (-709 *3)))) (-2859 (*1 *2 *1) (-12 (-4 *2 (-709 *3)) (-5 *1 (-828 *2 *3)) (-4 *3 (-1051)))))
-(-13 (-709 |#2|) (-10 -8 (IF (|has| |#1| (-233)) (-6 (-233)) |%noBranch|) (-15 -4179 ($ |#1|)) (-15 -2859 (|#1| $))))
-((-2904 (((-1273) (-823) $ (-112)) 9) (((-1273) (-823) $) 8) (((-1160) $ (-112)) 7) (((-1160) $) 6)))
+((-3341 (($ (-1122)) 7)) (-1813 (((-112) $ (-1161) (-1122)) 15)) (-4074 (((-823) $) 12)) (-1880 (((-823) $) 11)) (-3460 (((-1274) $) 9)) (-4349 (((-112) $ (-1122)) 16)))
+(((-822) (-10 -8 (-15 -3341 ($ (-1122))) (-15 -3460 ((-1274) $)) (-15 -1880 ((-823) $)) (-15 -4074 ((-823) $)) (-15 -1813 ((-112) $ (-1161) (-1122))) (-15 -4349 ((-112) $ (-1122))))) (T -822))
+((-4349 (*1 *2 *1 *3) (-12 (-5 *3 (-1122)) (-5 *2 (-112)) (-5 *1 (-822)))) (-1813 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1161)) (-5 *4 (-1122)) (-5 *2 (-112)) (-5 *1 (-822)))) (-4074 (*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-822)))) (-1880 (*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-822)))) (-3460 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-822)))) (-3341 (*1 *1 *2) (-12 (-5 *2 (-1122)) (-5 *1 (-822)))))
+(-10 -8 (-15 -3341 ($ (-1122))) (-15 -3460 ((-1274) $)) (-15 -1880 ((-823) $)) (-15 -4074 ((-823) $)) (-15 -1813 ((-112) $ (-1161) (-1122))) (-15 -4349 ((-112) $ (-1122))))
+((-1881 (((-1274) $ (-824)) 12)) (-3933 (((-1274) $ (-1179)) 32)) (-1555 (((-1274) $ (-1161) (-1161)) 34)) (-3820 (((-1274) $ (-1161)) 33)) (-2168 (((-1274) $) 19)) (-4237 (((-1274) $ (-567)) 28)) (-3361 (((-1274) $ (-225)) 30)) (-1352 (((-1274) $) 18)) (-1617 (((-1274) $) 26)) (-1682 (((-1274) $) 25)) (-2292 (((-1274) $) 23)) (-3998 (((-1274) $) 24)) (-1691 (((-1274) $) 22)) (-3430 (((-1274) $) 21)) (-1894 (((-1274) $) 20)) (-4119 (((-1274) $) 16)) (-3389 (((-1274) $) 17)) (-1420 (((-1274) $) 15)) (-1808 (((-1274) $) 14)) (-3303 (((-1274) $) 13)) (-1875 (($ (-1161) (-824)) 9)) (-2582 (($ (-1161) (-1161) (-824)) 8)) (-3861 (((-1179) $) 51)) (-1936 (((-1179) $) 55)) (-3467 (((-2 (|:| |cd| (-1161)) (|:| -2007 (-1161))) $) 54)) (-3939 (((-1161) $) 52)) (-4170 (((-1274) $) 41)) (-4080 (((-567) $) 49)) (-2192 (((-225) $) 50)) (-3284 (((-1274) $) 40)) (-2018 (((-1274) $) 48)) (-3686 (((-1274) $) 47)) (-1587 (((-1274) $) 45)) (-2193 (((-1274) $) 46)) (-4101 (((-1274) $) 44)) (-2632 (((-1274) $) 43)) (-1472 (((-1274) $) 42)) (-2483 (((-1274) $) 38)) (-3525 (((-1274) $) 39)) (-2289 (((-1274) $) 37)) (-3350 (((-1274) $) 36)) (-2116 (((-1274) $) 35)) (-2205 (((-1274) $) 11)))
+(((-823) (-10 -8 (-15 -2582 ($ (-1161) (-1161) (-824))) (-15 -1875 ($ (-1161) (-824))) (-15 -2205 ((-1274) $)) (-15 -1881 ((-1274) $ (-824))) (-15 -3303 ((-1274) $)) (-15 -1808 ((-1274) $)) (-15 -1420 ((-1274) $)) (-15 -4119 ((-1274) $)) (-15 -3389 ((-1274) $)) (-15 -1352 ((-1274) $)) (-15 -2168 ((-1274) $)) (-15 -1894 ((-1274) $)) (-15 -3430 ((-1274) $)) (-15 -1691 ((-1274) $)) (-15 -2292 ((-1274) $)) (-15 -3998 ((-1274) $)) (-15 -1682 ((-1274) $)) (-15 -1617 ((-1274) $)) (-15 -4237 ((-1274) $ (-567))) (-15 -3361 ((-1274) $ (-225))) (-15 -3933 ((-1274) $ (-1179))) (-15 -3820 ((-1274) $ (-1161))) (-15 -1555 ((-1274) $ (-1161) (-1161))) (-15 -2116 ((-1274) $)) (-15 -3350 ((-1274) $)) (-15 -2289 ((-1274) $)) (-15 -2483 ((-1274) $)) (-15 -3525 ((-1274) $)) (-15 -3284 ((-1274) $)) (-15 -4170 ((-1274) $)) (-15 -1472 ((-1274) $)) (-15 -2632 ((-1274) $)) (-15 -4101 ((-1274) $)) (-15 -1587 ((-1274) $)) (-15 -2193 ((-1274) $)) (-15 -3686 ((-1274) $)) (-15 -2018 ((-1274) $)) (-15 -4080 ((-567) $)) (-15 -2192 ((-225) $)) (-15 -3861 ((-1179) $)) (-15 -3939 ((-1161) $)) (-15 -3467 ((-2 (|:| |cd| (-1161)) (|:| -2007 (-1161))) $)) (-15 -1936 ((-1179) $)))) (T -823))
+((-1936 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-823)))) (-3467 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1161)) (|:| -2007 (-1161)))) (-5 *1 (-823)))) (-3939 (*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-823)))) (-3861 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-823)))) (-2192 (*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-823)))) (-4080 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-823)))) (-2018 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))) (-3686 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))) (-2193 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))) (-1587 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))) (-4101 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))) (-2632 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))) (-1472 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))) (-4170 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))) (-3284 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))) (-3525 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))) (-2483 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))) (-2289 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))) (-3350 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))) (-2116 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))) (-1555 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-823)))) (-3820 (*1 *2 *1 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-823)))) (-3933 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1274)) (-5 *1 (-823)))) (-3361 (*1 *2 *1 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1274)) (-5 *1 (-823)))) (-4237 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *2 (-1274)) (-5 *1 (-823)))) (-1617 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))) (-1682 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))) (-3998 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))) (-2292 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))) (-1691 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))) (-3430 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))) (-1894 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))) (-2168 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))) (-1352 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))) (-3389 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))) (-4119 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))) (-1420 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))) (-1808 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))) (-3303 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))) (-1881 (*1 *2 *1 *3) (-12 (-5 *3 (-824)) (-5 *2 (-1274)) (-5 *1 (-823)))) (-2205 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))) (-1875 (*1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-824)) (-5 *1 (-823)))) (-2582 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-824)) (-5 *1 (-823)))))
+(-10 -8 (-15 -2582 ($ (-1161) (-1161) (-824))) (-15 -1875 ($ (-1161) (-824))) (-15 -2205 ((-1274) $)) (-15 -1881 ((-1274) $ (-824))) (-15 -3303 ((-1274) $)) (-15 -1808 ((-1274) $)) (-15 -1420 ((-1274) $)) (-15 -4119 ((-1274) $)) (-15 -3389 ((-1274) $)) (-15 -1352 ((-1274) $)) (-15 -2168 ((-1274) $)) (-15 -1894 ((-1274) $)) (-15 -3430 ((-1274) $)) (-15 -1691 ((-1274) $)) (-15 -2292 ((-1274) $)) (-15 -3998 ((-1274) $)) (-15 -1682 ((-1274) $)) (-15 -1617 ((-1274) $)) (-15 -4237 ((-1274) $ (-567))) (-15 -3361 ((-1274) $ (-225))) (-15 -3933 ((-1274) $ (-1179))) (-15 -3820 ((-1274) $ (-1161))) (-15 -1555 ((-1274) $ (-1161) (-1161))) (-15 -2116 ((-1274) $)) (-15 -3350 ((-1274) $)) (-15 -2289 ((-1274) $)) (-15 -2483 ((-1274) $)) (-15 -3525 ((-1274) $)) (-15 -3284 ((-1274) $)) (-15 -4170 ((-1274) $)) (-15 -1472 ((-1274) $)) (-15 -2632 ((-1274) $)) (-15 -4101 ((-1274) $)) (-15 -1587 ((-1274) $)) (-15 -2193 ((-1274) $)) (-15 -3686 ((-1274) $)) (-15 -2018 ((-1274) $)) (-15 -4080 ((-567) $)) (-15 -2192 ((-225) $)) (-15 -3861 ((-1179) $)) (-15 -3939 ((-1161) $)) (-15 -3467 ((-2 (|:| |cd| (-1161)) (|:| -2007 (-1161))) $)) (-15 -1936 ((-1179) $)))
+((-2412 (((-112) $ $) NIL)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) 13)) (-3357 (((-112) $ $) NIL)) (-2469 (($) 16)) (-1685 (($) 14)) (-2363 (($) 17)) (-3386 (($) 15)) (-2946 (((-112) $ $) 9)))
+(((-824) (-13 (-1102) (-10 -8 (-15 -1685 ($)) (-15 -2469 ($)) (-15 -2363 ($)) (-15 -3386 ($))))) (T -824))
+((-1685 (*1 *1) (-5 *1 (-824))) (-2469 (*1 *1) (-5 *1 (-824))) (-2363 (*1 *1) (-5 *1 (-824))) (-3386 (*1 *1) (-5 *1 (-824))))
+(-13 (-1102) (-10 -8 (-15 -1685 ($)) (-15 -2469 ($)) (-15 -2363 ($)) (-15 -3386 ($))))
+((-2412 (((-112) $ $) NIL)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) 23) (($ (-1179)) 19)) (-3357 (((-112) $ $) NIL)) (-2573 (((-112) $) 10)) (-3697 (((-112) $) 9)) (-1471 (((-112) $) 11)) (-3197 (((-112) $) 8)) (-2946 (((-112) $ $) 21)))
+(((-825) (-13 (-1102) (-10 -8 (-15 -4129 ($ (-1179))) (-15 -3197 ((-112) $)) (-15 -3697 ((-112) $)) (-15 -2573 ((-112) $)) (-15 -1471 ((-112) $))))) (T -825))
+((-4129 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-825)))) (-3197 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-825)))) (-3697 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-825)))) (-2573 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-825)))) (-1471 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-825)))))
+(-13 (-1102) (-10 -8 (-15 -4129 ($ (-1179))) (-15 -3197 ((-112) $)) (-15 -3697 ((-112) $)) (-15 -2573 ((-112) $)) (-15 -1471 ((-112) $))))
+((-2412 (((-112) $ $) NIL)) (-1724 (($ (-825) (-645 (-1179))) 32)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-2951 (((-825) $) 33)) (-4329 (((-645 (-1179)) $) 34)) (-4129 (((-863) $) 31)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)))
+(((-826) (-13 (-1102) (-10 -8 (-15 -2951 ((-825) $)) (-15 -4329 ((-645 (-1179)) $)) (-15 -1724 ($ (-825) (-645 (-1179))))))) (T -826))
+((-2951 (*1 *2 *1) (-12 (-5 *2 (-825)) (-5 *1 (-826)))) (-4329 (*1 *2 *1) (-12 (-5 *2 (-645 (-1179))) (-5 *1 (-826)))) (-1724 (*1 *1 *2 *3) (-12 (-5 *2 (-825)) (-5 *3 (-645 (-1179))) (-5 *1 (-826)))))
+(-13 (-1102) (-10 -8 (-15 -2951 ((-825) $)) (-15 -4329 ((-645 (-1179)) $)) (-15 -1724 ($ (-825) (-645 (-1179))))))
+((-1335 (((-1274) (-823) (-317 |#1|) (-112)) 24) (((-1274) (-823) (-317 |#1|)) 90) (((-1161) (-317 |#1|) (-112)) 89) (((-1161) (-317 |#1|)) 88)))
+(((-827 |#1|) (-10 -7 (-15 -1335 ((-1161) (-317 |#1|))) (-15 -1335 ((-1161) (-317 |#1|) (-112))) (-15 -1335 ((-1274) (-823) (-317 |#1|))) (-15 -1335 ((-1274) (-823) (-317 |#1|) (-112)))) (-13 (-829) (-1051))) (T -827))
+((-1335 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-823)) (-5 *4 (-317 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-829) (-1051))) (-5 *2 (-1274)) (-5 *1 (-827 *6)))) (-1335 (*1 *2 *3 *4) (-12 (-5 *3 (-823)) (-5 *4 (-317 *5)) (-4 *5 (-13 (-829) (-1051))) (-5 *2 (-1274)) (-5 *1 (-827 *5)))) (-1335 (*1 *2 *3 *4) (-12 (-5 *3 (-317 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-829) (-1051))) (-5 *2 (-1161)) (-5 *1 (-827 *5)))) (-1335 (*1 *2 *3) (-12 (-5 *3 (-317 *4)) (-4 *4 (-13 (-829) (-1051))) (-5 *2 (-1161)) (-5 *1 (-827 *4)))))
+(-10 -7 (-15 -1335 ((-1161) (-317 |#1|))) (-15 -1335 ((-1161) (-317 |#1|) (-112))) (-15 -1335 ((-1274) (-823) (-317 |#1|))) (-15 -1335 ((-1274) (-823) (-317 |#1|) (-112))))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-2376 (((-3 $ "failed") $ $) NIL)) (-3647 (($) NIL T CONST)) (-3023 (($ $) NIL)) (-3588 (((-3 $ "failed") $) NIL)) (-2821 ((|#1| $) 10)) (-4178 (($ |#1|) 9)) (-4346 (((-112) $) NIL)) (-2836 (($ |#2| (-772)) NIL)) (-2955 (((-772) $) NIL)) (-2996 ((|#2| $) NIL)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-1616 (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-3104 (((-772) $) NIL)) (-4129 (((-863) $) 17) (($ (-567)) NIL) (($ |#2|) NIL (|has| |#2| (-172)))) (-2558 ((|#2| $ (-772)) NIL)) (-2746 (((-772)) NIL T CONST)) (-3357 (((-112) $ $) NIL)) (-1733 (($) NIL T CONST)) (-1744 (($) NIL T CONST)) (-2647 (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-2946 (((-112) $ $) NIL)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-828 |#1| |#2|) (-13 (-709 |#2|) (-10 -8 (IF (|has| |#1| (-233)) (-6 (-233)) |%noBranch|) (-15 -4178 ($ |#1|)) (-15 -2821 (|#1| $)))) (-709 |#2|) (-1051)) (T -828))
+((-4178 (*1 *1 *2) (-12 (-4 *3 (-1051)) (-5 *1 (-828 *2 *3)) (-4 *2 (-709 *3)))) (-2821 (*1 *2 *1) (-12 (-4 *2 (-709 *3)) (-5 *1 (-828 *2 *3)) (-4 *3 (-1051)))))
+(-13 (-709 |#2|) (-10 -8 (IF (|has| |#1| (-233)) (-6 (-233)) |%noBranch|) (-15 -4178 ($ |#1|)) (-15 -2821 (|#1| $))))
+((-1335 (((-1274) (-823) $ (-112)) 9) (((-1274) (-823) $) 8) (((-1161) $ (-112)) 7) (((-1161) $) 6)))
(((-829) (-140)) (T -829))
-((-2904 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-829)) (-5 *3 (-823)) (-5 *4 (-112)) (-5 *2 (-1273)))) (-2904 (*1 *2 *3 *1) (-12 (-4 *1 (-829)) (-5 *3 (-823)) (-5 *2 (-1273)))) (-2904 (*1 *2 *1 *3) (-12 (-4 *1 (-829)) (-5 *3 (-112)) (-5 *2 (-1160)))) (-2904 (*1 *2 *1) (-12 (-4 *1 (-829)) (-5 *2 (-1160)))))
-(-13 (-10 -8 (-15 -2904 ((-1160) $)) (-15 -2904 ((-1160) $ (-112))) (-15 -2904 ((-1273) (-823) $)) (-15 -2904 ((-1273) (-823) $ (-112)))))
-((-3702 (((-313) (-1160) (-1160)) 12)) (-2358 (((-112) (-1160) (-1160)) 34)) (-2169 (((-112) (-1160)) 33)) (-2798 (((-52) (-1160)) 25)) (-4291 (((-52) (-1160)) 23)) (-1693 (((-52) (-823)) 17)) (-1311 (((-645 (-1160)) (-1160)) 28)) (-1457 (((-645 (-1160))) 27)))
-(((-830) (-10 -7 (-15 -1693 ((-52) (-823))) (-15 -4291 ((-52) (-1160))) (-15 -2798 ((-52) (-1160))) (-15 -1457 ((-645 (-1160)))) (-15 -1311 ((-645 (-1160)) (-1160))) (-15 -2169 ((-112) (-1160))) (-15 -2358 ((-112) (-1160) (-1160))) (-15 -3702 ((-313) (-1160) (-1160))))) (T -830))
-((-3702 (*1 *2 *3 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-313)) (-5 *1 (-830)))) (-2358 (*1 *2 *3 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-112)) (-5 *1 (-830)))) (-2169 (*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-112)) (-5 *1 (-830)))) (-1311 (*1 *2 *3) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-830)) (-5 *3 (-1160)))) (-1457 (*1 *2) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-830)))) (-2798 (*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-52)) (-5 *1 (-830)))) (-4291 (*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-52)) (-5 *1 (-830)))) (-1693 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-52)) (-5 *1 (-830)))))
-(-10 -7 (-15 -1693 ((-52) (-823))) (-15 -4291 ((-52) (-1160))) (-15 -2798 ((-52) (-1160))) (-15 -1457 ((-645 (-1160)))) (-15 -1311 ((-645 (-1160)) (-1160))) (-15 -2169 ((-112) (-1160))) (-15 -2358 ((-112) (-1160) (-1160))) (-15 -3702 ((-313) (-1160) (-1160))))
-((-2403 (((-112) $ $) 19)) (-4244 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-4287 (($ $ $) 73)) (-2493 (((-112) $ $) 74)) (-3445 (((-112) $ (-772)) 8)) (-4155 (($ (-645 |#1|)) 69) (($) 68)) (-2839 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4418)))) (-3350 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4418)))) (-2585 (($) 7 T CONST)) (-2133 (($ $) 63)) (-2444 (($ $) 59 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-2539 (($ |#1| $) 48 (|has| $ (-6 -4418))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4418)))) (-3238 (($ |#1| $) 58 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4418)))) (-2477 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4418)))) (-2777 (((-645 |#1|) $) 31 (|has| $ (-6 -4418)))) (-2548 (((-112) $ $) 65)) (-2077 (((-112) $ (-772)) 9)) (-1354 ((|#1| $) 79)) (-2966 (($ $ $) 82)) (-4135 (($ $ $) 81)) (-2279 (((-645 |#1|) $) 30 (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-2981 ((|#1| $) 80)) (-3731 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) 36)) (-2863 (((-112) $ (-772)) 10)) (-1419 (((-1160) $) 22)) (-2370 (($ $ $) 70)) (-1566 ((|#1| $) 40)) (-2531 (($ |#1| $) 41) (($ |#1| $ (-772)) 64)) (-3430 (((-1122) $) 21)) (-4128 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1793 ((|#1| $) 42)) (-3025 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) 14)) (-3572 (((-112) $) 11)) (-3498 (($) 12)) (-2334 (((-645 (-2 (|:| -4237 |#1|) (|:| -3439 (-772)))) $) 62)) (-4071 (($ $ |#1|) 72) (($ $ $) 71)) (-2718 (($) 50) (($ (-645 |#1|)) 49)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4418))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-4305 (($ $) 13)) (-3893 (((-539) $) 60 (|has| |#1| (-615 (-539))))) (-4147 (($ (-645 |#1|)) 51)) (-4132 (((-863) $) 18)) (-2772 (($ (-645 |#1|)) 67) (($) 66)) (-1745 (((-112) $ $) 23)) (-3551 (($ (-645 |#1|)) 43)) (-1853 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 20)) (-2414 (((-772) $) 6 (|has| $ (-6 -4418)))))
+((-1335 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-829)) (-5 *3 (-823)) (-5 *4 (-112)) (-5 *2 (-1274)))) (-1335 (*1 *2 *3 *1) (-12 (-4 *1 (-829)) (-5 *3 (-823)) (-5 *2 (-1274)))) (-1335 (*1 *2 *1 *3) (-12 (-4 *1 (-829)) (-5 *3 (-112)) (-5 *2 (-1161)))) (-1335 (*1 *2 *1) (-12 (-4 *1 (-829)) (-5 *2 (-1161)))))
+(-13 (-10 -8 (-15 -1335 ((-1161) $)) (-15 -1335 ((-1161) $ (-112))) (-15 -1335 ((-1274) (-823) $)) (-15 -1335 ((-1274) (-823) $ (-112)))))
+((-3914 (((-313) (-1161) (-1161)) 12)) (-4124 (((-112) (-1161) (-1161)) 34)) (-1668 (((-112) (-1161)) 33)) (-3091 (((-52) (-1161)) 25)) (-1386 (((-52) (-1161)) 23)) (-3858 (((-52) (-823)) 17)) (-1328 (((-645 (-1161)) (-1161)) 28)) (-2290 (((-645 (-1161))) 27)))
+(((-830) (-10 -7 (-15 -3858 ((-52) (-823))) (-15 -1386 ((-52) (-1161))) (-15 -3091 ((-52) (-1161))) (-15 -2290 ((-645 (-1161)))) (-15 -1328 ((-645 (-1161)) (-1161))) (-15 -1668 ((-112) (-1161))) (-15 -4124 ((-112) (-1161) (-1161))) (-15 -3914 ((-313) (-1161) (-1161))))) (T -830))
+((-3914 (*1 *2 *3 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-313)) (-5 *1 (-830)))) (-4124 (*1 *2 *3 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-112)) (-5 *1 (-830)))) (-1668 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-112)) (-5 *1 (-830)))) (-1328 (*1 *2 *3) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-830)) (-5 *3 (-1161)))) (-2290 (*1 *2) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-830)))) (-3091 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-52)) (-5 *1 (-830)))) (-1386 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-52)) (-5 *1 (-830)))) (-3858 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-52)) (-5 *1 (-830)))))
+(-10 -7 (-15 -3858 ((-52) (-823))) (-15 -1386 ((-52) (-1161))) (-15 -3091 ((-52) (-1161))) (-15 -2290 ((-645 (-1161)))) (-15 -1328 ((-645 (-1161)) (-1161))) (-15 -1668 ((-112) (-1161))) (-15 -4124 ((-112) (-1161) (-1161))) (-15 -3914 ((-313) (-1161) (-1161))))
+((-2412 (((-112) $ $) 19)) (-4244 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-2148 (($ $ $) 73)) (-1951 (((-112) $ $) 74)) (-1563 (((-112) $ (-772)) 8)) (-4155 (($ (-645 |#1|)) 69) (($) 68)) (-1494 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4422)))) (-3356 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4422)))) (-3647 (($) 7 T CONST)) (-3837 (($ $) 63)) (-2453 (($ $) 59 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-2247 (($ |#1| $) 48 (|has| $ (-6 -4422))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4422)))) (-3246 (($ |#1| $) 58 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4422)))) (-2494 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4422)))) (-2799 (((-645 |#1|) $) 31 (|has| $ (-6 -4422)))) (-3862 (((-112) $ $) 65)) (-4093 (((-112) $ (-772)) 9)) (-1365 ((|#1| $) 79)) (-1661 (($ $ $) 82)) (-2473 (($ $ $) 81)) (-1942 (((-645 |#1|) $) 30 (|has| $ (-6 -4422)))) (-3237 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-3002 ((|#1| $) 80)) (-3751 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#1| |#1|) $) 36)) (-1986 (((-112) $ (-772)) 10)) (-2516 (((-1161) $) 22)) (-3660 (($ $ $) 70)) (-2706 ((|#1| $) 40)) (-2646 (($ |#1| $) 41) (($ |#1| $ (-772)) 64)) (-3437 (((-1122) $) 21)) (-3196 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3949 ((|#1| $) 42)) (-4233 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3875 (((-112) $ $) 14)) (-3885 (((-112) $) 11)) (-2701 (($) 12)) (-2885 (((-645 (-2 (|:| -4236 |#1|) (|:| -3447 (-772)))) $) 62)) (-4117 (($ $ |#1|) 72) (($ $ $) 71)) (-4106 (($) 50) (($ (-645 |#1|)) 49)) (-3447 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4422))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-4309 (($ $) 13)) (-3902 (((-539) $) 60 (|has| |#1| (-615 (-539))))) (-4145 (($ (-645 |#1|)) 51)) (-4129 (((-863) $) 18)) (-2782 (($ (-645 |#1|)) 67) (($) 66)) (-3357 (((-112) $ $) 23)) (-3700 (($ (-645 |#1|)) 43)) (-3436 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4422)))) (-2946 (((-112) $ $) 20)) (-2423 (((-772) $) 6 (|has| $ (-6 -4422)))))
(((-831 |#1|) (-140) (-851)) (T -831))
-((-1354 (*1 *2 *1) (-12 (-4 *1 (-831 *2)) (-4 *2 (-851)))))
-(-13 (-737 |t#1|) (-970 |t#1|) (-10 -8 (-15 -1354 (|t#1| $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-614 (-863)) . T) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-235 |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-696 |#1|) . T) ((-737 |#1|) . T) ((-970 |#1|) . T) ((-1100 |#1|) . T) ((-1102) . T) ((-1218) . T))
-((-2664 (((-1273) (-1122) (-1122)) 48)) (-3902 (((-1273) (-822) (-52)) 45)) (-1685 (((-52) (-822)) 16)))
-(((-832) (-10 -7 (-15 -1685 ((-52) (-822))) (-15 -3902 ((-1273) (-822) (-52))) (-15 -2664 ((-1273) (-1122) (-1122))))) (T -832))
-((-2664 (*1 *2 *3 *3) (-12 (-5 *3 (-1122)) (-5 *2 (-1273)) (-5 *1 (-832)))) (-3902 (*1 *2 *3 *4) (-12 (-5 *3 (-822)) (-5 *4 (-52)) (-5 *2 (-1273)) (-5 *1 (-832)))) (-1685 (*1 *2 *3) (-12 (-5 *3 (-822)) (-5 *2 (-52)) (-5 *1 (-832)))))
-(-10 -7 (-15 -1685 ((-52) (-822))) (-15 -3902 ((-1273) (-822) (-52))) (-15 -2664 ((-1273) (-1122) (-1122))))
-((-3829 (((-834 |#2|) (-1 |#2| |#1|) (-834 |#1|) (-834 |#2|)) 12) (((-834 |#2|) (-1 |#2| |#1|) (-834 |#1|)) 13)))
-(((-833 |#1| |#2|) (-10 -7 (-15 -3829 ((-834 |#2|) (-1 |#2| |#1|) (-834 |#1|))) (-15 -3829 ((-834 |#2|) (-1 |#2| |#1|) (-834 |#1|) (-834 |#2|)))) (-1102) (-1102)) (T -833))
-((-3829 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-834 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-834 *5)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-5 *1 (-833 *5 *6)))) (-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-834 *5)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-5 *2 (-834 *6)) (-5 *1 (-833 *5 *6)))))
-(-10 -7 (-15 -3829 ((-834 |#2|) (-1 |#2| |#1|) (-834 |#1|))) (-15 -3829 ((-834 |#2|) (-1 |#2| |#1|) (-834 |#1|) (-834 |#2|))))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL (|has| |#1| (-21)))) (-3472 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1750 (((-567) $) NIL (|has| |#1| (-849)))) (-2585 (($) NIL (|has| |#1| (-21)) CONST)) (-3753 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) 15)) (-2038 (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) 9)) (-2109 (((-3 $ "failed") $) 42 (|has| |#1| (-849)))) (-2085 (((-3 (-410 (-567)) "failed") $) 52 (|has| |#1| (-548)))) (-1862 (((-112) $) 46 (|has| |#1| (-548)))) (-2331 (((-410 (-567)) $) 49 (|has| |#1| (-548)))) (-4336 (((-112) $) NIL (|has| |#1| (-849)))) (-1433 (((-112) $) NIL (|has| |#1| (-849)))) (-3494 (((-112) $) NIL (|has| |#1| (-849)))) (-1354 (($ $ $) NIL (|has| |#1| (-849)))) (-2981 (($ $ $) NIL (|has| |#1| (-849)))) (-1419 (((-1160) $) NIL)) (-1493 (($) 13)) (-2125 (((-112) $) 12)) (-3430 (((-1122) $) NIL)) (-1314 (((-112) $) 11)) (-4132 (((-863) $) 18) (($ (-410 (-567))) NIL (|has| |#1| (-1040 (-410 (-567))))) (($ |#1|) 8) (($ (-567)) NIL (-2800 (|has| |#1| (-849)) (|has| |#1| (-1040 (-567)))))) (-4221 (((-772)) 36 (|has| |#1| (-849)) CONST)) (-1745 (((-112) $ $) 54)) (-2219 (($ $) NIL (|has| |#1| (-849)))) (-1716 (($) 23 (|has| |#1| (-21)) CONST)) (-1728 (($) 33 (|has| |#1| (-849)) CONST)) (-2997 (((-112) $ $) NIL (|has| |#1| (-849)))) (-2971 (((-112) $ $) NIL (|has| |#1| (-849)))) (-2936 (((-112) $ $) 21)) (-2984 (((-112) $ $) NIL (|has| |#1| (-849)))) (-2958 (((-112) $ $) 45 (|has| |#1| (-849)))) (-3045 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 29 (|has| |#1| (-21)))) (-3033 (($ $ $) 31 (|has| |#1| (-21)))) (** (($ $ (-923)) NIL (|has| |#1| (-849))) (($ $ (-772)) NIL (|has| |#1| (-849)))) (* (($ $ $) 39 (|has| |#1| (-849))) (($ (-567) $) 27 (|has| |#1| (-21))) (($ (-772) $) NIL (|has| |#1| (-21))) (($ (-923) $) NIL (|has| |#1| (-21)))))
-(((-834 |#1|) (-13 (-1102) (-414 |#1|) (-10 -8 (-15 -1493 ($)) (-15 -1314 ((-112) $)) (-15 -2125 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-849)) (-6 (-849)) |%noBranch|) (IF (|has| |#1| (-548)) (PROGN (-15 -1862 ((-112) $)) (-15 -2331 ((-410 (-567)) $)) (-15 -2085 ((-3 (-410 (-567)) "failed") $))) |%noBranch|))) (-1102)) (T -834))
-((-1493 (*1 *1) (-12 (-5 *1 (-834 *2)) (-4 *2 (-1102)))) (-1314 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834 *3)) (-4 *3 (-1102)))) (-2125 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834 *3)) (-4 *3 (-1102)))) (-1862 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834 *3)) (-4 *3 (-548)) (-4 *3 (-1102)))) (-2331 (*1 *2 *1) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-834 *3)) (-4 *3 (-548)) (-4 *3 (-1102)))) (-2085 (*1 *2 *1) (|partial| -12 (-5 *2 (-410 (-567))) (-5 *1 (-834 *3)) (-4 *3 (-548)) (-4 *3 (-1102)))))
-(-13 (-1102) (-414 |#1|) (-10 -8 (-15 -1493 ($)) (-15 -1314 ((-112) $)) (-15 -2125 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-849)) (-6 (-849)) |%noBranch|) (IF (|has| |#1| (-548)) (PROGN (-15 -1862 ((-112) $)) (-15 -2331 ((-410 (-567)) $)) (-15 -2085 ((-3 (-410 (-567)) "failed") $))) |%noBranch|)))
-((-1854 (((-112) $ |#2|) 14)) (-4132 (((-863) $) 11)))
-(((-835 |#1| |#2|) (-10 -8 (-15 -1854 ((-112) |#1| |#2|)) (-15 -4132 ((-863) |#1|))) (-836 |#2|) (-1102)) (T -835))
-NIL
-(-10 -8 (-15 -1854 ((-112) |#1| |#2|)) (-15 -4132 ((-863) |#1|)))
-((-2403 (((-112) $ $) 7)) (-1996 ((|#1| $) 16)) (-1419 (((-1160) $) 10)) (-1854 (((-112) $ |#1|) 14)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-2124 (((-55) $) 15)) (-2936 (((-112) $ $) 6)))
+((-1365 (*1 *2 *1) (-12 (-4 *1 (-831 *2)) (-4 *2 (-851)))))
+(-13 (-737 |t#1|) (-970 |t#1|) (-10 -8 (-15 -1365 (|t#1| $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-614 (-863)) . T) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-235 |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-696 |#1|) . T) ((-737 |#1|) . T) ((-970 |#1|) . T) ((-1100 |#1|) . T) ((-1102) . T) ((-1219) . T))
+((-2507 (((-1274) (-1122) (-1122)) 48)) (-3957 (((-1274) (-822) (-52)) 45)) (-1346 (((-52) (-822)) 16)))
+(((-832) (-10 -7 (-15 -1346 ((-52) (-822))) (-15 -3957 ((-1274) (-822) (-52))) (-15 -2507 ((-1274) (-1122) (-1122))))) (T -832))
+((-2507 (*1 *2 *3 *3) (-12 (-5 *3 (-1122)) (-5 *2 (-1274)) (-5 *1 (-832)))) (-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-822)) (-5 *4 (-52)) (-5 *2 (-1274)) (-5 *1 (-832)))) (-1346 (*1 *2 *3) (-12 (-5 *3 (-822)) (-5 *2 (-52)) (-5 *1 (-832)))))
+(-10 -7 (-15 -1346 ((-52) (-822))) (-15 -3957 ((-1274) (-822) (-52))) (-15 -2507 ((-1274) (-1122) (-1122))))
+((-3841 (((-834 |#2|) (-1 |#2| |#1|) (-834 |#1|) (-834 |#2|)) 12) (((-834 |#2|) (-1 |#2| |#1|) (-834 |#1|)) 13)))
+(((-833 |#1| |#2|) (-10 -7 (-15 -3841 ((-834 |#2|) (-1 |#2| |#1|) (-834 |#1|))) (-15 -3841 ((-834 |#2|) (-1 |#2| |#1|) (-834 |#1|) (-834 |#2|)))) (-1102) (-1102)) (T -833))
+((-3841 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-834 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-834 *5)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-5 *1 (-833 *5 *6)))) (-3841 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-834 *5)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-5 *2 (-834 *6)) (-5 *1 (-833 *5 *6)))))
+(-10 -7 (-15 -3841 ((-834 |#2|) (-1 |#2| |#1|) (-834 |#1|))) (-15 -3841 ((-834 |#2|) (-1 |#2| |#1|) (-834 |#1|) (-834 |#2|))))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL (|has| |#1| (-21)))) (-2376 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2677 (((-567) $) NIL (|has| |#1| (-849)))) (-3647 (($) NIL (|has| |#1| (-21)) CONST)) (-3765 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) 15)) (-2051 (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) 9)) (-3588 (((-3 $ "failed") $) 42 (|has| |#1| (-849)))) (-1605 (((-3 (-410 (-567)) "failed") $) 52 (|has| |#1| (-548)))) (-2492 (((-112) $) 46 (|has| |#1| (-548)))) (-2778 (((-410 (-567)) $) 49 (|has| |#1| (-548)))) (-3137 (((-112) $) NIL (|has| |#1| (-849)))) (-4346 (((-112) $) NIL (|has| |#1| (-849)))) (-3465 (((-112) $) NIL (|has| |#1| (-849)))) (-1365 (($ $ $) NIL (|has| |#1| (-849)))) (-3002 (($ $ $) NIL (|has| |#1| (-849)))) (-2516 (((-1161) $) NIL)) (-1495 (($) 13)) (-2427 (((-112) $) 12)) (-3437 (((-1122) $) NIL)) (-1700 (((-112) $) 11)) (-4129 (((-863) $) 18) (($ (-410 (-567))) NIL (|has| |#1| (-1040 (-410 (-567))))) (($ |#1|) 8) (($ (-567)) NIL (-2811 (|has| |#1| (-849)) (|has| |#1| (-1040 (-567)))))) (-2746 (((-772)) 36 (|has| |#1| (-849)) CONST)) (-3357 (((-112) $ $) 54)) (-1547 (($ $) NIL (|has| |#1| (-849)))) (-1733 (($) 23 (|has| |#1| (-21)) CONST)) (-1744 (($) 33 (|has| |#1| (-849)) CONST)) (-3004 (((-112) $ $) NIL (|has| |#1| (-849)))) (-2980 (((-112) $ $) NIL (|has| |#1| (-849)))) (-2946 (((-112) $ $) 21)) (-2993 (((-112) $ $) NIL (|has| |#1| (-849)))) (-2968 (((-112) $ $) 45 (|has| |#1| (-849)))) (-3053 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 29 (|has| |#1| (-21)))) (-3041 (($ $ $) 31 (|has| |#1| (-21)))) (** (($ $ (-923)) NIL (|has| |#1| (-849))) (($ $ (-772)) NIL (|has| |#1| (-849)))) (* (($ $ $) 39 (|has| |#1| (-849))) (($ (-567) $) 27 (|has| |#1| (-21))) (($ (-772) $) NIL (|has| |#1| (-21))) (($ (-923) $) NIL (|has| |#1| (-21)))))
+(((-834 |#1|) (-13 (-1102) (-414 |#1|) (-10 -8 (-15 -1495 ($)) (-15 -1700 ((-112) $)) (-15 -2427 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-849)) (-6 (-849)) |%noBranch|) (IF (|has| |#1| (-548)) (PROGN (-15 -2492 ((-112) $)) (-15 -2778 ((-410 (-567)) $)) (-15 -1605 ((-3 (-410 (-567)) "failed") $))) |%noBranch|))) (-1102)) (T -834))
+((-1495 (*1 *1) (-12 (-5 *1 (-834 *2)) (-4 *2 (-1102)))) (-1700 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834 *3)) (-4 *3 (-1102)))) (-2427 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834 *3)) (-4 *3 (-1102)))) (-2492 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834 *3)) (-4 *3 (-548)) (-4 *3 (-1102)))) (-2778 (*1 *2 *1) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-834 *3)) (-4 *3 (-548)) (-4 *3 (-1102)))) (-1605 (*1 *2 *1) (|partial| -12 (-5 *2 (-410 (-567))) (-5 *1 (-834 *3)) (-4 *3 (-548)) (-4 *3 (-1102)))))
+(-13 (-1102) (-414 |#1|) (-10 -8 (-15 -1495 ($)) (-15 -1700 ((-112) $)) (-15 -2427 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-849)) (-6 (-849)) |%noBranch|) (IF (|has| |#1| (-548)) (PROGN (-15 -2492 ((-112) $)) (-15 -2778 ((-410 (-567)) $)) (-15 -1605 ((-3 (-410 (-567)) "failed") $))) |%noBranch|)))
+((-3545 (((-112) $ |#2|) 14)) (-4129 (((-863) $) 11)))
+(((-835 |#1| |#2|) (-10 -8 (-15 -3545 ((-112) |#1| |#2|)) (-15 -4129 ((-863) |#1|))) (-836 |#2|) (-1102)) (T -835))
+NIL
+(-10 -8 (-15 -3545 ((-112) |#1| |#2|)) (-15 -4129 ((-863) |#1|)))
+((-2412 (((-112) $ $) 7)) (-2007 ((|#1| $) 16)) (-2516 (((-1161) $) 10)) (-3545 (((-112) $ |#1|) 14)) (-3437 (((-1122) $) 11)) (-4129 (((-863) $) 12)) (-3357 (((-112) $ $) 9)) (-2336 (((-55) $) 15)) (-2946 (((-112) $ $) 6)))
(((-836 |#1|) (-140) (-1102)) (T -836))
-((-1996 (*1 *2 *1) (-12 (-4 *1 (-836 *2)) (-4 *2 (-1102)))) (-2124 (*1 *2 *1) (-12 (-4 *1 (-836 *3)) (-4 *3 (-1102)) (-5 *2 (-55)))) (-1854 (*1 *2 *1 *3) (-12 (-4 *1 (-836 *3)) (-4 *3 (-1102)) (-5 *2 (-112)))))
-(-13 (-1102) (-10 -8 (-15 -1996 (|t#1| $)) (-15 -2124 ((-55) $)) (-15 -1854 ((-112) $ |t#1|))))
+((-2007 (*1 *2 *1) (-12 (-4 *1 (-836 *2)) (-4 *2 (-1102)))) (-2336 (*1 *2 *1) (-12 (-4 *1 (-836 *3)) (-4 *3 (-1102)) (-5 *2 (-55)))) (-3545 (*1 *2 *1 *3) (-12 (-4 *1 (-836 *3)) (-4 *3 (-1102)) (-5 *2 (-112)))))
+(-13 (-1102) (-10 -8 (-15 -2007 (|t#1| $)) (-15 -2336 ((-55) $)) (-15 -3545 ((-112) $ |t#1|))))
(((-102) . T) ((-614 (-863)) . T) ((-1102) . T))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2585 (($) NIL T CONST)) (-3753 (((-3 |#1| "failed") $) NIL) (((-3 (-114) "failed") $) NIL)) (-2038 ((|#1| $) NIL) (((-114) $) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-1929 ((|#1| (-114) |#1|) NIL)) (-1433 (((-112) $) NIL)) (-2371 (($ |#1| (-363 (-114))) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-1361 (($ $ (-1 |#1| |#1|)) NIL)) (-3456 (($ $ (-1 |#1| |#1|)) NIL)) (-1787 ((|#1| $ |#1|) NIL)) (-2665 ((|#1| |#1|) NIL (|has| |#1| (-172)))) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) NIL) (($ (-114)) NIL)) (-1903 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-4221 (((-772)) NIL T CONST)) (-1745 (((-112) $ $) NIL)) (-2974 (($ $) NIL (|has| |#1| (-172))) (($ $ $) NIL (|has| |#1| (-172)))) (-1716 (($) NIL T CONST)) (-1728 (($) NIL T CONST)) (-2936 (((-112) $ $) NIL)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ (-114) (-567)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172)))))
-(((-837 |#1|) (-13 (-1051) (-1040 |#1|) (-1040 (-114)) (-287 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -2974 ($ $)) (-15 -2974 ($ $ $)) (-15 -2665 (|#1| |#1|))) |%noBranch|) (-15 -3456 ($ $ (-1 |#1| |#1|))) (-15 -1361 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-567))) (-15 ** ($ $ (-567))) (-15 -1929 (|#1| (-114) |#1|)) (-15 -2371 ($ |#1| (-363 (-114)))))) (-1051)) (T -837))
-((-2974 (*1 *1 *1) (-12 (-5 *1 (-837 *2)) (-4 *2 (-172)) (-4 *2 (-1051)))) (-2974 (*1 *1 *1 *1) (-12 (-5 *1 (-837 *2)) (-4 *2 (-172)) (-4 *2 (-1051)))) (-2665 (*1 *2 *2) (-12 (-5 *1 (-837 *2)) (-4 *2 (-172)) (-4 *2 (-1051)))) (-3456 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1051)) (-5 *1 (-837 *3)))) (-1361 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1051)) (-5 *1 (-837 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-567)) (-5 *1 (-837 *4)) (-4 *4 (-1051)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-837 *3)) (-4 *3 (-1051)))) (-1929 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-837 *2)) (-4 *2 (-1051)))) (-2371 (*1 *1 *2 *3) (-12 (-5 *3 (-363 (-114))) (-5 *1 (-837 *2)) (-4 *2 (-1051)))))
-(-13 (-1051) (-1040 |#1|) (-1040 (-114)) (-287 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -2974 ($ $)) (-15 -2974 ($ $ $)) (-15 -2665 (|#1| |#1|))) |%noBranch|) (-15 -3456 ($ $ (-1 |#1| |#1|))) (-15 -1361 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-567))) (-15 ** ($ $ (-567))) (-15 -1929 (|#1| (-114) |#1|)) (-15 -2371 ($ |#1| (-363 (-114))))))
-((-2163 (((-214 (-505)) (-1160)) 9)))
-(((-838) (-10 -7 (-15 -2163 ((-214 (-505)) (-1160))))) (T -838))
-((-2163 (*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-214 (-505))) (-5 *1 (-838)))))
-(-10 -7 (-15 -2163 ((-214 (-505)) (-1160))))
-((-2403 (((-112) $ $) NIL)) (-3386 (((-1120) $) 10)) (-1996 (((-509) $) 9)) (-1419 (((-1160) $) NIL)) (-1854 (((-112) $ (-509)) NIL)) (-3430 (((-1122) $) NIL)) (-4147 (($ (-509) (-1120)) 8)) (-4132 (((-863) $) 25)) (-1745 (((-112) $ $) NIL)) (-2124 (((-55) $) 20)) (-2936 (((-112) $ $) 12)))
-(((-839) (-13 (-836 (-509)) (-10 -8 (-15 -3386 ((-1120) $)) (-15 -4147 ($ (-509) (-1120)))))) (T -839))
-((-3386 (*1 *2 *1) (-12 (-5 *2 (-1120)) (-5 *1 (-839)))) (-4147 (*1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-1120)) (-5 *1 (-839)))))
-(-13 (-836 (-509)) (-10 -8 (-15 -3386 ((-1120) $)) (-15 -4147 ($ (-509) (-1120)))))
-((-2403 (((-112) $ $) 7)) (-3912 (((-1037) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225))))) 15) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 14)) (-2264 (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 17) (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160))) (-1065) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225))))) 16)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-2936 (((-112) $ $) 6)))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-2376 (((-3 $ "failed") $ $) NIL)) (-3647 (($) NIL T CONST)) (-3765 (((-3 |#1| "failed") $) NIL) (((-3 (-114) "failed") $) NIL)) (-2051 ((|#1| $) NIL) (((-114) $) NIL)) (-3588 (((-3 $ "failed") $) NIL)) (-3212 ((|#1| (-114) |#1|) NIL)) (-4346 (((-112) $) NIL)) (-3761 (($ |#1| (-363 (-114))) NIL)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-2832 (($ $ (-1 |#1| |#1|)) NIL)) (-3301 (($ $ (-1 |#1| |#1|)) NIL)) (-1801 ((|#1| $ |#1|) NIL)) (-1367 ((|#1| |#1|) NIL (|has| |#1| (-172)))) (-4129 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) NIL) (($ (-114)) NIL)) (-2118 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2746 (((-772)) NIL T CONST)) (-3357 (((-112) $ $) NIL)) (-1900 (($ $) NIL (|has| |#1| (-172))) (($ $ $) NIL (|has| |#1| (-172)))) (-1733 (($) NIL T CONST)) (-1744 (($) NIL T CONST)) (-2946 (((-112) $ $) NIL)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ (-114) (-567)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172)))))
+(((-837 |#1|) (-13 (-1051) (-1040 |#1|) (-1040 (-114)) (-287 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -1900 ($ $)) (-15 -1900 ($ $ $)) (-15 -1367 (|#1| |#1|))) |%noBranch|) (-15 -3301 ($ $ (-1 |#1| |#1|))) (-15 -2832 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-567))) (-15 ** ($ $ (-567))) (-15 -3212 (|#1| (-114) |#1|)) (-15 -3761 ($ |#1| (-363 (-114)))))) (-1051)) (T -837))
+((-1900 (*1 *1 *1) (-12 (-5 *1 (-837 *2)) (-4 *2 (-172)) (-4 *2 (-1051)))) (-1900 (*1 *1 *1 *1) (-12 (-5 *1 (-837 *2)) (-4 *2 (-172)) (-4 *2 (-1051)))) (-1367 (*1 *2 *2) (-12 (-5 *1 (-837 *2)) (-4 *2 (-172)) (-4 *2 (-1051)))) (-3301 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1051)) (-5 *1 (-837 *3)))) (-2832 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1051)) (-5 *1 (-837 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-567)) (-5 *1 (-837 *4)) (-4 *4 (-1051)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-837 *3)) (-4 *3 (-1051)))) (-3212 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-837 *2)) (-4 *2 (-1051)))) (-3761 (*1 *1 *2 *3) (-12 (-5 *3 (-363 (-114))) (-5 *1 (-837 *2)) (-4 *2 (-1051)))))
+(-13 (-1051) (-1040 |#1|) (-1040 (-114)) (-287 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -1900 ($ $)) (-15 -1900 ($ $ $)) (-15 -1367 (|#1| |#1|))) |%noBranch|) (-15 -3301 ($ $ (-1 |#1| |#1|))) (-15 -2832 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-567))) (-15 ** ($ $ (-567))) (-15 -3212 (|#1| (-114) |#1|)) (-15 -3761 ($ |#1| (-363 (-114))))))
+((-1818 (((-214 (-505)) (-1161)) 9)))
+(((-838) (-10 -7 (-15 -1818 ((-214 (-505)) (-1161))))) (T -838))
+((-1818 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-214 (-505))) (-5 *1 (-838)))))
+(-10 -7 (-15 -1818 ((-214 (-505)) (-1161))))
+((-2412 (((-112) $ $) NIL)) (-3394 (((-1120) $) 10)) (-2007 (((-509) $) 9)) (-2516 (((-1161) $) NIL)) (-3545 (((-112) $ (-509)) NIL)) (-3437 (((-1122) $) NIL)) (-4145 (($ (-509) (-1120)) 8)) (-4129 (((-863) $) 25)) (-3357 (((-112) $ $) NIL)) (-2336 (((-55) $) 20)) (-2946 (((-112) $ $) 12)))
+(((-839) (-13 (-836 (-509)) (-10 -8 (-15 -3394 ((-1120) $)) (-15 -4145 ($ (-509) (-1120)))))) (T -839))
+((-3394 (*1 *2 *1) (-12 (-5 *2 (-1120)) (-5 *1 (-839)))) (-4145 (*1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-1120)) (-5 *1 (-839)))))
+(-13 (-836 (-509)) (-10 -8 (-15 -3394 ((-1120) $)) (-15 -4145 ($ (-509) (-1120)))))
+((-2412 (((-112) $ $) 7)) (-3755 (((-1037) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2694 (-645 (-225))))) 15) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -2694 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 14)) (-3055 (((-2 (|:| -3055 (-381)) (|:| |explanations| (-1161))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -2694 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 17) (((-2 (|:| -3055 (-381)) (|:| |explanations| (-1161))) (-1065) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2694 (-645 (-225))))) 16)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-4129 (((-863) $) 12)) (-3357 (((-112) $ $) 9)) (-2946 (((-112) $ $) 6)))
(((-840) (-140)) (T -840))
-((-2264 (*1 *2 *3 *4) (-12 (-4 *1 (-840)) (-5 *3 (-1065)) (-5 *4 (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (-5 *2 (-2 (|:| -2264 (-381)) (|:| |explanations| (-1160)))))) (-2264 (*1 *2 *3 *4) (-12 (-4 *1 (-840)) (-5 *3 (-1065)) (-5 *4 (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225))))) (-5 *2 (-2 (|:| -2264 (-381)) (|:| |explanations| (-1160)))))) (-3912 (*1 *2 *3) (-12 (-4 *1 (-840)) (-5 *3 (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225))))) (-5 *2 (-1037)))) (-3912 (*1 *2 *3) (-12 (-4 *1 (-840)) (-5 *3 (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (-5 *2 (-1037)))))
-(-13 (-1102) (-10 -7 (-15 -2264 ((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225))))))) (-15 -2264 ((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160))) (-1065) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225)))))) (-15 -3912 ((-1037) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225)))))) (-15 -3912 ((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))))))
+((-3055 (*1 *2 *3 *4) (-12 (-4 *1 (-840)) (-5 *3 (-1065)) (-5 *4 (-2 (|:| |fn| (-317 (-225))) (|:| -2694 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (-5 *2 (-2 (|:| -3055 (-381)) (|:| |explanations| (-1161)))))) (-3055 (*1 *2 *3 *4) (-12 (-4 *1 (-840)) (-5 *3 (-1065)) (-5 *4 (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2694 (-645 (-225))))) (-5 *2 (-2 (|:| -3055 (-381)) (|:| |explanations| (-1161)))))) (-3755 (*1 *2 *3) (-12 (-4 *1 (-840)) (-5 *3 (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2694 (-645 (-225))))) (-5 *2 (-1037)))) (-3755 (*1 *2 *3) (-12 (-4 *1 (-840)) (-5 *3 (-2 (|:| |fn| (-317 (-225))) (|:| -2694 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (-5 *2 (-1037)))))
+(-13 (-1102) (-10 -7 (-15 -3055 ((-2 (|:| -3055 (-381)) (|:| |explanations| (-1161))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -2694 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225))))))) (-15 -3055 ((-2 (|:| -3055 (-381)) (|:| |explanations| (-1161))) (-1065) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2694 (-645 (-225)))))) (-15 -3755 ((-1037) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2694 (-645 (-225)))))) (-15 -3755 ((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -2694 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))))))
(((-102) . T) ((-614 (-863)) . T) ((-1102) . T))
-((-2252 (((-1037) (-645 (-317 (-381))) (-645 (-381))) 169) (((-1037) (-317 (-381)) (-645 (-381))) 167) (((-1037) (-317 (-381)) (-645 (-381)) (-645 (-844 (-381))) (-645 (-844 (-381)))) 165) (((-1037) (-317 (-381)) (-645 (-381)) (-645 (-844 (-381))) (-645 (-317 (-381))) (-645 (-844 (-381)))) 163) (((-1037) (-842)) 128) (((-1037) (-842) (-1065)) 127)) (-2264 (((-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160)))) (-842) (-1065)) 88) (((-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160)))) (-842)) 90)) (-3059 (((-1037) (-645 (-317 (-381))) (-645 (-381))) 170) (((-1037) (-842)) 153)))
-(((-841) (-10 -7 (-15 -2264 ((-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160)))) (-842))) (-15 -2264 ((-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160)))) (-842) (-1065))) (-15 -2252 ((-1037) (-842) (-1065))) (-15 -2252 ((-1037) (-842))) (-15 -3059 ((-1037) (-842))) (-15 -2252 ((-1037) (-317 (-381)) (-645 (-381)) (-645 (-844 (-381))) (-645 (-317 (-381))) (-645 (-844 (-381))))) (-15 -2252 ((-1037) (-317 (-381)) (-645 (-381)) (-645 (-844 (-381))) (-645 (-844 (-381))))) (-15 -2252 ((-1037) (-317 (-381)) (-645 (-381)))) (-15 -2252 ((-1037) (-645 (-317 (-381))) (-645 (-381)))) (-15 -3059 ((-1037) (-645 (-317 (-381))) (-645 (-381)))))) (T -841))
-((-3059 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-317 (-381)))) (-5 *4 (-645 (-381))) (-5 *2 (-1037)) (-5 *1 (-841)))) (-2252 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-317 (-381)))) (-5 *4 (-645 (-381))) (-5 *2 (-1037)) (-5 *1 (-841)))) (-2252 (*1 *2 *3 *4) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-645 (-381))) (-5 *2 (-1037)) (-5 *1 (-841)))) (-2252 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-645 (-381))) (-5 *5 (-645 (-844 (-381)))) (-5 *2 (-1037)) (-5 *1 (-841)))) (-2252 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-645 (-381))) (-5 *5 (-645 (-844 (-381)))) (-5 *6 (-645 (-317 (-381)))) (-5 *3 (-317 (-381))) (-5 *2 (-1037)) (-5 *1 (-841)))) (-3059 (*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1037)) (-5 *1 (-841)))) (-2252 (*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1037)) (-5 *1 (-841)))) (-2252 (*1 *2 *3 *4) (-12 (-5 *3 (-842)) (-5 *4 (-1065)) (-5 *2 (-1037)) (-5 *1 (-841)))) (-2264 (*1 *2 *3 *4) (-12 (-5 *3 (-842)) (-5 *4 (-1065)) (-5 *2 (-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160))))) (-5 *1 (-841)))) (-2264 (*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160))))) (-5 *1 (-841)))))
-(-10 -7 (-15 -2264 ((-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160)))) (-842))) (-15 -2264 ((-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160)))) (-842) (-1065))) (-15 -2252 ((-1037) (-842) (-1065))) (-15 -2252 ((-1037) (-842))) (-15 -3059 ((-1037) (-842))) (-15 -2252 ((-1037) (-317 (-381)) (-645 (-381)) (-645 (-844 (-381))) (-645 (-317 (-381))) (-645 (-844 (-381))))) (-15 -2252 ((-1037) (-317 (-381)) (-645 (-381)) (-645 (-844 (-381))) (-645 (-844 (-381))))) (-15 -2252 ((-1037) (-317 (-381)) (-645 (-381)))) (-15 -2252 ((-1037) (-645 (-317 (-381))) (-645 (-381)))) (-15 -3059 ((-1037) (-645 (-317 (-381))) (-645 (-381)))))
-((-2403 (((-112) $ $) NIL)) (-2038 (((-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225)))))) $) 21)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 20) (($ (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 14) (($ (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225))))))) 18)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)))
-(((-842) (-13 (-1102) (-10 -8 (-15 -4132 ($ (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225))))))) (-15 -4132 ($ (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225)))))) (-15 -4132 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225)))))))) (-15 -2038 ((-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225)))))) $))))) (T -842))
-((-4132 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (-5 *1 (-842)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225))))) (-5 *1 (-842)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225))))))) (-5 *1 (-842)))) (-2038 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225))))))) (-5 *1 (-842)))))
-(-13 (-1102) (-10 -8 (-15 -4132 ($ (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225))))))) (-15 -4132 ($ (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225)))))) (-15 -4132 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225)))))))) (-15 -2038 ((-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225)))))) $))))
-((-3829 (((-844 |#2|) (-1 |#2| |#1|) (-844 |#1|) (-844 |#2|) (-844 |#2|)) 13) (((-844 |#2|) (-1 |#2| |#1|) (-844 |#1|)) 14)))
-(((-843 |#1| |#2|) (-10 -7 (-15 -3829 ((-844 |#2|) (-1 |#2| |#1|) (-844 |#1|))) (-15 -3829 ((-844 |#2|) (-1 |#2| |#1|) (-844 |#1|) (-844 |#2|) (-844 |#2|)))) (-1102) (-1102)) (T -843))
-((-3829 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-844 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-844 *5)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-5 *1 (-843 *5 *6)))) (-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-844 *5)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-5 *2 (-844 *6)) (-5 *1 (-843 *5 *6)))))
-(-10 -7 (-15 -3829 ((-844 |#2|) (-1 |#2| |#1|) (-844 |#1|))) (-15 -3829 ((-844 |#2|) (-1 |#2| |#1|) (-844 |#1|) (-844 |#2|) (-844 |#2|))))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL (|has| |#1| (-21)))) (-3406 (((-1122) $) 31)) (-3472 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1750 (((-567) $) NIL (|has| |#1| (-849)))) (-2585 (($) NIL (|has| |#1| (-21)) CONST)) (-3753 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) 18)) (-2038 (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) 9)) (-2109 (((-3 $ "failed") $) 58 (|has| |#1| (-849)))) (-2085 (((-3 (-410 (-567)) "failed") $) 65 (|has| |#1| (-548)))) (-1862 (((-112) $) 60 (|has| |#1| (-548)))) (-2331 (((-410 (-567)) $) 63 (|has| |#1| (-548)))) (-4336 (((-112) $) NIL (|has| |#1| (-849)))) (-2319 (($) 14)) (-1433 (((-112) $) NIL (|has| |#1| (-849)))) (-3494 (((-112) $) NIL (|has| |#1| (-849)))) (-2333 (($) 16)) (-1354 (($ $ $) NIL (|has| |#1| (-849)))) (-2981 (($ $ $) NIL (|has| |#1| (-849)))) (-1419 (((-1160) $) NIL)) (-2125 (((-112) $) 12)) (-3430 (((-1122) $) NIL)) (-1314 (((-112) $) 11)) (-4132 (((-863) $) 24) (($ (-410 (-567))) NIL (|has| |#1| (-1040 (-410 (-567))))) (($ |#1|) 8) (($ (-567)) NIL (-2800 (|has| |#1| (-849)) (|has| |#1| (-1040 (-567)))))) (-4221 (((-772)) 51 (|has| |#1| (-849)) CONST)) (-1745 (((-112) $ $) NIL)) (-2219 (($ $) NIL (|has| |#1| (-849)))) (-1716 (($) 37 (|has| |#1| (-21)) CONST)) (-1728 (($) 48 (|has| |#1| (-849)) CONST)) (-2997 (((-112) $ $) NIL (|has| |#1| (-849)))) (-2971 (((-112) $ $) NIL (|has| |#1| (-849)))) (-2936 (((-112) $ $) 35)) (-2984 (((-112) $ $) NIL (|has| |#1| (-849)))) (-2958 (((-112) $ $) 59 (|has| |#1| (-849)))) (-3045 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 44 (|has| |#1| (-21)))) (-3033 (($ $ $) 46 (|has| |#1| (-21)))) (** (($ $ (-923)) NIL (|has| |#1| (-849))) (($ $ (-772)) NIL (|has| |#1| (-849)))) (* (($ $ $) 55 (|has| |#1| (-849))) (($ (-567) $) 42 (|has| |#1| (-21))) (($ (-772) $) NIL (|has| |#1| (-21))) (($ (-923) $) NIL (|has| |#1| (-21)))))
-(((-844 |#1|) (-13 (-1102) (-414 |#1|) (-10 -8 (-15 -2319 ($)) (-15 -2333 ($)) (-15 -1314 ((-112) $)) (-15 -2125 ((-112) $)) (-15 -3406 ((-1122) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-849)) (-6 (-849)) |%noBranch|) (IF (|has| |#1| (-548)) (PROGN (-15 -1862 ((-112) $)) (-15 -2331 ((-410 (-567)) $)) (-15 -2085 ((-3 (-410 (-567)) "failed") $))) |%noBranch|))) (-1102)) (T -844))
-((-2319 (*1 *1) (-12 (-5 *1 (-844 *2)) (-4 *2 (-1102)))) (-2333 (*1 *1) (-12 (-5 *1 (-844 *2)) (-4 *2 (-1102)))) (-1314 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-844 *3)) (-4 *3 (-1102)))) (-2125 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-844 *3)) (-4 *3 (-1102)))) (-3406 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-844 *3)) (-4 *3 (-1102)))) (-1862 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-844 *3)) (-4 *3 (-548)) (-4 *3 (-1102)))) (-2331 (*1 *2 *1) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-844 *3)) (-4 *3 (-548)) (-4 *3 (-1102)))) (-2085 (*1 *2 *1) (|partial| -12 (-5 *2 (-410 (-567))) (-5 *1 (-844 *3)) (-4 *3 (-548)) (-4 *3 (-1102)))))
-(-13 (-1102) (-414 |#1|) (-10 -8 (-15 -2319 ($)) (-15 -2333 ($)) (-15 -1314 ((-112) $)) (-15 -2125 ((-112) $)) (-15 -3406 ((-1122) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-849)) (-6 (-849)) |%noBranch|) (IF (|has| |#1| (-548)) (PROGN (-15 -1862 ((-112) $)) (-15 -2331 ((-410 (-567)) $)) (-15 -2085 ((-3 (-410 (-567)) "failed") $))) |%noBranch|)))
-((-2403 (((-112) $ $) 7)) (-2375 (((-772)) 23)) (-1348 (($) 26)) (-1354 (($ $ $) 14) (($) 22 T CONST)) (-2981 (($ $ $) 15) (($) 21 T CONST)) (-4249 (((-923) $) 25)) (-1419 (((-1160) $) 10)) (-3768 (($ (-923)) 24)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-2997 (((-112) $ $) 17)) (-2971 (((-112) $ $) 18)) (-2936 (((-112) $ $) 6)) (-2984 (((-112) $ $) 16)) (-2958 (((-112) $ $) 19)))
+((-2260 (((-1037) (-645 (-317 (-381))) (-645 (-381))) 169) (((-1037) (-317 (-381)) (-645 (-381))) 167) (((-1037) (-317 (-381)) (-645 (-381)) (-645 (-844 (-381))) (-645 (-844 (-381)))) 165) (((-1037) (-317 (-381)) (-645 (-381)) (-645 (-844 (-381))) (-645 (-317 (-381))) (-645 (-844 (-381)))) 163) (((-1037) (-842)) 128) (((-1037) (-842) (-1065)) 127)) (-3055 (((-2 (|:| -3055 (-381)) (|:| -2007 (-1161)) (|:| |explanations| (-645 (-1161)))) (-842) (-1065)) 88) (((-2 (|:| -3055 (-381)) (|:| -2007 (-1161)) (|:| |explanations| (-645 (-1161)))) (-842)) 90)) (-1965 (((-1037) (-645 (-317 (-381))) (-645 (-381))) 170) (((-1037) (-842)) 153)))
+(((-841) (-10 -7 (-15 -3055 ((-2 (|:| -3055 (-381)) (|:| -2007 (-1161)) (|:| |explanations| (-645 (-1161)))) (-842))) (-15 -3055 ((-2 (|:| -3055 (-381)) (|:| -2007 (-1161)) (|:| |explanations| (-645 (-1161)))) (-842) (-1065))) (-15 -2260 ((-1037) (-842) (-1065))) (-15 -2260 ((-1037) (-842))) (-15 -1965 ((-1037) (-842))) (-15 -2260 ((-1037) (-317 (-381)) (-645 (-381)) (-645 (-844 (-381))) (-645 (-317 (-381))) (-645 (-844 (-381))))) (-15 -2260 ((-1037) (-317 (-381)) (-645 (-381)) (-645 (-844 (-381))) (-645 (-844 (-381))))) (-15 -2260 ((-1037) (-317 (-381)) (-645 (-381)))) (-15 -2260 ((-1037) (-645 (-317 (-381))) (-645 (-381)))) (-15 -1965 ((-1037) (-645 (-317 (-381))) (-645 (-381)))))) (T -841))
+((-1965 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-317 (-381)))) (-5 *4 (-645 (-381))) (-5 *2 (-1037)) (-5 *1 (-841)))) (-2260 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-317 (-381)))) (-5 *4 (-645 (-381))) (-5 *2 (-1037)) (-5 *1 (-841)))) (-2260 (*1 *2 *3 *4) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-645 (-381))) (-5 *2 (-1037)) (-5 *1 (-841)))) (-2260 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-645 (-381))) (-5 *5 (-645 (-844 (-381)))) (-5 *2 (-1037)) (-5 *1 (-841)))) (-2260 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-645 (-381))) (-5 *5 (-645 (-844 (-381)))) (-5 *6 (-645 (-317 (-381)))) (-5 *3 (-317 (-381))) (-5 *2 (-1037)) (-5 *1 (-841)))) (-1965 (*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1037)) (-5 *1 (-841)))) (-2260 (*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1037)) (-5 *1 (-841)))) (-2260 (*1 *2 *3 *4) (-12 (-5 *3 (-842)) (-5 *4 (-1065)) (-5 *2 (-1037)) (-5 *1 (-841)))) (-3055 (*1 *2 *3 *4) (-12 (-5 *3 (-842)) (-5 *4 (-1065)) (-5 *2 (-2 (|:| -3055 (-381)) (|:| -2007 (-1161)) (|:| |explanations| (-645 (-1161))))) (-5 *1 (-841)))) (-3055 (*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-2 (|:| -3055 (-381)) (|:| -2007 (-1161)) (|:| |explanations| (-645 (-1161))))) (-5 *1 (-841)))))
+(-10 -7 (-15 -3055 ((-2 (|:| -3055 (-381)) (|:| -2007 (-1161)) (|:| |explanations| (-645 (-1161)))) (-842))) (-15 -3055 ((-2 (|:| -3055 (-381)) (|:| -2007 (-1161)) (|:| |explanations| (-645 (-1161)))) (-842) (-1065))) (-15 -2260 ((-1037) (-842) (-1065))) (-15 -2260 ((-1037) (-842))) (-15 -1965 ((-1037) (-842))) (-15 -2260 ((-1037) (-317 (-381)) (-645 (-381)) (-645 (-844 (-381))) (-645 (-317 (-381))) (-645 (-844 (-381))))) (-15 -2260 ((-1037) (-317 (-381)) (-645 (-381)) (-645 (-844 (-381))) (-645 (-844 (-381))))) (-15 -2260 ((-1037) (-317 (-381)) (-645 (-381)))) (-15 -2260 ((-1037) (-645 (-317 (-381))) (-645 (-381)))) (-15 -1965 ((-1037) (-645 (-317 (-381))) (-645 (-381)))))
+((-2412 (((-112) $ $) NIL)) (-2051 (((-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -2694 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2694 (-645 (-225)))))) $) 21)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) 20) (($ (-2 (|:| |fn| (-317 (-225))) (|:| -2694 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 14) (($ (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2694 (-645 (-225))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -2694 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2694 (-645 (-225))))))) 18)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)))
+(((-842) (-13 (-1102) (-10 -8 (-15 -4129 ($ (-2 (|:| |fn| (-317 (-225))) (|:| -2694 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225))))))) (-15 -4129 ($ (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2694 (-645 (-225)))))) (-15 -4129 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -2694 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2694 (-645 (-225)))))))) (-15 -2051 ((-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -2694 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2694 (-645 (-225)))))) $))))) (T -842))
+((-4129 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-317 (-225))) (|:| -2694 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (-5 *1 (-842)))) (-4129 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2694 (-645 (-225))))) (-5 *1 (-842)))) (-4129 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -2694 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2694 (-645 (-225))))))) (-5 *1 (-842)))) (-2051 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -2694 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2694 (-645 (-225))))))) (-5 *1 (-842)))))
+(-13 (-1102) (-10 -8 (-15 -4129 ($ (-2 (|:| |fn| (-317 (-225))) (|:| -2694 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225))))))) (-15 -4129 ($ (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2694 (-645 (-225)))))) (-15 -4129 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -2694 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2694 (-645 (-225)))))))) (-15 -2051 ((-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -2694 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2694 (-645 (-225)))))) $))))
+((-3841 (((-844 |#2|) (-1 |#2| |#1|) (-844 |#1|) (-844 |#2|) (-844 |#2|)) 13) (((-844 |#2|) (-1 |#2| |#1|) (-844 |#1|)) 14)))
+(((-843 |#1| |#2|) (-10 -7 (-15 -3841 ((-844 |#2|) (-1 |#2| |#1|) (-844 |#1|))) (-15 -3841 ((-844 |#2|) (-1 |#2| |#1|) (-844 |#1|) (-844 |#2|) (-844 |#2|)))) (-1102) (-1102)) (T -843))
+((-3841 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-844 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-844 *5)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-5 *1 (-843 *5 *6)))) (-3841 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-844 *5)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-5 *2 (-844 *6)) (-5 *1 (-843 *5 *6)))))
+(-10 -7 (-15 -3841 ((-844 |#2|) (-1 |#2| |#1|) (-844 |#1|))) (-15 -3841 ((-844 |#2|) (-1 |#2| |#1|) (-844 |#1|) (-844 |#2|) (-844 |#2|))))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL (|has| |#1| (-21)))) (-3265 (((-1122) $) 31)) (-2376 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2677 (((-567) $) NIL (|has| |#1| (-849)))) (-3647 (($) NIL (|has| |#1| (-21)) CONST)) (-3765 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) 18)) (-2051 (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) 9)) (-3588 (((-3 $ "failed") $) 58 (|has| |#1| (-849)))) (-1605 (((-3 (-410 (-567)) "failed") $) 65 (|has| |#1| (-548)))) (-2492 (((-112) $) 60 (|has| |#1| (-548)))) (-2778 (((-410 (-567)) $) 63 (|has| |#1| (-548)))) (-3137 (((-112) $) NIL (|has| |#1| (-849)))) (-2325 (($) 14)) (-4346 (((-112) $) NIL (|has| |#1| (-849)))) (-3465 (((-112) $) NIL (|has| |#1| (-849)))) (-2341 (($) 16)) (-1365 (($ $ $) NIL (|has| |#1| (-849)))) (-3002 (($ $ $) NIL (|has| |#1| (-849)))) (-2516 (((-1161) $) NIL)) (-2427 (((-112) $) 12)) (-3437 (((-1122) $) NIL)) (-1700 (((-112) $) 11)) (-4129 (((-863) $) 24) (($ (-410 (-567))) NIL (|has| |#1| (-1040 (-410 (-567))))) (($ |#1|) 8) (($ (-567)) NIL (-2811 (|has| |#1| (-849)) (|has| |#1| (-1040 (-567)))))) (-2746 (((-772)) 51 (|has| |#1| (-849)) CONST)) (-3357 (((-112) $ $) NIL)) (-1547 (($ $) NIL (|has| |#1| (-849)))) (-1733 (($) 37 (|has| |#1| (-21)) CONST)) (-1744 (($) 48 (|has| |#1| (-849)) CONST)) (-3004 (((-112) $ $) NIL (|has| |#1| (-849)))) (-2980 (((-112) $ $) NIL (|has| |#1| (-849)))) (-2946 (((-112) $ $) 35)) (-2993 (((-112) $ $) NIL (|has| |#1| (-849)))) (-2968 (((-112) $ $) 59 (|has| |#1| (-849)))) (-3053 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 44 (|has| |#1| (-21)))) (-3041 (($ $ $) 46 (|has| |#1| (-21)))) (** (($ $ (-923)) NIL (|has| |#1| (-849))) (($ $ (-772)) NIL (|has| |#1| (-849)))) (* (($ $ $) 55 (|has| |#1| (-849))) (($ (-567) $) 42 (|has| |#1| (-21))) (($ (-772) $) NIL (|has| |#1| (-21))) (($ (-923) $) NIL (|has| |#1| (-21)))))
+(((-844 |#1|) (-13 (-1102) (-414 |#1|) (-10 -8 (-15 -2325 ($)) (-15 -2341 ($)) (-15 -1700 ((-112) $)) (-15 -2427 ((-112) $)) (-15 -3265 ((-1122) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-849)) (-6 (-849)) |%noBranch|) (IF (|has| |#1| (-548)) (PROGN (-15 -2492 ((-112) $)) (-15 -2778 ((-410 (-567)) $)) (-15 -1605 ((-3 (-410 (-567)) "failed") $))) |%noBranch|))) (-1102)) (T -844))
+((-2325 (*1 *1) (-12 (-5 *1 (-844 *2)) (-4 *2 (-1102)))) (-2341 (*1 *1) (-12 (-5 *1 (-844 *2)) (-4 *2 (-1102)))) (-1700 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-844 *3)) (-4 *3 (-1102)))) (-2427 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-844 *3)) (-4 *3 (-1102)))) (-3265 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-844 *3)) (-4 *3 (-1102)))) (-2492 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-844 *3)) (-4 *3 (-548)) (-4 *3 (-1102)))) (-2778 (*1 *2 *1) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-844 *3)) (-4 *3 (-548)) (-4 *3 (-1102)))) (-1605 (*1 *2 *1) (|partial| -12 (-5 *2 (-410 (-567))) (-5 *1 (-844 *3)) (-4 *3 (-548)) (-4 *3 (-1102)))))
+(-13 (-1102) (-414 |#1|) (-10 -8 (-15 -2325 ($)) (-15 -2341 ($)) (-15 -1700 ((-112) $)) (-15 -2427 ((-112) $)) (-15 -3265 ((-1122) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-849)) (-6 (-849)) |%noBranch|) (IF (|has| |#1| (-548)) (PROGN (-15 -2492 ((-112) $)) (-15 -2778 ((-410 (-567)) $)) (-15 -1605 ((-3 (-410 (-567)) "failed") $))) |%noBranch|)))
+((-2412 (((-112) $ $) 7)) (-2384 (((-772)) 23)) (-1359 (($) 26)) (-1365 (($ $ $) 14) (($) 22 T CONST)) (-3002 (($ $ $) 15) (($) 21 T CONST)) (-3474 (((-923) $) 25)) (-2516 (((-1161) $) 10)) (-3779 (($ (-923)) 24)) (-3437 (((-1122) $) 11)) (-4129 (((-863) $) 12)) (-3357 (((-112) $ $) 9)) (-3004 (((-112) $ $) 17)) (-2980 (((-112) $ $) 18)) (-2946 (((-112) $ $) 6)) (-2993 (((-112) $ $) 16)) (-2968 (((-112) $ $) 19)))
(((-845) (-140)) (T -845))
-((-1354 (*1 *1) (-4 *1 (-845))) (-2981 (*1 *1) (-4 *1 (-845))))
-(-13 (-851) (-370) (-10 -8 (-15 -1354 ($) -3286) (-15 -2981 ($) -3286)))
+((-1365 (*1 *1) (-4 *1 (-845))) (-3002 (*1 *1) (-4 *1 (-845))))
+(-13 (-851) (-370) (-10 -8 (-15 -1365 ($) -3304) (-15 -3002 ($) -3304)))
(((-102) . T) ((-614 (-863)) . T) ((-370) . T) ((-851) . T) ((-1102) . T))
-((-2507 (((-112) (-1268 |#2|) (-1268 |#2|)) 23)) (-4279 (((-112) (-1268 |#2|) (-1268 |#2|)) 24)) (-4055 (((-112) (-1268 |#2|) (-1268 |#2|)) 20)))
-(((-846 |#1| |#2|) (-10 -7 (-15 -4055 ((-112) (-1268 |#2|) (-1268 |#2|))) (-15 -2507 ((-112) (-1268 |#2|) (-1268 |#2|))) (-15 -4279 ((-112) (-1268 |#2|) (-1268 |#2|)))) (-772) (-793)) (T -846))
-((-4279 (*1 *2 *3 *3) (-12 (-5 *3 (-1268 *5)) (-4 *5 (-793)) (-5 *2 (-112)) (-5 *1 (-846 *4 *5)) (-14 *4 (-772)))) (-2507 (*1 *2 *3 *3) (-12 (-5 *3 (-1268 *5)) (-4 *5 (-793)) (-5 *2 (-112)) (-5 *1 (-846 *4 *5)) (-14 *4 (-772)))) (-4055 (*1 *2 *3 *3) (-12 (-5 *3 (-1268 *5)) (-4 *5 (-793)) (-5 *2 (-112)) (-5 *1 (-846 *4 *5)) (-14 *4 (-772)))))
-(-10 -7 (-15 -4055 ((-112) (-1268 |#2|) (-1268 |#2|))) (-15 -2507 ((-112) (-1268 |#2|) (-1268 |#2|))) (-15 -4279 ((-112) (-1268 |#2|) (-1268 |#2|))))
-((-2403 (((-112) $ $) 7)) (-2585 (($) 24 T CONST)) (-2109 (((-3 $ "failed") $) 27)) (-1433 (((-112) $) 25)) (-1354 (($ $ $) 14)) (-2981 (($ $ $) 15)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-1728 (($) 23 T CONST)) (-2997 (((-112) $ $) 17)) (-2971 (((-112) $ $) 18)) (-2936 (((-112) $ $) 6)) (-2984 (((-112) $ $) 16)) (-2958 (((-112) $ $) 19)) (** (($ $ (-923)) 22) (($ $ (-772)) 26)) (* (($ $ $) 21)))
+((-1934 (((-112) (-1269 |#2|) (-1269 |#2|)) 23)) (-2766 (((-112) (-1269 |#2|) (-1269 |#2|)) 24)) (-2667 (((-112) (-1269 |#2|) (-1269 |#2|)) 20)))
+(((-846 |#1| |#2|) (-10 -7 (-15 -2667 ((-112) (-1269 |#2|) (-1269 |#2|))) (-15 -1934 ((-112) (-1269 |#2|) (-1269 |#2|))) (-15 -2766 ((-112) (-1269 |#2|) (-1269 |#2|)))) (-772) (-793)) (T -846))
+((-2766 (*1 *2 *3 *3) (-12 (-5 *3 (-1269 *5)) (-4 *5 (-793)) (-5 *2 (-112)) (-5 *1 (-846 *4 *5)) (-14 *4 (-772)))) (-1934 (*1 *2 *3 *3) (-12 (-5 *3 (-1269 *5)) (-4 *5 (-793)) (-5 *2 (-112)) (-5 *1 (-846 *4 *5)) (-14 *4 (-772)))) (-2667 (*1 *2 *3 *3) (-12 (-5 *3 (-1269 *5)) (-4 *5 (-793)) (-5 *2 (-112)) (-5 *1 (-846 *4 *5)) (-14 *4 (-772)))))
+(-10 -7 (-15 -2667 ((-112) (-1269 |#2|) (-1269 |#2|))) (-15 -1934 ((-112) (-1269 |#2|) (-1269 |#2|))) (-15 -2766 ((-112) (-1269 |#2|) (-1269 |#2|))))
+((-2412 (((-112) $ $) 7)) (-3647 (($) 24 T CONST)) (-3588 (((-3 $ "failed") $) 27)) (-4346 (((-112) $) 25)) (-1365 (($ $ $) 14)) (-3002 (($ $ $) 15)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-4129 (((-863) $) 12)) (-3357 (((-112) $ $) 9)) (-1744 (($) 23 T CONST)) (-3004 (((-112) $ $) 17)) (-2980 (((-112) $ $) 18)) (-2946 (((-112) $ $) 6)) (-2993 (((-112) $ $) 16)) (-2968 (((-112) $ $) 19)) (** (($ $ (-923)) 22) (($ $ (-772)) 26)) (* (($ $ $) 21)))
(((-847) (-140)) (T -847))
NIL
(-13 (-858) (-727))
(((-102) . T) ((-614 (-863)) . T) ((-727) . T) ((-858) . T) ((-851) . T) ((-1114) . T) ((-1102) . T))
-((-1750 (((-567) $) 21)) (-4336 (((-112) $) 10)) (-3494 (((-112) $) 12)) (-2219 (($ $) 23)))
-(((-848 |#1|) (-10 -8 (-15 -2219 (|#1| |#1|)) (-15 -1750 ((-567) |#1|)) (-15 -3494 ((-112) |#1|)) (-15 -4336 ((-112) |#1|))) (-849)) (T -848))
+((-2677 (((-567) $) 21)) (-3137 (((-112) $) 10)) (-3465 (((-112) $) 12)) (-1547 (($ $) 23)))
+(((-848 |#1|) (-10 -8 (-15 -1547 (|#1| |#1|)) (-15 -2677 ((-567) |#1|)) (-15 -3465 ((-112) |#1|)) (-15 -3137 ((-112) |#1|))) (-849)) (T -848))
NIL
-(-10 -8 (-15 -2219 (|#1| |#1|)) (-15 -1750 ((-567) |#1|)) (-15 -3494 ((-112) |#1|)) (-15 -4336 ((-112) |#1|)))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 25)) (-3472 (((-3 $ "failed") $ $) 27)) (-1750 (((-567) $) 37)) (-2585 (($) 24 T CONST)) (-2109 (((-3 $ "failed") $) 42)) (-4336 (((-112) $) 39)) (-1433 (((-112) $) 44)) (-3494 (((-112) $) 38)) (-1354 (($ $ $) 14)) (-2981 (($ $ $) 15)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12) (($ (-567)) 46)) (-4221 (((-772)) 47 T CONST)) (-1745 (((-112) $ $) 9)) (-2219 (($ $) 36)) (-1716 (($) 23 T CONST)) (-1728 (($) 45 T CONST)) (-2997 (((-112) $ $) 17)) (-2971 (((-112) $ $) 18)) (-2936 (((-112) $ $) 6)) (-2984 (((-112) $ $) 16)) (-2958 (((-112) $ $) 19)) (-3045 (($ $ $) 31) (($ $) 30)) (-3033 (($ $ $) 21)) (** (($ $ (-772)) 43) (($ $ (-923)) 40)) (* (($ (-923) $) 22) (($ (-772) $) 26) (($ (-567) $) 29) (($ $ $) 41)))
+(-10 -8 (-15 -1547 (|#1| |#1|)) (-15 -2677 ((-567) |#1|)) (-15 -3465 ((-112) |#1|)) (-15 -3137 ((-112) |#1|)))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 25)) (-2376 (((-3 $ "failed") $ $) 27)) (-2677 (((-567) $) 37)) (-3647 (($) 24 T CONST)) (-3588 (((-3 $ "failed") $) 42)) (-3137 (((-112) $) 39)) (-4346 (((-112) $) 44)) (-3465 (((-112) $) 38)) (-1365 (($ $ $) 14)) (-3002 (($ $ $) 15)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-4129 (((-863) $) 12) (($ (-567)) 46)) (-2746 (((-772)) 47 T CONST)) (-3357 (((-112) $ $) 9)) (-1547 (($ $) 36)) (-1733 (($) 23 T CONST)) (-1744 (($) 45 T CONST)) (-3004 (((-112) $ $) 17)) (-2980 (((-112) $ $) 18)) (-2946 (((-112) $ $) 6)) (-2993 (((-112) $ $) 16)) (-2968 (((-112) $ $) 19)) (-3053 (($ $ $) 31) (($ $) 30)) (-3041 (($ $ $) 21)) (** (($ $ (-772)) 43) (($ $ (-923)) 40)) (* (($ (-923) $) 22) (($ (-772) $) 26) (($ (-567) $) 29) (($ $ $) 41)))
(((-849) (-140)) (T -849))
-((-4336 (*1 *2 *1) (-12 (-4 *1 (-849)) (-5 *2 (-112)))) (-3494 (*1 *2 *1) (-12 (-4 *1 (-849)) (-5 *2 (-112)))) (-1750 (*1 *2 *1) (-12 (-4 *1 (-849)) (-5 *2 (-567)))) (-2219 (*1 *1 *1) (-4 *1 (-849))))
-(-13 (-792) (-1051) (-727) (-10 -8 (-15 -4336 ((-112) $)) (-15 -3494 ((-112) $)) (-15 -1750 ((-567) $)) (-15 -2219 ($ $))))
+((-3137 (*1 *2 *1) (-12 (-4 *1 (-849)) (-5 *2 (-112)))) (-3465 (*1 *2 *1) (-12 (-4 *1 (-849)) (-5 *2 (-112)))) (-2677 (*1 *2 *1) (-12 (-4 *1 (-849)) (-5 *2 (-567)))) (-1547 (*1 *1 *1) (-4 *1 (-849))))
+(-13 (-792) (-1051) (-727) (-10 -8 (-15 -3137 ((-112) $)) (-15 -3465 ((-112) $)) (-15 -2677 ((-567) $)) (-15 -1547 ($ $))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-617 (-567)) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-727) . T) ((-792) . T) ((-793) . T) ((-795) . T) ((-796) . T) ((-851) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T))
-((-1354 (($ $ $) 12)) (-2981 (($ $ $) 11)) (-1745 (((-112) $ $) 9)) (-2997 (((-112) $ $) 15)) (-2971 (((-112) $ $) 13)) (-2984 (((-112) $ $) 16)))
-(((-850 |#1|) (-10 -8 (-15 -1354 (|#1| |#1| |#1|)) (-15 -2981 (|#1| |#1| |#1|)) (-15 -2984 ((-112) |#1| |#1|)) (-15 -2997 ((-112) |#1| |#1|)) (-15 -2971 ((-112) |#1| |#1|)) (-15 -1745 ((-112) |#1| |#1|))) (-851)) (T -850))
+((-1365 (($ $ $) 12)) (-3002 (($ $ $) 11)) (-3357 (((-112) $ $) 9)) (-3004 (((-112) $ $) 15)) (-2980 (((-112) $ $) 13)) (-2993 (((-112) $ $) 16)))
+(((-850 |#1|) (-10 -8 (-15 -1365 (|#1| |#1| |#1|)) (-15 -3002 (|#1| |#1| |#1|)) (-15 -2993 ((-112) |#1| |#1|)) (-15 -3004 ((-112) |#1| |#1|)) (-15 -2980 ((-112) |#1| |#1|)) (-15 -3357 ((-112) |#1| |#1|))) (-851)) (T -850))
NIL
-(-10 -8 (-15 -1354 (|#1| |#1| |#1|)) (-15 -2981 (|#1| |#1| |#1|)) (-15 -2984 ((-112) |#1| |#1|)) (-15 -2997 ((-112) |#1| |#1|)) (-15 -2971 ((-112) |#1| |#1|)) (-15 -1745 ((-112) |#1| |#1|)))
-((-2403 (((-112) $ $) 7)) (-1354 (($ $ $) 14)) (-2981 (($ $ $) 15)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-2997 (((-112) $ $) 17)) (-2971 (((-112) $ $) 18)) (-2936 (((-112) $ $) 6)) (-2984 (((-112) $ $) 16)) (-2958 (((-112) $ $) 19)))
+(-10 -8 (-15 -1365 (|#1| |#1| |#1|)) (-15 -3002 (|#1| |#1| |#1|)) (-15 -2993 ((-112) |#1| |#1|)) (-15 -3004 ((-112) |#1| |#1|)) (-15 -2980 ((-112) |#1| |#1|)) (-15 -3357 ((-112) |#1| |#1|)))
+((-2412 (((-112) $ $) 7)) (-1365 (($ $ $) 14)) (-3002 (($ $ $) 15)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-4129 (((-863) $) 12)) (-3357 (((-112) $ $) 9)) (-3004 (((-112) $ $) 17)) (-2980 (((-112) $ $) 18)) (-2946 (((-112) $ $) 6)) (-2993 (((-112) $ $) 16)) (-2968 (((-112) $ $) 19)))
(((-851) (-140)) (T -851))
-((-2958 (*1 *2 *1 *1) (-12 (-4 *1 (-851)) (-5 *2 (-112)))) (-2971 (*1 *2 *1 *1) (-12 (-4 *1 (-851)) (-5 *2 (-112)))) (-2997 (*1 *2 *1 *1) (-12 (-4 *1 (-851)) (-5 *2 (-112)))) (-2984 (*1 *2 *1 *1) (-12 (-4 *1 (-851)) (-5 *2 (-112)))) (-2981 (*1 *1 *1 *1) (-4 *1 (-851))) (-1354 (*1 *1 *1 *1) (-4 *1 (-851))))
-(-13 (-1102) (-10 -8 (-15 -2958 ((-112) $ $)) (-15 -2971 ((-112) $ $)) (-15 -2997 ((-112) $ $)) (-15 -2984 ((-112) $ $)) (-15 -2981 ($ $ $)) (-15 -1354 ($ $ $))))
+((-2968 (*1 *2 *1 *1) (-12 (-4 *1 (-851)) (-5 *2 (-112)))) (-2980 (*1 *2 *1 *1) (-12 (-4 *1 (-851)) (-5 *2 (-112)))) (-3004 (*1 *2 *1 *1) (-12 (-4 *1 (-851)) (-5 *2 (-112)))) (-2993 (*1 *2 *1 *1) (-12 (-4 *1 (-851)) (-5 *2 (-112)))) (-3002 (*1 *1 *1 *1) (-4 *1 (-851))) (-1365 (*1 *1 *1 *1) (-4 *1 (-851))))
+(-13 (-1102) (-10 -8 (-15 -2968 ((-112) $ $)) (-15 -2980 ((-112) $ $)) (-15 -3004 ((-112) $ $)) (-15 -2993 ((-112) $ $)) (-15 -3002 ($ $ $)) (-15 -1365 ($ $ $))))
(((-102) . T) ((-614 (-863)) . T) ((-1102) . T))
-((-2336 (($ $ $) 49)) (-2210 (($ $ $) 48)) (-2785 (($ $ $) 46)) (-2680 (($ $ $) 55)) (-3037 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) 50)) (-2080 (((-3 $ "failed") $ $) 53)) (-3753 (((-3 (-567) "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 |#2| "failed") $) 29)) (-3501 (($ $) 39)) (-1778 (($ $ $) 43)) (-3683 (($ $ $) 42)) (-1739 (($ $ $) 51)) (-3053 (($ $ $) 57)) (-2285 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) 45)) (-2446 (((-3 $ "failed") $ $) 52)) (-2391 (((-3 $ "failed") $ |#2|) 32)) (-4358 ((|#2| $) 36)) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ (-410 (-567))) NIL) (($ |#2|) 13)) (-3032 (((-645 |#2|) $) 21)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 25)))
-(((-852 |#1| |#2|) (-10 -8 (-15 -1739 (|#1| |#1| |#1|)) (-15 -3037 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1398 |#1|)) |#1| |#1|)) (-15 -2680 (|#1| |#1| |#1|)) (-15 -2080 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2336 (|#1| |#1| |#1|)) (-15 -2210 (|#1| |#1| |#1|)) (-15 -2785 (|#1| |#1| |#1|)) (-15 -2285 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1398 |#1|)) |#1| |#1|)) (-15 -3053 (|#1| |#1| |#1|)) (-15 -2446 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1778 (|#1| |#1| |#1|)) (-15 -3683 (|#1| |#1| |#1|)) (-15 -3501 (|#1| |#1|)) (-15 -4358 (|#2| |#1|)) (-15 -2391 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3032 ((-645 |#2|) |#1|)) (-15 -4132 (|#1| |#2|)) (-15 -3753 ((-3 |#2| "failed") |#1|)) (-15 -3753 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -4132 (|#1| (-410 (-567)))) (-15 -3753 ((-3 (-567) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4132 (|#1| (-567))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-923) |#1|)) (-15 -4132 ((-863) |#1|))) (-853 |#2|) (-1051)) (T -852))
+((-3113 (($ $ $) 49)) (-2912 (($ $ $) 48)) (-3215 (($ $ $) 46)) (-4259 (($ $ $) 55)) (-3762 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) 50)) (-4394 (((-3 $ "failed") $ $) 53)) (-3765 (((-3 (-567) "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 |#2| "failed") $) 29)) (-2989 (($ $) 39)) (-1651 (($ $ $) 43)) (-2710 (($ $ $) 42)) (-4099 (($ $ $) 51)) (-2521 (($ $ $) 57)) (-4318 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) 45)) (-2012 (((-3 $ "failed") $ $) 52)) (-2400 (((-3 $ "failed") $ |#2|) 32)) (-1849 ((|#2| $) 36)) (-4129 (((-863) $) NIL) (($ (-567)) NIL) (($ (-410 (-567))) NIL) (($ |#2|) 13)) (-3601 (((-645 |#2|) $) 21)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 25)))
+(((-852 |#1| |#2|) (-10 -8 (-15 -4099 (|#1| |#1| |#1|)) (-15 -3762 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1399 |#1|)) |#1| |#1|)) (-15 -4259 (|#1| |#1| |#1|)) (-15 -4394 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3113 (|#1| |#1| |#1|)) (-15 -2912 (|#1| |#1| |#1|)) (-15 -3215 (|#1| |#1| |#1|)) (-15 -4318 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1399 |#1|)) |#1| |#1|)) (-15 -2521 (|#1| |#1| |#1|)) (-15 -2012 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1651 (|#1| |#1| |#1|)) (-15 -2710 (|#1| |#1| |#1|)) (-15 -2989 (|#1| |#1|)) (-15 -1849 (|#2| |#1|)) (-15 -2400 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3601 ((-645 |#2|) |#1|)) (-15 -4129 (|#1| |#2|)) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -3765 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -4129 (|#1| (-410 (-567)))) (-15 -3765 ((-3 (-567) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4129 (|#1| (-567))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-923) |#1|)) (-15 -4129 ((-863) |#1|))) (-853 |#2|) (-1051)) (T -852))
NIL
-(-10 -8 (-15 -1739 (|#1| |#1| |#1|)) (-15 -3037 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1398 |#1|)) |#1| |#1|)) (-15 -2680 (|#1| |#1| |#1|)) (-15 -2080 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2336 (|#1| |#1| |#1|)) (-15 -2210 (|#1| |#1| |#1|)) (-15 -2785 (|#1| |#1| |#1|)) (-15 -2285 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1398 |#1|)) |#1| |#1|)) (-15 -3053 (|#1| |#1| |#1|)) (-15 -2446 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1778 (|#1| |#1| |#1|)) (-15 -3683 (|#1| |#1| |#1|)) (-15 -3501 (|#1| |#1|)) (-15 -4358 (|#2| |#1|)) (-15 -2391 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3032 ((-645 |#2|) |#1|)) (-15 -4132 (|#1| |#2|)) (-15 -3753 ((-3 |#2| "failed") |#1|)) (-15 -3753 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -4132 (|#1| (-410 (-567)))) (-15 -3753 ((-3 (-567) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4132 (|#1| (-567))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-923) |#1|)) (-15 -4132 ((-863) |#1|)))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-2336 (($ $ $) 50 (|has| |#1| (-365)))) (-2210 (($ $ $) 51 (|has| |#1| (-365)))) (-2785 (($ $ $) 53 (|has| |#1| (-365)))) (-2680 (($ $ $) 48 (|has| |#1| (-365)))) (-3037 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) 47 (|has| |#1| (-365)))) (-2080 (((-3 $ "failed") $ $) 49 (|has| |#1| (-365)))) (-3327 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 52 (|has| |#1| (-365)))) (-3753 (((-3 (-567) "failed") $) 80 (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) 77 (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) 74)) (-2038 (((-567) $) 79 (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) 76 (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) 75)) (-3014 (($ $) 69)) (-2109 (((-3 $ "failed") $) 37)) (-3501 (($ $) 60 (|has| |#1| (-455)))) (-1433 (((-112) $) 35)) (-2824 (($ |#1| (-772)) 67)) (-1701 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 62 (|has| |#1| (-559)))) (-1624 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 63 (|has| |#1| (-559)))) (-2656 (((-772) $) 71)) (-1778 (($ $ $) 57 (|has| |#1| (-365)))) (-3683 (($ $ $) 58 (|has| |#1| (-365)))) (-1739 (($ $ $) 46 (|has| |#1| (-365)))) (-3053 (($ $ $) 55 (|has| |#1| (-365)))) (-2285 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) 54 (|has| |#1| (-365)))) (-2446 (((-3 $ "failed") $ $) 56 (|has| |#1| (-365)))) (-2720 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 59 (|has| |#1| (-365)))) (-2989 ((|#1| $) 70)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-2391 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-559)))) (-3077 (((-772) $) 72)) (-4358 ((|#1| $) 61 (|has| |#1| (-455)))) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ (-410 (-567))) 78 (|has| |#1| (-1040 (-410 (-567))))) (($ |#1|) 73)) (-3032 (((-645 |#1|) $) 66)) (-4136 ((|#1| $ (-772)) 68)) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-2355 ((|#1| $ |#1| |#1|) 65)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81)))
+(-10 -8 (-15 -4099 (|#1| |#1| |#1|)) (-15 -3762 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1399 |#1|)) |#1| |#1|)) (-15 -4259 (|#1| |#1| |#1|)) (-15 -4394 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3113 (|#1| |#1| |#1|)) (-15 -2912 (|#1| |#1| |#1|)) (-15 -3215 (|#1| |#1| |#1|)) (-15 -4318 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1399 |#1|)) |#1| |#1|)) (-15 -2521 (|#1| |#1| |#1|)) (-15 -2012 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1651 (|#1| |#1| |#1|)) (-15 -2710 (|#1| |#1| |#1|)) (-15 -2989 (|#1| |#1|)) (-15 -1849 (|#2| |#1|)) (-15 -2400 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3601 ((-645 |#2|) |#1|)) (-15 -4129 (|#1| |#2|)) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -3765 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -4129 (|#1| (-410 (-567)))) (-15 -3765 ((-3 (-567) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4129 (|#1| (-567))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-923) |#1|)) (-15 -4129 ((-863) |#1|)))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-2376 (((-3 $ "failed") $ $) 20)) (-3647 (($) 18 T CONST)) (-3113 (($ $ $) 50 (|has| |#1| (-365)))) (-2912 (($ $ $) 51 (|has| |#1| (-365)))) (-3215 (($ $ $) 53 (|has| |#1| (-365)))) (-4259 (($ $ $) 48 (|has| |#1| (-365)))) (-3762 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) 47 (|has| |#1| (-365)))) (-4394 (((-3 $ "failed") $ $) 49 (|has| |#1| (-365)))) (-2275 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) 52 (|has| |#1| (-365)))) (-3765 (((-3 (-567) "failed") $) 80 (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) 77 (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) 74)) (-2051 (((-567) $) 79 (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) 76 (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) 75)) (-3023 (($ $) 69)) (-3588 (((-3 $ "failed") $) 37)) (-2989 (($ $) 60 (|has| |#1| (-455)))) (-4346 (((-112) $) 35)) (-2836 (($ |#1| (-772)) 67)) (-3371 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) 62 (|has| |#1| (-559)))) (-3036 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) 63 (|has| |#1| (-559)))) (-2955 (((-772) $) 71)) (-1651 (($ $ $) 57 (|has| |#1| (-365)))) (-2710 (($ $ $) 58 (|has| |#1| (-365)))) (-4099 (($ $ $) 46 (|has| |#1| (-365)))) (-2521 (($ $ $) 55 (|has| |#1| (-365)))) (-4318 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) 54 (|has| |#1| (-365)))) (-2012 (((-3 $ "failed") $ $) 56 (|has| |#1| (-365)))) (-4333 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) 59 (|has| |#1| (-365)))) (-2996 ((|#1| $) 70)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-2400 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-559)))) (-3104 (((-772) $) 72)) (-1849 ((|#1| $) 61 (|has| |#1| (-455)))) (-4129 (((-863) $) 12) (($ (-567)) 33) (($ (-410 (-567))) 78 (|has| |#1| (-1040 (-410 (-567))))) (($ |#1|) 73)) (-3601 (((-645 |#1|) $) 66)) (-2558 ((|#1| $ (-772)) 68)) (-2746 (((-772)) 32 T CONST)) (-3357 (((-112) $ $) 9)) (-2364 ((|#1| $ |#1| |#1|) 65)) (-1733 (($) 19 T CONST)) (-1744 (($) 34 T CONST)) (-2946 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81)))
(((-853 |#1|) (-140) (-1051)) (T -853))
-((-3077 (*1 *2 *1) (-12 (-4 *1 (-853 *3)) (-4 *3 (-1051)) (-5 *2 (-772)))) (-2656 (*1 *2 *1) (-12 (-4 *1 (-853 *3)) (-4 *3 (-1051)) (-5 *2 (-772)))) (-2989 (*1 *2 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)))) (-3014 (*1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)))) (-4136 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-4 *1 (-853 *2)) (-4 *2 (-1051)))) (-2824 (*1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-853 *2)) (-4 *2 (-1051)))) (-3032 (*1 *2 *1) (-12 (-4 *1 (-853 *3)) (-4 *3 (-1051)) (-5 *2 (-645 *3)))) (-2355 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)))) (-2391 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-559)))) (-1624 (*1 *2 *1 *1) (-12 (-4 *3 (-559)) (-4 *3 (-1051)) (-5 *2 (-2 (|:| -3102 *1) (|:| -4194 *1))) (-4 *1 (-853 *3)))) (-1701 (*1 *2 *1 *1) (-12 (-4 *3 (-559)) (-4 *3 (-1051)) (-5 *2 (-2 (|:| -3102 *1) (|:| -4194 *1))) (-4 *1 (-853 *3)))) (-4358 (*1 *2 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-455)))) (-3501 (*1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-455)))) (-2720 (*1 *2 *1 *1) (-12 (-4 *3 (-365)) (-4 *3 (-1051)) (-5 *2 (-2 (|:| -3102 *1) (|:| -4194 *1))) (-4 *1 (-853 *3)))) (-3683 (*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))) (-1778 (*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))) (-2446 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))) (-3053 (*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))) (-2285 (*1 *2 *1 *1) (-12 (-4 *3 (-365)) (-4 *3 (-1051)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1398 *1))) (-4 *1 (-853 *3)))) (-2785 (*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))) (-3327 (*1 *2 *1 *1) (-12 (-4 *3 (-365)) (-4 *3 (-1051)) (-5 *2 (-2 (|:| -3102 *1) (|:| -4194 *1))) (-4 *1 (-853 *3)))) (-2210 (*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))) (-2336 (*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))) (-2080 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))) (-2680 (*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))) (-3037 (*1 *2 *1 *1) (-12 (-4 *3 (-365)) (-4 *3 (-1051)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1398 *1))) (-4 *1 (-853 *3)))) (-1739 (*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))))
-(-13 (-1051) (-111 |t#1| |t#1|) (-414 |t#1|) (-10 -8 (-15 -3077 ((-772) $)) (-15 -2656 ((-772) $)) (-15 -2989 (|t#1| $)) (-15 -3014 ($ $)) (-15 -4136 (|t#1| $ (-772))) (-15 -2824 ($ |t#1| (-772))) (-15 -3032 ((-645 |t#1|) $)) (-15 -2355 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-559)) (PROGN (-15 -2391 ((-3 $ "failed") $ |t#1|)) (-15 -1624 ((-2 (|:| -3102 $) (|:| -4194 $)) $ $)) (-15 -1701 ((-2 (|:| -3102 $) (|:| -4194 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-455)) (PROGN (-15 -4358 (|t#1| $)) (-15 -3501 ($ $))) |%noBranch|) (IF (|has| |t#1| (-365)) (PROGN (-15 -2720 ((-2 (|:| -3102 $) (|:| -4194 $)) $ $)) (-15 -3683 ($ $ $)) (-15 -1778 ($ $ $)) (-15 -2446 ((-3 $ "failed") $ $)) (-15 -3053 ($ $ $)) (-15 -2285 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $)) (-15 -2785 ($ $ $)) (-15 -3327 ((-2 (|:| -3102 $) (|:| -4194 $)) $ $)) (-15 -2210 ($ $ $)) (-15 -2336 ($ $ $)) (-15 -2080 ((-3 $ "failed") $ $)) (-15 -2680 ($ $ $)) (-15 -3037 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $)) (-15 -1739 ($ $ $))) |%noBranch|)))
+((-3104 (*1 *2 *1) (-12 (-4 *1 (-853 *3)) (-4 *3 (-1051)) (-5 *2 (-772)))) (-2955 (*1 *2 *1) (-12 (-4 *1 (-853 *3)) (-4 *3 (-1051)) (-5 *2 (-772)))) (-2996 (*1 *2 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)))) (-3023 (*1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)))) (-2558 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-4 *1 (-853 *2)) (-4 *2 (-1051)))) (-2836 (*1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-853 *2)) (-4 *2 (-1051)))) (-3601 (*1 *2 *1) (-12 (-4 *1 (-853 *3)) (-4 *3 (-1051)) (-5 *2 (-645 *3)))) (-2364 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)))) (-2400 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-559)))) (-3036 (*1 *2 *1 *1) (-12 (-4 *3 (-559)) (-4 *3 (-1051)) (-5 *2 (-2 (|:| -2654 *1) (|:| -2023 *1))) (-4 *1 (-853 *3)))) (-3371 (*1 *2 *1 *1) (-12 (-4 *3 (-559)) (-4 *3 (-1051)) (-5 *2 (-2 (|:| -2654 *1) (|:| -2023 *1))) (-4 *1 (-853 *3)))) (-1849 (*1 *2 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-455)))) (-2989 (*1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-455)))) (-4333 (*1 *2 *1 *1) (-12 (-4 *3 (-365)) (-4 *3 (-1051)) (-5 *2 (-2 (|:| -2654 *1) (|:| -2023 *1))) (-4 *1 (-853 *3)))) (-2710 (*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))) (-1651 (*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))) (-2012 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))) (-2521 (*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))) (-4318 (*1 *2 *1 *1) (-12 (-4 *3 (-365)) (-4 *3 (-1051)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1399 *1))) (-4 *1 (-853 *3)))) (-3215 (*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))) (-2275 (*1 *2 *1 *1) (-12 (-4 *3 (-365)) (-4 *3 (-1051)) (-5 *2 (-2 (|:| -2654 *1) (|:| -2023 *1))) (-4 *1 (-853 *3)))) (-2912 (*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))) (-3113 (*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))) (-4394 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))) (-4259 (*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))) (-3762 (*1 *2 *1 *1) (-12 (-4 *3 (-365)) (-4 *3 (-1051)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1399 *1))) (-4 *1 (-853 *3)))) (-4099 (*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))))
+(-13 (-1051) (-111 |t#1| |t#1|) (-414 |t#1|) (-10 -8 (-15 -3104 ((-772) $)) (-15 -2955 ((-772) $)) (-15 -2996 (|t#1| $)) (-15 -3023 ($ $)) (-15 -2558 (|t#1| $ (-772))) (-15 -2836 ($ |t#1| (-772))) (-15 -3601 ((-645 |t#1|) $)) (-15 -2364 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-559)) (PROGN (-15 -2400 ((-3 $ "failed") $ |t#1|)) (-15 -3036 ((-2 (|:| -2654 $) (|:| -2023 $)) $ $)) (-15 -3371 ((-2 (|:| -2654 $) (|:| -2023 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-455)) (PROGN (-15 -1849 (|t#1| $)) (-15 -2989 ($ $))) |%noBranch|) (IF (|has| |t#1| (-365)) (PROGN (-15 -4333 ((-2 (|:| -2654 $) (|:| -2023 $)) $ $)) (-15 -2710 ($ $ $)) (-15 -1651 ($ $ $)) (-15 -2012 ((-3 $ "failed") $ $)) (-15 -2521 ($ $ $)) (-15 -4318 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $)) (-15 -3215 ($ $ $)) (-15 -2275 ((-2 (|:| -2654 $) (|:| -2023 $)) $ $)) (-15 -2912 ($ $ $)) (-15 -3113 ($ $ $)) (-15 -4394 ((-3 $ "failed") $ $)) (-15 -4259 ($ $ $)) (-15 -3762 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $)) (-15 -4099 ($ $ $))) |%noBranch|)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-617 #0=(-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-614 (-863)) . T) ((-414 |#1|) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-641 |#1|) |has| |#1| (-172)) ((-718 |#1|) |has| |#1| (-172)) ((-727) . T) ((-1040 #0#) |has| |#1| (-1040 (-410 (-567)))) ((-1040 (-567)) |has| |#1| (-1040 (-567))) ((-1040 |#1|) . T) ((-1053 |#1|) . T) ((-1058 |#1|) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T))
-((-2243 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20)) (-3327 (((-2 (|:| -3102 |#2|) (|:| -4194 |#2|)) |#2| |#2| (-99 |#1|)) 49 (|has| |#1| (-365)))) (-1701 (((-2 (|:| -3102 |#2|) (|:| -4194 |#2|)) |#2| |#2| (-99 |#1|)) 46 (|has| |#1| (-559)))) (-1624 (((-2 (|:| -3102 |#2|) (|:| -4194 |#2|)) |#2| |#2| (-99 |#1|)) 45 (|has| |#1| (-559)))) (-2720 (((-2 (|:| -3102 |#2|) (|:| -4194 |#2|)) |#2| |#2| (-99 |#1|)) 48 (|has| |#1| (-365)))) (-2355 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 36)))
-(((-854 |#1| |#2|) (-10 -7 (-15 -2243 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -2355 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-559)) (PROGN (-15 -1624 ((-2 (|:| -3102 |#2|) (|:| -4194 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -1701 ((-2 (|:| -3102 |#2|) (|:| -4194 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -2720 ((-2 (|:| -3102 |#2|) (|:| -4194 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3327 ((-2 (|:| -3102 |#2|) (|:| -4194 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1051) (-853 |#1|)) (T -854))
-((-3327 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-365)) (-4 *5 (-1051)) (-5 *2 (-2 (|:| -3102 *3) (|:| -4194 *3))) (-5 *1 (-854 *5 *3)) (-4 *3 (-853 *5)))) (-2720 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-365)) (-4 *5 (-1051)) (-5 *2 (-2 (|:| -3102 *3) (|:| -4194 *3))) (-5 *1 (-854 *5 *3)) (-4 *3 (-853 *5)))) (-1701 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-559)) (-4 *5 (-1051)) (-5 *2 (-2 (|:| -3102 *3) (|:| -4194 *3))) (-5 *1 (-854 *5 *3)) (-4 *3 (-853 *5)))) (-1624 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-559)) (-4 *5 (-1051)) (-5 *2 (-2 (|:| -3102 *3) (|:| -4194 *3))) (-5 *1 (-854 *5 *3)) (-4 *3 (-853 *5)))) (-2355 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1051)) (-5 *1 (-854 *2 *3)) (-4 *3 (-853 *2)))) (-2243 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1051)) (-5 *1 (-854 *5 *2)) (-4 *2 (-853 *5)))))
-(-10 -7 (-15 -2243 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -2355 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-559)) (PROGN (-15 -1624 ((-2 (|:| -3102 |#2|) (|:| -4194 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -1701 ((-2 (|:| -3102 |#2|) (|:| -4194 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -2720 ((-2 (|:| -3102 |#2|) (|:| -4194 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3327 ((-2 (|:| -3102 |#2|) (|:| -4194 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2585 (($) NIL T CONST)) (-2336 (($ $ $) NIL (|has| |#1| (-365)))) (-2210 (($ $ $) NIL (|has| |#1| (-365)))) (-2785 (($ $ $) NIL (|has| |#1| (-365)))) (-2680 (($ $ $) NIL (|has| |#1| (-365)))) (-3037 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL (|has| |#1| (-365)))) (-2080 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-3327 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 34 (|has| |#1| (-365)))) (-3753 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) NIL)) (-2038 (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) NIL)) (-3014 (($ $) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-3501 (($ $) NIL (|has| |#1| (-455)))) (-2570 (((-863) $ (-863)) NIL)) (-1433 (((-112) $) NIL)) (-2824 (($ |#1| (-772)) NIL)) (-1701 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 30 (|has| |#1| (-559)))) (-1624 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 28 (|has| |#1| (-559)))) (-2656 (((-772) $) NIL)) (-1778 (($ $ $) NIL (|has| |#1| (-365)))) (-3683 (($ $ $) NIL (|has| |#1| (-365)))) (-1739 (($ $ $) NIL (|has| |#1| (-365)))) (-3053 (($ $ $) NIL (|has| |#1| (-365)))) (-2285 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL (|has| |#1| (-365)))) (-2446 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-2720 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 32 (|has| |#1| (-365)))) (-2989 ((|#1| $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-2391 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559)))) (-3077 (((-772) $) NIL)) (-4358 ((|#1| $) NIL (|has| |#1| (-455)))) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ (-410 (-567))) NIL (|has| |#1| (-1040 (-410 (-567))))) (($ |#1|) NIL)) (-3032 (((-645 |#1|) $) NIL)) (-4136 ((|#1| $ (-772)) NIL)) (-4221 (((-772)) NIL T CONST)) (-1745 (((-112) $ $) NIL)) (-2355 ((|#1| $ |#1| |#1|) 15)) (-1716 (($) NIL T CONST)) (-1728 (($) 23 T CONST)) (-2936 (((-112) $ $) NIL)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) 19) (($ $ (-772)) 24)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-855 |#1| |#2| |#3|) (-13 (-853 |#1|) (-10 -8 (-15 -2570 ((-863) $ (-863))))) (-1051) (-99 |#1|) (-1 |#1| |#1|)) (T -855))
-((-2570 (*1 *2 *1 *2) (-12 (-5 *2 (-863)) (-5 *1 (-855 *3 *4 *5)) (-4 *3 (-1051)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3)))))
-(-13 (-853 |#1|) (-10 -8 (-15 -2570 ((-863) $ (-863)))))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2585 (($) NIL T CONST)) (-2336 (($ $ $) NIL (|has| |#2| (-365)))) (-2210 (($ $ $) NIL (|has| |#2| (-365)))) (-2785 (($ $ $) NIL (|has| |#2| (-365)))) (-2680 (($ $ $) NIL (|has| |#2| (-365)))) (-3037 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL (|has| |#2| (-365)))) (-2080 (((-3 $ "failed") $ $) NIL (|has| |#2| (-365)))) (-3327 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL (|has| |#2| (-365)))) (-3753 (((-3 (-567) "failed") $) NIL (|has| |#2| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#2| (-1040 (-410 (-567))))) (((-3 |#2| "failed") $) NIL)) (-2038 (((-567) $) NIL (|has| |#2| (-1040 (-567)))) (((-410 (-567)) $) NIL (|has| |#2| (-1040 (-410 (-567))))) ((|#2| $) NIL)) (-3014 (($ $) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-3501 (($ $) NIL (|has| |#2| (-455)))) (-1433 (((-112) $) NIL)) (-2824 (($ |#2| (-772)) 17)) (-1701 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL (|has| |#2| (-559)))) (-1624 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL (|has| |#2| (-559)))) (-2656 (((-772) $) NIL)) (-1778 (($ $ $) NIL (|has| |#2| (-365)))) (-3683 (($ $ $) NIL (|has| |#2| (-365)))) (-1739 (($ $ $) NIL (|has| |#2| (-365)))) (-3053 (($ $ $) NIL (|has| |#2| (-365)))) (-2285 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL (|has| |#2| (-365)))) (-2446 (((-3 $ "failed") $ $) NIL (|has| |#2| (-365)))) (-2720 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL (|has| |#2| (-365)))) (-2989 ((|#2| $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-2391 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-559)))) (-3077 (((-772) $) NIL)) (-4358 ((|#2| $) NIL (|has| |#2| (-455)))) (-4132 (((-863) $) 24) (($ (-567)) NIL) (($ (-410 (-567))) NIL (|has| |#2| (-1040 (-410 (-567))))) (($ |#2|) NIL) (($ (-1264 |#1|)) 19)) (-3032 (((-645 |#2|) $) NIL)) (-4136 ((|#2| $ (-772)) NIL)) (-4221 (((-772)) NIL T CONST)) (-1745 (((-112) $ $) NIL)) (-2355 ((|#2| $ |#2| |#2|) NIL)) (-1716 (($) NIL T CONST)) (-1728 (($) 13 T CONST)) (-2936 (((-112) $ $) NIL)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-856 |#1| |#2| |#3| |#4|) (-13 (-853 |#2|) (-617 (-1264 |#1|))) (-1178) (-1051) (-99 |#2|) (-1 |#2| |#2|)) (T -856))
-NIL
-(-13 (-853 |#2|) (-617 (-1264 |#1|)))
-((-3772 ((|#1| (-772) |#1|) 48 (|has| |#1| (-38 (-410 (-567)))))) (-3684 ((|#1| (-772) (-772) |#1|) 39) ((|#1| (-772) |#1|) 27)) (-3008 ((|#1| (-772) |#1|) 43)) (-2773 ((|#1| (-772) |#1|) 41)) (-2489 ((|#1| (-772) |#1|) 40)))
-(((-857 |#1|) (-10 -7 (-15 -2489 (|#1| (-772) |#1|)) (-15 -2773 (|#1| (-772) |#1|)) (-15 -3008 (|#1| (-772) |#1|)) (-15 -3684 (|#1| (-772) |#1|)) (-15 -3684 (|#1| (-772) (-772) |#1|)) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -3772 (|#1| (-772) |#1|)) |%noBranch|)) (-172)) (T -857))
-((-3772 (*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-857 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-172)))) (-3684 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-857 *2)) (-4 *2 (-172)))) (-3684 (*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-857 *2)) (-4 *2 (-172)))) (-3008 (*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-857 *2)) (-4 *2 (-172)))) (-2773 (*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-857 *2)) (-4 *2 (-172)))) (-2489 (*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-857 *2)) (-4 *2 (-172)))))
-(-10 -7 (-15 -2489 (|#1| (-772) |#1|)) (-15 -2773 (|#1| (-772) |#1|)) (-15 -3008 (|#1| (-772) |#1|)) (-15 -3684 (|#1| (-772) |#1|)) (-15 -3684 (|#1| (-772) (-772) |#1|)) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -3772 (|#1| (-772) |#1|)) |%noBranch|))
-((-2403 (((-112) $ $) 7)) (-1354 (($ $ $) 14)) (-2981 (($ $ $) 15)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-2997 (((-112) $ $) 17)) (-2971 (((-112) $ $) 18)) (-2936 (((-112) $ $) 6)) (-2984 (((-112) $ $) 16)) (-2958 (((-112) $ $) 19)) (** (($ $ (-923)) 22)) (* (($ $ $) 21)))
+((-2251 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20)) (-2275 (((-2 (|:| -2654 |#2|) (|:| -2023 |#2|)) |#2| |#2| (-99 |#1|)) 49 (|has| |#1| (-365)))) (-3371 (((-2 (|:| -2654 |#2|) (|:| -2023 |#2|)) |#2| |#2| (-99 |#1|)) 46 (|has| |#1| (-559)))) (-3036 (((-2 (|:| -2654 |#2|) (|:| -2023 |#2|)) |#2| |#2| (-99 |#1|)) 45 (|has| |#1| (-559)))) (-4333 (((-2 (|:| -2654 |#2|) (|:| -2023 |#2|)) |#2| |#2| (-99 |#1|)) 48 (|has| |#1| (-365)))) (-2364 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 36)))
+(((-854 |#1| |#2|) (-10 -7 (-15 -2251 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -2364 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-559)) (PROGN (-15 -3036 ((-2 (|:| -2654 |#2|) (|:| -2023 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3371 ((-2 (|:| -2654 |#2|) (|:| -2023 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -4333 ((-2 (|:| -2654 |#2|) (|:| -2023 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2275 ((-2 (|:| -2654 |#2|) (|:| -2023 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1051) (-853 |#1|)) (T -854))
+((-2275 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-365)) (-4 *5 (-1051)) (-5 *2 (-2 (|:| -2654 *3) (|:| -2023 *3))) (-5 *1 (-854 *5 *3)) (-4 *3 (-853 *5)))) (-4333 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-365)) (-4 *5 (-1051)) (-5 *2 (-2 (|:| -2654 *3) (|:| -2023 *3))) (-5 *1 (-854 *5 *3)) (-4 *3 (-853 *5)))) (-3371 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-559)) (-4 *5 (-1051)) (-5 *2 (-2 (|:| -2654 *3) (|:| -2023 *3))) (-5 *1 (-854 *5 *3)) (-4 *3 (-853 *5)))) (-3036 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-559)) (-4 *5 (-1051)) (-5 *2 (-2 (|:| -2654 *3) (|:| -2023 *3))) (-5 *1 (-854 *5 *3)) (-4 *3 (-853 *5)))) (-2364 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1051)) (-5 *1 (-854 *2 *3)) (-4 *3 (-853 *2)))) (-2251 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1051)) (-5 *1 (-854 *5 *2)) (-4 *2 (-853 *5)))))
+(-10 -7 (-15 -2251 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -2364 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-559)) (PROGN (-15 -3036 ((-2 (|:| -2654 |#2|) (|:| -2023 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3371 ((-2 (|:| -2654 |#2|) (|:| -2023 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -4333 ((-2 (|:| -2654 |#2|) (|:| -2023 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2275 ((-2 (|:| -2654 |#2|) (|:| -2023 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-2376 (((-3 $ "failed") $ $) NIL)) (-3647 (($) NIL T CONST)) (-3113 (($ $ $) NIL (|has| |#1| (-365)))) (-2912 (($ $ $) NIL (|has| |#1| (-365)))) (-3215 (($ $ $) NIL (|has| |#1| (-365)))) (-4259 (($ $ $) NIL (|has| |#1| (-365)))) (-3762 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) NIL (|has| |#1| (-365)))) (-4394 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-2275 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) 34 (|has| |#1| (-365)))) (-3765 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) NIL)) (-2051 (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) NIL)) (-3023 (($ $) NIL)) (-3588 (((-3 $ "failed") $) NIL)) (-2989 (($ $) NIL (|has| |#1| (-455)))) (-2417 (((-863) $ (-863)) NIL)) (-4346 (((-112) $) NIL)) (-2836 (($ |#1| (-772)) NIL)) (-3371 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) 30 (|has| |#1| (-559)))) (-3036 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) 28 (|has| |#1| (-559)))) (-2955 (((-772) $) NIL)) (-1651 (($ $ $) NIL (|has| |#1| (-365)))) (-2710 (($ $ $) NIL (|has| |#1| (-365)))) (-4099 (($ $ $) NIL (|has| |#1| (-365)))) (-2521 (($ $ $) NIL (|has| |#1| (-365)))) (-4318 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) NIL (|has| |#1| (-365)))) (-2012 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-4333 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) 32 (|has| |#1| (-365)))) (-2996 ((|#1| $) NIL)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-2400 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559)))) (-3104 (((-772) $) NIL)) (-1849 ((|#1| $) NIL (|has| |#1| (-455)))) (-4129 (((-863) $) NIL) (($ (-567)) NIL) (($ (-410 (-567))) NIL (|has| |#1| (-1040 (-410 (-567))))) (($ |#1|) NIL)) (-3601 (((-645 |#1|) $) NIL)) (-2558 ((|#1| $ (-772)) NIL)) (-2746 (((-772)) NIL T CONST)) (-3357 (((-112) $ $) NIL)) (-2364 ((|#1| $ |#1| |#1|) 15)) (-1733 (($) NIL T CONST)) (-1744 (($) 23 T CONST)) (-2946 (((-112) $ $) NIL)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-923)) 19) (($ $ (-772)) 24)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-855 |#1| |#2| |#3|) (-13 (-853 |#1|) (-10 -8 (-15 -2417 ((-863) $ (-863))))) (-1051) (-99 |#1|) (-1 |#1| |#1|)) (T -855))
+((-2417 (*1 *2 *1 *2) (-12 (-5 *2 (-863)) (-5 *1 (-855 *3 *4 *5)) (-4 *3 (-1051)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3)))))
+(-13 (-853 |#1|) (-10 -8 (-15 -2417 ((-863) $ (-863)))))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-2376 (((-3 $ "failed") $ $) NIL)) (-3647 (($) NIL T CONST)) (-3113 (($ $ $) NIL (|has| |#2| (-365)))) (-2912 (($ $ $) NIL (|has| |#2| (-365)))) (-3215 (($ $ $) NIL (|has| |#2| (-365)))) (-4259 (($ $ $) NIL (|has| |#2| (-365)))) (-3762 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) NIL (|has| |#2| (-365)))) (-4394 (((-3 $ "failed") $ $) NIL (|has| |#2| (-365)))) (-2275 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) NIL (|has| |#2| (-365)))) (-3765 (((-3 (-567) "failed") $) NIL (|has| |#2| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#2| (-1040 (-410 (-567))))) (((-3 |#2| "failed") $) NIL)) (-2051 (((-567) $) NIL (|has| |#2| (-1040 (-567)))) (((-410 (-567)) $) NIL (|has| |#2| (-1040 (-410 (-567))))) ((|#2| $) NIL)) (-3023 (($ $) NIL)) (-3588 (((-3 $ "failed") $) NIL)) (-2989 (($ $) NIL (|has| |#2| (-455)))) (-4346 (((-112) $) NIL)) (-2836 (($ |#2| (-772)) 17)) (-3371 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) NIL (|has| |#2| (-559)))) (-3036 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) NIL (|has| |#2| (-559)))) (-2955 (((-772) $) NIL)) (-1651 (($ $ $) NIL (|has| |#2| (-365)))) (-2710 (($ $ $) NIL (|has| |#2| (-365)))) (-4099 (($ $ $) NIL (|has| |#2| (-365)))) (-2521 (($ $ $) NIL (|has| |#2| (-365)))) (-4318 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) NIL (|has| |#2| (-365)))) (-2012 (((-3 $ "failed") $ $) NIL (|has| |#2| (-365)))) (-4333 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) NIL (|has| |#2| (-365)))) (-2996 ((|#2| $) NIL)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-2400 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-559)))) (-3104 (((-772) $) NIL)) (-1849 ((|#2| $) NIL (|has| |#2| (-455)))) (-4129 (((-863) $) 24) (($ (-567)) NIL) (($ (-410 (-567))) NIL (|has| |#2| (-1040 (-410 (-567))))) (($ |#2|) NIL) (($ (-1265 |#1|)) 19)) (-3601 (((-645 |#2|) $) NIL)) (-2558 ((|#2| $ (-772)) NIL)) (-2746 (((-772)) NIL T CONST)) (-3357 (((-112) $ $) NIL)) (-2364 ((|#2| $ |#2| |#2|) NIL)) (-1733 (($) NIL T CONST)) (-1744 (($) 13 T CONST)) (-2946 (((-112) $ $) NIL)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-856 |#1| |#2| |#3| |#4|) (-13 (-853 |#2|) (-617 (-1265 |#1|))) (-1179) (-1051) (-99 |#2|) (-1 |#2| |#2|)) (T -856))
+NIL
+(-13 (-853 |#2|) (-617 (-1265 |#1|)))
+((-3526 ((|#1| (-772) |#1|) 48 (|has| |#1| (-38 (-410 (-567)))))) (-2809 ((|#1| (-772) (-772) |#1|) 39) ((|#1| (-772) |#1|) 27)) (-2853 ((|#1| (-772) |#1|) 43)) (-1635 ((|#1| (-772) |#1|) 41)) (-1560 ((|#1| (-772) |#1|) 40)))
+(((-857 |#1|) (-10 -7 (-15 -1560 (|#1| (-772) |#1|)) (-15 -1635 (|#1| (-772) |#1|)) (-15 -2853 (|#1| (-772) |#1|)) (-15 -2809 (|#1| (-772) |#1|)) (-15 -2809 (|#1| (-772) (-772) |#1|)) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -3526 (|#1| (-772) |#1|)) |%noBranch|)) (-172)) (T -857))
+((-3526 (*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-857 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-172)))) (-2809 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-857 *2)) (-4 *2 (-172)))) (-2809 (*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-857 *2)) (-4 *2 (-172)))) (-2853 (*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-857 *2)) (-4 *2 (-172)))) (-1635 (*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-857 *2)) (-4 *2 (-172)))) (-1560 (*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-857 *2)) (-4 *2 (-172)))))
+(-10 -7 (-15 -1560 (|#1| (-772) |#1|)) (-15 -1635 (|#1| (-772) |#1|)) (-15 -2853 (|#1| (-772) |#1|)) (-15 -2809 (|#1| (-772) |#1|)) (-15 -2809 (|#1| (-772) (-772) |#1|)) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -3526 (|#1| (-772) |#1|)) |%noBranch|))
+((-2412 (((-112) $ $) 7)) (-1365 (($ $ $) 14)) (-3002 (($ $ $) 15)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-4129 (((-863) $) 12)) (-3357 (((-112) $ $) 9)) (-3004 (((-112) $ $) 17)) (-2980 (((-112) $ $) 18)) (-2946 (((-112) $ $) 6)) (-2993 (((-112) $ $) 16)) (-2968 (((-112) $ $) 19)) (** (($ $ (-923)) 22)) (* (($ $ $) 21)))
(((-858) (-140)) (T -858))
NIL
(-13 (-851) (-1114))
(((-102) . T) ((-614 (-863)) . T) ((-851) . T) ((-1114) . T) ((-1102) . T))
-((-2403 (((-112) $ $) NIL)) (-3802 (((-567) $) 14)) (-1354 (($ $ $) NIL)) (-2981 (($ $ $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 20) (($ (-567)) 13)) (-1745 (((-112) $ $) NIL)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 9)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) 11)))
-(((-859) (-13 (-851) (-10 -8 (-15 -4132 ($ (-567))) (-15 -3802 ((-567) $))))) (T -859))
-((-4132 (*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-859)))) (-3802 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-859)))))
-(-13 (-851) (-10 -8 (-15 -4132 ($ (-567))) (-15 -3802 ((-567) $))))
-((-3835 (((-692 (-1226)) $ (-1226)) 15)) (-2841 (((-692 (-552)) $ (-552)) 12)) (-3597 (((-772) $ (-128)) 30)))
-(((-860 |#1|) (-10 -8 (-15 -3597 ((-772) |#1| (-128))) (-15 -3835 ((-692 (-1226)) |#1| (-1226))) (-15 -2841 ((-692 (-552)) |#1| (-552)))) (-861)) (T -860))
-NIL
-(-10 -8 (-15 -3597 ((-772) |#1| (-128))) (-15 -3835 ((-692 (-1226)) |#1| (-1226))) (-15 -2841 ((-692 (-552)) |#1| (-552))))
-((-3835 (((-692 (-1226)) $ (-1226)) 8)) (-2841 (((-692 (-552)) $ (-552)) 9)) (-3597 (((-772) $ (-128)) 7)) (-3887 (((-692 (-129)) $ (-129)) 10)) (-1675 (($ $) 6)))
+((-2412 (((-112) $ $) NIL)) (-3812 (((-567) $) 14)) (-1365 (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) 20) (($ (-567)) 13)) (-3357 (((-112) $ $) NIL)) (-3004 (((-112) $ $) NIL)) (-2980 (((-112) $ $) NIL)) (-2946 (((-112) $ $) 9)) (-2993 (((-112) $ $) NIL)) (-2968 (((-112) $ $) 11)))
+(((-859) (-13 (-851) (-10 -8 (-15 -4129 ($ (-567))) (-15 -3812 ((-567) $))))) (T -859))
+((-4129 (*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-859)))) (-3812 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-859)))))
+(-13 (-851) (-10 -8 (-15 -4129 ($ (-567))) (-15 -3812 ((-567) $))))
+((-1695 (((-692 (-1227)) $ (-1227)) 15)) (-1741 (((-692 (-552)) $ (-552)) 12)) (-2487 (((-772) $ (-128)) 30)))
+(((-860 |#1|) (-10 -8 (-15 -2487 ((-772) |#1| (-128))) (-15 -1695 ((-692 (-1227)) |#1| (-1227))) (-15 -1741 ((-692 (-552)) |#1| (-552)))) (-861)) (T -860))
+NIL
+(-10 -8 (-15 -2487 ((-772) |#1| (-128))) (-15 -1695 ((-692 (-1227)) |#1| (-1227))) (-15 -1741 ((-692 (-552)) |#1| (-552))))
+((-1695 (((-692 (-1227)) $ (-1227)) 8)) (-1741 (((-692 (-552)) $ (-552)) 9)) (-2487 (((-772) $ (-128)) 7)) (-2061 (((-692 (-129)) $ (-129)) 10)) (-3034 (($ $) 6)))
(((-861) (-140)) (T -861))
-((-3887 (*1 *2 *1 *3) (-12 (-4 *1 (-861)) (-5 *2 (-692 (-129))) (-5 *3 (-129)))) (-2841 (*1 *2 *1 *3) (-12 (-4 *1 (-861)) (-5 *2 (-692 (-552))) (-5 *3 (-552)))) (-3835 (*1 *2 *1 *3) (-12 (-4 *1 (-861)) (-5 *2 (-692 (-1226))) (-5 *3 (-1226)))) (-3597 (*1 *2 *1 *3) (-12 (-4 *1 (-861)) (-5 *3 (-128)) (-5 *2 (-772)))))
-(-13 (-173) (-10 -8 (-15 -3887 ((-692 (-129)) $ (-129))) (-15 -2841 ((-692 (-552)) $ (-552))) (-15 -3835 ((-692 (-1226)) $ (-1226))) (-15 -3597 ((-772) $ (-128)))))
+((-2061 (*1 *2 *1 *3) (-12 (-4 *1 (-861)) (-5 *2 (-692 (-129))) (-5 *3 (-129)))) (-1741 (*1 *2 *1 *3) (-12 (-4 *1 (-861)) (-5 *2 (-692 (-552))) (-5 *3 (-552)))) (-1695 (*1 *2 *1 *3) (-12 (-4 *1 (-861)) (-5 *2 (-692 (-1227))) (-5 *3 (-1227)))) (-2487 (*1 *2 *1 *3) (-12 (-4 *1 (-861)) (-5 *3 (-128)) (-5 *2 (-772)))))
+(-13 (-173) (-10 -8 (-15 -2061 ((-692 (-129)) $ (-129))) (-15 -1741 ((-692 (-552)) $ (-552))) (-15 -1695 ((-692 (-1227)) $ (-1227))) (-15 -2487 ((-772) $ (-128)))))
(((-173) . T))
-((-3835 (((-692 (-1226)) $ (-1226)) NIL)) (-2841 (((-692 (-552)) $ (-552)) NIL)) (-3597 (((-772) $ (-128)) NIL)) (-3887 (((-692 (-129)) $ (-129)) 22)) (-2694 (($ (-391)) 12) (($ (-1160)) 14)) (-3254 (((-112) $) 19)) (-4132 (((-863) $) 26)) (-1675 (($ $) 23)))
-(((-862) (-13 (-861) (-614 (-863)) (-10 -8 (-15 -2694 ($ (-391))) (-15 -2694 ($ (-1160))) (-15 -3254 ((-112) $))))) (T -862))
-((-2694 (*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-862)))) (-2694 (*1 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-862)))) (-3254 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-862)))))
-(-13 (-861) (-614 (-863)) (-10 -8 (-15 -2694 ($ (-391))) (-15 -2694 ($ (-1160))) (-15 -3254 ((-112) $))))
-((-2403 (((-112) $ $) NIL) (($ $ $) 85)) (-1521 (($ $ $) 125)) (-2039 (((-567) $) 31) (((-567)) 36)) (-2961 (($ (-567)) 53)) (-3096 (($ $ $) 54) (($ (-645 $)) 84)) (-2256 (($ $ (-645 $)) 82)) (-1610 (((-567) $) 34)) (-3206 (($ $ $) 73)) (-3579 (($ $) 140) (($ $ $) 141) (($ $ $ $) 142)) (-1367 (((-567) $) 33)) (-3466 (($ $ $) 72)) (-3657 (($ $) 114)) (-1727 (($ $ $) 129)) (-2705 (($ (-645 $)) 61)) (-1711 (($ $ (-645 $)) 79)) (-3990 (($ (-567) (-567)) 55)) (-2236 (($ $) 126) (($ $ $) 127)) (-2963 (($ $ (-567)) 43) (($ $) 46)) (-2349 (($ $ $) 97)) (-1923 (($ $ $) 132)) (-3924 (($ $) 115)) (-2360 (($ $ $) 98)) (-2424 (($ $) 143) (($ $ $) 144) (($ $ $ $) 145)) (-2733 (((-1273) $) 10)) (-3950 (($ $) 118) (($ $ (-772)) 122)) (-4264 (($ $ $) 75)) (-2533 (($ $ $) 74)) (-3848 (($ $ (-645 $)) 110)) (-3605 (($ $ $) 113)) (-3907 (($ (-645 $)) 59)) (-2068 (($ $) 70) (($ (-645 $)) 71)) (-3778 (($ $ $) 123)) (-1528 (($ $) 116)) (-3686 (($ $ $) 128)) (-2570 (($ (-567)) 21) (($ (-1178)) 23) (($ (-1160)) 30) (($ (-225)) 25)) (-1677 (($ $ $) 101)) (-1657 (($ $) 102)) (-1507 (((-1273) (-1160)) 15)) (-3410 (($ (-1160)) 14)) (-2114 (($ (-645 (-645 $))) 58)) (-2950 (($ $ (-567)) 42) (($ $) 45)) (-1419 (((-1160) $) NIL)) (-3170 (($ $ $) 131)) (-2669 (($ $) 146) (($ $ $) 147) (($ $ $ $) 148)) (-1437 (((-112) $) 108)) (-2108 (($ $ (-645 $)) 111) (($ $ $ $) 112)) (-3443 (($ (-567)) 39)) (-4138 (((-567) $) 32) (((-567)) 35)) (-1529 (($ $ $) 40) (($ (-645 $)) 83)) (-3430 (((-1122) $) NIL)) (-2391 (($ $ $) 99)) (-3498 (($) 13)) (-1787 (($ $ (-645 $)) 109)) (-3917 (((-1160) (-1160)) 8)) (-3366 (($ $) 117) (($ $ (-772)) 121)) (-2380 (($ $ $) 96)) (-1593 (($ $ (-772)) 139)) (-1514 (($ (-645 $)) 60)) (-4132 (((-863) $) 19)) (-2166 (($ $ (-567)) 41) (($ $) 44)) (-3553 (($ $) 68) (($ (-645 $)) 69)) (-2772 (($ $) 66) (($ (-645 $)) 67)) (-1334 (($ $) 124)) (-3505 (($ (-645 $)) 65)) (-3881 (($ $ $) 105)) (-1745 (((-112) $ $) NIL)) (-3209 (($ $ $) 130)) (-1667 (($ $ $) 100)) (-2179 (($ $ $) 103) (($ $) 104)) (-2997 (($ $ $) 89)) (-2971 (($ $ $) 87)) (-2936 (((-112) $ $) 16) (($ $ $) 17)) (-2984 (($ $ $) 88)) (-2958 (($ $ $) 86)) (-3060 (($ $ $) 94)) (-3045 (($ $ $) 91) (($ $) 92)) (-3033 (($ $ $) 90)) (** (($ $ $) 95)) (* (($ $ $) 93)))
-(((-863) (-13 (-1102) (-10 -8 (-15 -2733 ((-1273) $)) (-15 -3410 ($ (-1160))) (-15 -1507 ((-1273) (-1160))) (-15 -2570 ($ (-567))) (-15 -2570 ($ (-1178))) (-15 -2570 ($ (-1160))) (-15 -2570 ($ (-225))) (-15 -3498 ($)) (-15 -3917 ((-1160) (-1160))) (-15 -2039 ((-567) $)) (-15 -4138 ((-567) $)) (-15 -2039 ((-567))) (-15 -4138 ((-567))) (-15 -1367 ((-567) $)) (-15 -1610 ((-567) $)) (-15 -3443 ($ (-567))) (-15 -2961 ($ (-567))) (-15 -3990 ($ (-567) (-567))) (-15 -2950 ($ $ (-567))) (-15 -2963 ($ $ (-567))) (-15 -2166 ($ $ (-567))) (-15 -2950 ($ $)) (-15 -2963 ($ $)) (-15 -2166 ($ $)) (-15 -1529 ($ $ $)) (-15 -3096 ($ $ $)) (-15 -1529 ($ (-645 $))) (-15 -3096 ($ (-645 $))) (-15 -3848 ($ $ (-645 $))) (-15 -2108 ($ $ (-645 $))) (-15 -2108 ($ $ $ $)) (-15 -3605 ($ $ $)) (-15 -1437 ((-112) $)) (-15 -1787 ($ $ (-645 $))) (-15 -3657 ($ $)) (-15 -3170 ($ $ $)) (-15 -1334 ($ $)) (-15 -2114 ($ (-645 (-645 $)))) (-15 -1521 ($ $ $)) (-15 -2236 ($ $)) (-15 -2236 ($ $ $)) (-15 -3686 ($ $ $)) (-15 -1727 ($ $ $)) (-15 -3209 ($ $ $)) (-15 -1923 ($ $ $)) (-15 -1593 ($ $ (-772))) (-15 -3881 ($ $ $)) (-15 -3466 ($ $ $)) (-15 -3206 ($ $ $)) (-15 -2533 ($ $ $)) (-15 -4264 ($ $ $)) (-15 -1711 ($ $ (-645 $))) (-15 -2256 ($ $ (-645 $))) (-15 -3924 ($ $)) (-15 -3366 ($ $)) (-15 -3366 ($ $ (-772))) (-15 -3950 ($ $)) (-15 -3950 ($ $ (-772))) (-15 -1528 ($ $)) (-15 -3778 ($ $ $)) (-15 -3579 ($ $)) (-15 -3579 ($ $ $)) (-15 -3579 ($ $ $ $)) (-15 -2424 ($ $)) (-15 -2424 ($ $ $)) (-15 -2424 ($ $ $ $)) (-15 -2669 ($ $)) (-15 -2669 ($ $ $)) (-15 -2669 ($ $ $ $)) (-15 -2772 ($ $)) (-15 -2772 ($ (-645 $))) (-15 -3553 ($ $)) (-15 -3553 ($ (-645 $))) (-15 -2068 ($ $)) (-15 -2068 ($ (-645 $))) (-15 -3907 ($ (-645 $))) (-15 -1514 ($ (-645 $))) (-15 -2705 ($ (-645 $))) (-15 -3505 ($ (-645 $))) (-15 -2936 ($ $ $)) (-15 -2403 ($ $ $)) (-15 -2958 ($ $ $)) (-15 -2971 ($ $ $)) (-15 -2984 ($ $ $)) (-15 -2997 ($ $ $)) (-15 -3033 ($ $ $)) (-15 -3045 ($ $ $)) (-15 -3045 ($ $)) (-15 * ($ $ $)) (-15 -3060 ($ $ $)) (-15 ** ($ $ $)) (-15 -2380 ($ $ $)) (-15 -2349 ($ $ $)) (-15 -2360 ($ $ $)) (-15 -2391 ($ $ $)) (-15 -1667 ($ $ $)) (-15 -1677 ($ $ $)) (-15 -1657 ($ $)) (-15 -2179 ($ $ $)) (-15 -2179 ($ $))))) (T -863))
-((-2733 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-863)))) (-3410 (*1 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-863)))) (-1507 (*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-863)))) (-2570 (*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-2570 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-863)))) (-2570 (*1 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-863)))) (-2570 (*1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-863)))) (-3498 (*1 *1) (-5 *1 (-863))) (-3917 (*1 *2 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-863)))) (-2039 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-4138 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-2039 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-4138 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-1367 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-1610 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-3443 (*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-2961 (*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-3990 (*1 *1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-2950 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-2963 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-2166 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-2950 (*1 *1 *1) (-5 *1 (-863))) (-2963 (*1 *1 *1) (-5 *1 (-863))) (-2166 (*1 *1 *1) (-5 *1 (-863))) (-1529 (*1 *1 *1 *1) (-5 *1 (-863))) (-3096 (*1 *1 *1 *1) (-5 *1 (-863))) (-1529 (*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-3096 (*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-3848 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-2108 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-2108 (*1 *1 *1 *1 *1) (-5 *1 (-863))) (-3605 (*1 *1 *1 *1) (-5 *1 (-863))) (-1437 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-863)))) (-1787 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-3657 (*1 *1 *1) (-5 *1 (-863))) (-3170 (*1 *1 *1 *1) (-5 *1 (-863))) (-1334 (*1 *1 *1) (-5 *1 (-863))) (-2114 (*1 *1 *2) (-12 (-5 *2 (-645 (-645 (-863)))) (-5 *1 (-863)))) (-1521 (*1 *1 *1 *1) (-5 *1 (-863))) (-2236 (*1 *1 *1) (-5 *1 (-863))) (-2236 (*1 *1 *1 *1) (-5 *1 (-863))) (-3686 (*1 *1 *1 *1) (-5 *1 (-863))) (-1727 (*1 *1 *1 *1) (-5 *1 (-863))) (-3209 (*1 *1 *1 *1) (-5 *1 (-863))) (-1923 (*1 *1 *1 *1) (-5 *1 (-863))) (-1593 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-863)))) (-3881 (*1 *1 *1 *1) (-5 *1 (-863))) (-3466 (*1 *1 *1 *1) (-5 *1 (-863))) (-3206 (*1 *1 *1 *1) (-5 *1 (-863))) (-2533 (*1 *1 *1 *1) (-5 *1 (-863))) (-4264 (*1 *1 *1 *1) (-5 *1 (-863))) (-1711 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-2256 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-3924 (*1 *1 *1) (-5 *1 (-863))) (-3366 (*1 *1 *1) (-5 *1 (-863))) (-3366 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-863)))) (-3950 (*1 *1 *1) (-5 *1 (-863))) (-3950 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-863)))) (-1528 (*1 *1 *1) (-5 *1 (-863))) (-3778 (*1 *1 *1 *1) (-5 *1 (-863))) (-3579 (*1 *1 *1) (-5 *1 (-863))) (-3579 (*1 *1 *1 *1) (-5 *1 (-863))) (-3579 (*1 *1 *1 *1 *1) (-5 *1 (-863))) (-2424 (*1 *1 *1) (-5 *1 (-863))) (-2424 (*1 *1 *1 *1) (-5 *1 (-863))) (-2424 (*1 *1 *1 *1 *1) (-5 *1 (-863))) (-2669 (*1 *1 *1) (-5 *1 (-863))) (-2669 (*1 *1 *1 *1) (-5 *1 (-863))) (-2669 (*1 *1 *1 *1 *1) (-5 *1 (-863))) (-2772 (*1 *1 *1) (-5 *1 (-863))) (-2772 (*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-3553 (*1 *1 *1) (-5 *1 (-863))) (-3553 (*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-2068 (*1 *1 *1) (-5 *1 (-863))) (-2068 (*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-3907 (*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-1514 (*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-2705 (*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-3505 (*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-2936 (*1 *1 *1 *1) (-5 *1 (-863))) (-2403 (*1 *1 *1 *1) (-5 *1 (-863))) (-2958 (*1 *1 *1 *1) (-5 *1 (-863))) (-2971 (*1 *1 *1 *1) (-5 *1 (-863))) (-2984 (*1 *1 *1 *1) (-5 *1 (-863))) (-2997 (*1 *1 *1 *1) (-5 *1 (-863))) (-3033 (*1 *1 *1 *1) (-5 *1 (-863))) (-3045 (*1 *1 *1 *1) (-5 *1 (-863))) (-3045 (*1 *1 *1) (-5 *1 (-863))) (* (*1 *1 *1 *1) (-5 *1 (-863))) (-3060 (*1 *1 *1 *1) (-5 *1 (-863))) (** (*1 *1 *1 *1) (-5 *1 (-863))) (-2380 (*1 *1 *1 *1) (-5 *1 (-863))) (-2349 (*1 *1 *1 *1) (-5 *1 (-863))) (-2360 (*1 *1 *1 *1) (-5 *1 (-863))) (-2391 (*1 *1 *1 *1) (-5 *1 (-863))) (-1667 (*1 *1 *1 *1) (-5 *1 (-863))) (-1677 (*1 *1 *1 *1) (-5 *1 (-863))) (-1657 (*1 *1 *1) (-5 *1 (-863))) (-2179 (*1 *1 *1 *1) (-5 *1 (-863))) (-2179 (*1 *1 *1) (-5 *1 (-863))))
-(-13 (-1102) (-10 -8 (-15 -2733 ((-1273) $)) (-15 -3410 ($ (-1160))) (-15 -1507 ((-1273) (-1160))) (-15 -2570 ($ (-567))) (-15 -2570 ($ (-1178))) (-15 -2570 ($ (-1160))) (-15 -2570 ($ (-225))) (-15 -3498 ($)) (-15 -3917 ((-1160) (-1160))) (-15 -2039 ((-567) $)) (-15 -4138 ((-567) $)) (-15 -2039 ((-567))) (-15 -4138 ((-567))) (-15 -1367 ((-567) $)) (-15 -1610 ((-567) $)) (-15 -3443 ($ (-567))) (-15 -2961 ($ (-567))) (-15 -3990 ($ (-567) (-567))) (-15 -2950 ($ $ (-567))) (-15 -2963 ($ $ (-567))) (-15 -2166 ($ $ (-567))) (-15 -2950 ($ $)) (-15 -2963 ($ $)) (-15 -2166 ($ $)) (-15 -1529 ($ $ $)) (-15 -3096 ($ $ $)) (-15 -1529 ($ (-645 $))) (-15 -3096 ($ (-645 $))) (-15 -3848 ($ $ (-645 $))) (-15 -2108 ($ $ (-645 $))) (-15 -2108 ($ $ $ $)) (-15 -3605 ($ $ $)) (-15 -1437 ((-112) $)) (-15 -1787 ($ $ (-645 $))) (-15 -3657 ($ $)) (-15 -3170 ($ $ $)) (-15 -1334 ($ $)) (-15 -2114 ($ (-645 (-645 $)))) (-15 -1521 ($ $ $)) (-15 -2236 ($ $)) (-15 -2236 ($ $ $)) (-15 -3686 ($ $ $)) (-15 -1727 ($ $ $)) (-15 -3209 ($ $ $)) (-15 -1923 ($ $ $)) (-15 -1593 ($ $ (-772))) (-15 -3881 ($ $ $)) (-15 -3466 ($ $ $)) (-15 -3206 ($ $ $)) (-15 -2533 ($ $ $)) (-15 -4264 ($ $ $)) (-15 -1711 ($ $ (-645 $))) (-15 -2256 ($ $ (-645 $))) (-15 -3924 ($ $)) (-15 -3366 ($ $)) (-15 -3366 ($ $ (-772))) (-15 -3950 ($ $)) (-15 -3950 ($ $ (-772))) (-15 -1528 ($ $)) (-15 -3778 ($ $ $)) (-15 -3579 ($ $)) (-15 -3579 ($ $ $)) (-15 -3579 ($ $ $ $)) (-15 -2424 ($ $)) (-15 -2424 ($ $ $)) (-15 -2424 ($ $ $ $)) (-15 -2669 ($ $)) (-15 -2669 ($ $ $)) (-15 -2669 ($ $ $ $)) (-15 -2772 ($ $)) (-15 -2772 ($ (-645 $))) (-15 -3553 ($ $)) (-15 -3553 ($ (-645 $))) (-15 -2068 ($ $)) (-15 -2068 ($ (-645 $))) (-15 -3907 ($ (-645 $))) (-15 -1514 ($ (-645 $))) (-15 -2705 ($ (-645 $))) (-15 -3505 ($ (-645 $))) (-15 -2936 ($ $ $)) (-15 -2403 ($ $ $)) (-15 -2958 ($ $ $)) (-15 -2971 ($ $ $)) (-15 -2984 ($ $ $)) (-15 -2997 ($ $ $)) (-15 -3033 ($ $ $)) (-15 -3045 ($ $ $)) (-15 -3045 ($ $)) (-15 * ($ $ $)) (-15 -3060 ($ $ $)) (-15 ** ($ $ $)) (-15 -2380 ($ $ $)) (-15 -2349 ($ $ $)) (-15 -2360 ($ $ $)) (-15 -2391 ($ $ $)) (-15 -1667 ($ $ $)) (-15 -1677 ($ $ $)) (-15 -1657 ($ $)) (-15 -2179 ($ $ $)) (-15 -2179 ($ $))))
-((-3129 (((-1273) (-645 (-52))) 24)) (-2393 (((-1273) (-1160) (-863)) 14) (((-1273) (-863)) 9) (((-1273) (-1160)) 11)))
-(((-864) (-10 -7 (-15 -2393 ((-1273) (-1160))) (-15 -2393 ((-1273) (-863))) (-15 -2393 ((-1273) (-1160) (-863))) (-15 -3129 ((-1273) (-645 (-52)))))) (T -864))
-((-3129 (*1 *2 *3) (-12 (-5 *3 (-645 (-52))) (-5 *2 (-1273)) (-5 *1 (-864)))) (-2393 (*1 *2 *3 *4) (-12 (-5 *3 (-1160)) (-5 *4 (-863)) (-5 *2 (-1273)) (-5 *1 (-864)))) (-2393 (*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1273)) (-5 *1 (-864)))) (-2393 (*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-864)))))
-(-10 -7 (-15 -2393 ((-1273) (-1160))) (-15 -2393 ((-1273) (-863))) (-15 -2393 ((-1273) (-1160) (-863))) (-15 -3129 ((-1273) (-645 (-52)))))
-((-2403 (((-112) $ $) NIL)) (-3644 (((-3 $ "failed") (-1178)) 39)) (-2375 (((-772)) 32)) (-1348 (($) NIL)) (-1354 (($ $ $) NIL) (($) NIL T CONST)) (-2981 (($ $ $) NIL) (($) NIL T CONST)) (-4249 (((-923) $) 29)) (-1419 (((-1160) $) 46)) (-3768 (($ (-923)) 28)) (-3430 (((-1122) $) NIL)) (-3893 (((-1178) $) 13) (((-539) $) 19) (((-894 (-381)) $) 26) (((-894 (-567)) $) 22)) (-4132 (((-863) $) 16)) (-1745 (((-112) $ $) NIL)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 43)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) 41)))
-(((-865 |#1|) (-13 (-845) (-615 (-1178)) (-615 (-539)) (-615 (-894 (-381))) (-615 (-894 (-567))) (-10 -8 (-15 -3644 ((-3 $ "failed") (-1178))))) (-645 (-1178))) (T -865))
-((-3644 (*1 *1 *2) (|partial| -12 (-5 *2 (-1178)) (-5 *1 (-865 *3)) (-14 *3 (-645 *2)))))
-(-13 (-845) (-615 (-1178)) (-615 (-539)) (-615 (-894 (-381))) (-615 (-894 (-567))) (-10 -8 (-15 -3644 ((-3 $ "failed") (-1178)))))
-((-2403 (((-112) $ $) NIL)) (-1996 (((-509) $) 9)) (-2279 (((-645 (-442)) $) 13)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 21)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 16)))
-(((-866) (-13 (-1102) (-10 -8 (-15 -1996 ((-509) $)) (-15 -2279 ((-645 (-442)) $))))) (T -866))
-((-1996 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-866)))) (-2279 (*1 *2 *1) (-12 (-5 *2 (-645 (-442))) (-5 *1 (-866)))))
-(-13 (-1102) (-10 -8 (-15 -1996 ((-509) $)) (-15 -2279 ((-645 (-442)) $))))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2585 (($) NIL T CONST)) (-2109 (((-3 $ "failed") $) NIL)) (-1433 (((-112) $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ (-954 |#1|)) NIL) (((-954 |#1|) $) NIL) (($ |#1|) NIL (|has| |#1| (-172)))) (-4221 (((-772)) NIL T CONST)) (-1330 (((-1273) (-772)) NIL)) (-1745 (((-112) $ $) NIL)) (-1716 (($) NIL T CONST)) (-1728 (($) NIL T CONST)) (-2936 (((-112) $ $) NIL)) (-3060 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172)))))
-(((-867 |#1| |#2| |#3| |#4|) (-13 (-1051) (-493 (-954 |#1|)) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -3060 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1330 ((-1273) (-772))))) (-1051) (-645 (-1178)) (-645 (-772)) (-772)) (T -867))
-((-3060 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-867 *2 *3 *4 *5)) (-4 *2 (-365)) (-4 *2 (-1051)) (-14 *3 (-645 (-1178))) (-14 *4 (-645 (-772))) (-14 *5 (-772)))) (-1330 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1273)) (-5 *1 (-867 *4 *5 *6 *7)) (-4 *4 (-1051)) (-14 *5 (-645 (-1178))) (-14 *6 (-645 *3)) (-14 *7 *3))))
-(-13 (-1051) (-493 (-954 |#1|)) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -3060 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1330 ((-1273) (-772)))))
-((-2803 (((-3 (-174 |#3|) "failed") (-772) (-772) |#2| |#2|) 43)) (-4002 (((-3 (-410 |#3|) "failed") (-772) (-772) |#2| |#2|) 34)))
-(((-868 |#1| |#2| |#3|) (-10 -7 (-15 -4002 ((-3 (-410 |#3|) "failed") (-772) (-772) |#2| |#2|)) (-15 -2803 ((-3 (-174 |#3|) "failed") (-772) (-772) |#2| |#2|))) (-365) (-1259 |#1|) (-1244 |#1|)) (T -868))
-((-2803 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-772)) (-4 *5 (-365)) (-5 *2 (-174 *6)) (-5 *1 (-868 *5 *4 *6)) (-4 *4 (-1259 *5)) (-4 *6 (-1244 *5)))) (-4002 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-772)) (-4 *5 (-365)) (-5 *2 (-410 *6)) (-5 *1 (-868 *5 *4 *6)) (-4 *4 (-1259 *5)) (-4 *6 (-1244 *5)))))
-(-10 -7 (-15 -4002 ((-3 (-410 |#3|) "failed") (-772) (-772) |#2| |#2|)) (-15 -2803 ((-3 (-174 |#3|) "failed") (-772) (-772) |#2| |#2|)))
-((-4002 (((-3 (-410 (-1241 |#2| |#1|)) "failed") (-772) (-772) (-1260 |#1| |#2| |#3|)) 30) (((-3 (-410 (-1241 |#2| |#1|)) "failed") (-772) (-772) (-1260 |#1| |#2| |#3|) (-1260 |#1| |#2| |#3|)) 28)))
-(((-869 |#1| |#2| |#3|) (-10 -7 (-15 -4002 ((-3 (-410 (-1241 |#2| |#1|)) "failed") (-772) (-772) (-1260 |#1| |#2| |#3|) (-1260 |#1| |#2| |#3|))) (-15 -4002 ((-3 (-410 (-1241 |#2| |#1|)) "failed") (-772) (-772) (-1260 |#1| |#2| |#3|)))) (-365) (-1178) |#1|) (T -869))
-((-4002 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-772)) (-5 *4 (-1260 *5 *6 *7)) (-4 *5 (-365)) (-14 *6 (-1178)) (-14 *7 *5) (-5 *2 (-410 (-1241 *6 *5))) (-5 *1 (-869 *5 *6 *7)))) (-4002 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-772)) (-5 *4 (-1260 *5 *6 *7)) (-4 *5 (-365)) (-14 *6 (-1178)) (-14 *7 *5) (-5 *2 (-410 (-1241 *6 *5))) (-5 *1 (-869 *5 *6 *7)))))
-(-10 -7 (-15 -4002 ((-3 (-410 (-1241 |#2| |#1|)) "failed") (-772) (-772) (-1260 |#1| |#2| |#3|) (-1260 |#1| |#2| |#3|))) (-15 -4002 ((-3 (-410 (-1241 |#2| |#1|)) "failed") (-772) (-772) (-1260 |#1| |#2| |#3|))))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 47)) (-4381 (($ $) 46)) (-3949 (((-112) $) 44)) (-3472 (((-3 $ "failed") $ $) 20)) (-2716 (($ $ (-567)) 68)) (-3609 (((-112) $ $) 65)) (-2585 (($) 18 T CONST)) (-2236 (($ (-1174 (-567)) (-567)) 67)) (-2349 (($ $ $) 61)) (-2109 (((-3 $ "failed") $) 37)) (-1648 (($ $) 70)) (-2360 (($ $ $) 62)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) 57)) (-4384 (((-772) $) 75)) (-1433 (((-112) $) 35)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) 58)) (-2211 (((-567)) 72)) (-3297 (((-567) $) 71)) (-2740 (($ $ $) 52) (($ (-645 $)) 51)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 50)) (-2774 (($ $ $) 54) (($ (-645 $)) 53)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2410 (($ $ (-567)) 74)) (-2391 (((-3 $ "failed") $ $) 48)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-1990 (((-772) $) 64)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 63)) (-3038 (((-1158 (-567)) $) 76)) (-2192 (($ $) 73)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ $) 49)) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-3816 (((-112) $ $) 45)) (-3050 (((-567) $ (-567)) 69)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27)))
+((-1695 (((-692 (-1227)) $ (-1227)) NIL)) (-1741 (((-692 (-552)) $ (-552)) NIL)) (-2487 (((-772) $ (-128)) NIL)) (-2061 (((-692 (-129)) $ (-129)) 22)) (-2764 (($ (-391)) 12) (($ (-1161)) 14)) (-3075 (((-112) $) 19)) (-4129 (((-863) $) 26)) (-3034 (($ $) 23)))
+(((-862) (-13 (-861) (-614 (-863)) (-10 -8 (-15 -2764 ($ (-391))) (-15 -2764 ($ (-1161))) (-15 -3075 ((-112) $))))) (T -862))
+((-2764 (*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-862)))) (-2764 (*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-862)))) (-3075 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-862)))))
+(-13 (-861) (-614 (-863)) (-10 -8 (-15 -2764 ($ (-391))) (-15 -2764 ($ (-1161))) (-15 -3075 ((-112) $))))
+((-2412 (((-112) $ $) NIL) (($ $ $) 85)) (-1822 (($ $ $) 125)) (-2052 (((-567) $) 31) (((-567)) 36)) (-3236 (($ (-567)) 53)) (-4250 (($ $ $) 54) (($ (-645 $)) 84)) (-3342 (($ $ (-645 $)) 82)) (-4193 (((-567) $) 34)) (-3223 (($ $ $) 73)) (-3596 (($ $) 140) (($ $ $) 141) (($ $ $ $) 142)) (-3693 (((-567) $) 33)) (-3005 (($ $ $) 72)) (-3666 (($ $) 114)) (-1653 (($ $ $) 129)) (-2513 (($ (-645 $)) 61)) (-2348 (($ $ (-645 $)) 79)) (-4234 (($ (-567) (-567)) 55)) (-3048 (($ $) 126) (($ $ $) 127)) (-2973 (($ $ (-567)) 43) (($ $) 46)) (-2357 (($ $ $) 97)) (-3768 (($ $ $) 132)) (-2553 (($ $) 115)) (-2368 (($ $ $) 98)) (-3481 (($ $) 143) (($ $ $) 144) (($ $ $ $) 145)) (-2744 (((-1274) $) 10)) (-2413 (($ $) 118) (($ $ (-772)) 122)) (-1797 (($ $ $) 75)) (-2875 (($ $ $) 74)) (-3872 (($ $ (-645 $)) 110)) (-1941 (($ $ $) 113)) (-3292 (($ (-645 $)) 59)) (-1464 (($ $) 70) (($ (-645 $)) 71)) (-2734 (($ $ $) 123)) (-4370 (($ $) 116)) (-2901 (($ $ $) 128)) (-2417 (($ (-567)) 21) (($ (-1179)) 23) (($ (-1161)) 30) (($ (-225)) 25)) (-1696 (($ $ $) 101)) (-1673 (($ $) 102)) (-2861 (((-1274) (-1161)) 15)) (-3418 (($ (-1161)) 14)) (-2124 (($ (-645 (-645 $))) 58)) (-2961 (($ $ (-567)) 42) (($ $) 45)) (-2516 (((-1161) $) NIL)) (-3176 (($ $ $) 131)) (-2691 (($ $) 146) (($ $ $) 147) (($ $ $ $) 148)) (-1452 (((-112) $) 108)) (-3500 (($ $ (-645 $)) 111) (($ $ $ $) 112)) (-1358 (($ (-567)) 39)) (-4136 (((-567) $) 32) (((-567)) 35)) (-3262 (($ $ $) 40) (($ (-645 $)) 83)) (-3437 (((-1122) $) NIL)) (-2400 (($ $ $) 99)) (-2701 (($) 13)) (-1801 (($ $ (-645 $)) 109)) (-3102 (((-1161) (-1161)) 8)) (-3917 (($ $) 117) (($ $ (-772)) 121)) (-2388 (($ $ $) 96)) (-1616 (($ $ (-772)) 139)) (-2310 (($ (-645 $)) 60)) (-4129 (((-863) $) 19)) (-2185 (($ $ (-567)) 41) (($ $) 44)) (-2729 (($ $) 68) (($ (-645 $)) 69)) (-2782 (($ $) 66) (($ (-645 $)) 67)) (-1372 (($ $) 124)) (-2166 (($ (-645 $)) 65)) (-2708 (($ $ $) 105)) (-3357 (((-112) $ $) NIL)) (-3873 (($ $ $) 130)) (-1686 (($ $ $) 100)) (-2189 (($ $ $) 103) (($ $) 104)) (-3004 (($ $ $) 89)) (-2980 (($ $ $) 87)) (-2946 (((-112) $ $) 16) (($ $ $) 17)) (-2993 (($ $ $) 88)) (-2968 (($ $ $) 86)) (-3069 (($ $ $) 94)) (-3053 (($ $ $) 91) (($ $) 92)) (-3041 (($ $ $) 90)) (** (($ $ $) 95)) (* (($ $ $) 93)))
+(((-863) (-13 (-1102) (-10 -8 (-15 -2744 ((-1274) $)) (-15 -3418 ($ (-1161))) (-15 -2861 ((-1274) (-1161))) (-15 -2417 ($ (-567))) (-15 -2417 ($ (-1179))) (-15 -2417 ($ (-1161))) (-15 -2417 ($ (-225))) (-15 -2701 ($)) (-15 -3102 ((-1161) (-1161))) (-15 -2052 ((-567) $)) (-15 -4136 ((-567) $)) (-15 -2052 ((-567))) (-15 -4136 ((-567))) (-15 -3693 ((-567) $)) (-15 -4193 ((-567) $)) (-15 -1358 ($ (-567))) (-15 -3236 ($ (-567))) (-15 -4234 ($ (-567) (-567))) (-15 -2961 ($ $ (-567))) (-15 -2973 ($ $ (-567))) (-15 -2185 ($ $ (-567))) (-15 -2961 ($ $)) (-15 -2973 ($ $)) (-15 -2185 ($ $)) (-15 -3262 ($ $ $)) (-15 -4250 ($ $ $)) (-15 -3262 ($ (-645 $))) (-15 -4250 ($ (-645 $))) (-15 -3872 ($ $ (-645 $))) (-15 -3500 ($ $ (-645 $))) (-15 -3500 ($ $ $ $)) (-15 -1941 ($ $ $)) (-15 -1452 ((-112) $)) (-15 -1801 ($ $ (-645 $))) (-15 -3666 ($ $)) (-15 -3176 ($ $ $)) (-15 -1372 ($ $)) (-15 -2124 ($ (-645 (-645 $)))) (-15 -1822 ($ $ $)) (-15 -3048 ($ $)) (-15 -3048 ($ $ $)) (-15 -2901 ($ $ $)) (-15 -1653 ($ $ $)) (-15 -3873 ($ $ $)) (-15 -3768 ($ $ $)) (-15 -1616 ($ $ (-772))) (-15 -2708 ($ $ $)) (-15 -3005 ($ $ $)) (-15 -3223 ($ $ $)) (-15 -2875 ($ $ $)) (-15 -1797 ($ $ $)) (-15 -2348 ($ $ (-645 $))) (-15 -3342 ($ $ (-645 $))) (-15 -2553 ($ $)) (-15 -3917 ($ $)) (-15 -3917 ($ $ (-772))) (-15 -2413 ($ $)) (-15 -2413 ($ $ (-772))) (-15 -4370 ($ $)) (-15 -2734 ($ $ $)) (-15 -3596 ($ $)) (-15 -3596 ($ $ $)) (-15 -3596 ($ $ $ $)) (-15 -3481 ($ $)) (-15 -3481 ($ $ $)) (-15 -3481 ($ $ $ $)) (-15 -2691 ($ $)) (-15 -2691 ($ $ $)) (-15 -2691 ($ $ $ $)) (-15 -2782 ($ $)) (-15 -2782 ($ (-645 $))) (-15 -2729 ($ $)) (-15 -2729 ($ (-645 $))) (-15 -1464 ($ $)) (-15 -1464 ($ (-645 $))) (-15 -3292 ($ (-645 $))) (-15 -2310 ($ (-645 $))) (-15 -2513 ($ (-645 $))) (-15 -2166 ($ (-645 $))) (-15 -2946 ($ $ $)) (-15 -2412 ($ $ $)) (-15 -2968 ($ $ $)) (-15 -2980 ($ $ $)) (-15 -2993 ($ $ $)) (-15 -3004 ($ $ $)) (-15 -3041 ($ $ $)) (-15 -3053 ($ $ $)) (-15 -3053 ($ $)) (-15 * ($ $ $)) (-15 -3069 ($ $ $)) (-15 ** ($ $ $)) (-15 -2388 ($ $ $)) (-15 -2357 ($ $ $)) (-15 -2368 ($ $ $)) (-15 -2400 ($ $ $)) (-15 -1686 ($ $ $)) (-15 -1696 ($ $ $)) (-15 -1673 ($ $)) (-15 -2189 ($ $ $)) (-15 -2189 ($ $))))) (T -863))
+((-2744 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-863)))) (-3418 (*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-863)))) (-2861 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-863)))) (-2417 (*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-2417 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-863)))) (-2417 (*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-863)))) (-2417 (*1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-863)))) (-2701 (*1 *1) (-5 *1 (-863))) (-3102 (*1 *2 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-863)))) (-2052 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-4136 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-2052 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-4136 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-3693 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-4193 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-1358 (*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-3236 (*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-4234 (*1 *1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-2961 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-2973 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-2185 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-2961 (*1 *1 *1) (-5 *1 (-863))) (-2973 (*1 *1 *1) (-5 *1 (-863))) (-2185 (*1 *1 *1) (-5 *1 (-863))) (-3262 (*1 *1 *1 *1) (-5 *1 (-863))) (-4250 (*1 *1 *1 *1) (-5 *1 (-863))) (-3262 (*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-4250 (*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-3872 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-3500 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-3500 (*1 *1 *1 *1 *1) (-5 *1 (-863))) (-1941 (*1 *1 *1 *1) (-5 *1 (-863))) (-1452 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-863)))) (-1801 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-3666 (*1 *1 *1) (-5 *1 (-863))) (-3176 (*1 *1 *1 *1) (-5 *1 (-863))) (-1372 (*1 *1 *1) (-5 *1 (-863))) (-2124 (*1 *1 *2) (-12 (-5 *2 (-645 (-645 (-863)))) (-5 *1 (-863)))) (-1822 (*1 *1 *1 *1) (-5 *1 (-863))) (-3048 (*1 *1 *1) (-5 *1 (-863))) (-3048 (*1 *1 *1 *1) (-5 *1 (-863))) (-2901 (*1 *1 *1 *1) (-5 *1 (-863))) (-1653 (*1 *1 *1 *1) (-5 *1 (-863))) (-3873 (*1 *1 *1 *1) (-5 *1 (-863))) (-3768 (*1 *1 *1 *1) (-5 *1 (-863))) (-1616 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-863)))) (-2708 (*1 *1 *1 *1) (-5 *1 (-863))) (-3005 (*1 *1 *1 *1) (-5 *1 (-863))) (-3223 (*1 *1 *1 *1) (-5 *1 (-863))) (-2875 (*1 *1 *1 *1) (-5 *1 (-863))) (-1797 (*1 *1 *1 *1) (-5 *1 (-863))) (-2348 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-3342 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-2553 (*1 *1 *1) (-5 *1 (-863))) (-3917 (*1 *1 *1) (-5 *1 (-863))) (-3917 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-863)))) (-2413 (*1 *1 *1) (-5 *1 (-863))) (-2413 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-863)))) (-4370 (*1 *1 *1) (-5 *1 (-863))) (-2734 (*1 *1 *1 *1) (-5 *1 (-863))) (-3596 (*1 *1 *1) (-5 *1 (-863))) (-3596 (*1 *1 *1 *1) (-5 *1 (-863))) (-3596 (*1 *1 *1 *1 *1) (-5 *1 (-863))) (-3481 (*1 *1 *1) (-5 *1 (-863))) (-3481 (*1 *1 *1 *1) (-5 *1 (-863))) (-3481 (*1 *1 *1 *1 *1) (-5 *1 (-863))) (-2691 (*1 *1 *1) (-5 *1 (-863))) (-2691 (*1 *1 *1 *1) (-5 *1 (-863))) (-2691 (*1 *1 *1 *1 *1) (-5 *1 (-863))) (-2782 (*1 *1 *1) (-5 *1 (-863))) (-2782 (*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-2729 (*1 *1 *1) (-5 *1 (-863))) (-2729 (*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-1464 (*1 *1 *1) (-5 *1 (-863))) (-1464 (*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-3292 (*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-2310 (*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-2513 (*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-2166 (*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-2946 (*1 *1 *1 *1) (-5 *1 (-863))) (-2412 (*1 *1 *1 *1) (-5 *1 (-863))) (-2968 (*1 *1 *1 *1) (-5 *1 (-863))) (-2980 (*1 *1 *1 *1) (-5 *1 (-863))) (-2993 (*1 *1 *1 *1) (-5 *1 (-863))) (-3004 (*1 *1 *1 *1) (-5 *1 (-863))) (-3041 (*1 *1 *1 *1) (-5 *1 (-863))) (-3053 (*1 *1 *1 *1) (-5 *1 (-863))) (-3053 (*1 *1 *1) (-5 *1 (-863))) (* (*1 *1 *1 *1) (-5 *1 (-863))) (-3069 (*1 *1 *1 *1) (-5 *1 (-863))) (** (*1 *1 *1 *1) (-5 *1 (-863))) (-2388 (*1 *1 *1 *1) (-5 *1 (-863))) (-2357 (*1 *1 *1 *1) (-5 *1 (-863))) (-2368 (*1 *1 *1 *1) (-5 *1 (-863))) (-2400 (*1 *1 *1 *1) (-5 *1 (-863))) (-1686 (*1 *1 *1 *1) (-5 *1 (-863))) (-1696 (*1 *1 *1 *1) (-5 *1 (-863))) (-1673 (*1 *1 *1) (-5 *1 (-863))) (-2189 (*1 *1 *1 *1) (-5 *1 (-863))) (-2189 (*1 *1 *1) (-5 *1 (-863))))
+(-13 (-1102) (-10 -8 (-15 -2744 ((-1274) $)) (-15 -3418 ($ (-1161))) (-15 -2861 ((-1274) (-1161))) (-15 -2417 ($ (-567))) (-15 -2417 ($ (-1179))) (-15 -2417 ($ (-1161))) (-15 -2417 ($ (-225))) (-15 -2701 ($)) (-15 -3102 ((-1161) (-1161))) (-15 -2052 ((-567) $)) (-15 -4136 ((-567) $)) (-15 -2052 ((-567))) (-15 -4136 ((-567))) (-15 -3693 ((-567) $)) (-15 -4193 ((-567) $)) (-15 -1358 ($ (-567))) (-15 -3236 ($ (-567))) (-15 -4234 ($ (-567) (-567))) (-15 -2961 ($ $ (-567))) (-15 -2973 ($ $ (-567))) (-15 -2185 ($ $ (-567))) (-15 -2961 ($ $)) (-15 -2973 ($ $)) (-15 -2185 ($ $)) (-15 -3262 ($ $ $)) (-15 -4250 ($ $ $)) (-15 -3262 ($ (-645 $))) (-15 -4250 ($ (-645 $))) (-15 -3872 ($ $ (-645 $))) (-15 -3500 ($ $ (-645 $))) (-15 -3500 ($ $ $ $)) (-15 -1941 ($ $ $)) (-15 -1452 ((-112) $)) (-15 -1801 ($ $ (-645 $))) (-15 -3666 ($ $)) (-15 -3176 ($ $ $)) (-15 -1372 ($ $)) (-15 -2124 ($ (-645 (-645 $)))) (-15 -1822 ($ $ $)) (-15 -3048 ($ $)) (-15 -3048 ($ $ $)) (-15 -2901 ($ $ $)) (-15 -1653 ($ $ $)) (-15 -3873 ($ $ $)) (-15 -3768 ($ $ $)) (-15 -1616 ($ $ (-772))) (-15 -2708 ($ $ $)) (-15 -3005 ($ $ $)) (-15 -3223 ($ $ $)) (-15 -2875 ($ $ $)) (-15 -1797 ($ $ $)) (-15 -2348 ($ $ (-645 $))) (-15 -3342 ($ $ (-645 $))) (-15 -2553 ($ $)) (-15 -3917 ($ $)) (-15 -3917 ($ $ (-772))) (-15 -2413 ($ $)) (-15 -2413 ($ $ (-772))) (-15 -4370 ($ $)) (-15 -2734 ($ $ $)) (-15 -3596 ($ $)) (-15 -3596 ($ $ $)) (-15 -3596 ($ $ $ $)) (-15 -3481 ($ $)) (-15 -3481 ($ $ $)) (-15 -3481 ($ $ $ $)) (-15 -2691 ($ $)) (-15 -2691 ($ $ $)) (-15 -2691 ($ $ $ $)) (-15 -2782 ($ $)) (-15 -2782 ($ (-645 $))) (-15 -2729 ($ $)) (-15 -2729 ($ (-645 $))) (-15 -1464 ($ $)) (-15 -1464 ($ (-645 $))) (-15 -3292 ($ (-645 $))) (-15 -2310 ($ (-645 $))) (-15 -2513 ($ (-645 $))) (-15 -2166 ($ (-645 $))) (-15 -2946 ($ $ $)) (-15 -2412 ($ $ $)) (-15 -2968 ($ $ $)) (-15 -2980 ($ $ $)) (-15 -2993 ($ $ $)) (-15 -3004 ($ $ $)) (-15 -3041 ($ $ $)) (-15 -3053 ($ $ $)) (-15 -3053 ($ $)) (-15 * ($ $ $)) (-15 -3069 ($ $ $)) (-15 ** ($ $ $)) (-15 -2388 ($ $ $)) (-15 -2357 ($ $ $)) (-15 -2368 ($ $ $)) (-15 -2400 ($ $ $)) (-15 -1686 ($ $ $)) (-15 -1696 ($ $ $)) (-15 -1673 ($ $)) (-15 -2189 ($ $ $)) (-15 -2189 ($ $))))
+((-2527 (((-1274) (-645 (-52))) 24)) (-2402 (((-1274) (-1161) (-863)) 14) (((-1274) (-863)) 9) (((-1274) (-1161)) 11)))
+(((-864) (-10 -7 (-15 -2402 ((-1274) (-1161))) (-15 -2402 ((-1274) (-863))) (-15 -2402 ((-1274) (-1161) (-863))) (-15 -2527 ((-1274) (-645 (-52)))))) (T -864))
+((-2527 (*1 *2 *3) (-12 (-5 *3 (-645 (-52))) (-5 *2 (-1274)) (-5 *1 (-864)))) (-2402 (*1 *2 *3 *4) (-12 (-5 *3 (-1161)) (-5 *4 (-863)) (-5 *2 (-1274)) (-5 *1 (-864)))) (-2402 (*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1274)) (-5 *1 (-864)))) (-2402 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-864)))))
+(-10 -7 (-15 -2402 ((-1274) (-1161))) (-15 -2402 ((-1274) (-863))) (-15 -2402 ((-1274) (-1161) (-863))) (-15 -2527 ((-1274) (-645 (-52)))))
+((-2412 (((-112) $ $) NIL)) (-3653 (((-3 $ "failed") (-1179)) 39)) (-2384 (((-772)) 32)) (-1359 (($) NIL)) (-1365 (($ $ $) NIL) (($) NIL T CONST)) (-3002 (($ $ $) NIL) (($) NIL T CONST)) (-3474 (((-923) $) 29)) (-2516 (((-1161) $) 46)) (-3779 (($ (-923)) 28)) (-3437 (((-1122) $) NIL)) (-3902 (((-1179) $) 13) (((-539) $) 19) (((-894 (-381)) $) 26) (((-894 (-567)) $) 22)) (-4129 (((-863) $) 16)) (-3357 (((-112) $ $) NIL)) (-3004 (((-112) $ $) NIL)) (-2980 (((-112) $ $) NIL)) (-2946 (((-112) $ $) 43)) (-2993 (((-112) $ $) NIL)) (-2968 (((-112) $ $) 41)))
+(((-865 |#1|) (-13 (-845) (-615 (-1179)) (-615 (-539)) (-615 (-894 (-381))) (-615 (-894 (-567))) (-10 -8 (-15 -3653 ((-3 $ "failed") (-1179))))) (-645 (-1179))) (T -865))
+((-3653 (*1 *1 *2) (|partial| -12 (-5 *2 (-1179)) (-5 *1 (-865 *3)) (-14 *3 (-645 *2)))))
+(-13 (-845) (-615 (-1179)) (-615 (-539)) (-615 (-894 (-381))) (-615 (-894 (-567))) (-10 -8 (-15 -3653 ((-3 $ "failed") (-1179)))))
+((-2412 (((-112) $ $) NIL)) (-2007 (((-509) $) 9)) (-1942 (((-645 (-442)) $) 13)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) 21)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) 16)))
+(((-866) (-13 (-1102) (-10 -8 (-15 -2007 ((-509) $)) (-15 -1942 ((-645 (-442)) $))))) (T -866))
+((-2007 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-866)))) (-1942 (*1 *2 *1) (-12 (-5 *2 (-645 (-442))) (-5 *1 (-866)))))
+(-13 (-1102) (-10 -8 (-15 -2007 ((-509) $)) (-15 -1942 ((-645 (-442)) $))))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-2376 (((-3 $ "failed") $ $) NIL)) (-3647 (($) NIL T CONST)) (-3588 (((-3 $ "failed") $) NIL)) (-4346 (((-112) $) NIL)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) NIL) (($ (-567)) NIL) (($ (-954 |#1|)) NIL) (((-954 |#1|) $) NIL) (($ |#1|) NIL (|has| |#1| (-172)))) (-2746 (((-772)) NIL T CONST)) (-1465 (((-1274) (-772)) NIL)) (-3357 (((-112) $ $) NIL)) (-1733 (($) NIL T CONST)) (-1744 (($) NIL T CONST)) (-2946 (((-112) $ $) NIL)) (-3069 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172)))))
+(((-867 |#1| |#2| |#3| |#4|) (-13 (-1051) (-493 (-954 |#1|)) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -3069 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1465 ((-1274) (-772))))) (-1051) (-645 (-1179)) (-645 (-772)) (-772)) (T -867))
+((-3069 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-867 *2 *3 *4 *5)) (-4 *2 (-365)) (-4 *2 (-1051)) (-14 *3 (-645 (-1179))) (-14 *4 (-645 (-772))) (-14 *5 (-772)))) (-1465 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1274)) (-5 *1 (-867 *4 *5 *6 *7)) (-4 *4 (-1051)) (-14 *5 (-645 (-1179))) (-14 *6 (-645 *3)) (-14 *7 *3))))
+(-13 (-1051) (-493 (-954 |#1|)) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -3069 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1465 ((-1274) (-772)))))
+((-2261 (((-3 (-174 |#3|) "failed") (-772) (-772) |#2| |#2|) 43)) (-3205 (((-3 (-410 |#3|) "failed") (-772) (-772) |#2| |#2|) 34)))
+(((-868 |#1| |#2| |#3|) (-10 -7 (-15 -3205 ((-3 (-410 |#3|) "failed") (-772) (-772) |#2| |#2|)) (-15 -2261 ((-3 (-174 |#3|) "failed") (-772) (-772) |#2| |#2|))) (-365) (-1260 |#1|) (-1245 |#1|)) (T -868))
+((-2261 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-772)) (-4 *5 (-365)) (-5 *2 (-174 *6)) (-5 *1 (-868 *5 *4 *6)) (-4 *4 (-1260 *5)) (-4 *6 (-1245 *5)))) (-3205 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-772)) (-4 *5 (-365)) (-5 *2 (-410 *6)) (-5 *1 (-868 *5 *4 *6)) (-4 *4 (-1260 *5)) (-4 *6 (-1245 *5)))))
+(-10 -7 (-15 -3205 ((-3 (-410 |#3|) "failed") (-772) (-772) |#2| |#2|)) (-15 -2261 ((-3 (-174 |#3|) "failed") (-772) (-772) |#2| |#2|)))
+((-3205 (((-3 (-410 (-1242 |#2| |#1|)) "failed") (-772) (-772) (-1261 |#1| |#2| |#3|)) 30) (((-3 (-410 (-1242 |#2| |#1|)) "failed") (-772) (-772) (-1261 |#1| |#2| |#3|) (-1261 |#1| |#2| |#3|)) 28)))
+(((-869 |#1| |#2| |#3|) (-10 -7 (-15 -3205 ((-3 (-410 (-1242 |#2| |#1|)) "failed") (-772) (-772) (-1261 |#1| |#2| |#3|) (-1261 |#1| |#2| |#3|))) (-15 -3205 ((-3 (-410 (-1242 |#2| |#1|)) "failed") (-772) (-772) (-1261 |#1| |#2| |#3|)))) (-365) (-1179) |#1|) (T -869))
+((-3205 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-772)) (-5 *4 (-1261 *5 *6 *7)) (-4 *5 (-365)) (-14 *6 (-1179)) (-14 *7 *5) (-5 *2 (-410 (-1242 *6 *5))) (-5 *1 (-869 *5 *6 *7)))) (-3205 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-772)) (-5 *4 (-1261 *5 *6 *7)) (-4 *5 (-365)) (-14 *6 (-1179)) (-14 *7 *5) (-5 *2 (-410 (-1242 *6 *5))) (-5 *1 (-869 *5 *6 *7)))))
+(-10 -7 (-15 -3205 ((-3 (-410 (-1242 |#2| |#1|)) "failed") (-772) (-772) (-1261 |#1| |#2| |#3|) (-1261 |#1| |#2| |#3|))) (-15 -3205 ((-3 (-410 (-1242 |#2| |#1|)) "failed") (-772) (-772) (-1261 |#1| |#2| |#3|))))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) 47)) (-4287 (($ $) 46)) (-2286 (((-112) $) 44)) (-2376 (((-3 $ "failed") $ $) 20)) (-2728 (($ $ (-567)) 68)) (-3696 (((-112) $ $) 65)) (-3647 (($) 18 T CONST)) (-3048 (($ (-1175 (-567)) (-567)) 67)) (-2357 (($ $ $) 61)) (-3588 (((-3 $ "failed") $) 37)) (-3031 (($ $) 70)) (-2368 (($ $ $) 62)) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) 57)) (-3362 (((-772) $) 75)) (-4346 (((-112) $) 35)) (-1469 (((-3 (-645 $) "failed") (-645 $) $) 58)) (-3054 (((-567)) 72)) (-2239 (((-567) $) 71)) (-2751 (($ $ $) 52) (($ (-645 $)) 51)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) 50)) (-2785 (($ $ $) 54) (($ (-645 $)) 53)) (-2905 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-1874 (($ $ (-567)) 74)) (-2400 (((-3 $ "failed") $ $) 48)) (-2372 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-2460 (((-772) $) 64)) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) 63)) (-2688 (((-1159 (-567)) $) 76)) (-1834 (($ $) 73)) (-4129 (((-863) $) 12) (($ (-567)) 33) (($ $) 49)) (-2746 (((-772)) 32 T CONST)) (-3357 (((-112) $ $) 9)) (-3731 (((-112) $ $) 45)) (-3058 (((-567) $ (-567)) 69)) (-1733 (($) 19 T CONST)) (-1744 (($) 34 T CONST)) (-2946 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27)))
(((-870 |#1|) (-140) (-567)) (T -870))
-((-3038 (*1 *2 *1) (-12 (-4 *1 (-870 *3)) (-5 *2 (-1158 (-567))))) (-4384 (*1 *2 *1) (-12 (-4 *1 (-870 *3)) (-5 *2 (-772)))) (-2410 (*1 *1 *1 *2) (-12 (-4 *1 (-870 *3)) (-5 *2 (-567)))) (-2192 (*1 *1 *1) (-4 *1 (-870 *2))) (-2211 (*1 *2) (-12 (-4 *1 (-870 *3)) (-5 *2 (-567)))) (-3297 (*1 *2 *1) (-12 (-4 *1 (-870 *3)) (-5 *2 (-567)))) (-1648 (*1 *1 *1) (-4 *1 (-870 *2))) (-3050 (*1 *2 *1 *2) (-12 (-4 *1 (-870 *3)) (-5 *2 (-567)))) (-2716 (*1 *1 *1 *2) (-12 (-4 *1 (-870 *3)) (-5 *2 (-567)))) (-2236 (*1 *1 *2 *3) (-12 (-5 *2 (-1174 (-567))) (-5 *3 (-567)) (-4 *1 (-870 *4)))))
-(-13 (-308) (-147) (-10 -8 (-15 -3038 ((-1158 (-567)) $)) (-15 -4384 ((-772) $)) (-15 -2410 ($ $ (-567))) (-15 -2192 ($ $)) (-15 -2211 ((-567))) (-15 -3297 ((-567) $)) (-15 -1648 ($ $)) (-15 -3050 ((-567) $ (-567))) (-15 -2716 ($ $ (-567))) (-15 -2236 ($ (-1174 (-567)) (-567)))))
+((-2688 (*1 *2 *1) (-12 (-4 *1 (-870 *3)) (-5 *2 (-1159 (-567))))) (-3362 (*1 *2 *1) (-12 (-4 *1 (-870 *3)) (-5 *2 (-772)))) (-1874 (*1 *1 *1 *2) (-12 (-4 *1 (-870 *3)) (-5 *2 (-567)))) (-1834 (*1 *1 *1) (-4 *1 (-870 *2))) (-3054 (*1 *2) (-12 (-4 *1 (-870 *3)) (-5 *2 (-567)))) (-2239 (*1 *2 *1) (-12 (-4 *1 (-870 *3)) (-5 *2 (-567)))) (-3031 (*1 *1 *1) (-4 *1 (-870 *2))) (-3058 (*1 *2 *1 *2) (-12 (-4 *1 (-870 *3)) (-5 *2 (-567)))) (-2728 (*1 *1 *1 *2) (-12 (-4 *1 (-870 *3)) (-5 *2 (-567)))) (-3048 (*1 *1 *2 *3) (-12 (-5 *2 (-1175 (-567))) (-5 *3 (-567)) (-4 *1 (-870 *4)))))
+(-13 (-308) (-147) (-10 -8 (-15 -2688 ((-1159 (-567)) $)) (-15 -3362 ((-772) $)) (-15 -1874 ($ $ (-567))) (-15 -1834 ($ $)) (-15 -3054 ((-567))) (-15 -2239 ((-567) $)) (-15 -3031 ($ $)) (-15 -3058 ((-567) $ (-567))) (-15 -2728 ($ $ (-567))) (-15 -3048 ($ (-1175 (-567)) (-567)))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-291) . T) ((-308) . T) ((-455) . T) ((-559) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-641 $) . T) ((-718 $) . T) ((-727) . T) ((-922) . T) ((-1053 $) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2716 (($ $ (-567)) NIL)) (-3609 (((-112) $ $) NIL)) (-2585 (($) NIL T CONST)) (-2236 (($ (-1174 (-567)) (-567)) NIL)) (-2349 (($ $ $) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-1648 (($ $) NIL)) (-2360 (($ $ $) NIL)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-4384 (((-772) $) NIL)) (-1433 (((-112) $) NIL)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2211 (((-567)) NIL)) (-3297 (((-567) $) NIL)) (-2740 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-2774 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2410 (($ $ (-567)) NIL)) (-2391 (((-3 $ "failed") $ $) NIL)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1990 (((-772) $) NIL)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL)) (-3038 (((-1158 (-567)) $) NIL)) (-2192 (($ $) NIL)) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL)) (-4221 (((-772)) NIL T CONST)) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL)) (-3050 (((-567) $ (-567)) NIL)) (-1716 (($) NIL T CONST)) (-1728 (($) NIL T CONST)) (-2936 (((-112) $ $) NIL)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL)))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-4287 (($ $) NIL)) (-2286 (((-112) $) NIL)) (-2376 (((-3 $ "failed") $ $) NIL)) (-2728 (($ $ (-567)) NIL)) (-3696 (((-112) $ $) NIL)) (-3647 (($) NIL T CONST)) (-3048 (($ (-1175 (-567)) (-567)) NIL)) (-2357 (($ $ $) NIL)) (-3588 (((-3 $ "failed") $) NIL)) (-3031 (($ $) NIL)) (-2368 (($ $ $) NIL)) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) NIL)) (-3362 (((-772) $) NIL)) (-4346 (((-112) $) NIL)) (-1469 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-3054 (((-567)) NIL)) (-2239 (((-567) $) NIL)) (-2751 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-2785 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2905 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1874 (($ $ (-567)) NIL)) (-2400 (((-3 $ "failed") $ $) NIL)) (-2372 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2460 (((-772) $) NIL)) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) NIL)) (-2688 (((-1159 (-567)) $) NIL)) (-1834 (($ $) NIL)) (-4129 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL)) (-2746 (((-772)) NIL T CONST)) (-3357 (((-112) $ $) NIL)) (-3731 (((-112) $ $) NIL)) (-3058 (((-567) $ (-567)) NIL)) (-1733 (($) NIL T CONST)) (-1744 (($) NIL T CONST)) (-2946 (((-112) $ $) NIL)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL)))
(((-871 |#1|) (-870 |#1|) (-567)) (T -871))
NIL
(-870 |#1|)
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3093 (((-871 |#1|) $) NIL (|has| (-871 |#1|) (-308)))) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-4226 (((-421 (-1174 $)) (-1174 $)) NIL (|has| (-871 |#1|) (-911)))) (-3248 (($ $) NIL)) (-2908 (((-421 $) $) NIL)) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) NIL (|has| (-871 |#1|) (-911)))) (-3609 (((-112) $ $) NIL)) (-1750 (((-567) $) NIL (|has| (-871 |#1|) (-821)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 (-871 |#1|) "failed") $) NIL) (((-3 (-1178) "failed") $) NIL (|has| (-871 |#1|) (-1040 (-1178)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| (-871 |#1|) (-1040 (-567)))) (((-3 (-567) "failed") $) NIL (|has| (-871 |#1|) (-1040 (-567))))) (-2038 (((-871 |#1|) $) NIL) (((-1178) $) NIL (|has| (-871 |#1|) (-1040 (-1178)))) (((-410 (-567)) $) NIL (|has| (-871 |#1|) (-1040 (-567)))) (((-567) $) NIL (|has| (-871 |#1|) (-1040 (-567))))) (-3812 (($ $) NIL) (($ (-567) $) NIL)) (-2349 (($ $ $) NIL)) (-2630 (((-690 (-567)) (-690 $)) NIL (|has| (-871 |#1|) (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (|has| (-871 |#1|) (-640 (-567)))) (((-2 (|:| -2316 (-690 (-871 |#1|))) (|:| |vec| (-1268 (-871 |#1|)))) (-690 $) (-1268 $)) NIL) (((-690 (-871 |#1|)) (-690 $)) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-1348 (($) NIL (|has| (-871 |#1|) (-548)))) (-2360 (($ $ $) NIL)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-3184 (((-112) $) NIL)) (-4336 (((-112) $) NIL (|has| (-871 |#1|) (-821)))) (-4303 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (|has| (-871 |#1|) (-888 (-567)))) (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (|has| (-871 |#1|) (-888 (-381))))) (-1433 (((-112) $) NIL)) (-3530 (($ $) NIL)) (-1448 (((-871 |#1|) $) NIL)) (-3972 (((-3 $ "failed") $) NIL (|has| (-871 |#1|) (-1153)))) (-3494 (((-112) $) NIL (|has| (-871 |#1|) (-821)))) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1354 (($ $ $) NIL (|has| (-871 |#1|) (-851)))) (-2981 (($ $ $) NIL (|has| (-871 |#1|) (-851)))) (-3829 (($ (-1 (-871 |#1|) (-871 |#1|)) $) NIL)) (-2740 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) NIL)) (-2672 (($) NIL (|has| (-871 |#1|) (-1153)) CONST)) (-3430 (((-1122) $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-2774 (($ $ $) NIL) (($ (-645 $)) NIL)) (-4094 (($ $) NIL (|has| (-871 |#1|) (-308)))) (-2780 (((-871 |#1|) $) NIL (|has| (-871 |#1|) (-548)))) (-2435 (((-421 (-1174 $)) (-1174 $)) NIL (|has| (-871 |#1|) (-911)))) (-3517 (((-421 (-1174 $)) (-1174 $)) NIL (|has| (-871 |#1|) (-911)))) (-2706 (((-421 $) $) NIL)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2391 (((-3 $ "failed") $ $) NIL)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2631 (($ $ (-645 (-871 |#1|)) (-645 (-871 |#1|))) NIL (|has| (-871 |#1|) (-310 (-871 |#1|)))) (($ $ (-871 |#1|) (-871 |#1|)) NIL (|has| (-871 |#1|) (-310 (-871 |#1|)))) (($ $ (-295 (-871 |#1|))) NIL (|has| (-871 |#1|) (-310 (-871 |#1|)))) (($ $ (-645 (-295 (-871 |#1|)))) NIL (|has| (-871 |#1|) (-310 (-871 |#1|)))) (($ $ (-645 (-1178)) (-645 (-871 |#1|))) NIL (|has| (-871 |#1|) (-517 (-1178) (-871 |#1|)))) (($ $ (-1178) (-871 |#1|)) NIL (|has| (-871 |#1|) (-517 (-1178) (-871 |#1|))))) (-1990 (((-772) $) NIL)) (-1787 (($ $ (-871 |#1|)) NIL (|has| (-871 |#1|) (-287 (-871 |#1|) (-871 |#1|))))) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL)) (-1593 (($ $) NIL (|has| (-871 |#1|) (-233))) (($ $ (-772)) NIL (|has| (-871 |#1|) (-233))) (($ $ (-1178)) NIL (|has| (-871 |#1|) (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| (-871 |#1|) (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| (-871 |#1|) (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| (-871 |#1|) (-902 (-1178)))) (($ $ (-1 (-871 |#1|) (-871 |#1|)) (-772)) NIL) (($ $ (-1 (-871 |#1|) (-871 |#1|))) NIL)) (-1967 (($ $) NIL)) (-1460 (((-871 |#1|) $) NIL)) (-3893 (((-894 (-567)) $) NIL (|has| (-871 |#1|) (-615 (-894 (-567))))) (((-894 (-381)) $) NIL (|has| (-871 |#1|) (-615 (-894 (-381))))) (((-539) $) NIL (|has| (-871 |#1|) (-615 (-539)))) (((-381) $) NIL (|has| (-871 |#1|) (-1024))) (((-225) $) NIL (|has| (-871 |#1|) (-1024)))) (-1579 (((-174 (-410 (-567))) $) NIL)) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| (-871 |#1|) (-911))))) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ (-871 |#1|)) NIL) (($ (-1178)) NIL (|has| (-871 |#1|) (-1040 (-1178))))) (-1903 (((-3 $ "failed") $) NIL (-2800 (-12 (|has| $ (-145)) (|has| (-871 |#1|) (-911))) (|has| (-871 |#1|) (-145))))) (-4221 (((-772)) NIL T CONST)) (-1423 (((-871 |#1|) $) NIL (|has| (-871 |#1|) (-548)))) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL)) (-3050 (((-410 (-567)) $ (-567)) NIL)) (-2219 (($ $) NIL (|has| (-871 |#1|) (-821)))) (-1716 (($) NIL T CONST)) (-1728 (($) NIL T CONST)) (-2637 (($ $) NIL (|has| (-871 |#1|) (-233))) (($ $ (-772)) NIL (|has| (-871 |#1|) (-233))) (($ $ (-1178)) NIL (|has| (-871 |#1|) (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| (-871 |#1|) (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| (-871 |#1|) (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| (-871 |#1|) (-902 (-1178)))) (($ $ (-1 (-871 |#1|) (-871 |#1|)) (-772)) NIL) (($ $ (-1 (-871 |#1|) (-871 |#1|))) NIL)) (-2997 (((-112) $ $) NIL (|has| (-871 |#1|) (-851)))) (-2971 (((-112) $ $) NIL (|has| (-871 |#1|) (-851)))) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL (|has| (-871 |#1|) (-851)))) (-2958 (((-112) $ $) NIL (|has| (-871 |#1|) (-851)))) (-3060 (($ $ $) NIL) (($ (-871 |#1|) (-871 |#1|)) NIL)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ (-871 |#1|) $) NIL) (($ $ (-871 |#1|)) NIL)))
-(((-872 |#1|) (-13 (-994 (-871 |#1|)) (-10 -8 (-15 -3050 ((-410 (-567)) $ (-567))) (-15 -1579 ((-174 (-410 (-567))) $)) (-15 -3812 ($ $)) (-15 -3812 ($ (-567) $)))) (-567)) (T -872))
-((-3050 (*1 *2 *1 *3) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-872 *4)) (-14 *4 *3) (-5 *3 (-567)))) (-1579 (*1 *2 *1) (-12 (-5 *2 (-174 (-410 (-567)))) (-5 *1 (-872 *3)) (-14 *3 (-567)))) (-3812 (*1 *1 *1) (-12 (-5 *1 (-872 *2)) (-14 *2 (-567)))) (-3812 (*1 *1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-872 *3)) (-14 *3 *2))))
-(-13 (-994 (-871 |#1|)) (-10 -8 (-15 -3050 ((-410 (-567)) $ (-567))) (-15 -1579 ((-174 (-410 (-567))) $)) (-15 -3812 ($ $)) (-15 -3812 ($ (-567) $))))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3093 ((|#2| $) NIL (|has| |#2| (-308)))) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-4226 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-911)))) (-3248 (($ $) NIL)) (-2908 (((-421 $) $) NIL)) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-911)))) (-3609 (((-112) $ $) NIL)) (-1750 (((-567) $) NIL (|has| |#2| (-821)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 |#2| "failed") $) NIL) (((-3 (-1178) "failed") $) NIL (|has| |#2| (-1040 (-1178)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#2| (-1040 (-567)))) (((-3 (-567) "failed") $) NIL (|has| |#2| (-1040 (-567))))) (-2038 ((|#2| $) NIL) (((-1178) $) NIL (|has| |#2| (-1040 (-1178)))) (((-410 (-567)) $) NIL (|has| |#2| (-1040 (-567)))) (((-567) $) NIL (|has| |#2| (-1040 (-567))))) (-3812 (($ $) 35) (($ (-567) $) 38)) (-2349 (($ $ $) NIL)) (-2630 (((-690 (-567)) (-690 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -2316 (-690 |#2|)) (|:| |vec| (-1268 |#2|))) (-690 $) (-1268 $)) NIL) (((-690 |#2|) (-690 $)) NIL)) (-2109 (((-3 $ "failed") $) 64)) (-1348 (($) NIL (|has| |#2| (-548)))) (-2360 (($ $ $) NIL)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-3184 (((-112) $) NIL)) (-4336 (((-112) $) NIL (|has| |#2| (-821)))) (-4303 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (|has| |#2| (-888 (-567)))) (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (|has| |#2| (-888 (-381))))) (-1433 (((-112) $) NIL)) (-3530 (($ $) NIL)) (-1448 ((|#2| $) NIL)) (-3972 (((-3 $ "failed") $) NIL (|has| |#2| (-1153)))) (-3494 (((-112) $) NIL (|has| |#2| (-821)))) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1354 (($ $ $) NIL (|has| |#2| (-851)))) (-2981 (($ $ $) NIL (|has| |#2| (-851)))) (-3829 (($ (-1 |#2| |#2|) $) NIL)) (-2740 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) 60)) (-2672 (($) NIL (|has| |#2| (-1153)) CONST)) (-3430 (((-1122) $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-2774 (($ $ $) NIL) (($ (-645 $)) NIL)) (-4094 (($ $) NIL (|has| |#2| (-308)))) (-2780 ((|#2| $) NIL (|has| |#2| (-548)))) (-2435 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-911)))) (-3517 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-911)))) (-2706 (((-421 $) $) NIL)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2391 (((-3 $ "failed") $ $) NIL)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2631 (($ $ (-645 |#2|) (-645 |#2|)) NIL (|has| |#2| (-310 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-310 |#2|))) (($ $ (-295 |#2|)) NIL (|has| |#2| (-310 |#2|))) (($ $ (-645 (-295 |#2|))) NIL (|has| |#2| (-310 |#2|))) (($ $ (-645 (-1178)) (-645 |#2|)) NIL (|has| |#2| (-517 (-1178) |#2|))) (($ $ (-1178) |#2|) NIL (|has| |#2| (-517 (-1178) |#2|)))) (-1990 (((-772) $) NIL)) (-1787 (($ $ |#2|) NIL (|has| |#2| (-287 |#2| |#2|)))) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL)) (-1593 (($ $) NIL (|has| |#2| (-233))) (($ $ (-772)) NIL (|has| |#2| (-233))) (($ $ (-1178)) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1967 (($ $) NIL)) (-1460 ((|#2| $) NIL)) (-3893 (((-894 (-567)) $) NIL (|has| |#2| (-615 (-894 (-567))))) (((-894 (-381)) $) NIL (|has| |#2| (-615 (-894 (-381))))) (((-539) $) NIL (|has| |#2| (-615 (-539)))) (((-381) $) NIL (|has| |#2| (-1024))) (((-225) $) NIL (|has| |#2| (-1024)))) (-1579 (((-174 (-410 (-567))) $) 78)) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-911))))) (-4132 (((-863) $) 108) (($ (-567)) 20) (($ $) NIL) (($ (-410 (-567))) 25) (($ |#2|) 19) (($ (-1178)) NIL (|has| |#2| (-1040 (-1178))))) (-1903 (((-3 $ "failed") $) NIL (-2800 (-12 (|has| $ (-145)) (|has| |#2| (-911))) (|has| |#2| (-145))))) (-4221 (((-772)) NIL T CONST)) (-1423 ((|#2| $) NIL (|has| |#2| (-548)))) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL)) (-3050 (((-410 (-567)) $ (-567)) 71)) (-2219 (($ $) NIL (|has| |#2| (-821)))) (-1716 (($) 15 T CONST)) (-1728 (($) 17 T CONST)) (-2637 (($ $) NIL (|has| |#2| (-233))) (($ $ (-772)) NIL (|has| |#2| (-233))) (($ $ (-1178)) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2997 (((-112) $ $) NIL (|has| |#2| (-851)))) (-2971 (((-112) $ $) NIL (|has| |#2| (-851)))) (-2936 (((-112) $ $) 46)) (-2984 (((-112) $ $) NIL (|has| |#2| (-851)))) (-2958 (((-112) $ $) NIL (|has| |#2| (-851)))) (-3060 (($ $ $) 24) (($ |#2| |#2|) 65)) (-3045 (($ $) 50) (($ $ $) 52)) (-3033 (($ $ $) 48)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) 61)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 53) (($ $ $) 55) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ |#2| $) 66) (($ $ |#2|) NIL)))
-(((-873 |#1| |#2|) (-13 (-994 |#2|) (-10 -8 (-15 -3050 ((-410 (-567)) $ (-567))) (-15 -1579 ((-174 (-410 (-567))) $)) (-15 -3812 ($ $)) (-15 -3812 ($ (-567) $)))) (-567) (-870 |#1|)) (T -873))
-((-3050 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-410 (-567))) (-5 *1 (-873 *4 *5)) (-5 *3 (-567)) (-4 *5 (-870 *4)))) (-1579 (*1 *2 *1) (-12 (-14 *3 (-567)) (-5 *2 (-174 (-410 (-567)))) (-5 *1 (-873 *3 *4)) (-4 *4 (-870 *3)))) (-3812 (*1 *1 *1) (-12 (-14 *2 (-567)) (-5 *1 (-873 *2 *3)) (-4 *3 (-870 *2)))) (-3812 (*1 *1 *2 *1) (-12 (-5 *2 (-567)) (-14 *3 *2) (-5 *1 (-873 *3 *4)) (-4 *4 (-870 *3)))))
-(-13 (-994 |#2|) (-10 -8 (-15 -3050 ((-410 (-567)) $ (-567))) (-15 -1579 ((-174 (-410 (-567))) $)) (-15 -3812 ($ $)) (-15 -3812 ($ (-567) $))))
-((-2403 (((-112) $ $) NIL (-12 (|has| |#1| (-1102)) (|has| |#2| (-1102))))) (-3984 ((|#2| $) 12)) (-3795 (($ |#1| |#2|) 9)) (-1419 (((-1160) $) NIL (-12 (|has| |#1| (-1102)) (|has| |#2| (-1102))))) (-3430 (((-1122) $) NIL (-12 (|has| |#1| (-1102)) (|has| |#2| (-1102))))) (-2409 ((|#1| $) 11)) (-4147 (($ |#1| |#2|) 10)) (-4132 (((-863) $) 18 (-2800 (-12 (|has| |#1| (-614 (-863))) (|has| |#2| (-614 (-863)))) (-12 (|has| |#1| (-1102)) (|has| |#2| (-1102)))))) (-1745 (((-112) $ $) NIL (-12 (|has| |#1| (-1102)) (|has| |#2| (-1102))))) (-2936 (((-112) $ $) 23 (-12 (|has| |#1| (-1102)) (|has| |#2| (-1102))))))
-(((-874 |#1| |#2|) (-13 (-1218) (-10 -8 (IF (|has| |#1| (-614 (-863))) (IF (|has| |#2| (-614 (-863))) (-6 (-614 (-863))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1102)) (IF (|has| |#2| (-1102)) (-6 (-1102)) |%noBranch|) |%noBranch|) (-15 -3795 ($ |#1| |#2|)) (-15 -4147 ($ |#1| |#2|)) (-15 -2409 (|#1| $)) (-15 -3984 (|#2| $)))) (-1218) (-1218)) (T -874))
-((-3795 (*1 *1 *2 *3) (-12 (-5 *1 (-874 *2 *3)) (-4 *2 (-1218)) (-4 *3 (-1218)))) (-4147 (*1 *1 *2 *3) (-12 (-5 *1 (-874 *2 *3)) (-4 *2 (-1218)) (-4 *3 (-1218)))) (-2409 (*1 *2 *1) (-12 (-4 *2 (-1218)) (-5 *1 (-874 *2 *3)) (-4 *3 (-1218)))) (-3984 (*1 *2 *1) (-12 (-4 *2 (-1218)) (-5 *1 (-874 *3 *2)) (-4 *3 (-1218)))))
-(-13 (-1218) (-10 -8 (IF (|has| |#1| (-614 (-863))) (IF (|has| |#2| (-614 (-863))) (-6 (-614 (-863))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1102)) (IF (|has| |#2| (-1102)) (-6 (-1102)) |%noBranch|) |%noBranch|) (-15 -3795 ($ |#1| |#2|)) (-15 -4147 ($ |#1| |#2|)) (-15 -2409 (|#1| $)) (-15 -3984 (|#2| $))))
-((-2403 (((-112) $ $) NIL)) (-4315 (((-567) $) 16)) (-1984 (($ (-157)) 13)) (-2794 (($ (-157)) 14)) (-1419 (((-1160) $) NIL)) (-3811 (((-157) $) 15)) (-3430 (((-1122) $) NIL)) (-2612 (($ (-157)) 11)) (-3895 (($ (-157)) 10)) (-4132 (((-863) $) 24) (($ (-157)) 17)) (-2597 (($ (-157)) 12)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)))
-(((-875) (-13 (-1102) (-10 -8 (-15 -3895 ($ (-157))) (-15 -2612 ($ (-157))) (-15 -2597 ($ (-157))) (-15 -1984 ($ (-157))) (-15 -2794 ($ (-157))) (-15 -3811 ((-157) $)) (-15 -4315 ((-567) $)) (-15 -4132 ($ (-157)))))) (T -875))
-((-3895 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-875)))) (-2612 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-875)))) (-2597 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-875)))) (-1984 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-875)))) (-2794 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-875)))) (-3811 (*1 *2 *1) (-12 (-5 *2 (-157)) (-5 *1 (-875)))) (-4315 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-875)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-875)))))
-(-13 (-1102) (-10 -8 (-15 -3895 ($ (-157))) (-15 -2612 ($ (-157))) (-15 -2597 ($ (-157))) (-15 -1984 ($ (-157))) (-15 -2794 ($ (-157))) (-15 -3811 ((-157) $)) (-15 -4315 ((-567) $)) (-15 -4132 ($ (-157)))))
-((-4132 (((-317 (-567)) (-410 (-954 (-48)))) 23) (((-317 (-567)) (-954 (-48))) 18)))
-(((-876) (-10 -7 (-15 -4132 ((-317 (-567)) (-954 (-48)))) (-15 -4132 ((-317 (-567)) (-410 (-954 (-48))))))) (T -876))
-((-4132 (*1 *2 *3) (-12 (-5 *3 (-410 (-954 (-48)))) (-5 *2 (-317 (-567))) (-5 *1 (-876)))) (-4132 (*1 *2 *3) (-12 (-5 *3 (-954 (-48))) (-5 *2 (-317 (-567))) (-5 *1 (-876)))))
-(-10 -7 (-15 -4132 ((-317 (-567)) (-954 (-48)))) (-15 -4132 ((-317 (-567)) (-410 (-954 (-48))))))
-((-2403 (((-112) $ $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 18) (($ (-1183)) NIL) (((-1183) $) NIL)) (-1702 (((-112) $ (|[\|\|]| (-509))) 9) (((-112) $ (|[\|\|]| (-1160))) 13)) (-1745 (((-112) $ $) NIL)) (-2523 (((-509) $) 10) (((-1160) $) 14)) (-2936 (((-112) $ $) 15)))
-(((-877) (-13 (-1085) (-1263) (-10 -8 (-15 -1702 ((-112) $ (|[\|\|]| (-509)))) (-15 -2523 ((-509) $)) (-15 -1702 ((-112) $ (|[\|\|]| (-1160)))) (-15 -2523 ((-1160) $))))) (T -877))
-((-1702 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-509))) (-5 *2 (-112)) (-5 *1 (-877)))) (-2523 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-877)))) (-1702 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1160))) (-5 *2 (-112)) (-5 *1 (-877)))) (-2523 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-877)))))
-(-13 (-1085) (-1263) (-10 -8 (-15 -1702 ((-112) $ (|[\|\|]| (-509)))) (-15 -2523 ((-509) $)) (-15 -1702 ((-112) $ (|[\|\|]| (-1160)))) (-15 -2523 ((-1160) $))))
-((-3829 (((-879 |#2|) (-1 |#2| |#1|) (-879 |#1|)) 15)))
-(((-878 |#1| |#2|) (-10 -7 (-15 -3829 ((-879 |#2|) (-1 |#2| |#1|) (-879 |#1|)))) (-1218) (-1218)) (T -878))
-((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-879 *5)) (-4 *5 (-1218)) (-4 *6 (-1218)) (-5 *2 (-879 *6)) (-5 *1 (-878 *5 *6)))))
-(-10 -7 (-15 -3829 ((-879 |#2|) (-1 |#2| |#1|) (-879 |#1|))))
-((-1533 (($ |#1| |#1|) 8)) (-3646 ((|#1| $ (-772)) 15)))
-(((-879 |#1|) (-10 -8 (-15 -1533 ($ |#1| |#1|)) (-15 -3646 (|#1| $ (-772)))) (-1218)) (T -879))
-((-3646 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *1 (-879 *2)) (-4 *2 (-1218)))) (-1533 (*1 *1 *2 *2) (-12 (-5 *1 (-879 *2)) (-4 *2 (-1218)))))
-(-10 -8 (-15 -1533 ($ |#1| |#1|)) (-15 -3646 (|#1| $ (-772))))
-((-3829 (((-881 |#2|) (-1 |#2| |#1|) (-881 |#1|)) 15)))
-(((-880 |#1| |#2|) (-10 -7 (-15 -3829 ((-881 |#2|) (-1 |#2| |#1|) (-881 |#1|)))) (-1218) (-1218)) (T -880))
-((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-881 *5)) (-4 *5 (-1218)) (-4 *6 (-1218)) (-5 *2 (-881 *6)) (-5 *1 (-880 *5 *6)))))
-(-10 -7 (-15 -3829 ((-881 |#2|) (-1 |#2| |#1|) (-881 |#1|))))
-((-1533 (($ |#1| |#1| |#1|) 8)) (-3646 ((|#1| $ (-772)) 15)))
-(((-881 |#1|) (-10 -8 (-15 -1533 ($ |#1| |#1| |#1|)) (-15 -3646 (|#1| $ (-772)))) (-1218)) (T -881))
-((-3646 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *1 (-881 *2)) (-4 *2 (-1218)))) (-1533 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-881 *2)) (-4 *2 (-1218)))))
-(-10 -8 (-15 -1533 ($ |#1| |#1| |#1|)) (-15 -3646 (|#1| $ (-772))))
-((-1415 (((-645 (-1183)) (-1160)) 9)))
-(((-882) (-10 -7 (-15 -1415 ((-645 (-1183)) (-1160))))) (T -882))
-((-1415 (*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-645 (-1183))) (-5 *1 (-882)))))
-(-10 -7 (-15 -1415 ((-645 (-1183)) (-1160))))
-((-3829 (((-884 |#2|) (-1 |#2| |#1|) (-884 |#1|)) 15)))
-(((-883 |#1| |#2|) (-10 -7 (-15 -3829 ((-884 |#2|) (-1 |#2| |#1|) (-884 |#1|)))) (-1218) (-1218)) (T -883))
-((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-884 *5)) (-4 *5 (-1218)) (-4 *6 (-1218)) (-5 *2 (-884 *6)) (-5 *1 (-883 *5 *6)))))
-(-10 -7 (-15 -3829 ((-884 |#2|) (-1 |#2| |#1|) (-884 |#1|))))
-((-3399 (($ |#1| |#1| |#1|) 8)) (-3646 ((|#1| $ (-772)) 15)))
-(((-884 |#1|) (-10 -8 (-15 -3399 ($ |#1| |#1| |#1|)) (-15 -3646 (|#1| $ (-772)))) (-1218)) (T -884))
-((-3646 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *1 (-884 *2)) (-4 *2 (-1218)))) (-3399 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-884 *2)) (-4 *2 (-1218)))))
-(-10 -8 (-15 -3399 ($ |#1| |#1| |#1|)) (-15 -3646 (|#1| $ (-772))))
-((-4070 (((-1158 (-645 (-567))) (-645 (-567)) (-1158 (-645 (-567)))) 48)) (-3489 (((-1158 (-645 (-567))) (-645 (-567)) (-645 (-567))) 44)) (-3594 (((-1158 (-645 (-567))) (-645 (-567))) 58) (((-1158 (-645 (-567))) (-645 (-567)) (-645 (-567))) 56)) (-3452 (((-1158 (-645 (-567))) (-567)) 59)) (-1452 (((-1158 (-645 (-567))) (-567) (-567)) 34) (((-1158 (-645 (-567))) (-567)) 23) (((-1158 (-645 (-567))) (-567) (-567) (-567)) 19)) (-2764 (((-1158 (-645 (-567))) (-1158 (-645 (-567)))) 42)) (-1823 (((-645 (-567)) (-645 (-567))) 41)))
-(((-885) (-10 -7 (-15 -1452 ((-1158 (-645 (-567))) (-567) (-567) (-567))) (-15 -1452 ((-1158 (-645 (-567))) (-567))) (-15 -1452 ((-1158 (-645 (-567))) (-567) (-567))) (-15 -1823 ((-645 (-567)) (-645 (-567)))) (-15 -2764 ((-1158 (-645 (-567))) (-1158 (-645 (-567))))) (-15 -3489 ((-1158 (-645 (-567))) (-645 (-567)) (-645 (-567)))) (-15 -4070 ((-1158 (-645 (-567))) (-645 (-567)) (-1158 (-645 (-567))))) (-15 -3594 ((-1158 (-645 (-567))) (-645 (-567)) (-645 (-567)))) (-15 -3594 ((-1158 (-645 (-567))) (-645 (-567)))) (-15 -3452 ((-1158 (-645 (-567))) (-567))))) (T -885))
-((-3452 (*1 *2 *3) (-12 (-5 *2 (-1158 (-645 (-567)))) (-5 *1 (-885)) (-5 *3 (-567)))) (-3594 (*1 *2 *3) (-12 (-5 *2 (-1158 (-645 (-567)))) (-5 *1 (-885)) (-5 *3 (-645 (-567))))) (-3594 (*1 *2 *3 *3) (-12 (-5 *2 (-1158 (-645 (-567)))) (-5 *1 (-885)) (-5 *3 (-645 (-567))))) (-4070 (*1 *2 *3 *2) (-12 (-5 *2 (-1158 (-645 (-567)))) (-5 *3 (-645 (-567))) (-5 *1 (-885)))) (-3489 (*1 *2 *3 *3) (-12 (-5 *2 (-1158 (-645 (-567)))) (-5 *1 (-885)) (-5 *3 (-645 (-567))))) (-2764 (*1 *2 *2) (-12 (-5 *2 (-1158 (-645 (-567)))) (-5 *1 (-885)))) (-1823 (*1 *2 *2) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-885)))) (-1452 (*1 *2 *3 *3) (-12 (-5 *2 (-1158 (-645 (-567)))) (-5 *1 (-885)) (-5 *3 (-567)))) (-1452 (*1 *2 *3) (-12 (-5 *2 (-1158 (-645 (-567)))) (-5 *1 (-885)) (-5 *3 (-567)))) (-1452 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1158 (-645 (-567)))) (-5 *1 (-885)) (-5 *3 (-567)))))
-(-10 -7 (-15 -1452 ((-1158 (-645 (-567))) (-567) (-567) (-567))) (-15 -1452 ((-1158 (-645 (-567))) (-567))) (-15 -1452 ((-1158 (-645 (-567))) (-567) (-567))) (-15 -1823 ((-645 (-567)) (-645 (-567)))) (-15 -2764 ((-1158 (-645 (-567))) (-1158 (-645 (-567))))) (-15 -3489 ((-1158 (-645 (-567))) (-645 (-567)) (-645 (-567)))) (-15 -4070 ((-1158 (-645 (-567))) (-645 (-567)) (-1158 (-645 (-567))))) (-15 -3594 ((-1158 (-645 (-567))) (-645 (-567)) (-645 (-567)))) (-15 -3594 ((-1158 (-645 (-567))) (-645 (-567)))) (-15 -3452 ((-1158 (-645 (-567))) (-567))))
-((-3893 (((-894 (-381)) $) 9 (|has| |#1| (-615 (-894 (-381))))) (((-894 (-567)) $) 8 (|has| |#1| (-615 (-894 (-567)))))))
-(((-886 |#1|) (-140) (-1218)) (T -886))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-4014 (((-871 |#1|) $) NIL (|has| (-871 |#1|) (-308)))) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-4287 (($ $) NIL)) (-2286 (((-112) $) NIL)) (-2376 (((-3 $ "failed") $ $) NIL)) (-2029 (((-421 (-1175 $)) (-1175 $)) NIL (|has| (-871 |#1|) (-911)))) (-3659 (($ $) NIL)) (-3597 (((-421 $) $) NIL)) (-3610 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) NIL (|has| (-871 |#1|) (-911)))) (-3696 (((-112) $ $) NIL)) (-2677 (((-567) $) NIL (|has| (-871 |#1|) (-821)))) (-3647 (($) NIL T CONST)) (-3765 (((-3 (-871 |#1|) "failed") $) NIL) (((-3 (-1179) "failed") $) NIL (|has| (-871 |#1|) (-1040 (-1179)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| (-871 |#1|) (-1040 (-567)))) (((-3 (-567) "failed") $) NIL (|has| (-871 |#1|) (-1040 (-567))))) (-2051 (((-871 |#1|) $) NIL) (((-1179) $) NIL (|has| (-871 |#1|) (-1040 (-1179)))) (((-410 (-567)) $) NIL (|has| (-871 |#1|) (-1040 (-567)))) (((-567) $) NIL (|has| (-871 |#1|) (-1040 (-567))))) (-3337 (($ $) NIL) (($ (-567) $) NIL)) (-2357 (($ $ $) NIL)) (-1423 (((-690 (-567)) (-690 $)) NIL (|has| (-871 |#1|) (-640 (-567)))) (((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (|has| (-871 |#1|) (-640 (-567)))) (((-2 (|:| -4208 (-690 (-871 |#1|))) (|:| |vec| (-1269 (-871 |#1|)))) (-690 $) (-1269 $)) NIL) (((-690 (-871 |#1|)) (-690 $)) NIL)) (-3588 (((-3 $ "failed") $) NIL)) (-1359 (($) NIL (|has| (-871 |#1|) (-548)))) (-2368 (($ $ $) NIL)) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) NIL)) (-3502 (((-112) $) NIL)) (-3137 (((-112) $) NIL (|has| (-871 |#1|) (-821)))) (-3193 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (|has| (-871 |#1|) (-888 (-567)))) (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (|has| (-871 |#1|) (-888 (-381))))) (-4346 (((-112) $) NIL)) (-1863 (($ $) NIL)) (-1447 (((-871 |#1|) $) NIL)) (-3067 (((-3 $ "failed") $) NIL (|has| (-871 |#1|) (-1154)))) (-3465 (((-112) $) NIL (|has| (-871 |#1|) (-821)))) (-1469 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1365 (($ $ $) NIL (|has| (-871 |#1|) (-851)))) (-3002 (($ $ $) NIL (|has| (-871 |#1|) (-851)))) (-3841 (($ (-1 (-871 |#1|) (-871 |#1|)) $) NIL)) (-2751 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2516 (((-1161) $) NIL)) (-2949 (($ $) NIL)) (-2694 (($) NIL (|has| (-871 |#1|) (-1154)) CONST)) (-3437 (((-1122) $) NIL)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-2785 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2554 (($ $) NIL (|has| (-871 |#1|) (-308)))) (-3969 (((-871 |#1|) $) NIL (|has| (-871 |#1|) (-548)))) (-3551 (((-421 (-1175 $)) (-1175 $)) NIL (|has| (-871 |#1|) (-911)))) (-2016 (((-421 (-1175 $)) (-1175 $)) NIL (|has| (-871 |#1|) (-911)))) (-2717 (((-421 $) $) NIL)) (-2905 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2400 (((-3 $ "failed") $ $) NIL)) (-2372 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2642 (($ $ (-645 (-871 |#1|)) (-645 (-871 |#1|))) NIL (|has| (-871 |#1|) (-310 (-871 |#1|)))) (($ $ (-871 |#1|) (-871 |#1|)) NIL (|has| (-871 |#1|) (-310 (-871 |#1|)))) (($ $ (-295 (-871 |#1|))) NIL (|has| (-871 |#1|) (-310 (-871 |#1|)))) (($ $ (-645 (-295 (-871 |#1|)))) NIL (|has| (-871 |#1|) (-310 (-871 |#1|)))) (($ $ (-645 (-1179)) (-645 (-871 |#1|))) NIL (|has| (-871 |#1|) (-517 (-1179) (-871 |#1|)))) (($ $ (-1179) (-871 |#1|)) NIL (|has| (-871 |#1|) (-517 (-1179) (-871 |#1|))))) (-2460 (((-772) $) NIL)) (-1801 (($ $ (-871 |#1|)) NIL (|has| (-871 |#1|) (-287 (-871 |#1|) (-871 |#1|))))) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) NIL)) (-1616 (($ $) NIL (|has| (-871 |#1|) (-233))) (($ $ (-772)) NIL (|has| (-871 |#1|) (-233))) (($ $ (-1179)) NIL (|has| (-871 |#1|) (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| (-871 |#1|) (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| (-871 |#1|) (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| (-871 |#1|) (-902 (-1179)))) (($ $ (-1 (-871 |#1|) (-871 |#1|)) (-772)) NIL) (($ $ (-1 (-871 |#1|) (-871 |#1|))) NIL)) (-1762 (($ $) NIL)) (-1462 (((-871 |#1|) $) NIL)) (-3902 (((-894 (-567)) $) NIL (|has| (-871 |#1|) (-615 (-894 (-567))))) (((-894 (-381)) $) NIL (|has| (-871 |#1|) (-615 (-894 (-381))))) (((-539) $) NIL (|has| (-871 |#1|) (-615 (-539)))) (((-381) $) NIL (|has| (-871 |#1|) (-1024))) (((-225) $) NIL (|has| (-871 |#1|) (-1024)))) (-1705 (((-174 (-410 (-567))) $) NIL)) (-2616 (((-3 (-1269 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| (-871 |#1|) (-911))))) (-4129 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ (-871 |#1|)) NIL) (($ (-1179)) NIL (|has| (-871 |#1|) (-1040 (-1179))))) (-2118 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-145)) (|has| (-871 |#1|) (-911))) (|has| (-871 |#1|) (-145))))) (-2746 (((-772)) NIL T CONST)) (-1689 (((-871 |#1|) $) NIL (|has| (-871 |#1|) (-548)))) (-3357 (((-112) $ $) NIL)) (-3731 (((-112) $ $) NIL)) (-3058 (((-410 (-567)) $ (-567)) NIL)) (-1547 (($ $) NIL (|has| (-871 |#1|) (-821)))) (-1733 (($) NIL T CONST)) (-1744 (($) NIL T CONST)) (-2647 (($ $) NIL (|has| (-871 |#1|) (-233))) (($ $ (-772)) NIL (|has| (-871 |#1|) (-233))) (($ $ (-1179)) NIL (|has| (-871 |#1|) (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| (-871 |#1|) (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| (-871 |#1|) (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| (-871 |#1|) (-902 (-1179)))) (($ $ (-1 (-871 |#1|) (-871 |#1|)) (-772)) NIL) (($ $ (-1 (-871 |#1|) (-871 |#1|))) NIL)) (-3004 (((-112) $ $) NIL (|has| (-871 |#1|) (-851)))) (-2980 (((-112) $ $) NIL (|has| (-871 |#1|) (-851)))) (-2946 (((-112) $ $) NIL)) (-2993 (((-112) $ $) NIL (|has| (-871 |#1|) (-851)))) (-2968 (((-112) $ $) NIL (|has| (-871 |#1|) (-851)))) (-3069 (($ $ $) NIL) (($ (-871 |#1|) (-871 |#1|)) NIL)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ (-871 |#1|) $) NIL) (($ $ (-871 |#1|)) NIL)))
+(((-872 |#1|) (-13 (-994 (-871 |#1|)) (-10 -8 (-15 -3058 ((-410 (-567)) $ (-567))) (-15 -1705 ((-174 (-410 (-567))) $)) (-15 -3337 ($ $)) (-15 -3337 ($ (-567) $)))) (-567)) (T -872))
+((-3058 (*1 *2 *1 *3) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-872 *4)) (-14 *4 *3) (-5 *3 (-567)))) (-1705 (*1 *2 *1) (-12 (-5 *2 (-174 (-410 (-567)))) (-5 *1 (-872 *3)) (-14 *3 (-567)))) (-3337 (*1 *1 *1) (-12 (-5 *1 (-872 *2)) (-14 *2 (-567)))) (-3337 (*1 *1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-872 *3)) (-14 *3 *2))))
+(-13 (-994 (-871 |#1|)) (-10 -8 (-15 -3058 ((-410 (-567)) $ (-567))) (-15 -1705 ((-174 (-410 (-567))) $)) (-15 -3337 ($ $)) (-15 -3337 ($ (-567) $))))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-4014 ((|#2| $) NIL (|has| |#2| (-308)))) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-4287 (($ $) NIL)) (-2286 (((-112) $) NIL)) (-2376 (((-3 $ "failed") $ $) NIL)) (-2029 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#2| (-911)))) (-3659 (($ $) NIL)) (-3597 (((-421 $) $) NIL)) (-3610 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) NIL (|has| |#2| (-911)))) (-3696 (((-112) $ $) NIL)) (-2677 (((-567) $) NIL (|has| |#2| (-821)))) (-3647 (($) NIL T CONST)) (-3765 (((-3 |#2| "failed") $) NIL) (((-3 (-1179) "failed") $) NIL (|has| |#2| (-1040 (-1179)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#2| (-1040 (-567)))) (((-3 (-567) "failed") $) NIL (|has| |#2| (-1040 (-567))))) (-2051 ((|#2| $) NIL) (((-1179) $) NIL (|has| |#2| (-1040 (-1179)))) (((-410 (-567)) $) NIL (|has| |#2| (-1040 (-567)))) (((-567) $) NIL (|has| |#2| (-1040 (-567))))) (-3337 (($ $) 35) (($ (-567) $) 38)) (-2357 (($ $ $) NIL)) (-1423 (((-690 (-567)) (-690 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -4208 (-690 |#2|)) (|:| |vec| (-1269 |#2|))) (-690 $) (-1269 $)) NIL) (((-690 |#2|) (-690 $)) NIL)) (-3588 (((-3 $ "failed") $) 64)) (-1359 (($) NIL (|has| |#2| (-548)))) (-2368 (($ $ $) NIL)) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) NIL)) (-3502 (((-112) $) NIL)) (-3137 (((-112) $) NIL (|has| |#2| (-821)))) (-3193 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (|has| |#2| (-888 (-567)))) (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (|has| |#2| (-888 (-381))))) (-4346 (((-112) $) NIL)) (-1863 (($ $) NIL)) (-1447 ((|#2| $) NIL)) (-3067 (((-3 $ "failed") $) NIL (|has| |#2| (-1154)))) (-3465 (((-112) $) NIL (|has| |#2| (-821)))) (-1469 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1365 (($ $ $) NIL (|has| |#2| (-851)))) (-3002 (($ $ $) NIL (|has| |#2| (-851)))) (-3841 (($ (-1 |#2| |#2|) $) NIL)) (-2751 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2516 (((-1161) $) NIL)) (-2949 (($ $) 60)) (-2694 (($) NIL (|has| |#2| (-1154)) CONST)) (-3437 (((-1122) $) NIL)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-2785 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2554 (($ $) NIL (|has| |#2| (-308)))) (-3969 ((|#2| $) NIL (|has| |#2| (-548)))) (-3551 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#2| (-911)))) (-2016 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#2| (-911)))) (-2717 (((-421 $) $) NIL)) (-2905 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2400 (((-3 $ "failed") $ $) NIL)) (-2372 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2642 (($ $ (-645 |#2|) (-645 |#2|)) NIL (|has| |#2| (-310 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-310 |#2|))) (($ $ (-295 |#2|)) NIL (|has| |#2| (-310 |#2|))) (($ $ (-645 (-295 |#2|))) NIL (|has| |#2| (-310 |#2|))) (($ $ (-645 (-1179)) (-645 |#2|)) NIL (|has| |#2| (-517 (-1179) |#2|))) (($ $ (-1179) |#2|) NIL (|has| |#2| (-517 (-1179) |#2|)))) (-2460 (((-772) $) NIL)) (-1801 (($ $ |#2|) NIL (|has| |#2| (-287 |#2| |#2|)))) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) NIL)) (-1616 (($ $) NIL (|has| |#2| (-233))) (($ $ (-772)) NIL (|has| |#2| (-233))) (($ $ (-1179)) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1762 (($ $) NIL)) (-1462 ((|#2| $) NIL)) (-3902 (((-894 (-567)) $) NIL (|has| |#2| (-615 (-894 (-567))))) (((-894 (-381)) $) NIL (|has| |#2| (-615 (-894 (-381))))) (((-539) $) NIL (|has| |#2| (-615 (-539)))) (((-381) $) NIL (|has| |#2| (-1024))) (((-225) $) NIL (|has| |#2| (-1024)))) (-1705 (((-174 (-410 (-567))) $) 78)) (-2616 (((-3 (-1269 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-911))))) (-4129 (((-863) $) 108) (($ (-567)) 20) (($ $) NIL) (($ (-410 (-567))) 25) (($ |#2|) 19) (($ (-1179)) NIL (|has| |#2| (-1040 (-1179))))) (-2118 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-145)) (|has| |#2| (-911))) (|has| |#2| (-145))))) (-2746 (((-772)) NIL T CONST)) (-1689 ((|#2| $) NIL (|has| |#2| (-548)))) (-3357 (((-112) $ $) NIL)) (-3731 (((-112) $ $) NIL)) (-3058 (((-410 (-567)) $ (-567)) 71)) (-1547 (($ $) NIL (|has| |#2| (-821)))) (-1733 (($) 15 T CONST)) (-1744 (($) 17 T CONST)) (-2647 (($ $) NIL (|has| |#2| (-233))) (($ $ (-772)) NIL (|has| |#2| (-233))) (($ $ (-1179)) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3004 (((-112) $ $) NIL (|has| |#2| (-851)))) (-2980 (((-112) $ $) NIL (|has| |#2| (-851)))) (-2946 (((-112) $ $) 46)) (-2993 (((-112) $ $) NIL (|has| |#2| (-851)))) (-2968 (((-112) $ $) NIL (|has| |#2| (-851)))) (-3069 (($ $ $) 24) (($ |#2| |#2|) 65)) (-3053 (($ $) 50) (($ $ $) 52)) (-3041 (($ $ $) 48)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) 61)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 53) (($ $ $) 55) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ |#2| $) 66) (($ $ |#2|) NIL)))
+(((-873 |#1| |#2|) (-13 (-994 |#2|) (-10 -8 (-15 -3058 ((-410 (-567)) $ (-567))) (-15 -1705 ((-174 (-410 (-567))) $)) (-15 -3337 ($ $)) (-15 -3337 ($ (-567) $)))) (-567) (-870 |#1|)) (T -873))
+((-3058 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-410 (-567))) (-5 *1 (-873 *4 *5)) (-5 *3 (-567)) (-4 *5 (-870 *4)))) (-1705 (*1 *2 *1) (-12 (-14 *3 (-567)) (-5 *2 (-174 (-410 (-567)))) (-5 *1 (-873 *3 *4)) (-4 *4 (-870 *3)))) (-3337 (*1 *1 *1) (-12 (-14 *2 (-567)) (-5 *1 (-873 *2 *3)) (-4 *3 (-870 *2)))) (-3337 (*1 *1 *2 *1) (-12 (-5 *2 (-567)) (-14 *3 *2) (-5 *1 (-873 *3 *4)) (-4 *4 (-870 *3)))))
+(-13 (-994 |#2|) (-10 -8 (-15 -3058 ((-410 (-567)) $ (-567))) (-15 -1705 ((-174 (-410 (-567))) $)) (-15 -3337 ($ $)) (-15 -3337 ($ (-567) $))))
+((-2412 (((-112) $ $) NIL (-12 (|has| |#1| (-1102)) (|has| |#2| (-1102))))) (-3990 ((|#2| $) 12)) (-3806 (($ |#1| |#2|) 9)) (-2516 (((-1161) $) NIL (-12 (|has| |#1| (-1102)) (|has| |#2| (-1102))))) (-3437 (((-1122) $) NIL (-12 (|has| |#1| (-1102)) (|has| |#2| (-1102))))) (-2418 ((|#1| $) 11)) (-4145 (($ |#1| |#2|) 10)) (-4129 (((-863) $) 18 (-2811 (-12 (|has| |#1| (-614 (-863))) (|has| |#2| (-614 (-863)))) (-12 (|has| |#1| (-1102)) (|has| |#2| (-1102)))))) (-3357 (((-112) $ $) NIL (-12 (|has| |#1| (-1102)) (|has| |#2| (-1102))))) (-2946 (((-112) $ $) 23 (-12 (|has| |#1| (-1102)) (|has| |#2| (-1102))))))
+(((-874 |#1| |#2|) (-13 (-1219) (-10 -8 (IF (|has| |#1| (-614 (-863))) (IF (|has| |#2| (-614 (-863))) (-6 (-614 (-863))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1102)) (IF (|has| |#2| (-1102)) (-6 (-1102)) |%noBranch|) |%noBranch|) (-15 -3806 ($ |#1| |#2|)) (-15 -4145 ($ |#1| |#2|)) (-15 -2418 (|#1| $)) (-15 -3990 (|#2| $)))) (-1219) (-1219)) (T -874))
+((-3806 (*1 *1 *2 *3) (-12 (-5 *1 (-874 *2 *3)) (-4 *2 (-1219)) (-4 *3 (-1219)))) (-4145 (*1 *1 *2 *3) (-12 (-5 *1 (-874 *2 *3)) (-4 *2 (-1219)) (-4 *3 (-1219)))) (-2418 (*1 *2 *1) (-12 (-4 *2 (-1219)) (-5 *1 (-874 *2 *3)) (-4 *3 (-1219)))) (-3990 (*1 *2 *1) (-12 (-4 *2 (-1219)) (-5 *1 (-874 *3 *2)) (-4 *3 (-1219)))))
+(-13 (-1219) (-10 -8 (IF (|has| |#1| (-614 (-863))) (IF (|has| |#2| (-614 (-863))) (-6 (-614 (-863))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1102)) (IF (|has| |#2| (-1102)) (-6 (-1102)) |%noBranch|) |%noBranch|) (-15 -3806 ($ |#1| |#2|)) (-15 -4145 ($ |#1| |#2|)) (-15 -2418 (|#1| $)) (-15 -3990 (|#2| $))))
+((-2412 (((-112) $ $) NIL)) (-2311 (((-567) $) 16)) (-2033 (($ (-157)) 13)) (-2693 (($ (-157)) 14)) (-2516 (((-1161) $) NIL)) (-3475 (((-157) $) 15)) (-3437 (((-1122) $) NIL)) (-2622 (($ (-157)) 11)) (-1435 (($ (-157)) 10)) (-4129 (((-863) $) 24) (($ (-157)) 17)) (-2606 (($ (-157)) 12)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)))
+(((-875) (-13 (-1102) (-10 -8 (-15 -1435 ($ (-157))) (-15 -2622 ($ (-157))) (-15 -2606 ($ (-157))) (-15 -2033 ($ (-157))) (-15 -2693 ($ (-157))) (-15 -3475 ((-157) $)) (-15 -2311 ((-567) $)) (-15 -4129 ($ (-157)))))) (T -875))
+((-1435 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-875)))) (-2622 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-875)))) (-2606 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-875)))) (-2033 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-875)))) (-2693 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-875)))) (-3475 (*1 *2 *1) (-12 (-5 *2 (-157)) (-5 *1 (-875)))) (-2311 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-875)))) (-4129 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-875)))))
+(-13 (-1102) (-10 -8 (-15 -1435 ($ (-157))) (-15 -2622 ($ (-157))) (-15 -2606 ($ (-157))) (-15 -2033 ($ (-157))) (-15 -2693 ($ (-157))) (-15 -3475 ((-157) $)) (-15 -2311 ((-567) $)) (-15 -4129 ($ (-157)))))
+((-4129 (((-317 (-567)) (-410 (-954 (-48)))) 23) (((-317 (-567)) (-954 (-48))) 18)))
+(((-876) (-10 -7 (-15 -4129 ((-317 (-567)) (-954 (-48)))) (-15 -4129 ((-317 (-567)) (-410 (-954 (-48))))))) (T -876))
+((-4129 (*1 *2 *3) (-12 (-5 *3 (-410 (-954 (-48)))) (-5 *2 (-317 (-567))) (-5 *1 (-876)))) (-4129 (*1 *2 *3) (-12 (-5 *3 (-954 (-48))) (-5 *2 (-317 (-567))) (-5 *1 (-876)))))
+(-10 -7 (-15 -4129 ((-317 (-567)) (-954 (-48)))) (-15 -4129 ((-317 (-567)) (-410 (-954 (-48))))))
+((-2412 (((-112) $ $) NIL)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) 18) (($ (-1184)) NIL) (((-1184) $) NIL)) (-1719 (((-112) $ (|[\|\|]| (-509))) 9) (((-112) $ (|[\|\|]| (-1161))) 13)) (-3357 (((-112) $ $) NIL)) (-2533 (((-509) $) 10) (((-1161) $) 14)) (-2946 (((-112) $ $) 15)))
+(((-877) (-13 (-1085) (-1264) (-10 -8 (-15 -1719 ((-112) $ (|[\|\|]| (-509)))) (-15 -2533 ((-509) $)) (-15 -1719 ((-112) $ (|[\|\|]| (-1161)))) (-15 -2533 ((-1161) $))))) (T -877))
+((-1719 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-509))) (-5 *2 (-112)) (-5 *1 (-877)))) (-2533 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-877)))) (-1719 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1161))) (-5 *2 (-112)) (-5 *1 (-877)))) (-2533 (*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-877)))))
+(-13 (-1085) (-1264) (-10 -8 (-15 -1719 ((-112) $ (|[\|\|]| (-509)))) (-15 -2533 ((-509) $)) (-15 -1719 ((-112) $ (|[\|\|]| (-1161)))) (-15 -2533 ((-1161) $))))
+((-3841 (((-879 |#2|) (-1 |#2| |#1|) (-879 |#1|)) 15)))
+(((-878 |#1| |#2|) (-10 -7 (-15 -3841 ((-879 |#2|) (-1 |#2| |#1|) (-879 |#1|)))) (-1219) (-1219)) (T -878))
+((-3841 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-879 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) (-5 *2 (-879 *6)) (-5 *1 (-878 *5 *6)))))
+(-10 -7 (-15 -3841 ((-879 |#2|) (-1 |#2| |#1|) (-879 |#1|))))
+((-3636 (($ |#1| |#1|) 8)) (-3206 ((|#1| $ (-772)) 15)))
+(((-879 |#1|) (-10 -8 (-15 -3636 ($ |#1| |#1|)) (-15 -3206 (|#1| $ (-772)))) (-1219)) (T -879))
+((-3206 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *1 (-879 *2)) (-4 *2 (-1219)))) (-3636 (*1 *1 *2 *2) (-12 (-5 *1 (-879 *2)) (-4 *2 (-1219)))))
+(-10 -8 (-15 -3636 ($ |#1| |#1|)) (-15 -3206 (|#1| $ (-772))))
+((-3841 (((-881 |#2|) (-1 |#2| |#1|) (-881 |#1|)) 15)))
+(((-880 |#1| |#2|) (-10 -7 (-15 -3841 ((-881 |#2|) (-1 |#2| |#1|) (-881 |#1|)))) (-1219) (-1219)) (T -880))
+((-3841 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-881 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) (-5 *2 (-881 *6)) (-5 *1 (-880 *5 *6)))))
+(-10 -7 (-15 -3841 ((-881 |#2|) (-1 |#2| |#1|) (-881 |#1|))))
+((-3636 (($ |#1| |#1| |#1|) 8)) (-3206 ((|#1| $ (-772)) 15)))
+(((-881 |#1|) (-10 -8 (-15 -3636 ($ |#1| |#1| |#1|)) (-15 -3206 (|#1| $ (-772)))) (-1219)) (T -881))
+((-3206 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *1 (-881 *2)) (-4 *2 (-1219)))) (-3636 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-881 *2)) (-4 *2 (-1219)))))
+(-10 -8 (-15 -3636 ($ |#1| |#1| |#1|)) (-15 -3206 (|#1| $ (-772))))
+((-3489 (((-645 (-1184)) (-1161)) 9)))
+(((-882) (-10 -7 (-15 -3489 ((-645 (-1184)) (-1161))))) (T -882))
+((-3489 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-645 (-1184))) (-5 *1 (-882)))))
+(-10 -7 (-15 -3489 ((-645 (-1184)) (-1161))))
+((-3841 (((-884 |#2|) (-1 |#2| |#1|) (-884 |#1|)) 15)))
+(((-883 |#1| |#2|) (-10 -7 (-15 -3841 ((-884 |#2|) (-1 |#2| |#1|) (-884 |#1|)))) (-1219) (-1219)) (T -883))
+((-3841 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-884 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) (-5 *2 (-884 *6)) (-5 *1 (-883 *5 *6)))))
+(-10 -7 (-15 -3841 ((-884 |#2|) (-1 |#2| |#1|) (-884 |#1|))))
+((-3709 (($ |#1| |#1| |#1|) 8)) (-3206 ((|#1| $ (-772)) 15)))
+(((-884 |#1|) (-10 -8 (-15 -3709 ($ |#1| |#1| |#1|)) (-15 -3206 (|#1| $ (-772)))) (-1219)) (T -884))
+((-3206 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *1 (-884 *2)) (-4 *2 (-1219)))) (-3709 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-884 *2)) (-4 *2 (-1219)))))
+(-10 -8 (-15 -3709 ($ |#1| |#1| |#1|)) (-15 -3206 (|#1| $ (-772))))
+((-4005 (((-1159 (-645 (-567))) (-645 (-567)) (-1159 (-645 (-567)))) 48)) (-4215 (((-1159 (-645 (-567))) (-645 (-567)) (-645 (-567))) 44)) (-2191 (((-1159 (-645 (-567))) (-645 (-567))) 58) (((-1159 (-645 (-567))) (-645 (-567)) (-645 (-567))) 56)) (-4091 (((-1159 (-645 (-567))) (-567)) 59)) (-3120 (((-1159 (-645 (-567))) (-567) (-567)) 34) (((-1159 (-645 (-567))) (-567)) 23) (((-1159 (-645 (-567))) (-567) (-567) (-567)) 19)) (-2071 (((-1159 (-645 (-567))) (-1159 (-645 (-567)))) 42)) (-1672 (((-645 (-567)) (-645 (-567))) 41)))
+(((-885) (-10 -7 (-15 -3120 ((-1159 (-645 (-567))) (-567) (-567) (-567))) (-15 -3120 ((-1159 (-645 (-567))) (-567))) (-15 -3120 ((-1159 (-645 (-567))) (-567) (-567))) (-15 -1672 ((-645 (-567)) (-645 (-567)))) (-15 -2071 ((-1159 (-645 (-567))) (-1159 (-645 (-567))))) (-15 -4215 ((-1159 (-645 (-567))) (-645 (-567)) (-645 (-567)))) (-15 -4005 ((-1159 (-645 (-567))) (-645 (-567)) (-1159 (-645 (-567))))) (-15 -2191 ((-1159 (-645 (-567))) (-645 (-567)) (-645 (-567)))) (-15 -2191 ((-1159 (-645 (-567))) (-645 (-567)))) (-15 -4091 ((-1159 (-645 (-567))) (-567))))) (T -885))
+((-4091 (*1 *2 *3) (-12 (-5 *2 (-1159 (-645 (-567)))) (-5 *1 (-885)) (-5 *3 (-567)))) (-2191 (*1 *2 *3) (-12 (-5 *2 (-1159 (-645 (-567)))) (-5 *1 (-885)) (-5 *3 (-645 (-567))))) (-2191 (*1 *2 *3 *3) (-12 (-5 *2 (-1159 (-645 (-567)))) (-5 *1 (-885)) (-5 *3 (-645 (-567))))) (-4005 (*1 *2 *3 *2) (-12 (-5 *2 (-1159 (-645 (-567)))) (-5 *3 (-645 (-567))) (-5 *1 (-885)))) (-4215 (*1 *2 *3 *3) (-12 (-5 *2 (-1159 (-645 (-567)))) (-5 *1 (-885)) (-5 *3 (-645 (-567))))) (-2071 (*1 *2 *2) (-12 (-5 *2 (-1159 (-645 (-567)))) (-5 *1 (-885)))) (-1672 (*1 *2 *2) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-885)))) (-3120 (*1 *2 *3 *3) (-12 (-5 *2 (-1159 (-645 (-567)))) (-5 *1 (-885)) (-5 *3 (-567)))) (-3120 (*1 *2 *3) (-12 (-5 *2 (-1159 (-645 (-567)))) (-5 *1 (-885)) (-5 *3 (-567)))) (-3120 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1159 (-645 (-567)))) (-5 *1 (-885)) (-5 *3 (-567)))))
+(-10 -7 (-15 -3120 ((-1159 (-645 (-567))) (-567) (-567) (-567))) (-15 -3120 ((-1159 (-645 (-567))) (-567))) (-15 -3120 ((-1159 (-645 (-567))) (-567) (-567))) (-15 -1672 ((-645 (-567)) (-645 (-567)))) (-15 -2071 ((-1159 (-645 (-567))) (-1159 (-645 (-567))))) (-15 -4215 ((-1159 (-645 (-567))) (-645 (-567)) (-645 (-567)))) (-15 -4005 ((-1159 (-645 (-567))) (-645 (-567)) (-1159 (-645 (-567))))) (-15 -2191 ((-1159 (-645 (-567))) (-645 (-567)) (-645 (-567)))) (-15 -2191 ((-1159 (-645 (-567))) (-645 (-567)))) (-15 -4091 ((-1159 (-645 (-567))) (-567))))
+((-3902 (((-894 (-381)) $) 9 (|has| |#1| (-615 (-894 (-381))))) (((-894 (-567)) $) 8 (|has| |#1| (-615 (-894 (-567)))))))
+(((-886 |#1|) (-140) (-1219)) (T -886))
NIL
(-13 (-10 -7 (IF (|has| |t#1| (-615 (-894 (-567)))) (-6 (-615 (-894 (-567)))) |%noBranch|) (IF (|has| |t#1| (-615 (-894 (-381)))) (-6 (-615 (-894 (-381)))) |%noBranch|)))
(((-615 (-894 (-381))) |has| |#1| (-615 (-894 (-381)))) ((-615 (-894 (-567))) |has| |#1| (-615 (-894 (-567)))))
-((-2403 (((-112) $ $) NIL)) (-2846 (($) 14)) (-2389 (($ (-891 |#1| |#2|) (-891 |#1| |#3|)) 28)) (-2022 (((-891 |#1| |#3|) $) 16)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-3569 (((-112) $) 22)) (-3668 (($) 19)) (-4132 (((-863) $) 31)) (-1745 (((-112) $ $) NIL)) (-1582 (((-891 |#1| |#2|) $) 15)) (-2936 (((-112) $ $) 26)))
-(((-887 |#1| |#2| |#3|) (-13 (-1102) (-10 -8 (-15 -3569 ((-112) $)) (-15 -3668 ($)) (-15 -2846 ($)) (-15 -2389 ($ (-891 |#1| |#2|) (-891 |#1| |#3|))) (-15 -1582 ((-891 |#1| |#2|) $)) (-15 -2022 ((-891 |#1| |#3|) $)))) (-1102) (-1102) (-667 |#2|)) (T -887))
-((-3569 (*1 *2 *1) (-12 (-4 *4 (-1102)) (-5 *2 (-112)) (-5 *1 (-887 *3 *4 *5)) (-4 *3 (-1102)) (-4 *5 (-667 *4)))) (-3668 (*1 *1) (-12 (-4 *3 (-1102)) (-5 *1 (-887 *2 *3 *4)) (-4 *2 (-1102)) (-4 *4 (-667 *3)))) (-2846 (*1 *1) (-12 (-4 *3 (-1102)) (-5 *1 (-887 *2 *3 *4)) (-4 *2 (-1102)) (-4 *4 (-667 *3)))) (-2389 (*1 *1 *2 *3) (-12 (-5 *2 (-891 *4 *5)) (-5 *3 (-891 *4 *6)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-667 *5)) (-5 *1 (-887 *4 *5 *6)))) (-1582 (*1 *2 *1) (-12 (-4 *4 (-1102)) (-5 *2 (-891 *3 *4)) (-5 *1 (-887 *3 *4 *5)) (-4 *3 (-1102)) (-4 *5 (-667 *4)))) (-2022 (*1 *2 *1) (-12 (-4 *4 (-1102)) (-5 *2 (-891 *3 *5)) (-5 *1 (-887 *3 *4 *5)) (-4 *3 (-1102)) (-4 *5 (-667 *4)))))
-(-13 (-1102) (-10 -8 (-15 -3569 ((-112) $)) (-15 -3668 ($)) (-15 -2846 ($)) (-15 -2389 ($ (-891 |#1| |#2|) (-891 |#1| |#3|))) (-15 -1582 ((-891 |#1| |#2|) $)) (-15 -2022 ((-891 |#1| |#3|) $))))
-((-2403 (((-112) $ $) 7)) (-4303 (((-891 |#1| $) $ (-894 |#1|) (-891 |#1| $)) 14)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-2936 (((-112) $ $) 6)))
+((-2412 (((-112) $ $) NIL)) (-2858 (($) 14)) (-1615 (($ (-891 |#1| |#2|) (-891 |#1| |#3|)) 28)) (-2044 (((-891 |#1| |#3|) $) 16)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-1891 (((-112) $) 22)) (-3678 (($) 19)) (-4129 (((-863) $) 31)) (-3357 (((-112) $ $) NIL)) (-3734 (((-891 |#1| |#2|) $) 15)) (-2946 (((-112) $ $) 26)))
+(((-887 |#1| |#2| |#3|) (-13 (-1102) (-10 -8 (-15 -1891 ((-112) $)) (-15 -3678 ($)) (-15 -2858 ($)) (-15 -1615 ($ (-891 |#1| |#2|) (-891 |#1| |#3|))) (-15 -3734 ((-891 |#1| |#2|) $)) (-15 -2044 ((-891 |#1| |#3|) $)))) (-1102) (-1102) (-667 |#2|)) (T -887))
+((-1891 (*1 *2 *1) (-12 (-4 *4 (-1102)) (-5 *2 (-112)) (-5 *1 (-887 *3 *4 *5)) (-4 *3 (-1102)) (-4 *5 (-667 *4)))) (-3678 (*1 *1) (-12 (-4 *3 (-1102)) (-5 *1 (-887 *2 *3 *4)) (-4 *2 (-1102)) (-4 *4 (-667 *3)))) (-2858 (*1 *1) (-12 (-4 *3 (-1102)) (-5 *1 (-887 *2 *3 *4)) (-4 *2 (-1102)) (-4 *4 (-667 *3)))) (-1615 (*1 *1 *2 *3) (-12 (-5 *2 (-891 *4 *5)) (-5 *3 (-891 *4 *6)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-667 *5)) (-5 *1 (-887 *4 *5 *6)))) (-3734 (*1 *2 *1) (-12 (-4 *4 (-1102)) (-5 *2 (-891 *3 *4)) (-5 *1 (-887 *3 *4 *5)) (-4 *3 (-1102)) (-4 *5 (-667 *4)))) (-2044 (*1 *2 *1) (-12 (-4 *4 (-1102)) (-5 *2 (-891 *3 *5)) (-5 *1 (-887 *3 *4 *5)) (-4 *3 (-1102)) (-4 *5 (-667 *4)))))
+(-13 (-1102) (-10 -8 (-15 -1891 ((-112) $)) (-15 -3678 ($)) (-15 -2858 ($)) (-15 -1615 ($ (-891 |#1| |#2|) (-891 |#1| |#3|))) (-15 -3734 ((-891 |#1| |#2|) $)) (-15 -2044 ((-891 |#1| |#3|) $))))
+((-2412 (((-112) $ $) 7)) (-3193 (((-891 |#1| $) $ (-894 |#1|) (-891 |#1| $)) 14)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-4129 (((-863) $) 12)) (-3357 (((-112) $ $) 9)) (-2946 (((-112) $ $) 6)))
(((-888 |#1|) (-140) (-1102)) (T -888))
-((-4303 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-891 *4 *1)) (-5 *3 (-894 *4)) (-4 *1 (-888 *4)) (-4 *4 (-1102)))))
-(-13 (-1102) (-10 -8 (-15 -4303 ((-891 |t#1| $) $ (-894 |t#1|) (-891 |t#1| $)))))
+((-3193 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-891 *4 *1)) (-5 *3 (-894 *4)) (-4 *1 (-888 *4)) (-4 *4 (-1102)))))
+(-13 (-1102) (-10 -8 (-15 -3193 ((-891 |t#1| $) $ (-894 |t#1|) (-891 |t#1| $)))))
(((-102) . T) ((-614 (-863)) . T) ((-1102) . T))
-((-1854 (((-112) (-645 |#2|) |#3|) 23) (((-112) |#2| |#3|) 18)) (-2525 (((-891 |#1| |#2|) |#2| |#3|) 45 (-12 (-1657 (|has| |#2| (-1040 (-1178)))) (-1657 (|has| |#2| (-1051))))) (((-645 (-295 (-954 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-1051)) (-1657 (|has| |#2| (-1040 (-1178)))))) (((-645 (-295 |#2|)) |#2| |#3|) 36 (|has| |#2| (-1040 (-1178)))) (((-887 |#1| |#2| (-645 |#2|)) (-645 |#2|) |#3|) 21)))
-(((-889 |#1| |#2| |#3|) (-10 -7 (-15 -1854 ((-112) |#2| |#3|)) (-15 -1854 ((-112) (-645 |#2|) |#3|)) (-15 -2525 ((-887 |#1| |#2| (-645 |#2|)) (-645 |#2|) |#3|)) (IF (|has| |#2| (-1040 (-1178))) (-15 -2525 ((-645 (-295 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1051)) (-15 -2525 ((-645 (-295 (-954 |#2|))) |#2| |#3|)) (-15 -2525 ((-891 |#1| |#2|) |#2| |#3|))))) (-1102) (-888 |#1|) (-615 (-894 |#1|))) (T -889))
-((-2525 (*1 *2 *3 *4) (-12 (-4 *5 (-1102)) (-5 *2 (-891 *5 *3)) (-5 *1 (-889 *5 *3 *4)) (-1657 (-4 *3 (-1040 (-1178)))) (-1657 (-4 *3 (-1051))) (-4 *3 (-888 *5)) (-4 *4 (-615 (-894 *5))))) (-2525 (*1 *2 *3 *4) (-12 (-4 *5 (-1102)) (-5 *2 (-645 (-295 (-954 *3)))) (-5 *1 (-889 *5 *3 *4)) (-4 *3 (-1051)) (-1657 (-4 *3 (-1040 (-1178)))) (-4 *3 (-888 *5)) (-4 *4 (-615 (-894 *5))))) (-2525 (*1 *2 *3 *4) (-12 (-4 *5 (-1102)) (-5 *2 (-645 (-295 *3))) (-5 *1 (-889 *5 *3 *4)) (-4 *3 (-1040 (-1178))) (-4 *3 (-888 *5)) (-4 *4 (-615 (-894 *5))))) (-2525 (*1 *2 *3 *4) (-12 (-4 *5 (-1102)) (-4 *6 (-888 *5)) (-5 *2 (-887 *5 *6 (-645 *6))) (-5 *1 (-889 *5 *6 *4)) (-5 *3 (-645 *6)) (-4 *4 (-615 (-894 *5))))) (-1854 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *6)) (-4 *6 (-888 *5)) (-4 *5 (-1102)) (-5 *2 (-112)) (-5 *1 (-889 *5 *6 *4)) (-4 *4 (-615 (-894 *5))))) (-1854 (*1 *2 *3 *4) (-12 (-4 *5 (-1102)) (-5 *2 (-112)) (-5 *1 (-889 *5 *3 *4)) (-4 *3 (-888 *5)) (-4 *4 (-615 (-894 *5))))))
-(-10 -7 (-15 -1854 ((-112) |#2| |#3|)) (-15 -1854 ((-112) (-645 |#2|) |#3|)) (-15 -2525 ((-887 |#1| |#2| (-645 |#2|)) (-645 |#2|) |#3|)) (IF (|has| |#2| (-1040 (-1178))) (-15 -2525 ((-645 (-295 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1051)) (-15 -2525 ((-645 (-295 (-954 |#2|))) |#2| |#3|)) (-15 -2525 ((-891 |#1| |#2|) |#2| |#3|)))))
-((-3829 (((-891 |#1| |#3|) (-1 |#3| |#2|) (-891 |#1| |#2|)) 22)))
-(((-890 |#1| |#2| |#3|) (-10 -7 (-15 -3829 ((-891 |#1| |#3|) (-1 |#3| |#2|) (-891 |#1| |#2|)))) (-1102) (-1102) (-1102)) (T -890))
-((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-891 *5 *6)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-891 *5 *7)) (-5 *1 (-890 *5 *6 *7)))))
-(-10 -7 (-15 -3829 ((-891 |#1| |#3|) (-1 |#3| |#2|) (-891 |#1| |#2|))))
-((-2403 (((-112) $ $) NIL)) (-4244 (($ $ $) 40)) (-1683 (((-3 (-112) "failed") $ (-894 |#1|)) 37)) (-2846 (($) 12)) (-1419 (((-1160) $) NIL)) (-3235 (($ (-894 |#1|) |#2| $) 20)) (-3430 (((-1122) $) NIL)) (-2942 (((-3 |#2| "failed") (-894 |#1|) $) 51)) (-3569 (((-112) $) 15)) (-3668 (($) 13)) (-2784 (((-645 (-2 (|:| -1795 (-1178)) (|:| -4237 |#2|))) $) 25)) (-4147 (($ (-645 (-2 (|:| -1795 (-1178)) (|:| -4237 |#2|)))) 23)) (-4132 (((-863) $) 45)) (-1745 (((-112) $ $) NIL)) (-4373 (($ (-894 |#1|) |#2| $ |#2|) 49)) (-1651 (($ (-894 |#1|) |#2| $) 48)) (-2936 (((-112) $ $) 42)))
-(((-891 |#1| |#2|) (-13 (-1102) (-10 -8 (-15 -3569 ((-112) $)) (-15 -3668 ($)) (-15 -2846 ($)) (-15 -4244 ($ $ $)) (-15 -2942 ((-3 |#2| "failed") (-894 |#1|) $)) (-15 -1651 ($ (-894 |#1|) |#2| $)) (-15 -3235 ($ (-894 |#1|) |#2| $)) (-15 -4373 ($ (-894 |#1|) |#2| $ |#2|)) (-15 -2784 ((-645 (-2 (|:| -1795 (-1178)) (|:| -4237 |#2|))) $)) (-15 -4147 ($ (-645 (-2 (|:| -1795 (-1178)) (|:| -4237 |#2|))))) (-15 -1683 ((-3 (-112) "failed") $ (-894 |#1|))))) (-1102) (-1102)) (T -891))
-((-3569 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-891 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102)))) (-3668 (*1 *1) (-12 (-5 *1 (-891 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-1102)))) (-2846 (*1 *1) (-12 (-5 *1 (-891 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-1102)))) (-4244 (*1 *1 *1 *1) (-12 (-5 *1 (-891 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-1102)))) (-2942 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-894 *4)) (-4 *4 (-1102)) (-4 *2 (-1102)) (-5 *1 (-891 *4 *2)))) (-1651 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-894 *4)) (-4 *4 (-1102)) (-5 *1 (-891 *4 *3)) (-4 *3 (-1102)))) (-3235 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-894 *4)) (-4 *4 (-1102)) (-5 *1 (-891 *4 *3)) (-4 *3 (-1102)))) (-4373 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-894 *4)) (-4 *4 (-1102)) (-5 *1 (-891 *4 *3)) (-4 *3 (-1102)))) (-2784 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| -1795 (-1178)) (|:| -4237 *4)))) (-5 *1 (-891 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102)))) (-4147 (*1 *1 *2) (-12 (-5 *2 (-645 (-2 (|:| -1795 (-1178)) (|:| -4237 *4)))) (-4 *4 (-1102)) (-5 *1 (-891 *3 *4)) (-4 *3 (-1102)))) (-1683 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-894 *4)) (-4 *4 (-1102)) (-5 *2 (-112)) (-5 *1 (-891 *4 *5)) (-4 *5 (-1102)))))
-(-13 (-1102) (-10 -8 (-15 -3569 ((-112) $)) (-15 -3668 ($)) (-15 -2846 ($)) (-15 -4244 ($ $ $)) (-15 -2942 ((-3 |#2| "failed") (-894 |#1|) $)) (-15 -1651 ($ (-894 |#1|) |#2| $)) (-15 -3235 ($ (-894 |#1|) |#2| $)) (-15 -4373 ($ (-894 |#1|) |#2| $ |#2|)) (-15 -2784 ((-645 (-2 (|:| -1795 (-1178)) (|:| -4237 |#2|))) $)) (-15 -4147 ($ (-645 (-2 (|:| -1795 (-1178)) (|:| -4237 |#2|))))) (-15 -1683 ((-3 (-112) "failed") $ (-894 |#1|)))))
-((-2111 (((-894 |#1|) (-894 |#1|) (-645 (-1178)) (-1 (-112) (-645 |#2|))) 32) (((-894 |#1|) (-894 |#1|) (-645 (-1 (-112) |#2|))) 46) (((-894 |#1|) (-894 |#1|) (-1 (-112) |#2|)) 35)) (-1683 (((-112) (-645 |#2|) (-894 |#1|)) 42) (((-112) |#2| (-894 |#1|)) 36)) (-3342 (((-1 (-112) |#2|) (-894 |#1|)) 16)) (-3698 (((-645 |#2|) (-894 |#1|)) 24)) (-1810 (((-894 |#1|) (-894 |#1|) |#2|) 20)))
-(((-892 |#1| |#2|) (-10 -7 (-15 -2111 ((-894 |#1|) (-894 |#1|) (-1 (-112) |#2|))) (-15 -2111 ((-894 |#1|) (-894 |#1|) (-645 (-1 (-112) |#2|)))) (-15 -2111 ((-894 |#1|) (-894 |#1|) (-645 (-1178)) (-1 (-112) (-645 |#2|)))) (-15 -3342 ((-1 (-112) |#2|) (-894 |#1|))) (-15 -1683 ((-112) |#2| (-894 |#1|))) (-15 -1683 ((-112) (-645 |#2|) (-894 |#1|))) (-15 -1810 ((-894 |#1|) (-894 |#1|) |#2|)) (-15 -3698 ((-645 |#2|) (-894 |#1|)))) (-1102) (-1218)) (T -892))
-((-3698 (*1 *2 *3) (-12 (-5 *3 (-894 *4)) (-4 *4 (-1102)) (-5 *2 (-645 *5)) (-5 *1 (-892 *4 *5)) (-4 *5 (-1218)))) (-1810 (*1 *2 *2 *3) (-12 (-5 *2 (-894 *4)) (-4 *4 (-1102)) (-5 *1 (-892 *4 *3)) (-4 *3 (-1218)))) (-1683 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *6)) (-5 *4 (-894 *5)) (-4 *5 (-1102)) (-4 *6 (-1218)) (-5 *2 (-112)) (-5 *1 (-892 *5 *6)))) (-1683 (*1 *2 *3 *4) (-12 (-5 *4 (-894 *5)) (-4 *5 (-1102)) (-5 *2 (-112)) (-5 *1 (-892 *5 *3)) (-4 *3 (-1218)))) (-3342 (*1 *2 *3) (-12 (-5 *3 (-894 *4)) (-4 *4 (-1102)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-892 *4 *5)) (-4 *5 (-1218)))) (-2111 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-894 *5)) (-5 *3 (-645 (-1178))) (-5 *4 (-1 (-112) (-645 *6))) (-4 *5 (-1102)) (-4 *6 (-1218)) (-5 *1 (-892 *5 *6)))) (-2111 (*1 *2 *2 *3) (-12 (-5 *2 (-894 *4)) (-5 *3 (-645 (-1 (-112) *5))) (-4 *4 (-1102)) (-4 *5 (-1218)) (-5 *1 (-892 *4 *5)))) (-2111 (*1 *2 *2 *3) (-12 (-5 *2 (-894 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1102)) (-4 *5 (-1218)) (-5 *1 (-892 *4 *5)))))
-(-10 -7 (-15 -2111 ((-894 |#1|) (-894 |#1|) (-1 (-112) |#2|))) (-15 -2111 ((-894 |#1|) (-894 |#1|) (-645 (-1 (-112) |#2|)))) (-15 -2111 ((-894 |#1|) (-894 |#1|) (-645 (-1178)) (-1 (-112) (-645 |#2|)))) (-15 -3342 ((-1 (-112) |#2|) (-894 |#1|))) (-15 -1683 ((-112) |#2| (-894 |#1|))) (-15 -1683 ((-112) (-645 |#2|) (-894 |#1|))) (-15 -1810 ((-894 |#1|) (-894 |#1|) |#2|)) (-15 -3698 ((-645 |#2|) (-894 |#1|))))
-((-3829 (((-894 |#2|) (-1 |#2| |#1|) (-894 |#1|)) 19)))
-(((-893 |#1| |#2|) (-10 -7 (-15 -3829 ((-894 |#2|) (-1 |#2| |#1|) (-894 |#1|)))) (-1102) (-1102)) (T -893))
-((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-894 *5)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-5 *2 (-894 *6)) (-5 *1 (-893 *5 *6)))))
-(-10 -7 (-15 -3829 ((-894 |#2|) (-1 |#2| |#1|) (-894 |#1|))))
-((-2403 (((-112) $ $) NIL)) (-3933 (($ $ (-645 (-52))) 74)) (-2847 (((-645 $) $) 138)) (-1738 (((-2 (|:| |var| (-645 (-1178))) (|:| |pred| (-52))) $) 30)) (-1765 (((-112) $) 35)) (-2113 (($ $ (-645 (-1178)) (-52)) 31)) (-3215 (($ $ (-645 (-52))) 73)) (-3753 (((-3 |#1| "failed") $) 71) (((-3 (-1178) "failed") $) 162)) (-2038 ((|#1| $) 68) (((-1178) $) NIL)) (-3390 (($ $) 126)) (-2093 (((-112) $) 55)) (-1376 (((-645 (-52)) $) 50)) (-2413 (($ (-1178) (-112) (-112) (-112)) 75)) (-3550 (((-3 (-645 $) "failed") (-645 $)) 82)) (-2536 (((-112) $) 58)) (-3939 (((-112) $) 57)) (-1419 (((-1160) $) NIL)) (-2056 (((-3 (-645 $) "failed") $) 41)) (-4068 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 48)) (-1912 (((-3 (-2 (|:| |val| $) (|:| -3458 $)) "failed") $) 97)) (-3671 (((-3 (-645 $) "failed") $) 40)) (-2486 (((-3 (-645 $) "failed") $ (-114)) 124) (((-3 (-2 (|:| -4179 (-114)) (|:| |arg| (-645 $))) "failed") $) 107)) (-1700 (((-3 (-645 $) "failed") $) 42)) (-3798 (((-3 (-2 (|:| |val| $) (|:| -3458 (-772))) "failed") $) 45)) (-4134 (((-112) $) 34)) (-3430 (((-1122) $) NIL)) (-1400 (((-112) $) 28)) (-4087 (((-112) $) 52)) (-3789 (((-645 (-52)) $) 130)) (-3857 (((-112) $) 56)) (-1787 (($ (-114) (-645 $)) 104)) (-3272 (((-772) $) 33)) (-4305 (($ $) 72)) (-3893 (($ (-645 $)) 69)) (-1935 (((-112) $) 32)) (-4132 (((-863) $) 63) (($ |#1|) 23) (($ (-1178)) 76)) (-1745 (((-112) $ $) NIL)) (-1810 (($ $ (-52)) 129)) (-1716 (($) 103 T CONST)) (-1728 (($) 83 T CONST)) (-2936 (((-112) $ $) 93)) (-3060 (($ $ $) 117)) (-3033 (($ $ $) 121)) (** (($ $ (-772)) 115) (($ $ $) 64)) (* (($ $ $) 122)))
-(((-894 |#1|) (-13 (-1102) (-1040 |#1|) (-1040 (-1178)) (-10 -8 (-15 0 ($) -3286) (-15 1 ($) -3286) (-15 -3671 ((-3 (-645 $) "failed") $)) (-15 -2056 ((-3 (-645 $) "failed") $)) (-15 -2486 ((-3 (-645 $) "failed") $ (-114))) (-15 -2486 ((-3 (-2 (|:| -4179 (-114)) (|:| |arg| (-645 $))) "failed") $)) (-15 -3798 ((-3 (-2 (|:| |val| $) (|:| -3458 (-772))) "failed") $)) (-15 -4068 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -1700 ((-3 (-645 $) "failed") $)) (-15 -1912 ((-3 (-2 (|:| |val| $) (|:| -3458 $)) "failed") $)) (-15 -1787 ($ (-114) (-645 $))) (-15 -3033 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-772))) (-15 ** ($ $ $)) (-15 -3060 ($ $ $)) (-15 -3272 ((-772) $)) (-15 -3893 ($ (-645 $))) (-15 -4305 ($ $)) (-15 -4134 ((-112) $)) (-15 -2093 ((-112) $)) (-15 -1765 ((-112) $)) (-15 -1935 ((-112) $)) (-15 -3857 ((-112) $)) (-15 -3939 ((-112) $)) (-15 -2536 ((-112) $)) (-15 -4087 ((-112) $)) (-15 -1376 ((-645 (-52)) $)) (-15 -3215 ($ $ (-645 (-52)))) (-15 -3933 ($ $ (-645 (-52)))) (-15 -2413 ($ (-1178) (-112) (-112) (-112))) (-15 -2113 ($ $ (-645 (-1178)) (-52))) (-15 -1738 ((-2 (|:| |var| (-645 (-1178))) (|:| |pred| (-52))) $)) (-15 -1400 ((-112) $)) (-15 -3390 ($ $)) (-15 -1810 ($ $ (-52))) (-15 -3789 ((-645 (-52)) $)) (-15 -2847 ((-645 $) $)) (-15 -3550 ((-3 (-645 $) "failed") (-645 $))))) (-1102)) (T -894))
-((-1716 (*1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1102)))) (-1728 (*1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1102)))) (-3671 (*1 *2 *1) (|partial| -12 (-5 *2 (-645 (-894 *3))) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-2056 (*1 *2 *1) (|partial| -12 (-5 *2 (-645 (-894 *3))) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-2486 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-645 (-894 *4))) (-5 *1 (-894 *4)) (-4 *4 (-1102)))) (-2486 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -4179 (-114)) (|:| |arg| (-645 (-894 *3))))) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-3798 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-894 *3)) (|:| -3458 (-772)))) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-4068 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-894 *3)) (|:| |den| (-894 *3)))) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-1700 (*1 *2 *1) (|partial| -12 (-5 *2 (-645 (-894 *3))) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-1912 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-894 *3)) (|:| -3458 (-894 *3)))) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-1787 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-645 (-894 *4))) (-5 *1 (-894 *4)) (-4 *4 (-1102)))) (-3033 (*1 *1 *1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1102)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1102)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1102)))) (-3060 (*1 *1 *1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1102)))) (-3272 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-3893 (*1 *1 *2) (-12 (-5 *2 (-645 (-894 *3))) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-4305 (*1 *1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1102)))) (-4134 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-2093 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-1765 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-1935 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-3857 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-3939 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-2536 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-4087 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-1376 (*1 *2 *1) (-12 (-5 *2 (-645 (-52))) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-3215 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-52))) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-3933 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-52))) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-2413 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-112)) (-5 *1 (-894 *4)) (-4 *4 (-1102)))) (-2113 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-1178))) (-5 *3 (-52)) (-5 *1 (-894 *4)) (-4 *4 (-1102)))) (-1738 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-645 (-1178))) (|:| |pred| (-52)))) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-1400 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-3390 (*1 *1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1102)))) (-1810 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-3789 (*1 *2 *1) (-12 (-5 *2 (-645 (-52))) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-2847 (*1 *2 *1) (-12 (-5 *2 (-645 (-894 *3))) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-3550 (*1 *2 *2) (|partial| -12 (-5 *2 (-645 (-894 *3))) (-5 *1 (-894 *3)) (-4 *3 (-1102)))))
-(-13 (-1102) (-1040 |#1|) (-1040 (-1178)) (-10 -8 (-15 (-1716) ($) -3286) (-15 (-1728) ($) -3286) (-15 -3671 ((-3 (-645 $) "failed") $)) (-15 -2056 ((-3 (-645 $) "failed") $)) (-15 -2486 ((-3 (-645 $) "failed") $ (-114))) (-15 -2486 ((-3 (-2 (|:| -4179 (-114)) (|:| |arg| (-645 $))) "failed") $)) (-15 -3798 ((-3 (-2 (|:| |val| $) (|:| -3458 (-772))) "failed") $)) (-15 -4068 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -1700 ((-3 (-645 $) "failed") $)) (-15 -1912 ((-3 (-2 (|:| |val| $) (|:| -3458 $)) "failed") $)) (-15 -1787 ($ (-114) (-645 $))) (-15 -3033 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-772))) (-15 ** ($ $ $)) (-15 -3060 ($ $ $)) (-15 -3272 ((-772) $)) (-15 -3893 ($ (-645 $))) (-15 -4305 ($ $)) (-15 -4134 ((-112) $)) (-15 -2093 ((-112) $)) (-15 -1765 ((-112) $)) (-15 -1935 ((-112) $)) (-15 -3857 ((-112) $)) (-15 -3939 ((-112) $)) (-15 -2536 ((-112) $)) (-15 -4087 ((-112) $)) (-15 -1376 ((-645 (-52)) $)) (-15 -3215 ($ $ (-645 (-52)))) (-15 -3933 ($ $ (-645 (-52)))) (-15 -2413 ($ (-1178) (-112) (-112) (-112))) (-15 -2113 ($ $ (-645 (-1178)) (-52))) (-15 -1738 ((-2 (|:| |var| (-645 (-1178))) (|:| |pred| (-52))) $)) (-15 -1400 ((-112) $)) (-15 -3390 ($ $)) (-15 -1810 ($ $ (-52))) (-15 -3789 ((-645 (-52)) $)) (-15 -2847 ((-645 $) $)) (-15 -3550 ((-3 (-645 $) "failed") (-645 $)))))
-((-2403 (((-112) $ $) NIL)) (-3267 (((-645 |#1|) $) 19)) (-3164 (((-112) $) 49)) (-3753 (((-3 (-673 |#1|) "failed") $) 56)) (-2038 (((-673 |#1|) $) 54)) (-2421 (($ $) 23)) (-1354 (($ $ $) NIL)) (-2981 (($ $ $) NIL)) (-1699 (((-772) $) 61)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-2409 (((-673 |#1|) $) 21)) (-4132 (((-863) $) 47) (($ (-673 |#1|)) 26) (((-820 |#1|) $) 36) (($ |#1|) 25)) (-1745 (((-112) $ $) NIL)) (-1728 (($) 9 T CONST)) (-2761 (((-645 (-673 |#1|)) $) 28)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 12)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) 67)))
-(((-895 |#1|) (-13 (-851) (-1040 (-673 |#1|)) (-10 -8 (-15 1 ($) -3286) (-15 -4132 ((-820 |#1|) $)) (-15 -4132 ($ |#1|)) (-15 -2409 ((-673 |#1|) $)) (-15 -1699 ((-772) $)) (-15 -2761 ((-645 (-673 |#1|)) $)) (-15 -2421 ($ $)) (-15 -3164 ((-112) $)) (-15 -3267 ((-645 |#1|) $)))) (-851)) (T -895))
-((-1728 (*1 *1) (-12 (-5 *1 (-895 *2)) (-4 *2 (-851)))) (-4132 (*1 *2 *1) (-12 (-5 *2 (-820 *3)) (-5 *1 (-895 *3)) (-4 *3 (-851)))) (-4132 (*1 *1 *2) (-12 (-5 *1 (-895 *2)) (-4 *2 (-851)))) (-2409 (*1 *2 *1) (-12 (-5 *2 (-673 *3)) (-5 *1 (-895 *3)) (-4 *3 (-851)))) (-1699 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-895 *3)) (-4 *3 (-851)))) (-2761 (*1 *2 *1) (-12 (-5 *2 (-645 (-673 *3))) (-5 *1 (-895 *3)) (-4 *3 (-851)))) (-2421 (*1 *1 *1) (-12 (-5 *1 (-895 *2)) (-4 *2 (-851)))) (-3164 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-895 *3)) (-4 *3 (-851)))) (-3267 (*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-895 *3)) (-4 *3 (-851)))))
-(-13 (-851) (-1040 (-673 |#1|)) (-10 -8 (-15 (-1728) ($) -3286) (-15 -4132 ((-820 |#1|) $)) (-15 -4132 ($ |#1|)) (-15 -2409 ((-673 |#1|) $)) (-15 -1699 ((-772) $)) (-15 -2761 ((-645 (-673 |#1|)) $)) (-15 -2421 ($ $)) (-15 -3164 ((-112) $)) (-15 -3267 ((-645 |#1|) $))))
-((-2476 ((|#1| |#1| |#1|) 19)))
-(((-896 |#1| |#2|) (-10 -7 (-15 -2476 (|#1| |#1| |#1|))) (-1244 |#2|) (-1051)) (T -896))
-((-2476 (*1 *2 *2 *2) (-12 (-4 *3 (-1051)) (-5 *1 (-896 *2 *3)) (-4 *2 (-1244 *3)))))
-(-10 -7 (-15 -2476 (|#1| |#1| |#1|)))
-((-2403 (((-112) $ $) 7)) (-2264 (((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160))) (-1065) (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1160)) (|:| |tol| (-225)))) 15)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-3473 (((-1037) (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1160)) (|:| |tol| (-225)))) 14)) (-2936 (((-112) $ $) 6)))
+((-3545 (((-112) (-645 |#2|) |#3|) 23) (((-112) |#2| |#3|) 18)) (-3213 (((-891 |#1| |#2|) |#2| |#3|) 45 (-12 (-1673 (|has| |#2| (-1040 (-1179)))) (-1673 (|has| |#2| (-1051))))) (((-645 (-295 (-954 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-1051)) (-1673 (|has| |#2| (-1040 (-1179)))))) (((-645 (-295 |#2|)) |#2| |#3|) 36 (|has| |#2| (-1040 (-1179)))) (((-887 |#1| |#2| (-645 |#2|)) (-645 |#2|) |#3|) 21)))
+(((-889 |#1| |#2| |#3|) (-10 -7 (-15 -3545 ((-112) |#2| |#3|)) (-15 -3545 ((-112) (-645 |#2|) |#3|)) (-15 -3213 ((-887 |#1| |#2| (-645 |#2|)) (-645 |#2|) |#3|)) (IF (|has| |#2| (-1040 (-1179))) (-15 -3213 ((-645 (-295 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1051)) (-15 -3213 ((-645 (-295 (-954 |#2|))) |#2| |#3|)) (-15 -3213 ((-891 |#1| |#2|) |#2| |#3|))))) (-1102) (-888 |#1|) (-615 (-894 |#1|))) (T -889))
+((-3213 (*1 *2 *3 *4) (-12 (-4 *5 (-1102)) (-5 *2 (-891 *5 *3)) (-5 *1 (-889 *5 *3 *4)) (-1673 (-4 *3 (-1040 (-1179)))) (-1673 (-4 *3 (-1051))) (-4 *3 (-888 *5)) (-4 *4 (-615 (-894 *5))))) (-3213 (*1 *2 *3 *4) (-12 (-4 *5 (-1102)) (-5 *2 (-645 (-295 (-954 *3)))) (-5 *1 (-889 *5 *3 *4)) (-4 *3 (-1051)) (-1673 (-4 *3 (-1040 (-1179)))) (-4 *3 (-888 *5)) (-4 *4 (-615 (-894 *5))))) (-3213 (*1 *2 *3 *4) (-12 (-4 *5 (-1102)) (-5 *2 (-645 (-295 *3))) (-5 *1 (-889 *5 *3 *4)) (-4 *3 (-1040 (-1179))) (-4 *3 (-888 *5)) (-4 *4 (-615 (-894 *5))))) (-3213 (*1 *2 *3 *4) (-12 (-4 *5 (-1102)) (-4 *6 (-888 *5)) (-5 *2 (-887 *5 *6 (-645 *6))) (-5 *1 (-889 *5 *6 *4)) (-5 *3 (-645 *6)) (-4 *4 (-615 (-894 *5))))) (-3545 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *6)) (-4 *6 (-888 *5)) (-4 *5 (-1102)) (-5 *2 (-112)) (-5 *1 (-889 *5 *6 *4)) (-4 *4 (-615 (-894 *5))))) (-3545 (*1 *2 *3 *4) (-12 (-4 *5 (-1102)) (-5 *2 (-112)) (-5 *1 (-889 *5 *3 *4)) (-4 *3 (-888 *5)) (-4 *4 (-615 (-894 *5))))))
+(-10 -7 (-15 -3545 ((-112) |#2| |#3|)) (-15 -3545 ((-112) (-645 |#2|) |#3|)) (-15 -3213 ((-887 |#1| |#2| (-645 |#2|)) (-645 |#2|) |#3|)) (IF (|has| |#2| (-1040 (-1179))) (-15 -3213 ((-645 (-295 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1051)) (-15 -3213 ((-645 (-295 (-954 |#2|))) |#2| |#3|)) (-15 -3213 ((-891 |#1| |#2|) |#2| |#3|)))))
+((-3841 (((-891 |#1| |#3|) (-1 |#3| |#2|) (-891 |#1| |#2|)) 22)))
+(((-890 |#1| |#2| |#3|) (-10 -7 (-15 -3841 ((-891 |#1| |#3|) (-1 |#3| |#2|) (-891 |#1| |#2|)))) (-1102) (-1102) (-1102)) (T -890))
+((-3841 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-891 *5 *6)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-891 *5 *7)) (-5 *1 (-890 *5 *6 *7)))))
+(-10 -7 (-15 -3841 ((-891 |#1| |#3|) (-1 |#3| |#2|) (-891 |#1| |#2|))))
+((-2412 (((-112) $ $) NIL)) (-4244 (($ $ $) 40)) (-2404 (((-3 (-112) "failed") $ (-894 |#1|)) 37)) (-2858 (($) 12)) (-2516 (((-1161) $) NIL)) (-3520 (($ (-894 |#1|) |#2| $) 20)) (-3437 (((-1122) $) NIL)) (-3866 (((-3 |#2| "failed") (-894 |#1|) $) 51)) (-1891 (((-112) $) 15)) (-3678 (($) 13)) (-2794 (((-645 (-2 (|:| -1809 (-1179)) (|:| -4236 |#2|))) $) 25)) (-4145 (($ (-645 (-2 (|:| -1809 (-1179)) (|:| -4236 |#2|)))) 23)) (-4129 (((-863) $) 45)) (-3357 (((-112) $ $) NIL)) (-1646 (($ (-894 |#1|) |#2| $ |#2|) 49)) (-2151 (($ (-894 |#1|) |#2| $) 48)) (-2946 (((-112) $ $) 42)))
+(((-891 |#1| |#2|) (-13 (-1102) (-10 -8 (-15 -1891 ((-112) $)) (-15 -3678 ($)) (-15 -2858 ($)) (-15 -4244 ($ $ $)) (-15 -3866 ((-3 |#2| "failed") (-894 |#1|) $)) (-15 -2151 ($ (-894 |#1|) |#2| $)) (-15 -3520 ($ (-894 |#1|) |#2| $)) (-15 -1646 ($ (-894 |#1|) |#2| $ |#2|)) (-15 -2794 ((-645 (-2 (|:| -1809 (-1179)) (|:| -4236 |#2|))) $)) (-15 -4145 ($ (-645 (-2 (|:| -1809 (-1179)) (|:| -4236 |#2|))))) (-15 -2404 ((-3 (-112) "failed") $ (-894 |#1|))))) (-1102) (-1102)) (T -891))
+((-1891 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-891 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102)))) (-3678 (*1 *1) (-12 (-5 *1 (-891 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-1102)))) (-2858 (*1 *1) (-12 (-5 *1 (-891 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-1102)))) (-4244 (*1 *1 *1 *1) (-12 (-5 *1 (-891 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-1102)))) (-3866 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-894 *4)) (-4 *4 (-1102)) (-4 *2 (-1102)) (-5 *1 (-891 *4 *2)))) (-2151 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-894 *4)) (-4 *4 (-1102)) (-5 *1 (-891 *4 *3)) (-4 *3 (-1102)))) (-3520 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-894 *4)) (-4 *4 (-1102)) (-5 *1 (-891 *4 *3)) (-4 *3 (-1102)))) (-1646 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-894 *4)) (-4 *4 (-1102)) (-5 *1 (-891 *4 *3)) (-4 *3 (-1102)))) (-2794 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| -1809 (-1179)) (|:| -4236 *4)))) (-5 *1 (-891 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102)))) (-4145 (*1 *1 *2) (-12 (-5 *2 (-645 (-2 (|:| -1809 (-1179)) (|:| -4236 *4)))) (-4 *4 (-1102)) (-5 *1 (-891 *3 *4)) (-4 *3 (-1102)))) (-2404 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-894 *4)) (-4 *4 (-1102)) (-5 *2 (-112)) (-5 *1 (-891 *4 *5)) (-4 *5 (-1102)))))
+(-13 (-1102) (-10 -8 (-15 -1891 ((-112) $)) (-15 -3678 ($)) (-15 -2858 ($)) (-15 -4244 ($ $ $)) (-15 -3866 ((-3 |#2| "failed") (-894 |#1|) $)) (-15 -2151 ($ (-894 |#1|) |#2| $)) (-15 -3520 ($ (-894 |#1|) |#2| $)) (-15 -1646 ($ (-894 |#1|) |#2| $ |#2|)) (-15 -2794 ((-645 (-2 (|:| -1809 (-1179)) (|:| -4236 |#2|))) $)) (-15 -4145 ($ (-645 (-2 (|:| -1809 (-1179)) (|:| -4236 |#2|))))) (-15 -2404 ((-3 (-112) "failed") $ (-894 |#1|)))))
+((-2133 (((-894 |#1|) (-894 |#1|) (-645 (-1179)) (-1 (-112) (-645 |#2|))) 32) (((-894 |#1|) (-894 |#1|) (-645 (-1 (-112) |#2|))) 46) (((-894 |#1|) (-894 |#1|) (-1 (-112) |#2|)) 35)) (-2404 (((-112) (-645 |#2|) (-894 |#1|)) 42) (((-112) |#2| (-894 |#1|)) 36)) (-3360 (((-1 (-112) |#2|) (-894 |#1|)) 16)) (-1567 (((-645 |#2|) (-894 |#1|)) 24)) (-2899 (((-894 |#1|) (-894 |#1|) |#2|) 20)))
+(((-892 |#1| |#2|) (-10 -7 (-15 -2133 ((-894 |#1|) (-894 |#1|) (-1 (-112) |#2|))) (-15 -2133 ((-894 |#1|) (-894 |#1|) (-645 (-1 (-112) |#2|)))) (-15 -2133 ((-894 |#1|) (-894 |#1|) (-645 (-1179)) (-1 (-112) (-645 |#2|)))) (-15 -3360 ((-1 (-112) |#2|) (-894 |#1|))) (-15 -2404 ((-112) |#2| (-894 |#1|))) (-15 -2404 ((-112) (-645 |#2|) (-894 |#1|))) (-15 -2899 ((-894 |#1|) (-894 |#1|) |#2|)) (-15 -1567 ((-645 |#2|) (-894 |#1|)))) (-1102) (-1219)) (T -892))
+((-1567 (*1 *2 *3) (-12 (-5 *3 (-894 *4)) (-4 *4 (-1102)) (-5 *2 (-645 *5)) (-5 *1 (-892 *4 *5)) (-4 *5 (-1219)))) (-2899 (*1 *2 *2 *3) (-12 (-5 *2 (-894 *4)) (-4 *4 (-1102)) (-5 *1 (-892 *4 *3)) (-4 *3 (-1219)))) (-2404 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *6)) (-5 *4 (-894 *5)) (-4 *5 (-1102)) (-4 *6 (-1219)) (-5 *2 (-112)) (-5 *1 (-892 *5 *6)))) (-2404 (*1 *2 *3 *4) (-12 (-5 *4 (-894 *5)) (-4 *5 (-1102)) (-5 *2 (-112)) (-5 *1 (-892 *5 *3)) (-4 *3 (-1219)))) (-3360 (*1 *2 *3) (-12 (-5 *3 (-894 *4)) (-4 *4 (-1102)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-892 *4 *5)) (-4 *5 (-1219)))) (-2133 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-894 *5)) (-5 *3 (-645 (-1179))) (-5 *4 (-1 (-112) (-645 *6))) (-4 *5 (-1102)) (-4 *6 (-1219)) (-5 *1 (-892 *5 *6)))) (-2133 (*1 *2 *2 *3) (-12 (-5 *2 (-894 *4)) (-5 *3 (-645 (-1 (-112) *5))) (-4 *4 (-1102)) (-4 *5 (-1219)) (-5 *1 (-892 *4 *5)))) (-2133 (*1 *2 *2 *3) (-12 (-5 *2 (-894 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1102)) (-4 *5 (-1219)) (-5 *1 (-892 *4 *5)))))
+(-10 -7 (-15 -2133 ((-894 |#1|) (-894 |#1|) (-1 (-112) |#2|))) (-15 -2133 ((-894 |#1|) (-894 |#1|) (-645 (-1 (-112) |#2|)))) (-15 -2133 ((-894 |#1|) (-894 |#1|) (-645 (-1179)) (-1 (-112) (-645 |#2|)))) (-15 -3360 ((-1 (-112) |#2|) (-894 |#1|))) (-15 -2404 ((-112) |#2| (-894 |#1|))) (-15 -2404 ((-112) (-645 |#2|) (-894 |#1|))) (-15 -2899 ((-894 |#1|) (-894 |#1|) |#2|)) (-15 -1567 ((-645 |#2|) (-894 |#1|))))
+((-3841 (((-894 |#2|) (-1 |#2| |#1|) (-894 |#1|)) 19)))
+(((-893 |#1| |#2|) (-10 -7 (-15 -3841 ((-894 |#2|) (-1 |#2| |#1|) (-894 |#1|)))) (-1102) (-1102)) (T -893))
+((-3841 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-894 *5)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-5 *2 (-894 *6)) (-5 *1 (-893 *5 *6)))))
+(-10 -7 (-15 -3841 ((-894 |#2|) (-1 |#2| |#1|) (-894 |#1|))))
+((-2412 (((-112) $ $) NIL)) (-4073 (($ $ (-645 (-52))) 74)) (-2859 (((-645 $) $) 138)) (-3963 (((-2 (|:| |var| (-645 (-1179))) (|:| |pred| (-52))) $) 30)) (-1708 (((-112) $) 35)) (-2686 (($ $ (-645 (-1179)) (-52)) 31)) (-1303 (($ $ (-645 (-52))) 73)) (-3765 (((-3 |#1| "failed") $) 71) (((-3 (-1179) "failed") $) 162)) (-2051 ((|#1| $) 68) (((-1179) $) NIL)) (-1917 (($ $) 126)) (-4137 (((-112) $) 55)) (-3293 (((-645 (-52)) $) 50)) (-3972 (($ (-1179) (-112) (-112) (-112)) 75)) (-3598 (((-3 (-645 $) "failed") (-645 $)) 82)) (-2027 (((-112) $) 58)) (-2556 (((-112) $) 57)) (-2516 (((-1161) $) NIL)) (-3037 (((-3 (-645 $) "failed") $) 41)) (-4069 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 48)) (-1851 (((-3 (-2 (|:| |val| $) (|:| -3468 $)) "failed") $) 97)) (-3774 (((-3 (-645 $) "failed") $) 40)) (-2496 (((-3 (-645 $) "failed") $ (-114)) 124) (((-3 (-2 (|:| -4178 (-114)) (|:| |arg| (-645 $))) "failed") $) 107)) (-3281 (((-3 (-645 $) "failed") $) 42)) (-3816 (((-3 (-2 (|:| |val| $) (|:| -3468 (-772))) "failed") $) 45)) (-2374 (((-112) $) 34)) (-3437 (((-1122) $) NIL)) (-4194 (((-112) $) 28)) (-2019 (((-112) $) 52)) (-2515 (((-645 (-52)) $) 130)) (-4045 (((-112) $) 56)) (-1801 (($ (-114) (-645 $)) 104)) (-3289 (((-772) $) 33)) (-4309 (($ $) 72)) (-3902 (($ (-645 $)) 69)) (-1415 (((-112) $) 32)) (-4129 (((-863) $) 63) (($ |#1|) 23) (($ (-1179)) 76)) (-3357 (((-112) $ $) NIL)) (-2899 (($ $ (-52)) 129)) (-1733 (($) 103 T CONST)) (-1744 (($) 83 T CONST)) (-2946 (((-112) $ $) 93)) (-3069 (($ $ $) 117)) (-3041 (($ $ $) 121)) (** (($ $ (-772)) 115) (($ $ $) 64)) (* (($ $ $) 122)))
+(((-894 |#1|) (-13 (-1102) (-1040 |#1|) (-1040 (-1179)) (-10 -8 (-15 0 ($) -3304) (-15 1 ($) -3304) (-15 -3774 ((-3 (-645 $) "failed") $)) (-15 -3037 ((-3 (-645 $) "failed") $)) (-15 -2496 ((-3 (-645 $) "failed") $ (-114))) (-15 -2496 ((-3 (-2 (|:| -4178 (-114)) (|:| |arg| (-645 $))) "failed") $)) (-15 -3816 ((-3 (-2 (|:| |val| $) (|:| -3468 (-772))) "failed") $)) (-15 -4069 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3281 ((-3 (-645 $) "failed") $)) (-15 -1851 ((-3 (-2 (|:| |val| $) (|:| -3468 $)) "failed") $)) (-15 -1801 ($ (-114) (-645 $))) (-15 -3041 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-772))) (-15 ** ($ $ $)) (-15 -3069 ($ $ $)) (-15 -3289 ((-772) $)) (-15 -3902 ($ (-645 $))) (-15 -4309 ($ $)) (-15 -2374 ((-112) $)) (-15 -4137 ((-112) $)) (-15 -1708 ((-112) $)) (-15 -1415 ((-112) $)) (-15 -4045 ((-112) $)) (-15 -2556 ((-112) $)) (-15 -2027 ((-112) $)) (-15 -2019 ((-112) $)) (-15 -3293 ((-645 (-52)) $)) (-15 -1303 ($ $ (-645 (-52)))) (-15 -4073 ($ $ (-645 (-52)))) (-15 -3972 ($ (-1179) (-112) (-112) (-112))) (-15 -2686 ($ $ (-645 (-1179)) (-52))) (-15 -3963 ((-2 (|:| |var| (-645 (-1179))) (|:| |pred| (-52))) $)) (-15 -4194 ((-112) $)) (-15 -1917 ($ $)) (-15 -2899 ($ $ (-52))) (-15 -2515 ((-645 (-52)) $)) (-15 -2859 ((-645 $) $)) (-15 -3598 ((-3 (-645 $) "failed") (-645 $))))) (-1102)) (T -894))
+((-1733 (*1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1102)))) (-1744 (*1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1102)))) (-3774 (*1 *2 *1) (|partial| -12 (-5 *2 (-645 (-894 *3))) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-3037 (*1 *2 *1) (|partial| -12 (-5 *2 (-645 (-894 *3))) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-2496 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-645 (-894 *4))) (-5 *1 (-894 *4)) (-4 *4 (-1102)))) (-2496 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -4178 (-114)) (|:| |arg| (-645 (-894 *3))))) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-3816 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-894 *3)) (|:| -3468 (-772)))) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-4069 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-894 *3)) (|:| |den| (-894 *3)))) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-3281 (*1 *2 *1) (|partial| -12 (-5 *2 (-645 (-894 *3))) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-1851 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-894 *3)) (|:| -3468 (-894 *3)))) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-1801 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-645 (-894 *4))) (-5 *1 (-894 *4)) (-4 *4 (-1102)))) (-3041 (*1 *1 *1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1102)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1102)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1102)))) (-3069 (*1 *1 *1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1102)))) (-3289 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-3902 (*1 *1 *2) (-12 (-5 *2 (-645 (-894 *3))) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-4309 (*1 *1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1102)))) (-2374 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-4137 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-1708 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-1415 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-4045 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-2556 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-2027 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-2019 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-3293 (*1 *2 *1) (-12 (-5 *2 (-645 (-52))) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-1303 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-52))) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-4073 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-52))) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-3972 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-112)) (-5 *1 (-894 *4)) (-4 *4 (-1102)))) (-2686 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-1179))) (-5 *3 (-52)) (-5 *1 (-894 *4)) (-4 *4 (-1102)))) (-3963 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-645 (-1179))) (|:| |pred| (-52)))) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-4194 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-1917 (*1 *1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1102)))) (-2899 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-2515 (*1 *2 *1) (-12 (-5 *2 (-645 (-52))) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-2859 (*1 *2 *1) (-12 (-5 *2 (-645 (-894 *3))) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-3598 (*1 *2 *2) (|partial| -12 (-5 *2 (-645 (-894 *3))) (-5 *1 (-894 *3)) (-4 *3 (-1102)))))
+(-13 (-1102) (-1040 |#1|) (-1040 (-1179)) (-10 -8 (-15 (-1733) ($) -3304) (-15 (-1744) ($) -3304) (-15 -3774 ((-3 (-645 $) "failed") $)) (-15 -3037 ((-3 (-645 $) "failed") $)) (-15 -2496 ((-3 (-645 $) "failed") $ (-114))) (-15 -2496 ((-3 (-2 (|:| -4178 (-114)) (|:| |arg| (-645 $))) "failed") $)) (-15 -3816 ((-3 (-2 (|:| |val| $) (|:| -3468 (-772))) "failed") $)) (-15 -4069 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3281 ((-3 (-645 $) "failed") $)) (-15 -1851 ((-3 (-2 (|:| |val| $) (|:| -3468 $)) "failed") $)) (-15 -1801 ($ (-114) (-645 $))) (-15 -3041 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-772))) (-15 ** ($ $ $)) (-15 -3069 ($ $ $)) (-15 -3289 ((-772) $)) (-15 -3902 ($ (-645 $))) (-15 -4309 ($ $)) (-15 -2374 ((-112) $)) (-15 -4137 ((-112) $)) (-15 -1708 ((-112) $)) (-15 -1415 ((-112) $)) (-15 -4045 ((-112) $)) (-15 -2556 ((-112) $)) (-15 -2027 ((-112) $)) (-15 -2019 ((-112) $)) (-15 -3293 ((-645 (-52)) $)) (-15 -1303 ($ $ (-645 (-52)))) (-15 -4073 ($ $ (-645 (-52)))) (-15 -3972 ($ (-1179) (-112) (-112) (-112))) (-15 -2686 ($ $ (-645 (-1179)) (-52))) (-15 -3963 ((-2 (|:| |var| (-645 (-1179))) (|:| |pred| (-52))) $)) (-15 -4194 ((-112) $)) (-15 -1917 ($ $)) (-15 -2899 ($ $ (-52))) (-15 -2515 ((-645 (-52)) $)) (-15 -2859 ((-645 $) $)) (-15 -3598 ((-3 (-645 $) "failed") (-645 $)))))
+((-2412 (((-112) $ $) NIL)) (-3275 (((-645 |#1|) $) 19)) (-1793 (((-112) $) 49)) (-3765 (((-3 (-673 |#1|) "failed") $) 56)) (-2051 (((-673 |#1|) $) 54)) (-2430 (($ $) 23)) (-1365 (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (-2334 (((-772) $) 61)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-2418 (((-673 |#1|) $) 21)) (-4129 (((-863) $) 47) (($ (-673 |#1|)) 26) (((-820 |#1|) $) 36) (($ |#1|) 25)) (-3357 (((-112) $ $) NIL)) (-1744 (($) 9 T CONST)) (-2987 (((-645 (-673 |#1|)) $) 28)) (-3004 (((-112) $ $) NIL)) (-2980 (((-112) $ $) NIL)) (-2946 (((-112) $ $) 12)) (-2993 (((-112) $ $) NIL)) (-2968 (((-112) $ $) 67)))
+(((-895 |#1|) (-13 (-851) (-1040 (-673 |#1|)) (-10 -8 (-15 1 ($) -3304) (-15 -4129 ((-820 |#1|) $)) (-15 -4129 ($ |#1|)) (-15 -2418 ((-673 |#1|) $)) (-15 -2334 ((-772) $)) (-15 -2987 ((-645 (-673 |#1|)) $)) (-15 -2430 ($ $)) (-15 -1793 ((-112) $)) (-15 -3275 ((-645 |#1|) $)))) (-851)) (T -895))
+((-1744 (*1 *1) (-12 (-5 *1 (-895 *2)) (-4 *2 (-851)))) (-4129 (*1 *2 *1) (-12 (-5 *2 (-820 *3)) (-5 *1 (-895 *3)) (-4 *3 (-851)))) (-4129 (*1 *1 *2) (-12 (-5 *1 (-895 *2)) (-4 *2 (-851)))) (-2418 (*1 *2 *1) (-12 (-5 *2 (-673 *3)) (-5 *1 (-895 *3)) (-4 *3 (-851)))) (-2334 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-895 *3)) (-4 *3 (-851)))) (-2987 (*1 *2 *1) (-12 (-5 *2 (-645 (-673 *3))) (-5 *1 (-895 *3)) (-4 *3 (-851)))) (-2430 (*1 *1 *1) (-12 (-5 *1 (-895 *2)) (-4 *2 (-851)))) (-1793 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-895 *3)) (-4 *3 (-851)))) (-3275 (*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-895 *3)) (-4 *3 (-851)))))
+(-13 (-851) (-1040 (-673 |#1|)) (-10 -8 (-15 (-1744) ($) -3304) (-15 -4129 ((-820 |#1|) $)) (-15 -4129 ($ |#1|)) (-15 -2418 ((-673 |#1|) $)) (-15 -2334 ((-772) $)) (-15 -2987 ((-645 (-673 |#1|)) $)) (-15 -2430 ($ $)) (-15 -1793 ((-112) $)) (-15 -3275 ((-645 |#1|) $))))
+((-2824 ((|#1| |#1| |#1|) 19)))
+(((-896 |#1| |#2|) (-10 -7 (-15 -2824 (|#1| |#1| |#1|))) (-1245 |#2|) (-1051)) (T -896))
+((-2824 (*1 *2 *2 *2) (-12 (-4 *3 (-1051)) (-5 *1 (-896 *2 *3)) (-4 *2 (-1245 *3)))))
+(-10 -7 (-15 -2824 (|#1| |#1| |#1|)))
+((-2412 (((-112) $ $) 7)) (-3055 (((-2 (|:| -3055 (-381)) (|:| |explanations| (-1161))) (-1065) (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1161)) (|:| |tol| (-225)))) 15)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-4129 (((-863) $) 12)) (-3357 (((-112) $ $) 9)) (-2465 (((-1037) (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1161)) (|:| |tol| (-225)))) 14)) (-2946 (((-112) $ $) 6)))
(((-897) (-140)) (T -897))
-((-2264 (*1 *2 *3 *4) (-12 (-4 *1 (-897)) (-5 *3 (-1065)) (-5 *4 (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1160)) (|:| |tol| (-225)))) (-5 *2 (-2 (|:| -2264 (-381)) (|:| |explanations| (-1160)))))) (-3473 (*1 *2 *3) (-12 (-4 *1 (-897)) (-5 *3 (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1160)) (|:| |tol| (-225)))) (-5 *2 (-1037)))))
-(-13 (-1102) (-10 -7 (-15 -2264 ((-2 (|:| -2264 (-381)) (|:| |explanations| (-1160))) (-1065) (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1160)) (|:| |tol| (-225))))) (-15 -3473 ((-1037) (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1160)) (|:| |tol| (-225)))))))
+((-3055 (*1 *2 *3 *4) (-12 (-4 *1 (-897)) (-5 *3 (-1065)) (-5 *4 (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1161)) (|:| |tol| (-225)))) (-5 *2 (-2 (|:| -3055 (-381)) (|:| |explanations| (-1161)))))) (-2465 (*1 *2 *3) (-12 (-4 *1 (-897)) (-5 *3 (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1161)) (|:| |tol| (-225)))) (-5 *2 (-1037)))))
+(-13 (-1102) (-10 -7 (-15 -3055 ((-2 (|:| -3055 (-381)) (|:| |explanations| (-1161))) (-1065) (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1161)) (|:| |tol| (-225))))) (-15 -2465 ((-1037) (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1161)) (|:| |tol| (-225)))))))
(((-102) . T) ((-614 (-863)) . T) ((-1102) . T))
-((-2596 ((|#1| |#1| (-772)) 29)) (-2723 (((-3 |#1| "failed") |#1| |#1|) 26)) (-2532 (((-3 (-2 (|:| -2950 |#1|) (|:| -2963 |#1|)) "failed") |#1| (-772) (-772)) 32) (((-645 |#1|) |#1|) 39)))
-(((-898 |#1| |#2|) (-10 -7 (-15 -2532 ((-645 |#1|) |#1|)) (-15 -2532 ((-3 (-2 (|:| -2950 |#1|) (|:| -2963 |#1|)) "failed") |#1| (-772) (-772))) (-15 -2723 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2596 (|#1| |#1| (-772)))) (-1244 |#2|) (-365)) (T -898))
-((-2596 (*1 *2 *2 *3) (-12 (-5 *3 (-772)) (-4 *4 (-365)) (-5 *1 (-898 *2 *4)) (-4 *2 (-1244 *4)))) (-2723 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-365)) (-5 *1 (-898 *2 *3)) (-4 *2 (-1244 *3)))) (-2532 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-772)) (-4 *5 (-365)) (-5 *2 (-2 (|:| -2950 *3) (|:| -2963 *3))) (-5 *1 (-898 *3 *5)) (-4 *3 (-1244 *5)))) (-2532 (*1 *2 *3) (-12 (-4 *4 (-365)) (-5 *2 (-645 *3)) (-5 *1 (-898 *3 *4)) (-4 *3 (-1244 *4)))))
-(-10 -7 (-15 -2532 ((-645 |#1|) |#1|)) (-15 -2532 ((-3 (-2 (|:| -2950 |#1|) (|:| -2963 |#1|)) "failed") |#1| (-772) (-772))) (-15 -2723 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2596 (|#1| |#1| (-772))))
-((-3018 (((-1037) (-381) (-381) (-381) (-381) (-772) (-772) (-645 (-317 (-381))) (-645 (-645 (-317 (-381)))) (-1160)) 106) (((-1037) (-381) (-381) (-381) (-381) (-772) (-772) (-645 (-317 (-381))) (-645 (-645 (-317 (-381)))) (-1160) (-225)) 102) (((-1037) (-900) (-1065)) 94) (((-1037) (-900)) 95)) (-2264 (((-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160)))) (-900) (-1065)) 65) (((-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160)))) (-900)) 67)))
-(((-899) (-10 -7 (-15 -3018 ((-1037) (-900))) (-15 -3018 ((-1037) (-900) (-1065))) (-15 -3018 ((-1037) (-381) (-381) (-381) (-381) (-772) (-772) (-645 (-317 (-381))) (-645 (-645 (-317 (-381)))) (-1160) (-225))) (-15 -3018 ((-1037) (-381) (-381) (-381) (-381) (-772) (-772) (-645 (-317 (-381))) (-645 (-645 (-317 (-381)))) (-1160))) (-15 -2264 ((-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160)))) (-900))) (-15 -2264 ((-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160)))) (-900) (-1065))))) (T -899))
-((-2264 (*1 *2 *3 *4) (-12 (-5 *3 (-900)) (-5 *4 (-1065)) (-5 *2 (-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160))))) (-5 *1 (-899)))) (-2264 (*1 *2 *3) (-12 (-5 *3 (-900)) (-5 *2 (-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160))))) (-5 *1 (-899)))) (-3018 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-772)) (-5 *6 (-645 (-645 (-317 *3)))) (-5 *7 (-1160)) (-5 *5 (-645 (-317 (-381)))) (-5 *3 (-381)) (-5 *2 (-1037)) (-5 *1 (-899)))) (-3018 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-772)) (-5 *6 (-645 (-645 (-317 *3)))) (-5 *7 (-1160)) (-5 *8 (-225)) (-5 *5 (-645 (-317 (-381)))) (-5 *3 (-381)) (-5 *2 (-1037)) (-5 *1 (-899)))) (-3018 (*1 *2 *3 *4) (-12 (-5 *3 (-900)) (-5 *4 (-1065)) (-5 *2 (-1037)) (-5 *1 (-899)))) (-3018 (*1 *2 *3) (-12 (-5 *3 (-900)) (-5 *2 (-1037)) (-5 *1 (-899)))))
-(-10 -7 (-15 -3018 ((-1037) (-900))) (-15 -3018 ((-1037) (-900) (-1065))) (-15 -3018 ((-1037) (-381) (-381) (-381) (-381) (-772) (-772) (-645 (-317 (-381))) (-645 (-645 (-317 (-381)))) (-1160) (-225))) (-15 -3018 ((-1037) (-381) (-381) (-381) (-381) (-772) (-772) (-645 (-317 (-381))) (-645 (-645 (-317 (-381)))) (-1160))) (-15 -2264 ((-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160)))) (-900))) (-15 -2264 ((-2 (|:| -2264 (-381)) (|:| -1996 (-1160)) (|:| |explanations| (-645 (-1160)))) (-900) (-1065))))
-((-2403 (((-112) $ $) NIL)) (-2038 (((-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1160)) (|:| |tol| (-225))) $) 19)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 21) (($ (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1160)) (|:| |tol| (-225)))) 18)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)))
-(((-900) (-13 (-1102) (-10 -8 (-15 -4132 ($ (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1160)) (|:| |tol| (-225))))) (-15 -2038 ((-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1160)) (|:| |tol| (-225))) $))))) (T -900))
-((-4132 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1160)) (|:| |tol| (-225)))) (-5 *1 (-900)))) (-2038 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1160)) (|:| |tol| (-225)))) (-5 *1 (-900)))))
-(-13 (-1102) (-10 -8 (-15 -4132 ($ (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1160)) (|:| |tol| (-225))))) (-15 -2038 ((-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1160)) (|:| |tol| (-225))) $))))
-((-1593 (($ $ |#2|) NIL) (($ $ (-645 |#2|)) 10) (($ $ |#2| (-772)) 15) (($ $ (-645 |#2|) (-645 (-772))) 18)) (-2637 (($ $ |#2|) 19) (($ $ (-645 |#2|)) 21) (($ $ |#2| (-772)) 22) (($ $ (-645 |#2|) (-645 (-772))) 24)))
-(((-901 |#1| |#2|) (-10 -8 (-15 -2637 (|#1| |#1| (-645 |#2|) (-645 (-772)))) (-15 -2637 (|#1| |#1| |#2| (-772))) (-15 -2637 (|#1| |#1| (-645 |#2|))) (-15 -2637 (|#1| |#1| |#2|)) (-15 -1593 (|#1| |#1| (-645 |#2|) (-645 (-772)))) (-15 -1593 (|#1| |#1| |#2| (-772))) (-15 -1593 (|#1| |#1| (-645 |#2|))) (-15 -1593 (|#1| |#1| |#2|))) (-902 |#2|) (-1102)) (T -901))
-NIL
-(-10 -8 (-15 -2637 (|#1| |#1| (-645 |#2|) (-645 (-772)))) (-15 -2637 (|#1| |#1| |#2| (-772))) (-15 -2637 (|#1| |#1| (-645 |#2|))) (-15 -2637 (|#1| |#1| |#2|)) (-15 -1593 (|#1| |#1| (-645 |#2|) (-645 (-772)))) (-15 -1593 (|#1| |#1| |#2| (-772))) (-15 -1593 (|#1| |#1| (-645 |#2|))) (-15 -1593 (|#1| |#1| |#2|)))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-2109 (((-3 $ "failed") $) 37)) (-1433 (((-112) $) 35)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-1593 (($ $ |#1|) 46) (($ $ (-645 |#1|)) 45) (($ $ |#1| (-772)) 44) (($ $ (-645 |#1|) (-645 (-772))) 43)) (-4132 (((-863) $) 12) (($ (-567)) 33)) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2637 (($ $ |#1|) 42) (($ $ (-645 |#1|)) 41) (($ $ |#1| (-772)) 40) (($ $ (-645 |#1|) (-645 (-772))) 39)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27)))
+((-2457 ((|#1| |#1| (-772)) 29)) (-1407 (((-3 |#1| "failed") |#1| |#1|) 26)) (-2756 (((-3 (-2 (|:| -2961 |#1|) (|:| -2973 |#1|)) "failed") |#1| (-772) (-772)) 32) (((-645 |#1|) |#1|) 39)))
+(((-898 |#1| |#2|) (-10 -7 (-15 -2756 ((-645 |#1|) |#1|)) (-15 -2756 ((-3 (-2 (|:| -2961 |#1|) (|:| -2973 |#1|)) "failed") |#1| (-772) (-772))) (-15 -1407 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2457 (|#1| |#1| (-772)))) (-1245 |#2|) (-365)) (T -898))
+((-2457 (*1 *2 *2 *3) (-12 (-5 *3 (-772)) (-4 *4 (-365)) (-5 *1 (-898 *2 *4)) (-4 *2 (-1245 *4)))) (-1407 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-365)) (-5 *1 (-898 *2 *3)) (-4 *2 (-1245 *3)))) (-2756 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-772)) (-4 *5 (-365)) (-5 *2 (-2 (|:| -2961 *3) (|:| -2973 *3))) (-5 *1 (-898 *3 *5)) (-4 *3 (-1245 *5)))) (-2756 (*1 *2 *3) (-12 (-4 *4 (-365)) (-5 *2 (-645 *3)) (-5 *1 (-898 *3 *4)) (-4 *3 (-1245 *4)))))
+(-10 -7 (-15 -2756 ((-645 |#1|) |#1|)) (-15 -2756 ((-3 (-2 (|:| -2961 |#1|) (|:| -2973 |#1|)) "failed") |#1| (-772) (-772))) (-15 -1407 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2457 (|#1| |#1| (-772))))
+((-2464 (((-1037) (-381) (-381) (-381) (-381) (-772) (-772) (-645 (-317 (-381))) (-645 (-645 (-317 (-381)))) (-1161)) 106) (((-1037) (-381) (-381) (-381) (-381) (-772) (-772) (-645 (-317 (-381))) (-645 (-645 (-317 (-381)))) (-1161) (-225)) 102) (((-1037) (-900) (-1065)) 94) (((-1037) (-900)) 95)) (-3055 (((-2 (|:| -3055 (-381)) (|:| -2007 (-1161)) (|:| |explanations| (-645 (-1161)))) (-900) (-1065)) 65) (((-2 (|:| -3055 (-381)) (|:| -2007 (-1161)) (|:| |explanations| (-645 (-1161)))) (-900)) 67)))
+(((-899) (-10 -7 (-15 -2464 ((-1037) (-900))) (-15 -2464 ((-1037) (-900) (-1065))) (-15 -2464 ((-1037) (-381) (-381) (-381) (-381) (-772) (-772) (-645 (-317 (-381))) (-645 (-645 (-317 (-381)))) (-1161) (-225))) (-15 -2464 ((-1037) (-381) (-381) (-381) (-381) (-772) (-772) (-645 (-317 (-381))) (-645 (-645 (-317 (-381)))) (-1161))) (-15 -3055 ((-2 (|:| -3055 (-381)) (|:| -2007 (-1161)) (|:| |explanations| (-645 (-1161)))) (-900))) (-15 -3055 ((-2 (|:| -3055 (-381)) (|:| -2007 (-1161)) (|:| |explanations| (-645 (-1161)))) (-900) (-1065))))) (T -899))
+((-3055 (*1 *2 *3 *4) (-12 (-5 *3 (-900)) (-5 *4 (-1065)) (-5 *2 (-2 (|:| -3055 (-381)) (|:| -2007 (-1161)) (|:| |explanations| (-645 (-1161))))) (-5 *1 (-899)))) (-3055 (*1 *2 *3) (-12 (-5 *3 (-900)) (-5 *2 (-2 (|:| -3055 (-381)) (|:| -2007 (-1161)) (|:| |explanations| (-645 (-1161))))) (-5 *1 (-899)))) (-2464 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-772)) (-5 *6 (-645 (-645 (-317 *3)))) (-5 *7 (-1161)) (-5 *5 (-645 (-317 (-381)))) (-5 *3 (-381)) (-5 *2 (-1037)) (-5 *1 (-899)))) (-2464 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-772)) (-5 *6 (-645 (-645 (-317 *3)))) (-5 *7 (-1161)) (-5 *8 (-225)) (-5 *5 (-645 (-317 (-381)))) (-5 *3 (-381)) (-5 *2 (-1037)) (-5 *1 (-899)))) (-2464 (*1 *2 *3 *4) (-12 (-5 *3 (-900)) (-5 *4 (-1065)) (-5 *2 (-1037)) (-5 *1 (-899)))) (-2464 (*1 *2 *3) (-12 (-5 *3 (-900)) (-5 *2 (-1037)) (-5 *1 (-899)))))
+(-10 -7 (-15 -2464 ((-1037) (-900))) (-15 -2464 ((-1037) (-900) (-1065))) (-15 -2464 ((-1037) (-381) (-381) (-381) (-381) (-772) (-772) (-645 (-317 (-381))) (-645 (-645 (-317 (-381)))) (-1161) (-225))) (-15 -2464 ((-1037) (-381) (-381) (-381) (-381) (-772) (-772) (-645 (-317 (-381))) (-645 (-645 (-317 (-381)))) (-1161))) (-15 -3055 ((-2 (|:| -3055 (-381)) (|:| -2007 (-1161)) (|:| |explanations| (-645 (-1161)))) (-900))) (-15 -3055 ((-2 (|:| -3055 (-381)) (|:| -2007 (-1161)) (|:| |explanations| (-645 (-1161)))) (-900) (-1065))))
+((-2412 (((-112) $ $) NIL)) (-2051 (((-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1161)) (|:| |tol| (-225))) $) 19)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) 21) (($ (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1161)) (|:| |tol| (-225)))) 18)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)))
+(((-900) (-13 (-1102) (-10 -8 (-15 -4129 ($ (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1161)) (|:| |tol| (-225))))) (-15 -2051 ((-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1161)) (|:| |tol| (-225))) $))))) (T -900))
+((-4129 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1161)) (|:| |tol| (-225)))) (-5 *1 (-900)))) (-2051 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1161)) (|:| |tol| (-225)))) (-5 *1 (-900)))))
+(-13 (-1102) (-10 -8 (-15 -4129 ($ (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1161)) (|:| |tol| (-225))))) (-15 -2051 ((-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1161)) (|:| |tol| (-225))) $))))
+((-1616 (($ $ |#2|) NIL) (($ $ (-645 |#2|)) 10) (($ $ |#2| (-772)) 15) (($ $ (-645 |#2|) (-645 (-772))) 18)) (-2647 (($ $ |#2|) 19) (($ $ (-645 |#2|)) 21) (($ $ |#2| (-772)) 22) (($ $ (-645 |#2|) (-645 (-772))) 24)))
+(((-901 |#1| |#2|) (-10 -8 (-15 -2647 (|#1| |#1| (-645 |#2|) (-645 (-772)))) (-15 -2647 (|#1| |#1| |#2| (-772))) (-15 -2647 (|#1| |#1| (-645 |#2|))) (-15 -2647 (|#1| |#1| |#2|)) (-15 -1616 (|#1| |#1| (-645 |#2|) (-645 (-772)))) (-15 -1616 (|#1| |#1| |#2| (-772))) (-15 -1616 (|#1| |#1| (-645 |#2|))) (-15 -1616 (|#1| |#1| |#2|))) (-902 |#2|) (-1102)) (T -901))
+NIL
+(-10 -8 (-15 -2647 (|#1| |#1| (-645 |#2|) (-645 (-772)))) (-15 -2647 (|#1| |#1| |#2| (-772))) (-15 -2647 (|#1| |#1| (-645 |#2|))) (-15 -2647 (|#1| |#1| |#2|)) (-15 -1616 (|#1| |#1| (-645 |#2|) (-645 (-772)))) (-15 -1616 (|#1| |#1| |#2| (-772))) (-15 -1616 (|#1| |#1| (-645 |#2|))) (-15 -1616 (|#1| |#1| |#2|)))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-2376 (((-3 $ "failed") $ $) 20)) (-3647 (($) 18 T CONST)) (-3588 (((-3 $ "failed") $) 37)) (-4346 (((-112) $) 35)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-1616 (($ $ |#1|) 46) (($ $ (-645 |#1|)) 45) (($ $ |#1| (-772)) 44) (($ $ (-645 |#1|) (-645 (-772))) 43)) (-4129 (((-863) $) 12) (($ (-567)) 33)) (-2746 (((-772)) 32 T CONST)) (-3357 (((-112) $ $) 9)) (-1733 (($) 19 T CONST)) (-1744 (($) 34 T CONST)) (-2647 (($ $ |#1|) 42) (($ $ (-645 |#1|)) 41) (($ $ |#1| (-772)) 40) (($ $ (-645 |#1|) (-645 (-772))) 39)) (-2946 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27)))
(((-902 |#1|) (-140) (-1102)) (T -902))
-((-1593 (*1 *1 *1 *2) (-12 (-4 *1 (-902 *2)) (-4 *2 (-1102)))) (-1593 (*1 *1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *1 (-902 *3)) (-4 *3 (-1102)))) (-1593 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-902 *2)) (-4 *2 (-1102)))) (-1593 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 *4)) (-5 *3 (-645 (-772))) (-4 *1 (-902 *4)) (-4 *4 (-1102)))) (-2637 (*1 *1 *1 *2) (-12 (-4 *1 (-902 *2)) (-4 *2 (-1102)))) (-2637 (*1 *1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *1 (-902 *3)) (-4 *3 (-1102)))) (-2637 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-902 *2)) (-4 *2 (-1102)))) (-2637 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 *4)) (-5 *3 (-645 (-772))) (-4 *1 (-902 *4)) (-4 *4 (-1102)))))
-(-13 (-1051) (-10 -8 (-15 -1593 ($ $ |t#1|)) (-15 -1593 ($ $ (-645 |t#1|))) (-15 -1593 ($ $ |t#1| (-772))) (-15 -1593 ($ $ (-645 |t#1|) (-645 (-772)))) (-15 -2637 ($ $ |t#1|)) (-15 -2637 ($ $ (-645 |t#1|))) (-15 -2637 ($ $ |t#1| (-772))) (-15 -2637 ($ $ (-645 |t#1|) (-645 (-772))))))
+((-1616 (*1 *1 *1 *2) (-12 (-4 *1 (-902 *2)) (-4 *2 (-1102)))) (-1616 (*1 *1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *1 (-902 *3)) (-4 *3 (-1102)))) (-1616 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-902 *2)) (-4 *2 (-1102)))) (-1616 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 *4)) (-5 *3 (-645 (-772))) (-4 *1 (-902 *4)) (-4 *4 (-1102)))) (-2647 (*1 *1 *1 *2) (-12 (-4 *1 (-902 *2)) (-4 *2 (-1102)))) (-2647 (*1 *1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *1 (-902 *3)) (-4 *3 (-1102)))) (-2647 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-902 *2)) (-4 *2 (-1102)))) (-2647 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 *4)) (-5 *3 (-645 (-772))) (-4 *1 (-902 *4)) (-4 *4 (-1102)))))
+(-13 (-1051) (-10 -8 (-15 -1616 ($ $ |t#1|)) (-15 -1616 ($ $ (-645 |t#1|))) (-15 -1616 ($ $ |t#1| (-772))) (-15 -1616 ($ $ (-645 |t#1|) (-645 (-772)))) (-15 -2647 ($ $ |t#1|)) (-15 -2647 ($ $ (-645 |t#1|))) (-15 -2647 ($ $ |t#1| (-772))) (-15 -2647 ($ $ (-645 |t#1|) (-645 (-772))))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-617 (-567)) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-727) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T))
-((-2403 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3802 ((|#1| $) 26)) (-3445 (((-112) $ (-772)) NIL)) (-2138 ((|#1| $ |#1|) NIL (|has| $ (-6 -4419)))) (-3909 (($ $ $) NIL (|has| $ (-6 -4419)))) (-4062 (($ $ $) NIL (|has| $ (-6 -4419)))) (-4284 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4419))) (($ $ "left" $) NIL (|has| $ (-6 -4419))) (($ $ "right" $) NIL (|has| $ (-6 -4419)))) (-1301 (($ $ (-645 $)) NIL (|has| $ (-6 -4419)))) (-2585 (($) NIL T CONST)) (-2963 (($ $) 25)) (-3427 (($ |#1|) 12) (($ $ $) 17)) (-2777 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-2182 (((-645 $) $) NIL)) (-3512 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2077 (((-112) $ (-772)) NIL)) (-2279 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-3731 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-2950 (($ $) 23)) (-3773 (((-645 |#1|) $) NIL)) (-2769 (((-112) $) 20)) (-1419 (((-1160) $) NIL (|has| |#1| (-1102)))) (-3430 (((-1122) $) NIL (|has| |#1| (-1102)))) (-3025 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) NIL)) (-1787 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2658 (((-567) $ $) NIL)) (-3900 (((-112) $) NIL)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-4305 (($ $) NIL)) (-4132 (((-1204 |#1|) $) 9) (((-863) $) 29 (|has| |#1| (-614 (-863))))) (-1531 (((-645 $) $) NIL)) (-3606 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1745 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 21 (|has| |#1| (-1102)))) (-2414 (((-772) $) NIL (|has| $ (-6 -4418)))))
-(((-903 |#1|) (-13 (-119 |#1|) (-614 (-1204 |#1|)) (-10 -8 (-15 -3427 ($ |#1|)) (-15 -3427 ($ $ $)))) (-1102)) (T -903))
-((-3427 (*1 *1 *2) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1102)))) (-3427 (*1 *1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1102)))))
-(-13 (-119 |#1|) (-614 (-1204 |#1|)) (-10 -8 (-15 -3427 ($ |#1|)) (-15 -3427 ($ $ $))))
-((-2526 ((|#2| (-1144 |#1| |#2|)) 53)))
-(((-904 |#1| |#2|) (-10 -7 (-15 -2526 (|#2| (-1144 |#1| |#2|)))) (-923) (-13 (-1051) (-10 -7 (-6 (-4420 "*"))))) (T -904))
-((-2526 (*1 *2 *3) (-12 (-5 *3 (-1144 *4 *2)) (-14 *4 (-923)) (-4 *2 (-13 (-1051) (-10 -7 (-6 (-4420 "*"))))) (-5 *1 (-904 *4 *2)))))
-(-10 -7 (-15 -2526 (|#2| (-1144 |#1| |#2|))))
-((-2403 (((-112) $ $) 7)) (-2585 (($) 19 T CONST)) (-2109 (((-3 $ "failed") $) 16)) (-4276 (((-1104 |#1|) $ |#1|) 33)) (-1433 (((-112) $) 18)) (-1354 (($ $ $) 31 (-2800 (|has| |#1| (-851)) (|has| |#1| (-370))))) (-2981 (($ $ $) 30 (-2800 (|has| |#1| (-851)) (|has| |#1| (-370))))) (-1419 (((-1160) $) 10)) (-2939 (($ $) 25)) (-3430 (((-1122) $) 11)) (-2631 ((|#1| $ |#1|) 35)) (-1787 ((|#1| $ |#1|) 34)) (-2926 (($ (-645 (-645 |#1|))) 36)) (-2088 (($ (-645 |#1|)) 37)) (-1823 (($ $ $) 22)) (-1485 (($ $ $) 21)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-1728 (($) 20 T CONST)) (-2997 (((-112) $ $) 28 (-2800 (|has| |#1| (-851)) (|has| |#1| (-370))))) (-2971 (((-112) $ $) 27 (-2800 (|has| |#1| (-851)) (|has| |#1| (-370))))) (-2936 (((-112) $ $) 6)) (-2984 (((-112) $ $) 29 (-2800 (|has| |#1| (-851)) (|has| |#1| (-370))))) (-2958 (((-112) $ $) 32)) (-3060 (($ $ $) 24)) (** (($ $ (-923)) 14) (($ $ (-772)) 17) (($ $ (-567)) 23)) (* (($ $ $) 15)))
+((-2412 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3812 ((|#1| $) 26)) (-1563 (((-112) $ (-772)) NIL)) (-4392 ((|#1| $ |#1|) NIL (|has| $ (-6 -4423)))) (-3487 (($ $ $) NIL (|has| $ (-6 -4423)))) (-1485 (($ $ $) NIL (|has| $ (-6 -4423)))) (-4285 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4423))) (($ $ "left" $) NIL (|has| $ (-6 -4423))) (($ $ "right" $) NIL (|has| $ (-6 -4423)))) (-2831 (($ $ (-645 $)) NIL (|has| $ (-6 -4423)))) (-3647 (($) NIL T CONST)) (-2973 (($ $) 25)) (-3445 (($ |#1|) 12) (($ $ $) 17)) (-2799 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-2070 (((-645 $) $) NIL)) (-1520 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-4093 (((-112) $ (-772)) NIL)) (-1942 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-3237 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3751 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#1| |#1|) $) NIL)) (-1986 (((-112) $ (-772)) NIL)) (-2961 (($ $) 23)) (-3793 (((-645 |#1|) $) NIL)) (-1323 (((-112) $) 20)) (-2516 (((-1161) $) NIL (|has| |#1| (-1102)))) (-3437 (((-1122) $) NIL (|has| |#1| (-1102)))) (-4233 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3875 (((-112) $ $) NIL)) (-3885 (((-112) $) NIL)) (-2701 (($) NIL)) (-1801 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3162 (((-567) $ $) NIL)) (-3771 (((-112) $) NIL)) (-3447 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-4309 (($ $) NIL)) (-4129 (((-1205 |#1|) $) 9) (((-863) $) 29 (|has| |#1| (-614 (-863))))) (-3469 (((-645 $) $) NIL)) (-3854 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3357 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3436 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2946 (((-112) $ $) 21 (|has| |#1| (-1102)))) (-2423 (((-772) $) NIL (|has| $ (-6 -4422)))))
+(((-903 |#1|) (-13 (-119 |#1|) (-614 (-1205 |#1|)) (-10 -8 (-15 -3445 ($ |#1|)) (-15 -3445 ($ $ $)))) (-1102)) (T -903))
+((-3445 (*1 *1 *2) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1102)))) (-3445 (*1 *1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1102)))))
+(-13 (-119 |#1|) (-614 (-1205 |#1|)) (-10 -8 (-15 -3445 ($ |#1|)) (-15 -3445 ($ $ $))))
+((-3300 ((|#2| (-1144 |#1| |#2|)) 53)))
+(((-904 |#1| |#2|) (-10 -7 (-15 -3300 (|#2| (-1144 |#1| |#2|)))) (-923) (-13 (-1051) (-10 -7 (-6 (-4424 "*"))))) (T -904))
+((-3300 (*1 *2 *3) (-12 (-5 *3 (-1144 *4 *2)) (-14 *4 (-923)) (-4 *2 (-13 (-1051) (-10 -7 (-6 (-4424 "*"))))) (-5 *1 (-904 *4 *2)))))
+(-10 -7 (-15 -3300 (|#2| (-1144 |#1| |#2|))))
+((-2412 (((-112) $ $) 7)) (-3647 (($) 19 T CONST)) (-3588 (((-3 $ "failed") $) 16)) (-3613 (((-1104 |#1|) $ |#1|) 33)) (-4346 (((-112) $) 18)) (-1365 (($ $ $) 31 (-2811 (|has| |#1| (-851)) (|has| |#1| (-370))))) (-3002 (($ $ $) 30 (-2811 (|has| |#1| (-851)) (|has| |#1| (-370))))) (-2516 (((-1161) $) 10)) (-2949 (($ $) 25)) (-3437 (((-1122) $) 11)) (-2642 ((|#1| $ |#1|) 35)) (-1801 ((|#1| $ |#1|) 34)) (-1854 (($ (-645 (-645 |#1|))) 36)) (-1815 (($ (-645 |#1|)) 37)) (-1672 (($ $ $) 22)) (-3997 (($ $ $) 21)) (-4129 (((-863) $) 12)) (-3357 (((-112) $ $) 9)) (-1744 (($) 20 T CONST)) (-3004 (((-112) $ $) 28 (-2811 (|has| |#1| (-851)) (|has| |#1| (-370))))) (-2980 (((-112) $ $) 27 (-2811 (|has| |#1| (-851)) (|has| |#1| (-370))))) (-2946 (((-112) $ $) 6)) (-2993 (((-112) $ $) 29 (-2811 (|has| |#1| (-851)) (|has| |#1| (-370))))) (-2968 (((-112) $ $) 32)) (-3069 (($ $ $) 24)) (** (($ $ (-923)) 14) (($ $ (-772)) 17) (($ $ (-567)) 23)) (* (($ $ $) 15)))
(((-905 |#1|) (-140) (-1102)) (T -905))
-((-2088 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-4 *1 (-905 *3)))) (-2926 (*1 *1 *2) (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-1102)) (-4 *1 (-905 *3)))) (-2631 (*1 *2 *1 *2) (-12 (-4 *1 (-905 *2)) (-4 *2 (-1102)))) (-1787 (*1 *2 *1 *2) (-12 (-4 *1 (-905 *2)) (-4 *2 (-1102)))) (-4276 (*1 *2 *1 *3) (-12 (-4 *1 (-905 *3)) (-4 *3 (-1102)) (-5 *2 (-1104 *3)))) (-2958 (*1 *2 *1 *1) (-12 (-4 *1 (-905 *3)) (-4 *3 (-1102)) (-5 *2 (-112)))))
-(-13 (-476) (-10 -8 (-15 -2088 ($ (-645 |t#1|))) (-15 -2926 ($ (-645 (-645 |t#1|)))) (-15 -2631 (|t#1| $ |t#1|)) (-15 -1787 (|t#1| $ |t#1|)) (-15 -4276 ((-1104 |t#1|) $ |t#1|)) (-15 -2958 ((-112) $ $)) (IF (|has| |t#1| (-851)) (-6 (-851)) |%noBranch|) (IF (|has| |t#1| (-370)) (-6 (-851)) |%noBranch|)))
-(((-102) . T) ((-614 (-863)) . T) ((-476) . T) ((-727) . T) ((-851) -2800 (|has| |#1| (-851)) (|has| |#1| (-370))) ((-1114) . T) ((-1102) . T))
-((-2403 (((-112) $ $) NIL)) (-1558 (((-645 (-645 (-772))) $) 165)) (-1706 (((-645 (-772)) (-907 |#1|) $) 193)) (-1666 (((-645 (-772)) (-907 |#1|) $) 194)) (-1412 (((-645 (-907 |#1|)) $) 154)) (-1348 (((-907 |#1|) $ (-567)) 159) (((-907 |#1|) $) 160)) (-3669 (($ (-645 (-907 |#1|))) 167)) (-4384 (((-772) $) 161)) (-1761 (((-1104 (-1104 |#1|)) $) 191)) (-4276 (((-1104 |#1|) $ |#1|) 182) (((-1104 (-1104 |#1|)) $ (-1104 |#1|)) 202) (((-1104 (-645 |#1|)) $ (-645 |#1|)) 205)) (-1312 (((-1104 |#1|) $) 157)) (-4337 (((-112) (-907 |#1|) $) 143)) (-1419 (((-1160) $) NIL)) (-1925 (((-1273) $) 147) (((-1273) $ (-567) (-567)) 206)) (-3430 (((-1122) $) NIL)) (-1587 (((-645 (-907 |#1|)) $) 148)) (-1787 (((-907 |#1|) $ (-772)) 155)) (-3077 (((-772) $) 162)) (-4132 (((-863) $) 179) (((-645 (-907 |#1|)) $) 28) (($ (-645 (-907 |#1|))) 166)) (-1745 (((-112) $ $) NIL)) (-3047 (((-645 |#1|) $) 164)) (-2936 (((-112) $ $) 199)) (-2984 (((-112) $ $) 197)) (-2958 (((-112) $ $) 196)))
-(((-906 |#1|) (-13 (-1102) (-10 -8 (-15 -4132 ((-645 (-907 |#1|)) $)) (-15 -1587 ((-645 (-907 |#1|)) $)) (-15 -1787 ((-907 |#1|) $ (-772))) (-15 -1348 ((-907 |#1|) $ (-567))) (-15 -1348 ((-907 |#1|) $)) (-15 -4384 ((-772) $)) (-15 -3077 ((-772) $)) (-15 -3047 ((-645 |#1|) $)) (-15 -1412 ((-645 (-907 |#1|)) $)) (-15 -1558 ((-645 (-645 (-772))) $)) (-15 -4132 ($ (-645 (-907 |#1|)))) (-15 -3669 ($ (-645 (-907 |#1|)))) (-15 -4276 ((-1104 |#1|) $ |#1|)) (-15 -1761 ((-1104 (-1104 |#1|)) $)) (-15 -4276 ((-1104 (-1104 |#1|)) $ (-1104 |#1|))) (-15 -4276 ((-1104 (-645 |#1|)) $ (-645 |#1|))) (-15 -4337 ((-112) (-907 |#1|) $)) (-15 -1706 ((-645 (-772)) (-907 |#1|) $)) (-15 -1666 ((-645 (-772)) (-907 |#1|) $)) (-15 -1312 ((-1104 |#1|) $)) (-15 -2958 ((-112) $ $)) (-15 -2984 ((-112) $ $)) (-15 -1925 ((-1273) $)) (-15 -1925 ((-1273) $ (-567) (-567))))) (-1102)) (T -906))
-((-4132 (*1 *2 *1) (-12 (-5 *2 (-645 (-907 *3))) (-5 *1 (-906 *3)) (-4 *3 (-1102)))) (-1587 (*1 *2 *1) (-12 (-5 *2 (-645 (-907 *3))) (-5 *1 (-906 *3)) (-4 *3 (-1102)))) (-1787 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *2 (-907 *4)) (-5 *1 (-906 *4)) (-4 *4 (-1102)))) (-1348 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *2 (-907 *4)) (-5 *1 (-906 *4)) (-4 *4 (-1102)))) (-1348 (*1 *2 *1) (-12 (-5 *2 (-907 *3)) (-5 *1 (-906 *3)) (-4 *3 (-1102)))) (-4384 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-906 *3)) (-4 *3 (-1102)))) (-3077 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-906 *3)) (-4 *3 (-1102)))) (-3047 (*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-906 *3)) (-4 *3 (-1102)))) (-1412 (*1 *2 *1) (-12 (-5 *2 (-645 (-907 *3))) (-5 *1 (-906 *3)) (-4 *3 (-1102)))) (-1558 (*1 *2 *1) (-12 (-5 *2 (-645 (-645 (-772)))) (-5 *1 (-906 *3)) (-4 *3 (-1102)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-645 (-907 *3))) (-4 *3 (-1102)) (-5 *1 (-906 *3)))) (-3669 (*1 *1 *2) (-12 (-5 *2 (-645 (-907 *3))) (-4 *3 (-1102)) (-5 *1 (-906 *3)))) (-4276 (*1 *2 *1 *3) (-12 (-5 *2 (-1104 *3)) (-5 *1 (-906 *3)) (-4 *3 (-1102)))) (-1761 (*1 *2 *1) (-12 (-5 *2 (-1104 (-1104 *3))) (-5 *1 (-906 *3)) (-4 *3 (-1102)))) (-4276 (*1 *2 *1 *3) (-12 (-4 *4 (-1102)) (-5 *2 (-1104 (-1104 *4))) (-5 *1 (-906 *4)) (-5 *3 (-1104 *4)))) (-4276 (*1 *2 *1 *3) (-12 (-4 *4 (-1102)) (-5 *2 (-1104 (-645 *4))) (-5 *1 (-906 *4)) (-5 *3 (-645 *4)))) (-4337 (*1 *2 *3 *1) (-12 (-5 *3 (-907 *4)) (-4 *4 (-1102)) (-5 *2 (-112)) (-5 *1 (-906 *4)))) (-1706 (*1 *2 *3 *1) (-12 (-5 *3 (-907 *4)) (-4 *4 (-1102)) (-5 *2 (-645 (-772))) (-5 *1 (-906 *4)))) (-1666 (*1 *2 *3 *1) (-12 (-5 *3 (-907 *4)) (-4 *4 (-1102)) (-5 *2 (-645 (-772))) (-5 *1 (-906 *4)))) (-1312 (*1 *2 *1) (-12 (-5 *2 (-1104 *3)) (-5 *1 (-906 *3)) (-4 *3 (-1102)))) (-2958 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-906 *3)) (-4 *3 (-1102)))) (-2984 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-906 *3)) (-4 *3 (-1102)))) (-1925 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-906 *3)) (-4 *3 (-1102)))) (-1925 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-567)) (-5 *2 (-1273)) (-5 *1 (-906 *4)) (-4 *4 (-1102)))))
-(-13 (-1102) (-10 -8 (-15 -4132 ((-645 (-907 |#1|)) $)) (-15 -1587 ((-645 (-907 |#1|)) $)) (-15 -1787 ((-907 |#1|) $ (-772))) (-15 -1348 ((-907 |#1|) $ (-567))) (-15 -1348 ((-907 |#1|) $)) (-15 -4384 ((-772) $)) (-15 -3077 ((-772) $)) (-15 -3047 ((-645 |#1|) $)) (-15 -1412 ((-645 (-907 |#1|)) $)) (-15 -1558 ((-645 (-645 (-772))) $)) (-15 -4132 ($ (-645 (-907 |#1|)))) (-15 -3669 ($ (-645 (-907 |#1|)))) (-15 -4276 ((-1104 |#1|) $ |#1|)) (-15 -1761 ((-1104 (-1104 |#1|)) $)) (-15 -4276 ((-1104 (-1104 |#1|)) $ (-1104 |#1|))) (-15 -4276 ((-1104 (-645 |#1|)) $ (-645 |#1|))) (-15 -4337 ((-112) (-907 |#1|) $)) (-15 -1706 ((-645 (-772)) (-907 |#1|) $)) (-15 -1666 ((-645 (-772)) (-907 |#1|) $)) (-15 -1312 ((-1104 |#1|) $)) (-15 -2958 ((-112) $ $)) (-15 -2984 ((-112) $ $)) (-15 -1925 ((-1273) $)) (-15 -1925 ((-1273) $ (-567) (-567)))))
-((-2403 (((-112) $ $) NIL)) (-4396 (((-645 $) (-645 $)) 105)) (-1750 (((-567) $) 86)) (-2585 (($) NIL T CONST)) (-2109 (((-3 $ "failed") $) NIL)) (-4384 (((-772) $) 83)) (-4276 (((-1104 |#1|) $ |#1|) 74)) (-1433 (((-112) $) NIL)) (-3837 (((-112) $) 90)) (-1322 (((-772) $) 87)) (-1312 (((-1104 |#1|) $) 63)) (-1354 (($ $ $) NIL (-2800 (|has| |#1| (-370)) (|has| |#1| (-851))))) (-2981 (($ $ $) NIL (-2800 (|has| |#1| (-370)) (|has| |#1| (-851))))) (-3849 (((-2 (|:| |preimage| (-645 |#1|)) (|:| |image| (-645 |#1|))) $) 58)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) 133)) (-3430 (((-1122) $) NIL)) (-4216 (((-1104 |#1|) $) 141 (|has| |#1| (-370)))) (-2757 (((-112) $) 84)) (-2631 ((|#1| $ |#1|) 72)) (-1787 ((|#1| $ |#1|) 135)) (-3077 (((-772) $) 65)) (-2926 (($ (-645 (-645 |#1|))) 120)) (-2540 (((-973) $) 78)) (-2088 (($ (-645 |#1|)) 35)) (-1823 (($ $ $) NIL)) (-1485 (($ $ $) NIL)) (-1775 (($ (-645 (-645 |#1|))) 60)) (-1921 (($ (-645 (-645 |#1|))) 125)) (-4105 (($ (-645 |#1|)) 137)) (-4132 (((-863) $) 119) (($ (-645 (-645 |#1|))) 93) (($ (-645 |#1|)) 94)) (-1745 (((-112) $ $) NIL)) (-1728 (($) 27 T CONST)) (-2997 (((-112) $ $) NIL (-2800 (|has| |#1| (-370)) (|has| |#1| (-851))))) (-2971 (((-112) $ $) NIL (-2800 (|has| |#1| (-370)) (|has| |#1| (-851))))) (-2936 (((-112) $ $) 70)) (-2984 (((-112) $ $) NIL (-2800 (|has| |#1| (-370)) (|has| |#1| (-851))))) (-2958 (((-112) $ $) 92)) (-3060 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ $ $) 36)))
-(((-907 |#1|) (-13 (-905 |#1|) (-10 -8 (-15 -3849 ((-2 (|:| |preimage| (-645 |#1|)) (|:| |image| (-645 |#1|))) $)) (-15 -1775 ($ (-645 (-645 |#1|)))) (-15 -4132 ($ (-645 (-645 |#1|)))) (-15 -4132 ($ (-645 |#1|))) (-15 -1921 ($ (-645 (-645 |#1|)))) (-15 -3077 ((-772) $)) (-15 -1312 ((-1104 |#1|) $)) (-15 -2540 ((-973) $)) (-15 -4384 ((-772) $)) (-15 -1322 ((-772) $)) (-15 -1750 ((-567) $)) (-15 -2757 ((-112) $)) (-15 -3837 ((-112) $)) (-15 -4396 ((-645 $) (-645 $))) (IF (|has| |#1| (-370)) (-15 -4216 ((-1104 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-548)) (-15 -4105 ($ (-645 |#1|))) (IF (|has| |#1| (-370)) (-15 -4105 ($ (-645 |#1|))) |%noBranch|)))) (-1102)) (T -907))
-((-3849 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-645 *3)) (|:| |image| (-645 *3)))) (-5 *1 (-907 *3)) (-4 *3 (-1102)))) (-1775 (*1 *1 *2) (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-1102)) (-5 *1 (-907 *3)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-1102)) (-5 *1 (-907 *3)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-5 *1 (-907 *3)))) (-1921 (*1 *1 *2) (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-1102)) (-5 *1 (-907 *3)))) (-3077 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-907 *3)) (-4 *3 (-1102)))) (-1312 (*1 *2 *1) (-12 (-5 *2 (-1104 *3)) (-5 *1 (-907 *3)) (-4 *3 (-1102)))) (-2540 (*1 *2 *1) (-12 (-5 *2 (-973)) (-5 *1 (-907 *3)) (-4 *3 (-1102)))) (-4384 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-907 *3)) (-4 *3 (-1102)))) (-1322 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-907 *3)) (-4 *3 (-1102)))) (-1750 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-907 *3)) (-4 *3 (-1102)))) (-2757 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1102)))) (-3837 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1102)))) (-4396 (*1 *2 *2) (-12 (-5 *2 (-645 (-907 *3))) (-5 *1 (-907 *3)) (-4 *3 (-1102)))) (-4216 (*1 *2 *1) (-12 (-5 *2 (-1104 *3)) (-5 *1 (-907 *3)) (-4 *3 (-370)) (-4 *3 (-1102)))) (-4105 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-5 *1 (-907 *3)))))
-(-13 (-905 |#1|) (-10 -8 (-15 -3849 ((-2 (|:| |preimage| (-645 |#1|)) (|:| |image| (-645 |#1|))) $)) (-15 -1775 ($ (-645 (-645 |#1|)))) (-15 -4132 ($ (-645 (-645 |#1|)))) (-15 -4132 ($ (-645 |#1|))) (-15 -1921 ($ (-645 (-645 |#1|)))) (-15 -3077 ((-772) $)) (-15 -1312 ((-1104 |#1|) $)) (-15 -2540 ((-973) $)) (-15 -4384 ((-772) $)) (-15 -1322 ((-772) $)) (-15 -1750 ((-567) $)) (-15 -2757 ((-112) $)) (-15 -3837 ((-112) $)) (-15 -4396 ((-645 $) (-645 $))) (IF (|has| |#1| (-370)) (-15 -4216 ((-1104 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-548)) (-15 -4105 ($ (-645 |#1|))) (IF (|has| |#1| (-370)) (-15 -4105 ($ (-645 |#1|))) |%noBranch|))))
-((-2295 (((-3 (-645 (-1174 |#4|)) "failed") (-645 (-1174 |#4|)) (-1174 |#4|)) 159)) (-1422 ((|#1|) 97)) (-2078 (((-421 (-1174 |#4|)) (-1174 |#4|)) 168)) (-1698 (((-421 (-1174 |#4|)) (-645 |#3|) (-1174 |#4|)) 84)) (-4153 (((-421 (-1174 |#4|)) (-1174 |#4|)) 178)) (-3867 (((-3 (-645 (-1174 |#4|)) "failed") (-645 (-1174 |#4|)) (-1174 |#4|) |#3|) 113)))
-(((-908 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2295 ((-3 (-645 (-1174 |#4|)) "failed") (-645 (-1174 |#4|)) (-1174 |#4|))) (-15 -4153 ((-421 (-1174 |#4|)) (-1174 |#4|))) (-15 -2078 ((-421 (-1174 |#4|)) (-1174 |#4|))) (-15 -1422 (|#1|)) (-15 -3867 ((-3 (-645 (-1174 |#4|)) "failed") (-645 (-1174 |#4|)) (-1174 |#4|) |#3|)) (-15 -1698 ((-421 (-1174 |#4|)) (-645 |#3|) (-1174 |#4|)))) (-911) (-794) (-851) (-951 |#1| |#2| |#3|)) (T -908))
-((-1698 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *7)) (-4 *7 (-851)) (-4 *5 (-911)) (-4 *6 (-794)) (-4 *8 (-951 *5 *6 *7)) (-5 *2 (-421 (-1174 *8))) (-5 *1 (-908 *5 *6 *7 *8)) (-5 *4 (-1174 *8)))) (-3867 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-645 (-1174 *7))) (-5 *3 (-1174 *7)) (-4 *7 (-951 *5 *6 *4)) (-4 *5 (-911)) (-4 *6 (-794)) (-4 *4 (-851)) (-5 *1 (-908 *5 *6 *4 *7)))) (-1422 (*1 *2) (-12 (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-911)) (-5 *1 (-908 *2 *3 *4 *5)) (-4 *5 (-951 *2 *3 *4)))) (-2078 (*1 *2 *3) (-12 (-4 *4 (-911)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-951 *4 *5 *6)) (-5 *2 (-421 (-1174 *7))) (-5 *1 (-908 *4 *5 *6 *7)) (-5 *3 (-1174 *7)))) (-4153 (*1 *2 *3) (-12 (-4 *4 (-911)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-951 *4 *5 *6)) (-5 *2 (-421 (-1174 *7))) (-5 *1 (-908 *4 *5 *6 *7)) (-5 *3 (-1174 *7)))) (-2295 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-645 (-1174 *7))) (-5 *3 (-1174 *7)) (-4 *7 (-951 *4 *5 *6)) (-4 *4 (-911)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-908 *4 *5 *6 *7)))))
-(-10 -7 (-15 -2295 ((-3 (-645 (-1174 |#4|)) "failed") (-645 (-1174 |#4|)) (-1174 |#4|))) (-15 -4153 ((-421 (-1174 |#4|)) (-1174 |#4|))) (-15 -2078 ((-421 (-1174 |#4|)) (-1174 |#4|))) (-15 -1422 (|#1|)) (-15 -3867 ((-3 (-645 (-1174 |#4|)) "failed") (-645 (-1174 |#4|)) (-1174 |#4|) |#3|)) (-15 -1698 ((-421 (-1174 |#4|)) (-645 |#3|) (-1174 |#4|))))
-((-2295 (((-3 (-645 (-1174 |#2|)) "failed") (-645 (-1174 |#2|)) (-1174 |#2|)) 41)) (-1422 ((|#1|) 75)) (-2078 (((-421 (-1174 |#2|)) (-1174 |#2|)) 124)) (-1698 (((-421 (-1174 |#2|)) (-1174 |#2|)) 108)) (-4153 (((-421 (-1174 |#2|)) (-1174 |#2|)) 135)))
-(((-909 |#1| |#2|) (-10 -7 (-15 -2295 ((-3 (-645 (-1174 |#2|)) "failed") (-645 (-1174 |#2|)) (-1174 |#2|))) (-15 -4153 ((-421 (-1174 |#2|)) (-1174 |#2|))) (-15 -2078 ((-421 (-1174 |#2|)) (-1174 |#2|))) (-15 -1422 (|#1|)) (-15 -1698 ((-421 (-1174 |#2|)) (-1174 |#2|)))) (-911) (-1244 |#1|)) (T -909))
-((-1698 (*1 *2 *3) (-12 (-4 *4 (-911)) (-4 *5 (-1244 *4)) (-5 *2 (-421 (-1174 *5))) (-5 *1 (-909 *4 *5)) (-5 *3 (-1174 *5)))) (-1422 (*1 *2) (-12 (-4 *2 (-911)) (-5 *1 (-909 *2 *3)) (-4 *3 (-1244 *2)))) (-2078 (*1 *2 *3) (-12 (-4 *4 (-911)) (-4 *5 (-1244 *4)) (-5 *2 (-421 (-1174 *5))) (-5 *1 (-909 *4 *5)) (-5 *3 (-1174 *5)))) (-4153 (*1 *2 *3) (-12 (-4 *4 (-911)) (-4 *5 (-1244 *4)) (-5 *2 (-421 (-1174 *5))) (-5 *1 (-909 *4 *5)) (-5 *3 (-1174 *5)))) (-2295 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-645 (-1174 *5))) (-5 *3 (-1174 *5)) (-4 *5 (-1244 *4)) (-4 *4 (-911)) (-5 *1 (-909 *4 *5)))))
-(-10 -7 (-15 -2295 ((-3 (-645 (-1174 |#2|)) "failed") (-645 (-1174 |#2|)) (-1174 |#2|))) (-15 -4153 ((-421 (-1174 |#2|)) (-1174 |#2|))) (-15 -2078 ((-421 (-1174 |#2|)) (-1174 |#2|))) (-15 -1422 (|#1|)) (-15 -1698 ((-421 (-1174 |#2|)) (-1174 |#2|))))
-((-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) 42)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 18)) (-1903 (((-3 $ "failed") $) 36)))
-(((-910 |#1|) (-10 -8 (-15 -1903 ((-3 |#1| "failed") |#1|)) (-15 -3815 ((-3 (-645 (-1174 |#1|)) "failed") (-645 (-1174 |#1|)) (-1174 |#1|))) (-15 -3750 ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|)))) (-911)) (T -910))
-NIL
-(-10 -8 (-15 -1903 ((-3 |#1| "failed") |#1|)) (-15 -3815 ((-3 (-645 (-1174 |#1|)) "failed") (-645 (-1174 |#1|)) (-1174 |#1|))) (-15 -3750 ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 47)) (-4381 (($ $) 46)) (-3949 (((-112) $) 44)) (-3472 (((-3 $ "failed") $ $) 20)) (-4226 (((-421 (-1174 $)) (-1174 $)) 66)) (-3248 (($ $) 57)) (-2908 (((-421 $) $) 58)) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) 63)) (-2585 (($) 18 T CONST)) (-2109 (((-3 $ "failed") $) 37)) (-3184 (((-112) $) 59)) (-1433 (((-112) $) 35)) (-2740 (($ $ $) 52) (($ (-645 $)) 51)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 50)) (-2774 (($ $ $) 54) (($ (-645 $)) 53)) (-2435 (((-421 (-1174 $)) (-1174 $)) 64)) (-3517 (((-421 (-1174 $)) (-1174 $)) 65)) (-2706 (((-421 $) $) 56)) (-2391 (((-3 $ "failed") $ $) 48)) (-1895 (((-3 (-1268 $) "failed") (-690 $)) 62 (|has| $ (-145)))) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ $) 49)) (-1903 (((-3 $ "failed") $) 61 (|has| $ (-145)))) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-3816 (((-112) $ $) 45)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27)))
+((-1815 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-4 *1 (-905 *3)))) (-1854 (*1 *1 *2) (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-1102)) (-4 *1 (-905 *3)))) (-2642 (*1 *2 *1 *2) (-12 (-4 *1 (-905 *2)) (-4 *2 (-1102)))) (-1801 (*1 *2 *1 *2) (-12 (-4 *1 (-905 *2)) (-4 *2 (-1102)))) (-3613 (*1 *2 *1 *3) (-12 (-4 *1 (-905 *3)) (-4 *3 (-1102)) (-5 *2 (-1104 *3)))) (-2968 (*1 *2 *1 *1) (-12 (-4 *1 (-905 *3)) (-4 *3 (-1102)) (-5 *2 (-112)))))
+(-13 (-476) (-10 -8 (-15 -1815 ($ (-645 |t#1|))) (-15 -1854 ($ (-645 (-645 |t#1|)))) (-15 -2642 (|t#1| $ |t#1|)) (-15 -1801 (|t#1| $ |t#1|)) (-15 -3613 ((-1104 |t#1|) $ |t#1|)) (-15 -2968 ((-112) $ $)) (IF (|has| |t#1| (-851)) (-6 (-851)) |%noBranch|) (IF (|has| |t#1| (-370)) (-6 (-851)) |%noBranch|)))
+(((-102) . T) ((-614 (-863)) . T) ((-476) . T) ((-727) . T) ((-851) -2811 (|has| |#1| (-851)) (|has| |#1| (-370))) ((-1114) . T) ((-1102) . T))
+((-2412 (((-112) $ $) NIL)) (-3529 (((-645 (-645 (-772))) $) 165)) (-3548 (((-645 (-772)) (-907 |#1|) $) 193)) (-3550 (((-645 (-772)) (-907 |#1|) $) 194)) (-4312 (((-645 (-907 |#1|)) $) 154)) (-1359 (((-907 |#1|) $ (-567)) 159) (((-907 |#1|) $) 160)) (-1736 (($ (-645 (-907 |#1|))) 167)) (-3362 (((-772) $) 161)) (-2530 (((-1104 (-1104 |#1|)) $) 191)) (-3613 (((-1104 |#1|) $ |#1|) 182) (((-1104 (-1104 |#1|)) $ (-1104 |#1|)) 202) (((-1104 (-645 |#1|)) $ (-645 |#1|)) 205)) (-1454 (((-1104 |#1|) $) 157)) (-3237 (((-112) (-907 |#1|) $) 143)) (-2516 (((-1161) $) NIL)) (-2798 (((-1274) $) 147) (((-1274) $ (-567) (-567)) 206)) (-3437 (((-1122) $) NIL)) (-4217 (((-645 (-907 |#1|)) $) 148)) (-1801 (((-907 |#1|) $ (-772)) 155)) (-3104 (((-772) $) 162)) (-4129 (((-863) $) 179) (((-645 (-907 |#1|)) $) 28) (($ (-645 (-907 |#1|))) 166)) (-3357 (((-112) $ $) NIL)) (-3070 (((-645 |#1|) $) 164)) (-2946 (((-112) $ $) 199)) (-2993 (((-112) $ $) 197)) (-2968 (((-112) $ $) 196)))
+(((-906 |#1|) (-13 (-1102) (-10 -8 (-15 -4129 ((-645 (-907 |#1|)) $)) (-15 -4217 ((-645 (-907 |#1|)) $)) (-15 -1801 ((-907 |#1|) $ (-772))) (-15 -1359 ((-907 |#1|) $ (-567))) (-15 -1359 ((-907 |#1|) $)) (-15 -3362 ((-772) $)) (-15 -3104 ((-772) $)) (-15 -3070 ((-645 |#1|) $)) (-15 -4312 ((-645 (-907 |#1|)) $)) (-15 -3529 ((-645 (-645 (-772))) $)) (-15 -4129 ($ (-645 (-907 |#1|)))) (-15 -1736 ($ (-645 (-907 |#1|)))) (-15 -3613 ((-1104 |#1|) $ |#1|)) (-15 -2530 ((-1104 (-1104 |#1|)) $)) (-15 -3613 ((-1104 (-1104 |#1|)) $ (-1104 |#1|))) (-15 -3613 ((-1104 (-645 |#1|)) $ (-645 |#1|))) (-15 -3237 ((-112) (-907 |#1|) $)) (-15 -3548 ((-645 (-772)) (-907 |#1|) $)) (-15 -3550 ((-645 (-772)) (-907 |#1|) $)) (-15 -1454 ((-1104 |#1|) $)) (-15 -2968 ((-112) $ $)) (-15 -2993 ((-112) $ $)) (-15 -2798 ((-1274) $)) (-15 -2798 ((-1274) $ (-567) (-567))))) (-1102)) (T -906))
+((-4129 (*1 *2 *1) (-12 (-5 *2 (-645 (-907 *3))) (-5 *1 (-906 *3)) (-4 *3 (-1102)))) (-4217 (*1 *2 *1) (-12 (-5 *2 (-645 (-907 *3))) (-5 *1 (-906 *3)) (-4 *3 (-1102)))) (-1801 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *2 (-907 *4)) (-5 *1 (-906 *4)) (-4 *4 (-1102)))) (-1359 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *2 (-907 *4)) (-5 *1 (-906 *4)) (-4 *4 (-1102)))) (-1359 (*1 *2 *1) (-12 (-5 *2 (-907 *3)) (-5 *1 (-906 *3)) (-4 *3 (-1102)))) (-3362 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-906 *3)) (-4 *3 (-1102)))) (-3104 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-906 *3)) (-4 *3 (-1102)))) (-3070 (*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-906 *3)) (-4 *3 (-1102)))) (-4312 (*1 *2 *1) (-12 (-5 *2 (-645 (-907 *3))) (-5 *1 (-906 *3)) (-4 *3 (-1102)))) (-3529 (*1 *2 *1) (-12 (-5 *2 (-645 (-645 (-772)))) (-5 *1 (-906 *3)) (-4 *3 (-1102)))) (-4129 (*1 *1 *2) (-12 (-5 *2 (-645 (-907 *3))) (-4 *3 (-1102)) (-5 *1 (-906 *3)))) (-1736 (*1 *1 *2) (-12 (-5 *2 (-645 (-907 *3))) (-4 *3 (-1102)) (-5 *1 (-906 *3)))) (-3613 (*1 *2 *1 *3) (-12 (-5 *2 (-1104 *3)) (-5 *1 (-906 *3)) (-4 *3 (-1102)))) (-2530 (*1 *2 *1) (-12 (-5 *2 (-1104 (-1104 *3))) (-5 *1 (-906 *3)) (-4 *3 (-1102)))) (-3613 (*1 *2 *1 *3) (-12 (-4 *4 (-1102)) (-5 *2 (-1104 (-1104 *4))) (-5 *1 (-906 *4)) (-5 *3 (-1104 *4)))) (-3613 (*1 *2 *1 *3) (-12 (-4 *4 (-1102)) (-5 *2 (-1104 (-645 *4))) (-5 *1 (-906 *4)) (-5 *3 (-645 *4)))) (-3237 (*1 *2 *3 *1) (-12 (-5 *3 (-907 *4)) (-4 *4 (-1102)) (-5 *2 (-112)) (-5 *1 (-906 *4)))) (-3548 (*1 *2 *3 *1) (-12 (-5 *3 (-907 *4)) (-4 *4 (-1102)) (-5 *2 (-645 (-772))) (-5 *1 (-906 *4)))) (-3550 (*1 *2 *3 *1) (-12 (-5 *3 (-907 *4)) (-4 *4 (-1102)) (-5 *2 (-645 (-772))) (-5 *1 (-906 *4)))) (-1454 (*1 *2 *1) (-12 (-5 *2 (-1104 *3)) (-5 *1 (-906 *3)) (-4 *3 (-1102)))) (-2968 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-906 *3)) (-4 *3 (-1102)))) (-2993 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-906 *3)) (-4 *3 (-1102)))) (-2798 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-906 *3)) (-4 *3 (-1102)))) (-2798 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-567)) (-5 *2 (-1274)) (-5 *1 (-906 *4)) (-4 *4 (-1102)))))
+(-13 (-1102) (-10 -8 (-15 -4129 ((-645 (-907 |#1|)) $)) (-15 -4217 ((-645 (-907 |#1|)) $)) (-15 -1801 ((-907 |#1|) $ (-772))) (-15 -1359 ((-907 |#1|) $ (-567))) (-15 -1359 ((-907 |#1|) $)) (-15 -3362 ((-772) $)) (-15 -3104 ((-772) $)) (-15 -3070 ((-645 |#1|) $)) (-15 -4312 ((-645 (-907 |#1|)) $)) (-15 -3529 ((-645 (-645 (-772))) $)) (-15 -4129 ($ (-645 (-907 |#1|)))) (-15 -1736 ($ (-645 (-907 |#1|)))) (-15 -3613 ((-1104 |#1|) $ |#1|)) (-15 -2530 ((-1104 (-1104 |#1|)) $)) (-15 -3613 ((-1104 (-1104 |#1|)) $ (-1104 |#1|))) (-15 -3613 ((-1104 (-645 |#1|)) $ (-645 |#1|))) (-15 -3237 ((-112) (-907 |#1|) $)) (-15 -3548 ((-645 (-772)) (-907 |#1|) $)) (-15 -3550 ((-645 (-772)) (-907 |#1|) $)) (-15 -1454 ((-1104 |#1|) $)) (-15 -2968 ((-112) $ $)) (-15 -2993 ((-112) $ $)) (-15 -2798 ((-1274) $)) (-15 -2798 ((-1274) $ (-567) (-567)))))
+((-2412 (((-112) $ $) NIL)) (-1311 (((-645 $) (-645 $)) 105)) (-2677 (((-567) $) 86)) (-3647 (($) NIL T CONST)) (-3588 (((-3 $ "failed") $) NIL)) (-3362 (((-772) $) 83)) (-3613 (((-1104 |#1|) $ |#1|) 74)) (-4346 (((-112) $) NIL)) (-1904 (((-112) $) 90)) (-4218 (((-772) $) 87)) (-1454 (((-1104 |#1|) $) 63)) (-1365 (($ $ $) NIL (-2811 (|has| |#1| (-370)) (|has| |#1| (-851))))) (-3002 (($ $ $) NIL (-2811 (|has| |#1| (-370)) (|has| |#1| (-851))))) (-1418 (((-2 (|:| |preimage| (-645 |#1|)) (|:| |image| (-645 |#1|))) $) 58)) (-2516 (((-1161) $) NIL)) (-2949 (($ $) 133)) (-3437 (((-1122) $) NIL)) (-3451 (((-1104 |#1|) $) 141 (|has| |#1| (-370)))) (-2795 (((-112) $) 84)) (-2642 ((|#1| $ |#1|) 72)) (-1801 ((|#1| $ |#1|) 135)) (-3104 (((-772) $) 65)) (-1854 (($ (-645 (-645 |#1|))) 120)) (-2365 (((-973) $) 78)) (-1815 (($ (-645 |#1|)) 35)) (-1672 (($ $ $) NIL)) (-3997 (($ $ $) NIL)) (-1338 (($ (-645 (-645 |#1|))) 60)) (-3590 (($ (-645 (-645 |#1|))) 125)) (-3853 (($ (-645 |#1|)) 137)) (-4129 (((-863) $) 119) (($ (-645 (-645 |#1|))) 93) (($ (-645 |#1|)) 94)) (-3357 (((-112) $ $) NIL)) (-1744 (($) 27 T CONST)) (-3004 (((-112) $ $) NIL (-2811 (|has| |#1| (-370)) (|has| |#1| (-851))))) (-2980 (((-112) $ $) NIL (-2811 (|has| |#1| (-370)) (|has| |#1| (-851))))) (-2946 (((-112) $ $) 70)) (-2993 (((-112) $ $) NIL (-2811 (|has| |#1| (-370)) (|has| |#1| (-851))))) (-2968 (((-112) $ $) 92)) (-3069 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ $ $) 36)))
+(((-907 |#1|) (-13 (-905 |#1|) (-10 -8 (-15 -1418 ((-2 (|:| |preimage| (-645 |#1|)) (|:| |image| (-645 |#1|))) $)) (-15 -1338 ($ (-645 (-645 |#1|)))) (-15 -4129 ($ (-645 (-645 |#1|)))) (-15 -4129 ($ (-645 |#1|))) (-15 -3590 ($ (-645 (-645 |#1|)))) (-15 -3104 ((-772) $)) (-15 -1454 ((-1104 |#1|) $)) (-15 -2365 ((-973) $)) (-15 -3362 ((-772) $)) (-15 -4218 ((-772) $)) (-15 -2677 ((-567) $)) (-15 -2795 ((-112) $)) (-15 -1904 ((-112) $)) (-15 -1311 ((-645 $) (-645 $))) (IF (|has| |#1| (-370)) (-15 -3451 ((-1104 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-548)) (-15 -3853 ($ (-645 |#1|))) (IF (|has| |#1| (-370)) (-15 -3853 ($ (-645 |#1|))) |%noBranch|)))) (-1102)) (T -907))
+((-1418 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-645 *3)) (|:| |image| (-645 *3)))) (-5 *1 (-907 *3)) (-4 *3 (-1102)))) (-1338 (*1 *1 *2) (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-1102)) (-5 *1 (-907 *3)))) (-4129 (*1 *1 *2) (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-1102)) (-5 *1 (-907 *3)))) (-4129 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-5 *1 (-907 *3)))) (-3590 (*1 *1 *2) (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-1102)) (-5 *1 (-907 *3)))) (-3104 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-907 *3)) (-4 *3 (-1102)))) (-1454 (*1 *2 *1) (-12 (-5 *2 (-1104 *3)) (-5 *1 (-907 *3)) (-4 *3 (-1102)))) (-2365 (*1 *2 *1) (-12 (-5 *2 (-973)) (-5 *1 (-907 *3)) (-4 *3 (-1102)))) (-3362 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-907 *3)) (-4 *3 (-1102)))) (-4218 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-907 *3)) (-4 *3 (-1102)))) (-2677 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-907 *3)) (-4 *3 (-1102)))) (-2795 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1102)))) (-1904 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1102)))) (-1311 (*1 *2 *2) (-12 (-5 *2 (-645 (-907 *3))) (-5 *1 (-907 *3)) (-4 *3 (-1102)))) (-3451 (*1 *2 *1) (-12 (-5 *2 (-1104 *3)) (-5 *1 (-907 *3)) (-4 *3 (-370)) (-4 *3 (-1102)))) (-3853 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-5 *1 (-907 *3)))))
+(-13 (-905 |#1|) (-10 -8 (-15 -1418 ((-2 (|:| |preimage| (-645 |#1|)) (|:| |image| (-645 |#1|))) $)) (-15 -1338 ($ (-645 (-645 |#1|)))) (-15 -4129 ($ (-645 (-645 |#1|)))) (-15 -4129 ($ (-645 |#1|))) (-15 -3590 ($ (-645 (-645 |#1|)))) (-15 -3104 ((-772) $)) (-15 -1454 ((-1104 |#1|) $)) (-15 -2365 ((-973) $)) (-15 -3362 ((-772) $)) (-15 -4218 ((-772) $)) (-15 -2677 ((-567) $)) (-15 -2795 ((-112) $)) (-15 -1904 ((-112) $)) (-15 -1311 ((-645 $) (-645 $))) (IF (|has| |#1| (-370)) (-15 -3451 ((-1104 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-548)) (-15 -3853 ($ (-645 |#1|))) (IF (|has| |#1| (-370)) (-15 -3853 ($ (-645 |#1|))) |%noBranch|))))
+((-3061 (((-3 (-645 (-1175 |#4|)) "failed") (-645 (-1175 |#4|)) (-1175 |#4|)) 159)) (-1584 ((|#1|) 97)) (-4200 (((-421 (-1175 |#4|)) (-1175 |#4|)) 168)) (-4391 (((-421 (-1175 |#4|)) (-645 |#3|) (-1175 |#4|)) 84)) (-1373 (((-421 (-1175 |#4|)) (-1175 |#4|)) 178)) (-3532 (((-3 (-645 (-1175 |#4|)) "failed") (-645 (-1175 |#4|)) (-1175 |#4|) |#3|) 113)))
+(((-908 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3061 ((-3 (-645 (-1175 |#4|)) "failed") (-645 (-1175 |#4|)) (-1175 |#4|))) (-15 -1373 ((-421 (-1175 |#4|)) (-1175 |#4|))) (-15 -4200 ((-421 (-1175 |#4|)) (-1175 |#4|))) (-15 -1584 (|#1|)) (-15 -3532 ((-3 (-645 (-1175 |#4|)) "failed") (-645 (-1175 |#4|)) (-1175 |#4|) |#3|)) (-15 -4391 ((-421 (-1175 |#4|)) (-645 |#3|) (-1175 |#4|)))) (-911) (-794) (-851) (-951 |#1| |#2| |#3|)) (T -908))
+((-4391 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *7)) (-4 *7 (-851)) (-4 *5 (-911)) (-4 *6 (-794)) (-4 *8 (-951 *5 *6 *7)) (-5 *2 (-421 (-1175 *8))) (-5 *1 (-908 *5 *6 *7 *8)) (-5 *4 (-1175 *8)))) (-3532 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-645 (-1175 *7))) (-5 *3 (-1175 *7)) (-4 *7 (-951 *5 *6 *4)) (-4 *5 (-911)) (-4 *6 (-794)) (-4 *4 (-851)) (-5 *1 (-908 *5 *6 *4 *7)))) (-1584 (*1 *2) (-12 (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-911)) (-5 *1 (-908 *2 *3 *4 *5)) (-4 *5 (-951 *2 *3 *4)))) (-4200 (*1 *2 *3) (-12 (-4 *4 (-911)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-951 *4 *5 *6)) (-5 *2 (-421 (-1175 *7))) (-5 *1 (-908 *4 *5 *6 *7)) (-5 *3 (-1175 *7)))) (-1373 (*1 *2 *3) (-12 (-4 *4 (-911)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-951 *4 *5 *6)) (-5 *2 (-421 (-1175 *7))) (-5 *1 (-908 *4 *5 *6 *7)) (-5 *3 (-1175 *7)))) (-3061 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-645 (-1175 *7))) (-5 *3 (-1175 *7)) (-4 *7 (-951 *4 *5 *6)) (-4 *4 (-911)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-908 *4 *5 *6 *7)))))
+(-10 -7 (-15 -3061 ((-3 (-645 (-1175 |#4|)) "failed") (-645 (-1175 |#4|)) (-1175 |#4|))) (-15 -1373 ((-421 (-1175 |#4|)) (-1175 |#4|))) (-15 -4200 ((-421 (-1175 |#4|)) (-1175 |#4|))) (-15 -1584 (|#1|)) (-15 -3532 ((-3 (-645 (-1175 |#4|)) "failed") (-645 (-1175 |#4|)) (-1175 |#4|) |#3|)) (-15 -4391 ((-421 (-1175 |#4|)) (-645 |#3|) (-1175 |#4|))))
+((-3061 (((-3 (-645 (-1175 |#2|)) "failed") (-645 (-1175 |#2|)) (-1175 |#2|)) 41)) (-1584 ((|#1|) 75)) (-4200 (((-421 (-1175 |#2|)) (-1175 |#2|)) 124)) (-4391 (((-421 (-1175 |#2|)) (-1175 |#2|)) 108)) (-1373 (((-421 (-1175 |#2|)) (-1175 |#2|)) 135)))
+(((-909 |#1| |#2|) (-10 -7 (-15 -3061 ((-3 (-645 (-1175 |#2|)) "failed") (-645 (-1175 |#2|)) (-1175 |#2|))) (-15 -1373 ((-421 (-1175 |#2|)) (-1175 |#2|))) (-15 -4200 ((-421 (-1175 |#2|)) (-1175 |#2|))) (-15 -1584 (|#1|)) (-15 -4391 ((-421 (-1175 |#2|)) (-1175 |#2|)))) (-911) (-1245 |#1|)) (T -909))
+((-4391 (*1 *2 *3) (-12 (-4 *4 (-911)) (-4 *5 (-1245 *4)) (-5 *2 (-421 (-1175 *5))) (-5 *1 (-909 *4 *5)) (-5 *3 (-1175 *5)))) (-1584 (*1 *2) (-12 (-4 *2 (-911)) (-5 *1 (-909 *2 *3)) (-4 *3 (-1245 *2)))) (-4200 (*1 *2 *3) (-12 (-4 *4 (-911)) (-4 *5 (-1245 *4)) (-5 *2 (-421 (-1175 *5))) (-5 *1 (-909 *4 *5)) (-5 *3 (-1175 *5)))) (-1373 (*1 *2 *3) (-12 (-4 *4 (-911)) (-4 *5 (-1245 *4)) (-5 *2 (-421 (-1175 *5))) (-5 *1 (-909 *4 *5)) (-5 *3 (-1175 *5)))) (-3061 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-645 (-1175 *5))) (-5 *3 (-1175 *5)) (-4 *5 (-1245 *4)) (-4 *4 (-911)) (-5 *1 (-909 *4 *5)))))
+(-10 -7 (-15 -3061 ((-3 (-645 (-1175 |#2|)) "failed") (-645 (-1175 |#2|)) (-1175 |#2|))) (-15 -1373 ((-421 (-1175 |#2|)) (-1175 |#2|))) (-15 -4200 ((-421 (-1175 |#2|)) (-1175 |#2|))) (-15 -1584 (|#1|)) (-15 -4391 ((-421 (-1175 |#2|)) (-1175 |#2|))))
+((-3610 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) 42)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) 18)) (-2118 (((-3 $ "failed") $) 36)))
+(((-910 |#1|) (-10 -8 (-15 -2118 ((-3 |#1| "failed") |#1|)) (-15 -3610 ((-3 (-645 (-1175 |#1|)) "failed") (-645 (-1175 |#1|)) (-1175 |#1|))) (-15 -2217 ((-1175 |#1|) (-1175 |#1|) (-1175 |#1|)))) (-911)) (T -910))
+NIL
+(-10 -8 (-15 -2118 ((-3 |#1| "failed") |#1|)) (-15 -3610 ((-3 (-645 (-1175 |#1|)) "failed") (-645 (-1175 |#1|)) (-1175 |#1|))) (-15 -2217 ((-1175 |#1|) (-1175 |#1|) (-1175 |#1|))))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) 47)) (-4287 (($ $) 46)) (-2286 (((-112) $) 44)) (-2376 (((-3 $ "failed") $ $) 20)) (-2029 (((-421 (-1175 $)) (-1175 $)) 66)) (-3659 (($ $) 57)) (-3597 (((-421 $) $) 58)) (-3610 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) 63)) (-3647 (($) 18 T CONST)) (-3588 (((-3 $ "failed") $) 37)) (-3502 (((-112) $) 59)) (-4346 (((-112) $) 35)) (-2751 (($ $ $) 52) (($ (-645 $)) 51)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) 50)) (-2785 (($ $ $) 54) (($ (-645 $)) 53)) (-3551 (((-421 (-1175 $)) (-1175 $)) 64)) (-2016 (((-421 (-1175 $)) (-1175 $)) 65)) (-2717 (((-421 $) $) 56)) (-2400 (((-3 $ "failed") $ $) 48)) (-2616 (((-3 (-1269 $) "failed") (-690 $)) 62 (|has| $ (-145)))) (-4129 (((-863) $) 12) (($ (-567)) 33) (($ $) 49)) (-2118 (((-3 $ "failed") $) 61 (|has| $ (-145)))) (-2746 (((-772)) 32 T CONST)) (-3357 (((-112) $ $) 9)) (-3731 (((-112) $ $) 45)) (-1733 (($) 19 T CONST)) (-1744 (($) 34 T CONST)) (-2946 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27)))
(((-911) (-140)) (T -911))
-((-3750 (*1 *2 *2 *2) (-12 (-5 *2 (-1174 *1)) (-4 *1 (-911)))) (-4226 (*1 *2 *3) (-12 (-4 *1 (-911)) (-5 *2 (-421 (-1174 *1))) (-5 *3 (-1174 *1)))) (-3517 (*1 *2 *3) (-12 (-4 *1 (-911)) (-5 *2 (-421 (-1174 *1))) (-5 *3 (-1174 *1)))) (-2435 (*1 *2 *3) (-12 (-4 *1 (-911)) (-5 *2 (-421 (-1174 *1))) (-5 *3 (-1174 *1)))) (-3815 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-645 (-1174 *1))) (-5 *3 (-1174 *1)) (-4 *1 (-911)))) (-1895 (*1 *2 *3) (|partial| -12 (-5 *3 (-690 *1)) (-4 *1 (-145)) (-4 *1 (-911)) (-5 *2 (-1268 *1)))) (-1903 (*1 *1 *1) (|partial| -12 (-4 *1 (-145)) (-4 *1 (-911)))))
-(-13 (-1222) (-10 -8 (-15 -4226 ((-421 (-1174 $)) (-1174 $))) (-15 -3517 ((-421 (-1174 $)) (-1174 $))) (-15 -2435 ((-421 (-1174 $)) (-1174 $))) (-15 -3750 ((-1174 $) (-1174 $) (-1174 $))) (-15 -3815 ((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $))) (IF (|has| $ (-145)) (PROGN (-15 -1895 ((-3 (-1268 $) "failed") (-690 $))) (-15 -1903 ((-3 $ "failed") $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-291) . T) ((-455) . T) ((-559) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-641 $) . T) ((-718 $) . T) ((-727) . T) ((-1053 $) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1222) . T))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-3419 (((-112) $) NIL)) (-3862 (((-772)) NIL)) (-4293 (($ $ (-923)) NIL (|has| $ (-370))) (($ $) NIL)) (-3400 (((-1191 (-923) (-772)) (-567)) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-3248 (($ $) NIL)) (-2908 (((-421 $) $) NIL)) (-3609 (((-112) $ $) NIL)) (-2375 (((-772)) NIL)) (-2585 (($) NIL T CONST)) (-3753 (((-3 $ "failed") $) NIL)) (-2038 (($ $) NIL)) (-3658 (($ (-1268 $)) NIL)) (-2443 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-2349 (($ $ $) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-1348 (($) NIL)) (-2360 (($ $ $) NIL)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-3431 (($) NIL)) (-2722 (((-112) $) NIL)) (-4225 (($ $) NIL) (($ $ (-772)) NIL)) (-3184 (((-112) $) NIL)) (-4384 (((-834 (-923)) $) NIL) (((-923) $) NIL)) (-1433 (((-112) $) NIL)) (-3559 (($) NIL (|has| $ (-370)))) (-1426 (((-112) $) NIL (|has| $ (-370)))) (-2475 (($ $ (-923)) NIL (|has| $ (-370))) (($ $) NIL)) (-3972 (((-3 $ "failed") $) NIL)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4206 (((-1174 $) $ (-923)) NIL (|has| $ (-370))) (((-1174 $) $) NIL)) (-4249 (((-923) $) NIL)) (-2016 (((-1174 $) $) NIL (|has| $ (-370)))) (-2280 (((-3 (-1174 $) "failed") $ $) NIL (|has| $ (-370))) (((-1174 $) $) NIL (|has| $ (-370)))) (-2286 (($ $ (-1174 $)) NIL (|has| $ (-370)))) (-2740 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) NIL)) (-2672 (($) NIL T CONST)) (-3768 (($ (-923)) NIL)) (-2051 (((-112) $) NIL)) (-3430 (((-1122) $) NIL)) (-1398 (($) NIL (|has| $ (-370)))) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-2774 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1796 (((-645 (-2 (|:| -2706 (-567)) (|:| -3458 (-567))))) NIL)) (-2706 (((-421 $) $) NIL)) (-1953 (((-923)) NIL) (((-834 (-923))) NIL)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2391 (((-3 $ "failed") $ $) NIL)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1990 (((-772) $) NIL)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL)) (-2491 (((-3 (-772) "failed") $ $) NIL) (((-772) $) NIL)) (-1879 (((-134)) NIL)) (-1593 (($ $ (-772)) NIL) (($ $) NIL)) (-3077 (((-923) $) NIL) (((-834 (-923)) $) NIL)) (-3341 (((-1174 $)) NIL)) (-1527 (($) NIL)) (-2661 (($) NIL (|has| $ (-370)))) (-2887 (((-690 $) (-1268 $)) NIL) (((-1268 $) $) NIL)) (-3893 (((-567) $) NIL)) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL)) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL)) (-1903 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-4221 (((-772)) NIL T CONST)) (-1745 (((-112) $ $) NIL)) (-2623 (((-1268 $) (-923)) NIL) (((-1268 $)) NIL)) (-3816 (((-112) $ $) NIL)) (-2012 (((-112) $) NIL)) (-1716 (($) NIL T CONST)) (-1728 (($) NIL T CONST)) (-3253 (($ $ (-772)) NIL (|has| $ (-370))) (($ $) NIL (|has| $ (-370)))) (-2637 (($ $ (-772)) NIL) (($ $) NIL)) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ $) NIL)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL)))
+((-2217 (*1 *2 *2 *2) (-12 (-5 *2 (-1175 *1)) (-4 *1 (-911)))) (-2029 (*1 *2 *3) (-12 (-4 *1 (-911)) (-5 *2 (-421 (-1175 *1))) (-5 *3 (-1175 *1)))) (-2016 (*1 *2 *3) (-12 (-4 *1 (-911)) (-5 *2 (-421 (-1175 *1))) (-5 *3 (-1175 *1)))) (-3551 (*1 *2 *3) (-12 (-4 *1 (-911)) (-5 *2 (-421 (-1175 *1))) (-5 *3 (-1175 *1)))) (-3610 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-645 (-1175 *1))) (-5 *3 (-1175 *1)) (-4 *1 (-911)))) (-2616 (*1 *2 *3) (|partial| -12 (-5 *3 (-690 *1)) (-4 *1 (-145)) (-4 *1 (-911)) (-5 *2 (-1269 *1)))) (-2118 (*1 *1 *1) (|partial| -12 (-4 *1 (-145)) (-4 *1 (-911)))))
+(-13 (-1223) (-10 -8 (-15 -2029 ((-421 (-1175 $)) (-1175 $))) (-15 -2016 ((-421 (-1175 $)) (-1175 $))) (-15 -3551 ((-421 (-1175 $)) (-1175 $))) (-15 -2217 ((-1175 $) (-1175 $) (-1175 $))) (-15 -3610 ((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $))) (IF (|has| $ (-145)) (PROGN (-15 -2616 ((-3 (-1269 $) "failed") (-690 $))) (-15 -2118 ((-3 $ "failed") $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-291) . T) ((-455) . T) ((-559) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-641 $) . T) ((-718 $) . T) ((-727) . T) ((-1053 $) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1223) . T))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-4287 (($ $) NIL)) (-2286 (((-112) $) NIL)) (-2038 (((-112) $) NIL)) (-4355 (((-772)) NIL)) (-4293 (($ $ (-923)) NIL (|has| $ (-370))) (($ $) NIL)) (-3792 (((-1192 (-923) (-772)) (-567)) NIL)) (-2376 (((-3 $ "failed") $ $) NIL)) (-3659 (($ $) NIL)) (-3597 (((-421 $) $) NIL)) (-3696 (((-112) $ $) NIL)) (-2384 (((-772)) NIL)) (-3647 (($) NIL T CONST)) (-3765 (((-3 $ "failed") $) NIL)) (-2051 (($ $) NIL)) (-3111 (($ (-1269 $)) NIL)) (-2998 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-2357 (($ $ $) NIL)) (-3588 (((-3 $ "failed") $) NIL)) (-1359 (($) NIL)) (-2368 (($ $ $) NIL)) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) NIL)) (-2870 (($) NIL)) (-1305 (((-112) $) NIL)) (-3144 (($ $) NIL) (($ $ (-772)) NIL)) (-3502 (((-112) $) NIL)) (-3362 (((-834 (-923)) $) NIL) (((-923) $) NIL)) (-4346 (((-112) $) NIL)) (-2092 (($) NIL (|has| $ (-370)))) (-1897 (((-112) $) NIL (|has| $ (-370)))) (-2724 (($ $ (-923)) NIL (|has| $ (-370))) (($ $) NIL)) (-3067 (((-3 $ "failed") $) NIL)) (-1469 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1914 (((-1175 $) $ (-923)) NIL (|has| $ (-370))) (((-1175 $) $) NIL)) (-3474 (((-923) $) NIL)) (-3038 (((-1175 $) $) NIL (|has| $ (-370)))) (-2030 (((-3 (-1175 $) "failed") $ $) NIL (|has| $ (-370))) (((-1175 $) $) NIL (|has| $ (-370)))) (-1321 (($ $ (-1175 $)) NIL (|has| $ (-370)))) (-2751 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2516 (((-1161) $) NIL)) (-2949 (($ $) NIL)) (-2694 (($) NIL T CONST)) (-3779 (($ (-923)) NIL)) (-2645 (((-112) $) NIL)) (-3437 (((-1122) $) NIL)) (-1399 (($) NIL (|has| $ (-370)))) (-2217 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-2785 (($ $ $) NIL) (($ (-645 $)) NIL)) (-4151 (((-645 (-2 (|:| -2717 (-567)) (|:| -3468 (-567))))) NIL)) (-2717 (((-421 $) $) NIL)) (-2845 (((-923)) NIL) (((-834 (-923))) NIL)) (-2905 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2400 (((-3 $ "failed") $ $) NIL)) (-2372 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2460 (((-772) $) NIL)) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) NIL)) (-1760 (((-3 (-772) "failed") $ $) NIL) (((-772) $) NIL)) (-1412 (((-134)) NIL)) (-1616 (($ $ (-772)) NIL) (($ $) NIL)) (-3104 (((-923) $) NIL) (((-834 (-923)) $) NIL)) (-3169 (((-1175 $)) NIL)) (-4273 (($) NIL)) (-2230 (($) NIL (|has| $ (-370)))) (-3088 (((-690 $) (-1269 $)) NIL) (((-1269 $) $) NIL)) (-3902 (((-567) $) NIL)) (-2616 (((-3 (-1269 $) "failed") (-690 $)) NIL)) (-4129 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL)) (-2118 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-2746 (((-772)) NIL T CONST)) (-3357 (((-112) $ $) NIL)) (-2144 (((-1269 $) (-923)) NIL) (((-1269 $)) NIL)) (-3731 (((-112) $ $) NIL)) (-2618 (((-112) $) NIL)) (-1733 (($) NIL T CONST)) (-1744 (($) NIL T CONST)) (-2963 (($ $ (-772)) NIL (|has| $ (-370))) (($ $) NIL (|has| $ (-370)))) (-2647 (($ $ (-772)) NIL) (($ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3069 (($ $ $) NIL)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL)))
(((-912 |#1|) (-13 (-351) (-330 $) (-615 (-567))) (-923)) (T -912))
NIL
(-13 (-351) (-330 $) (-615 (-567)))
-((-2837 (((-3 (-2 (|:| -4384 (-772)) (|:| -2614 |#5|)) "failed") (-338 |#2| |#3| |#4| |#5|)) 77)) (-4220 (((-112) (-338 |#2| |#3| |#4| |#5|)) 17)) (-4384 (((-3 (-772) "failed") (-338 |#2| |#3| |#4| |#5|)) 15)))
-(((-913 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4384 ((-3 (-772) "failed") (-338 |#2| |#3| |#4| |#5|))) (-15 -4220 ((-112) (-338 |#2| |#3| |#4| |#5|))) (-15 -2837 ((-3 (-2 (|:| -4384 (-772)) (|:| -2614 |#5|)) "failed") (-338 |#2| |#3| |#4| |#5|)))) (-13 (-559) (-1040 (-567))) (-433 |#1|) (-1244 |#2|) (-1244 (-410 |#3|)) (-344 |#2| |#3| |#4|)) (T -913))
-((-2837 (*1 *2 *3) (|partial| -12 (-5 *3 (-338 *5 *6 *7 *8)) (-4 *5 (-433 *4)) (-4 *6 (-1244 *5)) (-4 *7 (-1244 (-410 *6))) (-4 *8 (-344 *5 *6 *7)) (-4 *4 (-13 (-559) (-1040 (-567)))) (-5 *2 (-2 (|:| -4384 (-772)) (|:| -2614 *8))) (-5 *1 (-913 *4 *5 *6 *7 *8)))) (-4220 (*1 *2 *3) (-12 (-5 *3 (-338 *5 *6 *7 *8)) (-4 *5 (-433 *4)) (-4 *6 (-1244 *5)) (-4 *7 (-1244 (-410 *6))) (-4 *8 (-344 *5 *6 *7)) (-4 *4 (-13 (-559) (-1040 (-567)))) (-5 *2 (-112)) (-5 *1 (-913 *4 *5 *6 *7 *8)))) (-4384 (*1 *2 *3) (|partial| -12 (-5 *3 (-338 *5 *6 *7 *8)) (-4 *5 (-433 *4)) (-4 *6 (-1244 *5)) (-4 *7 (-1244 (-410 *6))) (-4 *8 (-344 *5 *6 *7)) (-4 *4 (-13 (-559) (-1040 (-567)))) (-5 *2 (-772)) (-5 *1 (-913 *4 *5 *6 *7 *8)))))
-(-10 -7 (-15 -4384 ((-3 (-772) "failed") (-338 |#2| |#3| |#4| |#5|))) (-15 -4220 ((-112) (-338 |#2| |#3| |#4| |#5|))) (-15 -2837 ((-3 (-2 (|:| -4384 (-772)) (|:| -2614 |#5|)) "failed") (-338 |#2| |#3| |#4| |#5|))))
-((-2837 (((-3 (-2 (|:| -4384 (-772)) (|:| -2614 |#3|)) "failed") (-338 (-410 (-567)) |#1| |#2| |#3|)) 64)) (-4220 (((-112) (-338 (-410 (-567)) |#1| |#2| |#3|)) 16)) (-4384 (((-3 (-772) "failed") (-338 (-410 (-567)) |#1| |#2| |#3|)) 14)))
-(((-914 |#1| |#2| |#3|) (-10 -7 (-15 -4384 ((-3 (-772) "failed") (-338 (-410 (-567)) |#1| |#2| |#3|))) (-15 -4220 ((-112) (-338 (-410 (-567)) |#1| |#2| |#3|))) (-15 -2837 ((-3 (-2 (|:| -4384 (-772)) (|:| -2614 |#3|)) "failed") (-338 (-410 (-567)) |#1| |#2| |#3|)))) (-1244 (-410 (-567))) (-1244 (-410 |#1|)) (-344 (-410 (-567)) |#1| |#2|)) (T -914))
-((-2837 (*1 *2 *3) (|partial| -12 (-5 *3 (-338 (-410 (-567)) *4 *5 *6)) (-4 *4 (-1244 (-410 (-567)))) (-4 *5 (-1244 (-410 *4))) (-4 *6 (-344 (-410 (-567)) *4 *5)) (-5 *2 (-2 (|:| -4384 (-772)) (|:| -2614 *6))) (-5 *1 (-914 *4 *5 *6)))) (-4220 (*1 *2 *3) (-12 (-5 *3 (-338 (-410 (-567)) *4 *5 *6)) (-4 *4 (-1244 (-410 (-567)))) (-4 *5 (-1244 (-410 *4))) (-4 *6 (-344 (-410 (-567)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-914 *4 *5 *6)))) (-4384 (*1 *2 *3) (|partial| -12 (-5 *3 (-338 (-410 (-567)) *4 *5 *6)) (-4 *4 (-1244 (-410 (-567)))) (-4 *5 (-1244 (-410 *4))) (-4 *6 (-344 (-410 (-567)) *4 *5)) (-5 *2 (-772)) (-5 *1 (-914 *4 *5 *6)))))
-(-10 -7 (-15 -4384 ((-3 (-772) "failed") (-338 (-410 (-567)) |#1| |#2| |#3|))) (-15 -4220 ((-112) (-338 (-410 (-567)) |#1| |#2| |#3|))) (-15 -2837 ((-3 (-2 (|:| -4384 (-772)) (|:| -2614 |#3|)) "failed") (-338 (-410 (-567)) |#1| |#2| |#3|))))
-((-3510 ((|#2| |#2|) 26)) (-3759 (((-567) (-645 (-2 (|:| |den| (-567)) (|:| |gcdnum| (-567))))) 15)) (-3704 (((-923) (-567)) 38)) (-3078 (((-567) |#2|) 45)) (-4102 (((-567) |#2|) 21) (((-2 (|:| |den| (-567)) (|:| |gcdnum| (-567))) |#1|) 20)))
-(((-915 |#1| |#2|) (-10 -7 (-15 -3704 ((-923) (-567))) (-15 -4102 ((-2 (|:| |den| (-567)) (|:| |gcdnum| (-567))) |#1|)) (-15 -4102 ((-567) |#2|)) (-15 -3759 ((-567) (-645 (-2 (|:| |den| (-567)) (|:| |gcdnum| (-567)))))) (-15 -3078 ((-567) |#2|)) (-15 -3510 (|#2| |#2|))) (-1244 (-410 (-567))) (-1244 (-410 |#1|))) (T -915))
-((-3510 (*1 *2 *2) (-12 (-4 *3 (-1244 (-410 (-567)))) (-5 *1 (-915 *3 *2)) (-4 *2 (-1244 (-410 *3))))) (-3078 (*1 *2 *3) (-12 (-4 *4 (-1244 (-410 *2))) (-5 *2 (-567)) (-5 *1 (-915 *4 *3)) (-4 *3 (-1244 (-410 *4))))) (-3759 (*1 *2 *3) (-12 (-5 *3 (-645 (-2 (|:| |den| (-567)) (|:| |gcdnum| (-567))))) (-4 *4 (-1244 (-410 *2))) (-5 *2 (-567)) (-5 *1 (-915 *4 *5)) (-4 *5 (-1244 (-410 *4))))) (-4102 (*1 *2 *3) (-12 (-4 *4 (-1244 (-410 *2))) (-5 *2 (-567)) (-5 *1 (-915 *4 *3)) (-4 *3 (-1244 (-410 *4))))) (-4102 (*1 *2 *3) (-12 (-4 *3 (-1244 (-410 (-567)))) (-5 *2 (-2 (|:| |den| (-567)) (|:| |gcdnum| (-567)))) (-5 *1 (-915 *3 *4)) (-4 *4 (-1244 (-410 *3))))) (-3704 (*1 *2 *3) (-12 (-5 *3 (-567)) (-4 *4 (-1244 (-410 *3))) (-5 *2 (-923)) (-5 *1 (-915 *4 *5)) (-4 *5 (-1244 (-410 *4))))))
-(-10 -7 (-15 -3704 ((-923) (-567))) (-15 -4102 ((-2 (|:| |den| (-567)) (|:| |gcdnum| (-567))) |#1|)) (-15 -4102 ((-567) |#2|)) (-15 -3759 ((-567) (-645 (-2 (|:| |den| (-567)) (|:| |gcdnum| (-567)))))) (-15 -3078 ((-567) |#2|)) (-15 -3510 (|#2| |#2|)))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3093 ((|#1| $) 100)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-3248 (($ $) NIL)) (-2908 (((-421 $) $) NIL)) (-3609 (((-112) $ $) NIL)) (-2585 (($) NIL T CONST)) (-2349 (($ $ $) NIL)) (-2109 (((-3 $ "failed") $) 94)) (-2360 (($ $ $) NIL)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-3184 (((-112) $) NIL)) (-2293 (($ |#1| (-421 |#1|)) 92)) (-3915 (((-1174 |#1|) |#1| |#1|) 53)) (-1774 (($ $) 61)) (-1433 (((-112) $) NIL)) (-2052 (((-567) $) 97)) (-1551 (($ $ (-567)) 99)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2740 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) NIL)) (-3430 (((-1122) $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-2774 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3210 ((|#1| $) 96)) (-4301 (((-421 |#1|) $) 95)) (-2706 (((-421 $) $) NIL)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2391 (((-3 $ "failed") $ $) 93)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1990 (((-772) $) NIL)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL)) (-3805 (($ $) 50)) (-4132 (((-863) $) 124) (($ (-567)) 73) (($ $) NIL) (($ (-410 (-567))) NIL) (($ |#1|) 41) (((-410 |#1|) $) 78) (($ (-410 (-421 |#1|))) 86)) (-4221 (((-772)) 71 T CONST)) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL)) (-1716 (($) 26 T CONST)) (-1728 (($) 15 T CONST)) (-2936 (((-112) $ $) 87)) (-3060 (($ $ $) NIL)) (-3045 (($ $) 108) (($ $ $) NIL)) (-3033 (($ $ $) 49)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 110) (($ $ $) 48) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ |#1| $) 109) (($ $ |#1|) NIL)))
-(((-916 |#1|) (-13 (-365) (-38 |#1|) (-10 -8 (-15 -4132 ((-410 |#1|) $)) (-15 -4132 ($ (-410 (-421 |#1|)))) (-15 -3805 ($ $)) (-15 -4301 ((-421 |#1|) $)) (-15 -3210 (|#1| $)) (-15 -1551 ($ $ (-567))) (-15 -2052 ((-567) $)) (-15 -3915 ((-1174 |#1|) |#1| |#1|)) (-15 -1774 ($ $)) (-15 -2293 ($ |#1| (-421 |#1|))) (-15 -3093 (|#1| $)))) (-308)) (T -916))
-((-4132 (*1 *2 *1) (-12 (-5 *2 (-410 *3)) (-5 *1 (-916 *3)) (-4 *3 (-308)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-410 (-421 *3))) (-4 *3 (-308)) (-5 *1 (-916 *3)))) (-3805 (*1 *1 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-308)))) (-4301 (*1 *2 *1) (-12 (-5 *2 (-421 *3)) (-5 *1 (-916 *3)) (-4 *3 (-308)))) (-3210 (*1 *2 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-308)))) (-1551 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-916 *3)) (-4 *3 (-308)))) (-2052 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-916 *3)) (-4 *3 (-308)))) (-3915 (*1 *2 *3 *3) (-12 (-5 *2 (-1174 *3)) (-5 *1 (-916 *3)) (-4 *3 (-308)))) (-1774 (*1 *1 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-308)))) (-2293 (*1 *1 *2 *3) (-12 (-5 *3 (-421 *2)) (-4 *2 (-308)) (-5 *1 (-916 *2)))) (-3093 (*1 *2 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-308)))))
-(-13 (-365) (-38 |#1|) (-10 -8 (-15 -4132 ((-410 |#1|) $)) (-15 -4132 ($ (-410 (-421 |#1|)))) (-15 -3805 ($ $)) (-15 -4301 ((-421 |#1|) $)) (-15 -3210 (|#1| $)) (-15 -1551 ($ $ (-567))) (-15 -2052 ((-567) $)) (-15 -3915 ((-1174 |#1|) |#1| |#1|)) (-15 -1774 ($ $)) (-15 -2293 ($ |#1| (-421 |#1|))) (-15 -3093 (|#1| $))))
-((-2293 (((-52) (-954 |#1|) (-421 (-954 |#1|)) (-1178)) 17) (((-52) (-410 (-954 |#1|)) (-1178)) 18)))
-(((-917 |#1|) (-10 -7 (-15 -2293 ((-52) (-410 (-954 |#1|)) (-1178))) (-15 -2293 ((-52) (-954 |#1|) (-421 (-954 |#1|)) (-1178)))) (-13 (-308) (-147))) (T -917))
-((-2293 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-421 (-954 *6))) (-5 *5 (-1178)) (-5 *3 (-954 *6)) (-4 *6 (-13 (-308) (-147))) (-5 *2 (-52)) (-5 *1 (-917 *6)))) (-2293 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-1178)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-52)) (-5 *1 (-917 *5)))))
-(-10 -7 (-15 -2293 ((-52) (-410 (-954 |#1|)) (-1178))) (-15 -2293 ((-52) (-954 |#1|) (-421 (-954 |#1|)) (-1178))))
-((-2830 ((|#4| (-645 |#4|)) 149) (((-1174 |#4|) (-1174 |#4|) (-1174 |#4|)) 86) ((|#4| |#4| |#4|) 148)) (-2774 (((-1174 |#4|) (-645 (-1174 |#4|))) 142) (((-1174 |#4|) (-1174 |#4|) (-1174 |#4|)) 63) ((|#4| (-645 |#4|)) 71) ((|#4| |#4| |#4|) 109)))
-(((-918 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2774 (|#4| |#4| |#4|)) (-15 -2774 (|#4| (-645 |#4|))) (-15 -2774 ((-1174 |#4|) (-1174 |#4|) (-1174 |#4|))) (-15 -2774 ((-1174 |#4|) (-645 (-1174 |#4|)))) (-15 -2830 (|#4| |#4| |#4|)) (-15 -2830 ((-1174 |#4|) (-1174 |#4|) (-1174 |#4|))) (-15 -2830 (|#4| (-645 |#4|)))) (-794) (-851) (-308) (-951 |#3| |#1| |#2|)) (T -918))
-((-2830 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-951 *6 *4 *5)) (-5 *1 (-918 *4 *5 *6 *2)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-308)))) (-2830 (*1 *2 *2 *2) (-12 (-5 *2 (-1174 *6)) (-4 *6 (-951 *5 *3 *4)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *5 (-308)) (-5 *1 (-918 *3 *4 *5 *6)))) (-2830 (*1 *2 *2 *2) (-12 (-4 *3 (-794)) (-4 *4 (-851)) (-4 *5 (-308)) (-5 *1 (-918 *3 *4 *5 *2)) (-4 *2 (-951 *5 *3 *4)))) (-2774 (*1 *2 *3) (-12 (-5 *3 (-645 (-1174 *7))) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-308)) (-5 *2 (-1174 *7)) (-5 *1 (-918 *4 *5 *6 *7)) (-4 *7 (-951 *6 *4 *5)))) (-2774 (*1 *2 *2 *2) (-12 (-5 *2 (-1174 *6)) (-4 *6 (-951 *5 *3 *4)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *5 (-308)) (-5 *1 (-918 *3 *4 *5 *6)))) (-2774 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-951 *6 *4 *5)) (-5 *1 (-918 *4 *5 *6 *2)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-308)))) (-2774 (*1 *2 *2 *2) (-12 (-4 *3 (-794)) (-4 *4 (-851)) (-4 *5 (-308)) (-5 *1 (-918 *3 *4 *5 *2)) (-4 *2 (-951 *5 *3 *4)))))
-(-10 -7 (-15 -2774 (|#4| |#4| |#4|)) (-15 -2774 (|#4| (-645 |#4|))) (-15 -2774 ((-1174 |#4|) (-1174 |#4|) (-1174 |#4|))) (-15 -2774 ((-1174 |#4|) (-645 (-1174 |#4|)))) (-15 -2830 (|#4| |#4| |#4|)) (-15 -2830 ((-1174 |#4|) (-1174 |#4|) (-1174 |#4|))) (-15 -2830 (|#4| (-645 |#4|))))
-((-4067 (((-906 (-567)) (-973)) 38) (((-906 (-567)) (-645 (-567))) 35)) (-1695 (((-906 (-567)) (-645 (-567))) 70) (((-906 (-567)) (-923)) 71)) (-3925 (((-906 (-567))) 39)) (-3529 (((-906 (-567))) 55) (((-906 (-567)) (-645 (-567))) 54)) (-3223 (((-906 (-567))) 53) (((-906 (-567)) (-645 (-567))) 52)) (-2738 (((-906 (-567))) 51) (((-906 (-567)) (-645 (-567))) 50)) (-2156 (((-906 (-567))) 49) (((-906 (-567)) (-645 (-567))) 48)) (-3491 (((-906 (-567))) 47) (((-906 (-567)) (-645 (-567))) 46)) (-2817 (((-906 (-567))) 57) (((-906 (-567)) (-645 (-567))) 56)) (-3208 (((-906 (-567)) (-645 (-567))) 75) (((-906 (-567)) (-923)) 77)) (-2144 (((-906 (-567)) (-645 (-567))) 72) (((-906 (-567)) (-923)) 73)) (-4246 (((-906 (-567)) (-645 (-567))) 68) (((-906 (-567)) (-923)) 69)) (-2534 (((-906 (-567)) (-645 (-923))) 60)))
-(((-919) (-10 -7 (-15 -1695 ((-906 (-567)) (-923))) (-15 -1695 ((-906 (-567)) (-645 (-567)))) (-15 -4246 ((-906 (-567)) (-923))) (-15 -4246 ((-906 (-567)) (-645 (-567)))) (-15 -2534 ((-906 (-567)) (-645 (-923)))) (-15 -2144 ((-906 (-567)) (-923))) (-15 -2144 ((-906 (-567)) (-645 (-567)))) (-15 -3208 ((-906 (-567)) (-923))) (-15 -3208 ((-906 (-567)) (-645 (-567)))) (-15 -3491 ((-906 (-567)) (-645 (-567)))) (-15 -3491 ((-906 (-567)))) (-15 -2156 ((-906 (-567)) (-645 (-567)))) (-15 -2156 ((-906 (-567)))) (-15 -2738 ((-906 (-567)) (-645 (-567)))) (-15 -2738 ((-906 (-567)))) (-15 -3223 ((-906 (-567)) (-645 (-567)))) (-15 -3223 ((-906 (-567)))) (-15 -3529 ((-906 (-567)) (-645 (-567)))) (-15 -3529 ((-906 (-567)))) (-15 -2817 ((-906 (-567)) (-645 (-567)))) (-15 -2817 ((-906 (-567)))) (-15 -3925 ((-906 (-567)))) (-15 -4067 ((-906 (-567)) (-645 (-567)))) (-15 -4067 ((-906 (-567)) (-973))))) (T -919))
-((-4067 (*1 *2 *3) (-12 (-5 *3 (-973)) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-4067 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-3925 (*1 *2) (-12 (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-2817 (*1 *2) (-12 (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-2817 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-3529 (*1 *2) (-12 (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-3529 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-3223 (*1 *2) (-12 (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-3223 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-2738 (*1 *2) (-12 (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-2738 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-2156 (*1 *2) (-12 (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-2156 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-3491 (*1 *2) (-12 (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-3491 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-3208 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-3208 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-2144 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-2144 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-2534 (*1 *2 *3) (-12 (-5 *3 (-645 (-923))) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-4246 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-4246 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-1695 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-1695 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-906 (-567))) (-5 *1 (-919)))))
-(-10 -7 (-15 -1695 ((-906 (-567)) (-923))) (-15 -1695 ((-906 (-567)) (-645 (-567)))) (-15 -4246 ((-906 (-567)) (-923))) (-15 -4246 ((-906 (-567)) (-645 (-567)))) (-15 -2534 ((-906 (-567)) (-645 (-923)))) (-15 -2144 ((-906 (-567)) (-923))) (-15 -2144 ((-906 (-567)) (-645 (-567)))) (-15 -3208 ((-906 (-567)) (-923))) (-15 -3208 ((-906 (-567)) (-645 (-567)))) (-15 -3491 ((-906 (-567)) (-645 (-567)))) (-15 -3491 ((-906 (-567)))) (-15 -2156 ((-906 (-567)) (-645 (-567)))) (-15 -2156 ((-906 (-567)))) (-15 -2738 ((-906 (-567)) (-645 (-567)))) (-15 -2738 ((-906 (-567)))) (-15 -3223 ((-906 (-567)) (-645 (-567)))) (-15 -3223 ((-906 (-567)))) (-15 -3529 ((-906 (-567)) (-645 (-567)))) (-15 -3529 ((-906 (-567)))) (-15 -2817 ((-906 (-567)) (-645 (-567)))) (-15 -2817 ((-906 (-567)))) (-15 -3925 ((-906 (-567)))) (-15 -4067 ((-906 (-567)) (-645 (-567)))) (-15 -4067 ((-906 (-567)) (-973))))
-((-3745 (((-645 (-954 |#1|)) (-645 (-954 |#1|)) (-645 (-1178))) 14)) (-3312 (((-645 (-954 |#1|)) (-645 (-954 |#1|)) (-645 (-1178))) 13)))
-(((-920 |#1|) (-10 -7 (-15 -3312 ((-645 (-954 |#1|)) (-645 (-954 |#1|)) (-645 (-1178)))) (-15 -3745 ((-645 (-954 |#1|)) (-645 (-954 |#1|)) (-645 (-1178))))) (-455)) (T -920))
-((-3745 (*1 *2 *2 *3) (-12 (-5 *2 (-645 (-954 *4))) (-5 *3 (-645 (-1178))) (-4 *4 (-455)) (-5 *1 (-920 *4)))) (-3312 (*1 *2 *2 *3) (-12 (-5 *2 (-645 (-954 *4))) (-5 *3 (-645 (-1178))) (-4 *4 (-455)) (-5 *1 (-920 *4)))))
-(-10 -7 (-15 -3312 ((-645 (-954 |#1|)) (-645 (-954 |#1|)) (-645 (-1178)))) (-15 -3745 ((-645 (-954 |#1|)) (-645 (-954 |#1|)) (-645 (-1178)))))
-((-4132 (((-317 |#1|) (-480)) 16)))
-(((-921 |#1|) (-10 -7 (-15 -4132 ((-317 |#1|) (-480)))) (-559)) (T -921))
-((-4132 (*1 *2 *3) (-12 (-5 *3 (-480)) (-5 *2 (-317 *4)) (-5 *1 (-921 *4)) (-4 *4 (-559)))))
-(-10 -7 (-15 -4132 ((-317 |#1|) (-480))))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 47)) (-4381 (($ $) 46)) (-3949 (((-112) $) 44)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-2109 (((-3 $ "failed") $) 37)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) 57)) (-1433 (((-112) $) 35)) (-2740 (($ $ $) 52) (($ (-645 $)) 51)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 50)) (-2774 (($ $ $) 54) (($ (-645 $)) 53)) (-2391 (((-3 $ "failed") $ $) 48)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ $) 49)) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-3816 (((-112) $ $) 45)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27)))
+((-4378 (((-3 (-2 (|:| -3362 (-772)) (|:| -2624 |#5|)) "failed") (-338 |#2| |#3| |#4| |#5|)) 77)) (-2649 (((-112) (-338 |#2| |#3| |#4| |#5|)) 17)) (-3362 (((-3 (-772) "failed") (-338 |#2| |#3| |#4| |#5|)) 15)))
+(((-913 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3362 ((-3 (-772) "failed") (-338 |#2| |#3| |#4| |#5|))) (-15 -2649 ((-112) (-338 |#2| |#3| |#4| |#5|))) (-15 -4378 ((-3 (-2 (|:| -3362 (-772)) (|:| -2624 |#5|)) "failed") (-338 |#2| |#3| |#4| |#5|)))) (-13 (-559) (-1040 (-567))) (-433 |#1|) (-1245 |#2|) (-1245 (-410 |#3|)) (-344 |#2| |#3| |#4|)) (T -913))
+((-4378 (*1 *2 *3) (|partial| -12 (-5 *3 (-338 *5 *6 *7 *8)) (-4 *5 (-433 *4)) (-4 *6 (-1245 *5)) (-4 *7 (-1245 (-410 *6))) (-4 *8 (-344 *5 *6 *7)) (-4 *4 (-13 (-559) (-1040 (-567)))) (-5 *2 (-2 (|:| -3362 (-772)) (|:| -2624 *8))) (-5 *1 (-913 *4 *5 *6 *7 *8)))) (-2649 (*1 *2 *3) (-12 (-5 *3 (-338 *5 *6 *7 *8)) (-4 *5 (-433 *4)) (-4 *6 (-1245 *5)) (-4 *7 (-1245 (-410 *6))) (-4 *8 (-344 *5 *6 *7)) (-4 *4 (-13 (-559) (-1040 (-567)))) (-5 *2 (-112)) (-5 *1 (-913 *4 *5 *6 *7 *8)))) (-3362 (*1 *2 *3) (|partial| -12 (-5 *3 (-338 *5 *6 *7 *8)) (-4 *5 (-433 *4)) (-4 *6 (-1245 *5)) (-4 *7 (-1245 (-410 *6))) (-4 *8 (-344 *5 *6 *7)) (-4 *4 (-13 (-559) (-1040 (-567)))) (-5 *2 (-772)) (-5 *1 (-913 *4 *5 *6 *7 *8)))))
+(-10 -7 (-15 -3362 ((-3 (-772) "failed") (-338 |#2| |#3| |#4| |#5|))) (-15 -2649 ((-112) (-338 |#2| |#3| |#4| |#5|))) (-15 -4378 ((-3 (-2 (|:| -3362 (-772)) (|:| -2624 |#5|)) "failed") (-338 |#2| |#3| |#4| |#5|))))
+((-4378 (((-3 (-2 (|:| -3362 (-772)) (|:| -2624 |#3|)) "failed") (-338 (-410 (-567)) |#1| |#2| |#3|)) 64)) (-2649 (((-112) (-338 (-410 (-567)) |#1| |#2| |#3|)) 16)) (-3362 (((-3 (-772) "failed") (-338 (-410 (-567)) |#1| |#2| |#3|)) 14)))
+(((-914 |#1| |#2| |#3|) (-10 -7 (-15 -3362 ((-3 (-772) "failed") (-338 (-410 (-567)) |#1| |#2| |#3|))) (-15 -2649 ((-112) (-338 (-410 (-567)) |#1| |#2| |#3|))) (-15 -4378 ((-3 (-2 (|:| -3362 (-772)) (|:| -2624 |#3|)) "failed") (-338 (-410 (-567)) |#1| |#2| |#3|)))) (-1245 (-410 (-567))) (-1245 (-410 |#1|)) (-344 (-410 (-567)) |#1| |#2|)) (T -914))
+((-4378 (*1 *2 *3) (|partial| -12 (-5 *3 (-338 (-410 (-567)) *4 *5 *6)) (-4 *4 (-1245 (-410 (-567)))) (-4 *5 (-1245 (-410 *4))) (-4 *6 (-344 (-410 (-567)) *4 *5)) (-5 *2 (-2 (|:| -3362 (-772)) (|:| -2624 *6))) (-5 *1 (-914 *4 *5 *6)))) (-2649 (*1 *2 *3) (-12 (-5 *3 (-338 (-410 (-567)) *4 *5 *6)) (-4 *4 (-1245 (-410 (-567)))) (-4 *5 (-1245 (-410 *4))) (-4 *6 (-344 (-410 (-567)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-914 *4 *5 *6)))) (-3362 (*1 *2 *3) (|partial| -12 (-5 *3 (-338 (-410 (-567)) *4 *5 *6)) (-4 *4 (-1245 (-410 (-567)))) (-4 *5 (-1245 (-410 *4))) (-4 *6 (-344 (-410 (-567)) *4 *5)) (-5 *2 (-772)) (-5 *1 (-914 *4 *5 *6)))))
+(-10 -7 (-15 -3362 ((-3 (-772) "failed") (-338 (-410 (-567)) |#1| |#2| |#3|))) (-15 -2649 ((-112) (-338 (-410 (-567)) |#1| |#2| |#3|))) (-15 -4378 ((-3 (-2 (|:| -3362 (-772)) (|:| -2624 |#3|)) "failed") (-338 (-410 (-567)) |#1| |#2| |#3|))))
+((-2540 ((|#2| |#2|) 26)) (-1742 (((-567) (-645 (-2 (|:| |den| (-567)) (|:| |gcdnum| (-567))))) 15)) (-4054 (((-923) (-567)) 38)) (-3200 (((-567) |#2|) 45)) (-1876 (((-567) |#2|) 21) (((-2 (|:| |den| (-567)) (|:| |gcdnum| (-567))) |#1|) 20)))
+(((-915 |#1| |#2|) (-10 -7 (-15 -4054 ((-923) (-567))) (-15 -1876 ((-2 (|:| |den| (-567)) (|:| |gcdnum| (-567))) |#1|)) (-15 -1876 ((-567) |#2|)) (-15 -1742 ((-567) (-645 (-2 (|:| |den| (-567)) (|:| |gcdnum| (-567)))))) (-15 -3200 ((-567) |#2|)) (-15 -2540 (|#2| |#2|))) (-1245 (-410 (-567))) (-1245 (-410 |#1|))) (T -915))
+((-2540 (*1 *2 *2) (-12 (-4 *3 (-1245 (-410 (-567)))) (-5 *1 (-915 *3 *2)) (-4 *2 (-1245 (-410 *3))))) (-3200 (*1 *2 *3) (-12 (-4 *4 (-1245 (-410 *2))) (-5 *2 (-567)) (-5 *1 (-915 *4 *3)) (-4 *3 (-1245 (-410 *4))))) (-1742 (*1 *2 *3) (-12 (-5 *3 (-645 (-2 (|:| |den| (-567)) (|:| |gcdnum| (-567))))) (-4 *4 (-1245 (-410 *2))) (-5 *2 (-567)) (-5 *1 (-915 *4 *5)) (-4 *5 (-1245 (-410 *4))))) (-1876 (*1 *2 *3) (-12 (-4 *4 (-1245 (-410 *2))) (-5 *2 (-567)) (-5 *1 (-915 *4 *3)) (-4 *3 (-1245 (-410 *4))))) (-1876 (*1 *2 *3) (-12 (-4 *3 (-1245 (-410 (-567)))) (-5 *2 (-2 (|:| |den| (-567)) (|:| |gcdnum| (-567)))) (-5 *1 (-915 *3 *4)) (-4 *4 (-1245 (-410 *3))))) (-4054 (*1 *2 *3) (-12 (-5 *3 (-567)) (-4 *4 (-1245 (-410 *3))) (-5 *2 (-923)) (-5 *1 (-915 *4 *5)) (-4 *5 (-1245 (-410 *4))))))
+(-10 -7 (-15 -4054 ((-923) (-567))) (-15 -1876 ((-2 (|:| |den| (-567)) (|:| |gcdnum| (-567))) |#1|)) (-15 -1876 ((-567) |#2|)) (-15 -1742 ((-567) (-645 (-2 (|:| |den| (-567)) (|:| |gcdnum| (-567)))))) (-15 -3200 ((-567) |#2|)) (-15 -2540 (|#2| |#2|)))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-4014 ((|#1| $) 100)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-4287 (($ $) NIL)) (-2286 (((-112) $) NIL)) (-2376 (((-3 $ "failed") $ $) NIL)) (-3659 (($ $) NIL)) (-3597 (((-421 $) $) NIL)) (-3696 (((-112) $ $) NIL)) (-3647 (($) NIL T CONST)) (-2357 (($ $ $) NIL)) (-3588 (((-3 $ "failed") $) 94)) (-2368 (($ $ $) NIL)) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) NIL)) (-3502 (((-112) $) NIL)) (-2862 (($ |#1| (-421 |#1|)) 92)) (-2886 (((-1175 |#1|) |#1| |#1|) 53)) (-1336 (($ $) 61)) (-4346 (((-112) $) NIL)) (-2741 (((-567) $) 97)) (-3494 (($ $ (-567)) 99)) (-1469 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2751 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2516 (((-1161) $) NIL)) (-2949 (($ $) NIL)) (-3437 (((-1122) $) NIL)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-2785 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3982 ((|#1| $) 96)) (-4191 (((-421 |#1|) $) 95)) (-2717 (((-421 $) $) NIL)) (-2905 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2400 (((-3 $ "failed") $ $) 93)) (-2372 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2460 (((-772) $) NIL)) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) NIL)) (-4268 (($ $) 50)) (-4129 (((-863) $) 124) (($ (-567)) 73) (($ $) NIL) (($ (-410 (-567))) NIL) (($ |#1|) 41) (((-410 |#1|) $) 78) (($ (-410 (-421 |#1|))) 86)) (-2746 (((-772)) 71 T CONST)) (-3357 (((-112) $ $) NIL)) (-3731 (((-112) $ $) NIL)) (-1733 (($) 26 T CONST)) (-1744 (($) 15 T CONST)) (-2946 (((-112) $ $) 87)) (-3069 (($ $ $) NIL)) (-3053 (($ $) 108) (($ $ $) NIL)) (-3041 (($ $ $) 49)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 110) (($ $ $) 48) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ |#1| $) 109) (($ $ |#1|) NIL)))
+(((-916 |#1|) (-13 (-365) (-38 |#1|) (-10 -8 (-15 -4129 ((-410 |#1|) $)) (-15 -4129 ($ (-410 (-421 |#1|)))) (-15 -4268 ($ $)) (-15 -4191 ((-421 |#1|) $)) (-15 -3982 (|#1| $)) (-15 -3494 ($ $ (-567))) (-15 -2741 ((-567) $)) (-15 -2886 ((-1175 |#1|) |#1| |#1|)) (-15 -1336 ($ $)) (-15 -2862 ($ |#1| (-421 |#1|))) (-15 -4014 (|#1| $)))) (-308)) (T -916))
+((-4129 (*1 *2 *1) (-12 (-5 *2 (-410 *3)) (-5 *1 (-916 *3)) (-4 *3 (-308)))) (-4129 (*1 *1 *2) (-12 (-5 *2 (-410 (-421 *3))) (-4 *3 (-308)) (-5 *1 (-916 *3)))) (-4268 (*1 *1 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-308)))) (-4191 (*1 *2 *1) (-12 (-5 *2 (-421 *3)) (-5 *1 (-916 *3)) (-4 *3 (-308)))) (-3982 (*1 *2 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-308)))) (-3494 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-916 *3)) (-4 *3 (-308)))) (-2741 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-916 *3)) (-4 *3 (-308)))) (-2886 (*1 *2 *3 *3) (-12 (-5 *2 (-1175 *3)) (-5 *1 (-916 *3)) (-4 *3 (-308)))) (-1336 (*1 *1 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-308)))) (-2862 (*1 *1 *2 *3) (-12 (-5 *3 (-421 *2)) (-4 *2 (-308)) (-5 *1 (-916 *2)))) (-4014 (*1 *2 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-308)))))
+(-13 (-365) (-38 |#1|) (-10 -8 (-15 -4129 ((-410 |#1|) $)) (-15 -4129 ($ (-410 (-421 |#1|)))) (-15 -4268 ($ $)) (-15 -4191 ((-421 |#1|) $)) (-15 -3982 (|#1| $)) (-15 -3494 ($ $ (-567))) (-15 -2741 ((-567) $)) (-15 -2886 ((-1175 |#1|) |#1| |#1|)) (-15 -1336 ($ $)) (-15 -2862 ($ |#1| (-421 |#1|))) (-15 -4014 (|#1| $))))
+((-2862 (((-52) (-954 |#1|) (-421 (-954 |#1|)) (-1179)) 17) (((-52) (-410 (-954 |#1|)) (-1179)) 18)))
+(((-917 |#1|) (-10 -7 (-15 -2862 ((-52) (-410 (-954 |#1|)) (-1179))) (-15 -2862 ((-52) (-954 |#1|) (-421 (-954 |#1|)) (-1179)))) (-13 (-308) (-147))) (T -917))
+((-2862 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-421 (-954 *6))) (-5 *5 (-1179)) (-5 *3 (-954 *6)) (-4 *6 (-13 (-308) (-147))) (-5 *2 (-52)) (-5 *1 (-917 *6)))) (-2862 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-1179)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-52)) (-5 *1 (-917 *5)))))
+(-10 -7 (-15 -2862 ((-52) (-410 (-954 |#1|)) (-1179))) (-15 -2862 ((-52) (-954 |#1|) (-421 (-954 |#1|)) (-1179))))
+((-1981 ((|#4| (-645 |#4|)) 149) (((-1175 |#4|) (-1175 |#4|) (-1175 |#4|)) 86) ((|#4| |#4| |#4|) 148)) (-2785 (((-1175 |#4|) (-645 (-1175 |#4|))) 142) (((-1175 |#4|) (-1175 |#4|) (-1175 |#4|)) 63) ((|#4| (-645 |#4|)) 71) ((|#4| |#4| |#4|) 109)))
+(((-918 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2785 (|#4| |#4| |#4|)) (-15 -2785 (|#4| (-645 |#4|))) (-15 -2785 ((-1175 |#4|) (-1175 |#4|) (-1175 |#4|))) (-15 -2785 ((-1175 |#4|) (-645 (-1175 |#4|)))) (-15 -1981 (|#4| |#4| |#4|)) (-15 -1981 ((-1175 |#4|) (-1175 |#4|) (-1175 |#4|))) (-15 -1981 (|#4| (-645 |#4|)))) (-794) (-851) (-308) (-951 |#3| |#1| |#2|)) (T -918))
+((-1981 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-951 *6 *4 *5)) (-5 *1 (-918 *4 *5 *6 *2)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-308)))) (-1981 (*1 *2 *2 *2) (-12 (-5 *2 (-1175 *6)) (-4 *6 (-951 *5 *3 *4)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *5 (-308)) (-5 *1 (-918 *3 *4 *5 *6)))) (-1981 (*1 *2 *2 *2) (-12 (-4 *3 (-794)) (-4 *4 (-851)) (-4 *5 (-308)) (-5 *1 (-918 *3 *4 *5 *2)) (-4 *2 (-951 *5 *3 *4)))) (-2785 (*1 *2 *3) (-12 (-5 *3 (-645 (-1175 *7))) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-308)) (-5 *2 (-1175 *7)) (-5 *1 (-918 *4 *5 *6 *7)) (-4 *7 (-951 *6 *4 *5)))) (-2785 (*1 *2 *2 *2) (-12 (-5 *2 (-1175 *6)) (-4 *6 (-951 *5 *3 *4)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *5 (-308)) (-5 *1 (-918 *3 *4 *5 *6)))) (-2785 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-951 *6 *4 *5)) (-5 *1 (-918 *4 *5 *6 *2)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-308)))) (-2785 (*1 *2 *2 *2) (-12 (-4 *3 (-794)) (-4 *4 (-851)) (-4 *5 (-308)) (-5 *1 (-918 *3 *4 *5 *2)) (-4 *2 (-951 *5 *3 *4)))))
+(-10 -7 (-15 -2785 (|#4| |#4| |#4|)) (-15 -2785 (|#4| (-645 |#4|))) (-15 -2785 ((-1175 |#4|) (-1175 |#4|) (-1175 |#4|))) (-15 -2785 ((-1175 |#4|) (-645 (-1175 |#4|)))) (-15 -1981 (|#4| |#4| |#4|)) (-15 -1981 ((-1175 |#4|) (-1175 |#4|) (-1175 |#4|))) (-15 -1981 (|#4| (-645 |#4|))))
+((-3798 (((-906 (-567)) (-973)) 38) (((-906 (-567)) (-645 (-567))) 35)) (-4078 (((-906 (-567)) (-645 (-567))) 70) (((-906 (-567)) (-923)) 71)) (-1430 (((-906 (-567))) 39)) (-1768 (((-906 (-567))) 55) (((-906 (-567)) (-645 (-567))) 54)) (-1907 (((-906 (-567))) 53) (((-906 (-567)) (-645 (-567))) 52)) (-3306 (((-906 (-567))) 51) (((-906 (-567)) (-645 (-567))) 50)) (-2329 (((-906 (-567))) 49) (((-906 (-567)) (-645 (-567))) 48)) (-1319 (((-906 (-567))) 47) (((-906 (-567)) (-645 (-567))) 46)) (-4181 (((-906 (-567))) 57) (((-906 (-567)) (-645 (-567))) 56)) (-1966 (((-906 (-567)) (-645 (-567))) 75) (((-906 (-567)) (-923)) 77)) (-3746 (((-906 (-567)) (-645 (-567))) 72) (((-906 (-567)) (-923)) 73)) (-1329 (((-906 (-567)) (-645 (-567))) 68) (((-906 (-567)) (-923)) 69)) (-2991 (((-906 (-567)) (-645 (-923))) 60)))
+(((-919) (-10 -7 (-15 -4078 ((-906 (-567)) (-923))) (-15 -4078 ((-906 (-567)) (-645 (-567)))) (-15 -1329 ((-906 (-567)) (-923))) (-15 -1329 ((-906 (-567)) (-645 (-567)))) (-15 -2991 ((-906 (-567)) (-645 (-923)))) (-15 -3746 ((-906 (-567)) (-923))) (-15 -3746 ((-906 (-567)) (-645 (-567)))) (-15 -1966 ((-906 (-567)) (-923))) (-15 -1966 ((-906 (-567)) (-645 (-567)))) (-15 -1319 ((-906 (-567)) (-645 (-567)))) (-15 -1319 ((-906 (-567)))) (-15 -2329 ((-906 (-567)) (-645 (-567)))) (-15 -2329 ((-906 (-567)))) (-15 -3306 ((-906 (-567)) (-645 (-567)))) (-15 -3306 ((-906 (-567)))) (-15 -1907 ((-906 (-567)) (-645 (-567)))) (-15 -1907 ((-906 (-567)))) (-15 -1768 ((-906 (-567)) (-645 (-567)))) (-15 -1768 ((-906 (-567)))) (-15 -4181 ((-906 (-567)) (-645 (-567)))) (-15 -4181 ((-906 (-567)))) (-15 -1430 ((-906 (-567)))) (-15 -3798 ((-906 (-567)) (-645 (-567)))) (-15 -3798 ((-906 (-567)) (-973))))) (T -919))
+((-3798 (*1 *2 *3) (-12 (-5 *3 (-973)) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-3798 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-1430 (*1 *2) (-12 (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-4181 (*1 *2) (-12 (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-4181 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-1768 (*1 *2) (-12 (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-1768 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-1907 (*1 *2) (-12 (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-1907 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-3306 (*1 *2) (-12 (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-3306 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-2329 (*1 *2) (-12 (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-2329 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-1319 (*1 *2) (-12 (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-1319 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-1966 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-1966 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-3746 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-3746 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-2991 (*1 *2 *3) (-12 (-5 *3 (-645 (-923))) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-1329 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-1329 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-4078 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-4078 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-906 (-567))) (-5 *1 (-919)))))
+(-10 -7 (-15 -4078 ((-906 (-567)) (-923))) (-15 -4078 ((-906 (-567)) (-645 (-567)))) (-15 -1329 ((-906 (-567)) (-923))) (-15 -1329 ((-906 (-567)) (-645 (-567)))) (-15 -2991 ((-906 (-567)) (-645 (-923)))) (-15 -3746 ((-906 (-567)) (-923))) (-15 -3746 ((-906 (-567)) (-645 (-567)))) (-15 -1966 ((-906 (-567)) (-923))) (-15 -1966 ((-906 (-567)) (-645 (-567)))) (-15 -1319 ((-906 (-567)) (-645 (-567)))) (-15 -1319 ((-906 (-567)))) (-15 -2329 ((-906 (-567)) (-645 (-567)))) (-15 -2329 ((-906 (-567)))) (-15 -3306 ((-906 (-567)) (-645 (-567)))) (-15 -3306 ((-906 (-567)))) (-15 -1907 ((-906 (-567)) (-645 (-567)))) (-15 -1907 ((-906 (-567)))) (-15 -1768 ((-906 (-567)) (-645 (-567)))) (-15 -1768 ((-906 (-567)))) (-15 -4181 ((-906 (-567)) (-645 (-567)))) (-15 -4181 ((-906 (-567)))) (-15 -1430 ((-906 (-567)))) (-15 -3798 ((-906 (-567)) (-645 (-567)))) (-15 -3798 ((-906 (-567)) (-973))))
+((-3932 (((-645 (-954 |#1|)) (-645 (-954 |#1|)) (-645 (-1179))) 14)) (-4377 (((-645 (-954 |#1|)) (-645 (-954 |#1|)) (-645 (-1179))) 13)))
+(((-920 |#1|) (-10 -7 (-15 -4377 ((-645 (-954 |#1|)) (-645 (-954 |#1|)) (-645 (-1179)))) (-15 -3932 ((-645 (-954 |#1|)) (-645 (-954 |#1|)) (-645 (-1179))))) (-455)) (T -920))
+((-3932 (*1 *2 *2 *3) (-12 (-5 *2 (-645 (-954 *4))) (-5 *3 (-645 (-1179))) (-4 *4 (-455)) (-5 *1 (-920 *4)))) (-4377 (*1 *2 *2 *3) (-12 (-5 *2 (-645 (-954 *4))) (-5 *3 (-645 (-1179))) (-4 *4 (-455)) (-5 *1 (-920 *4)))))
+(-10 -7 (-15 -4377 ((-645 (-954 |#1|)) (-645 (-954 |#1|)) (-645 (-1179)))) (-15 -3932 ((-645 (-954 |#1|)) (-645 (-954 |#1|)) (-645 (-1179)))))
+((-4129 (((-317 |#1|) (-480)) 16)))
+(((-921 |#1|) (-10 -7 (-15 -4129 ((-317 |#1|) (-480)))) (-559)) (T -921))
+((-4129 (*1 *2 *3) (-12 (-5 *3 (-480)) (-5 *2 (-317 *4)) (-5 *1 (-921 *4)) (-4 *4 (-559)))))
+(-10 -7 (-15 -4129 ((-317 |#1|) (-480))))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) 47)) (-4287 (($ $) 46)) (-2286 (((-112) $) 44)) (-2376 (((-3 $ "failed") $ $) 20)) (-3647 (($) 18 T CONST)) (-3588 (((-3 $ "failed") $) 37)) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) 57)) (-4346 (((-112) $) 35)) (-2751 (($ $ $) 52) (($ (-645 $)) 51)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) 50)) (-2785 (($ $ $) 54) (($ (-645 $)) 53)) (-2400 (((-3 $ "failed") $ $) 48)) (-2372 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-4129 (((-863) $) 12) (($ (-567)) 33) (($ $) 49)) (-2746 (((-772)) 32 T CONST)) (-3357 (((-112) $ $) 9)) (-3731 (((-112) $ $) 45)) (-1733 (($) 19 T CONST)) (-1744 (($) 34 T CONST)) (-2946 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27)))
(((-922) (-140)) (T -922))
-((-3179 (*1 *2 *3) (-12 (-4 *1 (-922)) (-5 *2 (-2 (|:| -3694 (-645 *1)) (|:| -1398 *1))) (-5 *3 (-645 *1)))) (-3117 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-645 *1)) (-4 *1 (-922)))))
-(-13 (-455) (-10 -8 (-15 -3179 ((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $))) (-15 -3117 ((-3 (-645 $) "failed") (-645 $) $))))
+((-4367 (*1 *2 *3) (-12 (-4 *1 (-922)) (-5 *2 (-2 (|:| -3705 (-645 *1)) (|:| -1399 *1))) (-5 *3 (-645 *1)))) (-2372 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-645 *1)) (-4 *1 (-922)))))
+(-13 (-455) (-10 -8 (-15 -4367 ((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $))) (-15 -2372 ((-3 (-645 $) "failed") (-645 $) $))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-291) . T) ((-455) . T) ((-559) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-641 $) . T) ((-718 $) . T) ((-727) . T) ((-1053 $) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T))
-((-2403 (((-112) $ $) NIL)) (-2585 (($) NIL T CONST)) (-2109 (((-3 $ "failed") $) NIL)) (-1433 (((-112) $) NIL)) (-1354 (($ $ $) NIL)) (-2981 (($ $ $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-2774 (($ $ $) NIL)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-1728 (($) NIL T CONST)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-772)) NIL) (($ $ (-923)) NIL)) (* (($ (-923) $) NIL) (($ $ $) NIL)))
-(((-923) (-13 (-795) (-727) (-10 -8 (-15 -2774 ($ $ $)) (-6 (-4420 "*"))))) (T -923))
-((-2774 (*1 *1 *1 *1) (-5 *1 (-923))))
-(-13 (-795) (-727) (-10 -8 (-15 -2774 ($ $ $)) (-6 (-4420 "*"))))
+((-2412 (((-112) $ $) NIL)) (-3647 (($) NIL T CONST)) (-3588 (((-3 $ "failed") $) NIL)) (-4346 (((-112) $) NIL)) (-1365 (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-2785 (($ $ $) NIL)) (-4129 (((-863) $) NIL)) (-3357 (((-112) $ $) NIL)) (-1744 (($) NIL T CONST)) (-3004 (((-112) $ $) NIL)) (-2980 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2993 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-772)) NIL) (($ $ (-923)) NIL)) (* (($ (-923) $) NIL) (($ $ $) NIL)))
+(((-923) (-13 (-795) (-727) (-10 -8 (-15 -2785 ($ $ $)) (-6 (-4424 "*"))))) (T -923))
+((-2785 (*1 *1 *1 *1) (-5 *1 (-923))))
+(-13 (-795) (-727) (-10 -8 (-15 -2785 ($ $ $)) (-6 (-4424 "*"))))
((|NonNegativeInteger|) (> |#1| 0))
-((-2687 ((|#2| (-645 |#1|) (-645 |#1|)) 29)))
-(((-924 |#1| |#2|) (-10 -7 (-15 -2687 (|#2| (-645 |#1|) (-645 |#1|)))) (-365) (-1244 |#1|)) (T -924))
-((-2687 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *4)) (-4 *4 (-365)) (-4 *2 (-1244 *4)) (-5 *1 (-924 *4 *2)))))
-(-10 -7 (-15 -2687 (|#2| (-645 |#1|) (-645 |#1|))))
-((-2190 (((-1174 |#2|) (-645 |#2|) (-645 |#2|)) 17) (((-1241 |#1| |#2|) (-1241 |#1| |#2|) (-645 |#2|) (-645 |#2|)) 13)))
-(((-925 |#1| |#2|) (-10 -7 (-15 -2190 ((-1241 |#1| |#2|) (-1241 |#1| |#2|) (-645 |#2|) (-645 |#2|))) (-15 -2190 ((-1174 |#2|) (-645 |#2|) (-645 |#2|)))) (-1178) (-365)) (T -925))
-((-2190 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *5)) (-4 *5 (-365)) (-5 *2 (-1174 *5)) (-5 *1 (-925 *4 *5)) (-14 *4 (-1178)))) (-2190 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1241 *4 *5)) (-5 *3 (-645 *5)) (-14 *4 (-1178)) (-4 *5 (-365)) (-5 *1 (-925 *4 *5)))))
-(-10 -7 (-15 -2190 ((-1241 |#1| |#2|) (-1241 |#1| |#2|) (-645 |#2|) (-645 |#2|))) (-15 -2190 ((-1174 |#2|) (-645 |#2|) (-645 |#2|))))
-((-2503 (((-567) (-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|))))))))) (-1160)) 177)) (-1670 ((|#4| |#4|) 196)) (-3138 (((-645 (-410 (-954 |#1|))) (-645 (-1178))) 149)) (-2439 (((-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))) (-690 |#4|) (-645 (-410 (-954 |#1|))) (-645 (-645 |#4|)) (-772) (-772) (-567)) 88)) (-2374 (((-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|)))))) (-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|)))))) (-645 |#4|)) 69)) (-3195 (((-690 |#4|) (-690 |#4|) (-645 |#4|)) 65)) (-3328 (((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|))))))))) (-1160)) 189)) (-2898 (((-567) (-690 |#4|) (-923) (-1160)) 169) (((-567) (-690 |#4|) (-645 (-1178)) (-923) (-1160)) 168) (((-567) (-690 |#4|) (-645 |#4|) (-923) (-1160)) 167) (((-567) (-690 |#4|) (-1160)) 157) (((-567) (-690 |#4|) (-645 (-1178)) (-1160)) 156) (((-567) (-690 |#4|) (-645 |#4|) (-1160)) 155) (((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|))))))))) (-690 |#4|) (-923)) 154) (((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|))))))))) (-690 |#4|) (-645 (-1178)) (-923)) 153) (((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|))))))))) (-690 |#4|) (-645 |#4|) (-923)) 152) (((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|))))))))) (-690 |#4|)) 151) (((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|))))))))) (-690 |#4|) (-645 (-1178))) 150) (((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|))))))))) (-690 |#4|) (-645 |#4|)) 146)) (-3831 ((|#4| (-954 |#1|)) 80)) (-1715 (((-112) (-645 |#4|) (-645 (-645 |#4|))) 193)) (-3482 (((-645 (-645 (-567))) (-567) (-567)) 162)) (-3259 (((-645 (-645 |#4|)) (-645 (-645 |#4|))) 107)) (-2353 (((-772) (-645 (-2 (|:| -1954 (-772)) (|:| |eqns| (-645 (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (|:| |fgb| (-645 |#4|))))) 102)) (-4270 (((-772) (-645 (-2 (|:| -1954 (-772)) (|:| |eqns| (-645 (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (|:| |fgb| (-645 |#4|))))) 101)) (-2130 (((-112) (-645 (-954 |#1|))) 19) (((-112) (-645 |#4|)) 15)) (-1712 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-645 |#4|)) (|:| |n0| (-645 |#4|))) (-645 |#4|) (-645 |#4|)) 84)) (-1466 (((-645 |#4|) |#4|) 57)) (-2742 (((-645 (-410 (-954 |#1|))) (-645 |#4|)) 145) (((-690 (-410 (-954 |#1|))) (-690 |#4|)) 66) (((-410 (-954 |#1|)) |#4|) 142)) (-4361 (((-2 (|:| |rgl| (-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|)))))))))) (|:| |rgsz| (-567))) (-690 |#4|) (-645 (-410 (-954 |#1|))) (-772) (-1160) (-567)) 113)) (-4121 (((-645 (-2 (|:| -1954 (-772)) (|:| |eqns| (-645 (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (|:| |fgb| (-645 |#4|)))) (-690 |#4|) (-772)) 100)) (-1924 (((-645 (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567))))) (-690 |#4|) (-772)) 124)) (-3359 (((-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|)))))) (-2 (|:| -2316 (-690 (-410 (-954 |#1|)))) (|:| |vec| (-645 (-410 (-954 |#1|)))) (|:| -1954 (-772)) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567))))) 56)))
-(((-926 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2898 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|))))))))) (-690 |#4|) (-645 |#4|))) (-15 -2898 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|))))))))) (-690 |#4|) (-645 (-1178)))) (-15 -2898 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|))))))))) (-690 |#4|))) (-15 -2898 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|))))))))) (-690 |#4|) (-645 |#4|) (-923))) (-15 -2898 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|))))))))) (-690 |#4|) (-645 (-1178)) (-923))) (-15 -2898 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|))))))))) (-690 |#4|) (-923))) (-15 -2898 ((-567) (-690 |#4|) (-645 |#4|) (-1160))) (-15 -2898 ((-567) (-690 |#4|) (-645 (-1178)) (-1160))) (-15 -2898 ((-567) (-690 |#4|) (-1160))) (-15 -2898 ((-567) (-690 |#4|) (-645 |#4|) (-923) (-1160))) (-15 -2898 ((-567) (-690 |#4|) (-645 (-1178)) (-923) (-1160))) (-15 -2898 ((-567) (-690 |#4|) (-923) (-1160))) (-15 -2503 ((-567) (-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|))))))))) (-1160))) (-15 -3328 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|))))))))) (-1160))) (-15 -4361 ((-2 (|:| |rgl| (-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|)))))))))) (|:| |rgsz| (-567))) (-690 |#4|) (-645 (-410 (-954 |#1|))) (-772) (-1160) (-567))) (-15 -2742 ((-410 (-954 |#1|)) |#4|)) (-15 -2742 ((-690 (-410 (-954 |#1|))) (-690 |#4|))) (-15 -2742 ((-645 (-410 (-954 |#1|))) (-645 |#4|))) (-15 -3138 ((-645 (-410 (-954 |#1|))) (-645 (-1178)))) (-15 -3831 (|#4| (-954 |#1|))) (-15 -1712 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-645 |#4|)) (|:| |n0| (-645 |#4|))) (-645 |#4|) (-645 |#4|))) (-15 -4121 ((-645 (-2 (|:| -1954 (-772)) (|:| |eqns| (-645 (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (|:| |fgb| (-645 |#4|)))) (-690 |#4|) (-772))) (-15 -2374 ((-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|)))))) (-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|)))))) (-645 |#4|))) (-15 -3359 ((-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|)))))) (-2 (|:| -2316 (-690 (-410 (-954 |#1|)))) (|:| |vec| (-645 (-410 (-954 |#1|)))) (|:| -1954 (-772)) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (-15 -1466 ((-645 |#4|) |#4|)) (-15 -4270 ((-772) (-645 (-2 (|:| -1954 (-772)) (|:| |eqns| (-645 (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (|:| |fgb| (-645 |#4|)))))) (-15 -2353 ((-772) (-645 (-2 (|:| -1954 (-772)) (|:| |eqns| (-645 (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (|:| |fgb| (-645 |#4|)))))) (-15 -3259 ((-645 (-645 |#4|)) (-645 (-645 |#4|)))) (-15 -3482 ((-645 (-645 (-567))) (-567) (-567))) (-15 -1715 ((-112) (-645 |#4|) (-645 (-645 |#4|)))) (-15 -1924 ((-645 (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567))))) (-690 |#4|) (-772))) (-15 -3195 ((-690 |#4|) (-690 |#4|) (-645 |#4|))) (-15 -2439 ((-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))) (-690 |#4|) (-645 (-410 (-954 |#1|))) (-645 (-645 |#4|)) (-772) (-772) (-567))) (-15 -1670 (|#4| |#4|)) (-15 -2130 ((-112) (-645 |#4|))) (-15 -2130 ((-112) (-645 (-954 |#1|))))) (-13 (-308) (-147)) (-13 (-851) (-615 (-1178))) (-794) (-951 |#1| |#3| |#2|)) (T -926))
-((-2130 (*1 *2 *3) (-12 (-5 *3 (-645 (-954 *4))) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1178)))) (-4 *6 (-794)) (-5 *2 (-112)) (-5 *1 (-926 *4 *5 *6 *7)) (-4 *7 (-951 *4 *6 *5)))) (-2130 (*1 *2 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-951 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1178)))) (-4 *6 (-794)) (-5 *2 (-112)) (-5 *1 (-926 *4 *5 *6 *7)))) (-1670 (*1 *2 *2) (-12 (-4 *3 (-13 (-308) (-147))) (-4 *4 (-13 (-851) (-615 (-1178)))) (-4 *5 (-794)) (-5 *1 (-926 *3 *4 *5 *2)) (-4 *2 (-951 *3 *5 *4)))) (-2439 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567))))) (-5 *4 (-690 *12)) (-5 *5 (-645 (-410 (-954 *9)))) (-5 *6 (-645 (-645 *12))) (-5 *7 (-772)) (-5 *8 (-567)) (-4 *9 (-13 (-308) (-147))) (-4 *12 (-951 *9 *11 *10)) (-4 *10 (-13 (-851) (-615 (-1178)))) (-4 *11 (-794)) (-5 *2 (-2 (|:| |eqzro| (-645 *12)) (|:| |neqzro| (-645 *12)) (|:| |wcond| (-645 (-954 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 *9)))) (|:| -2623 (-645 (-1268 (-410 (-954 *9))))))))) (-5 *1 (-926 *9 *10 *11 *12)))) (-3195 (*1 *2 *2 *3) (-12 (-5 *2 (-690 *7)) (-5 *3 (-645 *7)) (-4 *7 (-951 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1178)))) (-4 *6 (-794)) (-5 *1 (-926 *4 *5 *6 *7)))) (-1924 (*1 *2 *3 *4) (-12 (-5 *3 (-690 *8)) (-5 *4 (-772)) (-4 *8 (-951 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1178)))) (-4 *7 (-794)) (-5 *2 (-645 (-2 (|:| |det| *8) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (-5 *1 (-926 *5 *6 *7 *8)))) (-1715 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-645 *8))) (-5 *3 (-645 *8)) (-4 *8 (-951 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1178)))) (-4 *7 (-794)) (-5 *2 (-112)) (-5 *1 (-926 *5 *6 *7 *8)))) (-3482 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1178)))) (-4 *6 (-794)) (-5 *2 (-645 (-645 (-567)))) (-5 *1 (-926 *4 *5 *6 *7)) (-5 *3 (-567)) (-4 *7 (-951 *4 *6 *5)))) (-3259 (*1 *2 *2) (-12 (-5 *2 (-645 (-645 *6))) (-4 *6 (-951 *3 *5 *4)) (-4 *3 (-13 (-308) (-147))) (-4 *4 (-13 (-851) (-615 (-1178)))) (-4 *5 (-794)) (-5 *1 (-926 *3 *4 *5 *6)))) (-2353 (*1 *2 *3) (-12 (-5 *3 (-645 (-2 (|:| -1954 (-772)) (|:| |eqns| (-645 (-2 (|:| |det| *7) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (|:| |fgb| (-645 *7))))) (-4 *7 (-951 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1178)))) (-4 *6 (-794)) (-5 *2 (-772)) (-5 *1 (-926 *4 *5 *6 *7)))) (-4270 (*1 *2 *3) (-12 (-5 *3 (-645 (-2 (|:| -1954 (-772)) (|:| |eqns| (-645 (-2 (|:| |det| *7) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (|:| |fgb| (-645 *7))))) (-4 *7 (-951 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1178)))) (-4 *6 (-794)) (-5 *2 (-772)) (-5 *1 (-926 *4 *5 *6 *7)))) (-1466 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1178)))) (-4 *6 (-794)) (-5 *2 (-645 *3)) (-5 *1 (-926 *4 *5 *6 *3)) (-4 *3 (-951 *4 *6 *5)))) (-3359 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2316 (-690 (-410 (-954 *4)))) (|:| |vec| (-645 (-410 (-954 *4)))) (|:| -1954 (-772)) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567))))) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1178)))) (-4 *6 (-794)) (-5 *2 (-2 (|:| |partsol| (-1268 (-410 (-954 *4)))) (|:| -2623 (-645 (-1268 (-410 (-954 *4))))))) (-5 *1 (-926 *4 *5 *6 *7)) (-4 *7 (-951 *4 *6 *5)))) (-2374 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1268 (-410 (-954 *4)))) (|:| -2623 (-645 (-1268 (-410 (-954 *4))))))) (-5 *3 (-645 *7)) (-4 *4 (-13 (-308) (-147))) (-4 *7 (-951 *4 *6 *5)) (-4 *5 (-13 (-851) (-615 (-1178)))) (-4 *6 (-794)) (-5 *1 (-926 *4 *5 *6 *7)))) (-4121 (*1 *2 *3 *4) (-12 (-5 *3 (-690 *8)) (-4 *8 (-951 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1178)))) (-4 *7 (-794)) (-5 *2 (-645 (-2 (|:| -1954 (-772)) (|:| |eqns| (-645 (-2 (|:| |det| *8) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (|:| |fgb| (-645 *8))))) (-5 *1 (-926 *5 *6 *7 *8)) (-5 *4 (-772)))) (-1712 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1178)))) (-4 *6 (-794)) (-4 *7 (-951 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-645 *7)) (|:| |n0| (-645 *7)))) (-5 *1 (-926 *4 *5 *6 *7)) (-5 *3 (-645 *7)))) (-3831 (*1 *2 *3) (-12 (-5 *3 (-954 *4)) (-4 *4 (-13 (-308) (-147))) (-4 *2 (-951 *4 *6 *5)) (-5 *1 (-926 *4 *5 *6 *2)) (-4 *5 (-13 (-851) (-615 (-1178)))) (-4 *6 (-794)))) (-3138 (*1 *2 *3) (-12 (-5 *3 (-645 (-1178))) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1178)))) (-4 *6 (-794)) (-5 *2 (-645 (-410 (-954 *4)))) (-5 *1 (-926 *4 *5 *6 *7)) (-4 *7 (-951 *4 *6 *5)))) (-2742 (*1 *2 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-951 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1178)))) (-4 *6 (-794)) (-5 *2 (-645 (-410 (-954 *4)))) (-5 *1 (-926 *4 *5 *6 *7)))) (-2742 (*1 *2 *3) (-12 (-5 *3 (-690 *7)) (-4 *7 (-951 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1178)))) (-4 *6 (-794)) (-5 *2 (-690 (-410 (-954 *4)))) (-5 *1 (-926 *4 *5 *6 *7)))) (-2742 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1178)))) (-4 *6 (-794)) (-5 *2 (-410 (-954 *4))) (-5 *1 (-926 *4 *5 *6 *3)) (-4 *3 (-951 *4 *6 *5)))) (-4361 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-690 *11)) (-5 *4 (-645 (-410 (-954 *8)))) (-5 *5 (-772)) (-5 *6 (-1160)) (-4 *8 (-13 (-308) (-147))) (-4 *11 (-951 *8 *10 *9)) (-4 *9 (-13 (-851) (-615 (-1178)))) (-4 *10 (-794)) (-5 *2 (-2 (|:| |rgl| (-645 (-2 (|:| |eqzro| (-645 *11)) (|:| |neqzro| (-645 *11)) (|:| |wcond| (-645 (-954 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 *8)))) (|:| -2623 (-645 (-1268 (-410 (-954 *8)))))))))) (|:| |rgsz| (-567)))) (-5 *1 (-926 *8 *9 *10 *11)) (-5 *7 (-567)))) (-3328 (*1 *2 *3) (-12 (-5 *3 (-1160)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1178)))) (-4 *6 (-794)) (-5 *2 (-645 (-2 (|:| |eqzro| (-645 *7)) (|:| |neqzro| (-645 *7)) (|:| |wcond| (-645 (-954 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 *4)))) (|:| -2623 (-645 (-1268 (-410 (-954 *4)))))))))) (-5 *1 (-926 *4 *5 *6 *7)) (-4 *7 (-951 *4 *6 *5)))) (-2503 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-2 (|:| |eqzro| (-645 *8)) (|:| |neqzro| (-645 *8)) (|:| |wcond| (-645 (-954 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 *5)))) (|:| -2623 (-645 (-1268 (-410 (-954 *5)))))))))) (-5 *4 (-1160)) (-4 *5 (-13 (-308) (-147))) (-4 *8 (-951 *5 *7 *6)) (-4 *6 (-13 (-851) (-615 (-1178)))) (-4 *7 (-794)) (-5 *2 (-567)) (-5 *1 (-926 *5 *6 *7 *8)))) (-2898 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-690 *9)) (-5 *4 (-923)) (-5 *5 (-1160)) (-4 *9 (-951 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) (-4 *7 (-13 (-851) (-615 (-1178)))) (-4 *8 (-794)) (-5 *2 (-567)) (-5 *1 (-926 *6 *7 *8 *9)))) (-2898 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-690 *10)) (-5 *4 (-645 (-1178))) (-5 *5 (-923)) (-5 *6 (-1160)) (-4 *10 (-951 *7 *9 *8)) (-4 *7 (-13 (-308) (-147))) (-4 *8 (-13 (-851) (-615 (-1178)))) (-4 *9 (-794)) (-5 *2 (-567)) (-5 *1 (-926 *7 *8 *9 *10)))) (-2898 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-690 *10)) (-5 *4 (-645 *10)) (-5 *5 (-923)) (-5 *6 (-1160)) (-4 *10 (-951 *7 *9 *8)) (-4 *7 (-13 (-308) (-147))) (-4 *8 (-13 (-851) (-615 (-1178)))) (-4 *9 (-794)) (-5 *2 (-567)) (-5 *1 (-926 *7 *8 *9 *10)))) (-2898 (*1 *2 *3 *4) (-12 (-5 *3 (-690 *8)) (-5 *4 (-1160)) (-4 *8 (-951 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1178)))) (-4 *7 (-794)) (-5 *2 (-567)) (-5 *1 (-926 *5 *6 *7 *8)))) (-2898 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-690 *9)) (-5 *4 (-645 (-1178))) (-5 *5 (-1160)) (-4 *9 (-951 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) (-4 *7 (-13 (-851) (-615 (-1178)))) (-4 *8 (-794)) (-5 *2 (-567)) (-5 *1 (-926 *6 *7 *8 *9)))) (-2898 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-690 *9)) (-5 *4 (-645 *9)) (-5 *5 (-1160)) (-4 *9 (-951 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) (-4 *7 (-13 (-851) (-615 (-1178)))) (-4 *8 (-794)) (-5 *2 (-567)) (-5 *1 (-926 *6 *7 *8 *9)))) (-2898 (*1 *2 *3 *4) (-12 (-5 *3 (-690 *8)) (-5 *4 (-923)) (-4 *8 (-951 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1178)))) (-4 *7 (-794)) (-5 *2 (-645 (-2 (|:| |eqzro| (-645 *8)) (|:| |neqzro| (-645 *8)) (|:| |wcond| (-645 (-954 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 *5)))) (|:| -2623 (-645 (-1268 (-410 (-954 *5)))))))))) (-5 *1 (-926 *5 *6 *7 *8)))) (-2898 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-690 *9)) (-5 *4 (-645 (-1178))) (-5 *5 (-923)) (-4 *9 (-951 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) (-4 *7 (-13 (-851) (-615 (-1178)))) (-4 *8 (-794)) (-5 *2 (-645 (-2 (|:| |eqzro| (-645 *9)) (|:| |neqzro| (-645 *9)) (|:| |wcond| (-645 (-954 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 *6)))) (|:| -2623 (-645 (-1268 (-410 (-954 *6)))))))))) (-5 *1 (-926 *6 *7 *8 *9)))) (-2898 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-690 *9)) (-5 *5 (-923)) (-4 *9 (-951 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) (-4 *7 (-13 (-851) (-615 (-1178)))) (-4 *8 (-794)) (-5 *2 (-645 (-2 (|:| |eqzro| (-645 *9)) (|:| |neqzro| (-645 *9)) (|:| |wcond| (-645 (-954 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 *6)))) (|:| -2623 (-645 (-1268 (-410 (-954 *6)))))))))) (-5 *1 (-926 *6 *7 *8 *9)) (-5 *4 (-645 *9)))) (-2898 (*1 *2 *3) (-12 (-5 *3 (-690 *7)) (-4 *7 (-951 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1178)))) (-4 *6 (-794)) (-5 *2 (-645 (-2 (|:| |eqzro| (-645 *7)) (|:| |neqzro| (-645 *7)) (|:| |wcond| (-645 (-954 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 *4)))) (|:| -2623 (-645 (-1268 (-410 (-954 *4)))))))))) (-5 *1 (-926 *4 *5 *6 *7)))) (-2898 (*1 *2 *3 *4) (-12 (-5 *3 (-690 *8)) (-5 *4 (-645 (-1178))) (-4 *8 (-951 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1178)))) (-4 *7 (-794)) (-5 *2 (-645 (-2 (|:| |eqzro| (-645 *8)) (|:| |neqzro| (-645 *8)) (|:| |wcond| (-645 (-954 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 *5)))) (|:| -2623 (-645 (-1268 (-410 (-954 *5)))))))))) (-5 *1 (-926 *5 *6 *7 *8)))) (-2898 (*1 *2 *3 *4) (-12 (-5 *3 (-690 *8)) (-4 *8 (-951 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1178)))) (-4 *7 (-794)) (-5 *2 (-645 (-2 (|:| |eqzro| (-645 *8)) (|:| |neqzro| (-645 *8)) (|:| |wcond| (-645 (-954 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 *5)))) (|:| -2623 (-645 (-1268 (-410 (-954 *5)))))))))) (-5 *1 (-926 *5 *6 *7 *8)) (-5 *4 (-645 *8)))))
-(-10 -7 (-15 -2898 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|))))))))) (-690 |#4|) (-645 |#4|))) (-15 -2898 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|))))))))) (-690 |#4|) (-645 (-1178)))) (-15 -2898 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|))))))))) (-690 |#4|))) (-15 -2898 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|))))))))) (-690 |#4|) (-645 |#4|) (-923))) (-15 -2898 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|))))))))) (-690 |#4|) (-645 (-1178)) (-923))) (-15 -2898 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|))))))))) (-690 |#4|) (-923))) (-15 -2898 ((-567) (-690 |#4|) (-645 |#4|) (-1160))) (-15 -2898 ((-567) (-690 |#4|) (-645 (-1178)) (-1160))) (-15 -2898 ((-567) (-690 |#4|) (-1160))) (-15 -2898 ((-567) (-690 |#4|) (-645 |#4|) (-923) (-1160))) (-15 -2898 ((-567) (-690 |#4|) (-645 (-1178)) (-923) (-1160))) (-15 -2898 ((-567) (-690 |#4|) (-923) (-1160))) (-15 -2503 ((-567) (-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|))))))))) (-1160))) (-15 -3328 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|))))))))) (-1160))) (-15 -4361 ((-2 (|:| |rgl| (-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|)))))))))) (|:| |rgsz| (-567))) (-690 |#4|) (-645 (-410 (-954 |#1|))) (-772) (-1160) (-567))) (-15 -2742 ((-410 (-954 |#1|)) |#4|)) (-15 -2742 ((-690 (-410 (-954 |#1|))) (-690 |#4|))) (-15 -2742 ((-645 (-410 (-954 |#1|))) (-645 |#4|))) (-15 -3138 ((-645 (-410 (-954 |#1|))) (-645 (-1178)))) (-15 -3831 (|#4| (-954 |#1|))) (-15 -1712 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-645 |#4|)) (|:| |n0| (-645 |#4|))) (-645 |#4|) (-645 |#4|))) (-15 -4121 ((-645 (-2 (|:| -1954 (-772)) (|:| |eqns| (-645 (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (|:| |fgb| (-645 |#4|)))) (-690 |#4|) (-772))) (-15 -2374 ((-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|)))))) (-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|)))))) (-645 |#4|))) (-15 -3359 ((-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|)))))) (-2 (|:| -2316 (-690 (-410 (-954 |#1|)))) (|:| |vec| (-645 (-410 (-954 |#1|)))) (|:| -1954 (-772)) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (-15 -1466 ((-645 |#4|) |#4|)) (-15 -4270 ((-772) (-645 (-2 (|:| -1954 (-772)) (|:| |eqns| (-645 (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (|:| |fgb| (-645 |#4|)))))) (-15 -2353 ((-772) (-645 (-2 (|:| -1954 (-772)) (|:| |eqns| (-645 (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (|:| |fgb| (-645 |#4|)))))) (-15 -3259 ((-645 (-645 |#4|)) (-645 (-645 |#4|)))) (-15 -3482 ((-645 (-645 (-567))) (-567) (-567))) (-15 -1715 ((-112) (-645 |#4|) (-645 (-645 |#4|)))) (-15 -1924 ((-645 (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567))))) (-690 |#4|) (-772))) (-15 -3195 ((-690 |#4|) (-690 |#4|) (-645 |#4|))) (-15 -2439 ((-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1268 (-410 (-954 |#1|)))) (|:| -2623 (-645 (-1268 (-410 (-954 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))) (-690 |#4|) (-645 (-410 (-954 |#1|))) (-645 (-645 |#4|)) (-772) (-772) (-567))) (-15 -1670 (|#4| |#4|)) (-15 -2130 ((-112) (-645 |#4|))) (-15 -2130 ((-112) (-645 (-954 |#1|)))))
-((-1335 (((-929) |#1| (-1178)) 17) (((-929) |#1| (-1178) (-1096 (-225))) 21)) (-1308 (((-929) |#1| |#1| (-1178) (-1096 (-225))) 19) (((-929) |#1| (-1178) (-1096 (-225))) 15)))
-(((-927 |#1|) (-10 -7 (-15 -1308 ((-929) |#1| (-1178) (-1096 (-225)))) (-15 -1308 ((-929) |#1| |#1| (-1178) (-1096 (-225)))) (-15 -1335 ((-929) |#1| (-1178) (-1096 (-225)))) (-15 -1335 ((-929) |#1| (-1178)))) (-615 (-539))) (T -927))
-((-1335 (*1 *2 *3 *4) (-12 (-5 *4 (-1178)) (-5 *2 (-929)) (-5 *1 (-927 *3)) (-4 *3 (-615 (-539))))) (-1335 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1178)) (-5 *5 (-1096 (-225))) (-5 *2 (-929)) (-5 *1 (-927 *3)) (-4 *3 (-615 (-539))))) (-1308 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1178)) (-5 *5 (-1096 (-225))) (-5 *2 (-929)) (-5 *1 (-927 *3)) (-4 *3 (-615 (-539))))) (-1308 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1178)) (-5 *5 (-1096 (-225))) (-5 *2 (-929)) (-5 *1 (-927 *3)) (-4 *3 (-615 (-539))))))
-(-10 -7 (-15 -1308 ((-929) |#1| (-1178) (-1096 (-225)))) (-15 -1308 ((-929) |#1| |#1| (-1178) (-1096 (-225)))) (-15 -1335 ((-929) |#1| (-1178) (-1096 (-225)))) (-15 -1335 ((-929) |#1| (-1178))))
-((-2544 (($ $ (-1096 (-225)) (-1096 (-225)) (-1096 (-225))) 123)) (-3720 (((-1096 (-225)) $) 64)) (-3711 (((-1096 (-225)) $) 63)) (-3703 (((-1096 (-225)) $) 62)) (-4142 (((-645 (-645 (-225))) $) 69)) (-1726 (((-1096 (-225)) $) 65)) (-3555 (((-567) (-567)) 57)) (-3956 (((-567) (-567)) 52)) (-2650 (((-567) (-567)) 55)) (-2432 (((-112) (-112)) 59)) (-2510 (((-567)) 56)) (-2298 (($ $ (-1096 (-225))) 126) (($ $) 127)) (-2084 (($ (-1 (-945 (-225)) (-225)) (-1096 (-225))) 133) (($ (-1 (-945 (-225)) (-225)) (-1096 (-225)) (-1096 (-225)) (-1096 (-225)) (-1096 (-225))) 134)) (-1308 (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1096 (-225))) 136) (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1096 (-225)) (-1096 (-225)) (-1096 (-225)) (-1096 (-225))) 137) (($ $ (-1096 (-225))) 129)) (-1643 (((-567)) 60)) (-3747 (((-567)) 50)) (-2551 (((-567)) 53)) (-2049 (((-645 (-645 (-945 (-225)))) $) 153)) (-1969 (((-112) (-112)) 61)) (-4132 (((-863) $) 151)) (-4261 (((-112)) 58)))
-(((-928) (-13 (-976) (-10 -8 (-15 -2084 ($ (-1 (-945 (-225)) (-225)) (-1096 (-225)))) (-15 -2084 ($ (-1 (-945 (-225)) (-225)) (-1096 (-225)) (-1096 (-225)) (-1096 (-225)) (-1096 (-225)))) (-15 -1308 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1096 (-225)))) (-15 -1308 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1096 (-225)) (-1096 (-225)) (-1096 (-225)) (-1096 (-225)))) (-15 -1308 ($ $ (-1096 (-225)))) (-15 -2544 ($ $ (-1096 (-225)) (-1096 (-225)) (-1096 (-225)))) (-15 -2298 ($ $ (-1096 (-225)))) (-15 -2298 ($ $)) (-15 -1726 ((-1096 (-225)) $)) (-15 -4142 ((-645 (-645 (-225))) $)) (-15 -3747 ((-567))) (-15 -3956 ((-567) (-567))) (-15 -2551 ((-567))) (-15 -2650 ((-567) (-567))) (-15 -2510 ((-567))) (-15 -3555 ((-567) (-567))) (-15 -4261 ((-112))) (-15 -2432 ((-112) (-112))) (-15 -1643 ((-567))) (-15 -1969 ((-112) (-112)))))) (T -928))
-((-2084 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-945 (-225)) (-225))) (-5 *3 (-1096 (-225))) (-5 *1 (-928)))) (-2084 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-945 (-225)) (-225))) (-5 *3 (-1096 (-225))) (-5 *1 (-928)))) (-1308 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1096 (-225))) (-5 *1 (-928)))) (-1308 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1096 (-225))) (-5 *1 (-928)))) (-1308 (*1 *1 *1 *2) (-12 (-5 *2 (-1096 (-225))) (-5 *1 (-928)))) (-2544 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1096 (-225))) (-5 *1 (-928)))) (-2298 (*1 *1 *1 *2) (-12 (-5 *2 (-1096 (-225))) (-5 *1 (-928)))) (-2298 (*1 *1 *1) (-5 *1 (-928))) (-1726 (*1 *2 *1) (-12 (-5 *2 (-1096 (-225))) (-5 *1 (-928)))) (-4142 (*1 *2 *1) (-12 (-5 *2 (-645 (-645 (-225)))) (-5 *1 (-928)))) (-3747 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928)))) (-3956 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928)))) (-2551 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928)))) (-2650 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928)))) (-2510 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928)))) (-3555 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928)))) (-4261 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-928)))) (-2432 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-928)))) (-1643 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928)))) (-1969 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-928)))))
-(-13 (-976) (-10 -8 (-15 -2084 ($ (-1 (-945 (-225)) (-225)) (-1096 (-225)))) (-15 -2084 ($ (-1 (-945 (-225)) (-225)) (-1096 (-225)) (-1096 (-225)) (-1096 (-225)) (-1096 (-225)))) (-15 -1308 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1096 (-225)))) (-15 -1308 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1096 (-225)) (-1096 (-225)) (-1096 (-225)) (-1096 (-225)))) (-15 -1308 ($ $ (-1096 (-225)))) (-15 -2544 ($ $ (-1096 (-225)) (-1096 (-225)) (-1096 (-225)))) (-15 -2298 ($ $ (-1096 (-225)))) (-15 -2298 ($ $)) (-15 -1726 ((-1096 (-225)) $)) (-15 -4142 ((-645 (-645 (-225))) $)) (-15 -3747 ((-567))) (-15 -3956 ((-567) (-567))) (-15 -2551 ((-567))) (-15 -2650 ((-567) (-567))) (-15 -2510 ((-567))) (-15 -3555 ((-567) (-567))) (-15 -4261 ((-112))) (-15 -2432 ((-112) (-112))) (-15 -1643 ((-567))) (-15 -1969 ((-112) (-112)))))
-((-2544 (($ $ (-1096 (-225))) 124) (($ $ (-1096 (-225)) (-1096 (-225))) 125)) (-3711 (((-1096 (-225)) $) 73)) (-3703 (((-1096 (-225)) $) 72)) (-1726 (((-1096 (-225)) $) 74)) (-4308 (((-567) (-567)) 66)) (-1880 (((-567) (-567)) 61)) (-2372 (((-567) (-567)) 64)) (-1802 (((-112) (-112)) 68)) (-2959 (((-567)) 65)) (-2298 (($ $ (-1096 (-225))) 128) (($ $) 129)) (-2084 (($ (-1 (-945 (-225)) (-225)) (-1096 (-225))) 143) (($ (-1 (-945 (-225)) (-225)) (-1096 (-225)) (-1096 (-225)) (-1096 (-225))) 144)) (-1335 (($ (-1 (-225) (-225)) (-1096 (-225))) 151) (($ (-1 (-225) (-225))) 155)) (-1308 (($ (-1 (-225) (-225)) (-1096 (-225))) 139) (($ (-1 (-225) (-225)) (-1096 (-225)) (-1096 (-225))) 140) (($ (-645 (-1 (-225) (-225))) (-1096 (-225))) 148) (($ (-645 (-1 (-225) (-225))) (-1096 (-225)) (-1096 (-225))) 149) (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1096 (-225))) 141) (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1096 (-225)) (-1096 (-225)) (-1096 (-225))) 142) (($ $ (-1096 (-225))) 130)) (-2948 (((-112) $) 69)) (-3866 (((-567)) 70)) (-3467 (((-567)) 59)) (-3213 (((-567)) 62)) (-2049 (((-645 (-645 (-945 (-225)))) $) 35)) (-2626 (((-112) (-112)) 71)) (-4132 (((-863) $) 169)) (-2855 (((-112)) 67)))
-(((-929) (-13 (-957) (-10 -8 (-15 -1308 ($ (-1 (-225) (-225)) (-1096 (-225)))) (-15 -1308 ($ (-1 (-225) (-225)) (-1096 (-225)) (-1096 (-225)))) (-15 -1308 ($ (-645 (-1 (-225) (-225))) (-1096 (-225)))) (-15 -1308 ($ (-645 (-1 (-225) (-225))) (-1096 (-225)) (-1096 (-225)))) (-15 -1308 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1096 (-225)))) (-15 -1308 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1096 (-225)) (-1096 (-225)) (-1096 (-225)))) (-15 -2084 ($ (-1 (-945 (-225)) (-225)) (-1096 (-225)))) (-15 -2084 ($ (-1 (-945 (-225)) (-225)) (-1096 (-225)) (-1096 (-225)) (-1096 (-225)))) (-15 -1335 ($ (-1 (-225) (-225)) (-1096 (-225)))) (-15 -1335 ($ (-1 (-225) (-225)))) (-15 -1308 ($ $ (-1096 (-225)))) (-15 -2948 ((-112) $)) (-15 -2544 ($ $ (-1096 (-225)))) (-15 -2544 ($ $ (-1096 (-225)) (-1096 (-225)))) (-15 -2298 ($ $ (-1096 (-225)))) (-15 -2298 ($ $)) (-15 -1726 ((-1096 (-225)) $)) (-15 -3467 ((-567))) (-15 -1880 ((-567) (-567))) (-15 -3213 ((-567))) (-15 -2372 ((-567) (-567))) (-15 -2959 ((-567))) (-15 -4308 ((-567) (-567))) (-15 -2855 ((-112))) (-15 -1802 ((-112) (-112))) (-15 -3866 ((-567))) (-15 -2626 ((-112) (-112)))))) (T -929))
-((-1308 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1096 (-225))) (-5 *1 (-929)))) (-1308 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1096 (-225))) (-5 *1 (-929)))) (-1308 (*1 *1 *2 *3) (-12 (-5 *2 (-645 (-1 (-225) (-225)))) (-5 *3 (-1096 (-225))) (-5 *1 (-929)))) (-1308 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-645 (-1 (-225) (-225)))) (-5 *3 (-1096 (-225))) (-5 *1 (-929)))) (-1308 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1096 (-225))) (-5 *1 (-929)))) (-1308 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1096 (-225))) (-5 *1 (-929)))) (-2084 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-945 (-225)) (-225))) (-5 *3 (-1096 (-225))) (-5 *1 (-929)))) (-2084 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-945 (-225)) (-225))) (-5 *3 (-1096 (-225))) (-5 *1 (-929)))) (-1335 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1096 (-225))) (-5 *1 (-929)))) (-1335 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-929)))) (-1308 (*1 *1 *1 *2) (-12 (-5 *2 (-1096 (-225))) (-5 *1 (-929)))) (-2948 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-929)))) (-2544 (*1 *1 *1 *2) (-12 (-5 *2 (-1096 (-225))) (-5 *1 (-929)))) (-2544 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1096 (-225))) (-5 *1 (-929)))) (-2298 (*1 *1 *1 *2) (-12 (-5 *2 (-1096 (-225))) (-5 *1 (-929)))) (-2298 (*1 *1 *1) (-5 *1 (-929))) (-1726 (*1 *2 *1) (-12 (-5 *2 (-1096 (-225))) (-5 *1 (-929)))) (-3467 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-929)))) (-1880 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-929)))) (-3213 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-929)))) (-2372 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-929)))) (-2959 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-929)))) (-4308 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-929)))) (-2855 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-929)))) (-1802 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-929)))) (-3866 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-929)))) (-2626 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-929)))))
-(-13 (-957) (-10 -8 (-15 -1308 ($ (-1 (-225) (-225)) (-1096 (-225)))) (-15 -1308 ($ (-1 (-225) (-225)) (-1096 (-225)) (-1096 (-225)))) (-15 -1308 ($ (-645 (-1 (-225) (-225))) (-1096 (-225)))) (-15 -1308 ($ (-645 (-1 (-225) (-225))) (-1096 (-225)) (-1096 (-225)))) (-15 -1308 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1096 (-225)))) (-15 -1308 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1096 (-225)) (-1096 (-225)) (-1096 (-225)))) (-15 -2084 ($ (-1 (-945 (-225)) (-225)) (-1096 (-225)))) (-15 -2084 ($ (-1 (-945 (-225)) (-225)) (-1096 (-225)) (-1096 (-225)) (-1096 (-225)))) (-15 -1335 ($ (-1 (-225) (-225)) (-1096 (-225)))) (-15 -1335 ($ (-1 (-225) (-225)))) (-15 -1308 ($ $ (-1096 (-225)))) (-15 -2948 ((-112) $)) (-15 -2544 ($ $ (-1096 (-225)))) (-15 -2544 ($ $ (-1096 (-225)) (-1096 (-225)))) (-15 -2298 ($ $ (-1096 (-225)))) (-15 -2298 ($ $)) (-15 -1726 ((-1096 (-225)) $)) (-15 -3467 ((-567))) (-15 -1880 ((-567) (-567))) (-15 -3213 ((-567))) (-15 -2372 ((-567) (-567))) (-15 -2959 ((-567))) (-15 -4308 ((-567) (-567))) (-15 -2855 ((-112))) (-15 -1802 ((-112) (-112))) (-15 -3866 ((-567))) (-15 -2626 ((-112) (-112)))))
-((-2992 (((-645 (-1096 (-225))) (-645 (-645 (-945 (-225))))) 34)))
-(((-930) (-10 -7 (-15 -2992 ((-645 (-1096 (-225))) (-645 (-645 (-945 (-225)))))))) (T -930))
-((-2992 (*1 *2 *3) (-12 (-5 *3 (-645 (-645 (-945 (-225))))) (-5 *2 (-645 (-1096 (-225)))) (-5 *1 (-930)))))
-(-10 -7 (-15 -2992 ((-645 (-1096 (-225))) (-645 (-645 (-945 (-225)))))))
-((-2115 ((|#2| |#2|) 28)) (-3236 ((|#2| |#2|) 29)) (-3286 ((|#2| |#2|) 27)) (-2074 ((|#2| |#2| (-509)) 26)))
-(((-931 |#1| |#2|) (-10 -7 (-15 -2074 (|#2| |#2| (-509))) (-15 -3286 (|#2| |#2|)) (-15 -2115 (|#2| |#2|)) (-15 -3236 (|#2| |#2|))) (-1102) (-433 |#1|)) (T -931))
-((-3236 (*1 *2 *2) (-12 (-4 *3 (-1102)) (-5 *1 (-931 *3 *2)) (-4 *2 (-433 *3)))) (-2115 (*1 *2 *2) (-12 (-4 *3 (-1102)) (-5 *1 (-931 *3 *2)) (-4 *2 (-433 *3)))) (-3286 (*1 *2 *2) (-12 (-4 *3 (-1102)) (-5 *1 (-931 *3 *2)) (-4 *2 (-433 *3)))) (-2074 (*1 *2 *2 *3) (-12 (-5 *3 (-509)) (-4 *4 (-1102)) (-5 *1 (-931 *4 *2)) (-4 *2 (-433 *4)))))
-(-10 -7 (-15 -2074 (|#2| |#2| (-509))) (-15 -3286 (|#2| |#2|)) (-15 -2115 (|#2| |#2|)) (-15 -3236 (|#2| |#2|)))
-((-2115 (((-317 (-567)) (-1178)) 16)) (-3236 (((-317 (-567)) (-1178)) 14)) (-3286 (((-317 (-567)) (-1178)) 12)) (-2074 (((-317 (-567)) (-1178) (-509)) 19)))
-(((-932) (-10 -7 (-15 -2074 ((-317 (-567)) (-1178) (-509))) (-15 -3286 ((-317 (-567)) (-1178))) (-15 -2115 ((-317 (-567)) (-1178))) (-15 -3236 ((-317 (-567)) (-1178))))) (T -932))
-((-3236 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-317 (-567))) (-5 *1 (-932)))) (-2115 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-317 (-567))) (-5 *1 (-932)))) (-3286 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-317 (-567))) (-5 *1 (-932)))) (-2074 (*1 *2 *3 *4) (-12 (-5 *3 (-1178)) (-5 *4 (-509)) (-5 *2 (-317 (-567))) (-5 *1 (-932)))))
-(-10 -7 (-15 -2074 ((-317 (-567)) (-1178) (-509))) (-15 -3286 ((-317 (-567)) (-1178))) (-15 -2115 ((-317 (-567)) (-1178))) (-15 -3236 ((-317 (-567)) (-1178))))
-((-4303 (((-891 |#1| |#3|) |#2| (-894 |#1|) (-891 |#1| |#3|)) 25)) (-1511 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13)))
-(((-933 |#1| |#2| |#3|) (-10 -7 (-15 -1511 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -4303 ((-891 |#1| |#3|) |#2| (-894 |#1|) (-891 |#1| |#3|)))) (-1102) (-888 |#1|) (-13 (-1102) (-1040 |#2|))) (T -933))
-((-4303 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-891 *5 *6)) (-5 *4 (-894 *5)) (-4 *5 (-1102)) (-4 *6 (-13 (-1102) (-1040 *3))) (-4 *3 (-888 *5)) (-5 *1 (-933 *5 *3 *6)))) (-1511 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1102) (-1040 *5))) (-4 *5 (-888 *4)) (-4 *4 (-1102)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-933 *4 *5 *6)))))
-(-10 -7 (-15 -1511 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -4303 ((-891 |#1| |#3|) |#2| (-894 |#1|) (-891 |#1| |#3|))))
-((-4303 (((-891 |#1| |#3|) |#3| (-894 |#1|) (-891 |#1| |#3|)) 30)))
-(((-934 |#1| |#2| |#3|) (-10 -7 (-15 -4303 ((-891 |#1| |#3|) |#3| (-894 |#1|) (-891 |#1| |#3|)))) (-1102) (-13 (-559) (-888 |#1|)) (-13 (-433 |#2|) (-615 (-894 |#1|)) (-888 |#1|) (-1040 (-613 $)))) (T -934))
-((-4303 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-891 *5 *3)) (-4 *5 (-1102)) (-4 *3 (-13 (-433 *6) (-615 *4) (-888 *5) (-1040 (-613 $)))) (-5 *4 (-894 *5)) (-4 *6 (-13 (-559) (-888 *5))) (-5 *1 (-934 *5 *6 *3)))))
-(-10 -7 (-15 -4303 ((-891 |#1| |#3|) |#3| (-894 |#1|) (-891 |#1| |#3|))))
-((-4303 (((-891 (-567) |#1|) |#1| (-894 (-567)) (-891 (-567) |#1|)) 13)))
-(((-935 |#1|) (-10 -7 (-15 -4303 ((-891 (-567) |#1|) |#1| (-894 (-567)) (-891 (-567) |#1|)))) (-548)) (T -935))
-((-4303 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-891 (-567) *3)) (-5 *4 (-894 (-567))) (-4 *3 (-548)) (-5 *1 (-935 *3)))))
-(-10 -7 (-15 -4303 ((-891 (-567) |#1|) |#1| (-894 (-567)) (-891 (-567) |#1|))))
-((-4303 (((-891 |#1| |#2|) (-613 |#2|) (-894 |#1|) (-891 |#1| |#2|)) 57)))
-(((-936 |#1| |#2|) (-10 -7 (-15 -4303 ((-891 |#1| |#2|) (-613 |#2|) (-894 |#1|) (-891 |#1| |#2|)))) (-1102) (-13 (-1102) (-1040 (-613 $)) (-615 (-894 |#1|)) (-888 |#1|))) (T -936))
-((-4303 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-891 *5 *6)) (-5 *3 (-613 *6)) (-4 *5 (-1102)) (-4 *6 (-13 (-1102) (-1040 (-613 $)) (-615 *4) (-888 *5))) (-5 *4 (-894 *5)) (-5 *1 (-936 *5 *6)))))
-(-10 -7 (-15 -4303 ((-891 |#1| |#2|) (-613 |#2|) (-894 |#1|) (-891 |#1| |#2|))))
-((-4303 (((-887 |#1| |#2| |#3|) |#3| (-894 |#1|) (-887 |#1| |#2| |#3|)) 17)))
-(((-937 |#1| |#2| |#3|) (-10 -7 (-15 -4303 ((-887 |#1| |#2| |#3|) |#3| (-894 |#1|) (-887 |#1| |#2| |#3|)))) (-1102) (-888 |#1|) (-667 |#2|)) (T -937))
-((-4303 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-887 *5 *6 *3)) (-5 *4 (-894 *5)) (-4 *5 (-1102)) (-4 *6 (-888 *5)) (-4 *3 (-667 *6)) (-5 *1 (-937 *5 *6 *3)))))
-(-10 -7 (-15 -4303 ((-887 |#1| |#2| |#3|) |#3| (-894 |#1|) (-887 |#1| |#2| |#3|))))
-((-4303 (((-891 |#1| |#5|) |#5| (-894 |#1|) (-891 |#1| |#5|)) 17 (|has| |#3| (-888 |#1|))) (((-891 |#1| |#5|) |#5| (-894 |#1|) (-891 |#1| |#5|) (-1 (-891 |#1| |#5|) |#3| (-894 |#1|) (-891 |#1| |#5|))) 16)))
-(((-938 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4303 ((-891 |#1| |#5|) |#5| (-894 |#1|) (-891 |#1| |#5|) (-1 (-891 |#1| |#5|) |#3| (-894 |#1|) (-891 |#1| |#5|)))) (IF (|has| |#3| (-888 |#1|)) (-15 -4303 ((-891 |#1| |#5|) |#5| (-894 |#1|) (-891 |#1| |#5|))) |%noBranch|)) (-1102) (-794) (-851) (-13 (-1051) (-888 |#1|)) (-13 (-951 |#4| |#2| |#3|) (-615 (-894 |#1|)))) (T -938))
-((-4303 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-891 *5 *3)) (-4 *5 (-1102)) (-4 *3 (-13 (-951 *8 *6 *7) (-615 *4))) (-5 *4 (-894 *5)) (-4 *7 (-888 *5)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-13 (-1051) (-888 *5))) (-5 *1 (-938 *5 *6 *7 *8 *3)))) (-4303 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-891 *6 *3) *8 (-894 *6) (-891 *6 *3))) (-4 *8 (-851)) (-5 *2 (-891 *6 *3)) (-5 *4 (-894 *6)) (-4 *6 (-1102)) (-4 *3 (-13 (-951 *9 *7 *8) (-615 *4))) (-4 *7 (-794)) (-4 *9 (-13 (-1051) (-888 *6))) (-5 *1 (-938 *6 *7 *8 *9 *3)))))
-(-10 -7 (-15 -4303 ((-891 |#1| |#5|) |#5| (-894 |#1|) (-891 |#1| |#5|) (-1 (-891 |#1| |#5|) |#3| (-894 |#1|) (-891 |#1| |#5|)))) (IF (|has| |#3| (-888 |#1|)) (-15 -4303 ((-891 |#1| |#5|) |#5| (-894 |#1|) (-891 |#1| |#5|))) |%noBranch|))
-((-2111 ((|#2| |#2| (-645 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13)))
-(((-939 |#1| |#2| |#3|) (-10 -7 (-15 -2111 (|#2| |#2| (-1 (-112) |#3|))) (-15 -2111 (|#2| |#2| (-645 (-1 (-112) |#3|))))) (-1102) (-433 |#1|) (-1218)) (T -939))
-((-2111 (*1 *2 *2 *3) (-12 (-5 *3 (-645 (-1 (-112) *5))) (-4 *5 (-1218)) (-4 *4 (-1102)) (-5 *1 (-939 *4 *2 *5)) (-4 *2 (-433 *4)))) (-2111 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1218)) (-4 *4 (-1102)) (-5 *1 (-939 *4 *2 *5)) (-4 *2 (-433 *4)))))
-(-10 -7 (-15 -2111 (|#2| |#2| (-1 (-112) |#3|))) (-15 -2111 (|#2| |#2| (-645 (-1 (-112) |#3|)))))
-((-2111 (((-317 (-567)) (-1178) (-645 (-1 (-112) |#1|))) 18) (((-317 (-567)) (-1178) (-1 (-112) |#1|)) 15)))
-(((-940 |#1|) (-10 -7 (-15 -2111 ((-317 (-567)) (-1178) (-1 (-112) |#1|))) (-15 -2111 ((-317 (-567)) (-1178) (-645 (-1 (-112) |#1|))))) (-1218)) (T -940))
-((-2111 (*1 *2 *3 *4) (-12 (-5 *3 (-1178)) (-5 *4 (-645 (-1 (-112) *5))) (-4 *5 (-1218)) (-5 *2 (-317 (-567))) (-5 *1 (-940 *5)))) (-2111 (*1 *2 *3 *4) (-12 (-5 *3 (-1178)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1218)) (-5 *2 (-317 (-567))) (-5 *1 (-940 *5)))))
-(-10 -7 (-15 -2111 ((-317 (-567)) (-1178) (-1 (-112) |#1|))) (-15 -2111 ((-317 (-567)) (-1178) (-645 (-1 (-112) |#1|)))))
-((-4303 (((-891 |#1| |#3|) |#3| (-894 |#1|) (-891 |#1| |#3|)) 25)))
-(((-941 |#1| |#2| |#3|) (-10 -7 (-15 -4303 ((-891 |#1| |#3|) |#3| (-894 |#1|) (-891 |#1| |#3|)))) (-1102) (-13 (-559) (-888 |#1|) (-615 (-894 |#1|))) (-994 |#2|)) (T -941))
-((-4303 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-891 *5 *3)) (-4 *5 (-1102)) (-4 *3 (-994 *6)) (-4 *6 (-13 (-559) (-888 *5) (-615 *4))) (-5 *4 (-894 *5)) (-5 *1 (-941 *5 *6 *3)))))
-(-10 -7 (-15 -4303 ((-891 |#1| |#3|) |#3| (-894 |#1|) (-891 |#1| |#3|))))
-((-4303 (((-891 |#1| (-1178)) (-1178) (-894 |#1|) (-891 |#1| (-1178))) 18)))
-(((-942 |#1|) (-10 -7 (-15 -4303 ((-891 |#1| (-1178)) (-1178) (-894 |#1|) (-891 |#1| (-1178))))) (-1102)) (T -942))
-((-4303 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-891 *5 (-1178))) (-5 *3 (-1178)) (-5 *4 (-894 *5)) (-4 *5 (-1102)) (-5 *1 (-942 *5)))))
-(-10 -7 (-15 -4303 ((-891 |#1| (-1178)) (-1178) (-894 |#1|) (-891 |#1| (-1178)))))
-((-2436 (((-891 |#1| |#3|) (-645 |#3|) (-645 (-894 |#1|)) (-891 |#1| |#3|) (-1 (-891 |#1| |#3|) |#3| (-894 |#1|) (-891 |#1| |#3|))) 34)) (-4303 (((-891 |#1| |#3|) (-645 |#3|) (-645 (-894 |#1|)) (-1 |#3| (-645 |#3|)) (-891 |#1| |#3|) (-1 (-891 |#1| |#3|) |#3| (-894 |#1|) (-891 |#1| |#3|))) 33)))
-(((-943 |#1| |#2| |#3|) (-10 -7 (-15 -4303 ((-891 |#1| |#3|) (-645 |#3|) (-645 (-894 |#1|)) (-1 |#3| (-645 |#3|)) (-891 |#1| |#3|) (-1 (-891 |#1| |#3|) |#3| (-894 |#1|) (-891 |#1| |#3|)))) (-15 -2436 ((-891 |#1| |#3|) (-645 |#3|) (-645 (-894 |#1|)) (-891 |#1| |#3|) (-1 (-891 |#1| |#3|) |#3| (-894 |#1|) (-891 |#1| |#3|))))) (-1102) (-1051) (-13 (-1051) (-615 (-894 |#1|)) (-1040 |#2|))) (T -943))
-((-2436 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 (-894 *6))) (-5 *5 (-1 (-891 *6 *8) *8 (-894 *6) (-891 *6 *8))) (-4 *6 (-1102)) (-4 *8 (-13 (-1051) (-615 (-894 *6)) (-1040 *7))) (-5 *2 (-891 *6 *8)) (-4 *7 (-1051)) (-5 *1 (-943 *6 *7 *8)))) (-4303 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-645 (-894 *7))) (-5 *5 (-1 *9 (-645 *9))) (-5 *6 (-1 (-891 *7 *9) *9 (-894 *7) (-891 *7 *9))) (-4 *7 (-1102)) (-4 *9 (-13 (-1051) (-615 (-894 *7)) (-1040 *8))) (-5 *2 (-891 *7 *9)) (-5 *3 (-645 *9)) (-4 *8 (-1051)) (-5 *1 (-943 *7 *8 *9)))))
-(-10 -7 (-15 -4303 ((-891 |#1| |#3|) (-645 |#3|) (-645 (-894 |#1|)) (-1 |#3| (-645 |#3|)) (-891 |#1| |#3|) (-1 (-891 |#1| |#3|) |#3| (-894 |#1|) (-891 |#1| |#3|)))) (-15 -2436 ((-891 |#1| |#3|) (-645 |#3|) (-645 (-894 |#1|)) (-891 |#1| |#3|) (-1 (-891 |#1| |#3|) |#3| (-894 |#1|) (-891 |#1| |#3|)))))
-((-1408 (((-1174 (-410 (-567))) (-567)) 81)) (-2878 (((-1174 (-567)) (-567)) 84)) (-3122 (((-1174 (-567)) (-567)) 78)) (-3065 (((-567) (-1174 (-567))) 74)) (-3840 (((-1174 (-410 (-567))) (-567)) 65)) (-3444 (((-1174 (-567)) (-567)) 49)) (-2773 (((-1174 (-567)) (-567)) 86)) (-2489 (((-1174 (-567)) (-567)) 85)) (-2346 (((-1174 (-410 (-567))) (-567)) 67)))
-(((-944) (-10 -7 (-15 -2346 ((-1174 (-410 (-567))) (-567))) (-15 -2489 ((-1174 (-567)) (-567))) (-15 -2773 ((-1174 (-567)) (-567))) (-15 -3444 ((-1174 (-567)) (-567))) (-15 -3840 ((-1174 (-410 (-567))) (-567))) (-15 -3065 ((-567) (-1174 (-567)))) (-15 -3122 ((-1174 (-567)) (-567))) (-15 -2878 ((-1174 (-567)) (-567))) (-15 -1408 ((-1174 (-410 (-567))) (-567))))) (T -944))
-((-1408 (*1 *2 *3) (-12 (-5 *2 (-1174 (-410 (-567)))) (-5 *1 (-944)) (-5 *3 (-567)))) (-2878 (*1 *2 *3) (-12 (-5 *2 (-1174 (-567))) (-5 *1 (-944)) (-5 *3 (-567)))) (-3122 (*1 *2 *3) (-12 (-5 *2 (-1174 (-567))) (-5 *1 (-944)) (-5 *3 (-567)))) (-3065 (*1 *2 *3) (-12 (-5 *3 (-1174 (-567))) (-5 *2 (-567)) (-5 *1 (-944)))) (-3840 (*1 *2 *3) (-12 (-5 *2 (-1174 (-410 (-567)))) (-5 *1 (-944)) (-5 *3 (-567)))) (-3444 (*1 *2 *3) (-12 (-5 *2 (-1174 (-567))) (-5 *1 (-944)) (-5 *3 (-567)))) (-2773 (*1 *2 *3) (-12 (-5 *2 (-1174 (-567))) (-5 *1 (-944)) (-5 *3 (-567)))) (-2489 (*1 *2 *3) (-12 (-5 *2 (-1174 (-567))) (-5 *1 (-944)) (-5 *3 (-567)))) (-2346 (*1 *2 *3) (-12 (-5 *2 (-1174 (-410 (-567)))) (-5 *1 (-944)) (-5 *3 (-567)))))
-(-10 -7 (-15 -2346 ((-1174 (-410 (-567))) (-567))) (-15 -2489 ((-1174 (-567)) (-567))) (-15 -2773 ((-1174 (-567)) (-567))) (-15 -3444 ((-1174 (-567)) (-567))) (-15 -3840 ((-1174 (-410 (-567))) (-567))) (-15 -3065 ((-567) (-1174 (-567)))) (-15 -3122 ((-1174 (-567)) (-567))) (-15 -2878 ((-1174 (-567)) (-567))) (-15 -1408 ((-1174 (-410 (-567))) (-567))))
-((-2403 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1316 (($ (-772)) NIL (|has| |#1| (-23)))) (-1783 (((-1273) $ (-567) (-567)) NIL (|has| $ (-6 -4419)))) (-2496 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-851)))) (-1394 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4419))) (($ $) NIL (-12 (|has| $ (-6 -4419)) (|has| |#1| (-851))))) (-4396 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-851)))) (-3445 (((-112) $ (-772)) NIL)) (-4284 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4419))) ((|#1| $ (-1235 (-567)) |#1|) NIL (|has| $ (-6 -4419)))) (-3350 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2585 (($) NIL T CONST)) (-1764 (($ $) NIL (|has| $ (-6 -4419)))) (-3584 (($ $) NIL)) (-2444 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-3238 (($ |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2477 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4418)))) (-3741 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4419)))) (-3680 ((|#1| $ (-567)) NIL)) (-2569 (((-567) (-1 (-112) |#1|) $) NIL) (((-567) |#1| $) NIL (|has| |#1| (-1102))) (((-567) |#1| $ (-567)) NIL (|has| |#1| (-1102)))) (-4371 (($ (-645 |#1|)) 9)) (-2777 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-1544 (((-690 |#1|) $ $) NIL (|has| |#1| (-1051)))) (-2846 (($ (-772) |#1|) NIL)) (-2077 (((-112) $ (-772)) NIL)) (-4069 (((-567) $) NIL (|has| (-567) (-851)))) (-1354 (($ $ $) NIL (|has| |#1| (-851)))) (-4135 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-851)))) (-2279 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2266 (((-567) $) NIL (|has| (-567) (-851)))) (-2981 (($ $ $) NIL (|has| |#1| (-851)))) (-3731 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3908 ((|#1| $) NIL (-12 (|has| |#1| (-1004)) (|has| |#1| (-1051))))) (-2863 (((-112) $ (-772)) NIL)) (-1699 ((|#1| $) NIL (-12 (|has| |#1| (-1004)) (|has| |#1| (-1051))))) (-1419 (((-1160) $) NIL (|has| |#1| (-1102)))) (-2845 (($ |#1| $ (-567)) NIL) (($ $ $ (-567)) NIL)) (-1789 (((-645 (-567)) $) NIL)) (-2996 (((-112) (-567) $) NIL)) (-3430 (((-1122) $) NIL (|has| |#1| (-1102)))) (-2409 ((|#1| $) NIL (|has| (-567) (-851)))) (-4128 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3986 (($ $ |#1|) NIL (|has| $ (-6 -4419)))) (-2410 (($ $ (-645 |#1|)) 25)) (-3025 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) NIL)) (-1794 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2339 (((-645 |#1|) $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) NIL)) (-1787 ((|#1| $ (-567) |#1|) NIL) ((|#1| $ (-567)) 18) (($ $ (-1235 (-567))) NIL)) (-3366 ((|#1| $ $) NIL (|has| |#1| (-1051)))) (-1879 (((-923) $) 13)) (-1560 (($ $ (-567)) NIL) (($ $ (-1235 (-567))) NIL)) (-4295 (($ $ $) 23)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-1395 (($ $ $ (-567)) NIL (|has| $ (-6 -4419)))) (-4305 (($ $) NIL)) (-3893 (((-539) $) NIL (|has| |#1| (-615 (-539)))) (($ (-645 |#1|)) 14)) (-4147 (($ (-645 |#1|)) NIL)) (-2269 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 24) (($ (-645 $)) NIL)) (-4132 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-1745 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2997 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2971 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2936 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2984 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2958 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3045 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3033 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-567) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-727))) (($ $ |#1|) NIL (|has| |#1| (-727)))) (-2414 (((-772) $) 11 (|has| $ (-6 -4418)))))
+((-3464 ((|#2| (-645 |#1|) (-645 |#1|)) 29)))
+(((-924 |#1| |#2|) (-10 -7 (-15 -3464 (|#2| (-645 |#1|) (-645 |#1|)))) (-365) (-1245 |#1|)) (T -924))
+((-3464 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *4)) (-4 *4 (-365)) (-4 *2 (-1245 *4)) (-5 *1 (-924 *4 *2)))))
+(-10 -7 (-15 -3464 (|#2| (-645 |#1|) (-645 |#1|))))
+((-1599 (((-1175 |#2|) (-645 |#2|) (-645 |#2|)) 17) (((-1242 |#1| |#2|) (-1242 |#1| |#2|) (-645 |#2|) (-645 |#2|)) 13)))
+(((-925 |#1| |#2|) (-10 -7 (-15 -1599 ((-1242 |#1| |#2|) (-1242 |#1| |#2|) (-645 |#2|) (-645 |#2|))) (-15 -1599 ((-1175 |#2|) (-645 |#2|) (-645 |#2|)))) (-1179) (-365)) (T -925))
+((-1599 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *5)) (-4 *5 (-365)) (-5 *2 (-1175 *5)) (-5 *1 (-925 *4 *5)) (-14 *4 (-1179)))) (-1599 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1242 *4 *5)) (-5 *3 (-645 *5)) (-14 *4 (-1179)) (-4 *5 (-365)) (-5 *1 (-925 *4 *5)))))
+(-10 -7 (-15 -1599 ((-1242 |#1| |#2|) (-1242 |#1| |#2|) (-645 |#2|) (-645 |#2|))) (-15 -1599 ((-1175 |#2|) (-645 |#2|) (-645 |#2|))))
+((-2697 (((-567) (-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -2144 (-645 (-1269 (-410 (-954 |#1|))))))))) (-1161)) 177)) (-2612 ((|#4| |#4|) 196)) (-3331 (((-645 (-410 (-954 |#1|))) (-645 (-1179))) 149)) (-2643 (((-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -2144 (-645 (-1269 (-410 (-954 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))) (-690 |#4|) (-645 (-410 (-954 |#1|))) (-645 (-645 |#4|)) (-772) (-772) (-567)) 88)) (-2883 (((-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -2144 (-645 (-1269 (-410 (-954 |#1|)))))) (-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -2144 (-645 (-1269 (-410 (-954 |#1|)))))) (-645 |#4|)) 69)) (-2117 (((-690 |#4|) (-690 |#4|) (-645 |#4|)) 65)) (-2390 (((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -2144 (-645 (-1269 (-410 (-954 |#1|))))))))) (-1161)) 189)) (-1938 (((-567) (-690 |#4|) (-923) (-1161)) 169) (((-567) (-690 |#4|) (-645 (-1179)) (-923) (-1161)) 168) (((-567) (-690 |#4|) (-645 |#4|) (-923) (-1161)) 167) (((-567) (-690 |#4|) (-1161)) 157) (((-567) (-690 |#4|) (-645 (-1179)) (-1161)) 156) (((-567) (-690 |#4|) (-645 |#4|) (-1161)) 155) (((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -2144 (-645 (-1269 (-410 (-954 |#1|))))))))) (-690 |#4|) (-923)) 154) (((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -2144 (-645 (-1269 (-410 (-954 |#1|))))))))) (-690 |#4|) (-645 (-1179)) (-923)) 153) (((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -2144 (-645 (-1269 (-410 (-954 |#1|))))))))) (-690 |#4|) (-645 |#4|) (-923)) 152) (((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -2144 (-645 (-1269 (-410 (-954 |#1|))))))))) (-690 |#4|)) 151) (((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -2144 (-645 (-1269 (-410 (-954 |#1|))))))))) (-690 |#4|) (-645 (-1179))) 150) (((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -2144 (-645 (-1269 (-410 (-954 |#1|))))))))) (-690 |#4|) (-645 |#4|)) 146)) (-2522 ((|#4| (-954 |#1|)) 80)) (-3190 (((-112) (-645 |#4|) (-645 (-645 |#4|))) 193)) (-3833 (((-645 (-645 (-567))) (-567) (-567)) 162)) (-2235 (((-645 (-645 |#4|)) (-645 (-645 |#4|))) 107)) (-1961 (((-772) (-645 (-2 (|:| -1976 (-772)) (|:| |eqns| (-645 (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (|:| |fgb| (-645 |#4|))))) 102)) (-4184 (((-772) (-645 (-2 (|:| -1976 (-772)) (|:| |eqns| (-645 (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (|:| |fgb| (-645 |#4|))))) 101)) (-1731 (((-112) (-645 (-954 |#1|))) 19) (((-112) (-645 |#4|)) 15)) (-2866 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-645 |#4|)) (|:| |n0| (-645 |#4|))) (-645 |#4|) (-645 |#4|)) 84)) (-1861 (((-645 |#4|) |#4|) 57)) (-3454 (((-645 (-410 (-954 |#1|))) (-645 |#4|)) 145) (((-690 (-410 (-954 |#1|))) (-690 |#4|)) 66) (((-410 (-954 |#1|)) |#4|) 142)) (-4075 (((-2 (|:| |rgl| (-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -2144 (-645 (-1269 (-410 (-954 |#1|)))))))))) (|:| |rgsz| (-567))) (-690 |#4|) (-645 (-410 (-954 |#1|))) (-772) (-1161) (-567)) 113)) (-3769 (((-645 (-2 (|:| -1976 (-772)) (|:| |eqns| (-645 (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (|:| |fgb| (-645 |#4|)))) (-690 |#4|) (-772)) 100)) (-2700 (((-645 (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567))))) (-690 |#4|) (-772)) 124)) (-1306 (((-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -2144 (-645 (-1269 (-410 (-954 |#1|)))))) (-2 (|:| -4208 (-690 (-410 (-954 |#1|)))) (|:| |vec| (-645 (-410 (-954 |#1|)))) (|:| -1976 (-772)) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567))))) 56)))
+(((-926 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1938 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -2144 (-645 (-1269 (-410 (-954 |#1|))))))))) (-690 |#4|) (-645 |#4|))) (-15 -1938 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -2144 (-645 (-1269 (-410 (-954 |#1|))))))))) (-690 |#4|) (-645 (-1179)))) (-15 -1938 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -2144 (-645 (-1269 (-410 (-954 |#1|))))))))) (-690 |#4|))) (-15 -1938 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -2144 (-645 (-1269 (-410 (-954 |#1|))))))))) (-690 |#4|) (-645 |#4|) (-923))) (-15 -1938 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -2144 (-645 (-1269 (-410 (-954 |#1|))))))))) (-690 |#4|) (-645 (-1179)) (-923))) (-15 -1938 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -2144 (-645 (-1269 (-410 (-954 |#1|))))))))) (-690 |#4|) (-923))) (-15 -1938 ((-567) (-690 |#4|) (-645 |#4|) (-1161))) (-15 -1938 ((-567) (-690 |#4|) (-645 (-1179)) (-1161))) (-15 -1938 ((-567) (-690 |#4|) (-1161))) (-15 -1938 ((-567) (-690 |#4|) (-645 |#4|) (-923) (-1161))) (-15 -1938 ((-567) (-690 |#4|) (-645 (-1179)) (-923) (-1161))) (-15 -1938 ((-567) (-690 |#4|) (-923) (-1161))) (-15 -2697 ((-567) (-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -2144 (-645 (-1269 (-410 (-954 |#1|))))))))) (-1161))) (-15 -2390 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -2144 (-645 (-1269 (-410 (-954 |#1|))))))))) (-1161))) (-15 -4075 ((-2 (|:| |rgl| (-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -2144 (-645 (-1269 (-410 (-954 |#1|)))))))))) (|:| |rgsz| (-567))) (-690 |#4|) (-645 (-410 (-954 |#1|))) (-772) (-1161) (-567))) (-15 -3454 ((-410 (-954 |#1|)) |#4|)) (-15 -3454 ((-690 (-410 (-954 |#1|))) (-690 |#4|))) (-15 -3454 ((-645 (-410 (-954 |#1|))) (-645 |#4|))) (-15 -3331 ((-645 (-410 (-954 |#1|))) (-645 (-1179)))) (-15 -2522 (|#4| (-954 |#1|))) (-15 -2866 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-645 |#4|)) (|:| |n0| (-645 |#4|))) (-645 |#4|) (-645 |#4|))) (-15 -3769 ((-645 (-2 (|:| -1976 (-772)) (|:| |eqns| (-645 (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (|:| |fgb| (-645 |#4|)))) (-690 |#4|) (-772))) (-15 -2883 ((-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -2144 (-645 (-1269 (-410 (-954 |#1|)))))) (-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -2144 (-645 (-1269 (-410 (-954 |#1|)))))) (-645 |#4|))) (-15 -1306 ((-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -2144 (-645 (-1269 (-410 (-954 |#1|)))))) (-2 (|:| -4208 (-690 (-410 (-954 |#1|)))) (|:| |vec| (-645 (-410 (-954 |#1|)))) (|:| -1976 (-772)) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (-15 -1861 ((-645 |#4|) |#4|)) (-15 -4184 ((-772) (-645 (-2 (|:| -1976 (-772)) (|:| |eqns| (-645 (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (|:| |fgb| (-645 |#4|)))))) (-15 -1961 ((-772) (-645 (-2 (|:| -1976 (-772)) (|:| |eqns| (-645 (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (|:| |fgb| (-645 |#4|)))))) (-15 -2235 ((-645 (-645 |#4|)) (-645 (-645 |#4|)))) (-15 -3833 ((-645 (-645 (-567))) (-567) (-567))) (-15 -3190 ((-112) (-645 |#4|) (-645 (-645 |#4|)))) (-15 -2700 ((-645 (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567))))) (-690 |#4|) (-772))) (-15 -2117 ((-690 |#4|) (-690 |#4|) (-645 |#4|))) (-15 -2643 ((-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -2144 (-645 (-1269 (-410 (-954 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))) (-690 |#4|) (-645 (-410 (-954 |#1|))) (-645 (-645 |#4|)) (-772) (-772) (-567))) (-15 -2612 (|#4| |#4|)) (-15 -1731 ((-112) (-645 |#4|))) (-15 -1731 ((-112) (-645 (-954 |#1|))))) (-13 (-308) (-147)) (-13 (-851) (-615 (-1179))) (-794) (-951 |#1| |#3| |#2|)) (T -926))
+((-1731 (*1 *2 *3) (-12 (-5 *3 (-645 (-954 *4))) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1179)))) (-4 *6 (-794)) (-5 *2 (-112)) (-5 *1 (-926 *4 *5 *6 *7)) (-4 *7 (-951 *4 *6 *5)))) (-1731 (*1 *2 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-951 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1179)))) (-4 *6 (-794)) (-5 *2 (-112)) (-5 *1 (-926 *4 *5 *6 *7)))) (-2612 (*1 *2 *2) (-12 (-4 *3 (-13 (-308) (-147))) (-4 *4 (-13 (-851) (-615 (-1179)))) (-4 *5 (-794)) (-5 *1 (-926 *3 *4 *5 *2)) (-4 *2 (-951 *3 *5 *4)))) (-2643 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567))))) (-5 *4 (-690 *12)) (-5 *5 (-645 (-410 (-954 *9)))) (-5 *6 (-645 (-645 *12))) (-5 *7 (-772)) (-5 *8 (-567)) (-4 *9 (-13 (-308) (-147))) (-4 *12 (-951 *9 *11 *10)) (-4 *10 (-13 (-851) (-615 (-1179)))) (-4 *11 (-794)) (-5 *2 (-2 (|:| |eqzro| (-645 *12)) (|:| |neqzro| (-645 *12)) (|:| |wcond| (-645 (-954 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 *9)))) (|:| -2144 (-645 (-1269 (-410 (-954 *9))))))))) (-5 *1 (-926 *9 *10 *11 *12)))) (-2117 (*1 *2 *2 *3) (-12 (-5 *2 (-690 *7)) (-5 *3 (-645 *7)) (-4 *7 (-951 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1179)))) (-4 *6 (-794)) (-5 *1 (-926 *4 *5 *6 *7)))) (-2700 (*1 *2 *3 *4) (-12 (-5 *3 (-690 *8)) (-5 *4 (-772)) (-4 *8 (-951 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1179)))) (-4 *7 (-794)) (-5 *2 (-645 (-2 (|:| |det| *8) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (-5 *1 (-926 *5 *6 *7 *8)))) (-3190 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-645 *8))) (-5 *3 (-645 *8)) (-4 *8 (-951 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1179)))) (-4 *7 (-794)) (-5 *2 (-112)) (-5 *1 (-926 *5 *6 *7 *8)))) (-3833 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1179)))) (-4 *6 (-794)) (-5 *2 (-645 (-645 (-567)))) (-5 *1 (-926 *4 *5 *6 *7)) (-5 *3 (-567)) (-4 *7 (-951 *4 *6 *5)))) (-2235 (*1 *2 *2) (-12 (-5 *2 (-645 (-645 *6))) (-4 *6 (-951 *3 *5 *4)) (-4 *3 (-13 (-308) (-147))) (-4 *4 (-13 (-851) (-615 (-1179)))) (-4 *5 (-794)) (-5 *1 (-926 *3 *4 *5 *6)))) (-1961 (*1 *2 *3) (-12 (-5 *3 (-645 (-2 (|:| -1976 (-772)) (|:| |eqns| (-645 (-2 (|:| |det| *7) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (|:| |fgb| (-645 *7))))) (-4 *7 (-951 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1179)))) (-4 *6 (-794)) (-5 *2 (-772)) (-5 *1 (-926 *4 *5 *6 *7)))) (-4184 (*1 *2 *3) (-12 (-5 *3 (-645 (-2 (|:| -1976 (-772)) (|:| |eqns| (-645 (-2 (|:| |det| *7) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (|:| |fgb| (-645 *7))))) (-4 *7 (-951 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1179)))) (-4 *6 (-794)) (-5 *2 (-772)) (-5 *1 (-926 *4 *5 *6 *7)))) (-1861 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1179)))) (-4 *6 (-794)) (-5 *2 (-645 *3)) (-5 *1 (-926 *4 *5 *6 *3)) (-4 *3 (-951 *4 *6 *5)))) (-1306 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -4208 (-690 (-410 (-954 *4)))) (|:| |vec| (-645 (-410 (-954 *4)))) (|:| -1976 (-772)) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567))))) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1179)))) (-4 *6 (-794)) (-5 *2 (-2 (|:| |partsol| (-1269 (-410 (-954 *4)))) (|:| -2144 (-645 (-1269 (-410 (-954 *4))))))) (-5 *1 (-926 *4 *5 *6 *7)) (-4 *7 (-951 *4 *6 *5)))) (-2883 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1269 (-410 (-954 *4)))) (|:| -2144 (-645 (-1269 (-410 (-954 *4))))))) (-5 *3 (-645 *7)) (-4 *4 (-13 (-308) (-147))) (-4 *7 (-951 *4 *6 *5)) (-4 *5 (-13 (-851) (-615 (-1179)))) (-4 *6 (-794)) (-5 *1 (-926 *4 *5 *6 *7)))) (-3769 (*1 *2 *3 *4) (-12 (-5 *3 (-690 *8)) (-4 *8 (-951 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1179)))) (-4 *7 (-794)) (-5 *2 (-645 (-2 (|:| -1976 (-772)) (|:| |eqns| (-645 (-2 (|:| |det| *8) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (|:| |fgb| (-645 *8))))) (-5 *1 (-926 *5 *6 *7 *8)) (-5 *4 (-772)))) (-2866 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1179)))) (-4 *6 (-794)) (-4 *7 (-951 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-645 *7)) (|:| |n0| (-645 *7)))) (-5 *1 (-926 *4 *5 *6 *7)) (-5 *3 (-645 *7)))) (-2522 (*1 *2 *3) (-12 (-5 *3 (-954 *4)) (-4 *4 (-13 (-308) (-147))) (-4 *2 (-951 *4 *6 *5)) (-5 *1 (-926 *4 *5 *6 *2)) (-4 *5 (-13 (-851) (-615 (-1179)))) (-4 *6 (-794)))) (-3331 (*1 *2 *3) (-12 (-5 *3 (-645 (-1179))) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1179)))) (-4 *6 (-794)) (-5 *2 (-645 (-410 (-954 *4)))) (-5 *1 (-926 *4 *5 *6 *7)) (-4 *7 (-951 *4 *6 *5)))) (-3454 (*1 *2 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-951 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1179)))) (-4 *6 (-794)) (-5 *2 (-645 (-410 (-954 *4)))) (-5 *1 (-926 *4 *5 *6 *7)))) (-3454 (*1 *2 *3) (-12 (-5 *3 (-690 *7)) (-4 *7 (-951 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1179)))) (-4 *6 (-794)) (-5 *2 (-690 (-410 (-954 *4)))) (-5 *1 (-926 *4 *5 *6 *7)))) (-3454 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1179)))) (-4 *6 (-794)) (-5 *2 (-410 (-954 *4))) (-5 *1 (-926 *4 *5 *6 *3)) (-4 *3 (-951 *4 *6 *5)))) (-4075 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-690 *11)) (-5 *4 (-645 (-410 (-954 *8)))) (-5 *5 (-772)) (-5 *6 (-1161)) (-4 *8 (-13 (-308) (-147))) (-4 *11 (-951 *8 *10 *9)) (-4 *9 (-13 (-851) (-615 (-1179)))) (-4 *10 (-794)) (-5 *2 (-2 (|:| |rgl| (-645 (-2 (|:| |eqzro| (-645 *11)) (|:| |neqzro| (-645 *11)) (|:| |wcond| (-645 (-954 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 *8)))) (|:| -2144 (-645 (-1269 (-410 (-954 *8)))))))))) (|:| |rgsz| (-567)))) (-5 *1 (-926 *8 *9 *10 *11)) (-5 *7 (-567)))) (-2390 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1179)))) (-4 *6 (-794)) (-5 *2 (-645 (-2 (|:| |eqzro| (-645 *7)) (|:| |neqzro| (-645 *7)) (|:| |wcond| (-645 (-954 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 *4)))) (|:| -2144 (-645 (-1269 (-410 (-954 *4)))))))))) (-5 *1 (-926 *4 *5 *6 *7)) (-4 *7 (-951 *4 *6 *5)))) (-2697 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-2 (|:| |eqzro| (-645 *8)) (|:| |neqzro| (-645 *8)) (|:| |wcond| (-645 (-954 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 *5)))) (|:| -2144 (-645 (-1269 (-410 (-954 *5)))))))))) (-5 *4 (-1161)) (-4 *5 (-13 (-308) (-147))) (-4 *8 (-951 *5 *7 *6)) (-4 *6 (-13 (-851) (-615 (-1179)))) (-4 *7 (-794)) (-5 *2 (-567)) (-5 *1 (-926 *5 *6 *7 *8)))) (-1938 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-690 *9)) (-5 *4 (-923)) (-5 *5 (-1161)) (-4 *9 (-951 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) (-4 *7 (-13 (-851) (-615 (-1179)))) (-4 *8 (-794)) (-5 *2 (-567)) (-5 *1 (-926 *6 *7 *8 *9)))) (-1938 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-690 *10)) (-5 *4 (-645 (-1179))) (-5 *5 (-923)) (-5 *6 (-1161)) (-4 *10 (-951 *7 *9 *8)) (-4 *7 (-13 (-308) (-147))) (-4 *8 (-13 (-851) (-615 (-1179)))) (-4 *9 (-794)) (-5 *2 (-567)) (-5 *1 (-926 *7 *8 *9 *10)))) (-1938 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-690 *10)) (-5 *4 (-645 *10)) (-5 *5 (-923)) (-5 *6 (-1161)) (-4 *10 (-951 *7 *9 *8)) (-4 *7 (-13 (-308) (-147))) (-4 *8 (-13 (-851) (-615 (-1179)))) (-4 *9 (-794)) (-5 *2 (-567)) (-5 *1 (-926 *7 *8 *9 *10)))) (-1938 (*1 *2 *3 *4) (-12 (-5 *3 (-690 *8)) (-5 *4 (-1161)) (-4 *8 (-951 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1179)))) (-4 *7 (-794)) (-5 *2 (-567)) (-5 *1 (-926 *5 *6 *7 *8)))) (-1938 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-690 *9)) (-5 *4 (-645 (-1179))) (-5 *5 (-1161)) (-4 *9 (-951 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) (-4 *7 (-13 (-851) (-615 (-1179)))) (-4 *8 (-794)) (-5 *2 (-567)) (-5 *1 (-926 *6 *7 *8 *9)))) (-1938 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-690 *9)) (-5 *4 (-645 *9)) (-5 *5 (-1161)) (-4 *9 (-951 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) (-4 *7 (-13 (-851) (-615 (-1179)))) (-4 *8 (-794)) (-5 *2 (-567)) (-5 *1 (-926 *6 *7 *8 *9)))) (-1938 (*1 *2 *3 *4) (-12 (-5 *3 (-690 *8)) (-5 *4 (-923)) (-4 *8 (-951 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1179)))) (-4 *7 (-794)) (-5 *2 (-645 (-2 (|:| |eqzro| (-645 *8)) (|:| |neqzro| (-645 *8)) (|:| |wcond| (-645 (-954 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 *5)))) (|:| -2144 (-645 (-1269 (-410 (-954 *5)))))))))) (-5 *1 (-926 *5 *6 *7 *8)))) (-1938 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-690 *9)) (-5 *4 (-645 (-1179))) (-5 *5 (-923)) (-4 *9 (-951 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) (-4 *7 (-13 (-851) (-615 (-1179)))) (-4 *8 (-794)) (-5 *2 (-645 (-2 (|:| |eqzro| (-645 *9)) (|:| |neqzro| (-645 *9)) (|:| |wcond| (-645 (-954 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 *6)))) (|:| -2144 (-645 (-1269 (-410 (-954 *6)))))))))) (-5 *1 (-926 *6 *7 *8 *9)))) (-1938 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-690 *9)) (-5 *5 (-923)) (-4 *9 (-951 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) (-4 *7 (-13 (-851) (-615 (-1179)))) (-4 *8 (-794)) (-5 *2 (-645 (-2 (|:| |eqzro| (-645 *9)) (|:| |neqzro| (-645 *9)) (|:| |wcond| (-645 (-954 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 *6)))) (|:| -2144 (-645 (-1269 (-410 (-954 *6)))))))))) (-5 *1 (-926 *6 *7 *8 *9)) (-5 *4 (-645 *9)))) (-1938 (*1 *2 *3) (-12 (-5 *3 (-690 *7)) (-4 *7 (-951 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1179)))) (-4 *6 (-794)) (-5 *2 (-645 (-2 (|:| |eqzro| (-645 *7)) (|:| |neqzro| (-645 *7)) (|:| |wcond| (-645 (-954 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 *4)))) (|:| -2144 (-645 (-1269 (-410 (-954 *4)))))))))) (-5 *1 (-926 *4 *5 *6 *7)))) (-1938 (*1 *2 *3 *4) (-12 (-5 *3 (-690 *8)) (-5 *4 (-645 (-1179))) (-4 *8 (-951 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1179)))) (-4 *7 (-794)) (-5 *2 (-645 (-2 (|:| |eqzro| (-645 *8)) (|:| |neqzro| (-645 *8)) (|:| |wcond| (-645 (-954 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 *5)))) (|:| -2144 (-645 (-1269 (-410 (-954 *5)))))))))) (-5 *1 (-926 *5 *6 *7 *8)))) (-1938 (*1 *2 *3 *4) (-12 (-5 *3 (-690 *8)) (-4 *8 (-951 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1179)))) (-4 *7 (-794)) (-5 *2 (-645 (-2 (|:| |eqzro| (-645 *8)) (|:| |neqzro| (-645 *8)) (|:| |wcond| (-645 (-954 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 *5)))) (|:| -2144 (-645 (-1269 (-410 (-954 *5)))))))))) (-5 *1 (-926 *5 *6 *7 *8)) (-5 *4 (-645 *8)))))
+(-10 -7 (-15 -1938 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -2144 (-645 (-1269 (-410 (-954 |#1|))))))))) (-690 |#4|) (-645 |#4|))) (-15 -1938 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -2144 (-645 (-1269 (-410 (-954 |#1|))))))))) (-690 |#4|) (-645 (-1179)))) (-15 -1938 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -2144 (-645 (-1269 (-410 (-954 |#1|))))))))) (-690 |#4|))) (-15 -1938 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -2144 (-645 (-1269 (-410 (-954 |#1|))))))))) (-690 |#4|) (-645 |#4|) (-923))) (-15 -1938 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -2144 (-645 (-1269 (-410 (-954 |#1|))))))))) (-690 |#4|) (-645 (-1179)) (-923))) (-15 -1938 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -2144 (-645 (-1269 (-410 (-954 |#1|))))))))) (-690 |#4|) (-923))) (-15 -1938 ((-567) (-690 |#4|) (-645 |#4|) (-1161))) (-15 -1938 ((-567) (-690 |#4|) (-645 (-1179)) (-1161))) (-15 -1938 ((-567) (-690 |#4|) (-1161))) (-15 -1938 ((-567) (-690 |#4|) (-645 |#4|) (-923) (-1161))) (-15 -1938 ((-567) (-690 |#4|) (-645 (-1179)) (-923) (-1161))) (-15 -1938 ((-567) (-690 |#4|) (-923) (-1161))) (-15 -2697 ((-567) (-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -2144 (-645 (-1269 (-410 (-954 |#1|))))))))) (-1161))) (-15 -2390 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -2144 (-645 (-1269 (-410 (-954 |#1|))))))))) (-1161))) (-15 -4075 ((-2 (|:| |rgl| (-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -2144 (-645 (-1269 (-410 (-954 |#1|)))))))))) (|:| |rgsz| (-567))) (-690 |#4|) (-645 (-410 (-954 |#1|))) (-772) (-1161) (-567))) (-15 -3454 ((-410 (-954 |#1|)) |#4|)) (-15 -3454 ((-690 (-410 (-954 |#1|))) (-690 |#4|))) (-15 -3454 ((-645 (-410 (-954 |#1|))) (-645 |#4|))) (-15 -3331 ((-645 (-410 (-954 |#1|))) (-645 (-1179)))) (-15 -2522 (|#4| (-954 |#1|))) (-15 -2866 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-645 |#4|)) (|:| |n0| (-645 |#4|))) (-645 |#4|) (-645 |#4|))) (-15 -3769 ((-645 (-2 (|:| -1976 (-772)) (|:| |eqns| (-645 (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (|:| |fgb| (-645 |#4|)))) (-690 |#4|) (-772))) (-15 -2883 ((-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -2144 (-645 (-1269 (-410 (-954 |#1|)))))) (-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -2144 (-645 (-1269 (-410 (-954 |#1|)))))) (-645 |#4|))) (-15 -1306 ((-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -2144 (-645 (-1269 (-410 (-954 |#1|)))))) (-2 (|:| -4208 (-690 (-410 (-954 |#1|)))) (|:| |vec| (-645 (-410 (-954 |#1|)))) (|:| -1976 (-772)) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (-15 -1861 ((-645 |#4|) |#4|)) (-15 -4184 ((-772) (-645 (-2 (|:| -1976 (-772)) (|:| |eqns| (-645 (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (|:| |fgb| (-645 |#4|)))))) (-15 -1961 ((-772) (-645 (-2 (|:| -1976 (-772)) (|:| |eqns| (-645 (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (|:| |fgb| (-645 |#4|)))))) (-15 -2235 ((-645 (-645 |#4|)) (-645 (-645 |#4|)))) (-15 -3833 ((-645 (-645 (-567))) (-567) (-567))) (-15 -3190 ((-112) (-645 |#4|) (-645 (-645 |#4|)))) (-15 -2700 ((-645 (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567))))) (-690 |#4|) (-772))) (-15 -2117 ((-690 |#4|) (-690 |#4|) (-645 |#4|))) (-15 -2643 ((-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -2144 (-645 (-1269 (-410 (-954 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))) (-690 |#4|) (-645 (-410 (-954 |#1|))) (-645 (-645 |#4|)) (-772) (-772) (-567))) (-15 -2612 (|#4| |#4|)) (-15 -1731 ((-112) (-645 |#4|))) (-15 -1731 ((-112) (-645 (-954 |#1|)))))
+((-1993 (((-929) |#1| (-1179)) 17) (((-929) |#1| (-1179) (-1096 (-225))) 21)) (-2210 (((-929) |#1| |#1| (-1179) (-1096 (-225))) 19) (((-929) |#1| (-1179) (-1096 (-225))) 15)))
+(((-927 |#1|) (-10 -7 (-15 -2210 ((-929) |#1| (-1179) (-1096 (-225)))) (-15 -2210 ((-929) |#1| |#1| (-1179) (-1096 (-225)))) (-15 -1993 ((-929) |#1| (-1179) (-1096 (-225)))) (-15 -1993 ((-929) |#1| (-1179)))) (-615 (-539))) (T -927))
+((-1993 (*1 *2 *3 *4) (-12 (-5 *4 (-1179)) (-5 *2 (-929)) (-5 *1 (-927 *3)) (-4 *3 (-615 (-539))))) (-1993 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1179)) (-5 *5 (-1096 (-225))) (-5 *2 (-929)) (-5 *1 (-927 *3)) (-4 *3 (-615 (-539))))) (-2210 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1179)) (-5 *5 (-1096 (-225))) (-5 *2 (-929)) (-5 *1 (-927 *3)) (-4 *3 (-615 (-539))))) (-2210 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1179)) (-5 *5 (-1096 (-225))) (-5 *2 (-929)) (-5 *1 (-927 *3)) (-4 *3 (-615 (-539))))))
+(-10 -7 (-15 -2210 ((-929) |#1| (-1179) (-1096 (-225)))) (-15 -2210 ((-929) |#1| |#1| (-1179) (-1096 (-225)))) (-15 -1993 ((-929) |#1| (-1179) (-1096 (-225)))) (-15 -1993 ((-929) |#1| (-1179))))
+((-1618 (($ $ (-1096 (-225)) (-1096 (-225)) (-1096 (-225))) 123)) (-3742 (((-1096 (-225)) $) 64)) (-3733 (((-1096 (-225)) $) 63)) (-3725 (((-1096 (-225)) $) 62)) (-1745 (((-645 (-645 (-225))) $) 69)) (-1559 (((-1096 (-225)) $) 65)) (-2919 (((-567) (-567)) 57)) (-1845 (((-567) (-567)) 52)) (-3614 (((-567) (-567)) 55)) (-3354 (((-112) (-112)) 59)) (-2233 (((-567)) 56)) (-2013 (($ $ (-1096 (-225))) 126) (($ $) 127)) (-1490 (($ (-1 (-945 (-225)) (-225)) (-1096 (-225))) 133) (($ (-1 (-945 (-225)) (-225)) (-1096 (-225)) (-1096 (-225)) (-1096 (-225)) (-1096 (-225))) 134)) (-2210 (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1096 (-225))) 136) (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1096 (-225)) (-1096 (-225)) (-1096 (-225)) (-1096 (-225))) 137) (($ $ (-1096 (-225))) 129)) (-3567 (((-567)) 60)) (-1982 (((-567)) 50)) (-3973 (((-567)) 53)) (-3600 (((-645 (-645 (-945 (-225)))) $) 153)) (-1980 (((-112) (-112)) 61)) (-4129 (((-863) $) 151)) (-1446 (((-112)) 58)))
+(((-928) (-13 (-976) (-10 -8 (-15 -1490 ($ (-1 (-945 (-225)) (-225)) (-1096 (-225)))) (-15 -1490 ($ (-1 (-945 (-225)) (-225)) (-1096 (-225)) (-1096 (-225)) (-1096 (-225)) (-1096 (-225)))) (-15 -2210 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1096 (-225)))) (-15 -2210 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1096 (-225)) (-1096 (-225)) (-1096 (-225)) (-1096 (-225)))) (-15 -2210 ($ $ (-1096 (-225)))) (-15 -1618 ($ $ (-1096 (-225)) (-1096 (-225)) (-1096 (-225)))) (-15 -2013 ($ $ (-1096 (-225)))) (-15 -2013 ($ $)) (-15 -1559 ((-1096 (-225)) $)) (-15 -1745 ((-645 (-645 (-225))) $)) (-15 -1982 ((-567))) (-15 -1845 ((-567) (-567))) (-15 -3973 ((-567))) (-15 -3614 ((-567) (-567))) (-15 -2233 ((-567))) (-15 -2919 ((-567) (-567))) (-15 -1446 ((-112))) (-15 -3354 ((-112) (-112))) (-15 -3567 ((-567))) (-15 -1980 ((-112) (-112)))))) (T -928))
+((-1490 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-945 (-225)) (-225))) (-5 *3 (-1096 (-225))) (-5 *1 (-928)))) (-1490 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-945 (-225)) (-225))) (-5 *3 (-1096 (-225))) (-5 *1 (-928)))) (-2210 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1096 (-225))) (-5 *1 (-928)))) (-2210 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1096 (-225))) (-5 *1 (-928)))) (-2210 (*1 *1 *1 *2) (-12 (-5 *2 (-1096 (-225))) (-5 *1 (-928)))) (-1618 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1096 (-225))) (-5 *1 (-928)))) (-2013 (*1 *1 *1 *2) (-12 (-5 *2 (-1096 (-225))) (-5 *1 (-928)))) (-2013 (*1 *1 *1) (-5 *1 (-928))) (-1559 (*1 *2 *1) (-12 (-5 *2 (-1096 (-225))) (-5 *1 (-928)))) (-1745 (*1 *2 *1) (-12 (-5 *2 (-645 (-645 (-225)))) (-5 *1 (-928)))) (-1982 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928)))) (-1845 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928)))) (-3973 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928)))) (-3614 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928)))) (-2233 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928)))) (-2919 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928)))) (-1446 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-928)))) (-3354 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-928)))) (-3567 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928)))) (-1980 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-928)))))
+(-13 (-976) (-10 -8 (-15 -1490 ($ (-1 (-945 (-225)) (-225)) (-1096 (-225)))) (-15 -1490 ($ (-1 (-945 (-225)) (-225)) (-1096 (-225)) (-1096 (-225)) (-1096 (-225)) (-1096 (-225)))) (-15 -2210 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1096 (-225)))) (-15 -2210 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1096 (-225)) (-1096 (-225)) (-1096 (-225)) (-1096 (-225)))) (-15 -2210 ($ $ (-1096 (-225)))) (-15 -1618 ($ $ (-1096 (-225)) (-1096 (-225)) (-1096 (-225)))) (-15 -2013 ($ $ (-1096 (-225)))) (-15 -2013 ($ $)) (-15 -1559 ((-1096 (-225)) $)) (-15 -1745 ((-645 (-645 (-225))) $)) (-15 -1982 ((-567))) (-15 -1845 ((-567) (-567))) (-15 -3973 ((-567))) (-15 -3614 ((-567) (-567))) (-15 -2233 ((-567))) (-15 -2919 ((-567) (-567))) (-15 -1446 ((-112))) (-15 -3354 ((-112) (-112))) (-15 -3567 ((-567))) (-15 -1980 ((-112) (-112)))))
+((-1618 (($ $ (-1096 (-225))) 124) (($ $ (-1096 (-225)) (-1096 (-225))) 125)) (-3733 (((-1096 (-225)) $) 73)) (-3725 (((-1096 (-225)) $) 72)) (-1559 (((-1096 (-225)) $) 74)) (-3560 (((-567) (-567)) 66)) (-1517 (((-567) (-567)) 61)) (-2689 (((-567) (-567)) 64)) (-3444 (((-112) (-112)) 68)) (-3684 (((-567)) 65)) (-2013 (($ $ (-1096 (-225))) 128) (($ $) 129)) (-1490 (($ (-1 (-945 (-225)) (-225)) (-1096 (-225))) 143) (($ (-1 (-945 (-225)) (-225)) (-1096 (-225)) (-1096 (-225)) (-1096 (-225))) 144)) (-1993 (($ (-1 (-225) (-225)) (-1096 (-225))) 151) (($ (-1 (-225) (-225))) 155)) (-2210 (($ (-1 (-225) (-225)) (-1096 (-225))) 139) (($ (-1 (-225) (-225)) (-1096 (-225)) (-1096 (-225))) 140) (($ (-645 (-1 (-225) (-225))) (-1096 (-225))) 148) (($ (-645 (-1 (-225) (-225))) (-1096 (-225)) (-1096 (-225))) 149) (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1096 (-225))) 141) (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1096 (-225)) (-1096 (-225)) (-1096 (-225))) 142) (($ $ (-1096 (-225))) 130)) (-3448 (((-112) $) 69)) (-3463 (((-567)) 70)) (-3124 (((-567)) 59)) (-4211 (((-567)) 62)) (-3600 (((-645 (-645 (-945 (-225)))) $) 35)) (-2636 (((-112) (-112)) 71)) (-4129 (((-863) $) 169)) (-3555 (((-112)) 67)))
+(((-929) (-13 (-957) (-10 -8 (-15 -2210 ($ (-1 (-225) (-225)) (-1096 (-225)))) (-15 -2210 ($ (-1 (-225) (-225)) (-1096 (-225)) (-1096 (-225)))) (-15 -2210 ($ (-645 (-1 (-225) (-225))) (-1096 (-225)))) (-15 -2210 ($ (-645 (-1 (-225) (-225))) (-1096 (-225)) (-1096 (-225)))) (-15 -2210 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1096 (-225)))) (-15 -2210 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1096 (-225)) (-1096 (-225)) (-1096 (-225)))) (-15 -1490 ($ (-1 (-945 (-225)) (-225)) (-1096 (-225)))) (-15 -1490 ($ (-1 (-945 (-225)) (-225)) (-1096 (-225)) (-1096 (-225)) (-1096 (-225)))) (-15 -1993 ($ (-1 (-225) (-225)) (-1096 (-225)))) (-15 -1993 ($ (-1 (-225) (-225)))) (-15 -2210 ($ $ (-1096 (-225)))) (-15 -3448 ((-112) $)) (-15 -1618 ($ $ (-1096 (-225)))) (-15 -1618 ($ $ (-1096 (-225)) (-1096 (-225)))) (-15 -2013 ($ $ (-1096 (-225)))) (-15 -2013 ($ $)) (-15 -1559 ((-1096 (-225)) $)) (-15 -3124 ((-567))) (-15 -1517 ((-567) (-567))) (-15 -4211 ((-567))) (-15 -2689 ((-567) (-567))) (-15 -3684 ((-567))) (-15 -3560 ((-567) (-567))) (-15 -3555 ((-112))) (-15 -3444 ((-112) (-112))) (-15 -3463 ((-567))) (-15 -2636 ((-112) (-112)))))) (T -929))
+((-2210 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1096 (-225))) (-5 *1 (-929)))) (-2210 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1096 (-225))) (-5 *1 (-929)))) (-2210 (*1 *1 *2 *3) (-12 (-5 *2 (-645 (-1 (-225) (-225)))) (-5 *3 (-1096 (-225))) (-5 *1 (-929)))) (-2210 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-645 (-1 (-225) (-225)))) (-5 *3 (-1096 (-225))) (-5 *1 (-929)))) (-2210 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1096 (-225))) (-5 *1 (-929)))) (-2210 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1096 (-225))) (-5 *1 (-929)))) (-1490 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-945 (-225)) (-225))) (-5 *3 (-1096 (-225))) (-5 *1 (-929)))) (-1490 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-945 (-225)) (-225))) (-5 *3 (-1096 (-225))) (-5 *1 (-929)))) (-1993 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1096 (-225))) (-5 *1 (-929)))) (-1993 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-929)))) (-2210 (*1 *1 *1 *2) (-12 (-5 *2 (-1096 (-225))) (-5 *1 (-929)))) (-3448 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-929)))) (-1618 (*1 *1 *1 *2) (-12 (-5 *2 (-1096 (-225))) (-5 *1 (-929)))) (-1618 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1096 (-225))) (-5 *1 (-929)))) (-2013 (*1 *1 *1 *2) (-12 (-5 *2 (-1096 (-225))) (-5 *1 (-929)))) (-2013 (*1 *1 *1) (-5 *1 (-929))) (-1559 (*1 *2 *1) (-12 (-5 *2 (-1096 (-225))) (-5 *1 (-929)))) (-3124 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-929)))) (-1517 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-929)))) (-4211 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-929)))) (-2689 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-929)))) (-3684 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-929)))) (-3560 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-929)))) (-3555 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-929)))) (-3444 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-929)))) (-3463 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-929)))) (-2636 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-929)))))
+(-13 (-957) (-10 -8 (-15 -2210 ($ (-1 (-225) (-225)) (-1096 (-225)))) (-15 -2210 ($ (-1 (-225) (-225)) (-1096 (-225)) (-1096 (-225)))) (-15 -2210 ($ (-645 (-1 (-225) (-225))) (-1096 (-225)))) (-15 -2210 ($ (-645 (-1 (-225) (-225))) (-1096 (-225)) (-1096 (-225)))) (-15 -2210 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1096 (-225)))) (-15 -2210 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1096 (-225)) (-1096 (-225)) (-1096 (-225)))) (-15 -1490 ($ (-1 (-945 (-225)) (-225)) (-1096 (-225)))) (-15 -1490 ($ (-1 (-945 (-225)) (-225)) (-1096 (-225)) (-1096 (-225)) (-1096 (-225)))) (-15 -1993 ($ (-1 (-225) (-225)) (-1096 (-225)))) (-15 -1993 ($ (-1 (-225) (-225)))) (-15 -2210 ($ $ (-1096 (-225)))) (-15 -3448 ((-112) $)) (-15 -1618 ($ $ (-1096 (-225)))) (-15 -1618 ($ $ (-1096 (-225)) (-1096 (-225)))) (-15 -2013 ($ $ (-1096 (-225)))) (-15 -2013 ($ $)) (-15 -1559 ((-1096 (-225)) $)) (-15 -3124 ((-567))) (-15 -1517 ((-567) (-567))) (-15 -4211 ((-567))) (-15 -2689 ((-567) (-567))) (-15 -3684 ((-567))) (-15 -3560 ((-567) (-567))) (-15 -3555 ((-112))) (-15 -3444 ((-112) (-112))) (-15 -3463 ((-567))) (-15 -2636 ((-112) (-112)))))
+((-3896 (((-645 (-1096 (-225))) (-645 (-645 (-945 (-225))))) 34)))
+(((-930) (-10 -7 (-15 -3896 ((-645 (-1096 (-225))) (-645 (-645 (-945 (-225)))))))) (T -930))
+((-3896 (*1 *2 *3) (-12 (-5 *3 (-645 (-645 (-945 (-225))))) (-5 *2 (-645 (-1096 (-225)))) (-5 *1 (-930)))))
+(-10 -7 (-15 -3896 ((-645 (-1096 (-225))) (-645 (-645 (-945 (-225)))))))
+((-2125 ((|#2| |#2|) 28)) (-3256 ((|#2| |#2|) 29)) (-3304 ((|#2| |#2|) 27)) (-2083 ((|#2| |#2| (-509)) 26)))
+(((-931 |#1| |#2|) (-10 -7 (-15 -2083 (|#2| |#2| (-509))) (-15 -3304 (|#2| |#2|)) (-15 -2125 (|#2| |#2|)) (-15 -3256 (|#2| |#2|))) (-1102) (-433 |#1|)) (T -931))
+((-3256 (*1 *2 *2) (-12 (-4 *3 (-1102)) (-5 *1 (-931 *3 *2)) (-4 *2 (-433 *3)))) (-2125 (*1 *2 *2) (-12 (-4 *3 (-1102)) (-5 *1 (-931 *3 *2)) (-4 *2 (-433 *3)))) (-3304 (*1 *2 *2) (-12 (-4 *3 (-1102)) (-5 *1 (-931 *3 *2)) (-4 *2 (-433 *3)))) (-2083 (*1 *2 *2 *3) (-12 (-5 *3 (-509)) (-4 *4 (-1102)) (-5 *1 (-931 *4 *2)) (-4 *2 (-433 *4)))))
+(-10 -7 (-15 -2083 (|#2| |#2| (-509))) (-15 -3304 (|#2| |#2|)) (-15 -2125 (|#2| |#2|)) (-15 -3256 (|#2| |#2|)))
+((-2125 (((-317 (-567)) (-1179)) 16)) (-3256 (((-317 (-567)) (-1179)) 14)) (-3304 (((-317 (-567)) (-1179)) 12)) (-2083 (((-317 (-567)) (-1179) (-509)) 19)))
+(((-932) (-10 -7 (-15 -2083 ((-317 (-567)) (-1179) (-509))) (-15 -3304 ((-317 (-567)) (-1179))) (-15 -2125 ((-317 (-567)) (-1179))) (-15 -3256 ((-317 (-567)) (-1179))))) (T -932))
+((-3256 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-317 (-567))) (-5 *1 (-932)))) (-2125 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-317 (-567))) (-5 *1 (-932)))) (-3304 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-317 (-567))) (-5 *1 (-932)))) (-2083 (*1 *2 *3 *4) (-12 (-5 *3 (-1179)) (-5 *4 (-509)) (-5 *2 (-317 (-567))) (-5 *1 (-932)))))
+(-10 -7 (-15 -2083 ((-317 (-567)) (-1179) (-509))) (-15 -3304 ((-317 (-567)) (-1179))) (-15 -2125 ((-317 (-567)) (-1179))) (-15 -3256 ((-317 (-567)) (-1179))))
+((-3193 (((-891 |#1| |#3|) |#2| (-894 |#1|) (-891 |#1| |#3|)) 25)) (-2040 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13)))
+(((-933 |#1| |#2| |#3|) (-10 -7 (-15 -2040 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -3193 ((-891 |#1| |#3|) |#2| (-894 |#1|) (-891 |#1| |#3|)))) (-1102) (-888 |#1|) (-13 (-1102) (-1040 |#2|))) (T -933))
+((-3193 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-891 *5 *6)) (-5 *4 (-894 *5)) (-4 *5 (-1102)) (-4 *6 (-13 (-1102) (-1040 *3))) (-4 *3 (-888 *5)) (-5 *1 (-933 *5 *3 *6)))) (-2040 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1102) (-1040 *5))) (-4 *5 (-888 *4)) (-4 *4 (-1102)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-933 *4 *5 *6)))))
+(-10 -7 (-15 -2040 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -3193 ((-891 |#1| |#3|) |#2| (-894 |#1|) (-891 |#1| |#3|))))
+((-3193 (((-891 |#1| |#3|) |#3| (-894 |#1|) (-891 |#1| |#3|)) 30)))
+(((-934 |#1| |#2| |#3|) (-10 -7 (-15 -3193 ((-891 |#1| |#3|) |#3| (-894 |#1|) (-891 |#1| |#3|)))) (-1102) (-13 (-559) (-888 |#1|)) (-13 (-433 |#2|) (-615 (-894 |#1|)) (-888 |#1|) (-1040 (-613 $)))) (T -934))
+((-3193 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-891 *5 *3)) (-4 *5 (-1102)) (-4 *3 (-13 (-433 *6) (-615 *4) (-888 *5) (-1040 (-613 $)))) (-5 *4 (-894 *5)) (-4 *6 (-13 (-559) (-888 *5))) (-5 *1 (-934 *5 *6 *3)))))
+(-10 -7 (-15 -3193 ((-891 |#1| |#3|) |#3| (-894 |#1|) (-891 |#1| |#3|))))
+((-3193 (((-891 (-567) |#1|) |#1| (-894 (-567)) (-891 (-567) |#1|)) 13)))
+(((-935 |#1|) (-10 -7 (-15 -3193 ((-891 (-567) |#1|) |#1| (-894 (-567)) (-891 (-567) |#1|)))) (-548)) (T -935))
+((-3193 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-891 (-567) *3)) (-5 *4 (-894 (-567))) (-4 *3 (-548)) (-5 *1 (-935 *3)))))
+(-10 -7 (-15 -3193 ((-891 (-567) |#1|) |#1| (-894 (-567)) (-891 (-567) |#1|))))
+((-3193 (((-891 |#1| |#2|) (-613 |#2|) (-894 |#1|) (-891 |#1| |#2|)) 57)))
+(((-936 |#1| |#2|) (-10 -7 (-15 -3193 ((-891 |#1| |#2|) (-613 |#2|) (-894 |#1|) (-891 |#1| |#2|)))) (-1102) (-13 (-1102) (-1040 (-613 $)) (-615 (-894 |#1|)) (-888 |#1|))) (T -936))
+((-3193 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-891 *5 *6)) (-5 *3 (-613 *6)) (-4 *5 (-1102)) (-4 *6 (-13 (-1102) (-1040 (-613 $)) (-615 *4) (-888 *5))) (-5 *4 (-894 *5)) (-5 *1 (-936 *5 *6)))))
+(-10 -7 (-15 -3193 ((-891 |#1| |#2|) (-613 |#2|) (-894 |#1|) (-891 |#1| |#2|))))
+((-3193 (((-887 |#1| |#2| |#3|) |#3| (-894 |#1|) (-887 |#1| |#2| |#3|)) 17)))
+(((-937 |#1| |#2| |#3|) (-10 -7 (-15 -3193 ((-887 |#1| |#2| |#3|) |#3| (-894 |#1|) (-887 |#1| |#2| |#3|)))) (-1102) (-888 |#1|) (-667 |#2|)) (T -937))
+((-3193 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-887 *5 *6 *3)) (-5 *4 (-894 *5)) (-4 *5 (-1102)) (-4 *6 (-888 *5)) (-4 *3 (-667 *6)) (-5 *1 (-937 *5 *6 *3)))))
+(-10 -7 (-15 -3193 ((-887 |#1| |#2| |#3|) |#3| (-894 |#1|) (-887 |#1| |#2| |#3|))))
+((-3193 (((-891 |#1| |#5|) |#5| (-894 |#1|) (-891 |#1| |#5|)) 17 (|has| |#3| (-888 |#1|))) (((-891 |#1| |#5|) |#5| (-894 |#1|) (-891 |#1| |#5|) (-1 (-891 |#1| |#5|) |#3| (-894 |#1|) (-891 |#1| |#5|))) 16)))
+(((-938 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3193 ((-891 |#1| |#5|) |#5| (-894 |#1|) (-891 |#1| |#5|) (-1 (-891 |#1| |#5|) |#3| (-894 |#1|) (-891 |#1| |#5|)))) (IF (|has| |#3| (-888 |#1|)) (-15 -3193 ((-891 |#1| |#5|) |#5| (-894 |#1|) (-891 |#1| |#5|))) |%noBranch|)) (-1102) (-794) (-851) (-13 (-1051) (-888 |#1|)) (-13 (-951 |#4| |#2| |#3|) (-615 (-894 |#1|)))) (T -938))
+((-3193 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-891 *5 *3)) (-4 *5 (-1102)) (-4 *3 (-13 (-951 *8 *6 *7) (-615 *4))) (-5 *4 (-894 *5)) (-4 *7 (-888 *5)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-13 (-1051) (-888 *5))) (-5 *1 (-938 *5 *6 *7 *8 *3)))) (-3193 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-891 *6 *3) *8 (-894 *6) (-891 *6 *3))) (-4 *8 (-851)) (-5 *2 (-891 *6 *3)) (-5 *4 (-894 *6)) (-4 *6 (-1102)) (-4 *3 (-13 (-951 *9 *7 *8) (-615 *4))) (-4 *7 (-794)) (-4 *9 (-13 (-1051) (-888 *6))) (-5 *1 (-938 *6 *7 *8 *9 *3)))))
+(-10 -7 (-15 -3193 ((-891 |#1| |#5|) |#5| (-894 |#1|) (-891 |#1| |#5|) (-1 (-891 |#1| |#5|) |#3| (-894 |#1|) (-891 |#1| |#5|)))) (IF (|has| |#3| (-888 |#1|)) (-15 -3193 ((-891 |#1| |#5|) |#5| (-894 |#1|) (-891 |#1| |#5|))) |%noBranch|))
+((-2133 ((|#2| |#2| (-645 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13)))
+(((-939 |#1| |#2| |#3|) (-10 -7 (-15 -2133 (|#2| |#2| (-1 (-112) |#3|))) (-15 -2133 (|#2| |#2| (-645 (-1 (-112) |#3|))))) (-1102) (-433 |#1|) (-1219)) (T -939))
+((-2133 (*1 *2 *2 *3) (-12 (-5 *3 (-645 (-1 (-112) *5))) (-4 *5 (-1219)) (-4 *4 (-1102)) (-5 *1 (-939 *4 *2 *5)) (-4 *2 (-433 *4)))) (-2133 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1219)) (-4 *4 (-1102)) (-5 *1 (-939 *4 *2 *5)) (-4 *2 (-433 *4)))))
+(-10 -7 (-15 -2133 (|#2| |#2| (-1 (-112) |#3|))) (-15 -2133 (|#2| |#2| (-645 (-1 (-112) |#3|)))))
+((-2133 (((-317 (-567)) (-1179) (-645 (-1 (-112) |#1|))) 18) (((-317 (-567)) (-1179) (-1 (-112) |#1|)) 15)))
+(((-940 |#1|) (-10 -7 (-15 -2133 ((-317 (-567)) (-1179) (-1 (-112) |#1|))) (-15 -2133 ((-317 (-567)) (-1179) (-645 (-1 (-112) |#1|))))) (-1219)) (T -940))
+((-2133 (*1 *2 *3 *4) (-12 (-5 *3 (-1179)) (-5 *4 (-645 (-1 (-112) *5))) (-4 *5 (-1219)) (-5 *2 (-317 (-567))) (-5 *1 (-940 *5)))) (-2133 (*1 *2 *3 *4) (-12 (-5 *3 (-1179)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1219)) (-5 *2 (-317 (-567))) (-5 *1 (-940 *5)))))
+(-10 -7 (-15 -2133 ((-317 (-567)) (-1179) (-1 (-112) |#1|))) (-15 -2133 ((-317 (-567)) (-1179) (-645 (-1 (-112) |#1|)))))
+((-3193 (((-891 |#1| |#3|) |#3| (-894 |#1|) (-891 |#1| |#3|)) 25)))
+(((-941 |#1| |#2| |#3|) (-10 -7 (-15 -3193 ((-891 |#1| |#3|) |#3| (-894 |#1|) (-891 |#1| |#3|)))) (-1102) (-13 (-559) (-888 |#1|) (-615 (-894 |#1|))) (-994 |#2|)) (T -941))
+((-3193 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-891 *5 *3)) (-4 *5 (-1102)) (-4 *3 (-994 *6)) (-4 *6 (-13 (-559) (-888 *5) (-615 *4))) (-5 *4 (-894 *5)) (-5 *1 (-941 *5 *6 *3)))))
+(-10 -7 (-15 -3193 ((-891 |#1| |#3|) |#3| (-894 |#1|) (-891 |#1| |#3|))))
+((-3193 (((-891 |#1| (-1179)) (-1179) (-894 |#1|) (-891 |#1| (-1179))) 18)))
+(((-942 |#1|) (-10 -7 (-15 -3193 ((-891 |#1| (-1179)) (-1179) (-894 |#1|) (-891 |#1| (-1179))))) (-1102)) (T -942))
+((-3193 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-891 *5 (-1179))) (-5 *3 (-1179)) (-5 *4 (-894 *5)) (-4 *5 (-1102)) (-5 *1 (-942 *5)))))
+(-10 -7 (-15 -3193 ((-891 |#1| (-1179)) (-1179) (-894 |#1|) (-891 |#1| (-1179)))))
+((-3617 (((-891 |#1| |#3|) (-645 |#3|) (-645 (-894 |#1|)) (-891 |#1| |#3|) (-1 (-891 |#1| |#3|) |#3| (-894 |#1|) (-891 |#1| |#3|))) 34)) (-3193 (((-891 |#1| |#3|) (-645 |#3|) (-645 (-894 |#1|)) (-1 |#3| (-645 |#3|)) (-891 |#1| |#3|) (-1 (-891 |#1| |#3|) |#3| (-894 |#1|) (-891 |#1| |#3|))) 33)))
+(((-943 |#1| |#2| |#3|) (-10 -7 (-15 -3193 ((-891 |#1| |#3|) (-645 |#3|) (-645 (-894 |#1|)) (-1 |#3| (-645 |#3|)) (-891 |#1| |#3|) (-1 (-891 |#1| |#3|) |#3| (-894 |#1|) (-891 |#1| |#3|)))) (-15 -3617 ((-891 |#1| |#3|) (-645 |#3|) (-645 (-894 |#1|)) (-891 |#1| |#3|) (-1 (-891 |#1| |#3|) |#3| (-894 |#1|) (-891 |#1| |#3|))))) (-1102) (-1051) (-13 (-1051) (-615 (-894 |#1|)) (-1040 |#2|))) (T -943))
+((-3617 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 (-894 *6))) (-5 *5 (-1 (-891 *6 *8) *8 (-894 *6) (-891 *6 *8))) (-4 *6 (-1102)) (-4 *8 (-13 (-1051) (-615 (-894 *6)) (-1040 *7))) (-5 *2 (-891 *6 *8)) (-4 *7 (-1051)) (-5 *1 (-943 *6 *7 *8)))) (-3193 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-645 (-894 *7))) (-5 *5 (-1 *9 (-645 *9))) (-5 *6 (-1 (-891 *7 *9) *9 (-894 *7) (-891 *7 *9))) (-4 *7 (-1102)) (-4 *9 (-13 (-1051) (-615 (-894 *7)) (-1040 *8))) (-5 *2 (-891 *7 *9)) (-5 *3 (-645 *9)) (-4 *8 (-1051)) (-5 *1 (-943 *7 *8 *9)))))
+(-10 -7 (-15 -3193 ((-891 |#1| |#3|) (-645 |#3|) (-645 (-894 |#1|)) (-1 |#3| (-645 |#3|)) (-891 |#1| |#3|) (-1 (-891 |#1| |#3|) |#3| (-894 |#1|) (-891 |#1| |#3|)))) (-15 -3617 ((-891 |#1| |#3|) (-645 |#3|) (-645 (-894 |#1|)) (-891 |#1| |#3|) (-1 (-891 |#1| |#3|) |#3| (-894 |#1|) (-891 |#1| |#3|)))))
+((-1947 (((-1175 (-410 (-567))) (-567)) 81)) (-4245 (((-1175 (-567)) (-567)) 84)) (-1507 (((-1175 (-567)) (-567)) 78)) (-4201 (((-567) (-1175 (-567))) 74)) (-3994 (((-1175 (-410 (-567))) (-567)) 65)) (-1463 (((-1175 (-567)) (-567)) 49)) (-1635 (((-1175 (-567)) (-567)) 86)) (-1560 (((-1175 (-567)) (-567)) 85)) (-1396 (((-1175 (-410 (-567))) (-567)) 67)))
+(((-944) (-10 -7 (-15 -1396 ((-1175 (-410 (-567))) (-567))) (-15 -1560 ((-1175 (-567)) (-567))) (-15 -1635 ((-1175 (-567)) (-567))) (-15 -1463 ((-1175 (-567)) (-567))) (-15 -3994 ((-1175 (-410 (-567))) (-567))) (-15 -4201 ((-567) (-1175 (-567)))) (-15 -1507 ((-1175 (-567)) (-567))) (-15 -4245 ((-1175 (-567)) (-567))) (-15 -1947 ((-1175 (-410 (-567))) (-567))))) (T -944))
+((-1947 (*1 *2 *3) (-12 (-5 *2 (-1175 (-410 (-567)))) (-5 *1 (-944)) (-5 *3 (-567)))) (-4245 (*1 *2 *3) (-12 (-5 *2 (-1175 (-567))) (-5 *1 (-944)) (-5 *3 (-567)))) (-1507 (*1 *2 *3) (-12 (-5 *2 (-1175 (-567))) (-5 *1 (-944)) (-5 *3 (-567)))) (-4201 (*1 *2 *3) (-12 (-5 *3 (-1175 (-567))) (-5 *2 (-567)) (-5 *1 (-944)))) (-3994 (*1 *2 *3) (-12 (-5 *2 (-1175 (-410 (-567)))) (-5 *1 (-944)) (-5 *3 (-567)))) (-1463 (*1 *2 *3) (-12 (-5 *2 (-1175 (-567))) (-5 *1 (-944)) (-5 *3 (-567)))) (-1635 (*1 *2 *3) (-12 (-5 *2 (-1175 (-567))) (-5 *1 (-944)) (-5 *3 (-567)))) (-1560 (*1 *2 *3) (-12 (-5 *2 (-1175 (-567))) (-5 *1 (-944)) (-5 *3 (-567)))) (-1396 (*1 *2 *3) (-12 (-5 *2 (-1175 (-410 (-567)))) (-5 *1 (-944)) (-5 *3 (-567)))))
+(-10 -7 (-15 -1396 ((-1175 (-410 (-567))) (-567))) (-15 -1560 ((-1175 (-567)) (-567))) (-15 -1635 ((-1175 (-567)) (-567))) (-15 -1463 ((-1175 (-567)) (-567))) (-15 -3994 ((-1175 (-410 (-567))) (-567))) (-15 -4201 ((-567) (-1175 (-567)))) (-15 -1507 ((-1175 (-567)) (-567))) (-15 -4245 ((-1175 (-567)) (-567))) (-15 -1947 ((-1175 (-410 (-567))) (-567))))
+((-2412 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1318 (($ (-772)) NIL (|has| |#1| (-23)))) (-3843 (((-1274) $ (-567) (-567)) NIL (|has| $ (-6 -4423)))) (-3531 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-851)))) (-2676 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4423))) (($ $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-851))))) (-1311 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-851)))) (-1563 (((-112) $ (-772)) NIL)) (-4285 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4423))) ((|#1| $ (-1236 (-567)) |#1|) NIL (|has| $ (-6 -4423)))) (-3356 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-3647 (($) NIL T CONST)) (-1602 (($ $) NIL (|has| $ (-6 -4423)))) (-3592 (($ $) NIL)) (-2453 (($ $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3246 (($ |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2494 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4422)))) (-3760 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4423)))) (-3703 ((|#1| $ (-567)) NIL)) (-2578 (((-567) (-1 (-112) |#1|) $) NIL) (((-567) |#1| $) NIL (|has| |#1| (-1102))) (((-567) |#1| $ (-567)) NIL (|has| |#1| (-1102)))) (-4385 (($ (-645 |#1|)) 9)) (-2799 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-1562 (((-690 |#1|) $ $) NIL (|has| |#1| (-1051)))) (-2858 (($ (-772) |#1|) NIL)) (-4093 (((-112) $ (-772)) NIL)) (-3895 (((-567) $) NIL (|has| (-567) (-851)))) (-1365 (($ $ $) NIL (|has| |#1| (-851)))) (-2473 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-851)))) (-1942 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-3237 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3255 (((-567) $) NIL (|has| (-567) (-851)))) (-3002 (($ $ $) NIL (|has| |#1| (-851)))) (-3751 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3390 ((|#1| $) NIL (-12 (|has| |#1| (-1004)) (|has| |#1| (-1051))))) (-1986 (((-112) $ (-772)) NIL)) (-2334 ((|#1| $) NIL (-12 (|has| |#1| (-1004)) (|has| |#1| (-1051))))) (-2516 (((-1161) $) NIL (|has| |#1| (-1102)))) (-2857 (($ |#1| $ (-567)) NIL) (($ $ $ (-567)) NIL)) (-4364 (((-645 (-567)) $) NIL)) (-3188 (((-112) (-567) $) NIL)) (-3437 (((-1122) $) NIL (|has| |#1| (-1102)))) (-2418 ((|#1| $) NIL (|has| (-567) (-851)))) (-3196 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3823 (($ $ |#1|) NIL (|has| $ (-6 -4423)))) (-1874 (($ $ (-645 |#1|)) 25)) (-4233 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3875 (((-112) $ $) NIL)) (-4058 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-2190 (((-645 |#1|) $) NIL)) (-3885 (((-112) $) NIL)) (-2701 (($) NIL)) (-1801 ((|#1| $ (-567) |#1|) NIL) ((|#1| $ (-567)) 18) (($ $ (-1236 (-567))) NIL)) (-3917 ((|#1| $ $) NIL (|has| |#1| (-1051)))) (-1412 (((-923) $) 13)) (-1569 (($ $ (-567)) NIL) (($ $ (-1236 (-567))) NIL)) (-1759 (($ $ $) 23)) (-3447 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-1656 (($ $ $ (-567)) NIL (|has| $ (-6 -4423)))) (-4309 (($ $) NIL)) (-3902 (((-539) $) NIL (|has| |#1| (-615 (-539)))) (($ (-645 |#1|)) 14)) (-4145 (($ (-645 |#1|)) NIL)) (-2276 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 24) (($ (-645 $)) NIL)) (-4129 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-3357 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3436 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-3004 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2980 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2993 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2968 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3053 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3041 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-567) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-727))) (($ $ |#1|) NIL (|has| |#1| (-727)))) (-2423 (((-772) $) 11 (|has| $ (-6 -4422)))))
(((-945 |#1|) (-982 |#1|) (-1051)) (T -945))
NIL
(-982 |#1|)
-((-3048 (((-484 |#1| |#2|) (-954 |#2|)) 22)) (-3296 (((-247 |#1| |#2|) (-954 |#2|)) 35)) (-3373 (((-954 |#2|) (-484 |#1| |#2|)) 27)) (-1858 (((-247 |#1| |#2|) (-484 |#1| |#2|)) 57)) (-1318 (((-954 |#2|) (-247 |#1| |#2|)) 32)) (-3748 (((-484 |#1| |#2|) (-247 |#1| |#2|)) 48)))
-(((-946 |#1| |#2|) (-10 -7 (-15 -3748 ((-484 |#1| |#2|) (-247 |#1| |#2|))) (-15 -1858 ((-247 |#1| |#2|) (-484 |#1| |#2|))) (-15 -3048 ((-484 |#1| |#2|) (-954 |#2|))) (-15 -3373 ((-954 |#2|) (-484 |#1| |#2|))) (-15 -1318 ((-954 |#2|) (-247 |#1| |#2|))) (-15 -3296 ((-247 |#1| |#2|) (-954 |#2|)))) (-645 (-1178)) (-1051)) (T -946))
-((-3296 (*1 *2 *3) (-12 (-5 *3 (-954 *5)) (-4 *5 (-1051)) (-5 *2 (-247 *4 *5)) (-5 *1 (-946 *4 *5)) (-14 *4 (-645 (-1178))))) (-1318 (*1 *2 *3) (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-645 (-1178))) (-4 *5 (-1051)) (-5 *2 (-954 *5)) (-5 *1 (-946 *4 *5)))) (-3373 (*1 *2 *3) (-12 (-5 *3 (-484 *4 *5)) (-14 *4 (-645 (-1178))) (-4 *5 (-1051)) (-5 *2 (-954 *5)) (-5 *1 (-946 *4 *5)))) (-3048 (*1 *2 *3) (-12 (-5 *3 (-954 *5)) (-4 *5 (-1051)) (-5 *2 (-484 *4 *5)) (-5 *1 (-946 *4 *5)) (-14 *4 (-645 (-1178))))) (-1858 (*1 *2 *3) (-12 (-5 *3 (-484 *4 *5)) (-14 *4 (-645 (-1178))) (-4 *5 (-1051)) (-5 *2 (-247 *4 *5)) (-5 *1 (-946 *4 *5)))) (-3748 (*1 *2 *3) (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-645 (-1178))) (-4 *5 (-1051)) (-5 *2 (-484 *4 *5)) (-5 *1 (-946 *4 *5)))))
-(-10 -7 (-15 -3748 ((-484 |#1| |#2|) (-247 |#1| |#2|))) (-15 -1858 ((-247 |#1| |#2|) (-484 |#1| |#2|))) (-15 -3048 ((-484 |#1| |#2|) (-954 |#2|))) (-15 -3373 ((-954 |#2|) (-484 |#1| |#2|))) (-15 -1318 ((-954 |#2|) (-247 |#1| |#2|))) (-15 -3296 ((-247 |#1| |#2|) (-954 |#2|))))
-((-1828 (((-645 |#2|) |#2| |#2|) 10)) (-2304 (((-772) (-645 |#1|)) 48 (|has| |#1| (-849)))) (-2871 (((-645 |#2|) |#2|) 11)) (-2505 (((-772) (-645 |#1|) (-567) (-567)) 52 (|has| |#1| (-849)))) (-2040 ((|#1| |#2|) 38 (|has| |#1| (-849)))))
-(((-947 |#1| |#2|) (-10 -7 (-15 -1828 ((-645 |#2|) |#2| |#2|)) (-15 -2871 ((-645 |#2|) |#2|)) (IF (|has| |#1| (-849)) (PROGN (-15 -2040 (|#1| |#2|)) (-15 -2304 ((-772) (-645 |#1|))) (-15 -2505 ((-772) (-645 |#1|) (-567) (-567)))) |%noBranch|)) (-365) (-1244 |#1|)) (T -947))
-((-2505 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-645 *5)) (-5 *4 (-567)) (-4 *5 (-849)) (-4 *5 (-365)) (-5 *2 (-772)) (-5 *1 (-947 *5 *6)) (-4 *6 (-1244 *5)))) (-2304 (*1 *2 *3) (-12 (-5 *3 (-645 *4)) (-4 *4 (-849)) (-4 *4 (-365)) (-5 *2 (-772)) (-5 *1 (-947 *4 *5)) (-4 *5 (-1244 *4)))) (-2040 (*1 *2 *3) (-12 (-4 *2 (-365)) (-4 *2 (-849)) (-5 *1 (-947 *2 *3)) (-4 *3 (-1244 *2)))) (-2871 (*1 *2 *3) (-12 (-4 *4 (-365)) (-5 *2 (-645 *3)) (-5 *1 (-947 *4 *3)) (-4 *3 (-1244 *4)))) (-1828 (*1 *2 *3 *3) (-12 (-4 *4 (-365)) (-5 *2 (-645 *3)) (-5 *1 (-947 *4 *3)) (-4 *3 (-1244 *4)))))
-(-10 -7 (-15 -1828 ((-645 |#2|) |#2| |#2|)) (-15 -2871 ((-645 |#2|) |#2|)) (IF (|has| |#1| (-849)) (PROGN (-15 -2040 (|#1| |#2|)) (-15 -2304 ((-772) (-645 |#1|))) (-15 -2505 ((-772) (-645 |#1|) (-567) (-567)))) |%noBranch|))
-((-3829 (((-954 |#2|) (-1 |#2| |#1|) (-954 |#1|)) 19)))
-(((-948 |#1| |#2|) (-10 -7 (-15 -3829 ((-954 |#2|) (-1 |#2| |#1|) (-954 |#1|)))) (-1051) (-1051)) (T -948))
-((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-954 *5)) (-4 *5 (-1051)) (-4 *6 (-1051)) (-5 *2 (-954 *6)) (-5 *1 (-948 *5 *6)))))
-(-10 -7 (-15 -3829 ((-954 |#2|) (-1 |#2| |#1|) (-954 |#1|))))
-((-2675 (((-1241 |#1| (-954 |#2|)) (-954 |#2|) (-1264 |#1|)) 18)))
-(((-949 |#1| |#2|) (-10 -7 (-15 -2675 ((-1241 |#1| (-954 |#2|)) (-954 |#2|) (-1264 |#1|)))) (-1178) (-1051)) (T -949))
-((-2675 (*1 *2 *3 *4) (-12 (-5 *4 (-1264 *5)) (-14 *5 (-1178)) (-4 *6 (-1051)) (-5 *2 (-1241 *5 (-954 *6))) (-5 *1 (-949 *5 *6)) (-5 *3 (-954 *6)))))
-(-10 -7 (-15 -2675 ((-1241 |#1| (-954 |#2|)) (-954 |#2|) (-1264 |#1|))))
-((-1468 (((-772) $) 88) (((-772) $ (-645 |#4|)) 93)) (-3248 (($ $) 203)) (-2908 (((-421 $) $) 195)) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) 141)) (-3753 (((-3 |#2| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 (-567) "failed") $) NIL) (((-3 |#4| "failed") $) 74)) (-2038 ((|#2| $) NIL) (((-410 (-567)) $) NIL) (((-567) $) NIL) ((|#4| $) 73)) (-2951 (($ $ $ |#4|) 95)) (-2630 (((-690 (-567)) (-690 $)) NIL) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL) (((-2 (|:| -2316 (-690 |#2|)) (|:| |vec| (-1268 |#2|))) (-690 $) (-1268 $)) 131) (((-690 |#2|) (-690 $)) 121)) (-3501 (($ $) 210) (($ $ |#4|) 213)) (-3000 (((-645 $) $) 77)) (-4303 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) 229) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) 222)) (-1709 (((-645 $) $) 34)) (-2824 (($ |#2| |#3|) NIL) (($ $ |#4| (-772)) NIL) (($ $ (-645 |#4|) (-645 (-772))) 71)) (-1621 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $ |#4|) 192)) (-2056 (((-3 (-645 $) "failed") $) 52)) (-3671 (((-3 (-645 $) "failed") $) 39)) (-3798 (((-3 (-2 (|:| |var| |#4|) (|:| -3458 (-772))) "failed") $) 57)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 134)) (-2435 (((-421 (-1174 $)) (-1174 $)) 147)) (-3517 (((-421 (-1174 $)) (-1174 $)) 145)) (-2706 (((-421 $) $) 165)) (-2631 (($ $ (-645 (-295 $))) 24) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-645 |#4|) (-645 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-645 |#4|) (-645 $)) NIL)) (-3788 (($ $ |#4|) 97)) (-3893 (((-894 (-381)) $) 243) (((-894 (-567)) $) 236) (((-539) $) 251)) (-4358 ((|#2| $) NIL) (($ $ |#4|) 205)) (-1895 (((-3 (-1268 $) "failed") (-690 $)) 184)) (-4136 ((|#2| $ |#3|) NIL) (($ $ |#4| (-772)) 62) (($ $ (-645 |#4|) (-645 (-772))) 69)) (-1903 (((-3 $ "failed") $) 186)) (-1745 (((-112) $ $) 216)))
-(((-950 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3750 ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 -2908 ((-421 |#1|) |#1|)) (-15 -3248 (|#1| |#1|)) (-15 -1903 ((-3 |#1| "failed") |#1|)) (-15 -3893 ((-539) |#1|)) (-15 -3893 ((-894 (-567)) |#1|)) (-15 -3893 ((-894 (-381)) |#1|)) (-15 -4303 ((-891 (-567) |#1|) |#1| (-894 (-567)) (-891 (-567) |#1|))) (-15 -4303 ((-891 (-381) |#1|) |#1| (-894 (-381)) (-891 (-381) |#1|))) (-15 -2706 ((-421 |#1|) |#1|)) (-15 -3517 ((-421 (-1174 |#1|)) (-1174 |#1|))) (-15 -2435 ((-421 (-1174 |#1|)) (-1174 |#1|))) (-15 -3815 ((-3 (-645 (-1174 |#1|)) "failed") (-645 (-1174 |#1|)) (-1174 |#1|))) (-15 -1895 ((-3 (-1268 |#1|) "failed") (-690 |#1|))) (-15 -3501 (|#1| |#1| |#4|)) (-15 -4358 (|#1| |#1| |#4|)) (-15 -3788 (|#1| |#1| |#4|)) (-15 -2951 (|#1| |#1| |#1| |#4|)) (-15 -3000 ((-645 |#1|) |#1|)) (-15 -1468 ((-772) |#1| (-645 |#4|))) (-15 -1468 ((-772) |#1|)) (-15 -3798 ((-3 (-2 (|:| |var| |#4|) (|:| -3458 (-772))) "failed") |#1|)) (-15 -2056 ((-3 (-645 |#1|) "failed") |#1|)) (-15 -3671 ((-3 (-645 |#1|) "failed") |#1|)) (-15 -2824 (|#1| |#1| (-645 |#4|) (-645 (-772)))) (-15 -2824 (|#1| |#1| |#4| (-772))) (-15 -1621 ((-2 (|:| -3102 |#1|) (|:| -4194 |#1|)) |#1| |#1| |#4|)) (-15 -1709 ((-645 |#1|) |#1|)) (-15 -4136 (|#1| |#1| (-645 |#4|) (-645 (-772)))) (-15 -4136 (|#1| |#1| |#4| (-772))) (-15 -2630 ((-690 |#2|) (-690 |#1|))) (-15 -2630 ((-2 (|:| -2316 (-690 |#2|)) (|:| |vec| (-1268 |#2|))) (-690 |#1|) (-1268 |#1|))) (-15 -2630 ((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 |#1|) (-1268 |#1|))) (-15 -2630 ((-690 (-567)) (-690 |#1|))) (-15 -3753 ((-3 |#4| "failed") |#1|)) (-15 -2038 (|#4| |#1|)) (-15 -2631 (|#1| |#1| (-645 |#4|) (-645 |#1|))) (-15 -2631 (|#1| |#1| |#4| |#1|)) (-15 -2631 (|#1| |#1| (-645 |#4|) (-645 |#2|))) (-15 -2631 (|#1| |#1| |#4| |#2|)) (-15 -2631 (|#1| |#1| (-645 |#1|) (-645 |#1|))) (-15 -2631 (|#1| |#1| |#1| |#1|)) (-15 -2631 (|#1| |#1| (-295 |#1|))) (-15 -2631 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -2824 (|#1| |#2| |#3|)) (-15 -4136 (|#2| |#1| |#3|)) (-15 -3753 ((-3 (-567) "failed") |#1|)) (-15 -2038 ((-567) |#1|)) (-15 -3753 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2038 ((-410 (-567)) |#1|)) (-15 -2038 (|#2| |#1|)) (-15 -3753 ((-3 |#2| "failed") |#1|)) (-15 -4358 (|#2| |#1|)) (-15 -3501 (|#1| |#1|)) (-15 -1745 ((-112) |#1| |#1|))) (-951 |#2| |#3| |#4|) (-1051) (-794) (-851)) (T -950))
-NIL
-(-10 -8 (-15 -3750 ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 -2908 ((-421 |#1|) |#1|)) (-15 -3248 (|#1| |#1|)) (-15 -1903 ((-3 |#1| "failed") |#1|)) (-15 -3893 ((-539) |#1|)) (-15 -3893 ((-894 (-567)) |#1|)) (-15 -3893 ((-894 (-381)) |#1|)) (-15 -4303 ((-891 (-567) |#1|) |#1| (-894 (-567)) (-891 (-567) |#1|))) (-15 -4303 ((-891 (-381) |#1|) |#1| (-894 (-381)) (-891 (-381) |#1|))) (-15 -2706 ((-421 |#1|) |#1|)) (-15 -3517 ((-421 (-1174 |#1|)) (-1174 |#1|))) (-15 -2435 ((-421 (-1174 |#1|)) (-1174 |#1|))) (-15 -3815 ((-3 (-645 (-1174 |#1|)) "failed") (-645 (-1174 |#1|)) (-1174 |#1|))) (-15 -1895 ((-3 (-1268 |#1|) "failed") (-690 |#1|))) (-15 -3501 (|#1| |#1| |#4|)) (-15 -4358 (|#1| |#1| |#4|)) (-15 -3788 (|#1| |#1| |#4|)) (-15 -2951 (|#1| |#1| |#1| |#4|)) (-15 -3000 ((-645 |#1|) |#1|)) (-15 -1468 ((-772) |#1| (-645 |#4|))) (-15 -1468 ((-772) |#1|)) (-15 -3798 ((-3 (-2 (|:| |var| |#4|) (|:| -3458 (-772))) "failed") |#1|)) (-15 -2056 ((-3 (-645 |#1|) "failed") |#1|)) (-15 -3671 ((-3 (-645 |#1|) "failed") |#1|)) (-15 -2824 (|#1| |#1| (-645 |#4|) (-645 (-772)))) (-15 -2824 (|#1| |#1| |#4| (-772))) (-15 -1621 ((-2 (|:| -3102 |#1|) (|:| -4194 |#1|)) |#1| |#1| |#4|)) (-15 -1709 ((-645 |#1|) |#1|)) (-15 -4136 (|#1| |#1| (-645 |#4|) (-645 (-772)))) (-15 -4136 (|#1| |#1| |#4| (-772))) (-15 -2630 ((-690 |#2|) (-690 |#1|))) (-15 -2630 ((-2 (|:| -2316 (-690 |#2|)) (|:| |vec| (-1268 |#2|))) (-690 |#1|) (-1268 |#1|))) (-15 -2630 ((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 |#1|) (-1268 |#1|))) (-15 -2630 ((-690 (-567)) (-690 |#1|))) (-15 -3753 ((-3 |#4| "failed") |#1|)) (-15 -2038 (|#4| |#1|)) (-15 -2631 (|#1| |#1| (-645 |#4|) (-645 |#1|))) (-15 -2631 (|#1| |#1| |#4| |#1|)) (-15 -2631 (|#1| |#1| (-645 |#4|) (-645 |#2|))) (-15 -2631 (|#1| |#1| |#4| |#2|)) (-15 -2631 (|#1| |#1| (-645 |#1|) (-645 |#1|))) (-15 -2631 (|#1| |#1| |#1| |#1|)) (-15 -2631 (|#1| |#1| (-295 |#1|))) (-15 -2631 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -2824 (|#1| |#2| |#3|)) (-15 -4136 (|#2| |#1| |#3|)) (-15 -3753 ((-3 (-567) "failed") |#1|)) (-15 -2038 ((-567) |#1|)) (-15 -3753 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2038 ((-410 (-567)) |#1|)) (-15 -2038 (|#2| |#1|)) (-15 -3753 ((-3 |#2| "failed") |#1|)) (-15 -4358 (|#2| |#1|)) (-15 -3501 (|#1| |#1|)) (-15 -1745 ((-112) |#1| |#1|)))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-2847 (((-645 |#3|) $) 112)) (-2675 (((-1174 $) $ |#3|) 127) (((-1174 |#1|) $) 126)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 89 (|has| |#1| (-559)))) (-4381 (($ $) 90 (|has| |#1| (-559)))) (-3949 (((-112) $) 92 (|has| |#1| (-559)))) (-1468 (((-772) $) 114) (((-772) $ (-645 |#3|)) 113)) (-3472 (((-3 $ "failed") $ $) 20)) (-4226 (((-421 (-1174 $)) (-1174 $)) 102 (|has| |#1| (-911)))) (-3248 (($ $) 100 (|has| |#1| (-455)))) (-2908 (((-421 $) $) 99 (|has| |#1| (-455)))) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) 105 (|has| |#1| (-911)))) (-2585 (($) 18 T CONST)) (-3753 (((-3 |#1| "failed") $) 166) (((-3 (-410 (-567)) "failed") $) 163 (|has| |#1| (-1040 (-410 (-567))))) (((-3 (-567) "failed") $) 161 (|has| |#1| (-1040 (-567)))) (((-3 |#3| "failed") $) 138)) (-2038 ((|#1| $) 165) (((-410 (-567)) $) 164 (|has| |#1| (-1040 (-410 (-567))))) (((-567) $) 162 (|has| |#1| (-1040 (-567)))) ((|#3| $) 139)) (-2951 (($ $ $ |#3|) 110 (|has| |#1| (-172)))) (-3014 (($ $) 156)) (-2630 (((-690 (-567)) (-690 $)) 136 (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) 135 (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 |#1|)) (|:| |vec| (-1268 |#1|))) (-690 $) (-1268 $)) 134) (((-690 |#1|) (-690 $)) 133)) (-2109 (((-3 $ "failed") $) 37)) (-3501 (($ $) 178 (|has| |#1| (-455))) (($ $ |#3|) 107 (|has| |#1| (-455)))) (-3000 (((-645 $) $) 111)) (-3184 (((-112) $) 98 (|has| |#1| (-911)))) (-2320 (($ $ |#1| |#2| $) 174)) (-4303 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) 86 (-12 (|has| |#3| (-888 (-381))) (|has| |#1| (-888 (-381))))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) 85 (-12 (|has| |#3| (-888 (-567))) (|has| |#1| (-888 (-567)))))) (-1433 (((-112) $) 35)) (-2695 (((-772) $) 171)) (-2836 (($ (-1174 |#1|) |#3|) 119) (($ (-1174 $) |#3|) 118)) (-1709 (((-645 $) $) 128)) (-2843 (((-112) $) 154)) (-2824 (($ |#1| |#2|) 155) (($ $ |#3| (-772)) 121) (($ $ (-645 |#3|) (-645 (-772))) 120)) (-1621 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $ |#3|) 122)) (-2656 ((|#2| $) 172) (((-772) $ |#3|) 124) (((-645 (-772)) $ (-645 |#3|)) 123)) (-3273 (($ (-1 |#2| |#2|) $) 173)) (-3829 (($ (-1 |#1| |#1|) $) 153)) (-3046 (((-3 |#3| "failed") $) 125)) (-2976 (($ $) 151)) (-2989 ((|#1| $) 150)) (-2740 (($ (-645 $)) 96 (|has| |#1| (-455))) (($ $ $) 95 (|has| |#1| (-455)))) (-1419 (((-1160) $) 10)) (-2056 (((-3 (-645 $) "failed") $) 116)) (-3671 (((-3 (-645 $) "failed") $) 117)) (-3798 (((-3 (-2 (|:| |var| |#3|) (|:| -3458 (-772))) "failed") $) 115)) (-3430 (((-1122) $) 11)) (-2949 (((-112) $) 168)) (-2962 ((|#1| $) 169)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 97 (|has| |#1| (-455)))) (-2774 (($ (-645 $)) 94 (|has| |#1| (-455))) (($ $ $) 93 (|has| |#1| (-455)))) (-2435 (((-421 (-1174 $)) (-1174 $)) 104 (|has| |#1| (-911)))) (-3517 (((-421 (-1174 $)) (-1174 $)) 103 (|has| |#1| (-911)))) (-2706 (((-421 $) $) 101 (|has| |#1| (-911)))) (-2391 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-559))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-559)))) (-2631 (($ $ (-645 (-295 $))) 147) (($ $ (-295 $)) 146) (($ $ $ $) 145) (($ $ (-645 $) (-645 $)) 144) (($ $ |#3| |#1|) 143) (($ $ (-645 |#3|) (-645 |#1|)) 142) (($ $ |#3| $) 141) (($ $ (-645 |#3|) (-645 $)) 140)) (-3788 (($ $ |#3|) 109 (|has| |#1| (-172)))) (-1593 (($ $ |#3|) 46) (($ $ (-645 |#3|)) 45) (($ $ |#3| (-772)) 44) (($ $ (-645 |#3|) (-645 (-772))) 43)) (-3077 ((|#2| $) 152) (((-772) $ |#3|) 132) (((-645 (-772)) $ (-645 |#3|)) 131)) (-3893 (((-894 (-381)) $) 84 (-12 (|has| |#3| (-615 (-894 (-381)))) (|has| |#1| (-615 (-894 (-381)))))) (((-894 (-567)) $) 83 (-12 (|has| |#3| (-615 (-894 (-567)))) (|has| |#1| (-615 (-894 (-567)))))) (((-539) $) 82 (-12 (|has| |#3| (-615 (-539))) (|has| |#1| (-615 (-539)))))) (-4358 ((|#1| $) 177 (|has| |#1| (-455))) (($ $ |#3|) 108 (|has| |#1| (-455)))) (-1895 (((-3 (-1268 $) "failed") (-690 $)) 106 (-1667 (|has| $ (-145)) (|has| |#1| (-911))))) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 167) (($ |#3|) 137) (($ $) 87 (|has| |#1| (-559))) (($ (-410 (-567))) 80 (-2800 (|has| |#1| (-1040 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567))))))) (-3032 (((-645 |#1|) $) 170)) (-4136 ((|#1| $ |#2|) 157) (($ $ |#3| (-772)) 130) (($ $ (-645 |#3|) (-645 (-772))) 129)) (-1903 (((-3 $ "failed") $) 81 (-2800 (-1667 (|has| $ (-145)) (|has| |#1| (-911))) (|has| |#1| (-145))))) (-4221 (((-772)) 32 T CONST)) (-4176 (($ $ $ (-772)) 175 (|has| |#1| (-172)))) (-1745 (((-112) $ $) 9)) (-3816 (((-112) $ $) 91 (|has| |#1| (-559)))) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2637 (($ $ |#3|) 42) (($ $ (-645 |#3|)) 41) (($ $ |#3| (-772)) 40) (($ $ (-645 |#3|) (-645 (-772))) 39)) (-2936 (((-112) $ $) 6)) (-3060 (($ $ |#1|) 158 (|has| |#1| (-365)))) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 160 (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) 159 (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) 149) (($ $ |#1|) 148)))
+((-2137 (((-484 |#1| |#2|) (-954 |#2|)) 22)) (-2149 (((-247 |#1| |#2|) (-954 |#2|)) 35)) (-3651 (((-954 |#2|) (-484 |#1| |#2|)) 27)) (-4013 (((-247 |#1| |#2|) (-484 |#1| |#2|)) 57)) (-3759 (((-954 |#2|) (-247 |#1| |#2|)) 32)) (-2062 (((-484 |#1| |#2|) (-247 |#1| |#2|)) 48)))
+(((-946 |#1| |#2|) (-10 -7 (-15 -2062 ((-484 |#1| |#2|) (-247 |#1| |#2|))) (-15 -4013 ((-247 |#1| |#2|) (-484 |#1| |#2|))) (-15 -2137 ((-484 |#1| |#2|) (-954 |#2|))) (-15 -3651 ((-954 |#2|) (-484 |#1| |#2|))) (-15 -3759 ((-954 |#2|) (-247 |#1| |#2|))) (-15 -2149 ((-247 |#1| |#2|) (-954 |#2|)))) (-645 (-1179)) (-1051)) (T -946))
+((-2149 (*1 *2 *3) (-12 (-5 *3 (-954 *5)) (-4 *5 (-1051)) (-5 *2 (-247 *4 *5)) (-5 *1 (-946 *4 *5)) (-14 *4 (-645 (-1179))))) (-3759 (*1 *2 *3) (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-645 (-1179))) (-4 *5 (-1051)) (-5 *2 (-954 *5)) (-5 *1 (-946 *4 *5)))) (-3651 (*1 *2 *3) (-12 (-5 *3 (-484 *4 *5)) (-14 *4 (-645 (-1179))) (-4 *5 (-1051)) (-5 *2 (-954 *5)) (-5 *1 (-946 *4 *5)))) (-2137 (*1 *2 *3) (-12 (-5 *3 (-954 *5)) (-4 *5 (-1051)) (-5 *2 (-484 *4 *5)) (-5 *1 (-946 *4 *5)) (-14 *4 (-645 (-1179))))) (-4013 (*1 *2 *3) (-12 (-5 *3 (-484 *4 *5)) (-14 *4 (-645 (-1179))) (-4 *5 (-1051)) (-5 *2 (-247 *4 *5)) (-5 *1 (-946 *4 *5)))) (-2062 (*1 *2 *3) (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-645 (-1179))) (-4 *5 (-1051)) (-5 *2 (-484 *4 *5)) (-5 *1 (-946 *4 *5)))))
+(-10 -7 (-15 -2062 ((-484 |#1| |#2|) (-247 |#1| |#2|))) (-15 -4013 ((-247 |#1| |#2|) (-484 |#1| |#2|))) (-15 -2137 ((-484 |#1| |#2|) (-954 |#2|))) (-15 -3651 ((-954 |#2|) (-484 |#1| |#2|))) (-15 -3759 ((-954 |#2|) (-247 |#1| |#2|))) (-15 -2149 ((-247 |#1| |#2|) (-954 |#2|))))
+((-3979 (((-645 |#2|) |#2| |#2|) 10)) (-2511 (((-772) (-645 |#1|)) 48 (|has| |#1| (-849)))) (-1687 (((-645 |#2|) |#2|) 11)) (-2906 (((-772) (-645 |#1|) (-567) (-567)) 52 (|has| |#1| (-849)))) (-3892 ((|#1| |#2|) 38 (|has| |#1| (-849)))))
+(((-947 |#1| |#2|) (-10 -7 (-15 -3979 ((-645 |#2|) |#2| |#2|)) (-15 -1687 ((-645 |#2|) |#2|)) (IF (|has| |#1| (-849)) (PROGN (-15 -3892 (|#1| |#2|)) (-15 -2511 ((-772) (-645 |#1|))) (-15 -2906 ((-772) (-645 |#1|) (-567) (-567)))) |%noBranch|)) (-365) (-1245 |#1|)) (T -947))
+((-2906 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-645 *5)) (-5 *4 (-567)) (-4 *5 (-849)) (-4 *5 (-365)) (-5 *2 (-772)) (-5 *1 (-947 *5 *6)) (-4 *6 (-1245 *5)))) (-2511 (*1 *2 *3) (-12 (-5 *3 (-645 *4)) (-4 *4 (-849)) (-4 *4 (-365)) (-5 *2 (-772)) (-5 *1 (-947 *4 *5)) (-4 *5 (-1245 *4)))) (-3892 (*1 *2 *3) (-12 (-4 *2 (-365)) (-4 *2 (-849)) (-5 *1 (-947 *2 *3)) (-4 *3 (-1245 *2)))) (-1687 (*1 *2 *3) (-12 (-4 *4 (-365)) (-5 *2 (-645 *3)) (-5 *1 (-947 *4 *3)) (-4 *3 (-1245 *4)))) (-3979 (*1 *2 *3 *3) (-12 (-4 *4 (-365)) (-5 *2 (-645 *3)) (-5 *1 (-947 *4 *3)) (-4 *3 (-1245 *4)))))
+(-10 -7 (-15 -3979 ((-645 |#2|) |#2| |#2|)) (-15 -1687 ((-645 |#2|) |#2|)) (IF (|has| |#1| (-849)) (PROGN (-15 -3892 (|#1| |#2|)) (-15 -2511 ((-772) (-645 |#1|))) (-15 -2906 ((-772) (-645 |#1|) (-567) (-567)))) |%noBranch|))
+((-3841 (((-954 |#2|) (-1 |#2| |#1|) (-954 |#1|)) 19)))
+(((-948 |#1| |#2|) (-10 -7 (-15 -3841 ((-954 |#2|) (-1 |#2| |#1|) (-954 |#1|)))) (-1051) (-1051)) (T -948))
+((-3841 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-954 *5)) (-4 *5 (-1051)) (-4 *6 (-1051)) (-5 *2 (-954 *6)) (-5 *1 (-948 *5 *6)))))
+(-10 -7 (-15 -3841 ((-954 |#2|) (-1 |#2| |#1|) (-954 |#1|))))
+((-2684 (((-1242 |#1| (-954 |#2|)) (-954 |#2|) (-1265 |#1|)) 18)))
+(((-949 |#1| |#2|) (-10 -7 (-15 -2684 ((-1242 |#1| (-954 |#2|)) (-954 |#2|) (-1265 |#1|)))) (-1179) (-1051)) (T -949))
+((-2684 (*1 *2 *3 *4) (-12 (-5 *4 (-1265 *5)) (-14 *5 (-1179)) (-4 *6 (-1051)) (-5 *2 (-1242 *5 (-954 *6))) (-5 *1 (-949 *5 *6)) (-5 *3 (-954 *6)))))
+(-10 -7 (-15 -2684 ((-1242 |#1| (-954 |#2|)) (-954 |#2|) (-1265 |#1|))))
+((-3849 (((-772) $) 88) (((-772) $ (-645 |#4|)) 93)) (-3659 (($ $) 203)) (-3597 (((-421 $) $) 195)) (-3610 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) 141)) (-3765 (((-3 |#2| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 (-567) "failed") $) NIL) (((-3 |#4| "failed") $) 74)) (-2051 ((|#2| $) NIL) (((-410 (-567)) $) NIL) (((-567) $) NIL) ((|#4| $) 73)) (-3554 (($ $ $ |#4|) 95)) (-1423 (((-690 (-567)) (-690 $)) NIL) (((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL) (((-2 (|:| -4208 (-690 |#2|)) (|:| |vec| (-1269 |#2|))) (-690 $) (-1269 $)) 131) (((-690 |#2|) (-690 $)) 121)) (-2989 (($ $) 210) (($ $ |#4|) 213)) (-3010 (((-645 $) $) 77)) (-3193 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) 229) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) 222)) (-2659 (((-645 $) $) 34)) (-2836 (($ |#2| |#3|) NIL) (($ $ |#4| (-772)) NIL) (($ $ (-645 |#4|) (-645 (-772))) 71)) (-2742 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $ |#4|) 192)) (-3037 (((-3 (-645 $) "failed") $) 52)) (-3774 (((-3 (-645 $) "failed") $) 39)) (-3816 (((-3 (-2 (|:| |var| |#4|) (|:| -3468 (-772))) "failed") $) 57)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) 134)) (-3551 (((-421 (-1175 $)) (-1175 $)) 147)) (-2016 (((-421 (-1175 $)) (-1175 $)) 145)) (-2717 (((-421 $) $) 165)) (-2642 (($ $ (-645 (-295 $))) 24) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-645 |#4|) (-645 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-645 |#4|) (-645 $)) NIL)) (-2433 (($ $ |#4|) 97)) (-3902 (((-894 (-381)) $) 243) (((-894 (-567)) $) 236) (((-539) $) 251)) (-1849 ((|#2| $) NIL) (($ $ |#4|) 205)) (-2616 (((-3 (-1269 $) "failed") (-690 $)) 184)) (-2558 ((|#2| $ |#3|) NIL) (($ $ |#4| (-772)) 62) (($ $ (-645 |#4|) (-645 (-772))) 69)) (-2118 (((-3 $ "failed") $) 186)) (-3357 (((-112) $ $) 216)))
+(((-950 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2217 ((-1175 |#1|) (-1175 |#1|) (-1175 |#1|))) (-15 -3597 ((-421 |#1|) |#1|)) (-15 -3659 (|#1| |#1|)) (-15 -2118 ((-3 |#1| "failed") |#1|)) (-15 -3902 ((-539) |#1|)) (-15 -3902 ((-894 (-567)) |#1|)) (-15 -3902 ((-894 (-381)) |#1|)) (-15 -3193 ((-891 (-567) |#1|) |#1| (-894 (-567)) (-891 (-567) |#1|))) (-15 -3193 ((-891 (-381) |#1|) |#1| (-894 (-381)) (-891 (-381) |#1|))) (-15 -2717 ((-421 |#1|) |#1|)) (-15 -2016 ((-421 (-1175 |#1|)) (-1175 |#1|))) (-15 -3551 ((-421 (-1175 |#1|)) (-1175 |#1|))) (-15 -3610 ((-3 (-645 (-1175 |#1|)) "failed") (-645 (-1175 |#1|)) (-1175 |#1|))) (-15 -2616 ((-3 (-1269 |#1|) "failed") (-690 |#1|))) (-15 -2989 (|#1| |#1| |#4|)) (-15 -1849 (|#1| |#1| |#4|)) (-15 -2433 (|#1| |#1| |#4|)) (-15 -3554 (|#1| |#1| |#1| |#4|)) (-15 -3010 ((-645 |#1|) |#1|)) (-15 -3849 ((-772) |#1| (-645 |#4|))) (-15 -3849 ((-772) |#1|)) (-15 -3816 ((-3 (-2 (|:| |var| |#4|) (|:| -3468 (-772))) "failed") |#1|)) (-15 -3037 ((-3 (-645 |#1|) "failed") |#1|)) (-15 -3774 ((-3 (-645 |#1|) "failed") |#1|)) (-15 -2836 (|#1| |#1| (-645 |#4|) (-645 (-772)))) (-15 -2836 (|#1| |#1| |#4| (-772))) (-15 -2742 ((-2 (|:| -2654 |#1|) (|:| -2023 |#1|)) |#1| |#1| |#4|)) (-15 -2659 ((-645 |#1|) |#1|)) (-15 -2558 (|#1| |#1| (-645 |#4|) (-645 (-772)))) (-15 -2558 (|#1| |#1| |#4| (-772))) (-15 -1423 ((-690 |#2|) (-690 |#1|))) (-15 -1423 ((-2 (|:| -4208 (-690 |#2|)) (|:| |vec| (-1269 |#2|))) (-690 |#1|) (-1269 |#1|))) (-15 -1423 ((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 |#1|) (-1269 |#1|))) (-15 -1423 ((-690 (-567)) (-690 |#1|))) (-15 -3765 ((-3 |#4| "failed") |#1|)) (-15 -2051 (|#4| |#1|)) (-15 -2642 (|#1| |#1| (-645 |#4|) (-645 |#1|))) (-15 -2642 (|#1| |#1| |#4| |#1|)) (-15 -2642 (|#1| |#1| (-645 |#4|) (-645 |#2|))) (-15 -2642 (|#1| |#1| |#4| |#2|)) (-15 -2642 (|#1| |#1| (-645 |#1|) (-645 |#1|))) (-15 -2642 (|#1| |#1| |#1| |#1|)) (-15 -2642 (|#1| |#1| (-295 |#1|))) (-15 -2642 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -2836 (|#1| |#2| |#3|)) (-15 -2558 (|#2| |#1| |#3|)) (-15 -3765 ((-3 (-567) "failed") |#1|)) (-15 -2051 ((-567) |#1|)) (-15 -3765 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2051 ((-410 (-567)) |#1|)) (-15 -2051 (|#2| |#1|)) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -1849 (|#2| |#1|)) (-15 -2989 (|#1| |#1|)) (-15 -3357 ((-112) |#1| |#1|))) (-951 |#2| |#3| |#4|) (-1051) (-794) (-851)) (T -950))
+NIL
+(-10 -8 (-15 -2217 ((-1175 |#1|) (-1175 |#1|) (-1175 |#1|))) (-15 -3597 ((-421 |#1|) |#1|)) (-15 -3659 (|#1| |#1|)) (-15 -2118 ((-3 |#1| "failed") |#1|)) (-15 -3902 ((-539) |#1|)) (-15 -3902 ((-894 (-567)) |#1|)) (-15 -3902 ((-894 (-381)) |#1|)) (-15 -3193 ((-891 (-567) |#1|) |#1| (-894 (-567)) (-891 (-567) |#1|))) (-15 -3193 ((-891 (-381) |#1|) |#1| (-894 (-381)) (-891 (-381) |#1|))) (-15 -2717 ((-421 |#1|) |#1|)) (-15 -2016 ((-421 (-1175 |#1|)) (-1175 |#1|))) (-15 -3551 ((-421 (-1175 |#1|)) (-1175 |#1|))) (-15 -3610 ((-3 (-645 (-1175 |#1|)) "failed") (-645 (-1175 |#1|)) (-1175 |#1|))) (-15 -2616 ((-3 (-1269 |#1|) "failed") (-690 |#1|))) (-15 -2989 (|#1| |#1| |#4|)) (-15 -1849 (|#1| |#1| |#4|)) (-15 -2433 (|#1| |#1| |#4|)) (-15 -3554 (|#1| |#1| |#1| |#4|)) (-15 -3010 ((-645 |#1|) |#1|)) (-15 -3849 ((-772) |#1| (-645 |#4|))) (-15 -3849 ((-772) |#1|)) (-15 -3816 ((-3 (-2 (|:| |var| |#4|) (|:| -3468 (-772))) "failed") |#1|)) (-15 -3037 ((-3 (-645 |#1|) "failed") |#1|)) (-15 -3774 ((-3 (-645 |#1|) "failed") |#1|)) (-15 -2836 (|#1| |#1| (-645 |#4|) (-645 (-772)))) (-15 -2836 (|#1| |#1| |#4| (-772))) (-15 -2742 ((-2 (|:| -2654 |#1|) (|:| -2023 |#1|)) |#1| |#1| |#4|)) (-15 -2659 ((-645 |#1|) |#1|)) (-15 -2558 (|#1| |#1| (-645 |#4|) (-645 (-772)))) (-15 -2558 (|#1| |#1| |#4| (-772))) (-15 -1423 ((-690 |#2|) (-690 |#1|))) (-15 -1423 ((-2 (|:| -4208 (-690 |#2|)) (|:| |vec| (-1269 |#2|))) (-690 |#1|) (-1269 |#1|))) (-15 -1423 ((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 |#1|) (-1269 |#1|))) (-15 -1423 ((-690 (-567)) (-690 |#1|))) (-15 -3765 ((-3 |#4| "failed") |#1|)) (-15 -2051 (|#4| |#1|)) (-15 -2642 (|#1| |#1| (-645 |#4|) (-645 |#1|))) (-15 -2642 (|#1| |#1| |#4| |#1|)) (-15 -2642 (|#1| |#1| (-645 |#4|) (-645 |#2|))) (-15 -2642 (|#1| |#1| |#4| |#2|)) (-15 -2642 (|#1| |#1| (-645 |#1|) (-645 |#1|))) (-15 -2642 (|#1| |#1| |#1| |#1|)) (-15 -2642 (|#1| |#1| (-295 |#1|))) (-15 -2642 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -2836 (|#1| |#2| |#3|)) (-15 -2558 (|#2| |#1| |#3|)) (-15 -3765 ((-3 (-567) "failed") |#1|)) (-15 -2051 ((-567) |#1|)) (-15 -3765 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2051 ((-410 (-567)) |#1|)) (-15 -2051 (|#2| |#1|)) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -1849 (|#2| |#1|)) (-15 -2989 (|#1| |#1|)) (-15 -3357 ((-112) |#1| |#1|)))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-2859 (((-645 |#3|) $) 112)) (-2684 (((-1175 $) $ |#3|) 127) (((-1175 |#1|) $) 126)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) 89 (|has| |#1| (-559)))) (-4287 (($ $) 90 (|has| |#1| (-559)))) (-2286 (((-112) $) 92 (|has| |#1| (-559)))) (-3849 (((-772) $) 114) (((-772) $ (-645 |#3|)) 113)) (-2376 (((-3 $ "failed") $ $) 20)) (-2029 (((-421 (-1175 $)) (-1175 $)) 102 (|has| |#1| (-911)))) (-3659 (($ $) 100 (|has| |#1| (-455)))) (-3597 (((-421 $) $) 99 (|has| |#1| (-455)))) (-3610 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) 105 (|has| |#1| (-911)))) (-3647 (($) 18 T CONST)) (-3765 (((-3 |#1| "failed") $) 166) (((-3 (-410 (-567)) "failed") $) 163 (|has| |#1| (-1040 (-410 (-567))))) (((-3 (-567) "failed") $) 161 (|has| |#1| (-1040 (-567)))) (((-3 |#3| "failed") $) 138)) (-2051 ((|#1| $) 165) (((-410 (-567)) $) 164 (|has| |#1| (-1040 (-410 (-567))))) (((-567) $) 162 (|has| |#1| (-1040 (-567)))) ((|#3| $) 139)) (-3554 (($ $ $ |#3|) 110 (|has| |#1| (-172)))) (-3023 (($ $) 156)) (-1423 (((-690 (-567)) (-690 $)) 136 (|has| |#1| (-640 (-567)))) (((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) 135 (|has| |#1| (-640 (-567)))) (((-2 (|:| -4208 (-690 |#1|)) (|:| |vec| (-1269 |#1|))) (-690 $) (-1269 $)) 134) (((-690 |#1|) (-690 $)) 133)) (-3588 (((-3 $ "failed") $) 37)) (-2989 (($ $) 178 (|has| |#1| (-455))) (($ $ |#3|) 107 (|has| |#1| (-455)))) (-3010 (((-645 $) $) 111)) (-3502 (((-112) $) 98 (|has| |#1| (-911)))) (-3214 (($ $ |#1| |#2| $) 174)) (-3193 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) 86 (-12 (|has| |#3| (-888 (-381))) (|has| |#1| (-888 (-381))))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) 85 (-12 (|has| |#3| (-888 (-567))) (|has| |#1| (-888 (-567)))))) (-4346 (((-112) $) 35)) (-2851 (((-772) $) 171)) (-2848 (($ (-1175 |#1|) |#3|) 119) (($ (-1175 $) |#3|) 118)) (-2659 (((-645 $) $) 128)) (-3770 (((-112) $) 154)) (-2836 (($ |#1| |#2|) 155) (($ $ |#3| (-772)) 121) (($ $ (-645 |#3|) (-645 (-772))) 120)) (-2742 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $ |#3|) 122)) (-2955 ((|#2| $) 172) (((-772) $ |#3|) 124) (((-645 (-772)) $ (-645 |#3|)) 123)) (-3827 (($ (-1 |#2| |#2|) $) 173)) (-3841 (($ (-1 |#1| |#1|) $) 153)) (-3221 (((-3 |#3| "failed") $) 125)) (-2985 (($ $) 151)) (-2996 ((|#1| $) 150)) (-2751 (($ (-645 $)) 96 (|has| |#1| (-455))) (($ $ $) 95 (|has| |#1| (-455)))) (-2516 (((-1161) $) 10)) (-3037 (((-3 (-645 $) "failed") $) 116)) (-3774 (((-3 (-645 $) "failed") $) 117)) (-3816 (((-3 (-2 (|:| |var| |#3|) (|:| -3468 (-772))) "failed") $) 115)) (-3437 (((-1122) $) 11)) (-2960 (((-112) $) 168)) (-2971 ((|#1| $) 169)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) 97 (|has| |#1| (-455)))) (-2785 (($ (-645 $)) 94 (|has| |#1| (-455))) (($ $ $) 93 (|has| |#1| (-455)))) (-3551 (((-421 (-1175 $)) (-1175 $)) 104 (|has| |#1| (-911)))) (-2016 (((-421 (-1175 $)) (-1175 $)) 103 (|has| |#1| (-911)))) (-2717 (((-421 $) $) 101 (|has| |#1| (-911)))) (-2400 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-559))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-559)))) (-2642 (($ $ (-645 (-295 $))) 147) (($ $ (-295 $)) 146) (($ $ $ $) 145) (($ $ (-645 $) (-645 $)) 144) (($ $ |#3| |#1|) 143) (($ $ (-645 |#3|) (-645 |#1|)) 142) (($ $ |#3| $) 141) (($ $ (-645 |#3|) (-645 $)) 140)) (-2433 (($ $ |#3|) 109 (|has| |#1| (-172)))) (-1616 (($ $ |#3|) 46) (($ $ (-645 |#3|)) 45) (($ $ |#3| (-772)) 44) (($ $ (-645 |#3|) (-645 (-772))) 43)) (-3104 ((|#2| $) 152) (((-772) $ |#3|) 132) (((-645 (-772)) $ (-645 |#3|)) 131)) (-3902 (((-894 (-381)) $) 84 (-12 (|has| |#3| (-615 (-894 (-381)))) (|has| |#1| (-615 (-894 (-381)))))) (((-894 (-567)) $) 83 (-12 (|has| |#3| (-615 (-894 (-567)))) (|has| |#1| (-615 (-894 (-567)))))) (((-539) $) 82 (-12 (|has| |#3| (-615 (-539))) (|has| |#1| (-615 (-539)))))) (-1849 ((|#1| $) 177 (|has| |#1| (-455))) (($ $ |#3|) 108 (|has| |#1| (-455)))) (-2616 (((-3 (-1269 $) "failed") (-690 $)) 106 (-1686 (|has| $ (-145)) (|has| |#1| (-911))))) (-4129 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 167) (($ |#3|) 137) (($ $) 87 (|has| |#1| (-559))) (($ (-410 (-567))) 80 (-2811 (|has| |#1| (-1040 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567))))))) (-3601 (((-645 |#1|) $) 170)) (-2558 ((|#1| $ |#2|) 157) (($ $ |#3| (-772)) 130) (($ $ (-645 |#3|) (-645 (-772))) 129)) (-2118 (((-3 $ "failed") $) 81 (-2811 (-1686 (|has| $ (-145)) (|has| |#1| (-911))) (|has| |#1| (-145))))) (-2746 (((-772)) 32 T CONST)) (-3658 (($ $ $ (-772)) 175 (|has| |#1| (-172)))) (-3357 (((-112) $ $) 9)) (-3731 (((-112) $ $) 91 (|has| |#1| (-559)))) (-1733 (($) 19 T CONST)) (-1744 (($) 34 T CONST)) (-2647 (($ $ |#3|) 42) (($ $ (-645 |#3|)) 41) (($ $ |#3| (-772)) 40) (($ $ (-645 |#3|) (-645 (-772))) 39)) (-2946 (((-112) $ $) 6)) (-3069 (($ $ |#1|) 158 (|has| |#1| (-365)))) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 160 (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) 159 (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) 149) (($ $ |#1|) 148)))
(((-951 |#1| |#2| |#3|) (-140) (-1051) (-794) (-851)) (T -951))
-((-3501 (*1 *1 *1) (-12 (-4 *1 (-951 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-455)))) (-3077 (*1 *2 *1 *3) (-12 (-4 *1 (-951 *4 *5 *3)) (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *3 (-851)) (-5 *2 (-772)))) (-3077 (*1 *2 *1 *3) (-12 (-5 *3 (-645 *6)) (-4 *1 (-951 *4 *5 *6)) (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 (-772))))) (-4136 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-951 *4 *5 *2)) (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *2 (-851)))) (-4136 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 *6)) (-5 *3 (-645 (-772))) (-4 *1 (-951 *4 *5 *6)) (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *6 (-851)))) (-1709 (*1 *2 *1) (-12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-951 *3 *4 *5)))) (-2675 (*1 *2 *1 *3) (-12 (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *3 (-851)) (-5 *2 (-1174 *1)) (-4 *1 (-951 *4 *5 *3)))) (-2675 (*1 *2 *1) (-12 (-4 *1 (-951 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-1174 *3)))) (-3046 (*1 *2 *1) (|partial| -12 (-4 *1 (-951 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *2 (-851)))) (-2656 (*1 *2 *1 *3) (-12 (-4 *1 (-951 *4 *5 *3)) (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *3 (-851)) (-5 *2 (-772)))) (-2656 (*1 *2 *1 *3) (-12 (-5 *3 (-645 *6)) (-4 *1 (-951 *4 *5 *6)) (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 (-772))))) (-1621 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *3 (-851)) (-5 *2 (-2 (|:| -3102 *1) (|:| -4194 *1))) (-4 *1 (-951 *4 *5 *3)))) (-2824 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-951 *4 *5 *2)) (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *2 (-851)))) (-2824 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 *6)) (-5 *3 (-645 (-772))) (-4 *1 (-951 *4 *5 *6)) (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *6 (-851)))) (-2836 (*1 *1 *2 *3) (-12 (-5 *2 (-1174 *4)) (-4 *4 (-1051)) (-4 *1 (-951 *4 *5 *3)) (-4 *5 (-794)) (-4 *3 (-851)))) (-2836 (*1 *1 *2 *3) (-12 (-5 *2 (-1174 *1)) (-4 *1 (-951 *4 *5 *3)) (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *3 (-851)))) (-3671 (*1 *2 *1) (|partial| -12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-951 *3 *4 *5)))) (-2056 (*1 *2 *1) (|partial| -12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-951 *3 *4 *5)))) (-3798 (*1 *2 *1) (|partial| -12 (-4 *1 (-951 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-2 (|:| |var| *5) (|:| -3458 (-772)))))) (-1468 (*1 *2 *1) (-12 (-4 *1 (-951 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-772)))) (-1468 (*1 *2 *1 *3) (-12 (-5 *3 (-645 *6)) (-4 *1 (-951 *4 *5 *6)) (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-772)))) (-2847 (*1 *2 *1) (-12 (-4 *1 (-951 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *5)))) (-3000 (*1 *2 *1) (-12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-951 *3 *4 *5)))) (-2951 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-951 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *2 (-851)) (-4 *3 (-172)))) (-3788 (*1 *1 *1 *2) (-12 (-4 *1 (-951 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *2 (-851)) (-4 *3 (-172)))) (-4358 (*1 *1 *1 *2) (-12 (-4 *1 (-951 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *2 (-851)) (-4 *3 (-455)))) (-3501 (*1 *1 *1 *2) (-12 (-4 *1 (-951 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *2 (-851)) (-4 *3 (-455)))) (-3248 (*1 *1 *1) (-12 (-4 *1 (-951 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-455)))) (-2908 (*1 *2 *1) (-12 (-4 *3 (-455)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-421 *1)) (-4 *1 (-951 *3 *4 *5)))))
-(-13 (-902 |t#3|) (-327 |t#1| |t#2|) (-310 $) (-517 |t#3| |t#1|) (-517 |t#3| $) (-1040 |t#3|) (-379 |t#1|) (-10 -8 (-15 -3077 ((-772) $ |t#3|)) (-15 -3077 ((-645 (-772)) $ (-645 |t#3|))) (-15 -4136 ($ $ |t#3| (-772))) (-15 -4136 ($ $ (-645 |t#3|) (-645 (-772)))) (-15 -1709 ((-645 $) $)) (-15 -2675 ((-1174 $) $ |t#3|)) (-15 -2675 ((-1174 |t#1|) $)) (-15 -3046 ((-3 |t#3| "failed") $)) (-15 -2656 ((-772) $ |t#3|)) (-15 -2656 ((-645 (-772)) $ (-645 |t#3|))) (-15 -1621 ((-2 (|:| -3102 $) (|:| -4194 $)) $ $ |t#3|)) (-15 -2824 ($ $ |t#3| (-772))) (-15 -2824 ($ $ (-645 |t#3|) (-645 (-772)))) (-15 -2836 ($ (-1174 |t#1|) |t#3|)) (-15 -2836 ($ (-1174 $) |t#3|)) (-15 -3671 ((-3 (-645 $) "failed") $)) (-15 -2056 ((-3 (-645 $) "failed") $)) (-15 -3798 ((-3 (-2 (|:| |var| |t#3|) (|:| -3458 (-772))) "failed") $)) (-15 -1468 ((-772) $)) (-15 -1468 ((-772) $ (-645 |t#3|))) (-15 -2847 ((-645 |t#3|) $)) (-15 -3000 ((-645 $) $)) (IF (|has| |t#1| (-615 (-539))) (IF (|has| |t#3| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-615 (-894 (-567)))) (IF (|has| |t#3| (-615 (-894 (-567)))) (-6 (-615 (-894 (-567)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-615 (-894 (-381)))) (IF (|has| |t#3| (-615 (-894 (-381)))) (-6 (-615 (-894 (-381)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-888 (-567))) (IF (|has| |t#3| (-888 (-567))) (-6 (-888 (-567))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-888 (-381))) (IF (|has| |t#3| (-888 (-381))) (-6 (-888 (-381))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-172)) (PROGN (-15 -2951 ($ $ $ |t#3|)) (-15 -3788 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-455)) (PROGN (-6 (-455)) (-15 -4358 ($ $ |t#3|)) (-15 -3501 ($ $)) (-15 -3501 ($ $ |t#3|)) (-15 -2908 ((-421 $) $)) (-15 -3248 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4416)) (-6 -4416) |%noBranch|) (IF (|has| |t#1| (-911)) (-6 (-911)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-410 (-567)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #0#) -2800 (|has| |#1| (-1040 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567))))) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-617 |#3|) . T) ((-617 $) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-614 (-863)) . T) ((-172) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-615 (-539)) -12 (|has| |#1| (-615 (-539))) (|has| |#3| (-615 (-539)))) ((-615 (-894 (-381))) -12 (|has| |#1| (-615 (-894 (-381)))) (|has| |#3| (-615 (-894 (-381))))) ((-615 (-894 (-567))) -12 (|has| |#1| (-615 (-894 (-567)))) (|has| |#3| (-615 (-894 (-567))))) ((-291) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-310 $) . T) ((-327 |#1| |#2|) . T) ((-379 |#1|) . T) ((-414 |#1|) . T) ((-455) -2800 (|has| |#1| (-911)) (|has| |#1| (-455))) ((-517 |#3| |#1|) . T) ((-517 |#3| $) . T) ((-517 $ $) . T) ((-559) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-647 #0#) |has| |#1| (-38 (-410 (-567)))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) |has| |#1| (-38 (-410 (-567)))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) |has| |#1| (-38 (-410 (-567)))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-640 (-567)) |has| |#1| (-640 (-567))) ((-640 |#1|) . T) ((-718 #0#) |has| |#1| (-38 (-410 (-567)))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-727) . T) ((-902 |#3|) . T) ((-888 (-381)) -12 (|has| |#1| (-888 (-381))) (|has| |#3| (-888 (-381)))) ((-888 (-567)) -12 (|has| |#1| (-888 (-567))) (|has| |#3| (-888 (-567)))) ((-911) |has| |#1| (-911)) ((-1040 (-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) ((-1040 (-567)) |has| |#1| (-1040 (-567))) ((-1040 |#1|) . T) ((-1040 |#3|) . T) ((-1053 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1053 |#1|) . T) ((-1053 $) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-1058 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1058 |#1|) . T) ((-1058 $) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1222) |has| |#1| (-911)))
-((-2847 (((-645 |#2|) |#5|) 40)) (-2675 (((-1174 |#5|) |#5| |#2| (-1174 |#5|)) 23) (((-410 (-1174 |#5|)) |#5| |#2|) 16)) (-2836 ((|#5| (-410 (-1174 |#5|)) |#2|) 30)) (-3046 (((-3 |#2| "failed") |#5|) 71)) (-2056 (((-3 (-645 |#5|) "failed") |#5|) 65)) (-1912 (((-3 (-2 (|:| |val| |#5|) (|:| -3458 (-567))) "failed") |#5|) 53)) (-3671 (((-3 (-645 |#5|) "failed") |#5|) 67)) (-3798 (((-3 (-2 (|:| |var| |#2|) (|:| -3458 (-567))) "failed") |#5|) 57)))
-(((-952 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2847 ((-645 |#2|) |#5|)) (-15 -3046 ((-3 |#2| "failed") |#5|)) (-15 -2675 ((-410 (-1174 |#5|)) |#5| |#2|)) (-15 -2836 (|#5| (-410 (-1174 |#5|)) |#2|)) (-15 -2675 ((-1174 |#5|) |#5| |#2| (-1174 |#5|))) (-15 -3671 ((-3 (-645 |#5|) "failed") |#5|)) (-15 -2056 ((-3 (-645 |#5|) "failed") |#5|)) (-15 -3798 ((-3 (-2 (|:| |var| |#2|) (|:| -3458 (-567))) "failed") |#5|)) (-15 -1912 ((-3 (-2 (|:| |val| |#5|) (|:| -3458 (-567))) "failed") |#5|))) (-794) (-851) (-1051) (-951 |#3| |#1| |#2|) (-13 (-365) (-10 -8 (-15 -4132 ($ |#4|)) (-15 -1448 (|#4| $)) (-15 -1460 (|#4| $))))) (T -952))
-((-1912 (*1 *2 *3) (|partial| -12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1051)) (-4 *7 (-951 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -3458 (-567)))) (-5 *1 (-952 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -4132 ($ *7)) (-15 -1448 (*7 $)) (-15 -1460 (*7 $))))))) (-3798 (*1 *2 *3) (|partial| -12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1051)) (-4 *7 (-951 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -3458 (-567)))) (-5 *1 (-952 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -4132 ($ *7)) (-15 -1448 (*7 $)) (-15 -1460 (*7 $))))))) (-2056 (*1 *2 *3) (|partial| -12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1051)) (-4 *7 (-951 *6 *4 *5)) (-5 *2 (-645 *3)) (-5 *1 (-952 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -4132 ($ *7)) (-15 -1448 (*7 $)) (-15 -1460 (*7 $))))))) (-3671 (*1 *2 *3) (|partial| -12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1051)) (-4 *7 (-951 *6 *4 *5)) (-5 *2 (-645 *3)) (-5 *1 (-952 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -4132 ($ *7)) (-15 -1448 (*7 $)) (-15 -1460 (*7 $))))))) (-2675 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -4132 ($ *7)) (-15 -1448 (*7 $)) (-15 -1460 (*7 $))))) (-4 *7 (-951 *6 *5 *4)) (-4 *5 (-794)) (-4 *4 (-851)) (-4 *6 (-1051)) (-5 *1 (-952 *5 *4 *6 *7 *3)))) (-2836 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-1174 *2))) (-4 *5 (-794)) (-4 *4 (-851)) (-4 *6 (-1051)) (-4 *2 (-13 (-365) (-10 -8 (-15 -4132 ($ *7)) (-15 -1448 (*7 $)) (-15 -1460 (*7 $))))) (-5 *1 (-952 *5 *4 *6 *7 *2)) (-4 *7 (-951 *6 *5 *4)))) (-2675 (*1 *2 *3 *4) (-12 (-4 *5 (-794)) (-4 *4 (-851)) (-4 *6 (-1051)) (-4 *7 (-951 *6 *5 *4)) (-5 *2 (-410 (-1174 *3))) (-5 *1 (-952 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -4132 ($ *7)) (-15 -1448 (*7 $)) (-15 -1460 (*7 $))))))) (-3046 (*1 *2 *3) (|partial| -12 (-4 *4 (-794)) (-4 *5 (-1051)) (-4 *6 (-951 *5 *4 *2)) (-4 *2 (-851)) (-5 *1 (-952 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -4132 ($ *6)) (-15 -1448 (*6 $)) (-15 -1460 (*6 $))))))) (-2847 (*1 *2 *3) (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1051)) (-4 *7 (-951 *6 *4 *5)) (-5 *2 (-645 *5)) (-5 *1 (-952 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -4132 ($ *7)) (-15 -1448 (*7 $)) (-15 -1460 (*7 $))))))))
-(-10 -7 (-15 -2847 ((-645 |#2|) |#5|)) (-15 -3046 ((-3 |#2| "failed") |#5|)) (-15 -2675 ((-410 (-1174 |#5|)) |#5| |#2|)) (-15 -2836 (|#5| (-410 (-1174 |#5|)) |#2|)) (-15 -2675 ((-1174 |#5|) |#5| |#2| (-1174 |#5|))) (-15 -3671 ((-3 (-645 |#5|) "failed") |#5|)) (-15 -2056 ((-3 (-645 |#5|) "failed") |#5|)) (-15 -3798 ((-3 (-2 (|:| |var| |#2|) (|:| -3458 (-567))) "failed") |#5|)) (-15 -1912 ((-3 (-2 (|:| |val| |#5|) (|:| -3458 (-567))) "failed") |#5|)))
-((-3829 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24)))
-(((-953 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3829 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-794) (-851) (-1051) (-951 |#3| |#1| |#2|) (-13 (-1102) (-10 -8 (-15 -3033 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-772)))))) (T -953))
-((-3829 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-851)) (-4 *8 (-1051)) (-4 *6 (-794)) (-4 *2 (-13 (-1102) (-10 -8 (-15 -3033 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-772)))))) (-5 *1 (-953 *6 *7 *8 *5 *2)) (-4 *5 (-951 *8 *6 *7)))))
-(-10 -7 (-15 -3829 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|)))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-2847 (((-645 (-1178)) $) 16)) (-2675 (((-1174 $) $ (-1178)) 21) (((-1174 |#1|) $) NIL)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-4381 (($ $) NIL (|has| |#1| (-559)))) (-3949 (((-112) $) NIL (|has| |#1| (-559)))) (-1468 (((-772) $) NIL) (((-772) $ (-645 (-1178))) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-4226 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-911)))) (-3248 (($ $) NIL (|has| |#1| (-455)))) (-2908 (((-421 $) $) NIL (|has| |#1| (-455)))) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-911)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 |#1| "failed") $) 8) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-1178) "failed") $) NIL)) (-2038 ((|#1| $) NIL) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-1178) $) NIL)) (-2951 (($ $ $ (-1178)) NIL (|has| |#1| (-172)))) (-3014 (($ $) NIL)) (-2630 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 |#1|)) (|:| |vec| (-1268 |#1|))) (-690 $) (-1268 $)) NIL) (((-690 |#1|) (-690 $)) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-3501 (($ $) NIL (|has| |#1| (-455))) (($ $ (-1178)) NIL (|has| |#1| (-455)))) (-3000 (((-645 $) $) NIL)) (-3184 (((-112) $) NIL (|has| |#1| (-911)))) (-2320 (($ $ |#1| (-534 (-1178)) $) NIL)) (-4303 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (-12 (|has| (-1178) (-888 (-381))) (|has| |#1| (-888 (-381))))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (-12 (|has| (-1178) (-888 (-567))) (|has| |#1| (-888 (-567)))))) (-1433 (((-112) $) NIL)) (-2695 (((-772) $) NIL)) (-2836 (($ (-1174 |#1|) (-1178)) NIL) (($ (-1174 $) (-1178)) NIL)) (-1709 (((-645 $) $) NIL)) (-2843 (((-112) $) NIL)) (-2824 (($ |#1| (-534 (-1178))) NIL) (($ $ (-1178) (-772)) NIL) (($ $ (-645 (-1178)) (-645 (-772))) NIL)) (-1621 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $ (-1178)) NIL)) (-2656 (((-534 (-1178)) $) NIL) (((-772) $ (-1178)) NIL) (((-645 (-772)) $ (-645 (-1178))) NIL)) (-3273 (($ (-1 (-534 (-1178)) (-534 (-1178))) $) NIL)) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-3046 (((-3 (-1178) "failed") $) 19)) (-2976 (($ $) NIL)) (-2989 ((|#1| $) NIL)) (-2740 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-1419 (((-1160) $) NIL)) (-2056 (((-3 (-645 $) "failed") $) NIL)) (-3671 (((-3 (-645 $) "failed") $) NIL)) (-3798 (((-3 (-2 (|:| |var| (-1178)) (|:| -3458 (-772))) "failed") $) NIL)) (-2416 (($ $ (-1178)) 29 (|has| |#1| (-38 (-410 (-567)))))) (-3430 (((-1122) $) NIL)) (-2949 (((-112) $) NIL)) (-2962 ((|#1| $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#1| (-455)))) (-2774 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-2435 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-911)))) (-3517 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-911)))) (-2706 (((-421 $) $) NIL (|has| |#1| (-911)))) (-2391 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-2631 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-1178) |#1|) NIL) (($ $ (-645 (-1178)) (-645 |#1|)) NIL) (($ $ (-1178) $) NIL) (($ $ (-645 (-1178)) (-645 $)) NIL)) (-3788 (($ $ (-1178)) NIL (|has| |#1| (-172)))) (-1593 (($ $ (-1178)) NIL) (($ $ (-645 (-1178))) NIL) (($ $ (-1178) (-772)) NIL) (($ $ (-645 (-1178)) (-645 (-772))) NIL)) (-3077 (((-534 (-1178)) $) NIL) (((-772) $ (-1178)) NIL) (((-645 (-772)) $ (-645 (-1178))) NIL)) (-3893 (((-894 (-381)) $) NIL (-12 (|has| (-1178) (-615 (-894 (-381)))) (|has| |#1| (-615 (-894 (-381)))))) (((-894 (-567)) $) NIL (-12 (|has| (-1178) (-615 (-894 (-567)))) (|has| |#1| (-615 (-894 (-567)))))) (((-539) $) NIL (-12 (|has| (-1178) (-615 (-539))) (|has| |#1| (-615 (-539)))))) (-4358 ((|#1| $) NIL (|has| |#1| (-455))) (($ $ (-1178)) NIL (|has| |#1| (-455)))) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-911))))) (-4132 (((-863) $) 25) (($ (-567)) NIL) (($ |#1|) NIL) (($ (-1178)) 27) (($ (-410 (-567))) NIL (-2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567)))))) (($ $) NIL (|has| |#1| (-559)))) (-3032 (((-645 |#1|) $) NIL)) (-4136 ((|#1| $ (-534 (-1178))) NIL) (($ $ (-1178) (-772)) NIL) (($ $ (-645 (-1178)) (-645 (-772))) NIL)) (-1903 (((-3 $ "failed") $) NIL (-2800 (-12 (|has| $ (-145)) (|has| |#1| (-911))) (|has| |#1| (-145))))) (-4221 (((-772)) NIL T CONST)) (-4176 (($ $ $ (-772)) NIL (|has| |#1| (-172)))) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1716 (($) NIL T CONST)) (-1728 (($) NIL T CONST)) (-2637 (($ $ (-1178)) NIL) (($ $ (-645 (-1178))) NIL) (($ $ (-1178) (-772)) NIL) (($ $ (-645 (-1178)) (-645 (-772))) NIL)) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-954 |#1|) (-13 (-951 |#1| (-534 (-1178)) (-1178)) (-10 -8 (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -2416 ($ $ (-1178))) |%noBranch|))) (-1051)) (T -954))
-((-2416 (*1 *1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-954 *3)) (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)))))
-(-13 (-951 |#1| (-534 (-1178)) (-1178)) (-10 -8 (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -2416 ($ $ (-1178))) |%noBranch|)))
-((-1790 (((-2 (|:| -3458 (-772)) (|:| -3694 |#5|) (|:| |radicand| |#5|)) |#3| (-772)) 49)) (-2429 (((-2 (|:| -3458 (-772)) (|:| -3694 |#5|) (|:| |radicand| |#5|)) (-410 (-567)) (-772)) 44)) (-1931 (((-2 (|:| -3458 (-772)) (|:| -3694 |#4|) (|:| |radicand| (-645 |#4|))) |#4| (-772)) 65)) (-3155 (((-2 (|:| -3458 (-772)) (|:| -3694 |#5|) (|:| |radicand| |#5|)) |#5| (-772)) 74 (|has| |#3| (-455)))))
-(((-955 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1790 ((-2 (|:| -3458 (-772)) (|:| -3694 |#5|) (|:| |radicand| |#5|)) |#3| (-772))) (-15 -2429 ((-2 (|:| -3458 (-772)) (|:| -3694 |#5|) (|:| |radicand| |#5|)) (-410 (-567)) (-772))) (IF (|has| |#3| (-455)) (-15 -3155 ((-2 (|:| -3458 (-772)) (|:| -3694 |#5|) (|:| |radicand| |#5|)) |#5| (-772))) |%noBranch|) (-15 -1931 ((-2 (|:| -3458 (-772)) (|:| -3694 |#4|) (|:| |radicand| (-645 |#4|))) |#4| (-772)))) (-794) (-851) (-559) (-951 |#3| |#1| |#2|) (-13 (-365) (-10 -8 (-15 -4132 ($ |#4|)) (-15 -1448 (|#4| $)) (-15 -1460 (|#4| $))))) (T -955))
-((-1931 (*1 *2 *3 *4) (-12 (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-559)) (-4 *3 (-951 *7 *5 *6)) (-5 *2 (-2 (|:| -3458 (-772)) (|:| -3694 *3) (|:| |radicand| (-645 *3)))) (-5 *1 (-955 *5 *6 *7 *3 *8)) (-5 *4 (-772)) (-4 *8 (-13 (-365) (-10 -8 (-15 -4132 ($ *3)) (-15 -1448 (*3 $)) (-15 -1460 (*3 $))))))) (-3155 (*1 *2 *3 *4) (-12 (-4 *7 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-559)) (-4 *8 (-951 *7 *5 *6)) (-5 *2 (-2 (|:| -3458 (-772)) (|:| -3694 *3) (|:| |radicand| *3))) (-5 *1 (-955 *5 *6 *7 *8 *3)) (-5 *4 (-772)) (-4 *3 (-13 (-365) (-10 -8 (-15 -4132 ($ *8)) (-15 -1448 (*8 $)) (-15 -1460 (*8 $))))))) (-2429 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-567))) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-559)) (-4 *8 (-951 *7 *5 *6)) (-5 *2 (-2 (|:| -3458 (-772)) (|:| -3694 *9) (|:| |radicand| *9))) (-5 *1 (-955 *5 *6 *7 *8 *9)) (-5 *4 (-772)) (-4 *9 (-13 (-365) (-10 -8 (-15 -4132 ($ *8)) (-15 -1448 (*8 $)) (-15 -1460 (*8 $))))))) (-1790 (*1 *2 *3 *4) (-12 (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-559)) (-4 *7 (-951 *3 *5 *6)) (-5 *2 (-2 (|:| -3458 (-772)) (|:| -3694 *8) (|:| |radicand| *8))) (-5 *1 (-955 *5 *6 *3 *7 *8)) (-5 *4 (-772)) (-4 *8 (-13 (-365) (-10 -8 (-15 -4132 ($ *7)) (-15 -1448 (*7 $)) (-15 -1460 (*7 $))))))))
-(-10 -7 (-15 -1790 ((-2 (|:| -3458 (-772)) (|:| -3694 |#5|) (|:| |radicand| |#5|)) |#3| (-772))) (-15 -2429 ((-2 (|:| -3458 (-772)) (|:| -3694 |#5|) (|:| |radicand| |#5|)) (-410 (-567)) (-772))) (IF (|has| |#3| (-455)) (-15 -3155 ((-2 (|:| -3458 (-772)) (|:| -3694 |#5|) (|:| |radicand| |#5|)) |#5| (-772))) |%noBranch|) (-15 -1931 ((-2 (|:| -3458 (-772)) (|:| -3694 |#4|) (|:| |radicand| (-645 |#4|))) |#4| (-772))))
-((-2403 (((-112) $ $) NIL)) (-2067 (($ (-1122)) 8)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 15) (((-1122) $) 12)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 11)))
-(((-956) (-13 (-1102) (-614 (-1122)) (-10 -8 (-15 -2067 ($ (-1122)))))) (T -956))
-((-2067 (*1 *1 *2) (-12 (-5 *2 (-1122)) (-5 *1 (-956)))))
-(-13 (-1102) (-614 (-1122)) (-10 -8 (-15 -2067 ($ (-1122)))))
-((-3711 (((-1096 (-225)) $) 8)) (-3703 (((-1096 (-225)) $) 9)) (-2049 (((-645 (-645 (-945 (-225)))) $) 10)) (-4132 (((-863) $) 6)))
+((-2989 (*1 *1 *1) (-12 (-4 *1 (-951 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-455)))) (-3104 (*1 *2 *1 *3) (-12 (-4 *1 (-951 *4 *5 *3)) (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *3 (-851)) (-5 *2 (-772)))) (-3104 (*1 *2 *1 *3) (-12 (-5 *3 (-645 *6)) (-4 *1 (-951 *4 *5 *6)) (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 (-772))))) (-2558 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-951 *4 *5 *2)) (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *2 (-851)))) (-2558 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 *6)) (-5 *3 (-645 (-772))) (-4 *1 (-951 *4 *5 *6)) (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *6 (-851)))) (-2659 (*1 *2 *1) (-12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-951 *3 *4 *5)))) (-2684 (*1 *2 *1 *3) (-12 (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *3 (-851)) (-5 *2 (-1175 *1)) (-4 *1 (-951 *4 *5 *3)))) (-2684 (*1 *2 *1) (-12 (-4 *1 (-951 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-1175 *3)))) (-3221 (*1 *2 *1) (|partial| -12 (-4 *1 (-951 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *2 (-851)))) (-2955 (*1 *2 *1 *3) (-12 (-4 *1 (-951 *4 *5 *3)) (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *3 (-851)) (-5 *2 (-772)))) (-2955 (*1 *2 *1 *3) (-12 (-5 *3 (-645 *6)) (-4 *1 (-951 *4 *5 *6)) (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 (-772))))) (-2742 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *3 (-851)) (-5 *2 (-2 (|:| -2654 *1) (|:| -2023 *1))) (-4 *1 (-951 *4 *5 *3)))) (-2836 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-951 *4 *5 *2)) (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *2 (-851)))) (-2836 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 *6)) (-5 *3 (-645 (-772))) (-4 *1 (-951 *4 *5 *6)) (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *6 (-851)))) (-2848 (*1 *1 *2 *3) (-12 (-5 *2 (-1175 *4)) (-4 *4 (-1051)) (-4 *1 (-951 *4 *5 *3)) (-4 *5 (-794)) (-4 *3 (-851)))) (-2848 (*1 *1 *2 *3) (-12 (-5 *2 (-1175 *1)) (-4 *1 (-951 *4 *5 *3)) (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *3 (-851)))) (-3774 (*1 *2 *1) (|partial| -12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-951 *3 *4 *5)))) (-3037 (*1 *2 *1) (|partial| -12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-951 *3 *4 *5)))) (-3816 (*1 *2 *1) (|partial| -12 (-4 *1 (-951 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-2 (|:| |var| *5) (|:| -3468 (-772)))))) (-3849 (*1 *2 *1) (-12 (-4 *1 (-951 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-772)))) (-3849 (*1 *2 *1 *3) (-12 (-5 *3 (-645 *6)) (-4 *1 (-951 *4 *5 *6)) (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-772)))) (-2859 (*1 *2 *1) (-12 (-4 *1 (-951 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *5)))) (-3010 (*1 *2 *1) (-12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-951 *3 *4 *5)))) (-3554 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-951 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *2 (-851)) (-4 *3 (-172)))) (-2433 (*1 *1 *1 *2) (-12 (-4 *1 (-951 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *2 (-851)) (-4 *3 (-172)))) (-1849 (*1 *1 *1 *2) (-12 (-4 *1 (-951 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *2 (-851)) (-4 *3 (-455)))) (-2989 (*1 *1 *1 *2) (-12 (-4 *1 (-951 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *2 (-851)) (-4 *3 (-455)))) (-3659 (*1 *1 *1) (-12 (-4 *1 (-951 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-455)))) (-3597 (*1 *2 *1) (-12 (-4 *3 (-455)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-421 *1)) (-4 *1 (-951 *3 *4 *5)))))
+(-13 (-902 |t#3|) (-327 |t#1| |t#2|) (-310 $) (-517 |t#3| |t#1|) (-517 |t#3| $) (-1040 |t#3|) (-379 |t#1|) (-10 -8 (-15 -3104 ((-772) $ |t#3|)) (-15 -3104 ((-645 (-772)) $ (-645 |t#3|))) (-15 -2558 ($ $ |t#3| (-772))) (-15 -2558 ($ $ (-645 |t#3|) (-645 (-772)))) (-15 -2659 ((-645 $) $)) (-15 -2684 ((-1175 $) $ |t#3|)) (-15 -2684 ((-1175 |t#1|) $)) (-15 -3221 ((-3 |t#3| "failed") $)) (-15 -2955 ((-772) $ |t#3|)) (-15 -2955 ((-645 (-772)) $ (-645 |t#3|))) (-15 -2742 ((-2 (|:| -2654 $) (|:| -2023 $)) $ $ |t#3|)) (-15 -2836 ($ $ |t#3| (-772))) (-15 -2836 ($ $ (-645 |t#3|) (-645 (-772)))) (-15 -2848 ($ (-1175 |t#1|) |t#3|)) (-15 -2848 ($ (-1175 $) |t#3|)) (-15 -3774 ((-3 (-645 $) "failed") $)) (-15 -3037 ((-3 (-645 $) "failed") $)) (-15 -3816 ((-3 (-2 (|:| |var| |t#3|) (|:| -3468 (-772))) "failed") $)) (-15 -3849 ((-772) $)) (-15 -3849 ((-772) $ (-645 |t#3|))) (-15 -2859 ((-645 |t#3|) $)) (-15 -3010 ((-645 $) $)) (IF (|has| |t#1| (-615 (-539))) (IF (|has| |t#3| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-615 (-894 (-567)))) (IF (|has| |t#3| (-615 (-894 (-567)))) (-6 (-615 (-894 (-567)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-615 (-894 (-381)))) (IF (|has| |t#3| (-615 (-894 (-381)))) (-6 (-615 (-894 (-381)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-888 (-567))) (IF (|has| |t#3| (-888 (-567))) (-6 (-888 (-567))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-888 (-381))) (IF (|has| |t#3| (-888 (-381))) (-6 (-888 (-381))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-172)) (PROGN (-15 -3554 ($ $ $ |t#3|)) (-15 -2433 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-455)) (PROGN (-6 (-455)) (-15 -1849 ($ $ |t#3|)) (-15 -2989 ($ $)) (-15 -2989 ($ $ |t#3|)) (-15 -3597 ((-421 $) $)) (-15 -3659 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4420)) (-6 -4420) |%noBranch|) (IF (|has| |t#1| (-911)) (-6 (-911)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2811 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-410 (-567)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2811 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #0#) -2811 (|has| |#1| (-1040 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567))))) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-617 |#3|) . T) ((-617 $) -2811 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-614 (-863)) . T) ((-172) -2811 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-615 (-539)) -12 (|has| |#1| (-615 (-539))) (|has| |#3| (-615 (-539)))) ((-615 (-894 (-381))) -12 (|has| |#1| (-615 (-894 (-381)))) (|has| |#3| (-615 (-894 (-381))))) ((-615 (-894 (-567))) -12 (|has| |#1| (-615 (-894 (-567)))) (|has| |#3| (-615 (-894 (-567))))) ((-291) -2811 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-310 $) . T) ((-327 |#1| |#2|) . T) ((-379 |#1|) . T) ((-414 |#1|) . T) ((-455) -2811 (|has| |#1| (-911)) (|has| |#1| (-455))) ((-517 |#3| |#1|) . T) ((-517 |#3| $) . T) ((-517 $ $) . T) ((-559) -2811 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-647 #0#) |has| |#1| (-38 (-410 (-567)))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) |has| |#1| (-38 (-410 (-567)))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) |has| |#1| (-38 (-410 (-567)))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) -2811 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-640 (-567)) |has| |#1| (-640 (-567))) ((-640 |#1|) . T) ((-718 #0#) |has| |#1| (-38 (-410 (-567)))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) -2811 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-727) . T) ((-902 |#3|) . T) ((-888 (-381)) -12 (|has| |#1| (-888 (-381))) (|has| |#3| (-888 (-381)))) ((-888 (-567)) -12 (|has| |#1| (-888 (-567))) (|has| |#3| (-888 (-567)))) ((-911) |has| |#1| (-911)) ((-1040 (-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) ((-1040 (-567)) |has| |#1| (-1040 (-567))) ((-1040 |#1|) . T) ((-1040 |#3|) . T) ((-1053 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1053 |#1|) . T) ((-1053 $) -2811 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-1058 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1058 |#1|) . T) ((-1058 $) -2811 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1223) |has| |#1| (-911)))
+((-2859 (((-645 |#2|) |#5|) 40)) (-2684 (((-1175 |#5|) |#5| |#2| (-1175 |#5|)) 23) (((-410 (-1175 |#5|)) |#5| |#2|) 16)) (-2848 ((|#5| (-410 (-1175 |#5|)) |#2|) 30)) (-3221 (((-3 |#2| "failed") |#5|) 71)) (-3037 (((-3 (-645 |#5|) "failed") |#5|) 65)) (-1851 (((-3 (-2 (|:| |val| |#5|) (|:| -3468 (-567))) "failed") |#5|) 53)) (-3774 (((-3 (-645 |#5|) "failed") |#5|) 67)) (-3816 (((-3 (-2 (|:| |var| |#2|) (|:| -3468 (-567))) "failed") |#5|) 57)))
+(((-952 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2859 ((-645 |#2|) |#5|)) (-15 -3221 ((-3 |#2| "failed") |#5|)) (-15 -2684 ((-410 (-1175 |#5|)) |#5| |#2|)) (-15 -2848 (|#5| (-410 (-1175 |#5|)) |#2|)) (-15 -2684 ((-1175 |#5|) |#5| |#2| (-1175 |#5|))) (-15 -3774 ((-3 (-645 |#5|) "failed") |#5|)) (-15 -3037 ((-3 (-645 |#5|) "failed") |#5|)) (-15 -3816 ((-3 (-2 (|:| |var| |#2|) (|:| -3468 (-567))) "failed") |#5|)) (-15 -1851 ((-3 (-2 (|:| |val| |#5|) (|:| -3468 (-567))) "failed") |#5|))) (-794) (-851) (-1051) (-951 |#3| |#1| |#2|) (-13 (-365) (-10 -8 (-15 -4129 ($ |#4|)) (-15 -1447 (|#4| $)) (-15 -1462 (|#4| $))))) (T -952))
+((-1851 (*1 *2 *3) (|partial| -12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1051)) (-4 *7 (-951 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -3468 (-567)))) (-5 *1 (-952 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -4129 ($ *7)) (-15 -1447 (*7 $)) (-15 -1462 (*7 $))))))) (-3816 (*1 *2 *3) (|partial| -12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1051)) (-4 *7 (-951 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -3468 (-567)))) (-5 *1 (-952 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -4129 ($ *7)) (-15 -1447 (*7 $)) (-15 -1462 (*7 $))))))) (-3037 (*1 *2 *3) (|partial| -12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1051)) (-4 *7 (-951 *6 *4 *5)) (-5 *2 (-645 *3)) (-5 *1 (-952 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -4129 ($ *7)) (-15 -1447 (*7 $)) (-15 -1462 (*7 $))))))) (-3774 (*1 *2 *3) (|partial| -12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1051)) (-4 *7 (-951 *6 *4 *5)) (-5 *2 (-645 *3)) (-5 *1 (-952 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -4129 ($ *7)) (-15 -1447 (*7 $)) (-15 -1462 (*7 $))))))) (-2684 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -4129 ($ *7)) (-15 -1447 (*7 $)) (-15 -1462 (*7 $))))) (-4 *7 (-951 *6 *5 *4)) (-4 *5 (-794)) (-4 *4 (-851)) (-4 *6 (-1051)) (-5 *1 (-952 *5 *4 *6 *7 *3)))) (-2848 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-1175 *2))) (-4 *5 (-794)) (-4 *4 (-851)) (-4 *6 (-1051)) (-4 *2 (-13 (-365) (-10 -8 (-15 -4129 ($ *7)) (-15 -1447 (*7 $)) (-15 -1462 (*7 $))))) (-5 *1 (-952 *5 *4 *6 *7 *2)) (-4 *7 (-951 *6 *5 *4)))) (-2684 (*1 *2 *3 *4) (-12 (-4 *5 (-794)) (-4 *4 (-851)) (-4 *6 (-1051)) (-4 *7 (-951 *6 *5 *4)) (-5 *2 (-410 (-1175 *3))) (-5 *1 (-952 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -4129 ($ *7)) (-15 -1447 (*7 $)) (-15 -1462 (*7 $))))))) (-3221 (*1 *2 *3) (|partial| -12 (-4 *4 (-794)) (-4 *5 (-1051)) (-4 *6 (-951 *5 *4 *2)) (-4 *2 (-851)) (-5 *1 (-952 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -4129 ($ *6)) (-15 -1447 (*6 $)) (-15 -1462 (*6 $))))))) (-2859 (*1 *2 *3) (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1051)) (-4 *7 (-951 *6 *4 *5)) (-5 *2 (-645 *5)) (-5 *1 (-952 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -4129 ($ *7)) (-15 -1447 (*7 $)) (-15 -1462 (*7 $))))))))
+(-10 -7 (-15 -2859 ((-645 |#2|) |#5|)) (-15 -3221 ((-3 |#2| "failed") |#5|)) (-15 -2684 ((-410 (-1175 |#5|)) |#5| |#2|)) (-15 -2848 (|#5| (-410 (-1175 |#5|)) |#2|)) (-15 -2684 ((-1175 |#5|) |#5| |#2| (-1175 |#5|))) (-15 -3774 ((-3 (-645 |#5|) "failed") |#5|)) (-15 -3037 ((-3 (-645 |#5|) "failed") |#5|)) (-15 -3816 ((-3 (-2 (|:| |var| |#2|) (|:| -3468 (-567))) "failed") |#5|)) (-15 -1851 ((-3 (-2 (|:| |val| |#5|) (|:| -3468 (-567))) "failed") |#5|)))
+((-3841 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24)))
+(((-953 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3841 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-794) (-851) (-1051) (-951 |#3| |#1| |#2|) (-13 (-1102) (-10 -8 (-15 -3041 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-772)))))) (T -953))
+((-3841 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-851)) (-4 *8 (-1051)) (-4 *6 (-794)) (-4 *2 (-13 (-1102) (-10 -8 (-15 -3041 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-772)))))) (-5 *1 (-953 *6 *7 *8 *5 *2)) (-4 *5 (-951 *8 *6 *7)))))
+(-10 -7 (-15 -3841 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|)))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-2859 (((-645 (-1179)) $) 16)) (-2684 (((-1175 $) $ (-1179)) 21) (((-1175 |#1|) $) NIL)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-4287 (($ $) NIL (|has| |#1| (-559)))) (-2286 (((-112) $) NIL (|has| |#1| (-559)))) (-3849 (((-772) $) NIL) (((-772) $ (-645 (-1179))) NIL)) (-2376 (((-3 $ "failed") $ $) NIL)) (-2029 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-911)))) (-3659 (($ $) NIL (|has| |#1| (-455)))) (-3597 (((-421 $) $) NIL (|has| |#1| (-455)))) (-3610 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-911)))) (-3647 (($) NIL T CONST)) (-3765 (((-3 |#1| "failed") $) 8) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-1179) "failed") $) NIL)) (-2051 ((|#1| $) NIL) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-1179) $) NIL)) (-3554 (($ $ $ (-1179)) NIL (|has| |#1| (-172)))) (-3023 (($ $) NIL)) (-1423 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4208 (-690 |#1|)) (|:| |vec| (-1269 |#1|))) (-690 $) (-1269 $)) NIL) (((-690 |#1|) (-690 $)) NIL)) (-3588 (((-3 $ "failed") $) NIL)) (-2989 (($ $) NIL (|has| |#1| (-455))) (($ $ (-1179)) NIL (|has| |#1| (-455)))) (-3010 (((-645 $) $) NIL)) (-3502 (((-112) $) NIL (|has| |#1| (-911)))) (-3214 (($ $ |#1| (-534 (-1179)) $) NIL)) (-3193 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (-12 (|has| (-1179) (-888 (-381))) (|has| |#1| (-888 (-381))))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (-12 (|has| (-1179) (-888 (-567))) (|has| |#1| (-888 (-567)))))) (-4346 (((-112) $) NIL)) (-2851 (((-772) $) NIL)) (-2848 (($ (-1175 |#1|) (-1179)) NIL) (($ (-1175 $) (-1179)) NIL)) (-2659 (((-645 $) $) NIL)) (-3770 (((-112) $) NIL)) (-2836 (($ |#1| (-534 (-1179))) NIL) (($ $ (-1179) (-772)) NIL) (($ $ (-645 (-1179)) (-645 (-772))) NIL)) (-2742 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $ (-1179)) NIL)) (-2955 (((-534 (-1179)) $) NIL) (((-772) $ (-1179)) NIL) (((-645 (-772)) $ (-645 (-1179))) NIL)) (-3827 (($ (-1 (-534 (-1179)) (-534 (-1179))) $) NIL)) (-3841 (($ (-1 |#1| |#1|) $) NIL)) (-3221 (((-3 (-1179) "failed") $) 19)) (-2985 (($ $) NIL)) (-2996 ((|#1| $) NIL)) (-2751 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-2516 (((-1161) $) NIL)) (-3037 (((-3 (-645 $) "failed") $) NIL)) (-3774 (((-3 (-645 $) "failed") $) NIL)) (-3816 (((-3 (-2 (|:| |var| (-1179)) (|:| -3468 (-772))) "failed") $) NIL)) (-4083 (($ $ (-1179)) 29 (|has| |#1| (-38 (-410 (-567)))))) (-3437 (((-1122) $) NIL)) (-2960 (((-112) $) NIL)) (-2971 ((|#1| $) NIL)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| |#1| (-455)))) (-2785 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-3551 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-911)))) (-2016 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-911)))) (-2717 (((-421 $) $) NIL (|has| |#1| (-911)))) (-2400 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-2642 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-1179) |#1|) NIL) (($ $ (-645 (-1179)) (-645 |#1|)) NIL) (($ $ (-1179) $) NIL) (($ $ (-645 (-1179)) (-645 $)) NIL)) (-2433 (($ $ (-1179)) NIL (|has| |#1| (-172)))) (-1616 (($ $ (-1179)) NIL) (($ $ (-645 (-1179))) NIL) (($ $ (-1179) (-772)) NIL) (($ $ (-645 (-1179)) (-645 (-772))) NIL)) (-3104 (((-534 (-1179)) $) NIL) (((-772) $ (-1179)) NIL) (((-645 (-772)) $ (-645 (-1179))) NIL)) (-3902 (((-894 (-381)) $) NIL (-12 (|has| (-1179) (-615 (-894 (-381)))) (|has| |#1| (-615 (-894 (-381)))))) (((-894 (-567)) $) NIL (-12 (|has| (-1179) (-615 (-894 (-567)))) (|has| |#1| (-615 (-894 (-567)))))) (((-539) $) NIL (-12 (|has| (-1179) (-615 (-539))) (|has| |#1| (-615 (-539)))))) (-1849 ((|#1| $) NIL (|has| |#1| (-455))) (($ $ (-1179)) NIL (|has| |#1| (-455)))) (-2616 (((-3 (-1269 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-911))))) (-4129 (((-863) $) 25) (($ (-567)) NIL) (($ |#1|) NIL) (($ (-1179)) 27) (($ (-410 (-567))) NIL (-2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567)))))) (($ $) NIL (|has| |#1| (-559)))) (-3601 (((-645 |#1|) $) NIL)) (-2558 ((|#1| $ (-534 (-1179))) NIL) (($ $ (-1179) (-772)) NIL) (($ $ (-645 (-1179)) (-645 (-772))) NIL)) (-2118 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-145)) (|has| |#1| (-911))) (|has| |#1| (-145))))) (-2746 (((-772)) NIL T CONST)) (-3658 (($ $ $ (-772)) NIL (|has| |#1| (-172)))) (-3357 (((-112) $ $) NIL)) (-3731 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1733 (($) NIL T CONST)) (-1744 (($) NIL T CONST)) (-2647 (($ $ (-1179)) NIL) (($ $ (-645 (-1179))) NIL) (($ $ (-1179) (-772)) NIL) (($ $ (-645 (-1179)) (-645 (-772))) NIL)) (-2946 (((-112) $ $) NIL)) (-3069 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-954 |#1|) (-13 (-951 |#1| (-534 (-1179)) (-1179)) (-10 -8 (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -4083 ($ $ (-1179))) |%noBranch|))) (-1051)) (T -954))
+((-4083 (*1 *1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-954 *3)) (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)))))
+(-13 (-951 |#1| (-534 (-1179)) (-1179)) (-10 -8 (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -4083 ($ $ (-1179))) |%noBranch|)))
+((-3247 (((-2 (|:| -3468 (-772)) (|:| -3705 |#5|) (|:| |radicand| |#5|)) |#3| (-772)) 49)) (-3711 (((-2 (|:| -3468 (-772)) (|:| -3705 |#5|) (|:| |radicand| |#5|)) (-410 (-567)) (-772)) 44)) (-2146 (((-2 (|:| -3468 (-772)) (|:| -3705 |#4|) (|:| |radicand| (-645 |#4|))) |#4| (-772)) 65)) (-2409 (((-2 (|:| -3468 (-772)) (|:| -3705 |#5|) (|:| |radicand| |#5|)) |#5| (-772)) 74 (|has| |#3| (-455)))))
+(((-955 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3247 ((-2 (|:| -3468 (-772)) (|:| -3705 |#5|) (|:| |radicand| |#5|)) |#3| (-772))) (-15 -3711 ((-2 (|:| -3468 (-772)) (|:| -3705 |#5|) (|:| |radicand| |#5|)) (-410 (-567)) (-772))) (IF (|has| |#3| (-455)) (-15 -2409 ((-2 (|:| -3468 (-772)) (|:| -3705 |#5|) (|:| |radicand| |#5|)) |#5| (-772))) |%noBranch|) (-15 -2146 ((-2 (|:| -3468 (-772)) (|:| -3705 |#4|) (|:| |radicand| (-645 |#4|))) |#4| (-772)))) (-794) (-851) (-559) (-951 |#3| |#1| |#2|) (-13 (-365) (-10 -8 (-15 -4129 ($ |#4|)) (-15 -1447 (|#4| $)) (-15 -1462 (|#4| $))))) (T -955))
+((-2146 (*1 *2 *3 *4) (-12 (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-559)) (-4 *3 (-951 *7 *5 *6)) (-5 *2 (-2 (|:| -3468 (-772)) (|:| -3705 *3) (|:| |radicand| (-645 *3)))) (-5 *1 (-955 *5 *6 *7 *3 *8)) (-5 *4 (-772)) (-4 *8 (-13 (-365) (-10 -8 (-15 -4129 ($ *3)) (-15 -1447 (*3 $)) (-15 -1462 (*3 $))))))) (-2409 (*1 *2 *3 *4) (-12 (-4 *7 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-559)) (-4 *8 (-951 *7 *5 *6)) (-5 *2 (-2 (|:| -3468 (-772)) (|:| -3705 *3) (|:| |radicand| *3))) (-5 *1 (-955 *5 *6 *7 *8 *3)) (-5 *4 (-772)) (-4 *3 (-13 (-365) (-10 -8 (-15 -4129 ($ *8)) (-15 -1447 (*8 $)) (-15 -1462 (*8 $))))))) (-3711 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-567))) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-559)) (-4 *8 (-951 *7 *5 *6)) (-5 *2 (-2 (|:| -3468 (-772)) (|:| -3705 *9) (|:| |radicand| *9))) (-5 *1 (-955 *5 *6 *7 *8 *9)) (-5 *4 (-772)) (-4 *9 (-13 (-365) (-10 -8 (-15 -4129 ($ *8)) (-15 -1447 (*8 $)) (-15 -1462 (*8 $))))))) (-3247 (*1 *2 *3 *4) (-12 (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-559)) (-4 *7 (-951 *3 *5 *6)) (-5 *2 (-2 (|:| -3468 (-772)) (|:| -3705 *8) (|:| |radicand| *8))) (-5 *1 (-955 *5 *6 *3 *7 *8)) (-5 *4 (-772)) (-4 *8 (-13 (-365) (-10 -8 (-15 -4129 ($ *7)) (-15 -1447 (*7 $)) (-15 -1462 (*7 $))))))))
+(-10 -7 (-15 -3247 ((-2 (|:| -3468 (-772)) (|:| -3705 |#5|) (|:| |radicand| |#5|)) |#3| (-772))) (-15 -3711 ((-2 (|:| -3468 (-772)) (|:| -3705 |#5|) (|:| |radicand| |#5|)) (-410 (-567)) (-772))) (IF (|has| |#3| (-455)) (-15 -2409 ((-2 (|:| -3468 (-772)) (|:| -3705 |#5|) (|:| |radicand| |#5|)) |#5| (-772))) |%noBranch|) (-15 -2146 ((-2 (|:| -3468 (-772)) (|:| -3705 |#4|) (|:| |radicand| (-645 |#4|))) |#4| (-772))))
+((-2412 (((-112) $ $) NIL)) (-2075 (($ (-1122)) 8)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) 15) (((-1122) $) 12)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) 11)))
+(((-956) (-13 (-1102) (-614 (-1122)) (-10 -8 (-15 -2075 ($ (-1122)))))) (T -956))
+((-2075 (*1 *1 *2) (-12 (-5 *2 (-1122)) (-5 *1 (-956)))))
+(-13 (-1102) (-614 (-1122)) (-10 -8 (-15 -2075 ($ (-1122)))))
+((-3733 (((-1096 (-225)) $) 8)) (-3725 (((-1096 (-225)) $) 9)) (-3600 (((-645 (-645 (-945 (-225)))) $) 10)) (-4129 (((-863) $) 6)))
(((-957) (-140)) (T -957))
-((-2049 (*1 *2 *1) (-12 (-4 *1 (-957)) (-5 *2 (-645 (-645 (-945 (-225))))))) (-3703 (*1 *2 *1) (-12 (-4 *1 (-957)) (-5 *2 (-1096 (-225))))) (-3711 (*1 *2 *1) (-12 (-4 *1 (-957)) (-5 *2 (-1096 (-225))))))
-(-13 (-614 (-863)) (-10 -8 (-15 -2049 ((-645 (-645 (-945 (-225)))) $)) (-15 -3703 ((-1096 (-225)) $)) (-15 -3711 ((-1096 (-225)) $))))
+((-3600 (*1 *2 *1) (-12 (-4 *1 (-957)) (-5 *2 (-645 (-645 (-945 (-225))))))) (-3725 (*1 *2 *1) (-12 (-4 *1 (-957)) (-5 *2 (-1096 (-225))))) (-3733 (*1 *2 *1) (-12 (-4 *1 (-957)) (-5 *2 (-1096 (-225))))))
+(-13 (-614 (-863)) (-10 -8 (-15 -3600 ((-645 (-645 (-945 (-225)))) $)) (-15 -3725 ((-1096 (-225)) $)) (-15 -3733 ((-1096 (-225)) $))))
(((-614 (-863)) . T))
-((-3923 (((-3 (-690 |#1|) "failed") |#2| (-923)) 18)))
-(((-958 |#1| |#2|) (-10 -7 (-15 -3923 ((-3 (-690 |#1|) "failed") |#2| (-923)))) (-559) (-657 |#1|)) (T -958))
-((-3923 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-923)) (-4 *5 (-559)) (-5 *2 (-690 *5)) (-5 *1 (-958 *5 *3)) (-4 *3 (-657 *5)))))
-(-10 -7 (-15 -3923 ((-3 (-690 |#1|) "failed") |#2| (-923))))
-((-2788 (((-960 |#2|) (-1 |#2| |#1| |#2|) (-960 |#1|) |#2|) 16)) (-2477 ((|#2| (-1 |#2| |#1| |#2|) (-960 |#1|) |#2|) 18)) (-3829 (((-960 |#2|) (-1 |#2| |#1|) (-960 |#1|)) 13)))
-(((-959 |#1| |#2|) (-10 -7 (-15 -2788 ((-960 |#2|) (-1 |#2| |#1| |#2|) (-960 |#1|) |#2|)) (-15 -2477 (|#2| (-1 |#2| |#1| |#2|) (-960 |#1|) |#2|)) (-15 -3829 ((-960 |#2|) (-1 |#2| |#1|) (-960 |#1|)))) (-1218) (-1218)) (T -959))
-((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-960 *5)) (-4 *5 (-1218)) (-4 *6 (-1218)) (-5 *2 (-960 *6)) (-5 *1 (-959 *5 *6)))) (-2477 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-960 *5)) (-4 *5 (-1218)) (-4 *2 (-1218)) (-5 *1 (-959 *5 *2)))) (-2788 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-960 *6)) (-4 *6 (-1218)) (-4 *5 (-1218)) (-5 *2 (-960 *5)) (-5 *1 (-959 *6 *5)))))
-(-10 -7 (-15 -2788 ((-960 |#2|) (-1 |#2| |#1| |#2|) (-960 |#1|) |#2|)) (-15 -2477 (|#2| (-1 |#2| |#1| |#2|) (-960 |#1|) |#2|)) (-15 -3829 ((-960 |#2|) (-1 |#2| |#1|) (-960 |#1|))))
-((-2403 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1783 (((-1273) $ (-567) (-567)) NIL (|has| $ (-6 -4419)))) (-2496 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-851)))) (-1394 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4419))) (($ $) NIL (-12 (|has| $ (-6 -4419)) (|has| |#1| (-851))))) (-4396 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-851)))) (-3445 (((-112) $ (-772)) NIL)) (-4284 ((|#1| $ (-567) |#1|) 19 (|has| $ (-6 -4419))) ((|#1| $ (-1235 (-567)) |#1|) NIL (|has| $ (-6 -4419)))) (-3350 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2585 (($) NIL T CONST)) (-1764 (($ $) NIL (|has| $ (-6 -4419)))) (-3584 (($ $) NIL)) (-2444 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-3238 (($ |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2477 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4418)))) (-3741 ((|#1| $ (-567) |#1|) 18 (|has| $ (-6 -4419)))) (-3680 ((|#1| $ (-567)) 16)) (-2569 (((-567) (-1 (-112) |#1|) $) NIL) (((-567) |#1| $) NIL (|has| |#1| (-1102))) (((-567) |#1| $ (-567)) NIL (|has| |#1| (-1102)))) (-2777 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-2846 (($ (-772) |#1|) 15)) (-2077 (((-112) $ (-772)) NIL)) (-4069 (((-567) $) 11 (|has| (-567) (-851)))) (-1354 (($ $ $) NIL (|has| |#1| (-851)))) (-4135 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-851)))) (-2279 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2266 (((-567) $) NIL (|has| (-567) (-851)))) (-2981 (($ $ $) NIL (|has| |#1| (-851)))) (-3731 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL (|has| |#1| (-1102)))) (-2845 (($ |#1| $ (-567)) NIL) (($ $ $ (-567)) NIL)) (-1789 (((-645 (-567)) $) NIL)) (-2996 (((-112) (-567) $) NIL)) (-3430 (((-1122) $) NIL (|has| |#1| (-1102)))) (-2409 ((|#1| $) NIL (|has| (-567) (-851)))) (-4128 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3986 (($ $ |#1|) 20 (|has| $ (-6 -4419)))) (-3025 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) NIL)) (-1794 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2339 (((-645 |#1|) $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) 12)) (-1787 ((|#1| $ (-567) |#1|) NIL) ((|#1| $ (-567)) 17) (($ $ (-1235 (-567))) NIL)) (-1560 (($ $ (-567)) NIL) (($ $ (-1235 (-567))) NIL)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-1395 (($ $ $ (-567)) NIL (|has| $ (-6 -4419)))) (-4305 (($ $) 21)) (-3893 (((-539) $) NIL (|has| |#1| (-615 (-539))))) (-4147 (($ (-645 |#1|)) 14)) (-2269 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-645 $)) NIL)) (-4132 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-1745 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2997 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2971 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2936 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2984 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2958 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2414 (((-772) $) 8 (|has| $ (-6 -4418)))))
-(((-960 |#1|) (-19 |#1|) (-1218)) (T -960))
+((-2466 (((-3 (-690 |#1|) "failed") |#2| (-923)) 18)))
+(((-958 |#1| |#2|) (-10 -7 (-15 -2466 ((-3 (-690 |#1|) "failed") |#2| (-923)))) (-559) (-657 |#1|)) (T -958))
+((-2466 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-923)) (-4 *5 (-559)) (-5 *2 (-690 *5)) (-5 *1 (-958 *5 *3)) (-4 *3 (-657 *5)))))
+(-10 -7 (-15 -2466 ((-3 (-690 |#1|) "failed") |#2| (-923))))
+((-3400 (((-960 |#2|) (-1 |#2| |#1| |#2|) (-960 |#1|) |#2|) 16)) (-2494 ((|#2| (-1 |#2| |#1| |#2|) (-960 |#1|) |#2|) 18)) (-3841 (((-960 |#2|) (-1 |#2| |#1|) (-960 |#1|)) 13)))
+(((-959 |#1| |#2|) (-10 -7 (-15 -3400 ((-960 |#2|) (-1 |#2| |#1| |#2|) (-960 |#1|) |#2|)) (-15 -2494 (|#2| (-1 |#2| |#1| |#2|) (-960 |#1|) |#2|)) (-15 -3841 ((-960 |#2|) (-1 |#2| |#1|) (-960 |#1|)))) (-1219) (-1219)) (T -959))
+((-3841 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-960 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) (-5 *2 (-960 *6)) (-5 *1 (-959 *5 *6)))) (-2494 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-960 *5)) (-4 *5 (-1219)) (-4 *2 (-1219)) (-5 *1 (-959 *5 *2)))) (-3400 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-960 *6)) (-4 *6 (-1219)) (-4 *5 (-1219)) (-5 *2 (-960 *5)) (-5 *1 (-959 *6 *5)))))
+(-10 -7 (-15 -3400 ((-960 |#2|) (-1 |#2| |#1| |#2|) (-960 |#1|) |#2|)) (-15 -2494 (|#2| (-1 |#2| |#1| |#2|) (-960 |#1|) |#2|)) (-15 -3841 ((-960 |#2|) (-1 |#2| |#1|) (-960 |#1|))))
+((-2412 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3843 (((-1274) $ (-567) (-567)) NIL (|has| $ (-6 -4423)))) (-3531 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-851)))) (-2676 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4423))) (($ $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-851))))) (-1311 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-851)))) (-1563 (((-112) $ (-772)) NIL)) (-4285 ((|#1| $ (-567) |#1|) 19 (|has| $ (-6 -4423))) ((|#1| $ (-1236 (-567)) |#1|) NIL (|has| $ (-6 -4423)))) (-3356 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-3647 (($) NIL T CONST)) (-1602 (($ $) NIL (|has| $ (-6 -4423)))) (-3592 (($ $) NIL)) (-2453 (($ $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3246 (($ |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2494 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4422)))) (-3760 ((|#1| $ (-567) |#1|) 18 (|has| $ (-6 -4423)))) (-3703 ((|#1| $ (-567)) 16)) (-2578 (((-567) (-1 (-112) |#1|) $) NIL) (((-567) |#1| $) NIL (|has| |#1| (-1102))) (((-567) |#1| $ (-567)) NIL (|has| |#1| (-1102)))) (-2799 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-2858 (($ (-772) |#1|) 15)) (-4093 (((-112) $ (-772)) NIL)) (-3895 (((-567) $) 11 (|has| (-567) (-851)))) (-1365 (($ $ $) NIL (|has| |#1| (-851)))) (-2473 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-851)))) (-1942 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-3237 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3255 (((-567) $) NIL (|has| (-567) (-851)))) (-3002 (($ $ $) NIL (|has| |#1| (-851)))) (-3751 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1986 (((-112) $ (-772)) NIL)) (-2516 (((-1161) $) NIL (|has| |#1| (-1102)))) (-2857 (($ |#1| $ (-567)) NIL) (($ $ $ (-567)) NIL)) (-4364 (((-645 (-567)) $) NIL)) (-3188 (((-112) (-567) $) NIL)) (-3437 (((-1122) $) NIL (|has| |#1| (-1102)))) (-2418 ((|#1| $) NIL (|has| (-567) (-851)))) (-3196 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3823 (($ $ |#1|) 20 (|has| $ (-6 -4423)))) (-4233 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3875 (((-112) $ $) NIL)) (-4058 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-2190 (((-645 |#1|) $) NIL)) (-3885 (((-112) $) NIL)) (-2701 (($) 12)) (-1801 ((|#1| $ (-567) |#1|) NIL) ((|#1| $ (-567)) 17) (($ $ (-1236 (-567))) NIL)) (-1569 (($ $ (-567)) NIL) (($ $ (-1236 (-567))) NIL)) (-3447 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-1656 (($ $ $ (-567)) NIL (|has| $ (-6 -4423)))) (-4309 (($ $) 21)) (-3902 (((-539) $) NIL (|has| |#1| (-615 (-539))))) (-4145 (($ (-645 |#1|)) 14)) (-2276 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-645 $)) NIL)) (-4129 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-3357 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3436 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-3004 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2980 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2993 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2968 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2423 (((-772) $) 8 (|has| $ (-6 -4422)))))
+(((-960 |#1|) (-19 |#1|) (-1219)) (T -960))
NIL
(-19 |#1|)
-((-2940 (($ $ (-1094 $)) 7) (($ $ (-1178)) 6)))
+((-1778 (($ $ (-1094 $)) 7) (($ $ (-1179)) 6)))
(((-961) (-140)) (T -961))
-((-2940 (*1 *1 *1 *2) (-12 (-5 *2 (-1094 *1)) (-4 *1 (-961)))) (-2940 (*1 *1 *1 *2) (-12 (-4 *1 (-961)) (-5 *2 (-1178)))))
-(-13 (-10 -8 (-15 -2940 ($ $ (-1178))) (-15 -2940 ($ $ (-1094 $)))))
-((-3431 (((-2 (|:| -3694 (-645 (-567))) (|:| |poly| (-645 (-1174 |#1|))) (|:| |prim| (-1174 |#1|))) (-645 (-954 |#1|)) (-645 (-1178)) (-1178)) 30) (((-2 (|:| -3694 (-645 (-567))) (|:| |poly| (-645 (-1174 |#1|))) (|:| |prim| (-1174 |#1|))) (-645 (-954 |#1|)) (-645 (-1178))) 31) (((-2 (|:| |coef1| (-567)) (|:| |coef2| (-567)) (|:| |prim| (-1174 |#1|))) (-954 |#1|) (-1178) (-954 |#1|) (-1178)) 49)))
-(((-962 |#1|) (-10 -7 (-15 -3431 ((-2 (|:| |coef1| (-567)) (|:| |coef2| (-567)) (|:| |prim| (-1174 |#1|))) (-954 |#1|) (-1178) (-954 |#1|) (-1178))) (-15 -3431 ((-2 (|:| -3694 (-645 (-567))) (|:| |poly| (-645 (-1174 |#1|))) (|:| |prim| (-1174 |#1|))) (-645 (-954 |#1|)) (-645 (-1178)))) (-15 -3431 ((-2 (|:| -3694 (-645 (-567))) (|:| |poly| (-645 (-1174 |#1|))) (|:| |prim| (-1174 |#1|))) (-645 (-954 |#1|)) (-645 (-1178)) (-1178)))) (-13 (-365) (-147))) (T -962))
-((-3431 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-645 (-954 *6))) (-5 *4 (-645 (-1178))) (-5 *5 (-1178)) (-4 *6 (-13 (-365) (-147))) (-5 *2 (-2 (|:| -3694 (-645 (-567))) (|:| |poly| (-645 (-1174 *6))) (|:| |prim| (-1174 *6)))) (-5 *1 (-962 *6)))) (-3431 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-645 (-1178))) (-4 *5 (-13 (-365) (-147))) (-5 *2 (-2 (|:| -3694 (-645 (-567))) (|:| |poly| (-645 (-1174 *5))) (|:| |prim| (-1174 *5)))) (-5 *1 (-962 *5)))) (-3431 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-954 *5)) (-5 *4 (-1178)) (-4 *5 (-13 (-365) (-147))) (-5 *2 (-2 (|:| |coef1| (-567)) (|:| |coef2| (-567)) (|:| |prim| (-1174 *5)))) (-5 *1 (-962 *5)))))
-(-10 -7 (-15 -3431 ((-2 (|:| |coef1| (-567)) (|:| |coef2| (-567)) (|:| |prim| (-1174 |#1|))) (-954 |#1|) (-1178) (-954 |#1|) (-1178))) (-15 -3431 ((-2 (|:| -3694 (-645 (-567))) (|:| |poly| (-645 (-1174 |#1|))) (|:| |prim| (-1174 |#1|))) (-645 (-954 |#1|)) (-645 (-1178)))) (-15 -3431 ((-2 (|:| -3694 (-645 (-567))) (|:| |poly| (-645 (-1174 |#1|))) (|:| |prim| (-1174 |#1|))) (-645 (-954 |#1|)) (-645 (-1178)) (-1178))))
-((-2605 (((-645 |#1|) |#1| |#1|) 47)) (-3184 (((-112) |#1|) 44)) (-3126 ((|#1| |#1|) 82)) (-2679 ((|#1| |#1|) 81)))
-(((-963 |#1|) (-10 -7 (-15 -3184 ((-112) |#1|)) (-15 -2679 (|#1| |#1|)) (-15 -3126 (|#1| |#1|)) (-15 -2605 ((-645 |#1|) |#1| |#1|))) (-548)) (T -963))
-((-2605 (*1 *2 *3 *3) (-12 (-5 *2 (-645 *3)) (-5 *1 (-963 *3)) (-4 *3 (-548)))) (-3126 (*1 *2 *2) (-12 (-5 *1 (-963 *2)) (-4 *2 (-548)))) (-2679 (*1 *2 *2) (-12 (-5 *1 (-963 *2)) (-4 *2 (-548)))) (-3184 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-963 *3)) (-4 *3 (-548)))))
-(-10 -7 (-15 -3184 ((-112) |#1|)) (-15 -2679 (|#1| |#1|)) (-15 -3126 (|#1| |#1|)) (-15 -2605 ((-645 |#1|) |#1| |#1|)))
-((-2733 (((-1273) (-863)) 9)))
-(((-964) (-10 -7 (-15 -2733 ((-1273) (-863))))) (T -964))
-((-2733 (*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1273)) (-5 *1 (-964)))))
-(-10 -7 (-15 -2733 ((-1273) (-863))))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 78 (|has| |#1| (-559)))) (-4381 (($ $) 79 (|has| |#1| (-559)))) (-3949 (((-112) $) NIL (|has| |#1| (-559)))) (-3472 (((-3 $ "failed") $ $) NIL)) (-2585 (($) NIL T CONST)) (-3753 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) 34)) (-2038 (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) NIL)) (-3014 (($ $) 31)) (-2109 (((-3 $ "failed") $) 42)) (-3501 (($ $) NIL (|has| |#1| (-455)))) (-2320 (($ $ |#1| |#2| $) 62)) (-1433 (((-112) $) NIL)) (-2695 (((-772) $) 17)) (-2843 (((-112) $) NIL)) (-2824 (($ |#1| |#2|) NIL)) (-2656 ((|#2| $) 24)) (-3273 (($ (-1 |#2| |#2|) $) NIL)) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-2976 (($ $) 28)) (-2989 ((|#1| $) 26)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-2949 (((-112) $) 51)) (-2962 ((|#1| $) NIL)) (-3110 (($ $ |#2| |#1| $) 90 (-12 (|has| |#2| (-131)) (|has| |#1| (-559))))) (-2391 (((-3 $ "failed") $ $) 91 (|has| |#1| (-559))) (((-3 $ "failed") $ |#1|) 85 (|has| |#1| (-559)))) (-3077 ((|#2| $) 22)) (-4358 ((|#1| $) NIL (|has| |#1| (-455)))) (-4132 (((-863) $) NIL) (($ (-567)) 46) (($ $) NIL (|has| |#1| (-559))) (($ |#1|) 41) (($ (-410 (-567))) NIL (-2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567))))))) (-3032 (((-645 |#1|) $) NIL)) (-4136 ((|#1| $ |#2|) 37)) (-1903 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-4221 (((-772)) 15 T CONST)) (-4176 (($ $ $ (-772)) 74 (|has| |#1| (-172)))) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) 84 (|has| |#1| (-559)))) (-1716 (($) 27 T CONST)) (-1728 (($) 12 T CONST)) (-2936 (((-112) $ $) 83)) (-3060 (($ $ |#1|) 92 (|has| |#1| (-365)))) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) 69) (($ $ (-772)) 67)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 66) (($ $ |#1|) 64) (($ |#1| $) 63) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))))
-(((-965 |#1| |#2|) (-13 (-327 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-559)) (IF (|has| |#2| (-131)) (-15 -3110 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4416)) (-6 -4416) |%noBranch|))) (-1051) (-793)) (T -965))
-((-3110 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-965 *3 *2)) (-4 *2 (-131)) (-4 *3 (-559)) (-4 *3 (-1051)) (-4 *2 (-793)))))
-(-13 (-327 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-559)) (IF (|has| |#2| (-131)) (-15 -3110 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4416)) (-6 -4416) |%noBranch|)))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL (-2800 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-794)) (|has| |#2| (-794)))))) (-4016 (($ $ $) 65 (-12 (|has| |#1| (-794)) (|has| |#2| (-794))))) (-3472 (((-3 $ "failed") $ $) 52 (-2800 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-794)) (|has| |#2| (-794)))))) (-2375 (((-772)) 36 (-12 (|has| |#1| (-370)) (|has| |#2| (-370))))) (-3787 ((|#2| $) 22)) (-2042 ((|#1| $) 21)) (-2585 (($) NIL (-2800 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-476)) (|has| |#2| (-476))) (-12 (|has| |#1| (-727)) (|has| |#2| (-727))) (-12 (|has| |#1| (-794)) (|has| |#2| (-794)))) CONST)) (-2109 (((-3 $ "failed") $) NIL (-2800 (-12 (|has| |#1| (-476)) (|has| |#2| (-476))) (-12 (|has| |#1| (-727)) (|has| |#2| (-727)))))) (-1348 (($) NIL (-12 (|has| |#1| (-370)) (|has| |#2| (-370))))) (-1433 (((-112) $) NIL (-2800 (-12 (|has| |#1| (-476)) (|has| |#2| (-476))) (-12 (|has| |#1| (-727)) (|has| |#2| (-727)))))) (-1354 (($ $ $) NIL (-2800 (-12 (|has| |#1| (-794)) (|has| |#2| (-794))) (-12 (|has| |#1| (-851)) (|has| |#2| (-851)))))) (-2981 (($ $ $) NIL (-2800 (-12 (|has| |#1| (-794)) (|has| |#2| (-794))) (-12 (|has| |#1| (-851)) (|has| |#2| (-851)))))) (-1799 (($ |#1| |#2|) 20)) (-4249 (((-923) $) NIL (-12 (|has| |#1| (-370)) (|has| |#2| (-370))))) (-1419 (((-1160) $) NIL)) (-2939 (($ $) 39 (-12 (|has| |#1| (-476)) (|has| |#2| (-476))))) (-3768 (($ (-923)) NIL (-12 (|has| |#1| (-370)) (|has| |#2| (-370))))) (-3430 (((-1122) $) NIL)) (-1823 (($ $ $) NIL (-12 (|has| |#1| (-476)) (|has| |#2| (-476))))) (-1485 (($ $ $) NIL (-12 (|has| |#1| (-476)) (|has| |#2| (-476))))) (-4132 (((-863) $) 14)) (-1745 (((-112) $ $) NIL)) (-1716 (($) 42 (-2800 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-794)) (|has| |#2| (-794)))) CONST)) (-1728 (($) 25 (-2800 (-12 (|has| |#1| (-476)) (|has| |#2| (-476))) (-12 (|has| |#1| (-727)) (|has| |#2| (-727)))) CONST)) (-2997 (((-112) $ $) NIL (-2800 (-12 (|has| |#1| (-794)) (|has| |#2| (-794))) (-12 (|has| |#1| (-851)) (|has| |#2| (-851)))))) (-2971 (((-112) $ $) NIL (-2800 (-12 (|has| |#1| (-794)) (|has| |#2| (-794))) (-12 (|has| |#1| (-851)) (|has| |#2| (-851)))))) (-2936 (((-112) $ $) 19)) (-2984 (((-112) $ $) NIL (-2800 (-12 (|has| |#1| (-794)) (|has| |#2| (-794))) (-12 (|has| |#1| (-851)) (|has| |#2| (-851)))))) (-2958 (((-112) $ $) 69 (-2800 (-12 (|has| |#1| (-794)) (|has| |#2| (-794))) (-12 (|has| |#1| (-851)) (|has| |#2| (-851)))))) (-3060 (($ $ $) NIL (-12 (|has| |#1| (-476)) (|has| |#2| (-476))))) (-3045 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-3033 (($ $ $) 45 (-2800 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-794)) (|has| |#2| (-794)))))) (** (($ $ (-567)) NIL (-12 (|has| |#1| (-476)) (|has| |#2| (-476)))) (($ $ (-772)) 32 (-2800 (-12 (|has| |#1| (-476)) (|has| |#2| (-476))) (-12 (|has| |#1| (-727)) (|has| |#2| (-727))))) (($ $ (-923)) NIL (-2800 (-12 (|has| |#1| (-476)) (|has| |#2| (-476))) (-12 (|has| |#1| (-727)) (|has| |#2| (-727)))))) (* (($ (-567) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-772) $) 48 (-2800 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-794)) (|has| |#2| (-794))))) (($ (-923) $) NIL (-2800 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-794)) (|has| |#2| (-794))))) (($ $ $) 28 (-2800 (-12 (|has| |#1| (-476)) (|has| |#2| (-476))) (-12 (|has| |#1| (-727)) (|has| |#2| (-727)))))))
-(((-966 |#1| |#2|) (-13 (-1102) (-10 -8 (IF (|has| |#1| (-370)) (IF (|has| |#2| (-370)) (-6 (-370)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-727)) (IF (|has| |#2| (-727)) (-6 (-727)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-131)) (IF (|has| |#2| (-131)) (-6 (-131)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-476)) (IF (|has| |#2| (-476)) (-6 (-476)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-794)) (IF (|has| |#2| (-794)) (-6 (-794)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-851)) (IF (|has| |#2| (-851)) (-6 (-851)) |%noBranch|) |%noBranch|) (-15 -1799 ($ |#1| |#2|)) (-15 -2042 (|#1| $)) (-15 -3787 (|#2| $)))) (-1102) (-1102)) (T -966))
-((-1799 (*1 *1 *2 *3) (-12 (-5 *1 (-966 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-1102)))) (-2042 (*1 *2 *1) (-12 (-4 *2 (-1102)) (-5 *1 (-966 *2 *3)) (-4 *3 (-1102)))) (-3787 (*1 *2 *1) (-12 (-4 *2 (-1102)) (-5 *1 (-966 *3 *2)) (-4 *3 (-1102)))))
-(-13 (-1102) (-10 -8 (IF (|has| |#1| (-370)) (IF (|has| |#2| (-370)) (-6 (-370)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-727)) (IF (|has| |#2| (-727)) (-6 (-727)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-131)) (IF (|has| |#2| (-131)) (-6 (-131)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-476)) (IF (|has| |#2| (-476)) (-6 (-476)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-794)) (IF (|has| |#2| (-794)) (-6 (-794)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-851)) (IF (|has| |#2| (-851)) (-6 (-851)) |%noBranch|) |%noBranch|) (-15 -1799 ($ |#1| |#2|)) (-15 -2042 (|#1| $)) (-15 -3787 (|#2| $))))
-((-3802 (((-1106) $) 12)) (-1704 (($ (-509) (-1106)) 14)) (-1996 (((-509) $) 9)) (-4132 (((-863) $) 26)))
-(((-967) (-13 (-614 (-863)) (-10 -8 (-15 -1996 ((-509) $)) (-15 -3802 ((-1106) $)) (-15 -1704 ($ (-509) (-1106)))))) (T -967))
-((-1996 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-967)))) (-3802 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-967)))) (-1704 (*1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-1106)) (-5 *1 (-967)))))
-(-13 (-614 (-863)) (-10 -8 (-15 -1996 ((-509) $)) (-15 -3802 ((-1106) $)) (-15 -1704 ($ (-509) (-1106)))))
-((-2403 (((-112) $ $) NIL)) (-1477 (($) NIL T CONST)) (-1677 (($ $ $) 11)) (-1657 (($ $) 9)) (-1419 (((-1160) $) NIL)) (-2447 (((-692 |#1|) $) 24)) (-3380 (((-692 (-874 $ $)) $) 36)) (-3268 (((-692 $) $) 29)) (-1822 (((-692 (-874 $ $)) $) 37)) (-3945 (((-692 (-874 $ $)) $) 38)) (-1754 (((-692 (-874 $ $)) $) 35)) (-3661 (($ $ $) 12)) (-3430 (((-1122) $) NIL)) (-2786 (($) 17 T CONST)) (-1983 (($ $ $) 13)) (-4132 (((-863) $) 40) (($ |#1|) 8)) (-1745 (((-112) $ $) NIL)) (-1667 (($ $ $) 10)) (-2936 (((-112) $ $) NIL)))
-(((-968 |#1|) (-13 (-969) (-617 |#1|) (-10 -8 (-15 -2447 ((-692 |#1|) $)) (-15 -3268 ((-692 $) $)) (-15 -1754 ((-692 (-874 $ $)) $)) (-15 -3380 ((-692 (-874 $ $)) $)) (-15 -1822 ((-692 (-874 $ $)) $)) (-15 -3945 ((-692 (-874 $ $)) $)))) (-1102)) (T -968))
-((-2447 (*1 *2 *1) (-12 (-5 *2 (-692 *3)) (-5 *1 (-968 *3)) (-4 *3 (-1102)))) (-3268 (*1 *2 *1) (-12 (-5 *2 (-692 (-968 *3))) (-5 *1 (-968 *3)) (-4 *3 (-1102)))) (-1754 (*1 *2 *1) (-12 (-5 *2 (-692 (-874 (-968 *3) (-968 *3)))) (-5 *1 (-968 *3)) (-4 *3 (-1102)))) (-3380 (*1 *2 *1) (-12 (-5 *2 (-692 (-874 (-968 *3) (-968 *3)))) (-5 *1 (-968 *3)) (-4 *3 (-1102)))) (-1822 (*1 *2 *1) (-12 (-5 *2 (-692 (-874 (-968 *3) (-968 *3)))) (-5 *1 (-968 *3)) (-4 *3 (-1102)))) (-3945 (*1 *2 *1) (-12 (-5 *2 (-692 (-874 (-968 *3) (-968 *3)))) (-5 *1 (-968 *3)) (-4 *3 (-1102)))))
-(-13 (-969) (-617 |#1|) (-10 -8 (-15 -2447 ((-692 |#1|) $)) (-15 -3268 ((-692 $) $)) (-15 -1754 ((-692 (-874 $ $)) $)) (-15 -3380 ((-692 (-874 $ $)) $)) (-15 -1822 ((-692 (-874 $ $)) $)) (-15 -3945 ((-692 (-874 $ $)) $))))
-((-2403 (((-112) $ $) 7)) (-1477 (($) 20 T CONST)) (-1677 (($ $ $) 16)) (-1657 (($ $) 18)) (-1419 (((-1160) $) 10)) (-3661 (($ $ $) 15)) (-3430 (((-1122) $) 11)) (-2786 (($) 19 T CONST)) (-1983 (($ $ $) 14)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-1667 (($ $ $) 17)) (-2936 (((-112) $ $) 6)))
+((-1778 (*1 *1 *1 *2) (-12 (-5 *2 (-1094 *1)) (-4 *1 (-961)))) (-1778 (*1 *1 *1 *2) (-12 (-4 *1 (-961)) (-5 *2 (-1179)))))
+(-13 (-10 -8 (-15 -1778 ($ $ (-1179))) (-15 -1778 ($ $ (-1094 $)))))
+((-2870 (((-2 (|:| -3705 (-645 (-567))) (|:| |poly| (-645 (-1175 |#1|))) (|:| |prim| (-1175 |#1|))) (-645 (-954 |#1|)) (-645 (-1179)) (-1179)) 30) (((-2 (|:| -3705 (-645 (-567))) (|:| |poly| (-645 (-1175 |#1|))) (|:| |prim| (-1175 |#1|))) (-645 (-954 |#1|)) (-645 (-1179))) 31) (((-2 (|:| |coef1| (-567)) (|:| |coef2| (-567)) (|:| |prim| (-1175 |#1|))) (-954 |#1|) (-1179) (-954 |#1|) (-1179)) 49)))
+(((-962 |#1|) (-10 -7 (-15 -2870 ((-2 (|:| |coef1| (-567)) (|:| |coef2| (-567)) (|:| |prim| (-1175 |#1|))) (-954 |#1|) (-1179) (-954 |#1|) (-1179))) (-15 -2870 ((-2 (|:| -3705 (-645 (-567))) (|:| |poly| (-645 (-1175 |#1|))) (|:| |prim| (-1175 |#1|))) (-645 (-954 |#1|)) (-645 (-1179)))) (-15 -2870 ((-2 (|:| -3705 (-645 (-567))) (|:| |poly| (-645 (-1175 |#1|))) (|:| |prim| (-1175 |#1|))) (-645 (-954 |#1|)) (-645 (-1179)) (-1179)))) (-13 (-365) (-147))) (T -962))
+((-2870 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-645 (-954 *6))) (-5 *4 (-645 (-1179))) (-5 *5 (-1179)) (-4 *6 (-13 (-365) (-147))) (-5 *2 (-2 (|:| -3705 (-645 (-567))) (|:| |poly| (-645 (-1175 *6))) (|:| |prim| (-1175 *6)))) (-5 *1 (-962 *6)))) (-2870 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-645 (-1179))) (-4 *5 (-13 (-365) (-147))) (-5 *2 (-2 (|:| -3705 (-645 (-567))) (|:| |poly| (-645 (-1175 *5))) (|:| |prim| (-1175 *5)))) (-5 *1 (-962 *5)))) (-2870 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-954 *5)) (-5 *4 (-1179)) (-4 *5 (-13 (-365) (-147))) (-5 *2 (-2 (|:| |coef1| (-567)) (|:| |coef2| (-567)) (|:| |prim| (-1175 *5)))) (-5 *1 (-962 *5)))))
+(-10 -7 (-15 -2870 ((-2 (|:| |coef1| (-567)) (|:| |coef2| (-567)) (|:| |prim| (-1175 |#1|))) (-954 |#1|) (-1179) (-954 |#1|) (-1179))) (-15 -2870 ((-2 (|:| -3705 (-645 (-567))) (|:| |poly| (-645 (-1175 |#1|))) (|:| |prim| (-1175 |#1|))) (-645 (-954 |#1|)) (-645 (-1179)))) (-15 -2870 ((-2 (|:| -3705 (-645 (-567))) (|:| |poly| (-645 (-1175 |#1|))) (|:| |prim| (-1175 |#1|))) (-645 (-954 |#1|)) (-645 (-1179)) (-1179))))
+((-3908 (((-645 |#1|) |#1| |#1|) 47)) (-3502 (((-112) |#1|) 44)) (-1823 ((|#1| |#1|) 82)) (-4168 ((|#1| |#1|) 81)))
+(((-963 |#1|) (-10 -7 (-15 -3502 ((-112) |#1|)) (-15 -4168 (|#1| |#1|)) (-15 -1823 (|#1| |#1|)) (-15 -3908 ((-645 |#1|) |#1| |#1|))) (-548)) (T -963))
+((-3908 (*1 *2 *3 *3) (-12 (-5 *2 (-645 *3)) (-5 *1 (-963 *3)) (-4 *3 (-548)))) (-1823 (*1 *2 *2) (-12 (-5 *1 (-963 *2)) (-4 *2 (-548)))) (-4168 (*1 *2 *2) (-12 (-5 *1 (-963 *2)) (-4 *2 (-548)))) (-3502 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-963 *3)) (-4 *3 (-548)))))
+(-10 -7 (-15 -3502 ((-112) |#1|)) (-15 -4168 (|#1| |#1|)) (-15 -1823 (|#1| |#1|)) (-15 -3908 ((-645 |#1|) |#1| |#1|)))
+((-2744 (((-1274) (-863)) 9)))
+(((-964) (-10 -7 (-15 -2744 ((-1274) (-863))))) (T -964))
+((-2744 (*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1274)) (-5 *1 (-964)))))
+(-10 -7 (-15 -2744 ((-1274) (-863))))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) 78 (|has| |#1| (-559)))) (-4287 (($ $) 79 (|has| |#1| (-559)))) (-2286 (((-112) $) NIL (|has| |#1| (-559)))) (-2376 (((-3 $ "failed") $ $) NIL)) (-3647 (($) NIL T CONST)) (-3765 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) 34)) (-2051 (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) NIL)) (-3023 (($ $) 31)) (-3588 (((-3 $ "failed") $) 42)) (-2989 (($ $) NIL (|has| |#1| (-455)))) (-3214 (($ $ |#1| |#2| $) 62)) (-4346 (((-112) $) NIL)) (-2851 (((-772) $) 17)) (-3770 (((-112) $) NIL)) (-2836 (($ |#1| |#2|) NIL)) (-2955 ((|#2| $) 24)) (-3827 (($ (-1 |#2| |#2|) $) NIL)) (-3841 (($ (-1 |#1| |#1|) $) NIL)) (-2985 (($ $) 28)) (-2996 ((|#1| $) 26)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-2960 (((-112) $) 51)) (-2971 ((|#1| $) NIL)) (-3166 (($ $ |#2| |#1| $) 90 (-12 (|has| |#2| (-131)) (|has| |#1| (-559))))) (-2400 (((-3 $ "failed") $ $) 91 (|has| |#1| (-559))) (((-3 $ "failed") $ |#1|) 85 (|has| |#1| (-559)))) (-3104 ((|#2| $) 22)) (-1849 ((|#1| $) NIL (|has| |#1| (-455)))) (-4129 (((-863) $) NIL) (($ (-567)) 46) (($ $) NIL (|has| |#1| (-559))) (($ |#1|) 41) (($ (-410 (-567))) NIL (-2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567))))))) (-3601 (((-645 |#1|) $) NIL)) (-2558 ((|#1| $ |#2|) 37)) (-2118 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2746 (((-772)) 15 T CONST)) (-3658 (($ $ $ (-772)) 74 (|has| |#1| (-172)))) (-3357 (((-112) $ $) NIL)) (-3731 (((-112) $ $) 84 (|has| |#1| (-559)))) (-1733 (($) 27 T CONST)) (-1744 (($) 12 T CONST)) (-2946 (((-112) $ $) 83)) (-3069 (($ $ |#1|) 92 (|has| |#1| (-365)))) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-923)) 69) (($ $ (-772)) 67)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 66) (($ $ |#1|) 64) (($ |#1| $) 63) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))))
+(((-965 |#1| |#2|) (-13 (-327 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-559)) (IF (|has| |#2| (-131)) (-15 -3166 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4420)) (-6 -4420) |%noBranch|))) (-1051) (-793)) (T -965))
+((-3166 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-965 *3 *2)) (-4 *2 (-131)) (-4 *3 (-559)) (-4 *3 (-1051)) (-4 *2 (-793)))))
+(-13 (-327 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-559)) (IF (|has| |#2| (-131)) (-15 -3166 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4420)) (-6 -4420) |%noBranch|)))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL (-2811 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-794)) (|has| |#2| (-794)))))) (-1325 (($ $ $) 65 (-12 (|has| |#1| (-794)) (|has| |#2| (-794))))) (-2376 (((-3 $ "failed") $ $) 52 (-2811 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-794)) (|has| |#2| (-794)))))) (-2384 (((-772)) 36 (-12 (|has| |#1| (-370)) (|has| |#2| (-370))))) (-2343 ((|#2| $) 22)) (-4154 ((|#1| $) 21)) (-3647 (($) NIL (-2811 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-476)) (|has| |#2| (-476))) (-12 (|has| |#1| (-727)) (|has| |#2| (-727))) (-12 (|has| |#1| (-794)) (|has| |#2| (-794)))) CONST)) (-3588 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| |#1| (-476)) (|has| |#2| (-476))) (-12 (|has| |#1| (-727)) (|has| |#2| (-727)))))) (-1359 (($) NIL (-12 (|has| |#1| (-370)) (|has| |#2| (-370))))) (-4346 (((-112) $) NIL (-2811 (-12 (|has| |#1| (-476)) (|has| |#2| (-476))) (-12 (|has| |#1| (-727)) (|has| |#2| (-727)))))) (-1365 (($ $ $) NIL (-2811 (-12 (|has| |#1| (-794)) (|has| |#2| (-794))) (-12 (|has| |#1| (-851)) (|has| |#2| (-851)))))) (-3002 (($ $ $) NIL (-2811 (-12 (|has| |#1| (-794)) (|has| |#2| (-794))) (-12 (|has| |#1| (-851)) (|has| |#2| (-851)))))) (-3258 (($ |#1| |#2|) 20)) (-3474 (((-923) $) NIL (-12 (|has| |#1| (-370)) (|has| |#2| (-370))))) (-2516 (((-1161) $) NIL)) (-2949 (($ $) 39 (-12 (|has| |#1| (-476)) (|has| |#2| (-476))))) (-3779 (($ (-923)) NIL (-12 (|has| |#1| (-370)) (|has| |#2| (-370))))) (-3437 (((-1122) $) NIL)) (-1672 (($ $ $) NIL (-12 (|has| |#1| (-476)) (|has| |#2| (-476))))) (-3997 (($ $ $) NIL (-12 (|has| |#1| (-476)) (|has| |#2| (-476))))) (-4129 (((-863) $) 14)) (-3357 (((-112) $ $) NIL)) (-1733 (($) 42 (-2811 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-794)) (|has| |#2| (-794)))) CONST)) (-1744 (($) 25 (-2811 (-12 (|has| |#1| (-476)) (|has| |#2| (-476))) (-12 (|has| |#1| (-727)) (|has| |#2| (-727)))) CONST)) (-3004 (((-112) $ $) NIL (-2811 (-12 (|has| |#1| (-794)) (|has| |#2| (-794))) (-12 (|has| |#1| (-851)) (|has| |#2| (-851)))))) (-2980 (((-112) $ $) NIL (-2811 (-12 (|has| |#1| (-794)) (|has| |#2| (-794))) (-12 (|has| |#1| (-851)) (|has| |#2| (-851)))))) (-2946 (((-112) $ $) 19)) (-2993 (((-112) $ $) NIL (-2811 (-12 (|has| |#1| (-794)) (|has| |#2| (-794))) (-12 (|has| |#1| (-851)) (|has| |#2| (-851)))))) (-2968 (((-112) $ $) 69 (-2811 (-12 (|has| |#1| (-794)) (|has| |#2| (-794))) (-12 (|has| |#1| (-851)) (|has| |#2| (-851)))))) (-3069 (($ $ $) NIL (-12 (|has| |#1| (-476)) (|has| |#2| (-476))))) (-3053 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-3041 (($ $ $) 45 (-2811 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-794)) (|has| |#2| (-794)))))) (** (($ $ (-567)) NIL (-12 (|has| |#1| (-476)) (|has| |#2| (-476)))) (($ $ (-772)) 32 (-2811 (-12 (|has| |#1| (-476)) (|has| |#2| (-476))) (-12 (|has| |#1| (-727)) (|has| |#2| (-727))))) (($ $ (-923)) NIL (-2811 (-12 (|has| |#1| (-476)) (|has| |#2| (-476))) (-12 (|has| |#1| (-727)) (|has| |#2| (-727)))))) (* (($ (-567) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-772) $) 48 (-2811 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-794)) (|has| |#2| (-794))))) (($ (-923) $) NIL (-2811 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-794)) (|has| |#2| (-794))))) (($ $ $) 28 (-2811 (-12 (|has| |#1| (-476)) (|has| |#2| (-476))) (-12 (|has| |#1| (-727)) (|has| |#2| (-727)))))))
+(((-966 |#1| |#2|) (-13 (-1102) (-10 -8 (IF (|has| |#1| (-370)) (IF (|has| |#2| (-370)) (-6 (-370)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-727)) (IF (|has| |#2| (-727)) (-6 (-727)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-131)) (IF (|has| |#2| (-131)) (-6 (-131)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-476)) (IF (|has| |#2| (-476)) (-6 (-476)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-794)) (IF (|has| |#2| (-794)) (-6 (-794)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-851)) (IF (|has| |#2| (-851)) (-6 (-851)) |%noBranch|) |%noBranch|) (-15 -3258 ($ |#1| |#2|)) (-15 -4154 (|#1| $)) (-15 -2343 (|#2| $)))) (-1102) (-1102)) (T -966))
+((-3258 (*1 *1 *2 *3) (-12 (-5 *1 (-966 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-1102)))) (-4154 (*1 *2 *1) (-12 (-4 *2 (-1102)) (-5 *1 (-966 *2 *3)) (-4 *3 (-1102)))) (-2343 (*1 *2 *1) (-12 (-4 *2 (-1102)) (-5 *1 (-966 *3 *2)) (-4 *3 (-1102)))))
+(-13 (-1102) (-10 -8 (IF (|has| |#1| (-370)) (IF (|has| |#2| (-370)) (-6 (-370)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-727)) (IF (|has| |#2| (-727)) (-6 (-727)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-131)) (IF (|has| |#2| (-131)) (-6 (-131)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-476)) (IF (|has| |#2| (-476)) (-6 (-476)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-794)) (IF (|has| |#2| (-794)) (-6 (-794)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-851)) (IF (|has| |#2| (-851)) (-6 (-851)) |%noBranch|) |%noBranch|) (-15 -3258 ($ |#1| |#2|)) (-15 -4154 (|#1| $)) (-15 -2343 (|#2| $))))
+((-3812 (((-1106) $) 12)) (-1722 (($ (-509) (-1106)) 14)) (-2007 (((-509) $) 9)) (-4129 (((-863) $) 26)))
+(((-967) (-13 (-614 (-863)) (-10 -8 (-15 -2007 ((-509) $)) (-15 -3812 ((-1106) $)) (-15 -1722 ($ (-509) (-1106)))))) (T -967))
+((-2007 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-967)))) (-3812 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-967)))) (-1722 (*1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-1106)) (-5 *1 (-967)))))
+(-13 (-614 (-863)) (-10 -8 (-15 -2007 ((-509) $)) (-15 -3812 ((-1106) $)) (-15 -1722 ($ (-509) (-1106)))))
+((-2412 (((-112) $ $) NIL)) (-1479 (($) NIL T CONST)) (-1696 (($ $ $) 11)) (-1673 (($ $) 9)) (-2516 (((-1161) $) NIL)) (-2105 (((-692 |#1|) $) 24)) (-3175 (((-692 (-874 $ $)) $) 36)) (-1622 (((-692 $) $) 29)) (-1553 (((-692 (-874 $ $)) $) 37)) (-1990 (((-692 (-874 $ $)) $) 38)) (-3077 (((-692 (-874 $ $)) $) 35)) (-2129 (($ $ $) 12)) (-3437 (((-1122) $) NIL)) (-2796 (($) 17 T CONST)) (-3156 (($ $ $) 13)) (-4129 (((-863) $) 40) (($ |#1|) 8)) (-3357 (((-112) $ $) NIL)) (-1686 (($ $ $) 10)) (-2946 (((-112) $ $) NIL)))
+(((-968 |#1|) (-13 (-969) (-617 |#1|) (-10 -8 (-15 -2105 ((-692 |#1|) $)) (-15 -1622 ((-692 $) $)) (-15 -3077 ((-692 (-874 $ $)) $)) (-15 -3175 ((-692 (-874 $ $)) $)) (-15 -1553 ((-692 (-874 $ $)) $)) (-15 -1990 ((-692 (-874 $ $)) $)))) (-1102)) (T -968))
+((-2105 (*1 *2 *1) (-12 (-5 *2 (-692 *3)) (-5 *1 (-968 *3)) (-4 *3 (-1102)))) (-1622 (*1 *2 *1) (-12 (-5 *2 (-692 (-968 *3))) (-5 *1 (-968 *3)) (-4 *3 (-1102)))) (-3077 (*1 *2 *1) (-12 (-5 *2 (-692 (-874 (-968 *3) (-968 *3)))) (-5 *1 (-968 *3)) (-4 *3 (-1102)))) (-3175 (*1 *2 *1) (-12 (-5 *2 (-692 (-874 (-968 *3) (-968 *3)))) (-5 *1 (-968 *3)) (-4 *3 (-1102)))) (-1553 (*1 *2 *1) (-12 (-5 *2 (-692 (-874 (-968 *3) (-968 *3)))) (-5 *1 (-968 *3)) (-4 *3 (-1102)))) (-1990 (*1 *2 *1) (-12 (-5 *2 (-692 (-874 (-968 *3) (-968 *3)))) (-5 *1 (-968 *3)) (-4 *3 (-1102)))))
+(-13 (-969) (-617 |#1|) (-10 -8 (-15 -2105 ((-692 |#1|) $)) (-15 -1622 ((-692 $) $)) (-15 -3077 ((-692 (-874 $ $)) $)) (-15 -3175 ((-692 (-874 $ $)) $)) (-15 -1553 ((-692 (-874 $ $)) $)) (-15 -1990 ((-692 (-874 $ $)) $))))
+((-2412 (((-112) $ $) 7)) (-1479 (($) 20 T CONST)) (-1696 (($ $ $) 16)) (-1673 (($ $) 18)) (-2516 (((-1161) $) 10)) (-2129 (($ $ $) 15)) (-3437 (((-1122) $) 11)) (-2796 (($) 19 T CONST)) (-3156 (($ $ $) 14)) (-4129 (((-863) $) 12)) (-3357 (((-112) $ $) 9)) (-1686 (($ $ $) 17)) (-2946 (((-112) $ $) 6)))
(((-969) (-140)) (T -969))
-((-1477 (*1 *1) (-4 *1 (-969))) (-2786 (*1 *1) (-4 *1 (-969))) (-1657 (*1 *1 *1) (-4 *1 (-969))) (-1667 (*1 *1 *1 *1) (-4 *1 (-969))) (-1677 (*1 *1 *1 *1) (-4 *1 (-969))) (-3661 (*1 *1 *1 *1) (-4 *1 (-969))) (-1983 (*1 *1 *1 *1) (-4 *1 (-969))))
-(-13 (-1102) (-10 -8 (-15 -1477 ($) -3286) (-15 -2786 ($) -3286) (-15 -1657 ($ $)) (-15 -1667 ($ $ $)) (-15 -1677 ($ $ $)) (-15 -3661 ($ $ $)) (-15 -1983 ($ $ $))))
+((-1479 (*1 *1) (-4 *1 (-969))) (-2796 (*1 *1) (-4 *1 (-969))) (-1673 (*1 *1 *1) (-4 *1 (-969))) (-1686 (*1 *1 *1 *1) (-4 *1 (-969))) (-1696 (*1 *1 *1 *1) (-4 *1 (-969))) (-2129 (*1 *1 *1 *1) (-4 *1 (-969))) (-3156 (*1 *1 *1 *1) (-4 *1 (-969))))
+(-13 (-1102) (-10 -8 (-15 -1479 ($) -3304) (-15 -2796 ($) -3304) (-15 -1673 ($ $)) (-15 -1686 ($ $ $)) (-15 -1696 ($ $ $)) (-15 -2129 ($ $ $)) (-15 -3156 ($ $ $))))
(((-102) . T) ((-614 (-863)) . T) ((-1102) . T))
-((-2403 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-3445 (((-112) $ (-772)) 8)) (-2585 (($) 7 T CONST)) (-2777 (((-645 |#1|) $) 31 (|has| $ (-6 -4418)))) (-2077 (((-112) $ (-772)) 9)) (-2966 (($ $ $) 44)) (-4135 (($ $ $) 45)) (-2279 (((-645 |#1|) $) 30 (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-2981 ((|#1| $) 46)) (-3731 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) 36)) (-2863 (((-112) $ (-772)) 10)) (-1419 (((-1160) $) 22 (|has| |#1| (-1102)))) (-1566 ((|#1| $) 40)) (-2531 (($ |#1| $) 41)) (-3430 (((-1122) $) 21 (|has| |#1| (-1102)))) (-1793 ((|#1| $) 42)) (-3025 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) 14)) (-3572 (((-112) $) 11)) (-3498 (($) 12)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4418))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-4305 (($ $) 13)) (-4132 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-1745 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-3551 (($ (-645 |#1|)) 43)) (-1853 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2414 (((-772) $) 6 (|has| $ (-6 -4418)))))
+((-2412 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-1563 (((-112) $ (-772)) 8)) (-3647 (($) 7 T CONST)) (-2799 (((-645 |#1|) $) 31 (|has| $ (-6 -4422)))) (-4093 (((-112) $ (-772)) 9)) (-1661 (($ $ $) 44)) (-2473 (($ $ $) 45)) (-1942 (((-645 |#1|) $) 30 (|has| $ (-6 -4422)))) (-3237 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-3002 ((|#1| $) 46)) (-3751 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#1| |#1|) $) 36)) (-1986 (((-112) $ (-772)) 10)) (-2516 (((-1161) $) 22 (|has| |#1| (-1102)))) (-2706 ((|#1| $) 40)) (-2646 (($ |#1| $) 41)) (-3437 (((-1122) $) 21 (|has| |#1| (-1102)))) (-3949 ((|#1| $) 42)) (-4233 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3875 (((-112) $ $) 14)) (-3885 (((-112) $) 11)) (-2701 (($) 12)) (-3447 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4422))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-4309 (($ $) 13)) (-4129 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-3357 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-3700 (($ (-645 |#1|)) 43)) (-3436 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4422)))) (-2946 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2423 (((-772) $) 6 (|has| $ (-6 -4422)))))
(((-970 |#1|) (-140) (-851)) (T -970))
-((-2981 (*1 *2 *1) (-12 (-4 *1 (-970 *2)) (-4 *2 (-851)))) (-4135 (*1 *1 *1 *1) (-12 (-4 *1 (-970 *2)) (-4 *2 (-851)))) (-2966 (*1 *1 *1 *1) (-12 (-4 *1 (-970 *2)) (-4 *2 (-851)))))
-(-13 (-107 |t#1|) (-10 -8 (-6 -4418) (-15 -2981 (|t#1| $)) (-15 -4135 ($ $ $)) (-15 -2966 ($ $ $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2800 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-1102) |has| |#1| (-1102)) ((-1218) . T))
-((-1489 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2774 |#2|)) |#2| |#2|) 106)) (-2323 ((|#2| |#2| |#2|) 104)) (-2667 (((-2 (|:| |coef2| |#2|) (|:| -2774 |#2|)) |#2| |#2|) 108)) (-2340 (((-2 (|:| |coef1| |#2|) (|:| -2774 |#2|)) |#2| |#2|) 110)) (-3182 (((-2 (|:| |coef2| |#2|) (|:| -2806 |#1|)) |#2| |#2|) 132 (|has| |#1| (-455)))) (-3387 (((-2 (|:| |coef2| |#2|) (|:| -2951 |#1|)) |#2| |#2|) 56)) (-3073 (((-2 (|:| |coef2| |#2|) (|:| -2951 |#1|)) |#2| |#2|) 81)) (-4020 (((-2 (|:| |coef1| |#2|) (|:| -2951 |#1|)) |#2| |#2|) 83)) (-1309 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 97)) (-3255 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-772)) 90)) (-3688 (((-2 (|:| |coef2| |#2|) (|:| -3788 |#1|)) |#2|) 122)) (-2419 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-772)) 93)) (-4052 (((-645 (-772)) |#2| |#2|) 103)) (-3718 ((|#1| |#2| |#2|) 50)) (-2186 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2806 |#1|)) |#2| |#2|) 130 (|has| |#1| (-455)))) (-2806 ((|#1| |#2| |#2|) 128 (|has| |#1| (-455)))) (-1864 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2951 |#1|)) |#2| |#2|) 54)) (-1786 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2951 |#1|)) |#2| |#2|) 80)) (-2951 ((|#1| |#2| |#2|) 77)) (-3708 (((-2 (|:| -3694 |#1|) (|:| -3102 |#2|) (|:| -4194 |#2|)) |#2| |#2|) 41)) (-2748 ((|#2| |#2| |#2| |#2| |#1|) 67)) (-3348 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 95)) (-2272 ((|#2| |#2| |#2|) 94)) (-1613 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-772)) 88)) (-1840 ((|#2| |#2| |#2| (-772)) 86)) (-2774 ((|#2| |#2| |#2|) 136 (|has| |#1| (-455)))) (-2391 (((-1268 |#2|) (-1268 |#2|) |#1|) 22)) (-2384 (((-2 (|:| -3102 |#2|) (|:| -4194 |#2|)) |#2| |#2|) 46)) (-1646 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3788 |#1|)) |#2|) 120)) (-3788 ((|#1| |#2|) 117)) (-4355 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-772)) 92)) (-1616 ((|#2| |#2| |#2| (-772)) 91)) (-4212 (((-645 |#2|) |#2| |#2|) 100)) (-1377 ((|#2| |#2| |#1| |#1| (-772)) 62)) (-1688 ((|#1| |#1| |#1| (-772)) 61)) (* (((-1268 |#2|) |#1| (-1268 |#2|)) 17)))
-(((-971 |#1| |#2|) (-10 -7 (-15 -2951 (|#1| |#2| |#2|)) (-15 -1786 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2951 |#1|)) |#2| |#2|)) (-15 -3073 ((-2 (|:| |coef2| |#2|) (|:| -2951 |#1|)) |#2| |#2|)) (-15 -4020 ((-2 (|:| |coef1| |#2|) (|:| -2951 |#1|)) |#2| |#2|)) (-15 -1840 (|#2| |#2| |#2| (-772))) (-15 -1613 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-772))) (-15 -3255 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-772))) (-15 -1616 (|#2| |#2| |#2| (-772))) (-15 -4355 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-772))) (-15 -2419 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-772))) (-15 -2272 (|#2| |#2| |#2|)) (-15 -3348 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1309 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2323 (|#2| |#2| |#2|)) (-15 -1489 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2774 |#2|)) |#2| |#2|)) (-15 -2667 ((-2 (|:| |coef2| |#2|) (|:| -2774 |#2|)) |#2| |#2|)) (-15 -2340 ((-2 (|:| |coef1| |#2|) (|:| -2774 |#2|)) |#2| |#2|)) (-15 -3788 (|#1| |#2|)) (-15 -1646 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3788 |#1|)) |#2|)) (-15 -3688 ((-2 (|:| |coef2| |#2|) (|:| -3788 |#1|)) |#2|)) (-15 -4212 ((-645 |#2|) |#2| |#2|)) (-15 -4052 ((-645 (-772)) |#2| |#2|)) (IF (|has| |#1| (-455)) (PROGN (-15 -2806 (|#1| |#2| |#2|)) (-15 -2186 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2806 |#1|)) |#2| |#2|)) (-15 -3182 ((-2 (|:| |coef2| |#2|) (|:| -2806 |#1|)) |#2| |#2|)) (-15 -2774 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1268 |#2|) |#1| (-1268 |#2|))) (-15 -2391 ((-1268 |#2|) (-1268 |#2|) |#1|)) (-15 -3708 ((-2 (|:| -3694 |#1|) (|:| -3102 |#2|) (|:| -4194 |#2|)) |#2| |#2|)) (-15 -2384 ((-2 (|:| -3102 |#2|) (|:| -4194 |#2|)) |#2| |#2|)) (-15 -1688 (|#1| |#1| |#1| (-772))) (-15 -1377 (|#2| |#2| |#1| |#1| (-772))) (-15 -2748 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3718 (|#1| |#2| |#2|)) (-15 -1864 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2951 |#1|)) |#2| |#2|)) (-15 -3387 ((-2 (|:| |coef2| |#2|) (|:| -2951 |#1|)) |#2| |#2|))) (-559) (-1244 |#1|)) (T -971))
-((-3387 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2951 *4))) (-5 *1 (-971 *4 *3)) (-4 *3 (-1244 *4)))) (-1864 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2951 *4))) (-5 *1 (-971 *4 *3)) (-4 *3 (-1244 *4)))) (-3718 (*1 *2 *3 *3) (-12 (-4 *2 (-559)) (-5 *1 (-971 *2 *3)) (-4 *3 (-1244 *2)))) (-2748 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-559)) (-5 *1 (-971 *3 *2)) (-4 *2 (-1244 *3)))) (-1377 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-772)) (-4 *3 (-559)) (-5 *1 (-971 *3 *2)) (-4 *2 (-1244 *3)))) (-1688 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-772)) (-4 *2 (-559)) (-5 *1 (-971 *2 *4)) (-4 *4 (-1244 *2)))) (-2384 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| -3102 *3) (|:| -4194 *3))) (-5 *1 (-971 *4 *3)) (-4 *3 (-1244 *4)))) (-3708 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| -3694 *4) (|:| -3102 *3) (|:| -4194 *3))) (-5 *1 (-971 *4 *3)) (-4 *3 (-1244 *4)))) (-2391 (*1 *2 *2 *3) (-12 (-5 *2 (-1268 *4)) (-4 *4 (-1244 *3)) (-4 *3 (-559)) (-5 *1 (-971 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1268 *4)) (-4 *4 (-1244 *3)) (-4 *3 (-559)) (-5 *1 (-971 *3 *4)))) (-2774 (*1 *2 *2 *2) (-12 (-4 *3 (-455)) (-4 *3 (-559)) (-5 *1 (-971 *3 *2)) (-4 *2 (-1244 *3)))) (-3182 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2806 *4))) (-5 *1 (-971 *4 *3)) (-4 *3 (-1244 *4)))) (-2186 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2806 *4))) (-5 *1 (-971 *4 *3)) (-4 *3 (-1244 *4)))) (-2806 (*1 *2 *3 *3) (-12 (-4 *2 (-559)) (-4 *2 (-455)) (-5 *1 (-971 *2 *3)) (-4 *3 (-1244 *2)))) (-4052 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-645 (-772))) (-5 *1 (-971 *4 *3)) (-4 *3 (-1244 *4)))) (-4212 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-645 *3)) (-5 *1 (-971 *4 *3)) (-4 *3 (-1244 *4)))) (-3688 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3788 *4))) (-5 *1 (-971 *4 *3)) (-4 *3 (-1244 *4)))) (-1646 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3788 *4))) (-5 *1 (-971 *4 *3)) (-4 *3 (-1244 *4)))) (-3788 (*1 *2 *3) (-12 (-4 *2 (-559)) (-5 *1 (-971 *2 *3)) (-4 *3 (-1244 *2)))) (-2340 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2774 *3))) (-5 *1 (-971 *4 *3)) (-4 *3 (-1244 *4)))) (-2667 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2774 *3))) (-5 *1 (-971 *4 *3)) (-4 *3 (-1244 *4)))) (-1489 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2774 *3))) (-5 *1 (-971 *4 *3)) (-4 *3 (-1244 *4)))) (-2323 (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-971 *3 *2)) (-4 *2 (-1244 *3)))) (-1309 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-971 *4 *3)) (-4 *3 (-1244 *4)))) (-3348 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-971 *4 *3)) (-4 *3 (-1244 *4)))) (-2272 (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-971 *3 *2)) (-4 *2 (-1244 *3)))) (-2419 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-772)) (-4 *5 (-559)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-971 *5 *3)) (-4 *3 (-1244 *5)))) (-4355 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-772)) (-4 *5 (-559)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-971 *5 *3)) (-4 *3 (-1244 *5)))) (-1616 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-772)) (-4 *4 (-559)) (-5 *1 (-971 *4 *2)) (-4 *2 (-1244 *4)))) (-3255 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-772)) (-4 *5 (-559)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-971 *5 *3)) (-4 *3 (-1244 *5)))) (-1613 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-772)) (-4 *5 (-559)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-971 *5 *3)) (-4 *3 (-1244 *5)))) (-1840 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-772)) (-4 *4 (-559)) (-5 *1 (-971 *4 *2)) (-4 *2 (-1244 *4)))) (-4020 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2951 *4))) (-5 *1 (-971 *4 *3)) (-4 *3 (-1244 *4)))) (-3073 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2951 *4))) (-5 *1 (-971 *4 *3)) (-4 *3 (-1244 *4)))) (-1786 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2951 *4))) (-5 *1 (-971 *4 *3)) (-4 *3 (-1244 *4)))) (-2951 (*1 *2 *3 *3) (-12 (-4 *2 (-559)) (-5 *1 (-971 *2 *3)) (-4 *3 (-1244 *2)))))
-(-10 -7 (-15 -2951 (|#1| |#2| |#2|)) (-15 -1786 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2951 |#1|)) |#2| |#2|)) (-15 -3073 ((-2 (|:| |coef2| |#2|) (|:| -2951 |#1|)) |#2| |#2|)) (-15 -4020 ((-2 (|:| |coef1| |#2|) (|:| -2951 |#1|)) |#2| |#2|)) (-15 -1840 (|#2| |#2| |#2| (-772))) (-15 -1613 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-772))) (-15 -3255 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-772))) (-15 -1616 (|#2| |#2| |#2| (-772))) (-15 -4355 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-772))) (-15 -2419 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-772))) (-15 -2272 (|#2| |#2| |#2|)) (-15 -3348 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1309 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2323 (|#2| |#2| |#2|)) (-15 -1489 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2774 |#2|)) |#2| |#2|)) (-15 -2667 ((-2 (|:| |coef2| |#2|) (|:| -2774 |#2|)) |#2| |#2|)) (-15 -2340 ((-2 (|:| |coef1| |#2|) (|:| -2774 |#2|)) |#2| |#2|)) (-15 -3788 (|#1| |#2|)) (-15 -1646 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3788 |#1|)) |#2|)) (-15 -3688 ((-2 (|:| |coef2| |#2|) (|:| -3788 |#1|)) |#2|)) (-15 -4212 ((-645 |#2|) |#2| |#2|)) (-15 -4052 ((-645 (-772)) |#2| |#2|)) (IF (|has| |#1| (-455)) (PROGN (-15 -2806 (|#1| |#2| |#2|)) (-15 -2186 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2806 |#1|)) |#2| |#2|)) (-15 -3182 ((-2 (|:| |coef2| |#2|) (|:| -2806 |#1|)) |#2| |#2|)) (-15 -2774 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1268 |#2|) |#1| (-1268 |#2|))) (-15 -2391 ((-1268 |#2|) (-1268 |#2|) |#1|)) (-15 -3708 ((-2 (|:| -3694 |#1|) (|:| -3102 |#2|) (|:| -4194 |#2|)) |#2| |#2|)) (-15 -2384 ((-2 (|:| -3102 |#2|) (|:| -4194 |#2|)) |#2| |#2|)) (-15 -1688 (|#1| |#1| |#1| (-772))) (-15 -1377 (|#2| |#2| |#1| |#1| (-772))) (-15 -2748 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3718 (|#1| |#2| |#2|)) (-15 -1864 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2951 |#1|)) |#2| |#2|)) (-15 -3387 ((-2 (|:| |coef2| |#2|) (|:| -2951 |#1|)) |#2| |#2|)))
-((-2403 (((-112) $ $) NIL)) (-3570 (((-1217) $) 13)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-3097 (((-1137) $) 10)) (-4132 (((-863) $) 20) (($ (-1183)) NIL) (((-1183) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)))
-(((-972) (-13 (-1085) (-10 -8 (-15 -3097 ((-1137) $)) (-15 -3570 ((-1217) $))))) (T -972))
-((-3097 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-972)))) (-3570 (*1 *2 *1) (-12 (-5 *2 (-1217)) (-5 *1 (-972)))))
-(-13 (-1085) (-10 -8 (-15 -3097 ((-1137) $)) (-15 -3570 ((-1217) $))))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) 39)) (-2585 (($) NIL T CONST)) (-2945 (((-645 (-645 (-567))) (-645 (-567))) 48)) (-2110 (((-567) $) 72)) (-4149 (($ (-645 (-567))) 18)) (-1354 (($ $ $) NIL)) (-2981 (($ $ $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-3893 (((-645 (-567)) $) 13)) (-1823 (($ $) 52)) (-4132 (((-863) $) 68) (((-645 (-567)) $) 11)) (-1745 (((-112) $ $) NIL)) (-1716 (($) 8 T CONST)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 26)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) 25)) (-3033 (($ $ $) 28)) (* (($ (-923) $) NIL) (($ (-772) $) 37)))
-(((-973) (-13 (-796) (-615 (-645 (-567))) (-614 (-645 (-567))) (-10 -8 (-15 -4149 ($ (-645 (-567)))) (-15 -2945 ((-645 (-645 (-567))) (-645 (-567)))) (-15 -2110 ((-567) $)) (-15 -1823 ($ $))))) (T -973))
-((-4149 (*1 *1 *2) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-973)))) (-2945 (*1 *2 *3) (-12 (-5 *2 (-645 (-645 (-567)))) (-5 *1 (-973)) (-5 *3 (-645 (-567))))) (-2110 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-973)))) (-1823 (*1 *1 *1) (-5 *1 (-973))))
-(-13 (-796) (-615 (-645 (-567))) (-614 (-645 (-567))) (-10 -8 (-15 -4149 ($ (-645 (-567)))) (-15 -2945 ((-645 (-645 (-567))) (-645 (-567)))) (-15 -2110 ((-567) $)) (-15 -1823 ($ $))))
-((-3060 (($ $ |#2|) 31)) (-3045 (($ $) 23) (($ $ $) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 17) (($ $ $) NIL) (($ $ |#2|) 21) (($ |#2| $) 20) (($ (-410 (-567)) $) 27) (($ $ (-410 (-567))) 29)))
-(((-974 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-410 (-567)))) (-15 * (|#1| (-410 (-567)) |#1|)) (-15 -3060 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3045 (|#1| |#1| |#1|)) (-15 -3045 (|#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-923) |#1|))) (-975 |#2| |#3| |#4|) (-1051) (-793) (-851)) (T -974))
-NIL
-(-10 -8 (-15 * (|#1| |#1| (-410 (-567)))) (-15 * (|#1| (-410 (-567)) |#1|)) (-15 -3060 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3045 (|#1| |#1| |#1|)) (-15 -3045 (|#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-923) |#1|)))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-2847 (((-645 |#3|) $) 86)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 63 (|has| |#1| (-559)))) (-4381 (($ $) 64 (|has| |#1| (-559)))) (-3949 (((-112) $) 66 (|has| |#1| (-559)))) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-3014 (($ $) 72)) (-2109 (((-3 $ "failed") $) 37)) (-2762 (((-112) $) 85)) (-1433 (((-112) $) 35)) (-2843 (((-112) $) 74)) (-2824 (($ |#1| |#2|) 73) (($ $ |#3| |#2|) 88) (($ $ (-645 |#3|) (-645 |#2|)) 87)) (-3829 (($ (-1 |#1| |#1|) $) 75)) (-2976 (($ $) 77)) (-2989 ((|#1| $) 78)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-2391 (((-3 $ "failed") $ $) 62 (|has| |#1| (-559)))) (-3077 ((|#2| $) 76)) (-2192 (($ $) 84)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ (-410 (-567))) 69 (|has| |#1| (-38 (-410 (-567))))) (($ $) 61 (|has| |#1| (-559))) (($ |#1|) 59 (|has| |#1| (-172)))) (-4136 ((|#1| $ |#2|) 71)) (-1903 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-3816 (((-112) $ $) 65 (|has| |#1| (-559)))) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2936 (((-112) $ $) 6)) (-3060 (($ $ |#1|) 70 (|has| |#1| (-365)))) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-410 (-567)) $) 68 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 67 (|has| |#1| (-38 (-410 (-567)))))))
+((-3002 (*1 *2 *1) (-12 (-4 *1 (-970 *2)) (-4 *2 (-851)))) (-2473 (*1 *1 *1 *1) (-12 (-4 *1 (-970 *2)) (-4 *2 (-851)))) (-1661 (*1 *1 *1 *1) (-12 (-4 *1 (-970 *2)) (-4 *2 (-851)))))
+(-13 (-107 |t#1|) (-10 -8 (-6 -4422) (-15 -3002 (|t#1| $)) (-15 -2473 ($ $ $)) (-15 -1661 ($ $ $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2811 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-1102) |has| |#1| (-1102)) ((-1219) . T))
+((-1769 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2785 |#2|)) |#2| |#2|) 106)) (-3479 ((|#2| |#2| |#2|) 104)) (-1549 (((-2 (|:| |coef2| |#2|) (|:| -2785 |#2|)) |#2| |#2|) 108)) (-2284 (((-2 (|:| |coef1| |#2|) (|:| -2785 |#2|)) |#2| |#2|) 110)) (-3405 (((-2 (|:| |coef2| |#2|) (|:| -2562 |#1|)) |#2| |#2|) 132 (|has| |#1| (-455)))) (-1510 (((-2 (|:| |coef2| |#2|) (|:| -3554 |#1|)) |#2| |#2|) 56)) (-2705 (((-2 (|:| |coef2| |#2|) (|:| -3554 |#1|)) |#2| |#2|) 81)) (-3576 (((-2 (|:| |coef1| |#2|) (|:| -3554 |#1|)) |#2| |#2|) 83)) (-2327 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 97)) (-3157 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-772)) 90)) (-3141 (((-2 (|:| |coef2| |#2|) (|:| -2433 |#1|)) |#2|) 122)) (-3194 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-772)) 93)) (-4002 (((-645 (-772)) |#2| |#2|) 103)) (-3216 ((|#1| |#2| |#2|) 50)) (-2401 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2562 |#1|)) |#2| |#2|) 130 (|has| |#1| (-455)))) (-2562 ((|#1| |#2| |#2|) 128 (|has| |#1| (-455)))) (-2314 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3554 |#1|)) |#2| |#2|) 54)) (-4177 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3554 |#1|)) |#2| |#2|) 80)) (-3554 ((|#1| |#2| |#2|) 77)) (-3410 (((-2 (|:| -3705 |#1|) (|:| -2654 |#2|) (|:| -2023 |#2|)) |#2| |#2|) 41)) (-2687 ((|#2| |#2| |#2| |#2| |#1|) 67)) (-2585 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 95)) (-2588 ((|#2| |#2| |#2|) 94)) (-3250 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-772)) 88)) (-2813 ((|#2| |#2| |#2| (-772)) 86)) (-2785 ((|#2| |#2| |#2|) 136 (|has| |#1| (-455)))) (-2400 (((-1269 |#2|) (-1269 |#2|) |#1|) 22)) (-2452 (((-2 (|:| -2654 |#2|) (|:| -2023 |#2|)) |#2| |#2|) 46)) (-2769 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2433 |#1|)) |#2|) 120)) (-2433 ((|#1| |#2|) 117)) (-3377 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-772)) 92)) (-3484 ((|#2| |#2| |#2| (-772)) 91)) (-4360 (((-645 |#2|) |#2| |#2|) 100)) (-3401 ((|#2| |#2| |#1| |#1| (-772)) 62)) (-1659 ((|#1| |#1| |#1| (-772)) 61)) (* (((-1269 |#2|) |#1| (-1269 |#2|)) 17)))
+(((-971 |#1| |#2|) (-10 -7 (-15 -3554 (|#1| |#2| |#2|)) (-15 -4177 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3554 |#1|)) |#2| |#2|)) (-15 -2705 ((-2 (|:| |coef2| |#2|) (|:| -3554 |#1|)) |#2| |#2|)) (-15 -3576 ((-2 (|:| |coef1| |#2|) (|:| -3554 |#1|)) |#2| |#2|)) (-15 -2813 (|#2| |#2| |#2| (-772))) (-15 -3250 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-772))) (-15 -3157 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-772))) (-15 -3484 (|#2| |#2| |#2| (-772))) (-15 -3377 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-772))) (-15 -3194 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-772))) (-15 -2588 (|#2| |#2| |#2|)) (-15 -2585 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2327 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3479 (|#2| |#2| |#2|)) (-15 -1769 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2785 |#2|)) |#2| |#2|)) (-15 -1549 ((-2 (|:| |coef2| |#2|) (|:| -2785 |#2|)) |#2| |#2|)) (-15 -2284 ((-2 (|:| |coef1| |#2|) (|:| -2785 |#2|)) |#2| |#2|)) (-15 -2433 (|#1| |#2|)) (-15 -2769 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2433 |#1|)) |#2|)) (-15 -3141 ((-2 (|:| |coef2| |#2|) (|:| -2433 |#1|)) |#2|)) (-15 -4360 ((-645 |#2|) |#2| |#2|)) (-15 -4002 ((-645 (-772)) |#2| |#2|)) (IF (|has| |#1| (-455)) (PROGN (-15 -2562 (|#1| |#2| |#2|)) (-15 -2401 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2562 |#1|)) |#2| |#2|)) (-15 -3405 ((-2 (|:| |coef2| |#2|) (|:| -2562 |#1|)) |#2| |#2|)) (-15 -2785 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1269 |#2|) |#1| (-1269 |#2|))) (-15 -2400 ((-1269 |#2|) (-1269 |#2|) |#1|)) (-15 -3410 ((-2 (|:| -3705 |#1|) (|:| -2654 |#2|) (|:| -2023 |#2|)) |#2| |#2|)) (-15 -2452 ((-2 (|:| -2654 |#2|) (|:| -2023 |#2|)) |#2| |#2|)) (-15 -1659 (|#1| |#1| |#1| (-772))) (-15 -3401 (|#2| |#2| |#1| |#1| (-772))) (-15 -2687 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3216 (|#1| |#2| |#2|)) (-15 -2314 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3554 |#1|)) |#2| |#2|)) (-15 -1510 ((-2 (|:| |coef2| |#2|) (|:| -3554 |#1|)) |#2| |#2|))) (-559) (-1245 |#1|)) (T -971))
+((-1510 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3554 *4))) (-5 *1 (-971 *4 *3)) (-4 *3 (-1245 *4)))) (-2314 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3554 *4))) (-5 *1 (-971 *4 *3)) (-4 *3 (-1245 *4)))) (-3216 (*1 *2 *3 *3) (-12 (-4 *2 (-559)) (-5 *1 (-971 *2 *3)) (-4 *3 (-1245 *2)))) (-2687 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-559)) (-5 *1 (-971 *3 *2)) (-4 *2 (-1245 *3)))) (-3401 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-772)) (-4 *3 (-559)) (-5 *1 (-971 *3 *2)) (-4 *2 (-1245 *3)))) (-1659 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-772)) (-4 *2 (-559)) (-5 *1 (-971 *2 *4)) (-4 *4 (-1245 *2)))) (-2452 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| -2654 *3) (|:| -2023 *3))) (-5 *1 (-971 *4 *3)) (-4 *3 (-1245 *4)))) (-3410 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| -3705 *4) (|:| -2654 *3) (|:| -2023 *3))) (-5 *1 (-971 *4 *3)) (-4 *3 (-1245 *4)))) (-2400 (*1 *2 *2 *3) (-12 (-5 *2 (-1269 *4)) (-4 *4 (-1245 *3)) (-4 *3 (-559)) (-5 *1 (-971 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1269 *4)) (-4 *4 (-1245 *3)) (-4 *3 (-559)) (-5 *1 (-971 *3 *4)))) (-2785 (*1 *2 *2 *2) (-12 (-4 *3 (-455)) (-4 *3 (-559)) (-5 *1 (-971 *3 *2)) (-4 *2 (-1245 *3)))) (-3405 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2562 *4))) (-5 *1 (-971 *4 *3)) (-4 *3 (-1245 *4)))) (-2401 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2562 *4))) (-5 *1 (-971 *4 *3)) (-4 *3 (-1245 *4)))) (-2562 (*1 *2 *3 *3) (-12 (-4 *2 (-559)) (-4 *2 (-455)) (-5 *1 (-971 *2 *3)) (-4 *3 (-1245 *2)))) (-4002 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-645 (-772))) (-5 *1 (-971 *4 *3)) (-4 *3 (-1245 *4)))) (-4360 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-645 *3)) (-5 *1 (-971 *4 *3)) (-4 *3 (-1245 *4)))) (-3141 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2433 *4))) (-5 *1 (-971 *4 *3)) (-4 *3 (-1245 *4)))) (-2769 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2433 *4))) (-5 *1 (-971 *4 *3)) (-4 *3 (-1245 *4)))) (-2433 (*1 *2 *3) (-12 (-4 *2 (-559)) (-5 *1 (-971 *2 *3)) (-4 *3 (-1245 *2)))) (-2284 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2785 *3))) (-5 *1 (-971 *4 *3)) (-4 *3 (-1245 *4)))) (-1549 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2785 *3))) (-5 *1 (-971 *4 *3)) (-4 *3 (-1245 *4)))) (-1769 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2785 *3))) (-5 *1 (-971 *4 *3)) (-4 *3 (-1245 *4)))) (-3479 (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-971 *3 *2)) (-4 *2 (-1245 *3)))) (-2327 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-971 *4 *3)) (-4 *3 (-1245 *4)))) (-2585 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-971 *4 *3)) (-4 *3 (-1245 *4)))) (-2588 (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-971 *3 *2)) (-4 *2 (-1245 *3)))) (-3194 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-772)) (-4 *5 (-559)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-971 *5 *3)) (-4 *3 (-1245 *5)))) (-3377 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-772)) (-4 *5 (-559)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-971 *5 *3)) (-4 *3 (-1245 *5)))) (-3484 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-772)) (-4 *4 (-559)) (-5 *1 (-971 *4 *2)) (-4 *2 (-1245 *4)))) (-3157 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-772)) (-4 *5 (-559)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-971 *5 *3)) (-4 *3 (-1245 *5)))) (-3250 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-772)) (-4 *5 (-559)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-971 *5 *3)) (-4 *3 (-1245 *5)))) (-2813 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-772)) (-4 *4 (-559)) (-5 *1 (-971 *4 *2)) (-4 *2 (-1245 *4)))) (-3576 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3554 *4))) (-5 *1 (-971 *4 *3)) (-4 *3 (-1245 *4)))) (-2705 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3554 *4))) (-5 *1 (-971 *4 *3)) (-4 *3 (-1245 *4)))) (-4177 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3554 *4))) (-5 *1 (-971 *4 *3)) (-4 *3 (-1245 *4)))) (-3554 (*1 *2 *3 *3) (-12 (-4 *2 (-559)) (-5 *1 (-971 *2 *3)) (-4 *3 (-1245 *2)))))
+(-10 -7 (-15 -3554 (|#1| |#2| |#2|)) (-15 -4177 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3554 |#1|)) |#2| |#2|)) (-15 -2705 ((-2 (|:| |coef2| |#2|) (|:| -3554 |#1|)) |#2| |#2|)) (-15 -3576 ((-2 (|:| |coef1| |#2|) (|:| -3554 |#1|)) |#2| |#2|)) (-15 -2813 (|#2| |#2| |#2| (-772))) (-15 -3250 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-772))) (-15 -3157 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-772))) (-15 -3484 (|#2| |#2| |#2| (-772))) (-15 -3377 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-772))) (-15 -3194 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-772))) (-15 -2588 (|#2| |#2| |#2|)) (-15 -2585 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2327 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3479 (|#2| |#2| |#2|)) (-15 -1769 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2785 |#2|)) |#2| |#2|)) (-15 -1549 ((-2 (|:| |coef2| |#2|) (|:| -2785 |#2|)) |#2| |#2|)) (-15 -2284 ((-2 (|:| |coef1| |#2|) (|:| -2785 |#2|)) |#2| |#2|)) (-15 -2433 (|#1| |#2|)) (-15 -2769 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2433 |#1|)) |#2|)) (-15 -3141 ((-2 (|:| |coef2| |#2|) (|:| -2433 |#1|)) |#2|)) (-15 -4360 ((-645 |#2|) |#2| |#2|)) (-15 -4002 ((-645 (-772)) |#2| |#2|)) (IF (|has| |#1| (-455)) (PROGN (-15 -2562 (|#1| |#2| |#2|)) (-15 -2401 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2562 |#1|)) |#2| |#2|)) (-15 -3405 ((-2 (|:| |coef2| |#2|) (|:| -2562 |#1|)) |#2| |#2|)) (-15 -2785 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1269 |#2|) |#1| (-1269 |#2|))) (-15 -2400 ((-1269 |#2|) (-1269 |#2|) |#1|)) (-15 -3410 ((-2 (|:| -3705 |#1|) (|:| -2654 |#2|) (|:| -2023 |#2|)) |#2| |#2|)) (-15 -2452 ((-2 (|:| -2654 |#2|) (|:| -2023 |#2|)) |#2| |#2|)) (-15 -1659 (|#1| |#1| |#1| (-772))) (-15 -3401 (|#2| |#2| |#1| |#1| (-772))) (-15 -2687 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3216 (|#1| |#2| |#2|)) (-15 -2314 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3554 |#1|)) |#2| |#2|)) (-15 -1510 ((-2 (|:| |coef2| |#2|) (|:| -3554 |#1|)) |#2| |#2|)))
+((-2412 (((-112) $ $) NIL)) (-3577 (((-1218) $) 13)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-3106 (((-1137) $) 10)) (-4129 (((-863) $) 20) (($ (-1184)) NIL) (((-1184) $) NIL)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)))
+(((-972) (-13 (-1085) (-10 -8 (-15 -3106 ((-1137) $)) (-15 -3577 ((-1218) $))))) (T -972))
+((-3106 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-972)))) (-3577 (*1 *2 *1) (-12 (-5 *2 (-1218)) (-5 *1 (-972)))))
+(-13 (-1085) (-10 -8 (-15 -3106 ((-1137) $)) (-15 -3577 ((-1218) $))))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-2376 (((-3 $ "failed") $ $) 39)) (-3647 (($) NIL T CONST)) (-3521 (((-645 (-645 (-567))) (-645 (-567))) 48)) (-3649 (((-567) $) 72)) (-4055 (($ (-645 (-567))) 18)) (-1365 (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-3902 (((-645 (-567)) $) 13)) (-1672 (($ $) 52)) (-4129 (((-863) $) 68) (((-645 (-567)) $) 11)) (-3357 (((-112) $ $) NIL)) (-1733 (($) 8 T CONST)) (-3004 (((-112) $ $) NIL)) (-2980 (((-112) $ $) NIL)) (-2946 (((-112) $ $) 26)) (-2993 (((-112) $ $) NIL)) (-2968 (((-112) $ $) 25)) (-3041 (($ $ $) 28)) (* (($ (-923) $) NIL) (($ (-772) $) 37)))
+(((-973) (-13 (-796) (-615 (-645 (-567))) (-614 (-645 (-567))) (-10 -8 (-15 -4055 ($ (-645 (-567)))) (-15 -3521 ((-645 (-645 (-567))) (-645 (-567)))) (-15 -3649 ((-567) $)) (-15 -1672 ($ $))))) (T -973))
+((-4055 (*1 *1 *2) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-973)))) (-3521 (*1 *2 *3) (-12 (-5 *2 (-645 (-645 (-567)))) (-5 *1 (-973)) (-5 *3 (-645 (-567))))) (-3649 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-973)))) (-1672 (*1 *1 *1) (-5 *1 (-973))))
+(-13 (-796) (-615 (-645 (-567))) (-614 (-645 (-567))) (-10 -8 (-15 -4055 ($ (-645 (-567)))) (-15 -3521 ((-645 (-645 (-567))) (-645 (-567)))) (-15 -3649 ((-567) $)) (-15 -1672 ($ $))))
+((-3069 (($ $ |#2|) 31)) (-3053 (($ $) 23) (($ $ $) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 17) (($ $ $) NIL) (($ $ |#2|) 21) (($ |#2| $) 20) (($ (-410 (-567)) $) 27) (($ $ (-410 (-567))) 29)))
+(((-974 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-410 (-567)))) (-15 * (|#1| (-410 (-567)) |#1|)) (-15 -3069 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3053 (|#1| |#1| |#1|)) (-15 -3053 (|#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-923) |#1|))) (-975 |#2| |#3| |#4|) (-1051) (-793) (-851)) (T -974))
+NIL
+(-10 -8 (-15 * (|#1| |#1| (-410 (-567)))) (-15 * (|#1| (-410 (-567)) |#1|)) (-15 -3069 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3053 (|#1| |#1| |#1|)) (-15 -3053 (|#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-923) |#1|)))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-2859 (((-645 |#3|) $) 86)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) 63 (|has| |#1| (-559)))) (-4287 (($ $) 64 (|has| |#1| (-559)))) (-2286 (((-112) $) 66 (|has| |#1| (-559)))) (-2376 (((-3 $ "failed") $ $) 20)) (-3647 (($) 18 T CONST)) (-3023 (($ $) 72)) (-3588 (((-3 $ "failed") $) 37)) (-3086 (((-112) $) 85)) (-4346 (((-112) $) 35)) (-3770 (((-112) $) 74)) (-2836 (($ |#1| |#2|) 73) (($ $ |#3| |#2|) 88) (($ $ (-645 |#3|) (-645 |#2|)) 87)) (-3841 (($ (-1 |#1| |#1|) $) 75)) (-2985 (($ $) 77)) (-2996 ((|#1| $) 78)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-2400 (((-3 $ "failed") $ $) 62 (|has| |#1| (-559)))) (-3104 ((|#2| $) 76)) (-1834 (($ $) 84)) (-4129 (((-863) $) 12) (($ (-567)) 33) (($ (-410 (-567))) 69 (|has| |#1| (-38 (-410 (-567))))) (($ $) 61 (|has| |#1| (-559))) (($ |#1|) 59 (|has| |#1| (-172)))) (-2558 ((|#1| $ |#2|) 71)) (-2118 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-2746 (((-772)) 32 T CONST)) (-3357 (((-112) $ $) 9)) (-3731 (((-112) $ $) 65 (|has| |#1| (-559)))) (-1733 (($) 19 T CONST)) (-1744 (($) 34 T CONST)) (-2946 (((-112) $ $) 6)) (-3069 (($ $ |#1|) 70 (|has| |#1| (-365)))) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-410 (-567)) $) 68 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 67 (|has| |#1| (-38 (-410 (-567)))))))
(((-975 |#1| |#2| |#3|) (-140) (-1051) (-793) (-851)) (T -975))
-((-2989 (*1 *2 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *3 (-793)) (-4 *4 (-851)) (-4 *2 (-1051)))) (-2976 (*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-793)) (-4 *4 (-851)))) (-3077 (*1 *2 *1) (-12 (-4 *1 (-975 *3 *2 *4)) (-4 *3 (-1051)) (-4 *4 (-851)) (-4 *2 (-793)))) (-2824 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-975 *4 *3 *2)) (-4 *4 (-1051)) (-4 *3 (-793)) (-4 *2 (-851)))) (-2824 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 *6)) (-5 *3 (-645 *5)) (-4 *1 (-975 *4 *5 *6)) (-4 *4 (-1051)) (-4 *5 (-793)) (-4 *6 (-851)))) (-2847 (*1 *2 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-793)) (-4 *5 (-851)) (-5 *2 (-645 *5)))) (-2762 (*1 *2 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-793)) (-4 *5 (-851)) (-5 *2 (-112)))) (-2192 (*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-793)) (-4 *4 (-851)))))
-(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -2824 ($ $ |t#3| |t#2|)) (-15 -2824 ($ $ (-645 |t#3|) (-645 |t#2|))) (-15 -2976 ($ $)) (-15 -2989 (|t#1| $)) (-15 -3077 (|t#2| $)) (-15 -2847 ((-645 |t#3|) $)) (-15 -2762 ((-112) $)) (-15 -2192 ($ $))))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-559)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-410 (-567)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2800 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #0#) |has| |#1| (-38 (-410 (-567)))) ((-617 (-567)) . T) ((-617 |#1|) |has| |#1| (-172)) ((-617 $) |has| |#1| (-559)) ((-614 (-863)) . T) ((-172) -2800 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-291) |has| |#1| (-559)) ((-559) |has| |#1| (-559)) ((-647 #0#) |has| |#1| (-38 (-410 (-567)))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) |has| |#1| (-38 (-410 (-567)))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) |has| |#1| (-38 (-410 (-567)))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) |has| |#1| (-559)) ((-718 #0#) |has| |#1| (-38 (-410 (-567)))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) |has| |#1| (-559)) ((-727) . T) ((-1053 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1053 |#1|) . T) ((-1053 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-1058 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1058 |#1|) . T) ((-1058 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T))
-((-3720 (((-1096 (-225)) $) 8)) (-3711 (((-1096 (-225)) $) 9)) (-3703 (((-1096 (-225)) $) 10)) (-2049 (((-645 (-645 (-945 (-225)))) $) 11)) (-4132 (((-863) $) 6)))
+((-2996 (*1 *2 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *3 (-793)) (-4 *4 (-851)) (-4 *2 (-1051)))) (-2985 (*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-793)) (-4 *4 (-851)))) (-3104 (*1 *2 *1) (-12 (-4 *1 (-975 *3 *2 *4)) (-4 *3 (-1051)) (-4 *4 (-851)) (-4 *2 (-793)))) (-2836 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-975 *4 *3 *2)) (-4 *4 (-1051)) (-4 *3 (-793)) (-4 *2 (-851)))) (-2836 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 *6)) (-5 *3 (-645 *5)) (-4 *1 (-975 *4 *5 *6)) (-4 *4 (-1051)) (-4 *5 (-793)) (-4 *6 (-851)))) (-2859 (*1 *2 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-793)) (-4 *5 (-851)) (-5 *2 (-645 *5)))) (-3086 (*1 *2 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-793)) (-4 *5 (-851)) (-5 *2 (-112)))) (-1834 (*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-793)) (-4 *4 (-851)))))
+(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -2836 ($ $ |t#3| |t#2|)) (-15 -2836 ($ $ (-645 |t#3|) (-645 |t#2|))) (-15 -2985 ($ $)) (-15 -2996 (|t#1| $)) (-15 -3104 (|t#2| $)) (-15 -2859 ((-645 |t#3|) $)) (-15 -3086 ((-112) $)) (-15 -1834 ($ $))))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-559)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-410 (-567)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2811 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #0#) |has| |#1| (-38 (-410 (-567)))) ((-617 (-567)) . T) ((-617 |#1|) |has| |#1| (-172)) ((-617 $) |has| |#1| (-559)) ((-614 (-863)) . T) ((-172) -2811 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-291) |has| |#1| (-559)) ((-559) |has| |#1| (-559)) ((-647 #0#) |has| |#1| (-38 (-410 (-567)))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) |has| |#1| (-38 (-410 (-567)))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) |has| |#1| (-38 (-410 (-567)))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) |has| |#1| (-559)) ((-718 #0#) |has| |#1| (-38 (-410 (-567)))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) |has| |#1| (-559)) ((-727) . T) ((-1053 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1053 |#1|) . T) ((-1053 $) -2811 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-1058 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1058 |#1|) . T) ((-1058 $) -2811 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T))
+((-3742 (((-1096 (-225)) $) 8)) (-3733 (((-1096 (-225)) $) 9)) (-3725 (((-1096 (-225)) $) 10)) (-3600 (((-645 (-645 (-945 (-225)))) $) 11)) (-4129 (((-863) $) 6)))
(((-976) (-140)) (T -976))
-((-2049 (*1 *2 *1) (-12 (-4 *1 (-976)) (-5 *2 (-645 (-645 (-945 (-225))))))) (-3703 (*1 *2 *1) (-12 (-4 *1 (-976)) (-5 *2 (-1096 (-225))))) (-3711 (*1 *2 *1) (-12 (-4 *1 (-976)) (-5 *2 (-1096 (-225))))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-976)) (-5 *2 (-1096 (-225))))))
-(-13 (-614 (-863)) (-10 -8 (-15 -2049 ((-645 (-645 (-945 (-225)))) $)) (-15 -3703 ((-1096 (-225)) $)) (-15 -3711 ((-1096 (-225)) $)) (-15 -3720 ((-1096 (-225)) $))))
+((-3600 (*1 *2 *1) (-12 (-4 *1 (-976)) (-5 *2 (-645 (-645 (-945 (-225))))))) (-3725 (*1 *2 *1) (-12 (-4 *1 (-976)) (-5 *2 (-1096 (-225))))) (-3733 (*1 *2 *1) (-12 (-4 *1 (-976)) (-5 *2 (-1096 (-225))))) (-3742 (*1 *2 *1) (-12 (-4 *1 (-976)) (-5 *2 (-1096 (-225))))))
+(-13 (-614 (-863)) (-10 -8 (-15 -3600 ((-645 (-645 (-945 (-225)))) $)) (-15 -3725 ((-1096 (-225)) $)) (-15 -3733 ((-1096 (-225)) $)) (-15 -3742 ((-1096 (-225)) $))))
(((-614 (-863)) . T))
-((-2847 (((-645 |#4|) $) 23)) (-2017 (((-112) $) 55)) (-3623 (((-112) $) 54)) (-4396 (((-2 (|:| |under| $) (|:| -2780 $) (|:| |upper| $)) $ |#4|) 42)) (-1490 (((-112) $) 56)) (-2752 (((-112) $ $) 62)) (-4224 (((-112) $ $) 65)) (-3547 (((-112) $) 60)) (-1724 (((-645 |#5|) (-645 |#5|) $) 98)) (-3197 (((-645 |#5|) (-645 |#5|) $) 95)) (-4194 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88)) (-2826 (((-645 |#4|) $) 27)) (-2808 (((-112) |#4| $) 34)) (-2430 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-2397 (($ $ |#4|) 39)) (-2120 (($ $ |#4|) 38)) (-2813 (($ $ |#4|) 40)) (-2936 (((-112) $ $) 46)))
-(((-977 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3623 ((-112) |#1|)) (-15 -1724 ((-645 |#5|) (-645 |#5|) |#1|)) (-15 -3197 ((-645 |#5|) (-645 |#5|) |#1|)) (-15 -4194 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2430 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1490 ((-112) |#1|)) (-15 -4224 ((-112) |#1| |#1|)) (-15 -2752 ((-112) |#1| |#1|)) (-15 -3547 ((-112) |#1|)) (-15 -2017 ((-112) |#1|)) (-15 -4396 ((-2 (|:| |under| |#1|) (|:| -2780 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2397 (|#1| |#1| |#4|)) (-15 -2813 (|#1| |#1| |#4|)) (-15 -2120 (|#1| |#1| |#4|)) (-15 -2808 ((-112) |#4| |#1|)) (-15 -2826 ((-645 |#4|) |#1|)) (-15 -2847 ((-645 |#4|) |#1|)) (-15 -2936 ((-112) |#1| |#1|))) (-978 |#2| |#3| |#4| |#5|) (-1051) (-794) (-851) (-1067 |#2| |#3| |#4|)) (T -977))
+((-2859 (((-645 |#4|) $) 23)) (-3153 (((-112) $) 55)) (-2031 (((-112) $) 54)) (-1311 (((-2 (|:| |under| $) (|:| -3969 $) (|:| |upper| $)) $ |#4|) 42)) (-1896 (((-112) $) 56)) (-2909 (((-112) $ $) 62)) (-3040 (((-112) $ $) 65)) (-3365 (((-112) $) 60)) (-1377 (((-645 |#5|) (-645 |#5|) $) 98)) (-2279 (((-645 |#5|) (-645 |#5|) $) 95)) (-2023 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88)) (-2869 (((-645 |#4|) $) 27)) (-1524 (((-112) |#4| $) 34)) (-2634 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-3937 (($ $ |#4|) 39)) (-3165 (($ $ |#4|) 38)) (-1920 (($ $ |#4|) 40)) (-2946 (((-112) $ $) 46)))
+(((-977 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2031 ((-112) |#1|)) (-15 -1377 ((-645 |#5|) (-645 |#5|) |#1|)) (-15 -2279 ((-645 |#5|) (-645 |#5|) |#1|)) (-15 -2023 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2634 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1896 ((-112) |#1|)) (-15 -3040 ((-112) |#1| |#1|)) (-15 -2909 ((-112) |#1| |#1|)) (-15 -3365 ((-112) |#1|)) (-15 -3153 ((-112) |#1|)) (-15 -1311 ((-2 (|:| |under| |#1|) (|:| -3969 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3937 (|#1| |#1| |#4|)) (-15 -1920 (|#1| |#1| |#4|)) (-15 -3165 (|#1| |#1| |#4|)) (-15 -1524 ((-112) |#4| |#1|)) (-15 -2869 ((-645 |#4|) |#1|)) (-15 -2859 ((-645 |#4|) |#1|)) (-15 -2946 ((-112) |#1| |#1|))) (-978 |#2| |#3| |#4| |#5|) (-1051) (-794) (-851) (-1067 |#2| |#3| |#4|)) (T -977))
NIL
-(-10 -8 (-15 -3623 ((-112) |#1|)) (-15 -1724 ((-645 |#5|) (-645 |#5|) |#1|)) (-15 -3197 ((-645 |#5|) (-645 |#5|) |#1|)) (-15 -4194 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2430 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1490 ((-112) |#1|)) (-15 -4224 ((-112) |#1| |#1|)) (-15 -2752 ((-112) |#1| |#1|)) (-15 -3547 ((-112) |#1|)) (-15 -2017 ((-112) |#1|)) (-15 -4396 ((-2 (|:| |under| |#1|) (|:| -2780 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2397 (|#1| |#1| |#4|)) (-15 -2813 (|#1| |#1| |#4|)) (-15 -2120 (|#1| |#1| |#4|)) (-15 -2808 ((-112) |#4| |#1|)) (-15 -2826 ((-645 |#4|) |#1|)) (-15 -2847 ((-645 |#4|) |#1|)) (-15 -2936 ((-112) |#1| |#1|)))
-((-2403 (((-112) $ $) 7)) (-2847 (((-645 |#3|) $) 34)) (-2017 (((-112) $) 27)) (-3623 (((-112) $) 18 (|has| |#1| (-559)))) (-4396 (((-2 (|:| |under| $) (|:| -2780 $) (|:| |upper| $)) $ |#3|) 28)) (-3445 (((-112) $ (-772)) 45)) (-3350 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4418)))) (-2585 (($) 46 T CONST)) (-1490 (((-112) $) 23 (|has| |#1| (-559)))) (-2752 (((-112) $ $) 25 (|has| |#1| (-559)))) (-4224 (((-112) $ $) 24 (|has| |#1| (-559)))) (-3547 (((-112) $) 26 (|has| |#1| (-559)))) (-1724 (((-645 |#4|) (-645 |#4|) $) 19 (|has| |#1| (-559)))) (-3197 (((-645 |#4|) (-645 |#4|) $) 20 (|has| |#1| (-559)))) (-3753 (((-3 $ "failed") (-645 |#4|)) 37)) (-2038 (($ (-645 |#4|)) 36)) (-2444 (($ $) 69 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4418))))) (-3238 (($ |#4| $) 68 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4418)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4418)))) (-4194 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-559)))) (-2477 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4418)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4418))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4418)))) (-2777 (((-645 |#4|) $) 53 (|has| $ (-6 -4418)))) (-1679 ((|#3| $) 35)) (-2077 (((-112) $ (-772)) 44)) (-2279 (((-645 |#4|) $) 54 (|has| $ (-6 -4418)))) (-4337 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4418))))) (-3731 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#4| |#4|) $) 48)) (-2826 (((-645 |#3|) $) 33)) (-2808 (((-112) |#3| $) 32)) (-2863 (((-112) $ (-772)) 43)) (-1419 (((-1160) $) 10)) (-2430 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-559)))) (-3430 (((-1122) $) 11)) (-4128 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3025 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 |#4|) (-645 |#4|)) 60 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-295 |#4|)) 58 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-645 (-295 |#4|))) 57 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))))) (-3092 (((-112) $ $) 39)) (-3572 (((-112) $) 42)) (-3498 (($) 41)) (-3439 (((-772) |#4| $) 55 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4418)))) (((-772) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4418)))) (-4305 (($ $) 40)) (-3893 (((-539) $) 70 (|has| |#4| (-615 (-539))))) (-4147 (($ (-645 |#4|)) 61)) (-2397 (($ $ |#3|) 29)) (-2120 (($ $ |#3|) 31)) (-2813 (($ $ |#3|) 30)) (-4132 (((-863) $) 12) (((-645 |#4|) $) 38)) (-1745 (((-112) $ $) 9)) (-1853 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 6)) (-2414 (((-772) $) 47 (|has| $ (-6 -4418)))))
+(-10 -8 (-15 -2031 ((-112) |#1|)) (-15 -1377 ((-645 |#5|) (-645 |#5|) |#1|)) (-15 -2279 ((-645 |#5|) (-645 |#5|) |#1|)) (-15 -2023 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2634 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1896 ((-112) |#1|)) (-15 -3040 ((-112) |#1| |#1|)) (-15 -2909 ((-112) |#1| |#1|)) (-15 -3365 ((-112) |#1|)) (-15 -3153 ((-112) |#1|)) (-15 -1311 ((-2 (|:| |under| |#1|) (|:| -3969 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3937 (|#1| |#1| |#4|)) (-15 -1920 (|#1| |#1| |#4|)) (-15 -3165 (|#1| |#1| |#4|)) (-15 -1524 ((-112) |#4| |#1|)) (-15 -2869 ((-645 |#4|) |#1|)) (-15 -2859 ((-645 |#4|) |#1|)) (-15 -2946 ((-112) |#1| |#1|)))
+((-2412 (((-112) $ $) 7)) (-2859 (((-645 |#3|) $) 34)) (-3153 (((-112) $) 27)) (-2031 (((-112) $) 18 (|has| |#1| (-559)))) (-1311 (((-2 (|:| |under| $) (|:| -3969 $) (|:| |upper| $)) $ |#3|) 28)) (-1563 (((-112) $ (-772)) 45)) (-3356 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4422)))) (-3647 (($) 46 T CONST)) (-1896 (((-112) $) 23 (|has| |#1| (-559)))) (-2909 (((-112) $ $) 25 (|has| |#1| (-559)))) (-3040 (((-112) $ $) 24 (|has| |#1| (-559)))) (-3365 (((-112) $) 26 (|has| |#1| (-559)))) (-1377 (((-645 |#4|) (-645 |#4|) $) 19 (|has| |#1| (-559)))) (-2279 (((-645 |#4|) (-645 |#4|) $) 20 (|has| |#1| (-559)))) (-3765 (((-3 $ "failed") (-645 |#4|)) 37)) (-2051 (($ (-645 |#4|)) 36)) (-2453 (($ $) 69 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4422))))) (-3246 (($ |#4| $) 68 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4422)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4422)))) (-2023 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-559)))) (-2494 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4422)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4422))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4422)))) (-2799 (((-645 |#4|) $) 53 (|has| $ (-6 -4422)))) (-2072 ((|#3| $) 35)) (-4093 (((-112) $ (-772)) 44)) (-1942 (((-645 |#4|) $) 54 (|has| $ (-6 -4422)))) (-3237 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4422))))) (-3751 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#4| |#4|) $) 48)) (-2869 (((-645 |#3|) $) 33)) (-1524 (((-112) |#3| $) 32)) (-1986 (((-112) $ (-772)) 43)) (-2516 (((-1161) $) 10)) (-2634 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-559)))) (-3437 (((-1122) $) 11)) (-3196 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-4233 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 |#4|) (-645 |#4|)) 60 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-295 |#4|)) 58 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-645 (-295 |#4|))) 57 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))))) (-3875 (((-112) $ $) 39)) (-3885 (((-112) $) 42)) (-2701 (($) 41)) (-3447 (((-772) |#4| $) 55 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4422)))) (((-772) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4422)))) (-4309 (($ $) 40)) (-3902 (((-539) $) 70 (|has| |#4| (-615 (-539))))) (-4145 (($ (-645 |#4|)) 61)) (-3937 (($ $ |#3|) 29)) (-3165 (($ $ |#3|) 31)) (-1920 (($ $ |#3|) 30)) (-4129 (((-863) $) 12) (((-645 |#4|) $) 38)) (-3357 (((-112) $ $) 9)) (-3436 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4422)))) (-2946 (((-112) $ $) 6)) (-2423 (((-772) $) 47 (|has| $ (-6 -4422)))))
(((-978 |#1| |#2| |#3| |#4|) (-140) (-1051) (-794) (-851) (-1067 |t#1| |t#2| |t#3|)) (T -978))
-((-3753 (*1 *1 *2) (|partial| -12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *1 (-978 *3 *4 *5 *6)))) (-2038 (*1 *1 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *1 (-978 *3 *4 *5 *6)))) (-1679 (*1 *2 *1) (-12 (-4 *1 (-978 *3 *4 *2 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-1067 *3 *4 *2)) (-4 *2 (-851)))) (-2847 (*1 *2 *1) (-12 (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-645 *5)))) (-2826 (*1 *2 *1) (-12 (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-645 *5)))) (-2808 (*1 *2 *3 *1) (-12 (-4 *1 (-978 *4 *5 *3 *6)) (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *3 (-851)) (-4 *6 (-1067 *4 *5 *3)) (-5 *2 (-112)))) (-2120 (*1 *1 *1 *2) (-12 (-4 *1 (-978 *3 *4 *2 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *2 (-851)) (-4 *5 (-1067 *3 *4 *2)))) (-2813 (*1 *1 *1 *2) (-12 (-4 *1 (-978 *3 *4 *2 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *2 (-851)) (-4 *5 (-1067 *3 *4 *2)))) (-2397 (*1 *1 *1 *2) (-12 (-4 *1 (-978 *3 *4 *2 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *2 (-851)) (-4 *5 (-1067 *3 *4 *2)))) (-4396 (*1 *2 *1 *3) (-12 (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *3 (-851)) (-4 *6 (-1067 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -2780 *1) (|:| |upper| *1))) (-4 *1 (-978 *4 *5 *3 *6)))) (-2017 (*1 *2 *1) (-12 (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-112)))) (-3547 (*1 *2 *1) (-12 (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)) (-5 *2 (-112)))) (-2752 (*1 *2 *1 *1) (-12 (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)) (-5 *2 (-112)))) (-4224 (*1 *2 *1 *1) (-12 (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)) (-5 *2 (-112)))) (-1490 (*1 *2 *1) (-12 (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)) (-5 *2 (-112)))) (-2430 (*1 *2 *3 *1) (-12 (-4 *1 (-978 *4 *5 *6 *3)) (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-4 *4 (-559)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-4194 (*1 *2 *3 *1) (-12 (-4 *1 (-978 *4 *5 *6 *3)) (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-4 *4 (-559)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-3197 (*1 *2 *2 *1) (-12 (-5 *2 (-645 *6)) (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)))) (-1724 (*1 *2 *2 *1) (-12 (-5 *2 (-645 *6)) (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)))) (-3623 (*1 *2 *1) (-12 (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)) (-5 *2 (-112)))))
-(-13 (-1102) (-151 |t#4|) (-614 (-645 |t#4|)) (-10 -8 (-6 -4418) (-15 -3753 ((-3 $ "failed") (-645 |t#4|))) (-15 -2038 ($ (-645 |t#4|))) (-15 -1679 (|t#3| $)) (-15 -2847 ((-645 |t#3|) $)) (-15 -2826 ((-645 |t#3|) $)) (-15 -2808 ((-112) |t#3| $)) (-15 -2120 ($ $ |t#3|)) (-15 -2813 ($ $ |t#3|)) (-15 -2397 ($ $ |t#3|)) (-15 -4396 ((-2 (|:| |under| $) (|:| -2780 $) (|:| |upper| $)) $ |t#3|)) (-15 -2017 ((-112) $)) (IF (|has| |t#1| (-559)) (PROGN (-15 -3547 ((-112) $)) (-15 -2752 ((-112) $ $)) (-15 -4224 ((-112) $ $)) (-15 -1490 ((-112) $)) (-15 -2430 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -4194 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3197 ((-645 |t#4|) (-645 |t#4|) $)) (-15 -1724 ((-645 |t#4|) (-645 |t#4|) $)) (-15 -3623 ((-112) $))) |%noBranch|)))
-(((-34) . T) ((-102) . T) ((-614 (-645 |#4|)) . T) ((-614 (-863)) . T) ((-151 |#4|) . T) ((-615 (-539)) |has| |#4| (-615 (-539))) ((-310 |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))) ((-492 |#4|) . T) ((-517 |#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))) ((-1102) . T) ((-1218) . T))
-((-2890 (((-645 |#4|) |#4| |#4|) 136)) (-1678 (((-645 |#4|) (-645 |#4|) (-112)) 125 (|has| |#1| (-455))) (((-645 |#4|) (-645 |#4|)) 126 (|has| |#1| (-455)))) (-3614 (((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 |#4|)) 44)) (-1641 (((-112) |#4|) 43)) (-3652 (((-645 |#4|) |#4|) 121 (|has| |#1| (-455)))) (-3434 (((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-1 (-112) |#4|) (-645 |#4|)) 24)) (-2511 (((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 (-1 (-112) |#4|)) (-645 |#4|)) 30)) (-3104 (((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 (-1 (-112) |#4|)) (-645 |#4|)) 31)) (-3228 (((-3 (-2 (|:| |bas| (-479 |#1| |#2| |#3| |#4|)) (|:| -2262 (-645 |#4|))) "failed") (-645 |#4|)) 90)) (-3409 (((-645 |#4|) (-645 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103)) (-2377 (((-645 |#4|) (-645 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 129)) (-3936 (((-645 |#4|) (-645 |#4|)) 128)) (-4360 (((-645 |#4|) (-645 |#4|) (-645 |#4|) (-112)) 59) (((-645 |#4|) (-645 |#4|) (-645 |#4|)) 61)) (-3885 ((|#4| |#4| (-645 |#4|)) 60)) (-4065 (((-645 |#4|) (-645 |#4|) (-645 |#4|)) 132 (|has| |#1| (-455)))) (-3369 (((-645 |#4|) (-645 |#4|) (-645 |#4|)) 135 (|has| |#1| (-455)))) (-3322 (((-645 |#4|) (-645 |#4|) (-645 |#4|)) 134 (|has| |#1| (-455)))) (-2771 (((-645 |#4|) (-645 |#4|) (-645 |#4|) (-1 (-645 |#4|) (-645 |#4|))) 105) (((-645 |#4|) (-645 |#4|) (-645 |#4|)) 107) (((-645 |#4|) (-645 |#4|) |#4|) 141) (((-645 |#4|) |#4| |#4|) 137) (((-645 |#4|) (-645 |#4|)) 106)) (-1694 (((-645 |#4|) (-645 |#4|) (-645 |#4|)) 118 (-12 (|has| |#1| (-147)) (|has| |#1| (-308))))) (-1937 (((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 |#4|)) 52)) (-4256 (((-112) (-645 |#4|)) 79)) (-4274 (((-112) (-645 |#4|) (-645 (-645 |#4|))) 67)) (-2329 (((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 |#4|)) 37)) (-4119 (((-112) |#4|) 36)) (-2747 (((-645 |#4|) (-645 |#4|)) 116 (-12 (|has| |#1| (-147)) (|has| |#1| (-308))))) (-2541 (((-645 |#4|) (-645 |#4|)) 117 (-12 (|has| |#1| (-147)) (|has| |#1| (-308))))) (-2516 (((-645 |#4|) (-645 |#4|)) 83)) (-3693 (((-645 |#4|) (-645 |#4|)) 97)) (-3127 (((-112) (-645 |#4|) (-645 |#4|)) 65)) (-2515 (((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 |#4|)) 50)) (-4187 (((-112) |#4|) 45)))
-(((-979 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2771 ((-645 |#4|) (-645 |#4|))) (-15 -2771 ((-645 |#4|) |#4| |#4|)) (-15 -3936 ((-645 |#4|) (-645 |#4|))) (-15 -2890 ((-645 |#4|) |#4| |#4|)) (-15 -2771 ((-645 |#4|) (-645 |#4|) |#4|)) (-15 -2771 ((-645 |#4|) (-645 |#4|) (-645 |#4|))) (-15 -2771 ((-645 |#4|) (-645 |#4|) (-645 |#4|) (-1 (-645 |#4|) (-645 |#4|)))) (-15 -3127 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -4274 ((-112) (-645 |#4|) (-645 (-645 |#4|)))) (-15 -4256 ((-112) (-645 |#4|))) (-15 -3434 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-1 (-112) |#4|) (-645 |#4|))) (-15 -2511 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 (-1 (-112) |#4|)) (-645 |#4|))) (-15 -3104 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 (-1 (-112) |#4|)) (-645 |#4|))) (-15 -1937 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 |#4|))) (-15 -1641 ((-112) |#4|)) (-15 -3614 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 |#4|))) (-15 -4119 ((-112) |#4|)) (-15 -2329 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 |#4|))) (-15 -4187 ((-112) |#4|)) (-15 -2515 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 |#4|))) (-15 -4360 ((-645 |#4|) (-645 |#4|) (-645 |#4|))) (-15 -4360 ((-645 |#4|) (-645 |#4|) (-645 |#4|) (-112))) (-15 -3885 (|#4| |#4| (-645 |#4|))) (-15 -2516 ((-645 |#4|) (-645 |#4|))) (-15 -3228 ((-3 (-2 (|:| |bas| (-479 |#1| |#2| |#3| |#4|)) (|:| -2262 (-645 |#4|))) "failed") (-645 |#4|))) (-15 -3693 ((-645 |#4|) (-645 |#4|))) (-15 -3409 ((-645 |#4|) (-645 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2377 ((-645 |#4|) (-645 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-455)) (PROGN (-15 -3652 ((-645 |#4|) |#4|)) (-15 -1678 ((-645 |#4|) (-645 |#4|))) (-15 -1678 ((-645 |#4|) (-645 |#4|) (-112))) (-15 -4065 ((-645 |#4|) (-645 |#4|) (-645 |#4|))) (-15 -3322 ((-645 |#4|) (-645 |#4|) (-645 |#4|))) (-15 -3369 ((-645 |#4|) (-645 |#4|) (-645 |#4|)))) |%noBranch|) (IF (|has| |#1| (-308)) (IF (|has| |#1| (-147)) (PROGN (-15 -2541 ((-645 |#4|) (-645 |#4|))) (-15 -2747 ((-645 |#4|) (-645 |#4|))) (-15 -1694 ((-645 |#4|) (-645 |#4|) (-645 |#4|)))) |%noBranch|) |%noBranch|)) (-559) (-794) (-851) (-1067 |#1| |#2| |#3|)) (T -979))
-((-1694 (*1 *2 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-308)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-979 *3 *4 *5 *6)))) (-2747 (*1 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-308)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-979 *3 *4 *5 *6)))) (-2541 (*1 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-308)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-979 *3 *4 *5 *6)))) (-3369 (*1 *2 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-455)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-979 *3 *4 *5 *6)))) (-3322 (*1 *2 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-455)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-979 *3 *4 *5 *6)))) (-4065 (*1 *2 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-455)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-979 *3 *4 *5 *6)))) (-1678 (*1 *2 *2 *3) (-12 (-5 *2 (-645 *7)) (-5 *3 (-112)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-979 *4 *5 *6 *7)))) (-1678 (*1 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-455)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-979 *3 *4 *5 *6)))) (-3652 (*1 *2 *3) (-12 (-4 *4 (-455)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *3)) (-5 *1 (-979 *4 *5 *6 *3)) (-4 *3 (-1067 *4 *5 *6)))) (-2377 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-645 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-979 *5 *6 *7 *8)))) (-3409 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-645 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1067 *6 *7 *8)) (-4 *6 (-559)) (-4 *7 (-794)) (-4 *8 (-851)) (-5 *1 (-979 *6 *7 *8 *9)))) (-3693 (*1 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-979 *3 *4 *5 *6)))) (-3228 (*1 *2 *3) (|partial| -12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-479 *4 *5 *6 *7)) (|:| -2262 (-645 *7)))) (-5 *1 (-979 *4 *5 *6 *7)) (-5 *3 (-645 *7)))) (-2516 (*1 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-979 *3 *4 *5 *6)))) (-3885 (*1 *2 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-1067 *4 *5 *6)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-979 *4 *5 *6 *2)))) (-4360 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-645 *7)) (-5 *3 (-112)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-979 *4 *5 *6 *7)))) (-4360 (*1 *2 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-979 *3 *4 *5 *6)))) (-2515 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-645 *7)) (|:| |badPols| (-645 *7)))) (-5 *1 (-979 *4 *5 *6 *7)) (-5 *3 (-645 *7)))) (-4187 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-979 *4 *5 *6 *3)) (-4 *3 (-1067 *4 *5 *6)))) (-2329 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-645 *7)) (|:| |badPols| (-645 *7)))) (-5 *1 (-979 *4 *5 *6 *7)) (-5 *3 (-645 *7)))) (-4119 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-979 *4 *5 *6 *3)) (-4 *3 (-1067 *4 *5 *6)))) (-3614 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-645 *7)) (|:| |badPols| (-645 *7)))) (-5 *1 (-979 *4 *5 *6 *7)) (-5 *3 (-645 *7)))) (-1641 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-979 *4 *5 *6 *3)) (-4 *3 (-1067 *4 *5 *6)))) (-1937 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-645 *7)) (|:| |badPols| (-645 *7)))) (-5 *1 (-979 *4 *5 *6 *7)) (-5 *3 (-645 *7)))) (-3104 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-1 (-112) *8))) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-2 (|:| |goodPols| (-645 *8)) (|:| |badPols| (-645 *8)))) (-5 *1 (-979 *5 *6 *7 *8)) (-5 *4 (-645 *8)))) (-2511 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-1 (-112) *8))) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-2 (|:| |goodPols| (-645 *8)) (|:| |badPols| (-645 *8)))) (-5 *1 (-979 *5 *6 *7 *8)) (-5 *4 (-645 *8)))) (-3434 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-2 (|:| |goodPols| (-645 *8)) (|:| |badPols| (-645 *8)))) (-5 *1 (-979 *5 *6 *7 *8)) (-5 *4 (-645 *8)))) (-4256 (*1 *2 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-979 *4 *5 *6 *7)))) (-4274 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-645 *8))) (-5 *3 (-645 *8)) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-112)) (-5 *1 (-979 *5 *6 *7 *8)))) (-3127 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-979 *4 *5 *6 *7)))) (-2771 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-645 *7) (-645 *7))) (-5 *2 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-979 *4 *5 *6 *7)))) (-2771 (*1 *2 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-979 *3 *4 *5 *6)))) (-2771 (*1 *2 *2 *3) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1067 *4 *5 *6)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-979 *4 *5 *6 *3)))) (-2890 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *3)) (-5 *1 (-979 *4 *5 *6 *3)) (-4 *3 (-1067 *4 *5 *6)))) (-3936 (*1 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-979 *3 *4 *5 *6)))) (-2771 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *3)) (-5 *1 (-979 *4 *5 *6 *3)) (-4 *3 (-1067 *4 *5 *6)))) (-2771 (*1 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-979 *3 *4 *5 *6)))))
-(-10 -7 (-15 -2771 ((-645 |#4|) (-645 |#4|))) (-15 -2771 ((-645 |#4|) |#4| |#4|)) (-15 -3936 ((-645 |#4|) (-645 |#4|))) (-15 -2890 ((-645 |#4|) |#4| |#4|)) (-15 -2771 ((-645 |#4|) (-645 |#4|) |#4|)) (-15 -2771 ((-645 |#4|) (-645 |#4|) (-645 |#4|))) (-15 -2771 ((-645 |#4|) (-645 |#4|) (-645 |#4|) (-1 (-645 |#4|) (-645 |#4|)))) (-15 -3127 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -4274 ((-112) (-645 |#4|) (-645 (-645 |#4|)))) (-15 -4256 ((-112) (-645 |#4|))) (-15 -3434 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-1 (-112) |#4|) (-645 |#4|))) (-15 -2511 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 (-1 (-112) |#4|)) (-645 |#4|))) (-15 -3104 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 (-1 (-112) |#4|)) (-645 |#4|))) (-15 -1937 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 |#4|))) (-15 -1641 ((-112) |#4|)) (-15 -3614 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 |#4|))) (-15 -4119 ((-112) |#4|)) (-15 -2329 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 |#4|))) (-15 -4187 ((-112) |#4|)) (-15 -2515 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 |#4|))) (-15 -4360 ((-645 |#4|) (-645 |#4|) (-645 |#4|))) (-15 -4360 ((-645 |#4|) (-645 |#4|) (-645 |#4|) (-112))) (-15 -3885 (|#4| |#4| (-645 |#4|))) (-15 -2516 ((-645 |#4|) (-645 |#4|))) (-15 -3228 ((-3 (-2 (|:| |bas| (-479 |#1| |#2| |#3| |#4|)) (|:| -2262 (-645 |#4|))) "failed") (-645 |#4|))) (-15 -3693 ((-645 |#4|) (-645 |#4|))) (-15 -3409 ((-645 |#4|) (-645 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2377 ((-645 |#4|) (-645 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-455)) (PROGN (-15 -3652 ((-645 |#4|) |#4|)) (-15 -1678 ((-645 |#4|) (-645 |#4|))) (-15 -1678 ((-645 |#4|) (-645 |#4|) (-112))) (-15 -4065 ((-645 |#4|) (-645 |#4|) (-645 |#4|))) (-15 -3322 ((-645 |#4|) (-645 |#4|) (-645 |#4|))) (-15 -3369 ((-645 |#4|) (-645 |#4|) (-645 |#4|)))) |%noBranch|) (IF (|has| |#1| (-308)) (IF (|has| |#1| (-147)) (PROGN (-15 -2541 ((-645 |#4|) (-645 |#4|))) (-15 -2747 ((-645 |#4|) (-645 |#4|))) (-15 -1694 ((-645 |#4|) (-645 |#4|) (-645 |#4|)))) |%noBranch|) |%noBranch|))
-((-4092 (((-2 (|:| R (-690 |#1|)) (|:| A (-690 |#1|)) (|:| |Ainv| (-690 |#1|))) (-690 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19)) (-2986 (((-645 (-2 (|:| C (-690 |#1|)) (|:| |g| (-1268 |#1|)))) (-690 |#1|) (-1268 |#1|)) 44)) (-2057 (((-690 |#1|) (-690 |#1|) (-690 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16)))
-(((-980 |#1|) (-10 -7 (-15 -4092 ((-2 (|:| R (-690 |#1|)) (|:| A (-690 |#1|)) (|:| |Ainv| (-690 |#1|))) (-690 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2057 ((-690 |#1|) (-690 |#1|) (-690 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2986 ((-645 (-2 (|:| C (-690 |#1|)) (|:| |g| (-1268 |#1|)))) (-690 |#1|) (-1268 |#1|)))) (-365)) (T -980))
-((-2986 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-5 *2 (-645 (-2 (|:| C (-690 *5)) (|:| |g| (-1268 *5))))) (-5 *1 (-980 *5)) (-5 *3 (-690 *5)) (-5 *4 (-1268 *5)))) (-2057 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-690 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-365)) (-5 *1 (-980 *5)))) (-4092 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-365)) (-5 *2 (-2 (|:| R (-690 *6)) (|:| A (-690 *6)) (|:| |Ainv| (-690 *6)))) (-5 *1 (-980 *6)) (-5 *3 (-690 *6)))))
-(-10 -7 (-15 -4092 ((-2 (|:| R (-690 |#1|)) (|:| A (-690 |#1|)) (|:| |Ainv| (-690 |#1|))) (-690 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2057 ((-690 |#1|) (-690 |#1|) (-690 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2986 ((-645 (-2 (|:| C (-690 |#1|)) (|:| |g| (-1268 |#1|)))) (-690 |#1|) (-1268 |#1|))))
-((-2908 (((-421 |#4|) |#4|) 56)))
-(((-981 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2908 ((-421 |#4|) |#4|))) (-851) (-794) (-455) (-951 |#3| |#2| |#1|)) (T -981))
-((-2908 (*1 *2 *3) (-12 (-4 *4 (-851)) (-4 *5 (-794)) (-4 *6 (-455)) (-5 *2 (-421 *3)) (-5 *1 (-981 *4 *5 *6 *3)) (-4 *3 (-951 *6 *5 *4)))))
-(-10 -7 (-15 -2908 ((-421 |#4|) |#4|)))
-((-2403 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-1316 (($ (-772)) 113 (|has| |#1| (-23)))) (-1783 (((-1273) $ (-567) (-567)) 41 (|has| $ (-6 -4419)))) (-2496 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-851)))) (-1394 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4419))) (($ $) 89 (-12 (|has| |#1| (-851)) (|has| $ (-6 -4419))))) (-4396 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-851)))) (-3445 (((-112) $ (-772)) 8)) (-4284 ((|#1| $ (-567) |#1|) 53 (|has| $ (-6 -4419))) ((|#1| $ (-1235 (-567)) |#1|) 59 (|has| $ (-6 -4419)))) (-3350 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4418)))) (-2585 (($) 7 T CONST)) (-1764 (($ $) 91 (|has| $ (-6 -4419)))) (-3584 (($ $) 101)) (-2444 (($ $) 79 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-3238 (($ |#1| $) 78 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4418)))) (-2477 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4418)))) (-3741 ((|#1| $ (-567) |#1|) 54 (|has| $ (-6 -4419)))) (-3680 ((|#1| $ (-567)) 52)) (-2569 (((-567) (-1 (-112) |#1|) $) 98) (((-567) |#1| $) 97 (|has| |#1| (-1102))) (((-567) |#1| $ (-567)) 96 (|has| |#1| (-1102)))) (-4371 (($ (-645 |#1|)) 119)) (-2777 (((-645 |#1|) $) 31 (|has| $ (-6 -4418)))) (-1544 (((-690 |#1|) $ $) 106 (|has| |#1| (-1051)))) (-2846 (($ (-772) |#1|) 70)) (-2077 (((-112) $ (-772)) 9)) (-4069 (((-567) $) 44 (|has| (-567) (-851)))) (-1354 (($ $ $) 88 (|has| |#1| (-851)))) (-4135 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-851)))) (-2279 (((-645 |#1|) $) 30 (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-2266 (((-567) $) 45 (|has| (-567) (-851)))) (-2981 (($ $ $) 87 (|has| |#1| (-851)))) (-3731 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-3908 ((|#1| $) 103 (-12 (|has| |#1| (-1051)) (|has| |#1| (-1004))))) (-2863 (((-112) $ (-772)) 10)) (-1699 ((|#1| $) 104 (-12 (|has| |#1| (-1051)) (|has| |#1| (-1004))))) (-1419 (((-1160) $) 22 (|has| |#1| (-1102)))) (-2845 (($ |#1| $ (-567)) 61) (($ $ $ (-567)) 60)) (-1789 (((-645 (-567)) $) 47)) (-2996 (((-112) (-567) $) 48)) (-3430 (((-1122) $) 21 (|has| |#1| (-1102)))) (-2409 ((|#1| $) 43 (|has| (-567) (-851)))) (-4128 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-3986 (($ $ |#1|) 42 (|has| $ (-6 -4419)))) (-2410 (($ $ (-645 |#1|)) 117)) (-3025 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) 14)) (-1794 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2339 (((-645 |#1|) $) 49)) (-3572 (((-112) $) 11)) (-3498 (($) 12)) (-1787 ((|#1| $ (-567) |#1|) 51) ((|#1| $ (-567)) 50) (($ $ (-1235 (-567))) 64)) (-3366 ((|#1| $ $) 107 (|has| |#1| (-1051)))) (-1879 (((-923) $) 118)) (-1560 (($ $ (-567)) 63) (($ $ (-1235 (-567))) 62)) (-4295 (($ $ $) 105)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4418))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-1395 (($ $ $ (-567)) 92 (|has| $ (-6 -4419)))) (-4305 (($ $) 13)) (-3893 (((-539) $) 80 (|has| |#1| (-615 (-539)))) (($ (-645 |#1|)) 120)) (-4147 (($ (-645 |#1|)) 71)) (-2269 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-645 $)) 66)) (-4132 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-1745 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4418)))) (-2997 (((-112) $ $) 85 (|has| |#1| (-851)))) (-2971 (((-112) $ $) 84 (|has| |#1| (-851)))) (-2936 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2984 (((-112) $ $) 86 (|has| |#1| (-851)))) (-2958 (((-112) $ $) 83 (|has| |#1| (-851)))) (-3045 (($ $) 112 (|has| |#1| (-21))) (($ $ $) 111 (|has| |#1| (-21)))) (-3033 (($ $ $) 114 (|has| |#1| (-25)))) (* (($ (-567) $) 110 (|has| |#1| (-21))) (($ |#1| $) 109 (|has| |#1| (-727))) (($ $ |#1|) 108 (|has| |#1| (-727)))) (-2414 (((-772) $) 6 (|has| $ (-6 -4418)))))
+((-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *1 (-978 *3 *4 *5 *6)))) (-2051 (*1 *1 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *1 (-978 *3 *4 *5 *6)))) (-2072 (*1 *2 *1) (-12 (-4 *1 (-978 *3 *4 *2 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-1067 *3 *4 *2)) (-4 *2 (-851)))) (-2859 (*1 *2 *1) (-12 (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-645 *5)))) (-2869 (*1 *2 *1) (-12 (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-645 *5)))) (-1524 (*1 *2 *3 *1) (-12 (-4 *1 (-978 *4 *5 *3 *6)) (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *3 (-851)) (-4 *6 (-1067 *4 *5 *3)) (-5 *2 (-112)))) (-3165 (*1 *1 *1 *2) (-12 (-4 *1 (-978 *3 *4 *2 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *2 (-851)) (-4 *5 (-1067 *3 *4 *2)))) (-1920 (*1 *1 *1 *2) (-12 (-4 *1 (-978 *3 *4 *2 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *2 (-851)) (-4 *5 (-1067 *3 *4 *2)))) (-3937 (*1 *1 *1 *2) (-12 (-4 *1 (-978 *3 *4 *2 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *2 (-851)) (-4 *5 (-1067 *3 *4 *2)))) (-1311 (*1 *2 *1 *3) (-12 (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *3 (-851)) (-4 *6 (-1067 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3969 *1) (|:| |upper| *1))) (-4 *1 (-978 *4 *5 *3 *6)))) (-3153 (*1 *2 *1) (-12 (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-112)))) (-3365 (*1 *2 *1) (-12 (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)) (-5 *2 (-112)))) (-2909 (*1 *2 *1 *1) (-12 (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)) (-5 *2 (-112)))) (-3040 (*1 *2 *1 *1) (-12 (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)) (-5 *2 (-112)))) (-1896 (*1 *2 *1) (-12 (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)) (-5 *2 (-112)))) (-2634 (*1 *2 *3 *1) (-12 (-4 *1 (-978 *4 *5 *6 *3)) (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-4 *4 (-559)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-2023 (*1 *2 *3 *1) (-12 (-4 *1 (-978 *4 *5 *6 *3)) (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-4 *4 (-559)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-2279 (*1 *2 *2 *1) (-12 (-5 *2 (-645 *6)) (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)))) (-1377 (*1 *2 *2 *1) (-12 (-5 *2 (-645 *6)) (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)))) (-2031 (*1 *2 *1) (-12 (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)) (-5 *2 (-112)))))
+(-13 (-1102) (-151 |t#4|) (-614 (-645 |t#4|)) (-10 -8 (-6 -4422) (-15 -3765 ((-3 $ "failed") (-645 |t#4|))) (-15 -2051 ($ (-645 |t#4|))) (-15 -2072 (|t#3| $)) (-15 -2859 ((-645 |t#3|) $)) (-15 -2869 ((-645 |t#3|) $)) (-15 -1524 ((-112) |t#3| $)) (-15 -3165 ($ $ |t#3|)) (-15 -1920 ($ $ |t#3|)) (-15 -3937 ($ $ |t#3|)) (-15 -1311 ((-2 (|:| |under| $) (|:| -3969 $) (|:| |upper| $)) $ |t#3|)) (-15 -3153 ((-112) $)) (IF (|has| |t#1| (-559)) (PROGN (-15 -3365 ((-112) $)) (-15 -2909 ((-112) $ $)) (-15 -3040 ((-112) $ $)) (-15 -1896 ((-112) $)) (-15 -2634 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2023 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2279 ((-645 |t#4|) (-645 |t#4|) $)) (-15 -1377 ((-645 |t#4|) (-645 |t#4|) $)) (-15 -2031 ((-112) $))) |%noBranch|)))
+(((-34) . T) ((-102) . T) ((-614 (-645 |#4|)) . T) ((-614 (-863)) . T) ((-151 |#4|) . T) ((-615 (-539)) |has| |#4| (-615 (-539))) ((-310 |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))) ((-492 |#4|) . T) ((-517 |#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))) ((-1102) . T) ((-1219) . T))
+((-2228 (((-645 |#4|) |#4| |#4|) 136)) (-1992 (((-645 |#4|) (-645 |#4|) (-112)) 125 (|has| |#1| (-455))) (((-645 |#4|) (-645 |#4|)) 126 (|has| |#1| (-455)))) (-2499 (((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 |#4|)) 44)) (-3452 (((-112) |#4|) 43)) (-2635 (((-645 |#4|) |#4|) 121 (|has| |#1| (-455)))) (-3140 (((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-1 (-112) |#4|) (-645 |#4|)) 24)) (-2347 (((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 (-1 (-112) |#4|)) (-645 |#4|)) 30)) (-2807 (((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 (-1 (-112) |#4|)) (-645 |#4|)) 31)) (-4235 (((-3 (-2 (|:| |bas| (-479 |#1| |#2| |#3| |#4|)) (|:| -2270 (-645 |#4|))) "failed") (-645 |#4|)) 90)) (-2274 (((-645 |#4|) (-645 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103)) (-3099 (((-645 |#4|) (-645 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 129)) (-4386 (((-645 |#4|) (-645 |#4|)) 128)) (-3943 (((-645 |#4|) (-645 |#4|) (-645 |#4|) (-112)) 59) (((-645 |#4|) (-645 |#4|) (-645 |#4|)) 61)) (-3097 ((|#4| |#4| (-645 |#4|)) 60)) (-1798 (((-645 |#4|) (-645 |#4|) (-645 |#4|)) 132 (|has| |#1| (-455)))) (-3415 (((-645 |#4|) (-645 |#4|) (-645 |#4|)) 135 (|has| |#1| (-455)))) (-3073 (((-645 |#4|) (-645 |#4|) (-645 |#4|)) 134 (|has| |#1| (-455)))) (-1542 (((-645 |#4|) (-645 |#4|) (-645 |#4|) (-1 (-645 |#4|) (-645 |#4|))) 105) (((-645 |#4|) (-645 |#4|) (-645 |#4|)) 107) (((-645 |#4|) (-645 |#4|) |#4|) 141) (((-645 |#4|) |#4| |#4|) 137) (((-645 |#4|) (-645 |#4|)) 106)) (-3968 (((-645 |#4|) (-645 |#4|) (-645 |#4|)) 118 (-12 (|has| |#1| (-147)) (|has| |#1| (-308))))) (-1697 (((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 |#4|)) 52)) (-2143 (((-112) (-645 |#4|)) 79)) (-3419 (((-112) (-645 |#4|) (-645 (-645 |#4|))) 67)) (-3737 (((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 |#4|)) 37)) (-3753 (((-112) |#4|) 36)) (-2601 (((-645 |#4|) (-645 |#4|)) 116 (-12 (|has| |#1| (-147)) (|has| |#1| (-308))))) (-2495 (((-645 |#4|) (-645 |#4|)) 117 (-12 (|has| |#1| (-147)) (|has| |#1| (-308))))) (-1670 (((-645 |#4|) (-645 |#4|)) 83)) (-2407 (((-645 |#4|) (-645 |#4|)) 97)) (-1927 (((-112) (-645 |#4|) (-645 |#4|)) 65)) (-1552 (((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 |#4|)) 50)) (-3148 (((-112) |#4|) 45)))
+(((-979 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1542 ((-645 |#4|) (-645 |#4|))) (-15 -1542 ((-645 |#4|) |#4| |#4|)) (-15 -4386 ((-645 |#4|) (-645 |#4|))) (-15 -2228 ((-645 |#4|) |#4| |#4|)) (-15 -1542 ((-645 |#4|) (-645 |#4|) |#4|)) (-15 -1542 ((-645 |#4|) (-645 |#4|) (-645 |#4|))) (-15 -1542 ((-645 |#4|) (-645 |#4|) (-645 |#4|) (-1 (-645 |#4|) (-645 |#4|)))) (-15 -1927 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -3419 ((-112) (-645 |#4|) (-645 (-645 |#4|)))) (-15 -2143 ((-112) (-645 |#4|))) (-15 -3140 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-1 (-112) |#4|) (-645 |#4|))) (-15 -2347 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 (-1 (-112) |#4|)) (-645 |#4|))) (-15 -2807 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 (-1 (-112) |#4|)) (-645 |#4|))) (-15 -1697 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 |#4|))) (-15 -3452 ((-112) |#4|)) (-15 -2499 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 |#4|))) (-15 -3753 ((-112) |#4|)) (-15 -3737 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 |#4|))) (-15 -3148 ((-112) |#4|)) (-15 -1552 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 |#4|))) (-15 -3943 ((-645 |#4|) (-645 |#4|) (-645 |#4|))) (-15 -3943 ((-645 |#4|) (-645 |#4|) (-645 |#4|) (-112))) (-15 -3097 (|#4| |#4| (-645 |#4|))) (-15 -1670 ((-645 |#4|) (-645 |#4|))) (-15 -4235 ((-3 (-2 (|:| |bas| (-479 |#1| |#2| |#3| |#4|)) (|:| -2270 (-645 |#4|))) "failed") (-645 |#4|))) (-15 -2407 ((-645 |#4|) (-645 |#4|))) (-15 -2274 ((-645 |#4|) (-645 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3099 ((-645 |#4|) (-645 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-455)) (PROGN (-15 -2635 ((-645 |#4|) |#4|)) (-15 -1992 ((-645 |#4|) (-645 |#4|))) (-15 -1992 ((-645 |#4|) (-645 |#4|) (-112))) (-15 -1798 ((-645 |#4|) (-645 |#4|) (-645 |#4|))) (-15 -3073 ((-645 |#4|) (-645 |#4|) (-645 |#4|))) (-15 -3415 ((-645 |#4|) (-645 |#4|) (-645 |#4|)))) |%noBranch|) (IF (|has| |#1| (-308)) (IF (|has| |#1| (-147)) (PROGN (-15 -2495 ((-645 |#4|) (-645 |#4|))) (-15 -2601 ((-645 |#4|) (-645 |#4|))) (-15 -3968 ((-645 |#4|) (-645 |#4|) (-645 |#4|)))) |%noBranch|) |%noBranch|)) (-559) (-794) (-851) (-1067 |#1| |#2| |#3|)) (T -979))
+((-3968 (*1 *2 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-308)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-979 *3 *4 *5 *6)))) (-2601 (*1 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-308)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-979 *3 *4 *5 *6)))) (-2495 (*1 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-308)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-979 *3 *4 *5 *6)))) (-3415 (*1 *2 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-455)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-979 *3 *4 *5 *6)))) (-3073 (*1 *2 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-455)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-979 *3 *4 *5 *6)))) (-1798 (*1 *2 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-455)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-979 *3 *4 *5 *6)))) (-1992 (*1 *2 *2 *3) (-12 (-5 *2 (-645 *7)) (-5 *3 (-112)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-979 *4 *5 *6 *7)))) (-1992 (*1 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-455)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-979 *3 *4 *5 *6)))) (-2635 (*1 *2 *3) (-12 (-4 *4 (-455)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *3)) (-5 *1 (-979 *4 *5 *6 *3)) (-4 *3 (-1067 *4 *5 *6)))) (-3099 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-645 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-979 *5 *6 *7 *8)))) (-2274 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-645 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1067 *6 *7 *8)) (-4 *6 (-559)) (-4 *7 (-794)) (-4 *8 (-851)) (-5 *1 (-979 *6 *7 *8 *9)))) (-2407 (*1 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-979 *3 *4 *5 *6)))) (-4235 (*1 *2 *3) (|partial| -12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-479 *4 *5 *6 *7)) (|:| -2270 (-645 *7)))) (-5 *1 (-979 *4 *5 *6 *7)) (-5 *3 (-645 *7)))) (-1670 (*1 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-979 *3 *4 *5 *6)))) (-3097 (*1 *2 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-1067 *4 *5 *6)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-979 *4 *5 *6 *2)))) (-3943 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-645 *7)) (-5 *3 (-112)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-979 *4 *5 *6 *7)))) (-3943 (*1 *2 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-979 *3 *4 *5 *6)))) (-1552 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-645 *7)) (|:| |badPols| (-645 *7)))) (-5 *1 (-979 *4 *5 *6 *7)) (-5 *3 (-645 *7)))) (-3148 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-979 *4 *5 *6 *3)) (-4 *3 (-1067 *4 *5 *6)))) (-3737 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-645 *7)) (|:| |badPols| (-645 *7)))) (-5 *1 (-979 *4 *5 *6 *7)) (-5 *3 (-645 *7)))) (-3753 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-979 *4 *5 *6 *3)) (-4 *3 (-1067 *4 *5 *6)))) (-2499 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-645 *7)) (|:| |badPols| (-645 *7)))) (-5 *1 (-979 *4 *5 *6 *7)) (-5 *3 (-645 *7)))) (-3452 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-979 *4 *5 *6 *3)) (-4 *3 (-1067 *4 *5 *6)))) (-1697 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-645 *7)) (|:| |badPols| (-645 *7)))) (-5 *1 (-979 *4 *5 *6 *7)) (-5 *3 (-645 *7)))) (-2807 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-1 (-112) *8))) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-2 (|:| |goodPols| (-645 *8)) (|:| |badPols| (-645 *8)))) (-5 *1 (-979 *5 *6 *7 *8)) (-5 *4 (-645 *8)))) (-2347 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-1 (-112) *8))) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-2 (|:| |goodPols| (-645 *8)) (|:| |badPols| (-645 *8)))) (-5 *1 (-979 *5 *6 *7 *8)) (-5 *4 (-645 *8)))) (-3140 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-2 (|:| |goodPols| (-645 *8)) (|:| |badPols| (-645 *8)))) (-5 *1 (-979 *5 *6 *7 *8)) (-5 *4 (-645 *8)))) (-2143 (*1 *2 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-979 *4 *5 *6 *7)))) (-3419 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-645 *8))) (-5 *3 (-645 *8)) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-112)) (-5 *1 (-979 *5 *6 *7 *8)))) (-1927 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-979 *4 *5 *6 *7)))) (-1542 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-645 *7) (-645 *7))) (-5 *2 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-979 *4 *5 *6 *7)))) (-1542 (*1 *2 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-979 *3 *4 *5 *6)))) (-1542 (*1 *2 *2 *3) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1067 *4 *5 *6)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-979 *4 *5 *6 *3)))) (-2228 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *3)) (-5 *1 (-979 *4 *5 *6 *3)) (-4 *3 (-1067 *4 *5 *6)))) (-4386 (*1 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-979 *3 *4 *5 *6)))) (-1542 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *3)) (-5 *1 (-979 *4 *5 *6 *3)) (-4 *3 (-1067 *4 *5 *6)))) (-1542 (*1 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-979 *3 *4 *5 *6)))))
+(-10 -7 (-15 -1542 ((-645 |#4|) (-645 |#4|))) (-15 -1542 ((-645 |#4|) |#4| |#4|)) (-15 -4386 ((-645 |#4|) (-645 |#4|))) (-15 -2228 ((-645 |#4|) |#4| |#4|)) (-15 -1542 ((-645 |#4|) (-645 |#4|) |#4|)) (-15 -1542 ((-645 |#4|) (-645 |#4|) (-645 |#4|))) (-15 -1542 ((-645 |#4|) (-645 |#4|) (-645 |#4|) (-1 (-645 |#4|) (-645 |#4|)))) (-15 -1927 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -3419 ((-112) (-645 |#4|) (-645 (-645 |#4|)))) (-15 -2143 ((-112) (-645 |#4|))) (-15 -3140 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-1 (-112) |#4|) (-645 |#4|))) (-15 -2347 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 (-1 (-112) |#4|)) (-645 |#4|))) (-15 -2807 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 (-1 (-112) |#4|)) (-645 |#4|))) (-15 -1697 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 |#4|))) (-15 -3452 ((-112) |#4|)) (-15 -2499 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 |#4|))) (-15 -3753 ((-112) |#4|)) (-15 -3737 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 |#4|))) (-15 -3148 ((-112) |#4|)) (-15 -1552 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 |#4|))) (-15 -3943 ((-645 |#4|) (-645 |#4|) (-645 |#4|))) (-15 -3943 ((-645 |#4|) (-645 |#4|) (-645 |#4|) (-112))) (-15 -3097 (|#4| |#4| (-645 |#4|))) (-15 -1670 ((-645 |#4|) (-645 |#4|))) (-15 -4235 ((-3 (-2 (|:| |bas| (-479 |#1| |#2| |#3| |#4|)) (|:| -2270 (-645 |#4|))) "failed") (-645 |#4|))) (-15 -2407 ((-645 |#4|) (-645 |#4|))) (-15 -2274 ((-645 |#4|) (-645 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3099 ((-645 |#4|) (-645 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-455)) (PROGN (-15 -2635 ((-645 |#4|) |#4|)) (-15 -1992 ((-645 |#4|) (-645 |#4|))) (-15 -1992 ((-645 |#4|) (-645 |#4|) (-112))) (-15 -1798 ((-645 |#4|) (-645 |#4|) (-645 |#4|))) (-15 -3073 ((-645 |#4|) (-645 |#4|) (-645 |#4|))) (-15 -3415 ((-645 |#4|) (-645 |#4|) (-645 |#4|)))) |%noBranch|) (IF (|has| |#1| (-308)) (IF (|has| |#1| (-147)) (PROGN (-15 -2495 ((-645 |#4|) (-645 |#4|))) (-15 -2601 ((-645 |#4|) (-645 |#4|))) (-15 -3968 ((-645 |#4|) (-645 |#4|) (-645 |#4|)))) |%noBranch|) |%noBranch|))
+((-2387 (((-2 (|:| R (-690 |#1|)) (|:| A (-690 |#1|)) (|:| |Ainv| (-690 |#1|))) (-690 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19)) (-1645 (((-645 (-2 (|:| C (-690 |#1|)) (|:| |g| (-1269 |#1|)))) (-690 |#1|) (-1269 |#1|)) 44)) (-3131 (((-690 |#1|) (-690 |#1|) (-690 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16)))
+(((-980 |#1|) (-10 -7 (-15 -2387 ((-2 (|:| R (-690 |#1|)) (|:| A (-690 |#1|)) (|:| |Ainv| (-690 |#1|))) (-690 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3131 ((-690 |#1|) (-690 |#1|) (-690 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -1645 ((-645 (-2 (|:| C (-690 |#1|)) (|:| |g| (-1269 |#1|)))) (-690 |#1|) (-1269 |#1|)))) (-365)) (T -980))
+((-1645 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-5 *2 (-645 (-2 (|:| C (-690 *5)) (|:| |g| (-1269 *5))))) (-5 *1 (-980 *5)) (-5 *3 (-690 *5)) (-5 *4 (-1269 *5)))) (-3131 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-690 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-365)) (-5 *1 (-980 *5)))) (-2387 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-365)) (-5 *2 (-2 (|:| R (-690 *6)) (|:| A (-690 *6)) (|:| |Ainv| (-690 *6)))) (-5 *1 (-980 *6)) (-5 *3 (-690 *6)))))
+(-10 -7 (-15 -2387 ((-2 (|:| R (-690 |#1|)) (|:| A (-690 |#1|)) (|:| |Ainv| (-690 |#1|))) (-690 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3131 ((-690 |#1|) (-690 |#1|) (-690 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -1645 ((-645 (-2 (|:| C (-690 |#1|)) (|:| |g| (-1269 |#1|)))) (-690 |#1|) (-1269 |#1|))))
+((-3597 (((-421 |#4|) |#4|) 56)))
+(((-981 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3597 ((-421 |#4|) |#4|))) (-851) (-794) (-455) (-951 |#3| |#2| |#1|)) (T -981))
+((-3597 (*1 *2 *3) (-12 (-4 *4 (-851)) (-4 *5 (-794)) (-4 *6 (-455)) (-5 *2 (-421 *3)) (-5 *1 (-981 *4 *5 *6 *3)) (-4 *3 (-951 *6 *5 *4)))))
+(-10 -7 (-15 -3597 ((-421 |#4|) |#4|)))
+((-2412 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-1318 (($ (-772)) 113 (|has| |#1| (-23)))) (-3843 (((-1274) $ (-567) (-567)) 41 (|has| $ (-6 -4423)))) (-3531 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-851)))) (-2676 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4423))) (($ $) 89 (-12 (|has| |#1| (-851)) (|has| $ (-6 -4423))))) (-1311 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-851)))) (-1563 (((-112) $ (-772)) 8)) (-4285 ((|#1| $ (-567) |#1|) 53 (|has| $ (-6 -4423))) ((|#1| $ (-1236 (-567)) |#1|) 59 (|has| $ (-6 -4423)))) (-3356 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4422)))) (-3647 (($) 7 T CONST)) (-1602 (($ $) 91 (|has| $ (-6 -4423)))) (-3592 (($ $) 101)) (-2453 (($ $) 79 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-3246 (($ |#1| $) 78 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4422)))) (-2494 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4422)))) (-3760 ((|#1| $ (-567) |#1|) 54 (|has| $ (-6 -4423)))) (-3703 ((|#1| $ (-567)) 52)) (-2578 (((-567) (-1 (-112) |#1|) $) 98) (((-567) |#1| $) 97 (|has| |#1| (-1102))) (((-567) |#1| $ (-567)) 96 (|has| |#1| (-1102)))) (-4385 (($ (-645 |#1|)) 119)) (-2799 (((-645 |#1|) $) 31 (|has| $ (-6 -4422)))) (-1562 (((-690 |#1|) $ $) 106 (|has| |#1| (-1051)))) (-2858 (($ (-772) |#1|) 70)) (-4093 (((-112) $ (-772)) 9)) (-3895 (((-567) $) 44 (|has| (-567) (-851)))) (-1365 (($ $ $) 88 (|has| |#1| (-851)))) (-2473 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-851)))) (-1942 (((-645 |#1|) $) 30 (|has| $ (-6 -4422)))) (-3237 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-3255 (((-567) $) 45 (|has| (-567) (-851)))) (-3002 (($ $ $) 87 (|has| |#1| (-851)))) (-3751 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-3390 ((|#1| $) 103 (-12 (|has| |#1| (-1051)) (|has| |#1| (-1004))))) (-1986 (((-112) $ (-772)) 10)) (-2334 ((|#1| $) 104 (-12 (|has| |#1| (-1051)) (|has| |#1| (-1004))))) (-2516 (((-1161) $) 22 (|has| |#1| (-1102)))) (-2857 (($ |#1| $ (-567)) 61) (($ $ $ (-567)) 60)) (-4364 (((-645 (-567)) $) 47)) (-3188 (((-112) (-567) $) 48)) (-3437 (((-1122) $) 21 (|has| |#1| (-1102)))) (-2418 ((|#1| $) 43 (|has| (-567) (-851)))) (-3196 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-3823 (($ $ |#1|) 42 (|has| $ (-6 -4423)))) (-1874 (($ $ (-645 |#1|)) 117)) (-4233 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3875 (((-112) $ $) 14)) (-4058 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-2190 (((-645 |#1|) $) 49)) (-3885 (((-112) $) 11)) (-2701 (($) 12)) (-1801 ((|#1| $ (-567) |#1|) 51) ((|#1| $ (-567)) 50) (($ $ (-1236 (-567))) 64)) (-3917 ((|#1| $ $) 107 (|has| |#1| (-1051)))) (-1412 (((-923) $) 118)) (-1569 (($ $ (-567)) 63) (($ $ (-1236 (-567))) 62)) (-1759 (($ $ $) 105)) (-3447 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4422))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-1656 (($ $ $ (-567)) 92 (|has| $ (-6 -4423)))) (-4309 (($ $) 13)) (-3902 (((-539) $) 80 (|has| |#1| (-615 (-539)))) (($ (-645 |#1|)) 120)) (-4145 (($ (-645 |#1|)) 71)) (-2276 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-645 $)) 66)) (-4129 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-3357 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-3436 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4422)))) (-3004 (((-112) $ $) 85 (|has| |#1| (-851)))) (-2980 (((-112) $ $) 84 (|has| |#1| (-851)))) (-2946 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2993 (((-112) $ $) 86 (|has| |#1| (-851)))) (-2968 (((-112) $ $) 83 (|has| |#1| (-851)))) (-3053 (($ $) 112 (|has| |#1| (-21))) (($ $ $) 111 (|has| |#1| (-21)))) (-3041 (($ $ $) 114 (|has| |#1| (-25)))) (* (($ (-567) $) 110 (|has| |#1| (-21))) (($ |#1| $) 109 (|has| |#1| (-727))) (($ $ |#1|) 108 (|has| |#1| (-727)))) (-2423 (((-772) $) 6 (|has| $ (-6 -4422)))))
(((-982 |#1|) (-140) (-1051)) (T -982))
-((-4371 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1051)) (-4 *1 (-982 *3)))) (-1879 (*1 *2 *1) (-12 (-4 *1 (-982 *3)) (-4 *3 (-1051)) (-5 *2 (-923)))) (-4295 (*1 *1 *1 *1) (-12 (-4 *1 (-982 *2)) (-4 *2 (-1051)))) (-2410 (*1 *1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *1 (-982 *3)) (-4 *3 (-1051)))))
-(-13 (-1266 |t#1|) (-619 (-645 |t#1|)) (-10 -8 (-15 -4371 ($ (-645 |t#1|))) (-15 -1879 ((-923) $)) (-15 -4295 ($ $ $)) (-15 -2410 ($ $ (-645 |t#1|)))))
-(((-34) . T) ((-102) -2800 (|has| |#1| (-1102)) (|has| |#1| (-851))) ((-614 (-863)) -2800 (|has| |#1| (-1102)) (|has| |#1| (-851)) (|has| |#1| (-614 (-863)))) ((-151 |#1|) . T) ((-619 (-645 |#1|)) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-287 #0=(-567) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-375 |#1|) . T) ((-492 |#1|) . T) ((-605 #0# |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-652 |#1|) . T) ((-19 |#1|) . T) ((-851) |has| |#1| (-851)) ((-1102) -2800 (|has| |#1| (-1102)) (|has| |#1| (-851))) ((-1218) . T) ((-1266 |#1|) . T))
-((-3829 (((-945 |#2|) (-1 |#2| |#1|) (-945 |#1|)) 17)))
-(((-983 |#1| |#2|) (-10 -7 (-15 -3829 ((-945 |#2|) (-1 |#2| |#1|) (-945 |#1|)))) (-1051) (-1051)) (T -983))
-((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-945 *5)) (-4 *5 (-1051)) (-4 *6 (-1051)) (-5 *2 (-945 *6)) (-5 *1 (-983 *5 *6)))))
-(-10 -7 (-15 -3829 ((-945 |#2|) (-1 |#2| |#1|) (-945 |#1|))))
-((-4198 ((|#1| (-945 |#1|)) 14)) (-3292 ((|#1| (-945 |#1|)) 13)) (-4366 ((|#1| (-945 |#1|)) 12)) (-1608 ((|#1| (-945 |#1|)) 16)) (-4315 ((|#1| (-945 |#1|)) 24)) (-4272 ((|#1| (-945 |#1|)) 15)) (-3447 ((|#1| (-945 |#1|)) 17)) (-3811 ((|#1| (-945 |#1|)) 23)) (-4039 ((|#1| (-945 |#1|)) 22)))
-(((-984 |#1|) (-10 -7 (-15 -4366 (|#1| (-945 |#1|))) (-15 -3292 (|#1| (-945 |#1|))) (-15 -4198 (|#1| (-945 |#1|))) (-15 -4272 (|#1| (-945 |#1|))) (-15 -1608 (|#1| (-945 |#1|))) (-15 -3447 (|#1| (-945 |#1|))) (-15 -4039 (|#1| (-945 |#1|))) (-15 -3811 (|#1| (-945 |#1|))) (-15 -4315 (|#1| (-945 |#1|)))) (-1051)) (T -984))
-((-4315 (*1 *2 *3) (-12 (-5 *3 (-945 *2)) (-5 *1 (-984 *2)) (-4 *2 (-1051)))) (-3811 (*1 *2 *3) (-12 (-5 *3 (-945 *2)) (-5 *1 (-984 *2)) (-4 *2 (-1051)))) (-4039 (*1 *2 *3) (-12 (-5 *3 (-945 *2)) (-5 *1 (-984 *2)) (-4 *2 (-1051)))) (-3447 (*1 *2 *3) (-12 (-5 *3 (-945 *2)) (-5 *1 (-984 *2)) (-4 *2 (-1051)))) (-1608 (*1 *2 *3) (-12 (-5 *3 (-945 *2)) (-5 *1 (-984 *2)) (-4 *2 (-1051)))) (-4272 (*1 *2 *3) (-12 (-5 *3 (-945 *2)) (-5 *1 (-984 *2)) (-4 *2 (-1051)))) (-4198 (*1 *2 *3) (-12 (-5 *3 (-945 *2)) (-5 *1 (-984 *2)) (-4 *2 (-1051)))) (-3292 (*1 *2 *3) (-12 (-5 *3 (-945 *2)) (-5 *1 (-984 *2)) (-4 *2 (-1051)))) (-4366 (*1 *2 *3) (-12 (-5 *3 (-945 *2)) (-5 *1 (-984 *2)) (-4 *2 (-1051)))))
-(-10 -7 (-15 -4366 (|#1| (-945 |#1|))) (-15 -3292 (|#1| (-945 |#1|))) (-15 -4198 (|#1| (-945 |#1|))) (-15 -4272 (|#1| (-945 |#1|))) (-15 -1608 (|#1| (-945 |#1|))) (-15 -3447 (|#1| (-945 |#1|))) (-15 -4039 (|#1| (-945 |#1|))) (-15 -3811 (|#1| (-945 |#1|))) (-15 -4315 (|#1| (-945 |#1|))))
-((-2376 (((-3 |#1| "failed") |#1|) 18)) (-3599 (((-3 |#1| "failed") |#1|) 6)) (-1649 (((-3 |#1| "failed") |#1|) 16)) (-4350 (((-3 |#1| "failed") |#1|) 4)) (-1349 (((-3 |#1| "failed") |#1|) 20)) (-2305 (((-3 |#1| "failed") |#1|) 8)) (-3769 (((-3 |#1| "failed") |#1| (-772)) 1)) (-1557 (((-3 |#1| "failed") |#1|) 3)) (-1632 (((-3 |#1| "failed") |#1|) 2)) (-1872 (((-3 |#1| "failed") |#1|) 21)) (-2874 (((-3 |#1| "failed") |#1|) 9)) (-3114 (((-3 |#1| "failed") |#1|) 19)) (-2579 (((-3 |#1| "failed") |#1|) 7)) (-2136 (((-3 |#1| "failed") |#1|) 17)) (-2247 (((-3 |#1| "failed") |#1|) 5)) (-4213 (((-3 |#1| "failed") |#1|) 24)) (-2363 (((-3 |#1| "failed") |#1|) 12)) (-3484 (((-3 |#1| "failed") |#1|) 22)) (-2440 (((-3 |#1| "failed") |#1|) 10)) (-1886 (((-3 |#1| "failed") |#1|) 26)) (-3391 (((-3 |#1| "failed") |#1|) 14)) (-2682 (((-3 |#1| "failed") |#1|) 27)) (-4109 (((-3 |#1| "failed") |#1|) 15)) (-1625 (((-3 |#1| "failed") |#1|) 25)) (-1812 (((-3 |#1| "failed") |#1|) 13)) (-2287 (((-3 |#1| "failed") |#1|) 23)) (-2224 (((-3 |#1| "failed") |#1|) 11)))
-(((-985 |#1|) (-140) (-1203)) (T -985))
-((-2682 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))) (-1886 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))) (-1625 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))) (-4213 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))) (-2287 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))) (-3484 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))) (-1872 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))) (-1349 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))) (-3114 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))) (-2376 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))) (-2136 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))) (-1649 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))) (-4109 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))) (-3391 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))) (-1812 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))) (-2363 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))) (-2224 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))) (-2440 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))) (-2874 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))) (-2305 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))) (-2579 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))) (-3599 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))) (-2247 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))) (-4350 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))) (-1557 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))) (-1632 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))) (-3769 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-772)) (-4 *1 (-985 *2)) (-4 *2 (-1203)))))
-(-13 (-10 -7 (-15 -3769 ((-3 |t#1| "failed") |t#1| (-772))) (-15 -1632 ((-3 |t#1| "failed") |t#1|)) (-15 -1557 ((-3 |t#1| "failed") |t#1|)) (-15 -4350 ((-3 |t#1| "failed") |t#1|)) (-15 -2247 ((-3 |t#1| "failed") |t#1|)) (-15 -3599 ((-3 |t#1| "failed") |t#1|)) (-15 -2579 ((-3 |t#1| "failed") |t#1|)) (-15 -2305 ((-3 |t#1| "failed") |t#1|)) (-15 -2874 ((-3 |t#1| "failed") |t#1|)) (-15 -2440 ((-3 |t#1| "failed") |t#1|)) (-15 -2224 ((-3 |t#1| "failed") |t#1|)) (-15 -2363 ((-3 |t#1| "failed") |t#1|)) (-15 -1812 ((-3 |t#1| "failed") |t#1|)) (-15 -3391 ((-3 |t#1| "failed") |t#1|)) (-15 -4109 ((-3 |t#1| "failed") |t#1|)) (-15 -1649 ((-3 |t#1| "failed") |t#1|)) (-15 -2136 ((-3 |t#1| "failed") |t#1|)) (-15 -2376 ((-3 |t#1| "failed") |t#1|)) (-15 -3114 ((-3 |t#1| "failed") |t#1|)) (-15 -1349 ((-3 |t#1| "failed") |t#1|)) (-15 -1872 ((-3 |t#1| "failed") |t#1|)) (-15 -3484 ((-3 |t#1| "failed") |t#1|)) (-15 -2287 ((-3 |t#1| "failed") |t#1|)) (-15 -4213 ((-3 |t#1| "failed") |t#1|)) (-15 -1625 ((-3 |t#1| "failed") |t#1|)) (-15 -1886 ((-3 |t#1| "failed") |t#1|)) (-15 -2682 ((-3 |t#1| "failed") |t#1|))))
-((-3876 ((|#4| |#4| (-645 |#3|)) 57) ((|#4| |#4| |#3|) 56)) (-2802 ((|#4| |#4| (-645 |#3|)) 24) ((|#4| |#4| |#3|) 20)) (-3829 ((|#4| (-1 |#4| (-954 |#1|)) |#4|) 31)))
-(((-986 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2802 (|#4| |#4| |#3|)) (-15 -2802 (|#4| |#4| (-645 |#3|))) (-15 -3876 (|#4| |#4| |#3|)) (-15 -3876 (|#4| |#4| (-645 |#3|))) (-15 -3829 (|#4| (-1 |#4| (-954 |#1|)) |#4|))) (-1051) (-794) (-13 (-851) (-10 -8 (-15 -3893 ((-1178) $)) (-15 -3644 ((-3 $ "failed") (-1178))))) (-951 (-954 |#1|) |#2| |#3|)) (T -986))
-((-3829 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-954 *4))) (-4 *4 (-1051)) (-4 *2 (-951 (-954 *4) *5 *6)) (-4 *5 (-794)) (-4 *6 (-13 (-851) (-10 -8 (-15 -3893 ((-1178) $)) (-15 -3644 ((-3 $ "failed") (-1178)))))) (-5 *1 (-986 *4 *5 *6 *2)))) (-3876 (*1 *2 *2 *3) (-12 (-5 *3 (-645 *6)) (-4 *6 (-13 (-851) (-10 -8 (-15 -3893 ((-1178) $)) (-15 -3644 ((-3 $ "failed") (-1178)))))) (-4 *4 (-1051)) (-4 *5 (-794)) (-5 *1 (-986 *4 *5 *6 *2)) (-4 *2 (-951 (-954 *4) *5 *6)))) (-3876 (*1 *2 *2 *3) (-12 (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *3 (-13 (-851) (-10 -8 (-15 -3893 ((-1178) $)) (-15 -3644 ((-3 $ "failed") (-1178)))))) (-5 *1 (-986 *4 *5 *3 *2)) (-4 *2 (-951 (-954 *4) *5 *3)))) (-2802 (*1 *2 *2 *3) (-12 (-5 *3 (-645 *6)) (-4 *6 (-13 (-851) (-10 -8 (-15 -3893 ((-1178) $)) (-15 -3644 ((-3 $ "failed") (-1178)))))) (-4 *4 (-1051)) (-4 *5 (-794)) (-5 *1 (-986 *4 *5 *6 *2)) (-4 *2 (-951 (-954 *4) *5 *6)))) (-2802 (*1 *2 *2 *3) (-12 (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *3 (-13 (-851) (-10 -8 (-15 -3893 ((-1178) $)) (-15 -3644 ((-3 $ "failed") (-1178)))))) (-5 *1 (-986 *4 *5 *3 *2)) (-4 *2 (-951 (-954 *4) *5 *3)))))
-(-10 -7 (-15 -2802 (|#4| |#4| |#3|)) (-15 -2802 (|#4| |#4| (-645 |#3|))) (-15 -3876 (|#4| |#4| |#3|)) (-15 -3876 (|#4| |#4| (-645 |#3|))) (-15 -3829 (|#4| (-1 |#4| (-954 |#1|)) |#4|)))
-((-1346 ((|#2| |#3|) 35)) (-3454 (((-2 (|:| -2623 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))) |#2|) 83)) (-3675 (((-2 (|:| -2623 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|)))) 103)))
-(((-987 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3675 ((-2 (|:| -2623 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))))) (-15 -3454 ((-2 (|:| -2623 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))) |#2|)) (-15 -1346 (|#2| |#3|))) (-351) (-1244 |#1|) (-1244 |#2|) (-725 |#2| |#3|)) (T -987))
-((-1346 (*1 *2 *3) (-12 (-4 *3 (-1244 *2)) (-4 *2 (-1244 *4)) (-5 *1 (-987 *4 *2 *3 *5)) (-4 *4 (-351)) (-4 *5 (-725 *2 *3)))) (-3454 (*1 *2 *3) (-12 (-4 *4 (-351)) (-4 *3 (-1244 *4)) (-4 *5 (-1244 *3)) (-5 *2 (-2 (|:| -2623 (-690 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-690 *3)))) (-5 *1 (-987 *4 *3 *5 *6)) (-4 *6 (-725 *3 *5)))) (-3675 (*1 *2) (-12 (-4 *3 (-351)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 *4)) (-5 *2 (-2 (|:| -2623 (-690 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-690 *4)))) (-5 *1 (-987 *3 *4 *5 *6)) (-4 *6 (-725 *4 *5)))))
-(-10 -7 (-15 -3675 ((-2 (|:| -2623 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))))) (-15 -3454 ((-2 (|:| -2623 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))) |#2|)) (-15 -1346 (|#2| |#3|)))
-((-3754 (((-989 (-410 (-567)) (-865 |#1|) (-240 |#2| (-772)) (-247 |#1| (-410 (-567)))) (-989 (-410 (-567)) (-865 |#1|) (-240 |#2| (-772)) (-247 |#1| (-410 (-567))))) 84)))
-(((-988 |#1| |#2|) (-10 -7 (-15 -3754 ((-989 (-410 (-567)) (-865 |#1|) (-240 |#2| (-772)) (-247 |#1| (-410 (-567)))) (-989 (-410 (-567)) (-865 |#1|) (-240 |#2| (-772)) (-247 |#1| (-410 (-567))))))) (-645 (-1178)) (-772)) (T -988))
-((-3754 (*1 *2 *2) (-12 (-5 *2 (-989 (-410 (-567)) (-865 *3) (-240 *4 (-772)) (-247 *3 (-410 (-567))))) (-14 *3 (-645 (-1178))) (-14 *4 (-772)) (-5 *1 (-988 *3 *4)))))
-(-10 -7 (-15 -3754 ((-989 (-410 (-567)) (-865 |#1|) (-240 |#2| (-772)) (-247 |#1| (-410 (-567)))) (-989 (-410 (-567)) (-865 |#1|) (-240 |#2| (-772)) (-247 |#1| (-410 (-567)))))))
-((-2403 (((-112) $ $) NIL)) (-2913 (((-3 (-112) "failed") $) 71)) (-3269 (($ $) 36 (-12 (|has| |#1| (-147)) (|has| |#1| (-308))))) (-3426 (($ $ (-3 (-112) "failed")) 72)) (-3699 (($ (-645 |#4|) |#4|) 25)) (-1419 (((-1160) $) NIL)) (-3618 (($ $) 69)) (-3430 (((-1122) $) NIL)) (-3572 (((-112) $) 70)) (-3498 (($) 30)) (-2472 ((|#4| $) 74)) (-2248 (((-645 |#4|) $) 73)) (-4132 (((-863) $) 68)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)))
-(((-989 |#1| |#2| |#3| |#4|) (-13 (-1102) (-614 (-863)) (-10 -8 (-15 -3498 ($)) (-15 -3699 ($ (-645 |#4|) |#4|)) (-15 -2913 ((-3 (-112) "failed") $)) (-15 -3426 ($ $ (-3 (-112) "failed"))) (-15 -3572 ((-112) $)) (-15 -2248 ((-645 |#4|) $)) (-15 -2472 (|#4| $)) (-15 -3618 ($ $)) (IF (|has| |#1| (-308)) (IF (|has| |#1| (-147)) (-15 -3269 ($ $)) |%noBranch|) |%noBranch|))) (-455) (-851) (-794) (-951 |#1| |#3| |#2|)) (T -989))
-((-3498 (*1 *1) (-12 (-4 *2 (-455)) (-4 *3 (-851)) (-4 *4 (-794)) (-5 *1 (-989 *2 *3 *4 *5)) (-4 *5 (-951 *2 *4 *3)))) (-3699 (*1 *1 *2 *3) (-12 (-5 *2 (-645 *3)) (-4 *3 (-951 *4 *6 *5)) (-4 *4 (-455)) (-4 *5 (-851)) (-4 *6 (-794)) (-5 *1 (-989 *4 *5 *6 *3)))) (-2913 (*1 *2 *1) (|partial| -12 (-4 *3 (-455)) (-4 *4 (-851)) (-4 *5 (-794)) (-5 *2 (-112)) (-5 *1 (-989 *3 *4 *5 *6)) (-4 *6 (-951 *3 *5 *4)))) (-3426 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-455)) (-4 *4 (-851)) (-4 *5 (-794)) (-5 *1 (-989 *3 *4 *5 *6)) (-4 *6 (-951 *3 *5 *4)))) (-3572 (*1 *2 *1) (-12 (-4 *3 (-455)) (-4 *4 (-851)) (-4 *5 (-794)) (-5 *2 (-112)) (-5 *1 (-989 *3 *4 *5 *6)) (-4 *6 (-951 *3 *5 *4)))) (-2248 (*1 *2 *1) (-12 (-4 *3 (-455)) (-4 *4 (-851)) (-4 *5 (-794)) (-5 *2 (-645 *6)) (-5 *1 (-989 *3 *4 *5 *6)) (-4 *6 (-951 *3 *5 *4)))) (-2472 (*1 *2 *1) (-12 (-4 *2 (-951 *3 *5 *4)) (-5 *1 (-989 *3 *4 *5 *2)) (-4 *3 (-455)) (-4 *4 (-851)) (-4 *5 (-794)))) (-3618 (*1 *1 *1) (-12 (-4 *2 (-455)) (-4 *3 (-851)) (-4 *4 (-794)) (-5 *1 (-989 *2 *3 *4 *5)) (-4 *5 (-951 *2 *4 *3)))) (-3269 (*1 *1 *1) (-12 (-4 *2 (-147)) (-4 *2 (-308)) (-4 *2 (-455)) (-4 *3 (-851)) (-4 *4 (-794)) (-5 *1 (-989 *2 *3 *4 *5)) (-4 *5 (-951 *2 *4 *3)))))
-(-13 (-1102) (-614 (-863)) (-10 -8 (-15 -3498 ($)) (-15 -3699 ($ (-645 |#4|) |#4|)) (-15 -2913 ((-3 (-112) "failed") $)) (-15 -3426 ($ $ (-3 (-112) "failed"))) (-15 -3572 ((-112) $)) (-15 -2248 ((-645 |#4|) $)) (-15 -2472 (|#4| $)) (-15 -3618 ($ $)) (IF (|has| |#1| (-308)) (IF (|has| |#1| (-147)) (-15 -3269 ($ $)) |%noBranch|) |%noBranch|)))
-((-2993 (((-112) |#5| |#5|) 45)) (-2203 (((-112) |#5| |#5|) 60)) (-3363 (((-112) |#5| (-645 |#5|)) 82) (((-112) |#5| |#5|) 69)) (-2763 (((-112) (-645 |#4|) (-645 |#4|)) 66)) (-2892 (((-112) (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|)) (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) 71)) (-2452 (((-1273)) 33)) (-2519 (((-1273) (-1160) (-1160) (-1160)) 29)) (-3864 (((-645 |#5|) (-645 |#5|)) 101)) (-3524 (((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|)))) 93)) (-3625 (((-645 (-2 (|:| -3845 (-645 |#4|)) (|:| -2566 |#5|) (|:| |ineq| (-645 |#4|)))) (-645 |#4|) (-645 |#5|) (-112) (-112)) 123)) (-4195 (((-112) |#5| |#5|) 54)) (-3300 (((-3 (-112) "failed") |#5| |#5|) 79)) (-1913 (((-112) (-645 |#4|) (-645 |#4|)) 65)) (-3150 (((-112) (-645 |#4|) (-645 |#4|)) 67)) (-3392 (((-112) (-645 |#4|) (-645 |#4|)) 68)) (-1833 (((-3 (-2 (|:| -3845 (-645 |#4|)) (|:| -2566 |#5|) (|:| |ineq| (-645 |#4|))) "failed") (-645 |#4|) |#5| (-645 |#4|) (-112) (-112) (-112) (-112) (-112)) 118)) (-2354 (((-645 |#5|) (-645 |#5|)) 50)))
-(((-990 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2519 ((-1273) (-1160) (-1160) (-1160))) (-15 -2452 ((-1273))) (-15 -2993 ((-112) |#5| |#5|)) (-15 -2354 ((-645 |#5|) (-645 |#5|))) (-15 -4195 ((-112) |#5| |#5|)) (-15 -2203 ((-112) |#5| |#5|)) (-15 -2763 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -1913 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -3150 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -3392 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -3300 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3363 ((-112) |#5| |#5|)) (-15 -3363 ((-112) |#5| (-645 |#5|))) (-15 -3864 ((-645 |#5|) (-645 |#5|))) (-15 -2892 ((-112) (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|)) (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|)))) (-15 -3524 ((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) (-15 -3625 ((-645 (-2 (|:| -3845 (-645 |#4|)) (|:| -2566 |#5|) (|:| |ineq| (-645 |#4|)))) (-645 |#4|) (-645 |#5|) (-112) (-112))) (-15 -1833 ((-3 (-2 (|:| -3845 (-645 |#4|)) (|:| -2566 |#5|) (|:| |ineq| (-645 |#4|))) "failed") (-645 |#4|) |#5| (-645 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-455) (-794) (-851) (-1067 |#1| |#2| |#3|) (-1073 |#1| |#2| |#3| |#4|)) (T -990))
-((-1833 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *9 (-1067 *6 *7 *8)) (-5 *2 (-2 (|:| -3845 (-645 *9)) (|:| -2566 *4) (|:| |ineq| (-645 *9)))) (-5 *1 (-990 *6 *7 *8 *9 *4)) (-5 *3 (-645 *9)) (-4 *4 (-1073 *6 *7 *8 *9)))) (-3625 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-645 *10)) (-5 *5 (-112)) (-4 *10 (-1073 *6 *7 *8 *9)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *9 (-1067 *6 *7 *8)) (-5 *2 (-645 (-2 (|:| -3845 (-645 *9)) (|:| -2566 *10) (|:| |ineq| (-645 *9))))) (-5 *1 (-990 *6 *7 *8 *9 *10)) (-5 *3 (-645 *9)))) (-3524 (*1 *2 *2) (-12 (-5 *2 (-645 (-2 (|:| |val| (-645 *6)) (|:| -2566 *7)))) (-4 *6 (-1067 *3 *4 *5)) (-4 *7 (-1073 *3 *4 *5 *6)) (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-990 *3 *4 *5 *6 *7)))) (-2892 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-645 *7)) (|:| -2566 *8))) (-4 *7 (-1067 *4 *5 *6)) (-4 *8 (-1073 *4 *5 *6 *7)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-990 *4 *5 *6 *7 *8)))) (-3864 (*1 *2 *2) (-12 (-5 *2 (-645 *7)) (-4 *7 (-1073 *3 *4 *5 *6)) (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *1 (-990 *3 *4 *5 *6 *7)))) (-3363 (*1 *2 *3 *4) (-12 (-5 *4 (-645 *3)) (-4 *3 (-1073 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-1067 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-990 *5 *6 *7 *8 *3)))) (-3363 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-990 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7)))) (-3300 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-990 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7)))) (-3392 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-990 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7)))) (-3150 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-990 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7)))) (-1913 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-990 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7)))) (-2763 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-990 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7)))) (-2203 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-990 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7)))) (-4195 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-990 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7)))) (-2354 (*1 *2 *2) (-12 (-5 *2 (-645 *7)) (-4 *7 (-1073 *3 *4 *5 *6)) (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *1 (-990 *3 *4 *5 *6 *7)))) (-2993 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-990 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7)))) (-2452 (*1 *2) (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-1273)) (-5 *1 (-990 *3 *4 *5 *6 *7)) (-4 *7 (-1073 *3 *4 *5 *6)))) (-2519 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1160)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-1273)) (-5 *1 (-990 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7)))))
-(-10 -7 (-15 -2519 ((-1273) (-1160) (-1160) (-1160))) (-15 -2452 ((-1273))) (-15 -2993 ((-112) |#5| |#5|)) (-15 -2354 ((-645 |#5|) (-645 |#5|))) (-15 -4195 ((-112) |#5| |#5|)) (-15 -2203 ((-112) |#5| |#5|)) (-15 -2763 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -1913 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -3150 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -3392 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -3300 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3363 ((-112) |#5| |#5|)) (-15 -3363 ((-112) |#5| (-645 |#5|))) (-15 -3864 ((-645 |#5|) (-645 |#5|))) (-15 -2892 ((-112) (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|)) (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|)))) (-15 -3524 ((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) (-15 -3625 ((-645 (-2 (|:| -3845 (-645 |#4|)) (|:| -2566 |#5|) (|:| |ineq| (-645 |#4|)))) (-645 |#4|) (-645 |#5|) (-112) (-112))) (-15 -1833 ((-3 (-2 (|:| -3845 (-645 |#4|)) (|:| -2566 |#5|) (|:| |ineq| (-645 |#4|))) "failed") (-645 |#4|) |#5| (-645 |#4|) (-112) (-112) (-112) (-112) (-112))))
-((-3644 (((-1178) $) 15)) (-3802 (((-1160) $) 16)) (-2537 (($ (-1178) (-1160)) 14)) (-4132 (((-863) $) 13)))
-(((-991) (-13 (-614 (-863)) (-10 -8 (-15 -2537 ($ (-1178) (-1160))) (-15 -3644 ((-1178) $)) (-15 -3802 ((-1160) $))))) (T -991))
-((-2537 (*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-1160)) (-5 *1 (-991)))) (-3644 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-991)))) (-3802 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-991)))))
-(-13 (-614 (-863)) (-10 -8 (-15 -2537 ($ (-1178) (-1160))) (-15 -3644 ((-1178) $)) (-15 -3802 ((-1160) $))))
-((-3829 ((|#4| (-1 |#2| |#1|) |#3|) 14)))
-(((-992 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3829 (|#4| (-1 |#2| |#1|) |#3|))) (-559) (-559) (-994 |#1|) (-994 |#2|)) (T -992))
-((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-559)) (-4 *6 (-559)) (-4 *2 (-994 *6)) (-5 *1 (-992 *5 *6 *4 *2)) (-4 *4 (-994 *5)))))
-(-10 -7 (-15 -3829 (|#4| (-1 |#2| |#1|) |#3|)))
-((-3753 (((-3 |#2| "failed") $) NIL) (((-3 (-1178) "failed") $) 66) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 (-567) "failed") $) 96)) (-2038 ((|#2| $) NIL) (((-1178) $) 61) (((-410 (-567)) $) NIL) (((-567) $) 93)) (-2630 (((-690 (-567)) (-690 $)) NIL) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL) (((-2 (|:| -2316 (-690 |#2|)) (|:| |vec| (-1268 |#2|))) (-690 $) (-1268 $)) 115) (((-690 |#2|) (-690 $)) 28)) (-1348 (($) 99)) (-4303 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) 76) (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) 85)) (-3530 (($ $) 10)) (-3972 (((-3 $ "failed") $) 20)) (-3829 (($ (-1 |#2| |#2|) $) 22)) (-2672 (($) 16)) (-4094 (($ $) 55)) (-1593 (($ $) NIL) (($ $ (-772)) NIL) (($ $ (-1178)) NIL) (($ $ (-645 (-1178))) NIL) (($ $ (-1178) (-772)) NIL) (($ $ (-645 (-1178)) (-645 (-772))) NIL) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-1967 (($ $) 12)) (-3893 (((-894 (-567)) $) 71) (((-894 (-381)) $) 80) (((-539) $) 40) (((-381) $) 44) (((-225) $) 48)) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) 91) (($ |#2|) NIL) (($ (-1178)) 58)) (-4221 (((-772)) 31)) (-2958 (((-112) $ $) 51)))
-(((-993 |#1| |#2|) (-10 -8 (-15 -2958 ((-112) |#1| |#1|)) (-15 -2672 (|#1|)) (-15 -3972 ((-3 |#1| "failed") |#1|)) (-15 -3753 ((-3 (-567) "failed") |#1|)) (-15 -2038 ((-567) |#1|)) (-15 -3753 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2038 ((-410 (-567)) |#1|)) (-15 -3893 ((-225) |#1|)) (-15 -3893 ((-381) |#1|)) (-15 -3893 ((-539) |#1|)) (-15 -4132 (|#1| (-1178))) (-15 -3753 ((-3 (-1178) "failed") |#1|)) (-15 -2038 ((-1178) |#1|)) (-15 -1348 (|#1|)) (-15 -4094 (|#1| |#1|)) (-15 -1967 (|#1| |#1|)) (-15 -3530 (|#1| |#1|)) (-15 -4303 ((-891 (-381) |#1|) |#1| (-894 (-381)) (-891 (-381) |#1|))) (-15 -4303 ((-891 (-567) |#1|) |#1| (-894 (-567)) (-891 (-567) |#1|))) (-15 -3893 ((-894 (-381)) |#1|)) (-15 -3893 ((-894 (-567)) |#1|)) (-15 -2630 ((-690 |#2|) (-690 |#1|))) (-15 -2630 ((-2 (|:| -2316 (-690 |#2|)) (|:| |vec| (-1268 |#2|))) (-690 |#1|) (-1268 |#1|))) (-15 -2630 ((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 |#1|) (-1268 |#1|))) (-15 -2630 ((-690 (-567)) (-690 |#1|))) (-15 -1593 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1593 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -1593 (|#1| |#1| (-645 (-1178)) (-645 (-772)))) (-15 -1593 (|#1| |#1| (-1178) (-772))) (-15 -1593 (|#1| |#1| (-645 (-1178)))) (-15 -1593 (|#1| |#1| (-1178))) (-15 -1593 (|#1| |#1| (-772))) (-15 -1593 (|#1| |#1|)) (-15 -3829 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3753 ((-3 |#2| "failed") |#1|)) (-15 -2038 (|#2| |#1|)) (-15 -4132 (|#1| |#2|)) (-15 -4132 (|#1| (-410 (-567)))) (-15 -4132 (|#1| |#1|)) (-15 -4221 ((-772))) (-15 -4132 (|#1| (-567))) (-15 -4132 ((-863) |#1|))) (-994 |#2|) (-559)) (T -993))
-((-4221 (*1 *2) (-12 (-4 *4 (-559)) (-5 *2 (-772)) (-5 *1 (-993 *3 *4)) (-4 *3 (-994 *4)))))
-(-10 -8 (-15 -2958 ((-112) |#1| |#1|)) (-15 -2672 (|#1|)) (-15 -3972 ((-3 |#1| "failed") |#1|)) (-15 -3753 ((-3 (-567) "failed") |#1|)) (-15 -2038 ((-567) |#1|)) (-15 -3753 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2038 ((-410 (-567)) |#1|)) (-15 -3893 ((-225) |#1|)) (-15 -3893 ((-381) |#1|)) (-15 -3893 ((-539) |#1|)) (-15 -4132 (|#1| (-1178))) (-15 -3753 ((-3 (-1178) "failed") |#1|)) (-15 -2038 ((-1178) |#1|)) (-15 -1348 (|#1|)) (-15 -4094 (|#1| |#1|)) (-15 -1967 (|#1| |#1|)) (-15 -3530 (|#1| |#1|)) (-15 -4303 ((-891 (-381) |#1|) |#1| (-894 (-381)) (-891 (-381) |#1|))) (-15 -4303 ((-891 (-567) |#1|) |#1| (-894 (-567)) (-891 (-567) |#1|))) (-15 -3893 ((-894 (-381)) |#1|)) (-15 -3893 ((-894 (-567)) |#1|)) (-15 -2630 ((-690 |#2|) (-690 |#1|))) (-15 -2630 ((-2 (|:| -2316 (-690 |#2|)) (|:| |vec| (-1268 |#2|))) (-690 |#1|) (-1268 |#1|))) (-15 -2630 ((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 |#1|) (-1268 |#1|))) (-15 -2630 ((-690 (-567)) (-690 |#1|))) (-15 -1593 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1593 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -1593 (|#1| |#1| (-645 (-1178)) (-645 (-772)))) (-15 -1593 (|#1| |#1| (-1178) (-772))) (-15 -1593 (|#1| |#1| (-645 (-1178)))) (-15 -1593 (|#1| |#1| (-1178))) (-15 -1593 (|#1| |#1| (-772))) (-15 -1593 (|#1| |#1|)) (-15 -3829 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3753 ((-3 |#2| "failed") |#1|)) (-15 -2038 (|#2| |#1|)) (-15 -4132 (|#1| |#2|)) (-15 -4132 (|#1| (-410 (-567)))) (-15 -4132 (|#1| |#1|)) (-15 -4221 ((-772))) (-15 -4132 (|#1| (-567))) (-15 -4132 ((-863) |#1|)))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3093 ((|#1| $) 147 (|has| |#1| (-308)))) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 47)) (-4381 (($ $) 46)) (-3949 (((-112) $) 44)) (-3472 (((-3 $ "failed") $ $) 20)) (-4226 (((-421 (-1174 $)) (-1174 $)) 138 (|has| |#1| (-911)))) (-3248 (($ $) 81)) (-2908 (((-421 $) $) 80)) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) 141 (|has| |#1| (-911)))) (-3609 (((-112) $ $) 65)) (-1750 (((-567) $) 128 (|has| |#1| (-821)))) (-2585 (($) 18 T CONST)) (-3753 (((-3 |#1| "failed") $) 185) (((-3 (-1178) "failed") $) 136 (|has| |#1| (-1040 (-1178)))) (((-3 (-410 (-567)) "failed") $) 119 (|has| |#1| (-1040 (-567)))) (((-3 (-567) "failed") $) 117 (|has| |#1| (-1040 (-567))))) (-2038 ((|#1| $) 186) (((-1178) $) 137 (|has| |#1| (-1040 (-1178)))) (((-410 (-567)) $) 120 (|has| |#1| (-1040 (-567)))) (((-567) $) 118 (|has| |#1| (-1040 (-567))))) (-2349 (($ $ $) 61)) (-2630 (((-690 (-567)) (-690 $)) 160 (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) 159 (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 |#1|)) (|:| |vec| (-1268 |#1|))) (-690 $) (-1268 $)) 158) (((-690 |#1|) (-690 $)) 157)) (-2109 (((-3 $ "failed") $) 37)) (-1348 (($) 145 (|has| |#1| (-548)))) (-2360 (($ $ $) 62)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) 57)) (-3184 (((-112) $) 79)) (-4336 (((-112) $) 130 (|has| |#1| (-821)))) (-4303 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) 154 (|has| |#1| (-888 (-567)))) (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) 153 (|has| |#1| (-888 (-381))))) (-1433 (((-112) $) 35)) (-3530 (($ $) 149)) (-1448 ((|#1| $) 151)) (-3972 (((-3 $ "failed") $) 116 (|has| |#1| (-1153)))) (-3494 (((-112) $) 129 (|has| |#1| (-821)))) (-1725 (((-3 (-645 $) "failed") (-645 $) $) 58)) (-1354 (($ $ $) 126 (|has| |#1| (-851)))) (-2981 (($ $ $) 125 (|has| |#1| (-851)))) (-3829 (($ (-1 |#1| |#1|) $) 177)) (-2740 (($ $ $) 52) (($ (-645 $)) 51)) (-1419 (((-1160) $) 10)) (-2939 (($ $) 78)) (-2672 (($) 115 (|has| |#1| (-1153)) CONST)) (-3430 (((-1122) $) 11)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 50)) (-2774 (($ $ $) 54) (($ (-645 $)) 53)) (-4094 (($ $) 146 (|has| |#1| (-308)))) (-2780 ((|#1| $) 143 (|has| |#1| (-548)))) (-2435 (((-421 (-1174 $)) (-1174 $)) 140 (|has| |#1| (-911)))) (-3517 (((-421 (-1174 $)) (-1174 $)) 139 (|has| |#1| (-911)))) (-2706 (((-421 $) $) 82)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2391 (((-3 $ "failed") $ $) 48)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-2631 (($ $ (-645 |#1|) (-645 |#1|)) 183 (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) 182 (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) 181 (|has| |#1| (-310 |#1|))) (($ $ (-645 (-295 |#1|))) 180 (|has| |#1| (-310 |#1|))) (($ $ (-645 (-1178)) (-645 |#1|)) 179 (|has| |#1| (-517 (-1178) |#1|))) (($ $ (-1178) |#1|) 178 (|has| |#1| (-517 (-1178) |#1|)))) (-1990 (((-772) $) 64)) (-1787 (($ $ |#1|) 184 (|has| |#1| (-287 |#1| |#1|)))) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 63)) (-1593 (($ $) 176 (|has| |#1| (-233))) (($ $ (-772)) 174 (|has| |#1| (-233))) (($ $ (-1178)) 172 (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178))) 171 (|has| |#1| (-902 (-1178)))) (($ $ (-1178) (-772)) 170 (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) 169 (|has| |#1| (-902 (-1178)))) (($ $ (-1 |#1| |#1|) (-772)) 162) (($ $ (-1 |#1| |#1|)) 161)) (-1967 (($ $) 148)) (-1460 ((|#1| $) 150)) (-3893 (((-894 (-567)) $) 156 (|has| |#1| (-615 (-894 (-567))))) (((-894 (-381)) $) 155 (|has| |#1| (-615 (-894 (-381))))) (((-539) $) 133 (|has| |#1| (-615 (-539)))) (((-381) $) 132 (|has| |#1| (-1024))) (((-225) $) 131 (|has| |#1| (-1024)))) (-1895 (((-3 (-1268 $) "failed") (-690 $)) 142 (-1667 (|has| $ (-145)) (|has| |#1| (-911))))) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-410 (-567))) 74) (($ |#1|) 189) (($ (-1178)) 135 (|has| |#1| (-1040 (-1178))))) (-1903 (((-3 $ "failed") $) 134 (-2800 (|has| |#1| (-145)) (-1667 (|has| $ (-145)) (|has| |#1| (-911)))))) (-4221 (((-772)) 32 T CONST)) (-1423 ((|#1| $) 144 (|has| |#1| (-548)))) (-1745 (((-112) $ $) 9)) (-3816 (((-112) $ $) 45)) (-2219 (($ $) 127 (|has| |#1| (-821)))) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2637 (($ $) 175 (|has| |#1| (-233))) (($ $ (-772)) 173 (|has| |#1| (-233))) (($ $ (-1178)) 168 (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178))) 167 (|has| |#1| (-902 (-1178)))) (($ $ (-1178) (-772)) 166 (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) 165 (|has| |#1| (-902 (-1178)))) (($ $ (-1 |#1| |#1|) (-772)) 164) (($ $ (-1 |#1| |#1|)) 163)) (-2997 (((-112) $ $) 123 (|has| |#1| (-851)))) (-2971 (((-112) $ $) 122 (|has| |#1| (-851)))) (-2936 (((-112) $ $) 6)) (-2984 (((-112) $ $) 124 (|has| |#1| (-851)))) (-2958 (((-112) $ $) 121 (|has| |#1| (-851)))) (-3060 (($ $ $) 73) (($ |#1| |#1|) 152)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 77)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 76) (($ (-410 (-567)) $) 75) (($ |#1| $) 188) (($ $ |#1|) 187)))
+((-4385 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1051)) (-4 *1 (-982 *3)))) (-1412 (*1 *2 *1) (-12 (-4 *1 (-982 *3)) (-4 *3 (-1051)) (-5 *2 (-923)))) (-1759 (*1 *1 *1 *1) (-12 (-4 *1 (-982 *2)) (-4 *2 (-1051)))) (-1874 (*1 *1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *1 (-982 *3)) (-4 *3 (-1051)))))
+(-13 (-1267 |t#1|) (-619 (-645 |t#1|)) (-10 -8 (-15 -4385 ($ (-645 |t#1|))) (-15 -1412 ((-923) $)) (-15 -1759 ($ $ $)) (-15 -1874 ($ $ (-645 |t#1|)))))
+(((-34) . T) ((-102) -2811 (|has| |#1| (-1102)) (|has| |#1| (-851))) ((-614 (-863)) -2811 (|has| |#1| (-1102)) (|has| |#1| (-851)) (|has| |#1| (-614 (-863)))) ((-151 |#1|) . T) ((-619 (-645 |#1|)) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-287 #0=(-567) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-375 |#1|) . T) ((-492 |#1|) . T) ((-605 #0# |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-652 |#1|) . T) ((-19 |#1|) . T) ((-851) |has| |#1| (-851)) ((-1102) -2811 (|has| |#1| (-1102)) (|has| |#1| (-851))) ((-1219) . T) ((-1267 |#1|) . T))
+((-3841 (((-945 |#2|) (-1 |#2| |#1|) (-945 |#1|)) 17)))
+(((-983 |#1| |#2|) (-10 -7 (-15 -3841 ((-945 |#2|) (-1 |#2| |#1|) (-945 |#1|)))) (-1051) (-1051)) (T -983))
+((-3841 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-945 *5)) (-4 *5 (-1051)) (-4 *6 (-1051)) (-5 *2 (-945 *6)) (-5 *1 (-983 *5 *6)))))
+(-10 -7 (-15 -3841 ((-945 |#2|) (-1 |#2| |#1|) (-945 |#1|))))
+((-2299 ((|#1| (-945 |#1|)) 14)) (-2956 ((|#1| (-945 |#1|)) 13)) (-2570 ((|#1| (-945 |#1|)) 12)) (-4012 ((|#1| (-945 |#1|)) 16)) (-2311 ((|#1| (-945 |#1|)) 24)) (-3222 ((|#1| (-945 |#1|)) 15)) (-1785 ((|#1| (-945 |#1|)) 17)) (-3475 ((|#1| (-945 |#1|)) 23)) (-1952 ((|#1| (-945 |#1|)) 22)))
+(((-984 |#1|) (-10 -7 (-15 -2570 (|#1| (-945 |#1|))) (-15 -2956 (|#1| (-945 |#1|))) (-15 -2299 (|#1| (-945 |#1|))) (-15 -3222 (|#1| (-945 |#1|))) (-15 -4012 (|#1| (-945 |#1|))) (-15 -1785 (|#1| (-945 |#1|))) (-15 -1952 (|#1| (-945 |#1|))) (-15 -3475 (|#1| (-945 |#1|))) (-15 -2311 (|#1| (-945 |#1|)))) (-1051)) (T -984))
+((-2311 (*1 *2 *3) (-12 (-5 *3 (-945 *2)) (-5 *1 (-984 *2)) (-4 *2 (-1051)))) (-3475 (*1 *2 *3) (-12 (-5 *3 (-945 *2)) (-5 *1 (-984 *2)) (-4 *2 (-1051)))) (-1952 (*1 *2 *3) (-12 (-5 *3 (-945 *2)) (-5 *1 (-984 *2)) (-4 *2 (-1051)))) (-1785 (*1 *2 *3) (-12 (-5 *3 (-945 *2)) (-5 *1 (-984 *2)) (-4 *2 (-1051)))) (-4012 (*1 *2 *3) (-12 (-5 *3 (-945 *2)) (-5 *1 (-984 *2)) (-4 *2 (-1051)))) (-3222 (*1 *2 *3) (-12 (-5 *3 (-945 *2)) (-5 *1 (-984 *2)) (-4 *2 (-1051)))) (-2299 (*1 *2 *3) (-12 (-5 *3 (-945 *2)) (-5 *1 (-984 *2)) (-4 *2 (-1051)))) (-2956 (*1 *2 *3) (-12 (-5 *3 (-945 *2)) (-5 *1 (-984 *2)) (-4 *2 (-1051)))) (-2570 (*1 *2 *3) (-12 (-5 *3 (-945 *2)) (-5 *1 (-984 *2)) (-4 *2 (-1051)))))
+(-10 -7 (-15 -2570 (|#1| (-945 |#1|))) (-15 -2956 (|#1| (-945 |#1|))) (-15 -2299 (|#1| (-945 |#1|))) (-15 -3222 (|#1| (-945 |#1|))) (-15 -4012 (|#1| (-945 |#1|))) (-15 -1785 (|#1| (-945 |#1|))) (-15 -1952 (|#1| (-945 |#1|))) (-15 -3475 (|#1| (-945 |#1|))) (-15 -2311 (|#1| (-945 |#1|))))
+((-2977 (((-3 |#1| "failed") |#1|) 18)) (-1470 (((-3 |#1| "failed") |#1|) 6)) (-3154 (((-3 |#1| "failed") |#1|) 16)) (-4049 (((-3 |#1| "failed") |#1|) 4)) (-2887 (((-3 |#1| "failed") |#1|) 20)) (-1371 (((-3 |#1| "failed") |#1|) 8)) (-3263 (((-3 |#1| "failed") |#1| (-772)) 1)) (-1340 (((-3 |#1| "failed") |#1|) 3)) (-1625 (((-3 |#1| "failed") |#1|) 2)) (-1912 (((-3 |#1| "failed") |#1|) 21)) (-3830 (((-3 |#1| "failed") |#1|) 9)) (-2126 (((-3 |#1| "failed") |#1|) 19)) (-4220 (((-3 |#1| "failed") |#1|) 7)) (-4173 (((-3 |#1| "failed") |#1|) 17)) (-1787 (((-3 |#1| "failed") |#1|) 5)) (-3253 (((-3 |#1| "failed") |#1|) 24)) (-4225 (((-3 |#1| "failed") |#1|) 12)) (-4036 (((-3 |#1| "failed") |#1|) 22)) (-2740 (((-3 |#1| "failed") |#1|) 10)) (-4004 (((-3 |#1| "failed") |#1|) 26)) (-3850 (((-3 |#1| "failed") |#1|) 14)) (-1330 (((-3 |#1| "failed") |#1|) 27)) (-4226 (((-3 |#1| "failed") |#1|) 15)) (-3168 (((-3 |#1| "failed") |#1|) 25)) (-3107 (((-3 |#1| "failed") |#1|) 13)) (-3318 (((-3 |#1| "failed") |#1|) 23)) (-3904 (((-3 |#1| "failed") |#1|) 11)))
+(((-985 |#1|) (-140) (-1204)) (T -985))
+((-1330 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))) (-4004 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))) (-3168 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))) (-3253 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))) (-3318 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))) (-4036 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))) (-1912 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))) (-2887 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))) (-2126 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))) (-2977 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))) (-4173 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))) (-3154 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))) (-4226 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))) (-3850 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))) (-3107 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))) (-4225 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))) (-3904 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))) (-2740 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))) (-3830 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))) (-1371 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))) (-4220 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))) (-1470 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))) (-1787 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))) (-4049 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))) (-1340 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))) (-1625 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))) (-3263 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-772)) (-4 *1 (-985 *2)) (-4 *2 (-1204)))))
+(-13 (-10 -7 (-15 -3263 ((-3 |t#1| "failed") |t#1| (-772))) (-15 -1625 ((-3 |t#1| "failed") |t#1|)) (-15 -1340 ((-3 |t#1| "failed") |t#1|)) (-15 -4049 ((-3 |t#1| "failed") |t#1|)) (-15 -1787 ((-3 |t#1| "failed") |t#1|)) (-15 -1470 ((-3 |t#1| "failed") |t#1|)) (-15 -4220 ((-3 |t#1| "failed") |t#1|)) (-15 -1371 ((-3 |t#1| "failed") |t#1|)) (-15 -3830 ((-3 |t#1| "failed") |t#1|)) (-15 -2740 ((-3 |t#1| "failed") |t#1|)) (-15 -3904 ((-3 |t#1| "failed") |t#1|)) (-15 -4225 ((-3 |t#1| "failed") |t#1|)) (-15 -3107 ((-3 |t#1| "failed") |t#1|)) (-15 -3850 ((-3 |t#1| "failed") |t#1|)) (-15 -4226 ((-3 |t#1| "failed") |t#1|)) (-15 -3154 ((-3 |t#1| "failed") |t#1|)) (-15 -4173 ((-3 |t#1| "failed") |t#1|)) (-15 -2977 ((-3 |t#1| "failed") |t#1|)) (-15 -2126 ((-3 |t#1| "failed") |t#1|)) (-15 -2887 ((-3 |t#1| "failed") |t#1|)) (-15 -1912 ((-3 |t#1| "failed") |t#1|)) (-15 -4036 ((-3 |t#1| "failed") |t#1|)) (-15 -3318 ((-3 |t#1| "failed") |t#1|)) (-15 -3253 ((-3 |t#1| "failed") |t#1|)) (-15 -3168 ((-3 |t#1| "failed") |t#1|)) (-15 -4004 ((-3 |t#1| "failed") |t#1|)) (-15 -1330 ((-3 |t#1| "failed") |t#1|))))
+((-2920 ((|#4| |#4| (-645 |#3|)) 57) ((|#4| |#4| |#3|) 56)) (-2170 ((|#4| |#4| (-645 |#3|)) 24) ((|#4| |#4| |#3|) 20)) (-3841 ((|#4| (-1 |#4| (-954 |#1|)) |#4|) 31)))
+(((-986 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2170 (|#4| |#4| |#3|)) (-15 -2170 (|#4| |#4| (-645 |#3|))) (-15 -2920 (|#4| |#4| |#3|)) (-15 -2920 (|#4| |#4| (-645 |#3|))) (-15 -3841 (|#4| (-1 |#4| (-954 |#1|)) |#4|))) (-1051) (-794) (-13 (-851) (-10 -8 (-15 -3902 ((-1179) $)) (-15 -3653 ((-3 $ "failed") (-1179))))) (-951 (-954 |#1|) |#2| |#3|)) (T -986))
+((-3841 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-954 *4))) (-4 *4 (-1051)) (-4 *2 (-951 (-954 *4) *5 *6)) (-4 *5 (-794)) (-4 *6 (-13 (-851) (-10 -8 (-15 -3902 ((-1179) $)) (-15 -3653 ((-3 $ "failed") (-1179)))))) (-5 *1 (-986 *4 *5 *6 *2)))) (-2920 (*1 *2 *2 *3) (-12 (-5 *3 (-645 *6)) (-4 *6 (-13 (-851) (-10 -8 (-15 -3902 ((-1179) $)) (-15 -3653 ((-3 $ "failed") (-1179)))))) (-4 *4 (-1051)) (-4 *5 (-794)) (-5 *1 (-986 *4 *5 *6 *2)) (-4 *2 (-951 (-954 *4) *5 *6)))) (-2920 (*1 *2 *2 *3) (-12 (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *3 (-13 (-851) (-10 -8 (-15 -3902 ((-1179) $)) (-15 -3653 ((-3 $ "failed") (-1179)))))) (-5 *1 (-986 *4 *5 *3 *2)) (-4 *2 (-951 (-954 *4) *5 *3)))) (-2170 (*1 *2 *2 *3) (-12 (-5 *3 (-645 *6)) (-4 *6 (-13 (-851) (-10 -8 (-15 -3902 ((-1179) $)) (-15 -3653 ((-3 $ "failed") (-1179)))))) (-4 *4 (-1051)) (-4 *5 (-794)) (-5 *1 (-986 *4 *5 *6 *2)) (-4 *2 (-951 (-954 *4) *5 *6)))) (-2170 (*1 *2 *2 *3) (-12 (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *3 (-13 (-851) (-10 -8 (-15 -3902 ((-1179) $)) (-15 -3653 ((-3 $ "failed") (-1179)))))) (-5 *1 (-986 *4 *5 *3 *2)) (-4 *2 (-951 (-954 *4) *5 *3)))))
+(-10 -7 (-15 -2170 (|#4| |#4| |#3|)) (-15 -2170 (|#4| |#4| (-645 |#3|))) (-15 -2920 (|#4| |#4| |#3|)) (-15 -2920 (|#4| |#4| (-645 |#3|))) (-15 -3841 (|#4| (-1 |#4| (-954 |#1|)) |#4|)))
+((-3783 ((|#2| |#3|) 35)) (-4321 (((-2 (|:| -2144 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))) |#2|) 83)) (-4180 (((-2 (|:| -2144 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|)))) 103)))
+(((-987 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4180 ((-2 (|:| -2144 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))))) (-15 -4321 ((-2 (|:| -2144 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))) |#2|)) (-15 -3783 (|#2| |#3|))) (-351) (-1245 |#1|) (-1245 |#2|) (-725 |#2| |#3|)) (T -987))
+((-3783 (*1 *2 *3) (-12 (-4 *3 (-1245 *2)) (-4 *2 (-1245 *4)) (-5 *1 (-987 *4 *2 *3 *5)) (-4 *4 (-351)) (-4 *5 (-725 *2 *3)))) (-4321 (*1 *2 *3) (-12 (-4 *4 (-351)) (-4 *3 (-1245 *4)) (-4 *5 (-1245 *3)) (-5 *2 (-2 (|:| -2144 (-690 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-690 *3)))) (-5 *1 (-987 *4 *3 *5 *6)) (-4 *6 (-725 *3 *5)))) (-4180 (*1 *2) (-12 (-4 *3 (-351)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 *4)) (-5 *2 (-2 (|:| -2144 (-690 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-690 *4)))) (-5 *1 (-987 *3 *4 *5 *6)) (-4 *6 (-725 *4 *5)))))
+(-10 -7 (-15 -4180 ((-2 (|:| -2144 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))))) (-15 -4321 ((-2 (|:| -2144 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))) |#2|)) (-15 -3783 (|#2| |#3|)))
+((-2471 (((-989 (-410 (-567)) (-865 |#1|) (-240 |#2| (-772)) (-247 |#1| (-410 (-567)))) (-989 (-410 (-567)) (-865 |#1|) (-240 |#2| (-772)) (-247 |#1| (-410 (-567))))) 84)))
+(((-988 |#1| |#2|) (-10 -7 (-15 -2471 ((-989 (-410 (-567)) (-865 |#1|) (-240 |#2| (-772)) (-247 |#1| (-410 (-567)))) (-989 (-410 (-567)) (-865 |#1|) (-240 |#2| (-772)) (-247 |#1| (-410 (-567))))))) (-645 (-1179)) (-772)) (T -988))
+((-2471 (*1 *2 *2) (-12 (-5 *2 (-989 (-410 (-567)) (-865 *3) (-240 *4 (-772)) (-247 *3 (-410 (-567))))) (-14 *3 (-645 (-1179))) (-14 *4 (-772)) (-5 *1 (-988 *3 *4)))))
+(-10 -7 (-15 -2471 ((-989 (-410 (-567)) (-865 |#1|) (-240 |#2| (-772)) (-247 |#1| (-410 (-567)))) (-989 (-410 (-567)) (-865 |#1|) (-240 |#2| (-772)) (-247 |#1| (-410 (-567)))))))
+((-2412 (((-112) $ $) NIL)) (-2933 (((-3 (-112) "failed") $) 71)) (-1743 (($ $) 36 (-12 (|has| |#1| (-147)) (|has| |#1| (-308))))) (-3397 (($ $ (-3 (-112) "failed")) 72)) (-1707 (($ (-645 |#4|) |#4|) 25)) (-2516 (((-1161) $) NIL)) (-2793 (($ $) 69)) (-3437 (((-1122) $) NIL)) (-3885 (((-112) $) 70)) (-2701 (($) 30)) (-3605 ((|#4| $) 74)) (-1929 (((-645 |#4|) $) 73)) (-4129 (((-863) $) 68)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)))
+(((-989 |#1| |#2| |#3| |#4|) (-13 (-1102) (-614 (-863)) (-10 -8 (-15 -2701 ($)) (-15 -1707 ($ (-645 |#4|) |#4|)) (-15 -2933 ((-3 (-112) "failed") $)) (-15 -3397 ($ $ (-3 (-112) "failed"))) (-15 -3885 ((-112) $)) (-15 -1929 ((-645 |#4|) $)) (-15 -3605 (|#4| $)) (-15 -2793 ($ $)) (IF (|has| |#1| (-308)) (IF (|has| |#1| (-147)) (-15 -1743 ($ $)) |%noBranch|) |%noBranch|))) (-455) (-851) (-794) (-951 |#1| |#3| |#2|)) (T -989))
+((-2701 (*1 *1) (-12 (-4 *2 (-455)) (-4 *3 (-851)) (-4 *4 (-794)) (-5 *1 (-989 *2 *3 *4 *5)) (-4 *5 (-951 *2 *4 *3)))) (-1707 (*1 *1 *2 *3) (-12 (-5 *2 (-645 *3)) (-4 *3 (-951 *4 *6 *5)) (-4 *4 (-455)) (-4 *5 (-851)) (-4 *6 (-794)) (-5 *1 (-989 *4 *5 *6 *3)))) (-2933 (*1 *2 *1) (|partial| -12 (-4 *3 (-455)) (-4 *4 (-851)) (-4 *5 (-794)) (-5 *2 (-112)) (-5 *1 (-989 *3 *4 *5 *6)) (-4 *6 (-951 *3 *5 *4)))) (-3397 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-455)) (-4 *4 (-851)) (-4 *5 (-794)) (-5 *1 (-989 *3 *4 *5 *6)) (-4 *6 (-951 *3 *5 *4)))) (-3885 (*1 *2 *1) (-12 (-4 *3 (-455)) (-4 *4 (-851)) (-4 *5 (-794)) (-5 *2 (-112)) (-5 *1 (-989 *3 *4 *5 *6)) (-4 *6 (-951 *3 *5 *4)))) (-1929 (*1 *2 *1) (-12 (-4 *3 (-455)) (-4 *4 (-851)) (-4 *5 (-794)) (-5 *2 (-645 *6)) (-5 *1 (-989 *3 *4 *5 *6)) (-4 *6 (-951 *3 *5 *4)))) (-3605 (*1 *2 *1) (-12 (-4 *2 (-951 *3 *5 *4)) (-5 *1 (-989 *3 *4 *5 *2)) (-4 *3 (-455)) (-4 *4 (-851)) (-4 *5 (-794)))) (-2793 (*1 *1 *1) (-12 (-4 *2 (-455)) (-4 *3 (-851)) (-4 *4 (-794)) (-5 *1 (-989 *2 *3 *4 *5)) (-4 *5 (-951 *2 *4 *3)))) (-1743 (*1 *1 *1) (-12 (-4 *2 (-147)) (-4 *2 (-308)) (-4 *2 (-455)) (-4 *3 (-851)) (-4 *4 (-794)) (-5 *1 (-989 *2 *3 *4 *5)) (-4 *5 (-951 *2 *4 *3)))))
+(-13 (-1102) (-614 (-863)) (-10 -8 (-15 -2701 ($)) (-15 -1707 ($ (-645 |#4|) |#4|)) (-15 -2933 ((-3 (-112) "failed") $)) (-15 -3397 ($ $ (-3 (-112) "failed"))) (-15 -3885 ((-112) $)) (-15 -1929 ((-645 |#4|) $)) (-15 -3605 (|#4| $)) (-15 -2793 ($ $)) (IF (|has| |#1| (-308)) (IF (|has| |#1| (-147)) (-15 -1743 ($ $)) |%noBranch|) |%noBranch|)))
+((-4015 (((-112) |#5| |#5|) 45)) (-3458 (((-112) |#5| |#5|) 60)) (-1803 (((-112) |#5| (-645 |#5|)) 82) (((-112) |#5| |#5|) 69)) (-1983 (((-112) (-645 |#4|) (-645 |#4|)) 66)) (-2493 (((-112) (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|)) (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))) 71)) (-2480 (((-1274)) 33)) (-3807 (((-1274) (-1161) (-1161) (-1161)) 29)) (-3314 (((-645 |#5|) (-645 |#5|)) 101)) (-1353 (((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|)))) 93)) (-2134 (((-645 (-2 (|:| -3855 (-645 |#4|)) (|:| -2575 |#5|) (|:| |ineq| (-645 |#4|)))) (-645 |#4|) (-645 |#5|) (-112) (-112)) 123)) (-2115 (((-112) |#5| |#5|) 54)) (-2543 (((-3 (-112) "failed") |#5| |#5|) 79)) (-4248 (((-112) (-645 |#4|) (-645 |#4|)) 65)) (-2036 (((-112) (-645 |#4|) (-645 |#4|)) 67)) (-3995 (((-112) (-645 |#4|) (-645 |#4|)) 68)) (-3321 (((-3 (-2 (|:| -3855 (-645 |#4|)) (|:| -2575 |#5|) (|:| |ineq| (-645 |#4|))) "failed") (-645 |#4|) |#5| (-645 |#4|) (-112) (-112) (-112) (-112) (-112)) 118)) (-3845 (((-645 |#5|) (-645 |#5|)) 50)))
+(((-990 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3807 ((-1274) (-1161) (-1161) (-1161))) (-15 -2480 ((-1274))) (-15 -4015 ((-112) |#5| |#5|)) (-15 -3845 ((-645 |#5|) (-645 |#5|))) (-15 -2115 ((-112) |#5| |#5|)) (-15 -3458 ((-112) |#5| |#5|)) (-15 -1983 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -4248 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -2036 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -3995 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -2543 ((-3 (-112) "failed") |#5| |#5|)) (-15 -1803 ((-112) |#5| |#5|)) (-15 -1803 ((-112) |#5| (-645 |#5|))) (-15 -3314 ((-645 |#5|) (-645 |#5|))) (-15 -2493 ((-112) (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|)) (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|)))) (-15 -1353 ((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))))) (-15 -2134 ((-645 (-2 (|:| -3855 (-645 |#4|)) (|:| -2575 |#5|) (|:| |ineq| (-645 |#4|)))) (-645 |#4|) (-645 |#5|) (-112) (-112))) (-15 -3321 ((-3 (-2 (|:| -3855 (-645 |#4|)) (|:| -2575 |#5|) (|:| |ineq| (-645 |#4|))) "failed") (-645 |#4|) |#5| (-645 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-455) (-794) (-851) (-1067 |#1| |#2| |#3|) (-1073 |#1| |#2| |#3| |#4|)) (T -990))
+((-3321 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *9 (-1067 *6 *7 *8)) (-5 *2 (-2 (|:| -3855 (-645 *9)) (|:| -2575 *4) (|:| |ineq| (-645 *9)))) (-5 *1 (-990 *6 *7 *8 *9 *4)) (-5 *3 (-645 *9)) (-4 *4 (-1073 *6 *7 *8 *9)))) (-2134 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-645 *10)) (-5 *5 (-112)) (-4 *10 (-1073 *6 *7 *8 *9)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *9 (-1067 *6 *7 *8)) (-5 *2 (-645 (-2 (|:| -3855 (-645 *9)) (|:| -2575 *10) (|:| |ineq| (-645 *9))))) (-5 *1 (-990 *6 *7 *8 *9 *10)) (-5 *3 (-645 *9)))) (-1353 (*1 *2 *2) (-12 (-5 *2 (-645 (-2 (|:| |val| (-645 *6)) (|:| -2575 *7)))) (-4 *6 (-1067 *3 *4 *5)) (-4 *7 (-1073 *3 *4 *5 *6)) (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-990 *3 *4 *5 *6 *7)))) (-2493 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-645 *7)) (|:| -2575 *8))) (-4 *7 (-1067 *4 *5 *6)) (-4 *8 (-1073 *4 *5 *6 *7)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-990 *4 *5 *6 *7 *8)))) (-3314 (*1 *2 *2) (-12 (-5 *2 (-645 *7)) (-4 *7 (-1073 *3 *4 *5 *6)) (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *1 (-990 *3 *4 *5 *6 *7)))) (-1803 (*1 *2 *3 *4) (-12 (-5 *4 (-645 *3)) (-4 *3 (-1073 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-1067 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-990 *5 *6 *7 *8 *3)))) (-1803 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-990 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7)))) (-2543 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-990 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7)))) (-3995 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-990 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7)))) (-2036 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-990 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7)))) (-4248 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-990 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7)))) (-1983 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-990 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7)))) (-3458 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-990 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7)))) (-2115 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-990 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7)))) (-3845 (*1 *2 *2) (-12 (-5 *2 (-645 *7)) (-4 *7 (-1073 *3 *4 *5 *6)) (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *1 (-990 *3 *4 *5 *6 *7)))) (-4015 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-990 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7)))) (-2480 (*1 *2) (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-1274)) (-5 *1 (-990 *3 *4 *5 *6 *7)) (-4 *7 (-1073 *3 *4 *5 *6)))) (-3807 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1161)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-1274)) (-5 *1 (-990 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7)))))
+(-10 -7 (-15 -3807 ((-1274) (-1161) (-1161) (-1161))) (-15 -2480 ((-1274))) (-15 -4015 ((-112) |#5| |#5|)) (-15 -3845 ((-645 |#5|) (-645 |#5|))) (-15 -2115 ((-112) |#5| |#5|)) (-15 -3458 ((-112) |#5| |#5|)) (-15 -1983 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -4248 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -2036 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -3995 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -2543 ((-3 (-112) "failed") |#5| |#5|)) (-15 -1803 ((-112) |#5| |#5|)) (-15 -1803 ((-112) |#5| (-645 |#5|))) (-15 -3314 ((-645 |#5|) (-645 |#5|))) (-15 -2493 ((-112) (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|)) (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|)))) (-15 -1353 ((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))))) (-15 -2134 ((-645 (-2 (|:| -3855 (-645 |#4|)) (|:| -2575 |#5|) (|:| |ineq| (-645 |#4|)))) (-645 |#4|) (-645 |#5|) (-112) (-112))) (-15 -3321 ((-3 (-2 (|:| -3855 (-645 |#4|)) (|:| -2575 |#5|) (|:| |ineq| (-645 |#4|))) "failed") (-645 |#4|) |#5| (-645 |#4|) (-112) (-112) (-112) (-112) (-112))))
+((-3653 (((-1179) $) 15)) (-3812 (((-1161) $) 16)) (-2547 (($ (-1179) (-1161)) 14)) (-4129 (((-863) $) 13)))
+(((-991) (-13 (-614 (-863)) (-10 -8 (-15 -2547 ($ (-1179) (-1161))) (-15 -3653 ((-1179) $)) (-15 -3812 ((-1161) $))))) (T -991))
+((-2547 (*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-1161)) (-5 *1 (-991)))) (-3653 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-991)))) (-3812 (*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-991)))))
+(-13 (-614 (-863)) (-10 -8 (-15 -2547 ($ (-1179) (-1161))) (-15 -3653 ((-1179) $)) (-15 -3812 ((-1161) $))))
+((-3841 ((|#4| (-1 |#2| |#1|) |#3|) 14)))
+(((-992 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3841 (|#4| (-1 |#2| |#1|) |#3|))) (-559) (-559) (-994 |#1|) (-994 |#2|)) (T -992))
+((-3841 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-559)) (-4 *6 (-559)) (-4 *2 (-994 *6)) (-5 *1 (-992 *5 *6 *4 *2)) (-4 *4 (-994 *5)))))
+(-10 -7 (-15 -3841 (|#4| (-1 |#2| |#1|) |#3|)))
+((-3765 (((-3 |#2| "failed") $) NIL) (((-3 (-1179) "failed") $) 66) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 (-567) "failed") $) 96)) (-2051 ((|#2| $) NIL) (((-1179) $) 61) (((-410 (-567)) $) NIL) (((-567) $) 93)) (-1423 (((-690 (-567)) (-690 $)) NIL) (((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL) (((-2 (|:| -4208 (-690 |#2|)) (|:| |vec| (-1269 |#2|))) (-690 $) (-1269 $)) 115) (((-690 |#2|) (-690 $)) 28)) (-1359 (($) 99)) (-3193 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) 76) (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) 85)) (-1863 (($ $) 10)) (-3067 (((-3 $ "failed") $) 20)) (-3841 (($ (-1 |#2| |#2|) $) 22)) (-2694 (($) 16)) (-2554 (($ $) 55)) (-1616 (($ $) NIL) (($ $ (-772)) NIL) (($ $ (-1179)) NIL) (($ $ (-645 (-1179))) NIL) (($ $ (-1179) (-772)) NIL) (($ $ (-645 (-1179)) (-645 (-772))) NIL) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-1762 (($ $) 12)) (-3902 (((-894 (-567)) $) 71) (((-894 (-381)) $) 80) (((-539) $) 40) (((-381) $) 44) (((-225) $) 48)) (-4129 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) 91) (($ |#2|) NIL) (($ (-1179)) 58)) (-2746 (((-772)) 31)) (-2968 (((-112) $ $) 51)))
+(((-993 |#1| |#2|) (-10 -8 (-15 -2968 ((-112) |#1| |#1|)) (-15 -2694 (|#1|)) (-15 -3067 ((-3 |#1| "failed") |#1|)) (-15 -3765 ((-3 (-567) "failed") |#1|)) (-15 -2051 ((-567) |#1|)) (-15 -3765 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2051 ((-410 (-567)) |#1|)) (-15 -3902 ((-225) |#1|)) (-15 -3902 ((-381) |#1|)) (-15 -3902 ((-539) |#1|)) (-15 -4129 (|#1| (-1179))) (-15 -3765 ((-3 (-1179) "failed") |#1|)) (-15 -2051 ((-1179) |#1|)) (-15 -1359 (|#1|)) (-15 -2554 (|#1| |#1|)) (-15 -1762 (|#1| |#1|)) (-15 -1863 (|#1| |#1|)) (-15 -3193 ((-891 (-381) |#1|) |#1| (-894 (-381)) (-891 (-381) |#1|))) (-15 -3193 ((-891 (-567) |#1|) |#1| (-894 (-567)) (-891 (-567) |#1|))) (-15 -3902 ((-894 (-381)) |#1|)) (-15 -3902 ((-894 (-567)) |#1|)) (-15 -1423 ((-690 |#2|) (-690 |#1|))) (-15 -1423 ((-2 (|:| -4208 (-690 |#2|)) (|:| |vec| (-1269 |#2|))) (-690 |#1|) (-1269 |#1|))) (-15 -1423 ((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 |#1|) (-1269 |#1|))) (-15 -1423 ((-690 (-567)) (-690 |#1|))) (-15 -1616 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1616 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -1616 (|#1| |#1| (-645 (-1179)) (-645 (-772)))) (-15 -1616 (|#1| |#1| (-1179) (-772))) (-15 -1616 (|#1| |#1| (-645 (-1179)))) (-15 -1616 (|#1| |#1| (-1179))) (-15 -1616 (|#1| |#1| (-772))) (-15 -1616 (|#1| |#1|)) (-15 -3841 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -2051 (|#2| |#1|)) (-15 -4129 (|#1| |#2|)) (-15 -4129 (|#1| (-410 (-567)))) (-15 -4129 (|#1| |#1|)) (-15 -2746 ((-772))) (-15 -4129 (|#1| (-567))) (-15 -4129 ((-863) |#1|))) (-994 |#2|) (-559)) (T -993))
+((-2746 (*1 *2) (-12 (-4 *4 (-559)) (-5 *2 (-772)) (-5 *1 (-993 *3 *4)) (-4 *3 (-994 *4)))))
+(-10 -8 (-15 -2968 ((-112) |#1| |#1|)) (-15 -2694 (|#1|)) (-15 -3067 ((-3 |#1| "failed") |#1|)) (-15 -3765 ((-3 (-567) "failed") |#1|)) (-15 -2051 ((-567) |#1|)) (-15 -3765 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2051 ((-410 (-567)) |#1|)) (-15 -3902 ((-225) |#1|)) (-15 -3902 ((-381) |#1|)) (-15 -3902 ((-539) |#1|)) (-15 -4129 (|#1| (-1179))) (-15 -3765 ((-3 (-1179) "failed") |#1|)) (-15 -2051 ((-1179) |#1|)) (-15 -1359 (|#1|)) (-15 -2554 (|#1| |#1|)) (-15 -1762 (|#1| |#1|)) (-15 -1863 (|#1| |#1|)) (-15 -3193 ((-891 (-381) |#1|) |#1| (-894 (-381)) (-891 (-381) |#1|))) (-15 -3193 ((-891 (-567) |#1|) |#1| (-894 (-567)) (-891 (-567) |#1|))) (-15 -3902 ((-894 (-381)) |#1|)) (-15 -3902 ((-894 (-567)) |#1|)) (-15 -1423 ((-690 |#2|) (-690 |#1|))) (-15 -1423 ((-2 (|:| -4208 (-690 |#2|)) (|:| |vec| (-1269 |#2|))) (-690 |#1|) (-1269 |#1|))) (-15 -1423 ((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 |#1|) (-1269 |#1|))) (-15 -1423 ((-690 (-567)) (-690 |#1|))) (-15 -1616 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1616 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -1616 (|#1| |#1| (-645 (-1179)) (-645 (-772)))) (-15 -1616 (|#1| |#1| (-1179) (-772))) (-15 -1616 (|#1| |#1| (-645 (-1179)))) (-15 -1616 (|#1| |#1| (-1179))) (-15 -1616 (|#1| |#1| (-772))) (-15 -1616 (|#1| |#1|)) (-15 -3841 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -2051 (|#2| |#1|)) (-15 -4129 (|#1| |#2|)) (-15 -4129 (|#1| (-410 (-567)))) (-15 -4129 (|#1| |#1|)) (-15 -2746 ((-772))) (-15 -4129 (|#1| (-567))) (-15 -4129 ((-863) |#1|)))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-4014 ((|#1| $) 147 (|has| |#1| (-308)))) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) 47)) (-4287 (($ $) 46)) (-2286 (((-112) $) 44)) (-2376 (((-3 $ "failed") $ $) 20)) (-2029 (((-421 (-1175 $)) (-1175 $)) 138 (|has| |#1| (-911)))) (-3659 (($ $) 81)) (-3597 (((-421 $) $) 80)) (-3610 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) 141 (|has| |#1| (-911)))) (-3696 (((-112) $ $) 65)) (-2677 (((-567) $) 128 (|has| |#1| (-821)))) (-3647 (($) 18 T CONST)) (-3765 (((-3 |#1| "failed") $) 185) (((-3 (-1179) "failed") $) 136 (|has| |#1| (-1040 (-1179)))) (((-3 (-410 (-567)) "failed") $) 119 (|has| |#1| (-1040 (-567)))) (((-3 (-567) "failed") $) 117 (|has| |#1| (-1040 (-567))))) (-2051 ((|#1| $) 186) (((-1179) $) 137 (|has| |#1| (-1040 (-1179)))) (((-410 (-567)) $) 120 (|has| |#1| (-1040 (-567)))) (((-567) $) 118 (|has| |#1| (-1040 (-567))))) (-2357 (($ $ $) 61)) (-1423 (((-690 (-567)) (-690 $)) 160 (|has| |#1| (-640 (-567)))) (((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) 159 (|has| |#1| (-640 (-567)))) (((-2 (|:| -4208 (-690 |#1|)) (|:| |vec| (-1269 |#1|))) (-690 $) (-1269 $)) 158) (((-690 |#1|) (-690 $)) 157)) (-3588 (((-3 $ "failed") $) 37)) (-1359 (($) 145 (|has| |#1| (-548)))) (-2368 (($ $ $) 62)) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) 57)) (-3502 (((-112) $) 79)) (-3137 (((-112) $) 130 (|has| |#1| (-821)))) (-3193 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) 154 (|has| |#1| (-888 (-567)))) (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) 153 (|has| |#1| (-888 (-381))))) (-4346 (((-112) $) 35)) (-1863 (($ $) 149)) (-1447 ((|#1| $) 151)) (-3067 (((-3 $ "failed") $) 116 (|has| |#1| (-1154)))) (-3465 (((-112) $) 129 (|has| |#1| (-821)))) (-1469 (((-3 (-645 $) "failed") (-645 $) $) 58)) (-1365 (($ $ $) 126 (|has| |#1| (-851)))) (-3002 (($ $ $) 125 (|has| |#1| (-851)))) (-3841 (($ (-1 |#1| |#1|) $) 177)) (-2751 (($ $ $) 52) (($ (-645 $)) 51)) (-2516 (((-1161) $) 10)) (-2949 (($ $) 78)) (-2694 (($) 115 (|has| |#1| (-1154)) CONST)) (-3437 (((-1122) $) 11)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) 50)) (-2785 (($ $ $) 54) (($ (-645 $)) 53)) (-2554 (($ $) 146 (|has| |#1| (-308)))) (-3969 ((|#1| $) 143 (|has| |#1| (-548)))) (-3551 (((-421 (-1175 $)) (-1175 $)) 140 (|has| |#1| (-911)))) (-2016 (((-421 (-1175 $)) (-1175 $)) 139 (|has| |#1| (-911)))) (-2717 (((-421 $) $) 82)) (-2905 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2400 (((-3 $ "failed") $ $) 48)) (-2372 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-2642 (($ $ (-645 |#1|) (-645 |#1|)) 183 (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) 182 (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) 181 (|has| |#1| (-310 |#1|))) (($ $ (-645 (-295 |#1|))) 180 (|has| |#1| (-310 |#1|))) (($ $ (-645 (-1179)) (-645 |#1|)) 179 (|has| |#1| (-517 (-1179) |#1|))) (($ $ (-1179) |#1|) 178 (|has| |#1| (-517 (-1179) |#1|)))) (-2460 (((-772) $) 64)) (-1801 (($ $ |#1|) 184 (|has| |#1| (-287 |#1| |#1|)))) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) 63)) (-1616 (($ $) 176 (|has| |#1| (-233))) (($ $ (-772)) 174 (|has| |#1| (-233))) (($ $ (-1179)) 172 (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179))) 171 (|has| |#1| (-902 (-1179)))) (($ $ (-1179) (-772)) 170 (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) 169 (|has| |#1| (-902 (-1179)))) (($ $ (-1 |#1| |#1|) (-772)) 162) (($ $ (-1 |#1| |#1|)) 161)) (-1762 (($ $) 148)) (-1462 ((|#1| $) 150)) (-3902 (((-894 (-567)) $) 156 (|has| |#1| (-615 (-894 (-567))))) (((-894 (-381)) $) 155 (|has| |#1| (-615 (-894 (-381))))) (((-539) $) 133 (|has| |#1| (-615 (-539)))) (((-381) $) 132 (|has| |#1| (-1024))) (((-225) $) 131 (|has| |#1| (-1024)))) (-2616 (((-3 (-1269 $) "failed") (-690 $)) 142 (-1686 (|has| $ (-145)) (|has| |#1| (-911))))) (-4129 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-410 (-567))) 74) (($ |#1|) 189) (($ (-1179)) 135 (|has| |#1| (-1040 (-1179))))) (-2118 (((-3 $ "failed") $) 134 (-2811 (|has| |#1| (-145)) (-1686 (|has| $ (-145)) (|has| |#1| (-911)))))) (-2746 (((-772)) 32 T CONST)) (-1689 ((|#1| $) 144 (|has| |#1| (-548)))) (-3357 (((-112) $ $) 9)) (-3731 (((-112) $ $) 45)) (-1547 (($ $) 127 (|has| |#1| (-821)))) (-1733 (($) 19 T CONST)) (-1744 (($) 34 T CONST)) (-2647 (($ $) 175 (|has| |#1| (-233))) (($ $ (-772)) 173 (|has| |#1| (-233))) (($ $ (-1179)) 168 (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179))) 167 (|has| |#1| (-902 (-1179)))) (($ $ (-1179) (-772)) 166 (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) 165 (|has| |#1| (-902 (-1179)))) (($ $ (-1 |#1| |#1|) (-772)) 164) (($ $ (-1 |#1| |#1|)) 163)) (-3004 (((-112) $ $) 123 (|has| |#1| (-851)))) (-2980 (((-112) $ $) 122 (|has| |#1| (-851)))) (-2946 (((-112) $ $) 6)) (-2993 (((-112) $ $) 124 (|has| |#1| (-851)))) (-2968 (((-112) $ $) 121 (|has| |#1| (-851)))) (-3069 (($ $ $) 73) (($ |#1| |#1|) 152)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 77)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 76) (($ (-410 (-567)) $) 75) (($ |#1| $) 188) (($ $ |#1|) 187)))
(((-994 |#1|) (-140) (-559)) (T -994))
-((-3060 (*1 *1 *2 *2) (-12 (-4 *1 (-994 *2)) (-4 *2 (-559)))) (-1448 (*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-559)))) (-1460 (*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-559)))) (-3530 (*1 *1 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-559)))) (-1967 (*1 *1 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-559)))) (-3093 (*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-559)) (-4 *2 (-308)))) (-4094 (*1 *1 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-559)) (-4 *2 (-308)))) (-1348 (*1 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-548)) (-4 *2 (-559)))) (-1423 (*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-559)) (-4 *2 (-548)))) (-2780 (*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-559)) (-4 *2 (-548)))))
-(-13 (-365) (-38 |t#1|) (-1040 |t#1|) (-340 |t#1|) (-231 |t#1|) (-379 |t#1|) (-886 |t#1|) (-403 |t#1|) (-10 -8 (-15 -3060 ($ |t#1| |t#1|)) (-15 -1448 (|t#1| $)) (-15 -1460 (|t#1| $)) (-15 -3530 ($ $)) (-15 -1967 ($ $)) (IF (|has| |t#1| (-1153)) (-6 (-1153)) |%noBranch|) (IF (|has| |t#1| (-1040 (-567))) (PROGN (-6 (-1040 (-567))) (-6 (-1040 (-410 (-567))))) |%noBranch|) (IF (|has| |t#1| (-851)) (-6 (-851)) |%noBranch|) (IF (|has| |t#1| (-821)) (-6 (-821)) |%noBranch|) (IF (|has| |t#1| (-1024)) (-6 (-1024)) |%noBranch|) (IF (|has| |t#1| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1040 (-1178))) (-6 (-1040 (-1178))) |%noBranch|) (IF (|has| |t#1| (-308)) (PROGN (-15 -3093 (|t#1| $)) (-15 -4094 ($ $))) |%noBranch|) (IF (|has| |t#1| (-548)) (PROGN (-15 -1348 ($)) (-15 -1423 (|t#1| $)) (-15 -2780 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-911)) (-6 (-911)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #0#) . T) ((-617 (-567)) . T) ((-617 #1=(-1178)) |has| |#1| (-1040 (-1178))) ((-617 |#1|) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-615 (-225)) |has| |#1| (-1024)) ((-615 (-381)) |has| |#1| (-1024)) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-615 (-894 (-381))) |has| |#1| (-615 (-894 (-381)))) ((-615 (-894 (-567))) |has| |#1| (-615 (-894 (-567)))) ((-231 |#1|) . T) ((-233) |has| |#1| (-233)) ((-243) . T) ((-287 |#1| $) |has| |#1| (-287 |#1| |#1|)) ((-291) . T) ((-308) . T) ((-310 |#1|) |has| |#1| (-310 |#1|)) ((-365) . T) ((-340 |#1|) . T) ((-379 |#1|) . T) ((-403 |#1|) . T) ((-455) . T) ((-517 (-1178) |#1|) |has| |#1| (-517 (-1178) |#1|)) ((-517 |#1| |#1|) |has| |#1| (-310 |#1|)) ((-559) . T) ((-647 #0#) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) . T) ((-641 |#1|) . T) ((-641 $) . T) ((-640 (-567)) |has| |#1| (-640 (-567))) ((-640 |#1|) . T) ((-718 #0#) . T) ((-718 |#1|) . T) ((-718 $) . T) ((-727) . T) ((-792) |has| |#1| (-821)) ((-793) |has| |#1| (-821)) ((-795) |has| |#1| (-821)) ((-796) |has| |#1| (-821)) ((-821) |has| |#1| (-821)) ((-849) |has| |#1| (-821)) ((-851) -2800 (|has| |#1| (-851)) (|has| |#1| (-821))) ((-902 (-1178)) |has| |#1| (-902 (-1178))) ((-888 (-381)) |has| |#1| (-888 (-381))) ((-888 (-567)) |has| |#1| (-888 (-567))) ((-886 |#1|) . T) ((-911) |has| |#1| (-911)) ((-922) . T) ((-1024) |has| |#1| (-1024)) ((-1040 (-410 (-567))) |has| |#1| (-1040 (-567))) ((-1040 (-567)) |has| |#1| (-1040 (-567))) ((-1040 #1#) |has| |#1| (-1040 (-1178))) ((-1040 |#1|) . T) ((-1053 #0#) . T) ((-1053 |#1|) . T) ((-1053 $) . T) ((-1058 #0#) . T) ((-1058 |#1|) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1153) |has| |#1| (-1153)) ((-1218) . T) ((-1222) . T))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2585 (($) NIL T CONST)) (-1919 (($ (-1144 |#1| |#2|)) 11)) (-2114 (((-1144 |#1| |#2|) $) 12)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-1787 ((|#2| $ (-240 |#1| |#2|)) 16)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-1716 (($) NIL T CONST)) (-2936 (((-112) $ $) NIL)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL)))
-(((-995 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -1919 ($ (-1144 |#1| |#2|))) (-15 -2114 ((-1144 |#1| |#2|) $)) (-15 -1787 (|#2| $ (-240 |#1| |#2|))))) (-923) (-365)) (T -995))
-((-1919 (*1 *1 *2) (-12 (-5 *2 (-1144 *3 *4)) (-14 *3 (-923)) (-4 *4 (-365)) (-5 *1 (-995 *3 *4)))) (-2114 (*1 *2 *1) (-12 (-5 *2 (-1144 *3 *4)) (-5 *1 (-995 *3 *4)) (-14 *3 (-923)) (-4 *4 (-365)))) (-1787 (*1 *2 *1 *3) (-12 (-5 *3 (-240 *4 *2)) (-14 *4 (-923)) (-4 *2 (-365)) (-5 *1 (-995 *4 *2)))))
-(-13 (-21) (-10 -8 (-15 -1919 ($ (-1144 |#1| |#2|))) (-15 -2114 ((-1144 |#1| |#2|) $)) (-15 -1787 (|#2| $ (-240 |#1| |#2|)))))
-((-2403 (((-112) $ $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-3097 (((-1137) $) 9)) (-4132 (((-863) $) 15) (($ (-1183)) NIL) (((-1183) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)))
-(((-996) (-13 (-1085) (-10 -8 (-15 -3097 ((-1137) $))))) (T -996))
-((-3097 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-996)))))
-(-13 (-1085) (-10 -8 (-15 -3097 ((-1137) $))))
-((-2403 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-3445 (((-112) $ (-772)) 8)) (-2585 (($) 7 T CONST)) (-3061 (($ $) 47)) (-2777 (((-645 |#1|) $) 31 (|has| $ (-6 -4418)))) (-2077 (((-112) $ (-772)) 9)) (-2279 (((-645 |#1|) $) 30 (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-3731 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) 36)) (-2863 (((-112) $ (-772)) 10)) (-1699 (((-772) $) 46)) (-1419 (((-1160) $) 22 (|has| |#1| (-1102)))) (-1566 ((|#1| $) 40)) (-2531 (($ |#1| $) 41)) (-3430 (((-1122) $) 21 (|has| |#1| (-1102)))) (-3303 ((|#1| $) 45)) (-1793 ((|#1| $) 42)) (-3025 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) 14)) (-3136 ((|#1| |#1| $) 49)) (-3572 (((-112) $) 11)) (-3498 (($) 12)) (-2234 ((|#1| $) 48)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4418))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-4305 (($ $) 13)) (-4132 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-1745 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-3551 (($ (-645 |#1|)) 43)) (-3090 ((|#1| $) 44)) (-1853 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2414 (((-772) $) 6 (|has| $ (-6 -4418)))))
-(((-997 |#1|) (-140) (-1218)) (T -997))
-((-3136 (*1 *2 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1218)))) (-2234 (*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1218)))) (-3061 (*1 *1 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1218)))) (-1699 (*1 *2 *1) (-12 (-4 *1 (-997 *3)) (-4 *3 (-1218)) (-5 *2 (-772)))) (-3303 (*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1218)))) (-3090 (*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1218)))))
-(-13 (-107 |t#1|) (-10 -8 (-6 -4418) (-15 -3136 (|t#1| |t#1| $)) (-15 -2234 (|t#1| $)) (-15 -3061 ($ $)) (-15 -1699 ((-772) $)) (-15 -3303 (|t#1| $)) (-15 -3090 (|t#1| $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2800 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-1102) |has| |#1| (-1102)) ((-1218) . T))
-((-2460 (((-112) $) 43)) (-3753 (((-3 (-567) "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 |#2| "failed") $) 46)) (-2038 (((-567) $) NIL) (((-410 (-567)) $) NIL) ((|#2| $) 44)) (-2085 (((-3 (-410 (-567)) "failed") $) 78)) (-1862 (((-112) $) 72)) (-2331 (((-410 (-567)) $) 76)) (-1433 (((-112) $) 42)) (-2475 ((|#2| $) 22)) (-3829 (($ (-1 |#2| |#2|) $) 19)) (-2939 (($ $) 58)) (-1593 (($ $) NIL) (($ $ (-772)) NIL) (($ $ (-1178)) NIL) (($ $ (-645 (-1178))) NIL) (($ $ (-1178) (-772)) NIL) (($ $ (-645 (-1178)) (-645 (-772))) NIL) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-1 |#2| |#2|)) 35)) (-3893 (((-539) $) 67)) (-1823 (($ $) 17)) (-4132 (((-863) $) 53) (($ (-567)) 39) (($ |#2|) 37) (($ (-410 (-567))) NIL)) (-4221 (((-772)) 10)) (-2219 ((|#2| $) 71)) (-2936 (((-112) $ $) 26)) (-2958 (((-112) $ $) 69)) (-3045 (($ $) 30) (($ $ $) 29)) (-3033 (($ $ $) 27)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 34) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 31) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL)))
-(((-998 |#1| |#2|) (-10 -8 (-15 -4132 (|#1| (-410 (-567)))) (-15 -2958 ((-112) |#1| |#1|)) (-15 * (|#1| (-410 (-567)) |#1|)) (-15 * (|#1| |#1| (-410 (-567)))) (-15 -2939 (|#1| |#1|)) (-15 -3893 ((-539) |#1|)) (-15 -2085 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2331 ((-410 (-567)) |#1|)) (-15 -1862 ((-112) |#1|)) (-15 -2219 (|#2| |#1|)) (-15 -2475 (|#2| |#1|)) (-15 -1823 (|#1| |#1|)) (-15 -3829 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1593 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1593 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -1593 (|#1| |#1| (-645 (-1178)) (-645 (-772)))) (-15 -1593 (|#1| |#1| (-1178) (-772))) (-15 -1593 (|#1| |#1| (-645 (-1178)))) (-15 -1593 (|#1| |#1| (-1178))) (-15 -1593 (|#1| |#1| (-772))) (-15 -1593 (|#1| |#1|)) (-15 -3753 ((-3 |#2| "failed") |#1|)) (-15 -2038 (|#2| |#1|)) (-15 -2038 ((-410 (-567)) |#1|)) (-15 -3753 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2038 ((-567) |#1|)) (-15 -3753 ((-3 (-567) "failed") |#1|)) (-15 -4132 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4221 ((-772))) (-15 -4132 (|#1| (-567))) (-15 -1433 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3045 (|#1| |#1| |#1|)) (-15 -3045 (|#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 -2460 ((-112) |#1|)) (-15 * (|#1| (-923) |#1|)) (-15 -3033 (|#1| |#1| |#1|)) (-15 -4132 ((-863) |#1|)) (-15 -2936 ((-112) |#1| |#1|))) (-999 |#2|) (-172)) (T -998))
-((-4221 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-772)) (-5 *1 (-998 *3 *4)) (-4 *3 (-999 *4)))))
-(-10 -8 (-15 -4132 (|#1| (-410 (-567)))) (-15 -2958 ((-112) |#1| |#1|)) (-15 * (|#1| (-410 (-567)) |#1|)) (-15 * (|#1| |#1| (-410 (-567)))) (-15 -2939 (|#1| |#1|)) (-15 -3893 ((-539) |#1|)) (-15 -2085 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2331 ((-410 (-567)) |#1|)) (-15 -1862 ((-112) |#1|)) (-15 -2219 (|#2| |#1|)) (-15 -2475 (|#2| |#1|)) (-15 -1823 (|#1| |#1|)) (-15 -3829 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1593 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1593 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -1593 (|#1| |#1| (-645 (-1178)) (-645 (-772)))) (-15 -1593 (|#1| |#1| (-1178) (-772))) (-15 -1593 (|#1| |#1| (-645 (-1178)))) (-15 -1593 (|#1| |#1| (-1178))) (-15 -1593 (|#1| |#1| (-772))) (-15 -1593 (|#1| |#1|)) (-15 -3753 ((-3 |#2| "failed") |#1|)) (-15 -2038 (|#2| |#1|)) (-15 -2038 ((-410 (-567)) |#1|)) (-15 -3753 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2038 ((-567) |#1|)) (-15 -3753 ((-3 (-567) "failed") |#1|)) (-15 -4132 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4221 ((-772))) (-15 -4132 (|#1| (-567))) (-15 -1433 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3045 (|#1| |#1| |#1|)) (-15 -3045 (|#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 -2460 ((-112) |#1|)) (-15 * (|#1| (-923) |#1|)) (-15 -3033 (|#1| |#1| |#1|)) (-15 -4132 ((-863) |#1|)) (-15 -2936 ((-112) |#1| |#1|)))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-3753 (((-3 (-567) "failed") $) 127 (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) 125 (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) 122)) (-2038 (((-567) $) 126 (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) 124 (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) 123)) (-2630 (((-690 (-567)) (-690 $)) 97 (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) 96 (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 |#1|)) (|:| |vec| (-1268 |#1|))) (-690 $) (-1268 $)) 95) (((-690 |#1|) (-690 $)) 94)) (-2109 (((-3 $ "failed") $) 37)) (-2727 ((|#1| $) 87)) (-2085 (((-3 (-410 (-567)) "failed") $) 83 (|has| |#1| (-548)))) (-1862 (((-112) $) 85 (|has| |#1| (-548)))) (-2331 (((-410 (-567)) $) 84 (|has| |#1| (-548)))) (-3079 (($ |#1| |#1| |#1| |#1|) 88)) (-1433 (((-112) $) 35)) (-2475 ((|#1| $) 89)) (-1354 (($ $ $) 76 (|has| |#1| (-851)))) (-2981 (($ $ $) 75 (|has| |#1| (-851)))) (-3829 (($ (-1 |#1| |#1|) $) 98)) (-1419 (((-1160) $) 10)) (-2939 (($ $) 80 (|has| |#1| (-365)))) (-2048 ((|#1| $) 90)) (-3926 ((|#1| $) 91)) (-3421 ((|#1| $) 92)) (-3430 (((-1122) $) 11)) (-2631 (($ $ (-645 |#1|) (-645 |#1|)) 104 (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) 103 (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) 102 (|has| |#1| (-310 |#1|))) (($ $ (-645 (-295 |#1|))) 101 (|has| |#1| (-310 |#1|))) (($ $ (-645 (-1178)) (-645 |#1|)) 100 (|has| |#1| (-517 (-1178) |#1|))) (($ $ (-1178) |#1|) 99 (|has| |#1| (-517 (-1178) |#1|)))) (-1787 (($ $ |#1|) 105 (|has| |#1| (-287 |#1| |#1|)))) (-1593 (($ $) 121 (|has| |#1| (-233))) (($ $ (-772)) 119 (|has| |#1| (-233))) (($ $ (-1178)) 117 (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178))) 116 (|has| |#1| (-902 (-1178)))) (($ $ (-1178) (-772)) 115 (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) 114 (|has| |#1| (-902 (-1178)))) (($ $ (-1 |#1| |#1|) (-772)) 107) (($ $ (-1 |#1| |#1|)) 106)) (-3893 (((-539) $) 81 (|has| |#1| (-615 (-539))))) (-1823 (($ $) 93)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 44) (($ (-410 (-567))) 70 (-2800 (|has| |#1| (-365)) (|has| |#1| (-1040 (-410 (-567))))))) (-1903 (((-3 $ "failed") $) 82 (|has| |#1| (-145)))) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-2219 ((|#1| $) 86 (|has| |#1| (-1062)))) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2637 (($ $) 120 (|has| |#1| (-233))) (($ $ (-772)) 118 (|has| |#1| (-233))) (($ $ (-1178)) 113 (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178))) 112 (|has| |#1| (-902 (-1178)))) (($ $ (-1178) (-772)) 111 (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) 110 (|has| |#1| (-902 (-1178)))) (($ $ (-1 |#1| |#1|) (-772)) 109) (($ $ (-1 |#1| |#1|)) 108)) (-2997 (((-112) $ $) 73 (|has| |#1| (-851)))) (-2971 (((-112) $ $) 72 (|has| |#1| (-851)))) (-2936 (((-112) $ $) 6)) (-2984 (((-112) $ $) 74 (|has| |#1| (-851)))) (-2958 (((-112) $ $) 71 (|has| |#1| (-851)))) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 79 (|has| |#1| (-365)))) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ $ (-410 (-567))) 78 (|has| |#1| (-365))) (($ (-410 (-567)) $) 77 (|has| |#1| (-365)))))
+((-3069 (*1 *1 *2 *2) (-12 (-4 *1 (-994 *2)) (-4 *2 (-559)))) (-1447 (*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-559)))) (-1462 (*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-559)))) (-1863 (*1 *1 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-559)))) (-1762 (*1 *1 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-559)))) (-4014 (*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-559)) (-4 *2 (-308)))) (-2554 (*1 *1 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-559)) (-4 *2 (-308)))) (-1359 (*1 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-548)) (-4 *2 (-559)))) (-1689 (*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-559)) (-4 *2 (-548)))) (-3969 (*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-559)) (-4 *2 (-548)))))
+(-13 (-365) (-38 |t#1|) (-1040 |t#1|) (-340 |t#1|) (-231 |t#1|) (-379 |t#1|) (-886 |t#1|) (-403 |t#1|) (-10 -8 (-15 -3069 ($ |t#1| |t#1|)) (-15 -1447 (|t#1| $)) (-15 -1462 (|t#1| $)) (-15 -1863 ($ $)) (-15 -1762 ($ $)) (IF (|has| |t#1| (-1154)) (-6 (-1154)) |%noBranch|) (IF (|has| |t#1| (-1040 (-567))) (PROGN (-6 (-1040 (-567))) (-6 (-1040 (-410 (-567))))) |%noBranch|) (IF (|has| |t#1| (-851)) (-6 (-851)) |%noBranch|) (IF (|has| |t#1| (-821)) (-6 (-821)) |%noBranch|) (IF (|has| |t#1| (-1024)) (-6 (-1024)) |%noBranch|) (IF (|has| |t#1| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1040 (-1179))) (-6 (-1040 (-1179))) |%noBranch|) (IF (|has| |t#1| (-308)) (PROGN (-15 -4014 (|t#1| $)) (-15 -2554 ($ $))) |%noBranch|) (IF (|has| |t#1| (-548)) (PROGN (-15 -1359 ($)) (-15 -1689 (|t#1| $)) (-15 -3969 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-911)) (-6 (-911)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #0#) . T) ((-617 (-567)) . T) ((-617 #1=(-1179)) |has| |#1| (-1040 (-1179))) ((-617 |#1|) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-615 (-225)) |has| |#1| (-1024)) ((-615 (-381)) |has| |#1| (-1024)) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-615 (-894 (-381))) |has| |#1| (-615 (-894 (-381)))) ((-615 (-894 (-567))) |has| |#1| (-615 (-894 (-567)))) ((-231 |#1|) . T) ((-233) |has| |#1| (-233)) ((-243) . T) ((-287 |#1| $) |has| |#1| (-287 |#1| |#1|)) ((-291) . T) ((-308) . T) ((-310 |#1|) |has| |#1| (-310 |#1|)) ((-365) . T) ((-340 |#1|) . T) ((-379 |#1|) . T) ((-403 |#1|) . T) ((-455) . T) ((-517 (-1179) |#1|) |has| |#1| (-517 (-1179) |#1|)) ((-517 |#1| |#1|) |has| |#1| (-310 |#1|)) ((-559) . T) ((-647 #0#) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) . T) ((-641 |#1|) . T) ((-641 $) . T) ((-640 (-567)) |has| |#1| (-640 (-567))) ((-640 |#1|) . T) ((-718 #0#) . T) ((-718 |#1|) . T) ((-718 $) . T) ((-727) . T) ((-792) |has| |#1| (-821)) ((-793) |has| |#1| (-821)) ((-795) |has| |#1| (-821)) ((-796) |has| |#1| (-821)) ((-821) |has| |#1| (-821)) ((-849) |has| |#1| (-821)) ((-851) -2811 (|has| |#1| (-851)) (|has| |#1| (-821))) ((-902 (-1179)) |has| |#1| (-902 (-1179))) ((-888 (-381)) |has| |#1| (-888 (-381))) ((-888 (-567)) |has| |#1| (-888 (-567))) ((-886 |#1|) . T) ((-911) |has| |#1| (-911)) ((-922) . T) ((-1024) |has| |#1| (-1024)) ((-1040 (-410 (-567))) |has| |#1| (-1040 (-567))) ((-1040 (-567)) |has| |#1| (-1040 (-567))) ((-1040 #1#) |has| |#1| (-1040 (-1179))) ((-1040 |#1|) . T) ((-1053 #0#) . T) ((-1053 |#1|) . T) ((-1053 $) . T) ((-1058 #0#) . T) ((-1058 |#1|) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1154) |has| |#1| (-1154)) ((-1219) . T) ((-1223) . T))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-2376 (((-3 $ "failed") $ $) NIL)) (-3647 (($) NIL T CONST)) (-3446 (($ (-1144 |#1| |#2|)) 11)) (-2124 (((-1144 |#1| |#2|) $) 12)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-1801 ((|#2| $ (-240 |#1| |#2|)) 16)) (-4129 (((-863) $) NIL)) (-3357 (((-112) $ $) NIL)) (-1733 (($) NIL T CONST)) (-2946 (((-112) $ $) NIL)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL)))
+(((-995 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -3446 ($ (-1144 |#1| |#2|))) (-15 -2124 ((-1144 |#1| |#2|) $)) (-15 -1801 (|#2| $ (-240 |#1| |#2|))))) (-923) (-365)) (T -995))
+((-3446 (*1 *1 *2) (-12 (-5 *2 (-1144 *3 *4)) (-14 *3 (-923)) (-4 *4 (-365)) (-5 *1 (-995 *3 *4)))) (-2124 (*1 *2 *1) (-12 (-5 *2 (-1144 *3 *4)) (-5 *1 (-995 *3 *4)) (-14 *3 (-923)) (-4 *4 (-365)))) (-1801 (*1 *2 *1 *3) (-12 (-5 *3 (-240 *4 *2)) (-14 *4 (-923)) (-4 *2 (-365)) (-5 *1 (-995 *4 *2)))))
+(-13 (-21) (-10 -8 (-15 -3446 ($ (-1144 |#1| |#2|))) (-15 -2124 ((-1144 |#1| |#2|) $)) (-15 -1801 (|#2| $ (-240 |#1| |#2|)))))
+((-2412 (((-112) $ $) NIL)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-3106 (((-1137) $) 9)) (-4129 (((-863) $) 15) (($ (-1184)) NIL) (((-1184) $) NIL)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)))
+(((-996) (-13 (-1085) (-10 -8 (-15 -3106 ((-1137) $))))) (T -996))
+((-3106 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-996)))))
+(-13 (-1085) (-10 -8 (-15 -3106 ((-1137) $))))
+((-2412 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-1563 (((-112) $ (-772)) 8)) (-3647 (($) 7 T CONST)) (-3900 (($ $) 47)) (-2799 (((-645 |#1|) $) 31 (|has| $ (-6 -4422)))) (-4093 (((-112) $ (-772)) 9)) (-1942 (((-645 |#1|) $) 30 (|has| $ (-6 -4422)))) (-3237 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-3751 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#1| |#1|) $) 36)) (-1986 (((-112) $ (-772)) 10)) (-2334 (((-772) $) 46)) (-2516 (((-1161) $) 22 (|has| |#1| (-1102)))) (-2706 ((|#1| $) 40)) (-2646 (($ |#1| $) 41)) (-3437 (((-1122) $) 21 (|has| |#1| (-1102)))) (-1595 ((|#1| $) 45)) (-3949 ((|#1| $) 42)) (-4233 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3875 (((-112) $ $) 14)) (-3254 ((|#1| |#1| $) 49)) (-3885 (((-112) $) 11)) (-2701 (($) 12)) (-2852 ((|#1| $) 48)) (-3447 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4422))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-4309 (($ $) 13)) (-4129 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-3357 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-3700 (($ (-645 |#1|)) 43)) (-1877 ((|#1| $) 44)) (-3436 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4422)))) (-2946 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2423 (((-772) $) 6 (|has| $ (-6 -4422)))))
+(((-997 |#1|) (-140) (-1219)) (T -997))
+((-3254 (*1 *2 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1219)))) (-2852 (*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1219)))) (-3900 (*1 *1 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1219)))) (-2334 (*1 *2 *1) (-12 (-4 *1 (-997 *3)) (-4 *3 (-1219)) (-5 *2 (-772)))) (-1595 (*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1219)))) (-1877 (*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1219)))))
+(-13 (-107 |t#1|) (-10 -8 (-6 -4422) (-15 -3254 (|t#1| |t#1| $)) (-15 -2852 (|t#1| $)) (-15 -3900 ($ $)) (-15 -2334 ((-772) $)) (-15 -1595 (|t#1| $)) (-15 -1877 (|t#1| $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2811 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-1102) |has| |#1| (-1102)) ((-1219) . T))
+((-3791 (((-112) $) 43)) (-3765 (((-3 (-567) "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 |#2| "failed") $) 46)) (-2051 (((-567) $) NIL) (((-410 (-567)) $) NIL) ((|#2| $) 44)) (-1605 (((-3 (-410 (-567)) "failed") $) 78)) (-2492 (((-112) $) 72)) (-2778 (((-410 (-567)) $) 76)) (-4346 (((-112) $) 42)) (-2724 ((|#2| $) 22)) (-3841 (($ (-1 |#2| |#2|) $) 19)) (-2949 (($ $) 58)) (-1616 (($ $) NIL) (($ $ (-772)) NIL) (($ $ (-1179)) NIL) (($ $ (-645 (-1179))) NIL) (($ $ (-1179) (-772)) NIL) (($ $ (-645 (-1179)) (-645 (-772))) NIL) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-1 |#2| |#2|)) 35)) (-3902 (((-539) $) 67)) (-1672 (($ $) 17)) (-4129 (((-863) $) 53) (($ (-567)) 39) (($ |#2|) 37) (($ (-410 (-567))) NIL)) (-2746 (((-772)) 10)) (-1547 ((|#2| $) 71)) (-2946 (((-112) $ $) 26)) (-2968 (((-112) $ $) 69)) (-3053 (($ $) 30) (($ $ $) 29)) (-3041 (($ $ $) 27)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 34) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 31) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL)))
+(((-998 |#1| |#2|) (-10 -8 (-15 -4129 (|#1| (-410 (-567)))) (-15 -2968 ((-112) |#1| |#1|)) (-15 * (|#1| (-410 (-567)) |#1|)) (-15 * (|#1| |#1| (-410 (-567)))) (-15 -2949 (|#1| |#1|)) (-15 -3902 ((-539) |#1|)) (-15 -1605 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2778 ((-410 (-567)) |#1|)) (-15 -2492 ((-112) |#1|)) (-15 -1547 (|#2| |#1|)) (-15 -2724 (|#2| |#1|)) (-15 -1672 (|#1| |#1|)) (-15 -3841 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1616 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1616 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -1616 (|#1| |#1| (-645 (-1179)) (-645 (-772)))) (-15 -1616 (|#1| |#1| (-1179) (-772))) (-15 -1616 (|#1| |#1| (-645 (-1179)))) (-15 -1616 (|#1| |#1| (-1179))) (-15 -1616 (|#1| |#1| (-772))) (-15 -1616 (|#1| |#1|)) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -2051 (|#2| |#1|)) (-15 -2051 ((-410 (-567)) |#1|)) (-15 -3765 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2051 ((-567) |#1|)) (-15 -3765 ((-3 (-567) "failed") |#1|)) (-15 -4129 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2746 ((-772))) (-15 -4129 (|#1| (-567))) (-15 -4346 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3053 (|#1| |#1| |#1|)) (-15 -3053 (|#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 -3791 ((-112) |#1|)) (-15 * (|#1| (-923) |#1|)) (-15 -3041 (|#1| |#1| |#1|)) (-15 -4129 ((-863) |#1|)) (-15 -2946 ((-112) |#1| |#1|))) (-999 |#2|) (-172)) (T -998))
+((-2746 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-772)) (-5 *1 (-998 *3 *4)) (-4 *3 (-999 *4)))))
+(-10 -8 (-15 -4129 (|#1| (-410 (-567)))) (-15 -2968 ((-112) |#1| |#1|)) (-15 * (|#1| (-410 (-567)) |#1|)) (-15 * (|#1| |#1| (-410 (-567)))) (-15 -2949 (|#1| |#1|)) (-15 -3902 ((-539) |#1|)) (-15 -1605 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2778 ((-410 (-567)) |#1|)) (-15 -2492 ((-112) |#1|)) (-15 -1547 (|#2| |#1|)) (-15 -2724 (|#2| |#1|)) (-15 -1672 (|#1| |#1|)) (-15 -3841 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1616 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1616 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -1616 (|#1| |#1| (-645 (-1179)) (-645 (-772)))) (-15 -1616 (|#1| |#1| (-1179) (-772))) (-15 -1616 (|#1| |#1| (-645 (-1179)))) (-15 -1616 (|#1| |#1| (-1179))) (-15 -1616 (|#1| |#1| (-772))) (-15 -1616 (|#1| |#1|)) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -2051 (|#2| |#1|)) (-15 -2051 ((-410 (-567)) |#1|)) (-15 -3765 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2051 ((-567) |#1|)) (-15 -3765 ((-3 (-567) "failed") |#1|)) (-15 -4129 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2746 ((-772))) (-15 -4129 (|#1| (-567))) (-15 -4346 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3053 (|#1| |#1| |#1|)) (-15 -3053 (|#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 -3791 ((-112) |#1|)) (-15 * (|#1| (-923) |#1|)) (-15 -3041 (|#1| |#1| |#1|)) (-15 -4129 ((-863) |#1|)) (-15 -2946 ((-112) |#1| |#1|)))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-2376 (((-3 $ "failed") $ $) 20)) (-3647 (($) 18 T CONST)) (-3765 (((-3 (-567) "failed") $) 127 (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) 125 (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) 122)) (-2051 (((-567) $) 126 (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) 124 (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) 123)) (-1423 (((-690 (-567)) (-690 $)) 97 (|has| |#1| (-640 (-567)))) (((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) 96 (|has| |#1| (-640 (-567)))) (((-2 (|:| -4208 (-690 |#1|)) (|:| |vec| (-1269 |#1|))) (-690 $) (-1269 $)) 95) (((-690 |#1|) (-690 $)) 94)) (-3588 (((-3 $ "failed") $) 37)) (-2738 ((|#1| $) 87)) (-1605 (((-3 (-410 (-567)) "failed") $) 83 (|has| |#1| (-548)))) (-2492 (((-112) $) 85 (|has| |#1| (-548)))) (-2778 (((-410 (-567)) $) 84 (|has| |#1| (-548)))) (-2121 (($ |#1| |#1| |#1| |#1|) 88)) (-4346 (((-112) $) 35)) (-2724 ((|#1| $) 89)) (-1365 (($ $ $) 76 (|has| |#1| (-851)))) (-3002 (($ $ $) 75 (|has| |#1| (-851)))) (-3841 (($ (-1 |#1| |#1|) $) 98)) (-2516 (((-1161) $) 10)) (-2949 (($ $) 80 (|has| |#1| (-365)))) (-3493 ((|#1| $) 90)) (-1536 ((|#1| $) 91)) (-4087 ((|#1| $) 92)) (-3437 (((-1122) $) 11)) (-2642 (($ $ (-645 |#1|) (-645 |#1|)) 104 (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) 103 (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) 102 (|has| |#1| (-310 |#1|))) (($ $ (-645 (-295 |#1|))) 101 (|has| |#1| (-310 |#1|))) (($ $ (-645 (-1179)) (-645 |#1|)) 100 (|has| |#1| (-517 (-1179) |#1|))) (($ $ (-1179) |#1|) 99 (|has| |#1| (-517 (-1179) |#1|)))) (-1801 (($ $ |#1|) 105 (|has| |#1| (-287 |#1| |#1|)))) (-1616 (($ $) 121 (|has| |#1| (-233))) (($ $ (-772)) 119 (|has| |#1| (-233))) (($ $ (-1179)) 117 (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179))) 116 (|has| |#1| (-902 (-1179)))) (($ $ (-1179) (-772)) 115 (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) 114 (|has| |#1| (-902 (-1179)))) (($ $ (-1 |#1| |#1|) (-772)) 107) (($ $ (-1 |#1| |#1|)) 106)) (-3902 (((-539) $) 81 (|has| |#1| (-615 (-539))))) (-1672 (($ $) 93)) (-4129 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 44) (($ (-410 (-567))) 70 (-2811 (|has| |#1| (-365)) (|has| |#1| (-1040 (-410 (-567))))))) (-2118 (((-3 $ "failed") $) 82 (|has| |#1| (-145)))) (-2746 (((-772)) 32 T CONST)) (-3357 (((-112) $ $) 9)) (-1547 ((|#1| $) 86 (|has| |#1| (-1062)))) (-1733 (($) 19 T CONST)) (-1744 (($) 34 T CONST)) (-2647 (($ $) 120 (|has| |#1| (-233))) (($ $ (-772)) 118 (|has| |#1| (-233))) (($ $ (-1179)) 113 (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179))) 112 (|has| |#1| (-902 (-1179)))) (($ $ (-1179) (-772)) 111 (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) 110 (|has| |#1| (-902 (-1179)))) (($ $ (-1 |#1| |#1|) (-772)) 109) (($ $ (-1 |#1| |#1|)) 108)) (-3004 (((-112) $ $) 73 (|has| |#1| (-851)))) (-2980 (((-112) $ $) 72 (|has| |#1| (-851)))) (-2946 (((-112) $ $) 6)) (-2993 (((-112) $ $) 74 (|has| |#1| (-851)))) (-2968 (((-112) $ $) 71 (|has| |#1| (-851)))) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 79 (|has| |#1| (-365)))) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ $ (-410 (-567))) 78 (|has| |#1| (-365))) (($ (-410 (-567)) $) 77 (|has| |#1| (-365)))))
(((-999 |#1|) (-140) (-172)) (T -999))
-((-1823 (*1 *1 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-172)))) (-3421 (*1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-172)))) (-3926 (*1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-172)))) (-2048 (*1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-172)))) (-2475 (*1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-172)))) (-3079 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-999 *2)) (-4 *2 (-172)))) (-2727 (*1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-172)))) (-2219 (*1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-172)) (-4 *2 (-1062)))) (-1862 (*1 *2 *1) (-12 (-4 *1 (-999 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-112)))) (-2331 (*1 *2 *1) (-12 (-4 *1 (-999 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-410 (-567))))) (-2085 (*1 *2 *1) (|partial| -12 (-4 *1 (-999 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-410 (-567))))))
-(-13 (-38 |t#1|) (-414 |t#1|) (-231 |t#1|) (-340 |t#1|) (-379 |t#1|) (-10 -8 (-15 -1823 ($ $)) (-15 -3421 (|t#1| $)) (-15 -3926 (|t#1| $)) (-15 -2048 (|t#1| $)) (-15 -2475 (|t#1| $)) (-15 -3079 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -2727 (|t#1| $)) (IF (|has| |t#1| (-291)) (-6 (-291)) |%noBranch|) (IF (|has| |t#1| (-851)) (-6 (-851)) |%noBranch|) (IF (|has| |t#1| (-365)) (-6 (-243)) |%noBranch|) (IF (|has| |t#1| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1062)) (-15 -2219 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-548)) (PROGN (-15 -1862 ((-112) $)) (-15 -2331 ((-410 (-567)) $)) (-15 -2085 ((-3 (-410 (-567)) "failed") $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) |has| |#1| (-365)) ((-38 |#1|) . T) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-365)) ((-111 |#1| |#1|) . T) ((-111 $ $) -2800 (|has| |#1| (-365)) (|has| |#1| (-291))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #0#) -2800 (|has| |#1| (-1040 (-410 (-567)))) (|has| |#1| (-365))) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-614 (-863)) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-231 |#1|) . T) ((-233) |has| |#1| (-233)) ((-243) |has| |#1| (-365)) ((-287 |#1| $) |has| |#1| (-287 |#1| |#1|)) ((-291) -2800 (|has| |#1| (-365)) (|has| |#1| (-291))) ((-310 |#1|) |has| |#1| (-310 |#1|)) ((-340 |#1|) . T) ((-379 |#1|) . T) ((-414 |#1|) . T) ((-517 (-1178) |#1|) |has| |#1| (-517 (-1178) |#1|)) ((-517 |#1| |#1|) |has| |#1| (-310 |#1|)) ((-647 #0#) |has| |#1| (-365)) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) |has| |#1| (-365)) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) |has| |#1| (-365)) ((-641 |#1|) . T) ((-640 (-567)) |has| |#1| (-640 (-567))) ((-640 |#1|) . T) ((-718 #0#) |has| |#1| (-365)) ((-718 |#1|) . T) ((-727) . T) ((-851) |has| |#1| (-851)) ((-902 (-1178)) |has| |#1| (-902 (-1178))) ((-1040 (-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) ((-1040 (-567)) |has| |#1| (-1040 (-567))) ((-1040 |#1|) . T) ((-1053 #0#) |has| |#1| (-365)) ((-1053 |#1|) . T) ((-1053 $) -2800 (|has| |#1| (-365)) (|has| |#1| (-291))) ((-1058 #0#) |has| |#1| (-365)) ((-1058 |#1|) . T) ((-1058 $) -2800 (|has| |#1| (-365)) (|has| |#1| (-291))) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T))
-((-3829 ((|#3| (-1 |#4| |#2|) |#1|) 16)))
-(((-1000 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3829 (|#3| (-1 |#4| |#2|) |#1|))) (-999 |#2|) (-172) (-999 |#4|) (-172)) (T -1000))
-((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-999 *6)) (-5 *1 (-1000 *4 *5 *2 *6)) (-4 *4 (-999 *5)))))
-(-10 -7 (-15 -3829 (|#3| (-1 |#4| |#2|) |#1|)))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2585 (($) NIL T CONST)) (-3753 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) NIL)) (-2038 (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) NIL)) (-2630 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 |#1|)) (|:| |vec| (-1268 |#1|))) (-690 $) (-1268 $)) NIL) (((-690 |#1|) (-690 $)) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-2727 ((|#1| $) 12)) (-2085 (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-548)))) (-1862 (((-112) $) NIL (|has| |#1| (-548)))) (-2331 (((-410 (-567)) $) NIL (|has| |#1| (-548)))) (-3079 (($ |#1| |#1| |#1| |#1|) 16)) (-1433 (((-112) $) NIL)) (-2475 ((|#1| $) NIL)) (-1354 (($ $ $) NIL (|has| |#1| (-851)))) (-2981 (($ $ $) NIL (|has| |#1| (-851)))) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) NIL (|has| |#1| (-365)))) (-2048 ((|#1| $) 15)) (-3926 ((|#1| $) 14)) (-3421 ((|#1| $) 13)) (-3430 (((-1122) $) NIL)) (-2631 (($ $ (-645 |#1|) (-645 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ (-645 (-295 |#1|))) NIL (|has| |#1| (-310 |#1|))) (($ $ (-645 (-1178)) (-645 |#1|)) NIL (|has| |#1| (-517 (-1178) |#1|))) (($ $ (-1178) |#1|) NIL (|has| |#1| (-517 (-1178) |#1|)))) (-1787 (($ $ |#1|) NIL (|has| |#1| (-287 |#1| |#1|)))) (-1593 (($ $) NIL (|has| |#1| (-233))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $ (-1178)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3893 (((-539) $) NIL (|has| |#1| (-615 (-539))))) (-1823 (($ $) NIL)) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) NIL) (($ (-410 (-567))) NIL (-2800 (|has| |#1| (-365)) (|has| |#1| (-1040 (-410 (-567))))))) (-1903 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-4221 (((-772)) NIL T CONST)) (-1745 (((-112) $ $) NIL)) (-2219 ((|#1| $) NIL (|has| |#1| (-1062)))) (-1716 (($) 8 T CONST)) (-1728 (($) 10 T CONST)) (-2637 (($ $) NIL (|has| |#1| (-233))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $ (-1178)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2997 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2971 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2958 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL (|has| |#1| (-365)))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-410 (-567))) NIL (|has| |#1| (-365))) (($ (-410 (-567)) $) NIL (|has| |#1| (-365)))))
+((-1672 (*1 *1 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-172)))) (-4087 (*1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-172)))) (-1536 (*1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-172)))) (-3493 (*1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-172)))) (-2724 (*1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-172)))) (-2121 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-999 *2)) (-4 *2 (-172)))) (-2738 (*1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-172)))) (-1547 (*1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-172)) (-4 *2 (-1062)))) (-2492 (*1 *2 *1) (-12 (-4 *1 (-999 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-112)))) (-2778 (*1 *2 *1) (-12 (-4 *1 (-999 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-410 (-567))))) (-1605 (*1 *2 *1) (|partial| -12 (-4 *1 (-999 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-410 (-567))))))
+(-13 (-38 |t#1|) (-414 |t#1|) (-231 |t#1|) (-340 |t#1|) (-379 |t#1|) (-10 -8 (-15 -1672 ($ $)) (-15 -4087 (|t#1| $)) (-15 -1536 (|t#1| $)) (-15 -3493 (|t#1| $)) (-15 -2724 (|t#1| $)) (-15 -2121 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -2738 (|t#1| $)) (IF (|has| |t#1| (-291)) (-6 (-291)) |%noBranch|) (IF (|has| |t#1| (-851)) (-6 (-851)) |%noBranch|) (IF (|has| |t#1| (-365)) (-6 (-243)) |%noBranch|) (IF (|has| |t#1| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1062)) (-15 -1547 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-548)) (PROGN (-15 -2492 ((-112) $)) (-15 -2778 ((-410 (-567)) $)) (-15 -1605 ((-3 (-410 (-567)) "failed") $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) |has| |#1| (-365)) ((-38 |#1|) . T) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-365)) ((-111 |#1| |#1|) . T) ((-111 $ $) -2811 (|has| |#1| (-365)) (|has| |#1| (-291))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #0#) -2811 (|has| |#1| (-1040 (-410 (-567)))) (|has| |#1| (-365))) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-614 (-863)) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-231 |#1|) . T) ((-233) |has| |#1| (-233)) ((-243) |has| |#1| (-365)) ((-287 |#1| $) |has| |#1| (-287 |#1| |#1|)) ((-291) -2811 (|has| |#1| (-365)) (|has| |#1| (-291))) ((-310 |#1|) |has| |#1| (-310 |#1|)) ((-340 |#1|) . T) ((-379 |#1|) . T) ((-414 |#1|) . T) ((-517 (-1179) |#1|) |has| |#1| (-517 (-1179) |#1|)) ((-517 |#1| |#1|) |has| |#1| (-310 |#1|)) ((-647 #0#) |has| |#1| (-365)) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) |has| |#1| (-365)) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) |has| |#1| (-365)) ((-641 |#1|) . T) ((-640 (-567)) |has| |#1| (-640 (-567))) ((-640 |#1|) . T) ((-718 #0#) |has| |#1| (-365)) ((-718 |#1|) . T) ((-727) . T) ((-851) |has| |#1| (-851)) ((-902 (-1179)) |has| |#1| (-902 (-1179))) ((-1040 (-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) ((-1040 (-567)) |has| |#1| (-1040 (-567))) ((-1040 |#1|) . T) ((-1053 #0#) |has| |#1| (-365)) ((-1053 |#1|) . T) ((-1053 $) -2811 (|has| |#1| (-365)) (|has| |#1| (-291))) ((-1058 #0#) |has| |#1| (-365)) ((-1058 |#1|) . T) ((-1058 $) -2811 (|has| |#1| (-365)) (|has| |#1| (-291))) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T))
+((-3841 ((|#3| (-1 |#4| |#2|) |#1|) 16)))
+(((-1000 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3841 (|#3| (-1 |#4| |#2|) |#1|))) (-999 |#2|) (-172) (-999 |#4|) (-172)) (T -1000))
+((-3841 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-999 *6)) (-5 *1 (-1000 *4 *5 *2 *6)) (-4 *4 (-999 *5)))))
+(-10 -7 (-15 -3841 (|#3| (-1 |#4| |#2|) |#1|)))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-2376 (((-3 $ "failed") $ $) NIL)) (-3647 (($) NIL T CONST)) (-3765 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) NIL)) (-2051 (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) NIL)) (-1423 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4208 (-690 |#1|)) (|:| |vec| (-1269 |#1|))) (-690 $) (-1269 $)) NIL) (((-690 |#1|) (-690 $)) NIL)) (-3588 (((-3 $ "failed") $) NIL)) (-2738 ((|#1| $) 12)) (-1605 (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-548)))) (-2492 (((-112) $) NIL (|has| |#1| (-548)))) (-2778 (((-410 (-567)) $) NIL (|has| |#1| (-548)))) (-2121 (($ |#1| |#1| |#1| |#1|) 16)) (-4346 (((-112) $) NIL)) (-2724 ((|#1| $) NIL)) (-1365 (($ $ $) NIL (|has| |#1| (-851)))) (-3002 (($ $ $) NIL (|has| |#1| (-851)))) (-3841 (($ (-1 |#1| |#1|) $) NIL)) (-2516 (((-1161) $) NIL)) (-2949 (($ $) NIL (|has| |#1| (-365)))) (-3493 ((|#1| $) 15)) (-1536 ((|#1| $) 14)) (-4087 ((|#1| $) 13)) (-3437 (((-1122) $) NIL)) (-2642 (($ $ (-645 |#1|) (-645 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ (-645 (-295 |#1|))) NIL (|has| |#1| (-310 |#1|))) (($ $ (-645 (-1179)) (-645 |#1|)) NIL (|has| |#1| (-517 (-1179) |#1|))) (($ $ (-1179) |#1|) NIL (|has| |#1| (-517 (-1179) |#1|)))) (-1801 (($ $ |#1|) NIL (|has| |#1| (-287 |#1| |#1|)))) (-1616 (($ $) NIL (|has| |#1| (-233))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $ (-1179)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3902 (((-539) $) NIL (|has| |#1| (-615 (-539))))) (-1672 (($ $) NIL)) (-4129 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) NIL) (($ (-410 (-567))) NIL (-2811 (|has| |#1| (-365)) (|has| |#1| (-1040 (-410 (-567))))))) (-2118 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2746 (((-772)) NIL T CONST)) (-3357 (((-112) $ $) NIL)) (-1547 ((|#1| $) NIL (|has| |#1| (-1062)))) (-1733 (($) 8 T CONST)) (-1744 (($) 10 T CONST)) (-2647 (($ $) NIL (|has| |#1| (-233))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $ (-1179)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3004 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2980 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2946 (((-112) $ $) NIL)) (-2993 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2968 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL (|has| |#1| (-365)))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-410 (-567))) NIL (|has| |#1| (-365))) (($ (-410 (-567)) $) NIL (|has| |#1| (-365)))))
(((-1001 |#1|) (-999 |#1|) (-172)) (T -1001))
NIL
(-999 |#1|)
-((-2403 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3445 (((-112) $ (-772)) NIL)) (-2585 (($) NIL T CONST)) (-3061 (($ $) 23)) (-2314 (($ (-645 |#1|)) 33)) (-2777 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-2077 (((-112) $ (-772)) NIL)) (-2279 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-3731 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-1699 (((-772) $) 26)) (-1419 (((-1160) $) NIL (|has| |#1| (-1102)))) (-1566 ((|#1| $) 28)) (-2531 (($ |#1| $) 17)) (-3430 (((-1122) $) NIL (|has| |#1| (-1102)))) (-3303 ((|#1| $) 27)) (-1793 ((|#1| $) 22)) (-3025 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) NIL)) (-3136 ((|#1| |#1| $) 16)) (-3572 (((-112) $) 18)) (-3498 (($) NIL)) (-2234 ((|#1| $) 21)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-4305 (($ $) NIL)) (-4132 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-1745 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3551 (($ (-645 |#1|)) NIL)) (-3090 ((|#1| $) 30)) (-1853 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2414 (((-772) $) NIL (|has| $ (-6 -4418)))))
-(((-1002 |#1|) (-13 (-997 |#1|) (-10 -8 (-15 -2314 ($ (-645 |#1|))))) (-1102)) (T -1002))
-((-2314 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-5 *1 (-1002 *3)))))
-(-13 (-997 |#1|) (-10 -8 (-15 -2314 ($ (-645 |#1|)))))
-((-2716 (($ $) 12)) (-2651 (($ $ (-567)) 13)))
-(((-1003 |#1|) (-10 -8 (-15 -2716 (|#1| |#1|)) (-15 -2651 (|#1| |#1| (-567)))) (-1004)) (T -1003))
-NIL
-(-10 -8 (-15 -2716 (|#1| |#1|)) (-15 -2651 (|#1| |#1| (-567))))
-((-2716 (($ $) 6)) (-2651 (($ $ (-567)) 7)) (** (($ $ (-410 (-567))) 8)))
+((-2412 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1563 (((-112) $ (-772)) NIL)) (-3647 (($) NIL T CONST)) (-3900 (($ $) 23)) (-3980 (($ (-645 |#1|)) 33)) (-2799 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-4093 (((-112) $ (-772)) NIL)) (-1942 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-3237 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3751 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#1| |#1|) $) NIL)) (-1986 (((-112) $ (-772)) NIL)) (-2334 (((-772) $) 26)) (-2516 (((-1161) $) NIL (|has| |#1| (-1102)))) (-2706 ((|#1| $) 28)) (-2646 (($ |#1| $) 17)) (-3437 (((-1122) $) NIL (|has| |#1| (-1102)))) (-1595 ((|#1| $) 27)) (-3949 ((|#1| $) 22)) (-4233 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3875 (((-112) $ $) NIL)) (-3254 ((|#1| |#1| $) 16)) (-3885 (((-112) $) 18)) (-2701 (($) NIL)) (-2852 ((|#1| $) 21)) (-3447 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-4309 (($ $) NIL)) (-4129 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-3357 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3700 (($ (-645 |#1|)) NIL)) (-1877 ((|#1| $) 30)) (-3436 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2423 (((-772) $) NIL (|has| $ (-6 -4422)))))
+(((-1002 |#1|) (-13 (-997 |#1|) (-10 -8 (-15 -3980 ($ (-645 |#1|))))) (-1102)) (T -1002))
+((-3980 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-5 *1 (-1002 *3)))))
+(-13 (-997 |#1|) (-10 -8 (-15 -3980 ($ (-645 |#1|)))))
+((-2728 (($ $) 12)) (-3698 (($ $ (-567)) 13)))
+(((-1003 |#1|) (-10 -8 (-15 -2728 (|#1| |#1|)) (-15 -3698 (|#1| |#1| (-567)))) (-1004)) (T -1003))
+NIL
+(-10 -8 (-15 -2728 (|#1| |#1|)) (-15 -3698 (|#1| |#1| (-567))))
+((-2728 (($ $) 6)) (-3698 (($ $ (-567)) 7)) (** (($ $ (-410 (-567))) 8)))
(((-1004) (-140)) (T -1004))
-((** (*1 *1 *1 *2) (-12 (-4 *1 (-1004)) (-5 *2 (-410 (-567))))) (-2651 (*1 *1 *1 *2) (-12 (-4 *1 (-1004)) (-5 *2 (-567)))) (-2716 (*1 *1 *1) (-4 *1 (-1004))))
-(-13 (-10 -8 (-15 -2716 ($ $)) (-15 -2651 ($ $ (-567))) (-15 ** ($ $ (-410 (-567))))))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3852 (((-2 (|:| |num| (-1268 |#2|)) (|:| |den| |#2|)) $) NIL)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL (|has| (-410 |#2|) (-365)))) (-4381 (($ $) NIL (|has| (-410 |#2|) (-365)))) (-3949 (((-112) $) NIL (|has| (-410 |#2|) (-365)))) (-2141 (((-690 (-410 |#2|)) (-1268 $)) NIL) (((-690 (-410 |#2|))) NIL)) (-4293 (((-410 |#2|) $) NIL)) (-3400 (((-1191 (-923) (-772)) (-567)) NIL (|has| (-410 |#2|) (-351)))) (-3472 (((-3 $ "failed") $ $) NIL)) (-3248 (($ $) NIL (|has| (-410 |#2|) (-365)))) (-2908 (((-421 $) $) NIL (|has| (-410 |#2|) (-365)))) (-3609 (((-112) $ $) NIL (|has| (-410 |#2|) (-365)))) (-2375 (((-772)) NIL (|has| (-410 |#2|) (-370)))) (-1331 (((-112)) NIL)) (-1404 (((-112) |#1|) 173) (((-112) |#2|) 177)) (-2585 (($) NIL T CONST)) (-3753 (((-3 (-567) "failed") $) NIL (|has| (-410 |#2|) (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| (-410 |#2|) (-1040 (-410 (-567))))) (((-3 (-410 |#2|) "failed") $) NIL)) (-2038 (((-567) $) NIL (|has| (-410 |#2|) (-1040 (-567)))) (((-410 (-567)) $) NIL (|has| (-410 |#2|) (-1040 (-410 (-567))))) (((-410 |#2|) $) NIL)) (-3658 (($ (-1268 (-410 |#2|)) (-1268 $)) NIL) (($ (-1268 (-410 |#2|))) 81) (($ (-1268 |#2|) |#2|) NIL)) (-2443 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-410 |#2|) (-351)))) (-2349 (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-1811 (((-690 (-410 |#2|)) $ (-1268 $)) NIL) (((-690 (-410 |#2|)) $) NIL)) (-2630 (((-690 (-567)) (-690 $)) NIL (|has| (-410 |#2|) (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (|has| (-410 |#2|) (-640 (-567)))) (((-2 (|:| -2316 (-690 (-410 |#2|))) (|:| |vec| (-1268 (-410 |#2|)))) (-690 $) (-1268 $)) NIL) (((-690 (-410 |#2|)) (-690 $)) NIL)) (-1639 (((-1268 $) (-1268 $)) NIL)) (-2477 (($ |#3|) 75) (((-3 $ "failed") (-410 |#3|)) NIL (|has| (-410 |#2|) (-365)))) (-2109 (((-3 $ "failed") $) NIL)) (-1381 (((-645 (-645 |#1|))) NIL (|has| |#1| (-370)))) (-3282 (((-112) |#1| |#1|) NIL)) (-1954 (((-923)) NIL)) (-1348 (($) NIL (|has| (-410 |#2|) (-370)))) (-3863 (((-112)) NIL)) (-3347 (((-112) |#1|) 61) (((-112) |#2|) 175)) (-2360 (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL (|has| (-410 |#2|) (-365)))) (-3501 (($ $) NIL)) (-3431 (($) NIL (|has| (-410 |#2|) (-351)))) (-2722 (((-112) $) NIL (|has| (-410 |#2|) (-351)))) (-4225 (($ $ (-772)) NIL (|has| (-410 |#2|) (-351))) (($ $) NIL (|has| (-410 |#2|) (-351)))) (-3184 (((-112) $) NIL (|has| (-410 |#2|) (-365)))) (-4384 (((-923) $) NIL (|has| (-410 |#2|) (-351))) (((-834 (-923)) $) NIL (|has| (-410 |#2|) (-351)))) (-1433 (((-112) $) NIL)) (-3663 (((-772)) NIL)) (-4126 (((-1268 $) (-1268 $)) NIL)) (-2475 (((-410 |#2|) $) NIL)) (-4334 (((-645 (-954 |#1|)) (-1178)) NIL (|has| |#1| (-365)))) (-3972 (((-3 $ "failed") $) NIL (|has| (-410 |#2|) (-351)))) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| (-410 |#2|) (-365)))) (-4206 ((|#3| $) NIL (|has| (-410 |#2|) (-365)))) (-4249 (((-923) $) NIL (|has| (-410 |#2|) (-370)))) (-2465 ((|#3| $) NIL)) (-2740 (($ (-645 $)) NIL (|has| (-410 |#2|) (-365))) (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-1419 (((-1160) $) NIL)) (-4143 (((-690 (-410 |#2|))) 57)) (-3264 (((-690 (-410 |#2|))) 56)) (-2939 (($ $) NIL (|has| (-410 |#2|) (-365)))) (-4236 (($ (-1268 |#2|) |#2|) 82)) (-1900 (((-690 (-410 |#2|))) 55)) (-3564 (((-690 (-410 |#2|))) 54)) (-4253 (((-2 (|:| |num| (-690 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 97)) (-3270 (((-2 (|:| |num| (-1268 |#2|)) (|:| |den| |#2|)) $) 88)) (-3992 (((-1268 $)) 51)) (-3675 (((-1268 $)) 50)) (-1928 (((-112) $) NIL)) (-4255 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-2672 (($) NIL (|has| (-410 |#2|) (-351)) CONST)) (-3768 (($ (-923)) NIL (|has| (-410 |#2|) (-370)))) (-4050 (((-3 |#2| "failed")) 70)) (-3430 (((-1122) $) NIL)) (-2666 (((-772)) NIL)) (-1398 (($) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| (-410 |#2|) (-365)))) (-2774 (($ (-645 $)) NIL (|has| (-410 |#2|) (-365))) (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-1796 (((-645 (-2 (|:| -2706 (-567)) (|:| -3458 (-567))))) NIL (|has| (-410 |#2|) (-351)))) (-2706 (((-421 $) $) NIL (|has| (-410 |#2|) (-365)))) (-3402 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-410 |#2|) (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL (|has| (-410 |#2|) (-365)))) (-2391 (((-3 $ "failed") $ $) NIL (|has| (-410 |#2|) (-365)))) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| (-410 |#2|) (-365)))) (-1990 (((-772) $) NIL (|has| (-410 |#2|) (-365)))) (-1787 ((|#1| $ |#1| |#1|) NIL)) (-3346 (((-3 |#2| "failed")) 68)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL (|has| (-410 |#2|) (-365)))) (-3788 (((-410 |#2|) (-1268 $)) NIL) (((-410 |#2|)) 47)) (-2491 (((-772) $) NIL (|has| (-410 |#2|) (-351))) (((-3 (-772) "failed") $ $) NIL (|has| (-410 |#2|) (-351)))) (-1593 (($ $ (-1 (-410 |#2|) (-410 |#2|)) (-772)) NIL (|has| (-410 |#2|) (-365))) (($ $ (-1 (-410 |#2|) (-410 |#2|))) NIL (|has| (-410 |#2|) (-365))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-645 (-1178)) (-645 (-772))) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1178))))) (($ $ (-1178) (-772)) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1178))))) (($ $ (-645 (-1178))) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1178))))) (($ $ (-1178)) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1178))))) (($ $ (-772)) NIL (-2800 (-12 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-351)))) (($ $) NIL (-2800 (-12 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-351))))) (-1866 (((-690 (-410 |#2|)) (-1268 $) (-1 (-410 |#2|) (-410 |#2|))) NIL (|has| (-410 |#2|) (-365)))) (-3341 ((|#3|) 58)) (-1527 (($) NIL (|has| (-410 |#2|) (-351)))) (-2887 (((-1268 (-410 |#2|)) $ (-1268 $)) NIL) (((-690 (-410 |#2|)) (-1268 $) (-1268 $)) NIL) (((-1268 (-410 |#2|)) $) 83) (((-690 (-410 |#2|)) (-1268 $)) NIL)) (-3893 (((-1268 (-410 |#2|)) $) NIL) (($ (-1268 (-410 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (|has| (-410 |#2|) (-351)))) (-4000 (((-1268 $) (-1268 $)) NIL)) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ (-410 |#2|)) NIL) (($ (-410 (-567))) NIL (-2800 (|has| (-410 |#2|) (-1040 (-410 (-567)))) (|has| (-410 |#2|) (-365)))) (($ $) NIL (|has| (-410 |#2|) (-365)))) (-1903 (($ $) NIL (|has| (-410 |#2|) (-351))) (((-3 $ "failed") $) NIL (|has| (-410 |#2|) (-145)))) (-2155 ((|#3| $) NIL)) (-4221 (((-772)) NIL T CONST)) (-2104 (((-112)) 65)) (-2542 (((-112) |#1|) 178) (((-112) |#2|) 179)) (-1745 (((-112) $ $) NIL)) (-2623 (((-1268 $)) 143)) (-3816 (((-112) $ $) NIL (|has| (-410 |#2|) (-365)))) (-2250 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1562 (((-112)) NIL)) (-1716 (($) 109 T CONST)) (-1728 (($) NIL T CONST)) (-2637 (($ $ (-1 (-410 |#2|) (-410 |#2|)) (-772)) NIL (|has| (-410 |#2|) (-365))) (($ $ (-1 (-410 |#2|) (-410 |#2|))) NIL (|has| (-410 |#2|) (-365))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1178))))) (($ $ (-1178) (-772)) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1178))))) (($ $ (-645 (-1178))) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1178))))) (($ $ (-1178)) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1178))))) (($ $ (-772)) NIL (-2800 (-12 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-351)))) (($ $) NIL (-2800 (-12 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-351))))) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL (|has| (-410 |#2|) (-365)))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 |#2|)) NIL) (($ (-410 |#2|) $) NIL) (($ (-410 (-567)) $) NIL (|has| (-410 |#2|) (-365))) (($ $ (-410 (-567))) NIL (|has| (-410 |#2|) (-365)))))
-(((-1005 |#1| |#2| |#3| |#4| |#5|) (-344 |#1| |#2| |#3|) (-1222) (-1244 |#1|) (-1244 (-410 |#2|)) (-410 |#2|) (-772)) (T -1005))
+((** (*1 *1 *1 *2) (-12 (-4 *1 (-1004)) (-5 *2 (-410 (-567))))) (-3698 (*1 *1 *1 *2) (-12 (-4 *1 (-1004)) (-5 *2 (-567)))) (-2728 (*1 *1 *1) (-4 *1 (-1004))))
+(-13 (-10 -8 (-15 -2728 ($ $)) (-15 -3698 ($ $ (-567))) (-15 ** ($ $ (-410 (-567))))))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-1723 (((-2 (|:| |num| (-1269 |#2|)) (|:| |den| |#2|)) $) NIL)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) NIL (|has| (-410 |#2|) (-365)))) (-4287 (($ $) NIL (|has| (-410 |#2|) (-365)))) (-2286 (((-112) $) NIL (|has| (-410 |#2|) (-365)))) (-3478 (((-690 (-410 |#2|)) (-1269 $)) NIL) (((-690 (-410 |#2|))) NIL)) (-4293 (((-410 |#2|) $) NIL)) (-3792 (((-1192 (-923) (-772)) (-567)) NIL (|has| (-410 |#2|) (-351)))) (-2376 (((-3 $ "failed") $ $) NIL)) (-3659 (($ $) NIL (|has| (-410 |#2|) (-365)))) (-3597 (((-421 $) $) NIL (|has| (-410 |#2|) (-365)))) (-3696 (((-112) $ $) NIL (|has| (-410 |#2|) (-365)))) (-2384 (((-772)) NIL (|has| (-410 |#2|) (-370)))) (-1597 (((-112)) NIL)) (-1516 (((-112) |#1|) 173) (((-112) |#2|) 177)) (-3647 (($) NIL T CONST)) (-3765 (((-3 (-567) "failed") $) NIL (|has| (-410 |#2|) (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| (-410 |#2|) (-1040 (-410 (-567))))) (((-3 (-410 |#2|) "failed") $) NIL)) (-2051 (((-567) $) NIL (|has| (-410 |#2|) (-1040 (-567)))) (((-410 (-567)) $) NIL (|has| (-410 |#2|) (-1040 (-410 (-567))))) (((-410 |#2|) $) NIL)) (-3111 (($ (-1269 (-410 |#2|)) (-1269 $)) NIL) (($ (-1269 (-410 |#2|))) 81) (($ (-1269 |#2|) |#2|) NIL)) (-2998 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-410 |#2|) (-351)))) (-2357 (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-3012 (((-690 (-410 |#2|)) $ (-1269 $)) NIL) (((-690 (-410 |#2|)) $) NIL)) (-1423 (((-690 (-567)) (-690 $)) NIL (|has| (-410 |#2|) (-640 (-567)))) (((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (|has| (-410 |#2|) (-640 (-567)))) (((-2 (|:| -4208 (-690 (-410 |#2|))) (|:| |vec| (-1269 (-410 |#2|)))) (-690 $) (-1269 $)) NIL) (((-690 (-410 |#2|)) (-690 $)) NIL)) (-4381 (((-1269 $) (-1269 $)) NIL)) (-2494 (($ |#3|) 75) (((-3 $ "failed") (-410 |#3|)) NIL (|has| (-410 |#2|) (-365)))) (-3588 (((-3 $ "failed") $) NIL)) (-3476 (((-645 (-645 |#1|))) NIL (|has| |#1| (-370)))) (-3459 (((-112) |#1| |#1|) NIL)) (-1976 (((-923)) NIL)) (-1359 (($) NIL (|has| (-410 |#2|) (-370)))) (-3240 (((-112)) NIL)) (-3644 (((-112) |#1|) 61) (((-112) |#2|) 175)) (-2368 (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) NIL (|has| (-410 |#2|) (-365)))) (-2989 (($ $) NIL)) (-2870 (($) NIL (|has| (-410 |#2|) (-351)))) (-1305 (((-112) $) NIL (|has| (-410 |#2|) (-351)))) (-3144 (($ $ (-772)) NIL (|has| (-410 |#2|) (-351))) (($ $) NIL (|has| (-410 |#2|) (-351)))) (-3502 (((-112) $) NIL (|has| (-410 |#2|) (-365)))) (-3362 (((-923) $) NIL (|has| (-410 |#2|) (-351))) (((-834 (-923)) $) NIL (|has| (-410 |#2|) (-351)))) (-4346 (((-112) $) NIL)) (-2375 (((-772)) NIL)) (-3001 (((-1269 $) (-1269 $)) NIL)) (-2724 (((-410 |#2|) $) NIL)) (-2825 (((-645 (-954 |#1|)) (-1179)) NIL (|has| |#1| (-365)))) (-3067 (((-3 $ "failed") $) NIL (|has| (-410 |#2|) (-351)))) (-1469 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| (-410 |#2|) (-365)))) (-1914 ((|#3| $) NIL (|has| (-410 |#2|) (-365)))) (-3474 (((-923) $) NIL (|has| (-410 |#2|) (-370)))) (-2484 ((|#3| $) NIL)) (-2751 (($ (-645 $)) NIL (|has| (-410 |#2|) (-365))) (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-2516 (((-1161) $) NIL)) (-1848 (((-690 (-410 |#2|))) 57)) (-1392 (((-690 (-410 |#2|))) 56)) (-2949 (($ $) NIL (|has| (-410 |#2|) (-365)))) (-1781 (($ (-1269 |#2|) |#2|) 82)) (-3089 (((-690 (-410 |#2|))) 55)) (-1334 (((-690 (-410 |#2|))) 54)) (-3033 (((-2 (|:| |num| (-690 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 97)) (-1835 (((-2 (|:| |num| (-1269 |#2|)) (|:| |den| |#2|)) $) 88)) (-3230 (((-1269 $)) 51)) (-4180 (((-1269 $)) 50)) (-3098 (((-112) $) NIL)) (-2039 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-2694 (($) NIL (|has| (-410 |#2|) (-351)) CONST)) (-3779 (($ (-923)) NIL (|has| (-410 |#2|) (-370)))) (-1867 (((-3 |#2| "failed")) 70)) (-3437 (((-1122) $) NIL)) (-1438 (((-772)) NIL)) (-1399 (($) NIL)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| (-410 |#2|) (-365)))) (-2785 (($ (-645 $)) NIL (|has| (-410 |#2|) (-365))) (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-4151 (((-645 (-2 (|:| -2717 (-567)) (|:| -3468 (-567))))) NIL (|has| (-410 |#2|) (-351)))) (-2717 (((-421 $) $) NIL (|has| (-410 |#2|) (-365)))) (-2905 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-410 |#2|) (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) NIL (|has| (-410 |#2|) (-365)))) (-2400 (((-3 $ "failed") $ $) NIL (|has| (-410 |#2|) (-365)))) (-2372 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| (-410 |#2|) (-365)))) (-2460 (((-772) $) NIL (|has| (-410 |#2|) (-365)))) (-1801 ((|#1| $ |#1| |#1|) NIL)) (-3524 (((-3 |#2| "failed")) 68)) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) NIL (|has| (-410 |#2|) (-365)))) (-2433 (((-410 |#2|) (-1269 $)) NIL) (((-410 |#2|)) 47)) (-1760 (((-772) $) NIL (|has| (-410 |#2|) (-351))) (((-3 (-772) "failed") $ $) NIL (|has| (-410 |#2|) (-351)))) (-1616 (($ $ (-1 (-410 |#2|) (-410 |#2|)) (-772)) NIL (|has| (-410 |#2|) (-365))) (($ $ (-1 (-410 |#2|) (-410 |#2|))) NIL (|has| (-410 |#2|) (-365))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-645 (-1179)) (-645 (-772))) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1179))))) (($ $ (-1179) (-772)) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1179))))) (($ $ (-645 (-1179))) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1179))))) (($ $ (-1179)) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1179))))) (($ $ (-772)) NIL (-2811 (-12 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-351)))) (($ $) NIL (-2811 (-12 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-351))))) (-1648 (((-690 (-410 |#2|)) (-1269 $) (-1 (-410 |#2|) (-410 |#2|))) NIL (|has| (-410 |#2|) (-365)))) (-3169 ((|#3|) 58)) (-4273 (($) NIL (|has| (-410 |#2|) (-351)))) (-3088 (((-1269 (-410 |#2|)) $ (-1269 $)) NIL) (((-690 (-410 |#2|)) (-1269 $) (-1269 $)) NIL) (((-1269 (-410 |#2|)) $) 83) (((-690 (-410 |#2|)) (-1269 $)) NIL)) (-3902 (((-1269 (-410 |#2|)) $) NIL) (($ (-1269 (-410 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-2616 (((-3 (-1269 $) "failed") (-690 $)) NIL (|has| (-410 |#2|) (-351)))) (-2965 (((-1269 $) (-1269 $)) NIL)) (-4129 (((-863) $) NIL) (($ (-567)) NIL) (($ (-410 |#2|)) NIL) (($ (-410 (-567))) NIL (-2811 (|has| (-410 |#2|) (-1040 (-410 (-567)))) (|has| (-410 |#2|) (-365)))) (($ $) NIL (|has| (-410 |#2|) (-365)))) (-2118 (($ $) NIL (|has| (-410 |#2|) (-351))) (((-3 $ "failed") $) NIL (|has| (-410 |#2|) (-145)))) (-2231 ((|#3| $) NIL)) (-2746 (((-772)) NIL T CONST)) (-4315 (((-112)) 65)) (-1362 (((-112) |#1|) 178) (((-112) |#2|) 179)) (-3357 (((-112) $ $) NIL)) (-2144 (((-1269 $)) 143)) (-3731 (((-112) $ $) NIL (|has| (-410 |#2|) (-365)))) (-3959 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-2584 (((-112)) NIL)) (-1733 (($) 109 T CONST)) (-1744 (($) NIL T CONST)) (-2647 (($ $ (-1 (-410 |#2|) (-410 |#2|)) (-772)) NIL (|has| (-410 |#2|) (-365))) (($ $ (-1 (-410 |#2|) (-410 |#2|))) NIL (|has| (-410 |#2|) (-365))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1179))))) (($ $ (-1179) (-772)) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1179))))) (($ $ (-645 (-1179))) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1179))))) (($ $ (-1179)) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1179))))) (($ $ (-772)) NIL (-2811 (-12 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-351)))) (($ $) NIL (-2811 (-12 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-351))))) (-2946 (((-112) $ $) NIL)) (-3069 (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL (|has| (-410 |#2|) (-365)))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 |#2|)) NIL) (($ (-410 |#2|) $) NIL) (($ (-410 (-567)) $) NIL (|has| (-410 |#2|) (-365))) (($ $ (-410 (-567))) NIL (|has| (-410 |#2|) (-365)))))
+(((-1005 |#1| |#2| |#3| |#4| |#5|) (-344 |#1| |#2| |#3|) (-1223) (-1245 |#1|) (-1245 (-410 |#2|)) (-410 |#2|) (-772)) (T -1005))
NIL
(-344 |#1| |#2| |#3|)
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-2766 (((-645 (-567)) $) 73)) (-1814 (($ (-645 (-567))) 81)) (-3093 (((-567) $) 48 (|has| (-567) (-308)))) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-4226 (((-421 (-1174 $)) (-1174 $)) NIL (|has| (-567) (-911)))) (-3248 (($ $) NIL)) (-2908 (((-421 $) $) NIL)) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) NIL (|has| (-567) (-911)))) (-3609 (((-112) $ $) NIL)) (-1750 (((-567) $) NIL (|has| (-567) (-821)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 (-567) "failed") $) 60) (((-3 (-1178) "failed") $) NIL (|has| (-567) (-1040 (-1178)))) (((-3 (-410 (-567)) "failed") $) 57 (|has| (-567) (-1040 (-567)))) (((-3 (-567) "failed") $) 60 (|has| (-567) (-1040 (-567))))) (-2038 (((-567) $) NIL) (((-1178) $) NIL (|has| (-567) (-1040 (-1178)))) (((-410 (-567)) $) NIL (|has| (-567) (-1040 (-567)))) (((-567) $) NIL (|has| (-567) (-1040 (-567))))) (-2349 (($ $ $) NIL)) (-2630 (((-690 (-567)) (-690 $)) NIL (|has| (-567) (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (|has| (-567) (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL) (((-690 (-567)) (-690 $)) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-1348 (($) NIL (|has| (-567) (-548)))) (-2360 (($ $ $) NIL)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-3184 (((-112) $) NIL)) (-4294 (((-645 (-567)) $) 79)) (-4336 (((-112) $) NIL (|has| (-567) (-821)))) (-4303 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (|has| (-567) (-888 (-567)))) (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (|has| (-567) (-888 (-381))))) (-1433 (((-112) $) NIL)) (-3530 (($ $) NIL)) (-1448 (((-567) $) 45)) (-3972 (((-3 $ "failed") $) NIL (|has| (-567) (-1153)))) (-3494 (((-112) $) NIL (|has| (-567) (-821)))) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1354 (($ $ $) NIL (|has| (-567) (-851)))) (-2981 (($ $ $) NIL (|has| (-567) (-851)))) (-3829 (($ (-1 (-567) (-567)) $) NIL)) (-2740 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) NIL)) (-2672 (($) NIL (|has| (-567) (-1153)) CONST)) (-3430 (((-1122) $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-2774 (($ $ $) NIL) (($ (-645 $)) NIL)) (-4094 (($ $) NIL (|has| (-567) (-308))) (((-410 (-567)) $) 50)) (-2497 (((-1158 (-567)) $) 78)) (-2258 (($ (-645 (-567)) (-645 (-567))) 82)) (-2780 (((-567) $) 64 (|has| (-567) (-548)))) (-2435 (((-421 (-1174 $)) (-1174 $)) NIL (|has| (-567) (-911)))) (-3517 (((-421 (-1174 $)) (-1174 $)) NIL (|has| (-567) (-911)))) (-2706 (((-421 $) $) NIL)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2391 (((-3 $ "failed") $ $) NIL)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2631 (($ $ (-645 (-567)) (-645 (-567))) NIL (|has| (-567) (-310 (-567)))) (($ $ (-567) (-567)) NIL (|has| (-567) (-310 (-567)))) (($ $ (-295 (-567))) NIL (|has| (-567) (-310 (-567)))) (($ $ (-645 (-295 (-567)))) NIL (|has| (-567) (-310 (-567)))) (($ $ (-645 (-1178)) (-645 (-567))) NIL (|has| (-567) (-517 (-1178) (-567)))) (($ $ (-1178) (-567)) NIL (|has| (-567) (-517 (-1178) (-567))))) (-1990 (((-772) $) NIL)) (-1787 (($ $ (-567)) NIL (|has| (-567) (-287 (-567) (-567))))) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL)) (-1593 (($ $) 15 (|has| (-567) (-233))) (($ $ (-772)) NIL (|has| (-567) (-233))) (($ $ (-1178)) NIL (|has| (-567) (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| (-567) (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| (-567) (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| (-567) (-902 (-1178)))) (($ $ (-1 (-567) (-567)) (-772)) NIL) (($ $ (-1 (-567) (-567))) NIL)) (-1967 (($ $) NIL)) (-1460 (((-567) $) 47)) (-3855 (((-645 (-567)) $) 80)) (-3893 (((-894 (-567)) $) NIL (|has| (-567) (-615 (-894 (-567))))) (((-894 (-381)) $) NIL (|has| (-567) (-615 (-894 (-381))))) (((-539) $) NIL (|has| (-567) (-615 (-539)))) (((-381) $) NIL (|has| (-567) (-1024))) (((-225) $) NIL (|has| (-567) (-1024)))) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| (-567) (-911))))) (-4132 (((-863) $) 107) (($ (-567)) 51) (($ $) NIL) (($ (-410 (-567))) 27) (($ (-567)) 51) (($ (-1178)) NIL (|has| (-567) (-1040 (-1178)))) (((-410 (-567)) $) 25)) (-1903 (((-3 $ "failed") $) NIL (-2800 (-12 (|has| $ (-145)) (|has| (-567) (-911))) (|has| (-567) (-145))))) (-4221 (((-772)) 13 T CONST)) (-1423 (((-567) $) 62 (|has| (-567) (-548)))) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL)) (-2219 (($ $) NIL (|has| (-567) (-821)))) (-1716 (($) 14 T CONST)) (-1728 (($) 17 T CONST)) (-2637 (($ $) NIL (|has| (-567) (-233))) (($ $ (-772)) NIL (|has| (-567) (-233))) (($ $ (-1178)) NIL (|has| (-567) (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| (-567) (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| (-567) (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| (-567) (-902 (-1178)))) (($ $ (-1 (-567) (-567)) (-772)) NIL) (($ $ (-1 (-567) (-567))) NIL)) (-2997 (((-112) $ $) NIL (|has| (-567) (-851)))) (-2971 (((-112) $ $) NIL (|has| (-567) (-851)))) (-2936 (((-112) $ $) 21)) (-2984 (((-112) $ $) NIL (|has| (-567) (-851)))) (-2958 (((-112) $ $) 40 (|has| (-567) (-851)))) (-3060 (($ $ $) 36) (($ (-567) (-567)) 38)) (-3045 (($ $) 23) (($ $ $) 30)) (-3033 (($ $ $) 28)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 32) (($ $ $) 34) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ (-567) $) 32) (($ $ (-567)) NIL)))
-(((-1006 |#1|) (-13 (-994 (-567)) (-614 (-410 (-567))) (-10 -8 (-15 -4094 ((-410 (-567)) $)) (-15 -2766 ((-645 (-567)) $)) (-15 -2497 ((-1158 (-567)) $)) (-15 -4294 ((-645 (-567)) $)) (-15 -3855 ((-645 (-567)) $)) (-15 -1814 ($ (-645 (-567)))) (-15 -2258 ($ (-645 (-567)) (-645 (-567)))))) (-567)) (T -1006))
-((-4094 (*1 *2 *1) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-1006 *3)) (-14 *3 (-567)))) (-2766 (*1 *2 *1) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1006 *3)) (-14 *3 (-567)))) (-2497 (*1 *2 *1) (-12 (-5 *2 (-1158 (-567))) (-5 *1 (-1006 *3)) (-14 *3 (-567)))) (-4294 (*1 *2 *1) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1006 *3)) (-14 *3 (-567)))) (-3855 (*1 *2 *1) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1006 *3)) (-14 *3 (-567)))) (-1814 (*1 *1 *2) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1006 *3)) (-14 *3 (-567)))) (-2258 (*1 *1 *2 *2) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1006 *3)) (-14 *3 (-567)))))
-(-13 (-994 (-567)) (-614 (-410 (-567))) (-10 -8 (-15 -4094 ((-410 (-567)) $)) (-15 -2766 ((-645 (-567)) $)) (-15 -2497 ((-1158 (-567)) $)) (-15 -4294 ((-645 (-567)) $)) (-15 -3855 ((-645 (-567)) $)) (-15 -1814 ($ (-645 (-567)))) (-15 -2258 ($ (-645 (-567)) (-645 (-567))))))
-((-2629 (((-52) (-410 (-567)) (-567)) 9)))
-(((-1007) (-10 -7 (-15 -2629 ((-52) (-410 (-567)) (-567))))) (T -1007))
-((-2629 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-567))) (-5 *4 (-567)) (-5 *2 (-52)) (-5 *1 (-1007)))))
-(-10 -7 (-15 -2629 ((-52) (-410 (-567)) (-567))))
-((-2375 (((-567)) 23)) (-3298 (((-567)) 28)) (-1559 (((-1273) (-567)) 26)) (-3144 (((-567) (-567)) 29) (((-567)) 22)))
-(((-1008) (-10 -7 (-15 -3144 ((-567))) (-15 -2375 ((-567))) (-15 -3144 ((-567) (-567))) (-15 -1559 ((-1273) (-567))) (-15 -3298 ((-567))))) (T -1008))
-((-3298 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1008)))) (-1559 (*1 *2 *3) (-12 (-5 *3 (-567)) (-5 *2 (-1273)) (-5 *1 (-1008)))) (-3144 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1008)))) (-2375 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1008)))) (-3144 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1008)))))
-(-10 -7 (-15 -3144 ((-567))) (-15 -2375 ((-567))) (-15 -3144 ((-567) (-567))) (-15 -1559 ((-1273) (-567))) (-15 -3298 ((-567))))
-((-2688 (((-421 |#1|) |#1|) 43)) (-2706 (((-421 |#1|) |#1|) 41)))
-(((-1009 |#1|) (-10 -7 (-15 -2706 ((-421 |#1|) |#1|)) (-15 -2688 ((-421 |#1|) |#1|))) (-1244 (-410 (-567)))) (T -1009))
-((-2688 (*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-1009 *3)) (-4 *3 (-1244 (-410 (-567)))))) (-2706 (*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-1009 *3)) (-4 *3 (-1244 (-410 (-567)))))))
-(-10 -7 (-15 -2706 ((-421 |#1|) |#1|)) (-15 -2688 ((-421 |#1|) |#1|)))
-((-2085 (((-3 (-410 (-567)) "failed") |#1|) 15)) (-1862 (((-112) |#1|) 14)) (-2331 (((-410 (-567)) |#1|) 10)))
-(((-1010 |#1|) (-10 -7 (-15 -2331 ((-410 (-567)) |#1|)) (-15 -1862 ((-112) |#1|)) (-15 -2085 ((-3 (-410 (-567)) "failed") |#1|))) (-1040 (-410 (-567)))) (T -1010))
-((-2085 (*1 *2 *3) (|partial| -12 (-5 *2 (-410 (-567))) (-5 *1 (-1010 *3)) (-4 *3 (-1040 *2)))) (-1862 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1010 *3)) (-4 *3 (-1040 (-410 (-567)))))) (-2331 (*1 *2 *3) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-1010 *3)) (-4 *3 (-1040 *2)))))
-(-10 -7 (-15 -2331 ((-410 (-567)) |#1|)) (-15 -1862 ((-112) |#1|)) (-15 -2085 ((-3 (-410 (-567)) "failed") |#1|)))
-((-4284 ((|#2| $ "value" |#2|) 12)) (-1787 ((|#2| $ "value") 10)) (-3606 (((-112) $ $) 18)))
-(((-1011 |#1| |#2|) (-10 -8 (-15 -4284 (|#2| |#1| "value" |#2|)) (-15 -3606 ((-112) |#1| |#1|)) (-15 -1787 (|#2| |#1| "value"))) (-1012 |#2|) (-1218)) (T -1011))
-NIL
-(-10 -8 (-15 -4284 (|#2| |#1| "value" |#2|)) (-15 -3606 ((-112) |#1| |#1|)) (-15 -1787 (|#2| |#1| "value")))
-((-2403 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-3802 ((|#1| $) 49)) (-3445 (((-112) $ (-772)) 8)) (-2138 ((|#1| $ |#1|) 40 (|has| $ (-6 -4419)))) (-4284 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4419)))) (-1301 (($ $ (-645 $)) 42 (|has| $ (-6 -4419)))) (-2585 (($) 7 T CONST)) (-2777 (((-645 |#1|) $) 31 (|has| $ (-6 -4418)))) (-2182 (((-645 $) $) 51)) (-3512 (((-112) $ $) 43 (|has| |#1| (-1102)))) (-2077 (((-112) $ (-772)) 9)) (-2279 (((-645 |#1|) $) 30 (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-3731 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) 36)) (-2863 (((-112) $ (-772)) 10)) (-3773 (((-645 |#1|) $) 46)) (-2769 (((-112) $) 50)) (-1419 (((-1160) $) 22 (|has| |#1| (-1102)))) (-3430 (((-1122) $) 21 (|has| |#1| (-1102)))) (-3025 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) 14)) (-3572 (((-112) $) 11)) (-3498 (($) 12)) (-1787 ((|#1| $ "value") 48)) (-2658 (((-567) $ $) 45)) (-3900 (((-112) $) 47)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4418))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-4305 (($ $) 13)) (-4132 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-1531 (((-645 $) $) 52)) (-3606 (((-112) $ $) 44 (|has| |#1| (-1102)))) (-1745 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2414 (((-772) $) 6 (|has| $ (-6 -4418)))))
-(((-1012 |#1|) (-140) (-1218)) (T -1012))
-((-1531 (*1 *2 *1) (-12 (-4 *3 (-1218)) (-5 *2 (-645 *1)) (-4 *1 (-1012 *3)))) (-2182 (*1 *2 *1) (-12 (-4 *3 (-1218)) (-5 *2 (-645 *1)) (-4 *1 (-1012 *3)))) (-2769 (*1 *2 *1) (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1218)) (-5 *2 (-112)))) (-3802 (*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1218)))) (-1787 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1012 *2)) (-4 *2 (-1218)))) (-3900 (*1 *2 *1) (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1218)) (-5 *2 (-112)))) (-3773 (*1 *2 *1) (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1218)) (-5 *2 (-645 *3)))) (-2658 (*1 *2 *1 *1) (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1218)) (-5 *2 (-567)))) (-3606 (*1 *2 *1 *1) (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1218)) (-4 *3 (-1102)) (-5 *2 (-112)))) (-3512 (*1 *2 *1 *1) (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1218)) (-4 *3 (-1102)) (-5 *2 (-112)))) (-1301 (*1 *1 *1 *2) (-12 (-5 *2 (-645 *1)) (|has| *1 (-6 -4419)) (-4 *1 (-1012 *3)) (-4 *3 (-1218)))) (-4284 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4419)) (-4 *1 (-1012 *2)) (-4 *2 (-1218)))) (-2138 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4419)) (-4 *1 (-1012 *2)) (-4 *2 (-1218)))))
-(-13 (-492 |t#1|) (-10 -8 (-15 -1531 ((-645 $) $)) (-15 -2182 ((-645 $) $)) (-15 -2769 ((-112) $)) (-15 -3802 (|t#1| $)) (-15 -1787 (|t#1| $ "value")) (-15 -3900 ((-112) $)) (-15 -3773 ((-645 |t#1|) $)) (-15 -2658 ((-567) $ $)) (IF (|has| |t#1| (-1102)) (PROGN (-15 -3606 ((-112) $ $)) (-15 -3512 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4419)) (PROGN (-15 -1301 ($ $ (-645 $))) (-15 -4284 (|t#1| $ "value" |t#1|)) (-15 -2138 (|t#1| $ |t#1|))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2800 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-1102) |has| |#1| (-1102)) ((-1218) . T))
-((-2716 (($ $) 9) (($ $ (-923)) 49) (($ (-410 (-567))) 13) (($ (-567)) 15)) (-3483 (((-3 $ "failed") (-1174 $) (-923) (-863)) 24) (((-3 $ "failed") (-1174 $) (-923)) 32)) (-2651 (($ $ (-567)) 58)) (-4221 (((-772)) 18)) (-4262 (((-645 $) (-1174 $)) NIL) (((-645 $) (-1174 (-410 (-567)))) 63) (((-645 $) (-1174 (-567))) 68) (((-645 $) (-954 $)) 72) (((-645 $) (-954 (-410 (-567)))) 76) (((-645 $) (-954 (-567))) 80)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL) (($ $ (-410 (-567))) 53)))
-(((-1013 |#1|) (-10 -8 (-15 -2716 (|#1| (-567))) (-15 -2716 (|#1| (-410 (-567)))) (-15 -2716 (|#1| |#1| (-923))) (-15 -4262 ((-645 |#1|) (-954 (-567)))) (-15 -4262 ((-645 |#1|) (-954 (-410 (-567))))) (-15 -4262 ((-645 |#1|) (-954 |#1|))) (-15 -4262 ((-645 |#1|) (-1174 (-567)))) (-15 -4262 ((-645 |#1|) (-1174 (-410 (-567))))) (-15 -4262 ((-645 |#1|) (-1174 |#1|))) (-15 -3483 ((-3 |#1| "failed") (-1174 |#1|) (-923))) (-15 -3483 ((-3 |#1| "failed") (-1174 |#1|) (-923) (-863))) (-15 ** (|#1| |#1| (-410 (-567)))) (-15 -2651 (|#1| |#1| (-567))) (-15 -2716 (|#1| |#1|)) (-15 ** (|#1| |#1| (-567))) (-15 -4221 ((-772))) (-15 ** (|#1| |#1| (-772))) (-15 ** (|#1| |#1| (-923)))) (-1014)) (T -1013))
-((-4221 (*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-1013 *3)) (-4 *3 (-1014)))))
-(-10 -8 (-15 -2716 (|#1| (-567))) (-15 -2716 (|#1| (-410 (-567)))) (-15 -2716 (|#1| |#1| (-923))) (-15 -4262 ((-645 |#1|) (-954 (-567)))) (-15 -4262 ((-645 |#1|) (-954 (-410 (-567))))) (-15 -4262 ((-645 |#1|) (-954 |#1|))) (-15 -4262 ((-645 |#1|) (-1174 (-567)))) (-15 -4262 ((-645 |#1|) (-1174 (-410 (-567))))) (-15 -4262 ((-645 |#1|) (-1174 |#1|))) (-15 -3483 ((-3 |#1| "failed") (-1174 |#1|) (-923))) (-15 -3483 ((-3 |#1| "failed") (-1174 |#1|) (-923) (-863))) (-15 ** (|#1| |#1| (-410 (-567)))) (-15 -2651 (|#1| |#1| (-567))) (-15 -2716 (|#1| |#1|)) (-15 ** (|#1| |#1| (-567))) (-15 -4221 ((-772))) (-15 ** (|#1| |#1| (-772))) (-15 ** (|#1| |#1| (-923))))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 102)) (-4381 (($ $) 103)) (-3949 (((-112) $) 105)) (-3472 (((-3 $ "failed") $ $) 20)) (-3248 (($ $) 122)) (-2908 (((-421 $) $) 123)) (-2716 (($ $) 86) (($ $ (-923)) 72) (($ (-410 (-567))) 71) (($ (-567)) 70)) (-3609 (((-112) $ $) 113)) (-1750 (((-567) $) 139)) (-2585 (($) 18 T CONST)) (-3483 (((-3 $ "failed") (-1174 $) (-923) (-863)) 80) (((-3 $ "failed") (-1174 $) (-923)) 79)) (-3753 (((-3 (-567) "failed") $) 99 (|has| (-410 (-567)) (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) 97 (|has| (-410 (-567)) (-1040 (-410 (-567))))) (((-3 (-410 (-567)) "failed") $) 94)) (-2038 (((-567) $) 98 (|has| (-410 (-567)) (-1040 (-567)))) (((-410 (-567)) $) 96 (|has| (-410 (-567)) (-1040 (-410 (-567))))) (((-410 (-567)) $) 95)) (-2522 (($ $ (-863)) 69)) (-3988 (($ $ (-863)) 68)) (-2349 (($ $ $) 117)) (-2109 (((-3 $ "failed") $) 37)) (-2360 (($ $ $) 116)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) 111)) (-3184 (((-112) $) 124)) (-4336 (((-112) $) 137)) (-1433 (((-112) $) 35)) (-2651 (($ $ (-567)) 85)) (-3494 (((-112) $) 138)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) 120)) (-1354 (($ $ $) 136)) (-2981 (($ $ $) 135)) (-3448 (((-3 (-1174 $) "failed") $) 81)) (-3838 (((-3 (-863) "failed") $) 83)) (-2188 (((-3 (-1174 $) "failed") $) 82)) (-2740 (($ (-645 $)) 109) (($ $ $) 108)) (-1419 (((-1160) $) 10)) (-2939 (($ $) 125)) (-3430 (((-1122) $) 11)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 110)) (-2774 (($ (-645 $)) 107) (($ $ $) 106)) (-2706 (((-421 $) $) 121)) (-3402 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) 118)) (-2391 (((-3 $ "failed") $ $) 101)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) 112)) (-1990 (((-772) $) 114)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 115)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ (-410 (-567))) 129) (($ $) 100) (($ (-410 (-567))) 93) (($ (-567)) 92) (($ (-410 (-567))) 89)) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-3816 (((-112) $ $) 104)) (-3050 (((-410 (-567)) $ $) 67)) (-4262 (((-645 $) (-1174 $)) 78) (((-645 $) (-1174 (-410 (-567)))) 77) (((-645 $) (-1174 (-567))) 76) (((-645 $) (-954 $)) 75) (((-645 $) (-954 (-410 (-567)))) 74) (((-645 $) (-954 (-567))) 73)) (-2219 (($ $) 140)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2997 (((-112) $ $) 133)) (-2971 (((-112) $ $) 132)) (-2936 (((-112) $ $) 6)) (-2984 (((-112) $ $) 134)) (-2958 (((-112) $ $) 131)) (-3060 (($ $ $) 130)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 126) (($ $ (-410 (-567))) 84)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ (-410 (-567)) $) 128) (($ $ (-410 (-567))) 127) (($ (-567) $) 91) (($ $ (-567)) 90) (($ (-410 (-567)) $) 88) (($ $ (-410 (-567))) 87)))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-2243 (((-645 (-567)) $) 73)) (-2082 (($ (-645 (-567))) 81)) (-4014 (((-567) $) 48 (|has| (-567) (-308)))) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-4287 (($ $) NIL)) (-2286 (((-112) $) NIL)) (-2376 (((-3 $ "failed") $ $) NIL)) (-2029 (((-421 (-1175 $)) (-1175 $)) NIL (|has| (-567) (-911)))) (-3659 (($ $) NIL)) (-3597 (((-421 $) $) NIL)) (-3610 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) NIL (|has| (-567) (-911)))) (-3696 (((-112) $ $) NIL)) (-2677 (((-567) $) NIL (|has| (-567) (-821)))) (-3647 (($) NIL T CONST)) (-3765 (((-3 (-567) "failed") $) 60) (((-3 (-1179) "failed") $) NIL (|has| (-567) (-1040 (-1179)))) (((-3 (-410 (-567)) "failed") $) 57 (|has| (-567) (-1040 (-567)))) (((-3 (-567) "failed") $) 60 (|has| (-567) (-1040 (-567))))) (-2051 (((-567) $) NIL) (((-1179) $) NIL (|has| (-567) (-1040 (-1179)))) (((-410 (-567)) $) NIL (|has| (-567) (-1040 (-567)))) (((-567) $) NIL (|has| (-567) (-1040 (-567))))) (-2357 (($ $ $) NIL)) (-1423 (((-690 (-567)) (-690 $)) NIL (|has| (-567) (-640 (-567)))) (((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (|has| (-567) (-640 (-567)))) (((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL) (((-690 (-567)) (-690 $)) NIL)) (-3588 (((-3 $ "failed") $) NIL)) (-1359 (($) NIL (|has| (-567) (-548)))) (-2368 (($ $ $) NIL)) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) NIL)) (-3502 (((-112) $) NIL)) (-1628 (((-645 (-567)) $) 79)) (-3137 (((-112) $) NIL (|has| (-567) (-821)))) (-3193 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (|has| (-567) (-888 (-567)))) (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (|has| (-567) (-888 (-381))))) (-4346 (((-112) $) NIL)) (-1863 (($ $) NIL)) (-1447 (((-567) $) 45)) (-3067 (((-3 $ "failed") $) NIL (|has| (-567) (-1154)))) (-3465 (((-112) $) NIL (|has| (-567) (-821)))) (-1469 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1365 (($ $ $) NIL (|has| (-567) (-851)))) (-3002 (($ $ $) NIL (|has| (-567) (-851)))) (-3841 (($ (-1 (-567) (-567)) $) NIL)) (-2751 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2516 (((-1161) $) NIL)) (-2949 (($ $) NIL)) (-2694 (($) NIL (|has| (-567) (-1154)) CONST)) (-3437 (((-1122) $) NIL)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-2785 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2554 (($ $) NIL (|has| (-567) (-308))) (((-410 (-567)) $) 50)) (-4060 (((-1159 (-567)) $) 78)) (-3586 (($ (-645 (-567)) (-645 (-567))) 82)) (-3969 (((-567) $) 64 (|has| (-567) (-548)))) (-3551 (((-421 (-1175 $)) (-1175 $)) NIL (|has| (-567) (-911)))) (-2016 (((-421 (-1175 $)) (-1175 $)) NIL (|has| (-567) (-911)))) (-2717 (((-421 $) $) NIL)) (-2905 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2400 (((-3 $ "failed") $ $) NIL)) (-2372 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2642 (($ $ (-645 (-567)) (-645 (-567))) NIL (|has| (-567) (-310 (-567)))) (($ $ (-567) (-567)) NIL (|has| (-567) (-310 (-567)))) (($ $ (-295 (-567))) NIL (|has| (-567) (-310 (-567)))) (($ $ (-645 (-295 (-567)))) NIL (|has| (-567) (-310 (-567)))) (($ $ (-645 (-1179)) (-645 (-567))) NIL (|has| (-567) (-517 (-1179) (-567)))) (($ $ (-1179) (-567)) NIL (|has| (-567) (-517 (-1179) (-567))))) (-2460 (((-772) $) NIL)) (-1801 (($ $ (-567)) NIL (|has| (-567) (-287 (-567) (-567))))) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) NIL)) (-1616 (($ $) 15 (|has| (-567) (-233))) (($ $ (-772)) NIL (|has| (-567) (-233))) (($ $ (-1179)) NIL (|has| (-567) (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| (-567) (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| (-567) (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| (-567) (-902 (-1179)))) (($ $ (-1 (-567) (-567)) (-772)) NIL) (($ $ (-1 (-567) (-567))) NIL)) (-1762 (($ $) NIL)) (-1462 (((-567) $) 47)) (-3831 (((-645 (-567)) $) 80)) (-3902 (((-894 (-567)) $) NIL (|has| (-567) (-615 (-894 (-567))))) (((-894 (-381)) $) NIL (|has| (-567) (-615 (-894 (-381))))) (((-539) $) NIL (|has| (-567) (-615 (-539)))) (((-381) $) NIL (|has| (-567) (-1024))) (((-225) $) NIL (|has| (-567) (-1024)))) (-2616 (((-3 (-1269 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| (-567) (-911))))) (-4129 (((-863) $) 107) (($ (-567)) 51) (($ $) NIL) (($ (-410 (-567))) 27) (($ (-567)) 51) (($ (-1179)) NIL (|has| (-567) (-1040 (-1179)))) (((-410 (-567)) $) 25)) (-2118 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-145)) (|has| (-567) (-911))) (|has| (-567) (-145))))) (-2746 (((-772)) 13 T CONST)) (-1689 (((-567) $) 62 (|has| (-567) (-548)))) (-3357 (((-112) $ $) NIL)) (-3731 (((-112) $ $) NIL)) (-1547 (($ $) NIL (|has| (-567) (-821)))) (-1733 (($) 14 T CONST)) (-1744 (($) 17 T CONST)) (-2647 (($ $) NIL (|has| (-567) (-233))) (($ $ (-772)) NIL (|has| (-567) (-233))) (($ $ (-1179)) NIL (|has| (-567) (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| (-567) (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| (-567) (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| (-567) (-902 (-1179)))) (($ $ (-1 (-567) (-567)) (-772)) NIL) (($ $ (-1 (-567) (-567))) NIL)) (-3004 (((-112) $ $) NIL (|has| (-567) (-851)))) (-2980 (((-112) $ $) NIL (|has| (-567) (-851)))) (-2946 (((-112) $ $) 21)) (-2993 (((-112) $ $) NIL (|has| (-567) (-851)))) (-2968 (((-112) $ $) 40 (|has| (-567) (-851)))) (-3069 (($ $ $) 36) (($ (-567) (-567)) 38)) (-3053 (($ $) 23) (($ $ $) 30)) (-3041 (($ $ $) 28)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 32) (($ $ $) 34) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ (-567) $) 32) (($ $ (-567)) NIL)))
+(((-1006 |#1|) (-13 (-994 (-567)) (-614 (-410 (-567))) (-10 -8 (-15 -2554 ((-410 (-567)) $)) (-15 -2243 ((-645 (-567)) $)) (-15 -4060 ((-1159 (-567)) $)) (-15 -1628 ((-645 (-567)) $)) (-15 -3831 ((-645 (-567)) $)) (-15 -2082 ($ (-645 (-567)))) (-15 -3586 ($ (-645 (-567)) (-645 (-567)))))) (-567)) (T -1006))
+((-2554 (*1 *2 *1) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-1006 *3)) (-14 *3 (-567)))) (-2243 (*1 *2 *1) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1006 *3)) (-14 *3 (-567)))) (-4060 (*1 *2 *1) (-12 (-5 *2 (-1159 (-567))) (-5 *1 (-1006 *3)) (-14 *3 (-567)))) (-1628 (*1 *2 *1) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1006 *3)) (-14 *3 (-567)))) (-3831 (*1 *2 *1) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1006 *3)) (-14 *3 (-567)))) (-2082 (*1 *1 *2) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1006 *3)) (-14 *3 (-567)))) (-3586 (*1 *1 *2 *2) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1006 *3)) (-14 *3 (-567)))))
+(-13 (-994 (-567)) (-614 (-410 (-567))) (-10 -8 (-15 -2554 ((-410 (-567)) $)) (-15 -2243 ((-645 (-567)) $)) (-15 -4060 ((-1159 (-567)) $)) (-15 -1628 ((-645 (-567)) $)) (-15 -3831 ((-645 (-567)) $)) (-15 -2082 ($ (-645 (-567)))) (-15 -3586 ($ (-645 (-567)) (-645 (-567))))))
+((-2549 (((-52) (-410 (-567)) (-567)) 9)))
+(((-1007) (-10 -7 (-15 -2549 ((-52) (-410 (-567)) (-567))))) (T -1007))
+((-2549 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-567))) (-5 *4 (-567)) (-5 *2 (-52)) (-5 *1 (-1007)))))
+(-10 -7 (-15 -2549 ((-52) (-410 (-567)) (-567))))
+((-2384 (((-567)) 23)) (-2344 (((-567)) 28)) (-4139 (((-1274) (-567)) 26)) (-2713 (((-567) (-567)) 29) (((-567)) 22)))
+(((-1008) (-10 -7 (-15 -2713 ((-567))) (-15 -2384 ((-567))) (-15 -2713 ((-567) (-567))) (-15 -4139 ((-1274) (-567))) (-15 -2344 ((-567))))) (T -1008))
+((-2344 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1008)))) (-4139 (*1 *2 *3) (-12 (-5 *3 (-567)) (-5 *2 (-1274)) (-5 *1 (-1008)))) (-2713 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1008)))) (-2384 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1008)))) (-2713 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1008)))))
+(-10 -7 (-15 -2713 ((-567))) (-15 -2384 ((-567))) (-15 -2713 ((-567) (-567))) (-15 -4139 ((-1274) (-567))) (-15 -2344 ((-567))))
+((-3347 (((-421 |#1|) |#1|) 43)) (-2717 (((-421 |#1|) |#1|) 41)))
+(((-1009 |#1|) (-10 -7 (-15 -2717 ((-421 |#1|) |#1|)) (-15 -3347 ((-421 |#1|) |#1|))) (-1245 (-410 (-567)))) (T -1009))
+((-3347 (*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-1009 *3)) (-4 *3 (-1245 (-410 (-567)))))) (-2717 (*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-1009 *3)) (-4 *3 (-1245 (-410 (-567)))))))
+(-10 -7 (-15 -2717 ((-421 |#1|) |#1|)) (-15 -3347 ((-421 |#1|) |#1|)))
+((-1605 (((-3 (-410 (-567)) "failed") |#1|) 15)) (-2492 (((-112) |#1|) 14)) (-2778 (((-410 (-567)) |#1|) 10)))
+(((-1010 |#1|) (-10 -7 (-15 -2778 ((-410 (-567)) |#1|)) (-15 -2492 ((-112) |#1|)) (-15 -1605 ((-3 (-410 (-567)) "failed") |#1|))) (-1040 (-410 (-567)))) (T -1010))
+((-1605 (*1 *2 *3) (|partial| -12 (-5 *2 (-410 (-567))) (-5 *1 (-1010 *3)) (-4 *3 (-1040 *2)))) (-2492 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1010 *3)) (-4 *3 (-1040 (-410 (-567)))))) (-2778 (*1 *2 *3) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-1010 *3)) (-4 *3 (-1040 *2)))))
+(-10 -7 (-15 -2778 ((-410 (-567)) |#1|)) (-15 -2492 ((-112) |#1|)) (-15 -1605 ((-3 (-410 (-567)) "failed") |#1|)))
+((-4285 ((|#2| $ "value" |#2|) 12)) (-1801 ((|#2| $ "value") 10)) (-3854 (((-112) $ $) 18)))
+(((-1011 |#1| |#2|) (-10 -8 (-15 -4285 (|#2| |#1| "value" |#2|)) (-15 -3854 ((-112) |#1| |#1|)) (-15 -1801 (|#2| |#1| "value"))) (-1012 |#2|) (-1219)) (T -1011))
+NIL
+(-10 -8 (-15 -4285 (|#2| |#1| "value" |#2|)) (-15 -3854 ((-112) |#1| |#1|)) (-15 -1801 (|#2| |#1| "value")))
+((-2412 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-3812 ((|#1| $) 49)) (-1563 (((-112) $ (-772)) 8)) (-4392 ((|#1| $ |#1|) 40 (|has| $ (-6 -4423)))) (-4285 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4423)))) (-2831 (($ $ (-645 $)) 42 (|has| $ (-6 -4423)))) (-3647 (($) 7 T CONST)) (-2799 (((-645 |#1|) $) 31 (|has| $ (-6 -4422)))) (-2070 (((-645 $) $) 51)) (-1520 (((-112) $ $) 43 (|has| |#1| (-1102)))) (-4093 (((-112) $ (-772)) 9)) (-1942 (((-645 |#1|) $) 30 (|has| $ (-6 -4422)))) (-3237 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-3751 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#1| |#1|) $) 36)) (-1986 (((-112) $ (-772)) 10)) (-3793 (((-645 |#1|) $) 46)) (-1323 (((-112) $) 50)) (-2516 (((-1161) $) 22 (|has| |#1| (-1102)))) (-3437 (((-1122) $) 21 (|has| |#1| (-1102)))) (-4233 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3875 (((-112) $ $) 14)) (-3885 (((-112) $) 11)) (-2701 (($) 12)) (-1801 ((|#1| $ "value") 48)) (-3162 (((-567) $ $) 45)) (-3771 (((-112) $) 47)) (-3447 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4422))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-4309 (($ $) 13)) (-4129 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-3469 (((-645 $) $) 52)) (-3854 (((-112) $ $) 44 (|has| |#1| (-1102)))) (-3357 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-3436 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4422)))) (-2946 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2423 (((-772) $) 6 (|has| $ (-6 -4422)))))
+(((-1012 |#1|) (-140) (-1219)) (T -1012))
+((-3469 (*1 *2 *1) (-12 (-4 *3 (-1219)) (-5 *2 (-645 *1)) (-4 *1 (-1012 *3)))) (-2070 (*1 *2 *1) (-12 (-4 *3 (-1219)) (-5 *2 (-645 *1)) (-4 *1 (-1012 *3)))) (-1323 (*1 *2 *1) (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1219)) (-5 *2 (-112)))) (-3812 (*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1219)))) (-1801 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1012 *2)) (-4 *2 (-1219)))) (-3771 (*1 *2 *1) (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1219)) (-5 *2 (-112)))) (-3793 (*1 *2 *1) (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1219)) (-5 *2 (-645 *3)))) (-3162 (*1 *2 *1 *1) (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1219)) (-5 *2 (-567)))) (-3854 (*1 *2 *1 *1) (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1219)) (-4 *3 (-1102)) (-5 *2 (-112)))) (-1520 (*1 *2 *1 *1) (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1219)) (-4 *3 (-1102)) (-5 *2 (-112)))) (-2831 (*1 *1 *1 *2) (-12 (-5 *2 (-645 *1)) (|has| *1 (-6 -4423)) (-4 *1 (-1012 *3)) (-4 *3 (-1219)))) (-4285 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4423)) (-4 *1 (-1012 *2)) (-4 *2 (-1219)))) (-4392 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4423)) (-4 *1 (-1012 *2)) (-4 *2 (-1219)))))
+(-13 (-492 |t#1|) (-10 -8 (-15 -3469 ((-645 $) $)) (-15 -2070 ((-645 $) $)) (-15 -1323 ((-112) $)) (-15 -3812 (|t#1| $)) (-15 -1801 (|t#1| $ "value")) (-15 -3771 ((-112) $)) (-15 -3793 ((-645 |t#1|) $)) (-15 -3162 ((-567) $ $)) (IF (|has| |t#1| (-1102)) (PROGN (-15 -3854 ((-112) $ $)) (-15 -1520 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4423)) (PROGN (-15 -2831 ($ $ (-645 $))) (-15 -4285 (|t#1| $ "value" |t#1|)) (-15 -4392 (|t#1| $ |t#1|))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2811 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-1102) |has| |#1| (-1102)) ((-1219) . T))
+((-2728 (($ $) 9) (($ $ (-923)) 49) (($ (-410 (-567))) 13) (($ (-567)) 15)) (-3940 (((-3 $ "failed") (-1175 $) (-923) (-863)) 24) (((-3 $ "failed") (-1175 $) (-923)) 32)) (-3698 (($ $ (-567)) 58)) (-2746 (((-772)) 18)) (-1564 (((-645 $) (-1175 $)) NIL) (((-645 $) (-1175 (-410 (-567)))) 63) (((-645 $) (-1175 (-567))) 68) (((-645 $) (-954 $)) 72) (((-645 $) (-954 (-410 (-567)))) 76) (((-645 $) (-954 (-567))) 80)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL) (($ $ (-410 (-567))) 53)))
+(((-1013 |#1|) (-10 -8 (-15 -2728 (|#1| (-567))) (-15 -2728 (|#1| (-410 (-567)))) (-15 -2728 (|#1| |#1| (-923))) (-15 -1564 ((-645 |#1|) (-954 (-567)))) (-15 -1564 ((-645 |#1|) (-954 (-410 (-567))))) (-15 -1564 ((-645 |#1|) (-954 |#1|))) (-15 -1564 ((-645 |#1|) (-1175 (-567)))) (-15 -1564 ((-645 |#1|) (-1175 (-410 (-567))))) (-15 -1564 ((-645 |#1|) (-1175 |#1|))) (-15 -3940 ((-3 |#1| "failed") (-1175 |#1|) (-923))) (-15 -3940 ((-3 |#1| "failed") (-1175 |#1|) (-923) (-863))) (-15 ** (|#1| |#1| (-410 (-567)))) (-15 -3698 (|#1| |#1| (-567))) (-15 -2728 (|#1| |#1|)) (-15 ** (|#1| |#1| (-567))) (-15 -2746 ((-772))) (-15 ** (|#1| |#1| (-772))) (-15 ** (|#1| |#1| (-923)))) (-1014)) (T -1013))
+((-2746 (*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-1013 *3)) (-4 *3 (-1014)))))
+(-10 -8 (-15 -2728 (|#1| (-567))) (-15 -2728 (|#1| (-410 (-567)))) (-15 -2728 (|#1| |#1| (-923))) (-15 -1564 ((-645 |#1|) (-954 (-567)))) (-15 -1564 ((-645 |#1|) (-954 (-410 (-567))))) (-15 -1564 ((-645 |#1|) (-954 |#1|))) (-15 -1564 ((-645 |#1|) (-1175 (-567)))) (-15 -1564 ((-645 |#1|) (-1175 (-410 (-567))))) (-15 -1564 ((-645 |#1|) (-1175 |#1|))) (-15 -3940 ((-3 |#1| "failed") (-1175 |#1|) (-923))) (-15 -3940 ((-3 |#1| "failed") (-1175 |#1|) (-923) (-863))) (-15 ** (|#1| |#1| (-410 (-567)))) (-15 -3698 (|#1| |#1| (-567))) (-15 -2728 (|#1| |#1|)) (-15 ** (|#1| |#1| (-567))) (-15 -2746 ((-772))) (-15 ** (|#1| |#1| (-772))) (-15 ** (|#1| |#1| (-923))))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) 102)) (-4287 (($ $) 103)) (-2286 (((-112) $) 105)) (-2376 (((-3 $ "failed") $ $) 20)) (-3659 (($ $) 122)) (-3597 (((-421 $) $) 123)) (-2728 (($ $) 86) (($ $ (-923)) 72) (($ (-410 (-567))) 71) (($ (-567)) 70)) (-3696 (((-112) $ $) 113)) (-2677 (((-567) $) 139)) (-3647 (($) 18 T CONST)) (-3940 (((-3 $ "failed") (-1175 $) (-923) (-863)) 80) (((-3 $ "failed") (-1175 $) (-923)) 79)) (-3765 (((-3 (-567) "failed") $) 99 (|has| (-410 (-567)) (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) 97 (|has| (-410 (-567)) (-1040 (-410 (-567))))) (((-3 (-410 (-567)) "failed") $) 94)) (-2051 (((-567) $) 98 (|has| (-410 (-567)) (-1040 (-567)))) (((-410 (-567)) $) 96 (|has| (-410 (-567)) (-1040 (-410 (-567))))) (((-410 (-567)) $) 95)) (-4171 (($ $ (-863)) 69)) (-4046 (($ $ (-863)) 68)) (-2357 (($ $ $) 117)) (-3588 (((-3 $ "failed") $) 37)) (-2368 (($ $ $) 116)) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) 111)) (-3502 (((-112) $) 124)) (-3137 (((-112) $) 137)) (-4346 (((-112) $) 35)) (-3698 (($ $ (-567)) 85)) (-3465 (((-112) $) 138)) (-1469 (((-3 (-645 $) "failed") (-645 $) $) 120)) (-1365 (($ $ $) 136)) (-3002 (($ $ $) 135)) (-1892 (((-3 (-1175 $) "failed") $) 81)) (-1994 (((-3 (-863) "failed") $) 83)) (-1370 (((-3 (-1175 $) "failed") $) 82)) (-2751 (($ (-645 $)) 109) (($ $ $) 108)) (-2516 (((-1161) $) 10)) (-2949 (($ $) 125)) (-3437 (((-1122) $) 11)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) 110)) (-2785 (($ (-645 $)) 107) (($ $ $) 106)) (-2717 (((-421 $) $) 121)) (-2905 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) 118)) (-2400 (((-3 $ "failed") $ $) 101)) (-2372 (((-3 (-645 $) "failed") (-645 $) $) 112)) (-2460 (((-772) $) 114)) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) 115)) (-4129 (((-863) $) 12) (($ (-567)) 33) (($ (-410 (-567))) 129) (($ $) 100) (($ (-410 (-567))) 93) (($ (-567)) 92) (($ (-410 (-567))) 89)) (-2746 (((-772)) 32 T CONST)) (-3357 (((-112) $ $) 9)) (-3731 (((-112) $ $) 104)) (-3058 (((-410 (-567)) $ $) 67)) (-1564 (((-645 $) (-1175 $)) 78) (((-645 $) (-1175 (-410 (-567)))) 77) (((-645 $) (-1175 (-567))) 76) (((-645 $) (-954 $)) 75) (((-645 $) (-954 (-410 (-567)))) 74) (((-645 $) (-954 (-567))) 73)) (-1547 (($ $) 140)) (-1733 (($) 19 T CONST)) (-1744 (($) 34 T CONST)) (-3004 (((-112) $ $) 133)) (-2980 (((-112) $ $) 132)) (-2946 (((-112) $ $) 6)) (-2993 (((-112) $ $) 134)) (-2968 (((-112) $ $) 131)) (-3069 (($ $ $) 130)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 126) (($ $ (-410 (-567))) 84)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ (-410 (-567)) $) 128) (($ $ (-410 (-567))) 127) (($ (-567) $) 91) (($ $ (-567)) 90) (($ (-410 (-567)) $) 88) (($ $ (-410 (-567))) 87)))
(((-1014) (-140)) (T -1014))
-((-2716 (*1 *1 *1) (-4 *1 (-1014))) (-3838 (*1 *2 *1) (|partial| -12 (-4 *1 (-1014)) (-5 *2 (-863)))) (-2188 (*1 *2 *1) (|partial| -12 (-5 *2 (-1174 *1)) (-4 *1 (-1014)))) (-3448 (*1 *2 *1) (|partial| -12 (-5 *2 (-1174 *1)) (-4 *1 (-1014)))) (-3483 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1174 *1)) (-5 *3 (-923)) (-5 *4 (-863)) (-4 *1 (-1014)))) (-3483 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1174 *1)) (-5 *3 (-923)) (-4 *1 (-1014)))) (-4262 (*1 *2 *3) (-12 (-5 *3 (-1174 *1)) (-4 *1 (-1014)) (-5 *2 (-645 *1)))) (-4262 (*1 *2 *3) (-12 (-5 *3 (-1174 (-410 (-567)))) (-5 *2 (-645 *1)) (-4 *1 (-1014)))) (-4262 (*1 *2 *3) (-12 (-5 *3 (-1174 (-567))) (-5 *2 (-645 *1)) (-4 *1 (-1014)))) (-4262 (*1 *2 *3) (-12 (-5 *3 (-954 *1)) (-4 *1 (-1014)) (-5 *2 (-645 *1)))) (-4262 (*1 *2 *3) (-12 (-5 *3 (-954 (-410 (-567)))) (-5 *2 (-645 *1)) (-4 *1 (-1014)))) (-4262 (*1 *2 *3) (-12 (-5 *3 (-954 (-567))) (-5 *2 (-645 *1)) (-4 *1 (-1014)))) (-2716 (*1 *1 *1 *2) (-12 (-4 *1 (-1014)) (-5 *2 (-923)))) (-2716 (*1 *1 *2) (-12 (-5 *2 (-410 (-567))) (-4 *1 (-1014)))) (-2716 (*1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-1014)))) (-2522 (*1 *1 *1 *2) (-12 (-4 *1 (-1014)) (-5 *2 (-863)))) (-3988 (*1 *1 *1 *2) (-12 (-4 *1 (-1014)) (-5 *2 (-863)))) (-3050 (*1 *2 *1 *1) (-12 (-4 *1 (-1014)) (-5 *2 (-410 (-567))))))
-(-13 (-147) (-849) (-172) (-365) (-414 (-410 (-567))) (-38 (-567)) (-38 (-410 (-567))) (-1004) (-10 -8 (-15 -3838 ((-3 (-863) "failed") $)) (-15 -2188 ((-3 (-1174 $) "failed") $)) (-15 -3448 ((-3 (-1174 $) "failed") $)) (-15 -3483 ((-3 $ "failed") (-1174 $) (-923) (-863))) (-15 -3483 ((-3 $ "failed") (-1174 $) (-923))) (-15 -4262 ((-645 $) (-1174 $))) (-15 -4262 ((-645 $) (-1174 (-410 (-567))))) (-15 -4262 ((-645 $) (-1174 (-567)))) (-15 -4262 ((-645 $) (-954 $))) (-15 -4262 ((-645 $) (-954 (-410 (-567))))) (-15 -4262 ((-645 $) (-954 (-567)))) (-15 -2716 ($ $ (-923))) (-15 -2716 ($ $)) (-15 -2716 ($ (-410 (-567)))) (-15 -2716 ($ (-567))) (-15 -2522 ($ $ (-863))) (-15 -3988 ($ $ (-863))) (-15 -3050 ((-410 (-567)) $ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) . T) ((-38 #1=(-567)) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-617 #0#) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-414 (-410 (-567))) . T) ((-455) . T) ((-559) . T) ((-647 #0#) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 #0#) . T) ((-649 #1#) . T) ((-649 $) . T) ((-641 #0#) . T) ((-641 #1#) . T) ((-641 $) . T) ((-718 #0#) . T) ((-718 #1#) . T) ((-718 $) . T) ((-727) . T) ((-792) . T) ((-793) . T) ((-795) . T) ((-796) . T) ((-849) . T) ((-851) . T) ((-922) . T) ((-1004) . T) ((-1040 (-410 (-567))) . T) ((-1040 (-567)) |has| (-410 (-567)) (-1040 (-567))) ((-1053 #0#) . T) ((-1053 #1#) . T) ((-1053 $) . T) ((-1058 #0#) . T) ((-1058 #1#) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1222) . T))
-((-2232 (((-2 (|:| |ans| |#2|) (|:| -2963 |#2|) (|:| |sol?| (-112))) (-567) |#2| |#2| (-1178) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-645 |#2|)) (-1 (-3 (-2 (|:| -1752 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 67)))
-(((-1015 |#1| |#2|) (-10 -7 (-15 -2232 ((-2 (|:| |ans| |#2|) (|:| -2963 |#2|) (|:| |sol?| (-112))) (-567) |#2| |#2| (-1178) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-645 |#2|)) (-1 (-3 (-2 (|:| -1752 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-455) (-147) (-1040 (-567)) (-640 (-567))) (-13 (-1203) (-27) (-433 |#1|))) (T -1015))
-((-2232 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1178)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-645 *4))) (-5 *7 (-1 (-3 (-2 (|:| -1752 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1203) (-27) (-433 *8))) (-4 *8 (-13 (-455) (-147) (-1040 *3) (-640 *3))) (-5 *3 (-567)) (-5 *2 (-2 (|:| |ans| *4) (|:| -2963 *4) (|:| |sol?| (-112)))) (-5 *1 (-1015 *8 *4)))))
-(-10 -7 (-15 -2232 ((-2 (|:| |ans| |#2|) (|:| -2963 |#2|) (|:| |sol?| (-112))) (-567) |#2| |#2| (-1178) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-645 |#2|)) (-1 (-3 (-2 (|:| -1752 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
-((-2538 (((-3 (-645 |#2|) "failed") (-567) |#2| |#2| |#2| (-1178) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-645 |#2|)) (-1 (-3 (-2 (|:| -1752 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 55)))
-(((-1016 |#1| |#2|) (-10 -7 (-15 -2538 ((-3 (-645 |#2|) "failed") (-567) |#2| |#2| |#2| (-1178) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-645 |#2|)) (-1 (-3 (-2 (|:| -1752 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-455) (-147) (-1040 (-567)) (-640 (-567))) (-13 (-1203) (-27) (-433 |#1|))) (T -1016))
-((-2538 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1178)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-645 *4))) (-5 *7 (-1 (-3 (-2 (|:| -1752 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1203) (-27) (-433 *8))) (-4 *8 (-13 (-455) (-147) (-1040 *3) (-640 *3))) (-5 *3 (-567)) (-5 *2 (-645 *4)) (-5 *1 (-1016 *8 *4)))))
-(-10 -7 (-15 -2538 ((-3 (-645 |#2|) "failed") (-567) |#2| |#2| |#2| (-1178) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-645 |#2|)) (-1 (-3 (-2 (|:| -1752 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
-((-2593 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3845 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-567)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-567) (-1 |#2| |#2|)) 41)) (-1987 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-410 |#2|)) (|:| |c| (-410 |#2|)) (|:| -2087 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-1 |#2| |#2|)) 71)) (-2927 (((-2 (|:| |ans| (-410 |#2|)) (|:| |nosol| (-112))) (-410 |#2|) (-410 |#2|)) 76)))
-(((-1017 |#1| |#2|) (-10 -7 (-15 -1987 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-410 |#2|)) (|:| |c| (-410 |#2|)) (|:| -2087 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-1 |#2| |#2|))) (-15 -2927 ((-2 (|:| |ans| (-410 |#2|)) (|:| |nosol| (-112))) (-410 |#2|) (-410 |#2|))) (-15 -2593 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3845 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-567)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-567) (-1 |#2| |#2|)))) (-13 (-365) (-147) (-1040 (-567))) (-1244 |#1|)) (T -1017))
-((-2593 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1244 *6)) (-4 *6 (-13 (-365) (-147) (-1040 *4))) (-5 *4 (-567)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -3845 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1017 *6 *3)))) (-2927 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-365) (-147) (-1040 (-567)))) (-4 *5 (-1244 *4)) (-5 *2 (-2 (|:| |ans| (-410 *5)) (|:| |nosol| (-112)))) (-5 *1 (-1017 *4 *5)) (-5 *3 (-410 *5)))) (-1987 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1244 *5)) (-4 *5 (-13 (-365) (-147) (-1040 (-567)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-410 *6)) (|:| |c| (-410 *6)) (|:| -2087 *6))) (-5 *1 (-1017 *5 *6)) (-5 *3 (-410 *6)))))
-(-10 -7 (-15 -1987 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-410 |#2|)) (|:| |c| (-410 |#2|)) (|:| -2087 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-1 |#2| |#2|))) (-15 -2927 ((-2 (|:| |ans| (-410 |#2|)) (|:| |nosol| (-112))) (-410 |#2|) (-410 |#2|))) (-15 -2593 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3845 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-567)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-567) (-1 |#2| |#2|))))
-((-3967 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-410 |#2|)) (|:| |h| |#2|) (|:| |c1| (-410 |#2|)) (|:| |c2| (-410 |#2|)) (|:| -2087 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|) (-1 |#2| |#2|)) 22)) (-3707 (((-3 (-645 (-410 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|)) 34)))
-(((-1018 |#1| |#2|) (-10 -7 (-15 -3967 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-410 |#2|)) (|:| |h| |#2|) (|:| |c1| (-410 |#2|)) (|:| |c2| (-410 |#2|)) (|:| -2087 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|) (-1 |#2| |#2|))) (-15 -3707 ((-3 (-645 (-410 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|)))) (-13 (-365) (-147) (-1040 (-567))) (-1244 |#1|)) (T -1018))
-((-3707 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-365) (-147) (-1040 (-567)))) (-4 *5 (-1244 *4)) (-5 *2 (-645 (-410 *5))) (-5 *1 (-1018 *4 *5)) (-5 *3 (-410 *5)))) (-3967 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1244 *5)) (-4 *5 (-13 (-365) (-147) (-1040 (-567)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-410 *6)) (|:| |h| *6) (|:| |c1| (-410 *6)) (|:| |c2| (-410 *6)) (|:| -2087 *6))) (-5 *1 (-1018 *5 *6)) (-5 *3 (-410 *6)))))
-(-10 -7 (-15 -3967 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-410 |#2|)) (|:| |h| |#2|) (|:| |c1| (-410 |#2|)) (|:| |c2| (-410 |#2|)) (|:| -2087 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|) (-1 |#2| |#2|))) (-15 -3707 ((-3 (-645 (-410 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|))))
-((-2398 (((-1 |#1|) (-645 (-2 (|:| -3802 |#1|) (|:| -3729 (-567))))) 37)) (-3055 (((-1 |#1|) (-1104 |#1|)) 45)) (-3174 (((-1 |#1|) (-1268 |#1|) (-1268 (-567)) (-567)) 34)))
-(((-1019 |#1|) (-10 -7 (-15 -3055 ((-1 |#1|) (-1104 |#1|))) (-15 -2398 ((-1 |#1|) (-645 (-2 (|:| -3802 |#1|) (|:| -3729 (-567)))))) (-15 -3174 ((-1 |#1|) (-1268 |#1|) (-1268 (-567)) (-567)))) (-1102)) (T -1019))
-((-3174 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1268 *6)) (-5 *4 (-1268 (-567))) (-5 *5 (-567)) (-4 *6 (-1102)) (-5 *2 (-1 *6)) (-5 *1 (-1019 *6)))) (-2398 (*1 *2 *3) (-12 (-5 *3 (-645 (-2 (|:| -3802 *4) (|:| -3729 (-567))))) (-4 *4 (-1102)) (-5 *2 (-1 *4)) (-5 *1 (-1019 *4)))) (-3055 (*1 *2 *3) (-12 (-5 *3 (-1104 *4)) (-4 *4 (-1102)) (-5 *2 (-1 *4)) (-5 *1 (-1019 *4)))))
-(-10 -7 (-15 -3055 ((-1 |#1|) (-1104 |#1|))) (-15 -2398 ((-1 |#1|) (-645 (-2 (|:| -3802 |#1|) (|:| -3729 (-567)))))) (-15 -3174 ((-1 |#1|) (-1268 |#1|) (-1268 (-567)) (-567))))
-((-4384 (((-772) (-338 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23)))
-(((-1020 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4384 ((-772) (-338 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-365) (-1244 |#1|) (-1244 (-410 |#2|)) (-344 |#1| |#2| |#3|) (-13 (-370) (-365))) (T -1020))
-((-4384 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-338 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-365)) (-4 *7 (-1244 *6)) (-4 *4 (-1244 (-410 *7))) (-4 *8 (-344 *6 *7 *4)) (-4 *9 (-13 (-370) (-365))) (-5 *2 (-772)) (-5 *1 (-1020 *6 *7 *4 *8 *9)))))
-(-10 -7 (-15 -4384 ((-772) (-338 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|))))
-((-2403 (((-112) $ $) NIL)) (-2654 (((-1137) $) 9)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL) (($ (-1183)) NIL) (((-1183) $) NIL)) (-2006 (((-1137) $) 11)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)))
-(((-1021) (-13 (-1085) (-10 -8 (-15 -2654 ((-1137) $)) (-15 -2006 ((-1137) $))))) (T -1021))
-((-2654 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1021)))) (-2006 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1021)))))
-(-13 (-1085) (-10 -8 (-15 -2654 ((-1137) $)) (-15 -2006 ((-1137) $))))
-((-2298 (((-3 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))) "failed") |#1| (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))) (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))) 32) (((-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))) |#1| (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))) (-410 (-567))) 29)) (-2932 (((-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))) |#1| (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))) (-410 (-567))) 34) (((-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))) |#1| (-410 (-567))) 30) (((-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))) |#1| (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))) 33) (((-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))) |#1|) 28)) (-4312 (((-645 (-410 (-567))) (-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))))) 20)) (-1655 (((-410 (-567)) (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))) 17)))
-(((-1022 |#1|) (-10 -7 (-15 -2932 ((-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))) |#1|)) (-15 -2932 ((-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))) |#1| (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))))) (-15 -2932 ((-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))) |#1| (-410 (-567)))) (-15 -2932 ((-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))) |#1| (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))) (-410 (-567)))) (-15 -2298 ((-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))) |#1| (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))) (-410 (-567)))) (-15 -2298 ((-3 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))) "failed") |#1| (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))) (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))))) (-15 -1655 ((-410 (-567)) (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))))) (-15 -4312 ((-645 (-410 (-567))) (-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))))))) (-1244 (-567))) (T -1022))
-((-4312 (*1 *2 *3) (-12 (-5 *3 (-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))))) (-5 *2 (-645 (-410 (-567)))) (-5 *1 (-1022 *4)) (-4 *4 (-1244 (-567))))) (-1655 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))) (-5 *2 (-410 (-567))) (-5 *1 (-1022 *4)) (-4 *4 (-1244 (-567))))) (-2298 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))) (-5 *1 (-1022 *3)) (-4 *3 (-1244 (-567))))) (-2298 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))) (-5 *4 (-410 (-567))) (-5 *1 (-1022 *3)) (-4 *3 (-1244 (-567))))) (-2932 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-410 (-567))) (-5 *2 (-645 (-2 (|:| -2950 *5) (|:| -2963 *5)))) (-5 *1 (-1022 *3)) (-4 *3 (-1244 (-567))) (-5 *4 (-2 (|:| -2950 *5) (|:| -2963 *5))))) (-2932 (*1 *2 *3 *4) (-12 (-5 *2 (-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))))) (-5 *1 (-1022 *3)) (-4 *3 (-1244 (-567))) (-5 *4 (-410 (-567))))) (-2932 (*1 *2 *3 *4) (-12 (-5 *2 (-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))))) (-5 *1 (-1022 *3)) (-4 *3 (-1244 (-567))) (-5 *4 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))))) (-2932 (*1 *2 *3) (-12 (-5 *2 (-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))))) (-5 *1 (-1022 *3)) (-4 *3 (-1244 (-567))))))
-(-10 -7 (-15 -2932 ((-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))) |#1|)) (-15 -2932 ((-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))) |#1| (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))))) (-15 -2932 ((-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))) |#1| (-410 (-567)))) (-15 -2932 ((-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))) |#1| (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))) (-410 (-567)))) (-15 -2298 ((-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))) |#1| (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))) (-410 (-567)))) (-15 -2298 ((-3 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))) "failed") |#1| (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))) (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))))) (-15 -1655 ((-410 (-567)) (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))))) (-15 -4312 ((-645 (-410 (-567))) (-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))))))
-((-2298 (((-3 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))) "failed") |#1| (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))) (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))) 35) (((-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))) |#1| (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))) (-410 (-567))) 32)) (-2932 (((-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))) |#1| (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))) (-410 (-567))) 30) (((-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))) |#1| (-410 (-567))) 26) (((-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))) |#1| (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))) 28) (((-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))) |#1|) 24)))
-(((-1023 |#1|) (-10 -7 (-15 -2932 ((-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))) |#1|)) (-15 -2932 ((-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))) |#1| (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))))) (-15 -2932 ((-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))) |#1| (-410 (-567)))) (-15 -2932 ((-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))) |#1| (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))) (-410 (-567)))) (-15 -2298 ((-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))) |#1| (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))) (-410 (-567)))) (-15 -2298 ((-3 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))) "failed") |#1| (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))) (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))))) (-1244 (-410 (-567)))) (T -1023))
-((-2298 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))) (-5 *1 (-1023 *3)) (-4 *3 (-1244 (-410 (-567)))))) (-2298 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))) (-5 *4 (-410 (-567))) (-5 *1 (-1023 *3)) (-4 *3 (-1244 *4)))) (-2932 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-410 (-567))) (-5 *2 (-645 (-2 (|:| -2950 *5) (|:| -2963 *5)))) (-5 *1 (-1023 *3)) (-4 *3 (-1244 *5)) (-5 *4 (-2 (|:| -2950 *5) (|:| -2963 *5))))) (-2932 (*1 *2 *3 *4) (-12 (-5 *4 (-410 (-567))) (-5 *2 (-645 (-2 (|:| -2950 *4) (|:| -2963 *4)))) (-5 *1 (-1023 *3)) (-4 *3 (-1244 *4)))) (-2932 (*1 *2 *3 *4) (-12 (-5 *2 (-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))))) (-5 *1 (-1023 *3)) (-4 *3 (-1244 (-410 (-567)))) (-5 *4 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))))) (-2932 (*1 *2 *3) (-12 (-5 *2 (-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))))) (-5 *1 (-1023 *3)) (-4 *3 (-1244 (-410 (-567)))))))
-(-10 -7 (-15 -2932 ((-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))) |#1|)) (-15 -2932 ((-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))) |#1| (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))))) (-15 -2932 ((-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))) |#1| (-410 (-567)))) (-15 -2932 ((-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))) |#1| (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))) (-410 (-567)))) (-15 -2298 ((-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))) |#1| (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))) (-410 (-567)))) (-15 -2298 ((-3 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))) "failed") |#1| (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))) (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))))))
-((-3893 (((-225) $) 6) (((-381) $) 9)))
+((-2728 (*1 *1 *1) (-4 *1 (-1014))) (-1994 (*1 *2 *1) (|partial| -12 (-4 *1 (-1014)) (-5 *2 (-863)))) (-1370 (*1 *2 *1) (|partial| -12 (-5 *2 (-1175 *1)) (-4 *1 (-1014)))) (-1892 (*1 *2 *1) (|partial| -12 (-5 *2 (-1175 *1)) (-4 *1 (-1014)))) (-3940 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1175 *1)) (-5 *3 (-923)) (-5 *4 (-863)) (-4 *1 (-1014)))) (-3940 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1175 *1)) (-5 *3 (-923)) (-4 *1 (-1014)))) (-1564 (*1 *2 *3) (-12 (-5 *3 (-1175 *1)) (-4 *1 (-1014)) (-5 *2 (-645 *1)))) (-1564 (*1 *2 *3) (-12 (-5 *3 (-1175 (-410 (-567)))) (-5 *2 (-645 *1)) (-4 *1 (-1014)))) (-1564 (*1 *2 *3) (-12 (-5 *3 (-1175 (-567))) (-5 *2 (-645 *1)) (-4 *1 (-1014)))) (-1564 (*1 *2 *3) (-12 (-5 *3 (-954 *1)) (-4 *1 (-1014)) (-5 *2 (-645 *1)))) (-1564 (*1 *2 *3) (-12 (-5 *3 (-954 (-410 (-567)))) (-5 *2 (-645 *1)) (-4 *1 (-1014)))) (-1564 (*1 *2 *3) (-12 (-5 *3 (-954 (-567))) (-5 *2 (-645 *1)) (-4 *1 (-1014)))) (-2728 (*1 *1 *1 *2) (-12 (-4 *1 (-1014)) (-5 *2 (-923)))) (-2728 (*1 *1 *2) (-12 (-5 *2 (-410 (-567))) (-4 *1 (-1014)))) (-2728 (*1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-1014)))) (-4171 (*1 *1 *1 *2) (-12 (-4 *1 (-1014)) (-5 *2 (-863)))) (-4046 (*1 *1 *1 *2) (-12 (-4 *1 (-1014)) (-5 *2 (-863)))) (-3058 (*1 *2 *1 *1) (-12 (-4 *1 (-1014)) (-5 *2 (-410 (-567))))))
+(-13 (-147) (-849) (-172) (-365) (-414 (-410 (-567))) (-38 (-567)) (-38 (-410 (-567))) (-1004) (-10 -8 (-15 -1994 ((-3 (-863) "failed") $)) (-15 -1370 ((-3 (-1175 $) "failed") $)) (-15 -1892 ((-3 (-1175 $) "failed") $)) (-15 -3940 ((-3 $ "failed") (-1175 $) (-923) (-863))) (-15 -3940 ((-3 $ "failed") (-1175 $) (-923))) (-15 -1564 ((-645 $) (-1175 $))) (-15 -1564 ((-645 $) (-1175 (-410 (-567))))) (-15 -1564 ((-645 $) (-1175 (-567)))) (-15 -1564 ((-645 $) (-954 $))) (-15 -1564 ((-645 $) (-954 (-410 (-567))))) (-15 -1564 ((-645 $) (-954 (-567)))) (-15 -2728 ($ $ (-923))) (-15 -2728 ($ $)) (-15 -2728 ($ (-410 (-567)))) (-15 -2728 ($ (-567))) (-15 -4171 ($ $ (-863))) (-15 -4046 ($ $ (-863))) (-15 -3058 ((-410 (-567)) $ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) . T) ((-38 #1=(-567)) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-617 #0#) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-414 (-410 (-567))) . T) ((-455) . T) ((-559) . T) ((-647 #0#) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 #0#) . T) ((-649 #1#) . T) ((-649 $) . T) ((-641 #0#) . T) ((-641 #1#) . T) ((-641 $) . T) ((-718 #0#) . T) ((-718 #1#) . T) ((-718 $) . T) ((-727) . T) ((-792) . T) ((-793) . T) ((-795) . T) ((-796) . T) ((-849) . T) ((-851) . T) ((-922) . T) ((-1004) . T) ((-1040 (-410 (-567))) . T) ((-1040 (-567)) |has| (-410 (-567)) (-1040 (-567))) ((-1053 #0#) . T) ((-1053 #1#) . T) ((-1053 $) . T) ((-1058 #0#) . T) ((-1058 #1#) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1223) . T))
+((-2665 (((-2 (|:| |ans| |#2|) (|:| -2973 |#2|) (|:| |sol?| (-112))) (-567) |#2| |#2| (-1179) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-645 |#2|)) (-1 (-3 (-2 (|:| -2872 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 67)))
+(((-1015 |#1| |#2|) (-10 -7 (-15 -2665 ((-2 (|:| |ans| |#2|) (|:| -2973 |#2|) (|:| |sol?| (-112))) (-567) |#2| |#2| (-1179) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-645 |#2|)) (-1 (-3 (-2 (|:| -2872 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-455) (-147) (-1040 (-567)) (-640 (-567))) (-13 (-1204) (-27) (-433 |#1|))) (T -1015))
+((-2665 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1179)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-645 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2872 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1204) (-27) (-433 *8))) (-4 *8 (-13 (-455) (-147) (-1040 *3) (-640 *3))) (-5 *3 (-567)) (-5 *2 (-2 (|:| |ans| *4) (|:| -2973 *4) (|:| |sol?| (-112)))) (-5 *1 (-1015 *8 *4)))))
+(-10 -7 (-15 -2665 ((-2 (|:| |ans| |#2|) (|:| -2973 |#2|) (|:| |sol?| (-112))) (-567) |#2| |#2| (-1179) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-645 |#2|)) (-1 (-3 (-2 (|:| -2872 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
+((-2139 (((-3 (-645 |#2|) "failed") (-567) |#2| |#2| |#2| (-1179) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-645 |#2|)) (-1 (-3 (-2 (|:| -2872 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 55)))
+(((-1016 |#1| |#2|) (-10 -7 (-15 -2139 ((-3 (-645 |#2|) "failed") (-567) |#2| |#2| |#2| (-1179) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-645 |#2|)) (-1 (-3 (-2 (|:| -2872 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-455) (-147) (-1040 (-567)) (-640 (-567))) (-13 (-1204) (-27) (-433 |#1|))) (T -1016))
+((-2139 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1179)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-645 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2872 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1204) (-27) (-433 *8))) (-4 *8 (-13 (-455) (-147) (-1040 *3) (-640 *3))) (-5 *3 (-567)) (-5 *2 (-645 *4)) (-5 *1 (-1016 *8 *4)))))
+(-10 -7 (-15 -2139 ((-3 (-645 |#2|) "failed") (-567) |#2| |#2| |#2| (-1179) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-645 |#2|)) (-1 (-3 (-2 (|:| -2872 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
+((-2232 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3855 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-567)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-567) (-1 |#2| |#2|)) 41)) (-2194 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-410 |#2|)) (|:| |c| (-410 |#2|)) (|:| -2097 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-1 |#2| |#2|)) 71)) (-1962 (((-2 (|:| |ans| (-410 |#2|)) (|:| |nosol| (-112))) (-410 |#2|) (-410 |#2|)) 76)))
+(((-1017 |#1| |#2|) (-10 -7 (-15 -2194 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-410 |#2|)) (|:| |c| (-410 |#2|)) (|:| -2097 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-1 |#2| |#2|))) (-15 -1962 ((-2 (|:| |ans| (-410 |#2|)) (|:| |nosol| (-112))) (-410 |#2|) (-410 |#2|))) (-15 -2232 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3855 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-567)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-567) (-1 |#2| |#2|)))) (-13 (-365) (-147) (-1040 (-567))) (-1245 |#1|)) (T -1017))
+((-2232 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1245 *6)) (-4 *6 (-13 (-365) (-147) (-1040 *4))) (-5 *4 (-567)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -3855 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1017 *6 *3)))) (-1962 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-365) (-147) (-1040 (-567)))) (-4 *5 (-1245 *4)) (-5 *2 (-2 (|:| |ans| (-410 *5)) (|:| |nosol| (-112)))) (-5 *1 (-1017 *4 *5)) (-5 *3 (-410 *5)))) (-2194 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1245 *5)) (-4 *5 (-13 (-365) (-147) (-1040 (-567)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-410 *6)) (|:| |c| (-410 *6)) (|:| -2097 *6))) (-5 *1 (-1017 *5 *6)) (-5 *3 (-410 *6)))))
+(-10 -7 (-15 -2194 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-410 |#2|)) (|:| |c| (-410 |#2|)) (|:| -2097 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-1 |#2| |#2|))) (-15 -1962 ((-2 (|:| |ans| (-410 |#2|)) (|:| |nosol| (-112))) (-410 |#2|) (-410 |#2|))) (-15 -2232 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3855 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-567)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-567) (-1 |#2| |#2|))))
+((-3664 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-410 |#2|)) (|:| |h| |#2|) (|:| |c1| (-410 |#2|)) (|:| |c2| (-410 |#2|)) (|:| -2097 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|) (-1 |#2| |#2|)) 22)) (-3283 (((-3 (-645 (-410 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|)) 34)))
+(((-1018 |#1| |#2|) (-10 -7 (-15 -3664 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-410 |#2|)) (|:| |h| |#2|) (|:| |c1| (-410 |#2|)) (|:| |c2| (-410 |#2|)) (|:| -2097 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|) (-1 |#2| |#2|))) (-15 -3283 ((-3 (-645 (-410 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|)))) (-13 (-365) (-147) (-1040 (-567))) (-1245 |#1|)) (T -1018))
+((-3283 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-365) (-147) (-1040 (-567)))) (-4 *5 (-1245 *4)) (-5 *2 (-645 (-410 *5))) (-5 *1 (-1018 *4 *5)) (-5 *3 (-410 *5)))) (-3664 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1245 *5)) (-4 *5 (-13 (-365) (-147) (-1040 (-567)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-410 *6)) (|:| |h| *6) (|:| |c1| (-410 *6)) (|:| |c2| (-410 *6)) (|:| -2097 *6))) (-5 *1 (-1018 *5 *6)) (-5 *3 (-410 *6)))))
+(-10 -7 (-15 -3664 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-410 |#2|)) (|:| |h| |#2|) (|:| |c1| (-410 |#2|)) (|:| |c2| (-410 |#2|)) (|:| -2097 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|) (-1 |#2| |#2|))) (-15 -3283 ((-3 (-645 (-410 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|))))
+((-4033 (((-1 |#1|) (-645 (-2 (|:| -3812 |#1|) (|:| -1772 (-567))))) 37)) (-1556 (((-1 |#1|) (-1104 |#1|)) 45)) (-3906 (((-1 |#1|) (-1269 |#1|) (-1269 (-567)) (-567)) 34)))
+(((-1019 |#1|) (-10 -7 (-15 -1556 ((-1 |#1|) (-1104 |#1|))) (-15 -4033 ((-1 |#1|) (-645 (-2 (|:| -3812 |#1|) (|:| -1772 (-567)))))) (-15 -3906 ((-1 |#1|) (-1269 |#1|) (-1269 (-567)) (-567)))) (-1102)) (T -1019))
+((-3906 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1269 *6)) (-5 *4 (-1269 (-567))) (-5 *5 (-567)) (-4 *6 (-1102)) (-5 *2 (-1 *6)) (-5 *1 (-1019 *6)))) (-4033 (*1 *2 *3) (-12 (-5 *3 (-645 (-2 (|:| -3812 *4) (|:| -1772 (-567))))) (-4 *4 (-1102)) (-5 *2 (-1 *4)) (-5 *1 (-1019 *4)))) (-1556 (*1 *2 *3) (-12 (-5 *3 (-1104 *4)) (-4 *4 (-1102)) (-5 *2 (-1 *4)) (-5 *1 (-1019 *4)))))
+(-10 -7 (-15 -1556 ((-1 |#1|) (-1104 |#1|))) (-15 -4033 ((-1 |#1|) (-645 (-2 (|:| -3812 |#1|) (|:| -1772 (-567)))))) (-15 -3906 ((-1 |#1|) (-1269 |#1|) (-1269 (-567)) (-567))))
+((-3362 (((-772) (-338 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23)))
+(((-1020 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3362 ((-772) (-338 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-365) (-1245 |#1|) (-1245 (-410 |#2|)) (-344 |#1| |#2| |#3|) (-13 (-370) (-365))) (T -1020))
+((-3362 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-338 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-365)) (-4 *7 (-1245 *6)) (-4 *4 (-1245 (-410 *7))) (-4 *8 (-344 *6 *7 *4)) (-4 *9 (-13 (-370) (-365))) (-5 *2 (-772)) (-5 *1 (-1020 *6 *7 *4 *8 *9)))))
+(-10 -7 (-15 -3362 ((-772) (-338 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|))))
+((-2412 (((-112) $ $) NIL)) (-2662 (((-1137) $) 9)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) NIL) (($ (-1184)) NIL) (((-1184) $) NIL)) (-2017 (((-1137) $) 11)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)))
+(((-1021) (-13 (-1085) (-10 -8 (-15 -2662 ((-1137) $)) (-15 -2017 ((-1137) $))))) (T -1021))
+((-2662 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1021)))) (-2017 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1021)))))
+(-13 (-1085) (-10 -8 (-15 -2662 ((-1137) $)) (-15 -2017 ((-1137) $))))
+((-2013 (((-3 (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567)))) "failed") |#1| (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567)))) (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567))))) 32) (((-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567)))) |#1| (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567)))) (-410 (-567))) 29)) (-4339 (((-645 (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567))))) |#1| (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567)))) (-410 (-567))) 34) (((-645 (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567))))) |#1| (-410 (-567))) 30) (((-645 (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567))))) |#1| (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567))))) 33) (((-645 (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567))))) |#1|) 28)) (-3158 (((-645 (-410 (-567))) (-645 (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567)))))) 20)) (-2576 (((-410 (-567)) (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567))))) 17)))
+(((-1022 |#1|) (-10 -7 (-15 -4339 ((-645 (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567))))) |#1|)) (-15 -4339 ((-645 (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567))))) |#1| (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567)))))) (-15 -4339 ((-645 (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567))))) |#1| (-410 (-567)))) (-15 -4339 ((-645 (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567))))) |#1| (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567)))) (-410 (-567)))) (-15 -2013 ((-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567)))) |#1| (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567)))) (-410 (-567)))) (-15 -2013 ((-3 (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567)))) "failed") |#1| (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567)))) (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567)))))) (-15 -2576 ((-410 (-567)) (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567)))))) (-15 -3158 ((-645 (-410 (-567))) (-645 (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567)))))))) (-1245 (-567))) (T -1022))
+((-3158 (*1 *2 *3) (-12 (-5 *3 (-645 (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567)))))) (-5 *2 (-645 (-410 (-567)))) (-5 *1 (-1022 *4)) (-4 *4 (-1245 (-567))))) (-2576 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567))))) (-5 *2 (-410 (-567))) (-5 *1 (-1022 *4)) (-4 *4 (-1245 (-567))))) (-2013 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567))))) (-5 *1 (-1022 *3)) (-4 *3 (-1245 (-567))))) (-2013 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567))))) (-5 *4 (-410 (-567))) (-5 *1 (-1022 *3)) (-4 *3 (-1245 (-567))))) (-4339 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-410 (-567))) (-5 *2 (-645 (-2 (|:| -2961 *5) (|:| -2973 *5)))) (-5 *1 (-1022 *3)) (-4 *3 (-1245 (-567))) (-5 *4 (-2 (|:| -2961 *5) (|:| -2973 *5))))) (-4339 (*1 *2 *3 *4) (-12 (-5 *2 (-645 (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567)))))) (-5 *1 (-1022 *3)) (-4 *3 (-1245 (-567))) (-5 *4 (-410 (-567))))) (-4339 (*1 *2 *3 *4) (-12 (-5 *2 (-645 (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567)))))) (-5 *1 (-1022 *3)) (-4 *3 (-1245 (-567))) (-5 *4 (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567))))))) (-4339 (*1 *2 *3) (-12 (-5 *2 (-645 (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567)))))) (-5 *1 (-1022 *3)) (-4 *3 (-1245 (-567))))))
+(-10 -7 (-15 -4339 ((-645 (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567))))) |#1|)) (-15 -4339 ((-645 (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567))))) |#1| (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567)))))) (-15 -4339 ((-645 (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567))))) |#1| (-410 (-567)))) (-15 -4339 ((-645 (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567))))) |#1| (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567)))) (-410 (-567)))) (-15 -2013 ((-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567)))) |#1| (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567)))) (-410 (-567)))) (-15 -2013 ((-3 (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567)))) "failed") |#1| (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567)))) (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567)))))) (-15 -2576 ((-410 (-567)) (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567)))))) (-15 -3158 ((-645 (-410 (-567))) (-645 (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567))))))))
+((-2013 (((-3 (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567)))) "failed") |#1| (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567)))) (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567))))) 35) (((-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567)))) |#1| (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567)))) (-410 (-567))) 32)) (-4339 (((-645 (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567))))) |#1| (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567)))) (-410 (-567))) 30) (((-645 (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567))))) |#1| (-410 (-567))) 26) (((-645 (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567))))) |#1| (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567))))) 28) (((-645 (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567))))) |#1|) 24)))
+(((-1023 |#1|) (-10 -7 (-15 -4339 ((-645 (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567))))) |#1|)) (-15 -4339 ((-645 (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567))))) |#1| (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567)))))) (-15 -4339 ((-645 (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567))))) |#1| (-410 (-567)))) (-15 -4339 ((-645 (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567))))) |#1| (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567)))) (-410 (-567)))) (-15 -2013 ((-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567)))) |#1| (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567)))) (-410 (-567)))) (-15 -2013 ((-3 (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567)))) "failed") |#1| (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567)))) (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567))))))) (-1245 (-410 (-567)))) (T -1023))
+((-2013 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567))))) (-5 *1 (-1023 *3)) (-4 *3 (-1245 (-410 (-567)))))) (-2013 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567))))) (-5 *4 (-410 (-567))) (-5 *1 (-1023 *3)) (-4 *3 (-1245 *4)))) (-4339 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-410 (-567))) (-5 *2 (-645 (-2 (|:| -2961 *5) (|:| -2973 *5)))) (-5 *1 (-1023 *3)) (-4 *3 (-1245 *5)) (-5 *4 (-2 (|:| -2961 *5) (|:| -2973 *5))))) (-4339 (*1 *2 *3 *4) (-12 (-5 *4 (-410 (-567))) (-5 *2 (-645 (-2 (|:| -2961 *4) (|:| -2973 *4)))) (-5 *1 (-1023 *3)) (-4 *3 (-1245 *4)))) (-4339 (*1 *2 *3 *4) (-12 (-5 *2 (-645 (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567)))))) (-5 *1 (-1023 *3)) (-4 *3 (-1245 (-410 (-567)))) (-5 *4 (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567))))))) (-4339 (*1 *2 *3) (-12 (-5 *2 (-645 (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567)))))) (-5 *1 (-1023 *3)) (-4 *3 (-1245 (-410 (-567)))))))
+(-10 -7 (-15 -4339 ((-645 (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567))))) |#1|)) (-15 -4339 ((-645 (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567))))) |#1| (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567)))))) (-15 -4339 ((-645 (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567))))) |#1| (-410 (-567)))) (-15 -4339 ((-645 (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567))))) |#1| (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567)))) (-410 (-567)))) (-15 -2013 ((-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567)))) |#1| (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567)))) (-410 (-567)))) (-15 -2013 ((-3 (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567)))) "failed") |#1| (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567)))) (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567)))))))
+((-3902 (((-225) $) 6) (((-381) $) 9)))
(((-1024) (-140)) (T -1024))
NIL
(-13 (-615 (-225)) (-615 (-381)))
(((-615 (-225)) . T) ((-615 (-381)) . T))
-((-3018 (((-645 (-381)) (-954 (-567)) (-381)) 28) (((-645 (-381)) (-954 (-410 (-567))) (-381)) 27)) (-2032 (((-645 (-645 (-381))) (-645 (-954 (-567))) (-645 (-1178)) (-381)) 37)))
-(((-1025) (-10 -7 (-15 -3018 ((-645 (-381)) (-954 (-410 (-567))) (-381))) (-15 -3018 ((-645 (-381)) (-954 (-567)) (-381))) (-15 -2032 ((-645 (-645 (-381))) (-645 (-954 (-567))) (-645 (-1178)) (-381))))) (T -1025))
-((-2032 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-645 (-954 (-567)))) (-5 *4 (-645 (-1178))) (-5 *2 (-645 (-645 (-381)))) (-5 *1 (-1025)) (-5 *5 (-381)))) (-3018 (*1 *2 *3 *4) (-12 (-5 *3 (-954 (-567))) (-5 *2 (-645 (-381))) (-5 *1 (-1025)) (-5 *4 (-381)))) (-3018 (*1 *2 *3 *4) (-12 (-5 *3 (-954 (-410 (-567)))) (-5 *2 (-645 (-381))) (-5 *1 (-1025)) (-5 *4 (-381)))))
-(-10 -7 (-15 -3018 ((-645 (-381)) (-954 (-410 (-567))) (-381))) (-15 -3018 ((-645 (-381)) (-954 (-567)) (-381))) (-15 -2032 ((-645 (-645 (-381))) (-645 (-954 (-567))) (-645 (-1178)) (-381))))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) 75)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-3248 (($ $) NIL)) (-2908 (((-421 $) $) NIL)) (-2716 (($ $) NIL) (($ $ (-923)) NIL) (($ (-410 (-567))) NIL) (($ (-567)) NIL)) (-3609 (((-112) $ $) NIL)) (-1750 (((-567) $) 70)) (-2585 (($) NIL T CONST)) (-3483 (((-3 $ "failed") (-1174 $) (-923) (-863)) NIL) (((-3 $ "failed") (-1174 $) (-923)) 55)) (-3753 (((-3 (-410 (-567)) "failed") $) NIL (|has| (-410 (-567)) (-1040 (-410 (-567))))) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 |#1| "failed") $) 116) (((-3 (-567) "failed") $) NIL (-2800 (|has| (-410 (-567)) (-1040 (-567))) (|has| |#1| (-1040 (-567)))))) (-2038 (((-410 (-567)) $) 17 (|has| (-410 (-567)) (-1040 (-410 (-567))))) (((-410 (-567)) $) 17) ((|#1| $) 117) (((-567) $) NIL (-2800 (|has| (-410 (-567)) (-1040 (-567))) (|has| |#1| (-1040 (-567)))))) (-2522 (($ $ (-863)) 47)) (-3988 (($ $ (-863)) 48)) (-2349 (($ $ $) NIL)) (-4122 (((-410 (-567)) $ $) 21)) (-2109 (((-3 $ "failed") $) 88)) (-2360 (($ $ $) NIL)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-3184 (((-112) $) NIL)) (-4336 (((-112) $) 66)) (-1433 (((-112) $) NIL)) (-2651 (($ $ (-567)) NIL)) (-3494 (((-112) $) 69)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1354 (($ $ $) NIL)) (-2981 (($ $ $) NIL)) (-3448 (((-3 (-1174 $) "failed") $) 83)) (-3838 (((-3 (-863) "failed") $) 82)) (-2188 (((-3 (-1174 $) "failed") $) 80)) (-2864 (((-3 (-1063 $ (-1174 $)) "failed") $) 78)) (-2740 (($ (-645 $)) NIL) (($ $ $) NIL)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) 89)) (-3430 (((-1122) $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-2774 (($ (-645 $)) NIL) (($ $ $) NIL)) (-2706 (((-421 $) $) NIL)) (-3402 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL)) (-2391 (((-3 $ "failed") $ $) NIL)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1990 (((-772) $) NIL)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL)) (-4132 (((-863) $) 87) (($ (-567)) NIL) (($ (-410 (-567))) NIL) (($ $) 63) (($ (-410 (-567))) NIL) (($ (-567)) NIL) (($ (-410 (-567))) NIL) (($ |#1|) 119)) (-4221 (((-772)) NIL T CONST)) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL)) (-3050 (((-410 (-567)) $ $) 27)) (-4262 (((-645 $) (-1174 $)) 61) (((-645 $) (-1174 (-410 (-567)))) NIL) (((-645 $) (-1174 (-567))) NIL) (((-645 $) (-954 $)) NIL) (((-645 $) (-954 (-410 (-567)))) NIL) (((-645 $) (-954 (-567))) NIL)) (-4004 (($ (-1063 $ (-1174 $)) (-863)) 46)) (-2219 (($ $) 22)) (-1716 (($) 32 T CONST)) (-1728 (($) 39 T CONST)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 76)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) 24)) (-3060 (($ $ $) 37)) (-3045 (($ $) 38) (($ $ $) 74)) (-3033 (($ $ $) 112)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL) (($ $ (-410 (-567))) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 98) (($ $ $) 104) (($ (-410 (-567)) $) NIL) (($ $ (-410 (-567))) NIL) (($ (-567) $) 98) (($ $ (-567)) NIL) (($ (-410 (-567)) $) NIL) (($ $ (-410 (-567))) NIL) (($ |#1| $) 102) (($ $ |#1|) NIL)))
-(((-1026 |#1|) (-13 (-1014) (-414 |#1|) (-38 |#1|) (-10 -8 (-15 -4004 ($ (-1063 $ (-1174 $)) (-863))) (-15 -2864 ((-3 (-1063 $ (-1174 $)) "failed") $)) (-15 -4122 ((-410 (-567)) $ $)))) (-13 (-849) (-365) (-1024))) (T -1026))
-((-4004 (*1 *1 *2 *3) (-12 (-5 *2 (-1063 (-1026 *4) (-1174 (-1026 *4)))) (-5 *3 (-863)) (-5 *1 (-1026 *4)) (-4 *4 (-13 (-849) (-365) (-1024))))) (-2864 (*1 *2 *1) (|partial| -12 (-5 *2 (-1063 (-1026 *3) (-1174 (-1026 *3)))) (-5 *1 (-1026 *3)) (-4 *3 (-13 (-849) (-365) (-1024))))) (-4122 (*1 *2 *1 *1) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-1026 *3)) (-4 *3 (-13 (-849) (-365) (-1024))))))
-(-13 (-1014) (-414 |#1|) (-38 |#1|) (-10 -8 (-15 -4004 ($ (-1063 $ (-1174 $)) (-863))) (-15 -2864 ((-3 (-1063 $ (-1174 $)) "failed") $)) (-15 -4122 ((-410 (-567)) $ $))))
-((-4365 (((-2 (|:| -3845 |#2|) (|:| -4179 (-645 |#1|))) |#2| (-645 |#1|)) 32) ((|#2| |#2| |#1|) 27)))
-(((-1027 |#1| |#2|) (-10 -7 (-15 -4365 (|#2| |#2| |#1|)) (-15 -4365 ((-2 (|:| -3845 |#2|) (|:| -4179 (-645 |#1|))) |#2| (-645 |#1|)))) (-365) (-657 |#1|)) (T -1027))
-((-4365 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-5 *2 (-2 (|:| -3845 *3) (|:| -4179 (-645 *5)))) (-5 *1 (-1027 *5 *3)) (-5 *4 (-645 *5)) (-4 *3 (-657 *5)))) (-4365 (*1 *2 *2 *3) (-12 (-4 *3 (-365)) (-5 *1 (-1027 *3 *2)) (-4 *2 (-657 *3)))))
-(-10 -7 (-15 -4365 (|#2| |#2| |#1|)) (-15 -4365 ((-2 (|:| -3845 |#2|) (|:| -4179 (-645 |#1|))) |#2| (-645 |#1|))))
-((-2403 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2717 ((|#1| $ |#1|) 14)) (-4284 ((|#1| $ |#1|) 12)) (-4397 (($ |#1|) 10)) (-1419 (((-1160) $) NIL (|has| |#1| (-1102)))) (-3430 (((-1122) $) NIL (|has| |#1| (-1102)))) (-1787 ((|#1| $) 11)) (-4090 ((|#1| $) 13)) (-4132 (((-863) $) 21 (|has| |#1| (-1102)))) (-1745 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2936 (((-112) $ $) 9)))
-(((-1028 |#1|) (-13 (-1218) (-10 -8 (-15 -4397 ($ |#1|)) (-15 -1787 (|#1| $)) (-15 -4284 (|#1| $ |#1|)) (-15 -4090 (|#1| $)) (-15 -2717 (|#1| $ |#1|)) (-15 -2936 ((-112) $ $)) (IF (|has| |#1| (-1102)) (-6 (-1102)) |%noBranch|))) (-1218)) (T -1028))
-((-4397 (*1 *1 *2) (-12 (-5 *1 (-1028 *2)) (-4 *2 (-1218)))) (-1787 (*1 *2 *1) (-12 (-5 *1 (-1028 *2)) (-4 *2 (-1218)))) (-4284 (*1 *2 *1 *2) (-12 (-5 *1 (-1028 *2)) (-4 *2 (-1218)))) (-4090 (*1 *2 *1) (-12 (-5 *1 (-1028 *2)) (-4 *2 (-1218)))) (-2717 (*1 *2 *1 *2) (-12 (-5 *1 (-1028 *2)) (-4 *2 (-1218)))) (-2936 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1028 *3)) (-4 *3 (-1218)))))
-(-13 (-1218) (-10 -8 (-15 -4397 ($ |#1|)) (-15 -1787 (|#1| $)) (-15 -4284 (|#1| $ |#1|)) (-15 -4090 (|#1| $)) (-15 -2717 (|#1| $ |#1|)) (-15 -2936 ((-112) $ $)) (IF (|has| |#1| (-1102)) (-6 (-1102)) |%noBranch|)))
-((-2403 (((-112) $ $) NIL)) (-3487 (((-645 (-2 (|:| -3995 $) (|:| -3823 (-645 |#4|)))) (-645 |#4|)) NIL)) (-3244 (((-645 $) (-645 |#4|)) 118) (((-645 $) (-645 |#4|) (-112)) 119) (((-645 $) (-645 |#4|) (-112) (-112)) 117) (((-645 $) (-645 |#4|) (-112) (-112) (-112) (-112)) 120)) (-2847 (((-645 |#3|) $) NIL)) (-2017 (((-112) $) NIL)) (-3623 (((-112) $) NIL (|has| |#1| (-559)))) (-1326 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3722 ((|#4| |#4| $) NIL)) (-3248 (((-645 (-2 (|:| |val| |#4|) (|:| -2566 $))) |#4| $) 112)) (-4396 (((-2 (|:| |under| $) (|:| -2780 $) (|:| |upper| $)) $ |#3|) NIL)) (-3445 (((-112) $ (-772)) NIL)) (-3350 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4418))) (((-3 |#4| "failed") $ |#3|) 66)) (-2585 (($) NIL T CONST)) (-1490 (((-112) $) 29 (|has| |#1| (-559)))) (-2752 (((-112) $ $) NIL (|has| |#1| (-559)))) (-4224 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3547 (((-112) $) NIL (|has| |#1| (-559)))) (-1441 (((-645 |#4|) (-645 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1724 (((-645 |#4|) (-645 |#4|) $) NIL (|has| |#1| (-559)))) (-3197 (((-645 |#4|) (-645 |#4|) $) NIL (|has| |#1| (-559)))) (-3753 (((-3 $ "failed") (-645 |#4|)) NIL)) (-2038 (($ (-645 |#4|)) NIL)) (-2421 (((-3 $ "failed") $) 45)) (-1999 ((|#4| |#4| $) 69)) (-2444 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#4| (-1102))))) (-3238 (($ |#4| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#4| (-1102)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4418)))) (-4194 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 85 (|has| |#1| (-559)))) (-3786 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3730 ((|#4| |#4| $) NIL)) (-2477 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4418)) (|has| |#4| (-1102)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4418))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4418))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1585 (((-2 (|:| -3995 (-645 |#4|)) (|:| -3823 (-645 |#4|))) $) NIL)) (-3783 (((-112) |#4| $) NIL)) (-1829 (((-112) |#4| $) NIL)) (-2127 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1653 (((-2 (|:| |val| (-645 |#4|)) (|:| |towers| (-645 $))) (-645 |#4|) (-112) (-112)) 133)) (-2777 (((-645 |#4|) $) 18 (|has| $ (-6 -4418)))) (-1664 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1679 ((|#3| $) 38)) (-2077 (((-112) $ (-772)) NIL)) (-2279 (((-645 |#4|) $) 19 (|has| $ (-6 -4418)))) (-4337 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4418)) (|has| |#4| (-1102))))) (-3731 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#4| |#4|) $) 23)) (-2826 (((-645 |#3|) $) NIL)) (-2808 (((-112) |#3| $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL)) (-3232 (((-3 |#4| (-645 $)) |#4| |#4| $) NIL)) (-2272 (((-645 (-2 (|:| |val| |#4|) (|:| -2566 $))) |#4| |#4| $) 110)) (-3257 (((-3 |#4| "failed") $) 42)) (-1756 (((-645 $) |#4| $) 93)) (-4057 (((-3 (-112) (-645 $)) |#4| $) NIL)) (-3573 (((-645 (-2 (|:| |val| (-112)) (|:| -2566 $))) |#4| $) 103) (((-112) |#4| $) 64)) (-2370 (((-645 $) |#4| $) 115) (((-645 $) (-645 |#4|) $) NIL) (((-645 $) (-645 |#4|) (-645 $)) 116) (((-645 $) |#4| (-645 $)) NIL)) (-2545 (((-645 $) (-645 |#4|) (-112) (-112) (-112)) 128)) (-3101 (($ |#4| $) 82) (($ (-645 |#4|) $) 83) (((-645 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 79)) (-4051 (((-645 |#4|) $) NIL)) (-1791 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3159 ((|#4| |#4| $) NIL)) (-3392 (((-112) $ $) NIL)) (-2430 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-559)))) (-2554 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4164 ((|#4| |#4| $) NIL)) (-3430 (((-1122) $) NIL)) (-2409 (((-3 |#4| "failed") $) 40)) (-4128 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4077 (((-3 $ "failed") $ |#4|) 59)) (-2410 (($ $ |#4|) NIL) (((-645 $) |#4| $) 95) (((-645 $) |#4| (-645 $)) NIL) (((-645 $) (-645 |#4|) $) NIL) (((-645 $) (-645 |#4|) (-645 $)) 89)) (-3025 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 |#4|) (-645 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-295 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-645 (-295 |#4|))) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))))) (-3092 (((-112) $ $) NIL)) (-3572 (((-112) $) 17)) (-3498 (($) 14)) (-3077 (((-772) $) NIL)) (-3439 (((-772) |#4| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#4| (-1102)))) (((-772) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4418)))) (-4305 (($ $) 13)) (-3893 (((-539) $) NIL (|has| |#4| (-615 (-539))))) (-4147 (($ (-645 |#4|)) 22)) (-2397 (($ $ |#3|) 52)) (-2120 (($ $ |#3|) 54)) (-4129 (($ $) NIL)) (-2813 (($ $ |#3|) NIL)) (-4132 (((-863) $) 35) (((-645 |#4|) $) 46)) (-2073 (((-772) $) NIL (|has| |#3| (-370)))) (-1745 (((-112) $ $) NIL)) (-2220 (((-3 (-2 (|:| |bas| $) (|:| -2262 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2262 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2668 (((-112) $ (-1 (-112) |#4| (-645 |#4|))) NIL)) (-4021 (((-645 $) |#4| $) 92) (((-645 $) |#4| (-645 $)) NIL) (((-645 $) (-645 |#4|) $) NIL) (((-645 $) (-645 |#4|) (-645 $)) NIL)) (-1853 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4418)))) (-2385 (((-645 |#3|) $) NIL)) (-2848 (((-112) |#4| $) NIL)) (-2012 (((-112) |#3| $) 65)) (-2936 (((-112) $ $) NIL)) (-2414 (((-772) $) NIL (|has| $ (-6 -4418)))))
-(((-1029 |#1| |#2| |#3| |#4|) (-13 (-1073 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3101 ((-645 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3244 ((-645 $) (-645 |#4|) (-112) (-112))) (-15 -3244 ((-645 $) (-645 |#4|) (-112) (-112) (-112) (-112))) (-15 -2545 ((-645 $) (-645 |#4|) (-112) (-112) (-112))) (-15 -1653 ((-2 (|:| |val| (-645 |#4|)) (|:| |towers| (-645 $))) (-645 |#4|) (-112) (-112))))) (-455) (-794) (-851) (-1067 |#1| |#2| |#3|)) (T -1029))
-((-3101 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-645 (-1029 *5 *6 *7 *3))) (-5 *1 (-1029 *5 *6 *7 *3)) (-4 *3 (-1067 *5 *6 *7)))) (-3244 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-645 (-1029 *5 *6 *7 *8))) (-5 *1 (-1029 *5 *6 *7 *8)))) (-3244 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-645 (-1029 *5 *6 *7 *8))) (-5 *1 (-1029 *5 *6 *7 *8)))) (-2545 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-645 (-1029 *5 *6 *7 *8))) (-5 *1 (-1029 *5 *6 *7 *8)))) (-1653 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-1067 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-645 *8)) (|:| |towers| (-645 (-1029 *5 *6 *7 *8))))) (-5 *1 (-1029 *5 *6 *7 *8)) (-5 *3 (-645 *8)))))
-(-13 (-1073 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3101 ((-645 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3244 ((-645 $) (-645 |#4|) (-112) (-112))) (-15 -3244 ((-645 $) (-645 |#4|) (-112) (-112) (-112) (-112))) (-15 -2545 ((-645 $) (-645 |#4|) (-112) (-112) (-112))) (-15 -1653 ((-2 (|:| |val| (-645 |#4|)) (|:| |towers| (-645 $))) (-645 |#4|) (-112) (-112)))))
-((-3474 (((-645 (-690 |#1|)) (-645 (-690 |#1|))) 73) (((-690 |#1|) (-690 |#1|)) 72) (((-645 (-690 |#1|)) (-645 (-690 |#1|)) (-645 (-690 |#1|))) 71) (((-690 |#1|) (-690 |#1|) (-690 |#1|)) 68)) (-2787 (((-645 (-690 |#1|)) (-645 (-690 |#1|)) (-923)) 66) (((-690 |#1|) (-690 |#1|) (-923)) 65)) (-3775 (((-645 (-690 (-567))) (-645 (-645 (-567)))) 84) (((-645 (-690 (-567))) (-645 (-907 (-567))) (-567)) 83) (((-690 (-567)) (-645 (-567))) 80) (((-690 (-567)) (-907 (-567)) (-567)) 78)) (-3192 (((-690 (-954 |#1|)) (-772)) 98)) (-2448 (((-645 (-690 |#1|)) (-645 (-690 |#1|)) (-923)) 52 (|has| |#1| (-6 (-4420 "*")))) (((-690 |#1|) (-690 |#1|) (-923)) 50 (|has| |#1| (-6 (-4420 "*"))))))
-(((-1030 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4420 "*"))) (-15 -2448 ((-690 |#1|) (-690 |#1|) (-923))) |%noBranch|) (IF (|has| |#1| (-6 (-4420 "*"))) (-15 -2448 ((-645 (-690 |#1|)) (-645 (-690 |#1|)) (-923))) |%noBranch|) (-15 -3192 ((-690 (-954 |#1|)) (-772))) (-15 -2787 ((-690 |#1|) (-690 |#1|) (-923))) (-15 -2787 ((-645 (-690 |#1|)) (-645 (-690 |#1|)) (-923))) (-15 -3474 ((-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -3474 ((-645 (-690 |#1|)) (-645 (-690 |#1|)) (-645 (-690 |#1|)))) (-15 -3474 ((-690 |#1|) (-690 |#1|))) (-15 -3474 ((-645 (-690 |#1|)) (-645 (-690 |#1|)))) (-15 -3775 ((-690 (-567)) (-907 (-567)) (-567))) (-15 -3775 ((-690 (-567)) (-645 (-567)))) (-15 -3775 ((-645 (-690 (-567))) (-645 (-907 (-567))) (-567))) (-15 -3775 ((-645 (-690 (-567))) (-645 (-645 (-567)))))) (-1051)) (T -1030))
-((-3775 (*1 *2 *3) (-12 (-5 *3 (-645 (-645 (-567)))) (-5 *2 (-645 (-690 (-567)))) (-5 *1 (-1030 *4)) (-4 *4 (-1051)))) (-3775 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-907 (-567)))) (-5 *4 (-567)) (-5 *2 (-645 (-690 *4))) (-5 *1 (-1030 *5)) (-4 *5 (-1051)))) (-3775 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-690 (-567))) (-5 *1 (-1030 *4)) (-4 *4 (-1051)))) (-3775 (*1 *2 *3 *4) (-12 (-5 *3 (-907 (-567))) (-5 *4 (-567)) (-5 *2 (-690 *4)) (-5 *1 (-1030 *5)) (-4 *5 (-1051)))) (-3474 (*1 *2 *2) (-12 (-5 *2 (-645 (-690 *3))) (-4 *3 (-1051)) (-5 *1 (-1030 *3)))) (-3474 (*1 *2 *2) (-12 (-5 *2 (-690 *3)) (-4 *3 (-1051)) (-5 *1 (-1030 *3)))) (-3474 (*1 *2 *2 *2) (-12 (-5 *2 (-645 (-690 *3))) (-4 *3 (-1051)) (-5 *1 (-1030 *3)))) (-3474 (*1 *2 *2 *2) (-12 (-5 *2 (-690 *3)) (-4 *3 (-1051)) (-5 *1 (-1030 *3)))) (-2787 (*1 *2 *2 *3) (-12 (-5 *2 (-645 (-690 *4))) (-5 *3 (-923)) (-4 *4 (-1051)) (-5 *1 (-1030 *4)))) (-2787 (*1 *2 *2 *3) (-12 (-5 *2 (-690 *4)) (-5 *3 (-923)) (-4 *4 (-1051)) (-5 *1 (-1030 *4)))) (-3192 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-690 (-954 *4))) (-5 *1 (-1030 *4)) (-4 *4 (-1051)))) (-2448 (*1 *2 *2 *3) (-12 (-5 *2 (-645 (-690 *4))) (-5 *3 (-923)) (|has| *4 (-6 (-4420 "*"))) (-4 *4 (-1051)) (-5 *1 (-1030 *4)))) (-2448 (*1 *2 *2 *3) (-12 (-5 *2 (-690 *4)) (-5 *3 (-923)) (|has| *4 (-6 (-4420 "*"))) (-4 *4 (-1051)) (-5 *1 (-1030 *4)))))
-(-10 -7 (IF (|has| |#1| (-6 (-4420 "*"))) (-15 -2448 ((-690 |#1|) (-690 |#1|) (-923))) |%noBranch|) (IF (|has| |#1| (-6 (-4420 "*"))) (-15 -2448 ((-645 (-690 |#1|)) (-645 (-690 |#1|)) (-923))) |%noBranch|) (-15 -3192 ((-690 (-954 |#1|)) (-772))) (-15 -2787 ((-690 |#1|) (-690 |#1|) (-923))) (-15 -2787 ((-645 (-690 |#1|)) (-645 (-690 |#1|)) (-923))) (-15 -3474 ((-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -3474 ((-645 (-690 |#1|)) (-645 (-690 |#1|)) (-645 (-690 |#1|)))) (-15 -3474 ((-690 |#1|) (-690 |#1|))) (-15 -3474 ((-645 (-690 |#1|)) (-645 (-690 |#1|)))) (-15 -3775 ((-690 (-567)) (-907 (-567)) (-567))) (-15 -3775 ((-690 (-567)) (-645 (-567)))) (-15 -3775 ((-645 (-690 (-567))) (-645 (-907 (-567))) (-567))) (-15 -3775 ((-645 (-690 (-567))) (-645 (-645 (-567))))))
-((-1374 (((-690 |#1|) (-645 (-690 |#1|)) (-1268 |#1|)) 71 (|has| |#1| (-308)))) (-4323 (((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-1268 (-1268 |#1|))) 112 (|has| |#1| (-365))) (((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-1268 |#1|)) 119 (|has| |#1| (-365)))) (-4045 (((-1268 |#1|) (-645 (-1268 |#1|)) (-567)) 137 (-12 (|has| |#1| (-365)) (|has| |#1| (-370))))) (-4114 (((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-923)) 125 (-12 (|has| |#1| (-365)) (|has| |#1| (-370)))) (((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-112)) 124 (-12 (|has| |#1| (-365)) (|has| |#1| (-370)))) (((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|))) 123 (-12 (|has| |#1| (-365)) (|has| |#1| (-370)))) (((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-112) (-567) (-567)) 122 (-12 (|has| |#1| (-365)) (|has| |#1| (-370))))) (-1915 (((-112) (-645 (-690 |#1|))) 105 (|has| |#1| (-365))) (((-112) (-645 (-690 |#1|)) (-567)) 108 (|has| |#1| (-365)))) (-2741 (((-1268 (-1268 |#1|)) (-645 (-690 |#1|)) (-1268 |#1|)) 68 (|has| |#1| (-308)))) (-2610 (((-690 |#1|) (-645 (-690 |#1|)) (-690 |#1|)) 48)) (-1896 (((-690 |#1|) (-1268 (-1268 |#1|))) 41)) (-3782 (((-690 |#1|) (-645 (-690 |#1|)) (-645 (-690 |#1|)) (-567)) 96 (|has| |#1| (-365))) (((-690 |#1|) (-645 (-690 |#1|)) (-645 (-690 |#1|))) 95 (|has| |#1| (-365))) (((-690 |#1|) (-645 (-690 |#1|)) (-645 (-690 |#1|)) (-112) (-567)) 103 (|has| |#1| (-365)))))
-(((-1031 |#1|) (-10 -7 (-15 -1896 ((-690 |#1|) (-1268 (-1268 |#1|)))) (-15 -2610 ((-690 |#1|) (-645 (-690 |#1|)) (-690 |#1|))) (IF (|has| |#1| (-308)) (PROGN (-15 -2741 ((-1268 (-1268 |#1|)) (-645 (-690 |#1|)) (-1268 |#1|))) (-15 -1374 ((-690 |#1|) (-645 (-690 |#1|)) (-1268 |#1|)))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -3782 ((-690 |#1|) (-645 (-690 |#1|)) (-645 (-690 |#1|)) (-112) (-567))) (-15 -3782 ((-690 |#1|) (-645 (-690 |#1|)) (-645 (-690 |#1|)))) (-15 -3782 ((-690 |#1|) (-645 (-690 |#1|)) (-645 (-690 |#1|)) (-567))) (-15 -1915 ((-112) (-645 (-690 |#1|)) (-567))) (-15 -1915 ((-112) (-645 (-690 |#1|)))) (-15 -4323 ((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-1268 |#1|))) (-15 -4323 ((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-1268 (-1268 |#1|))))) |%noBranch|) (IF (|has| |#1| (-370)) (IF (|has| |#1| (-365)) (PROGN (-15 -4114 ((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-112) (-567) (-567))) (-15 -4114 ((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)))) (-15 -4114 ((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-112))) (-15 -4114 ((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-923))) (-15 -4045 ((-1268 |#1|) (-645 (-1268 |#1|)) (-567)))) |%noBranch|) |%noBranch|)) (-1051)) (T -1031))
-((-4045 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-1268 *5))) (-5 *4 (-567)) (-5 *2 (-1268 *5)) (-5 *1 (-1031 *5)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1051)))) (-4114 (*1 *2 *3 *4) (-12 (-5 *4 (-923)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1051)) (-5 *2 (-645 (-645 (-690 *5)))) (-5 *1 (-1031 *5)) (-5 *3 (-645 (-690 *5))))) (-4114 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1051)) (-5 *2 (-645 (-645 (-690 *5)))) (-5 *1 (-1031 *5)) (-5 *3 (-645 (-690 *5))))) (-4114 (*1 *2 *3) (-12 (-4 *4 (-365)) (-4 *4 (-370)) (-4 *4 (-1051)) (-5 *2 (-645 (-645 (-690 *4)))) (-5 *1 (-1031 *4)) (-5 *3 (-645 (-690 *4))))) (-4114 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-567)) (-4 *6 (-365)) (-4 *6 (-370)) (-4 *6 (-1051)) (-5 *2 (-645 (-645 (-690 *6)))) (-5 *1 (-1031 *6)) (-5 *3 (-645 (-690 *6))))) (-4323 (*1 *2 *3 *4) (-12 (-5 *4 (-1268 (-1268 *5))) (-4 *5 (-365)) (-4 *5 (-1051)) (-5 *2 (-645 (-645 (-690 *5)))) (-5 *1 (-1031 *5)) (-5 *3 (-645 (-690 *5))))) (-4323 (*1 *2 *3 *4) (-12 (-5 *4 (-1268 *5)) (-4 *5 (-365)) (-4 *5 (-1051)) (-5 *2 (-645 (-645 (-690 *5)))) (-5 *1 (-1031 *5)) (-5 *3 (-645 (-690 *5))))) (-1915 (*1 *2 *3) (-12 (-5 *3 (-645 (-690 *4))) (-4 *4 (-365)) (-4 *4 (-1051)) (-5 *2 (-112)) (-5 *1 (-1031 *4)))) (-1915 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-690 *5))) (-5 *4 (-567)) (-4 *5 (-365)) (-4 *5 (-1051)) (-5 *2 (-112)) (-5 *1 (-1031 *5)))) (-3782 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-645 (-690 *5))) (-5 *4 (-567)) (-5 *2 (-690 *5)) (-5 *1 (-1031 *5)) (-4 *5 (-365)) (-4 *5 (-1051)))) (-3782 (*1 *2 *3 *3) (-12 (-5 *3 (-645 (-690 *4))) (-5 *2 (-690 *4)) (-5 *1 (-1031 *4)) (-4 *4 (-365)) (-4 *4 (-1051)))) (-3782 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-645 (-690 *6))) (-5 *4 (-112)) (-5 *5 (-567)) (-5 *2 (-690 *6)) (-5 *1 (-1031 *6)) (-4 *6 (-365)) (-4 *6 (-1051)))) (-1374 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-690 *5))) (-5 *4 (-1268 *5)) (-4 *5 (-308)) (-4 *5 (-1051)) (-5 *2 (-690 *5)) (-5 *1 (-1031 *5)))) (-2741 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-690 *5))) (-4 *5 (-308)) (-4 *5 (-1051)) (-5 *2 (-1268 (-1268 *5))) (-5 *1 (-1031 *5)) (-5 *4 (-1268 *5)))) (-2610 (*1 *2 *3 *2) (-12 (-5 *3 (-645 (-690 *4))) (-5 *2 (-690 *4)) (-4 *4 (-1051)) (-5 *1 (-1031 *4)))) (-1896 (*1 *2 *3) (-12 (-5 *3 (-1268 (-1268 *4))) (-4 *4 (-1051)) (-5 *2 (-690 *4)) (-5 *1 (-1031 *4)))))
-(-10 -7 (-15 -1896 ((-690 |#1|) (-1268 (-1268 |#1|)))) (-15 -2610 ((-690 |#1|) (-645 (-690 |#1|)) (-690 |#1|))) (IF (|has| |#1| (-308)) (PROGN (-15 -2741 ((-1268 (-1268 |#1|)) (-645 (-690 |#1|)) (-1268 |#1|))) (-15 -1374 ((-690 |#1|) (-645 (-690 |#1|)) (-1268 |#1|)))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -3782 ((-690 |#1|) (-645 (-690 |#1|)) (-645 (-690 |#1|)) (-112) (-567))) (-15 -3782 ((-690 |#1|) (-645 (-690 |#1|)) (-645 (-690 |#1|)))) (-15 -3782 ((-690 |#1|) (-645 (-690 |#1|)) (-645 (-690 |#1|)) (-567))) (-15 -1915 ((-112) (-645 (-690 |#1|)) (-567))) (-15 -1915 ((-112) (-645 (-690 |#1|)))) (-15 -4323 ((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-1268 |#1|))) (-15 -4323 ((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-1268 (-1268 |#1|))))) |%noBranch|) (IF (|has| |#1| (-370)) (IF (|has| |#1| (-365)) (PROGN (-15 -4114 ((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-112) (-567) (-567))) (-15 -4114 ((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)))) (-15 -4114 ((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-112))) (-15 -4114 ((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-923))) (-15 -4045 ((-1268 |#1|) (-645 (-1268 |#1|)) (-567)))) |%noBranch|) |%noBranch|))
-((-2685 ((|#1| (-923) |#1|) 18)))
-(((-1032 |#1|) (-10 -7 (-15 -2685 (|#1| (-923) |#1|))) (-13 (-1102) (-10 -8 (-15 -3033 ($ $ $))))) (T -1032))
-((-2685 (*1 *2 *3 *2) (-12 (-5 *3 (-923)) (-5 *1 (-1032 *2)) (-4 *2 (-13 (-1102) (-10 -8 (-15 -3033 ($ $ $))))))))
-(-10 -7 (-15 -2685 (|#1| (-923) |#1|)))
-((-1525 (((-645 (-2 (|:| |radval| (-317 (-567))) (|:| |radmult| (-567)) (|:| |radvect| (-645 (-690 (-317 (-567))))))) (-690 (-410 (-954 (-567))))) 67)) (-4345 (((-645 (-690 (-317 (-567)))) (-317 (-567)) (-690 (-410 (-954 (-567))))) 52)) (-3121 (((-645 (-317 (-567))) (-690 (-410 (-954 (-567))))) 45)) (-1574 (((-645 (-690 (-317 (-567)))) (-690 (-410 (-954 (-567))))) 88)) (-3054 (((-690 (-317 (-567))) (-690 (-317 (-567)))) 38)) (-3075 (((-645 (-690 (-317 (-567)))) (-645 (-690 (-317 (-567))))) 76)) (-3568 (((-3 (-690 (-317 (-567))) "failed") (-690 (-410 (-954 (-567))))) 85)))
-(((-1033) (-10 -7 (-15 -1525 ((-645 (-2 (|:| |radval| (-317 (-567))) (|:| |radmult| (-567)) (|:| |radvect| (-645 (-690 (-317 (-567))))))) (-690 (-410 (-954 (-567)))))) (-15 -4345 ((-645 (-690 (-317 (-567)))) (-317 (-567)) (-690 (-410 (-954 (-567)))))) (-15 -3121 ((-645 (-317 (-567))) (-690 (-410 (-954 (-567)))))) (-15 -3568 ((-3 (-690 (-317 (-567))) "failed") (-690 (-410 (-954 (-567)))))) (-15 -3054 ((-690 (-317 (-567))) (-690 (-317 (-567))))) (-15 -3075 ((-645 (-690 (-317 (-567)))) (-645 (-690 (-317 (-567)))))) (-15 -1574 ((-645 (-690 (-317 (-567)))) (-690 (-410 (-954 (-567)))))))) (T -1033))
-((-1574 (*1 *2 *3) (-12 (-5 *3 (-690 (-410 (-954 (-567))))) (-5 *2 (-645 (-690 (-317 (-567))))) (-5 *1 (-1033)))) (-3075 (*1 *2 *2) (-12 (-5 *2 (-645 (-690 (-317 (-567))))) (-5 *1 (-1033)))) (-3054 (*1 *2 *2) (-12 (-5 *2 (-690 (-317 (-567)))) (-5 *1 (-1033)))) (-3568 (*1 *2 *3) (|partial| -12 (-5 *3 (-690 (-410 (-954 (-567))))) (-5 *2 (-690 (-317 (-567)))) (-5 *1 (-1033)))) (-3121 (*1 *2 *3) (-12 (-5 *3 (-690 (-410 (-954 (-567))))) (-5 *2 (-645 (-317 (-567)))) (-5 *1 (-1033)))) (-4345 (*1 *2 *3 *4) (-12 (-5 *4 (-690 (-410 (-954 (-567))))) (-5 *2 (-645 (-690 (-317 (-567))))) (-5 *1 (-1033)) (-5 *3 (-317 (-567))))) (-1525 (*1 *2 *3) (-12 (-5 *3 (-690 (-410 (-954 (-567))))) (-5 *2 (-645 (-2 (|:| |radval| (-317 (-567))) (|:| |radmult| (-567)) (|:| |radvect| (-645 (-690 (-317 (-567)))))))) (-5 *1 (-1033)))))
-(-10 -7 (-15 -1525 ((-645 (-2 (|:| |radval| (-317 (-567))) (|:| |radmult| (-567)) (|:| |radvect| (-645 (-690 (-317 (-567))))))) (-690 (-410 (-954 (-567)))))) (-15 -4345 ((-645 (-690 (-317 (-567)))) (-317 (-567)) (-690 (-410 (-954 (-567)))))) (-15 -3121 ((-645 (-317 (-567))) (-690 (-410 (-954 (-567)))))) (-15 -3568 ((-3 (-690 (-317 (-567))) "failed") (-690 (-410 (-954 (-567)))))) (-15 -3054 ((-690 (-317 (-567))) (-690 (-317 (-567))))) (-15 -3075 ((-645 (-690 (-317 (-567)))) (-645 (-690 (-317 (-567)))))) (-15 -1574 ((-645 (-690 (-317 (-567)))) (-690 (-410 (-954 (-567)))))))
-((-1922 ((|#1| |#1| (-923)) 18)))
-(((-1034 |#1|) (-10 -7 (-15 -1922 (|#1| |#1| (-923)))) (-13 (-1102) (-10 -8 (-15 * ($ $ $))))) (T -1034))
-((-1922 (*1 *2 *2 *3) (-12 (-5 *3 (-923)) (-5 *1 (-1034 *2)) (-4 *2 (-13 (-1102) (-10 -8 (-15 * ($ $ $))))))))
-(-10 -7 (-15 -1922 (|#1| |#1| (-923))))
-((-4132 ((|#1| (-313)) 11) (((-1273) |#1|) 9)))
-(((-1035 |#1|) (-10 -7 (-15 -4132 ((-1273) |#1|)) (-15 -4132 (|#1| (-313)))) (-1218)) (T -1035))
-((-4132 (*1 *2 *3) (-12 (-5 *3 (-313)) (-5 *1 (-1035 *2)) (-4 *2 (-1218)))) (-4132 (*1 *2 *3) (-12 (-5 *2 (-1273)) (-5 *1 (-1035 *3)) (-4 *3 (-1218)))))
-(-10 -7 (-15 -4132 ((-1273) |#1|)) (-15 -4132 (|#1| (-313))))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2585 (($) NIL T CONST)) (-2477 (($ |#4|) 25)) (-2109 (((-3 $ "failed") $) NIL)) (-1433 (((-112) $) NIL)) (-2465 ((|#4| $) 27)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 46) (($ (-567)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-4221 (((-772)) 43 T CONST)) (-1745 (((-112) $ $) NIL)) (-1716 (($) 21 T CONST)) (-1728 (($) 23 T CONST)) (-2936 (((-112) $ $) 40)) (-3045 (($ $) 31) (($ $ $) NIL)) (-3033 (($ $ $) 29)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL)))
-(((-1036 |#1| |#2| |#3| |#4| |#5|) (-13 (-172) (-38 |#1|) (-10 -8 (-15 -2477 ($ |#4|)) (-15 -4132 ($ |#4|)) (-15 -2465 (|#4| $)))) (-365) (-794) (-851) (-951 |#1| |#2| |#3|) (-645 |#4|)) (T -1036))
-((-2477 (*1 *1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-1036 *3 *4 *5 *2 *6)) (-4 *2 (-951 *3 *4 *5)) (-14 *6 (-645 *2)))) (-4132 (*1 *1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-1036 *3 *4 *5 *2 *6)) (-4 *2 (-951 *3 *4 *5)) (-14 *6 (-645 *2)))) (-2465 (*1 *2 *1) (-12 (-4 *2 (-951 *3 *4 *5)) (-5 *1 (-1036 *3 *4 *5 *2 *6)) (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-14 *6 (-645 *2)))))
-(-13 (-172) (-38 |#1|) (-10 -8 (-15 -2477 ($ |#4|)) (-15 -4132 ($ |#4|)) (-15 -2465 (|#4| $))))
-((-2403 (((-112) $ $) NIL (-2800 (|has| (-52) (-1102)) (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-1102))))) (-2835 (($) NIL) (($ (-645 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))))) NIL)) (-1783 (((-1273) $ (-1178) (-1178)) NIL (|has| $ (-6 -4419)))) (-3445 (((-112) $ (-772)) NIL)) (-1763 (((-112) (-112)) 43)) (-3523 (((-112) (-112)) 42)) (-4284 (((-52) $ (-1178) (-52)) NIL)) (-2839 (($ (-1 (-112) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) $) NIL (|has| $ (-6 -4418)))) (-3350 (($ (-1 (-112) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) $) NIL (|has| $ (-6 -4418)))) (-4019 (((-3 (-52) "failed") (-1178) $) NIL)) (-2585 (($) NIL T CONST)) (-2444 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-1102))))) (-2539 (($ (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) $) NIL (|has| $ (-6 -4418))) (($ (-1 (-112) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) $) NIL (|has| $ (-6 -4418))) (((-3 (-52) "failed") (-1178) $) NIL)) (-3238 (($ (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-1102)))) (($ (-1 (-112) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) $) NIL (|has| $ (-6 -4418)))) (-2477 (((-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-1 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) $ (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-1102)))) (((-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-1 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) $ (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) NIL (|has| $ (-6 -4418))) (((-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-1 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) $) NIL (|has| $ (-6 -4418)))) (-3741 (((-52) $ (-1178) (-52)) NIL (|has| $ (-6 -4419)))) (-3680 (((-52) $ (-1178)) NIL)) (-2777 (((-645 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) $) NIL (|has| $ (-6 -4418))) (((-645 (-52)) $) NIL (|has| $ (-6 -4418)))) (-2077 (((-112) $ (-772)) NIL)) (-4069 (((-1178) $) NIL (|has| (-1178) (-851)))) (-2279 (((-645 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) $) NIL (|has| $ (-6 -4418))) (((-645 (-52)) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-1102)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-52) (-1102))))) (-2266 (((-1178) $) NIL (|has| (-1178) (-851)))) (-3731 (($ (-1 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) $) NIL (|has| $ (-6 -4419))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL (-2800 (|has| (-52) (-1102)) (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-1102))))) (-1391 (((-645 (-1178)) $) 37)) (-4251 (((-112) (-1178) $) NIL)) (-1566 (((-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) $) NIL)) (-2531 (($ (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) $) NIL)) (-1789 (((-645 (-1178)) $) NIL)) (-2996 (((-112) (-1178) $) NIL)) (-3430 (((-1122) $) NIL (-2800 (|has| (-52) (-1102)) (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-1102))))) (-2409 (((-52) $) NIL (|has| (-1178) (-851)))) (-4128 (((-3 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) "failed") (-1 (-112) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) $) NIL)) (-3986 (($ $ (-52)) NIL (|has| $ (-6 -4419)))) (-1793 (((-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) $) NIL)) (-3025 (((-112) (-1 (-112) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) $) NIL (|has| $ (-6 -4418))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))))) NIL (-12 (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-310 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))))) (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-1102)))) (($ $ (-295 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))))) NIL (-12 (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-310 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))))) (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-1102)))) (($ $ (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) NIL (-12 (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-310 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))))) (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-1102)))) (($ $ (-645 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) (-645 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))))) NIL (-12 (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-310 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))))) (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-1102)))) (($ $ (-645 (-52)) (-645 (-52))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1102)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1102)))) (($ $ (-295 (-52))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1102)))) (($ $ (-645 (-295 (-52)))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1102))))) (-3092 (((-112) $ $) NIL)) (-1794 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-52) (-1102))))) (-2339 (((-645 (-52)) $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) NIL)) (-1787 (((-52) $ (-1178)) 39) (((-52) $ (-1178) (-52)) NIL)) (-2718 (($) NIL) (($ (-645 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))))) NIL)) (-3439 (((-772) (-1 (-112) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) $) NIL (|has| $ (-6 -4418))) (((-772) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-1102)))) (((-772) (-52) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-52) (-1102)))) (((-772) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4418)))) (-4305 (($ $) NIL)) (-3893 (((-539) $) NIL (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-615 (-539))))) (-4147 (($ (-645 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))))) NIL)) (-4132 (((-863) $) 41 (-2800 (|has| (-52) (-614 (-863))) (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-614 (-863)))))) (-1745 (((-112) $ $) NIL (-2800 (|has| (-52) (-1102)) (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-1102))))) (-3551 (($ (-645 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))))) NIL)) (-1853 (((-112) (-1 (-112) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) $) NIL (|has| $ (-6 -4418))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) NIL (-2800 (|has| (-52) (-1102)) (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-1102))))) (-2414 (((-772) $) NIL (|has| $ (-6 -4418)))))
-(((-1037) (-13 (-1194 (-1178) (-52)) (-10 -7 (-15 -1763 ((-112) (-112))) (-15 -3523 ((-112) (-112))) (-6 -4418)))) (T -1037))
-((-1763 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1037)))) (-3523 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1037)))))
-(-13 (-1194 (-1178) (-52)) (-10 -7 (-15 -1763 ((-112) (-112))) (-15 -3523 ((-112) (-112))) (-6 -4418)))
-((-2403 (((-112) $ $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-3097 (((-1137) $) 9)) (-4132 (((-863) $) 15) (($ (-1183)) NIL) (((-1183) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)))
-(((-1038) (-13 (-1085) (-10 -8 (-15 -3097 ((-1137) $))))) (T -1038))
-((-3097 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1038)))))
-(-13 (-1085) (-10 -8 (-15 -3097 ((-1137) $))))
-((-2038 ((|#2| $) 10)))
-(((-1039 |#1| |#2|) (-10 -8 (-15 -2038 (|#2| |#1|))) (-1040 |#2|) (-1218)) (T -1039))
-NIL
-(-10 -8 (-15 -2038 (|#2| |#1|)))
-((-3753 (((-3 |#1| "failed") $) 9)) (-2038 ((|#1| $) 8)) (-4132 (($ |#1|) 6)))
-(((-1040 |#1|) (-140) (-1218)) (T -1040))
-((-3753 (*1 *2 *1) (|partial| -12 (-4 *1 (-1040 *2)) (-4 *2 (-1218)))) (-2038 (*1 *2 *1) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-1218)))))
-(-13 (-617 |t#1|) (-10 -8 (-15 -3753 ((-3 |t#1| "failed") $)) (-15 -2038 (|t#1| $))))
+((-2464 (((-645 (-381)) (-954 (-567)) (-381)) 28) (((-645 (-381)) (-954 (-410 (-567))) (-381)) 27)) (-1898 (((-645 (-645 (-381))) (-645 (-954 (-567))) (-645 (-1179)) (-381)) 37)))
+(((-1025) (-10 -7 (-15 -2464 ((-645 (-381)) (-954 (-410 (-567))) (-381))) (-15 -2464 ((-645 (-381)) (-954 (-567)) (-381))) (-15 -1898 ((-645 (-645 (-381))) (-645 (-954 (-567))) (-645 (-1179)) (-381))))) (T -1025))
+((-1898 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-645 (-954 (-567)))) (-5 *4 (-645 (-1179))) (-5 *2 (-645 (-645 (-381)))) (-5 *1 (-1025)) (-5 *5 (-381)))) (-2464 (*1 *2 *3 *4) (-12 (-5 *3 (-954 (-567))) (-5 *2 (-645 (-381))) (-5 *1 (-1025)) (-5 *4 (-381)))) (-2464 (*1 *2 *3 *4) (-12 (-5 *3 (-954 (-410 (-567)))) (-5 *2 (-645 (-381))) (-5 *1 (-1025)) (-5 *4 (-381)))))
+(-10 -7 (-15 -2464 ((-645 (-381)) (-954 (-410 (-567))) (-381))) (-15 -2464 ((-645 (-381)) (-954 (-567)) (-381))) (-15 -1898 ((-645 (-645 (-381))) (-645 (-954 (-567))) (-645 (-1179)) (-381))))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) 75)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-4287 (($ $) NIL)) (-2286 (((-112) $) NIL)) (-2376 (((-3 $ "failed") $ $) NIL)) (-3659 (($ $) NIL)) (-3597 (((-421 $) $) NIL)) (-2728 (($ $) NIL) (($ $ (-923)) NIL) (($ (-410 (-567))) NIL) (($ (-567)) NIL)) (-3696 (((-112) $ $) NIL)) (-2677 (((-567) $) 70)) (-3647 (($) NIL T CONST)) (-3940 (((-3 $ "failed") (-1175 $) (-923) (-863)) NIL) (((-3 $ "failed") (-1175 $) (-923)) 55)) (-3765 (((-3 (-410 (-567)) "failed") $) NIL (|has| (-410 (-567)) (-1040 (-410 (-567))))) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 |#1| "failed") $) 116) (((-3 (-567) "failed") $) NIL (-2811 (|has| (-410 (-567)) (-1040 (-567))) (|has| |#1| (-1040 (-567)))))) (-2051 (((-410 (-567)) $) 17 (|has| (-410 (-567)) (-1040 (-410 (-567))))) (((-410 (-567)) $) 17) ((|#1| $) 117) (((-567) $) NIL (-2811 (|has| (-410 (-567)) (-1040 (-567))) (|has| |#1| (-1040 (-567)))))) (-4171 (($ $ (-863)) 47)) (-4046 (($ $ (-863)) 48)) (-2357 (($ $ $) NIL)) (-2711 (((-410 (-567)) $ $) 21)) (-3588 (((-3 $ "failed") $) 88)) (-2368 (($ $ $) NIL)) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) NIL)) (-3502 (((-112) $) NIL)) (-3137 (((-112) $) 66)) (-4346 (((-112) $) NIL)) (-3698 (($ $ (-567)) NIL)) (-3465 (((-112) $) 69)) (-1469 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1365 (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (-1892 (((-3 (-1175 $) "failed") $) 83)) (-1994 (((-3 (-863) "failed") $) 82)) (-1370 (((-3 (-1175 $) "failed") $) 80)) (-2087 (((-3 (-1063 $ (-1175 $)) "failed") $) 78)) (-2751 (($ (-645 $)) NIL) (($ $ $) NIL)) (-2516 (((-1161) $) NIL)) (-2949 (($ $) 89)) (-3437 (((-1122) $) NIL)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-2785 (($ (-645 $)) NIL) (($ $ $) NIL)) (-2717 (((-421 $) $) NIL)) (-2905 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) NIL)) (-2400 (((-3 $ "failed") $ $) NIL)) (-2372 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2460 (((-772) $) NIL)) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) NIL)) (-4129 (((-863) $) 87) (($ (-567)) NIL) (($ (-410 (-567))) NIL) (($ $) 63) (($ (-410 (-567))) NIL) (($ (-567)) NIL) (($ (-410 (-567))) NIL) (($ |#1|) 119)) (-2746 (((-772)) NIL T CONST)) (-3357 (((-112) $ $) NIL)) (-3731 (((-112) $ $) NIL)) (-3058 (((-410 (-567)) $ $) 27)) (-1564 (((-645 $) (-1175 $)) 61) (((-645 $) (-1175 (-410 (-567)))) NIL) (((-645 $) (-1175 (-567))) NIL) (((-645 $) (-954 $)) NIL) (((-645 $) (-954 (-410 (-567)))) NIL) (((-645 $) (-954 (-567))) NIL)) (-2237 (($ (-1063 $ (-1175 $)) (-863)) 46)) (-1547 (($ $) 22)) (-1733 (($) 32 T CONST)) (-1744 (($) 39 T CONST)) (-3004 (((-112) $ $) NIL)) (-2980 (((-112) $ $) NIL)) (-2946 (((-112) $ $) 76)) (-2993 (((-112) $ $) NIL)) (-2968 (((-112) $ $) 24)) (-3069 (($ $ $) 37)) (-3053 (($ $) 38) (($ $ $) 74)) (-3041 (($ $ $) 112)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL) (($ $ (-410 (-567))) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 98) (($ $ $) 104) (($ (-410 (-567)) $) NIL) (($ $ (-410 (-567))) NIL) (($ (-567) $) 98) (($ $ (-567)) NIL) (($ (-410 (-567)) $) NIL) (($ $ (-410 (-567))) NIL) (($ |#1| $) 102) (($ $ |#1|) NIL)))
+(((-1026 |#1|) (-13 (-1014) (-414 |#1|) (-38 |#1|) (-10 -8 (-15 -2237 ($ (-1063 $ (-1175 $)) (-863))) (-15 -2087 ((-3 (-1063 $ (-1175 $)) "failed") $)) (-15 -2711 ((-410 (-567)) $ $)))) (-13 (-849) (-365) (-1024))) (T -1026))
+((-2237 (*1 *1 *2 *3) (-12 (-5 *2 (-1063 (-1026 *4) (-1175 (-1026 *4)))) (-5 *3 (-863)) (-5 *1 (-1026 *4)) (-4 *4 (-13 (-849) (-365) (-1024))))) (-2087 (*1 *2 *1) (|partial| -12 (-5 *2 (-1063 (-1026 *3) (-1175 (-1026 *3)))) (-5 *1 (-1026 *3)) (-4 *3 (-13 (-849) (-365) (-1024))))) (-2711 (*1 *2 *1 *1) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-1026 *3)) (-4 *3 (-13 (-849) (-365) (-1024))))))
+(-13 (-1014) (-414 |#1|) (-38 |#1|) (-10 -8 (-15 -2237 ($ (-1063 $ (-1175 $)) (-863))) (-15 -2087 ((-3 (-1063 $ (-1175 $)) "failed") $)) (-15 -2711 ((-410 (-567)) $ $))))
+((-2595 (((-2 (|:| -3855 |#2|) (|:| -4178 (-645 |#1|))) |#2| (-645 |#1|)) 32) ((|#2| |#2| |#1|) 27)))
+(((-1027 |#1| |#2|) (-10 -7 (-15 -2595 (|#2| |#2| |#1|)) (-15 -2595 ((-2 (|:| -3855 |#2|) (|:| -4178 (-645 |#1|))) |#2| (-645 |#1|)))) (-365) (-657 |#1|)) (T -1027))
+((-2595 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-5 *2 (-2 (|:| -3855 *3) (|:| -4178 (-645 *5)))) (-5 *1 (-1027 *5 *3)) (-5 *4 (-645 *5)) (-4 *3 (-657 *5)))) (-2595 (*1 *2 *2 *3) (-12 (-4 *3 (-365)) (-5 *1 (-1027 *3 *2)) (-4 *2 (-657 *3)))))
+(-10 -7 (-15 -2595 (|#2| |#2| |#1|)) (-15 -2595 ((-2 (|:| -3855 |#2|) (|:| -4178 (-645 |#1|))) |#2| (-645 |#1|))))
+((-2412 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-4007 ((|#1| $ |#1|) 14)) (-4285 ((|#1| $ |#1|) 12)) (-2160 (($ |#1|) 10)) (-2516 (((-1161) $) NIL (|has| |#1| (-1102)))) (-3437 (((-1122) $) NIL (|has| |#1| (-1102)))) (-1801 ((|#1| $) 11)) (-2199 ((|#1| $) 13)) (-4129 (((-863) $) 21 (|has| |#1| (-1102)))) (-3357 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2946 (((-112) $ $) 9)))
+(((-1028 |#1|) (-13 (-1219) (-10 -8 (-15 -2160 ($ |#1|)) (-15 -1801 (|#1| $)) (-15 -4285 (|#1| $ |#1|)) (-15 -2199 (|#1| $)) (-15 -4007 (|#1| $ |#1|)) (-15 -2946 ((-112) $ $)) (IF (|has| |#1| (-1102)) (-6 (-1102)) |%noBranch|))) (-1219)) (T -1028))
+((-2160 (*1 *1 *2) (-12 (-5 *1 (-1028 *2)) (-4 *2 (-1219)))) (-1801 (*1 *2 *1) (-12 (-5 *1 (-1028 *2)) (-4 *2 (-1219)))) (-4285 (*1 *2 *1 *2) (-12 (-5 *1 (-1028 *2)) (-4 *2 (-1219)))) (-2199 (*1 *2 *1) (-12 (-5 *1 (-1028 *2)) (-4 *2 (-1219)))) (-4007 (*1 *2 *1 *2) (-12 (-5 *1 (-1028 *2)) (-4 *2 (-1219)))) (-2946 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1028 *3)) (-4 *3 (-1219)))))
+(-13 (-1219) (-10 -8 (-15 -2160 ($ |#1|)) (-15 -1801 (|#1| $)) (-15 -4285 (|#1| $ |#1|)) (-15 -2199 (|#1| $)) (-15 -4007 (|#1| $ |#1|)) (-15 -2946 ((-112) $ $)) (IF (|has| |#1| (-1102)) (-6 (-1102)) |%noBranch|)))
+((-2412 (((-112) $ $) NIL)) (-4305 (((-645 (-2 (|:| -4000 $) (|:| -3835 (-645 |#4|)))) (-645 |#4|)) NIL)) (-3403 (((-645 $) (-645 |#4|)) 118) (((-645 $) (-645 |#4|) (-112)) 119) (((-645 $) (-645 |#4|) (-112) (-112)) 117) (((-645 $) (-645 |#4|) (-112) (-112) (-112) (-112)) 120)) (-2859 (((-645 |#3|) $) NIL)) (-3153 (((-112) $) NIL)) (-2031 (((-112) $) NIL (|has| |#1| (-559)))) (-2176 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2345 ((|#4| |#4| $) NIL)) (-3659 (((-645 (-2 (|:| |val| |#4|) (|:| -2575 $))) |#4| $) 112)) (-1311 (((-2 (|:| |under| $) (|:| -3969 $) (|:| |upper| $)) $ |#3|) NIL)) (-1563 (((-112) $ (-772)) NIL)) (-3356 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4422))) (((-3 |#4| "failed") $ |#3|) 66)) (-3647 (($) NIL T CONST)) (-1896 (((-112) $) 29 (|has| |#1| (-559)))) (-2909 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3040 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3365 (((-112) $) NIL (|has| |#1| (-559)))) (-3683 (((-645 |#4|) (-645 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1377 (((-645 |#4|) (-645 |#4|) $) NIL (|has| |#1| (-559)))) (-2279 (((-645 |#4|) (-645 |#4|) $) NIL (|has| |#1| (-559)))) (-3765 (((-3 $ "failed") (-645 |#4|)) NIL)) (-2051 (($ (-645 |#4|)) NIL)) (-2430 (((-3 $ "failed") $) 45)) (-3819 ((|#4| |#4| $) 69)) (-2453 (($ $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#4| (-1102))))) (-3246 (($ |#4| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#4| (-1102)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4422)))) (-2023 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 85 (|has| |#1| (-559)))) (-2240 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-1889 ((|#4| |#4| $) NIL)) (-2494 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4422)) (|has| |#4| (-1102)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4422))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4422))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4076 (((-2 (|:| -4000 (-645 |#4|)) (|:| -3835 (-645 |#4|))) $) NIL)) (-2057 (((-112) |#4| $) NIL)) (-4104 (((-112) |#4| $) NIL)) (-1413 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2369 (((-2 (|:| |val| (-645 |#4|)) (|:| |towers| (-645 $))) (-645 |#4|) (-112) (-112)) 133)) (-2799 (((-645 |#4|) $) 18 (|has| $ (-6 -4422)))) (-4061 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2072 ((|#3| $) 38)) (-4093 (((-112) $ (-772)) NIL)) (-1942 (((-645 |#4|) $) 19 (|has| $ (-6 -4422)))) (-3237 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4422)) (|has| |#4| (-1102))))) (-3751 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#4| |#4|) $) 23)) (-2869 (((-645 |#3|) $) NIL)) (-1524 (((-112) |#3| $) NIL)) (-1986 (((-112) $ (-772)) NIL)) (-2516 (((-1161) $) NIL)) (-3295 (((-3 |#4| (-645 $)) |#4| |#4| $) NIL)) (-2588 (((-645 (-2 (|:| |val| |#4|) (|:| -2575 $))) |#4| |#4| $) 110)) (-3266 (((-3 |#4| "failed") $) 42)) (-2055 (((-645 $) |#4| $) 93)) (-2254 (((-3 (-112) (-645 $)) |#4| $) NIL)) (-3992 (((-645 (-2 (|:| |val| (-112)) (|:| -2575 $))) |#4| $) 103) (((-112) |#4| $) 64)) (-3660 (((-645 $) |#4| $) 115) (((-645 $) (-645 |#4|) $) NIL) (((-645 $) (-645 |#4|) (-645 $)) 116) (((-645 $) |#4| (-645 $)) NIL)) (-1748 (((-645 $) (-645 |#4|) (-112) (-112) (-112)) 128)) (-2579 (($ |#4| $) 82) (($ (-645 |#4|) $) 83) (((-645 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 79)) (-3881 (((-645 |#4|) $) NIL)) (-3324 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1431 ((|#4| |#4| $) NIL)) (-3995 (((-112) $ $) NIL)) (-2634 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-559)))) (-4278 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3984 ((|#4| |#4| $) NIL)) (-3437 (((-1122) $) NIL)) (-2418 (((-3 |#4| "failed") $) 40)) (-3196 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3488 (((-3 $ "failed") $ |#4|) 59)) (-1874 (($ $ |#4|) NIL) (((-645 $) |#4| $) 95) (((-645 $) |#4| (-645 $)) NIL) (((-645 $) (-645 |#4|) $) NIL) (((-645 $) (-645 |#4|) (-645 $)) 89)) (-4233 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 |#4|) (-645 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-295 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-645 (-295 |#4|))) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))))) (-3875 (((-112) $ $) NIL)) (-3885 (((-112) $) 17)) (-2701 (($) 14)) (-3104 (((-772) $) NIL)) (-3447 (((-772) |#4| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#4| (-1102)))) (((-772) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4422)))) (-4309 (($ $) 13)) (-3902 (((-539) $) NIL (|has| |#4| (-615 (-539))))) (-4145 (($ (-645 |#4|)) 22)) (-3937 (($ $ |#3|) 52)) (-3165 (($ $ |#3|) 54)) (-2085 (($ $) NIL)) (-1920 (($ $ |#3|) NIL)) (-4129 (((-863) $) 35) (((-645 |#4|) $) 46)) (-1975 (((-772) $) NIL (|has| |#3| (-370)))) (-3357 (((-112) $ $) NIL)) (-1676 (((-3 (-2 (|:| |bas| $) (|:| -2270 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2270 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1642 (((-112) $ (-1 (-112) |#4| (-645 |#4|))) NIL)) (-3730 (((-645 $) |#4| $) 92) (((-645 $) |#4| (-645 $)) NIL) (((-645 $) (-645 |#4|) $) NIL) (((-645 $) (-645 |#4|) (-645 $)) NIL)) (-3436 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4422)))) (-2551 (((-645 |#3|) $) NIL)) (-3991 (((-112) |#4| $) NIL)) (-2618 (((-112) |#3| $) 65)) (-2946 (((-112) $ $) NIL)) (-2423 (((-772) $) NIL (|has| $ (-6 -4422)))))
+(((-1029 |#1| |#2| |#3| |#4|) (-13 (-1073 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2579 ((-645 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3403 ((-645 $) (-645 |#4|) (-112) (-112))) (-15 -3403 ((-645 $) (-645 |#4|) (-112) (-112) (-112) (-112))) (-15 -1748 ((-645 $) (-645 |#4|) (-112) (-112) (-112))) (-15 -2369 ((-2 (|:| |val| (-645 |#4|)) (|:| |towers| (-645 $))) (-645 |#4|) (-112) (-112))))) (-455) (-794) (-851) (-1067 |#1| |#2| |#3|)) (T -1029))
+((-2579 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-645 (-1029 *5 *6 *7 *3))) (-5 *1 (-1029 *5 *6 *7 *3)) (-4 *3 (-1067 *5 *6 *7)))) (-3403 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-645 (-1029 *5 *6 *7 *8))) (-5 *1 (-1029 *5 *6 *7 *8)))) (-3403 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-645 (-1029 *5 *6 *7 *8))) (-5 *1 (-1029 *5 *6 *7 *8)))) (-1748 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-645 (-1029 *5 *6 *7 *8))) (-5 *1 (-1029 *5 *6 *7 *8)))) (-2369 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-1067 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-645 *8)) (|:| |towers| (-645 (-1029 *5 *6 *7 *8))))) (-5 *1 (-1029 *5 *6 *7 *8)) (-5 *3 (-645 *8)))))
+(-13 (-1073 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2579 ((-645 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3403 ((-645 $) (-645 |#4|) (-112) (-112))) (-15 -3403 ((-645 $) (-645 |#4|) (-112) (-112) (-112) (-112))) (-15 -1748 ((-645 $) (-645 |#4|) (-112) (-112) (-112))) (-15 -2369 ((-2 (|:| |val| (-645 |#4|)) (|:| |towers| (-645 $))) (-645 |#4|) (-112) (-112)))))
+((-2535 (((-645 (-690 |#1|)) (-645 (-690 |#1|))) 73) (((-690 |#1|) (-690 |#1|)) 72) (((-645 (-690 |#1|)) (-645 (-690 |#1|)) (-645 (-690 |#1|))) 71) (((-690 |#1|) (-690 |#1|) (-690 |#1|)) 68)) (-3302 (((-645 (-690 |#1|)) (-645 (-690 |#1|)) (-923)) 66) (((-690 |#1|) (-690 |#1|) (-923)) 65)) (-3707 (((-645 (-690 (-567))) (-645 (-645 (-567)))) 84) (((-645 (-690 (-567))) (-645 (-907 (-567))) (-567)) 83) (((-690 (-567)) (-645 (-567))) 80) (((-690 (-567)) (-907 (-567)) (-567)) 78)) (-3142 (((-690 (-954 |#1|)) (-772)) 98)) (-2195 (((-645 (-690 |#1|)) (-645 (-690 |#1|)) (-923)) 52 (|has| |#1| (-6 (-4424 "*")))) (((-690 |#1|) (-690 |#1|) (-923)) 50 (|has| |#1| (-6 (-4424 "*"))))))
+(((-1030 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4424 "*"))) (-15 -2195 ((-690 |#1|) (-690 |#1|) (-923))) |%noBranch|) (IF (|has| |#1| (-6 (-4424 "*"))) (-15 -2195 ((-645 (-690 |#1|)) (-645 (-690 |#1|)) (-923))) |%noBranch|) (-15 -3142 ((-690 (-954 |#1|)) (-772))) (-15 -3302 ((-690 |#1|) (-690 |#1|) (-923))) (-15 -3302 ((-645 (-690 |#1|)) (-645 (-690 |#1|)) (-923))) (-15 -2535 ((-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -2535 ((-645 (-690 |#1|)) (-645 (-690 |#1|)) (-645 (-690 |#1|)))) (-15 -2535 ((-690 |#1|) (-690 |#1|))) (-15 -2535 ((-645 (-690 |#1|)) (-645 (-690 |#1|)))) (-15 -3707 ((-690 (-567)) (-907 (-567)) (-567))) (-15 -3707 ((-690 (-567)) (-645 (-567)))) (-15 -3707 ((-645 (-690 (-567))) (-645 (-907 (-567))) (-567))) (-15 -3707 ((-645 (-690 (-567))) (-645 (-645 (-567)))))) (-1051)) (T -1030))
+((-3707 (*1 *2 *3) (-12 (-5 *3 (-645 (-645 (-567)))) (-5 *2 (-645 (-690 (-567)))) (-5 *1 (-1030 *4)) (-4 *4 (-1051)))) (-3707 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-907 (-567)))) (-5 *4 (-567)) (-5 *2 (-645 (-690 *4))) (-5 *1 (-1030 *5)) (-4 *5 (-1051)))) (-3707 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-690 (-567))) (-5 *1 (-1030 *4)) (-4 *4 (-1051)))) (-3707 (*1 *2 *3 *4) (-12 (-5 *3 (-907 (-567))) (-5 *4 (-567)) (-5 *2 (-690 *4)) (-5 *1 (-1030 *5)) (-4 *5 (-1051)))) (-2535 (*1 *2 *2) (-12 (-5 *2 (-645 (-690 *3))) (-4 *3 (-1051)) (-5 *1 (-1030 *3)))) (-2535 (*1 *2 *2) (-12 (-5 *2 (-690 *3)) (-4 *3 (-1051)) (-5 *1 (-1030 *3)))) (-2535 (*1 *2 *2 *2) (-12 (-5 *2 (-645 (-690 *3))) (-4 *3 (-1051)) (-5 *1 (-1030 *3)))) (-2535 (*1 *2 *2 *2) (-12 (-5 *2 (-690 *3)) (-4 *3 (-1051)) (-5 *1 (-1030 *3)))) (-3302 (*1 *2 *2 *3) (-12 (-5 *2 (-645 (-690 *4))) (-5 *3 (-923)) (-4 *4 (-1051)) (-5 *1 (-1030 *4)))) (-3302 (*1 *2 *2 *3) (-12 (-5 *2 (-690 *4)) (-5 *3 (-923)) (-4 *4 (-1051)) (-5 *1 (-1030 *4)))) (-3142 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-690 (-954 *4))) (-5 *1 (-1030 *4)) (-4 *4 (-1051)))) (-2195 (*1 *2 *2 *3) (-12 (-5 *2 (-645 (-690 *4))) (-5 *3 (-923)) (|has| *4 (-6 (-4424 "*"))) (-4 *4 (-1051)) (-5 *1 (-1030 *4)))) (-2195 (*1 *2 *2 *3) (-12 (-5 *2 (-690 *4)) (-5 *3 (-923)) (|has| *4 (-6 (-4424 "*"))) (-4 *4 (-1051)) (-5 *1 (-1030 *4)))))
+(-10 -7 (IF (|has| |#1| (-6 (-4424 "*"))) (-15 -2195 ((-690 |#1|) (-690 |#1|) (-923))) |%noBranch|) (IF (|has| |#1| (-6 (-4424 "*"))) (-15 -2195 ((-645 (-690 |#1|)) (-645 (-690 |#1|)) (-923))) |%noBranch|) (-15 -3142 ((-690 (-954 |#1|)) (-772))) (-15 -3302 ((-690 |#1|) (-690 |#1|) (-923))) (-15 -3302 ((-645 (-690 |#1|)) (-645 (-690 |#1|)) (-923))) (-15 -2535 ((-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -2535 ((-645 (-690 |#1|)) (-645 (-690 |#1|)) (-645 (-690 |#1|)))) (-15 -2535 ((-690 |#1|) (-690 |#1|))) (-15 -2535 ((-645 (-690 |#1|)) (-645 (-690 |#1|)))) (-15 -3707 ((-690 (-567)) (-907 (-567)) (-567))) (-15 -3707 ((-690 (-567)) (-645 (-567)))) (-15 -3707 ((-645 (-690 (-567))) (-645 (-907 (-567))) (-567))) (-15 -3707 ((-645 (-690 (-567))) (-645 (-645 (-567))))))
+((-1950 (((-690 |#1|) (-645 (-690 |#1|)) (-1269 |#1|)) 71 (|has| |#1| (-308)))) (-2004 (((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-1269 (-1269 |#1|))) 112 (|has| |#1| (-365))) (((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-1269 |#1|)) 119 (|has| |#1| (-365)))) (-1344 (((-1269 |#1|) (-645 (-1269 |#1|)) (-567)) 137 (-12 (|has| |#1| (-365)) (|has| |#1| (-370))))) (-3336 (((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-923)) 125 (-12 (|has| |#1| (-365)) (|has| |#1| (-370)))) (((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-112)) 124 (-12 (|has| |#1| (-365)) (|has| |#1| (-370)))) (((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|))) 123 (-12 (|has| |#1| (-365)) (|has| |#1| (-370)))) (((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-112) (-567) (-567)) 122 (-12 (|has| |#1| (-365)) (|has| |#1| (-370))))) (-1320 (((-112) (-645 (-690 |#1|))) 105 (|has| |#1| (-365))) (((-112) (-645 (-690 |#1|)) (-567)) 108 (|has| |#1| (-365)))) (-3392 (((-1269 (-1269 |#1|)) (-645 (-690 |#1|)) (-1269 |#1|)) 68 (|has| |#1| (-308)))) (-1389 (((-690 |#1|) (-645 (-690 |#1|)) (-690 |#1|)) 48)) (-2733 (((-690 |#1|) (-1269 (-1269 |#1|))) 41)) (-3170 (((-690 |#1|) (-645 (-690 |#1|)) (-645 (-690 |#1|)) (-567)) 96 (|has| |#1| (-365))) (((-690 |#1|) (-645 (-690 |#1|)) (-645 (-690 |#1|))) 95 (|has| |#1| (-365))) (((-690 |#1|) (-645 (-690 |#1|)) (-645 (-690 |#1|)) (-112) (-567)) 103 (|has| |#1| (-365)))))
+(((-1031 |#1|) (-10 -7 (-15 -2733 ((-690 |#1|) (-1269 (-1269 |#1|)))) (-15 -1389 ((-690 |#1|) (-645 (-690 |#1|)) (-690 |#1|))) (IF (|has| |#1| (-308)) (PROGN (-15 -3392 ((-1269 (-1269 |#1|)) (-645 (-690 |#1|)) (-1269 |#1|))) (-15 -1950 ((-690 |#1|) (-645 (-690 |#1|)) (-1269 |#1|)))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -3170 ((-690 |#1|) (-645 (-690 |#1|)) (-645 (-690 |#1|)) (-112) (-567))) (-15 -3170 ((-690 |#1|) (-645 (-690 |#1|)) (-645 (-690 |#1|)))) (-15 -3170 ((-690 |#1|) (-645 (-690 |#1|)) (-645 (-690 |#1|)) (-567))) (-15 -1320 ((-112) (-645 (-690 |#1|)) (-567))) (-15 -1320 ((-112) (-645 (-690 |#1|)))) (-15 -2004 ((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-1269 |#1|))) (-15 -2004 ((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-1269 (-1269 |#1|))))) |%noBranch|) (IF (|has| |#1| (-370)) (IF (|has| |#1| (-365)) (PROGN (-15 -3336 ((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-112) (-567) (-567))) (-15 -3336 ((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)))) (-15 -3336 ((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-112))) (-15 -3336 ((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-923))) (-15 -1344 ((-1269 |#1|) (-645 (-1269 |#1|)) (-567)))) |%noBranch|) |%noBranch|)) (-1051)) (T -1031))
+((-1344 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-1269 *5))) (-5 *4 (-567)) (-5 *2 (-1269 *5)) (-5 *1 (-1031 *5)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1051)))) (-3336 (*1 *2 *3 *4) (-12 (-5 *4 (-923)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1051)) (-5 *2 (-645 (-645 (-690 *5)))) (-5 *1 (-1031 *5)) (-5 *3 (-645 (-690 *5))))) (-3336 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1051)) (-5 *2 (-645 (-645 (-690 *5)))) (-5 *1 (-1031 *5)) (-5 *3 (-645 (-690 *5))))) (-3336 (*1 *2 *3) (-12 (-4 *4 (-365)) (-4 *4 (-370)) (-4 *4 (-1051)) (-5 *2 (-645 (-645 (-690 *4)))) (-5 *1 (-1031 *4)) (-5 *3 (-645 (-690 *4))))) (-3336 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-567)) (-4 *6 (-365)) (-4 *6 (-370)) (-4 *6 (-1051)) (-5 *2 (-645 (-645 (-690 *6)))) (-5 *1 (-1031 *6)) (-5 *3 (-645 (-690 *6))))) (-2004 (*1 *2 *3 *4) (-12 (-5 *4 (-1269 (-1269 *5))) (-4 *5 (-365)) (-4 *5 (-1051)) (-5 *2 (-645 (-645 (-690 *5)))) (-5 *1 (-1031 *5)) (-5 *3 (-645 (-690 *5))))) (-2004 (*1 *2 *3 *4) (-12 (-5 *4 (-1269 *5)) (-4 *5 (-365)) (-4 *5 (-1051)) (-5 *2 (-645 (-645 (-690 *5)))) (-5 *1 (-1031 *5)) (-5 *3 (-645 (-690 *5))))) (-1320 (*1 *2 *3) (-12 (-5 *3 (-645 (-690 *4))) (-4 *4 (-365)) (-4 *4 (-1051)) (-5 *2 (-112)) (-5 *1 (-1031 *4)))) (-1320 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-690 *5))) (-5 *4 (-567)) (-4 *5 (-365)) (-4 *5 (-1051)) (-5 *2 (-112)) (-5 *1 (-1031 *5)))) (-3170 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-645 (-690 *5))) (-5 *4 (-567)) (-5 *2 (-690 *5)) (-5 *1 (-1031 *5)) (-4 *5 (-365)) (-4 *5 (-1051)))) (-3170 (*1 *2 *3 *3) (-12 (-5 *3 (-645 (-690 *4))) (-5 *2 (-690 *4)) (-5 *1 (-1031 *4)) (-4 *4 (-365)) (-4 *4 (-1051)))) (-3170 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-645 (-690 *6))) (-5 *4 (-112)) (-5 *5 (-567)) (-5 *2 (-690 *6)) (-5 *1 (-1031 *6)) (-4 *6 (-365)) (-4 *6 (-1051)))) (-1950 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-690 *5))) (-5 *4 (-1269 *5)) (-4 *5 (-308)) (-4 *5 (-1051)) (-5 *2 (-690 *5)) (-5 *1 (-1031 *5)))) (-3392 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-690 *5))) (-4 *5 (-308)) (-4 *5 (-1051)) (-5 *2 (-1269 (-1269 *5))) (-5 *1 (-1031 *5)) (-5 *4 (-1269 *5)))) (-1389 (*1 *2 *3 *2) (-12 (-5 *3 (-645 (-690 *4))) (-5 *2 (-690 *4)) (-4 *4 (-1051)) (-5 *1 (-1031 *4)))) (-2733 (*1 *2 *3) (-12 (-5 *3 (-1269 (-1269 *4))) (-4 *4 (-1051)) (-5 *2 (-690 *4)) (-5 *1 (-1031 *4)))))
+(-10 -7 (-15 -2733 ((-690 |#1|) (-1269 (-1269 |#1|)))) (-15 -1389 ((-690 |#1|) (-645 (-690 |#1|)) (-690 |#1|))) (IF (|has| |#1| (-308)) (PROGN (-15 -3392 ((-1269 (-1269 |#1|)) (-645 (-690 |#1|)) (-1269 |#1|))) (-15 -1950 ((-690 |#1|) (-645 (-690 |#1|)) (-1269 |#1|)))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -3170 ((-690 |#1|) (-645 (-690 |#1|)) (-645 (-690 |#1|)) (-112) (-567))) (-15 -3170 ((-690 |#1|) (-645 (-690 |#1|)) (-645 (-690 |#1|)))) (-15 -3170 ((-690 |#1|) (-645 (-690 |#1|)) (-645 (-690 |#1|)) (-567))) (-15 -1320 ((-112) (-645 (-690 |#1|)) (-567))) (-15 -1320 ((-112) (-645 (-690 |#1|)))) (-15 -2004 ((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-1269 |#1|))) (-15 -2004 ((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-1269 (-1269 |#1|))))) |%noBranch|) (IF (|has| |#1| (-370)) (IF (|has| |#1| (-365)) (PROGN (-15 -3336 ((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-112) (-567) (-567))) (-15 -3336 ((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)))) (-15 -3336 ((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-112))) (-15 -3336 ((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-923))) (-15 -1344 ((-1269 |#1|) (-645 (-1269 |#1|)) (-567)))) |%noBranch|) |%noBranch|))
+((-2696 ((|#1| (-923) |#1|) 18)))
+(((-1032 |#1|) (-10 -7 (-15 -2696 (|#1| (-923) |#1|))) (-13 (-1102) (-10 -8 (-15 -3041 ($ $ $))))) (T -1032))
+((-2696 (*1 *2 *3 *2) (-12 (-5 *3 (-923)) (-5 *1 (-1032 *2)) (-4 *2 (-13 (-1102) (-10 -8 (-15 -3041 ($ $ $))))))))
+(-10 -7 (-15 -2696 (|#1| (-923) |#1|)))
+((-4031 (((-645 (-2 (|:| |radval| (-317 (-567))) (|:| |radmult| (-567)) (|:| |radvect| (-645 (-690 (-317 (-567))))))) (-690 (-410 (-954 (-567))))) 67)) (-1679 (((-645 (-690 (-317 (-567)))) (-317 (-567)) (-690 (-410 (-954 (-567))))) 52)) (-1411 (((-645 (-317 (-567))) (-690 (-410 (-954 (-567))))) 45)) (-2379 (((-645 (-690 (-317 (-567)))) (-690 (-410 (-954 (-567))))) 88)) (-1403 (((-690 (-317 (-567))) (-690 (-317 (-567)))) 38)) (-2834 (((-645 (-690 (-317 (-567)))) (-645 (-690 (-317 (-567))))) 76)) (-1786 (((-3 (-690 (-317 (-567))) "failed") (-690 (-410 (-954 (-567))))) 85)))
+(((-1033) (-10 -7 (-15 -4031 ((-645 (-2 (|:| |radval| (-317 (-567))) (|:| |radmult| (-567)) (|:| |radvect| (-645 (-690 (-317 (-567))))))) (-690 (-410 (-954 (-567)))))) (-15 -1679 ((-645 (-690 (-317 (-567)))) (-317 (-567)) (-690 (-410 (-954 (-567)))))) (-15 -1411 ((-645 (-317 (-567))) (-690 (-410 (-954 (-567)))))) (-15 -1786 ((-3 (-690 (-317 (-567))) "failed") (-690 (-410 (-954 (-567)))))) (-15 -1403 ((-690 (-317 (-567))) (-690 (-317 (-567))))) (-15 -2834 ((-645 (-690 (-317 (-567)))) (-645 (-690 (-317 (-567)))))) (-15 -2379 ((-645 (-690 (-317 (-567)))) (-690 (-410 (-954 (-567)))))))) (T -1033))
+((-2379 (*1 *2 *3) (-12 (-5 *3 (-690 (-410 (-954 (-567))))) (-5 *2 (-645 (-690 (-317 (-567))))) (-5 *1 (-1033)))) (-2834 (*1 *2 *2) (-12 (-5 *2 (-645 (-690 (-317 (-567))))) (-5 *1 (-1033)))) (-1403 (*1 *2 *2) (-12 (-5 *2 (-690 (-317 (-567)))) (-5 *1 (-1033)))) (-1786 (*1 *2 *3) (|partial| -12 (-5 *3 (-690 (-410 (-954 (-567))))) (-5 *2 (-690 (-317 (-567)))) (-5 *1 (-1033)))) (-1411 (*1 *2 *3) (-12 (-5 *3 (-690 (-410 (-954 (-567))))) (-5 *2 (-645 (-317 (-567)))) (-5 *1 (-1033)))) (-1679 (*1 *2 *3 *4) (-12 (-5 *4 (-690 (-410 (-954 (-567))))) (-5 *2 (-645 (-690 (-317 (-567))))) (-5 *1 (-1033)) (-5 *3 (-317 (-567))))) (-4031 (*1 *2 *3) (-12 (-5 *3 (-690 (-410 (-954 (-567))))) (-5 *2 (-645 (-2 (|:| |radval| (-317 (-567))) (|:| |radmult| (-567)) (|:| |radvect| (-645 (-690 (-317 (-567)))))))) (-5 *1 (-1033)))))
+(-10 -7 (-15 -4031 ((-645 (-2 (|:| |radval| (-317 (-567))) (|:| |radmult| (-567)) (|:| |radvect| (-645 (-690 (-317 (-567))))))) (-690 (-410 (-954 (-567)))))) (-15 -1679 ((-645 (-690 (-317 (-567)))) (-317 (-567)) (-690 (-410 (-954 (-567)))))) (-15 -1411 ((-645 (-317 (-567))) (-690 (-410 (-954 (-567)))))) (-15 -1786 ((-3 (-690 (-317 (-567))) "failed") (-690 (-410 (-954 (-567)))))) (-15 -1403 ((-690 (-317 (-567))) (-690 (-317 (-567))))) (-15 -2834 ((-645 (-690 (-317 (-567)))) (-645 (-690 (-317 (-567)))))) (-15 -2379 ((-645 (-690 (-317 (-567)))) (-690 (-410 (-954 (-567)))))))
+((-3694 ((|#1| |#1| (-923)) 18)))
+(((-1034 |#1|) (-10 -7 (-15 -3694 (|#1| |#1| (-923)))) (-13 (-1102) (-10 -8 (-15 * ($ $ $))))) (T -1034))
+((-3694 (*1 *2 *2 *3) (-12 (-5 *3 (-923)) (-5 *1 (-1034 *2)) (-4 *2 (-13 (-1102) (-10 -8 (-15 * ($ $ $))))))))
+(-10 -7 (-15 -3694 (|#1| |#1| (-923))))
+((-4129 ((|#1| (-313)) 11) (((-1274) |#1|) 9)))
+(((-1035 |#1|) (-10 -7 (-15 -4129 ((-1274) |#1|)) (-15 -4129 (|#1| (-313)))) (-1219)) (T -1035))
+((-4129 (*1 *2 *3) (-12 (-5 *3 (-313)) (-5 *1 (-1035 *2)) (-4 *2 (-1219)))) (-4129 (*1 *2 *3) (-12 (-5 *2 (-1274)) (-5 *1 (-1035 *3)) (-4 *3 (-1219)))))
+(-10 -7 (-15 -4129 ((-1274) |#1|)) (-15 -4129 (|#1| (-313))))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-2376 (((-3 $ "failed") $ $) NIL)) (-3647 (($) NIL T CONST)) (-2494 (($ |#4|) 25)) (-3588 (((-3 $ "failed") $) NIL)) (-4346 (((-112) $) NIL)) (-2484 ((|#4| $) 27)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) 46) (($ (-567)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-2746 (((-772)) 43 T CONST)) (-3357 (((-112) $ $) NIL)) (-1733 (($) 21 T CONST)) (-1744 (($) 23 T CONST)) (-2946 (((-112) $ $) 40)) (-3053 (($ $) 31) (($ $ $) NIL)) (-3041 (($ $ $) 29)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL)))
+(((-1036 |#1| |#2| |#3| |#4| |#5|) (-13 (-172) (-38 |#1|) (-10 -8 (-15 -2494 ($ |#4|)) (-15 -4129 ($ |#4|)) (-15 -2484 (|#4| $)))) (-365) (-794) (-851) (-951 |#1| |#2| |#3|) (-645 |#4|)) (T -1036))
+((-2494 (*1 *1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-1036 *3 *4 *5 *2 *6)) (-4 *2 (-951 *3 *4 *5)) (-14 *6 (-645 *2)))) (-4129 (*1 *1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-1036 *3 *4 *5 *2 *6)) (-4 *2 (-951 *3 *4 *5)) (-14 *6 (-645 *2)))) (-2484 (*1 *2 *1) (-12 (-4 *2 (-951 *3 *4 *5)) (-5 *1 (-1036 *3 *4 *5 *2 *6)) (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-14 *6 (-645 *2)))))
+(-13 (-172) (-38 |#1|) (-10 -8 (-15 -2494 ($ |#4|)) (-15 -4129 ($ |#4|)) (-15 -2484 (|#4| $))))
+((-2412 (((-112) $ $) NIL (-2811 (|has| (-52) (-1102)) (|has| (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (-1102))))) (-2847 (($) NIL) (($ (-645 (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))))) NIL)) (-3843 (((-1274) $ (-1179) (-1179)) NIL (|has| $ (-6 -4423)))) (-1563 (((-112) $ (-772)) NIL)) (-1499 (((-112) (-112)) 43)) (-1361 (((-112) (-112)) 42)) (-4285 (((-52) $ (-1179) (-52)) NIL)) (-1494 (($ (-1 (-112) (-2 (|:| -1809 (-1179)) (|:| -4236 (-52)))) $) NIL (|has| $ (-6 -4422)))) (-3356 (($ (-1 (-112) (-2 (|:| -1809 (-1179)) (|:| -4236 (-52)))) $) NIL (|has| $ (-6 -4422)))) (-4021 (((-3 (-52) "failed") (-1179) $) NIL)) (-3647 (($) NIL T CONST)) (-2453 (($ $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (-1102))))) (-2247 (($ (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) $) NIL (|has| $ (-6 -4422))) (($ (-1 (-112) (-2 (|:| -1809 (-1179)) (|:| -4236 (-52)))) $) NIL (|has| $ (-6 -4422))) (((-3 (-52) "failed") (-1179) $) NIL)) (-3246 (($ (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (-1102)))) (($ (-1 (-112) (-2 (|:| -1809 (-1179)) (|:| -4236 (-52)))) $) NIL (|has| $ (-6 -4422)))) (-2494 (((-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (-1 (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (-2 (|:| -1809 (-1179)) (|:| -4236 (-52)))) $ (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (-2 (|:| -1809 (-1179)) (|:| -4236 (-52)))) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (-1102)))) (((-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (-1 (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (-2 (|:| -1809 (-1179)) (|:| -4236 (-52)))) $ (-2 (|:| -1809 (-1179)) (|:| -4236 (-52)))) NIL (|has| $ (-6 -4422))) (((-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (-1 (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (-2 (|:| -1809 (-1179)) (|:| -4236 (-52)))) $) NIL (|has| $ (-6 -4422)))) (-3760 (((-52) $ (-1179) (-52)) NIL (|has| $ (-6 -4423)))) (-3703 (((-52) $ (-1179)) NIL)) (-2799 (((-645 (-2 (|:| -1809 (-1179)) (|:| -4236 (-52)))) $) NIL (|has| $ (-6 -4422))) (((-645 (-52)) $) NIL (|has| $ (-6 -4422)))) (-4093 (((-112) $ (-772)) NIL)) (-3895 (((-1179) $) NIL (|has| (-1179) (-851)))) (-1942 (((-645 (-2 (|:| -1809 (-1179)) (|:| -4236 (-52)))) $) NIL (|has| $ (-6 -4422))) (((-645 (-52)) $) NIL (|has| $ (-6 -4422)))) (-3237 (((-112) (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (-1102)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-52) (-1102))))) (-3255 (((-1179) $) NIL (|has| (-1179) (-851)))) (-3751 (($ (-1 (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (-2 (|:| -1809 (-1179)) (|:| -4236 (-52)))) $) NIL (|has| $ (-6 -4423))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4423)))) (-3841 (($ (-1 (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (-2 (|:| -1809 (-1179)) (|:| -4236 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-1986 (((-112) $ (-772)) NIL)) (-2516 (((-1161) $) NIL (-2811 (|has| (-52) (-1102)) (|has| (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (-1102))))) (-1405 (((-645 (-1179)) $) 37)) (-2816 (((-112) (-1179) $) NIL)) (-2706 (((-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) $) NIL)) (-2646 (($ (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) $) NIL)) (-4364 (((-645 (-1179)) $) NIL)) (-3188 (((-112) (-1179) $) NIL)) (-3437 (((-1122) $) NIL (-2811 (|has| (-52) (-1102)) (|has| (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (-1102))))) (-2418 (((-52) $) NIL (|has| (-1179) (-851)))) (-3196 (((-3 (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) "failed") (-1 (-112) (-2 (|:| -1809 (-1179)) (|:| -4236 (-52)))) $) NIL)) (-3823 (($ $ (-52)) NIL (|has| $ (-6 -4423)))) (-3949 (((-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) $) NIL)) (-4233 (((-112) (-1 (-112) (-2 (|:| -1809 (-1179)) (|:| -4236 (-52)))) $) NIL (|has| $ (-6 -4422))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 (-2 (|:| -1809 (-1179)) (|:| -4236 (-52)))))) NIL (-12 (|has| (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (-310 (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))))) (|has| (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (-1102)))) (($ $ (-295 (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))))) NIL (-12 (|has| (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (-310 (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))))) (|has| (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (-1102)))) (($ $ (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (-2 (|:| -1809 (-1179)) (|:| -4236 (-52)))) NIL (-12 (|has| (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (-310 (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))))) (|has| (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (-1102)))) (($ $ (-645 (-2 (|:| -1809 (-1179)) (|:| -4236 (-52)))) (-645 (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))))) NIL (-12 (|has| (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (-310 (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))))) (|has| (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (-1102)))) (($ $ (-645 (-52)) (-645 (-52))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1102)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1102)))) (($ $ (-295 (-52))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1102)))) (($ $ (-645 (-295 (-52)))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1102))))) (-3875 (((-112) $ $) NIL)) (-4058 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-52) (-1102))))) (-2190 (((-645 (-52)) $) NIL)) (-3885 (((-112) $) NIL)) (-2701 (($) NIL)) (-1801 (((-52) $ (-1179)) 39) (((-52) $ (-1179) (-52)) NIL)) (-4106 (($) NIL) (($ (-645 (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))))) NIL)) (-3447 (((-772) (-1 (-112) (-2 (|:| -1809 (-1179)) (|:| -4236 (-52)))) $) NIL (|has| $ (-6 -4422))) (((-772) (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (-1102)))) (((-772) (-52) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-52) (-1102)))) (((-772) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4422)))) (-4309 (($ $) NIL)) (-3902 (((-539) $) NIL (|has| (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (-615 (-539))))) (-4145 (($ (-645 (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))))) NIL)) (-4129 (((-863) $) 41 (-2811 (|has| (-52) (-614 (-863))) (|has| (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (-614 (-863)))))) (-3357 (((-112) $ $) NIL (-2811 (|has| (-52) (-1102)) (|has| (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (-1102))))) (-3700 (($ (-645 (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))))) NIL)) (-3436 (((-112) (-1 (-112) (-2 (|:| -1809 (-1179)) (|:| -4236 (-52)))) $) NIL (|has| $ (-6 -4422))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4422)))) (-2946 (((-112) $ $) NIL (-2811 (|has| (-52) (-1102)) (|has| (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (-1102))))) (-2423 (((-772) $) NIL (|has| $ (-6 -4422)))))
+(((-1037) (-13 (-1195 (-1179) (-52)) (-10 -7 (-15 -1499 ((-112) (-112))) (-15 -1361 ((-112) (-112))) (-6 -4422)))) (T -1037))
+((-1499 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1037)))) (-1361 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1037)))))
+(-13 (-1195 (-1179) (-52)) (-10 -7 (-15 -1499 ((-112) (-112))) (-15 -1361 ((-112) (-112))) (-6 -4422)))
+((-2412 (((-112) $ $) NIL)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-3106 (((-1137) $) 9)) (-4129 (((-863) $) 15) (($ (-1184)) NIL) (((-1184) $) NIL)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)))
+(((-1038) (-13 (-1085) (-10 -8 (-15 -3106 ((-1137) $))))) (T -1038))
+((-3106 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1038)))))
+(-13 (-1085) (-10 -8 (-15 -3106 ((-1137) $))))
+((-2051 ((|#2| $) 10)))
+(((-1039 |#1| |#2|) (-10 -8 (-15 -2051 (|#2| |#1|))) (-1040 |#2|) (-1219)) (T -1039))
+NIL
+(-10 -8 (-15 -2051 (|#2| |#1|)))
+((-3765 (((-3 |#1| "failed") $) 9)) (-2051 ((|#1| $) 8)) (-4129 (($ |#1|) 6)))
+(((-1040 |#1|) (-140) (-1219)) (T -1040))
+((-3765 (*1 *2 *1) (|partial| -12 (-4 *1 (-1040 *2)) (-4 *2 (-1219)))) (-2051 (*1 *2 *1) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-1219)))))
+(-13 (-617 |t#1|) (-10 -8 (-15 -3765 ((-3 |t#1| "failed") $)) (-15 -2051 (|t#1| $))))
(((-617 |#1|) . T))
-((-2600 (((-645 (-645 (-295 (-410 (-954 |#2|))))) (-645 (-954 |#2|)) (-645 (-1178))) 38)))
-(((-1041 |#1| |#2|) (-10 -7 (-15 -2600 ((-645 (-645 (-295 (-410 (-954 |#2|))))) (-645 (-954 |#2|)) (-645 (-1178))))) (-559) (-13 (-559) (-1040 |#1|))) (T -1041))
-((-2600 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-954 *6))) (-5 *4 (-645 (-1178))) (-4 *6 (-13 (-559) (-1040 *5))) (-4 *5 (-559)) (-5 *2 (-645 (-645 (-295 (-410 (-954 *6)))))) (-5 *1 (-1041 *5 *6)))))
-(-10 -7 (-15 -2600 ((-645 (-645 (-295 (-410 (-954 |#2|))))) (-645 (-954 |#2|)) (-645 (-1178)))))
-((-3314 (((-381)) 17)) (-3055 (((-1 (-381)) (-381) (-381)) 22)) (-2087 (((-1 (-381)) (-772)) 50)) (-2520 (((-381)) 37)) (-4180 (((-1 (-381)) (-381) (-381)) 38)) (-1495 (((-381)) 29)) (-1617 (((-1 (-381)) (-381)) 30)) (-3850 (((-381) (-772)) 45)) (-3889 (((-1 (-381)) (-772)) 46)) (-3879 (((-1 (-381)) (-772) (-772)) 49)) (-3944 (((-1 (-381)) (-772) (-772)) 47)))
-(((-1042) (-10 -7 (-15 -3314 ((-381))) (-15 -2520 ((-381))) (-15 -1495 ((-381))) (-15 -3850 ((-381) (-772))) (-15 -3055 ((-1 (-381)) (-381) (-381))) (-15 -4180 ((-1 (-381)) (-381) (-381))) (-15 -1617 ((-1 (-381)) (-381))) (-15 -3889 ((-1 (-381)) (-772))) (-15 -3944 ((-1 (-381)) (-772) (-772))) (-15 -3879 ((-1 (-381)) (-772) (-772))) (-15 -2087 ((-1 (-381)) (-772))))) (T -1042))
-((-2087 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1 (-381))) (-5 *1 (-1042)))) (-3879 (*1 *2 *3 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1 (-381))) (-5 *1 (-1042)))) (-3944 (*1 *2 *3 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1 (-381))) (-5 *1 (-1042)))) (-3889 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1 (-381))) (-5 *1 (-1042)))) (-1617 (*1 *2 *3) (-12 (-5 *2 (-1 (-381))) (-5 *1 (-1042)) (-5 *3 (-381)))) (-4180 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-381))) (-5 *1 (-1042)) (-5 *3 (-381)))) (-3055 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-381))) (-5 *1 (-1042)) (-5 *3 (-381)))) (-3850 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-381)) (-5 *1 (-1042)))) (-1495 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1042)))) (-2520 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1042)))) (-3314 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1042)))))
-(-10 -7 (-15 -3314 ((-381))) (-15 -2520 ((-381))) (-15 -1495 ((-381))) (-15 -3850 ((-381) (-772))) (-15 -3055 ((-1 (-381)) (-381) (-381))) (-15 -4180 ((-1 (-381)) (-381) (-381))) (-15 -1617 ((-1 (-381)) (-381))) (-15 -3889 ((-1 (-381)) (-772))) (-15 -3944 ((-1 (-381)) (-772) (-772))) (-15 -3879 ((-1 (-381)) (-772) (-772))) (-15 -2087 ((-1 (-381)) (-772))))
-((-2706 (((-421 |#1|) |#1|) 33)))
-(((-1043 |#1|) (-10 -7 (-15 -2706 ((-421 |#1|) |#1|))) (-1244 (-410 (-954 (-567))))) (T -1043))
-((-2706 (*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-1043 *3)) (-4 *3 (-1244 (-410 (-954 (-567))))))))
-(-10 -7 (-15 -2706 ((-421 |#1|) |#1|)))
-((-4260 (((-410 (-421 (-954 |#1|))) (-410 (-954 |#1|))) 14)))
-(((-1044 |#1|) (-10 -7 (-15 -4260 ((-410 (-421 (-954 |#1|))) (-410 (-954 |#1|))))) (-308)) (T -1044))
-((-4260 (*1 *2 *3) (-12 (-5 *3 (-410 (-954 *4))) (-4 *4 (-308)) (-5 *2 (-410 (-421 (-954 *4)))) (-5 *1 (-1044 *4)))))
-(-10 -7 (-15 -4260 ((-410 (-421 (-954 |#1|))) (-410 (-954 |#1|)))))
-((-2847 (((-645 (-1178)) (-410 (-954 |#1|))) 17)) (-2675 (((-410 (-1174 (-410 (-954 |#1|)))) (-410 (-954 |#1|)) (-1178)) 24)) (-2836 (((-410 (-954 |#1|)) (-410 (-1174 (-410 (-954 |#1|)))) (-1178)) 26)) (-3046 (((-3 (-1178) "failed") (-410 (-954 |#1|))) 20)) (-2631 (((-410 (-954 |#1|)) (-410 (-954 |#1|)) (-645 (-295 (-410 (-954 |#1|))))) 32) (((-410 (-954 |#1|)) (-410 (-954 |#1|)) (-295 (-410 (-954 |#1|)))) 33) (((-410 (-954 |#1|)) (-410 (-954 |#1|)) (-645 (-1178)) (-645 (-410 (-954 |#1|)))) 28) (((-410 (-954 |#1|)) (-410 (-954 |#1|)) (-1178) (-410 (-954 |#1|))) 29)) (-4132 (((-410 (-954 |#1|)) |#1|) 11)))
-(((-1045 |#1|) (-10 -7 (-15 -2847 ((-645 (-1178)) (-410 (-954 |#1|)))) (-15 -3046 ((-3 (-1178) "failed") (-410 (-954 |#1|)))) (-15 -2675 ((-410 (-1174 (-410 (-954 |#1|)))) (-410 (-954 |#1|)) (-1178))) (-15 -2836 ((-410 (-954 |#1|)) (-410 (-1174 (-410 (-954 |#1|)))) (-1178))) (-15 -2631 ((-410 (-954 |#1|)) (-410 (-954 |#1|)) (-1178) (-410 (-954 |#1|)))) (-15 -2631 ((-410 (-954 |#1|)) (-410 (-954 |#1|)) (-645 (-1178)) (-645 (-410 (-954 |#1|))))) (-15 -2631 ((-410 (-954 |#1|)) (-410 (-954 |#1|)) (-295 (-410 (-954 |#1|))))) (-15 -2631 ((-410 (-954 |#1|)) (-410 (-954 |#1|)) (-645 (-295 (-410 (-954 |#1|)))))) (-15 -4132 ((-410 (-954 |#1|)) |#1|))) (-559)) (T -1045))
-((-4132 (*1 *2 *3) (-12 (-5 *2 (-410 (-954 *3))) (-5 *1 (-1045 *3)) (-4 *3 (-559)))) (-2631 (*1 *2 *2 *3) (-12 (-5 *3 (-645 (-295 (-410 (-954 *4))))) (-5 *2 (-410 (-954 *4))) (-4 *4 (-559)) (-5 *1 (-1045 *4)))) (-2631 (*1 *2 *2 *3) (-12 (-5 *3 (-295 (-410 (-954 *4)))) (-5 *2 (-410 (-954 *4))) (-4 *4 (-559)) (-5 *1 (-1045 *4)))) (-2631 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-645 (-1178))) (-5 *4 (-645 (-410 (-954 *5)))) (-5 *2 (-410 (-954 *5))) (-4 *5 (-559)) (-5 *1 (-1045 *5)))) (-2631 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-410 (-954 *4))) (-5 *3 (-1178)) (-4 *4 (-559)) (-5 *1 (-1045 *4)))) (-2836 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-1174 (-410 (-954 *5))))) (-5 *4 (-1178)) (-5 *2 (-410 (-954 *5))) (-5 *1 (-1045 *5)) (-4 *5 (-559)))) (-2675 (*1 *2 *3 *4) (-12 (-5 *4 (-1178)) (-4 *5 (-559)) (-5 *2 (-410 (-1174 (-410 (-954 *5))))) (-5 *1 (-1045 *5)) (-5 *3 (-410 (-954 *5))))) (-3046 (*1 *2 *3) (|partial| -12 (-5 *3 (-410 (-954 *4))) (-4 *4 (-559)) (-5 *2 (-1178)) (-5 *1 (-1045 *4)))) (-2847 (*1 *2 *3) (-12 (-5 *3 (-410 (-954 *4))) (-4 *4 (-559)) (-5 *2 (-645 (-1178))) (-5 *1 (-1045 *4)))))
-(-10 -7 (-15 -2847 ((-645 (-1178)) (-410 (-954 |#1|)))) (-15 -3046 ((-3 (-1178) "failed") (-410 (-954 |#1|)))) (-15 -2675 ((-410 (-1174 (-410 (-954 |#1|)))) (-410 (-954 |#1|)) (-1178))) (-15 -2836 ((-410 (-954 |#1|)) (-410 (-1174 (-410 (-954 |#1|)))) (-1178))) (-15 -2631 ((-410 (-954 |#1|)) (-410 (-954 |#1|)) (-1178) (-410 (-954 |#1|)))) (-15 -2631 ((-410 (-954 |#1|)) (-410 (-954 |#1|)) (-645 (-1178)) (-645 (-410 (-954 |#1|))))) (-15 -2631 ((-410 (-954 |#1|)) (-410 (-954 |#1|)) (-295 (-410 (-954 |#1|))))) (-15 -2631 ((-410 (-954 |#1|)) (-410 (-954 |#1|)) (-645 (-295 (-410 (-954 |#1|)))))) (-15 -4132 ((-410 (-954 |#1|)) |#1|)))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-2585 (($) 18 T CONST)) (-3695 ((|#1| $) 23)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-3043 ((|#1| $) 22)) (-1462 ((|#1|) 20 T CONST)) (-4132 (((-863) $) 12)) (-1904 ((|#1| $) 21)) (-1745 (((-112) $ $) 9)) (-1716 (($) 19 T CONST)) (-2936 (((-112) $ $) 6)) (-3033 (($ $ $) 15)) (* (($ (-923) $) 14) (($ (-772) $) 16)))
+((-1550 (((-645 (-645 (-295 (-410 (-954 |#2|))))) (-645 (-954 |#2|)) (-645 (-1179))) 38)))
+(((-1041 |#1| |#2|) (-10 -7 (-15 -1550 ((-645 (-645 (-295 (-410 (-954 |#2|))))) (-645 (-954 |#2|)) (-645 (-1179))))) (-559) (-13 (-559) (-1040 |#1|))) (T -1041))
+((-1550 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-954 *6))) (-5 *4 (-645 (-1179))) (-4 *6 (-13 (-559) (-1040 *5))) (-4 *5 (-559)) (-5 *2 (-645 (-645 (-295 (-410 (-954 *6)))))) (-5 *1 (-1041 *5 *6)))))
+(-10 -7 (-15 -1550 ((-645 (-645 (-295 (-410 (-954 |#2|))))) (-645 (-954 |#2|)) (-645 (-1179)))))
+((-2596 (((-381)) 17)) (-1556 (((-1 (-381)) (-381) (-381)) 22)) (-2097 (((-1 (-381)) (-772)) 50)) (-3922 (((-381)) 37)) (-4179 (((-1 (-381)) (-381) (-381)) 38)) (-4109 (((-381)) 29)) (-3544 (((-1 (-381)) (-381)) 30)) (-1512 (((-381) (-772)) 45)) (-2253 (((-1 (-381)) (-772)) 46)) (-3888 (((-1 (-381)) (-772) (-772)) 49)) (-3095 (((-1 (-381)) (-772) (-772)) 47)))
+(((-1042) (-10 -7 (-15 -2596 ((-381))) (-15 -3922 ((-381))) (-15 -4109 ((-381))) (-15 -1512 ((-381) (-772))) (-15 -1556 ((-1 (-381)) (-381) (-381))) (-15 -4179 ((-1 (-381)) (-381) (-381))) (-15 -3544 ((-1 (-381)) (-381))) (-15 -2253 ((-1 (-381)) (-772))) (-15 -3095 ((-1 (-381)) (-772) (-772))) (-15 -3888 ((-1 (-381)) (-772) (-772))) (-15 -2097 ((-1 (-381)) (-772))))) (T -1042))
+((-2097 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1 (-381))) (-5 *1 (-1042)))) (-3888 (*1 *2 *3 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1 (-381))) (-5 *1 (-1042)))) (-3095 (*1 *2 *3 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1 (-381))) (-5 *1 (-1042)))) (-2253 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1 (-381))) (-5 *1 (-1042)))) (-3544 (*1 *2 *3) (-12 (-5 *2 (-1 (-381))) (-5 *1 (-1042)) (-5 *3 (-381)))) (-4179 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-381))) (-5 *1 (-1042)) (-5 *3 (-381)))) (-1556 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-381))) (-5 *1 (-1042)) (-5 *3 (-381)))) (-1512 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-381)) (-5 *1 (-1042)))) (-4109 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1042)))) (-3922 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1042)))) (-2596 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1042)))))
+(-10 -7 (-15 -2596 ((-381))) (-15 -3922 ((-381))) (-15 -4109 ((-381))) (-15 -1512 ((-381) (-772))) (-15 -1556 ((-1 (-381)) (-381) (-381))) (-15 -4179 ((-1 (-381)) (-381) (-381))) (-15 -3544 ((-1 (-381)) (-381))) (-15 -2253 ((-1 (-381)) (-772))) (-15 -3095 ((-1 (-381)) (-772) (-772))) (-15 -3888 ((-1 (-381)) (-772) (-772))) (-15 -2097 ((-1 (-381)) (-772))))
+((-2717 (((-421 |#1|) |#1|) 33)))
+(((-1043 |#1|) (-10 -7 (-15 -2717 ((-421 |#1|) |#1|))) (-1245 (-410 (-954 (-567))))) (T -1043))
+((-2717 (*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-1043 *3)) (-4 *3 (-1245 (-410 (-954 (-567))))))))
+(-10 -7 (-15 -2717 ((-421 |#1|) |#1|)))
+((-1332 (((-410 (-421 (-954 |#1|))) (-410 (-954 |#1|))) 14)))
+(((-1044 |#1|) (-10 -7 (-15 -1332 ((-410 (-421 (-954 |#1|))) (-410 (-954 |#1|))))) (-308)) (T -1044))
+((-1332 (*1 *2 *3) (-12 (-5 *3 (-410 (-954 *4))) (-4 *4 (-308)) (-5 *2 (-410 (-421 (-954 *4)))) (-5 *1 (-1044 *4)))))
+(-10 -7 (-15 -1332 ((-410 (-421 (-954 |#1|))) (-410 (-954 |#1|)))))
+((-2859 (((-645 (-1179)) (-410 (-954 |#1|))) 17)) (-2684 (((-410 (-1175 (-410 (-954 |#1|)))) (-410 (-954 |#1|)) (-1179)) 24)) (-2848 (((-410 (-954 |#1|)) (-410 (-1175 (-410 (-954 |#1|)))) (-1179)) 26)) (-3221 (((-3 (-1179) "failed") (-410 (-954 |#1|))) 20)) (-2642 (((-410 (-954 |#1|)) (-410 (-954 |#1|)) (-645 (-295 (-410 (-954 |#1|))))) 32) (((-410 (-954 |#1|)) (-410 (-954 |#1|)) (-295 (-410 (-954 |#1|)))) 33) (((-410 (-954 |#1|)) (-410 (-954 |#1|)) (-645 (-1179)) (-645 (-410 (-954 |#1|)))) 28) (((-410 (-954 |#1|)) (-410 (-954 |#1|)) (-1179) (-410 (-954 |#1|))) 29)) (-4129 (((-410 (-954 |#1|)) |#1|) 11)))
+(((-1045 |#1|) (-10 -7 (-15 -2859 ((-645 (-1179)) (-410 (-954 |#1|)))) (-15 -3221 ((-3 (-1179) "failed") (-410 (-954 |#1|)))) (-15 -2684 ((-410 (-1175 (-410 (-954 |#1|)))) (-410 (-954 |#1|)) (-1179))) (-15 -2848 ((-410 (-954 |#1|)) (-410 (-1175 (-410 (-954 |#1|)))) (-1179))) (-15 -2642 ((-410 (-954 |#1|)) (-410 (-954 |#1|)) (-1179) (-410 (-954 |#1|)))) (-15 -2642 ((-410 (-954 |#1|)) (-410 (-954 |#1|)) (-645 (-1179)) (-645 (-410 (-954 |#1|))))) (-15 -2642 ((-410 (-954 |#1|)) (-410 (-954 |#1|)) (-295 (-410 (-954 |#1|))))) (-15 -2642 ((-410 (-954 |#1|)) (-410 (-954 |#1|)) (-645 (-295 (-410 (-954 |#1|)))))) (-15 -4129 ((-410 (-954 |#1|)) |#1|))) (-559)) (T -1045))
+((-4129 (*1 *2 *3) (-12 (-5 *2 (-410 (-954 *3))) (-5 *1 (-1045 *3)) (-4 *3 (-559)))) (-2642 (*1 *2 *2 *3) (-12 (-5 *3 (-645 (-295 (-410 (-954 *4))))) (-5 *2 (-410 (-954 *4))) (-4 *4 (-559)) (-5 *1 (-1045 *4)))) (-2642 (*1 *2 *2 *3) (-12 (-5 *3 (-295 (-410 (-954 *4)))) (-5 *2 (-410 (-954 *4))) (-4 *4 (-559)) (-5 *1 (-1045 *4)))) (-2642 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-645 (-1179))) (-5 *4 (-645 (-410 (-954 *5)))) (-5 *2 (-410 (-954 *5))) (-4 *5 (-559)) (-5 *1 (-1045 *5)))) (-2642 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-410 (-954 *4))) (-5 *3 (-1179)) (-4 *4 (-559)) (-5 *1 (-1045 *4)))) (-2848 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-1175 (-410 (-954 *5))))) (-5 *4 (-1179)) (-5 *2 (-410 (-954 *5))) (-5 *1 (-1045 *5)) (-4 *5 (-559)))) (-2684 (*1 *2 *3 *4) (-12 (-5 *4 (-1179)) (-4 *5 (-559)) (-5 *2 (-410 (-1175 (-410 (-954 *5))))) (-5 *1 (-1045 *5)) (-5 *3 (-410 (-954 *5))))) (-3221 (*1 *2 *3) (|partial| -12 (-5 *3 (-410 (-954 *4))) (-4 *4 (-559)) (-5 *2 (-1179)) (-5 *1 (-1045 *4)))) (-2859 (*1 *2 *3) (-12 (-5 *3 (-410 (-954 *4))) (-4 *4 (-559)) (-5 *2 (-645 (-1179))) (-5 *1 (-1045 *4)))))
+(-10 -7 (-15 -2859 ((-645 (-1179)) (-410 (-954 |#1|)))) (-15 -3221 ((-3 (-1179) "failed") (-410 (-954 |#1|)))) (-15 -2684 ((-410 (-1175 (-410 (-954 |#1|)))) (-410 (-954 |#1|)) (-1179))) (-15 -2848 ((-410 (-954 |#1|)) (-410 (-1175 (-410 (-954 |#1|)))) (-1179))) (-15 -2642 ((-410 (-954 |#1|)) (-410 (-954 |#1|)) (-1179) (-410 (-954 |#1|)))) (-15 -2642 ((-410 (-954 |#1|)) (-410 (-954 |#1|)) (-645 (-1179)) (-645 (-410 (-954 |#1|))))) (-15 -2642 ((-410 (-954 |#1|)) (-410 (-954 |#1|)) (-295 (-410 (-954 |#1|))))) (-15 -2642 ((-410 (-954 |#1|)) (-410 (-954 |#1|)) (-645 (-295 (-410 (-954 |#1|)))))) (-15 -4129 ((-410 (-954 |#1|)) |#1|)))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-3647 (($) 18 T CONST)) (-2531 ((|#1| $) 23)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-3121 ((|#1| $) 22)) (-1437 ((|#1|) 20 T CONST)) (-4129 (((-863) $) 12)) (-2229 ((|#1| $) 21)) (-3357 (((-112) $ $) 9)) (-1733 (($) 19 T CONST)) (-2946 (((-112) $ $) 6)) (-3041 (($ $ $) 15)) (* (($ (-923) $) 14) (($ (-772) $) 16)))
(((-1046 |#1|) (-140) (-23)) (T -1046))
-((-3695 (*1 *2 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-23)))) (-3043 (*1 *2 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-23)))) (-1904 (*1 *2 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-23)))) (-1462 (*1 *2) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-23)))))
-(-13 (-23) (-10 -8 (-15 -3695 (|t#1| $)) (-15 -3043 (|t#1| $)) (-15 -1904 (|t#1| $)) (-15 -1462 (|t#1|) -3286)))
+((-2531 (*1 *2 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-23)))) (-3121 (*1 *2 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-23)))) (-2229 (*1 *2 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-23)))) (-1437 (*1 *2) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-23)))))
+(-13 (-23) (-10 -8 (-15 -2531 (|t#1| $)) (-15 -3121 (|t#1| $)) (-15 -2229 (|t#1| $)) (-15 -1437 (|t#1|) -3304)))
(((-23) . T) ((-25) . T) ((-102) . T) ((-614 (-863)) . T) ((-1102) . T))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-2457 (($) 25 T CONST)) (-2585 (($) 18 T CONST)) (-3695 ((|#1| $) 23)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-3043 ((|#1| $) 22)) (-1462 ((|#1|) 20 T CONST)) (-4132 (((-863) $) 12)) (-1904 ((|#1| $) 21)) (-1745 (((-112) $ $) 9)) (-1716 (($) 19 T CONST)) (-2936 (((-112) $ $) 6)) (-3033 (($ $ $) 15)) (* (($ (-923) $) 14) (($ (-772) $) 16)))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-1799 (($) 25 T CONST)) (-3647 (($) 18 T CONST)) (-2531 ((|#1| $) 23)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-3121 ((|#1| $) 22)) (-1437 ((|#1|) 20 T CONST)) (-4129 (((-863) $) 12)) (-2229 ((|#1| $) 21)) (-3357 (((-112) $ $) 9)) (-1733 (($) 19 T CONST)) (-2946 (((-112) $ $) 6)) (-3041 (($ $ $) 15)) (* (($ (-923) $) 14) (($ (-772) $) 16)))
(((-1047 |#1|) (-140) (-23)) (T -1047))
-((-2457 (*1 *1) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-23)))))
-(-13 (-1046 |t#1|) (-10 -8 (-15 -2457 ($) -3286)))
+((-1799 (*1 *1) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-23)))))
+(-13 (-1046 |t#1|) (-10 -8 (-15 -1799 ($) -3304)))
(((-23) . T) ((-25) . T) ((-102) . T) ((-614 (-863)) . T) ((-1046 |#1|) . T) ((-1102) . T))
-((-2403 (((-112) $ $) NIL)) (-3487 (((-645 (-2 (|:| -3995 $) (|:| -3823 (-645 (-781 |#1| (-865 |#2|)))))) (-645 (-781 |#1| (-865 |#2|)))) NIL)) (-3244 (((-645 $) (-645 (-781 |#1| (-865 |#2|)))) NIL) (((-645 $) (-645 (-781 |#1| (-865 |#2|))) (-112)) NIL) (((-645 $) (-645 (-781 |#1| (-865 |#2|))) (-112) (-112)) NIL)) (-2847 (((-645 (-865 |#2|)) $) NIL)) (-2017 (((-112) $) NIL)) (-3623 (((-112) $) NIL (|has| |#1| (-559)))) (-1326 (((-112) (-781 |#1| (-865 |#2|)) $) NIL) (((-112) $) NIL)) (-3722 (((-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) $) NIL)) (-3248 (((-645 (-2 (|:| |val| (-781 |#1| (-865 |#2|))) (|:| -2566 $))) (-781 |#1| (-865 |#2|)) $) NIL)) (-4396 (((-2 (|:| |under| $) (|:| -2780 $) (|:| |upper| $)) $ (-865 |#2|)) NIL)) (-3445 (((-112) $ (-772)) NIL)) (-3350 (($ (-1 (-112) (-781 |#1| (-865 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-3 (-781 |#1| (-865 |#2|)) "failed") $ (-865 |#2|)) NIL)) (-2585 (($) NIL T CONST)) (-1490 (((-112) $) NIL (|has| |#1| (-559)))) (-2752 (((-112) $ $) NIL (|has| |#1| (-559)))) (-4224 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3547 (((-112) $) NIL (|has| |#1| (-559)))) (-1441 (((-645 (-781 |#1| (-865 |#2|))) (-645 (-781 |#1| (-865 |#2|))) $ (-1 (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|))) (-1 (-112) (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)))) NIL)) (-1724 (((-645 (-781 |#1| (-865 |#2|))) (-645 (-781 |#1| (-865 |#2|))) $) NIL (|has| |#1| (-559)))) (-3197 (((-645 (-781 |#1| (-865 |#2|))) (-645 (-781 |#1| (-865 |#2|))) $) NIL (|has| |#1| (-559)))) (-3753 (((-3 $ "failed") (-645 (-781 |#1| (-865 |#2|)))) NIL)) (-2038 (($ (-645 (-781 |#1| (-865 |#2|)))) NIL)) (-2421 (((-3 $ "failed") $) NIL)) (-1999 (((-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) $) NIL)) (-2444 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-781 |#1| (-865 |#2|)) (-1102))))) (-3238 (($ (-781 |#1| (-865 |#2|)) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-781 |#1| (-865 |#2|)) (-1102)))) (($ (-1 (-112) (-781 |#1| (-865 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-4194 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-781 |#1| (-865 |#2|))) (|:| |den| |#1|)) (-781 |#1| (-865 |#2|)) $) NIL (|has| |#1| (-559)))) (-3786 (((-112) (-781 |#1| (-865 |#2|)) $ (-1 (-112) (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)))) NIL)) (-3730 (((-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) $) NIL)) (-2477 (((-781 |#1| (-865 |#2|)) (-1 (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|))) $ (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|))) NIL (-12 (|has| $ (-6 -4418)) (|has| (-781 |#1| (-865 |#2|)) (-1102)))) (((-781 |#1| (-865 |#2|)) (-1 (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|))) $ (-781 |#1| (-865 |#2|))) NIL (|has| $ (-6 -4418))) (((-781 |#1| (-865 |#2|)) (-1 (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) $ (-1 (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|))) (-1 (-112) (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)))) NIL)) (-1585 (((-2 (|:| -3995 (-645 (-781 |#1| (-865 |#2|)))) (|:| -3823 (-645 (-781 |#1| (-865 |#2|))))) $) NIL)) (-3783 (((-112) (-781 |#1| (-865 |#2|)) $) NIL)) (-1829 (((-112) (-781 |#1| (-865 |#2|)) $) NIL)) (-2127 (((-112) (-781 |#1| (-865 |#2|)) $) NIL) (((-112) $) NIL)) (-2777 (((-645 (-781 |#1| (-865 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-1664 (((-112) (-781 |#1| (-865 |#2|)) $) NIL) (((-112) $) NIL)) (-1679 (((-865 |#2|) $) NIL)) (-2077 (((-112) $ (-772)) NIL)) (-2279 (((-645 (-781 |#1| (-865 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) (-781 |#1| (-865 |#2|)) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-781 |#1| (-865 |#2|)) (-1102))))) (-3731 (($ (-1 (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|))) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|))) $) NIL)) (-2826 (((-645 (-865 |#2|)) $) NIL)) (-2808 (((-112) (-865 |#2|) $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL)) (-3232 (((-3 (-781 |#1| (-865 |#2|)) (-645 $)) (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) $) NIL)) (-2272 (((-645 (-2 (|:| |val| (-781 |#1| (-865 |#2|))) (|:| -2566 $))) (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) $) NIL)) (-3257 (((-3 (-781 |#1| (-865 |#2|)) "failed") $) NIL)) (-1756 (((-645 $) (-781 |#1| (-865 |#2|)) $) NIL)) (-4057 (((-3 (-112) (-645 $)) (-781 |#1| (-865 |#2|)) $) NIL)) (-3573 (((-645 (-2 (|:| |val| (-112)) (|:| -2566 $))) (-781 |#1| (-865 |#2|)) $) NIL) (((-112) (-781 |#1| (-865 |#2|)) $) NIL)) (-2370 (((-645 $) (-781 |#1| (-865 |#2|)) $) NIL) (((-645 $) (-645 (-781 |#1| (-865 |#2|))) $) NIL) (((-645 $) (-645 (-781 |#1| (-865 |#2|))) (-645 $)) NIL) (((-645 $) (-781 |#1| (-865 |#2|)) (-645 $)) NIL)) (-3101 (($ (-781 |#1| (-865 |#2|)) $) NIL) (($ (-645 (-781 |#1| (-865 |#2|))) $) NIL)) (-4051 (((-645 (-781 |#1| (-865 |#2|))) $) NIL)) (-1791 (((-112) (-781 |#1| (-865 |#2|)) $) NIL) (((-112) $) NIL)) (-3159 (((-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) $) NIL)) (-3392 (((-112) $ $) NIL)) (-2430 (((-2 (|:| |num| (-781 |#1| (-865 |#2|))) (|:| |den| |#1|)) (-781 |#1| (-865 |#2|)) $) NIL (|has| |#1| (-559)))) (-2554 (((-112) (-781 |#1| (-865 |#2|)) $) NIL) (((-112) $) NIL)) (-4164 (((-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) $) NIL)) (-3430 (((-1122) $) NIL)) (-2409 (((-3 (-781 |#1| (-865 |#2|)) "failed") $) NIL)) (-4128 (((-3 (-781 |#1| (-865 |#2|)) "failed") (-1 (-112) (-781 |#1| (-865 |#2|))) $) NIL)) (-4077 (((-3 $ "failed") $ (-781 |#1| (-865 |#2|))) NIL)) (-2410 (($ $ (-781 |#1| (-865 |#2|))) NIL) (((-645 $) (-781 |#1| (-865 |#2|)) $) NIL) (((-645 $) (-781 |#1| (-865 |#2|)) (-645 $)) NIL) (((-645 $) (-645 (-781 |#1| (-865 |#2|))) $) NIL) (((-645 $) (-645 (-781 |#1| (-865 |#2|))) (-645 $)) NIL)) (-3025 (((-112) (-1 (-112) (-781 |#1| (-865 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-781 |#1| (-865 |#2|))) (-645 (-781 |#1| (-865 |#2|)))) NIL (-12 (|has| (-781 |#1| (-865 |#2|)) (-310 (-781 |#1| (-865 |#2|)))) (|has| (-781 |#1| (-865 |#2|)) (-1102)))) (($ $ (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|))) NIL (-12 (|has| (-781 |#1| (-865 |#2|)) (-310 (-781 |#1| (-865 |#2|)))) (|has| (-781 |#1| (-865 |#2|)) (-1102)))) (($ $ (-295 (-781 |#1| (-865 |#2|)))) NIL (-12 (|has| (-781 |#1| (-865 |#2|)) (-310 (-781 |#1| (-865 |#2|)))) (|has| (-781 |#1| (-865 |#2|)) (-1102)))) (($ $ (-645 (-295 (-781 |#1| (-865 |#2|))))) NIL (-12 (|has| (-781 |#1| (-865 |#2|)) (-310 (-781 |#1| (-865 |#2|)))) (|has| (-781 |#1| (-865 |#2|)) (-1102))))) (-3092 (((-112) $ $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) NIL)) (-3077 (((-772) $) NIL)) (-3439 (((-772) (-781 |#1| (-865 |#2|)) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-781 |#1| (-865 |#2|)) (-1102)))) (((-772) (-1 (-112) (-781 |#1| (-865 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-4305 (($ $) NIL)) (-3893 (((-539) $) NIL (|has| (-781 |#1| (-865 |#2|)) (-615 (-539))))) (-4147 (($ (-645 (-781 |#1| (-865 |#2|)))) NIL)) (-2397 (($ $ (-865 |#2|)) NIL)) (-2120 (($ $ (-865 |#2|)) NIL)) (-4129 (($ $) NIL)) (-2813 (($ $ (-865 |#2|)) NIL)) (-4132 (((-863) $) NIL) (((-645 (-781 |#1| (-865 |#2|))) $) NIL)) (-2073 (((-772) $) NIL (|has| (-865 |#2|) (-370)))) (-1745 (((-112) $ $) NIL)) (-2220 (((-3 (-2 (|:| |bas| $) (|:| -2262 (-645 (-781 |#1| (-865 |#2|))))) "failed") (-645 (-781 |#1| (-865 |#2|))) (-1 (-112) (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2262 (-645 (-781 |#1| (-865 |#2|))))) "failed") (-645 (-781 |#1| (-865 |#2|))) (-1 (-112) (-781 |#1| (-865 |#2|))) (-1 (-112) (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)))) NIL)) (-2668 (((-112) $ (-1 (-112) (-781 |#1| (-865 |#2|)) (-645 (-781 |#1| (-865 |#2|))))) NIL)) (-4021 (((-645 $) (-781 |#1| (-865 |#2|)) $) NIL) (((-645 $) (-781 |#1| (-865 |#2|)) (-645 $)) NIL) (((-645 $) (-645 (-781 |#1| (-865 |#2|))) $) NIL) (((-645 $) (-645 (-781 |#1| (-865 |#2|))) (-645 $)) NIL)) (-1853 (((-112) (-1 (-112) (-781 |#1| (-865 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-2385 (((-645 (-865 |#2|)) $) NIL)) (-2848 (((-112) (-781 |#1| (-865 |#2|)) $) NIL)) (-2012 (((-112) (-865 |#2|) $) NIL)) (-2936 (((-112) $ $) NIL)) (-2414 (((-772) $) NIL (|has| $ (-6 -4418)))))
-(((-1048 |#1| |#2|) (-13 (-1073 |#1| (-534 (-865 |#2|)) (-865 |#2|) (-781 |#1| (-865 |#2|))) (-10 -8 (-15 -3244 ((-645 $) (-645 (-781 |#1| (-865 |#2|))) (-112) (-112))))) (-455) (-645 (-1178))) (T -1048))
-((-3244 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-645 (-781 *5 (-865 *6)))) (-5 *4 (-112)) (-4 *5 (-455)) (-14 *6 (-645 (-1178))) (-5 *2 (-645 (-1048 *5 *6))) (-5 *1 (-1048 *5 *6)))))
-(-13 (-1073 |#1| (-534 (-865 |#2|)) (-865 |#2|) (-781 |#1| (-865 |#2|))) (-10 -8 (-15 -3244 ((-645 $) (-645 (-781 |#1| (-865 |#2|))) (-112) (-112)))))
-((-3055 (((-1 (-567)) (-1096 (-567))) 32)) (-3966 (((-567) (-567) (-567) (-567) (-567)) 29)) (-1609 (((-1 (-567)) |RationalNumber|) NIL)) (-4066 (((-1 (-567)) |RationalNumber|) NIL)) (-3881 (((-1 (-567)) (-567) |RationalNumber|) NIL)))
-(((-1049) (-10 -7 (-15 -3055 ((-1 (-567)) (-1096 (-567)))) (-15 -3881 ((-1 (-567)) (-567) |RationalNumber|)) (-15 -1609 ((-1 (-567)) |RationalNumber|)) (-15 -4066 ((-1 (-567)) |RationalNumber|)) (-15 -3966 ((-567) (-567) (-567) (-567) (-567))))) (T -1049))
-((-3966 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1049)))) (-4066 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-567))) (-5 *1 (-1049)))) (-1609 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-567))) (-5 *1 (-1049)))) (-3881 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-567))) (-5 *1 (-1049)) (-5 *3 (-567)))) (-3055 (*1 *2 *3) (-12 (-5 *3 (-1096 (-567))) (-5 *2 (-1 (-567))) (-5 *1 (-1049)))))
-(-10 -7 (-15 -3055 ((-1 (-567)) (-1096 (-567)))) (-15 -3881 ((-1 (-567)) (-567) |RationalNumber|)) (-15 -1609 ((-1 (-567)) |RationalNumber|)) (-15 -4066 ((-1 (-567)) |RationalNumber|)) (-15 -3966 ((-567) (-567) (-567) (-567) (-567))))
-((-4132 (((-863) $) NIL) (($ (-567)) 10)))
-(((-1050 |#1|) (-10 -8 (-15 -4132 (|#1| (-567))) (-15 -4132 ((-863) |#1|))) (-1051)) (T -1050))
-NIL
-(-10 -8 (-15 -4132 (|#1| (-567))) (-15 -4132 ((-863) |#1|)))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-2109 (((-3 $ "failed") $) 37)) (-1433 (((-112) $) 35)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12) (($ (-567)) 33)) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27)))
+((-2412 (((-112) $ $) NIL)) (-4305 (((-645 (-2 (|:| -4000 $) (|:| -3835 (-645 (-781 |#1| (-865 |#2|)))))) (-645 (-781 |#1| (-865 |#2|)))) NIL)) (-3403 (((-645 $) (-645 (-781 |#1| (-865 |#2|)))) NIL) (((-645 $) (-645 (-781 |#1| (-865 |#2|))) (-112)) NIL) (((-645 $) (-645 (-781 |#1| (-865 |#2|))) (-112) (-112)) NIL)) (-2859 (((-645 (-865 |#2|)) $) NIL)) (-3153 (((-112) $) NIL)) (-2031 (((-112) $) NIL (|has| |#1| (-559)))) (-2176 (((-112) (-781 |#1| (-865 |#2|)) $) NIL) (((-112) $) NIL)) (-2345 (((-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) $) NIL)) (-3659 (((-645 (-2 (|:| |val| (-781 |#1| (-865 |#2|))) (|:| -2575 $))) (-781 |#1| (-865 |#2|)) $) NIL)) (-1311 (((-2 (|:| |under| $) (|:| -3969 $) (|:| |upper| $)) $ (-865 |#2|)) NIL)) (-1563 (((-112) $ (-772)) NIL)) (-3356 (($ (-1 (-112) (-781 |#1| (-865 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-3 (-781 |#1| (-865 |#2|)) "failed") $ (-865 |#2|)) NIL)) (-3647 (($) NIL T CONST)) (-1896 (((-112) $) NIL (|has| |#1| (-559)))) (-2909 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3040 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3365 (((-112) $) NIL (|has| |#1| (-559)))) (-3683 (((-645 (-781 |#1| (-865 |#2|))) (-645 (-781 |#1| (-865 |#2|))) $ (-1 (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|))) (-1 (-112) (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)))) NIL)) (-1377 (((-645 (-781 |#1| (-865 |#2|))) (-645 (-781 |#1| (-865 |#2|))) $) NIL (|has| |#1| (-559)))) (-2279 (((-645 (-781 |#1| (-865 |#2|))) (-645 (-781 |#1| (-865 |#2|))) $) NIL (|has| |#1| (-559)))) (-3765 (((-3 $ "failed") (-645 (-781 |#1| (-865 |#2|)))) NIL)) (-2051 (($ (-645 (-781 |#1| (-865 |#2|)))) NIL)) (-2430 (((-3 $ "failed") $) NIL)) (-3819 (((-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) $) NIL)) (-2453 (($ $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-781 |#1| (-865 |#2|)) (-1102))))) (-3246 (($ (-781 |#1| (-865 |#2|)) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-781 |#1| (-865 |#2|)) (-1102)))) (($ (-1 (-112) (-781 |#1| (-865 |#2|))) $) NIL (|has| $ (-6 -4422)))) (-2023 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-781 |#1| (-865 |#2|))) (|:| |den| |#1|)) (-781 |#1| (-865 |#2|)) $) NIL (|has| |#1| (-559)))) (-2240 (((-112) (-781 |#1| (-865 |#2|)) $ (-1 (-112) (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)))) NIL)) (-1889 (((-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) $) NIL)) (-2494 (((-781 |#1| (-865 |#2|)) (-1 (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|))) $ (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|))) NIL (-12 (|has| $ (-6 -4422)) (|has| (-781 |#1| (-865 |#2|)) (-1102)))) (((-781 |#1| (-865 |#2|)) (-1 (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|))) $ (-781 |#1| (-865 |#2|))) NIL (|has| $ (-6 -4422))) (((-781 |#1| (-865 |#2|)) (-1 (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) $ (-1 (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|))) (-1 (-112) (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)))) NIL)) (-4076 (((-2 (|:| -4000 (-645 (-781 |#1| (-865 |#2|)))) (|:| -3835 (-645 (-781 |#1| (-865 |#2|))))) $) NIL)) (-2057 (((-112) (-781 |#1| (-865 |#2|)) $) NIL)) (-4104 (((-112) (-781 |#1| (-865 |#2|)) $) NIL)) (-1413 (((-112) (-781 |#1| (-865 |#2|)) $) NIL) (((-112) $) NIL)) (-2799 (((-645 (-781 |#1| (-865 |#2|))) $) NIL (|has| $ (-6 -4422)))) (-4061 (((-112) (-781 |#1| (-865 |#2|)) $) NIL) (((-112) $) NIL)) (-2072 (((-865 |#2|) $) NIL)) (-4093 (((-112) $ (-772)) NIL)) (-1942 (((-645 (-781 |#1| (-865 |#2|))) $) NIL (|has| $ (-6 -4422)))) (-3237 (((-112) (-781 |#1| (-865 |#2|)) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-781 |#1| (-865 |#2|)) (-1102))))) (-3751 (($ (-1 (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|))) $) NIL (|has| $ (-6 -4423)))) (-3841 (($ (-1 (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|))) $) NIL)) (-2869 (((-645 (-865 |#2|)) $) NIL)) (-1524 (((-112) (-865 |#2|) $) NIL)) (-1986 (((-112) $ (-772)) NIL)) (-2516 (((-1161) $) NIL)) (-3295 (((-3 (-781 |#1| (-865 |#2|)) (-645 $)) (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) $) NIL)) (-2588 (((-645 (-2 (|:| |val| (-781 |#1| (-865 |#2|))) (|:| -2575 $))) (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) $) NIL)) (-3266 (((-3 (-781 |#1| (-865 |#2|)) "failed") $) NIL)) (-2055 (((-645 $) (-781 |#1| (-865 |#2|)) $) NIL)) (-2254 (((-3 (-112) (-645 $)) (-781 |#1| (-865 |#2|)) $) NIL)) (-3992 (((-645 (-2 (|:| |val| (-112)) (|:| -2575 $))) (-781 |#1| (-865 |#2|)) $) NIL) (((-112) (-781 |#1| (-865 |#2|)) $) NIL)) (-3660 (((-645 $) (-781 |#1| (-865 |#2|)) $) NIL) (((-645 $) (-645 (-781 |#1| (-865 |#2|))) $) NIL) (((-645 $) (-645 (-781 |#1| (-865 |#2|))) (-645 $)) NIL) (((-645 $) (-781 |#1| (-865 |#2|)) (-645 $)) NIL)) (-2579 (($ (-781 |#1| (-865 |#2|)) $) NIL) (($ (-645 (-781 |#1| (-865 |#2|))) $) NIL)) (-3881 (((-645 (-781 |#1| (-865 |#2|))) $) NIL)) (-3324 (((-112) (-781 |#1| (-865 |#2|)) $) NIL) (((-112) $) NIL)) (-1431 (((-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) $) NIL)) (-3995 (((-112) $ $) NIL)) (-2634 (((-2 (|:| |num| (-781 |#1| (-865 |#2|))) (|:| |den| |#1|)) (-781 |#1| (-865 |#2|)) $) NIL (|has| |#1| (-559)))) (-4278 (((-112) (-781 |#1| (-865 |#2|)) $) NIL) (((-112) $) NIL)) (-3984 (((-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) $) NIL)) (-3437 (((-1122) $) NIL)) (-2418 (((-3 (-781 |#1| (-865 |#2|)) "failed") $) NIL)) (-3196 (((-3 (-781 |#1| (-865 |#2|)) "failed") (-1 (-112) (-781 |#1| (-865 |#2|))) $) NIL)) (-3488 (((-3 $ "failed") $ (-781 |#1| (-865 |#2|))) NIL)) (-1874 (($ $ (-781 |#1| (-865 |#2|))) NIL) (((-645 $) (-781 |#1| (-865 |#2|)) $) NIL) (((-645 $) (-781 |#1| (-865 |#2|)) (-645 $)) NIL) (((-645 $) (-645 (-781 |#1| (-865 |#2|))) $) NIL) (((-645 $) (-645 (-781 |#1| (-865 |#2|))) (-645 $)) NIL)) (-4233 (((-112) (-1 (-112) (-781 |#1| (-865 |#2|))) $) NIL (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-781 |#1| (-865 |#2|))) (-645 (-781 |#1| (-865 |#2|)))) NIL (-12 (|has| (-781 |#1| (-865 |#2|)) (-310 (-781 |#1| (-865 |#2|)))) (|has| (-781 |#1| (-865 |#2|)) (-1102)))) (($ $ (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|))) NIL (-12 (|has| (-781 |#1| (-865 |#2|)) (-310 (-781 |#1| (-865 |#2|)))) (|has| (-781 |#1| (-865 |#2|)) (-1102)))) (($ $ (-295 (-781 |#1| (-865 |#2|)))) NIL (-12 (|has| (-781 |#1| (-865 |#2|)) (-310 (-781 |#1| (-865 |#2|)))) (|has| (-781 |#1| (-865 |#2|)) (-1102)))) (($ $ (-645 (-295 (-781 |#1| (-865 |#2|))))) NIL (-12 (|has| (-781 |#1| (-865 |#2|)) (-310 (-781 |#1| (-865 |#2|)))) (|has| (-781 |#1| (-865 |#2|)) (-1102))))) (-3875 (((-112) $ $) NIL)) (-3885 (((-112) $) NIL)) (-2701 (($) NIL)) (-3104 (((-772) $) NIL)) (-3447 (((-772) (-781 |#1| (-865 |#2|)) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-781 |#1| (-865 |#2|)) (-1102)))) (((-772) (-1 (-112) (-781 |#1| (-865 |#2|))) $) NIL (|has| $ (-6 -4422)))) (-4309 (($ $) NIL)) (-3902 (((-539) $) NIL (|has| (-781 |#1| (-865 |#2|)) (-615 (-539))))) (-4145 (($ (-645 (-781 |#1| (-865 |#2|)))) NIL)) (-3937 (($ $ (-865 |#2|)) NIL)) (-3165 (($ $ (-865 |#2|)) NIL)) (-2085 (($ $) NIL)) (-1920 (($ $ (-865 |#2|)) NIL)) (-4129 (((-863) $) NIL) (((-645 (-781 |#1| (-865 |#2|))) $) NIL)) (-1975 (((-772) $) NIL (|has| (-865 |#2|) (-370)))) (-3357 (((-112) $ $) NIL)) (-1676 (((-3 (-2 (|:| |bas| $) (|:| -2270 (-645 (-781 |#1| (-865 |#2|))))) "failed") (-645 (-781 |#1| (-865 |#2|))) (-1 (-112) (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2270 (-645 (-781 |#1| (-865 |#2|))))) "failed") (-645 (-781 |#1| (-865 |#2|))) (-1 (-112) (-781 |#1| (-865 |#2|))) (-1 (-112) (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)))) NIL)) (-1642 (((-112) $ (-1 (-112) (-781 |#1| (-865 |#2|)) (-645 (-781 |#1| (-865 |#2|))))) NIL)) (-3730 (((-645 $) (-781 |#1| (-865 |#2|)) $) NIL) (((-645 $) (-781 |#1| (-865 |#2|)) (-645 $)) NIL) (((-645 $) (-645 (-781 |#1| (-865 |#2|))) $) NIL) (((-645 $) (-645 (-781 |#1| (-865 |#2|))) (-645 $)) NIL)) (-3436 (((-112) (-1 (-112) (-781 |#1| (-865 |#2|))) $) NIL (|has| $ (-6 -4422)))) (-2551 (((-645 (-865 |#2|)) $) NIL)) (-3991 (((-112) (-781 |#1| (-865 |#2|)) $) NIL)) (-2618 (((-112) (-865 |#2|) $) NIL)) (-2946 (((-112) $ $) NIL)) (-2423 (((-772) $) NIL (|has| $ (-6 -4422)))))
+(((-1048 |#1| |#2|) (-13 (-1073 |#1| (-534 (-865 |#2|)) (-865 |#2|) (-781 |#1| (-865 |#2|))) (-10 -8 (-15 -3403 ((-645 $) (-645 (-781 |#1| (-865 |#2|))) (-112) (-112))))) (-455) (-645 (-1179))) (T -1048))
+((-3403 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-645 (-781 *5 (-865 *6)))) (-5 *4 (-112)) (-4 *5 (-455)) (-14 *6 (-645 (-1179))) (-5 *2 (-645 (-1048 *5 *6))) (-5 *1 (-1048 *5 *6)))))
+(-13 (-1073 |#1| (-534 (-865 |#2|)) (-865 |#2|) (-781 |#1| (-865 |#2|))) (-10 -8 (-15 -3403 ((-645 $) (-645 (-781 |#1| (-865 |#2|))) (-112) (-112)))))
+((-1556 (((-1 (-567)) (-1096 (-567))) 32)) (-3564 (((-567) (-567) (-567) (-567) (-567)) 29)) (-4112 (((-1 (-567)) |RationalNumber|) NIL)) (-1902 (((-1 (-567)) |RationalNumber|) NIL)) (-2708 (((-1 (-567)) (-567) |RationalNumber|) NIL)))
+(((-1049) (-10 -7 (-15 -1556 ((-1 (-567)) (-1096 (-567)))) (-15 -2708 ((-1 (-567)) (-567) |RationalNumber|)) (-15 -4112 ((-1 (-567)) |RationalNumber|)) (-15 -1902 ((-1 (-567)) |RationalNumber|)) (-15 -3564 ((-567) (-567) (-567) (-567) (-567))))) (T -1049))
+((-3564 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1049)))) (-1902 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-567))) (-5 *1 (-1049)))) (-4112 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-567))) (-5 *1 (-1049)))) (-2708 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-567))) (-5 *1 (-1049)) (-5 *3 (-567)))) (-1556 (*1 *2 *3) (-12 (-5 *3 (-1096 (-567))) (-5 *2 (-1 (-567))) (-5 *1 (-1049)))))
+(-10 -7 (-15 -1556 ((-1 (-567)) (-1096 (-567)))) (-15 -2708 ((-1 (-567)) (-567) |RationalNumber|)) (-15 -4112 ((-1 (-567)) |RationalNumber|)) (-15 -1902 ((-1 (-567)) |RationalNumber|)) (-15 -3564 ((-567) (-567) (-567) (-567) (-567))))
+((-4129 (((-863) $) NIL) (($ (-567)) 10)))
+(((-1050 |#1|) (-10 -8 (-15 -4129 (|#1| (-567))) (-15 -4129 ((-863) |#1|))) (-1051)) (T -1050))
+NIL
+(-10 -8 (-15 -4129 (|#1| (-567))) (-15 -4129 ((-863) |#1|)))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-2376 (((-3 $ "failed") $ $) 20)) (-3647 (($) 18 T CONST)) (-3588 (((-3 $ "failed") $) 37)) (-4346 (((-112) $) 35)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-4129 (((-863) $) 12) (($ (-567)) 33)) (-2746 (((-772)) 32 T CONST)) (-3357 (((-112) $ $) 9)) (-1733 (($) 19 T CONST)) (-1744 (($) 34 T CONST)) (-2946 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27)))
(((-1051) (-140)) (T -1051))
-((-4221 (*1 *2) (-12 (-4 *1 (-1051)) (-5 *2 (-772)))))
-(-13 (-1060) (-727) (-649 $) (-617 (-567)) (-10 -7 (-15 -4221 ((-772)) -3286) (-6 -4415)))
+((-2746 (*1 *2) (-12 (-4 *1 (-1051)) (-5 *2 (-772)))))
+(-13 (-1060) (-727) (-649 $) (-617 (-567)) (-10 -7 (-15 -2746 ((-772)) -3304) (-6 -4419)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-617 (-567)) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-727) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T))
-((-2190 (((-410 (-954 |#2|)) (-645 |#2|) (-645 |#2|) (-772) (-772)) 60)))
-(((-1052 |#1| |#2|) (-10 -7 (-15 -2190 ((-410 (-954 |#2|)) (-645 |#2|) (-645 |#2|) (-772) (-772)))) (-1178) (-365)) (T -1052))
-((-2190 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-645 *6)) (-5 *4 (-772)) (-4 *6 (-365)) (-5 *2 (-410 (-954 *6))) (-5 *1 (-1052 *5 *6)) (-14 *5 (-1178)))))
-(-10 -7 (-15 -2190 ((-410 (-954 |#2|)) (-645 |#2|) (-645 |#2|) (-772) (-772))))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 15)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-1716 (($) 16 T CONST)) (-2936 (((-112) $ $) 6)) (* (($ $ |#1|) 14)))
+((-1599 (((-410 (-954 |#2|)) (-645 |#2|) (-645 |#2|) (-772) (-772)) 60)))
+(((-1052 |#1| |#2|) (-10 -7 (-15 -1599 ((-410 (-954 |#2|)) (-645 |#2|) (-645 |#2|) (-772) (-772)))) (-1179) (-365)) (T -1052))
+((-1599 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-645 *6)) (-5 *4 (-772)) (-4 *6 (-365)) (-5 *2 (-410 (-954 *6))) (-5 *1 (-1052 *5 *6)) (-14 *5 (-1179)))))
+(-10 -7 (-15 -1599 ((-410 (-954 |#2|)) (-645 |#2|) (-645 |#2|) (-772) (-772))))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 15)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-4129 (((-863) $) 12)) (-3357 (((-112) $ $) 9)) (-1733 (($) 16 T CONST)) (-2946 (((-112) $ $) 6)) (* (($ $ |#1|) 14)))
(((-1053 |#1|) (-140) (-1060)) (T -1053))
-((-1716 (*1 *1) (-12 (-4 *1 (-1053 *2)) (-4 *2 (-1060)))) (-2460 (*1 *2 *1) (-12 (-4 *1 (-1053 *3)) (-4 *3 (-1060)) (-5 *2 (-112)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1053 *2)) (-4 *2 (-1060)))))
-(-13 (-1102) (-10 -8 (-15 (-1716) ($) -3286) (-15 -2460 ((-112) $)) (-15 * ($ $ |t#1|))))
+((-1733 (*1 *1) (-12 (-4 *1 (-1053 *2)) (-4 *2 (-1060)))) (-3791 (*1 *2 *1) (-12 (-4 *1 (-1053 *3)) (-4 *3 (-1060)) (-5 *2 (-112)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1053 *2)) (-4 *2 (-1060)))))
+(-13 (-1102) (-10 -8 (-15 (-1733) ($) -3304) (-15 -3791 ((-112) $)) (-15 * ($ $ |t#1|))))
(((-102) . T) ((-614 (-863)) . T) ((-1102) . T))
-((-1981 (((-112) $) 40)) (-1948 (((-112) $) 17)) (-3633 (((-772) $) 13)) (-3643 (((-772) $) 14)) (-3339 (((-112) $) 30)) (-2619 (((-112) $) 42)))
-(((-1054 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -3643 ((-772) |#1|)) (-15 -3633 ((-772) |#1|)) (-15 -2619 ((-112) |#1|)) (-15 -1981 ((-112) |#1|)) (-15 -3339 ((-112) |#1|)) (-15 -1948 ((-112) |#1|))) (-1055 |#2| |#3| |#4| |#5| |#6|) (-772) (-772) (-1051) (-238 |#3| |#4|) (-238 |#2| |#4|)) (T -1054))
+((-2999 (((-112) $) 40)) (-3507 (((-112) $) 17)) (-4296 (((-772) $) 13)) (-4307 (((-772) $) 14)) (-4103 (((-112) $) 30)) (-4050 (((-112) $) 42)))
+(((-1054 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -4307 ((-772) |#1|)) (-15 -4296 ((-772) |#1|)) (-15 -4050 ((-112) |#1|)) (-15 -2999 ((-112) |#1|)) (-15 -4103 ((-112) |#1|)) (-15 -3507 ((-112) |#1|))) (-1055 |#2| |#3| |#4| |#5| |#6|) (-772) (-772) (-1051) (-238 |#3| |#4|) (-238 |#2| |#4|)) (T -1054))
NIL
-(-10 -8 (-15 -3643 ((-772) |#1|)) (-15 -3633 ((-772) |#1|)) (-15 -2619 ((-112) |#1|)) (-15 -1981 ((-112) |#1|)) (-15 -3339 ((-112) |#1|)) (-15 -1948 ((-112) |#1|)))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-1981 (((-112) $) 56)) (-3472 (((-3 $ "failed") $ $) 20)) (-1948 (((-112) $) 58)) (-3445 (((-112) $ (-772)) 66)) (-2585 (($) 18 T CONST)) (-2233 (($ $) 39 (|has| |#3| (-308)))) (-1944 ((|#4| $ (-567)) 44)) (-1954 (((-772) $) 38 (|has| |#3| (-559)))) (-3680 ((|#3| $ (-567) (-567)) 46)) (-2777 (((-645 |#3|) $) 73 (|has| $ (-6 -4418)))) (-1940 (((-772) $) 37 (|has| |#3| (-559)))) (-1325 (((-645 |#5|) $) 36 (|has| |#3| (-559)))) (-3633 (((-772) $) 50)) (-3643 (((-772) $) 49)) (-2077 (((-112) $ (-772)) 65)) (-2527 (((-567) $) 54)) (-4043 (((-567) $) 52)) (-2279 (((-645 |#3|) $) 74 (|has| $ (-6 -4418)))) (-4337 (((-112) |#3| $) 76 (-12 (|has| |#3| (-1102)) (|has| $ (-6 -4418))))) (-2107 (((-567) $) 53)) (-2646 (((-567) $) 51)) (-2114 (($ (-645 (-645 |#3|))) 59)) (-3731 (($ (-1 |#3| |#3|) $) 69 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#3| |#3|) $) 68) (($ (-1 |#3| |#3| |#3|) $ $) 42)) (-1603 (((-645 (-645 |#3|)) $) 48)) (-2863 (((-112) $ (-772)) 64)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-2391 (((-3 $ "failed") $ |#3|) 41 (|has| |#3| (-559)))) (-3025 (((-112) (-1 (-112) |#3|) $) 71 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 |#3|) (-645 |#3|)) 80 (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102)))) (($ $ |#3| |#3|) 79 (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102)))) (($ $ (-295 |#3|)) 78 (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102)))) (($ $ (-645 (-295 |#3|))) 77 (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102))))) (-3092 (((-112) $ $) 60)) (-3572 (((-112) $) 63)) (-3498 (($) 62)) (-1787 ((|#3| $ (-567) (-567)) 47) ((|#3| $ (-567) (-567) |#3|) 45)) (-3339 (((-112) $) 57)) (-3439 (((-772) |#3| $) 75 (-12 (|has| |#3| (-1102)) (|has| $ (-6 -4418)))) (((-772) (-1 (-112) |#3|) $) 72 (|has| $ (-6 -4418)))) (-4305 (($ $) 61)) (-2237 ((|#5| $ (-567)) 43)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-1853 (((-112) (-1 (-112) |#3|) $) 70 (|has| $ (-6 -4418)))) (-2619 (((-112) $) 55)) (-1716 (($) 19 T CONST)) (-2936 (((-112) $ $) 6)) (-3060 (($ $ |#3|) 40 (|has| |#3| (-365)))) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ |#3| $) 27) (($ $ |#3|) 31)) (-2414 (((-772) $) 67 (|has| $ (-6 -4418)))))
+(-10 -8 (-15 -4307 ((-772) |#1|)) (-15 -4296 ((-772) |#1|)) (-15 -4050 ((-112) |#1|)) (-15 -2999 ((-112) |#1|)) (-15 -4103 ((-112) |#1|)) (-15 -3507 ((-112) |#1|)))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-2999 (((-112) $) 56)) (-2376 (((-3 $ "failed") $ $) 20)) (-3507 (((-112) $) 58)) (-1563 (((-112) $ (-772)) 66)) (-3647 (($) 18 T CONST)) (-2765 (($ $) 39 (|has| |#3| (-308)))) (-4323 ((|#4| $ (-567)) 44)) (-1976 (((-772) $) 38 (|has| |#3| (-559)))) (-3703 ((|#3| $ (-567) (-567)) 46)) (-2799 (((-645 |#3|) $) 73 (|has| $ (-6 -4422)))) (-1974 (((-772) $) 37 (|has| |#3| (-559)))) (-2064 (((-645 |#5|) $) 36 (|has| |#3| (-559)))) (-4296 (((-772) $) 50)) (-4307 (((-772) $) 49)) (-4093 (((-112) $ (-772)) 65)) (-3407 (((-567) $) 54)) (-4227 (((-567) $) 52)) (-1942 (((-645 |#3|) $) 74 (|has| $ (-6 -4422)))) (-3237 (((-112) |#3| $) 76 (-12 (|has| |#3| (-1102)) (|has| $ (-6 -4422))))) (-3393 (((-567) $) 53)) (-3351 (((-567) $) 51)) (-2124 (($ (-645 (-645 |#3|))) 59)) (-3751 (($ (-1 |#3| |#3|) $) 69 (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#3| |#3|) $) 68) (($ (-1 |#3| |#3| |#3|) $ $) 42)) (-2282 (((-645 (-645 |#3|)) $) 48)) (-1986 (((-112) $ (-772)) 64)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-2400 (((-3 $ "failed") $ |#3|) 41 (|has| |#3| (-559)))) (-4233 (((-112) (-1 (-112) |#3|) $) 71 (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 |#3|) (-645 |#3|)) 80 (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102)))) (($ $ |#3| |#3|) 79 (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102)))) (($ $ (-295 |#3|)) 78 (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102)))) (($ $ (-645 (-295 |#3|))) 77 (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102))))) (-3875 (((-112) $ $) 60)) (-3885 (((-112) $) 63)) (-2701 (($) 62)) (-1801 ((|#3| $ (-567) (-567)) 47) ((|#3| $ (-567) (-567) |#3|) 45)) (-4103 (((-112) $) 57)) (-3447 (((-772) |#3| $) 75 (-12 (|has| |#3| (-1102)) (|has| $ (-6 -4422)))) (((-772) (-1 (-112) |#3|) $) 72 (|has| $ (-6 -4422)))) (-4309 (($ $) 61)) (-3186 ((|#5| $ (-567)) 43)) (-4129 (((-863) $) 12)) (-3357 (((-112) $ $) 9)) (-3436 (((-112) (-1 (-112) |#3|) $) 70 (|has| $ (-6 -4422)))) (-4050 (((-112) $) 55)) (-1733 (($) 19 T CONST)) (-2946 (((-112) $ $) 6)) (-3069 (($ $ |#3|) 40 (|has| |#3| (-365)))) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ |#3| $) 27) (($ $ |#3|) 31)) (-2423 (((-772) $) 67 (|has| $ (-6 -4422)))))
(((-1055 |#1| |#2| |#3| |#4| |#5|) (-140) (-772) (-772) (-1051) (-238 |t#2| |t#3|) (-238 |t#1| |t#3|)) (T -1055))
-((-3829 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) (-2114 (*1 *1 *2) (-12 (-5 *2 (-645 (-645 *5))) (-4 *5 (-1051)) (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) (-1948 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-3339 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-1981 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-2619 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-2527 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-567)))) (-2107 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-567)))) (-4043 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-567)))) (-2646 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-567)))) (-3633 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-772)))) (-3643 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-772)))) (-1603 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-645 (-645 *5))))) (-1787 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-567)) (-4 *1 (-1055 *4 *5 *2 *6 *7)) (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1051)))) (-3680 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-567)) (-4 *1 (-1055 *4 *5 *2 *6 *7)) (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1051)))) (-1787 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-567)) (-4 *1 (-1055 *4 *5 *2 *6 *7)) (-4 *2 (-1051)) (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)))) (-1944 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-1055 *4 *5 *6 *2 *7)) (-4 *6 (-1051)) (-4 *7 (-238 *4 *6)) (-4 *2 (-238 *5 *6)))) (-2237 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-1055 *4 *5 *6 *7 *2)) (-4 *6 (-1051)) (-4 *7 (-238 *5 *6)) (-4 *2 (-238 *4 *6)))) (-3829 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) (-2391 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1055 *3 *4 *2 *5 *6)) (-4 *2 (-1051)) (-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-559)))) (-3060 (*1 *1 *1 *2) (-12 (-4 *1 (-1055 *3 *4 *2 *5 *6)) (-4 *2 (-1051)) (-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-365)))) (-2233 (*1 *1 *1) (-12 (-4 *1 (-1055 *2 *3 *4 *5 *6)) (-4 *4 (-1051)) (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *2 *4)) (-4 *4 (-308)))) (-1954 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-559)) (-5 *2 (-772)))) (-1940 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-559)) (-5 *2 (-772)))) (-1325 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-559)) (-5 *2 (-645 *7)))))
-(-13 (-111 |t#3| |t#3|) (-492 |t#3|) (-10 -8 (-6 -4418) (IF (|has| |t#3| (-172)) (-6 (-718 |t#3|)) |%noBranch|) (-15 -2114 ($ (-645 (-645 |t#3|)))) (-15 -1948 ((-112) $)) (-15 -3339 ((-112) $)) (-15 -1981 ((-112) $)) (-15 -2619 ((-112) $)) (-15 -2527 ((-567) $)) (-15 -2107 ((-567) $)) (-15 -4043 ((-567) $)) (-15 -2646 ((-567) $)) (-15 -3633 ((-772) $)) (-15 -3643 ((-772) $)) (-15 -1603 ((-645 (-645 |t#3|)) $)) (-15 -1787 (|t#3| $ (-567) (-567))) (-15 -3680 (|t#3| $ (-567) (-567))) (-15 -1787 (|t#3| $ (-567) (-567) |t#3|)) (-15 -1944 (|t#4| $ (-567))) (-15 -2237 (|t#5| $ (-567))) (-15 -3829 ($ (-1 |t#3| |t#3|) $)) (-15 -3829 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-559)) (-15 -2391 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-365)) (-15 -3060 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-308)) (-15 -2233 ($ $)) |%noBranch|) (IF (|has| |t#3| (-559)) (PROGN (-15 -1954 ((-772) $)) (-15 -1940 ((-772) $)) (-15 -1325 ((-645 |t#5|) $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-102) . T) ((-111 |#3| |#3|) . T) ((-131) . T) ((-614 (-863)) . T) ((-310 |#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102))) ((-492 |#3|) . T) ((-517 |#3| |#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102))) ((-647 (-567)) . T) ((-647 |#3|) . T) ((-649 |#3|) . T) ((-641 |#3|) |has| |#3| (-172)) ((-718 |#3|) |has| |#3| (-172)) ((-1053 |#3|) . T) ((-1058 |#3|) . T) ((-1102) . T) ((-1218) . T))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-1981 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-1948 (((-112) $) NIL)) (-3445 (((-112) $ (-772)) NIL)) (-2585 (($) NIL T CONST)) (-2233 (($ $) 47 (|has| |#3| (-308)))) (-1944 (((-240 |#2| |#3|) $ (-567)) 36)) (-2529 (($ (-690 |#3|)) 45)) (-1954 (((-772) $) 49 (|has| |#3| (-559)))) (-3680 ((|#3| $ (-567) (-567)) NIL)) (-2777 (((-645 |#3|) $) NIL (|has| $ (-6 -4418)))) (-1940 (((-772) $) 51 (|has| |#3| (-559)))) (-1325 (((-645 (-240 |#1| |#3|)) $) 55 (|has| |#3| (-559)))) (-3633 (((-772) $) NIL)) (-3643 (((-772) $) NIL)) (-2077 (((-112) $ (-772)) NIL)) (-2527 (((-567) $) NIL)) (-4043 (((-567) $) NIL)) (-2279 (((-645 |#3|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#3| (-1102))))) (-2107 (((-567) $) NIL)) (-2646 (((-567) $) NIL)) (-2114 (($ (-645 (-645 |#3|))) 31)) (-3731 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-1603 (((-645 (-645 |#3|)) $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-2391 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-559)))) (-3025 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 |#3|) (-645 |#3|)) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102)))) (($ $ (-295 |#3|)) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102)))) (($ $ (-645 (-295 |#3|))) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102))))) (-3092 (((-112) $ $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) NIL)) (-1787 ((|#3| $ (-567) (-567)) NIL) ((|#3| $ (-567) (-567) |#3|) NIL)) (-1879 (((-134)) 59 (|has| |#3| (-365)))) (-3339 (((-112) $) NIL)) (-3439 (((-772) |#3| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#3| (-1102)))) (((-772) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4418)))) (-4305 (($ $) NIL)) (-3893 (((-539) $) 65 (|has| |#3| (-615 (-539))))) (-2237 (((-240 |#1| |#3|) $ (-567)) 40)) (-4132 (((-863) $) 19) (((-690 |#3|) $) 42)) (-1745 (((-112) $ $) NIL)) (-1853 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4418)))) (-2619 (((-112) $) NIL)) (-1716 (($) 16 T CONST)) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ |#3|) NIL (|has| |#3| (-365)))) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-2414 (((-772) $) NIL (|has| $ (-6 -4418)))))
-(((-1056 |#1| |#2| |#3|) (-13 (-1055 |#1| |#2| |#3| (-240 |#2| |#3|) (-240 |#1| |#3|)) (-614 (-690 |#3|)) (-10 -8 (IF (|has| |#3| (-365)) (-6 (-1275 |#3|)) |%noBranch|) (IF (|has| |#3| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|) (-15 -2529 ($ (-690 |#3|))))) (-772) (-772) (-1051)) (T -1056))
-((-2529 (*1 *1 *2) (-12 (-5 *2 (-690 *5)) (-4 *5 (-1051)) (-5 *1 (-1056 *3 *4 *5)) (-14 *3 (-772)) (-14 *4 (-772)))))
-(-13 (-1055 |#1| |#2| |#3| (-240 |#2| |#3|) (-240 |#1| |#3|)) (-614 (-690 |#3|)) (-10 -8 (IF (|has| |#3| (-365)) (-6 (-1275 |#3|)) |%noBranch|) (IF (|has| |#3| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|) (-15 -2529 ($ (-690 |#3|)))))
-((-2477 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36)) (-3829 ((|#10| (-1 |#7| |#3|) |#6|) 34)))
-(((-1057 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -3829 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2477 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-772) (-772) (-1051) (-238 |#2| |#3|) (-238 |#1| |#3|) (-1055 |#1| |#2| |#3| |#4| |#5|) (-1051) (-238 |#2| |#7|) (-238 |#1| |#7|) (-1055 |#1| |#2| |#7| |#8| |#9|)) (T -1057))
-((-2477 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1051)) (-4 *2 (-1051)) (-14 *5 (-772)) (-14 *6 (-772)) (-4 *8 (-238 *6 *7)) (-4 *9 (-238 *5 *7)) (-4 *10 (-238 *6 *2)) (-4 *11 (-238 *5 *2)) (-5 *1 (-1057 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1055 *5 *6 *7 *8 *9)) (-4 *12 (-1055 *5 *6 *2 *10 *11)))) (-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1051)) (-4 *10 (-1051)) (-14 *5 (-772)) (-14 *6 (-772)) (-4 *8 (-238 *6 *7)) (-4 *9 (-238 *5 *7)) (-4 *2 (-1055 *5 *6 *10 *11 *12)) (-5 *1 (-1057 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1055 *5 *6 *7 *8 *9)) (-4 *11 (-238 *6 *10)) (-4 *12 (-238 *5 *10)))))
-(-10 -7 (-15 -3829 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2477 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|)))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-1716 (($) 19 T CONST)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ |#1|) 27)))
+((-3841 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) (-2124 (*1 *1 *2) (-12 (-5 *2 (-645 (-645 *5))) (-4 *5 (-1051)) (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) (-3507 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-4103 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-2999 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-4050 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-3407 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-567)))) (-3393 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-567)))) (-4227 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-567)))) (-3351 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-567)))) (-4296 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-772)))) (-4307 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-772)))) (-2282 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-645 (-645 *5))))) (-1801 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-567)) (-4 *1 (-1055 *4 *5 *2 *6 *7)) (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1051)))) (-3703 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-567)) (-4 *1 (-1055 *4 *5 *2 *6 *7)) (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1051)))) (-1801 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-567)) (-4 *1 (-1055 *4 *5 *2 *6 *7)) (-4 *2 (-1051)) (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)))) (-4323 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-1055 *4 *5 *6 *2 *7)) (-4 *6 (-1051)) (-4 *7 (-238 *4 *6)) (-4 *2 (-238 *5 *6)))) (-3186 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-1055 *4 *5 *6 *7 *2)) (-4 *6 (-1051)) (-4 *7 (-238 *5 *6)) (-4 *2 (-238 *4 *6)))) (-3841 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) (-2400 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1055 *3 *4 *2 *5 *6)) (-4 *2 (-1051)) (-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-559)))) (-3069 (*1 *1 *1 *2) (-12 (-4 *1 (-1055 *3 *4 *2 *5 *6)) (-4 *2 (-1051)) (-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-365)))) (-2765 (*1 *1 *1) (-12 (-4 *1 (-1055 *2 *3 *4 *5 *6)) (-4 *4 (-1051)) (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *2 *4)) (-4 *4 (-308)))) (-1976 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-559)) (-5 *2 (-772)))) (-1974 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-559)) (-5 *2 (-772)))) (-2064 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-559)) (-5 *2 (-645 *7)))))
+(-13 (-111 |t#3| |t#3|) (-492 |t#3|) (-10 -8 (-6 -4422) (IF (|has| |t#3| (-172)) (-6 (-718 |t#3|)) |%noBranch|) (-15 -2124 ($ (-645 (-645 |t#3|)))) (-15 -3507 ((-112) $)) (-15 -4103 ((-112) $)) (-15 -2999 ((-112) $)) (-15 -4050 ((-112) $)) (-15 -3407 ((-567) $)) (-15 -3393 ((-567) $)) (-15 -4227 ((-567) $)) (-15 -3351 ((-567) $)) (-15 -4296 ((-772) $)) (-15 -4307 ((-772) $)) (-15 -2282 ((-645 (-645 |t#3|)) $)) (-15 -1801 (|t#3| $ (-567) (-567))) (-15 -3703 (|t#3| $ (-567) (-567))) (-15 -1801 (|t#3| $ (-567) (-567) |t#3|)) (-15 -4323 (|t#4| $ (-567))) (-15 -3186 (|t#5| $ (-567))) (-15 -3841 ($ (-1 |t#3| |t#3|) $)) (-15 -3841 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-559)) (-15 -2400 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-365)) (-15 -3069 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-308)) (-15 -2765 ($ $)) |%noBranch|) (IF (|has| |t#3| (-559)) (PROGN (-15 -1976 ((-772) $)) (-15 -1974 ((-772) $)) (-15 -2064 ((-645 |t#5|) $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-102) . T) ((-111 |#3| |#3|) . T) ((-131) . T) ((-614 (-863)) . T) ((-310 |#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102))) ((-492 |#3|) . T) ((-517 |#3| |#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102))) ((-647 (-567)) . T) ((-647 |#3|) . T) ((-649 |#3|) . T) ((-641 |#3|) |has| |#3| (-172)) ((-718 |#3|) |has| |#3| (-172)) ((-1053 |#3|) . T) ((-1058 |#3|) . T) ((-1102) . T) ((-1219) . T))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-2999 (((-112) $) NIL)) (-2376 (((-3 $ "failed") $ $) NIL)) (-3507 (((-112) $) NIL)) (-1563 (((-112) $ (-772)) NIL)) (-3647 (($) NIL T CONST)) (-2765 (($ $) 47 (|has| |#3| (-308)))) (-4323 (((-240 |#2| |#3|) $ (-567)) 36)) (-3593 (($ (-690 |#3|)) 45)) (-1976 (((-772) $) 49 (|has| |#3| (-559)))) (-3703 ((|#3| $ (-567) (-567)) NIL)) (-2799 (((-645 |#3|) $) NIL (|has| $ (-6 -4422)))) (-1974 (((-772) $) 51 (|has| |#3| (-559)))) (-2064 (((-645 (-240 |#1| |#3|)) $) 55 (|has| |#3| (-559)))) (-4296 (((-772) $) NIL)) (-4307 (((-772) $) NIL)) (-4093 (((-112) $ (-772)) NIL)) (-3407 (((-567) $) NIL)) (-4227 (((-567) $) NIL)) (-1942 (((-645 |#3|) $) NIL (|has| $ (-6 -4422)))) (-3237 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#3| (-1102))))) (-3393 (((-567) $) NIL)) (-3351 (((-567) $) NIL)) (-2124 (($ (-645 (-645 |#3|))) 31)) (-3751 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-2282 (((-645 (-645 |#3|)) $) NIL)) (-1986 (((-112) $ (-772)) NIL)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-2400 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-559)))) (-4233 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 |#3|) (-645 |#3|)) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102)))) (($ $ (-295 |#3|)) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102)))) (($ $ (-645 (-295 |#3|))) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102))))) (-3875 (((-112) $ $) NIL)) (-3885 (((-112) $) NIL)) (-2701 (($) NIL)) (-1801 ((|#3| $ (-567) (-567)) NIL) ((|#3| $ (-567) (-567) |#3|) NIL)) (-1412 (((-134)) 59 (|has| |#3| (-365)))) (-4103 (((-112) $) NIL)) (-3447 (((-772) |#3| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#3| (-1102)))) (((-772) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4422)))) (-4309 (($ $) NIL)) (-3902 (((-539) $) 65 (|has| |#3| (-615 (-539))))) (-3186 (((-240 |#1| |#3|) $ (-567)) 40)) (-4129 (((-863) $) 19) (((-690 |#3|) $) 42)) (-3357 (((-112) $ $) NIL)) (-3436 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4422)))) (-4050 (((-112) $) NIL)) (-1733 (($) 16 T CONST)) (-2946 (((-112) $ $) NIL)) (-3069 (($ $ |#3|) NIL (|has| |#3| (-365)))) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-2423 (((-772) $) NIL (|has| $ (-6 -4422)))))
+(((-1056 |#1| |#2| |#3|) (-13 (-1055 |#1| |#2| |#3| (-240 |#2| |#3|) (-240 |#1| |#3|)) (-614 (-690 |#3|)) (-10 -8 (IF (|has| |#3| (-365)) (-6 (-1276 |#3|)) |%noBranch|) (IF (|has| |#3| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|) (-15 -3593 ($ (-690 |#3|))))) (-772) (-772) (-1051)) (T -1056))
+((-3593 (*1 *1 *2) (-12 (-5 *2 (-690 *5)) (-4 *5 (-1051)) (-5 *1 (-1056 *3 *4 *5)) (-14 *3 (-772)) (-14 *4 (-772)))))
+(-13 (-1055 |#1| |#2| |#3| (-240 |#2| |#3|) (-240 |#1| |#3|)) (-614 (-690 |#3|)) (-10 -8 (IF (|has| |#3| (-365)) (-6 (-1276 |#3|)) |%noBranch|) (IF (|has| |#3| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|) (-15 -3593 ($ (-690 |#3|)))))
+((-2494 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36)) (-3841 ((|#10| (-1 |#7| |#3|) |#6|) 34)))
+(((-1057 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -3841 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2494 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-772) (-772) (-1051) (-238 |#2| |#3|) (-238 |#1| |#3|) (-1055 |#1| |#2| |#3| |#4| |#5|) (-1051) (-238 |#2| |#7|) (-238 |#1| |#7|) (-1055 |#1| |#2| |#7| |#8| |#9|)) (T -1057))
+((-2494 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1051)) (-4 *2 (-1051)) (-14 *5 (-772)) (-14 *6 (-772)) (-4 *8 (-238 *6 *7)) (-4 *9 (-238 *5 *7)) (-4 *10 (-238 *6 *2)) (-4 *11 (-238 *5 *2)) (-5 *1 (-1057 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1055 *5 *6 *7 *8 *9)) (-4 *12 (-1055 *5 *6 *2 *10 *11)))) (-3841 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1051)) (-4 *10 (-1051)) (-14 *5 (-772)) (-14 *6 (-772)) (-4 *8 (-238 *6 *7)) (-4 *9 (-238 *5 *7)) (-4 *2 (-1055 *5 *6 *10 *11 *12)) (-5 *1 (-1057 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1055 *5 *6 *7 *8 *9)) (-4 *11 (-238 *6 *10)) (-4 *12 (-238 *5 *10)))))
+(-10 -7 (-15 -3841 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2494 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|)))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-2376 (((-3 $ "failed") $ $) 20)) (-3647 (($) 18 T CONST)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-4129 (((-863) $) 12)) (-3357 (((-112) $ $) 9)) (-1733 (($) 19 T CONST)) (-2946 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ |#1|) 27)))
(((-1058 |#1|) (-140) (-1060)) (T -1058))
NIL
(-13 (-21) (-1053 |t#1|))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-1053 |#1|) . T) ((-1102) . T))
-((-2403 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3644 (((-1178) $) 11)) (-3099 ((|#1| $) 12)) (-1419 (((-1160) $) NIL (|has| |#1| (-1102)))) (-3430 (((-1122) $) NIL (|has| |#1| (-1102)))) (-2537 (($ (-1178) |#1|) 10)) (-4132 (((-863) $) 22 (|has| |#1| (-1102)))) (-1745 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2936 (((-112) $ $) 17 (|has| |#1| (-1102)))))
-(((-1059 |#1| |#2|) (-13 (-1218) (-10 -8 (-15 -2537 ($ (-1178) |#1|)) (-15 -3644 ((-1178) $)) (-15 -3099 (|#1| $)) (IF (|has| |#1| (-1102)) (-6 (-1102)) |%noBranch|))) (-1095 |#2|) (-1218)) (T -1059))
-((-2537 (*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-4 *4 (-1218)) (-5 *1 (-1059 *3 *4)) (-4 *3 (-1095 *4)))) (-3644 (*1 *2 *1) (-12 (-4 *4 (-1218)) (-5 *2 (-1178)) (-5 *1 (-1059 *3 *4)) (-4 *3 (-1095 *4)))) (-3099 (*1 *2 *1) (-12 (-4 *2 (-1095 *3)) (-5 *1 (-1059 *2 *3)) (-4 *3 (-1218)))))
-(-13 (-1218) (-10 -8 (-15 -2537 ($ (-1178) |#1|)) (-15 -3644 ((-1178) $)) (-15 -3099 (|#1| $)) (IF (|has| |#1| (-1102)) (-6 (-1102)) |%noBranch|)))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-1716 (($) 19 T CONST)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27)))
+((-2412 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3653 (((-1179) $) 11)) (-3109 ((|#1| $) 12)) (-2516 (((-1161) $) NIL (|has| |#1| (-1102)))) (-3437 (((-1122) $) NIL (|has| |#1| (-1102)))) (-2547 (($ (-1179) |#1|) 10)) (-4129 (((-863) $) 22 (|has| |#1| (-1102)))) (-3357 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2946 (((-112) $ $) 17 (|has| |#1| (-1102)))))
+(((-1059 |#1| |#2|) (-13 (-1219) (-10 -8 (-15 -2547 ($ (-1179) |#1|)) (-15 -3653 ((-1179) $)) (-15 -3109 (|#1| $)) (IF (|has| |#1| (-1102)) (-6 (-1102)) |%noBranch|))) (-1095 |#2|) (-1219)) (T -1059))
+((-2547 (*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-4 *4 (-1219)) (-5 *1 (-1059 *3 *4)) (-4 *3 (-1095 *4)))) (-3653 (*1 *2 *1) (-12 (-4 *4 (-1219)) (-5 *2 (-1179)) (-5 *1 (-1059 *3 *4)) (-4 *3 (-1095 *4)))) (-3109 (*1 *2 *1) (-12 (-4 *2 (-1095 *3)) (-5 *1 (-1059 *2 *3)) (-4 *3 (-1219)))))
+(-13 (-1219) (-10 -8 (-15 -2547 ($ (-1179) |#1|)) (-15 -3653 ((-1179) $)) (-15 -3109 (|#1| $)) (IF (|has| |#1| (-1102)) (-6 (-1102)) |%noBranch|)))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-2376 (((-3 $ "failed") $ $) 20)) (-3647 (($) 18 T CONST)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-4129 (((-863) $) 12)) (-3357 (((-112) $ $) 9)) (-1733 (($) 19 T CONST)) (-2946 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-923)) 28)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27)))
(((-1060) (-140)) (T -1060))
NIL
(-13 (-21) (-1114))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-1114) . T) ((-1102) . T))
-((-1950 (($ $) 17)) (-2535 (($ $) 25)) (-4303 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) 55)) (-2475 (($ $) 27)) (-4094 (($ $) 12)) (-2780 (($ $) 43)) (-3893 (((-381) $) NIL) (((-225) $) NIL) (((-894 (-381)) $) 36)) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) 31) (($ (-567)) NIL) (($ (-410 (-567))) 31)) (-4221 (((-772)) 9)) (-1423 (($ $) 45)))
-(((-1061 |#1|) (-10 -8 (-15 -2535 (|#1| |#1|)) (-15 -1950 (|#1| |#1|)) (-15 -4094 (|#1| |#1|)) (-15 -2780 (|#1| |#1|)) (-15 -1423 (|#1| |#1|)) (-15 -2475 (|#1| |#1|)) (-15 -4303 ((-891 (-381) |#1|) |#1| (-894 (-381)) (-891 (-381) |#1|))) (-15 -3893 ((-894 (-381)) |#1|)) (-15 -4132 (|#1| (-410 (-567)))) (-15 -4132 (|#1| (-567))) (-15 -3893 ((-225) |#1|)) (-15 -3893 ((-381) |#1|)) (-15 -4132 (|#1| (-410 (-567)))) (-15 -4132 (|#1| |#1|)) (-15 -4221 ((-772))) (-15 -4132 (|#1| (-567))) (-15 -4132 ((-863) |#1|))) (-1062)) (T -1061))
-((-4221 (*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-1061 *3)) (-4 *3 (-1062)))))
-(-10 -8 (-15 -2535 (|#1| |#1|)) (-15 -1950 (|#1| |#1|)) (-15 -4094 (|#1| |#1|)) (-15 -2780 (|#1| |#1|)) (-15 -1423 (|#1| |#1|)) (-15 -2475 (|#1| |#1|)) (-15 -4303 ((-891 (-381) |#1|) |#1| (-894 (-381)) (-891 (-381) |#1|))) (-15 -3893 ((-894 (-381)) |#1|)) (-15 -4132 (|#1| (-410 (-567)))) (-15 -4132 (|#1| (-567))) (-15 -3893 ((-225) |#1|)) (-15 -3893 ((-381) |#1|)) (-15 -4132 (|#1| (-410 (-567)))) (-15 -4132 (|#1| |#1|)) (-15 -4221 ((-772))) (-15 -4132 (|#1| (-567))) (-15 -4132 ((-863) |#1|)))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3093 (((-567) $) 97)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 47)) (-4381 (($ $) 46)) (-3949 (((-112) $) 44)) (-1950 (($ $) 95)) (-3472 (((-3 $ "failed") $ $) 20)) (-3248 (($ $) 81)) (-2908 (((-421 $) $) 80)) (-2716 (($ $) 105)) (-3609 (((-112) $ $) 65)) (-1750 (((-567) $) 122)) (-2585 (($) 18 T CONST)) (-2535 (($ $) 94)) (-3753 (((-3 (-567) "failed") $) 110) (((-3 (-410 (-567)) "failed") $) 107)) (-2038 (((-567) $) 111) (((-410 (-567)) $) 108)) (-2349 (($ $ $) 61)) (-2109 (((-3 $ "failed") $) 37)) (-2360 (($ $ $) 62)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) 57)) (-3184 (((-112) $) 79)) (-4336 (((-112) $) 120)) (-4303 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) 101)) (-1433 (((-112) $) 35)) (-2651 (($ $ (-567)) 104)) (-2475 (($ $) 100)) (-3494 (((-112) $) 121)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) 58)) (-1354 (($ $ $) 119)) (-2981 (($ $ $) 118)) (-2740 (($ $ $) 52) (($ (-645 $)) 51)) (-1419 (((-1160) $) 10)) (-2939 (($ $) 78)) (-3430 (((-1122) $) 11)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 50)) (-2774 (($ $ $) 54) (($ (-645 $)) 53)) (-4094 (($ $) 96)) (-2780 (($ $) 98)) (-2706 (((-421 $) $) 82)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2391 (((-3 $ "failed") $ $) 48)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-1990 (((-772) $) 64)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 63)) (-3893 (((-381) $) 113) (((-225) $) 112) (((-894 (-381)) $) 102)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-410 (-567))) 74) (($ (-567)) 109) (($ (-410 (-567))) 106)) (-4221 (((-772)) 32 T CONST)) (-1423 (($ $) 99)) (-1745 (((-112) $ $) 9)) (-3816 (((-112) $ $) 45)) (-2219 (($ $) 123)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2997 (((-112) $ $) 116)) (-2971 (((-112) $ $) 115)) (-2936 (((-112) $ $) 6)) (-2984 (((-112) $ $) 117)) (-2958 (((-112) $ $) 114)) (-3060 (($ $ $) 73)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 77) (($ $ (-410 (-567))) 103)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 76) (($ (-410 (-567)) $) 75)))
+((-3748 (($ $) 17)) (-3122 (($ $) 25)) (-3193 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) 55)) (-2724 (($ $) 27)) (-2554 (($ $) 12)) (-3969 (($ $) 43)) (-3902 (((-381) $) NIL) (((-225) $) NIL) (((-894 (-381)) $) 36)) (-4129 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) 31) (($ (-567)) NIL) (($ (-410 (-567))) 31)) (-2746 (((-772)) 9)) (-1689 (($ $) 45)))
+(((-1061 |#1|) (-10 -8 (-15 -3122 (|#1| |#1|)) (-15 -3748 (|#1| |#1|)) (-15 -2554 (|#1| |#1|)) (-15 -3969 (|#1| |#1|)) (-15 -1689 (|#1| |#1|)) (-15 -2724 (|#1| |#1|)) (-15 -3193 ((-891 (-381) |#1|) |#1| (-894 (-381)) (-891 (-381) |#1|))) (-15 -3902 ((-894 (-381)) |#1|)) (-15 -4129 (|#1| (-410 (-567)))) (-15 -4129 (|#1| (-567))) (-15 -3902 ((-225) |#1|)) (-15 -3902 ((-381) |#1|)) (-15 -4129 (|#1| (-410 (-567)))) (-15 -4129 (|#1| |#1|)) (-15 -2746 ((-772))) (-15 -4129 (|#1| (-567))) (-15 -4129 ((-863) |#1|))) (-1062)) (T -1061))
+((-2746 (*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-1061 *3)) (-4 *3 (-1062)))))
+(-10 -8 (-15 -3122 (|#1| |#1|)) (-15 -3748 (|#1| |#1|)) (-15 -2554 (|#1| |#1|)) (-15 -3969 (|#1| |#1|)) (-15 -1689 (|#1| |#1|)) (-15 -2724 (|#1| |#1|)) (-15 -3193 ((-891 (-381) |#1|) |#1| (-894 (-381)) (-891 (-381) |#1|))) (-15 -3902 ((-894 (-381)) |#1|)) (-15 -4129 (|#1| (-410 (-567)))) (-15 -4129 (|#1| (-567))) (-15 -3902 ((-225) |#1|)) (-15 -3902 ((-381) |#1|)) (-15 -4129 (|#1| (-410 (-567)))) (-15 -4129 (|#1| |#1|)) (-15 -2746 ((-772))) (-15 -4129 (|#1| (-567))) (-15 -4129 ((-863) |#1|)))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-4014 (((-567) $) 97)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) 47)) (-4287 (($ $) 46)) (-2286 (((-112) $) 44)) (-3748 (($ $) 95)) (-2376 (((-3 $ "failed") $ $) 20)) (-3659 (($ $) 81)) (-3597 (((-421 $) $) 80)) (-2728 (($ $) 105)) (-3696 (((-112) $ $) 65)) (-2677 (((-567) $) 122)) (-3647 (($) 18 T CONST)) (-3122 (($ $) 94)) (-3765 (((-3 (-567) "failed") $) 110) (((-3 (-410 (-567)) "failed") $) 107)) (-2051 (((-567) $) 111) (((-410 (-567)) $) 108)) (-2357 (($ $ $) 61)) (-3588 (((-3 $ "failed") $) 37)) (-2368 (($ $ $) 62)) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) 57)) (-3502 (((-112) $) 79)) (-3137 (((-112) $) 120)) (-3193 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) 101)) (-4346 (((-112) $) 35)) (-3698 (($ $ (-567)) 104)) (-2724 (($ $) 100)) (-3465 (((-112) $) 121)) (-1469 (((-3 (-645 $) "failed") (-645 $) $) 58)) (-1365 (($ $ $) 119)) (-3002 (($ $ $) 118)) (-2751 (($ $ $) 52) (($ (-645 $)) 51)) (-2516 (((-1161) $) 10)) (-2949 (($ $) 78)) (-3437 (((-1122) $) 11)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) 50)) (-2785 (($ $ $) 54) (($ (-645 $)) 53)) (-2554 (($ $) 96)) (-3969 (($ $) 98)) (-2717 (((-421 $) $) 82)) (-2905 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2400 (((-3 $ "failed") $ $) 48)) (-2372 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-2460 (((-772) $) 64)) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) 63)) (-3902 (((-381) $) 113) (((-225) $) 112) (((-894 (-381)) $) 102)) (-4129 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-410 (-567))) 74) (($ (-567)) 109) (($ (-410 (-567))) 106)) (-2746 (((-772)) 32 T CONST)) (-1689 (($ $) 99)) (-3357 (((-112) $ $) 9)) (-3731 (((-112) $ $) 45)) (-1547 (($ $) 123)) (-1733 (($) 19 T CONST)) (-1744 (($) 34 T CONST)) (-3004 (((-112) $ $) 116)) (-2980 (((-112) $ $) 115)) (-2946 (((-112) $ $) 6)) (-2993 (((-112) $ $) 117)) (-2968 (((-112) $ $) 114)) (-3069 (($ $ $) 73)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 77) (($ $ (-410 (-567))) 103)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 76) (($ (-410 (-567)) $) 75)))
(((-1062) (-140)) (T -1062))
-((-2219 (*1 *1 *1) (-4 *1 (-1062))) (-2475 (*1 *1 *1) (-4 *1 (-1062))) (-1423 (*1 *1 *1) (-4 *1 (-1062))) (-2780 (*1 *1 *1) (-4 *1 (-1062))) (-3093 (*1 *2 *1) (-12 (-4 *1 (-1062)) (-5 *2 (-567)))) (-4094 (*1 *1 *1) (-4 *1 (-1062))) (-1950 (*1 *1 *1) (-4 *1 (-1062))) (-2535 (*1 *1 *1) (-4 *1 (-1062))))
-(-13 (-365) (-849) (-1024) (-1040 (-567)) (-1040 (-410 (-567))) (-1004) (-615 (-894 (-381))) (-888 (-381)) (-147) (-10 -8 (-15 -2475 ($ $)) (-15 -1423 ($ $)) (-15 -2780 ($ $)) (-15 -3093 ((-567) $)) (-15 -4094 ($ $)) (-15 -1950 ($ $)) (-15 -2535 ($ $)) (-15 -2219 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-617 #0#) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-615 (-225)) . T) ((-615 (-381)) . T) ((-615 (-894 (-381))) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-455) . T) ((-559) . T) ((-647 #0#) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 #0#) . T) ((-649 $) . T) ((-641 #0#) . T) ((-641 $) . T) ((-718 #0#) . T) ((-718 $) . T) ((-727) . T) ((-792) . T) ((-793) . T) ((-795) . T) ((-796) . T) ((-849) . T) ((-851) . T) ((-888 (-381)) . T) ((-922) . T) ((-1004) . T) ((-1024) . T) ((-1040 (-410 (-567))) . T) ((-1040 (-567)) . T) ((-1053 #0#) . T) ((-1053 $) . T) ((-1058 #0#) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1222) . T))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) |#2| $) 26)) (-2375 ((|#1| $) 10)) (-1750 (((-567) |#2| $) 116)) (-3483 (((-3 $ "failed") |#2| (-923)) 75)) (-2963 ((|#1| $) 31)) (-4122 ((|#1| |#2| $ |#1|) 40)) (-2298 (($ $) 28)) (-2109 (((-3 |#2| "failed") |#2| $) 111)) (-4336 (((-112) |#2| $) NIL)) (-3494 (((-112) |#2| $) NIL)) (-3479 (((-112) |#2| $) 27)) (-3082 ((|#1| $) 117)) (-2950 ((|#1| $) 30)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-3341 ((|#2| $) 102)) (-4132 (((-863) $) 92)) (-1745 (((-112) $ $) NIL)) (-3050 ((|#1| |#2| $ |#1|) 41)) (-4262 (((-645 $) |#2|) 77)) (-2936 (((-112) $ $) 97)))
-(((-1063 |#1| |#2|) (-13 (-1070 |#1| |#2|) (-10 -8 (-15 -2950 (|#1| $)) (-15 -2963 (|#1| $)) (-15 -2375 (|#1| $)) (-15 -3082 (|#1| $)) (-15 -2298 ($ $)) (-15 -3479 ((-112) |#2| $)) (-15 -4122 (|#1| |#2| $ |#1|)))) (-13 (-849) (-365)) (-1244 |#1|)) (T -1063))
-((-4122 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-849) (-365))) (-5 *1 (-1063 *2 *3)) (-4 *3 (-1244 *2)))) (-2950 (*1 *2 *1) (-12 (-4 *2 (-13 (-849) (-365))) (-5 *1 (-1063 *2 *3)) (-4 *3 (-1244 *2)))) (-2963 (*1 *2 *1) (-12 (-4 *2 (-13 (-849) (-365))) (-5 *1 (-1063 *2 *3)) (-4 *3 (-1244 *2)))) (-2375 (*1 *2 *1) (-12 (-4 *2 (-13 (-849) (-365))) (-5 *1 (-1063 *2 *3)) (-4 *3 (-1244 *2)))) (-3082 (*1 *2 *1) (-12 (-4 *2 (-13 (-849) (-365))) (-5 *1 (-1063 *2 *3)) (-4 *3 (-1244 *2)))) (-2298 (*1 *1 *1) (-12 (-4 *2 (-13 (-849) (-365))) (-5 *1 (-1063 *2 *3)) (-4 *3 (-1244 *2)))) (-3479 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-849) (-365))) (-5 *2 (-112)) (-5 *1 (-1063 *4 *3)) (-4 *3 (-1244 *4)))))
-(-13 (-1070 |#1| |#2|) (-10 -8 (-15 -2950 (|#1| $)) (-15 -2963 (|#1| $)) (-15 -2375 (|#1| $)) (-15 -3082 (|#1| $)) (-15 -2298 ($ $)) (-15 -3479 ((-112) |#2| $)) (-15 -4122 (|#1| |#2| $ |#1|))))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-2882 (($ $ $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2208 (($ $ $ $) NIL)) (-3248 (($ $) NIL)) (-2908 (((-421 $) $) NIL)) (-3609 (((-112) $ $) NIL)) (-1750 (((-567) $) NIL)) (-4130 (($ $ $) NIL)) (-2585 (($) NIL T CONST)) (-1673 (($ (-1178)) 10) (($ (-567)) 7)) (-3753 (((-3 (-567) "failed") $) NIL)) (-2038 (((-567) $) NIL)) (-2349 (($ $ $) NIL)) (-2630 (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL) (((-690 (-567)) (-690 $)) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-2085 (((-3 (-410 (-567)) "failed") $) NIL)) (-1862 (((-112) $) NIL)) (-2331 (((-410 (-567)) $) NIL)) (-1348 (($) NIL) (($ $) NIL)) (-2360 (($ $ $) NIL)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-3184 (((-112) $) NIL)) (-3407 (($ $ $ $) NIL)) (-4254 (($ $ $) NIL)) (-4336 (((-112) $) NIL)) (-2967 (($ $ $) NIL)) (-4303 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL)) (-1433 (((-112) $) NIL)) (-3837 (((-112) $) NIL)) (-3972 (((-3 $ "failed") $) NIL)) (-3494 (((-112) $) NIL)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2317 (($ $ $ $) NIL)) (-1354 (($ $ $) NIL)) (-2981 (($ $ $) NIL)) (-1446 (($ $) NIL)) (-1699 (($ $) NIL)) (-2740 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1419 (((-1160) $) NIL)) (-2196 (($ $ $) NIL)) (-2672 (($) NIL T CONST)) (-2289 (($ $) NIL)) (-3430 (((-1122) $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-2774 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1576 (($ $) NIL)) (-2706 (((-421 $) $) NIL)) (-3402 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL)) (-2391 (((-3 $ "failed") $ $) NIL)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2757 (((-112) $) NIL)) (-1990 (((-772) $) NIL)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL)) (-1593 (($ $ (-772)) NIL) (($ $) NIL)) (-2277 (($ $) NIL)) (-4305 (($ $) NIL)) (-3893 (((-567) $) 16) (((-539) $) NIL) (((-894 (-567)) $) NIL) (((-381) $) NIL) (((-225) $) NIL) (($ (-1178)) 9)) (-4132 (((-863) $) 23) (($ (-567)) 6) (($ $) NIL) (($ (-567)) 6)) (-4221 (((-772)) NIL T CONST)) (-4210 (((-112) $ $) NIL)) (-3881 (($ $ $) NIL)) (-1745 (((-112) $ $) NIL)) (-3047 (($) NIL)) (-3816 (((-112) $ $) NIL)) (-4309 (($ $ $ $) NIL)) (-2219 (($ $) NIL)) (-1716 (($) NIL T CONST)) (-1728 (($) NIL T CONST)) (-2637 (($ $ (-772)) NIL) (($ $) NIL)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) NIL)) (-3045 (($ $) 22) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL)))
-(((-1064) (-13 (-548) (-619 (-1178)) (-10 -8 (-6 -4405) (-6 -4410) (-6 -4406) (-15 -1673 ($ (-1178))) (-15 -1673 ($ (-567)))))) (T -1064))
-((-1673 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1064)))) (-1673 (*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1064)))))
-(-13 (-548) (-619 (-1178)) (-10 -8 (-6 -4405) (-6 -4410) (-6 -4406) (-15 -1673 ($ (-1178))) (-15 -1673 ($ (-567)))))
-((-2403 (((-112) $ $) NIL (-2800 (|has| (-52) (-1102)) (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-1102))))) (-2835 (($) NIL) (($ (-645 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))))) NIL)) (-1783 (((-1273) $ (-1178) (-1178)) NIL (|has| $ (-6 -4419)))) (-3445 (((-112) $ (-772)) NIL)) (-2459 (($) 9)) (-4284 (((-52) $ (-1178) (-52)) NIL)) (-4085 (($ $) 32)) (-3736 (($ $) 30)) (-3919 (($ $) 29)) (-1414 (($ $) 31)) (-3973 (($ $) 35)) (-2671 (($ $) 36)) (-1965 (($ $) 28)) (-4168 (($ $) 33)) (-2839 (($ (-1 (-112) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) $) NIL (|has| $ (-6 -4418)))) (-3350 (($ (-1 (-112) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) $) 27 (|has| $ (-6 -4418)))) (-4019 (((-3 (-52) "failed") (-1178) $) 43)) (-2585 (($) NIL T CONST)) (-1597 (($) 7)) (-2444 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-1102))))) (-2539 (($ (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) $) 53 (|has| $ (-6 -4418))) (($ (-1 (-112) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) $) NIL (|has| $ (-6 -4418))) (((-3 (-52) "failed") (-1178) $) NIL)) (-3238 (($ (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-1102)))) (($ (-1 (-112) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) $) NIL (|has| $ (-6 -4418)))) (-2477 (((-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-1 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) $ (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-1102)))) (((-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-1 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) $ (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) NIL (|has| $ (-6 -4418))) (((-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-1 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) $) NIL (|has| $ (-6 -4418)))) (-2608 (((-3 (-1160) "failed") $ (-1160) (-567)) 74)) (-3741 (((-52) $ (-1178) (-52)) NIL (|has| $ (-6 -4419)))) (-3680 (((-52) $ (-1178)) NIL)) (-2777 (((-645 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) $) NIL (|has| $ (-6 -4418))) (((-645 (-52)) $) NIL (|has| $ (-6 -4418)))) (-2077 (((-112) $ (-772)) NIL)) (-4069 (((-1178) $) NIL (|has| (-1178) (-851)))) (-2279 (((-645 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) $) 38 (|has| $ (-6 -4418))) (((-645 (-52)) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-1102)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-52) (-1102))))) (-2266 (((-1178) $) NIL (|has| (-1178) (-851)))) (-3731 (($ (-1 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) $) NIL (|has| $ (-6 -4419))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL (-2800 (|has| (-52) (-1102)) (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-1102))))) (-1391 (((-645 (-1178)) $) NIL)) (-4251 (((-112) (-1178) $) NIL)) (-1566 (((-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) $) NIL)) (-2531 (($ (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) $) 46)) (-1789 (((-645 (-1178)) $) NIL)) (-2996 (((-112) (-1178) $) NIL)) (-3430 (((-1122) $) NIL (-2800 (|has| (-52) (-1102)) (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-1102))))) (-2064 (((-381) $ (-1178)) 52)) (-1324 (((-645 (-1160)) $ (-1160)) 76)) (-2409 (((-52) $) NIL (|has| (-1178) (-851)))) (-4128 (((-3 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) "failed") (-1 (-112) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) $) NIL)) (-3986 (($ $ (-52)) NIL (|has| $ (-6 -4419)))) (-1793 (((-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) $) NIL)) (-3025 (((-112) (-1 (-112) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) $) NIL (|has| $ (-6 -4418))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))))) NIL (-12 (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-310 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))))) (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-1102)))) (($ $ (-295 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))))) NIL (-12 (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-310 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))))) (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-1102)))) (($ $ (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) NIL (-12 (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-310 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))))) (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-1102)))) (($ $ (-645 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) (-645 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))))) NIL (-12 (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-310 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))))) (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-1102)))) (($ $ (-645 (-52)) (-645 (-52))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1102)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1102)))) (($ $ (-295 (-52))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1102)))) (($ $ (-645 (-295 (-52)))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1102))))) (-3092 (((-112) $ $) NIL)) (-1794 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-52) (-1102))))) (-2339 (((-645 (-52)) $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) NIL)) (-1787 (((-52) $ (-1178)) NIL) (((-52) $ (-1178) (-52)) NIL)) (-2718 (($) NIL) (($ (-645 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))))) NIL)) (-2988 (($ $ (-1178)) 54)) (-3439 (((-772) (-1 (-112) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) $) NIL (|has| $ (-6 -4418))) (((-772) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-1102)))) (((-772) (-52) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-52) (-1102)))) (((-772) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4418)))) (-4305 (($ $) NIL)) (-3893 (((-539) $) NIL (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-615 (-539))))) (-4147 (($ (-645 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))))) 40)) (-2269 (($ $ $) 41)) (-4132 (((-863) $) NIL (-2800 (|has| (-52) (-614 (-863))) (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-614 (-863)))))) (-2378 (($ $ (-1178) (-381)) 50)) (-2420 (($ $ (-1178) (-381)) 51)) (-1745 (((-112) $ $) NIL (-2800 (|has| (-52) (-1102)) (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-1102))))) (-3551 (($ (-645 (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))))) NIL)) (-1853 (((-112) (-1 (-112) (-2 (|:| -1795 (-1178)) (|:| -4237 (-52)))) $) NIL (|has| $ (-6 -4418))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) NIL (-2800 (|has| (-52) (-1102)) (|has| (-2 (|:| -1795 (-1178)) (|:| -4237 (-52))) (-1102))))) (-2414 (((-772) $) NIL (|has| $ (-6 -4418)))))
-(((-1065) (-13 (-1194 (-1178) (-52)) (-10 -8 (-15 -2269 ($ $ $)) (-15 -1597 ($)) (-15 -1965 ($ $)) (-15 -3919 ($ $)) (-15 -3736 ($ $)) (-15 -1414 ($ $)) (-15 -4168 ($ $)) (-15 -4085 ($ $)) (-15 -3973 ($ $)) (-15 -2671 ($ $)) (-15 -2378 ($ $ (-1178) (-381))) (-15 -2420 ($ $ (-1178) (-381))) (-15 -2064 ((-381) $ (-1178))) (-15 -1324 ((-645 (-1160)) $ (-1160))) (-15 -2988 ($ $ (-1178))) (-15 -2459 ($)) (-15 -2608 ((-3 (-1160) "failed") $ (-1160) (-567))) (-6 -4418)))) (T -1065))
-((-2269 (*1 *1 *1 *1) (-5 *1 (-1065))) (-1597 (*1 *1) (-5 *1 (-1065))) (-1965 (*1 *1 *1) (-5 *1 (-1065))) (-3919 (*1 *1 *1) (-5 *1 (-1065))) (-3736 (*1 *1 *1) (-5 *1 (-1065))) (-1414 (*1 *1 *1) (-5 *1 (-1065))) (-4168 (*1 *1 *1) (-5 *1 (-1065))) (-4085 (*1 *1 *1) (-5 *1 (-1065))) (-3973 (*1 *1 *1) (-5 *1 (-1065))) (-2671 (*1 *1 *1) (-5 *1 (-1065))) (-2378 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-381)) (-5 *1 (-1065)))) (-2420 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-381)) (-5 *1 (-1065)))) (-2064 (*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-381)) (-5 *1 (-1065)))) (-1324 (*1 *2 *1 *3) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-1065)) (-5 *3 (-1160)))) (-2988 (*1 *1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1065)))) (-2459 (*1 *1) (-5 *1 (-1065))) (-2608 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1160)) (-5 *3 (-567)) (-5 *1 (-1065)))))
-(-13 (-1194 (-1178) (-52)) (-10 -8 (-15 -2269 ($ $ $)) (-15 -1597 ($)) (-15 -1965 ($ $)) (-15 -3919 ($ $)) (-15 -3736 ($ $)) (-15 -1414 ($ $)) (-15 -4168 ($ $)) (-15 -4085 ($ $)) (-15 -3973 ($ $)) (-15 -2671 ($ $)) (-15 -2378 ($ $ (-1178) (-381))) (-15 -2420 ($ $ (-1178) (-381))) (-15 -2064 ((-381) $ (-1178))) (-15 -1324 ((-645 (-1160)) $ (-1160))) (-15 -2988 ($ $ (-1178))) (-15 -2459 ($)) (-15 -2608 ((-3 (-1160) "failed") $ (-1160) (-567))) (-6 -4418)))
-((-4283 (($ $) 46)) (-2061 (((-112) $ $) 82)) (-3753 (((-3 |#2| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 (-567) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-954 (-410 (-567)))) 253) (((-3 $ "failed") (-954 (-567))) 252) (((-3 $ "failed") (-954 |#2|)) 255)) (-2038 ((|#2| $) NIL) (((-410 (-567)) $) NIL) (((-567) $) NIL) ((|#4| $) NIL) (($ (-954 (-410 (-567)))) 241) (($ (-954 (-567))) 237) (($ (-954 |#2|)) 257)) (-3014 (($ $) NIL) (($ $ |#4|) 44)) (-3786 (((-112) $ $) 131) (((-112) $ (-645 $)) 135)) (-1479 (((-112) $) 60)) (-3708 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 125)) (-2872 (($ $) 160)) (-3411 (($ $) 156)) (-3395 (($ $) 155)) (-4205 (($ $ $) 87) (($ $ $ |#4|) 92)) (-1824 (($ $ $) 90) (($ $ $ |#4|) 94)) (-1664 (((-112) $ $) 143) (((-112) $ (-645 $)) 144)) (-1679 ((|#4| $) 32)) (-1838 (($ $ $) 128)) (-1721 (((-112) $) 59)) (-2991 (((-772) $) 35)) (-2964 (($ $) 174)) (-4146 (($ $) 171)) (-3388 (((-645 $) $) 72)) (-4040 (($ $) 62)) (-2091 (($ $) 167)) (-2719 (((-645 $) $) 69)) (-1359 (($ $) 64)) (-2989 ((|#2| $) NIL) (($ $ |#4|) 39)) (-1451 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2673 (-772))) $ $) 130)) (-2521 (((-2 (|:| -3694 $) (|:| |gap| (-772)) (|:| -3102 $) (|:| -4194 $)) $ $) 126) (((-2 (|:| -3694 $) (|:| |gap| (-772)) (|:| -3102 $) (|:| -4194 $)) $ $ |#4|) 127)) (-3983 (((-2 (|:| -3694 $) (|:| |gap| (-772)) (|:| -4194 $)) $ $) 121) (((-2 (|:| -3694 $) (|:| |gap| (-772)) (|:| -4194 $)) $ $ |#4|) 123)) (-1491 (($ $ $) 97) (($ $ $ |#4|) 106)) (-2767 (($ $ $) 98) (($ $ $ |#4|) 107)) (-2300 (((-645 $) $) 54)) (-1791 (((-112) $ $) 140) (((-112) $ (-645 $)) 141)) (-3159 (($ $ $) 116)) (-2672 (($ $) 37)) (-3392 (((-112) $ $) 80)) (-2554 (((-112) $ $) 136) (((-112) $ (-645 $)) 138)) (-4164 (($ $ $) 112)) (-2724 (($ $) 41)) (-2774 ((|#2| |#2| $) 164) (($ (-645 $)) NIL) (($ $ $) NIL)) (-1772 (($ $ |#2|) NIL) (($ $ $) 153)) (-3288 (($ $ |#2|) 148) (($ $ $) 151)) (-2804 (($ $) 49)) (-2606 (($ $) 55)) (-3893 (((-894 (-381)) $) NIL) (((-894 (-567)) $) NIL) (((-539) $) NIL) (($ (-954 (-410 (-567)))) 243) (($ (-954 (-567))) 239) (($ (-954 |#2|)) 254) (((-1160) $) 281) (((-954 |#2|) $) 184)) (-4132 (((-863) $) 29) (($ (-567)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-954 |#2|) $) 185) (($ (-410 (-567))) NIL) (($ $) NIL)) (-4222 (((-3 (-112) "failed") $ $) 79)))
-(((-1066 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4132 (|#1| |#1|)) (-15 -2774 (|#1| |#1| |#1|)) (-15 -2774 (|#1| (-645 |#1|))) (-15 -4132 (|#1| (-410 (-567)))) (-15 -4132 ((-954 |#2|) |#1|)) (-15 -3893 ((-954 |#2|) |#1|)) (-15 -3893 ((-1160) |#1|)) (-15 -2964 (|#1| |#1|)) (-15 -4146 (|#1| |#1|)) (-15 -2091 (|#1| |#1|)) (-15 -2872 (|#1| |#1|)) (-15 -2774 (|#2| |#2| |#1|)) (-15 -1772 (|#1| |#1| |#1|)) (-15 -3288 (|#1| |#1| |#1|)) (-15 -1772 (|#1| |#1| |#2|)) (-15 -3288 (|#1| |#1| |#2|)) (-15 -3411 (|#1| |#1|)) (-15 -3395 (|#1| |#1|)) (-15 -3893 (|#1| (-954 |#2|))) (-15 -2038 (|#1| (-954 |#2|))) (-15 -3753 ((-3 |#1| "failed") (-954 |#2|))) (-15 -3893 (|#1| (-954 (-567)))) (-15 -2038 (|#1| (-954 (-567)))) (-15 -3753 ((-3 |#1| "failed") (-954 (-567)))) (-15 -3893 (|#1| (-954 (-410 (-567))))) (-15 -2038 (|#1| (-954 (-410 (-567))))) (-15 -3753 ((-3 |#1| "failed") (-954 (-410 (-567))))) (-15 -3159 (|#1| |#1| |#1|)) (-15 -4164 (|#1| |#1| |#1|)) (-15 -1451 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -2673 (-772))) |#1| |#1|)) (-15 -1838 (|#1| |#1| |#1|)) (-15 -3708 ((-2 (|:| -3102 |#1|) (|:| -4194 |#1|)) |#1| |#1|)) (-15 -2521 ((-2 (|:| -3694 |#1|) (|:| |gap| (-772)) (|:| -3102 |#1|) (|:| -4194 |#1|)) |#1| |#1| |#4|)) (-15 -2521 ((-2 (|:| -3694 |#1|) (|:| |gap| (-772)) (|:| -3102 |#1|) (|:| -4194 |#1|)) |#1| |#1|)) (-15 -3983 ((-2 (|:| -3694 |#1|) (|:| |gap| (-772)) (|:| -4194 |#1|)) |#1| |#1| |#4|)) (-15 -3983 ((-2 (|:| -3694 |#1|) (|:| |gap| (-772)) (|:| -4194 |#1|)) |#1| |#1|)) (-15 -2767 (|#1| |#1| |#1| |#4|)) (-15 -1491 (|#1| |#1| |#1| |#4|)) (-15 -2767 (|#1| |#1| |#1|)) (-15 -1491 (|#1| |#1| |#1|)) (-15 -1824 (|#1| |#1| |#1| |#4|)) (-15 -4205 (|#1| |#1| |#1| |#4|)) (-15 -1824 (|#1| |#1| |#1|)) (-15 -4205 (|#1| |#1| |#1|)) (-15 -1664 ((-112) |#1| (-645 |#1|))) (-15 -1664 ((-112) |#1| |#1|)) (-15 -1791 ((-112) |#1| (-645 |#1|))) (-15 -1791 ((-112) |#1| |#1|)) (-15 -2554 ((-112) |#1| (-645 |#1|))) (-15 -2554 ((-112) |#1| |#1|)) (-15 -3786 ((-112) |#1| (-645 |#1|))) (-15 -3786 ((-112) |#1| |#1|)) (-15 -2061 ((-112) |#1| |#1|)) (-15 -3392 ((-112) |#1| |#1|)) (-15 -4222 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3388 ((-645 |#1|) |#1|)) (-15 -2719 ((-645 |#1|) |#1|)) (-15 -1359 (|#1| |#1|)) (-15 -4040 (|#1| |#1|)) (-15 -1479 ((-112) |#1|)) (-15 -1721 ((-112) |#1|)) (-15 -3014 (|#1| |#1| |#4|)) (-15 -2989 (|#1| |#1| |#4|)) (-15 -2606 (|#1| |#1|)) (-15 -2300 ((-645 |#1|) |#1|)) (-15 -2804 (|#1| |#1|)) (-15 -4283 (|#1| |#1|)) (-15 -2724 (|#1| |#1|)) (-15 -2672 (|#1| |#1|)) (-15 -2991 ((-772) |#1|)) (-15 -1679 (|#4| |#1|)) (-15 -3893 ((-539) |#1|)) (-15 -3893 ((-894 (-567)) |#1|)) (-15 -3893 ((-894 (-381)) |#1|)) (-15 -4132 (|#1| |#4|)) (-15 -3753 ((-3 |#4| "failed") |#1|)) (-15 -2038 (|#4| |#1|)) (-15 -2989 (|#2| |#1|)) (-15 -3014 (|#1| |#1|)) (-15 -3753 ((-3 (-567) "failed") |#1|)) (-15 -2038 ((-567) |#1|)) (-15 -3753 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2038 ((-410 (-567)) |#1|)) (-15 -2038 (|#2| |#1|)) (-15 -3753 ((-3 |#2| "failed") |#1|)) (-15 -4132 (|#1| |#2|)) (-15 -4132 (|#1| (-567))) (-15 -4132 ((-863) |#1|))) (-1067 |#2| |#3| |#4|) (-1051) (-794) (-851)) (T -1066))
-NIL
-(-10 -8 (-15 -4132 (|#1| |#1|)) (-15 -2774 (|#1| |#1| |#1|)) (-15 -2774 (|#1| (-645 |#1|))) (-15 -4132 (|#1| (-410 (-567)))) (-15 -4132 ((-954 |#2|) |#1|)) (-15 -3893 ((-954 |#2|) |#1|)) (-15 -3893 ((-1160) |#1|)) (-15 -2964 (|#1| |#1|)) (-15 -4146 (|#1| |#1|)) (-15 -2091 (|#1| |#1|)) (-15 -2872 (|#1| |#1|)) (-15 -2774 (|#2| |#2| |#1|)) (-15 -1772 (|#1| |#1| |#1|)) (-15 -3288 (|#1| |#1| |#1|)) (-15 -1772 (|#1| |#1| |#2|)) (-15 -3288 (|#1| |#1| |#2|)) (-15 -3411 (|#1| |#1|)) (-15 -3395 (|#1| |#1|)) (-15 -3893 (|#1| (-954 |#2|))) (-15 -2038 (|#1| (-954 |#2|))) (-15 -3753 ((-3 |#1| "failed") (-954 |#2|))) (-15 -3893 (|#1| (-954 (-567)))) (-15 -2038 (|#1| (-954 (-567)))) (-15 -3753 ((-3 |#1| "failed") (-954 (-567)))) (-15 -3893 (|#1| (-954 (-410 (-567))))) (-15 -2038 (|#1| (-954 (-410 (-567))))) (-15 -3753 ((-3 |#1| "failed") (-954 (-410 (-567))))) (-15 -3159 (|#1| |#1| |#1|)) (-15 -4164 (|#1| |#1| |#1|)) (-15 -1451 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -2673 (-772))) |#1| |#1|)) (-15 -1838 (|#1| |#1| |#1|)) (-15 -3708 ((-2 (|:| -3102 |#1|) (|:| -4194 |#1|)) |#1| |#1|)) (-15 -2521 ((-2 (|:| -3694 |#1|) (|:| |gap| (-772)) (|:| -3102 |#1|) (|:| -4194 |#1|)) |#1| |#1| |#4|)) (-15 -2521 ((-2 (|:| -3694 |#1|) (|:| |gap| (-772)) (|:| -3102 |#1|) (|:| -4194 |#1|)) |#1| |#1|)) (-15 -3983 ((-2 (|:| -3694 |#1|) (|:| |gap| (-772)) (|:| -4194 |#1|)) |#1| |#1| |#4|)) (-15 -3983 ((-2 (|:| -3694 |#1|) (|:| |gap| (-772)) (|:| -4194 |#1|)) |#1| |#1|)) (-15 -2767 (|#1| |#1| |#1| |#4|)) (-15 -1491 (|#1| |#1| |#1| |#4|)) (-15 -2767 (|#1| |#1| |#1|)) (-15 -1491 (|#1| |#1| |#1|)) (-15 -1824 (|#1| |#1| |#1| |#4|)) (-15 -4205 (|#1| |#1| |#1| |#4|)) (-15 -1824 (|#1| |#1| |#1|)) (-15 -4205 (|#1| |#1| |#1|)) (-15 -1664 ((-112) |#1| (-645 |#1|))) (-15 -1664 ((-112) |#1| |#1|)) (-15 -1791 ((-112) |#1| (-645 |#1|))) (-15 -1791 ((-112) |#1| |#1|)) (-15 -2554 ((-112) |#1| (-645 |#1|))) (-15 -2554 ((-112) |#1| |#1|)) (-15 -3786 ((-112) |#1| (-645 |#1|))) (-15 -3786 ((-112) |#1| |#1|)) (-15 -2061 ((-112) |#1| |#1|)) (-15 -3392 ((-112) |#1| |#1|)) (-15 -4222 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3388 ((-645 |#1|) |#1|)) (-15 -2719 ((-645 |#1|) |#1|)) (-15 -1359 (|#1| |#1|)) (-15 -4040 (|#1| |#1|)) (-15 -1479 ((-112) |#1|)) (-15 -1721 ((-112) |#1|)) (-15 -3014 (|#1| |#1| |#4|)) (-15 -2989 (|#1| |#1| |#4|)) (-15 -2606 (|#1| |#1|)) (-15 -2300 ((-645 |#1|) |#1|)) (-15 -2804 (|#1| |#1|)) (-15 -4283 (|#1| |#1|)) (-15 -2724 (|#1| |#1|)) (-15 -2672 (|#1| |#1|)) (-15 -2991 ((-772) |#1|)) (-15 -1679 (|#4| |#1|)) (-15 -3893 ((-539) |#1|)) (-15 -3893 ((-894 (-567)) |#1|)) (-15 -3893 ((-894 (-381)) |#1|)) (-15 -4132 (|#1| |#4|)) (-15 -3753 ((-3 |#4| "failed") |#1|)) (-15 -2038 (|#4| |#1|)) (-15 -2989 (|#2| |#1|)) (-15 -3014 (|#1| |#1|)) (-15 -3753 ((-3 (-567) "failed") |#1|)) (-15 -2038 ((-567) |#1|)) (-15 -3753 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2038 ((-410 (-567)) |#1|)) (-15 -2038 (|#2| |#1|)) (-15 -3753 ((-3 |#2| "failed") |#1|)) (-15 -4132 (|#1| |#2|)) (-15 -4132 (|#1| (-567))) (-15 -4132 ((-863) |#1|)))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-2847 (((-645 |#3|) $) 112)) (-2675 (((-1174 $) $ |#3|) 127) (((-1174 |#1|) $) 126)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 89 (|has| |#1| (-559)))) (-4381 (($ $) 90 (|has| |#1| (-559)))) (-3949 (((-112) $) 92 (|has| |#1| (-559)))) (-1468 (((-772) $) 114) (((-772) $ (-645 |#3|)) 113)) (-4283 (($ $) 273)) (-2061 (((-112) $ $) 259)) (-3472 (((-3 $ "failed") $ $) 20)) (-2323 (($ $ $) 218 (|has| |#1| (-559)))) (-1734 (((-645 $) $ $) 213 (|has| |#1| (-559)))) (-4226 (((-421 (-1174 $)) (-1174 $)) 102 (|has| |#1| (-911)))) (-3248 (($ $) 100 (|has| |#1| (-455)))) (-2908 (((-421 $) $) 99 (|has| |#1| (-455)))) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) 105 (|has| |#1| (-911)))) (-2585 (($) 18 T CONST)) (-3753 (((-3 |#1| "failed") $) 166) (((-3 (-410 (-567)) "failed") $) 163 (|has| |#1| (-1040 (-410 (-567))))) (((-3 (-567) "failed") $) 161 (|has| |#1| (-1040 (-567)))) (((-3 |#3| "failed") $) 138) (((-3 $ "failed") (-954 (-410 (-567)))) 233 (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#3| (-615 (-1178))))) (((-3 $ "failed") (-954 (-567))) 230 (-2800 (-12 (-1657 (|has| |#1| (-38 (-410 (-567))))) (|has| |#1| (-38 (-567))) (|has| |#3| (-615 (-1178)))) (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#3| (-615 (-1178)))))) (((-3 $ "failed") (-954 |#1|)) 227 (-2800 (-12 (-1657 (|has| |#1| (-38 (-410 (-567))))) (-1657 (|has| |#1| (-38 (-567)))) (|has| |#3| (-615 (-1178)))) (-12 (-1657 (|has| |#1| (-548))) (-1657 (|has| |#1| (-38 (-410 (-567))))) (|has| |#1| (-38 (-567))) (|has| |#3| (-615 (-1178)))) (-12 (-1657 (|has| |#1| (-994 (-567)))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#3| (-615 (-1178))))))) (-2038 ((|#1| $) 165) (((-410 (-567)) $) 164 (|has| |#1| (-1040 (-410 (-567))))) (((-567) $) 162 (|has| |#1| (-1040 (-567)))) ((|#3| $) 139) (($ (-954 (-410 (-567)))) 232 (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#3| (-615 (-1178))))) (($ (-954 (-567))) 229 (-2800 (-12 (-1657 (|has| |#1| (-38 (-410 (-567))))) (|has| |#1| (-38 (-567))) (|has| |#3| (-615 (-1178)))) (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#3| (-615 (-1178)))))) (($ (-954 |#1|)) 226 (-2800 (-12 (-1657 (|has| |#1| (-38 (-410 (-567))))) (-1657 (|has| |#1| (-38 (-567)))) (|has| |#3| (-615 (-1178)))) (-12 (-1657 (|has| |#1| (-548))) (-1657 (|has| |#1| (-38 (-410 (-567))))) (|has| |#1| (-38 (-567))) (|has| |#3| (-615 (-1178)))) (-12 (-1657 (|has| |#1| (-994 (-567)))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#3| (-615 (-1178))))))) (-2951 (($ $ $ |#3|) 110 (|has| |#1| (-172))) (($ $ $) 214 (|has| |#1| (-559)))) (-3014 (($ $) 156) (($ $ |#3|) 268)) (-2630 (((-690 (-567)) (-690 $)) 136 (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) 135 (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 |#1|)) (|:| |vec| (-1268 |#1|))) (-690 $) (-1268 $)) 134) (((-690 |#1|) (-690 $)) 133)) (-3786 (((-112) $ $) 258) (((-112) $ (-645 $)) 257)) (-2109 (((-3 $ "failed") $) 37)) (-1479 (((-112) $) 266)) (-3708 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 238)) (-2872 (($ $) 207 (|has| |#1| (-455)))) (-3501 (($ $) 178 (|has| |#1| (-455))) (($ $ |#3|) 107 (|has| |#1| (-455)))) (-3000 (((-645 $) $) 111)) (-3184 (((-112) $) 98 (|has| |#1| (-911)))) (-3411 (($ $) 223 (|has| |#1| (-559)))) (-3395 (($ $) 224 (|has| |#1| (-559)))) (-4205 (($ $ $) 250) (($ $ $ |#3|) 248)) (-1824 (($ $ $) 249) (($ $ $ |#3|) 247)) (-2320 (($ $ |#1| |#2| $) 174)) (-4303 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) 86 (-12 (|has| |#3| (-888 (-381))) (|has| |#1| (-888 (-381))))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) 85 (-12 (|has| |#3| (-888 (-567))) (|has| |#1| (-888 (-567)))))) (-1433 (((-112) $) 35)) (-2695 (((-772) $) 171)) (-1664 (((-112) $ $) 252) (((-112) $ (-645 $)) 251)) (-2689 (($ $ $ $ $) 209 (|has| |#1| (-559)))) (-1679 ((|#3| $) 277)) (-2836 (($ (-1174 |#1|) |#3|) 119) (($ (-1174 $) |#3|) 118)) (-1709 (((-645 $) $) 128)) (-2843 (((-112) $) 154)) (-2824 (($ |#1| |#2|) 155) (($ $ |#3| (-772)) 121) (($ $ (-645 |#3|) (-645 (-772))) 120)) (-1838 (($ $ $) 237)) (-1621 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $ |#3|) 122)) (-1721 (((-112) $) 267)) (-2656 ((|#2| $) 172) (((-772) $ |#3|) 124) (((-645 (-772)) $ (-645 |#3|)) 123)) (-2991 (((-772) $) 276)) (-3273 (($ (-1 |#2| |#2|) $) 173)) (-3829 (($ (-1 |#1| |#1|) $) 153)) (-3046 (((-3 |#3| "failed") $) 125)) (-2964 (($ $) 204 (|has| |#1| (-455)))) (-4146 (($ $) 205 (|has| |#1| (-455)))) (-3388 (((-645 $) $) 262)) (-4040 (($ $) 265)) (-2091 (($ $) 206 (|has| |#1| (-455)))) (-2719 (((-645 $) $) 263)) (-1359 (($ $) 264)) (-2976 (($ $) 151)) (-2989 ((|#1| $) 150) (($ $ |#3|) 269)) (-2740 (($ (-645 $)) 96 (|has| |#1| (-455))) (($ $ $) 95 (|has| |#1| (-455)))) (-1451 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2673 (-772))) $ $) 236)) (-2521 (((-2 (|:| -3694 $) (|:| |gap| (-772)) (|:| -3102 $) (|:| -4194 $)) $ $) 240) (((-2 (|:| -3694 $) (|:| |gap| (-772)) (|:| -3102 $) (|:| -4194 $)) $ $ |#3|) 239)) (-3983 (((-2 (|:| -3694 $) (|:| |gap| (-772)) (|:| -4194 $)) $ $) 242) (((-2 (|:| -3694 $) (|:| |gap| (-772)) (|:| -4194 $)) $ $ |#3|) 241)) (-1491 (($ $ $) 246) (($ $ $ |#3|) 244)) (-2767 (($ $ $) 245) (($ $ $ |#3|) 243)) (-1419 (((-1160) $) 10)) (-2272 (($ $ $) 212 (|has| |#1| (-559)))) (-2300 (((-645 $) $) 271)) (-2056 (((-3 (-645 $) "failed") $) 116)) (-3671 (((-3 (-645 $) "failed") $) 117)) (-3798 (((-3 (-2 (|:| |var| |#3|) (|:| -3458 (-772))) "failed") $) 115)) (-1791 (((-112) $ $) 254) (((-112) $ (-645 $)) 253)) (-3159 (($ $ $) 234)) (-2672 (($ $) 275)) (-3392 (((-112) $ $) 260)) (-2554 (((-112) $ $) 256) (((-112) $ (-645 $)) 255)) (-4164 (($ $ $) 235)) (-2724 (($ $) 274)) (-3430 (((-1122) $) 11)) (-3521 (((-2 (|:| -2774 $) (|:| |coef2| $)) $ $) 215 (|has| |#1| (-559)))) (-4348 (((-2 (|:| -2774 $) (|:| |coef1| $)) $ $) 216 (|has| |#1| (-559)))) (-2949 (((-112) $) 168)) (-2962 ((|#1| $) 169)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 97 (|has| |#1| (-455)))) (-2774 ((|#1| |#1| $) 208 (|has| |#1| (-455))) (($ (-645 $)) 94 (|has| |#1| (-455))) (($ $ $) 93 (|has| |#1| (-455)))) (-2435 (((-421 (-1174 $)) (-1174 $)) 104 (|has| |#1| (-911)))) (-3517 (((-421 (-1174 $)) (-1174 $)) 103 (|has| |#1| (-911)))) (-2706 (((-421 $) $) 101 (|has| |#1| (-911)))) (-1893 (((-2 (|:| -2774 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 217 (|has| |#1| (-559)))) (-2391 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-559))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-559)))) (-1772 (($ $ |#1|) 221 (|has| |#1| (-559))) (($ $ $) 219 (|has| |#1| (-559)))) (-3288 (($ $ |#1|) 222 (|has| |#1| (-559))) (($ $ $) 220 (|has| |#1| (-559)))) (-2631 (($ $ (-645 (-295 $))) 147) (($ $ (-295 $)) 146) (($ $ $ $) 145) (($ $ (-645 $) (-645 $)) 144) (($ $ |#3| |#1|) 143) (($ $ (-645 |#3|) (-645 |#1|)) 142) (($ $ |#3| $) 141) (($ $ (-645 |#3|) (-645 $)) 140)) (-3788 (($ $ |#3|) 109 (|has| |#1| (-172)))) (-1593 (($ $ |#3|) 46) (($ $ (-645 |#3|)) 45) (($ $ |#3| (-772)) 44) (($ $ (-645 |#3|) (-645 (-772))) 43)) (-3077 ((|#2| $) 152) (((-772) $ |#3|) 132) (((-645 (-772)) $ (-645 |#3|)) 131)) (-2804 (($ $) 272)) (-2606 (($ $) 270)) (-3893 (((-894 (-381)) $) 84 (-12 (|has| |#3| (-615 (-894 (-381)))) (|has| |#1| (-615 (-894 (-381)))))) (((-894 (-567)) $) 83 (-12 (|has| |#3| (-615 (-894 (-567)))) (|has| |#1| (-615 (-894 (-567)))))) (((-539) $) 82 (-12 (|has| |#3| (-615 (-539))) (|has| |#1| (-615 (-539))))) (($ (-954 (-410 (-567)))) 231 (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#3| (-615 (-1178))))) (($ (-954 (-567))) 228 (-2800 (-12 (-1657 (|has| |#1| (-38 (-410 (-567))))) (|has| |#1| (-38 (-567))) (|has| |#3| (-615 (-1178)))) (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#3| (-615 (-1178)))))) (($ (-954 |#1|)) 225 (|has| |#3| (-615 (-1178)))) (((-1160) $) 203 (-12 (|has| |#1| (-1040 (-567))) (|has| |#3| (-615 (-1178))))) (((-954 |#1|) $) 202 (|has| |#3| (-615 (-1178))))) (-4358 ((|#1| $) 177 (|has| |#1| (-455))) (($ $ |#3|) 108 (|has| |#1| (-455)))) (-1895 (((-3 (-1268 $) "failed") (-690 $)) 106 (-1667 (|has| $ (-145)) (|has| |#1| (-911))))) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 167) (($ |#3|) 137) (((-954 |#1|) $) 201 (|has| |#3| (-615 (-1178)))) (($ (-410 (-567))) 80 (-2800 (|has| |#1| (-1040 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567)))))) (($ $) 87 (|has| |#1| (-559)))) (-3032 (((-645 |#1|) $) 170)) (-4136 ((|#1| $ |#2|) 157) (($ $ |#3| (-772)) 130) (($ $ (-645 |#3|) (-645 (-772))) 129)) (-1903 (((-3 $ "failed") $) 81 (-2800 (-1667 (|has| $ (-145)) (|has| |#1| (-911))) (|has| |#1| (-145))))) (-4221 (((-772)) 32 T CONST)) (-4176 (($ $ $ (-772)) 175 (|has| |#1| (-172)))) (-1745 (((-112) $ $) 9)) (-3816 (((-112) $ $) 91 (|has| |#1| (-559)))) (-1716 (($) 19 T CONST)) (-4222 (((-3 (-112) "failed") $ $) 261)) (-1728 (($) 34 T CONST)) (-2097 (($ $ $ $ (-772)) 210 (|has| |#1| (-559)))) (-1875 (($ $ $ (-772)) 211 (|has| |#1| (-559)))) (-2637 (($ $ |#3|) 42) (($ $ (-645 |#3|)) 41) (($ $ |#3| (-772)) 40) (($ $ (-645 |#3|) (-645 (-772))) 39)) (-2936 (((-112) $ $) 6)) (-3060 (($ $ |#1|) 158 (|has| |#1| (-365)))) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 160 (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) 159 (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) 149) (($ $ |#1|) 148)))
+((-1547 (*1 *1 *1) (-4 *1 (-1062))) (-2724 (*1 *1 *1) (-4 *1 (-1062))) (-1689 (*1 *1 *1) (-4 *1 (-1062))) (-3969 (*1 *1 *1) (-4 *1 (-1062))) (-4014 (*1 *2 *1) (-12 (-4 *1 (-1062)) (-5 *2 (-567)))) (-2554 (*1 *1 *1) (-4 *1 (-1062))) (-3748 (*1 *1 *1) (-4 *1 (-1062))) (-3122 (*1 *1 *1) (-4 *1 (-1062))))
+(-13 (-365) (-849) (-1024) (-1040 (-567)) (-1040 (-410 (-567))) (-1004) (-615 (-894 (-381))) (-888 (-381)) (-147) (-10 -8 (-15 -2724 ($ $)) (-15 -1689 ($ $)) (-15 -3969 ($ $)) (-15 -4014 ((-567) $)) (-15 -2554 ($ $)) (-15 -3748 ($ $)) (-15 -3122 ($ $)) (-15 -1547 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-617 #0#) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-615 (-225)) . T) ((-615 (-381)) . T) ((-615 (-894 (-381))) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-455) . T) ((-559) . T) ((-647 #0#) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 #0#) . T) ((-649 $) . T) ((-641 #0#) . T) ((-641 $) . T) ((-718 #0#) . T) ((-718 $) . T) ((-727) . T) ((-792) . T) ((-793) . T) ((-795) . T) ((-796) . T) ((-849) . T) ((-851) . T) ((-888 (-381)) . T) ((-922) . T) ((-1004) . T) ((-1024) . T) ((-1040 (-410 (-567))) . T) ((-1040 (-567)) . T) ((-1053 #0#) . T) ((-1053 $) . T) ((-1058 #0#) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1223) . T))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) |#2| $) 26)) (-2384 ((|#1| $) 10)) (-2677 (((-567) |#2| $) 116)) (-3940 (((-3 $ "failed") |#2| (-923)) 75)) (-2973 ((|#1| $) 31)) (-2711 ((|#1| |#2| $ |#1|) 40)) (-2013 (($ $) 28)) (-3588 (((-3 |#2| "failed") |#2| $) 111)) (-3137 (((-112) |#2| $) NIL)) (-3465 (((-112) |#2| $) NIL)) (-1761 (((-112) |#2| $) 27)) (-2446 ((|#1| $) 117)) (-2961 ((|#1| $) 30)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-3169 ((|#2| $) 102)) (-4129 (((-863) $) 92)) (-3357 (((-112) $ $) NIL)) (-3058 ((|#1| |#2| $ |#1|) 41)) (-1564 (((-645 $) |#2|) 77)) (-2946 (((-112) $ $) 97)))
+(((-1063 |#1| |#2|) (-13 (-1070 |#1| |#2|) (-10 -8 (-15 -2961 (|#1| $)) (-15 -2973 (|#1| $)) (-15 -2384 (|#1| $)) (-15 -2446 (|#1| $)) (-15 -2013 ($ $)) (-15 -1761 ((-112) |#2| $)) (-15 -2711 (|#1| |#2| $ |#1|)))) (-13 (-849) (-365)) (-1245 |#1|)) (T -1063))
+((-2711 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-849) (-365))) (-5 *1 (-1063 *2 *3)) (-4 *3 (-1245 *2)))) (-2961 (*1 *2 *1) (-12 (-4 *2 (-13 (-849) (-365))) (-5 *1 (-1063 *2 *3)) (-4 *3 (-1245 *2)))) (-2973 (*1 *2 *1) (-12 (-4 *2 (-13 (-849) (-365))) (-5 *1 (-1063 *2 *3)) (-4 *3 (-1245 *2)))) (-2384 (*1 *2 *1) (-12 (-4 *2 (-13 (-849) (-365))) (-5 *1 (-1063 *2 *3)) (-4 *3 (-1245 *2)))) (-2446 (*1 *2 *1) (-12 (-4 *2 (-13 (-849) (-365))) (-5 *1 (-1063 *2 *3)) (-4 *3 (-1245 *2)))) (-2013 (*1 *1 *1) (-12 (-4 *2 (-13 (-849) (-365))) (-5 *1 (-1063 *2 *3)) (-4 *3 (-1245 *2)))) (-1761 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-849) (-365))) (-5 *2 (-112)) (-5 *1 (-1063 *4 *3)) (-4 *3 (-1245 *4)))))
+(-13 (-1070 |#1| |#2|) (-10 -8 (-15 -2961 (|#1| $)) (-15 -2973 (|#1| $)) (-15 -2384 (|#1| $)) (-15 -2446 (|#1| $)) (-15 -2013 ($ $)) (-15 -1761 ((-112) |#2| $)) (-15 -2711 (|#1| |#2| $ |#1|))))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-4287 (($ $) NIL)) (-2286 (((-112) $) NIL)) (-3423 (($ $ $) NIL)) (-2376 (((-3 $ "failed") $ $) NIL)) (-2690 (($ $ $ $) NIL)) (-3659 (($ $) NIL)) (-3597 (((-421 $) $) NIL)) (-3696 (((-112) $ $) NIL)) (-2677 (((-567) $) NIL)) (-4128 (($ $ $) NIL)) (-3647 (($) NIL T CONST)) (-2850 (($ (-1179)) 10) (($ (-567)) 7)) (-3765 (((-3 (-567) "failed") $) NIL)) (-2051 (((-567) $) NIL)) (-2357 (($ $ $) NIL)) (-1423 (((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL) (((-690 (-567)) (-690 $)) NIL)) (-3588 (((-3 $ "failed") $) NIL)) (-1605 (((-3 (-410 (-567)) "failed") $) NIL)) (-2492 (((-112) $) NIL)) (-2778 (((-410 (-567)) $) NIL)) (-1359 (($) NIL) (($ $) NIL)) (-2368 (($ $ $) NIL)) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) NIL)) (-3502 (((-112) $) NIL)) (-2171 (($ $ $ $) NIL)) (-1943 (($ $ $) NIL)) (-3137 (((-112) $) NIL)) (-2565 (($ $ $) NIL)) (-3193 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL)) (-4346 (((-112) $) NIL)) (-1904 (((-112) $) NIL)) (-3067 (((-3 $ "failed") $) NIL)) (-3465 (((-112) $) NIL)) (-1469 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4311 (($ $ $ $) NIL)) (-1365 (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (-1459 (($ $) NIL)) (-2334 (($ $) NIL)) (-2751 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2516 (((-1161) $) NIL)) (-4088 (($ $ $) NIL)) (-2694 (($) NIL T CONST)) (-2307 (($ $) NIL)) (-3437 (((-1122) $) NIL)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-2785 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1345 (($ $) NIL)) (-2717 (((-421 $) $) NIL)) (-2905 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) NIL)) (-2400 (((-3 $ "failed") $ $) NIL)) (-2372 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2795 (((-112) $) NIL)) (-2460 (((-772) $) NIL)) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) NIL)) (-1616 (($ $ (-772)) NIL) (($ $) NIL)) (-1699 (($ $) NIL)) (-4309 (($ $) NIL)) (-3902 (((-567) $) 16) (((-539) $) NIL) (((-894 (-567)) $) NIL) (((-381) $) NIL) (((-225) $) NIL) (($ (-1179)) 9)) (-4129 (((-863) $) 23) (($ (-567)) 6) (($ $) NIL) (($ (-567)) 6)) (-2746 (((-772)) NIL T CONST)) (-4147 (((-112) $ $) NIL)) (-2708 (($ $ $) NIL)) (-3357 (((-112) $ $) NIL)) (-3070 (($) NIL)) (-3731 (((-112) $ $) NIL)) (-3627 (($ $ $ $) NIL)) (-1547 (($ $) NIL)) (-1733 (($) NIL T CONST)) (-1744 (($) NIL T CONST)) (-2647 (($ $ (-772)) NIL) (($ $) NIL)) (-3004 (((-112) $ $) NIL)) (-2980 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2993 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)) (-3053 (($ $) 22) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL)))
+(((-1064) (-13 (-548) (-619 (-1179)) (-10 -8 (-6 -4409) (-6 -4414) (-6 -4410) (-15 -2850 ($ (-1179))) (-15 -2850 ($ (-567)))))) (T -1064))
+((-2850 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1064)))) (-2850 (*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1064)))))
+(-13 (-548) (-619 (-1179)) (-10 -8 (-6 -4409) (-6 -4414) (-6 -4410) (-15 -2850 ($ (-1179))) (-15 -2850 ($ (-567)))))
+((-2412 (((-112) $ $) NIL (-2811 (|has| (-52) (-1102)) (|has| (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (-1102))))) (-2847 (($) NIL) (($ (-645 (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))))) NIL)) (-3843 (((-1274) $ (-1179) (-1179)) NIL (|has| $ (-6 -4423)))) (-1563 (((-112) $ (-772)) NIL)) (-1903 (($) 9)) (-4285 (((-52) $ (-1179) (-52)) NIL)) (-3019 (($ $) 32)) (-4271 (($ $) 30)) (-2078 (($ $) 29)) (-3363 (($ $) 31)) (-1977 (($ $) 35)) (-1829 (($ $) 36)) (-1526 (($ $) 28)) (-4213 (($ $) 33)) (-1494 (($ (-1 (-112) (-2 (|:| -1809 (-1179)) (|:| -4236 (-52)))) $) NIL (|has| $ (-6 -4422)))) (-3356 (($ (-1 (-112) (-2 (|:| -1809 (-1179)) (|:| -4236 (-52)))) $) 27 (|has| $ (-6 -4422)))) (-4021 (((-3 (-52) "failed") (-1179) $) 43)) (-3647 (($) NIL T CONST)) (-2788 (($) 7)) (-2453 (($ $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (-1102))))) (-2247 (($ (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) $) 53 (|has| $ (-6 -4422))) (($ (-1 (-112) (-2 (|:| -1809 (-1179)) (|:| -4236 (-52)))) $) NIL (|has| $ (-6 -4422))) (((-3 (-52) "failed") (-1179) $) NIL)) (-3246 (($ (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (-1102)))) (($ (-1 (-112) (-2 (|:| -1809 (-1179)) (|:| -4236 (-52)))) $) NIL (|has| $ (-6 -4422)))) (-2494 (((-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (-1 (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (-2 (|:| -1809 (-1179)) (|:| -4236 (-52)))) $ (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (-2 (|:| -1809 (-1179)) (|:| -4236 (-52)))) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (-1102)))) (((-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (-1 (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (-2 (|:| -1809 (-1179)) (|:| -4236 (-52)))) $ (-2 (|:| -1809 (-1179)) (|:| -4236 (-52)))) NIL (|has| $ (-6 -4422))) (((-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (-1 (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (-2 (|:| -1809 (-1179)) (|:| -4236 (-52)))) $) NIL (|has| $ (-6 -4422)))) (-4260 (((-3 (-1161) "failed") $ (-1161) (-567)) 74)) (-3760 (((-52) $ (-1179) (-52)) NIL (|has| $ (-6 -4423)))) (-3703 (((-52) $ (-1179)) NIL)) (-2799 (((-645 (-2 (|:| -1809 (-1179)) (|:| -4236 (-52)))) $) NIL (|has| $ (-6 -4422))) (((-645 (-52)) $) NIL (|has| $ (-6 -4422)))) (-4093 (((-112) $ (-772)) NIL)) (-3895 (((-1179) $) NIL (|has| (-1179) (-851)))) (-1942 (((-645 (-2 (|:| -1809 (-1179)) (|:| -4236 (-52)))) $) 38 (|has| $ (-6 -4422))) (((-645 (-52)) $) NIL (|has| $ (-6 -4422)))) (-3237 (((-112) (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (-1102)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-52) (-1102))))) (-3255 (((-1179) $) NIL (|has| (-1179) (-851)))) (-3751 (($ (-1 (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (-2 (|:| -1809 (-1179)) (|:| -4236 (-52)))) $) NIL (|has| $ (-6 -4423))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4423)))) (-3841 (($ (-1 (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (-2 (|:| -1809 (-1179)) (|:| -4236 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-1986 (((-112) $ (-772)) NIL)) (-2516 (((-1161) $) NIL (-2811 (|has| (-52) (-1102)) (|has| (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (-1102))))) (-1405 (((-645 (-1179)) $) NIL)) (-2816 (((-112) (-1179) $) NIL)) (-2706 (((-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) $) NIL)) (-2646 (($ (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) $) 46)) (-4364 (((-645 (-1179)) $) NIL)) (-3188 (((-112) (-1179) $) NIL)) (-3437 (((-1122) $) NIL (-2811 (|has| (-52) (-1102)) (|has| (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (-1102))))) (-2503 (((-381) $ (-1179)) 52)) (-3150 (((-645 (-1161)) $ (-1161)) 76)) (-2418 (((-52) $) NIL (|has| (-1179) (-851)))) (-3196 (((-3 (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) "failed") (-1 (-112) (-2 (|:| -1809 (-1179)) (|:| -4236 (-52)))) $) NIL)) (-3823 (($ $ (-52)) NIL (|has| $ (-6 -4423)))) (-3949 (((-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) $) NIL)) (-4233 (((-112) (-1 (-112) (-2 (|:| -1809 (-1179)) (|:| -4236 (-52)))) $) NIL (|has| $ (-6 -4422))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 (-2 (|:| -1809 (-1179)) (|:| -4236 (-52)))))) NIL (-12 (|has| (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (-310 (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))))) (|has| (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (-1102)))) (($ $ (-295 (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))))) NIL (-12 (|has| (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (-310 (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))))) (|has| (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (-1102)))) (($ $ (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (-2 (|:| -1809 (-1179)) (|:| -4236 (-52)))) NIL (-12 (|has| (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (-310 (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))))) (|has| (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (-1102)))) (($ $ (-645 (-2 (|:| -1809 (-1179)) (|:| -4236 (-52)))) (-645 (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))))) NIL (-12 (|has| (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (-310 (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))))) (|has| (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (-1102)))) (($ $ (-645 (-52)) (-645 (-52))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1102)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1102)))) (($ $ (-295 (-52))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1102)))) (($ $ (-645 (-295 (-52)))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1102))))) (-3875 (((-112) $ $) NIL)) (-4058 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-52) (-1102))))) (-2190 (((-645 (-52)) $) NIL)) (-3885 (((-112) $) NIL)) (-2701 (($) NIL)) (-1801 (((-52) $ (-1179)) NIL) (((-52) $ (-1179) (-52)) NIL)) (-4106 (($) NIL) (($ (-645 (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))))) NIL)) (-1763 (($ $ (-1179)) 54)) (-3447 (((-772) (-1 (-112) (-2 (|:| -1809 (-1179)) (|:| -4236 (-52)))) $) NIL (|has| $ (-6 -4422))) (((-772) (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (-1102)))) (((-772) (-52) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-52) (-1102)))) (((-772) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4422)))) (-4309 (($ $) NIL)) (-3902 (((-539) $) NIL (|has| (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (-615 (-539))))) (-4145 (($ (-645 (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))))) 40)) (-2276 (($ $ $) 41)) (-4129 (((-863) $) NIL (-2811 (|has| (-52) (-614 (-863))) (|has| (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (-614 (-863)))))) (-3187 (($ $ (-1179) (-381)) 50)) (-3267 (($ $ (-1179) (-381)) 51)) (-3357 (((-112) $ $) NIL (-2811 (|has| (-52) (-1102)) (|has| (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (-1102))))) (-3700 (($ (-645 (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))))) NIL)) (-3436 (((-112) (-1 (-112) (-2 (|:| -1809 (-1179)) (|:| -4236 (-52)))) $) NIL (|has| $ (-6 -4422))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4422)))) (-2946 (((-112) $ $) NIL (-2811 (|has| (-52) (-1102)) (|has| (-2 (|:| -1809 (-1179)) (|:| -4236 (-52))) (-1102))))) (-2423 (((-772) $) NIL (|has| $ (-6 -4422)))))
+(((-1065) (-13 (-1195 (-1179) (-52)) (-10 -8 (-15 -2276 ($ $ $)) (-15 -2788 ($)) (-15 -1526 ($ $)) (-15 -2078 ($ $)) (-15 -4271 ($ $)) (-15 -3363 ($ $)) (-15 -4213 ($ $)) (-15 -3019 ($ $)) (-15 -1977 ($ $)) (-15 -1829 ($ $)) (-15 -3187 ($ $ (-1179) (-381))) (-15 -3267 ($ $ (-1179) (-381))) (-15 -2503 ((-381) $ (-1179))) (-15 -3150 ((-645 (-1161)) $ (-1161))) (-15 -1763 ($ $ (-1179))) (-15 -1903 ($)) (-15 -4260 ((-3 (-1161) "failed") $ (-1161) (-567))) (-6 -4422)))) (T -1065))
+((-2276 (*1 *1 *1 *1) (-5 *1 (-1065))) (-2788 (*1 *1) (-5 *1 (-1065))) (-1526 (*1 *1 *1) (-5 *1 (-1065))) (-2078 (*1 *1 *1) (-5 *1 (-1065))) (-4271 (*1 *1 *1) (-5 *1 (-1065))) (-3363 (*1 *1 *1) (-5 *1 (-1065))) (-4213 (*1 *1 *1) (-5 *1 (-1065))) (-3019 (*1 *1 *1) (-5 *1 (-1065))) (-1977 (*1 *1 *1) (-5 *1 (-1065))) (-1829 (*1 *1 *1) (-5 *1 (-1065))) (-3187 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-381)) (-5 *1 (-1065)))) (-3267 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-381)) (-5 *1 (-1065)))) (-2503 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-381)) (-5 *1 (-1065)))) (-3150 (*1 *2 *1 *3) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-1065)) (-5 *3 (-1161)))) (-1763 (*1 *1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1065)))) (-1903 (*1 *1) (-5 *1 (-1065))) (-4260 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1161)) (-5 *3 (-567)) (-5 *1 (-1065)))))
+(-13 (-1195 (-1179) (-52)) (-10 -8 (-15 -2276 ($ $ $)) (-15 -2788 ($)) (-15 -1526 ($ $)) (-15 -2078 ($ $)) (-15 -4271 ($ $)) (-15 -3363 ($ $)) (-15 -4213 ($ $)) (-15 -3019 ($ $)) (-15 -1977 ($ $)) (-15 -1829 ($ $)) (-15 -3187 ($ $ (-1179) (-381))) (-15 -3267 ($ $ (-1179) (-381))) (-15 -2503 ((-381) $ (-1179))) (-15 -3150 ((-645 (-1161)) $ (-1161))) (-15 -1763 ($ $ (-1179))) (-15 -1903 ($)) (-15 -4260 ((-3 (-1161) "failed") $ (-1161) (-567))) (-6 -4422)))
+((-4284 (($ $) 46)) (-2206 (((-112) $ $) 82)) (-3765 (((-3 |#2| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 (-567) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-954 (-410 (-567)))) 253) (((-3 $ "failed") (-954 (-567))) 252) (((-3 $ "failed") (-954 |#2|)) 255)) (-2051 ((|#2| $) NIL) (((-410 (-567)) $) NIL) (((-567) $) NIL) ((|#4| $) NIL) (($ (-954 (-410 (-567)))) 241) (($ (-954 (-567))) 237) (($ (-954 |#2|)) 257)) (-3023 (($ $) NIL) (($ $ |#4|) 44)) (-2240 (((-112) $ $) 131) (((-112) $ (-645 $)) 135)) (-1688 (((-112) $) 60)) (-3410 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) 125)) (-1816 (($ $) 160)) (-2389 (($ $) 156)) (-1313 (($ $) 155)) (-1811 (($ $ $) 87) (($ $ $ |#4|) 92)) (-1776 (($ $ $) 90) (($ $ $ |#4|) 94)) (-4061 (((-112) $ $) 143) (((-112) $ (-645 $)) 144)) (-2072 ((|#4| $) 32)) (-2617 (($ $ $) 128)) (-2366 (((-112) $) 59)) (-3780 (((-772) $) 35)) (-2326 (($ $) 174)) (-3840 (($ $) 171)) (-1637 (((-645 $) $) 72)) (-2059 (($ $) 62)) (-3916 (($ $) 167)) (-4221 (((-645 $) $) 69)) (-3248 (($ $) 64)) (-2996 ((|#2| $) NIL) (($ $ |#4|) 39)) (-3014 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1921 (-772))) $ $) 130)) (-4040 (((-2 (|:| -3705 $) (|:| |gap| (-772)) (|:| -2654 $) (|:| -2023 $)) $ $) 126) (((-2 (|:| -3705 $) (|:| |gap| (-772)) (|:| -2654 $) (|:| -2023 $)) $ $ |#4|) 127)) (-1827 (((-2 (|:| -3705 $) (|:| |gap| (-772)) (|:| -2023 $)) $ $) 121) (((-2 (|:| -3705 $) (|:| |gap| (-772)) (|:| -2023 $)) $ $ |#4|) 123)) (-3795 (($ $ $) 97) (($ $ $ |#4|) 106)) (-2349 (($ $ $) 98) (($ $ $ |#4|) 107)) (-2174 (((-645 $) $) 54)) (-3324 (((-112) $ $) 140) (((-112) $ (-645 $)) 141)) (-1431 (($ $ $) 116)) (-2694 (($ $) 37)) (-3995 (((-112) $ $) 80)) (-4278 (((-112) $ $) 136) (((-112) $ (-645 $)) 138)) (-3984 (($ $ $) 112)) (-1523 (($ $) 41)) (-2785 ((|#2| |#2| $) 164) (($ (-645 $)) NIL) (($ $ $) NIL)) (-4242 (($ $ |#2|) NIL) (($ $ $) 153)) (-2779 (($ $ |#2|) 148) (($ $ $) 151)) (-2367 (($ $) 49)) (-4038 (($ $) 55)) (-3902 (((-894 (-381)) $) NIL) (((-894 (-567)) $) NIL) (((-539) $) NIL) (($ (-954 (-410 (-567)))) 243) (($ (-954 (-567))) 239) (($ (-954 |#2|)) 254) (((-1161) $) 281) (((-954 |#2|) $) 184)) (-4129 (((-863) $) 29) (($ (-567)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-954 |#2|) $) 185) (($ (-410 (-567))) NIL) (($ $) NIL)) (-2843 (((-3 (-112) "failed") $ $) 79)))
+(((-1066 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4129 (|#1| |#1|)) (-15 -2785 (|#1| |#1| |#1|)) (-15 -2785 (|#1| (-645 |#1|))) (-15 -4129 (|#1| (-410 (-567)))) (-15 -4129 ((-954 |#2|) |#1|)) (-15 -3902 ((-954 |#2|) |#1|)) (-15 -3902 ((-1161) |#1|)) (-15 -2326 (|#1| |#1|)) (-15 -3840 (|#1| |#1|)) (-15 -3916 (|#1| |#1|)) (-15 -1816 (|#1| |#1|)) (-15 -2785 (|#2| |#2| |#1|)) (-15 -4242 (|#1| |#1| |#1|)) (-15 -2779 (|#1| |#1| |#1|)) (-15 -4242 (|#1| |#1| |#2|)) (-15 -2779 (|#1| |#1| |#2|)) (-15 -2389 (|#1| |#1|)) (-15 -1313 (|#1| |#1|)) (-15 -3902 (|#1| (-954 |#2|))) (-15 -2051 (|#1| (-954 |#2|))) (-15 -3765 ((-3 |#1| "failed") (-954 |#2|))) (-15 -3902 (|#1| (-954 (-567)))) (-15 -2051 (|#1| (-954 (-567)))) (-15 -3765 ((-3 |#1| "failed") (-954 (-567)))) (-15 -3902 (|#1| (-954 (-410 (-567))))) (-15 -2051 (|#1| (-954 (-410 (-567))))) (-15 -3765 ((-3 |#1| "failed") (-954 (-410 (-567))))) (-15 -1431 (|#1| |#1| |#1|)) (-15 -3984 (|#1| |#1| |#1|)) (-15 -3014 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -1921 (-772))) |#1| |#1|)) (-15 -2617 (|#1| |#1| |#1|)) (-15 -3410 ((-2 (|:| -2654 |#1|) (|:| -2023 |#1|)) |#1| |#1|)) (-15 -4040 ((-2 (|:| -3705 |#1|) (|:| |gap| (-772)) (|:| -2654 |#1|) (|:| -2023 |#1|)) |#1| |#1| |#4|)) (-15 -4040 ((-2 (|:| -3705 |#1|) (|:| |gap| (-772)) (|:| -2654 |#1|) (|:| -2023 |#1|)) |#1| |#1|)) (-15 -1827 ((-2 (|:| -3705 |#1|) (|:| |gap| (-772)) (|:| -2023 |#1|)) |#1| |#1| |#4|)) (-15 -1827 ((-2 (|:| -3705 |#1|) (|:| |gap| (-772)) (|:| -2023 |#1|)) |#1| |#1|)) (-15 -2349 (|#1| |#1| |#1| |#4|)) (-15 -3795 (|#1| |#1| |#1| |#4|)) (-15 -2349 (|#1| |#1| |#1|)) (-15 -3795 (|#1| |#1| |#1|)) (-15 -1776 (|#1| |#1| |#1| |#4|)) (-15 -1811 (|#1| |#1| |#1| |#4|)) (-15 -1776 (|#1| |#1| |#1|)) (-15 -1811 (|#1| |#1| |#1|)) (-15 -4061 ((-112) |#1| (-645 |#1|))) (-15 -4061 ((-112) |#1| |#1|)) (-15 -3324 ((-112) |#1| (-645 |#1|))) (-15 -3324 ((-112) |#1| |#1|)) (-15 -4278 ((-112) |#1| (-645 |#1|))) (-15 -4278 ((-112) |#1| |#1|)) (-15 -2240 ((-112) |#1| (-645 |#1|))) (-15 -2240 ((-112) |#1| |#1|)) (-15 -2206 ((-112) |#1| |#1|)) (-15 -3995 ((-112) |#1| |#1|)) (-15 -2843 ((-3 (-112) "failed") |#1| |#1|)) (-15 -1637 ((-645 |#1|) |#1|)) (-15 -4221 ((-645 |#1|) |#1|)) (-15 -3248 (|#1| |#1|)) (-15 -2059 (|#1| |#1|)) (-15 -1688 ((-112) |#1|)) (-15 -2366 ((-112) |#1|)) (-15 -3023 (|#1| |#1| |#4|)) (-15 -2996 (|#1| |#1| |#4|)) (-15 -4038 (|#1| |#1|)) (-15 -2174 ((-645 |#1|) |#1|)) (-15 -2367 (|#1| |#1|)) (-15 -4284 (|#1| |#1|)) (-15 -1523 (|#1| |#1|)) (-15 -2694 (|#1| |#1|)) (-15 -3780 ((-772) |#1|)) (-15 -2072 (|#4| |#1|)) (-15 -3902 ((-539) |#1|)) (-15 -3902 ((-894 (-567)) |#1|)) (-15 -3902 ((-894 (-381)) |#1|)) (-15 -4129 (|#1| |#4|)) (-15 -3765 ((-3 |#4| "failed") |#1|)) (-15 -2051 (|#4| |#1|)) (-15 -2996 (|#2| |#1|)) (-15 -3023 (|#1| |#1|)) (-15 -3765 ((-3 (-567) "failed") |#1|)) (-15 -2051 ((-567) |#1|)) (-15 -3765 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2051 ((-410 (-567)) |#1|)) (-15 -2051 (|#2| |#1|)) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -4129 (|#1| |#2|)) (-15 -4129 (|#1| (-567))) (-15 -4129 ((-863) |#1|))) (-1067 |#2| |#3| |#4|) (-1051) (-794) (-851)) (T -1066))
+NIL
+(-10 -8 (-15 -4129 (|#1| |#1|)) (-15 -2785 (|#1| |#1| |#1|)) (-15 -2785 (|#1| (-645 |#1|))) (-15 -4129 (|#1| (-410 (-567)))) (-15 -4129 ((-954 |#2|) |#1|)) (-15 -3902 ((-954 |#2|) |#1|)) (-15 -3902 ((-1161) |#1|)) (-15 -2326 (|#1| |#1|)) (-15 -3840 (|#1| |#1|)) (-15 -3916 (|#1| |#1|)) (-15 -1816 (|#1| |#1|)) (-15 -2785 (|#2| |#2| |#1|)) (-15 -4242 (|#1| |#1| |#1|)) (-15 -2779 (|#1| |#1| |#1|)) (-15 -4242 (|#1| |#1| |#2|)) (-15 -2779 (|#1| |#1| |#2|)) (-15 -2389 (|#1| |#1|)) (-15 -1313 (|#1| |#1|)) (-15 -3902 (|#1| (-954 |#2|))) (-15 -2051 (|#1| (-954 |#2|))) (-15 -3765 ((-3 |#1| "failed") (-954 |#2|))) (-15 -3902 (|#1| (-954 (-567)))) (-15 -2051 (|#1| (-954 (-567)))) (-15 -3765 ((-3 |#1| "failed") (-954 (-567)))) (-15 -3902 (|#1| (-954 (-410 (-567))))) (-15 -2051 (|#1| (-954 (-410 (-567))))) (-15 -3765 ((-3 |#1| "failed") (-954 (-410 (-567))))) (-15 -1431 (|#1| |#1| |#1|)) (-15 -3984 (|#1| |#1| |#1|)) (-15 -3014 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -1921 (-772))) |#1| |#1|)) (-15 -2617 (|#1| |#1| |#1|)) (-15 -3410 ((-2 (|:| -2654 |#1|) (|:| -2023 |#1|)) |#1| |#1|)) (-15 -4040 ((-2 (|:| -3705 |#1|) (|:| |gap| (-772)) (|:| -2654 |#1|) (|:| -2023 |#1|)) |#1| |#1| |#4|)) (-15 -4040 ((-2 (|:| -3705 |#1|) (|:| |gap| (-772)) (|:| -2654 |#1|) (|:| -2023 |#1|)) |#1| |#1|)) (-15 -1827 ((-2 (|:| -3705 |#1|) (|:| |gap| (-772)) (|:| -2023 |#1|)) |#1| |#1| |#4|)) (-15 -1827 ((-2 (|:| -3705 |#1|) (|:| |gap| (-772)) (|:| -2023 |#1|)) |#1| |#1|)) (-15 -2349 (|#1| |#1| |#1| |#4|)) (-15 -3795 (|#1| |#1| |#1| |#4|)) (-15 -2349 (|#1| |#1| |#1|)) (-15 -3795 (|#1| |#1| |#1|)) (-15 -1776 (|#1| |#1| |#1| |#4|)) (-15 -1811 (|#1| |#1| |#1| |#4|)) (-15 -1776 (|#1| |#1| |#1|)) (-15 -1811 (|#1| |#1| |#1|)) (-15 -4061 ((-112) |#1| (-645 |#1|))) (-15 -4061 ((-112) |#1| |#1|)) (-15 -3324 ((-112) |#1| (-645 |#1|))) (-15 -3324 ((-112) |#1| |#1|)) (-15 -4278 ((-112) |#1| (-645 |#1|))) (-15 -4278 ((-112) |#1| |#1|)) (-15 -2240 ((-112) |#1| (-645 |#1|))) (-15 -2240 ((-112) |#1| |#1|)) (-15 -2206 ((-112) |#1| |#1|)) (-15 -3995 ((-112) |#1| |#1|)) (-15 -2843 ((-3 (-112) "failed") |#1| |#1|)) (-15 -1637 ((-645 |#1|) |#1|)) (-15 -4221 ((-645 |#1|) |#1|)) (-15 -3248 (|#1| |#1|)) (-15 -2059 (|#1| |#1|)) (-15 -1688 ((-112) |#1|)) (-15 -2366 ((-112) |#1|)) (-15 -3023 (|#1| |#1| |#4|)) (-15 -2996 (|#1| |#1| |#4|)) (-15 -4038 (|#1| |#1|)) (-15 -2174 ((-645 |#1|) |#1|)) (-15 -2367 (|#1| |#1|)) (-15 -4284 (|#1| |#1|)) (-15 -1523 (|#1| |#1|)) (-15 -2694 (|#1| |#1|)) (-15 -3780 ((-772) |#1|)) (-15 -2072 (|#4| |#1|)) (-15 -3902 ((-539) |#1|)) (-15 -3902 ((-894 (-567)) |#1|)) (-15 -3902 ((-894 (-381)) |#1|)) (-15 -4129 (|#1| |#4|)) (-15 -3765 ((-3 |#4| "failed") |#1|)) (-15 -2051 (|#4| |#1|)) (-15 -2996 (|#2| |#1|)) (-15 -3023 (|#1| |#1|)) (-15 -3765 ((-3 (-567) "failed") |#1|)) (-15 -2051 ((-567) |#1|)) (-15 -3765 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2051 ((-410 (-567)) |#1|)) (-15 -2051 (|#2| |#1|)) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -4129 (|#1| |#2|)) (-15 -4129 (|#1| (-567))) (-15 -4129 ((-863) |#1|)))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-2859 (((-645 |#3|) $) 112)) (-2684 (((-1175 $) $ |#3|) 127) (((-1175 |#1|) $) 126)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) 89 (|has| |#1| (-559)))) (-4287 (($ $) 90 (|has| |#1| (-559)))) (-2286 (((-112) $) 92 (|has| |#1| (-559)))) (-3849 (((-772) $) 114) (((-772) $ (-645 |#3|)) 113)) (-4284 (($ $) 273)) (-2206 (((-112) $ $) 259)) (-2376 (((-3 $ "failed") $ $) 20)) (-3479 (($ $ $) 218 (|has| |#1| (-559)))) (-1750 (((-645 $) $ $) 213 (|has| |#1| (-559)))) (-2029 (((-421 (-1175 $)) (-1175 $)) 102 (|has| |#1| (-911)))) (-3659 (($ $) 100 (|has| |#1| (-455)))) (-3597 (((-421 $) $) 99 (|has| |#1| (-455)))) (-3610 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) 105 (|has| |#1| (-911)))) (-3647 (($) 18 T CONST)) (-3765 (((-3 |#1| "failed") $) 166) (((-3 (-410 (-567)) "failed") $) 163 (|has| |#1| (-1040 (-410 (-567))))) (((-3 (-567) "failed") $) 161 (|has| |#1| (-1040 (-567)))) (((-3 |#3| "failed") $) 138) (((-3 $ "failed") (-954 (-410 (-567)))) 233 (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#3| (-615 (-1179))))) (((-3 $ "failed") (-954 (-567))) 230 (-2811 (-12 (-1673 (|has| |#1| (-38 (-410 (-567))))) (|has| |#1| (-38 (-567))) (|has| |#3| (-615 (-1179)))) (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#3| (-615 (-1179)))))) (((-3 $ "failed") (-954 |#1|)) 227 (-2811 (-12 (-1673 (|has| |#1| (-38 (-410 (-567))))) (-1673 (|has| |#1| (-38 (-567)))) (|has| |#3| (-615 (-1179)))) (-12 (-1673 (|has| |#1| (-548))) (-1673 (|has| |#1| (-38 (-410 (-567))))) (|has| |#1| (-38 (-567))) (|has| |#3| (-615 (-1179)))) (-12 (-1673 (|has| |#1| (-994 (-567)))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#3| (-615 (-1179))))))) (-2051 ((|#1| $) 165) (((-410 (-567)) $) 164 (|has| |#1| (-1040 (-410 (-567))))) (((-567) $) 162 (|has| |#1| (-1040 (-567)))) ((|#3| $) 139) (($ (-954 (-410 (-567)))) 232 (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#3| (-615 (-1179))))) (($ (-954 (-567))) 229 (-2811 (-12 (-1673 (|has| |#1| (-38 (-410 (-567))))) (|has| |#1| (-38 (-567))) (|has| |#3| (-615 (-1179)))) (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#3| (-615 (-1179)))))) (($ (-954 |#1|)) 226 (-2811 (-12 (-1673 (|has| |#1| (-38 (-410 (-567))))) (-1673 (|has| |#1| (-38 (-567)))) (|has| |#3| (-615 (-1179)))) (-12 (-1673 (|has| |#1| (-548))) (-1673 (|has| |#1| (-38 (-410 (-567))))) (|has| |#1| (-38 (-567))) (|has| |#3| (-615 (-1179)))) (-12 (-1673 (|has| |#1| (-994 (-567)))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#3| (-615 (-1179))))))) (-3554 (($ $ $ |#3|) 110 (|has| |#1| (-172))) (($ $ $) 214 (|has| |#1| (-559)))) (-3023 (($ $) 156) (($ $ |#3|) 268)) (-1423 (((-690 (-567)) (-690 $)) 136 (|has| |#1| (-640 (-567)))) (((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) 135 (|has| |#1| (-640 (-567)))) (((-2 (|:| -4208 (-690 |#1|)) (|:| |vec| (-1269 |#1|))) (-690 $) (-1269 $)) 134) (((-690 |#1|) (-690 $)) 133)) (-2240 (((-112) $ $) 258) (((-112) $ (-645 $)) 257)) (-3588 (((-3 $ "failed") $) 37)) (-1688 (((-112) $) 266)) (-3410 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) 238)) (-1816 (($ $) 207 (|has| |#1| (-455)))) (-2989 (($ $) 178 (|has| |#1| (-455))) (($ $ |#3|) 107 (|has| |#1| (-455)))) (-3010 (((-645 $) $) 111)) (-3502 (((-112) $) 98 (|has| |#1| (-911)))) (-2389 (($ $) 223 (|has| |#1| (-559)))) (-1313 (($ $) 224 (|has| |#1| (-559)))) (-1811 (($ $ $) 250) (($ $ $ |#3|) 248)) (-1776 (($ $ $) 249) (($ $ $ |#3|) 247)) (-3214 (($ $ |#1| |#2| $) 174)) (-3193 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) 86 (-12 (|has| |#3| (-888 (-381))) (|has| |#1| (-888 (-381))))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) 85 (-12 (|has| |#3| (-888 (-567))) (|has| |#1| (-888 (-567)))))) (-4346 (((-112) $) 35)) (-2851 (((-772) $) 171)) (-4061 (((-112) $ $) 252) (((-112) $ (-645 $)) 251)) (-3435 (($ $ $ $ $) 209 (|has| |#1| (-559)))) (-2072 ((|#3| $) 277)) (-2848 (($ (-1175 |#1|) |#3|) 119) (($ (-1175 $) |#3|) 118)) (-2659 (((-645 $) $) 128)) (-3770 (((-112) $) 154)) (-2836 (($ |#1| |#2|) 155) (($ $ |#3| (-772)) 121) (($ $ (-645 |#3|) (-645 (-772))) 120)) (-2617 (($ $ $) 237)) (-2742 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $ |#3|) 122)) (-2366 (((-112) $) 267)) (-2955 ((|#2| $) 172) (((-772) $ |#3|) 124) (((-645 (-772)) $ (-645 |#3|)) 123)) (-3780 (((-772) $) 276)) (-3827 (($ (-1 |#2| |#2|) $) 173)) (-3841 (($ (-1 |#1| |#1|) $) 153)) (-3221 (((-3 |#3| "failed") $) 125)) (-2326 (($ $) 204 (|has| |#1| (-455)))) (-3840 (($ $) 205 (|has| |#1| (-455)))) (-1637 (((-645 $) $) 262)) (-2059 (($ $) 265)) (-3916 (($ $) 206 (|has| |#1| (-455)))) (-4221 (((-645 $) $) 263)) (-3248 (($ $) 264)) (-2985 (($ $) 151)) (-2996 ((|#1| $) 150) (($ $ |#3|) 269)) (-2751 (($ (-645 $)) 96 (|has| |#1| (-455))) (($ $ $) 95 (|has| |#1| (-455)))) (-3014 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1921 (-772))) $ $) 236)) (-4040 (((-2 (|:| -3705 $) (|:| |gap| (-772)) (|:| -2654 $) (|:| -2023 $)) $ $) 240) (((-2 (|:| -3705 $) (|:| |gap| (-772)) (|:| -2654 $) (|:| -2023 $)) $ $ |#3|) 239)) (-1827 (((-2 (|:| -3705 $) (|:| |gap| (-772)) (|:| -2023 $)) $ $) 242) (((-2 (|:| -3705 $) (|:| |gap| (-772)) (|:| -2023 $)) $ $ |#3|) 241)) (-3795 (($ $ $) 246) (($ $ $ |#3|) 244)) (-2349 (($ $ $) 245) (($ $ $ |#3|) 243)) (-2516 (((-1161) $) 10)) (-2588 (($ $ $) 212 (|has| |#1| (-559)))) (-2174 (((-645 $) $) 271)) (-3037 (((-3 (-645 $) "failed") $) 116)) (-3774 (((-3 (-645 $) "failed") $) 117)) (-3816 (((-3 (-2 (|:| |var| |#3|) (|:| -3468 (-772))) "failed") $) 115)) (-3324 (((-112) $ $) 254) (((-112) $ (-645 $)) 253)) (-1431 (($ $ $) 234)) (-2694 (($ $) 275)) (-3995 (((-112) $ $) 260)) (-4278 (((-112) $ $) 256) (((-112) $ (-645 $)) 255)) (-3984 (($ $ $) 235)) (-1523 (($ $) 274)) (-3437 (((-1122) $) 11)) (-4265 (((-2 (|:| -2785 $) (|:| |coef2| $)) $ $) 215 (|has| |#1| (-559)))) (-2010 (((-2 (|:| -2785 $) (|:| |coef1| $)) $ $) 216 (|has| |#1| (-559)))) (-2960 (((-112) $) 168)) (-2971 ((|#1| $) 169)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) 97 (|has| |#1| (-455)))) (-2785 ((|#1| |#1| $) 208 (|has| |#1| (-455))) (($ (-645 $)) 94 (|has| |#1| (-455))) (($ $ $) 93 (|has| |#1| (-455)))) (-3551 (((-421 (-1175 $)) (-1175 $)) 104 (|has| |#1| (-911)))) (-2016 (((-421 (-1175 $)) (-1175 $)) 103 (|has| |#1| (-911)))) (-2717 (((-421 $) $) 101 (|has| |#1| (-911)))) (-3583 (((-2 (|:| -2785 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 217 (|has| |#1| (-559)))) (-2400 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-559))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-559)))) (-4242 (($ $ |#1|) 221 (|has| |#1| (-559))) (($ $ $) 219 (|has| |#1| (-559)))) (-2779 (($ $ |#1|) 222 (|has| |#1| (-559))) (($ $ $) 220 (|has| |#1| (-559)))) (-2642 (($ $ (-645 (-295 $))) 147) (($ $ (-295 $)) 146) (($ $ $ $) 145) (($ $ (-645 $) (-645 $)) 144) (($ $ |#3| |#1|) 143) (($ $ (-645 |#3|) (-645 |#1|)) 142) (($ $ |#3| $) 141) (($ $ (-645 |#3|) (-645 $)) 140)) (-2433 (($ $ |#3|) 109 (|has| |#1| (-172)))) (-1616 (($ $ |#3|) 46) (($ $ (-645 |#3|)) 45) (($ $ |#3| (-772)) 44) (($ $ (-645 |#3|) (-645 (-772))) 43)) (-3104 ((|#2| $) 152) (((-772) $ |#3|) 132) (((-645 (-772)) $ (-645 |#3|)) 131)) (-2367 (($ $) 272)) (-4038 (($ $) 270)) (-3902 (((-894 (-381)) $) 84 (-12 (|has| |#3| (-615 (-894 (-381)))) (|has| |#1| (-615 (-894 (-381)))))) (((-894 (-567)) $) 83 (-12 (|has| |#3| (-615 (-894 (-567)))) (|has| |#1| (-615 (-894 (-567)))))) (((-539) $) 82 (-12 (|has| |#3| (-615 (-539))) (|has| |#1| (-615 (-539))))) (($ (-954 (-410 (-567)))) 231 (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#3| (-615 (-1179))))) (($ (-954 (-567))) 228 (-2811 (-12 (-1673 (|has| |#1| (-38 (-410 (-567))))) (|has| |#1| (-38 (-567))) (|has| |#3| (-615 (-1179)))) (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#3| (-615 (-1179)))))) (($ (-954 |#1|)) 225 (|has| |#3| (-615 (-1179)))) (((-1161) $) 203 (-12 (|has| |#1| (-1040 (-567))) (|has| |#3| (-615 (-1179))))) (((-954 |#1|) $) 202 (|has| |#3| (-615 (-1179))))) (-1849 ((|#1| $) 177 (|has| |#1| (-455))) (($ $ |#3|) 108 (|has| |#1| (-455)))) (-2616 (((-3 (-1269 $) "failed") (-690 $)) 106 (-1686 (|has| $ (-145)) (|has| |#1| (-911))))) (-4129 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 167) (($ |#3|) 137) (((-954 |#1|) $) 201 (|has| |#3| (-615 (-1179)))) (($ (-410 (-567))) 80 (-2811 (|has| |#1| (-1040 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567)))))) (($ $) 87 (|has| |#1| (-559)))) (-3601 (((-645 |#1|) $) 170)) (-2558 ((|#1| $ |#2|) 157) (($ $ |#3| (-772)) 130) (($ $ (-645 |#3|) (-645 (-772))) 129)) (-2118 (((-3 $ "failed") $) 81 (-2811 (-1686 (|has| $ (-145)) (|has| |#1| (-911))) (|has| |#1| (-145))))) (-2746 (((-772)) 32 T CONST)) (-3658 (($ $ $ (-772)) 175 (|has| |#1| (-172)))) (-3357 (((-112) $ $) 9)) (-3731 (((-112) $ $) 91 (|has| |#1| (-559)))) (-1733 (($) 19 T CONST)) (-2843 (((-3 (-112) "failed") $ $) 261)) (-1744 (($) 34 T CONST)) (-3285 (($ $ $ $ (-772)) 210 (|has| |#1| (-559)))) (-2215 (($ $ $ (-772)) 211 (|has| |#1| (-559)))) (-2647 (($ $ |#3|) 42) (($ $ (-645 |#3|)) 41) (($ $ |#3| (-772)) 40) (($ $ (-645 |#3|) (-645 (-772))) 39)) (-2946 (((-112) $ $) 6)) (-3069 (($ $ |#1|) 158 (|has| |#1| (-365)))) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 160 (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) 159 (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) 149) (($ $ |#1|) 148)))
(((-1067 |#1| |#2| |#3|) (-140) (-1051) (-794) (-851)) (T -1067))
-((-1679 (*1 *2 *1) (-12 (-4 *1 (-1067 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *2 (-851)))) (-2991 (*1 *2 *1) (-12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-772)))) (-2672 (*1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)))) (-2724 (*1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)))) (-4283 (*1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)))) (-2804 (*1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)))) (-2300 (*1 *2 *1) (-12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-1067 *3 *4 *5)))) (-2606 (*1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)))) (-2989 (*1 *1 *1 *2) (-12 (-4 *1 (-1067 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *2 (-851)))) (-3014 (*1 *1 *1 *2) (-12 (-4 *1 (-1067 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *2 (-851)))) (-1721 (*1 *2 *1) (-12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)))) (-1479 (*1 *2 *1) (-12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)))) (-4040 (*1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)))) (-1359 (*1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)))) (-2719 (*1 *2 *1) (-12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-1067 *3 *4 *5)))) (-3388 (*1 *2 *1) (-12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-1067 *3 *4 *5)))) (-4222 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)))) (-3392 (*1 *2 *1 *1) (-12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)))) (-2061 (*1 *2 *1 *1) (-12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)))) (-3786 (*1 *2 *1 *1) (-12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)))) (-3786 (*1 *2 *1 *3) (-12 (-5 *3 (-645 *1)) (-4 *1 (-1067 *4 *5 *6)) (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)))) (-2554 (*1 *2 *1 *1) (-12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)))) (-2554 (*1 *2 *1 *3) (-12 (-5 *3 (-645 *1)) (-4 *1 (-1067 *4 *5 *6)) (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)))) (-1791 (*1 *2 *1 *1) (-12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)))) (-1791 (*1 *2 *1 *3) (-12 (-5 *3 (-645 *1)) (-4 *1 (-1067 *4 *5 *6)) (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)))) (-1664 (*1 *2 *1 *1) (-12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)))) (-1664 (*1 *2 *1 *3) (-12 (-5 *3 (-645 *1)) (-4 *1 (-1067 *4 *5 *6)) (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)))) (-4205 (*1 *1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)))) (-1824 (*1 *1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)))) (-4205 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1067 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *2 (-851)))) (-1824 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1067 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *2 (-851)))) (-1491 (*1 *1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)))) (-2767 (*1 *1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)))) (-1491 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1067 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *2 (-851)))) (-2767 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1067 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *2 (-851)))) (-3983 (*1 *2 *1 *1) (-12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-2 (|:| -3694 *1) (|:| |gap| (-772)) (|:| -4194 *1))) (-4 *1 (-1067 *3 *4 *5)))) (-3983 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *3 (-851)) (-5 *2 (-2 (|:| -3694 *1) (|:| |gap| (-772)) (|:| -4194 *1))) (-4 *1 (-1067 *4 *5 *3)))) (-2521 (*1 *2 *1 *1) (-12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-2 (|:| -3694 *1) (|:| |gap| (-772)) (|:| -3102 *1) (|:| -4194 *1))) (-4 *1 (-1067 *3 *4 *5)))) (-2521 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *3 (-851)) (-5 *2 (-2 (|:| -3694 *1) (|:| |gap| (-772)) (|:| -3102 *1) (|:| -4194 *1))) (-4 *1 (-1067 *4 *5 *3)))) (-3708 (*1 *2 *1 *1) (-12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-2 (|:| -3102 *1) (|:| -4194 *1))) (-4 *1 (-1067 *3 *4 *5)))) (-1838 (*1 *1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)))) (-1451 (*1 *2 *1 *1) (-12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -2673 (-772)))) (-4 *1 (-1067 *3 *4 *5)))) (-4164 (*1 *1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)))) (-3159 (*1 *1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)))) (-3753 (*1 *1 *2) (|partial| -12 (-5 *2 (-954 (-410 (-567)))) (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1178))) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)))) (-2038 (*1 *1 *2) (-12 (-5 *2 (-954 (-410 (-567)))) (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1178))) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)))) (-3893 (*1 *1 *2) (-12 (-5 *2 (-954 (-410 (-567)))) (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1178))) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)))) (-3753 (*1 *1 *2) (|partial| -2800 (-12 (-5 *2 (-954 (-567))) (-4 *1 (-1067 *3 *4 *5)) (-12 (-1657 (-4 *3 (-38 (-410 (-567))))) (-4 *3 (-38 (-567))) (-4 *5 (-615 (-1178)))) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851))) (-12 (-5 *2 (-954 (-567))) (-4 *1 (-1067 *3 *4 *5)) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1178)))) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851))))) (-2038 (*1 *1 *2) (-2800 (-12 (-5 *2 (-954 (-567))) (-4 *1 (-1067 *3 *4 *5)) (-12 (-1657 (-4 *3 (-38 (-410 (-567))))) (-4 *3 (-38 (-567))) (-4 *5 (-615 (-1178)))) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851))) (-12 (-5 *2 (-954 (-567))) (-4 *1 (-1067 *3 *4 *5)) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1178)))) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851))))) (-3893 (*1 *1 *2) (-2800 (-12 (-5 *2 (-954 (-567))) (-4 *1 (-1067 *3 *4 *5)) (-12 (-1657 (-4 *3 (-38 (-410 (-567))))) (-4 *3 (-38 (-567))) (-4 *5 (-615 (-1178)))) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851))) (-12 (-5 *2 (-954 (-567))) (-4 *1 (-1067 *3 *4 *5)) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1178)))) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851))))) (-3753 (*1 *1 *2) (|partial| -2800 (-12 (-5 *2 (-954 *3)) (-12 (-1657 (-4 *3 (-38 (-410 (-567))))) (-1657 (-4 *3 (-38 (-567)))) (-4 *5 (-615 (-1178)))) (-4 *3 (-1051)) (-4 *1 (-1067 *3 *4 *5)) (-4 *4 (-794)) (-4 *5 (-851))) (-12 (-5 *2 (-954 *3)) (-12 (-1657 (-4 *3 (-548))) (-1657 (-4 *3 (-38 (-410 (-567))))) (-4 *3 (-38 (-567))) (-4 *5 (-615 (-1178)))) (-4 *3 (-1051)) (-4 *1 (-1067 *3 *4 *5)) (-4 *4 (-794)) (-4 *5 (-851))) (-12 (-5 *2 (-954 *3)) (-12 (-1657 (-4 *3 (-994 (-567)))) (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1178)))) (-4 *3 (-1051)) (-4 *1 (-1067 *3 *4 *5)) (-4 *4 (-794)) (-4 *5 (-851))))) (-2038 (*1 *1 *2) (-2800 (-12 (-5 *2 (-954 *3)) (-12 (-1657 (-4 *3 (-38 (-410 (-567))))) (-1657 (-4 *3 (-38 (-567)))) (-4 *5 (-615 (-1178)))) (-4 *3 (-1051)) (-4 *1 (-1067 *3 *4 *5)) (-4 *4 (-794)) (-4 *5 (-851))) (-12 (-5 *2 (-954 *3)) (-12 (-1657 (-4 *3 (-548))) (-1657 (-4 *3 (-38 (-410 (-567))))) (-4 *3 (-38 (-567))) (-4 *5 (-615 (-1178)))) (-4 *3 (-1051)) (-4 *1 (-1067 *3 *4 *5)) (-4 *4 (-794)) (-4 *5 (-851))) (-12 (-5 *2 (-954 *3)) (-12 (-1657 (-4 *3 (-994 (-567)))) (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1178)))) (-4 *3 (-1051)) (-4 *1 (-1067 *3 *4 *5)) (-4 *4 (-794)) (-4 *5 (-851))))) (-3893 (*1 *1 *2) (-12 (-5 *2 (-954 *3)) (-4 *3 (-1051)) (-4 *1 (-1067 *3 *4 *5)) (-4 *5 (-615 (-1178))) (-4 *4 (-794)) (-4 *5 (-851)))) (-3395 (*1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-559)))) (-3411 (*1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-559)))) (-3288 (*1 *1 *1 *2) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-559)))) (-1772 (*1 *1 *1 *2) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-559)))) (-3288 (*1 *1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-559)))) (-1772 (*1 *1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-559)))) (-2323 (*1 *1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-559)))) (-1893 (*1 *2 *1 *1) (-12 (-4 *3 (-559)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-2 (|:| -2774 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1067 *3 *4 *5)))) (-4348 (*1 *2 *1 *1) (-12 (-4 *3 (-559)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-2 (|:| -2774 *1) (|:| |coef1| *1))) (-4 *1 (-1067 *3 *4 *5)))) (-3521 (*1 *2 *1 *1) (-12 (-4 *3 (-559)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-2 (|:| -2774 *1) (|:| |coef2| *1))) (-4 *1 (-1067 *3 *4 *5)))) (-2951 (*1 *1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-559)))) (-1734 (*1 *2 *1 *1) (-12 (-4 *3 (-559)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-1067 *3 *4 *5)))) (-2272 (*1 *1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-559)))) (-1875 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *3 (-559)))) (-2097 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *3 (-559)))) (-2689 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-559)))) (-2774 (*1 *2 *2 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-455)))) (-2872 (*1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-455)))) (-2091 (*1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-455)))) (-4146 (*1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-455)))) (-2964 (*1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-455)))))
-(-13 (-951 |t#1| |t#2| |t#3|) (-10 -8 (-15 -1679 (|t#3| $)) (-15 -2991 ((-772) $)) (-15 -2672 ($ $)) (-15 -2724 ($ $)) (-15 -4283 ($ $)) (-15 -2804 ($ $)) (-15 -2300 ((-645 $) $)) (-15 -2606 ($ $)) (-15 -2989 ($ $ |t#3|)) (-15 -3014 ($ $ |t#3|)) (-15 -1721 ((-112) $)) (-15 -1479 ((-112) $)) (-15 -4040 ($ $)) (-15 -1359 ($ $)) (-15 -2719 ((-645 $) $)) (-15 -3388 ((-645 $) $)) (-15 -4222 ((-3 (-112) "failed") $ $)) (-15 -3392 ((-112) $ $)) (-15 -2061 ((-112) $ $)) (-15 -3786 ((-112) $ $)) (-15 -3786 ((-112) $ (-645 $))) (-15 -2554 ((-112) $ $)) (-15 -2554 ((-112) $ (-645 $))) (-15 -1791 ((-112) $ $)) (-15 -1791 ((-112) $ (-645 $))) (-15 -1664 ((-112) $ $)) (-15 -1664 ((-112) $ (-645 $))) (-15 -4205 ($ $ $)) (-15 -1824 ($ $ $)) (-15 -4205 ($ $ $ |t#3|)) (-15 -1824 ($ $ $ |t#3|)) (-15 -1491 ($ $ $)) (-15 -2767 ($ $ $)) (-15 -1491 ($ $ $ |t#3|)) (-15 -2767 ($ $ $ |t#3|)) (-15 -3983 ((-2 (|:| -3694 $) (|:| |gap| (-772)) (|:| -4194 $)) $ $)) (-15 -3983 ((-2 (|:| -3694 $) (|:| |gap| (-772)) (|:| -4194 $)) $ $ |t#3|)) (-15 -2521 ((-2 (|:| -3694 $) (|:| |gap| (-772)) (|:| -3102 $) (|:| -4194 $)) $ $)) (-15 -2521 ((-2 (|:| -3694 $) (|:| |gap| (-772)) (|:| -3102 $) (|:| -4194 $)) $ $ |t#3|)) (-15 -3708 ((-2 (|:| -3102 $) (|:| -4194 $)) $ $)) (-15 -1838 ($ $ $)) (-15 -1451 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2673 (-772))) $ $)) (-15 -4164 ($ $ $)) (-15 -3159 ($ $ $)) (IF (|has| |t#3| (-615 (-1178))) (PROGN (-6 (-614 (-954 |t#1|))) (-6 (-615 (-954 |t#1|))) (IF (|has| |t#1| (-38 (-410 (-567)))) (PROGN (-15 -3753 ((-3 $ "failed") (-954 (-410 (-567))))) (-15 -2038 ($ (-954 (-410 (-567))))) (-15 -3893 ($ (-954 (-410 (-567))))) (-15 -3753 ((-3 $ "failed") (-954 (-567)))) (-15 -2038 ($ (-954 (-567)))) (-15 -3893 ($ (-954 (-567)))) (IF (|has| |t#1| (-994 (-567))) |%noBranch| (PROGN (-15 -3753 ((-3 $ "failed") (-954 |t#1|))) (-15 -2038 ($ (-954 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-567))) (IF (|has| |t#1| (-38 (-410 (-567)))) |%noBranch| (PROGN (-15 -3753 ((-3 $ "failed") (-954 (-567)))) (-15 -2038 ($ (-954 (-567)))) (-15 -3893 ($ (-954 (-567)))) (IF (|has| |t#1| (-548)) |%noBranch| (PROGN (-15 -3753 ((-3 $ "failed") (-954 |t#1|))) (-15 -2038 ($ (-954 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-567))) |%noBranch| (IF (|has| |t#1| (-38 (-410 (-567)))) |%noBranch| (PROGN (-15 -3753 ((-3 $ "failed") (-954 |t#1|))) (-15 -2038 ($ (-954 |t#1|)))))) (-15 -3893 ($ (-954 |t#1|))) (IF (|has| |t#1| (-1040 (-567))) (-6 (-615 (-1160))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-559)) (PROGN (-15 -3395 ($ $)) (-15 -3411 ($ $)) (-15 -3288 ($ $ |t#1|)) (-15 -1772 ($ $ |t#1|)) (-15 -3288 ($ $ $)) (-15 -1772 ($ $ $)) (-15 -2323 ($ $ $)) (-15 -1893 ((-2 (|:| -2774 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -4348 ((-2 (|:| -2774 $) (|:| |coef1| $)) $ $)) (-15 -3521 ((-2 (|:| -2774 $) (|:| |coef2| $)) $ $)) (-15 -2951 ($ $ $)) (-15 -1734 ((-645 $) $ $)) (-15 -2272 ($ $ $)) (-15 -1875 ($ $ $ (-772))) (-15 -2097 ($ $ $ $ (-772))) (-15 -2689 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-455)) (PROGN (-15 -2774 (|t#1| |t#1| $)) (-15 -2872 ($ $)) (-15 -2091 ($ $)) (-15 -4146 ($ $)) (-15 -2964 ($ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-410 (-567)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #0#) -2800 (|has| |#1| (-1040 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567))))) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-617 |#3|) . T) ((-617 $) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-614 (-863)) . T) ((-614 (-954 |#1|)) |has| |#3| (-615 (-1178))) ((-172) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-615 (-539)) -12 (|has| |#1| (-615 (-539))) (|has| |#3| (-615 (-539)))) ((-615 (-894 (-381))) -12 (|has| |#1| (-615 (-894 (-381)))) (|has| |#3| (-615 (-894 (-381))))) ((-615 (-894 (-567))) -12 (|has| |#1| (-615 (-894 (-567)))) (|has| |#3| (-615 (-894 (-567))))) ((-615 (-954 |#1|)) |has| |#3| (-615 (-1178))) ((-615 (-1160)) -12 (|has| |#1| (-1040 (-567))) (|has| |#3| (-615 (-1178)))) ((-291) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-310 $) . T) ((-327 |#1| |#2|) . T) ((-379 |#1|) . T) ((-414 |#1|) . T) ((-455) -2800 (|has| |#1| (-911)) (|has| |#1| (-455))) ((-517 |#3| |#1|) . T) ((-517 |#3| $) . T) ((-517 $ $) . T) ((-559) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-647 #0#) |has| |#1| (-38 (-410 (-567)))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) |has| |#1| (-38 (-410 (-567)))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) |has| |#1| (-38 (-410 (-567)))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-640 (-567)) |has| |#1| (-640 (-567))) ((-640 |#1|) . T) ((-718 #0#) |has| |#1| (-38 (-410 (-567)))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-727) . T) ((-902 |#3|) . T) ((-888 (-381)) -12 (|has| |#1| (-888 (-381))) (|has| |#3| (-888 (-381)))) ((-888 (-567)) -12 (|has| |#1| (-888 (-567))) (|has| |#3| (-888 (-567)))) ((-951 |#1| |#2| |#3|) . T) ((-911) |has| |#1| (-911)) ((-1040 (-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) ((-1040 (-567)) |has| |#1| (-1040 (-567))) ((-1040 |#1|) . T) ((-1040 |#3|) . T) ((-1053 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1053 |#1|) . T) ((-1053 $) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-1058 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1058 |#1|) . T) ((-1058 $) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1222) |has| |#1| (-911)))
-((-2403 (((-112) $ $) NIL)) (-1419 (((-1160) $) NIL)) (-3653 (((-645 (-1137)) $) 18)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 27) (($ (-1183)) NIL) (((-1183) $) NIL)) (-2006 (((-1137) $) 20)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)))
-(((-1068) (-13 (-1085) (-10 -8 (-15 -3653 ((-645 (-1137)) $)) (-15 -2006 ((-1137) $))))) (T -1068))
-((-3653 (*1 *2 *1) (-12 (-5 *2 (-645 (-1137))) (-5 *1 (-1068)))) (-2006 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1068)))))
-(-13 (-1085) (-10 -8 (-15 -3653 ((-645 (-1137)) $)) (-15 -2006 ((-1137) $))))
-((-2460 (((-112) |#3| $) 15)) (-3483 (((-3 $ "failed") |#3| (-923)) 29)) (-2109 (((-3 |#3| "failed") |#3| $) 45)) (-4336 (((-112) |#3| $) 19)) (-3494 (((-112) |#3| $) 17)))
-(((-1069 |#1| |#2| |#3|) (-10 -8 (-15 -3483 ((-3 |#1| "failed") |#3| (-923))) (-15 -2109 ((-3 |#3| "failed") |#3| |#1|)) (-15 -4336 ((-112) |#3| |#1|)) (-15 -3494 ((-112) |#3| |#1|)) (-15 -2460 ((-112) |#3| |#1|))) (-1070 |#2| |#3|) (-13 (-849) (-365)) (-1244 |#2|)) (T -1069))
-NIL
-(-10 -8 (-15 -3483 ((-3 |#1| "failed") |#3| (-923))) (-15 -2109 ((-3 |#3| "failed") |#3| |#1|)) (-15 -4336 ((-112) |#3| |#1|)) (-15 -3494 ((-112) |#3| |#1|)) (-15 -2460 ((-112) |#3| |#1|)))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) |#2| $) 22)) (-1750 (((-567) |#2| $) 23)) (-3483 (((-3 $ "failed") |#2| (-923)) 16)) (-4122 ((|#1| |#2| $ |#1|) 14)) (-2109 (((-3 |#2| "failed") |#2| $) 19)) (-4336 (((-112) |#2| $) 20)) (-3494 (((-112) |#2| $) 21)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-3341 ((|#2| $) 18)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-3050 ((|#1| |#2| $ |#1|) 15)) (-4262 (((-645 $) |#2|) 17)) (-2936 (((-112) $ $) 6)))
-(((-1070 |#1| |#2|) (-140) (-13 (-849) (-365)) (-1244 |t#1|)) (T -1070))
-((-1750 (*1 *2 *3 *1) (-12 (-4 *1 (-1070 *4 *3)) (-4 *4 (-13 (-849) (-365))) (-4 *3 (-1244 *4)) (-5 *2 (-567)))) (-2460 (*1 *2 *3 *1) (-12 (-4 *1 (-1070 *4 *3)) (-4 *4 (-13 (-849) (-365))) (-4 *3 (-1244 *4)) (-5 *2 (-112)))) (-3494 (*1 *2 *3 *1) (-12 (-4 *1 (-1070 *4 *3)) (-4 *4 (-13 (-849) (-365))) (-4 *3 (-1244 *4)) (-5 *2 (-112)))) (-4336 (*1 *2 *3 *1) (-12 (-4 *1 (-1070 *4 *3)) (-4 *4 (-13 (-849) (-365))) (-4 *3 (-1244 *4)) (-5 *2 (-112)))) (-2109 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1070 *3 *2)) (-4 *3 (-13 (-849) (-365))) (-4 *2 (-1244 *3)))) (-3341 (*1 *2 *1) (-12 (-4 *1 (-1070 *3 *2)) (-4 *3 (-13 (-849) (-365))) (-4 *2 (-1244 *3)))) (-4262 (*1 *2 *3) (-12 (-4 *4 (-13 (-849) (-365))) (-4 *3 (-1244 *4)) (-5 *2 (-645 *1)) (-4 *1 (-1070 *4 *3)))) (-3483 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-923)) (-4 *4 (-13 (-849) (-365))) (-4 *1 (-1070 *4 *2)) (-4 *2 (-1244 *4)))) (-3050 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1070 *2 *3)) (-4 *2 (-13 (-849) (-365))) (-4 *3 (-1244 *2)))) (-4122 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1070 *2 *3)) (-4 *2 (-13 (-849) (-365))) (-4 *3 (-1244 *2)))))
-(-13 (-1102) (-10 -8 (-15 -1750 ((-567) |t#2| $)) (-15 -2460 ((-112) |t#2| $)) (-15 -3494 ((-112) |t#2| $)) (-15 -4336 ((-112) |t#2| $)) (-15 -2109 ((-3 |t#2| "failed") |t#2| $)) (-15 -3341 (|t#2| $)) (-15 -4262 ((-645 $) |t#2|)) (-15 -3483 ((-3 $ "failed") |t#2| (-923))) (-15 -3050 (|t#1| |t#2| $ |t#1|)) (-15 -4122 (|t#1| |t#2| $ |t#1|))))
+((-2072 (*1 *2 *1) (-12 (-4 *1 (-1067 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *2 (-851)))) (-3780 (*1 *2 *1) (-12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-772)))) (-2694 (*1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)))) (-1523 (*1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)))) (-4284 (*1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)))) (-2367 (*1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)))) (-2174 (*1 *2 *1) (-12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-1067 *3 *4 *5)))) (-4038 (*1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)))) (-2996 (*1 *1 *1 *2) (-12 (-4 *1 (-1067 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *2 (-851)))) (-3023 (*1 *1 *1 *2) (-12 (-4 *1 (-1067 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *2 (-851)))) (-2366 (*1 *2 *1) (-12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)))) (-1688 (*1 *2 *1) (-12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)))) (-2059 (*1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)))) (-3248 (*1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)))) (-4221 (*1 *2 *1) (-12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-1067 *3 *4 *5)))) (-1637 (*1 *2 *1) (-12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-1067 *3 *4 *5)))) (-2843 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)))) (-3995 (*1 *2 *1 *1) (-12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)))) (-2206 (*1 *2 *1 *1) (-12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)))) (-2240 (*1 *2 *1 *1) (-12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)))) (-2240 (*1 *2 *1 *3) (-12 (-5 *3 (-645 *1)) (-4 *1 (-1067 *4 *5 *6)) (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)))) (-4278 (*1 *2 *1 *1) (-12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)))) (-4278 (*1 *2 *1 *3) (-12 (-5 *3 (-645 *1)) (-4 *1 (-1067 *4 *5 *6)) (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)))) (-3324 (*1 *2 *1 *1) (-12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)))) (-3324 (*1 *2 *1 *3) (-12 (-5 *3 (-645 *1)) (-4 *1 (-1067 *4 *5 *6)) (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)))) (-4061 (*1 *2 *1 *1) (-12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)))) (-4061 (*1 *2 *1 *3) (-12 (-5 *3 (-645 *1)) (-4 *1 (-1067 *4 *5 *6)) (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)))) (-1811 (*1 *1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)))) (-1776 (*1 *1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)))) (-1811 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1067 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *2 (-851)))) (-1776 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1067 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *2 (-851)))) (-3795 (*1 *1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)))) (-2349 (*1 *1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)))) (-3795 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1067 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *2 (-851)))) (-2349 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1067 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *2 (-851)))) (-1827 (*1 *2 *1 *1) (-12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-2 (|:| -3705 *1) (|:| |gap| (-772)) (|:| -2023 *1))) (-4 *1 (-1067 *3 *4 *5)))) (-1827 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *3 (-851)) (-5 *2 (-2 (|:| -3705 *1) (|:| |gap| (-772)) (|:| -2023 *1))) (-4 *1 (-1067 *4 *5 *3)))) (-4040 (*1 *2 *1 *1) (-12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-2 (|:| -3705 *1) (|:| |gap| (-772)) (|:| -2654 *1) (|:| -2023 *1))) (-4 *1 (-1067 *3 *4 *5)))) (-4040 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *3 (-851)) (-5 *2 (-2 (|:| -3705 *1) (|:| |gap| (-772)) (|:| -2654 *1) (|:| -2023 *1))) (-4 *1 (-1067 *4 *5 *3)))) (-3410 (*1 *2 *1 *1) (-12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-2 (|:| -2654 *1) (|:| -2023 *1))) (-4 *1 (-1067 *3 *4 *5)))) (-2617 (*1 *1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)))) (-3014 (*1 *2 *1 *1) (-12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -1921 (-772)))) (-4 *1 (-1067 *3 *4 *5)))) (-3984 (*1 *1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)))) (-1431 (*1 *1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-954 (-410 (-567)))) (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1179))) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)))) (-2051 (*1 *1 *2) (-12 (-5 *2 (-954 (-410 (-567)))) (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1179))) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)))) (-3902 (*1 *1 *2) (-12 (-5 *2 (-954 (-410 (-567)))) (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1179))) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)))) (-3765 (*1 *1 *2) (|partial| -2811 (-12 (-5 *2 (-954 (-567))) (-4 *1 (-1067 *3 *4 *5)) (-12 (-1673 (-4 *3 (-38 (-410 (-567))))) (-4 *3 (-38 (-567))) (-4 *5 (-615 (-1179)))) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851))) (-12 (-5 *2 (-954 (-567))) (-4 *1 (-1067 *3 *4 *5)) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1179)))) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851))))) (-2051 (*1 *1 *2) (-2811 (-12 (-5 *2 (-954 (-567))) (-4 *1 (-1067 *3 *4 *5)) (-12 (-1673 (-4 *3 (-38 (-410 (-567))))) (-4 *3 (-38 (-567))) (-4 *5 (-615 (-1179)))) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851))) (-12 (-5 *2 (-954 (-567))) (-4 *1 (-1067 *3 *4 *5)) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1179)))) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851))))) (-3902 (*1 *1 *2) (-2811 (-12 (-5 *2 (-954 (-567))) (-4 *1 (-1067 *3 *4 *5)) (-12 (-1673 (-4 *3 (-38 (-410 (-567))))) (-4 *3 (-38 (-567))) (-4 *5 (-615 (-1179)))) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851))) (-12 (-5 *2 (-954 (-567))) (-4 *1 (-1067 *3 *4 *5)) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1179)))) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851))))) (-3765 (*1 *1 *2) (|partial| -2811 (-12 (-5 *2 (-954 *3)) (-12 (-1673 (-4 *3 (-38 (-410 (-567))))) (-1673 (-4 *3 (-38 (-567)))) (-4 *5 (-615 (-1179)))) (-4 *3 (-1051)) (-4 *1 (-1067 *3 *4 *5)) (-4 *4 (-794)) (-4 *5 (-851))) (-12 (-5 *2 (-954 *3)) (-12 (-1673 (-4 *3 (-548))) (-1673 (-4 *3 (-38 (-410 (-567))))) (-4 *3 (-38 (-567))) (-4 *5 (-615 (-1179)))) (-4 *3 (-1051)) (-4 *1 (-1067 *3 *4 *5)) (-4 *4 (-794)) (-4 *5 (-851))) (-12 (-5 *2 (-954 *3)) (-12 (-1673 (-4 *3 (-994 (-567)))) (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1179)))) (-4 *3 (-1051)) (-4 *1 (-1067 *3 *4 *5)) (-4 *4 (-794)) (-4 *5 (-851))))) (-2051 (*1 *1 *2) (-2811 (-12 (-5 *2 (-954 *3)) (-12 (-1673 (-4 *3 (-38 (-410 (-567))))) (-1673 (-4 *3 (-38 (-567)))) (-4 *5 (-615 (-1179)))) (-4 *3 (-1051)) (-4 *1 (-1067 *3 *4 *5)) (-4 *4 (-794)) (-4 *5 (-851))) (-12 (-5 *2 (-954 *3)) (-12 (-1673 (-4 *3 (-548))) (-1673 (-4 *3 (-38 (-410 (-567))))) (-4 *3 (-38 (-567))) (-4 *5 (-615 (-1179)))) (-4 *3 (-1051)) (-4 *1 (-1067 *3 *4 *5)) (-4 *4 (-794)) (-4 *5 (-851))) (-12 (-5 *2 (-954 *3)) (-12 (-1673 (-4 *3 (-994 (-567)))) (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1179)))) (-4 *3 (-1051)) (-4 *1 (-1067 *3 *4 *5)) (-4 *4 (-794)) (-4 *5 (-851))))) (-3902 (*1 *1 *2) (-12 (-5 *2 (-954 *3)) (-4 *3 (-1051)) (-4 *1 (-1067 *3 *4 *5)) (-4 *5 (-615 (-1179))) (-4 *4 (-794)) (-4 *5 (-851)))) (-1313 (*1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-559)))) (-2389 (*1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-559)))) (-2779 (*1 *1 *1 *2) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-559)))) (-4242 (*1 *1 *1 *2) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-559)))) (-2779 (*1 *1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-559)))) (-4242 (*1 *1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-559)))) (-3479 (*1 *1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-559)))) (-3583 (*1 *2 *1 *1) (-12 (-4 *3 (-559)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-2 (|:| -2785 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1067 *3 *4 *5)))) (-2010 (*1 *2 *1 *1) (-12 (-4 *3 (-559)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-2 (|:| -2785 *1) (|:| |coef1| *1))) (-4 *1 (-1067 *3 *4 *5)))) (-4265 (*1 *2 *1 *1) (-12 (-4 *3 (-559)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-2 (|:| -2785 *1) (|:| |coef2| *1))) (-4 *1 (-1067 *3 *4 *5)))) (-3554 (*1 *1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-559)))) (-1750 (*1 *2 *1 *1) (-12 (-4 *3 (-559)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-1067 *3 *4 *5)))) (-2588 (*1 *1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-559)))) (-2215 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *3 (-559)))) (-3285 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *3 (-559)))) (-3435 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-559)))) (-2785 (*1 *2 *2 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-455)))) (-1816 (*1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-455)))) (-3916 (*1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-455)))) (-3840 (*1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-455)))) (-2326 (*1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-455)))))
+(-13 (-951 |t#1| |t#2| |t#3|) (-10 -8 (-15 -2072 (|t#3| $)) (-15 -3780 ((-772) $)) (-15 -2694 ($ $)) (-15 -1523 ($ $)) (-15 -4284 ($ $)) (-15 -2367 ($ $)) (-15 -2174 ((-645 $) $)) (-15 -4038 ($ $)) (-15 -2996 ($ $ |t#3|)) (-15 -3023 ($ $ |t#3|)) (-15 -2366 ((-112) $)) (-15 -1688 ((-112) $)) (-15 -2059 ($ $)) (-15 -3248 ($ $)) (-15 -4221 ((-645 $) $)) (-15 -1637 ((-645 $) $)) (-15 -2843 ((-3 (-112) "failed") $ $)) (-15 -3995 ((-112) $ $)) (-15 -2206 ((-112) $ $)) (-15 -2240 ((-112) $ $)) (-15 -2240 ((-112) $ (-645 $))) (-15 -4278 ((-112) $ $)) (-15 -4278 ((-112) $ (-645 $))) (-15 -3324 ((-112) $ $)) (-15 -3324 ((-112) $ (-645 $))) (-15 -4061 ((-112) $ $)) (-15 -4061 ((-112) $ (-645 $))) (-15 -1811 ($ $ $)) (-15 -1776 ($ $ $)) (-15 -1811 ($ $ $ |t#3|)) (-15 -1776 ($ $ $ |t#3|)) (-15 -3795 ($ $ $)) (-15 -2349 ($ $ $)) (-15 -3795 ($ $ $ |t#3|)) (-15 -2349 ($ $ $ |t#3|)) (-15 -1827 ((-2 (|:| -3705 $) (|:| |gap| (-772)) (|:| -2023 $)) $ $)) (-15 -1827 ((-2 (|:| -3705 $) (|:| |gap| (-772)) (|:| -2023 $)) $ $ |t#3|)) (-15 -4040 ((-2 (|:| -3705 $) (|:| |gap| (-772)) (|:| -2654 $) (|:| -2023 $)) $ $)) (-15 -4040 ((-2 (|:| -3705 $) (|:| |gap| (-772)) (|:| -2654 $) (|:| -2023 $)) $ $ |t#3|)) (-15 -3410 ((-2 (|:| -2654 $) (|:| -2023 $)) $ $)) (-15 -2617 ($ $ $)) (-15 -3014 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1921 (-772))) $ $)) (-15 -3984 ($ $ $)) (-15 -1431 ($ $ $)) (IF (|has| |t#3| (-615 (-1179))) (PROGN (-6 (-614 (-954 |t#1|))) (-6 (-615 (-954 |t#1|))) (IF (|has| |t#1| (-38 (-410 (-567)))) (PROGN (-15 -3765 ((-3 $ "failed") (-954 (-410 (-567))))) (-15 -2051 ($ (-954 (-410 (-567))))) (-15 -3902 ($ (-954 (-410 (-567))))) (-15 -3765 ((-3 $ "failed") (-954 (-567)))) (-15 -2051 ($ (-954 (-567)))) (-15 -3902 ($ (-954 (-567)))) (IF (|has| |t#1| (-994 (-567))) |%noBranch| (PROGN (-15 -3765 ((-3 $ "failed") (-954 |t#1|))) (-15 -2051 ($ (-954 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-567))) (IF (|has| |t#1| (-38 (-410 (-567)))) |%noBranch| (PROGN (-15 -3765 ((-3 $ "failed") (-954 (-567)))) (-15 -2051 ($ (-954 (-567)))) (-15 -3902 ($ (-954 (-567)))) (IF (|has| |t#1| (-548)) |%noBranch| (PROGN (-15 -3765 ((-3 $ "failed") (-954 |t#1|))) (-15 -2051 ($ (-954 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-567))) |%noBranch| (IF (|has| |t#1| (-38 (-410 (-567)))) |%noBranch| (PROGN (-15 -3765 ((-3 $ "failed") (-954 |t#1|))) (-15 -2051 ($ (-954 |t#1|)))))) (-15 -3902 ($ (-954 |t#1|))) (IF (|has| |t#1| (-1040 (-567))) (-6 (-615 (-1161))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-559)) (PROGN (-15 -1313 ($ $)) (-15 -2389 ($ $)) (-15 -2779 ($ $ |t#1|)) (-15 -4242 ($ $ |t#1|)) (-15 -2779 ($ $ $)) (-15 -4242 ($ $ $)) (-15 -3479 ($ $ $)) (-15 -3583 ((-2 (|:| -2785 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2010 ((-2 (|:| -2785 $) (|:| |coef1| $)) $ $)) (-15 -4265 ((-2 (|:| -2785 $) (|:| |coef2| $)) $ $)) (-15 -3554 ($ $ $)) (-15 -1750 ((-645 $) $ $)) (-15 -2588 ($ $ $)) (-15 -2215 ($ $ $ (-772))) (-15 -3285 ($ $ $ $ (-772))) (-15 -3435 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-455)) (PROGN (-15 -2785 (|t#1| |t#1| $)) (-15 -1816 ($ $)) (-15 -3916 ($ $)) (-15 -3840 ($ $)) (-15 -2326 ($ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2811 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-410 (-567)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2811 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #0#) -2811 (|has| |#1| (-1040 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567))))) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-617 |#3|) . T) ((-617 $) -2811 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-614 (-863)) . T) ((-614 (-954 |#1|)) |has| |#3| (-615 (-1179))) ((-172) -2811 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-615 (-539)) -12 (|has| |#1| (-615 (-539))) (|has| |#3| (-615 (-539)))) ((-615 (-894 (-381))) -12 (|has| |#1| (-615 (-894 (-381)))) (|has| |#3| (-615 (-894 (-381))))) ((-615 (-894 (-567))) -12 (|has| |#1| (-615 (-894 (-567)))) (|has| |#3| (-615 (-894 (-567))))) ((-615 (-954 |#1|)) |has| |#3| (-615 (-1179))) ((-615 (-1161)) -12 (|has| |#1| (-1040 (-567))) (|has| |#3| (-615 (-1179)))) ((-291) -2811 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-310 $) . T) ((-327 |#1| |#2|) . T) ((-379 |#1|) . T) ((-414 |#1|) . T) ((-455) -2811 (|has| |#1| (-911)) (|has| |#1| (-455))) ((-517 |#3| |#1|) . T) ((-517 |#3| $) . T) ((-517 $ $) . T) ((-559) -2811 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-647 #0#) |has| |#1| (-38 (-410 (-567)))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) |has| |#1| (-38 (-410 (-567)))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) |has| |#1| (-38 (-410 (-567)))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) -2811 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-640 (-567)) |has| |#1| (-640 (-567))) ((-640 |#1|) . T) ((-718 #0#) |has| |#1| (-38 (-410 (-567)))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) -2811 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-727) . T) ((-902 |#3|) . T) ((-888 (-381)) -12 (|has| |#1| (-888 (-381))) (|has| |#3| (-888 (-381)))) ((-888 (-567)) -12 (|has| |#1| (-888 (-567))) (|has| |#3| (-888 (-567)))) ((-951 |#1| |#2| |#3|) . T) ((-911) |has| |#1| (-911)) ((-1040 (-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) ((-1040 (-567)) |has| |#1| (-1040 (-567))) ((-1040 |#1|) . T) ((-1040 |#3|) . T) ((-1053 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1053 |#1|) . T) ((-1053 $) -2811 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-1058 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1058 |#1|) . T) ((-1058 $) -2811 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1223) |has| |#1| (-911)))
+((-2412 (((-112) $ $) NIL)) (-2516 (((-1161) $) NIL)) (-3662 (((-645 (-1137)) $) 18)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) 27) (($ (-1184)) NIL) (((-1184) $) NIL)) (-2017 (((-1137) $) 20)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)))
+(((-1068) (-13 (-1085) (-10 -8 (-15 -3662 ((-645 (-1137)) $)) (-15 -2017 ((-1137) $))))) (T -1068))
+((-3662 (*1 *2 *1) (-12 (-5 *2 (-645 (-1137))) (-5 *1 (-1068)))) (-2017 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1068)))))
+(-13 (-1085) (-10 -8 (-15 -3662 ((-645 (-1137)) $)) (-15 -2017 ((-1137) $))))
+((-3791 (((-112) |#3| $) 15)) (-3940 (((-3 $ "failed") |#3| (-923)) 29)) (-3588 (((-3 |#3| "failed") |#3| $) 45)) (-3137 (((-112) |#3| $) 19)) (-3465 (((-112) |#3| $) 17)))
+(((-1069 |#1| |#2| |#3|) (-10 -8 (-15 -3940 ((-3 |#1| "failed") |#3| (-923))) (-15 -3588 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3137 ((-112) |#3| |#1|)) (-15 -3465 ((-112) |#3| |#1|)) (-15 -3791 ((-112) |#3| |#1|))) (-1070 |#2| |#3|) (-13 (-849) (-365)) (-1245 |#2|)) (T -1069))
+NIL
+(-10 -8 (-15 -3940 ((-3 |#1| "failed") |#3| (-923))) (-15 -3588 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3137 ((-112) |#3| |#1|)) (-15 -3465 ((-112) |#3| |#1|)) (-15 -3791 ((-112) |#3| |#1|)))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) |#2| $) 22)) (-2677 (((-567) |#2| $) 23)) (-3940 (((-3 $ "failed") |#2| (-923)) 16)) (-2711 ((|#1| |#2| $ |#1|) 14)) (-3588 (((-3 |#2| "failed") |#2| $) 19)) (-3137 (((-112) |#2| $) 20)) (-3465 (((-112) |#2| $) 21)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-3169 ((|#2| $) 18)) (-4129 (((-863) $) 12)) (-3357 (((-112) $ $) 9)) (-3058 ((|#1| |#2| $ |#1|) 15)) (-1564 (((-645 $) |#2|) 17)) (-2946 (((-112) $ $) 6)))
+(((-1070 |#1| |#2|) (-140) (-13 (-849) (-365)) (-1245 |t#1|)) (T -1070))
+((-2677 (*1 *2 *3 *1) (-12 (-4 *1 (-1070 *4 *3)) (-4 *4 (-13 (-849) (-365))) (-4 *3 (-1245 *4)) (-5 *2 (-567)))) (-3791 (*1 *2 *3 *1) (-12 (-4 *1 (-1070 *4 *3)) (-4 *4 (-13 (-849) (-365))) (-4 *3 (-1245 *4)) (-5 *2 (-112)))) (-3465 (*1 *2 *3 *1) (-12 (-4 *1 (-1070 *4 *3)) (-4 *4 (-13 (-849) (-365))) (-4 *3 (-1245 *4)) (-5 *2 (-112)))) (-3137 (*1 *2 *3 *1) (-12 (-4 *1 (-1070 *4 *3)) (-4 *4 (-13 (-849) (-365))) (-4 *3 (-1245 *4)) (-5 *2 (-112)))) (-3588 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1070 *3 *2)) (-4 *3 (-13 (-849) (-365))) (-4 *2 (-1245 *3)))) (-3169 (*1 *2 *1) (-12 (-4 *1 (-1070 *3 *2)) (-4 *3 (-13 (-849) (-365))) (-4 *2 (-1245 *3)))) (-1564 (*1 *2 *3) (-12 (-4 *4 (-13 (-849) (-365))) (-4 *3 (-1245 *4)) (-5 *2 (-645 *1)) (-4 *1 (-1070 *4 *3)))) (-3940 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-923)) (-4 *4 (-13 (-849) (-365))) (-4 *1 (-1070 *4 *2)) (-4 *2 (-1245 *4)))) (-3058 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1070 *2 *3)) (-4 *2 (-13 (-849) (-365))) (-4 *3 (-1245 *2)))) (-2711 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1070 *2 *3)) (-4 *2 (-13 (-849) (-365))) (-4 *3 (-1245 *2)))))
+(-13 (-1102) (-10 -8 (-15 -2677 ((-567) |t#2| $)) (-15 -3791 ((-112) |t#2| $)) (-15 -3465 ((-112) |t#2| $)) (-15 -3137 ((-112) |t#2| $)) (-15 -3588 ((-3 |t#2| "failed") |t#2| $)) (-15 -3169 (|t#2| $)) (-15 -1564 ((-645 $) |t#2|)) (-15 -3940 ((-3 $ "failed") |t#2| (-923))) (-15 -3058 (|t#1| |t#2| $ |t#1|)) (-15 -2711 (|t#1| |t#2| $ |t#1|))))
(((-102) . T) ((-614 (-863)) . T) ((-1102) . T))
-((-2595 (((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) (-645 |#4|) (-645 |#5|) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) (-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) (-772)) 115)) (-3958 (((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) |#4| |#5| (-772)) 63)) (-3262 (((-1273) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) (-772)) 100)) (-3252 (((-772) (-645 |#4|) (-645 |#5|)) 30)) (-3574 (((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) |#4| |#5|) 66) (((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) |#4| |#5| (-772)) 65) (((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) |#4| |#5| (-772) (-112)) 67)) (-2532 (((-645 |#5|) (-645 |#4|) (-645 |#5|) (-112) (-112) (-112) (-112) (-112)) 86) (((-645 |#5|) (-645 |#4|) (-645 |#5|) (-112) (-112)) 87)) (-3893 (((-1160) (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) 92)) (-1836 (((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) |#4| |#5| (-112)) 62)) (-4230 (((-772) (-645 |#4|) (-645 |#5|)) 21)))
-(((-1071 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4230 ((-772) (-645 |#4|) (-645 |#5|))) (-15 -3252 ((-772) (-645 |#4|) (-645 |#5|))) (-15 -1836 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) |#4| |#5| (-112))) (-15 -3958 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) |#4| |#5| (-772))) (-15 -3958 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) |#4| |#5|)) (-15 -3574 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) |#4| |#5| (-772) (-112))) (-15 -3574 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) |#4| |#5| (-772))) (-15 -3574 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) |#4| |#5|)) (-15 -2532 ((-645 |#5|) (-645 |#4|) (-645 |#5|) (-112) (-112))) (-15 -2532 ((-645 |#5|) (-645 |#4|) (-645 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2595 ((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) (-645 |#4|) (-645 |#5|) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) (-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) (-772))) (-15 -3893 ((-1160) (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|)))) (-15 -3262 ((-1273) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) (-772)))) (-455) (-794) (-851) (-1067 |#1| |#2| |#3|) (-1073 |#1| |#2| |#3| |#4|)) (T -1071))
-((-3262 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-2 (|:| |val| (-645 *8)) (|:| -2566 *9)))) (-5 *4 (-772)) (-4 *8 (-1067 *5 *6 *7)) (-4 *9 (-1073 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-1273)) (-5 *1 (-1071 *5 *6 *7 *8 *9)))) (-3893 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-645 *7)) (|:| -2566 *8))) (-4 *7 (-1067 *4 *5 *6)) (-4 *8 (-1073 *4 *5 *6 *7)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-1160)) (-5 *1 (-1071 *4 *5 *6 *7 *8)))) (-2595 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-645 *11)) (|:| |todo| (-645 (-2 (|:| |val| *3) (|:| -2566 *11)))))) (-5 *6 (-772)) (-5 *2 (-645 (-2 (|:| |val| (-645 *10)) (|:| -2566 *11)))) (-5 *3 (-645 *10)) (-5 *4 (-645 *11)) (-4 *10 (-1067 *7 *8 *9)) (-4 *11 (-1073 *7 *8 *9 *10)) (-4 *7 (-455)) (-4 *8 (-794)) (-4 *9 (-851)) (-5 *1 (-1071 *7 *8 *9 *10 *11)))) (-2532 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-645 *9)) (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7)) (-4 *9 (-1073 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-1071 *5 *6 *7 *8 *9)))) (-2532 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-645 *9)) (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7)) (-4 *9 (-1073 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-1071 *5 *6 *7 *8 *9)))) (-3574 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-645 *4)) (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2566 *4)))))) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-3574 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-772)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *3 (-1067 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-645 *4)) (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2566 *4)))))) (-5 *1 (-1071 *6 *7 *8 *3 *4)) (-4 *4 (-1073 *6 *7 *8 *3)))) (-3574 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-772)) (-5 *6 (-112)) (-4 *7 (-455)) (-4 *8 (-794)) (-4 *9 (-851)) (-4 *3 (-1067 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-645 *4)) (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2566 *4)))))) (-5 *1 (-1071 *7 *8 *9 *3 *4)) (-4 *4 (-1073 *7 *8 *9 *3)))) (-3958 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-645 *4)) (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2566 *4)))))) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-3958 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-772)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *3 (-1067 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-645 *4)) (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2566 *4)))))) (-5 *1 (-1071 *6 *7 *8 *3 *4)) (-4 *4 (-1073 *6 *7 *8 *3)))) (-1836 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *3 (-1067 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-645 *4)) (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2566 *4)))))) (-5 *1 (-1071 *6 *7 *8 *3 *4)) (-4 *4 (-1073 *6 *7 *8 *3)))) (-3252 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 *9)) (-4 *8 (-1067 *5 *6 *7)) (-4 *9 (-1073 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-772)) (-5 *1 (-1071 *5 *6 *7 *8 *9)))) (-4230 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 *9)) (-4 *8 (-1067 *5 *6 *7)) (-4 *9 (-1073 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-772)) (-5 *1 (-1071 *5 *6 *7 *8 *9)))))
-(-10 -7 (-15 -4230 ((-772) (-645 |#4|) (-645 |#5|))) (-15 -3252 ((-772) (-645 |#4|) (-645 |#5|))) (-15 -1836 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) |#4| |#5| (-112))) (-15 -3958 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) |#4| |#5| (-772))) (-15 -3958 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) |#4| |#5|)) (-15 -3574 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) |#4| |#5| (-772) (-112))) (-15 -3574 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) |#4| |#5| (-772))) (-15 -3574 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) |#4| |#5|)) (-15 -2532 ((-645 |#5|) (-645 |#4|) (-645 |#5|) (-112) (-112))) (-15 -2532 ((-645 |#5|) (-645 |#4|) (-645 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2595 ((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) (-645 |#4|) (-645 |#5|) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) (-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) (-772))) (-15 -3893 ((-1160) (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|)))) (-15 -3262 ((-1273) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) (-772))))
-((-3783 (((-112) |#5| $) 26)) (-1829 (((-112) |#5| $) 29)) (-2127 (((-112) |#5| $) 18) (((-112) $) 52)) (-2370 (((-645 $) |#5| $) NIL) (((-645 $) (-645 |#5|) $) 94) (((-645 $) (-645 |#5|) (-645 $)) 92) (((-645 $) |#5| (-645 $)) 95)) (-2410 (($ $ |#5|) NIL) (((-645 $) |#5| $) NIL) (((-645 $) |#5| (-645 $)) 73) (((-645 $) (-645 |#5|) $) 75) (((-645 $) (-645 |#5|) (-645 $)) 77)) (-4021 (((-645 $) |#5| $) NIL) (((-645 $) |#5| (-645 $)) 64) (((-645 $) (-645 |#5|) $) 69) (((-645 $) (-645 |#5|) (-645 $)) 71)) (-2848 (((-112) |#5| $) 32)))
-(((-1072 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2410 ((-645 |#1|) (-645 |#5|) (-645 |#1|))) (-15 -2410 ((-645 |#1|) (-645 |#5|) |#1|)) (-15 -2410 ((-645 |#1|) |#5| (-645 |#1|))) (-15 -2410 ((-645 |#1|) |#5| |#1|)) (-15 -4021 ((-645 |#1|) (-645 |#5|) (-645 |#1|))) (-15 -4021 ((-645 |#1|) (-645 |#5|) |#1|)) (-15 -4021 ((-645 |#1|) |#5| (-645 |#1|))) (-15 -4021 ((-645 |#1|) |#5| |#1|)) (-15 -2370 ((-645 |#1|) |#5| (-645 |#1|))) (-15 -2370 ((-645 |#1|) (-645 |#5|) (-645 |#1|))) (-15 -2370 ((-645 |#1|) (-645 |#5|) |#1|)) (-15 -2370 ((-645 |#1|) |#5| |#1|)) (-15 -1829 ((-112) |#5| |#1|)) (-15 -2127 ((-112) |#1|)) (-15 -2848 ((-112) |#5| |#1|)) (-15 -3783 ((-112) |#5| |#1|)) (-15 -2127 ((-112) |#5| |#1|)) (-15 -2410 (|#1| |#1| |#5|))) (-1073 |#2| |#3| |#4| |#5|) (-455) (-794) (-851) (-1067 |#2| |#3| |#4|)) (T -1072))
-NIL
-(-10 -8 (-15 -2410 ((-645 |#1|) (-645 |#5|) (-645 |#1|))) (-15 -2410 ((-645 |#1|) (-645 |#5|) |#1|)) (-15 -2410 ((-645 |#1|) |#5| (-645 |#1|))) (-15 -2410 ((-645 |#1|) |#5| |#1|)) (-15 -4021 ((-645 |#1|) (-645 |#5|) (-645 |#1|))) (-15 -4021 ((-645 |#1|) (-645 |#5|) |#1|)) (-15 -4021 ((-645 |#1|) |#5| (-645 |#1|))) (-15 -4021 ((-645 |#1|) |#5| |#1|)) (-15 -2370 ((-645 |#1|) |#5| (-645 |#1|))) (-15 -2370 ((-645 |#1|) (-645 |#5|) (-645 |#1|))) (-15 -2370 ((-645 |#1|) (-645 |#5|) |#1|)) (-15 -2370 ((-645 |#1|) |#5| |#1|)) (-15 -1829 ((-112) |#5| |#1|)) (-15 -2127 ((-112) |#1|)) (-15 -2848 ((-112) |#5| |#1|)) (-15 -3783 ((-112) |#5| |#1|)) (-15 -2127 ((-112) |#5| |#1|)) (-15 -2410 (|#1| |#1| |#5|)))
-((-2403 (((-112) $ $) 7)) (-3487 (((-645 (-2 (|:| -3995 $) (|:| -3823 (-645 |#4|)))) (-645 |#4|)) 86)) (-3244 (((-645 $) (-645 |#4|)) 87) (((-645 $) (-645 |#4|) (-112)) 112)) (-2847 (((-645 |#3|) $) 34)) (-2017 (((-112) $) 27)) (-3623 (((-112) $) 18 (|has| |#1| (-559)))) (-1326 (((-112) |#4| $) 102) (((-112) $) 98)) (-3722 ((|#4| |#4| $) 93)) (-3248 (((-645 (-2 (|:| |val| |#4|) (|:| -2566 $))) |#4| $) 127)) (-4396 (((-2 (|:| |under| $) (|:| -2780 $) (|:| |upper| $)) $ |#3|) 28)) (-3445 (((-112) $ (-772)) 45)) (-3350 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4418))) (((-3 |#4| "failed") $ |#3|) 80)) (-2585 (($) 46 T CONST)) (-1490 (((-112) $) 23 (|has| |#1| (-559)))) (-2752 (((-112) $ $) 25 (|has| |#1| (-559)))) (-4224 (((-112) $ $) 24 (|has| |#1| (-559)))) (-3547 (((-112) $) 26 (|has| |#1| (-559)))) (-1441 (((-645 |#4|) (-645 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1724 (((-645 |#4|) (-645 |#4|) $) 19 (|has| |#1| (-559)))) (-3197 (((-645 |#4|) (-645 |#4|) $) 20 (|has| |#1| (-559)))) (-3753 (((-3 $ "failed") (-645 |#4|)) 37)) (-2038 (($ (-645 |#4|)) 36)) (-2421 (((-3 $ "failed") $) 83)) (-1999 ((|#4| |#4| $) 90)) (-2444 (($ $) 69 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4418))))) (-3238 (($ |#4| $) 68 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4418)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4418)))) (-4194 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-559)))) (-3786 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3730 ((|#4| |#4| $) 88)) (-2477 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4418)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4418))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4418))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1585 (((-2 (|:| -3995 (-645 |#4|)) (|:| -3823 (-645 |#4|))) $) 106)) (-3783 (((-112) |#4| $) 137)) (-1829 (((-112) |#4| $) 134)) (-2127 (((-112) |#4| $) 138) (((-112) $) 135)) (-2777 (((-645 |#4|) $) 53 (|has| $ (-6 -4418)))) (-1664 (((-112) |#4| $) 105) (((-112) $) 104)) (-1679 ((|#3| $) 35)) (-2077 (((-112) $ (-772)) 44)) (-2279 (((-645 |#4|) $) 54 (|has| $ (-6 -4418)))) (-4337 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4418))))) (-3731 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#4| |#4|) $) 48)) (-2826 (((-645 |#3|) $) 33)) (-2808 (((-112) |#3| $) 32)) (-2863 (((-112) $ (-772)) 43)) (-1419 (((-1160) $) 10)) (-3232 (((-3 |#4| (-645 $)) |#4| |#4| $) 129)) (-2272 (((-645 (-2 (|:| |val| |#4|) (|:| -2566 $))) |#4| |#4| $) 128)) (-3257 (((-3 |#4| "failed") $) 84)) (-1756 (((-645 $) |#4| $) 130)) (-4057 (((-3 (-112) (-645 $)) |#4| $) 133)) (-3573 (((-645 (-2 (|:| |val| (-112)) (|:| -2566 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-2370 (((-645 $) |#4| $) 126) (((-645 $) (-645 |#4|) $) 125) (((-645 $) (-645 |#4|) (-645 $)) 124) (((-645 $) |#4| (-645 $)) 123)) (-3101 (($ |#4| $) 118) (($ (-645 |#4|) $) 117)) (-4051 (((-645 |#4|) $) 108)) (-1791 (((-112) |#4| $) 100) (((-112) $) 96)) (-3159 ((|#4| |#4| $) 91)) (-3392 (((-112) $ $) 111)) (-2430 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-559)))) (-2554 (((-112) |#4| $) 101) (((-112) $) 97)) (-4164 ((|#4| |#4| $) 92)) (-3430 (((-1122) $) 11)) (-2409 (((-3 |#4| "failed") $) 85)) (-4128 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-4077 (((-3 $ "failed") $ |#4|) 79)) (-2410 (($ $ |#4|) 78) (((-645 $) |#4| $) 116) (((-645 $) |#4| (-645 $)) 115) (((-645 $) (-645 |#4|) $) 114) (((-645 $) (-645 |#4|) (-645 $)) 113)) (-3025 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 |#4|) (-645 |#4|)) 60 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-295 |#4|)) 58 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-645 (-295 |#4|))) 57 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))))) (-3092 (((-112) $ $) 39)) (-3572 (((-112) $) 42)) (-3498 (($) 41)) (-3077 (((-772) $) 107)) (-3439 (((-772) |#4| $) 55 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4418)))) (((-772) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4418)))) (-4305 (($ $) 40)) (-3893 (((-539) $) 70 (|has| |#4| (-615 (-539))))) (-4147 (($ (-645 |#4|)) 61)) (-2397 (($ $ |#3|) 29)) (-2120 (($ $ |#3|) 31)) (-4129 (($ $) 89)) (-2813 (($ $ |#3|) 30)) (-4132 (((-863) $) 12) (((-645 |#4|) $) 38)) (-2073 (((-772) $) 77 (|has| |#3| (-370)))) (-1745 (((-112) $ $) 9)) (-2220 (((-3 (-2 (|:| |bas| $) (|:| -2262 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2262 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-2668 (((-112) $ (-1 (-112) |#4| (-645 |#4|))) 99)) (-4021 (((-645 $) |#4| $) 122) (((-645 $) |#4| (-645 $)) 121) (((-645 $) (-645 |#4|) $) 120) (((-645 $) (-645 |#4|) (-645 $)) 119)) (-1853 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4418)))) (-2385 (((-645 |#3|) $) 82)) (-2848 (((-112) |#4| $) 136)) (-2012 (((-112) |#3| $) 81)) (-2936 (((-112) $ $) 6)) (-2414 (((-772) $) 47 (|has| $ (-6 -4418)))))
+((-2331 (((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))) (-645 |#4|) (-645 |#5|) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))) (-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))))) (-772)) 115)) (-3870 (((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))))) |#4| |#5| (-772)) 63)) (-3674 (((-1274) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))) (-772)) 100)) (-2871 (((-772) (-645 |#4|) (-645 |#5|)) 30)) (-4131 (((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))))) |#4| |#5|) 66) (((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))))) |#4| |#5| (-772)) 65) (((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))))) |#4| |#5| (-772) (-112)) 67)) (-2756 (((-645 |#5|) (-645 |#4|) (-645 |#5|) (-112) (-112) (-112) (-112) (-112)) 86) (((-645 |#5|) (-645 |#4|) (-645 |#5|) (-112) (-112)) 87)) (-3902 (((-1161) (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))) 92)) (-3594 (((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))))) |#4| |#5| (-112)) 62)) (-2410 (((-772) (-645 |#4|) (-645 |#5|)) 21)))
+(((-1071 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2410 ((-772) (-645 |#4|) (-645 |#5|))) (-15 -2871 ((-772) (-645 |#4|) (-645 |#5|))) (-15 -3594 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))))) |#4| |#5| (-112))) (-15 -3870 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))))) |#4| |#5| (-772))) (-15 -3870 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))))) |#4| |#5|)) (-15 -4131 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))))) |#4| |#5| (-772) (-112))) (-15 -4131 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))))) |#4| |#5| (-772))) (-15 -4131 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))))) |#4| |#5|)) (-15 -2756 ((-645 |#5|) (-645 |#4|) (-645 |#5|) (-112) (-112))) (-15 -2756 ((-645 |#5|) (-645 |#4|) (-645 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2331 ((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))) (-645 |#4|) (-645 |#5|) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))) (-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))))) (-772))) (-15 -3902 ((-1161) (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|)))) (-15 -3674 ((-1274) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))) (-772)))) (-455) (-794) (-851) (-1067 |#1| |#2| |#3|) (-1073 |#1| |#2| |#3| |#4|)) (T -1071))
+((-3674 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-2 (|:| |val| (-645 *8)) (|:| -2575 *9)))) (-5 *4 (-772)) (-4 *8 (-1067 *5 *6 *7)) (-4 *9 (-1073 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-1274)) (-5 *1 (-1071 *5 *6 *7 *8 *9)))) (-3902 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-645 *7)) (|:| -2575 *8))) (-4 *7 (-1067 *4 *5 *6)) (-4 *8 (-1073 *4 *5 *6 *7)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-1161)) (-5 *1 (-1071 *4 *5 *6 *7 *8)))) (-2331 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-645 *11)) (|:| |todo| (-645 (-2 (|:| |val| *3) (|:| -2575 *11)))))) (-5 *6 (-772)) (-5 *2 (-645 (-2 (|:| |val| (-645 *10)) (|:| -2575 *11)))) (-5 *3 (-645 *10)) (-5 *4 (-645 *11)) (-4 *10 (-1067 *7 *8 *9)) (-4 *11 (-1073 *7 *8 *9 *10)) (-4 *7 (-455)) (-4 *8 (-794)) (-4 *9 (-851)) (-5 *1 (-1071 *7 *8 *9 *10 *11)))) (-2756 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-645 *9)) (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7)) (-4 *9 (-1073 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-1071 *5 *6 *7 *8 *9)))) (-2756 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-645 *9)) (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7)) (-4 *9 (-1073 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-1071 *5 *6 *7 *8 *9)))) (-4131 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-645 *4)) (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2575 *4)))))) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-4131 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-772)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *3 (-1067 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-645 *4)) (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2575 *4)))))) (-5 *1 (-1071 *6 *7 *8 *3 *4)) (-4 *4 (-1073 *6 *7 *8 *3)))) (-4131 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-772)) (-5 *6 (-112)) (-4 *7 (-455)) (-4 *8 (-794)) (-4 *9 (-851)) (-4 *3 (-1067 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-645 *4)) (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2575 *4)))))) (-5 *1 (-1071 *7 *8 *9 *3 *4)) (-4 *4 (-1073 *7 *8 *9 *3)))) (-3870 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-645 *4)) (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2575 *4)))))) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-3870 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-772)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *3 (-1067 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-645 *4)) (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2575 *4)))))) (-5 *1 (-1071 *6 *7 *8 *3 *4)) (-4 *4 (-1073 *6 *7 *8 *3)))) (-3594 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *3 (-1067 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-645 *4)) (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2575 *4)))))) (-5 *1 (-1071 *6 *7 *8 *3 *4)) (-4 *4 (-1073 *6 *7 *8 *3)))) (-2871 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 *9)) (-4 *8 (-1067 *5 *6 *7)) (-4 *9 (-1073 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-772)) (-5 *1 (-1071 *5 *6 *7 *8 *9)))) (-2410 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 *9)) (-4 *8 (-1067 *5 *6 *7)) (-4 *9 (-1073 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-772)) (-5 *1 (-1071 *5 *6 *7 *8 *9)))))
+(-10 -7 (-15 -2410 ((-772) (-645 |#4|) (-645 |#5|))) (-15 -2871 ((-772) (-645 |#4|) (-645 |#5|))) (-15 -3594 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))))) |#4| |#5| (-112))) (-15 -3870 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))))) |#4| |#5| (-772))) (-15 -3870 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))))) |#4| |#5|)) (-15 -4131 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))))) |#4| |#5| (-772) (-112))) (-15 -4131 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))))) |#4| |#5| (-772))) (-15 -4131 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))))) |#4| |#5|)) (-15 -2756 ((-645 |#5|) (-645 |#4|) (-645 |#5|) (-112) (-112))) (-15 -2756 ((-645 |#5|) (-645 |#4|) (-645 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2331 ((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))) (-645 |#4|) (-645 |#5|) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))) (-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))))) (-772))) (-15 -3902 ((-1161) (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|)))) (-15 -3674 ((-1274) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))) (-772))))
+((-2057 (((-112) |#5| $) 26)) (-4104 (((-112) |#5| $) 29)) (-1413 (((-112) |#5| $) 18) (((-112) $) 52)) (-3660 (((-645 $) |#5| $) NIL) (((-645 $) (-645 |#5|) $) 94) (((-645 $) (-645 |#5|) (-645 $)) 92) (((-645 $) |#5| (-645 $)) 95)) (-1874 (($ $ |#5|) NIL) (((-645 $) |#5| $) NIL) (((-645 $) |#5| (-645 $)) 73) (((-645 $) (-645 |#5|) $) 75) (((-645 $) (-645 |#5|) (-645 $)) 77)) (-3730 (((-645 $) |#5| $) NIL) (((-645 $) |#5| (-645 $)) 64) (((-645 $) (-645 |#5|) $) 69) (((-645 $) (-645 |#5|) (-645 $)) 71)) (-3991 (((-112) |#5| $) 32)))
+(((-1072 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1874 ((-645 |#1|) (-645 |#5|) (-645 |#1|))) (-15 -1874 ((-645 |#1|) (-645 |#5|) |#1|)) (-15 -1874 ((-645 |#1|) |#5| (-645 |#1|))) (-15 -1874 ((-645 |#1|) |#5| |#1|)) (-15 -3730 ((-645 |#1|) (-645 |#5|) (-645 |#1|))) (-15 -3730 ((-645 |#1|) (-645 |#5|) |#1|)) (-15 -3730 ((-645 |#1|) |#5| (-645 |#1|))) (-15 -3730 ((-645 |#1|) |#5| |#1|)) (-15 -3660 ((-645 |#1|) |#5| (-645 |#1|))) (-15 -3660 ((-645 |#1|) (-645 |#5|) (-645 |#1|))) (-15 -3660 ((-645 |#1|) (-645 |#5|) |#1|)) (-15 -3660 ((-645 |#1|) |#5| |#1|)) (-15 -4104 ((-112) |#5| |#1|)) (-15 -1413 ((-112) |#1|)) (-15 -3991 ((-112) |#5| |#1|)) (-15 -2057 ((-112) |#5| |#1|)) (-15 -1413 ((-112) |#5| |#1|)) (-15 -1874 (|#1| |#1| |#5|))) (-1073 |#2| |#3| |#4| |#5|) (-455) (-794) (-851) (-1067 |#2| |#3| |#4|)) (T -1072))
+NIL
+(-10 -8 (-15 -1874 ((-645 |#1|) (-645 |#5|) (-645 |#1|))) (-15 -1874 ((-645 |#1|) (-645 |#5|) |#1|)) (-15 -1874 ((-645 |#1|) |#5| (-645 |#1|))) (-15 -1874 ((-645 |#1|) |#5| |#1|)) (-15 -3730 ((-645 |#1|) (-645 |#5|) (-645 |#1|))) (-15 -3730 ((-645 |#1|) (-645 |#5|) |#1|)) (-15 -3730 ((-645 |#1|) |#5| (-645 |#1|))) (-15 -3730 ((-645 |#1|) |#5| |#1|)) (-15 -3660 ((-645 |#1|) |#5| (-645 |#1|))) (-15 -3660 ((-645 |#1|) (-645 |#5|) (-645 |#1|))) (-15 -3660 ((-645 |#1|) (-645 |#5|) |#1|)) (-15 -3660 ((-645 |#1|) |#5| |#1|)) (-15 -4104 ((-112) |#5| |#1|)) (-15 -1413 ((-112) |#1|)) (-15 -3991 ((-112) |#5| |#1|)) (-15 -2057 ((-112) |#5| |#1|)) (-15 -1413 ((-112) |#5| |#1|)) (-15 -1874 (|#1| |#1| |#5|)))
+((-2412 (((-112) $ $) 7)) (-4305 (((-645 (-2 (|:| -4000 $) (|:| -3835 (-645 |#4|)))) (-645 |#4|)) 86)) (-3403 (((-645 $) (-645 |#4|)) 87) (((-645 $) (-645 |#4|) (-112)) 112)) (-2859 (((-645 |#3|) $) 34)) (-3153 (((-112) $) 27)) (-2031 (((-112) $) 18 (|has| |#1| (-559)))) (-2176 (((-112) |#4| $) 102) (((-112) $) 98)) (-2345 ((|#4| |#4| $) 93)) (-3659 (((-645 (-2 (|:| |val| |#4|) (|:| -2575 $))) |#4| $) 127)) (-1311 (((-2 (|:| |under| $) (|:| -3969 $) (|:| |upper| $)) $ |#3|) 28)) (-1563 (((-112) $ (-772)) 45)) (-3356 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4422))) (((-3 |#4| "failed") $ |#3|) 80)) (-3647 (($) 46 T CONST)) (-1896 (((-112) $) 23 (|has| |#1| (-559)))) (-2909 (((-112) $ $) 25 (|has| |#1| (-559)))) (-3040 (((-112) $ $) 24 (|has| |#1| (-559)))) (-3365 (((-112) $) 26 (|has| |#1| (-559)))) (-3683 (((-645 |#4|) (-645 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1377 (((-645 |#4|) (-645 |#4|) $) 19 (|has| |#1| (-559)))) (-2279 (((-645 |#4|) (-645 |#4|) $) 20 (|has| |#1| (-559)))) (-3765 (((-3 $ "failed") (-645 |#4|)) 37)) (-2051 (($ (-645 |#4|)) 36)) (-2430 (((-3 $ "failed") $) 83)) (-3819 ((|#4| |#4| $) 90)) (-2453 (($ $) 69 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4422))))) (-3246 (($ |#4| $) 68 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4422)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4422)))) (-2023 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-559)))) (-2240 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-1889 ((|#4| |#4| $) 88)) (-2494 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4422)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4422))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4422))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-4076 (((-2 (|:| -4000 (-645 |#4|)) (|:| -3835 (-645 |#4|))) $) 106)) (-2057 (((-112) |#4| $) 137)) (-4104 (((-112) |#4| $) 134)) (-1413 (((-112) |#4| $) 138) (((-112) $) 135)) (-2799 (((-645 |#4|) $) 53 (|has| $ (-6 -4422)))) (-4061 (((-112) |#4| $) 105) (((-112) $) 104)) (-2072 ((|#3| $) 35)) (-4093 (((-112) $ (-772)) 44)) (-1942 (((-645 |#4|) $) 54 (|has| $ (-6 -4422)))) (-3237 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4422))))) (-3751 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#4| |#4|) $) 48)) (-2869 (((-645 |#3|) $) 33)) (-1524 (((-112) |#3| $) 32)) (-1986 (((-112) $ (-772)) 43)) (-2516 (((-1161) $) 10)) (-3295 (((-3 |#4| (-645 $)) |#4| |#4| $) 129)) (-2588 (((-645 (-2 (|:| |val| |#4|) (|:| -2575 $))) |#4| |#4| $) 128)) (-3266 (((-3 |#4| "failed") $) 84)) (-2055 (((-645 $) |#4| $) 130)) (-2254 (((-3 (-112) (-645 $)) |#4| $) 133)) (-3992 (((-645 (-2 (|:| |val| (-112)) (|:| -2575 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3660 (((-645 $) |#4| $) 126) (((-645 $) (-645 |#4|) $) 125) (((-645 $) (-645 |#4|) (-645 $)) 124) (((-645 $) |#4| (-645 $)) 123)) (-2579 (($ |#4| $) 118) (($ (-645 |#4|) $) 117)) (-3881 (((-645 |#4|) $) 108)) (-3324 (((-112) |#4| $) 100) (((-112) $) 96)) (-1431 ((|#4| |#4| $) 91)) (-3995 (((-112) $ $) 111)) (-2634 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-559)))) (-4278 (((-112) |#4| $) 101) (((-112) $) 97)) (-3984 ((|#4| |#4| $) 92)) (-3437 (((-1122) $) 11)) (-2418 (((-3 |#4| "failed") $) 85)) (-3196 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3488 (((-3 $ "failed") $ |#4|) 79)) (-1874 (($ $ |#4|) 78) (((-645 $) |#4| $) 116) (((-645 $) |#4| (-645 $)) 115) (((-645 $) (-645 |#4|) $) 114) (((-645 $) (-645 |#4|) (-645 $)) 113)) (-4233 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 |#4|) (-645 |#4|)) 60 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-295 |#4|)) 58 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-645 (-295 |#4|))) 57 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))))) (-3875 (((-112) $ $) 39)) (-3885 (((-112) $) 42)) (-2701 (($) 41)) (-3104 (((-772) $) 107)) (-3447 (((-772) |#4| $) 55 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4422)))) (((-772) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4422)))) (-4309 (($ $) 40)) (-3902 (((-539) $) 70 (|has| |#4| (-615 (-539))))) (-4145 (($ (-645 |#4|)) 61)) (-3937 (($ $ |#3|) 29)) (-3165 (($ $ |#3|) 31)) (-2085 (($ $) 89)) (-1920 (($ $ |#3|) 30)) (-4129 (((-863) $) 12) (((-645 |#4|) $) 38)) (-1975 (((-772) $) 77 (|has| |#3| (-370)))) (-3357 (((-112) $ $) 9)) (-1676 (((-3 (-2 (|:| |bas| $) (|:| -2270 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2270 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-1642 (((-112) $ (-1 (-112) |#4| (-645 |#4|))) 99)) (-3730 (((-645 $) |#4| $) 122) (((-645 $) |#4| (-645 $)) 121) (((-645 $) (-645 |#4|) $) 120) (((-645 $) (-645 |#4|) (-645 $)) 119)) (-3436 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4422)))) (-2551 (((-645 |#3|) $) 82)) (-3991 (((-112) |#4| $) 136)) (-2618 (((-112) |#3| $) 81)) (-2946 (((-112) $ $) 6)) (-2423 (((-772) $) 47 (|has| $ (-6 -4422)))))
(((-1073 |#1| |#2| |#3| |#4|) (-140) (-455) (-794) (-851) (-1067 |t#1| |t#2| |t#3|)) (T -1073))
-((-2127 (*1 *2 *3 *1) (-12 (-4 *1 (-1073 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-112)))) (-3783 (*1 *2 *3 *1) (-12 (-4 *1 (-1073 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-112)))) (-2848 (*1 *2 *3 *1) (-12 (-4 *1 (-1073 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-112)))) (-2127 (*1 *2 *1) (-12 (-4 *1 (-1073 *3 *4 *5 *6)) (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-112)))) (-1829 (*1 *2 *3 *1) (-12 (-4 *1 (-1073 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-112)))) (-4057 (*1 *2 *3 *1) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-3 (-112) (-645 *1))) (-4 *1 (-1073 *4 *5 *6 *3)))) (-3573 (*1 *2 *3 *1) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-645 (-2 (|:| |val| (-112)) (|:| -2566 *1)))) (-4 *1 (-1073 *4 *5 *6 *3)))) (-3573 (*1 *2 *3 *1) (-12 (-4 *1 (-1073 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-112)))) (-1756 (*1 *2 *3 *1) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-645 *1)) (-4 *1 (-1073 *4 *5 *6 *3)))) (-3232 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-3 *3 (-645 *1))) (-4 *1 (-1073 *4 *5 *6 *3)))) (-2272 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2566 *1)))) (-4 *1 (-1073 *4 *5 *6 *3)))) (-3248 (*1 *2 *3 *1) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2566 *1)))) (-4 *1 (-1073 *4 *5 *6 *3)))) (-2370 (*1 *2 *3 *1) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-645 *1)) (-4 *1 (-1073 *4 *5 *6 *3)))) (-2370 (*1 *2 *3 *1) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-1073 *4 *5 *6 *7)))) (-2370 (*1 *2 *3 *2) (-12 (-5 *2 (-645 *1)) (-5 *3 (-645 *7)) (-4 *1 (-1073 *4 *5 *6 *7)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)))) (-2370 (*1 *2 *3 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-1073 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)))) (-4021 (*1 *2 *3 *1) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-645 *1)) (-4 *1 (-1073 *4 *5 *6 *3)))) (-4021 (*1 *2 *3 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-1073 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)))) (-4021 (*1 *2 *3 *1) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-1073 *4 *5 *6 *7)))) (-4021 (*1 *2 *3 *2) (-12 (-5 *2 (-645 *1)) (-5 *3 (-645 *7)) (-4 *1 (-1073 *4 *5 *6 *7)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)))) (-3101 (*1 *1 *2 *1) (-12 (-4 *1 (-1073 *3 *4 *5 *2)) (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5)))) (-3101 (*1 *1 *2 *1) (-12 (-5 *2 (-645 *6)) (-4 *1 (-1073 *3 *4 *5 *6)) (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)))) (-2410 (*1 *2 *3 *1) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-645 *1)) (-4 *1 (-1073 *4 *5 *6 *3)))) (-2410 (*1 *2 *3 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-1073 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)))) (-2410 (*1 *2 *3 *1) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-1073 *4 *5 *6 *7)))) (-2410 (*1 *2 *3 *2) (-12 (-5 *2 (-645 *1)) (-5 *3 (-645 *7)) (-4 *1 (-1073 *4 *5 *6 *7)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)))) (-3244 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-1073 *5 *6 *7 *8)))))
-(-13 (-1211 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -2127 ((-112) |t#4| $)) (-15 -3783 ((-112) |t#4| $)) (-15 -2848 ((-112) |t#4| $)) (-15 -2127 ((-112) $)) (-15 -1829 ((-112) |t#4| $)) (-15 -4057 ((-3 (-112) (-645 $)) |t#4| $)) (-15 -3573 ((-645 (-2 (|:| |val| (-112)) (|:| -2566 $))) |t#4| $)) (-15 -3573 ((-112) |t#4| $)) (-15 -1756 ((-645 $) |t#4| $)) (-15 -3232 ((-3 |t#4| (-645 $)) |t#4| |t#4| $)) (-15 -2272 ((-645 (-2 (|:| |val| |t#4|) (|:| -2566 $))) |t#4| |t#4| $)) (-15 -3248 ((-645 (-2 (|:| |val| |t#4|) (|:| -2566 $))) |t#4| $)) (-15 -2370 ((-645 $) |t#4| $)) (-15 -2370 ((-645 $) (-645 |t#4|) $)) (-15 -2370 ((-645 $) (-645 |t#4|) (-645 $))) (-15 -2370 ((-645 $) |t#4| (-645 $))) (-15 -4021 ((-645 $) |t#4| $)) (-15 -4021 ((-645 $) |t#4| (-645 $))) (-15 -4021 ((-645 $) (-645 |t#4|) $)) (-15 -4021 ((-645 $) (-645 |t#4|) (-645 $))) (-15 -3101 ($ |t#4| $)) (-15 -3101 ($ (-645 |t#4|) $)) (-15 -2410 ((-645 $) |t#4| $)) (-15 -2410 ((-645 $) |t#4| (-645 $))) (-15 -2410 ((-645 $) (-645 |t#4|) $)) (-15 -2410 ((-645 $) (-645 |t#4|) (-645 $))) (-15 -3244 ((-645 $) (-645 |t#4|) (-112)))))
-(((-34) . T) ((-102) . T) ((-614 (-645 |#4|)) . T) ((-614 (-863)) . T) ((-151 |#4|) . T) ((-615 (-539)) |has| |#4| (-615 (-539))) ((-310 |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))) ((-492 |#4|) . T) ((-517 |#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))) ((-978 |#1| |#2| |#3| |#4|) . T) ((-1102) . T) ((-1211 |#1| |#2| |#3| |#4|) . T) ((-1218) . T))
-((-4188 (((-645 (-2 (|:| |val| |#4|) (|:| -2566 |#5|))) |#4| |#5|) 87)) (-3401 (((-645 (-2 (|:| |val| |#4|) (|:| -2566 |#5|))) |#4| |#4| |#5|) 128)) (-3897 (((-645 |#5|) |#4| |#5|) 75)) (-2754 (((-645 (-2 (|:| |val| (-112)) (|:| -2566 |#5|))) |#4| |#5|) 48) (((-112) |#4| |#5|) 56)) (-3687 (((-1273)) 37)) (-3571 (((-1273)) 26)) (-4268 (((-1273) (-1160) (-1160) (-1160)) 33)) (-4378 (((-1273) (-1160) (-1160) (-1160)) 22)) (-3123 (((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) |#4| |#4| |#5|) 108)) (-2089 (((-645 (-2 (|:| |val| |#4|) (|:| -2566 |#5|))) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) |#3| (-112)) 119) (((-645 (-2 (|:| |val| |#4|) (|:| -2566 |#5|))) |#4| |#4| |#5| (-112) (-112)) 53)) (-4280 (((-645 (-2 (|:| |val| |#4|) (|:| -2566 |#5|))) |#4| |#4| |#5|) 114)))
-(((-1074 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4378 ((-1273) (-1160) (-1160) (-1160))) (-15 -3571 ((-1273))) (-15 -4268 ((-1273) (-1160) (-1160) (-1160))) (-15 -3687 ((-1273))) (-15 -3123 ((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) |#4| |#4| |#5|)) (-15 -2089 ((-645 (-2 (|:| |val| |#4|) (|:| -2566 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2089 ((-645 (-2 (|:| |val| |#4|) (|:| -2566 |#5|))) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) |#3| (-112))) (-15 -4280 ((-645 (-2 (|:| |val| |#4|) (|:| -2566 |#5|))) |#4| |#4| |#5|)) (-15 -3401 ((-645 (-2 (|:| |val| |#4|) (|:| -2566 |#5|))) |#4| |#4| |#5|)) (-15 -2754 ((-112) |#4| |#5|)) (-15 -2754 ((-645 (-2 (|:| |val| (-112)) (|:| -2566 |#5|))) |#4| |#5|)) (-15 -3897 ((-645 |#5|) |#4| |#5|)) (-15 -4188 ((-645 (-2 (|:| |val| |#4|) (|:| -2566 |#5|))) |#4| |#5|))) (-455) (-794) (-851) (-1067 |#1| |#2| |#3|) (-1073 |#1| |#2| |#3| |#4|)) (T -1074))
-((-4188 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2566 *4)))) (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-3897 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 *4)) (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-2754 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| (-112)) (|:| -2566 *4)))) (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-2754 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-3401 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2566 *4)))) (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-4280 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2566 *4)))) (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-2089 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-645 (-2 (|:| |val| (-645 *8)) (|:| -2566 *9)))) (-5 *5 (-112)) (-4 *8 (-1067 *6 *7 *4)) (-4 *9 (-1073 *6 *7 *4 *8)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *4 (-851)) (-5 *2 (-645 (-2 (|:| |val| *8) (|:| -2566 *9)))) (-5 *1 (-1074 *6 *7 *4 *8 *9)))) (-2089 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *3 (-1067 *6 *7 *8)) (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2566 *4)))) (-5 *1 (-1074 *6 *7 *8 *3 *4)) (-4 *4 (-1073 *6 *7 *8 *3)))) (-3123 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| (-645 *3)) (|:| -2566 *4)))) (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-3687 (*1 *2) (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-1273)) (-5 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *7 (-1073 *3 *4 *5 *6)))) (-4268 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1160)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-1273)) (-5 *1 (-1074 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7)))) (-3571 (*1 *2) (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-1273)) (-5 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *7 (-1073 *3 *4 *5 *6)))) (-4378 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1160)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-1273)) (-5 *1 (-1074 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7)))))
-(-10 -7 (-15 -4378 ((-1273) (-1160) (-1160) (-1160))) (-15 -3571 ((-1273))) (-15 -4268 ((-1273) (-1160) (-1160) (-1160))) (-15 -3687 ((-1273))) (-15 -3123 ((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) |#4| |#4| |#5|)) (-15 -2089 ((-645 (-2 (|:| |val| |#4|) (|:| -2566 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2089 ((-645 (-2 (|:| |val| |#4|) (|:| -2566 |#5|))) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) |#3| (-112))) (-15 -4280 ((-645 (-2 (|:| |val| |#4|) (|:| -2566 |#5|))) |#4| |#4| |#5|)) (-15 -3401 ((-645 (-2 (|:| |val| |#4|) (|:| -2566 |#5|))) |#4| |#4| |#5|)) (-15 -2754 ((-112) |#4| |#5|)) (-15 -2754 ((-645 (-2 (|:| |val| (-112)) (|:| -2566 |#5|))) |#4| |#5|)) (-15 -3897 ((-645 |#5|) |#4| |#5|)) (-15 -4188 ((-645 (-2 (|:| |val| |#4|) (|:| -2566 |#5|))) |#4| |#5|)))
-((-2403 (((-112) $ $) NIL)) (-3570 (((-1217) $) 13)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-3097 (((-1137) $) 10)) (-4132 (((-863) $) 20) (($ (-1183)) NIL) (((-1183) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)))
-(((-1075) (-13 (-1085) (-10 -8 (-15 -3097 ((-1137) $)) (-15 -3570 ((-1217) $))))) (T -1075))
-((-3097 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1075)))) (-3570 (*1 *2 *1) (-12 (-5 *2 (-1217)) (-5 *1 (-1075)))))
-(-13 (-1085) (-10 -8 (-15 -3097 ((-1137) $)) (-15 -3570 ((-1217) $))))
-((-3845 (((-112) $ $) 7)))
-(((-1076) (-13 (-1218) (-10 -8 (-15 -3845 ((-112) $ $))))) (T -1076))
-((-3845 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1076)))))
-(-13 (-1218) (-10 -8 (-15 -3845 ((-112) $ $))))
-((-2403 (((-112) $ $) NIL)) (-1996 (((-1178) $) 8)) (-1419 (((-1160) $) 17)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 11)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 14)))
-(((-1077 |#1|) (-13 (-1102) (-10 -8 (-15 -1996 ((-1178) $)))) (-1178)) (T -1077))
-((-1996 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1077 *3)) (-14 *3 *2))))
-(-13 (-1102) (-10 -8 (-15 -1996 ((-1178) $))))
-((-2403 (((-112) $ $) NIL)) (-2111 (($ $ (-645 (-1178)) (-1 (-112) (-645 |#3|))) 34)) (-3001 (($ |#3| |#3|) 23) (($ |#3| |#3| (-645 (-1178))) 21)) (-4104 ((|#3| $) 13)) (-3753 (((-3 (-295 |#3|) "failed") $) 60)) (-2038 (((-295 |#3|) $) NIL)) (-3860 (((-645 (-1178)) $) 16)) (-3370 (((-894 |#1|) $) 11)) (-4089 ((|#3| $) 12)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-1787 ((|#3| $ |#3|) 28) ((|#3| $ |#3| (-923)) 41)) (-4132 (((-863) $) 89) (($ (-295 |#3|)) 22)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 38)))
-(((-1078 |#1| |#2| |#3|) (-13 (-1102) (-287 |#3| |#3|) (-1040 (-295 |#3|)) (-10 -8 (-15 -3001 ($ |#3| |#3|)) (-15 -3001 ($ |#3| |#3| (-645 (-1178)))) (-15 -2111 ($ $ (-645 (-1178)) (-1 (-112) (-645 |#3|)))) (-15 -3370 ((-894 |#1|) $)) (-15 -4089 (|#3| $)) (-15 -4104 (|#3| $)) (-15 -1787 (|#3| $ |#3| (-923))) (-15 -3860 ((-645 (-1178)) $)))) (-1102) (-13 (-1051) (-888 |#1|) (-615 (-894 |#1|))) (-13 (-433 |#2|) (-888 |#1|) (-615 (-894 |#1|)))) (T -1078))
-((-3001 (*1 *1 *2 *2) (-12 (-4 *3 (-1102)) (-4 *4 (-13 (-1051) (-888 *3) (-615 (-894 *3)))) (-5 *1 (-1078 *3 *4 *2)) (-4 *2 (-13 (-433 *4) (-888 *3) (-615 (-894 *3)))))) (-3001 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-645 (-1178))) (-4 *4 (-1102)) (-4 *5 (-13 (-1051) (-888 *4) (-615 (-894 *4)))) (-5 *1 (-1078 *4 *5 *2)) (-4 *2 (-13 (-433 *5) (-888 *4) (-615 (-894 *4)))))) (-2111 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-1178))) (-5 *3 (-1 (-112) (-645 *6))) (-4 *6 (-13 (-433 *5) (-888 *4) (-615 (-894 *4)))) (-4 *4 (-1102)) (-4 *5 (-13 (-1051) (-888 *4) (-615 (-894 *4)))) (-5 *1 (-1078 *4 *5 *6)))) (-3370 (*1 *2 *1) (-12 (-4 *3 (-1102)) (-4 *4 (-13 (-1051) (-888 *3) (-615 *2))) (-5 *2 (-894 *3)) (-5 *1 (-1078 *3 *4 *5)) (-4 *5 (-13 (-433 *4) (-888 *3) (-615 *2))))) (-4089 (*1 *2 *1) (-12 (-4 *3 (-1102)) (-4 *2 (-13 (-433 *4) (-888 *3) (-615 (-894 *3)))) (-5 *1 (-1078 *3 *4 *2)) (-4 *4 (-13 (-1051) (-888 *3) (-615 (-894 *3)))))) (-4104 (*1 *2 *1) (-12 (-4 *3 (-1102)) (-4 *2 (-13 (-433 *4) (-888 *3) (-615 (-894 *3)))) (-5 *1 (-1078 *3 *4 *2)) (-4 *4 (-13 (-1051) (-888 *3) (-615 (-894 *3)))))) (-1787 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-923)) (-4 *4 (-1102)) (-4 *5 (-13 (-1051) (-888 *4) (-615 (-894 *4)))) (-5 *1 (-1078 *4 *5 *2)) (-4 *2 (-13 (-433 *5) (-888 *4) (-615 (-894 *4)))))) (-3860 (*1 *2 *1) (-12 (-4 *3 (-1102)) (-4 *4 (-13 (-1051) (-888 *3) (-615 (-894 *3)))) (-5 *2 (-645 (-1178))) (-5 *1 (-1078 *3 *4 *5)) (-4 *5 (-13 (-433 *4) (-888 *3) (-615 (-894 *3)))))))
-(-13 (-1102) (-287 |#3| |#3|) (-1040 (-295 |#3|)) (-10 -8 (-15 -3001 ($ |#3| |#3|)) (-15 -3001 ($ |#3| |#3| (-645 (-1178)))) (-15 -2111 ($ $ (-645 (-1178)) (-1 (-112) (-645 |#3|)))) (-15 -3370 ((-894 |#1|) $)) (-15 -4089 (|#3| $)) (-15 -4104 (|#3| $)) (-15 -1787 (|#3| $ |#3| (-923))) (-15 -3860 ((-645 (-1178)) $))))
-((-2403 (((-112) $ $) NIL)) (-2081 (($ (-645 (-1078 |#1| |#2| |#3|))) 14)) (-3810 (((-645 (-1078 |#1| |#2| |#3|)) $) 21)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-1787 ((|#3| $ |#3|) 24) ((|#3| $ |#3| (-923)) 27)) (-4132 (((-863) $) 17)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 20)))
-(((-1079 |#1| |#2| |#3|) (-13 (-1102) (-287 |#3| |#3|) (-10 -8 (-15 -2081 ($ (-645 (-1078 |#1| |#2| |#3|)))) (-15 -3810 ((-645 (-1078 |#1| |#2| |#3|)) $)) (-15 -1787 (|#3| $ |#3| (-923))))) (-1102) (-13 (-1051) (-888 |#1|) (-615 (-894 |#1|))) (-13 (-433 |#2|) (-888 |#1|) (-615 (-894 |#1|)))) (T -1079))
-((-2081 (*1 *1 *2) (-12 (-5 *2 (-645 (-1078 *3 *4 *5))) (-4 *3 (-1102)) (-4 *4 (-13 (-1051) (-888 *3) (-615 (-894 *3)))) (-4 *5 (-13 (-433 *4) (-888 *3) (-615 (-894 *3)))) (-5 *1 (-1079 *3 *4 *5)))) (-3810 (*1 *2 *1) (-12 (-4 *3 (-1102)) (-4 *4 (-13 (-1051) (-888 *3) (-615 (-894 *3)))) (-5 *2 (-645 (-1078 *3 *4 *5))) (-5 *1 (-1079 *3 *4 *5)) (-4 *5 (-13 (-433 *4) (-888 *3) (-615 (-894 *3)))))) (-1787 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-923)) (-4 *4 (-1102)) (-4 *5 (-13 (-1051) (-888 *4) (-615 (-894 *4)))) (-5 *1 (-1079 *4 *5 *2)) (-4 *2 (-13 (-433 *5) (-888 *4) (-615 (-894 *4)))))))
-(-13 (-1102) (-287 |#3| |#3|) (-10 -8 (-15 -2081 ($ (-645 (-1078 |#1| |#2| |#3|)))) (-15 -3810 ((-645 (-1078 |#1| |#2| |#3|)) $)) (-15 -1787 (|#3| $ |#3| (-923)))))
-((-1839 (((-645 (-2 (|:| -3892 (-1174 |#1|)) (|:| -2887 (-645 (-954 |#1|))))) (-645 (-954 |#1|)) (-112) (-112)) 88) (((-645 (-2 (|:| -3892 (-1174 |#1|)) (|:| -2887 (-645 (-954 |#1|))))) (-645 (-954 |#1|))) 92) (((-645 (-2 (|:| -3892 (-1174 |#1|)) (|:| -2887 (-645 (-954 |#1|))))) (-645 (-954 |#1|)) (-112)) 90)))
-(((-1080 |#1| |#2|) (-10 -7 (-15 -1839 ((-645 (-2 (|:| -3892 (-1174 |#1|)) (|:| -2887 (-645 (-954 |#1|))))) (-645 (-954 |#1|)) (-112))) (-15 -1839 ((-645 (-2 (|:| -3892 (-1174 |#1|)) (|:| -2887 (-645 (-954 |#1|))))) (-645 (-954 |#1|)))) (-15 -1839 ((-645 (-2 (|:| -3892 (-1174 |#1|)) (|:| -2887 (-645 (-954 |#1|))))) (-645 (-954 |#1|)) (-112) (-112)))) (-13 (-308) (-147)) (-645 (-1178))) (T -1080))
-((-1839 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-2 (|:| -3892 (-1174 *5)) (|:| -2887 (-645 (-954 *5)))))) (-5 *1 (-1080 *5 *6)) (-5 *3 (-645 (-954 *5))) (-14 *6 (-645 (-1178))))) (-1839 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-5 *2 (-645 (-2 (|:| -3892 (-1174 *4)) (|:| -2887 (-645 (-954 *4)))))) (-5 *1 (-1080 *4 *5)) (-5 *3 (-645 (-954 *4))) (-14 *5 (-645 (-1178))))) (-1839 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-2 (|:| -3892 (-1174 *5)) (|:| -2887 (-645 (-954 *5)))))) (-5 *1 (-1080 *5 *6)) (-5 *3 (-645 (-954 *5))) (-14 *6 (-645 (-1178))))))
-(-10 -7 (-15 -1839 ((-645 (-2 (|:| -3892 (-1174 |#1|)) (|:| -2887 (-645 (-954 |#1|))))) (-645 (-954 |#1|)) (-112))) (-15 -1839 ((-645 (-2 (|:| -3892 (-1174 |#1|)) (|:| -2887 (-645 (-954 |#1|))))) (-645 (-954 |#1|)))) (-15 -1839 ((-645 (-2 (|:| -3892 (-1174 |#1|)) (|:| -2887 (-645 (-954 |#1|))))) (-645 (-954 |#1|)) (-112) (-112))))
-((-2706 (((-421 |#3|) |#3|) 18)))
-(((-1081 |#1| |#2| |#3|) (-10 -7 (-15 -2706 ((-421 |#3|) |#3|))) (-1244 (-410 (-567))) (-13 (-365) (-147) (-725 (-410 (-567)) |#1|)) (-1244 |#2|)) (T -1081))
-((-2706 (*1 *2 *3) (-12 (-4 *4 (-1244 (-410 (-567)))) (-4 *5 (-13 (-365) (-147) (-725 (-410 (-567)) *4))) (-5 *2 (-421 *3)) (-5 *1 (-1081 *4 *5 *3)) (-4 *3 (-1244 *5)))))
-(-10 -7 (-15 -2706 ((-421 |#3|) |#3|)))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) 141)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL (|has| |#1| (-365)))) (-4381 (($ $) NIL (|has| |#1| (-365)))) (-3949 (((-112) $) NIL (|has| |#1| (-365)))) (-2141 (((-690 |#1|) (-1268 $)) NIL) (((-690 |#1|)) 125)) (-4293 ((|#1| $) 130)) (-3400 (((-1191 (-923) (-772)) (-567)) NIL (|has| |#1| (-351)))) (-3472 (((-3 $ "failed") $ $) NIL)) (-3248 (($ $) NIL (|has| |#1| (-365)))) (-2908 (((-421 $) $) NIL (|has| |#1| (-365)))) (-3609 (((-112) $ $) NIL (|has| |#1| (-365)))) (-2375 (((-772)) 46 (|has| |#1| (-370)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) NIL)) (-2038 (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) NIL)) (-3658 (($ (-1268 |#1|) (-1268 $)) NIL) (($ (-1268 |#1|)) 49)) (-2443 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-351)))) (-2349 (($ $ $) NIL (|has| |#1| (-365)))) (-1811 (((-690 |#1|) $ (-1268 $)) NIL) (((-690 |#1|) $) NIL)) (-2630 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 |#1|)) (|:| |vec| (-1268 |#1|))) (-690 $) (-1268 $)) 115) (((-690 |#1|) (-690 $)) 110)) (-2477 (($ |#2|) 67) (((-3 $ "failed") (-410 |#2|)) NIL (|has| |#1| (-365)))) (-2109 (((-3 $ "failed") $) NIL)) (-1954 (((-923)) 84)) (-1348 (($) 50 (|has| |#1| (-370)))) (-2360 (($ $ $) NIL (|has| |#1| (-365)))) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-3431 (($) NIL (|has| |#1| (-351)))) (-2722 (((-112) $) NIL (|has| |#1| (-351)))) (-4225 (($ $ (-772)) NIL (|has| |#1| (-351))) (($ $) NIL (|has| |#1| (-351)))) (-3184 (((-112) $) NIL (|has| |#1| (-365)))) (-4384 (((-923) $) NIL (|has| |#1| (-351))) (((-834 (-923)) $) NIL (|has| |#1| (-351)))) (-1433 (((-112) $) NIL)) (-2475 ((|#1| $) NIL)) (-3972 (((-3 $ "failed") $) NIL (|has| |#1| (-351)))) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-4206 ((|#2| $) 91 (|has| |#1| (-365)))) (-4249 (((-923) $) 150 (|has| |#1| (-370)))) (-2465 ((|#2| $) 64)) (-2740 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-1419 (((-1160) $) NIL)) (-2939 (($ $) NIL (|has| |#1| (-365)))) (-2672 (($) NIL (|has| |#1| (-351)) CONST)) (-3768 (($ (-923)) 140 (|has| |#1| (-370)))) (-3430 (((-1122) $) NIL)) (-1398 (($) 132)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#1| (-365)))) (-2774 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-1796 (((-645 (-2 (|:| -2706 (-567)) (|:| -3458 (-567))))) NIL (|has| |#1| (-351)))) (-2706 (((-421 $) $) NIL (|has| |#1| (-365)))) (-3402 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL (|has| |#1| (-365)))) (-2391 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-1990 (((-772) $) NIL (|has| |#1| (-365)))) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL (|has| |#1| (-365)))) (-3788 ((|#1| (-1268 $)) NIL) ((|#1|) 119)) (-2491 (((-772) $) NIL (|has| |#1| (-351))) (((-3 (-772) "failed") $ $) NIL (|has| |#1| (-351)))) (-1593 (($ $) NIL (-2800 (-12 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-772)) NIL (-2800 (-12 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-1178)) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-902 (-1178))))) (($ $ (-645 (-1178))) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-902 (-1178))))) (($ $ (-1178) (-772)) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-902 (-1178))))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-902 (-1178))))) (($ $ (-1 |#1| |#1|) (-772)) NIL (|has| |#1| (-365))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-365)))) (-1866 (((-690 |#1|) (-1268 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-365)))) (-3341 ((|#2|) 80)) (-1527 (($) NIL (|has| |#1| (-351)))) (-2887 (((-1268 |#1|) $ (-1268 $)) 96) (((-690 |#1|) (-1268 $) (-1268 $)) NIL) (((-1268 |#1|) $) 77) (((-690 |#1|) (-1268 $)) 92)) (-3893 (((-1268 |#1|) $) NIL) (($ (-1268 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (|has| |#1| (-351)))) (-4132 (((-863) $) 63) (($ (-567)) 59) (($ |#1|) 60) (($ $) NIL (|has| |#1| (-365))) (($ (-410 (-567))) NIL (-2800 (|has| |#1| (-365)) (|has| |#1| (-1040 (-410 (-567))))))) (-1903 (($ $) NIL (|has| |#1| (-351))) (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2155 ((|#2| $) 89)) (-4221 (((-772)) 82 T CONST)) (-1745 (((-112) $ $) NIL)) (-2623 (((-1268 $)) 88)) (-3816 (((-112) $ $) NIL (|has| |#1| (-365)))) (-1716 (($) 32 T CONST)) (-1728 (($) 19 T CONST)) (-2637 (($ $) NIL (-2800 (-12 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-772)) NIL (-2800 (-12 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-1178)) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-902 (-1178))))) (($ $ (-645 (-1178))) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-902 (-1178))))) (($ $ (-1178) (-772)) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-902 (-1178))))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-902 (-1178))))) (($ $ (-1 |#1| |#1|) (-772)) NIL (|has| |#1| (-365))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-365)))) (-2936 (((-112) $ $) 69)) (-3060 (($ $ $) NIL (|has| |#1| (-365)))) (-3045 (($ $) 73) (($ $ $) NIL)) (-3033 (($ $ $) 71)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL (|has| |#1| (-365)))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 57) (($ $ $) 75) (($ $ |#1|) NIL) (($ |#1| $) 54) (($ (-410 (-567)) $) NIL (|has| |#1| (-365))) (($ $ (-410 (-567))) NIL (|has| |#1| (-365)))))
-(((-1082 |#1| |#2| |#3|) (-725 |#1| |#2|) (-172) (-1244 |#1|) |#2|) (T -1082))
+((-1413 (*1 *2 *3 *1) (-12 (-4 *1 (-1073 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-112)))) (-2057 (*1 *2 *3 *1) (-12 (-4 *1 (-1073 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-112)))) (-3991 (*1 *2 *3 *1) (-12 (-4 *1 (-1073 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-112)))) (-1413 (*1 *2 *1) (-12 (-4 *1 (-1073 *3 *4 *5 *6)) (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-112)))) (-4104 (*1 *2 *3 *1) (-12 (-4 *1 (-1073 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-112)))) (-2254 (*1 *2 *3 *1) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-3 (-112) (-645 *1))) (-4 *1 (-1073 *4 *5 *6 *3)))) (-3992 (*1 *2 *3 *1) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-645 (-2 (|:| |val| (-112)) (|:| -2575 *1)))) (-4 *1 (-1073 *4 *5 *6 *3)))) (-3992 (*1 *2 *3 *1) (-12 (-4 *1 (-1073 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-112)))) (-2055 (*1 *2 *3 *1) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-645 *1)) (-4 *1 (-1073 *4 *5 *6 *3)))) (-3295 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-3 *3 (-645 *1))) (-4 *1 (-1073 *4 *5 *6 *3)))) (-2588 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2575 *1)))) (-4 *1 (-1073 *4 *5 *6 *3)))) (-3659 (*1 *2 *3 *1) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2575 *1)))) (-4 *1 (-1073 *4 *5 *6 *3)))) (-3660 (*1 *2 *3 *1) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-645 *1)) (-4 *1 (-1073 *4 *5 *6 *3)))) (-3660 (*1 *2 *3 *1) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-1073 *4 *5 *6 *7)))) (-3660 (*1 *2 *3 *2) (-12 (-5 *2 (-645 *1)) (-5 *3 (-645 *7)) (-4 *1 (-1073 *4 *5 *6 *7)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)))) (-3660 (*1 *2 *3 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-1073 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)))) (-3730 (*1 *2 *3 *1) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-645 *1)) (-4 *1 (-1073 *4 *5 *6 *3)))) (-3730 (*1 *2 *3 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-1073 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)))) (-3730 (*1 *2 *3 *1) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-1073 *4 *5 *6 *7)))) (-3730 (*1 *2 *3 *2) (-12 (-5 *2 (-645 *1)) (-5 *3 (-645 *7)) (-4 *1 (-1073 *4 *5 *6 *7)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)))) (-2579 (*1 *1 *2 *1) (-12 (-4 *1 (-1073 *3 *4 *5 *2)) (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5)))) (-2579 (*1 *1 *2 *1) (-12 (-5 *2 (-645 *6)) (-4 *1 (-1073 *3 *4 *5 *6)) (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)))) (-1874 (*1 *2 *3 *1) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-645 *1)) (-4 *1 (-1073 *4 *5 *6 *3)))) (-1874 (*1 *2 *3 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-1073 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)))) (-1874 (*1 *2 *3 *1) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-1073 *4 *5 *6 *7)))) (-1874 (*1 *2 *3 *2) (-12 (-5 *2 (-645 *1)) (-5 *3 (-645 *7)) (-4 *1 (-1073 *4 *5 *6 *7)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)))) (-3403 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-1073 *5 *6 *7 *8)))))
+(-13 (-1212 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -1413 ((-112) |t#4| $)) (-15 -2057 ((-112) |t#4| $)) (-15 -3991 ((-112) |t#4| $)) (-15 -1413 ((-112) $)) (-15 -4104 ((-112) |t#4| $)) (-15 -2254 ((-3 (-112) (-645 $)) |t#4| $)) (-15 -3992 ((-645 (-2 (|:| |val| (-112)) (|:| -2575 $))) |t#4| $)) (-15 -3992 ((-112) |t#4| $)) (-15 -2055 ((-645 $) |t#4| $)) (-15 -3295 ((-3 |t#4| (-645 $)) |t#4| |t#4| $)) (-15 -2588 ((-645 (-2 (|:| |val| |t#4|) (|:| -2575 $))) |t#4| |t#4| $)) (-15 -3659 ((-645 (-2 (|:| |val| |t#4|) (|:| -2575 $))) |t#4| $)) (-15 -3660 ((-645 $) |t#4| $)) (-15 -3660 ((-645 $) (-645 |t#4|) $)) (-15 -3660 ((-645 $) (-645 |t#4|) (-645 $))) (-15 -3660 ((-645 $) |t#4| (-645 $))) (-15 -3730 ((-645 $) |t#4| $)) (-15 -3730 ((-645 $) |t#4| (-645 $))) (-15 -3730 ((-645 $) (-645 |t#4|) $)) (-15 -3730 ((-645 $) (-645 |t#4|) (-645 $))) (-15 -2579 ($ |t#4| $)) (-15 -2579 ($ (-645 |t#4|) $)) (-15 -1874 ((-645 $) |t#4| $)) (-15 -1874 ((-645 $) |t#4| (-645 $))) (-15 -1874 ((-645 $) (-645 |t#4|) $)) (-15 -1874 ((-645 $) (-645 |t#4|) (-645 $))) (-15 -3403 ((-645 $) (-645 |t#4|) (-112)))))
+(((-34) . T) ((-102) . T) ((-614 (-645 |#4|)) . T) ((-614 (-863)) . T) ((-151 |#4|) . T) ((-615 (-539)) |has| |#4| (-615 (-539))) ((-310 |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))) ((-492 |#4|) . T) ((-517 |#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))) ((-978 |#1| |#2| |#3| |#4|) . T) ((-1102) . T) ((-1212 |#1| |#2| |#3| |#4|) . T) ((-1219) . T))
+((-2024 (((-645 (-2 (|:| |val| |#4|) (|:| -2575 |#5|))) |#4| |#5|) 87)) (-2791 (((-645 (-2 (|:| |val| |#4|) (|:| -2575 |#5|))) |#4| |#4| |#5|) 128)) (-1647 (((-645 |#5|) |#4| |#5|) 75)) (-3681 (((-645 (-2 (|:| |val| (-112)) (|:| -2575 |#5|))) |#4| |#5|) 48) (((-112) |#4| |#5|) 56)) (-3015 (((-1274)) 37)) (-3799 (((-1274)) 26)) (-4051 (((-1274) (-1161) (-1161) (-1161)) 33)) (-3958 (((-1274) (-1161) (-1161) (-1161)) 22)) (-1613 (((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))) |#4| |#4| |#5|) 108)) (-1918 (((-645 (-2 (|:| |val| |#4|) (|:| -2575 |#5|))) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))) |#3| (-112)) 119) (((-645 (-2 (|:| |val| |#4|) (|:| -2575 |#5|))) |#4| |#4| |#5| (-112) (-112)) 53)) (-2884 (((-645 (-2 (|:| |val| |#4|) (|:| -2575 |#5|))) |#4| |#4| |#5|) 114)))
+(((-1074 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3958 ((-1274) (-1161) (-1161) (-1161))) (-15 -3799 ((-1274))) (-15 -4051 ((-1274) (-1161) (-1161) (-1161))) (-15 -3015 ((-1274))) (-15 -1613 ((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))) |#4| |#4| |#5|)) (-15 -1918 ((-645 (-2 (|:| |val| |#4|) (|:| -2575 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -1918 ((-645 (-2 (|:| |val| |#4|) (|:| -2575 |#5|))) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))) |#3| (-112))) (-15 -2884 ((-645 (-2 (|:| |val| |#4|) (|:| -2575 |#5|))) |#4| |#4| |#5|)) (-15 -2791 ((-645 (-2 (|:| |val| |#4|) (|:| -2575 |#5|))) |#4| |#4| |#5|)) (-15 -3681 ((-112) |#4| |#5|)) (-15 -3681 ((-645 (-2 (|:| |val| (-112)) (|:| -2575 |#5|))) |#4| |#5|)) (-15 -1647 ((-645 |#5|) |#4| |#5|)) (-15 -2024 ((-645 (-2 (|:| |val| |#4|) (|:| -2575 |#5|))) |#4| |#5|))) (-455) (-794) (-851) (-1067 |#1| |#2| |#3|) (-1073 |#1| |#2| |#3| |#4|)) (T -1074))
+((-2024 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2575 *4)))) (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-1647 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 *4)) (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-3681 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| (-112)) (|:| -2575 *4)))) (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-3681 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-2791 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2575 *4)))) (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-2884 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2575 *4)))) (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-1918 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-645 (-2 (|:| |val| (-645 *8)) (|:| -2575 *9)))) (-5 *5 (-112)) (-4 *8 (-1067 *6 *7 *4)) (-4 *9 (-1073 *6 *7 *4 *8)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *4 (-851)) (-5 *2 (-645 (-2 (|:| |val| *8) (|:| -2575 *9)))) (-5 *1 (-1074 *6 *7 *4 *8 *9)))) (-1918 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *3 (-1067 *6 *7 *8)) (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2575 *4)))) (-5 *1 (-1074 *6 *7 *8 *3 *4)) (-4 *4 (-1073 *6 *7 *8 *3)))) (-1613 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| (-645 *3)) (|:| -2575 *4)))) (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-3015 (*1 *2) (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-1274)) (-5 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *7 (-1073 *3 *4 *5 *6)))) (-4051 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1161)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-1274)) (-5 *1 (-1074 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7)))) (-3799 (*1 *2) (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-1274)) (-5 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *7 (-1073 *3 *4 *5 *6)))) (-3958 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1161)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-1274)) (-5 *1 (-1074 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7)))))
+(-10 -7 (-15 -3958 ((-1274) (-1161) (-1161) (-1161))) (-15 -3799 ((-1274))) (-15 -4051 ((-1274) (-1161) (-1161) (-1161))) (-15 -3015 ((-1274))) (-15 -1613 ((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))) |#4| |#4| |#5|)) (-15 -1918 ((-645 (-2 (|:| |val| |#4|) (|:| -2575 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -1918 ((-645 (-2 (|:| |val| |#4|) (|:| -2575 |#5|))) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))) |#3| (-112))) (-15 -2884 ((-645 (-2 (|:| |val| |#4|) (|:| -2575 |#5|))) |#4| |#4| |#5|)) (-15 -2791 ((-645 (-2 (|:| |val| |#4|) (|:| -2575 |#5|))) |#4| |#4| |#5|)) (-15 -3681 ((-112) |#4| |#5|)) (-15 -3681 ((-645 (-2 (|:| |val| (-112)) (|:| -2575 |#5|))) |#4| |#5|)) (-15 -1647 ((-645 |#5|) |#4| |#5|)) (-15 -2024 ((-645 (-2 (|:| |val| |#4|) (|:| -2575 |#5|))) |#4| |#5|)))
+((-2412 (((-112) $ $) NIL)) (-3577 (((-1218) $) 13)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-3106 (((-1137) $) 10)) (-4129 (((-863) $) 20) (($ (-1184)) NIL) (((-1184) $) NIL)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)))
+(((-1075) (-13 (-1085) (-10 -8 (-15 -3106 ((-1137) $)) (-15 -3577 ((-1218) $))))) (T -1075))
+((-3106 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1075)))) (-3577 (*1 *2 *1) (-12 (-5 *2 (-1218)) (-5 *1 (-1075)))))
+(-13 (-1085) (-10 -8 (-15 -3106 ((-1137) $)) (-15 -3577 ((-1218) $))))
+((-3855 (((-112) $ $) 7)))
+(((-1076) (-13 (-1219) (-10 -8 (-15 -3855 ((-112) $ $))))) (T -1076))
+((-3855 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1076)))))
+(-13 (-1219) (-10 -8 (-15 -3855 ((-112) $ $))))
+((-2412 (((-112) $ $) NIL)) (-2007 (((-1179) $) 8)) (-2516 (((-1161) $) 17)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) 11)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) 14)))
+(((-1077 |#1|) (-13 (-1102) (-10 -8 (-15 -2007 ((-1179) $)))) (-1179)) (T -1077))
+((-2007 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1077 *3)) (-14 *3 *2))))
+(-13 (-1102) (-10 -8 (-15 -2007 ((-1179) $))))
+((-2412 (((-112) $ $) NIL)) (-2133 (($ $ (-645 (-1179)) (-1 (-112) (-645 |#3|))) 34)) (-3011 (($ |#3| |#3|) 23) (($ |#3| |#3| (-645 (-1179))) 21)) (-4102 ((|#3| $) 13)) (-3765 (((-3 (-295 |#3|) "failed") $) 60)) (-2051 (((-295 |#3|) $) NIL)) (-4166 (((-645 (-1179)) $) 16)) (-3378 (((-894 |#1|) $) 11)) (-4089 ((|#3| $) 12)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-1801 ((|#3| $ |#3|) 28) ((|#3| $ |#3| (-923)) 41)) (-4129 (((-863) $) 89) (($ (-295 |#3|)) 22)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) 38)))
+(((-1078 |#1| |#2| |#3|) (-13 (-1102) (-287 |#3| |#3|) (-1040 (-295 |#3|)) (-10 -8 (-15 -3011 ($ |#3| |#3|)) (-15 -3011 ($ |#3| |#3| (-645 (-1179)))) (-15 -2133 ($ $ (-645 (-1179)) (-1 (-112) (-645 |#3|)))) (-15 -3378 ((-894 |#1|) $)) (-15 -4089 (|#3| $)) (-15 -4102 (|#3| $)) (-15 -1801 (|#3| $ |#3| (-923))) (-15 -4166 ((-645 (-1179)) $)))) (-1102) (-13 (-1051) (-888 |#1|) (-615 (-894 |#1|))) (-13 (-433 |#2|) (-888 |#1|) (-615 (-894 |#1|)))) (T -1078))
+((-3011 (*1 *1 *2 *2) (-12 (-4 *3 (-1102)) (-4 *4 (-13 (-1051) (-888 *3) (-615 (-894 *3)))) (-5 *1 (-1078 *3 *4 *2)) (-4 *2 (-13 (-433 *4) (-888 *3) (-615 (-894 *3)))))) (-3011 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-645 (-1179))) (-4 *4 (-1102)) (-4 *5 (-13 (-1051) (-888 *4) (-615 (-894 *4)))) (-5 *1 (-1078 *4 *5 *2)) (-4 *2 (-13 (-433 *5) (-888 *4) (-615 (-894 *4)))))) (-2133 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-1179))) (-5 *3 (-1 (-112) (-645 *6))) (-4 *6 (-13 (-433 *5) (-888 *4) (-615 (-894 *4)))) (-4 *4 (-1102)) (-4 *5 (-13 (-1051) (-888 *4) (-615 (-894 *4)))) (-5 *1 (-1078 *4 *5 *6)))) (-3378 (*1 *2 *1) (-12 (-4 *3 (-1102)) (-4 *4 (-13 (-1051) (-888 *3) (-615 *2))) (-5 *2 (-894 *3)) (-5 *1 (-1078 *3 *4 *5)) (-4 *5 (-13 (-433 *4) (-888 *3) (-615 *2))))) (-4089 (*1 *2 *1) (-12 (-4 *3 (-1102)) (-4 *2 (-13 (-433 *4) (-888 *3) (-615 (-894 *3)))) (-5 *1 (-1078 *3 *4 *2)) (-4 *4 (-13 (-1051) (-888 *3) (-615 (-894 *3)))))) (-4102 (*1 *2 *1) (-12 (-4 *3 (-1102)) (-4 *2 (-13 (-433 *4) (-888 *3) (-615 (-894 *3)))) (-5 *1 (-1078 *3 *4 *2)) (-4 *4 (-13 (-1051) (-888 *3) (-615 (-894 *3)))))) (-1801 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-923)) (-4 *4 (-1102)) (-4 *5 (-13 (-1051) (-888 *4) (-615 (-894 *4)))) (-5 *1 (-1078 *4 *5 *2)) (-4 *2 (-13 (-433 *5) (-888 *4) (-615 (-894 *4)))))) (-4166 (*1 *2 *1) (-12 (-4 *3 (-1102)) (-4 *4 (-13 (-1051) (-888 *3) (-615 (-894 *3)))) (-5 *2 (-645 (-1179))) (-5 *1 (-1078 *3 *4 *5)) (-4 *5 (-13 (-433 *4) (-888 *3) (-615 (-894 *3)))))))
+(-13 (-1102) (-287 |#3| |#3|) (-1040 (-295 |#3|)) (-10 -8 (-15 -3011 ($ |#3| |#3|)) (-15 -3011 ($ |#3| |#3| (-645 (-1179)))) (-15 -2133 ($ $ (-645 (-1179)) (-1 (-112) (-645 |#3|)))) (-15 -3378 ((-894 |#1|) $)) (-15 -4089 (|#3| $)) (-15 -4102 (|#3| $)) (-15 -1801 (|#3| $ |#3| (-923))) (-15 -4166 ((-645 (-1179)) $))))
+((-2412 (((-112) $ $) NIL)) (-2101 (($ (-645 (-1078 |#1| |#2| |#3|))) 14)) (-3821 (((-645 (-1078 |#1| |#2| |#3|)) $) 21)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-1801 ((|#3| $ |#3|) 24) ((|#3| $ |#3| (-923)) 27)) (-4129 (((-863) $) 17)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) 20)))
+(((-1079 |#1| |#2| |#3|) (-13 (-1102) (-287 |#3| |#3|) (-10 -8 (-15 -2101 ($ (-645 (-1078 |#1| |#2| |#3|)))) (-15 -3821 ((-645 (-1078 |#1| |#2| |#3|)) $)) (-15 -1801 (|#3| $ |#3| (-923))))) (-1102) (-13 (-1051) (-888 |#1|) (-615 (-894 |#1|))) (-13 (-433 |#2|) (-888 |#1|) (-615 (-894 |#1|)))) (T -1079))
+((-2101 (*1 *1 *2) (-12 (-5 *2 (-645 (-1078 *3 *4 *5))) (-4 *3 (-1102)) (-4 *4 (-13 (-1051) (-888 *3) (-615 (-894 *3)))) (-4 *5 (-13 (-433 *4) (-888 *3) (-615 (-894 *3)))) (-5 *1 (-1079 *3 *4 *5)))) (-3821 (*1 *2 *1) (-12 (-4 *3 (-1102)) (-4 *4 (-13 (-1051) (-888 *3) (-615 (-894 *3)))) (-5 *2 (-645 (-1078 *3 *4 *5))) (-5 *1 (-1079 *3 *4 *5)) (-4 *5 (-13 (-433 *4) (-888 *3) (-615 (-894 *3)))))) (-1801 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-923)) (-4 *4 (-1102)) (-4 *5 (-13 (-1051) (-888 *4) (-615 (-894 *4)))) (-5 *1 (-1079 *4 *5 *2)) (-4 *2 (-13 (-433 *5) (-888 *4) (-615 (-894 *4)))))))
+(-13 (-1102) (-287 |#3| |#3|) (-10 -8 (-15 -2101 ($ (-645 (-1078 |#1| |#2| |#3|)))) (-15 -3821 ((-645 (-1078 |#1| |#2| |#3|)) $)) (-15 -1801 (|#3| $ |#3| (-923)))))
+((-2714 (((-645 (-2 (|:| -2450 (-1175 |#1|)) (|:| -3088 (-645 (-954 |#1|))))) (-645 (-954 |#1|)) (-112) (-112)) 88) (((-645 (-2 (|:| -2450 (-1175 |#1|)) (|:| -3088 (-645 (-954 |#1|))))) (-645 (-954 |#1|))) 92) (((-645 (-2 (|:| -2450 (-1175 |#1|)) (|:| -3088 (-645 (-954 |#1|))))) (-645 (-954 |#1|)) (-112)) 90)))
+(((-1080 |#1| |#2|) (-10 -7 (-15 -2714 ((-645 (-2 (|:| -2450 (-1175 |#1|)) (|:| -3088 (-645 (-954 |#1|))))) (-645 (-954 |#1|)) (-112))) (-15 -2714 ((-645 (-2 (|:| -2450 (-1175 |#1|)) (|:| -3088 (-645 (-954 |#1|))))) (-645 (-954 |#1|)))) (-15 -2714 ((-645 (-2 (|:| -2450 (-1175 |#1|)) (|:| -3088 (-645 (-954 |#1|))))) (-645 (-954 |#1|)) (-112) (-112)))) (-13 (-308) (-147)) (-645 (-1179))) (T -1080))
+((-2714 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-2 (|:| -2450 (-1175 *5)) (|:| -3088 (-645 (-954 *5)))))) (-5 *1 (-1080 *5 *6)) (-5 *3 (-645 (-954 *5))) (-14 *6 (-645 (-1179))))) (-2714 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-5 *2 (-645 (-2 (|:| -2450 (-1175 *4)) (|:| -3088 (-645 (-954 *4)))))) (-5 *1 (-1080 *4 *5)) (-5 *3 (-645 (-954 *4))) (-14 *5 (-645 (-1179))))) (-2714 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-2 (|:| -2450 (-1175 *5)) (|:| -3088 (-645 (-954 *5)))))) (-5 *1 (-1080 *5 *6)) (-5 *3 (-645 (-954 *5))) (-14 *6 (-645 (-1179))))))
+(-10 -7 (-15 -2714 ((-645 (-2 (|:| -2450 (-1175 |#1|)) (|:| -3088 (-645 (-954 |#1|))))) (-645 (-954 |#1|)) (-112))) (-15 -2714 ((-645 (-2 (|:| -2450 (-1175 |#1|)) (|:| -3088 (-645 (-954 |#1|))))) (-645 (-954 |#1|)))) (-15 -2714 ((-645 (-2 (|:| -2450 (-1175 |#1|)) (|:| -3088 (-645 (-954 |#1|))))) (-645 (-954 |#1|)) (-112) (-112))))
+((-2717 (((-421 |#3|) |#3|) 18)))
+(((-1081 |#1| |#2| |#3|) (-10 -7 (-15 -2717 ((-421 |#3|) |#3|))) (-1245 (-410 (-567))) (-13 (-365) (-147) (-725 (-410 (-567)) |#1|)) (-1245 |#2|)) (T -1081))
+((-2717 (*1 *2 *3) (-12 (-4 *4 (-1245 (-410 (-567)))) (-4 *5 (-13 (-365) (-147) (-725 (-410 (-567)) *4))) (-5 *2 (-421 *3)) (-5 *1 (-1081 *4 *5 *3)) (-4 *3 (-1245 *5)))))
+(-10 -7 (-15 -2717 ((-421 |#3|) |#3|)))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) 141)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) NIL (|has| |#1| (-365)))) (-4287 (($ $) NIL (|has| |#1| (-365)))) (-2286 (((-112) $) NIL (|has| |#1| (-365)))) (-3478 (((-690 |#1|) (-1269 $)) NIL) (((-690 |#1|)) 125)) (-4293 ((|#1| $) 130)) (-3792 (((-1192 (-923) (-772)) (-567)) NIL (|has| |#1| (-351)))) (-2376 (((-3 $ "failed") $ $) NIL)) (-3659 (($ $) NIL (|has| |#1| (-365)))) (-3597 (((-421 $) $) NIL (|has| |#1| (-365)))) (-3696 (((-112) $ $) NIL (|has| |#1| (-365)))) (-2384 (((-772)) 46 (|has| |#1| (-370)))) (-3647 (($) NIL T CONST)) (-3765 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) NIL)) (-2051 (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) NIL)) (-3111 (($ (-1269 |#1|) (-1269 $)) NIL) (($ (-1269 |#1|)) 49)) (-2998 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-351)))) (-2357 (($ $ $) NIL (|has| |#1| (-365)))) (-3012 (((-690 |#1|) $ (-1269 $)) NIL) (((-690 |#1|) $) NIL)) (-1423 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4208 (-690 |#1|)) (|:| |vec| (-1269 |#1|))) (-690 $) (-1269 $)) 115) (((-690 |#1|) (-690 $)) 110)) (-2494 (($ |#2|) 67) (((-3 $ "failed") (-410 |#2|)) NIL (|has| |#1| (-365)))) (-3588 (((-3 $ "failed") $) NIL)) (-1976 (((-923)) 84)) (-1359 (($) 50 (|has| |#1| (-370)))) (-2368 (($ $ $) NIL (|has| |#1| (-365)))) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-2870 (($) NIL (|has| |#1| (-351)))) (-1305 (((-112) $) NIL (|has| |#1| (-351)))) (-3144 (($ $ (-772)) NIL (|has| |#1| (-351))) (($ $) NIL (|has| |#1| (-351)))) (-3502 (((-112) $) NIL (|has| |#1| (-365)))) (-3362 (((-923) $) NIL (|has| |#1| (-351))) (((-834 (-923)) $) NIL (|has| |#1| (-351)))) (-4346 (((-112) $) NIL)) (-2724 ((|#1| $) NIL)) (-3067 (((-3 $ "failed") $) NIL (|has| |#1| (-351)))) (-1469 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-1914 ((|#2| $) 91 (|has| |#1| (-365)))) (-3474 (((-923) $) 150 (|has| |#1| (-370)))) (-2484 ((|#2| $) 64)) (-2751 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2516 (((-1161) $) NIL)) (-2949 (($ $) NIL (|has| |#1| (-365)))) (-2694 (($) NIL (|has| |#1| (-351)) CONST)) (-3779 (($ (-923)) 140 (|has| |#1| (-370)))) (-3437 (((-1122) $) NIL)) (-1399 (($) 132)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| |#1| (-365)))) (-2785 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-4151 (((-645 (-2 (|:| -2717 (-567)) (|:| -3468 (-567))))) NIL (|has| |#1| (-351)))) (-2717 (((-421 $) $) NIL (|has| |#1| (-365)))) (-2905 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) NIL (|has| |#1| (-365)))) (-2400 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-2372 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-2460 (((-772) $) NIL (|has| |#1| (-365)))) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) NIL (|has| |#1| (-365)))) (-2433 ((|#1| (-1269 $)) NIL) ((|#1|) 119)) (-1760 (((-772) $) NIL (|has| |#1| (-351))) (((-3 (-772) "failed") $ $) NIL (|has| |#1| (-351)))) (-1616 (($ $) NIL (-2811 (-12 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-772)) NIL (-2811 (-12 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-1179)) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-902 (-1179))))) (($ $ (-645 (-1179))) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-902 (-1179))))) (($ $ (-1179) (-772)) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-902 (-1179))))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-902 (-1179))))) (($ $ (-1 |#1| |#1|) (-772)) NIL (|has| |#1| (-365))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-365)))) (-1648 (((-690 |#1|) (-1269 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-365)))) (-3169 ((|#2|) 80)) (-4273 (($) NIL (|has| |#1| (-351)))) (-3088 (((-1269 |#1|) $ (-1269 $)) 96) (((-690 |#1|) (-1269 $) (-1269 $)) NIL) (((-1269 |#1|) $) 77) (((-690 |#1|) (-1269 $)) 92)) (-3902 (((-1269 |#1|) $) NIL) (($ (-1269 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-2616 (((-3 (-1269 $) "failed") (-690 $)) NIL (|has| |#1| (-351)))) (-4129 (((-863) $) 63) (($ (-567)) 59) (($ |#1|) 60) (($ $) NIL (|has| |#1| (-365))) (($ (-410 (-567))) NIL (-2811 (|has| |#1| (-365)) (|has| |#1| (-1040 (-410 (-567))))))) (-2118 (($ $) NIL (|has| |#1| (-351))) (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2231 ((|#2| $) 89)) (-2746 (((-772)) 82 T CONST)) (-3357 (((-112) $ $) NIL)) (-2144 (((-1269 $)) 88)) (-3731 (((-112) $ $) NIL (|has| |#1| (-365)))) (-1733 (($) 32 T CONST)) (-1744 (($) 19 T CONST)) (-2647 (($ $) NIL (-2811 (-12 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-772)) NIL (-2811 (-12 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-1179)) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-902 (-1179))))) (($ $ (-645 (-1179))) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-902 (-1179))))) (($ $ (-1179) (-772)) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-902 (-1179))))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-902 (-1179))))) (($ $ (-1 |#1| |#1|) (-772)) NIL (|has| |#1| (-365))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-365)))) (-2946 (((-112) $ $) 69)) (-3069 (($ $ $) NIL (|has| |#1| (-365)))) (-3053 (($ $) 73) (($ $ $) NIL)) (-3041 (($ $ $) 71)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL (|has| |#1| (-365)))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 57) (($ $ $) 75) (($ $ |#1|) NIL) (($ |#1| $) 54) (($ (-410 (-567)) $) NIL (|has| |#1| (-365))) (($ $ (-410 (-567))) NIL (|has| |#1| (-365)))))
+(((-1082 |#1| |#2| |#3|) (-725 |#1| |#2|) (-172) (-1245 |#1|) |#2|) (T -1082))
NIL
(-725 |#1| |#2|)
-((-2706 (((-421 |#3|) |#3|) 19)))
-(((-1083 |#1| |#2| |#3|) (-10 -7 (-15 -2706 ((-421 |#3|) |#3|))) (-1244 (-410 (-954 (-567)))) (-13 (-365) (-147) (-725 (-410 (-954 (-567))) |#1|)) (-1244 |#2|)) (T -1083))
-((-2706 (*1 *2 *3) (-12 (-4 *4 (-1244 (-410 (-954 (-567))))) (-4 *5 (-13 (-365) (-147) (-725 (-410 (-954 (-567))) *4))) (-5 *2 (-421 *3)) (-5 *1 (-1083 *4 *5 *3)) (-4 *3 (-1244 *5)))))
-(-10 -7 (-15 -2706 ((-421 |#3|) |#3|)))
-((-2403 (((-112) $ $) NIL)) (-1354 (($ $ $) 16)) (-2981 (($ $ $) 17)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4314 (($) 6)) (-3893 (((-1178) $) 20)) (-4132 (((-863) $) 13)) (-1745 (((-112) $ $) NIL)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 15)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) 9)))
-(((-1084) (-13 (-851) (-615 (-1178)) (-10 -8 (-15 -4314 ($))))) (T -1084))
-((-4314 (*1 *1) (-5 *1 (-1084))))
-(-13 (-851) (-615 (-1178)) (-10 -8 (-15 -4314 ($))))
-((-2403 (((-112) $ $) 7)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12) (($ (-1183)) 17) (((-1183) $) 16)) (-1745 (((-112) $ $) 9)) (-2936 (((-112) $ $) 6)))
+((-2717 (((-421 |#3|) |#3|) 19)))
+(((-1083 |#1| |#2| |#3|) (-10 -7 (-15 -2717 ((-421 |#3|) |#3|))) (-1245 (-410 (-954 (-567)))) (-13 (-365) (-147) (-725 (-410 (-954 (-567))) |#1|)) (-1245 |#2|)) (T -1083))
+((-2717 (*1 *2 *3) (-12 (-4 *4 (-1245 (-410 (-954 (-567))))) (-4 *5 (-13 (-365) (-147) (-725 (-410 (-954 (-567))) *4))) (-5 *2 (-421 *3)) (-5 *1 (-1083 *4 *5 *3)) (-4 *3 (-1245 *5)))))
+(-10 -7 (-15 -2717 ((-421 |#3|) |#3|)))
+((-2412 (((-112) $ $) NIL)) (-1365 (($ $ $) 16)) (-3002 (($ $ $) 17)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-2187 (($) 6)) (-3902 (((-1179) $) 20)) (-4129 (((-863) $) 13)) (-3357 (((-112) $ $) NIL)) (-3004 (((-112) $ $) NIL)) (-2980 (((-112) $ $) NIL)) (-2946 (((-112) $ $) 15)) (-2993 (((-112) $ $) NIL)) (-2968 (((-112) $ $) 9)))
+(((-1084) (-13 (-851) (-615 (-1179)) (-10 -8 (-15 -2187 ($))))) (T -1084))
+((-2187 (*1 *1) (-5 *1 (-1084))))
+(-13 (-851) (-615 (-1179)) (-10 -8 (-15 -2187 ($))))
+((-2412 (((-112) $ $) 7)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-4129 (((-863) $) 12) (($ (-1184)) 17) (((-1184) $) 16)) (-3357 (((-112) $ $) 9)) (-2946 (((-112) $ $) 6)))
(((-1085) (-140)) (T -1085))
NIL
(-13 (-93))
-(((-93) . T) ((-102) . T) ((-617 #0=(-1183)) . T) ((-614 (-863)) . T) ((-614 #0#) . T) ((-493 #0#) . T) ((-1102) . T))
-((-3313 ((|#1| |#1| (-1 (-567) |#1| |#1|)) 43) ((|#1| |#1| (-1 (-112) |#1|)) 34)) (-2026 (((-1273)) 22)) (-2862 (((-645 |#1|)) 13)))
-(((-1086 |#1|) (-10 -7 (-15 -2026 ((-1273))) (-15 -2862 ((-645 |#1|))) (-15 -3313 (|#1| |#1| (-1 (-112) |#1|))) (-15 -3313 (|#1| |#1| (-1 (-567) |#1| |#1|)))) (-132)) (T -1086))
-((-3313 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-567) *2 *2)) (-4 *2 (-132)) (-5 *1 (-1086 *2)))) (-3313 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-132)) (-5 *1 (-1086 *2)))) (-2862 (*1 *2) (-12 (-5 *2 (-645 *3)) (-5 *1 (-1086 *3)) (-4 *3 (-132)))) (-2026 (*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-1086 *3)) (-4 *3 (-132)))))
-(-10 -7 (-15 -2026 ((-1273))) (-15 -2862 ((-645 |#1|))) (-15 -3313 (|#1| |#1| (-1 (-112) |#1|))) (-15 -3313 (|#1| |#1| (-1 (-567) |#1| |#1|))))
-((-1386 (($ (-109) $) 20)) (-2025 (((-692 (-109)) (-509) $) 19)) (-3498 (($) 7)) (-2632 (($) 21)) (-2265 (($) 22)) (-4229 (((-645 (-175)) $) 10)) (-4132 (((-863) $) 25)))
-(((-1087) (-13 (-614 (-863)) (-10 -8 (-15 -3498 ($)) (-15 -4229 ((-645 (-175)) $)) (-15 -2025 ((-692 (-109)) (-509) $)) (-15 -1386 ($ (-109) $)) (-15 -2632 ($)) (-15 -2265 ($))))) (T -1087))
-((-3498 (*1 *1) (-5 *1 (-1087))) (-4229 (*1 *2 *1) (-12 (-5 *2 (-645 (-175))) (-5 *1 (-1087)))) (-2025 (*1 *2 *3 *1) (-12 (-5 *3 (-509)) (-5 *2 (-692 (-109))) (-5 *1 (-1087)))) (-1386 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1087)))) (-2632 (*1 *1) (-5 *1 (-1087))) (-2265 (*1 *1) (-5 *1 (-1087))))
-(-13 (-614 (-863)) (-10 -8 (-15 -3498 ($)) (-15 -4229 ((-645 (-175)) $)) (-15 -2025 ((-692 (-109)) (-509) $)) (-15 -1386 ($ (-109) $)) (-15 -2632 ($)) (-15 -2265 ($))))
-((-2189 (((-1268 (-690 |#1|)) (-645 (-690 |#1|))) 47) (((-1268 (-690 (-954 |#1|))) (-645 (-1178)) (-690 (-954 |#1|))) 75) (((-1268 (-690 (-410 (-954 |#1|)))) (-645 (-1178)) (-690 (-410 (-954 |#1|)))) 92)) (-2887 (((-1268 |#1|) (-690 |#1|) (-645 (-690 |#1|))) 41)))
-(((-1088 |#1|) (-10 -7 (-15 -2189 ((-1268 (-690 (-410 (-954 |#1|)))) (-645 (-1178)) (-690 (-410 (-954 |#1|))))) (-15 -2189 ((-1268 (-690 (-954 |#1|))) (-645 (-1178)) (-690 (-954 |#1|)))) (-15 -2189 ((-1268 (-690 |#1|)) (-645 (-690 |#1|)))) (-15 -2887 ((-1268 |#1|) (-690 |#1|) (-645 (-690 |#1|))))) (-365)) (T -1088))
-((-2887 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-690 *5))) (-5 *3 (-690 *5)) (-4 *5 (-365)) (-5 *2 (-1268 *5)) (-5 *1 (-1088 *5)))) (-2189 (*1 *2 *3) (-12 (-5 *3 (-645 (-690 *4))) (-4 *4 (-365)) (-5 *2 (-1268 (-690 *4))) (-5 *1 (-1088 *4)))) (-2189 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-1178))) (-4 *5 (-365)) (-5 *2 (-1268 (-690 (-954 *5)))) (-5 *1 (-1088 *5)) (-5 *4 (-690 (-954 *5))))) (-2189 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-1178))) (-4 *5 (-365)) (-5 *2 (-1268 (-690 (-410 (-954 *5))))) (-5 *1 (-1088 *5)) (-5 *4 (-690 (-410 (-954 *5)))))))
-(-10 -7 (-15 -2189 ((-1268 (-690 (-410 (-954 |#1|)))) (-645 (-1178)) (-690 (-410 (-954 |#1|))))) (-15 -2189 ((-1268 (-690 (-954 |#1|))) (-645 (-1178)) (-690 (-954 |#1|)))) (-15 -2189 ((-1268 (-690 |#1|)) (-645 (-690 |#1|)))) (-15 -2887 ((-1268 |#1|) (-690 |#1|) (-645 (-690 |#1|)))))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3335 (((-645 (-772)) $) NIL) (((-645 (-772)) $ (-1178)) NIL)) (-3729 (((-772) $) NIL) (((-772) $ (-1178)) NIL)) (-2847 (((-645 (-1090 (-1178))) $) NIL)) (-2675 (((-1174 $) $ (-1090 (-1178))) NIL) (((-1174 |#1|) $) NIL)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-4381 (($ $) NIL (|has| |#1| (-559)))) (-3949 (((-112) $) NIL (|has| |#1| (-559)))) (-1468 (((-772) $) NIL) (((-772) $ (-645 (-1090 (-1178)))) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-4226 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-911)))) (-3248 (($ $) NIL (|has| |#1| (-455)))) (-2908 (((-421 $) $) NIL (|has| |#1| (-455)))) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-911)))) (-3634 (($ $) NIL)) (-2585 (($) NIL T CONST)) (-3753 (((-3 |#1| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-1090 (-1178)) "failed") $) NIL) (((-3 (-1178) "failed") $) NIL) (((-3 (-1127 |#1| (-1178)) "failed") $) NIL)) (-2038 ((|#1| $) NIL) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-1090 (-1178)) $) NIL) (((-1178) $) NIL) (((-1127 |#1| (-1178)) $) NIL)) (-2951 (($ $ $ (-1090 (-1178))) NIL (|has| |#1| (-172)))) (-3014 (($ $) NIL)) (-2630 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 |#1|)) (|:| |vec| (-1268 |#1|))) (-690 $) (-1268 $)) NIL) (((-690 |#1|) (-690 $)) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-3501 (($ $) NIL (|has| |#1| (-455))) (($ $ (-1090 (-1178))) NIL (|has| |#1| (-455)))) (-3000 (((-645 $) $) NIL)) (-3184 (((-112) $) NIL (|has| |#1| (-911)))) (-2320 (($ $ |#1| (-534 (-1090 (-1178))) $) NIL)) (-4303 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (-12 (|has| (-1090 (-1178)) (-888 (-381))) (|has| |#1| (-888 (-381))))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (-12 (|has| (-1090 (-1178)) (-888 (-567))) (|has| |#1| (-888 (-567)))))) (-4384 (((-772) $ (-1178)) NIL) (((-772) $) NIL)) (-1433 (((-112) $) NIL)) (-2695 (((-772) $) NIL)) (-2836 (($ (-1174 |#1|) (-1090 (-1178))) NIL) (($ (-1174 $) (-1090 (-1178))) NIL)) (-1709 (((-645 $) $) NIL)) (-2843 (((-112) $) NIL)) (-2824 (($ |#1| (-534 (-1090 (-1178)))) NIL) (($ $ (-1090 (-1178)) (-772)) NIL) (($ $ (-645 (-1090 (-1178))) (-645 (-772))) NIL)) (-1621 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $ (-1090 (-1178))) NIL)) (-2656 (((-534 (-1090 (-1178))) $) NIL) (((-772) $ (-1090 (-1178))) NIL) (((-645 (-772)) $ (-645 (-1090 (-1178)))) NIL)) (-3273 (($ (-1 (-534 (-1090 (-1178))) (-534 (-1090 (-1178)))) $) NIL)) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-1369 (((-1 $ (-772)) (-1178)) NIL) (((-1 $ (-772)) $) NIL (|has| |#1| (-233)))) (-3046 (((-3 (-1090 (-1178)) "failed") $) NIL)) (-2976 (($ $) NIL)) (-2989 ((|#1| $) NIL)) (-3151 (((-1090 (-1178)) $) NIL)) (-2740 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-1419 (((-1160) $) NIL)) (-1634 (((-112) $) NIL)) (-2056 (((-3 (-645 $) "failed") $) NIL)) (-3671 (((-3 (-645 $) "failed") $) NIL)) (-3798 (((-3 (-2 (|:| |var| (-1090 (-1178))) (|:| -3458 (-772))) "failed") $) NIL)) (-2344 (($ $) NIL)) (-3430 (((-1122) $) NIL)) (-2949 (((-112) $) NIL)) (-2962 ((|#1| $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#1| (-455)))) (-2774 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-2435 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-911)))) (-3517 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-911)))) (-2706 (((-421 $) $) NIL (|has| |#1| (-911)))) (-2391 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-2631 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-1090 (-1178)) |#1|) NIL) (($ $ (-645 (-1090 (-1178))) (-645 |#1|)) NIL) (($ $ (-1090 (-1178)) $) NIL) (($ $ (-645 (-1090 (-1178))) (-645 $)) NIL) (($ $ (-1178) $) NIL (|has| |#1| (-233))) (($ $ (-645 (-1178)) (-645 $)) NIL (|has| |#1| (-233))) (($ $ (-1178) |#1|) NIL (|has| |#1| (-233))) (($ $ (-645 (-1178)) (-645 |#1|)) NIL (|has| |#1| (-233)))) (-3788 (($ $ (-1090 (-1178))) NIL (|has| |#1| (-172)))) (-1593 (($ $ (-1090 (-1178))) NIL) (($ $ (-645 (-1090 (-1178)))) NIL) (($ $ (-1090 (-1178)) (-772)) NIL) (($ $ (-645 (-1090 (-1178))) (-645 (-772))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $ (-1178)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2395 (((-645 (-1178)) $) NIL)) (-3077 (((-534 (-1090 (-1178))) $) NIL) (((-772) $ (-1090 (-1178))) NIL) (((-645 (-772)) $ (-645 (-1090 (-1178)))) NIL) (((-772) $ (-1178)) NIL)) (-3893 (((-894 (-381)) $) NIL (-12 (|has| (-1090 (-1178)) (-615 (-894 (-381)))) (|has| |#1| (-615 (-894 (-381)))))) (((-894 (-567)) $) NIL (-12 (|has| (-1090 (-1178)) (-615 (-894 (-567)))) (|has| |#1| (-615 (-894 (-567)))))) (((-539) $) NIL (-12 (|has| (-1090 (-1178)) (-615 (-539))) (|has| |#1| (-615 (-539)))))) (-4358 ((|#1| $) NIL (|has| |#1| (-455))) (($ $ (-1090 (-1178))) NIL (|has| |#1| (-455)))) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-911))))) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) NIL) (($ (-1090 (-1178))) NIL) (($ (-1178)) NIL) (($ (-1127 |#1| (-1178))) NIL) (($ (-410 (-567))) NIL (-2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567)))))) (($ $) NIL (|has| |#1| (-559)))) (-3032 (((-645 |#1|) $) NIL)) (-4136 ((|#1| $ (-534 (-1090 (-1178)))) NIL) (($ $ (-1090 (-1178)) (-772)) NIL) (($ $ (-645 (-1090 (-1178))) (-645 (-772))) NIL)) (-1903 (((-3 $ "failed") $) NIL (-2800 (-12 (|has| $ (-145)) (|has| |#1| (-911))) (|has| |#1| (-145))))) (-4221 (((-772)) NIL T CONST)) (-4176 (($ $ $ (-772)) NIL (|has| |#1| (-172)))) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1716 (($) NIL T CONST)) (-1728 (($) NIL T CONST)) (-2637 (($ $ (-1090 (-1178))) NIL) (($ $ (-645 (-1090 (-1178)))) NIL) (($ $ (-1090 (-1178)) (-772)) NIL) (($ $ (-645 (-1090 (-1178))) (-645 (-772))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $ (-1178)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-1089 |#1|) (-13 (-254 |#1| (-1178) (-1090 (-1178)) (-534 (-1090 (-1178)))) (-1040 (-1127 |#1| (-1178)))) (-1051)) (T -1089))
-NIL
-(-13 (-254 |#1| (-1178) (-1090 (-1178)) (-534 (-1090 (-1178)))) (-1040 (-1127 |#1| (-1178))))
-((-2403 (((-112) $ $) NIL)) (-3729 (((-772) $) NIL)) (-3644 ((|#1| $) 10)) (-3753 (((-3 |#1| "failed") $) NIL)) (-2038 ((|#1| $) NIL)) (-4384 (((-772) $) 11)) (-1354 (($ $ $) NIL)) (-2981 (($ $ $) NIL)) (-1369 (($ |#1| (-772)) 9)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-1593 (($ $) NIL) (($ $ (-772)) NIL)) (-4132 (((-863) $) NIL) (($ |#1|) NIL)) (-1745 (((-112) $ $) NIL)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) 16)))
+(((-93) . T) ((-102) . T) ((-617 #0=(-1184)) . T) ((-614 (-863)) . T) ((-614 #0#) . T) ((-493 #0#) . T) ((-1102) . T))
+((-3905 ((|#1| |#1| (-1 (-567) |#1| |#1|)) 43) ((|#1| |#1| (-1 (-112) |#1|)) 34)) (-2037 (((-1274)) 22)) (-2874 (((-645 |#1|)) 13)))
+(((-1086 |#1|) (-10 -7 (-15 -2037 ((-1274))) (-15 -2874 ((-645 |#1|))) (-15 -3905 (|#1| |#1| (-1 (-112) |#1|))) (-15 -3905 (|#1| |#1| (-1 (-567) |#1| |#1|)))) (-132)) (T -1086))
+((-3905 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-567) *2 *2)) (-4 *2 (-132)) (-5 *1 (-1086 *2)))) (-3905 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-132)) (-5 *1 (-1086 *2)))) (-2874 (*1 *2) (-12 (-5 *2 (-645 *3)) (-5 *1 (-1086 *3)) (-4 *3 (-132)))) (-2037 (*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-1086 *3)) (-4 *3 (-132)))))
+(-10 -7 (-15 -2037 ((-1274))) (-15 -2874 ((-645 |#1|))) (-15 -3905 (|#1| |#1| (-1 (-112) |#1|))) (-15 -3905 (|#1| |#1| (-1 (-567) |#1| |#1|))))
+((-3930 (($ (-109) $) 20)) (-2563 (((-692 (-109)) (-509) $) 19)) (-2701 (($) 7)) (-1518 (($) 21)) (-3172 (($) 22)) (-2305 (((-645 (-175)) $) 10)) (-4129 (((-863) $) 25)))
+(((-1087) (-13 (-614 (-863)) (-10 -8 (-15 -2701 ($)) (-15 -2305 ((-645 (-175)) $)) (-15 -2563 ((-692 (-109)) (-509) $)) (-15 -3930 ($ (-109) $)) (-15 -1518 ($)) (-15 -3172 ($))))) (T -1087))
+((-2701 (*1 *1) (-5 *1 (-1087))) (-2305 (*1 *2 *1) (-12 (-5 *2 (-645 (-175))) (-5 *1 (-1087)))) (-2563 (*1 *2 *3 *1) (-12 (-5 *3 (-509)) (-5 *2 (-692 (-109))) (-5 *1 (-1087)))) (-3930 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1087)))) (-1518 (*1 *1) (-5 *1 (-1087))) (-3172 (*1 *1) (-5 *1 (-1087))))
+(-13 (-614 (-863)) (-10 -8 (-15 -2701 ($)) (-15 -2305 ((-645 (-175)) $)) (-15 -2563 ((-692 (-109)) (-509) $)) (-15 -3930 ($ (-109) $)) (-15 -1518 ($)) (-15 -3172 ($))))
+((-1483 (((-1269 (-690 |#1|)) (-645 (-690 |#1|))) 47) (((-1269 (-690 (-954 |#1|))) (-645 (-1179)) (-690 (-954 |#1|))) 75) (((-1269 (-690 (-410 (-954 |#1|)))) (-645 (-1179)) (-690 (-410 (-954 |#1|)))) 92)) (-3088 (((-1269 |#1|) (-690 |#1|) (-645 (-690 |#1|))) 41)))
+(((-1088 |#1|) (-10 -7 (-15 -1483 ((-1269 (-690 (-410 (-954 |#1|)))) (-645 (-1179)) (-690 (-410 (-954 |#1|))))) (-15 -1483 ((-1269 (-690 (-954 |#1|))) (-645 (-1179)) (-690 (-954 |#1|)))) (-15 -1483 ((-1269 (-690 |#1|)) (-645 (-690 |#1|)))) (-15 -3088 ((-1269 |#1|) (-690 |#1|) (-645 (-690 |#1|))))) (-365)) (T -1088))
+((-3088 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-690 *5))) (-5 *3 (-690 *5)) (-4 *5 (-365)) (-5 *2 (-1269 *5)) (-5 *1 (-1088 *5)))) (-1483 (*1 *2 *3) (-12 (-5 *3 (-645 (-690 *4))) (-4 *4 (-365)) (-5 *2 (-1269 (-690 *4))) (-5 *1 (-1088 *4)))) (-1483 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-1179))) (-4 *5 (-365)) (-5 *2 (-1269 (-690 (-954 *5)))) (-5 *1 (-1088 *5)) (-5 *4 (-690 (-954 *5))))) (-1483 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-1179))) (-4 *5 (-365)) (-5 *2 (-1269 (-690 (-410 (-954 *5))))) (-5 *1 (-1088 *5)) (-5 *4 (-690 (-410 (-954 *5)))))))
+(-10 -7 (-15 -1483 ((-1269 (-690 (-410 (-954 |#1|)))) (-645 (-1179)) (-690 (-410 (-954 |#1|))))) (-15 -1483 ((-1269 (-690 (-954 |#1|))) (-645 (-1179)) (-690 (-954 |#1|)))) (-15 -1483 ((-1269 (-690 |#1|)) (-645 (-690 |#1|)))) (-15 -3088 ((-1269 |#1|) (-690 |#1|) (-645 (-690 |#1|)))))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-3754 (((-645 (-772)) $) NIL) (((-645 (-772)) $ (-1179)) NIL)) (-1772 (((-772) $) NIL) (((-772) $ (-1179)) NIL)) (-2859 (((-645 (-1090 (-1179))) $) NIL)) (-2684 (((-1175 $) $ (-1090 (-1179))) NIL) (((-1175 |#1|) $) NIL)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-4287 (($ $) NIL (|has| |#1| (-559)))) (-2286 (((-112) $) NIL (|has| |#1| (-559)))) (-3849 (((-772) $) NIL) (((-772) $ (-645 (-1090 (-1179)))) NIL)) (-2376 (((-3 $ "failed") $ $) NIL)) (-2029 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-911)))) (-3659 (($ $) NIL (|has| |#1| (-455)))) (-3597 (((-421 $) $) NIL (|has| |#1| (-455)))) (-3610 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-911)))) (-1540 (($ $) NIL)) (-3647 (($) NIL T CONST)) (-3765 (((-3 |#1| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-1090 (-1179)) "failed") $) NIL) (((-3 (-1179) "failed") $) NIL) (((-3 (-1127 |#1| (-1179)) "failed") $) NIL)) (-2051 ((|#1| $) NIL) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-1090 (-1179)) $) NIL) (((-1179) $) NIL) (((-1127 |#1| (-1179)) $) NIL)) (-3554 (($ $ $ (-1090 (-1179))) NIL (|has| |#1| (-172)))) (-3023 (($ $) NIL)) (-1423 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4208 (-690 |#1|)) (|:| |vec| (-1269 |#1|))) (-690 $) (-1269 $)) NIL) (((-690 |#1|) (-690 $)) NIL)) (-3588 (((-3 $ "failed") $) NIL)) (-2989 (($ $) NIL (|has| |#1| (-455))) (($ $ (-1090 (-1179))) NIL (|has| |#1| (-455)))) (-3010 (((-645 $) $) NIL)) (-3502 (((-112) $) NIL (|has| |#1| (-911)))) (-3214 (($ $ |#1| (-534 (-1090 (-1179))) $) NIL)) (-3193 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (-12 (|has| (-1090 (-1179)) (-888 (-381))) (|has| |#1| (-888 (-381))))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (-12 (|has| (-1090 (-1179)) (-888 (-567))) (|has| |#1| (-888 (-567)))))) (-3362 (((-772) $ (-1179)) NIL) (((-772) $) NIL)) (-4346 (((-112) $) NIL)) (-2851 (((-772) $) NIL)) (-2848 (($ (-1175 |#1|) (-1090 (-1179))) NIL) (($ (-1175 $) (-1090 (-1179))) NIL)) (-2659 (((-645 $) $) NIL)) (-3770 (((-112) $) NIL)) (-2836 (($ |#1| (-534 (-1090 (-1179)))) NIL) (($ $ (-1090 (-1179)) (-772)) NIL) (($ $ (-645 (-1090 (-1179))) (-645 (-772))) NIL)) (-2742 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $ (-1090 (-1179))) NIL)) (-2955 (((-534 (-1090 (-1179))) $) NIL) (((-772) $ (-1090 (-1179))) NIL) (((-645 (-772)) $ (-645 (-1090 (-1179)))) NIL)) (-3827 (($ (-1 (-534 (-1090 (-1179))) (-534 (-1090 (-1179)))) $) NIL)) (-3841 (($ (-1 |#1| |#1|) $) NIL)) (-3029 (((-1 $ (-772)) (-1179)) NIL) (((-1 $ (-772)) $) NIL (|has| |#1| (-233)))) (-3221 (((-3 (-1090 (-1179)) "failed") $) NIL)) (-2985 (($ $) NIL)) (-2996 ((|#1| $) NIL)) (-3726 (((-1090 (-1179)) $) NIL)) (-2751 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-2516 (((-1161) $) NIL)) (-1901 (((-112) $) NIL)) (-3037 (((-3 (-645 $) "failed") $) NIL)) (-3774 (((-3 (-645 $) "failed") $) NIL)) (-3816 (((-3 (-2 (|:| |var| (-1090 (-1179))) (|:| -3468 (-772))) "failed") $) NIL)) (-2353 (($ $) NIL)) (-3437 (((-1122) $) NIL)) (-2960 (((-112) $) NIL)) (-2971 ((|#1| $) NIL)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| |#1| (-455)))) (-2785 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-3551 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-911)))) (-2016 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-911)))) (-2717 (((-421 $) $) NIL (|has| |#1| (-911)))) (-2400 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-2642 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-1090 (-1179)) |#1|) NIL) (($ $ (-645 (-1090 (-1179))) (-645 |#1|)) NIL) (($ $ (-1090 (-1179)) $) NIL) (($ $ (-645 (-1090 (-1179))) (-645 $)) NIL) (($ $ (-1179) $) NIL (|has| |#1| (-233))) (($ $ (-645 (-1179)) (-645 $)) NIL (|has| |#1| (-233))) (($ $ (-1179) |#1|) NIL (|has| |#1| (-233))) (($ $ (-645 (-1179)) (-645 |#1|)) NIL (|has| |#1| (-233)))) (-2433 (($ $ (-1090 (-1179))) NIL (|has| |#1| (-172)))) (-1616 (($ $ (-1090 (-1179))) NIL) (($ $ (-645 (-1090 (-1179)))) NIL) (($ $ (-1090 (-1179)) (-772)) NIL) (($ $ (-645 (-1090 (-1179))) (-645 (-772))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $ (-1179)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1924 (((-645 (-1179)) $) NIL)) (-3104 (((-534 (-1090 (-1179))) $) NIL) (((-772) $ (-1090 (-1179))) NIL) (((-645 (-772)) $ (-645 (-1090 (-1179)))) NIL) (((-772) $ (-1179)) NIL)) (-3902 (((-894 (-381)) $) NIL (-12 (|has| (-1090 (-1179)) (-615 (-894 (-381)))) (|has| |#1| (-615 (-894 (-381)))))) (((-894 (-567)) $) NIL (-12 (|has| (-1090 (-1179)) (-615 (-894 (-567)))) (|has| |#1| (-615 (-894 (-567)))))) (((-539) $) NIL (-12 (|has| (-1090 (-1179)) (-615 (-539))) (|has| |#1| (-615 (-539)))))) (-1849 ((|#1| $) NIL (|has| |#1| (-455))) (($ $ (-1090 (-1179))) NIL (|has| |#1| (-455)))) (-2616 (((-3 (-1269 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-911))))) (-4129 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) NIL) (($ (-1090 (-1179))) NIL) (($ (-1179)) NIL) (($ (-1127 |#1| (-1179))) NIL) (($ (-410 (-567))) NIL (-2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567)))))) (($ $) NIL (|has| |#1| (-559)))) (-3601 (((-645 |#1|) $) NIL)) (-2558 ((|#1| $ (-534 (-1090 (-1179)))) NIL) (($ $ (-1090 (-1179)) (-772)) NIL) (($ $ (-645 (-1090 (-1179))) (-645 (-772))) NIL)) (-2118 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-145)) (|has| |#1| (-911))) (|has| |#1| (-145))))) (-2746 (((-772)) NIL T CONST)) (-3658 (($ $ $ (-772)) NIL (|has| |#1| (-172)))) (-3357 (((-112) $ $) NIL)) (-3731 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1733 (($) NIL T CONST)) (-1744 (($) NIL T CONST)) (-2647 (($ $ (-1090 (-1179))) NIL) (($ $ (-645 (-1090 (-1179)))) NIL) (($ $ (-1090 (-1179)) (-772)) NIL) (($ $ (-645 (-1090 (-1179))) (-645 (-772))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $ (-1179)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2946 (((-112) $ $) NIL)) (-3069 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-1089 |#1|) (-13 (-254 |#1| (-1179) (-1090 (-1179)) (-534 (-1090 (-1179)))) (-1040 (-1127 |#1| (-1179)))) (-1051)) (T -1089))
+NIL
+(-13 (-254 |#1| (-1179) (-1090 (-1179)) (-534 (-1090 (-1179)))) (-1040 (-1127 |#1| (-1179))))
+((-2412 (((-112) $ $) NIL)) (-1772 (((-772) $) NIL)) (-3653 ((|#1| $) 10)) (-3765 (((-3 |#1| "failed") $) NIL)) (-2051 ((|#1| $) NIL)) (-3362 (((-772) $) 11)) (-1365 (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (-3029 (($ |#1| (-772)) 9)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-1616 (($ $) NIL) (($ $ (-772)) NIL)) (-4129 (((-863) $) NIL) (($ |#1|) NIL)) (-3357 (((-112) $ $) NIL)) (-3004 (((-112) $ $) NIL)) (-2980 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2993 (((-112) $ $) NIL)) (-2968 (((-112) $ $) 16)))
(((-1090 |#1|) (-267 |#1|) (-851)) (T -1090))
NIL
(-267 |#1|)
-((-3829 (((-645 |#2|) (-1 |#2| |#1|) (-1096 |#1|)) 29 (|has| |#1| (-849))) (((-1096 |#2|) (-1 |#2| |#1|) (-1096 |#1|)) 14)))
-(((-1091 |#1| |#2|) (-10 -7 (-15 -3829 ((-1096 |#2|) (-1 |#2| |#1|) (-1096 |#1|))) (IF (|has| |#1| (-849)) (-15 -3829 ((-645 |#2|) (-1 |#2| |#1|) (-1096 |#1|))) |%noBranch|)) (-1218) (-1218)) (T -1091))
-((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1096 *5)) (-4 *5 (-849)) (-4 *5 (-1218)) (-4 *6 (-1218)) (-5 *2 (-645 *6)) (-5 *1 (-1091 *5 *6)))) (-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1096 *5)) (-4 *5 (-1218)) (-4 *6 (-1218)) (-5 *2 (-1096 *6)) (-5 *1 (-1091 *5 *6)))))
-(-10 -7 (-15 -3829 ((-1096 |#2|) (-1 |#2| |#1|) (-1096 |#1|))) (IF (|has| |#1| (-849)) (-15 -3829 ((-645 |#2|) (-1 |#2| |#1|) (-1096 |#1|))) |%noBranch|))
-((-2403 (((-112) $ $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 16) (($ (-1183)) NIL) (((-1183) $) NIL)) (-2783 (((-645 (-1137)) $) 10)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)))
-(((-1092) (-13 (-1085) (-10 -8 (-15 -2783 ((-645 (-1137)) $))))) (T -1092))
-((-2783 (*1 *2 *1) (-12 (-5 *2 (-645 (-1137))) (-5 *1 (-1092)))))
-(-13 (-1085) (-10 -8 (-15 -2783 ((-645 (-1137)) $))))
-((-3829 (((-1094 |#2|) (-1 |#2| |#1|) (-1094 |#1|)) 19)))
-(((-1093 |#1| |#2|) (-10 -7 (-15 -3829 ((-1094 |#2|) (-1 |#2| |#1|) (-1094 |#1|)))) (-1218) (-1218)) (T -1093))
-((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1094 *5)) (-4 *5 (-1218)) (-4 *6 (-1218)) (-5 *2 (-1094 *6)) (-5 *1 (-1093 *5 *6)))))
-(-10 -7 (-15 -3829 ((-1094 |#2|) (-1 |#2| |#1|) (-1094 |#1|))))
-((-2403 (((-112) $ $) NIL (|has| (-1096 |#1|) (-1102)))) (-3644 (((-1178) $) NIL)) (-3099 (((-1096 |#1|) $) NIL)) (-1419 (((-1160) $) NIL (|has| (-1096 |#1|) (-1102)))) (-3430 (((-1122) $) NIL (|has| (-1096 |#1|) (-1102)))) (-2537 (($ (-1178) (-1096 |#1|)) NIL)) (-4132 (((-863) $) NIL (|has| (-1096 |#1|) (-1102)))) (-1745 (((-112) $ $) NIL (|has| (-1096 |#1|) (-1102)))) (-2936 (((-112) $ $) NIL (|has| (-1096 |#1|) (-1102)))))
-(((-1094 |#1|) (-13 (-1218) (-10 -8 (-15 -2537 ($ (-1178) (-1096 |#1|))) (-15 -3644 ((-1178) $)) (-15 -3099 ((-1096 |#1|) $)) (IF (|has| (-1096 |#1|) (-1102)) (-6 (-1102)) |%noBranch|))) (-1218)) (T -1094))
-((-2537 (*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-1096 *4)) (-4 *4 (-1218)) (-5 *1 (-1094 *4)))) (-3644 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1094 *3)) (-4 *3 (-1218)))) (-3099 (*1 *2 *1) (-12 (-5 *2 (-1096 *3)) (-5 *1 (-1094 *3)) (-4 *3 (-1218)))))
-(-13 (-1218) (-10 -8 (-15 -2537 ($ (-1178) (-1096 |#1|))) (-15 -3644 ((-1178) $)) (-15 -3099 ((-1096 |#1|) $)) (IF (|has| (-1096 |#1|) (-1102)) (-6 (-1102)) |%noBranch|)))
-((-3099 (($ |#1| |#1|) 8)) (-2504 ((|#1| $) 11)) (-1407 ((|#1| $) 13)) (-1430 (((-567) $) 9)) (-3131 ((|#1| $) 10)) (-1443 ((|#1| $) 12)) (-3893 (($ |#1|) 6)) (-2179 (($ |#1| |#1|) 15)) (-2715 (($ $ (-567)) 14)))
-(((-1095 |#1|) (-140) (-1218)) (T -1095))
-((-2179 (*1 *1 *2 *2) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1218)))) (-2715 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-1095 *3)) (-4 *3 (-1218)))) (-1407 (*1 *2 *1) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1218)))) (-1443 (*1 *2 *1) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1218)))) (-2504 (*1 *2 *1) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1218)))) (-3131 (*1 *2 *1) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1218)))) (-1430 (*1 *2 *1) (-12 (-4 *1 (-1095 *3)) (-4 *3 (-1218)) (-5 *2 (-567)))) (-3099 (*1 *1 *2 *2) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1218)))))
-(-13 (-619 |t#1|) (-10 -8 (-15 -2179 ($ |t#1| |t#1|)) (-15 -2715 ($ $ (-567))) (-15 -1407 (|t#1| $)) (-15 -1443 (|t#1| $)) (-15 -2504 (|t#1| $)) (-15 -3131 (|t#1| $)) (-15 -1430 ((-567) $)) (-15 -3099 ($ |t#1| |t#1|))))
+((-3841 (((-645 |#2|) (-1 |#2| |#1|) (-1096 |#1|)) 29 (|has| |#1| (-849))) (((-1096 |#2|) (-1 |#2| |#1|) (-1096 |#1|)) 14)))
+(((-1091 |#1| |#2|) (-10 -7 (-15 -3841 ((-1096 |#2|) (-1 |#2| |#1|) (-1096 |#1|))) (IF (|has| |#1| (-849)) (-15 -3841 ((-645 |#2|) (-1 |#2| |#1|) (-1096 |#1|))) |%noBranch|)) (-1219) (-1219)) (T -1091))
+((-3841 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1096 *5)) (-4 *5 (-849)) (-4 *5 (-1219)) (-4 *6 (-1219)) (-5 *2 (-645 *6)) (-5 *1 (-1091 *5 *6)))) (-3841 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1096 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) (-5 *2 (-1096 *6)) (-5 *1 (-1091 *5 *6)))))
+(-10 -7 (-15 -3841 ((-1096 |#2|) (-1 |#2| |#1|) (-1096 |#1|))) (IF (|has| |#1| (-849)) (-15 -3841 ((-645 |#2|) (-1 |#2| |#1|) (-1096 |#1|))) |%noBranch|))
+((-2412 (((-112) $ $) NIL)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) 16) (($ (-1184)) NIL) (((-1184) $) NIL)) (-4320 (((-645 (-1137)) $) 10)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)))
+(((-1092) (-13 (-1085) (-10 -8 (-15 -4320 ((-645 (-1137)) $))))) (T -1092))
+((-4320 (*1 *2 *1) (-12 (-5 *2 (-645 (-1137))) (-5 *1 (-1092)))))
+(-13 (-1085) (-10 -8 (-15 -4320 ((-645 (-1137)) $))))
+((-3841 (((-1094 |#2|) (-1 |#2| |#1|) (-1094 |#1|)) 19)))
+(((-1093 |#1| |#2|) (-10 -7 (-15 -3841 ((-1094 |#2|) (-1 |#2| |#1|) (-1094 |#1|)))) (-1219) (-1219)) (T -1093))
+((-3841 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1094 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) (-5 *2 (-1094 *6)) (-5 *1 (-1093 *5 *6)))))
+(-10 -7 (-15 -3841 ((-1094 |#2|) (-1 |#2| |#1|) (-1094 |#1|))))
+((-2412 (((-112) $ $) NIL (|has| (-1096 |#1|) (-1102)))) (-3653 (((-1179) $) NIL)) (-3109 (((-1096 |#1|) $) NIL)) (-2516 (((-1161) $) NIL (|has| (-1096 |#1|) (-1102)))) (-3437 (((-1122) $) NIL (|has| (-1096 |#1|) (-1102)))) (-2547 (($ (-1179) (-1096 |#1|)) NIL)) (-4129 (((-863) $) NIL (|has| (-1096 |#1|) (-1102)))) (-3357 (((-112) $ $) NIL (|has| (-1096 |#1|) (-1102)))) (-2946 (((-112) $ $) NIL (|has| (-1096 |#1|) (-1102)))))
+(((-1094 |#1|) (-13 (-1219) (-10 -8 (-15 -2547 ($ (-1179) (-1096 |#1|))) (-15 -3653 ((-1179) $)) (-15 -3109 ((-1096 |#1|) $)) (IF (|has| (-1096 |#1|) (-1102)) (-6 (-1102)) |%noBranch|))) (-1219)) (T -1094))
+((-2547 (*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-1096 *4)) (-4 *4 (-1219)) (-5 *1 (-1094 *4)))) (-3653 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1094 *3)) (-4 *3 (-1219)))) (-3109 (*1 *2 *1) (-12 (-5 *2 (-1096 *3)) (-5 *1 (-1094 *3)) (-4 *3 (-1219)))))
+(-13 (-1219) (-10 -8 (-15 -2547 ($ (-1179) (-1096 |#1|))) (-15 -3653 ((-1179) $)) (-15 -3109 ((-1096 |#1|) $)) (IF (|has| (-1096 |#1|) (-1102)) (-6 (-1102)) |%noBranch|)))
+((-3109 (($ |#1| |#1|) 8)) (-2805 ((|#1| $) 11)) (-1408 ((|#1| $) 13)) (-1429 (((-567) $) 9)) (-3924 ((|#1| $) 10)) (-1441 ((|#1| $) 12)) (-3902 (($ |#1|) 6)) (-2189 (($ |#1| |#1|) 15)) (-2727 (($ $ (-567)) 14)))
+(((-1095 |#1|) (-140) (-1219)) (T -1095))
+((-2189 (*1 *1 *2 *2) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1219)))) (-2727 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-1095 *3)) (-4 *3 (-1219)))) (-1408 (*1 *2 *1) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1219)))) (-1441 (*1 *2 *1) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1219)))) (-2805 (*1 *2 *1) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1219)))) (-3924 (*1 *2 *1) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1219)))) (-1429 (*1 *2 *1) (-12 (-4 *1 (-1095 *3)) (-4 *3 (-1219)) (-5 *2 (-567)))) (-3109 (*1 *1 *2 *2) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1219)))))
+(-13 (-619 |t#1|) (-10 -8 (-15 -2189 ($ |t#1| |t#1|)) (-15 -2727 ($ $ (-567))) (-15 -1408 (|t#1| $)) (-15 -1441 (|t#1| $)) (-15 -2805 (|t#1| $)) (-15 -3924 (|t#1| $)) (-15 -1429 ((-567) $)) (-15 -3109 ($ |t#1| |t#1|))))
(((-619 |#1|) . T))
-((-2403 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3099 (($ |#1| |#1|) 16)) (-3829 (((-645 |#1|) (-1 |#1| |#1|) $) 46 (|has| |#1| (-849)))) (-2504 ((|#1| $) 12)) (-1407 ((|#1| $) 11)) (-1419 (((-1160) $) NIL (|has| |#1| (-1102)))) (-1430 (((-567) $) 15)) (-3131 ((|#1| $) 14)) (-1443 ((|#1| $) 13)) (-3430 (((-1122) $) NIL (|has| |#1| (-1102)))) (-3317 (((-645 |#1|) $) 44 (|has| |#1| (-849))) (((-645 |#1|) (-645 $)) 43 (|has| |#1| (-849)))) (-3893 (($ |#1|) 29)) (-4132 (((-863) $) 28 (|has| |#1| (-1102)))) (-1745 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2179 (($ |#1| |#1|) 10)) (-2715 (($ $ (-567)) 17)) (-2936 (((-112) $ $) 22 (|has| |#1| (-1102)))))
-(((-1096 |#1|) (-13 (-1095 |#1|) (-10 -7 (IF (|has| |#1| (-1102)) (-6 (-1102)) |%noBranch|) (IF (|has| |#1| (-849)) (-6 (-1097 |#1| (-645 |#1|))) |%noBranch|))) (-1218)) (T -1096))
+((-2412 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3109 (($ |#1| |#1|) 16)) (-3841 (((-645 |#1|) (-1 |#1| |#1|) $) 46 (|has| |#1| (-849)))) (-2805 ((|#1| $) 12)) (-1408 ((|#1| $) 11)) (-2516 (((-1161) $) NIL (|has| |#1| (-1102)))) (-1429 (((-567) $) 15)) (-3924 ((|#1| $) 14)) (-1441 ((|#1| $) 13)) (-3437 (((-1122) $) NIL (|has| |#1| (-1102)))) (-3326 (((-645 |#1|) $) 44 (|has| |#1| (-849))) (((-645 |#1|) (-645 $)) 43 (|has| |#1| (-849)))) (-3902 (($ |#1|) 29)) (-4129 (((-863) $) 28 (|has| |#1| (-1102)))) (-3357 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2189 (($ |#1| |#1|) 10)) (-2727 (($ $ (-567)) 17)) (-2946 (((-112) $ $) 22 (|has| |#1| (-1102)))))
+(((-1096 |#1|) (-13 (-1095 |#1|) (-10 -7 (IF (|has| |#1| (-1102)) (-6 (-1102)) |%noBranch|) (IF (|has| |#1| (-849)) (-6 (-1097 |#1| (-645 |#1|))) |%noBranch|))) (-1219)) (T -1096))
NIL
(-13 (-1095 |#1|) (-10 -7 (IF (|has| |#1| (-1102)) (-6 (-1102)) |%noBranch|) (IF (|has| |#1| (-849)) (-6 (-1097 |#1| (-645 |#1|))) |%noBranch|)))
-((-3099 (($ |#1| |#1|) 8)) (-3829 ((|#2| (-1 |#1| |#1|) $) 16)) (-2504 ((|#1| $) 11)) (-1407 ((|#1| $) 13)) (-1430 (((-567) $) 9)) (-3131 ((|#1| $) 10)) (-1443 ((|#1| $) 12)) (-3317 ((|#2| (-645 $)) 18) ((|#2| $) 17)) (-3893 (($ |#1|) 6)) (-2179 (($ |#1| |#1|) 15)) (-2715 (($ $ (-567)) 14)))
+((-3109 (($ |#1| |#1|) 8)) (-3841 ((|#2| (-1 |#1| |#1|) $) 16)) (-2805 ((|#1| $) 11)) (-1408 ((|#1| $) 13)) (-1429 (((-567) $) 9)) (-3924 ((|#1| $) 10)) (-1441 ((|#1| $) 12)) (-3326 ((|#2| (-645 $)) 18) ((|#2| $) 17)) (-3902 (($ |#1|) 6)) (-2189 (($ |#1| |#1|) 15)) (-2727 (($ $ (-567)) 14)))
(((-1097 |#1| |#2|) (-140) (-849) (-1151 |t#1|)) (T -1097))
-((-3317 (*1 *2 *3) (-12 (-5 *3 (-645 *1)) (-4 *1 (-1097 *4 *2)) (-4 *4 (-849)) (-4 *2 (-1151 *4)))) (-3317 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *2)) (-4 *3 (-849)) (-4 *2 (-1151 *3)))) (-3829 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1097 *4 *2)) (-4 *4 (-849)) (-4 *2 (-1151 *4)))))
-(-13 (-1095 |t#1|) (-10 -8 (-15 -3317 (|t#2| (-645 $))) (-15 -3317 (|t#2| $)) (-15 -3829 (|t#2| (-1 |t#1| |t#1|) $))))
+((-3326 (*1 *2 *3) (-12 (-5 *3 (-645 *1)) (-4 *1 (-1097 *4 *2)) (-4 *4 (-849)) (-4 *2 (-1151 *4)))) (-3326 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *2)) (-4 *3 (-849)) (-4 *2 (-1151 *3)))) (-3841 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1097 *4 *2)) (-4 *4 (-849)) (-4 *2 (-1151 *4)))))
+(-13 (-1095 |t#1|) (-10 -8 (-15 -3326 (|t#2| (-645 $))) (-15 -3326 (|t#2| $)) (-15 -3841 (|t#2| (-1 |t#1| |t#1|) $))))
(((-619 |#1|) . T) ((-1095 |#1|) . T))
-((-2403 (((-112) $ $) NIL)) (-1419 (((-1160) $) NIL)) (-3257 (((-1137) $) 12)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 18) (($ (-1183)) NIL) (((-1183) $) NIL)) (-2006 (((-645 (-1137)) $) 10)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)))
-(((-1098) (-13 (-1085) (-10 -8 (-15 -2006 ((-645 (-1137)) $)) (-15 -3257 ((-1137) $))))) (T -1098))
-((-2006 (*1 *2 *1) (-12 (-5 *2 (-645 (-1137))) (-5 *1 (-1098)))) (-3257 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1098)))))
-(-13 (-1085) (-10 -8 (-15 -2006 ((-645 (-1137)) $)) (-15 -3257 ((-1137) $))))
-((-4244 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-4287 (($ $ $) 10)) (-4071 (($ $ $) NIL) (($ $ |#2|) 15)))
-(((-1099 |#1| |#2|) (-10 -8 (-15 -4244 (|#1| |#2| |#1|)) (-15 -4244 (|#1| |#1| |#2|)) (-15 -4244 (|#1| |#1| |#1|)) (-15 -4287 (|#1| |#1| |#1|)) (-15 -4071 (|#1| |#1| |#2|)) (-15 -4071 (|#1| |#1| |#1|))) (-1100 |#2|) (-1102)) (T -1099))
-NIL
-(-10 -8 (-15 -4244 (|#1| |#2| |#1|)) (-15 -4244 (|#1| |#1| |#2|)) (-15 -4244 (|#1| |#1| |#1|)) (-15 -4287 (|#1| |#1| |#1|)) (-15 -4071 (|#1| |#1| |#2|)) (-15 -4071 (|#1| |#1| |#1|)))
-((-2403 (((-112) $ $) 7)) (-4244 (($ $ $) 19) (($ $ |#1|) 18) (($ |#1| $) 17)) (-4287 (($ $ $) 21)) (-2493 (((-112) $ $) 20)) (-3445 (((-112) $ (-772)) 36)) (-4155 (($) 26) (($ (-645 |#1|)) 25)) (-3350 (($ (-1 (-112) |#1|) $) 57 (|has| $ (-6 -4418)))) (-2585 (($) 37 T CONST)) (-2444 (($ $) 60 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-3238 (($ |#1| $) 59 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418)))) (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4418)))) (-2477 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 58 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 55 (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $) 54 (|has| $ (-6 -4418)))) (-2777 (((-645 |#1|) $) 44 (|has| $ (-6 -4418)))) (-2548 (((-112) $ $) 29)) (-2077 (((-112) $ (-772)) 35)) (-2279 (((-645 |#1|) $) 45 (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) 47 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-3731 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) 39)) (-2863 (((-112) $ (-772)) 34)) (-1419 (((-1160) $) 10)) (-2370 (($ $ $) 24)) (-3430 (((-1122) $) 11)) (-4128 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 53)) (-3025 (((-112) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 |#1|) (-645 |#1|)) 51 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 50 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 49 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 (-295 |#1|))) 48 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) 30)) (-3572 (((-112) $) 33)) (-3498 (($) 32)) (-4071 (($ $ $) 23) (($ $ |#1|) 22)) (-3439 (((-772) |#1| $) 46 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418)))) (((-772) (-1 (-112) |#1|) $) 43 (|has| $ (-6 -4418)))) (-4305 (($ $) 31)) (-3893 (((-539) $) 61 (|has| |#1| (-615 (-539))))) (-4147 (($ (-645 |#1|)) 52)) (-4132 (((-863) $) 12)) (-2772 (($) 28) (($ (-645 |#1|)) 27)) (-1745 (((-112) $ $) 9)) (-1853 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 6)) (-2414 (((-772) $) 38 (|has| $ (-6 -4418)))))
+((-2412 (((-112) $ $) NIL)) (-2516 (((-1161) $) NIL)) (-3266 (((-1137) $) 12)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) 18) (($ (-1184)) NIL) (((-1184) $) NIL)) (-2017 (((-645 (-1137)) $) 10)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)))
+(((-1098) (-13 (-1085) (-10 -8 (-15 -2017 ((-645 (-1137)) $)) (-15 -3266 ((-1137) $))))) (T -1098))
+((-2017 (*1 *2 *1) (-12 (-5 *2 (-645 (-1137))) (-5 *1 (-1098)))) (-3266 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1098)))))
+(-13 (-1085) (-10 -8 (-15 -2017 ((-645 (-1137)) $)) (-15 -3266 ((-1137) $))))
+((-4244 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-2148 (($ $ $) 10)) (-4117 (($ $ $) NIL) (($ $ |#2|) 15)))
+(((-1099 |#1| |#2|) (-10 -8 (-15 -4244 (|#1| |#2| |#1|)) (-15 -4244 (|#1| |#1| |#2|)) (-15 -4244 (|#1| |#1| |#1|)) (-15 -2148 (|#1| |#1| |#1|)) (-15 -4117 (|#1| |#1| |#2|)) (-15 -4117 (|#1| |#1| |#1|))) (-1100 |#2|) (-1102)) (T -1099))
+NIL
+(-10 -8 (-15 -4244 (|#1| |#2| |#1|)) (-15 -4244 (|#1| |#1| |#2|)) (-15 -4244 (|#1| |#1| |#1|)) (-15 -2148 (|#1| |#1| |#1|)) (-15 -4117 (|#1| |#1| |#2|)) (-15 -4117 (|#1| |#1| |#1|)))
+((-2412 (((-112) $ $) 7)) (-4244 (($ $ $) 19) (($ $ |#1|) 18) (($ |#1| $) 17)) (-2148 (($ $ $) 21)) (-1951 (((-112) $ $) 20)) (-1563 (((-112) $ (-772)) 36)) (-4155 (($) 26) (($ (-645 |#1|)) 25)) (-3356 (($ (-1 (-112) |#1|) $) 57 (|has| $ (-6 -4422)))) (-3647 (($) 37 T CONST)) (-2453 (($ $) 60 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-3246 (($ |#1| $) 59 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422)))) (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4422)))) (-2494 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 58 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 55 (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $) 54 (|has| $ (-6 -4422)))) (-2799 (((-645 |#1|) $) 44 (|has| $ (-6 -4422)))) (-3862 (((-112) $ $) 29)) (-4093 (((-112) $ (-772)) 35)) (-1942 (((-645 |#1|) $) 45 (|has| $ (-6 -4422)))) (-3237 (((-112) |#1| $) 47 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-3751 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#1| |#1|) $) 39)) (-1986 (((-112) $ (-772)) 34)) (-2516 (((-1161) $) 10)) (-3660 (($ $ $) 24)) (-3437 (((-1122) $) 11)) (-3196 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 53)) (-4233 (((-112) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 |#1|) (-645 |#1|)) 51 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 50 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 49 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 (-295 |#1|))) 48 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3875 (((-112) $ $) 30)) (-3885 (((-112) $) 33)) (-2701 (($) 32)) (-4117 (($ $ $) 23) (($ $ |#1|) 22)) (-3447 (((-772) |#1| $) 46 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422)))) (((-772) (-1 (-112) |#1|) $) 43 (|has| $ (-6 -4422)))) (-4309 (($ $) 31)) (-3902 (((-539) $) 61 (|has| |#1| (-615 (-539))))) (-4145 (($ (-645 |#1|)) 52)) (-4129 (((-863) $) 12)) (-2782 (($) 28) (($ (-645 |#1|)) 27)) (-3357 (((-112) $ $) 9)) (-3436 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4422)))) (-2946 (((-112) $ $) 6)) (-2423 (((-772) $) 38 (|has| $ (-6 -4422)))))
(((-1100 |#1|) (-140) (-1102)) (T -1100))
-((-2548 (*1 *2 *1 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1102)) (-5 *2 (-112)))) (-2772 (*1 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1102)))) (-2772 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-4 *1 (-1100 *3)))) (-4155 (*1 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1102)))) (-4155 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-4 *1 (-1100 *3)))) (-2370 (*1 *1 *1 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1102)))) (-4071 (*1 *1 *1 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1102)))) (-4071 (*1 *1 *1 *2) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1102)))) (-4287 (*1 *1 *1 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1102)))) (-2493 (*1 *2 *1 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1102)) (-5 *2 (-112)))) (-4244 (*1 *1 *1 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1102)))) (-4244 (*1 *1 *1 *2) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1102)))) (-4244 (*1 *1 *2 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1102)))))
-(-13 (-1102) (-151 |t#1|) (-10 -8 (-6 -4408) (-15 -2548 ((-112) $ $)) (-15 -2772 ($)) (-15 -2772 ($ (-645 |t#1|))) (-15 -4155 ($)) (-15 -4155 ($ (-645 |t#1|))) (-15 -2370 ($ $ $)) (-15 -4071 ($ $ $)) (-15 -4071 ($ $ |t#1|)) (-15 -4287 ($ $ $)) (-15 -2493 ((-112) $ $)) (-15 -4244 ($ $ $)) (-15 -4244 ($ $ |t#1|)) (-15 -4244 ($ |t#1| $))))
-(((-34) . T) ((-102) . T) ((-614 (-863)) . T) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-1102) . T) ((-1218) . T))
-((-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 8)) (-1745 (((-112) $ $) 12)))
-(((-1101 |#1|) (-10 -8 (-15 -1745 ((-112) |#1| |#1|)) (-15 -1419 ((-1160) |#1|)) (-15 -3430 ((-1122) |#1|))) (-1102)) (T -1101))
-NIL
-(-10 -8 (-15 -1745 ((-112) |#1| |#1|)) (-15 -1419 ((-1160) |#1|)) (-15 -3430 ((-1122) |#1|)))
-((-2403 (((-112) $ $) 7)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-2936 (((-112) $ $) 6)))
+((-3862 (*1 *2 *1 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1102)) (-5 *2 (-112)))) (-2782 (*1 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1102)))) (-2782 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-4 *1 (-1100 *3)))) (-4155 (*1 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1102)))) (-4155 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-4 *1 (-1100 *3)))) (-3660 (*1 *1 *1 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1102)))) (-4117 (*1 *1 *1 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1102)))) (-4117 (*1 *1 *1 *2) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1102)))) (-2148 (*1 *1 *1 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1102)))) (-1951 (*1 *2 *1 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1102)) (-5 *2 (-112)))) (-4244 (*1 *1 *1 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1102)))) (-4244 (*1 *1 *1 *2) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1102)))) (-4244 (*1 *1 *2 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1102)))))
+(-13 (-1102) (-151 |t#1|) (-10 -8 (-6 -4412) (-15 -3862 ((-112) $ $)) (-15 -2782 ($)) (-15 -2782 ($ (-645 |t#1|))) (-15 -4155 ($)) (-15 -4155 ($ (-645 |t#1|))) (-15 -3660 ($ $ $)) (-15 -4117 ($ $ $)) (-15 -4117 ($ $ |t#1|)) (-15 -2148 ($ $ $)) (-15 -1951 ((-112) $ $)) (-15 -4244 ($ $ $)) (-15 -4244 ($ $ |t#1|)) (-15 -4244 ($ |t#1| $))))
+(((-34) . T) ((-102) . T) ((-614 (-863)) . T) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-1102) . T) ((-1219) . T))
+((-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 8)) (-3357 (((-112) $ $) 12)))
+(((-1101 |#1|) (-10 -8 (-15 -3357 ((-112) |#1| |#1|)) (-15 -2516 ((-1161) |#1|)) (-15 -3437 ((-1122) |#1|))) (-1102)) (T -1101))
+NIL
+(-10 -8 (-15 -3357 ((-112) |#1| |#1|)) (-15 -2516 ((-1161) |#1|)) (-15 -3437 ((-1122) |#1|)))
+((-2412 (((-112) $ $) 7)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-4129 (((-863) $) 12)) (-3357 (((-112) $ $) 9)) (-2946 (((-112) $ $) 6)))
(((-1102) (-140)) (T -1102))
-((-3430 (*1 *2 *1) (-12 (-4 *1 (-1102)) (-5 *2 (-1122)))) (-1419 (*1 *2 *1) (-12 (-4 *1 (-1102)) (-5 *2 (-1160)))) (-1745 (*1 *2 *1 *1) (-12 (-4 *1 (-1102)) (-5 *2 (-112)))))
-(-13 (-102) (-614 (-863)) (-10 -8 (-15 -3430 ((-1122) $)) (-15 -1419 ((-1160) $)) (-15 -1745 ((-112) $ $))))
+((-3437 (*1 *2 *1) (-12 (-4 *1 (-1102)) (-5 *2 (-1122)))) (-2516 (*1 *2 *1) (-12 (-4 *1 (-1102)) (-5 *2 (-1161)))) (-3357 (*1 *2 *1 *1) (-12 (-4 *1 (-1102)) (-5 *2 (-112)))))
+(-13 (-102) (-614 (-863)) (-10 -8 (-15 -3437 ((-1122) $)) (-15 -2516 ((-1161) $)) (-15 -3357 ((-112) $ $))))
(((-102) . T) ((-614 (-863)) . T))
-((-2403 (((-112) $ $) NIL)) (-2375 (((-772)) 36)) (-3415 (($ (-645 (-923))) 73)) (-3171 (((-3 $ "failed") $ (-923) (-923)) 84)) (-1348 (($) 40)) (-4337 (((-112) (-923) $) 44)) (-4249 (((-923) $) 66)) (-1419 (((-1160) $) NIL)) (-3768 (($ (-923)) 39)) (-1733 (((-3 $ "failed") $ (-923)) 80)) (-3430 (((-1122) $) NIL)) (-1661 (((-1268 $)) 49)) (-2559 (((-645 (-923)) $) 27)) (-1781 (((-772) $ (-923) (-923)) 81)) (-4132 (((-863) $) 32)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 24)))
-(((-1103 |#1| |#2|) (-13 (-370) (-10 -8 (-15 -1733 ((-3 $ "failed") $ (-923))) (-15 -3171 ((-3 $ "failed") $ (-923) (-923))) (-15 -2559 ((-645 (-923)) $)) (-15 -3415 ($ (-645 (-923)))) (-15 -1661 ((-1268 $))) (-15 -4337 ((-112) (-923) $)) (-15 -1781 ((-772) $ (-923) (-923))))) (-923) (-923)) (T -1103))
-((-1733 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-923)) (-5 *1 (-1103 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3171 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-923)) (-5 *1 (-1103 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-2559 (*1 *2 *1) (-12 (-5 *2 (-645 (-923))) (-5 *1 (-1103 *3 *4)) (-14 *3 (-923)) (-14 *4 (-923)))) (-3415 (*1 *1 *2) (-12 (-5 *2 (-645 (-923))) (-5 *1 (-1103 *3 *4)) (-14 *3 (-923)) (-14 *4 (-923)))) (-1661 (*1 *2) (-12 (-5 *2 (-1268 (-1103 *3 *4))) (-5 *1 (-1103 *3 *4)) (-14 *3 (-923)) (-14 *4 (-923)))) (-4337 (*1 *2 *3 *1) (-12 (-5 *3 (-923)) (-5 *2 (-112)) (-5 *1 (-1103 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-1781 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-923)) (-5 *2 (-772)) (-5 *1 (-1103 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
-(-13 (-370) (-10 -8 (-15 -1733 ((-3 $ "failed") $ (-923))) (-15 -3171 ((-3 $ "failed") $ (-923) (-923))) (-15 -2559 ((-645 (-923)) $)) (-15 -3415 ($ (-645 (-923)))) (-15 -1661 ((-1268 $))) (-15 -4337 ((-112) (-923) $)) (-15 -1781 ((-772) $ (-923) (-923)))))
-((-2403 (((-112) $ $) NIL)) (-3533 (($) NIL (|has| |#1| (-370)))) (-4244 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 83)) (-4287 (($ $ $) 81)) (-2493 (((-112) $ $) 82)) (-3445 (((-112) $ (-772)) NIL)) (-2375 (((-772)) NIL (|has| |#1| (-370)))) (-4155 (($ (-645 |#1|)) NIL) (($) 13)) (-2839 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-3350 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2585 (($) NIL T CONST)) (-2444 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2539 (($ |#1| $) 74 (|has| $ (-6 -4418))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-3238 (($ |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2477 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4418)))) (-1348 (($) NIL (|has| |#1| (-370)))) (-2777 (((-645 |#1|) $) 19 (|has| $ (-6 -4418)))) (-2548 (((-112) $ $) NIL)) (-2077 (((-112) $ (-772)) NIL)) (-1354 ((|#1| $) 55 (|has| |#1| (-851)))) (-2279 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) 73 (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2981 ((|#1| $) 53 (|has| |#1| (-851)))) (-3731 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) 34)) (-4249 (((-923) $) NIL (|has| |#1| (-370)))) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL)) (-2370 (($ $ $) 79)) (-1566 ((|#1| $) 25)) (-2531 (($ |#1| $) 69)) (-3768 (($ (-923)) NIL (|has| |#1| (-370)))) (-3430 (((-1122) $) NIL)) (-4128 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-1793 ((|#1| $) 27)) (-3025 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) NIL)) (-3572 (((-112) $) 21)) (-3498 (($) 11)) (-4071 (($ $ |#1|) NIL) (($ $ $) 80)) (-2718 (($) NIL) (($ (-645 |#1|)) NIL)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-4305 (($ $) 16)) (-3893 (((-539) $) 50 (|has| |#1| (-615 (-539))))) (-4147 (($ (-645 |#1|)) 62)) (-2099 (($ $) NIL (|has| |#1| (-370)))) (-4132 (((-863) $) NIL)) (-1480 (((-772) $) NIL)) (-2772 (($ (-645 |#1|)) NIL) (($) 12)) (-1745 (((-112) $ $) NIL)) (-3551 (($ (-645 |#1|)) NIL)) (-1853 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 52)) (-2414 (((-772) $) 10 (|has| $ (-6 -4418)))))
+((-2412 (((-112) $ $) NIL)) (-2384 (((-772)) 36)) (-1596 (($ (-645 (-923))) 73)) (-3964 (((-3 $ "failed") $ (-923) (-923)) 84)) (-1359 (($) 40)) (-3237 (((-112) (-923) $) 44)) (-3474 (((-923) $) 66)) (-2516 (((-1161) $) NIL)) (-3779 (($ (-923)) 39)) (-1641 (((-3 $ "failed") $ (-923)) 80)) (-3437 (((-1122) $) NIL)) (-1922 (((-1269 $)) 49)) (-2721 (((-645 (-923)) $) 27)) (-3116 (((-772) $ (-923) (-923)) 81)) (-4129 (((-863) $) 32)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) 24)))
+(((-1103 |#1| |#2|) (-13 (-370) (-10 -8 (-15 -1641 ((-3 $ "failed") $ (-923))) (-15 -3964 ((-3 $ "failed") $ (-923) (-923))) (-15 -2721 ((-645 (-923)) $)) (-15 -1596 ($ (-645 (-923)))) (-15 -1922 ((-1269 $))) (-15 -3237 ((-112) (-923) $)) (-15 -3116 ((-772) $ (-923) (-923))))) (-923) (-923)) (T -1103))
+((-1641 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-923)) (-5 *1 (-1103 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3964 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-923)) (-5 *1 (-1103 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-2721 (*1 *2 *1) (-12 (-5 *2 (-645 (-923))) (-5 *1 (-1103 *3 *4)) (-14 *3 (-923)) (-14 *4 (-923)))) (-1596 (*1 *1 *2) (-12 (-5 *2 (-645 (-923))) (-5 *1 (-1103 *3 *4)) (-14 *3 (-923)) (-14 *4 (-923)))) (-1922 (*1 *2) (-12 (-5 *2 (-1269 (-1103 *3 *4))) (-5 *1 (-1103 *3 *4)) (-14 *3 (-923)) (-14 *4 (-923)))) (-3237 (*1 *2 *3 *1) (-12 (-5 *3 (-923)) (-5 *2 (-112)) (-5 *1 (-1103 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-3116 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-923)) (-5 *2 (-772)) (-5 *1 (-1103 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
+(-13 (-370) (-10 -8 (-15 -1641 ((-3 $ "failed") $ (-923))) (-15 -3964 ((-3 $ "failed") $ (-923) (-923))) (-15 -2721 ((-645 (-923)) $)) (-15 -1596 ($ (-645 (-923)))) (-15 -1922 ((-1269 $))) (-15 -3237 ((-112) (-923) $)) (-15 -3116 ((-772) $ (-923) (-923)))))
+((-2412 (((-112) $ $) NIL)) (-3950 (($) NIL (|has| |#1| (-370)))) (-4244 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 83)) (-2148 (($ $ $) 81)) (-1951 (((-112) $ $) 82)) (-1563 (((-112) $ (-772)) NIL)) (-2384 (((-772)) NIL (|has| |#1| (-370)))) (-4155 (($ (-645 |#1|)) NIL) (($) 13)) (-1494 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-3356 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-3647 (($) NIL T CONST)) (-2453 (($ $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-2247 (($ |#1| $) 74 (|has| $ (-6 -4422))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-3246 (($ |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2494 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4422)))) (-1359 (($) NIL (|has| |#1| (-370)))) (-2799 (((-645 |#1|) $) 19 (|has| $ (-6 -4422)))) (-3862 (((-112) $ $) NIL)) (-4093 (((-112) $ (-772)) NIL)) (-1365 ((|#1| $) 55 (|has| |#1| (-851)))) (-1942 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-3237 (((-112) |#1| $) 73 (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3002 ((|#1| $) 53 (|has| |#1| (-851)))) (-3751 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#1| |#1|) $) 34)) (-3474 (((-923) $) NIL (|has| |#1| (-370)))) (-1986 (((-112) $ (-772)) NIL)) (-2516 (((-1161) $) NIL)) (-3660 (($ $ $) 79)) (-2706 ((|#1| $) 25)) (-2646 (($ |#1| $) 69)) (-3779 (($ (-923)) NIL (|has| |#1| (-370)))) (-3437 (((-1122) $) NIL)) (-3196 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-3949 ((|#1| $) 27)) (-4233 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3875 (((-112) $ $) NIL)) (-3885 (((-112) $) 21)) (-2701 (($) 11)) (-4117 (($ $ |#1|) NIL) (($ $ $) 80)) (-4106 (($) NIL) (($ (-645 |#1|)) NIL)) (-3447 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-4309 (($ $) 16)) (-3902 (((-539) $) 50 (|has| |#1| (-615 (-539))))) (-4145 (($ (-645 |#1|)) 62)) (-3364 (($ $) NIL (|has| |#1| (-370)))) (-4129 (((-863) $) NIL)) (-1791 (((-772) $) NIL)) (-2782 (($ (-645 |#1|)) NIL) (($) 12)) (-3357 (((-112) $ $) NIL)) (-3700 (($ (-645 |#1|)) NIL)) (-3436 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2946 (((-112) $ $) 52)) (-2423 (((-772) $) 10 (|has| $ (-6 -4422)))))
(((-1104 |#1|) (-428 |#1|) (-1102)) (T -1104))
NIL
(-428 |#1|)
-((-2403 (((-112) $ $) 7)) (-1765 (((-112) $) 33)) (-3085 ((|#2| $) 28)) (-1583 (((-112) $) 34)) (-3657 ((|#1| $) 29)) (-2181 (((-112) $) 36)) (-3582 (((-112) $) 38)) (-2968 (((-112) $) 35)) (-1419 (((-1160) $) 10)) (-2047 (((-112) $) 32)) (-3108 ((|#3| $) 27)) (-3430 (((-1122) $) 11)) (-2660 (((-112) $) 31)) (-2327 ((|#4| $) 26)) (-3602 ((|#5| $) 25)) (-3845 (((-112) $ $) 39)) (-1787 (($ $ (-567)) 21) (($ $ (-645 (-567))) 20)) (-2784 (((-645 $) $) 30)) (-3893 (($ |#1|) 45) (($ |#2|) 44) (($ |#3|) 43) (($ |#4|) 42) (($ |#5|) 41) (($ (-645 $)) 40)) (-4132 (((-863) $) 12)) (-2307 (($ $) 23)) (-2296 (($ $) 24)) (-1745 (((-112) $ $) 9)) (-2633 (((-112) $) 37)) (-2936 (((-112) $ $) 6)) (-2414 (((-567) $) 22)))
+((-2412 (((-112) $ $) 7)) (-1708 (((-112) $) 33)) (-3094 ((|#2| $) 28)) (-3826 (((-112) $) 34)) (-3666 ((|#1| $) 29)) (-1963 (((-112) $) 36)) (-3615 (((-112) $) 38)) (-2673 (((-112) $) 35)) (-2516 (((-1161) $) 10)) (-3416 (((-112) $) 32)) (-3117 ((|#3| $) 27)) (-3437 (((-1122) $) 11)) (-2141 (((-112) $) 31)) (-2335 ((|#4| $) 26)) (-3612 ((|#5| $) 25)) (-3855 (((-112) $ $) 39)) (-1801 (($ $ (-567)) 21) (($ $ (-645 (-567))) 20)) (-2794 (((-645 $) $) 30)) (-3902 (($ |#1|) 45) (($ |#2|) 44) (($ |#3|) 43) (($ |#4|) 42) (($ |#5|) 41) (($ (-645 $)) 40)) (-4129 (((-863) $) 12)) (-2313 (($ $) 23)) (-2302 (($ $) 24)) (-3357 (((-112) $ $) 9)) (-1624 (((-112) $) 37)) (-2946 (((-112) $ $) 6)) (-2423 (((-567) $) 22)))
(((-1105 |#1| |#2| |#3| |#4| |#5|) (-140) (-1102) (-1102) (-1102) (-1102) (-1102)) (T -1105))
-((-3845 (*1 *2 *1 *1) (-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-112)))) (-3582 (*1 *2 *1) (-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-112)))) (-2633 (*1 *2 *1) (-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-112)))) (-2181 (*1 *2 *1) (-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-112)))) (-2968 (*1 *2 *1) (-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-112)))) (-1583 (*1 *2 *1) (-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-112)))) (-1765 (*1 *2 *1) (-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-112)))) (-2047 (*1 *2 *1) (-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-112)))) (-2660 (*1 *2 *1) (-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-112)))) (-2784 (*1 *2 *1) (-12 (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-645 *1)) (-4 *1 (-1105 *3 *4 *5 *6 *7)))) (-3657 (*1 *2 *1) (-12 (-4 *1 (-1105 *2 *3 *4 *5 *6)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *2 (-1102)))) (-3085 (*1 *2 *1) (-12 (-4 *1 (-1105 *3 *2 *4 *5 *6)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *2 (-1102)))) (-3108 (*1 *2 *1) (-12 (-4 *1 (-1105 *3 *4 *2 *5 *6)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *2 (-1102)))) (-2327 (*1 *2 *1) (-12 (-4 *1 (-1105 *3 *4 *5 *2 *6)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *2 (-1102)))) (-3602 (*1 *2 *1) (-12 (-4 *1 (-1105 *3 *4 *5 *6 *2)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *2 (-1102)))) (-2296 (*1 *1 *1) (-12 (-4 *1 (-1105 *2 *3 *4 *5 *6)) (-4 *2 (-1102)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)))) (-2307 (*1 *1 *1) (-12 (-4 *1 (-1105 *2 *3 *4 *5 *6)) (-4 *2 (-1102)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)))) (-2414 (*1 *2 *1) (-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-567)))) (-1787 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)))) (-1787 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-567))) (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)))))
-(-13 (-1102) (-619 |t#1|) (-619 |t#2|) (-619 |t#3|) (-619 |t#4|) (-619 |t#4|) (-619 |t#5|) (-619 (-645 $)) (-10 -8 (-15 -3845 ((-112) $ $)) (-15 -3582 ((-112) $)) (-15 -2633 ((-112) $)) (-15 -2181 ((-112) $)) (-15 -2968 ((-112) $)) (-15 -1583 ((-112) $)) (-15 -1765 ((-112) $)) (-15 -2047 ((-112) $)) (-15 -2660 ((-112) $)) (-15 -2784 ((-645 $) $)) (-15 -3657 (|t#1| $)) (-15 -3085 (|t#2| $)) (-15 -3108 (|t#3| $)) (-15 -2327 (|t#4| $)) (-15 -3602 (|t#5| $)) (-15 -2296 ($ $)) (-15 -2307 ($ $)) (-15 -2414 ((-567) $)) (-15 -1787 ($ $ (-567))) (-15 -1787 ($ $ (-645 (-567))))))
+((-3855 (*1 *2 *1 *1) (-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-112)))) (-3615 (*1 *2 *1) (-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-112)))) (-1624 (*1 *2 *1) (-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-112)))) (-1963 (*1 *2 *1) (-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-112)))) (-2673 (*1 *2 *1) (-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-112)))) (-3826 (*1 *2 *1) (-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-112)))) (-1708 (*1 *2 *1) (-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-112)))) (-3416 (*1 *2 *1) (-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-112)))) (-2141 (*1 *2 *1) (-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-112)))) (-2794 (*1 *2 *1) (-12 (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-645 *1)) (-4 *1 (-1105 *3 *4 *5 *6 *7)))) (-3666 (*1 *2 *1) (-12 (-4 *1 (-1105 *2 *3 *4 *5 *6)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *2 (-1102)))) (-3094 (*1 *2 *1) (-12 (-4 *1 (-1105 *3 *2 *4 *5 *6)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *2 (-1102)))) (-3117 (*1 *2 *1) (-12 (-4 *1 (-1105 *3 *4 *2 *5 *6)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *2 (-1102)))) (-2335 (*1 *2 *1) (-12 (-4 *1 (-1105 *3 *4 *5 *2 *6)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *2 (-1102)))) (-3612 (*1 *2 *1) (-12 (-4 *1 (-1105 *3 *4 *5 *6 *2)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *2 (-1102)))) (-2302 (*1 *1 *1) (-12 (-4 *1 (-1105 *2 *3 *4 *5 *6)) (-4 *2 (-1102)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)))) (-2313 (*1 *1 *1) (-12 (-4 *1 (-1105 *2 *3 *4 *5 *6)) (-4 *2 (-1102)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)))) (-2423 (*1 *2 *1) (-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-567)))) (-1801 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)))) (-1801 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-567))) (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)))))
+(-13 (-1102) (-619 |t#1|) (-619 |t#2|) (-619 |t#3|) (-619 |t#4|) (-619 |t#4|) (-619 |t#5|) (-619 (-645 $)) (-10 -8 (-15 -3855 ((-112) $ $)) (-15 -3615 ((-112) $)) (-15 -1624 ((-112) $)) (-15 -1963 ((-112) $)) (-15 -2673 ((-112) $)) (-15 -3826 ((-112) $)) (-15 -1708 ((-112) $)) (-15 -3416 ((-112) $)) (-15 -2141 ((-112) $)) (-15 -2794 ((-645 $) $)) (-15 -3666 (|t#1| $)) (-15 -3094 (|t#2| $)) (-15 -3117 (|t#3| $)) (-15 -2335 (|t#4| $)) (-15 -3612 (|t#5| $)) (-15 -2302 ($ $)) (-15 -2313 ($ $)) (-15 -2423 ((-567) $)) (-15 -1801 ($ $ (-567))) (-15 -1801 ($ $ (-645 (-567))))))
(((-102) . T) ((-614 (-863)) . T) ((-619 (-645 $)) . T) ((-619 |#1|) . T) ((-619 |#2|) . T) ((-619 |#3|) . T) ((-619 |#4|) . T) ((-619 |#5|) . T) ((-1102) . T))
-((-2403 (((-112) $ $) NIL)) (-1765 (((-112) $) NIL)) (-3085 (((-1178) $) NIL)) (-1583 (((-112) $) NIL)) (-3657 (((-1160) $) NIL)) (-2181 (((-112) $) NIL)) (-3582 (((-112) $) NIL)) (-2968 (((-112) $) NIL)) (-1419 (((-1160) $) NIL)) (-2047 (((-112) $) NIL)) (-3108 (((-567) $) NIL)) (-3430 (((-1122) $) NIL)) (-2660 (((-112) $) NIL)) (-2327 (((-225) $) NIL)) (-3602 (((-863) $) NIL)) (-3845 (((-112) $ $) NIL)) (-1787 (($ $ (-567)) NIL) (($ $ (-645 (-567))) NIL)) (-2784 (((-645 $) $) NIL)) (-3893 (($ (-1160)) NIL) (($ (-1178)) NIL) (($ (-567)) NIL) (($ (-225)) NIL) (($ (-863)) NIL) (($ (-645 $)) NIL)) (-4132 (((-863) $) NIL)) (-2307 (($ $) NIL)) (-2296 (($ $) NIL)) (-1745 (((-112) $ $) NIL)) (-2633 (((-112) $) NIL)) (-2936 (((-112) $ $) NIL)) (-2414 (((-567) $) NIL)))
-(((-1106) (-1105 (-1160) (-1178) (-567) (-225) (-863))) (T -1106))
+((-2412 (((-112) $ $) NIL)) (-1708 (((-112) $) NIL)) (-3094 (((-1179) $) NIL)) (-3826 (((-112) $) NIL)) (-3666 (((-1161) $) NIL)) (-1963 (((-112) $) NIL)) (-3615 (((-112) $) NIL)) (-2673 (((-112) $) NIL)) (-2516 (((-1161) $) NIL)) (-3416 (((-112) $) NIL)) (-3117 (((-567) $) NIL)) (-3437 (((-1122) $) NIL)) (-2141 (((-112) $) NIL)) (-2335 (((-225) $) NIL)) (-3612 (((-863) $) NIL)) (-3855 (((-112) $ $) NIL)) (-1801 (($ $ (-567)) NIL) (($ $ (-645 (-567))) NIL)) (-2794 (((-645 $) $) NIL)) (-3902 (($ (-1161)) NIL) (($ (-1179)) NIL) (($ (-567)) NIL) (($ (-225)) NIL) (($ (-863)) NIL) (($ (-645 $)) NIL)) (-4129 (((-863) $) NIL)) (-2313 (($ $) NIL)) (-2302 (($ $) NIL)) (-3357 (((-112) $ $) NIL)) (-1624 (((-112) $) NIL)) (-2946 (((-112) $ $) NIL)) (-2423 (((-567) $) NIL)))
+(((-1106) (-1105 (-1161) (-1179) (-567) (-225) (-863))) (T -1106))
NIL
-(-1105 (-1160) (-1178) (-567) (-225) (-863))
-((-2403 (((-112) $ $) NIL)) (-1765 (((-112) $) 45)) (-3085 ((|#2| $) 48)) (-1583 (((-112) $) 20)) (-3657 ((|#1| $) 21)) (-2181 (((-112) $) 42)) (-3582 (((-112) $) 14)) (-2968 (((-112) $) 44)) (-1419 (((-1160) $) NIL)) (-2047 (((-112) $) 46)) (-3108 ((|#3| $) 50)) (-3430 (((-1122) $) NIL)) (-2660 (((-112) $) 47)) (-2327 ((|#4| $) 49)) (-3602 ((|#5| $) 51)) (-3845 (((-112) $ $) 41)) (-1787 (($ $ (-567)) 62) (($ $ (-645 (-567))) 64)) (-2784 (((-645 $) $) 27)) (-3893 (($ |#1|) 53) (($ |#2|) 54) (($ |#3|) 55) (($ |#4|) 56) (($ |#5|) 57) (($ (-645 $)) 52)) (-4132 (((-863) $) 28)) (-2307 (($ $) 26)) (-2296 (($ $) 58)) (-1745 (((-112) $ $) NIL)) (-2633 (((-112) $) 23)) (-2936 (((-112) $ $) 40)) (-2414 (((-567) $) 60)))
+(-1105 (-1161) (-1179) (-567) (-225) (-863))
+((-2412 (((-112) $ $) NIL)) (-1708 (((-112) $) 45)) (-3094 ((|#2| $) 48)) (-3826 (((-112) $) 20)) (-3666 ((|#1| $) 21)) (-1963 (((-112) $) 42)) (-3615 (((-112) $) 14)) (-2673 (((-112) $) 44)) (-2516 (((-1161) $) NIL)) (-3416 (((-112) $) 46)) (-3117 ((|#3| $) 50)) (-3437 (((-1122) $) NIL)) (-2141 (((-112) $) 47)) (-2335 ((|#4| $) 49)) (-3612 ((|#5| $) 51)) (-3855 (((-112) $ $) 41)) (-1801 (($ $ (-567)) 62) (($ $ (-645 (-567))) 64)) (-2794 (((-645 $) $) 27)) (-3902 (($ |#1|) 53) (($ |#2|) 54) (($ |#3|) 55) (($ |#4|) 56) (($ |#5|) 57) (($ (-645 $)) 52)) (-4129 (((-863) $) 28)) (-2313 (($ $) 26)) (-2302 (($ $) 58)) (-3357 (((-112) $ $) NIL)) (-1624 (((-112) $) 23)) (-2946 (((-112) $ $) 40)) (-2423 (((-567) $) 60)))
(((-1107 |#1| |#2| |#3| |#4| |#5|) (-1105 |#1| |#2| |#3| |#4| |#5|) (-1102) (-1102) (-1102) (-1102) (-1102)) (T -1107))
NIL
(-1105 |#1| |#2| |#3| |#4| |#5|)
-((-1453 (((-1273) $) 23)) (-2146 (($ (-1178) (-437) |#2|) 11)) (-4132 (((-863) $) 16)))
-(((-1108 |#1| |#2|) (-13 (-398) (-10 -8 (-15 -2146 ($ (-1178) (-437) |#2|)))) (-1102) (-433 |#1|)) (T -1108))
-((-2146 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1178)) (-5 *3 (-437)) (-4 *5 (-1102)) (-5 *1 (-1108 *5 *4)) (-4 *4 (-433 *5)))))
-(-13 (-398) (-10 -8 (-15 -2146 ($ (-1178) (-437) |#2|))))
-((-2993 (((-112) |#5| |#5|) 45)) (-2203 (((-112) |#5| |#5|) 60)) (-3363 (((-112) |#5| (-645 |#5|)) 83) (((-112) |#5| |#5|) 69)) (-2763 (((-112) (-645 |#4|) (-645 |#4|)) 66)) (-2892 (((-112) (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|)) (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) 71)) (-2452 (((-1273)) 33)) (-2519 (((-1273) (-1160) (-1160) (-1160)) 29)) (-3864 (((-645 |#5|) (-645 |#5|)) 102)) (-3524 (((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|)))) 94)) (-3625 (((-645 (-2 (|:| -3845 (-645 |#4|)) (|:| -2566 |#5|) (|:| |ineq| (-645 |#4|)))) (-645 |#4|) (-645 |#5|) (-112) (-112)) 124)) (-4195 (((-112) |#5| |#5|) 54)) (-3300 (((-3 (-112) "failed") |#5| |#5|) 79)) (-1913 (((-112) (-645 |#4|) (-645 |#4|)) 65)) (-3150 (((-112) (-645 |#4|) (-645 |#4|)) 67)) (-3392 (((-112) (-645 |#4|) (-645 |#4|)) 68)) (-1833 (((-3 (-2 (|:| -3845 (-645 |#4|)) (|:| -2566 |#5|) (|:| |ineq| (-645 |#4|))) "failed") (-645 |#4|) |#5| (-645 |#4|) (-112) (-112) (-112) (-112) (-112)) 119)) (-2354 (((-645 |#5|) (-645 |#5|)) 50)))
-(((-1109 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2519 ((-1273) (-1160) (-1160) (-1160))) (-15 -2452 ((-1273))) (-15 -2993 ((-112) |#5| |#5|)) (-15 -2354 ((-645 |#5|) (-645 |#5|))) (-15 -4195 ((-112) |#5| |#5|)) (-15 -2203 ((-112) |#5| |#5|)) (-15 -2763 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -1913 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -3150 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -3392 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -3300 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3363 ((-112) |#5| |#5|)) (-15 -3363 ((-112) |#5| (-645 |#5|))) (-15 -3864 ((-645 |#5|) (-645 |#5|))) (-15 -2892 ((-112) (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|)) (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|)))) (-15 -3524 ((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) (-15 -3625 ((-645 (-2 (|:| -3845 (-645 |#4|)) (|:| -2566 |#5|) (|:| |ineq| (-645 |#4|)))) (-645 |#4|) (-645 |#5|) (-112) (-112))) (-15 -1833 ((-3 (-2 (|:| -3845 (-645 |#4|)) (|:| -2566 |#5|) (|:| |ineq| (-645 |#4|))) "failed") (-645 |#4|) |#5| (-645 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-455) (-794) (-851) (-1067 |#1| |#2| |#3|) (-1073 |#1| |#2| |#3| |#4|)) (T -1109))
-((-1833 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *9 (-1067 *6 *7 *8)) (-5 *2 (-2 (|:| -3845 (-645 *9)) (|:| -2566 *4) (|:| |ineq| (-645 *9)))) (-5 *1 (-1109 *6 *7 *8 *9 *4)) (-5 *3 (-645 *9)) (-4 *4 (-1073 *6 *7 *8 *9)))) (-3625 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-645 *10)) (-5 *5 (-112)) (-4 *10 (-1073 *6 *7 *8 *9)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *9 (-1067 *6 *7 *8)) (-5 *2 (-645 (-2 (|:| -3845 (-645 *9)) (|:| -2566 *10) (|:| |ineq| (-645 *9))))) (-5 *1 (-1109 *6 *7 *8 *9 *10)) (-5 *3 (-645 *9)))) (-3524 (*1 *2 *2) (-12 (-5 *2 (-645 (-2 (|:| |val| (-645 *6)) (|:| -2566 *7)))) (-4 *6 (-1067 *3 *4 *5)) (-4 *7 (-1073 *3 *4 *5 *6)) (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-1109 *3 *4 *5 *6 *7)))) (-2892 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-645 *7)) (|:| -2566 *8))) (-4 *7 (-1067 *4 *5 *6)) (-4 *8 (-1073 *4 *5 *6 *7)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-1109 *4 *5 *6 *7 *8)))) (-3864 (*1 *2 *2) (-12 (-5 *2 (-645 *7)) (-4 *7 (-1073 *3 *4 *5 *6)) (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *1 (-1109 *3 *4 *5 *6 *7)))) (-3363 (*1 *2 *3 *4) (-12 (-5 *4 (-645 *3)) (-4 *3 (-1073 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-1067 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1109 *5 *6 *7 *8 *3)))) (-3363 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1109 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7)))) (-3300 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1109 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7)))) (-3392 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-1109 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7)))) (-3150 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-1109 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7)))) (-1913 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-1109 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7)))) (-2763 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-1109 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7)))) (-2203 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1109 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7)))) (-4195 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1109 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7)))) (-2354 (*1 *2 *2) (-12 (-5 *2 (-645 *7)) (-4 *7 (-1073 *3 *4 *5 *6)) (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *1 (-1109 *3 *4 *5 *6 *7)))) (-2993 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1109 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7)))) (-2452 (*1 *2) (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-1273)) (-5 *1 (-1109 *3 *4 *5 *6 *7)) (-4 *7 (-1073 *3 *4 *5 *6)))) (-2519 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1160)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-1273)) (-5 *1 (-1109 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7)))))
-(-10 -7 (-15 -2519 ((-1273) (-1160) (-1160) (-1160))) (-15 -2452 ((-1273))) (-15 -2993 ((-112) |#5| |#5|)) (-15 -2354 ((-645 |#5|) (-645 |#5|))) (-15 -4195 ((-112) |#5| |#5|)) (-15 -2203 ((-112) |#5| |#5|)) (-15 -2763 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -1913 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -3150 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -3392 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -3300 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3363 ((-112) |#5| |#5|)) (-15 -3363 ((-112) |#5| (-645 |#5|))) (-15 -3864 ((-645 |#5|) (-645 |#5|))) (-15 -2892 ((-112) (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|)) (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|)))) (-15 -3524 ((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) (-15 -3625 ((-645 (-2 (|:| -3845 (-645 |#4|)) (|:| -2566 |#5|) (|:| |ineq| (-645 |#4|)))) (-645 |#4|) (-645 |#5|) (-112) (-112))) (-15 -1833 ((-3 (-2 (|:| -3845 (-645 |#4|)) (|:| -2566 |#5|) (|:| |ineq| (-645 |#4|))) "failed") (-645 |#4|) |#5| (-645 |#4|) (-112) (-112) (-112) (-112) (-112))))
-((-2021 (((-645 (-2 (|:| |val| |#4|) (|:| -2566 |#5|))) |#4| |#5|) 109)) (-3284 (((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) |#4| |#4| |#5|) 81)) (-1731 (((-645 (-2 (|:| |val| |#4|) (|:| -2566 |#5|))) |#4| |#4| |#5|) 103)) (-3728 (((-645 |#5|) |#4| |#5|) 125)) (-3954 (((-645 |#5|) |#4| |#5|) 132)) (-2037 (((-645 |#5|) |#4| |#5|) 133)) (-2498 (((-645 (-2 (|:| |val| (-112)) (|:| -2566 |#5|))) |#4| |#5|) 110)) (-2283 (((-645 (-2 (|:| |val| (-112)) (|:| -2566 |#5|))) |#4| |#5|) 131)) (-3368 (((-645 (-2 (|:| |val| (-112)) (|:| -2566 |#5|))) |#4| |#5|) 48) (((-112) |#4| |#5|) 56)) (-1471 (((-645 (-2 (|:| |val| |#4|) (|:| -2566 |#5|))) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) |#3| (-112)) 93) (((-645 (-2 (|:| |val| |#4|) (|:| -2566 |#5|))) |#4| |#4| |#5| (-112) (-112)) 53)) (-1672 (((-645 (-2 (|:| |val| |#4|) (|:| -2566 |#5|))) |#4| |#4| |#5|) 88)) (-3687 (((-1273)) 37)) (-3571 (((-1273)) 26)) (-4268 (((-1273) (-1160) (-1160) (-1160)) 33)) (-4378 (((-1273) (-1160) (-1160) (-1160)) 22)))
-(((-1110 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4378 ((-1273) (-1160) (-1160) (-1160))) (-15 -3571 ((-1273))) (-15 -4268 ((-1273) (-1160) (-1160) (-1160))) (-15 -3687 ((-1273))) (-15 -3284 ((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) |#4| |#4| |#5|)) (-15 -1471 ((-645 (-2 (|:| |val| |#4|) (|:| -2566 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -1471 ((-645 (-2 (|:| |val| |#4|) (|:| -2566 |#5|))) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) |#3| (-112))) (-15 -1672 ((-645 (-2 (|:| |val| |#4|) (|:| -2566 |#5|))) |#4| |#4| |#5|)) (-15 -1731 ((-645 (-2 (|:| |val| |#4|) (|:| -2566 |#5|))) |#4| |#4| |#5|)) (-15 -3368 ((-112) |#4| |#5|)) (-15 -2498 ((-645 (-2 (|:| |val| (-112)) (|:| -2566 |#5|))) |#4| |#5|)) (-15 -3728 ((-645 |#5|) |#4| |#5|)) (-15 -2283 ((-645 (-2 (|:| |val| (-112)) (|:| -2566 |#5|))) |#4| |#5|)) (-15 -3954 ((-645 |#5|) |#4| |#5|)) (-15 -3368 ((-645 (-2 (|:| |val| (-112)) (|:| -2566 |#5|))) |#4| |#5|)) (-15 -2037 ((-645 |#5|) |#4| |#5|)) (-15 -2021 ((-645 (-2 (|:| |val| |#4|) (|:| -2566 |#5|))) |#4| |#5|))) (-455) (-794) (-851) (-1067 |#1| |#2| |#3|) (-1073 |#1| |#2| |#3| |#4|)) (T -1110))
-((-2021 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2566 *4)))) (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-2037 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 *4)) (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-3368 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| (-112)) (|:| -2566 *4)))) (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-3954 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 *4)) (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-2283 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| (-112)) (|:| -2566 *4)))) (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-3728 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 *4)) (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-2498 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| (-112)) (|:| -2566 *4)))) (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-3368 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-1731 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2566 *4)))) (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-1672 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2566 *4)))) (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-1471 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-645 (-2 (|:| |val| (-645 *8)) (|:| -2566 *9)))) (-5 *5 (-112)) (-4 *8 (-1067 *6 *7 *4)) (-4 *9 (-1073 *6 *7 *4 *8)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *4 (-851)) (-5 *2 (-645 (-2 (|:| |val| *8) (|:| -2566 *9)))) (-5 *1 (-1110 *6 *7 *4 *8 *9)))) (-1471 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *3 (-1067 *6 *7 *8)) (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2566 *4)))) (-5 *1 (-1110 *6 *7 *8 *3 *4)) (-4 *4 (-1073 *6 *7 *8 *3)))) (-3284 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| (-645 *3)) (|:| -2566 *4)))) (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-3687 (*1 *2) (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-1273)) (-5 *1 (-1110 *3 *4 *5 *6 *7)) (-4 *7 (-1073 *3 *4 *5 *6)))) (-4268 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1160)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-1273)) (-5 *1 (-1110 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7)))) (-3571 (*1 *2) (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-1273)) (-5 *1 (-1110 *3 *4 *5 *6 *7)) (-4 *7 (-1073 *3 *4 *5 *6)))) (-4378 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1160)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-1273)) (-5 *1 (-1110 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7)))))
-(-10 -7 (-15 -4378 ((-1273) (-1160) (-1160) (-1160))) (-15 -3571 ((-1273))) (-15 -4268 ((-1273) (-1160) (-1160) (-1160))) (-15 -3687 ((-1273))) (-15 -3284 ((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) |#4| |#4| |#5|)) (-15 -1471 ((-645 (-2 (|:| |val| |#4|) (|:| -2566 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -1471 ((-645 (-2 (|:| |val| |#4|) (|:| -2566 |#5|))) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) |#3| (-112))) (-15 -1672 ((-645 (-2 (|:| |val| |#4|) (|:| -2566 |#5|))) |#4| |#4| |#5|)) (-15 -1731 ((-645 (-2 (|:| |val| |#4|) (|:| -2566 |#5|))) |#4| |#4| |#5|)) (-15 -3368 ((-112) |#4| |#5|)) (-15 -2498 ((-645 (-2 (|:| |val| (-112)) (|:| -2566 |#5|))) |#4| |#5|)) (-15 -3728 ((-645 |#5|) |#4| |#5|)) (-15 -2283 ((-645 (-2 (|:| |val| (-112)) (|:| -2566 |#5|))) |#4| |#5|)) (-15 -3954 ((-645 |#5|) |#4| |#5|)) (-15 -3368 ((-645 (-2 (|:| |val| (-112)) (|:| -2566 |#5|))) |#4| |#5|)) (-15 -2037 ((-645 |#5|) |#4| |#5|)) (-15 -2021 ((-645 (-2 (|:| |val| |#4|) (|:| -2566 |#5|))) |#4| |#5|)))
-((-2403 (((-112) $ $) 7)) (-3487 (((-645 (-2 (|:| -3995 $) (|:| -3823 (-645 |#4|)))) (-645 |#4|)) 86)) (-3244 (((-645 $) (-645 |#4|)) 87) (((-645 $) (-645 |#4|) (-112)) 112)) (-2847 (((-645 |#3|) $) 34)) (-2017 (((-112) $) 27)) (-3623 (((-112) $) 18 (|has| |#1| (-559)))) (-1326 (((-112) |#4| $) 102) (((-112) $) 98)) (-3722 ((|#4| |#4| $) 93)) (-3248 (((-645 (-2 (|:| |val| |#4|) (|:| -2566 $))) |#4| $) 127)) (-4396 (((-2 (|:| |under| $) (|:| -2780 $) (|:| |upper| $)) $ |#3|) 28)) (-3445 (((-112) $ (-772)) 45)) (-3350 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4418))) (((-3 |#4| "failed") $ |#3|) 80)) (-2585 (($) 46 T CONST)) (-1490 (((-112) $) 23 (|has| |#1| (-559)))) (-2752 (((-112) $ $) 25 (|has| |#1| (-559)))) (-4224 (((-112) $ $) 24 (|has| |#1| (-559)))) (-3547 (((-112) $) 26 (|has| |#1| (-559)))) (-1441 (((-645 |#4|) (-645 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1724 (((-645 |#4|) (-645 |#4|) $) 19 (|has| |#1| (-559)))) (-3197 (((-645 |#4|) (-645 |#4|) $) 20 (|has| |#1| (-559)))) (-3753 (((-3 $ "failed") (-645 |#4|)) 37)) (-2038 (($ (-645 |#4|)) 36)) (-2421 (((-3 $ "failed") $) 83)) (-1999 ((|#4| |#4| $) 90)) (-2444 (($ $) 69 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4418))))) (-3238 (($ |#4| $) 68 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4418)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4418)))) (-4194 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-559)))) (-3786 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3730 ((|#4| |#4| $) 88)) (-2477 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4418)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4418))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4418))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1585 (((-2 (|:| -3995 (-645 |#4|)) (|:| -3823 (-645 |#4|))) $) 106)) (-3783 (((-112) |#4| $) 137)) (-1829 (((-112) |#4| $) 134)) (-2127 (((-112) |#4| $) 138) (((-112) $) 135)) (-2777 (((-645 |#4|) $) 53 (|has| $ (-6 -4418)))) (-1664 (((-112) |#4| $) 105) (((-112) $) 104)) (-1679 ((|#3| $) 35)) (-2077 (((-112) $ (-772)) 44)) (-2279 (((-645 |#4|) $) 54 (|has| $ (-6 -4418)))) (-4337 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4418))))) (-3731 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#4| |#4|) $) 48)) (-2826 (((-645 |#3|) $) 33)) (-2808 (((-112) |#3| $) 32)) (-2863 (((-112) $ (-772)) 43)) (-1419 (((-1160) $) 10)) (-3232 (((-3 |#4| (-645 $)) |#4| |#4| $) 129)) (-2272 (((-645 (-2 (|:| |val| |#4|) (|:| -2566 $))) |#4| |#4| $) 128)) (-3257 (((-3 |#4| "failed") $) 84)) (-1756 (((-645 $) |#4| $) 130)) (-4057 (((-3 (-112) (-645 $)) |#4| $) 133)) (-3573 (((-645 (-2 (|:| |val| (-112)) (|:| -2566 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-2370 (((-645 $) |#4| $) 126) (((-645 $) (-645 |#4|) $) 125) (((-645 $) (-645 |#4|) (-645 $)) 124) (((-645 $) |#4| (-645 $)) 123)) (-3101 (($ |#4| $) 118) (($ (-645 |#4|) $) 117)) (-4051 (((-645 |#4|) $) 108)) (-1791 (((-112) |#4| $) 100) (((-112) $) 96)) (-3159 ((|#4| |#4| $) 91)) (-3392 (((-112) $ $) 111)) (-2430 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-559)))) (-2554 (((-112) |#4| $) 101) (((-112) $) 97)) (-4164 ((|#4| |#4| $) 92)) (-3430 (((-1122) $) 11)) (-2409 (((-3 |#4| "failed") $) 85)) (-4128 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-4077 (((-3 $ "failed") $ |#4|) 79)) (-2410 (($ $ |#4|) 78) (((-645 $) |#4| $) 116) (((-645 $) |#4| (-645 $)) 115) (((-645 $) (-645 |#4|) $) 114) (((-645 $) (-645 |#4|) (-645 $)) 113)) (-3025 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 |#4|) (-645 |#4|)) 60 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-295 |#4|)) 58 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-645 (-295 |#4|))) 57 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))))) (-3092 (((-112) $ $) 39)) (-3572 (((-112) $) 42)) (-3498 (($) 41)) (-3077 (((-772) $) 107)) (-3439 (((-772) |#4| $) 55 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4418)))) (((-772) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4418)))) (-4305 (($ $) 40)) (-3893 (((-539) $) 70 (|has| |#4| (-615 (-539))))) (-4147 (($ (-645 |#4|)) 61)) (-2397 (($ $ |#3|) 29)) (-2120 (($ $ |#3|) 31)) (-4129 (($ $) 89)) (-2813 (($ $ |#3|) 30)) (-4132 (((-863) $) 12) (((-645 |#4|) $) 38)) (-2073 (((-772) $) 77 (|has| |#3| (-370)))) (-1745 (((-112) $ $) 9)) (-2220 (((-3 (-2 (|:| |bas| $) (|:| -2262 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2262 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-2668 (((-112) $ (-1 (-112) |#4| (-645 |#4|))) 99)) (-4021 (((-645 $) |#4| $) 122) (((-645 $) |#4| (-645 $)) 121) (((-645 $) (-645 |#4|) $) 120) (((-645 $) (-645 |#4|) (-645 $)) 119)) (-1853 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4418)))) (-2385 (((-645 |#3|) $) 82)) (-2848 (((-112) |#4| $) 136)) (-2012 (((-112) |#3| $) 81)) (-2936 (((-112) $ $) 6)) (-2414 (((-772) $) 47 (|has| $ (-6 -4418)))))
+((-1466 (((-1274) $) 23)) (-1544 (($ (-1179) (-437) |#2|) 11)) (-4129 (((-863) $) 16)))
+(((-1108 |#1| |#2|) (-13 (-398) (-10 -8 (-15 -1544 ($ (-1179) (-437) |#2|)))) (-1102) (-433 |#1|)) (T -1108))
+((-1544 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1179)) (-5 *3 (-437)) (-4 *5 (-1102)) (-5 *1 (-1108 *5 *4)) (-4 *4 (-433 *5)))))
+(-13 (-398) (-10 -8 (-15 -1544 ($ (-1179) (-437) |#2|))))
+((-4015 (((-112) |#5| |#5|) 45)) (-3458 (((-112) |#5| |#5|) 60)) (-1803 (((-112) |#5| (-645 |#5|)) 83) (((-112) |#5| |#5|) 69)) (-1983 (((-112) (-645 |#4|) (-645 |#4|)) 66)) (-2493 (((-112) (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|)) (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))) 71)) (-2480 (((-1274)) 33)) (-3807 (((-1274) (-1161) (-1161) (-1161)) 29)) (-3314 (((-645 |#5|) (-645 |#5|)) 102)) (-1353 (((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|)))) 94)) (-2134 (((-645 (-2 (|:| -3855 (-645 |#4|)) (|:| -2575 |#5|) (|:| |ineq| (-645 |#4|)))) (-645 |#4|) (-645 |#5|) (-112) (-112)) 124)) (-2115 (((-112) |#5| |#5|) 54)) (-2543 (((-3 (-112) "failed") |#5| |#5|) 79)) (-4248 (((-112) (-645 |#4|) (-645 |#4|)) 65)) (-2036 (((-112) (-645 |#4|) (-645 |#4|)) 67)) (-3995 (((-112) (-645 |#4|) (-645 |#4|)) 68)) (-3321 (((-3 (-2 (|:| -3855 (-645 |#4|)) (|:| -2575 |#5|) (|:| |ineq| (-645 |#4|))) "failed") (-645 |#4|) |#5| (-645 |#4|) (-112) (-112) (-112) (-112) (-112)) 119)) (-3845 (((-645 |#5|) (-645 |#5|)) 50)))
+(((-1109 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3807 ((-1274) (-1161) (-1161) (-1161))) (-15 -2480 ((-1274))) (-15 -4015 ((-112) |#5| |#5|)) (-15 -3845 ((-645 |#5|) (-645 |#5|))) (-15 -2115 ((-112) |#5| |#5|)) (-15 -3458 ((-112) |#5| |#5|)) (-15 -1983 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -4248 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -2036 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -3995 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -2543 ((-3 (-112) "failed") |#5| |#5|)) (-15 -1803 ((-112) |#5| |#5|)) (-15 -1803 ((-112) |#5| (-645 |#5|))) (-15 -3314 ((-645 |#5|) (-645 |#5|))) (-15 -2493 ((-112) (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|)) (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|)))) (-15 -1353 ((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))))) (-15 -2134 ((-645 (-2 (|:| -3855 (-645 |#4|)) (|:| -2575 |#5|) (|:| |ineq| (-645 |#4|)))) (-645 |#4|) (-645 |#5|) (-112) (-112))) (-15 -3321 ((-3 (-2 (|:| -3855 (-645 |#4|)) (|:| -2575 |#5|) (|:| |ineq| (-645 |#4|))) "failed") (-645 |#4|) |#5| (-645 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-455) (-794) (-851) (-1067 |#1| |#2| |#3|) (-1073 |#1| |#2| |#3| |#4|)) (T -1109))
+((-3321 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *9 (-1067 *6 *7 *8)) (-5 *2 (-2 (|:| -3855 (-645 *9)) (|:| -2575 *4) (|:| |ineq| (-645 *9)))) (-5 *1 (-1109 *6 *7 *8 *9 *4)) (-5 *3 (-645 *9)) (-4 *4 (-1073 *6 *7 *8 *9)))) (-2134 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-645 *10)) (-5 *5 (-112)) (-4 *10 (-1073 *6 *7 *8 *9)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *9 (-1067 *6 *7 *8)) (-5 *2 (-645 (-2 (|:| -3855 (-645 *9)) (|:| -2575 *10) (|:| |ineq| (-645 *9))))) (-5 *1 (-1109 *6 *7 *8 *9 *10)) (-5 *3 (-645 *9)))) (-1353 (*1 *2 *2) (-12 (-5 *2 (-645 (-2 (|:| |val| (-645 *6)) (|:| -2575 *7)))) (-4 *6 (-1067 *3 *4 *5)) (-4 *7 (-1073 *3 *4 *5 *6)) (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-1109 *3 *4 *5 *6 *7)))) (-2493 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-645 *7)) (|:| -2575 *8))) (-4 *7 (-1067 *4 *5 *6)) (-4 *8 (-1073 *4 *5 *6 *7)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-1109 *4 *5 *6 *7 *8)))) (-3314 (*1 *2 *2) (-12 (-5 *2 (-645 *7)) (-4 *7 (-1073 *3 *4 *5 *6)) (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *1 (-1109 *3 *4 *5 *6 *7)))) (-1803 (*1 *2 *3 *4) (-12 (-5 *4 (-645 *3)) (-4 *3 (-1073 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-1067 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1109 *5 *6 *7 *8 *3)))) (-1803 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1109 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7)))) (-2543 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1109 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7)))) (-3995 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-1109 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7)))) (-2036 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-1109 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7)))) (-4248 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-1109 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7)))) (-1983 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-1109 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7)))) (-3458 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1109 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7)))) (-2115 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1109 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7)))) (-3845 (*1 *2 *2) (-12 (-5 *2 (-645 *7)) (-4 *7 (-1073 *3 *4 *5 *6)) (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *1 (-1109 *3 *4 *5 *6 *7)))) (-4015 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1109 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7)))) (-2480 (*1 *2) (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-1274)) (-5 *1 (-1109 *3 *4 *5 *6 *7)) (-4 *7 (-1073 *3 *4 *5 *6)))) (-3807 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1161)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-1274)) (-5 *1 (-1109 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7)))))
+(-10 -7 (-15 -3807 ((-1274) (-1161) (-1161) (-1161))) (-15 -2480 ((-1274))) (-15 -4015 ((-112) |#5| |#5|)) (-15 -3845 ((-645 |#5|) (-645 |#5|))) (-15 -2115 ((-112) |#5| |#5|)) (-15 -3458 ((-112) |#5| |#5|)) (-15 -1983 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -4248 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -2036 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -3995 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -2543 ((-3 (-112) "failed") |#5| |#5|)) (-15 -1803 ((-112) |#5| |#5|)) (-15 -1803 ((-112) |#5| (-645 |#5|))) (-15 -3314 ((-645 |#5|) (-645 |#5|))) (-15 -2493 ((-112) (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|)) (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|)))) (-15 -1353 ((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))))) (-15 -2134 ((-645 (-2 (|:| -3855 (-645 |#4|)) (|:| -2575 |#5|) (|:| |ineq| (-645 |#4|)))) (-645 |#4|) (-645 |#5|) (-112) (-112))) (-15 -3321 ((-3 (-2 (|:| -3855 (-645 |#4|)) (|:| -2575 |#5|) (|:| |ineq| (-645 |#4|))) "failed") (-645 |#4|) |#5| (-645 |#4|) (-112) (-112) (-112) (-112) (-112))))
+((-2317 (((-645 (-2 (|:| |val| |#4|) (|:| -2575 |#5|))) |#4| |#5|) 109)) (-3655 (((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))) |#4| |#4| |#5|) 81)) (-1841 (((-645 (-2 (|:| |val| |#4|) (|:| -2575 |#5|))) |#4| |#4| |#5|) 103)) (-1666 (((-645 |#5|) |#4| |#5|) 125)) (-1612 (((-645 |#5|) |#4| |#5|) 132)) (-1987 (((-645 |#5|) |#4| |#5|) 133)) (-2583 (((-645 (-2 (|:| |val| (-112)) (|:| -2575 |#5|))) |#4| |#5|) 110)) (-4195 (((-645 (-2 (|:| |val| (-112)) (|:| -2575 |#5|))) |#4| |#5|) 131)) (-3317 (((-645 (-2 (|:| |val| (-112)) (|:| -2575 |#5|))) |#4| |#5|) 48) (((-112) |#4| |#5|) 56)) (-4189 (((-645 (-2 (|:| |val| |#4|) (|:| -2575 |#5|))) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))) |#3| (-112)) 93) (((-645 (-2 (|:| |val| |#4|) (|:| -2575 |#5|))) |#4| |#4| |#5| (-112) (-112)) 53)) (-2784 (((-645 (-2 (|:| |val| |#4|) (|:| -2575 |#5|))) |#4| |#4| |#5|) 88)) (-3015 (((-1274)) 37)) (-3799 (((-1274)) 26)) (-4051 (((-1274) (-1161) (-1161) (-1161)) 33)) (-3958 (((-1274) (-1161) (-1161) (-1161)) 22)))
+(((-1110 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3958 ((-1274) (-1161) (-1161) (-1161))) (-15 -3799 ((-1274))) (-15 -4051 ((-1274) (-1161) (-1161) (-1161))) (-15 -3015 ((-1274))) (-15 -3655 ((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))) |#4| |#4| |#5|)) (-15 -4189 ((-645 (-2 (|:| |val| |#4|) (|:| -2575 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -4189 ((-645 (-2 (|:| |val| |#4|) (|:| -2575 |#5|))) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))) |#3| (-112))) (-15 -2784 ((-645 (-2 (|:| |val| |#4|) (|:| -2575 |#5|))) |#4| |#4| |#5|)) (-15 -1841 ((-645 (-2 (|:| |val| |#4|) (|:| -2575 |#5|))) |#4| |#4| |#5|)) (-15 -3317 ((-112) |#4| |#5|)) (-15 -2583 ((-645 (-2 (|:| |val| (-112)) (|:| -2575 |#5|))) |#4| |#5|)) (-15 -1666 ((-645 |#5|) |#4| |#5|)) (-15 -4195 ((-645 (-2 (|:| |val| (-112)) (|:| -2575 |#5|))) |#4| |#5|)) (-15 -1612 ((-645 |#5|) |#4| |#5|)) (-15 -3317 ((-645 (-2 (|:| |val| (-112)) (|:| -2575 |#5|))) |#4| |#5|)) (-15 -1987 ((-645 |#5|) |#4| |#5|)) (-15 -2317 ((-645 (-2 (|:| |val| |#4|) (|:| -2575 |#5|))) |#4| |#5|))) (-455) (-794) (-851) (-1067 |#1| |#2| |#3|) (-1073 |#1| |#2| |#3| |#4|)) (T -1110))
+((-2317 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2575 *4)))) (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-1987 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 *4)) (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-3317 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| (-112)) (|:| -2575 *4)))) (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-1612 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 *4)) (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-4195 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| (-112)) (|:| -2575 *4)))) (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-1666 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 *4)) (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-2583 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| (-112)) (|:| -2575 *4)))) (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-3317 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-1841 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2575 *4)))) (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-2784 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2575 *4)))) (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-4189 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-645 (-2 (|:| |val| (-645 *8)) (|:| -2575 *9)))) (-5 *5 (-112)) (-4 *8 (-1067 *6 *7 *4)) (-4 *9 (-1073 *6 *7 *4 *8)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *4 (-851)) (-5 *2 (-645 (-2 (|:| |val| *8) (|:| -2575 *9)))) (-5 *1 (-1110 *6 *7 *4 *8 *9)))) (-4189 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *3 (-1067 *6 *7 *8)) (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2575 *4)))) (-5 *1 (-1110 *6 *7 *8 *3 *4)) (-4 *4 (-1073 *6 *7 *8 *3)))) (-3655 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| (-645 *3)) (|:| -2575 *4)))) (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-3015 (*1 *2) (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-1274)) (-5 *1 (-1110 *3 *4 *5 *6 *7)) (-4 *7 (-1073 *3 *4 *5 *6)))) (-4051 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1161)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-1274)) (-5 *1 (-1110 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7)))) (-3799 (*1 *2) (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-1274)) (-5 *1 (-1110 *3 *4 *5 *6 *7)) (-4 *7 (-1073 *3 *4 *5 *6)))) (-3958 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1161)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-1274)) (-5 *1 (-1110 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7)))))
+(-10 -7 (-15 -3958 ((-1274) (-1161) (-1161) (-1161))) (-15 -3799 ((-1274))) (-15 -4051 ((-1274) (-1161) (-1161) (-1161))) (-15 -3015 ((-1274))) (-15 -3655 ((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))) |#4| |#4| |#5|)) (-15 -4189 ((-645 (-2 (|:| |val| |#4|) (|:| -2575 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -4189 ((-645 (-2 (|:| |val| |#4|) (|:| -2575 |#5|))) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))) |#3| (-112))) (-15 -2784 ((-645 (-2 (|:| |val| |#4|) (|:| -2575 |#5|))) |#4| |#4| |#5|)) (-15 -1841 ((-645 (-2 (|:| |val| |#4|) (|:| -2575 |#5|))) |#4| |#4| |#5|)) (-15 -3317 ((-112) |#4| |#5|)) (-15 -2583 ((-645 (-2 (|:| |val| (-112)) (|:| -2575 |#5|))) |#4| |#5|)) (-15 -1666 ((-645 |#5|) |#4| |#5|)) (-15 -4195 ((-645 (-2 (|:| |val| (-112)) (|:| -2575 |#5|))) |#4| |#5|)) (-15 -1612 ((-645 |#5|) |#4| |#5|)) (-15 -3317 ((-645 (-2 (|:| |val| (-112)) (|:| -2575 |#5|))) |#4| |#5|)) (-15 -1987 ((-645 |#5|) |#4| |#5|)) (-15 -2317 ((-645 (-2 (|:| |val| |#4|) (|:| -2575 |#5|))) |#4| |#5|)))
+((-2412 (((-112) $ $) 7)) (-4305 (((-645 (-2 (|:| -4000 $) (|:| -3835 (-645 |#4|)))) (-645 |#4|)) 86)) (-3403 (((-645 $) (-645 |#4|)) 87) (((-645 $) (-645 |#4|) (-112)) 112)) (-2859 (((-645 |#3|) $) 34)) (-3153 (((-112) $) 27)) (-2031 (((-112) $) 18 (|has| |#1| (-559)))) (-2176 (((-112) |#4| $) 102) (((-112) $) 98)) (-2345 ((|#4| |#4| $) 93)) (-3659 (((-645 (-2 (|:| |val| |#4|) (|:| -2575 $))) |#4| $) 127)) (-1311 (((-2 (|:| |under| $) (|:| -3969 $) (|:| |upper| $)) $ |#3|) 28)) (-1563 (((-112) $ (-772)) 45)) (-3356 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4422))) (((-3 |#4| "failed") $ |#3|) 80)) (-3647 (($) 46 T CONST)) (-1896 (((-112) $) 23 (|has| |#1| (-559)))) (-2909 (((-112) $ $) 25 (|has| |#1| (-559)))) (-3040 (((-112) $ $) 24 (|has| |#1| (-559)))) (-3365 (((-112) $) 26 (|has| |#1| (-559)))) (-3683 (((-645 |#4|) (-645 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1377 (((-645 |#4|) (-645 |#4|) $) 19 (|has| |#1| (-559)))) (-2279 (((-645 |#4|) (-645 |#4|) $) 20 (|has| |#1| (-559)))) (-3765 (((-3 $ "failed") (-645 |#4|)) 37)) (-2051 (($ (-645 |#4|)) 36)) (-2430 (((-3 $ "failed") $) 83)) (-3819 ((|#4| |#4| $) 90)) (-2453 (($ $) 69 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4422))))) (-3246 (($ |#4| $) 68 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4422)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4422)))) (-2023 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-559)))) (-2240 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-1889 ((|#4| |#4| $) 88)) (-2494 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4422)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4422))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4422))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-4076 (((-2 (|:| -4000 (-645 |#4|)) (|:| -3835 (-645 |#4|))) $) 106)) (-2057 (((-112) |#4| $) 137)) (-4104 (((-112) |#4| $) 134)) (-1413 (((-112) |#4| $) 138) (((-112) $) 135)) (-2799 (((-645 |#4|) $) 53 (|has| $ (-6 -4422)))) (-4061 (((-112) |#4| $) 105) (((-112) $) 104)) (-2072 ((|#3| $) 35)) (-4093 (((-112) $ (-772)) 44)) (-1942 (((-645 |#4|) $) 54 (|has| $ (-6 -4422)))) (-3237 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4422))))) (-3751 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#4| |#4|) $) 48)) (-2869 (((-645 |#3|) $) 33)) (-1524 (((-112) |#3| $) 32)) (-1986 (((-112) $ (-772)) 43)) (-2516 (((-1161) $) 10)) (-3295 (((-3 |#4| (-645 $)) |#4| |#4| $) 129)) (-2588 (((-645 (-2 (|:| |val| |#4|) (|:| -2575 $))) |#4| |#4| $) 128)) (-3266 (((-3 |#4| "failed") $) 84)) (-2055 (((-645 $) |#4| $) 130)) (-2254 (((-3 (-112) (-645 $)) |#4| $) 133)) (-3992 (((-645 (-2 (|:| |val| (-112)) (|:| -2575 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3660 (((-645 $) |#4| $) 126) (((-645 $) (-645 |#4|) $) 125) (((-645 $) (-645 |#4|) (-645 $)) 124) (((-645 $) |#4| (-645 $)) 123)) (-2579 (($ |#4| $) 118) (($ (-645 |#4|) $) 117)) (-3881 (((-645 |#4|) $) 108)) (-3324 (((-112) |#4| $) 100) (((-112) $) 96)) (-1431 ((|#4| |#4| $) 91)) (-3995 (((-112) $ $) 111)) (-2634 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-559)))) (-4278 (((-112) |#4| $) 101) (((-112) $) 97)) (-3984 ((|#4| |#4| $) 92)) (-3437 (((-1122) $) 11)) (-2418 (((-3 |#4| "failed") $) 85)) (-3196 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3488 (((-3 $ "failed") $ |#4|) 79)) (-1874 (($ $ |#4|) 78) (((-645 $) |#4| $) 116) (((-645 $) |#4| (-645 $)) 115) (((-645 $) (-645 |#4|) $) 114) (((-645 $) (-645 |#4|) (-645 $)) 113)) (-4233 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 |#4|) (-645 |#4|)) 60 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-295 |#4|)) 58 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-645 (-295 |#4|))) 57 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))))) (-3875 (((-112) $ $) 39)) (-3885 (((-112) $) 42)) (-2701 (($) 41)) (-3104 (((-772) $) 107)) (-3447 (((-772) |#4| $) 55 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4422)))) (((-772) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4422)))) (-4309 (($ $) 40)) (-3902 (((-539) $) 70 (|has| |#4| (-615 (-539))))) (-4145 (($ (-645 |#4|)) 61)) (-3937 (($ $ |#3|) 29)) (-3165 (($ $ |#3|) 31)) (-2085 (($ $) 89)) (-1920 (($ $ |#3|) 30)) (-4129 (((-863) $) 12) (((-645 |#4|) $) 38)) (-1975 (((-772) $) 77 (|has| |#3| (-370)))) (-3357 (((-112) $ $) 9)) (-1676 (((-3 (-2 (|:| |bas| $) (|:| -2270 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2270 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-1642 (((-112) $ (-1 (-112) |#4| (-645 |#4|))) 99)) (-3730 (((-645 $) |#4| $) 122) (((-645 $) |#4| (-645 $)) 121) (((-645 $) (-645 |#4|) $) 120) (((-645 $) (-645 |#4|) (-645 $)) 119)) (-3436 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4422)))) (-2551 (((-645 |#3|) $) 82)) (-3991 (((-112) |#4| $) 136)) (-2618 (((-112) |#3| $) 81)) (-2946 (((-112) $ $) 6)) (-2423 (((-772) $) 47 (|has| $ (-6 -4422)))))
(((-1111 |#1| |#2| |#3| |#4|) (-140) (-455) (-794) (-851) (-1067 |t#1| |t#2| |t#3|)) (T -1111))
NIL
(-13 (-1073 |t#1| |t#2| |t#3| |t#4|))
-(((-34) . T) ((-102) . T) ((-614 (-645 |#4|)) . T) ((-614 (-863)) . T) ((-151 |#4|) . T) ((-615 (-539)) |has| |#4| (-615 (-539))) ((-310 |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))) ((-492 |#4|) . T) ((-517 |#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))) ((-978 |#1| |#2| |#3| |#4|) . T) ((-1073 |#1| |#2| |#3| |#4|) . T) ((-1102) . T) ((-1211 |#1| |#2| |#3| |#4|) . T) ((-1218) . T))
-((-3779 (((-645 (-567)) (-567) (-567) (-567)) 39)) (-1852 (((-645 (-567)) (-567) (-567) (-567)) 29)) (-2560 (((-645 (-567)) (-567) (-567) (-567)) 34)) (-3485 (((-567) (-567) (-567)) 23)) (-2072 (((-1268 (-567)) (-645 (-567)) (-1268 (-567)) (-567)) 75) (((-1268 (-567)) (-1268 (-567)) (-1268 (-567)) (-567)) 70)) (-1627 (((-645 (-567)) (-645 (-567)) (-645 (-567)) (-112)) 52)) (-2096 (((-690 (-567)) (-645 (-567)) (-645 (-567)) (-690 (-567))) 74)) (-2197 (((-690 (-567)) (-645 (-567)) (-645 (-567))) 58)) (-1686 (((-645 (-690 (-567))) (-645 (-567))) 63)) (-1372 (((-645 (-567)) (-645 (-567)) (-645 (-567)) (-690 (-567))) 78)) (-2793 (((-690 (-567)) (-645 (-567)) (-645 (-567)) (-645 (-567))) 88)))
-(((-1112) (-10 -7 (-15 -2793 ((-690 (-567)) (-645 (-567)) (-645 (-567)) (-645 (-567)))) (-15 -1372 ((-645 (-567)) (-645 (-567)) (-645 (-567)) (-690 (-567)))) (-15 -1686 ((-645 (-690 (-567))) (-645 (-567)))) (-15 -2197 ((-690 (-567)) (-645 (-567)) (-645 (-567)))) (-15 -2096 ((-690 (-567)) (-645 (-567)) (-645 (-567)) (-690 (-567)))) (-15 -1627 ((-645 (-567)) (-645 (-567)) (-645 (-567)) (-112))) (-15 -2072 ((-1268 (-567)) (-1268 (-567)) (-1268 (-567)) (-567))) (-15 -2072 ((-1268 (-567)) (-645 (-567)) (-1268 (-567)) (-567))) (-15 -3485 ((-567) (-567) (-567))) (-15 -2560 ((-645 (-567)) (-567) (-567) (-567))) (-15 -1852 ((-645 (-567)) (-567) (-567) (-567))) (-15 -3779 ((-645 (-567)) (-567) (-567) (-567))))) (T -1112))
-((-3779 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1112)) (-5 *3 (-567)))) (-1852 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1112)) (-5 *3 (-567)))) (-2560 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1112)) (-5 *3 (-567)))) (-3485 (*1 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1112)))) (-2072 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1268 (-567))) (-5 *3 (-645 (-567))) (-5 *4 (-567)) (-5 *1 (-1112)))) (-2072 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1268 (-567))) (-5 *3 (-567)) (-5 *1 (-1112)))) (-1627 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-645 (-567))) (-5 *3 (-112)) (-5 *1 (-1112)))) (-2096 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-690 (-567))) (-5 *3 (-645 (-567))) (-5 *1 (-1112)))) (-2197 (*1 *2 *3 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-690 (-567))) (-5 *1 (-1112)))) (-1686 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-645 (-690 (-567)))) (-5 *1 (-1112)))) (-1372 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-645 (-567))) (-5 *3 (-690 (-567))) (-5 *1 (-1112)))) (-2793 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-690 (-567))) (-5 *1 (-1112)))))
-(-10 -7 (-15 -2793 ((-690 (-567)) (-645 (-567)) (-645 (-567)) (-645 (-567)))) (-15 -1372 ((-645 (-567)) (-645 (-567)) (-645 (-567)) (-690 (-567)))) (-15 -1686 ((-645 (-690 (-567))) (-645 (-567)))) (-15 -2197 ((-690 (-567)) (-645 (-567)) (-645 (-567)))) (-15 -2096 ((-690 (-567)) (-645 (-567)) (-645 (-567)) (-690 (-567)))) (-15 -1627 ((-645 (-567)) (-645 (-567)) (-645 (-567)) (-112))) (-15 -2072 ((-1268 (-567)) (-1268 (-567)) (-1268 (-567)) (-567))) (-15 -2072 ((-1268 (-567)) (-645 (-567)) (-1268 (-567)) (-567))) (-15 -3485 ((-567) (-567) (-567))) (-15 -2560 ((-645 (-567)) (-567) (-567) (-567))) (-15 -1852 ((-645 (-567)) (-567) (-567) (-567))) (-15 -3779 ((-645 (-567)) (-567) (-567) (-567))))
+(((-34) . T) ((-102) . T) ((-614 (-645 |#4|)) . T) ((-614 (-863)) . T) ((-151 |#4|) . T) ((-615 (-539)) |has| |#4| (-615 (-539))) ((-310 |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))) ((-492 |#4|) . T) ((-517 |#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))) ((-978 |#1| |#2| |#3| |#4|) . T) ((-1073 |#1| |#2| |#3| |#4|) . T) ((-1102) . T) ((-1212 |#1| |#2| |#3| |#4|) . T) ((-1219) . T))
+((-2844 (((-645 (-567)) (-567) (-567) (-567)) 39)) (-1442 (((-645 (-567)) (-567) (-567) (-567)) 29)) (-2820 (((-645 (-567)) (-567) (-567) (-567)) 34)) (-4140 (((-567) (-567) (-567)) 23)) (-1882 (((-1269 (-567)) (-645 (-567)) (-1269 (-567)) (-567)) 75) (((-1269 (-567)) (-1269 (-567)) (-1269 (-567)) (-567)) 70)) (-2207 (((-645 (-567)) (-645 (-567)) (-645 (-567)) (-112)) 52)) (-3219 (((-690 (-567)) (-645 (-567)) (-645 (-567)) (-690 (-567))) 74)) (-4239 (((-690 (-567)) (-645 (-567)) (-645 (-567))) 58)) (-1450 (((-645 (-690 (-567))) (-645 (-567))) 63)) (-3533 (((-645 (-567)) (-645 (-567)) (-645 (-567)) (-690 (-567))) 78)) (-2608 (((-690 (-567)) (-645 (-567)) (-645 (-567)) (-645 (-567))) 88)))
+(((-1112) (-10 -7 (-15 -2608 ((-690 (-567)) (-645 (-567)) (-645 (-567)) (-645 (-567)))) (-15 -3533 ((-645 (-567)) (-645 (-567)) (-645 (-567)) (-690 (-567)))) (-15 -1450 ((-645 (-690 (-567))) (-645 (-567)))) (-15 -4239 ((-690 (-567)) (-645 (-567)) (-645 (-567)))) (-15 -3219 ((-690 (-567)) (-645 (-567)) (-645 (-567)) (-690 (-567)))) (-15 -2207 ((-645 (-567)) (-645 (-567)) (-645 (-567)) (-112))) (-15 -1882 ((-1269 (-567)) (-1269 (-567)) (-1269 (-567)) (-567))) (-15 -1882 ((-1269 (-567)) (-645 (-567)) (-1269 (-567)) (-567))) (-15 -4140 ((-567) (-567) (-567))) (-15 -2820 ((-645 (-567)) (-567) (-567) (-567))) (-15 -1442 ((-645 (-567)) (-567) (-567) (-567))) (-15 -2844 ((-645 (-567)) (-567) (-567) (-567))))) (T -1112))
+((-2844 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1112)) (-5 *3 (-567)))) (-1442 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1112)) (-5 *3 (-567)))) (-2820 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1112)) (-5 *3 (-567)))) (-4140 (*1 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1112)))) (-1882 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1269 (-567))) (-5 *3 (-645 (-567))) (-5 *4 (-567)) (-5 *1 (-1112)))) (-1882 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1269 (-567))) (-5 *3 (-567)) (-5 *1 (-1112)))) (-2207 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-645 (-567))) (-5 *3 (-112)) (-5 *1 (-1112)))) (-3219 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-690 (-567))) (-5 *3 (-645 (-567))) (-5 *1 (-1112)))) (-4239 (*1 *2 *3 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-690 (-567))) (-5 *1 (-1112)))) (-1450 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-645 (-690 (-567)))) (-5 *1 (-1112)))) (-3533 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-645 (-567))) (-5 *3 (-690 (-567))) (-5 *1 (-1112)))) (-2608 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-690 (-567))) (-5 *1 (-1112)))))
+(-10 -7 (-15 -2608 ((-690 (-567)) (-645 (-567)) (-645 (-567)) (-645 (-567)))) (-15 -3533 ((-645 (-567)) (-645 (-567)) (-645 (-567)) (-690 (-567)))) (-15 -1450 ((-645 (-690 (-567))) (-645 (-567)))) (-15 -4239 ((-690 (-567)) (-645 (-567)) (-645 (-567)))) (-15 -3219 ((-690 (-567)) (-645 (-567)) (-645 (-567)) (-690 (-567)))) (-15 -2207 ((-645 (-567)) (-645 (-567)) (-645 (-567)) (-112))) (-15 -1882 ((-1269 (-567)) (-1269 (-567)) (-1269 (-567)) (-567))) (-15 -1882 ((-1269 (-567)) (-645 (-567)) (-1269 (-567)) (-567))) (-15 -4140 ((-567) (-567) (-567))) (-15 -2820 ((-645 (-567)) (-567) (-567) (-567))) (-15 -1442 ((-645 (-567)) (-567) (-567) (-567))) (-15 -2844 ((-645 (-567)) (-567) (-567) (-567))))
((** (($ $ (-923)) 10)))
(((-1113 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-923)))) (-1114)) (T -1113))
NIL
(-10 -8 (-15 ** (|#1| |#1| (-923))))
-((-2403 (((-112) $ $) 7)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-2936 (((-112) $ $) 6)) (** (($ $ (-923)) 14)) (* (($ $ $) 15)))
+((-2412 (((-112) $ $) 7)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-4129 (((-863) $) 12)) (-3357 (((-112) $ $) 9)) (-2946 (((-112) $ $) 6)) (** (($ $ (-923)) 14)) (* (($ $ $) 15)))
(((-1114) (-140)) (T -1114))
((* (*1 *1 *1 *1) (-4 *1 (-1114))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1114)) (-5 *2 (-923)))))
(-13 (-1102) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-923)))))
(((-102) . T) ((-614 (-863)) . T) ((-1102) . T))
-((-2403 (((-112) $ $) NIL (|has| |#3| (-1102)))) (-2460 (((-112) $) NIL (|has| |#3| (-131)))) (-4387 (($ (-923)) NIL (|has| |#3| (-1051)))) (-1783 (((-1273) $ (-567) (-567)) NIL (|has| $ (-6 -4419)))) (-4016 (($ $ $) NIL (|has| |#3| (-794)))) (-3472 (((-3 $ "failed") $ $) NIL (|has| |#3| (-131)))) (-3445 (((-112) $ (-772)) NIL)) (-2375 (((-772)) NIL (|has| |#3| (-370)))) (-1750 (((-567) $) NIL (|has| |#3| (-849)))) (-4284 ((|#3| $ (-567) |#3|) NIL (|has| $ (-6 -4419)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 (-567) "failed") $) NIL (-12 (|has| |#3| (-1040 (-567))) (|has| |#3| (-1102)))) (((-3 (-410 (-567)) "failed") $) NIL (-12 (|has| |#3| (-1040 (-410 (-567)))) (|has| |#3| (-1102)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1102)))) (-2038 (((-567) $) NIL (-12 (|has| |#3| (-1040 (-567))) (|has| |#3| (-1102)))) (((-410 (-567)) $) NIL (-12 (|has| |#3| (-1040 (-410 (-567)))) (|has| |#3| (-1102)))) ((|#3| $) NIL (|has| |#3| (-1102)))) (-2630 (((-690 (-567)) (-690 $)) NIL (-12 (|has| |#3| (-640 (-567))) (|has| |#3| (-1051)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (-12 (|has| |#3| (-640 (-567))) (|has| |#3| (-1051)))) (((-2 (|:| -2316 (-690 |#3|)) (|:| |vec| (-1268 |#3|))) (-690 $) (-1268 $)) NIL (|has| |#3| (-1051))) (((-690 |#3|) (-690 $)) NIL (|has| |#3| (-1051)))) (-2109 (((-3 $ "failed") $) NIL (|has| |#3| (-727)))) (-1348 (($) NIL (|has| |#3| (-370)))) (-3741 ((|#3| $ (-567) |#3|) NIL (|has| $ (-6 -4419)))) (-3680 ((|#3| $ (-567)) 12)) (-4336 (((-112) $) NIL (|has| |#3| (-849)))) (-2777 (((-645 |#3|) $) NIL (|has| $ (-6 -4418)))) (-1433 (((-112) $) NIL (|has| |#3| (-727)))) (-3494 (((-112) $) NIL (|has| |#3| (-849)))) (-2077 (((-112) $ (-772)) NIL)) (-4069 (((-567) $) NIL (|has| (-567) (-851)))) (-1354 (($ $ $) NIL (-2800 (|has| |#3| (-794)) (|has| |#3| (-849))))) (-2279 (((-645 |#3|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#3| (-1102))))) (-2266 (((-567) $) NIL (|has| (-567) (-851)))) (-2981 (($ $ $) NIL (-2800 (|has| |#3| (-794)) (|has| |#3| (-849))))) (-3731 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#3| |#3|) $) NIL)) (-4249 (((-923) $) NIL (|has| |#3| (-370)))) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL (|has| |#3| (-1102)))) (-1789 (((-645 (-567)) $) NIL)) (-2996 (((-112) (-567) $) NIL)) (-3768 (($ (-923)) NIL (|has| |#3| (-370)))) (-3430 (((-1122) $) NIL (|has| |#3| (-1102)))) (-2409 ((|#3| $) NIL (|has| (-567) (-851)))) (-3986 (($ $ |#3|) NIL (|has| $ (-6 -4419)))) (-3025 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#3|))) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102)))) (($ $ (-295 |#3|)) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102)))) (($ $ (-645 |#3|) (-645 |#3|)) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102))))) (-3092 (((-112) $ $) NIL)) (-1794 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#3| (-1102))))) (-2339 (((-645 |#3|) $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) NIL)) (-1787 ((|#3| $ (-567) |#3|) NIL) ((|#3| $ (-567)) NIL)) (-3366 ((|#3| $ $) NIL (|has| |#3| (-1051)))) (-2749 (($ (-1268 |#3|)) NIL)) (-1879 (((-134)) NIL (|has| |#3| (-365)))) (-1593 (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1051)))) (($ $ (-772)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1051)))) (($ $ (-1178)) NIL (-12 (|has| |#3| (-902 (-1178))) (|has| |#3| (-1051)))) (($ $ (-645 (-1178))) NIL (-12 (|has| |#3| (-902 (-1178))) (|has| |#3| (-1051)))) (($ $ (-1178) (-772)) NIL (-12 (|has| |#3| (-902 (-1178))) (|has| |#3| (-1051)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (-12 (|has| |#3| (-902 (-1178))) (|has| |#3| (-1051)))) (($ $ (-1 |#3| |#3|) (-772)) NIL (|has| |#3| (-1051))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1051)))) (-3439 (((-772) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4418))) (((-772) |#3| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#3| (-1102))))) (-4305 (($ $) NIL)) (-4132 (((-1268 |#3|) $) NIL) (($ (-567)) NIL (-2800 (-12 (|has| |#3| (-1040 (-567))) (|has| |#3| (-1102))) (|has| |#3| (-1051)))) (($ (-410 (-567))) NIL (-12 (|has| |#3| (-1040 (-410 (-567)))) (|has| |#3| (-1102)))) (($ |#3|) NIL (|has| |#3| (-1102))) (((-863) $) NIL (|has| |#3| (-614 (-863))))) (-4221 (((-772)) NIL (|has| |#3| (-1051)) CONST)) (-1745 (((-112) $ $) NIL (|has| |#3| (-1102)))) (-1853 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4418)))) (-2219 (($ $) NIL (|has| |#3| (-849)))) (-1716 (($) NIL (|has| |#3| (-131)) CONST)) (-1728 (($) NIL (|has| |#3| (-727)) CONST)) (-2637 (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1051)))) (($ $ (-772)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1051)))) (($ $ (-1178)) NIL (-12 (|has| |#3| (-902 (-1178))) (|has| |#3| (-1051)))) (($ $ (-645 (-1178))) NIL (-12 (|has| |#3| (-902 (-1178))) (|has| |#3| (-1051)))) (($ $ (-1178) (-772)) NIL (-12 (|has| |#3| (-902 (-1178))) (|has| |#3| (-1051)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (-12 (|has| |#3| (-902 (-1178))) (|has| |#3| (-1051)))) (($ $ (-1 |#3| |#3|) (-772)) NIL (|has| |#3| (-1051))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1051)))) (-2997 (((-112) $ $) NIL (-2800 (|has| |#3| (-794)) (|has| |#3| (-849))))) (-2971 (((-112) $ $) NIL (-2800 (|has| |#3| (-794)) (|has| |#3| (-849))))) (-2936 (((-112) $ $) NIL (|has| |#3| (-1102)))) (-2984 (((-112) $ $) NIL (-2800 (|has| |#3| (-794)) (|has| |#3| (-849))))) (-2958 (((-112) $ $) 24 (-2800 (|has| |#3| (-794)) (|has| |#3| (-849))))) (-3060 (($ $ |#3|) NIL (|has| |#3| (-365)))) (-3045 (($ $ $) NIL (|has| |#3| (-1051))) (($ $) NIL (|has| |#3| (-1051)))) (-3033 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-772)) NIL (|has| |#3| (-727))) (($ $ (-923)) NIL (|has| |#3| (-727)))) (* (($ (-567) $) NIL (|has| |#3| (-1051))) (($ $ $) NIL (|has| |#3| (-727))) (($ $ |#3|) NIL (|has| |#3| (-727))) (($ |#3| $) NIL (|has| |#3| (-727))) (($ (-772) $) NIL (|has| |#3| (-131))) (($ (-923) $) NIL (|has| |#3| (-25)))) (-2414 (((-772) $) NIL (|has| $ (-6 -4418)))))
+((-2412 (((-112) $ $) NIL (|has| |#3| (-1102)))) (-3791 (((-112) $) NIL (|has| |#3| (-131)))) (-3624 (($ (-923)) NIL (|has| |#3| (-1051)))) (-3843 (((-1274) $ (-567) (-567)) NIL (|has| $ (-6 -4423)))) (-1325 (($ $ $) NIL (|has| |#3| (-794)))) (-2376 (((-3 $ "failed") $ $) NIL (|has| |#3| (-131)))) (-1563 (((-112) $ (-772)) NIL)) (-2384 (((-772)) NIL (|has| |#3| (-370)))) (-2677 (((-567) $) NIL (|has| |#3| (-849)))) (-4285 ((|#3| $ (-567) |#3|) NIL (|has| $ (-6 -4423)))) (-3647 (($) NIL T CONST)) (-3765 (((-3 (-567) "failed") $) NIL (-12 (|has| |#3| (-1040 (-567))) (|has| |#3| (-1102)))) (((-3 (-410 (-567)) "failed") $) NIL (-12 (|has| |#3| (-1040 (-410 (-567)))) (|has| |#3| (-1102)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1102)))) (-2051 (((-567) $) NIL (-12 (|has| |#3| (-1040 (-567))) (|has| |#3| (-1102)))) (((-410 (-567)) $) NIL (-12 (|has| |#3| (-1040 (-410 (-567)))) (|has| |#3| (-1102)))) ((|#3| $) NIL (|has| |#3| (-1102)))) (-1423 (((-690 (-567)) (-690 $)) NIL (-12 (|has| |#3| (-640 (-567))) (|has| |#3| (-1051)))) (((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (-12 (|has| |#3| (-640 (-567))) (|has| |#3| (-1051)))) (((-2 (|:| -4208 (-690 |#3|)) (|:| |vec| (-1269 |#3|))) (-690 $) (-1269 $)) NIL (|has| |#3| (-1051))) (((-690 |#3|) (-690 $)) NIL (|has| |#3| (-1051)))) (-3588 (((-3 $ "failed") $) NIL (|has| |#3| (-727)))) (-1359 (($) NIL (|has| |#3| (-370)))) (-3760 ((|#3| $ (-567) |#3|) NIL (|has| $ (-6 -4423)))) (-3703 ((|#3| $ (-567)) 12)) (-3137 (((-112) $) NIL (|has| |#3| (-849)))) (-2799 (((-645 |#3|) $) NIL (|has| $ (-6 -4422)))) (-4346 (((-112) $) NIL (|has| |#3| (-727)))) (-3465 (((-112) $) NIL (|has| |#3| (-849)))) (-4093 (((-112) $ (-772)) NIL)) (-3895 (((-567) $) NIL (|has| (-567) (-851)))) (-1365 (($ $ $) NIL (-2811 (|has| |#3| (-794)) (|has| |#3| (-849))))) (-1942 (((-645 |#3|) $) NIL (|has| $ (-6 -4422)))) (-3237 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#3| (-1102))))) (-3255 (((-567) $) NIL (|has| (-567) (-851)))) (-3002 (($ $ $) NIL (-2811 (|has| |#3| (-794)) (|has| |#3| (-849))))) (-3751 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#3| |#3|) $) NIL)) (-3474 (((-923) $) NIL (|has| |#3| (-370)))) (-1986 (((-112) $ (-772)) NIL)) (-2516 (((-1161) $) NIL (|has| |#3| (-1102)))) (-4364 (((-645 (-567)) $) NIL)) (-3188 (((-112) (-567) $) NIL)) (-3779 (($ (-923)) NIL (|has| |#3| (-370)))) (-3437 (((-1122) $) NIL (|has| |#3| (-1102)))) (-2418 ((|#3| $) NIL (|has| (-567) (-851)))) (-3823 (($ $ |#3|) NIL (|has| $ (-6 -4423)))) (-4233 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 |#3|))) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102)))) (($ $ (-295 |#3|)) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102)))) (($ $ (-645 |#3|) (-645 |#3|)) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102))))) (-3875 (((-112) $ $) NIL)) (-4058 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#3| (-1102))))) (-2190 (((-645 |#3|) $) NIL)) (-3885 (((-112) $) NIL)) (-2701 (($) NIL)) (-1801 ((|#3| $ (-567) |#3|) NIL) ((|#3| $ (-567)) NIL)) (-3917 ((|#3| $ $) NIL (|has| |#3| (-1051)))) (-2760 (($ (-1269 |#3|)) NIL)) (-1412 (((-134)) NIL (|has| |#3| (-365)))) (-1616 (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1051)))) (($ $ (-772)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1051)))) (($ $ (-1179)) NIL (-12 (|has| |#3| (-902 (-1179))) (|has| |#3| (-1051)))) (($ $ (-645 (-1179))) NIL (-12 (|has| |#3| (-902 (-1179))) (|has| |#3| (-1051)))) (($ $ (-1179) (-772)) NIL (-12 (|has| |#3| (-902 (-1179))) (|has| |#3| (-1051)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (-12 (|has| |#3| (-902 (-1179))) (|has| |#3| (-1051)))) (($ $ (-1 |#3| |#3|) (-772)) NIL (|has| |#3| (-1051))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1051)))) (-3447 (((-772) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4422))) (((-772) |#3| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#3| (-1102))))) (-4309 (($ $) NIL)) (-4129 (((-1269 |#3|) $) NIL) (($ (-567)) NIL (-2811 (-12 (|has| |#3| (-1040 (-567))) (|has| |#3| (-1102))) (|has| |#3| (-1051)))) (($ (-410 (-567))) NIL (-12 (|has| |#3| (-1040 (-410 (-567)))) (|has| |#3| (-1102)))) (($ |#3|) NIL (|has| |#3| (-1102))) (((-863) $) NIL (|has| |#3| (-614 (-863))))) (-2746 (((-772)) NIL (|has| |#3| (-1051)) CONST)) (-3357 (((-112) $ $) NIL (|has| |#3| (-1102)))) (-3436 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4422)))) (-1547 (($ $) NIL (|has| |#3| (-849)))) (-1733 (($) NIL (|has| |#3| (-131)) CONST)) (-1744 (($) NIL (|has| |#3| (-727)) CONST)) (-2647 (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1051)))) (($ $ (-772)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1051)))) (($ $ (-1179)) NIL (-12 (|has| |#3| (-902 (-1179))) (|has| |#3| (-1051)))) (($ $ (-645 (-1179))) NIL (-12 (|has| |#3| (-902 (-1179))) (|has| |#3| (-1051)))) (($ $ (-1179) (-772)) NIL (-12 (|has| |#3| (-902 (-1179))) (|has| |#3| (-1051)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (-12 (|has| |#3| (-902 (-1179))) (|has| |#3| (-1051)))) (($ $ (-1 |#3| |#3|) (-772)) NIL (|has| |#3| (-1051))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1051)))) (-3004 (((-112) $ $) NIL (-2811 (|has| |#3| (-794)) (|has| |#3| (-849))))) (-2980 (((-112) $ $) NIL (-2811 (|has| |#3| (-794)) (|has| |#3| (-849))))) (-2946 (((-112) $ $) NIL (|has| |#3| (-1102)))) (-2993 (((-112) $ $) NIL (-2811 (|has| |#3| (-794)) (|has| |#3| (-849))))) (-2968 (((-112) $ $) 24 (-2811 (|has| |#3| (-794)) (|has| |#3| (-849))))) (-3069 (($ $ |#3|) NIL (|has| |#3| (-365)))) (-3053 (($ $ $) NIL (|has| |#3| (-1051))) (($ $) NIL (|has| |#3| (-1051)))) (-3041 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-772)) NIL (|has| |#3| (-727))) (($ $ (-923)) NIL (|has| |#3| (-727)))) (* (($ (-567) $) NIL (|has| |#3| (-1051))) (($ $ $) NIL (|has| |#3| (-727))) (($ $ |#3|) NIL (|has| |#3| (-727))) (($ |#3| $) NIL (|has| |#3| (-727))) (($ (-772) $) NIL (|has| |#3| (-131))) (($ (-923) $) NIL (|has| |#3| (-25)))) (-2423 (((-772) $) NIL (|has| $ (-6 -4422)))))
(((-1115 |#1| |#2| |#3|) (-238 |#1| |#3|) (-772) (-772) (-794)) (T -1115))
NIL
(-238 |#1| |#3|)
-((-3826 (((-645 (-1241 |#2| |#1|)) (-1241 |#2| |#1|) (-1241 |#2| |#1|)) 53)) (-4203 (((-567) (-1241 |#2| |#1|)) 100 (|has| |#1| (-455)))) (-2094 (((-567) (-1241 |#2| |#1|)) 82)) (-2226 (((-645 (-1241 |#2| |#1|)) (-1241 |#2| |#1|) (-1241 |#2| |#1|)) 63)) (-2881 (((-567) (-1241 |#2| |#1|) (-1241 |#2| |#1|)) 99 (|has| |#1| (-455)))) (-3577 (((-645 |#1|) (-1241 |#2| |#1|) (-1241 |#2| |#1|)) 67)) (-1397 (((-567) (-1241 |#2| |#1|) (-1241 |#2| |#1|)) 81)))
-(((-1116 |#1| |#2|) (-10 -7 (-15 -3826 ((-645 (-1241 |#2| |#1|)) (-1241 |#2| |#1|) (-1241 |#2| |#1|))) (-15 -2226 ((-645 (-1241 |#2| |#1|)) (-1241 |#2| |#1|) (-1241 |#2| |#1|))) (-15 -3577 ((-645 |#1|) (-1241 |#2| |#1|) (-1241 |#2| |#1|))) (-15 -1397 ((-567) (-1241 |#2| |#1|) (-1241 |#2| |#1|))) (-15 -2094 ((-567) (-1241 |#2| |#1|))) (IF (|has| |#1| (-455)) (PROGN (-15 -2881 ((-567) (-1241 |#2| |#1|) (-1241 |#2| |#1|))) (-15 -4203 ((-567) (-1241 |#2| |#1|)))) |%noBranch|)) (-821) (-1178)) (T -1116))
-((-4203 (*1 *2 *3) (-12 (-5 *3 (-1241 *5 *4)) (-4 *4 (-455)) (-4 *4 (-821)) (-14 *5 (-1178)) (-5 *2 (-567)) (-5 *1 (-1116 *4 *5)))) (-2881 (*1 *2 *3 *3) (-12 (-5 *3 (-1241 *5 *4)) (-4 *4 (-455)) (-4 *4 (-821)) (-14 *5 (-1178)) (-5 *2 (-567)) (-5 *1 (-1116 *4 *5)))) (-2094 (*1 *2 *3) (-12 (-5 *3 (-1241 *5 *4)) (-4 *4 (-821)) (-14 *5 (-1178)) (-5 *2 (-567)) (-5 *1 (-1116 *4 *5)))) (-1397 (*1 *2 *3 *3) (-12 (-5 *3 (-1241 *5 *4)) (-4 *4 (-821)) (-14 *5 (-1178)) (-5 *2 (-567)) (-5 *1 (-1116 *4 *5)))) (-3577 (*1 *2 *3 *3) (-12 (-5 *3 (-1241 *5 *4)) (-4 *4 (-821)) (-14 *5 (-1178)) (-5 *2 (-645 *4)) (-5 *1 (-1116 *4 *5)))) (-2226 (*1 *2 *3 *3) (-12 (-4 *4 (-821)) (-14 *5 (-1178)) (-5 *2 (-645 (-1241 *5 *4))) (-5 *1 (-1116 *4 *5)) (-5 *3 (-1241 *5 *4)))) (-3826 (*1 *2 *3 *3) (-12 (-4 *4 (-821)) (-14 *5 (-1178)) (-5 *2 (-645 (-1241 *5 *4))) (-5 *1 (-1116 *4 *5)) (-5 *3 (-1241 *5 *4)))))
-(-10 -7 (-15 -3826 ((-645 (-1241 |#2| |#1|)) (-1241 |#2| |#1|) (-1241 |#2| |#1|))) (-15 -2226 ((-645 (-1241 |#2| |#1|)) (-1241 |#2| |#1|) (-1241 |#2| |#1|))) (-15 -3577 ((-645 |#1|) (-1241 |#2| |#1|) (-1241 |#2| |#1|))) (-15 -1397 ((-567) (-1241 |#2| |#1|) (-1241 |#2| |#1|))) (-15 -2094 ((-567) (-1241 |#2| |#1|))) (IF (|has| |#1| (-455)) (PROGN (-15 -2881 ((-567) (-1241 |#2| |#1|) (-1241 |#2| |#1|))) (-15 -4203 ((-567) (-1241 |#2| |#1|)))) |%noBranch|))
-((-2403 (((-112) $ $) NIL)) (-2577 (($ (-509) (-1120)) 13)) (-3386 (((-1120) $) 19)) (-1996 (((-509) $) 16)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 26) (($ (-1183)) NIL) (((-1183) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)))
-(((-1117) (-13 (-1085) (-10 -8 (-15 -2577 ($ (-509) (-1120))) (-15 -1996 ((-509) $)) (-15 -3386 ((-1120) $))))) (T -1117))
-((-2577 (*1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-1120)) (-5 *1 (-1117)))) (-1996 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-1117)))) (-3386 (*1 *2 *1) (-12 (-5 *2 (-1120)) (-5 *1 (-1117)))))
-(-13 (-1085) (-10 -8 (-15 -2577 ($ (-509) (-1120))) (-15 -1996 ((-509) $)) (-15 -3386 ((-1120) $))))
-((-1750 (((-3 (-567) "failed") |#2| (-1178) |#2| (-1160)) 19) (((-3 (-567) "failed") |#2| (-1178) (-844 |#2|)) 17) (((-3 (-567) "failed") |#2|) 60)))
-(((-1118 |#1| |#2|) (-10 -7 (-15 -1750 ((-3 (-567) "failed") |#2|)) (-15 -1750 ((-3 (-567) "failed") |#2| (-1178) (-844 |#2|))) (-15 -1750 ((-3 (-567) "failed") |#2| (-1178) |#2| (-1160)))) (-13 (-559) (-1040 (-567)) (-640 (-567)) (-455)) (-13 (-27) (-1203) (-433 |#1|))) (T -1118))
-((-1750 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1178)) (-5 *5 (-1160)) (-4 *6 (-13 (-559) (-1040 *2) (-640 *2) (-455))) (-5 *2 (-567)) (-5 *1 (-1118 *6 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *6))))) (-1750 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1178)) (-5 *5 (-844 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *6))) (-4 *6 (-13 (-559) (-1040 *2) (-640 *2) (-455))) (-5 *2 (-567)) (-5 *1 (-1118 *6 *3)))) (-1750 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-559) (-1040 *2) (-640 *2) (-455))) (-5 *2 (-567)) (-5 *1 (-1118 *4 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *4))))))
-(-10 -7 (-15 -1750 ((-3 (-567) "failed") |#2|)) (-15 -1750 ((-3 (-567) "failed") |#2| (-1178) (-844 |#2|))) (-15 -1750 ((-3 (-567) "failed") |#2| (-1178) |#2| (-1160))))
-((-1750 (((-3 (-567) "failed") (-410 (-954 |#1|)) (-1178) (-410 (-954 |#1|)) (-1160)) 38) (((-3 (-567) "failed") (-410 (-954 |#1|)) (-1178) (-844 (-410 (-954 |#1|)))) 33) (((-3 (-567) "failed") (-410 (-954 |#1|))) 14)))
-(((-1119 |#1|) (-10 -7 (-15 -1750 ((-3 (-567) "failed") (-410 (-954 |#1|)))) (-15 -1750 ((-3 (-567) "failed") (-410 (-954 |#1|)) (-1178) (-844 (-410 (-954 |#1|))))) (-15 -1750 ((-3 (-567) "failed") (-410 (-954 |#1|)) (-1178) (-410 (-954 |#1|)) (-1160)))) (-455)) (T -1119))
-((-1750 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-410 (-954 *6))) (-5 *4 (-1178)) (-5 *5 (-1160)) (-4 *6 (-455)) (-5 *2 (-567)) (-5 *1 (-1119 *6)))) (-1750 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1178)) (-5 *5 (-844 (-410 (-954 *6)))) (-5 *3 (-410 (-954 *6))) (-4 *6 (-455)) (-5 *2 (-567)) (-5 *1 (-1119 *6)))) (-1750 (*1 *2 *3) (|partial| -12 (-5 *3 (-410 (-954 *4))) (-4 *4 (-455)) (-5 *2 (-567)) (-5 *1 (-1119 *4)))))
-(-10 -7 (-15 -1750 ((-3 (-567) "failed") (-410 (-954 |#1|)))) (-15 -1750 ((-3 (-567) "failed") (-410 (-954 |#1|)) (-1178) (-844 (-410 (-954 |#1|))))) (-15 -1750 ((-3 (-567) "failed") (-410 (-954 |#1|)) (-1178) (-410 (-954 |#1|)) (-1160))))
-((-2403 (((-112) $ $) NIL)) (-3570 (((-1183) $) 12)) (-3527 (((-645 (-1183)) $) 14)) (-3386 (($ (-645 (-1183)) (-1183)) 10)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 29)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 17)))
-(((-1120) (-13 (-1102) (-10 -8 (-15 -3386 ($ (-645 (-1183)) (-1183))) (-15 -3570 ((-1183) $)) (-15 -3527 ((-645 (-1183)) $))))) (T -1120))
-((-3386 (*1 *1 *2 *3) (-12 (-5 *2 (-645 (-1183))) (-5 *3 (-1183)) (-5 *1 (-1120)))) (-3570 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1120)))) (-3527 (*1 *2 *1) (-12 (-5 *2 (-645 (-1183))) (-5 *1 (-1120)))))
-(-13 (-1102) (-10 -8 (-15 -3386 ($ (-645 (-1183)) (-1183))) (-15 -3570 ((-1183) $)) (-15 -3527 ((-645 (-1183)) $))))
-((-3269 (((-317 (-567)) (-48)) 12)))
-(((-1121) (-10 -7 (-15 -3269 ((-317 (-567)) (-48))))) (T -1121))
-((-3269 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-317 (-567))) (-5 *1 (-1121)))))
-(-10 -7 (-15 -3269 ((-317 (-567)) (-48))))
-((-2403 (((-112) $ $) NIL)) (-2425 (($ $) 44)) (-2460 (((-112) $) 69)) (-1689 (($ $ $) 51)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 97)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-2882 (($ $ $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2208 (($ $ $ $) 80)) (-3248 (($ $) NIL)) (-2908 (((-421 $) $) NIL)) (-3609 (((-112) $ $) NIL)) (-2375 (((-772)) 82)) (-1750 (((-567) $) NIL)) (-4130 (($ $ $) 77)) (-2585 (($) NIL T CONST)) (-3753 (((-3 (-567) "failed") $) NIL)) (-2038 (((-567) $) NIL)) (-2349 (($ $ $) 63)) (-2630 (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) 91) (((-690 (-567)) (-690 $)) 32)) (-2109 (((-3 $ "failed") $) NIL)) (-2085 (((-3 (-410 (-567)) "failed") $) NIL)) (-1862 (((-112) $) NIL)) (-2331 (((-410 (-567)) $) NIL)) (-1348 (($) 94) (($ $) 95)) (-2360 (($ $ $) 62)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL)) (-3184 (((-112) $) NIL)) (-3407 (($ $ $ $) NIL)) (-4254 (($ $ $) 92)) (-4336 (((-112) $) NIL)) (-2967 (($ $ $) NIL)) (-4303 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL)) (-1433 (((-112) $) 71)) (-3837 (((-112) $) 68)) (-1657 (($ $) 45)) (-3972 (((-3 $ "failed") $) NIL)) (-3494 (((-112) $) 81)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2317 (($ $ $ $) 78)) (-1354 (($ $ $) 73) (($) 42 T CONST)) (-2981 (($ $ $) 72) (($) 41 T CONST)) (-1446 (($ $) NIL)) (-4249 (((-923) $) 87)) (-1699 (($ $) 76)) (-2740 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1419 (((-1160) $) NIL)) (-2196 (($ $ $) NIL)) (-2672 (($) NIL T CONST)) (-3768 (($ (-923)) 86)) (-2289 (($ $) 56)) (-3430 (((-1122) $) 75)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-2774 (($ $ $) 66) (($ (-645 $)) NIL)) (-1576 (($ $) NIL)) (-2706 (((-421 $) $) NIL)) (-3402 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL)) (-2391 (((-3 $ "failed") $ $) NIL)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2757 (((-112) $) NIL)) (-1990 (((-772) $) NIL)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 65)) (-1593 (($ $ (-772)) NIL) (($ $) NIL)) (-2277 (($ $) 57)) (-4305 (($ $) NIL)) (-3893 (((-567) $) 17) (((-539) $) NIL) (((-894 (-567)) $) NIL) (((-381) $) NIL) (((-225) $) NIL)) (-4132 (((-863) $) 35) (($ (-567)) 93) (($ $) NIL) (($ (-567)) 93)) (-4221 (((-772)) NIL T CONST)) (-4210 (((-112) $ $) NIL)) (-3881 (($ $ $) NIL)) (-1745 (((-112) $ $) NIL)) (-3047 (($) 40)) (-3816 (((-112) $ $) NIL)) (-4309 (($ $ $ $) 79)) (-2219 (($ $) 67)) (-2470 (($ $ $) 47)) (-1716 (($) 7 T CONST)) (-1355 (($ $ $) 50)) (-1728 (($) 39 T CONST)) (-2904 (((-1160) $) 26) (((-1160) $ (-112)) 27) (((-1273) (-823) $) 28) (((-1273) (-823) $ (-112)) 29)) (-1366 (($ $) 48)) (-2637 (($ $ (-772)) NIL) (($ $) NIL)) (-1341 (($ $ $) 49)) (-2997 (((-112) $ $) 55)) (-2971 (((-112) $ $) 52)) (-2936 (((-112) $ $) 43)) (-2984 (((-112) $ $) 54)) (-2958 (((-112) $ $) 10)) (-2458 (($ $ $) 46)) (-3045 (($ $) 16) (($ $ $) 59)) (-3033 (($ $ $) 58)) (** (($ $ (-923)) NIL) (($ $ (-772)) 61)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 38) (($ $ $) 37)))
-(((-1122) (-13 (-548) (-845) (-662) (-829) (-10 -8 (-6 -4405) (-6 -4410) (-6 -4406) (-15 -1657 ($ $)) (-15 -1689 ($ $ $)) (-15 -1366 ($ $)) (-15 -1341 ($ $ $)) (-15 -1355 ($ $ $))))) (T -1122))
-((-1657 (*1 *1 *1) (-5 *1 (-1122))) (-1689 (*1 *1 *1 *1) (-5 *1 (-1122))) (-1366 (*1 *1 *1) (-5 *1 (-1122))) (-1341 (*1 *1 *1 *1) (-5 *1 (-1122))) (-1355 (*1 *1 *1 *1) (-5 *1 (-1122))))
-(-13 (-548) (-845) (-662) (-829) (-10 -8 (-6 -4405) (-6 -4410) (-6 -4406) (-15 -1657 ($ $)) (-15 -1689 ($ $ $)) (-15 -1366 ($ $)) (-15 -1341 ($ $ $)) (-15 -1355 ($ $ $))))
+((-2138 (((-645 (-1242 |#2| |#1|)) (-1242 |#2| |#1|) (-1242 |#2| |#1|)) 53)) (-1589 (((-567) (-1242 |#2| |#1|)) 100 (|has| |#1| (-455)))) (-4246 (((-567) (-1242 |#2| |#1|)) 82)) (-3327 (((-645 (-1242 |#2| |#1|)) (-1242 |#2| |#1|) (-1242 |#2| |#1|)) 63)) (-3315 (((-567) (-1242 |#2| |#1|) (-1242 |#2| |#1|)) 99 (|has| |#1| (-455)))) (-3244 (((-645 |#1|) (-1242 |#2| |#1|) (-1242 |#2| |#1|)) 67)) (-3952 (((-567) (-1242 |#2| |#1|) (-1242 |#2| |#1|)) 81)))
+(((-1116 |#1| |#2|) (-10 -7 (-15 -2138 ((-645 (-1242 |#2| |#1|)) (-1242 |#2| |#1|) (-1242 |#2| |#1|))) (-15 -3327 ((-645 (-1242 |#2| |#1|)) (-1242 |#2| |#1|) (-1242 |#2| |#1|))) (-15 -3244 ((-645 |#1|) (-1242 |#2| |#1|) (-1242 |#2| |#1|))) (-15 -3952 ((-567) (-1242 |#2| |#1|) (-1242 |#2| |#1|))) (-15 -4246 ((-567) (-1242 |#2| |#1|))) (IF (|has| |#1| (-455)) (PROGN (-15 -3315 ((-567) (-1242 |#2| |#1|) (-1242 |#2| |#1|))) (-15 -1589 ((-567) (-1242 |#2| |#1|)))) |%noBranch|)) (-821) (-1179)) (T -1116))
+((-1589 (*1 *2 *3) (-12 (-5 *3 (-1242 *5 *4)) (-4 *4 (-455)) (-4 *4 (-821)) (-14 *5 (-1179)) (-5 *2 (-567)) (-5 *1 (-1116 *4 *5)))) (-3315 (*1 *2 *3 *3) (-12 (-5 *3 (-1242 *5 *4)) (-4 *4 (-455)) (-4 *4 (-821)) (-14 *5 (-1179)) (-5 *2 (-567)) (-5 *1 (-1116 *4 *5)))) (-4246 (*1 *2 *3) (-12 (-5 *3 (-1242 *5 *4)) (-4 *4 (-821)) (-14 *5 (-1179)) (-5 *2 (-567)) (-5 *1 (-1116 *4 *5)))) (-3952 (*1 *2 *3 *3) (-12 (-5 *3 (-1242 *5 *4)) (-4 *4 (-821)) (-14 *5 (-1179)) (-5 *2 (-567)) (-5 *1 (-1116 *4 *5)))) (-3244 (*1 *2 *3 *3) (-12 (-5 *3 (-1242 *5 *4)) (-4 *4 (-821)) (-14 *5 (-1179)) (-5 *2 (-645 *4)) (-5 *1 (-1116 *4 *5)))) (-3327 (*1 *2 *3 *3) (-12 (-4 *4 (-821)) (-14 *5 (-1179)) (-5 *2 (-645 (-1242 *5 *4))) (-5 *1 (-1116 *4 *5)) (-5 *3 (-1242 *5 *4)))) (-2138 (*1 *2 *3 *3) (-12 (-4 *4 (-821)) (-14 *5 (-1179)) (-5 *2 (-645 (-1242 *5 *4))) (-5 *1 (-1116 *4 *5)) (-5 *3 (-1242 *5 *4)))))
+(-10 -7 (-15 -2138 ((-645 (-1242 |#2| |#1|)) (-1242 |#2| |#1|) (-1242 |#2| |#1|))) (-15 -3327 ((-645 (-1242 |#2| |#1|)) (-1242 |#2| |#1|) (-1242 |#2| |#1|))) (-15 -3244 ((-645 |#1|) (-1242 |#2| |#1|) (-1242 |#2| |#1|))) (-15 -3952 ((-567) (-1242 |#2| |#1|) (-1242 |#2| |#1|))) (-15 -4246 ((-567) (-1242 |#2| |#1|))) (IF (|has| |#1| (-455)) (PROGN (-15 -3315 ((-567) (-1242 |#2| |#1|) (-1242 |#2| |#1|))) (-15 -1589 ((-567) (-1242 |#2| |#1|)))) |%noBranch|))
+((-2412 (((-112) $ $) NIL)) (-3926 (($ (-509) (-1120)) 13)) (-3394 (((-1120) $) 19)) (-2007 (((-509) $) 16)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) 26) (($ (-1184)) NIL) (((-1184) $) NIL)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)))
+(((-1117) (-13 (-1085) (-10 -8 (-15 -3926 ($ (-509) (-1120))) (-15 -2007 ((-509) $)) (-15 -3394 ((-1120) $))))) (T -1117))
+((-3926 (*1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-1120)) (-5 *1 (-1117)))) (-2007 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-1117)))) (-3394 (*1 *2 *1) (-12 (-5 *2 (-1120)) (-5 *1 (-1117)))))
+(-13 (-1085) (-10 -8 (-15 -3926 ($ (-509) (-1120))) (-15 -2007 ((-509) $)) (-15 -3394 ((-1120) $))))
+((-2677 (((-3 (-567) "failed") |#2| (-1179) |#2| (-1161)) 19) (((-3 (-567) "failed") |#2| (-1179) (-844 |#2|)) 17) (((-3 (-567) "failed") |#2|) 60)))
+(((-1118 |#1| |#2|) (-10 -7 (-15 -2677 ((-3 (-567) "failed") |#2|)) (-15 -2677 ((-3 (-567) "failed") |#2| (-1179) (-844 |#2|))) (-15 -2677 ((-3 (-567) "failed") |#2| (-1179) |#2| (-1161)))) (-13 (-559) (-1040 (-567)) (-640 (-567)) (-455)) (-13 (-27) (-1204) (-433 |#1|))) (T -1118))
+((-2677 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1179)) (-5 *5 (-1161)) (-4 *6 (-13 (-559) (-1040 *2) (-640 *2) (-455))) (-5 *2 (-567)) (-5 *1 (-1118 *6 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *6))))) (-2677 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1179)) (-5 *5 (-844 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *6))) (-4 *6 (-13 (-559) (-1040 *2) (-640 *2) (-455))) (-5 *2 (-567)) (-5 *1 (-1118 *6 *3)))) (-2677 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-559) (-1040 *2) (-640 *2) (-455))) (-5 *2 (-567)) (-5 *1 (-1118 *4 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *4))))))
+(-10 -7 (-15 -2677 ((-3 (-567) "failed") |#2|)) (-15 -2677 ((-3 (-567) "failed") |#2| (-1179) (-844 |#2|))) (-15 -2677 ((-3 (-567) "failed") |#2| (-1179) |#2| (-1161))))
+((-2677 (((-3 (-567) "failed") (-410 (-954 |#1|)) (-1179) (-410 (-954 |#1|)) (-1161)) 38) (((-3 (-567) "failed") (-410 (-954 |#1|)) (-1179) (-844 (-410 (-954 |#1|)))) 33) (((-3 (-567) "failed") (-410 (-954 |#1|))) 14)))
+(((-1119 |#1|) (-10 -7 (-15 -2677 ((-3 (-567) "failed") (-410 (-954 |#1|)))) (-15 -2677 ((-3 (-567) "failed") (-410 (-954 |#1|)) (-1179) (-844 (-410 (-954 |#1|))))) (-15 -2677 ((-3 (-567) "failed") (-410 (-954 |#1|)) (-1179) (-410 (-954 |#1|)) (-1161)))) (-455)) (T -1119))
+((-2677 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-410 (-954 *6))) (-5 *4 (-1179)) (-5 *5 (-1161)) (-4 *6 (-455)) (-5 *2 (-567)) (-5 *1 (-1119 *6)))) (-2677 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1179)) (-5 *5 (-844 (-410 (-954 *6)))) (-5 *3 (-410 (-954 *6))) (-4 *6 (-455)) (-5 *2 (-567)) (-5 *1 (-1119 *6)))) (-2677 (*1 *2 *3) (|partial| -12 (-5 *3 (-410 (-954 *4))) (-4 *4 (-455)) (-5 *2 (-567)) (-5 *1 (-1119 *4)))))
+(-10 -7 (-15 -2677 ((-3 (-567) "failed") (-410 (-954 |#1|)))) (-15 -2677 ((-3 (-567) "failed") (-410 (-954 |#1|)) (-1179) (-844 (-410 (-954 |#1|))))) (-15 -2677 ((-3 (-567) "failed") (-410 (-954 |#1|)) (-1179) (-410 (-954 |#1|)) (-1161))))
+((-2412 (((-112) $ $) NIL)) (-3577 (((-1184) $) 12)) (-3530 (((-645 (-1184)) $) 14)) (-3394 (($ (-645 (-1184)) (-1184)) 10)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) 29)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) 17)))
+(((-1120) (-13 (-1102) (-10 -8 (-15 -3394 ($ (-645 (-1184)) (-1184))) (-15 -3577 ((-1184) $)) (-15 -3530 ((-645 (-1184)) $))))) (T -1120))
+((-3394 (*1 *1 *2 *3) (-12 (-5 *2 (-645 (-1184))) (-5 *3 (-1184)) (-5 *1 (-1120)))) (-3577 (*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-1120)))) (-3530 (*1 *2 *1) (-12 (-5 *2 (-645 (-1184))) (-5 *1 (-1120)))))
+(-13 (-1102) (-10 -8 (-15 -3394 ($ (-645 (-1184)) (-1184))) (-15 -3577 ((-1184) $)) (-15 -3530 ((-645 (-1184)) $))))
+((-1743 (((-317 (-567)) (-48)) 12)))
+(((-1121) (-10 -7 (-15 -1743 ((-317 (-567)) (-48))))) (T -1121))
+((-1743 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-317 (-567))) (-5 *1 (-1121)))))
+(-10 -7 (-15 -1743 ((-317 (-567)) (-48))))
+((-2412 (((-112) $ $) NIL)) (-2434 (($ $) 44)) (-3791 (((-112) $) 69)) (-1709 (($ $ $) 51)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) 97)) (-4287 (($ $) NIL)) (-2286 (((-112) $) NIL)) (-3423 (($ $ $) NIL)) (-2376 (((-3 $ "failed") $ $) NIL)) (-2690 (($ $ $ $) 80)) (-3659 (($ $) NIL)) (-3597 (((-421 $) $) NIL)) (-3696 (((-112) $ $) NIL)) (-2384 (((-772)) 82)) (-2677 (((-567) $) NIL)) (-4128 (($ $ $) 77)) (-3647 (($) NIL T CONST)) (-3765 (((-3 (-567) "failed") $) NIL)) (-2051 (((-567) $) NIL)) (-2357 (($ $ $) 63)) (-1423 (((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) 91) (((-690 (-567)) (-690 $)) 32)) (-3588 (((-3 $ "failed") $) NIL)) (-1605 (((-3 (-410 (-567)) "failed") $) NIL)) (-2492 (((-112) $) NIL)) (-2778 (((-410 (-567)) $) NIL)) (-1359 (($) 94) (($ $) 95)) (-2368 (($ $ $) 62)) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) NIL)) (-3502 (((-112) $) NIL)) (-2171 (($ $ $ $) NIL)) (-1943 (($ $ $) 92)) (-3137 (((-112) $) NIL)) (-2565 (($ $ $) NIL)) (-3193 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL)) (-4346 (((-112) $) 71)) (-1904 (((-112) $) 68)) (-1673 (($ $) 45)) (-3067 (((-3 $ "failed") $) NIL)) (-3465 (((-112) $) 81)) (-1469 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4311 (($ $ $ $) 78)) (-1365 (($ $ $) 73) (($) 42 T CONST)) (-3002 (($ $ $) 72) (($) 41 T CONST)) (-1459 (($ $) NIL)) (-3474 (((-923) $) 87)) (-2334 (($ $) 76)) (-2751 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2516 (((-1161) $) NIL)) (-4088 (($ $ $) NIL)) (-2694 (($) NIL T CONST)) (-3779 (($ (-923)) 86)) (-2307 (($ $) 56)) (-3437 (((-1122) $) 75)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-2785 (($ $ $) 66) (($ (-645 $)) NIL)) (-1345 (($ $) NIL)) (-2717 (((-421 $) $) NIL)) (-2905 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) NIL)) (-2400 (((-3 $ "failed") $ $) NIL)) (-2372 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2795 (((-112) $) NIL)) (-2460 (((-772) $) NIL)) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) 65)) (-1616 (($ $ (-772)) NIL) (($ $) NIL)) (-1699 (($ $) 57)) (-4309 (($ $) NIL)) (-3902 (((-567) $) 17) (((-539) $) NIL) (((-894 (-567)) $) NIL) (((-381) $) NIL) (((-225) $) NIL)) (-4129 (((-863) $) 35) (($ (-567)) 93) (($ $) NIL) (($ (-567)) 93)) (-2746 (((-772)) NIL T CONST)) (-4147 (((-112) $ $) NIL)) (-2708 (($ $ $) NIL)) (-3357 (((-112) $ $) NIL)) (-3070 (($) 40)) (-3731 (((-112) $ $) NIL)) (-3627 (($ $ $ $) 79)) (-1547 (($ $) 67)) (-2477 (($ $ $) 47)) (-1733 (($) 7 T CONST)) (-1354 (($ $ $) 50)) (-1744 (($) 39 T CONST)) (-1335 (((-1161) $) 26) (((-1161) $ (-112)) 27) (((-1274) (-823) $) 28) (((-1274) (-823) $ (-112)) 29)) (-1366 (($ $) 48)) (-2647 (($ $ (-772)) NIL) (($ $) NIL)) (-1341 (($ $ $) 49)) (-3004 (((-112) $ $) 55)) (-2980 (((-112) $ $) 52)) (-2946 (((-112) $ $) 43)) (-2993 (((-112) $ $) 54)) (-2968 (((-112) $ $) 10)) (-2468 (($ $ $) 46)) (-3053 (($ $) 16) (($ $ $) 59)) (-3041 (($ $ $) 58)) (** (($ $ (-923)) NIL) (($ $ (-772)) 61)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 38) (($ $ $) 37)))
+(((-1122) (-13 (-548) (-845) (-662) (-829) (-10 -8 (-6 -4409) (-6 -4414) (-6 -4410) (-15 -1673 ($ $)) (-15 -1709 ($ $ $)) (-15 -1366 ($ $)) (-15 -1341 ($ $ $)) (-15 -1354 ($ $ $))))) (T -1122))
+((-1673 (*1 *1 *1) (-5 *1 (-1122))) (-1709 (*1 *1 *1 *1) (-5 *1 (-1122))) (-1366 (*1 *1 *1) (-5 *1 (-1122))) (-1341 (*1 *1 *1 *1) (-5 *1 (-1122))) (-1354 (*1 *1 *1 *1) (-5 *1 (-1122))))
+(-13 (-548) (-845) (-662) (-829) (-10 -8 (-6 -4409) (-6 -4414) (-6 -4410) (-15 -1673 ($ $)) (-15 -1709 ($ $ $)) (-15 -1366 ($ $)) (-15 -1341 ($ $ $)) (-15 -1354 ($ $ $))))
((|Integer|) (SMINTP |#1|))
-((-2403 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-2262 ((|#1| $) 45)) (-3445 (((-112) $ (-772)) 8)) (-2585 (($) 7 T CONST)) (-2576 ((|#1| |#1| $) 47)) (-4338 ((|#1| $) 46)) (-2777 (((-645 |#1|) $) 31 (|has| $ (-6 -4418)))) (-2077 (((-112) $ (-772)) 9)) (-2279 (((-645 |#1|) $) 30 (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-3731 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) 36)) (-2863 (((-112) $ (-772)) 10)) (-1419 (((-1160) $) 22 (|has| |#1| (-1102)))) (-1566 ((|#1| $) 40)) (-2531 (($ |#1| $) 41)) (-3430 (((-1122) $) 21 (|has| |#1| (-1102)))) (-1793 ((|#1| $) 42)) (-3025 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) 14)) (-3572 (((-112) $) 11)) (-3498 (($) 12)) (-3272 (((-772) $) 44)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4418))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-4305 (($ $) 13)) (-4132 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-1745 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-3551 (($ (-645 |#1|)) 43)) (-1853 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2414 (((-772) $) 6 (|has| $ (-6 -4418)))))
-(((-1123 |#1|) (-140) (-1218)) (T -1123))
-((-2576 (*1 *2 *2 *1) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1218)))) (-4338 (*1 *2 *1) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1218)))) (-2262 (*1 *2 *1) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1218)))) (-3272 (*1 *2 *1) (-12 (-4 *1 (-1123 *3)) (-4 *3 (-1218)) (-5 *2 (-772)))))
-(-13 (-107 |t#1|) (-10 -8 (-6 -4418) (-15 -2576 (|t#1| |t#1| $)) (-15 -4338 (|t#1| $)) (-15 -2262 (|t#1| $)) (-15 -3272 ((-772) $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2800 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-1102) |has| |#1| (-1102)) ((-1218) . T))
-((-4293 ((|#3| $) 87)) (-3753 (((-3 (-567) "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 |#3| "failed") $) 50)) (-2038 (((-567) $) NIL) (((-410 (-567)) $) NIL) ((|#3| $) 47)) (-2630 (((-690 (-567)) (-690 $)) NIL) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL) (((-2 (|:| -2316 (-690 |#3|)) (|:| |vec| (-1268 |#3|))) (-690 $) (-1268 $)) 84) (((-690 |#3|) (-690 $)) 76)) (-1593 (($ $ (-1 |#3| |#3|)) 28) (($ $ (-1 |#3| |#3|) (-772)) NIL) (($ $ (-645 (-1178)) (-645 (-772))) NIL) (($ $ (-1178) (-772)) NIL) (($ $ (-645 (-1178))) NIL) (($ $ (-1178)) NIL) (($ $ (-772)) NIL) (($ $) NIL)) (-1877 ((|#3| $) 89)) (-2213 ((|#4| $) 43)) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ (-410 (-567))) NIL) (($ |#3|) 25)) (** (($ $ (-923)) NIL) (($ $ (-772)) 24) (($ $ (-567)) 95)))
-(((-1124 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-567))) (-15 -1877 (|#3| |#1|)) (-15 -4293 (|#3| |#1|)) (-15 -2213 (|#4| |#1|)) (-15 -2630 ((-690 |#3|) (-690 |#1|))) (-15 -2630 ((-2 (|:| -2316 (-690 |#3|)) (|:| |vec| (-1268 |#3|))) (-690 |#1|) (-1268 |#1|))) (-15 -2630 ((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 |#1|) (-1268 |#1|))) (-15 -2630 ((-690 (-567)) (-690 |#1|))) (-15 -4132 (|#1| |#3|)) (-15 -3753 ((-3 |#3| "failed") |#1|)) (-15 -2038 (|#3| |#1|)) (-15 -2038 ((-410 (-567)) |#1|)) (-15 -3753 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -4132 (|#1| (-410 (-567)))) (-15 -2038 ((-567) |#1|)) (-15 -3753 ((-3 (-567) "failed") |#1|)) (-15 -1593 (|#1| |#1|)) (-15 -1593 (|#1| |#1| (-772))) (-15 -1593 (|#1| |#1| (-1178))) (-15 -1593 (|#1| |#1| (-645 (-1178)))) (-15 -1593 (|#1| |#1| (-1178) (-772))) (-15 -1593 (|#1| |#1| (-645 (-1178)) (-645 (-772)))) (-15 -1593 (|#1| |#1| (-1 |#3| |#3|) (-772))) (-15 -1593 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4132 (|#1| (-567))) (-15 ** (|#1| |#1| (-772))) (-15 ** (|#1| |#1| (-923))) (-15 -4132 ((-863) |#1|))) (-1125 |#2| |#3| |#4| |#5|) (-772) (-1051) (-238 |#2| |#3|) (-238 |#2| |#3|)) (T -1124))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-567))) (-15 -1877 (|#3| |#1|)) (-15 -4293 (|#3| |#1|)) (-15 -2213 (|#4| |#1|)) (-15 -2630 ((-690 |#3|) (-690 |#1|))) (-15 -2630 ((-2 (|:| -2316 (-690 |#3|)) (|:| |vec| (-1268 |#3|))) (-690 |#1|) (-1268 |#1|))) (-15 -2630 ((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 |#1|) (-1268 |#1|))) (-15 -2630 ((-690 (-567)) (-690 |#1|))) (-15 -4132 (|#1| |#3|)) (-15 -3753 ((-3 |#3| "failed") |#1|)) (-15 -2038 (|#3| |#1|)) (-15 -2038 ((-410 (-567)) |#1|)) (-15 -3753 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -4132 (|#1| (-410 (-567)))) (-15 -2038 ((-567) |#1|)) (-15 -3753 ((-3 (-567) "failed") |#1|)) (-15 -1593 (|#1| |#1|)) (-15 -1593 (|#1| |#1| (-772))) (-15 -1593 (|#1| |#1| (-1178))) (-15 -1593 (|#1| |#1| (-645 (-1178)))) (-15 -1593 (|#1| |#1| (-1178) (-772))) (-15 -1593 (|#1| |#1| (-645 (-1178)) (-645 (-772)))) (-15 -1593 (|#1| |#1| (-1 |#3| |#3|) (-772))) (-15 -1593 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4132 (|#1| (-567))) (-15 ** (|#1| |#1| (-772))) (-15 ** (|#1| |#1| (-923))) (-15 -4132 ((-863) |#1|)))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-4293 ((|#2| $) 77)) (-1981 (((-112) $) 117)) (-3472 (((-3 $ "failed") $ $) 20)) (-1948 (((-112) $) 115)) (-3445 (((-112) $ (-772)) 107)) (-3536 (($ |#2|) 80)) (-2585 (($) 18 T CONST)) (-2233 (($ $) 134 (|has| |#2| (-308)))) (-1944 ((|#3| $ (-567)) 129)) (-3753 (((-3 (-567) "failed") $) 92 (|has| |#2| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) 89 (|has| |#2| (-1040 (-410 (-567))))) (((-3 |#2| "failed") $) 86)) (-2038 (((-567) $) 91 (|has| |#2| (-1040 (-567)))) (((-410 (-567)) $) 88 (|has| |#2| (-1040 (-410 (-567))))) ((|#2| $) 87)) (-2630 (((-690 (-567)) (-690 $)) 84 (|has| |#2| (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) 83 (|has| |#2| (-640 (-567)))) (((-2 (|:| -2316 (-690 |#2|)) (|:| |vec| (-1268 |#2|))) (-690 $) (-1268 $)) 82) (((-690 |#2|) (-690 $)) 81)) (-2109 (((-3 $ "failed") $) 37)) (-1954 (((-772) $) 135 (|has| |#2| (-559)))) (-3680 ((|#2| $ (-567) (-567)) 127)) (-2777 (((-645 |#2|) $) 100 (|has| $ (-6 -4418)))) (-1433 (((-112) $) 35)) (-1940 (((-772) $) 136 (|has| |#2| (-559)))) (-1325 (((-645 |#4|) $) 137 (|has| |#2| (-559)))) (-3633 (((-772) $) 123)) (-3643 (((-772) $) 124)) (-2077 (((-112) $ (-772)) 108)) (-2031 ((|#2| $) 72 (|has| |#2| (-6 (-4420 "*"))))) (-2527 (((-567) $) 119)) (-4043 (((-567) $) 121)) (-2279 (((-645 |#2|) $) 99 (|has| $ (-6 -4418)))) (-4337 (((-112) |#2| $) 97 (-12 (|has| |#2| (-1102)) (|has| $ (-6 -4418))))) (-2107 (((-567) $) 120)) (-2646 (((-567) $) 122)) (-2114 (($ (-645 (-645 |#2|))) 114)) (-3731 (($ (-1 |#2| |#2|) $) 104 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#2| |#2| |#2|) $ $) 131) (($ (-1 |#2| |#2|) $) 105)) (-1603 (((-645 (-645 |#2|)) $) 125)) (-2863 (((-112) $ (-772)) 109)) (-1419 (((-1160) $) 10)) (-1401 (((-3 $ "failed") $) 71 (|has| |#2| (-365)))) (-3430 (((-1122) $) 11)) (-2391 (((-3 $ "failed") $ |#2|) 132 (|has| |#2| (-559)))) (-3025 (((-112) (-1 (-112) |#2|) $) 102 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#2|))) 96 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-295 |#2|)) 95 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ |#2| |#2|) 94 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-645 |#2|) (-645 |#2|)) 93 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))))) (-3092 (((-112) $ $) 113)) (-3572 (((-112) $) 110)) (-3498 (($) 111)) (-1787 ((|#2| $ (-567) (-567) |#2|) 128) ((|#2| $ (-567) (-567)) 126)) (-1593 (($ $ (-1 |#2| |#2|)) 56) (($ $ (-1 |#2| |#2|) (-772)) 55) (($ $ (-645 (-1178)) (-645 (-772))) 48 (|has| |#2| (-902 (-1178)))) (($ $ (-1178) (-772)) 47 (|has| |#2| (-902 (-1178)))) (($ $ (-645 (-1178))) 46 (|has| |#2| (-902 (-1178)))) (($ $ (-1178)) 45 (|has| |#2| (-902 (-1178)))) (($ $ (-772)) 43 (|has| |#2| (-233))) (($ $) 41 (|has| |#2| (-233)))) (-1877 ((|#2| $) 76)) (-3068 (($ (-645 |#2|)) 79)) (-3339 (((-112) $) 116)) (-2213 ((|#3| $) 78)) (-4083 ((|#2| $) 73 (|has| |#2| (-6 (-4420 "*"))))) (-3439 (((-772) (-1 (-112) |#2|) $) 101 (|has| $ (-6 -4418))) (((-772) |#2| $) 98 (-12 (|has| |#2| (-1102)) (|has| $ (-6 -4418))))) (-4305 (($ $) 112)) (-2237 ((|#4| $ (-567)) 130)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ (-410 (-567))) 90 (|has| |#2| (-1040 (-410 (-567))))) (($ |#2|) 85)) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-1853 (((-112) (-1 (-112) |#2|) $) 103 (|has| $ (-6 -4418)))) (-2619 (((-112) $) 118)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2637 (($ $ (-1 |#2| |#2|)) 54) (($ $ (-1 |#2| |#2|) (-772)) 53) (($ $ (-645 (-1178)) (-645 (-772))) 52 (|has| |#2| (-902 (-1178)))) (($ $ (-1178) (-772)) 51 (|has| |#2| (-902 (-1178)))) (($ $ (-645 (-1178))) 50 (|has| |#2| (-902 (-1178)))) (($ $ (-1178)) 49 (|has| |#2| (-902 (-1178)))) (($ $ (-772)) 44 (|has| |#2| (-233))) (($ $) 42 (|has| |#2| (-233)))) (-2936 (((-112) $ $) 6)) (-3060 (($ $ |#2|) 133 (|has| |#2| (-365)))) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 70 (|has| |#2| (-365)))) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#2|) 139) (($ |#2| $) 138) ((|#4| $ |#4|) 75) ((|#3| |#3| $) 74)) (-2414 (((-772) $) 106 (|has| $ (-6 -4418)))))
+((-2412 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-2270 ((|#1| $) 45)) (-1563 (((-112) $ (-772)) 8)) (-3647 (($) 7 T CONST)) (-1985 ((|#1| |#1| $) 47)) (-2142 ((|#1| $) 46)) (-2799 (((-645 |#1|) $) 31 (|has| $ (-6 -4422)))) (-4093 (((-112) $ (-772)) 9)) (-1942 (((-645 |#1|) $) 30 (|has| $ (-6 -4422)))) (-3237 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-3751 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#1| |#1|) $) 36)) (-1986 (((-112) $ (-772)) 10)) (-2516 (((-1161) $) 22 (|has| |#1| (-1102)))) (-2706 ((|#1| $) 40)) (-2646 (($ |#1| $) 41)) (-3437 (((-1122) $) 21 (|has| |#1| (-1102)))) (-3949 ((|#1| $) 42)) (-4233 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3875 (((-112) $ $) 14)) (-3885 (((-112) $) 11)) (-2701 (($) 12)) (-3289 (((-772) $) 44)) (-3447 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4422))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-4309 (($ $) 13)) (-4129 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-3357 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-3700 (($ (-645 |#1|)) 43)) (-3436 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4422)))) (-2946 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2423 (((-772) $) 6 (|has| $ (-6 -4422)))))
+(((-1123 |#1|) (-140) (-1219)) (T -1123))
+((-1985 (*1 *2 *2 *1) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1219)))) (-2142 (*1 *2 *1) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1219)))) (-2270 (*1 *2 *1) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1219)))) (-3289 (*1 *2 *1) (-12 (-4 *1 (-1123 *3)) (-4 *3 (-1219)) (-5 *2 (-772)))))
+(-13 (-107 |t#1|) (-10 -8 (-6 -4422) (-15 -1985 (|t#1| |t#1| $)) (-15 -2142 (|t#1| $)) (-15 -2270 (|t#1| $)) (-15 -3289 ((-772) $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2811 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-1102) |has| |#1| (-1102)) ((-1219) . T))
+((-4293 ((|#3| $) 87)) (-3765 (((-3 (-567) "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 |#3| "failed") $) 50)) (-2051 (((-567) $) NIL) (((-410 (-567)) $) NIL) ((|#3| $) 47)) (-1423 (((-690 (-567)) (-690 $)) NIL) (((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL) (((-2 (|:| -4208 (-690 |#3|)) (|:| |vec| (-1269 |#3|))) (-690 $) (-1269 $)) 84) (((-690 |#3|) (-690 $)) 76)) (-1616 (($ $ (-1 |#3| |#3|)) 28) (($ $ (-1 |#3| |#3|) (-772)) NIL) (($ $ (-645 (-1179)) (-645 (-772))) NIL) (($ $ (-1179) (-772)) NIL) (($ $ (-645 (-1179))) NIL) (($ $ (-1179)) NIL) (($ $ (-772)) NIL) (($ $) NIL)) (-2437 ((|#3| $) 89)) (-2076 ((|#4| $) 43)) (-4129 (((-863) $) NIL) (($ (-567)) NIL) (($ (-410 (-567))) NIL) (($ |#3|) 25)) (** (($ $ (-923)) NIL) (($ $ (-772)) 24) (($ $ (-567)) 95)))
+(((-1124 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-567))) (-15 -2437 (|#3| |#1|)) (-15 -4293 (|#3| |#1|)) (-15 -2076 (|#4| |#1|)) (-15 -1423 ((-690 |#3|) (-690 |#1|))) (-15 -1423 ((-2 (|:| -4208 (-690 |#3|)) (|:| |vec| (-1269 |#3|))) (-690 |#1|) (-1269 |#1|))) (-15 -1423 ((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 |#1|) (-1269 |#1|))) (-15 -1423 ((-690 (-567)) (-690 |#1|))) (-15 -4129 (|#1| |#3|)) (-15 -3765 ((-3 |#3| "failed") |#1|)) (-15 -2051 (|#3| |#1|)) (-15 -2051 ((-410 (-567)) |#1|)) (-15 -3765 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -4129 (|#1| (-410 (-567)))) (-15 -2051 ((-567) |#1|)) (-15 -3765 ((-3 (-567) "failed") |#1|)) (-15 -1616 (|#1| |#1|)) (-15 -1616 (|#1| |#1| (-772))) (-15 -1616 (|#1| |#1| (-1179))) (-15 -1616 (|#1| |#1| (-645 (-1179)))) (-15 -1616 (|#1| |#1| (-1179) (-772))) (-15 -1616 (|#1| |#1| (-645 (-1179)) (-645 (-772)))) (-15 -1616 (|#1| |#1| (-1 |#3| |#3|) (-772))) (-15 -1616 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4129 (|#1| (-567))) (-15 ** (|#1| |#1| (-772))) (-15 ** (|#1| |#1| (-923))) (-15 -4129 ((-863) |#1|))) (-1125 |#2| |#3| |#4| |#5|) (-772) (-1051) (-238 |#2| |#3|) (-238 |#2| |#3|)) (T -1124))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-567))) (-15 -2437 (|#3| |#1|)) (-15 -4293 (|#3| |#1|)) (-15 -2076 (|#4| |#1|)) (-15 -1423 ((-690 |#3|) (-690 |#1|))) (-15 -1423 ((-2 (|:| -4208 (-690 |#3|)) (|:| |vec| (-1269 |#3|))) (-690 |#1|) (-1269 |#1|))) (-15 -1423 ((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 |#1|) (-1269 |#1|))) (-15 -1423 ((-690 (-567)) (-690 |#1|))) (-15 -4129 (|#1| |#3|)) (-15 -3765 ((-3 |#3| "failed") |#1|)) (-15 -2051 (|#3| |#1|)) (-15 -2051 ((-410 (-567)) |#1|)) (-15 -3765 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -4129 (|#1| (-410 (-567)))) (-15 -2051 ((-567) |#1|)) (-15 -3765 ((-3 (-567) "failed") |#1|)) (-15 -1616 (|#1| |#1|)) (-15 -1616 (|#1| |#1| (-772))) (-15 -1616 (|#1| |#1| (-1179))) (-15 -1616 (|#1| |#1| (-645 (-1179)))) (-15 -1616 (|#1| |#1| (-1179) (-772))) (-15 -1616 (|#1| |#1| (-645 (-1179)) (-645 (-772)))) (-15 -1616 (|#1| |#1| (-1 |#3| |#3|) (-772))) (-15 -1616 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4129 (|#1| (-567))) (-15 ** (|#1| |#1| (-772))) (-15 ** (|#1| |#1| (-923))) (-15 -4129 ((-863) |#1|)))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-4293 ((|#2| $) 77)) (-2999 (((-112) $) 117)) (-2376 (((-3 $ "failed") $ $) 20)) (-3507 (((-112) $) 115)) (-1563 (((-112) $ (-772)) 107)) (-4302 (($ |#2|) 80)) (-3647 (($) 18 T CONST)) (-2765 (($ $) 134 (|has| |#2| (-308)))) (-4323 ((|#3| $ (-567)) 129)) (-3765 (((-3 (-567) "failed") $) 92 (|has| |#2| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) 89 (|has| |#2| (-1040 (-410 (-567))))) (((-3 |#2| "failed") $) 86)) (-2051 (((-567) $) 91 (|has| |#2| (-1040 (-567)))) (((-410 (-567)) $) 88 (|has| |#2| (-1040 (-410 (-567))))) ((|#2| $) 87)) (-1423 (((-690 (-567)) (-690 $)) 84 (|has| |#2| (-640 (-567)))) (((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) 83 (|has| |#2| (-640 (-567)))) (((-2 (|:| -4208 (-690 |#2|)) (|:| |vec| (-1269 |#2|))) (-690 $) (-1269 $)) 82) (((-690 |#2|) (-690 $)) 81)) (-3588 (((-3 $ "failed") $) 37)) (-1976 (((-772) $) 135 (|has| |#2| (-559)))) (-3703 ((|#2| $ (-567) (-567)) 127)) (-2799 (((-645 |#2|) $) 100 (|has| $ (-6 -4422)))) (-4346 (((-112) $) 35)) (-1974 (((-772) $) 136 (|has| |#2| (-559)))) (-2064 (((-645 |#4|) $) 137 (|has| |#2| (-559)))) (-4296 (((-772) $) 123)) (-4307 (((-772) $) 124)) (-4093 (((-112) $ (-772)) 108)) (-1805 ((|#2| $) 72 (|has| |#2| (-6 (-4424 "*"))))) (-3407 (((-567) $) 119)) (-4227 (((-567) $) 121)) (-1942 (((-645 |#2|) $) 99 (|has| $ (-6 -4422)))) (-3237 (((-112) |#2| $) 97 (-12 (|has| |#2| (-1102)) (|has| $ (-6 -4422))))) (-3393 (((-567) $) 120)) (-3351 (((-567) $) 122)) (-2124 (($ (-645 (-645 |#2|))) 114)) (-3751 (($ (-1 |#2| |#2|) $) 104 (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#2| |#2| |#2|) $ $) 131) (($ (-1 |#2| |#2|) $) 105)) (-2282 (((-645 (-645 |#2|)) $) 125)) (-1986 (((-112) $ (-772)) 109)) (-2516 (((-1161) $) 10)) (-2504 (((-3 $ "failed") $) 71 (|has| |#2| (-365)))) (-3437 (((-1122) $) 11)) (-2400 (((-3 $ "failed") $ |#2|) 132 (|has| |#2| (-559)))) (-4233 (((-112) (-1 (-112) |#2|) $) 102 (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 |#2|))) 96 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-295 |#2|)) 95 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ |#2| |#2|) 94 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-645 |#2|) (-645 |#2|)) 93 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))))) (-3875 (((-112) $ $) 113)) (-3885 (((-112) $) 110)) (-2701 (($) 111)) (-1801 ((|#2| $ (-567) (-567) |#2|) 128) ((|#2| $ (-567) (-567)) 126)) (-1616 (($ $ (-1 |#2| |#2|)) 56) (($ $ (-1 |#2| |#2|) (-772)) 55) (($ $ (-645 (-1179)) (-645 (-772))) 48 (|has| |#2| (-902 (-1179)))) (($ $ (-1179) (-772)) 47 (|has| |#2| (-902 (-1179)))) (($ $ (-645 (-1179))) 46 (|has| |#2| (-902 (-1179)))) (($ $ (-1179)) 45 (|has| |#2| (-902 (-1179)))) (($ $ (-772)) 43 (|has| |#2| (-233))) (($ $) 41 (|has| |#2| (-233)))) (-2437 ((|#2| $) 76)) (-3391 (($ (-645 |#2|)) 79)) (-4103 (((-112) $) 116)) (-2076 ((|#3| $) 78)) (-2790 ((|#2| $) 73 (|has| |#2| (-6 (-4424 "*"))))) (-3447 (((-772) (-1 (-112) |#2|) $) 101 (|has| $ (-6 -4422))) (((-772) |#2| $) 98 (-12 (|has| |#2| (-1102)) (|has| $ (-6 -4422))))) (-4309 (($ $) 112)) (-3186 ((|#4| $ (-567)) 130)) (-4129 (((-863) $) 12) (($ (-567)) 33) (($ (-410 (-567))) 90 (|has| |#2| (-1040 (-410 (-567))))) (($ |#2|) 85)) (-2746 (((-772)) 32 T CONST)) (-3357 (((-112) $ $) 9)) (-3436 (((-112) (-1 (-112) |#2|) $) 103 (|has| $ (-6 -4422)))) (-4050 (((-112) $) 118)) (-1733 (($) 19 T CONST)) (-1744 (($) 34 T CONST)) (-2647 (($ $ (-1 |#2| |#2|)) 54) (($ $ (-1 |#2| |#2|) (-772)) 53) (($ $ (-645 (-1179)) (-645 (-772))) 52 (|has| |#2| (-902 (-1179)))) (($ $ (-1179) (-772)) 51 (|has| |#2| (-902 (-1179)))) (($ $ (-645 (-1179))) 50 (|has| |#2| (-902 (-1179)))) (($ $ (-1179)) 49 (|has| |#2| (-902 (-1179)))) (($ $ (-772)) 44 (|has| |#2| (-233))) (($ $) 42 (|has| |#2| (-233)))) (-2946 (((-112) $ $) 6)) (-3069 (($ $ |#2|) 133 (|has| |#2| (-365)))) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 70 (|has| |#2| (-365)))) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#2|) 139) (($ |#2| $) 138) ((|#4| $ |#4|) 75) ((|#3| |#3| $) 74)) (-2423 (((-772) $) 106 (|has| $ (-6 -4422)))))
(((-1125 |#1| |#2| |#3| |#4|) (-140) (-772) (-1051) (-238 |t#1| |t#2|) (-238 |t#1| |t#2|)) (T -1125))
-((-3536 (*1 *1 *2) (-12 (-4 *2 (-1051)) (-4 *1 (-1125 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)))) (-3068 (*1 *1 *2) (-12 (-5 *2 (-645 *4)) (-4 *4 (-1051)) (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4)))) (-2213 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *2 *5)) (-4 *4 (-1051)) (-4 *5 (-238 *3 *4)) (-4 *2 (-238 *3 *4)))) (-4293 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (-4 *2 (-1051)))) (-1877 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (-4 *2 (-1051)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *4 (-1051)) (-4 *5 (-238 *3 *4)) (-4 *2 (-238 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *2 *5)) (-4 *4 (-1051)) (-4 *2 (-238 *3 *4)) (-4 *5 (-238 *3 *4)))) (-4083 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4420 "*"))) (-4 *2 (-1051)))) (-2031 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4420 "*"))) (-4 *2 (-1051)))) (-1401 (*1 *1 *1) (|partial| -12 (-4 *1 (-1125 *2 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-238 *2 *3)) (-4 *5 (-238 *2 *3)) (-4 *3 (-365)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *4 (-1051)) (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4)) (-4 *4 (-365)))))
-(-13 (-231 |t#2|) (-111 |t#2| |t#2|) (-1055 |t#1| |t#1| |t#2| |t#3| |t#4|) (-414 |t#2|) (-379 |t#2|) (-10 -8 (IF (|has| |t#2| (-172)) (-6 (-718 |t#2|)) |%noBranch|) (-15 -3536 ($ |t#2|)) (-15 -3068 ($ (-645 |t#2|))) (-15 -2213 (|t#3| $)) (-15 -4293 (|t#2| $)) (-15 -1877 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4420 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -4083 (|t#2| $)) (-15 -2031 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-365)) (PROGN (-15 -1401 ((-3 $ "failed") $)) (-15 ** ($ $ (-567)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4420 "*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-617 #0=(-410 (-567))) |has| |#2| (-1040 (-410 (-567)))) ((-617 (-567)) . T) ((-617 |#2|) . T) ((-614 (-863)) . T) ((-231 |#2|) . T) ((-233) |has| |#2| (-233)) ((-310 |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) ((-379 |#2|) . T) ((-414 |#2|) . T) ((-492 |#2|) . T) ((-517 |#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) ((-647 (-567)) . T) ((-647 |#2|) . T) ((-647 $) . T) ((-649 |#2|) . T) ((-649 $) . T) ((-641 |#2|) -2800 (|has| |#2| (-172)) (|has| |#2| (-6 (-4420 "*")))) ((-640 (-567)) |has| |#2| (-640 (-567))) ((-640 |#2|) . T) ((-718 |#2|) -2800 (|has| |#2| (-172)) (|has| |#2| (-6 (-4420 "*")))) ((-727) . T) ((-902 (-1178)) |has| |#2| (-902 (-1178))) ((-1055 |#1| |#1| |#2| |#3| |#4|) . T) ((-1040 #0#) |has| |#2| (-1040 (-410 (-567)))) ((-1040 (-567)) |has| |#2| (-1040 (-567))) ((-1040 |#2|) . T) ((-1053 |#2|) . T) ((-1058 |#2|) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1218) . T))
-((-4362 ((|#4| |#4|) 81)) (-3122 ((|#4| |#4|) 76)) (-4273 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2623 (-645 |#3|))) |#4| |#3|) 91)) (-2693 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80)) (-3681 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78)))
-(((-1126 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3122 (|#4| |#4|)) (-15 -3681 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -4362 (|#4| |#4|)) (-15 -2693 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -4273 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2623 (-645 |#3|))) |#4| |#3|))) (-308) (-375 |#1|) (-375 |#1|) (-688 |#1| |#2| |#3|)) (T -1126))
-((-4273 (*1 *2 *3 *4) (-12 (-4 *5 (-308)) (-4 *6 (-375 *5)) (-4 *4 (-375 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2623 (-645 *4)))) (-5 *1 (-1126 *5 *6 *4 *3)) (-4 *3 (-688 *5 *6 *4)))) (-2693 (*1 *2 *3) (-12 (-4 *4 (-308)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1126 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) (-4362 (*1 *2 *2) (-12 (-4 *3 (-308)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-1126 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) (-3681 (*1 *2 *3) (-12 (-4 *4 (-308)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1126 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) (-3122 (*1 *2 *2) (-12 (-4 *3 (-308)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-1126 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))))
-(-10 -7 (-15 -3122 (|#4| |#4|)) (-15 -3681 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -4362 (|#4| |#4|)) (-15 -2693 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -4273 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2623 (-645 |#3|))) |#4| |#3|)))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) 18)) (-2847 (((-645 |#2|) $) 178)) (-2675 (((-1174 $) $ |#2|) 63) (((-1174 |#1|) $) 52)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 118 (|has| |#1| (-559)))) (-4381 (($ $) 120 (|has| |#1| (-559)))) (-3949 (((-112) $) 122 (|has| |#1| (-559)))) (-1468 (((-772) $) NIL) (((-772) $ (-645 |#2|)) 217)) (-3472 (((-3 $ "failed") $ $) NIL)) (-4226 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-911)))) (-3248 (($ $) NIL (|has| |#1| (-455)))) (-2908 (((-421 $) $) NIL (|has| |#1| (-455)))) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-911)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 |#1| "failed") $) 172) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 |#2| "failed") $) NIL)) (-2038 ((|#1| $) 170) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-567) $) NIL (|has| |#1| (-1040 (-567)))) ((|#2| $) NIL)) (-2951 (($ $ $ |#2|) NIL (|has| |#1| (-172)))) (-3014 (($ $) 221)) (-2630 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 |#1|)) (|:| |vec| (-1268 |#1|))) (-690 $) (-1268 $)) NIL) (((-690 |#1|) (-690 $)) NIL)) (-2109 (((-3 $ "failed") $) 92)) (-3501 (($ $) NIL (|has| |#1| (-455))) (($ $ |#2|) NIL (|has| |#1| (-455)))) (-3000 (((-645 $) $) NIL)) (-3184 (((-112) $) NIL (|has| |#1| (-911)))) (-2320 (($ $ |#1| (-534 |#2|) $) NIL)) (-4303 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (-12 (|has| |#1| (-888 (-381))) (|has| |#2| (-888 (-381))))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (-12 (|has| |#1| (-888 (-567))) (|has| |#2| (-888 (-567)))))) (-1433 (((-112) $) 20)) (-2695 (((-772) $) 30)) (-2836 (($ (-1174 |#1|) |#2|) 57) (($ (-1174 $) |#2|) 74)) (-1709 (((-645 $) $) NIL)) (-2843 (((-112) $) 41)) (-2824 (($ |#1| (-534 |#2|)) 81) (($ $ |#2| (-772)) 61) (($ $ (-645 |#2|) (-645 (-772))) NIL)) (-1621 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $ |#2|) NIL)) (-2656 (((-534 |#2|) $) 209) (((-772) $ |#2|) 210) (((-645 (-772)) $ (-645 |#2|)) 211)) (-3273 (($ (-1 (-534 |#2|) (-534 |#2|)) $) NIL)) (-3829 (($ (-1 |#1| |#1|) $) 130)) (-3046 (((-3 |#2| "failed") $) 181)) (-2976 (($ $) 220)) (-2989 ((|#1| $) 46)) (-2740 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-1419 (((-1160) $) NIL)) (-2056 (((-3 (-645 $) "failed") $) NIL)) (-3671 (((-3 (-645 $) "failed") $) NIL)) (-3798 (((-3 (-2 (|:| |var| |#2|) (|:| -3458 (-772))) "failed") $) NIL)) (-3430 (((-1122) $) NIL)) (-2949 (((-112) $) 42)) (-2962 ((|#1| $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 150 (|has| |#1| (-455)))) (-2774 (($ (-645 $)) 155 (|has| |#1| (-455))) (($ $ $) 140 (|has| |#1| (-455)))) (-2435 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-911)))) (-3517 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-911)))) (-2706 (((-421 $) $) NIL (|has| |#1| (-911)))) (-2391 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559))) (((-3 $ "failed") $ $) 128 (|has| |#1| (-559)))) (-2631 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ |#2| |#1|) 184) (($ $ (-645 |#2|) (-645 |#1|)) 199) (($ $ |#2| $) 183) (($ $ (-645 |#2|) (-645 $)) 198)) (-3788 (($ $ |#2|) NIL (|has| |#1| (-172)))) (-1593 (($ $ |#2|) 219) (($ $ (-645 |#2|)) NIL) (($ $ |#2| (-772)) NIL) (($ $ (-645 |#2|) (-645 (-772))) NIL)) (-3077 (((-534 |#2|) $) 205) (((-772) $ |#2|) 200) (((-645 (-772)) $ (-645 |#2|)) 203)) (-3893 (((-894 (-381)) $) NIL (-12 (|has| |#1| (-615 (-894 (-381)))) (|has| |#2| (-615 (-894 (-381)))))) (((-894 (-567)) $) NIL (-12 (|has| |#1| (-615 (-894 (-567)))) (|has| |#2| (-615 (-894 (-567)))))) (((-539) $) NIL (-12 (|has| |#1| (-615 (-539))) (|has| |#2| (-615 (-539)))))) (-4358 ((|#1| $) 136 (|has| |#1| (-455))) (($ $ |#2|) 139 (|has| |#1| (-455)))) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-911))))) (-4132 (((-863) $) 161) (($ (-567)) 86) (($ |#1|) 87) (($ |#2|) 33) (($ $) NIL (|has| |#1| (-559))) (($ (-410 (-567))) NIL (-2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567))))))) (-3032 (((-645 |#1|) $) 164)) (-4136 ((|#1| $ (-534 |#2|)) 83) (($ $ |#2| (-772)) NIL) (($ $ (-645 |#2|) (-645 (-772))) NIL)) (-1903 (((-3 $ "failed") $) NIL (-2800 (-12 (|has| $ (-145)) (|has| |#1| (-911))) (|has| |#1| (-145))))) (-4221 (((-772)) 89 T CONST)) (-4176 (($ $ $ (-772)) NIL (|has| |#1| (-172)))) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) 125 (|has| |#1| (-559)))) (-1716 (($) 12 T CONST)) (-1728 (($) 14 T CONST)) (-2637 (($ $ |#2|) NIL) (($ $ (-645 |#2|)) NIL) (($ $ |#2| (-772)) NIL) (($ $ (-645 |#2|) (-645 (-772))) NIL)) (-2936 (((-112) $ $) 108)) (-3060 (($ $ |#1|) 134 (|has| |#1| (-365)))) (-3045 (($ $) 95) (($ $ $) 106)) (-3033 (($ $ $) 58)) (** (($ $ (-923)) 112) (($ $ (-772)) 111)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 98) (($ $ $) 75) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) 101) (($ $ |#1|) NIL)))
+((-4302 (*1 *1 *2) (-12 (-4 *2 (-1051)) (-4 *1 (-1125 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)))) (-3391 (*1 *1 *2) (-12 (-5 *2 (-645 *4)) (-4 *4 (-1051)) (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4)))) (-2076 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *2 *5)) (-4 *4 (-1051)) (-4 *5 (-238 *3 *4)) (-4 *2 (-238 *3 *4)))) (-4293 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (-4 *2 (-1051)))) (-2437 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (-4 *2 (-1051)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *4 (-1051)) (-4 *5 (-238 *3 *4)) (-4 *2 (-238 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *2 *5)) (-4 *4 (-1051)) (-4 *2 (-238 *3 *4)) (-4 *5 (-238 *3 *4)))) (-2790 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4424 "*"))) (-4 *2 (-1051)))) (-1805 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4424 "*"))) (-4 *2 (-1051)))) (-2504 (*1 *1 *1) (|partial| -12 (-4 *1 (-1125 *2 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-238 *2 *3)) (-4 *5 (-238 *2 *3)) (-4 *3 (-365)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *4 (-1051)) (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4)) (-4 *4 (-365)))))
+(-13 (-231 |t#2|) (-111 |t#2| |t#2|) (-1055 |t#1| |t#1| |t#2| |t#3| |t#4|) (-414 |t#2|) (-379 |t#2|) (-10 -8 (IF (|has| |t#2| (-172)) (-6 (-718 |t#2|)) |%noBranch|) (-15 -4302 ($ |t#2|)) (-15 -3391 ($ (-645 |t#2|))) (-15 -2076 (|t#3| $)) (-15 -4293 (|t#2| $)) (-15 -2437 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4424 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -2790 (|t#2| $)) (-15 -1805 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-365)) (PROGN (-15 -2504 ((-3 $ "failed") $)) (-15 ** ($ $ (-567)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4424 "*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-617 #0=(-410 (-567))) |has| |#2| (-1040 (-410 (-567)))) ((-617 (-567)) . T) ((-617 |#2|) . T) ((-614 (-863)) . T) ((-231 |#2|) . T) ((-233) |has| |#2| (-233)) ((-310 |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) ((-379 |#2|) . T) ((-414 |#2|) . T) ((-492 |#2|) . T) ((-517 |#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) ((-647 (-567)) . T) ((-647 |#2|) . T) ((-647 $) . T) ((-649 |#2|) . T) ((-649 $) . T) ((-641 |#2|) -2811 (|has| |#2| (-172)) (|has| |#2| (-6 (-4424 "*")))) ((-640 (-567)) |has| |#2| (-640 (-567))) ((-640 |#2|) . T) ((-718 |#2|) -2811 (|has| |#2| (-172)) (|has| |#2| (-6 (-4424 "*")))) ((-727) . T) ((-902 (-1179)) |has| |#2| (-902 (-1179))) ((-1055 |#1| |#1| |#2| |#3| |#4|) . T) ((-1040 #0#) |has| |#2| (-1040 (-410 (-567)))) ((-1040 (-567)) |has| |#2| (-1040 (-567))) ((-1040 |#2|) . T) ((-1053 |#2|) . T) ((-1058 |#2|) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1219) . T))
+((-2180 ((|#4| |#4|) 81)) (-1507 ((|#4| |#4|) 76)) (-3319 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2144 (-645 |#3|))) |#4| |#3|) 91)) (-2666 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80)) (-3788 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78)))
+(((-1126 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1507 (|#4| |#4|)) (-15 -3788 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2180 (|#4| |#4|)) (-15 -2666 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3319 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2144 (-645 |#3|))) |#4| |#3|))) (-308) (-375 |#1|) (-375 |#1|) (-688 |#1| |#2| |#3|)) (T -1126))
+((-3319 (*1 *2 *3 *4) (-12 (-4 *5 (-308)) (-4 *6 (-375 *5)) (-4 *4 (-375 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2144 (-645 *4)))) (-5 *1 (-1126 *5 *6 *4 *3)) (-4 *3 (-688 *5 *6 *4)))) (-2666 (*1 *2 *3) (-12 (-4 *4 (-308)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1126 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) (-2180 (*1 *2 *2) (-12 (-4 *3 (-308)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-1126 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) (-3788 (*1 *2 *3) (-12 (-4 *4 (-308)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1126 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) (-1507 (*1 *2 *2) (-12 (-4 *3 (-308)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-1126 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))))
+(-10 -7 (-15 -1507 (|#4| |#4|)) (-15 -3788 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2180 (|#4| |#4|)) (-15 -2666 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3319 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2144 (-645 |#3|))) |#4| |#3|)))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) 18)) (-2859 (((-645 |#2|) $) 178)) (-2684 (((-1175 $) $ |#2|) 63) (((-1175 |#1|) $) 52)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) 118 (|has| |#1| (-559)))) (-4287 (($ $) 120 (|has| |#1| (-559)))) (-2286 (((-112) $) 122 (|has| |#1| (-559)))) (-3849 (((-772) $) NIL) (((-772) $ (-645 |#2|)) 217)) (-2376 (((-3 $ "failed") $ $) NIL)) (-2029 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-911)))) (-3659 (($ $) NIL (|has| |#1| (-455)))) (-3597 (((-421 $) $) NIL (|has| |#1| (-455)))) (-3610 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-911)))) (-3647 (($) NIL T CONST)) (-3765 (((-3 |#1| "failed") $) 172) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 |#2| "failed") $) NIL)) (-2051 ((|#1| $) 170) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-567) $) NIL (|has| |#1| (-1040 (-567)))) ((|#2| $) NIL)) (-3554 (($ $ $ |#2|) NIL (|has| |#1| (-172)))) (-3023 (($ $) 221)) (-1423 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4208 (-690 |#1|)) (|:| |vec| (-1269 |#1|))) (-690 $) (-1269 $)) NIL) (((-690 |#1|) (-690 $)) NIL)) (-3588 (((-3 $ "failed") $) 92)) (-2989 (($ $) NIL (|has| |#1| (-455))) (($ $ |#2|) NIL (|has| |#1| (-455)))) (-3010 (((-645 $) $) NIL)) (-3502 (((-112) $) NIL (|has| |#1| (-911)))) (-3214 (($ $ |#1| (-534 |#2|) $) NIL)) (-3193 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (-12 (|has| |#1| (-888 (-381))) (|has| |#2| (-888 (-381))))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (-12 (|has| |#1| (-888 (-567))) (|has| |#2| (-888 (-567)))))) (-4346 (((-112) $) 20)) (-2851 (((-772) $) 30)) (-2848 (($ (-1175 |#1|) |#2|) 57) (($ (-1175 $) |#2|) 74)) (-2659 (((-645 $) $) NIL)) (-3770 (((-112) $) 41)) (-2836 (($ |#1| (-534 |#2|)) 81) (($ $ |#2| (-772)) 61) (($ $ (-645 |#2|) (-645 (-772))) NIL)) (-2742 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $ |#2|) NIL)) (-2955 (((-534 |#2|) $) 209) (((-772) $ |#2|) 210) (((-645 (-772)) $ (-645 |#2|)) 211)) (-3827 (($ (-1 (-534 |#2|) (-534 |#2|)) $) NIL)) (-3841 (($ (-1 |#1| |#1|) $) 130)) (-3221 (((-3 |#2| "failed") $) 181)) (-2985 (($ $) 220)) (-2996 ((|#1| $) 46)) (-2751 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-2516 (((-1161) $) NIL)) (-3037 (((-3 (-645 $) "failed") $) NIL)) (-3774 (((-3 (-645 $) "failed") $) NIL)) (-3816 (((-3 (-2 (|:| |var| |#2|) (|:| -3468 (-772))) "failed") $) NIL)) (-3437 (((-1122) $) NIL)) (-2960 (((-112) $) 42)) (-2971 ((|#1| $) NIL)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) 150 (|has| |#1| (-455)))) (-2785 (($ (-645 $)) 155 (|has| |#1| (-455))) (($ $ $) 140 (|has| |#1| (-455)))) (-3551 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-911)))) (-2016 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-911)))) (-2717 (((-421 $) $) NIL (|has| |#1| (-911)))) (-2400 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559))) (((-3 $ "failed") $ $) 128 (|has| |#1| (-559)))) (-2642 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ |#2| |#1|) 184) (($ $ (-645 |#2|) (-645 |#1|)) 199) (($ $ |#2| $) 183) (($ $ (-645 |#2|) (-645 $)) 198)) (-2433 (($ $ |#2|) NIL (|has| |#1| (-172)))) (-1616 (($ $ |#2|) 219) (($ $ (-645 |#2|)) NIL) (($ $ |#2| (-772)) NIL) (($ $ (-645 |#2|) (-645 (-772))) NIL)) (-3104 (((-534 |#2|) $) 205) (((-772) $ |#2|) 200) (((-645 (-772)) $ (-645 |#2|)) 203)) (-3902 (((-894 (-381)) $) NIL (-12 (|has| |#1| (-615 (-894 (-381)))) (|has| |#2| (-615 (-894 (-381)))))) (((-894 (-567)) $) NIL (-12 (|has| |#1| (-615 (-894 (-567)))) (|has| |#2| (-615 (-894 (-567)))))) (((-539) $) NIL (-12 (|has| |#1| (-615 (-539))) (|has| |#2| (-615 (-539)))))) (-1849 ((|#1| $) 136 (|has| |#1| (-455))) (($ $ |#2|) 139 (|has| |#1| (-455)))) (-2616 (((-3 (-1269 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-911))))) (-4129 (((-863) $) 161) (($ (-567)) 86) (($ |#1|) 87) (($ |#2|) 33) (($ $) NIL (|has| |#1| (-559))) (($ (-410 (-567))) NIL (-2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567))))))) (-3601 (((-645 |#1|) $) 164)) (-2558 ((|#1| $ (-534 |#2|)) 83) (($ $ |#2| (-772)) NIL) (($ $ (-645 |#2|) (-645 (-772))) NIL)) (-2118 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-145)) (|has| |#1| (-911))) (|has| |#1| (-145))))) (-2746 (((-772)) 89 T CONST)) (-3658 (($ $ $ (-772)) NIL (|has| |#1| (-172)))) (-3357 (((-112) $ $) NIL)) (-3731 (((-112) $ $) 125 (|has| |#1| (-559)))) (-1733 (($) 12 T CONST)) (-1744 (($) 14 T CONST)) (-2647 (($ $ |#2|) NIL) (($ $ (-645 |#2|)) NIL) (($ $ |#2| (-772)) NIL) (($ $ (-645 |#2|) (-645 (-772))) NIL)) (-2946 (((-112) $ $) 108)) (-3069 (($ $ |#1|) 134 (|has| |#1| (-365)))) (-3053 (($ $) 95) (($ $ $) 106)) (-3041 (($ $ $) 58)) (** (($ $ (-923)) 112) (($ $ (-772)) 111)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 98) (($ $ $) 75) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) 101) (($ $ |#1|) NIL)))
(((-1127 |#1| |#2|) (-951 |#1| (-534 |#2|) |#2|) (-1051) (-851)) (T -1127))
NIL
(-951 |#1| (-534 |#2|) |#2|)
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-2847 (((-645 |#2|) $) NIL)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-4381 (($ $) NIL (|has| |#1| (-559)))) (-3949 (((-112) $) NIL (|has| |#1| (-559)))) (-3146 (($ $) 152 (|has| |#1| (-38 (-410 (-567)))))) (-3012 (($ $) 128 (|has| |#1| (-38 (-410 (-567)))))) (-3472 (((-3 $ "failed") $ $) NIL)) (-2716 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3128 (($ $) 148 (|has| |#1| (-38 (-410 (-567)))))) (-2987 (($ $) 124 (|has| |#1| (-38 (-410 (-567)))))) (-3166 (($ $) 156 (|has| |#1| (-38 (-410 (-567)))))) (-3035 (($ $) 132 (|has| |#1| (-38 (-410 (-567)))))) (-2585 (($) NIL T CONST)) (-3014 (($ $) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-3717 (((-954 |#1|) $ (-772)) NIL) (((-954 |#1|) $ (-772) (-772)) NIL)) (-2762 (((-112) $) NIL)) (-1482 (($) NIL (|has| |#1| (-38 (-410 (-567)))))) (-4384 (((-772) $ |#2|) NIL) (((-772) $ |#2| (-772)) NIL)) (-1433 (((-112) $) NIL)) (-2651 (($ $ (-567)) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2843 (((-112) $) NIL)) (-2824 (($ $ (-645 |#2|) (-645 (-534 |#2|))) NIL) (($ $ |#2| (-534 |#2|)) NIL) (($ |#1| (-534 |#2|)) NIL) (($ $ |#2| (-772)) 63) (($ $ (-645 |#2|) (-645 (-772))) NIL)) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-3063 (($ $) 122 (|has| |#1| (-38 (-410 (-567)))))) (-2976 (($ $) NIL)) (-2989 ((|#1| $) NIL)) (-1419 (((-1160) $) NIL)) (-2416 (($ $ |#2|) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ |#2| |#1|) 175 (|has| |#1| (-38 (-410 (-567)))))) (-3430 (((-1122) $) NIL)) (-3583 (($ (-1 $) |#2| |#1|) 174 (|has| |#1| (-38 (-410 (-567)))))) (-2410 (($ $ (-772)) 16)) (-2391 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-3946 (($ $) 120 (|has| |#1| (-38 (-410 (-567)))))) (-2631 (($ $ |#2| $) 106) (($ $ (-645 |#2|) (-645 $)) 99) (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL)) (-1593 (($ $ |#2|) 109) (($ $ (-645 |#2|)) NIL) (($ $ |#2| (-772)) NIL) (($ $ (-645 |#2|) (-645 (-772))) NIL)) (-3077 (((-534 |#2|) $) NIL)) (-1888 (((-1 (-1158 |#3|) |#3|) (-645 |#2|) (-645 (-1158 |#3|))) 87)) (-3175 (($ $) 158 (|has| |#1| (-38 (-410 (-567)))))) (-3049 (($ $) 134 (|has| |#1| (-38 (-410 (-567)))))) (-3156 (($ $) 154 (|has| |#1| (-38 (-410 (-567)))))) (-3023 (($ $) 130 (|has| |#1| (-38 (-410 (-567)))))) (-3137 (($ $) 150 (|has| |#1| (-38 (-410 (-567)))))) (-2999 (($ $) 126 (|has| |#1| (-38 (-410 (-567)))))) (-2192 (($ $) 18)) (-4132 (((-863) $) 199) (($ (-567)) NIL) (($ |#1|) 45 (|has| |#1| (-172))) (($ $) NIL (|has| |#1| (-559))) (($ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ |#2|) 70) (($ |#3|) 68)) (-4136 ((|#1| $ (-534 |#2|)) NIL) (($ $ |#2| (-772)) NIL) (($ $ (-645 |#2|) (-645 (-772))) NIL) ((|#3| $ (-772)) 43)) (-1903 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-4221 (((-772)) NIL T CONST)) (-1745 (((-112) $ $) NIL)) (-3200 (($ $) 164 (|has| |#1| (-38 (-410 (-567)))))) (-3084 (($ $) 140 (|has| |#1| (-38 (-410 (-567)))))) (-3816 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3183 (($ $) 160 (|has| |#1| (-38 (-410 (-567)))))) (-3062 (($ $) 136 (|has| |#1| (-38 (-410 (-567)))))) (-3221 (($ $) 168 (|has| |#1| (-38 (-410 (-567)))))) (-3106 (($ $) 144 (|has| |#1| (-38 (-410 (-567)))))) (-3785 (($ $) 170 (|has| |#1| (-38 (-410 (-567)))))) (-3118 (($ $) 146 (|has| |#1| (-38 (-410 (-567)))))) (-3211 (($ $) 166 (|has| |#1| (-38 (-410 (-567)))))) (-3095 (($ $) 142 (|has| |#1| (-38 (-410 (-567)))))) (-3193 (($ $) 162 (|has| |#1| (-38 (-410 (-567)))))) (-3074 (($ $) 138 (|has| |#1| (-38 (-410 (-567)))))) (-1716 (($) 52 T CONST)) (-1728 (($) 62 T CONST)) (-2637 (($ $ |#2|) NIL) (($ $ (-645 |#2|)) NIL) (($ $ |#2| (-772)) NIL) (($ $ (-645 |#2|) (-645 (-772))) NIL)) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ |#1|) 201 (|has| |#1| (-365)))) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) 66)) (** (($ $ (-923)) NIL) (($ $ (-772)) 77) (($ $ $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 112 (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 65) (($ $ (-410 (-567))) 117 (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) 115 (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) 48) (($ $ |#1|) 49) (($ |#3| $) 47)))
-(((-1128 |#1| |#2| |#3|) (-13 (-741 |#1| |#2|) (-10 -8 (-15 -4136 (|#3| $ (-772))) (-15 -4132 ($ |#2|)) (-15 -4132 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -1888 ((-1 (-1158 |#3|) |#3|) (-645 |#2|) (-645 (-1158 |#3|)))) (IF (|has| |#1| (-38 (-410 (-567)))) (PROGN (-15 -2416 ($ $ |#2| |#1|)) (-15 -3583 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1051) (-851) (-951 |#1| (-534 |#2|) |#2|)) (T -1128))
-((-4136 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-4 *2 (-951 *4 (-534 *5) *5)) (-5 *1 (-1128 *4 *5 *2)) (-4 *4 (-1051)) (-4 *5 (-851)))) (-4132 (*1 *1 *2) (-12 (-4 *3 (-1051)) (-4 *2 (-851)) (-5 *1 (-1128 *3 *2 *4)) (-4 *4 (-951 *3 (-534 *2) *2)))) (-4132 (*1 *1 *2) (-12 (-4 *3 (-1051)) (-4 *4 (-851)) (-5 *1 (-1128 *3 *4 *2)) (-4 *2 (-951 *3 (-534 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1051)) (-4 *4 (-851)) (-5 *1 (-1128 *3 *4 *2)) (-4 *2 (-951 *3 (-534 *4) *4)))) (-1888 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *6)) (-5 *4 (-645 (-1158 *7))) (-4 *6 (-851)) (-4 *7 (-951 *5 (-534 *6) *6)) (-4 *5 (-1051)) (-5 *2 (-1 (-1158 *7) *7)) (-5 *1 (-1128 *5 *6 *7)))) (-2416 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)) (-4 *2 (-851)) (-5 *1 (-1128 *3 *2 *4)) (-4 *4 (-951 *3 (-534 *2) *2)))) (-3583 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1128 *4 *3 *5))) (-4 *4 (-38 (-410 (-567)))) (-4 *4 (-1051)) (-4 *3 (-851)) (-5 *1 (-1128 *4 *3 *5)) (-4 *5 (-951 *4 (-534 *3) *3)))))
-(-13 (-741 |#1| |#2|) (-10 -8 (-15 -4136 (|#3| $ (-772))) (-15 -4132 ($ |#2|)) (-15 -4132 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -1888 ((-1 (-1158 |#3|) |#3|) (-645 |#2|) (-645 (-1158 |#3|)))) (IF (|has| |#1| (-38 (-410 (-567)))) (PROGN (-15 -2416 ($ $ |#2| |#1|)) (-15 -3583 ($ (-1 $) |#2| |#1|))) |%noBranch|)))
-((-2403 (((-112) $ $) 7)) (-3487 (((-645 (-2 (|:| -3995 $) (|:| -3823 (-645 |#4|)))) (-645 |#4|)) 86)) (-3244 (((-645 $) (-645 |#4|)) 87) (((-645 $) (-645 |#4|) (-112)) 112)) (-2847 (((-645 |#3|) $) 34)) (-2017 (((-112) $) 27)) (-3623 (((-112) $) 18 (|has| |#1| (-559)))) (-1326 (((-112) |#4| $) 102) (((-112) $) 98)) (-3722 ((|#4| |#4| $) 93)) (-3248 (((-645 (-2 (|:| |val| |#4|) (|:| -2566 $))) |#4| $) 127)) (-4396 (((-2 (|:| |under| $) (|:| -2780 $) (|:| |upper| $)) $ |#3|) 28)) (-3445 (((-112) $ (-772)) 45)) (-3350 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4418))) (((-3 |#4| "failed") $ |#3|) 80)) (-2585 (($) 46 T CONST)) (-1490 (((-112) $) 23 (|has| |#1| (-559)))) (-2752 (((-112) $ $) 25 (|has| |#1| (-559)))) (-4224 (((-112) $ $) 24 (|has| |#1| (-559)))) (-3547 (((-112) $) 26 (|has| |#1| (-559)))) (-1441 (((-645 |#4|) (-645 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1724 (((-645 |#4|) (-645 |#4|) $) 19 (|has| |#1| (-559)))) (-3197 (((-645 |#4|) (-645 |#4|) $) 20 (|has| |#1| (-559)))) (-3753 (((-3 $ "failed") (-645 |#4|)) 37)) (-2038 (($ (-645 |#4|)) 36)) (-2421 (((-3 $ "failed") $) 83)) (-1999 ((|#4| |#4| $) 90)) (-2444 (($ $) 69 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4418))))) (-3238 (($ |#4| $) 68 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4418)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4418)))) (-4194 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-559)))) (-3786 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3730 ((|#4| |#4| $) 88)) (-2477 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4418)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4418))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4418))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1585 (((-2 (|:| -3995 (-645 |#4|)) (|:| -3823 (-645 |#4|))) $) 106)) (-3783 (((-112) |#4| $) 137)) (-1829 (((-112) |#4| $) 134)) (-2127 (((-112) |#4| $) 138) (((-112) $) 135)) (-2777 (((-645 |#4|) $) 53 (|has| $ (-6 -4418)))) (-1664 (((-112) |#4| $) 105) (((-112) $) 104)) (-1679 ((|#3| $) 35)) (-2077 (((-112) $ (-772)) 44)) (-2279 (((-645 |#4|) $) 54 (|has| $ (-6 -4418)))) (-4337 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4418))))) (-3731 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#4| |#4|) $) 48)) (-2826 (((-645 |#3|) $) 33)) (-2808 (((-112) |#3| $) 32)) (-2863 (((-112) $ (-772)) 43)) (-1419 (((-1160) $) 10)) (-3232 (((-3 |#4| (-645 $)) |#4| |#4| $) 129)) (-2272 (((-645 (-2 (|:| |val| |#4|) (|:| -2566 $))) |#4| |#4| $) 128)) (-3257 (((-3 |#4| "failed") $) 84)) (-1756 (((-645 $) |#4| $) 130)) (-4057 (((-3 (-112) (-645 $)) |#4| $) 133)) (-3573 (((-645 (-2 (|:| |val| (-112)) (|:| -2566 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-2370 (((-645 $) |#4| $) 126) (((-645 $) (-645 |#4|) $) 125) (((-645 $) (-645 |#4|) (-645 $)) 124) (((-645 $) |#4| (-645 $)) 123)) (-3101 (($ |#4| $) 118) (($ (-645 |#4|) $) 117)) (-4051 (((-645 |#4|) $) 108)) (-1791 (((-112) |#4| $) 100) (((-112) $) 96)) (-3159 ((|#4| |#4| $) 91)) (-3392 (((-112) $ $) 111)) (-2430 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-559)))) (-2554 (((-112) |#4| $) 101) (((-112) $) 97)) (-4164 ((|#4| |#4| $) 92)) (-3430 (((-1122) $) 11)) (-2409 (((-3 |#4| "failed") $) 85)) (-4128 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-4077 (((-3 $ "failed") $ |#4|) 79)) (-2410 (($ $ |#4|) 78) (((-645 $) |#4| $) 116) (((-645 $) |#4| (-645 $)) 115) (((-645 $) (-645 |#4|) $) 114) (((-645 $) (-645 |#4|) (-645 $)) 113)) (-3025 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 |#4|) (-645 |#4|)) 60 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-295 |#4|)) 58 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-645 (-295 |#4|))) 57 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))))) (-3092 (((-112) $ $) 39)) (-3572 (((-112) $) 42)) (-3498 (($) 41)) (-3077 (((-772) $) 107)) (-3439 (((-772) |#4| $) 55 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4418)))) (((-772) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4418)))) (-4305 (($ $) 40)) (-3893 (((-539) $) 70 (|has| |#4| (-615 (-539))))) (-4147 (($ (-645 |#4|)) 61)) (-2397 (($ $ |#3|) 29)) (-2120 (($ $ |#3|) 31)) (-4129 (($ $) 89)) (-2813 (($ $ |#3|) 30)) (-4132 (((-863) $) 12) (((-645 |#4|) $) 38)) (-2073 (((-772) $) 77 (|has| |#3| (-370)))) (-1745 (((-112) $ $) 9)) (-2220 (((-3 (-2 (|:| |bas| $) (|:| -2262 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2262 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-2668 (((-112) $ (-1 (-112) |#4| (-645 |#4|))) 99)) (-4021 (((-645 $) |#4| $) 122) (((-645 $) |#4| (-645 $)) 121) (((-645 $) (-645 |#4|) $) 120) (((-645 $) (-645 |#4|) (-645 $)) 119)) (-1853 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4418)))) (-2385 (((-645 |#3|) $) 82)) (-2848 (((-112) |#4| $) 136)) (-2012 (((-112) |#3| $) 81)) (-2936 (((-112) $ $) 6)) (-2414 (((-772) $) 47 (|has| $ (-6 -4418)))))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-2859 (((-645 |#2|) $) NIL)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-4287 (($ $) NIL (|has| |#1| (-559)))) (-2286 (((-112) $) NIL (|has| |#1| (-559)))) (-3164 (($ $) 152 (|has| |#1| (-38 (-410 (-567)))))) (-3032 (($ $) 128 (|has| |#1| (-38 (-410 (-567)))))) (-2376 (((-3 $ "failed") $ $) NIL)) (-2728 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3145 (($ $) 148 (|has| |#1| (-38 (-410 (-567)))))) (-3008 (($ $) 124 (|has| |#1| (-38 (-410 (-567)))))) (-3182 (($ $) 156 (|has| |#1| (-38 (-410 (-567)))))) (-3057 (($ $) 132 (|has| |#1| (-38 (-410 (-567)))))) (-3647 (($) NIL T CONST)) (-3023 (($ $) NIL)) (-3588 (((-3 $ "failed") $) NIL)) (-3736 (((-954 |#1|) $ (-772)) NIL) (((-954 |#1|) $ (-772) (-772)) NIL)) (-3086 (((-112) $) NIL)) (-1484 (($) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3362 (((-772) $ |#2|) NIL) (((-772) $ |#2| (-772)) NIL)) (-4346 (((-112) $) NIL)) (-3698 (($ $ (-567)) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3770 (((-112) $) NIL)) (-2836 (($ $ (-645 |#2|) (-645 (-534 |#2|))) NIL) (($ $ |#2| (-534 |#2|)) NIL) (($ |#1| (-534 |#2|)) NIL) (($ $ |#2| (-772)) 63) (($ $ (-645 |#2|) (-645 (-772))) NIL)) (-3841 (($ (-1 |#1| |#1|) $) NIL)) (-3072 (($ $) 122 (|has| |#1| (-38 (-410 (-567)))))) (-2985 (($ $) NIL)) (-2996 ((|#1| $) NIL)) (-2516 (((-1161) $) NIL)) (-4083 (($ $ |#2|) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ |#2| |#1|) 175 (|has| |#1| (-38 (-410 (-567)))))) (-3437 (((-1122) $) NIL)) (-3708 (($ (-1 $) |#2| |#1|) 174 (|has| |#1| (-38 (-410 (-567)))))) (-1874 (($ $ (-772)) 16)) (-2400 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-3955 (($ $) 120 (|has| |#1| (-38 (-410 (-567)))))) (-2642 (($ $ |#2| $) 106) (($ $ (-645 |#2|) (-645 $)) 99) (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL)) (-1616 (($ $ |#2|) 109) (($ $ (-645 |#2|)) NIL) (($ $ |#2| (-772)) NIL) (($ $ (-645 |#2|) (-645 (-772))) NIL)) (-3104 (((-534 |#2|) $) NIL)) (-4272 (((-1 (-1159 |#3|) |#3|) (-645 |#2|) (-645 (-1159 |#3|))) 87)) (-3192 (($ $) 158 (|has| |#1| (-38 (-410 (-567)))))) (-3071 (($ $) 134 (|has| |#1| (-38 (-410 (-567)))))) (-3173 (($ $) 154 (|has| |#1| (-38 (-410 (-567)))))) (-3043 (($ $) 130 (|has| |#1| (-38 (-410 (-567)))))) (-3155 (($ $) 150 (|has| |#1| (-38 (-410 (-567)))))) (-3021 (($ $) 126 (|has| |#1| (-38 (-410 (-567)))))) (-1834 (($ $) 18)) (-4129 (((-863) $) 199) (($ (-567)) NIL) (($ |#1|) 45 (|has| |#1| (-172))) (($ $) NIL (|has| |#1| (-559))) (($ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ |#2|) 70) (($ |#3|) 68)) (-2558 ((|#1| $ (-534 |#2|)) NIL) (($ $ |#2| (-772)) NIL) (($ $ (-645 |#2|) (-645 (-772))) NIL) ((|#3| $ (-772)) 43)) (-2118 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2746 (((-772)) NIL T CONST)) (-3357 (((-112) $ $) NIL)) (-3217 (($ $) 164 (|has| |#1| (-38 (-410 (-567)))))) (-3103 (($ $) 140 (|has| |#1| (-38 (-410 (-567)))))) (-3731 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3201 (($ $) 160 (|has| |#1| (-38 (-410 (-567)))))) (-3083 (($ $) 136 (|has| |#1| (-38 (-410 (-567)))))) (-3238 (($ $) 168 (|has| |#1| (-38 (-410 (-567)))))) (-3126 (($ $) 144 (|has| |#1| (-38 (-410 (-567)))))) (-3805 (($ $) 170 (|has| |#1| (-38 (-410 (-567)))))) (-3138 (($ $) 146 (|has| |#1| (-38 (-410 (-567)))))) (-3228 (($ $) 166 (|has| |#1| (-38 (-410 (-567)))))) (-3115 (($ $) 142 (|has| |#1| (-38 (-410 (-567)))))) (-3208 (($ $) 162 (|has| |#1| (-38 (-410 (-567)))))) (-3093 (($ $) 138 (|has| |#1| (-38 (-410 (-567)))))) (-1733 (($) 52 T CONST)) (-1744 (($) 62 T CONST)) (-2647 (($ $ |#2|) NIL) (($ $ (-645 |#2|)) NIL) (($ $ |#2| (-772)) NIL) (($ $ (-645 |#2|) (-645 (-772))) NIL)) (-2946 (((-112) $ $) NIL)) (-3069 (($ $ |#1|) 201 (|has| |#1| (-365)))) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) 66)) (** (($ $ (-923)) NIL) (($ $ (-772)) 77) (($ $ $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 112 (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 65) (($ $ (-410 (-567))) 117 (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) 115 (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) 48) (($ $ |#1|) 49) (($ |#3| $) 47)))
+(((-1128 |#1| |#2| |#3|) (-13 (-741 |#1| |#2|) (-10 -8 (-15 -2558 (|#3| $ (-772))) (-15 -4129 ($ |#2|)) (-15 -4129 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -4272 ((-1 (-1159 |#3|) |#3|) (-645 |#2|) (-645 (-1159 |#3|)))) (IF (|has| |#1| (-38 (-410 (-567)))) (PROGN (-15 -4083 ($ $ |#2| |#1|)) (-15 -3708 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1051) (-851) (-951 |#1| (-534 |#2|) |#2|)) (T -1128))
+((-2558 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-4 *2 (-951 *4 (-534 *5) *5)) (-5 *1 (-1128 *4 *5 *2)) (-4 *4 (-1051)) (-4 *5 (-851)))) (-4129 (*1 *1 *2) (-12 (-4 *3 (-1051)) (-4 *2 (-851)) (-5 *1 (-1128 *3 *2 *4)) (-4 *4 (-951 *3 (-534 *2) *2)))) (-4129 (*1 *1 *2) (-12 (-4 *3 (-1051)) (-4 *4 (-851)) (-5 *1 (-1128 *3 *4 *2)) (-4 *2 (-951 *3 (-534 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1051)) (-4 *4 (-851)) (-5 *1 (-1128 *3 *4 *2)) (-4 *2 (-951 *3 (-534 *4) *4)))) (-4272 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *6)) (-5 *4 (-645 (-1159 *7))) (-4 *6 (-851)) (-4 *7 (-951 *5 (-534 *6) *6)) (-4 *5 (-1051)) (-5 *2 (-1 (-1159 *7) *7)) (-5 *1 (-1128 *5 *6 *7)))) (-4083 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)) (-4 *2 (-851)) (-5 *1 (-1128 *3 *2 *4)) (-4 *4 (-951 *3 (-534 *2) *2)))) (-3708 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1128 *4 *3 *5))) (-4 *4 (-38 (-410 (-567)))) (-4 *4 (-1051)) (-4 *3 (-851)) (-5 *1 (-1128 *4 *3 *5)) (-4 *5 (-951 *4 (-534 *3) *3)))))
+(-13 (-741 |#1| |#2|) (-10 -8 (-15 -2558 (|#3| $ (-772))) (-15 -4129 ($ |#2|)) (-15 -4129 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -4272 ((-1 (-1159 |#3|) |#3|) (-645 |#2|) (-645 (-1159 |#3|)))) (IF (|has| |#1| (-38 (-410 (-567)))) (PROGN (-15 -4083 ($ $ |#2| |#1|)) (-15 -3708 ($ (-1 $) |#2| |#1|))) |%noBranch|)))
+((-2412 (((-112) $ $) 7)) (-4305 (((-645 (-2 (|:| -4000 $) (|:| -3835 (-645 |#4|)))) (-645 |#4|)) 86)) (-3403 (((-645 $) (-645 |#4|)) 87) (((-645 $) (-645 |#4|) (-112)) 112)) (-2859 (((-645 |#3|) $) 34)) (-3153 (((-112) $) 27)) (-2031 (((-112) $) 18 (|has| |#1| (-559)))) (-2176 (((-112) |#4| $) 102) (((-112) $) 98)) (-2345 ((|#4| |#4| $) 93)) (-3659 (((-645 (-2 (|:| |val| |#4|) (|:| -2575 $))) |#4| $) 127)) (-1311 (((-2 (|:| |under| $) (|:| -3969 $) (|:| |upper| $)) $ |#3|) 28)) (-1563 (((-112) $ (-772)) 45)) (-3356 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4422))) (((-3 |#4| "failed") $ |#3|) 80)) (-3647 (($) 46 T CONST)) (-1896 (((-112) $) 23 (|has| |#1| (-559)))) (-2909 (((-112) $ $) 25 (|has| |#1| (-559)))) (-3040 (((-112) $ $) 24 (|has| |#1| (-559)))) (-3365 (((-112) $) 26 (|has| |#1| (-559)))) (-3683 (((-645 |#4|) (-645 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1377 (((-645 |#4|) (-645 |#4|) $) 19 (|has| |#1| (-559)))) (-2279 (((-645 |#4|) (-645 |#4|) $) 20 (|has| |#1| (-559)))) (-3765 (((-3 $ "failed") (-645 |#4|)) 37)) (-2051 (($ (-645 |#4|)) 36)) (-2430 (((-3 $ "failed") $) 83)) (-3819 ((|#4| |#4| $) 90)) (-2453 (($ $) 69 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4422))))) (-3246 (($ |#4| $) 68 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4422)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4422)))) (-2023 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-559)))) (-2240 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-1889 ((|#4| |#4| $) 88)) (-2494 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4422)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4422))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4422))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-4076 (((-2 (|:| -4000 (-645 |#4|)) (|:| -3835 (-645 |#4|))) $) 106)) (-2057 (((-112) |#4| $) 137)) (-4104 (((-112) |#4| $) 134)) (-1413 (((-112) |#4| $) 138) (((-112) $) 135)) (-2799 (((-645 |#4|) $) 53 (|has| $ (-6 -4422)))) (-4061 (((-112) |#4| $) 105) (((-112) $) 104)) (-2072 ((|#3| $) 35)) (-4093 (((-112) $ (-772)) 44)) (-1942 (((-645 |#4|) $) 54 (|has| $ (-6 -4422)))) (-3237 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4422))))) (-3751 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#4| |#4|) $) 48)) (-2869 (((-645 |#3|) $) 33)) (-1524 (((-112) |#3| $) 32)) (-1986 (((-112) $ (-772)) 43)) (-2516 (((-1161) $) 10)) (-3295 (((-3 |#4| (-645 $)) |#4| |#4| $) 129)) (-2588 (((-645 (-2 (|:| |val| |#4|) (|:| -2575 $))) |#4| |#4| $) 128)) (-3266 (((-3 |#4| "failed") $) 84)) (-2055 (((-645 $) |#4| $) 130)) (-2254 (((-3 (-112) (-645 $)) |#4| $) 133)) (-3992 (((-645 (-2 (|:| |val| (-112)) (|:| -2575 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3660 (((-645 $) |#4| $) 126) (((-645 $) (-645 |#4|) $) 125) (((-645 $) (-645 |#4|) (-645 $)) 124) (((-645 $) |#4| (-645 $)) 123)) (-2579 (($ |#4| $) 118) (($ (-645 |#4|) $) 117)) (-3881 (((-645 |#4|) $) 108)) (-3324 (((-112) |#4| $) 100) (((-112) $) 96)) (-1431 ((|#4| |#4| $) 91)) (-3995 (((-112) $ $) 111)) (-2634 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-559)))) (-4278 (((-112) |#4| $) 101) (((-112) $) 97)) (-3984 ((|#4| |#4| $) 92)) (-3437 (((-1122) $) 11)) (-2418 (((-3 |#4| "failed") $) 85)) (-3196 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3488 (((-3 $ "failed") $ |#4|) 79)) (-1874 (($ $ |#4|) 78) (((-645 $) |#4| $) 116) (((-645 $) |#4| (-645 $)) 115) (((-645 $) (-645 |#4|) $) 114) (((-645 $) (-645 |#4|) (-645 $)) 113)) (-4233 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 |#4|) (-645 |#4|)) 60 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-295 |#4|)) 58 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-645 (-295 |#4|))) 57 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))))) (-3875 (((-112) $ $) 39)) (-3885 (((-112) $) 42)) (-2701 (($) 41)) (-3104 (((-772) $) 107)) (-3447 (((-772) |#4| $) 55 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4422)))) (((-772) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4422)))) (-4309 (($ $) 40)) (-3902 (((-539) $) 70 (|has| |#4| (-615 (-539))))) (-4145 (($ (-645 |#4|)) 61)) (-3937 (($ $ |#3|) 29)) (-3165 (($ $ |#3|) 31)) (-2085 (($ $) 89)) (-1920 (($ $ |#3|) 30)) (-4129 (((-863) $) 12) (((-645 |#4|) $) 38)) (-1975 (((-772) $) 77 (|has| |#3| (-370)))) (-3357 (((-112) $ $) 9)) (-1676 (((-3 (-2 (|:| |bas| $) (|:| -2270 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2270 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-1642 (((-112) $ (-1 (-112) |#4| (-645 |#4|))) 99)) (-3730 (((-645 $) |#4| $) 122) (((-645 $) |#4| (-645 $)) 121) (((-645 $) (-645 |#4|) $) 120) (((-645 $) (-645 |#4|) (-645 $)) 119)) (-3436 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4422)))) (-2551 (((-645 |#3|) $) 82)) (-3991 (((-112) |#4| $) 136)) (-2618 (((-112) |#3| $) 81)) (-2946 (((-112) $ $) 6)) (-2423 (((-772) $) 47 (|has| $ (-6 -4422)))))
(((-1129 |#1| |#2| |#3| |#4|) (-140) (-455) (-794) (-851) (-1067 |t#1| |t#2| |t#3|)) (T -1129))
NIL
(-13 (-1111 |t#1| |t#2| |t#3| |t#4|) (-785 |t#1| |t#2| |t#3| |t#4|))
-(((-34) . T) ((-102) . T) ((-614 (-645 |#4|)) . T) ((-614 (-863)) . T) ((-151 |#4|) . T) ((-615 (-539)) |has| |#4| (-615 (-539))) ((-310 |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))) ((-492 |#4|) . T) ((-517 |#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))) ((-785 |#1| |#2| |#3| |#4|) . T) ((-978 |#1| |#2| |#3| |#4|) . T) ((-1073 |#1| |#2| |#3| |#4|) . T) ((-1102) . T) ((-1111 |#1| |#2| |#3| |#4|) . T) ((-1211 |#1| |#2| |#3| |#4|) . T) ((-1218) . T))
-((-3018 (((-645 |#2|) |#1|) 15)) (-4335 (((-645 |#2|) |#2| |#2| |#2| |#2| |#2|) 47) (((-645 |#2|) |#1|) 63)) (-3824 (((-645 |#2|) |#2| |#2| |#2|) 45) (((-645 |#2|) |#1|) 61)) (-3141 ((|#2| |#1|) 56)) (-3204 (((-2 (|:| |solns| (-645 |#2|)) (|:| |maps| (-645 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20)) (-3697 (((-645 |#2|) |#2| |#2|) 42) (((-645 |#2|) |#1|) 60)) (-1598 (((-645 |#2|) |#2| |#2| |#2| |#2|) 46) (((-645 |#2|) |#1|) 62)) (-2818 ((|#2| |#2| |#2| |#2| |#2| |#2|) 55)) (-1957 ((|#2| |#2| |#2| |#2|) 53)) (-3989 ((|#2| |#2| |#2|) 52)) (-3937 ((|#2| |#2| |#2| |#2| |#2|) 54)))
-(((-1130 |#1| |#2|) (-10 -7 (-15 -3018 ((-645 |#2|) |#1|)) (-15 -3141 (|#2| |#1|)) (-15 -3204 ((-2 (|:| |solns| (-645 |#2|)) (|:| |maps| (-645 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3697 ((-645 |#2|) |#1|)) (-15 -3824 ((-645 |#2|) |#1|)) (-15 -1598 ((-645 |#2|) |#1|)) (-15 -4335 ((-645 |#2|) |#1|)) (-15 -3697 ((-645 |#2|) |#2| |#2|)) (-15 -3824 ((-645 |#2|) |#2| |#2| |#2|)) (-15 -1598 ((-645 |#2|) |#2| |#2| |#2| |#2|)) (-15 -4335 ((-645 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3989 (|#2| |#2| |#2|)) (-15 -1957 (|#2| |#2| |#2| |#2|)) (-15 -3937 (|#2| |#2| |#2| |#2| |#2|)) (-15 -2818 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1244 |#2|) (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (T -1130))
-((-2818 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *1 (-1130 *3 *2)) (-4 *3 (-1244 *2)))) (-3937 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *1 (-1130 *3 *2)) (-4 *3 (-1244 *2)))) (-1957 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *1 (-1130 *3 *2)) (-4 *3 (-1244 *2)))) (-3989 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *1 (-1130 *3 *2)) (-4 *3 (-1244 *2)))) (-4335 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *2 (-645 *3)) (-5 *1 (-1130 *4 *3)) (-4 *4 (-1244 *3)))) (-1598 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *2 (-645 *3)) (-5 *1 (-1130 *4 *3)) (-4 *4 (-1244 *3)))) (-3824 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *2 (-645 *3)) (-5 *1 (-1130 *4 *3)) (-4 *4 (-1244 *3)))) (-3697 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *2 (-645 *3)) (-5 *1 (-1130 *4 *3)) (-4 *4 (-1244 *3)))) (-4335 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *2 (-645 *4)) (-5 *1 (-1130 *3 *4)) (-4 *3 (-1244 *4)))) (-1598 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *2 (-645 *4)) (-5 *1 (-1130 *3 *4)) (-4 *3 (-1244 *4)))) (-3824 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *2 (-645 *4)) (-5 *1 (-1130 *3 *4)) (-4 *3 (-1244 *4)))) (-3697 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *2 (-645 *4)) (-5 *1 (-1130 *3 *4)) (-4 *3 (-1244 *4)))) (-3204 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *2 (-2 (|:| |solns| (-645 *5)) (|:| |maps| (-645 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1130 *3 *5)) (-4 *3 (-1244 *5)))) (-3141 (*1 *2 *3) (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *1 (-1130 *3 *2)) (-4 *3 (-1244 *2)))) (-3018 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *2 (-645 *4)) (-5 *1 (-1130 *3 *4)) (-4 *3 (-1244 *4)))))
-(-10 -7 (-15 -3018 ((-645 |#2|) |#1|)) (-15 -3141 (|#2| |#1|)) (-15 -3204 ((-2 (|:| |solns| (-645 |#2|)) (|:| |maps| (-645 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3697 ((-645 |#2|) |#1|)) (-15 -3824 ((-645 |#2|) |#1|)) (-15 -1598 ((-645 |#2|) |#1|)) (-15 -4335 ((-645 |#2|) |#1|)) (-15 -3697 ((-645 |#2|) |#2| |#2|)) (-15 -3824 ((-645 |#2|) |#2| |#2| |#2|)) (-15 -1598 ((-645 |#2|) |#2| |#2| |#2| |#2|)) (-15 -4335 ((-645 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3989 (|#2| |#2| |#2|)) (-15 -1957 (|#2| |#2| |#2| |#2|)) (-15 -3937 (|#2| |#2| |#2| |#2| |#2|)) (-15 -2818 (|#2| |#2| |#2| |#2| |#2| |#2|)))
-((-1580 (((-645 (-645 (-295 (-317 |#1|)))) (-645 (-295 (-410 (-954 |#1|))))) 124) (((-645 (-645 (-295 (-317 |#1|)))) (-645 (-295 (-410 (-954 |#1|)))) (-645 (-1178))) 123) (((-645 (-645 (-295 (-317 |#1|)))) (-645 (-410 (-954 |#1|)))) 121) (((-645 (-645 (-295 (-317 |#1|)))) (-645 (-410 (-954 |#1|))) (-645 (-1178))) 119) (((-645 (-295 (-317 |#1|))) (-295 (-410 (-954 |#1|)))) 97) (((-645 (-295 (-317 |#1|))) (-295 (-410 (-954 |#1|))) (-1178)) 98) (((-645 (-295 (-317 |#1|))) (-410 (-954 |#1|))) 92) (((-645 (-295 (-317 |#1|))) (-410 (-954 |#1|)) (-1178)) 82)) (-1350 (((-645 (-645 (-317 |#1|))) (-645 (-410 (-954 |#1|))) (-645 (-1178))) 117) (((-645 (-317 |#1|)) (-410 (-954 |#1|)) (-1178)) 54)) (-3086 (((-1167 (-645 (-317 |#1|)) (-645 (-295 (-317 |#1|)))) (-410 (-954 |#1|)) (-1178)) 128) (((-1167 (-645 (-317 |#1|)) (-645 (-295 (-317 |#1|)))) (-295 (-410 (-954 |#1|))) (-1178)) 127)))
-(((-1131 |#1|) (-10 -7 (-15 -1580 ((-645 (-295 (-317 |#1|))) (-410 (-954 |#1|)) (-1178))) (-15 -1580 ((-645 (-295 (-317 |#1|))) (-410 (-954 |#1|)))) (-15 -1580 ((-645 (-295 (-317 |#1|))) (-295 (-410 (-954 |#1|))) (-1178))) (-15 -1580 ((-645 (-295 (-317 |#1|))) (-295 (-410 (-954 |#1|))))) (-15 -1580 ((-645 (-645 (-295 (-317 |#1|)))) (-645 (-410 (-954 |#1|))) (-645 (-1178)))) (-15 -1580 ((-645 (-645 (-295 (-317 |#1|)))) (-645 (-410 (-954 |#1|))))) (-15 -1580 ((-645 (-645 (-295 (-317 |#1|)))) (-645 (-295 (-410 (-954 |#1|)))) (-645 (-1178)))) (-15 -1580 ((-645 (-645 (-295 (-317 |#1|)))) (-645 (-295 (-410 (-954 |#1|)))))) (-15 -1350 ((-645 (-317 |#1|)) (-410 (-954 |#1|)) (-1178))) (-15 -1350 ((-645 (-645 (-317 |#1|))) (-645 (-410 (-954 |#1|))) (-645 (-1178)))) (-15 -3086 ((-1167 (-645 (-317 |#1|)) (-645 (-295 (-317 |#1|)))) (-295 (-410 (-954 |#1|))) (-1178))) (-15 -3086 ((-1167 (-645 (-317 |#1|)) (-645 (-295 (-317 |#1|)))) (-410 (-954 |#1|)) (-1178)))) (-13 (-308) (-147))) (T -1131))
-((-3086 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-1178)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-1167 (-645 (-317 *5)) (-645 (-295 (-317 *5))))) (-5 *1 (-1131 *5)))) (-3086 (*1 *2 *3 *4) (-12 (-5 *3 (-295 (-410 (-954 *5)))) (-5 *4 (-1178)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-1167 (-645 (-317 *5)) (-645 (-295 (-317 *5))))) (-5 *1 (-1131 *5)))) (-1350 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-410 (-954 *5)))) (-5 *4 (-645 (-1178))) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-645 (-317 *5)))) (-5 *1 (-1131 *5)))) (-1350 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-1178)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-317 *5))) (-5 *1 (-1131 *5)))) (-1580 (*1 *2 *3) (-12 (-5 *3 (-645 (-295 (-410 (-954 *4))))) (-4 *4 (-13 (-308) (-147))) (-5 *2 (-645 (-645 (-295 (-317 *4))))) (-5 *1 (-1131 *4)))) (-1580 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-295 (-410 (-954 *5))))) (-5 *4 (-645 (-1178))) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-645 (-295 (-317 *5))))) (-5 *1 (-1131 *5)))) (-1580 (*1 *2 *3) (-12 (-5 *3 (-645 (-410 (-954 *4)))) (-4 *4 (-13 (-308) (-147))) (-5 *2 (-645 (-645 (-295 (-317 *4))))) (-5 *1 (-1131 *4)))) (-1580 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-410 (-954 *5)))) (-5 *4 (-645 (-1178))) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-645 (-295 (-317 *5))))) (-5 *1 (-1131 *5)))) (-1580 (*1 *2 *3) (-12 (-5 *3 (-295 (-410 (-954 *4)))) (-4 *4 (-13 (-308) (-147))) (-5 *2 (-645 (-295 (-317 *4)))) (-5 *1 (-1131 *4)))) (-1580 (*1 *2 *3 *4) (-12 (-5 *3 (-295 (-410 (-954 *5)))) (-5 *4 (-1178)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-295 (-317 *5)))) (-5 *1 (-1131 *5)))) (-1580 (*1 *2 *3) (-12 (-5 *3 (-410 (-954 *4))) (-4 *4 (-13 (-308) (-147))) (-5 *2 (-645 (-295 (-317 *4)))) (-5 *1 (-1131 *4)))) (-1580 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-1178)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-295 (-317 *5)))) (-5 *1 (-1131 *5)))))
-(-10 -7 (-15 -1580 ((-645 (-295 (-317 |#1|))) (-410 (-954 |#1|)) (-1178))) (-15 -1580 ((-645 (-295 (-317 |#1|))) (-410 (-954 |#1|)))) (-15 -1580 ((-645 (-295 (-317 |#1|))) (-295 (-410 (-954 |#1|))) (-1178))) (-15 -1580 ((-645 (-295 (-317 |#1|))) (-295 (-410 (-954 |#1|))))) (-15 -1580 ((-645 (-645 (-295 (-317 |#1|)))) (-645 (-410 (-954 |#1|))) (-645 (-1178)))) (-15 -1580 ((-645 (-645 (-295 (-317 |#1|)))) (-645 (-410 (-954 |#1|))))) (-15 -1580 ((-645 (-645 (-295 (-317 |#1|)))) (-645 (-295 (-410 (-954 |#1|)))) (-645 (-1178)))) (-15 -1580 ((-645 (-645 (-295 (-317 |#1|)))) (-645 (-295 (-410 (-954 |#1|)))))) (-15 -1350 ((-645 (-317 |#1|)) (-410 (-954 |#1|)) (-1178))) (-15 -1350 ((-645 (-645 (-317 |#1|))) (-645 (-410 (-954 |#1|))) (-645 (-1178)))) (-15 -3086 ((-1167 (-645 (-317 |#1|)) (-645 (-295 (-317 |#1|)))) (-295 (-410 (-954 |#1|))) (-1178))) (-15 -3086 ((-1167 (-645 (-317 |#1|)) (-645 (-295 (-317 |#1|)))) (-410 (-954 |#1|)) (-1178))))
-((-3480 (((-410 (-1174 (-317 |#1|))) (-1268 (-317 |#1|)) (-410 (-1174 (-317 |#1|))) (-567)) 38)) (-3422 (((-410 (-1174 (-317 |#1|))) (-410 (-1174 (-317 |#1|))) (-410 (-1174 (-317 |#1|))) (-410 (-1174 (-317 |#1|)))) 49)))
-(((-1132 |#1|) (-10 -7 (-15 -3422 ((-410 (-1174 (-317 |#1|))) (-410 (-1174 (-317 |#1|))) (-410 (-1174 (-317 |#1|))) (-410 (-1174 (-317 |#1|))))) (-15 -3480 ((-410 (-1174 (-317 |#1|))) (-1268 (-317 |#1|)) (-410 (-1174 (-317 |#1|))) (-567)))) (-559)) (T -1132))
-((-3480 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-410 (-1174 (-317 *5)))) (-5 *3 (-1268 (-317 *5))) (-5 *4 (-567)) (-4 *5 (-559)) (-5 *1 (-1132 *5)))) (-3422 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-410 (-1174 (-317 *3)))) (-4 *3 (-559)) (-5 *1 (-1132 *3)))))
-(-10 -7 (-15 -3422 ((-410 (-1174 (-317 |#1|))) (-410 (-1174 (-317 |#1|))) (-410 (-1174 (-317 |#1|))) (-410 (-1174 (-317 |#1|))))) (-15 -3480 ((-410 (-1174 (-317 |#1|))) (-1268 (-317 |#1|)) (-410 (-1174 (-317 |#1|))) (-567))))
-((-3018 (((-645 (-645 (-295 (-317 |#1|)))) (-645 (-295 (-317 |#1|))) (-645 (-1178))) 250) (((-645 (-295 (-317 |#1|))) (-317 |#1|) (-1178)) 23) (((-645 (-295 (-317 |#1|))) (-295 (-317 |#1|)) (-1178)) 29) (((-645 (-295 (-317 |#1|))) (-295 (-317 |#1|))) 28) (((-645 (-295 (-317 |#1|))) (-317 |#1|)) 24)))
-(((-1133 |#1|) (-10 -7 (-15 -3018 ((-645 (-295 (-317 |#1|))) (-317 |#1|))) (-15 -3018 ((-645 (-295 (-317 |#1|))) (-295 (-317 |#1|)))) (-15 -3018 ((-645 (-295 (-317 |#1|))) (-295 (-317 |#1|)) (-1178))) (-15 -3018 ((-645 (-295 (-317 |#1|))) (-317 |#1|) (-1178))) (-15 -3018 ((-645 (-645 (-295 (-317 |#1|)))) (-645 (-295 (-317 |#1|))) (-645 (-1178))))) (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (T -1133))
-((-3018 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-1178))) (-4 *5 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (-5 *2 (-645 (-645 (-295 (-317 *5))))) (-5 *1 (-1133 *5)) (-5 *3 (-645 (-295 (-317 *5)))))) (-3018 (*1 *2 *3 *4) (-12 (-5 *4 (-1178)) (-4 *5 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (-5 *2 (-645 (-295 (-317 *5)))) (-5 *1 (-1133 *5)) (-5 *3 (-317 *5)))) (-3018 (*1 *2 *3 *4) (-12 (-5 *4 (-1178)) (-4 *5 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (-5 *2 (-645 (-295 (-317 *5)))) (-5 *1 (-1133 *5)) (-5 *3 (-295 (-317 *5))))) (-3018 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (-5 *2 (-645 (-295 (-317 *4)))) (-5 *1 (-1133 *4)) (-5 *3 (-295 (-317 *4))))) (-3018 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (-5 *2 (-645 (-295 (-317 *4)))) (-5 *1 (-1133 *4)) (-5 *3 (-317 *4)))))
-(-10 -7 (-15 -3018 ((-645 (-295 (-317 |#1|))) (-317 |#1|))) (-15 -3018 ((-645 (-295 (-317 |#1|))) (-295 (-317 |#1|)))) (-15 -3018 ((-645 (-295 (-317 |#1|))) (-295 (-317 |#1|)) (-1178))) (-15 -3018 ((-645 (-295 (-317 |#1|))) (-317 |#1|) (-1178))) (-15 -3018 ((-645 (-645 (-295 (-317 |#1|)))) (-645 (-295 (-317 |#1|))) (-645 (-1178)))))
-((-4072 ((|#2| |#2|) 30 (|has| |#1| (-851))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 27)) (-3500 ((|#2| |#2|) 29 (|has| |#1| (-851))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 22)))
-(((-1134 |#1| |#2|) (-10 -7 (-15 -3500 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -4072 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-851)) (PROGN (-15 -3500 (|#2| |#2|)) (-15 -4072 (|#2| |#2|))) |%noBranch|)) (-1218) (-13 (-605 (-567) |#1|) (-10 -7 (-6 -4418) (-6 -4419)))) (T -1134))
-((-4072 (*1 *2 *2) (-12 (-4 *3 (-851)) (-4 *3 (-1218)) (-5 *1 (-1134 *3 *2)) (-4 *2 (-13 (-605 (-567) *3) (-10 -7 (-6 -4418) (-6 -4419)))))) (-3500 (*1 *2 *2) (-12 (-4 *3 (-851)) (-4 *3 (-1218)) (-5 *1 (-1134 *3 *2)) (-4 *2 (-13 (-605 (-567) *3) (-10 -7 (-6 -4418) (-6 -4419)))))) (-4072 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1218)) (-5 *1 (-1134 *4 *2)) (-4 *2 (-13 (-605 (-567) *4) (-10 -7 (-6 -4418) (-6 -4419)))))) (-3500 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1218)) (-5 *1 (-1134 *4 *2)) (-4 *2 (-13 (-605 (-567) *4) (-10 -7 (-6 -4418) (-6 -4419)))))))
-(-10 -7 (-15 -3500 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -4072 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-851)) (PROGN (-15 -3500 (|#2| |#2|)) (-15 -4072 (|#2| |#2|))) |%noBranch|))
-((-2403 (((-112) $ $) NIL)) (-1455 (((-1166 3 |#1|) $) 141)) (-1668 (((-112) $) 101)) (-3941 (($ $ (-645 (-945 |#1|))) 44) (($ $ (-645 (-645 |#1|))) 104) (($ (-645 (-945 |#1|))) 103) (((-645 (-945 |#1|)) $) 102)) (-1857 (((-112) $) 72)) (-4371 (($ $ (-945 |#1|)) 76) (($ $ (-645 |#1|)) 81) (($ $ (-772)) 83) (($ (-945 |#1|)) 77) (((-945 |#1|) $) 75)) (-3034 (((-2 (|:| -3932 (-772)) (|:| |curves| (-772)) (|:| |polygons| (-772)) (|:| |constructs| (-772))) $) 139)) (-2842 (((-772) $) 53)) (-3663 (((-772) $) 52)) (-1353 (($ $ (-772) (-945 |#1|)) 67)) (-4131 (((-112) $) 111)) (-2164 (($ $ (-645 (-645 (-945 |#1|))) (-645 (-171)) (-171)) 118) (($ $ (-645 (-645 (-645 |#1|))) (-645 (-171)) (-171)) 120) (($ $ (-645 (-645 (-945 |#1|))) (-112) (-112)) 115) (($ $ (-645 (-645 (-645 |#1|))) (-112) (-112)) 127) (($ (-645 (-645 (-945 |#1|)))) 116) (($ (-645 (-645 (-945 |#1|))) (-112) (-112)) 117) (((-645 (-645 (-945 |#1|))) $) 114)) (-4135 (($ (-645 $)) 56) (($ $ $) 57)) (-3557 (((-645 (-171)) $) 133)) (-3611 (((-645 (-945 |#1|)) $) 130)) (-3076 (((-645 (-645 (-171))) $) 132)) (-3586 (((-645 (-645 (-645 (-945 |#1|)))) $) NIL)) (-3603 (((-645 (-645 (-645 (-772)))) $) 131)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-3357 (((-772) $ (-645 (-945 |#1|))) 65)) (-1874 (((-112) $) 84)) (-1533 (($ $ (-645 (-945 |#1|))) 86) (($ $ (-645 (-645 |#1|))) 92) (($ (-645 (-945 |#1|))) 87) (((-645 (-945 |#1|)) $) 85)) (-2306 (($) 48) (($ (-1166 3 |#1|)) 49)) (-4305 (($ $) 63)) (-2729 (((-645 $) $) 62)) (-2159 (($ (-645 $)) 59)) (-2274 (((-645 $) $) 61)) (-4132 (((-863) $) 146)) (-3295 (((-112) $) 94)) (-1979 (($ $ (-645 (-945 |#1|))) 96) (($ $ (-645 (-645 |#1|))) 99) (($ (-645 (-945 |#1|))) 97) (((-645 (-945 |#1|)) $) 95)) (-2177 (($ $) 140)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)))
+(((-34) . T) ((-102) . T) ((-614 (-645 |#4|)) . T) ((-614 (-863)) . T) ((-151 |#4|) . T) ((-615 (-539)) |has| |#4| (-615 (-539))) ((-310 |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))) ((-492 |#4|) . T) ((-517 |#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))) ((-785 |#1| |#2| |#3| |#4|) . T) ((-978 |#1| |#2| |#3| |#4|) . T) ((-1073 |#1| |#2| |#3| |#4|) . T) ((-1102) . T) ((-1111 |#1| |#2| |#3| |#4|) . T) ((-1212 |#1| |#2| |#3| |#4|) . T) ((-1219) . T))
+((-2464 (((-645 |#2|) |#1|) 15)) (-3007 (((-645 |#2|) |#2| |#2| |#2| |#2| |#2|) 47) (((-645 |#2|) |#1|) 63)) (-3159 (((-645 |#2|) |#2| |#2| |#2|) 45) (((-645 |#2|) |#1|) 61)) (-3585 ((|#2| |#1|) 56)) (-1674 (((-2 (|:| |solns| (-645 |#2|)) (|:| |maps| (-645 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20)) (-3719 (((-645 |#2|) |#2| |#2|) 42) (((-645 |#2|) |#1|) 60)) (-2902 (((-645 |#2|) |#2| |#2| |#2| |#2|) 46) (((-645 |#2|) |#1|) 62)) (-4294 ((|#2| |#2| |#2| |#2| |#2| |#2|) 55)) (-3207 ((|#2| |#2| |#2| |#2|) 53)) (-4138 ((|#2| |#2| |#2|) 52)) (-1521 ((|#2| |#2| |#2| |#2| |#2|) 54)))
+(((-1130 |#1| |#2|) (-10 -7 (-15 -2464 ((-645 |#2|) |#1|)) (-15 -3585 (|#2| |#1|)) (-15 -1674 ((-2 (|:| |solns| (-645 |#2|)) (|:| |maps| (-645 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3719 ((-645 |#2|) |#1|)) (-15 -3159 ((-645 |#2|) |#1|)) (-15 -2902 ((-645 |#2|) |#1|)) (-15 -3007 ((-645 |#2|) |#1|)) (-15 -3719 ((-645 |#2|) |#2| |#2|)) (-15 -3159 ((-645 |#2|) |#2| |#2| |#2|)) (-15 -2902 ((-645 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3007 ((-645 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -4138 (|#2| |#2| |#2|)) (-15 -3207 (|#2| |#2| |#2| |#2|)) (-15 -1521 (|#2| |#2| |#2| |#2| |#2|)) (-15 -4294 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1245 |#2|) (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (T -1130))
+((-4294 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *1 (-1130 *3 *2)) (-4 *3 (-1245 *2)))) (-1521 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *1 (-1130 *3 *2)) (-4 *3 (-1245 *2)))) (-3207 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *1 (-1130 *3 *2)) (-4 *3 (-1245 *2)))) (-4138 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *1 (-1130 *3 *2)) (-4 *3 (-1245 *2)))) (-3007 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *2 (-645 *3)) (-5 *1 (-1130 *4 *3)) (-4 *4 (-1245 *3)))) (-2902 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *2 (-645 *3)) (-5 *1 (-1130 *4 *3)) (-4 *4 (-1245 *3)))) (-3159 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *2 (-645 *3)) (-5 *1 (-1130 *4 *3)) (-4 *4 (-1245 *3)))) (-3719 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *2 (-645 *3)) (-5 *1 (-1130 *4 *3)) (-4 *4 (-1245 *3)))) (-3007 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *2 (-645 *4)) (-5 *1 (-1130 *3 *4)) (-4 *3 (-1245 *4)))) (-2902 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *2 (-645 *4)) (-5 *1 (-1130 *3 *4)) (-4 *3 (-1245 *4)))) (-3159 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *2 (-645 *4)) (-5 *1 (-1130 *3 *4)) (-4 *3 (-1245 *4)))) (-3719 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *2 (-645 *4)) (-5 *1 (-1130 *3 *4)) (-4 *3 (-1245 *4)))) (-1674 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *2 (-2 (|:| |solns| (-645 *5)) (|:| |maps| (-645 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1130 *3 *5)) (-4 *3 (-1245 *5)))) (-3585 (*1 *2 *3) (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *1 (-1130 *3 *2)) (-4 *3 (-1245 *2)))) (-2464 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *2 (-645 *4)) (-5 *1 (-1130 *3 *4)) (-4 *3 (-1245 *4)))))
+(-10 -7 (-15 -2464 ((-645 |#2|) |#1|)) (-15 -3585 (|#2| |#1|)) (-15 -1674 ((-2 (|:| |solns| (-645 |#2|)) (|:| |maps| (-645 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3719 ((-645 |#2|) |#1|)) (-15 -3159 ((-645 |#2|) |#1|)) (-15 -2902 ((-645 |#2|) |#1|)) (-15 -3007 ((-645 |#2|) |#1|)) (-15 -3719 ((-645 |#2|) |#2| |#2|)) (-15 -3159 ((-645 |#2|) |#2| |#2| |#2|)) (-15 -2902 ((-645 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3007 ((-645 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -4138 (|#2| |#2| |#2|)) (-15 -3207 (|#2| |#2| |#2| |#2|)) (-15 -1521 (|#2| |#2| |#2| |#2| |#2|)) (-15 -4294 (|#2| |#2| |#2| |#2| |#2| |#2|)))
+((-1821 (((-645 (-645 (-295 (-317 |#1|)))) (-645 (-295 (-410 (-954 |#1|))))) 124) (((-645 (-645 (-295 (-317 |#1|)))) (-645 (-295 (-410 (-954 |#1|)))) (-645 (-1179))) 123) (((-645 (-645 (-295 (-317 |#1|)))) (-645 (-410 (-954 |#1|)))) 121) (((-645 (-645 (-295 (-317 |#1|)))) (-645 (-410 (-954 |#1|))) (-645 (-1179))) 119) (((-645 (-295 (-317 |#1|))) (-295 (-410 (-954 |#1|)))) 97) (((-645 (-295 (-317 |#1|))) (-295 (-410 (-954 |#1|))) (-1179)) 98) (((-645 (-295 (-317 |#1|))) (-410 (-954 |#1|))) 92) (((-645 (-295 (-317 |#1|))) (-410 (-954 |#1|)) (-1179)) 82)) (-3020 (((-645 (-645 (-317 |#1|))) (-645 (-410 (-954 |#1|))) (-645 (-1179))) 117) (((-645 (-317 |#1|)) (-410 (-954 |#1|)) (-1179)) 54)) (-2639 (((-1168 (-645 (-317 |#1|)) (-645 (-295 (-317 |#1|)))) (-410 (-954 |#1|)) (-1179)) 128) (((-1168 (-645 (-317 |#1|)) (-645 (-295 (-317 |#1|)))) (-295 (-410 (-954 |#1|))) (-1179)) 127)))
+(((-1131 |#1|) (-10 -7 (-15 -1821 ((-645 (-295 (-317 |#1|))) (-410 (-954 |#1|)) (-1179))) (-15 -1821 ((-645 (-295 (-317 |#1|))) (-410 (-954 |#1|)))) (-15 -1821 ((-645 (-295 (-317 |#1|))) (-295 (-410 (-954 |#1|))) (-1179))) (-15 -1821 ((-645 (-295 (-317 |#1|))) (-295 (-410 (-954 |#1|))))) (-15 -1821 ((-645 (-645 (-295 (-317 |#1|)))) (-645 (-410 (-954 |#1|))) (-645 (-1179)))) (-15 -1821 ((-645 (-645 (-295 (-317 |#1|)))) (-645 (-410 (-954 |#1|))))) (-15 -1821 ((-645 (-645 (-295 (-317 |#1|)))) (-645 (-295 (-410 (-954 |#1|)))) (-645 (-1179)))) (-15 -1821 ((-645 (-645 (-295 (-317 |#1|)))) (-645 (-295 (-410 (-954 |#1|)))))) (-15 -3020 ((-645 (-317 |#1|)) (-410 (-954 |#1|)) (-1179))) (-15 -3020 ((-645 (-645 (-317 |#1|))) (-645 (-410 (-954 |#1|))) (-645 (-1179)))) (-15 -2639 ((-1168 (-645 (-317 |#1|)) (-645 (-295 (-317 |#1|)))) (-295 (-410 (-954 |#1|))) (-1179))) (-15 -2639 ((-1168 (-645 (-317 |#1|)) (-645 (-295 (-317 |#1|)))) (-410 (-954 |#1|)) (-1179)))) (-13 (-308) (-147))) (T -1131))
+((-2639 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-1179)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-1168 (-645 (-317 *5)) (-645 (-295 (-317 *5))))) (-5 *1 (-1131 *5)))) (-2639 (*1 *2 *3 *4) (-12 (-5 *3 (-295 (-410 (-954 *5)))) (-5 *4 (-1179)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-1168 (-645 (-317 *5)) (-645 (-295 (-317 *5))))) (-5 *1 (-1131 *5)))) (-3020 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-410 (-954 *5)))) (-5 *4 (-645 (-1179))) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-645 (-317 *5)))) (-5 *1 (-1131 *5)))) (-3020 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-1179)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-317 *5))) (-5 *1 (-1131 *5)))) (-1821 (*1 *2 *3) (-12 (-5 *3 (-645 (-295 (-410 (-954 *4))))) (-4 *4 (-13 (-308) (-147))) (-5 *2 (-645 (-645 (-295 (-317 *4))))) (-5 *1 (-1131 *4)))) (-1821 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-295 (-410 (-954 *5))))) (-5 *4 (-645 (-1179))) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-645 (-295 (-317 *5))))) (-5 *1 (-1131 *5)))) (-1821 (*1 *2 *3) (-12 (-5 *3 (-645 (-410 (-954 *4)))) (-4 *4 (-13 (-308) (-147))) (-5 *2 (-645 (-645 (-295 (-317 *4))))) (-5 *1 (-1131 *4)))) (-1821 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-410 (-954 *5)))) (-5 *4 (-645 (-1179))) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-645 (-295 (-317 *5))))) (-5 *1 (-1131 *5)))) (-1821 (*1 *2 *3) (-12 (-5 *3 (-295 (-410 (-954 *4)))) (-4 *4 (-13 (-308) (-147))) (-5 *2 (-645 (-295 (-317 *4)))) (-5 *1 (-1131 *4)))) (-1821 (*1 *2 *3 *4) (-12 (-5 *3 (-295 (-410 (-954 *5)))) (-5 *4 (-1179)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-295 (-317 *5)))) (-5 *1 (-1131 *5)))) (-1821 (*1 *2 *3) (-12 (-5 *3 (-410 (-954 *4))) (-4 *4 (-13 (-308) (-147))) (-5 *2 (-645 (-295 (-317 *4)))) (-5 *1 (-1131 *4)))) (-1821 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-1179)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-295 (-317 *5)))) (-5 *1 (-1131 *5)))))
+(-10 -7 (-15 -1821 ((-645 (-295 (-317 |#1|))) (-410 (-954 |#1|)) (-1179))) (-15 -1821 ((-645 (-295 (-317 |#1|))) (-410 (-954 |#1|)))) (-15 -1821 ((-645 (-295 (-317 |#1|))) (-295 (-410 (-954 |#1|))) (-1179))) (-15 -1821 ((-645 (-295 (-317 |#1|))) (-295 (-410 (-954 |#1|))))) (-15 -1821 ((-645 (-645 (-295 (-317 |#1|)))) (-645 (-410 (-954 |#1|))) (-645 (-1179)))) (-15 -1821 ((-645 (-645 (-295 (-317 |#1|)))) (-645 (-410 (-954 |#1|))))) (-15 -1821 ((-645 (-645 (-295 (-317 |#1|)))) (-645 (-295 (-410 (-954 |#1|)))) (-645 (-1179)))) (-15 -1821 ((-645 (-645 (-295 (-317 |#1|)))) (-645 (-295 (-410 (-954 |#1|)))))) (-15 -3020 ((-645 (-317 |#1|)) (-410 (-954 |#1|)) (-1179))) (-15 -3020 ((-645 (-645 (-317 |#1|))) (-645 (-410 (-954 |#1|))) (-645 (-1179)))) (-15 -2639 ((-1168 (-645 (-317 |#1|)) (-645 (-295 (-317 |#1|)))) (-295 (-410 (-954 |#1|))) (-1179))) (-15 -2639 ((-1168 (-645 (-317 |#1|)) (-645 (-295 (-317 |#1|)))) (-410 (-954 |#1|)) (-1179))))
+((-1853 (((-410 (-1175 (-317 |#1|))) (-1269 (-317 |#1|)) (-410 (-1175 (-317 |#1|))) (-567)) 38)) (-4206 (((-410 (-1175 (-317 |#1|))) (-410 (-1175 (-317 |#1|))) (-410 (-1175 (-317 |#1|))) (-410 (-1175 (-317 |#1|)))) 49)))
+(((-1132 |#1|) (-10 -7 (-15 -4206 ((-410 (-1175 (-317 |#1|))) (-410 (-1175 (-317 |#1|))) (-410 (-1175 (-317 |#1|))) (-410 (-1175 (-317 |#1|))))) (-15 -1853 ((-410 (-1175 (-317 |#1|))) (-1269 (-317 |#1|)) (-410 (-1175 (-317 |#1|))) (-567)))) (-559)) (T -1132))
+((-1853 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-410 (-1175 (-317 *5)))) (-5 *3 (-1269 (-317 *5))) (-5 *4 (-567)) (-4 *5 (-559)) (-5 *1 (-1132 *5)))) (-4206 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-410 (-1175 (-317 *3)))) (-4 *3 (-559)) (-5 *1 (-1132 *3)))))
+(-10 -7 (-15 -4206 ((-410 (-1175 (-317 |#1|))) (-410 (-1175 (-317 |#1|))) (-410 (-1175 (-317 |#1|))) (-410 (-1175 (-317 |#1|))))) (-15 -1853 ((-410 (-1175 (-317 |#1|))) (-1269 (-317 |#1|)) (-410 (-1175 (-317 |#1|))) (-567))))
+((-2464 (((-645 (-645 (-295 (-317 |#1|)))) (-645 (-295 (-317 |#1|))) (-645 (-1179))) 250) (((-645 (-295 (-317 |#1|))) (-317 |#1|) (-1179)) 23) (((-645 (-295 (-317 |#1|))) (-295 (-317 |#1|)) (-1179)) 29) (((-645 (-295 (-317 |#1|))) (-295 (-317 |#1|))) 28) (((-645 (-295 (-317 |#1|))) (-317 |#1|)) 24)))
+(((-1133 |#1|) (-10 -7 (-15 -2464 ((-645 (-295 (-317 |#1|))) (-317 |#1|))) (-15 -2464 ((-645 (-295 (-317 |#1|))) (-295 (-317 |#1|)))) (-15 -2464 ((-645 (-295 (-317 |#1|))) (-295 (-317 |#1|)) (-1179))) (-15 -2464 ((-645 (-295 (-317 |#1|))) (-317 |#1|) (-1179))) (-15 -2464 ((-645 (-645 (-295 (-317 |#1|)))) (-645 (-295 (-317 |#1|))) (-645 (-1179))))) (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (T -1133))
+((-2464 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-1179))) (-4 *5 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (-5 *2 (-645 (-645 (-295 (-317 *5))))) (-5 *1 (-1133 *5)) (-5 *3 (-645 (-295 (-317 *5)))))) (-2464 (*1 *2 *3 *4) (-12 (-5 *4 (-1179)) (-4 *5 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (-5 *2 (-645 (-295 (-317 *5)))) (-5 *1 (-1133 *5)) (-5 *3 (-317 *5)))) (-2464 (*1 *2 *3 *4) (-12 (-5 *4 (-1179)) (-4 *5 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (-5 *2 (-645 (-295 (-317 *5)))) (-5 *1 (-1133 *5)) (-5 *3 (-295 (-317 *5))))) (-2464 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (-5 *2 (-645 (-295 (-317 *4)))) (-5 *1 (-1133 *4)) (-5 *3 (-295 (-317 *4))))) (-2464 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (-5 *2 (-645 (-295 (-317 *4)))) (-5 *1 (-1133 *4)) (-5 *3 (-317 *4)))))
+(-10 -7 (-15 -2464 ((-645 (-295 (-317 |#1|))) (-317 |#1|))) (-15 -2464 ((-645 (-295 (-317 |#1|))) (-295 (-317 |#1|)))) (-15 -2464 ((-645 (-295 (-317 |#1|))) (-295 (-317 |#1|)) (-1179))) (-15 -2464 ((-645 (-295 (-317 |#1|))) (-317 |#1|) (-1179))) (-15 -2464 ((-645 (-645 (-295 (-317 |#1|)))) (-645 (-295 (-317 |#1|))) (-645 (-1179)))))
+((-4230 ((|#2| |#2|) 30 (|has| |#1| (-851))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 27)) (-2892 ((|#2| |#2|) 29 (|has| |#1| (-851))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 22)))
+(((-1134 |#1| |#2|) (-10 -7 (-15 -2892 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -4230 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-851)) (PROGN (-15 -2892 (|#2| |#2|)) (-15 -4230 (|#2| |#2|))) |%noBranch|)) (-1219) (-13 (-605 (-567) |#1|) (-10 -7 (-6 -4422) (-6 -4423)))) (T -1134))
+((-4230 (*1 *2 *2) (-12 (-4 *3 (-851)) (-4 *3 (-1219)) (-5 *1 (-1134 *3 *2)) (-4 *2 (-13 (-605 (-567) *3) (-10 -7 (-6 -4422) (-6 -4423)))))) (-2892 (*1 *2 *2) (-12 (-4 *3 (-851)) (-4 *3 (-1219)) (-5 *1 (-1134 *3 *2)) (-4 *2 (-13 (-605 (-567) *3) (-10 -7 (-6 -4422) (-6 -4423)))))) (-4230 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1219)) (-5 *1 (-1134 *4 *2)) (-4 *2 (-13 (-605 (-567) *4) (-10 -7 (-6 -4422) (-6 -4423)))))) (-2892 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1219)) (-5 *1 (-1134 *4 *2)) (-4 *2 (-13 (-605 (-567) *4) (-10 -7 (-6 -4422) (-6 -4423)))))))
+(-10 -7 (-15 -2892 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -4230 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-851)) (PROGN (-15 -2892 (|#2| |#2|)) (-15 -4230 (|#2| |#2|))) |%noBranch|))
+((-2412 (((-112) $ $) NIL)) (-2095 (((-1167 3 |#1|) $) 141)) (-3628 (((-112) $) 101)) (-2761 (($ $ (-645 (-945 |#1|))) 44) (($ $ (-645 (-645 |#1|))) 104) (($ (-645 (-945 |#1|))) 103) (((-645 (-945 |#1|)) $) 102)) (-3907 (((-112) $) 72)) (-4385 (($ $ (-945 |#1|)) 76) (($ $ (-645 |#1|)) 81) (($ $ (-772)) 83) (($ (-945 |#1|)) 77) (((-945 |#1|) $) 75)) (-3056 (((-2 (|:| -3941 (-772)) (|:| |curves| (-772)) (|:| |polygons| (-772)) (|:| |constructs| (-772))) $) 139)) (-1856 (((-772) $) 53)) (-2375 (((-772) $) 52)) (-2502 (($ $ (-772) (-945 |#1|)) 67)) (-2175 (((-112) $) 111)) (-2281 (($ $ (-645 (-645 (-945 |#1|))) (-645 (-171)) (-171)) 118) (($ $ (-645 (-645 (-645 |#1|))) (-645 (-171)) (-171)) 120) (($ $ (-645 (-645 (-945 |#1|))) (-112) (-112)) 115) (($ $ (-645 (-645 (-645 |#1|))) (-112) (-112)) 127) (($ (-645 (-645 (-945 |#1|)))) 116) (($ (-645 (-645 (-945 |#1|))) (-112) (-112)) 117) (((-645 (-645 (-945 |#1|))) $) 114)) (-2473 (($ (-645 $)) 56) (($ $ $) 57)) (-3129 (((-645 (-171)) $) 133)) (-3632 (((-645 (-945 |#1|)) $) 130)) (-2983 (((-645 (-645 (-171))) $) 132)) (-2735 (((-645 (-645 (-645 (-945 |#1|)))) $) NIL)) (-1770 (((-645 (-645 (-645 (-772)))) $) 131)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-2303 (((-772) $ (-645 (-945 |#1|))) 65)) (-2113 (((-112) $) 84)) (-3636 (($ $ (-645 (-945 |#1|))) 86) (($ $ (-645 (-645 |#1|))) 92) (($ (-645 (-945 |#1|))) 87) (((-645 (-945 |#1|)) $) 85)) (-1473 (($) 48) (($ (-1167 3 |#1|)) 49)) (-4309 (($ $) 63)) (-3750 (((-645 $) $) 62)) (-1409 (($ (-645 $)) 59)) (-1482 (((-645 $) $) 61)) (-4129 (((-863) $) 146)) (-2058 (((-112) $) 94)) (-2818 (($ $ (-645 (-945 |#1|))) 96) (($ $ (-645 (-645 |#1|))) 99) (($ (-645 (-945 |#1|))) 97) (((-645 (-945 |#1|)) $) 95)) (-2860 (($ $) 140)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)))
(((-1135 |#1|) (-1136 |#1|) (-1051)) (T -1135))
NIL
(-1136 |#1|)
-((-2403 (((-112) $ $) 7)) (-1455 (((-1166 3 |#1|) $) 14)) (-1668 (((-112) $) 30)) (-3941 (($ $ (-645 (-945 |#1|))) 34) (($ $ (-645 (-645 |#1|))) 33) (($ (-645 (-945 |#1|))) 32) (((-645 (-945 |#1|)) $) 31)) (-1857 (((-112) $) 45)) (-4371 (($ $ (-945 |#1|)) 50) (($ $ (-645 |#1|)) 49) (($ $ (-772)) 48) (($ (-945 |#1|)) 47) (((-945 |#1|) $) 46)) (-3034 (((-2 (|:| -3932 (-772)) (|:| |curves| (-772)) (|:| |polygons| (-772)) (|:| |constructs| (-772))) $) 16)) (-2842 (((-772) $) 59)) (-3663 (((-772) $) 60)) (-1353 (($ $ (-772) (-945 |#1|)) 51)) (-4131 (((-112) $) 22)) (-2164 (($ $ (-645 (-645 (-945 |#1|))) (-645 (-171)) (-171)) 29) (($ $ (-645 (-645 (-645 |#1|))) (-645 (-171)) (-171)) 28) (($ $ (-645 (-645 (-945 |#1|))) (-112) (-112)) 27) (($ $ (-645 (-645 (-645 |#1|))) (-112) (-112)) 26) (($ (-645 (-645 (-945 |#1|)))) 25) (($ (-645 (-645 (-945 |#1|))) (-112) (-112)) 24) (((-645 (-645 (-945 |#1|))) $) 23)) (-4135 (($ (-645 $)) 58) (($ $ $) 57)) (-3557 (((-645 (-171)) $) 17)) (-3611 (((-645 (-945 |#1|)) $) 21)) (-3076 (((-645 (-645 (-171))) $) 18)) (-3586 (((-645 (-645 (-645 (-945 |#1|)))) $) 19)) (-3603 (((-645 (-645 (-645 (-772)))) $) 20)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-3357 (((-772) $ (-645 (-945 |#1|))) 52)) (-1874 (((-112) $) 40)) (-1533 (($ $ (-645 (-945 |#1|))) 44) (($ $ (-645 (-645 |#1|))) 43) (($ (-645 (-945 |#1|))) 42) (((-645 (-945 |#1|)) $) 41)) (-2306 (($) 62) (($ (-1166 3 |#1|)) 61)) (-4305 (($ $) 53)) (-2729 (((-645 $) $) 54)) (-2159 (($ (-645 $)) 56)) (-2274 (((-645 $) $) 55)) (-4132 (((-863) $) 12)) (-3295 (((-112) $) 35)) (-1979 (($ $ (-645 (-945 |#1|))) 39) (($ $ (-645 (-645 |#1|))) 38) (($ (-645 (-945 |#1|))) 37) (((-645 (-945 |#1|)) $) 36)) (-2177 (($ $) 15)) (-1745 (((-112) $ $) 9)) (-2936 (((-112) $ $) 6)))
+((-2412 (((-112) $ $) 7)) (-2095 (((-1167 3 |#1|) $) 14)) (-3628 (((-112) $) 30)) (-2761 (($ $ (-645 (-945 |#1|))) 34) (($ $ (-645 (-645 |#1|))) 33) (($ (-645 (-945 |#1|))) 32) (((-645 (-945 |#1|)) $) 31)) (-3907 (((-112) $) 45)) (-4385 (($ $ (-945 |#1|)) 50) (($ $ (-645 |#1|)) 49) (($ $ (-772)) 48) (($ (-945 |#1|)) 47) (((-945 |#1|) $) 46)) (-3056 (((-2 (|:| -3941 (-772)) (|:| |curves| (-772)) (|:| |polygons| (-772)) (|:| |constructs| (-772))) $) 16)) (-1856 (((-772) $) 59)) (-2375 (((-772) $) 60)) (-2502 (($ $ (-772) (-945 |#1|)) 51)) (-2175 (((-112) $) 22)) (-2281 (($ $ (-645 (-645 (-945 |#1|))) (-645 (-171)) (-171)) 29) (($ $ (-645 (-645 (-645 |#1|))) (-645 (-171)) (-171)) 28) (($ $ (-645 (-645 (-945 |#1|))) (-112) (-112)) 27) (($ $ (-645 (-645 (-645 |#1|))) (-112) (-112)) 26) (($ (-645 (-645 (-945 |#1|)))) 25) (($ (-645 (-645 (-945 |#1|))) (-112) (-112)) 24) (((-645 (-645 (-945 |#1|))) $) 23)) (-2473 (($ (-645 $)) 58) (($ $ $) 57)) (-3129 (((-645 (-171)) $) 17)) (-3632 (((-645 (-945 |#1|)) $) 21)) (-2983 (((-645 (-645 (-171))) $) 18)) (-2735 (((-645 (-645 (-645 (-945 |#1|)))) $) 19)) (-1770 (((-645 (-645 (-645 (-772)))) $) 20)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-2303 (((-772) $ (-645 (-945 |#1|))) 52)) (-2113 (((-112) $) 40)) (-3636 (($ $ (-645 (-945 |#1|))) 44) (($ $ (-645 (-645 |#1|))) 43) (($ (-645 (-945 |#1|))) 42) (((-645 (-945 |#1|)) $) 41)) (-1473 (($) 62) (($ (-1167 3 |#1|)) 61)) (-4309 (($ $) 53)) (-3750 (((-645 $) $) 54)) (-1409 (($ (-645 $)) 56)) (-1482 (((-645 $) $) 55)) (-4129 (((-863) $) 12)) (-2058 (((-112) $) 35)) (-2818 (($ $ (-645 (-945 |#1|))) 39) (($ $ (-645 (-645 |#1|))) 38) (($ (-645 (-945 |#1|))) 37) (((-645 (-945 |#1|)) $) 36)) (-2860 (($ $) 15)) (-3357 (((-112) $ $) 9)) (-2946 (((-112) $ $) 6)))
(((-1136 |#1|) (-140) (-1051)) (T -1136))
-((-4132 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-863)))) (-2306 (*1 *1) (-12 (-4 *1 (-1136 *2)) (-4 *2 (-1051)))) (-2306 (*1 *1 *2) (-12 (-5 *2 (-1166 3 *3)) (-4 *3 (-1051)) (-4 *1 (-1136 *3)))) (-3663 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-772)))) (-2842 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-772)))) (-4135 (*1 *1 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-1136 *3)) (-4 *3 (-1051)))) (-4135 (*1 *1 *1 *1) (-12 (-4 *1 (-1136 *2)) (-4 *2 (-1051)))) (-2159 (*1 *1 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-1136 *3)) (-4 *3 (-1051)))) (-2274 (*1 *2 *1) (-12 (-4 *3 (-1051)) (-5 *2 (-645 *1)) (-4 *1 (-1136 *3)))) (-2729 (*1 *2 *1) (-12 (-4 *3 (-1051)) (-5 *2 (-645 *1)) (-4 *1 (-1136 *3)))) (-4305 (*1 *1 *1) (-12 (-4 *1 (-1136 *2)) (-4 *2 (-1051)))) (-3357 (*1 *2 *1 *3) (-12 (-5 *3 (-645 (-945 *4))) (-4 *1 (-1136 *4)) (-4 *4 (-1051)) (-5 *2 (-772)))) (-1353 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-772)) (-5 *3 (-945 *4)) (-4 *1 (-1136 *4)) (-4 *4 (-1051)))) (-4371 (*1 *1 *1 *2) (-12 (-5 *2 (-945 *3)) (-4 *1 (-1136 *3)) (-4 *3 (-1051)))) (-4371 (*1 *1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *1 (-1136 *3)) (-4 *3 (-1051)))) (-4371 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1136 *3)) (-4 *3 (-1051)))) (-4371 (*1 *1 *2) (-12 (-5 *2 (-945 *3)) (-4 *3 (-1051)) (-4 *1 (-1136 *3)))) (-4371 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-945 *3)))) (-1857 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-112)))) (-1533 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-945 *3))) (-4 *1 (-1136 *3)) (-4 *3 (-1051)))) (-1533 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-645 *3))) (-4 *1 (-1136 *3)) (-4 *3 (-1051)))) (-1533 (*1 *1 *2) (-12 (-5 *2 (-645 (-945 *3))) (-4 *3 (-1051)) (-4 *1 (-1136 *3)))) (-1533 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-645 (-945 *3))))) (-1874 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-112)))) (-1979 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-945 *3))) (-4 *1 (-1136 *3)) (-4 *3 (-1051)))) (-1979 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-645 *3))) (-4 *1 (-1136 *3)) (-4 *3 (-1051)))) (-1979 (*1 *1 *2) (-12 (-5 *2 (-645 (-945 *3))) (-4 *3 (-1051)) (-4 *1 (-1136 *3)))) (-1979 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-645 (-945 *3))))) (-3295 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-112)))) (-3941 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-945 *3))) (-4 *1 (-1136 *3)) (-4 *3 (-1051)))) (-3941 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-645 *3))) (-4 *1 (-1136 *3)) (-4 *3 (-1051)))) (-3941 (*1 *1 *2) (-12 (-5 *2 (-645 (-945 *3))) (-4 *3 (-1051)) (-4 *1 (-1136 *3)))) (-3941 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-645 (-945 *3))))) (-1668 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-112)))) (-2164 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-645 (-645 (-945 *5)))) (-5 *3 (-645 (-171))) (-5 *4 (-171)) (-4 *1 (-1136 *5)) (-4 *5 (-1051)))) (-2164 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-645 (-645 (-645 *5)))) (-5 *3 (-645 (-171))) (-5 *4 (-171)) (-4 *1 (-1136 *5)) (-4 *5 (-1051)))) (-2164 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-645 (-645 (-945 *4)))) (-5 *3 (-112)) (-4 *1 (-1136 *4)) (-4 *4 (-1051)))) (-2164 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-645 (-645 (-645 *4)))) (-5 *3 (-112)) (-4 *1 (-1136 *4)) (-4 *4 (-1051)))) (-2164 (*1 *1 *2) (-12 (-5 *2 (-645 (-645 (-945 *3)))) (-4 *3 (-1051)) (-4 *1 (-1136 *3)))) (-2164 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-645 (-645 (-945 *4)))) (-5 *3 (-112)) (-4 *4 (-1051)) (-4 *1 (-1136 *4)))) (-2164 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-645 (-645 (-945 *3)))))) (-4131 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-112)))) (-3611 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-645 (-945 *3))))) (-3603 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-645 (-645 (-645 (-772))))))) (-3586 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-645 (-645 (-645 (-945 *3))))))) (-3076 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-645 (-645 (-171)))))) (-3557 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-645 (-171))))) (-3034 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-2 (|:| -3932 (-772)) (|:| |curves| (-772)) (|:| |polygons| (-772)) (|:| |constructs| (-772)))))) (-2177 (*1 *1 *1) (-12 (-4 *1 (-1136 *2)) (-4 *2 (-1051)))) (-1455 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-1166 3 *3)))))
-(-13 (-1102) (-10 -8 (-15 -2306 ($)) (-15 -2306 ($ (-1166 3 |t#1|))) (-15 -3663 ((-772) $)) (-15 -2842 ((-772) $)) (-15 -4135 ($ (-645 $))) (-15 -4135 ($ $ $)) (-15 -2159 ($ (-645 $))) (-15 -2274 ((-645 $) $)) (-15 -2729 ((-645 $) $)) (-15 -4305 ($ $)) (-15 -3357 ((-772) $ (-645 (-945 |t#1|)))) (-15 -1353 ($ $ (-772) (-945 |t#1|))) (-15 -4371 ($ $ (-945 |t#1|))) (-15 -4371 ($ $ (-645 |t#1|))) (-15 -4371 ($ $ (-772))) (-15 -4371 ($ (-945 |t#1|))) (-15 -4371 ((-945 |t#1|) $)) (-15 -1857 ((-112) $)) (-15 -1533 ($ $ (-645 (-945 |t#1|)))) (-15 -1533 ($ $ (-645 (-645 |t#1|)))) (-15 -1533 ($ (-645 (-945 |t#1|)))) (-15 -1533 ((-645 (-945 |t#1|)) $)) (-15 -1874 ((-112) $)) (-15 -1979 ($ $ (-645 (-945 |t#1|)))) (-15 -1979 ($ $ (-645 (-645 |t#1|)))) (-15 -1979 ($ (-645 (-945 |t#1|)))) (-15 -1979 ((-645 (-945 |t#1|)) $)) (-15 -3295 ((-112) $)) (-15 -3941 ($ $ (-645 (-945 |t#1|)))) (-15 -3941 ($ $ (-645 (-645 |t#1|)))) (-15 -3941 ($ (-645 (-945 |t#1|)))) (-15 -3941 ((-645 (-945 |t#1|)) $)) (-15 -1668 ((-112) $)) (-15 -2164 ($ $ (-645 (-645 (-945 |t#1|))) (-645 (-171)) (-171))) (-15 -2164 ($ $ (-645 (-645 (-645 |t#1|))) (-645 (-171)) (-171))) (-15 -2164 ($ $ (-645 (-645 (-945 |t#1|))) (-112) (-112))) (-15 -2164 ($ $ (-645 (-645 (-645 |t#1|))) (-112) (-112))) (-15 -2164 ($ (-645 (-645 (-945 |t#1|))))) (-15 -2164 ($ (-645 (-645 (-945 |t#1|))) (-112) (-112))) (-15 -2164 ((-645 (-645 (-945 |t#1|))) $)) (-15 -4131 ((-112) $)) (-15 -3611 ((-645 (-945 |t#1|)) $)) (-15 -3603 ((-645 (-645 (-645 (-772)))) $)) (-15 -3586 ((-645 (-645 (-645 (-945 |t#1|)))) $)) (-15 -3076 ((-645 (-645 (-171))) $)) (-15 -3557 ((-645 (-171)) $)) (-15 -3034 ((-2 (|:| -3932 (-772)) (|:| |curves| (-772)) (|:| |polygons| (-772)) (|:| |constructs| (-772))) $)) (-15 -2177 ($ $)) (-15 -1455 ((-1166 3 |t#1|) $)) (-15 -4132 ((-863) $))))
+((-4129 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-863)))) (-1473 (*1 *1) (-12 (-4 *1 (-1136 *2)) (-4 *2 (-1051)))) (-1473 (*1 *1 *2) (-12 (-5 *2 (-1167 3 *3)) (-4 *3 (-1051)) (-4 *1 (-1136 *3)))) (-2375 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-772)))) (-1856 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-772)))) (-2473 (*1 *1 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-1136 *3)) (-4 *3 (-1051)))) (-2473 (*1 *1 *1 *1) (-12 (-4 *1 (-1136 *2)) (-4 *2 (-1051)))) (-1409 (*1 *1 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-1136 *3)) (-4 *3 (-1051)))) (-1482 (*1 *2 *1) (-12 (-4 *3 (-1051)) (-5 *2 (-645 *1)) (-4 *1 (-1136 *3)))) (-3750 (*1 *2 *1) (-12 (-4 *3 (-1051)) (-5 *2 (-645 *1)) (-4 *1 (-1136 *3)))) (-4309 (*1 *1 *1) (-12 (-4 *1 (-1136 *2)) (-4 *2 (-1051)))) (-2303 (*1 *2 *1 *3) (-12 (-5 *3 (-645 (-945 *4))) (-4 *1 (-1136 *4)) (-4 *4 (-1051)) (-5 *2 (-772)))) (-2502 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-772)) (-5 *3 (-945 *4)) (-4 *1 (-1136 *4)) (-4 *4 (-1051)))) (-4385 (*1 *1 *1 *2) (-12 (-5 *2 (-945 *3)) (-4 *1 (-1136 *3)) (-4 *3 (-1051)))) (-4385 (*1 *1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *1 (-1136 *3)) (-4 *3 (-1051)))) (-4385 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1136 *3)) (-4 *3 (-1051)))) (-4385 (*1 *1 *2) (-12 (-5 *2 (-945 *3)) (-4 *3 (-1051)) (-4 *1 (-1136 *3)))) (-4385 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-945 *3)))) (-3907 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-112)))) (-3636 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-945 *3))) (-4 *1 (-1136 *3)) (-4 *3 (-1051)))) (-3636 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-645 *3))) (-4 *1 (-1136 *3)) (-4 *3 (-1051)))) (-3636 (*1 *1 *2) (-12 (-5 *2 (-645 (-945 *3))) (-4 *3 (-1051)) (-4 *1 (-1136 *3)))) (-3636 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-645 (-945 *3))))) (-2113 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-112)))) (-2818 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-945 *3))) (-4 *1 (-1136 *3)) (-4 *3 (-1051)))) (-2818 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-645 *3))) (-4 *1 (-1136 *3)) (-4 *3 (-1051)))) (-2818 (*1 *1 *2) (-12 (-5 *2 (-645 (-945 *3))) (-4 *3 (-1051)) (-4 *1 (-1136 *3)))) (-2818 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-645 (-945 *3))))) (-2058 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-112)))) (-2761 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-945 *3))) (-4 *1 (-1136 *3)) (-4 *3 (-1051)))) (-2761 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-645 *3))) (-4 *1 (-1136 *3)) (-4 *3 (-1051)))) (-2761 (*1 *1 *2) (-12 (-5 *2 (-645 (-945 *3))) (-4 *3 (-1051)) (-4 *1 (-1136 *3)))) (-2761 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-645 (-945 *3))))) (-3628 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-112)))) (-2281 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-645 (-645 (-945 *5)))) (-5 *3 (-645 (-171))) (-5 *4 (-171)) (-4 *1 (-1136 *5)) (-4 *5 (-1051)))) (-2281 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-645 (-645 (-645 *5)))) (-5 *3 (-645 (-171))) (-5 *4 (-171)) (-4 *1 (-1136 *5)) (-4 *5 (-1051)))) (-2281 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-645 (-645 (-945 *4)))) (-5 *3 (-112)) (-4 *1 (-1136 *4)) (-4 *4 (-1051)))) (-2281 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-645 (-645 (-645 *4)))) (-5 *3 (-112)) (-4 *1 (-1136 *4)) (-4 *4 (-1051)))) (-2281 (*1 *1 *2) (-12 (-5 *2 (-645 (-645 (-945 *3)))) (-4 *3 (-1051)) (-4 *1 (-1136 *3)))) (-2281 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-645 (-645 (-945 *4)))) (-5 *3 (-112)) (-4 *4 (-1051)) (-4 *1 (-1136 *4)))) (-2281 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-645 (-645 (-945 *3)))))) (-2175 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-112)))) (-3632 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-645 (-945 *3))))) (-1770 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-645 (-645 (-645 (-772))))))) (-2735 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-645 (-645 (-645 (-945 *3))))))) (-2983 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-645 (-645 (-171)))))) (-3129 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-645 (-171))))) (-3056 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-2 (|:| -3941 (-772)) (|:| |curves| (-772)) (|:| |polygons| (-772)) (|:| |constructs| (-772)))))) (-2860 (*1 *1 *1) (-12 (-4 *1 (-1136 *2)) (-4 *2 (-1051)))) (-2095 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-1167 3 *3)))))
+(-13 (-1102) (-10 -8 (-15 -1473 ($)) (-15 -1473 ($ (-1167 3 |t#1|))) (-15 -2375 ((-772) $)) (-15 -1856 ((-772) $)) (-15 -2473 ($ (-645 $))) (-15 -2473 ($ $ $)) (-15 -1409 ($ (-645 $))) (-15 -1482 ((-645 $) $)) (-15 -3750 ((-645 $) $)) (-15 -4309 ($ $)) (-15 -2303 ((-772) $ (-645 (-945 |t#1|)))) (-15 -2502 ($ $ (-772) (-945 |t#1|))) (-15 -4385 ($ $ (-945 |t#1|))) (-15 -4385 ($ $ (-645 |t#1|))) (-15 -4385 ($ $ (-772))) (-15 -4385 ($ (-945 |t#1|))) (-15 -4385 ((-945 |t#1|) $)) (-15 -3907 ((-112) $)) (-15 -3636 ($ $ (-645 (-945 |t#1|)))) (-15 -3636 ($ $ (-645 (-645 |t#1|)))) (-15 -3636 ($ (-645 (-945 |t#1|)))) (-15 -3636 ((-645 (-945 |t#1|)) $)) (-15 -2113 ((-112) $)) (-15 -2818 ($ $ (-645 (-945 |t#1|)))) (-15 -2818 ($ $ (-645 (-645 |t#1|)))) (-15 -2818 ($ (-645 (-945 |t#1|)))) (-15 -2818 ((-645 (-945 |t#1|)) $)) (-15 -2058 ((-112) $)) (-15 -2761 ($ $ (-645 (-945 |t#1|)))) (-15 -2761 ($ $ (-645 (-645 |t#1|)))) (-15 -2761 ($ (-645 (-945 |t#1|)))) (-15 -2761 ((-645 (-945 |t#1|)) $)) (-15 -3628 ((-112) $)) (-15 -2281 ($ $ (-645 (-645 (-945 |t#1|))) (-645 (-171)) (-171))) (-15 -2281 ($ $ (-645 (-645 (-645 |t#1|))) (-645 (-171)) (-171))) (-15 -2281 ($ $ (-645 (-645 (-945 |t#1|))) (-112) (-112))) (-15 -2281 ($ $ (-645 (-645 (-645 |t#1|))) (-112) (-112))) (-15 -2281 ($ (-645 (-645 (-945 |t#1|))))) (-15 -2281 ($ (-645 (-645 (-945 |t#1|))) (-112) (-112))) (-15 -2281 ((-645 (-645 (-945 |t#1|))) $)) (-15 -2175 ((-112) $)) (-15 -3632 ((-645 (-945 |t#1|)) $)) (-15 -1770 ((-645 (-645 (-645 (-772)))) $)) (-15 -2735 ((-645 (-645 (-645 (-945 |t#1|)))) $)) (-15 -2983 ((-645 (-645 (-171))) $)) (-15 -3129 ((-645 (-171)) $)) (-15 -3056 ((-2 (|:| -3941 (-772)) (|:| |curves| (-772)) (|:| |polygons| (-772)) (|:| |constructs| (-772))) $)) (-15 -2860 ($ $)) (-15 -2095 ((-1167 3 |t#1|) $)) (-15 -4129 ((-863) $))))
(((-102) . T) ((-614 (-863)) . T) ((-1102) . T))
-((-2403 (((-112) $ $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 174) (($ (-1183)) NIL) (((-1183) $) 7)) (-1702 (((-112) $ (|[\|\|]| (-527))) 19) (((-112) $ (|[\|\|]| (-218))) 23) (((-112) $ (|[\|\|]| (-677))) 27) (((-112) $ (|[\|\|]| (-1278))) 31) (((-112) $ (|[\|\|]| (-138))) 35) (((-112) $ (|[\|\|]| (-133))) 39) (((-112) $ (|[\|\|]| (-1117))) 43) (((-112) $ (|[\|\|]| (-96))) 47) (((-112) $ (|[\|\|]| (-682))) 51) (((-112) $ (|[\|\|]| (-520))) 55) (((-112) $ (|[\|\|]| (-1068))) 59) (((-112) $ (|[\|\|]| (-1279))) 63) (((-112) $ (|[\|\|]| (-528))) 67) (((-112) $ (|[\|\|]| (-154))) 71) (((-112) $ (|[\|\|]| (-672))) 75) (((-112) $ (|[\|\|]| (-312))) 79) (((-112) $ (|[\|\|]| (-1038))) 83) (((-112) $ (|[\|\|]| (-180))) 87) (((-112) $ (|[\|\|]| (-972))) 91) (((-112) $ (|[\|\|]| (-1075))) 95) (((-112) $ (|[\|\|]| (-1092))) 99) (((-112) $ (|[\|\|]| (-1098))) 103) (((-112) $ (|[\|\|]| (-627))) 107) (((-112) $ (|[\|\|]| (-1168))) 111) (((-112) $ (|[\|\|]| (-156))) 115) (((-112) $ (|[\|\|]| (-137))) 119) (((-112) $ (|[\|\|]| (-481))) 123) (((-112) $ (|[\|\|]| (-594))) 127) (((-112) $ (|[\|\|]| (-509))) 131) (((-112) $ (|[\|\|]| (-1160))) 135) (((-112) $ (|[\|\|]| (-567))) 139)) (-1745 (((-112) $ $) NIL)) (-2523 (((-527) $) 20) (((-218) $) 24) (((-677) $) 28) (((-1278) $) 32) (((-138) $) 36) (((-133) $) 40) (((-1117) $) 44) (((-96) $) 48) (((-682) $) 52) (((-520) $) 56) (((-1068) $) 60) (((-1279) $) 64) (((-528) $) 68) (((-154) $) 72) (((-672) $) 76) (((-312) $) 80) (((-1038) $) 84) (((-180) $) 88) (((-972) $) 92) (((-1075) $) 96) (((-1092) $) 100) (((-1098) $) 104) (((-627) $) 108) (((-1168) $) 112) (((-156) $) 116) (((-137) $) 120) (((-481) $) 124) (((-594) $) 128) (((-509) $) 132) (((-1160) $) 136) (((-567) $) 140)) (-2936 (((-112) $ $) NIL)))
+((-2412 (((-112) $ $) NIL)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) 179) (($ (-1184)) NIL) (((-1184) $) 7)) (-1719 (((-112) $ (|[\|\|]| (-527))) 19) (((-112) $ (|[\|\|]| (-218))) 23) (((-112) $ (|[\|\|]| (-677))) 27) (((-112) $ (|[\|\|]| (-1279))) 31) (((-112) $ (|[\|\|]| (-138))) 35) (((-112) $ (|[\|\|]| (-133))) 39) (((-112) $ (|[\|\|]| (-1117))) 43) (((-112) $ (|[\|\|]| (-96))) 47) (((-112) $ (|[\|\|]| (-682))) 51) (((-112) $ (|[\|\|]| (-520))) 55) (((-112) $ (|[\|\|]| (-1068))) 59) (((-112) $ (|[\|\|]| (-1280))) 63) (((-112) $ (|[\|\|]| (-528))) 67) (((-112) $ (|[\|\|]| (-1153))) 71) (((-112) $ (|[\|\|]| (-154))) 75) (((-112) $ (|[\|\|]| (-672))) 79) (((-112) $ (|[\|\|]| (-312))) 83) (((-112) $ (|[\|\|]| (-1038))) 87) (((-112) $ (|[\|\|]| (-180))) 91) (((-112) $ (|[\|\|]| (-972))) 95) (((-112) $ (|[\|\|]| (-1075))) 99) (((-112) $ (|[\|\|]| (-1092))) 103) (((-112) $ (|[\|\|]| (-1098))) 107) (((-112) $ (|[\|\|]| (-627))) 111) (((-112) $ (|[\|\|]| (-1169))) 115) (((-112) $ (|[\|\|]| (-156))) 119) (((-112) $ (|[\|\|]| (-137))) 123) (((-112) $ (|[\|\|]| (-481))) 127) (((-112) $ (|[\|\|]| (-594))) 131) (((-112) $ (|[\|\|]| (-509))) 135) (((-112) $ (|[\|\|]| (-1161))) 139) (((-112) $ (|[\|\|]| (-567))) 143)) (-3357 (((-112) $ $) NIL)) (-2533 (((-527) $) 20) (((-218) $) 24) (((-677) $) 28) (((-1279) $) 32) (((-138) $) 36) (((-133) $) 40) (((-1117) $) 44) (((-96) $) 48) (((-682) $) 52) (((-520) $) 56) (((-1068) $) 60) (((-1280) $) 64) (((-528) $) 68) (((-1153) $) 72) (((-154) $) 76) (((-672) $) 80) (((-312) $) 84) (((-1038) $) 88) (((-180) $) 92) (((-972) $) 96) (((-1075) $) 100) (((-1092) $) 104) (((-1098) $) 108) (((-627) $) 112) (((-1169) $) 116) (((-156) $) 120) (((-137) $) 124) (((-481) $) 128) (((-594) $) 132) (((-509) $) 136) (((-1161) $) 140) (((-567) $) 144)) (-2946 (((-112) $ $) NIL)))
(((-1137) (-1139)) (T -1137))
NIL
(-1139)
-((-1842 (((-645 (-1183)) (-1160)) 9)))
-(((-1138) (-10 -7 (-15 -1842 ((-645 (-1183)) (-1160))))) (T -1138))
-((-1842 (*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-645 (-1183))) (-5 *1 (-1138)))))
-(-10 -7 (-15 -1842 ((-645 (-1183)) (-1160))))
-((-2403 (((-112) $ $) 7)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12) (($ (-1183)) 17) (((-1183) $) 16)) (-1702 (((-112) $ (|[\|\|]| (-527))) 81) (((-112) $ (|[\|\|]| (-218))) 79) (((-112) $ (|[\|\|]| (-677))) 77) (((-112) $ (|[\|\|]| (-1278))) 75) (((-112) $ (|[\|\|]| (-138))) 73) (((-112) $ (|[\|\|]| (-133))) 71) (((-112) $ (|[\|\|]| (-1117))) 69) (((-112) $ (|[\|\|]| (-96))) 67) (((-112) $ (|[\|\|]| (-682))) 65) (((-112) $ (|[\|\|]| (-520))) 63) (((-112) $ (|[\|\|]| (-1068))) 61) (((-112) $ (|[\|\|]| (-1279))) 59) (((-112) $ (|[\|\|]| (-528))) 57) (((-112) $ (|[\|\|]| (-154))) 55) (((-112) $ (|[\|\|]| (-672))) 53) (((-112) $ (|[\|\|]| (-312))) 51) (((-112) $ (|[\|\|]| (-1038))) 49) (((-112) $ (|[\|\|]| (-180))) 47) (((-112) $ (|[\|\|]| (-972))) 45) (((-112) $ (|[\|\|]| (-1075))) 43) (((-112) $ (|[\|\|]| (-1092))) 41) (((-112) $ (|[\|\|]| (-1098))) 39) (((-112) $ (|[\|\|]| (-627))) 37) (((-112) $ (|[\|\|]| (-1168))) 35) (((-112) $ (|[\|\|]| (-156))) 33) (((-112) $ (|[\|\|]| (-137))) 31) (((-112) $ (|[\|\|]| (-481))) 29) (((-112) $ (|[\|\|]| (-594))) 27) (((-112) $ (|[\|\|]| (-509))) 25) (((-112) $ (|[\|\|]| (-1160))) 23) (((-112) $ (|[\|\|]| (-567))) 21)) (-1745 (((-112) $ $) 9)) (-2523 (((-527) $) 80) (((-218) $) 78) (((-677) $) 76) (((-1278) $) 74) (((-138) $) 72) (((-133) $) 70) (((-1117) $) 68) (((-96) $) 66) (((-682) $) 64) (((-520) $) 62) (((-1068) $) 60) (((-1279) $) 58) (((-528) $) 56) (((-154) $) 54) (((-672) $) 52) (((-312) $) 50) (((-1038) $) 48) (((-180) $) 46) (((-972) $) 44) (((-1075) $) 42) (((-1092) $) 40) (((-1098) $) 38) (((-627) $) 36) (((-1168) $) 34) (((-156) $) 32) (((-137) $) 30) (((-481) $) 28) (((-594) $) 26) (((-509) $) 24) (((-1160) $) 22) (((-567) $) 20)) (-2936 (((-112) $ $) 6)))
+((-1857 (((-645 (-1184)) (-1161)) 9)))
+(((-1138) (-10 -7 (-15 -1857 ((-645 (-1184)) (-1161))))) (T -1138))
+((-1857 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-645 (-1184))) (-5 *1 (-1138)))))
+(-10 -7 (-15 -1857 ((-645 (-1184)) (-1161))))
+((-2412 (((-112) $ $) 7)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-4129 (((-863) $) 12) (($ (-1184)) 17) (((-1184) $) 16)) (-1719 (((-112) $ (|[\|\|]| (-527))) 83) (((-112) $ (|[\|\|]| (-218))) 81) (((-112) $ (|[\|\|]| (-677))) 79) (((-112) $ (|[\|\|]| (-1279))) 77) (((-112) $ (|[\|\|]| (-138))) 75) (((-112) $ (|[\|\|]| (-133))) 73) (((-112) $ (|[\|\|]| (-1117))) 71) (((-112) $ (|[\|\|]| (-96))) 69) (((-112) $ (|[\|\|]| (-682))) 67) (((-112) $ (|[\|\|]| (-520))) 65) (((-112) $ (|[\|\|]| (-1068))) 63) (((-112) $ (|[\|\|]| (-1280))) 61) (((-112) $ (|[\|\|]| (-528))) 59) (((-112) $ (|[\|\|]| (-1153))) 57) (((-112) $ (|[\|\|]| (-154))) 55) (((-112) $ (|[\|\|]| (-672))) 53) (((-112) $ (|[\|\|]| (-312))) 51) (((-112) $ (|[\|\|]| (-1038))) 49) (((-112) $ (|[\|\|]| (-180))) 47) (((-112) $ (|[\|\|]| (-972))) 45) (((-112) $ (|[\|\|]| (-1075))) 43) (((-112) $ (|[\|\|]| (-1092))) 41) (((-112) $ (|[\|\|]| (-1098))) 39) (((-112) $ (|[\|\|]| (-627))) 37) (((-112) $ (|[\|\|]| (-1169))) 35) (((-112) $ (|[\|\|]| (-156))) 33) (((-112) $ (|[\|\|]| (-137))) 31) (((-112) $ (|[\|\|]| (-481))) 29) (((-112) $ (|[\|\|]| (-594))) 27) (((-112) $ (|[\|\|]| (-509))) 25) (((-112) $ (|[\|\|]| (-1161))) 23) (((-112) $ (|[\|\|]| (-567))) 21)) (-3357 (((-112) $ $) 9)) (-2533 (((-527) $) 82) (((-218) $) 80) (((-677) $) 78) (((-1279) $) 76) (((-138) $) 74) (((-133) $) 72) (((-1117) $) 70) (((-96) $) 68) (((-682) $) 66) (((-520) $) 64) (((-1068) $) 62) (((-1280) $) 60) (((-528) $) 58) (((-1153) $) 56) (((-154) $) 54) (((-672) $) 52) (((-312) $) 50) (((-1038) $) 48) (((-180) $) 46) (((-972) $) 44) (((-1075) $) 42) (((-1092) $) 40) (((-1098) $) 38) (((-627) $) 36) (((-1169) $) 34) (((-156) $) 32) (((-137) $) 30) (((-481) $) 28) (((-594) $) 26) (((-509) $) 24) (((-1161) $) 22) (((-567) $) 20)) (-2946 (((-112) $ $) 6)))
(((-1139) (-140)) (T -1139))
-((-1702 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-527))) (-5 *2 (-112)))) (-2523 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-527)))) (-1702 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-218))) (-5 *2 (-112)))) (-2523 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-218)))) (-1702 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-677))) (-5 *2 (-112)))) (-2523 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-677)))) (-1702 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-1278))) (-5 *2 (-112)))) (-2523 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-1278)))) (-1702 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) (-2523 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-138)))) (-1702 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-133))) (-5 *2 (-112)))) (-2523 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-133)))) (-1702 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-1117))) (-5 *2 (-112)))) (-2523 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-1117)))) (-1702 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) (-2523 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-96)))) (-1702 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-682))) (-5 *2 (-112)))) (-2523 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-682)))) (-1702 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-520))) (-5 *2 (-112)))) (-2523 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-520)))) (-1702 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-1068))) (-5 *2 (-112)))) (-2523 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-1068)))) (-1702 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-1279))) (-5 *2 (-112)))) (-2523 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-1279)))) (-1702 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-528))) (-5 *2 (-112)))) (-2523 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-528)))) (-1702 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112)))) (-2523 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-154)))) (-1702 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-672))) (-5 *2 (-112)))) (-2523 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-672)))) (-1702 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-312))) (-5 *2 (-112)))) (-2523 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-312)))) (-1702 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-1038))) (-5 *2 (-112)))) (-2523 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-1038)))) (-1702 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-180))) (-5 *2 (-112)))) (-2523 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-180)))) (-1702 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-972))) (-5 *2 (-112)))) (-2523 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-972)))) (-1702 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-1075))) (-5 *2 (-112)))) (-2523 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-1075)))) (-1702 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-1092))) (-5 *2 (-112)))) (-2523 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-1092)))) (-1702 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-1098))) (-5 *2 (-112)))) (-2523 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-1098)))) (-1702 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-627))) (-5 *2 (-112)))) (-2523 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-627)))) (-1702 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-1168))) (-5 *2 (-112)))) (-2523 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-1168)))) (-1702 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-156))) (-5 *2 (-112)))) (-2523 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-156)))) (-1702 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) (-2523 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-137)))) (-1702 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-481))) (-5 *2 (-112)))) (-2523 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-481)))) (-1702 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-594))) (-5 *2 (-112)))) (-2523 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-594)))) (-1702 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-509))) (-5 *2 (-112)))) (-2523 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-509)))) (-1702 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-1160))) (-5 *2 (-112)))) (-2523 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-1160)))) (-1702 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-567))) (-5 *2 (-112)))) (-2523 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-567)))))
-(-13 (-1085) (-1263) (-10 -8 (-15 -1702 ((-112) $ (|[\|\|]| (-527)))) (-15 -2523 ((-527) $)) (-15 -1702 ((-112) $ (|[\|\|]| (-218)))) (-15 -2523 ((-218) $)) (-15 -1702 ((-112) $ (|[\|\|]| (-677)))) (-15 -2523 ((-677) $)) (-15 -1702 ((-112) $ (|[\|\|]| (-1278)))) (-15 -2523 ((-1278) $)) (-15 -1702 ((-112) $ (|[\|\|]| (-138)))) (-15 -2523 ((-138) $)) (-15 -1702 ((-112) $ (|[\|\|]| (-133)))) (-15 -2523 ((-133) $)) (-15 -1702 ((-112) $ (|[\|\|]| (-1117)))) (-15 -2523 ((-1117) $)) (-15 -1702 ((-112) $ (|[\|\|]| (-96)))) (-15 -2523 ((-96) $)) (-15 -1702 ((-112) $ (|[\|\|]| (-682)))) (-15 -2523 ((-682) $)) (-15 -1702 ((-112) $ (|[\|\|]| (-520)))) (-15 -2523 ((-520) $)) (-15 -1702 ((-112) $ (|[\|\|]| (-1068)))) (-15 -2523 ((-1068) $)) (-15 -1702 ((-112) $ (|[\|\|]| (-1279)))) (-15 -2523 ((-1279) $)) (-15 -1702 ((-112) $ (|[\|\|]| (-528)))) (-15 -2523 ((-528) $)) (-15 -1702 ((-112) $ (|[\|\|]| (-154)))) (-15 -2523 ((-154) $)) (-15 -1702 ((-112) $ (|[\|\|]| (-672)))) (-15 -2523 ((-672) $)) (-15 -1702 ((-112) $ (|[\|\|]| (-312)))) (-15 -2523 ((-312) $)) (-15 -1702 ((-112) $ (|[\|\|]| (-1038)))) (-15 -2523 ((-1038) $)) (-15 -1702 ((-112) $ (|[\|\|]| (-180)))) (-15 -2523 ((-180) $)) (-15 -1702 ((-112) $ (|[\|\|]| (-972)))) (-15 -2523 ((-972) $)) (-15 -1702 ((-112) $ (|[\|\|]| (-1075)))) (-15 -2523 ((-1075) $)) (-15 -1702 ((-112) $ (|[\|\|]| (-1092)))) (-15 -2523 ((-1092) $)) (-15 -1702 ((-112) $ (|[\|\|]| (-1098)))) (-15 -2523 ((-1098) $)) (-15 -1702 ((-112) $ (|[\|\|]| (-627)))) (-15 -2523 ((-627) $)) (-15 -1702 ((-112) $ (|[\|\|]| (-1168)))) (-15 -2523 ((-1168) $)) (-15 -1702 ((-112) $ (|[\|\|]| (-156)))) (-15 -2523 ((-156) $)) (-15 -1702 ((-112) $ (|[\|\|]| (-137)))) (-15 -2523 ((-137) $)) (-15 -1702 ((-112) $ (|[\|\|]| (-481)))) (-15 -2523 ((-481) $)) (-15 -1702 ((-112) $ (|[\|\|]| (-594)))) (-15 -2523 ((-594) $)) (-15 -1702 ((-112) $ (|[\|\|]| (-509)))) (-15 -2523 ((-509) $)) (-15 -1702 ((-112) $ (|[\|\|]| (-1160)))) (-15 -2523 ((-1160) $)) (-15 -1702 ((-112) $ (|[\|\|]| (-567)))) (-15 -2523 ((-567) $))))
-(((-93) . T) ((-102) . T) ((-617 #0=(-1183)) . T) ((-614 (-863)) . T) ((-614 #0#) . T) ((-493 #0#) . T) ((-1102) . T) ((-1085) . T) ((-1263) . T))
-((-3540 (((-1273) (-645 (-863))) 23) (((-1273) (-863)) 22)) (-3161 (((-1273) (-645 (-863))) 21) (((-1273) (-863)) 20)) (-1453 (((-1273) (-645 (-863))) 19) (((-1273) (-863)) 11) (((-1273) (-1160) (-863)) 17)))
-(((-1140) (-10 -7 (-15 -1453 ((-1273) (-1160) (-863))) (-15 -1453 ((-1273) (-863))) (-15 -3161 ((-1273) (-863))) (-15 -3540 ((-1273) (-863))) (-15 -1453 ((-1273) (-645 (-863)))) (-15 -3161 ((-1273) (-645 (-863)))) (-15 -3540 ((-1273) (-645 (-863)))))) (T -1140))
-((-3540 (*1 *2 *3) (-12 (-5 *3 (-645 (-863))) (-5 *2 (-1273)) (-5 *1 (-1140)))) (-3161 (*1 *2 *3) (-12 (-5 *3 (-645 (-863))) (-5 *2 (-1273)) (-5 *1 (-1140)))) (-1453 (*1 *2 *3) (-12 (-5 *3 (-645 (-863))) (-5 *2 (-1273)) (-5 *1 (-1140)))) (-3540 (*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1273)) (-5 *1 (-1140)))) (-3161 (*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1273)) (-5 *1 (-1140)))) (-1453 (*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1273)) (-5 *1 (-1140)))) (-1453 (*1 *2 *3 *4) (-12 (-5 *3 (-1160)) (-5 *4 (-863)) (-5 *2 (-1273)) (-5 *1 (-1140)))))
-(-10 -7 (-15 -1453 ((-1273) (-1160) (-863))) (-15 -1453 ((-1273) (-863))) (-15 -3161 ((-1273) (-863))) (-15 -3540 ((-1273) (-863))) (-15 -1453 ((-1273) (-645 (-863)))) (-15 -3161 ((-1273) (-645 (-863)))) (-15 -3540 ((-1273) (-645 (-863)))))
-((-2387 (($ $ $) 10)) (-4275 (($ $) 9)) (-3031 (($ $ $) 13)) (-2030 (($ $ $) 15)) (-3913 (($ $ $) 12)) (-2944 (($ $ $) 14)) (-3382 (($ $) 17)) (-4023 (($ $) 16)) (-2219 (($ $) 6)) (-1890 (($ $ $) 11) (($ $) 7)) (-3944 (($ $ $) 8)))
+((-1719 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-527))) (-5 *2 (-112)))) (-2533 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-527)))) (-1719 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-218))) (-5 *2 (-112)))) (-2533 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-218)))) (-1719 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-677))) (-5 *2 (-112)))) (-2533 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-677)))) (-1719 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-1279))) (-5 *2 (-112)))) (-2533 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-1279)))) (-1719 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) (-2533 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-138)))) (-1719 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-133))) (-5 *2 (-112)))) (-2533 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-133)))) (-1719 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-1117))) (-5 *2 (-112)))) (-2533 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-1117)))) (-1719 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) (-2533 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-96)))) (-1719 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-682))) (-5 *2 (-112)))) (-2533 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-682)))) (-1719 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-520))) (-5 *2 (-112)))) (-2533 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-520)))) (-1719 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-1068))) (-5 *2 (-112)))) (-2533 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-1068)))) (-1719 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-1280))) (-5 *2 (-112)))) (-2533 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-1280)))) (-1719 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-528))) (-5 *2 (-112)))) (-2533 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-528)))) (-1719 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-1153))) (-5 *2 (-112)))) (-2533 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-1153)))) (-1719 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112)))) (-2533 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-154)))) (-1719 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-672))) (-5 *2 (-112)))) (-2533 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-672)))) (-1719 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-312))) (-5 *2 (-112)))) (-2533 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-312)))) (-1719 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-1038))) (-5 *2 (-112)))) (-2533 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-1038)))) (-1719 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-180))) (-5 *2 (-112)))) (-2533 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-180)))) (-1719 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-972))) (-5 *2 (-112)))) (-2533 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-972)))) (-1719 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-1075))) (-5 *2 (-112)))) (-2533 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-1075)))) (-1719 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-1092))) (-5 *2 (-112)))) (-2533 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-1092)))) (-1719 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-1098))) (-5 *2 (-112)))) (-2533 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-1098)))) (-1719 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-627))) (-5 *2 (-112)))) (-2533 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-627)))) (-1719 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-1169))) (-5 *2 (-112)))) (-2533 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-1169)))) (-1719 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-156))) (-5 *2 (-112)))) (-2533 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-156)))) (-1719 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) (-2533 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-137)))) (-1719 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-481))) (-5 *2 (-112)))) (-2533 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-481)))) (-1719 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-594))) (-5 *2 (-112)))) (-2533 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-594)))) (-1719 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-509))) (-5 *2 (-112)))) (-2533 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-509)))) (-1719 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-1161))) (-5 *2 (-112)))) (-2533 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-1161)))) (-1719 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-567))) (-5 *2 (-112)))) (-2533 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-567)))))
+(-13 (-1085) (-1264) (-10 -8 (-15 -1719 ((-112) $ (|[\|\|]| (-527)))) (-15 -2533 ((-527) $)) (-15 -1719 ((-112) $ (|[\|\|]| (-218)))) (-15 -2533 ((-218) $)) (-15 -1719 ((-112) $ (|[\|\|]| (-677)))) (-15 -2533 ((-677) $)) (-15 -1719 ((-112) $ (|[\|\|]| (-1279)))) (-15 -2533 ((-1279) $)) (-15 -1719 ((-112) $ (|[\|\|]| (-138)))) (-15 -2533 ((-138) $)) (-15 -1719 ((-112) $ (|[\|\|]| (-133)))) (-15 -2533 ((-133) $)) (-15 -1719 ((-112) $ (|[\|\|]| (-1117)))) (-15 -2533 ((-1117) $)) (-15 -1719 ((-112) $ (|[\|\|]| (-96)))) (-15 -2533 ((-96) $)) (-15 -1719 ((-112) $ (|[\|\|]| (-682)))) (-15 -2533 ((-682) $)) (-15 -1719 ((-112) $ (|[\|\|]| (-520)))) (-15 -2533 ((-520) $)) (-15 -1719 ((-112) $ (|[\|\|]| (-1068)))) (-15 -2533 ((-1068) $)) (-15 -1719 ((-112) $ (|[\|\|]| (-1280)))) (-15 -2533 ((-1280) $)) (-15 -1719 ((-112) $ (|[\|\|]| (-528)))) (-15 -2533 ((-528) $)) (-15 -1719 ((-112) $ (|[\|\|]| (-1153)))) (-15 -2533 ((-1153) $)) (-15 -1719 ((-112) $ (|[\|\|]| (-154)))) (-15 -2533 ((-154) $)) (-15 -1719 ((-112) $ (|[\|\|]| (-672)))) (-15 -2533 ((-672) $)) (-15 -1719 ((-112) $ (|[\|\|]| (-312)))) (-15 -2533 ((-312) $)) (-15 -1719 ((-112) $ (|[\|\|]| (-1038)))) (-15 -2533 ((-1038) $)) (-15 -1719 ((-112) $ (|[\|\|]| (-180)))) (-15 -2533 ((-180) $)) (-15 -1719 ((-112) $ (|[\|\|]| (-972)))) (-15 -2533 ((-972) $)) (-15 -1719 ((-112) $ (|[\|\|]| (-1075)))) (-15 -2533 ((-1075) $)) (-15 -1719 ((-112) $ (|[\|\|]| (-1092)))) (-15 -2533 ((-1092) $)) (-15 -1719 ((-112) $ (|[\|\|]| (-1098)))) (-15 -2533 ((-1098) $)) (-15 -1719 ((-112) $ (|[\|\|]| (-627)))) (-15 -2533 ((-627) $)) (-15 -1719 ((-112) $ (|[\|\|]| (-1169)))) (-15 -2533 ((-1169) $)) (-15 -1719 ((-112) $ (|[\|\|]| (-156)))) (-15 -2533 ((-156) $)) (-15 -1719 ((-112) $ (|[\|\|]| (-137)))) (-15 -2533 ((-137) $)) (-15 -1719 ((-112) $ (|[\|\|]| (-481)))) (-15 -2533 ((-481) $)) (-15 -1719 ((-112) $ (|[\|\|]| (-594)))) (-15 -2533 ((-594) $)) (-15 -1719 ((-112) $ (|[\|\|]| (-509)))) (-15 -2533 ((-509) $)) (-15 -1719 ((-112) $ (|[\|\|]| (-1161)))) (-15 -2533 ((-1161) $)) (-15 -1719 ((-112) $ (|[\|\|]| (-567)))) (-15 -2533 ((-567) $))))
+(((-93) . T) ((-102) . T) ((-617 #0=(-1184)) . T) ((-614 (-863)) . T) ((-614 #0#) . T) ((-493 #0#) . T) ((-1102) . T) ((-1085) . T) ((-1264) . T))
+((-3414 (((-1274) (-645 (-863))) 23) (((-1274) (-863)) 22)) (-1620 (((-1274) (-645 (-863))) 21) (((-1274) (-863)) 20)) (-1466 (((-1274) (-645 (-863))) 19) (((-1274) (-863)) 11) (((-1274) (-1161) (-863)) 17)))
+(((-1140) (-10 -7 (-15 -1466 ((-1274) (-1161) (-863))) (-15 -1466 ((-1274) (-863))) (-15 -1620 ((-1274) (-863))) (-15 -3414 ((-1274) (-863))) (-15 -1466 ((-1274) (-645 (-863)))) (-15 -1620 ((-1274) (-645 (-863)))) (-15 -3414 ((-1274) (-645 (-863)))))) (T -1140))
+((-3414 (*1 *2 *3) (-12 (-5 *3 (-645 (-863))) (-5 *2 (-1274)) (-5 *1 (-1140)))) (-1620 (*1 *2 *3) (-12 (-5 *3 (-645 (-863))) (-5 *2 (-1274)) (-5 *1 (-1140)))) (-1466 (*1 *2 *3) (-12 (-5 *3 (-645 (-863))) (-5 *2 (-1274)) (-5 *1 (-1140)))) (-3414 (*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1274)) (-5 *1 (-1140)))) (-1620 (*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1274)) (-5 *1 (-1140)))) (-1466 (*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1274)) (-5 *1 (-1140)))) (-1466 (*1 *2 *3 *4) (-12 (-5 *3 (-1161)) (-5 *4 (-863)) (-5 *2 (-1274)) (-5 *1 (-1140)))))
+(-10 -7 (-15 -1466 ((-1274) (-1161) (-863))) (-15 -1466 ((-1274) (-863))) (-15 -1620 ((-1274) (-863))) (-15 -3414 ((-1274) (-863))) (-15 -1466 ((-1274) (-645 (-863)))) (-15 -1620 ((-1274) (-645 (-863)))) (-15 -3414 ((-1274) (-645 (-863)))))
+((-1414 (($ $ $) 10)) (-3514 (($ $) 9)) (-3534 (($ $ $) 13)) (-1713 (($ $ $) 15)) (-2704 (($ $ $) 12)) (-4126 (($ $ $) 14)) (-2219 (($ $) 17)) (-2682 (($ $) 16)) (-1547 (($ $) 6)) (-3290 (($ $ $) 11) (($ $) 7)) (-3095 (($ $ $) 8)))
(((-1141) (-140)) (T -1141))
-((-3382 (*1 *1 *1) (-4 *1 (-1141))) (-4023 (*1 *1 *1) (-4 *1 (-1141))) (-2030 (*1 *1 *1 *1) (-4 *1 (-1141))) (-2944 (*1 *1 *1 *1) (-4 *1 (-1141))) (-3031 (*1 *1 *1 *1) (-4 *1 (-1141))) (-3913 (*1 *1 *1 *1) (-4 *1 (-1141))) (-1890 (*1 *1 *1 *1) (-4 *1 (-1141))) (-2387 (*1 *1 *1 *1) (-4 *1 (-1141))) (-4275 (*1 *1 *1) (-4 *1 (-1141))) (-3944 (*1 *1 *1 *1) (-4 *1 (-1141))) (-1890 (*1 *1 *1) (-4 *1 (-1141))) (-2219 (*1 *1 *1) (-4 *1 (-1141))))
-(-13 (-10 -8 (-15 -2219 ($ $)) (-15 -1890 ($ $)) (-15 -3944 ($ $ $)) (-15 -4275 ($ $)) (-15 -2387 ($ $ $)) (-15 -1890 ($ $ $)) (-15 -3913 ($ $ $)) (-15 -3031 ($ $ $)) (-15 -2944 ($ $ $)) (-15 -2030 ($ $ $)) (-15 -4023 ($ $)) (-15 -3382 ($ $))))
-((-2403 (((-112) $ $) 44)) (-3802 ((|#1| $) 17)) (-1808 (((-112) $ $ (-1 (-112) |#2| |#2|)) 39)) (-2913 (((-112) $) 19)) (-2838 (($ $ |#1|) 30)) (-4042 (($ $ (-112)) 32)) (-3620 (($ $) 33)) (-2647 (($ $ |#2|) 31)) (-1419 (((-1160) $) NIL)) (-2139 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 38)) (-3430 (((-1122) $) NIL)) (-3572 (((-112) $) 16)) (-3498 (($) 13)) (-4305 (($ $) 29)) (-4147 (($ |#1| |#2| (-112)) 20) (($ |#1| |#2|) 21) (($ (-2 (|:| |val| |#1|) (|:| -2566 |#2|))) 23) (((-645 $) (-645 (-2 (|:| |val| |#1|) (|:| -2566 |#2|)))) 26) (((-645 $) |#1| (-645 |#2|)) 28)) (-2055 ((|#2| $) 18)) (-4132 (((-863) $) 53)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 42)))
-(((-1142 |#1| |#2|) (-13 (-1102) (-10 -8 (-15 -3498 ($)) (-15 -3572 ((-112) $)) (-15 -3802 (|#1| $)) (-15 -2055 (|#2| $)) (-15 -2913 ((-112) $)) (-15 -4147 ($ |#1| |#2| (-112))) (-15 -4147 ($ |#1| |#2|)) (-15 -4147 ($ (-2 (|:| |val| |#1|) (|:| -2566 |#2|)))) (-15 -4147 ((-645 $) (-645 (-2 (|:| |val| |#1|) (|:| -2566 |#2|))))) (-15 -4147 ((-645 $) |#1| (-645 |#2|))) (-15 -4305 ($ $)) (-15 -2838 ($ $ |#1|)) (-15 -2647 ($ $ |#2|)) (-15 -4042 ($ $ (-112))) (-15 -3620 ($ $)) (-15 -2139 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -1808 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1102) (-34)) (-13 (-1102) (-34))) (T -1142))
-((-3498 (*1 *1) (-12 (-5 *1 (-1142 *2 *3)) (-4 *2 (-13 (-1102) (-34))) (-4 *3 (-13 (-1102) (-34))))) (-3572 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1142 *3 *4)) (-4 *3 (-13 (-1102) (-34))) (-4 *4 (-13 (-1102) (-34))))) (-3802 (*1 *2 *1) (-12 (-4 *2 (-13 (-1102) (-34))) (-5 *1 (-1142 *2 *3)) (-4 *3 (-13 (-1102) (-34))))) (-2055 (*1 *2 *1) (-12 (-4 *2 (-13 (-1102) (-34))) (-5 *1 (-1142 *3 *2)) (-4 *3 (-13 (-1102) (-34))))) (-2913 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1142 *3 *4)) (-4 *3 (-13 (-1102) (-34))) (-4 *4 (-13 (-1102) (-34))))) (-4147 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1142 *2 *3)) (-4 *2 (-13 (-1102) (-34))) (-4 *3 (-13 (-1102) (-34))))) (-4147 (*1 *1 *2 *3) (-12 (-5 *1 (-1142 *2 *3)) (-4 *2 (-13 (-1102) (-34))) (-4 *3 (-13 (-1102) (-34))))) (-4147 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -2566 *4))) (-4 *3 (-13 (-1102) (-34))) (-4 *4 (-13 (-1102) (-34))) (-5 *1 (-1142 *3 *4)))) (-4147 (*1 *2 *3) (-12 (-5 *3 (-645 (-2 (|:| |val| *4) (|:| -2566 *5)))) (-4 *4 (-13 (-1102) (-34))) (-4 *5 (-13 (-1102) (-34))) (-5 *2 (-645 (-1142 *4 *5))) (-5 *1 (-1142 *4 *5)))) (-4147 (*1 *2 *3 *4) (-12 (-5 *4 (-645 *5)) (-4 *5 (-13 (-1102) (-34))) (-5 *2 (-645 (-1142 *3 *5))) (-5 *1 (-1142 *3 *5)) (-4 *3 (-13 (-1102) (-34))))) (-4305 (*1 *1 *1) (-12 (-5 *1 (-1142 *2 *3)) (-4 *2 (-13 (-1102) (-34))) (-4 *3 (-13 (-1102) (-34))))) (-2838 (*1 *1 *1 *2) (-12 (-5 *1 (-1142 *2 *3)) (-4 *2 (-13 (-1102) (-34))) (-4 *3 (-13 (-1102) (-34))))) (-2647 (*1 *1 *1 *2) (-12 (-5 *1 (-1142 *3 *2)) (-4 *3 (-13 (-1102) (-34))) (-4 *2 (-13 (-1102) (-34))))) (-4042 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1142 *3 *4)) (-4 *3 (-13 (-1102) (-34))) (-4 *4 (-13 (-1102) (-34))))) (-3620 (*1 *1 *1) (-12 (-5 *1 (-1142 *2 *3)) (-4 *2 (-13 (-1102) (-34))) (-4 *3 (-13 (-1102) (-34))))) (-2139 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1102) (-34))) (-4 *6 (-13 (-1102) (-34))) (-5 *2 (-112)) (-5 *1 (-1142 *5 *6)))) (-1808 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1102) (-34))) (-5 *2 (-112)) (-5 *1 (-1142 *4 *5)) (-4 *4 (-13 (-1102) (-34))))))
-(-13 (-1102) (-10 -8 (-15 -3498 ($)) (-15 -3572 ((-112) $)) (-15 -3802 (|#1| $)) (-15 -2055 (|#2| $)) (-15 -2913 ((-112) $)) (-15 -4147 ($ |#1| |#2| (-112))) (-15 -4147 ($ |#1| |#2|)) (-15 -4147 ($ (-2 (|:| |val| |#1|) (|:| -2566 |#2|)))) (-15 -4147 ((-645 $) (-645 (-2 (|:| |val| |#1|) (|:| -2566 |#2|))))) (-15 -4147 ((-645 $) |#1| (-645 |#2|))) (-15 -4305 ($ $)) (-15 -2838 ($ $ |#1|)) (-15 -2647 ($ $ |#2|)) (-15 -4042 ($ $ (-112))) (-15 -3620 ($ $)) (-15 -2139 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -1808 ((-112) $ $ (-1 (-112) |#2| |#2|)))))
-((-2403 (((-112) $ $) NIL (|has| (-1142 |#1| |#2|) (-1102)))) (-3802 (((-1142 |#1| |#2|) $) 27)) (-2014 (($ $) 91)) (-3968 (((-112) (-1142 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 100)) (-2235 (($ $ $ (-645 (-1142 |#1| |#2|))) 108) (($ $ $ (-645 (-1142 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 109)) (-3445 (((-112) $ (-772)) NIL)) (-2138 (((-1142 |#1| |#2|) $ (-1142 |#1| |#2|)) 46 (|has| $ (-6 -4419)))) (-4284 (((-1142 |#1| |#2|) $ "value" (-1142 |#1| |#2|)) NIL (|has| $ (-6 -4419)))) (-1301 (($ $ (-645 $)) 44 (|has| $ (-6 -4419)))) (-2585 (($) NIL T CONST)) (-1304 (((-645 (-2 (|:| |val| |#1|) (|:| -2566 |#2|))) $) 95)) (-2539 (($ (-1142 |#1| |#2|) $) 42)) (-3238 (($ (-1142 |#1| |#2|) $) 34)) (-2777 (((-645 (-1142 |#1| |#2|)) $) NIL (|has| $ (-6 -4418)))) (-2182 (((-645 $) $) 54)) (-2768 (((-112) (-1142 |#1| |#2|) $) 97)) (-3512 (((-112) $ $) NIL (|has| (-1142 |#1| |#2|) (-1102)))) (-2077 (((-112) $ (-772)) NIL)) (-2279 (((-645 (-1142 |#1| |#2|)) $) 58 (|has| $ (-6 -4418)))) (-4337 (((-112) (-1142 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-1142 |#1| |#2|) (-1102))))) (-3731 (($ (-1 (-1142 |#1| |#2|) (-1142 |#1| |#2|)) $) 50 (|has| $ (-6 -4419)))) (-3829 (($ (-1 (-1142 |#1| |#2|) (-1142 |#1| |#2|)) $) 49)) (-2863 (((-112) $ (-772)) NIL)) (-3773 (((-645 (-1142 |#1| |#2|)) $) 56)) (-2769 (((-112) $) 45)) (-1419 (((-1160) $) NIL (|has| (-1142 |#1| |#2|) (-1102)))) (-3430 (((-1122) $) NIL (|has| (-1142 |#1| |#2|) (-1102)))) (-3929 (((-3 $ "failed") $) 89)) (-3025 (((-112) (-1 (-112) (-1142 |#1| |#2|)) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 (-1142 |#1| |#2|)))) NIL (-12 (|has| (-1142 |#1| |#2|) (-310 (-1142 |#1| |#2|))) (|has| (-1142 |#1| |#2|) (-1102)))) (($ $ (-295 (-1142 |#1| |#2|))) NIL (-12 (|has| (-1142 |#1| |#2|) (-310 (-1142 |#1| |#2|))) (|has| (-1142 |#1| |#2|) (-1102)))) (($ $ (-1142 |#1| |#2|) (-1142 |#1| |#2|)) NIL (-12 (|has| (-1142 |#1| |#2|) (-310 (-1142 |#1| |#2|))) (|has| (-1142 |#1| |#2|) (-1102)))) (($ $ (-645 (-1142 |#1| |#2|)) (-645 (-1142 |#1| |#2|))) NIL (-12 (|has| (-1142 |#1| |#2|) (-310 (-1142 |#1| |#2|))) (|has| (-1142 |#1| |#2|) (-1102))))) (-3092 (((-112) $ $) 53)) (-3572 (((-112) $) 24)) (-3498 (($) 26)) (-1787 (((-1142 |#1| |#2|) $ "value") NIL)) (-2658 (((-567) $ $) NIL)) (-3900 (((-112) $) 47)) (-3439 (((-772) (-1 (-112) (-1142 |#1| |#2|)) $) NIL (|has| $ (-6 -4418))) (((-772) (-1142 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-1142 |#1| |#2|) (-1102))))) (-4305 (($ $) 52)) (-4147 (($ (-1142 |#1| |#2|)) 10) (($ |#1| |#2| (-645 $)) 13) (($ |#1| |#2| (-645 (-1142 |#1| |#2|))) 15) (($ |#1| |#2| |#1| (-645 |#2|)) 18)) (-4186 (((-645 |#2|) $) 96)) (-4132 (((-863) $) 87 (|has| (-1142 |#1| |#2|) (-614 (-863))))) (-1531 (((-645 $) $) 31)) (-3606 (((-112) $ $) NIL (|has| (-1142 |#1| |#2|) (-1102)))) (-1745 (((-112) $ $) NIL (|has| (-1142 |#1| |#2|) (-1102)))) (-1853 (((-112) (-1 (-112) (-1142 |#1| |#2|)) $) NIL (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 70 (|has| (-1142 |#1| |#2|) (-1102)))) (-2414 (((-772) $) 64 (|has| $ (-6 -4418)))))
-(((-1143 |#1| |#2|) (-13 (-1012 (-1142 |#1| |#2|)) (-10 -8 (-6 -4419) (-6 -4418) (-15 -3929 ((-3 $ "failed") $)) (-15 -2014 ($ $)) (-15 -4147 ($ (-1142 |#1| |#2|))) (-15 -4147 ($ |#1| |#2| (-645 $))) (-15 -4147 ($ |#1| |#2| (-645 (-1142 |#1| |#2|)))) (-15 -4147 ($ |#1| |#2| |#1| (-645 |#2|))) (-15 -4186 ((-645 |#2|) $)) (-15 -1304 ((-645 (-2 (|:| |val| |#1|) (|:| -2566 |#2|))) $)) (-15 -2768 ((-112) (-1142 |#1| |#2|) $)) (-15 -3968 ((-112) (-1142 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3238 ($ (-1142 |#1| |#2|) $)) (-15 -2539 ($ (-1142 |#1| |#2|) $)) (-15 -2235 ($ $ $ (-645 (-1142 |#1| |#2|)))) (-15 -2235 ($ $ $ (-645 (-1142 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1102) (-34)) (-13 (-1102) (-34))) (T -1143))
-((-3929 (*1 *1 *1) (|partial| -12 (-5 *1 (-1143 *2 *3)) (-4 *2 (-13 (-1102) (-34))) (-4 *3 (-13 (-1102) (-34))))) (-2014 (*1 *1 *1) (-12 (-5 *1 (-1143 *2 *3)) (-4 *2 (-13 (-1102) (-34))) (-4 *3 (-13 (-1102) (-34))))) (-4147 (*1 *1 *2) (-12 (-5 *2 (-1142 *3 *4)) (-4 *3 (-13 (-1102) (-34))) (-4 *4 (-13 (-1102) (-34))) (-5 *1 (-1143 *3 *4)))) (-4147 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-645 (-1143 *2 *3))) (-5 *1 (-1143 *2 *3)) (-4 *2 (-13 (-1102) (-34))) (-4 *3 (-13 (-1102) (-34))))) (-4147 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-645 (-1142 *2 *3))) (-4 *2 (-13 (-1102) (-34))) (-4 *3 (-13 (-1102) (-34))) (-5 *1 (-1143 *2 *3)))) (-4147 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-645 *3)) (-4 *3 (-13 (-1102) (-34))) (-5 *1 (-1143 *2 *3)) (-4 *2 (-13 (-1102) (-34))))) (-4186 (*1 *2 *1) (-12 (-5 *2 (-645 *4)) (-5 *1 (-1143 *3 *4)) (-4 *3 (-13 (-1102) (-34))) (-4 *4 (-13 (-1102) (-34))))) (-1304 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2566 *4)))) (-5 *1 (-1143 *3 *4)) (-4 *3 (-13 (-1102) (-34))) (-4 *4 (-13 (-1102) (-34))))) (-2768 (*1 *2 *3 *1) (-12 (-5 *3 (-1142 *4 *5)) (-4 *4 (-13 (-1102) (-34))) (-4 *5 (-13 (-1102) (-34))) (-5 *2 (-112)) (-5 *1 (-1143 *4 *5)))) (-3968 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1142 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1102) (-34))) (-4 *6 (-13 (-1102) (-34))) (-5 *2 (-112)) (-5 *1 (-1143 *5 *6)))) (-3238 (*1 *1 *2 *1) (-12 (-5 *2 (-1142 *3 *4)) (-4 *3 (-13 (-1102) (-34))) (-4 *4 (-13 (-1102) (-34))) (-5 *1 (-1143 *3 *4)))) (-2539 (*1 *1 *2 *1) (-12 (-5 *2 (-1142 *3 *4)) (-4 *3 (-13 (-1102) (-34))) (-4 *4 (-13 (-1102) (-34))) (-5 *1 (-1143 *3 *4)))) (-2235 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-645 (-1142 *3 *4))) (-4 *3 (-13 (-1102) (-34))) (-4 *4 (-13 (-1102) (-34))) (-5 *1 (-1143 *3 *4)))) (-2235 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-1142 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1102) (-34))) (-4 *5 (-13 (-1102) (-34))) (-5 *1 (-1143 *4 *5)))))
-(-13 (-1012 (-1142 |#1| |#2|)) (-10 -8 (-6 -4419) (-6 -4418) (-15 -3929 ((-3 $ "failed") $)) (-15 -2014 ($ $)) (-15 -4147 ($ (-1142 |#1| |#2|))) (-15 -4147 ($ |#1| |#2| (-645 $))) (-15 -4147 ($ |#1| |#2| (-645 (-1142 |#1| |#2|)))) (-15 -4147 ($ |#1| |#2| |#1| (-645 |#2|))) (-15 -4186 ((-645 |#2|) $)) (-15 -1304 ((-645 (-2 (|:| |val| |#1|) (|:| -2566 |#2|))) $)) (-15 -2768 ((-112) (-1142 |#1| |#2|) $)) (-15 -3968 ((-112) (-1142 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3238 ($ (-1142 |#1| |#2|) $)) (-15 -2539 ($ (-1142 |#1| |#2|) $)) (-15 -2235 ($ $ $ (-645 (-1142 |#1| |#2|)))) (-15 -2235 ($ $ $ (-645 (-1142 |#1| |#2|)) (-1 (-112) |#2| |#2|)))))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3094 (($ $) NIL)) (-4293 ((|#2| $) NIL)) (-1981 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-3461 (($ (-690 |#2|)) 56)) (-1948 (((-112) $) NIL)) (-3445 (((-112) $ (-772)) NIL)) (-3536 (($ |#2|) 14)) (-2585 (($) NIL T CONST)) (-2233 (($ $) 69 (|has| |#2| (-308)))) (-1944 (((-240 |#1| |#2|) $ (-567)) 42)) (-3753 (((-3 (-567) "failed") $) NIL (|has| |#2| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#2| (-1040 (-410 (-567))))) (((-3 |#2| "failed") $) NIL)) (-2038 (((-567) $) NIL (|has| |#2| (-1040 (-567)))) (((-410 (-567)) $) NIL (|has| |#2| (-1040 (-410 (-567))))) ((|#2| $) NIL)) (-2630 (((-690 (-567)) (-690 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -2316 (-690 |#2|)) (|:| |vec| (-1268 |#2|))) (-690 $) (-1268 $)) NIL) (((-690 |#2|) (-690 $)) NIL)) (-2109 (((-3 $ "failed") $) 83)) (-1954 (((-772) $) 71 (|has| |#2| (-559)))) (-3680 ((|#2| $ (-567) (-567)) NIL)) (-2777 (((-645 |#2|) $) NIL (|has| $ (-6 -4418)))) (-1433 (((-112) $) NIL)) (-1940 (((-772) $) 73 (|has| |#2| (-559)))) (-1325 (((-645 (-240 |#1| |#2|)) $) 77 (|has| |#2| (-559)))) (-3633 (((-772) $) NIL)) (-2846 (($ |#2|) 25)) (-3643 (((-772) $) NIL)) (-2077 (((-112) $ (-772)) NIL)) (-2031 ((|#2| $) 67 (|has| |#2| (-6 (-4420 "*"))))) (-2527 (((-567) $) NIL)) (-4043 (((-567) $) NIL)) (-2279 (((-645 |#2|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#2| (-1102))))) (-2107 (((-567) $) NIL)) (-2646 (((-567) $) NIL)) (-2114 (($ (-645 (-645 |#2|))) 37)) (-3731 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-1603 (((-645 (-645 |#2|)) $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL)) (-1401 (((-3 $ "failed") $) 80 (|has| |#2| (-365)))) (-3430 (((-1122) $) NIL)) (-2391 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-559)))) (-3025 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))))) (-3092 (((-112) $ $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) NIL)) (-1787 ((|#2| $ (-567) (-567) |#2|) NIL) ((|#2| $ (-567) (-567)) NIL)) (-1593 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-1178)) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-772)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-1877 ((|#2| $) NIL)) (-3068 (($ (-645 |#2|)) 50)) (-3339 (((-112) $) NIL)) (-2213 (((-240 |#1| |#2|) $) NIL)) (-4083 ((|#2| $) 65 (|has| |#2| (-6 (-4420 "*"))))) (-3439 (((-772) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4418))) (((-772) |#2| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#2| (-1102))))) (-4305 (($ $) NIL)) (-3893 (((-539) $) 89 (|has| |#2| (-615 (-539))))) (-2237 (((-240 |#1| |#2|) $ (-567)) 44)) (-4132 (((-863) $) 47) (($ (-567)) NIL) (($ (-410 (-567))) NIL (|has| |#2| (-1040 (-410 (-567))))) (($ |#2|) NIL) (((-690 |#2|) $) 52)) (-4221 (((-772)) 23 T CONST)) (-1745 (((-112) $ $) NIL)) (-1853 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4418)))) (-2619 (((-112) $) NIL)) (-1716 (($) 16 T CONST)) (-1728 (($) 21 T CONST)) (-2637 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-1178)) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-772)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) 63) (($ $ (-567)) 82 (|has| |#2| (-365)))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-240 |#1| |#2|) $ (-240 |#1| |#2|)) 59) (((-240 |#1| |#2|) (-240 |#1| |#2|) $) 61)) (-2414 (((-772) $) NIL (|has| $ (-6 -4418)))))
-(((-1144 |#1| |#2|) (-13 (-1125 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-614 (-690 |#2|)) (-10 -8 (-15 -2846 ($ |#2|)) (-15 -3094 ($ $)) (-15 -3461 ($ (-690 |#2|))) (IF (|has| |#2| (-6 (-4420 "*"))) (-6 -4407) |%noBranch|) (IF (|has| |#2| (-6 (-4420 "*"))) (IF (|has| |#2| (-6 -4415)) (-6 -4415) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|))) (-772) (-1051)) (T -1144))
-((-2846 (*1 *1 *2) (-12 (-5 *1 (-1144 *3 *2)) (-14 *3 (-772)) (-4 *2 (-1051)))) (-3094 (*1 *1 *1) (-12 (-5 *1 (-1144 *2 *3)) (-14 *2 (-772)) (-4 *3 (-1051)))) (-3461 (*1 *1 *2) (-12 (-5 *2 (-690 *4)) (-4 *4 (-1051)) (-5 *1 (-1144 *3 *4)) (-14 *3 (-772)))))
-(-13 (-1125 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-614 (-690 |#2|)) (-10 -8 (-15 -2846 ($ |#2|)) (-15 -3094 ($ $)) (-15 -3461 ($ (-690 |#2|))) (IF (|has| |#2| (-6 (-4420 "*"))) (-6 -4407) |%noBranch|) (IF (|has| |#2| (-6 (-4420 "*"))) (IF (|has| |#2| (-6 -4415)) (-6 -4415) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|)))
-((-3714 (($ $) 19)) (-1757 (($ $ (-144)) 10) (($ $ (-141)) 14)) (-1958 (((-112) $ $) 24)) (-3677 (($ $) 17)) (-1787 (((-144) $ (-567) (-144)) NIL) (((-144) $ (-567)) NIL) (($ $ (-1235 (-567))) NIL) (($ $ $) 31)) (-4132 (($ (-144)) 29) (((-863) $) NIL)))
-(((-1145 |#1|) (-10 -8 (-15 -4132 ((-863) |#1|)) (-15 -1787 (|#1| |#1| |#1|)) (-15 -1757 (|#1| |#1| (-141))) (-15 -1757 (|#1| |#1| (-144))) (-15 -4132 (|#1| (-144))) (-15 -1958 ((-112) |#1| |#1|)) (-15 -3714 (|#1| |#1|)) (-15 -3677 (|#1| |#1|)) (-15 -1787 (|#1| |#1| (-1235 (-567)))) (-15 -1787 ((-144) |#1| (-567))) (-15 -1787 ((-144) |#1| (-567) (-144)))) (-1146)) (T -1145))
-NIL
-(-10 -8 (-15 -4132 ((-863) |#1|)) (-15 -1787 (|#1| |#1| |#1|)) (-15 -1757 (|#1| |#1| (-141))) (-15 -1757 (|#1| |#1| (-144))) (-15 -4132 (|#1| (-144))) (-15 -1958 ((-112) |#1| |#1|)) (-15 -3714 (|#1| |#1|)) (-15 -3677 (|#1| |#1|)) (-15 -1787 (|#1| |#1| (-1235 (-567)))) (-15 -1787 ((-144) |#1| (-567))) (-15 -1787 ((-144) |#1| (-567) (-144))))
-((-2403 (((-112) $ $) 19 (|has| (-144) (-1102)))) (-4172 (($ $) 121)) (-3714 (($ $) 122)) (-1757 (($ $ (-144)) 109) (($ $ (-141)) 108)) (-1783 (((-1273) $ (-567) (-567)) 41 (|has| $ (-6 -4419)))) (-1938 (((-112) $ $) 119)) (-1918 (((-112) $ $ (-567)) 118)) (-4323 (((-645 $) $ (-144)) 111) (((-645 $) $ (-141)) 110)) (-2496 (((-112) (-1 (-112) (-144) (-144)) $) 99) (((-112) $) 93 (|has| (-144) (-851)))) (-1394 (($ (-1 (-112) (-144) (-144)) $) 90 (|has| $ (-6 -4419))) (($ $) 89 (-12 (|has| (-144) (-851)) (|has| $ (-6 -4419))))) (-4396 (($ (-1 (-112) (-144) (-144)) $) 100) (($ $) 94 (|has| (-144) (-851)))) (-3445 (((-112) $ (-772)) 8)) (-4284 (((-144) $ (-567) (-144)) 53 (|has| $ (-6 -4419))) (((-144) $ (-1235 (-567)) (-144)) 59 (|has| $ (-6 -4419)))) (-3350 (($ (-1 (-112) (-144)) $) 76 (|has| $ (-6 -4418)))) (-2585 (($) 7 T CONST)) (-3279 (($ $ (-144)) 105) (($ $ (-141)) 104)) (-1764 (($ $) 91 (|has| $ (-6 -4419)))) (-3584 (($ $) 101)) (-3364 (($ $ (-1235 (-567)) $) 115)) (-2444 (($ $) 79 (-12 (|has| (-144) (-1102)) (|has| $ (-6 -4418))))) (-3238 (($ (-144) $) 78 (-12 (|has| (-144) (-1102)) (|has| $ (-6 -4418)))) (($ (-1 (-112) (-144)) $) 75 (|has| $ (-6 -4418)))) (-2477 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) 77 (-12 (|has| (-144) (-1102)) (|has| $ (-6 -4418)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) 74 (|has| $ (-6 -4418))) (((-144) (-1 (-144) (-144) (-144)) $) 73 (|has| $ (-6 -4418)))) (-3741 (((-144) $ (-567) (-144)) 54 (|has| $ (-6 -4419)))) (-3680 (((-144) $ (-567)) 52)) (-1958 (((-112) $ $) 120)) (-2569 (((-567) (-1 (-112) (-144)) $) 98) (((-567) (-144) $) 97 (|has| (-144) (-1102))) (((-567) (-144) $ (-567)) 96 (|has| (-144) (-1102))) (((-567) $ $ (-567)) 114) (((-567) (-141) $ (-567)) 113)) (-2777 (((-645 (-144)) $) 31 (|has| $ (-6 -4418)))) (-2846 (($ (-772) (-144)) 70)) (-2077 (((-112) $ (-772)) 9)) (-4069 (((-567) $) 44 (|has| (-567) (-851)))) (-1354 (($ $ $) 88 (|has| (-144) (-851)))) (-4135 (($ (-1 (-112) (-144) (-144)) $ $) 102) (($ $ $) 95 (|has| (-144) (-851)))) (-2279 (((-645 (-144)) $) 30 (|has| $ (-6 -4418)))) (-4337 (((-112) (-144) $) 28 (-12 (|has| (-144) (-1102)) (|has| $ (-6 -4418))))) (-2266 (((-567) $) 45 (|has| (-567) (-851)))) (-2981 (($ $ $) 87 (|has| (-144) (-851)))) (-2580 (((-112) $ $ (-144)) 116)) (-4197 (((-772) $ $ (-144)) 117)) (-3731 (($ (-1 (-144) (-144)) $) 35 (|has| $ (-6 -4419)))) (-3829 (($ (-1 (-144) (-144)) $) 36) (($ (-1 (-144) (-144) (-144)) $ $) 65)) (-3240 (($ $) 123)) (-3677 (($ $) 124)) (-2863 (((-112) $ (-772)) 10)) (-3289 (($ $ (-144)) 107) (($ $ (-141)) 106)) (-1419 (((-1160) $) 22 (|has| (-144) (-1102)))) (-2845 (($ (-144) $ (-567)) 61) (($ $ $ (-567)) 60)) (-1789 (((-645 (-567)) $) 47)) (-2996 (((-112) (-567) $) 48)) (-3430 (((-1122) $) 21 (|has| (-144) (-1102)))) (-2409 (((-144) $) 43 (|has| (-567) (-851)))) (-4128 (((-3 (-144) "failed") (-1 (-112) (-144)) $) 72)) (-3986 (($ $ (-144)) 42 (|has| $ (-6 -4419)))) (-3025 (((-112) (-1 (-112) (-144)) $) 33 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 (-144)))) 27 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102)))) (($ $ (-295 (-144))) 26 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102)))) (($ $ (-144) (-144)) 25 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102)))) (($ $ (-645 (-144)) (-645 (-144))) 24 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102))))) (-3092 (((-112) $ $) 14)) (-1794 (((-112) (-144) $) 46 (-12 (|has| $ (-6 -4418)) (|has| (-144) (-1102))))) (-2339 (((-645 (-144)) $) 49)) (-3572 (((-112) $) 11)) (-3498 (($) 12)) (-1787 (((-144) $ (-567) (-144)) 51) (((-144) $ (-567)) 50) (($ $ (-1235 (-567))) 64) (($ $ $) 103)) (-1560 (($ $ (-567)) 63) (($ $ (-1235 (-567))) 62)) (-3439 (((-772) (-1 (-112) (-144)) $) 32 (|has| $ (-6 -4418))) (((-772) (-144) $) 29 (-12 (|has| (-144) (-1102)) (|has| $ (-6 -4418))))) (-1395 (($ $ $ (-567)) 92 (|has| $ (-6 -4419)))) (-4305 (($ $) 13)) (-3893 (((-539) $) 80 (|has| (-144) (-615 (-539))))) (-4147 (($ (-645 (-144))) 71)) (-2269 (($ $ (-144)) 69) (($ (-144) $) 68) (($ $ $) 67) (($ (-645 $)) 66)) (-4132 (($ (-144)) 112) (((-863) $) 18 (|has| (-144) (-614 (-863))))) (-1745 (((-112) $ $) 23 (|has| (-144) (-1102)))) (-1853 (((-112) (-1 (-112) (-144)) $) 34 (|has| $ (-6 -4418)))) (-2997 (((-112) $ $) 85 (|has| (-144) (-851)))) (-2971 (((-112) $ $) 84 (|has| (-144) (-851)))) (-2936 (((-112) $ $) 20 (|has| (-144) (-1102)))) (-2984 (((-112) $ $) 86 (|has| (-144) (-851)))) (-2958 (((-112) $ $) 83 (|has| (-144) (-851)))) (-2414 (((-772) $) 6 (|has| $ (-6 -4418)))))
+((-2219 (*1 *1 *1) (-4 *1 (-1141))) (-2682 (*1 *1 *1) (-4 *1 (-1141))) (-1713 (*1 *1 *1 *1) (-4 *1 (-1141))) (-4126 (*1 *1 *1 *1) (-4 *1 (-1141))) (-3534 (*1 *1 *1 *1) (-4 *1 (-1141))) (-2704 (*1 *1 *1 *1) (-4 *1 (-1141))) (-3290 (*1 *1 *1 *1) (-4 *1 (-1141))) (-1414 (*1 *1 *1 *1) (-4 *1 (-1141))) (-3514 (*1 *1 *1) (-4 *1 (-1141))) (-3095 (*1 *1 *1 *1) (-4 *1 (-1141))) (-3290 (*1 *1 *1) (-4 *1 (-1141))) (-1547 (*1 *1 *1) (-4 *1 (-1141))))
+(-13 (-10 -8 (-15 -1547 ($ $)) (-15 -3290 ($ $)) (-15 -3095 ($ $ $)) (-15 -3514 ($ $)) (-15 -1414 ($ $ $)) (-15 -3290 ($ $ $)) (-15 -2704 ($ $ $)) (-15 -3534 ($ $ $)) (-15 -4126 ($ $ $)) (-15 -1713 ($ $ $)) (-15 -2682 ($ $)) (-15 -2219 ($ $))))
+((-2412 (((-112) $ $) 44)) (-3812 ((|#1| $) 17)) (-2719 (((-112) $ $ (-1 (-112) |#2| |#2|)) 39)) (-2933 (((-112) $) 19)) (-1390 (($ $ |#1|) 30)) (-4114 (($ $ (-112)) 32)) (-3022 (($ $) 33)) (-3440 (($ $ |#2|) 31)) (-2516 (((-1161) $) NIL)) (-3282 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 38)) (-3437 (((-1122) $) NIL)) (-3885 (((-112) $) 16)) (-2701 (($) 13)) (-4309 (($ $) 29)) (-4145 (($ |#1| |#2| (-112)) 20) (($ |#1| |#2|) 21) (($ (-2 (|:| |val| |#1|) (|:| -2575 |#2|))) 23) (((-645 $) (-645 (-2 (|:| |val| |#1|) (|:| -2575 |#2|)))) 26) (((-645 $) |#1| (-645 |#2|)) 28)) (-2066 ((|#2| $) 18)) (-4129 (((-863) $) 53)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) 42)))
+(((-1142 |#1| |#2|) (-13 (-1102) (-10 -8 (-15 -2701 ($)) (-15 -3885 ((-112) $)) (-15 -3812 (|#1| $)) (-15 -2066 (|#2| $)) (-15 -2933 ((-112) $)) (-15 -4145 ($ |#1| |#2| (-112))) (-15 -4145 ($ |#1| |#2|)) (-15 -4145 ($ (-2 (|:| |val| |#1|) (|:| -2575 |#2|)))) (-15 -4145 ((-645 $) (-645 (-2 (|:| |val| |#1|) (|:| -2575 |#2|))))) (-15 -4145 ((-645 $) |#1| (-645 |#2|))) (-15 -4309 ($ $)) (-15 -1390 ($ $ |#1|)) (-15 -3440 ($ $ |#2|)) (-15 -4114 ($ $ (-112))) (-15 -3022 ($ $)) (-15 -3282 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -2719 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1102) (-34)) (-13 (-1102) (-34))) (T -1142))
+((-2701 (*1 *1) (-12 (-5 *1 (-1142 *2 *3)) (-4 *2 (-13 (-1102) (-34))) (-4 *3 (-13 (-1102) (-34))))) (-3885 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1142 *3 *4)) (-4 *3 (-13 (-1102) (-34))) (-4 *4 (-13 (-1102) (-34))))) (-3812 (*1 *2 *1) (-12 (-4 *2 (-13 (-1102) (-34))) (-5 *1 (-1142 *2 *3)) (-4 *3 (-13 (-1102) (-34))))) (-2066 (*1 *2 *1) (-12 (-4 *2 (-13 (-1102) (-34))) (-5 *1 (-1142 *3 *2)) (-4 *3 (-13 (-1102) (-34))))) (-2933 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1142 *3 *4)) (-4 *3 (-13 (-1102) (-34))) (-4 *4 (-13 (-1102) (-34))))) (-4145 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1142 *2 *3)) (-4 *2 (-13 (-1102) (-34))) (-4 *3 (-13 (-1102) (-34))))) (-4145 (*1 *1 *2 *3) (-12 (-5 *1 (-1142 *2 *3)) (-4 *2 (-13 (-1102) (-34))) (-4 *3 (-13 (-1102) (-34))))) (-4145 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -2575 *4))) (-4 *3 (-13 (-1102) (-34))) (-4 *4 (-13 (-1102) (-34))) (-5 *1 (-1142 *3 *4)))) (-4145 (*1 *2 *3) (-12 (-5 *3 (-645 (-2 (|:| |val| *4) (|:| -2575 *5)))) (-4 *4 (-13 (-1102) (-34))) (-4 *5 (-13 (-1102) (-34))) (-5 *2 (-645 (-1142 *4 *5))) (-5 *1 (-1142 *4 *5)))) (-4145 (*1 *2 *3 *4) (-12 (-5 *4 (-645 *5)) (-4 *5 (-13 (-1102) (-34))) (-5 *2 (-645 (-1142 *3 *5))) (-5 *1 (-1142 *3 *5)) (-4 *3 (-13 (-1102) (-34))))) (-4309 (*1 *1 *1) (-12 (-5 *1 (-1142 *2 *3)) (-4 *2 (-13 (-1102) (-34))) (-4 *3 (-13 (-1102) (-34))))) (-1390 (*1 *1 *1 *2) (-12 (-5 *1 (-1142 *2 *3)) (-4 *2 (-13 (-1102) (-34))) (-4 *3 (-13 (-1102) (-34))))) (-3440 (*1 *1 *1 *2) (-12 (-5 *1 (-1142 *3 *2)) (-4 *3 (-13 (-1102) (-34))) (-4 *2 (-13 (-1102) (-34))))) (-4114 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1142 *3 *4)) (-4 *3 (-13 (-1102) (-34))) (-4 *4 (-13 (-1102) (-34))))) (-3022 (*1 *1 *1) (-12 (-5 *1 (-1142 *2 *3)) (-4 *2 (-13 (-1102) (-34))) (-4 *3 (-13 (-1102) (-34))))) (-3282 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1102) (-34))) (-4 *6 (-13 (-1102) (-34))) (-5 *2 (-112)) (-5 *1 (-1142 *5 *6)))) (-2719 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1102) (-34))) (-5 *2 (-112)) (-5 *1 (-1142 *4 *5)) (-4 *4 (-13 (-1102) (-34))))))
+(-13 (-1102) (-10 -8 (-15 -2701 ($)) (-15 -3885 ((-112) $)) (-15 -3812 (|#1| $)) (-15 -2066 (|#2| $)) (-15 -2933 ((-112) $)) (-15 -4145 ($ |#1| |#2| (-112))) (-15 -4145 ($ |#1| |#2|)) (-15 -4145 ($ (-2 (|:| |val| |#1|) (|:| -2575 |#2|)))) (-15 -4145 ((-645 $) (-645 (-2 (|:| |val| |#1|) (|:| -2575 |#2|))))) (-15 -4145 ((-645 $) |#1| (-645 |#2|))) (-15 -4309 ($ $)) (-15 -1390 ($ $ |#1|)) (-15 -3440 ($ $ |#2|)) (-15 -4114 ($ $ (-112))) (-15 -3022 ($ $)) (-15 -3282 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -2719 ((-112) $ $ (-1 (-112) |#2| |#2|)))))
+((-2412 (((-112) $ $) NIL (|has| (-1142 |#1| |#2|) (-1102)))) (-3812 (((-1142 |#1| |#2|) $) 27)) (-2823 (($ $) 91)) (-2605 (((-112) (-1142 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 100)) (-2942 (($ $ $ (-645 (-1142 |#1| |#2|))) 108) (($ $ $ (-645 (-1142 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 109)) (-1563 (((-112) $ (-772)) NIL)) (-4392 (((-1142 |#1| |#2|) $ (-1142 |#1| |#2|)) 46 (|has| $ (-6 -4423)))) (-4285 (((-1142 |#1| |#2|) $ "value" (-1142 |#1| |#2|)) NIL (|has| $ (-6 -4423)))) (-2831 (($ $ (-645 $)) 44 (|has| $ (-6 -4423)))) (-3647 (($) NIL T CONST)) (-1304 (((-645 (-2 (|:| |val| |#1|) (|:| -2575 |#2|))) $) 95)) (-2247 (($ (-1142 |#1| |#2|) $) 42)) (-3246 (($ (-1142 |#1| |#2|) $) 34)) (-2799 (((-645 (-1142 |#1| |#2|)) $) NIL (|has| $ (-6 -4422)))) (-2070 (((-645 $) $) 54)) (-2461 (((-112) (-1142 |#1| |#2|) $) 97)) (-1520 (((-112) $ $) NIL (|has| (-1142 |#1| |#2|) (-1102)))) (-4093 (((-112) $ (-772)) NIL)) (-1942 (((-645 (-1142 |#1| |#2|)) $) 58 (|has| $ (-6 -4422)))) (-3237 (((-112) (-1142 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-1142 |#1| |#2|) (-1102))))) (-3751 (($ (-1 (-1142 |#1| |#2|) (-1142 |#1| |#2|)) $) 50 (|has| $ (-6 -4423)))) (-3841 (($ (-1 (-1142 |#1| |#2|) (-1142 |#1| |#2|)) $) 49)) (-1986 (((-112) $ (-772)) NIL)) (-3793 (((-645 (-1142 |#1| |#2|)) $) 56)) (-1323 (((-112) $) 45)) (-2516 (((-1161) $) NIL (|has| (-1142 |#1| |#2|) (-1102)))) (-3437 (((-1122) $) NIL (|has| (-1142 |#1| |#2|) (-1102)))) (-1842 (((-3 $ "failed") $) 89)) (-4233 (((-112) (-1 (-112) (-1142 |#1| |#2|)) $) NIL (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 (-1142 |#1| |#2|)))) NIL (-12 (|has| (-1142 |#1| |#2|) (-310 (-1142 |#1| |#2|))) (|has| (-1142 |#1| |#2|) (-1102)))) (($ $ (-295 (-1142 |#1| |#2|))) NIL (-12 (|has| (-1142 |#1| |#2|) (-310 (-1142 |#1| |#2|))) (|has| (-1142 |#1| |#2|) (-1102)))) (($ $ (-1142 |#1| |#2|) (-1142 |#1| |#2|)) NIL (-12 (|has| (-1142 |#1| |#2|) (-310 (-1142 |#1| |#2|))) (|has| (-1142 |#1| |#2|) (-1102)))) (($ $ (-645 (-1142 |#1| |#2|)) (-645 (-1142 |#1| |#2|))) NIL (-12 (|has| (-1142 |#1| |#2|) (-310 (-1142 |#1| |#2|))) (|has| (-1142 |#1| |#2|) (-1102))))) (-3875 (((-112) $ $) 53)) (-3885 (((-112) $) 24)) (-2701 (($) 26)) (-1801 (((-1142 |#1| |#2|) $ "value") NIL)) (-3162 (((-567) $ $) NIL)) (-3771 (((-112) $) 47)) (-3447 (((-772) (-1 (-112) (-1142 |#1| |#2|)) $) NIL (|has| $ (-6 -4422))) (((-772) (-1142 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-1142 |#1| |#2|) (-1102))))) (-4309 (($ $) 52)) (-4145 (($ (-1142 |#1| |#2|)) 10) (($ |#1| |#2| (-645 $)) 13) (($ |#1| |#2| (-645 (-1142 |#1| |#2|))) 15) (($ |#1| |#2| |#1| (-645 |#2|)) 18)) (-4185 (((-645 |#2|) $) 96)) (-4129 (((-863) $) 87 (|has| (-1142 |#1| |#2|) (-614 (-863))))) (-3469 (((-645 $) $) 31)) (-3854 (((-112) $ $) NIL (|has| (-1142 |#1| |#2|) (-1102)))) (-3357 (((-112) $ $) NIL (|has| (-1142 |#1| |#2|) (-1102)))) (-3436 (((-112) (-1 (-112) (-1142 |#1| |#2|)) $) NIL (|has| $ (-6 -4422)))) (-2946 (((-112) $ $) 70 (|has| (-1142 |#1| |#2|) (-1102)))) (-2423 (((-772) $) 64 (|has| $ (-6 -4422)))))
+(((-1143 |#1| |#2|) (-13 (-1012 (-1142 |#1| |#2|)) (-10 -8 (-6 -4423) (-6 -4422) (-15 -1842 ((-3 $ "failed") $)) (-15 -2823 ($ $)) (-15 -4145 ($ (-1142 |#1| |#2|))) (-15 -4145 ($ |#1| |#2| (-645 $))) (-15 -4145 ($ |#1| |#2| (-645 (-1142 |#1| |#2|)))) (-15 -4145 ($ |#1| |#2| |#1| (-645 |#2|))) (-15 -4185 ((-645 |#2|) $)) (-15 -1304 ((-645 (-2 (|:| |val| |#1|) (|:| -2575 |#2|))) $)) (-15 -2461 ((-112) (-1142 |#1| |#2|) $)) (-15 -2605 ((-112) (-1142 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3246 ($ (-1142 |#1| |#2|) $)) (-15 -2247 ($ (-1142 |#1| |#2|) $)) (-15 -2942 ($ $ $ (-645 (-1142 |#1| |#2|)))) (-15 -2942 ($ $ $ (-645 (-1142 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1102) (-34)) (-13 (-1102) (-34))) (T -1143))
+((-1842 (*1 *1 *1) (|partial| -12 (-5 *1 (-1143 *2 *3)) (-4 *2 (-13 (-1102) (-34))) (-4 *3 (-13 (-1102) (-34))))) (-2823 (*1 *1 *1) (-12 (-5 *1 (-1143 *2 *3)) (-4 *2 (-13 (-1102) (-34))) (-4 *3 (-13 (-1102) (-34))))) (-4145 (*1 *1 *2) (-12 (-5 *2 (-1142 *3 *4)) (-4 *3 (-13 (-1102) (-34))) (-4 *4 (-13 (-1102) (-34))) (-5 *1 (-1143 *3 *4)))) (-4145 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-645 (-1143 *2 *3))) (-5 *1 (-1143 *2 *3)) (-4 *2 (-13 (-1102) (-34))) (-4 *3 (-13 (-1102) (-34))))) (-4145 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-645 (-1142 *2 *3))) (-4 *2 (-13 (-1102) (-34))) (-4 *3 (-13 (-1102) (-34))) (-5 *1 (-1143 *2 *3)))) (-4145 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-645 *3)) (-4 *3 (-13 (-1102) (-34))) (-5 *1 (-1143 *2 *3)) (-4 *2 (-13 (-1102) (-34))))) (-4185 (*1 *2 *1) (-12 (-5 *2 (-645 *4)) (-5 *1 (-1143 *3 *4)) (-4 *3 (-13 (-1102) (-34))) (-4 *4 (-13 (-1102) (-34))))) (-1304 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2575 *4)))) (-5 *1 (-1143 *3 *4)) (-4 *3 (-13 (-1102) (-34))) (-4 *4 (-13 (-1102) (-34))))) (-2461 (*1 *2 *3 *1) (-12 (-5 *3 (-1142 *4 *5)) (-4 *4 (-13 (-1102) (-34))) (-4 *5 (-13 (-1102) (-34))) (-5 *2 (-112)) (-5 *1 (-1143 *4 *5)))) (-2605 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1142 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1102) (-34))) (-4 *6 (-13 (-1102) (-34))) (-5 *2 (-112)) (-5 *1 (-1143 *5 *6)))) (-3246 (*1 *1 *2 *1) (-12 (-5 *2 (-1142 *3 *4)) (-4 *3 (-13 (-1102) (-34))) (-4 *4 (-13 (-1102) (-34))) (-5 *1 (-1143 *3 *4)))) (-2247 (*1 *1 *2 *1) (-12 (-5 *2 (-1142 *3 *4)) (-4 *3 (-13 (-1102) (-34))) (-4 *4 (-13 (-1102) (-34))) (-5 *1 (-1143 *3 *4)))) (-2942 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-645 (-1142 *3 *4))) (-4 *3 (-13 (-1102) (-34))) (-4 *4 (-13 (-1102) (-34))) (-5 *1 (-1143 *3 *4)))) (-2942 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-1142 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1102) (-34))) (-4 *5 (-13 (-1102) (-34))) (-5 *1 (-1143 *4 *5)))))
+(-13 (-1012 (-1142 |#1| |#2|)) (-10 -8 (-6 -4423) (-6 -4422) (-15 -1842 ((-3 $ "failed") $)) (-15 -2823 ($ $)) (-15 -4145 ($ (-1142 |#1| |#2|))) (-15 -4145 ($ |#1| |#2| (-645 $))) (-15 -4145 ($ |#1| |#2| (-645 (-1142 |#1| |#2|)))) (-15 -4145 ($ |#1| |#2| |#1| (-645 |#2|))) (-15 -4185 ((-645 |#2|) $)) (-15 -1304 ((-645 (-2 (|:| |val| |#1|) (|:| -2575 |#2|))) $)) (-15 -2461 ((-112) (-1142 |#1| |#2|) $)) (-15 -2605 ((-112) (-1142 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3246 ($ (-1142 |#1| |#2|) $)) (-15 -2247 ($ (-1142 |#1| |#2|) $)) (-15 -2942 ($ $ $ (-645 (-1142 |#1| |#2|)))) (-15 -2942 ($ $ $ (-645 (-1142 |#1| |#2|)) (-1 (-112) |#2| |#2|)))))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-4141 (($ $) NIL)) (-4293 ((|#2| $) NIL)) (-2999 (((-112) $) NIL)) (-2376 (((-3 $ "failed") $ $) NIL)) (-3747 (($ (-690 |#2|)) 56)) (-3507 (((-112) $) NIL)) (-1563 (((-112) $ (-772)) NIL)) (-4302 (($ |#2|) 14)) (-3647 (($) NIL T CONST)) (-2765 (($ $) 69 (|has| |#2| (-308)))) (-4323 (((-240 |#1| |#2|) $ (-567)) 42)) (-3765 (((-3 (-567) "failed") $) NIL (|has| |#2| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#2| (-1040 (-410 (-567))))) (((-3 |#2| "failed") $) NIL)) (-2051 (((-567) $) NIL (|has| |#2| (-1040 (-567)))) (((-410 (-567)) $) NIL (|has| |#2| (-1040 (-410 (-567))))) ((|#2| $) NIL)) (-1423 (((-690 (-567)) (-690 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -4208 (-690 |#2|)) (|:| |vec| (-1269 |#2|))) (-690 $) (-1269 $)) NIL) (((-690 |#2|) (-690 $)) NIL)) (-3588 (((-3 $ "failed") $) 83)) (-1976 (((-772) $) 71 (|has| |#2| (-559)))) (-3703 ((|#2| $ (-567) (-567)) NIL)) (-2799 (((-645 |#2|) $) NIL (|has| $ (-6 -4422)))) (-4346 (((-112) $) NIL)) (-1974 (((-772) $) 73 (|has| |#2| (-559)))) (-2064 (((-645 (-240 |#1| |#2|)) $) 77 (|has| |#2| (-559)))) (-4296 (((-772) $) NIL)) (-2858 (($ |#2|) 25)) (-4307 (((-772) $) NIL)) (-4093 (((-112) $ (-772)) NIL)) (-1805 ((|#2| $) 67 (|has| |#2| (-6 (-4424 "*"))))) (-3407 (((-567) $) NIL)) (-4227 (((-567) $) NIL)) (-1942 (((-645 |#2|) $) NIL (|has| $ (-6 -4422)))) (-3237 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#2| (-1102))))) (-3393 (((-567) $) NIL)) (-3351 (((-567) $) NIL)) (-2124 (($ (-645 (-645 |#2|))) 37)) (-3751 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-2282 (((-645 (-645 |#2|)) $) NIL)) (-1986 (((-112) $ (-772)) NIL)) (-2516 (((-1161) $) NIL)) (-2504 (((-3 $ "failed") $) 80 (|has| |#2| (-365)))) (-3437 (((-1122) $) NIL)) (-2400 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-559)))) (-4233 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))))) (-3875 (((-112) $ $) NIL)) (-3885 (((-112) $) NIL)) (-2701 (($) NIL)) (-1801 ((|#2| $ (-567) (-567) |#2|) NIL) ((|#2| $ (-567) (-567)) NIL)) (-1616 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-1179)) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-772)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-2437 ((|#2| $) NIL)) (-3391 (($ (-645 |#2|)) 50)) (-4103 (((-112) $) NIL)) (-2076 (((-240 |#1| |#2|) $) NIL)) (-2790 ((|#2| $) 65 (|has| |#2| (-6 (-4424 "*"))))) (-3447 (((-772) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4422))) (((-772) |#2| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#2| (-1102))))) (-4309 (($ $) NIL)) (-3902 (((-539) $) 89 (|has| |#2| (-615 (-539))))) (-3186 (((-240 |#1| |#2|) $ (-567)) 44)) (-4129 (((-863) $) 47) (($ (-567)) NIL) (($ (-410 (-567))) NIL (|has| |#2| (-1040 (-410 (-567))))) (($ |#2|) NIL) (((-690 |#2|) $) 52)) (-2746 (((-772)) 23 T CONST)) (-3357 (((-112) $ $) NIL)) (-3436 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4422)))) (-4050 (((-112) $) NIL)) (-1733 (($) 16 T CONST)) (-1744 (($) 21 T CONST)) (-2647 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-1179)) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-772)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-2946 (((-112) $ $) NIL)) (-3069 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) 63) (($ $ (-567)) 82 (|has| |#2| (-365)))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-240 |#1| |#2|) $ (-240 |#1| |#2|)) 59) (((-240 |#1| |#2|) (-240 |#1| |#2|) $) 61)) (-2423 (((-772) $) NIL (|has| $ (-6 -4422)))))
+(((-1144 |#1| |#2|) (-13 (-1125 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-614 (-690 |#2|)) (-10 -8 (-15 -2858 ($ |#2|)) (-15 -4141 ($ $)) (-15 -3747 ($ (-690 |#2|))) (IF (|has| |#2| (-6 (-4424 "*"))) (-6 -4411) |%noBranch|) (IF (|has| |#2| (-6 (-4424 "*"))) (IF (|has| |#2| (-6 -4419)) (-6 -4419) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|))) (-772) (-1051)) (T -1144))
+((-2858 (*1 *1 *2) (-12 (-5 *1 (-1144 *3 *2)) (-14 *3 (-772)) (-4 *2 (-1051)))) (-4141 (*1 *1 *1) (-12 (-5 *1 (-1144 *2 *3)) (-14 *2 (-772)) (-4 *3 (-1051)))) (-3747 (*1 *1 *2) (-12 (-5 *2 (-690 *4)) (-4 *4 (-1051)) (-5 *1 (-1144 *3 *4)) (-14 *3 (-772)))))
+(-13 (-1125 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-614 (-690 |#2|)) (-10 -8 (-15 -2858 ($ |#2|)) (-15 -4141 ($ $)) (-15 -3747 ($ (-690 |#2|))) (IF (|has| |#2| (-6 (-4424 "*"))) (-6 -4411) |%noBranch|) (IF (|has| |#2| (-6 (-4424 "*"))) (IF (|has| |#2| (-6 -4419)) (-6 -4419) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|)))
+((-2868 (($ $) 19)) (-2147 (($ $ (-144)) 10) (($ $ (-141)) 14)) (-3712 (((-112) $ $) 24)) (-4365 (($ $) 17)) (-1801 (((-144) $ (-567) (-144)) NIL) (((-144) $ (-567)) NIL) (($ $ (-1236 (-567))) NIL) (($ $ $) 31)) (-4129 (($ (-144)) 29) (((-863) $) NIL)))
+(((-1145 |#1|) (-10 -8 (-15 -4129 ((-863) |#1|)) (-15 -1801 (|#1| |#1| |#1|)) (-15 -2147 (|#1| |#1| (-141))) (-15 -2147 (|#1| |#1| (-144))) (-15 -4129 (|#1| (-144))) (-15 -3712 ((-112) |#1| |#1|)) (-15 -2868 (|#1| |#1|)) (-15 -4365 (|#1| |#1|)) (-15 -1801 (|#1| |#1| (-1236 (-567)))) (-15 -1801 ((-144) |#1| (-567))) (-15 -1801 ((-144) |#1| (-567) (-144)))) (-1146)) (T -1145))
+NIL
+(-10 -8 (-15 -4129 ((-863) |#1|)) (-15 -1801 (|#1| |#1| |#1|)) (-15 -2147 (|#1| |#1| (-141))) (-15 -2147 (|#1| |#1| (-144))) (-15 -4129 (|#1| (-144))) (-15 -3712 ((-112) |#1| |#1|)) (-15 -2868 (|#1| |#1|)) (-15 -4365 (|#1| |#1|)) (-15 -1801 (|#1| |#1| (-1236 (-567)))) (-15 -1801 ((-144) |#1| (-567))) (-15 -1801 ((-144) |#1| (-567) (-144))))
+((-2412 (((-112) $ $) 19 (|has| (-144) (-1102)))) (-3355 (($ $) 121)) (-2868 (($ $) 122)) (-2147 (($ $ (-144)) 109) (($ $ (-141)) 108)) (-3843 (((-1274) $ (-567) (-567)) 41 (|has| $ (-6 -4423)))) (-3691 (((-112) $ $) 119)) (-3671 (((-112) $ $ (-567)) 118)) (-2004 (((-645 $) $ (-144)) 111) (((-645 $) $ (-141)) 110)) (-3531 (((-112) (-1 (-112) (-144) (-144)) $) 99) (((-112) $) 93 (|has| (-144) (-851)))) (-2676 (($ (-1 (-112) (-144) (-144)) $) 90 (|has| $ (-6 -4423))) (($ $) 89 (-12 (|has| (-144) (-851)) (|has| $ (-6 -4423))))) (-1311 (($ (-1 (-112) (-144) (-144)) $) 100) (($ $) 94 (|has| (-144) (-851)))) (-1563 (((-112) $ (-772)) 8)) (-4285 (((-144) $ (-567) (-144)) 53 (|has| $ (-6 -4423))) (((-144) $ (-1236 (-567)) (-144)) 59 (|has| $ (-6 -4423)))) (-3356 (($ (-1 (-112) (-144)) $) 76 (|has| $ (-6 -4422)))) (-3647 (($) 7 T CONST)) (-3286 (($ $ (-144)) 105) (($ $ (-141)) 104)) (-1602 (($ $) 91 (|has| $ (-6 -4423)))) (-3592 (($ $) 101)) (-1919 (($ $ (-1236 (-567)) $) 115)) (-2453 (($ $) 79 (-12 (|has| (-144) (-1102)) (|has| $ (-6 -4422))))) (-3246 (($ (-144) $) 78 (-12 (|has| (-144) (-1102)) (|has| $ (-6 -4422)))) (($ (-1 (-112) (-144)) $) 75 (|has| $ (-6 -4422)))) (-2494 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) 77 (-12 (|has| (-144) (-1102)) (|has| $ (-6 -4422)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) 74 (|has| $ (-6 -4422))) (((-144) (-1 (-144) (-144) (-144)) $) 73 (|has| $ (-6 -4422)))) (-3760 (((-144) $ (-567) (-144)) 54 (|has| $ (-6 -4423)))) (-3703 (((-144) $ (-567)) 52)) (-3712 (((-112) $ $) 120)) (-2578 (((-567) (-1 (-112) (-144)) $) 98) (((-567) (-144) $) 97 (|has| (-144) (-1102))) (((-567) (-144) $ (-567)) 96 (|has| (-144) (-1102))) (((-567) $ $ (-567)) 114) (((-567) (-141) $ (-567)) 113)) (-2799 (((-645 (-144)) $) 31 (|has| $ (-6 -4422)))) (-2858 (($ (-772) (-144)) 70)) (-4093 (((-112) $ (-772)) 9)) (-3895 (((-567) $) 44 (|has| (-567) (-851)))) (-1365 (($ $ $) 88 (|has| (-144) (-851)))) (-2473 (($ (-1 (-112) (-144) (-144)) $ $) 102) (($ $ $) 95 (|has| (-144) (-851)))) (-1942 (((-645 (-144)) $) 30 (|has| $ (-6 -4422)))) (-3237 (((-112) (-144) $) 28 (-12 (|has| (-144) (-1102)) (|has| $ (-6 -4422))))) (-3255 (((-567) $) 45 (|has| (-567) (-851)))) (-3002 (($ $ $) 87 (|has| (-144) (-851)))) (-2590 (((-112) $ $ (-144)) 116)) (-4197 (((-772) $ $ (-144)) 117)) (-3751 (($ (-1 (-144) (-144)) $) 35 (|has| $ (-6 -4423)))) (-3841 (($ (-1 (-144) (-144)) $) 36) (($ (-1 (-144) (-144) (-144)) $ $) 65)) (-4326 (($ $) 123)) (-4365 (($ $) 124)) (-1986 (((-112) $ (-772)) 10)) (-3296 (($ $ (-144)) 107) (($ $ (-141)) 106)) (-2516 (((-1161) $) 22 (|has| (-144) (-1102)))) (-2857 (($ (-144) $ (-567)) 61) (($ $ $ (-567)) 60)) (-4364 (((-645 (-567)) $) 47)) (-3188 (((-112) (-567) $) 48)) (-3437 (((-1122) $) 21 (|has| (-144) (-1102)))) (-2418 (((-144) $) 43 (|has| (-567) (-851)))) (-3196 (((-3 (-144) "failed") (-1 (-112) (-144)) $) 72)) (-3823 (($ $ (-144)) 42 (|has| $ (-6 -4423)))) (-4233 (((-112) (-1 (-112) (-144)) $) 33 (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 (-144)))) 27 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102)))) (($ $ (-295 (-144))) 26 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102)))) (($ $ (-144) (-144)) 25 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102)))) (($ $ (-645 (-144)) (-645 (-144))) 24 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102))))) (-3875 (((-112) $ $) 14)) (-4058 (((-112) (-144) $) 46 (-12 (|has| $ (-6 -4422)) (|has| (-144) (-1102))))) (-2190 (((-645 (-144)) $) 49)) (-3885 (((-112) $) 11)) (-2701 (($) 12)) (-1801 (((-144) $ (-567) (-144)) 51) (((-144) $ (-567)) 50) (($ $ (-1236 (-567))) 64) (($ $ $) 103)) (-1569 (($ $ (-567)) 63) (($ $ (-1236 (-567))) 62)) (-3447 (((-772) (-1 (-112) (-144)) $) 32 (|has| $ (-6 -4422))) (((-772) (-144) $) 29 (-12 (|has| (-144) (-1102)) (|has| $ (-6 -4422))))) (-1656 (($ $ $ (-567)) 92 (|has| $ (-6 -4423)))) (-4309 (($ $) 13)) (-3902 (((-539) $) 80 (|has| (-144) (-615 (-539))))) (-4145 (($ (-645 (-144))) 71)) (-2276 (($ $ (-144)) 69) (($ (-144) $) 68) (($ $ $) 67) (($ (-645 $)) 66)) (-4129 (($ (-144)) 112) (((-863) $) 18 (|has| (-144) (-614 (-863))))) (-3357 (((-112) $ $) 23 (|has| (-144) (-1102)))) (-3436 (((-112) (-1 (-112) (-144)) $) 34 (|has| $ (-6 -4422)))) (-3004 (((-112) $ $) 85 (|has| (-144) (-851)))) (-2980 (((-112) $ $) 84 (|has| (-144) (-851)))) (-2946 (((-112) $ $) 20 (|has| (-144) (-1102)))) (-2993 (((-112) $ $) 86 (|has| (-144) (-851)))) (-2968 (((-112) $ $) 83 (|has| (-144) (-851)))) (-2423 (((-772) $) 6 (|has| $ (-6 -4422)))))
(((-1146) (-140)) (T -1146))
-((-3677 (*1 *1 *1) (-4 *1 (-1146))) (-3240 (*1 *1 *1) (-4 *1 (-1146))) (-3714 (*1 *1 *1) (-4 *1 (-1146))) (-4172 (*1 *1 *1) (-4 *1 (-1146))) (-1958 (*1 *2 *1 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-112)))) (-1938 (*1 *2 *1 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-112)))) (-1918 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (-567)) (-5 *2 (-112)))) (-4197 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (-144)) (-5 *2 (-772)))) (-2580 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (-144)) (-5 *2 (-112)))) (-3364 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-1235 (-567))))) (-2569 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1146)) (-5 *2 (-567)))) (-2569 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1146)) (-5 *2 (-567)) (-5 *3 (-141)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-144)) (-4 *1 (-1146)))) (-4323 (*1 *2 *1 *3) (-12 (-5 *3 (-144)) (-5 *2 (-645 *1)) (-4 *1 (-1146)))) (-4323 (*1 *2 *1 *3) (-12 (-5 *3 (-141)) (-5 *2 (-645 *1)) (-4 *1 (-1146)))) (-1757 (*1 *1 *1 *2) (-12 (-4 *1 (-1146)) (-5 *2 (-144)))) (-1757 (*1 *1 *1 *2) (-12 (-4 *1 (-1146)) (-5 *2 (-141)))) (-3289 (*1 *1 *1 *2) (-12 (-4 *1 (-1146)) (-5 *2 (-144)))) (-3289 (*1 *1 *1 *2) (-12 (-4 *1 (-1146)) (-5 *2 (-141)))) (-3279 (*1 *1 *1 *2) (-12 (-4 *1 (-1146)) (-5 *2 (-144)))) (-3279 (*1 *1 *1 *2) (-12 (-4 *1 (-1146)) (-5 *2 (-141)))) (-1787 (*1 *1 *1 *1) (-4 *1 (-1146))))
-(-13 (-19 (-144)) (-10 -8 (-15 -3677 ($ $)) (-15 -3240 ($ $)) (-15 -3714 ($ $)) (-15 -4172 ($ $)) (-15 -1958 ((-112) $ $)) (-15 -1938 ((-112) $ $)) (-15 -1918 ((-112) $ $ (-567))) (-15 -4197 ((-772) $ $ (-144))) (-15 -2580 ((-112) $ $ (-144))) (-15 -3364 ($ $ (-1235 (-567)) $)) (-15 -2569 ((-567) $ $ (-567))) (-15 -2569 ((-567) (-141) $ (-567))) (-15 -4132 ($ (-144))) (-15 -4323 ((-645 $) $ (-144))) (-15 -4323 ((-645 $) $ (-141))) (-15 -1757 ($ $ (-144))) (-15 -1757 ($ $ (-141))) (-15 -3289 ($ $ (-144))) (-15 -3289 ($ $ (-141))) (-15 -3279 ($ $ (-144))) (-15 -3279 ($ $ (-141))) (-15 -1787 ($ $ $))))
-(((-34) . T) ((-102) -2800 (|has| (-144) (-1102)) (|has| (-144) (-851))) ((-614 (-863)) -2800 (|has| (-144) (-1102)) (|has| (-144) (-851)) (|has| (-144) (-614 (-863)))) ((-151 #0=(-144)) . T) ((-615 (-539)) |has| (-144) (-615 (-539))) ((-287 #1=(-567) #0#) . T) ((-289 #1# #0#) . T) ((-310 #0#) -12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102))) ((-375 #0#) . T) ((-492 #0#) . T) ((-605 #1# #0#) . T) ((-517 #0# #0#) -12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102))) ((-652 #0#) . T) ((-19 #0#) . T) ((-851) |has| (-144) (-851)) ((-1102) -2800 (|has| (-144) (-1102)) (|has| (-144) (-851))) ((-1218) . T))
-((-2595 (((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) (-645 |#4|) (-645 |#5|) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) (-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) (-772)) 113)) (-3958 (((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) |#4| |#5|) 62) (((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) |#4| |#5| (-772)) 61)) (-3262 (((-1273) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) (-772)) 98)) (-3252 (((-772) (-645 |#4|) (-645 |#5|)) 30)) (-3574 (((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) |#4| |#5| (-772)) 63) (((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) |#4| |#5| (-772) (-112)) 65)) (-2532 (((-645 |#5|) (-645 |#4|) (-645 |#5|) (-112) (-112) (-112) (-112) (-112)) 84) (((-645 |#5|) (-645 |#4|) (-645 |#5|) (-112) (-112)) 85)) (-3893 (((-1160) (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) 90)) (-1836 (((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) |#4| |#5|) 60)) (-4230 (((-772) (-645 |#4|) (-645 |#5|)) 21)))
-(((-1147 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4230 ((-772) (-645 |#4|) (-645 |#5|))) (-15 -3252 ((-772) (-645 |#4|) (-645 |#5|))) (-15 -1836 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) |#4| |#5|)) (-15 -3958 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) |#4| |#5| (-772))) (-15 -3958 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) |#4| |#5|)) (-15 -3574 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) |#4| |#5| (-772) (-112))) (-15 -3574 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) |#4| |#5| (-772))) (-15 -3574 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) |#4| |#5|)) (-15 -2532 ((-645 |#5|) (-645 |#4|) (-645 |#5|) (-112) (-112))) (-15 -2532 ((-645 |#5|) (-645 |#4|) (-645 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2595 ((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) (-645 |#4|) (-645 |#5|) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) (-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) (-772))) (-15 -3893 ((-1160) (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|)))) (-15 -3262 ((-1273) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) (-772)))) (-455) (-794) (-851) (-1067 |#1| |#2| |#3|) (-1111 |#1| |#2| |#3| |#4|)) (T -1147))
-((-3262 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-2 (|:| |val| (-645 *8)) (|:| -2566 *9)))) (-5 *4 (-772)) (-4 *8 (-1067 *5 *6 *7)) (-4 *9 (-1111 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-1273)) (-5 *1 (-1147 *5 *6 *7 *8 *9)))) (-3893 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-645 *7)) (|:| -2566 *8))) (-4 *7 (-1067 *4 *5 *6)) (-4 *8 (-1111 *4 *5 *6 *7)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-1160)) (-5 *1 (-1147 *4 *5 *6 *7 *8)))) (-2595 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-645 *11)) (|:| |todo| (-645 (-2 (|:| |val| *3) (|:| -2566 *11)))))) (-5 *6 (-772)) (-5 *2 (-645 (-2 (|:| |val| (-645 *10)) (|:| -2566 *11)))) (-5 *3 (-645 *10)) (-5 *4 (-645 *11)) (-4 *10 (-1067 *7 *8 *9)) (-4 *11 (-1111 *7 *8 *9 *10)) (-4 *7 (-455)) (-4 *8 (-794)) (-4 *9 (-851)) (-5 *1 (-1147 *7 *8 *9 *10 *11)))) (-2532 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-645 *9)) (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7)) (-4 *9 (-1111 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-1147 *5 *6 *7 *8 *9)))) (-2532 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-645 *9)) (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7)) (-4 *9 (-1111 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-1147 *5 *6 *7 *8 *9)))) (-3574 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-645 *4)) (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2566 *4)))))) (-5 *1 (-1147 *5 *6 *7 *3 *4)) (-4 *4 (-1111 *5 *6 *7 *3)))) (-3574 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-772)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *3 (-1067 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-645 *4)) (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2566 *4)))))) (-5 *1 (-1147 *6 *7 *8 *3 *4)) (-4 *4 (-1111 *6 *7 *8 *3)))) (-3574 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-772)) (-5 *6 (-112)) (-4 *7 (-455)) (-4 *8 (-794)) (-4 *9 (-851)) (-4 *3 (-1067 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-645 *4)) (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2566 *4)))))) (-5 *1 (-1147 *7 *8 *9 *3 *4)) (-4 *4 (-1111 *7 *8 *9 *3)))) (-3958 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-645 *4)) (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2566 *4)))))) (-5 *1 (-1147 *5 *6 *7 *3 *4)) (-4 *4 (-1111 *5 *6 *7 *3)))) (-3958 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-772)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *3 (-1067 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-645 *4)) (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2566 *4)))))) (-5 *1 (-1147 *6 *7 *8 *3 *4)) (-4 *4 (-1111 *6 *7 *8 *3)))) (-1836 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-645 *4)) (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2566 *4)))))) (-5 *1 (-1147 *5 *6 *7 *3 *4)) (-4 *4 (-1111 *5 *6 *7 *3)))) (-3252 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 *9)) (-4 *8 (-1067 *5 *6 *7)) (-4 *9 (-1111 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-772)) (-5 *1 (-1147 *5 *6 *7 *8 *9)))) (-4230 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 *9)) (-4 *8 (-1067 *5 *6 *7)) (-4 *9 (-1111 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-772)) (-5 *1 (-1147 *5 *6 *7 *8 *9)))))
-(-10 -7 (-15 -4230 ((-772) (-645 |#4|) (-645 |#5|))) (-15 -3252 ((-772) (-645 |#4|) (-645 |#5|))) (-15 -1836 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) |#4| |#5|)) (-15 -3958 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) |#4| |#5| (-772))) (-15 -3958 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) |#4| |#5|)) (-15 -3574 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) |#4| |#5| (-772) (-112))) (-15 -3574 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) |#4| |#5| (-772))) (-15 -3574 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) |#4| |#5|)) (-15 -2532 ((-645 |#5|) (-645 |#4|) (-645 |#5|) (-112) (-112))) (-15 -2532 ((-645 |#5|) (-645 |#4|) (-645 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2595 ((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) (-645 |#4|) (-645 |#5|) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) (-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))))) (-772))) (-15 -3893 ((-1160) (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|)))) (-15 -3262 ((-1273) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2566 |#5|))) (-772))))
-((-2403 (((-112) $ $) NIL)) (-3487 (((-645 (-2 (|:| -3995 $) (|:| -3823 (-645 |#4|)))) (-645 |#4|)) NIL)) (-3244 (((-645 $) (-645 |#4|)) 124) (((-645 $) (-645 |#4|) (-112)) 125) (((-645 $) (-645 |#4|) (-112) (-112)) 123) (((-645 $) (-645 |#4|) (-112) (-112) (-112) (-112)) 126)) (-2847 (((-645 |#3|) $) NIL)) (-2017 (((-112) $) NIL)) (-3623 (((-112) $) NIL (|has| |#1| (-559)))) (-1326 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3722 ((|#4| |#4| $) NIL)) (-3248 (((-645 (-2 (|:| |val| |#4|) (|:| -2566 $))) |#4| $) 97)) (-4396 (((-2 (|:| |under| $) (|:| -2780 $) (|:| |upper| $)) $ |#3|) NIL)) (-3445 (((-112) $ (-772)) NIL)) (-3350 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4418))) (((-3 |#4| "failed") $ |#3|) 75)) (-2585 (($) NIL T CONST)) (-1490 (((-112) $) 29 (|has| |#1| (-559)))) (-2752 (((-112) $ $) NIL (|has| |#1| (-559)))) (-4224 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3547 (((-112) $) NIL (|has| |#1| (-559)))) (-1441 (((-645 |#4|) (-645 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1724 (((-645 |#4|) (-645 |#4|) $) NIL (|has| |#1| (-559)))) (-3197 (((-645 |#4|) (-645 |#4|) $) NIL (|has| |#1| (-559)))) (-3753 (((-3 $ "failed") (-645 |#4|)) NIL)) (-2038 (($ (-645 |#4|)) NIL)) (-2421 (((-3 $ "failed") $) 45)) (-1999 ((|#4| |#4| $) 78)) (-2444 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#4| (-1102))))) (-3238 (($ |#4| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#4| (-1102)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4418)))) (-4194 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 91 (|has| |#1| (-559)))) (-3786 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3730 ((|#4| |#4| $) NIL)) (-2477 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4418)) (|has| |#4| (-1102)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4418))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4418))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1585 (((-2 (|:| -3995 (-645 |#4|)) (|:| -3823 (-645 |#4|))) $) NIL)) (-3783 (((-112) |#4| $) NIL)) (-1829 (((-112) |#4| $) NIL)) (-2127 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1653 (((-2 (|:| |val| (-645 |#4|)) (|:| |towers| (-645 $))) (-645 |#4|) (-112) (-112)) 139)) (-2777 (((-645 |#4|) $) 18 (|has| $ (-6 -4418)))) (-1664 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1679 ((|#3| $) 38)) (-2077 (((-112) $ (-772)) NIL)) (-2279 (((-645 |#4|) $) 19 (|has| $ (-6 -4418)))) (-4337 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4418)) (|has| |#4| (-1102))))) (-3731 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#4| |#4|) $) 23)) (-2826 (((-645 |#3|) $) NIL)) (-2808 (((-112) |#3| $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL)) (-3232 (((-3 |#4| (-645 $)) |#4| |#4| $) NIL)) (-2272 (((-645 (-2 (|:| |val| |#4|) (|:| -2566 $))) |#4| |#4| $) 117)) (-3257 (((-3 |#4| "failed") $) 42)) (-1756 (((-645 $) |#4| $) 102)) (-4057 (((-3 (-112) (-645 $)) |#4| $) NIL)) (-3573 (((-645 (-2 (|:| |val| (-112)) (|:| -2566 $))) |#4| $) 112) (((-112) |#4| $) 65)) (-2370 (((-645 $) |#4| $) 121) (((-645 $) (-645 |#4|) $) NIL) (((-645 $) (-645 |#4|) (-645 $)) 122) (((-645 $) |#4| (-645 $)) NIL)) (-2545 (((-645 $) (-645 |#4|) (-112) (-112) (-112)) 134)) (-3101 (($ |#4| $) 88) (($ (-645 |#4|) $) 89) (((-645 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 87)) (-4051 (((-645 |#4|) $) NIL)) (-1791 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3159 ((|#4| |#4| $) NIL)) (-3392 (((-112) $ $) NIL)) (-2430 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-559)))) (-2554 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4164 ((|#4| |#4| $) NIL)) (-3430 (((-1122) $) NIL)) (-2409 (((-3 |#4| "failed") $) 40)) (-4128 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4077 (((-3 $ "failed") $ |#4|) 59)) (-2410 (($ $ |#4|) NIL) (((-645 $) |#4| $) 104) (((-645 $) |#4| (-645 $)) NIL) (((-645 $) (-645 |#4|) $) NIL) (((-645 $) (-645 |#4|) (-645 $)) 99)) (-3025 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 |#4|) (-645 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-295 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-645 (-295 |#4|))) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))))) (-3092 (((-112) $ $) NIL)) (-3572 (((-112) $) 17)) (-3498 (($) 14)) (-3077 (((-772) $) NIL)) (-3439 (((-772) |#4| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#4| (-1102)))) (((-772) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4418)))) (-4305 (($ $) 13)) (-3893 (((-539) $) NIL (|has| |#4| (-615 (-539))))) (-4147 (($ (-645 |#4|)) 22)) (-2397 (($ $ |#3|) 52)) (-2120 (($ $ |#3|) 54)) (-4129 (($ $) NIL)) (-2813 (($ $ |#3|) NIL)) (-4132 (((-863) $) 35) (((-645 |#4|) $) 46)) (-2073 (((-772) $) NIL (|has| |#3| (-370)))) (-1745 (((-112) $ $) NIL)) (-2220 (((-3 (-2 (|:| |bas| $) (|:| -2262 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2262 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2668 (((-112) $ (-1 (-112) |#4| (-645 |#4|))) NIL)) (-4021 (((-645 $) |#4| $) 66) (((-645 $) |#4| (-645 $)) NIL) (((-645 $) (-645 |#4|) $) NIL) (((-645 $) (-645 |#4|) (-645 $)) NIL)) (-1853 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4418)))) (-2385 (((-645 |#3|) $) NIL)) (-2848 (((-112) |#4| $) NIL)) (-2012 (((-112) |#3| $) 74)) (-2936 (((-112) $ $) NIL)) (-2414 (((-772) $) NIL (|has| $ (-6 -4418)))))
-(((-1148 |#1| |#2| |#3| |#4|) (-13 (-1111 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3101 ((-645 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3244 ((-645 $) (-645 |#4|) (-112) (-112))) (-15 -3244 ((-645 $) (-645 |#4|) (-112) (-112) (-112) (-112))) (-15 -2545 ((-645 $) (-645 |#4|) (-112) (-112) (-112))) (-15 -1653 ((-2 (|:| |val| (-645 |#4|)) (|:| |towers| (-645 $))) (-645 |#4|) (-112) (-112))))) (-455) (-794) (-851) (-1067 |#1| |#2| |#3|)) (T -1148))
-((-3101 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-645 (-1148 *5 *6 *7 *3))) (-5 *1 (-1148 *5 *6 *7 *3)) (-4 *3 (-1067 *5 *6 *7)))) (-3244 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-645 (-1148 *5 *6 *7 *8))) (-5 *1 (-1148 *5 *6 *7 *8)))) (-3244 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-645 (-1148 *5 *6 *7 *8))) (-5 *1 (-1148 *5 *6 *7 *8)))) (-2545 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-645 (-1148 *5 *6 *7 *8))) (-5 *1 (-1148 *5 *6 *7 *8)))) (-1653 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-1067 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-645 *8)) (|:| |towers| (-645 (-1148 *5 *6 *7 *8))))) (-5 *1 (-1148 *5 *6 *7 *8)) (-5 *3 (-645 *8)))))
-(-13 (-1111 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3101 ((-645 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3244 ((-645 $) (-645 |#4|) (-112) (-112))) (-15 -3244 ((-645 $) (-645 |#4|) (-112) (-112) (-112) (-112))) (-15 -2545 ((-645 $) (-645 |#4|) (-112) (-112) (-112))) (-15 -1653 ((-2 (|:| |val| (-645 |#4|)) (|:| |towers| (-645 $))) (-645 |#4|) (-112) (-112)))))
-((-2403 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2262 ((|#1| $) 37)) (-2829 (($ (-645 |#1|)) 45)) (-3445 (((-112) $ (-772)) NIL)) (-2585 (($) NIL T CONST)) (-2576 ((|#1| |#1| $) 40)) (-4338 ((|#1| $) 35)) (-2777 (((-645 |#1|) $) 18 (|has| $ (-6 -4418)))) (-2077 (((-112) $ (-772)) NIL)) (-2279 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-3731 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) 22)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL (|has| |#1| (-1102)))) (-1566 ((|#1| $) 38)) (-2531 (($ |#1| $) 41)) (-3430 (((-1122) $) NIL (|has| |#1| (-1102)))) (-1793 ((|#1| $) 36)) (-3025 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) NIL)) (-3572 (((-112) $) 32)) (-3498 (($) 43)) (-3272 (((-772) $) 30)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-4305 (($ $) 27)) (-4132 (((-863) $) 14 (|has| |#1| (-614 (-863))))) (-1745 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3551 (($ (-645 |#1|)) NIL)) (-1853 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 17 (|has| |#1| (-1102)))) (-2414 (((-772) $) 31 (|has| $ (-6 -4418)))))
-(((-1149 |#1|) (-13 (-1123 |#1|) (-10 -8 (-15 -2829 ($ (-645 |#1|))))) (-1218)) (T -1149))
-((-2829 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1218)) (-5 *1 (-1149 *3)))))
-(-13 (-1123 |#1|) (-10 -8 (-15 -2829 ($ (-645 |#1|)))))
-((-4284 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1235 (-567)) |#2|) 55) ((|#2| $ (-567) |#2|) 52)) (-1399 (((-112) $) 12)) (-3731 (($ (-1 |#2| |#2|) $) 50)) (-2409 ((|#2| $) NIL) (($ $ (-772)) 20)) (-3986 (($ $ |#2|) 51)) (-3323 (((-112) $) 11)) (-1787 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1235 (-567))) 38) ((|#2| $ (-567)) 29) ((|#2| $ (-567) |#2|) NIL)) (-2484 (($ $ $) 58) (($ $ |#2|) NIL)) (-2269 (($ $ $) 40) (($ |#2| $) NIL) (($ (-645 $)) 47) (($ $ |#2|) NIL)))
-(((-1150 |#1| |#2|) (-10 -8 (-15 -1399 ((-112) |#1|)) (-15 -3323 ((-112) |#1|)) (-15 -4284 (|#2| |#1| (-567) |#2|)) (-15 -1787 (|#2| |#1| (-567) |#2|)) (-15 -1787 (|#2| |#1| (-567))) (-15 -3986 (|#1| |#1| |#2|)) (-15 -2269 (|#1| |#1| |#2|)) (-15 -2269 (|#1| (-645 |#1|))) (-15 -1787 (|#1| |#1| (-1235 (-567)))) (-15 -4284 (|#2| |#1| (-1235 (-567)) |#2|)) (-15 -4284 (|#2| |#1| "last" |#2|)) (-15 -4284 (|#1| |#1| "rest" |#1|)) (-15 -4284 (|#2| |#1| "first" |#2|)) (-15 -2484 (|#1| |#1| |#2|)) (-15 -2484 (|#1| |#1| |#1|)) (-15 -1787 (|#2| |#1| "last")) (-15 -1787 (|#1| |#1| "rest")) (-15 -2409 (|#1| |#1| (-772))) (-15 -1787 (|#2| |#1| "first")) (-15 -2409 (|#2| |#1|)) (-15 -2269 (|#1| |#2| |#1|)) (-15 -2269 (|#1| |#1| |#1|)) (-15 -4284 (|#2| |#1| "value" |#2|)) (-15 -1787 (|#2| |#1| "value")) (-15 -3731 (|#1| (-1 |#2| |#2|) |#1|))) (-1151 |#2|) (-1218)) (T -1150))
-NIL
-(-10 -8 (-15 -1399 ((-112) |#1|)) (-15 -3323 ((-112) |#1|)) (-15 -4284 (|#2| |#1| (-567) |#2|)) (-15 -1787 (|#2| |#1| (-567) |#2|)) (-15 -1787 (|#2| |#1| (-567))) (-15 -3986 (|#1| |#1| |#2|)) (-15 -2269 (|#1| |#1| |#2|)) (-15 -2269 (|#1| (-645 |#1|))) (-15 -1787 (|#1| |#1| (-1235 (-567)))) (-15 -4284 (|#2| |#1| (-1235 (-567)) |#2|)) (-15 -4284 (|#2| |#1| "last" |#2|)) (-15 -4284 (|#1| |#1| "rest" |#1|)) (-15 -4284 (|#2| |#1| "first" |#2|)) (-15 -2484 (|#1| |#1| |#2|)) (-15 -2484 (|#1| |#1| |#1|)) (-15 -1787 (|#2| |#1| "last")) (-15 -1787 (|#1| |#1| "rest")) (-15 -2409 (|#1| |#1| (-772))) (-15 -1787 (|#2| |#1| "first")) (-15 -2409 (|#2| |#1|)) (-15 -2269 (|#1| |#2| |#1|)) (-15 -2269 (|#1| |#1| |#1|)) (-15 -4284 (|#2| |#1| "value" |#2|)) (-15 -1787 (|#2| |#1| "value")) (-15 -3731 (|#1| (-1 |#2| |#2|) |#1|)))
-((-2403 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-3802 ((|#1| $) 49)) (-3998 ((|#1| $) 66)) (-4283 (($ $) 68)) (-1783 (((-1273) $ (-567) (-567)) 98 (|has| $ (-6 -4419)))) (-2366 (($ $ (-567)) 53 (|has| $ (-6 -4419)))) (-3445 (((-112) $ (-772)) 8)) (-2138 ((|#1| $ |#1|) 40 (|has| $ (-6 -4419)))) (-4209 (($ $ $) 57 (|has| $ (-6 -4419)))) (-2315 ((|#1| $ |#1|) 55 (|has| $ (-6 -4419)))) (-2271 ((|#1| $ |#1|) 59 (|has| $ (-6 -4419)))) (-4284 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4419))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4419))) (($ $ "rest" $) 56 (|has| $ (-6 -4419))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4419))) ((|#1| $ (-1235 (-567)) |#1|) 118 (|has| $ (-6 -4419))) ((|#1| $ (-567) |#1|) 87 (|has| $ (-6 -4419)))) (-1301 (($ $ (-645 $)) 42 (|has| $ (-6 -4419)))) (-3350 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4418)))) (-3984 ((|#1| $) 67)) (-2585 (($) 7 T CONST)) (-2421 (($ $) 74) (($ $ (-772)) 72)) (-2444 (($ $) 100 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-3238 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4418))) (($ |#1| $) 101 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-2477 ((|#1| (-1 |#1| |#1| |#1|) $) 106 (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 105 (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 102 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-3741 ((|#1| $ (-567) |#1|) 86 (|has| $ (-6 -4419)))) (-3680 ((|#1| $ (-567)) 88)) (-1399 (((-112) $) 84)) (-2777 (((-645 |#1|) $) 31 (|has| $ (-6 -4418)))) (-2182 (((-645 $) $) 51)) (-3512 (((-112) $ $) 43 (|has| |#1| (-1102)))) (-2846 (($ (-772) |#1|) 109)) (-2077 (((-112) $ (-772)) 9)) (-4069 (((-567) $) 96 (|has| (-567) (-851)))) (-2279 (((-645 |#1|) $) 30 (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-2266 (((-567) $) 95 (|has| (-567) (-851)))) (-3731 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 112)) (-2863 (((-112) $ (-772)) 10)) (-3773 (((-645 |#1|) $) 46)) (-2769 (((-112) $) 50)) (-1419 (((-1160) $) 22 (|has| |#1| (-1102)))) (-3257 ((|#1| $) 71) (($ $ (-772)) 69)) (-2845 (($ $ $ (-567)) 117) (($ |#1| $ (-567)) 116)) (-1789 (((-645 (-567)) $) 93)) (-2996 (((-112) (-567) $) 92)) (-3430 (((-1122) $) 21 (|has| |#1| (-1102)))) (-2409 ((|#1| $) 77) (($ $ (-772)) 75)) (-4128 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 107)) (-3986 (($ $ |#1|) 97 (|has| $ (-6 -4419)))) (-3323 (((-112) $) 85)) (-3025 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) 14)) (-1794 (((-112) |#1| $) 94 (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2339 (((-645 |#1|) $) 91)) (-3572 (((-112) $) 11)) (-3498 (($) 12)) (-1787 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1235 (-567))) 113) ((|#1| $ (-567)) 90) ((|#1| $ (-567) |#1|) 89)) (-2658 (((-567) $ $) 45)) (-1560 (($ $ (-1235 (-567))) 115) (($ $ (-567)) 114)) (-3900 (((-112) $) 47)) (-1644 (($ $) 63)) (-3519 (($ $) 60 (|has| $ (-6 -4419)))) (-3344 (((-772) $) 64)) (-1503 (($ $) 65)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4418))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-4305 (($ $) 13)) (-3893 (((-539) $) 99 (|has| |#1| (-615 (-539))))) (-4147 (($ (-645 |#1|)) 108)) (-2484 (($ $ $) 62 (|has| $ (-6 -4419))) (($ $ |#1|) 61 (|has| $ (-6 -4419)))) (-2269 (($ $ $) 79) (($ |#1| $) 78) (($ (-645 $)) 111) (($ $ |#1|) 110)) (-4132 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-1531 (((-645 $) $) 52)) (-3606 (((-112) $ $) 44 (|has| |#1| (-1102)))) (-1745 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2414 (((-772) $) 6 (|has| $ (-6 -4418)))))
-(((-1151 |#1|) (-140) (-1218)) (T -1151))
-((-3323 (*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1218)) (-5 *2 (-112)))) (-1399 (*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1218)) (-5 *2 (-112)))))
-(-13 (-1256 |t#1|) (-652 |t#1|) (-10 -8 (-15 -3323 ((-112) $)) (-15 -1399 ((-112) $))))
-(((-34) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2800 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-287 #0=(-567) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-605 #0# |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-652 |#1|) . T) ((-1012 |#1|) . T) ((-1102) |has| |#1| (-1102)) ((-1218) . T) ((-1256 |#1|) . T))
-((-2403 (((-112) $ $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-2835 (($) NIL) (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL)) (-1783 (((-1273) $ |#1| |#1|) NIL (|has| $ (-6 -4419)))) (-3445 (((-112) $ (-772)) NIL)) (-4284 ((|#2| $ |#1| |#2|) NIL)) (-2839 (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-3350 (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-4019 (((-3 |#2| "failed") |#1| $) NIL)) (-2585 (($) NIL T CONST)) (-2444 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102))))) (-2539 (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL (|has| $ (-6 -4418))) (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-3 |#2| "failed") |#1| $) NIL)) (-3238 (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-2477 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) NIL (|has| $ (-6 -4418))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-3741 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4419)))) (-3680 ((|#2| $ |#1|) NIL)) (-2777 (((-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-645 |#2|) $) NIL (|has| $ (-6 -4418)))) (-2077 (((-112) $ (-772)) NIL)) (-4069 ((|#1| $) NIL (|has| |#1| (-851)))) (-2279 (((-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-645 |#2|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#2| (-1102))))) (-2266 ((|#1| $) NIL (|has| |#1| (-851)))) (-3731 (($ (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4419))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-1391 (((-645 |#1|) $) NIL)) (-4251 (((-112) |#1| $) NIL)) (-1566 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL)) (-2531 (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL)) (-1789 (((-645 |#1|) $) NIL)) (-2996 (((-112) |#1| $) NIL)) (-3430 (((-1122) $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-2409 ((|#2| $) NIL (|has| |#1| (-851)))) (-4128 (((-3 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) "failed") (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL)) (-3986 (($ $ |#2|) NIL (|has| $ (-6 -4419)))) (-1793 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL)) (-3025 (((-112) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))))) NIL (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-295 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) NIL (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))))) (-3092 (((-112) $ $) NIL)) (-1794 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#2| (-1102))))) (-2339 (((-645 |#2|) $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) NIL)) (-1787 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2718 (($) NIL) (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL)) (-3439 (((-772) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-772) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (((-772) |#2| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#2| (-1102)))) (((-772) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4418)))) (-4305 (($ $) NIL)) (-3893 (((-539) $) NIL (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-615 (-539))))) (-4147 (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL)) (-4132 (((-863) $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-614 (-863))) (|has| |#2| (-614 (-863)))))) (-1745 (((-112) $ $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-3551 (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL)) (-1853 (((-112) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-2414 (((-772) $) NIL (|has| $ (-6 -4418)))))
-(((-1152 |#1| |#2| |#3|) (-1194 |#1| |#2|) (-1102) (-1102) |#2|) (T -1152))
-NIL
-(-1194 |#1| |#2|)
-((-2403 (((-112) $ $) 7)) (-3972 (((-3 $ "failed") $) 14)) (-1419 (((-1160) $) 10)) (-2672 (($) 15 T CONST)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-2936 (((-112) $ $) 6)))
-(((-1153) (-140)) (T -1153))
-((-2672 (*1 *1) (-4 *1 (-1153))) (-3972 (*1 *1 *1) (|partial| -4 *1 (-1153))))
-(-13 (-1102) (-10 -8 (-15 -2672 ($) -3286) (-15 -3972 ((-3 $ "failed") $))))
+((-4365 (*1 *1 *1) (-4 *1 (-1146))) (-4326 (*1 *1 *1) (-4 *1 (-1146))) (-2868 (*1 *1 *1) (-4 *1 (-1146))) (-3355 (*1 *1 *1) (-4 *1 (-1146))) (-3712 (*1 *2 *1 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-112)))) (-3691 (*1 *2 *1 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-112)))) (-3671 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (-567)) (-5 *2 (-112)))) (-4197 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (-144)) (-5 *2 (-772)))) (-2590 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (-144)) (-5 *2 (-112)))) (-1919 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-1236 (-567))))) (-2578 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1146)) (-5 *2 (-567)))) (-2578 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1146)) (-5 *2 (-567)) (-5 *3 (-141)))) (-4129 (*1 *1 *2) (-12 (-5 *2 (-144)) (-4 *1 (-1146)))) (-2004 (*1 *2 *1 *3) (-12 (-5 *3 (-144)) (-5 *2 (-645 *1)) (-4 *1 (-1146)))) (-2004 (*1 *2 *1 *3) (-12 (-5 *3 (-141)) (-5 *2 (-645 *1)) (-4 *1 (-1146)))) (-2147 (*1 *1 *1 *2) (-12 (-4 *1 (-1146)) (-5 *2 (-144)))) (-2147 (*1 *1 *1 *2) (-12 (-4 *1 (-1146)) (-5 *2 (-141)))) (-3296 (*1 *1 *1 *2) (-12 (-4 *1 (-1146)) (-5 *2 (-144)))) (-3296 (*1 *1 *1 *2) (-12 (-4 *1 (-1146)) (-5 *2 (-141)))) (-3286 (*1 *1 *1 *2) (-12 (-4 *1 (-1146)) (-5 *2 (-144)))) (-3286 (*1 *1 *1 *2) (-12 (-4 *1 (-1146)) (-5 *2 (-141)))) (-1801 (*1 *1 *1 *1) (-4 *1 (-1146))))
+(-13 (-19 (-144)) (-10 -8 (-15 -4365 ($ $)) (-15 -4326 ($ $)) (-15 -2868 ($ $)) (-15 -3355 ($ $)) (-15 -3712 ((-112) $ $)) (-15 -3691 ((-112) $ $)) (-15 -3671 ((-112) $ $ (-567))) (-15 -4197 ((-772) $ $ (-144))) (-15 -2590 ((-112) $ $ (-144))) (-15 -1919 ($ $ (-1236 (-567)) $)) (-15 -2578 ((-567) $ $ (-567))) (-15 -2578 ((-567) (-141) $ (-567))) (-15 -4129 ($ (-144))) (-15 -2004 ((-645 $) $ (-144))) (-15 -2004 ((-645 $) $ (-141))) (-15 -2147 ($ $ (-144))) (-15 -2147 ($ $ (-141))) (-15 -3296 ($ $ (-144))) (-15 -3296 ($ $ (-141))) (-15 -3286 ($ $ (-144))) (-15 -3286 ($ $ (-141))) (-15 -1801 ($ $ $))))
+(((-34) . T) ((-102) -2811 (|has| (-144) (-1102)) (|has| (-144) (-851))) ((-614 (-863)) -2811 (|has| (-144) (-1102)) (|has| (-144) (-851)) (|has| (-144) (-614 (-863)))) ((-151 #0=(-144)) . T) ((-615 (-539)) |has| (-144) (-615 (-539))) ((-287 #1=(-567) #0#) . T) ((-289 #1# #0#) . T) ((-310 #0#) -12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102))) ((-375 #0#) . T) ((-492 #0#) . T) ((-605 #1# #0#) . T) ((-517 #0# #0#) -12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102))) ((-652 #0#) . T) ((-19 #0#) . T) ((-851) |has| (-144) (-851)) ((-1102) -2811 (|has| (-144) (-1102)) (|has| (-144) (-851))) ((-1219) . T))
+((-2331 (((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))) (-645 |#4|) (-645 |#5|) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))) (-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))))) (-772)) 113)) (-3870 (((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))))) |#4| |#5|) 62) (((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))))) |#4| |#5| (-772)) 61)) (-3674 (((-1274) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))) (-772)) 98)) (-2871 (((-772) (-645 |#4|) (-645 |#5|)) 30)) (-4131 (((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))))) |#4| |#5| (-772)) 63) (((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))))) |#4| |#5| (-772) (-112)) 65)) (-2756 (((-645 |#5|) (-645 |#4|) (-645 |#5|) (-112) (-112) (-112) (-112) (-112)) 84) (((-645 |#5|) (-645 |#4|) (-645 |#5|) (-112) (-112)) 85)) (-3902 (((-1161) (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))) 90)) (-3594 (((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))))) |#4| |#5|) 60)) (-2410 (((-772) (-645 |#4|) (-645 |#5|)) 21)))
+(((-1147 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2410 ((-772) (-645 |#4|) (-645 |#5|))) (-15 -2871 ((-772) (-645 |#4|) (-645 |#5|))) (-15 -3594 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))))) |#4| |#5|)) (-15 -3870 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))))) |#4| |#5| (-772))) (-15 -3870 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))))) |#4| |#5|)) (-15 -4131 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))))) |#4| |#5| (-772) (-112))) (-15 -4131 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))))) |#4| |#5| (-772))) (-15 -4131 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))))) |#4| |#5|)) (-15 -2756 ((-645 |#5|) (-645 |#4|) (-645 |#5|) (-112) (-112))) (-15 -2756 ((-645 |#5|) (-645 |#4|) (-645 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2331 ((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))) (-645 |#4|) (-645 |#5|) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))) (-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))))) (-772))) (-15 -3902 ((-1161) (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|)))) (-15 -3674 ((-1274) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))) (-772)))) (-455) (-794) (-851) (-1067 |#1| |#2| |#3|) (-1111 |#1| |#2| |#3| |#4|)) (T -1147))
+((-3674 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-2 (|:| |val| (-645 *8)) (|:| -2575 *9)))) (-5 *4 (-772)) (-4 *8 (-1067 *5 *6 *7)) (-4 *9 (-1111 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-1274)) (-5 *1 (-1147 *5 *6 *7 *8 *9)))) (-3902 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-645 *7)) (|:| -2575 *8))) (-4 *7 (-1067 *4 *5 *6)) (-4 *8 (-1111 *4 *5 *6 *7)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-1161)) (-5 *1 (-1147 *4 *5 *6 *7 *8)))) (-2331 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-645 *11)) (|:| |todo| (-645 (-2 (|:| |val| *3) (|:| -2575 *11)))))) (-5 *6 (-772)) (-5 *2 (-645 (-2 (|:| |val| (-645 *10)) (|:| -2575 *11)))) (-5 *3 (-645 *10)) (-5 *4 (-645 *11)) (-4 *10 (-1067 *7 *8 *9)) (-4 *11 (-1111 *7 *8 *9 *10)) (-4 *7 (-455)) (-4 *8 (-794)) (-4 *9 (-851)) (-5 *1 (-1147 *7 *8 *9 *10 *11)))) (-2756 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-645 *9)) (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7)) (-4 *9 (-1111 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-1147 *5 *6 *7 *8 *9)))) (-2756 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-645 *9)) (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7)) (-4 *9 (-1111 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-1147 *5 *6 *7 *8 *9)))) (-4131 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-645 *4)) (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2575 *4)))))) (-5 *1 (-1147 *5 *6 *7 *3 *4)) (-4 *4 (-1111 *5 *6 *7 *3)))) (-4131 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-772)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *3 (-1067 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-645 *4)) (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2575 *4)))))) (-5 *1 (-1147 *6 *7 *8 *3 *4)) (-4 *4 (-1111 *6 *7 *8 *3)))) (-4131 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-772)) (-5 *6 (-112)) (-4 *7 (-455)) (-4 *8 (-794)) (-4 *9 (-851)) (-4 *3 (-1067 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-645 *4)) (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2575 *4)))))) (-5 *1 (-1147 *7 *8 *9 *3 *4)) (-4 *4 (-1111 *7 *8 *9 *3)))) (-3870 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-645 *4)) (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2575 *4)))))) (-5 *1 (-1147 *5 *6 *7 *3 *4)) (-4 *4 (-1111 *5 *6 *7 *3)))) (-3870 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-772)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *3 (-1067 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-645 *4)) (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2575 *4)))))) (-5 *1 (-1147 *6 *7 *8 *3 *4)) (-4 *4 (-1111 *6 *7 *8 *3)))) (-3594 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-645 *4)) (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2575 *4)))))) (-5 *1 (-1147 *5 *6 *7 *3 *4)) (-4 *4 (-1111 *5 *6 *7 *3)))) (-2871 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 *9)) (-4 *8 (-1067 *5 *6 *7)) (-4 *9 (-1111 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-772)) (-5 *1 (-1147 *5 *6 *7 *8 *9)))) (-2410 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 *9)) (-4 *8 (-1067 *5 *6 *7)) (-4 *9 (-1111 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-772)) (-5 *1 (-1147 *5 *6 *7 *8 *9)))))
+(-10 -7 (-15 -2410 ((-772) (-645 |#4|) (-645 |#5|))) (-15 -2871 ((-772) (-645 |#4|) (-645 |#5|))) (-15 -3594 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))))) |#4| |#5|)) (-15 -3870 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))))) |#4| |#5| (-772))) (-15 -3870 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))))) |#4| |#5|)) (-15 -4131 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))))) |#4| |#5| (-772) (-112))) (-15 -4131 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))))) |#4| |#5| (-772))) (-15 -4131 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))))) |#4| |#5|)) (-15 -2756 ((-645 |#5|) (-645 |#4|) (-645 |#5|) (-112) (-112))) (-15 -2756 ((-645 |#5|) (-645 |#4|) (-645 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2331 ((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))) (-645 |#4|) (-645 |#5|) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))) (-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))))) (-772))) (-15 -3902 ((-1161) (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|)))) (-15 -3674 ((-1274) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2575 |#5|))) (-772))))
+((-2412 (((-112) $ $) NIL)) (-4305 (((-645 (-2 (|:| -4000 $) (|:| -3835 (-645 |#4|)))) (-645 |#4|)) NIL)) (-3403 (((-645 $) (-645 |#4|)) 124) (((-645 $) (-645 |#4|) (-112)) 125) (((-645 $) (-645 |#4|) (-112) (-112)) 123) (((-645 $) (-645 |#4|) (-112) (-112) (-112) (-112)) 126)) (-2859 (((-645 |#3|) $) NIL)) (-3153 (((-112) $) NIL)) (-2031 (((-112) $) NIL (|has| |#1| (-559)))) (-2176 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2345 ((|#4| |#4| $) NIL)) (-3659 (((-645 (-2 (|:| |val| |#4|) (|:| -2575 $))) |#4| $) 97)) (-1311 (((-2 (|:| |under| $) (|:| -3969 $) (|:| |upper| $)) $ |#3|) NIL)) (-1563 (((-112) $ (-772)) NIL)) (-3356 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4422))) (((-3 |#4| "failed") $ |#3|) 75)) (-3647 (($) NIL T CONST)) (-1896 (((-112) $) 29 (|has| |#1| (-559)))) (-2909 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3040 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3365 (((-112) $) NIL (|has| |#1| (-559)))) (-3683 (((-645 |#4|) (-645 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1377 (((-645 |#4|) (-645 |#4|) $) NIL (|has| |#1| (-559)))) (-2279 (((-645 |#4|) (-645 |#4|) $) NIL (|has| |#1| (-559)))) (-3765 (((-3 $ "failed") (-645 |#4|)) NIL)) (-2051 (($ (-645 |#4|)) NIL)) (-2430 (((-3 $ "failed") $) 45)) (-3819 ((|#4| |#4| $) 78)) (-2453 (($ $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#4| (-1102))))) (-3246 (($ |#4| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#4| (-1102)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4422)))) (-2023 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 91 (|has| |#1| (-559)))) (-2240 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-1889 ((|#4| |#4| $) NIL)) (-2494 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4422)) (|has| |#4| (-1102)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4422))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4422))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4076 (((-2 (|:| -4000 (-645 |#4|)) (|:| -3835 (-645 |#4|))) $) NIL)) (-2057 (((-112) |#4| $) NIL)) (-4104 (((-112) |#4| $) NIL)) (-1413 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2369 (((-2 (|:| |val| (-645 |#4|)) (|:| |towers| (-645 $))) (-645 |#4|) (-112) (-112)) 139)) (-2799 (((-645 |#4|) $) 18 (|has| $ (-6 -4422)))) (-4061 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2072 ((|#3| $) 38)) (-4093 (((-112) $ (-772)) NIL)) (-1942 (((-645 |#4|) $) 19 (|has| $ (-6 -4422)))) (-3237 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4422)) (|has| |#4| (-1102))))) (-3751 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#4| |#4|) $) 23)) (-2869 (((-645 |#3|) $) NIL)) (-1524 (((-112) |#3| $) NIL)) (-1986 (((-112) $ (-772)) NIL)) (-2516 (((-1161) $) NIL)) (-3295 (((-3 |#4| (-645 $)) |#4| |#4| $) NIL)) (-2588 (((-645 (-2 (|:| |val| |#4|) (|:| -2575 $))) |#4| |#4| $) 117)) (-3266 (((-3 |#4| "failed") $) 42)) (-2055 (((-645 $) |#4| $) 102)) (-2254 (((-3 (-112) (-645 $)) |#4| $) NIL)) (-3992 (((-645 (-2 (|:| |val| (-112)) (|:| -2575 $))) |#4| $) 112) (((-112) |#4| $) 65)) (-3660 (((-645 $) |#4| $) 121) (((-645 $) (-645 |#4|) $) NIL) (((-645 $) (-645 |#4|) (-645 $)) 122) (((-645 $) |#4| (-645 $)) NIL)) (-1748 (((-645 $) (-645 |#4|) (-112) (-112) (-112)) 134)) (-2579 (($ |#4| $) 88) (($ (-645 |#4|) $) 89) (((-645 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 87)) (-3881 (((-645 |#4|) $) NIL)) (-3324 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1431 ((|#4| |#4| $) NIL)) (-3995 (((-112) $ $) NIL)) (-2634 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-559)))) (-4278 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3984 ((|#4| |#4| $) NIL)) (-3437 (((-1122) $) NIL)) (-2418 (((-3 |#4| "failed") $) 40)) (-3196 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3488 (((-3 $ "failed") $ |#4|) 59)) (-1874 (($ $ |#4|) NIL) (((-645 $) |#4| $) 104) (((-645 $) |#4| (-645 $)) NIL) (((-645 $) (-645 |#4|) $) NIL) (((-645 $) (-645 |#4|) (-645 $)) 99)) (-4233 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 |#4|) (-645 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-295 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-645 (-295 |#4|))) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))))) (-3875 (((-112) $ $) NIL)) (-3885 (((-112) $) 17)) (-2701 (($) 14)) (-3104 (((-772) $) NIL)) (-3447 (((-772) |#4| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#4| (-1102)))) (((-772) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4422)))) (-4309 (($ $) 13)) (-3902 (((-539) $) NIL (|has| |#4| (-615 (-539))))) (-4145 (($ (-645 |#4|)) 22)) (-3937 (($ $ |#3|) 52)) (-3165 (($ $ |#3|) 54)) (-2085 (($ $) NIL)) (-1920 (($ $ |#3|) NIL)) (-4129 (((-863) $) 35) (((-645 |#4|) $) 46)) (-1975 (((-772) $) NIL (|has| |#3| (-370)))) (-3357 (((-112) $ $) NIL)) (-1676 (((-3 (-2 (|:| |bas| $) (|:| -2270 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2270 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1642 (((-112) $ (-1 (-112) |#4| (-645 |#4|))) NIL)) (-3730 (((-645 $) |#4| $) 66) (((-645 $) |#4| (-645 $)) NIL) (((-645 $) (-645 |#4|) $) NIL) (((-645 $) (-645 |#4|) (-645 $)) NIL)) (-3436 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4422)))) (-2551 (((-645 |#3|) $) NIL)) (-3991 (((-112) |#4| $) NIL)) (-2618 (((-112) |#3| $) 74)) (-2946 (((-112) $ $) NIL)) (-2423 (((-772) $) NIL (|has| $ (-6 -4422)))))
+(((-1148 |#1| |#2| |#3| |#4|) (-13 (-1111 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2579 ((-645 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3403 ((-645 $) (-645 |#4|) (-112) (-112))) (-15 -3403 ((-645 $) (-645 |#4|) (-112) (-112) (-112) (-112))) (-15 -1748 ((-645 $) (-645 |#4|) (-112) (-112) (-112))) (-15 -2369 ((-2 (|:| |val| (-645 |#4|)) (|:| |towers| (-645 $))) (-645 |#4|) (-112) (-112))))) (-455) (-794) (-851) (-1067 |#1| |#2| |#3|)) (T -1148))
+((-2579 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-645 (-1148 *5 *6 *7 *3))) (-5 *1 (-1148 *5 *6 *7 *3)) (-4 *3 (-1067 *5 *6 *7)))) (-3403 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-645 (-1148 *5 *6 *7 *8))) (-5 *1 (-1148 *5 *6 *7 *8)))) (-3403 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-645 (-1148 *5 *6 *7 *8))) (-5 *1 (-1148 *5 *6 *7 *8)))) (-1748 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-645 (-1148 *5 *6 *7 *8))) (-5 *1 (-1148 *5 *6 *7 *8)))) (-2369 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-1067 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-645 *8)) (|:| |towers| (-645 (-1148 *5 *6 *7 *8))))) (-5 *1 (-1148 *5 *6 *7 *8)) (-5 *3 (-645 *8)))))
+(-13 (-1111 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2579 ((-645 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3403 ((-645 $) (-645 |#4|) (-112) (-112))) (-15 -3403 ((-645 $) (-645 |#4|) (-112) (-112) (-112) (-112))) (-15 -1748 ((-645 $) (-645 |#4|) (-112) (-112) (-112))) (-15 -2369 ((-2 (|:| |val| (-645 |#4|)) (|:| |towers| (-645 $))) (-645 |#4|) (-112) (-112)))))
+((-2412 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2270 ((|#1| $) 37)) (-2841 (($ (-645 |#1|)) 45)) (-1563 (((-112) $ (-772)) NIL)) (-3647 (($) NIL T CONST)) (-1985 ((|#1| |#1| $) 40)) (-2142 ((|#1| $) 35)) (-2799 (((-645 |#1|) $) 18 (|has| $ (-6 -4422)))) (-4093 (((-112) $ (-772)) NIL)) (-1942 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-3237 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3751 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#1| |#1|) $) 22)) (-1986 (((-112) $ (-772)) NIL)) (-2516 (((-1161) $) NIL (|has| |#1| (-1102)))) (-2706 ((|#1| $) 38)) (-2646 (($ |#1| $) 41)) (-3437 (((-1122) $) NIL (|has| |#1| (-1102)))) (-3949 ((|#1| $) 36)) (-4233 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3875 (((-112) $ $) NIL)) (-3885 (((-112) $) 32)) (-2701 (($) 43)) (-3289 (((-772) $) 30)) (-3447 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-4309 (($ $) 27)) (-4129 (((-863) $) 14 (|has| |#1| (-614 (-863))))) (-3357 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3700 (($ (-645 |#1|)) NIL)) (-3436 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2946 (((-112) $ $) 17 (|has| |#1| (-1102)))) (-2423 (((-772) $) 31 (|has| $ (-6 -4422)))))
+(((-1149 |#1|) (-13 (-1123 |#1|) (-10 -8 (-15 -2841 ($ (-645 |#1|))))) (-1219)) (T -1149))
+((-2841 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1219)) (-5 *1 (-1149 *3)))))
+(-13 (-1123 |#1|) (-10 -8 (-15 -2841 ($ (-645 |#1|)))))
+((-4285 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1236 (-567)) |#2|) 55) ((|#2| $ (-567) |#2|) 52)) (-4085 (((-112) $) 12)) (-3751 (($ (-1 |#2| |#2|) $) 50)) (-2418 ((|#2| $) NIL) (($ $ (-772)) 20)) (-3823 (($ $ |#2|) 51)) (-1971 (((-112) $) 11)) (-1801 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1236 (-567))) 38) ((|#2| $ (-567)) 29) ((|#2| $ (-567) |#2|) NIL)) (-2294 (($ $ $) 58) (($ $ |#2|) NIL)) (-2276 (($ $ $) 40) (($ |#2| $) NIL) (($ (-645 $)) 47) (($ $ |#2|) NIL)))
+(((-1150 |#1| |#2|) (-10 -8 (-15 -4085 ((-112) |#1|)) (-15 -1971 ((-112) |#1|)) (-15 -4285 (|#2| |#1| (-567) |#2|)) (-15 -1801 (|#2| |#1| (-567) |#2|)) (-15 -1801 (|#2| |#1| (-567))) (-15 -3823 (|#1| |#1| |#2|)) (-15 -2276 (|#1| |#1| |#2|)) (-15 -2276 (|#1| (-645 |#1|))) (-15 -1801 (|#1| |#1| (-1236 (-567)))) (-15 -4285 (|#2| |#1| (-1236 (-567)) |#2|)) (-15 -4285 (|#2| |#1| "last" |#2|)) (-15 -4285 (|#1| |#1| "rest" |#1|)) (-15 -4285 (|#2| |#1| "first" |#2|)) (-15 -2294 (|#1| |#1| |#2|)) (-15 -2294 (|#1| |#1| |#1|)) (-15 -1801 (|#2| |#1| "last")) (-15 -1801 (|#1| |#1| "rest")) (-15 -2418 (|#1| |#1| (-772))) (-15 -1801 (|#2| |#1| "first")) (-15 -2418 (|#2| |#1|)) (-15 -2276 (|#1| |#2| |#1|)) (-15 -2276 (|#1| |#1| |#1|)) (-15 -4285 (|#2| |#1| "value" |#2|)) (-15 -1801 (|#2| |#1| "value")) (-15 -3751 (|#1| (-1 |#2| |#2|) |#1|))) (-1151 |#2|) (-1219)) (T -1150))
+NIL
+(-10 -8 (-15 -4085 ((-112) |#1|)) (-15 -1971 ((-112) |#1|)) (-15 -4285 (|#2| |#1| (-567) |#2|)) (-15 -1801 (|#2| |#1| (-567) |#2|)) (-15 -1801 (|#2| |#1| (-567))) (-15 -3823 (|#1| |#1| |#2|)) (-15 -2276 (|#1| |#1| |#2|)) (-15 -2276 (|#1| (-645 |#1|))) (-15 -1801 (|#1| |#1| (-1236 (-567)))) (-15 -4285 (|#2| |#1| (-1236 (-567)) |#2|)) (-15 -4285 (|#2| |#1| "last" |#2|)) (-15 -4285 (|#1| |#1| "rest" |#1|)) (-15 -4285 (|#2| |#1| "first" |#2|)) (-15 -2294 (|#1| |#1| |#2|)) (-15 -2294 (|#1| |#1| |#1|)) (-15 -1801 (|#2| |#1| "last")) (-15 -1801 (|#1| |#1| "rest")) (-15 -2418 (|#1| |#1| (-772))) (-15 -1801 (|#2| |#1| "first")) (-15 -2418 (|#2| |#1|)) (-15 -2276 (|#1| |#2| |#1|)) (-15 -2276 (|#1| |#1| |#1|)) (-15 -4285 (|#2| |#1| "value" |#2|)) (-15 -1801 (|#2| |#1| "value")) (-15 -3751 (|#1| (-1 |#2| |#2|) |#1|)))
+((-2412 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-3812 ((|#1| $) 49)) (-4003 ((|#1| $) 66)) (-4284 (($ $) 68)) (-3843 (((-1274) $ (-567) (-567)) 98 (|has| $ (-6 -4423)))) (-3288 (($ $ (-567)) 53 (|has| $ (-6 -4423)))) (-1563 (((-112) $ (-772)) 8)) (-4392 ((|#1| $ |#1|) 40 (|has| $ (-6 -4423)))) (-4017 (($ $ $) 57 (|has| $ (-6 -4423)))) (-4105 ((|#1| $ |#1|) 55 (|has| $ (-6 -4423)))) (-2498 ((|#1| $ |#1|) 59 (|has| $ (-6 -4423)))) (-4285 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4423))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4423))) (($ $ "rest" $) 56 (|has| $ (-6 -4423))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4423))) ((|#1| $ (-1236 (-567)) |#1|) 118 (|has| $ (-6 -4423))) ((|#1| $ (-567) |#1|) 87 (|has| $ (-6 -4423)))) (-2831 (($ $ (-645 $)) 42 (|has| $ (-6 -4423)))) (-3356 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4422)))) (-3990 ((|#1| $) 67)) (-3647 (($) 7 T CONST)) (-2430 (($ $) 74) (($ $ (-772)) 72)) (-2453 (($ $) 100 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-3246 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4422))) (($ |#1| $) 101 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-2494 ((|#1| (-1 |#1| |#1| |#1|) $) 106 (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 105 (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 102 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-3760 ((|#1| $ (-567) |#1|) 86 (|has| $ (-6 -4423)))) (-3703 ((|#1| $ (-567)) 88)) (-4085 (((-112) $) 84)) (-2799 (((-645 |#1|) $) 31 (|has| $ (-6 -4422)))) (-2070 (((-645 $) $) 51)) (-1520 (((-112) $ $) 43 (|has| |#1| (-1102)))) (-2858 (($ (-772) |#1|) 109)) (-4093 (((-112) $ (-772)) 9)) (-3895 (((-567) $) 96 (|has| (-567) (-851)))) (-1942 (((-645 |#1|) $) 30 (|has| $ (-6 -4422)))) (-3237 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-3255 (((-567) $) 95 (|has| (-567) (-851)))) (-3751 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 112)) (-1986 (((-112) $ (-772)) 10)) (-3793 (((-645 |#1|) $) 46)) (-1323 (((-112) $) 50)) (-2516 (((-1161) $) 22 (|has| |#1| (-1102)))) (-3266 ((|#1| $) 71) (($ $ (-772)) 69)) (-2857 (($ $ $ (-567)) 117) (($ |#1| $ (-567)) 116)) (-4364 (((-645 (-567)) $) 93)) (-3188 (((-112) (-567) $) 92)) (-3437 (((-1122) $) 21 (|has| |#1| (-1102)))) (-2418 ((|#1| $) 77) (($ $ (-772)) 75)) (-3196 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 107)) (-3823 (($ $ |#1|) 97 (|has| $ (-6 -4423)))) (-1971 (((-112) $) 85)) (-4233 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3875 (((-112) $ $) 14)) (-4058 (((-112) |#1| $) 94 (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-2190 (((-645 |#1|) $) 91)) (-3885 (((-112) $) 11)) (-2701 (($) 12)) (-1801 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1236 (-567))) 113) ((|#1| $ (-567)) 90) ((|#1| $ (-567) |#1|) 89)) (-3162 (((-567) $ $) 45)) (-1569 (($ $ (-1236 (-567))) 115) (($ $ (-567)) 114)) (-3771 (((-112) $) 47)) (-3688 (($ $) 63)) (-4044 (($ $) 60 (|has| $ (-6 -4423)))) (-3359 (((-772) $) 64)) (-3640 (($ $) 65)) (-3447 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4422))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-4309 (($ $) 13)) (-3902 (((-539) $) 99 (|has| |#1| (-615 (-539))))) (-4145 (($ (-645 |#1|)) 108)) (-2294 (($ $ $) 62 (|has| $ (-6 -4423))) (($ $ |#1|) 61 (|has| $ (-6 -4423)))) (-2276 (($ $ $) 79) (($ |#1| $) 78) (($ (-645 $)) 111) (($ $ |#1|) 110)) (-4129 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-3469 (((-645 $) $) 52)) (-3854 (((-112) $ $) 44 (|has| |#1| (-1102)))) (-3357 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-3436 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4422)))) (-2946 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2423 (((-772) $) 6 (|has| $ (-6 -4422)))))
+(((-1151 |#1|) (-140) (-1219)) (T -1151))
+((-1971 (*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1219)) (-5 *2 (-112)))) (-4085 (*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1219)) (-5 *2 (-112)))))
+(-13 (-1257 |t#1|) (-652 |t#1|) (-10 -8 (-15 -1971 ((-112) $)) (-15 -4085 ((-112) $))))
+(((-34) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2811 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-287 #0=(-567) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-605 #0# |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-652 |#1|) . T) ((-1012 |#1|) . T) ((-1102) |has| |#1| (-1102)) ((-1219) . T) ((-1257 |#1|) . T))
+((-2412 (((-112) $ $) NIL (-2811 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-2847 (($) NIL) (($ (-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) NIL)) (-3843 (((-1274) $ |#1| |#1|) NIL (|has| $ (-6 -4423)))) (-1563 (((-112) $ (-772)) NIL)) (-4285 ((|#2| $ |#1| |#2|) NIL)) (-1494 (($ (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4422)))) (-3356 (($ (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4422)))) (-4021 (((-3 |#2| "failed") |#1| $) NIL)) (-3647 (($) NIL T CONST)) (-2453 (($ $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102))))) (-2247 (($ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) NIL (|has| $ (-6 -4422))) (($ (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-3 |#2| "failed") |#1| $) NIL)) (-3246 (($ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (($ (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4422)))) (-2494 (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) NIL (|has| $ (-6 -4422))) (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4422)))) (-3760 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4423)))) (-3703 ((|#2| $ |#1|) NIL)) (-2799 (((-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-645 |#2|) $) NIL (|has| $ (-6 -4422)))) (-4093 (((-112) $ (-772)) NIL)) (-3895 ((|#1| $) NIL (|has| |#1| (-851)))) (-1942 (((-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-645 |#2|) $) NIL (|has| $ (-6 -4422)))) (-3237 (((-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#2| (-1102))))) (-3255 ((|#1| $) NIL (|has| |#1| (-851)))) (-3751 (($ (-1 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4423))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4423)))) (-3841 (($ (-1 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1986 (((-112) $ (-772)) NIL)) (-2516 (((-1161) $) NIL (-2811 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-1405 (((-645 |#1|) $) NIL)) (-2816 (((-112) |#1| $) NIL)) (-2706 (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) NIL)) (-2646 (($ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) NIL)) (-4364 (((-645 |#1|) $) NIL)) (-3188 (((-112) |#1| $) NIL)) (-3437 (((-1122) $) NIL (-2811 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-2418 ((|#2| $) NIL (|has| |#1| (-851)))) (-3196 (((-3 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) "failed") (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL)) (-3823 (($ $ |#2|) NIL (|has| $ (-6 -4423)))) (-3949 (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) NIL)) (-4233 (((-112) (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))))) NIL (-12 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-310 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (($ $ (-295 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) NIL (-12 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-310 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (($ $ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) NIL (-12 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-310 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (($ $ (-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) (-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) NIL (-12 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-310 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))))) (-3875 (((-112) $ $) NIL)) (-4058 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#2| (-1102))))) (-2190 (((-645 |#2|) $) NIL)) (-3885 (((-112) $) NIL)) (-2701 (($) NIL)) (-1801 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-4106 (($) NIL) (($ (-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) NIL)) (-3447 (((-772) (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-772) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (((-772) |#2| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#2| (-1102)))) (((-772) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4422)))) (-4309 (($ $) NIL)) (-3902 (((-539) $) NIL (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-615 (-539))))) (-4145 (($ (-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) NIL)) (-4129 (((-863) $) NIL (-2811 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-614 (-863))) (|has| |#2| (-614 (-863)))))) (-3357 (((-112) $ $) NIL (-2811 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-3700 (($ (-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) NIL)) (-3436 (((-112) (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4422)))) (-2946 (((-112) $ $) NIL (-2811 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-2423 (((-772) $) NIL (|has| $ (-6 -4422)))))
+(((-1152 |#1| |#2| |#3|) (-1195 |#1| |#2|) (-1102) (-1102) |#2|) (T -1152))
+NIL
+(-1195 |#1| |#2|)
+((-2412 (((-112) $ $) NIL)) (-3581 (((-692 (-1137)) $) 27)) (-3621 (((-1137) $) 15)) (-3672 (((-1137) $) 17)) (-2516 (((-1161) $) NIL)) (-4387 (((-509) $) 13)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) 37) (($ (-1184)) NIL) (((-1184) $) NIL)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)))
+(((-1153) (-13 (-1085) (-10 -8 (-15 -4387 ((-509) $)) (-15 -3672 ((-1137) $)) (-15 -3581 ((-692 (-1137)) $)) (-15 -3621 ((-1137) $))))) (T -1153))
+((-4387 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-1153)))) (-3672 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1153)))) (-3581 (*1 *2 *1) (-12 (-5 *2 (-692 (-1137))) (-5 *1 (-1153)))) (-3621 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1153)))))
+(-13 (-1085) (-10 -8 (-15 -4387 ((-509) $)) (-15 -3672 ((-1137) $)) (-15 -3581 ((-692 (-1137)) $)) (-15 -3621 ((-1137) $))))
+((-2412 (((-112) $ $) 7)) (-3067 (((-3 $ "failed") $) 14)) (-2516 (((-1161) $) 10)) (-2694 (($) 15 T CONST)) (-3437 (((-1122) $) 11)) (-4129 (((-863) $) 12)) (-3357 (((-112) $ $) 9)) (-2946 (((-112) $ $) 6)))
+(((-1154) (-140)) (T -1154))
+((-2694 (*1 *1) (-4 *1 (-1154))) (-3067 (*1 *1 *1) (|partial| -4 *1 (-1154))))
+(-13 (-1102) (-10 -8 (-15 -2694 ($) -3304) (-15 -3067 ((-3 $ "failed") $))))
(((-102) . T) ((-614 (-863)) . T) ((-1102) . T))
-((-3509 (((-1158 |#1|) (-1158 |#1|)) 17)) (-3513 (((-1158 |#1|) (-1158 |#1|)) 13)) (-3833 (((-1158 |#1|) (-1158 |#1|) (-567) (-567)) 20)) (-4277 (((-1158 |#1|) (-1158 |#1|)) 15)))
-(((-1154 |#1|) (-10 -7 (-15 -3513 ((-1158 |#1|) (-1158 |#1|))) (-15 -4277 ((-1158 |#1|) (-1158 |#1|))) (-15 -3509 ((-1158 |#1|) (-1158 |#1|))) (-15 -3833 ((-1158 |#1|) (-1158 |#1|) (-567) (-567)))) (-13 (-559) (-147))) (T -1154))
-((-3833 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1158 *4)) (-5 *3 (-567)) (-4 *4 (-13 (-559) (-147))) (-5 *1 (-1154 *4)))) (-3509 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-13 (-559) (-147))) (-5 *1 (-1154 *3)))) (-4277 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-13 (-559) (-147))) (-5 *1 (-1154 *3)))) (-3513 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-13 (-559) (-147))) (-5 *1 (-1154 *3)))))
-(-10 -7 (-15 -3513 ((-1158 |#1|) (-1158 |#1|))) (-15 -4277 ((-1158 |#1|) (-1158 |#1|))) (-15 -3509 ((-1158 |#1|) (-1158 |#1|))) (-15 -3833 ((-1158 |#1|) (-1158 |#1|) (-567) (-567))))
-((-2269 (((-1158 |#1|) (-1158 (-1158 |#1|))) 15)))
-(((-1155 |#1|) (-10 -7 (-15 -2269 ((-1158 |#1|) (-1158 (-1158 |#1|))))) (-1218)) (T -1155))
-((-2269 (*1 *2 *3) (-12 (-5 *3 (-1158 (-1158 *4))) (-5 *2 (-1158 *4)) (-5 *1 (-1155 *4)) (-4 *4 (-1218)))))
-(-10 -7 (-15 -2269 ((-1158 |#1|) (-1158 (-1158 |#1|)))))
-((-2788 (((-1158 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1158 |#1|)) 25)) (-2477 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1158 |#1|)) 26)) (-3829 (((-1158 |#2|) (-1 |#2| |#1|) (-1158 |#1|)) 16)))
-(((-1156 |#1| |#2|) (-10 -7 (-15 -3829 ((-1158 |#2|) (-1 |#2| |#1|) (-1158 |#1|))) (-15 -2788 ((-1158 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1158 |#1|))) (-15 -2477 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1158 |#1|)))) (-1218) (-1218)) (T -1156))
-((-2477 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1158 *5)) (-4 *5 (-1218)) (-4 *2 (-1218)) (-5 *1 (-1156 *5 *2)))) (-2788 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1158 *6)) (-4 *6 (-1218)) (-4 *3 (-1218)) (-5 *2 (-1158 *3)) (-5 *1 (-1156 *6 *3)))) (-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1158 *5)) (-4 *5 (-1218)) (-4 *6 (-1218)) (-5 *2 (-1158 *6)) (-5 *1 (-1156 *5 *6)))))
-(-10 -7 (-15 -3829 ((-1158 |#2|) (-1 |#2| |#1|) (-1158 |#1|))) (-15 -2788 ((-1158 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1158 |#1|))) (-15 -2477 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1158 |#1|))))
-((-3829 (((-1158 |#3|) (-1 |#3| |#1| |#2|) (-1158 |#1|) (-1158 |#2|)) 21)))
-(((-1157 |#1| |#2| |#3|) (-10 -7 (-15 -3829 ((-1158 |#3|) (-1 |#3| |#1| |#2|) (-1158 |#1|) (-1158 |#2|)))) (-1218) (-1218) (-1218)) (T -1157))
-((-3829 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1158 *6)) (-5 *5 (-1158 *7)) (-4 *6 (-1218)) (-4 *7 (-1218)) (-4 *8 (-1218)) (-5 *2 (-1158 *8)) (-5 *1 (-1157 *6 *7 *8)))))
-(-10 -7 (-15 -3829 ((-1158 |#3|) (-1 |#3| |#1| |#2|) (-1158 |#1|) (-1158 |#2|))))
-((-2403 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3802 ((|#1| $) NIL)) (-3998 ((|#1| $) NIL)) (-4283 (($ $) 67)) (-1783 (((-1273) $ (-567) (-567)) 99 (|has| $ (-6 -4419)))) (-2366 (($ $ (-567)) 129 (|has| $ (-6 -4419)))) (-3445 (((-112) $ (-772)) NIL)) (-3836 (((-863) $) 56 (|has| |#1| (-1102)))) (-2796 (((-112)) 55 (|has| |#1| (-1102)))) (-2138 ((|#1| $ |#1|) NIL (|has| $ (-6 -4419)))) (-4209 (($ $ $) 116 (|has| $ (-6 -4419))) (($ $ (-567) $) 142)) (-2315 ((|#1| $ |#1|) 126 (|has| $ (-6 -4419)))) (-2271 ((|#1| $ |#1|) 121 (|has| $ (-6 -4419)))) (-4284 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4419))) ((|#1| $ "first" |#1|) 123 (|has| $ (-6 -4419))) (($ $ "rest" $) 125 (|has| $ (-6 -4419))) ((|#1| $ "last" |#1|) 128 (|has| $ (-6 -4419))) ((|#1| $ (-1235 (-567)) |#1|) 113 (|has| $ (-6 -4419))) ((|#1| $ (-567) |#1|) 77 (|has| $ (-6 -4419)))) (-1301 (($ $ (-645 $)) NIL (|has| $ (-6 -4419)))) (-3350 (($ (-1 (-112) |#1|) $) 80)) (-3984 ((|#1| $) NIL)) (-2585 (($) NIL T CONST)) (-2584 (($ $) 14)) (-2421 (($ $) 42) (($ $ (-772)) 111)) (-2591 (((-112) (-645 |#1|) $) 135 (|has| |#1| (-1102)))) (-2050 (($ (-645 |#1|)) 131)) (-2444 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-3238 (($ |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102)))) (($ (-1 (-112) |#1|) $) 79)) (-2477 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-3741 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4419)))) (-3680 ((|#1| $ (-567)) NIL)) (-1399 (((-112) $) NIL)) (-2777 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-2393 (((-1273) (-567) $) 141 (|has| |#1| (-1102)))) (-3532 (((-772) $) 138)) (-2182 (((-645 $) $) NIL)) (-3512 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2846 (($ (-772) |#1|) NIL)) (-2077 (((-112) $ (-772)) NIL)) (-4069 (((-567) $) NIL (|has| (-567) (-851)))) (-2279 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2266 (((-567) $) NIL (|has| (-567) (-851)))) (-3731 (($ (-1 |#1| |#1|) $) 95 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) 85) (($ (-1 |#1| |#1| |#1|) $ $) 89)) (-2863 (((-112) $ (-772)) NIL)) (-3773 (((-645 |#1|) $) NIL)) (-2769 (((-112) $) NIL)) (-3381 (($ $) 114)) (-1406 (((-112) $) 13)) (-1419 (((-1160) $) NIL (|has| |#1| (-1102)))) (-3257 ((|#1| $) NIL) (($ $ (-772)) NIL)) (-2845 (($ $ $ (-567)) NIL) (($ |#1| $ (-567)) NIL)) (-1789 (((-645 (-567)) $) NIL)) (-2996 (((-112) (-567) $) 96)) (-3430 (((-1122) $) NIL (|has| |#1| (-1102)))) (-3291 (($ (-1 |#1|)) 144) (($ (-1 |#1| |#1|) |#1|) 145)) (-2249 ((|#1| $) 10)) (-2409 ((|#1| $) 41) (($ $ (-772)) 65)) (-3002 (((-2 (|:| |cycle?| (-112)) (|:| -3848 (-772)) (|:| |period| (-772))) (-772) $) 36)) (-4128 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3326 (($ (-1 (-112) |#1|) $) 146)) (-3338 (($ (-1 (-112) |#1|) $) 147)) (-3986 (($ $ |#1|) 90 (|has| $ (-6 -4419)))) (-2410 (($ $ (-567)) 45)) (-3323 (((-112) $) 94)) (-2418 (((-112) $) 12)) (-4320 (((-112) $) 137)) (-3025 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) 30)) (-1794 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2339 (((-645 |#1|) $) NIL)) (-3572 (((-112) $) 20)) (-3498 (($) 60)) (-1787 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1235 (-567))) NIL) ((|#1| $ (-567)) 75) ((|#1| $ (-567) |#1|) NIL)) (-2658 (((-567) $ $) 64)) (-1560 (($ $ (-1235 (-567))) NIL) (($ $ (-567)) NIL)) (-2880 (($ (-1 $)) 63)) (-3900 (((-112) $) 91)) (-1644 (($ $) 92)) (-3519 (($ $) 117 (|has| $ (-6 -4419)))) (-3344 (((-772) $) NIL)) (-1503 (($ $) NIL)) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-4305 (($ $) 59)) (-3893 (((-539) $) NIL (|has| |#1| (-615 (-539))))) (-4147 (($ (-645 |#1|)) 73)) (-3465 (($ |#1| $) 115)) (-2484 (($ $ $) 119 (|has| $ (-6 -4419))) (($ $ |#1|) 120 (|has| $ (-6 -4419)))) (-2269 (($ $ $) 101) (($ |#1| $) 61) (($ (-645 $)) 106) (($ $ |#1|) 100)) (-2192 (($ $) 66)) (-4132 (($ (-645 |#1|)) 130) (((-863) $) 57 (|has| |#1| (-614 (-863))))) (-1531 (((-645 $) $) NIL)) (-3606 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1745 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 133 (|has| |#1| (-1102)))) (-2414 (((-772) $) NIL (|has| $ (-6 -4418)))))
-(((-1158 |#1|) (-13 (-675 |#1|) (-617 (-645 |#1|)) (-10 -8 (-6 -4419) (-15 -2050 ($ (-645 |#1|))) (IF (|has| |#1| (-1102)) (-15 -2591 ((-112) (-645 |#1|) $)) |%noBranch|) (-15 -3002 ((-2 (|:| |cycle?| (-112)) (|:| -3848 (-772)) (|:| |period| (-772))) (-772) $)) (-15 -2880 ($ (-1 $))) (-15 -3465 ($ |#1| $)) (IF (|has| |#1| (-1102)) (PROGN (-15 -2393 ((-1273) (-567) $)) (-15 -3836 ((-863) $)) (-15 -2796 ((-112)))) |%noBranch|) (-15 -4209 ($ $ (-567) $)) (-15 -3291 ($ (-1 |#1|))) (-15 -3291 ($ (-1 |#1| |#1|) |#1|)) (-15 -3326 ($ (-1 (-112) |#1|) $)) (-15 -3338 ($ (-1 (-112) |#1|) $)))) (-1218)) (T -1158))
-((-2050 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1218)) (-5 *1 (-1158 *3)))) (-2591 (*1 *2 *3 *1) (-12 (-5 *3 (-645 *4)) (-4 *4 (-1102)) (-4 *4 (-1218)) (-5 *2 (-112)) (-5 *1 (-1158 *4)))) (-3002 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -3848 (-772)) (|:| |period| (-772)))) (-5 *1 (-1158 *4)) (-4 *4 (-1218)) (-5 *3 (-772)))) (-2880 (*1 *1 *2) (-12 (-5 *2 (-1 (-1158 *3))) (-5 *1 (-1158 *3)) (-4 *3 (-1218)))) (-3465 (*1 *1 *2 *1) (-12 (-5 *1 (-1158 *2)) (-4 *2 (-1218)))) (-2393 (*1 *2 *3 *1) (-12 (-5 *3 (-567)) (-5 *2 (-1273)) (-5 *1 (-1158 *4)) (-4 *4 (-1102)) (-4 *4 (-1218)))) (-3836 (*1 *2 *1) (-12 (-5 *2 (-863)) (-5 *1 (-1158 *3)) (-4 *3 (-1102)) (-4 *3 (-1218)))) (-2796 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3)) (-4 *3 (-1102)) (-4 *3 (-1218)))) (-4209 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-1158 *3)) (-4 *3 (-1218)))) (-3291 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1218)) (-5 *1 (-1158 *3)))) (-3291 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1218)) (-5 *1 (-1158 *3)))) (-3326 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1218)) (-5 *1 (-1158 *3)))) (-3338 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1218)) (-5 *1 (-1158 *3)))))
-(-13 (-675 |#1|) (-617 (-645 |#1|)) (-10 -8 (-6 -4419) (-15 -2050 ($ (-645 |#1|))) (IF (|has| |#1| (-1102)) (-15 -2591 ((-112) (-645 |#1|) $)) |%noBranch|) (-15 -3002 ((-2 (|:| |cycle?| (-112)) (|:| -3848 (-772)) (|:| |period| (-772))) (-772) $)) (-15 -2880 ($ (-1 $))) (-15 -3465 ($ |#1| $)) (IF (|has| |#1| (-1102)) (PROGN (-15 -2393 ((-1273) (-567) $)) (-15 -3836 ((-863) $)) (-15 -2796 ((-112)))) |%noBranch|) (-15 -4209 ($ $ (-567) $)) (-15 -3291 ($ (-1 |#1|))) (-15 -3291 ($ (-1 |#1| |#1|) |#1|)) (-15 -3326 ($ (-1 (-112) |#1|) $)) (-15 -3338 ($ (-1 (-112) |#1|) $))))
-((-2403 (((-112) $ $) 19)) (-4172 (($ $) 121)) (-3714 (($ $) 122)) (-1757 (($ $ (-144)) 109) (($ $ (-141)) 108)) (-1783 (((-1273) $ (-567) (-567)) 41 (|has| $ (-6 -4419)))) (-1938 (((-112) $ $) 119)) (-1918 (((-112) $ $ (-567)) 118)) (-3657 (($ (-567)) 128)) (-4323 (((-645 $) $ (-144)) 111) (((-645 $) $ (-141)) 110)) (-2496 (((-112) (-1 (-112) (-144) (-144)) $) 99) (((-112) $) 93 (|has| (-144) (-851)))) (-1394 (($ (-1 (-112) (-144) (-144)) $) 90 (|has| $ (-6 -4419))) (($ $) 89 (-12 (|has| (-144) (-851)) (|has| $ (-6 -4419))))) (-4396 (($ (-1 (-112) (-144) (-144)) $) 100) (($ $) 94 (|has| (-144) (-851)))) (-3445 (((-112) $ (-772)) 8)) (-4284 (((-144) $ (-567) (-144)) 53 (|has| $ (-6 -4419))) (((-144) $ (-1235 (-567)) (-144)) 59 (|has| $ (-6 -4419)))) (-3350 (($ (-1 (-112) (-144)) $) 76 (|has| $ (-6 -4418)))) (-2585 (($) 7 T CONST)) (-3279 (($ $ (-144)) 105) (($ $ (-141)) 104)) (-1764 (($ $) 91 (|has| $ (-6 -4419)))) (-3584 (($ $) 101)) (-3364 (($ $ (-1235 (-567)) $) 115)) (-2444 (($ $) 79 (-12 (|has| (-144) (-1102)) (|has| $ (-6 -4418))))) (-3238 (($ (-144) $) 78 (-12 (|has| (-144) (-1102)) (|has| $ (-6 -4418)))) (($ (-1 (-112) (-144)) $) 75 (|has| $ (-6 -4418)))) (-2477 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) 77 (-12 (|has| (-144) (-1102)) (|has| $ (-6 -4418)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) 74 (|has| $ (-6 -4418))) (((-144) (-1 (-144) (-144) (-144)) $) 73 (|has| $ (-6 -4418)))) (-3741 (((-144) $ (-567) (-144)) 54 (|has| $ (-6 -4419)))) (-3680 (((-144) $ (-567)) 52)) (-1958 (((-112) $ $) 120)) (-2569 (((-567) (-1 (-112) (-144)) $) 98) (((-567) (-144) $) 97 (|has| (-144) (-1102))) (((-567) (-144) $ (-567)) 96 (|has| (-144) (-1102))) (((-567) $ $ (-567)) 114) (((-567) (-141) $ (-567)) 113)) (-2777 (((-645 (-144)) $) 31 (|has| $ (-6 -4418)))) (-2846 (($ (-772) (-144)) 70)) (-2077 (((-112) $ (-772)) 9)) (-4069 (((-567) $) 44 (|has| (-567) (-851)))) (-1354 (($ $ $) 88 (|has| (-144) (-851)))) (-4135 (($ (-1 (-112) (-144) (-144)) $ $) 102) (($ $ $) 95 (|has| (-144) (-851)))) (-2279 (((-645 (-144)) $) 30 (|has| $ (-6 -4418)))) (-4337 (((-112) (-144) $) 28 (-12 (|has| (-144) (-1102)) (|has| $ (-6 -4418))))) (-2266 (((-567) $) 45 (|has| (-567) (-851)))) (-2981 (($ $ $) 87 (|has| (-144) (-851)))) (-2580 (((-112) $ $ (-144)) 116)) (-4197 (((-772) $ $ (-144)) 117)) (-3731 (($ (-1 (-144) (-144)) $) 35 (|has| $ (-6 -4419)))) (-3829 (($ (-1 (-144) (-144)) $) 36) (($ (-1 (-144) (-144) (-144)) $ $) 65)) (-3240 (($ $) 123)) (-3677 (($ $) 124)) (-2863 (((-112) $ (-772)) 10)) (-3289 (($ $ (-144)) 107) (($ $ (-141)) 106)) (-1419 (((-1160) $) 22)) (-2845 (($ (-144) $ (-567)) 61) (($ $ $ (-567)) 60)) (-1789 (((-645 (-567)) $) 47)) (-2996 (((-112) (-567) $) 48)) (-3430 (((-1122) $) 21)) (-2409 (((-144) $) 43 (|has| (-567) (-851)))) (-4128 (((-3 (-144) "failed") (-1 (-112) (-144)) $) 72)) (-3986 (($ $ (-144)) 42 (|has| $ (-6 -4419)))) (-3025 (((-112) (-1 (-112) (-144)) $) 33 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 (-144)))) 27 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102)))) (($ $ (-295 (-144))) 26 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102)))) (($ $ (-144) (-144)) 25 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102)))) (($ $ (-645 (-144)) (-645 (-144))) 24 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102))))) (-3092 (((-112) $ $) 14)) (-1794 (((-112) (-144) $) 46 (-12 (|has| $ (-6 -4418)) (|has| (-144) (-1102))))) (-2339 (((-645 (-144)) $) 49)) (-3572 (((-112) $) 11)) (-3498 (($) 12)) (-1787 (((-144) $ (-567) (-144)) 51) (((-144) $ (-567)) 50) (($ $ (-1235 (-567))) 64) (($ $ $) 103)) (-1560 (($ $ (-567)) 63) (($ $ (-1235 (-567))) 62)) (-3439 (((-772) (-1 (-112) (-144)) $) 32 (|has| $ (-6 -4418))) (((-772) (-144) $) 29 (-12 (|has| (-144) (-1102)) (|has| $ (-6 -4418))))) (-1395 (($ $ $ (-567)) 92 (|has| $ (-6 -4419)))) (-4305 (($ $) 13)) (-3893 (((-539) $) 80 (|has| (-144) (-615 (-539))))) (-4147 (($ (-645 (-144))) 71)) (-2269 (($ $ (-144)) 69) (($ (-144) $) 68) (($ $ $) 67) (($ (-645 $)) 66)) (-4132 (($ (-144)) 112) (((-863) $) 18)) (-1745 (((-112) $ $) 23)) (-1853 (((-112) (-1 (-112) (-144)) $) 34 (|has| $ (-6 -4418)))) (-2904 (((-1160) $) 132) (((-1160) $ (-112)) 131) (((-1273) (-823) $) 130) (((-1273) (-823) $ (-112)) 129)) (-2997 (((-112) $ $) 85 (|has| (-144) (-851)))) (-2971 (((-112) $ $) 84 (|has| (-144) (-851)))) (-2936 (((-112) $ $) 20)) (-2984 (((-112) $ $) 86 (|has| (-144) (-851)))) (-2958 (((-112) $ $) 83 (|has| (-144) (-851)))) (-2414 (((-772) $) 6 (|has| $ (-6 -4418)))))
-(((-1159) (-140)) (T -1159))
-((-3657 (*1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-1159)))))
-(-13 (-1146) (-1102) (-829) (-10 -8 (-15 -3657 ($ (-567)))))
-(((-34) . T) ((-102) . T) ((-614 (-863)) . T) ((-151 #0=(-144)) . T) ((-615 (-539)) |has| (-144) (-615 (-539))) ((-287 #1=(-567) #0#) . T) ((-289 #1# #0#) . T) ((-310 #0#) -12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102))) ((-375 #0#) . T) ((-492 #0#) . T) ((-605 #1# #0#) . T) ((-517 #0# #0#) -12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102))) ((-652 #0#) . T) ((-19 #0#) . T) ((-829) . T) ((-851) |has| (-144) (-851)) ((-1102) . T) ((-1146) . T) ((-1218) . T))
-((-2403 (((-112) $ $) NIL)) (-4172 (($ $) NIL)) (-3714 (($ $) NIL)) (-1757 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-1783 (((-1273) $ (-567) (-567)) NIL (|has| $ (-6 -4419)))) (-1938 (((-112) $ $) NIL)) (-1918 (((-112) $ $ (-567)) NIL)) (-3657 (($ (-567)) 8)) (-4323 (((-645 $) $ (-144)) NIL) (((-645 $) $ (-141)) NIL)) (-2496 (((-112) (-1 (-112) (-144) (-144)) $) NIL) (((-112) $) NIL (|has| (-144) (-851)))) (-1394 (($ (-1 (-112) (-144) (-144)) $) NIL (|has| $ (-6 -4419))) (($ $) NIL (-12 (|has| $ (-6 -4419)) (|has| (-144) (-851))))) (-4396 (($ (-1 (-112) (-144) (-144)) $) NIL) (($ $) NIL (|has| (-144) (-851)))) (-3445 (((-112) $ (-772)) NIL)) (-4284 (((-144) $ (-567) (-144)) NIL (|has| $ (-6 -4419))) (((-144) $ (-1235 (-567)) (-144)) NIL (|has| $ (-6 -4419)))) (-3350 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4418)))) (-2585 (($) NIL T CONST)) (-3279 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-1764 (($ $) NIL (|has| $ (-6 -4419)))) (-3584 (($ $) NIL)) (-3364 (($ $ (-1235 (-567)) $) NIL)) (-2444 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-144) (-1102))))) (-3238 (($ (-144) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-144) (-1102)))) (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4418)))) (-2477 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4418)) (|has| (-144) (-1102)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4418))) (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4418)))) (-3741 (((-144) $ (-567) (-144)) NIL (|has| $ (-6 -4419)))) (-3680 (((-144) $ (-567)) NIL)) (-1958 (((-112) $ $) NIL)) (-2569 (((-567) (-1 (-112) (-144)) $) NIL) (((-567) (-144) $) NIL (|has| (-144) (-1102))) (((-567) (-144) $ (-567)) NIL (|has| (-144) (-1102))) (((-567) $ $ (-567)) NIL) (((-567) (-141) $ (-567)) NIL)) (-2777 (((-645 (-144)) $) NIL (|has| $ (-6 -4418)))) (-2846 (($ (-772) (-144)) NIL)) (-2077 (((-112) $ (-772)) NIL)) (-4069 (((-567) $) NIL (|has| (-567) (-851)))) (-1354 (($ $ $) NIL (|has| (-144) (-851)))) (-4135 (($ (-1 (-112) (-144) (-144)) $ $) NIL) (($ $ $) NIL (|has| (-144) (-851)))) (-2279 (((-645 (-144)) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-144) (-1102))))) (-2266 (((-567) $) NIL (|has| (-567) (-851)))) (-2981 (($ $ $) NIL (|has| (-144) (-851)))) (-2580 (((-112) $ $ (-144)) NIL)) (-4197 (((-772) $ $ (-144)) NIL)) (-3731 (($ (-1 (-144) (-144)) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 (-144) (-144)) $) NIL) (($ (-1 (-144) (-144) (-144)) $ $) NIL)) (-3240 (($ $) NIL)) (-3677 (($ $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-3289 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-1419 (((-1160) $) NIL)) (-2845 (($ (-144) $ (-567)) NIL) (($ $ $ (-567)) NIL)) (-1789 (((-645 (-567)) $) NIL)) (-2996 (((-112) (-567) $) NIL)) (-3430 (((-1122) $) NIL)) (-2409 (((-144) $) NIL (|has| (-567) (-851)))) (-4128 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-3986 (($ $ (-144)) NIL (|has| $ (-6 -4419)))) (-3025 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 (-144)))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102)))) (($ $ (-295 (-144))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102)))) (($ $ (-645 (-144)) (-645 (-144))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102))))) (-3092 (((-112) $ $) NIL)) (-1794 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-144) (-1102))))) (-2339 (((-645 (-144)) $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) NIL)) (-1787 (((-144) $ (-567) (-144)) NIL) (((-144) $ (-567)) NIL) (($ $ (-1235 (-567))) NIL) (($ $ $) NIL)) (-1560 (($ $ (-567)) NIL) (($ $ (-1235 (-567))) NIL)) (-3439 (((-772) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4418))) (((-772) (-144) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-144) (-1102))))) (-1395 (($ $ $ (-567)) NIL (|has| $ (-6 -4419)))) (-4305 (($ $) NIL)) (-3893 (((-539) $) NIL (|has| (-144) (-615 (-539))))) (-4147 (($ (-645 (-144))) NIL)) (-2269 (($ $ (-144)) NIL) (($ (-144) $) NIL) (($ $ $) NIL) (($ (-645 $)) NIL)) (-4132 (($ (-144)) NIL) (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-1853 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4418)))) (-2904 (((-1160) $) 19) (((-1160) $ (-112)) 21) (((-1273) (-823) $) 22) (((-1273) (-823) $ (-112)) 23)) (-2997 (((-112) $ $) NIL (|has| (-144) (-851)))) (-2971 (((-112) $ $) NIL (|has| (-144) (-851)))) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL (|has| (-144) (-851)))) (-2958 (((-112) $ $) NIL (|has| (-144) (-851)))) (-2414 (((-772) $) NIL (|has| $ (-6 -4418)))))
-(((-1160) (-1159)) (T -1160))
-NIL
-(-1159)
-((-2403 (((-112) $ $) NIL (-2800 (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-1102)) (|has| |#1| (-1102))))) (-2835 (($) NIL) (($ (-645 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)))) NIL)) (-1783 (((-1273) $ (-1160) (-1160)) NIL (|has| $ (-6 -4419)))) (-3445 (((-112) $ (-772)) NIL)) (-4284 ((|#1| $ (-1160) |#1|) NIL)) (-2839 (($ (-1 (-112) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) $) NIL (|has| $ (-6 -4418)))) (-3350 (($ (-1 (-112) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) $) NIL (|has| $ (-6 -4418)))) (-4019 (((-3 |#1| "failed") (-1160) $) NIL)) (-2585 (($) NIL T CONST)) (-2444 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-1102))))) (-2539 (($ (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) $) NIL (|has| $ (-6 -4418))) (($ (-1 (-112) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) $) NIL (|has| $ (-6 -4418))) (((-3 |#1| "failed") (-1160) $) NIL)) (-3238 (($ (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-1102)))) (($ (-1 (-112) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) $) NIL (|has| $ (-6 -4418)))) (-2477 (((-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-1 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) $ (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-1102)))) (((-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-1 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) $ (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) NIL (|has| $ (-6 -4418))) (((-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-1 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) $) NIL (|has| $ (-6 -4418)))) (-3741 ((|#1| $ (-1160) |#1|) NIL (|has| $ (-6 -4419)))) (-3680 ((|#1| $ (-1160)) NIL)) (-2777 (((-645 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) $) NIL (|has| $ (-6 -4418))) (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-2077 (((-112) $ (-772)) NIL)) (-4069 (((-1160) $) NIL (|has| (-1160) (-851)))) (-2279 (((-645 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) $) NIL (|has| $ (-6 -4418))) (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-1102)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2266 (((-1160) $) NIL (|has| (-1160) (-851)))) (-3731 (($ (-1 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) $) NIL (|has| $ (-6 -4419))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL (-2800 (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-1102)) (|has| |#1| (-1102))))) (-1391 (((-645 (-1160)) $) NIL)) (-4251 (((-112) (-1160) $) NIL)) (-1566 (((-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) $) NIL)) (-2531 (($ (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) $) NIL)) (-1789 (((-645 (-1160)) $) NIL)) (-2996 (((-112) (-1160) $) NIL)) (-3430 (((-1122) $) NIL (-2800 (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-1102)) (|has| |#1| (-1102))))) (-2409 ((|#1| $) NIL (|has| (-1160) (-851)))) (-4128 (((-3 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) "failed") (-1 (-112) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) $) NIL)) (-3986 (($ $ |#1|) NIL (|has| $ (-6 -4419)))) (-1793 (((-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) $) NIL)) (-3025 (((-112) (-1 (-112) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) $) NIL (|has| $ (-6 -4418))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))))) NIL (-12 (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-310 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)))) (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-1102)))) (($ $ (-295 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)))) NIL (-12 (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-310 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)))) (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-1102)))) (($ $ (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) NIL (-12 (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-310 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)))) (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-1102)))) (($ $ (-645 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) (-645 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)))) NIL (-12 (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-310 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)))) (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) NIL)) (-1794 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2339 (((-645 |#1|) $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) NIL)) (-1787 ((|#1| $ (-1160)) NIL) ((|#1| $ (-1160) |#1|) NIL)) (-2718 (($) NIL) (($ (-645 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)))) NIL)) (-3439 (((-772) (-1 (-112) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) $) NIL (|has| $ (-6 -4418))) (((-772) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-1102)))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102)))) (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-4305 (($ $) NIL)) (-3893 (((-539) $) NIL (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-615 (-539))))) (-4147 (($ (-645 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)))) NIL)) (-4132 (((-863) $) NIL (-2800 (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-614 (-863))) (|has| |#1| (-614 (-863)))))) (-1745 (((-112) $ $) NIL (-2800 (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-1102)) (|has| |#1| (-1102))))) (-3551 (($ (-645 (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)))) NIL)) (-1853 (((-112) (-1 (-112) (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|))) $) NIL (|has| $ (-6 -4418))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) NIL (-2800 (|has| (-2 (|:| -1795 (-1160)) (|:| -4237 |#1|)) (-1102)) (|has| |#1| (-1102))))) (-2414 (((-772) $) NIL (|has| $ (-6 -4418)))))
-(((-1161 |#1|) (-13 (-1194 (-1160) |#1|) (-10 -7 (-6 -4418))) (-1102)) (T -1161))
-NIL
-(-13 (-1194 (-1160) |#1|) (-10 -7 (-6 -4418)))
-((-2900 (((-1158 |#1|) (-1158 |#1|)) 85)) (-2109 (((-3 (-1158 |#1|) "failed") (-1158 |#1|)) 42)) (-3861 (((-1158 |#1|) (-410 (-567)) (-1158 |#1|)) 136 (|has| |#1| (-38 (-410 (-567)))))) (-2673 (((-1158 |#1|) |#1| (-1158 |#1|)) 142 (|has| |#1| (-365)))) (-1486 (((-1158 |#1|) (-1158 |#1|)) 100)) (-2910 (((-1158 (-567)) (-567)) 64)) (-3290 (((-1158 |#1|) (-1158 (-1158 |#1|))) 119 (|has| |#1| (-38 (-410 (-567)))))) (-3352 (((-1158 |#1|) (-567) (-567) (-1158 |#1|)) 105)) (-2290 (((-1158 |#1|) |#1| (-567)) 54)) (-1509 (((-1158 |#1|) (-1158 |#1|) (-1158 |#1|)) 67)) (-1977 (((-1158 |#1|) (-1158 |#1|) (-1158 |#1|)) 139 (|has| |#1| (-365)))) (-3814 (((-1158 |#1|) |#1| (-1 (-1158 |#1|))) 118 (|has| |#1| (-38 (-410 (-567)))))) (-2024 (((-1158 |#1|) (-1 |#1| (-567)) |#1| (-1 (-1158 |#1|))) 140 (|has| |#1| (-365)))) (-3535 (((-1158 |#1|) (-1158 |#1|)) 99)) (-1517 (((-1158 |#1|) (-1158 |#1|)) 83)) (-1505 (((-1158 |#1|) (-567) (-567) (-1158 |#1|)) 106)) (-2416 (((-1158 |#1|) |#1| (-1158 |#1|)) 115 (|has| |#1| (-38 (-410 (-567)))))) (-1952 (((-1158 (-567)) (-567)) 63)) (-2669 (((-1158 |#1|) |#1|) 66)) (-1343 (((-1158 |#1|) (-1158 |#1|) (-567) (-567)) 102)) (-2149 (((-1158 |#1|) (-1 |#1| (-567)) (-1158 |#1|)) 73)) (-2391 (((-3 (-1158 |#1|) "failed") (-1158 |#1|) (-1158 |#1|)) 40)) (-3994 (((-1158 |#1|) (-1158 |#1|)) 101)) (-2631 (((-1158 |#1|) (-1158 |#1|) |#1|) 78)) (-3531 (((-1158 |#1|) (-1158 |#1|)) 69)) (-2476 (((-1158 |#1|) (-1158 |#1|) (-1158 |#1|)) 79)) (-4132 (((-1158 |#1|) |#1|) 74)) (-4181 (((-1158 |#1|) (-1158 (-1158 |#1|))) 90)) (-3060 (((-1158 |#1|) (-1158 |#1|) (-1158 |#1|)) 41)) (-3045 (((-1158 |#1|) (-1158 |#1|)) 21) (((-1158 |#1|) (-1158 |#1|) (-1158 |#1|)) 23)) (-3033 (((-1158 |#1|) (-1158 |#1|) (-1158 |#1|)) 17)) (* (((-1158 |#1|) (-1158 |#1|) |#1|) 29) (((-1158 |#1|) |#1| (-1158 |#1|)) 26) (((-1158 |#1|) (-1158 |#1|) (-1158 |#1|)) 27)))
-(((-1162 |#1|) (-10 -7 (-15 -3033 ((-1158 |#1|) (-1158 |#1|) (-1158 |#1|))) (-15 -3045 ((-1158 |#1|) (-1158 |#1|) (-1158 |#1|))) (-15 -3045 ((-1158 |#1|) (-1158 |#1|))) (-15 * ((-1158 |#1|) (-1158 |#1|) (-1158 |#1|))) (-15 * ((-1158 |#1|) |#1| (-1158 |#1|))) (-15 * ((-1158 |#1|) (-1158 |#1|) |#1|)) (-15 -2391 ((-3 (-1158 |#1|) "failed") (-1158 |#1|) (-1158 |#1|))) (-15 -3060 ((-1158 |#1|) (-1158 |#1|) (-1158 |#1|))) (-15 -2109 ((-3 (-1158 |#1|) "failed") (-1158 |#1|))) (-15 -2290 ((-1158 |#1|) |#1| (-567))) (-15 -1952 ((-1158 (-567)) (-567))) (-15 -2910 ((-1158 (-567)) (-567))) (-15 -2669 ((-1158 |#1|) |#1|)) (-15 -1509 ((-1158 |#1|) (-1158 |#1|) (-1158 |#1|))) (-15 -3531 ((-1158 |#1|) (-1158 |#1|))) (-15 -2149 ((-1158 |#1|) (-1 |#1| (-567)) (-1158 |#1|))) (-15 -4132 ((-1158 |#1|) |#1|)) (-15 -2631 ((-1158 |#1|) (-1158 |#1|) |#1|)) (-15 -2476 ((-1158 |#1|) (-1158 |#1|) (-1158 |#1|))) (-15 -1517 ((-1158 |#1|) (-1158 |#1|))) (-15 -2900 ((-1158 |#1|) (-1158 |#1|))) (-15 -4181 ((-1158 |#1|) (-1158 (-1158 |#1|)))) (-15 -3535 ((-1158 |#1|) (-1158 |#1|))) (-15 -1486 ((-1158 |#1|) (-1158 |#1|))) (-15 -3994 ((-1158 |#1|) (-1158 |#1|))) (-15 -1343 ((-1158 |#1|) (-1158 |#1|) (-567) (-567))) (-15 -3352 ((-1158 |#1|) (-567) (-567) (-1158 |#1|))) (-15 -1505 ((-1158 |#1|) (-567) (-567) (-1158 |#1|))) (IF (|has| |#1| (-38 (-410 (-567)))) (PROGN (-15 -2416 ((-1158 |#1|) |#1| (-1158 |#1|))) (-15 -3814 ((-1158 |#1|) |#1| (-1 (-1158 |#1|)))) (-15 -3290 ((-1158 |#1|) (-1158 (-1158 |#1|)))) (-15 -3861 ((-1158 |#1|) (-410 (-567)) (-1158 |#1|)))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -1977 ((-1158 |#1|) (-1158 |#1|) (-1158 |#1|))) (-15 -2024 ((-1158 |#1|) (-1 |#1| (-567)) |#1| (-1 (-1158 |#1|)))) (-15 -2673 ((-1158 |#1|) |#1| (-1158 |#1|)))) |%noBranch|)) (-1051)) (T -1162))
-((-2673 (*1 *2 *3 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-365)) (-4 *3 (-1051)) (-5 *1 (-1162 *3)))) (-2024 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-567))) (-5 *5 (-1 (-1158 *4))) (-4 *4 (-365)) (-4 *4 (-1051)) (-5 *2 (-1158 *4)) (-5 *1 (-1162 *4)))) (-1977 (*1 *2 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-365)) (-4 *3 (-1051)) (-5 *1 (-1162 *3)))) (-3861 (*1 *2 *3 *2) (-12 (-5 *2 (-1158 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1051)) (-5 *3 (-410 (-567))) (-5 *1 (-1162 *4)))) (-3290 (*1 *2 *3) (-12 (-5 *3 (-1158 (-1158 *4))) (-5 *2 (-1158 *4)) (-5 *1 (-1162 *4)) (-4 *4 (-38 (-410 (-567)))) (-4 *4 (-1051)))) (-3814 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1158 *3))) (-5 *2 (-1158 *3)) (-5 *1 (-1162 *3)) (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)))) (-2416 (*1 *2 *3 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)) (-5 *1 (-1162 *3)))) (-1505 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1158 *4)) (-5 *3 (-567)) (-4 *4 (-1051)) (-5 *1 (-1162 *4)))) (-3352 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1158 *4)) (-5 *3 (-567)) (-4 *4 (-1051)) (-5 *1 (-1162 *4)))) (-1343 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1158 *4)) (-5 *3 (-567)) (-4 *4 (-1051)) (-5 *1 (-1162 *4)))) (-3994 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-5 *1 (-1162 *3)))) (-1486 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-5 *1 (-1162 *3)))) (-3535 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-5 *1 (-1162 *3)))) (-4181 (*1 *2 *3) (-12 (-5 *3 (-1158 (-1158 *4))) (-5 *2 (-1158 *4)) (-5 *1 (-1162 *4)) (-4 *4 (-1051)))) (-2900 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-5 *1 (-1162 *3)))) (-1517 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-5 *1 (-1162 *3)))) (-2476 (*1 *2 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-5 *1 (-1162 *3)))) (-2631 (*1 *2 *2 *3) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-5 *1 (-1162 *3)))) (-4132 (*1 *2 *3) (-12 (-5 *2 (-1158 *3)) (-5 *1 (-1162 *3)) (-4 *3 (-1051)))) (-2149 (*1 *2 *3 *2) (-12 (-5 *2 (-1158 *4)) (-5 *3 (-1 *4 (-567))) (-4 *4 (-1051)) (-5 *1 (-1162 *4)))) (-3531 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-5 *1 (-1162 *3)))) (-1509 (*1 *2 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-5 *1 (-1162 *3)))) (-2669 (*1 *2 *3) (-12 (-5 *2 (-1158 *3)) (-5 *1 (-1162 *3)) (-4 *3 (-1051)))) (-2910 (*1 *2 *3) (-12 (-5 *2 (-1158 (-567))) (-5 *1 (-1162 *4)) (-4 *4 (-1051)) (-5 *3 (-567)))) (-1952 (*1 *2 *3) (-12 (-5 *2 (-1158 (-567))) (-5 *1 (-1162 *4)) (-4 *4 (-1051)) (-5 *3 (-567)))) (-2290 (*1 *2 *3 *4) (-12 (-5 *4 (-567)) (-5 *2 (-1158 *3)) (-5 *1 (-1162 *3)) (-4 *3 (-1051)))) (-2109 (*1 *2 *2) (|partial| -12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-5 *1 (-1162 *3)))) (-3060 (*1 *2 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-5 *1 (-1162 *3)))) (-2391 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-5 *1 (-1162 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-5 *1 (-1162 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-5 *1 (-1162 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-5 *1 (-1162 *3)))) (-3045 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-5 *1 (-1162 *3)))) (-3045 (*1 *2 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-5 *1 (-1162 *3)))) (-3033 (*1 *2 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-5 *1 (-1162 *3)))))
-(-10 -7 (-15 -3033 ((-1158 |#1|) (-1158 |#1|) (-1158 |#1|))) (-15 -3045 ((-1158 |#1|) (-1158 |#1|) (-1158 |#1|))) (-15 -3045 ((-1158 |#1|) (-1158 |#1|))) (-15 * ((-1158 |#1|) (-1158 |#1|) (-1158 |#1|))) (-15 * ((-1158 |#1|) |#1| (-1158 |#1|))) (-15 * ((-1158 |#1|) (-1158 |#1|) |#1|)) (-15 -2391 ((-3 (-1158 |#1|) "failed") (-1158 |#1|) (-1158 |#1|))) (-15 -3060 ((-1158 |#1|) (-1158 |#1|) (-1158 |#1|))) (-15 -2109 ((-3 (-1158 |#1|) "failed") (-1158 |#1|))) (-15 -2290 ((-1158 |#1|) |#1| (-567))) (-15 -1952 ((-1158 (-567)) (-567))) (-15 -2910 ((-1158 (-567)) (-567))) (-15 -2669 ((-1158 |#1|) |#1|)) (-15 -1509 ((-1158 |#1|) (-1158 |#1|) (-1158 |#1|))) (-15 -3531 ((-1158 |#1|) (-1158 |#1|))) (-15 -2149 ((-1158 |#1|) (-1 |#1| (-567)) (-1158 |#1|))) (-15 -4132 ((-1158 |#1|) |#1|)) (-15 -2631 ((-1158 |#1|) (-1158 |#1|) |#1|)) (-15 -2476 ((-1158 |#1|) (-1158 |#1|) (-1158 |#1|))) (-15 -1517 ((-1158 |#1|) (-1158 |#1|))) (-15 -2900 ((-1158 |#1|) (-1158 |#1|))) (-15 -4181 ((-1158 |#1|) (-1158 (-1158 |#1|)))) (-15 -3535 ((-1158 |#1|) (-1158 |#1|))) (-15 -1486 ((-1158 |#1|) (-1158 |#1|))) (-15 -3994 ((-1158 |#1|) (-1158 |#1|))) (-15 -1343 ((-1158 |#1|) (-1158 |#1|) (-567) (-567))) (-15 -3352 ((-1158 |#1|) (-567) (-567) (-1158 |#1|))) (-15 -1505 ((-1158 |#1|) (-567) (-567) (-1158 |#1|))) (IF (|has| |#1| (-38 (-410 (-567)))) (PROGN (-15 -2416 ((-1158 |#1|) |#1| (-1158 |#1|))) (-15 -3814 ((-1158 |#1|) |#1| (-1 (-1158 |#1|)))) (-15 -3290 ((-1158 |#1|) (-1158 (-1158 |#1|)))) (-15 -3861 ((-1158 |#1|) (-410 (-567)) (-1158 |#1|)))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -1977 ((-1158 |#1|) (-1158 |#1|) (-1158 |#1|))) (-15 -2024 ((-1158 |#1|) (-1 |#1| (-567)) |#1| (-1 (-1158 |#1|)))) (-15 -2673 ((-1158 |#1|) |#1| (-1158 |#1|)))) |%noBranch|))
-((-3146 (((-1158 |#1|) (-1158 |#1|)) 60)) (-3012 (((-1158 |#1|) (-1158 |#1|)) 42)) (-3128 (((-1158 |#1|) (-1158 |#1|)) 56)) (-2987 (((-1158 |#1|) (-1158 |#1|)) 38)) (-3166 (((-1158 |#1|) (-1158 |#1|)) 63)) (-3035 (((-1158 |#1|) (-1158 |#1|)) 45)) (-3063 (((-1158 |#1|) (-1158 |#1|)) 34)) (-3946 (((-1158 |#1|) (-1158 |#1|)) 29)) (-3175 (((-1158 |#1|) (-1158 |#1|)) 64)) (-3049 (((-1158 |#1|) (-1158 |#1|)) 46)) (-3156 (((-1158 |#1|) (-1158 |#1|)) 61)) (-3023 (((-1158 |#1|) (-1158 |#1|)) 43)) (-3137 (((-1158 |#1|) (-1158 |#1|)) 58)) (-2999 (((-1158 |#1|) (-1158 |#1|)) 40)) (-3200 (((-1158 |#1|) (-1158 |#1|)) 68)) (-3084 (((-1158 |#1|) (-1158 |#1|)) 50)) (-3183 (((-1158 |#1|) (-1158 |#1|)) 66)) (-3062 (((-1158 |#1|) (-1158 |#1|)) 48)) (-3221 (((-1158 |#1|) (-1158 |#1|)) 71)) (-3106 (((-1158 |#1|) (-1158 |#1|)) 53)) (-3785 (((-1158 |#1|) (-1158 |#1|)) 72)) (-3118 (((-1158 |#1|) (-1158 |#1|)) 54)) (-3211 (((-1158 |#1|) (-1158 |#1|)) 70)) (-3095 (((-1158 |#1|) (-1158 |#1|)) 52)) (-3193 (((-1158 |#1|) (-1158 |#1|)) 69)) (-3074 (((-1158 |#1|) (-1158 |#1|)) 51)) (** (((-1158 |#1|) (-1158 |#1|) (-1158 |#1|)) 36)))
-(((-1163 |#1|) (-10 -7 (-15 -3946 ((-1158 |#1|) (-1158 |#1|))) (-15 -3063 ((-1158 |#1|) (-1158 |#1|))) (-15 ** ((-1158 |#1|) (-1158 |#1|) (-1158 |#1|))) (-15 -2987 ((-1158 |#1|) (-1158 |#1|))) (-15 -2999 ((-1158 |#1|) (-1158 |#1|))) (-15 -3012 ((-1158 |#1|) (-1158 |#1|))) (-15 -3023 ((-1158 |#1|) (-1158 |#1|))) (-15 -3035 ((-1158 |#1|) (-1158 |#1|))) (-15 -3049 ((-1158 |#1|) (-1158 |#1|))) (-15 -3062 ((-1158 |#1|) (-1158 |#1|))) (-15 -3074 ((-1158 |#1|) (-1158 |#1|))) (-15 -3084 ((-1158 |#1|) (-1158 |#1|))) (-15 -3095 ((-1158 |#1|) (-1158 |#1|))) (-15 -3106 ((-1158 |#1|) (-1158 |#1|))) (-15 -3118 ((-1158 |#1|) (-1158 |#1|))) (-15 -3128 ((-1158 |#1|) (-1158 |#1|))) (-15 -3137 ((-1158 |#1|) (-1158 |#1|))) (-15 -3146 ((-1158 |#1|) (-1158 |#1|))) (-15 -3156 ((-1158 |#1|) (-1158 |#1|))) (-15 -3166 ((-1158 |#1|) (-1158 |#1|))) (-15 -3175 ((-1158 |#1|) (-1158 |#1|))) (-15 -3183 ((-1158 |#1|) (-1158 |#1|))) (-15 -3193 ((-1158 |#1|) (-1158 |#1|))) (-15 -3200 ((-1158 |#1|) (-1158 |#1|))) (-15 -3211 ((-1158 |#1|) (-1158 |#1|))) (-15 -3221 ((-1158 |#1|) (-1158 |#1|))) (-15 -3785 ((-1158 |#1|) (-1158 |#1|)))) (-38 (-410 (-567)))) (T -1163))
-((-3785 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (-3221 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (-3211 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (-3200 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (-3193 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (-3183 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (-3175 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (-3166 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (-3156 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (-3146 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (-3137 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (-3128 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (-3118 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (-3106 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (-3095 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (-3084 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (-3074 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (-3062 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (-3049 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (-3035 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (-3023 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (-3012 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (-2999 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (-2987 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (-3063 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))) (-3946 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1163 *3)))))
-(-10 -7 (-15 -3946 ((-1158 |#1|) (-1158 |#1|))) (-15 -3063 ((-1158 |#1|) (-1158 |#1|))) (-15 ** ((-1158 |#1|) (-1158 |#1|) (-1158 |#1|))) (-15 -2987 ((-1158 |#1|) (-1158 |#1|))) (-15 -2999 ((-1158 |#1|) (-1158 |#1|))) (-15 -3012 ((-1158 |#1|) (-1158 |#1|))) (-15 -3023 ((-1158 |#1|) (-1158 |#1|))) (-15 -3035 ((-1158 |#1|) (-1158 |#1|))) (-15 -3049 ((-1158 |#1|) (-1158 |#1|))) (-15 -3062 ((-1158 |#1|) (-1158 |#1|))) (-15 -3074 ((-1158 |#1|) (-1158 |#1|))) (-15 -3084 ((-1158 |#1|) (-1158 |#1|))) (-15 -3095 ((-1158 |#1|) (-1158 |#1|))) (-15 -3106 ((-1158 |#1|) (-1158 |#1|))) (-15 -3118 ((-1158 |#1|) (-1158 |#1|))) (-15 -3128 ((-1158 |#1|) (-1158 |#1|))) (-15 -3137 ((-1158 |#1|) (-1158 |#1|))) (-15 -3146 ((-1158 |#1|) (-1158 |#1|))) (-15 -3156 ((-1158 |#1|) (-1158 |#1|))) (-15 -3166 ((-1158 |#1|) (-1158 |#1|))) (-15 -3175 ((-1158 |#1|) (-1158 |#1|))) (-15 -3183 ((-1158 |#1|) (-1158 |#1|))) (-15 -3193 ((-1158 |#1|) (-1158 |#1|))) (-15 -3200 ((-1158 |#1|) (-1158 |#1|))) (-15 -3211 ((-1158 |#1|) (-1158 |#1|))) (-15 -3221 ((-1158 |#1|) (-1158 |#1|))) (-15 -3785 ((-1158 |#1|) (-1158 |#1|))))
-((-3146 (((-1158 |#1|) (-1158 |#1|)) 108)) (-3012 (((-1158 |#1|) (-1158 |#1|)) 65)) (-3319 (((-2 (|:| -3128 (-1158 |#1|)) (|:| -3137 (-1158 |#1|))) (-1158 |#1|)) 104)) (-3128 (((-1158 |#1|) (-1158 |#1|)) 105)) (-3647 (((-2 (|:| -2987 (-1158 |#1|)) (|:| -2999 (-1158 |#1|))) (-1158 |#1|)) 54)) (-2987 (((-1158 |#1|) (-1158 |#1|)) 55)) (-3166 (((-1158 |#1|) (-1158 |#1|)) 110)) (-3035 (((-1158 |#1|) (-1158 |#1|)) 72)) (-3063 (((-1158 |#1|) (-1158 |#1|)) 40)) (-3946 (((-1158 |#1|) (-1158 |#1|)) 37)) (-3175 (((-1158 |#1|) (-1158 |#1|)) 111)) (-3049 (((-1158 |#1|) (-1158 |#1|)) 73)) (-3156 (((-1158 |#1|) (-1158 |#1|)) 109)) (-3023 (((-1158 |#1|) (-1158 |#1|)) 68)) (-3137 (((-1158 |#1|) (-1158 |#1|)) 106)) (-2999 (((-1158 |#1|) (-1158 |#1|)) 56)) (-3200 (((-1158 |#1|) (-1158 |#1|)) 119)) (-3084 (((-1158 |#1|) (-1158 |#1|)) 94)) (-3183 (((-1158 |#1|) (-1158 |#1|)) 113)) (-3062 (((-1158 |#1|) (-1158 |#1|)) 90)) (-3221 (((-1158 |#1|) (-1158 |#1|)) 123)) (-3106 (((-1158 |#1|) (-1158 |#1|)) 98)) (-3785 (((-1158 |#1|) (-1158 |#1|)) 125)) (-3118 (((-1158 |#1|) (-1158 |#1|)) 100)) (-3211 (((-1158 |#1|) (-1158 |#1|)) 121)) (-3095 (((-1158 |#1|) (-1158 |#1|)) 96)) (-3193 (((-1158 |#1|) (-1158 |#1|)) 115)) (-3074 (((-1158 |#1|) (-1158 |#1|)) 92)) (** (((-1158 |#1|) (-1158 |#1|) (-1158 |#1|)) 41)))
-(((-1164 |#1|) (-10 -7 (-15 -3946 ((-1158 |#1|) (-1158 |#1|))) (-15 -3063 ((-1158 |#1|) (-1158 |#1|))) (-15 ** ((-1158 |#1|) (-1158 |#1|) (-1158 |#1|))) (-15 -3647 ((-2 (|:| -2987 (-1158 |#1|)) (|:| -2999 (-1158 |#1|))) (-1158 |#1|))) (-15 -2987 ((-1158 |#1|) (-1158 |#1|))) (-15 -2999 ((-1158 |#1|) (-1158 |#1|))) (-15 -3012 ((-1158 |#1|) (-1158 |#1|))) (-15 -3023 ((-1158 |#1|) (-1158 |#1|))) (-15 -3035 ((-1158 |#1|) (-1158 |#1|))) (-15 -3049 ((-1158 |#1|) (-1158 |#1|))) (-15 -3062 ((-1158 |#1|) (-1158 |#1|))) (-15 -3074 ((-1158 |#1|) (-1158 |#1|))) (-15 -3084 ((-1158 |#1|) (-1158 |#1|))) (-15 -3095 ((-1158 |#1|) (-1158 |#1|))) (-15 -3106 ((-1158 |#1|) (-1158 |#1|))) (-15 -3118 ((-1158 |#1|) (-1158 |#1|))) (-15 -3319 ((-2 (|:| -3128 (-1158 |#1|)) (|:| -3137 (-1158 |#1|))) (-1158 |#1|))) (-15 -3128 ((-1158 |#1|) (-1158 |#1|))) (-15 -3137 ((-1158 |#1|) (-1158 |#1|))) (-15 -3146 ((-1158 |#1|) (-1158 |#1|))) (-15 -3156 ((-1158 |#1|) (-1158 |#1|))) (-15 -3166 ((-1158 |#1|) (-1158 |#1|))) (-15 -3175 ((-1158 |#1|) (-1158 |#1|))) (-15 -3183 ((-1158 |#1|) (-1158 |#1|))) (-15 -3193 ((-1158 |#1|) (-1158 |#1|))) (-15 -3200 ((-1158 |#1|) (-1158 |#1|))) (-15 -3211 ((-1158 |#1|) (-1158 |#1|))) (-15 -3221 ((-1158 |#1|) (-1158 |#1|))) (-15 -3785 ((-1158 |#1|) (-1158 |#1|)))) (-38 (-410 (-567)))) (T -1164))
-((-3785 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-3221 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-3211 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-3200 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-3193 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-3183 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-3175 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-3166 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-3156 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-3146 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-3137 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-3128 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-3319 (*1 *2 *3) (-12 (-4 *4 (-38 (-410 (-567)))) (-5 *2 (-2 (|:| -3128 (-1158 *4)) (|:| -3137 (-1158 *4)))) (-5 *1 (-1164 *4)) (-5 *3 (-1158 *4)))) (-3118 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-3106 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-3095 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-3084 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-3074 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-3062 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-3049 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-3035 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-3023 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-3012 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-2999 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-2987 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-3647 (*1 *2 *3) (-12 (-4 *4 (-38 (-410 (-567)))) (-5 *2 (-2 (|:| -2987 (-1158 *4)) (|:| -2999 (-1158 *4)))) (-5 *1 (-1164 *4)) (-5 *3 (-1158 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-3063 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-3946 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))))
-(-10 -7 (-15 -3946 ((-1158 |#1|) (-1158 |#1|))) (-15 -3063 ((-1158 |#1|) (-1158 |#1|))) (-15 ** ((-1158 |#1|) (-1158 |#1|) (-1158 |#1|))) (-15 -3647 ((-2 (|:| -2987 (-1158 |#1|)) (|:| -2999 (-1158 |#1|))) (-1158 |#1|))) (-15 -2987 ((-1158 |#1|) (-1158 |#1|))) (-15 -2999 ((-1158 |#1|) (-1158 |#1|))) (-15 -3012 ((-1158 |#1|) (-1158 |#1|))) (-15 -3023 ((-1158 |#1|) (-1158 |#1|))) (-15 -3035 ((-1158 |#1|) (-1158 |#1|))) (-15 -3049 ((-1158 |#1|) (-1158 |#1|))) (-15 -3062 ((-1158 |#1|) (-1158 |#1|))) (-15 -3074 ((-1158 |#1|) (-1158 |#1|))) (-15 -3084 ((-1158 |#1|) (-1158 |#1|))) (-15 -3095 ((-1158 |#1|) (-1158 |#1|))) (-15 -3106 ((-1158 |#1|) (-1158 |#1|))) (-15 -3118 ((-1158 |#1|) (-1158 |#1|))) (-15 -3319 ((-2 (|:| -3128 (-1158 |#1|)) (|:| -3137 (-1158 |#1|))) (-1158 |#1|))) (-15 -3128 ((-1158 |#1|) (-1158 |#1|))) (-15 -3137 ((-1158 |#1|) (-1158 |#1|))) (-15 -3146 ((-1158 |#1|) (-1158 |#1|))) (-15 -3156 ((-1158 |#1|) (-1158 |#1|))) (-15 -3166 ((-1158 |#1|) (-1158 |#1|))) (-15 -3175 ((-1158 |#1|) (-1158 |#1|))) (-15 -3183 ((-1158 |#1|) (-1158 |#1|))) (-15 -3193 ((-1158 |#1|) (-1158 |#1|))) (-15 -3200 ((-1158 |#1|) (-1158 |#1|))) (-15 -3211 ((-1158 |#1|) (-1158 |#1|))) (-15 -3221 ((-1158 |#1|) (-1158 |#1|))) (-15 -3785 ((-1158 |#1|) (-1158 |#1|))))
-((-2309 (((-960 |#2|) |#2| |#2|) 51)) (-3501 ((|#2| |#2| |#1|) 19 (|has| |#1| (-308)))))
-(((-1165 |#1| |#2|) (-10 -7 (-15 -2309 ((-960 |#2|) |#2| |#2|)) (IF (|has| |#1| (-308)) (-15 -3501 (|#2| |#2| |#1|)) |%noBranch|)) (-559) (-1244 |#1|)) (T -1165))
-((-3501 (*1 *2 *2 *3) (-12 (-4 *3 (-308)) (-4 *3 (-559)) (-5 *1 (-1165 *3 *2)) (-4 *2 (-1244 *3)))) (-2309 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-960 *3)) (-5 *1 (-1165 *4 *3)) (-4 *3 (-1244 *4)))))
-(-10 -7 (-15 -2309 ((-960 |#2|) |#2| |#2|)) (IF (|has| |#1| (-308)) (-15 -3501 (|#2| |#2| |#1|)) |%noBranch|))
-((-2403 (((-112) $ $) NIL)) (-3757 (($ $ (-645 (-772))) 81)) (-1455 (($) 33)) (-4329 (($ $) 51)) (-2743 (((-645 $) $) 60)) (-4310 (((-112) $) 19)) (-3072 (((-645 (-945 |#2|)) $) 88)) (-4346 (($ $) 82)) (-3715 (((-772) $) 47)) (-2846 (($) 32)) (-3271 (($ $ (-645 (-772)) (-945 |#2|)) 74) (($ $ (-645 (-772)) (-772)) 75) (($ $ (-772) (-945 |#2|)) 77)) (-4135 (($ $ $) 57) (($ (-645 $)) 59)) (-2684 (((-772) $) 89)) (-2769 (((-112) $) 15)) (-1419 (((-1160) $) NIL)) (-3758 (((-112) $) 22)) (-3430 (((-1122) $) NIL)) (-2561 (((-171) $) 87)) (-1868 (((-945 |#2|) $) 83)) (-2474 (((-772) $) 84)) (-2555 (((-112) $) 86)) (-2160 (($ $ (-645 (-772)) (-171)) 80)) (-4154 (($ $) 52)) (-4132 (((-863) $) 100)) (-1776 (($ $ (-645 (-772)) (-112)) 79)) (-1531 (((-645 $) $) 11)) (-3820 (($ $ (-772)) 46)) (-4340 (($ $) 43)) (-1745 (((-112) $ $) NIL)) (-3237 (($ $ $ (-945 |#2|) (-772)) 70)) (-1357 (($ $ (-945 |#2|)) 69)) (-2062 (($ $ (-645 (-772)) (-945 |#2|)) 66) (($ $ (-645 (-772)) (-772)) 72) (((-772) $ (-945 |#2|)) 73)) (-2936 (((-112) $ $) 94)))
-(((-1166 |#1| |#2|) (-13 (-1102) (-10 -8 (-15 -2769 ((-112) $)) (-15 -4310 ((-112) $)) (-15 -3758 ((-112) $)) (-15 -2846 ($)) (-15 -1455 ($)) (-15 -4340 ($ $)) (-15 -3820 ($ $ (-772))) (-15 -1531 ((-645 $) $)) (-15 -3715 ((-772) $)) (-15 -4329 ($ $)) (-15 -4154 ($ $)) (-15 -4135 ($ $ $)) (-15 -4135 ($ (-645 $))) (-15 -2743 ((-645 $) $)) (-15 -2062 ($ $ (-645 (-772)) (-945 |#2|))) (-15 -1357 ($ $ (-945 |#2|))) (-15 -3237 ($ $ $ (-945 |#2|) (-772))) (-15 -3271 ($ $ (-645 (-772)) (-945 |#2|))) (-15 -2062 ($ $ (-645 (-772)) (-772))) (-15 -3271 ($ $ (-645 (-772)) (-772))) (-15 -2062 ((-772) $ (-945 |#2|))) (-15 -3271 ($ $ (-772) (-945 |#2|))) (-15 -1776 ($ $ (-645 (-772)) (-112))) (-15 -2160 ($ $ (-645 (-772)) (-171))) (-15 -3757 ($ $ (-645 (-772)))) (-15 -1868 ((-945 |#2|) $)) (-15 -2474 ((-772) $)) (-15 -2555 ((-112) $)) (-15 -2561 ((-171) $)) (-15 -2684 ((-772) $)) (-15 -4346 ($ $)) (-15 -3072 ((-645 (-945 |#2|)) $)))) (-923) (-1051)) (T -1166))
-((-2769 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1166 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1051)))) (-4310 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1166 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1051)))) (-3758 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1166 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1051)))) (-2846 (*1 *1) (-12 (-5 *1 (-1166 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1051)))) (-1455 (*1 *1) (-12 (-5 *1 (-1166 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1051)))) (-4340 (*1 *1 *1) (-12 (-5 *1 (-1166 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1051)))) (-3820 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-1166 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1051)))) (-1531 (*1 *2 *1) (-12 (-5 *2 (-645 (-1166 *3 *4))) (-5 *1 (-1166 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1051)))) (-3715 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1166 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1051)))) (-4329 (*1 *1 *1) (-12 (-5 *1 (-1166 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1051)))) (-4154 (*1 *1 *1) (-12 (-5 *1 (-1166 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1051)))) (-4135 (*1 *1 *1 *1) (-12 (-5 *1 (-1166 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1051)))) (-4135 (*1 *1 *2) (-12 (-5 *2 (-645 (-1166 *3 *4))) (-5 *1 (-1166 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1051)))) (-2743 (*1 *2 *1) (-12 (-5 *2 (-645 (-1166 *3 *4))) (-5 *1 (-1166 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1051)))) (-2062 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-772))) (-5 *3 (-945 *5)) (-4 *5 (-1051)) (-5 *1 (-1166 *4 *5)) (-14 *4 (-923)))) (-1357 (*1 *1 *1 *2) (-12 (-5 *2 (-945 *4)) (-4 *4 (-1051)) (-5 *1 (-1166 *3 *4)) (-14 *3 (-923)))) (-3237 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-945 *5)) (-5 *3 (-772)) (-4 *5 (-1051)) (-5 *1 (-1166 *4 *5)) (-14 *4 (-923)))) (-3271 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-772))) (-5 *3 (-945 *5)) (-4 *5 (-1051)) (-5 *1 (-1166 *4 *5)) (-14 *4 (-923)))) (-2062 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-772))) (-5 *3 (-772)) (-5 *1 (-1166 *4 *5)) (-14 *4 (-923)) (-4 *5 (-1051)))) (-3271 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-772))) (-5 *3 (-772)) (-5 *1 (-1166 *4 *5)) (-14 *4 (-923)) (-4 *5 (-1051)))) (-2062 (*1 *2 *1 *3) (-12 (-5 *3 (-945 *5)) (-4 *5 (-1051)) (-5 *2 (-772)) (-5 *1 (-1166 *4 *5)) (-14 *4 (-923)))) (-3271 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-772)) (-5 *3 (-945 *5)) (-4 *5 (-1051)) (-5 *1 (-1166 *4 *5)) (-14 *4 (-923)))) (-1776 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-772))) (-5 *3 (-112)) (-5 *1 (-1166 *4 *5)) (-14 *4 (-923)) (-4 *5 (-1051)))) (-2160 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-772))) (-5 *3 (-171)) (-5 *1 (-1166 *4 *5)) (-14 *4 (-923)) (-4 *5 (-1051)))) (-3757 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-772))) (-5 *1 (-1166 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1051)))) (-1868 (*1 *2 *1) (-12 (-5 *2 (-945 *4)) (-5 *1 (-1166 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1051)))) (-2474 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1166 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1051)))) (-2555 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1166 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1051)))) (-2561 (*1 *2 *1) (-12 (-5 *2 (-171)) (-5 *1 (-1166 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1051)))) (-2684 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1166 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1051)))) (-4346 (*1 *1 *1) (-12 (-5 *1 (-1166 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1051)))) (-3072 (*1 *2 *1) (-12 (-5 *2 (-645 (-945 *4))) (-5 *1 (-1166 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1051)))))
-(-13 (-1102) (-10 -8 (-15 -2769 ((-112) $)) (-15 -4310 ((-112) $)) (-15 -3758 ((-112) $)) (-15 -2846 ($)) (-15 -1455 ($)) (-15 -4340 ($ $)) (-15 -3820 ($ $ (-772))) (-15 -1531 ((-645 $) $)) (-15 -3715 ((-772) $)) (-15 -4329 ($ $)) (-15 -4154 ($ $)) (-15 -4135 ($ $ $)) (-15 -4135 ($ (-645 $))) (-15 -2743 ((-645 $) $)) (-15 -2062 ($ $ (-645 (-772)) (-945 |#2|))) (-15 -1357 ($ $ (-945 |#2|))) (-15 -3237 ($ $ $ (-945 |#2|) (-772))) (-15 -3271 ($ $ (-645 (-772)) (-945 |#2|))) (-15 -2062 ($ $ (-645 (-772)) (-772))) (-15 -3271 ($ $ (-645 (-772)) (-772))) (-15 -2062 ((-772) $ (-945 |#2|))) (-15 -3271 ($ $ (-772) (-945 |#2|))) (-15 -1776 ($ $ (-645 (-772)) (-112))) (-15 -2160 ($ $ (-645 (-772)) (-171))) (-15 -3757 ($ $ (-645 (-772)))) (-15 -1868 ((-945 |#2|) $)) (-15 -2474 ((-772) $)) (-15 -2555 ((-112) $)) (-15 -2561 ((-171) $)) (-15 -2684 ((-772) $)) (-15 -4346 ($ $)) (-15 -3072 ((-645 (-945 |#2|)) $))))
-((-2403 (((-112) $ $) NIL)) (-4104 ((|#2| $) 11)) (-4089 ((|#1| $) 10)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4147 (($ |#1| |#2|) 9)) (-4132 (((-863) $) 16)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)))
-(((-1167 |#1| |#2|) (-13 (-1102) (-10 -8 (-15 -4147 ($ |#1| |#2|)) (-15 -4089 (|#1| $)) (-15 -4104 (|#2| $)))) (-1102) (-1102)) (T -1167))
-((-4147 (*1 *1 *2 *3) (-12 (-5 *1 (-1167 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-1102)))) (-4089 (*1 *2 *1) (-12 (-4 *2 (-1102)) (-5 *1 (-1167 *2 *3)) (-4 *3 (-1102)))) (-4104 (*1 *2 *1) (-12 (-4 *2 (-1102)) (-5 *1 (-1167 *3 *2)) (-4 *3 (-1102)))))
-(-13 (-1102) (-10 -8 (-15 -4147 ($ |#1| |#2|)) (-15 -4089 (|#1| $)) (-15 -4104 (|#2| $))))
-((-2403 (((-112) $ $) NIL)) (-3342 (((-1137) $) 9)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 15) (($ (-1183)) NIL) (((-1183) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)))
-(((-1168) (-13 (-1085) (-10 -8 (-15 -3342 ((-1137) $))))) (T -1168))
-((-3342 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1168)))))
-(-13 (-1085) (-10 -8 (-15 -3342 ((-1137) $))))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3093 (((-1176 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-308)) (|has| |#1| (-365))))) (-2847 (((-645 (-1084)) $) NIL)) (-3644 (((-1178) $) 11)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL (-2800 (-12 (|has| (-1176 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1176 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))) (|has| |#1| (-559))))) (-4381 (($ $) NIL (-2800 (-12 (|has| (-1176 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1176 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))) (|has| |#1| (-559))))) (-3949 (((-112) $) NIL (-2800 (-12 (|has| (-1176 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1176 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))) (|has| |#1| (-559))))) (-1950 (($ $ (-567)) NIL) (($ $ (-567) (-567)) 75)) (-1843 (((-1158 (-2 (|:| |k| (-567)) (|:| |c| |#1|))) $) NIL)) (-2821 (((-1176 |#1| |#2| |#3|) $) 42)) (-2401 (((-3 (-1176 |#1| |#2| |#3|) "failed") $) 32)) (-2896 (((-1176 |#1| |#2| |#3|) $) 33)) (-3146 (($ $) 116 (|has| |#1| (-38 (-410 (-567)))))) (-3012 (($ $) 92 (|has| |#1| (-38 (-410 (-567)))))) (-3472 (((-3 $ "failed") $ $) NIL)) (-4226 (((-421 (-1174 $)) (-1174 $)) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))))) (-3248 (($ $) NIL (|has| |#1| (-365)))) (-2908 (((-421 $) $) NIL (|has| |#1| (-365)))) (-2716 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))))) (-3609 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3128 (($ $) 112 (|has| |#1| (-38 (-410 (-567)))))) (-2987 (($ $) 88 (|has| |#1| (-38 (-410 (-567)))))) (-1750 (((-567) $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))))) (-1306 (($ (-1158 (-2 (|:| |k| (-567)) (|:| |c| |#1|)))) NIL)) (-3166 (($ $) 120 (|has| |#1| (-38 (-410 (-567)))))) (-3035 (($ $) 96 (|has| |#1| (-38 (-410 (-567)))))) (-2585 (($) NIL T CONST)) (-3753 (((-3 (-1176 |#1| |#2| |#3|) "failed") $) 34) (((-3 (-1178) "failed") $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-1040 (-1178))) (|has| |#1| (-365)))) (((-3 (-410 (-567)) "failed") $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-1040 (-567))) (|has| |#1| (-365)))) (((-3 (-567) "failed") $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-1040 (-567))) (|has| |#1| (-365))))) (-2038 (((-1176 |#1| |#2| |#3|) $) 140) (((-1178) $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-1040 (-1178))) (|has| |#1| (-365)))) (((-410 (-567)) $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-1040 (-567))) (|has| |#1| (-365)))) (((-567) $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-1040 (-567))) (|has| |#1| (-365))))) (-3812 (($ $) 37) (($ (-567) $) 38)) (-2349 (($ $ $) NIL (|has| |#1| (-365)))) (-3014 (($ $) NIL)) (-2630 (((-690 (-1176 |#1| |#2| |#3|)) (-690 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -2316 (-690 (-1176 |#1| |#2| |#3|))) (|:| |vec| (-1268 (-1176 |#1| |#2| |#3|)))) (-690 $) (-1268 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-640 (-567))) (|has| |#1| (-365)))) (((-690 (-567)) (-690 $)) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-640 (-567))) (|has| |#1| (-365))))) (-2109 (((-3 $ "failed") $) 54)) (-2157 (((-410 (-954 |#1|)) $ (-567)) 74 (|has| |#1| (-559))) (((-410 (-954 |#1|)) $ (-567) (-567)) 76 (|has| |#1| (-559)))) (-1348 (($) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-548)) (|has| |#1| (-365))))) (-2360 (($ $ $) NIL (|has| |#1| (-365)))) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-3184 (((-112) $) NIL (|has| |#1| (-365)))) (-4336 (((-112) $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))))) (-2762 (((-112) $) 28)) (-1482 (($) NIL (|has| |#1| (-38 (-410 (-567)))))) (-4303 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-888 (-381))) (|has| |#1| (-365)))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-888 (-567))) (|has| |#1| (-365))))) (-4384 (((-567) $) NIL) (((-567) $ (-567)) 26)) (-1433 (((-112) $) NIL)) (-3530 (($ $) NIL (|has| |#1| (-365)))) (-1448 (((-1176 |#1| |#2| |#3|) $) 44 (|has| |#1| (-365)))) (-2651 (($ $ (-567)) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3972 (((-3 $ "failed") $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-1153)) (|has| |#1| (-365))))) (-3494 (((-112) $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))))) (-3807 (($ $ (-923)) NIL)) (-2288 (($ (-1 |#1| (-567)) $) NIL)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-2843 (((-112) $) NIL)) (-2824 (($ |#1| (-567)) 19) (($ $ (-1084) (-567)) NIL) (($ $ (-645 (-1084)) (-645 (-567))) NIL)) (-1354 (($ $ $) NIL (-2800 (-12 (|has| (-1176 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1176 |#1| |#2| |#3|) (-851)) (|has| |#1| (-365)))))) (-2981 (($ $ $) NIL (-2800 (-12 (|has| (-1176 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1176 |#1| |#2| |#3|) (-851)) (|has| |#1| (-365)))))) (-3829 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1176 |#1| |#2| |#3|) (-1176 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-365)))) (-3063 (($ $) 81 (|has| |#1| (-38 (-410 (-567)))))) (-2976 (($ $) NIL)) (-2989 ((|#1| $) NIL)) (-2740 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2907 (($ (-567) (-1176 |#1| |#2| |#3|)) 36)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) NIL (|has| |#1| (-365)))) (-2416 (($ $) 79 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1178)) NIL (-2800 (-12 (|has| |#1| (-15 -2416 (|#1| |#1| (-1178)))) (|has| |#1| (-15 -2847 ((-645 (-1178)) |#1|))) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-961)) (|has| |#1| (-1203))))) (($ $ (-1264 |#2|)) 80 (|has| |#1| (-38 (-410 (-567)))))) (-2672 (($) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-1153)) (|has| |#1| (-365))) CONST)) (-3430 (((-1122) $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#1| (-365)))) (-2774 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-4094 (($ $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-308)) (|has| |#1| (-365))))) (-2780 (((-1176 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-548)) (|has| |#1| (-365))))) (-2435 (((-421 (-1174 $)) (-1174 $)) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))))) (-3517 (((-421 (-1174 $)) (-1174 $)) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))))) (-2706 (((-421 $) $) NIL (|has| |#1| (-365)))) (-3402 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL (|has| |#1| (-365)))) (-2410 (($ $ (-567)) 158)) (-2391 (((-3 $ "failed") $ $) 55 (-2800 (-12 (|has| (-1176 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1176 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))) (|has| |#1| (-559))))) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-3946 (($ $) 82 (|has| |#1| (-38 (-410 (-567)))))) (-2631 (((-1158 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-567))))) (($ $ (-1178) (-1176 |#1| |#2| |#3|)) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-517 (-1178) (-1176 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-645 (-1178)) (-645 (-1176 |#1| |#2| |#3|))) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-517 (-1178) (-1176 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-645 (-295 (-1176 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-310 (-1176 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-295 (-1176 |#1| |#2| |#3|))) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-310 (-1176 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-1176 |#1| |#2| |#3|) (-1176 |#1| |#2| |#3|)) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-310 (-1176 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-645 (-1176 |#1| |#2| |#3|)) (-645 (-1176 |#1| |#2| |#3|))) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-310 (-1176 |#1| |#2| |#3|))) (|has| |#1| (-365))))) (-1990 (((-772) $) NIL (|has| |#1| (-365)))) (-1787 ((|#1| $ (-567)) NIL) (($ $ $) 61 (|has| (-567) (-1114))) (($ $ (-1176 |#1| |#2| |#3|)) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-287 (-1176 |#1| |#2| |#3|) (-1176 |#1| |#2| |#3|))) (|has| |#1| (-365))))) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL (|has| |#1| (-365)))) (-1593 (($ $ (-1 (-1176 |#1| |#2| |#3|) (-1176 |#1| |#2| |#3|))) NIL (|has| |#1| (-365))) (($ $ (-1 (-1176 |#1| |#2| |#3|) (-1176 |#1| |#2| |#3|)) (-772)) NIL (|has| |#1| (-365))) (($ $ (-1264 |#2|)) 57) (($ $ (-772)) NIL (-2800 (-12 (|has| (-1176 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $) 56 (-2800 (-12 (|has| (-1176 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (-2800 (-12 (|has| (-1176 |#1| |#2| |#3|) (-902 (-1178))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1178)))))) (($ $ (-1178) (-772)) NIL (-2800 (-12 (|has| (-1176 |#1| |#2| |#3|) (-902 (-1178))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1178)))))) (($ $ (-645 (-1178))) NIL (-2800 (-12 (|has| (-1176 |#1| |#2| |#3|) (-902 (-1178))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1178)))))) (($ $ (-1178)) NIL (-2800 (-12 (|has| (-1176 |#1| |#2| |#3|) (-902 (-1178))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1178))))))) (-1967 (($ $) NIL (|has| |#1| (-365)))) (-1460 (((-1176 |#1| |#2| |#3|) $) 46 (|has| |#1| (-365)))) (-3077 (((-567) $) 43)) (-3175 (($ $) 122 (|has| |#1| (-38 (-410 (-567)))))) (-3049 (($ $) 98 (|has| |#1| (-38 (-410 (-567)))))) (-3156 (($ $) 118 (|has| |#1| (-38 (-410 (-567)))))) (-3023 (($ $) 94 (|has| |#1| (-38 (-410 (-567)))))) (-3137 (($ $) 114 (|has| |#1| (-38 (-410 (-567)))))) (-2999 (($ $) 90 (|has| |#1| (-38 (-410 (-567)))))) (-3893 (((-539) $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-615 (-539))) (|has| |#1| (-365)))) (((-381) $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-1024)) (|has| |#1| (-365)))) (((-225) $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-1024)) (|has| |#1| (-365)))) (((-894 (-381)) $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-615 (-894 (-381)))) (|has| |#1| (-365)))) (((-894 (-567)) $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-615 (-894 (-567)))) (|has| |#1| (-365))))) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| (-1176 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))))) (-2192 (($ $) NIL)) (-4132 (((-863) $) 162) (($ (-567)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1176 |#1| |#2| |#3|)) 30) (($ (-1264 |#2|)) 25) (($ (-1178)) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-1040 (-1178))) (|has| |#1| (-365)))) (($ $) NIL (-2800 (-12 (|has| (-1176 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1176 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))) (|has| |#1| (-559)))) (($ (-410 (-567))) NIL (-2800 (-12 (|has| (-1176 |#1| |#2| |#3|) (-1040 (-567))) (|has| |#1| (-365))) (|has| |#1| (-38 (-410 (-567))))))) (-4136 ((|#1| $ (-567)) 77)) (-1903 (((-3 $ "failed") $) NIL (-2800 (-12 (|has| $ (-145)) (|has| (-1176 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))) (-12 (|has| (-1176 |#1| |#2| |#3|) (-145)) (|has| |#1| (-365))) (|has| |#1| (-145))))) (-4221 (((-772)) NIL T CONST)) (-2166 ((|#1| $) 12)) (-1423 (((-1176 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-548)) (|has| |#1| (-365))))) (-1745 (((-112) $ $) NIL)) (-3200 (($ $) 128 (|has| |#1| (-38 (-410 (-567)))))) (-3084 (($ $) 104 (|has| |#1| (-38 (-410 (-567)))))) (-3816 (((-112) $ $) NIL (-2800 (-12 (|has| (-1176 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1176 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))) (|has| |#1| (-559))))) (-3183 (($ $) 124 (|has| |#1| (-38 (-410 (-567)))))) (-3062 (($ $) 100 (|has| |#1| (-38 (-410 (-567)))))) (-3221 (($ $) 132 (|has| |#1| (-38 (-410 (-567)))))) (-3106 (($ $) 108 (|has| |#1| (-38 (-410 (-567)))))) (-3050 ((|#1| $ (-567)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-567)))) (|has| |#1| (-15 -4132 (|#1| (-1178))))))) (-3785 (($ $) 134 (|has| |#1| (-38 (-410 (-567)))))) (-3118 (($ $) 110 (|has| |#1| (-38 (-410 (-567)))))) (-3211 (($ $) 130 (|has| |#1| (-38 (-410 (-567)))))) (-3095 (($ $) 106 (|has| |#1| (-38 (-410 (-567)))))) (-3193 (($ $) 126 (|has| |#1| (-38 (-410 (-567)))))) (-3074 (($ $) 102 (|has| |#1| (-38 (-410 (-567)))))) (-2219 (($ $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))))) (-1716 (($) 21 T CONST)) (-1728 (($) 16 T CONST)) (-2637 (($ $ (-1 (-1176 |#1| |#2| |#3|) (-1176 |#1| |#2| |#3|))) NIL (|has| |#1| (-365))) (($ $ (-1 (-1176 |#1| |#2| |#3|) (-1176 |#1| |#2| |#3|)) (-772)) NIL (|has| |#1| (-365))) (($ $ (-772)) NIL (-2800 (-12 (|has| (-1176 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $) NIL (-2800 (-12 (|has| (-1176 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (-2800 (-12 (|has| (-1176 |#1| |#2| |#3|) (-902 (-1178))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1178)))))) (($ $ (-1178) (-772)) NIL (-2800 (-12 (|has| (-1176 |#1| |#2| |#3|) (-902 (-1178))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1178)))))) (($ $ (-645 (-1178))) NIL (-2800 (-12 (|has| (-1176 |#1| |#2| |#3|) (-902 (-1178))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1178)))))) (($ $ (-1178)) NIL (-2800 (-12 (|has| (-1176 |#1| |#2| |#3|) (-902 (-1178))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1178))))))) (-2997 (((-112) $ $) NIL (-2800 (-12 (|has| (-1176 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1176 |#1| |#2| |#3|) (-851)) (|has| |#1| (-365)))))) (-2971 (((-112) $ $) NIL (-2800 (-12 (|has| (-1176 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1176 |#1| |#2| |#3|) (-851)) (|has| |#1| (-365)))))) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL (-2800 (-12 (|has| (-1176 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1176 |#1| |#2| |#3|) (-851)) (|has| |#1| (-365)))))) (-2958 (((-112) $ $) NIL (-2800 (-12 (|has| (-1176 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1176 |#1| |#2| |#3|) (-851)) (|has| |#1| (-365)))))) (-3060 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) 49 (|has| |#1| (-365))) (($ (-1176 |#1| |#2| |#3|) (-1176 |#1| |#2| |#3|)) 50 (|has| |#1| (-365)))) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) 23)) (** (($ $ (-923)) NIL) (($ $ (-772)) 60) (($ $ (-567)) NIL (|has| |#1| (-365))) (($ $ $) 83 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 137 (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 35) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1176 |#1| |#2| |#3|)) 48 (|has| |#1| (-365))) (($ (-1176 |#1| |#2| |#3|) $) 47 (|has| |#1| (-365))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))))
-(((-1169 |#1| |#2| |#3|) (-13 (-1230 |#1| (-1176 |#1| |#2| |#3|)) (-10 -8 (-15 -4132 ($ (-1264 |#2|))) (-15 -1593 ($ $ (-1264 |#2|))) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -2416 ($ $ (-1264 |#2|))) |%noBranch|))) (-1051) (-1178) |#1|) (T -1169))
-((-4132 (*1 *1 *2) (-12 (-5 *2 (-1264 *4)) (-14 *4 (-1178)) (-5 *1 (-1169 *3 *4 *5)) (-4 *3 (-1051)) (-14 *5 *3))) (-1593 (*1 *1 *1 *2) (-12 (-5 *2 (-1264 *4)) (-14 *4 (-1178)) (-5 *1 (-1169 *3 *4 *5)) (-4 *3 (-1051)) (-14 *5 *3))) (-2416 (*1 *1 *1 *2) (-12 (-5 *2 (-1264 *4)) (-14 *4 (-1178)) (-5 *1 (-1169 *3 *4 *5)) (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)) (-14 *5 *3))))
-(-13 (-1230 |#1| (-1176 |#1| |#2| |#3|)) (-10 -8 (-15 -4132 ($ (-1264 |#2|))) (-15 -1593 ($ $ (-1264 |#2|))) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -2416 ($ $ (-1264 |#2|))) |%noBranch|)))
-((-3579 ((|#2| |#2| (-1094 |#2|)) 26) ((|#2| |#2| (-1178)) 28)))
-(((-1170 |#1| |#2|) (-10 -7 (-15 -3579 (|#2| |#2| (-1178))) (-15 -3579 (|#2| |#2| (-1094 |#2|)))) (-13 (-559) (-1040 (-567)) (-640 (-567))) (-13 (-433 |#1|) (-160) (-27) (-1203))) (T -1170))
-((-3579 (*1 *2 *2 *3) (-12 (-5 *3 (-1094 *2)) (-4 *2 (-13 (-433 *4) (-160) (-27) (-1203))) (-4 *4 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-1170 *4 *2)))) (-3579 (*1 *2 *2 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-1170 *4 *2)) (-4 *2 (-13 (-433 *4) (-160) (-27) (-1203))))))
-(-10 -7 (-15 -3579 (|#2| |#2| (-1178))) (-15 -3579 (|#2| |#2| (-1094 |#2|))))
-((-3579 (((-3 (-410 (-954 |#1|)) (-317 |#1|)) (-410 (-954 |#1|)) (-1094 (-410 (-954 |#1|)))) 31) (((-410 (-954 |#1|)) (-954 |#1|) (-1094 (-954 |#1|))) 44) (((-3 (-410 (-954 |#1|)) (-317 |#1|)) (-410 (-954 |#1|)) (-1178)) 33) (((-410 (-954 |#1|)) (-954 |#1|) (-1178)) 36)))
-(((-1171 |#1|) (-10 -7 (-15 -3579 ((-410 (-954 |#1|)) (-954 |#1|) (-1178))) (-15 -3579 ((-3 (-410 (-954 |#1|)) (-317 |#1|)) (-410 (-954 |#1|)) (-1178))) (-15 -3579 ((-410 (-954 |#1|)) (-954 |#1|) (-1094 (-954 |#1|)))) (-15 -3579 ((-3 (-410 (-954 |#1|)) (-317 |#1|)) (-410 (-954 |#1|)) (-1094 (-410 (-954 |#1|)))))) (-13 (-559) (-1040 (-567)))) (T -1171))
-((-3579 (*1 *2 *3 *4) (-12 (-5 *4 (-1094 (-410 (-954 *5)))) (-5 *3 (-410 (-954 *5))) (-4 *5 (-13 (-559) (-1040 (-567)))) (-5 *2 (-3 *3 (-317 *5))) (-5 *1 (-1171 *5)))) (-3579 (*1 *2 *3 *4) (-12 (-5 *4 (-1094 (-954 *5))) (-5 *3 (-954 *5)) (-4 *5 (-13 (-559) (-1040 (-567)))) (-5 *2 (-410 *3)) (-5 *1 (-1171 *5)))) (-3579 (*1 *2 *3 *4) (-12 (-5 *4 (-1178)) (-4 *5 (-13 (-559) (-1040 (-567)))) (-5 *2 (-3 (-410 (-954 *5)) (-317 *5))) (-5 *1 (-1171 *5)) (-5 *3 (-410 (-954 *5))))) (-3579 (*1 *2 *3 *4) (-12 (-5 *4 (-1178)) (-4 *5 (-13 (-559) (-1040 (-567)))) (-5 *2 (-410 (-954 *5))) (-5 *1 (-1171 *5)) (-5 *3 (-954 *5)))))
-(-10 -7 (-15 -3579 ((-410 (-954 |#1|)) (-954 |#1|) (-1178))) (-15 -3579 ((-3 (-410 (-954 |#1|)) (-317 |#1|)) (-410 (-954 |#1|)) (-1178))) (-15 -3579 ((-410 (-954 |#1|)) (-954 |#1|) (-1094 (-954 |#1|)))) (-15 -3579 ((-3 (-410 (-954 |#1|)) (-317 |#1|)) (-410 (-954 |#1|)) (-1094 (-410 (-954 |#1|))))))
-((-3829 (((-1174 |#2|) (-1 |#2| |#1|) (-1174 |#1|)) 13)))
-(((-1172 |#1| |#2|) (-10 -7 (-15 -3829 ((-1174 |#2|) (-1 |#2| |#1|) (-1174 |#1|)))) (-1051) (-1051)) (T -1172))
-((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1174 *5)) (-4 *5 (-1051)) (-4 *6 (-1051)) (-5 *2 (-1174 *6)) (-5 *1 (-1172 *5 *6)))))
-(-10 -7 (-15 -3829 ((-1174 |#2|) (-1 |#2| |#1|) (-1174 |#1|))))
-((-2908 (((-421 (-1174 (-410 |#4|))) (-1174 (-410 |#4|))) 51)) (-2706 (((-421 (-1174 (-410 |#4|))) (-1174 (-410 |#4|))) 52)))
-(((-1173 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2706 ((-421 (-1174 (-410 |#4|))) (-1174 (-410 |#4|)))) (-15 -2908 ((-421 (-1174 (-410 |#4|))) (-1174 (-410 |#4|))))) (-794) (-851) (-455) (-951 |#3| |#1| |#2|)) (T -1173))
-((-2908 (*1 *2 *3) (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-455)) (-4 *7 (-951 *6 *4 *5)) (-5 *2 (-421 (-1174 (-410 *7)))) (-5 *1 (-1173 *4 *5 *6 *7)) (-5 *3 (-1174 (-410 *7))))) (-2706 (*1 *2 *3) (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-455)) (-4 *7 (-951 *6 *4 *5)) (-5 *2 (-421 (-1174 (-410 *7)))) (-5 *1 (-1173 *4 *5 *6 *7)) (-5 *3 (-1174 (-410 *7))))))
-(-10 -7 (-15 -2706 ((-421 (-1174 (-410 |#4|))) (-1174 (-410 |#4|)))) (-15 -2908 ((-421 (-1174 (-410 |#4|))) (-1174 (-410 |#4|)))))
-((-2403 (((-112) $ $) 171)) (-2460 (((-112) $) 43)) (-4199 (((-1268 |#1|) $ (-772)) NIL)) (-2847 (((-645 (-1084)) $) NIL)) (-2703 (($ (-1174 |#1|)) NIL)) (-2675 (((-1174 $) $ (-1084)) 82) (((-1174 |#1|) $) 71)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-4381 (($ $) 164 (|has| |#1| (-559)))) (-3949 (((-112) $) NIL (|has| |#1| (-559)))) (-1468 (((-772) $) NIL) (((-772) $ (-645 (-1084))) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2323 (($ $ $) 158 (|has| |#1| (-559)))) (-4226 (((-421 (-1174 $)) (-1174 $)) 95 (|has| |#1| (-911)))) (-3248 (($ $) NIL (|has| |#1| (-455)))) (-2908 (((-421 $) $) NIL (|has| |#1| (-455)))) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) 115 (|has| |#1| (-911)))) (-3609 (((-112) $ $) NIL (|has| |#1| (-365)))) (-1516 (($ $ (-772)) 61)) (-3993 (($ $ (-772)) 63)) (-2743 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-455)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 |#1| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-1084) "failed") $) NIL)) (-2038 ((|#1| $) NIL) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-1084) $) NIL)) (-2951 (($ $ $ (-1084)) NIL (|has| |#1| (-172))) ((|#1| $ $) 160 (|has| |#1| (-172)))) (-2349 (($ $ $) NIL (|has| |#1| (-365)))) (-3014 (($ $) 80)) (-2630 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 |#1|)) (|:| |vec| (-1268 |#1|))) (-690 $) (-1268 $)) NIL) (((-690 |#1|) (-690 $)) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-2360 (($ $ $) NIL (|has| |#1| (-365)))) (-1629 (($ $ $) 131)) (-1946 (($ $ $) NIL (|has| |#1| (-559)))) (-3708 (((-2 (|:| -3694 |#1|) (|:| -3102 $) (|:| -4194 $)) $ $) NIL (|has| |#1| (-559)))) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-3501 (($ $) 165 (|has| |#1| (-455))) (($ $ (-1084)) NIL (|has| |#1| (-455)))) (-3000 (((-645 $) $) NIL)) (-3184 (((-112) $) NIL (|has| |#1| (-911)))) (-2320 (($ $ |#1| (-772) $) 69)) (-4303 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (-12 (|has| (-1084) (-888 (-381))) (|has| |#1| (-888 (-381))))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (-12 (|has| (-1084) (-888 (-567))) (|has| |#1| (-888 (-567)))))) (-2570 (((-863) $ (-863)) 148)) (-4384 (((-772) $ $) NIL (|has| |#1| (-559)))) (-1433 (((-112) $) 48)) (-2695 (((-772) $) NIL)) (-3972 (((-3 $ "failed") $) NIL (|has| |#1| (-1153)))) (-2836 (($ (-1174 |#1|) (-1084)) 73) (($ (-1174 $) (-1084)) 89)) (-3807 (($ $ (-772)) 51)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-1709 (((-645 $) $) NIL)) (-2843 (((-112) $) NIL)) (-2824 (($ |#1| (-772)) 87) (($ $ (-1084) (-772)) NIL) (($ $ (-645 (-1084)) (-645 (-772))) NIL)) (-1621 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $ (-1084)) NIL) (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 153)) (-2656 (((-772) $) NIL) (((-772) $ (-1084)) NIL) (((-645 (-772)) $ (-645 (-1084))) NIL)) (-3273 (($ (-1 (-772) (-772)) $) NIL)) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-1647 (((-1174 |#1|) $) NIL)) (-3046 (((-3 (-1084) "failed") $) NIL)) (-2976 (($ $) NIL)) (-2989 ((|#1| $) 76)) (-2740 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-1419 (((-1160) $) NIL)) (-3139 (((-2 (|:| -3102 $) (|:| -4194 $)) $ (-772)) 60)) (-2056 (((-3 (-645 $) "failed") $) NIL)) (-3671 (((-3 (-645 $) "failed") $) NIL)) (-3798 (((-3 (-2 (|:| |var| (-1084)) (|:| -3458 (-772))) "failed") $) NIL)) (-2416 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2672 (($) NIL (|has| |#1| (-1153)) CONST)) (-3430 (((-1122) $) NIL)) (-2949 (((-112) $) 50)) (-2962 ((|#1| $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 103 (|has| |#1| (-455)))) (-2774 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) 167 (|has| |#1| (-455)))) (-3110 (($ $ (-772) |#1| $) 123)) (-2435 (((-421 (-1174 $)) (-1174 $)) 101 (|has| |#1| (-911)))) (-3517 (((-421 (-1174 $)) (-1174 $)) 100 (|has| |#1| (-911)))) (-2706 (((-421 $) $) 108 (|has| |#1| (-911)))) (-3402 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL (|has| |#1| (-365)))) (-2391 (((-3 $ "failed") $ |#1|) 163 (|has| |#1| (-559))) (((-3 $ "failed") $ $) 124 (|has| |#1| (-559)))) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-2631 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-1084) |#1|) NIL) (($ $ (-645 (-1084)) (-645 |#1|)) NIL) (($ $ (-1084) $) NIL) (($ $ (-645 (-1084)) (-645 $)) NIL)) (-1990 (((-772) $) NIL (|has| |#1| (-365)))) (-1787 ((|#1| $ |#1|) 150) (($ $ $) 151) (((-410 $) (-410 $) (-410 $)) NIL (|has| |#1| (-559))) ((|#1| (-410 $) |#1|) NIL (|has| |#1| (-365))) (((-410 $) $ (-410 $)) NIL (|has| |#1| (-559)))) (-3997 (((-3 $ "failed") $ (-772)) 54)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 172 (|has| |#1| (-365)))) (-3788 (($ $ (-1084)) NIL (|has| |#1| (-172))) ((|#1| $) 156 (|has| |#1| (-172)))) (-1593 (($ $ (-1084)) NIL) (($ $ (-645 (-1084))) NIL) (($ $ (-1084) (-772)) NIL) (($ $ (-645 (-1084)) (-645 (-772))) NIL) (($ $ (-772)) NIL) (($ $) NIL) (($ $ (-1178)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3077 (((-772) $) 78) (((-772) $ (-1084)) NIL) (((-645 (-772)) $ (-645 (-1084))) NIL)) (-3893 (((-894 (-381)) $) NIL (-12 (|has| (-1084) (-615 (-894 (-381)))) (|has| |#1| (-615 (-894 (-381)))))) (((-894 (-567)) $) NIL (-12 (|has| (-1084) (-615 (-894 (-567)))) (|has| |#1| (-615 (-894 (-567)))))) (((-539) $) NIL (-12 (|has| (-1084) (-615 (-539))) (|has| |#1| (-615 (-539)))))) (-4358 ((|#1| $) 162 (|has| |#1| (-455))) (($ $ (-1084)) NIL (|has| |#1| (-455)))) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-911))))) (-2159 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559))) (((-3 (-410 $) "failed") (-410 $) $) NIL (|has| |#1| (-559)))) (-4132 (((-863) $) 149) (($ (-567)) NIL) (($ |#1|) 77) (($ (-1084)) NIL) (($ (-410 (-567))) NIL (-2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567)))))) (($ $) NIL (|has| |#1| (-559)))) (-3032 (((-645 |#1|) $) NIL)) (-4136 ((|#1| $ (-772)) NIL) (($ $ (-1084) (-772)) NIL) (($ $ (-645 (-1084)) (-645 (-772))) NIL)) (-1903 (((-3 $ "failed") $) NIL (-2800 (-12 (|has| $ (-145)) (|has| |#1| (-911))) (|has| |#1| (-145))))) (-4221 (((-772)) NIL T CONST)) (-4176 (($ $ $ (-772)) 41 (|has| |#1| (-172)))) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1716 (($) 17 T CONST)) (-1728 (($) 19 T CONST)) (-2637 (($ $ (-1084)) NIL) (($ $ (-645 (-1084))) NIL) (($ $ (-1084) (-772)) NIL) (($ $ (-645 (-1084)) (-645 (-772))) NIL) (($ $ (-772)) NIL) (($ $) NIL) (($ $ (-1178)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| |#1| (-902 (-1178)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2936 (((-112) $ $) 120)) (-3060 (($ $ |#1|) 173 (|has| |#1| (-365)))) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) 90)) (** (($ $ (-923)) 14) (($ $ (-772)) 12)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 39) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) 129) (($ $ |#1|) NIL)))
-(((-1174 |#1|) (-13 (-1244 |#1|) (-10 -8 (-15 -2570 ((-863) $ (-863))) (-15 -3110 ($ $ (-772) |#1| $)))) (-1051)) (T -1174))
-((-2570 (*1 *2 *1 *2) (-12 (-5 *2 (-863)) (-5 *1 (-1174 *3)) (-4 *3 (-1051)))) (-3110 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1174 *3)) (-4 *3 (-1051)))))
-(-13 (-1244 |#1|) (-10 -8 (-15 -2570 ((-863) $ (-863))) (-15 -3110 ($ $ (-772) |#1| $))))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-2847 (((-645 (-1084)) $) NIL)) (-3644 (((-1178) $) 11)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-4381 (($ $) NIL (|has| |#1| (-559)))) (-3949 (((-112) $) NIL (|has| |#1| (-559)))) (-1950 (($ $ (-410 (-567))) NIL) (($ $ (-410 (-567)) (-410 (-567))) NIL)) (-1843 (((-1158 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|))) $) NIL)) (-3146 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3012 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3472 (((-3 $ "failed") $ $) NIL)) (-3248 (($ $) NIL (|has| |#1| (-365)))) (-2908 (((-421 $) $) NIL (|has| |#1| (-365)))) (-2716 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3609 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3128 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2987 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1306 (($ (-772) (-1158 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|)))) NIL)) (-3166 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3035 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2585 (($) NIL T CONST)) (-3753 (((-3 (-1169 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1176 |#1| |#2| |#3|) "failed") $) 36)) (-2038 (((-1169 |#1| |#2| |#3|) $) NIL) (((-1176 |#1| |#2| |#3|) $) NIL)) (-2349 (($ $ $) NIL (|has| |#1| (-365)))) (-3014 (($ $) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-3058 (((-410 (-567)) $) 59)) (-2360 (($ $ $) NIL (|has| |#1| (-365)))) (-2919 (($ (-410 (-567)) (-1169 |#1| |#2| |#3|)) NIL)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-3184 (((-112) $) NIL (|has| |#1| (-365)))) (-2762 (((-112) $) NIL)) (-1482 (($) NIL (|has| |#1| (-38 (-410 (-567)))))) (-4384 (((-410 (-567)) $) NIL) (((-410 (-567)) $ (-410 (-567))) NIL)) (-1433 (((-112) $) NIL)) (-2651 (($ $ (-567)) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3807 (($ $ (-923)) NIL) (($ $ (-410 (-567))) NIL)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-2843 (((-112) $) NIL)) (-2824 (($ |#1| (-410 (-567))) 20) (($ $ (-1084) (-410 (-567))) NIL) (($ $ (-645 (-1084)) (-645 (-410 (-567)))) NIL)) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-3063 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2976 (($ $) NIL)) (-2989 ((|#1| $) NIL)) (-2740 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3804 (((-1169 |#1| |#2| |#3|) $) 41)) (-4144 (((-3 (-1169 |#1| |#2| |#3|) "failed") $) NIL)) (-2907 (((-1169 |#1| |#2| |#3|) $) NIL)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) NIL (|has| |#1| (-365)))) (-2416 (($ $) 39 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1178)) NIL (-2800 (-12 (|has| |#1| (-15 -2416 (|#1| |#1| (-1178)))) (|has| |#1| (-15 -2847 ((-645 (-1178)) |#1|))) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-961)) (|has| |#1| (-1203))))) (($ $ (-1264 |#2|)) 40 (|has| |#1| (-38 (-410 (-567)))))) (-3430 (((-1122) $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#1| (-365)))) (-2774 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2706 (((-421 $) $) NIL (|has| |#1| (-365)))) (-3402 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL (|has| |#1| (-365)))) (-2410 (($ $ (-410 (-567))) NIL)) (-2391 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-3946 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2631 (((-1158 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))))) (-1990 (((-772) $) NIL (|has| |#1| (-365)))) (-1787 ((|#1| $ (-410 (-567))) NIL) (($ $ $) NIL (|has| (-410 (-567)) (-1114)))) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL (|has| |#1| (-365)))) (-1593 (($ $ (-645 (-1178)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-1178) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-645 (-1178))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-1178)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $ (-1264 |#2|)) 38)) (-3077 (((-410 (-567)) $) NIL)) (-3175 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3049 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3156 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3023 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3137 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2999 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2192 (($ $) NIL)) (-4132 (((-863) $) 62) (($ (-567)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1169 |#1| |#2| |#3|)) 30) (($ (-1176 |#1| |#2| |#3|)) 31) (($ (-1264 |#2|)) 26) (($ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $) NIL (|has| |#1| (-559)))) (-4136 ((|#1| $ (-410 (-567))) NIL)) (-1903 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-4221 (((-772)) NIL T CONST)) (-2166 ((|#1| $) 12)) (-1745 (((-112) $ $) NIL)) (-3200 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3084 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3816 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3183 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3062 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3221 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3106 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3050 ((|#1| $ (-410 (-567))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))) (|has| |#1| (-15 -4132 (|#1| (-1178))))))) (-3785 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3118 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3211 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3095 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3193 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3074 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1716 (($) 22 T CONST)) (-1728 (($) 16 T CONST)) (-2637 (($ $ (-645 (-1178)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-1178) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-645 (-1178))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-1178)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) 24)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))))
-(((-1175 |#1| |#2| |#3|) (-13 (-1251 |#1| (-1169 |#1| |#2| |#3|)) (-1040 (-1176 |#1| |#2| |#3|)) (-617 (-1264 |#2|)) (-10 -8 (-15 -1593 ($ $ (-1264 |#2|))) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -2416 ($ $ (-1264 |#2|))) |%noBranch|))) (-1051) (-1178) |#1|) (T -1175))
-((-1593 (*1 *1 *1 *2) (-12 (-5 *2 (-1264 *4)) (-14 *4 (-1178)) (-5 *1 (-1175 *3 *4 *5)) (-4 *3 (-1051)) (-14 *5 *3))) (-2416 (*1 *1 *1 *2) (-12 (-5 *2 (-1264 *4)) (-14 *4 (-1178)) (-5 *1 (-1175 *3 *4 *5)) (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)) (-14 *5 *3))))
-(-13 (-1251 |#1| (-1169 |#1| |#2| |#3|)) (-1040 (-1176 |#1| |#2| |#3|)) (-617 (-1264 |#2|)) (-10 -8 (-15 -1593 ($ $ (-1264 |#2|))) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -2416 ($ $ (-1264 |#2|))) |%noBranch|)))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) 131)) (-2847 (((-645 (-1084)) $) NIL)) (-3644 (((-1178) $) 121)) (-1779 (((-1241 |#2| |#1|) $ (-772)) 69)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-4381 (($ $) NIL (|has| |#1| (-559)))) (-3949 (((-112) $) NIL (|has| |#1| (-559)))) (-1950 (($ $ (-772)) 85) (($ $ (-772) (-772)) 82)) (-1843 (((-1158 (-2 (|:| |k| (-772)) (|:| |c| |#1|))) $) 107)) (-3146 (($ $) 175 (|has| |#1| (-38 (-410 (-567)))))) (-3012 (($ $) 151 (|has| |#1| (-38 (-410 (-567)))))) (-3472 (((-3 $ "failed") $ $) NIL)) (-2716 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3128 (($ $) 171 (|has| |#1| (-38 (-410 (-567)))))) (-2987 (($ $) 147 (|has| |#1| (-38 (-410 (-567)))))) (-1306 (($ (-1158 (-2 (|:| |k| (-772)) (|:| |c| |#1|)))) 120) (($ (-1158 |#1|)) 115)) (-3166 (($ $) 179 (|has| |#1| (-38 (-410 (-567)))))) (-3035 (($ $) 155 (|has| |#1| (-38 (-410 (-567)))))) (-2585 (($) NIL T CONST)) (-3014 (($ $) NIL)) (-2109 (((-3 $ "failed") $) 25)) (-3842 (($ $) 28)) (-3717 (((-954 |#1|) $ (-772)) 81) (((-954 |#1|) $ (-772) (-772)) 83)) (-2762 (((-112) $) 126)) (-1482 (($) NIL (|has| |#1| (-38 (-410 (-567)))))) (-4384 (((-772) $) 128) (((-772) $ (-772)) 130)) (-1433 (((-112) $) NIL)) (-2651 (($ $ (-567)) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3807 (($ $ (-923)) NIL)) (-2288 (($ (-1 |#1| (-567)) $) NIL)) (-2843 (((-112) $) NIL)) (-2824 (($ |#1| (-772)) 13) (($ $ (-1084) (-772)) NIL) (($ $ (-645 (-1084)) (-645 (-772))) NIL)) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-3063 (($ $) 137 (|has| |#1| (-38 (-410 (-567)))))) (-2976 (($ $) NIL)) (-2989 ((|#1| $) NIL)) (-1419 (((-1160) $) NIL)) (-2416 (($ $) 135 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1178)) NIL (-2800 (-12 (|has| |#1| (-15 -2416 (|#1| |#1| (-1178)))) (|has| |#1| (-15 -2847 ((-645 (-1178)) |#1|))) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-961)) (|has| |#1| (-1203))))) (($ $ (-1264 |#2|)) 136 (|has| |#1| (-38 (-410 (-567)))))) (-3430 (((-1122) $) NIL)) (-2410 (($ $ (-772)) 15)) (-2391 (((-3 $ "failed") $ $) 26 (|has| |#1| (-559)))) (-3946 (($ $) 139 (|has| |#1| (-38 (-410 (-567)))))) (-2631 (((-1158 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-772)))))) (-1787 ((|#1| $ (-772)) 124) (($ $ $) 134 (|has| (-772) (-1114)))) (-1593 (($ $ (-645 (-1178)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-1178) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-645 (-1178))) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-1178)) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-772) |#1|)))) (($ $) 29 (|has| |#1| (-15 * (|#1| (-772) |#1|)))) (($ $ (-1264 |#2|)) 31)) (-3077 (((-772) $) NIL)) (-3175 (($ $) 181 (|has| |#1| (-38 (-410 (-567)))))) (-3049 (($ $) 157 (|has| |#1| (-38 (-410 (-567)))))) (-3156 (($ $) 177 (|has| |#1| (-38 (-410 (-567)))))) (-3023 (($ $) 153 (|has| |#1| (-38 (-410 (-567)))))) (-3137 (($ $) 173 (|has| |#1| (-38 (-410 (-567)))))) (-2999 (($ $) 149 (|has| |#1| (-38 (-410 (-567)))))) (-2192 (($ $) NIL)) (-4132 (((-863) $) 208) (($ (-567)) NIL) (($ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $) NIL (|has| |#1| (-559))) (($ |#1|) 132 (|has| |#1| (-172))) (($ (-1241 |#2| |#1|)) 55) (($ (-1264 |#2|)) 36)) (-3032 (((-1158 |#1|) $) 103)) (-4136 ((|#1| $ (-772)) 123)) (-1903 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-4221 (((-772)) NIL T CONST)) (-2166 ((|#1| $) 58)) (-1745 (((-112) $ $) NIL)) (-3200 (($ $) 187 (|has| |#1| (-38 (-410 (-567)))))) (-3084 (($ $) 163 (|has| |#1| (-38 (-410 (-567)))))) (-3816 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3183 (($ $) 183 (|has| |#1| (-38 (-410 (-567)))))) (-3062 (($ $) 159 (|has| |#1| (-38 (-410 (-567)))))) (-3221 (($ $) 191 (|has| |#1| (-38 (-410 (-567)))))) (-3106 (($ $) 167 (|has| |#1| (-38 (-410 (-567)))))) (-3050 ((|#1| $ (-772)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-772)))) (|has| |#1| (-15 -4132 (|#1| (-1178))))))) (-3785 (($ $) 193 (|has| |#1| (-38 (-410 (-567)))))) (-3118 (($ $) 169 (|has| |#1| (-38 (-410 (-567)))))) (-3211 (($ $) 189 (|has| |#1| (-38 (-410 (-567)))))) (-3095 (($ $) 165 (|has| |#1| (-38 (-410 (-567)))))) (-3193 (($ $) 185 (|has| |#1| (-38 (-410 (-567)))))) (-3074 (($ $) 161 (|has| |#1| (-38 (-410 (-567)))))) (-1716 (($) 17 T CONST)) (-1728 (($) 20 T CONST)) (-2637 (($ $ (-645 (-1178)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-1178) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-645 (-1178))) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-1178)) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-772) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-772) |#1|))))) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3045 (($ $) NIL) (($ $ $) 200)) (-3033 (($ $ $) 35)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ |#1|) 205 (|has| |#1| (-365))) (($ $ $) 140 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 143 (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 138) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))))
-(((-1176 |#1| |#2| |#3|) (-13 (-1259 |#1|) (-10 -8 (-15 -4132 ($ (-1241 |#2| |#1|))) (-15 -1779 ((-1241 |#2| |#1|) $ (-772))) (-15 -4132 ($ (-1264 |#2|))) (-15 -1593 ($ $ (-1264 |#2|))) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -2416 ($ $ (-1264 |#2|))) |%noBranch|))) (-1051) (-1178) |#1|) (T -1176))
-((-4132 (*1 *1 *2) (-12 (-5 *2 (-1241 *4 *3)) (-4 *3 (-1051)) (-14 *4 (-1178)) (-14 *5 *3) (-5 *1 (-1176 *3 *4 *5)))) (-1779 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1241 *5 *4)) (-5 *1 (-1176 *4 *5 *6)) (-4 *4 (-1051)) (-14 *5 (-1178)) (-14 *6 *4))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-1264 *4)) (-14 *4 (-1178)) (-5 *1 (-1176 *3 *4 *5)) (-4 *3 (-1051)) (-14 *5 *3))) (-1593 (*1 *1 *1 *2) (-12 (-5 *2 (-1264 *4)) (-14 *4 (-1178)) (-5 *1 (-1176 *3 *4 *5)) (-4 *3 (-1051)) (-14 *5 *3))) (-2416 (*1 *1 *1 *2) (-12 (-5 *2 (-1264 *4)) (-14 *4 (-1178)) (-5 *1 (-1176 *3 *4 *5)) (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)) (-14 *5 *3))))
-(-13 (-1259 |#1|) (-10 -8 (-15 -4132 ($ (-1241 |#2| |#1|))) (-15 -1779 ((-1241 |#2| |#1|) $ (-772))) (-15 -4132 ($ (-1264 |#2|))) (-15 -1593 ($ $ (-1264 |#2|))) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -2416 ($ $ (-1264 |#2|))) |%noBranch|)))
-((-4132 (((-863) $) 33) (($ (-1178)) 35)) (-2800 (($ (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 46)) (-2790 (($ (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 39) (($ $) 40)) (-2450 (($ (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 41)) (-2438 (($ (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 43)) (-2428 (($ (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 42)) (-2415 (($ (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 44)) (-2098 (($ (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 47)) (-12 (($ (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 45)))
-(((-1177) (-13 (-614 (-863)) (-10 -8 (-15 -4132 ($ (-1178))) (-15 -2450 ($ (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2428 ($ (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2438 ($ (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2415 ($ (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2800 ($ (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2098 ($ (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2790 ($ (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2790 ($ $))))) (T -1177))
-((-4132 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1177)))) (-2450 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1177)))) (-5 *1 (-1177)))) (-2428 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1177)))) (-5 *1 (-1177)))) (-2438 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1177)))) (-5 *1 (-1177)))) (-2415 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1177)))) (-5 *1 (-1177)))) (-2800 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1177)))) (-5 *1 (-1177)))) (-2098 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1177)))) (-5 *1 (-1177)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1177)))) (-5 *1 (-1177)))) (-2790 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1177)))) (-5 *1 (-1177)))) (-2790 (*1 *1 *1) (-5 *1 (-1177))))
-(-13 (-614 (-863)) (-10 -8 (-15 -4132 ($ (-1178))) (-15 -2450 ($ (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2428 ($ (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2438 ($ (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2415 ($ (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2800 ($ (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2098 ($ (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2790 ($ (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2790 ($ $))))
-((-2403 (((-112) $ $) NIL)) (-3469 (($ $ (-645 (-863))) 64)) (-4024 (($ $ (-645 (-863))) 62)) (-3657 (((-1160) $) 103)) (-1711 (((-2 (|:| -3466 (-645 (-863))) (|:| -4016 (-645 (-863))) (|:| |presup| (-645 (-863))) (|:| -2533 (-645 (-863))) (|:| |args| (-645 (-863)))) $) 110)) (-2408 (((-112) $) 23)) (-2273 (($ $ (-645 (-645 (-863)))) 61) (($ $ (-2 (|:| -3466 (-645 (-863))) (|:| -4016 (-645 (-863))) (|:| |presup| (-645 (-863))) (|:| -2533 (-645 (-863))) (|:| |args| (-645 (-863))))) 101)) (-2585 (($) 166 T CONST)) (-1410 (((-1273)) 138)) (-4303 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) 71) (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) 78)) (-2846 (($) 124) (($ $) 133)) (-1996 (($ $) 102)) (-1354 (($ $ $) NIL)) (-2981 (($ $ $) NIL)) (-2284 (((-645 $) $) 139)) (-1419 (((-1160) $) 116)) (-3430 (((-1122) $) NIL)) (-1787 (($ $ (-645 (-863))) 63)) (-3893 (((-539) $) 48) (((-1178) $) 49) (((-894 (-567)) $) 82) (((-894 (-381)) $) 80)) (-4132 (((-863) $) 55) (($ (-1160)) 50)) (-1745 (((-112) $ $) NIL)) (-1519 (($ $ (-645 (-863))) 65)) (-2904 (((-1160) $) 34) (((-1160) $ (-112)) 35) (((-1273) (-823) $) 36) (((-1273) (-823) $ (-112)) 37)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 51)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) 52)))
-(((-1178) (-13 (-851) (-615 (-539)) (-829) (-615 (-1178)) (-617 (-1160)) (-615 (-894 (-567))) (-615 (-894 (-381))) (-888 (-567)) (-888 (-381)) (-10 -8 (-15 -2846 ($)) (-15 -2846 ($ $)) (-15 -1410 ((-1273))) (-15 -1996 ($ $)) (-15 -2408 ((-112) $)) (-15 -1711 ((-2 (|:| -3466 (-645 (-863))) (|:| -4016 (-645 (-863))) (|:| |presup| (-645 (-863))) (|:| -2533 (-645 (-863))) (|:| |args| (-645 (-863)))) $)) (-15 -2273 ($ $ (-645 (-645 (-863))))) (-15 -2273 ($ $ (-2 (|:| -3466 (-645 (-863))) (|:| -4016 (-645 (-863))) (|:| |presup| (-645 (-863))) (|:| -2533 (-645 (-863))) (|:| |args| (-645 (-863)))))) (-15 -4024 ($ $ (-645 (-863)))) (-15 -3469 ($ $ (-645 (-863)))) (-15 -1519 ($ $ (-645 (-863)))) (-15 -1787 ($ $ (-645 (-863)))) (-15 -3657 ((-1160) $)) (-15 -2284 ((-645 $) $)) (-15 -2585 ($) -3286)))) (T -1178))
-((-2846 (*1 *1) (-5 *1 (-1178))) (-2846 (*1 *1 *1) (-5 *1 (-1178))) (-1410 (*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-1178)))) (-1996 (*1 *1 *1) (-5 *1 (-1178))) (-2408 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1178)))) (-1711 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3466 (-645 (-863))) (|:| -4016 (-645 (-863))) (|:| |presup| (-645 (-863))) (|:| -2533 (-645 (-863))) (|:| |args| (-645 (-863))))) (-5 *1 (-1178)))) (-2273 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-645 (-863)))) (-5 *1 (-1178)))) (-2273 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -3466 (-645 (-863))) (|:| -4016 (-645 (-863))) (|:| |presup| (-645 (-863))) (|:| -2533 (-645 (-863))) (|:| |args| (-645 (-863))))) (-5 *1 (-1178)))) (-4024 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-1178)))) (-3469 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-1178)))) (-1519 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-1178)))) (-1787 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-1178)))) (-3657 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-1178)))) (-2284 (*1 *2 *1) (-12 (-5 *2 (-645 (-1178))) (-5 *1 (-1178)))) (-2585 (*1 *1) (-5 *1 (-1178))))
-(-13 (-851) (-615 (-539)) (-829) (-615 (-1178)) (-617 (-1160)) (-615 (-894 (-567))) (-615 (-894 (-381))) (-888 (-567)) (-888 (-381)) (-10 -8 (-15 -2846 ($)) (-15 -2846 ($ $)) (-15 -1410 ((-1273))) (-15 -1996 ($ $)) (-15 -2408 ((-112) $)) (-15 -1711 ((-2 (|:| -3466 (-645 (-863))) (|:| -4016 (-645 (-863))) (|:| |presup| (-645 (-863))) (|:| -2533 (-645 (-863))) (|:| |args| (-645 (-863)))) $)) (-15 -2273 ($ $ (-645 (-645 (-863))))) (-15 -2273 ($ $ (-2 (|:| -3466 (-645 (-863))) (|:| -4016 (-645 (-863))) (|:| |presup| (-645 (-863))) (|:| -2533 (-645 (-863))) (|:| |args| (-645 (-863)))))) (-15 -4024 ($ $ (-645 (-863)))) (-15 -3469 ($ $ (-645 (-863)))) (-15 -1519 ($ $ (-645 (-863)))) (-15 -1787 ($ $ (-645 (-863)))) (-15 -3657 ((-1160) $)) (-15 -2284 ((-645 $) $)) (-15 -2585 ($) -3286)))
-((-4150 (((-1268 |#1|) |#1| (-923)) 18) (((-1268 |#1|) (-645 |#1|)) 25)))
-(((-1179 |#1|) (-10 -7 (-15 -4150 ((-1268 |#1|) (-645 |#1|))) (-15 -4150 ((-1268 |#1|) |#1| (-923)))) (-1051)) (T -1179))
-((-4150 (*1 *2 *3 *4) (-12 (-5 *4 (-923)) (-5 *2 (-1268 *3)) (-5 *1 (-1179 *3)) (-4 *3 (-1051)))) (-4150 (*1 *2 *3) (-12 (-5 *3 (-645 *4)) (-4 *4 (-1051)) (-5 *2 (-1268 *4)) (-5 *1 (-1179 *4)))))
-(-10 -7 (-15 -4150 ((-1268 |#1|) (-645 |#1|))) (-15 -4150 ((-1268 |#1|) |#1| (-923))))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-4381 (($ $) NIL (|has| |#1| (-559)))) (-3949 (((-112) $) NIL (|has| |#1| (-559)))) (-3472 (((-3 $ "failed") $ $) NIL)) (-2585 (($) NIL T CONST)) (-3753 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) NIL)) (-2038 (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) NIL)) (-3014 (($ $) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-3501 (($ $) NIL (|has| |#1| (-455)))) (-2320 (($ $ |#1| (-973) $) NIL)) (-1433 (((-112) $) 17)) (-2695 (((-772) $) NIL)) (-2843 (((-112) $) NIL)) (-2824 (($ |#1| (-973)) NIL)) (-2656 (((-973) $) NIL)) (-3273 (($ (-1 (-973) (-973)) $) NIL)) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-2976 (($ $) NIL)) (-2989 ((|#1| $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-2949 (((-112) $) NIL)) (-2962 ((|#1| $) NIL)) (-3110 (($ $ (-973) |#1| $) NIL (-12 (|has| (-973) (-131)) (|has| |#1| (-559))))) (-2391 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559)))) (-3077 (((-973) $) NIL)) (-4358 ((|#1| $) NIL (|has| |#1| (-455)))) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL (|has| |#1| (-559))) (($ |#1|) NIL) (($ (-410 (-567))) NIL (-2800 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567))))))) (-3032 (((-645 |#1|) $) NIL)) (-4136 ((|#1| $ (-973)) NIL)) (-1903 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-4221 (((-772)) NIL T CONST)) (-4176 (($ $ $ (-772)) NIL (|has| |#1| (-172)))) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1716 (($) 11 T CONST)) (-1728 (($) NIL T CONST)) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) 21)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 22) (($ $ |#1|) NIL) (($ |#1| $) 16) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))))
-(((-1180 |#1|) (-13 (-327 |#1| (-973)) (-10 -8 (IF (|has| |#1| (-559)) (IF (|has| (-973) (-131)) (-15 -3110 ($ $ (-973) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4416)) (-6 -4416) |%noBranch|))) (-1051)) (T -1180))
-((-3110 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-973)) (-4 *2 (-131)) (-5 *1 (-1180 *3)) (-4 *3 (-559)) (-4 *3 (-1051)))))
-(-13 (-327 |#1| (-973)) (-10 -8 (IF (|has| |#1| (-559)) (IF (|has| (-973) (-131)) (-15 -3110 ($ $ (-973) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4416)) (-6 -4416) |%noBranch|)))
-((-2573 (((-1182) (-1178) $) 25)) (-3781 (($) 29)) (-1545 (((-3 (|:| |fst| (-437)) (|:| -4321 "void")) (-1178) $) 22)) (-1690 (((-1273) (-1178) (-3 (|:| |fst| (-437)) (|:| -4321 "void")) $) 41) (((-1273) (-1178) (-3 (|:| |fst| (-437)) (|:| -4321 "void"))) 42) (((-1273) (-3 (|:| |fst| (-437)) (|:| -4321 "void"))) 43)) (-2150 (((-1273) (-1178)) 58)) (-3763 (((-1273) (-1178) $) 55) (((-1273) (-1178)) 56) (((-1273)) 57)) (-4383 (((-1273) (-1178)) 37)) (-1870 (((-1178)) 36)) (-3498 (($) 34)) (-2759 (((-440) (-1178) (-440) (-1178) $) 45) (((-440) (-645 (-1178)) (-440) (-1178) $) 49) (((-440) (-1178) (-440)) 46) (((-440) (-1178) (-440) (-1178)) 50)) (-3135 (((-1178)) 35)) (-4132 (((-863) $) 28)) (-4127 (((-1273)) 30) (((-1273) (-1178)) 33)) (-2955 (((-645 (-1178)) (-1178) $) 24)) (-1681 (((-1273) (-1178) (-645 (-1178)) $) 38) (((-1273) (-1178) (-645 (-1178))) 39) (((-1273) (-645 (-1178))) 40)))
-(((-1181) (-13 (-614 (-863)) (-10 -8 (-15 -3781 ($)) (-15 -4127 ((-1273))) (-15 -4127 ((-1273) (-1178))) (-15 -2759 ((-440) (-1178) (-440) (-1178) $)) (-15 -2759 ((-440) (-645 (-1178)) (-440) (-1178) $)) (-15 -2759 ((-440) (-1178) (-440))) (-15 -2759 ((-440) (-1178) (-440) (-1178))) (-15 -4383 ((-1273) (-1178))) (-15 -3135 ((-1178))) (-15 -1870 ((-1178))) (-15 -1681 ((-1273) (-1178) (-645 (-1178)) $)) (-15 -1681 ((-1273) (-1178) (-645 (-1178)))) (-15 -1681 ((-1273) (-645 (-1178)))) (-15 -1690 ((-1273) (-1178) (-3 (|:| |fst| (-437)) (|:| -4321 "void")) $)) (-15 -1690 ((-1273) (-1178) (-3 (|:| |fst| (-437)) (|:| -4321 "void")))) (-15 -1690 ((-1273) (-3 (|:| |fst| (-437)) (|:| -4321 "void")))) (-15 -3763 ((-1273) (-1178) $)) (-15 -3763 ((-1273) (-1178))) (-15 -3763 ((-1273))) (-15 -2150 ((-1273) (-1178))) (-15 -3498 ($)) (-15 -1545 ((-3 (|:| |fst| (-437)) (|:| -4321 "void")) (-1178) $)) (-15 -2955 ((-645 (-1178)) (-1178) $)) (-15 -2573 ((-1182) (-1178) $))))) (T -1181))
-((-3781 (*1 *1) (-5 *1 (-1181))) (-4127 (*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-1181)))) (-4127 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1273)) (-5 *1 (-1181)))) (-2759 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-440)) (-5 *3 (-1178)) (-5 *1 (-1181)))) (-2759 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-440)) (-5 *3 (-645 (-1178))) (-5 *4 (-1178)) (-5 *1 (-1181)))) (-2759 (*1 *2 *3 *2) (-12 (-5 *2 (-440)) (-5 *3 (-1178)) (-5 *1 (-1181)))) (-2759 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-440)) (-5 *3 (-1178)) (-5 *1 (-1181)))) (-4383 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1273)) (-5 *1 (-1181)))) (-3135 (*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1181)))) (-1870 (*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1181)))) (-1681 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-645 (-1178))) (-5 *3 (-1178)) (-5 *2 (-1273)) (-5 *1 (-1181)))) (-1681 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-1178))) (-5 *3 (-1178)) (-5 *2 (-1273)) (-5 *1 (-1181)))) (-1681 (*1 *2 *3) (-12 (-5 *3 (-645 (-1178))) (-5 *2 (-1273)) (-5 *1 (-1181)))) (-1690 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1178)) (-5 *4 (-3 (|:| |fst| (-437)) (|:| -4321 "void"))) (-5 *2 (-1273)) (-5 *1 (-1181)))) (-1690 (*1 *2 *3 *4) (-12 (-5 *3 (-1178)) (-5 *4 (-3 (|:| |fst| (-437)) (|:| -4321 "void"))) (-5 *2 (-1273)) (-5 *1 (-1181)))) (-1690 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-437)) (|:| -4321 "void"))) (-5 *2 (-1273)) (-5 *1 (-1181)))) (-3763 (*1 *2 *3 *1) (-12 (-5 *3 (-1178)) (-5 *2 (-1273)) (-5 *1 (-1181)))) (-3763 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1273)) (-5 *1 (-1181)))) (-3763 (*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-1181)))) (-2150 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1273)) (-5 *1 (-1181)))) (-3498 (*1 *1) (-5 *1 (-1181))) (-1545 (*1 *2 *3 *1) (-12 (-5 *3 (-1178)) (-5 *2 (-3 (|:| |fst| (-437)) (|:| -4321 "void"))) (-5 *1 (-1181)))) (-2955 (*1 *2 *3 *1) (-12 (-5 *2 (-645 (-1178))) (-5 *1 (-1181)) (-5 *3 (-1178)))) (-2573 (*1 *2 *3 *1) (-12 (-5 *3 (-1178)) (-5 *2 (-1182)) (-5 *1 (-1181)))))
-(-13 (-614 (-863)) (-10 -8 (-15 -3781 ($)) (-15 -4127 ((-1273))) (-15 -4127 ((-1273) (-1178))) (-15 -2759 ((-440) (-1178) (-440) (-1178) $)) (-15 -2759 ((-440) (-645 (-1178)) (-440) (-1178) $)) (-15 -2759 ((-440) (-1178) (-440))) (-15 -2759 ((-440) (-1178) (-440) (-1178))) (-15 -4383 ((-1273) (-1178))) (-15 -3135 ((-1178))) (-15 -1870 ((-1178))) (-15 -1681 ((-1273) (-1178) (-645 (-1178)) $)) (-15 -1681 ((-1273) (-1178) (-645 (-1178)))) (-15 -1681 ((-1273) (-645 (-1178)))) (-15 -1690 ((-1273) (-1178) (-3 (|:| |fst| (-437)) (|:| -4321 "void")) $)) (-15 -1690 ((-1273) (-1178) (-3 (|:| |fst| (-437)) (|:| -4321 "void")))) (-15 -1690 ((-1273) (-3 (|:| |fst| (-437)) (|:| -4321 "void")))) (-15 -3763 ((-1273) (-1178) $)) (-15 -3763 ((-1273) (-1178))) (-15 -3763 ((-1273))) (-15 -2150 ((-1273) (-1178))) (-15 -3498 ($)) (-15 -1545 ((-3 (|:| |fst| (-437)) (|:| -4321 "void")) (-1178) $)) (-15 -2955 ((-645 (-1178)) (-1178) $)) (-15 -2573 ((-1182) (-1178) $))))
-((-2481 (((-645 (-645 (-3 (|:| -1996 (-1178)) (|:| -2783 (-645 (-3 (|:| S (-1178)) (|:| P (-954 (-567))))))))) $) 66)) (-1869 (((-645 (-3 (|:| -1996 (-1178)) (|:| -2783 (-645 (-3 (|:| S (-1178)) (|:| P (-954 (-567)))))))) (-437) $) 47)) (-1403 (($ (-645 (-2 (|:| -1795 (-1178)) (|:| -4237 (-440))))) 17)) (-2150 (((-1273) $) 74)) (-4163 (((-645 (-1178)) $) 22)) (-1798 (((-1106) $) 60)) (-3051 (((-440) (-1178) $) 27)) (-3021 (((-645 (-1178)) $) 30)) (-3498 (($) 19)) (-2759 (((-440) (-645 (-1178)) (-440) $) 25) (((-440) (-1178) (-440) $) 24)) (-4132 (((-863) $) 9) (((-1191 (-1178) (-440)) $) 13)))
-(((-1182) (-13 (-614 (-863)) (-10 -8 (-15 -4132 ((-1191 (-1178) (-440)) $)) (-15 -3498 ($)) (-15 -2759 ((-440) (-645 (-1178)) (-440) $)) (-15 -2759 ((-440) (-1178) (-440) $)) (-15 -3051 ((-440) (-1178) $)) (-15 -4163 ((-645 (-1178)) $)) (-15 -1869 ((-645 (-3 (|:| -1996 (-1178)) (|:| -2783 (-645 (-3 (|:| S (-1178)) (|:| P (-954 (-567)))))))) (-437) $)) (-15 -3021 ((-645 (-1178)) $)) (-15 -2481 ((-645 (-645 (-3 (|:| -1996 (-1178)) (|:| -2783 (-645 (-3 (|:| S (-1178)) (|:| P (-954 (-567))))))))) $)) (-15 -1798 ((-1106) $)) (-15 -2150 ((-1273) $)) (-15 -1403 ($ (-645 (-2 (|:| -1795 (-1178)) (|:| -4237 (-440))))))))) (T -1182))
-((-4132 (*1 *2 *1) (-12 (-5 *2 (-1191 (-1178) (-440))) (-5 *1 (-1182)))) (-3498 (*1 *1) (-5 *1 (-1182))) (-2759 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-440)) (-5 *3 (-645 (-1178))) (-5 *1 (-1182)))) (-2759 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-440)) (-5 *3 (-1178)) (-5 *1 (-1182)))) (-3051 (*1 *2 *3 *1) (-12 (-5 *3 (-1178)) (-5 *2 (-440)) (-5 *1 (-1182)))) (-4163 (*1 *2 *1) (-12 (-5 *2 (-645 (-1178))) (-5 *1 (-1182)))) (-1869 (*1 *2 *3 *1) (-12 (-5 *3 (-437)) (-5 *2 (-645 (-3 (|:| -1996 (-1178)) (|:| -2783 (-645 (-3 (|:| S (-1178)) (|:| P (-954 (-567))))))))) (-5 *1 (-1182)))) (-3021 (*1 *2 *1) (-12 (-5 *2 (-645 (-1178))) (-5 *1 (-1182)))) (-2481 (*1 *2 *1) (-12 (-5 *2 (-645 (-645 (-3 (|:| -1996 (-1178)) (|:| -2783 (-645 (-3 (|:| S (-1178)) (|:| P (-954 (-567)))))))))) (-5 *1 (-1182)))) (-1798 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-1182)))) (-2150 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-1182)))) (-1403 (*1 *1 *2) (-12 (-5 *2 (-645 (-2 (|:| -1795 (-1178)) (|:| -4237 (-440))))) (-5 *1 (-1182)))))
-(-13 (-614 (-863)) (-10 -8 (-15 -4132 ((-1191 (-1178) (-440)) $)) (-15 -3498 ($)) (-15 -2759 ((-440) (-645 (-1178)) (-440) $)) (-15 -2759 ((-440) (-1178) (-440) $)) (-15 -3051 ((-440) (-1178) $)) (-15 -4163 ((-645 (-1178)) $)) (-15 -1869 ((-645 (-3 (|:| -1996 (-1178)) (|:| -2783 (-645 (-3 (|:| S (-1178)) (|:| P (-954 (-567)))))))) (-437) $)) (-15 -3021 ((-645 (-1178)) $)) (-15 -2481 ((-645 (-645 (-3 (|:| -1996 (-1178)) (|:| -2783 (-645 (-3 (|:| S (-1178)) (|:| P (-954 (-567))))))))) $)) (-15 -1798 ((-1106) $)) (-15 -2150 ((-1273) $)) (-15 -1403 ($ (-645 (-2 (|:| -1795 (-1178)) (|:| -4237 (-440))))))))
-((-2403 (((-112) $ $) NIL)) (-3753 (((-3 (-567) "failed") $) 29) (((-3 (-225) "failed") $) 35) (((-3 (-509) "failed") $) 43) (((-3 (-1160) "failed") $) 47)) (-2038 (((-567) $) 30) (((-225) $) 36) (((-509) $) 40) (((-1160) $) 48)) (-3385 (((-112) $) 53)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-3428 (((-3 (-567) (-225) (-509) (-1160) $) $) 55)) (-2916 (((-645 $) $) 57)) (-3893 (((-1106) $) 24) (($ (-1106)) 25)) (-3413 (((-112) $) 56)) (-4132 (((-863) $) 23) (($ (-567)) 26) (($ (-225)) 32) (($ (-509)) 38) (($ (-1160)) 44) (((-539) $) 59) (((-567) $) 31) (((-225) $) 37) (((-509) $) 41) (((-1160) $) 49)) (-1702 (((-112) $ (|[\|\|]| (-567))) 10) (((-112) $ (|[\|\|]| (-225))) 13) (((-112) $ (|[\|\|]| (-509))) 19) (((-112) $ (|[\|\|]| (-1160))) 16)) (-2426 (($ (-509) (-645 $)) 51) (($ $ (-645 $)) 52)) (-1745 (((-112) $ $) NIL)) (-2523 (((-567) $) 27) (((-225) $) 33) (((-509) $) 39) (((-1160) $) 45)) (-2936 (((-112) $ $) 7)))
-(((-1183) (-13 (-1263) (-1102) (-1040 (-567)) (-1040 (-225)) (-1040 (-509)) (-1040 (-1160)) (-614 (-539)) (-10 -8 (-15 -3893 ((-1106) $)) (-15 -3893 ($ (-1106))) (-15 -4132 ((-567) $)) (-15 -2523 ((-567) $)) (-15 -4132 ((-225) $)) (-15 -2523 ((-225) $)) (-15 -4132 ((-509) $)) (-15 -2523 ((-509) $)) (-15 -4132 ((-1160) $)) (-15 -2523 ((-1160) $)) (-15 -2426 ($ (-509) (-645 $))) (-15 -2426 ($ $ (-645 $))) (-15 -3385 ((-112) $)) (-15 -3428 ((-3 (-567) (-225) (-509) (-1160) $) $)) (-15 -2916 ((-645 $) $)) (-15 -3413 ((-112) $)) (-15 -1702 ((-112) $ (|[\|\|]| (-567)))) (-15 -1702 ((-112) $ (|[\|\|]| (-225)))) (-15 -1702 ((-112) $ (|[\|\|]| (-509)))) (-15 -1702 ((-112) $ (|[\|\|]| (-1160))))))) (T -1183))
-((-3893 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-1183)))) (-3893 (*1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-1183)))) (-4132 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-1183)))) (-2523 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-1183)))) (-4132 (*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1183)))) (-2523 (*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1183)))) (-4132 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-1183)))) (-2523 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-1183)))) (-4132 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-1183)))) (-2523 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-1183)))) (-2426 (*1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-645 (-1183))) (-5 *1 (-1183)))) (-2426 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-1183))) (-5 *1 (-1183)))) (-3385 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1183)))) (-3428 (*1 *2 *1) (-12 (-5 *2 (-3 (-567) (-225) (-509) (-1160) (-1183))) (-5 *1 (-1183)))) (-2916 (*1 *2 *1) (-12 (-5 *2 (-645 (-1183))) (-5 *1 (-1183)))) (-3413 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1183)))) (-1702 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-567))) (-5 *2 (-112)) (-5 *1 (-1183)))) (-1702 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-225))) (-5 *2 (-112)) (-5 *1 (-1183)))) (-1702 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-509))) (-5 *2 (-112)) (-5 *1 (-1183)))) (-1702 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1160))) (-5 *2 (-112)) (-5 *1 (-1183)))))
-(-13 (-1263) (-1102) (-1040 (-567)) (-1040 (-225)) (-1040 (-509)) (-1040 (-1160)) (-614 (-539)) (-10 -8 (-15 -3893 ((-1106) $)) (-15 -3893 ($ (-1106))) (-15 -4132 ((-567) $)) (-15 -2523 ((-567) $)) (-15 -4132 ((-225) $)) (-15 -2523 ((-225) $)) (-15 -4132 ((-509) $)) (-15 -2523 ((-509) $)) (-15 -4132 ((-1160) $)) (-15 -2523 ((-1160) $)) (-15 -2426 ($ (-509) (-645 $))) (-15 -2426 ($ $ (-645 $))) (-15 -3385 ((-112) $)) (-15 -3428 ((-3 (-567) (-225) (-509) (-1160) $) $)) (-15 -2916 ((-645 $) $)) (-15 -3413 ((-112) $)) (-15 -1702 ((-112) $ (|[\|\|]| (-567)))) (-15 -1702 ((-112) $ (|[\|\|]| (-225)))) (-15 -1702 ((-112) $ (|[\|\|]| (-509)))) (-15 -1702 ((-112) $ (|[\|\|]| (-1160))))))
-((-2403 (((-112) $ $) NIL)) (-2375 (((-772)) 22)) (-2585 (($) 12 T CONST)) (-1348 (($) 26)) (-1354 (($ $ $) NIL) (($) 19 T CONST)) (-2981 (($ $ $) NIL) (($) 20 T CONST)) (-4249 (((-923) $) 24)) (-1419 (((-1160) $) NIL)) (-3768 (($ (-923)) 23)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) NIL)))
-(((-1184 |#1|) (-13 (-845) (-10 -8 (-15 -2585 ($) -3286))) (-923)) (T -1184))
-((-2585 (*1 *1) (-12 (-5 *1 (-1184 *2)) (-14 *2 (-923)))))
-(-13 (-845) (-10 -8 (-15 -2585 ($) -3286)))
+((-2462 (((-1159 |#1|) (-1159 |#1|)) 17)) (-1626 (((-1159 |#1|) (-1159 |#1|)) 13)) (-1487 (((-1159 |#1|) (-1159 |#1|) (-567) (-567)) 20)) (-2552 (((-1159 |#1|) (-1159 |#1|)) 15)))
+(((-1155 |#1|) (-10 -7 (-15 -1626 ((-1159 |#1|) (-1159 |#1|))) (-15 -2552 ((-1159 |#1|) (-1159 |#1|))) (-15 -2462 ((-1159 |#1|) (-1159 |#1|))) (-15 -1487 ((-1159 |#1|) (-1159 |#1|) (-567) (-567)))) (-13 (-559) (-147))) (T -1155))
+((-1487 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1159 *4)) (-5 *3 (-567)) (-4 *4 (-13 (-559) (-147))) (-5 *1 (-1155 *4)))) (-2462 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-13 (-559) (-147))) (-5 *1 (-1155 *3)))) (-2552 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-13 (-559) (-147))) (-5 *1 (-1155 *3)))) (-1626 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-13 (-559) (-147))) (-5 *1 (-1155 *3)))))
+(-10 -7 (-15 -1626 ((-1159 |#1|) (-1159 |#1|))) (-15 -2552 ((-1159 |#1|) (-1159 |#1|))) (-15 -2462 ((-1159 |#1|) (-1159 |#1|))) (-15 -1487 ((-1159 |#1|) (-1159 |#1|) (-567) (-567))))
+((-2276 (((-1159 |#1|) (-1159 (-1159 |#1|))) 15)))
+(((-1156 |#1|) (-10 -7 (-15 -2276 ((-1159 |#1|) (-1159 (-1159 |#1|))))) (-1219)) (T -1156))
+((-2276 (*1 *2 *3) (-12 (-5 *3 (-1159 (-1159 *4))) (-5 *2 (-1159 *4)) (-5 *1 (-1156 *4)) (-4 *4 (-1219)))))
+(-10 -7 (-15 -2276 ((-1159 |#1|) (-1159 (-1159 |#1|)))))
+((-3400 (((-1159 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1159 |#1|)) 25)) (-2494 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1159 |#1|)) 26)) (-3841 (((-1159 |#2|) (-1 |#2| |#1|) (-1159 |#1|)) 16)))
+(((-1157 |#1| |#2|) (-10 -7 (-15 -3841 ((-1159 |#2|) (-1 |#2| |#1|) (-1159 |#1|))) (-15 -3400 ((-1159 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1159 |#1|))) (-15 -2494 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1159 |#1|)))) (-1219) (-1219)) (T -1157))
+((-2494 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1159 *5)) (-4 *5 (-1219)) (-4 *2 (-1219)) (-5 *1 (-1157 *5 *2)))) (-3400 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1159 *6)) (-4 *6 (-1219)) (-4 *3 (-1219)) (-5 *2 (-1159 *3)) (-5 *1 (-1157 *6 *3)))) (-3841 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1159 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) (-5 *2 (-1159 *6)) (-5 *1 (-1157 *5 *6)))))
+(-10 -7 (-15 -3841 ((-1159 |#2|) (-1 |#2| |#1|) (-1159 |#1|))) (-15 -3400 ((-1159 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1159 |#1|))) (-15 -2494 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1159 |#1|))))
+((-3841 (((-1159 |#3|) (-1 |#3| |#1| |#2|) (-1159 |#1|) (-1159 |#2|)) 21)))
+(((-1158 |#1| |#2| |#3|) (-10 -7 (-15 -3841 ((-1159 |#3|) (-1 |#3| |#1| |#2|) (-1159 |#1|) (-1159 |#2|)))) (-1219) (-1219) (-1219)) (T -1158))
+((-3841 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1159 *6)) (-5 *5 (-1159 *7)) (-4 *6 (-1219)) (-4 *7 (-1219)) (-4 *8 (-1219)) (-5 *2 (-1159 *8)) (-5 *1 (-1158 *6 *7 *8)))))
+(-10 -7 (-15 -3841 ((-1159 |#3|) (-1 |#3| |#1| |#2|) (-1159 |#1|) (-1159 |#2|))))
+((-2412 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3812 ((|#1| $) NIL)) (-4003 ((|#1| $) NIL)) (-4284 (($ $) 67)) (-3843 (((-1274) $ (-567) (-567)) 99 (|has| $ (-6 -4423)))) (-3288 (($ $ (-567)) 129 (|has| $ (-6 -4423)))) (-1563 (((-112) $ (-772)) NIL)) (-1788 (((-863) $) 56 (|has| |#1| (-1102)))) (-2895 (((-112)) 55 (|has| |#1| (-1102)))) (-4392 ((|#1| $ |#1|) NIL (|has| $ (-6 -4423)))) (-4017 (($ $ $) 116 (|has| $ (-6 -4423))) (($ $ (-567) $) 142)) (-4105 ((|#1| $ |#1|) 126 (|has| $ (-6 -4423)))) (-2498 ((|#1| $ |#1|) 121 (|has| $ (-6 -4423)))) (-4285 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4423))) ((|#1| $ "first" |#1|) 123 (|has| $ (-6 -4423))) (($ $ "rest" $) 125 (|has| $ (-6 -4423))) ((|#1| $ "last" |#1|) 128 (|has| $ (-6 -4423))) ((|#1| $ (-1236 (-567)) |#1|) 113 (|has| $ (-6 -4423))) ((|#1| $ (-567) |#1|) 77 (|has| $ (-6 -4423)))) (-2831 (($ $ (-645 $)) NIL (|has| $ (-6 -4423)))) (-3356 (($ (-1 (-112) |#1|) $) 80)) (-3990 ((|#1| $) NIL)) (-3647 (($) NIL T CONST)) (-3517 (($ $) 14)) (-2430 (($ $) 42) (($ $ (-772)) 111)) (-3227 (((-112) (-645 |#1|) $) 135 (|has| |#1| (-1102)))) (-3704 (($ (-645 |#1|)) 131)) (-2453 (($ $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3246 (($ |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102)))) (($ (-1 (-112) |#1|) $) 79)) (-2494 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3760 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4423)))) (-3703 ((|#1| $ (-567)) NIL)) (-4085 (((-112) $) NIL)) (-2799 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-2402 (((-1274) (-567) $) 141 (|has| |#1| (-1102)))) (-3852 (((-772) $) 138)) (-2070 (((-645 $) $) NIL)) (-1520 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2858 (($ (-772) |#1|) NIL)) (-4093 (((-112) $ (-772)) NIL)) (-3895 (((-567) $) NIL (|has| (-567) (-851)))) (-1942 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-3237 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3255 (((-567) $) NIL (|has| (-567) (-851)))) (-3751 (($ (-1 |#1| |#1|) $) 95 (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#1| |#1|) $) 85) (($ (-1 |#1| |#1| |#1|) $ $) 89)) (-1986 (((-112) $ (-772)) NIL)) (-3793 (((-645 |#1|) $) NIL)) (-1323 (((-112) $) NIL)) (-2094 (($ $) 114)) (-1795 (((-112) $) 13)) (-2516 (((-1161) $) NIL (|has| |#1| (-1102)))) (-3266 ((|#1| $) NIL) (($ $ (-772)) NIL)) (-2857 (($ $ $ (-567)) NIL) (($ |#1| $ (-567)) NIL)) (-4364 (((-645 (-567)) $) NIL)) (-3188 (((-112) (-567) $) 96)) (-3437 (((-1122) $) NIL (|has| |#1| (-1102)))) (-3299 (($ (-1 |#1|)) 144) (($ (-1 |#1| |#1|) |#1|) 145)) (-3839 ((|#1| $) 10)) (-2418 ((|#1| $) 41) (($ $ (-772)) 65)) (-3379 (((-2 (|:| |cycle?| (-112)) (|:| -3872 (-772)) (|:| |period| (-772))) (-772) $) 36)) (-3196 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3335 (($ (-1 (-112) |#1|) $) 146)) (-3346 (($ (-1 (-112) |#1|) $) 147)) (-3823 (($ $ |#1|) 90 (|has| $ (-6 -4423)))) (-1874 (($ $ (-567)) 45)) (-1971 (((-112) $) 94)) (-4291 (((-112) $) 12)) (-1740 (((-112) $) 137)) (-4233 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3875 (((-112) $ $) 30)) (-4058 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-2190 (((-645 |#1|) $) NIL)) (-3885 (((-112) $) 20)) (-2701 (($) 60)) (-1801 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1236 (-567))) NIL) ((|#1| $ (-567)) 75) ((|#1| $ (-567) |#1|) NIL)) (-3162 (((-567) $ $) 64)) (-1569 (($ $ (-1236 (-567))) NIL) (($ $ (-567)) NIL)) (-3241 (($ (-1 $)) 63)) (-3771 (((-112) $) 91)) (-3688 (($ $) 92)) (-4044 (($ $) 117 (|has| $ (-6 -4423)))) (-3359 (((-772) $) NIL)) (-3640 (($ $) NIL)) (-3447 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-4309 (($ $) 59)) (-3902 (((-539) $) NIL (|has| |#1| (-615 (-539))))) (-4145 (($ (-645 |#1|)) 73)) (-3471 (($ |#1| $) 115)) (-2294 (($ $ $) 119 (|has| $ (-6 -4423))) (($ $ |#1|) 120 (|has| $ (-6 -4423)))) (-2276 (($ $ $) 101) (($ |#1| $) 61) (($ (-645 $)) 106) (($ $ |#1|) 100)) (-1834 (($ $) 66)) (-4129 (($ (-645 |#1|)) 130) (((-863) $) 57 (|has| |#1| (-614 (-863))))) (-3469 (((-645 $) $) NIL)) (-3854 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3357 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3436 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2946 (((-112) $ $) 133 (|has| |#1| (-1102)))) (-2423 (((-772) $) NIL (|has| $ (-6 -4422)))))
+(((-1159 |#1|) (-13 (-675 |#1|) (-617 (-645 |#1|)) (-10 -8 (-6 -4423) (-15 -3704 ($ (-645 |#1|))) (IF (|has| |#1| (-1102)) (-15 -3227 ((-112) (-645 |#1|) $)) |%noBranch|) (-15 -3379 ((-2 (|:| |cycle?| (-112)) (|:| -3872 (-772)) (|:| |period| (-772))) (-772) $)) (-15 -3241 ($ (-1 $))) (-15 -3471 ($ |#1| $)) (IF (|has| |#1| (-1102)) (PROGN (-15 -2402 ((-1274) (-567) $)) (-15 -1788 ((-863) $)) (-15 -2895 ((-112)))) |%noBranch|) (-15 -4017 ($ $ (-567) $)) (-15 -3299 ($ (-1 |#1|))) (-15 -3299 ($ (-1 |#1| |#1|) |#1|)) (-15 -3335 ($ (-1 (-112) |#1|) $)) (-15 -3346 ($ (-1 (-112) |#1|) $)))) (-1219)) (T -1159))
+((-3704 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1219)) (-5 *1 (-1159 *3)))) (-3227 (*1 *2 *3 *1) (-12 (-5 *3 (-645 *4)) (-4 *4 (-1102)) (-4 *4 (-1219)) (-5 *2 (-112)) (-5 *1 (-1159 *4)))) (-3379 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -3872 (-772)) (|:| |period| (-772)))) (-5 *1 (-1159 *4)) (-4 *4 (-1219)) (-5 *3 (-772)))) (-3241 (*1 *1 *2) (-12 (-5 *2 (-1 (-1159 *3))) (-5 *1 (-1159 *3)) (-4 *3 (-1219)))) (-3471 (*1 *1 *2 *1) (-12 (-5 *1 (-1159 *2)) (-4 *2 (-1219)))) (-2402 (*1 *2 *3 *1) (-12 (-5 *3 (-567)) (-5 *2 (-1274)) (-5 *1 (-1159 *4)) (-4 *4 (-1102)) (-4 *4 (-1219)))) (-1788 (*1 *2 *1) (-12 (-5 *2 (-863)) (-5 *1 (-1159 *3)) (-4 *3 (-1102)) (-4 *3 (-1219)))) (-2895 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1159 *3)) (-4 *3 (-1102)) (-4 *3 (-1219)))) (-4017 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-1159 *3)) (-4 *3 (-1219)))) (-3299 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1219)) (-5 *1 (-1159 *3)))) (-3299 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1219)) (-5 *1 (-1159 *3)))) (-3335 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1219)) (-5 *1 (-1159 *3)))) (-3346 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1219)) (-5 *1 (-1159 *3)))))
+(-13 (-675 |#1|) (-617 (-645 |#1|)) (-10 -8 (-6 -4423) (-15 -3704 ($ (-645 |#1|))) (IF (|has| |#1| (-1102)) (-15 -3227 ((-112) (-645 |#1|) $)) |%noBranch|) (-15 -3379 ((-2 (|:| |cycle?| (-112)) (|:| -3872 (-772)) (|:| |period| (-772))) (-772) $)) (-15 -3241 ($ (-1 $))) (-15 -3471 ($ |#1| $)) (IF (|has| |#1| (-1102)) (PROGN (-15 -2402 ((-1274) (-567) $)) (-15 -1788 ((-863) $)) (-15 -2895 ((-112)))) |%noBranch|) (-15 -4017 ($ $ (-567) $)) (-15 -3299 ($ (-1 |#1|))) (-15 -3299 ($ (-1 |#1| |#1|) |#1|)) (-15 -3335 ($ (-1 (-112) |#1|) $)) (-15 -3346 ($ (-1 (-112) |#1|) $))))
+((-2412 (((-112) $ $) 19)) (-3355 (($ $) 121)) (-2868 (($ $) 122)) (-2147 (($ $ (-144)) 109) (($ $ (-141)) 108)) (-3843 (((-1274) $ (-567) (-567)) 41 (|has| $ (-6 -4423)))) (-3691 (((-112) $ $) 119)) (-3671 (((-112) $ $ (-567)) 118)) (-3666 (($ (-567)) 128)) (-2004 (((-645 $) $ (-144)) 111) (((-645 $) $ (-141)) 110)) (-3531 (((-112) (-1 (-112) (-144) (-144)) $) 99) (((-112) $) 93 (|has| (-144) (-851)))) (-2676 (($ (-1 (-112) (-144) (-144)) $) 90 (|has| $ (-6 -4423))) (($ $) 89 (-12 (|has| (-144) (-851)) (|has| $ (-6 -4423))))) (-1311 (($ (-1 (-112) (-144) (-144)) $) 100) (($ $) 94 (|has| (-144) (-851)))) (-1563 (((-112) $ (-772)) 8)) (-4285 (((-144) $ (-567) (-144)) 53 (|has| $ (-6 -4423))) (((-144) $ (-1236 (-567)) (-144)) 59 (|has| $ (-6 -4423)))) (-3356 (($ (-1 (-112) (-144)) $) 76 (|has| $ (-6 -4422)))) (-3647 (($) 7 T CONST)) (-3286 (($ $ (-144)) 105) (($ $ (-141)) 104)) (-1602 (($ $) 91 (|has| $ (-6 -4423)))) (-3592 (($ $) 101)) (-1919 (($ $ (-1236 (-567)) $) 115)) (-2453 (($ $) 79 (-12 (|has| (-144) (-1102)) (|has| $ (-6 -4422))))) (-3246 (($ (-144) $) 78 (-12 (|has| (-144) (-1102)) (|has| $ (-6 -4422)))) (($ (-1 (-112) (-144)) $) 75 (|has| $ (-6 -4422)))) (-2494 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) 77 (-12 (|has| (-144) (-1102)) (|has| $ (-6 -4422)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) 74 (|has| $ (-6 -4422))) (((-144) (-1 (-144) (-144) (-144)) $) 73 (|has| $ (-6 -4422)))) (-3760 (((-144) $ (-567) (-144)) 54 (|has| $ (-6 -4423)))) (-3703 (((-144) $ (-567)) 52)) (-3712 (((-112) $ $) 120)) (-2578 (((-567) (-1 (-112) (-144)) $) 98) (((-567) (-144) $) 97 (|has| (-144) (-1102))) (((-567) (-144) $ (-567)) 96 (|has| (-144) (-1102))) (((-567) $ $ (-567)) 114) (((-567) (-141) $ (-567)) 113)) (-2799 (((-645 (-144)) $) 31 (|has| $ (-6 -4422)))) (-2858 (($ (-772) (-144)) 70)) (-4093 (((-112) $ (-772)) 9)) (-3895 (((-567) $) 44 (|has| (-567) (-851)))) (-1365 (($ $ $) 88 (|has| (-144) (-851)))) (-2473 (($ (-1 (-112) (-144) (-144)) $ $) 102) (($ $ $) 95 (|has| (-144) (-851)))) (-1942 (((-645 (-144)) $) 30 (|has| $ (-6 -4422)))) (-3237 (((-112) (-144) $) 28 (-12 (|has| (-144) (-1102)) (|has| $ (-6 -4422))))) (-3255 (((-567) $) 45 (|has| (-567) (-851)))) (-3002 (($ $ $) 87 (|has| (-144) (-851)))) (-2590 (((-112) $ $ (-144)) 116)) (-4197 (((-772) $ $ (-144)) 117)) (-3751 (($ (-1 (-144) (-144)) $) 35 (|has| $ (-6 -4423)))) (-3841 (($ (-1 (-144) (-144)) $) 36) (($ (-1 (-144) (-144) (-144)) $ $) 65)) (-4326 (($ $) 123)) (-4365 (($ $) 124)) (-1986 (((-112) $ (-772)) 10)) (-3296 (($ $ (-144)) 107) (($ $ (-141)) 106)) (-2516 (((-1161) $) 22)) (-2857 (($ (-144) $ (-567)) 61) (($ $ $ (-567)) 60)) (-4364 (((-645 (-567)) $) 47)) (-3188 (((-112) (-567) $) 48)) (-3437 (((-1122) $) 21)) (-2418 (((-144) $) 43 (|has| (-567) (-851)))) (-3196 (((-3 (-144) "failed") (-1 (-112) (-144)) $) 72)) (-3823 (($ $ (-144)) 42 (|has| $ (-6 -4423)))) (-4233 (((-112) (-1 (-112) (-144)) $) 33 (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 (-144)))) 27 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102)))) (($ $ (-295 (-144))) 26 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102)))) (($ $ (-144) (-144)) 25 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102)))) (($ $ (-645 (-144)) (-645 (-144))) 24 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102))))) (-3875 (((-112) $ $) 14)) (-4058 (((-112) (-144) $) 46 (-12 (|has| $ (-6 -4422)) (|has| (-144) (-1102))))) (-2190 (((-645 (-144)) $) 49)) (-3885 (((-112) $) 11)) (-2701 (($) 12)) (-1801 (((-144) $ (-567) (-144)) 51) (((-144) $ (-567)) 50) (($ $ (-1236 (-567))) 64) (($ $ $) 103)) (-1569 (($ $ (-567)) 63) (($ $ (-1236 (-567))) 62)) (-3447 (((-772) (-1 (-112) (-144)) $) 32 (|has| $ (-6 -4422))) (((-772) (-144) $) 29 (-12 (|has| (-144) (-1102)) (|has| $ (-6 -4422))))) (-1656 (($ $ $ (-567)) 92 (|has| $ (-6 -4423)))) (-4309 (($ $) 13)) (-3902 (((-539) $) 80 (|has| (-144) (-615 (-539))))) (-4145 (($ (-645 (-144))) 71)) (-2276 (($ $ (-144)) 69) (($ (-144) $) 68) (($ $ $) 67) (($ (-645 $)) 66)) (-4129 (($ (-144)) 112) (((-863) $) 18)) (-3357 (((-112) $ $) 23)) (-3436 (((-112) (-1 (-112) (-144)) $) 34 (|has| $ (-6 -4422)))) (-1335 (((-1161) $) 132) (((-1161) $ (-112)) 131) (((-1274) (-823) $) 130) (((-1274) (-823) $ (-112)) 129)) (-3004 (((-112) $ $) 85 (|has| (-144) (-851)))) (-2980 (((-112) $ $) 84 (|has| (-144) (-851)))) (-2946 (((-112) $ $) 20)) (-2993 (((-112) $ $) 86 (|has| (-144) (-851)))) (-2968 (((-112) $ $) 83 (|has| (-144) (-851)))) (-2423 (((-772) $) 6 (|has| $ (-6 -4422)))))
+(((-1160) (-140)) (T -1160))
+((-3666 (*1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-1160)))))
+(-13 (-1146) (-1102) (-829) (-10 -8 (-15 -3666 ($ (-567)))))
+(((-34) . T) ((-102) . T) ((-614 (-863)) . T) ((-151 #0=(-144)) . T) ((-615 (-539)) |has| (-144) (-615 (-539))) ((-287 #1=(-567) #0#) . T) ((-289 #1# #0#) . T) ((-310 #0#) -12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102))) ((-375 #0#) . T) ((-492 #0#) . T) ((-605 #1# #0#) . T) ((-517 #0# #0#) -12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102))) ((-652 #0#) . T) ((-19 #0#) . T) ((-829) . T) ((-851) |has| (-144) (-851)) ((-1102) . T) ((-1146) . T) ((-1219) . T))
+((-2412 (((-112) $ $) NIL)) (-3355 (($ $) NIL)) (-2868 (($ $) NIL)) (-2147 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-3843 (((-1274) $ (-567) (-567)) NIL (|has| $ (-6 -4423)))) (-3691 (((-112) $ $) NIL)) (-3671 (((-112) $ $ (-567)) NIL)) (-3666 (($ (-567)) 8)) (-2004 (((-645 $) $ (-144)) NIL) (((-645 $) $ (-141)) NIL)) (-3531 (((-112) (-1 (-112) (-144) (-144)) $) NIL) (((-112) $) NIL (|has| (-144) (-851)))) (-2676 (($ (-1 (-112) (-144) (-144)) $) NIL (|has| $ (-6 -4423))) (($ $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-144) (-851))))) (-1311 (($ (-1 (-112) (-144) (-144)) $) NIL) (($ $) NIL (|has| (-144) (-851)))) (-1563 (((-112) $ (-772)) NIL)) (-4285 (((-144) $ (-567) (-144)) NIL (|has| $ (-6 -4423))) (((-144) $ (-1236 (-567)) (-144)) NIL (|has| $ (-6 -4423)))) (-3356 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4422)))) (-3647 (($) NIL T CONST)) (-3286 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-1602 (($ $) NIL (|has| $ (-6 -4423)))) (-3592 (($ $) NIL)) (-1919 (($ $ (-1236 (-567)) $) NIL)) (-2453 (($ $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-144) (-1102))))) (-3246 (($ (-144) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-144) (-1102)))) (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4422)))) (-2494 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4422)) (|has| (-144) (-1102)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4422))) (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4422)))) (-3760 (((-144) $ (-567) (-144)) NIL (|has| $ (-6 -4423)))) (-3703 (((-144) $ (-567)) NIL)) (-3712 (((-112) $ $) NIL)) (-2578 (((-567) (-1 (-112) (-144)) $) NIL) (((-567) (-144) $) NIL (|has| (-144) (-1102))) (((-567) (-144) $ (-567)) NIL (|has| (-144) (-1102))) (((-567) $ $ (-567)) NIL) (((-567) (-141) $ (-567)) NIL)) (-2799 (((-645 (-144)) $) NIL (|has| $ (-6 -4422)))) (-2858 (($ (-772) (-144)) NIL)) (-4093 (((-112) $ (-772)) NIL)) (-3895 (((-567) $) NIL (|has| (-567) (-851)))) (-1365 (($ $ $) NIL (|has| (-144) (-851)))) (-2473 (($ (-1 (-112) (-144) (-144)) $ $) NIL) (($ $ $) NIL (|has| (-144) (-851)))) (-1942 (((-645 (-144)) $) NIL (|has| $ (-6 -4422)))) (-3237 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-144) (-1102))))) (-3255 (((-567) $) NIL (|has| (-567) (-851)))) (-3002 (($ $ $) NIL (|has| (-144) (-851)))) (-2590 (((-112) $ $ (-144)) NIL)) (-4197 (((-772) $ $ (-144)) NIL)) (-3751 (($ (-1 (-144) (-144)) $) NIL (|has| $ (-6 -4423)))) (-3841 (($ (-1 (-144) (-144)) $) NIL) (($ (-1 (-144) (-144) (-144)) $ $) NIL)) (-4326 (($ $) NIL)) (-4365 (($ $) NIL)) (-1986 (((-112) $ (-772)) NIL)) (-3296 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-2516 (((-1161) $) NIL)) (-2857 (($ (-144) $ (-567)) NIL) (($ $ $ (-567)) NIL)) (-4364 (((-645 (-567)) $) NIL)) (-3188 (((-112) (-567) $) NIL)) (-3437 (((-1122) $) NIL)) (-2418 (((-144) $) NIL (|has| (-567) (-851)))) (-3196 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-3823 (($ $ (-144)) NIL (|has| $ (-6 -4423)))) (-4233 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 (-144)))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102)))) (($ $ (-295 (-144))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102)))) (($ $ (-645 (-144)) (-645 (-144))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102))))) (-3875 (((-112) $ $) NIL)) (-4058 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-144) (-1102))))) (-2190 (((-645 (-144)) $) NIL)) (-3885 (((-112) $) NIL)) (-2701 (($) NIL)) (-1801 (((-144) $ (-567) (-144)) NIL) (((-144) $ (-567)) NIL) (($ $ (-1236 (-567))) NIL) (($ $ $) NIL)) (-1569 (($ $ (-567)) NIL) (($ $ (-1236 (-567))) NIL)) (-3447 (((-772) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4422))) (((-772) (-144) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-144) (-1102))))) (-1656 (($ $ $ (-567)) NIL (|has| $ (-6 -4423)))) (-4309 (($ $) NIL)) (-3902 (((-539) $) NIL (|has| (-144) (-615 (-539))))) (-4145 (($ (-645 (-144))) NIL)) (-2276 (($ $ (-144)) NIL) (($ (-144) $) NIL) (($ $ $) NIL) (($ (-645 $)) NIL)) (-4129 (($ (-144)) NIL) (((-863) $) NIL)) (-3357 (((-112) $ $) NIL)) (-3436 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4422)))) (-1335 (((-1161) $) 19) (((-1161) $ (-112)) 21) (((-1274) (-823) $) 22) (((-1274) (-823) $ (-112)) 23)) (-3004 (((-112) $ $) NIL (|has| (-144) (-851)))) (-2980 (((-112) $ $) NIL (|has| (-144) (-851)))) (-2946 (((-112) $ $) NIL)) (-2993 (((-112) $ $) NIL (|has| (-144) (-851)))) (-2968 (((-112) $ $) NIL (|has| (-144) (-851)))) (-2423 (((-772) $) NIL (|has| $ (-6 -4422)))))
+(((-1161) (-1160)) (T -1161))
+NIL
+(-1160)
+((-2412 (((-112) $ $) NIL (-2811 (|has| (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (-1102)) (|has| |#1| (-1102))))) (-2847 (($) NIL) (($ (-645 (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)))) NIL)) (-3843 (((-1274) $ (-1161) (-1161)) NIL (|has| $ (-6 -4423)))) (-1563 (((-112) $ (-772)) NIL)) (-4285 ((|#1| $ (-1161) |#1|) NIL)) (-1494 (($ (-1 (-112) (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|))) $) NIL (|has| $ (-6 -4422)))) (-3356 (($ (-1 (-112) (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|))) $) NIL (|has| $ (-6 -4422)))) (-4021 (((-3 |#1| "failed") (-1161) $) NIL)) (-3647 (($) NIL T CONST)) (-2453 (($ $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (-1102))))) (-2247 (($ (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) $) NIL (|has| $ (-6 -4422))) (($ (-1 (-112) (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|))) $) NIL (|has| $ (-6 -4422))) (((-3 |#1| "failed") (-1161) $) NIL)) (-3246 (($ (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (-1102)))) (($ (-1 (-112) (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|))) $) NIL (|has| $ (-6 -4422)))) (-2494 (((-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (-1 (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|))) $ (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|))) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (-1102)))) (((-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (-1 (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|))) $ (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|))) NIL (|has| $ (-6 -4422))) (((-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (-1 (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|))) $) NIL (|has| $ (-6 -4422)))) (-3760 ((|#1| $ (-1161) |#1|) NIL (|has| $ (-6 -4423)))) (-3703 ((|#1| $ (-1161)) NIL)) (-2799 (((-645 (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|))) $) NIL (|has| $ (-6 -4422))) (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-4093 (((-112) $ (-772)) NIL)) (-3895 (((-1161) $) NIL (|has| (-1161) (-851)))) (-1942 (((-645 (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|))) $) NIL (|has| $ (-6 -4422))) (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-3237 (((-112) (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (-1102)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3255 (((-1161) $) NIL (|has| (-1161) (-851)))) (-3751 (($ (-1 (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|))) $) NIL (|has| $ (-6 -4423))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4423)))) (-3841 (($ (-1 (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1986 (((-112) $ (-772)) NIL)) (-2516 (((-1161) $) NIL (-2811 (|has| (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (-1102)) (|has| |#1| (-1102))))) (-1405 (((-645 (-1161)) $) NIL)) (-2816 (((-112) (-1161) $) NIL)) (-2706 (((-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) $) NIL)) (-2646 (($ (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) $) NIL)) (-4364 (((-645 (-1161)) $) NIL)) (-3188 (((-112) (-1161) $) NIL)) (-3437 (((-1122) $) NIL (-2811 (|has| (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (-1102)) (|has| |#1| (-1102))))) (-2418 ((|#1| $) NIL (|has| (-1161) (-851)))) (-3196 (((-3 (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) "failed") (-1 (-112) (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|))) $) NIL)) (-3823 (($ $ |#1|) NIL (|has| $ (-6 -4423)))) (-3949 (((-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) $) NIL)) (-4233 (((-112) (-1 (-112) (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|))) $) NIL (|has| $ (-6 -4422))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|))))) NIL (-12 (|has| (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (-310 (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)))) (|has| (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (-1102)))) (($ $ (-295 (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)))) NIL (-12 (|has| (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (-310 (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)))) (|has| (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (-1102)))) (($ $ (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|))) NIL (-12 (|has| (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (-310 (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)))) (|has| (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (-1102)))) (($ $ (-645 (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|))) (-645 (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)))) NIL (-12 (|has| (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (-310 (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)))) (|has| (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3875 (((-112) $ $) NIL)) (-4058 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-2190 (((-645 |#1|) $) NIL)) (-3885 (((-112) $) NIL)) (-2701 (($) NIL)) (-1801 ((|#1| $ (-1161)) NIL) ((|#1| $ (-1161) |#1|) NIL)) (-4106 (($) NIL) (($ (-645 (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)))) NIL)) (-3447 (((-772) (-1 (-112) (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|))) $) NIL (|has| $ (-6 -4422))) (((-772) (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (-1102)))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102)))) (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-4309 (($ $) NIL)) (-3902 (((-539) $) NIL (|has| (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (-615 (-539))))) (-4145 (($ (-645 (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)))) NIL)) (-4129 (((-863) $) NIL (-2811 (|has| (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (-614 (-863))) (|has| |#1| (-614 (-863)))))) (-3357 (((-112) $ $) NIL (-2811 (|has| (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (-1102)) (|has| |#1| (-1102))))) (-3700 (($ (-645 (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)))) NIL)) (-3436 (((-112) (-1 (-112) (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|))) $) NIL (|has| $ (-6 -4422))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2946 (((-112) $ $) NIL (-2811 (|has| (-2 (|:| -1809 (-1161)) (|:| -4236 |#1|)) (-1102)) (|has| |#1| (-1102))))) (-2423 (((-772) $) NIL (|has| $ (-6 -4422)))))
+(((-1162 |#1|) (-13 (-1195 (-1161) |#1|) (-10 -7 (-6 -4422))) (-1102)) (T -1162))
+NIL
+(-13 (-1195 (-1161) |#1|) (-10 -7 (-6 -4422)))
+((-4008 (((-1159 |#1|) (-1159 |#1|)) 85)) (-3588 (((-3 (-1159 |#1|) "failed") (-1159 |#1|)) 42)) (-4267 (((-1159 |#1|) (-410 (-567)) (-1159 |#1|)) 136 (|has| |#1| (-38 (-410 (-567)))))) (-1921 (((-1159 |#1|) |#1| (-1159 |#1|)) 142 (|has| |#1| (-365)))) (-4110 (((-1159 |#1|) (-1159 |#1|)) 100)) (-2695 (((-1159 (-567)) (-567)) 64)) (-2877 (((-1159 |#1|) (-1159 (-1159 |#1|))) 119 (|has| |#1| (-38 (-410 (-567)))))) (-2923 (((-1159 |#1|) (-567) (-567) (-1159 |#1|)) 105)) (-2296 (((-1159 |#1|) |#1| (-567)) 54)) (-3046 (((-1159 |#1|) (-1159 |#1|) (-1159 |#1|)) 67)) (-2663 (((-1159 |#1|) (-1159 |#1|) (-1159 |#1|)) 139 (|has| |#1| (-365)))) (-3511 (((-1159 |#1|) |#1| (-1 (-1159 |#1|))) 118 (|has| |#1| (-38 (-410 (-567)))))) (-2497 (((-1159 |#1|) (-1 |#1| (-567)) |#1| (-1 (-1159 |#1|))) 140 (|has| |#1| (-365)))) (-4203 (((-1159 |#1|) (-1159 |#1|)) 99)) (-1401 (((-1159 |#1|) (-1159 |#1|)) 83)) (-2664 (((-1159 |#1|) (-567) (-567) (-1159 |#1|)) 106)) (-4083 (((-1159 |#1|) |#1| (-1159 |#1|)) 115 (|has| |#1| (-38 (-410 (-567)))))) (-2715 (((-1159 (-567)) (-567)) 63)) (-2691 (((-1159 |#1|) |#1|) 66)) (-3431 (((-1159 |#1|) (-1159 |#1|) (-567) (-567)) 102)) (-2867 (((-1159 |#1|) (-1 |#1| (-567)) (-1159 |#1|)) 73)) (-2400 (((-3 (-1159 |#1|) "failed") (-1159 |#1|) (-1159 |#1|)) 40)) (-3433 (((-1159 |#1|) (-1159 |#1|)) 101)) (-2642 (((-1159 |#1|) (-1159 |#1|) |#1|) 78)) (-3775 (((-1159 |#1|) (-1159 |#1|)) 69)) (-2824 (((-1159 |#1|) (-1159 |#1|) (-1159 |#1|)) 79)) (-4129 (((-1159 |#1|) |#1|) 74)) (-2730 (((-1159 |#1|) (-1159 (-1159 |#1|))) 90)) (-3069 (((-1159 |#1|) (-1159 |#1|) (-1159 |#1|)) 41)) (-3053 (((-1159 |#1|) (-1159 |#1|)) 21) (((-1159 |#1|) (-1159 |#1|) (-1159 |#1|)) 23)) (-3041 (((-1159 |#1|) (-1159 |#1|) (-1159 |#1|)) 17)) (* (((-1159 |#1|) (-1159 |#1|) |#1|) 29) (((-1159 |#1|) |#1| (-1159 |#1|)) 26) (((-1159 |#1|) (-1159 |#1|) (-1159 |#1|)) 27)))
+(((-1163 |#1|) (-10 -7 (-15 -3041 ((-1159 |#1|) (-1159 |#1|) (-1159 |#1|))) (-15 -3053 ((-1159 |#1|) (-1159 |#1|) (-1159 |#1|))) (-15 -3053 ((-1159 |#1|) (-1159 |#1|))) (-15 * ((-1159 |#1|) (-1159 |#1|) (-1159 |#1|))) (-15 * ((-1159 |#1|) |#1| (-1159 |#1|))) (-15 * ((-1159 |#1|) (-1159 |#1|) |#1|)) (-15 -2400 ((-3 (-1159 |#1|) "failed") (-1159 |#1|) (-1159 |#1|))) (-15 -3069 ((-1159 |#1|) (-1159 |#1|) (-1159 |#1|))) (-15 -3588 ((-3 (-1159 |#1|) "failed") (-1159 |#1|))) (-15 -2296 ((-1159 |#1|) |#1| (-567))) (-15 -2715 ((-1159 (-567)) (-567))) (-15 -2695 ((-1159 (-567)) (-567))) (-15 -2691 ((-1159 |#1|) |#1|)) (-15 -3046 ((-1159 |#1|) (-1159 |#1|) (-1159 |#1|))) (-15 -3775 ((-1159 |#1|) (-1159 |#1|))) (-15 -2867 ((-1159 |#1|) (-1 |#1| (-567)) (-1159 |#1|))) (-15 -4129 ((-1159 |#1|) |#1|)) (-15 -2642 ((-1159 |#1|) (-1159 |#1|) |#1|)) (-15 -2824 ((-1159 |#1|) (-1159 |#1|) (-1159 |#1|))) (-15 -1401 ((-1159 |#1|) (-1159 |#1|))) (-15 -4008 ((-1159 |#1|) (-1159 |#1|))) (-15 -2730 ((-1159 |#1|) (-1159 (-1159 |#1|)))) (-15 -4203 ((-1159 |#1|) (-1159 |#1|))) (-15 -4110 ((-1159 |#1|) (-1159 |#1|))) (-15 -3433 ((-1159 |#1|) (-1159 |#1|))) (-15 -3431 ((-1159 |#1|) (-1159 |#1|) (-567) (-567))) (-15 -2923 ((-1159 |#1|) (-567) (-567) (-1159 |#1|))) (-15 -2664 ((-1159 |#1|) (-567) (-567) (-1159 |#1|))) (IF (|has| |#1| (-38 (-410 (-567)))) (PROGN (-15 -4083 ((-1159 |#1|) |#1| (-1159 |#1|))) (-15 -3511 ((-1159 |#1|) |#1| (-1 (-1159 |#1|)))) (-15 -2877 ((-1159 |#1|) (-1159 (-1159 |#1|)))) (-15 -4267 ((-1159 |#1|) (-410 (-567)) (-1159 |#1|)))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -2663 ((-1159 |#1|) (-1159 |#1|) (-1159 |#1|))) (-15 -2497 ((-1159 |#1|) (-1 |#1| (-567)) |#1| (-1 (-1159 |#1|)))) (-15 -1921 ((-1159 |#1|) |#1| (-1159 |#1|)))) |%noBranch|)) (-1051)) (T -1163))
+((-1921 (*1 *2 *3 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-365)) (-4 *3 (-1051)) (-5 *1 (-1163 *3)))) (-2497 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-567))) (-5 *5 (-1 (-1159 *4))) (-4 *4 (-365)) (-4 *4 (-1051)) (-5 *2 (-1159 *4)) (-5 *1 (-1163 *4)))) (-2663 (*1 *2 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-365)) (-4 *3 (-1051)) (-5 *1 (-1163 *3)))) (-4267 (*1 *2 *3 *2) (-12 (-5 *2 (-1159 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1051)) (-5 *3 (-410 (-567))) (-5 *1 (-1163 *4)))) (-2877 (*1 *2 *3) (-12 (-5 *3 (-1159 (-1159 *4))) (-5 *2 (-1159 *4)) (-5 *1 (-1163 *4)) (-4 *4 (-38 (-410 (-567)))) (-4 *4 (-1051)))) (-3511 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1159 *3))) (-5 *2 (-1159 *3)) (-5 *1 (-1163 *3)) (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)))) (-4083 (*1 *2 *3 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)) (-5 *1 (-1163 *3)))) (-2664 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1159 *4)) (-5 *3 (-567)) (-4 *4 (-1051)) (-5 *1 (-1163 *4)))) (-2923 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1159 *4)) (-5 *3 (-567)) (-4 *4 (-1051)) (-5 *1 (-1163 *4)))) (-3431 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1159 *4)) (-5 *3 (-567)) (-4 *4 (-1051)) (-5 *1 (-1163 *4)))) (-3433 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-5 *1 (-1163 *3)))) (-4110 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-5 *1 (-1163 *3)))) (-4203 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-5 *1 (-1163 *3)))) (-2730 (*1 *2 *3) (-12 (-5 *3 (-1159 (-1159 *4))) (-5 *2 (-1159 *4)) (-5 *1 (-1163 *4)) (-4 *4 (-1051)))) (-4008 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-5 *1 (-1163 *3)))) (-1401 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-5 *1 (-1163 *3)))) (-2824 (*1 *2 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-5 *1 (-1163 *3)))) (-2642 (*1 *2 *2 *3) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-5 *1 (-1163 *3)))) (-4129 (*1 *2 *3) (-12 (-5 *2 (-1159 *3)) (-5 *1 (-1163 *3)) (-4 *3 (-1051)))) (-2867 (*1 *2 *3 *2) (-12 (-5 *2 (-1159 *4)) (-5 *3 (-1 *4 (-567))) (-4 *4 (-1051)) (-5 *1 (-1163 *4)))) (-3775 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-5 *1 (-1163 *3)))) (-3046 (*1 *2 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-5 *1 (-1163 *3)))) (-2691 (*1 *2 *3) (-12 (-5 *2 (-1159 *3)) (-5 *1 (-1163 *3)) (-4 *3 (-1051)))) (-2695 (*1 *2 *3) (-12 (-5 *2 (-1159 (-567))) (-5 *1 (-1163 *4)) (-4 *4 (-1051)) (-5 *3 (-567)))) (-2715 (*1 *2 *3) (-12 (-5 *2 (-1159 (-567))) (-5 *1 (-1163 *4)) (-4 *4 (-1051)) (-5 *3 (-567)))) (-2296 (*1 *2 *3 *4) (-12 (-5 *4 (-567)) (-5 *2 (-1159 *3)) (-5 *1 (-1163 *3)) (-4 *3 (-1051)))) (-3588 (*1 *2 *2) (|partial| -12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-5 *1 (-1163 *3)))) (-3069 (*1 *2 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-5 *1 (-1163 *3)))) (-2400 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-5 *1 (-1163 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-5 *1 (-1163 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-5 *1 (-1163 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-5 *1 (-1163 *3)))) (-3053 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-5 *1 (-1163 *3)))) (-3053 (*1 *2 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-5 *1 (-1163 *3)))) (-3041 (*1 *2 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-5 *1 (-1163 *3)))))
+(-10 -7 (-15 -3041 ((-1159 |#1|) (-1159 |#1|) (-1159 |#1|))) (-15 -3053 ((-1159 |#1|) (-1159 |#1|) (-1159 |#1|))) (-15 -3053 ((-1159 |#1|) (-1159 |#1|))) (-15 * ((-1159 |#1|) (-1159 |#1|) (-1159 |#1|))) (-15 * ((-1159 |#1|) |#1| (-1159 |#1|))) (-15 * ((-1159 |#1|) (-1159 |#1|) |#1|)) (-15 -2400 ((-3 (-1159 |#1|) "failed") (-1159 |#1|) (-1159 |#1|))) (-15 -3069 ((-1159 |#1|) (-1159 |#1|) (-1159 |#1|))) (-15 -3588 ((-3 (-1159 |#1|) "failed") (-1159 |#1|))) (-15 -2296 ((-1159 |#1|) |#1| (-567))) (-15 -2715 ((-1159 (-567)) (-567))) (-15 -2695 ((-1159 (-567)) (-567))) (-15 -2691 ((-1159 |#1|) |#1|)) (-15 -3046 ((-1159 |#1|) (-1159 |#1|) (-1159 |#1|))) (-15 -3775 ((-1159 |#1|) (-1159 |#1|))) (-15 -2867 ((-1159 |#1|) (-1 |#1| (-567)) (-1159 |#1|))) (-15 -4129 ((-1159 |#1|) |#1|)) (-15 -2642 ((-1159 |#1|) (-1159 |#1|) |#1|)) (-15 -2824 ((-1159 |#1|) (-1159 |#1|) (-1159 |#1|))) (-15 -1401 ((-1159 |#1|) (-1159 |#1|))) (-15 -4008 ((-1159 |#1|) (-1159 |#1|))) (-15 -2730 ((-1159 |#1|) (-1159 (-1159 |#1|)))) (-15 -4203 ((-1159 |#1|) (-1159 |#1|))) (-15 -4110 ((-1159 |#1|) (-1159 |#1|))) (-15 -3433 ((-1159 |#1|) (-1159 |#1|))) (-15 -3431 ((-1159 |#1|) (-1159 |#1|) (-567) (-567))) (-15 -2923 ((-1159 |#1|) (-567) (-567) (-1159 |#1|))) (-15 -2664 ((-1159 |#1|) (-567) (-567) (-1159 |#1|))) (IF (|has| |#1| (-38 (-410 (-567)))) (PROGN (-15 -4083 ((-1159 |#1|) |#1| (-1159 |#1|))) (-15 -3511 ((-1159 |#1|) |#1| (-1 (-1159 |#1|)))) (-15 -2877 ((-1159 |#1|) (-1159 (-1159 |#1|)))) (-15 -4267 ((-1159 |#1|) (-410 (-567)) (-1159 |#1|)))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -2663 ((-1159 |#1|) (-1159 |#1|) (-1159 |#1|))) (-15 -2497 ((-1159 |#1|) (-1 |#1| (-567)) |#1| (-1 (-1159 |#1|)))) (-15 -1921 ((-1159 |#1|) |#1| (-1159 |#1|)))) |%noBranch|))
+((-3164 (((-1159 |#1|) (-1159 |#1|)) 60)) (-3032 (((-1159 |#1|) (-1159 |#1|)) 42)) (-3145 (((-1159 |#1|) (-1159 |#1|)) 56)) (-3008 (((-1159 |#1|) (-1159 |#1|)) 38)) (-3182 (((-1159 |#1|) (-1159 |#1|)) 63)) (-3057 (((-1159 |#1|) (-1159 |#1|)) 45)) (-3072 (((-1159 |#1|) (-1159 |#1|)) 34)) (-3955 (((-1159 |#1|) (-1159 |#1|)) 29)) (-3192 (((-1159 |#1|) (-1159 |#1|)) 64)) (-3071 (((-1159 |#1|) (-1159 |#1|)) 46)) (-3173 (((-1159 |#1|) (-1159 |#1|)) 61)) (-3043 (((-1159 |#1|) (-1159 |#1|)) 43)) (-3155 (((-1159 |#1|) (-1159 |#1|)) 58)) (-3021 (((-1159 |#1|) (-1159 |#1|)) 40)) (-3217 (((-1159 |#1|) (-1159 |#1|)) 68)) (-3103 (((-1159 |#1|) (-1159 |#1|)) 50)) (-3201 (((-1159 |#1|) (-1159 |#1|)) 66)) (-3083 (((-1159 |#1|) (-1159 |#1|)) 48)) (-3238 (((-1159 |#1|) (-1159 |#1|)) 71)) (-3126 (((-1159 |#1|) (-1159 |#1|)) 53)) (-3805 (((-1159 |#1|) (-1159 |#1|)) 72)) (-3138 (((-1159 |#1|) (-1159 |#1|)) 54)) (-3228 (((-1159 |#1|) (-1159 |#1|)) 70)) (-3115 (((-1159 |#1|) (-1159 |#1|)) 52)) (-3208 (((-1159 |#1|) (-1159 |#1|)) 69)) (-3093 (((-1159 |#1|) (-1159 |#1|)) 51)) (** (((-1159 |#1|) (-1159 |#1|) (-1159 |#1|)) 36)))
+(((-1164 |#1|) (-10 -7 (-15 -3955 ((-1159 |#1|) (-1159 |#1|))) (-15 -3072 ((-1159 |#1|) (-1159 |#1|))) (-15 ** ((-1159 |#1|) (-1159 |#1|) (-1159 |#1|))) (-15 -3008 ((-1159 |#1|) (-1159 |#1|))) (-15 -3021 ((-1159 |#1|) (-1159 |#1|))) (-15 -3032 ((-1159 |#1|) (-1159 |#1|))) (-15 -3043 ((-1159 |#1|) (-1159 |#1|))) (-15 -3057 ((-1159 |#1|) (-1159 |#1|))) (-15 -3071 ((-1159 |#1|) (-1159 |#1|))) (-15 -3083 ((-1159 |#1|) (-1159 |#1|))) (-15 -3093 ((-1159 |#1|) (-1159 |#1|))) (-15 -3103 ((-1159 |#1|) (-1159 |#1|))) (-15 -3115 ((-1159 |#1|) (-1159 |#1|))) (-15 -3126 ((-1159 |#1|) (-1159 |#1|))) (-15 -3138 ((-1159 |#1|) (-1159 |#1|))) (-15 -3145 ((-1159 |#1|) (-1159 |#1|))) (-15 -3155 ((-1159 |#1|) (-1159 |#1|))) (-15 -3164 ((-1159 |#1|) (-1159 |#1|))) (-15 -3173 ((-1159 |#1|) (-1159 |#1|))) (-15 -3182 ((-1159 |#1|) (-1159 |#1|))) (-15 -3192 ((-1159 |#1|) (-1159 |#1|))) (-15 -3201 ((-1159 |#1|) (-1159 |#1|))) (-15 -3208 ((-1159 |#1|) (-1159 |#1|))) (-15 -3217 ((-1159 |#1|) (-1159 |#1|))) (-15 -3228 ((-1159 |#1|) (-1159 |#1|))) (-15 -3238 ((-1159 |#1|) (-1159 |#1|))) (-15 -3805 ((-1159 |#1|) (-1159 |#1|)))) (-38 (-410 (-567)))) (T -1164))
+((-3805 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-3238 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-3228 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-3217 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-3208 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-3201 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-3192 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-3182 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-3173 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-3164 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-3155 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-3145 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-3138 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-3126 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-3115 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-3103 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-3093 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-3083 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-3071 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-3057 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-3043 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-3032 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-3021 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-3008 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-3072 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-3955 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))))
+(-10 -7 (-15 -3955 ((-1159 |#1|) (-1159 |#1|))) (-15 -3072 ((-1159 |#1|) (-1159 |#1|))) (-15 ** ((-1159 |#1|) (-1159 |#1|) (-1159 |#1|))) (-15 -3008 ((-1159 |#1|) (-1159 |#1|))) (-15 -3021 ((-1159 |#1|) (-1159 |#1|))) (-15 -3032 ((-1159 |#1|) (-1159 |#1|))) (-15 -3043 ((-1159 |#1|) (-1159 |#1|))) (-15 -3057 ((-1159 |#1|) (-1159 |#1|))) (-15 -3071 ((-1159 |#1|) (-1159 |#1|))) (-15 -3083 ((-1159 |#1|) (-1159 |#1|))) (-15 -3093 ((-1159 |#1|) (-1159 |#1|))) (-15 -3103 ((-1159 |#1|) (-1159 |#1|))) (-15 -3115 ((-1159 |#1|) (-1159 |#1|))) (-15 -3126 ((-1159 |#1|) (-1159 |#1|))) (-15 -3138 ((-1159 |#1|) (-1159 |#1|))) (-15 -3145 ((-1159 |#1|) (-1159 |#1|))) (-15 -3155 ((-1159 |#1|) (-1159 |#1|))) (-15 -3164 ((-1159 |#1|) (-1159 |#1|))) (-15 -3173 ((-1159 |#1|) (-1159 |#1|))) (-15 -3182 ((-1159 |#1|) (-1159 |#1|))) (-15 -3192 ((-1159 |#1|) (-1159 |#1|))) (-15 -3201 ((-1159 |#1|) (-1159 |#1|))) (-15 -3208 ((-1159 |#1|) (-1159 |#1|))) (-15 -3217 ((-1159 |#1|) (-1159 |#1|))) (-15 -3228 ((-1159 |#1|) (-1159 |#1|))) (-15 -3238 ((-1159 |#1|) (-1159 |#1|))) (-15 -3805 ((-1159 |#1|) (-1159 |#1|))))
+((-3164 (((-1159 |#1|) (-1159 |#1|)) 108)) (-3032 (((-1159 |#1|) (-1159 |#1|)) 65)) (-2749 (((-2 (|:| -3145 (-1159 |#1|)) (|:| -3155 (-1159 |#1|))) (-1159 |#1|)) 104)) (-3145 (((-1159 |#1|) (-1159 |#1|)) 105)) (-3309 (((-2 (|:| -3008 (-1159 |#1|)) (|:| -3021 (-1159 |#1|))) (-1159 |#1|)) 54)) (-3008 (((-1159 |#1|) (-1159 |#1|)) 55)) (-3182 (((-1159 |#1|) (-1159 |#1|)) 110)) (-3057 (((-1159 |#1|) (-1159 |#1|)) 72)) (-3072 (((-1159 |#1|) (-1159 |#1|)) 40)) (-3955 (((-1159 |#1|) (-1159 |#1|)) 37)) (-3192 (((-1159 |#1|) (-1159 |#1|)) 111)) (-3071 (((-1159 |#1|) (-1159 |#1|)) 73)) (-3173 (((-1159 |#1|) (-1159 |#1|)) 109)) (-3043 (((-1159 |#1|) (-1159 |#1|)) 68)) (-3155 (((-1159 |#1|) (-1159 |#1|)) 106)) (-3021 (((-1159 |#1|) (-1159 |#1|)) 56)) (-3217 (((-1159 |#1|) (-1159 |#1|)) 119)) (-3103 (((-1159 |#1|) (-1159 |#1|)) 94)) (-3201 (((-1159 |#1|) (-1159 |#1|)) 113)) (-3083 (((-1159 |#1|) (-1159 |#1|)) 90)) (-3238 (((-1159 |#1|) (-1159 |#1|)) 123)) (-3126 (((-1159 |#1|) (-1159 |#1|)) 98)) (-3805 (((-1159 |#1|) (-1159 |#1|)) 125)) (-3138 (((-1159 |#1|) (-1159 |#1|)) 100)) (-3228 (((-1159 |#1|) (-1159 |#1|)) 121)) (-3115 (((-1159 |#1|) (-1159 |#1|)) 96)) (-3208 (((-1159 |#1|) (-1159 |#1|)) 115)) (-3093 (((-1159 |#1|) (-1159 |#1|)) 92)) (** (((-1159 |#1|) (-1159 |#1|) (-1159 |#1|)) 41)))
+(((-1165 |#1|) (-10 -7 (-15 -3955 ((-1159 |#1|) (-1159 |#1|))) (-15 -3072 ((-1159 |#1|) (-1159 |#1|))) (-15 ** ((-1159 |#1|) (-1159 |#1|) (-1159 |#1|))) (-15 -3309 ((-2 (|:| -3008 (-1159 |#1|)) (|:| -3021 (-1159 |#1|))) (-1159 |#1|))) (-15 -3008 ((-1159 |#1|) (-1159 |#1|))) (-15 -3021 ((-1159 |#1|) (-1159 |#1|))) (-15 -3032 ((-1159 |#1|) (-1159 |#1|))) (-15 -3043 ((-1159 |#1|) (-1159 |#1|))) (-15 -3057 ((-1159 |#1|) (-1159 |#1|))) (-15 -3071 ((-1159 |#1|) (-1159 |#1|))) (-15 -3083 ((-1159 |#1|) (-1159 |#1|))) (-15 -3093 ((-1159 |#1|) (-1159 |#1|))) (-15 -3103 ((-1159 |#1|) (-1159 |#1|))) (-15 -3115 ((-1159 |#1|) (-1159 |#1|))) (-15 -3126 ((-1159 |#1|) (-1159 |#1|))) (-15 -3138 ((-1159 |#1|) (-1159 |#1|))) (-15 -2749 ((-2 (|:| -3145 (-1159 |#1|)) (|:| -3155 (-1159 |#1|))) (-1159 |#1|))) (-15 -3145 ((-1159 |#1|) (-1159 |#1|))) (-15 -3155 ((-1159 |#1|) (-1159 |#1|))) (-15 -3164 ((-1159 |#1|) (-1159 |#1|))) (-15 -3173 ((-1159 |#1|) (-1159 |#1|))) (-15 -3182 ((-1159 |#1|) (-1159 |#1|))) (-15 -3192 ((-1159 |#1|) (-1159 |#1|))) (-15 -3201 ((-1159 |#1|) (-1159 |#1|))) (-15 -3208 ((-1159 |#1|) (-1159 |#1|))) (-15 -3217 ((-1159 |#1|) (-1159 |#1|))) (-15 -3228 ((-1159 |#1|) (-1159 |#1|))) (-15 -3238 ((-1159 |#1|) (-1159 |#1|))) (-15 -3805 ((-1159 |#1|) (-1159 |#1|)))) (-38 (-410 (-567)))) (T -1165))
+((-3805 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1165 *3)))) (-3238 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1165 *3)))) (-3228 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1165 *3)))) (-3217 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1165 *3)))) (-3208 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1165 *3)))) (-3201 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1165 *3)))) (-3192 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1165 *3)))) (-3182 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1165 *3)))) (-3173 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1165 *3)))) (-3164 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1165 *3)))) (-3155 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1165 *3)))) (-3145 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1165 *3)))) (-2749 (*1 *2 *3) (-12 (-4 *4 (-38 (-410 (-567)))) (-5 *2 (-2 (|:| -3145 (-1159 *4)) (|:| -3155 (-1159 *4)))) (-5 *1 (-1165 *4)) (-5 *3 (-1159 *4)))) (-3138 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1165 *3)))) (-3126 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1165 *3)))) (-3115 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1165 *3)))) (-3103 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1165 *3)))) (-3093 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1165 *3)))) (-3083 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1165 *3)))) (-3071 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1165 *3)))) (-3057 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1165 *3)))) (-3043 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1165 *3)))) (-3032 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1165 *3)))) (-3021 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1165 *3)))) (-3008 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1165 *3)))) (-3309 (*1 *2 *3) (-12 (-4 *4 (-38 (-410 (-567)))) (-5 *2 (-2 (|:| -3008 (-1159 *4)) (|:| -3021 (-1159 *4)))) (-5 *1 (-1165 *4)) (-5 *3 (-1159 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1165 *3)))) (-3072 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1165 *3)))) (-3955 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1165 *3)))))
+(-10 -7 (-15 -3955 ((-1159 |#1|) (-1159 |#1|))) (-15 -3072 ((-1159 |#1|) (-1159 |#1|))) (-15 ** ((-1159 |#1|) (-1159 |#1|) (-1159 |#1|))) (-15 -3309 ((-2 (|:| -3008 (-1159 |#1|)) (|:| -3021 (-1159 |#1|))) (-1159 |#1|))) (-15 -3008 ((-1159 |#1|) (-1159 |#1|))) (-15 -3021 ((-1159 |#1|) (-1159 |#1|))) (-15 -3032 ((-1159 |#1|) (-1159 |#1|))) (-15 -3043 ((-1159 |#1|) (-1159 |#1|))) (-15 -3057 ((-1159 |#1|) (-1159 |#1|))) (-15 -3071 ((-1159 |#1|) (-1159 |#1|))) (-15 -3083 ((-1159 |#1|) (-1159 |#1|))) (-15 -3093 ((-1159 |#1|) (-1159 |#1|))) (-15 -3103 ((-1159 |#1|) (-1159 |#1|))) (-15 -3115 ((-1159 |#1|) (-1159 |#1|))) (-15 -3126 ((-1159 |#1|) (-1159 |#1|))) (-15 -3138 ((-1159 |#1|) (-1159 |#1|))) (-15 -2749 ((-2 (|:| -3145 (-1159 |#1|)) (|:| -3155 (-1159 |#1|))) (-1159 |#1|))) (-15 -3145 ((-1159 |#1|) (-1159 |#1|))) (-15 -3155 ((-1159 |#1|) (-1159 |#1|))) (-15 -3164 ((-1159 |#1|) (-1159 |#1|))) (-15 -3173 ((-1159 |#1|) (-1159 |#1|))) (-15 -3182 ((-1159 |#1|) (-1159 |#1|))) (-15 -3192 ((-1159 |#1|) (-1159 |#1|))) (-15 -3201 ((-1159 |#1|) (-1159 |#1|))) (-15 -3208 ((-1159 |#1|) (-1159 |#1|))) (-15 -3217 ((-1159 |#1|) (-1159 |#1|))) (-15 -3228 ((-1159 |#1|) (-1159 |#1|))) (-15 -3238 ((-1159 |#1|) (-1159 |#1|))) (-15 -3805 ((-1159 |#1|) (-1159 |#1|))))
+((-1684 (((-960 |#2|) |#2| |#2|) 51)) (-2989 ((|#2| |#2| |#1|) 19 (|has| |#1| (-308)))))
+(((-1166 |#1| |#2|) (-10 -7 (-15 -1684 ((-960 |#2|) |#2| |#2|)) (IF (|has| |#1| (-308)) (-15 -2989 (|#2| |#2| |#1|)) |%noBranch|)) (-559) (-1245 |#1|)) (T -1166))
+((-2989 (*1 *2 *2 *3) (-12 (-4 *3 (-308)) (-4 *3 (-559)) (-5 *1 (-1166 *3 *2)) (-4 *2 (-1245 *3)))) (-1684 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-960 *3)) (-5 *1 (-1166 *4 *3)) (-4 *3 (-1245 *4)))))
+(-10 -7 (-15 -1684 ((-960 |#2|) |#2| |#2|)) (IF (|has| |#1| (-308)) (-15 -2989 (|#2| |#2| |#1|)) |%noBranch|))
+((-2412 (((-112) $ $) NIL)) (-1530 (($ $ (-645 (-772))) 81)) (-2095 (($) 33)) (-3422 (($ $) 51)) (-3542 (((-645 $) $) 60)) (-2567 (((-112) $) 19)) (-3738 (((-645 (-945 |#2|)) $) 88)) (-1794 (($ $) 82)) (-2995 (((-772) $) 47)) (-2858 (($) 32)) (-1945 (($ $ (-645 (-772)) (-945 |#2|)) 74) (($ $ (-645 (-772)) (-772)) 75) (($ $ (-772) (-945 |#2|)) 77)) (-2473 (($ $ $) 57) (($ (-645 $)) 59)) (-2102 (((-772) $) 89)) (-1323 (((-112) $) 15)) (-2516 (((-1161) $) NIL)) (-1636 (((-112) $) 22)) (-3437 (((-1122) $) NIL)) (-2911 (((-171) $) 87)) (-2685 (((-945 |#2|) $) 83)) (-2629 (((-772) $) 84)) (-3185 (((-112) $) 86)) (-1514 (($ $ (-645 (-772)) (-171)) 80)) (-1364 (($ $) 52)) (-4129 (((-863) $) 100)) (-1440 (($ $ (-645 (-772)) (-112)) 79)) (-3469 (((-645 $) $) 11)) (-2864 (($ $ (-772)) 46)) (-2358 (($ $) 43)) (-3357 (((-112) $ $) NIL)) (-3599 (($ $ $ (-945 |#2|) (-772)) 70)) (-4039 (($ $ (-945 |#2|)) 69)) (-2300 (($ $ (-645 (-772)) (-945 |#2|)) 66) (($ $ (-645 (-772)) (-772)) 72) (((-772) $ (-945 |#2|)) 73)) (-2946 (((-112) $ $) 94)))
+(((-1167 |#1| |#2|) (-13 (-1102) (-10 -8 (-15 -1323 ((-112) $)) (-15 -2567 ((-112) $)) (-15 -1636 ((-112) $)) (-15 -2858 ($)) (-15 -2095 ($)) (-15 -2358 ($ $)) (-15 -2864 ($ $ (-772))) (-15 -3469 ((-645 $) $)) (-15 -2995 ((-772) $)) (-15 -3422 ($ $)) (-15 -1364 ($ $)) (-15 -2473 ($ $ $)) (-15 -2473 ($ (-645 $))) (-15 -3542 ((-645 $) $)) (-15 -2300 ($ $ (-645 (-772)) (-945 |#2|))) (-15 -4039 ($ $ (-945 |#2|))) (-15 -3599 ($ $ $ (-945 |#2|) (-772))) (-15 -1945 ($ $ (-645 (-772)) (-945 |#2|))) (-15 -2300 ($ $ (-645 (-772)) (-772))) (-15 -1945 ($ $ (-645 (-772)) (-772))) (-15 -2300 ((-772) $ (-945 |#2|))) (-15 -1945 ($ $ (-772) (-945 |#2|))) (-15 -1440 ($ $ (-645 (-772)) (-112))) (-15 -1514 ($ $ (-645 (-772)) (-171))) (-15 -1530 ($ $ (-645 (-772)))) (-15 -2685 ((-945 |#2|) $)) (-15 -2629 ((-772) $)) (-15 -3185 ((-112) $)) (-15 -2911 ((-171) $)) (-15 -2102 ((-772) $)) (-15 -1794 ($ $)) (-15 -3738 ((-645 (-945 |#2|)) $)))) (-923) (-1051)) (T -1167))
+((-1323 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1167 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1051)))) (-2567 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1167 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1051)))) (-1636 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1167 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1051)))) (-2858 (*1 *1) (-12 (-5 *1 (-1167 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1051)))) (-2095 (*1 *1) (-12 (-5 *1 (-1167 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1051)))) (-2358 (*1 *1 *1) (-12 (-5 *1 (-1167 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1051)))) (-2864 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-1167 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1051)))) (-3469 (*1 *2 *1) (-12 (-5 *2 (-645 (-1167 *3 *4))) (-5 *1 (-1167 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1051)))) (-2995 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1167 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1051)))) (-3422 (*1 *1 *1) (-12 (-5 *1 (-1167 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1051)))) (-1364 (*1 *1 *1) (-12 (-5 *1 (-1167 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1051)))) (-2473 (*1 *1 *1 *1) (-12 (-5 *1 (-1167 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1051)))) (-2473 (*1 *1 *2) (-12 (-5 *2 (-645 (-1167 *3 *4))) (-5 *1 (-1167 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1051)))) (-3542 (*1 *2 *1) (-12 (-5 *2 (-645 (-1167 *3 *4))) (-5 *1 (-1167 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1051)))) (-2300 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-772))) (-5 *3 (-945 *5)) (-4 *5 (-1051)) (-5 *1 (-1167 *4 *5)) (-14 *4 (-923)))) (-4039 (*1 *1 *1 *2) (-12 (-5 *2 (-945 *4)) (-4 *4 (-1051)) (-5 *1 (-1167 *3 *4)) (-14 *3 (-923)))) (-3599 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-945 *5)) (-5 *3 (-772)) (-4 *5 (-1051)) (-5 *1 (-1167 *4 *5)) (-14 *4 (-923)))) (-1945 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-772))) (-5 *3 (-945 *5)) (-4 *5 (-1051)) (-5 *1 (-1167 *4 *5)) (-14 *4 (-923)))) (-2300 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-772))) (-5 *3 (-772)) (-5 *1 (-1167 *4 *5)) (-14 *4 (-923)) (-4 *5 (-1051)))) (-1945 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-772))) (-5 *3 (-772)) (-5 *1 (-1167 *4 *5)) (-14 *4 (-923)) (-4 *5 (-1051)))) (-2300 (*1 *2 *1 *3) (-12 (-5 *3 (-945 *5)) (-4 *5 (-1051)) (-5 *2 (-772)) (-5 *1 (-1167 *4 *5)) (-14 *4 (-923)))) (-1945 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-772)) (-5 *3 (-945 *5)) (-4 *5 (-1051)) (-5 *1 (-1167 *4 *5)) (-14 *4 (-923)))) (-1440 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-772))) (-5 *3 (-112)) (-5 *1 (-1167 *4 *5)) (-14 *4 (-923)) (-4 *5 (-1051)))) (-1514 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-772))) (-5 *3 (-171)) (-5 *1 (-1167 *4 *5)) (-14 *4 (-923)) (-4 *5 (-1051)))) (-1530 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-772))) (-5 *1 (-1167 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1051)))) (-2685 (*1 *2 *1) (-12 (-5 *2 (-945 *4)) (-5 *1 (-1167 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1051)))) (-2629 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1167 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1051)))) (-3185 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1167 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1051)))) (-2911 (*1 *2 *1) (-12 (-5 *2 (-171)) (-5 *1 (-1167 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1051)))) (-2102 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1167 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1051)))) (-1794 (*1 *1 *1) (-12 (-5 *1 (-1167 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1051)))) (-3738 (*1 *2 *1) (-12 (-5 *2 (-645 (-945 *4))) (-5 *1 (-1167 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1051)))))
+(-13 (-1102) (-10 -8 (-15 -1323 ((-112) $)) (-15 -2567 ((-112) $)) (-15 -1636 ((-112) $)) (-15 -2858 ($)) (-15 -2095 ($)) (-15 -2358 ($ $)) (-15 -2864 ($ $ (-772))) (-15 -3469 ((-645 $) $)) (-15 -2995 ((-772) $)) (-15 -3422 ($ $)) (-15 -1364 ($ $)) (-15 -2473 ($ $ $)) (-15 -2473 ($ (-645 $))) (-15 -3542 ((-645 $) $)) (-15 -2300 ($ $ (-645 (-772)) (-945 |#2|))) (-15 -4039 ($ $ (-945 |#2|))) (-15 -3599 ($ $ $ (-945 |#2|) (-772))) (-15 -1945 ($ $ (-645 (-772)) (-945 |#2|))) (-15 -2300 ($ $ (-645 (-772)) (-772))) (-15 -1945 ($ $ (-645 (-772)) (-772))) (-15 -2300 ((-772) $ (-945 |#2|))) (-15 -1945 ($ $ (-772) (-945 |#2|))) (-15 -1440 ($ $ (-645 (-772)) (-112))) (-15 -1514 ($ $ (-645 (-772)) (-171))) (-15 -1530 ($ $ (-645 (-772)))) (-15 -2685 ((-945 |#2|) $)) (-15 -2629 ((-772) $)) (-15 -3185 ((-112) $)) (-15 -2911 ((-171) $)) (-15 -2102 ((-772) $)) (-15 -1794 ($ $)) (-15 -3738 ((-645 (-945 |#2|)) $))))
+((-2412 (((-112) $ $) NIL)) (-4102 ((|#2| $) 11)) (-4089 ((|#1| $) 10)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4145 (($ |#1| |#2|) 9)) (-4129 (((-863) $) 16)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)))
+(((-1168 |#1| |#2|) (-13 (-1102) (-10 -8 (-15 -4145 ($ |#1| |#2|)) (-15 -4089 (|#1| $)) (-15 -4102 (|#2| $)))) (-1102) (-1102)) (T -1168))
+((-4145 (*1 *1 *2 *3) (-12 (-5 *1 (-1168 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-1102)))) (-4089 (*1 *2 *1) (-12 (-4 *2 (-1102)) (-5 *1 (-1168 *2 *3)) (-4 *3 (-1102)))) (-4102 (*1 *2 *1) (-12 (-4 *2 (-1102)) (-5 *1 (-1168 *3 *2)) (-4 *3 (-1102)))))
+(-13 (-1102) (-10 -8 (-15 -4145 ($ |#1| |#2|)) (-15 -4089 (|#1| $)) (-15 -4102 (|#2| $))))
+((-2412 (((-112) $ $) NIL)) (-3360 (((-1137) $) 9)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) 15) (($ (-1184)) NIL) (((-1184) $) NIL)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)))
+(((-1169) (-13 (-1085) (-10 -8 (-15 -3360 ((-1137) $))))) (T -1169))
+((-3360 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1169)))))
+(-13 (-1085) (-10 -8 (-15 -3360 ((-1137) $))))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-4014 (((-1177 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1177 |#1| |#2| |#3|) (-308)) (|has| |#1| (-365))))) (-2859 (((-645 (-1084)) $) NIL)) (-3653 (((-1179) $) 11)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) NIL (-2811 (-12 (|has| (-1177 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1177 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))) (|has| |#1| (-559))))) (-4287 (($ $) NIL (-2811 (-12 (|has| (-1177 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1177 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))) (|has| |#1| (-559))))) (-2286 (((-112) $) NIL (-2811 (-12 (|has| (-1177 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1177 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))) (|has| |#1| (-559))))) (-3748 (($ $ (-567)) NIL) (($ $ (-567) (-567)) 75)) (-3006 (((-1159 (-2 (|:| |k| (-567)) (|:| |c| |#1|))) $) NIL)) (-1638 (((-1177 |#1| |#2| |#3|) $) 42)) (-4363 (((-3 (-1177 |#1| |#2| |#3|) "failed") $) 32)) (-2907 (((-1177 |#1| |#2| |#3|) $) 33)) (-3164 (($ $) 116 (|has| |#1| (-38 (-410 (-567)))))) (-3032 (($ $) 92 (|has| |#1| (-38 (-410 (-567)))))) (-2376 (((-3 $ "failed") $ $) NIL)) (-2029 (((-421 (-1175 $)) (-1175 $)) NIL (-12 (|has| (-1177 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))))) (-3659 (($ $) NIL (|has| |#1| (-365)))) (-3597 (((-421 $) $) NIL (|has| |#1| (-365)))) (-2728 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3610 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) NIL (-12 (|has| (-1177 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))))) (-3696 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3145 (($ $) 112 (|has| |#1| (-38 (-410 (-567)))))) (-3008 (($ $) 88 (|has| |#1| (-38 (-410 (-567)))))) (-2677 (((-567) $) NIL (-12 (|has| (-1177 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))))) (-1317 (($ (-1159 (-2 (|:| |k| (-567)) (|:| |c| |#1|)))) NIL)) (-3182 (($ $) 120 (|has| |#1| (-38 (-410 (-567)))))) (-3057 (($ $) 96 (|has| |#1| (-38 (-410 (-567)))))) (-3647 (($) NIL T CONST)) (-3765 (((-3 (-1177 |#1| |#2| |#3|) "failed") $) 34) (((-3 (-1179) "failed") $) NIL (-12 (|has| (-1177 |#1| |#2| |#3|) (-1040 (-1179))) (|has| |#1| (-365)))) (((-3 (-410 (-567)) "failed") $) NIL (-12 (|has| (-1177 |#1| |#2| |#3|) (-1040 (-567))) (|has| |#1| (-365)))) (((-3 (-567) "failed") $) NIL (-12 (|has| (-1177 |#1| |#2| |#3|) (-1040 (-567))) (|has| |#1| (-365))))) (-2051 (((-1177 |#1| |#2| |#3|) $) 140) (((-1179) $) NIL (-12 (|has| (-1177 |#1| |#2| |#3|) (-1040 (-1179))) (|has| |#1| (-365)))) (((-410 (-567)) $) NIL (-12 (|has| (-1177 |#1| |#2| |#3|) (-1040 (-567))) (|has| |#1| (-365)))) (((-567) $) NIL (-12 (|has| (-1177 |#1| |#2| |#3|) (-1040 (-567))) (|has| |#1| (-365))))) (-3337 (($ $) 37) (($ (-567) $) 38)) (-2357 (($ $ $) NIL (|has| |#1| (-365)))) (-3023 (($ $) NIL)) (-1423 (((-690 (-1177 |#1| |#2| |#3|)) (-690 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -4208 (-690 (-1177 |#1| |#2| |#3|))) (|:| |vec| (-1269 (-1177 |#1| |#2| |#3|)))) (-690 $) (-1269 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (-12 (|has| (-1177 |#1| |#2| |#3|) (-640 (-567))) (|has| |#1| (-365)))) (((-690 (-567)) (-690 $)) NIL (-12 (|has| (-1177 |#1| |#2| |#3|) (-640 (-567))) (|has| |#1| (-365))))) (-3588 (((-3 $ "failed") $) 54)) (-2445 (((-410 (-954 |#1|)) $ (-567)) 74 (|has| |#1| (-559))) (((-410 (-954 |#1|)) $ (-567) (-567)) 76 (|has| |#1| (-559)))) (-1359 (($) NIL (-12 (|has| (-1177 |#1| |#2| |#3|) (-548)) (|has| |#1| (-365))))) (-2368 (($ $ $) NIL (|has| |#1| (-365)))) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-3502 (((-112) $) NIL (|has| |#1| (-365)))) (-3137 (((-112) $) NIL (-12 (|has| (-1177 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))))) (-3086 (((-112) $) 28)) (-1484 (($) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3193 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (-12 (|has| (-1177 |#1| |#2| |#3|) (-888 (-381))) (|has| |#1| (-365)))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (-12 (|has| (-1177 |#1| |#2| |#3|) (-888 (-567))) (|has| |#1| (-365))))) (-3362 (((-567) $) NIL) (((-567) $ (-567)) 26)) (-4346 (((-112) $) NIL)) (-1863 (($ $) NIL (|has| |#1| (-365)))) (-1447 (((-1177 |#1| |#2| |#3|) $) 44 (|has| |#1| (-365)))) (-3698 (($ $ (-567)) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3067 (((-3 $ "failed") $) NIL (-12 (|has| (-1177 |#1| |#2| |#3|) (-1154)) (|has| |#1| (-365))))) (-3465 (((-112) $) NIL (-12 (|has| (-1177 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))))) (-1343 (($ $ (-923)) NIL)) (-3406 (($ (-1 |#1| (-567)) $) NIL)) (-1469 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-3770 (((-112) $) NIL)) (-2836 (($ |#1| (-567)) 19) (($ $ (-1084) (-567)) NIL) (($ $ (-645 (-1084)) (-645 (-567))) NIL)) (-1365 (($ $ $) NIL (-2811 (-12 (|has| (-1177 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1177 |#1| |#2| |#3|) (-851)) (|has| |#1| (-365)))))) (-3002 (($ $ $) NIL (-2811 (-12 (|has| (-1177 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1177 |#1| |#2| |#3|) (-851)) (|has| |#1| (-365)))))) (-3841 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1177 |#1| |#2| |#3|) (-1177 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-365)))) (-3072 (($ $) 81 (|has| |#1| (-38 (-410 (-567)))))) (-2985 (($ $) NIL)) (-2996 ((|#1| $) NIL)) (-2751 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2917 (($ (-567) (-1177 |#1| |#2| |#3|)) 36)) (-2516 (((-1161) $) NIL)) (-2949 (($ $) NIL (|has| |#1| (-365)))) (-4083 (($ $) 79 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1179)) NIL (-2811 (-12 (|has| |#1| (-15 -4083 (|#1| |#1| (-1179)))) (|has| |#1| (-15 -2859 ((-645 (-1179)) |#1|))) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-961)) (|has| |#1| (-1204))))) (($ $ (-1265 |#2|)) 80 (|has| |#1| (-38 (-410 (-567)))))) (-2694 (($) NIL (-12 (|has| (-1177 |#1| |#2| |#3|) (-1154)) (|has| |#1| (-365))) CONST)) (-3437 (((-1122) $) NIL)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| |#1| (-365)))) (-2785 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2554 (($ $) NIL (-12 (|has| (-1177 |#1| |#2| |#3|) (-308)) (|has| |#1| (-365))))) (-3969 (((-1177 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1177 |#1| |#2| |#3|) (-548)) (|has| |#1| (-365))))) (-3551 (((-421 (-1175 $)) (-1175 $)) NIL (-12 (|has| (-1177 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))))) (-2016 (((-421 (-1175 $)) (-1175 $)) NIL (-12 (|has| (-1177 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))))) (-2717 (((-421 $) $) NIL (|has| |#1| (-365)))) (-2905 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) NIL (|has| |#1| (-365)))) (-1874 (($ $ (-567)) 158)) (-2400 (((-3 $ "failed") $ $) 55 (-2811 (-12 (|has| (-1177 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1177 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))) (|has| |#1| (-559))))) (-2372 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-3955 (($ $) 82 (|has| |#1| (-38 (-410 (-567)))))) (-2642 (((-1159 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-567))))) (($ $ (-1179) (-1177 |#1| |#2| |#3|)) NIL (-12 (|has| (-1177 |#1| |#2| |#3|) (-517 (-1179) (-1177 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-645 (-1179)) (-645 (-1177 |#1| |#2| |#3|))) NIL (-12 (|has| (-1177 |#1| |#2| |#3|) (-517 (-1179) (-1177 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-645 (-295 (-1177 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1177 |#1| |#2| |#3|) (-310 (-1177 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-295 (-1177 |#1| |#2| |#3|))) NIL (-12 (|has| (-1177 |#1| |#2| |#3|) (-310 (-1177 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-1177 |#1| |#2| |#3|) (-1177 |#1| |#2| |#3|)) NIL (-12 (|has| (-1177 |#1| |#2| |#3|) (-310 (-1177 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-645 (-1177 |#1| |#2| |#3|)) (-645 (-1177 |#1| |#2| |#3|))) NIL (-12 (|has| (-1177 |#1| |#2| |#3|) (-310 (-1177 |#1| |#2| |#3|))) (|has| |#1| (-365))))) (-2460 (((-772) $) NIL (|has| |#1| (-365)))) (-1801 ((|#1| $ (-567)) NIL) (($ $ $) 61 (|has| (-567) (-1114))) (($ $ (-1177 |#1| |#2| |#3|)) NIL (-12 (|has| (-1177 |#1| |#2| |#3|) (-287 (-1177 |#1| |#2| |#3|) (-1177 |#1| |#2| |#3|))) (|has| |#1| (-365))))) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) NIL (|has| |#1| (-365)))) (-1616 (($ $ (-1 (-1177 |#1| |#2| |#3|) (-1177 |#1| |#2| |#3|))) NIL (|has| |#1| (-365))) (($ $ (-1 (-1177 |#1| |#2| |#3|) (-1177 |#1| |#2| |#3|)) (-772)) NIL (|has| |#1| (-365))) (($ $ (-1265 |#2|)) 57) (($ $ (-772)) NIL (-2811 (-12 (|has| (-1177 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $) 56 (-2811 (-12 (|has| (-1177 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (-2811 (-12 (|has| (-1177 |#1| |#2| |#3|) (-902 (-1179))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1179)))))) (($ $ (-1179) (-772)) NIL (-2811 (-12 (|has| (-1177 |#1| |#2| |#3|) (-902 (-1179))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1179)))))) (($ $ (-645 (-1179))) NIL (-2811 (-12 (|has| (-1177 |#1| |#2| |#3|) (-902 (-1179))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1179)))))) (($ $ (-1179)) NIL (-2811 (-12 (|has| (-1177 |#1| |#2| |#3|) (-902 (-1179))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1179))))))) (-1762 (($ $) NIL (|has| |#1| (-365)))) (-1462 (((-1177 |#1| |#2| |#3|) $) 46 (|has| |#1| (-365)))) (-3104 (((-567) $) 43)) (-3192 (($ $) 122 (|has| |#1| (-38 (-410 (-567)))))) (-3071 (($ $) 98 (|has| |#1| (-38 (-410 (-567)))))) (-3173 (($ $) 118 (|has| |#1| (-38 (-410 (-567)))))) (-3043 (($ $) 94 (|has| |#1| (-38 (-410 (-567)))))) (-3155 (($ $) 114 (|has| |#1| (-38 (-410 (-567)))))) (-3021 (($ $) 90 (|has| |#1| (-38 (-410 (-567)))))) (-3902 (((-539) $) NIL (-12 (|has| (-1177 |#1| |#2| |#3|) (-615 (-539))) (|has| |#1| (-365)))) (((-381) $) NIL (-12 (|has| (-1177 |#1| |#2| |#3|) (-1024)) (|has| |#1| (-365)))) (((-225) $) NIL (-12 (|has| (-1177 |#1| |#2| |#3|) (-1024)) (|has| |#1| (-365)))) (((-894 (-381)) $) NIL (-12 (|has| (-1177 |#1| |#2| |#3|) (-615 (-894 (-381)))) (|has| |#1| (-365)))) (((-894 (-567)) $) NIL (-12 (|has| (-1177 |#1| |#2| |#3|) (-615 (-894 (-567)))) (|has| |#1| (-365))))) (-2616 (((-3 (-1269 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| (-1177 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))))) (-1834 (($ $) NIL)) (-4129 (((-863) $) 162) (($ (-567)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1177 |#1| |#2| |#3|)) 30) (($ (-1265 |#2|)) 25) (($ (-1179)) NIL (-12 (|has| (-1177 |#1| |#2| |#3|) (-1040 (-1179))) (|has| |#1| (-365)))) (($ $) NIL (-2811 (-12 (|has| (-1177 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1177 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))) (|has| |#1| (-559)))) (($ (-410 (-567))) NIL (-2811 (-12 (|has| (-1177 |#1| |#2| |#3|) (-1040 (-567))) (|has| |#1| (-365))) (|has| |#1| (-38 (-410 (-567))))))) (-2558 ((|#1| $ (-567)) 77)) (-2118 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-145)) (|has| (-1177 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))) (-12 (|has| (-1177 |#1| |#2| |#3|) (-145)) (|has| |#1| (-365))) (|has| |#1| (-145))))) (-2746 (((-772)) NIL T CONST)) (-2185 ((|#1| $) 12)) (-1689 (((-1177 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1177 |#1| |#2| |#3|) (-548)) (|has| |#1| (-365))))) (-3357 (((-112) $ $) NIL)) (-3217 (($ $) 128 (|has| |#1| (-38 (-410 (-567)))))) (-3103 (($ $) 104 (|has| |#1| (-38 (-410 (-567)))))) (-3731 (((-112) $ $) NIL (-2811 (-12 (|has| (-1177 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1177 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))) (|has| |#1| (-559))))) (-3201 (($ $) 124 (|has| |#1| (-38 (-410 (-567)))))) (-3083 (($ $) 100 (|has| |#1| (-38 (-410 (-567)))))) (-3238 (($ $) 132 (|has| |#1| (-38 (-410 (-567)))))) (-3126 (($ $) 108 (|has| |#1| (-38 (-410 (-567)))))) (-3058 ((|#1| $ (-567)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-567)))) (|has| |#1| (-15 -4129 (|#1| (-1179))))))) (-3805 (($ $) 134 (|has| |#1| (-38 (-410 (-567)))))) (-3138 (($ $) 110 (|has| |#1| (-38 (-410 (-567)))))) (-3228 (($ $) 130 (|has| |#1| (-38 (-410 (-567)))))) (-3115 (($ $) 106 (|has| |#1| (-38 (-410 (-567)))))) (-3208 (($ $) 126 (|has| |#1| (-38 (-410 (-567)))))) (-3093 (($ $) 102 (|has| |#1| (-38 (-410 (-567)))))) (-1547 (($ $) NIL (-12 (|has| (-1177 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))))) (-1733 (($) 21 T CONST)) (-1744 (($) 16 T CONST)) (-2647 (($ $ (-1 (-1177 |#1| |#2| |#3|) (-1177 |#1| |#2| |#3|))) NIL (|has| |#1| (-365))) (($ $ (-1 (-1177 |#1| |#2| |#3|) (-1177 |#1| |#2| |#3|)) (-772)) NIL (|has| |#1| (-365))) (($ $ (-772)) NIL (-2811 (-12 (|has| (-1177 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $) NIL (-2811 (-12 (|has| (-1177 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (-2811 (-12 (|has| (-1177 |#1| |#2| |#3|) (-902 (-1179))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1179)))))) (($ $ (-1179) (-772)) NIL (-2811 (-12 (|has| (-1177 |#1| |#2| |#3|) (-902 (-1179))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1179)))))) (($ $ (-645 (-1179))) NIL (-2811 (-12 (|has| (-1177 |#1| |#2| |#3|) (-902 (-1179))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1179)))))) (($ $ (-1179)) NIL (-2811 (-12 (|has| (-1177 |#1| |#2| |#3|) (-902 (-1179))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1179))))))) (-3004 (((-112) $ $) NIL (-2811 (-12 (|has| (-1177 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1177 |#1| |#2| |#3|) (-851)) (|has| |#1| (-365)))))) (-2980 (((-112) $ $) NIL (-2811 (-12 (|has| (-1177 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1177 |#1| |#2| |#3|) (-851)) (|has| |#1| (-365)))))) (-2946 (((-112) $ $) NIL)) (-2993 (((-112) $ $) NIL (-2811 (-12 (|has| (-1177 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1177 |#1| |#2| |#3|) (-851)) (|has| |#1| (-365)))))) (-2968 (((-112) $ $) NIL (-2811 (-12 (|has| (-1177 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1177 |#1| |#2| |#3|) (-851)) (|has| |#1| (-365)))))) (-3069 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) 49 (|has| |#1| (-365))) (($ (-1177 |#1| |#2| |#3|) (-1177 |#1| |#2| |#3|)) 50 (|has| |#1| (-365)))) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) 23)) (** (($ $ (-923)) NIL) (($ $ (-772)) 60) (($ $ (-567)) NIL (|has| |#1| (-365))) (($ $ $) 83 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 137 (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 35) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1177 |#1| |#2| |#3|)) 48 (|has| |#1| (-365))) (($ (-1177 |#1| |#2| |#3|) $) 47 (|has| |#1| (-365))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))))
+(((-1170 |#1| |#2| |#3|) (-13 (-1231 |#1| (-1177 |#1| |#2| |#3|)) (-10 -8 (-15 -4129 ($ (-1265 |#2|))) (-15 -1616 ($ $ (-1265 |#2|))) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -4083 ($ $ (-1265 |#2|))) |%noBranch|))) (-1051) (-1179) |#1|) (T -1170))
+((-4129 (*1 *1 *2) (-12 (-5 *2 (-1265 *4)) (-14 *4 (-1179)) (-5 *1 (-1170 *3 *4 *5)) (-4 *3 (-1051)) (-14 *5 *3))) (-1616 (*1 *1 *1 *2) (-12 (-5 *2 (-1265 *4)) (-14 *4 (-1179)) (-5 *1 (-1170 *3 *4 *5)) (-4 *3 (-1051)) (-14 *5 *3))) (-4083 (*1 *1 *1 *2) (-12 (-5 *2 (-1265 *4)) (-14 *4 (-1179)) (-5 *1 (-1170 *3 *4 *5)) (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)) (-14 *5 *3))))
+(-13 (-1231 |#1| (-1177 |#1| |#2| |#3|)) (-10 -8 (-15 -4129 ($ (-1265 |#2|))) (-15 -1616 ($ $ (-1265 |#2|))) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -4083 ($ $ (-1265 |#2|))) |%noBranch|)))
+((-3596 ((|#2| |#2| (-1094 |#2|)) 26) ((|#2| |#2| (-1179)) 28)))
+(((-1171 |#1| |#2|) (-10 -7 (-15 -3596 (|#2| |#2| (-1179))) (-15 -3596 (|#2| |#2| (-1094 |#2|)))) (-13 (-559) (-1040 (-567)) (-640 (-567))) (-13 (-433 |#1|) (-160) (-27) (-1204))) (T -1171))
+((-3596 (*1 *2 *2 *3) (-12 (-5 *3 (-1094 *2)) (-4 *2 (-13 (-433 *4) (-160) (-27) (-1204))) (-4 *4 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-1171 *4 *2)))) (-3596 (*1 *2 *2 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-1171 *4 *2)) (-4 *2 (-13 (-433 *4) (-160) (-27) (-1204))))))
+(-10 -7 (-15 -3596 (|#2| |#2| (-1179))) (-15 -3596 (|#2| |#2| (-1094 |#2|))))
+((-3596 (((-3 (-410 (-954 |#1|)) (-317 |#1|)) (-410 (-954 |#1|)) (-1094 (-410 (-954 |#1|)))) 31) (((-410 (-954 |#1|)) (-954 |#1|) (-1094 (-954 |#1|))) 44) (((-3 (-410 (-954 |#1|)) (-317 |#1|)) (-410 (-954 |#1|)) (-1179)) 33) (((-410 (-954 |#1|)) (-954 |#1|) (-1179)) 36)))
+(((-1172 |#1|) (-10 -7 (-15 -3596 ((-410 (-954 |#1|)) (-954 |#1|) (-1179))) (-15 -3596 ((-3 (-410 (-954 |#1|)) (-317 |#1|)) (-410 (-954 |#1|)) (-1179))) (-15 -3596 ((-410 (-954 |#1|)) (-954 |#1|) (-1094 (-954 |#1|)))) (-15 -3596 ((-3 (-410 (-954 |#1|)) (-317 |#1|)) (-410 (-954 |#1|)) (-1094 (-410 (-954 |#1|)))))) (-13 (-559) (-1040 (-567)))) (T -1172))
+((-3596 (*1 *2 *3 *4) (-12 (-5 *4 (-1094 (-410 (-954 *5)))) (-5 *3 (-410 (-954 *5))) (-4 *5 (-13 (-559) (-1040 (-567)))) (-5 *2 (-3 *3 (-317 *5))) (-5 *1 (-1172 *5)))) (-3596 (*1 *2 *3 *4) (-12 (-5 *4 (-1094 (-954 *5))) (-5 *3 (-954 *5)) (-4 *5 (-13 (-559) (-1040 (-567)))) (-5 *2 (-410 *3)) (-5 *1 (-1172 *5)))) (-3596 (*1 *2 *3 *4) (-12 (-5 *4 (-1179)) (-4 *5 (-13 (-559) (-1040 (-567)))) (-5 *2 (-3 (-410 (-954 *5)) (-317 *5))) (-5 *1 (-1172 *5)) (-5 *3 (-410 (-954 *5))))) (-3596 (*1 *2 *3 *4) (-12 (-5 *4 (-1179)) (-4 *5 (-13 (-559) (-1040 (-567)))) (-5 *2 (-410 (-954 *5))) (-5 *1 (-1172 *5)) (-5 *3 (-954 *5)))))
+(-10 -7 (-15 -3596 ((-410 (-954 |#1|)) (-954 |#1|) (-1179))) (-15 -3596 ((-3 (-410 (-954 |#1|)) (-317 |#1|)) (-410 (-954 |#1|)) (-1179))) (-15 -3596 ((-410 (-954 |#1|)) (-954 |#1|) (-1094 (-954 |#1|)))) (-15 -3596 ((-3 (-410 (-954 |#1|)) (-317 |#1|)) (-410 (-954 |#1|)) (-1094 (-410 (-954 |#1|))))))
+((-3841 (((-1175 |#2|) (-1 |#2| |#1|) (-1175 |#1|)) 13)))
+(((-1173 |#1| |#2|) (-10 -7 (-15 -3841 ((-1175 |#2|) (-1 |#2| |#1|) (-1175 |#1|)))) (-1051) (-1051)) (T -1173))
+((-3841 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1175 *5)) (-4 *5 (-1051)) (-4 *6 (-1051)) (-5 *2 (-1175 *6)) (-5 *1 (-1173 *5 *6)))))
+(-10 -7 (-15 -3841 ((-1175 |#2|) (-1 |#2| |#1|) (-1175 |#1|))))
+((-3597 (((-421 (-1175 (-410 |#4|))) (-1175 (-410 |#4|))) 51)) (-2717 (((-421 (-1175 (-410 |#4|))) (-1175 (-410 |#4|))) 52)))
+(((-1174 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2717 ((-421 (-1175 (-410 |#4|))) (-1175 (-410 |#4|)))) (-15 -3597 ((-421 (-1175 (-410 |#4|))) (-1175 (-410 |#4|))))) (-794) (-851) (-455) (-951 |#3| |#1| |#2|)) (T -1174))
+((-3597 (*1 *2 *3) (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-455)) (-4 *7 (-951 *6 *4 *5)) (-5 *2 (-421 (-1175 (-410 *7)))) (-5 *1 (-1174 *4 *5 *6 *7)) (-5 *3 (-1175 (-410 *7))))) (-2717 (*1 *2 *3) (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-455)) (-4 *7 (-951 *6 *4 *5)) (-5 *2 (-421 (-1175 (-410 *7)))) (-5 *1 (-1174 *4 *5 *6 *7)) (-5 *3 (-1175 (-410 *7))))))
+(-10 -7 (-15 -2717 ((-421 (-1175 (-410 |#4|))) (-1175 (-410 |#4|)))) (-15 -3597 ((-421 (-1175 (-410 |#4|))) (-1175 (-410 |#4|)))))
+((-2412 (((-112) $ $) 171)) (-3791 (((-112) $) 43)) (-2405 (((-1269 |#1|) $ (-772)) NIL)) (-2859 (((-645 (-1084)) $) NIL)) (-2323 (($ (-1175 |#1|)) NIL)) (-2684 (((-1175 $) $ (-1084)) 82) (((-1175 |#1|) $) 71)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-4287 (($ $) 164 (|has| |#1| (-559)))) (-2286 (((-112) $) NIL (|has| |#1| (-559)))) (-3849 (((-772) $) NIL) (((-772) $ (-645 (-1084))) NIL)) (-2376 (((-3 $ "failed") $ $) NIL)) (-3479 (($ $ $) 158 (|has| |#1| (-559)))) (-2029 (((-421 (-1175 $)) (-1175 $)) 95 (|has| |#1| (-911)))) (-3659 (($ $) NIL (|has| |#1| (-455)))) (-3597 (((-421 $) $) NIL (|has| |#1| (-455)))) (-3610 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) 115 (|has| |#1| (-911)))) (-3696 (((-112) $ $) NIL (|has| |#1| (-365)))) (-2520 (($ $ (-772)) 61)) (-3325 (($ $ (-772)) 63)) (-3542 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-455)))) (-3647 (($) NIL T CONST)) (-3765 (((-3 |#1| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-1084) "failed") $) NIL)) (-2051 ((|#1| $) NIL) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-1084) $) NIL)) (-3554 (($ $ $ (-1084)) NIL (|has| |#1| (-172))) ((|#1| $ $) 160 (|has| |#1| (-172)))) (-2357 (($ $ $) NIL (|has| |#1| (-365)))) (-3023 (($ $) 80)) (-1423 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4208 (-690 |#1|)) (|:| |vec| (-1269 |#1|))) (-690 $) (-1269 $)) NIL) (((-690 |#1|) (-690 $)) NIL)) (-3588 (((-3 $ "failed") $) NIL)) (-2368 (($ $ $) NIL (|has| |#1| (-365)))) (-2463 (($ $ $) 131)) (-1374 (($ $ $) NIL (|has| |#1| (-559)))) (-3410 (((-2 (|:| -3705 |#1|) (|:| -2654 $) (|:| -2023 $)) $ $) NIL (|has| |#1| (-559)))) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-2989 (($ $) 165 (|has| |#1| (-455))) (($ $ (-1084)) NIL (|has| |#1| (-455)))) (-3010 (((-645 $) $) NIL)) (-3502 (((-112) $) NIL (|has| |#1| (-911)))) (-3214 (($ $ |#1| (-772) $) 69)) (-3193 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (-12 (|has| (-1084) (-888 (-381))) (|has| |#1| (-888 (-381))))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (-12 (|has| (-1084) (-888 (-567))) (|has| |#1| (-888 (-567)))))) (-2417 (((-863) $ (-863)) 148)) (-3362 (((-772) $ $) NIL (|has| |#1| (-559)))) (-4346 (((-112) $) 48)) (-2851 (((-772) $) NIL)) (-3067 (((-3 $ "failed") $) NIL (|has| |#1| (-1154)))) (-2848 (($ (-1175 |#1|) (-1084)) 73) (($ (-1175 $) (-1084)) 89)) (-1343 (($ $ (-772)) 51)) (-1469 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-2659 (((-645 $) $) NIL)) (-3770 (((-112) $) NIL)) (-2836 (($ |#1| (-772)) 87) (($ $ (-1084) (-772)) NIL) (($ $ (-645 (-1084)) (-645 (-772))) NIL)) (-2742 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $ (-1084)) NIL) (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) 153)) (-2955 (((-772) $) NIL) (((-772) $ (-1084)) NIL) (((-645 (-772)) $ (-645 (-1084))) NIL)) (-3827 (($ (-1 (-772) (-772)) $) NIL)) (-3841 (($ (-1 |#1| |#1|) $) NIL)) (-2896 (((-1175 |#1|) $) NIL)) (-3221 (((-3 (-1084) "failed") $) NIL)) (-2985 (($ $) NIL)) (-2996 ((|#1| $) 76)) (-2751 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-2516 (((-1161) $) NIL)) (-3421 (((-2 (|:| -2654 $) (|:| -2023 $)) $ (-772)) 60)) (-3037 (((-3 (-645 $) "failed") $) NIL)) (-3774 (((-3 (-645 $) "failed") $) NIL)) (-3816 (((-3 (-2 (|:| |var| (-1084)) (|:| -3468 (-772))) "failed") $) NIL)) (-4083 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2694 (($) NIL (|has| |#1| (-1154)) CONST)) (-3437 (((-1122) $) NIL)) (-2960 (((-112) $) 50)) (-2971 ((|#1| $) NIL)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) 103 (|has| |#1| (-455)))) (-2785 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) 167 (|has| |#1| (-455)))) (-3166 (($ $ (-772) |#1| $) 123)) (-3551 (((-421 (-1175 $)) (-1175 $)) 101 (|has| |#1| (-911)))) (-2016 (((-421 (-1175 $)) (-1175 $)) 100 (|has| |#1| (-911)))) (-2717 (((-421 $) $) 108 (|has| |#1| (-911)))) (-2905 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) NIL (|has| |#1| (-365)))) (-2400 (((-3 $ "failed") $ |#1|) 163 (|has| |#1| (-559))) (((-3 $ "failed") $ $) 124 (|has| |#1| (-559)))) (-2372 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-2642 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-1084) |#1|) NIL) (($ $ (-645 (-1084)) (-645 |#1|)) NIL) (($ $ (-1084) $) NIL) (($ $ (-645 (-1084)) (-645 $)) NIL)) (-2460 (((-772) $) NIL (|has| |#1| (-365)))) (-1801 ((|#1| $ |#1|) 150) (($ $ $) 151) (((-410 $) (-410 $) (-410 $)) NIL (|has| |#1| (-559))) ((|#1| (-410 $) |#1|) NIL (|has| |#1| (-365))) (((-410 $) $ (-410 $)) NIL (|has| |#1| (-559)))) (-2776 (((-3 $ "failed") $ (-772)) 54)) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) 172 (|has| |#1| (-365)))) (-2433 (($ $ (-1084)) NIL (|has| |#1| (-172))) ((|#1| $) 156 (|has| |#1| (-172)))) (-1616 (($ $ (-1084)) NIL) (($ $ (-645 (-1084))) NIL) (($ $ (-1084) (-772)) NIL) (($ $ (-645 (-1084)) (-645 (-772))) NIL) (($ $ (-772)) NIL) (($ $) NIL) (($ $ (-1179)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3104 (((-772) $) 78) (((-772) $ (-1084)) NIL) (((-645 (-772)) $ (-645 (-1084))) NIL)) (-3902 (((-894 (-381)) $) NIL (-12 (|has| (-1084) (-615 (-894 (-381)))) (|has| |#1| (-615 (-894 (-381)))))) (((-894 (-567)) $) NIL (-12 (|has| (-1084) (-615 (-894 (-567)))) (|has| |#1| (-615 (-894 (-567)))))) (((-539) $) NIL (-12 (|has| (-1084) (-615 (-539))) (|has| |#1| (-615 (-539)))))) (-1849 ((|#1| $) 162 (|has| |#1| (-455))) (($ $ (-1084)) NIL (|has| |#1| (-455)))) (-2616 (((-3 (-1269 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-911))))) (-1409 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559))) (((-3 (-410 $) "failed") (-410 $) $) NIL (|has| |#1| (-559)))) (-4129 (((-863) $) 149) (($ (-567)) NIL) (($ |#1|) 77) (($ (-1084)) NIL) (($ (-410 (-567))) NIL (-2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567)))))) (($ $) NIL (|has| |#1| (-559)))) (-3601 (((-645 |#1|) $) NIL)) (-2558 ((|#1| $ (-772)) NIL) (($ $ (-1084) (-772)) NIL) (($ $ (-645 (-1084)) (-645 (-772))) NIL)) (-2118 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-145)) (|has| |#1| (-911))) (|has| |#1| (-145))))) (-2746 (((-772)) NIL T CONST)) (-3658 (($ $ $ (-772)) 41 (|has| |#1| (-172)))) (-3357 (((-112) $ $) NIL)) (-3731 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1733 (($) 17 T CONST)) (-1744 (($) 19 T CONST)) (-2647 (($ $ (-1084)) NIL) (($ $ (-645 (-1084))) NIL) (($ $ (-1084) (-772)) NIL) (($ $ (-645 (-1084)) (-645 (-772))) NIL) (($ $ (-772)) NIL) (($ $) NIL) (($ $ (-1179)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2946 (((-112) $ $) 120)) (-3069 (($ $ |#1|) 173 (|has| |#1| (-365)))) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) 90)) (** (($ $ (-923)) 14) (($ $ (-772)) 12)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 39) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) 129) (($ $ |#1|) NIL)))
+(((-1175 |#1|) (-13 (-1245 |#1|) (-10 -8 (-15 -2417 ((-863) $ (-863))) (-15 -3166 ($ $ (-772) |#1| $)))) (-1051)) (T -1175))
+((-2417 (*1 *2 *1 *2) (-12 (-5 *2 (-863)) (-5 *1 (-1175 *3)) (-4 *3 (-1051)))) (-3166 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1175 *3)) (-4 *3 (-1051)))))
+(-13 (-1245 |#1|) (-10 -8 (-15 -2417 ((-863) $ (-863))) (-15 -3166 ($ $ (-772) |#1| $))))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-2859 (((-645 (-1084)) $) NIL)) (-3653 (((-1179) $) 11)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-4287 (($ $) NIL (|has| |#1| (-559)))) (-2286 (((-112) $) NIL (|has| |#1| (-559)))) (-3748 (($ $ (-410 (-567))) NIL) (($ $ (-410 (-567)) (-410 (-567))) NIL)) (-3006 (((-1159 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|))) $) NIL)) (-3164 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3032 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2376 (((-3 $ "failed") $ $) NIL)) (-3659 (($ $) NIL (|has| |#1| (-365)))) (-3597 (((-421 $) $) NIL (|has| |#1| (-365)))) (-2728 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3696 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3145 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3008 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1317 (($ (-772) (-1159 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|)))) NIL)) (-3182 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3057 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3647 (($) NIL T CONST)) (-3765 (((-3 (-1170 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1177 |#1| |#2| |#3|) "failed") $) 36)) (-2051 (((-1170 |#1| |#2| |#3|) $) NIL) (((-1177 |#1| |#2| |#3|) $) NIL)) (-2357 (($ $ $) NIL (|has| |#1| (-365)))) (-3023 (($ $) NIL)) (-3588 (((-3 $ "failed") $) NIL)) (-1838 (((-410 (-567)) $) 59)) (-2368 (($ $ $) NIL (|has| |#1| (-365)))) (-2928 (($ (-410 (-567)) (-1170 |#1| |#2| |#3|)) NIL)) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-3502 (((-112) $) NIL (|has| |#1| (-365)))) (-3086 (((-112) $) NIL)) (-1484 (($) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3362 (((-410 (-567)) $) NIL) (((-410 (-567)) $ (-410 (-567))) NIL)) (-4346 (((-112) $) NIL)) (-3698 (($ $ (-567)) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1343 (($ $ (-923)) NIL) (($ $ (-410 (-567))) NIL)) (-1469 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-3770 (((-112) $) NIL)) (-2836 (($ |#1| (-410 (-567))) 20) (($ $ (-1084) (-410 (-567))) NIL) (($ $ (-645 (-1084)) (-645 (-410 (-567)))) NIL)) (-3841 (($ (-1 |#1| |#1|) $) NIL)) (-3072 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2985 (($ $) NIL)) (-2996 ((|#1| $) NIL)) (-2751 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-4182 (((-1170 |#1| |#2| |#3|) $) 41)) (-1948 (((-3 (-1170 |#1| |#2| |#3|) "failed") $) NIL)) (-2917 (((-1170 |#1| |#2| |#3|) $) NIL)) (-2516 (((-1161) $) NIL)) (-2949 (($ $) NIL (|has| |#1| (-365)))) (-4083 (($ $) 39 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1179)) NIL (-2811 (-12 (|has| |#1| (-15 -4083 (|#1| |#1| (-1179)))) (|has| |#1| (-15 -2859 ((-645 (-1179)) |#1|))) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-961)) (|has| |#1| (-1204))))) (($ $ (-1265 |#2|)) 40 (|has| |#1| (-38 (-410 (-567)))))) (-3437 (((-1122) $) NIL)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| |#1| (-365)))) (-2785 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2717 (((-421 $) $) NIL (|has| |#1| (-365)))) (-2905 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) NIL (|has| |#1| (-365)))) (-1874 (($ $ (-410 (-567))) NIL)) (-2400 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-2372 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-3955 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2642 (((-1159 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))))) (-2460 (((-772) $) NIL (|has| |#1| (-365)))) (-1801 ((|#1| $ (-410 (-567))) NIL) (($ $ $) NIL (|has| (-410 (-567)) (-1114)))) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) NIL (|has| |#1| (-365)))) (-1616 (($ $ (-645 (-1179)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-1179) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-645 (-1179))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-1179)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $ (-1265 |#2|)) 38)) (-3104 (((-410 (-567)) $) NIL)) (-3192 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3071 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3173 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3043 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3155 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3021 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1834 (($ $) NIL)) (-4129 (((-863) $) 62) (($ (-567)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1170 |#1| |#2| |#3|)) 30) (($ (-1177 |#1| |#2| |#3|)) 31) (($ (-1265 |#2|)) 26) (($ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $) NIL (|has| |#1| (-559)))) (-2558 ((|#1| $ (-410 (-567))) NIL)) (-2118 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2746 (((-772)) NIL T CONST)) (-2185 ((|#1| $) 12)) (-3357 (((-112) $ $) NIL)) (-3217 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3103 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3731 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3201 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3083 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3238 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3126 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3058 ((|#1| $ (-410 (-567))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))) (|has| |#1| (-15 -4129 (|#1| (-1179))))))) (-3805 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3138 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3228 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3115 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3208 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3093 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1733 (($) 22 T CONST)) (-1744 (($) 16 T CONST)) (-2647 (($ $ (-645 (-1179)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-1179) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-645 (-1179))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-1179)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (-2946 (((-112) $ $) NIL)) (-3069 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) 24)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))))
+(((-1176 |#1| |#2| |#3|) (-13 (-1252 |#1| (-1170 |#1| |#2| |#3|)) (-1040 (-1177 |#1| |#2| |#3|)) (-617 (-1265 |#2|)) (-10 -8 (-15 -1616 ($ $ (-1265 |#2|))) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -4083 ($ $ (-1265 |#2|))) |%noBranch|))) (-1051) (-1179) |#1|) (T -1176))
+((-1616 (*1 *1 *1 *2) (-12 (-5 *2 (-1265 *4)) (-14 *4 (-1179)) (-5 *1 (-1176 *3 *4 *5)) (-4 *3 (-1051)) (-14 *5 *3))) (-4083 (*1 *1 *1 *2) (-12 (-5 *2 (-1265 *4)) (-14 *4 (-1179)) (-5 *1 (-1176 *3 *4 *5)) (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)) (-14 *5 *3))))
+(-13 (-1252 |#1| (-1170 |#1| |#2| |#3|)) (-1040 (-1177 |#1| |#2| |#3|)) (-617 (-1265 |#2|)) (-10 -8 (-15 -1616 ($ $ (-1265 |#2|))) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -4083 ($ $ (-1265 |#2|))) |%noBranch|)))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) 131)) (-2859 (((-645 (-1084)) $) NIL)) (-3653 (((-1179) $) 121)) (-1758 (((-1242 |#2| |#1|) $ (-772)) 69)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-4287 (($ $) NIL (|has| |#1| (-559)))) (-2286 (((-112) $) NIL (|has| |#1| (-559)))) (-3748 (($ $ (-772)) 85) (($ $ (-772) (-772)) 82)) (-3006 (((-1159 (-2 (|:| |k| (-772)) (|:| |c| |#1|))) $) 107)) (-3164 (($ $) 175 (|has| |#1| (-38 (-410 (-567)))))) (-3032 (($ $) 151 (|has| |#1| (-38 (-410 (-567)))))) (-2376 (((-3 $ "failed") $ $) NIL)) (-2728 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3145 (($ $) 171 (|has| |#1| (-38 (-410 (-567)))))) (-3008 (($ $) 147 (|has| |#1| (-38 (-410 (-567)))))) (-1317 (($ (-1159 (-2 (|:| |k| (-772)) (|:| |c| |#1|)))) 120) (($ (-1159 |#1|)) 115)) (-3182 (($ $) 179 (|has| |#1| (-38 (-410 (-567)))))) (-3057 (($ $) 155 (|has| |#1| (-38 (-410 (-567)))))) (-3647 (($) NIL T CONST)) (-3023 (($ $) NIL)) (-3588 (((-3 $ "failed") $) 25)) (-4232 (($ $) 28)) (-3736 (((-954 |#1|) $ (-772)) 81) (((-954 |#1|) $ (-772) (-772)) 83)) (-3086 (((-112) $) 126)) (-1484 (($) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3362 (((-772) $) 128) (((-772) $ (-772)) 130)) (-4346 (((-112) $) NIL)) (-3698 (($ $ (-567)) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1343 (($ $ (-923)) NIL)) (-3406 (($ (-1 |#1| (-567)) $) NIL)) (-3770 (((-112) $) NIL)) (-2836 (($ |#1| (-772)) 13) (($ $ (-1084) (-772)) NIL) (($ $ (-645 (-1084)) (-645 (-772))) NIL)) (-3841 (($ (-1 |#1| |#1|) $) NIL)) (-3072 (($ $) 137 (|has| |#1| (-38 (-410 (-567)))))) (-2985 (($ $) NIL)) (-2996 ((|#1| $) NIL)) (-2516 (((-1161) $) NIL)) (-4083 (($ $) 135 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1179)) NIL (-2811 (-12 (|has| |#1| (-15 -4083 (|#1| |#1| (-1179)))) (|has| |#1| (-15 -2859 ((-645 (-1179)) |#1|))) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-961)) (|has| |#1| (-1204))))) (($ $ (-1265 |#2|)) 136 (|has| |#1| (-38 (-410 (-567)))))) (-3437 (((-1122) $) NIL)) (-1874 (($ $ (-772)) 15)) (-2400 (((-3 $ "failed") $ $) 26 (|has| |#1| (-559)))) (-3955 (($ $) 139 (|has| |#1| (-38 (-410 (-567)))))) (-2642 (((-1159 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-772)))))) (-1801 ((|#1| $ (-772)) 124) (($ $ $) 134 (|has| (-772) (-1114)))) (-1616 (($ $ (-645 (-1179)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-1179) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-645 (-1179))) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-1179)) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-772) |#1|)))) (($ $) 29 (|has| |#1| (-15 * (|#1| (-772) |#1|)))) (($ $ (-1265 |#2|)) 31)) (-3104 (((-772) $) NIL)) (-3192 (($ $) 181 (|has| |#1| (-38 (-410 (-567)))))) (-3071 (($ $) 157 (|has| |#1| (-38 (-410 (-567)))))) (-3173 (($ $) 177 (|has| |#1| (-38 (-410 (-567)))))) (-3043 (($ $) 153 (|has| |#1| (-38 (-410 (-567)))))) (-3155 (($ $) 173 (|has| |#1| (-38 (-410 (-567)))))) (-3021 (($ $) 149 (|has| |#1| (-38 (-410 (-567)))))) (-1834 (($ $) NIL)) (-4129 (((-863) $) 208) (($ (-567)) NIL) (($ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $) NIL (|has| |#1| (-559))) (($ |#1|) 132 (|has| |#1| (-172))) (($ (-1242 |#2| |#1|)) 55) (($ (-1265 |#2|)) 36)) (-3601 (((-1159 |#1|) $) 103)) (-2558 ((|#1| $ (-772)) 123)) (-2118 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2746 (((-772)) NIL T CONST)) (-2185 ((|#1| $) 58)) (-3357 (((-112) $ $) NIL)) (-3217 (($ $) 187 (|has| |#1| (-38 (-410 (-567)))))) (-3103 (($ $) 163 (|has| |#1| (-38 (-410 (-567)))))) (-3731 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3201 (($ $) 183 (|has| |#1| (-38 (-410 (-567)))))) (-3083 (($ $) 159 (|has| |#1| (-38 (-410 (-567)))))) (-3238 (($ $) 191 (|has| |#1| (-38 (-410 (-567)))))) (-3126 (($ $) 167 (|has| |#1| (-38 (-410 (-567)))))) (-3058 ((|#1| $ (-772)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-772)))) (|has| |#1| (-15 -4129 (|#1| (-1179))))))) (-3805 (($ $) 193 (|has| |#1| (-38 (-410 (-567)))))) (-3138 (($ $) 169 (|has| |#1| (-38 (-410 (-567)))))) (-3228 (($ $) 189 (|has| |#1| (-38 (-410 (-567)))))) (-3115 (($ $) 165 (|has| |#1| (-38 (-410 (-567)))))) (-3208 (($ $) 185 (|has| |#1| (-38 (-410 (-567)))))) (-3093 (($ $) 161 (|has| |#1| (-38 (-410 (-567)))))) (-1733 (($) 17 T CONST)) (-1744 (($) 20 T CONST)) (-2647 (($ $ (-645 (-1179)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-1179) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-645 (-1179))) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-1179)) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-772) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-772) |#1|))))) (-2946 (((-112) $ $) NIL)) (-3069 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3053 (($ $) NIL) (($ $ $) 200)) (-3041 (($ $ $) 35)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ |#1|) 205 (|has| |#1| (-365))) (($ $ $) 140 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 143 (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 138) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))))
+(((-1177 |#1| |#2| |#3|) (-13 (-1260 |#1|) (-10 -8 (-15 -4129 ($ (-1242 |#2| |#1|))) (-15 -1758 ((-1242 |#2| |#1|) $ (-772))) (-15 -4129 ($ (-1265 |#2|))) (-15 -1616 ($ $ (-1265 |#2|))) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -4083 ($ $ (-1265 |#2|))) |%noBranch|))) (-1051) (-1179) |#1|) (T -1177))
+((-4129 (*1 *1 *2) (-12 (-5 *2 (-1242 *4 *3)) (-4 *3 (-1051)) (-14 *4 (-1179)) (-14 *5 *3) (-5 *1 (-1177 *3 *4 *5)))) (-1758 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1242 *5 *4)) (-5 *1 (-1177 *4 *5 *6)) (-4 *4 (-1051)) (-14 *5 (-1179)) (-14 *6 *4))) (-4129 (*1 *1 *2) (-12 (-5 *2 (-1265 *4)) (-14 *4 (-1179)) (-5 *1 (-1177 *3 *4 *5)) (-4 *3 (-1051)) (-14 *5 *3))) (-1616 (*1 *1 *1 *2) (-12 (-5 *2 (-1265 *4)) (-14 *4 (-1179)) (-5 *1 (-1177 *3 *4 *5)) (-4 *3 (-1051)) (-14 *5 *3))) (-4083 (*1 *1 *1 *2) (-12 (-5 *2 (-1265 *4)) (-14 *4 (-1179)) (-5 *1 (-1177 *3 *4 *5)) (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)) (-14 *5 *3))))
+(-13 (-1260 |#1|) (-10 -8 (-15 -4129 ($ (-1242 |#2| |#1|))) (-15 -1758 ((-1242 |#2| |#1|) $ (-772))) (-15 -4129 ($ (-1265 |#2|))) (-15 -1616 ($ $ (-1265 |#2|))) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -4083 ($ $ (-1265 |#2|))) |%noBranch|)))
+((-4129 (((-863) $) 33) (($ (-1179)) 35)) (-2811 (($ (-3 (|:| I (-317 (-567))) (|:| -3888 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3888 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 46)) (-2801 (($ (-3 (|:| I (-317 (-567))) (|:| -3888 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 39) (($ $) 40)) (-2459 (($ (-3 (|:| I (-317 (-567))) (|:| -3888 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3888 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 41)) (-2448 (($ (-3 (|:| I (-317 (-567))) (|:| -3888 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3888 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 43)) (-2436 (($ (-3 (|:| I (-317 (-567))) (|:| -3888 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3888 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 42)) (-2425 (($ (-3 (|:| I (-317 (-567))) (|:| -3888 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3888 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 44)) (-2109 (($ (-3 (|:| I (-317 (-567))) (|:| -3888 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3888 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 47)) (-12 (($ (-3 (|:| I (-317 (-567))) (|:| -3888 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3888 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 45)))
+(((-1178) (-13 (-614 (-863)) (-10 -8 (-15 -4129 ($ (-1179))) (-15 -2459 ($ (-3 (|:| I (-317 (-567))) (|:| -3888 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3888 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2436 ($ (-3 (|:| I (-317 (-567))) (|:| -3888 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3888 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2448 ($ (-3 (|:| I (-317 (-567))) (|:| -3888 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3888 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2425 ($ (-3 (|:| I (-317 (-567))) (|:| -3888 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3888 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2811 ($ (-3 (|:| I (-317 (-567))) (|:| -3888 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3888 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2109 ($ (-3 (|:| I (-317 (-567))) (|:| -3888 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3888 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-317 (-567))) (|:| -3888 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3888 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2801 ($ (-3 (|:| I (-317 (-567))) (|:| -3888 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2801 ($ $))))) (T -1178))
+((-4129 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1178)))) (-2459 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-567))) (|:| -3888 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1178)))) (-5 *1 (-1178)))) (-2436 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-567))) (|:| -3888 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1178)))) (-5 *1 (-1178)))) (-2448 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-567))) (|:| -3888 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1178)))) (-5 *1 (-1178)))) (-2425 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-567))) (|:| -3888 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1178)))) (-5 *1 (-1178)))) (-2811 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-567))) (|:| -3888 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1178)))) (-5 *1 (-1178)))) (-2109 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-567))) (|:| -3888 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1178)))) (-5 *1 (-1178)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-567))) (|:| -3888 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1178)))) (-5 *1 (-1178)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-567))) (|:| -3888 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1178)))) (-5 *1 (-1178)))) (-2801 (*1 *1 *1) (-5 *1 (-1178))))
+(-13 (-614 (-863)) (-10 -8 (-15 -4129 ($ (-1179))) (-15 -2459 ($ (-3 (|:| I (-317 (-567))) (|:| -3888 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3888 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2436 ($ (-3 (|:| I (-317 (-567))) (|:| -3888 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3888 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2448 ($ (-3 (|:| I (-317 (-567))) (|:| -3888 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3888 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2425 ($ (-3 (|:| I (-317 (-567))) (|:| -3888 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3888 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2811 ($ (-3 (|:| I (-317 (-567))) (|:| -3888 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3888 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2109 ($ (-3 (|:| I (-317 (-567))) (|:| -3888 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3888 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-317 (-567))) (|:| -3888 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -3888 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2801 ($ (-3 (|:| I (-317 (-567))) (|:| -3888 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2801 ($ $))))
+((-2412 (((-112) $ $) NIL)) (-2100 (($ $ (-645 (-863))) 64)) (-2814 (($ $ (-645 (-863))) 62)) (-3666 (((-1161) $) 103)) (-2348 (((-2 (|:| -3005 (-645 (-863))) (|:| -1325 (-645 (-863))) (|:| |presup| (-645 (-863))) (|:| -2875 (-645 (-863))) (|:| |args| (-645 (-863)))) $) 110)) (-1780 (((-112) $) 23)) (-4192 (($ $ (-645 (-645 (-863)))) 61) (($ $ (-2 (|:| -3005 (-645 (-863))) (|:| -1325 (-645 (-863))) (|:| |presup| (-645 (-863))) (|:| -2875 (-645 (-863))) (|:| |args| (-645 (-863))))) 101)) (-3647 (($) 166 T CONST)) (-4019 (((-1274)) 138)) (-3193 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) 71) (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) 78)) (-2858 (($) 124) (($ $) 133)) (-2007 (($ $) 102)) (-1365 (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (-2291 (((-645 $) $) 139)) (-2516 (((-1161) $) 116)) (-3437 (((-1122) $) NIL)) (-1801 (($ $ (-645 (-863))) 63)) (-3902 (((-539) $) 48) (((-1179) $) 49) (((-894 (-567)) $) 82) (((-894 (-381)) $) 80)) (-4129 (((-863) $) 55) (($ (-1161)) 50)) (-3357 (((-112) $ $) NIL)) (-1614 (($ $ (-645 (-863))) 65)) (-1335 (((-1161) $) 34) (((-1161) $ (-112)) 35) (((-1274) (-823) $) 36) (((-1274) (-823) $ (-112)) 37)) (-3004 (((-112) $ $) NIL)) (-2980 (((-112) $ $) NIL)) (-2946 (((-112) $ $) 51)) (-2993 (((-112) $ $) NIL)) (-2968 (((-112) $ $) 52)))
+(((-1179) (-13 (-851) (-615 (-539)) (-829) (-615 (-1179)) (-617 (-1161)) (-615 (-894 (-567))) (-615 (-894 (-381))) (-888 (-567)) (-888 (-381)) (-10 -8 (-15 -2858 ($)) (-15 -2858 ($ $)) (-15 -4019 ((-1274))) (-15 -2007 ($ $)) (-15 -1780 ((-112) $)) (-15 -2348 ((-2 (|:| -3005 (-645 (-863))) (|:| -1325 (-645 (-863))) (|:| |presup| (-645 (-863))) (|:| -2875 (-645 (-863))) (|:| |args| (-645 (-863)))) $)) (-15 -4192 ($ $ (-645 (-645 (-863))))) (-15 -4192 ($ $ (-2 (|:| -3005 (-645 (-863))) (|:| -1325 (-645 (-863))) (|:| |presup| (-645 (-863))) (|:| -2875 (-645 (-863))) (|:| |args| (-645 (-863)))))) (-15 -2814 ($ $ (-645 (-863)))) (-15 -2100 ($ $ (-645 (-863)))) (-15 -1614 ($ $ (-645 (-863)))) (-15 -1801 ($ $ (-645 (-863)))) (-15 -3666 ((-1161) $)) (-15 -2291 ((-645 $) $)) (-15 -3647 ($) -3304)))) (T -1179))
+((-2858 (*1 *1) (-5 *1 (-1179))) (-2858 (*1 *1 *1) (-5 *1 (-1179))) (-4019 (*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-1179)))) (-2007 (*1 *1 *1) (-5 *1 (-1179))) (-1780 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1179)))) (-2348 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3005 (-645 (-863))) (|:| -1325 (-645 (-863))) (|:| |presup| (-645 (-863))) (|:| -2875 (-645 (-863))) (|:| |args| (-645 (-863))))) (-5 *1 (-1179)))) (-4192 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-645 (-863)))) (-5 *1 (-1179)))) (-4192 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -3005 (-645 (-863))) (|:| -1325 (-645 (-863))) (|:| |presup| (-645 (-863))) (|:| -2875 (-645 (-863))) (|:| |args| (-645 (-863))))) (-5 *1 (-1179)))) (-2814 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-1179)))) (-2100 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-1179)))) (-1614 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-1179)))) (-1801 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-1179)))) (-3666 (*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-1179)))) (-2291 (*1 *2 *1) (-12 (-5 *2 (-645 (-1179))) (-5 *1 (-1179)))) (-3647 (*1 *1) (-5 *1 (-1179))))
+(-13 (-851) (-615 (-539)) (-829) (-615 (-1179)) (-617 (-1161)) (-615 (-894 (-567))) (-615 (-894 (-381))) (-888 (-567)) (-888 (-381)) (-10 -8 (-15 -2858 ($)) (-15 -2858 ($ $)) (-15 -4019 ((-1274))) (-15 -2007 ($ $)) (-15 -1780 ((-112) $)) (-15 -2348 ((-2 (|:| -3005 (-645 (-863))) (|:| -1325 (-645 (-863))) (|:| |presup| (-645 (-863))) (|:| -2875 (-645 (-863))) (|:| |args| (-645 (-863)))) $)) (-15 -4192 ($ $ (-645 (-645 (-863))))) (-15 -4192 ($ $ (-2 (|:| -3005 (-645 (-863))) (|:| -1325 (-645 (-863))) (|:| |presup| (-645 (-863))) (|:| -2875 (-645 (-863))) (|:| |args| (-645 (-863)))))) (-15 -2814 ($ $ (-645 (-863)))) (-15 -2100 ($ $ (-645 (-863)))) (-15 -1614 ($ $ (-645 (-863)))) (-15 -1801 ($ $ (-645 (-863)))) (-15 -3666 ((-1161) $)) (-15 -2291 ((-645 $) $)) (-15 -3647 ($) -3304)))
+((-4174 (((-1269 |#1|) |#1| (-923)) 18) (((-1269 |#1|) (-645 |#1|)) 25)))
+(((-1180 |#1|) (-10 -7 (-15 -4174 ((-1269 |#1|) (-645 |#1|))) (-15 -4174 ((-1269 |#1|) |#1| (-923)))) (-1051)) (T -1180))
+((-4174 (*1 *2 *3 *4) (-12 (-5 *4 (-923)) (-5 *2 (-1269 *3)) (-5 *1 (-1180 *3)) (-4 *3 (-1051)))) (-4174 (*1 *2 *3) (-12 (-5 *3 (-645 *4)) (-4 *4 (-1051)) (-5 *2 (-1269 *4)) (-5 *1 (-1180 *4)))))
+(-10 -7 (-15 -4174 ((-1269 |#1|) (-645 |#1|))) (-15 -4174 ((-1269 |#1|) |#1| (-923))))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-4287 (($ $) NIL (|has| |#1| (-559)))) (-2286 (((-112) $) NIL (|has| |#1| (-559)))) (-2376 (((-3 $ "failed") $ $) NIL)) (-3647 (($) NIL T CONST)) (-3765 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) NIL)) (-2051 (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) NIL)) (-3023 (($ $) NIL)) (-3588 (((-3 $ "failed") $) NIL)) (-2989 (($ $) NIL (|has| |#1| (-455)))) (-3214 (($ $ |#1| (-973) $) NIL)) (-4346 (((-112) $) 17)) (-2851 (((-772) $) NIL)) (-3770 (((-112) $) NIL)) (-2836 (($ |#1| (-973)) NIL)) (-2955 (((-973) $) NIL)) (-3827 (($ (-1 (-973) (-973)) $) NIL)) (-3841 (($ (-1 |#1| |#1|) $) NIL)) (-2985 (($ $) NIL)) (-2996 ((|#1| $) NIL)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-2960 (((-112) $) NIL)) (-2971 ((|#1| $) NIL)) (-3166 (($ $ (-973) |#1| $) NIL (-12 (|has| (-973) (-131)) (|has| |#1| (-559))))) (-2400 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559)))) (-3104 (((-973) $) NIL)) (-1849 ((|#1| $) NIL (|has| |#1| (-455)))) (-4129 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL (|has| |#1| (-559))) (($ |#1|) NIL) (($ (-410 (-567))) NIL (-2811 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567))))))) (-3601 (((-645 |#1|) $) NIL)) (-2558 ((|#1| $ (-973)) NIL)) (-2118 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2746 (((-772)) NIL T CONST)) (-3658 (($ $ $ (-772)) NIL (|has| |#1| (-172)))) (-3357 (((-112) $ $) NIL)) (-3731 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1733 (($) 11 T CONST)) (-1744 (($) NIL T CONST)) (-2946 (((-112) $ $) NIL)) (-3069 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) 21)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 22) (($ $ |#1|) NIL) (($ |#1| $) 16) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))))
+(((-1181 |#1|) (-13 (-327 |#1| (-973)) (-10 -8 (IF (|has| |#1| (-559)) (IF (|has| (-973) (-131)) (-15 -3166 ($ $ (-973) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4420)) (-6 -4420) |%noBranch|))) (-1051)) (T -1181))
+((-3166 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-973)) (-4 *2 (-131)) (-5 *1 (-1181 *3)) (-4 *3 (-559)) (-4 *3 (-1051)))))
+(-13 (-327 |#1| (-973)) (-10 -8 (IF (|has| |#1| (-559)) (IF (|has| (-973) (-131)) (-15 -3166 ($ $ (-973) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4420)) (-6 -4420) |%noBranch|)))
+((-1580 (((-1183) (-1179) $) 25)) (-3080 (($) 29)) (-2222 (((-3 (|:| |fst| (-437)) (|:| -4324 "void")) (-1179) $) 22)) (-1764 (((-1274) (-1179) (-3 (|:| |fst| (-437)) (|:| -4324 "void")) $) 41) (((-1274) (-1179) (-3 (|:| |fst| (-437)) (|:| -4324 "void"))) 42) (((-1274) (-3 (|:| |fst| (-437)) (|:| -4324 "void"))) 43)) (-2969 (((-1274) (-1179)) 58)) (-3945 (((-1274) (-1179) $) 55) (((-1274) (-1179)) 56) (((-1274)) 57)) (-3273 (((-1274) (-1179)) 37)) (-2888 (((-1179)) 36)) (-2701 (($) 34)) (-2770 (((-440) (-1179) (-440) (-1179) $) 45) (((-440) (-645 (-1179)) (-440) (-1179) $) 49) (((-440) (-1179) (-440)) 46) (((-440) (-1179) (-440) (-1179)) 50)) (-4350 (((-1179)) 35)) (-4129 (((-863) $) 28)) (-3110 (((-1274)) 30) (((-1274) (-1179)) 33)) (-4026 (((-645 (-1179)) (-1179) $) 24)) (-2226 (((-1274) (-1179) (-645 (-1179)) $) 38) (((-1274) (-1179) (-645 (-1179))) 39) (((-1274) (-645 (-1179))) 40)))
+(((-1182) (-13 (-614 (-863)) (-10 -8 (-15 -3080 ($)) (-15 -3110 ((-1274))) (-15 -3110 ((-1274) (-1179))) (-15 -2770 ((-440) (-1179) (-440) (-1179) $)) (-15 -2770 ((-440) (-645 (-1179)) (-440) (-1179) $)) (-15 -2770 ((-440) (-1179) (-440))) (-15 -2770 ((-440) (-1179) (-440) (-1179))) (-15 -3273 ((-1274) (-1179))) (-15 -4350 ((-1179))) (-15 -2888 ((-1179))) (-15 -2226 ((-1274) (-1179) (-645 (-1179)) $)) (-15 -2226 ((-1274) (-1179) (-645 (-1179)))) (-15 -2226 ((-1274) (-645 (-1179)))) (-15 -1764 ((-1274) (-1179) (-3 (|:| |fst| (-437)) (|:| -4324 "void")) $)) (-15 -1764 ((-1274) (-1179) (-3 (|:| |fst| (-437)) (|:| -4324 "void")))) (-15 -1764 ((-1274) (-3 (|:| |fst| (-437)) (|:| -4324 "void")))) (-15 -3945 ((-1274) (-1179) $)) (-15 -3945 ((-1274) (-1179))) (-15 -3945 ((-1274))) (-15 -2969 ((-1274) (-1179))) (-15 -2701 ($)) (-15 -2222 ((-3 (|:| |fst| (-437)) (|:| -4324 "void")) (-1179) $)) (-15 -4026 ((-645 (-1179)) (-1179) $)) (-15 -1580 ((-1183) (-1179) $))))) (T -1182))
+((-3080 (*1 *1) (-5 *1 (-1182))) (-3110 (*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-1182)))) (-3110 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1274)) (-5 *1 (-1182)))) (-2770 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-440)) (-5 *3 (-1179)) (-5 *1 (-1182)))) (-2770 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-440)) (-5 *3 (-645 (-1179))) (-5 *4 (-1179)) (-5 *1 (-1182)))) (-2770 (*1 *2 *3 *2) (-12 (-5 *2 (-440)) (-5 *3 (-1179)) (-5 *1 (-1182)))) (-2770 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-440)) (-5 *3 (-1179)) (-5 *1 (-1182)))) (-3273 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1274)) (-5 *1 (-1182)))) (-4350 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1182)))) (-2888 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1182)))) (-2226 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-645 (-1179))) (-5 *3 (-1179)) (-5 *2 (-1274)) (-5 *1 (-1182)))) (-2226 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-1179))) (-5 *3 (-1179)) (-5 *2 (-1274)) (-5 *1 (-1182)))) (-2226 (*1 *2 *3) (-12 (-5 *3 (-645 (-1179))) (-5 *2 (-1274)) (-5 *1 (-1182)))) (-1764 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1179)) (-5 *4 (-3 (|:| |fst| (-437)) (|:| -4324 "void"))) (-5 *2 (-1274)) (-5 *1 (-1182)))) (-1764 (*1 *2 *3 *4) (-12 (-5 *3 (-1179)) (-5 *4 (-3 (|:| |fst| (-437)) (|:| -4324 "void"))) (-5 *2 (-1274)) (-5 *1 (-1182)))) (-1764 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-437)) (|:| -4324 "void"))) (-5 *2 (-1274)) (-5 *1 (-1182)))) (-3945 (*1 *2 *3 *1) (-12 (-5 *3 (-1179)) (-5 *2 (-1274)) (-5 *1 (-1182)))) (-3945 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1274)) (-5 *1 (-1182)))) (-3945 (*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-1182)))) (-2969 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1274)) (-5 *1 (-1182)))) (-2701 (*1 *1) (-5 *1 (-1182))) (-2222 (*1 *2 *3 *1) (-12 (-5 *3 (-1179)) (-5 *2 (-3 (|:| |fst| (-437)) (|:| -4324 "void"))) (-5 *1 (-1182)))) (-4026 (*1 *2 *3 *1) (-12 (-5 *2 (-645 (-1179))) (-5 *1 (-1182)) (-5 *3 (-1179)))) (-1580 (*1 *2 *3 *1) (-12 (-5 *3 (-1179)) (-5 *2 (-1183)) (-5 *1 (-1182)))))
+(-13 (-614 (-863)) (-10 -8 (-15 -3080 ($)) (-15 -3110 ((-1274))) (-15 -3110 ((-1274) (-1179))) (-15 -2770 ((-440) (-1179) (-440) (-1179) $)) (-15 -2770 ((-440) (-645 (-1179)) (-440) (-1179) $)) (-15 -2770 ((-440) (-1179) (-440))) (-15 -2770 ((-440) (-1179) (-440) (-1179))) (-15 -3273 ((-1274) (-1179))) (-15 -4350 ((-1179))) (-15 -2888 ((-1179))) (-15 -2226 ((-1274) (-1179) (-645 (-1179)) $)) (-15 -2226 ((-1274) (-1179) (-645 (-1179)))) (-15 -2226 ((-1274) (-645 (-1179)))) (-15 -1764 ((-1274) (-1179) (-3 (|:| |fst| (-437)) (|:| -4324 "void")) $)) (-15 -1764 ((-1274) (-1179) (-3 (|:| |fst| (-437)) (|:| -4324 "void")))) (-15 -1764 ((-1274) (-3 (|:| |fst| (-437)) (|:| -4324 "void")))) (-15 -3945 ((-1274) (-1179) $)) (-15 -3945 ((-1274) (-1179))) (-15 -3945 ((-1274))) (-15 -2969 ((-1274) (-1179))) (-15 -2701 ($)) (-15 -2222 ((-3 (|:| |fst| (-437)) (|:| -4324 "void")) (-1179) $)) (-15 -4026 ((-645 (-1179)) (-1179) $)) (-15 -1580 ((-1183) (-1179) $))))
+((-2020 (((-645 (-645 (-3 (|:| -2007 (-1179)) (|:| -4320 (-645 (-3 (|:| S (-1179)) (|:| P (-954 (-567))))))))) $) 66)) (-2783 (((-645 (-3 (|:| -2007 (-1179)) (|:| -4320 (-645 (-3 (|:| S (-1179)) (|:| P (-954 (-567)))))))) (-437) $) 47)) (-1416 (($ (-645 (-2 (|:| -1809 (-1179)) (|:| -4236 (-440))))) 17)) (-2969 (((-1274) $) 74)) (-3877 (((-645 (-1179)) $) 22)) (-4354 (((-1106) $) 60)) (-2256 (((-440) (-1179) $) 27)) (-1593 (((-645 (-1179)) $) 30)) (-2701 (($) 19)) (-2770 (((-440) (-645 (-1179)) (-440) $) 25) (((-440) (-1179) (-440) $) 24)) (-4129 (((-863) $) 9) (((-1192 (-1179) (-440)) $) 13)))
+(((-1183) (-13 (-614 (-863)) (-10 -8 (-15 -4129 ((-1192 (-1179) (-440)) $)) (-15 -2701 ($)) (-15 -2770 ((-440) (-645 (-1179)) (-440) $)) (-15 -2770 ((-440) (-1179) (-440) $)) (-15 -2256 ((-440) (-1179) $)) (-15 -3877 ((-645 (-1179)) $)) (-15 -2783 ((-645 (-3 (|:| -2007 (-1179)) (|:| -4320 (-645 (-3 (|:| S (-1179)) (|:| P (-954 (-567)))))))) (-437) $)) (-15 -1593 ((-645 (-1179)) $)) (-15 -2020 ((-645 (-645 (-3 (|:| -2007 (-1179)) (|:| -4320 (-645 (-3 (|:| S (-1179)) (|:| P (-954 (-567))))))))) $)) (-15 -4354 ((-1106) $)) (-15 -2969 ((-1274) $)) (-15 -1416 ($ (-645 (-2 (|:| -1809 (-1179)) (|:| -4236 (-440))))))))) (T -1183))
+((-4129 (*1 *2 *1) (-12 (-5 *2 (-1192 (-1179) (-440))) (-5 *1 (-1183)))) (-2701 (*1 *1) (-5 *1 (-1183))) (-2770 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-440)) (-5 *3 (-645 (-1179))) (-5 *1 (-1183)))) (-2770 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-440)) (-5 *3 (-1179)) (-5 *1 (-1183)))) (-2256 (*1 *2 *3 *1) (-12 (-5 *3 (-1179)) (-5 *2 (-440)) (-5 *1 (-1183)))) (-3877 (*1 *2 *1) (-12 (-5 *2 (-645 (-1179))) (-5 *1 (-1183)))) (-2783 (*1 *2 *3 *1) (-12 (-5 *3 (-437)) (-5 *2 (-645 (-3 (|:| -2007 (-1179)) (|:| -4320 (-645 (-3 (|:| S (-1179)) (|:| P (-954 (-567))))))))) (-5 *1 (-1183)))) (-1593 (*1 *2 *1) (-12 (-5 *2 (-645 (-1179))) (-5 *1 (-1183)))) (-2020 (*1 *2 *1) (-12 (-5 *2 (-645 (-645 (-3 (|:| -2007 (-1179)) (|:| -4320 (-645 (-3 (|:| S (-1179)) (|:| P (-954 (-567)))))))))) (-5 *1 (-1183)))) (-4354 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-1183)))) (-2969 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-1183)))) (-1416 (*1 *1 *2) (-12 (-5 *2 (-645 (-2 (|:| -1809 (-1179)) (|:| -4236 (-440))))) (-5 *1 (-1183)))))
+(-13 (-614 (-863)) (-10 -8 (-15 -4129 ((-1192 (-1179) (-440)) $)) (-15 -2701 ($)) (-15 -2770 ((-440) (-645 (-1179)) (-440) $)) (-15 -2770 ((-440) (-1179) (-440) $)) (-15 -2256 ((-440) (-1179) $)) (-15 -3877 ((-645 (-1179)) $)) (-15 -2783 ((-645 (-3 (|:| -2007 (-1179)) (|:| -4320 (-645 (-3 (|:| S (-1179)) (|:| P (-954 (-567)))))))) (-437) $)) (-15 -1593 ((-645 (-1179)) $)) (-15 -2020 ((-645 (-645 (-3 (|:| -2007 (-1179)) (|:| -4320 (-645 (-3 (|:| S (-1179)) (|:| P (-954 (-567))))))))) $)) (-15 -4354 ((-1106) $)) (-15 -2969 ((-1274) $)) (-15 -1416 ($ (-645 (-2 (|:| -1809 (-1179)) (|:| -4236 (-440))))))))
+((-2412 (((-112) $ $) NIL)) (-3765 (((-3 (-567) "failed") $) 29) (((-3 (-225) "failed") $) 35) (((-3 (-509) "failed") $) 43) (((-3 (-1161) "failed") $) 47)) (-2051 (((-567) $) 30) (((-225) $) 36) (((-509) $) 40) (((-1161) $) 48)) (-2603 (((-112) $) 53)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-3513 (((-3 (-567) (-225) (-509) (-1161) $) $) 55)) (-2090 (((-645 $) $) 57)) (-3902 (((-1106) $) 24) (($ (-1106)) 25)) (-2598 (((-112) $) 56)) (-4129 (((-863) $) 23) (($ (-567)) 26) (($ (-225)) 32) (($ (-509)) 38) (($ (-1161)) 44) (((-539) $) 59) (((-567) $) 31) (((-225) $) 37) (((-509) $) 41) (((-1161) $) 49)) (-1719 (((-112) $ (|[\|\|]| (-567))) 10) (((-112) $ (|[\|\|]| (-225))) 13) (((-112) $ (|[\|\|]| (-509))) 19) (((-112) $ (|[\|\|]| (-1161))) 16)) (-3569 (($ (-509) (-645 $)) 51) (($ $ (-645 $)) 52)) (-3357 (((-112) $ $) NIL)) (-2533 (((-567) $) 27) (((-225) $) 33) (((-509) $) 39) (((-1161) $) 45)) (-2946 (((-112) $ $) 7)))
+(((-1184) (-13 (-1264) (-1102) (-1040 (-567)) (-1040 (-225)) (-1040 (-509)) (-1040 (-1161)) (-614 (-539)) (-10 -8 (-15 -3902 ((-1106) $)) (-15 -3902 ($ (-1106))) (-15 -4129 ((-567) $)) (-15 -2533 ((-567) $)) (-15 -4129 ((-225) $)) (-15 -2533 ((-225) $)) (-15 -4129 ((-509) $)) (-15 -2533 ((-509) $)) (-15 -4129 ((-1161) $)) (-15 -2533 ((-1161) $)) (-15 -3569 ($ (-509) (-645 $))) (-15 -3569 ($ $ (-645 $))) (-15 -2603 ((-112) $)) (-15 -3513 ((-3 (-567) (-225) (-509) (-1161) $) $)) (-15 -2090 ((-645 $) $)) (-15 -2598 ((-112) $)) (-15 -1719 ((-112) $ (|[\|\|]| (-567)))) (-15 -1719 ((-112) $ (|[\|\|]| (-225)))) (-15 -1719 ((-112) $ (|[\|\|]| (-509)))) (-15 -1719 ((-112) $ (|[\|\|]| (-1161))))))) (T -1184))
+((-3902 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-1184)))) (-3902 (*1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-1184)))) (-4129 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-1184)))) (-2533 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-1184)))) (-4129 (*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1184)))) (-2533 (*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1184)))) (-4129 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-1184)))) (-2533 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-1184)))) (-4129 (*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-1184)))) (-2533 (*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-1184)))) (-3569 (*1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-645 (-1184))) (-5 *1 (-1184)))) (-3569 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-1184))) (-5 *1 (-1184)))) (-2603 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1184)))) (-3513 (*1 *2 *1) (-12 (-5 *2 (-3 (-567) (-225) (-509) (-1161) (-1184))) (-5 *1 (-1184)))) (-2090 (*1 *2 *1) (-12 (-5 *2 (-645 (-1184))) (-5 *1 (-1184)))) (-2598 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1184)))) (-1719 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-567))) (-5 *2 (-112)) (-5 *1 (-1184)))) (-1719 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-225))) (-5 *2 (-112)) (-5 *1 (-1184)))) (-1719 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-509))) (-5 *2 (-112)) (-5 *1 (-1184)))) (-1719 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1161))) (-5 *2 (-112)) (-5 *1 (-1184)))))
+(-13 (-1264) (-1102) (-1040 (-567)) (-1040 (-225)) (-1040 (-509)) (-1040 (-1161)) (-614 (-539)) (-10 -8 (-15 -3902 ((-1106) $)) (-15 -3902 ($ (-1106))) (-15 -4129 ((-567) $)) (-15 -2533 ((-567) $)) (-15 -4129 ((-225) $)) (-15 -2533 ((-225) $)) (-15 -4129 ((-509) $)) (-15 -2533 ((-509) $)) (-15 -4129 ((-1161) $)) (-15 -2533 ((-1161) $)) (-15 -3569 ($ (-509) (-645 $))) (-15 -3569 ($ $ (-645 $))) (-15 -2603 ((-112) $)) (-15 -3513 ((-3 (-567) (-225) (-509) (-1161) $) $)) (-15 -2090 ((-645 $) $)) (-15 -2598 ((-112) $)) (-15 -1719 ((-112) $ (|[\|\|]| (-567)))) (-15 -1719 ((-112) $ (|[\|\|]| (-225)))) (-15 -1719 ((-112) $ (|[\|\|]| (-509)))) (-15 -1719 ((-112) $ (|[\|\|]| (-1161))))))
+((-2412 (((-112) $ $) NIL)) (-2384 (((-772)) 22)) (-3647 (($) 12 T CONST)) (-1359 (($) 26)) (-1365 (($ $ $) NIL) (($) 19 T CONST)) (-3002 (($ $ $) NIL) (($) 20 T CONST)) (-3474 (((-923) $) 24)) (-2516 (((-1161) $) NIL)) (-3779 (($ (-923)) 23)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) NIL)) (-3357 (((-112) $ $) NIL)) (-3004 (((-112) $ $) NIL)) (-2980 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2993 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)))
+(((-1185 |#1|) (-13 (-845) (-10 -8 (-15 -3647 ($) -3304))) (-923)) (T -1185))
+((-3647 (*1 *1) (-12 (-5 *1 (-1185 *2)) (-14 *2 (-923)))))
+(-13 (-845) (-10 -8 (-15 -3647 ($) -3304)))
((|Integer|) (NOT (> (INTEGER-LENGTH |#1|) @1)))
-((-2403 (((-112) $ $) NIL)) (-2375 (((-772)) NIL)) (-2585 (($) 19 T CONST)) (-1348 (($) NIL)) (-1354 (($ $ $) NIL) (($) 12 T CONST)) (-2981 (($ $ $) NIL) (($) 18 T CONST)) (-4249 (((-923) $) NIL)) (-1419 (((-1160) $) NIL)) (-3768 (($ (-923)) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-1729 (($ $ $) 21)) (-1717 (($ $ $) 20)) (-1745 (((-112) $ $) NIL)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) NIL)))
-(((-1185 |#1|) (-13 (-845) (-10 -8 (-15 -1717 ($ $ $)) (-15 -1729 ($ $ $)) (-15 -2585 ($) -3286))) (-923)) (T -1185))
-((-1717 (*1 *1 *1 *1) (-12 (-5 *1 (-1185 *2)) (-14 *2 (-923)))) (-1729 (*1 *1 *1 *1) (-12 (-5 *1 (-1185 *2)) (-14 *2 (-923)))) (-2585 (*1 *1) (-12 (-5 *1 (-1185 *2)) (-14 *2 (-923)))))
-(-13 (-845) (-10 -8 (-15 -1717 ($ $ $)) (-15 -1729 ($ $ $)) (-15 -2585 ($) -3286)))
+((-2412 (((-112) $ $) NIL)) (-2384 (((-772)) NIL)) (-3647 (($) 19 T CONST)) (-1359 (($) NIL)) (-1365 (($ $ $) NIL) (($) 12 T CONST)) (-3002 (($ $ $) NIL) (($) 18 T CONST)) (-3474 (((-923) $) NIL)) (-2516 (((-1161) $) NIL)) (-3779 (($ (-923)) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) NIL)) (-1746 (($ $ $) 21)) (-1734 (($ $ $) 20)) (-3357 (((-112) $ $) NIL)) (-3004 (((-112) $ $) NIL)) (-2980 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2993 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)))
+(((-1186 |#1|) (-13 (-845) (-10 -8 (-15 -1734 ($ $ $)) (-15 -1746 ($ $ $)) (-15 -3647 ($) -3304))) (-923)) (T -1186))
+((-1734 (*1 *1 *1 *1) (-12 (-5 *1 (-1186 *2)) (-14 *2 (-923)))) (-1746 (*1 *1 *1 *1) (-12 (-5 *1 (-1186 *2)) (-14 *2 (-923)))) (-3647 (*1 *1) (-12 (-5 *1 (-1186 *2)) (-14 *2 (-923)))))
+(-13 (-845) (-10 -8 (-15 -1734 ($ $ $)) (-15 -1746 ($ $ $)) (-15 -3647 ($) -3304)))
((|NonNegativeInteger|) (NOT (> (INTEGER-LENGTH |#1|) @1)))
-((-2403 (((-112) $ $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 9)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 7)))
-(((-1186) (-1102)) (T -1186))
+((-2412 (((-112) $ $) NIL)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) 9)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) 7)))
+(((-1187) (-1102)) (T -1187))
NIL
(-1102)
-((-1820 (((-645 (-645 (-954 |#1|))) (-645 (-410 (-954 |#1|))) (-645 (-1178))) 67)) (-3018 (((-645 (-295 (-410 (-954 |#1|)))) (-295 (-410 (-954 |#1|)))) 78) (((-645 (-295 (-410 (-954 |#1|)))) (-410 (-954 |#1|))) 74) (((-645 (-295 (-410 (-954 |#1|)))) (-295 (-410 (-954 |#1|))) (-1178)) 79) (((-645 (-295 (-410 (-954 |#1|)))) (-410 (-954 |#1|)) (-1178)) 73) (((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-295 (-410 (-954 |#1|))))) 106) (((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-410 (-954 |#1|)))) 105) (((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-295 (-410 (-954 |#1|)))) (-645 (-1178))) 107) (((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-410 (-954 |#1|))) (-645 (-1178))) 104)))
-(((-1187 |#1|) (-10 -7 (-15 -3018 ((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-410 (-954 |#1|))) (-645 (-1178)))) (-15 -3018 ((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-295 (-410 (-954 |#1|)))) (-645 (-1178)))) (-15 -3018 ((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-410 (-954 |#1|))))) (-15 -3018 ((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-295 (-410 (-954 |#1|)))))) (-15 -3018 ((-645 (-295 (-410 (-954 |#1|)))) (-410 (-954 |#1|)) (-1178))) (-15 -3018 ((-645 (-295 (-410 (-954 |#1|)))) (-295 (-410 (-954 |#1|))) (-1178))) (-15 -3018 ((-645 (-295 (-410 (-954 |#1|)))) (-410 (-954 |#1|)))) (-15 -3018 ((-645 (-295 (-410 (-954 |#1|)))) (-295 (-410 (-954 |#1|))))) (-15 -1820 ((-645 (-645 (-954 |#1|))) (-645 (-410 (-954 |#1|))) (-645 (-1178))))) (-559)) (T -1187))
-((-1820 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-410 (-954 *5)))) (-5 *4 (-645 (-1178))) (-4 *5 (-559)) (-5 *2 (-645 (-645 (-954 *5)))) (-5 *1 (-1187 *5)))) (-3018 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-645 (-295 (-410 (-954 *4))))) (-5 *1 (-1187 *4)) (-5 *3 (-295 (-410 (-954 *4)))))) (-3018 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-645 (-295 (-410 (-954 *4))))) (-5 *1 (-1187 *4)) (-5 *3 (-410 (-954 *4))))) (-3018 (*1 *2 *3 *4) (-12 (-5 *4 (-1178)) (-4 *5 (-559)) (-5 *2 (-645 (-295 (-410 (-954 *5))))) (-5 *1 (-1187 *5)) (-5 *3 (-295 (-410 (-954 *5)))))) (-3018 (*1 *2 *3 *4) (-12 (-5 *4 (-1178)) (-4 *5 (-559)) (-5 *2 (-645 (-295 (-410 (-954 *5))))) (-5 *1 (-1187 *5)) (-5 *3 (-410 (-954 *5))))) (-3018 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-645 (-645 (-295 (-410 (-954 *4)))))) (-5 *1 (-1187 *4)) (-5 *3 (-645 (-295 (-410 (-954 *4))))))) (-3018 (*1 *2 *3) (-12 (-5 *3 (-645 (-410 (-954 *4)))) (-4 *4 (-559)) (-5 *2 (-645 (-645 (-295 (-410 (-954 *4)))))) (-5 *1 (-1187 *4)))) (-3018 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-1178))) (-4 *5 (-559)) (-5 *2 (-645 (-645 (-295 (-410 (-954 *5)))))) (-5 *1 (-1187 *5)) (-5 *3 (-645 (-295 (-410 (-954 *5))))))) (-3018 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-410 (-954 *5)))) (-5 *4 (-645 (-1178))) (-4 *5 (-559)) (-5 *2 (-645 (-645 (-295 (-410 (-954 *5)))))) (-5 *1 (-1187 *5)))))
-(-10 -7 (-15 -3018 ((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-410 (-954 |#1|))) (-645 (-1178)))) (-15 -3018 ((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-295 (-410 (-954 |#1|)))) (-645 (-1178)))) (-15 -3018 ((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-410 (-954 |#1|))))) (-15 -3018 ((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-295 (-410 (-954 |#1|)))))) (-15 -3018 ((-645 (-295 (-410 (-954 |#1|)))) (-410 (-954 |#1|)) (-1178))) (-15 -3018 ((-645 (-295 (-410 (-954 |#1|)))) (-295 (-410 (-954 |#1|))) (-1178))) (-15 -3018 ((-645 (-295 (-410 (-954 |#1|)))) (-410 (-954 |#1|)))) (-15 -3018 ((-645 (-295 (-410 (-954 |#1|)))) (-295 (-410 (-954 |#1|))))) (-15 -1820 ((-645 (-645 (-954 |#1|))) (-645 (-410 (-954 |#1|))) (-645 (-1178)))))
-((-1891 (((-1160)) 7)) (-2810 (((-1160)) 11 T CONST)) (-3044 (((-1273) (-1160)) 13)) (-1837 (((-1160)) 8 T CONST)) (-3575 (((-130)) 10 T CONST)))
-(((-1188) (-13 (-1218) (-10 -7 (-15 -1891 ((-1160))) (-15 -1837 ((-1160)) -3286) (-15 -3575 ((-130)) -3286) (-15 -2810 ((-1160)) -3286) (-15 -3044 ((-1273) (-1160)))))) (T -1188))
-((-1891 (*1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-1188)))) (-1837 (*1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-1188)))) (-3575 (*1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-1188)))) (-2810 (*1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-1188)))) (-3044 (*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1188)))))
-(-13 (-1218) (-10 -7 (-15 -1891 ((-1160))) (-15 -1837 ((-1160)) -3286) (-15 -3575 ((-130)) -3286) (-15 -2810 ((-1160)) -3286) (-15 -3044 ((-1273) (-1160)))))
-((-3764 (((-645 (-645 |#1|)) (-645 (-645 |#1|)) (-645 (-645 (-645 |#1|)))) 56)) (-2899 (((-645 (-645 (-645 |#1|))) (-645 (-645 |#1|))) 38)) (-1743 (((-1190 (-645 |#1|)) (-645 |#1|)) 49)) (-3565 (((-645 (-645 |#1|)) (-645 |#1|)) 45)) (-2698 (((-2 (|:| |f1| (-645 |#1|)) (|:| |f2| (-645 (-645 (-645 |#1|)))) (|:| |f3| (-645 (-645 |#1|))) (|:| |f4| (-645 (-645 (-645 |#1|))))) (-645 (-645 (-645 |#1|)))) 53)) (-3761 (((-2 (|:| |f1| (-645 |#1|)) (|:| |f2| (-645 (-645 (-645 |#1|)))) (|:| |f3| (-645 (-645 |#1|))) (|:| |f4| (-645 (-645 (-645 |#1|))))) (-645 |#1|) (-645 (-645 (-645 |#1|))) (-645 (-645 |#1|)) (-645 (-645 (-645 |#1|))) (-645 (-645 (-645 |#1|))) (-645 (-645 (-645 |#1|)))) 52)) (-3828 (((-645 (-645 |#1|)) (-645 (-645 |#1|))) 43)) (-1401 (((-645 |#1|) (-645 |#1|)) 46)) (-1472 (((-645 (-645 (-645 |#1|))) (-645 |#1|) (-645 (-645 (-645 |#1|)))) 32)) (-2106 (((-645 (-645 (-645 |#1|))) (-1 (-112) |#1| |#1|) (-645 |#1|) (-645 (-645 (-645 |#1|)))) 29)) (-2351 (((-2 (|:| |fs| (-112)) (|:| |sd| (-645 |#1|)) (|:| |td| (-645 (-645 |#1|)))) (-1 (-112) |#1| |#1|) (-645 |#1|) (-645 (-645 |#1|))) 24)) (-2396 (((-645 (-645 |#1|)) (-645 (-645 (-645 |#1|)))) 58)) (-3733 (((-645 (-645 |#1|)) (-1190 (-645 |#1|))) 60)))
-(((-1189 |#1|) (-10 -7 (-15 -2351 ((-2 (|:| |fs| (-112)) (|:| |sd| (-645 |#1|)) (|:| |td| (-645 (-645 |#1|)))) (-1 (-112) |#1| |#1|) (-645 |#1|) (-645 (-645 |#1|)))) (-15 -2106 ((-645 (-645 (-645 |#1|))) (-1 (-112) |#1| |#1|) (-645 |#1|) (-645 (-645 (-645 |#1|))))) (-15 -1472 ((-645 (-645 (-645 |#1|))) (-645 |#1|) (-645 (-645 (-645 |#1|))))) (-15 -3764 ((-645 (-645 |#1|)) (-645 (-645 |#1|)) (-645 (-645 (-645 |#1|))))) (-15 -2396 ((-645 (-645 |#1|)) (-645 (-645 (-645 |#1|))))) (-15 -3733 ((-645 (-645 |#1|)) (-1190 (-645 |#1|)))) (-15 -2899 ((-645 (-645 (-645 |#1|))) (-645 (-645 |#1|)))) (-15 -1743 ((-1190 (-645 |#1|)) (-645 |#1|))) (-15 -3828 ((-645 (-645 |#1|)) (-645 (-645 |#1|)))) (-15 -3565 ((-645 (-645 |#1|)) (-645 |#1|))) (-15 -1401 ((-645 |#1|) (-645 |#1|))) (-15 -3761 ((-2 (|:| |f1| (-645 |#1|)) (|:| |f2| (-645 (-645 (-645 |#1|)))) (|:| |f3| (-645 (-645 |#1|))) (|:| |f4| (-645 (-645 (-645 |#1|))))) (-645 |#1|) (-645 (-645 (-645 |#1|))) (-645 (-645 |#1|)) (-645 (-645 (-645 |#1|))) (-645 (-645 (-645 |#1|))) (-645 (-645 (-645 |#1|))))) (-15 -2698 ((-2 (|:| |f1| (-645 |#1|)) (|:| |f2| (-645 (-645 (-645 |#1|)))) (|:| |f3| (-645 (-645 |#1|))) (|:| |f4| (-645 (-645 (-645 |#1|))))) (-645 (-645 (-645 |#1|)))))) (-851)) (T -1189))
-((-2698 (*1 *2 *3) (-12 (-4 *4 (-851)) (-5 *2 (-2 (|:| |f1| (-645 *4)) (|:| |f2| (-645 (-645 (-645 *4)))) (|:| |f3| (-645 (-645 *4))) (|:| |f4| (-645 (-645 (-645 *4)))))) (-5 *1 (-1189 *4)) (-5 *3 (-645 (-645 (-645 *4)))))) (-3761 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-851)) (-5 *3 (-645 *6)) (-5 *5 (-645 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-645 *5)) (|:| |f3| *5) (|:| |f4| (-645 *5)))) (-5 *1 (-1189 *6)) (-5 *4 (-645 *5)))) (-1401 (*1 *2 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-851)) (-5 *1 (-1189 *3)))) (-3565 (*1 *2 *3) (-12 (-4 *4 (-851)) (-5 *2 (-645 (-645 *4))) (-5 *1 (-1189 *4)) (-5 *3 (-645 *4)))) (-3828 (*1 *2 *2) (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-851)) (-5 *1 (-1189 *3)))) (-1743 (*1 *2 *3) (-12 (-4 *4 (-851)) (-5 *2 (-1190 (-645 *4))) (-5 *1 (-1189 *4)) (-5 *3 (-645 *4)))) (-2899 (*1 *2 *3) (-12 (-4 *4 (-851)) (-5 *2 (-645 (-645 (-645 *4)))) (-5 *1 (-1189 *4)) (-5 *3 (-645 (-645 *4))))) (-3733 (*1 *2 *3) (-12 (-5 *3 (-1190 (-645 *4))) (-4 *4 (-851)) (-5 *2 (-645 (-645 *4))) (-5 *1 (-1189 *4)))) (-2396 (*1 *2 *3) (-12 (-5 *3 (-645 (-645 (-645 *4)))) (-5 *2 (-645 (-645 *4))) (-5 *1 (-1189 *4)) (-4 *4 (-851)))) (-3764 (*1 *2 *2 *3) (-12 (-5 *3 (-645 (-645 (-645 *4)))) (-5 *2 (-645 (-645 *4))) (-4 *4 (-851)) (-5 *1 (-1189 *4)))) (-1472 (*1 *2 *3 *2) (-12 (-5 *2 (-645 (-645 (-645 *4)))) (-5 *3 (-645 *4)) (-4 *4 (-851)) (-5 *1 (-1189 *4)))) (-2106 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-645 (-645 (-645 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-645 *5)) (-4 *5 (-851)) (-5 *1 (-1189 *5)))) (-2351 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-851)) (-5 *4 (-645 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-645 *4)))) (-5 *1 (-1189 *6)) (-5 *5 (-645 *4)))))
-(-10 -7 (-15 -2351 ((-2 (|:| |fs| (-112)) (|:| |sd| (-645 |#1|)) (|:| |td| (-645 (-645 |#1|)))) (-1 (-112) |#1| |#1|) (-645 |#1|) (-645 (-645 |#1|)))) (-15 -2106 ((-645 (-645 (-645 |#1|))) (-1 (-112) |#1| |#1|) (-645 |#1|) (-645 (-645 (-645 |#1|))))) (-15 -1472 ((-645 (-645 (-645 |#1|))) (-645 |#1|) (-645 (-645 (-645 |#1|))))) (-15 -3764 ((-645 (-645 |#1|)) (-645 (-645 |#1|)) (-645 (-645 (-645 |#1|))))) (-15 -2396 ((-645 (-645 |#1|)) (-645 (-645 (-645 |#1|))))) (-15 -3733 ((-645 (-645 |#1|)) (-1190 (-645 |#1|)))) (-15 -2899 ((-645 (-645 (-645 |#1|))) (-645 (-645 |#1|)))) (-15 -1743 ((-1190 (-645 |#1|)) (-645 |#1|))) (-15 -3828 ((-645 (-645 |#1|)) (-645 (-645 |#1|)))) (-15 -3565 ((-645 (-645 |#1|)) (-645 |#1|))) (-15 -1401 ((-645 |#1|) (-645 |#1|))) (-15 -3761 ((-2 (|:| |f1| (-645 |#1|)) (|:| |f2| (-645 (-645 (-645 |#1|)))) (|:| |f3| (-645 (-645 |#1|))) (|:| |f4| (-645 (-645 (-645 |#1|))))) (-645 |#1|) (-645 (-645 (-645 |#1|))) (-645 (-645 |#1|)) (-645 (-645 (-645 |#1|))) (-645 (-645 (-645 |#1|))) (-645 (-645 (-645 |#1|))))) (-15 -2698 ((-2 (|:| |f1| (-645 |#1|)) (|:| |f2| (-645 (-645 (-645 |#1|)))) (|:| |f3| (-645 (-645 |#1|))) (|:| |f4| (-645 (-645 (-645 |#1|))))) (-645 (-645 (-645 |#1|))))))
-((-2281 (($ (-645 (-645 |#1|))) 10)) (-1603 (((-645 (-645 |#1|)) $) 11)) (-4132 (((-863) $) 38)))
-(((-1190 |#1|) (-10 -8 (-15 -2281 ($ (-645 (-645 |#1|)))) (-15 -1603 ((-645 (-645 |#1|)) $)) (-15 -4132 ((-863) $))) (-1102)) (T -1190))
-((-4132 (*1 *2 *1) (-12 (-5 *2 (-863)) (-5 *1 (-1190 *3)) (-4 *3 (-1102)))) (-1603 (*1 *2 *1) (-12 (-5 *2 (-645 (-645 *3))) (-5 *1 (-1190 *3)) (-4 *3 (-1102)))) (-2281 (*1 *1 *2) (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-1102)) (-5 *1 (-1190 *3)))))
-(-10 -8 (-15 -2281 ($ (-645 (-645 |#1|)))) (-15 -1603 ((-645 (-645 |#1|)) $)) (-15 -4132 ((-863) $)))
-((-2403 (((-112) $ $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-2835 (($) NIL) (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL)) (-1783 (((-1273) $ |#1| |#1|) NIL (|has| $ (-6 -4419)))) (-3445 (((-112) $ (-772)) NIL)) (-4284 ((|#2| $ |#1| |#2|) NIL)) (-2839 (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-3350 (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-4019 (((-3 |#2| "failed") |#1| $) NIL)) (-2585 (($) NIL T CONST)) (-2444 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102))))) (-2539 (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL (|has| $ (-6 -4418))) (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-3 |#2| "failed") |#1| $) NIL)) (-3238 (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-2477 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) NIL (|has| $ (-6 -4418))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418)))) (-3741 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4419)))) (-3680 ((|#2| $ |#1|) NIL)) (-2777 (((-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-645 |#2|) $) NIL (|has| $ (-6 -4418)))) (-2077 (((-112) $ (-772)) NIL)) (-4069 ((|#1| $) NIL (|has| |#1| (-851)))) (-2279 (((-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-645 |#2|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#2| (-1102))))) (-2266 ((|#1| $) NIL (|has| |#1| (-851)))) (-3731 (($ (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4419))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-1391 (((-645 |#1|) $) NIL)) (-4251 (((-112) |#1| $) NIL)) (-1566 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL)) (-2531 (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL)) (-1789 (((-645 |#1|) $) NIL)) (-2996 (((-112) |#1| $) NIL)) (-3430 (((-1122) $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-2409 ((|#2| $) NIL (|has| |#1| (-851)))) (-4128 (((-3 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) "failed") (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL)) (-3986 (($ $ |#2|) NIL (|has| $ (-6 -4419)))) (-1793 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL)) (-3025 (((-112) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))))) NIL (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-295 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) NIL (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))))) (-3092 (((-112) $ $) NIL)) (-1794 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#2| (-1102))))) (-2339 (((-645 |#2|) $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) NIL)) (-1787 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2718 (($) NIL) (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL)) (-3439 (((-772) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-772) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) NIL (-12 (|has| $ (-6 -4418)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (((-772) |#2| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#2| (-1102)))) (((-772) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4418)))) (-4305 (($ $) NIL)) (-3893 (((-539) $) NIL (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-615 (-539))))) (-4147 (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL)) (-4132 (((-863) $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-614 (-863))) (|has| |#2| (-614 (-863)))))) (-1745 (((-112) $ $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-3551 (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) NIL)) (-1853 (((-112) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) NIL (|has| $ (-6 -4418))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) NIL (-2800 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-2414 (((-772) $) NIL (|has| $ (-6 -4418)))))
-(((-1191 |#1| |#2|) (-13 (-1194 |#1| |#2|) (-10 -7 (-6 -4418))) (-1102) (-1102)) (T -1191))
-NIL
-(-13 (-1194 |#1| |#2|) (-10 -7 (-6 -4418)))
-((-3098 ((|#1| (-645 |#1|)) 49)) (-2750 ((|#1| |#1| (-567)) 24)) (-4120 (((-1174 |#1|) |#1| (-923)) 20)))
-(((-1192 |#1|) (-10 -7 (-15 -3098 (|#1| (-645 |#1|))) (-15 -4120 ((-1174 |#1|) |#1| (-923))) (-15 -2750 (|#1| |#1| (-567)))) (-365)) (T -1192))
-((-2750 (*1 *2 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-1192 *2)) (-4 *2 (-365)))) (-4120 (*1 *2 *3 *4) (-12 (-5 *4 (-923)) (-5 *2 (-1174 *3)) (-5 *1 (-1192 *3)) (-4 *3 (-365)))) (-3098 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-5 *1 (-1192 *2)) (-4 *2 (-365)))))
-(-10 -7 (-15 -3098 (|#1| (-645 |#1|))) (-15 -4120 ((-1174 |#1|) |#1| (-923))) (-15 -2750 (|#1| |#1| (-567))))
-((-2835 (($) 10) (($ (-645 (-2 (|:| -1795 |#2|) (|:| -4237 |#3|)))) 14)) (-2539 (($ (-2 (|:| -1795 |#2|) (|:| -4237 |#3|)) $) 67) (($ (-1 (-112) (-2 (|:| -1795 |#2|) (|:| -4237 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-2777 (((-645 (-2 (|:| -1795 |#2|) (|:| -4237 |#3|))) $) 39) (((-645 |#3|) $) 41)) (-3731 (($ (-1 (-2 (|:| -1795 |#2|) (|:| -4237 |#3|)) (-2 (|:| -1795 |#2|) (|:| -4237 |#3|))) $) 57) (($ (-1 |#3| |#3|) $) 33)) (-3829 (($ (-1 (-2 (|:| -1795 |#2|) (|:| -4237 |#3|)) (-2 (|:| -1795 |#2|) (|:| -4237 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-1566 (((-2 (|:| -1795 |#2|) (|:| -4237 |#3|)) $) 60)) (-2531 (($ (-2 (|:| -1795 |#2|) (|:| -4237 |#3|)) $) 16)) (-1789 (((-645 |#2|) $) 19)) (-2996 (((-112) |#2| $) 65)) (-4128 (((-3 (-2 (|:| -1795 |#2|) (|:| -4237 |#3|)) "failed") (-1 (-112) (-2 (|:| -1795 |#2|) (|:| -4237 |#3|))) $) 64)) (-1793 (((-2 (|:| -1795 |#2|) (|:| -4237 |#3|)) $) 69)) (-3025 (((-112) (-1 (-112) (-2 (|:| -1795 |#2|) (|:| -4237 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 73)) (-2339 (((-645 |#3|) $) 43)) (-1787 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-3439 (((-772) (-1 (-112) (-2 (|:| -1795 |#2|) (|:| -4237 |#3|))) $) NIL) (((-772) (-2 (|:| -1795 |#2|) (|:| -4237 |#3|)) $) NIL) (((-772) |#3| $) NIL) (((-772) (-1 (-112) |#3|) $) 79)) (-4132 (((-863) $) 27)) (-1853 (((-112) (-1 (-112) (-2 (|:| -1795 |#2|) (|:| -4237 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 71)) (-2936 (((-112) $ $) 51)))
-(((-1193 |#1| |#2| |#3|) (-10 -8 (-15 -2936 ((-112) |#1| |#1|)) (-15 -4132 ((-863) |#1|)) (-15 -3829 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -2835 (|#1| (-645 (-2 (|:| -1795 |#2|) (|:| -4237 |#3|))))) (-15 -2835 (|#1|)) (-15 -3829 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3731 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1853 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3025 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3439 ((-772) (-1 (-112) |#3|) |#1|)) (-15 -2777 ((-645 |#3|) |#1|)) (-15 -3439 ((-772) |#3| |#1|)) (-15 -1787 (|#3| |#1| |#2| |#3|)) (-15 -1787 (|#3| |#1| |#2|)) (-15 -2339 ((-645 |#3|) |#1|)) (-15 -2996 ((-112) |#2| |#1|)) (-15 -1789 ((-645 |#2|) |#1|)) (-15 -2539 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2539 (|#1| (-1 (-112) (-2 (|:| -1795 |#2|) (|:| -4237 |#3|))) |#1|)) (-15 -2539 (|#1| (-2 (|:| -1795 |#2|) (|:| -4237 |#3|)) |#1|)) (-15 -4128 ((-3 (-2 (|:| -1795 |#2|) (|:| -4237 |#3|)) "failed") (-1 (-112) (-2 (|:| -1795 |#2|) (|:| -4237 |#3|))) |#1|)) (-15 -1566 ((-2 (|:| -1795 |#2|) (|:| -4237 |#3|)) |#1|)) (-15 -2531 (|#1| (-2 (|:| -1795 |#2|) (|:| -4237 |#3|)) |#1|)) (-15 -1793 ((-2 (|:| -1795 |#2|) (|:| -4237 |#3|)) |#1|)) (-15 -3439 ((-772) (-2 (|:| -1795 |#2|) (|:| -4237 |#3|)) |#1|)) (-15 -2777 ((-645 (-2 (|:| -1795 |#2|) (|:| -4237 |#3|))) |#1|)) (-15 -3439 ((-772) (-1 (-112) (-2 (|:| -1795 |#2|) (|:| -4237 |#3|))) |#1|)) (-15 -3025 ((-112) (-1 (-112) (-2 (|:| -1795 |#2|) (|:| -4237 |#3|))) |#1|)) (-15 -1853 ((-112) (-1 (-112) (-2 (|:| -1795 |#2|) (|:| -4237 |#3|))) |#1|)) (-15 -3731 (|#1| (-1 (-2 (|:| -1795 |#2|) (|:| -4237 |#3|)) (-2 (|:| -1795 |#2|) (|:| -4237 |#3|))) |#1|)) (-15 -3829 (|#1| (-1 (-2 (|:| -1795 |#2|) (|:| -4237 |#3|)) (-2 (|:| -1795 |#2|) (|:| -4237 |#3|))) |#1|))) (-1194 |#2| |#3|) (-1102) (-1102)) (T -1193))
-NIL
-(-10 -8 (-15 -2936 ((-112) |#1| |#1|)) (-15 -4132 ((-863) |#1|)) (-15 -3829 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -2835 (|#1| (-645 (-2 (|:| -1795 |#2|) (|:| -4237 |#3|))))) (-15 -2835 (|#1|)) (-15 -3829 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3731 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1853 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3025 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3439 ((-772) (-1 (-112) |#3|) |#1|)) (-15 -2777 ((-645 |#3|) |#1|)) (-15 -3439 ((-772) |#3| |#1|)) (-15 -1787 (|#3| |#1| |#2| |#3|)) (-15 -1787 (|#3| |#1| |#2|)) (-15 -2339 ((-645 |#3|) |#1|)) (-15 -2996 ((-112) |#2| |#1|)) (-15 -1789 ((-645 |#2|) |#1|)) (-15 -2539 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2539 (|#1| (-1 (-112) (-2 (|:| -1795 |#2|) (|:| -4237 |#3|))) |#1|)) (-15 -2539 (|#1| (-2 (|:| -1795 |#2|) (|:| -4237 |#3|)) |#1|)) (-15 -4128 ((-3 (-2 (|:| -1795 |#2|) (|:| -4237 |#3|)) "failed") (-1 (-112) (-2 (|:| -1795 |#2|) (|:| -4237 |#3|))) |#1|)) (-15 -1566 ((-2 (|:| -1795 |#2|) (|:| -4237 |#3|)) |#1|)) (-15 -2531 (|#1| (-2 (|:| -1795 |#2|) (|:| -4237 |#3|)) |#1|)) (-15 -1793 ((-2 (|:| -1795 |#2|) (|:| -4237 |#3|)) |#1|)) (-15 -3439 ((-772) (-2 (|:| -1795 |#2|) (|:| -4237 |#3|)) |#1|)) (-15 -2777 ((-645 (-2 (|:| -1795 |#2|) (|:| -4237 |#3|))) |#1|)) (-15 -3439 ((-772) (-1 (-112) (-2 (|:| -1795 |#2|) (|:| -4237 |#3|))) |#1|)) (-15 -3025 ((-112) (-1 (-112) (-2 (|:| -1795 |#2|) (|:| -4237 |#3|))) |#1|)) (-15 -1853 ((-112) (-1 (-112) (-2 (|:| -1795 |#2|) (|:| -4237 |#3|))) |#1|)) (-15 -3731 (|#1| (-1 (-2 (|:| -1795 |#2|) (|:| -4237 |#3|)) (-2 (|:| -1795 |#2|) (|:| -4237 |#3|))) |#1|)) (-15 -3829 (|#1| (-1 (-2 (|:| -1795 |#2|) (|:| -4237 |#3|)) (-2 (|:| -1795 |#2|) (|:| -4237 |#3|))) |#1|)))
-((-2403 (((-112) $ $) 19 (-2800 (|has| |#2| (-1102)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102))))) (-2835 (($) 73) (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) 72)) (-1783 (((-1273) $ |#1| |#1|) 100 (|has| $ (-6 -4419)))) (-3445 (((-112) $ (-772)) 8)) (-4284 ((|#2| $ |#1| |#2|) 74)) (-2839 (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 46 (|has| $ (-6 -4418)))) (-3350 (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 56 (|has| $ (-6 -4418)))) (-4019 (((-3 |#2| "failed") |#1| $) 62)) (-2585 (($) 7 T CONST)) (-2444 (($ $) 59 (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| $ (-6 -4418))))) (-2539 (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) 48 (|has| $ (-6 -4418))) (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 47 (|has| $ (-6 -4418))) (((-3 |#2| "failed") |#1| $) 63)) (-3238 (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) 58 (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| $ (-6 -4418)))) (($ (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 55 (|has| $ (-6 -4418)))) (-2477 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) 57 (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| $ (-6 -4418)))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) 54 (|has| $ (-6 -4418))) (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 53 (|has| $ (-6 -4418)))) (-3741 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4419)))) (-3680 ((|#2| $ |#1|) 89)) (-2777 (((-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 31 (|has| $ (-6 -4418))) (((-645 |#2|) $) 80 (|has| $ (-6 -4418)))) (-2077 (((-112) $ (-772)) 9)) (-4069 ((|#1| $) 97 (|has| |#1| (-851)))) (-2279 (((-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 30 (|has| $ (-6 -4418))) (((-645 |#2|) $) 81 (|has| $ (-6 -4418)))) (-4337 (((-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) 28 (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| $ (-6 -4418)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1102)) (|has| $ (-6 -4418))))) (-2266 ((|#1| $) 96 (|has| |#1| (-851)))) (-3731 (($ (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 35 (|has| $ (-6 -4419))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4419)))) (-3829 (($ (-1 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71)) (-2863 (((-112) $ (-772)) 10)) (-1419 (((-1160) $) 22 (-2800 (|has| |#2| (-1102)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102))))) (-1391 (((-645 |#1|) $) 64)) (-4251 (((-112) |#1| $) 65)) (-1566 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) 40)) (-2531 (($ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) 41)) (-1789 (((-645 |#1|) $) 94)) (-2996 (((-112) |#1| $) 93)) (-3430 (((-1122) $) 21 (-2800 (|has| |#2| (-1102)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102))))) (-2409 ((|#2| $) 98 (|has| |#1| (-851)))) (-4128 (((-3 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) "failed") (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 52)) (-3986 (($ $ |#2|) 99 (|has| $ (-6 -4419)))) (-1793 (((-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) 42)) (-3025 (((-112) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 33 (|has| $ (-6 -4418))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))))) 27 (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-295 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) 26 (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) 25 (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) 24 (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)))) (($ $ (-645 |#2|) (-645 |#2|)) 87 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-295 |#2|)) 85 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-645 (-295 |#2|))) 84 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))))) (-3092 (((-112) $ $) 14)) (-1794 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4418)) (|has| |#2| (-1102))))) (-2339 (((-645 |#2|) $) 92)) (-3572 (((-112) $) 11)) (-3498 (($) 12)) (-1787 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90)) (-2718 (($) 50) (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) 49)) (-3439 (((-772) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 32 (|has| $ (-6 -4418))) (((-772) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) $) 29 (-12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| $ (-6 -4418)))) (((-772) |#2| $) 82 (-12 (|has| |#2| (-1102)) (|has| $ (-6 -4418)))) (((-772) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4418)))) (-4305 (($ $) 13)) (-3893 (((-539) $) 60 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-615 (-539))))) (-4147 (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) 51)) (-4132 (((-863) $) 18 (-2800 (|has| |#2| (-614 (-863))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-614 (-863)))))) (-1745 (((-112) $ $) 23 (-2800 (|has| |#2| (-1102)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102))))) (-3551 (($ (-645 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) 43)) (-1853 (((-112) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) $) 34 (|has| $ (-6 -4418))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 20 (-2800 (|has| |#2| (-1102)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102))))) (-2414 (((-772) $) 6 (|has| $ (-6 -4418)))))
-(((-1194 |#1| |#2|) (-140) (-1102) (-1102)) (T -1194))
-((-4284 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1194 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1102)))) (-2835 (*1 *1) (-12 (-4 *1 (-1194 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-1102)))) (-2835 (*1 *1 *2) (-12 (-5 *2 (-645 (-2 (|:| -1795 *3) (|:| -4237 *4)))) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *1 (-1194 *3 *4)))) (-3829 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1194 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102)))))
-(-13 (-611 |t#1| |t#2|) (-605 |t#1| |t#2|) (-10 -8 (-15 -4284 (|t#2| $ |t#1| |t#2|)) (-15 -2835 ($)) (-15 -2835 ($ (-645 (-2 (|:| -1795 |t#1|) (|:| -4237 |t#2|))))) (-15 -3829 ($ (-1 |t#2| |t#2| |t#2|) $ $))))
-(((-34) . T) ((-107 #0=(-2 (|:| -1795 |#1|) (|:| -4237 |#2|))) . T) ((-102) -2800 (|has| |#2| (-1102)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102))) ((-614 (-863)) -2800 (|has| |#2| (-1102)) (|has| |#2| (-614 (-863))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-614 (-863)))) ((-151 #0#) . T) ((-615 (-539)) |has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-615 (-539))) ((-229 #0#) . T) ((-235 #0#) . T) ((-287 |#1| |#2|) . T) ((-289 |#1| |#2|) . T) ((-310 #0#) -12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102))) ((-310 |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) ((-492 #0#) . T) ((-492 |#2|) . T) ((-605 |#1| |#2|) . T) ((-517 #0# #0#) -12 (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-310 (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)))) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102))) ((-517 |#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) ((-611 |#1| |#2|) . T) ((-1102) -2800 (|has| |#2| (-1102)) (|has| (-2 (|:| -1795 |#1|) (|:| -4237 |#2|)) (-1102))) ((-1218) . T))
-((-1570 (((-112)) 29)) (-1849 (((-1273) (-1160)) 31)) (-1469 (((-112)) 41)) (-2483 (((-1273)) 39)) (-2010 (((-1273) (-1160) (-1160)) 30)) (-2161 (((-112)) 42)) (-2531 (((-1273) |#1| |#2|) 53)) (-2035 (((-1273)) 27)) (-3006 (((-3 |#2| "failed") |#1|) 51)) (-3158 (((-1273)) 40)))
-(((-1195 |#1| |#2|) (-10 -7 (-15 -2035 ((-1273))) (-15 -2010 ((-1273) (-1160) (-1160))) (-15 -1849 ((-1273) (-1160))) (-15 -2483 ((-1273))) (-15 -3158 ((-1273))) (-15 -1570 ((-112))) (-15 -1469 ((-112))) (-15 -2161 ((-112))) (-15 -3006 ((-3 |#2| "failed") |#1|)) (-15 -2531 ((-1273) |#1| |#2|))) (-1102) (-1102)) (T -1195))
-((-2531 (*1 *2 *3 *4) (-12 (-5 *2 (-1273)) (-5 *1 (-1195 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102)))) (-3006 (*1 *2 *3) (|partial| -12 (-4 *2 (-1102)) (-5 *1 (-1195 *3 *2)) (-4 *3 (-1102)))) (-2161 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1195 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102)))) (-1469 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1195 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102)))) (-1570 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1195 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102)))) (-3158 (*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-1195 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102)))) (-2483 (*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-1195 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102)))) (-1849 (*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1195 *4 *5)) (-4 *4 (-1102)) (-4 *5 (-1102)))) (-2010 (*1 *2 *3 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1195 *4 *5)) (-4 *4 (-1102)) (-4 *5 (-1102)))) (-2035 (*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-1195 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102)))))
-(-10 -7 (-15 -2035 ((-1273))) (-15 -2010 ((-1273) (-1160) (-1160))) (-15 -1849 ((-1273) (-1160))) (-15 -2483 ((-1273))) (-15 -3158 ((-1273))) (-15 -1570 ((-112))) (-15 -1469 ((-112))) (-15 -2161 ((-112))) (-15 -3006 ((-3 |#2| "failed") |#1|)) (-15 -2531 ((-1273) |#1| |#2|)))
-((-2352 (((-1160) (-1160)) 22)) (-4331 (((-52) (-1160)) 25)))
-(((-1196) (-10 -7 (-15 -4331 ((-52) (-1160))) (-15 -2352 ((-1160) (-1160))))) (T -1196))
-((-2352 (*1 *2 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-1196)))) (-4331 (*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-52)) (-5 *1 (-1196)))))
-(-10 -7 (-15 -4331 ((-52) (-1160))) (-15 -2352 ((-1160) (-1160))))
-((-4132 (((-1198) |#1|) 11)))
-(((-1197 |#1|) (-10 -7 (-15 -4132 ((-1198) |#1|))) (-1102)) (T -1197))
-((-4132 (*1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *1 (-1197 *3)) (-4 *3 (-1102)))))
-(-10 -7 (-15 -4132 ((-1198) |#1|)))
-((-2403 (((-112) $ $) NIL)) (-4214 (((-645 (-1160)) $) 40)) (-2543 (((-645 (-1160)) $ (-645 (-1160))) 43)) (-1631 (((-645 (-1160)) $ (-645 (-1160))) 42)) (-2121 (((-645 (-1160)) $ (-645 (-1160))) 44)) (-1499 (((-645 (-1160)) $) 39)) (-2846 (($) 28)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-3028 (((-645 (-1160)) $) 41)) (-4022 (((-1273) $ (-567)) 36) (((-1273) $) 37)) (-3893 (($ (-863) (-567)) 33) (($ (-863) (-567) (-863)) NIL)) (-4132 (((-863) $) 54) (($ (-863)) 32)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)))
-(((-1198) (-13 (-1102) (-617 (-863)) (-10 -8 (-15 -3893 ($ (-863) (-567))) (-15 -3893 ($ (-863) (-567) (-863))) (-15 -4022 ((-1273) $ (-567))) (-15 -4022 ((-1273) $)) (-15 -3028 ((-645 (-1160)) $)) (-15 -4214 ((-645 (-1160)) $)) (-15 -2846 ($)) (-15 -1499 ((-645 (-1160)) $)) (-15 -2121 ((-645 (-1160)) $ (-645 (-1160)))) (-15 -2543 ((-645 (-1160)) $ (-645 (-1160)))) (-15 -1631 ((-645 (-1160)) $ (-645 (-1160))))))) (T -1198))
-((-3893 (*1 *1 *2 *3) (-12 (-5 *2 (-863)) (-5 *3 (-567)) (-5 *1 (-1198)))) (-3893 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-863)) (-5 *3 (-567)) (-5 *1 (-1198)))) (-4022 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *2 (-1273)) (-5 *1 (-1198)))) (-4022 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-1198)))) (-3028 (*1 *2 *1) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-1198)))) (-4214 (*1 *2 *1) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-1198)))) (-2846 (*1 *1) (-5 *1 (-1198))) (-1499 (*1 *2 *1) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-1198)))) (-2121 (*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-1198)))) (-2543 (*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-1198)))) (-1631 (*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-1198)))))
-(-13 (-1102) (-617 (-863)) (-10 -8 (-15 -3893 ($ (-863) (-567))) (-15 -3893 ($ (-863) (-567) (-863))) (-15 -4022 ((-1273) $ (-567))) (-15 -4022 ((-1273) $)) (-15 -3028 ((-645 (-1160)) $)) (-15 -4214 ((-645 (-1160)) $)) (-15 -2846 ($)) (-15 -1499 ((-645 (-1160)) $)) (-15 -2121 ((-645 (-1160)) $ (-645 (-1160)))) (-15 -2543 ((-645 (-1160)) $ (-645 (-1160)))) (-15 -1631 ((-645 (-1160)) $ (-645 (-1160))))))
-((-2403 (((-112) $ $) NIL)) (-2711 (((-1160) $ (-1160)) 17) (((-1160) $) 16)) (-4032 (((-1160) $ (-1160)) 15)) (-2828 (($ $ (-1160)) NIL)) (-4151 (((-3 (-1160) "failed") $) 11)) (-3587 (((-1160) $) 8)) (-2901 (((-3 (-1160) "failed") $) 12)) (-2636 (((-1160) $) 9)) (-3823 (($ (-391)) NIL) (($ (-391) (-1160)) NIL)) (-1996 (((-391) $) NIL)) (-1419 (((-1160) $) NIL)) (-1892 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-2461 (((-112) $) 21)) (-4132 (((-863) $) NIL)) (-1675 (($ $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)))
-(((-1199) (-13 (-366 (-391) (-1160)) (-10 -8 (-15 -2711 ((-1160) $ (-1160))) (-15 -2711 ((-1160) $)) (-15 -3587 ((-1160) $)) (-15 -4151 ((-3 (-1160) "failed") $)) (-15 -2901 ((-3 (-1160) "failed") $)) (-15 -2461 ((-112) $))))) (T -1199))
-((-2711 (*1 *2 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-1199)))) (-2711 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-1199)))) (-3587 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-1199)))) (-4151 (*1 *2 *1) (|partial| -12 (-5 *2 (-1160)) (-5 *1 (-1199)))) (-2901 (*1 *2 *1) (|partial| -12 (-5 *2 (-1160)) (-5 *1 (-1199)))) (-2461 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1199)))))
-(-13 (-366 (-391) (-1160)) (-10 -8 (-15 -2711 ((-1160) $ (-1160))) (-15 -2711 ((-1160) $)) (-15 -3587 ((-1160) $)) (-15 -4151 ((-3 (-1160) "failed") $)) (-15 -2901 ((-3 (-1160) "failed") $)) (-15 -2461 ((-112) $))))
-((-1750 (((-3 (-567) "failed") |#1|) 19)) (-2301 (((-3 (-567) "failed") |#1|) 14)) (-2302 (((-567) (-1160)) 33)))
-(((-1200 |#1|) (-10 -7 (-15 -1750 ((-3 (-567) "failed") |#1|)) (-15 -2301 ((-3 (-567) "failed") |#1|)) (-15 -2302 ((-567) (-1160)))) (-1051)) (T -1200))
-((-2302 (*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-567)) (-5 *1 (-1200 *4)) (-4 *4 (-1051)))) (-2301 (*1 *2 *3) (|partial| -12 (-5 *2 (-567)) (-5 *1 (-1200 *3)) (-4 *3 (-1051)))) (-1750 (*1 *2 *3) (|partial| -12 (-5 *2 (-567)) (-5 *1 (-1200 *3)) (-4 *3 (-1051)))))
-(-10 -7 (-15 -1750 ((-3 (-567) "failed") |#1|)) (-15 -2301 ((-3 (-567) "failed") |#1|)) (-15 -2302 ((-567) (-1160))))
-((-4379 (((-1135 (-225))) 9)))
-(((-1201) (-10 -7 (-15 -4379 ((-1135 (-225)))))) (T -1201))
-((-4379 (*1 *2) (-12 (-5 *2 (-1135 (-225))) (-5 *1 (-1201)))))
-(-10 -7 (-15 -4379 ((-1135 (-225)))))
-((-1482 (($) 12)) (-3200 (($ $) 36)) (-3183 (($ $) 34)) (-3062 (($ $) 26)) (-3221 (($ $) 18)) (-3785 (($ $) 16)) (-3211 (($ $) 20)) (-3095 (($ $) 31)) (-3193 (($ $) 35)) (-3074 (($ $) 30)))
-(((-1202 |#1|) (-10 -8 (-15 -1482 (|#1|)) (-15 -3200 (|#1| |#1|)) (-15 -3183 (|#1| |#1|)) (-15 -3221 (|#1| |#1|)) (-15 -3785 (|#1| |#1|)) (-15 -3211 (|#1| |#1|)) (-15 -3193 (|#1| |#1|)) (-15 -3062 (|#1| |#1|)) (-15 -3095 (|#1| |#1|)) (-15 -3074 (|#1| |#1|))) (-1203)) (T -1202))
-NIL
-(-10 -8 (-15 -1482 (|#1|)) (-15 -3200 (|#1| |#1|)) (-15 -3183 (|#1| |#1|)) (-15 -3221 (|#1| |#1|)) (-15 -3785 (|#1| |#1|)) (-15 -3211 (|#1| |#1|)) (-15 -3193 (|#1| |#1|)) (-15 -3062 (|#1| |#1|)) (-15 -3095 (|#1| |#1|)) (-15 -3074 (|#1| |#1|)))
-((-3146 (($ $) 26)) (-3012 (($ $) 11)) (-3128 (($ $) 27)) (-2987 (($ $) 10)) (-3166 (($ $) 28)) (-3035 (($ $) 9)) (-1482 (($) 16)) (-3063 (($ $) 19)) (-3946 (($ $) 18)) (-3175 (($ $) 29)) (-3049 (($ $) 8)) (-3156 (($ $) 30)) (-3023 (($ $) 7)) (-3137 (($ $) 31)) (-2999 (($ $) 6)) (-3200 (($ $) 20)) (-3084 (($ $) 32)) (-3183 (($ $) 21)) (-3062 (($ $) 33)) (-3221 (($ $) 22)) (-3106 (($ $) 34)) (-3785 (($ $) 23)) (-3118 (($ $) 35)) (-3211 (($ $) 24)) (-3095 (($ $) 36)) (-3193 (($ $) 25)) (-3074 (($ $) 37)) (** (($ $ $) 17)))
-(((-1203) (-140)) (T -1203))
-((-1482 (*1 *1) (-4 *1 (-1203))))
-(-13 (-1206) (-95) (-496) (-35) (-285) (-10 -8 (-15 -1482 ($))))
-(((-35) . T) ((-95) . T) ((-285) . T) ((-496) . T) ((-1206) . T))
-((-2403 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3802 ((|#1| $) 19)) (-2394 (($ |#1| (-645 $)) 28) (($ (-645 |#1|)) 35) (($ |#1|) 30)) (-3445 (((-112) $ (-772)) 72)) (-2138 ((|#1| $ |#1|) 14 (|has| $ (-6 -4419)))) (-4284 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4419)))) (-1301 (($ $ (-645 $)) 13 (|has| $ (-6 -4419)))) (-2585 (($) NIL T CONST)) (-2777 (((-645 |#1|) $) 76 (|has| $ (-6 -4418)))) (-2182 (((-645 $) $) 64)) (-3512 (((-112) $ $) 49 (|has| |#1| (-1102)))) (-2077 (((-112) $ (-772)) 62)) (-2279 (((-645 |#1|) $) 77 (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) 75 (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-3731 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) 27)) (-2863 (((-112) $ (-772)) 60)) (-3773 (((-645 |#1|) $) 54)) (-2769 (((-112) $) 52)) (-1419 (((-1160) $) NIL (|has| |#1| (-1102)))) (-3430 (((-1122) $) NIL (|has| |#1| (-1102)))) (-3025 (((-112) (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) 107)) (-3572 (((-112) $) 9)) (-3498 (($) 10)) (-1787 ((|#1| $ "value") NIL)) (-2658 (((-567) $ $) 48)) (-3767 (((-645 $) $) 89)) (-2565 (((-112) $ $) 110)) (-4326 (((-645 $) $) 105)) (-3329 (($ $) 106)) (-3900 (((-112) $) 84)) (-3439 (((-772) (-1 (-112) |#1|) $) 25 (|has| $ (-6 -4418))) (((-772) |#1| $) 17 (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-4305 (($ $) 88)) (-4132 (((-863) $) 91 (|has| |#1| (-614 (-863))))) (-1531 (((-645 $) $) 12)) (-3606 (((-112) $ $) 39 (|has| |#1| (-1102)))) (-1745 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) 73 (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 37 (|has| |#1| (-1102)))) (-2414 (((-772) $) 58 (|has| $ (-6 -4418)))))
-(((-1204 |#1|) (-13 (-1012 |#1|) (-10 -8 (-6 -4418) (-6 -4419) (-15 -2394 ($ |#1| (-645 $))) (-15 -2394 ($ (-645 |#1|))) (-15 -2394 ($ |#1|)) (-15 -3900 ((-112) $)) (-15 -3329 ($ $)) (-15 -4326 ((-645 $) $)) (-15 -2565 ((-112) $ $)) (-15 -3767 ((-645 $) $)))) (-1102)) (T -1204))
-((-3900 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1204 *3)) (-4 *3 (-1102)))) (-2394 (*1 *1 *2 *3) (-12 (-5 *3 (-645 (-1204 *2))) (-5 *1 (-1204 *2)) (-4 *2 (-1102)))) (-2394 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-5 *1 (-1204 *3)))) (-2394 (*1 *1 *2) (-12 (-5 *1 (-1204 *2)) (-4 *2 (-1102)))) (-3329 (*1 *1 *1) (-12 (-5 *1 (-1204 *2)) (-4 *2 (-1102)))) (-4326 (*1 *2 *1) (-12 (-5 *2 (-645 (-1204 *3))) (-5 *1 (-1204 *3)) (-4 *3 (-1102)))) (-2565 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1204 *3)) (-4 *3 (-1102)))) (-3767 (*1 *2 *1) (-12 (-5 *2 (-645 (-1204 *3))) (-5 *1 (-1204 *3)) (-4 *3 (-1102)))))
-(-13 (-1012 |#1|) (-10 -8 (-6 -4418) (-6 -4419) (-15 -2394 ($ |#1| (-645 $))) (-15 -2394 ($ (-645 |#1|))) (-15 -2394 ($ |#1|)) (-15 -3900 ((-112) $)) (-15 -3329 ($ $)) (-15 -4326 ((-645 $) $)) (-15 -2565 ((-112) $ $)) (-15 -3767 ((-645 $) $))))
-((-3012 (($ $) 15)) (-3035 (($ $) 12)) (-3049 (($ $) 10)) (-3023 (($ $) 17)))
-(((-1205 |#1|) (-10 -8 (-15 -3023 (|#1| |#1|)) (-15 -3049 (|#1| |#1|)) (-15 -3035 (|#1| |#1|)) (-15 -3012 (|#1| |#1|))) (-1206)) (T -1205))
-NIL
-(-10 -8 (-15 -3023 (|#1| |#1|)) (-15 -3049 (|#1| |#1|)) (-15 -3035 (|#1| |#1|)) (-15 -3012 (|#1| |#1|)))
-((-3012 (($ $) 11)) (-2987 (($ $) 10)) (-3035 (($ $) 9)) (-3049 (($ $) 8)) (-3023 (($ $) 7)) (-2999 (($ $) 6)))
-(((-1206) (-140)) (T -1206))
-((-3012 (*1 *1 *1) (-4 *1 (-1206))) (-2987 (*1 *1 *1) (-4 *1 (-1206))) (-3035 (*1 *1 *1) (-4 *1 (-1206))) (-3049 (*1 *1 *1) (-4 *1 (-1206))) (-3023 (*1 *1 *1) (-4 *1 (-1206))) (-2999 (*1 *1 *1) (-4 *1 (-1206))))
-(-13 (-10 -8 (-15 -2999 ($ $)) (-15 -3023 ($ $)) (-15 -3049 ($ $)) (-15 -3035 ($ $)) (-15 -2987 ($ $)) (-15 -3012 ($ $))))
-((-2165 ((|#2| |#2|) 98)) (-1684 (((-112) |#2|) 29)) (-2727 ((|#2| |#2|) 33)) (-2739 ((|#2| |#2|) 35)) (-4049 ((|#2| |#2| (-1178)) 92) ((|#2| |#2|) 93)) (-1327 (((-169 |#2|) |#2|) 31)) (-2912 ((|#2| |#2| (-1178)) 94) ((|#2| |#2|) 95)))
-(((-1207 |#1| |#2|) (-10 -7 (-15 -4049 (|#2| |#2|)) (-15 -4049 (|#2| |#2| (-1178))) (-15 -2912 (|#2| |#2|)) (-15 -2912 (|#2| |#2| (-1178))) (-15 -2165 (|#2| |#2|)) (-15 -2727 (|#2| |#2|)) (-15 -2739 (|#2| |#2|)) (-15 -1684 ((-112) |#2|)) (-15 -1327 ((-169 |#2|) |#2|))) (-13 (-455) (-1040 (-567)) (-640 (-567))) (-13 (-27) (-1203) (-433 |#1|))) (T -1207))
-((-1327 (*1 *2 *3) (-12 (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-169 *3)) (-5 *1 (-1207 *4 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *4))))) (-1684 (*1 *2 *3) (-12 (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-112)) (-5 *1 (-1207 *4 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *4))))) (-2739 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-1207 *3 *2)) (-4 *2 (-13 (-27) (-1203) (-433 *3))))) (-2727 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-1207 *3 *2)) (-4 *2 (-13 (-27) (-1203) (-433 *3))))) (-2165 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-1207 *3 *2)) (-4 *2 (-13 (-27) (-1203) (-433 *3))))) (-2912 (*1 *2 *2 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-1207 *4 *2)) (-4 *2 (-13 (-27) (-1203) (-433 *4))))) (-2912 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-1207 *3 *2)) (-4 *2 (-13 (-27) (-1203) (-433 *3))))) (-4049 (*1 *2 *2 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-1207 *4 *2)) (-4 *2 (-13 (-27) (-1203) (-433 *4))))) (-4049 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-1207 *3 *2)) (-4 *2 (-13 (-27) (-1203) (-433 *3))))))
-(-10 -7 (-15 -4049 (|#2| |#2|)) (-15 -4049 (|#2| |#2| (-1178))) (-15 -2912 (|#2| |#2|)) (-15 -2912 (|#2| |#2| (-1178))) (-15 -2165 (|#2| |#2|)) (-15 -2727 (|#2| |#2|)) (-15 -2739 (|#2| |#2|)) (-15 -1684 ((-112) |#2|)) (-15 -1327 ((-169 |#2|) |#2|)))
-((-1504 ((|#4| |#4| |#1|) 32)) (-3186 ((|#4| |#4| |#1|) 33)))
-(((-1208 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1504 (|#4| |#4| |#1|)) (-15 -3186 (|#4| |#4| |#1|))) (-559) (-375 |#1|) (-375 |#1|) (-688 |#1| |#2| |#3|)) (T -1208))
-((-3186 (*1 *2 *2 *3) (-12 (-4 *3 (-559)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-1208 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) (-1504 (*1 *2 *2 *3) (-12 (-4 *3 (-559)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-1208 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))))
-(-10 -7 (-15 -1504 (|#4| |#4| |#1|)) (-15 -3186 (|#4| |#4| |#1|)))
-((-3365 ((|#2| |#2|) 148)) (-1817 ((|#2| |#2|) 145)) (-2253 ((|#2| |#2|) 136)) (-2574 ((|#2| |#2|) 133)) (-3109 ((|#2| |#2|) 141)) (-2578 ((|#2| |#2|) 129)) (-2441 ((|#2| |#2|) 44)) (-1564 ((|#2| |#2|) 105)) (-3269 ((|#2| |#2|) 88)) (-3451 ((|#2| |#2|) 143)) (-2972 ((|#2| |#2|) 131)) (-2866 ((|#2| |#2|) 153)) (-2765 ((|#2| |#2|) 151)) (-2079 ((|#2| |#2|) 152)) (-2644 ((|#2| |#2|) 150)) (-2116 ((|#2| |#2|) 163)) (-3712 ((|#2| |#2|) 30 (-12 (|has| |#2| (-615 (-894 |#1|))) (|has| |#2| (-888 |#1|)) (|has| |#1| (-615 (-894 |#1|))) (|has| |#1| (-888 |#1|))))) (-2466 ((|#2| |#2|) 89)) (-4241 ((|#2| |#2|) 154)) (-3317 ((|#2| |#2|) 155)) (-1595 ((|#2| |#2|) 142)) (-2865 ((|#2| |#2|) 130)) (-1470 ((|#2| |#2|) 149)) (-4047 ((|#2| |#2|) 147)) (-1831 ((|#2| |#2|) 137)) (-2462 ((|#2| |#2|) 135)) (-2581 ((|#2| |#2|) 139)) (-2345 ((|#2| |#2|) 127)))
-(((-1209 |#1| |#2|) (-10 -7 (-15 -3317 (|#2| |#2|)) (-15 -3269 (|#2| |#2|)) (-15 -2116 (|#2| |#2|)) (-15 -1564 (|#2| |#2|)) (-15 -2441 (|#2| |#2|)) (-15 -2466 (|#2| |#2|)) (-15 -4241 (|#2| |#2|)) (-15 -2345 (|#2| |#2|)) (-15 -2581 (|#2| |#2|)) (-15 -1831 (|#2| |#2|)) (-15 -1470 (|#2| |#2|)) (-15 -2865 (|#2| |#2|)) (-15 -1595 (|#2| |#2|)) (-15 -2972 (|#2| |#2|)) (-15 -3451 (|#2| |#2|)) (-15 -2578 (|#2| |#2|)) (-15 -3109 (|#2| |#2|)) (-15 -2253 (|#2| |#2|)) (-15 -3365 (|#2| |#2|)) (-15 -2574 (|#2| |#2|)) (-15 -1817 (|#2| |#2|)) (-15 -2462 (|#2| |#2|)) (-15 -4047 (|#2| |#2|)) (-15 -2644 (|#2| |#2|)) (-15 -2765 (|#2| |#2|)) (-15 -2079 (|#2| |#2|)) (-15 -2866 (|#2| |#2|)) (IF (|has| |#1| (-888 |#1|)) (IF (|has| |#1| (-615 (-894 |#1|))) (IF (|has| |#2| (-615 (-894 |#1|))) (IF (|has| |#2| (-888 |#1|)) (-15 -3712 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-455) (-13 (-433 |#1|) (-1203))) (T -1209))
-((-3712 (*1 *2 *2) (-12 (-4 *3 (-615 (-894 *3))) (-4 *3 (-888 *3)) (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) (-4 *2 (-615 (-894 *3))) (-4 *2 (-888 *3)) (-4 *2 (-13 (-433 *3) (-1203))))) (-2866 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) (-4 *2 (-13 (-433 *3) (-1203))))) (-2079 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) (-4 *2 (-13 (-433 *3) (-1203))))) (-2765 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) (-4 *2 (-13 (-433 *3) (-1203))))) (-2644 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) (-4 *2 (-13 (-433 *3) (-1203))))) (-4047 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) (-4 *2 (-13 (-433 *3) (-1203))))) (-2462 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) (-4 *2 (-13 (-433 *3) (-1203))))) (-1817 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) (-4 *2 (-13 (-433 *3) (-1203))))) (-2574 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) (-4 *2 (-13 (-433 *3) (-1203))))) (-3365 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) (-4 *2 (-13 (-433 *3) (-1203))))) (-2253 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) (-4 *2 (-13 (-433 *3) (-1203))))) (-3109 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) (-4 *2 (-13 (-433 *3) (-1203))))) (-2578 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) (-4 *2 (-13 (-433 *3) (-1203))))) (-3451 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) (-4 *2 (-13 (-433 *3) (-1203))))) (-2972 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) (-4 *2 (-13 (-433 *3) (-1203))))) (-1595 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) (-4 *2 (-13 (-433 *3) (-1203))))) (-2865 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) (-4 *2 (-13 (-433 *3) (-1203))))) (-1470 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) (-4 *2 (-13 (-433 *3) (-1203))))) (-1831 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) (-4 *2 (-13 (-433 *3) (-1203))))) (-2581 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) (-4 *2 (-13 (-433 *3) (-1203))))) (-2345 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) (-4 *2 (-13 (-433 *3) (-1203))))) (-4241 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) (-4 *2 (-13 (-433 *3) (-1203))))) (-2466 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) (-4 *2 (-13 (-433 *3) (-1203))))) (-2441 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) (-4 *2 (-13 (-433 *3) (-1203))))) (-1564 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) (-4 *2 (-13 (-433 *3) (-1203))))) (-2116 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) (-4 *2 (-13 (-433 *3) (-1203))))) (-3269 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) (-4 *2 (-13 (-433 *3) (-1203))))) (-3317 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2)) (-4 *2 (-13 (-433 *3) (-1203))))))
-(-10 -7 (-15 -3317 (|#2| |#2|)) (-15 -3269 (|#2| |#2|)) (-15 -2116 (|#2| |#2|)) (-15 -1564 (|#2| |#2|)) (-15 -2441 (|#2| |#2|)) (-15 -2466 (|#2| |#2|)) (-15 -4241 (|#2| |#2|)) (-15 -2345 (|#2| |#2|)) (-15 -2581 (|#2| |#2|)) (-15 -1831 (|#2| |#2|)) (-15 -1470 (|#2| |#2|)) (-15 -2865 (|#2| |#2|)) (-15 -1595 (|#2| |#2|)) (-15 -2972 (|#2| |#2|)) (-15 -3451 (|#2| |#2|)) (-15 -2578 (|#2| |#2|)) (-15 -3109 (|#2| |#2|)) (-15 -2253 (|#2| |#2|)) (-15 -3365 (|#2| |#2|)) (-15 -2574 (|#2| |#2|)) (-15 -1817 (|#2| |#2|)) (-15 -2462 (|#2| |#2|)) (-15 -4047 (|#2| |#2|)) (-15 -2644 (|#2| |#2|)) (-15 -2765 (|#2| |#2|)) (-15 -2079 (|#2| |#2|)) (-15 -2866 (|#2| |#2|)) (IF (|has| |#1| (-888 |#1|)) (IF (|has| |#1| (-615 (-894 |#1|))) (IF (|has| |#2| (-615 (-894 |#1|))) (IF (|has| |#2| (-888 |#1|)) (-15 -3712 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
-((-1326 (((-112) |#5| $) 68) (((-112) $) 110)) (-3722 ((|#5| |#5| $) 83)) (-3350 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 127)) (-1441 (((-645 |#5|) (-645 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 81)) (-3753 (((-3 $ "failed") (-645 |#5|)) 135)) (-2421 (((-3 $ "failed") $) 120)) (-1999 ((|#5| |#5| $) 102)) (-3786 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 36)) (-3730 ((|#5| |#5| $) 106)) (-2477 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 77)) (-1585 (((-2 (|:| -3995 (-645 |#5|)) (|:| -3823 (-645 |#5|))) $) 63)) (-1664 (((-112) |#5| $) 66) (((-112) $) 111)) (-1679 ((|#4| $) 116)) (-3257 (((-3 |#5| "failed") $) 118)) (-4051 (((-645 |#5|) $) 55)) (-1791 (((-112) |#5| $) 75) (((-112) $) 115)) (-3159 ((|#5| |#5| $) 89)) (-3392 (((-112) $ $) 29)) (-2554 (((-112) |#5| $) 71) (((-112) $) 113)) (-4164 ((|#5| |#5| $) 86)) (-2409 (((-3 |#5| "failed") $) 117)) (-2410 (($ $ |#5|) 136)) (-3077 (((-772) $) 60)) (-4147 (($ (-645 |#5|)) 133)) (-2397 (($ $ |#4|) 131)) (-2120 (($ $ |#4|) 129)) (-4129 (($ $) 128)) (-4132 (((-863) $) NIL) (((-645 |#5|) $) 121)) (-2073 (((-772) $) 140)) (-2220 (((-3 (-2 (|:| |bas| $) (|:| -2262 (-645 |#5|))) "failed") (-645 |#5|) (-1 (-112) |#5| |#5|)) 49) (((-3 (-2 (|:| |bas| $) (|:| -2262 (-645 |#5|))) "failed") (-645 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 51)) (-2668 (((-112) $ (-1 (-112) |#5| (-645 |#5|))) 108)) (-2385 (((-645 |#4|) $) 123)) (-2012 (((-112) |#4| $) 126)) (-2936 (((-112) $ $) 20)))
-(((-1210 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2073 ((-772) |#1|)) (-15 -2410 (|#1| |#1| |#5|)) (-15 -3350 ((-3 |#5| "failed") |#1| |#4|)) (-15 -2012 ((-112) |#4| |#1|)) (-15 -2385 ((-645 |#4|) |#1|)) (-15 -2421 ((-3 |#1| "failed") |#1|)) (-15 -3257 ((-3 |#5| "failed") |#1|)) (-15 -2409 ((-3 |#5| "failed") |#1|)) (-15 -3730 (|#5| |#5| |#1|)) (-15 -4129 (|#1| |#1|)) (-15 -1999 (|#5| |#5| |#1|)) (-15 -3159 (|#5| |#5| |#1|)) (-15 -4164 (|#5| |#5| |#1|)) (-15 -3722 (|#5| |#5| |#1|)) (-15 -1441 ((-645 |#5|) (-645 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2477 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -1791 ((-112) |#1|)) (-15 -2554 ((-112) |#1|)) (-15 -1326 ((-112) |#1|)) (-15 -2668 ((-112) |#1| (-1 (-112) |#5| (-645 |#5|)))) (-15 -1791 ((-112) |#5| |#1|)) (-15 -2554 ((-112) |#5| |#1|)) (-15 -1326 ((-112) |#5| |#1|)) (-15 -3786 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -1664 ((-112) |#1|)) (-15 -1664 ((-112) |#5| |#1|)) (-15 -1585 ((-2 (|:| -3995 (-645 |#5|)) (|:| -3823 (-645 |#5|))) |#1|)) (-15 -3077 ((-772) |#1|)) (-15 -4051 ((-645 |#5|) |#1|)) (-15 -2220 ((-3 (-2 (|:| |bas| |#1|) (|:| -2262 (-645 |#5|))) "failed") (-645 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -2220 ((-3 (-2 (|:| |bas| |#1|) (|:| -2262 (-645 |#5|))) "failed") (-645 |#5|) (-1 (-112) |#5| |#5|))) (-15 -3392 ((-112) |#1| |#1|)) (-15 -2397 (|#1| |#1| |#4|)) (-15 -2120 (|#1| |#1| |#4|)) (-15 -1679 (|#4| |#1|)) (-15 -3753 ((-3 |#1| "failed") (-645 |#5|))) (-15 -4132 ((-645 |#5|) |#1|)) (-15 -4147 (|#1| (-645 |#5|))) (-15 -2477 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2477 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3350 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2477 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -4132 ((-863) |#1|)) (-15 -2936 ((-112) |#1| |#1|))) (-1211 |#2| |#3| |#4| |#5|) (-559) (-794) (-851) (-1067 |#2| |#3| |#4|)) (T -1210))
-NIL
-(-10 -8 (-15 -2073 ((-772) |#1|)) (-15 -2410 (|#1| |#1| |#5|)) (-15 -3350 ((-3 |#5| "failed") |#1| |#4|)) (-15 -2012 ((-112) |#4| |#1|)) (-15 -2385 ((-645 |#4|) |#1|)) (-15 -2421 ((-3 |#1| "failed") |#1|)) (-15 -3257 ((-3 |#5| "failed") |#1|)) (-15 -2409 ((-3 |#5| "failed") |#1|)) (-15 -3730 (|#5| |#5| |#1|)) (-15 -4129 (|#1| |#1|)) (-15 -1999 (|#5| |#5| |#1|)) (-15 -3159 (|#5| |#5| |#1|)) (-15 -4164 (|#5| |#5| |#1|)) (-15 -3722 (|#5| |#5| |#1|)) (-15 -1441 ((-645 |#5|) (-645 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2477 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -1791 ((-112) |#1|)) (-15 -2554 ((-112) |#1|)) (-15 -1326 ((-112) |#1|)) (-15 -2668 ((-112) |#1| (-1 (-112) |#5| (-645 |#5|)))) (-15 -1791 ((-112) |#5| |#1|)) (-15 -2554 ((-112) |#5| |#1|)) (-15 -1326 ((-112) |#5| |#1|)) (-15 -3786 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -1664 ((-112) |#1|)) (-15 -1664 ((-112) |#5| |#1|)) (-15 -1585 ((-2 (|:| -3995 (-645 |#5|)) (|:| -3823 (-645 |#5|))) |#1|)) (-15 -3077 ((-772) |#1|)) (-15 -4051 ((-645 |#5|) |#1|)) (-15 -2220 ((-3 (-2 (|:| |bas| |#1|) (|:| -2262 (-645 |#5|))) "failed") (-645 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -2220 ((-3 (-2 (|:| |bas| |#1|) (|:| -2262 (-645 |#5|))) "failed") (-645 |#5|) (-1 (-112) |#5| |#5|))) (-15 -3392 ((-112) |#1| |#1|)) (-15 -2397 (|#1| |#1| |#4|)) (-15 -2120 (|#1| |#1| |#4|)) (-15 -1679 (|#4| |#1|)) (-15 -3753 ((-3 |#1| "failed") (-645 |#5|))) (-15 -4132 ((-645 |#5|) |#1|)) (-15 -4147 (|#1| (-645 |#5|))) (-15 -2477 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2477 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3350 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2477 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -4132 ((-863) |#1|)) (-15 -2936 ((-112) |#1| |#1|)))
-((-2403 (((-112) $ $) 7)) (-3487 (((-645 (-2 (|:| -3995 $) (|:| -3823 (-645 |#4|)))) (-645 |#4|)) 86)) (-3244 (((-645 $) (-645 |#4|)) 87)) (-2847 (((-645 |#3|) $) 34)) (-2017 (((-112) $) 27)) (-3623 (((-112) $) 18 (|has| |#1| (-559)))) (-1326 (((-112) |#4| $) 102) (((-112) $) 98)) (-3722 ((|#4| |#4| $) 93)) (-4396 (((-2 (|:| |under| $) (|:| -2780 $) (|:| |upper| $)) $ |#3|) 28)) (-3445 (((-112) $ (-772)) 45)) (-3350 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4418))) (((-3 |#4| "failed") $ |#3|) 80)) (-2585 (($) 46 T CONST)) (-1490 (((-112) $) 23 (|has| |#1| (-559)))) (-2752 (((-112) $ $) 25 (|has| |#1| (-559)))) (-4224 (((-112) $ $) 24 (|has| |#1| (-559)))) (-3547 (((-112) $) 26 (|has| |#1| (-559)))) (-1441 (((-645 |#4|) (-645 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1724 (((-645 |#4|) (-645 |#4|) $) 19 (|has| |#1| (-559)))) (-3197 (((-645 |#4|) (-645 |#4|) $) 20 (|has| |#1| (-559)))) (-3753 (((-3 $ "failed") (-645 |#4|)) 37)) (-2038 (($ (-645 |#4|)) 36)) (-2421 (((-3 $ "failed") $) 83)) (-1999 ((|#4| |#4| $) 90)) (-2444 (($ $) 69 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4418))))) (-3238 (($ |#4| $) 68 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4418)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4418)))) (-4194 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-559)))) (-3786 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3730 ((|#4| |#4| $) 88)) (-2477 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4418)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4418))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4418))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1585 (((-2 (|:| -3995 (-645 |#4|)) (|:| -3823 (-645 |#4|))) $) 106)) (-2777 (((-645 |#4|) $) 53 (|has| $ (-6 -4418)))) (-1664 (((-112) |#4| $) 105) (((-112) $) 104)) (-1679 ((|#3| $) 35)) (-2077 (((-112) $ (-772)) 44)) (-2279 (((-645 |#4|) $) 54 (|has| $ (-6 -4418)))) (-4337 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4418))))) (-3731 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#4| |#4|) $) 48)) (-2826 (((-645 |#3|) $) 33)) (-2808 (((-112) |#3| $) 32)) (-2863 (((-112) $ (-772)) 43)) (-1419 (((-1160) $) 10)) (-3257 (((-3 |#4| "failed") $) 84)) (-4051 (((-645 |#4|) $) 108)) (-1791 (((-112) |#4| $) 100) (((-112) $) 96)) (-3159 ((|#4| |#4| $) 91)) (-3392 (((-112) $ $) 111)) (-2430 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-559)))) (-2554 (((-112) |#4| $) 101) (((-112) $) 97)) (-4164 ((|#4| |#4| $) 92)) (-3430 (((-1122) $) 11)) (-2409 (((-3 |#4| "failed") $) 85)) (-4128 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-4077 (((-3 $ "failed") $ |#4|) 79)) (-2410 (($ $ |#4|) 78)) (-3025 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 |#4|) (-645 |#4|)) 60 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-295 |#4|)) 58 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-645 (-295 |#4|))) 57 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))))) (-3092 (((-112) $ $) 39)) (-3572 (((-112) $) 42)) (-3498 (($) 41)) (-3077 (((-772) $) 107)) (-3439 (((-772) |#4| $) 55 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4418)))) (((-772) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4418)))) (-4305 (($ $) 40)) (-3893 (((-539) $) 70 (|has| |#4| (-615 (-539))))) (-4147 (($ (-645 |#4|)) 61)) (-2397 (($ $ |#3|) 29)) (-2120 (($ $ |#3|) 31)) (-4129 (($ $) 89)) (-2813 (($ $ |#3|) 30)) (-4132 (((-863) $) 12) (((-645 |#4|) $) 38)) (-2073 (((-772) $) 77 (|has| |#3| (-370)))) (-1745 (((-112) $ $) 9)) (-2220 (((-3 (-2 (|:| |bas| $) (|:| -2262 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2262 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-2668 (((-112) $ (-1 (-112) |#4| (-645 |#4|))) 99)) (-1853 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4418)))) (-2385 (((-645 |#3|) $) 82)) (-2012 (((-112) |#3| $) 81)) (-2936 (((-112) $ $) 6)) (-2414 (((-772) $) 47 (|has| $ (-6 -4418)))))
-(((-1211 |#1| |#2| |#3| |#4|) (-140) (-559) (-794) (-851) (-1067 |t#1| |t#2| |t#3|)) (T -1211))
-((-3392 (*1 *2 *1 *1) (-12 (-4 *1 (-1211 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-112)))) (-2220 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2262 (-645 *8)))) (-5 *3 (-645 *8)) (-4 *1 (-1211 *5 *6 *7 *8)))) (-2220 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1067 *6 *7 *8)) (-4 *6 (-559)) (-4 *7 (-794)) (-4 *8 (-851)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2262 (-645 *9)))) (-5 *3 (-645 *9)) (-4 *1 (-1211 *6 *7 *8 *9)))) (-4051 (*1 *2 *1) (-12 (-4 *1 (-1211 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-645 *6)))) (-3077 (*1 *2 *1) (-12 (-4 *1 (-1211 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-772)))) (-1585 (*1 *2 *1) (-12 (-4 *1 (-1211 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-2 (|:| -3995 (-645 *6)) (|:| -3823 (-645 *6)))))) (-1664 (*1 *2 *3 *1) (-12 (-4 *1 (-1211 *4 *5 *6 *3)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-112)))) (-1664 (*1 *2 *1) (-12 (-4 *1 (-1211 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-112)))) (-3786 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1211 *5 *6 *7 *3)) (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-112)))) (-1326 (*1 *2 *3 *1) (-12 (-4 *1 (-1211 *4 *5 *6 *3)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-112)))) (-2554 (*1 *2 *3 *1) (-12 (-4 *1 (-1211 *4 *5 *6 *3)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-112)))) (-1791 (*1 *2 *3 *1) (-12 (-4 *1 (-1211 *4 *5 *6 *3)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-112)))) (-2668 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-645 *7))) (-4 *1 (-1211 *4 *5 *6 *7)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112)))) (-1326 (*1 *2 *1) (-12 (-4 *1 (-1211 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-112)))) (-2554 (*1 *2 *1) (-12 (-4 *1 (-1211 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-112)))) (-1791 (*1 *2 *1) (-12 (-4 *1 (-1211 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-112)))) (-2477 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1211 *5 *6 *7 *2)) (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *2 (-1067 *5 *6 *7)))) (-1441 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-645 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1211 *5 *6 *7 *8)) (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-1067 *5 *6 *7)))) (-3722 (*1 *2 *2 *1) (-12 (-4 *1 (-1211 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5)))) (-4164 (*1 *2 *2 *1) (-12 (-4 *1 (-1211 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5)))) (-3159 (*1 *2 *2 *1) (-12 (-4 *1 (-1211 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5)))) (-1999 (*1 *2 *2 *1) (-12 (-4 *1 (-1211 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5)))) (-4129 (*1 *1 *1) (-12 (-4 *1 (-1211 *2 *3 *4 *5)) (-4 *2 (-559)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *5 (-1067 *2 *3 *4)))) (-3730 (*1 *2 *2 *1) (-12 (-4 *1 (-1211 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5)))) (-3244 (*1 *2 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-1211 *4 *5 *6 *7)))) (-3487 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-645 (-2 (|:| -3995 *1) (|:| -3823 (-645 *7))))) (-5 *3 (-645 *7)) (-4 *1 (-1211 *4 *5 *6 *7)))) (-2409 (*1 *2 *1) (|partial| -12 (-4 *1 (-1211 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5)))) (-3257 (*1 *2 *1) (|partial| -12 (-4 *1 (-1211 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5)))) (-2421 (*1 *1 *1) (|partial| -12 (-4 *1 (-1211 *2 *3 *4 *5)) (-4 *2 (-559)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *5 (-1067 *2 *3 *4)))) (-2385 (*1 *2 *1) (-12 (-4 *1 (-1211 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-645 *5)))) (-2012 (*1 *2 *3 *1) (-12 (-4 *1 (-1211 *4 *5 *3 *6)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *3 (-851)) (-4 *6 (-1067 *4 *5 *3)) (-5 *2 (-112)))) (-3350 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1211 *4 *5 *3 *2)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *3 (-851)) (-4 *2 (-1067 *4 *5 *3)))) (-4077 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1211 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5)))) (-2410 (*1 *1 *1 *2) (-12 (-4 *1 (-1211 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5)))) (-2073 (*1 *2 *1) (-12 (-4 *1 (-1211 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-4 *5 (-370)) (-5 *2 (-772)))))
-(-13 (-978 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4418) (-6 -4419) (-15 -3392 ((-112) $ $)) (-15 -2220 ((-3 (-2 (|:| |bas| $) (|:| -2262 (-645 |t#4|))) "failed") (-645 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2220 ((-3 (-2 (|:| |bas| $) (|:| -2262 (-645 |t#4|))) "failed") (-645 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4051 ((-645 |t#4|) $)) (-15 -3077 ((-772) $)) (-15 -1585 ((-2 (|:| -3995 (-645 |t#4|)) (|:| -3823 (-645 |t#4|))) $)) (-15 -1664 ((-112) |t#4| $)) (-15 -1664 ((-112) $)) (-15 -3786 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -1326 ((-112) |t#4| $)) (-15 -2554 ((-112) |t#4| $)) (-15 -1791 ((-112) |t#4| $)) (-15 -2668 ((-112) $ (-1 (-112) |t#4| (-645 |t#4|)))) (-15 -1326 ((-112) $)) (-15 -2554 ((-112) $)) (-15 -1791 ((-112) $)) (-15 -2477 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -1441 ((-645 |t#4|) (-645 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3722 (|t#4| |t#4| $)) (-15 -4164 (|t#4| |t#4| $)) (-15 -3159 (|t#4| |t#4| $)) (-15 -1999 (|t#4| |t#4| $)) (-15 -4129 ($ $)) (-15 -3730 (|t#4| |t#4| $)) (-15 -3244 ((-645 $) (-645 |t#4|))) (-15 -3487 ((-645 (-2 (|:| -3995 $) (|:| -3823 (-645 |t#4|)))) (-645 |t#4|))) (-15 -2409 ((-3 |t#4| "failed") $)) (-15 -3257 ((-3 |t#4| "failed") $)) (-15 -2421 ((-3 $ "failed") $)) (-15 -2385 ((-645 |t#3|) $)) (-15 -2012 ((-112) |t#3| $)) (-15 -3350 ((-3 |t#4| "failed") $ |t#3|)) (-15 -4077 ((-3 $ "failed") $ |t#4|)) (-15 -2410 ($ $ |t#4|)) (IF (|has| |t#3| (-370)) (-15 -2073 ((-772) $)) |%noBranch|)))
-(((-34) . T) ((-102) . T) ((-614 (-645 |#4|)) . T) ((-614 (-863)) . T) ((-151 |#4|) . T) ((-615 (-539)) |has| |#4| (-615 (-539))) ((-310 |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))) ((-492 |#4|) . T) ((-517 |#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))) ((-978 |#1| |#2| |#3| |#4|) . T) ((-1102) . T) ((-1218) . T))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-2847 (((-645 (-1178)) $) NIL)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-4381 (($ $) NIL (|has| |#1| (-559)))) (-3949 (((-112) $) NIL (|has| |#1| (-559)))) (-3146 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3012 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3472 (((-3 $ "failed") $ $) NIL)) (-2716 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3128 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2987 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3166 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3035 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2585 (($) NIL T CONST)) (-3014 (($ $) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-3717 (((-954 |#1|) $ (-772)) 20) (((-954 |#1|) $ (-772) (-772)) NIL)) (-2762 (((-112) $) NIL)) (-1482 (($) NIL (|has| |#1| (-38 (-410 (-567)))))) (-4384 (((-772) $ (-1178)) NIL) (((-772) $ (-1178) (-772)) NIL)) (-1433 (((-112) $) NIL)) (-2651 (($ $ (-567)) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2843 (((-112) $) NIL)) (-2824 (($ $ (-645 (-1178)) (-645 (-534 (-1178)))) NIL) (($ $ (-1178) (-534 (-1178))) NIL) (($ |#1| (-534 (-1178))) NIL) (($ $ (-1178) (-772)) NIL) (($ $ (-645 (-1178)) (-645 (-772))) NIL)) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-3063 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2976 (($ $) NIL)) (-2989 ((|#1| $) NIL)) (-1419 (((-1160) $) NIL)) (-2416 (($ $ (-1178)) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1178) |#1|) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3430 (((-1122) $) NIL)) (-3583 (($ (-1 $) (-1178) |#1|) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2410 (($ $ (-772)) NIL)) (-2391 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-3946 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2631 (($ $ (-1178) $) NIL) (($ $ (-645 (-1178)) (-645 $)) NIL) (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL)) (-1593 (($ $ (-1178)) NIL) (($ $ (-645 (-1178))) NIL) (($ $ (-1178) (-772)) NIL) (($ $ (-645 (-1178)) (-645 (-772))) NIL)) (-3077 (((-534 (-1178)) $) NIL)) (-3175 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3049 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3156 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3023 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3137 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2999 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2192 (($ $) NIL)) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ $) NIL (|has| |#1| (-559))) (($ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ (-1178)) NIL) (($ (-954 |#1|)) NIL)) (-4136 ((|#1| $ (-534 (-1178))) NIL) (($ $ (-1178) (-772)) NIL) (($ $ (-645 (-1178)) (-645 (-772))) NIL) (((-954 |#1|) $ (-772)) NIL)) (-1903 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-4221 (((-772)) NIL T CONST)) (-1745 (((-112) $ $) NIL)) (-3200 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3084 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3816 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3183 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3062 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3221 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3106 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3785 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3118 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3211 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3095 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3193 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3074 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1716 (($) NIL T CONST)) (-1728 (($) NIL T CONST)) (-2637 (($ $ (-1178)) NIL) (($ $ (-645 (-1178))) NIL) (($ $ (-1178) (-772)) NIL) (($ $ (-645 (-1178)) (-645 (-772))) NIL)) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-1212 |#1|) (-13 (-741 |#1| (-1178)) (-10 -8 (-15 -4136 ((-954 |#1|) $ (-772))) (-15 -4132 ($ (-1178))) (-15 -4132 ($ (-954 |#1|))) (IF (|has| |#1| (-38 (-410 (-567)))) (PROGN (-15 -2416 ($ $ (-1178) |#1|)) (-15 -3583 ($ (-1 $) (-1178) |#1|))) |%noBranch|))) (-1051)) (T -1212))
-((-4136 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *2 (-954 *4)) (-5 *1 (-1212 *4)) (-4 *4 (-1051)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1212 *3)) (-4 *3 (-1051)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-954 *3)) (-4 *3 (-1051)) (-5 *1 (-1212 *3)))) (-2416 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *1 (-1212 *3)) (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)))) (-3583 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1212 *4))) (-5 *3 (-1178)) (-5 *1 (-1212 *4)) (-4 *4 (-38 (-410 (-567)))) (-4 *4 (-1051)))))
-(-13 (-741 |#1| (-1178)) (-10 -8 (-15 -4136 ((-954 |#1|) $ (-772))) (-15 -4132 ($ (-1178))) (-15 -4132 ($ (-954 |#1|))) (IF (|has| |#1| (-38 (-410 (-567)))) (PROGN (-15 -2416 ($ $ (-1178) |#1|)) (-15 -3583 ($ (-1 $) (-1178) |#1|))) |%noBranch|)))
-((-1692 (($ |#1| (-645 (-645 (-945 (-225)))) (-112)) 19)) (-1773 (((-112) $ (-112)) 18)) (-2640 (((-112) $) 17)) (-3218 (((-645 (-645 (-945 (-225)))) $) 13)) (-4053 ((|#1| $) 8)) (-3416 (((-112) $) 15)))
-(((-1213 |#1|) (-10 -8 (-15 -4053 (|#1| $)) (-15 -3218 ((-645 (-645 (-945 (-225)))) $)) (-15 -3416 ((-112) $)) (-15 -2640 ((-112) $)) (-15 -1773 ((-112) $ (-112))) (-15 -1692 ($ |#1| (-645 (-645 (-945 (-225)))) (-112)))) (-976)) (T -1213))
-((-1692 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-645 (-645 (-945 (-225))))) (-5 *4 (-112)) (-5 *1 (-1213 *2)) (-4 *2 (-976)))) (-1773 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1213 *3)) (-4 *3 (-976)))) (-2640 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1213 *3)) (-4 *3 (-976)))) (-3416 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1213 *3)) (-4 *3 (-976)))) (-3218 (*1 *2 *1) (-12 (-5 *2 (-645 (-645 (-945 (-225))))) (-5 *1 (-1213 *3)) (-4 *3 (-976)))) (-4053 (*1 *2 *1) (-12 (-5 *1 (-1213 *2)) (-4 *2 (-976)))))
-(-10 -8 (-15 -4053 (|#1| $)) (-15 -3218 ((-645 (-645 (-945 (-225)))) $)) (-15 -3416 ((-112) $)) (-15 -2640 ((-112) $)) (-15 -1773 ((-112) $ (-112))) (-15 -1692 ($ |#1| (-645 (-645 (-945 (-225)))) (-112))))
-((-4387 (((-945 (-225)) (-945 (-225))) 31)) (-4371 (((-945 (-225)) (-225) (-225) (-225) (-225)) 10)) (-1492 (((-645 (-945 (-225))) (-945 (-225)) (-945 (-225)) (-945 (-225)) (-225) (-645 (-645 (-225)))) 60)) (-3366 (((-225) (-945 (-225)) (-945 (-225))) 27)) (-4295 (((-945 (-225)) (-945 (-225)) (-945 (-225))) 28)) (-4391 (((-645 (-645 (-225))) (-567)) 48)) (-3045 (((-945 (-225)) (-945 (-225)) (-945 (-225))) 26)) (-3033 (((-945 (-225)) (-945 (-225)) (-945 (-225))) 24)) (* (((-945 (-225)) (-225) (-945 (-225))) 22)))
-(((-1214) (-10 -7 (-15 -4371 ((-945 (-225)) (-225) (-225) (-225) (-225))) (-15 * ((-945 (-225)) (-225) (-945 (-225)))) (-15 -3033 ((-945 (-225)) (-945 (-225)) (-945 (-225)))) (-15 -3045 ((-945 (-225)) (-945 (-225)) (-945 (-225)))) (-15 -3366 ((-225) (-945 (-225)) (-945 (-225)))) (-15 -4295 ((-945 (-225)) (-945 (-225)) (-945 (-225)))) (-15 -4387 ((-945 (-225)) (-945 (-225)))) (-15 -4391 ((-645 (-645 (-225))) (-567))) (-15 -1492 ((-645 (-945 (-225))) (-945 (-225)) (-945 (-225)) (-945 (-225)) (-225) (-645 (-645 (-225))))))) (T -1214))
-((-1492 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-645 (-645 (-225)))) (-5 *4 (-225)) (-5 *2 (-645 (-945 *4))) (-5 *1 (-1214)) (-5 *3 (-945 *4)))) (-4391 (*1 *2 *3) (-12 (-5 *3 (-567)) (-5 *2 (-645 (-645 (-225)))) (-5 *1 (-1214)))) (-4387 (*1 *2 *2) (-12 (-5 *2 (-945 (-225))) (-5 *1 (-1214)))) (-4295 (*1 *2 *2 *2) (-12 (-5 *2 (-945 (-225))) (-5 *1 (-1214)))) (-3366 (*1 *2 *3 *3) (-12 (-5 *3 (-945 (-225))) (-5 *2 (-225)) (-5 *1 (-1214)))) (-3045 (*1 *2 *2 *2) (-12 (-5 *2 (-945 (-225))) (-5 *1 (-1214)))) (-3033 (*1 *2 *2 *2) (-12 (-5 *2 (-945 (-225))) (-5 *1 (-1214)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-945 (-225))) (-5 *3 (-225)) (-5 *1 (-1214)))) (-4371 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-945 (-225))) (-5 *1 (-1214)) (-5 *3 (-225)))))
-(-10 -7 (-15 -4371 ((-945 (-225)) (-225) (-225) (-225) (-225))) (-15 * ((-945 (-225)) (-225) (-945 (-225)))) (-15 -3033 ((-945 (-225)) (-945 (-225)) (-945 (-225)))) (-15 -3045 ((-945 (-225)) (-945 (-225)) (-945 (-225)))) (-15 -3366 ((-225) (-945 (-225)) (-945 (-225)))) (-15 -4295 ((-945 (-225)) (-945 (-225)) (-945 (-225)))) (-15 -4387 ((-945 (-225)) (-945 (-225)))) (-15 -4391 ((-645 (-645 (-225))) (-567))) (-15 -1492 ((-645 (-945 (-225))) (-945 (-225)) (-945 (-225)) (-945 (-225)) (-225) (-645 (-645 (-225))))))
-((-2403 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3350 ((|#1| $ (-772)) 18)) (-1699 (((-772) $) 13)) (-1419 (((-1160) $) NIL (|has| |#1| (-1102)))) (-3430 (((-1122) $) NIL (|has| |#1| (-1102)))) (-4132 (((-960 |#1|) $) 12) (($ (-960 |#1|)) 11) (((-863) $) 29 (|has| |#1| (-614 (-863))))) (-1745 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2936 (((-112) $ $) 22 (|has| |#1| (-1102)))))
-(((-1215 |#1|) (-13 (-493 (-960 |#1|)) (-10 -8 (-15 -3350 (|#1| $ (-772))) (-15 -1699 ((-772) $)) (IF (|has| |#1| (-614 (-863))) (-6 (-614 (-863))) |%noBranch|) (IF (|has| |#1| (-1102)) (-6 (-1102)) |%noBranch|))) (-1218)) (T -1215))
-((-3350 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *1 (-1215 *2)) (-4 *2 (-1218)))) (-1699 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1215 *3)) (-4 *3 (-1218)))))
-(-13 (-493 (-960 |#1|)) (-10 -8 (-15 -3350 (|#1| $ (-772))) (-15 -1699 ((-772) $)) (IF (|has| |#1| (-614 (-863))) (-6 (-614 (-863))) |%noBranch|) (IF (|has| |#1| (-1102)) (-6 (-1102)) |%noBranch|)))
-((-2840 (((-421 (-1174 (-1174 |#1|))) (-1174 (-1174 |#1|)) (-567)) 94)) (-2145 (((-421 (-1174 (-1174 |#1|))) (-1174 (-1174 |#1|))) 86)) (-4299 (((-421 (-1174 (-1174 |#1|))) (-1174 (-1174 |#1|))) 70)))
-(((-1216 |#1|) (-10 -7 (-15 -2145 ((-421 (-1174 (-1174 |#1|))) (-1174 (-1174 |#1|)))) (-15 -4299 ((-421 (-1174 (-1174 |#1|))) (-1174 (-1174 |#1|)))) (-15 -2840 ((-421 (-1174 (-1174 |#1|))) (-1174 (-1174 |#1|)) (-567)))) (-351)) (T -1216))
-((-2840 (*1 *2 *3 *4) (-12 (-5 *4 (-567)) (-4 *5 (-351)) (-5 *2 (-421 (-1174 (-1174 *5)))) (-5 *1 (-1216 *5)) (-5 *3 (-1174 (-1174 *5))))) (-4299 (*1 *2 *3) (-12 (-4 *4 (-351)) (-5 *2 (-421 (-1174 (-1174 *4)))) (-5 *1 (-1216 *4)) (-5 *3 (-1174 (-1174 *4))))) (-2145 (*1 *2 *3) (-12 (-4 *4 (-351)) (-5 *2 (-421 (-1174 (-1174 *4)))) (-5 *1 (-1216 *4)) (-5 *3 (-1174 (-1174 *4))))))
-(-10 -7 (-15 -2145 ((-421 (-1174 (-1174 |#1|))) (-1174 (-1174 |#1|)))) (-15 -4299 ((-421 (-1174 (-1174 |#1|))) (-1174 (-1174 |#1|)))) (-15 -2840 ((-421 (-1174 (-1174 |#1|))) (-1174 (-1174 |#1|)) (-567))))
-((-2403 (((-112) $ $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 9) (($ (-1183)) NIL) (((-1183) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)))
-(((-1217) (-1085)) (T -1217))
+((-1347 (((-645 (-645 (-954 |#1|))) (-645 (-410 (-954 |#1|))) (-645 (-1179))) 67)) (-2464 (((-645 (-295 (-410 (-954 |#1|)))) (-295 (-410 (-954 |#1|)))) 78) (((-645 (-295 (-410 (-954 |#1|)))) (-410 (-954 |#1|))) 74) (((-645 (-295 (-410 (-954 |#1|)))) (-295 (-410 (-954 |#1|))) (-1179)) 79) (((-645 (-295 (-410 (-954 |#1|)))) (-410 (-954 |#1|)) (-1179)) 73) (((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-295 (-410 (-954 |#1|))))) 106) (((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-410 (-954 |#1|)))) 105) (((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-295 (-410 (-954 |#1|)))) (-645 (-1179))) 107) (((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-410 (-954 |#1|))) (-645 (-1179))) 104)))
+(((-1188 |#1|) (-10 -7 (-15 -2464 ((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-410 (-954 |#1|))) (-645 (-1179)))) (-15 -2464 ((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-295 (-410 (-954 |#1|)))) (-645 (-1179)))) (-15 -2464 ((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-410 (-954 |#1|))))) (-15 -2464 ((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-295 (-410 (-954 |#1|)))))) (-15 -2464 ((-645 (-295 (-410 (-954 |#1|)))) (-410 (-954 |#1|)) (-1179))) (-15 -2464 ((-645 (-295 (-410 (-954 |#1|)))) (-295 (-410 (-954 |#1|))) (-1179))) (-15 -2464 ((-645 (-295 (-410 (-954 |#1|)))) (-410 (-954 |#1|)))) (-15 -2464 ((-645 (-295 (-410 (-954 |#1|)))) (-295 (-410 (-954 |#1|))))) (-15 -1347 ((-645 (-645 (-954 |#1|))) (-645 (-410 (-954 |#1|))) (-645 (-1179))))) (-559)) (T -1188))
+((-1347 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-410 (-954 *5)))) (-5 *4 (-645 (-1179))) (-4 *5 (-559)) (-5 *2 (-645 (-645 (-954 *5)))) (-5 *1 (-1188 *5)))) (-2464 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-645 (-295 (-410 (-954 *4))))) (-5 *1 (-1188 *4)) (-5 *3 (-295 (-410 (-954 *4)))))) (-2464 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-645 (-295 (-410 (-954 *4))))) (-5 *1 (-1188 *4)) (-5 *3 (-410 (-954 *4))))) (-2464 (*1 *2 *3 *4) (-12 (-5 *4 (-1179)) (-4 *5 (-559)) (-5 *2 (-645 (-295 (-410 (-954 *5))))) (-5 *1 (-1188 *5)) (-5 *3 (-295 (-410 (-954 *5)))))) (-2464 (*1 *2 *3 *4) (-12 (-5 *4 (-1179)) (-4 *5 (-559)) (-5 *2 (-645 (-295 (-410 (-954 *5))))) (-5 *1 (-1188 *5)) (-5 *3 (-410 (-954 *5))))) (-2464 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-645 (-645 (-295 (-410 (-954 *4)))))) (-5 *1 (-1188 *4)) (-5 *3 (-645 (-295 (-410 (-954 *4))))))) (-2464 (*1 *2 *3) (-12 (-5 *3 (-645 (-410 (-954 *4)))) (-4 *4 (-559)) (-5 *2 (-645 (-645 (-295 (-410 (-954 *4)))))) (-5 *1 (-1188 *4)))) (-2464 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-1179))) (-4 *5 (-559)) (-5 *2 (-645 (-645 (-295 (-410 (-954 *5)))))) (-5 *1 (-1188 *5)) (-5 *3 (-645 (-295 (-410 (-954 *5))))))) (-2464 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-410 (-954 *5)))) (-5 *4 (-645 (-1179))) (-4 *5 (-559)) (-5 *2 (-645 (-645 (-295 (-410 (-954 *5)))))) (-5 *1 (-1188 *5)))))
+(-10 -7 (-15 -2464 ((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-410 (-954 |#1|))) (-645 (-1179)))) (-15 -2464 ((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-295 (-410 (-954 |#1|)))) (-645 (-1179)))) (-15 -2464 ((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-410 (-954 |#1|))))) (-15 -2464 ((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-295 (-410 (-954 |#1|)))))) (-15 -2464 ((-645 (-295 (-410 (-954 |#1|)))) (-410 (-954 |#1|)) (-1179))) (-15 -2464 ((-645 (-295 (-410 (-954 |#1|)))) (-295 (-410 (-954 |#1|))) (-1179))) (-15 -2464 ((-645 (-295 (-410 (-954 |#1|)))) (-410 (-954 |#1|)))) (-15 -2464 ((-645 (-295 (-410 (-954 |#1|)))) (-295 (-410 (-954 |#1|))))) (-15 -1347 ((-645 (-645 (-954 |#1|))) (-645 (-410 (-954 |#1|))) (-645 (-1179)))))
+((-3388 (((-1161)) 7)) (-1631 (((-1161)) 11 T CONST)) (-3052 (((-1274) (-1161)) 13)) (-3687 (((-1161)) 8 T CONST)) (-4241 (((-130)) 10 T CONST)))
+(((-1189) (-13 (-1219) (-10 -7 (-15 -3388 ((-1161))) (-15 -3687 ((-1161)) -3304) (-15 -4241 ((-130)) -3304) (-15 -1631 ((-1161)) -3304) (-15 -3052 ((-1274) (-1161)))))) (T -1189))
+((-3388 (*1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-1189)))) (-3687 (*1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-1189)))) (-4241 (*1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-1189)))) (-1631 (*1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-1189)))) (-3052 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1189)))))
+(-13 (-1219) (-10 -7 (-15 -3388 ((-1161))) (-15 -3687 ((-1161)) -3304) (-15 -4241 ((-130)) -3304) (-15 -1631 ((-1161)) -3304) (-15 -3052 ((-1274) (-1161)))))
+((-4042 (((-645 (-645 |#1|)) (-645 (-645 |#1|)) (-645 (-645 (-645 |#1|)))) 56)) (-3874 (((-645 (-645 (-645 |#1|))) (-645 (-645 |#1|))) 38)) (-4398 (((-1191 (-645 |#1|)) (-645 |#1|)) 49)) (-1474 (((-645 (-645 |#1|)) (-645 |#1|)) 45)) (-2709 (((-2 (|:| |f1| (-645 |#1|)) (|:| |f2| (-645 (-645 (-645 |#1|)))) (|:| |f3| (-645 (-645 |#1|))) (|:| |f4| (-645 (-645 (-645 |#1|))))) (-645 (-645 (-645 |#1|)))) 53)) (-1946 (((-2 (|:| |f1| (-645 |#1|)) (|:| |f2| (-645 (-645 (-645 |#1|)))) (|:| |f3| (-645 (-645 |#1|))) (|:| |f4| (-645 (-645 (-645 |#1|))))) (-645 |#1|) (-645 (-645 (-645 |#1|))) (-645 (-645 |#1|)) (-645 (-645 (-645 |#1|))) (-645 (-645 (-645 |#1|))) (-645 (-645 (-645 |#1|)))) 52)) (-2312 (((-645 (-645 |#1|)) (-645 (-645 |#1|))) 43)) (-2504 (((-645 |#1|) (-645 |#1|)) 46)) (-4288 (((-645 (-645 (-645 |#1|))) (-645 |#1|) (-645 (-645 (-645 |#1|)))) 32)) (-3297 (((-645 (-645 (-645 |#1|))) (-1 (-112) |#1| |#1|) (-645 |#1|) (-645 (-645 (-645 |#1|)))) 29)) (-1771 (((-2 (|:| |fs| (-112)) (|:| |sd| (-645 |#1|)) (|:| |td| (-645 (-645 |#1|)))) (-1 (-112) |#1| |#1|) (-645 |#1|) (-645 (-645 |#1|))) 24)) (-2026 (((-645 (-645 |#1|)) (-645 (-645 (-645 |#1|)))) 58)) (-3921 (((-645 (-645 |#1|)) (-1191 (-645 |#1|))) 60)))
+(((-1190 |#1|) (-10 -7 (-15 -1771 ((-2 (|:| |fs| (-112)) (|:| |sd| (-645 |#1|)) (|:| |td| (-645 (-645 |#1|)))) (-1 (-112) |#1| |#1|) (-645 |#1|) (-645 (-645 |#1|)))) (-15 -3297 ((-645 (-645 (-645 |#1|))) (-1 (-112) |#1| |#1|) (-645 |#1|) (-645 (-645 (-645 |#1|))))) (-15 -4288 ((-645 (-645 (-645 |#1|))) (-645 |#1|) (-645 (-645 (-645 |#1|))))) (-15 -4042 ((-645 (-645 |#1|)) (-645 (-645 |#1|)) (-645 (-645 (-645 |#1|))))) (-15 -2026 ((-645 (-645 |#1|)) (-645 (-645 (-645 |#1|))))) (-15 -3921 ((-645 (-645 |#1|)) (-1191 (-645 |#1|)))) (-15 -3874 ((-645 (-645 (-645 |#1|))) (-645 (-645 |#1|)))) (-15 -4398 ((-1191 (-645 |#1|)) (-645 |#1|))) (-15 -2312 ((-645 (-645 |#1|)) (-645 (-645 |#1|)))) (-15 -1474 ((-645 (-645 |#1|)) (-645 |#1|))) (-15 -2504 ((-645 |#1|) (-645 |#1|))) (-15 -1946 ((-2 (|:| |f1| (-645 |#1|)) (|:| |f2| (-645 (-645 (-645 |#1|)))) (|:| |f3| (-645 (-645 |#1|))) (|:| |f4| (-645 (-645 (-645 |#1|))))) (-645 |#1|) (-645 (-645 (-645 |#1|))) (-645 (-645 |#1|)) (-645 (-645 (-645 |#1|))) (-645 (-645 (-645 |#1|))) (-645 (-645 (-645 |#1|))))) (-15 -2709 ((-2 (|:| |f1| (-645 |#1|)) (|:| |f2| (-645 (-645 (-645 |#1|)))) (|:| |f3| (-645 (-645 |#1|))) (|:| |f4| (-645 (-645 (-645 |#1|))))) (-645 (-645 (-645 |#1|)))))) (-851)) (T -1190))
+((-2709 (*1 *2 *3) (-12 (-4 *4 (-851)) (-5 *2 (-2 (|:| |f1| (-645 *4)) (|:| |f2| (-645 (-645 (-645 *4)))) (|:| |f3| (-645 (-645 *4))) (|:| |f4| (-645 (-645 (-645 *4)))))) (-5 *1 (-1190 *4)) (-5 *3 (-645 (-645 (-645 *4)))))) (-1946 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-851)) (-5 *3 (-645 *6)) (-5 *5 (-645 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-645 *5)) (|:| |f3| *5) (|:| |f4| (-645 *5)))) (-5 *1 (-1190 *6)) (-5 *4 (-645 *5)))) (-2504 (*1 *2 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-851)) (-5 *1 (-1190 *3)))) (-1474 (*1 *2 *3) (-12 (-4 *4 (-851)) (-5 *2 (-645 (-645 *4))) (-5 *1 (-1190 *4)) (-5 *3 (-645 *4)))) (-2312 (*1 *2 *2) (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-851)) (-5 *1 (-1190 *3)))) (-4398 (*1 *2 *3) (-12 (-4 *4 (-851)) (-5 *2 (-1191 (-645 *4))) (-5 *1 (-1190 *4)) (-5 *3 (-645 *4)))) (-3874 (*1 *2 *3) (-12 (-4 *4 (-851)) (-5 *2 (-645 (-645 (-645 *4)))) (-5 *1 (-1190 *4)) (-5 *3 (-645 (-645 *4))))) (-3921 (*1 *2 *3) (-12 (-5 *3 (-1191 (-645 *4))) (-4 *4 (-851)) (-5 *2 (-645 (-645 *4))) (-5 *1 (-1190 *4)))) (-2026 (*1 *2 *3) (-12 (-5 *3 (-645 (-645 (-645 *4)))) (-5 *2 (-645 (-645 *4))) (-5 *1 (-1190 *4)) (-4 *4 (-851)))) (-4042 (*1 *2 *2 *3) (-12 (-5 *3 (-645 (-645 (-645 *4)))) (-5 *2 (-645 (-645 *4))) (-4 *4 (-851)) (-5 *1 (-1190 *4)))) (-4288 (*1 *2 *3 *2) (-12 (-5 *2 (-645 (-645 (-645 *4)))) (-5 *3 (-645 *4)) (-4 *4 (-851)) (-5 *1 (-1190 *4)))) (-3297 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-645 (-645 (-645 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-645 *5)) (-4 *5 (-851)) (-5 *1 (-1190 *5)))) (-1771 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-851)) (-5 *4 (-645 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-645 *4)))) (-5 *1 (-1190 *6)) (-5 *5 (-645 *4)))))
+(-10 -7 (-15 -1771 ((-2 (|:| |fs| (-112)) (|:| |sd| (-645 |#1|)) (|:| |td| (-645 (-645 |#1|)))) (-1 (-112) |#1| |#1|) (-645 |#1|) (-645 (-645 |#1|)))) (-15 -3297 ((-645 (-645 (-645 |#1|))) (-1 (-112) |#1| |#1|) (-645 |#1|) (-645 (-645 (-645 |#1|))))) (-15 -4288 ((-645 (-645 (-645 |#1|))) (-645 |#1|) (-645 (-645 (-645 |#1|))))) (-15 -4042 ((-645 (-645 |#1|)) (-645 (-645 |#1|)) (-645 (-645 (-645 |#1|))))) (-15 -2026 ((-645 (-645 |#1|)) (-645 (-645 (-645 |#1|))))) (-15 -3921 ((-645 (-645 |#1|)) (-1191 (-645 |#1|)))) (-15 -3874 ((-645 (-645 (-645 |#1|))) (-645 (-645 |#1|)))) (-15 -4398 ((-1191 (-645 |#1|)) (-645 |#1|))) (-15 -2312 ((-645 (-645 |#1|)) (-645 (-645 |#1|)))) (-15 -1474 ((-645 (-645 |#1|)) (-645 |#1|))) (-15 -2504 ((-645 |#1|) (-645 |#1|))) (-15 -1946 ((-2 (|:| |f1| (-645 |#1|)) (|:| |f2| (-645 (-645 (-645 |#1|)))) (|:| |f3| (-645 (-645 |#1|))) (|:| |f4| (-645 (-645 (-645 |#1|))))) (-645 |#1|) (-645 (-645 (-645 |#1|))) (-645 (-645 |#1|)) (-645 (-645 (-645 |#1|))) (-645 (-645 (-645 |#1|))) (-645 (-645 (-645 |#1|))))) (-15 -2709 ((-2 (|:| |f1| (-645 |#1|)) (|:| |f2| (-645 (-645 (-645 |#1|)))) (|:| |f3| (-645 (-645 |#1|))) (|:| |f4| (-645 (-645 (-645 |#1|))))) (-645 (-645 (-645 |#1|))))))
+((-3966 (($ (-645 (-645 |#1|))) 10)) (-2282 (((-645 (-645 |#1|)) $) 11)) (-4129 (((-863) $) 38)))
+(((-1191 |#1|) (-10 -8 (-15 -3966 ($ (-645 (-645 |#1|)))) (-15 -2282 ((-645 (-645 |#1|)) $)) (-15 -4129 ((-863) $))) (-1102)) (T -1191))
+((-4129 (*1 *2 *1) (-12 (-5 *2 (-863)) (-5 *1 (-1191 *3)) (-4 *3 (-1102)))) (-2282 (*1 *2 *1) (-12 (-5 *2 (-645 (-645 *3))) (-5 *1 (-1191 *3)) (-4 *3 (-1102)))) (-3966 (*1 *1 *2) (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-1102)) (-5 *1 (-1191 *3)))))
+(-10 -8 (-15 -3966 ($ (-645 (-645 |#1|)))) (-15 -2282 ((-645 (-645 |#1|)) $)) (-15 -4129 ((-863) $)))
+((-2412 (((-112) $ $) NIL (-2811 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-2847 (($) NIL) (($ (-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) NIL)) (-3843 (((-1274) $ |#1| |#1|) NIL (|has| $ (-6 -4423)))) (-1563 (((-112) $ (-772)) NIL)) (-4285 ((|#2| $ |#1| |#2|) NIL)) (-1494 (($ (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4422)))) (-3356 (($ (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4422)))) (-4021 (((-3 |#2| "failed") |#1| $) NIL)) (-3647 (($) NIL T CONST)) (-2453 (($ $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102))))) (-2247 (($ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) NIL (|has| $ (-6 -4422))) (($ (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-3 |#2| "failed") |#1| $) NIL)) (-3246 (($ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (($ (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4422)))) (-2494 (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) NIL (|has| $ (-6 -4422))) (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4422)))) (-3760 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4423)))) (-3703 ((|#2| $ |#1|) NIL)) (-2799 (((-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-645 |#2|) $) NIL (|has| $ (-6 -4422)))) (-4093 (((-112) $ (-772)) NIL)) (-3895 ((|#1| $) NIL (|has| |#1| (-851)))) (-1942 (((-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-645 |#2|) $) NIL (|has| $ (-6 -4422)))) (-3237 (((-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#2| (-1102))))) (-3255 ((|#1| $) NIL (|has| |#1| (-851)))) (-3751 (($ (-1 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4423))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4423)))) (-3841 (($ (-1 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1986 (((-112) $ (-772)) NIL)) (-2516 (((-1161) $) NIL (-2811 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-1405 (((-645 |#1|) $) NIL)) (-2816 (((-112) |#1| $) NIL)) (-2706 (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) NIL)) (-2646 (($ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) NIL)) (-4364 (((-645 |#1|) $) NIL)) (-3188 (((-112) |#1| $) NIL)) (-3437 (((-1122) $) NIL (-2811 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-2418 ((|#2| $) NIL (|has| |#1| (-851)))) (-3196 (((-3 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) "failed") (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL)) (-3823 (($ $ |#2|) NIL (|has| $ (-6 -4423)))) (-3949 (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) NIL)) (-4233 (((-112) (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))))) NIL (-12 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-310 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (($ $ (-295 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) NIL (-12 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-310 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (($ $ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) NIL (-12 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-310 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (($ $ (-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) (-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) NIL (-12 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-310 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))))) (-3875 (((-112) $ $) NIL)) (-4058 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#2| (-1102))))) (-2190 (((-645 |#2|) $) NIL)) (-3885 (((-112) $) NIL)) (-2701 (($) NIL)) (-1801 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-4106 (($) NIL) (($ (-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) NIL)) (-3447 (((-772) (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-772) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (((-772) |#2| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#2| (-1102)))) (((-772) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4422)))) (-4309 (($ $) NIL)) (-3902 (((-539) $) NIL (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-615 (-539))))) (-4145 (($ (-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) NIL)) (-4129 (((-863) $) NIL (-2811 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-614 (-863))) (|has| |#2| (-614 (-863)))))) (-3357 (((-112) $ $) NIL (-2811 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-3700 (($ (-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) NIL)) (-3436 (((-112) (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4422)))) (-2946 (((-112) $ $) NIL (-2811 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-2423 (((-772) $) NIL (|has| $ (-6 -4422)))))
+(((-1192 |#1| |#2|) (-13 (-1195 |#1| |#2|) (-10 -7 (-6 -4422))) (-1102) (-1102)) (T -1192))
+NIL
+(-13 (-1195 |#1| |#2|) (-10 -7 (-6 -4422)))
+((-4358 ((|#1| (-645 |#1|)) 49)) (-2763 ((|#1| |#1| (-567)) 24)) (-3673 (((-1175 |#1|) |#1| (-923)) 20)))
+(((-1193 |#1|) (-10 -7 (-15 -4358 (|#1| (-645 |#1|))) (-15 -3673 ((-1175 |#1|) |#1| (-923))) (-15 -2763 (|#1| |#1| (-567)))) (-365)) (T -1193))
+((-2763 (*1 *2 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-1193 *2)) (-4 *2 (-365)))) (-3673 (*1 *2 *3 *4) (-12 (-5 *4 (-923)) (-5 *2 (-1175 *3)) (-5 *1 (-1193 *3)) (-4 *3 (-365)))) (-4358 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-5 *1 (-1193 *2)) (-4 *2 (-365)))))
+(-10 -7 (-15 -4358 (|#1| (-645 |#1|))) (-15 -3673 ((-1175 |#1|) |#1| (-923))) (-15 -2763 (|#1| |#1| (-567))))
+((-2847 (($) 10) (($ (-645 (-2 (|:| -1809 |#2|) (|:| -4236 |#3|)))) 14)) (-2247 (($ (-2 (|:| -1809 |#2|) (|:| -4236 |#3|)) $) 67) (($ (-1 (-112) (-2 (|:| -1809 |#2|) (|:| -4236 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-2799 (((-645 (-2 (|:| -1809 |#2|) (|:| -4236 |#3|))) $) 39) (((-645 |#3|) $) 41)) (-3751 (($ (-1 (-2 (|:| -1809 |#2|) (|:| -4236 |#3|)) (-2 (|:| -1809 |#2|) (|:| -4236 |#3|))) $) 57) (($ (-1 |#3| |#3|) $) 33)) (-3841 (($ (-1 (-2 (|:| -1809 |#2|) (|:| -4236 |#3|)) (-2 (|:| -1809 |#2|) (|:| -4236 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-2706 (((-2 (|:| -1809 |#2|) (|:| -4236 |#3|)) $) 60)) (-2646 (($ (-2 (|:| -1809 |#2|) (|:| -4236 |#3|)) $) 16)) (-4364 (((-645 |#2|) $) 19)) (-3188 (((-112) |#2| $) 65)) (-3196 (((-3 (-2 (|:| -1809 |#2|) (|:| -4236 |#3|)) "failed") (-1 (-112) (-2 (|:| -1809 |#2|) (|:| -4236 |#3|))) $) 64)) (-3949 (((-2 (|:| -1809 |#2|) (|:| -4236 |#3|)) $) 69)) (-4233 (((-112) (-1 (-112) (-2 (|:| -1809 |#2|) (|:| -4236 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 73)) (-2190 (((-645 |#3|) $) 43)) (-1801 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-3447 (((-772) (-1 (-112) (-2 (|:| -1809 |#2|) (|:| -4236 |#3|))) $) NIL) (((-772) (-2 (|:| -1809 |#2|) (|:| -4236 |#3|)) $) NIL) (((-772) |#3| $) NIL) (((-772) (-1 (-112) |#3|) $) 79)) (-4129 (((-863) $) 27)) (-3436 (((-112) (-1 (-112) (-2 (|:| -1809 |#2|) (|:| -4236 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 71)) (-2946 (((-112) $ $) 51)))
+(((-1194 |#1| |#2| |#3|) (-10 -8 (-15 -2946 ((-112) |#1| |#1|)) (-15 -4129 ((-863) |#1|)) (-15 -3841 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -2847 (|#1| (-645 (-2 (|:| -1809 |#2|) (|:| -4236 |#3|))))) (-15 -2847 (|#1|)) (-15 -3841 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3751 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3436 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -4233 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3447 ((-772) (-1 (-112) |#3|) |#1|)) (-15 -2799 ((-645 |#3|) |#1|)) (-15 -3447 ((-772) |#3| |#1|)) (-15 -1801 (|#3| |#1| |#2| |#3|)) (-15 -1801 (|#3| |#1| |#2|)) (-15 -2190 ((-645 |#3|) |#1|)) (-15 -3188 ((-112) |#2| |#1|)) (-15 -4364 ((-645 |#2|) |#1|)) (-15 -2247 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2247 (|#1| (-1 (-112) (-2 (|:| -1809 |#2|) (|:| -4236 |#3|))) |#1|)) (-15 -2247 (|#1| (-2 (|:| -1809 |#2|) (|:| -4236 |#3|)) |#1|)) (-15 -3196 ((-3 (-2 (|:| -1809 |#2|) (|:| -4236 |#3|)) "failed") (-1 (-112) (-2 (|:| -1809 |#2|) (|:| -4236 |#3|))) |#1|)) (-15 -2706 ((-2 (|:| -1809 |#2|) (|:| -4236 |#3|)) |#1|)) (-15 -2646 (|#1| (-2 (|:| -1809 |#2|) (|:| -4236 |#3|)) |#1|)) (-15 -3949 ((-2 (|:| -1809 |#2|) (|:| -4236 |#3|)) |#1|)) (-15 -3447 ((-772) (-2 (|:| -1809 |#2|) (|:| -4236 |#3|)) |#1|)) (-15 -2799 ((-645 (-2 (|:| -1809 |#2|) (|:| -4236 |#3|))) |#1|)) (-15 -3447 ((-772) (-1 (-112) (-2 (|:| -1809 |#2|) (|:| -4236 |#3|))) |#1|)) (-15 -4233 ((-112) (-1 (-112) (-2 (|:| -1809 |#2|) (|:| -4236 |#3|))) |#1|)) (-15 -3436 ((-112) (-1 (-112) (-2 (|:| -1809 |#2|) (|:| -4236 |#3|))) |#1|)) (-15 -3751 (|#1| (-1 (-2 (|:| -1809 |#2|) (|:| -4236 |#3|)) (-2 (|:| -1809 |#2|) (|:| -4236 |#3|))) |#1|)) (-15 -3841 (|#1| (-1 (-2 (|:| -1809 |#2|) (|:| -4236 |#3|)) (-2 (|:| -1809 |#2|) (|:| -4236 |#3|))) |#1|))) (-1195 |#2| |#3|) (-1102) (-1102)) (T -1194))
+NIL
+(-10 -8 (-15 -2946 ((-112) |#1| |#1|)) (-15 -4129 ((-863) |#1|)) (-15 -3841 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -2847 (|#1| (-645 (-2 (|:| -1809 |#2|) (|:| -4236 |#3|))))) (-15 -2847 (|#1|)) (-15 -3841 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3751 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3436 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -4233 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3447 ((-772) (-1 (-112) |#3|) |#1|)) (-15 -2799 ((-645 |#3|) |#1|)) (-15 -3447 ((-772) |#3| |#1|)) (-15 -1801 (|#3| |#1| |#2| |#3|)) (-15 -1801 (|#3| |#1| |#2|)) (-15 -2190 ((-645 |#3|) |#1|)) (-15 -3188 ((-112) |#2| |#1|)) (-15 -4364 ((-645 |#2|) |#1|)) (-15 -2247 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2247 (|#1| (-1 (-112) (-2 (|:| -1809 |#2|) (|:| -4236 |#3|))) |#1|)) (-15 -2247 (|#1| (-2 (|:| -1809 |#2|) (|:| -4236 |#3|)) |#1|)) (-15 -3196 ((-3 (-2 (|:| -1809 |#2|) (|:| -4236 |#3|)) "failed") (-1 (-112) (-2 (|:| -1809 |#2|) (|:| -4236 |#3|))) |#1|)) (-15 -2706 ((-2 (|:| -1809 |#2|) (|:| -4236 |#3|)) |#1|)) (-15 -2646 (|#1| (-2 (|:| -1809 |#2|) (|:| -4236 |#3|)) |#1|)) (-15 -3949 ((-2 (|:| -1809 |#2|) (|:| -4236 |#3|)) |#1|)) (-15 -3447 ((-772) (-2 (|:| -1809 |#2|) (|:| -4236 |#3|)) |#1|)) (-15 -2799 ((-645 (-2 (|:| -1809 |#2|) (|:| -4236 |#3|))) |#1|)) (-15 -3447 ((-772) (-1 (-112) (-2 (|:| -1809 |#2|) (|:| -4236 |#3|))) |#1|)) (-15 -4233 ((-112) (-1 (-112) (-2 (|:| -1809 |#2|) (|:| -4236 |#3|))) |#1|)) (-15 -3436 ((-112) (-1 (-112) (-2 (|:| -1809 |#2|) (|:| -4236 |#3|))) |#1|)) (-15 -3751 (|#1| (-1 (-2 (|:| -1809 |#2|) (|:| -4236 |#3|)) (-2 (|:| -1809 |#2|) (|:| -4236 |#3|))) |#1|)) (-15 -3841 (|#1| (-1 (-2 (|:| -1809 |#2|) (|:| -4236 |#3|)) (-2 (|:| -1809 |#2|) (|:| -4236 |#3|))) |#1|)))
+((-2412 (((-112) $ $) 19 (-2811 (|has| |#2| (-1102)) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102))))) (-2847 (($) 73) (($ (-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) 72)) (-3843 (((-1274) $ |#1| |#1|) 100 (|has| $ (-6 -4423)))) (-1563 (((-112) $ (-772)) 8)) (-4285 ((|#2| $ |#1| |#2|) 74)) (-1494 (($ (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) 46 (|has| $ (-6 -4422)))) (-3356 (($ (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) 56 (|has| $ (-6 -4422)))) (-4021 (((-3 |#2| "failed") |#1| $) 62)) (-3647 (($) 7 T CONST)) (-2453 (($ $) 59 (-12 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)) (|has| $ (-6 -4422))))) (-2247 (($ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) 48 (|has| $ (-6 -4422))) (($ (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) 47 (|has| $ (-6 -4422))) (((-3 |#2| "failed") |#1| $) 63)) (-3246 (($ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) 58 (-12 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)) (|has| $ (-6 -4422)))) (($ (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) 55 (|has| $ (-6 -4422)))) (-2494 (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) 57 (-12 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)) (|has| $ (-6 -4422)))) (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) 54 (|has| $ (-6 -4422))) (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) 53 (|has| $ (-6 -4422)))) (-3760 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4423)))) (-3703 ((|#2| $ |#1|) 89)) (-2799 (((-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) 31 (|has| $ (-6 -4422))) (((-645 |#2|) $) 80 (|has| $ (-6 -4422)))) (-4093 (((-112) $ (-772)) 9)) (-3895 ((|#1| $) 97 (|has| |#1| (-851)))) (-1942 (((-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) 30 (|has| $ (-6 -4422))) (((-645 |#2|) $) 81 (|has| $ (-6 -4422)))) (-3237 (((-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) 28 (-12 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)) (|has| $ (-6 -4422)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1102)) (|has| $ (-6 -4422))))) (-3255 ((|#1| $) 96 (|has| |#1| (-851)))) (-3751 (($ (-1 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) 35 (|has| $ (-6 -4423))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4423)))) (-3841 (($ (-1 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71)) (-1986 (((-112) $ (-772)) 10)) (-2516 (((-1161) $) 22 (-2811 (|has| |#2| (-1102)) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102))))) (-1405 (((-645 |#1|) $) 64)) (-2816 (((-112) |#1| $) 65)) (-2706 (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) 40)) (-2646 (($ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) 41)) (-4364 (((-645 |#1|) $) 94)) (-3188 (((-112) |#1| $) 93)) (-3437 (((-1122) $) 21 (-2811 (|has| |#2| (-1102)) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102))))) (-2418 ((|#2| $) 98 (|has| |#1| (-851)))) (-3196 (((-3 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) "failed") (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) 52)) (-3823 (($ $ |#2|) 99 (|has| $ (-6 -4423)))) (-3949 (((-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) 42)) (-4233 (((-112) (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) 33 (|has| $ (-6 -4422))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))))) 27 (-12 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-310 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (($ $ (-295 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) 26 (-12 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-310 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (($ $ (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) 25 (-12 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-310 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (($ $ (-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) (-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) 24 (-12 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-310 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)))) (($ $ (-645 |#2|) (-645 |#2|)) 87 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-295 |#2|)) 85 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-645 (-295 |#2|))) 84 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))))) (-3875 (((-112) $ $) 14)) (-4058 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4422)) (|has| |#2| (-1102))))) (-2190 (((-645 |#2|) $) 92)) (-3885 (((-112) $) 11)) (-2701 (($) 12)) (-1801 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90)) (-4106 (($) 50) (($ (-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) 49)) (-3447 (((-772) (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) 32 (|has| $ (-6 -4422))) (((-772) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) $) 29 (-12 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)) (|has| $ (-6 -4422)))) (((-772) |#2| $) 82 (-12 (|has| |#2| (-1102)) (|has| $ (-6 -4422)))) (((-772) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4422)))) (-4309 (($ $) 13)) (-3902 (((-539) $) 60 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-615 (-539))))) (-4145 (($ (-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) 51)) (-4129 (((-863) $) 18 (-2811 (|has| |#2| (-614 (-863))) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-614 (-863)))))) (-3357 (((-112) $ $) 23 (-2811 (|has| |#2| (-1102)) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102))))) (-3700 (($ (-645 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) 43)) (-3436 (((-112) (-1 (-112) (-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) $) 34 (|has| $ (-6 -4422))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4422)))) (-2946 (((-112) $ $) 20 (-2811 (|has| |#2| (-1102)) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102))))) (-2423 (((-772) $) 6 (|has| $ (-6 -4422)))))
+(((-1195 |#1| |#2|) (-140) (-1102) (-1102)) (T -1195))
+((-4285 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1195 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1102)))) (-2847 (*1 *1) (-12 (-4 *1 (-1195 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-1102)))) (-2847 (*1 *1 *2) (-12 (-5 *2 (-645 (-2 (|:| -1809 *3) (|:| -4236 *4)))) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *1 (-1195 *3 *4)))) (-3841 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1195 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102)))))
+(-13 (-611 |t#1| |t#2|) (-605 |t#1| |t#2|) (-10 -8 (-15 -4285 (|t#2| $ |t#1| |t#2|)) (-15 -2847 ($)) (-15 -2847 ($ (-645 (-2 (|:| -1809 |t#1|) (|:| -4236 |t#2|))))) (-15 -3841 ($ (-1 |t#2| |t#2| |t#2|) $ $))))
+(((-34) . T) ((-107 #0=(-2 (|:| -1809 |#1|) (|:| -4236 |#2|))) . T) ((-102) -2811 (|has| |#2| (-1102)) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102))) ((-614 (-863)) -2811 (|has| |#2| (-1102)) (|has| |#2| (-614 (-863))) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102)) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-614 (-863)))) ((-151 #0#) . T) ((-615 (-539)) |has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-615 (-539))) ((-229 #0#) . T) ((-235 #0#) . T) ((-287 |#1| |#2|) . T) ((-289 |#1| |#2|) . T) ((-310 #0#) -12 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-310 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102))) ((-310 |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) ((-492 #0#) . T) ((-492 |#2|) . T) ((-605 |#1| |#2|) . T) ((-517 #0# #0#) -12 (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-310 (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)))) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102))) ((-517 |#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) ((-611 |#1| |#2|) . T) ((-1102) -2811 (|has| |#2| (-1102)) (|has| (-2 (|:| -1809 |#1|) (|:| -4236 |#2|)) (-1102))) ((-1219) . T))
+((-1953 (((-112)) 29)) (-2377 (((-1274) (-1161)) 31)) (-3960 (((-112)) 41)) (-2200 (((-1274)) 39)) (-3595 (((-1274) (-1161) (-1161)) 30)) (-1607 (((-112)) 42)) (-2646 (((-1274) |#1| |#2|) 53)) (-3975 (((-1274)) 27)) (-2627 (((-3 |#2| "failed") |#1|) 51)) (-2574 (((-1274)) 40)))
+(((-1196 |#1| |#2|) (-10 -7 (-15 -3975 ((-1274))) (-15 -3595 ((-1274) (-1161) (-1161))) (-15 -2377 ((-1274) (-1161))) (-15 -2200 ((-1274))) (-15 -2574 ((-1274))) (-15 -1953 ((-112))) (-15 -3960 ((-112))) (-15 -1607 ((-112))) (-15 -2627 ((-3 |#2| "failed") |#1|)) (-15 -2646 ((-1274) |#1| |#2|))) (-1102) (-1102)) (T -1196))
+((-2646 (*1 *2 *3 *4) (-12 (-5 *2 (-1274)) (-5 *1 (-1196 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102)))) (-2627 (*1 *2 *3) (|partial| -12 (-4 *2 (-1102)) (-5 *1 (-1196 *3 *2)) (-4 *3 (-1102)))) (-1607 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1196 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102)))) (-3960 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1196 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102)))) (-1953 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1196 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102)))) (-2574 (*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-1196 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102)))) (-2200 (*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-1196 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102)))) (-2377 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1196 *4 *5)) (-4 *4 (-1102)) (-4 *5 (-1102)))) (-3595 (*1 *2 *3 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1196 *4 *5)) (-4 *4 (-1102)) (-4 *5 (-1102)))) (-3975 (*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-1196 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102)))))
+(-10 -7 (-15 -3975 ((-1274))) (-15 -3595 ((-1274) (-1161) (-1161))) (-15 -2377 ((-1274) (-1161))) (-15 -2200 ((-1274))) (-15 -2574 ((-1274))) (-15 -1953 ((-112))) (-15 -3960 ((-112))) (-15 -1607 ((-112))) (-15 -2627 ((-3 |#2| "failed") |#1|)) (-15 -2646 ((-1274) |#1| |#2|)))
+((-1865 (((-1161) (-1161)) 22)) (-3667 (((-52) (-1161)) 25)))
+(((-1197) (-10 -7 (-15 -3667 ((-52) (-1161))) (-15 -1865 ((-1161) (-1161))))) (T -1197))
+((-1865 (*1 *2 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-1197)))) (-3667 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-52)) (-5 *1 (-1197)))))
+(-10 -7 (-15 -3667 ((-52) (-1161))) (-15 -1865 ((-1161) (-1161))))
+((-4129 (((-1199) |#1|) 11)))
+(((-1198 |#1|) (-10 -7 (-15 -4129 ((-1199) |#1|))) (-1102)) (T -1198))
+((-4129 (*1 *2 *3) (-12 (-5 *2 (-1199)) (-5 *1 (-1198 *3)) (-4 *3 (-1102)))))
+(-10 -7 (-15 -4129 ((-1199) |#1|)))
+((-2412 (((-112) $ $) NIL)) (-4224 (((-645 (-1161)) $) 40)) (-1500 (((-645 (-1161)) $ (-645 (-1161))) 43)) (-1488 (((-645 (-1161)) $ (-645 (-1161))) 42)) (-2053 (((-645 (-1161)) $ (-645 (-1161))) 44)) (-3277 (((-645 (-1161)) $) 39)) (-2858 (($) 28)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-3279 (((-645 (-1161)) $) 41)) (-4025 (((-1274) $ (-567)) 36) (((-1274) $) 37)) (-3902 (($ (-863) (-567)) 33) (($ (-863) (-567) (-863)) NIL)) (-4129 (((-863) $) 54) (($ (-863)) 32)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)))
+(((-1199) (-13 (-1102) (-617 (-863)) (-10 -8 (-15 -3902 ($ (-863) (-567))) (-15 -3902 ($ (-863) (-567) (-863))) (-15 -4025 ((-1274) $ (-567))) (-15 -4025 ((-1274) $)) (-15 -3279 ((-645 (-1161)) $)) (-15 -4224 ((-645 (-1161)) $)) (-15 -2858 ($)) (-15 -3277 ((-645 (-1161)) $)) (-15 -2053 ((-645 (-1161)) $ (-645 (-1161)))) (-15 -1500 ((-645 (-1161)) $ (-645 (-1161)))) (-15 -1488 ((-645 (-1161)) $ (-645 (-1161))))))) (T -1199))
+((-3902 (*1 *1 *2 *3) (-12 (-5 *2 (-863)) (-5 *3 (-567)) (-5 *1 (-1199)))) (-3902 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-863)) (-5 *3 (-567)) (-5 *1 (-1199)))) (-4025 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *2 (-1274)) (-5 *1 (-1199)))) (-4025 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-1199)))) (-3279 (*1 *2 *1) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-1199)))) (-4224 (*1 *2 *1) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-1199)))) (-2858 (*1 *1) (-5 *1 (-1199))) (-3277 (*1 *2 *1) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-1199)))) (-2053 (*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-1199)))) (-1500 (*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-1199)))) (-1488 (*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-1199)))))
+(-13 (-1102) (-617 (-863)) (-10 -8 (-15 -3902 ($ (-863) (-567))) (-15 -3902 ($ (-863) (-567) (-863))) (-15 -4025 ((-1274) $ (-567))) (-15 -4025 ((-1274) $)) (-15 -3279 ((-645 (-1161)) $)) (-15 -4224 ((-645 (-1161)) $)) (-15 -2858 ($)) (-15 -3277 ((-645 (-1161)) $)) (-15 -2053 ((-645 (-1161)) $ (-645 (-1161)))) (-15 -1500 ((-645 (-1161)) $ (-645 (-1161)))) (-15 -1488 ((-645 (-1161)) $ (-645 (-1161))))))
+((-2412 (((-112) $ $) NIL)) (-1800 (((-1161) $ (-1161)) 17) (((-1161) $) 16)) (-2411 (((-1161) $ (-1161)) 15)) (-3084 (($ $ (-1161)) NIL)) (-4276 (((-3 (-1161) "failed") $) 11)) (-2833 (((-1161) $) 8)) (-4175 (((-3 (-1161) "failed") $) 12)) (-1935 (((-1161) $) 9)) (-3835 (($ (-391)) NIL) (($ (-391) (-1161)) NIL)) (-2007 (((-391) $) NIL)) (-2516 (((-1161) $) NIL)) (-3477 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-3898 (((-112) $) 21)) (-4129 (((-863) $) NIL)) (-3034 (($ $) NIL)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)))
+(((-1200) (-13 (-366 (-391) (-1161)) (-10 -8 (-15 -1800 ((-1161) $ (-1161))) (-15 -1800 ((-1161) $)) (-15 -2833 ((-1161) $)) (-15 -4276 ((-3 (-1161) "failed") $)) (-15 -4175 ((-3 (-1161) "failed") $)) (-15 -3898 ((-112) $))))) (T -1200))
+((-1800 (*1 *2 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-1200)))) (-1800 (*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-1200)))) (-2833 (*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-1200)))) (-4276 (*1 *2 *1) (|partial| -12 (-5 *2 (-1161)) (-5 *1 (-1200)))) (-4175 (*1 *2 *1) (|partial| -12 (-5 *2 (-1161)) (-5 *1 (-1200)))) (-3898 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1200)))))
+(-13 (-366 (-391) (-1161)) (-10 -8 (-15 -1800 ((-1161) $ (-1161))) (-15 -1800 ((-1161) $)) (-15 -2833 ((-1161) $)) (-15 -4276 ((-3 (-1161) "failed") $)) (-15 -4175 ((-3 (-1161) "failed") $)) (-15 -3898 ((-112) $))))
+((-2677 (((-3 (-567) "failed") |#1|) 19)) (-2244 (((-3 (-567) "failed") |#1|) 14)) (-2337 (((-567) (-1161)) 33)))
+(((-1201 |#1|) (-10 -7 (-15 -2677 ((-3 (-567) "failed") |#1|)) (-15 -2244 ((-3 (-567) "failed") |#1|)) (-15 -2337 ((-567) (-1161)))) (-1051)) (T -1201))
+((-2337 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-567)) (-5 *1 (-1201 *4)) (-4 *4 (-1051)))) (-2244 (*1 *2 *3) (|partial| -12 (-5 *2 (-567)) (-5 *1 (-1201 *3)) (-4 *3 (-1051)))) (-2677 (*1 *2 *3) (|partial| -12 (-5 *2 (-567)) (-5 *1 (-1201 *3)) (-4 *3 (-1051)))))
+(-10 -7 (-15 -2677 ((-3 (-567) "failed") |#1|)) (-15 -2244 ((-3 (-567) "failed") |#1|)) (-15 -2337 ((-567) (-1161))))
+((-4065 (((-1135 (-225))) 9)))
+(((-1202) (-10 -7 (-15 -4065 ((-1135 (-225)))))) (T -1202))
+((-4065 (*1 *2) (-12 (-5 *2 (-1135 (-225))) (-5 *1 (-1202)))))
+(-10 -7 (-15 -4065 ((-1135 (-225)))))
+((-1484 (($) 12)) (-3217 (($ $) 36)) (-3201 (($ $) 34)) (-3083 (($ $) 26)) (-3238 (($ $) 18)) (-3805 (($ $) 16)) (-3228 (($ $) 20)) (-3115 (($ $) 31)) (-3208 (($ $) 35)) (-3093 (($ $) 30)))
+(((-1203 |#1|) (-10 -8 (-15 -1484 (|#1|)) (-15 -3217 (|#1| |#1|)) (-15 -3201 (|#1| |#1|)) (-15 -3238 (|#1| |#1|)) (-15 -3805 (|#1| |#1|)) (-15 -3228 (|#1| |#1|)) (-15 -3208 (|#1| |#1|)) (-15 -3083 (|#1| |#1|)) (-15 -3115 (|#1| |#1|)) (-15 -3093 (|#1| |#1|))) (-1204)) (T -1203))
+NIL
+(-10 -8 (-15 -1484 (|#1|)) (-15 -3217 (|#1| |#1|)) (-15 -3201 (|#1| |#1|)) (-15 -3238 (|#1| |#1|)) (-15 -3805 (|#1| |#1|)) (-15 -3228 (|#1| |#1|)) (-15 -3208 (|#1| |#1|)) (-15 -3083 (|#1| |#1|)) (-15 -3115 (|#1| |#1|)) (-15 -3093 (|#1| |#1|)))
+((-3164 (($ $) 26)) (-3032 (($ $) 11)) (-3145 (($ $) 27)) (-3008 (($ $) 10)) (-3182 (($ $) 28)) (-3057 (($ $) 9)) (-1484 (($) 16)) (-3072 (($ $) 19)) (-3955 (($ $) 18)) (-3192 (($ $) 29)) (-3071 (($ $) 8)) (-3173 (($ $) 30)) (-3043 (($ $) 7)) (-3155 (($ $) 31)) (-3021 (($ $) 6)) (-3217 (($ $) 20)) (-3103 (($ $) 32)) (-3201 (($ $) 21)) (-3083 (($ $) 33)) (-3238 (($ $) 22)) (-3126 (($ $) 34)) (-3805 (($ $) 23)) (-3138 (($ $) 35)) (-3228 (($ $) 24)) (-3115 (($ $) 36)) (-3208 (($ $) 25)) (-3093 (($ $) 37)) (** (($ $ $) 17)))
+(((-1204) (-140)) (T -1204))
+((-1484 (*1 *1) (-4 *1 (-1204))))
+(-13 (-1207) (-95) (-496) (-35) (-285) (-10 -8 (-15 -1484 ($))))
+(((-35) . T) ((-95) . T) ((-285) . T) ((-496) . T) ((-1207) . T))
+((-2412 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3812 ((|#1| $) 19)) (-2403 (($ |#1| (-645 $)) 28) (($ (-645 |#1|)) 35) (($ |#1|) 30)) (-1563 (((-112) $ (-772)) 72)) (-4392 ((|#1| $ |#1|) 14 (|has| $ (-6 -4423)))) (-4285 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4423)))) (-2831 (($ $ (-645 $)) 13 (|has| $ (-6 -4423)))) (-3647 (($) NIL T CONST)) (-2799 (((-645 |#1|) $) 76 (|has| $ (-6 -4422)))) (-2070 (((-645 $) $) 64)) (-1520 (((-112) $ $) 49 (|has| |#1| (-1102)))) (-4093 (((-112) $ (-772)) 62)) (-1942 (((-645 |#1|) $) 77 (|has| $ (-6 -4422)))) (-3237 (((-112) |#1| $) 75 (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3751 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#1| |#1|) $) 27)) (-1986 (((-112) $ (-772)) 60)) (-3793 (((-645 |#1|) $) 54)) (-1323 (((-112) $) 52)) (-2516 (((-1161) $) NIL (|has| |#1| (-1102)))) (-3437 (((-1122) $) NIL (|has| |#1| (-1102)))) (-4233 (((-112) (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3875 (((-112) $ $) 107)) (-3885 (((-112) $) 9)) (-2701 (($) 10)) (-1801 ((|#1| $ "value") NIL)) (-3162 (((-567) $ $) 48)) (-4361 (((-645 $) $) 89)) (-2043 (((-112) $ $) 110)) (-4243 (((-645 $) $) 105)) (-4359 (($ $) 106)) (-3771 (((-112) $) 84)) (-3447 (((-772) (-1 (-112) |#1|) $) 25 (|has| $ (-6 -4422))) (((-772) |#1| $) 17 (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-4309 (($ $) 88)) (-4129 (((-863) $) 91 (|has| |#1| (-614 (-863))))) (-3469 (((-645 $) $) 12)) (-3854 (((-112) $ $) 39 (|has| |#1| (-1102)))) (-3357 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3436 (((-112) (-1 (-112) |#1|) $) 73 (|has| $ (-6 -4422)))) (-2946 (((-112) $ $) 37 (|has| |#1| (-1102)))) (-2423 (((-772) $) 58 (|has| $ (-6 -4422)))))
+(((-1205 |#1|) (-13 (-1012 |#1|) (-10 -8 (-6 -4422) (-6 -4423) (-15 -2403 ($ |#1| (-645 $))) (-15 -2403 ($ (-645 |#1|))) (-15 -2403 ($ |#1|)) (-15 -3771 ((-112) $)) (-15 -4359 ($ $)) (-15 -4243 ((-645 $) $)) (-15 -2043 ((-112) $ $)) (-15 -4361 ((-645 $) $)))) (-1102)) (T -1205))
+((-3771 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1205 *3)) (-4 *3 (-1102)))) (-2403 (*1 *1 *2 *3) (-12 (-5 *3 (-645 (-1205 *2))) (-5 *1 (-1205 *2)) (-4 *2 (-1102)))) (-2403 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-5 *1 (-1205 *3)))) (-2403 (*1 *1 *2) (-12 (-5 *1 (-1205 *2)) (-4 *2 (-1102)))) (-4359 (*1 *1 *1) (-12 (-5 *1 (-1205 *2)) (-4 *2 (-1102)))) (-4243 (*1 *2 *1) (-12 (-5 *2 (-645 (-1205 *3))) (-5 *1 (-1205 *3)) (-4 *3 (-1102)))) (-2043 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1205 *3)) (-4 *3 (-1102)))) (-4361 (*1 *2 *1) (-12 (-5 *2 (-645 (-1205 *3))) (-5 *1 (-1205 *3)) (-4 *3 (-1102)))))
+(-13 (-1012 |#1|) (-10 -8 (-6 -4422) (-6 -4423) (-15 -2403 ($ |#1| (-645 $))) (-15 -2403 ($ (-645 |#1|))) (-15 -2403 ($ |#1|)) (-15 -3771 ((-112) $)) (-15 -4359 ($ $)) (-15 -4243 ((-645 $) $)) (-15 -2043 ((-112) $ $)) (-15 -4361 ((-645 $) $))))
+((-3032 (($ $) 15)) (-3057 (($ $) 12)) (-3071 (($ $) 10)) (-3043 (($ $) 17)))
+(((-1206 |#1|) (-10 -8 (-15 -3043 (|#1| |#1|)) (-15 -3071 (|#1| |#1|)) (-15 -3057 (|#1| |#1|)) (-15 -3032 (|#1| |#1|))) (-1207)) (T -1206))
+NIL
+(-10 -8 (-15 -3043 (|#1| |#1|)) (-15 -3071 (|#1| |#1|)) (-15 -3057 (|#1| |#1|)) (-15 -3032 (|#1| |#1|)))
+((-3032 (($ $) 11)) (-3008 (($ $) 10)) (-3057 (($ $) 9)) (-3071 (($ $) 8)) (-3043 (($ $) 7)) (-3021 (($ $) 6)))
+(((-1207) (-140)) (T -1207))
+((-3032 (*1 *1 *1) (-4 *1 (-1207))) (-3008 (*1 *1 *1) (-4 *1 (-1207))) (-3057 (*1 *1 *1) (-4 *1 (-1207))) (-3071 (*1 *1 *1) (-4 *1 (-1207))) (-3043 (*1 *1 *1) (-4 *1 (-1207))) (-3021 (*1 *1 *1) (-4 *1 (-1207))))
+(-13 (-10 -8 (-15 -3021 ($ $)) (-15 -3043 ($ $)) (-15 -3071 ($ $)) (-15 -3057 ($ $)) (-15 -3008 ($ $)) (-15 -3032 ($ $))))
+((-3977 ((|#2| |#2|) 98)) (-2490 (((-112) |#2|) 29)) (-2738 ((|#2| |#2|) 33)) (-2750 ((|#2| |#2|) 35)) (-1789 ((|#2| |#2| (-1179)) 92) ((|#2| |#2|) 93)) (-2280 (((-169 |#2|) |#2|) 31)) (-2937 ((|#2| |#2| (-1179)) 94) ((|#2| |#2|) 95)))
+(((-1208 |#1| |#2|) (-10 -7 (-15 -1789 (|#2| |#2|)) (-15 -1789 (|#2| |#2| (-1179))) (-15 -2937 (|#2| |#2|)) (-15 -2937 (|#2| |#2| (-1179))) (-15 -3977 (|#2| |#2|)) (-15 -2738 (|#2| |#2|)) (-15 -2750 (|#2| |#2|)) (-15 -2490 ((-112) |#2|)) (-15 -2280 ((-169 |#2|) |#2|))) (-13 (-455) (-1040 (-567)) (-640 (-567))) (-13 (-27) (-1204) (-433 |#1|))) (T -1208))
+((-2280 (*1 *2 *3) (-12 (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-169 *3)) (-5 *1 (-1208 *4 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *4))))) (-2490 (*1 *2 *3) (-12 (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-112)) (-5 *1 (-1208 *4 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *4))))) (-2750 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-1208 *3 *2)) (-4 *2 (-13 (-27) (-1204) (-433 *3))))) (-2738 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-1208 *3 *2)) (-4 *2 (-13 (-27) (-1204) (-433 *3))))) (-3977 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-1208 *3 *2)) (-4 *2 (-13 (-27) (-1204) (-433 *3))))) (-2937 (*1 *2 *2 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-1208 *4 *2)) (-4 *2 (-13 (-27) (-1204) (-433 *4))))) (-2937 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-1208 *3 *2)) (-4 *2 (-13 (-27) (-1204) (-433 *3))))) (-1789 (*1 *2 *2 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-1208 *4 *2)) (-4 *2 (-13 (-27) (-1204) (-433 *4))))) (-1789 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-1208 *3 *2)) (-4 *2 (-13 (-27) (-1204) (-433 *3))))))
+(-10 -7 (-15 -1789 (|#2| |#2|)) (-15 -1789 (|#2| |#2| (-1179))) (-15 -2937 (|#2| |#2|)) (-15 -2937 (|#2| |#2| (-1179))) (-15 -3977 (|#2| |#2|)) (-15 -2738 (|#2| |#2|)) (-15 -2750 (|#2| |#2|)) (-15 -2490 ((-112) |#2|)) (-15 -2280 ((-169 |#2|) |#2|)))
+((-2580 ((|#4| |#4| |#1|) 32)) (-3715 ((|#4| |#4| |#1|) 33)))
+(((-1209 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2580 (|#4| |#4| |#1|)) (-15 -3715 (|#4| |#4| |#1|))) (-559) (-375 |#1|) (-375 |#1|) (-688 |#1| |#2| |#3|)) (T -1209))
+((-3715 (*1 *2 *2 *3) (-12 (-4 *3 (-559)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-1209 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) (-2580 (*1 *2 *2 *3) (-12 (-4 *3 (-559)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-1209 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))))
+(-10 -7 (-15 -2580 (|#4| |#4| |#1|)) (-15 -3715 (|#4| |#4| |#1|)))
+((-3813 ((|#2| |#2|) 148)) (-2380 ((|#2| |#2|) 145)) (-4289 ((|#2| |#2|) 136)) (-1720 ((|#2| |#2|) 133)) (-3108 ((|#2| |#2|) 141)) (-4067 ((|#2| |#2|) 129)) (-2828 ((|#2| |#2|) 44)) (-2518 ((|#2| |#2|) 105)) (-1743 ((|#2| |#2|) 88)) (-3993 ((|#2| |#2|) 143)) (-2997 ((|#2| |#2|) 131)) (-2315 ((|#2| |#2|) 153)) (-2164 ((|#2| |#2|) 151)) (-4313 ((|#2| |#2|) 152)) (-4371 ((|#2| |#2|) 150)) (-2773 ((|#2| |#2|) 163)) (-3764 ((|#2| |#2|) 30 (-12 (|has| |#2| (-615 (-894 |#1|))) (|has| |#2| (-888 |#1|)) (|has| |#1| (-615 (-894 |#1|))) (|has| |#1| (-888 |#1|))))) (-4351 ((|#2| |#2|) 89)) (-3999 ((|#2| |#2|) 154)) (-3326 ((|#2| |#2|) 155)) (-2561 ((|#2| |#2|) 142)) (-2198 ((|#2| |#2|) 130)) (-4066 ((|#2| |#2|) 149)) (-3427 ((|#2| |#2|) 147)) (-4332 ((|#2| |#2|) 137)) (-4006 ((|#2| |#2|) 135)) (-4352 ((|#2| |#2|) 139)) (-2544 ((|#2| |#2|) 127)))
+(((-1210 |#1| |#2|) (-10 -7 (-15 -3326 (|#2| |#2|)) (-15 -1743 (|#2| |#2|)) (-15 -2773 (|#2| |#2|)) (-15 -2518 (|#2| |#2|)) (-15 -2828 (|#2| |#2|)) (-15 -4351 (|#2| |#2|)) (-15 -3999 (|#2| |#2|)) (-15 -2544 (|#2| |#2|)) (-15 -4352 (|#2| |#2|)) (-15 -4332 (|#2| |#2|)) (-15 -4066 (|#2| |#2|)) (-15 -2198 (|#2| |#2|)) (-15 -2561 (|#2| |#2|)) (-15 -2997 (|#2| |#2|)) (-15 -3993 (|#2| |#2|)) (-15 -4067 (|#2| |#2|)) (-15 -3108 (|#2| |#2|)) (-15 -4289 (|#2| |#2|)) (-15 -3813 (|#2| |#2|)) (-15 -1720 (|#2| |#2|)) (-15 -2380 (|#2| |#2|)) (-15 -4006 (|#2| |#2|)) (-15 -3427 (|#2| |#2|)) (-15 -4371 (|#2| |#2|)) (-15 -2164 (|#2| |#2|)) (-15 -4313 (|#2| |#2|)) (-15 -2315 (|#2| |#2|)) (IF (|has| |#1| (-888 |#1|)) (IF (|has| |#1| (-615 (-894 |#1|))) (IF (|has| |#2| (-615 (-894 |#1|))) (IF (|has| |#2| (-888 |#1|)) (-15 -3764 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-455) (-13 (-433 |#1|) (-1204))) (T -1210))
+((-3764 (*1 *2 *2) (-12 (-4 *3 (-615 (-894 *3))) (-4 *3 (-888 *3)) (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) (-4 *2 (-615 (-894 *3))) (-4 *2 (-888 *3)) (-4 *2 (-13 (-433 *3) (-1204))))) (-2315 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) (-4 *2 (-13 (-433 *3) (-1204))))) (-4313 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) (-4 *2 (-13 (-433 *3) (-1204))))) (-2164 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) (-4 *2 (-13 (-433 *3) (-1204))))) (-4371 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) (-4 *2 (-13 (-433 *3) (-1204))))) (-3427 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) (-4 *2 (-13 (-433 *3) (-1204))))) (-4006 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) (-4 *2 (-13 (-433 *3) (-1204))))) (-2380 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) (-4 *2 (-13 (-433 *3) (-1204))))) (-1720 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) (-4 *2 (-13 (-433 *3) (-1204))))) (-3813 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) (-4 *2 (-13 (-433 *3) (-1204))))) (-4289 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) (-4 *2 (-13 (-433 *3) (-1204))))) (-3108 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) (-4 *2 (-13 (-433 *3) (-1204))))) (-4067 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) (-4 *2 (-13 (-433 *3) (-1204))))) (-3993 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) (-4 *2 (-13 (-433 *3) (-1204))))) (-2997 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) (-4 *2 (-13 (-433 *3) (-1204))))) (-2561 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) (-4 *2 (-13 (-433 *3) (-1204))))) (-2198 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) (-4 *2 (-13 (-433 *3) (-1204))))) (-4066 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) (-4 *2 (-13 (-433 *3) (-1204))))) (-4332 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) (-4 *2 (-13 (-433 *3) (-1204))))) (-4352 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) (-4 *2 (-13 (-433 *3) (-1204))))) (-2544 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) (-4 *2 (-13 (-433 *3) (-1204))))) (-3999 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) (-4 *2 (-13 (-433 *3) (-1204))))) (-4351 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) (-4 *2 (-13 (-433 *3) (-1204))))) (-2828 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) (-4 *2 (-13 (-433 *3) (-1204))))) (-2518 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) (-4 *2 (-13 (-433 *3) (-1204))))) (-2773 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) (-4 *2 (-13 (-433 *3) (-1204))))) (-1743 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) (-4 *2 (-13 (-433 *3) (-1204))))) (-3326 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) (-4 *2 (-13 (-433 *3) (-1204))))))
+(-10 -7 (-15 -3326 (|#2| |#2|)) (-15 -1743 (|#2| |#2|)) (-15 -2773 (|#2| |#2|)) (-15 -2518 (|#2| |#2|)) (-15 -2828 (|#2| |#2|)) (-15 -4351 (|#2| |#2|)) (-15 -3999 (|#2| |#2|)) (-15 -2544 (|#2| |#2|)) (-15 -4352 (|#2| |#2|)) (-15 -4332 (|#2| |#2|)) (-15 -4066 (|#2| |#2|)) (-15 -2198 (|#2| |#2|)) (-15 -2561 (|#2| |#2|)) (-15 -2997 (|#2| |#2|)) (-15 -3993 (|#2| |#2|)) (-15 -4067 (|#2| |#2|)) (-15 -3108 (|#2| |#2|)) (-15 -4289 (|#2| |#2|)) (-15 -3813 (|#2| |#2|)) (-15 -1720 (|#2| |#2|)) (-15 -2380 (|#2| |#2|)) (-15 -4006 (|#2| |#2|)) (-15 -3427 (|#2| |#2|)) (-15 -4371 (|#2| |#2|)) (-15 -2164 (|#2| |#2|)) (-15 -4313 (|#2| |#2|)) (-15 -2315 (|#2| |#2|)) (IF (|has| |#1| (-888 |#1|)) (IF (|has| |#1| (-615 (-894 |#1|))) (IF (|has| |#2| (-615 (-894 |#1|))) (IF (|has| |#2| (-888 |#1|)) (-15 -3764 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
+((-2176 (((-112) |#5| $) 68) (((-112) $) 110)) (-2345 ((|#5| |#5| $) 83)) (-3356 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 127)) (-3683 (((-645 |#5|) (-645 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 81)) (-3765 (((-3 $ "failed") (-645 |#5|)) 135)) (-2430 (((-3 $ "failed") $) 120)) (-3819 ((|#5| |#5| $) 102)) (-2240 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 36)) (-1889 ((|#5| |#5| $) 106)) (-2494 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 77)) (-4076 (((-2 (|:| -4000 (-645 |#5|)) (|:| -3835 (-645 |#5|))) $) 63)) (-4061 (((-112) |#5| $) 66) (((-112) $) 111)) (-2072 ((|#4| $) 116)) (-3266 (((-3 |#5| "failed") $) 118)) (-3881 (((-645 |#5|) $) 55)) (-3324 (((-112) |#5| $) 75) (((-112) $) 115)) (-1431 ((|#5| |#5| $) 89)) (-3995 (((-112) $ $) 29)) (-4278 (((-112) |#5| $) 71) (((-112) $) 113)) (-3984 ((|#5| |#5| $) 86)) (-2418 (((-3 |#5| "failed") $) 117)) (-1874 (($ $ |#5|) 136)) (-3104 (((-772) $) 60)) (-4145 (($ (-645 |#5|)) 133)) (-3937 (($ $ |#4|) 131)) (-3165 (($ $ |#4|) 129)) (-2085 (($ $) 128)) (-4129 (((-863) $) NIL) (((-645 |#5|) $) 121)) (-1975 (((-772) $) 140)) (-1676 (((-3 (-2 (|:| |bas| $) (|:| -2270 (-645 |#5|))) "failed") (-645 |#5|) (-1 (-112) |#5| |#5|)) 49) (((-3 (-2 (|:| |bas| $) (|:| -2270 (-645 |#5|))) "failed") (-645 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 51)) (-1642 (((-112) $ (-1 (-112) |#5| (-645 |#5|))) 108)) (-2551 (((-645 |#4|) $) 123)) (-2618 (((-112) |#4| $) 126)) (-2946 (((-112) $ $) 20)))
+(((-1211 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1975 ((-772) |#1|)) (-15 -1874 (|#1| |#1| |#5|)) (-15 -3356 ((-3 |#5| "failed") |#1| |#4|)) (-15 -2618 ((-112) |#4| |#1|)) (-15 -2551 ((-645 |#4|) |#1|)) (-15 -2430 ((-3 |#1| "failed") |#1|)) (-15 -3266 ((-3 |#5| "failed") |#1|)) (-15 -2418 ((-3 |#5| "failed") |#1|)) (-15 -1889 (|#5| |#5| |#1|)) (-15 -2085 (|#1| |#1|)) (-15 -3819 (|#5| |#5| |#1|)) (-15 -1431 (|#5| |#5| |#1|)) (-15 -3984 (|#5| |#5| |#1|)) (-15 -2345 (|#5| |#5| |#1|)) (-15 -3683 ((-645 |#5|) (-645 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2494 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3324 ((-112) |#1|)) (-15 -4278 ((-112) |#1|)) (-15 -2176 ((-112) |#1|)) (-15 -1642 ((-112) |#1| (-1 (-112) |#5| (-645 |#5|)))) (-15 -3324 ((-112) |#5| |#1|)) (-15 -4278 ((-112) |#5| |#1|)) (-15 -2176 ((-112) |#5| |#1|)) (-15 -2240 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -4061 ((-112) |#1|)) (-15 -4061 ((-112) |#5| |#1|)) (-15 -4076 ((-2 (|:| -4000 (-645 |#5|)) (|:| -3835 (-645 |#5|))) |#1|)) (-15 -3104 ((-772) |#1|)) (-15 -3881 ((-645 |#5|) |#1|)) (-15 -1676 ((-3 (-2 (|:| |bas| |#1|) (|:| -2270 (-645 |#5|))) "failed") (-645 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -1676 ((-3 (-2 (|:| |bas| |#1|) (|:| -2270 (-645 |#5|))) "failed") (-645 |#5|) (-1 (-112) |#5| |#5|))) (-15 -3995 ((-112) |#1| |#1|)) (-15 -3937 (|#1| |#1| |#4|)) (-15 -3165 (|#1| |#1| |#4|)) (-15 -2072 (|#4| |#1|)) (-15 -3765 ((-3 |#1| "failed") (-645 |#5|))) (-15 -4129 ((-645 |#5|) |#1|)) (-15 -4145 (|#1| (-645 |#5|))) (-15 -2494 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2494 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3356 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2494 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -4129 ((-863) |#1|)) (-15 -2946 ((-112) |#1| |#1|))) (-1212 |#2| |#3| |#4| |#5|) (-559) (-794) (-851) (-1067 |#2| |#3| |#4|)) (T -1211))
+NIL
+(-10 -8 (-15 -1975 ((-772) |#1|)) (-15 -1874 (|#1| |#1| |#5|)) (-15 -3356 ((-3 |#5| "failed") |#1| |#4|)) (-15 -2618 ((-112) |#4| |#1|)) (-15 -2551 ((-645 |#4|) |#1|)) (-15 -2430 ((-3 |#1| "failed") |#1|)) (-15 -3266 ((-3 |#5| "failed") |#1|)) (-15 -2418 ((-3 |#5| "failed") |#1|)) (-15 -1889 (|#5| |#5| |#1|)) (-15 -2085 (|#1| |#1|)) (-15 -3819 (|#5| |#5| |#1|)) (-15 -1431 (|#5| |#5| |#1|)) (-15 -3984 (|#5| |#5| |#1|)) (-15 -2345 (|#5| |#5| |#1|)) (-15 -3683 ((-645 |#5|) (-645 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2494 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3324 ((-112) |#1|)) (-15 -4278 ((-112) |#1|)) (-15 -2176 ((-112) |#1|)) (-15 -1642 ((-112) |#1| (-1 (-112) |#5| (-645 |#5|)))) (-15 -3324 ((-112) |#5| |#1|)) (-15 -4278 ((-112) |#5| |#1|)) (-15 -2176 ((-112) |#5| |#1|)) (-15 -2240 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -4061 ((-112) |#1|)) (-15 -4061 ((-112) |#5| |#1|)) (-15 -4076 ((-2 (|:| -4000 (-645 |#5|)) (|:| -3835 (-645 |#5|))) |#1|)) (-15 -3104 ((-772) |#1|)) (-15 -3881 ((-645 |#5|) |#1|)) (-15 -1676 ((-3 (-2 (|:| |bas| |#1|) (|:| -2270 (-645 |#5|))) "failed") (-645 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -1676 ((-3 (-2 (|:| |bas| |#1|) (|:| -2270 (-645 |#5|))) "failed") (-645 |#5|) (-1 (-112) |#5| |#5|))) (-15 -3995 ((-112) |#1| |#1|)) (-15 -3937 (|#1| |#1| |#4|)) (-15 -3165 (|#1| |#1| |#4|)) (-15 -2072 (|#4| |#1|)) (-15 -3765 ((-3 |#1| "failed") (-645 |#5|))) (-15 -4129 ((-645 |#5|) |#1|)) (-15 -4145 (|#1| (-645 |#5|))) (-15 -2494 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2494 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3356 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2494 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -4129 ((-863) |#1|)) (-15 -2946 ((-112) |#1| |#1|)))
+((-2412 (((-112) $ $) 7)) (-4305 (((-645 (-2 (|:| -4000 $) (|:| -3835 (-645 |#4|)))) (-645 |#4|)) 86)) (-3403 (((-645 $) (-645 |#4|)) 87)) (-2859 (((-645 |#3|) $) 34)) (-3153 (((-112) $) 27)) (-2031 (((-112) $) 18 (|has| |#1| (-559)))) (-2176 (((-112) |#4| $) 102) (((-112) $) 98)) (-2345 ((|#4| |#4| $) 93)) (-1311 (((-2 (|:| |under| $) (|:| -3969 $) (|:| |upper| $)) $ |#3|) 28)) (-1563 (((-112) $ (-772)) 45)) (-3356 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4422))) (((-3 |#4| "failed") $ |#3|) 80)) (-3647 (($) 46 T CONST)) (-1896 (((-112) $) 23 (|has| |#1| (-559)))) (-2909 (((-112) $ $) 25 (|has| |#1| (-559)))) (-3040 (((-112) $ $) 24 (|has| |#1| (-559)))) (-3365 (((-112) $) 26 (|has| |#1| (-559)))) (-3683 (((-645 |#4|) (-645 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1377 (((-645 |#4|) (-645 |#4|) $) 19 (|has| |#1| (-559)))) (-2279 (((-645 |#4|) (-645 |#4|) $) 20 (|has| |#1| (-559)))) (-3765 (((-3 $ "failed") (-645 |#4|)) 37)) (-2051 (($ (-645 |#4|)) 36)) (-2430 (((-3 $ "failed") $) 83)) (-3819 ((|#4| |#4| $) 90)) (-2453 (($ $) 69 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4422))))) (-3246 (($ |#4| $) 68 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4422)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4422)))) (-2023 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-559)))) (-2240 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-1889 ((|#4| |#4| $) 88)) (-2494 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4422)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4422))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4422))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-4076 (((-2 (|:| -4000 (-645 |#4|)) (|:| -3835 (-645 |#4|))) $) 106)) (-2799 (((-645 |#4|) $) 53 (|has| $ (-6 -4422)))) (-4061 (((-112) |#4| $) 105) (((-112) $) 104)) (-2072 ((|#3| $) 35)) (-4093 (((-112) $ (-772)) 44)) (-1942 (((-645 |#4|) $) 54 (|has| $ (-6 -4422)))) (-3237 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4422))))) (-3751 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#4| |#4|) $) 48)) (-2869 (((-645 |#3|) $) 33)) (-1524 (((-112) |#3| $) 32)) (-1986 (((-112) $ (-772)) 43)) (-2516 (((-1161) $) 10)) (-3266 (((-3 |#4| "failed") $) 84)) (-3881 (((-645 |#4|) $) 108)) (-3324 (((-112) |#4| $) 100) (((-112) $) 96)) (-1431 ((|#4| |#4| $) 91)) (-3995 (((-112) $ $) 111)) (-2634 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-559)))) (-4278 (((-112) |#4| $) 101) (((-112) $) 97)) (-3984 ((|#4| |#4| $) 92)) (-3437 (((-1122) $) 11)) (-2418 (((-3 |#4| "failed") $) 85)) (-3196 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3488 (((-3 $ "failed") $ |#4|) 79)) (-1874 (($ $ |#4|) 78)) (-4233 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 |#4|) (-645 |#4|)) 60 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-295 |#4|)) 58 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-645 (-295 |#4|))) 57 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))))) (-3875 (((-112) $ $) 39)) (-3885 (((-112) $) 42)) (-2701 (($) 41)) (-3104 (((-772) $) 107)) (-3447 (((-772) |#4| $) 55 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4422)))) (((-772) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4422)))) (-4309 (($ $) 40)) (-3902 (((-539) $) 70 (|has| |#4| (-615 (-539))))) (-4145 (($ (-645 |#4|)) 61)) (-3937 (($ $ |#3|) 29)) (-3165 (($ $ |#3|) 31)) (-2085 (($ $) 89)) (-1920 (($ $ |#3|) 30)) (-4129 (((-863) $) 12) (((-645 |#4|) $) 38)) (-1975 (((-772) $) 77 (|has| |#3| (-370)))) (-3357 (((-112) $ $) 9)) (-1676 (((-3 (-2 (|:| |bas| $) (|:| -2270 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2270 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-1642 (((-112) $ (-1 (-112) |#4| (-645 |#4|))) 99)) (-3436 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4422)))) (-2551 (((-645 |#3|) $) 82)) (-2618 (((-112) |#3| $) 81)) (-2946 (((-112) $ $) 6)) (-2423 (((-772) $) 47 (|has| $ (-6 -4422)))))
+(((-1212 |#1| |#2| |#3| |#4|) (-140) (-559) (-794) (-851) (-1067 |t#1| |t#2| |t#3|)) (T -1212))
+((-3995 (*1 *2 *1 *1) (-12 (-4 *1 (-1212 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-112)))) (-1676 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2270 (-645 *8)))) (-5 *3 (-645 *8)) (-4 *1 (-1212 *5 *6 *7 *8)))) (-1676 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1067 *6 *7 *8)) (-4 *6 (-559)) (-4 *7 (-794)) (-4 *8 (-851)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2270 (-645 *9)))) (-5 *3 (-645 *9)) (-4 *1 (-1212 *6 *7 *8 *9)))) (-3881 (*1 *2 *1) (-12 (-4 *1 (-1212 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-645 *6)))) (-3104 (*1 *2 *1) (-12 (-4 *1 (-1212 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-772)))) (-4076 (*1 *2 *1) (-12 (-4 *1 (-1212 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-2 (|:| -4000 (-645 *6)) (|:| -3835 (-645 *6)))))) (-4061 (*1 *2 *3 *1) (-12 (-4 *1 (-1212 *4 *5 *6 *3)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-112)))) (-4061 (*1 *2 *1) (-12 (-4 *1 (-1212 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-112)))) (-2240 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1212 *5 *6 *7 *3)) (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-112)))) (-2176 (*1 *2 *3 *1) (-12 (-4 *1 (-1212 *4 *5 *6 *3)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-112)))) (-4278 (*1 *2 *3 *1) (-12 (-4 *1 (-1212 *4 *5 *6 *3)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-112)))) (-3324 (*1 *2 *3 *1) (-12 (-4 *1 (-1212 *4 *5 *6 *3)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-112)))) (-1642 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-645 *7))) (-4 *1 (-1212 *4 *5 *6 *7)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112)))) (-2176 (*1 *2 *1) (-12 (-4 *1 (-1212 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-112)))) (-4278 (*1 *2 *1) (-12 (-4 *1 (-1212 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-112)))) (-3324 (*1 *2 *1) (-12 (-4 *1 (-1212 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-112)))) (-2494 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1212 *5 *6 *7 *2)) (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *2 (-1067 *5 *6 *7)))) (-3683 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-645 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1212 *5 *6 *7 *8)) (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-1067 *5 *6 *7)))) (-2345 (*1 *2 *2 *1) (-12 (-4 *1 (-1212 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5)))) (-3984 (*1 *2 *2 *1) (-12 (-4 *1 (-1212 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5)))) (-1431 (*1 *2 *2 *1) (-12 (-4 *1 (-1212 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5)))) (-3819 (*1 *2 *2 *1) (-12 (-4 *1 (-1212 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5)))) (-2085 (*1 *1 *1) (-12 (-4 *1 (-1212 *2 *3 *4 *5)) (-4 *2 (-559)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *5 (-1067 *2 *3 *4)))) (-1889 (*1 *2 *2 *1) (-12 (-4 *1 (-1212 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5)))) (-3403 (*1 *2 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-1212 *4 *5 *6 *7)))) (-4305 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-645 (-2 (|:| -4000 *1) (|:| -3835 (-645 *7))))) (-5 *3 (-645 *7)) (-4 *1 (-1212 *4 *5 *6 *7)))) (-2418 (*1 *2 *1) (|partial| -12 (-4 *1 (-1212 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5)))) (-3266 (*1 *2 *1) (|partial| -12 (-4 *1 (-1212 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5)))) (-2430 (*1 *1 *1) (|partial| -12 (-4 *1 (-1212 *2 *3 *4 *5)) (-4 *2 (-559)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *5 (-1067 *2 *3 *4)))) (-2551 (*1 *2 *1) (-12 (-4 *1 (-1212 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-645 *5)))) (-2618 (*1 *2 *3 *1) (-12 (-4 *1 (-1212 *4 *5 *3 *6)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *3 (-851)) (-4 *6 (-1067 *4 *5 *3)) (-5 *2 (-112)))) (-3356 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1212 *4 *5 *3 *2)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *3 (-851)) (-4 *2 (-1067 *4 *5 *3)))) (-3488 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1212 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5)))) (-1874 (*1 *1 *1 *2) (-12 (-4 *1 (-1212 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5)))) (-1975 (*1 *2 *1) (-12 (-4 *1 (-1212 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-4 *5 (-370)) (-5 *2 (-772)))))
+(-13 (-978 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4422) (-6 -4423) (-15 -3995 ((-112) $ $)) (-15 -1676 ((-3 (-2 (|:| |bas| $) (|:| -2270 (-645 |t#4|))) "failed") (-645 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -1676 ((-3 (-2 (|:| |bas| $) (|:| -2270 (-645 |t#4|))) "failed") (-645 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3881 ((-645 |t#4|) $)) (-15 -3104 ((-772) $)) (-15 -4076 ((-2 (|:| -4000 (-645 |t#4|)) (|:| -3835 (-645 |t#4|))) $)) (-15 -4061 ((-112) |t#4| $)) (-15 -4061 ((-112) $)) (-15 -2240 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -2176 ((-112) |t#4| $)) (-15 -4278 ((-112) |t#4| $)) (-15 -3324 ((-112) |t#4| $)) (-15 -1642 ((-112) $ (-1 (-112) |t#4| (-645 |t#4|)))) (-15 -2176 ((-112) $)) (-15 -4278 ((-112) $)) (-15 -3324 ((-112) $)) (-15 -2494 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3683 ((-645 |t#4|) (-645 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2345 (|t#4| |t#4| $)) (-15 -3984 (|t#4| |t#4| $)) (-15 -1431 (|t#4| |t#4| $)) (-15 -3819 (|t#4| |t#4| $)) (-15 -2085 ($ $)) (-15 -1889 (|t#4| |t#4| $)) (-15 -3403 ((-645 $) (-645 |t#4|))) (-15 -4305 ((-645 (-2 (|:| -4000 $) (|:| -3835 (-645 |t#4|)))) (-645 |t#4|))) (-15 -2418 ((-3 |t#4| "failed") $)) (-15 -3266 ((-3 |t#4| "failed") $)) (-15 -2430 ((-3 $ "failed") $)) (-15 -2551 ((-645 |t#3|) $)) (-15 -2618 ((-112) |t#3| $)) (-15 -3356 ((-3 |t#4| "failed") $ |t#3|)) (-15 -3488 ((-3 $ "failed") $ |t#4|)) (-15 -1874 ($ $ |t#4|)) (IF (|has| |t#3| (-370)) (-15 -1975 ((-772) $)) |%noBranch|)))
+(((-34) . T) ((-102) . T) ((-614 (-645 |#4|)) . T) ((-614 (-863)) . T) ((-151 |#4|) . T) ((-615 (-539)) |has| |#4| (-615 (-539))) ((-310 |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))) ((-492 |#4|) . T) ((-517 |#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))) ((-978 |#1| |#2| |#3| |#4|) . T) ((-1102) . T) ((-1219) . T))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-2859 (((-645 (-1179)) $) NIL)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-4287 (($ $) NIL (|has| |#1| (-559)))) (-2286 (((-112) $) NIL (|has| |#1| (-559)))) (-3164 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3032 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2376 (((-3 $ "failed") $ $) NIL)) (-2728 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3145 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3008 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3182 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3057 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3647 (($) NIL T CONST)) (-3023 (($ $) NIL)) (-3588 (((-3 $ "failed") $) NIL)) (-3736 (((-954 |#1|) $ (-772)) 20) (((-954 |#1|) $ (-772) (-772)) NIL)) (-3086 (((-112) $) NIL)) (-1484 (($) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3362 (((-772) $ (-1179)) NIL) (((-772) $ (-1179) (-772)) NIL)) (-4346 (((-112) $) NIL)) (-3698 (($ $ (-567)) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3770 (((-112) $) NIL)) (-2836 (($ $ (-645 (-1179)) (-645 (-534 (-1179)))) NIL) (($ $ (-1179) (-534 (-1179))) NIL) (($ |#1| (-534 (-1179))) NIL) (($ $ (-1179) (-772)) NIL) (($ $ (-645 (-1179)) (-645 (-772))) NIL)) (-3841 (($ (-1 |#1| |#1|) $) NIL)) (-3072 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2985 (($ $) NIL)) (-2996 ((|#1| $) NIL)) (-2516 (((-1161) $) NIL)) (-4083 (($ $ (-1179)) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1179) |#1|) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3437 (((-1122) $) NIL)) (-3708 (($ (-1 $) (-1179) |#1|) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1874 (($ $ (-772)) NIL)) (-2400 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-3955 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2642 (($ $ (-1179) $) NIL) (($ $ (-645 (-1179)) (-645 $)) NIL) (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL)) (-1616 (($ $ (-1179)) NIL) (($ $ (-645 (-1179))) NIL) (($ $ (-1179) (-772)) NIL) (($ $ (-645 (-1179)) (-645 (-772))) NIL)) (-3104 (((-534 (-1179)) $) NIL)) (-3192 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3071 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3173 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3043 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3155 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3021 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1834 (($ $) NIL)) (-4129 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ $) NIL (|has| |#1| (-559))) (($ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ (-1179)) NIL) (($ (-954 |#1|)) NIL)) (-2558 ((|#1| $ (-534 (-1179))) NIL) (($ $ (-1179) (-772)) NIL) (($ $ (-645 (-1179)) (-645 (-772))) NIL) (((-954 |#1|) $ (-772)) NIL)) (-2118 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2746 (((-772)) NIL T CONST)) (-3357 (((-112) $ $) NIL)) (-3217 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3103 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3731 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3201 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3083 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3238 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3126 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3805 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3138 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3228 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3115 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3208 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3093 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1733 (($) NIL T CONST)) (-1744 (($) NIL T CONST)) (-2647 (($ $ (-1179)) NIL) (($ $ (-645 (-1179))) NIL) (($ $ (-1179) (-772)) NIL) (($ $ (-645 (-1179)) (-645 (-772))) NIL)) (-2946 (((-112) $ $) NIL)) (-3069 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-1213 |#1|) (-13 (-741 |#1| (-1179)) (-10 -8 (-15 -2558 ((-954 |#1|) $ (-772))) (-15 -4129 ($ (-1179))) (-15 -4129 ($ (-954 |#1|))) (IF (|has| |#1| (-38 (-410 (-567)))) (PROGN (-15 -4083 ($ $ (-1179) |#1|)) (-15 -3708 ($ (-1 $) (-1179) |#1|))) |%noBranch|))) (-1051)) (T -1213))
+((-2558 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *2 (-954 *4)) (-5 *1 (-1213 *4)) (-4 *4 (-1051)))) (-4129 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1213 *3)) (-4 *3 (-1051)))) (-4129 (*1 *1 *2) (-12 (-5 *2 (-954 *3)) (-4 *3 (-1051)) (-5 *1 (-1213 *3)))) (-4083 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *1 (-1213 *3)) (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)))) (-3708 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1213 *4))) (-5 *3 (-1179)) (-5 *1 (-1213 *4)) (-4 *4 (-38 (-410 (-567)))) (-4 *4 (-1051)))))
+(-13 (-741 |#1| (-1179)) (-10 -8 (-15 -2558 ((-954 |#1|) $ (-772))) (-15 -4129 ($ (-1179))) (-15 -4129 ($ (-954 |#1|))) (IF (|has| |#1| (-38 (-410 (-567)))) (PROGN (-15 -4083 ($ $ (-1179) |#1|)) (-15 -3708 ($ (-1 $) (-1179) |#1|))) |%noBranch|)))
+((-3772 (($ |#1| (-645 (-645 (-945 (-225)))) (-112)) 19)) (-4353 (((-112) $ (-112)) 18)) (-4053 (((-112) $) 17)) (-1501 (((-645 (-645 (-945 (-225)))) $) 13)) (-4142 ((|#1| $) 8)) (-1714 (((-112) $) 15)))
+(((-1214 |#1|) (-10 -8 (-15 -4142 (|#1| $)) (-15 -1501 ((-645 (-645 (-945 (-225)))) $)) (-15 -1714 ((-112) $)) (-15 -4053 ((-112) $)) (-15 -4353 ((-112) $ (-112))) (-15 -3772 ($ |#1| (-645 (-645 (-945 (-225)))) (-112)))) (-976)) (T -1214))
+((-3772 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-645 (-645 (-945 (-225))))) (-5 *4 (-112)) (-5 *1 (-1214 *2)) (-4 *2 (-976)))) (-4353 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1214 *3)) (-4 *3 (-976)))) (-4053 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1214 *3)) (-4 *3 (-976)))) (-1714 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1214 *3)) (-4 *3 (-976)))) (-1501 (*1 *2 *1) (-12 (-5 *2 (-645 (-645 (-945 (-225))))) (-5 *1 (-1214 *3)) (-4 *3 (-976)))) (-4142 (*1 *2 *1) (-12 (-5 *1 (-1214 *2)) (-4 *2 (-976)))))
+(-10 -8 (-15 -4142 (|#1| $)) (-15 -1501 ((-645 (-645 (-945 (-225)))) $)) (-15 -1714 ((-112) $)) (-15 -4053 ((-112) $)) (-15 -4353 ((-112) $ (-112))) (-15 -3772 ($ |#1| (-645 (-645 (-945 (-225)))) (-112))))
+((-3624 (((-945 (-225)) (-945 (-225))) 31)) (-4385 (((-945 (-225)) (-225) (-225) (-225) (-225)) 10)) (-3889 (((-645 (-945 (-225))) (-945 (-225)) (-945 (-225)) (-945 (-225)) (-225) (-645 (-645 (-225)))) 60)) (-3917 (((-225) (-945 (-225)) (-945 (-225))) 27)) (-1759 (((-945 (-225)) (-945 (-225)) (-945 (-225))) 28)) (-2854 (((-645 (-645 (-225))) (-567)) 48)) (-3053 (((-945 (-225)) (-945 (-225)) (-945 (-225))) 26)) (-3041 (((-945 (-225)) (-945 (-225)) (-945 (-225))) 24)) (* (((-945 (-225)) (-225) (-945 (-225))) 22)))
+(((-1215) (-10 -7 (-15 -4385 ((-945 (-225)) (-225) (-225) (-225) (-225))) (-15 * ((-945 (-225)) (-225) (-945 (-225)))) (-15 -3041 ((-945 (-225)) (-945 (-225)) (-945 (-225)))) (-15 -3053 ((-945 (-225)) (-945 (-225)) (-945 (-225)))) (-15 -3917 ((-225) (-945 (-225)) (-945 (-225)))) (-15 -1759 ((-945 (-225)) (-945 (-225)) (-945 (-225)))) (-15 -3624 ((-945 (-225)) (-945 (-225)))) (-15 -2854 ((-645 (-645 (-225))) (-567))) (-15 -3889 ((-645 (-945 (-225))) (-945 (-225)) (-945 (-225)) (-945 (-225)) (-225) (-645 (-645 (-225))))))) (T -1215))
+((-3889 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-645 (-645 (-225)))) (-5 *4 (-225)) (-5 *2 (-645 (-945 *4))) (-5 *1 (-1215)) (-5 *3 (-945 *4)))) (-2854 (*1 *2 *3) (-12 (-5 *3 (-567)) (-5 *2 (-645 (-645 (-225)))) (-5 *1 (-1215)))) (-3624 (*1 *2 *2) (-12 (-5 *2 (-945 (-225))) (-5 *1 (-1215)))) (-1759 (*1 *2 *2 *2) (-12 (-5 *2 (-945 (-225))) (-5 *1 (-1215)))) (-3917 (*1 *2 *3 *3) (-12 (-5 *3 (-945 (-225))) (-5 *2 (-225)) (-5 *1 (-1215)))) (-3053 (*1 *2 *2 *2) (-12 (-5 *2 (-945 (-225))) (-5 *1 (-1215)))) (-3041 (*1 *2 *2 *2) (-12 (-5 *2 (-945 (-225))) (-5 *1 (-1215)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-945 (-225))) (-5 *3 (-225)) (-5 *1 (-1215)))) (-4385 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-945 (-225))) (-5 *1 (-1215)) (-5 *3 (-225)))))
+(-10 -7 (-15 -4385 ((-945 (-225)) (-225) (-225) (-225) (-225))) (-15 * ((-945 (-225)) (-225) (-945 (-225)))) (-15 -3041 ((-945 (-225)) (-945 (-225)) (-945 (-225)))) (-15 -3053 ((-945 (-225)) (-945 (-225)) (-945 (-225)))) (-15 -3917 ((-225) (-945 (-225)) (-945 (-225)))) (-15 -1759 ((-945 (-225)) (-945 (-225)) (-945 (-225)))) (-15 -3624 ((-945 (-225)) (-945 (-225)))) (-15 -2854 ((-645 (-645 (-225))) (-567))) (-15 -3889 ((-645 (-945 (-225))) (-945 (-225)) (-945 (-225)) (-945 (-225)) (-225) (-645 (-645 (-225))))))
+((-2412 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3356 ((|#1| $ (-772)) 18)) (-2334 (((-772) $) 13)) (-2516 (((-1161) $) NIL (|has| |#1| (-1102)))) (-3437 (((-1122) $) NIL (|has| |#1| (-1102)))) (-4129 (((-960 |#1|) $) 12) (($ (-960 |#1|)) 11) (((-863) $) 29 (|has| |#1| (-614 (-863))))) (-3357 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2946 (((-112) $ $) 22 (|has| |#1| (-1102)))))
+(((-1216 |#1|) (-13 (-493 (-960 |#1|)) (-10 -8 (-15 -3356 (|#1| $ (-772))) (-15 -2334 ((-772) $)) (IF (|has| |#1| (-614 (-863))) (-6 (-614 (-863))) |%noBranch|) (IF (|has| |#1| (-1102)) (-6 (-1102)) |%noBranch|))) (-1219)) (T -1216))
+((-3356 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *1 (-1216 *2)) (-4 *2 (-1219)))) (-2334 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1216 *3)) (-4 *3 (-1219)))))
+(-13 (-493 (-960 |#1|)) (-10 -8 (-15 -3356 (|#1| $ (-772))) (-15 -2334 ((-772) $)) (IF (|has| |#1| (-614 (-863))) (-6 (-614 (-863))) |%noBranch|) (IF (|has| |#1| (-1102)) (-6 (-1102)) |%noBranch|)))
+((-1623 (((-421 (-1175 (-1175 |#1|))) (-1175 (-1175 |#1|)) (-567)) 94)) (-2681 (((-421 (-1175 (-1175 |#1|))) (-1175 (-1175 |#1|))) 86)) (-3985 (((-421 (-1175 (-1175 |#1|))) (-1175 (-1175 |#1|))) 70)))
+(((-1217 |#1|) (-10 -7 (-15 -2681 ((-421 (-1175 (-1175 |#1|))) (-1175 (-1175 |#1|)))) (-15 -3985 ((-421 (-1175 (-1175 |#1|))) (-1175 (-1175 |#1|)))) (-15 -1623 ((-421 (-1175 (-1175 |#1|))) (-1175 (-1175 |#1|)) (-567)))) (-351)) (T -1217))
+((-1623 (*1 *2 *3 *4) (-12 (-5 *4 (-567)) (-4 *5 (-351)) (-5 *2 (-421 (-1175 (-1175 *5)))) (-5 *1 (-1217 *5)) (-5 *3 (-1175 (-1175 *5))))) (-3985 (*1 *2 *3) (-12 (-4 *4 (-351)) (-5 *2 (-421 (-1175 (-1175 *4)))) (-5 *1 (-1217 *4)) (-5 *3 (-1175 (-1175 *4))))) (-2681 (*1 *2 *3) (-12 (-4 *4 (-351)) (-5 *2 (-421 (-1175 (-1175 *4)))) (-5 *1 (-1217 *4)) (-5 *3 (-1175 (-1175 *4))))))
+(-10 -7 (-15 -2681 ((-421 (-1175 (-1175 |#1|))) (-1175 (-1175 |#1|)))) (-15 -3985 ((-421 (-1175 (-1175 |#1|))) (-1175 (-1175 |#1|)))) (-15 -1623 ((-421 (-1175 (-1175 |#1|))) (-1175 (-1175 |#1|)) (-567))))
+((-2412 (((-112) $ $) NIL)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) 9) (($ (-1184)) NIL) (((-1184) $) NIL)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)))
+(((-1218) (-1085)) (T -1218))
NIL
(-1085)
NIL
-(((-1218) (-140)) (T -1218))
-NIL
-(-13 (-10 -7 (-6 -3011)))
-((-3563 (((-112)) 18)) (-1884 (((-1273) (-645 |#1|) (-645 |#1|)) 22) (((-1273) (-645 |#1|)) 23)) (-2077 (((-112) |#1| |#1|) 38 (|has| |#1| (-851)))) (-2863 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 30) (((-3 (-112) "failed") |#1| |#1|) 28)) (-3333 ((|#1| (-645 |#1|)) 39 (|has| |#1| (-851))) ((|#1| (-645 |#1|) (-1 (-112) |#1| |#1|)) 33)) (-2464 (((-2 (|:| -2504 (-645 |#1|)) (|:| -3131 (-645 |#1|)))) 20)))
-(((-1219 |#1|) (-10 -7 (-15 -1884 ((-1273) (-645 |#1|))) (-15 -1884 ((-1273) (-645 |#1|) (-645 |#1|))) (-15 -2464 ((-2 (|:| -2504 (-645 |#1|)) (|:| -3131 (-645 |#1|))))) (-15 -2863 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2863 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -3333 (|#1| (-645 |#1|) (-1 (-112) |#1| |#1|))) (-15 -3563 ((-112))) (IF (|has| |#1| (-851)) (PROGN (-15 -3333 (|#1| (-645 |#1|))) (-15 -2077 ((-112) |#1| |#1|))) |%noBranch|)) (-1102)) (T -1219))
-((-2077 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1219 *3)) (-4 *3 (-851)) (-4 *3 (-1102)))) (-3333 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-1102)) (-4 *2 (-851)) (-5 *1 (-1219 *2)))) (-3563 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1219 *3)) (-4 *3 (-1102)))) (-3333 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1219 *2)) (-4 *2 (-1102)))) (-2863 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1102)) (-5 *2 (-112)) (-5 *1 (-1219 *3)))) (-2863 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1219 *3)) (-4 *3 (-1102)))) (-2464 (*1 *2) (-12 (-5 *2 (-2 (|:| -2504 (-645 *3)) (|:| -3131 (-645 *3)))) (-5 *1 (-1219 *3)) (-4 *3 (-1102)))) (-1884 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *4)) (-4 *4 (-1102)) (-5 *2 (-1273)) (-5 *1 (-1219 *4)))) (-1884 (*1 *2 *3) (-12 (-5 *3 (-645 *4)) (-4 *4 (-1102)) (-5 *2 (-1273)) (-5 *1 (-1219 *4)))))
-(-10 -7 (-15 -1884 ((-1273) (-645 |#1|))) (-15 -1884 ((-1273) (-645 |#1|) (-645 |#1|))) (-15 -2464 ((-2 (|:| -2504 (-645 |#1|)) (|:| -3131 (-645 |#1|))))) (-15 -2863 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2863 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -3333 (|#1| (-645 |#1|) (-1 (-112) |#1| |#1|))) (-15 -3563 ((-112))) (IF (|has| |#1| (-851)) (PROGN (-15 -3333 (|#1| (-645 |#1|))) (-15 -2077 ((-112) |#1| |#1|))) |%noBranch|))
-((-3460 (((-1273) (-645 (-1178)) (-645 (-1178))) 14) (((-1273) (-645 (-1178))) 12)) (-1611 (((-1273)) 16)) (-1708 (((-2 (|:| -3131 (-645 (-1178))) (|:| -2504 (-645 (-1178))))) 20)))
-(((-1220) (-10 -7 (-15 -3460 ((-1273) (-645 (-1178)))) (-15 -3460 ((-1273) (-645 (-1178)) (-645 (-1178)))) (-15 -1708 ((-2 (|:| -3131 (-645 (-1178))) (|:| -2504 (-645 (-1178)))))) (-15 -1611 ((-1273))))) (T -1220))
-((-1611 (*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-1220)))) (-1708 (*1 *2) (-12 (-5 *2 (-2 (|:| -3131 (-645 (-1178))) (|:| -2504 (-645 (-1178))))) (-5 *1 (-1220)))) (-3460 (*1 *2 *3 *3) (-12 (-5 *3 (-645 (-1178))) (-5 *2 (-1273)) (-5 *1 (-1220)))) (-3460 (*1 *2 *3) (-12 (-5 *3 (-645 (-1178))) (-5 *2 (-1273)) (-5 *1 (-1220)))))
-(-10 -7 (-15 -3460 ((-1273) (-645 (-1178)))) (-15 -3460 ((-1273) (-645 (-1178)) (-645 (-1178)))) (-15 -1708 ((-2 (|:| -3131 (-645 (-1178))) (|:| -2504 (-645 (-1178)))))) (-15 -1611 ((-1273))))
-((-3248 (($ $) 17)) (-3184 (((-112) $) 28)))
-(((-1221 |#1|) (-10 -8 (-15 -3248 (|#1| |#1|)) (-15 -3184 ((-112) |#1|))) (-1222)) (T -1221))
-NIL
-(-10 -8 (-15 -3248 (|#1| |#1|)) (-15 -3184 ((-112) |#1|)))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 47)) (-4381 (($ $) 46)) (-3949 (((-112) $) 44)) (-3472 (((-3 $ "failed") $ $) 20)) (-3248 (($ $) 57)) (-2908 (((-421 $) $) 58)) (-2585 (($) 18 T CONST)) (-2109 (((-3 $ "failed") $) 37)) (-3184 (((-112) $) 59)) (-1433 (((-112) $) 35)) (-2740 (($ $ $) 52) (($ (-645 $)) 51)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 50)) (-2774 (($ $ $) 54) (($ (-645 $)) 53)) (-2706 (((-421 $) $) 56)) (-2391 (((-3 $ "failed") $ $) 48)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ $) 49)) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-3816 (((-112) $ $) 45)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27)))
-(((-1222) (-140)) (T -1222))
-((-3184 (*1 *2 *1) (-12 (-4 *1 (-1222)) (-5 *2 (-112)))) (-2908 (*1 *2 *1) (-12 (-5 *2 (-421 *1)) (-4 *1 (-1222)))) (-3248 (*1 *1 *1) (-4 *1 (-1222))) (-2706 (*1 *2 *1) (-12 (-5 *2 (-421 *1)) (-4 *1 (-1222)))))
-(-13 (-455) (-10 -8 (-15 -3184 ((-112) $)) (-15 -2908 ((-421 $) $)) (-15 -3248 ($ $)) (-15 -2706 ((-421 $) $))))
+(((-1219) (-140)) (T -1219))
+NIL
+(-13 (-10 -7 (-6 -3018)))
+((-2491 (((-112)) 18)) (-3789 (((-1274) (-645 |#1|) (-645 |#1|)) 22) (((-1274) (-645 |#1|)) 23)) (-4093 (((-112) |#1| |#1|) 38 (|has| |#1| (-851)))) (-1986 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 30) (((-3 (-112) "failed") |#1| |#1|) 28)) (-1729 ((|#1| (-645 |#1|)) 39 (|has| |#1| (-851))) ((|#1| (-645 |#1|) (-1 (-112) |#1| |#1|)) 33)) (-4253 (((-2 (|:| -2805 (-645 |#1|)) (|:| -3924 (-645 |#1|)))) 20)))
+(((-1220 |#1|) (-10 -7 (-15 -3789 ((-1274) (-645 |#1|))) (-15 -3789 ((-1274) (-645 |#1|) (-645 |#1|))) (-15 -4253 ((-2 (|:| -2805 (-645 |#1|)) (|:| -3924 (-645 |#1|))))) (-15 -1986 ((-3 (-112) "failed") |#1| |#1|)) (-15 -1986 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -1729 (|#1| (-645 |#1|) (-1 (-112) |#1| |#1|))) (-15 -2491 ((-112))) (IF (|has| |#1| (-851)) (PROGN (-15 -1729 (|#1| (-645 |#1|))) (-15 -4093 ((-112) |#1| |#1|))) |%noBranch|)) (-1102)) (T -1220))
+((-4093 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1220 *3)) (-4 *3 (-851)) (-4 *3 (-1102)))) (-1729 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-1102)) (-4 *2 (-851)) (-5 *1 (-1220 *2)))) (-2491 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1220 *3)) (-4 *3 (-1102)))) (-1729 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1220 *2)) (-4 *2 (-1102)))) (-1986 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1102)) (-5 *2 (-112)) (-5 *1 (-1220 *3)))) (-1986 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1220 *3)) (-4 *3 (-1102)))) (-4253 (*1 *2) (-12 (-5 *2 (-2 (|:| -2805 (-645 *3)) (|:| -3924 (-645 *3)))) (-5 *1 (-1220 *3)) (-4 *3 (-1102)))) (-3789 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *4)) (-4 *4 (-1102)) (-5 *2 (-1274)) (-5 *1 (-1220 *4)))) (-3789 (*1 *2 *3) (-12 (-5 *3 (-645 *4)) (-4 *4 (-1102)) (-5 *2 (-1274)) (-5 *1 (-1220 *4)))))
+(-10 -7 (-15 -3789 ((-1274) (-645 |#1|))) (-15 -3789 ((-1274) (-645 |#1|) (-645 |#1|))) (-15 -4253 ((-2 (|:| -2805 (-645 |#1|)) (|:| -3924 (-645 |#1|))))) (-15 -1986 ((-3 (-112) "failed") |#1| |#1|)) (-15 -1986 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -1729 (|#1| (-645 |#1|) (-1 (-112) |#1| |#1|))) (-15 -2491 ((-112))) (IF (|has| |#1| (-851)) (PROGN (-15 -1729 (|#1| (-645 |#1|))) (-15 -4093 ((-112) |#1| |#1|))) |%noBranch|))
+((-3656 (((-1274) (-645 (-1179)) (-645 (-1179))) 14) (((-1274) (-645 (-1179))) 12)) (-4280 (((-1274)) 16)) (-3729 (((-2 (|:| -3924 (-645 (-1179))) (|:| -2805 (-645 (-1179))))) 20)))
+(((-1221) (-10 -7 (-15 -3656 ((-1274) (-645 (-1179)))) (-15 -3656 ((-1274) (-645 (-1179)) (-645 (-1179)))) (-15 -3729 ((-2 (|:| -3924 (-645 (-1179))) (|:| -2805 (-645 (-1179)))))) (-15 -4280 ((-1274))))) (T -1221))
+((-4280 (*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-1221)))) (-3729 (*1 *2) (-12 (-5 *2 (-2 (|:| -3924 (-645 (-1179))) (|:| -2805 (-645 (-1179))))) (-5 *1 (-1221)))) (-3656 (*1 *2 *3 *3) (-12 (-5 *3 (-645 (-1179))) (-5 *2 (-1274)) (-5 *1 (-1221)))) (-3656 (*1 *2 *3) (-12 (-5 *3 (-645 (-1179))) (-5 *2 (-1274)) (-5 *1 (-1221)))))
+(-10 -7 (-15 -3656 ((-1274) (-645 (-1179)))) (-15 -3656 ((-1274) (-645 (-1179)) (-645 (-1179)))) (-15 -3729 ((-2 (|:| -3924 (-645 (-1179))) (|:| -2805 (-645 (-1179)))))) (-15 -4280 ((-1274))))
+((-3659 (($ $) 17)) (-3502 (((-112) $) 28)))
+(((-1222 |#1|) (-10 -8 (-15 -3659 (|#1| |#1|)) (-15 -3502 ((-112) |#1|))) (-1223)) (T -1222))
+NIL
+(-10 -8 (-15 -3659 (|#1| |#1|)) (-15 -3502 ((-112) |#1|)))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) 47)) (-4287 (($ $) 46)) (-2286 (((-112) $) 44)) (-2376 (((-3 $ "failed") $ $) 20)) (-3659 (($ $) 57)) (-3597 (((-421 $) $) 58)) (-3647 (($) 18 T CONST)) (-3588 (((-3 $ "failed") $) 37)) (-3502 (((-112) $) 59)) (-4346 (((-112) $) 35)) (-2751 (($ $ $) 52) (($ (-645 $)) 51)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) 50)) (-2785 (($ $ $) 54) (($ (-645 $)) 53)) (-2717 (((-421 $) $) 56)) (-2400 (((-3 $ "failed") $ $) 48)) (-4129 (((-863) $) 12) (($ (-567)) 33) (($ $) 49)) (-2746 (((-772)) 32 T CONST)) (-3357 (((-112) $ $) 9)) (-3731 (((-112) $ $) 45)) (-1733 (($) 19 T CONST)) (-1744 (($) 34 T CONST)) (-2946 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27)))
+(((-1223) (-140)) (T -1223))
+((-3502 (*1 *2 *1) (-12 (-4 *1 (-1223)) (-5 *2 (-112)))) (-3597 (*1 *2 *1) (-12 (-5 *2 (-421 *1)) (-4 *1 (-1223)))) (-3659 (*1 *1 *1) (-4 *1 (-1223))) (-2717 (*1 *2 *1) (-12 (-5 *2 (-421 *1)) (-4 *1 (-1223)))))
+(-13 (-455) (-10 -8 (-15 -3502 ((-112) $)) (-15 -3597 ((-421 $) $)) (-15 -3659 ($ $)) (-15 -2717 ((-421 $) $))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-291) . T) ((-455) . T) ((-559) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-641 $) . T) ((-718 $) . T) ((-727) . T) ((-1053 $) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T))
-((-2403 (((-112) $ $) NIL)) (-2375 (((-772)) NIL)) (-2585 (($) NIL T CONST)) (-1348 (($) NIL)) (-1354 (($ $ $) NIL) (($) NIL T CONST)) (-2981 (($ $ $) NIL) (($) NIL T CONST)) (-4249 (((-923) $) NIL)) (-1419 (((-1160) $) NIL)) (-3768 (($ (-923)) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-1729 (($ $ $) NIL)) (-1717 (($ $ $) NIL)) (-1745 (((-112) $ $) NIL)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) NIL)))
-(((-1223) (-13 (-845) (-10 -8 (-15 -1717 ($ $ $)) (-15 -1729 ($ $ $)) (-15 -2585 ($) -3286)))) (T -1223))
-((-1717 (*1 *1 *1 *1) (-5 *1 (-1223))) (-1729 (*1 *1 *1 *1) (-5 *1 (-1223))) (-2585 (*1 *1) (-5 *1 (-1223))))
-(-13 (-845) (-10 -8 (-15 -1717 ($ $ $)) (-15 -1729 ($ $ $)) (-15 -2585 ($) -3286)))
+((-2412 (((-112) $ $) NIL)) (-2384 (((-772)) NIL)) (-3647 (($) NIL T CONST)) (-1359 (($) NIL)) (-1365 (($ $ $) NIL) (($) NIL T CONST)) (-3002 (($ $ $) NIL) (($) NIL T CONST)) (-3474 (((-923) $) NIL)) (-2516 (((-1161) $) NIL)) (-3779 (($ (-923)) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) NIL)) (-1746 (($ $ $) NIL)) (-1734 (($ $ $) NIL)) (-3357 (((-112) $ $) NIL)) (-3004 (((-112) $ $) NIL)) (-2980 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2993 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)))
+(((-1224) (-13 (-845) (-10 -8 (-15 -1734 ($ $ $)) (-15 -1746 ($ $ $)) (-15 -3647 ($) -3304)))) (T -1224))
+((-1734 (*1 *1 *1 *1) (-5 *1 (-1224))) (-1746 (*1 *1 *1 *1) (-5 *1 (-1224))) (-3647 (*1 *1) (-5 *1 (-1224))))
+(-13 (-845) (-10 -8 (-15 -1734 ($ $ $)) (-15 -1746 ($ $ $)) (-15 -3647 ($) -3304)))
((|NonNegativeInteger|) (NOT (> (INTEGER-LENGTH |#1|) 16)))
-((-2403 (((-112) $ $) NIL)) (-2375 (((-772)) NIL)) (-2585 (($) NIL T CONST)) (-1348 (($) NIL)) (-1354 (($ $ $) NIL) (($) NIL T CONST)) (-2981 (($ $ $) NIL) (($) NIL T CONST)) (-4249 (((-923) $) NIL)) (-1419 (((-1160) $) NIL)) (-3768 (($ (-923)) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-1729 (($ $ $) NIL)) (-1717 (($ $ $) NIL)) (-1745 (((-112) $ $) NIL)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) NIL)))
-(((-1224) (-13 (-845) (-10 -8 (-15 -1717 ($ $ $)) (-15 -1729 ($ $ $)) (-15 -2585 ($) -3286)))) (T -1224))
-((-1717 (*1 *1 *1 *1) (-5 *1 (-1224))) (-1729 (*1 *1 *1 *1) (-5 *1 (-1224))) (-2585 (*1 *1) (-5 *1 (-1224))))
-(-13 (-845) (-10 -8 (-15 -1717 ($ $ $)) (-15 -1729 ($ $ $)) (-15 -2585 ($) -3286)))
+((-2412 (((-112) $ $) NIL)) (-2384 (((-772)) NIL)) (-3647 (($) NIL T CONST)) (-1359 (($) NIL)) (-1365 (($ $ $) NIL) (($) NIL T CONST)) (-3002 (($ $ $) NIL) (($) NIL T CONST)) (-3474 (((-923) $) NIL)) (-2516 (((-1161) $) NIL)) (-3779 (($ (-923)) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) NIL)) (-1746 (($ $ $) NIL)) (-1734 (($ $ $) NIL)) (-3357 (((-112) $ $) NIL)) (-3004 (((-112) $ $) NIL)) (-2980 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2993 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)))
+(((-1225) (-13 (-845) (-10 -8 (-15 -1734 ($ $ $)) (-15 -1746 ($ $ $)) (-15 -3647 ($) -3304)))) (T -1225))
+((-1734 (*1 *1 *1 *1) (-5 *1 (-1225))) (-1746 (*1 *1 *1 *1) (-5 *1 (-1225))) (-3647 (*1 *1) (-5 *1 (-1225))))
+(-13 (-845) (-10 -8 (-15 -1734 ($ $ $)) (-15 -1746 ($ $ $)) (-15 -3647 ($) -3304)))
((|NonNegativeInteger|) (NOT (> (INTEGER-LENGTH |#1|) 32)))
-((-2403 (((-112) $ $) NIL)) (-2375 (((-772)) NIL)) (-2585 (($) NIL T CONST)) (-1348 (($) NIL)) (-1354 (($ $ $) NIL) (($) NIL T CONST)) (-2981 (($ $ $) NIL) (($) NIL T CONST)) (-4249 (((-923) $) NIL)) (-1419 (((-1160) $) NIL)) (-3768 (($ (-923)) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-1729 (($ $ $) NIL)) (-1717 (($ $ $) NIL)) (-1745 (((-112) $ $) NIL)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) NIL)))
-(((-1225) (-13 (-845) (-10 -8 (-15 -1717 ($ $ $)) (-15 -1729 ($ $ $)) (-15 -2585 ($) -3286)))) (T -1225))
-((-1717 (*1 *1 *1 *1) (-5 *1 (-1225))) (-1729 (*1 *1 *1 *1) (-5 *1 (-1225))) (-2585 (*1 *1) (-5 *1 (-1225))))
-(-13 (-845) (-10 -8 (-15 -1717 ($ $ $)) (-15 -1729 ($ $ $)) (-15 -2585 ($) -3286)))
+((-2412 (((-112) $ $) NIL)) (-2384 (((-772)) NIL)) (-3647 (($) NIL T CONST)) (-1359 (($) NIL)) (-1365 (($ $ $) NIL) (($) NIL T CONST)) (-3002 (($ $ $) NIL) (($) NIL T CONST)) (-3474 (((-923) $) NIL)) (-2516 (((-1161) $) NIL)) (-3779 (($ (-923)) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) NIL)) (-1746 (($ $ $) NIL)) (-1734 (($ $ $) NIL)) (-3357 (((-112) $ $) NIL)) (-3004 (((-112) $ $) NIL)) (-2980 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2993 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)))
+(((-1226) (-13 (-845) (-10 -8 (-15 -1734 ($ $ $)) (-15 -1746 ($ $ $)) (-15 -3647 ($) -3304)))) (T -1226))
+((-1734 (*1 *1 *1 *1) (-5 *1 (-1226))) (-1746 (*1 *1 *1 *1) (-5 *1 (-1226))) (-3647 (*1 *1) (-5 *1 (-1226))))
+(-13 (-845) (-10 -8 (-15 -1734 ($ $ $)) (-15 -1746 ($ $ $)) (-15 -3647 ($) -3304)))
((|NonNegativeInteger|) (NOT (> (INTEGER-LENGTH |#1|) 64)))
-((-2403 (((-112) $ $) NIL)) (-2375 (((-772)) NIL)) (-2585 (($) NIL T CONST)) (-1348 (($) NIL)) (-1354 (($ $ $) NIL) (($) NIL T CONST)) (-2981 (($ $ $) NIL) (($) NIL T CONST)) (-4249 (((-923) $) NIL)) (-1419 (((-1160) $) NIL)) (-3768 (($ (-923)) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) NIL)) (-1729 (($ $ $) NIL)) (-1717 (($ $ $) NIL)) (-1745 (((-112) $ $) NIL)) (-2997 (((-112) $ $) NIL)) (-2971 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2958 (((-112) $ $) NIL)))
-(((-1226) (-13 (-845) (-10 -8 (-15 -1717 ($ $ $)) (-15 -1729 ($ $ $)) (-15 -2585 ($) -3286)))) (T -1226))
-((-1717 (*1 *1 *1 *1) (-5 *1 (-1226))) (-1729 (*1 *1 *1 *1) (-5 *1 (-1226))) (-2585 (*1 *1) (-5 *1 (-1226))))
-(-13 (-845) (-10 -8 (-15 -1717 ($ $ $)) (-15 -1729 ($ $ $)) (-15 -2585 ($) -3286)))
+((-2412 (((-112) $ $) NIL)) (-2384 (((-772)) NIL)) (-3647 (($) NIL T CONST)) (-1359 (($) NIL)) (-1365 (($ $ $) NIL) (($) NIL T CONST)) (-3002 (($ $ $) NIL) (($) NIL T CONST)) (-3474 (((-923) $) NIL)) (-2516 (((-1161) $) NIL)) (-3779 (($ (-923)) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) NIL)) (-1746 (($ $ $) NIL)) (-1734 (($ $ $) NIL)) (-3357 (((-112) $ $) NIL)) (-3004 (((-112) $ $) NIL)) (-2980 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2993 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)))
+(((-1227) (-13 (-845) (-10 -8 (-15 -1734 ($ $ $)) (-15 -1746 ($ $ $)) (-15 -3647 ($) -3304)))) (T -1227))
+((-1734 (*1 *1 *1 *1) (-5 *1 (-1227))) (-1746 (*1 *1 *1 *1) (-5 *1 (-1227))) (-3647 (*1 *1) (-5 *1 (-1227))))
+(-13 (-845) (-10 -8 (-15 -1734 ($ $ $)) (-15 -1746 ($ $ $)) (-15 -3647 ($) -3304)))
((|NonNegativeInteger|) (NOT (> (INTEGER-LENGTH |#1|) 8)))
-((-3829 (((-1232 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1232 |#1| |#3| |#5|)) 23)))
-(((-1227 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3829 ((-1232 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1232 |#1| |#3| |#5|)))) (-1051) (-1051) (-1178) (-1178) |#1| |#2|) (T -1227))
-((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1232 *5 *7 *9)) (-4 *5 (-1051)) (-4 *6 (-1051)) (-14 *7 (-1178)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1232 *6 *8 *10)) (-5 *1 (-1227 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1178)))))
-(-10 -7 (-15 -3829 ((-1232 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1232 |#1| |#3| |#5|))))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-2847 (((-645 (-1084)) $) 86)) (-3644 (((-1178) $) 115)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 63 (|has| |#1| (-559)))) (-4381 (($ $) 64 (|has| |#1| (-559)))) (-3949 (((-112) $) 66 (|has| |#1| (-559)))) (-1950 (($ $ (-567)) 110) (($ $ (-567) (-567)) 109)) (-1843 (((-1158 (-2 (|:| |k| (-567)) (|:| |c| |#1|))) $) 117)) (-3146 (($ $) 147 (|has| |#1| (-38 (-410 (-567)))))) (-3012 (($ $) 130 (|has| |#1| (-38 (-410 (-567)))))) (-3472 (((-3 $ "failed") $ $) 20)) (-3248 (($ $) 174 (|has| |#1| (-365)))) (-2908 (((-421 $) $) 175 (|has| |#1| (-365)))) (-2716 (($ $) 129 (|has| |#1| (-38 (-410 (-567)))))) (-3609 (((-112) $ $) 165 (|has| |#1| (-365)))) (-3128 (($ $) 146 (|has| |#1| (-38 (-410 (-567)))))) (-2987 (($ $) 131 (|has| |#1| (-38 (-410 (-567)))))) (-1306 (($ (-1158 (-2 (|:| |k| (-567)) (|:| |c| |#1|)))) 185)) (-3166 (($ $) 145 (|has| |#1| (-38 (-410 (-567)))))) (-3035 (($ $) 132 (|has| |#1| (-38 (-410 (-567)))))) (-2585 (($) 18 T CONST)) (-2349 (($ $ $) 169 (|has| |#1| (-365)))) (-3014 (($ $) 72)) (-2109 (((-3 $ "failed") $) 37)) (-2157 (((-410 (-954 |#1|)) $ (-567)) 183 (|has| |#1| (-559))) (((-410 (-954 |#1|)) $ (-567) (-567)) 182 (|has| |#1| (-559)))) (-2360 (($ $ $) 168 (|has| |#1| (-365)))) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) 163 (|has| |#1| (-365)))) (-3184 (((-112) $) 176 (|has| |#1| (-365)))) (-2762 (((-112) $) 85)) (-1482 (($) 157 (|has| |#1| (-38 (-410 (-567)))))) (-4384 (((-567) $) 112) (((-567) $ (-567)) 111)) (-1433 (((-112) $) 35)) (-2651 (($ $ (-567)) 128 (|has| |#1| (-38 (-410 (-567)))))) (-3807 (($ $ (-923)) 113)) (-2288 (($ (-1 |#1| (-567)) $) 184)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) 172 (|has| |#1| (-365)))) (-2843 (((-112) $) 74)) (-2824 (($ |#1| (-567)) 73) (($ $ (-1084) (-567)) 88) (($ $ (-645 (-1084)) (-645 (-567))) 87)) (-3829 (($ (-1 |#1| |#1|) $) 75)) (-3063 (($ $) 154 (|has| |#1| (-38 (-410 (-567)))))) (-2976 (($ $) 77)) (-2989 ((|#1| $) 78)) (-2740 (($ (-645 $)) 161 (|has| |#1| (-365))) (($ $ $) 160 (|has| |#1| (-365)))) (-1419 (((-1160) $) 10)) (-2939 (($ $) 177 (|has| |#1| (-365)))) (-2416 (($ $) 181 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1178)) 180 (-2800 (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-961)) (|has| |#1| (-1203)) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-15 -2847 ((-645 (-1178)) |#1|))) (|has| |#1| (-15 -2416 (|#1| |#1| (-1178)))) (|has| |#1| (-38 (-410 (-567)))))))) (-3430 (((-1122) $) 11)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 162 (|has| |#1| (-365)))) (-2774 (($ (-645 $)) 159 (|has| |#1| (-365))) (($ $ $) 158 (|has| |#1| (-365)))) (-2706 (((-421 $) $) 173 (|has| |#1| (-365)))) (-3402 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 171 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) 170 (|has| |#1| (-365)))) (-2410 (($ $ (-567)) 107)) (-2391 (((-3 $ "failed") $ $) 62 (|has| |#1| (-559)))) (-3117 (((-3 (-645 $) "failed") (-645 $) $) 164 (|has| |#1| (-365)))) (-3946 (($ $) 155 (|has| |#1| (-38 (-410 (-567)))))) (-2631 (((-1158 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-567)))))) (-1990 (((-772) $) 166 (|has| |#1| (-365)))) (-1787 ((|#1| $ (-567)) 116) (($ $ $) 93 (|has| (-567) (-1114)))) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 167 (|has| |#1| (-365)))) (-1593 (($ $ (-645 (-1178)) (-645 (-772))) 101 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-1178) (-772)) 100 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-645 (-1178))) 99 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-1178)) 98 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-772)) 96 (|has| |#1| (-15 * (|#1| (-567) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (-3077 (((-567) $) 76)) (-3175 (($ $) 144 (|has| |#1| (-38 (-410 (-567)))))) (-3049 (($ $) 133 (|has| |#1| (-38 (-410 (-567)))))) (-3156 (($ $) 143 (|has| |#1| (-38 (-410 (-567)))))) (-3023 (($ $) 134 (|has| |#1| (-38 (-410 (-567)))))) (-3137 (($ $) 142 (|has| |#1| (-38 (-410 (-567)))))) (-2999 (($ $) 135 (|has| |#1| (-38 (-410 (-567)))))) (-2192 (($ $) 84)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 59 (|has| |#1| (-172))) (($ (-410 (-567))) 69 (|has| |#1| (-38 (-410 (-567))))) (($ $) 61 (|has| |#1| (-559)))) (-4136 ((|#1| $ (-567)) 71)) (-1903 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-4221 (((-772)) 32 T CONST)) (-2166 ((|#1| $) 114)) (-1745 (((-112) $ $) 9)) (-3200 (($ $) 153 (|has| |#1| (-38 (-410 (-567)))))) (-3084 (($ $) 141 (|has| |#1| (-38 (-410 (-567)))))) (-3816 (((-112) $ $) 65 (|has| |#1| (-559)))) (-3183 (($ $) 152 (|has| |#1| (-38 (-410 (-567)))))) (-3062 (($ $) 140 (|has| |#1| (-38 (-410 (-567)))))) (-3221 (($ $) 151 (|has| |#1| (-38 (-410 (-567)))))) (-3106 (($ $) 139 (|has| |#1| (-38 (-410 (-567)))))) (-3050 ((|#1| $ (-567)) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-567)))) (|has| |#1| (-15 -4132 (|#1| (-1178))))))) (-3785 (($ $) 150 (|has| |#1| (-38 (-410 (-567)))))) (-3118 (($ $) 138 (|has| |#1| (-38 (-410 (-567)))))) (-3211 (($ $) 149 (|has| |#1| (-38 (-410 (-567)))))) (-3095 (($ $) 137 (|has| |#1| (-38 (-410 (-567)))))) (-3193 (($ $) 148 (|has| |#1| (-38 (-410 (-567)))))) (-3074 (($ $) 136 (|has| |#1| (-38 (-410 (-567)))))) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2637 (($ $ (-645 (-1178)) (-645 (-772))) 105 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-1178) (-772)) 104 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-645 (-1178))) 103 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-1178)) 102 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-772)) 97 (|has| |#1| (-15 * (|#1| (-567) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (-2936 (((-112) $ $) 6)) (-3060 (($ $ |#1|) 70 (|has| |#1| (-365))) (($ $ $) 179 (|has| |#1| (-365)))) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 178 (|has| |#1| (-365))) (($ $ $) 156 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 127 (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-410 (-567)) $) 68 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 67 (|has| |#1| (-38 (-410 (-567)))))))
-(((-1228 |#1|) (-140) (-1051)) (T -1228))
-((-1306 (*1 *1 *2) (-12 (-5 *2 (-1158 (-2 (|:| |k| (-567)) (|:| |c| *3)))) (-4 *3 (-1051)) (-4 *1 (-1228 *3)))) (-2288 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-567))) (-4 *1 (-1228 *3)) (-4 *3 (-1051)))) (-2157 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-1228 *4)) (-4 *4 (-1051)) (-4 *4 (-559)) (-5 *2 (-410 (-954 *4))))) (-2157 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-567)) (-4 *1 (-1228 *4)) (-4 *4 (-1051)) (-4 *4 (-559)) (-5 *2 (-410 (-954 *4))))) (-2416 (*1 *1 *1) (-12 (-4 *1 (-1228 *2)) (-4 *2 (-1051)) (-4 *2 (-38 (-410 (-567)))))) (-2416 (*1 *1 *1 *2) (-2800 (-12 (-5 *2 (-1178)) (-4 *1 (-1228 *3)) (-4 *3 (-1051)) (-12 (-4 *3 (-29 (-567))) (-4 *3 (-961)) (-4 *3 (-1203)) (-4 *3 (-38 (-410 (-567)))))) (-12 (-5 *2 (-1178)) (-4 *1 (-1228 *3)) (-4 *3 (-1051)) (-12 (|has| *3 (-15 -2847 ((-645 *2) *3))) (|has| *3 (-15 -2416 (*3 *3 *2))) (-4 *3 (-38 (-410 (-567)))))))))
-(-13 (-1246 |t#1| (-567)) (-10 -8 (-15 -1306 ($ (-1158 (-2 (|:| |k| (-567)) (|:| |c| |t#1|))))) (-15 -2288 ($ (-1 |t#1| (-567)) $)) (IF (|has| |t#1| (-559)) (PROGN (-15 -2157 ((-410 (-954 |t#1|)) $ (-567))) (-15 -2157 ((-410 (-954 |t#1|)) $ (-567) (-567)))) |%noBranch|) (IF (|has| |t#1| (-38 (-410 (-567)))) (PROGN (-15 -2416 ($ $)) (IF (|has| |t#1| (-15 -2416 (|t#1| |t#1| (-1178)))) (IF (|has| |t#1| (-15 -2847 ((-645 (-1178)) |t#1|))) (-15 -2416 ($ $ (-1178))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1203)) (IF (|has| |t#1| (-961)) (IF (|has| |t#1| (-29 (-567))) (-15 -2416 ($ $ (-1178))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1004)) (-6 (-1203))) |%noBranch|) (IF (|has| |t#1| (-365)) (-6 (-365)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-567)) . T) ((-25) . T) ((-38 #1=(-410 (-567))) -2800 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-35) |has| |#1| (-38 (-410 (-567)))) ((-95) |has| |#1| (-38 (-410 (-567)))) ((-102) . T) ((-111 #1# #1#) -2800 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2800 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #1#) -2800 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-617 (-567)) . T) ((-617 |#1|) |has| |#1| (-172)) ((-617 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-614 (-863)) . T) ((-172) -2800 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-567) |#1|))) ((-243) |has| |#1| (-365)) ((-285) |has| |#1| (-38 (-410 (-567)))) ((-287 $ $) |has| (-567) (-1114)) ((-291) -2800 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-308) |has| |#1| (-365)) ((-365) |has| |#1| (-365)) ((-455) |has| |#1| (-365)) ((-496) |has| |#1| (-38 (-410 (-567)))) ((-559) -2800 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-647 #1#) -2800 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #1#) -2800 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #1#) -2800 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-718 #1#) -2800 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-727) . T) ((-902 (-1178)) -12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1178)))) ((-975 |#1| #0# (-1084)) . T) ((-922) |has| |#1| (-365)) ((-1004) |has| |#1| (-38 (-410 (-567)))) ((-1053 #1#) -2800 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-1053 |#1|) . T) ((-1053 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1058 #1#) -2800 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-1058 |#1|) . T) ((-1058 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1203) |has| |#1| (-38 (-410 (-567)))) ((-1206) |has| |#1| (-38 (-410 (-567)))) ((-1222) |has| |#1| (-365)) ((-1246 |#1| #0#) . T))
-((-2460 (((-112) $) 12)) (-3753 (((-3 |#3| "failed") $) 17) (((-3 (-1178) "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 (-567) "failed") $) NIL)) (-2038 ((|#3| $) 14) (((-1178) $) NIL) (((-410 (-567)) $) NIL) (((-567) $) NIL)))
-(((-1229 |#1| |#2| |#3|) (-10 -8 (-15 -3753 ((-3 (-567) "failed") |#1|)) (-15 -2038 ((-567) |#1|)) (-15 -3753 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2038 ((-410 (-567)) |#1|)) (-15 -3753 ((-3 (-1178) "failed") |#1|)) (-15 -2038 ((-1178) |#1|)) (-15 -3753 ((-3 |#3| "failed") |#1|)) (-15 -2038 (|#3| |#1|)) (-15 -2460 ((-112) |#1|))) (-1230 |#2| |#3|) (-1051) (-1259 |#2|)) (T -1229))
-NIL
-(-10 -8 (-15 -3753 ((-3 (-567) "failed") |#1|)) (-15 -2038 ((-567) |#1|)) (-15 -3753 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2038 ((-410 (-567)) |#1|)) (-15 -3753 ((-3 (-1178) "failed") |#1|)) (-15 -2038 ((-1178) |#1|)) (-15 -3753 ((-3 |#3| "failed") |#1|)) (-15 -2038 (|#3| |#1|)) (-15 -2460 ((-112) |#1|)))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3093 ((|#2| $) 242 (-1667 (|has| |#2| (-308)) (|has| |#1| (-365))))) (-2847 (((-645 (-1084)) $) 86)) (-3644 (((-1178) $) 115)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 63 (|has| |#1| (-559)))) (-4381 (($ $) 64 (|has| |#1| (-559)))) (-3949 (((-112) $) 66 (|has| |#1| (-559)))) (-1950 (($ $ (-567)) 110) (($ $ (-567) (-567)) 109)) (-1843 (((-1158 (-2 (|:| |k| (-567)) (|:| |c| |#1|))) $) 117)) (-2821 ((|#2| $) 278)) (-2401 (((-3 |#2| "failed") $) 274)) (-2896 ((|#2| $) 275)) (-3146 (($ $) 147 (|has| |#1| (-38 (-410 (-567)))))) (-3012 (($ $) 130 (|has| |#1| (-38 (-410 (-567)))))) (-3472 (((-3 $ "failed") $ $) 20)) (-4226 (((-421 (-1174 $)) (-1174 $)) 251 (-1667 (|has| |#2| (-911)) (|has| |#1| (-365))))) (-3248 (($ $) 174 (|has| |#1| (-365)))) (-2908 (((-421 $) $) 175 (|has| |#1| (-365)))) (-2716 (($ $) 129 (|has| |#1| (-38 (-410 (-567)))))) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) 248 (-1667 (|has| |#2| (-911)) (|has| |#1| (-365))))) (-3609 (((-112) $ $) 165 (|has| |#1| (-365)))) (-3128 (($ $) 146 (|has| |#1| (-38 (-410 (-567)))))) (-2987 (($ $) 131 (|has| |#1| (-38 (-410 (-567)))))) (-1750 (((-567) $) 260 (-1667 (|has| |#2| (-821)) (|has| |#1| (-365))))) (-1306 (($ (-1158 (-2 (|:| |k| (-567)) (|:| |c| |#1|)))) 185)) (-3166 (($ $) 145 (|has| |#1| (-38 (-410 (-567)))))) (-3035 (($ $) 132 (|has| |#1| (-38 (-410 (-567)))))) (-2585 (($) 18 T CONST)) (-3753 (((-3 |#2| "failed") $) 281) (((-3 (-567) "failed") $) 271 (-1667 (|has| |#2| (-1040 (-567))) (|has| |#1| (-365)))) (((-3 (-410 (-567)) "failed") $) 269 (-1667 (|has| |#2| (-1040 (-567))) (|has| |#1| (-365)))) (((-3 (-1178) "failed") $) 253 (-1667 (|has| |#2| (-1040 (-1178))) (|has| |#1| (-365))))) (-2038 ((|#2| $) 282) (((-567) $) 270 (-1667 (|has| |#2| (-1040 (-567))) (|has| |#1| (-365)))) (((-410 (-567)) $) 268 (-1667 (|has| |#2| (-1040 (-567))) (|has| |#1| (-365)))) (((-1178) $) 252 (-1667 (|has| |#2| (-1040 (-1178))) (|has| |#1| (-365))))) (-3812 (($ $) 277) (($ (-567) $) 276)) (-2349 (($ $ $) 169 (|has| |#1| (-365)))) (-3014 (($ $) 72)) (-2630 (((-690 |#2|) (-690 $)) 232 (|has| |#1| (-365))) (((-2 (|:| -2316 (-690 |#2|)) (|:| |vec| (-1268 |#2|))) (-690 $) (-1268 $)) 231 (|has| |#1| (-365))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) 230 (-1667 (|has| |#2| (-640 (-567))) (|has| |#1| (-365)))) (((-690 (-567)) (-690 $)) 229 (-1667 (|has| |#2| (-640 (-567))) (|has| |#1| (-365))))) (-2109 (((-3 $ "failed") $) 37)) (-2157 (((-410 (-954 |#1|)) $ (-567)) 183 (|has| |#1| (-559))) (((-410 (-954 |#1|)) $ (-567) (-567)) 182 (|has| |#1| (-559)))) (-1348 (($) 244 (-1667 (|has| |#2| (-548)) (|has| |#1| (-365))))) (-2360 (($ $ $) 168 (|has| |#1| (-365)))) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) 163 (|has| |#1| (-365)))) (-3184 (((-112) $) 176 (|has| |#1| (-365)))) (-4336 (((-112) $) 258 (-1667 (|has| |#2| (-821)) (|has| |#1| (-365))))) (-2762 (((-112) $) 85)) (-1482 (($) 157 (|has| |#1| (-38 (-410 (-567)))))) (-4303 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) 236 (-1667 (|has| |#2| (-888 (-381))) (|has| |#1| (-365)))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) 235 (-1667 (|has| |#2| (-888 (-567))) (|has| |#1| (-365))))) (-4384 (((-567) $) 112) (((-567) $ (-567)) 111)) (-1433 (((-112) $) 35)) (-3530 (($ $) 240 (|has| |#1| (-365)))) (-1448 ((|#2| $) 238 (|has| |#1| (-365)))) (-2651 (($ $ (-567)) 128 (|has| |#1| (-38 (-410 (-567)))))) (-3972 (((-3 $ "failed") $) 272 (-1667 (|has| |#2| (-1153)) (|has| |#1| (-365))))) (-3494 (((-112) $) 259 (-1667 (|has| |#2| (-821)) (|has| |#1| (-365))))) (-3807 (($ $ (-923)) 113)) (-2288 (($ (-1 |#1| (-567)) $) 184)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) 172 (|has| |#1| (-365)))) (-2843 (((-112) $) 74)) (-2824 (($ |#1| (-567)) 73) (($ $ (-1084) (-567)) 88) (($ $ (-645 (-1084)) (-645 (-567))) 87)) (-1354 (($ $ $) 262 (-1667 (|has| |#2| (-851)) (|has| |#1| (-365))))) (-2981 (($ $ $) 263 (-1667 (|has| |#2| (-851)) (|has| |#1| (-365))))) (-3829 (($ (-1 |#1| |#1|) $) 75) (($ (-1 |#2| |#2|) $) 224 (|has| |#1| (-365)))) (-3063 (($ $) 154 (|has| |#1| (-38 (-410 (-567)))))) (-2976 (($ $) 77)) (-2989 ((|#1| $) 78)) (-2740 (($ (-645 $)) 161 (|has| |#1| (-365))) (($ $ $) 160 (|has| |#1| (-365)))) (-2907 (($ (-567) |#2|) 279)) (-1419 (((-1160) $) 10)) (-2939 (($ $) 177 (|has| |#1| (-365)))) (-2416 (($ $) 181 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1178)) 180 (-2800 (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-961)) (|has| |#1| (-1203)) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-15 -2847 ((-645 (-1178)) |#1|))) (|has| |#1| (-15 -2416 (|#1| |#1| (-1178)))) (|has| |#1| (-38 (-410 (-567)))))))) (-2672 (($) 273 (-1667 (|has| |#2| (-1153)) (|has| |#1| (-365))) CONST)) (-3430 (((-1122) $) 11)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 162 (|has| |#1| (-365)))) (-2774 (($ (-645 $)) 159 (|has| |#1| (-365))) (($ $ $) 158 (|has| |#1| (-365)))) (-4094 (($ $) 243 (-1667 (|has| |#2| (-308)) (|has| |#1| (-365))))) (-2780 ((|#2| $) 246 (-1667 (|has| |#2| (-548)) (|has| |#1| (-365))))) (-2435 (((-421 (-1174 $)) (-1174 $)) 249 (-1667 (|has| |#2| (-911)) (|has| |#1| (-365))))) (-3517 (((-421 (-1174 $)) (-1174 $)) 250 (-1667 (|has| |#2| (-911)) (|has| |#1| (-365))))) (-2706 (((-421 $) $) 173 (|has| |#1| (-365)))) (-3402 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 171 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) 170 (|has| |#1| (-365)))) (-2410 (($ $ (-567)) 107)) (-2391 (((-3 $ "failed") $ $) 62 (|has| |#1| (-559)))) (-3117 (((-3 (-645 $) "failed") (-645 $) $) 164 (|has| |#1| (-365)))) (-3946 (($ $) 155 (|has| |#1| (-38 (-410 (-567)))))) (-2631 (((-1158 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-567))))) (($ $ (-1178) |#2|) 223 (-1667 (|has| |#2| (-517 (-1178) |#2|)) (|has| |#1| (-365)))) (($ $ (-645 (-1178)) (-645 |#2|)) 222 (-1667 (|has| |#2| (-517 (-1178) |#2|)) (|has| |#1| (-365)))) (($ $ (-645 (-295 |#2|))) 221 (-1667 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365)))) (($ $ (-295 |#2|)) 220 (-1667 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365)))) (($ $ |#2| |#2|) 219 (-1667 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365)))) (($ $ (-645 |#2|) (-645 |#2|)) 218 (-1667 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365))))) (-1990 (((-772) $) 166 (|has| |#1| (-365)))) (-1787 ((|#1| $ (-567)) 116) (($ $ $) 93 (|has| (-567) (-1114))) (($ $ |#2|) 217 (-1667 (|has| |#2| (-287 |#2| |#2|)) (|has| |#1| (-365))))) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 167 (|has| |#1| (-365)))) (-1593 (($ $ (-1 |#2| |#2|)) 228 (|has| |#1| (-365))) (($ $ (-1 |#2| |#2|) (-772)) 227 (|has| |#1| (-365))) (($ $ (-772)) 96 (-2800 (-1667 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $) 94 (-2800 (-1667 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-645 (-1178)) (-645 (-772))) 101 (-2800 (-1667 (|has| |#2| (-902 (-1178))) (|has| |#1| (-365))) (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-567) |#1|)))))) (($ $ (-1178) (-772)) 100 (-2800 (-1667 (|has| |#2| (-902 (-1178))) (|has| |#1| (-365))) (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-567) |#1|)))))) (($ $ (-645 (-1178))) 99 (-2800 (-1667 (|has| |#2| (-902 (-1178))) (|has| |#1| (-365))) (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-567) |#1|)))))) (($ $ (-1178)) 98 (-2800 (-1667 (|has| |#2| (-902 (-1178))) (|has| |#1| (-365))) (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))))) (-1967 (($ $) 241 (|has| |#1| (-365)))) (-1460 ((|#2| $) 239 (|has| |#1| (-365)))) (-3077 (((-567) $) 76)) (-3175 (($ $) 144 (|has| |#1| (-38 (-410 (-567)))))) (-3049 (($ $) 133 (|has| |#1| (-38 (-410 (-567)))))) (-3156 (($ $) 143 (|has| |#1| (-38 (-410 (-567)))))) (-3023 (($ $) 134 (|has| |#1| (-38 (-410 (-567)))))) (-3137 (($ $) 142 (|has| |#1| (-38 (-410 (-567)))))) (-2999 (($ $) 135 (|has| |#1| (-38 (-410 (-567)))))) (-3893 (((-225) $) 257 (-1667 (|has| |#2| (-1024)) (|has| |#1| (-365)))) (((-381) $) 256 (-1667 (|has| |#2| (-1024)) (|has| |#1| (-365)))) (((-539) $) 255 (-1667 (|has| |#2| (-615 (-539))) (|has| |#1| (-365)))) (((-894 (-381)) $) 234 (-1667 (|has| |#2| (-615 (-894 (-381)))) (|has| |#1| (-365)))) (((-894 (-567)) $) 233 (-1667 (|has| |#2| (-615 (-894 (-567)))) (|has| |#1| (-365))))) (-1895 (((-3 (-1268 $) "failed") (-690 $)) 247 (-1667 (-1667 (|has| $ (-145)) (|has| |#2| (-911))) (|has| |#1| (-365))))) (-2192 (($ $) 84)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 59 (|has| |#1| (-172))) (($ |#2|) 280) (($ (-1178)) 254 (-1667 (|has| |#2| (-1040 (-1178))) (|has| |#1| (-365)))) (($ (-410 (-567))) 69 (|has| |#1| (-38 (-410 (-567))))) (($ $) 61 (|has| |#1| (-559)))) (-4136 ((|#1| $ (-567)) 71)) (-1903 (((-3 $ "failed") $) 60 (-2800 (-1667 (-2800 (|has| |#2| (-145)) (-1667 (|has| $ (-145)) (|has| |#2| (-911)))) (|has| |#1| (-365))) (|has| |#1| (-145))))) (-4221 (((-772)) 32 T CONST)) (-2166 ((|#1| $) 114)) (-1423 ((|#2| $) 245 (-1667 (|has| |#2| (-548)) (|has| |#1| (-365))))) (-1745 (((-112) $ $) 9)) (-3200 (($ $) 153 (|has| |#1| (-38 (-410 (-567)))))) (-3084 (($ $) 141 (|has| |#1| (-38 (-410 (-567)))))) (-3816 (((-112) $ $) 65 (|has| |#1| (-559)))) (-3183 (($ $) 152 (|has| |#1| (-38 (-410 (-567)))))) (-3062 (($ $) 140 (|has| |#1| (-38 (-410 (-567)))))) (-3221 (($ $) 151 (|has| |#1| (-38 (-410 (-567)))))) (-3106 (($ $) 139 (|has| |#1| (-38 (-410 (-567)))))) (-3050 ((|#1| $ (-567)) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-567)))) (|has| |#1| (-15 -4132 (|#1| (-1178))))))) (-3785 (($ $) 150 (|has| |#1| (-38 (-410 (-567)))))) (-3118 (($ $) 138 (|has| |#1| (-38 (-410 (-567)))))) (-3211 (($ $) 149 (|has| |#1| (-38 (-410 (-567)))))) (-3095 (($ $) 137 (|has| |#1| (-38 (-410 (-567)))))) (-3193 (($ $) 148 (|has| |#1| (-38 (-410 (-567)))))) (-3074 (($ $) 136 (|has| |#1| (-38 (-410 (-567)))))) (-2219 (($ $) 261 (-1667 (|has| |#2| (-821)) (|has| |#1| (-365))))) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2637 (($ $ (-1 |#2| |#2|)) 226 (|has| |#1| (-365))) (($ $ (-1 |#2| |#2|) (-772)) 225 (|has| |#1| (-365))) (($ $ (-772)) 97 (-2800 (-1667 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $) 95 (-2800 (-1667 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-645 (-1178)) (-645 (-772))) 105 (-2800 (-1667 (|has| |#2| (-902 (-1178))) (|has| |#1| (-365))) (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-567) |#1|)))))) (($ $ (-1178) (-772)) 104 (-2800 (-1667 (|has| |#2| (-902 (-1178))) (|has| |#1| (-365))) (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-567) |#1|)))))) (($ $ (-645 (-1178))) 103 (-2800 (-1667 (|has| |#2| (-902 (-1178))) (|has| |#1| (-365))) (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-567) |#1|)))))) (($ $ (-1178)) 102 (-2800 (-1667 (|has| |#2| (-902 (-1178))) (|has| |#1| (-365))) (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))))) (-2997 (((-112) $ $) 265 (-1667 (|has| |#2| (-851)) (|has| |#1| (-365))))) (-2971 (((-112) $ $) 266 (-1667 (|has| |#2| (-851)) (|has| |#1| (-365))))) (-2936 (((-112) $ $) 6)) (-2984 (((-112) $ $) 264 (-1667 (|has| |#2| (-851)) (|has| |#1| (-365))))) (-2958 (((-112) $ $) 267 (-1667 (|has| |#2| (-851)) (|has| |#1| (-365))))) (-3060 (($ $ |#1|) 70 (|has| |#1| (-365))) (($ $ $) 179 (|has| |#1| (-365))) (($ |#2| |#2|) 237 (|has| |#1| (-365)))) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 178 (|has| |#1| (-365))) (($ $ $) 156 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 127 (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ $ |#2|) 216 (|has| |#1| (-365))) (($ |#2| $) 215 (|has| |#1| (-365))) (($ (-410 (-567)) $) 68 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 67 (|has| |#1| (-38 (-410 (-567)))))))
-(((-1230 |#1| |#2|) (-140) (-1051) (-1259 |t#1|)) (T -1230))
-((-3077 (*1 *2 *1) (-12 (-4 *1 (-1230 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-1259 *3)) (-5 *2 (-567)))) (-2907 (*1 *1 *2 *3) (-12 (-5 *2 (-567)) (-4 *4 (-1051)) (-4 *1 (-1230 *4 *3)) (-4 *3 (-1259 *4)))) (-2821 (*1 *2 *1) (-12 (-4 *1 (-1230 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-1259 *3)))) (-3812 (*1 *1 *1) (-12 (-4 *1 (-1230 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-1259 *2)))) (-3812 (*1 *1 *2 *1) (-12 (-5 *2 (-567)) (-4 *1 (-1230 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-1259 *3)))) (-2896 (*1 *2 *1) (-12 (-4 *1 (-1230 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-1259 *3)))) (-2401 (*1 *2 *1) (|partial| -12 (-4 *1 (-1230 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-1259 *3)))))
-(-13 (-1228 |t#1|) (-1040 |t#2|) (-617 |t#2|) (-10 -8 (-15 -2907 ($ (-567) |t#2|)) (-15 -3077 ((-567) $)) (-15 -2821 (|t#2| $)) (-15 -3812 ($ $)) (-15 -3812 ($ (-567) $)) (-15 -2896 (|t#2| $)) (-15 -2401 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-365)) (-6 (-994 |t#2|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-567)) . T) ((-25) . T) ((-38 #1=(-410 (-567))) -2800 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 |#2|) |has| |#1| (-365)) ((-38 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-35) |has| |#1| (-38 (-410 (-567)))) ((-95) |has| |#1| (-38 (-410 (-567)))) ((-102) . T) ((-111 #1# #1#) -2800 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-365)) ((-111 $ $) -2800 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-131) . T) ((-145) -2800 (-12 (|has| |#1| (-365)) (|has| |#2| (-145))) (|has| |#1| (-145))) ((-147) -2800 (-12 (|has| |#1| (-365)) (|has| |#2| (-147))) (|has| |#1| (-147))) ((-617 #1#) -2800 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-617 (-567)) . T) ((-617 #2=(-1178)) -12 (|has| |#1| (-365)) (|has| |#2| (-1040 (-1178)))) ((-617 |#1|) |has| |#1| (-172)) ((-617 |#2|) . T) ((-617 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-614 (-863)) . T) ((-172) -2800 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-615 (-225)) -12 (|has| |#1| (-365)) (|has| |#2| (-1024))) ((-615 (-381)) -12 (|has| |#1| (-365)) (|has| |#2| (-1024))) ((-615 (-539)) -12 (|has| |#1| (-365)) (|has| |#2| (-615 (-539)))) ((-615 (-894 (-381))) -12 (|has| |#1| (-365)) (|has| |#2| (-615 (-894 (-381))))) ((-615 (-894 (-567))) -12 (|has| |#1| (-365)) (|has| |#2| (-615 (-894 (-567))))) ((-231 |#2|) |has| |#1| (-365)) ((-233) -2800 (-12 (|has| |#1| (-365)) (|has| |#2| (-233))) (|has| |#1| (-15 * (|#1| (-567) |#1|)))) ((-243) |has| |#1| (-365)) ((-285) |has| |#1| (-38 (-410 (-567)))) ((-287 |#2| $) -12 (|has| |#1| (-365)) (|has| |#2| (-287 |#2| |#2|))) ((-287 $ $) |has| (-567) (-1114)) ((-291) -2800 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-308) |has| |#1| (-365)) ((-310 |#2|) -12 (|has| |#1| (-365)) (|has| |#2| (-310 |#2|))) ((-365) |has| |#1| (-365)) ((-340 |#2|) |has| |#1| (-365)) ((-379 |#2|) |has| |#1| (-365)) ((-403 |#2|) |has| |#1| (-365)) ((-455) |has| |#1| (-365)) ((-496) |has| |#1| (-38 (-410 (-567)))) ((-517 (-1178) |#2|) -12 (|has| |#1| (-365)) (|has| |#2| (-517 (-1178) |#2|))) ((-517 |#2| |#2|) -12 (|has| |#1| (-365)) (|has| |#2| (-310 |#2|))) ((-559) -2800 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-647 #1#) -2800 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 |#2|) |has| |#1| (-365)) ((-647 $) . T) ((-649 #1#) -2800 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-649 |#1|) . T) ((-649 |#2|) |has| |#1| (-365)) ((-649 $) . T) ((-641 #1#) -2800 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-641 |#1|) |has| |#1| (-172)) ((-641 |#2|) |has| |#1| (-365)) ((-641 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-640 (-567)) -12 (|has| |#1| (-365)) (|has| |#2| (-640 (-567)))) ((-640 |#2|) |has| |#1| (-365)) ((-718 #1#) -2800 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-718 |#1|) |has| |#1| (-172)) ((-718 |#2|) |has| |#1| (-365)) ((-718 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-727) . T) ((-792) -12 (|has| |#1| (-365)) (|has| |#2| (-821))) ((-793) -12 (|has| |#1| (-365)) (|has| |#2| (-821))) ((-795) -12 (|has| |#1| (-365)) (|has| |#2| (-821))) ((-796) -12 (|has| |#1| (-365)) (|has| |#2| (-821))) ((-821) -12 (|has| |#1| (-365)) (|has| |#2| (-821))) ((-849) -12 (|has| |#1| (-365)) (|has| |#2| (-821))) ((-851) -2800 (-12 (|has| |#1| (-365)) (|has| |#2| (-851))) (-12 (|has| |#1| (-365)) (|has| |#2| (-821)))) ((-902 (-1178)) -2800 (-12 (|has| |#1| (-365)) (|has| |#2| (-902 (-1178)))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1178))))) ((-888 (-381)) -12 (|has| |#1| (-365)) (|has| |#2| (-888 (-381)))) ((-888 (-567)) -12 (|has| |#1| (-365)) (|has| |#2| (-888 (-567)))) ((-886 |#2|) |has| |#1| (-365)) ((-911) -12 (|has| |#1| (-365)) (|has| |#2| (-911))) ((-975 |#1| #0# (-1084)) . T) ((-922) |has| |#1| (-365)) ((-994 |#2|) |has| |#1| (-365)) ((-1004) |has| |#1| (-38 (-410 (-567)))) ((-1024) -12 (|has| |#1| (-365)) (|has| |#2| (-1024))) ((-1040 (-410 (-567))) -12 (|has| |#1| (-365)) (|has| |#2| (-1040 (-567)))) ((-1040 (-567)) -12 (|has| |#1| (-365)) (|has| |#2| (-1040 (-567)))) ((-1040 #2#) -12 (|has| |#1| (-365)) (|has| |#2| (-1040 (-1178)))) ((-1040 |#2|) . T) ((-1053 #1#) -2800 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-1053 |#1|) . T) ((-1053 |#2|) |has| |#1| (-365)) ((-1053 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1058 #1#) -2800 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-1058 |#1|) . T) ((-1058 |#2|) |has| |#1| (-365)) ((-1058 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1153) -12 (|has| |#1| (-365)) (|has| |#2| (-1153))) ((-1203) |has| |#1| (-38 (-410 (-567)))) ((-1206) |has| |#1| (-38 (-410 (-567)))) ((-1218) |has| |#1| (-365)) ((-1222) |has| |#1| (-365)) ((-1228 |#1|) . T) ((-1246 |#1| #0#) . T))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) 81)) (-3093 ((|#2| $) NIL (-12 (|has| |#2| (-308)) (|has| |#1| (-365))))) (-2847 (((-645 (-1084)) $) NIL)) (-3644 (((-1178) $) 100)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-4381 (($ $) NIL (|has| |#1| (-559)))) (-3949 (((-112) $) NIL (|has| |#1| (-559)))) (-1950 (($ $ (-567)) 109) (($ $ (-567) (-567)) 111)) (-1843 (((-1158 (-2 (|:| |k| (-567)) (|:| |c| |#1|))) $) 51)) (-2821 ((|#2| $) 11)) (-2401 (((-3 |#2| "failed") $) 35)) (-2896 ((|#2| $) 36)) (-3146 (($ $) 206 (|has| |#1| (-38 (-410 (-567)))))) (-3012 (($ $) 182 (|has| |#1| (-38 (-410 (-567)))))) (-3472 (((-3 $ "failed") $ $) NIL)) (-4226 (((-421 (-1174 $)) (-1174 $)) NIL (-12 (|has| |#2| (-911)) (|has| |#1| (-365))))) (-3248 (($ $) NIL (|has| |#1| (-365)))) (-2908 (((-421 $) $) NIL (|has| |#1| (-365)))) (-2716 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) NIL (-12 (|has| |#2| (-911)) (|has| |#1| (-365))))) (-3609 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3128 (($ $) 202 (|has| |#1| (-38 (-410 (-567)))))) (-2987 (($ $) 178 (|has| |#1| (-38 (-410 (-567)))))) (-1750 (((-567) $) NIL (-12 (|has| |#2| (-821)) (|has| |#1| (-365))))) (-1306 (($ (-1158 (-2 (|:| |k| (-567)) (|:| |c| |#1|)))) 59)) (-3166 (($ $) 210 (|has| |#1| (-38 (-410 (-567)))))) (-3035 (($ $) 186 (|has| |#1| (-38 (-410 (-567)))))) (-2585 (($) NIL T CONST)) (-3753 (((-3 |#2| "failed") $) 157) (((-3 (-567) "failed") $) NIL (-12 (|has| |#2| (-1040 (-567))) (|has| |#1| (-365)))) (((-3 (-410 (-567)) "failed") $) NIL (-12 (|has| |#2| (-1040 (-567))) (|has| |#1| (-365)))) (((-3 (-1178) "failed") $) NIL (-12 (|has| |#2| (-1040 (-1178))) (|has| |#1| (-365))))) (-2038 ((|#2| $) 156) (((-567) $) NIL (-12 (|has| |#2| (-1040 (-567))) (|has| |#1| (-365)))) (((-410 (-567)) $) NIL (-12 (|has| |#2| (-1040 (-567))) (|has| |#1| (-365)))) (((-1178) $) NIL (-12 (|has| |#2| (-1040 (-1178))) (|has| |#1| (-365))))) (-3812 (($ $) 65) (($ (-567) $) 28)) (-2349 (($ $ $) NIL (|has| |#1| (-365)))) (-3014 (($ $) NIL)) (-2630 (((-690 |#2|) (-690 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -2316 (-690 |#2|)) (|:| |vec| (-1268 |#2|))) (-690 $) (-1268 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (-12 (|has| |#2| (-640 (-567))) (|has| |#1| (-365)))) (((-690 (-567)) (-690 $)) NIL (-12 (|has| |#2| (-640 (-567))) (|has| |#1| (-365))))) (-2109 (((-3 $ "failed") $) 88)) (-2157 (((-410 (-954 |#1|)) $ (-567)) 124 (|has| |#1| (-559))) (((-410 (-954 |#1|)) $ (-567) (-567)) 126 (|has| |#1| (-559)))) (-1348 (($) NIL (-12 (|has| |#2| (-548)) (|has| |#1| (-365))))) (-2360 (($ $ $) NIL (|has| |#1| (-365)))) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-3184 (((-112) $) NIL (|has| |#1| (-365)))) (-4336 (((-112) $) NIL (-12 (|has| |#2| (-821)) (|has| |#1| (-365))))) (-2762 (((-112) $) 74)) (-1482 (($) NIL (|has| |#1| (-38 (-410 (-567)))))) (-4303 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (-12 (|has| |#2| (-888 (-381))) (|has| |#1| (-365)))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (-12 (|has| |#2| (-888 (-567))) (|has| |#1| (-365))))) (-4384 (((-567) $) 105) (((-567) $ (-567)) 107)) (-1433 (((-112) $) NIL)) (-3530 (($ $) NIL (|has| |#1| (-365)))) (-1448 ((|#2| $) 165 (|has| |#1| (-365)))) (-2651 (($ $ (-567)) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3972 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1153)) (|has| |#1| (-365))))) (-3494 (((-112) $) NIL (-12 (|has| |#2| (-821)) (|has| |#1| (-365))))) (-3807 (($ $ (-923)) 148)) (-2288 (($ (-1 |#1| (-567)) $) 144)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-2843 (((-112) $) NIL)) (-2824 (($ |#1| (-567)) 20) (($ $ (-1084) (-567)) NIL) (($ $ (-645 (-1084)) (-645 (-567))) NIL)) (-1354 (($ $ $) NIL (-12 (|has| |#2| (-851)) (|has| |#1| (-365))))) (-2981 (($ $ $) NIL (-12 (|has| |#2| (-851)) (|has| |#1| (-365))))) (-3829 (($ (-1 |#1| |#1|) $) 141) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-365)))) (-3063 (($ $) 176 (|has| |#1| (-38 (-410 (-567)))))) (-2976 (($ $) NIL)) (-2989 ((|#1| $) NIL)) (-2740 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2907 (($ (-567) |#2|) 10)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) 159 (|has| |#1| (-365)))) (-2416 (($ $) 228 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1178)) 233 (-2800 (-12 (|has| |#1| (-15 -2416 (|#1| |#1| (-1178)))) (|has| |#1| (-15 -2847 ((-645 (-1178)) |#1|))) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-961)) (|has| |#1| (-1203)))))) (-2672 (($) NIL (-12 (|has| |#2| (-1153)) (|has| |#1| (-365))) CONST)) (-3430 (((-1122) $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#1| (-365)))) (-2774 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-4094 (($ $) NIL (-12 (|has| |#2| (-308)) (|has| |#1| (-365))))) (-2780 ((|#2| $) NIL (-12 (|has| |#2| (-548)) (|has| |#1| (-365))))) (-2435 (((-421 (-1174 $)) (-1174 $)) NIL (-12 (|has| |#2| (-911)) (|has| |#1| (-365))))) (-3517 (((-421 (-1174 $)) (-1174 $)) NIL (-12 (|has| |#2| (-911)) (|has| |#1| (-365))))) (-2706 (((-421 $) $) NIL (|has| |#1| (-365)))) (-3402 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL (|has| |#1| (-365)))) (-2410 (($ $ (-567)) 138)) (-2391 (((-3 $ "failed") $ $) 128 (|has| |#1| (-559)))) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-3946 (($ $) 174 (|has| |#1| (-38 (-410 (-567)))))) (-2631 (((-1158 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-567))))) (($ $ (-1178) |#2|) NIL (-12 (|has| |#2| (-517 (-1178) |#2|)) (|has| |#1| (-365)))) (($ $ (-645 (-1178)) (-645 |#2|)) NIL (-12 (|has| |#2| (-517 (-1178) |#2|)) (|has| |#1| (-365)))) (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365))))) (-1990 (((-772) $) NIL (|has| |#1| (-365)))) (-1787 ((|#1| $ (-567)) 103) (($ $ $) 90 (|has| (-567) (-1114))) (($ $ |#2|) NIL (-12 (|has| |#2| (-287 |#2| |#2|)) (|has| |#1| (-365))))) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL (|has| |#1| (-365)))) (-1593 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-365))) (($ $ (-1 |#2| |#2|) (-772)) NIL (|has| |#1| (-365))) (($ $ (-772)) NIL (-2800 (-12 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $) 149 (-2800 (-12 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (-2800 (-12 (|has| |#2| (-902 (-1178))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1178)))))) (($ $ (-1178) (-772)) NIL (-2800 (-12 (|has| |#2| (-902 (-1178))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1178)))))) (($ $ (-645 (-1178))) NIL (-2800 (-12 (|has| |#2| (-902 (-1178))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1178)))))) (($ $ (-1178)) 153 (-2800 (-12 (|has| |#2| (-902 (-1178))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1178))))))) (-1967 (($ $) NIL (|has| |#1| (-365)))) (-1460 ((|#2| $) 166 (|has| |#1| (-365)))) (-3077 (((-567) $) 12)) (-3175 (($ $) 212 (|has| |#1| (-38 (-410 (-567)))))) (-3049 (($ $) 188 (|has| |#1| (-38 (-410 (-567)))))) (-3156 (($ $) 208 (|has| |#1| (-38 (-410 (-567)))))) (-3023 (($ $) 184 (|has| |#1| (-38 (-410 (-567)))))) (-3137 (($ $) 204 (|has| |#1| (-38 (-410 (-567)))))) (-2999 (($ $) 180 (|has| |#1| (-38 (-410 (-567)))))) (-3893 (((-225) $) NIL (-12 (|has| |#2| (-1024)) (|has| |#1| (-365)))) (((-381) $) NIL (-12 (|has| |#2| (-1024)) (|has| |#1| (-365)))) (((-539) $) NIL (-12 (|has| |#2| (-615 (-539))) (|has| |#1| (-365)))) (((-894 (-381)) $) NIL (-12 (|has| |#2| (-615 (-894 (-381)))) (|has| |#1| (-365)))) (((-894 (-567)) $) NIL (-12 (|has| |#2| (-615 (-894 (-567)))) (|has| |#1| (-365))))) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-911)) (|has| |#1| (-365))))) (-2192 (($ $) 136)) (-4132 (((-863) $) 267) (($ (-567)) 24) (($ |#1|) 22 (|has| |#1| (-172))) (($ |#2|) 21) (($ (-1178)) NIL (-12 (|has| |#2| (-1040 (-1178))) (|has| |#1| (-365)))) (($ (-410 (-567))) 169 (|has| |#1| (-38 (-410 (-567))))) (($ $) NIL (|has| |#1| (-559)))) (-4136 ((|#1| $ (-567)) 85)) (-1903 (((-3 $ "failed") $) NIL (-2800 (-12 (|has| $ (-145)) (|has| |#2| (-911)) (|has| |#1| (-365))) (-12 (|has| |#2| (-145)) (|has| |#1| (-365))) (|has| |#1| (-145))))) (-4221 (((-772)) 155 T CONST)) (-2166 ((|#1| $) 102)) (-1423 ((|#2| $) NIL (-12 (|has| |#2| (-548)) (|has| |#1| (-365))))) (-1745 (((-112) $ $) NIL)) (-3200 (($ $) 218 (|has| |#1| (-38 (-410 (-567)))))) (-3084 (($ $) 194 (|has| |#1| (-38 (-410 (-567)))))) (-3816 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3183 (($ $) 214 (|has| |#1| (-38 (-410 (-567)))))) (-3062 (($ $) 190 (|has| |#1| (-38 (-410 (-567)))))) (-3221 (($ $) 222 (|has| |#1| (-38 (-410 (-567)))))) (-3106 (($ $) 198 (|has| |#1| (-38 (-410 (-567)))))) (-3050 ((|#1| $ (-567)) 134 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-567)))) (|has| |#1| (-15 -4132 (|#1| (-1178))))))) (-3785 (($ $) 224 (|has| |#1| (-38 (-410 (-567)))))) (-3118 (($ $) 200 (|has| |#1| (-38 (-410 (-567)))))) (-3211 (($ $) 220 (|has| |#1| (-38 (-410 (-567)))))) (-3095 (($ $) 196 (|has| |#1| (-38 (-410 (-567)))))) (-3193 (($ $) 216 (|has| |#1| (-38 (-410 (-567)))))) (-3074 (($ $) 192 (|has| |#1| (-38 (-410 (-567)))))) (-2219 (($ $) NIL (-12 (|has| |#2| (-821)) (|has| |#1| (-365))))) (-1716 (($) 13 T CONST)) (-1728 (($) 18 T CONST)) (-2637 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-365))) (($ $ (-1 |#2| |#2|) (-772)) NIL (|has| |#1| (-365))) (($ $ (-772)) NIL (-2800 (-12 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $) NIL (-2800 (-12 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (-2800 (-12 (|has| |#2| (-902 (-1178))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1178)))))) (($ $ (-1178) (-772)) NIL (-2800 (-12 (|has| |#2| (-902 (-1178))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1178)))))) (($ $ (-645 (-1178))) NIL (-2800 (-12 (|has| |#2| (-902 (-1178))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1178)))))) (($ $ (-1178)) NIL (-2800 (-12 (|has| |#2| (-902 (-1178))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1178))))))) (-2997 (((-112) $ $) NIL (-12 (|has| |#2| (-851)) (|has| |#1| (-365))))) (-2971 (((-112) $ $) NIL (-12 (|has| |#2| (-851)) (|has| |#1| (-365))))) (-2936 (((-112) $ $) 72)) (-2984 (((-112) $ $) NIL (-12 (|has| |#2| (-851)) (|has| |#1| (-365))))) (-2958 (((-112) $ $) NIL (-12 (|has| |#2| (-851)) (|has| |#1| (-365))))) (-3060 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) 163 (|has| |#1| (-365))) (($ |#2| |#2|) 164 (|has| |#1| (-365)))) (-3045 (($ $) 227) (($ $ $) 78)) (-3033 (($ $ $) 76)) (** (($ $ (-923)) NIL) (($ $ (-772)) 84) (($ $ (-567)) 160 (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 172 (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 79) (($ $ |#1|) NIL) (($ |#1| $) 152) (($ $ |#2|) 162 (|has| |#1| (-365))) (($ |#2| $) 161 (|has| |#1| (-365))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))))
-(((-1231 |#1| |#2|) (-1230 |#1| |#2|) (-1051) (-1259 |#1|)) (T -1231))
-NIL
-(-1230 |#1| |#2|)
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3093 (((-1260 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-308)) (|has| |#1| (-365))))) (-2847 (((-645 (-1084)) $) NIL)) (-3644 (((-1178) $) 10)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL (-2800 (-12 (|has| (-1260 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1260 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))) (|has| |#1| (-559))))) (-4381 (($ $) NIL (-2800 (-12 (|has| (-1260 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1260 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))) (|has| |#1| (-559))))) (-3949 (((-112) $) NIL (-2800 (-12 (|has| (-1260 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1260 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))) (|has| |#1| (-559))))) (-1950 (($ $ (-567)) NIL) (($ $ (-567) (-567)) NIL)) (-1843 (((-1158 (-2 (|:| |k| (-567)) (|:| |c| |#1|))) $) NIL)) (-2821 (((-1260 |#1| |#2| |#3|) $) NIL)) (-2401 (((-3 (-1260 |#1| |#2| |#3|) "failed") $) NIL)) (-2896 (((-1260 |#1| |#2| |#3|) $) NIL)) (-3146 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3012 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3472 (((-3 $ "failed") $ $) NIL)) (-4226 (((-421 (-1174 $)) (-1174 $)) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))))) (-3248 (($ $) NIL (|has| |#1| (-365)))) (-2908 (((-421 $) $) NIL (|has| |#1| (-365)))) (-2716 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))))) (-3609 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3128 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2987 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1750 (((-567) $) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))))) (-1306 (($ (-1158 (-2 (|:| |k| (-567)) (|:| |c| |#1|)))) NIL)) (-3166 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3035 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2585 (($) NIL T CONST)) (-3753 (((-3 (-1260 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1178) "failed") $) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-1040 (-1178))) (|has| |#1| (-365)))) (((-3 (-410 (-567)) "failed") $) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-1040 (-567))) (|has| |#1| (-365)))) (((-3 (-567) "failed") $) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-1040 (-567))) (|has| |#1| (-365))))) (-2038 (((-1260 |#1| |#2| |#3|) $) NIL) (((-1178) $) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-1040 (-1178))) (|has| |#1| (-365)))) (((-410 (-567)) $) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-1040 (-567))) (|has| |#1| (-365)))) (((-567) $) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-1040 (-567))) (|has| |#1| (-365))))) (-3812 (($ $) NIL) (($ (-567) $) NIL)) (-2349 (($ $ $) NIL (|has| |#1| (-365)))) (-3014 (($ $) NIL)) (-2630 (((-690 (-1260 |#1| |#2| |#3|)) (-690 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -2316 (-690 (-1260 |#1| |#2| |#3|))) (|:| |vec| (-1268 (-1260 |#1| |#2| |#3|)))) (-690 $) (-1268 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-640 (-567))) (|has| |#1| (-365)))) (((-690 (-567)) (-690 $)) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-640 (-567))) (|has| |#1| (-365))))) (-2109 (((-3 $ "failed") $) NIL)) (-2157 (((-410 (-954 |#1|)) $ (-567)) NIL (|has| |#1| (-559))) (((-410 (-954 |#1|)) $ (-567) (-567)) NIL (|has| |#1| (-559)))) (-1348 (($) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-548)) (|has| |#1| (-365))))) (-2360 (($ $ $) NIL (|has| |#1| (-365)))) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-3184 (((-112) $) NIL (|has| |#1| (-365)))) (-4336 (((-112) $) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))))) (-2762 (((-112) $) NIL)) (-1482 (($) NIL (|has| |#1| (-38 (-410 (-567)))))) (-4303 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-888 (-381))) (|has| |#1| (-365)))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-888 (-567))) (|has| |#1| (-365))))) (-4384 (((-567) $) NIL) (((-567) $ (-567)) NIL)) (-1433 (((-112) $) NIL)) (-3530 (($ $) NIL (|has| |#1| (-365)))) (-1448 (((-1260 |#1| |#2| |#3|) $) NIL (|has| |#1| (-365)))) (-2651 (($ $ (-567)) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3972 (((-3 $ "failed") $) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-1153)) (|has| |#1| (-365))))) (-3494 (((-112) $) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))))) (-3807 (($ $ (-923)) NIL)) (-2288 (($ (-1 |#1| (-567)) $) NIL)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-2843 (((-112) $) NIL)) (-2824 (($ |#1| (-567)) 18) (($ $ (-1084) (-567)) NIL) (($ $ (-645 (-1084)) (-645 (-567))) NIL)) (-1354 (($ $ $) NIL (-2800 (-12 (|has| (-1260 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1260 |#1| |#2| |#3|) (-851)) (|has| |#1| (-365)))))) (-2981 (($ $ $) NIL (-2800 (-12 (|has| (-1260 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1260 |#1| |#2| |#3|) (-851)) (|has| |#1| (-365)))))) (-3829 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1260 |#1| |#2| |#3|) (-1260 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-365)))) (-3063 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2976 (($ $) NIL)) (-2989 ((|#1| $) NIL)) (-2740 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2907 (($ (-567) (-1260 |#1| |#2| |#3|)) NIL)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) NIL (|has| |#1| (-365)))) (-2416 (($ $) 27 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1178)) NIL (-2800 (-12 (|has| |#1| (-15 -2416 (|#1| |#1| (-1178)))) (|has| |#1| (-15 -2847 ((-645 (-1178)) |#1|))) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-961)) (|has| |#1| (-1203))))) (($ $ (-1264 |#2|)) 28 (|has| |#1| (-38 (-410 (-567)))))) (-2672 (($) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-1153)) (|has| |#1| (-365))) CONST)) (-3430 (((-1122) $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#1| (-365)))) (-2774 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-4094 (($ $) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-308)) (|has| |#1| (-365))))) (-2780 (((-1260 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-548)) (|has| |#1| (-365))))) (-2435 (((-421 (-1174 $)) (-1174 $)) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))))) (-3517 (((-421 (-1174 $)) (-1174 $)) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))))) (-2706 (((-421 $) $) NIL (|has| |#1| (-365)))) (-3402 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL (|has| |#1| (-365)))) (-2410 (($ $ (-567)) NIL)) (-2391 (((-3 $ "failed") $ $) NIL (-2800 (-12 (|has| (-1260 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1260 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))) (|has| |#1| (-559))))) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-3946 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2631 (((-1158 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-567))))) (($ $ (-1178) (-1260 |#1| |#2| |#3|)) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-517 (-1178) (-1260 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-645 (-1178)) (-645 (-1260 |#1| |#2| |#3|))) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-517 (-1178) (-1260 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-645 (-295 (-1260 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-310 (-1260 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-295 (-1260 |#1| |#2| |#3|))) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-310 (-1260 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-1260 |#1| |#2| |#3|) (-1260 |#1| |#2| |#3|)) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-310 (-1260 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-645 (-1260 |#1| |#2| |#3|)) (-645 (-1260 |#1| |#2| |#3|))) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-310 (-1260 |#1| |#2| |#3|))) (|has| |#1| (-365))))) (-1990 (((-772) $) NIL (|has| |#1| (-365)))) (-1787 ((|#1| $ (-567)) NIL) (($ $ $) NIL (|has| (-567) (-1114))) (($ $ (-1260 |#1| |#2| |#3|)) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-287 (-1260 |#1| |#2| |#3|) (-1260 |#1| |#2| |#3|))) (|has| |#1| (-365))))) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL (|has| |#1| (-365)))) (-1593 (($ $ (-1 (-1260 |#1| |#2| |#3|) (-1260 |#1| |#2| |#3|))) NIL (|has| |#1| (-365))) (($ $ (-1 (-1260 |#1| |#2| |#3|) (-1260 |#1| |#2| |#3|)) (-772)) NIL (|has| |#1| (-365))) (($ $ (-1264 |#2|)) 26) (($ $ (-772)) NIL (-2800 (-12 (|has| (-1260 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $) 25 (-2800 (-12 (|has| (-1260 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (-2800 (-12 (|has| (-1260 |#1| |#2| |#3|) (-902 (-1178))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1178)))))) (($ $ (-1178) (-772)) NIL (-2800 (-12 (|has| (-1260 |#1| |#2| |#3|) (-902 (-1178))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1178)))))) (($ $ (-645 (-1178))) NIL (-2800 (-12 (|has| (-1260 |#1| |#2| |#3|) (-902 (-1178))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1178)))))) (($ $ (-1178)) NIL (-2800 (-12 (|has| (-1260 |#1| |#2| |#3|) (-902 (-1178))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1178))))))) (-1967 (($ $) NIL (|has| |#1| (-365)))) (-1460 (((-1260 |#1| |#2| |#3|) $) NIL (|has| |#1| (-365)))) (-3077 (((-567) $) NIL)) (-3175 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3049 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3156 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3023 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3137 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2999 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3893 (((-539) $) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-615 (-539))) (|has| |#1| (-365)))) (((-381) $) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-1024)) (|has| |#1| (-365)))) (((-225) $) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-1024)) (|has| |#1| (-365)))) (((-894 (-381)) $) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-615 (-894 (-381)))) (|has| |#1| (-365)))) (((-894 (-567)) $) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-615 (-894 (-567)))) (|has| |#1| (-365))))) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| (-1260 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))))) (-2192 (($ $) NIL)) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1260 |#1| |#2| |#3|)) NIL) (($ (-1264 |#2|)) 24) (($ (-1178)) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-1040 (-1178))) (|has| |#1| (-365)))) (($ $) NIL (-2800 (-12 (|has| (-1260 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1260 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))) (|has| |#1| (-559)))) (($ (-410 (-567))) NIL (-2800 (-12 (|has| (-1260 |#1| |#2| |#3|) (-1040 (-567))) (|has| |#1| (-365))) (|has| |#1| (-38 (-410 (-567))))))) (-4136 ((|#1| $ (-567)) NIL)) (-1903 (((-3 $ "failed") $) NIL (-2800 (-12 (|has| $ (-145)) (|has| (-1260 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))) (-12 (|has| (-1260 |#1| |#2| |#3|) (-145)) (|has| |#1| (-365))) (|has| |#1| (-145))))) (-4221 (((-772)) NIL T CONST)) (-2166 ((|#1| $) 11)) (-1423 (((-1260 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-548)) (|has| |#1| (-365))))) (-1745 (((-112) $ $) NIL)) (-3200 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3084 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3816 (((-112) $ $) NIL (-2800 (-12 (|has| (-1260 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1260 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))) (|has| |#1| (-559))))) (-3183 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3062 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3221 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3106 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3050 ((|#1| $ (-567)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-567)))) (|has| |#1| (-15 -4132 (|#1| (-1178))))))) (-3785 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3118 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3211 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3095 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3193 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3074 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2219 (($ $) NIL (-12 (|has| (-1260 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))))) (-1716 (($) 20 T CONST)) (-1728 (($) 15 T CONST)) (-2637 (($ $ (-1 (-1260 |#1| |#2| |#3|) (-1260 |#1| |#2| |#3|))) NIL (|has| |#1| (-365))) (($ $ (-1 (-1260 |#1| |#2| |#3|) (-1260 |#1| |#2| |#3|)) (-772)) NIL (|has| |#1| (-365))) (($ $ (-772)) NIL (-2800 (-12 (|has| (-1260 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $) NIL (-2800 (-12 (|has| (-1260 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (-2800 (-12 (|has| (-1260 |#1| |#2| |#3|) (-902 (-1178))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1178)))))) (($ $ (-1178) (-772)) NIL (-2800 (-12 (|has| (-1260 |#1| |#2| |#3|) (-902 (-1178))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1178)))))) (($ $ (-645 (-1178))) NIL (-2800 (-12 (|has| (-1260 |#1| |#2| |#3|) (-902 (-1178))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1178)))))) (($ $ (-1178)) NIL (-2800 (-12 (|has| (-1260 |#1| |#2| |#3|) (-902 (-1178))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1178))))))) (-2997 (((-112) $ $) NIL (-2800 (-12 (|has| (-1260 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1260 |#1| |#2| |#3|) (-851)) (|has| |#1| (-365)))))) (-2971 (((-112) $ $) NIL (-2800 (-12 (|has| (-1260 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1260 |#1| |#2| |#3|) (-851)) (|has| |#1| (-365)))))) (-2936 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL (-2800 (-12 (|has| (-1260 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1260 |#1| |#2| |#3|) (-851)) (|has| |#1| (-365)))))) (-2958 (((-112) $ $) NIL (-2800 (-12 (|has| (-1260 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1260 |#1| |#2| |#3|) (-851)) (|has| |#1| (-365)))))) (-3060 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365))) (($ (-1260 |#1| |#2| |#3|) (-1260 |#1| |#2| |#3|)) NIL (|has| |#1| (-365)))) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) 22)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1260 |#1| |#2| |#3|)) NIL (|has| |#1| (-365))) (($ (-1260 |#1| |#2| |#3|) $) NIL (|has| |#1| (-365))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))))
-(((-1232 |#1| |#2| |#3|) (-13 (-1230 |#1| (-1260 |#1| |#2| |#3|)) (-10 -8 (-15 -4132 ($ (-1264 |#2|))) (-15 -1593 ($ $ (-1264 |#2|))) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -2416 ($ $ (-1264 |#2|))) |%noBranch|))) (-1051) (-1178) |#1|) (T -1232))
-((-4132 (*1 *1 *2) (-12 (-5 *2 (-1264 *4)) (-14 *4 (-1178)) (-5 *1 (-1232 *3 *4 *5)) (-4 *3 (-1051)) (-14 *5 *3))) (-1593 (*1 *1 *1 *2) (-12 (-5 *2 (-1264 *4)) (-14 *4 (-1178)) (-5 *1 (-1232 *3 *4 *5)) (-4 *3 (-1051)) (-14 *5 *3))) (-2416 (*1 *1 *1 *2) (-12 (-5 *2 (-1264 *4)) (-14 *4 (-1178)) (-5 *1 (-1232 *3 *4 *5)) (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)) (-14 *5 *3))))
-(-13 (-1230 |#1| (-1260 |#1| |#2| |#3|)) (-10 -8 (-15 -4132 ($ (-1264 |#2|))) (-15 -1593 ($ $ (-1264 |#2|))) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -2416 ($ $ (-1264 |#2|))) |%noBranch|)))
-((-2033 (((-2 (|:| |contp| (-567)) (|:| -3920 (-645 (-2 (|:| |irr| |#1|) (|:| -2625 (-567)))))) |#1| (-112)) 13)) (-2688 (((-421 |#1|) |#1|) 26)) (-2706 (((-421 |#1|) |#1|) 24)))
-(((-1233 |#1|) (-10 -7 (-15 -2706 ((-421 |#1|) |#1|)) (-15 -2688 ((-421 |#1|) |#1|)) (-15 -2033 ((-2 (|:| |contp| (-567)) (|:| -3920 (-645 (-2 (|:| |irr| |#1|) (|:| -2625 (-567)))))) |#1| (-112)))) (-1244 (-567))) (T -1233))
-((-2033 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-567)) (|:| -3920 (-645 (-2 (|:| |irr| *3) (|:| -2625 (-567))))))) (-5 *1 (-1233 *3)) (-4 *3 (-1244 (-567))))) (-2688 (*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-1233 *3)) (-4 *3 (-1244 (-567))))) (-2706 (*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-1233 *3)) (-4 *3 (-1244 (-567))))))
-(-10 -7 (-15 -2706 ((-421 |#1|) |#1|)) (-15 -2688 ((-421 |#1|) |#1|)) (-15 -2033 ((-2 (|:| |contp| (-567)) (|:| -3920 (-645 (-2 (|:| |irr| |#1|) (|:| -2625 (-567)))))) |#1| (-112))))
-((-3829 (((-1158 |#2|) (-1 |#2| |#1|) (-1235 |#1|)) 23 (|has| |#1| (-849))) (((-1235 |#2|) (-1 |#2| |#1|) (-1235 |#1|)) 17)))
-(((-1234 |#1| |#2|) (-10 -7 (-15 -3829 ((-1235 |#2|) (-1 |#2| |#1|) (-1235 |#1|))) (IF (|has| |#1| (-849)) (-15 -3829 ((-1158 |#2|) (-1 |#2| |#1|) (-1235 |#1|))) |%noBranch|)) (-1218) (-1218)) (T -1234))
-((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1235 *5)) (-4 *5 (-849)) (-4 *5 (-1218)) (-4 *6 (-1218)) (-5 *2 (-1158 *6)) (-5 *1 (-1234 *5 *6)))) (-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1235 *5)) (-4 *5 (-1218)) (-4 *6 (-1218)) (-5 *2 (-1235 *6)) (-5 *1 (-1234 *5 *6)))))
-(-10 -7 (-15 -3829 ((-1235 |#2|) (-1 |#2| |#1|) (-1235 |#1|))) (IF (|has| |#1| (-849)) (-15 -3829 ((-1158 |#2|) (-1 |#2| |#1|) (-1235 |#1|))) |%noBranch|))
-((-2403 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3099 (($ |#1| |#1|) 11) (($ |#1|) 10)) (-3829 (((-1158 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-849)))) (-2504 ((|#1| $) 15)) (-1407 ((|#1| $) 12)) (-1419 (((-1160) $) NIL (|has| |#1| (-1102)))) (-1430 (((-567) $) 19)) (-3131 ((|#1| $) 18)) (-1443 ((|#1| $) 13)) (-3430 (((-1122) $) NIL (|has| |#1| (-1102)))) (-1302 (((-112) $) 17)) (-3317 (((-1158 |#1|) $) 41 (|has| |#1| (-849))) (((-1158 |#1|) (-645 $)) 40 (|has| |#1| (-849)))) (-3893 (($ |#1|) 26)) (-4132 (($ (-1096 |#1|)) 25) (((-863) $) 37 (|has| |#1| (-1102)))) (-1745 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2179 (($ |#1| |#1|) 21) (($ |#1|) 20)) (-2715 (($ $ (-567)) 14)) (-2936 (((-112) $ $) 30 (|has| |#1| (-1102)))))
-(((-1235 |#1|) (-13 (-1095 |#1|) (-10 -8 (-15 -2179 ($ |#1|)) (-15 -3099 ($ |#1|)) (-15 -4132 ($ (-1096 |#1|))) (-15 -1302 ((-112) $)) (IF (|has| |#1| (-1102)) (-6 (-1102)) |%noBranch|) (IF (|has| |#1| (-849)) (-6 (-1097 |#1| (-1158 |#1|))) |%noBranch|))) (-1218)) (T -1235))
-((-2179 (*1 *1 *2) (-12 (-5 *1 (-1235 *2)) (-4 *2 (-1218)))) (-3099 (*1 *1 *2) (-12 (-5 *1 (-1235 *2)) (-4 *2 (-1218)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-1096 *3)) (-4 *3 (-1218)) (-5 *1 (-1235 *3)))) (-1302 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1235 *3)) (-4 *3 (-1218)))))
-(-13 (-1095 |#1|) (-10 -8 (-15 -2179 ($ |#1|)) (-15 -3099 ($ |#1|)) (-15 -4132 ($ (-1096 |#1|))) (-15 -1302 ((-112) $)) (IF (|has| |#1| (-1102)) (-6 (-1102)) |%noBranch|) (IF (|has| |#1| (-849)) (-6 (-1097 |#1| (-1158 |#1|))) |%noBranch|)))
-((-3829 (((-1241 |#3| |#4|) (-1 |#4| |#2|) (-1241 |#1| |#2|)) 15)))
-(((-1236 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3829 ((-1241 |#3| |#4|) (-1 |#4| |#2|) (-1241 |#1| |#2|)))) (-1178) (-1051) (-1178) (-1051)) (T -1236))
-((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1241 *5 *6)) (-14 *5 (-1178)) (-4 *6 (-1051)) (-4 *8 (-1051)) (-5 *2 (-1241 *7 *8)) (-5 *1 (-1236 *5 *6 *7 *8)) (-14 *7 (-1178)))))
-(-10 -7 (-15 -3829 ((-1241 |#3| |#4|) (-1 |#4| |#2|) (-1241 |#1| |#2|))))
-((-1989 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-3354 ((|#1| |#3|) 13)) (-4304 ((|#3| |#3|) 19)))
-(((-1237 |#1| |#2| |#3|) (-10 -7 (-15 -3354 (|#1| |#3|)) (-15 -4304 (|#3| |#3|)) (-15 -1989 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-559) (-994 |#1|) (-1244 |#2|)) (T -1237))
-((-1989 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-994 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1237 *4 *5 *3)) (-4 *3 (-1244 *5)))) (-4304 (*1 *2 *2) (-12 (-4 *3 (-559)) (-4 *4 (-994 *3)) (-5 *1 (-1237 *3 *4 *2)) (-4 *2 (-1244 *4)))) (-3354 (*1 *2 *3) (-12 (-4 *4 (-994 *2)) (-4 *2 (-559)) (-5 *1 (-1237 *2 *4 *3)) (-4 *3 (-1244 *4)))))
-(-10 -7 (-15 -3354 (|#1| |#3|)) (-15 -4304 (|#3| |#3|)) (-15 -1989 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
-((-2490 (((-3 |#2| "failed") |#2| (-772) |#1|) 37)) (-2222 (((-3 |#2| "failed") |#2| (-772)) 38)) (-1932 (((-3 (-2 (|:| -2950 |#2|) (|:| -2963 |#2|)) "failed") |#2|) 52)) (-3261 (((-645 |#2|) |#2|) 54)) (-1336 (((-3 |#2| "failed") |#2| |#2|) 48)))
-(((-1238 |#1| |#2|) (-10 -7 (-15 -2222 ((-3 |#2| "failed") |#2| (-772))) (-15 -2490 ((-3 |#2| "failed") |#2| (-772) |#1|)) (-15 -1336 ((-3 |#2| "failed") |#2| |#2|)) (-15 -1932 ((-3 (-2 (|:| -2950 |#2|) (|:| -2963 |#2|)) "failed") |#2|)) (-15 -3261 ((-645 |#2|) |#2|))) (-13 (-559) (-147)) (-1244 |#1|)) (T -1238))
-((-3261 (*1 *2 *3) (-12 (-4 *4 (-13 (-559) (-147))) (-5 *2 (-645 *3)) (-5 *1 (-1238 *4 *3)) (-4 *3 (-1244 *4)))) (-1932 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-559) (-147))) (-5 *2 (-2 (|:| -2950 *3) (|:| -2963 *3))) (-5 *1 (-1238 *4 *3)) (-4 *3 (-1244 *4)))) (-1336 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-559) (-147))) (-5 *1 (-1238 *3 *2)) (-4 *2 (-1244 *3)))) (-2490 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-772)) (-4 *4 (-13 (-559) (-147))) (-5 *1 (-1238 *4 *2)) (-4 *2 (-1244 *4)))) (-2222 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-772)) (-4 *4 (-13 (-559) (-147))) (-5 *1 (-1238 *4 *2)) (-4 *2 (-1244 *4)))))
-(-10 -7 (-15 -2222 ((-3 |#2| "failed") |#2| (-772))) (-15 -2490 ((-3 |#2| "failed") |#2| (-772) |#1|)) (-15 -1336 ((-3 |#2| "failed") |#2| |#2|)) (-15 -1932 ((-3 (-2 (|:| -2950 |#2|) (|:| -2963 |#2|)) "failed") |#2|)) (-15 -3261 ((-645 |#2|) |#2|)))
-((-2071 (((-3 (-2 (|:| -3102 |#2|) (|:| -4194 |#2|)) "failed") |#2| |#2|) 30)))
-(((-1239 |#1| |#2|) (-10 -7 (-15 -2071 ((-3 (-2 (|:| -3102 |#2|) (|:| -4194 |#2|)) "failed") |#2| |#2|))) (-559) (-1244 |#1|)) (T -1239))
-((-2071 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-559)) (-5 *2 (-2 (|:| -3102 *3) (|:| -4194 *3))) (-5 *1 (-1239 *4 *3)) (-4 *3 (-1244 *4)))))
-(-10 -7 (-15 -2071 ((-3 (-2 (|:| -3102 |#2|) (|:| -4194 |#2|)) "failed") |#2| |#2|)))
-((-2239 ((|#2| |#2| |#2|) 22)) (-1687 ((|#2| |#2| |#2|) 36)) (-1390 ((|#2| |#2| |#2| (-772) (-772)) 44)))
-(((-1240 |#1| |#2|) (-10 -7 (-15 -2239 (|#2| |#2| |#2|)) (-15 -1687 (|#2| |#2| |#2|)) (-15 -1390 (|#2| |#2| |#2| (-772) (-772)))) (-1051) (-1244 |#1|)) (T -1240))
-((-1390 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-772)) (-4 *4 (-1051)) (-5 *1 (-1240 *4 *2)) (-4 *2 (-1244 *4)))) (-1687 (*1 *2 *2 *2) (-12 (-4 *3 (-1051)) (-5 *1 (-1240 *3 *2)) (-4 *2 (-1244 *3)))) (-2239 (*1 *2 *2 *2) (-12 (-4 *3 (-1051)) (-5 *1 (-1240 *3 *2)) (-4 *2 (-1244 *3)))))
-(-10 -7 (-15 -2239 (|#2| |#2| |#2|)) (-15 -1687 (|#2| |#2| |#2|)) (-15 -1390 (|#2| |#2| |#2| (-772) (-772))))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-4199 (((-1268 |#2|) $ (-772)) NIL)) (-2847 (((-645 (-1084)) $) NIL)) (-2703 (($ (-1174 |#2|)) NIL)) (-2675 (((-1174 $) $ (-1084)) NIL) (((-1174 |#2|) $) NIL)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL (|has| |#2| (-559)))) (-4381 (($ $) NIL (|has| |#2| (-559)))) (-3949 (((-112) $) NIL (|has| |#2| (-559)))) (-1468 (((-772) $) NIL) (((-772) $ (-645 (-1084))) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2323 (($ $ $) NIL (|has| |#2| (-559)))) (-4226 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-911)))) (-3248 (($ $) NIL (|has| |#2| (-455)))) (-2908 (((-421 $) $) NIL (|has| |#2| (-455)))) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-911)))) (-3609 (((-112) $ $) NIL (|has| |#2| (-365)))) (-1516 (($ $ (-772)) NIL)) (-3993 (($ $ (-772)) NIL)) (-2743 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-455)))) (-2585 (($) NIL T CONST)) (-3753 (((-3 |#2| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#2| (-1040 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#2| (-1040 (-567)))) (((-3 (-1084) "failed") $) NIL)) (-2038 ((|#2| $) NIL) (((-410 (-567)) $) NIL (|has| |#2| (-1040 (-410 (-567))))) (((-567) $) NIL (|has| |#2| (-1040 (-567)))) (((-1084) $) NIL)) (-2951 (($ $ $ (-1084)) NIL (|has| |#2| (-172))) ((|#2| $ $) NIL (|has| |#2| (-172)))) (-2349 (($ $ $) NIL (|has| |#2| (-365)))) (-3014 (($ $) NIL)) (-2630 (((-690 (-567)) (-690 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -2316 (-690 |#2|)) (|:| |vec| (-1268 |#2|))) (-690 $) (-1268 $)) NIL) (((-690 |#2|) (-690 $)) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-2360 (($ $ $) NIL (|has| |#2| (-365)))) (-1629 (($ $ $) NIL)) (-1946 (($ $ $) NIL (|has| |#2| (-559)))) (-3708 (((-2 (|:| -3694 |#2|) (|:| -3102 $) (|:| -4194 $)) $ $) NIL (|has| |#2| (-559)))) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL (|has| |#2| (-365)))) (-3501 (($ $) NIL (|has| |#2| (-455))) (($ $ (-1084)) NIL (|has| |#2| (-455)))) (-3000 (((-645 $) $) NIL)) (-3184 (((-112) $) NIL (|has| |#2| (-911)))) (-2320 (($ $ |#2| (-772) $) NIL)) (-4303 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (-12 (|has| (-1084) (-888 (-381))) (|has| |#2| (-888 (-381))))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (-12 (|has| (-1084) (-888 (-567))) (|has| |#2| (-888 (-567)))))) (-4384 (((-772) $ $) NIL (|has| |#2| (-559)))) (-1433 (((-112) $) NIL)) (-2695 (((-772) $) NIL)) (-3972 (((-3 $ "failed") $) NIL (|has| |#2| (-1153)))) (-2836 (($ (-1174 |#2|) (-1084)) NIL) (($ (-1174 $) (-1084)) NIL)) (-3807 (($ $ (-772)) NIL)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#2| (-365)))) (-1709 (((-645 $) $) NIL)) (-2843 (((-112) $) NIL)) (-2824 (($ |#2| (-772)) 18) (($ $ (-1084) (-772)) NIL) (($ $ (-645 (-1084)) (-645 (-772))) NIL)) (-1621 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $ (-1084)) NIL) (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL)) (-2656 (((-772) $) NIL) (((-772) $ (-1084)) NIL) (((-645 (-772)) $ (-645 (-1084))) NIL)) (-3273 (($ (-1 (-772) (-772)) $) NIL)) (-3829 (($ (-1 |#2| |#2|) $) NIL)) (-1647 (((-1174 |#2|) $) NIL)) (-3046 (((-3 (-1084) "failed") $) NIL)) (-2976 (($ $) NIL)) (-2989 ((|#2| $) NIL)) (-2740 (($ (-645 $)) NIL (|has| |#2| (-455))) (($ $ $) NIL (|has| |#2| (-455)))) (-1419 (((-1160) $) NIL)) (-3139 (((-2 (|:| -3102 $) (|:| -4194 $)) $ (-772)) NIL)) (-2056 (((-3 (-645 $) "failed") $) NIL)) (-3671 (((-3 (-645 $) "failed") $) NIL)) (-3798 (((-3 (-2 (|:| |var| (-1084)) (|:| -3458 (-772))) "failed") $) NIL)) (-2416 (($ $) NIL (|has| |#2| (-38 (-410 (-567)))))) (-2672 (($) NIL (|has| |#2| (-1153)) CONST)) (-3430 (((-1122) $) NIL)) (-2949 (((-112) $) NIL)) (-2962 ((|#2| $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#2| (-455)))) (-2774 (($ (-645 $)) NIL (|has| |#2| (-455))) (($ $ $) NIL (|has| |#2| (-455)))) (-3110 (($ $ (-772) |#2| $) NIL)) (-2435 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-911)))) (-3517 (((-421 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-911)))) (-2706 (((-421 $) $) NIL (|has| |#2| (-911)))) (-3402 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL (|has| |#2| (-365)))) (-2391 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-559))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-559)))) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#2| (-365)))) (-2631 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-1084) |#2|) NIL) (($ $ (-645 (-1084)) (-645 |#2|)) NIL) (($ $ (-1084) $) NIL) (($ $ (-645 (-1084)) (-645 $)) NIL)) (-1990 (((-772) $) NIL (|has| |#2| (-365)))) (-1787 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-410 $) (-410 $) (-410 $)) NIL (|has| |#2| (-559))) ((|#2| (-410 $) |#2|) NIL (|has| |#2| (-365))) (((-410 $) $ (-410 $)) NIL (|has| |#2| (-559)))) (-3997 (((-3 $ "failed") $ (-772)) NIL)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL (|has| |#2| (-365)))) (-3788 (($ $ (-1084)) NIL (|has| |#2| (-172))) ((|#2| $) NIL (|has| |#2| (-172)))) (-1593 (($ $ (-1084)) NIL) (($ $ (-645 (-1084))) NIL) (($ $ (-1084) (-772)) NIL) (($ $ (-645 (-1084)) (-645 (-772))) NIL) (($ $ (-772)) NIL) (($ $) NIL) (($ $ (-1178)) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-3077 (((-772) $) NIL) (((-772) $ (-1084)) NIL) (((-645 (-772)) $ (-645 (-1084))) NIL)) (-3893 (((-894 (-381)) $) NIL (-12 (|has| (-1084) (-615 (-894 (-381)))) (|has| |#2| (-615 (-894 (-381)))))) (((-894 (-567)) $) NIL (-12 (|has| (-1084) (-615 (-894 (-567)))) (|has| |#2| (-615 (-894 (-567)))))) (((-539) $) NIL (-12 (|has| (-1084) (-615 (-539))) (|has| |#2| (-615 (-539)))))) (-4358 ((|#2| $) NIL (|has| |#2| (-455))) (($ $ (-1084)) NIL (|has| |#2| (-455)))) (-1895 (((-3 (-1268 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-911))))) (-2159 (((-3 $ "failed") $ $) NIL (|has| |#2| (-559))) (((-3 (-410 $) "failed") (-410 $) $) NIL (|has| |#2| (-559)))) (-4132 (((-863) $) 13) (($ (-567)) NIL) (($ |#2|) NIL) (($ (-1084)) NIL) (($ (-1264 |#1|)) 20) (($ (-410 (-567))) NIL (-2800 (|has| |#2| (-38 (-410 (-567)))) (|has| |#2| (-1040 (-410 (-567)))))) (($ $) NIL (|has| |#2| (-559)))) (-3032 (((-645 |#2|) $) NIL)) (-4136 ((|#2| $ (-772)) NIL) (($ $ (-1084) (-772)) NIL) (($ $ (-645 (-1084)) (-645 (-772))) NIL)) (-1903 (((-3 $ "failed") $) NIL (-2800 (-12 (|has| $ (-145)) (|has| |#2| (-911))) (|has| |#2| (-145))))) (-4221 (((-772)) NIL T CONST)) (-4176 (($ $ $ (-772)) NIL (|has| |#2| (-172)))) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL (|has| |#2| (-559)))) (-1716 (($) NIL T CONST)) (-1728 (($) 14 T CONST)) (-2637 (($ $ (-1084)) NIL) (($ $ (-645 (-1084))) NIL) (($ $ (-1084) (-772)) NIL) (($ $ (-645 (-1084)) (-645 (-772))) NIL) (($ $ (-772)) NIL) (($ $) NIL) (($ $ (-1178)) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-645 (-1178))) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-1178) (-772)) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) NIL (|has| |#2| (-902 (-1178)))) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL (|has| |#2| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#2| (-38 (-410 (-567))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-1241 |#1| |#2|) (-13 (-1244 |#2|) (-617 (-1264 |#1|)) (-10 -8 (-15 -3110 ($ $ (-772) |#2| $)))) (-1178) (-1051)) (T -1241))
-((-3110 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1241 *4 *3)) (-14 *4 (-1178)) (-4 *3 (-1051)))))
-(-13 (-1244 |#2|) (-617 (-1264 |#1|)) (-10 -8 (-15 -3110 ($ $ (-772) |#2| $))))
-((-3829 ((|#4| (-1 |#3| |#1|) |#2|) 22)))
-(((-1242 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3829 (|#4| (-1 |#3| |#1|) |#2|))) (-1051) (-1244 |#1|) (-1051) (-1244 |#3|)) (T -1242))
-((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1051)) (-4 *6 (-1051)) (-4 *2 (-1244 *6)) (-5 *1 (-1242 *5 *4 *6 *2)) (-4 *4 (-1244 *5)))))
-(-10 -7 (-15 -3829 (|#4| (-1 |#3| |#1|) |#2|)))
-((-4199 (((-1268 |#2|) $ (-772)) 129)) (-2847 (((-645 (-1084)) $) 16)) (-2703 (($ (-1174 |#2|)) 80)) (-1468 (((-772) $) NIL) (((-772) $ (-645 (-1084))) 21)) (-4226 (((-421 (-1174 $)) (-1174 $)) 204)) (-3248 (($ $) 194)) (-2908 (((-421 $) $) 192)) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) 95)) (-1516 (($ $ (-772)) 84)) (-3993 (($ $ (-772)) 86)) (-2743 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 145)) (-3753 (((-3 |#2| "failed") $) 132) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 (-567) "failed") $) NIL) (((-3 (-1084) "failed") $) NIL)) (-2038 ((|#2| $) 130) (((-410 (-567)) $) NIL) (((-567) $) NIL) (((-1084) $) NIL)) (-1946 (($ $ $) 170)) (-3708 (((-2 (|:| -3694 |#2|) (|:| -3102 $) (|:| -4194 $)) $ $) 172)) (-4384 (((-772) $ $) 189)) (-3972 (((-3 $ "failed") $) 138)) (-2824 (($ |#2| (-772)) NIL) (($ $ (-1084) (-772)) 59) (($ $ (-645 (-1084)) (-645 (-772))) NIL)) (-2656 (((-772) $) NIL) (((-772) $ (-1084)) 54) (((-645 (-772)) $ (-645 (-1084))) 55)) (-1647 (((-1174 |#2|) $) 72)) (-3046 (((-3 (-1084) "failed") $) 52)) (-3139 (((-2 (|:| -3102 $) (|:| -4194 $)) $ (-772)) 83)) (-2416 (($ $) 219)) (-2672 (($) 134)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 201)) (-2435 (((-421 (-1174 $)) (-1174 $)) 101)) (-3517 (((-421 (-1174 $)) (-1174 $)) 99)) (-2706 (((-421 $) $) 120)) (-2631 (($ $ (-645 (-295 $))) 51) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-1084) |#2|) 39) (($ $ (-645 (-1084)) (-645 |#2|)) 36) (($ $ (-1084) $) 32) (($ $ (-645 (-1084)) (-645 $)) 30)) (-1990 (((-772) $) 207)) (-1787 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-410 $) (-410 $) (-410 $)) 164) ((|#2| (-410 $) |#2|) 206) (((-410 $) $ (-410 $)) 188)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 212)) (-1593 (($ $ (-1084)) 157) (($ $ (-645 (-1084))) NIL) (($ $ (-1084) (-772)) NIL) (($ $ (-645 (-1084)) (-645 (-772))) NIL) (($ $ (-772)) NIL) (($ $) 155) (($ $ (-1178)) NIL) (($ $ (-645 (-1178))) NIL) (($ $ (-1178) (-772)) NIL) (($ $ (-645 (-1178)) (-645 (-772))) NIL) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-1 |#2| |#2|)) 154) (($ $ (-1 |#2| |#2|) $) 149)) (-3077 (((-772) $) NIL) (((-772) $ (-1084)) 17) (((-645 (-772)) $ (-645 (-1084))) 23)) (-4358 ((|#2| $) NIL) (($ $ (-1084)) 140)) (-2159 (((-3 $ "failed") $ $) 180) (((-3 (-410 $) "failed") (-410 $) $) 176)) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ |#2|) NIL) (($ (-1084)) 64) (($ (-410 (-567))) NIL) (($ $) NIL)))
-(((-1243 |#1| |#2|) (-10 -8 (-15 -4132 (|#1| |#1|)) (-15 -3750 ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 -2908 ((-421 |#1|) |#1|)) (-15 -3248 (|#1| |#1|)) (-15 -4132 (|#1| (-410 (-567)))) (-15 -2672 (|#1|)) (-15 -3972 ((-3 |#1| "failed") |#1|)) (-15 -1787 ((-410 |#1|) |#1| (-410 |#1|))) (-15 -1990 ((-772) |#1|)) (-15 -2384 ((-2 (|:| -3102 |#1|) (|:| -4194 |#1|)) |#1| |#1|)) (-15 -2416 (|#1| |#1|)) (-15 -1787 (|#2| (-410 |#1|) |#2|)) (-15 -2743 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3708 ((-2 (|:| -3694 |#2|) (|:| -3102 |#1|) (|:| -4194 |#1|)) |#1| |#1|)) (-15 -1946 (|#1| |#1| |#1|)) (-15 -2159 ((-3 (-410 |#1|) "failed") (-410 |#1|) |#1|)) (-15 -2159 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4384 ((-772) |#1| |#1|)) (-15 -1787 ((-410 |#1|) (-410 |#1|) (-410 |#1|))) (-15 -1593 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3993 (|#1| |#1| (-772))) (-15 -1516 (|#1| |#1| (-772))) (-15 -3139 ((-2 (|:| -3102 |#1|) (|:| -4194 |#1|)) |#1| (-772))) (-15 -2703 (|#1| (-1174 |#2|))) (-15 -1647 ((-1174 |#2|) |#1|)) (-15 -4199 ((-1268 |#2|) |#1| (-772))) (-15 -1593 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1593 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -1593 (|#1| |#1| (-645 (-1178)) (-645 (-772)))) (-15 -1593 (|#1| |#1| (-1178) (-772))) (-15 -1593 (|#1| |#1| (-645 (-1178)))) (-15 -1593 (|#1| |#1| (-1178))) (-15 -1593 (|#1| |#1|)) (-15 -1593 (|#1| |#1| (-772))) (-15 -1787 (|#1| |#1| |#1|)) (-15 -1787 (|#2| |#1| |#2|)) (-15 -2706 ((-421 |#1|) |#1|)) (-15 -4226 ((-421 (-1174 |#1|)) (-1174 |#1|))) (-15 -3517 ((-421 (-1174 |#1|)) (-1174 |#1|))) (-15 -2435 ((-421 (-1174 |#1|)) (-1174 |#1|))) (-15 -3815 ((-3 (-645 (-1174 |#1|)) "failed") (-645 (-1174 |#1|)) (-1174 |#1|))) (-15 -4358 (|#1| |#1| (-1084))) (-15 -2847 ((-645 (-1084)) |#1|)) (-15 -1468 ((-772) |#1| (-645 (-1084)))) (-15 -1468 ((-772) |#1|)) (-15 -2824 (|#1| |#1| (-645 (-1084)) (-645 (-772)))) (-15 -2824 (|#1| |#1| (-1084) (-772))) (-15 -2656 ((-645 (-772)) |#1| (-645 (-1084)))) (-15 -2656 ((-772) |#1| (-1084))) (-15 -3046 ((-3 (-1084) "failed") |#1|)) (-15 -3077 ((-645 (-772)) |#1| (-645 (-1084)))) (-15 -3077 ((-772) |#1| (-1084))) (-15 -4132 (|#1| (-1084))) (-15 -3753 ((-3 (-1084) "failed") |#1|)) (-15 -2038 ((-1084) |#1|)) (-15 -2631 (|#1| |#1| (-645 (-1084)) (-645 |#1|))) (-15 -2631 (|#1| |#1| (-1084) |#1|)) (-15 -2631 (|#1| |#1| (-645 (-1084)) (-645 |#2|))) (-15 -2631 (|#1| |#1| (-1084) |#2|)) (-15 -2631 (|#1| |#1| (-645 |#1|) (-645 |#1|))) (-15 -2631 (|#1| |#1| |#1| |#1|)) (-15 -2631 (|#1| |#1| (-295 |#1|))) (-15 -2631 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -3077 ((-772) |#1|)) (-15 -2824 (|#1| |#2| (-772))) (-15 -3753 ((-3 (-567) "failed") |#1|)) (-15 -2038 ((-567) |#1|)) (-15 -3753 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2038 ((-410 (-567)) |#1|)) (-15 -2038 (|#2| |#1|)) (-15 -3753 ((-3 |#2| "failed") |#1|)) (-15 -4132 (|#1| |#2|)) (-15 -2656 ((-772) |#1|)) (-15 -4358 (|#2| |#1|)) (-15 -1593 (|#1| |#1| (-645 (-1084)) (-645 (-772)))) (-15 -1593 (|#1| |#1| (-1084) (-772))) (-15 -1593 (|#1| |#1| (-645 (-1084)))) (-15 -1593 (|#1| |#1| (-1084))) (-15 -4132 (|#1| (-567))) (-15 -4132 ((-863) |#1|))) (-1244 |#2|) (-1051)) (T -1243))
-NIL
-(-10 -8 (-15 -4132 (|#1| |#1|)) (-15 -3750 ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 -2908 ((-421 |#1|) |#1|)) (-15 -3248 (|#1| |#1|)) (-15 -4132 (|#1| (-410 (-567)))) (-15 -2672 (|#1|)) (-15 -3972 ((-3 |#1| "failed") |#1|)) (-15 -1787 ((-410 |#1|) |#1| (-410 |#1|))) (-15 -1990 ((-772) |#1|)) (-15 -2384 ((-2 (|:| -3102 |#1|) (|:| -4194 |#1|)) |#1| |#1|)) (-15 -2416 (|#1| |#1|)) (-15 -1787 (|#2| (-410 |#1|) |#2|)) (-15 -2743 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3708 ((-2 (|:| -3694 |#2|) (|:| -3102 |#1|) (|:| -4194 |#1|)) |#1| |#1|)) (-15 -1946 (|#1| |#1| |#1|)) (-15 -2159 ((-3 (-410 |#1|) "failed") (-410 |#1|) |#1|)) (-15 -2159 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4384 ((-772) |#1| |#1|)) (-15 -1787 ((-410 |#1|) (-410 |#1|) (-410 |#1|))) (-15 -1593 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3993 (|#1| |#1| (-772))) (-15 -1516 (|#1| |#1| (-772))) (-15 -3139 ((-2 (|:| -3102 |#1|) (|:| -4194 |#1|)) |#1| (-772))) (-15 -2703 (|#1| (-1174 |#2|))) (-15 -1647 ((-1174 |#2|) |#1|)) (-15 -4199 ((-1268 |#2|) |#1| (-772))) (-15 -1593 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1593 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -1593 (|#1| |#1| (-645 (-1178)) (-645 (-772)))) (-15 -1593 (|#1| |#1| (-1178) (-772))) (-15 -1593 (|#1| |#1| (-645 (-1178)))) (-15 -1593 (|#1| |#1| (-1178))) (-15 -1593 (|#1| |#1|)) (-15 -1593 (|#1| |#1| (-772))) (-15 -1787 (|#1| |#1| |#1|)) (-15 -1787 (|#2| |#1| |#2|)) (-15 -2706 ((-421 |#1|) |#1|)) (-15 -4226 ((-421 (-1174 |#1|)) (-1174 |#1|))) (-15 -3517 ((-421 (-1174 |#1|)) (-1174 |#1|))) (-15 -2435 ((-421 (-1174 |#1|)) (-1174 |#1|))) (-15 -3815 ((-3 (-645 (-1174 |#1|)) "failed") (-645 (-1174 |#1|)) (-1174 |#1|))) (-15 -4358 (|#1| |#1| (-1084))) (-15 -2847 ((-645 (-1084)) |#1|)) (-15 -1468 ((-772) |#1| (-645 (-1084)))) (-15 -1468 ((-772) |#1|)) (-15 -2824 (|#1| |#1| (-645 (-1084)) (-645 (-772)))) (-15 -2824 (|#1| |#1| (-1084) (-772))) (-15 -2656 ((-645 (-772)) |#1| (-645 (-1084)))) (-15 -2656 ((-772) |#1| (-1084))) (-15 -3046 ((-3 (-1084) "failed") |#1|)) (-15 -3077 ((-645 (-772)) |#1| (-645 (-1084)))) (-15 -3077 ((-772) |#1| (-1084))) (-15 -4132 (|#1| (-1084))) (-15 -3753 ((-3 (-1084) "failed") |#1|)) (-15 -2038 ((-1084) |#1|)) (-15 -2631 (|#1| |#1| (-645 (-1084)) (-645 |#1|))) (-15 -2631 (|#1| |#1| (-1084) |#1|)) (-15 -2631 (|#1| |#1| (-645 (-1084)) (-645 |#2|))) (-15 -2631 (|#1| |#1| (-1084) |#2|)) (-15 -2631 (|#1| |#1| (-645 |#1|) (-645 |#1|))) (-15 -2631 (|#1| |#1| |#1| |#1|)) (-15 -2631 (|#1| |#1| (-295 |#1|))) (-15 -2631 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -3077 ((-772) |#1|)) (-15 -2824 (|#1| |#2| (-772))) (-15 -3753 ((-3 (-567) "failed") |#1|)) (-15 -2038 ((-567) |#1|)) (-15 -3753 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2038 ((-410 (-567)) |#1|)) (-15 -2038 (|#2| |#1|)) (-15 -3753 ((-3 |#2| "failed") |#1|)) (-15 -4132 (|#1| |#2|)) (-15 -2656 ((-772) |#1|)) (-15 -4358 (|#2| |#1|)) (-15 -1593 (|#1| |#1| (-645 (-1084)) (-645 (-772)))) (-15 -1593 (|#1| |#1| (-1084) (-772))) (-15 -1593 (|#1| |#1| (-645 (-1084)))) (-15 -1593 (|#1| |#1| (-1084))) (-15 -4132 (|#1| (-567))) (-15 -4132 ((-863) |#1|)))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-4199 (((-1268 |#1|) $ (-772)) 240)) (-2847 (((-645 (-1084)) $) 112)) (-2703 (($ (-1174 |#1|)) 238)) (-2675 (((-1174 $) $ (-1084)) 127) (((-1174 |#1|) $) 126)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 89 (|has| |#1| (-559)))) (-4381 (($ $) 90 (|has| |#1| (-559)))) (-3949 (((-112) $) 92 (|has| |#1| (-559)))) (-1468 (((-772) $) 114) (((-772) $ (-645 (-1084))) 113)) (-3472 (((-3 $ "failed") $ $) 20)) (-2323 (($ $ $) 225 (|has| |#1| (-559)))) (-4226 (((-421 (-1174 $)) (-1174 $)) 102 (|has| |#1| (-911)))) (-3248 (($ $) 100 (|has| |#1| (-455)))) (-2908 (((-421 $) $) 99 (|has| |#1| (-455)))) (-3815 (((-3 (-645 (-1174 $)) "failed") (-645 (-1174 $)) (-1174 $)) 105 (|has| |#1| (-911)))) (-3609 (((-112) $ $) 210 (|has| |#1| (-365)))) (-1516 (($ $ (-772)) 233)) (-3993 (($ $ (-772)) 232)) (-2743 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 220 (|has| |#1| (-455)))) (-2585 (($) 18 T CONST)) (-3753 (((-3 |#1| "failed") $) 166) (((-3 (-410 (-567)) "failed") $) 163 (|has| |#1| (-1040 (-410 (-567))))) (((-3 (-567) "failed") $) 161 (|has| |#1| (-1040 (-567)))) (((-3 (-1084) "failed") $) 138)) (-2038 ((|#1| $) 165) (((-410 (-567)) $) 164 (|has| |#1| (-1040 (-410 (-567))))) (((-567) $) 162 (|has| |#1| (-1040 (-567)))) (((-1084) $) 139)) (-2951 (($ $ $ (-1084)) 110 (|has| |#1| (-172))) ((|#1| $ $) 228 (|has| |#1| (-172)))) (-2349 (($ $ $) 214 (|has| |#1| (-365)))) (-3014 (($ $) 156)) (-2630 (((-690 (-567)) (-690 $)) 136 (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 (-567))) (|:| |vec| (-1268 (-567)))) (-690 $) (-1268 $)) 135 (|has| |#1| (-640 (-567)))) (((-2 (|:| -2316 (-690 |#1|)) (|:| |vec| (-1268 |#1|))) (-690 $) (-1268 $)) 134) (((-690 |#1|) (-690 $)) 133)) (-2109 (((-3 $ "failed") $) 37)) (-2360 (($ $ $) 213 (|has| |#1| (-365)))) (-1629 (($ $ $) 231)) (-1946 (($ $ $) 222 (|has| |#1| (-559)))) (-3708 (((-2 (|:| -3694 |#1|) (|:| -3102 $) (|:| -4194 $)) $ $) 221 (|has| |#1| (-559)))) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) 208 (|has| |#1| (-365)))) (-3501 (($ $) 178 (|has| |#1| (-455))) (($ $ (-1084)) 107 (|has| |#1| (-455)))) (-3000 (((-645 $) $) 111)) (-3184 (((-112) $) 98 (|has| |#1| (-911)))) (-2320 (($ $ |#1| (-772) $) 174)) (-4303 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) 86 (-12 (|has| (-1084) (-888 (-381))) (|has| |#1| (-888 (-381))))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) 85 (-12 (|has| (-1084) (-888 (-567))) (|has| |#1| (-888 (-567)))))) (-4384 (((-772) $ $) 226 (|has| |#1| (-559)))) (-1433 (((-112) $) 35)) (-2695 (((-772) $) 171)) (-3972 (((-3 $ "failed") $) 206 (|has| |#1| (-1153)))) (-2836 (($ (-1174 |#1|) (-1084)) 119) (($ (-1174 $) (-1084)) 118)) (-3807 (($ $ (-772)) 237)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) 217 (|has| |#1| (-365)))) (-1709 (((-645 $) $) 128)) (-2843 (((-112) $) 154)) (-2824 (($ |#1| (-772)) 155) (($ $ (-1084) (-772)) 121) (($ $ (-645 (-1084)) (-645 (-772))) 120)) (-1621 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $ (-1084)) 122) (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 235)) (-2656 (((-772) $) 172) (((-772) $ (-1084)) 124) (((-645 (-772)) $ (-645 (-1084))) 123)) (-3273 (($ (-1 (-772) (-772)) $) 173)) (-3829 (($ (-1 |#1| |#1|) $) 153)) (-1647 (((-1174 |#1|) $) 239)) (-3046 (((-3 (-1084) "failed") $) 125)) (-2976 (($ $) 151)) (-2989 ((|#1| $) 150)) (-2740 (($ (-645 $)) 96 (|has| |#1| (-455))) (($ $ $) 95 (|has| |#1| (-455)))) (-1419 (((-1160) $) 10)) (-3139 (((-2 (|:| -3102 $) (|:| -4194 $)) $ (-772)) 234)) (-2056 (((-3 (-645 $) "failed") $) 116)) (-3671 (((-3 (-645 $) "failed") $) 117)) (-3798 (((-3 (-2 (|:| |var| (-1084)) (|:| -3458 (-772))) "failed") $) 115)) (-2416 (($ $) 218 (|has| |#1| (-38 (-410 (-567)))))) (-2672 (($) 205 (|has| |#1| (-1153)) CONST)) (-3430 (((-1122) $) 11)) (-2949 (((-112) $) 168)) (-2962 ((|#1| $) 169)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 97 (|has| |#1| (-455)))) (-2774 (($ (-645 $)) 94 (|has| |#1| (-455))) (($ $ $) 93 (|has| |#1| (-455)))) (-2435 (((-421 (-1174 $)) (-1174 $)) 104 (|has| |#1| (-911)))) (-3517 (((-421 (-1174 $)) (-1174 $)) 103 (|has| |#1| (-911)))) (-2706 (((-421 $) $) 101 (|has| |#1| (-911)))) (-3402 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 216 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) 215 (|has| |#1| (-365)))) (-2391 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-559))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-559)))) (-3117 (((-3 (-645 $) "failed") (-645 $) $) 209 (|has| |#1| (-365)))) (-2631 (($ $ (-645 (-295 $))) 147) (($ $ (-295 $)) 146) (($ $ $ $) 145) (($ $ (-645 $) (-645 $)) 144) (($ $ (-1084) |#1|) 143) (($ $ (-645 (-1084)) (-645 |#1|)) 142) (($ $ (-1084) $) 141) (($ $ (-645 (-1084)) (-645 $)) 140)) (-1990 (((-772) $) 211 (|has| |#1| (-365)))) (-1787 ((|#1| $ |#1|) 258) (($ $ $) 257) (((-410 $) (-410 $) (-410 $)) 227 (|has| |#1| (-559))) ((|#1| (-410 $) |#1|) 219 (|has| |#1| (-365))) (((-410 $) $ (-410 $)) 207 (|has| |#1| (-559)))) (-3997 (((-3 $ "failed") $ (-772)) 236)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 212 (|has| |#1| (-365)))) (-3788 (($ $ (-1084)) 109 (|has| |#1| (-172))) ((|#1| $) 229 (|has| |#1| (-172)))) (-1593 (($ $ (-1084)) 46) (($ $ (-645 (-1084))) 45) (($ $ (-1084) (-772)) 44) (($ $ (-645 (-1084)) (-645 (-772))) 43) (($ $ (-772)) 255) (($ $) 253) (($ $ (-1178)) 252 (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178))) 251 (|has| |#1| (-902 (-1178)))) (($ $ (-1178) (-772)) 250 (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) 249 (|has| |#1| (-902 (-1178)))) (($ $ (-1 |#1| |#1|) (-772)) 242) (($ $ (-1 |#1| |#1|)) 241) (($ $ (-1 |#1| |#1|) $) 230)) (-3077 (((-772) $) 152) (((-772) $ (-1084)) 132) (((-645 (-772)) $ (-645 (-1084))) 131)) (-3893 (((-894 (-381)) $) 84 (-12 (|has| (-1084) (-615 (-894 (-381)))) (|has| |#1| (-615 (-894 (-381)))))) (((-894 (-567)) $) 83 (-12 (|has| (-1084) (-615 (-894 (-567)))) (|has| |#1| (-615 (-894 (-567)))))) (((-539) $) 82 (-12 (|has| (-1084) (-615 (-539))) (|has| |#1| (-615 (-539)))))) (-4358 ((|#1| $) 177 (|has| |#1| (-455))) (($ $ (-1084)) 108 (|has| |#1| (-455)))) (-1895 (((-3 (-1268 $) "failed") (-690 $)) 106 (-1667 (|has| $ (-145)) (|has| |#1| (-911))))) (-2159 (((-3 $ "failed") $ $) 224 (|has| |#1| (-559))) (((-3 (-410 $) "failed") (-410 $) $) 223 (|has| |#1| (-559)))) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 167) (($ (-1084)) 137) (($ (-410 (-567))) 80 (-2800 (|has| |#1| (-1040 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567)))))) (($ $) 87 (|has| |#1| (-559)))) (-3032 (((-645 |#1|) $) 170)) (-4136 ((|#1| $ (-772)) 157) (($ $ (-1084) (-772)) 130) (($ $ (-645 (-1084)) (-645 (-772))) 129)) (-1903 (((-3 $ "failed") $) 81 (-2800 (-1667 (|has| $ (-145)) (|has| |#1| (-911))) (|has| |#1| (-145))))) (-4221 (((-772)) 32 T CONST)) (-4176 (($ $ $ (-772)) 175 (|has| |#1| (-172)))) (-1745 (((-112) $ $) 9)) (-3816 (((-112) $ $) 91 (|has| |#1| (-559)))) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2637 (($ $ (-1084)) 42) (($ $ (-645 (-1084))) 41) (($ $ (-1084) (-772)) 40) (($ $ (-645 (-1084)) (-645 (-772))) 39) (($ $ (-772)) 256) (($ $) 254) (($ $ (-1178)) 248 (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178))) 247 (|has| |#1| (-902 (-1178)))) (($ $ (-1178) (-772)) 246 (|has| |#1| (-902 (-1178)))) (($ $ (-645 (-1178)) (-645 (-772))) 245 (|has| |#1| (-902 (-1178)))) (($ $ (-1 |#1| |#1|) (-772)) 244) (($ $ (-1 |#1| |#1|)) 243)) (-2936 (((-112) $ $) 6)) (-3060 (($ $ |#1|) 158 (|has| |#1| (-365)))) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 160 (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) 159 (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) 149) (($ $ |#1|) 148)))
-(((-1244 |#1|) (-140) (-1051)) (T -1244))
-((-4199 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-4 *1 (-1244 *4)) (-4 *4 (-1051)) (-5 *2 (-1268 *4)))) (-1647 (*1 *2 *1) (-12 (-4 *1 (-1244 *3)) (-4 *3 (-1051)) (-5 *2 (-1174 *3)))) (-2703 (*1 *1 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1051)) (-4 *1 (-1244 *3)))) (-3807 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1244 *3)) (-4 *3 (-1051)))) (-3997 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-772)) (-4 *1 (-1244 *3)) (-4 *3 (-1051)))) (-1621 (*1 *2 *1 *1) (-12 (-4 *3 (-1051)) (-5 *2 (-2 (|:| -3102 *1) (|:| -4194 *1))) (-4 *1 (-1244 *3)))) (-3139 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-4 *4 (-1051)) (-5 *2 (-2 (|:| -3102 *1) (|:| -4194 *1))) (-4 *1 (-1244 *4)))) (-1516 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1244 *3)) (-4 *3 (-1051)))) (-3993 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1244 *3)) (-4 *3 (-1051)))) (-1629 (*1 *1 *1 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1051)))) (-1593 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1244 *3)) (-4 *3 (-1051)))) (-3788 (*1 *2 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1051)) (-4 *2 (-172)))) (-2951 (*1 *2 *1 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1051)) (-4 *2 (-172)))) (-1787 (*1 *2 *2 *2) (-12 (-5 *2 (-410 *1)) (-4 *1 (-1244 *3)) (-4 *3 (-1051)) (-4 *3 (-559)))) (-4384 (*1 *2 *1 *1) (-12 (-4 *1 (-1244 *3)) (-4 *3 (-1051)) (-4 *3 (-559)) (-5 *2 (-772)))) (-2323 (*1 *1 *1 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1051)) (-4 *2 (-559)))) (-2159 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1244 *2)) (-4 *2 (-1051)) (-4 *2 (-559)))) (-2159 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-410 *1)) (-4 *1 (-1244 *3)) (-4 *3 (-1051)) (-4 *3 (-559)))) (-1946 (*1 *1 *1 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1051)) (-4 *2 (-559)))) (-3708 (*1 *2 *1 *1) (-12 (-4 *3 (-559)) (-4 *3 (-1051)) (-5 *2 (-2 (|:| -3694 *3) (|:| -3102 *1) (|:| -4194 *1))) (-4 *1 (-1244 *3)))) (-2743 (*1 *2 *1 *1) (-12 (-4 *3 (-455)) (-4 *3 (-1051)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1244 *3)))) (-1787 (*1 *2 *3 *2) (-12 (-5 *3 (-410 *1)) (-4 *1 (-1244 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))) (-2416 (*1 *1 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1051)) (-4 *2 (-38 (-410 (-567)))))))
-(-13 (-951 |t#1| (-772) (-1084)) (-287 |t#1| |t#1|) (-287 $ $) (-233) (-231 |t#1|) (-10 -8 (-15 -4199 ((-1268 |t#1|) $ (-772))) (-15 -1647 ((-1174 |t#1|) $)) (-15 -2703 ($ (-1174 |t#1|))) (-15 -3807 ($ $ (-772))) (-15 -3997 ((-3 $ "failed") $ (-772))) (-15 -1621 ((-2 (|:| -3102 $) (|:| -4194 $)) $ $)) (-15 -3139 ((-2 (|:| -3102 $) (|:| -4194 $)) $ (-772))) (-15 -1516 ($ $ (-772))) (-15 -3993 ($ $ (-772))) (-15 -1629 ($ $ $)) (-15 -1593 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1153)) (-6 (-1153)) |%noBranch|) (IF (|has| |t#1| (-172)) (PROGN (-15 -3788 (|t#1| $)) (-15 -2951 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-559)) (PROGN (-6 (-287 (-410 $) (-410 $))) (-15 -1787 ((-410 $) (-410 $) (-410 $))) (-15 -4384 ((-772) $ $)) (-15 -2323 ($ $ $)) (-15 -2159 ((-3 $ "failed") $ $)) (-15 -2159 ((-3 (-410 $) "failed") (-410 $) $)) (-15 -1946 ($ $ $)) (-15 -3708 ((-2 (|:| -3694 |t#1|) (|:| -3102 $) (|:| -4194 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-455)) (-15 -2743 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-365)) (PROGN (-6 (-308)) (-6 -4414) (-15 -1787 (|t#1| (-410 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-410 (-567)))) (-15 -2416 ($ $)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-772)) . T) ((-25) . T) ((-38 #1=(-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-365))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-410 (-567)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #1#) -2800 (|has| |#1| (-1040 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567))))) ((-617 (-567)) . T) ((-617 #2=(-1084)) . T) ((-617 |#1|) . T) ((-617 $) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-365))) ((-614 (-863)) . T) ((-172) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-615 (-539)) -12 (|has| (-1084) (-615 (-539))) (|has| |#1| (-615 (-539)))) ((-615 (-894 (-381))) -12 (|has| (-1084) (-615 (-894 (-381)))) (|has| |#1| (-615 (-894 (-381))))) ((-615 (-894 (-567))) -12 (|has| (-1084) (-615 (-894 (-567)))) (|has| |#1| (-615 (-894 (-567))))) ((-231 |#1|) . T) ((-233) . T) ((-287 (-410 $) (-410 $)) |has| |#1| (-559)) ((-287 |#1| |#1|) . T) ((-287 $ $) . T) ((-291) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-365))) ((-308) |has| |#1| (-365)) ((-310 $) . T) ((-327 |#1| #0#) . T) ((-379 |#1|) . T) ((-414 |#1|) . T) ((-455) -2800 (|has| |#1| (-911)) (|has| |#1| (-455)) (|has| |#1| (-365))) ((-517 #2# |#1|) . T) ((-517 #2# $) . T) ((-517 $ $) . T) ((-559) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-365))) ((-647 #1#) |has| |#1| (-38 (-410 (-567)))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #1#) |has| |#1| (-38 (-410 (-567)))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #1#) |has| |#1| (-38 (-410 (-567)))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-365))) ((-640 (-567)) |has| |#1| (-640 (-567))) ((-640 |#1|) . T) ((-718 #1#) |has| |#1| (-38 (-410 (-567)))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-365))) ((-727) . T) ((-902 #2#) . T) ((-902 (-1178)) |has| |#1| (-902 (-1178))) ((-888 (-381)) -12 (|has| (-1084) (-888 (-381))) (|has| |#1| (-888 (-381)))) ((-888 (-567)) -12 (|has| (-1084) (-888 (-567))) (|has| |#1| (-888 (-567)))) ((-951 |#1| #0# #2#) . T) ((-911) |has| |#1| (-911)) ((-922) |has| |#1| (-365)) ((-1040 (-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) ((-1040 (-567)) |has| |#1| (-1040 (-567))) ((-1040 #2#) . T) ((-1040 |#1|) . T) ((-1053 #1#) |has| |#1| (-38 (-410 (-567)))) ((-1053 |#1|) . T) ((-1053 $) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1058 #1#) |has| |#1| (-38 (-410 (-567)))) ((-1058 |#1|) . T) ((-1058 $) -2800 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1153) |has| |#1| (-1153)) ((-1222) |has| |#1| (-911)))
-((-2847 (((-645 (-1084)) $) 34)) (-3014 (($ $) 31)) (-2824 (($ |#2| |#3|) NIL) (($ $ (-1084) |#3|) 28) (($ $ (-645 (-1084)) (-645 |#3|)) 27)) (-2976 (($ $) 14)) (-2989 ((|#2| $) 12)) (-3077 ((|#3| $) 10)))
-(((-1245 |#1| |#2| |#3|) (-10 -8 (-15 -2847 ((-645 (-1084)) |#1|)) (-15 -2824 (|#1| |#1| (-645 (-1084)) (-645 |#3|))) (-15 -2824 (|#1| |#1| (-1084) |#3|)) (-15 -3014 (|#1| |#1|)) (-15 -2824 (|#1| |#2| |#3|)) (-15 -3077 (|#3| |#1|)) (-15 -2976 (|#1| |#1|)) (-15 -2989 (|#2| |#1|))) (-1246 |#2| |#3|) (-1051) (-793)) (T -1245))
-NIL
-(-10 -8 (-15 -2847 ((-645 (-1084)) |#1|)) (-15 -2824 (|#1| |#1| (-645 (-1084)) (-645 |#3|))) (-15 -2824 (|#1| |#1| (-1084) |#3|)) (-15 -3014 (|#1| |#1|)) (-15 -2824 (|#1| |#2| |#3|)) (-15 -3077 (|#3| |#1|)) (-15 -2976 (|#1| |#1|)) (-15 -2989 (|#2| |#1|)))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-2847 (((-645 (-1084)) $) 86)) (-3644 (((-1178) $) 115)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 63 (|has| |#1| (-559)))) (-4381 (($ $) 64 (|has| |#1| (-559)))) (-3949 (((-112) $) 66 (|has| |#1| (-559)))) (-1950 (($ $ |#2|) 110) (($ $ |#2| |#2|) 109)) (-1843 (((-1158 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 117)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-3014 (($ $) 72)) (-2109 (((-3 $ "failed") $) 37)) (-2762 (((-112) $) 85)) (-4384 ((|#2| $) 112) ((|#2| $ |#2|) 111)) (-1433 (((-112) $) 35)) (-3807 (($ $ (-923)) 113)) (-2843 (((-112) $) 74)) (-2824 (($ |#1| |#2|) 73) (($ $ (-1084) |#2|) 88) (($ $ (-645 (-1084)) (-645 |#2|)) 87)) (-3829 (($ (-1 |#1| |#1|) $) 75)) (-2976 (($ $) 77)) (-2989 ((|#1| $) 78)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-2410 (($ $ |#2|) 107)) (-2391 (((-3 $ "failed") $ $) 62 (|has| |#1| (-559)))) (-2631 (((-1158 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-1787 ((|#1| $ |#2|) 116) (($ $ $) 93 (|has| |#2| (-1114)))) (-1593 (($ $ (-645 (-1178)) (-645 (-772))) 101 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1178) (-772)) 100 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-645 (-1178))) 99 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1178)) 98 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-772)) 96 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3077 ((|#2| $) 76)) (-2192 (($ $) 84)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ (-410 (-567))) 69 (|has| |#1| (-38 (-410 (-567))))) (($ $) 61 (|has| |#1| (-559))) (($ |#1|) 59 (|has| |#1| (-172)))) (-4136 ((|#1| $ |#2|) 71)) (-1903 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-4221 (((-772)) 32 T CONST)) (-2166 ((|#1| $) 114)) (-1745 (((-112) $ $) 9)) (-3816 (((-112) $ $) 65 (|has| |#1| (-559)))) (-3050 ((|#1| $ |#2|) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -4132 (|#1| (-1178))))))) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2637 (($ $ (-645 (-1178)) (-645 (-772))) 105 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1178) (-772)) 104 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-645 (-1178))) 103 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1178)) 102 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-772)) 97 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2936 (((-112) $ $) 6)) (-3060 (($ $ |#1|) 70 (|has| |#1| (-365)))) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-410 (-567)) $) 68 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 67 (|has| |#1| (-38 (-410 (-567)))))))
-(((-1246 |#1| |#2|) (-140) (-1051) (-793)) (T -1246))
-((-1843 (*1 *2 *1) (-12 (-4 *1 (-1246 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-793)) (-5 *2 (-1158 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1787 (*1 *2 *1 *3) (-12 (-4 *1 (-1246 *2 *3)) (-4 *3 (-793)) (-4 *2 (-1051)))) (-3644 (*1 *2 *1) (-12 (-4 *1 (-1246 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-793)) (-5 *2 (-1178)))) (-2166 (*1 *2 *1) (-12 (-4 *1 (-1246 *2 *3)) (-4 *3 (-793)) (-4 *2 (-1051)))) (-3807 (*1 *1 *1 *2) (-12 (-5 *2 (-923)) (-4 *1 (-1246 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-793)))) (-4384 (*1 *2 *1) (-12 (-4 *1 (-1246 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-793)))) (-4384 (*1 *2 *1 *2) (-12 (-4 *1 (-1246 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-793)))) (-1950 (*1 *1 *1 *2) (-12 (-4 *1 (-1246 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-793)))) (-1950 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1246 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-793)))) (-3050 (*1 *2 *1 *3) (-12 (-4 *1 (-1246 *2 *3)) (-4 *3 (-793)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -4132 (*2 (-1178)))) (-4 *2 (-1051)))) (-2410 (*1 *1 *1 *2) (-12 (-4 *1 (-1246 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-793)))) (-2631 (*1 *2 *1 *3) (-12 (-4 *1 (-1246 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-793)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1158 *3)))))
-(-13 (-975 |t#1| |t#2| (-1084)) (-10 -8 (-15 -1843 ((-1158 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1787 (|t#1| $ |t#2|)) (-15 -3644 ((-1178) $)) (-15 -2166 (|t#1| $)) (-15 -3807 ($ $ (-923))) (-15 -4384 (|t#2| $)) (-15 -4384 (|t#2| $ |t#2|)) (-15 -1950 ($ $ |t#2|)) (-15 -1950 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -4132 (|t#1| (-1178)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3050 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -2410 ($ $ |t#2|)) (IF (|has| |t#2| (-1114)) (-6 (-287 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-233)) (IF (|has| |t#1| (-902 (-1178))) (-6 (-902 (-1178))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2631 ((-1158 |t#1|) $ |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-559)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-410 (-567)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2800 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #0#) |has| |#1| (-38 (-410 (-567)))) ((-617 (-567)) . T) ((-617 |#1|) |has| |#1| (-172)) ((-617 $) |has| |#1| (-559)) ((-614 (-863)) . T) ((-172) -2800 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-287 $ $) |has| |#2| (-1114)) ((-291) |has| |#1| (-559)) ((-559) |has| |#1| (-559)) ((-647 #0#) |has| |#1| (-38 (-410 (-567)))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) |has| |#1| (-38 (-410 (-567)))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) |has| |#1| (-38 (-410 (-567)))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) |has| |#1| (-559)) ((-718 #0#) |has| |#1| (-38 (-410 (-567)))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) |has| |#1| (-559)) ((-727) . T) ((-902 (-1178)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-902 (-1178)))) ((-975 |#1| |#2| (-1084)) . T) ((-1053 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1053 |#1|) . T) ((-1053 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-1058 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1058 |#1|) . T) ((-1058 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T))
-((-3248 ((|#2| |#2|) 12)) (-2908 (((-421 |#2|) |#2|) 14)) (-2246 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-567))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-567)))) 30)))
-(((-1247 |#1| |#2|) (-10 -7 (-15 -2908 ((-421 |#2|) |#2|)) (-15 -3248 (|#2| |#2|)) (-15 -2246 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-567))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-567)))))) (-559) (-13 (-1244 |#1|) (-559) (-10 -8 (-15 -2774 ($ $ $))))) (T -1247))
-((-2246 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-567)))) (-4 *4 (-13 (-1244 *3) (-559) (-10 -8 (-15 -2774 ($ $ $))))) (-4 *3 (-559)) (-5 *1 (-1247 *3 *4)))) (-3248 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-1247 *3 *2)) (-4 *2 (-13 (-1244 *3) (-559) (-10 -8 (-15 -2774 ($ $ $))))))) (-2908 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-421 *3)) (-5 *1 (-1247 *4 *3)) (-4 *3 (-13 (-1244 *4) (-559) (-10 -8 (-15 -2774 ($ $ $))))))))
-(-10 -7 (-15 -2908 ((-421 |#2|) |#2|)) (-15 -3248 (|#2| |#2|)) (-15 -2246 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-567))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-567))))))
-((-3829 (((-1253 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1253 |#1| |#3| |#5|)) 24)))
-(((-1248 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3829 ((-1253 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1253 |#1| |#3| |#5|)))) (-1051) (-1051) (-1178) (-1178) |#1| |#2|) (T -1248))
-((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1253 *5 *7 *9)) (-4 *5 (-1051)) (-4 *6 (-1051)) (-14 *7 (-1178)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1253 *6 *8 *10)) (-5 *1 (-1248 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1178)))))
-(-10 -7 (-15 -3829 ((-1253 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1253 |#1| |#3| |#5|))))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-2847 (((-645 (-1084)) $) 86)) (-3644 (((-1178) $) 115)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 63 (|has| |#1| (-559)))) (-4381 (($ $) 64 (|has| |#1| (-559)))) (-3949 (((-112) $) 66 (|has| |#1| (-559)))) (-1950 (($ $ (-410 (-567))) 110) (($ $ (-410 (-567)) (-410 (-567))) 109)) (-1843 (((-1158 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|))) $) 117)) (-3146 (($ $) 147 (|has| |#1| (-38 (-410 (-567)))))) (-3012 (($ $) 130 (|has| |#1| (-38 (-410 (-567)))))) (-3472 (((-3 $ "failed") $ $) 20)) (-3248 (($ $) 174 (|has| |#1| (-365)))) (-2908 (((-421 $) $) 175 (|has| |#1| (-365)))) (-2716 (($ $) 129 (|has| |#1| (-38 (-410 (-567)))))) (-3609 (((-112) $ $) 165 (|has| |#1| (-365)))) (-3128 (($ $) 146 (|has| |#1| (-38 (-410 (-567)))))) (-2987 (($ $) 131 (|has| |#1| (-38 (-410 (-567)))))) (-1306 (($ (-772) (-1158 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|)))) 183)) (-3166 (($ $) 145 (|has| |#1| (-38 (-410 (-567)))))) (-3035 (($ $) 132 (|has| |#1| (-38 (-410 (-567)))))) (-2585 (($) 18 T CONST)) (-2349 (($ $ $) 169 (|has| |#1| (-365)))) (-3014 (($ $) 72)) (-2109 (((-3 $ "failed") $) 37)) (-2360 (($ $ $) 168 (|has| |#1| (-365)))) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) 163 (|has| |#1| (-365)))) (-3184 (((-112) $) 176 (|has| |#1| (-365)))) (-2762 (((-112) $) 85)) (-1482 (($) 157 (|has| |#1| (-38 (-410 (-567)))))) (-4384 (((-410 (-567)) $) 112) (((-410 (-567)) $ (-410 (-567))) 111)) (-1433 (((-112) $) 35)) (-2651 (($ $ (-567)) 128 (|has| |#1| (-38 (-410 (-567)))))) (-3807 (($ $ (-923)) 113) (($ $ (-410 (-567))) 182)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) 172 (|has| |#1| (-365)))) (-2843 (((-112) $) 74)) (-2824 (($ |#1| (-410 (-567))) 73) (($ $ (-1084) (-410 (-567))) 88) (($ $ (-645 (-1084)) (-645 (-410 (-567)))) 87)) (-3829 (($ (-1 |#1| |#1|) $) 75)) (-3063 (($ $) 154 (|has| |#1| (-38 (-410 (-567)))))) (-2976 (($ $) 77)) (-2989 ((|#1| $) 78)) (-2740 (($ (-645 $)) 161 (|has| |#1| (-365))) (($ $ $) 160 (|has| |#1| (-365)))) (-1419 (((-1160) $) 10)) (-2939 (($ $) 177 (|has| |#1| (-365)))) (-2416 (($ $) 181 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1178)) 180 (-2800 (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-961)) (|has| |#1| (-1203)) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-15 -2847 ((-645 (-1178)) |#1|))) (|has| |#1| (-15 -2416 (|#1| |#1| (-1178)))) (|has| |#1| (-38 (-410 (-567)))))))) (-3430 (((-1122) $) 11)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 162 (|has| |#1| (-365)))) (-2774 (($ (-645 $)) 159 (|has| |#1| (-365))) (($ $ $) 158 (|has| |#1| (-365)))) (-2706 (((-421 $) $) 173 (|has| |#1| (-365)))) (-3402 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 171 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) 170 (|has| |#1| (-365)))) (-2410 (($ $ (-410 (-567))) 107)) (-2391 (((-3 $ "failed") $ $) 62 (|has| |#1| (-559)))) (-3117 (((-3 (-645 $) "failed") (-645 $) $) 164 (|has| |#1| (-365)))) (-3946 (($ $) 155 (|has| |#1| (-38 (-410 (-567)))))) (-2631 (((-1158 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))))) (-1990 (((-772) $) 166 (|has| |#1| (-365)))) (-1787 ((|#1| $ (-410 (-567))) 116) (($ $ $) 93 (|has| (-410 (-567)) (-1114)))) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 167 (|has| |#1| (-365)))) (-1593 (($ $ (-645 (-1178)) (-645 (-772))) 101 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-1178) (-772)) 100 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-645 (-1178))) 99 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-1178)) 98 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-772)) 96 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (-3077 (((-410 (-567)) $) 76)) (-3175 (($ $) 144 (|has| |#1| (-38 (-410 (-567)))))) (-3049 (($ $) 133 (|has| |#1| (-38 (-410 (-567)))))) (-3156 (($ $) 143 (|has| |#1| (-38 (-410 (-567)))))) (-3023 (($ $) 134 (|has| |#1| (-38 (-410 (-567)))))) (-3137 (($ $) 142 (|has| |#1| (-38 (-410 (-567)))))) (-2999 (($ $) 135 (|has| |#1| (-38 (-410 (-567)))))) (-2192 (($ $) 84)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 59 (|has| |#1| (-172))) (($ (-410 (-567))) 69 (|has| |#1| (-38 (-410 (-567))))) (($ $) 61 (|has| |#1| (-559)))) (-4136 ((|#1| $ (-410 (-567))) 71)) (-1903 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-4221 (((-772)) 32 T CONST)) (-2166 ((|#1| $) 114)) (-1745 (((-112) $ $) 9)) (-3200 (($ $) 153 (|has| |#1| (-38 (-410 (-567)))))) (-3084 (($ $) 141 (|has| |#1| (-38 (-410 (-567)))))) (-3816 (((-112) $ $) 65 (|has| |#1| (-559)))) (-3183 (($ $) 152 (|has| |#1| (-38 (-410 (-567)))))) (-3062 (($ $) 140 (|has| |#1| (-38 (-410 (-567)))))) (-3221 (($ $) 151 (|has| |#1| (-38 (-410 (-567)))))) (-3106 (($ $) 139 (|has| |#1| (-38 (-410 (-567)))))) (-3050 ((|#1| $ (-410 (-567))) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))) (|has| |#1| (-15 -4132 (|#1| (-1178))))))) (-3785 (($ $) 150 (|has| |#1| (-38 (-410 (-567)))))) (-3118 (($ $) 138 (|has| |#1| (-38 (-410 (-567)))))) (-3211 (($ $) 149 (|has| |#1| (-38 (-410 (-567)))))) (-3095 (($ $) 137 (|has| |#1| (-38 (-410 (-567)))))) (-3193 (($ $) 148 (|has| |#1| (-38 (-410 (-567)))))) (-3074 (($ $) 136 (|has| |#1| (-38 (-410 (-567)))))) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2637 (($ $ (-645 (-1178)) (-645 (-772))) 105 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-1178) (-772)) 104 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-645 (-1178))) 103 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-1178)) 102 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-772)) 97 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (-2936 (((-112) $ $) 6)) (-3060 (($ $ |#1|) 70 (|has| |#1| (-365))) (($ $ $) 179 (|has| |#1| (-365)))) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 178 (|has| |#1| (-365))) (($ $ $) 156 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 127 (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-410 (-567)) $) 68 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 67 (|has| |#1| (-38 (-410 (-567)))))))
-(((-1249 |#1|) (-140) (-1051)) (T -1249))
-((-1306 (*1 *1 *2 *3) (-12 (-5 *2 (-772)) (-5 *3 (-1158 (-2 (|:| |k| (-410 (-567))) (|:| |c| *4)))) (-4 *4 (-1051)) (-4 *1 (-1249 *4)))) (-3807 (*1 *1 *1 *2) (-12 (-5 *2 (-410 (-567))) (-4 *1 (-1249 *3)) (-4 *3 (-1051)))) (-2416 (*1 *1 *1) (-12 (-4 *1 (-1249 *2)) (-4 *2 (-1051)) (-4 *2 (-38 (-410 (-567)))))) (-2416 (*1 *1 *1 *2) (-2800 (-12 (-5 *2 (-1178)) (-4 *1 (-1249 *3)) (-4 *3 (-1051)) (-12 (-4 *3 (-29 (-567))) (-4 *3 (-961)) (-4 *3 (-1203)) (-4 *3 (-38 (-410 (-567)))))) (-12 (-5 *2 (-1178)) (-4 *1 (-1249 *3)) (-4 *3 (-1051)) (-12 (|has| *3 (-15 -2847 ((-645 *2) *3))) (|has| *3 (-15 -2416 (*3 *3 *2))) (-4 *3 (-38 (-410 (-567)))))))))
-(-13 (-1246 |t#1| (-410 (-567))) (-10 -8 (-15 -1306 ($ (-772) (-1158 (-2 (|:| |k| (-410 (-567))) (|:| |c| |t#1|))))) (-15 -3807 ($ $ (-410 (-567)))) (IF (|has| |t#1| (-38 (-410 (-567)))) (PROGN (-15 -2416 ($ $)) (IF (|has| |t#1| (-15 -2416 (|t#1| |t#1| (-1178)))) (IF (|has| |t#1| (-15 -2847 ((-645 (-1178)) |t#1|))) (-15 -2416 ($ $ (-1178))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1203)) (IF (|has| |t#1| (-961)) (IF (|has| |t#1| (-29 (-567))) (-15 -2416 ($ $ (-1178))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1004)) (-6 (-1203))) |%noBranch|) (IF (|has| |t#1| (-365)) (-6 (-365)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-410 (-567))) . T) ((-25) . T) ((-38 #1=(-410 (-567))) -2800 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-35) |has| |#1| (-38 (-410 (-567)))) ((-95) |has| |#1| (-38 (-410 (-567)))) ((-102) . T) ((-111 #1# #1#) -2800 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2800 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #1#) -2800 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-617 (-567)) . T) ((-617 |#1|) |has| |#1| (-172)) ((-617 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-614 (-863)) . T) ((-172) -2800 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) ((-243) |has| |#1| (-365)) ((-285) |has| |#1| (-38 (-410 (-567)))) ((-287 $ $) |has| (-410 (-567)) (-1114)) ((-291) -2800 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-308) |has| |#1| (-365)) ((-365) |has| |#1| (-365)) ((-455) |has| |#1| (-365)) ((-496) |has| |#1| (-38 (-410 (-567)))) ((-559) -2800 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-647 #1#) -2800 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #1#) -2800 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #1#) -2800 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-718 #1#) -2800 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-727) . T) ((-902 (-1178)) -12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178)))) ((-975 |#1| #0# (-1084)) . T) ((-922) |has| |#1| (-365)) ((-1004) |has| |#1| (-38 (-410 (-567)))) ((-1053 #1#) -2800 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-1053 |#1|) . T) ((-1053 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1058 #1#) -2800 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-1058 |#1|) . T) ((-1058 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1203) |has| |#1| (-38 (-410 (-567)))) ((-1206) |has| |#1| (-38 (-410 (-567)))) ((-1222) |has| |#1| (-365)) ((-1246 |#1| #0#) . T))
-((-2460 (((-112) $) 12)) (-3753 (((-3 |#3| "failed") $) 17)) (-2038 ((|#3| $) 14)))
-(((-1250 |#1| |#2| |#3|) (-10 -8 (-15 -3753 ((-3 |#3| "failed") |#1|)) (-15 -2038 (|#3| |#1|)) (-15 -2460 ((-112) |#1|))) (-1251 |#2| |#3|) (-1051) (-1228 |#2|)) (T -1250))
-NIL
-(-10 -8 (-15 -3753 ((-3 |#3| "failed") |#1|)) (-15 -2038 (|#3| |#1|)) (-15 -2460 ((-112) |#1|)))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-2847 (((-645 (-1084)) $) 86)) (-3644 (((-1178) $) 115)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 63 (|has| |#1| (-559)))) (-4381 (($ $) 64 (|has| |#1| (-559)))) (-3949 (((-112) $) 66 (|has| |#1| (-559)))) (-1950 (($ $ (-410 (-567))) 110) (($ $ (-410 (-567)) (-410 (-567))) 109)) (-1843 (((-1158 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|))) $) 117)) (-3146 (($ $) 147 (|has| |#1| (-38 (-410 (-567)))))) (-3012 (($ $) 130 (|has| |#1| (-38 (-410 (-567)))))) (-3472 (((-3 $ "failed") $ $) 20)) (-3248 (($ $) 174 (|has| |#1| (-365)))) (-2908 (((-421 $) $) 175 (|has| |#1| (-365)))) (-2716 (($ $) 129 (|has| |#1| (-38 (-410 (-567)))))) (-3609 (((-112) $ $) 165 (|has| |#1| (-365)))) (-3128 (($ $) 146 (|has| |#1| (-38 (-410 (-567)))))) (-2987 (($ $) 131 (|has| |#1| (-38 (-410 (-567)))))) (-1306 (($ (-772) (-1158 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|)))) 183)) (-3166 (($ $) 145 (|has| |#1| (-38 (-410 (-567)))))) (-3035 (($ $) 132 (|has| |#1| (-38 (-410 (-567)))))) (-2585 (($) 18 T CONST)) (-3753 (((-3 |#2| "failed") $) 194)) (-2038 ((|#2| $) 195)) (-2349 (($ $ $) 169 (|has| |#1| (-365)))) (-3014 (($ $) 72)) (-2109 (((-3 $ "failed") $) 37)) (-3058 (((-410 (-567)) $) 191)) (-2360 (($ $ $) 168 (|has| |#1| (-365)))) (-2919 (($ (-410 (-567)) |#2|) 192)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) 163 (|has| |#1| (-365)))) (-3184 (((-112) $) 176 (|has| |#1| (-365)))) (-2762 (((-112) $) 85)) (-1482 (($) 157 (|has| |#1| (-38 (-410 (-567)))))) (-4384 (((-410 (-567)) $) 112) (((-410 (-567)) $ (-410 (-567))) 111)) (-1433 (((-112) $) 35)) (-2651 (($ $ (-567)) 128 (|has| |#1| (-38 (-410 (-567)))))) (-3807 (($ $ (-923)) 113) (($ $ (-410 (-567))) 182)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) 172 (|has| |#1| (-365)))) (-2843 (((-112) $) 74)) (-2824 (($ |#1| (-410 (-567))) 73) (($ $ (-1084) (-410 (-567))) 88) (($ $ (-645 (-1084)) (-645 (-410 (-567)))) 87)) (-3829 (($ (-1 |#1| |#1|) $) 75)) (-3063 (($ $) 154 (|has| |#1| (-38 (-410 (-567)))))) (-2976 (($ $) 77)) (-2989 ((|#1| $) 78)) (-2740 (($ (-645 $)) 161 (|has| |#1| (-365))) (($ $ $) 160 (|has| |#1| (-365)))) (-3804 ((|#2| $) 190)) (-4144 (((-3 |#2| "failed") $) 188)) (-2907 ((|#2| $) 189)) (-1419 (((-1160) $) 10)) (-2939 (($ $) 177 (|has| |#1| (-365)))) (-2416 (($ $) 181 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1178)) 180 (-2800 (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-961)) (|has| |#1| (-1203)) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-15 -2847 ((-645 (-1178)) |#1|))) (|has| |#1| (-15 -2416 (|#1| |#1| (-1178)))) (|has| |#1| (-38 (-410 (-567)))))))) (-3430 (((-1122) $) 11)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 162 (|has| |#1| (-365)))) (-2774 (($ (-645 $)) 159 (|has| |#1| (-365))) (($ $ $) 158 (|has| |#1| (-365)))) (-2706 (((-421 $) $) 173 (|has| |#1| (-365)))) (-3402 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 171 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) 170 (|has| |#1| (-365)))) (-2410 (($ $ (-410 (-567))) 107)) (-2391 (((-3 $ "failed") $ $) 62 (|has| |#1| (-559)))) (-3117 (((-3 (-645 $) "failed") (-645 $) $) 164 (|has| |#1| (-365)))) (-3946 (($ $) 155 (|has| |#1| (-38 (-410 (-567)))))) (-2631 (((-1158 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))))) (-1990 (((-772) $) 166 (|has| |#1| (-365)))) (-1787 ((|#1| $ (-410 (-567))) 116) (($ $ $) 93 (|has| (-410 (-567)) (-1114)))) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 167 (|has| |#1| (-365)))) (-1593 (($ $ (-645 (-1178)) (-645 (-772))) 101 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-1178) (-772)) 100 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-645 (-1178))) 99 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-1178)) 98 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-772)) 96 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (-3077 (((-410 (-567)) $) 76)) (-3175 (($ $) 144 (|has| |#1| (-38 (-410 (-567)))))) (-3049 (($ $) 133 (|has| |#1| (-38 (-410 (-567)))))) (-3156 (($ $) 143 (|has| |#1| (-38 (-410 (-567)))))) (-3023 (($ $) 134 (|has| |#1| (-38 (-410 (-567)))))) (-3137 (($ $) 142 (|has| |#1| (-38 (-410 (-567)))))) (-2999 (($ $) 135 (|has| |#1| (-38 (-410 (-567)))))) (-2192 (($ $) 84)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 59 (|has| |#1| (-172))) (($ |#2|) 193) (($ (-410 (-567))) 69 (|has| |#1| (-38 (-410 (-567))))) (($ $) 61 (|has| |#1| (-559)))) (-4136 ((|#1| $ (-410 (-567))) 71)) (-1903 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-4221 (((-772)) 32 T CONST)) (-2166 ((|#1| $) 114)) (-1745 (((-112) $ $) 9)) (-3200 (($ $) 153 (|has| |#1| (-38 (-410 (-567)))))) (-3084 (($ $) 141 (|has| |#1| (-38 (-410 (-567)))))) (-3816 (((-112) $ $) 65 (|has| |#1| (-559)))) (-3183 (($ $) 152 (|has| |#1| (-38 (-410 (-567)))))) (-3062 (($ $) 140 (|has| |#1| (-38 (-410 (-567)))))) (-3221 (($ $) 151 (|has| |#1| (-38 (-410 (-567)))))) (-3106 (($ $) 139 (|has| |#1| (-38 (-410 (-567)))))) (-3050 ((|#1| $ (-410 (-567))) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))) (|has| |#1| (-15 -4132 (|#1| (-1178))))))) (-3785 (($ $) 150 (|has| |#1| (-38 (-410 (-567)))))) (-3118 (($ $) 138 (|has| |#1| (-38 (-410 (-567)))))) (-3211 (($ $) 149 (|has| |#1| (-38 (-410 (-567)))))) (-3095 (($ $) 137 (|has| |#1| (-38 (-410 (-567)))))) (-3193 (($ $) 148 (|has| |#1| (-38 (-410 (-567)))))) (-3074 (($ $) 136 (|has| |#1| (-38 (-410 (-567)))))) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2637 (($ $ (-645 (-1178)) (-645 (-772))) 105 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-1178) (-772)) 104 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-645 (-1178))) 103 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-1178)) 102 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-772)) 97 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (-2936 (((-112) $ $) 6)) (-3060 (($ $ |#1|) 70 (|has| |#1| (-365))) (($ $ $) 179 (|has| |#1| (-365)))) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 178 (|has| |#1| (-365))) (($ $ $) 156 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 127 (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-410 (-567)) $) 68 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 67 (|has| |#1| (-38 (-410 (-567)))))))
-(((-1251 |#1| |#2|) (-140) (-1051) (-1228 |t#1|)) (T -1251))
-((-3077 (*1 *2 *1) (-12 (-4 *1 (-1251 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-1228 *3)) (-5 *2 (-410 (-567))))) (-2919 (*1 *1 *2 *3) (-12 (-5 *2 (-410 (-567))) (-4 *4 (-1051)) (-4 *1 (-1251 *4 *3)) (-4 *3 (-1228 *4)))) (-3058 (*1 *2 *1) (-12 (-4 *1 (-1251 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-1228 *3)) (-5 *2 (-410 (-567))))) (-3804 (*1 *2 *1) (-12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-1228 *3)))) (-2907 (*1 *2 *1) (-12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-1228 *3)))) (-4144 (*1 *2 *1) (|partial| -12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-1228 *3)))))
-(-13 (-1249 |t#1|) (-1040 |t#2|) (-617 |t#2|) (-10 -8 (-15 -2919 ($ (-410 (-567)) |t#2|)) (-15 -3058 ((-410 (-567)) $)) (-15 -3804 (|t#2| $)) (-15 -3077 ((-410 (-567)) $)) (-15 -2907 (|t#2| $)) (-15 -4144 ((-3 |t#2| "failed") $))))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-410 (-567))) . T) ((-25) . T) ((-38 #1=(-410 (-567))) -2800 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-35) |has| |#1| (-38 (-410 (-567)))) ((-95) |has| |#1| (-38 (-410 (-567)))) ((-102) . T) ((-111 #1# #1#) -2800 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2800 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #1#) -2800 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-617 (-567)) . T) ((-617 |#1|) |has| |#1| (-172)) ((-617 |#2|) . T) ((-617 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-614 (-863)) . T) ((-172) -2800 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) ((-243) |has| |#1| (-365)) ((-285) |has| |#1| (-38 (-410 (-567)))) ((-287 $ $) |has| (-410 (-567)) (-1114)) ((-291) -2800 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-308) |has| |#1| (-365)) ((-365) |has| |#1| (-365)) ((-455) |has| |#1| (-365)) ((-496) |has| |#1| (-38 (-410 (-567)))) ((-559) -2800 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-647 #1#) -2800 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #1#) -2800 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #1#) -2800 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-718 #1#) -2800 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-727) . T) ((-902 (-1178)) -12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178)))) ((-975 |#1| #0# (-1084)) . T) ((-922) |has| |#1| (-365)) ((-1004) |has| |#1| (-38 (-410 (-567)))) ((-1040 |#2|) . T) ((-1053 #1#) -2800 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-1053 |#1|) . T) ((-1053 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1058 #1#) -2800 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-1058 |#1|) . T) ((-1058 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1203) |has| |#1| (-38 (-410 (-567)))) ((-1206) |has| |#1| (-38 (-410 (-567)))) ((-1222) |has| |#1| (-365)) ((-1246 |#1| #0#) . T) ((-1249 |#1|) . T))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-2847 (((-645 (-1084)) $) NIL)) (-3644 (((-1178) $) 104)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-4381 (($ $) NIL (|has| |#1| (-559)))) (-3949 (((-112) $) NIL (|has| |#1| (-559)))) (-1950 (($ $ (-410 (-567))) 116) (($ $ (-410 (-567)) (-410 (-567))) 118)) (-1843 (((-1158 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|))) $) 54)) (-3146 (($ $) 192 (|has| |#1| (-38 (-410 (-567)))))) (-3012 (($ $) 168 (|has| |#1| (-38 (-410 (-567)))))) (-3472 (((-3 $ "failed") $ $) NIL)) (-3248 (($ $) NIL (|has| |#1| (-365)))) (-2908 (((-421 $) $) NIL (|has| |#1| (-365)))) (-2716 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3609 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3128 (($ $) 188 (|has| |#1| (-38 (-410 (-567)))))) (-2987 (($ $) 164 (|has| |#1| (-38 (-410 (-567)))))) (-1306 (($ (-772) (-1158 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|)))) 65)) (-3166 (($ $) 196 (|has| |#1| (-38 (-410 (-567)))))) (-3035 (($ $) 172 (|has| |#1| (-38 (-410 (-567)))))) (-2585 (($) NIL T CONST)) (-3753 (((-3 |#2| "failed") $) NIL)) (-2038 ((|#2| $) NIL)) (-2349 (($ $ $) NIL (|has| |#1| (-365)))) (-3014 (($ $) NIL)) (-2109 (((-3 $ "failed") $) 85)) (-3058 (((-410 (-567)) $) 13)) (-2360 (($ $ $) NIL (|has| |#1| (-365)))) (-2919 (($ (-410 (-567)) |#2|) 11)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-3184 (((-112) $) NIL (|has| |#1| (-365)))) (-2762 (((-112) $) 74)) (-1482 (($) NIL (|has| |#1| (-38 (-410 (-567)))))) (-4384 (((-410 (-567)) $) 113) (((-410 (-567)) $ (-410 (-567))) 114)) (-1433 (((-112) $) NIL)) (-2651 (($ $ (-567)) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3807 (($ $ (-923)) 130) (($ $ (-410 (-567))) 128)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-2843 (((-112) $) NIL)) (-2824 (($ |#1| (-410 (-567))) 33) (($ $ (-1084) (-410 (-567))) NIL) (($ $ (-645 (-1084)) (-645 (-410 (-567)))) NIL)) (-3829 (($ (-1 |#1| |#1|) $) 125)) (-3063 (($ $) 162 (|has| |#1| (-38 (-410 (-567)))))) (-2976 (($ $) NIL)) (-2989 ((|#1| $) NIL)) (-2740 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3804 ((|#2| $) 12)) (-4144 (((-3 |#2| "failed") $) 44)) (-2907 ((|#2| $) 45)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) 101 (|has| |#1| (-365)))) (-2416 (($ $) 146 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1178)) 151 (-2800 (-12 (|has| |#1| (-15 -2416 (|#1| |#1| (-1178)))) (|has| |#1| (-15 -2847 ((-645 (-1178)) |#1|))) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-961)) (|has| |#1| (-1203)))))) (-3430 (((-1122) $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#1| (-365)))) (-2774 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2706 (((-421 $) $) NIL (|has| |#1| (-365)))) (-3402 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL (|has| |#1| (-365)))) (-2410 (($ $ (-410 (-567))) 122)) (-2391 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-3946 (($ $) 160 (|has| |#1| (-38 (-410 (-567)))))) (-2631 (((-1158 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))))) (-1990 (((-772) $) NIL (|has| |#1| (-365)))) (-1787 ((|#1| $ (-410 (-567))) 108) (($ $ $) 94 (|has| (-410 (-567)) (-1114)))) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL (|has| |#1| (-365)))) (-1593 (($ $ (-645 (-1178)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-1178) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-645 (-1178))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-1178)) 138 (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) 134 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (-3077 (((-410 (-567)) $) 16)) (-3175 (($ $) 198 (|has| |#1| (-38 (-410 (-567)))))) (-3049 (($ $) 174 (|has| |#1| (-38 (-410 (-567)))))) (-3156 (($ $) 194 (|has| |#1| (-38 (-410 (-567)))))) (-3023 (($ $) 170 (|has| |#1| (-38 (-410 (-567)))))) (-3137 (($ $) 190 (|has| |#1| (-38 (-410 (-567)))))) (-2999 (($ $) 166 (|has| |#1| (-38 (-410 (-567)))))) (-2192 (($ $) 120)) (-4132 (((-863) $) NIL) (($ (-567)) 37) (($ |#1|) 27 (|has| |#1| (-172))) (($ |#2|) 34) (($ (-410 (-567))) 139 (|has| |#1| (-38 (-410 (-567))))) (($ $) NIL (|has| |#1| (-559)))) (-4136 ((|#1| $ (-410 (-567))) 107)) (-1903 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-4221 (((-772)) 127 T CONST)) (-2166 ((|#1| $) 106)) (-1745 (((-112) $ $) NIL)) (-3200 (($ $) 204 (|has| |#1| (-38 (-410 (-567)))))) (-3084 (($ $) 180 (|has| |#1| (-38 (-410 (-567)))))) (-3816 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3183 (($ $) 200 (|has| |#1| (-38 (-410 (-567)))))) (-3062 (($ $) 176 (|has| |#1| (-38 (-410 (-567)))))) (-3221 (($ $) 208 (|has| |#1| (-38 (-410 (-567)))))) (-3106 (($ $) 184 (|has| |#1| (-38 (-410 (-567)))))) (-3050 ((|#1| $ (-410 (-567))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))) (|has| |#1| (-15 -4132 (|#1| (-1178))))))) (-3785 (($ $) 210 (|has| |#1| (-38 (-410 (-567)))))) (-3118 (($ $) 186 (|has| |#1| (-38 (-410 (-567)))))) (-3211 (($ $) 206 (|has| |#1| (-38 (-410 (-567)))))) (-3095 (($ $) 182 (|has| |#1| (-38 (-410 (-567)))))) (-3193 (($ $) 202 (|has| |#1| (-38 (-410 (-567)))))) (-3074 (($ $) 178 (|has| |#1| (-38 (-410 (-567)))))) (-1716 (($) 21 T CONST)) (-1728 (($) 17 T CONST)) (-2637 (($ $ (-645 (-1178)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-1178) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-645 (-1178))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-1178)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (-2936 (((-112) $ $) 72)) (-3060 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) 100 (|has| |#1| (-365)))) (-3045 (($ $) 142) (($ $ $) 78)) (-3033 (($ $ $) 76)) (** (($ $ (-923)) NIL) (($ $ (-772)) 82) (($ $ (-567)) 157 (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 158 (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) 137) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))))
-(((-1252 |#1| |#2|) (-1251 |#1| |#2|) (-1051) (-1228 |#1|)) (T -1252))
-NIL
-(-1251 |#1| |#2|)
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-2847 (((-645 (-1084)) $) NIL)) (-3644 (((-1178) $) 11)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-4381 (($ $) NIL (|has| |#1| (-559)))) (-3949 (((-112) $) NIL (|has| |#1| (-559)))) (-1950 (($ $ (-410 (-567))) NIL) (($ $ (-410 (-567)) (-410 (-567))) NIL)) (-1843 (((-1158 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|))) $) NIL)) (-3146 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3012 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3472 (((-3 $ "failed") $ $) NIL)) (-3248 (($ $) NIL (|has| |#1| (-365)))) (-2908 (((-421 $) $) NIL (|has| |#1| (-365)))) (-2716 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3609 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3128 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2987 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1306 (($ (-772) (-1158 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|)))) NIL)) (-3166 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3035 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2585 (($) NIL T CONST)) (-3753 (((-3 (-1232 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1260 |#1| |#2| |#3|) "failed") $) 22)) (-2038 (((-1232 |#1| |#2| |#3|) $) NIL) (((-1260 |#1| |#2| |#3|) $) NIL)) (-2349 (($ $ $) NIL (|has| |#1| (-365)))) (-3014 (($ $) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-3058 (((-410 (-567)) $) 69)) (-2360 (($ $ $) NIL (|has| |#1| (-365)))) (-2919 (($ (-410 (-567)) (-1232 |#1| |#2| |#3|)) NIL)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-3184 (((-112) $) NIL (|has| |#1| (-365)))) (-2762 (((-112) $) NIL)) (-1482 (($) NIL (|has| |#1| (-38 (-410 (-567)))))) (-4384 (((-410 (-567)) $) NIL) (((-410 (-567)) $ (-410 (-567))) NIL)) (-1433 (((-112) $) NIL)) (-2651 (($ $ (-567)) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3807 (($ $ (-923)) NIL) (($ $ (-410 (-567))) NIL)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-2843 (((-112) $) NIL)) (-2824 (($ |#1| (-410 (-567))) 30) (($ $ (-1084) (-410 (-567))) NIL) (($ $ (-645 (-1084)) (-645 (-410 (-567)))) NIL)) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-3063 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2976 (($ $) NIL)) (-2989 ((|#1| $) NIL)) (-2740 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3804 (((-1232 |#1| |#2| |#3|) $) 72)) (-4144 (((-3 (-1232 |#1| |#2| |#3|) "failed") $) NIL)) (-2907 (((-1232 |#1| |#2| |#3|) $) NIL)) (-1419 (((-1160) $) NIL)) (-2939 (($ $) NIL (|has| |#1| (-365)))) (-2416 (($ $) 39 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1178)) NIL (-2800 (-12 (|has| |#1| (-15 -2416 (|#1| |#1| (-1178)))) (|has| |#1| (-15 -2847 ((-645 (-1178)) |#1|))) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-961)) (|has| |#1| (-1203))))) (($ $ (-1264 |#2|)) 40 (|has| |#1| (-38 (-410 (-567)))))) (-3430 (((-1122) $) NIL)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#1| (-365)))) (-2774 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2706 (((-421 $) $) NIL (|has| |#1| (-365)))) (-3402 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) NIL (|has| |#1| (-365)))) (-2410 (($ $ (-410 (-567))) NIL)) (-2391 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-3117 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-3946 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2631 (((-1158 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))))) (-1990 (((-772) $) NIL (|has| |#1| (-365)))) (-1787 ((|#1| $ (-410 (-567))) NIL) (($ $ $) NIL (|has| (-410 (-567)) (-1114)))) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) NIL (|has| |#1| (-365)))) (-1593 (($ $ (-645 (-1178)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-1178) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-645 (-1178))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-1178)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $ (-1264 |#2|)) 38)) (-3077 (((-410 (-567)) $) NIL)) (-3175 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3049 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3156 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3023 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3137 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2999 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2192 (($ $) NIL)) (-4132 (((-863) $) 109) (($ (-567)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1232 |#1| |#2| |#3|)) 16) (($ (-1260 |#1| |#2| |#3|)) 17) (($ (-1264 |#2|)) 36) (($ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $) NIL (|has| |#1| (-559)))) (-4136 ((|#1| $ (-410 (-567))) NIL)) (-1903 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-4221 (((-772)) NIL T CONST)) (-2166 ((|#1| $) 12)) (-1745 (((-112) $ $) NIL)) (-3200 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3084 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3816 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3183 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3062 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3221 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3106 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3050 ((|#1| $ (-410 (-567))) 74 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))) (|has| |#1| (-15 -4132 (|#1| (-1178))))))) (-3785 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3118 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3211 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3095 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3193 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3074 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1716 (($) 32 T CONST)) (-1728 (($) 26 T CONST)) (-2637 (($ $ (-645 (-1178)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-1178) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-645 (-1178))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-1178)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) 34)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))))
-(((-1253 |#1| |#2| |#3|) (-13 (-1251 |#1| (-1232 |#1| |#2| |#3|)) (-1040 (-1260 |#1| |#2| |#3|)) (-617 (-1264 |#2|)) (-10 -8 (-15 -1593 ($ $ (-1264 |#2|))) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -2416 ($ $ (-1264 |#2|))) |%noBranch|))) (-1051) (-1178) |#1|) (T -1253))
-((-1593 (*1 *1 *1 *2) (-12 (-5 *2 (-1264 *4)) (-14 *4 (-1178)) (-5 *1 (-1253 *3 *4 *5)) (-4 *3 (-1051)) (-14 *5 *3))) (-2416 (*1 *1 *1 *2) (-12 (-5 *2 (-1264 *4)) (-14 *4 (-1178)) (-5 *1 (-1253 *3 *4 *5)) (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)) (-14 *5 *3))))
-(-13 (-1251 |#1| (-1232 |#1| |#2| |#3|)) (-1040 (-1260 |#1| |#2| |#3|)) (-617 (-1264 |#2|)) (-10 -8 (-15 -1593 ($ $ (-1264 |#2|))) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -2416 ($ $ (-1264 |#2|))) |%noBranch|)))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) 37)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL)) (-4381 (($ $) NIL)) (-3949 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2585 (($) NIL T CONST)) (-3753 (((-3 (-567) "failed") $) NIL (|has| (-1253 |#2| |#3| |#4|) (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| (-1253 |#2| |#3| |#4|) (-1040 (-410 (-567))))) (((-3 (-1253 |#2| |#3| |#4|) "failed") $) 22)) (-2038 (((-567) $) NIL (|has| (-1253 |#2| |#3| |#4|) (-1040 (-567)))) (((-410 (-567)) $) NIL (|has| (-1253 |#2| |#3| |#4|) (-1040 (-410 (-567))))) (((-1253 |#2| |#3| |#4|) $) NIL)) (-3014 (($ $) 41)) (-2109 (((-3 $ "failed") $) 27)) (-3501 (($ $) NIL (|has| (-1253 |#2| |#3| |#4|) (-455)))) (-2320 (($ $ (-1253 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|) $) NIL)) (-1433 (((-112) $) NIL)) (-2695 (((-772) $) 11)) (-2843 (((-112) $) NIL)) (-2824 (($ (-1253 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|)) 25)) (-2656 (((-320 |#2| |#3| |#4|) $) NIL)) (-3273 (($ (-1 (-320 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|)) $) NIL)) (-3829 (($ (-1 (-1253 |#2| |#3| |#4|) (-1253 |#2| |#3| |#4|)) $) NIL)) (-1347 (((-3 (-844 |#2|) "failed") $) 90)) (-2976 (($ $) NIL)) (-2989 (((-1253 |#2| |#3| |#4|) $) 20)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-2949 (((-112) $) NIL)) (-2962 (((-1253 |#2| |#3| |#4|) $) NIL)) (-2391 (((-3 $ "failed") $ (-1253 |#2| |#3| |#4|)) NIL (|has| (-1253 |#2| |#3| |#4|) (-559))) (((-3 $ "failed") $ $) NIL)) (-1339 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1253 |#2| |#3| |#4|)) (|:| |%expon| (-320 |#2| |#3| |#4|)) (|:| |%expTerms| (-645 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#2|)))))) (|:| |%type| (-1160))) "failed") $) 74)) (-3077 (((-320 |#2| |#3| |#4|) $) 17)) (-4358 (((-1253 |#2| |#3| |#4|) $) NIL (|has| (-1253 |#2| |#3| |#4|) (-455)))) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ (-1253 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL (-2800 (|has| (-1253 |#2| |#3| |#4|) (-38 (-410 (-567)))) (|has| (-1253 |#2| |#3| |#4|) (-1040 (-410 (-567))))))) (-3032 (((-645 (-1253 |#2| |#3| |#4|)) $) NIL)) (-4136 (((-1253 |#2| |#3| |#4|) $ (-320 |#2| |#3| |#4|)) NIL)) (-1903 (((-3 $ "failed") $) NIL (|has| (-1253 |#2| |#3| |#4|) (-145)))) (-4221 (((-772)) NIL T CONST)) (-4176 (($ $ $ (-772)) NIL (|has| (-1253 |#2| |#3| |#4|) (-172)))) (-1745 (((-112) $ $) NIL)) (-3816 (((-112) $ $) NIL)) (-1716 (($) NIL T CONST)) (-1728 (($) NIL T CONST)) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ (-1253 |#2| |#3| |#4|)) NIL (|has| (-1253 |#2| |#3| |#4|) (-365)))) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-1253 |#2| |#3| |#4|)) NIL) (($ (-1253 |#2| |#3| |#4|) $) NIL) (($ (-410 (-567)) $) NIL (|has| (-1253 |#2| |#3| |#4|) (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| (-1253 |#2| |#3| |#4|) (-38 (-410 (-567)))))))
-(((-1254 |#1| |#2| |#3| |#4|) (-13 (-327 (-1253 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|)) (-559) (-10 -8 (-15 -1347 ((-3 (-844 |#2|) "failed") $)) (-15 -1339 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1253 |#2| |#3| |#4|)) (|:| |%expon| (-320 |#2| |#3| |#4|)) (|:| |%expTerms| (-645 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#2|)))))) (|:| |%type| (-1160))) "failed") $)))) (-13 (-1040 (-567)) (-640 (-567)) (-455)) (-13 (-27) (-1203) (-433 |#1|)) (-1178) |#2|) (T -1254))
-((-1347 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1040 (-567)) (-640 (-567)) (-455))) (-5 *2 (-844 *4)) (-5 *1 (-1254 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1203) (-433 *3))) (-14 *5 (-1178)) (-14 *6 *4))) (-1339 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1040 (-567)) (-640 (-567)) (-455))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1253 *4 *5 *6)) (|:| |%expon| (-320 *4 *5 *6)) (|:| |%expTerms| (-645 (-2 (|:| |k| (-410 (-567))) (|:| |c| *4)))))) (|:| |%type| (-1160)))) (-5 *1 (-1254 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1203) (-433 *3))) (-14 *5 (-1178)) (-14 *6 *4))))
-(-13 (-327 (-1253 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|)) (-559) (-10 -8 (-15 -1347 ((-3 (-844 |#2|) "failed") $)) (-15 -1339 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1253 |#2| |#3| |#4|)) (|:| |%expon| (-320 |#2| |#3| |#4|)) (|:| |%expTerms| (-645 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#2|)))))) (|:| |%type| (-1160))) "failed") $))))
-((-3802 ((|#2| $) 34)) (-3998 ((|#2| $) 18)) (-4283 (($ $) 52)) (-2366 (($ $ (-567)) 85)) (-3445 (((-112) $ (-772)) 46)) (-2138 ((|#2| $ |#2|) 82)) (-2315 ((|#2| $ |#2|) 78)) (-4284 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 71) (($ $ "rest" $) 75) ((|#2| $ "last" |#2|) 73)) (-1301 (($ $ (-645 $)) 81)) (-3984 ((|#2| $) 17)) (-2421 (($ $) NIL) (($ $ (-772)) 59)) (-2182 (((-645 $) $) 31)) (-3512 (((-112) $ $) 69)) (-2077 (((-112) $ (-772)) 45)) (-2863 (((-112) $ (-772)) 43)) (-2769 (((-112) $) 33)) (-3257 ((|#2| $) 25) (($ $ (-772)) 64)) (-1787 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-3900 (((-112) $) 23)) (-1644 (($ $) 55)) (-3519 (($ $) 86)) (-3344 (((-772) $) 58)) (-1503 (($ $) 57)) (-2269 (($ $ $) 77) (($ |#2| $) NIL)) (-1531 (((-645 $) $) 32)) (-2936 (((-112) $ $) 67)) (-2414 (((-772) $) 51)))
-(((-1255 |#1| |#2|) (-10 -8 (-15 -2366 (|#1| |#1| (-567))) (-15 -4284 (|#2| |#1| "last" |#2|)) (-15 -2315 (|#2| |#1| |#2|)) (-15 -4284 (|#1| |#1| "rest" |#1|)) (-15 -4284 (|#2| |#1| "first" |#2|)) (-15 -3519 (|#1| |#1|)) (-15 -1644 (|#1| |#1|)) (-15 -3344 ((-772) |#1|)) (-15 -1503 (|#1| |#1|)) (-15 -3998 (|#2| |#1|)) (-15 -3984 (|#2| |#1|)) (-15 -4283 (|#1| |#1|)) (-15 -3257 (|#1| |#1| (-772))) (-15 -1787 (|#2| |#1| "last")) (-15 -3257 (|#2| |#1|)) (-15 -2421 (|#1| |#1| (-772))) (-15 -1787 (|#1| |#1| "rest")) (-15 -2421 (|#1| |#1|)) (-15 -1787 (|#2| |#1| "first")) (-15 -2269 (|#1| |#2| |#1|)) (-15 -2269 (|#1| |#1| |#1|)) (-15 -2138 (|#2| |#1| |#2|)) (-15 -4284 (|#2| |#1| "value" |#2|)) (-15 -1301 (|#1| |#1| (-645 |#1|))) (-15 -3512 ((-112) |#1| |#1|)) (-15 -3900 ((-112) |#1|)) (-15 -1787 (|#2| |#1| "value")) (-15 -3802 (|#2| |#1|)) (-15 -2769 ((-112) |#1|)) (-15 -2182 ((-645 |#1|) |#1|)) (-15 -1531 ((-645 |#1|) |#1|)) (-15 -2936 ((-112) |#1| |#1|)) (-15 -2414 ((-772) |#1|)) (-15 -3445 ((-112) |#1| (-772))) (-15 -2077 ((-112) |#1| (-772))) (-15 -2863 ((-112) |#1| (-772)))) (-1256 |#2|) (-1218)) (T -1255))
-NIL
-(-10 -8 (-15 -2366 (|#1| |#1| (-567))) (-15 -4284 (|#2| |#1| "last" |#2|)) (-15 -2315 (|#2| |#1| |#2|)) (-15 -4284 (|#1| |#1| "rest" |#1|)) (-15 -4284 (|#2| |#1| "first" |#2|)) (-15 -3519 (|#1| |#1|)) (-15 -1644 (|#1| |#1|)) (-15 -3344 ((-772) |#1|)) (-15 -1503 (|#1| |#1|)) (-15 -3998 (|#2| |#1|)) (-15 -3984 (|#2| |#1|)) (-15 -4283 (|#1| |#1|)) (-15 -3257 (|#1| |#1| (-772))) (-15 -1787 (|#2| |#1| "last")) (-15 -3257 (|#2| |#1|)) (-15 -2421 (|#1| |#1| (-772))) (-15 -1787 (|#1| |#1| "rest")) (-15 -2421 (|#1| |#1|)) (-15 -1787 (|#2| |#1| "first")) (-15 -2269 (|#1| |#2| |#1|)) (-15 -2269 (|#1| |#1| |#1|)) (-15 -2138 (|#2| |#1| |#2|)) (-15 -4284 (|#2| |#1| "value" |#2|)) (-15 -1301 (|#1| |#1| (-645 |#1|))) (-15 -3512 ((-112) |#1| |#1|)) (-15 -3900 ((-112) |#1|)) (-15 -1787 (|#2| |#1| "value")) (-15 -3802 (|#2| |#1|)) (-15 -2769 ((-112) |#1|)) (-15 -2182 ((-645 |#1|) |#1|)) (-15 -1531 ((-645 |#1|) |#1|)) (-15 -2936 ((-112) |#1| |#1|)) (-15 -2414 ((-772) |#1|)) (-15 -3445 ((-112) |#1| (-772))) (-15 -2077 ((-112) |#1| (-772))) (-15 -2863 ((-112) |#1| (-772))))
-((-2403 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-3802 ((|#1| $) 49)) (-3998 ((|#1| $) 66)) (-4283 (($ $) 68)) (-2366 (($ $ (-567)) 53 (|has| $ (-6 -4419)))) (-3445 (((-112) $ (-772)) 8)) (-2138 ((|#1| $ |#1|) 40 (|has| $ (-6 -4419)))) (-4209 (($ $ $) 57 (|has| $ (-6 -4419)))) (-2315 ((|#1| $ |#1|) 55 (|has| $ (-6 -4419)))) (-2271 ((|#1| $ |#1|) 59 (|has| $ (-6 -4419)))) (-4284 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4419))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4419))) (($ $ "rest" $) 56 (|has| $ (-6 -4419))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4419)))) (-1301 (($ $ (-645 $)) 42 (|has| $ (-6 -4419)))) (-3984 ((|#1| $) 67)) (-2585 (($) 7 T CONST)) (-2421 (($ $) 74) (($ $ (-772)) 72)) (-2777 (((-645 |#1|) $) 31 (|has| $ (-6 -4418)))) (-2182 (((-645 $) $) 51)) (-3512 (((-112) $ $) 43 (|has| |#1| (-1102)))) (-2077 (((-112) $ (-772)) 9)) (-2279 (((-645 |#1|) $) 30 (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-3731 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) 36)) (-2863 (((-112) $ (-772)) 10)) (-3773 (((-645 |#1|) $) 46)) (-2769 (((-112) $) 50)) (-1419 (((-1160) $) 22 (|has| |#1| (-1102)))) (-3257 ((|#1| $) 71) (($ $ (-772)) 69)) (-3430 (((-1122) $) 21 (|has| |#1| (-1102)))) (-2409 ((|#1| $) 77) (($ $ (-772)) 75)) (-3025 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) 14)) (-3572 (((-112) $) 11)) (-3498 (($) 12)) (-1787 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70)) (-2658 (((-567) $ $) 45)) (-3900 (((-112) $) 47)) (-1644 (($ $) 63)) (-3519 (($ $) 60 (|has| $ (-6 -4419)))) (-3344 (((-772) $) 64)) (-1503 (($ $) 65)) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4418))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-4305 (($ $) 13)) (-2484 (($ $ $) 62 (|has| $ (-6 -4419))) (($ $ |#1|) 61 (|has| $ (-6 -4419)))) (-2269 (($ $ $) 79) (($ |#1| $) 78)) (-4132 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-1531 (((-645 $) $) 52)) (-3606 (((-112) $ $) 44 (|has| |#1| (-1102)))) (-1745 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4418)))) (-2936 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2414 (((-772) $) 6 (|has| $ (-6 -4418)))))
-(((-1256 |#1|) (-140) (-1218)) (T -1256))
-((-2269 (*1 *1 *1 *1) (-12 (-4 *1 (-1256 *2)) (-4 *2 (-1218)))) (-2269 (*1 *1 *2 *1) (-12 (-4 *1 (-1256 *2)) (-4 *2 (-1218)))) (-2409 (*1 *2 *1) (-12 (-4 *1 (-1256 *2)) (-4 *2 (-1218)))) (-1787 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1256 *2)) (-4 *2 (-1218)))) (-2409 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1256 *3)) (-4 *3 (-1218)))) (-2421 (*1 *1 *1) (-12 (-4 *1 (-1256 *2)) (-4 *2 (-1218)))) (-1787 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1256 *3)) (-4 *3 (-1218)))) (-2421 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1256 *3)) (-4 *3 (-1218)))) (-3257 (*1 *2 *1) (-12 (-4 *1 (-1256 *2)) (-4 *2 (-1218)))) (-1787 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1256 *2)) (-4 *2 (-1218)))) (-3257 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1256 *3)) (-4 *3 (-1218)))) (-4283 (*1 *1 *1) (-12 (-4 *1 (-1256 *2)) (-4 *2 (-1218)))) (-3984 (*1 *2 *1) (-12 (-4 *1 (-1256 *2)) (-4 *2 (-1218)))) (-3998 (*1 *2 *1) (-12 (-4 *1 (-1256 *2)) (-4 *2 (-1218)))) (-1503 (*1 *1 *1) (-12 (-4 *1 (-1256 *2)) (-4 *2 (-1218)))) (-3344 (*1 *2 *1) (-12 (-4 *1 (-1256 *3)) (-4 *3 (-1218)) (-5 *2 (-772)))) (-1644 (*1 *1 *1) (-12 (-4 *1 (-1256 *2)) (-4 *2 (-1218)))) (-2484 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4419)) (-4 *1 (-1256 *2)) (-4 *2 (-1218)))) (-2484 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4419)) (-4 *1 (-1256 *2)) (-4 *2 (-1218)))) (-3519 (*1 *1 *1) (-12 (|has| *1 (-6 -4419)) (-4 *1 (-1256 *2)) (-4 *2 (-1218)))) (-2271 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4419)) (-4 *1 (-1256 *2)) (-4 *2 (-1218)))) (-4284 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4419)) (-4 *1 (-1256 *2)) (-4 *2 (-1218)))) (-4209 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4419)) (-4 *1 (-1256 *2)) (-4 *2 (-1218)))) (-4284 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4419)) (-4 *1 (-1256 *3)) (-4 *3 (-1218)))) (-2315 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4419)) (-4 *1 (-1256 *2)) (-4 *2 (-1218)))) (-4284 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4419)) (-4 *1 (-1256 *2)) (-4 *2 (-1218)))) (-2366 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (|has| *1 (-6 -4419)) (-4 *1 (-1256 *3)) (-4 *3 (-1218)))))
-(-13 (-1012 |t#1|) (-10 -8 (-15 -2269 ($ $ $)) (-15 -2269 ($ |t#1| $)) (-15 -2409 (|t#1| $)) (-15 -1787 (|t#1| $ "first")) (-15 -2409 ($ $ (-772))) (-15 -2421 ($ $)) (-15 -1787 ($ $ "rest")) (-15 -2421 ($ $ (-772))) (-15 -3257 (|t#1| $)) (-15 -1787 (|t#1| $ "last")) (-15 -3257 ($ $ (-772))) (-15 -4283 ($ $)) (-15 -3984 (|t#1| $)) (-15 -3998 (|t#1| $)) (-15 -1503 ($ $)) (-15 -3344 ((-772) $)) (-15 -1644 ($ $)) (IF (|has| $ (-6 -4419)) (PROGN (-15 -2484 ($ $ $)) (-15 -2484 ($ $ |t#1|)) (-15 -3519 ($ $)) (-15 -2271 (|t#1| $ |t#1|)) (-15 -4284 (|t#1| $ "first" |t#1|)) (-15 -4209 ($ $ $)) (-15 -4284 ($ $ "rest" $)) (-15 -2315 (|t#1| $ |t#1|)) (-15 -4284 (|t#1| $ "last" |t#1|)) (-15 -2366 ($ $ (-567)))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2800 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-1012 |#1|) . T) ((-1102) |has| |#1| (-1102)) ((-1218) . T))
-((-3829 ((|#4| (-1 |#2| |#1|) |#3|) 17)))
-(((-1257 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3829 (|#4| (-1 |#2| |#1|) |#3|))) (-1051) (-1051) (-1259 |#1|) (-1259 |#2|)) (T -1257))
-((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1051)) (-4 *6 (-1051)) (-4 *2 (-1259 *6)) (-5 *1 (-1257 *5 *6 *4 *2)) (-4 *4 (-1259 *5)))))
-(-10 -7 (-15 -3829 (|#4| (-1 |#2| |#1|) |#3|)))
-((-2460 (((-112) $) 17)) (-3146 (($ $) 106)) (-3012 (($ $) 82)) (-3128 (($ $) 102)) (-2987 (($ $) 78)) (-3166 (($ $) 110)) (-3035 (($ $) 86)) (-3063 (($ $) 76)) (-3946 (($ $) 74)) (-3175 (($ $) 112)) (-3049 (($ $) 88)) (-3156 (($ $) 108)) (-3023 (($ $) 84)) (-3137 (($ $) 104)) (-2999 (($ $) 80)) (-4132 (((-863) $) 62) (($ (-567)) NIL) (($ (-410 (-567))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-3200 (($ $) 118)) (-3084 (($ $) 94)) (-3183 (($ $) 114)) (-3062 (($ $) 90)) (-3221 (($ $) 122)) (-3106 (($ $) 98)) (-3785 (($ $) 124)) (-3118 (($ $) 100)) (-3211 (($ $) 120)) (-3095 (($ $) 96)) (-3193 (($ $) 116)) (-3074 (($ $) 92)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ |#2|) 66) (($ $ $) 69) (($ $ (-410 (-567))) 72)))
-(((-1258 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-410 (-567)))) (-15 -3012 (|#1| |#1|)) (-15 -2987 (|#1| |#1|)) (-15 -3035 (|#1| |#1|)) (-15 -3049 (|#1| |#1|)) (-15 -3023 (|#1| |#1|)) (-15 -2999 (|#1| |#1|)) (-15 -3074 (|#1| |#1|)) (-15 -3095 (|#1| |#1|)) (-15 -3118 (|#1| |#1|)) (-15 -3106 (|#1| |#1|)) (-15 -3062 (|#1| |#1|)) (-15 -3084 (|#1| |#1|)) (-15 -3137 (|#1| |#1|)) (-15 -3156 (|#1| |#1|)) (-15 -3175 (|#1| |#1|)) (-15 -3166 (|#1| |#1|)) (-15 -3128 (|#1| |#1|)) (-15 -3146 (|#1| |#1|)) (-15 -3193 (|#1| |#1|)) (-15 -3211 (|#1| |#1|)) (-15 -3785 (|#1| |#1|)) (-15 -3221 (|#1| |#1|)) (-15 -3183 (|#1| |#1|)) (-15 -3200 (|#1| |#1|)) (-15 -3063 (|#1| |#1|)) (-15 -3946 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -4132 (|#1| |#2|)) (-15 -4132 (|#1| |#1|)) (-15 -4132 (|#1| (-410 (-567)))) (-15 -4132 (|#1| (-567))) (-15 ** (|#1| |#1| (-772))) (-15 ** (|#1| |#1| (-923))) (-15 -2460 ((-112) |#1|)) (-15 -4132 ((-863) |#1|))) (-1259 |#2|) (-1051)) (T -1258))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-410 (-567)))) (-15 -3012 (|#1| |#1|)) (-15 -2987 (|#1| |#1|)) (-15 -3035 (|#1| |#1|)) (-15 -3049 (|#1| |#1|)) (-15 -3023 (|#1| |#1|)) (-15 -2999 (|#1| |#1|)) (-15 -3074 (|#1| |#1|)) (-15 -3095 (|#1| |#1|)) (-15 -3118 (|#1| |#1|)) (-15 -3106 (|#1| |#1|)) (-15 -3062 (|#1| |#1|)) (-15 -3084 (|#1| |#1|)) (-15 -3137 (|#1| |#1|)) (-15 -3156 (|#1| |#1|)) (-15 -3175 (|#1| |#1|)) (-15 -3166 (|#1| |#1|)) (-15 -3128 (|#1| |#1|)) (-15 -3146 (|#1| |#1|)) (-15 -3193 (|#1| |#1|)) (-15 -3211 (|#1| |#1|)) (-15 -3785 (|#1| |#1|)) (-15 -3221 (|#1| |#1|)) (-15 -3183 (|#1| |#1|)) (-15 -3200 (|#1| |#1|)) (-15 -3063 (|#1| |#1|)) (-15 -3946 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -4132 (|#1| |#2|)) (-15 -4132 (|#1| |#1|)) (-15 -4132 (|#1| (-410 (-567)))) (-15 -4132 (|#1| (-567))) (-15 ** (|#1| |#1| (-772))) (-15 ** (|#1| |#1| (-923))) (-15 -2460 ((-112) |#1|)) (-15 -4132 ((-863) |#1|)))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-2847 (((-645 (-1084)) $) 86)) (-3644 (((-1178) $) 115)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 63 (|has| |#1| (-559)))) (-4381 (($ $) 64 (|has| |#1| (-559)))) (-3949 (((-112) $) 66 (|has| |#1| (-559)))) (-1950 (($ $ (-772)) 110) (($ $ (-772) (-772)) 109)) (-1843 (((-1158 (-2 (|:| |k| (-772)) (|:| |c| |#1|))) $) 117)) (-3146 (($ $) 147 (|has| |#1| (-38 (-410 (-567)))))) (-3012 (($ $) 130 (|has| |#1| (-38 (-410 (-567)))))) (-3472 (((-3 $ "failed") $ $) 20)) (-2716 (($ $) 129 (|has| |#1| (-38 (-410 (-567)))))) (-3128 (($ $) 146 (|has| |#1| (-38 (-410 (-567)))))) (-2987 (($ $) 131 (|has| |#1| (-38 (-410 (-567)))))) (-1306 (($ (-1158 (-2 (|:| |k| (-772)) (|:| |c| |#1|)))) 167) (($ (-1158 |#1|)) 165)) (-3166 (($ $) 145 (|has| |#1| (-38 (-410 (-567)))))) (-3035 (($ $) 132 (|has| |#1| (-38 (-410 (-567)))))) (-2585 (($) 18 T CONST)) (-3014 (($ $) 72)) (-2109 (((-3 $ "failed") $) 37)) (-3842 (($ $) 164)) (-3717 (((-954 |#1|) $ (-772)) 162) (((-954 |#1|) $ (-772) (-772)) 161)) (-2762 (((-112) $) 85)) (-1482 (($) 157 (|has| |#1| (-38 (-410 (-567)))))) (-4384 (((-772) $) 112) (((-772) $ (-772)) 111)) (-1433 (((-112) $) 35)) (-2651 (($ $ (-567)) 128 (|has| |#1| (-38 (-410 (-567)))))) (-3807 (($ $ (-923)) 113)) (-2288 (($ (-1 |#1| (-567)) $) 163)) (-2843 (((-112) $) 74)) (-2824 (($ |#1| (-772)) 73) (($ $ (-1084) (-772)) 88) (($ $ (-645 (-1084)) (-645 (-772))) 87)) (-3829 (($ (-1 |#1| |#1|) $) 75)) (-3063 (($ $) 154 (|has| |#1| (-38 (-410 (-567)))))) (-2976 (($ $) 77)) (-2989 ((|#1| $) 78)) (-1419 (((-1160) $) 10)) (-2416 (($ $) 159 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1178)) 158 (-2800 (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-961)) (|has| |#1| (-1203)) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-15 -2847 ((-645 (-1178)) |#1|))) (|has| |#1| (-15 -2416 (|#1| |#1| (-1178)))) (|has| |#1| (-38 (-410 (-567)))))))) (-3430 (((-1122) $) 11)) (-2410 (($ $ (-772)) 107)) (-2391 (((-3 $ "failed") $ $) 62 (|has| |#1| (-559)))) (-3946 (($ $) 155 (|has| |#1| (-38 (-410 (-567)))))) (-2631 (((-1158 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-772)))))) (-1787 ((|#1| $ (-772)) 116) (($ $ $) 93 (|has| (-772) (-1114)))) (-1593 (($ $ (-645 (-1178)) (-645 (-772))) 101 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-772) |#1|))))) (($ $ (-1178) (-772)) 100 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-772) |#1|))))) (($ $ (-645 (-1178))) 99 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-772) |#1|))))) (($ $ (-1178)) 98 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-772) |#1|))))) (($ $ (-772)) 96 (|has| |#1| (-15 * (|#1| (-772) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-772) |#1|))))) (-3077 (((-772) $) 76)) (-3175 (($ $) 144 (|has| |#1| (-38 (-410 (-567)))))) (-3049 (($ $) 133 (|has| |#1| (-38 (-410 (-567)))))) (-3156 (($ $) 143 (|has| |#1| (-38 (-410 (-567)))))) (-3023 (($ $) 134 (|has| |#1| (-38 (-410 (-567)))))) (-3137 (($ $) 142 (|has| |#1| (-38 (-410 (-567)))))) (-2999 (($ $) 135 (|has| |#1| (-38 (-410 (-567)))))) (-2192 (($ $) 84)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ (-410 (-567))) 69 (|has| |#1| (-38 (-410 (-567))))) (($ $) 61 (|has| |#1| (-559))) (($ |#1|) 59 (|has| |#1| (-172)))) (-3032 (((-1158 |#1|) $) 166)) (-4136 ((|#1| $ (-772)) 71)) (-1903 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-4221 (((-772)) 32 T CONST)) (-2166 ((|#1| $) 114)) (-1745 (((-112) $ $) 9)) (-3200 (($ $) 153 (|has| |#1| (-38 (-410 (-567)))))) (-3084 (($ $) 141 (|has| |#1| (-38 (-410 (-567)))))) (-3816 (((-112) $ $) 65 (|has| |#1| (-559)))) (-3183 (($ $) 152 (|has| |#1| (-38 (-410 (-567)))))) (-3062 (($ $) 140 (|has| |#1| (-38 (-410 (-567)))))) (-3221 (($ $) 151 (|has| |#1| (-38 (-410 (-567)))))) (-3106 (($ $) 139 (|has| |#1| (-38 (-410 (-567)))))) (-3050 ((|#1| $ (-772)) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-772)))) (|has| |#1| (-15 -4132 (|#1| (-1178))))))) (-3785 (($ $) 150 (|has| |#1| (-38 (-410 (-567)))))) (-3118 (($ $) 138 (|has| |#1| (-38 (-410 (-567)))))) (-3211 (($ $) 149 (|has| |#1| (-38 (-410 (-567)))))) (-3095 (($ $) 137 (|has| |#1| (-38 (-410 (-567)))))) (-3193 (($ $) 148 (|has| |#1| (-38 (-410 (-567)))))) (-3074 (($ $) 136 (|has| |#1| (-38 (-410 (-567)))))) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2637 (($ $ (-645 (-1178)) (-645 (-772))) 105 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-772) |#1|))))) (($ $ (-1178) (-772)) 104 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-772) |#1|))))) (($ $ (-645 (-1178))) 103 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-772) |#1|))))) (($ $ (-1178)) 102 (-12 (|has| |#1| (-902 (-1178))) (|has| |#1| (-15 * (|#1| (-772) |#1|))))) (($ $ (-772)) 97 (|has| |#1| (-15 * (|#1| (-772) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-772) |#1|))))) (-2936 (((-112) $ $) 6)) (-3060 (($ $ |#1|) 70 (|has| |#1| (-365)))) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ |#1|) 160 (|has| |#1| (-365))) (($ $ $) 156 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 127 (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-410 (-567)) $) 68 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 67 (|has| |#1| (-38 (-410 (-567)))))))
-(((-1259 |#1|) (-140) (-1051)) (T -1259))
-((-1306 (*1 *1 *2) (-12 (-5 *2 (-1158 (-2 (|:| |k| (-772)) (|:| |c| *3)))) (-4 *3 (-1051)) (-4 *1 (-1259 *3)))) (-3032 (*1 *2 *1) (-12 (-4 *1 (-1259 *3)) (-4 *3 (-1051)) (-5 *2 (-1158 *3)))) (-1306 (*1 *1 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-4 *1 (-1259 *3)))) (-3842 (*1 *1 *1) (-12 (-4 *1 (-1259 *2)) (-4 *2 (-1051)))) (-2288 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-567))) (-4 *1 (-1259 *3)) (-4 *3 (-1051)))) (-3717 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-4 *1 (-1259 *4)) (-4 *4 (-1051)) (-5 *2 (-954 *4)))) (-3717 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-772)) (-4 *1 (-1259 *4)) (-4 *4 (-1051)) (-5 *2 (-954 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1259 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))) (-2416 (*1 *1 *1) (-12 (-4 *1 (-1259 *2)) (-4 *2 (-1051)) (-4 *2 (-38 (-410 (-567)))))) (-2416 (*1 *1 *1 *2) (-2800 (-12 (-5 *2 (-1178)) (-4 *1 (-1259 *3)) (-4 *3 (-1051)) (-12 (-4 *3 (-29 (-567))) (-4 *3 (-961)) (-4 *3 (-1203)) (-4 *3 (-38 (-410 (-567)))))) (-12 (-5 *2 (-1178)) (-4 *1 (-1259 *3)) (-4 *3 (-1051)) (-12 (|has| *3 (-15 -2847 ((-645 *2) *3))) (|has| *3 (-15 -2416 (*3 *3 *2))) (-4 *3 (-38 (-410 (-567)))))))))
-(-13 (-1246 |t#1| (-772)) (-10 -8 (-15 -1306 ($ (-1158 (-2 (|:| |k| (-772)) (|:| |c| |t#1|))))) (-15 -3032 ((-1158 |t#1|) $)) (-15 -1306 ($ (-1158 |t#1|))) (-15 -3842 ($ $)) (-15 -2288 ($ (-1 |t#1| (-567)) $)) (-15 -3717 ((-954 |t#1|) $ (-772))) (-15 -3717 ((-954 |t#1|) $ (-772) (-772))) (IF (|has| |t#1| (-365)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-410 (-567)))) (PROGN (-15 -2416 ($ $)) (IF (|has| |t#1| (-15 -2416 (|t#1| |t#1| (-1178)))) (IF (|has| |t#1| (-15 -2847 ((-645 (-1178)) |t#1|))) (-15 -2416 ($ $ (-1178))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1203)) (IF (|has| |t#1| (-961)) (IF (|has| |t#1| (-29 (-567))) (-15 -2416 ($ $ (-1178))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1004)) (-6 (-1203))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-772)) . T) ((-25) . T) ((-38 #1=(-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-559)) ((-35) |has| |#1| (-38 (-410 (-567)))) ((-95) |has| |#1| (-38 (-410 (-567)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-410 (-567)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2800 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #1#) |has| |#1| (-38 (-410 (-567)))) ((-617 (-567)) . T) ((-617 |#1|) |has| |#1| (-172)) ((-617 $) |has| |#1| (-559)) ((-614 (-863)) . T) ((-172) -2800 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-772) |#1|))) ((-285) |has| |#1| (-38 (-410 (-567)))) ((-287 $ $) |has| (-772) (-1114)) ((-291) |has| |#1| (-559)) ((-496) |has| |#1| (-38 (-410 (-567)))) ((-559) |has| |#1| (-559)) ((-647 #1#) |has| |#1| (-38 (-410 (-567)))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #1#) |has| |#1| (-38 (-410 (-567)))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #1#) |has| |#1| (-38 (-410 (-567)))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) |has| |#1| (-559)) ((-718 #1#) |has| |#1| (-38 (-410 (-567)))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) |has| |#1| (-559)) ((-727) . T) ((-902 (-1178)) -12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-902 (-1178)))) ((-975 |#1| #0# (-1084)) . T) ((-1004) |has| |#1| (-38 (-410 (-567)))) ((-1053 #1#) |has| |#1| (-38 (-410 (-567)))) ((-1053 |#1|) . T) ((-1053 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-1058 #1#) |has| |#1| (-38 (-410 (-567)))) ((-1058 |#1|) . T) ((-1058 $) -2800 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1203) |has| |#1| (-38 (-410 (-567)))) ((-1206) |has| |#1| (-38 (-410 (-567)))) ((-1246 |#1| #0#) . T))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-2847 (((-645 (-1084)) $) NIL)) (-3644 (((-1178) $) 93)) (-1779 (((-1241 |#2| |#1|) $ (-772)) 74)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-4381 (($ $) NIL (|has| |#1| (-559)))) (-3949 (((-112) $) 145 (|has| |#1| (-559)))) (-1950 (($ $ (-772)) 130) (($ $ (-772) (-772)) 133)) (-1843 (((-1158 (-2 (|:| |k| (-772)) (|:| |c| |#1|))) $) 43)) (-3146 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3012 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3472 (((-3 $ "failed") $ $) NIL)) (-2716 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3128 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2987 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1306 (($ (-1158 (-2 (|:| |k| (-772)) (|:| |c| |#1|)))) 53) (($ (-1158 |#1|)) NIL)) (-3166 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3035 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2585 (($) NIL T CONST)) (-2900 (($ $) 137)) (-3014 (($ $) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-3842 (($ $) 143)) (-3717 (((-954 |#1|) $ (-772)) 64) (((-954 |#1|) $ (-772) (-772)) 66)) (-2762 (((-112) $) NIL)) (-1482 (($) NIL (|has| |#1| (-38 (-410 (-567)))))) (-4384 (((-772) $) NIL) (((-772) $ (-772)) NIL)) (-1433 (((-112) $) NIL)) (-1486 (($ $) 120)) (-2651 (($ $ (-567)) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3352 (($ (-567) (-567) $) 139)) (-3807 (($ $ (-923)) 142)) (-2288 (($ (-1 |#1| (-567)) $) 114)) (-2843 (((-112) $) NIL)) (-2824 (($ |#1| (-772)) 16) (($ $ (-1084) (-772)) NIL) (($ $ (-645 (-1084)) (-645 (-772))) NIL)) (-3829 (($ (-1 |#1| |#1|) $) 101)) (-3063 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2976 (($ $) NIL)) (-2989 ((|#1| $) NIL)) (-1419 (((-1160) $) NIL)) (-3535 (($ $) 118)) (-1517 (($ $) 116)) (-1505 (($ (-567) (-567) $) 141)) (-2416 (($ $) 153 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1178)) 159 (-2800 (-12 (|has| |#1| (-15 -2416 (|#1| |#1| (-1178)))) (|has| |#1| (-15 -2847 ((-645 (-1178)) |#1|))) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-961)) (|has| |#1| (-1203))))) (($ $ (-1264 |#2|)) 154 (|has| |#1| (-38 (-410 (-567)))))) (-3430 (((-1122) $) NIL)) (-1343 (($ $ (-567) (-567)) 124)) (-2410 (($ $ (-772)) 126)) (-2391 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-3946 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3994 (($ $) 122)) (-2631 (((-1158 |#1|) $ |#1|) 103 (|has| |#1| (-15 ** (|#1| |#1| (-772)))))) (-1787 ((|#1| $ (-772)) 98) (($ $ $) 135 (|has| (-772) (-1114)))) (-1593 (($ $ (-645 (-1178)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-1178) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-645 (-1178))) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-1178)) 111 (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-772) |#1|)))) (($ $) 105 (|has| |#1| (-15 * (|#1| (-772) |#1|)))) (($ $ (-1264 |#2|)) 106)) (-3077 (((-772) $) NIL)) (-3175 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3049 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3156 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3023 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3137 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2999 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2192 (($ $) 128)) (-4132 (((-863) $) NIL) (($ (-567)) 26) (($ (-410 (-567))) 151 (|has| |#1| (-38 (-410 (-567))))) (($ $) NIL (|has| |#1| (-559))) (($ |#1|) 25 (|has| |#1| (-172))) (($ (-1241 |#2| |#1|)) 84) (($ (-1264 |#2|)) 22)) (-3032 (((-1158 |#1|) $) NIL)) (-4136 ((|#1| $ (-772)) 97)) (-1903 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-4221 (((-772)) NIL T CONST)) (-2166 ((|#1| $) 94)) (-1745 (((-112) $ $) NIL)) (-3200 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3084 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3816 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3183 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3062 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3221 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3106 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3050 ((|#1| $ (-772)) 92 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-772)))) (|has| |#1| (-15 -4132 (|#1| (-1178))))))) (-3785 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3118 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3211 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3095 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3193 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3074 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1716 (($) 18 T CONST)) (-1728 (($) 13 T CONST)) (-2637 (($ $ (-645 (-1178)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-1178) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-645 (-1178))) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-1178)) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-902 (-1178))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-772) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-772) |#1|))))) (-2936 (((-112) $ $) NIL)) (-3060 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3045 (($ $) NIL) (($ $ $) 110)) (-3033 (($ $ $) 20)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ |#1|) 148 (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 109) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))))
-(((-1260 |#1| |#2| |#3|) (-13 (-1259 |#1|) (-10 -8 (-15 -4132 ($ (-1241 |#2| |#1|))) (-15 -1779 ((-1241 |#2| |#1|) $ (-772))) (-15 -4132 ($ (-1264 |#2|))) (-15 -1593 ($ $ (-1264 |#2|))) (-15 -1517 ($ $)) (-15 -3535 ($ $)) (-15 -1486 ($ $)) (-15 -3994 ($ $)) (-15 -1343 ($ $ (-567) (-567))) (-15 -2900 ($ $)) (-15 -3352 ($ (-567) (-567) $)) (-15 -1505 ($ (-567) (-567) $)) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -2416 ($ $ (-1264 |#2|))) |%noBranch|))) (-1051) (-1178) |#1|) (T -1260))
-((-4132 (*1 *1 *2) (-12 (-5 *2 (-1241 *4 *3)) (-4 *3 (-1051)) (-14 *4 (-1178)) (-14 *5 *3) (-5 *1 (-1260 *3 *4 *5)))) (-1779 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1241 *5 *4)) (-5 *1 (-1260 *4 *5 *6)) (-4 *4 (-1051)) (-14 *5 (-1178)) (-14 *6 *4))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-1264 *4)) (-14 *4 (-1178)) (-5 *1 (-1260 *3 *4 *5)) (-4 *3 (-1051)) (-14 *5 *3))) (-1593 (*1 *1 *1 *2) (-12 (-5 *2 (-1264 *4)) (-14 *4 (-1178)) (-5 *1 (-1260 *3 *4 *5)) (-4 *3 (-1051)) (-14 *5 *3))) (-1517 (*1 *1 *1) (-12 (-5 *1 (-1260 *2 *3 *4)) (-4 *2 (-1051)) (-14 *3 (-1178)) (-14 *4 *2))) (-3535 (*1 *1 *1) (-12 (-5 *1 (-1260 *2 *3 *4)) (-4 *2 (-1051)) (-14 *3 (-1178)) (-14 *4 *2))) (-1486 (*1 *1 *1) (-12 (-5 *1 (-1260 *2 *3 *4)) (-4 *2 (-1051)) (-14 *3 (-1178)) (-14 *4 *2))) (-3994 (*1 *1 *1) (-12 (-5 *1 (-1260 *2 *3 *4)) (-4 *2 (-1051)) (-14 *3 (-1178)) (-14 *4 *2))) (-1343 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1260 *3 *4 *5)) (-4 *3 (-1051)) (-14 *4 (-1178)) (-14 *5 *3))) (-2900 (*1 *1 *1) (-12 (-5 *1 (-1260 *2 *3 *4)) (-4 *2 (-1051)) (-14 *3 (-1178)) (-14 *4 *2))) (-3352 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-1260 *3 *4 *5)) (-4 *3 (-1051)) (-14 *4 (-1178)) (-14 *5 *3))) (-1505 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-1260 *3 *4 *5)) (-4 *3 (-1051)) (-14 *4 (-1178)) (-14 *5 *3))) (-2416 (*1 *1 *1 *2) (-12 (-5 *2 (-1264 *4)) (-14 *4 (-1178)) (-5 *1 (-1260 *3 *4 *5)) (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)) (-14 *5 *3))))
-(-13 (-1259 |#1|) (-10 -8 (-15 -4132 ($ (-1241 |#2| |#1|))) (-15 -1779 ((-1241 |#2| |#1|) $ (-772))) (-15 -4132 ($ (-1264 |#2|))) (-15 -1593 ($ $ (-1264 |#2|))) (-15 -1517 ($ $)) (-15 -3535 ($ $)) (-15 -1486 ($ $)) (-15 -3994 ($ $)) (-15 -1343 ($ $ (-567) (-567))) (-15 -2900 ($ $)) (-15 -3352 ($ (-567) (-567) $)) (-15 -1505 ($ (-567) (-567) $)) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -2416 ($ $ (-1264 |#2|))) |%noBranch|)))
-((-4232 (((-1 (-1158 |#1|) (-645 (-1158 |#1|))) (-1 |#2| (-645 |#2|))) 24)) (-4101 (((-1 (-1158 |#1|) (-1158 |#1|) (-1158 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-2571 (((-1 (-1158 |#1|) (-1158 |#1|)) (-1 |#2| |#2|)) 13)) (-3205 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-2171 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-1615 ((|#2| (-1 |#2| (-645 |#2|)) (-645 |#1|)) 60)) (-3112 (((-645 |#2|) (-645 |#1|) (-645 (-1 |#2| (-645 |#2|)))) 66)) (-3898 ((|#2| |#2| |#2|) 43)))
-(((-1261 |#1| |#2|) (-10 -7 (-15 -2571 ((-1 (-1158 |#1|) (-1158 |#1|)) (-1 |#2| |#2|))) (-15 -4101 ((-1 (-1158 |#1|) (-1158 |#1|) (-1158 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -4232 ((-1 (-1158 |#1|) (-645 (-1158 |#1|))) (-1 |#2| (-645 |#2|)))) (-15 -3898 (|#2| |#2| |#2|)) (-15 -2171 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3205 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1615 (|#2| (-1 |#2| (-645 |#2|)) (-645 |#1|))) (-15 -3112 ((-645 |#2|) (-645 |#1|) (-645 (-1 |#2| (-645 |#2|)))))) (-38 (-410 (-567))) (-1259 |#1|)) (T -1261))
-((-3112 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *5)) (-5 *4 (-645 (-1 *6 (-645 *6)))) (-4 *5 (-38 (-410 (-567)))) (-4 *6 (-1259 *5)) (-5 *2 (-645 *6)) (-5 *1 (-1261 *5 *6)))) (-1615 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-645 *2))) (-5 *4 (-645 *5)) (-4 *5 (-38 (-410 (-567)))) (-4 *2 (-1259 *5)) (-5 *1 (-1261 *5 *2)))) (-3205 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1259 *4)) (-5 *1 (-1261 *4 *2)) (-4 *4 (-38 (-410 (-567)))))) (-2171 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1259 *4)) (-5 *1 (-1261 *4 *2)) (-4 *4 (-38 (-410 (-567)))))) (-3898 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1261 *3 *2)) (-4 *2 (-1259 *3)))) (-4232 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-645 *5))) (-4 *5 (-1259 *4)) (-4 *4 (-38 (-410 (-567)))) (-5 *2 (-1 (-1158 *4) (-645 (-1158 *4)))) (-5 *1 (-1261 *4 *5)))) (-4101 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1259 *4)) (-4 *4 (-38 (-410 (-567)))) (-5 *2 (-1 (-1158 *4) (-1158 *4) (-1158 *4))) (-5 *1 (-1261 *4 *5)))) (-2571 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1259 *4)) (-4 *4 (-38 (-410 (-567)))) (-5 *2 (-1 (-1158 *4) (-1158 *4))) (-5 *1 (-1261 *4 *5)))))
-(-10 -7 (-15 -2571 ((-1 (-1158 |#1|) (-1158 |#1|)) (-1 |#2| |#2|))) (-15 -4101 ((-1 (-1158 |#1|) (-1158 |#1|) (-1158 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -4232 ((-1 (-1158 |#1|) (-645 (-1158 |#1|))) (-1 |#2| (-645 |#2|)))) (-15 -3898 (|#2| |#2| |#2|)) (-15 -2171 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3205 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1615 (|#2| (-1 |#2| (-645 |#2|)) (-645 |#1|))) (-15 -3112 ((-645 |#2|) (-645 |#1|) (-645 (-1 |#2| (-645 |#2|))))))
-((-2131 ((|#2| |#4| (-772)) 34)) (-1804 ((|#4| |#2|) 29)) (-3566 ((|#4| (-410 |#2|)) 53 (|has| |#1| (-559)))) (-1484 (((-1 |#4| (-645 |#4|)) |#3|) 46)))
-(((-1262 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1804 (|#4| |#2|)) (-15 -2131 (|#2| |#4| (-772))) (-15 -1484 ((-1 |#4| (-645 |#4|)) |#3|)) (IF (|has| |#1| (-559)) (-15 -3566 (|#4| (-410 |#2|))) |%noBranch|)) (-1051) (-1244 |#1|) (-657 |#2|) (-1259 |#1|)) (T -1262))
-((-3566 (*1 *2 *3) (-12 (-5 *3 (-410 *5)) (-4 *5 (-1244 *4)) (-4 *4 (-559)) (-4 *4 (-1051)) (-4 *2 (-1259 *4)) (-5 *1 (-1262 *4 *5 *6 *2)) (-4 *6 (-657 *5)))) (-1484 (*1 *2 *3) (-12 (-4 *4 (-1051)) (-4 *5 (-1244 *4)) (-5 *2 (-1 *6 (-645 *6))) (-5 *1 (-1262 *4 *5 *3 *6)) (-4 *3 (-657 *5)) (-4 *6 (-1259 *4)))) (-2131 (*1 *2 *3 *4) (-12 (-5 *4 (-772)) (-4 *5 (-1051)) (-4 *2 (-1244 *5)) (-5 *1 (-1262 *5 *2 *6 *3)) (-4 *6 (-657 *2)) (-4 *3 (-1259 *5)))) (-1804 (*1 *2 *3) (-12 (-4 *4 (-1051)) (-4 *3 (-1244 *4)) (-4 *2 (-1259 *4)) (-5 *1 (-1262 *4 *3 *5 *2)) (-4 *5 (-657 *3)))))
-(-10 -7 (-15 -1804 (|#4| |#2|)) (-15 -2131 (|#2| |#4| (-772))) (-15 -1484 ((-1 |#4| (-645 |#4|)) |#3|)) (IF (|has| |#1| (-559)) (-15 -3566 (|#4| (-410 |#2|))) |%noBranch|))
-NIL
-(((-1263) (-140)) (T -1263))
-NIL
-(-13 (-10 -7 (-6 -3011)))
-((-2403 (((-112) $ $) NIL)) (-3644 (((-1178)) 12)) (-1419 (((-1160) $) 18)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 11) (((-1178) $) 8)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) 15)))
-(((-1264 |#1|) (-13 (-1102) (-614 (-1178)) (-10 -8 (-15 -4132 ((-1178) $)) (-15 -3644 ((-1178))))) (-1178)) (T -1264))
-((-4132 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1264 *3)) (-14 *3 *2))) (-3644 (*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1264 *3)) (-14 *3 *2))))
-(-13 (-1102) (-614 (-1178)) (-10 -8 (-15 -4132 ((-1178) $)) (-15 -3644 ((-1178)))))
-((-1316 (($ (-772)) 19)) (-1544 (((-690 |#2|) $ $) 41)) (-3908 ((|#2| $) 51)) (-1699 ((|#2| $) 50)) (-3366 ((|#2| $ $) 36)) (-4295 (($ $ $) 47)) (-3045 (($ $) 23) (($ $ $) 29)) (-3033 (($ $ $) 15)) (* (($ (-567) $) 26) (($ |#2| $) 32) (($ $ |#2|) 31)))
-(((-1265 |#1| |#2|) (-10 -8 (-15 -3908 (|#2| |#1|)) (-15 -1699 (|#2| |#1|)) (-15 -4295 (|#1| |#1| |#1|)) (-15 -1544 ((-690 |#2|) |#1| |#1|)) (-15 -3366 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 -3045 (|#1| |#1| |#1|)) (-15 -3045 (|#1| |#1|)) (-15 -1316 (|#1| (-772))) (-15 -3033 (|#1| |#1| |#1|))) (-1266 |#2|) (-1218)) (T -1265))
-NIL
-(-10 -8 (-15 -3908 (|#2| |#1|)) (-15 -1699 (|#2| |#1|)) (-15 -4295 (|#1| |#1| |#1|)) (-15 -1544 ((-690 |#2|) |#1| |#1|)) (-15 -3366 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 -3045 (|#1| |#1| |#1|)) (-15 -3045 (|#1| |#1|)) (-15 -1316 (|#1| (-772))) (-15 -3033 (|#1| |#1| |#1|)))
-((-2403 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-1316 (($ (-772)) 113 (|has| |#1| (-23)))) (-1783 (((-1273) $ (-567) (-567)) 41 (|has| $ (-6 -4419)))) (-2496 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-851)))) (-1394 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4419))) (($ $) 89 (-12 (|has| |#1| (-851)) (|has| $ (-6 -4419))))) (-4396 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-851)))) (-3445 (((-112) $ (-772)) 8)) (-4284 ((|#1| $ (-567) |#1|) 53 (|has| $ (-6 -4419))) ((|#1| $ (-1235 (-567)) |#1|) 59 (|has| $ (-6 -4419)))) (-3350 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4418)))) (-2585 (($) 7 T CONST)) (-1764 (($ $) 91 (|has| $ (-6 -4419)))) (-3584 (($ $) 101)) (-2444 (($ $) 79 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-3238 (($ |#1| $) 78 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4418)))) (-2477 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4418)))) (-3741 ((|#1| $ (-567) |#1|) 54 (|has| $ (-6 -4419)))) (-3680 ((|#1| $ (-567)) 52)) (-2569 (((-567) (-1 (-112) |#1|) $) 98) (((-567) |#1| $) 97 (|has| |#1| (-1102))) (((-567) |#1| $ (-567)) 96 (|has| |#1| (-1102)))) (-2777 (((-645 |#1|) $) 31 (|has| $ (-6 -4418)))) (-1544 (((-690 |#1|) $ $) 106 (|has| |#1| (-1051)))) (-2846 (($ (-772) |#1|) 70)) (-2077 (((-112) $ (-772)) 9)) (-4069 (((-567) $) 44 (|has| (-567) (-851)))) (-1354 (($ $ $) 88 (|has| |#1| (-851)))) (-4135 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-851)))) (-2279 (((-645 |#1|) $) 30 (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-2266 (((-567) $) 45 (|has| (-567) (-851)))) (-2981 (($ $ $) 87 (|has| |#1| (-851)))) (-3731 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-3908 ((|#1| $) 103 (-12 (|has| |#1| (-1051)) (|has| |#1| (-1004))))) (-2863 (((-112) $ (-772)) 10)) (-1699 ((|#1| $) 104 (-12 (|has| |#1| (-1051)) (|has| |#1| (-1004))))) (-1419 (((-1160) $) 22 (|has| |#1| (-1102)))) (-2845 (($ |#1| $ (-567)) 61) (($ $ $ (-567)) 60)) (-1789 (((-645 (-567)) $) 47)) (-2996 (((-112) (-567) $) 48)) (-3430 (((-1122) $) 21 (|has| |#1| (-1102)))) (-2409 ((|#1| $) 43 (|has| (-567) (-851)))) (-4128 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-3986 (($ $ |#1|) 42 (|has| $ (-6 -4419)))) (-3025 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) 14)) (-1794 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2339 (((-645 |#1|) $) 49)) (-3572 (((-112) $) 11)) (-3498 (($) 12)) (-1787 ((|#1| $ (-567) |#1|) 51) ((|#1| $ (-567)) 50) (($ $ (-1235 (-567))) 64)) (-3366 ((|#1| $ $) 107 (|has| |#1| (-1051)))) (-1560 (($ $ (-567)) 63) (($ $ (-1235 (-567))) 62)) (-4295 (($ $ $) 105 (|has| |#1| (-1051)))) (-3439 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4418))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4418))))) (-1395 (($ $ $ (-567)) 92 (|has| $ (-6 -4419)))) (-4305 (($ $) 13)) (-3893 (((-539) $) 80 (|has| |#1| (-615 (-539))))) (-4147 (($ (-645 |#1|)) 71)) (-2269 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-645 $)) 66)) (-4132 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-1745 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4418)))) (-2997 (((-112) $ $) 85 (|has| |#1| (-851)))) (-2971 (((-112) $ $) 84 (|has| |#1| (-851)))) (-2936 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2984 (((-112) $ $) 86 (|has| |#1| (-851)))) (-2958 (((-112) $ $) 83 (|has| |#1| (-851)))) (-3045 (($ $) 112 (|has| |#1| (-21))) (($ $ $) 111 (|has| |#1| (-21)))) (-3033 (($ $ $) 114 (|has| |#1| (-25)))) (* (($ (-567) $) 110 (|has| |#1| (-21))) (($ |#1| $) 109 (|has| |#1| (-727))) (($ $ |#1|) 108 (|has| |#1| (-727)))) (-2414 (((-772) $) 6 (|has| $ (-6 -4418)))))
-(((-1266 |#1|) (-140) (-1218)) (T -1266))
-((-3033 (*1 *1 *1 *1) (-12 (-4 *1 (-1266 *2)) (-4 *2 (-1218)) (-4 *2 (-25)))) (-1316 (*1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1266 *3)) (-4 *3 (-23)) (-4 *3 (-1218)))) (-3045 (*1 *1 *1) (-12 (-4 *1 (-1266 *2)) (-4 *2 (-1218)) (-4 *2 (-21)))) (-3045 (*1 *1 *1 *1) (-12 (-4 *1 (-1266 *2)) (-4 *2 (-1218)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-567)) (-4 *1 (-1266 *3)) (-4 *3 (-1218)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1266 *2)) (-4 *2 (-1218)) (-4 *2 (-727)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1266 *2)) (-4 *2 (-1218)) (-4 *2 (-727)))) (-3366 (*1 *2 *1 *1) (-12 (-4 *1 (-1266 *2)) (-4 *2 (-1218)) (-4 *2 (-1051)))) (-1544 (*1 *2 *1 *1) (-12 (-4 *1 (-1266 *3)) (-4 *3 (-1218)) (-4 *3 (-1051)) (-5 *2 (-690 *3)))) (-4295 (*1 *1 *1 *1) (-12 (-4 *1 (-1266 *2)) (-4 *2 (-1218)) (-4 *2 (-1051)))) (-1699 (*1 *2 *1) (-12 (-4 *1 (-1266 *2)) (-4 *2 (-1218)) (-4 *2 (-1004)) (-4 *2 (-1051)))) (-3908 (*1 *2 *1) (-12 (-4 *1 (-1266 *2)) (-4 *2 (-1218)) (-4 *2 (-1004)) (-4 *2 (-1051)))))
-(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -3033 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -1316 ($ (-772))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -3045 ($ $)) (-15 -3045 ($ $ $)) (-15 * ($ (-567) $))) |%noBranch|) (IF (|has| |t#1| (-727)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1051)) (PROGN (-15 -3366 (|t#1| $ $)) (-15 -1544 ((-690 |t#1|) $ $)) (-15 -4295 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-1004)) (IF (|has| |t#1| (-1051)) (PROGN (-15 -1699 (|t#1| $)) (-15 -3908 (|t#1| $))) |%noBranch|) |%noBranch|)))
-(((-34) . T) ((-102) -2800 (|has| |#1| (-1102)) (|has| |#1| (-851))) ((-614 (-863)) -2800 (|has| |#1| (-1102)) (|has| |#1| (-851)) (|has| |#1| (-614 (-863)))) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-287 #0=(-567) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-375 |#1|) . T) ((-492 |#1|) . T) ((-605 #0# |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-652 |#1|) . T) ((-19 |#1|) . T) ((-851) |has| |#1| (-851)) ((-1102) -2800 (|has| |#1| (-1102)) (|has| |#1| (-851))) ((-1218) . T))
-((-2788 (((-1268 |#2|) (-1 |#2| |#1| |#2|) (-1268 |#1|) |#2|) 13)) (-2477 ((|#2| (-1 |#2| |#1| |#2|) (-1268 |#1|) |#2|) 15)) (-3829 (((-3 (-1268 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1268 |#1|)) 30) (((-1268 |#2|) (-1 |#2| |#1|) (-1268 |#1|)) 18)))
-(((-1267 |#1| |#2|) (-10 -7 (-15 -2788 ((-1268 |#2|) (-1 |#2| |#1| |#2|) (-1268 |#1|) |#2|)) (-15 -2477 (|#2| (-1 |#2| |#1| |#2|) (-1268 |#1|) |#2|)) (-15 -3829 ((-1268 |#2|) (-1 |#2| |#1|) (-1268 |#1|))) (-15 -3829 ((-3 (-1268 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1268 |#1|)))) (-1218) (-1218)) (T -1267))
-((-3829 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1268 *5)) (-4 *5 (-1218)) (-4 *6 (-1218)) (-5 *2 (-1268 *6)) (-5 *1 (-1267 *5 *6)))) (-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1268 *5)) (-4 *5 (-1218)) (-4 *6 (-1218)) (-5 *2 (-1268 *6)) (-5 *1 (-1267 *5 *6)))) (-2477 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1268 *5)) (-4 *5 (-1218)) (-4 *2 (-1218)) (-5 *1 (-1267 *5 *2)))) (-2788 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1268 *6)) (-4 *6 (-1218)) (-4 *5 (-1218)) (-5 *2 (-1268 *5)) (-5 *1 (-1267 *6 *5)))))
-(-10 -7 (-15 -2788 ((-1268 |#2|) (-1 |#2| |#1| |#2|) (-1268 |#1|) |#2|)) (-15 -2477 (|#2| (-1 |#2| |#1| |#2|) (-1268 |#1|) |#2|)) (-15 -3829 ((-1268 |#2|) (-1 |#2| |#1|) (-1268 |#1|))) (-15 -3829 ((-3 (-1268 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1268 |#1|))))
-((-2403 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1316 (($ (-772)) NIL (|has| |#1| (-23)))) (-1581 (($ (-645 |#1|)) 11)) (-1783 (((-1273) $ (-567) (-567)) NIL (|has| $ (-6 -4419)))) (-2496 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-851)))) (-1394 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4419))) (($ $) NIL (-12 (|has| $ (-6 -4419)) (|has| |#1| (-851))))) (-4396 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-851)))) (-3445 (((-112) $ (-772)) NIL)) (-4284 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4419))) ((|#1| $ (-1235 (-567)) |#1|) NIL (|has| $ (-6 -4419)))) (-3350 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2585 (($) NIL T CONST)) (-1764 (($ $) NIL (|has| $ (-6 -4419)))) (-3584 (($ $) NIL)) (-2444 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-3238 (($ |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2477 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4418))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4418)))) (-3741 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4419)))) (-3680 ((|#1| $ (-567)) NIL)) (-2569 (((-567) (-1 (-112) |#1|) $) NIL) (((-567) |#1| $) NIL (|has| |#1| (-1102))) (((-567) |#1| $ (-567)) NIL (|has| |#1| (-1102)))) (-2777 (((-645 |#1|) $) 15 (|has| $ (-6 -4418)))) (-1544 (((-690 |#1|) $ $) NIL (|has| |#1| (-1051)))) (-2846 (($ (-772) |#1|) NIL)) (-2077 (((-112) $ (-772)) NIL)) (-4069 (((-567) $) NIL (|has| (-567) (-851)))) (-1354 (($ $ $) NIL (|has| |#1| (-851)))) (-4135 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-851)))) (-2279 (((-645 |#1|) $) NIL (|has| $ (-6 -4418)))) (-4337 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2266 (((-567) $) NIL (|has| (-567) (-851)))) (-2981 (($ $ $) NIL (|has| |#1| (-851)))) (-3731 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3908 ((|#1| $) NIL (-12 (|has| |#1| (-1004)) (|has| |#1| (-1051))))) (-2863 (((-112) $ (-772)) NIL)) (-1699 ((|#1| $) NIL (-12 (|has| |#1| (-1004)) (|has| |#1| (-1051))))) (-1419 (((-1160) $) NIL (|has| |#1| (-1102)))) (-2845 (($ |#1| $ (-567)) NIL) (($ $ $ (-567)) NIL)) (-1789 (((-645 (-567)) $) NIL)) (-2996 (((-112) (-567) $) NIL)) (-3430 (((-1122) $) NIL (|has| |#1| (-1102)))) (-2409 ((|#1| $) NIL (|has| (-567) (-851)))) (-4128 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3986 (($ $ |#1|) NIL (|has| $ (-6 -4419)))) (-3025 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3092 (((-112) $ $) NIL)) (-1794 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-2339 (((-645 |#1|) $) NIL)) (-3572 (((-112) $) NIL)) (-3498 (($) NIL)) (-1787 ((|#1| $ (-567) |#1|) NIL) ((|#1| $ (-567)) NIL) (($ $ (-1235 (-567))) NIL)) (-3366 ((|#1| $ $) NIL (|has| |#1| (-1051)))) (-1560 (($ $ (-567)) NIL) (($ $ (-1235 (-567))) NIL)) (-4295 (($ $ $) NIL (|has| |#1| (-1051)))) (-3439 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#1| (-1102))))) (-1395 (($ $ $ (-567)) NIL (|has| $ (-6 -4419)))) (-4305 (($ $) NIL)) (-3893 (((-539) $) 19 (|has| |#1| (-615 (-539))))) (-4147 (($ (-645 |#1|)) 10)) (-2269 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-645 $)) NIL)) (-4132 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-1745 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1853 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4418)))) (-2997 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2971 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2936 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2984 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2958 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3045 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3033 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-567) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-727))) (($ $ |#1|) NIL (|has| |#1| (-727)))) (-2414 (((-772) $) NIL (|has| $ (-6 -4418)))))
-(((-1268 |#1|) (-13 (-1266 |#1|) (-10 -8 (-15 -1581 ($ (-645 |#1|))))) (-1218)) (T -1268))
-((-1581 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1218)) (-5 *1 (-1268 *3)))))
-(-13 (-1266 |#1|) (-10 -8 (-15 -1581 ($ (-645 |#1|)))))
-((-2403 (((-112) $ $) NIL)) (-1340 (((-1160) $ (-1160)) 110) (((-1160) $ (-1160) (-1160)) 108) (((-1160) $ (-1160) (-645 (-1160))) 107)) (-2953 (($) 70)) (-3682 (((-1273) $ (-471) (-923)) 55)) (-1741 (((-1273) $ (-923) (-1160)) 92) (((-1273) $ (-923) (-875)) 93)) (-2563 (((-1273) $ (-923) (-381) (-381)) 58)) (-3124 (((-1273) $ (-1160)) 87)) (-4269 (((-1273) $ (-923) (-1160)) 97)) (-2172 (((-1273) $ (-923) (-381) (-381)) 59)) (-1515 (((-1273) $ (-923) (-923)) 56)) (-1315 (((-1273) $) 88)) (-3891 (((-1273) $ (-923) (-1160)) 96)) (-3374 (((-1273) $ (-471) (-923)) 41)) (-3932 (((-1273) $ (-923) (-1160)) 95)) (-3624 (((-645 (-264)) $) 29) (($ $ (-645 (-264))) 30)) (-2151 (((-1273) $ (-772) (-772)) 53)) (-2053 (($ $) 72) (($ (-471) (-645 (-264))) 73)) (-1419 (((-1160) $) NIL)) (-1795 (((-567) $) 48)) (-3430 (((-1122) $) NIL)) (-3541 (((-1268 (-3 (-471) "undefined")) $) 47)) (-2437 (((-1268 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -3932 (-567)) (|:| -1310 (-567)) (|:| |spline| (-567)) (|:| -3585 (-567)) (|:| |axesColor| (-875)) (|:| -1741 (-567)) (|:| |unitsColor| (-875)) (|:| |showing| (-567)))) $) 46)) (-2128 (((-1273) $ (-923) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-567) (-875) (-567) (-875) (-567)) 86)) (-3962 (((-645 (-945 (-225))) $) NIL)) (-3755 (((-471) $ (-923)) 43)) (-3853 (((-1273) $ (-772) (-772) (-923) (-923)) 51)) (-2691 (((-1273) $ (-1160)) 98)) (-1310 (((-1273) $ (-923) (-1160)) 94)) (-4132 (((-863) $) 105)) (-3995 (((-1273) $) 99)) (-1745 (((-112) $ $) NIL)) (-3585 (((-1273) $ (-923) (-1160)) 90) (((-1273) $ (-923) (-875)) 91)) (-2936 (((-112) $ $) NIL)))
-(((-1269) (-13 (-1102) (-10 -8 (-15 -3962 ((-645 (-945 (-225))) $)) (-15 -2953 ($)) (-15 -2053 ($ $)) (-15 -3624 ((-645 (-264)) $)) (-15 -3624 ($ $ (-645 (-264)))) (-15 -2053 ($ (-471) (-645 (-264)))) (-15 -2128 ((-1273) $ (-923) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-567) (-875) (-567) (-875) (-567))) (-15 -2437 ((-1268 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -3932 (-567)) (|:| -1310 (-567)) (|:| |spline| (-567)) (|:| -3585 (-567)) (|:| |axesColor| (-875)) (|:| -1741 (-567)) (|:| |unitsColor| (-875)) (|:| |showing| (-567)))) $)) (-15 -3541 ((-1268 (-3 (-471) "undefined")) $)) (-15 -3124 ((-1273) $ (-1160))) (-15 -3374 ((-1273) $ (-471) (-923))) (-15 -3755 ((-471) $ (-923))) (-15 -3585 ((-1273) $ (-923) (-1160))) (-15 -3585 ((-1273) $ (-923) (-875))) (-15 -1741 ((-1273) $ (-923) (-1160))) (-15 -1741 ((-1273) $ (-923) (-875))) (-15 -3932 ((-1273) $ (-923) (-1160))) (-15 -3891 ((-1273) $ (-923) (-1160))) (-15 -1310 ((-1273) $ (-923) (-1160))) (-15 -2691 ((-1273) $ (-1160))) (-15 -3995 ((-1273) $)) (-15 -3853 ((-1273) $ (-772) (-772) (-923) (-923))) (-15 -2172 ((-1273) $ (-923) (-381) (-381))) (-15 -2563 ((-1273) $ (-923) (-381) (-381))) (-15 -4269 ((-1273) $ (-923) (-1160))) (-15 -2151 ((-1273) $ (-772) (-772))) (-15 -3682 ((-1273) $ (-471) (-923))) (-15 -1515 ((-1273) $ (-923) (-923))) (-15 -1340 ((-1160) $ (-1160))) (-15 -1340 ((-1160) $ (-1160) (-1160))) (-15 -1340 ((-1160) $ (-1160) (-645 (-1160)))) (-15 -1315 ((-1273) $)) (-15 -1795 ((-567) $)) (-15 -4132 ((-863) $))))) (T -1269))
-((-4132 (*1 *2 *1) (-12 (-5 *2 (-863)) (-5 *1 (-1269)))) (-3962 (*1 *2 *1) (-12 (-5 *2 (-645 (-945 (-225)))) (-5 *1 (-1269)))) (-2953 (*1 *1) (-5 *1 (-1269))) (-2053 (*1 *1 *1) (-5 *1 (-1269))) (-3624 (*1 *2 *1) (-12 (-5 *2 (-645 (-264))) (-5 *1 (-1269)))) (-3624 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-264))) (-5 *1 (-1269)))) (-2053 (*1 *1 *2 *3) (-12 (-5 *2 (-471)) (-5 *3 (-645 (-264))) (-5 *1 (-1269)))) (-2128 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-923)) (-5 *4 (-225)) (-5 *5 (-567)) (-5 *6 (-875)) (-5 *2 (-1273)) (-5 *1 (-1269)))) (-2437 (*1 *2 *1) (-12 (-5 *2 (-1268 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -3932 (-567)) (|:| -1310 (-567)) (|:| |spline| (-567)) (|:| -3585 (-567)) (|:| |axesColor| (-875)) (|:| -1741 (-567)) (|:| |unitsColor| (-875)) (|:| |showing| (-567))))) (-5 *1 (-1269)))) (-3541 (*1 *2 *1) (-12 (-5 *2 (-1268 (-3 (-471) "undefined"))) (-5 *1 (-1269)))) (-3124 (*1 *2 *1 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1269)))) (-3374 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-471)) (-5 *4 (-923)) (-5 *2 (-1273)) (-5 *1 (-1269)))) (-3755 (*1 *2 *1 *3) (-12 (-5 *3 (-923)) (-5 *2 (-471)) (-5 *1 (-1269)))) (-3585 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-923)) (-5 *4 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1269)))) (-3585 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-923)) (-5 *4 (-875)) (-5 *2 (-1273)) (-5 *1 (-1269)))) (-1741 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-923)) (-5 *4 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1269)))) (-1741 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-923)) (-5 *4 (-875)) (-5 *2 (-1273)) (-5 *1 (-1269)))) (-3932 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-923)) (-5 *4 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1269)))) (-3891 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-923)) (-5 *4 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1269)))) (-1310 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-923)) (-5 *4 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1269)))) (-2691 (*1 *2 *1 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1269)))) (-3995 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-1269)))) (-3853 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-772)) (-5 *4 (-923)) (-5 *2 (-1273)) (-5 *1 (-1269)))) (-2172 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-923)) (-5 *4 (-381)) (-5 *2 (-1273)) (-5 *1 (-1269)))) (-2563 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-923)) (-5 *4 (-381)) (-5 *2 (-1273)) (-5 *1 (-1269)))) (-4269 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-923)) (-5 *4 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1269)))) (-2151 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1273)) (-5 *1 (-1269)))) (-3682 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-471)) (-5 *4 (-923)) (-5 *2 (-1273)) (-5 *1 (-1269)))) (-1515 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1273)) (-5 *1 (-1269)))) (-1340 (*1 *2 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-1269)))) (-1340 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-1269)))) (-1340 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-645 (-1160))) (-5 *2 (-1160)) (-5 *1 (-1269)))) (-1315 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-1269)))) (-1795 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-1269)))))
-(-13 (-1102) (-10 -8 (-15 -3962 ((-645 (-945 (-225))) $)) (-15 -2953 ($)) (-15 -2053 ($ $)) (-15 -3624 ((-645 (-264)) $)) (-15 -3624 ($ $ (-645 (-264)))) (-15 -2053 ($ (-471) (-645 (-264)))) (-15 -2128 ((-1273) $ (-923) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-567) (-875) (-567) (-875) (-567))) (-15 -2437 ((-1268 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -3932 (-567)) (|:| -1310 (-567)) (|:| |spline| (-567)) (|:| -3585 (-567)) (|:| |axesColor| (-875)) (|:| -1741 (-567)) (|:| |unitsColor| (-875)) (|:| |showing| (-567)))) $)) (-15 -3541 ((-1268 (-3 (-471) "undefined")) $)) (-15 -3124 ((-1273) $ (-1160))) (-15 -3374 ((-1273) $ (-471) (-923))) (-15 -3755 ((-471) $ (-923))) (-15 -3585 ((-1273) $ (-923) (-1160))) (-15 -3585 ((-1273) $ (-923) (-875))) (-15 -1741 ((-1273) $ (-923) (-1160))) (-15 -1741 ((-1273) $ (-923) (-875))) (-15 -3932 ((-1273) $ (-923) (-1160))) (-15 -3891 ((-1273) $ (-923) (-1160))) (-15 -1310 ((-1273) $ (-923) (-1160))) (-15 -2691 ((-1273) $ (-1160))) (-15 -3995 ((-1273) $)) (-15 -3853 ((-1273) $ (-772) (-772) (-923) (-923))) (-15 -2172 ((-1273) $ (-923) (-381) (-381))) (-15 -2563 ((-1273) $ (-923) (-381) (-381))) (-15 -4269 ((-1273) $ (-923) (-1160))) (-15 -2151 ((-1273) $ (-772) (-772))) (-15 -3682 ((-1273) $ (-471) (-923))) (-15 -1515 ((-1273) $ (-923) (-923))) (-15 -1340 ((-1160) $ (-1160))) (-15 -1340 ((-1160) $ (-1160) (-1160))) (-15 -1340 ((-1160) $ (-1160) (-645 (-1160)))) (-15 -1315 ((-1273) $)) (-15 -1795 ((-567) $)) (-15 -4132 ((-863) $))))
-((-2403 (((-112) $ $) NIL)) (-2544 (((-1273) $ (-381)) 172) (((-1273) $ (-381) (-381) (-381)) 173)) (-1340 (((-1160) $ (-1160)) 182) (((-1160) $ (-1160) (-1160)) 180) (((-1160) $ (-1160) (-645 (-1160))) 179)) (-4078 (($) 67)) (-2369 (((-1273) $ (-381) (-381) (-381) (-381) (-381)) 144) (((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2172 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) $) 142) (((-1273) $ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2172 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) 143) (((-1273) $ (-567) (-567) (-381) (-381) (-381)) 147) (((-1273) $ (-381) (-381)) 148) (((-1273) $ (-381) (-381) (-381)) 155)) (-4041 (((-381)) 125) (((-381) (-381)) 126)) (-2628 (((-381)) 120) (((-381) (-381)) 122)) (-2697 (((-381)) 123) (((-381) (-381)) 124)) (-1402 (((-381)) 129) (((-381) (-381)) 130)) (-4156 (((-381)) 127) (((-381) (-381)) 128)) (-2563 (((-1273) $ (-381) (-381)) 174)) (-3124 (((-1273) $ (-1160)) 156)) (-1455 (((-1135 (-225)) $) 68) (($ $ (-1135 (-225))) 69)) (-4118 (((-1273) $ (-1160)) 190)) (-1537 (((-1273) $ (-1160)) 191)) (-1501 (((-1273) $ (-381) (-381)) 154) (((-1273) $ (-567) (-567)) 171)) (-1515 (((-1273) $ (-923) (-923)) 163)) (-1315 (((-1273) $) 140)) (-3379 (((-1273) $ (-1160)) 189)) (-3160 (((-1273) $ (-1160)) 137)) (-3624 (((-645 (-264)) $) 70) (($ $ (-645 (-264))) 71)) (-2151 (((-1273) $ (-772) (-772)) 162)) (-1353 (((-1273) $ (-772) (-945 (-225))) 196)) (-4100 (($ $) 73) (($ (-1135 (-225)) (-1160)) 74) (($ (-1135 (-225)) (-645 (-264))) 75)) (-3476 (((-1273) $ (-381) (-381) (-381)) 134)) (-1419 (((-1160) $) NIL)) (-1795 (((-567) $) 131)) (-4306 (((-1273) $ (-381)) 177)) (-1633 (((-1273) $ (-381)) 194)) (-3430 (((-1122) $) NIL)) (-1878 (((-1273) $ (-381)) 193)) (-3868 (((-1273) $ (-1160)) 139)) (-3853 (((-1273) $ (-772) (-772) (-923) (-923)) 161)) (-3453 (((-1273) $ (-1160)) 136)) (-2691 (((-1273) $ (-1160)) 138)) (-1352 (((-1273) $ (-157) (-157)) 160)) (-4132 (((-863) $) 169)) (-3995 (((-1273) $) 141)) (-3877 (((-1273) $ (-1160)) 192)) (-1745 (((-112) $ $) NIL)) (-3585 (((-1273) $ (-1160)) 135)) (-2936 (((-112) $ $) NIL)))
-(((-1270) (-13 (-1102) (-10 -8 (-15 -2628 ((-381))) (-15 -2628 ((-381) (-381))) (-15 -2697 ((-381))) (-15 -2697 ((-381) (-381))) (-15 -4041 ((-381))) (-15 -4041 ((-381) (-381))) (-15 -4156 ((-381))) (-15 -4156 ((-381) (-381))) (-15 -1402 ((-381))) (-15 -1402 ((-381) (-381))) (-15 -4078 ($)) (-15 -4100 ($ $)) (-15 -4100 ($ (-1135 (-225)) (-1160))) (-15 -4100 ($ (-1135 (-225)) (-645 (-264)))) (-15 -1455 ((-1135 (-225)) $)) (-15 -1455 ($ $ (-1135 (-225)))) (-15 -1353 ((-1273) $ (-772) (-945 (-225)))) (-15 -3624 ((-645 (-264)) $)) (-15 -3624 ($ $ (-645 (-264)))) (-15 -2151 ((-1273) $ (-772) (-772))) (-15 -1515 ((-1273) $ (-923) (-923))) (-15 -3124 ((-1273) $ (-1160))) (-15 -3853 ((-1273) $ (-772) (-772) (-923) (-923))) (-15 -2369 ((-1273) $ (-381) (-381) (-381) (-381) (-381))) (-15 -2369 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2172 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) $)) (-15 -2369 ((-1273) $ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2172 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -2369 ((-1273) $ (-567) (-567) (-381) (-381) (-381))) (-15 -2369 ((-1273) $ (-381) (-381))) (-15 -2369 ((-1273) $ (-381) (-381) (-381))) (-15 -2691 ((-1273) $ (-1160))) (-15 -3585 ((-1273) $ (-1160))) (-15 -3453 ((-1273) $ (-1160))) (-15 -3160 ((-1273) $ (-1160))) (-15 -3868 ((-1273) $ (-1160))) (-15 -1501 ((-1273) $ (-381) (-381))) (-15 -1501 ((-1273) $ (-567) (-567))) (-15 -2544 ((-1273) $ (-381))) (-15 -2544 ((-1273) $ (-381) (-381) (-381))) (-15 -2563 ((-1273) $ (-381) (-381))) (-15 -3379 ((-1273) $ (-1160))) (-15 -1878 ((-1273) $ (-381))) (-15 -1633 ((-1273) $ (-381))) (-15 -4118 ((-1273) $ (-1160))) (-15 -1537 ((-1273) $ (-1160))) (-15 -3877 ((-1273) $ (-1160))) (-15 -3476 ((-1273) $ (-381) (-381) (-381))) (-15 -4306 ((-1273) $ (-381))) (-15 -1315 ((-1273) $)) (-15 -1352 ((-1273) $ (-157) (-157))) (-15 -1340 ((-1160) $ (-1160))) (-15 -1340 ((-1160) $ (-1160) (-1160))) (-15 -1340 ((-1160) $ (-1160) (-645 (-1160)))) (-15 -3995 ((-1273) $)) (-15 -1795 ((-567) $))))) (T -1270))
-((-2628 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1270)))) (-2628 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1270)))) (-2697 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1270)))) (-2697 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1270)))) (-4041 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1270)))) (-4041 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1270)))) (-4156 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1270)))) (-4156 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1270)))) (-1402 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1270)))) (-1402 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1270)))) (-4078 (*1 *1) (-5 *1 (-1270))) (-4100 (*1 *1 *1) (-5 *1 (-1270))) (-4100 (*1 *1 *2 *3) (-12 (-5 *2 (-1135 (-225))) (-5 *3 (-1160)) (-5 *1 (-1270)))) (-4100 (*1 *1 *2 *3) (-12 (-5 *2 (-1135 (-225))) (-5 *3 (-645 (-264))) (-5 *1 (-1270)))) (-1455 (*1 *2 *1) (-12 (-5 *2 (-1135 (-225))) (-5 *1 (-1270)))) (-1455 (*1 *1 *1 *2) (-12 (-5 *2 (-1135 (-225))) (-5 *1 (-1270)))) (-1353 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-772)) (-5 *4 (-945 (-225))) (-5 *2 (-1273)) (-5 *1 (-1270)))) (-3624 (*1 *2 *1) (-12 (-5 *2 (-645 (-264))) (-5 *1 (-1270)))) (-3624 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-264))) (-5 *1 (-1270)))) (-2151 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1273)) (-5 *1 (-1270)))) (-1515 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1273)) (-5 *1 (-1270)))) (-3124 (*1 *2 *1 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1270)))) (-3853 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-772)) (-5 *4 (-923)) (-5 *2 (-1273)) (-5 *1 (-1270)))) (-2369 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1273)) (-5 *1 (-1270)))) (-2369 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2172 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *1 (-1270)))) (-2369 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2172 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *2 (-1273)) (-5 *1 (-1270)))) (-2369 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-567)) (-5 *4 (-381)) (-5 *2 (-1273)) (-5 *1 (-1270)))) (-2369 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1273)) (-5 *1 (-1270)))) (-2369 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1273)) (-5 *1 (-1270)))) (-2691 (*1 *2 *1 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1270)))) (-3585 (*1 *2 *1 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1270)))) (-3453 (*1 *2 *1 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1270)))) (-3160 (*1 *2 *1 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1270)))) (-3868 (*1 *2 *1 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1270)))) (-1501 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1273)) (-5 *1 (-1270)))) (-1501 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-567)) (-5 *2 (-1273)) (-5 *1 (-1270)))) (-2544 (*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1273)) (-5 *1 (-1270)))) (-2544 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1273)) (-5 *1 (-1270)))) (-2563 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1273)) (-5 *1 (-1270)))) (-3379 (*1 *2 *1 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1270)))) (-1878 (*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1273)) (-5 *1 (-1270)))) (-1633 (*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1273)) (-5 *1 (-1270)))) (-4118 (*1 *2 *1 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1270)))) (-1537 (*1 *2 *1 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1270)))) (-3877 (*1 *2 *1 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1270)))) (-3476 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1273)) (-5 *1 (-1270)))) (-4306 (*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1273)) (-5 *1 (-1270)))) (-1315 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-1270)))) (-1352 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-157)) (-5 *2 (-1273)) (-5 *1 (-1270)))) (-1340 (*1 *2 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-1270)))) (-1340 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-1270)))) (-1340 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-645 (-1160))) (-5 *2 (-1160)) (-5 *1 (-1270)))) (-3995 (*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-1270)))) (-1795 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-1270)))))
-(-13 (-1102) (-10 -8 (-15 -2628 ((-381))) (-15 -2628 ((-381) (-381))) (-15 -2697 ((-381))) (-15 -2697 ((-381) (-381))) (-15 -4041 ((-381))) (-15 -4041 ((-381) (-381))) (-15 -4156 ((-381))) (-15 -4156 ((-381) (-381))) (-15 -1402 ((-381))) (-15 -1402 ((-381) (-381))) (-15 -4078 ($)) (-15 -4100 ($ $)) (-15 -4100 ($ (-1135 (-225)) (-1160))) (-15 -4100 ($ (-1135 (-225)) (-645 (-264)))) (-15 -1455 ((-1135 (-225)) $)) (-15 -1455 ($ $ (-1135 (-225)))) (-15 -1353 ((-1273) $ (-772) (-945 (-225)))) (-15 -3624 ((-645 (-264)) $)) (-15 -3624 ($ $ (-645 (-264)))) (-15 -2151 ((-1273) $ (-772) (-772))) (-15 -1515 ((-1273) $ (-923) (-923))) (-15 -3124 ((-1273) $ (-1160))) (-15 -3853 ((-1273) $ (-772) (-772) (-923) (-923))) (-15 -2369 ((-1273) $ (-381) (-381) (-381) (-381) (-381))) (-15 -2369 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2172 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) $)) (-15 -2369 ((-1273) $ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2172 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -2369 ((-1273) $ (-567) (-567) (-381) (-381) (-381))) (-15 -2369 ((-1273) $ (-381) (-381))) (-15 -2369 ((-1273) $ (-381) (-381) (-381))) (-15 -2691 ((-1273) $ (-1160))) (-15 -3585 ((-1273) $ (-1160))) (-15 -3453 ((-1273) $ (-1160))) (-15 -3160 ((-1273) $ (-1160))) (-15 -3868 ((-1273) $ (-1160))) (-15 -1501 ((-1273) $ (-381) (-381))) (-15 -1501 ((-1273) $ (-567) (-567))) (-15 -2544 ((-1273) $ (-381))) (-15 -2544 ((-1273) $ (-381) (-381) (-381))) (-15 -2563 ((-1273) $ (-381) (-381))) (-15 -3379 ((-1273) $ (-1160))) (-15 -1878 ((-1273) $ (-381))) (-15 -1633 ((-1273) $ (-381))) (-15 -4118 ((-1273) $ (-1160))) (-15 -1537 ((-1273) $ (-1160))) (-15 -3877 ((-1273) $ (-1160))) (-15 -3476 ((-1273) $ (-381) (-381) (-381))) (-15 -4306 ((-1273) $ (-381))) (-15 -1315 ((-1273) $)) (-15 -1352 ((-1273) $ (-157) (-157))) (-15 -1340 ((-1160) $ (-1160))) (-15 -1340 ((-1160) $ (-1160) (-1160))) (-15 -1340 ((-1160) $ (-1160) (-645 (-1160)))) (-15 -3995 ((-1273) $)) (-15 -1795 ((-567) $))))
-((-2603 (((-645 (-1160)) (-645 (-1160))) 104) (((-645 (-1160))) 96)) (-4252 (((-645 (-1160))) 94)) (-2347 (((-645 (-923)) (-645 (-923))) 69) (((-645 (-923))) 64)) (-1713 (((-645 (-772)) (-645 (-772))) 61) (((-645 (-772))) 55)) (-2861 (((-1273)) 71)) (-4183 (((-923) (-923)) 87) (((-923)) 86)) (-3873 (((-923) (-923)) 85) (((-923)) 84)) (-4398 (((-875) (-875)) 81) (((-875)) 80)) (-1740 (((-225)) 91) (((-225) (-381)) 93)) (-4235 (((-923)) 88) (((-923) (-923)) 89)) (-3746 (((-923) (-923)) 83) (((-923)) 82)) (-4080 (((-875) (-875)) 75) (((-875)) 73)) (-1421 (((-875) (-875)) 77) (((-875)) 76)) (-2086 (((-875) (-875)) 79) (((-875)) 78)))
-(((-1271) (-10 -7 (-15 -4080 ((-875))) (-15 -4080 ((-875) (-875))) (-15 -1421 ((-875))) (-15 -1421 ((-875) (-875))) (-15 -2086 ((-875))) (-15 -2086 ((-875) (-875))) (-15 -4398 ((-875))) (-15 -4398 ((-875) (-875))) (-15 -3746 ((-923))) (-15 -3746 ((-923) (-923))) (-15 -1713 ((-645 (-772)))) (-15 -1713 ((-645 (-772)) (-645 (-772)))) (-15 -2347 ((-645 (-923)))) (-15 -2347 ((-645 (-923)) (-645 (-923)))) (-15 -2861 ((-1273))) (-15 -2603 ((-645 (-1160)))) (-15 -2603 ((-645 (-1160)) (-645 (-1160)))) (-15 -4252 ((-645 (-1160)))) (-15 -3873 ((-923))) (-15 -4183 ((-923))) (-15 -3873 ((-923) (-923))) (-15 -4183 ((-923) (-923))) (-15 -4235 ((-923) (-923))) (-15 -4235 ((-923))) (-15 -1740 ((-225) (-381))) (-15 -1740 ((-225))))) (T -1271))
-((-1740 (*1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-1271)))) (-1740 (*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-225)) (-5 *1 (-1271)))) (-4235 (*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1271)))) (-4235 (*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1271)))) (-4183 (*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1271)))) (-3873 (*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1271)))) (-4183 (*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1271)))) (-3873 (*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1271)))) (-4252 (*1 *2) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-1271)))) (-2603 (*1 *2 *2) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-1271)))) (-2603 (*1 *2) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-1271)))) (-2861 (*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-1271)))) (-2347 (*1 *2 *2) (-12 (-5 *2 (-645 (-923))) (-5 *1 (-1271)))) (-2347 (*1 *2) (-12 (-5 *2 (-645 (-923))) (-5 *1 (-1271)))) (-1713 (*1 *2 *2) (-12 (-5 *2 (-645 (-772))) (-5 *1 (-1271)))) (-1713 (*1 *2) (-12 (-5 *2 (-645 (-772))) (-5 *1 (-1271)))) (-3746 (*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1271)))) (-3746 (*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1271)))) (-4398 (*1 *2 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1271)))) (-4398 (*1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1271)))) (-2086 (*1 *2 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1271)))) (-2086 (*1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1271)))) (-1421 (*1 *2 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1271)))) (-1421 (*1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1271)))) (-4080 (*1 *2 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1271)))) (-4080 (*1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1271)))))
-(-10 -7 (-15 -4080 ((-875))) (-15 -4080 ((-875) (-875))) (-15 -1421 ((-875))) (-15 -1421 ((-875) (-875))) (-15 -2086 ((-875))) (-15 -2086 ((-875) (-875))) (-15 -4398 ((-875))) (-15 -4398 ((-875) (-875))) (-15 -3746 ((-923))) (-15 -3746 ((-923) (-923))) (-15 -1713 ((-645 (-772)))) (-15 -1713 ((-645 (-772)) (-645 (-772)))) (-15 -2347 ((-645 (-923)))) (-15 -2347 ((-645 (-923)) (-645 (-923)))) (-15 -2861 ((-1273))) (-15 -2603 ((-645 (-1160)))) (-15 -2603 ((-645 (-1160)) (-645 (-1160)))) (-15 -4252 ((-645 (-1160)))) (-15 -3873 ((-923))) (-15 -4183 ((-923))) (-15 -3873 ((-923) (-923))) (-15 -4183 ((-923) (-923))) (-15 -4235 ((-923) (-923))) (-15 -4235 ((-923))) (-15 -1740 ((-225) (-381))) (-15 -1740 ((-225))))
-((-3265 (((-471) (-645 (-645 (-945 (-225)))) (-645 (-264))) 22) (((-471) (-645 (-645 (-945 (-225))))) 21) (((-471) (-645 (-645 (-945 (-225)))) (-875) (-875) (-923) (-645 (-264))) 20)) (-4288 (((-1269) (-645 (-645 (-945 (-225)))) (-645 (-264))) 33) (((-1269) (-645 (-645 (-945 (-225)))) (-875) (-875) (-923) (-645 (-264))) 32)) (-4132 (((-1269) (-471)) 48)))
-(((-1272) (-10 -7 (-15 -3265 ((-471) (-645 (-645 (-945 (-225)))) (-875) (-875) (-923) (-645 (-264)))) (-15 -3265 ((-471) (-645 (-645 (-945 (-225)))))) (-15 -3265 ((-471) (-645 (-645 (-945 (-225)))) (-645 (-264)))) (-15 -4288 ((-1269) (-645 (-645 (-945 (-225)))) (-875) (-875) (-923) (-645 (-264)))) (-15 -4288 ((-1269) (-645 (-645 (-945 (-225)))) (-645 (-264)))) (-15 -4132 ((-1269) (-471))))) (T -1272))
-((-4132 (*1 *2 *3) (-12 (-5 *3 (-471)) (-5 *2 (-1269)) (-5 *1 (-1272)))) (-4288 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-645 (-945 (-225))))) (-5 *4 (-645 (-264))) (-5 *2 (-1269)) (-5 *1 (-1272)))) (-4288 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-645 (-645 (-945 (-225))))) (-5 *4 (-875)) (-5 *5 (-923)) (-5 *6 (-645 (-264))) (-5 *2 (-1269)) (-5 *1 (-1272)))) (-3265 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-645 (-945 (-225))))) (-5 *4 (-645 (-264))) (-5 *2 (-471)) (-5 *1 (-1272)))) (-3265 (*1 *2 *3) (-12 (-5 *3 (-645 (-645 (-945 (-225))))) (-5 *2 (-471)) (-5 *1 (-1272)))) (-3265 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-645 (-645 (-945 (-225))))) (-5 *4 (-875)) (-5 *5 (-923)) (-5 *6 (-645 (-264))) (-5 *2 (-471)) (-5 *1 (-1272)))))
-(-10 -7 (-15 -3265 ((-471) (-645 (-645 (-945 (-225)))) (-875) (-875) (-923) (-645 (-264)))) (-15 -3265 ((-471) (-645 (-645 (-945 (-225)))))) (-15 -3265 ((-471) (-645 (-645 (-945 (-225)))) (-645 (-264)))) (-15 -4288 ((-1269) (-645 (-645 (-945 (-225)))) (-875) (-875) (-923) (-645 (-264)))) (-15 -4288 ((-1269) (-645 (-645 (-945 (-225)))) (-645 (-264)))) (-15 -4132 ((-1269) (-471))))
-((-4321 (($) 6)) (-4132 (((-863) $) 9)))
-(((-1273) (-13 (-614 (-863)) (-10 -8 (-15 -4321 ($))))) (T -1273))
-((-4321 (*1 *1) (-5 *1 (-1273))))
-(-13 (-614 (-863)) (-10 -8 (-15 -4321 ($))))
-((-3060 (($ $ |#2|) 10)))
-(((-1274 |#1| |#2|) (-10 -8 (-15 -3060 (|#1| |#1| |#2|))) (-1275 |#2|) (-365)) (T -1274))
-NIL
-(-10 -8 (-15 -3060 (|#1| |#1| |#2|)))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-1879 (((-134)) 33)) (-4132 (((-863) $) 12)) (-1745 (((-112) $ $) 9)) (-1716 (($) 19 T CONST)) (-2936 (((-112) $ $) 6)) (-3060 (($ $ |#1|) 34)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31)))
-(((-1275 |#1|) (-140) (-365)) (T -1275))
-((-3060 (*1 *1 *1 *2) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-365)))) (-1879 (*1 *2) (-12 (-4 *1 (-1275 *3)) (-4 *3 (-365)) (-5 *2 (-134)))))
-(-13 (-718 |t#1|) (-10 -8 (-15 -3060 ($ $ |t#1|)) (-15 -1879 ((-134)))))
+((-3841 (((-1233 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1233 |#1| |#3| |#5|)) 23)))
+(((-1228 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3841 ((-1233 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1233 |#1| |#3| |#5|)))) (-1051) (-1051) (-1179) (-1179) |#1| |#2|) (T -1228))
+((-3841 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1233 *5 *7 *9)) (-4 *5 (-1051)) (-4 *6 (-1051)) (-14 *7 (-1179)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1233 *6 *8 *10)) (-5 *1 (-1228 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1179)))))
+(-10 -7 (-15 -3841 ((-1233 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1233 |#1| |#3| |#5|))))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-2859 (((-645 (-1084)) $) 86)) (-3653 (((-1179) $) 115)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) 63 (|has| |#1| (-559)))) (-4287 (($ $) 64 (|has| |#1| (-559)))) (-2286 (((-112) $) 66 (|has| |#1| (-559)))) (-3748 (($ $ (-567)) 110) (($ $ (-567) (-567)) 109)) (-3006 (((-1159 (-2 (|:| |k| (-567)) (|:| |c| |#1|))) $) 117)) (-3164 (($ $) 147 (|has| |#1| (-38 (-410 (-567)))))) (-3032 (($ $) 130 (|has| |#1| (-38 (-410 (-567)))))) (-2376 (((-3 $ "failed") $ $) 20)) (-3659 (($ $) 174 (|has| |#1| (-365)))) (-3597 (((-421 $) $) 175 (|has| |#1| (-365)))) (-2728 (($ $) 129 (|has| |#1| (-38 (-410 (-567)))))) (-3696 (((-112) $ $) 165 (|has| |#1| (-365)))) (-3145 (($ $) 146 (|has| |#1| (-38 (-410 (-567)))))) (-3008 (($ $) 131 (|has| |#1| (-38 (-410 (-567)))))) (-1317 (($ (-1159 (-2 (|:| |k| (-567)) (|:| |c| |#1|)))) 185)) (-3182 (($ $) 145 (|has| |#1| (-38 (-410 (-567)))))) (-3057 (($ $) 132 (|has| |#1| (-38 (-410 (-567)))))) (-3647 (($) 18 T CONST)) (-2357 (($ $ $) 169 (|has| |#1| (-365)))) (-3023 (($ $) 72)) (-3588 (((-3 $ "failed") $) 37)) (-2445 (((-410 (-954 |#1|)) $ (-567)) 183 (|has| |#1| (-559))) (((-410 (-954 |#1|)) $ (-567) (-567)) 182 (|has| |#1| (-559)))) (-2368 (($ $ $) 168 (|has| |#1| (-365)))) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) 163 (|has| |#1| (-365)))) (-3502 (((-112) $) 176 (|has| |#1| (-365)))) (-3086 (((-112) $) 85)) (-1484 (($) 157 (|has| |#1| (-38 (-410 (-567)))))) (-3362 (((-567) $) 112) (((-567) $ (-567)) 111)) (-4346 (((-112) $) 35)) (-3698 (($ $ (-567)) 128 (|has| |#1| (-38 (-410 (-567)))))) (-1343 (($ $ (-923)) 113)) (-3406 (($ (-1 |#1| (-567)) $) 184)) (-1469 (((-3 (-645 $) "failed") (-645 $) $) 172 (|has| |#1| (-365)))) (-3770 (((-112) $) 74)) (-2836 (($ |#1| (-567)) 73) (($ $ (-1084) (-567)) 88) (($ $ (-645 (-1084)) (-645 (-567))) 87)) (-3841 (($ (-1 |#1| |#1|) $) 75)) (-3072 (($ $) 154 (|has| |#1| (-38 (-410 (-567)))))) (-2985 (($ $) 77)) (-2996 ((|#1| $) 78)) (-2751 (($ (-645 $)) 161 (|has| |#1| (-365))) (($ $ $) 160 (|has| |#1| (-365)))) (-2516 (((-1161) $) 10)) (-2949 (($ $) 177 (|has| |#1| (-365)))) (-4083 (($ $) 181 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1179)) 180 (-2811 (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-961)) (|has| |#1| (-1204)) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-15 -2859 ((-645 (-1179)) |#1|))) (|has| |#1| (-15 -4083 (|#1| |#1| (-1179)))) (|has| |#1| (-38 (-410 (-567)))))))) (-3437 (((-1122) $) 11)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) 162 (|has| |#1| (-365)))) (-2785 (($ (-645 $)) 159 (|has| |#1| (-365))) (($ $ $) 158 (|has| |#1| (-365)))) (-2717 (((-421 $) $) 173 (|has| |#1| (-365)))) (-2905 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 171 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) 170 (|has| |#1| (-365)))) (-1874 (($ $ (-567)) 107)) (-2400 (((-3 $ "failed") $ $) 62 (|has| |#1| (-559)))) (-2372 (((-3 (-645 $) "failed") (-645 $) $) 164 (|has| |#1| (-365)))) (-3955 (($ $) 155 (|has| |#1| (-38 (-410 (-567)))))) (-2642 (((-1159 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-567)))))) (-2460 (((-772) $) 166 (|has| |#1| (-365)))) (-1801 ((|#1| $ (-567)) 116) (($ $ $) 93 (|has| (-567) (-1114)))) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) 167 (|has| |#1| (-365)))) (-1616 (($ $ (-645 (-1179)) (-645 (-772))) 101 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-1179) (-772)) 100 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-645 (-1179))) 99 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-1179)) 98 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-772)) 96 (|has| |#1| (-15 * (|#1| (-567) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (-3104 (((-567) $) 76)) (-3192 (($ $) 144 (|has| |#1| (-38 (-410 (-567)))))) (-3071 (($ $) 133 (|has| |#1| (-38 (-410 (-567)))))) (-3173 (($ $) 143 (|has| |#1| (-38 (-410 (-567)))))) (-3043 (($ $) 134 (|has| |#1| (-38 (-410 (-567)))))) (-3155 (($ $) 142 (|has| |#1| (-38 (-410 (-567)))))) (-3021 (($ $) 135 (|has| |#1| (-38 (-410 (-567)))))) (-1834 (($ $) 84)) (-4129 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 59 (|has| |#1| (-172))) (($ (-410 (-567))) 69 (|has| |#1| (-38 (-410 (-567))))) (($ $) 61 (|has| |#1| (-559)))) (-2558 ((|#1| $ (-567)) 71)) (-2118 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-2746 (((-772)) 32 T CONST)) (-2185 ((|#1| $) 114)) (-3357 (((-112) $ $) 9)) (-3217 (($ $) 153 (|has| |#1| (-38 (-410 (-567)))))) (-3103 (($ $) 141 (|has| |#1| (-38 (-410 (-567)))))) (-3731 (((-112) $ $) 65 (|has| |#1| (-559)))) (-3201 (($ $) 152 (|has| |#1| (-38 (-410 (-567)))))) (-3083 (($ $) 140 (|has| |#1| (-38 (-410 (-567)))))) (-3238 (($ $) 151 (|has| |#1| (-38 (-410 (-567)))))) (-3126 (($ $) 139 (|has| |#1| (-38 (-410 (-567)))))) (-3058 ((|#1| $ (-567)) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-567)))) (|has| |#1| (-15 -4129 (|#1| (-1179))))))) (-3805 (($ $) 150 (|has| |#1| (-38 (-410 (-567)))))) (-3138 (($ $) 138 (|has| |#1| (-38 (-410 (-567)))))) (-3228 (($ $) 149 (|has| |#1| (-38 (-410 (-567)))))) (-3115 (($ $) 137 (|has| |#1| (-38 (-410 (-567)))))) (-3208 (($ $) 148 (|has| |#1| (-38 (-410 (-567)))))) (-3093 (($ $) 136 (|has| |#1| (-38 (-410 (-567)))))) (-1733 (($) 19 T CONST)) (-1744 (($) 34 T CONST)) (-2647 (($ $ (-645 (-1179)) (-645 (-772))) 105 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-1179) (-772)) 104 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-645 (-1179))) 103 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-1179)) 102 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-772)) 97 (|has| |#1| (-15 * (|#1| (-567) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (-2946 (((-112) $ $) 6)) (-3069 (($ $ |#1|) 70 (|has| |#1| (-365))) (($ $ $) 179 (|has| |#1| (-365)))) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 178 (|has| |#1| (-365))) (($ $ $) 156 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 127 (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-410 (-567)) $) 68 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 67 (|has| |#1| (-38 (-410 (-567)))))))
+(((-1229 |#1|) (-140) (-1051)) (T -1229))
+((-1317 (*1 *1 *2) (-12 (-5 *2 (-1159 (-2 (|:| |k| (-567)) (|:| |c| *3)))) (-4 *3 (-1051)) (-4 *1 (-1229 *3)))) (-3406 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-567))) (-4 *1 (-1229 *3)) (-4 *3 (-1051)))) (-2445 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-1229 *4)) (-4 *4 (-1051)) (-4 *4 (-559)) (-5 *2 (-410 (-954 *4))))) (-2445 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-567)) (-4 *1 (-1229 *4)) (-4 *4 (-1051)) (-4 *4 (-559)) (-5 *2 (-410 (-954 *4))))) (-4083 (*1 *1 *1) (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1051)) (-4 *2 (-38 (-410 (-567)))))) (-4083 (*1 *1 *1 *2) (-2811 (-12 (-5 *2 (-1179)) (-4 *1 (-1229 *3)) (-4 *3 (-1051)) (-12 (-4 *3 (-29 (-567))) (-4 *3 (-961)) (-4 *3 (-1204)) (-4 *3 (-38 (-410 (-567)))))) (-12 (-5 *2 (-1179)) (-4 *1 (-1229 *3)) (-4 *3 (-1051)) (-12 (|has| *3 (-15 -2859 ((-645 *2) *3))) (|has| *3 (-15 -4083 (*3 *3 *2))) (-4 *3 (-38 (-410 (-567)))))))))
+(-13 (-1247 |t#1| (-567)) (-10 -8 (-15 -1317 ($ (-1159 (-2 (|:| |k| (-567)) (|:| |c| |t#1|))))) (-15 -3406 ($ (-1 |t#1| (-567)) $)) (IF (|has| |t#1| (-559)) (PROGN (-15 -2445 ((-410 (-954 |t#1|)) $ (-567))) (-15 -2445 ((-410 (-954 |t#1|)) $ (-567) (-567)))) |%noBranch|) (IF (|has| |t#1| (-38 (-410 (-567)))) (PROGN (-15 -4083 ($ $)) (IF (|has| |t#1| (-15 -4083 (|t#1| |t#1| (-1179)))) (IF (|has| |t#1| (-15 -2859 ((-645 (-1179)) |t#1|))) (-15 -4083 ($ $ (-1179))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1204)) (IF (|has| |t#1| (-961)) (IF (|has| |t#1| (-29 (-567))) (-15 -4083 ($ $ (-1179))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1004)) (-6 (-1204))) |%noBranch|) (IF (|has| |t#1| (-365)) (-6 (-365)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-567)) . T) ((-25) . T) ((-38 #1=(-410 (-567))) -2811 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2811 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-35) |has| |#1| (-38 (-410 (-567)))) ((-95) |has| |#1| (-38 (-410 (-567)))) ((-102) . T) ((-111 #1# #1#) -2811 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2811 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #1#) -2811 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-617 (-567)) . T) ((-617 |#1|) |has| |#1| (-172)) ((-617 $) -2811 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-614 (-863)) . T) ((-172) -2811 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-567) |#1|))) ((-243) |has| |#1| (-365)) ((-285) |has| |#1| (-38 (-410 (-567)))) ((-287 $ $) |has| (-567) (-1114)) ((-291) -2811 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-308) |has| |#1| (-365)) ((-365) |has| |#1| (-365)) ((-455) |has| |#1| (-365)) ((-496) |has| |#1| (-38 (-410 (-567)))) ((-559) -2811 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-647 #1#) -2811 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #1#) -2811 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #1#) -2811 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) -2811 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-718 #1#) -2811 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) -2811 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-727) . T) ((-902 (-1179)) -12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1179)))) ((-975 |#1| #0# (-1084)) . T) ((-922) |has| |#1| (-365)) ((-1004) |has| |#1| (-38 (-410 (-567)))) ((-1053 #1#) -2811 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-1053 |#1|) . T) ((-1053 $) -2811 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1058 #1#) -2811 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-1058 |#1|) . T) ((-1058 $) -2811 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1204) |has| |#1| (-38 (-410 (-567)))) ((-1207) |has| |#1| (-38 (-410 (-567)))) ((-1223) |has| |#1| (-365)) ((-1247 |#1| #0#) . T))
+((-3791 (((-112) $) 12)) (-3765 (((-3 |#3| "failed") $) 17) (((-3 (-1179) "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 (-567) "failed") $) NIL)) (-2051 ((|#3| $) 14) (((-1179) $) NIL) (((-410 (-567)) $) NIL) (((-567) $) NIL)))
+(((-1230 |#1| |#2| |#3|) (-10 -8 (-15 -3765 ((-3 (-567) "failed") |#1|)) (-15 -2051 ((-567) |#1|)) (-15 -3765 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2051 ((-410 (-567)) |#1|)) (-15 -3765 ((-3 (-1179) "failed") |#1|)) (-15 -2051 ((-1179) |#1|)) (-15 -3765 ((-3 |#3| "failed") |#1|)) (-15 -2051 (|#3| |#1|)) (-15 -3791 ((-112) |#1|))) (-1231 |#2| |#3|) (-1051) (-1260 |#2|)) (T -1230))
+NIL
+(-10 -8 (-15 -3765 ((-3 (-567) "failed") |#1|)) (-15 -2051 ((-567) |#1|)) (-15 -3765 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2051 ((-410 (-567)) |#1|)) (-15 -3765 ((-3 (-1179) "failed") |#1|)) (-15 -2051 ((-1179) |#1|)) (-15 -3765 ((-3 |#3| "failed") |#1|)) (-15 -2051 (|#3| |#1|)) (-15 -3791 ((-112) |#1|)))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-4014 ((|#2| $) 242 (-1686 (|has| |#2| (-308)) (|has| |#1| (-365))))) (-2859 (((-645 (-1084)) $) 86)) (-3653 (((-1179) $) 115)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) 63 (|has| |#1| (-559)))) (-4287 (($ $) 64 (|has| |#1| (-559)))) (-2286 (((-112) $) 66 (|has| |#1| (-559)))) (-3748 (($ $ (-567)) 110) (($ $ (-567) (-567)) 109)) (-3006 (((-1159 (-2 (|:| |k| (-567)) (|:| |c| |#1|))) $) 117)) (-1638 ((|#2| $) 278)) (-4363 (((-3 |#2| "failed") $) 274)) (-2907 ((|#2| $) 275)) (-3164 (($ $) 147 (|has| |#1| (-38 (-410 (-567)))))) (-3032 (($ $) 130 (|has| |#1| (-38 (-410 (-567)))))) (-2376 (((-3 $ "failed") $ $) 20)) (-2029 (((-421 (-1175 $)) (-1175 $)) 251 (-1686 (|has| |#2| (-911)) (|has| |#1| (-365))))) (-3659 (($ $) 174 (|has| |#1| (-365)))) (-3597 (((-421 $) $) 175 (|has| |#1| (-365)))) (-2728 (($ $) 129 (|has| |#1| (-38 (-410 (-567)))))) (-3610 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) 248 (-1686 (|has| |#2| (-911)) (|has| |#1| (-365))))) (-3696 (((-112) $ $) 165 (|has| |#1| (-365)))) (-3145 (($ $) 146 (|has| |#1| (-38 (-410 (-567)))))) (-3008 (($ $) 131 (|has| |#1| (-38 (-410 (-567)))))) (-2677 (((-567) $) 260 (-1686 (|has| |#2| (-821)) (|has| |#1| (-365))))) (-1317 (($ (-1159 (-2 (|:| |k| (-567)) (|:| |c| |#1|)))) 185)) (-3182 (($ $) 145 (|has| |#1| (-38 (-410 (-567)))))) (-3057 (($ $) 132 (|has| |#1| (-38 (-410 (-567)))))) (-3647 (($) 18 T CONST)) (-3765 (((-3 |#2| "failed") $) 281) (((-3 (-567) "failed") $) 271 (-1686 (|has| |#2| (-1040 (-567))) (|has| |#1| (-365)))) (((-3 (-410 (-567)) "failed") $) 269 (-1686 (|has| |#2| (-1040 (-567))) (|has| |#1| (-365)))) (((-3 (-1179) "failed") $) 253 (-1686 (|has| |#2| (-1040 (-1179))) (|has| |#1| (-365))))) (-2051 ((|#2| $) 282) (((-567) $) 270 (-1686 (|has| |#2| (-1040 (-567))) (|has| |#1| (-365)))) (((-410 (-567)) $) 268 (-1686 (|has| |#2| (-1040 (-567))) (|has| |#1| (-365)))) (((-1179) $) 252 (-1686 (|has| |#2| (-1040 (-1179))) (|has| |#1| (-365))))) (-3337 (($ $) 277) (($ (-567) $) 276)) (-2357 (($ $ $) 169 (|has| |#1| (-365)))) (-3023 (($ $) 72)) (-1423 (((-690 |#2|) (-690 $)) 232 (|has| |#1| (-365))) (((-2 (|:| -4208 (-690 |#2|)) (|:| |vec| (-1269 |#2|))) (-690 $) (-1269 $)) 231 (|has| |#1| (-365))) (((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) 230 (-1686 (|has| |#2| (-640 (-567))) (|has| |#1| (-365)))) (((-690 (-567)) (-690 $)) 229 (-1686 (|has| |#2| (-640 (-567))) (|has| |#1| (-365))))) (-3588 (((-3 $ "failed") $) 37)) (-2445 (((-410 (-954 |#1|)) $ (-567)) 183 (|has| |#1| (-559))) (((-410 (-954 |#1|)) $ (-567) (-567)) 182 (|has| |#1| (-559)))) (-1359 (($) 244 (-1686 (|has| |#2| (-548)) (|has| |#1| (-365))))) (-2368 (($ $ $) 168 (|has| |#1| (-365)))) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) 163 (|has| |#1| (-365)))) (-3502 (((-112) $) 176 (|has| |#1| (-365)))) (-3137 (((-112) $) 258 (-1686 (|has| |#2| (-821)) (|has| |#1| (-365))))) (-3086 (((-112) $) 85)) (-1484 (($) 157 (|has| |#1| (-38 (-410 (-567)))))) (-3193 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) 236 (-1686 (|has| |#2| (-888 (-381))) (|has| |#1| (-365)))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) 235 (-1686 (|has| |#2| (-888 (-567))) (|has| |#1| (-365))))) (-3362 (((-567) $) 112) (((-567) $ (-567)) 111)) (-4346 (((-112) $) 35)) (-1863 (($ $) 240 (|has| |#1| (-365)))) (-1447 ((|#2| $) 238 (|has| |#1| (-365)))) (-3698 (($ $ (-567)) 128 (|has| |#1| (-38 (-410 (-567)))))) (-3067 (((-3 $ "failed") $) 272 (-1686 (|has| |#2| (-1154)) (|has| |#1| (-365))))) (-3465 (((-112) $) 259 (-1686 (|has| |#2| (-821)) (|has| |#1| (-365))))) (-1343 (($ $ (-923)) 113)) (-3406 (($ (-1 |#1| (-567)) $) 184)) (-1469 (((-3 (-645 $) "failed") (-645 $) $) 172 (|has| |#1| (-365)))) (-3770 (((-112) $) 74)) (-2836 (($ |#1| (-567)) 73) (($ $ (-1084) (-567)) 88) (($ $ (-645 (-1084)) (-645 (-567))) 87)) (-1365 (($ $ $) 262 (-1686 (|has| |#2| (-851)) (|has| |#1| (-365))))) (-3002 (($ $ $) 263 (-1686 (|has| |#2| (-851)) (|has| |#1| (-365))))) (-3841 (($ (-1 |#1| |#1|) $) 75) (($ (-1 |#2| |#2|) $) 224 (|has| |#1| (-365)))) (-3072 (($ $) 154 (|has| |#1| (-38 (-410 (-567)))))) (-2985 (($ $) 77)) (-2996 ((|#1| $) 78)) (-2751 (($ (-645 $)) 161 (|has| |#1| (-365))) (($ $ $) 160 (|has| |#1| (-365)))) (-2917 (($ (-567) |#2|) 279)) (-2516 (((-1161) $) 10)) (-2949 (($ $) 177 (|has| |#1| (-365)))) (-4083 (($ $) 181 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1179)) 180 (-2811 (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-961)) (|has| |#1| (-1204)) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-15 -2859 ((-645 (-1179)) |#1|))) (|has| |#1| (-15 -4083 (|#1| |#1| (-1179)))) (|has| |#1| (-38 (-410 (-567)))))))) (-2694 (($) 273 (-1686 (|has| |#2| (-1154)) (|has| |#1| (-365))) CONST)) (-3437 (((-1122) $) 11)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) 162 (|has| |#1| (-365)))) (-2785 (($ (-645 $)) 159 (|has| |#1| (-365))) (($ $ $) 158 (|has| |#1| (-365)))) (-2554 (($ $) 243 (-1686 (|has| |#2| (-308)) (|has| |#1| (-365))))) (-3969 ((|#2| $) 246 (-1686 (|has| |#2| (-548)) (|has| |#1| (-365))))) (-3551 (((-421 (-1175 $)) (-1175 $)) 249 (-1686 (|has| |#2| (-911)) (|has| |#1| (-365))))) (-2016 (((-421 (-1175 $)) (-1175 $)) 250 (-1686 (|has| |#2| (-911)) (|has| |#1| (-365))))) (-2717 (((-421 $) $) 173 (|has| |#1| (-365)))) (-2905 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 171 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) 170 (|has| |#1| (-365)))) (-1874 (($ $ (-567)) 107)) (-2400 (((-3 $ "failed") $ $) 62 (|has| |#1| (-559)))) (-2372 (((-3 (-645 $) "failed") (-645 $) $) 164 (|has| |#1| (-365)))) (-3955 (($ $) 155 (|has| |#1| (-38 (-410 (-567)))))) (-2642 (((-1159 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-567))))) (($ $ (-1179) |#2|) 223 (-1686 (|has| |#2| (-517 (-1179) |#2|)) (|has| |#1| (-365)))) (($ $ (-645 (-1179)) (-645 |#2|)) 222 (-1686 (|has| |#2| (-517 (-1179) |#2|)) (|has| |#1| (-365)))) (($ $ (-645 (-295 |#2|))) 221 (-1686 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365)))) (($ $ (-295 |#2|)) 220 (-1686 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365)))) (($ $ |#2| |#2|) 219 (-1686 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365)))) (($ $ (-645 |#2|) (-645 |#2|)) 218 (-1686 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365))))) (-2460 (((-772) $) 166 (|has| |#1| (-365)))) (-1801 ((|#1| $ (-567)) 116) (($ $ $) 93 (|has| (-567) (-1114))) (($ $ |#2|) 217 (-1686 (|has| |#2| (-287 |#2| |#2|)) (|has| |#1| (-365))))) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) 167 (|has| |#1| (-365)))) (-1616 (($ $ (-1 |#2| |#2|)) 228 (|has| |#1| (-365))) (($ $ (-1 |#2| |#2|) (-772)) 227 (|has| |#1| (-365))) (($ $ (-772)) 96 (-2811 (-1686 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $) 94 (-2811 (-1686 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-645 (-1179)) (-645 (-772))) 101 (-2811 (-1686 (|has| |#2| (-902 (-1179))) (|has| |#1| (-365))) (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-567) |#1|)))))) (($ $ (-1179) (-772)) 100 (-2811 (-1686 (|has| |#2| (-902 (-1179))) (|has| |#1| (-365))) (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-567) |#1|)))))) (($ $ (-645 (-1179))) 99 (-2811 (-1686 (|has| |#2| (-902 (-1179))) (|has| |#1| (-365))) (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-567) |#1|)))))) (($ $ (-1179)) 98 (-2811 (-1686 (|has| |#2| (-902 (-1179))) (|has| |#1| (-365))) (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))))) (-1762 (($ $) 241 (|has| |#1| (-365)))) (-1462 ((|#2| $) 239 (|has| |#1| (-365)))) (-3104 (((-567) $) 76)) (-3192 (($ $) 144 (|has| |#1| (-38 (-410 (-567)))))) (-3071 (($ $) 133 (|has| |#1| (-38 (-410 (-567)))))) (-3173 (($ $) 143 (|has| |#1| (-38 (-410 (-567)))))) (-3043 (($ $) 134 (|has| |#1| (-38 (-410 (-567)))))) (-3155 (($ $) 142 (|has| |#1| (-38 (-410 (-567)))))) (-3021 (($ $) 135 (|has| |#1| (-38 (-410 (-567)))))) (-3902 (((-225) $) 257 (-1686 (|has| |#2| (-1024)) (|has| |#1| (-365)))) (((-381) $) 256 (-1686 (|has| |#2| (-1024)) (|has| |#1| (-365)))) (((-539) $) 255 (-1686 (|has| |#2| (-615 (-539))) (|has| |#1| (-365)))) (((-894 (-381)) $) 234 (-1686 (|has| |#2| (-615 (-894 (-381)))) (|has| |#1| (-365)))) (((-894 (-567)) $) 233 (-1686 (|has| |#2| (-615 (-894 (-567)))) (|has| |#1| (-365))))) (-2616 (((-3 (-1269 $) "failed") (-690 $)) 247 (-1686 (-1686 (|has| $ (-145)) (|has| |#2| (-911))) (|has| |#1| (-365))))) (-1834 (($ $) 84)) (-4129 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 59 (|has| |#1| (-172))) (($ |#2|) 280) (($ (-1179)) 254 (-1686 (|has| |#2| (-1040 (-1179))) (|has| |#1| (-365)))) (($ (-410 (-567))) 69 (|has| |#1| (-38 (-410 (-567))))) (($ $) 61 (|has| |#1| (-559)))) (-2558 ((|#1| $ (-567)) 71)) (-2118 (((-3 $ "failed") $) 60 (-2811 (-1686 (-2811 (|has| |#2| (-145)) (-1686 (|has| $ (-145)) (|has| |#2| (-911)))) (|has| |#1| (-365))) (|has| |#1| (-145))))) (-2746 (((-772)) 32 T CONST)) (-2185 ((|#1| $) 114)) (-1689 ((|#2| $) 245 (-1686 (|has| |#2| (-548)) (|has| |#1| (-365))))) (-3357 (((-112) $ $) 9)) (-3217 (($ $) 153 (|has| |#1| (-38 (-410 (-567)))))) (-3103 (($ $) 141 (|has| |#1| (-38 (-410 (-567)))))) (-3731 (((-112) $ $) 65 (|has| |#1| (-559)))) (-3201 (($ $) 152 (|has| |#1| (-38 (-410 (-567)))))) (-3083 (($ $) 140 (|has| |#1| (-38 (-410 (-567)))))) (-3238 (($ $) 151 (|has| |#1| (-38 (-410 (-567)))))) (-3126 (($ $) 139 (|has| |#1| (-38 (-410 (-567)))))) (-3058 ((|#1| $ (-567)) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-567)))) (|has| |#1| (-15 -4129 (|#1| (-1179))))))) (-3805 (($ $) 150 (|has| |#1| (-38 (-410 (-567)))))) (-3138 (($ $) 138 (|has| |#1| (-38 (-410 (-567)))))) (-3228 (($ $) 149 (|has| |#1| (-38 (-410 (-567)))))) (-3115 (($ $) 137 (|has| |#1| (-38 (-410 (-567)))))) (-3208 (($ $) 148 (|has| |#1| (-38 (-410 (-567)))))) (-3093 (($ $) 136 (|has| |#1| (-38 (-410 (-567)))))) (-1547 (($ $) 261 (-1686 (|has| |#2| (-821)) (|has| |#1| (-365))))) (-1733 (($) 19 T CONST)) (-1744 (($) 34 T CONST)) (-2647 (($ $ (-1 |#2| |#2|)) 226 (|has| |#1| (-365))) (($ $ (-1 |#2| |#2|) (-772)) 225 (|has| |#1| (-365))) (($ $ (-772)) 97 (-2811 (-1686 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $) 95 (-2811 (-1686 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-645 (-1179)) (-645 (-772))) 105 (-2811 (-1686 (|has| |#2| (-902 (-1179))) (|has| |#1| (-365))) (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-567) |#1|)))))) (($ $ (-1179) (-772)) 104 (-2811 (-1686 (|has| |#2| (-902 (-1179))) (|has| |#1| (-365))) (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-567) |#1|)))))) (($ $ (-645 (-1179))) 103 (-2811 (-1686 (|has| |#2| (-902 (-1179))) (|has| |#1| (-365))) (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-567) |#1|)))))) (($ $ (-1179)) 102 (-2811 (-1686 (|has| |#2| (-902 (-1179))) (|has| |#1| (-365))) (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))))) (-3004 (((-112) $ $) 265 (-1686 (|has| |#2| (-851)) (|has| |#1| (-365))))) (-2980 (((-112) $ $) 266 (-1686 (|has| |#2| (-851)) (|has| |#1| (-365))))) (-2946 (((-112) $ $) 6)) (-2993 (((-112) $ $) 264 (-1686 (|has| |#2| (-851)) (|has| |#1| (-365))))) (-2968 (((-112) $ $) 267 (-1686 (|has| |#2| (-851)) (|has| |#1| (-365))))) (-3069 (($ $ |#1|) 70 (|has| |#1| (-365))) (($ $ $) 179 (|has| |#1| (-365))) (($ |#2| |#2|) 237 (|has| |#1| (-365)))) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 178 (|has| |#1| (-365))) (($ $ $) 156 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 127 (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ $ |#2|) 216 (|has| |#1| (-365))) (($ |#2| $) 215 (|has| |#1| (-365))) (($ (-410 (-567)) $) 68 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 67 (|has| |#1| (-38 (-410 (-567)))))))
+(((-1231 |#1| |#2|) (-140) (-1051) (-1260 |t#1|)) (T -1231))
+((-3104 (*1 *2 *1) (-12 (-4 *1 (-1231 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-1260 *3)) (-5 *2 (-567)))) (-2917 (*1 *1 *2 *3) (-12 (-5 *2 (-567)) (-4 *4 (-1051)) (-4 *1 (-1231 *4 *3)) (-4 *3 (-1260 *4)))) (-1638 (*1 *2 *1) (-12 (-4 *1 (-1231 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-1260 *3)))) (-3337 (*1 *1 *1) (-12 (-4 *1 (-1231 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-1260 *2)))) (-3337 (*1 *1 *2 *1) (-12 (-5 *2 (-567)) (-4 *1 (-1231 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-1260 *3)))) (-2907 (*1 *2 *1) (-12 (-4 *1 (-1231 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-1260 *3)))) (-4363 (*1 *2 *1) (|partial| -12 (-4 *1 (-1231 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-1260 *3)))))
+(-13 (-1229 |t#1|) (-1040 |t#2|) (-617 |t#2|) (-10 -8 (-15 -2917 ($ (-567) |t#2|)) (-15 -3104 ((-567) $)) (-15 -1638 (|t#2| $)) (-15 -3337 ($ $)) (-15 -3337 ($ (-567) $)) (-15 -2907 (|t#2| $)) (-15 -4363 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-365)) (-6 (-994 |t#2|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-567)) . T) ((-25) . T) ((-38 #1=(-410 (-567))) -2811 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 |#2|) |has| |#1| (-365)) ((-38 $) -2811 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-35) |has| |#1| (-38 (-410 (-567)))) ((-95) |has| |#1| (-38 (-410 (-567)))) ((-102) . T) ((-111 #1# #1#) -2811 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-365)) ((-111 $ $) -2811 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-131) . T) ((-145) -2811 (-12 (|has| |#1| (-365)) (|has| |#2| (-145))) (|has| |#1| (-145))) ((-147) -2811 (-12 (|has| |#1| (-365)) (|has| |#2| (-147))) (|has| |#1| (-147))) ((-617 #1#) -2811 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-617 (-567)) . T) ((-617 #2=(-1179)) -12 (|has| |#1| (-365)) (|has| |#2| (-1040 (-1179)))) ((-617 |#1|) |has| |#1| (-172)) ((-617 |#2|) . T) ((-617 $) -2811 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-614 (-863)) . T) ((-172) -2811 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-615 (-225)) -12 (|has| |#1| (-365)) (|has| |#2| (-1024))) ((-615 (-381)) -12 (|has| |#1| (-365)) (|has| |#2| (-1024))) ((-615 (-539)) -12 (|has| |#1| (-365)) (|has| |#2| (-615 (-539)))) ((-615 (-894 (-381))) -12 (|has| |#1| (-365)) (|has| |#2| (-615 (-894 (-381))))) ((-615 (-894 (-567))) -12 (|has| |#1| (-365)) (|has| |#2| (-615 (-894 (-567))))) ((-231 |#2|) |has| |#1| (-365)) ((-233) -2811 (-12 (|has| |#1| (-365)) (|has| |#2| (-233))) (|has| |#1| (-15 * (|#1| (-567) |#1|)))) ((-243) |has| |#1| (-365)) ((-285) |has| |#1| (-38 (-410 (-567)))) ((-287 |#2| $) -12 (|has| |#1| (-365)) (|has| |#2| (-287 |#2| |#2|))) ((-287 $ $) |has| (-567) (-1114)) ((-291) -2811 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-308) |has| |#1| (-365)) ((-310 |#2|) -12 (|has| |#1| (-365)) (|has| |#2| (-310 |#2|))) ((-365) |has| |#1| (-365)) ((-340 |#2|) |has| |#1| (-365)) ((-379 |#2|) |has| |#1| (-365)) ((-403 |#2|) |has| |#1| (-365)) ((-455) |has| |#1| (-365)) ((-496) |has| |#1| (-38 (-410 (-567)))) ((-517 (-1179) |#2|) -12 (|has| |#1| (-365)) (|has| |#2| (-517 (-1179) |#2|))) ((-517 |#2| |#2|) -12 (|has| |#1| (-365)) (|has| |#2| (-310 |#2|))) ((-559) -2811 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-647 #1#) -2811 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 |#2|) |has| |#1| (-365)) ((-647 $) . T) ((-649 #1#) -2811 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-649 |#1|) . T) ((-649 |#2|) |has| |#1| (-365)) ((-649 $) . T) ((-641 #1#) -2811 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-641 |#1|) |has| |#1| (-172)) ((-641 |#2|) |has| |#1| (-365)) ((-641 $) -2811 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-640 (-567)) -12 (|has| |#1| (-365)) (|has| |#2| (-640 (-567)))) ((-640 |#2|) |has| |#1| (-365)) ((-718 #1#) -2811 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-718 |#1|) |has| |#1| (-172)) ((-718 |#2|) |has| |#1| (-365)) ((-718 $) -2811 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-727) . T) ((-792) -12 (|has| |#1| (-365)) (|has| |#2| (-821))) ((-793) -12 (|has| |#1| (-365)) (|has| |#2| (-821))) ((-795) -12 (|has| |#1| (-365)) (|has| |#2| (-821))) ((-796) -12 (|has| |#1| (-365)) (|has| |#2| (-821))) ((-821) -12 (|has| |#1| (-365)) (|has| |#2| (-821))) ((-849) -12 (|has| |#1| (-365)) (|has| |#2| (-821))) ((-851) -2811 (-12 (|has| |#1| (-365)) (|has| |#2| (-851))) (-12 (|has| |#1| (-365)) (|has| |#2| (-821)))) ((-902 (-1179)) -2811 (-12 (|has| |#1| (-365)) (|has| |#2| (-902 (-1179)))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1179))))) ((-888 (-381)) -12 (|has| |#1| (-365)) (|has| |#2| (-888 (-381)))) ((-888 (-567)) -12 (|has| |#1| (-365)) (|has| |#2| (-888 (-567)))) ((-886 |#2|) |has| |#1| (-365)) ((-911) -12 (|has| |#1| (-365)) (|has| |#2| (-911))) ((-975 |#1| #0# (-1084)) . T) ((-922) |has| |#1| (-365)) ((-994 |#2|) |has| |#1| (-365)) ((-1004) |has| |#1| (-38 (-410 (-567)))) ((-1024) -12 (|has| |#1| (-365)) (|has| |#2| (-1024))) ((-1040 (-410 (-567))) -12 (|has| |#1| (-365)) (|has| |#2| (-1040 (-567)))) ((-1040 (-567)) -12 (|has| |#1| (-365)) (|has| |#2| (-1040 (-567)))) ((-1040 #2#) -12 (|has| |#1| (-365)) (|has| |#2| (-1040 (-1179)))) ((-1040 |#2|) . T) ((-1053 #1#) -2811 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-1053 |#1|) . T) ((-1053 |#2|) |has| |#1| (-365)) ((-1053 $) -2811 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1058 #1#) -2811 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-1058 |#1|) . T) ((-1058 |#2|) |has| |#1| (-365)) ((-1058 $) -2811 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1154) -12 (|has| |#1| (-365)) (|has| |#2| (-1154))) ((-1204) |has| |#1| (-38 (-410 (-567)))) ((-1207) |has| |#1| (-38 (-410 (-567)))) ((-1219) |has| |#1| (-365)) ((-1223) |has| |#1| (-365)) ((-1229 |#1|) . T) ((-1247 |#1| #0#) . T))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) 81)) (-4014 ((|#2| $) NIL (-12 (|has| |#2| (-308)) (|has| |#1| (-365))))) (-2859 (((-645 (-1084)) $) NIL)) (-3653 (((-1179) $) 100)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-4287 (($ $) NIL (|has| |#1| (-559)))) (-2286 (((-112) $) NIL (|has| |#1| (-559)))) (-3748 (($ $ (-567)) 109) (($ $ (-567) (-567)) 111)) (-3006 (((-1159 (-2 (|:| |k| (-567)) (|:| |c| |#1|))) $) 51)) (-1638 ((|#2| $) 11)) (-4363 (((-3 |#2| "failed") $) 35)) (-2907 ((|#2| $) 36)) (-3164 (($ $) 206 (|has| |#1| (-38 (-410 (-567)))))) (-3032 (($ $) 182 (|has| |#1| (-38 (-410 (-567)))))) (-2376 (((-3 $ "failed") $ $) NIL)) (-2029 (((-421 (-1175 $)) (-1175 $)) NIL (-12 (|has| |#2| (-911)) (|has| |#1| (-365))))) (-3659 (($ $) NIL (|has| |#1| (-365)))) (-3597 (((-421 $) $) NIL (|has| |#1| (-365)))) (-2728 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3610 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) NIL (-12 (|has| |#2| (-911)) (|has| |#1| (-365))))) (-3696 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3145 (($ $) 202 (|has| |#1| (-38 (-410 (-567)))))) (-3008 (($ $) 178 (|has| |#1| (-38 (-410 (-567)))))) (-2677 (((-567) $) NIL (-12 (|has| |#2| (-821)) (|has| |#1| (-365))))) (-1317 (($ (-1159 (-2 (|:| |k| (-567)) (|:| |c| |#1|)))) 59)) (-3182 (($ $) 210 (|has| |#1| (-38 (-410 (-567)))))) (-3057 (($ $) 186 (|has| |#1| (-38 (-410 (-567)))))) (-3647 (($) NIL T CONST)) (-3765 (((-3 |#2| "failed") $) 157) (((-3 (-567) "failed") $) NIL (-12 (|has| |#2| (-1040 (-567))) (|has| |#1| (-365)))) (((-3 (-410 (-567)) "failed") $) NIL (-12 (|has| |#2| (-1040 (-567))) (|has| |#1| (-365)))) (((-3 (-1179) "failed") $) NIL (-12 (|has| |#2| (-1040 (-1179))) (|has| |#1| (-365))))) (-2051 ((|#2| $) 156) (((-567) $) NIL (-12 (|has| |#2| (-1040 (-567))) (|has| |#1| (-365)))) (((-410 (-567)) $) NIL (-12 (|has| |#2| (-1040 (-567))) (|has| |#1| (-365)))) (((-1179) $) NIL (-12 (|has| |#2| (-1040 (-1179))) (|has| |#1| (-365))))) (-3337 (($ $) 65) (($ (-567) $) 28)) (-2357 (($ $ $) NIL (|has| |#1| (-365)))) (-3023 (($ $) NIL)) (-1423 (((-690 |#2|) (-690 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -4208 (-690 |#2|)) (|:| |vec| (-1269 |#2|))) (-690 $) (-1269 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (-12 (|has| |#2| (-640 (-567))) (|has| |#1| (-365)))) (((-690 (-567)) (-690 $)) NIL (-12 (|has| |#2| (-640 (-567))) (|has| |#1| (-365))))) (-3588 (((-3 $ "failed") $) 88)) (-2445 (((-410 (-954 |#1|)) $ (-567)) 124 (|has| |#1| (-559))) (((-410 (-954 |#1|)) $ (-567) (-567)) 126 (|has| |#1| (-559)))) (-1359 (($) NIL (-12 (|has| |#2| (-548)) (|has| |#1| (-365))))) (-2368 (($ $ $) NIL (|has| |#1| (-365)))) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-3502 (((-112) $) NIL (|has| |#1| (-365)))) (-3137 (((-112) $) NIL (-12 (|has| |#2| (-821)) (|has| |#1| (-365))))) (-3086 (((-112) $) 74)) (-1484 (($) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3193 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (-12 (|has| |#2| (-888 (-381))) (|has| |#1| (-365)))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (-12 (|has| |#2| (-888 (-567))) (|has| |#1| (-365))))) (-3362 (((-567) $) 105) (((-567) $ (-567)) 107)) (-4346 (((-112) $) NIL)) (-1863 (($ $) NIL (|has| |#1| (-365)))) (-1447 ((|#2| $) 165 (|has| |#1| (-365)))) (-3698 (($ $ (-567)) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3067 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1154)) (|has| |#1| (-365))))) (-3465 (((-112) $) NIL (-12 (|has| |#2| (-821)) (|has| |#1| (-365))))) (-1343 (($ $ (-923)) 148)) (-3406 (($ (-1 |#1| (-567)) $) 144)) (-1469 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-3770 (((-112) $) NIL)) (-2836 (($ |#1| (-567)) 20) (($ $ (-1084) (-567)) NIL) (($ $ (-645 (-1084)) (-645 (-567))) NIL)) (-1365 (($ $ $) NIL (-12 (|has| |#2| (-851)) (|has| |#1| (-365))))) (-3002 (($ $ $) NIL (-12 (|has| |#2| (-851)) (|has| |#1| (-365))))) (-3841 (($ (-1 |#1| |#1|) $) 141) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-365)))) (-3072 (($ $) 176 (|has| |#1| (-38 (-410 (-567)))))) (-2985 (($ $) NIL)) (-2996 ((|#1| $) NIL)) (-2751 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2917 (($ (-567) |#2|) 10)) (-2516 (((-1161) $) NIL)) (-2949 (($ $) 159 (|has| |#1| (-365)))) (-4083 (($ $) 228 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1179)) 233 (-2811 (-12 (|has| |#1| (-15 -4083 (|#1| |#1| (-1179)))) (|has| |#1| (-15 -2859 ((-645 (-1179)) |#1|))) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-961)) (|has| |#1| (-1204)))))) (-2694 (($) NIL (-12 (|has| |#2| (-1154)) (|has| |#1| (-365))) CONST)) (-3437 (((-1122) $) NIL)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| |#1| (-365)))) (-2785 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2554 (($ $) NIL (-12 (|has| |#2| (-308)) (|has| |#1| (-365))))) (-3969 ((|#2| $) NIL (-12 (|has| |#2| (-548)) (|has| |#1| (-365))))) (-3551 (((-421 (-1175 $)) (-1175 $)) NIL (-12 (|has| |#2| (-911)) (|has| |#1| (-365))))) (-2016 (((-421 (-1175 $)) (-1175 $)) NIL (-12 (|has| |#2| (-911)) (|has| |#1| (-365))))) (-2717 (((-421 $) $) NIL (|has| |#1| (-365)))) (-2905 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) NIL (|has| |#1| (-365)))) (-1874 (($ $ (-567)) 138)) (-2400 (((-3 $ "failed") $ $) 128 (|has| |#1| (-559)))) (-2372 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-3955 (($ $) 174 (|has| |#1| (-38 (-410 (-567)))))) (-2642 (((-1159 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-567))))) (($ $ (-1179) |#2|) NIL (-12 (|has| |#2| (-517 (-1179) |#2|)) (|has| |#1| (-365)))) (($ $ (-645 (-1179)) (-645 |#2|)) NIL (-12 (|has| |#2| (-517 (-1179) |#2|)) (|has| |#1| (-365)))) (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365))))) (-2460 (((-772) $) NIL (|has| |#1| (-365)))) (-1801 ((|#1| $ (-567)) 103) (($ $ $) 90 (|has| (-567) (-1114))) (($ $ |#2|) NIL (-12 (|has| |#2| (-287 |#2| |#2|)) (|has| |#1| (-365))))) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) NIL (|has| |#1| (-365)))) (-1616 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-365))) (($ $ (-1 |#2| |#2|) (-772)) NIL (|has| |#1| (-365))) (($ $ (-772)) NIL (-2811 (-12 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $) 149 (-2811 (-12 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (-2811 (-12 (|has| |#2| (-902 (-1179))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1179)))))) (($ $ (-1179) (-772)) NIL (-2811 (-12 (|has| |#2| (-902 (-1179))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1179)))))) (($ $ (-645 (-1179))) NIL (-2811 (-12 (|has| |#2| (-902 (-1179))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1179)))))) (($ $ (-1179)) 153 (-2811 (-12 (|has| |#2| (-902 (-1179))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1179))))))) (-1762 (($ $) NIL (|has| |#1| (-365)))) (-1462 ((|#2| $) 166 (|has| |#1| (-365)))) (-3104 (((-567) $) 12)) (-3192 (($ $) 212 (|has| |#1| (-38 (-410 (-567)))))) (-3071 (($ $) 188 (|has| |#1| (-38 (-410 (-567)))))) (-3173 (($ $) 208 (|has| |#1| (-38 (-410 (-567)))))) (-3043 (($ $) 184 (|has| |#1| (-38 (-410 (-567)))))) (-3155 (($ $) 204 (|has| |#1| (-38 (-410 (-567)))))) (-3021 (($ $) 180 (|has| |#1| (-38 (-410 (-567)))))) (-3902 (((-225) $) NIL (-12 (|has| |#2| (-1024)) (|has| |#1| (-365)))) (((-381) $) NIL (-12 (|has| |#2| (-1024)) (|has| |#1| (-365)))) (((-539) $) NIL (-12 (|has| |#2| (-615 (-539))) (|has| |#1| (-365)))) (((-894 (-381)) $) NIL (-12 (|has| |#2| (-615 (-894 (-381)))) (|has| |#1| (-365)))) (((-894 (-567)) $) NIL (-12 (|has| |#2| (-615 (-894 (-567)))) (|has| |#1| (-365))))) (-2616 (((-3 (-1269 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-911)) (|has| |#1| (-365))))) (-1834 (($ $) 136)) (-4129 (((-863) $) 267) (($ (-567)) 24) (($ |#1|) 22 (|has| |#1| (-172))) (($ |#2|) 21) (($ (-1179)) NIL (-12 (|has| |#2| (-1040 (-1179))) (|has| |#1| (-365)))) (($ (-410 (-567))) 169 (|has| |#1| (-38 (-410 (-567))))) (($ $) NIL (|has| |#1| (-559)))) (-2558 ((|#1| $ (-567)) 85)) (-2118 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-145)) (|has| |#2| (-911)) (|has| |#1| (-365))) (-12 (|has| |#2| (-145)) (|has| |#1| (-365))) (|has| |#1| (-145))))) (-2746 (((-772)) 155 T CONST)) (-2185 ((|#1| $) 102)) (-1689 ((|#2| $) NIL (-12 (|has| |#2| (-548)) (|has| |#1| (-365))))) (-3357 (((-112) $ $) NIL)) (-3217 (($ $) 218 (|has| |#1| (-38 (-410 (-567)))))) (-3103 (($ $) 194 (|has| |#1| (-38 (-410 (-567)))))) (-3731 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3201 (($ $) 214 (|has| |#1| (-38 (-410 (-567)))))) (-3083 (($ $) 190 (|has| |#1| (-38 (-410 (-567)))))) (-3238 (($ $) 222 (|has| |#1| (-38 (-410 (-567)))))) (-3126 (($ $) 198 (|has| |#1| (-38 (-410 (-567)))))) (-3058 ((|#1| $ (-567)) 134 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-567)))) (|has| |#1| (-15 -4129 (|#1| (-1179))))))) (-3805 (($ $) 224 (|has| |#1| (-38 (-410 (-567)))))) (-3138 (($ $) 200 (|has| |#1| (-38 (-410 (-567)))))) (-3228 (($ $) 220 (|has| |#1| (-38 (-410 (-567)))))) (-3115 (($ $) 196 (|has| |#1| (-38 (-410 (-567)))))) (-3208 (($ $) 216 (|has| |#1| (-38 (-410 (-567)))))) (-3093 (($ $) 192 (|has| |#1| (-38 (-410 (-567)))))) (-1547 (($ $) NIL (-12 (|has| |#2| (-821)) (|has| |#1| (-365))))) (-1733 (($) 13 T CONST)) (-1744 (($) 18 T CONST)) (-2647 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-365))) (($ $ (-1 |#2| |#2|) (-772)) NIL (|has| |#1| (-365))) (($ $ (-772)) NIL (-2811 (-12 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $) NIL (-2811 (-12 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (-2811 (-12 (|has| |#2| (-902 (-1179))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1179)))))) (($ $ (-1179) (-772)) NIL (-2811 (-12 (|has| |#2| (-902 (-1179))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1179)))))) (($ $ (-645 (-1179))) NIL (-2811 (-12 (|has| |#2| (-902 (-1179))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1179)))))) (($ $ (-1179)) NIL (-2811 (-12 (|has| |#2| (-902 (-1179))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1179))))))) (-3004 (((-112) $ $) NIL (-12 (|has| |#2| (-851)) (|has| |#1| (-365))))) (-2980 (((-112) $ $) NIL (-12 (|has| |#2| (-851)) (|has| |#1| (-365))))) (-2946 (((-112) $ $) 72)) (-2993 (((-112) $ $) NIL (-12 (|has| |#2| (-851)) (|has| |#1| (-365))))) (-2968 (((-112) $ $) NIL (-12 (|has| |#2| (-851)) (|has| |#1| (-365))))) (-3069 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) 163 (|has| |#1| (-365))) (($ |#2| |#2|) 164 (|has| |#1| (-365)))) (-3053 (($ $) 227) (($ $ $) 78)) (-3041 (($ $ $) 76)) (** (($ $ (-923)) NIL) (($ $ (-772)) 84) (($ $ (-567)) 160 (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 172 (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 79) (($ $ |#1|) NIL) (($ |#1| $) 152) (($ $ |#2|) 162 (|has| |#1| (-365))) (($ |#2| $) 161 (|has| |#1| (-365))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))))
+(((-1232 |#1| |#2|) (-1231 |#1| |#2|) (-1051) (-1260 |#1|)) (T -1232))
+NIL
+(-1231 |#1| |#2|)
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-4014 (((-1261 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1261 |#1| |#2| |#3|) (-308)) (|has| |#1| (-365))))) (-2859 (((-645 (-1084)) $) NIL)) (-3653 (((-1179) $) 10)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) NIL (-2811 (-12 (|has| (-1261 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1261 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))) (|has| |#1| (-559))))) (-4287 (($ $) NIL (-2811 (-12 (|has| (-1261 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1261 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))) (|has| |#1| (-559))))) (-2286 (((-112) $) NIL (-2811 (-12 (|has| (-1261 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1261 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))) (|has| |#1| (-559))))) (-3748 (($ $ (-567)) NIL) (($ $ (-567) (-567)) NIL)) (-3006 (((-1159 (-2 (|:| |k| (-567)) (|:| |c| |#1|))) $) NIL)) (-1638 (((-1261 |#1| |#2| |#3|) $) NIL)) (-4363 (((-3 (-1261 |#1| |#2| |#3|) "failed") $) NIL)) (-2907 (((-1261 |#1| |#2| |#3|) $) NIL)) (-3164 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3032 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2376 (((-3 $ "failed") $ $) NIL)) (-2029 (((-421 (-1175 $)) (-1175 $)) NIL (-12 (|has| (-1261 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))))) (-3659 (($ $) NIL (|has| |#1| (-365)))) (-3597 (((-421 $) $) NIL (|has| |#1| (-365)))) (-2728 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3610 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) NIL (-12 (|has| (-1261 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))))) (-3696 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3145 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3008 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2677 (((-567) $) NIL (-12 (|has| (-1261 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))))) (-1317 (($ (-1159 (-2 (|:| |k| (-567)) (|:| |c| |#1|)))) NIL)) (-3182 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3057 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3647 (($) NIL T CONST)) (-3765 (((-3 (-1261 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1179) "failed") $) NIL (-12 (|has| (-1261 |#1| |#2| |#3|) (-1040 (-1179))) (|has| |#1| (-365)))) (((-3 (-410 (-567)) "failed") $) NIL (-12 (|has| (-1261 |#1| |#2| |#3|) (-1040 (-567))) (|has| |#1| (-365)))) (((-3 (-567) "failed") $) NIL (-12 (|has| (-1261 |#1| |#2| |#3|) (-1040 (-567))) (|has| |#1| (-365))))) (-2051 (((-1261 |#1| |#2| |#3|) $) NIL) (((-1179) $) NIL (-12 (|has| (-1261 |#1| |#2| |#3|) (-1040 (-1179))) (|has| |#1| (-365)))) (((-410 (-567)) $) NIL (-12 (|has| (-1261 |#1| |#2| |#3|) (-1040 (-567))) (|has| |#1| (-365)))) (((-567) $) NIL (-12 (|has| (-1261 |#1| |#2| |#3|) (-1040 (-567))) (|has| |#1| (-365))))) (-3337 (($ $) NIL) (($ (-567) $) NIL)) (-2357 (($ $ $) NIL (|has| |#1| (-365)))) (-3023 (($ $) NIL)) (-1423 (((-690 (-1261 |#1| |#2| |#3|)) (-690 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -4208 (-690 (-1261 |#1| |#2| |#3|))) (|:| |vec| (-1269 (-1261 |#1| |#2| |#3|)))) (-690 $) (-1269 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (-12 (|has| (-1261 |#1| |#2| |#3|) (-640 (-567))) (|has| |#1| (-365)))) (((-690 (-567)) (-690 $)) NIL (-12 (|has| (-1261 |#1| |#2| |#3|) (-640 (-567))) (|has| |#1| (-365))))) (-3588 (((-3 $ "failed") $) NIL)) (-2445 (((-410 (-954 |#1|)) $ (-567)) NIL (|has| |#1| (-559))) (((-410 (-954 |#1|)) $ (-567) (-567)) NIL (|has| |#1| (-559)))) (-1359 (($) NIL (-12 (|has| (-1261 |#1| |#2| |#3|) (-548)) (|has| |#1| (-365))))) (-2368 (($ $ $) NIL (|has| |#1| (-365)))) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-3502 (((-112) $) NIL (|has| |#1| (-365)))) (-3137 (((-112) $) NIL (-12 (|has| (-1261 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))))) (-3086 (((-112) $) NIL)) (-1484 (($) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3193 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (-12 (|has| (-1261 |#1| |#2| |#3|) (-888 (-381))) (|has| |#1| (-365)))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (-12 (|has| (-1261 |#1| |#2| |#3|) (-888 (-567))) (|has| |#1| (-365))))) (-3362 (((-567) $) NIL) (((-567) $ (-567)) NIL)) (-4346 (((-112) $) NIL)) (-1863 (($ $) NIL (|has| |#1| (-365)))) (-1447 (((-1261 |#1| |#2| |#3|) $) NIL (|has| |#1| (-365)))) (-3698 (($ $ (-567)) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3067 (((-3 $ "failed") $) NIL (-12 (|has| (-1261 |#1| |#2| |#3|) (-1154)) (|has| |#1| (-365))))) (-3465 (((-112) $) NIL (-12 (|has| (-1261 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))))) (-1343 (($ $ (-923)) NIL)) (-3406 (($ (-1 |#1| (-567)) $) NIL)) (-1469 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-3770 (((-112) $) NIL)) (-2836 (($ |#1| (-567)) 18) (($ $ (-1084) (-567)) NIL) (($ $ (-645 (-1084)) (-645 (-567))) NIL)) (-1365 (($ $ $) NIL (-2811 (-12 (|has| (-1261 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1261 |#1| |#2| |#3|) (-851)) (|has| |#1| (-365)))))) (-3002 (($ $ $) NIL (-2811 (-12 (|has| (-1261 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1261 |#1| |#2| |#3|) (-851)) (|has| |#1| (-365)))))) (-3841 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1261 |#1| |#2| |#3|) (-1261 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-365)))) (-3072 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2985 (($ $) NIL)) (-2996 ((|#1| $) NIL)) (-2751 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2917 (($ (-567) (-1261 |#1| |#2| |#3|)) NIL)) (-2516 (((-1161) $) NIL)) (-2949 (($ $) NIL (|has| |#1| (-365)))) (-4083 (($ $) 27 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1179)) NIL (-2811 (-12 (|has| |#1| (-15 -4083 (|#1| |#1| (-1179)))) (|has| |#1| (-15 -2859 ((-645 (-1179)) |#1|))) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-961)) (|has| |#1| (-1204))))) (($ $ (-1265 |#2|)) 28 (|has| |#1| (-38 (-410 (-567)))))) (-2694 (($) NIL (-12 (|has| (-1261 |#1| |#2| |#3|) (-1154)) (|has| |#1| (-365))) CONST)) (-3437 (((-1122) $) NIL)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| |#1| (-365)))) (-2785 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2554 (($ $) NIL (-12 (|has| (-1261 |#1| |#2| |#3|) (-308)) (|has| |#1| (-365))))) (-3969 (((-1261 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1261 |#1| |#2| |#3|) (-548)) (|has| |#1| (-365))))) (-3551 (((-421 (-1175 $)) (-1175 $)) NIL (-12 (|has| (-1261 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))))) (-2016 (((-421 (-1175 $)) (-1175 $)) NIL (-12 (|has| (-1261 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))))) (-2717 (((-421 $) $) NIL (|has| |#1| (-365)))) (-2905 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) NIL (|has| |#1| (-365)))) (-1874 (($ $ (-567)) NIL)) (-2400 (((-3 $ "failed") $ $) NIL (-2811 (-12 (|has| (-1261 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1261 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))) (|has| |#1| (-559))))) (-2372 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-3955 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2642 (((-1159 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-567))))) (($ $ (-1179) (-1261 |#1| |#2| |#3|)) NIL (-12 (|has| (-1261 |#1| |#2| |#3|) (-517 (-1179) (-1261 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-645 (-1179)) (-645 (-1261 |#1| |#2| |#3|))) NIL (-12 (|has| (-1261 |#1| |#2| |#3|) (-517 (-1179) (-1261 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-645 (-295 (-1261 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1261 |#1| |#2| |#3|) (-310 (-1261 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-295 (-1261 |#1| |#2| |#3|))) NIL (-12 (|has| (-1261 |#1| |#2| |#3|) (-310 (-1261 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-1261 |#1| |#2| |#3|) (-1261 |#1| |#2| |#3|)) NIL (-12 (|has| (-1261 |#1| |#2| |#3|) (-310 (-1261 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-645 (-1261 |#1| |#2| |#3|)) (-645 (-1261 |#1| |#2| |#3|))) NIL (-12 (|has| (-1261 |#1| |#2| |#3|) (-310 (-1261 |#1| |#2| |#3|))) (|has| |#1| (-365))))) (-2460 (((-772) $) NIL (|has| |#1| (-365)))) (-1801 ((|#1| $ (-567)) NIL) (($ $ $) NIL (|has| (-567) (-1114))) (($ $ (-1261 |#1| |#2| |#3|)) NIL (-12 (|has| (-1261 |#1| |#2| |#3|) (-287 (-1261 |#1| |#2| |#3|) (-1261 |#1| |#2| |#3|))) (|has| |#1| (-365))))) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) NIL (|has| |#1| (-365)))) (-1616 (($ $ (-1 (-1261 |#1| |#2| |#3|) (-1261 |#1| |#2| |#3|))) NIL (|has| |#1| (-365))) (($ $ (-1 (-1261 |#1| |#2| |#3|) (-1261 |#1| |#2| |#3|)) (-772)) NIL (|has| |#1| (-365))) (($ $ (-1265 |#2|)) 26) (($ $ (-772)) NIL (-2811 (-12 (|has| (-1261 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $) 25 (-2811 (-12 (|has| (-1261 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (-2811 (-12 (|has| (-1261 |#1| |#2| |#3|) (-902 (-1179))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1179)))))) (($ $ (-1179) (-772)) NIL (-2811 (-12 (|has| (-1261 |#1| |#2| |#3|) (-902 (-1179))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1179)))))) (($ $ (-645 (-1179))) NIL (-2811 (-12 (|has| (-1261 |#1| |#2| |#3|) (-902 (-1179))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1179)))))) (($ $ (-1179)) NIL (-2811 (-12 (|has| (-1261 |#1| |#2| |#3|) (-902 (-1179))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1179))))))) (-1762 (($ $) NIL (|has| |#1| (-365)))) (-1462 (((-1261 |#1| |#2| |#3|) $) NIL (|has| |#1| (-365)))) (-3104 (((-567) $) NIL)) (-3192 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3071 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3173 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3043 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3155 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3021 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3902 (((-539) $) NIL (-12 (|has| (-1261 |#1| |#2| |#3|) (-615 (-539))) (|has| |#1| (-365)))) (((-381) $) NIL (-12 (|has| (-1261 |#1| |#2| |#3|) (-1024)) (|has| |#1| (-365)))) (((-225) $) NIL (-12 (|has| (-1261 |#1| |#2| |#3|) (-1024)) (|has| |#1| (-365)))) (((-894 (-381)) $) NIL (-12 (|has| (-1261 |#1| |#2| |#3|) (-615 (-894 (-381)))) (|has| |#1| (-365)))) (((-894 (-567)) $) NIL (-12 (|has| (-1261 |#1| |#2| |#3|) (-615 (-894 (-567)))) (|has| |#1| (-365))))) (-2616 (((-3 (-1269 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| (-1261 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))))) (-1834 (($ $) NIL)) (-4129 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1261 |#1| |#2| |#3|)) NIL) (($ (-1265 |#2|)) 24) (($ (-1179)) NIL (-12 (|has| (-1261 |#1| |#2| |#3|) (-1040 (-1179))) (|has| |#1| (-365)))) (($ $) NIL (-2811 (-12 (|has| (-1261 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1261 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))) (|has| |#1| (-559)))) (($ (-410 (-567))) NIL (-2811 (-12 (|has| (-1261 |#1| |#2| |#3|) (-1040 (-567))) (|has| |#1| (-365))) (|has| |#1| (-38 (-410 (-567))))))) (-2558 ((|#1| $ (-567)) NIL)) (-2118 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-145)) (|has| (-1261 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))) (-12 (|has| (-1261 |#1| |#2| |#3|) (-145)) (|has| |#1| (-365))) (|has| |#1| (-145))))) (-2746 (((-772)) NIL T CONST)) (-2185 ((|#1| $) 11)) (-1689 (((-1261 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1261 |#1| |#2| |#3|) (-548)) (|has| |#1| (-365))))) (-3357 (((-112) $ $) NIL)) (-3217 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3103 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3731 (((-112) $ $) NIL (-2811 (-12 (|has| (-1261 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1261 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))) (|has| |#1| (-559))))) (-3201 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3083 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3238 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3126 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3058 ((|#1| $ (-567)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-567)))) (|has| |#1| (-15 -4129 (|#1| (-1179))))))) (-3805 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3138 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3228 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3115 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3208 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3093 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1547 (($ $) NIL (-12 (|has| (-1261 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))))) (-1733 (($) 20 T CONST)) (-1744 (($) 15 T CONST)) (-2647 (($ $ (-1 (-1261 |#1| |#2| |#3|) (-1261 |#1| |#2| |#3|))) NIL (|has| |#1| (-365))) (($ $ (-1 (-1261 |#1| |#2| |#3|) (-1261 |#1| |#2| |#3|)) (-772)) NIL (|has| |#1| (-365))) (($ $ (-772)) NIL (-2811 (-12 (|has| (-1261 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $) NIL (-2811 (-12 (|has| (-1261 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (-2811 (-12 (|has| (-1261 |#1| |#2| |#3|) (-902 (-1179))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1179)))))) (($ $ (-1179) (-772)) NIL (-2811 (-12 (|has| (-1261 |#1| |#2| |#3|) (-902 (-1179))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1179)))))) (($ $ (-645 (-1179))) NIL (-2811 (-12 (|has| (-1261 |#1| |#2| |#3|) (-902 (-1179))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1179)))))) (($ $ (-1179)) NIL (-2811 (-12 (|has| (-1261 |#1| |#2| |#3|) (-902 (-1179))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1179))))))) (-3004 (((-112) $ $) NIL (-2811 (-12 (|has| (-1261 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1261 |#1| |#2| |#3|) (-851)) (|has| |#1| (-365)))))) (-2980 (((-112) $ $) NIL (-2811 (-12 (|has| (-1261 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1261 |#1| |#2| |#3|) (-851)) (|has| |#1| (-365)))))) (-2946 (((-112) $ $) NIL)) (-2993 (((-112) $ $) NIL (-2811 (-12 (|has| (-1261 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1261 |#1| |#2| |#3|) (-851)) (|has| |#1| (-365)))))) (-2968 (((-112) $ $) NIL (-2811 (-12 (|has| (-1261 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1261 |#1| |#2| |#3|) (-851)) (|has| |#1| (-365)))))) (-3069 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365))) (($ (-1261 |#1| |#2| |#3|) (-1261 |#1| |#2| |#3|)) NIL (|has| |#1| (-365)))) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) 22)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1261 |#1| |#2| |#3|)) NIL (|has| |#1| (-365))) (($ (-1261 |#1| |#2| |#3|) $) NIL (|has| |#1| (-365))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))))
+(((-1233 |#1| |#2| |#3|) (-13 (-1231 |#1| (-1261 |#1| |#2| |#3|)) (-10 -8 (-15 -4129 ($ (-1265 |#2|))) (-15 -1616 ($ $ (-1265 |#2|))) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -4083 ($ $ (-1265 |#2|))) |%noBranch|))) (-1051) (-1179) |#1|) (T -1233))
+((-4129 (*1 *1 *2) (-12 (-5 *2 (-1265 *4)) (-14 *4 (-1179)) (-5 *1 (-1233 *3 *4 *5)) (-4 *3 (-1051)) (-14 *5 *3))) (-1616 (*1 *1 *1 *2) (-12 (-5 *2 (-1265 *4)) (-14 *4 (-1179)) (-5 *1 (-1233 *3 *4 *5)) (-4 *3 (-1051)) (-14 *5 *3))) (-4083 (*1 *1 *1 *2) (-12 (-5 *2 (-1265 *4)) (-14 *4 (-1179)) (-5 *1 (-1233 *3 *4 *5)) (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)) (-14 *5 *3))))
+(-13 (-1231 |#1| (-1261 |#1| |#2| |#3|)) (-10 -8 (-15 -4129 ($ (-1265 |#2|))) (-15 -1616 ($ $ (-1265 |#2|))) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -4083 ($ $ (-1265 |#2|))) |%noBranch|)))
+((-1988 (((-2 (|:| |contp| (-567)) (|:| -2158 (-645 (-2 (|:| |irr| |#1|) (|:| -2298 (-567)))))) |#1| (-112)) 13)) (-3347 (((-421 |#1|) |#1|) 26)) (-2717 (((-421 |#1|) |#1|) 24)))
+(((-1234 |#1|) (-10 -7 (-15 -2717 ((-421 |#1|) |#1|)) (-15 -3347 ((-421 |#1|) |#1|)) (-15 -1988 ((-2 (|:| |contp| (-567)) (|:| -2158 (-645 (-2 (|:| |irr| |#1|) (|:| -2298 (-567)))))) |#1| (-112)))) (-1245 (-567))) (T -1234))
+((-1988 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-567)) (|:| -2158 (-645 (-2 (|:| |irr| *3) (|:| -2298 (-567))))))) (-5 *1 (-1234 *3)) (-4 *3 (-1245 (-567))))) (-3347 (*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-1234 *3)) (-4 *3 (-1245 (-567))))) (-2717 (*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-1234 *3)) (-4 *3 (-1245 (-567))))))
+(-10 -7 (-15 -2717 ((-421 |#1|) |#1|)) (-15 -3347 ((-421 |#1|) |#1|)) (-15 -1988 ((-2 (|:| |contp| (-567)) (|:| -2158 (-645 (-2 (|:| |irr| |#1|) (|:| -2298 (-567)))))) |#1| (-112))))
+((-3841 (((-1159 |#2|) (-1 |#2| |#1|) (-1236 |#1|)) 23 (|has| |#1| (-849))) (((-1236 |#2|) (-1 |#2| |#1|) (-1236 |#1|)) 17)))
+(((-1235 |#1| |#2|) (-10 -7 (-15 -3841 ((-1236 |#2|) (-1 |#2| |#1|) (-1236 |#1|))) (IF (|has| |#1| (-849)) (-15 -3841 ((-1159 |#2|) (-1 |#2| |#1|) (-1236 |#1|))) |%noBranch|)) (-1219) (-1219)) (T -1235))
+((-3841 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1236 *5)) (-4 *5 (-849)) (-4 *5 (-1219)) (-4 *6 (-1219)) (-5 *2 (-1159 *6)) (-5 *1 (-1235 *5 *6)))) (-3841 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1236 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) (-5 *2 (-1236 *6)) (-5 *1 (-1235 *5 *6)))))
+(-10 -7 (-15 -3841 ((-1236 |#2|) (-1 |#2| |#1|) (-1236 |#1|))) (IF (|has| |#1| (-849)) (-15 -3841 ((-1159 |#2|) (-1 |#2| |#1|) (-1236 |#1|))) |%noBranch|))
+((-2412 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3109 (($ |#1| |#1|) 11) (($ |#1|) 10)) (-3841 (((-1159 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-849)))) (-2805 ((|#1| $) 15)) (-1408 ((|#1| $) 12)) (-2516 (((-1161) $) NIL (|has| |#1| (-1102)))) (-1429 (((-567) $) 19)) (-3924 ((|#1| $) 18)) (-1441 ((|#1| $) 13)) (-3437 (((-1122) $) NIL (|has| |#1| (-1102)))) (-2944 (((-112) $) 17)) (-3326 (((-1159 |#1|) $) 41 (|has| |#1| (-849))) (((-1159 |#1|) (-645 $)) 40 (|has| |#1| (-849)))) (-3902 (($ |#1|) 26)) (-4129 (($ (-1096 |#1|)) 25) (((-863) $) 37 (|has| |#1| (-1102)))) (-3357 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2189 (($ |#1| |#1|) 21) (($ |#1|) 20)) (-2727 (($ $ (-567)) 14)) (-2946 (((-112) $ $) 30 (|has| |#1| (-1102)))))
+(((-1236 |#1|) (-13 (-1095 |#1|) (-10 -8 (-15 -2189 ($ |#1|)) (-15 -3109 ($ |#1|)) (-15 -4129 ($ (-1096 |#1|))) (-15 -2944 ((-112) $)) (IF (|has| |#1| (-1102)) (-6 (-1102)) |%noBranch|) (IF (|has| |#1| (-849)) (-6 (-1097 |#1| (-1159 |#1|))) |%noBranch|))) (-1219)) (T -1236))
+((-2189 (*1 *1 *2) (-12 (-5 *1 (-1236 *2)) (-4 *2 (-1219)))) (-3109 (*1 *1 *2) (-12 (-5 *1 (-1236 *2)) (-4 *2 (-1219)))) (-4129 (*1 *1 *2) (-12 (-5 *2 (-1096 *3)) (-4 *3 (-1219)) (-5 *1 (-1236 *3)))) (-2944 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1236 *3)) (-4 *3 (-1219)))))
+(-13 (-1095 |#1|) (-10 -8 (-15 -2189 ($ |#1|)) (-15 -3109 ($ |#1|)) (-15 -4129 ($ (-1096 |#1|))) (-15 -2944 ((-112) $)) (IF (|has| |#1| (-1102)) (-6 (-1102)) |%noBranch|) (IF (|has| |#1| (-849)) (-6 (-1097 |#1| (-1159 |#1|))) |%noBranch|)))
+((-3841 (((-1242 |#3| |#4|) (-1 |#4| |#2|) (-1242 |#1| |#2|)) 15)))
+(((-1237 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3841 ((-1242 |#3| |#4|) (-1 |#4| |#2|) (-1242 |#1| |#2|)))) (-1179) (-1051) (-1179) (-1051)) (T -1237))
+((-3841 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1242 *5 *6)) (-14 *5 (-1179)) (-4 *6 (-1051)) (-4 *8 (-1051)) (-5 *2 (-1242 *7 *8)) (-5 *1 (-1237 *5 *6 *7 *8)) (-14 *7 (-1179)))))
+(-10 -7 (-15 -3841 ((-1242 |#3| |#4|) (-1 |#4| |#2|) (-1242 |#1| |#2|))))
+((-2381 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-1967 ((|#1| |#3|) 13)) (-3268 ((|#3| |#3|) 19)))
+(((-1238 |#1| |#2| |#3|) (-10 -7 (-15 -1967 (|#1| |#3|)) (-15 -3268 (|#3| |#3|)) (-15 -2381 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-559) (-994 |#1|) (-1245 |#2|)) (T -1238))
+((-2381 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-994 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1238 *4 *5 *3)) (-4 *3 (-1245 *5)))) (-3268 (*1 *2 *2) (-12 (-4 *3 (-559)) (-4 *4 (-994 *3)) (-5 *1 (-1238 *3 *4 *2)) (-4 *2 (-1245 *4)))) (-1967 (*1 *2 *3) (-12 (-4 *4 (-994 *2)) (-4 *2 (-559)) (-5 *1 (-1238 *2 *4 *3)) (-4 *3 (-1245 *4)))))
+(-10 -7 (-15 -1967 (|#1| |#3|)) (-15 -3268 (|#3| |#3|)) (-15 -2381 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
+((-1665 (((-3 |#2| "failed") |#2| (-772) |#1|) 37)) (-3740 (((-3 |#2| "failed") |#2| (-772)) 38)) (-2268 (((-3 (-2 (|:| -2961 |#2|) (|:| -2973 |#2|)) "failed") |#2|) 52)) (-2439 (((-645 |#2|) |#2|) 54)) (-3948 (((-3 |#2| "failed") |#2| |#2|) 48)))
+(((-1239 |#1| |#2|) (-10 -7 (-15 -3740 ((-3 |#2| "failed") |#2| (-772))) (-15 -1665 ((-3 |#2| "failed") |#2| (-772) |#1|)) (-15 -3948 ((-3 |#2| "failed") |#2| |#2|)) (-15 -2268 ((-3 (-2 (|:| -2961 |#2|) (|:| -2973 |#2|)) "failed") |#2|)) (-15 -2439 ((-645 |#2|) |#2|))) (-13 (-559) (-147)) (-1245 |#1|)) (T -1239))
+((-2439 (*1 *2 *3) (-12 (-4 *4 (-13 (-559) (-147))) (-5 *2 (-645 *3)) (-5 *1 (-1239 *4 *3)) (-4 *3 (-1245 *4)))) (-2268 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-559) (-147))) (-5 *2 (-2 (|:| -2961 *3) (|:| -2973 *3))) (-5 *1 (-1239 *4 *3)) (-4 *3 (-1245 *4)))) (-3948 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-559) (-147))) (-5 *1 (-1239 *3 *2)) (-4 *2 (-1245 *3)))) (-1665 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-772)) (-4 *4 (-13 (-559) (-147))) (-5 *1 (-1239 *4 *2)) (-4 *2 (-1245 *4)))) (-3740 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-772)) (-4 *4 (-13 (-559) (-147))) (-5 *1 (-1239 *4 *2)) (-4 *2 (-1245 *4)))))
+(-10 -7 (-15 -3740 ((-3 |#2| "failed") |#2| (-772))) (-15 -1665 ((-3 |#2| "failed") |#2| (-772) |#1|)) (-15 -3948 ((-3 |#2| "failed") |#2| |#2|)) (-15 -2268 ((-3 (-2 (|:| -2961 |#2|) (|:| -2973 |#2|)) "failed") |#2|)) (-15 -2439 ((-645 |#2|) |#2|)))
+((-1766 (((-3 (-2 (|:| -2654 |#2|) (|:| -2023 |#2|)) "failed") |#2| |#2|) 30)))
+(((-1240 |#1| |#2|) (-10 -7 (-15 -1766 ((-3 (-2 (|:| -2654 |#2|) (|:| -2023 |#2|)) "failed") |#2| |#2|))) (-559) (-1245 |#1|)) (T -1240))
+((-1766 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-559)) (-5 *2 (-2 (|:| -2654 *3) (|:| -2023 *3))) (-5 *1 (-1240 *4 *3)) (-4 *3 (-1245 *4)))))
+(-10 -7 (-15 -1766 ((-3 (-2 (|:| -2654 |#2|) (|:| -2023 |#2|)) "failed") |#2| |#2|)))
+((-2107 ((|#2| |#2| |#2|) 22)) (-1554 ((|#2| |#2| |#2|) 36)) (-2301 ((|#2| |#2| |#2| (-772) (-772)) 44)))
+(((-1241 |#1| |#2|) (-10 -7 (-15 -2107 (|#2| |#2| |#2|)) (-15 -1554 (|#2| |#2| |#2|)) (-15 -2301 (|#2| |#2| |#2| (-772) (-772)))) (-1051) (-1245 |#1|)) (T -1241))
+((-2301 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-772)) (-4 *4 (-1051)) (-5 *1 (-1241 *4 *2)) (-4 *2 (-1245 *4)))) (-1554 (*1 *2 *2 *2) (-12 (-4 *3 (-1051)) (-5 *1 (-1241 *3 *2)) (-4 *2 (-1245 *3)))) (-2107 (*1 *2 *2 *2) (-12 (-4 *3 (-1051)) (-5 *1 (-1241 *3 *2)) (-4 *2 (-1245 *3)))))
+(-10 -7 (-15 -2107 (|#2| |#2| |#2|)) (-15 -1554 (|#2| |#2| |#2|)) (-15 -2301 (|#2| |#2| |#2| (-772) (-772))))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-2405 (((-1269 |#2|) $ (-772)) NIL)) (-2859 (((-645 (-1084)) $) NIL)) (-2323 (($ (-1175 |#2|)) NIL)) (-2684 (((-1175 $) $ (-1084)) NIL) (((-1175 |#2|) $) NIL)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) NIL (|has| |#2| (-559)))) (-4287 (($ $) NIL (|has| |#2| (-559)))) (-2286 (((-112) $) NIL (|has| |#2| (-559)))) (-3849 (((-772) $) NIL) (((-772) $ (-645 (-1084))) NIL)) (-2376 (((-3 $ "failed") $ $) NIL)) (-3479 (($ $ $) NIL (|has| |#2| (-559)))) (-2029 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#2| (-911)))) (-3659 (($ $) NIL (|has| |#2| (-455)))) (-3597 (((-421 $) $) NIL (|has| |#2| (-455)))) (-3610 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) NIL (|has| |#2| (-911)))) (-3696 (((-112) $ $) NIL (|has| |#2| (-365)))) (-2520 (($ $ (-772)) NIL)) (-3325 (($ $ (-772)) NIL)) (-3542 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-455)))) (-3647 (($) NIL T CONST)) (-3765 (((-3 |#2| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#2| (-1040 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#2| (-1040 (-567)))) (((-3 (-1084) "failed") $) NIL)) (-2051 ((|#2| $) NIL) (((-410 (-567)) $) NIL (|has| |#2| (-1040 (-410 (-567))))) (((-567) $) NIL (|has| |#2| (-1040 (-567)))) (((-1084) $) NIL)) (-3554 (($ $ $ (-1084)) NIL (|has| |#2| (-172))) ((|#2| $ $) NIL (|has| |#2| (-172)))) (-2357 (($ $ $) NIL (|has| |#2| (-365)))) (-3023 (($ $) NIL)) (-1423 (((-690 (-567)) (-690 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -4208 (-690 |#2|)) (|:| |vec| (-1269 |#2|))) (-690 $) (-1269 $)) NIL) (((-690 |#2|) (-690 $)) NIL)) (-3588 (((-3 $ "failed") $) NIL)) (-2368 (($ $ $) NIL (|has| |#2| (-365)))) (-2463 (($ $ $) NIL)) (-1374 (($ $ $) NIL (|has| |#2| (-559)))) (-3410 (((-2 (|:| -3705 |#2|) (|:| -2654 $) (|:| -2023 $)) $ $) NIL (|has| |#2| (-559)))) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) NIL (|has| |#2| (-365)))) (-2989 (($ $) NIL (|has| |#2| (-455))) (($ $ (-1084)) NIL (|has| |#2| (-455)))) (-3010 (((-645 $) $) NIL)) (-3502 (((-112) $) NIL (|has| |#2| (-911)))) (-3214 (($ $ |#2| (-772) $) NIL)) (-3193 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (-12 (|has| (-1084) (-888 (-381))) (|has| |#2| (-888 (-381))))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (-12 (|has| (-1084) (-888 (-567))) (|has| |#2| (-888 (-567)))))) (-3362 (((-772) $ $) NIL (|has| |#2| (-559)))) (-4346 (((-112) $) NIL)) (-2851 (((-772) $) NIL)) (-3067 (((-3 $ "failed") $) NIL (|has| |#2| (-1154)))) (-2848 (($ (-1175 |#2|) (-1084)) NIL) (($ (-1175 $) (-1084)) NIL)) (-1343 (($ $ (-772)) NIL)) (-1469 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#2| (-365)))) (-2659 (((-645 $) $) NIL)) (-3770 (((-112) $) NIL)) (-2836 (($ |#2| (-772)) 18) (($ $ (-1084) (-772)) NIL) (($ $ (-645 (-1084)) (-645 (-772))) NIL)) (-2742 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $ (-1084)) NIL) (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) NIL)) (-2955 (((-772) $) NIL) (((-772) $ (-1084)) NIL) (((-645 (-772)) $ (-645 (-1084))) NIL)) (-3827 (($ (-1 (-772) (-772)) $) NIL)) (-3841 (($ (-1 |#2| |#2|) $) NIL)) (-2896 (((-1175 |#2|) $) NIL)) (-3221 (((-3 (-1084) "failed") $) NIL)) (-2985 (($ $) NIL)) (-2996 ((|#2| $) NIL)) (-2751 (($ (-645 $)) NIL (|has| |#2| (-455))) (($ $ $) NIL (|has| |#2| (-455)))) (-2516 (((-1161) $) NIL)) (-3421 (((-2 (|:| -2654 $) (|:| -2023 $)) $ (-772)) NIL)) (-3037 (((-3 (-645 $) "failed") $) NIL)) (-3774 (((-3 (-645 $) "failed") $) NIL)) (-3816 (((-3 (-2 (|:| |var| (-1084)) (|:| -3468 (-772))) "failed") $) NIL)) (-4083 (($ $) NIL (|has| |#2| (-38 (-410 (-567)))))) (-2694 (($) NIL (|has| |#2| (-1154)) CONST)) (-3437 (((-1122) $) NIL)) (-2960 (((-112) $) NIL)) (-2971 ((|#2| $) NIL)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| |#2| (-455)))) (-2785 (($ (-645 $)) NIL (|has| |#2| (-455))) (($ $ $) NIL (|has| |#2| (-455)))) (-3166 (($ $ (-772) |#2| $) NIL)) (-3551 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#2| (-911)))) (-2016 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#2| (-911)))) (-2717 (((-421 $) $) NIL (|has| |#2| (-911)))) (-2905 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) NIL (|has| |#2| (-365)))) (-2400 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-559))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-559)))) (-2372 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#2| (-365)))) (-2642 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-1084) |#2|) NIL) (($ $ (-645 (-1084)) (-645 |#2|)) NIL) (($ $ (-1084) $) NIL) (($ $ (-645 (-1084)) (-645 $)) NIL)) (-2460 (((-772) $) NIL (|has| |#2| (-365)))) (-1801 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-410 $) (-410 $) (-410 $)) NIL (|has| |#2| (-559))) ((|#2| (-410 $) |#2|) NIL (|has| |#2| (-365))) (((-410 $) $ (-410 $)) NIL (|has| |#2| (-559)))) (-2776 (((-3 $ "failed") $ (-772)) NIL)) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) NIL (|has| |#2| (-365)))) (-2433 (($ $ (-1084)) NIL (|has| |#2| (-172))) ((|#2| $) NIL (|has| |#2| (-172)))) (-1616 (($ $ (-1084)) NIL) (($ $ (-645 (-1084))) NIL) (($ $ (-1084) (-772)) NIL) (($ $ (-645 (-1084)) (-645 (-772))) NIL) (($ $ (-772)) NIL) (($ $) NIL) (($ $ (-1179)) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-3104 (((-772) $) NIL) (((-772) $ (-1084)) NIL) (((-645 (-772)) $ (-645 (-1084))) NIL)) (-3902 (((-894 (-381)) $) NIL (-12 (|has| (-1084) (-615 (-894 (-381)))) (|has| |#2| (-615 (-894 (-381)))))) (((-894 (-567)) $) NIL (-12 (|has| (-1084) (-615 (-894 (-567)))) (|has| |#2| (-615 (-894 (-567)))))) (((-539) $) NIL (-12 (|has| (-1084) (-615 (-539))) (|has| |#2| (-615 (-539)))))) (-1849 ((|#2| $) NIL (|has| |#2| (-455))) (($ $ (-1084)) NIL (|has| |#2| (-455)))) (-2616 (((-3 (-1269 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-911))))) (-1409 (((-3 $ "failed") $ $) NIL (|has| |#2| (-559))) (((-3 (-410 $) "failed") (-410 $) $) NIL (|has| |#2| (-559)))) (-4129 (((-863) $) 13) (($ (-567)) NIL) (($ |#2|) NIL) (($ (-1084)) NIL) (($ (-1265 |#1|)) 20) (($ (-410 (-567))) NIL (-2811 (|has| |#2| (-38 (-410 (-567)))) (|has| |#2| (-1040 (-410 (-567)))))) (($ $) NIL (|has| |#2| (-559)))) (-3601 (((-645 |#2|) $) NIL)) (-2558 ((|#2| $ (-772)) NIL) (($ $ (-1084) (-772)) NIL) (($ $ (-645 (-1084)) (-645 (-772))) NIL)) (-2118 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-145)) (|has| |#2| (-911))) (|has| |#2| (-145))))) (-2746 (((-772)) NIL T CONST)) (-3658 (($ $ $ (-772)) NIL (|has| |#2| (-172)))) (-3357 (((-112) $ $) NIL)) (-3731 (((-112) $ $) NIL (|has| |#2| (-559)))) (-1733 (($) NIL T CONST)) (-1744 (($) 14 T CONST)) (-2647 (($ $ (-1084)) NIL) (($ $ (-645 (-1084))) NIL) (($ $ (-1084) (-772)) NIL) (($ $ (-645 (-1084)) (-645 (-772))) NIL) (($ $ (-772)) NIL) (($ $) NIL) (($ $ (-1179)) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2946 (((-112) $ $) NIL)) (-3069 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL (|has| |#2| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#2| (-38 (-410 (-567))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-1242 |#1| |#2|) (-13 (-1245 |#2|) (-617 (-1265 |#1|)) (-10 -8 (-15 -3166 ($ $ (-772) |#2| $)))) (-1179) (-1051)) (T -1242))
+((-3166 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1242 *4 *3)) (-14 *4 (-1179)) (-4 *3 (-1051)))))
+(-13 (-1245 |#2|) (-617 (-1265 |#1|)) (-10 -8 (-15 -3166 ($ $ (-772) |#2| $))))
+((-3841 ((|#4| (-1 |#3| |#1|) |#2|) 22)))
+(((-1243 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3841 (|#4| (-1 |#3| |#1|) |#2|))) (-1051) (-1245 |#1|) (-1051) (-1245 |#3|)) (T -1243))
+((-3841 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1051)) (-4 *6 (-1051)) (-4 *2 (-1245 *6)) (-5 *1 (-1243 *5 *4 *6 *2)) (-4 *4 (-1245 *5)))))
+(-10 -7 (-15 -3841 (|#4| (-1 |#3| |#1|) |#2|)))
+((-2405 (((-1269 |#2|) $ (-772)) 129)) (-2859 (((-645 (-1084)) $) 16)) (-2323 (($ (-1175 |#2|)) 80)) (-3849 (((-772) $) NIL) (((-772) $ (-645 (-1084))) 21)) (-2029 (((-421 (-1175 $)) (-1175 $)) 204)) (-3659 (($ $) 194)) (-3597 (((-421 $) $) 192)) (-3610 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) 95)) (-2520 (($ $ (-772)) 84)) (-3325 (($ $ (-772)) 86)) (-3542 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 145)) (-3765 (((-3 |#2| "failed") $) 132) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 (-567) "failed") $) NIL) (((-3 (-1084) "failed") $) NIL)) (-2051 ((|#2| $) 130) (((-410 (-567)) $) NIL) (((-567) $) NIL) (((-1084) $) NIL)) (-1374 (($ $ $) 170)) (-3410 (((-2 (|:| -3705 |#2|) (|:| -2654 $) (|:| -2023 $)) $ $) 172)) (-3362 (((-772) $ $) 189)) (-3067 (((-3 $ "failed") $) 138)) (-2836 (($ |#2| (-772)) NIL) (($ $ (-1084) (-772)) 59) (($ $ (-645 (-1084)) (-645 (-772))) NIL)) (-2955 (((-772) $) NIL) (((-772) $ (-1084)) 54) (((-645 (-772)) $ (-645 (-1084))) 55)) (-2896 (((-1175 |#2|) $) 72)) (-3221 (((-3 (-1084) "failed") $) 52)) (-3421 (((-2 (|:| -2654 $) (|:| -2023 $)) $ (-772)) 83)) (-4083 (($ $) 219)) (-2694 (($) 134)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) 201)) (-3551 (((-421 (-1175 $)) (-1175 $)) 101)) (-2016 (((-421 (-1175 $)) (-1175 $)) 99)) (-2717 (((-421 $) $) 120)) (-2642 (($ $ (-645 (-295 $))) 51) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-1084) |#2|) 39) (($ $ (-645 (-1084)) (-645 |#2|)) 36) (($ $ (-1084) $) 32) (($ $ (-645 (-1084)) (-645 $)) 30)) (-2460 (((-772) $) 207)) (-1801 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-410 $) (-410 $) (-410 $)) 164) ((|#2| (-410 $) |#2|) 206) (((-410 $) $ (-410 $)) 188)) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) 212)) (-1616 (($ $ (-1084)) 157) (($ $ (-645 (-1084))) NIL) (($ $ (-1084) (-772)) NIL) (($ $ (-645 (-1084)) (-645 (-772))) NIL) (($ $ (-772)) NIL) (($ $) 155) (($ $ (-1179)) NIL) (($ $ (-645 (-1179))) NIL) (($ $ (-1179) (-772)) NIL) (($ $ (-645 (-1179)) (-645 (-772))) NIL) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-1 |#2| |#2|)) 154) (($ $ (-1 |#2| |#2|) $) 149)) (-3104 (((-772) $) NIL) (((-772) $ (-1084)) 17) (((-645 (-772)) $ (-645 (-1084))) 23)) (-1849 ((|#2| $) NIL) (($ $ (-1084)) 140)) (-1409 (((-3 $ "failed") $ $) 180) (((-3 (-410 $) "failed") (-410 $) $) 176)) (-4129 (((-863) $) NIL) (($ (-567)) NIL) (($ |#2|) NIL) (($ (-1084)) 64) (($ (-410 (-567))) NIL) (($ $) NIL)))
+(((-1244 |#1| |#2|) (-10 -8 (-15 -4129 (|#1| |#1|)) (-15 -2217 ((-1175 |#1|) (-1175 |#1|) (-1175 |#1|))) (-15 -3597 ((-421 |#1|) |#1|)) (-15 -3659 (|#1| |#1|)) (-15 -4129 (|#1| (-410 (-567)))) (-15 -2694 (|#1|)) (-15 -3067 ((-3 |#1| "failed") |#1|)) (-15 -1801 ((-410 |#1|) |#1| (-410 |#1|))) (-15 -2460 ((-772) |#1|)) (-15 -2452 ((-2 (|:| -2654 |#1|) (|:| -2023 |#1|)) |#1| |#1|)) (-15 -4083 (|#1| |#1|)) (-15 -1801 (|#2| (-410 |#1|) |#2|)) (-15 -3542 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3410 ((-2 (|:| -3705 |#2|) (|:| -2654 |#1|) (|:| -2023 |#1|)) |#1| |#1|)) (-15 -1374 (|#1| |#1| |#1|)) (-15 -1409 ((-3 (-410 |#1|) "failed") (-410 |#1|) |#1|)) (-15 -1409 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3362 ((-772) |#1| |#1|)) (-15 -1801 ((-410 |#1|) (-410 |#1|) (-410 |#1|))) (-15 -1616 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3325 (|#1| |#1| (-772))) (-15 -2520 (|#1| |#1| (-772))) (-15 -3421 ((-2 (|:| -2654 |#1|) (|:| -2023 |#1|)) |#1| (-772))) (-15 -2323 (|#1| (-1175 |#2|))) (-15 -2896 ((-1175 |#2|) |#1|)) (-15 -2405 ((-1269 |#2|) |#1| (-772))) (-15 -1616 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1616 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -1616 (|#1| |#1| (-645 (-1179)) (-645 (-772)))) (-15 -1616 (|#1| |#1| (-1179) (-772))) (-15 -1616 (|#1| |#1| (-645 (-1179)))) (-15 -1616 (|#1| |#1| (-1179))) (-15 -1616 (|#1| |#1|)) (-15 -1616 (|#1| |#1| (-772))) (-15 -1801 (|#1| |#1| |#1|)) (-15 -1801 (|#2| |#1| |#2|)) (-15 -2717 ((-421 |#1|) |#1|)) (-15 -2029 ((-421 (-1175 |#1|)) (-1175 |#1|))) (-15 -2016 ((-421 (-1175 |#1|)) (-1175 |#1|))) (-15 -3551 ((-421 (-1175 |#1|)) (-1175 |#1|))) (-15 -3610 ((-3 (-645 (-1175 |#1|)) "failed") (-645 (-1175 |#1|)) (-1175 |#1|))) (-15 -1849 (|#1| |#1| (-1084))) (-15 -2859 ((-645 (-1084)) |#1|)) (-15 -3849 ((-772) |#1| (-645 (-1084)))) (-15 -3849 ((-772) |#1|)) (-15 -2836 (|#1| |#1| (-645 (-1084)) (-645 (-772)))) (-15 -2836 (|#1| |#1| (-1084) (-772))) (-15 -2955 ((-645 (-772)) |#1| (-645 (-1084)))) (-15 -2955 ((-772) |#1| (-1084))) (-15 -3221 ((-3 (-1084) "failed") |#1|)) (-15 -3104 ((-645 (-772)) |#1| (-645 (-1084)))) (-15 -3104 ((-772) |#1| (-1084))) (-15 -4129 (|#1| (-1084))) (-15 -3765 ((-3 (-1084) "failed") |#1|)) (-15 -2051 ((-1084) |#1|)) (-15 -2642 (|#1| |#1| (-645 (-1084)) (-645 |#1|))) (-15 -2642 (|#1| |#1| (-1084) |#1|)) (-15 -2642 (|#1| |#1| (-645 (-1084)) (-645 |#2|))) (-15 -2642 (|#1| |#1| (-1084) |#2|)) (-15 -2642 (|#1| |#1| (-645 |#1|) (-645 |#1|))) (-15 -2642 (|#1| |#1| |#1| |#1|)) (-15 -2642 (|#1| |#1| (-295 |#1|))) (-15 -2642 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -3104 ((-772) |#1|)) (-15 -2836 (|#1| |#2| (-772))) (-15 -3765 ((-3 (-567) "failed") |#1|)) (-15 -2051 ((-567) |#1|)) (-15 -3765 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2051 ((-410 (-567)) |#1|)) (-15 -2051 (|#2| |#1|)) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -4129 (|#1| |#2|)) (-15 -2955 ((-772) |#1|)) (-15 -1849 (|#2| |#1|)) (-15 -1616 (|#1| |#1| (-645 (-1084)) (-645 (-772)))) (-15 -1616 (|#1| |#1| (-1084) (-772))) (-15 -1616 (|#1| |#1| (-645 (-1084)))) (-15 -1616 (|#1| |#1| (-1084))) (-15 -4129 (|#1| (-567))) (-15 -4129 ((-863) |#1|))) (-1245 |#2|) (-1051)) (T -1244))
+NIL
+(-10 -8 (-15 -4129 (|#1| |#1|)) (-15 -2217 ((-1175 |#1|) (-1175 |#1|) (-1175 |#1|))) (-15 -3597 ((-421 |#1|) |#1|)) (-15 -3659 (|#1| |#1|)) (-15 -4129 (|#1| (-410 (-567)))) (-15 -2694 (|#1|)) (-15 -3067 ((-3 |#1| "failed") |#1|)) (-15 -1801 ((-410 |#1|) |#1| (-410 |#1|))) (-15 -2460 ((-772) |#1|)) (-15 -2452 ((-2 (|:| -2654 |#1|) (|:| -2023 |#1|)) |#1| |#1|)) (-15 -4083 (|#1| |#1|)) (-15 -1801 (|#2| (-410 |#1|) |#2|)) (-15 -3542 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3410 ((-2 (|:| -3705 |#2|) (|:| -2654 |#1|) (|:| -2023 |#1|)) |#1| |#1|)) (-15 -1374 (|#1| |#1| |#1|)) (-15 -1409 ((-3 (-410 |#1|) "failed") (-410 |#1|) |#1|)) (-15 -1409 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3362 ((-772) |#1| |#1|)) (-15 -1801 ((-410 |#1|) (-410 |#1|) (-410 |#1|))) (-15 -1616 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3325 (|#1| |#1| (-772))) (-15 -2520 (|#1| |#1| (-772))) (-15 -3421 ((-2 (|:| -2654 |#1|) (|:| -2023 |#1|)) |#1| (-772))) (-15 -2323 (|#1| (-1175 |#2|))) (-15 -2896 ((-1175 |#2|) |#1|)) (-15 -2405 ((-1269 |#2|) |#1| (-772))) (-15 -1616 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1616 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -1616 (|#1| |#1| (-645 (-1179)) (-645 (-772)))) (-15 -1616 (|#1| |#1| (-1179) (-772))) (-15 -1616 (|#1| |#1| (-645 (-1179)))) (-15 -1616 (|#1| |#1| (-1179))) (-15 -1616 (|#1| |#1|)) (-15 -1616 (|#1| |#1| (-772))) (-15 -1801 (|#1| |#1| |#1|)) (-15 -1801 (|#2| |#1| |#2|)) (-15 -2717 ((-421 |#1|) |#1|)) (-15 -2029 ((-421 (-1175 |#1|)) (-1175 |#1|))) (-15 -2016 ((-421 (-1175 |#1|)) (-1175 |#1|))) (-15 -3551 ((-421 (-1175 |#1|)) (-1175 |#1|))) (-15 -3610 ((-3 (-645 (-1175 |#1|)) "failed") (-645 (-1175 |#1|)) (-1175 |#1|))) (-15 -1849 (|#1| |#1| (-1084))) (-15 -2859 ((-645 (-1084)) |#1|)) (-15 -3849 ((-772) |#1| (-645 (-1084)))) (-15 -3849 ((-772) |#1|)) (-15 -2836 (|#1| |#1| (-645 (-1084)) (-645 (-772)))) (-15 -2836 (|#1| |#1| (-1084) (-772))) (-15 -2955 ((-645 (-772)) |#1| (-645 (-1084)))) (-15 -2955 ((-772) |#1| (-1084))) (-15 -3221 ((-3 (-1084) "failed") |#1|)) (-15 -3104 ((-645 (-772)) |#1| (-645 (-1084)))) (-15 -3104 ((-772) |#1| (-1084))) (-15 -4129 (|#1| (-1084))) (-15 -3765 ((-3 (-1084) "failed") |#1|)) (-15 -2051 ((-1084) |#1|)) (-15 -2642 (|#1| |#1| (-645 (-1084)) (-645 |#1|))) (-15 -2642 (|#1| |#1| (-1084) |#1|)) (-15 -2642 (|#1| |#1| (-645 (-1084)) (-645 |#2|))) (-15 -2642 (|#1| |#1| (-1084) |#2|)) (-15 -2642 (|#1| |#1| (-645 |#1|) (-645 |#1|))) (-15 -2642 (|#1| |#1| |#1| |#1|)) (-15 -2642 (|#1| |#1| (-295 |#1|))) (-15 -2642 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -3104 ((-772) |#1|)) (-15 -2836 (|#1| |#2| (-772))) (-15 -3765 ((-3 (-567) "failed") |#1|)) (-15 -2051 ((-567) |#1|)) (-15 -3765 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2051 ((-410 (-567)) |#1|)) (-15 -2051 (|#2| |#1|)) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -4129 (|#1| |#2|)) (-15 -2955 ((-772) |#1|)) (-15 -1849 (|#2| |#1|)) (-15 -1616 (|#1| |#1| (-645 (-1084)) (-645 (-772)))) (-15 -1616 (|#1| |#1| (-1084) (-772))) (-15 -1616 (|#1| |#1| (-645 (-1084)))) (-15 -1616 (|#1| |#1| (-1084))) (-15 -4129 (|#1| (-567))) (-15 -4129 ((-863) |#1|)))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-2405 (((-1269 |#1|) $ (-772)) 240)) (-2859 (((-645 (-1084)) $) 112)) (-2323 (($ (-1175 |#1|)) 238)) (-2684 (((-1175 $) $ (-1084)) 127) (((-1175 |#1|) $) 126)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) 89 (|has| |#1| (-559)))) (-4287 (($ $) 90 (|has| |#1| (-559)))) (-2286 (((-112) $) 92 (|has| |#1| (-559)))) (-3849 (((-772) $) 114) (((-772) $ (-645 (-1084))) 113)) (-2376 (((-3 $ "failed") $ $) 20)) (-3479 (($ $ $) 225 (|has| |#1| (-559)))) (-2029 (((-421 (-1175 $)) (-1175 $)) 102 (|has| |#1| (-911)))) (-3659 (($ $) 100 (|has| |#1| (-455)))) (-3597 (((-421 $) $) 99 (|has| |#1| (-455)))) (-3610 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) 105 (|has| |#1| (-911)))) (-3696 (((-112) $ $) 210 (|has| |#1| (-365)))) (-2520 (($ $ (-772)) 233)) (-3325 (($ $ (-772)) 232)) (-3542 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 220 (|has| |#1| (-455)))) (-3647 (($) 18 T CONST)) (-3765 (((-3 |#1| "failed") $) 166) (((-3 (-410 (-567)) "failed") $) 163 (|has| |#1| (-1040 (-410 (-567))))) (((-3 (-567) "failed") $) 161 (|has| |#1| (-1040 (-567)))) (((-3 (-1084) "failed") $) 138)) (-2051 ((|#1| $) 165) (((-410 (-567)) $) 164 (|has| |#1| (-1040 (-410 (-567))))) (((-567) $) 162 (|has| |#1| (-1040 (-567)))) (((-1084) $) 139)) (-3554 (($ $ $ (-1084)) 110 (|has| |#1| (-172))) ((|#1| $ $) 228 (|has| |#1| (-172)))) (-2357 (($ $ $) 214 (|has| |#1| (-365)))) (-3023 (($ $) 156)) (-1423 (((-690 (-567)) (-690 $)) 136 (|has| |#1| (-640 (-567)))) (((-2 (|:| -4208 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) 135 (|has| |#1| (-640 (-567)))) (((-2 (|:| -4208 (-690 |#1|)) (|:| |vec| (-1269 |#1|))) (-690 $) (-1269 $)) 134) (((-690 |#1|) (-690 $)) 133)) (-3588 (((-3 $ "failed") $) 37)) (-2368 (($ $ $) 213 (|has| |#1| (-365)))) (-2463 (($ $ $) 231)) (-1374 (($ $ $) 222 (|has| |#1| (-559)))) (-3410 (((-2 (|:| -3705 |#1|) (|:| -2654 $) (|:| -2023 $)) $ $) 221 (|has| |#1| (-559)))) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) 208 (|has| |#1| (-365)))) (-2989 (($ $) 178 (|has| |#1| (-455))) (($ $ (-1084)) 107 (|has| |#1| (-455)))) (-3010 (((-645 $) $) 111)) (-3502 (((-112) $) 98 (|has| |#1| (-911)))) (-3214 (($ $ |#1| (-772) $) 174)) (-3193 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) 86 (-12 (|has| (-1084) (-888 (-381))) (|has| |#1| (-888 (-381))))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) 85 (-12 (|has| (-1084) (-888 (-567))) (|has| |#1| (-888 (-567)))))) (-3362 (((-772) $ $) 226 (|has| |#1| (-559)))) (-4346 (((-112) $) 35)) (-2851 (((-772) $) 171)) (-3067 (((-3 $ "failed") $) 206 (|has| |#1| (-1154)))) (-2848 (($ (-1175 |#1|) (-1084)) 119) (($ (-1175 $) (-1084)) 118)) (-1343 (($ $ (-772)) 237)) (-1469 (((-3 (-645 $) "failed") (-645 $) $) 217 (|has| |#1| (-365)))) (-2659 (((-645 $) $) 128)) (-3770 (((-112) $) 154)) (-2836 (($ |#1| (-772)) 155) (($ $ (-1084) (-772)) 121) (($ $ (-645 (-1084)) (-645 (-772))) 120)) (-2742 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $ (-1084)) 122) (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) 235)) (-2955 (((-772) $) 172) (((-772) $ (-1084)) 124) (((-645 (-772)) $ (-645 (-1084))) 123)) (-3827 (($ (-1 (-772) (-772)) $) 173)) (-3841 (($ (-1 |#1| |#1|) $) 153)) (-2896 (((-1175 |#1|) $) 239)) (-3221 (((-3 (-1084) "failed") $) 125)) (-2985 (($ $) 151)) (-2996 ((|#1| $) 150)) (-2751 (($ (-645 $)) 96 (|has| |#1| (-455))) (($ $ $) 95 (|has| |#1| (-455)))) (-2516 (((-1161) $) 10)) (-3421 (((-2 (|:| -2654 $) (|:| -2023 $)) $ (-772)) 234)) (-3037 (((-3 (-645 $) "failed") $) 116)) (-3774 (((-3 (-645 $) "failed") $) 117)) (-3816 (((-3 (-2 (|:| |var| (-1084)) (|:| -3468 (-772))) "failed") $) 115)) (-4083 (($ $) 218 (|has| |#1| (-38 (-410 (-567)))))) (-2694 (($) 205 (|has| |#1| (-1154)) CONST)) (-3437 (((-1122) $) 11)) (-2960 (((-112) $) 168)) (-2971 ((|#1| $) 169)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) 97 (|has| |#1| (-455)))) (-2785 (($ (-645 $)) 94 (|has| |#1| (-455))) (($ $ $) 93 (|has| |#1| (-455)))) (-3551 (((-421 (-1175 $)) (-1175 $)) 104 (|has| |#1| (-911)))) (-2016 (((-421 (-1175 $)) (-1175 $)) 103 (|has| |#1| (-911)))) (-2717 (((-421 $) $) 101 (|has| |#1| (-911)))) (-2905 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 216 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) 215 (|has| |#1| (-365)))) (-2400 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-559))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-559)))) (-2372 (((-3 (-645 $) "failed") (-645 $) $) 209 (|has| |#1| (-365)))) (-2642 (($ $ (-645 (-295 $))) 147) (($ $ (-295 $)) 146) (($ $ $ $) 145) (($ $ (-645 $) (-645 $)) 144) (($ $ (-1084) |#1|) 143) (($ $ (-645 (-1084)) (-645 |#1|)) 142) (($ $ (-1084) $) 141) (($ $ (-645 (-1084)) (-645 $)) 140)) (-2460 (((-772) $) 211 (|has| |#1| (-365)))) (-1801 ((|#1| $ |#1|) 258) (($ $ $) 257) (((-410 $) (-410 $) (-410 $)) 227 (|has| |#1| (-559))) ((|#1| (-410 $) |#1|) 219 (|has| |#1| (-365))) (((-410 $) $ (-410 $)) 207 (|has| |#1| (-559)))) (-2776 (((-3 $ "failed") $ (-772)) 236)) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) 212 (|has| |#1| (-365)))) (-2433 (($ $ (-1084)) 109 (|has| |#1| (-172))) ((|#1| $) 229 (|has| |#1| (-172)))) (-1616 (($ $ (-1084)) 46) (($ $ (-645 (-1084))) 45) (($ $ (-1084) (-772)) 44) (($ $ (-645 (-1084)) (-645 (-772))) 43) (($ $ (-772)) 255) (($ $) 253) (($ $ (-1179)) 252 (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179))) 251 (|has| |#1| (-902 (-1179)))) (($ $ (-1179) (-772)) 250 (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) 249 (|has| |#1| (-902 (-1179)))) (($ $ (-1 |#1| |#1|) (-772)) 242) (($ $ (-1 |#1| |#1|)) 241) (($ $ (-1 |#1| |#1|) $) 230)) (-3104 (((-772) $) 152) (((-772) $ (-1084)) 132) (((-645 (-772)) $ (-645 (-1084))) 131)) (-3902 (((-894 (-381)) $) 84 (-12 (|has| (-1084) (-615 (-894 (-381)))) (|has| |#1| (-615 (-894 (-381)))))) (((-894 (-567)) $) 83 (-12 (|has| (-1084) (-615 (-894 (-567)))) (|has| |#1| (-615 (-894 (-567)))))) (((-539) $) 82 (-12 (|has| (-1084) (-615 (-539))) (|has| |#1| (-615 (-539)))))) (-1849 ((|#1| $) 177 (|has| |#1| (-455))) (($ $ (-1084)) 108 (|has| |#1| (-455)))) (-2616 (((-3 (-1269 $) "failed") (-690 $)) 106 (-1686 (|has| $ (-145)) (|has| |#1| (-911))))) (-1409 (((-3 $ "failed") $ $) 224 (|has| |#1| (-559))) (((-3 (-410 $) "failed") (-410 $) $) 223 (|has| |#1| (-559)))) (-4129 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 167) (($ (-1084)) 137) (($ (-410 (-567))) 80 (-2811 (|has| |#1| (-1040 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567)))))) (($ $) 87 (|has| |#1| (-559)))) (-3601 (((-645 |#1|) $) 170)) (-2558 ((|#1| $ (-772)) 157) (($ $ (-1084) (-772)) 130) (($ $ (-645 (-1084)) (-645 (-772))) 129)) (-2118 (((-3 $ "failed") $) 81 (-2811 (-1686 (|has| $ (-145)) (|has| |#1| (-911))) (|has| |#1| (-145))))) (-2746 (((-772)) 32 T CONST)) (-3658 (($ $ $ (-772)) 175 (|has| |#1| (-172)))) (-3357 (((-112) $ $) 9)) (-3731 (((-112) $ $) 91 (|has| |#1| (-559)))) (-1733 (($) 19 T CONST)) (-1744 (($) 34 T CONST)) (-2647 (($ $ (-1084)) 42) (($ $ (-645 (-1084))) 41) (($ $ (-1084) (-772)) 40) (($ $ (-645 (-1084)) (-645 (-772))) 39) (($ $ (-772)) 256) (($ $) 254) (($ $ (-1179)) 248 (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179))) 247 (|has| |#1| (-902 (-1179)))) (($ $ (-1179) (-772)) 246 (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) 245 (|has| |#1| (-902 (-1179)))) (($ $ (-1 |#1| |#1|) (-772)) 244) (($ $ (-1 |#1| |#1|)) 243)) (-2946 (((-112) $ $) 6)) (-3069 (($ $ |#1|) 158 (|has| |#1| (-365)))) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 160 (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) 159 (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) 149) (($ $ |#1|) 148)))
+(((-1245 |#1|) (-140) (-1051)) (T -1245))
+((-2405 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-4 *1 (-1245 *4)) (-4 *4 (-1051)) (-5 *2 (-1269 *4)))) (-2896 (*1 *2 *1) (-12 (-4 *1 (-1245 *3)) (-4 *3 (-1051)) (-5 *2 (-1175 *3)))) (-2323 (*1 *1 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1051)) (-4 *1 (-1245 *3)))) (-1343 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1245 *3)) (-4 *3 (-1051)))) (-2776 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-772)) (-4 *1 (-1245 *3)) (-4 *3 (-1051)))) (-2742 (*1 *2 *1 *1) (-12 (-4 *3 (-1051)) (-5 *2 (-2 (|:| -2654 *1) (|:| -2023 *1))) (-4 *1 (-1245 *3)))) (-3421 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-4 *4 (-1051)) (-5 *2 (-2 (|:| -2654 *1) (|:| -2023 *1))) (-4 *1 (-1245 *4)))) (-2520 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1245 *3)) (-4 *3 (-1051)))) (-3325 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1245 *3)) (-4 *3 (-1051)))) (-2463 (*1 *1 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1051)))) (-1616 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1245 *3)) (-4 *3 (-1051)))) (-2433 (*1 *2 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1051)) (-4 *2 (-172)))) (-3554 (*1 *2 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1051)) (-4 *2 (-172)))) (-1801 (*1 *2 *2 *2) (-12 (-5 *2 (-410 *1)) (-4 *1 (-1245 *3)) (-4 *3 (-1051)) (-4 *3 (-559)))) (-3362 (*1 *2 *1 *1) (-12 (-4 *1 (-1245 *3)) (-4 *3 (-1051)) (-4 *3 (-559)) (-5 *2 (-772)))) (-3479 (*1 *1 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1051)) (-4 *2 (-559)))) (-1409 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1245 *2)) (-4 *2 (-1051)) (-4 *2 (-559)))) (-1409 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-410 *1)) (-4 *1 (-1245 *3)) (-4 *3 (-1051)) (-4 *3 (-559)))) (-1374 (*1 *1 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1051)) (-4 *2 (-559)))) (-3410 (*1 *2 *1 *1) (-12 (-4 *3 (-559)) (-4 *3 (-1051)) (-5 *2 (-2 (|:| -3705 *3) (|:| -2654 *1) (|:| -2023 *1))) (-4 *1 (-1245 *3)))) (-3542 (*1 *2 *1 *1) (-12 (-4 *3 (-455)) (-4 *3 (-1051)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1245 *3)))) (-1801 (*1 *2 *3 *2) (-12 (-5 *3 (-410 *1)) (-4 *1 (-1245 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))) (-4083 (*1 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1051)) (-4 *2 (-38 (-410 (-567)))))))
+(-13 (-951 |t#1| (-772) (-1084)) (-287 |t#1| |t#1|) (-287 $ $) (-233) (-231 |t#1|) (-10 -8 (-15 -2405 ((-1269 |t#1|) $ (-772))) (-15 -2896 ((-1175 |t#1|) $)) (-15 -2323 ($ (-1175 |t#1|))) (-15 -1343 ($ $ (-772))) (-15 -2776 ((-3 $ "failed") $ (-772))) (-15 -2742 ((-2 (|:| -2654 $) (|:| -2023 $)) $ $)) (-15 -3421 ((-2 (|:| -2654 $) (|:| -2023 $)) $ (-772))) (-15 -2520 ($ $ (-772))) (-15 -3325 ($ $ (-772))) (-15 -2463 ($ $ $)) (-15 -1616 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1154)) (-6 (-1154)) |%noBranch|) (IF (|has| |t#1| (-172)) (PROGN (-15 -2433 (|t#1| $)) (-15 -3554 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-559)) (PROGN (-6 (-287 (-410 $) (-410 $))) (-15 -1801 ((-410 $) (-410 $) (-410 $))) (-15 -3362 ((-772) $ $)) (-15 -3479 ($ $ $)) (-15 -1409 ((-3 $ "failed") $ $)) (-15 -1409 ((-3 (-410 $) "failed") (-410 $) $)) (-15 -1374 ($ $ $)) (-15 -3410 ((-2 (|:| -3705 |t#1|) (|:| -2654 $) (|:| -2023 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-455)) (-15 -3542 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-365)) (PROGN (-6 (-308)) (-6 -4418) (-15 -1801 (|t#1| (-410 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-410 (-567)))) (-15 -4083 ($ $)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-772)) . T) ((-25) . T) ((-38 #1=(-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2811 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-365))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-410 (-567)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2811 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #1#) -2811 (|has| |#1| (-1040 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567))))) ((-617 (-567)) . T) ((-617 #2=(-1084)) . T) ((-617 |#1|) . T) ((-617 $) -2811 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-365))) ((-614 (-863)) . T) ((-172) -2811 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-615 (-539)) -12 (|has| (-1084) (-615 (-539))) (|has| |#1| (-615 (-539)))) ((-615 (-894 (-381))) -12 (|has| (-1084) (-615 (-894 (-381)))) (|has| |#1| (-615 (-894 (-381))))) ((-615 (-894 (-567))) -12 (|has| (-1084) (-615 (-894 (-567)))) (|has| |#1| (-615 (-894 (-567))))) ((-231 |#1|) . T) ((-233) . T) ((-287 (-410 $) (-410 $)) |has| |#1| (-559)) ((-287 |#1| |#1|) . T) ((-287 $ $) . T) ((-291) -2811 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-365))) ((-308) |has| |#1| (-365)) ((-310 $) . T) ((-327 |#1| #0#) . T) ((-379 |#1|) . T) ((-414 |#1|) . T) ((-455) -2811 (|has| |#1| (-911)) (|has| |#1| (-455)) (|has| |#1| (-365))) ((-517 #2# |#1|) . T) ((-517 #2# $) . T) ((-517 $ $) . T) ((-559) -2811 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-365))) ((-647 #1#) |has| |#1| (-38 (-410 (-567)))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #1#) |has| |#1| (-38 (-410 (-567)))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #1#) |has| |#1| (-38 (-410 (-567)))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) -2811 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-365))) ((-640 (-567)) |has| |#1| (-640 (-567))) ((-640 |#1|) . T) ((-718 #1#) |has| |#1| (-38 (-410 (-567)))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) -2811 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-365))) ((-727) . T) ((-902 #2#) . T) ((-902 (-1179)) |has| |#1| (-902 (-1179))) ((-888 (-381)) -12 (|has| (-1084) (-888 (-381))) (|has| |#1| (-888 (-381)))) ((-888 (-567)) -12 (|has| (-1084) (-888 (-567))) (|has| |#1| (-888 (-567)))) ((-951 |#1| #0# #2#) . T) ((-911) |has| |#1| (-911)) ((-922) |has| |#1| (-365)) ((-1040 (-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) ((-1040 (-567)) |has| |#1| (-1040 (-567))) ((-1040 #2#) . T) ((-1040 |#1|) . T) ((-1053 #1#) |has| |#1| (-38 (-410 (-567)))) ((-1053 |#1|) . T) ((-1053 $) -2811 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1058 #1#) |has| |#1| (-38 (-410 (-567)))) ((-1058 |#1|) . T) ((-1058 $) -2811 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1154) |has| |#1| (-1154)) ((-1223) |has| |#1| (-911)))
+((-2859 (((-645 (-1084)) $) 34)) (-3023 (($ $) 31)) (-2836 (($ |#2| |#3|) NIL) (($ $ (-1084) |#3|) 28) (($ $ (-645 (-1084)) (-645 |#3|)) 27)) (-2985 (($ $) 14)) (-2996 ((|#2| $) 12)) (-3104 ((|#3| $) 10)))
+(((-1246 |#1| |#2| |#3|) (-10 -8 (-15 -2859 ((-645 (-1084)) |#1|)) (-15 -2836 (|#1| |#1| (-645 (-1084)) (-645 |#3|))) (-15 -2836 (|#1| |#1| (-1084) |#3|)) (-15 -3023 (|#1| |#1|)) (-15 -2836 (|#1| |#2| |#3|)) (-15 -3104 (|#3| |#1|)) (-15 -2985 (|#1| |#1|)) (-15 -2996 (|#2| |#1|))) (-1247 |#2| |#3|) (-1051) (-793)) (T -1246))
+NIL
+(-10 -8 (-15 -2859 ((-645 (-1084)) |#1|)) (-15 -2836 (|#1| |#1| (-645 (-1084)) (-645 |#3|))) (-15 -2836 (|#1| |#1| (-1084) |#3|)) (-15 -3023 (|#1| |#1|)) (-15 -2836 (|#1| |#2| |#3|)) (-15 -3104 (|#3| |#1|)) (-15 -2985 (|#1| |#1|)) (-15 -2996 (|#2| |#1|)))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-2859 (((-645 (-1084)) $) 86)) (-3653 (((-1179) $) 115)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) 63 (|has| |#1| (-559)))) (-4287 (($ $) 64 (|has| |#1| (-559)))) (-2286 (((-112) $) 66 (|has| |#1| (-559)))) (-3748 (($ $ |#2|) 110) (($ $ |#2| |#2|) 109)) (-3006 (((-1159 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 117)) (-2376 (((-3 $ "failed") $ $) 20)) (-3647 (($) 18 T CONST)) (-3023 (($ $) 72)) (-3588 (((-3 $ "failed") $) 37)) (-3086 (((-112) $) 85)) (-3362 ((|#2| $) 112) ((|#2| $ |#2|) 111)) (-4346 (((-112) $) 35)) (-1343 (($ $ (-923)) 113)) (-3770 (((-112) $) 74)) (-2836 (($ |#1| |#2|) 73) (($ $ (-1084) |#2|) 88) (($ $ (-645 (-1084)) (-645 |#2|)) 87)) (-3841 (($ (-1 |#1| |#1|) $) 75)) (-2985 (($ $) 77)) (-2996 ((|#1| $) 78)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-1874 (($ $ |#2|) 107)) (-2400 (((-3 $ "failed") $ $) 62 (|has| |#1| (-559)))) (-2642 (((-1159 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-1801 ((|#1| $ |#2|) 116) (($ $ $) 93 (|has| |#2| (-1114)))) (-1616 (($ $ (-645 (-1179)) (-645 (-772))) 101 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1179) (-772)) 100 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-645 (-1179))) 99 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1179)) 98 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-772)) 96 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3104 ((|#2| $) 76)) (-1834 (($ $) 84)) (-4129 (((-863) $) 12) (($ (-567)) 33) (($ (-410 (-567))) 69 (|has| |#1| (-38 (-410 (-567))))) (($ $) 61 (|has| |#1| (-559))) (($ |#1|) 59 (|has| |#1| (-172)))) (-2558 ((|#1| $ |#2|) 71)) (-2118 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-2746 (((-772)) 32 T CONST)) (-2185 ((|#1| $) 114)) (-3357 (((-112) $ $) 9)) (-3731 (((-112) $ $) 65 (|has| |#1| (-559)))) (-3058 ((|#1| $ |#2|) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -4129 (|#1| (-1179))))))) (-1733 (($) 19 T CONST)) (-1744 (($) 34 T CONST)) (-2647 (($ $ (-645 (-1179)) (-645 (-772))) 105 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1179) (-772)) 104 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-645 (-1179))) 103 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1179)) 102 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-772)) 97 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2946 (((-112) $ $) 6)) (-3069 (($ $ |#1|) 70 (|has| |#1| (-365)))) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-410 (-567)) $) 68 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 67 (|has| |#1| (-38 (-410 (-567)))))))
+(((-1247 |#1| |#2|) (-140) (-1051) (-793)) (T -1247))
+((-3006 (*1 *2 *1) (-12 (-4 *1 (-1247 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-793)) (-5 *2 (-1159 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1801 (*1 *2 *1 *3) (-12 (-4 *1 (-1247 *2 *3)) (-4 *3 (-793)) (-4 *2 (-1051)))) (-3653 (*1 *2 *1) (-12 (-4 *1 (-1247 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-793)) (-5 *2 (-1179)))) (-2185 (*1 *2 *1) (-12 (-4 *1 (-1247 *2 *3)) (-4 *3 (-793)) (-4 *2 (-1051)))) (-1343 (*1 *1 *1 *2) (-12 (-5 *2 (-923)) (-4 *1 (-1247 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-793)))) (-3362 (*1 *2 *1) (-12 (-4 *1 (-1247 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-793)))) (-3362 (*1 *2 *1 *2) (-12 (-4 *1 (-1247 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-793)))) (-3748 (*1 *1 *1 *2) (-12 (-4 *1 (-1247 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-793)))) (-3748 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1247 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-793)))) (-3058 (*1 *2 *1 *3) (-12 (-4 *1 (-1247 *2 *3)) (-4 *3 (-793)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -4129 (*2 (-1179)))) (-4 *2 (-1051)))) (-1874 (*1 *1 *1 *2) (-12 (-4 *1 (-1247 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-793)))) (-2642 (*1 *2 *1 *3) (-12 (-4 *1 (-1247 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-793)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1159 *3)))))
+(-13 (-975 |t#1| |t#2| (-1084)) (-10 -8 (-15 -3006 ((-1159 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1801 (|t#1| $ |t#2|)) (-15 -3653 ((-1179) $)) (-15 -2185 (|t#1| $)) (-15 -1343 ($ $ (-923))) (-15 -3362 (|t#2| $)) (-15 -3362 (|t#2| $ |t#2|)) (-15 -3748 ($ $ |t#2|)) (-15 -3748 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -4129 (|t#1| (-1179)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3058 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -1874 ($ $ |t#2|)) (IF (|has| |t#2| (-1114)) (-6 (-287 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-233)) (IF (|has| |t#1| (-902 (-1179))) (-6 (-902 (-1179))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2642 ((-1159 |t#1|) $ |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-559)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-410 (-567)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2811 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #0#) |has| |#1| (-38 (-410 (-567)))) ((-617 (-567)) . T) ((-617 |#1|) |has| |#1| (-172)) ((-617 $) |has| |#1| (-559)) ((-614 (-863)) . T) ((-172) -2811 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-287 $ $) |has| |#2| (-1114)) ((-291) |has| |#1| (-559)) ((-559) |has| |#1| (-559)) ((-647 #0#) |has| |#1| (-38 (-410 (-567)))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) |has| |#1| (-38 (-410 (-567)))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) |has| |#1| (-38 (-410 (-567)))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) |has| |#1| (-559)) ((-718 #0#) |has| |#1| (-38 (-410 (-567)))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) |has| |#1| (-559)) ((-727) . T) ((-902 (-1179)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-902 (-1179)))) ((-975 |#1| |#2| (-1084)) . T) ((-1053 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1053 |#1|) . T) ((-1053 $) -2811 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-1058 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1058 |#1|) . T) ((-1058 $) -2811 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T))
+((-3659 ((|#2| |#2|) 12)) (-3597 (((-421 |#2|) |#2|) 14)) (-1649 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-567))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-567)))) 30)))
+(((-1248 |#1| |#2|) (-10 -7 (-15 -3597 ((-421 |#2|) |#2|)) (-15 -3659 (|#2| |#2|)) (-15 -1649 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-567))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-567)))))) (-559) (-13 (-1245 |#1|) (-559) (-10 -8 (-15 -2785 ($ $ $))))) (T -1248))
+((-1649 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-567)))) (-4 *4 (-13 (-1245 *3) (-559) (-10 -8 (-15 -2785 ($ $ $))))) (-4 *3 (-559)) (-5 *1 (-1248 *3 *4)))) (-3659 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-1248 *3 *2)) (-4 *2 (-13 (-1245 *3) (-559) (-10 -8 (-15 -2785 ($ $ $))))))) (-3597 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-421 *3)) (-5 *1 (-1248 *4 *3)) (-4 *3 (-13 (-1245 *4) (-559) (-10 -8 (-15 -2785 ($ $ $))))))))
+(-10 -7 (-15 -3597 ((-421 |#2|) |#2|)) (-15 -3659 (|#2| |#2|)) (-15 -1649 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-567))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-567))))))
+((-3841 (((-1254 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1254 |#1| |#3| |#5|)) 24)))
+(((-1249 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3841 ((-1254 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1254 |#1| |#3| |#5|)))) (-1051) (-1051) (-1179) (-1179) |#1| |#2|) (T -1249))
+((-3841 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1254 *5 *7 *9)) (-4 *5 (-1051)) (-4 *6 (-1051)) (-14 *7 (-1179)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1254 *6 *8 *10)) (-5 *1 (-1249 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1179)))))
+(-10 -7 (-15 -3841 ((-1254 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1254 |#1| |#3| |#5|))))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-2859 (((-645 (-1084)) $) 86)) (-3653 (((-1179) $) 115)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) 63 (|has| |#1| (-559)))) (-4287 (($ $) 64 (|has| |#1| (-559)))) (-2286 (((-112) $) 66 (|has| |#1| (-559)))) (-3748 (($ $ (-410 (-567))) 110) (($ $ (-410 (-567)) (-410 (-567))) 109)) (-3006 (((-1159 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|))) $) 117)) (-3164 (($ $) 147 (|has| |#1| (-38 (-410 (-567)))))) (-3032 (($ $) 130 (|has| |#1| (-38 (-410 (-567)))))) (-2376 (((-3 $ "failed") $ $) 20)) (-3659 (($ $) 174 (|has| |#1| (-365)))) (-3597 (((-421 $) $) 175 (|has| |#1| (-365)))) (-2728 (($ $) 129 (|has| |#1| (-38 (-410 (-567)))))) (-3696 (((-112) $ $) 165 (|has| |#1| (-365)))) (-3145 (($ $) 146 (|has| |#1| (-38 (-410 (-567)))))) (-3008 (($ $) 131 (|has| |#1| (-38 (-410 (-567)))))) (-1317 (($ (-772) (-1159 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|)))) 183)) (-3182 (($ $) 145 (|has| |#1| (-38 (-410 (-567)))))) (-3057 (($ $) 132 (|has| |#1| (-38 (-410 (-567)))))) (-3647 (($) 18 T CONST)) (-2357 (($ $ $) 169 (|has| |#1| (-365)))) (-3023 (($ $) 72)) (-3588 (((-3 $ "failed") $) 37)) (-2368 (($ $ $) 168 (|has| |#1| (-365)))) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) 163 (|has| |#1| (-365)))) (-3502 (((-112) $) 176 (|has| |#1| (-365)))) (-3086 (((-112) $) 85)) (-1484 (($) 157 (|has| |#1| (-38 (-410 (-567)))))) (-3362 (((-410 (-567)) $) 112) (((-410 (-567)) $ (-410 (-567))) 111)) (-4346 (((-112) $) 35)) (-3698 (($ $ (-567)) 128 (|has| |#1| (-38 (-410 (-567)))))) (-1343 (($ $ (-923)) 113) (($ $ (-410 (-567))) 182)) (-1469 (((-3 (-645 $) "failed") (-645 $) $) 172 (|has| |#1| (-365)))) (-3770 (((-112) $) 74)) (-2836 (($ |#1| (-410 (-567))) 73) (($ $ (-1084) (-410 (-567))) 88) (($ $ (-645 (-1084)) (-645 (-410 (-567)))) 87)) (-3841 (($ (-1 |#1| |#1|) $) 75)) (-3072 (($ $) 154 (|has| |#1| (-38 (-410 (-567)))))) (-2985 (($ $) 77)) (-2996 ((|#1| $) 78)) (-2751 (($ (-645 $)) 161 (|has| |#1| (-365))) (($ $ $) 160 (|has| |#1| (-365)))) (-2516 (((-1161) $) 10)) (-2949 (($ $) 177 (|has| |#1| (-365)))) (-4083 (($ $) 181 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1179)) 180 (-2811 (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-961)) (|has| |#1| (-1204)) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-15 -2859 ((-645 (-1179)) |#1|))) (|has| |#1| (-15 -4083 (|#1| |#1| (-1179)))) (|has| |#1| (-38 (-410 (-567)))))))) (-3437 (((-1122) $) 11)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) 162 (|has| |#1| (-365)))) (-2785 (($ (-645 $)) 159 (|has| |#1| (-365))) (($ $ $) 158 (|has| |#1| (-365)))) (-2717 (((-421 $) $) 173 (|has| |#1| (-365)))) (-2905 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 171 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) 170 (|has| |#1| (-365)))) (-1874 (($ $ (-410 (-567))) 107)) (-2400 (((-3 $ "failed") $ $) 62 (|has| |#1| (-559)))) (-2372 (((-3 (-645 $) "failed") (-645 $) $) 164 (|has| |#1| (-365)))) (-3955 (($ $) 155 (|has| |#1| (-38 (-410 (-567)))))) (-2642 (((-1159 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))))) (-2460 (((-772) $) 166 (|has| |#1| (-365)))) (-1801 ((|#1| $ (-410 (-567))) 116) (($ $ $) 93 (|has| (-410 (-567)) (-1114)))) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) 167 (|has| |#1| (-365)))) (-1616 (($ $ (-645 (-1179)) (-645 (-772))) 101 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-1179) (-772)) 100 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-645 (-1179))) 99 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-1179)) 98 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-772)) 96 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (-3104 (((-410 (-567)) $) 76)) (-3192 (($ $) 144 (|has| |#1| (-38 (-410 (-567)))))) (-3071 (($ $) 133 (|has| |#1| (-38 (-410 (-567)))))) (-3173 (($ $) 143 (|has| |#1| (-38 (-410 (-567)))))) (-3043 (($ $) 134 (|has| |#1| (-38 (-410 (-567)))))) (-3155 (($ $) 142 (|has| |#1| (-38 (-410 (-567)))))) (-3021 (($ $) 135 (|has| |#1| (-38 (-410 (-567)))))) (-1834 (($ $) 84)) (-4129 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 59 (|has| |#1| (-172))) (($ (-410 (-567))) 69 (|has| |#1| (-38 (-410 (-567))))) (($ $) 61 (|has| |#1| (-559)))) (-2558 ((|#1| $ (-410 (-567))) 71)) (-2118 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-2746 (((-772)) 32 T CONST)) (-2185 ((|#1| $) 114)) (-3357 (((-112) $ $) 9)) (-3217 (($ $) 153 (|has| |#1| (-38 (-410 (-567)))))) (-3103 (($ $) 141 (|has| |#1| (-38 (-410 (-567)))))) (-3731 (((-112) $ $) 65 (|has| |#1| (-559)))) (-3201 (($ $) 152 (|has| |#1| (-38 (-410 (-567)))))) (-3083 (($ $) 140 (|has| |#1| (-38 (-410 (-567)))))) (-3238 (($ $) 151 (|has| |#1| (-38 (-410 (-567)))))) (-3126 (($ $) 139 (|has| |#1| (-38 (-410 (-567)))))) (-3058 ((|#1| $ (-410 (-567))) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))) (|has| |#1| (-15 -4129 (|#1| (-1179))))))) (-3805 (($ $) 150 (|has| |#1| (-38 (-410 (-567)))))) (-3138 (($ $) 138 (|has| |#1| (-38 (-410 (-567)))))) (-3228 (($ $) 149 (|has| |#1| (-38 (-410 (-567)))))) (-3115 (($ $) 137 (|has| |#1| (-38 (-410 (-567)))))) (-3208 (($ $) 148 (|has| |#1| (-38 (-410 (-567)))))) (-3093 (($ $) 136 (|has| |#1| (-38 (-410 (-567)))))) (-1733 (($) 19 T CONST)) (-1744 (($) 34 T CONST)) (-2647 (($ $ (-645 (-1179)) (-645 (-772))) 105 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-1179) (-772)) 104 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-645 (-1179))) 103 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-1179)) 102 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-772)) 97 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (-2946 (((-112) $ $) 6)) (-3069 (($ $ |#1|) 70 (|has| |#1| (-365))) (($ $ $) 179 (|has| |#1| (-365)))) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 178 (|has| |#1| (-365))) (($ $ $) 156 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 127 (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-410 (-567)) $) 68 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 67 (|has| |#1| (-38 (-410 (-567)))))))
+(((-1250 |#1|) (-140) (-1051)) (T -1250))
+((-1317 (*1 *1 *2 *3) (-12 (-5 *2 (-772)) (-5 *3 (-1159 (-2 (|:| |k| (-410 (-567))) (|:| |c| *4)))) (-4 *4 (-1051)) (-4 *1 (-1250 *4)))) (-1343 (*1 *1 *1 *2) (-12 (-5 *2 (-410 (-567))) (-4 *1 (-1250 *3)) (-4 *3 (-1051)))) (-4083 (*1 *1 *1) (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1051)) (-4 *2 (-38 (-410 (-567)))))) (-4083 (*1 *1 *1 *2) (-2811 (-12 (-5 *2 (-1179)) (-4 *1 (-1250 *3)) (-4 *3 (-1051)) (-12 (-4 *3 (-29 (-567))) (-4 *3 (-961)) (-4 *3 (-1204)) (-4 *3 (-38 (-410 (-567)))))) (-12 (-5 *2 (-1179)) (-4 *1 (-1250 *3)) (-4 *3 (-1051)) (-12 (|has| *3 (-15 -2859 ((-645 *2) *3))) (|has| *3 (-15 -4083 (*3 *3 *2))) (-4 *3 (-38 (-410 (-567)))))))))
+(-13 (-1247 |t#1| (-410 (-567))) (-10 -8 (-15 -1317 ($ (-772) (-1159 (-2 (|:| |k| (-410 (-567))) (|:| |c| |t#1|))))) (-15 -1343 ($ $ (-410 (-567)))) (IF (|has| |t#1| (-38 (-410 (-567)))) (PROGN (-15 -4083 ($ $)) (IF (|has| |t#1| (-15 -4083 (|t#1| |t#1| (-1179)))) (IF (|has| |t#1| (-15 -2859 ((-645 (-1179)) |t#1|))) (-15 -4083 ($ $ (-1179))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1204)) (IF (|has| |t#1| (-961)) (IF (|has| |t#1| (-29 (-567))) (-15 -4083 ($ $ (-1179))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1004)) (-6 (-1204))) |%noBranch|) (IF (|has| |t#1| (-365)) (-6 (-365)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-410 (-567))) . T) ((-25) . T) ((-38 #1=(-410 (-567))) -2811 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2811 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-35) |has| |#1| (-38 (-410 (-567)))) ((-95) |has| |#1| (-38 (-410 (-567)))) ((-102) . T) ((-111 #1# #1#) -2811 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2811 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #1#) -2811 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-617 (-567)) . T) ((-617 |#1|) |has| |#1| (-172)) ((-617 $) -2811 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-614 (-863)) . T) ((-172) -2811 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) ((-243) |has| |#1| (-365)) ((-285) |has| |#1| (-38 (-410 (-567)))) ((-287 $ $) |has| (-410 (-567)) (-1114)) ((-291) -2811 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-308) |has| |#1| (-365)) ((-365) |has| |#1| (-365)) ((-455) |has| |#1| (-365)) ((-496) |has| |#1| (-38 (-410 (-567)))) ((-559) -2811 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-647 #1#) -2811 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #1#) -2811 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #1#) -2811 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) -2811 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-718 #1#) -2811 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) -2811 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-727) . T) ((-902 (-1179)) -12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179)))) ((-975 |#1| #0# (-1084)) . T) ((-922) |has| |#1| (-365)) ((-1004) |has| |#1| (-38 (-410 (-567)))) ((-1053 #1#) -2811 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-1053 |#1|) . T) ((-1053 $) -2811 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1058 #1#) -2811 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-1058 |#1|) . T) ((-1058 $) -2811 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1204) |has| |#1| (-38 (-410 (-567)))) ((-1207) |has| |#1| (-38 (-410 (-567)))) ((-1223) |has| |#1| (-365)) ((-1247 |#1| #0#) . T))
+((-3791 (((-112) $) 12)) (-3765 (((-3 |#3| "failed") $) 17)) (-2051 ((|#3| $) 14)))
+(((-1251 |#1| |#2| |#3|) (-10 -8 (-15 -3765 ((-3 |#3| "failed") |#1|)) (-15 -2051 (|#3| |#1|)) (-15 -3791 ((-112) |#1|))) (-1252 |#2| |#3|) (-1051) (-1229 |#2|)) (T -1251))
+NIL
+(-10 -8 (-15 -3765 ((-3 |#3| "failed") |#1|)) (-15 -2051 (|#3| |#1|)) (-15 -3791 ((-112) |#1|)))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-2859 (((-645 (-1084)) $) 86)) (-3653 (((-1179) $) 115)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) 63 (|has| |#1| (-559)))) (-4287 (($ $) 64 (|has| |#1| (-559)))) (-2286 (((-112) $) 66 (|has| |#1| (-559)))) (-3748 (($ $ (-410 (-567))) 110) (($ $ (-410 (-567)) (-410 (-567))) 109)) (-3006 (((-1159 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|))) $) 117)) (-3164 (($ $) 147 (|has| |#1| (-38 (-410 (-567)))))) (-3032 (($ $) 130 (|has| |#1| (-38 (-410 (-567)))))) (-2376 (((-3 $ "failed") $ $) 20)) (-3659 (($ $) 174 (|has| |#1| (-365)))) (-3597 (((-421 $) $) 175 (|has| |#1| (-365)))) (-2728 (($ $) 129 (|has| |#1| (-38 (-410 (-567)))))) (-3696 (((-112) $ $) 165 (|has| |#1| (-365)))) (-3145 (($ $) 146 (|has| |#1| (-38 (-410 (-567)))))) (-3008 (($ $) 131 (|has| |#1| (-38 (-410 (-567)))))) (-1317 (($ (-772) (-1159 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|)))) 183)) (-3182 (($ $) 145 (|has| |#1| (-38 (-410 (-567)))))) (-3057 (($ $) 132 (|has| |#1| (-38 (-410 (-567)))))) (-3647 (($) 18 T CONST)) (-3765 (((-3 |#2| "failed") $) 194)) (-2051 ((|#2| $) 195)) (-2357 (($ $ $) 169 (|has| |#1| (-365)))) (-3023 (($ $) 72)) (-3588 (((-3 $ "failed") $) 37)) (-1838 (((-410 (-567)) $) 191)) (-2368 (($ $ $) 168 (|has| |#1| (-365)))) (-2928 (($ (-410 (-567)) |#2|) 192)) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) 163 (|has| |#1| (-365)))) (-3502 (((-112) $) 176 (|has| |#1| (-365)))) (-3086 (((-112) $) 85)) (-1484 (($) 157 (|has| |#1| (-38 (-410 (-567)))))) (-3362 (((-410 (-567)) $) 112) (((-410 (-567)) $ (-410 (-567))) 111)) (-4346 (((-112) $) 35)) (-3698 (($ $ (-567)) 128 (|has| |#1| (-38 (-410 (-567)))))) (-1343 (($ $ (-923)) 113) (($ $ (-410 (-567))) 182)) (-1469 (((-3 (-645 $) "failed") (-645 $) $) 172 (|has| |#1| (-365)))) (-3770 (((-112) $) 74)) (-2836 (($ |#1| (-410 (-567))) 73) (($ $ (-1084) (-410 (-567))) 88) (($ $ (-645 (-1084)) (-645 (-410 (-567)))) 87)) (-3841 (($ (-1 |#1| |#1|) $) 75)) (-3072 (($ $) 154 (|has| |#1| (-38 (-410 (-567)))))) (-2985 (($ $) 77)) (-2996 ((|#1| $) 78)) (-2751 (($ (-645 $)) 161 (|has| |#1| (-365))) (($ $ $) 160 (|has| |#1| (-365)))) (-4182 ((|#2| $) 190)) (-1948 (((-3 |#2| "failed") $) 188)) (-2917 ((|#2| $) 189)) (-2516 (((-1161) $) 10)) (-2949 (($ $) 177 (|has| |#1| (-365)))) (-4083 (($ $) 181 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1179)) 180 (-2811 (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-961)) (|has| |#1| (-1204)) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-15 -2859 ((-645 (-1179)) |#1|))) (|has| |#1| (-15 -4083 (|#1| |#1| (-1179)))) (|has| |#1| (-38 (-410 (-567)))))))) (-3437 (((-1122) $) 11)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) 162 (|has| |#1| (-365)))) (-2785 (($ (-645 $)) 159 (|has| |#1| (-365))) (($ $ $) 158 (|has| |#1| (-365)))) (-2717 (((-421 $) $) 173 (|has| |#1| (-365)))) (-2905 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 171 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) 170 (|has| |#1| (-365)))) (-1874 (($ $ (-410 (-567))) 107)) (-2400 (((-3 $ "failed") $ $) 62 (|has| |#1| (-559)))) (-2372 (((-3 (-645 $) "failed") (-645 $) $) 164 (|has| |#1| (-365)))) (-3955 (($ $) 155 (|has| |#1| (-38 (-410 (-567)))))) (-2642 (((-1159 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))))) (-2460 (((-772) $) 166 (|has| |#1| (-365)))) (-1801 ((|#1| $ (-410 (-567))) 116) (($ $ $) 93 (|has| (-410 (-567)) (-1114)))) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) 167 (|has| |#1| (-365)))) (-1616 (($ $ (-645 (-1179)) (-645 (-772))) 101 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-1179) (-772)) 100 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-645 (-1179))) 99 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-1179)) 98 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-772)) 96 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (-3104 (((-410 (-567)) $) 76)) (-3192 (($ $) 144 (|has| |#1| (-38 (-410 (-567)))))) (-3071 (($ $) 133 (|has| |#1| (-38 (-410 (-567)))))) (-3173 (($ $) 143 (|has| |#1| (-38 (-410 (-567)))))) (-3043 (($ $) 134 (|has| |#1| (-38 (-410 (-567)))))) (-3155 (($ $) 142 (|has| |#1| (-38 (-410 (-567)))))) (-3021 (($ $) 135 (|has| |#1| (-38 (-410 (-567)))))) (-1834 (($ $) 84)) (-4129 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 59 (|has| |#1| (-172))) (($ |#2|) 193) (($ (-410 (-567))) 69 (|has| |#1| (-38 (-410 (-567))))) (($ $) 61 (|has| |#1| (-559)))) (-2558 ((|#1| $ (-410 (-567))) 71)) (-2118 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-2746 (((-772)) 32 T CONST)) (-2185 ((|#1| $) 114)) (-3357 (((-112) $ $) 9)) (-3217 (($ $) 153 (|has| |#1| (-38 (-410 (-567)))))) (-3103 (($ $) 141 (|has| |#1| (-38 (-410 (-567)))))) (-3731 (((-112) $ $) 65 (|has| |#1| (-559)))) (-3201 (($ $) 152 (|has| |#1| (-38 (-410 (-567)))))) (-3083 (($ $) 140 (|has| |#1| (-38 (-410 (-567)))))) (-3238 (($ $) 151 (|has| |#1| (-38 (-410 (-567)))))) (-3126 (($ $) 139 (|has| |#1| (-38 (-410 (-567)))))) (-3058 ((|#1| $ (-410 (-567))) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))) (|has| |#1| (-15 -4129 (|#1| (-1179))))))) (-3805 (($ $) 150 (|has| |#1| (-38 (-410 (-567)))))) (-3138 (($ $) 138 (|has| |#1| (-38 (-410 (-567)))))) (-3228 (($ $) 149 (|has| |#1| (-38 (-410 (-567)))))) (-3115 (($ $) 137 (|has| |#1| (-38 (-410 (-567)))))) (-3208 (($ $) 148 (|has| |#1| (-38 (-410 (-567)))))) (-3093 (($ $) 136 (|has| |#1| (-38 (-410 (-567)))))) (-1733 (($) 19 T CONST)) (-1744 (($) 34 T CONST)) (-2647 (($ $ (-645 (-1179)) (-645 (-772))) 105 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-1179) (-772)) 104 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-645 (-1179))) 103 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-1179)) 102 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-772)) 97 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (-2946 (((-112) $ $) 6)) (-3069 (($ $ |#1|) 70 (|has| |#1| (-365))) (($ $ $) 179 (|has| |#1| (-365)))) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 178 (|has| |#1| (-365))) (($ $ $) 156 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 127 (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-410 (-567)) $) 68 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 67 (|has| |#1| (-38 (-410 (-567)))))))
+(((-1252 |#1| |#2|) (-140) (-1051) (-1229 |t#1|)) (T -1252))
+((-3104 (*1 *2 *1) (-12 (-4 *1 (-1252 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-1229 *3)) (-5 *2 (-410 (-567))))) (-2928 (*1 *1 *2 *3) (-12 (-5 *2 (-410 (-567))) (-4 *4 (-1051)) (-4 *1 (-1252 *4 *3)) (-4 *3 (-1229 *4)))) (-1838 (*1 *2 *1) (-12 (-4 *1 (-1252 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-1229 *3)) (-5 *2 (-410 (-567))))) (-4182 (*1 *2 *1) (-12 (-4 *1 (-1252 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-1229 *3)))) (-2917 (*1 *2 *1) (-12 (-4 *1 (-1252 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-1229 *3)))) (-1948 (*1 *2 *1) (|partial| -12 (-4 *1 (-1252 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-1229 *3)))))
+(-13 (-1250 |t#1|) (-1040 |t#2|) (-617 |t#2|) (-10 -8 (-15 -2928 ($ (-410 (-567)) |t#2|)) (-15 -1838 ((-410 (-567)) $)) (-15 -4182 (|t#2| $)) (-15 -3104 ((-410 (-567)) $)) (-15 -2917 (|t#2| $)) (-15 -1948 ((-3 |t#2| "failed") $))))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-410 (-567))) . T) ((-25) . T) ((-38 #1=(-410 (-567))) -2811 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2811 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-35) |has| |#1| (-38 (-410 (-567)))) ((-95) |has| |#1| (-38 (-410 (-567)))) ((-102) . T) ((-111 #1# #1#) -2811 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2811 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #1#) -2811 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-617 (-567)) . T) ((-617 |#1|) |has| |#1| (-172)) ((-617 |#2|) . T) ((-617 $) -2811 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-614 (-863)) . T) ((-172) -2811 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) ((-243) |has| |#1| (-365)) ((-285) |has| |#1| (-38 (-410 (-567)))) ((-287 $ $) |has| (-410 (-567)) (-1114)) ((-291) -2811 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-308) |has| |#1| (-365)) ((-365) |has| |#1| (-365)) ((-455) |has| |#1| (-365)) ((-496) |has| |#1| (-38 (-410 (-567)))) ((-559) -2811 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-647 #1#) -2811 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #1#) -2811 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #1#) -2811 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) -2811 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-718 #1#) -2811 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) -2811 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-727) . T) ((-902 (-1179)) -12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179)))) ((-975 |#1| #0# (-1084)) . T) ((-922) |has| |#1| (-365)) ((-1004) |has| |#1| (-38 (-410 (-567)))) ((-1040 |#2|) . T) ((-1053 #1#) -2811 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-1053 |#1|) . T) ((-1053 $) -2811 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1058 #1#) -2811 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-1058 |#1|) . T) ((-1058 $) -2811 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1204) |has| |#1| (-38 (-410 (-567)))) ((-1207) |has| |#1| (-38 (-410 (-567)))) ((-1223) |has| |#1| (-365)) ((-1247 |#1| #0#) . T) ((-1250 |#1|) . T))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-2859 (((-645 (-1084)) $) NIL)) (-3653 (((-1179) $) 104)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-4287 (($ $) NIL (|has| |#1| (-559)))) (-2286 (((-112) $) NIL (|has| |#1| (-559)))) (-3748 (($ $ (-410 (-567))) 116) (($ $ (-410 (-567)) (-410 (-567))) 118)) (-3006 (((-1159 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|))) $) 54)) (-3164 (($ $) 192 (|has| |#1| (-38 (-410 (-567)))))) (-3032 (($ $) 168 (|has| |#1| (-38 (-410 (-567)))))) (-2376 (((-3 $ "failed") $ $) NIL)) (-3659 (($ $) NIL (|has| |#1| (-365)))) (-3597 (((-421 $) $) NIL (|has| |#1| (-365)))) (-2728 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3696 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3145 (($ $) 188 (|has| |#1| (-38 (-410 (-567)))))) (-3008 (($ $) 164 (|has| |#1| (-38 (-410 (-567)))))) (-1317 (($ (-772) (-1159 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|)))) 65)) (-3182 (($ $) 196 (|has| |#1| (-38 (-410 (-567)))))) (-3057 (($ $) 172 (|has| |#1| (-38 (-410 (-567)))))) (-3647 (($) NIL T CONST)) (-3765 (((-3 |#2| "failed") $) NIL)) (-2051 ((|#2| $) NIL)) (-2357 (($ $ $) NIL (|has| |#1| (-365)))) (-3023 (($ $) NIL)) (-3588 (((-3 $ "failed") $) 85)) (-1838 (((-410 (-567)) $) 13)) (-2368 (($ $ $) NIL (|has| |#1| (-365)))) (-2928 (($ (-410 (-567)) |#2|) 11)) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-3502 (((-112) $) NIL (|has| |#1| (-365)))) (-3086 (((-112) $) 74)) (-1484 (($) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3362 (((-410 (-567)) $) 113) (((-410 (-567)) $ (-410 (-567))) 114)) (-4346 (((-112) $) NIL)) (-3698 (($ $ (-567)) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1343 (($ $ (-923)) 130) (($ $ (-410 (-567))) 128)) (-1469 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-3770 (((-112) $) NIL)) (-2836 (($ |#1| (-410 (-567))) 33) (($ $ (-1084) (-410 (-567))) NIL) (($ $ (-645 (-1084)) (-645 (-410 (-567)))) NIL)) (-3841 (($ (-1 |#1| |#1|) $) 125)) (-3072 (($ $) 162 (|has| |#1| (-38 (-410 (-567)))))) (-2985 (($ $) NIL)) (-2996 ((|#1| $) NIL)) (-2751 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-4182 ((|#2| $) 12)) (-1948 (((-3 |#2| "failed") $) 44)) (-2917 ((|#2| $) 45)) (-2516 (((-1161) $) NIL)) (-2949 (($ $) 101 (|has| |#1| (-365)))) (-4083 (($ $) 146 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1179)) 151 (-2811 (-12 (|has| |#1| (-15 -4083 (|#1| |#1| (-1179)))) (|has| |#1| (-15 -2859 ((-645 (-1179)) |#1|))) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-961)) (|has| |#1| (-1204)))))) (-3437 (((-1122) $) NIL)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| |#1| (-365)))) (-2785 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2717 (((-421 $) $) NIL (|has| |#1| (-365)))) (-2905 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) NIL (|has| |#1| (-365)))) (-1874 (($ $ (-410 (-567))) 122)) (-2400 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-2372 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-3955 (($ $) 160 (|has| |#1| (-38 (-410 (-567)))))) (-2642 (((-1159 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))))) (-2460 (((-772) $) NIL (|has| |#1| (-365)))) (-1801 ((|#1| $ (-410 (-567))) 108) (($ $ $) 94 (|has| (-410 (-567)) (-1114)))) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) NIL (|has| |#1| (-365)))) (-1616 (($ $ (-645 (-1179)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-1179) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-645 (-1179))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-1179)) 138 (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) 134 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (-3104 (((-410 (-567)) $) 16)) (-3192 (($ $) 198 (|has| |#1| (-38 (-410 (-567)))))) (-3071 (($ $) 174 (|has| |#1| (-38 (-410 (-567)))))) (-3173 (($ $) 194 (|has| |#1| (-38 (-410 (-567)))))) (-3043 (($ $) 170 (|has| |#1| (-38 (-410 (-567)))))) (-3155 (($ $) 190 (|has| |#1| (-38 (-410 (-567)))))) (-3021 (($ $) 166 (|has| |#1| (-38 (-410 (-567)))))) (-1834 (($ $) 120)) (-4129 (((-863) $) NIL) (($ (-567)) 37) (($ |#1|) 27 (|has| |#1| (-172))) (($ |#2|) 34) (($ (-410 (-567))) 139 (|has| |#1| (-38 (-410 (-567))))) (($ $) NIL (|has| |#1| (-559)))) (-2558 ((|#1| $ (-410 (-567))) 107)) (-2118 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2746 (((-772)) 127 T CONST)) (-2185 ((|#1| $) 106)) (-3357 (((-112) $ $) NIL)) (-3217 (($ $) 204 (|has| |#1| (-38 (-410 (-567)))))) (-3103 (($ $) 180 (|has| |#1| (-38 (-410 (-567)))))) (-3731 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3201 (($ $) 200 (|has| |#1| (-38 (-410 (-567)))))) (-3083 (($ $) 176 (|has| |#1| (-38 (-410 (-567)))))) (-3238 (($ $) 208 (|has| |#1| (-38 (-410 (-567)))))) (-3126 (($ $) 184 (|has| |#1| (-38 (-410 (-567)))))) (-3058 ((|#1| $ (-410 (-567))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))) (|has| |#1| (-15 -4129 (|#1| (-1179))))))) (-3805 (($ $) 210 (|has| |#1| (-38 (-410 (-567)))))) (-3138 (($ $) 186 (|has| |#1| (-38 (-410 (-567)))))) (-3228 (($ $) 206 (|has| |#1| (-38 (-410 (-567)))))) (-3115 (($ $) 182 (|has| |#1| (-38 (-410 (-567)))))) (-3208 (($ $) 202 (|has| |#1| (-38 (-410 (-567)))))) (-3093 (($ $) 178 (|has| |#1| (-38 (-410 (-567)))))) (-1733 (($) 21 T CONST)) (-1744 (($) 17 T CONST)) (-2647 (($ $ (-645 (-1179)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-1179) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-645 (-1179))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-1179)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (-2946 (((-112) $ $) 72)) (-3069 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) 100 (|has| |#1| (-365)))) (-3053 (($ $) 142) (($ $ $) 78)) (-3041 (($ $ $) 76)) (** (($ $ (-923)) NIL) (($ $ (-772)) 82) (($ $ (-567)) 157 (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 158 (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) 137) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))))
+(((-1253 |#1| |#2|) (-1252 |#1| |#2|) (-1051) (-1229 |#1|)) (T -1253))
+NIL
+(-1252 |#1| |#2|)
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-2859 (((-645 (-1084)) $) NIL)) (-3653 (((-1179) $) 11)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-4287 (($ $) NIL (|has| |#1| (-559)))) (-2286 (((-112) $) NIL (|has| |#1| (-559)))) (-3748 (($ $ (-410 (-567))) NIL) (($ $ (-410 (-567)) (-410 (-567))) NIL)) (-3006 (((-1159 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|))) $) NIL)) (-3164 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3032 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2376 (((-3 $ "failed") $ $) NIL)) (-3659 (($ $) NIL (|has| |#1| (-365)))) (-3597 (((-421 $) $) NIL (|has| |#1| (-365)))) (-2728 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3696 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3145 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3008 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1317 (($ (-772) (-1159 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|)))) NIL)) (-3182 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3057 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3647 (($) NIL T CONST)) (-3765 (((-3 (-1233 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1261 |#1| |#2| |#3|) "failed") $) 22)) (-2051 (((-1233 |#1| |#2| |#3|) $) NIL) (((-1261 |#1| |#2| |#3|) $) NIL)) (-2357 (($ $ $) NIL (|has| |#1| (-365)))) (-3023 (($ $) NIL)) (-3588 (((-3 $ "failed") $) NIL)) (-1838 (((-410 (-567)) $) 69)) (-2368 (($ $ $) NIL (|has| |#1| (-365)))) (-2928 (($ (-410 (-567)) (-1233 |#1| |#2| |#3|)) NIL)) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-3502 (((-112) $) NIL (|has| |#1| (-365)))) (-3086 (((-112) $) NIL)) (-1484 (($) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3362 (((-410 (-567)) $) NIL) (((-410 (-567)) $ (-410 (-567))) NIL)) (-4346 (((-112) $) NIL)) (-3698 (($ $ (-567)) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1343 (($ $ (-923)) NIL) (($ $ (-410 (-567))) NIL)) (-1469 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-3770 (((-112) $) NIL)) (-2836 (($ |#1| (-410 (-567))) 30) (($ $ (-1084) (-410 (-567))) NIL) (($ $ (-645 (-1084)) (-645 (-410 (-567)))) NIL)) (-3841 (($ (-1 |#1| |#1|) $) NIL)) (-3072 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2985 (($ $) NIL)) (-2996 ((|#1| $) NIL)) (-2751 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-4182 (((-1233 |#1| |#2| |#3|) $) 72)) (-1948 (((-3 (-1233 |#1| |#2| |#3|) "failed") $) NIL)) (-2917 (((-1233 |#1| |#2| |#3|) $) NIL)) (-2516 (((-1161) $) NIL)) (-2949 (($ $) NIL (|has| |#1| (-365)))) (-4083 (($ $) 39 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1179)) NIL (-2811 (-12 (|has| |#1| (-15 -4083 (|#1| |#1| (-1179)))) (|has| |#1| (-15 -2859 ((-645 (-1179)) |#1|))) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-961)) (|has| |#1| (-1204))))) (($ $ (-1265 |#2|)) 40 (|has| |#1| (-38 (-410 (-567)))))) (-3437 (((-1122) $) NIL)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| |#1| (-365)))) (-2785 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2717 (((-421 $) $) NIL (|has| |#1| (-365)))) (-2905 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) NIL (|has| |#1| (-365)))) (-1874 (($ $ (-410 (-567))) NIL)) (-2400 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-2372 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-3955 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2642 (((-1159 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))))) (-2460 (((-772) $) NIL (|has| |#1| (-365)))) (-1801 ((|#1| $ (-410 (-567))) NIL) (($ $ $) NIL (|has| (-410 (-567)) (-1114)))) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) NIL (|has| |#1| (-365)))) (-1616 (($ $ (-645 (-1179)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-1179) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-645 (-1179))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-1179)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $ (-1265 |#2|)) 38)) (-3104 (((-410 (-567)) $) NIL)) (-3192 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3071 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3173 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3043 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3155 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3021 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1834 (($ $) NIL)) (-4129 (((-863) $) 109) (($ (-567)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1233 |#1| |#2| |#3|)) 16) (($ (-1261 |#1| |#2| |#3|)) 17) (($ (-1265 |#2|)) 36) (($ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $) NIL (|has| |#1| (-559)))) (-2558 ((|#1| $ (-410 (-567))) NIL)) (-2118 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2746 (((-772)) NIL T CONST)) (-2185 ((|#1| $) 12)) (-3357 (((-112) $ $) NIL)) (-3217 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3103 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3731 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3201 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3083 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3238 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3126 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3058 ((|#1| $ (-410 (-567))) 74 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))) (|has| |#1| (-15 -4129 (|#1| (-1179))))))) (-3805 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3138 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3228 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3115 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3208 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3093 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1733 (($) 32 T CONST)) (-1744 (($) 26 T CONST)) (-2647 (($ $ (-645 (-1179)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-1179) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-645 (-1179))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-1179)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (-2946 (((-112) $ $) NIL)) (-3069 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) 34)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))))
+(((-1254 |#1| |#2| |#3|) (-13 (-1252 |#1| (-1233 |#1| |#2| |#3|)) (-1040 (-1261 |#1| |#2| |#3|)) (-617 (-1265 |#2|)) (-10 -8 (-15 -1616 ($ $ (-1265 |#2|))) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -4083 ($ $ (-1265 |#2|))) |%noBranch|))) (-1051) (-1179) |#1|) (T -1254))
+((-1616 (*1 *1 *1 *2) (-12 (-5 *2 (-1265 *4)) (-14 *4 (-1179)) (-5 *1 (-1254 *3 *4 *5)) (-4 *3 (-1051)) (-14 *5 *3))) (-4083 (*1 *1 *1 *2) (-12 (-5 *2 (-1265 *4)) (-14 *4 (-1179)) (-5 *1 (-1254 *3 *4 *5)) (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)) (-14 *5 *3))))
+(-13 (-1252 |#1| (-1233 |#1| |#2| |#3|)) (-1040 (-1261 |#1| |#2| |#3|)) (-617 (-1265 |#2|)) (-10 -8 (-15 -1616 ($ $ (-1265 |#2|))) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -4083 ($ $ (-1265 |#2|))) |%noBranch|)))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) 37)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-4287 (($ $) NIL)) (-2286 (((-112) $) NIL)) (-2376 (((-3 $ "failed") $ $) NIL)) (-3647 (($) NIL T CONST)) (-3765 (((-3 (-567) "failed") $) NIL (|has| (-1254 |#2| |#3| |#4|) (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| (-1254 |#2| |#3| |#4|) (-1040 (-410 (-567))))) (((-3 (-1254 |#2| |#3| |#4|) "failed") $) 22)) (-2051 (((-567) $) NIL (|has| (-1254 |#2| |#3| |#4|) (-1040 (-567)))) (((-410 (-567)) $) NIL (|has| (-1254 |#2| |#3| |#4|) (-1040 (-410 (-567))))) (((-1254 |#2| |#3| |#4|) $) NIL)) (-3023 (($ $) 41)) (-3588 (((-3 $ "failed") $) 27)) (-2989 (($ $) NIL (|has| (-1254 |#2| |#3| |#4|) (-455)))) (-3214 (($ $ (-1254 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|) $) NIL)) (-4346 (((-112) $) NIL)) (-2851 (((-772) $) 11)) (-3770 (((-112) $) NIL)) (-2836 (($ (-1254 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|)) 25)) (-2955 (((-320 |#2| |#3| |#4|) $) NIL)) (-3827 (($ (-1 (-320 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|)) $) NIL)) (-3841 (($ (-1 (-1254 |#2| |#3| |#4|) (-1254 |#2| |#3| |#4|)) $) NIL)) (-2759 (((-3 (-844 |#2|) "failed") $) 90)) (-2985 (($ $) NIL)) (-2996 (((-1254 |#2| |#3| |#4|) $) 20)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-2960 (((-112) $) NIL)) (-2971 (((-1254 |#2| |#3| |#4|) $) NIL)) (-2400 (((-3 $ "failed") $ (-1254 |#2| |#3| |#4|)) NIL (|has| (-1254 |#2| |#3| |#4|) (-559))) (((-3 $ "failed") $ $) NIL)) (-4373 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1254 |#2| |#3| |#4|)) (|:| |%expon| (-320 |#2| |#3| |#4|)) (|:| |%expTerms| (-645 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#2|)))))) (|:| |%type| (-1161))) "failed") $) 74)) (-3104 (((-320 |#2| |#3| |#4|) $) 17)) (-1849 (((-1254 |#2| |#3| |#4|) $) NIL (|has| (-1254 |#2| |#3| |#4|) (-455)))) (-4129 (((-863) $) NIL) (($ (-567)) NIL) (($ (-1254 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL (-2811 (|has| (-1254 |#2| |#3| |#4|) (-38 (-410 (-567)))) (|has| (-1254 |#2| |#3| |#4|) (-1040 (-410 (-567))))))) (-3601 (((-645 (-1254 |#2| |#3| |#4|)) $) NIL)) (-2558 (((-1254 |#2| |#3| |#4|) $ (-320 |#2| |#3| |#4|)) NIL)) (-2118 (((-3 $ "failed") $) NIL (|has| (-1254 |#2| |#3| |#4|) (-145)))) (-2746 (((-772)) NIL T CONST)) (-3658 (($ $ $ (-772)) NIL (|has| (-1254 |#2| |#3| |#4|) (-172)))) (-3357 (((-112) $ $) NIL)) (-3731 (((-112) $ $) NIL)) (-1733 (($) NIL T CONST)) (-1744 (($) NIL T CONST)) (-2946 (((-112) $ $) NIL)) (-3069 (($ $ (-1254 |#2| |#3| |#4|)) NIL (|has| (-1254 |#2| |#3| |#4|) (-365)))) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-1254 |#2| |#3| |#4|)) NIL) (($ (-1254 |#2| |#3| |#4|) $) NIL) (($ (-410 (-567)) $) NIL (|has| (-1254 |#2| |#3| |#4|) (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| (-1254 |#2| |#3| |#4|) (-38 (-410 (-567)))))))
+(((-1255 |#1| |#2| |#3| |#4|) (-13 (-327 (-1254 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|)) (-559) (-10 -8 (-15 -2759 ((-3 (-844 |#2|) "failed") $)) (-15 -4373 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1254 |#2| |#3| |#4|)) (|:| |%expon| (-320 |#2| |#3| |#4|)) (|:| |%expTerms| (-645 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#2|)))))) (|:| |%type| (-1161))) "failed") $)))) (-13 (-1040 (-567)) (-640 (-567)) (-455)) (-13 (-27) (-1204) (-433 |#1|)) (-1179) |#2|) (T -1255))
+((-2759 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1040 (-567)) (-640 (-567)) (-455))) (-5 *2 (-844 *4)) (-5 *1 (-1255 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1204) (-433 *3))) (-14 *5 (-1179)) (-14 *6 *4))) (-4373 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1040 (-567)) (-640 (-567)) (-455))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1254 *4 *5 *6)) (|:| |%expon| (-320 *4 *5 *6)) (|:| |%expTerms| (-645 (-2 (|:| |k| (-410 (-567))) (|:| |c| *4)))))) (|:| |%type| (-1161)))) (-5 *1 (-1255 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1204) (-433 *3))) (-14 *5 (-1179)) (-14 *6 *4))))
+(-13 (-327 (-1254 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|)) (-559) (-10 -8 (-15 -2759 ((-3 (-844 |#2|) "failed") $)) (-15 -4373 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1254 |#2| |#3| |#4|)) (|:| |%expon| (-320 |#2| |#3| |#4|)) (|:| |%expTerms| (-645 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#2|)))))) (|:| |%type| (-1161))) "failed") $))))
+((-3812 ((|#2| $) 34)) (-4003 ((|#2| $) 18)) (-4284 (($ $) 52)) (-3288 (($ $ (-567)) 85)) (-1563 (((-112) $ (-772)) 46)) (-4392 ((|#2| $ |#2|) 82)) (-4105 ((|#2| $ |#2|) 78)) (-4285 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 71) (($ $ "rest" $) 75) ((|#2| $ "last" |#2|) 73)) (-2831 (($ $ (-645 $)) 81)) (-3990 ((|#2| $) 17)) (-2430 (($ $) NIL) (($ $ (-772)) 59)) (-2070 (((-645 $) $) 31)) (-1520 (((-112) $ $) 69)) (-4093 (((-112) $ (-772)) 45)) (-1986 (((-112) $ (-772)) 43)) (-1323 (((-112) $) 33)) (-3266 ((|#2| $) 25) (($ $ (-772)) 64)) (-1801 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-3771 (((-112) $) 23)) (-3688 (($ $) 55)) (-4044 (($ $) 86)) (-3359 (((-772) $) 58)) (-3640 (($ $) 57)) (-2276 (($ $ $) 77) (($ |#2| $) NIL)) (-3469 (((-645 $) $) 32)) (-2946 (((-112) $ $) 67)) (-2423 (((-772) $) 51)))
+(((-1256 |#1| |#2|) (-10 -8 (-15 -3288 (|#1| |#1| (-567))) (-15 -4285 (|#2| |#1| "last" |#2|)) (-15 -4105 (|#2| |#1| |#2|)) (-15 -4285 (|#1| |#1| "rest" |#1|)) (-15 -4285 (|#2| |#1| "first" |#2|)) (-15 -4044 (|#1| |#1|)) (-15 -3688 (|#1| |#1|)) (-15 -3359 ((-772) |#1|)) (-15 -3640 (|#1| |#1|)) (-15 -4003 (|#2| |#1|)) (-15 -3990 (|#2| |#1|)) (-15 -4284 (|#1| |#1|)) (-15 -3266 (|#1| |#1| (-772))) (-15 -1801 (|#2| |#1| "last")) (-15 -3266 (|#2| |#1|)) (-15 -2430 (|#1| |#1| (-772))) (-15 -1801 (|#1| |#1| "rest")) (-15 -2430 (|#1| |#1|)) (-15 -1801 (|#2| |#1| "first")) (-15 -2276 (|#1| |#2| |#1|)) (-15 -2276 (|#1| |#1| |#1|)) (-15 -4392 (|#2| |#1| |#2|)) (-15 -4285 (|#2| |#1| "value" |#2|)) (-15 -2831 (|#1| |#1| (-645 |#1|))) (-15 -1520 ((-112) |#1| |#1|)) (-15 -3771 ((-112) |#1|)) (-15 -1801 (|#2| |#1| "value")) (-15 -3812 (|#2| |#1|)) (-15 -1323 ((-112) |#1|)) (-15 -2070 ((-645 |#1|) |#1|)) (-15 -3469 ((-645 |#1|) |#1|)) (-15 -2946 ((-112) |#1| |#1|)) (-15 -2423 ((-772) |#1|)) (-15 -1563 ((-112) |#1| (-772))) (-15 -4093 ((-112) |#1| (-772))) (-15 -1986 ((-112) |#1| (-772)))) (-1257 |#2|) (-1219)) (T -1256))
+NIL
+(-10 -8 (-15 -3288 (|#1| |#1| (-567))) (-15 -4285 (|#2| |#1| "last" |#2|)) (-15 -4105 (|#2| |#1| |#2|)) (-15 -4285 (|#1| |#1| "rest" |#1|)) (-15 -4285 (|#2| |#1| "first" |#2|)) (-15 -4044 (|#1| |#1|)) (-15 -3688 (|#1| |#1|)) (-15 -3359 ((-772) |#1|)) (-15 -3640 (|#1| |#1|)) (-15 -4003 (|#2| |#1|)) (-15 -3990 (|#2| |#1|)) (-15 -4284 (|#1| |#1|)) (-15 -3266 (|#1| |#1| (-772))) (-15 -1801 (|#2| |#1| "last")) (-15 -3266 (|#2| |#1|)) (-15 -2430 (|#1| |#1| (-772))) (-15 -1801 (|#1| |#1| "rest")) (-15 -2430 (|#1| |#1|)) (-15 -1801 (|#2| |#1| "first")) (-15 -2276 (|#1| |#2| |#1|)) (-15 -2276 (|#1| |#1| |#1|)) (-15 -4392 (|#2| |#1| |#2|)) (-15 -4285 (|#2| |#1| "value" |#2|)) (-15 -2831 (|#1| |#1| (-645 |#1|))) (-15 -1520 ((-112) |#1| |#1|)) (-15 -3771 ((-112) |#1|)) (-15 -1801 (|#2| |#1| "value")) (-15 -3812 (|#2| |#1|)) (-15 -1323 ((-112) |#1|)) (-15 -2070 ((-645 |#1|) |#1|)) (-15 -3469 ((-645 |#1|) |#1|)) (-15 -2946 ((-112) |#1| |#1|)) (-15 -2423 ((-772) |#1|)) (-15 -1563 ((-112) |#1| (-772))) (-15 -4093 ((-112) |#1| (-772))) (-15 -1986 ((-112) |#1| (-772))))
+((-2412 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-3812 ((|#1| $) 49)) (-4003 ((|#1| $) 66)) (-4284 (($ $) 68)) (-3288 (($ $ (-567)) 53 (|has| $ (-6 -4423)))) (-1563 (((-112) $ (-772)) 8)) (-4392 ((|#1| $ |#1|) 40 (|has| $ (-6 -4423)))) (-4017 (($ $ $) 57 (|has| $ (-6 -4423)))) (-4105 ((|#1| $ |#1|) 55 (|has| $ (-6 -4423)))) (-2498 ((|#1| $ |#1|) 59 (|has| $ (-6 -4423)))) (-4285 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4423))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4423))) (($ $ "rest" $) 56 (|has| $ (-6 -4423))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4423)))) (-2831 (($ $ (-645 $)) 42 (|has| $ (-6 -4423)))) (-3990 ((|#1| $) 67)) (-3647 (($) 7 T CONST)) (-2430 (($ $) 74) (($ $ (-772)) 72)) (-2799 (((-645 |#1|) $) 31 (|has| $ (-6 -4422)))) (-2070 (((-645 $) $) 51)) (-1520 (((-112) $ $) 43 (|has| |#1| (-1102)))) (-4093 (((-112) $ (-772)) 9)) (-1942 (((-645 |#1|) $) 30 (|has| $ (-6 -4422)))) (-3237 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-3751 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#1| |#1|) $) 36)) (-1986 (((-112) $ (-772)) 10)) (-3793 (((-645 |#1|) $) 46)) (-1323 (((-112) $) 50)) (-2516 (((-1161) $) 22 (|has| |#1| (-1102)))) (-3266 ((|#1| $) 71) (($ $ (-772)) 69)) (-3437 (((-1122) $) 21 (|has| |#1| (-1102)))) (-2418 ((|#1| $) 77) (($ $ (-772)) 75)) (-4233 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3875 (((-112) $ $) 14)) (-3885 (((-112) $) 11)) (-2701 (($) 12)) (-1801 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70)) (-3162 (((-567) $ $) 45)) (-3771 (((-112) $) 47)) (-3688 (($ $) 63)) (-4044 (($ $) 60 (|has| $ (-6 -4423)))) (-3359 (((-772) $) 64)) (-3640 (($ $) 65)) (-3447 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4422))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-4309 (($ $) 13)) (-2294 (($ $ $) 62 (|has| $ (-6 -4423))) (($ $ |#1|) 61 (|has| $ (-6 -4423)))) (-2276 (($ $ $) 79) (($ |#1| $) 78)) (-4129 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-3469 (((-645 $) $) 52)) (-3854 (((-112) $ $) 44 (|has| |#1| (-1102)))) (-3357 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-3436 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4422)))) (-2946 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2423 (((-772) $) 6 (|has| $ (-6 -4422)))))
+(((-1257 |#1|) (-140) (-1219)) (T -1257))
+((-2276 (*1 *1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1219)))) (-2276 (*1 *1 *2 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1219)))) (-2418 (*1 *2 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1219)))) (-1801 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1257 *2)) (-4 *2 (-1219)))) (-2418 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1257 *3)) (-4 *3 (-1219)))) (-2430 (*1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1219)))) (-1801 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1257 *3)) (-4 *3 (-1219)))) (-2430 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1257 *3)) (-4 *3 (-1219)))) (-3266 (*1 *2 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1219)))) (-1801 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1257 *2)) (-4 *2 (-1219)))) (-3266 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1257 *3)) (-4 *3 (-1219)))) (-4284 (*1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1219)))) (-3990 (*1 *2 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1219)))) (-4003 (*1 *2 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1219)))) (-3640 (*1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1219)))) (-3359 (*1 *2 *1) (-12 (-4 *1 (-1257 *3)) (-4 *3 (-1219)) (-5 *2 (-772)))) (-3688 (*1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1219)))) (-2294 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4423)) (-4 *1 (-1257 *2)) (-4 *2 (-1219)))) (-2294 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4423)) (-4 *1 (-1257 *2)) (-4 *2 (-1219)))) (-4044 (*1 *1 *1) (-12 (|has| *1 (-6 -4423)) (-4 *1 (-1257 *2)) (-4 *2 (-1219)))) (-2498 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4423)) (-4 *1 (-1257 *2)) (-4 *2 (-1219)))) (-4285 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4423)) (-4 *1 (-1257 *2)) (-4 *2 (-1219)))) (-4017 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4423)) (-4 *1 (-1257 *2)) (-4 *2 (-1219)))) (-4285 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4423)) (-4 *1 (-1257 *3)) (-4 *3 (-1219)))) (-4105 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4423)) (-4 *1 (-1257 *2)) (-4 *2 (-1219)))) (-4285 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4423)) (-4 *1 (-1257 *2)) (-4 *2 (-1219)))) (-3288 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (|has| *1 (-6 -4423)) (-4 *1 (-1257 *3)) (-4 *3 (-1219)))))
+(-13 (-1012 |t#1|) (-10 -8 (-15 -2276 ($ $ $)) (-15 -2276 ($ |t#1| $)) (-15 -2418 (|t#1| $)) (-15 -1801 (|t#1| $ "first")) (-15 -2418 ($ $ (-772))) (-15 -2430 ($ $)) (-15 -1801 ($ $ "rest")) (-15 -2430 ($ $ (-772))) (-15 -3266 (|t#1| $)) (-15 -1801 (|t#1| $ "last")) (-15 -3266 ($ $ (-772))) (-15 -4284 ($ $)) (-15 -3990 (|t#1| $)) (-15 -4003 (|t#1| $)) (-15 -3640 ($ $)) (-15 -3359 ((-772) $)) (-15 -3688 ($ $)) (IF (|has| $ (-6 -4423)) (PROGN (-15 -2294 ($ $ $)) (-15 -2294 ($ $ |t#1|)) (-15 -4044 ($ $)) (-15 -2498 (|t#1| $ |t#1|)) (-15 -4285 (|t#1| $ "first" |t#1|)) (-15 -4017 ($ $ $)) (-15 -4285 ($ $ "rest" $)) (-15 -4105 (|t#1| $ |t#1|)) (-15 -4285 (|t#1| $ "last" |t#1|)) (-15 -3288 ($ $ (-567)))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2811 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-1012 |#1|) . T) ((-1102) |has| |#1| (-1102)) ((-1219) . T))
+((-3841 ((|#4| (-1 |#2| |#1|) |#3|) 17)))
+(((-1258 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3841 (|#4| (-1 |#2| |#1|) |#3|))) (-1051) (-1051) (-1260 |#1|) (-1260 |#2|)) (T -1258))
+((-3841 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1051)) (-4 *6 (-1051)) (-4 *2 (-1260 *6)) (-5 *1 (-1258 *5 *6 *4 *2)) (-4 *4 (-1260 *5)))))
+(-10 -7 (-15 -3841 (|#4| (-1 |#2| |#1|) |#3|)))
+((-3791 (((-112) $) 17)) (-3164 (($ $) 106)) (-3032 (($ $) 82)) (-3145 (($ $) 102)) (-3008 (($ $) 78)) (-3182 (($ $) 110)) (-3057 (($ $) 86)) (-3072 (($ $) 76)) (-3955 (($ $) 74)) (-3192 (($ $) 112)) (-3071 (($ $) 88)) (-3173 (($ $) 108)) (-3043 (($ $) 84)) (-3155 (($ $) 104)) (-3021 (($ $) 80)) (-4129 (((-863) $) 62) (($ (-567)) NIL) (($ (-410 (-567))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-3217 (($ $) 118)) (-3103 (($ $) 94)) (-3201 (($ $) 114)) (-3083 (($ $) 90)) (-3238 (($ $) 122)) (-3126 (($ $) 98)) (-3805 (($ $) 124)) (-3138 (($ $) 100)) (-3228 (($ $) 120)) (-3115 (($ $) 96)) (-3208 (($ $) 116)) (-3093 (($ $) 92)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ |#2|) 66) (($ $ $) 69) (($ $ (-410 (-567))) 72)))
+(((-1259 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-410 (-567)))) (-15 -3032 (|#1| |#1|)) (-15 -3008 (|#1| |#1|)) (-15 -3057 (|#1| |#1|)) (-15 -3071 (|#1| |#1|)) (-15 -3043 (|#1| |#1|)) (-15 -3021 (|#1| |#1|)) (-15 -3093 (|#1| |#1|)) (-15 -3115 (|#1| |#1|)) (-15 -3138 (|#1| |#1|)) (-15 -3126 (|#1| |#1|)) (-15 -3083 (|#1| |#1|)) (-15 -3103 (|#1| |#1|)) (-15 -3155 (|#1| |#1|)) (-15 -3173 (|#1| |#1|)) (-15 -3192 (|#1| |#1|)) (-15 -3182 (|#1| |#1|)) (-15 -3145 (|#1| |#1|)) (-15 -3164 (|#1| |#1|)) (-15 -3208 (|#1| |#1|)) (-15 -3228 (|#1| |#1|)) (-15 -3805 (|#1| |#1|)) (-15 -3238 (|#1| |#1|)) (-15 -3201 (|#1| |#1|)) (-15 -3217 (|#1| |#1|)) (-15 -3072 (|#1| |#1|)) (-15 -3955 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -4129 (|#1| |#2|)) (-15 -4129 (|#1| |#1|)) (-15 -4129 (|#1| (-410 (-567)))) (-15 -4129 (|#1| (-567))) (-15 ** (|#1| |#1| (-772))) (-15 ** (|#1| |#1| (-923))) (-15 -3791 ((-112) |#1|)) (-15 -4129 ((-863) |#1|))) (-1260 |#2|) (-1051)) (T -1259))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-410 (-567)))) (-15 -3032 (|#1| |#1|)) (-15 -3008 (|#1| |#1|)) (-15 -3057 (|#1| |#1|)) (-15 -3071 (|#1| |#1|)) (-15 -3043 (|#1| |#1|)) (-15 -3021 (|#1| |#1|)) (-15 -3093 (|#1| |#1|)) (-15 -3115 (|#1| |#1|)) (-15 -3138 (|#1| |#1|)) (-15 -3126 (|#1| |#1|)) (-15 -3083 (|#1| |#1|)) (-15 -3103 (|#1| |#1|)) (-15 -3155 (|#1| |#1|)) (-15 -3173 (|#1| |#1|)) (-15 -3192 (|#1| |#1|)) (-15 -3182 (|#1| |#1|)) (-15 -3145 (|#1| |#1|)) (-15 -3164 (|#1| |#1|)) (-15 -3208 (|#1| |#1|)) (-15 -3228 (|#1| |#1|)) (-15 -3805 (|#1| |#1|)) (-15 -3238 (|#1| |#1|)) (-15 -3201 (|#1| |#1|)) (-15 -3217 (|#1| |#1|)) (-15 -3072 (|#1| |#1|)) (-15 -3955 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -4129 (|#1| |#2|)) (-15 -4129 (|#1| |#1|)) (-15 -4129 (|#1| (-410 (-567)))) (-15 -4129 (|#1| (-567))) (-15 ** (|#1| |#1| (-772))) (-15 ** (|#1| |#1| (-923))) (-15 -3791 ((-112) |#1|)) (-15 -4129 ((-863) |#1|)))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-2859 (((-645 (-1084)) $) 86)) (-3653 (((-1179) $) 115)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) 63 (|has| |#1| (-559)))) (-4287 (($ $) 64 (|has| |#1| (-559)))) (-2286 (((-112) $) 66 (|has| |#1| (-559)))) (-3748 (($ $ (-772)) 110) (($ $ (-772) (-772)) 109)) (-3006 (((-1159 (-2 (|:| |k| (-772)) (|:| |c| |#1|))) $) 117)) (-3164 (($ $) 147 (|has| |#1| (-38 (-410 (-567)))))) (-3032 (($ $) 130 (|has| |#1| (-38 (-410 (-567)))))) (-2376 (((-3 $ "failed") $ $) 20)) (-2728 (($ $) 129 (|has| |#1| (-38 (-410 (-567)))))) (-3145 (($ $) 146 (|has| |#1| (-38 (-410 (-567)))))) (-3008 (($ $) 131 (|has| |#1| (-38 (-410 (-567)))))) (-1317 (($ (-1159 (-2 (|:| |k| (-772)) (|:| |c| |#1|)))) 167) (($ (-1159 |#1|)) 165)) (-3182 (($ $) 145 (|has| |#1| (-38 (-410 (-567)))))) (-3057 (($ $) 132 (|has| |#1| (-38 (-410 (-567)))))) (-3647 (($) 18 T CONST)) (-3023 (($ $) 72)) (-3588 (((-3 $ "failed") $) 37)) (-4232 (($ $) 164)) (-3736 (((-954 |#1|) $ (-772)) 162) (((-954 |#1|) $ (-772) (-772)) 161)) (-3086 (((-112) $) 85)) (-1484 (($) 157 (|has| |#1| (-38 (-410 (-567)))))) (-3362 (((-772) $) 112) (((-772) $ (-772)) 111)) (-4346 (((-112) $) 35)) (-3698 (($ $ (-567)) 128 (|has| |#1| (-38 (-410 (-567)))))) (-1343 (($ $ (-923)) 113)) (-3406 (($ (-1 |#1| (-567)) $) 163)) (-3770 (((-112) $) 74)) (-2836 (($ |#1| (-772)) 73) (($ $ (-1084) (-772)) 88) (($ $ (-645 (-1084)) (-645 (-772))) 87)) (-3841 (($ (-1 |#1| |#1|) $) 75)) (-3072 (($ $) 154 (|has| |#1| (-38 (-410 (-567)))))) (-2985 (($ $) 77)) (-2996 ((|#1| $) 78)) (-2516 (((-1161) $) 10)) (-4083 (($ $) 159 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1179)) 158 (-2811 (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-961)) (|has| |#1| (-1204)) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-15 -2859 ((-645 (-1179)) |#1|))) (|has| |#1| (-15 -4083 (|#1| |#1| (-1179)))) (|has| |#1| (-38 (-410 (-567)))))))) (-3437 (((-1122) $) 11)) (-1874 (($ $ (-772)) 107)) (-2400 (((-3 $ "failed") $ $) 62 (|has| |#1| (-559)))) (-3955 (($ $) 155 (|has| |#1| (-38 (-410 (-567)))))) (-2642 (((-1159 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-772)))))) (-1801 ((|#1| $ (-772)) 116) (($ $ $) 93 (|has| (-772) (-1114)))) (-1616 (($ $ (-645 (-1179)) (-645 (-772))) 101 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-772) |#1|))))) (($ $ (-1179) (-772)) 100 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-772) |#1|))))) (($ $ (-645 (-1179))) 99 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-772) |#1|))))) (($ $ (-1179)) 98 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-772) |#1|))))) (($ $ (-772)) 96 (|has| |#1| (-15 * (|#1| (-772) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-772) |#1|))))) (-3104 (((-772) $) 76)) (-3192 (($ $) 144 (|has| |#1| (-38 (-410 (-567)))))) (-3071 (($ $) 133 (|has| |#1| (-38 (-410 (-567)))))) (-3173 (($ $) 143 (|has| |#1| (-38 (-410 (-567)))))) (-3043 (($ $) 134 (|has| |#1| (-38 (-410 (-567)))))) (-3155 (($ $) 142 (|has| |#1| (-38 (-410 (-567)))))) (-3021 (($ $) 135 (|has| |#1| (-38 (-410 (-567)))))) (-1834 (($ $) 84)) (-4129 (((-863) $) 12) (($ (-567)) 33) (($ (-410 (-567))) 69 (|has| |#1| (-38 (-410 (-567))))) (($ $) 61 (|has| |#1| (-559))) (($ |#1|) 59 (|has| |#1| (-172)))) (-3601 (((-1159 |#1|) $) 166)) (-2558 ((|#1| $ (-772)) 71)) (-2118 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-2746 (((-772)) 32 T CONST)) (-2185 ((|#1| $) 114)) (-3357 (((-112) $ $) 9)) (-3217 (($ $) 153 (|has| |#1| (-38 (-410 (-567)))))) (-3103 (($ $) 141 (|has| |#1| (-38 (-410 (-567)))))) (-3731 (((-112) $ $) 65 (|has| |#1| (-559)))) (-3201 (($ $) 152 (|has| |#1| (-38 (-410 (-567)))))) (-3083 (($ $) 140 (|has| |#1| (-38 (-410 (-567)))))) (-3238 (($ $) 151 (|has| |#1| (-38 (-410 (-567)))))) (-3126 (($ $) 139 (|has| |#1| (-38 (-410 (-567)))))) (-3058 ((|#1| $ (-772)) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-772)))) (|has| |#1| (-15 -4129 (|#1| (-1179))))))) (-3805 (($ $) 150 (|has| |#1| (-38 (-410 (-567)))))) (-3138 (($ $) 138 (|has| |#1| (-38 (-410 (-567)))))) (-3228 (($ $) 149 (|has| |#1| (-38 (-410 (-567)))))) (-3115 (($ $) 137 (|has| |#1| (-38 (-410 (-567)))))) (-3208 (($ $) 148 (|has| |#1| (-38 (-410 (-567)))))) (-3093 (($ $) 136 (|has| |#1| (-38 (-410 (-567)))))) (-1733 (($) 19 T CONST)) (-1744 (($) 34 T CONST)) (-2647 (($ $ (-645 (-1179)) (-645 (-772))) 105 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-772) |#1|))))) (($ $ (-1179) (-772)) 104 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-772) |#1|))))) (($ $ (-645 (-1179))) 103 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-772) |#1|))))) (($ $ (-1179)) 102 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-772) |#1|))))) (($ $ (-772)) 97 (|has| |#1| (-15 * (|#1| (-772) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-772) |#1|))))) (-2946 (((-112) $ $) 6)) (-3069 (($ $ |#1|) 70 (|has| |#1| (-365)))) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ |#1|) 160 (|has| |#1| (-365))) (($ $ $) 156 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 127 (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-410 (-567)) $) 68 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 67 (|has| |#1| (-38 (-410 (-567)))))))
+(((-1260 |#1|) (-140) (-1051)) (T -1260))
+((-1317 (*1 *1 *2) (-12 (-5 *2 (-1159 (-2 (|:| |k| (-772)) (|:| |c| *3)))) (-4 *3 (-1051)) (-4 *1 (-1260 *3)))) (-3601 (*1 *2 *1) (-12 (-4 *1 (-1260 *3)) (-4 *3 (-1051)) (-5 *2 (-1159 *3)))) (-1317 (*1 *1 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-4 *1 (-1260 *3)))) (-4232 (*1 *1 *1) (-12 (-4 *1 (-1260 *2)) (-4 *2 (-1051)))) (-3406 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-567))) (-4 *1 (-1260 *3)) (-4 *3 (-1051)))) (-3736 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-4 *1 (-1260 *4)) (-4 *4 (-1051)) (-5 *2 (-954 *4)))) (-3736 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-772)) (-4 *1 (-1260 *4)) (-4 *4 (-1051)) (-5 *2 (-954 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1260 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))) (-4083 (*1 *1 *1) (-12 (-4 *1 (-1260 *2)) (-4 *2 (-1051)) (-4 *2 (-38 (-410 (-567)))))) (-4083 (*1 *1 *1 *2) (-2811 (-12 (-5 *2 (-1179)) (-4 *1 (-1260 *3)) (-4 *3 (-1051)) (-12 (-4 *3 (-29 (-567))) (-4 *3 (-961)) (-4 *3 (-1204)) (-4 *3 (-38 (-410 (-567)))))) (-12 (-5 *2 (-1179)) (-4 *1 (-1260 *3)) (-4 *3 (-1051)) (-12 (|has| *3 (-15 -2859 ((-645 *2) *3))) (|has| *3 (-15 -4083 (*3 *3 *2))) (-4 *3 (-38 (-410 (-567)))))))))
+(-13 (-1247 |t#1| (-772)) (-10 -8 (-15 -1317 ($ (-1159 (-2 (|:| |k| (-772)) (|:| |c| |t#1|))))) (-15 -3601 ((-1159 |t#1|) $)) (-15 -1317 ($ (-1159 |t#1|))) (-15 -4232 ($ $)) (-15 -3406 ($ (-1 |t#1| (-567)) $)) (-15 -3736 ((-954 |t#1|) $ (-772))) (-15 -3736 ((-954 |t#1|) $ (-772) (-772))) (IF (|has| |t#1| (-365)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-410 (-567)))) (PROGN (-15 -4083 ($ $)) (IF (|has| |t#1| (-15 -4083 (|t#1| |t#1| (-1179)))) (IF (|has| |t#1| (-15 -2859 ((-645 (-1179)) |t#1|))) (-15 -4083 ($ $ (-1179))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1204)) (IF (|has| |t#1| (-961)) (IF (|has| |t#1| (-29 (-567))) (-15 -4083 ($ $ (-1179))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1004)) (-6 (-1204))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-772)) . T) ((-25) . T) ((-38 #1=(-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-559)) ((-35) |has| |#1| (-38 (-410 (-567)))) ((-95) |has| |#1| (-38 (-410 (-567)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-410 (-567)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2811 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #1#) |has| |#1| (-38 (-410 (-567)))) ((-617 (-567)) . T) ((-617 |#1|) |has| |#1| (-172)) ((-617 $) |has| |#1| (-559)) ((-614 (-863)) . T) ((-172) -2811 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-772) |#1|))) ((-285) |has| |#1| (-38 (-410 (-567)))) ((-287 $ $) |has| (-772) (-1114)) ((-291) |has| |#1| (-559)) ((-496) |has| |#1| (-38 (-410 (-567)))) ((-559) |has| |#1| (-559)) ((-647 #1#) |has| |#1| (-38 (-410 (-567)))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #1#) |has| |#1| (-38 (-410 (-567)))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #1#) |has| |#1| (-38 (-410 (-567)))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) |has| |#1| (-559)) ((-718 #1#) |has| |#1| (-38 (-410 (-567)))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) |has| |#1| (-559)) ((-727) . T) ((-902 (-1179)) -12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-902 (-1179)))) ((-975 |#1| #0# (-1084)) . T) ((-1004) |has| |#1| (-38 (-410 (-567)))) ((-1053 #1#) |has| |#1| (-38 (-410 (-567)))) ((-1053 |#1|) . T) ((-1053 $) -2811 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-1058 #1#) |has| |#1| (-38 (-410 (-567)))) ((-1058 |#1|) . T) ((-1058 $) -2811 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1204) |has| |#1| (-38 (-410 (-567)))) ((-1207) |has| |#1| (-38 (-410 (-567)))) ((-1247 |#1| #0#) . T))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-2859 (((-645 (-1084)) $) NIL)) (-3653 (((-1179) $) 93)) (-1758 (((-1242 |#2| |#1|) $ (-772)) 74)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-4287 (($ $) NIL (|has| |#1| (-559)))) (-2286 (((-112) $) 145 (|has| |#1| (-559)))) (-3748 (($ $ (-772)) 130) (($ $ (-772) (-772)) 133)) (-3006 (((-1159 (-2 (|:| |k| (-772)) (|:| |c| |#1|))) $) 43)) (-3164 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3032 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2376 (((-3 $ "failed") $ $) NIL)) (-2728 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3145 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3008 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1317 (($ (-1159 (-2 (|:| |k| (-772)) (|:| |c| |#1|)))) 53) (($ (-1159 |#1|)) NIL)) (-3182 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3057 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3647 (($) NIL T CONST)) (-4008 (($ $) 137)) (-3023 (($ $) NIL)) (-3588 (((-3 $ "failed") $) NIL)) (-4232 (($ $) 143)) (-3736 (((-954 |#1|) $ (-772)) 64) (((-954 |#1|) $ (-772) (-772)) 66)) (-3086 (((-112) $) NIL)) (-1484 (($) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3362 (((-772) $) NIL) (((-772) $ (-772)) NIL)) (-4346 (((-112) $) NIL)) (-4110 (($ $) 120)) (-3698 (($ $ (-567)) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2923 (($ (-567) (-567) $) 139)) (-1343 (($ $ (-923)) 142)) (-3406 (($ (-1 |#1| (-567)) $) 114)) (-3770 (((-112) $) NIL)) (-2836 (($ |#1| (-772)) 16) (($ $ (-1084) (-772)) NIL) (($ $ (-645 (-1084)) (-645 (-772))) NIL)) (-3841 (($ (-1 |#1| |#1|) $) 101)) (-3072 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2985 (($ $) NIL)) (-2996 ((|#1| $) NIL)) (-2516 (((-1161) $) NIL)) (-4203 (($ $) 118)) (-1401 (($ $) 116)) (-2664 (($ (-567) (-567) $) 141)) (-4083 (($ $) 153 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1179)) 159 (-2811 (-12 (|has| |#1| (-15 -4083 (|#1| |#1| (-1179)))) (|has| |#1| (-15 -2859 ((-645 (-1179)) |#1|))) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-961)) (|has| |#1| (-1204))))) (($ $ (-1265 |#2|)) 154 (|has| |#1| (-38 (-410 (-567)))))) (-3437 (((-1122) $) NIL)) (-3431 (($ $ (-567) (-567)) 124)) (-1874 (($ $ (-772)) 126)) (-2400 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-3955 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3433 (($ $) 122)) (-2642 (((-1159 |#1|) $ |#1|) 103 (|has| |#1| (-15 ** (|#1| |#1| (-772)))))) (-1801 ((|#1| $ (-772)) 98) (($ $ $) 135 (|has| (-772) (-1114)))) (-1616 (($ $ (-645 (-1179)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-1179) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-645 (-1179))) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-1179)) 111 (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-772) |#1|)))) (($ $) 105 (|has| |#1| (-15 * (|#1| (-772) |#1|)))) (($ $ (-1265 |#2|)) 106)) (-3104 (((-772) $) NIL)) (-3192 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3071 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3173 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3043 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3155 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3021 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1834 (($ $) 128)) (-4129 (((-863) $) NIL) (($ (-567)) 26) (($ (-410 (-567))) 151 (|has| |#1| (-38 (-410 (-567))))) (($ $) NIL (|has| |#1| (-559))) (($ |#1|) 25 (|has| |#1| (-172))) (($ (-1242 |#2| |#1|)) 84) (($ (-1265 |#2|)) 22)) (-3601 (((-1159 |#1|) $) NIL)) (-2558 ((|#1| $ (-772)) 97)) (-2118 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2746 (((-772)) NIL T CONST)) (-2185 ((|#1| $) 94)) (-3357 (((-112) $ $) NIL)) (-3217 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3103 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3731 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3201 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3083 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3238 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3126 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3058 ((|#1| $ (-772)) 92 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-772)))) (|has| |#1| (-15 -4129 (|#1| (-1179))))))) (-3805 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3138 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3228 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3115 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3208 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3093 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1733 (($) 18 T CONST)) (-1744 (($) 13 T CONST)) (-2647 (($ $ (-645 (-1179)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-1179) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-645 (-1179))) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-1179)) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-772) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-772) |#1|))))) (-2946 (((-112) $ $) NIL)) (-3069 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3053 (($ $) NIL) (($ $ $) 110)) (-3041 (($ $ $) 20)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ |#1|) 148 (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 109) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))))
+(((-1261 |#1| |#2| |#3|) (-13 (-1260 |#1|) (-10 -8 (-15 -4129 ($ (-1242 |#2| |#1|))) (-15 -1758 ((-1242 |#2| |#1|) $ (-772))) (-15 -4129 ($ (-1265 |#2|))) (-15 -1616 ($ $ (-1265 |#2|))) (-15 -1401 ($ $)) (-15 -4203 ($ $)) (-15 -4110 ($ $)) (-15 -3433 ($ $)) (-15 -3431 ($ $ (-567) (-567))) (-15 -4008 ($ $)) (-15 -2923 ($ (-567) (-567) $)) (-15 -2664 ($ (-567) (-567) $)) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -4083 ($ $ (-1265 |#2|))) |%noBranch|))) (-1051) (-1179) |#1|) (T -1261))
+((-4129 (*1 *1 *2) (-12 (-5 *2 (-1242 *4 *3)) (-4 *3 (-1051)) (-14 *4 (-1179)) (-14 *5 *3) (-5 *1 (-1261 *3 *4 *5)))) (-1758 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1242 *5 *4)) (-5 *1 (-1261 *4 *5 *6)) (-4 *4 (-1051)) (-14 *5 (-1179)) (-14 *6 *4))) (-4129 (*1 *1 *2) (-12 (-5 *2 (-1265 *4)) (-14 *4 (-1179)) (-5 *1 (-1261 *3 *4 *5)) (-4 *3 (-1051)) (-14 *5 *3))) (-1616 (*1 *1 *1 *2) (-12 (-5 *2 (-1265 *4)) (-14 *4 (-1179)) (-5 *1 (-1261 *3 *4 *5)) (-4 *3 (-1051)) (-14 *5 *3))) (-1401 (*1 *1 *1) (-12 (-5 *1 (-1261 *2 *3 *4)) (-4 *2 (-1051)) (-14 *3 (-1179)) (-14 *4 *2))) (-4203 (*1 *1 *1) (-12 (-5 *1 (-1261 *2 *3 *4)) (-4 *2 (-1051)) (-14 *3 (-1179)) (-14 *4 *2))) (-4110 (*1 *1 *1) (-12 (-5 *1 (-1261 *2 *3 *4)) (-4 *2 (-1051)) (-14 *3 (-1179)) (-14 *4 *2))) (-3433 (*1 *1 *1) (-12 (-5 *1 (-1261 *2 *3 *4)) (-4 *2 (-1051)) (-14 *3 (-1179)) (-14 *4 *2))) (-3431 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1261 *3 *4 *5)) (-4 *3 (-1051)) (-14 *4 (-1179)) (-14 *5 *3))) (-4008 (*1 *1 *1) (-12 (-5 *1 (-1261 *2 *3 *4)) (-4 *2 (-1051)) (-14 *3 (-1179)) (-14 *4 *2))) (-2923 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-1261 *3 *4 *5)) (-4 *3 (-1051)) (-14 *4 (-1179)) (-14 *5 *3))) (-2664 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-1261 *3 *4 *5)) (-4 *3 (-1051)) (-14 *4 (-1179)) (-14 *5 *3))) (-4083 (*1 *1 *1 *2) (-12 (-5 *2 (-1265 *4)) (-14 *4 (-1179)) (-5 *1 (-1261 *3 *4 *5)) (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)) (-14 *5 *3))))
+(-13 (-1260 |#1|) (-10 -8 (-15 -4129 ($ (-1242 |#2| |#1|))) (-15 -1758 ((-1242 |#2| |#1|) $ (-772))) (-15 -4129 ($ (-1265 |#2|))) (-15 -1616 ($ $ (-1265 |#2|))) (-15 -1401 ($ $)) (-15 -4203 ($ $)) (-15 -4110 ($ $)) (-15 -3433 ($ $)) (-15 -3431 ($ $ (-567) (-567))) (-15 -4008 ($ $)) (-15 -2923 ($ (-567) (-567) $)) (-15 -2664 ($ (-567) (-567) $)) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -4083 ($ $ (-1265 |#2|))) |%noBranch|)))
+((-1378 (((-1 (-1159 |#1|) (-645 (-1159 |#1|))) (-1 |#2| (-645 |#2|))) 24)) (-1782 (((-1 (-1159 |#1|) (-1159 |#1|) (-1159 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-2541 (((-1 (-1159 |#1|) (-1159 |#1|)) (-1 |#2| |#2|)) 13)) (-1777 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-3920 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-3396 ((|#2| (-1 |#2| (-645 |#2|)) (-645 |#1|)) 60)) (-2041 (((-645 |#2|) (-645 |#1|) (-645 (-1 |#2| (-645 |#2|)))) 66)) (-1765 ((|#2| |#2| |#2|) 43)))
+(((-1262 |#1| |#2|) (-10 -7 (-15 -2541 ((-1 (-1159 |#1|) (-1159 |#1|)) (-1 |#2| |#2|))) (-15 -1782 ((-1 (-1159 |#1|) (-1159 |#1|) (-1159 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -1378 ((-1 (-1159 |#1|) (-645 (-1159 |#1|))) (-1 |#2| (-645 |#2|)))) (-15 -1765 (|#2| |#2| |#2|)) (-15 -3920 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -1777 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3396 (|#2| (-1 |#2| (-645 |#2|)) (-645 |#1|))) (-15 -2041 ((-645 |#2|) (-645 |#1|) (-645 (-1 |#2| (-645 |#2|)))))) (-38 (-410 (-567))) (-1260 |#1|)) (T -1262))
+((-2041 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *5)) (-5 *4 (-645 (-1 *6 (-645 *6)))) (-4 *5 (-38 (-410 (-567)))) (-4 *6 (-1260 *5)) (-5 *2 (-645 *6)) (-5 *1 (-1262 *5 *6)))) (-3396 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-645 *2))) (-5 *4 (-645 *5)) (-4 *5 (-38 (-410 (-567)))) (-4 *2 (-1260 *5)) (-5 *1 (-1262 *5 *2)))) (-1777 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1260 *4)) (-5 *1 (-1262 *4 *2)) (-4 *4 (-38 (-410 (-567)))))) (-3920 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1260 *4)) (-5 *1 (-1262 *4 *2)) (-4 *4 (-38 (-410 (-567)))))) (-1765 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1262 *3 *2)) (-4 *2 (-1260 *3)))) (-1378 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-645 *5))) (-4 *5 (-1260 *4)) (-4 *4 (-38 (-410 (-567)))) (-5 *2 (-1 (-1159 *4) (-645 (-1159 *4)))) (-5 *1 (-1262 *4 *5)))) (-1782 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1260 *4)) (-4 *4 (-38 (-410 (-567)))) (-5 *2 (-1 (-1159 *4) (-1159 *4) (-1159 *4))) (-5 *1 (-1262 *4 *5)))) (-2541 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1260 *4)) (-4 *4 (-38 (-410 (-567)))) (-5 *2 (-1 (-1159 *4) (-1159 *4))) (-5 *1 (-1262 *4 *5)))))
+(-10 -7 (-15 -2541 ((-1 (-1159 |#1|) (-1159 |#1|)) (-1 |#2| |#2|))) (-15 -1782 ((-1 (-1159 |#1|) (-1159 |#1|) (-1159 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -1378 ((-1 (-1159 |#1|) (-645 (-1159 |#1|))) (-1 |#2| (-645 |#2|)))) (-15 -1765 (|#2| |#2| |#2|)) (-15 -3920 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -1777 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3396 (|#2| (-1 |#2| (-645 |#2|)) (-645 |#1|))) (-15 -2041 ((-645 |#2|) (-645 |#1|) (-645 (-1 |#2| (-645 |#2|))))))
+((-1847 ((|#2| |#4| (-772)) 34)) (-3608 ((|#4| |#2|) 29)) (-1578 ((|#4| (-410 |#2|)) 53 (|has| |#1| (-559)))) (-3890 (((-1 |#4| (-645 |#4|)) |#3|) 46)))
+(((-1263 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3608 (|#4| |#2|)) (-15 -1847 (|#2| |#4| (-772))) (-15 -3890 ((-1 |#4| (-645 |#4|)) |#3|)) (IF (|has| |#1| (-559)) (-15 -1578 (|#4| (-410 |#2|))) |%noBranch|)) (-1051) (-1245 |#1|) (-657 |#2|) (-1260 |#1|)) (T -1263))
+((-1578 (*1 *2 *3) (-12 (-5 *3 (-410 *5)) (-4 *5 (-1245 *4)) (-4 *4 (-559)) (-4 *4 (-1051)) (-4 *2 (-1260 *4)) (-5 *1 (-1263 *4 *5 *6 *2)) (-4 *6 (-657 *5)))) (-3890 (*1 *2 *3) (-12 (-4 *4 (-1051)) (-4 *5 (-1245 *4)) (-5 *2 (-1 *6 (-645 *6))) (-5 *1 (-1263 *4 *5 *3 *6)) (-4 *3 (-657 *5)) (-4 *6 (-1260 *4)))) (-1847 (*1 *2 *3 *4) (-12 (-5 *4 (-772)) (-4 *5 (-1051)) (-4 *2 (-1245 *5)) (-5 *1 (-1263 *5 *2 *6 *3)) (-4 *6 (-657 *2)) (-4 *3 (-1260 *5)))) (-3608 (*1 *2 *3) (-12 (-4 *4 (-1051)) (-4 *3 (-1245 *4)) (-4 *2 (-1260 *4)) (-5 *1 (-1263 *4 *3 *5 *2)) (-4 *5 (-657 *3)))))
+(-10 -7 (-15 -3608 (|#4| |#2|)) (-15 -1847 (|#2| |#4| (-772))) (-15 -3890 ((-1 |#4| (-645 |#4|)) |#3|)) (IF (|has| |#1| (-559)) (-15 -1578 (|#4| (-410 |#2|))) |%noBranch|))
+NIL
+(((-1264) (-140)) (T -1264))
+NIL
+(-13 (-10 -7 (-6 -3018)))
+((-2412 (((-112) $ $) NIL)) (-3653 (((-1179)) 12)) (-2516 (((-1161) $) 18)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) 11) (((-1179) $) 8)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) 15)))
+(((-1265 |#1|) (-13 (-1102) (-614 (-1179)) (-10 -8 (-15 -4129 ((-1179) $)) (-15 -3653 ((-1179))))) (-1179)) (T -1265))
+((-4129 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1265 *3)) (-14 *3 *2))) (-3653 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1265 *3)) (-14 *3 *2))))
+(-13 (-1102) (-614 (-1179)) (-10 -8 (-15 -4129 ((-1179) $)) (-15 -3653 ((-1179)))))
+((-1318 (($ (-772)) 19)) (-1562 (((-690 |#2|) $ $) 41)) (-3390 ((|#2| $) 51)) (-2334 ((|#2| $) 50)) (-3917 ((|#2| $ $) 36)) (-1759 (($ $ $) 47)) (-3053 (($ $) 23) (($ $ $) 29)) (-3041 (($ $ $) 15)) (* (($ (-567) $) 26) (($ |#2| $) 32) (($ $ |#2|) 31)))
+(((-1266 |#1| |#2|) (-10 -8 (-15 -3390 (|#2| |#1|)) (-15 -2334 (|#2| |#1|)) (-15 -1759 (|#1| |#1| |#1|)) (-15 -1562 ((-690 |#2|) |#1| |#1|)) (-15 -3917 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 -3053 (|#1| |#1| |#1|)) (-15 -3053 (|#1| |#1|)) (-15 -1318 (|#1| (-772))) (-15 -3041 (|#1| |#1| |#1|))) (-1267 |#2|) (-1219)) (T -1266))
+NIL
+(-10 -8 (-15 -3390 (|#2| |#1|)) (-15 -2334 (|#2| |#1|)) (-15 -1759 (|#1| |#1| |#1|)) (-15 -1562 ((-690 |#2|) |#1| |#1|)) (-15 -3917 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 -3053 (|#1| |#1| |#1|)) (-15 -3053 (|#1| |#1|)) (-15 -1318 (|#1| (-772))) (-15 -3041 (|#1| |#1| |#1|)))
+((-2412 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-1318 (($ (-772)) 113 (|has| |#1| (-23)))) (-3843 (((-1274) $ (-567) (-567)) 41 (|has| $ (-6 -4423)))) (-3531 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-851)))) (-2676 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4423))) (($ $) 89 (-12 (|has| |#1| (-851)) (|has| $ (-6 -4423))))) (-1311 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-851)))) (-1563 (((-112) $ (-772)) 8)) (-4285 ((|#1| $ (-567) |#1|) 53 (|has| $ (-6 -4423))) ((|#1| $ (-1236 (-567)) |#1|) 59 (|has| $ (-6 -4423)))) (-3356 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4422)))) (-3647 (($) 7 T CONST)) (-1602 (($ $) 91 (|has| $ (-6 -4423)))) (-3592 (($ $) 101)) (-2453 (($ $) 79 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-3246 (($ |#1| $) 78 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4422)))) (-2494 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4422)))) (-3760 ((|#1| $ (-567) |#1|) 54 (|has| $ (-6 -4423)))) (-3703 ((|#1| $ (-567)) 52)) (-2578 (((-567) (-1 (-112) |#1|) $) 98) (((-567) |#1| $) 97 (|has| |#1| (-1102))) (((-567) |#1| $ (-567)) 96 (|has| |#1| (-1102)))) (-2799 (((-645 |#1|) $) 31 (|has| $ (-6 -4422)))) (-1562 (((-690 |#1|) $ $) 106 (|has| |#1| (-1051)))) (-2858 (($ (-772) |#1|) 70)) (-4093 (((-112) $ (-772)) 9)) (-3895 (((-567) $) 44 (|has| (-567) (-851)))) (-1365 (($ $ $) 88 (|has| |#1| (-851)))) (-2473 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-851)))) (-1942 (((-645 |#1|) $) 30 (|has| $ (-6 -4422)))) (-3237 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-3255 (((-567) $) 45 (|has| (-567) (-851)))) (-3002 (($ $ $) 87 (|has| |#1| (-851)))) (-3751 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-3390 ((|#1| $) 103 (-12 (|has| |#1| (-1051)) (|has| |#1| (-1004))))) (-1986 (((-112) $ (-772)) 10)) (-2334 ((|#1| $) 104 (-12 (|has| |#1| (-1051)) (|has| |#1| (-1004))))) (-2516 (((-1161) $) 22 (|has| |#1| (-1102)))) (-2857 (($ |#1| $ (-567)) 61) (($ $ $ (-567)) 60)) (-4364 (((-645 (-567)) $) 47)) (-3188 (((-112) (-567) $) 48)) (-3437 (((-1122) $) 21 (|has| |#1| (-1102)))) (-2418 ((|#1| $) 43 (|has| (-567) (-851)))) (-3196 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-3823 (($ $ |#1|) 42 (|has| $ (-6 -4423)))) (-4233 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3875 (((-112) $ $) 14)) (-4058 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-2190 (((-645 |#1|) $) 49)) (-3885 (((-112) $) 11)) (-2701 (($) 12)) (-1801 ((|#1| $ (-567) |#1|) 51) ((|#1| $ (-567)) 50) (($ $ (-1236 (-567))) 64)) (-3917 ((|#1| $ $) 107 (|has| |#1| (-1051)))) (-1569 (($ $ (-567)) 63) (($ $ (-1236 (-567))) 62)) (-1759 (($ $ $) 105 (|has| |#1| (-1051)))) (-3447 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4422))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-1656 (($ $ $ (-567)) 92 (|has| $ (-6 -4423)))) (-4309 (($ $) 13)) (-3902 (((-539) $) 80 (|has| |#1| (-615 (-539))))) (-4145 (($ (-645 |#1|)) 71)) (-2276 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-645 $)) 66)) (-4129 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-3357 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-3436 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4422)))) (-3004 (((-112) $ $) 85 (|has| |#1| (-851)))) (-2980 (((-112) $ $) 84 (|has| |#1| (-851)))) (-2946 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2993 (((-112) $ $) 86 (|has| |#1| (-851)))) (-2968 (((-112) $ $) 83 (|has| |#1| (-851)))) (-3053 (($ $) 112 (|has| |#1| (-21))) (($ $ $) 111 (|has| |#1| (-21)))) (-3041 (($ $ $) 114 (|has| |#1| (-25)))) (* (($ (-567) $) 110 (|has| |#1| (-21))) (($ |#1| $) 109 (|has| |#1| (-727))) (($ $ |#1|) 108 (|has| |#1| (-727)))) (-2423 (((-772) $) 6 (|has| $ (-6 -4422)))))
+(((-1267 |#1|) (-140) (-1219)) (T -1267))
+((-3041 (*1 *1 *1 *1) (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1219)) (-4 *2 (-25)))) (-1318 (*1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1267 *3)) (-4 *3 (-23)) (-4 *3 (-1219)))) (-3053 (*1 *1 *1) (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1219)) (-4 *2 (-21)))) (-3053 (*1 *1 *1 *1) (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1219)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-567)) (-4 *1 (-1267 *3)) (-4 *3 (-1219)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1219)) (-4 *2 (-727)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1219)) (-4 *2 (-727)))) (-3917 (*1 *2 *1 *1) (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1219)) (-4 *2 (-1051)))) (-1562 (*1 *2 *1 *1) (-12 (-4 *1 (-1267 *3)) (-4 *3 (-1219)) (-4 *3 (-1051)) (-5 *2 (-690 *3)))) (-1759 (*1 *1 *1 *1) (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1219)) (-4 *2 (-1051)))) (-2334 (*1 *2 *1) (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1219)) (-4 *2 (-1004)) (-4 *2 (-1051)))) (-3390 (*1 *2 *1) (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1219)) (-4 *2 (-1004)) (-4 *2 (-1051)))))
+(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -3041 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -1318 ($ (-772))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -3053 ($ $)) (-15 -3053 ($ $ $)) (-15 * ($ (-567) $))) |%noBranch|) (IF (|has| |t#1| (-727)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1051)) (PROGN (-15 -3917 (|t#1| $ $)) (-15 -1562 ((-690 |t#1|) $ $)) (-15 -1759 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-1004)) (IF (|has| |t#1| (-1051)) (PROGN (-15 -2334 (|t#1| $)) (-15 -3390 (|t#1| $))) |%noBranch|) |%noBranch|)))
+(((-34) . T) ((-102) -2811 (|has| |#1| (-1102)) (|has| |#1| (-851))) ((-614 (-863)) -2811 (|has| |#1| (-1102)) (|has| |#1| (-851)) (|has| |#1| (-614 (-863)))) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-287 #0=(-567) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-375 |#1|) . T) ((-492 |#1|) . T) ((-605 #0# |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-652 |#1|) . T) ((-19 |#1|) . T) ((-851) |has| |#1| (-851)) ((-1102) -2811 (|has| |#1| (-1102)) (|has| |#1| (-851))) ((-1219) . T))
+((-3400 (((-1269 |#2|) (-1 |#2| |#1| |#2|) (-1269 |#1|) |#2|) 13)) (-2494 ((|#2| (-1 |#2| |#1| |#2|) (-1269 |#1|) |#2|) 15)) (-3841 (((-3 (-1269 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1269 |#1|)) 30) (((-1269 |#2|) (-1 |#2| |#1|) (-1269 |#1|)) 18)))
+(((-1268 |#1| |#2|) (-10 -7 (-15 -3400 ((-1269 |#2|) (-1 |#2| |#1| |#2|) (-1269 |#1|) |#2|)) (-15 -2494 (|#2| (-1 |#2| |#1| |#2|) (-1269 |#1|) |#2|)) (-15 -3841 ((-1269 |#2|) (-1 |#2| |#1|) (-1269 |#1|))) (-15 -3841 ((-3 (-1269 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1269 |#1|)))) (-1219) (-1219)) (T -1268))
+((-3841 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1269 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) (-5 *2 (-1269 *6)) (-5 *1 (-1268 *5 *6)))) (-3841 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1269 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) (-5 *2 (-1269 *6)) (-5 *1 (-1268 *5 *6)))) (-2494 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1269 *5)) (-4 *5 (-1219)) (-4 *2 (-1219)) (-5 *1 (-1268 *5 *2)))) (-3400 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1269 *6)) (-4 *6 (-1219)) (-4 *5 (-1219)) (-5 *2 (-1269 *5)) (-5 *1 (-1268 *6 *5)))))
+(-10 -7 (-15 -3400 ((-1269 |#2|) (-1 |#2| |#1| |#2|) (-1269 |#1|) |#2|)) (-15 -2494 (|#2| (-1 |#2| |#1| |#2|) (-1269 |#1|) |#2|)) (-15 -3841 ((-1269 |#2|) (-1 |#2| |#1|) (-1269 |#1|))) (-15 -3841 ((-3 (-1269 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1269 |#1|))))
+((-2412 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1318 (($ (-772)) NIL (|has| |#1| (-23)))) (-1603 (($ (-645 |#1|)) 11)) (-3843 (((-1274) $ (-567) (-567)) NIL (|has| $ (-6 -4423)))) (-3531 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-851)))) (-2676 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4423))) (($ $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-851))))) (-1311 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-851)))) (-1563 (((-112) $ (-772)) NIL)) (-4285 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4423))) ((|#1| $ (-1236 (-567)) |#1|) NIL (|has| $ (-6 -4423)))) (-3356 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-3647 (($) NIL T CONST)) (-1602 (($ $) NIL (|has| $ (-6 -4423)))) (-3592 (($ $) NIL)) (-2453 (($ $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3246 (($ |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2494 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4422)))) (-3760 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4423)))) (-3703 ((|#1| $ (-567)) NIL)) (-2578 (((-567) (-1 (-112) |#1|) $) NIL) (((-567) |#1| $) NIL (|has| |#1| (-1102))) (((-567) |#1| $ (-567)) NIL (|has| |#1| (-1102)))) (-2799 (((-645 |#1|) $) 15 (|has| $ (-6 -4422)))) (-1562 (((-690 |#1|) $ $) NIL (|has| |#1| (-1051)))) (-2858 (($ (-772) |#1|) NIL)) (-4093 (((-112) $ (-772)) NIL)) (-3895 (((-567) $) NIL (|has| (-567) (-851)))) (-1365 (($ $ $) NIL (|has| |#1| (-851)))) (-2473 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-851)))) (-1942 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-3237 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3255 (((-567) $) NIL (|has| (-567) (-851)))) (-3002 (($ $ $) NIL (|has| |#1| (-851)))) (-3751 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3390 ((|#1| $) NIL (-12 (|has| |#1| (-1004)) (|has| |#1| (-1051))))) (-1986 (((-112) $ (-772)) NIL)) (-2334 ((|#1| $) NIL (-12 (|has| |#1| (-1004)) (|has| |#1| (-1051))))) (-2516 (((-1161) $) NIL (|has| |#1| (-1102)))) (-2857 (($ |#1| $ (-567)) NIL) (($ $ $ (-567)) NIL)) (-4364 (((-645 (-567)) $) NIL)) (-3188 (((-112) (-567) $) NIL)) (-3437 (((-1122) $) NIL (|has| |#1| (-1102)))) (-2418 ((|#1| $) NIL (|has| (-567) (-851)))) (-3196 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3823 (($ $ |#1|) NIL (|has| $ (-6 -4423)))) (-4233 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-3875 (((-112) $ $) NIL)) (-4058 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-2190 (((-645 |#1|) $) NIL)) (-3885 (((-112) $) NIL)) (-2701 (($) NIL)) (-1801 ((|#1| $ (-567) |#1|) NIL) ((|#1| $ (-567)) NIL) (($ $ (-1236 (-567))) NIL)) (-3917 ((|#1| $ $) NIL (|has| |#1| (-1051)))) (-1569 (($ $ (-567)) NIL) (($ $ (-1236 (-567))) NIL)) (-1759 (($ $ $) NIL (|has| |#1| (-1051)))) (-3447 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-1656 (($ $ $ (-567)) NIL (|has| $ (-6 -4423)))) (-4309 (($ $) NIL)) (-3902 (((-539) $) 19 (|has| |#1| (-615 (-539))))) (-4145 (($ (-645 |#1|)) 10)) (-2276 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-645 $)) NIL)) (-4129 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-3357 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3436 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-3004 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2980 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2993 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2968 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3053 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3041 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-567) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-727))) (($ $ |#1|) NIL (|has| |#1| (-727)))) (-2423 (((-772) $) NIL (|has| $ (-6 -4422)))))
+(((-1269 |#1|) (-13 (-1267 |#1|) (-10 -8 (-15 -1603 ($ (-645 |#1|))))) (-1219)) (T -1269))
+((-1603 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1219)) (-5 *1 (-1269 *3)))))
+(-13 (-1267 |#1|) (-10 -8 (-15 -1603 ($ (-645 |#1|)))))
+((-2412 (((-112) $ $) NIL)) (-1339 (((-1161) $ (-1161)) 110) (((-1161) $ (-1161) (-1161)) 108) (((-1161) $ (-1161) (-645 (-1161))) 107)) (-1905 (($) 70)) (-3692 (((-1274) $ (-471) (-923)) 55)) (-1757 (((-1274) $ (-923) (-1161)) 92) (((-1274) $ (-923) (-875)) 93)) (-2572 (((-1274) $ (-923) (-381) (-381)) 58)) (-3134 (((-1274) $ (-1161)) 87)) (-4269 (((-1274) $ (-923) (-1161)) 97)) (-2604 (((-1274) $ (-923) (-381) (-381)) 59)) (-2415 (((-1274) $ (-923) (-923)) 56)) (-1316 (((-1274) $) 88)) (-2361 (((-1274) $ (-923) (-1161)) 96)) (-3743 (((-1274) $ (-471) (-923)) 41)) (-3941 (((-1274) $ (-923) (-1161)) 95)) (-3635 (((-645 (-264)) $) 29) (($ $ (-645 (-264))) 30)) (-3081 (((-1274) $ (-772) (-772)) 53)) (-2830 (($ $) 72) (($ (-471) (-645 (-264))) 73)) (-2516 (((-1161) $) NIL)) (-1809 (((-567) $) 48)) (-3437 (((-1122) $) NIL)) (-3491 (((-1269 (-3 (-471) "undefined")) $) 47)) (-3713 (((-1269 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -3941 (-567)) (|:| -2454 (-567)) (|:| |spline| (-567)) (|:| -2638 (-567)) (|:| |axesColor| (-875)) (|:| -1757 (-567)) (|:| |unitsColor| (-875)) (|:| |showing| (-567)))) $) 46)) (-1508 (((-1274) $ (-923) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-567) (-875) (-567) (-875) (-567)) 86)) (-3177 (((-645 (-945 (-225))) $) NIL)) (-1324 (((-471) $ (-923)) 43)) (-1840 (((-1274) $ (-772) (-772) (-923) (-923)) 51)) (-3620 (((-1274) $ (-1161)) 98)) (-2454 (((-1274) $ (-923) (-1161)) 94)) (-4129 (((-863) $) 105)) (-4000 (((-1274) $) 99)) (-3357 (((-112) $ $) NIL)) (-2638 (((-1274) $ (-923) (-1161)) 90) (((-1274) $ (-923) (-875)) 91)) (-2946 (((-112) $ $) NIL)))
+(((-1270) (-13 (-1102) (-10 -8 (-15 -3177 ((-645 (-945 (-225))) $)) (-15 -1905 ($)) (-15 -2830 ($ $)) (-15 -3635 ((-645 (-264)) $)) (-15 -3635 ($ $ (-645 (-264)))) (-15 -2830 ($ (-471) (-645 (-264)))) (-15 -1508 ((-1274) $ (-923) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-567) (-875) (-567) (-875) (-567))) (-15 -3713 ((-1269 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -3941 (-567)) (|:| -2454 (-567)) (|:| |spline| (-567)) (|:| -2638 (-567)) (|:| |axesColor| (-875)) (|:| -1757 (-567)) (|:| |unitsColor| (-875)) (|:| |showing| (-567)))) $)) (-15 -3491 ((-1269 (-3 (-471) "undefined")) $)) (-15 -3134 ((-1274) $ (-1161))) (-15 -3743 ((-1274) $ (-471) (-923))) (-15 -1324 ((-471) $ (-923))) (-15 -2638 ((-1274) $ (-923) (-1161))) (-15 -2638 ((-1274) $ (-923) (-875))) (-15 -1757 ((-1274) $ (-923) (-1161))) (-15 -1757 ((-1274) $ (-923) (-875))) (-15 -3941 ((-1274) $ (-923) (-1161))) (-15 -2361 ((-1274) $ (-923) (-1161))) (-15 -2454 ((-1274) $ (-923) (-1161))) (-15 -3620 ((-1274) $ (-1161))) (-15 -4000 ((-1274) $)) (-15 -1840 ((-1274) $ (-772) (-772) (-923) (-923))) (-15 -2604 ((-1274) $ (-923) (-381) (-381))) (-15 -2572 ((-1274) $ (-923) (-381) (-381))) (-15 -4269 ((-1274) $ (-923) (-1161))) (-15 -3081 ((-1274) $ (-772) (-772))) (-15 -3692 ((-1274) $ (-471) (-923))) (-15 -2415 ((-1274) $ (-923) (-923))) (-15 -1339 ((-1161) $ (-1161))) (-15 -1339 ((-1161) $ (-1161) (-1161))) (-15 -1339 ((-1161) $ (-1161) (-645 (-1161)))) (-15 -1316 ((-1274) $)) (-15 -1809 ((-567) $)) (-15 -4129 ((-863) $))))) (T -1270))
+((-4129 (*1 *2 *1) (-12 (-5 *2 (-863)) (-5 *1 (-1270)))) (-3177 (*1 *2 *1) (-12 (-5 *2 (-645 (-945 (-225)))) (-5 *1 (-1270)))) (-1905 (*1 *1) (-5 *1 (-1270))) (-2830 (*1 *1 *1) (-5 *1 (-1270))) (-3635 (*1 *2 *1) (-12 (-5 *2 (-645 (-264))) (-5 *1 (-1270)))) (-3635 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-264))) (-5 *1 (-1270)))) (-2830 (*1 *1 *2 *3) (-12 (-5 *2 (-471)) (-5 *3 (-645 (-264))) (-5 *1 (-1270)))) (-1508 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-923)) (-5 *4 (-225)) (-5 *5 (-567)) (-5 *6 (-875)) (-5 *2 (-1274)) (-5 *1 (-1270)))) (-3713 (*1 *2 *1) (-12 (-5 *2 (-1269 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -3941 (-567)) (|:| -2454 (-567)) (|:| |spline| (-567)) (|:| -2638 (-567)) (|:| |axesColor| (-875)) (|:| -1757 (-567)) (|:| |unitsColor| (-875)) (|:| |showing| (-567))))) (-5 *1 (-1270)))) (-3491 (*1 *2 *1) (-12 (-5 *2 (-1269 (-3 (-471) "undefined"))) (-5 *1 (-1270)))) (-3134 (*1 *2 *1 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1270)))) (-3743 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-471)) (-5 *4 (-923)) (-5 *2 (-1274)) (-5 *1 (-1270)))) (-1324 (*1 *2 *1 *3) (-12 (-5 *3 (-923)) (-5 *2 (-471)) (-5 *1 (-1270)))) (-2638 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-923)) (-5 *4 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1270)))) (-2638 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-923)) (-5 *4 (-875)) (-5 *2 (-1274)) (-5 *1 (-1270)))) (-1757 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-923)) (-5 *4 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1270)))) (-1757 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-923)) (-5 *4 (-875)) (-5 *2 (-1274)) (-5 *1 (-1270)))) (-3941 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-923)) (-5 *4 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1270)))) (-2361 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-923)) (-5 *4 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1270)))) (-2454 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-923)) (-5 *4 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1270)))) (-3620 (*1 *2 *1 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1270)))) (-4000 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-1270)))) (-1840 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-772)) (-5 *4 (-923)) (-5 *2 (-1274)) (-5 *1 (-1270)))) (-2604 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-923)) (-5 *4 (-381)) (-5 *2 (-1274)) (-5 *1 (-1270)))) (-2572 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-923)) (-5 *4 (-381)) (-5 *2 (-1274)) (-5 *1 (-1270)))) (-4269 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-923)) (-5 *4 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1270)))) (-3081 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1274)) (-5 *1 (-1270)))) (-3692 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-471)) (-5 *4 (-923)) (-5 *2 (-1274)) (-5 *1 (-1270)))) (-2415 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1274)) (-5 *1 (-1270)))) (-1339 (*1 *2 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-1270)))) (-1339 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-1270)))) (-1339 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-645 (-1161))) (-5 *2 (-1161)) (-5 *1 (-1270)))) (-1316 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-1270)))) (-1809 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-1270)))))
+(-13 (-1102) (-10 -8 (-15 -3177 ((-645 (-945 (-225))) $)) (-15 -1905 ($)) (-15 -2830 ($ $)) (-15 -3635 ((-645 (-264)) $)) (-15 -3635 ($ $ (-645 (-264)))) (-15 -2830 ($ (-471) (-645 (-264)))) (-15 -1508 ((-1274) $ (-923) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-567) (-875) (-567) (-875) (-567))) (-15 -3713 ((-1269 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -3941 (-567)) (|:| -2454 (-567)) (|:| |spline| (-567)) (|:| -2638 (-567)) (|:| |axesColor| (-875)) (|:| -1757 (-567)) (|:| |unitsColor| (-875)) (|:| |showing| (-567)))) $)) (-15 -3491 ((-1269 (-3 (-471) "undefined")) $)) (-15 -3134 ((-1274) $ (-1161))) (-15 -3743 ((-1274) $ (-471) (-923))) (-15 -1324 ((-471) $ (-923))) (-15 -2638 ((-1274) $ (-923) (-1161))) (-15 -2638 ((-1274) $ (-923) (-875))) (-15 -1757 ((-1274) $ (-923) (-1161))) (-15 -1757 ((-1274) $ (-923) (-875))) (-15 -3941 ((-1274) $ (-923) (-1161))) (-15 -2361 ((-1274) $ (-923) (-1161))) (-15 -2454 ((-1274) $ (-923) (-1161))) (-15 -3620 ((-1274) $ (-1161))) (-15 -4000 ((-1274) $)) (-15 -1840 ((-1274) $ (-772) (-772) (-923) (-923))) (-15 -2604 ((-1274) $ (-923) (-381) (-381))) (-15 -2572 ((-1274) $ (-923) (-381) (-381))) (-15 -4269 ((-1274) $ (-923) (-1161))) (-15 -3081 ((-1274) $ (-772) (-772))) (-15 -3692 ((-1274) $ (-471) (-923))) (-15 -2415 ((-1274) $ (-923) (-923))) (-15 -1339 ((-1161) $ (-1161))) (-15 -1339 ((-1161) $ (-1161) (-1161))) (-15 -1339 ((-1161) $ (-1161) (-645 (-1161)))) (-15 -1316 ((-1274) $)) (-15 -1809 ((-567) $)) (-15 -4129 ((-863) $))))
+((-2412 (((-112) $ $) NIL)) (-1618 (((-1274) $ (-381)) 172) (((-1274) $ (-381) (-381) (-381)) 173)) (-1339 (((-1161) $ (-1161)) 182) (((-1161) $ (-1161) (-1161)) 180) (((-1161) $ (-1161) (-645 (-1161))) 179)) (-3575 (($) 67)) (-3562 (((-1274) $ (-381) (-381) (-381) (-381) (-381)) 144) (((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2604 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) $) 142) (((-1274) $ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2604 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) 143) (((-1274) $ (-567) (-567) (-381) (-381) (-381)) 147) (((-1274) $ (-381) (-381)) 148) (((-1274) $ (-381) (-381) (-381)) 155)) (-3989 (((-381)) 125) (((-381) (-381)) 126)) (-2481 (((-381)) 120) (((-381) (-381)) 122)) (-3063 (((-381)) 123) (((-381) (-381)) 124)) (-2626 (((-381)) 129) (((-381) (-381)) 130)) (-1468 (((-381)) 127) (((-381) (-381)) 128)) (-2572 (((-1274) $ (-381) (-381)) 174)) (-3134 (((-1274) $ (-1161)) 156)) (-2095 (((-1135 (-225)) $) 68) (($ $ (-1135 (-225))) 69)) (-3661 (((-1274) $ (-1161)) 190)) (-2855 (((-1274) $ (-1161)) 191)) (-3482 (((-1274) $ (-381) (-381)) 154) (((-1274) $ (-567) (-567)) 171)) (-2415 (((-1274) $ (-923) (-923)) 163)) (-1316 (((-1274) $) 140)) (-3062 (((-1274) $ (-1161)) 189)) (-1525 (((-1274) $ (-1161)) 137)) (-3635 (((-645 (-264)) $) 70) (($ $ (-645 (-264))) 71)) (-3081 (((-1274) $ (-772) (-772)) 162)) (-2502 (((-1274) $ (-772) (-945 (-225))) 196)) (-1690 (($ $) 73) (($ (-1135 (-225)) (-1161)) 74) (($ (-1135 (-225)) (-645 (-264))) 75)) (-1481 (((-1274) $ (-381) (-381) (-381)) 134)) (-2516 (((-1161) $) NIL)) (-1809 (((-567) $) 131)) (-3374 (((-1274) $ (-381)) 177)) (-1767 (((-1274) $ (-381)) 194)) (-3437 (((-1122) $) NIL)) (-4400 (((-1274) $ (-381)) 193)) (-3618 (((-1274) $ (-1161)) 139)) (-1840 (((-1274) $ (-772) (-772) (-923) (-923)) 161)) (-4219 (((-1274) $ (-1161)) 136)) (-3620 (((-1274) $ (-1161)) 138)) (-3146 (((-1274) $ (-157) (-157)) 160)) (-4129 (((-863) $) 169)) (-4000 (((-1274) $) 141)) (-3025 (((-1274) $ (-1161)) 192)) (-3357 (((-112) $ $) NIL)) (-2638 (((-1274) $ (-1161)) 135)) (-2946 (((-112) $ $) NIL)))
+(((-1271) (-13 (-1102) (-10 -8 (-15 -2481 ((-381))) (-15 -2481 ((-381) (-381))) (-15 -3063 ((-381))) (-15 -3063 ((-381) (-381))) (-15 -3989 ((-381))) (-15 -3989 ((-381) (-381))) (-15 -1468 ((-381))) (-15 -1468 ((-381) (-381))) (-15 -2626 ((-381))) (-15 -2626 ((-381) (-381))) (-15 -3575 ($)) (-15 -1690 ($ $)) (-15 -1690 ($ (-1135 (-225)) (-1161))) (-15 -1690 ($ (-1135 (-225)) (-645 (-264)))) (-15 -2095 ((-1135 (-225)) $)) (-15 -2095 ($ $ (-1135 (-225)))) (-15 -2502 ((-1274) $ (-772) (-945 (-225)))) (-15 -3635 ((-645 (-264)) $)) (-15 -3635 ($ $ (-645 (-264)))) (-15 -3081 ((-1274) $ (-772) (-772))) (-15 -2415 ((-1274) $ (-923) (-923))) (-15 -3134 ((-1274) $ (-1161))) (-15 -1840 ((-1274) $ (-772) (-772) (-923) (-923))) (-15 -3562 ((-1274) $ (-381) (-381) (-381) (-381) (-381))) (-15 -3562 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2604 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) $)) (-15 -3562 ((-1274) $ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2604 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -3562 ((-1274) $ (-567) (-567) (-381) (-381) (-381))) (-15 -3562 ((-1274) $ (-381) (-381))) (-15 -3562 ((-1274) $ (-381) (-381) (-381))) (-15 -3620 ((-1274) $ (-1161))) (-15 -2638 ((-1274) $ (-1161))) (-15 -4219 ((-1274) $ (-1161))) (-15 -1525 ((-1274) $ (-1161))) (-15 -3618 ((-1274) $ (-1161))) (-15 -3482 ((-1274) $ (-381) (-381))) (-15 -3482 ((-1274) $ (-567) (-567))) (-15 -1618 ((-1274) $ (-381))) (-15 -1618 ((-1274) $ (-381) (-381) (-381))) (-15 -2572 ((-1274) $ (-381) (-381))) (-15 -3062 ((-1274) $ (-1161))) (-15 -4400 ((-1274) $ (-381))) (-15 -1767 ((-1274) $ (-381))) (-15 -3661 ((-1274) $ (-1161))) (-15 -2855 ((-1274) $ (-1161))) (-15 -3025 ((-1274) $ (-1161))) (-15 -1481 ((-1274) $ (-381) (-381) (-381))) (-15 -3374 ((-1274) $ (-381))) (-15 -1316 ((-1274) $)) (-15 -3146 ((-1274) $ (-157) (-157))) (-15 -1339 ((-1161) $ (-1161))) (-15 -1339 ((-1161) $ (-1161) (-1161))) (-15 -1339 ((-1161) $ (-1161) (-645 (-1161)))) (-15 -4000 ((-1274) $)) (-15 -1809 ((-567) $))))) (T -1271))
+((-2481 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1271)))) (-2481 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1271)))) (-3063 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1271)))) (-3063 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1271)))) (-3989 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1271)))) (-3989 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1271)))) (-1468 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1271)))) (-1468 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1271)))) (-2626 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1271)))) (-2626 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1271)))) (-3575 (*1 *1) (-5 *1 (-1271))) (-1690 (*1 *1 *1) (-5 *1 (-1271))) (-1690 (*1 *1 *2 *3) (-12 (-5 *2 (-1135 (-225))) (-5 *3 (-1161)) (-5 *1 (-1271)))) (-1690 (*1 *1 *2 *3) (-12 (-5 *2 (-1135 (-225))) (-5 *3 (-645 (-264))) (-5 *1 (-1271)))) (-2095 (*1 *2 *1) (-12 (-5 *2 (-1135 (-225))) (-5 *1 (-1271)))) (-2095 (*1 *1 *1 *2) (-12 (-5 *2 (-1135 (-225))) (-5 *1 (-1271)))) (-2502 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-772)) (-5 *4 (-945 (-225))) (-5 *2 (-1274)) (-5 *1 (-1271)))) (-3635 (*1 *2 *1) (-12 (-5 *2 (-645 (-264))) (-5 *1 (-1271)))) (-3635 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-264))) (-5 *1 (-1271)))) (-3081 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1274)) (-5 *1 (-1271)))) (-2415 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1274)) (-5 *1 (-1271)))) (-3134 (*1 *2 *1 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1271)))) (-1840 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-772)) (-5 *4 (-923)) (-5 *2 (-1274)) (-5 *1 (-1271)))) (-3562 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1274)) (-5 *1 (-1271)))) (-3562 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2604 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *1 (-1271)))) (-3562 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2604 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *2 (-1274)) (-5 *1 (-1271)))) (-3562 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-567)) (-5 *4 (-381)) (-5 *2 (-1274)) (-5 *1 (-1271)))) (-3562 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1274)) (-5 *1 (-1271)))) (-3562 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1274)) (-5 *1 (-1271)))) (-3620 (*1 *2 *1 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1271)))) (-2638 (*1 *2 *1 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1271)))) (-4219 (*1 *2 *1 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1271)))) (-1525 (*1 *2 *1 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1271)))) (-3618 (*1 *2 *1 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1271)))) (-3482 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1274)) (-5 *1 (-1271)))) (-3482 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-567)) (-5 *2 (-1274)) (-5 *1 (-1271)))) (-1618 (*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1274)) (-5 *1 (-1271)))) (-1618 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1274)) (-5 *1 (-1271)))) (-2572 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1274)) (-5 *1 (-1271)))) (-3062 (*1 *2 *1 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1271)))) (-4400 (*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1274)) (-5 *1 (-1271)))) (-1767 (*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1274)) (-5 *1 (-1271)))) (-3661 (*1 *2 *1 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1271)))) (-2855 (*1 *2 *1 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1271)))) (-3025 (*1 *2 *1 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1271)))) (-1481 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1274)) (-5 *1 (-1271)))) (-3374 (*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1274)) (-5 *1 (-1271)))) (-1316 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-1271)))) (-3146 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-157)) (-5 *2 (-1274)) (-5 *1 (-1271)))) (-1339 (*1 *2 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-1271)))) (-1339 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-1271)))) (-1339 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-645 (-1161))) (-5 *2 (-1161)) (-5 *1 (-1271)))) (-4000 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-1271)))) (-1809 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-1271)))))
+(-13 (-1102) (-10 -8 (-15 -2481 ((-381))) (-15 -2481 ((-381) (-381))) (-15 -3063 ((-381))) (-15 -3063 ((-381) (-381))) (-15 -3989 ((-381))) (-15 -3989 ((-381) (-381))) (-15 -1468 ((-381))) (-15 -1468 ((-381) (-381))) (-15 -2626 ((-381))) (-15 -2626 ((-381) (-381))) (-15 -3575 ($)) (-15 -1690 ($ $)) (-15 -1690 ($ (-1135 (-225)) (-1161))) (-15 -1690 ($ (-1135 (-225)) (-645 (-264)))) (-15 -2095 ((-1135 (-225)) $)) (-15 -2095 ($ $ (-1135 (-225)))) (-15 -2502 ((-1274) $ (-772) (-945 (-225)))) (-15 -3635 ((-645 (-264)) $)) (-15 -3635 ($ $ (-645 (-264)))) (-15 -3081 ((-1274) $ (-772) (-772))) (-15 -2415 ((-1274) $ (-923) (-923))) (-15 -3134 ((-1274) $ (-1161))) (-15 -1840 ((-1274) $ (-772) (-772) (-923) (-923))) (-15 -3562 ((-1274) $ (-381) (-381) (-381) (-381) (-381))) (-15 -3562 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2604 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) $)) (-15 -3562 ((-1274) $ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2604 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -3562 ((-1274) $ (-567) (-567) (-381) (-381) (-381))) (-15 -3562 ((-1274) $ (-381) (-381))) (-15 -3562 ((-1274) $ (-381) (-381) (-381))) (-15 -3620 ((-1274) $ (-1161))) (-15 -2638 ((-1274) $ (-1161))) (-15 -4219 ((-1274) $ (-1161))) (-15 -1525 ((-1274) $ (-1161))) (-15 -3618 ((-1274) $ (-1161))) (-15 -3482 ((-1274) $ (-381) (-381))) (-15 -3482 ((-1274) $ (-567) (-567))) (-15 -1618 ((-1274) $ (-381))) (-15 -1618 ((-1274) $ (-381) (-381) (-381))) (-15 -2572 ((-1274) $ (-381) (-381))) (-15 -3062 ((-1274) $ (-1161))) (-15 -4400 ((-1274) $ (-381))) (-15 -1767 ((-1274) $ (-381))) (-15 -3661 ((-1274) $ (-1161))) (-15 -2855 ((-1274) $ (-1161))) (-15 -3025 ((-1274) $ (-1161))) (-15 -1481 ((-1274) $ (-381) (-381) (-381))) (-15 -3374 ((-1274) $ (-381))) (-15 -1316 ((-1274) $)) (-15 -3146 ((-1274) $ (-157) (-157))) (-15 -1339 ((-1161) $ (-1161))) (-15 -1339 ((-1161) $ (-1161) (-1161))) (-15 -1339 ((-1161) $ (-1161) (-645 (-1161)))) (-15 -4000 ((-1274) $)) (-15 -1809 ((-567) $))))
+((-1899 (((-645 (-1161)) (-645 (-1161))) 104) (((-645 (-1161))) 96)) (-2918 (((-645 (-1161))) 94)) (-1492 (((-645 (-923)) (-645 (-923))) 69) (((-645 (-923))) 64)) (-2981 (((-645 (-772)) (-645 (-772))) 61) (((-645 (-772))) 55)) (-3079 (((-1274)) 71)) (-2881 (((-923) (-923)) 87) (((-923)) 86)) (-2774 (((-923) (-923)) 85) (((-923)) 84)) (-2249 (((-875) (-875)) 81) (((-875)) 80)) (-4205 (((-225)) 91) (((-225) (-381)) 93)) (-1678 (((-923)) 88) (((-923) (-923)) 89)) (-4062 (((-923) (-923)) 83) (((-923)) 82)) (-3756 (((-875) (-875)) 75) (((-875)) 73)) (-1491 (((-875) (-875)) 77) (((-875)) 76)) (-1711 (((-875) (-875)) 79) (((-875)) 78)))
+(((-1272) (-10 -7 (-15 -3756 ((-875))) (-15 -3756 ((-875) (-875))) (-15 -1491 ((-875))) (-15 -1491 ((-875) (-875))) (-15 -1711 ((-875))) (-15 -1711 ((-875) (-875))) (-15 -2249 ((-875))) (-15 -2249 ((-875) (-875))) (-15 -4062 ((-923))) (-15 -4062 ((-923) (-923))) (-15 -2981 ((-645 (-772)))) (-15 -2981 ((-645 (-772)) (-645 (-772)))) (-15 -1492 ((-645 (-923)))) (-15 -1492 ((-645 (-923)) (-645 (-923)))) (-15 -3079 ((-1274))) (-15 -1899 ((-645 (-1161)))) (-15 -1899 ((-645 (-1161)) (-645 (-1161)))) (-15 -2918 ((-645 (-1161)))) (-15 -2774 ((-923))) (-15 -2881 ((-923))) (-15 -2774 ((-923) (-923))) (-15 -2881 ((-923) (-923))) (-15 -1678 ((-923) (-923))) (-15 -1678 ((-923))) (-15 -4205 ((-225) (-381))) (-15 -4205 ((-225))))) (T -1272))
+((-4205 (*1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-1272)))) (-4205 (*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-225)) (-5 *1 (-1272)))) (-1678 (*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1272)))) (-1678 (*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1272)))) (-2881 (*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1272)))) (-2774 (*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1272)))) (-2881 (*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1272)))) (-2774 (*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1272)))) (-2918 (*1 *2) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-1272)))) (-1899 (*1 *2 *2) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-1272)))) (-1899 (*1 *2) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-1272)))) (-3079 (*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-1272)))) (-1492 (*1 *2 *2) (-12 (-5 *2 (-645 (-923))) (-5 *1 (-1272)))) (-1492 (*1 *2) (-12 (-5 *2 (-645 (-923))) (-5 *1 (-1272)))) (-2981 (*1 *2 *2) (-12 (-5 *2 (-645 (-772))) (-5 *1 (-1272)))) (-2981 (*1 *2) (-12 (-5 *2 (-645 (-772))) (-5 *1 (-1272)))) (-4062 (*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1272)))) (-4062 (*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1272)))) (-2249 (*1 *2 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1272)))) (-2249 (*1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1272)))) (-1711 (*1 *2 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1272)))) (-1711 (*1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1272)))) (-1491 (*1 *2 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1272)))) (-1491 (*1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1272)))) (-3756 (*1 *2 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1272)))) (-3756 (*1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1272)))))
+(-10 -7 (-15 -3756 ((-875))) (-15 -3756 ((-875) (-875))) (-15 -1491 ((-875))) (-15 -1491 ((-875) (-875))) (-15 -1711 ((-875))) (-15 -1711 ((-875) (-875))) (-15 -2249 ((-875))) (-15 -2249 ((-875) (-875))) (-15 -4062 ((-923))) (-15 -4062 ((-923) (-923))) (-15 -2981 ((-645 (-772)))) (-15 -2981 ((-645 (-772)) (-645 (-772)))) (-15 -1492 ((-645 (-923)))) (-15 -1492 ((-645 (-923)) (-645 (-923)))) (-15 -3079 ((-1274))) (-15 -1899 ((-645 (-1161)))) (-15 -1899 ((-645 (-1161)) (-645 (-1161)))) (-15 -2918 ((-645 (-1161)))) (-15 -2774 ((-923))) (-15 -2881 ((-923))) (-15 -2774 ((-923) (-923))) (-15 -2881 ((-923) (-923))) (-15 -1678 ((-923) (-923))) (-15 -1678 ((-923))) (-15 -4205 ((-225) (-381))) (-15 -4205 ((-225))))
+((-1519 (((-471) (-645 (-645 (-945 (-225)))) (-645 (-264))) 22) (((-471) (-645 (-645 (-945 (-225))))) 21) (((-471) (-645 (-645 (-945 (-225)))) (-875) (-875) (-923) (-645 (-264))) 20)) (-2259 (((-1270) (-645 (-645 (-945 (-225)))) (-645 (-264))) 33) (((-1270) (-645 (-645 (-945 (-225)))) (-875) (-875) (-923) (-645 (-264))) 32)) (-4129 (((-1270) (-471)) 48)))
+(((-1273) (-10 -7 (-15 -1519 ((-471) (-645 (-645 (-945 (-225)))) (-875) (-875) (-923) (-645 (-264)))) (-15 -1519 ((-471) (-645 (-645 (-945 (-225)))))) (-15 -1519 ((-471) (-645 (-645 (-945 (-225)))) (-645 (-264)))) (-15 -2259 ((-1270) (-645 (-645 (-945 (-225)))) (-875) (-875) (-923) (-645 (-264)))) (-15 -2259 ((-1270) (-645 (-645 (-945 (-225)))) (-645 (-264)))) (-15 -4129 ((-1270) (-471))))) (T -1273))
+((-4129 (*1 *2 *3) (-12 (-5 *3 (-471)) (-5 *2 (-1270)) (-5 *1 (-1273)))) (-2259 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-645 (-945 (-225))))) (-5 *4 (-645 (-264))) (-5 *2 (-1270)) (-5 *1 (-1273)))) (-2259 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-645 (-645 (-945 (-225))))) (-5 *4 (-875)) (-5 *5 (-923)) (-5 *6 (-645 (-264))) (-5 *2 (-1270)) (-5 *1 (-1273)))) (-1519 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-645 (-945 (-225))))) (-5 *4 (-645 (-264))) (-5 *2 (-471)) (-5 *1 (-1273)))) (-1519 (*1 *2 *3) (-12 (-5 *3 (-645 (-645 (-945 (-225))))) (-5 *2 (-471)) (-5 *1 (-1273)))) (-1519 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-645 (-645 (-945 (-225))))) (-5 *4 (-875)) (-5 *5 (-923)) (-5 *6 (-645 (-264))) (-5 *2 (-471)) (-5 *1 (-1273)))))
+(-10 -7 (-15 -1519 ((-471) (-645 (-645 (-945 (-225)))) (-875) (-875) (-923) (-645 (-264)))) (-15 -1519 ((-471) (-645 (-645 (-945 (-225)))))) (-15 -1519 ((-471) (-645 (-645 (-945 (-225)))) (-645 (-264)))) (-15 -2259 ((-1270) (-645 (-645 (-945 (-225)))) (-875) (-875) (-923) (-645 (-264)))) (-15 -2259 ((-1270) (-645 (-645 (-945 (-225)))) (-645 (-264)))) (-15 -4129 ((-1270) (-471))))
+((-4324 (($) 6)) (-4129 (((-863) $) 9)))
+(((-1274) (-13 (-614 (-863)) (-10 -8 (-15 -4324 ($))))) (T -1274))
+((-4324 (*1 *1) (-5 *1 (-1274))))
+(-13 (-614 (-863)) (-10 -8 (-15 -4324 ($))))
+((-3069 (($ $ |#2|) 10)))
+(((-1275 |#1| |#2|) (-10 -8 (-15 -3069 (|#1| |#1| |#2|))) (-1276 |#2|) (-365)) (T -1275))
+NIL
+(-10 -8 (-15 -3069 (|#1| |#1| |#2|)))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-2376 (((-3 $ "failed") $ $) 20)) (-3647 (($) 18 T CONST)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-1412 (((-134)) 33)) (-4129 (((-863) $) 12)) (-3357 (((-112) $ $) 9)) (-1733 (($) 19 T CONST)) (-2946 (((-112) $ $) 6)) (-3069 (($ $ |#1|) 34)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31)))
+(((-1276 |#1|) (-140) (-365)) (T -1276))
+((-3069 (*1 *1 *1 *2) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-365)))) (-1412 (*1 *2) (-12 (-4 *1 (-1276 *3)) (-4 *3 (-365)) (-5 *2 (-134)))))
+(-13 (-718 |t#1|) (-10 -8 (-15 -3069 ($ $ |t#1|)) (-15 -1412 ((-134)))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-649 |#1|) . T) ((-641 |#1|) . T) ((-718 |#1|) . T) ((-1053 |#1|) . T) ((-1058 |#1|) . T) ((-1102) . T))
-((-2043 (((-645 (-1212 |#1|)) (-1178) (-1212 |#1|)) 83)) (-2090 (((-1158 (-1158 (-954 |#1|))) (-1178) (-1158 (-954 |#1|))) 63)) (-2985 (((-1 (-1158 (-1212 |#1|)) (-1158 (-1212 |#1|))) (-772) (-1212 |#1|) (-1158 (-1212 |#1|))) 74)) (-2852 (((-1 (-1158 (-954 |#1|)) (-1158 (-954 |#1|))) (-772)) 65)) (-3120 (((-1 (-1174 (-954 |#1|)) (-954 |#1|)) (-1178)) 32)) (-1497 (((-1 (-1158 (-954 |#1|)) (-1158 (-954 |#1|))) (-772)) 64)))
-(((-1276 |#1|) (-10 -7 (-15 -2852 ((-1 (-1158 (-954 |#1|)) (-1158 (-954 |#1|))) (-772))) (-15 -1497 ((-1 (-1158 (-954 |#1|)) (-1158 (-954 |#1|))) (-772))) (-15 -2090 ((-1158 (-1158 (-954 |#1|))) (-1178) (-1158 (-954 |#1|)))) (-15 -3120 ((-1 (-1174 (-954 |#1|)) (-954 |#1|)) (-1178))) (-15 -2043 ((-645 (-1212 |#1|)) (-1178) (-1212 |#1|))) (-15 -2985 ((-1 (-1158 (-1212 |#1|)) (-1158 (-1212 |#1|))) (-772) (-1212 |#1|) (-1158 (-1212 |#1|))))) (-365)) (T -1276))
-((-2985 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-772)) (-4 *6 (-365)) (-5 *4 (-1212 *6)) (-5 *2 (-1 (-1158 *4) (-1158 *4))) (-5 *1 (-1276 *6)) (-5 *5 (-1158 *4)))) (-2043 (*1 *2 *3 *4) (-12 (-5 *3 (-1178)) (-4 *5 (-365)) (-5 *2 (-645 (-1212 *5))) (-5 *1 (-1276 *5)) (-5 *4 (-1212 *5)))) (-3120 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1 (-1174 (-954 *4)) (-954 *4))) (-5 *1 (-1276 *4)) (-4 *4 (-365)))) (-2090 (*1 *2 *3 *4) (-12 (-5 *3 (-1178)) (-4 *5 (-365)) (-5 *2 (-1158 (-1158 (-954 *5)))) (-5 *1 (-1276 *5)) (-5 *4 (-1158 (-954 *5))))) (-1497 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1 (-1158 (-954 *4)) (-1158 (-954 *4)))) (-5 *1 (-1276 *4)) (-4 *4 (-365)))) (-2852 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1 (-1158 (-954 *4)) (-1158 (-954 *4)))) (-5 *1 (-1276 *4)) (-4 *4 (-365)))))
-(-10 -7 (-15 -2852 ((-1 (-1158 (-954 |#1|)) (-1158 (-954 |#1|))) (-772))) (-15 -1497 ((-1 (-1158 (-954 |#1|)) (-1158 (-954 |#1|))) (-772))) (-15 -2090 ((-1158 (-1158 (-954 |#1|))) (-1178) (-1158 (-954 |#1|)))) (-15 -3120 ((-1 (-1174 (-954 |#1|)) (-954 |#1|)) (-1178))) (-15 -2043 ((-645 (-1212 |#1|)) (-1178) (-1212 |#1|))) (-15 -2985 ((-1 (-1158 (-1212 |#1|)) (-1158 (-1212 |#1|))) (-772) (-1212 |#1|) (-1158 (-1212 |#1|)))))
-((-3454 (((-2 (|:| -2623 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))) |#2|) 82)) (-3675 (((-2 (|:| -2623 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|)))) 81)))
-(((-1277 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3675 ((-2 (|:| -2623 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))))) (-15 -3454 ((-2 (|:| -2623 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))) |#2|))) (-351) (-1244 |#1|) (-1244 |#2|) (-412 |#2| |#3|)) (T -1277))
-((-3454 (*1 *2 *3) (-12 (-4 *4 (-351)) (-4 *3 (-1244 *4)) (-4 *5 (-1244 *3)) (-5 *2 (-2 (|:| -2623 (-690 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-690 *3)))) (-5 *1 (-1277 *4 *3 *5 *6)) (-4 *6 (-412 *3 *5)))) (-3675 (*1 *2) (-12 (-4 *3 (-351)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 *4)) (-5 *2 (-2 (|:| -2623 (-690 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-690 *4)))) (-5 *1 (-1277 *3 *4 *5 *6)) (-4 *6 (-412 *4 *5)))))
-(-10 -7 (-15 -3675 ((-2 (|:| -2623 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))))) (-15 -3454 ((-2 (|:| -2623 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))) |#2|)))
-((-2403 (((-112) $ $) NIL)) (-3276 (((-1137) $) 11)) (-2134 (((-1137) $) 9)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 17) (($ (-1183)) NIL) (((-1183) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)))
-(((-1278) (-13 (-1085) (-10 -8 (-15 -2134 ((-1137) $)) (-15 -3276 ((-1137) $))))) (T -1278))
-((-2134 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1278)))) (-3276 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1278)))))
-(-13 (-1085) (-10 -8 (-15 -2134 ((-1137) $)) (-15 -3276 ((-1137) $))))
-((-2403 (((-112) $ $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-2055 (((-1137) $) 9)) (-4132 (((-863) $) 15) (($ (-1183)) NIL) (((-1183) $) NIL)) (-1745 (((-112) $ $) NIL)) (-2936 (((-112) $ $) NIL)))
-(((-1279) (-13 (-1085) (-10 -8 (-15 -2055 ((-1137) $))))) (T -1279))
-((-2055 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1279)))))
-(-13 (-1085) (-10 -8 (-15 -2055 ((-1137) $))))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) 58)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2585 (($) NIL T CONST)) (-2109 (((-3 $ "failed") $) NIL)) (-1433 (((-112) $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-4132 (((-863) $) 81) (($ (-567)) NIL) (($ |#4|) 65) ((|#4| $) 70) (($ |#1|) NIL (|has| |#1| (-172)))) (-4221 (((-772)) NIL T CONST)) (-1330 (((-1273) (-772)) 16)) (-1745 (((-112) $ $) NIL)) (-1716 (($) 37 T CONST)) (-1728 (($) 84 T CONST)) (-2936 (((-112) $ $) 87)) (-3060 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-3045 (($ $) 89) (($ $ $) NIL)) (-3033 (($ $ $) 63)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 91) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172)))))
-(((-1280 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1051) (-493 |#4|) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -3060 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1330 ((-1273) (-772))))) (-1051) (-851) (-794) (-951 |#1| |#3| |#2|) (-645 |#2|) (-645 (-772)) (-772)) (T -1280))
-((-3060 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-365)) (-4 *2 (-1051)) (-4 *3 (-851)) (-4 *4 (-794)) (-14 *6 (-645 *3)) (-5 *1 (-1280 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-951 *2 *4 *3)) (-14 *7 (-645 (-772))) (-14 *8 (-772)))) (-1330 (*1 *2 *3) (-12 (-5 *3 (-772)) (-4 *4 (-1051)) (-4 *5 (-851)) (-4 *6 (-794)) (-14 *8 (-645 *5)) (-5 *2 (-1273)) (-5 *1 (-1280 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-951 *4 *6 *5)) (-14 *9 (-645 *3)) (-14 *10 *3))))
-(-13 (-1051) (-493 |#4|) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -3060 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1330 ((-1273) (-772)))))
-((-2403 (((-112) $ $) NIL)) (-3487 (((-645 (-2 (|:| -3995 $) (|:| -3823 (-645 |#4|)))) (-645 |#4|)) NIL)) (-3244 (((-645 $) (-645 |#4|)) 96)) (-2847 (((-645 |#3|) $) NIL)) (-2017 (((-112) $) NIL)) (-3623 (((-112) $) NIL (|has| |#1| (-559)))) (-1326 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3722 ((|#4| |#4| $) NIL)) (-4396 (((-2 (|:| |under| $) (|:| -2780 $) (|:| |upper| $)) $ |#3|) NIL)) (-3445 (((-112) $ (-772)) NIL)) (-3350 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4418))) (((-3 |#4| "failed") $ |#3|) NIL)) (-2585 (($) NIL T CONST)) (-1490 (((-112) $) NIL (|has| |#1| (-559)))) (-2752 (((-112) $ $) NIL (|has| |#1| (-559)))) (-4224 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3547 (((-112) $) NIL (|has| |#1| (-559)))) (-1441 (((-645 |#4|) (-645 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 31)) (-1724 (((-645 |#4|) (-645 |#4|) $) 28 (|has| |#1| (-559)))) (-3197 (((-645 |#4|) (-645 |#4|) $) NIL (|has| |#1| (-559)))) (-3753 (((-3 $ "failed") (-645 |#4|)) NIL)) (-2038 (($ (-645 |#4|)) NIL)) (-2421 (((-3 $ "failed") $) 78)) (-1999 ((|#4| |#4| $) 83)) (-2444 (($ $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#4| (-1102))))) (-3238 (($ |#4| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#4| (-1102)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4418)))) (-4194 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-559)))) (-3786 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3730 ((|#4| |#4| $) NIL)) (-2477 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4418)) (|has| |#4| (-1102)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4418))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4418))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1585 (((-2 (|:| -3995 (-645 |#4|)) (|:| -3823 (-645 |#4|))) $) NIL)) (-2777 (((-645 |#4|) $) NIL (|has| $ (-6 -4418)))) (-1664 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1679 ((|#3| $) 84)) (-2077 (((-112) $ (-772)) NIL)) (-2279 (((-645 |#4|) $) 32 (|has| $ (-6 -4418)))) (-4337 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#4| (-1102))))) (-2140 (((-3 $ "failed") (-645 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35) (((-3 $ "failed") (-645 |#4|)) 38)) (-3731 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4419)))) (-3829 (($ (-1 |#4| |#4|) $) NIL)) (-2826 (((-645 |#3|) $) NIL)) (-2808 (((-112) |#3| $) NIL)) (-2863 (((-112) $ (-772)) NIL)) (-1419 (((-1160) $) NIL)) (-3257 (((-3 |#4| "failed") $) NIL)) (-4051 (((-645 |#4|) $) 54)) (-1791 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3159 ((|#4| |#4| $) 82)) (-3392 (((-112) $ $) 93)) (-2430 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-559)))) (-2554 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4164 ((|#4| |#4| $) NIL)) (-3430 (((-1122) $) NIL)) (-2409 (((-3 |#4| "failed") $) 77)) (-4128 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4077 (((-3 $ "failed") $ |#4|) NIL)) (-2410 (($ $ |#4|) NIL)) (-3025 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4418)))) (-2631 (($ $ (-645 |#4|) (-645 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-295 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-645 (-295 |#4|))) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))))) (-3092 (((-112) $ $) NIL)) (-3572 (((-112) $) 75)) (-3498 (($) 46)) (-3077 (((-772) $) NIL)) (-3439 (((-772) |#4| $) NIL (-12 (|has| $ (-6 -4418)) (|has| |#4| (-1102)))) (((-772) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4418)))) (-4305 (($ $) NIL)) (-3893 (((-539) $) NIL (|has| |#4| (-615 (-539))))) (-4147 (($ (-645 |#4|)) NIL)) (-2397 (($ $ |#3|) NIL)) (-2120 (($ $ |#3|) NIL)) (-4129 (($ $) NIL)) (-2813 (($ $ |#3|) NIL)) (-4132 (((-863) $) NIL) (((-645 |#4|) $) 63)) (-2073 (((-772) $) NIL (|has| |#3| (-370)))) (-2184 (((-3 $ "failed") (-645 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 44) (((-3 $ "failed") (-645 |#4|)) 45)) (-2041 (((-645 $) (-645 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 73) (((-645 $) (-645 |#4|)) 74)) (-1745 (((-112) $ $) NIL)) (-2220 (((-3 (-2 (|:| |bas| $) (|:| -2262 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4| |#4|)) 27) (((-3 (-2 (|:| |bas| $) (|:| -2262 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2668 (((-112) $ (-1 (-112) |#4| (-645 |#4|))) NIL)) (-1853 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4418)))) (-2385 (((-645 |#3|) $) NIL)) (-2012 (((-112) |#3| $) NIL)) (-2936 (((-112) $ $) NIL)) (-2414 (((-772) $) NIL (|has| $ (-6 -4418)))))
-(((-1281 |#1| |#2| |#3| |#4|) (-13 (-1211 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2140 ((-3 $ "failed") (-645 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2140 ((-3 $ "failed") (-645 |#4|))) (-15 -2184 ((-3 $ "failed") (-645 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2184 ((-3 $ "failed") (-645 |#4|))) (-15 -2041 ((-645 $) (-645 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2041 ((-645 $) (-645 |#4|))))) (-559) (-794) (-851) (-1067 |#1| |#2| |#3|)) (T -1281))
-((-2140 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-645 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-1281 *5 *6 *7 *8)))) (-2140 (*1 *1 *2) (|partial| -12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-1281 *3 *4 *5 *6)))) (-2184 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-645 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-1281 *5 *6 *7 *8)))) (-2184 (*1 *1 *2) (|partial| -12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-1281 *3 *4 *5 *6)))) (-2041 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-645 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1067 *6 *7 *8)) (-4 *6 (-559)) (-4 *7 (-794)) (-4 *8 (-851)) (-5 *2 (-645 (-1281 *6 *7 *8 *9))) (-5 *1 (-1281 *6 *7 *8 *9)))) (-2041 (*1 *2 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 (-1281 *4 *5 *6 *7))) (-5 *1 (-1281 *4 *5 *6 *7)))))
-(-13 (-1211 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2140 ((-3 $ "failed") (-645 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2140 ((-3 $ "failed") (-645 |#4|))) (-15 -2184 ((-3 $ "failed") (-645 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2184 ((-3 $ "failed") (-645 |#4|))) (-15 -2041 ((-645 $) (-645 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2041 ((-645 $) (-645 |#4|)))))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3472 (((-3 $ "failed") $ $) 20)) (-2585 (($) 18 T CONST)) (-2109 (((-3 $ "failed") $) 37)) (-1433 (((-112) $) 35)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 45)) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 47) (($ |#1| $) 46)))
-(((-1282 |#1|) (-140) (-1051)) (T -1282))
+((-4270 (((-645 (-1213 |#1|)) (-1179) (-1213 |#1|)) 83)) (-3814 (((-1159 (-1159 (-954 |#1|))) (-1179) (-1159 (-954 |#1|))) 63)) (-1528 (((-1 (-1159 (-1213 |#1|)) (-1159 (-1213 |#1|))) (-772) (-1213 |#1|) (-1159 (-1213 |#1|))) 74)) (-3271 (((-1 (-1159 (-954 |#1|)) (-1159 (-954 |#1|))) (-772)) 65)) (-2539 (((-1 (-1175 (-954 |#1|)) (-954 |#1|)) (-1179)) 32)) (-4303 (((-1 (-1159 (-954 |#1|)) (-1159 (-954 |#1|))) (-772)) 64)))
+(((-1277 |#1|) (-10 -7 (-15 -3271 ((-1 (-1159 (-954 |#1|)) (-1159 (-954 |#1|))) (-772))) (-15 -4303 ((-1 (-1159 (-954 |#1|)) (-1159 (-954 |#1|))) (-772))) (-15 -3814 ((-1159 (-1159 (-954 |#1|))) (-1179) (-1159 (-954 |#1|)))) (-15 -2539 ((-1 (-1175 (-954 |#1|)) (-954 |#1|)) (-1179))) (-15 -4270 ((-645 (-1213 |#1|)) (-1179) (-1213 |#1|))) (-15 -1528 ((-1 (-1159 (-1213 |#1|)) (-1159 (-1213 |#1|))) (-772) (-1213 |#1|) (-1159 (-1213 |#1|))))) (-365)) (T -1277))
+((-1528 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-772)) (-4 *6 (-365)) (-5 *4 (-1213 *6)) (-5 *2 (-1 (-1159 *4) (-1159 *4))) (-5 *1 (-1277 *6)) (-5 *5 (-1159 *4)))) (-4270 (*1 *2 *3 *4) (-12 (-5 *3 (-1179)) (-4 *5 (-365)) (-5 *2 (-645 (-1213 *5))) (-5 *1 (-1277 *5)) (-5 *4 (-1213 *5)))) (-2539 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1 (-1175 (-954 *4)) (-954 *4))) (-5 *1 (-1277 *4)) (-4 *4 (-365)))) (-3814 (*1 *2 *3 *4) (-12 (-5 *3 (-1179)) (-4 *5 (-365)) (-5 *2 (-1159 (-1159 (-954 *5)))) (-5 *1 (-1277 *5)) (-5 *4 (-1159 (-954 *5))))) (-4303 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1 (-1159 (-954 *4)) (-1159 (-954 *4)))) (-5 *1 (-1277 *4)) (-4 *4 (-365)))) (-3271 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1 (-1159 (-954 *4)) (-1159 (-954 *4)))) (-5 *1 (-1277 *4)) (-4 *4 (-365)))))
+(-10 -7 (-15 -3271 ((-1 (-1159 (-954 |#1|)) (-1159 (-954 |#1|))) (-772))) (-15 -4303 ((-1 (-1159 (-954 |#1|)) (-1159 (-954 |#1|))) (-772))) (-15 -3814 ((-1159 (-1159 (-954 |#1|))) (-1179) (-1159 (-954 |#1|)))) (-15 -2539 ((-1 (-1175 (-954 |#1|)) (-954 |#1|)) (-1179))) (-15 -4270 ((-645 (-1213 |#1|)) (-1179) (-1213 |#1|))) (-15 -1528 ((-1 (-1159 (-1213 |#1|)) (-1159 (-1213 |#1|))) (-772) (-1213 |#1|) (-1159 (-1213 |#1|)))))
+((-4321 (((-2 (|:| -2144 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))) |#2|) 82)) (-4180 (((-2 (|:| -2144 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|)))) 81)))
+(((-1278 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4180 ((-2 (|:| -2144 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))))) (-15 -4321 ((-2 (|:| -2144 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))) |#2|))) (-351) (-1245 |#1|) (-1245 |#2|) (-412 |#2| |#3|)) (T -1278))
+((-4321 (*1 *2 *3) (-12 (-4 *4 (-351)) (-4 *3 (-1245 *4)) (-4 *5 (-1245 *3)) (-5 *2 (-2 (|:| -2144 (-690 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-690 *3)))) (-5 *1 (-1278 *4 *3 *5 *6)) (-4 *6 (-412 *3 *5)))) (-4180 (*1 *2) (-12 (-4 *3 (-351)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 *4)) (-5 *2 (-2 (|:| -2144 (-690 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-690 *4)))) (-5 *1 (-1278 *3 *4 *5 *6)) (-4 *6 (-412 *4 *5)))))
+(-10 -7 (-15 -4180 ((-2 (|:| -2144 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))))) (-15 -4321 ((-2 (|:| -2144 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))) |#2|)))
+((-2412 (((-112) $ $) NIL)) (-4187 (((-1137) $) 11)) (-3946 (((-1137) $) 9)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) 17) (($ (-1184)) NIL) (((-1184) $) NIL)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)))
+(((-1279) (-13 (-1085) (-10 -8 (-15 -3946 ((-1137) $)) (-15 -4187 ((-1137) $))))) (T -1279))
+((-3946 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1279)))) (-4187 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1279)))))
+(-13 (-1085) (-10 -8 (-15 -3946 ((-1137) $)) (-15 -4187 ((-1137) $))))
+((-2412 (((-112) $ $) NIL)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-2066 (((-1137) $) 9)) (-4129 (((-863) $) 15) (($ (-1184)) NIL) (((-1184) $) NIL)) (-3357 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)))
+(((-1280) (-13 (-1085) (-10 -8 (-15 -2066 ((-1137) $))))) (T -1280))
+((-2066 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1280)))))
+(-13 (-1085) (-10 -8 (-15 -2066 ((-1137) $))))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) 58)) (-2376 (((-3 $ "failed") $ $) NIL)) (-3647 (($) NIL T CONST)) (-3588 (((-3 $ "failed") $) NIL)) (-4346 (((-112) $) NIL)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-4129 (((-863) $) 81) (($ (-567)) NIL) (($ |#4|) 65) ((|#4| $) 70) (($ |#1|) NIL (|has| |#1| (-172)))) (-2746 (((-772)) NIL T CONST)) (-1465 (((-1274) (-772)) 16)) (-3357 (((-112) $ $) NIL)) (-1733 (($) 37 T CONST)) (-1744 (($) 84 T CONST)) (-2946 (((-112) $ $) 87)) (-3069 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-3053 (($ $) 89) (($ $ $) NIL)) (-3041 (($ $ $) 63)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 91) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172)))))
+(((-1281 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1051) (-493 |#4|) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -3069 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1465 ((-1274) (-772))))) (-1051) (-851) (-794) (-951 |#1| |#3| |#2|) (-645 |#2|) (-645 (-772)) (-772)) (T -1281))
+((-3069 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-365)) (-4 *2 (-1051)) (-4 *3 (-851)) (-4 *4 (-794)) (-14 *6 (-645 *3)) (-5 *1 (-1281 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-951 *2 *4 *3)) (-14 *7 (-645 (-772))) (-14 *8 (-772)))) (-1465 (*1 *2 *3) (-12 (-5 *3 (-772)) (-4 *4 (-1051)) (-4 *5 (-851)) (-4 *6 (-794)) (-14 *8 (-645 *5)) (-5 *2 (-1274)) (-5 *1 (-1281 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-951 *4 *6 *5)) (-14 *9 (-645 *3)) (-14 *10 *3))))
+(-13 (-1051) (-493 |#4|) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -3069 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1465 ((-1274) (-772)))))
+((-2412 (((-112) $ $) NIL)) (-4305 (((-645 (-2 (|:| -4000 $) (|:| -3835 (-645 |#4|)))) (-645 |#4|)) NIL)) (-3403 (((-645 $) (-645 |#4|)) 96)) (-2859 (((-645 |#3|) $) NIL)) (-3153 (((-112) $) NIL)) (-2031 (((-112) $) NIL (|has| |#1| (-559)))) (-2176 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2345 ((|#4| |#4| $) NIL)) (-1311 (((-2 (|:| |under| $) (|:| -3969 $) (|:| |upper| $)) $ |#3|) NIL)) (-1563 (((-112) $ (-772)) NIL)) (-3356 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4422))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3647 (($) NIL T CONST)) (-1896 (((-112) $) NIL (|has| |#1| (-559)))) (-2909 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3040 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3365 (((-112) $) NIL (|has| |#1| (-559)))) (-3683 (((-645 |#4|) (-645 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 31)) (-1377 (((-645 |#4|) (-645 |#4|) $) 28 (|has| |#1| (-559)))) (-2279 (((-645 |#4|) (-645 |#4|) $) NIL (|has| |#1| (-559)))) (-3765 (((-3 $ "failed") (-645 |#4|)) NIL)) (-2051 (($ (-645 |#4|)) NIL)) (-2430 (((-3 $ "failed") $) 78)) (-3819 ((|#4| |#4| $) 83)) (-2453 (($ $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#4| (-1102))))) (-3246 (($ |#4| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#4| (-1102)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4422)))) (-2023 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-559)))) (-2240 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-1889 ((|#4| |#4| $) NIL)) (-2494 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4422)) (|has| |#4| (-1102)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4422))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4422))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4076 (((-2 (|:| -4000 (-645 |#4|)) (|:| -3835 (-645 |#4|))) $) NIL)) (-2799 (((-645 |#4|) $) NIL (|has| $ (-6 -4422)))) (-4061 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2072 ((|#3| $) 84)) (-4093 (((-112) $ (-772)) NIL)) (-1942 (((-645 |#4|) $) 32 (|has| $ (-6 -4422)))) (-3237 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#4| (-1102))))) (-3381 (((-3 $ "failed") (-645 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35) (((-3 $ "failed") (-645 |#4|)) 38)) (-3751 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4423)))) (-3841 (($ (-1 |#4| |#4|) $) NIL)) (-2869 (((-645 |#3|) $) NIL)) (-1524 (((-112) |#3| $) NIL)) (-1986 (((-112) $ (-772)) NIL)) (-2516 (((-1161) $) NIL)) (-3266 (((-3 |#4| "failed") $) NIL)) (-3881 (((-645 |#4|) $) 54)) (-3324 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1431 ((|#4| |#4| $) 82)) (-3995 (((-112) $ $) 93)) (-2634 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-559)))) (-4278 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3984 ((|#4| |#4| $) NIL)) (-3437 (((-1122) $) NIL)) (-2418 (((-3 |#4| "failed") $) 77)) (-3196 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3488 (((-3 $ "failed") $ |#4|) NIL)) (-1874 (($ $ |#4|) NIL)) (-4233 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4422)))) (-2642 (($ $ (-645 |#4|) (-645 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-295 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-645 (-295 |#4|))) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))))) (-3875 (((-112) $ $) NIL)) (-3885 (((-112) $) 75)) (-2701 (($) 46)) (-3104 (((-772) $) NIL)) (-3447 (((-772) |#4| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#4| (-1102)))) (((-772) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4422)))) (-4309 (($ $) NIL)) (-3902 (((-539) $) NIL (|has| |#4| (-615 (-539))))) (-4145 (($ (-645 |#4|)) NIL)) (-3937 (($ $ |#3|) NIL)) (-3165 (($ $ |#3|) NIL)) (-2085 (($ $) NIL)) (-1920 (($ $ |#3|) NIL)) (-4129 (((-863) $) NIL) (((-645 |#4|) $) 63)) (-1975 (((-772) $) NIL (|has| |#3| (-370)))) (-2172 (((-3 $ "failed") (-645 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 44) (((-3 $ "failed") (-645 |#4|)) 45)) (-4037 (((-645 $) (-645 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 73) (((-645 $) (-645 |#4|)) 74)) (-3357 (((-112) $ $) NIL)) (-1676 (((-3 (-2 (|:| |bas| $) (|:| -2270 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4| |#4|)) 27) (((-3 (-2 (|:| |bas| $) (|:| -2270 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1642 (((-112) $ (-1 (-112) |#4| (-645 |#4|))) NIL)) (-3436 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4422)))) (-2551 (((-645 |#3|) $) NIL)) (-2618 (((-112) |#3| $) NIL)) (-2946 (((-112) $ $) NIL)) (-2423 (((-772) $) NIL (|has| $ (-6 -4422)))))
+(((-1282 |#1| |#2| |#3| |#4|) (-13 (-1212 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3381 ((-3 $ "failed") (-645 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3381 ((-3 $ "failed") (-645 |#4|))) (-15 -2172 ((-3 $ "failed") (-645 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2172 ((-3 $ "failed") (-645 |#4|))) (-15 -4037 ((-645 $) (-645 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4037 ((-645 $) (-645 |#4|))))) (-559) (-794) (-851) (-1067 |#1| |#2| |#3|)) (T -1282))
+((-3381 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-645 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-1282 *5 *6 *7 *8)))) (-3381 (*1 *1 *2) (|partial| -12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-1282 *3 *4 *5 *6)))) (-2172 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-645 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-1282 *5 *6 *7 *8)))) (-2172 (*1 *1 *2) (|partial| -12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-1282 *3 *4 *5 *6)))) (-4037 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-645 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1067 *6 *7 *8)) (-4 *6 (-559)) (-4 *7 (-794)) (-4 *8 (-851)) (-5 *2 (-645 (-1282 *6 *7 *8 *9))) (-5 *1 (-1282 *6 *7 *8 *9)))) (-4037 (*1 *2 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 (-1282 *4 *5 *6 *7))) (-5 *1 (-1282 *4 *5 *6 *7)))))
+(-13 (-1212 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3381 ((-3 $ "failed") (-645 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3381 ((-3 $ "failed") (-645 |#4|))) (-15 -2172 ((-3 $ "failed") (-645 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2172 ((-3 $ "failed") (-645 |#4|))) (-15 -4037 ((-645 $) (-645 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4037 ((-645 $) (-645 |#4|)))))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-2376 (((-3 $ "failed") $ $) 20)) (-3647 (($) 18 T CONST)) (-3588 (((-3 $ "failed") $) 37)) (-4346 (((-112) $) 35)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-4129 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 45)) (-2746 (((-772)) 32 T CONST)) (-3357 (((-112) $ $) 9)) (-1733 (($) 19 T CONST)) (-1744 (($) 34 T CONST)) (-2946 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 47) (($ |#1| $) 46)))
+(((-1283 |#1|) (-140) (-1051)) (T -1283))
NIL
(-13 (-1051) (-111 |t#1| |t#1|) (-617 |t#1|) (-10 -7 (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-641 |#1|) |has| |#1| (-172)) ((-718 |#1|) |has| |#1| (-172)) ((-727) . T) ((-1053 |#1|) . T) ((-1058 |#1|) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T))
-((-2403 (((-112) $ $) 67)) (-2460 (((-112) $) NIL)) (-3267 (((-645 |#1|) $) 52)) (-2721 (($ $ (-772)) 46)) (-3472 (((-3 $ "failed") $ $) NIL)) (-1907 (($ $ (-772)) 24 (|has| |#2| (-172))) (($ $ $) 25 (|has| |#2| (-172)))) (-2585 (($) NIL T CONST)) (-2885 (($ $ $) 70) (($ $ (-820 |#1|)) 56) (($ $ |#1|) 60)) (-3753 (((-3 (-820 |#1|) "failed") $) NIL)) (-2038 (((-820 |#1|) $) NIL)) (-3014 (($ $) 39)) (-2109 (((-3 $ "failed") $) NIL)) (-3650 (((-112) $) NIL)) (-3851 (($ $) NIL)) (-1433 (((-112) $) NIL)) (-2695 (((-772) $) NIL)) (-1709 (((-645 $) $) NIL)) (-2843 (((-112) $) NIL)) (-2290 (($ (-820 |#1|) |#2|) 38)) (-3592 (($ $) 40)) (-3713 (((-2 (|:| |k| (-820 |#1|)) (|:| |c| |#2|)) $) 12)) (-2069 (((-820 |#1|) $) NIL)) (-3066 (((-820 |#1|) $) 41)) (-3829 (($ (-1 |#2| |#2|) $) NIL)) (-2173 (($ $ $) 69) (($ $ (-820 |#1|)) 58) (($ $ |#1|) 62)) (-1901 (((-2 (|:| |k| (-820 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2976 (((-820 |#1|) $) 35)) (-2989 ((|#2| $) 37)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-3077 (((-772) $) 43)) (-1935 (((-112) $) 47)) (-3286 ((|#2| $) NIL)) (-4132 (((-863) $) NIL) (($ (-820 |#1|)) 30) (($ |#1|) 31) (($ |#2|) NIL) (($ (-567)) NIL)) (-3032 (((-645 |#2|) $) NIL)) (-4136 ((|#2| $ (-820 |#1|)) NIL)) (-3694 ((|#2| $ $) 76) ((|#2| $ (-820 |#1|)) NIL)) (-4221 (((-772)) NIL T CONST)) (-1745 (((-112) $ $) NIL)) (-1716 (($) 13 T CONST)) (-1728 (($) 19 T CONST)) (-2761 (((-645 (-2 (|:| |k| (-820 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2936 (((-112) $ $) 44)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) 28)) (** (($ $ (-772)) NIL) (($ $ (-923)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ |#2| $) 27) (($ $ |#2|) 68) (($ |#2| (-820 |#1|)) NIL) (($ |#1| $) 33) (($ $ $) NIL)))
-(((-1283 |#1| |#2|) (-13 (-384 |#2| (-820 |#1|)) (-1289 |#1| |#2|)) (-851) (-1051)) (T -1283))
-NIL
-(-13 (-384 |#2| (-820 |#1|)) (-1289 |#1| |#2|))
-((-3063 ((|#3| |#3| (-772)) 30)) (-3946 ((|#3| |#3| (-772)) 36)) (-3189 ((|#3| |#3| |#3| (-772)) 37)))
-(((-1284 |#1| |#2| |#3|) (-10 -7 (-15 -3946 (|#3| |#3| (-772))) (-15 -3063 (|#3| |#3| (-772))) (-15 -3189 (|#3| |#3| |#3| (-772)))) (-13 (-1051) (-718 (-410 (-567)))) (-851) (-1289 |#2| |#1|)) (T -1284))
-((-3189 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-772)) (-4 *4 (-13 (-1051) (-718 (-410 (-567))))) (-4 *5 (-851)) (-5 *1 (-1284 *4 *5 *2)) (-4 *2 (-1289 *5 *4)))) (-3063 (*1 *2 *2 *3) (-12 (-5 *3 (-772)) (-4 *4 (-13 (-1051) (-718 (-410 (-567))))) (-4 *5 (-851)) (-5 *1 (-1284 *4 *5 *2)) (-4 *2 (-1289 *5 *4)))) (-3946 (*1 *2 *2 *3) (-12 (-5 *3 (-772)) (-4 *4 (-13 (-1051) (-718 (-410 (-567))))) (-4 *5 (-851)) (-5 *1 (-1284 *4 *5 *2)) (-4 *2 (-1289 *5 *4)))))
-(-10 -7 (-15 -3946 (|#3| |#3| (-772))) (-15 -3063 (|#3| |#3| (-772))) (-15 -3189 (|#3| |#3| |#3| (-772))))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3267 (((-645 |#1|) $) 47)) (-3472 (((-3 $ "failed") $ $) 20)) (-1907 (($ $ $) 50 (|has| |#2| (-172))) (($ $ (-772)) 49 (|has| |#2| (-172)))) (-2585 (($) 18 T CONST)) (-2885 (($ $ |#1|) 61) (($ $ (-820 |#1|)) 60) (($ $ $) 59)) (-3753 (((-3 (-820 |#1|) "failed") $) 71)) (-2038 (((-820 |#1|) $) 72)) (-2109 (((-3 $ "failed") $) 37)) (-3650 (((-112) $) 52)) (-3851 (($ $) 51)) (-1433 (((-112) $) 35)) (-2843 (((-112) $) 57)) (-2290 (($ (-820 |#1|) |#2|) 58)) (-3592 (($ $) 56)) (-3713 (((-2 (|:| |k| (-820 |#1|)) (|:| |c| |#2|)) $) 67)) (-2069 (((-820 |#1|) $) 68)) (-3829 (($ (-1 |#2| |#2|) $) 48)) (-2173 (($ $ |#1|) 64) (($ $ (-820 |#1|)) 63) (($ $ $) 62)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-1935 (((-112) $) 54)) (-3286 ((|#2| $) 53)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ |#2|) 75) (($ (-820 |#1|)) 70) (($ |#1|) 55)) (-3694 ((|#2| $ (-820 |#1|)) 66) ((|#2| $ $) 65)) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69)))
-(((-1285 |#1| |#2|) (-140) (-851) (-1051)) (T -1285))
-((* (*1 *1 *1 *2) (-12 (-4 *1 (-1285 *3 *2)) (-4 *3 (-851)) (-4 *2 (-1051)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1285 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1051)))) (-2069 (*1 *2 *1) (-12 (-4 *1 (-1285 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)) (-5 *2 (-820 *3)))) (-3713 (*1 *2 *1) (-12 (-4 *1 (-1285 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)) (-5 *2 (-2 (|:| |k| (-820 *3)) (|:| |c| *4))))) (-3694 (*1 *2 *1 *3) (-12 (-5 *3 (-820 *4)) (-4 *1 (-1285 *4 *2)) (-4 *4 (-851)) (-4 *2 (-1051)))) (-3694 (*1 *2 *1 *1) (-12 (-4 *1 (-1285 *3 *2)) (-4 *3 (-851)) (-4 *2 (-1051)))) (-2173 (*1 *1 *1 *2) (-12 (-4 *1 (-1285 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1051)))) (-2173 (*1 *1 *1 *2) (-12 (-5 *2 (-820 *3)) (-4 *1 (-1285 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)))) (-2173 (*1 *1 *1 *1) (-12 (-4 *1 (-1285 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1051)))) (-2885 (*1 *1 *1 *2) (-12 (-4 *1 (-1285 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1051)))) (-2885 (*1 *1 *1 *2) (-12 (-5 *2 (-820 *3)) (-4 *1 (-1285 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)))) (-2885 (*1 *1 *1 *1) (-12 (-4 *1 (-1285 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1051)))) (-2290 (*1 *1 *2 *3) (-12 (-5 *2 (-820 *4)) (-4 *4 (-851)) (-4 *1 (-1285 *4 *3)) (-4 *3 (-1051)))) (-2843 (*1 *2 *1) (-12 (-4 *1 (-1285 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)) (-5 *2 (-112)))) (-3592 (*1 *1 *1) (-12 (-4 *1 (-1285 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1051)))) (-4132 (*1 *1 *2) (-12 (-4 *1 (-1285 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1051)))) (-1935 (*1 *2 *1) (-12 (-4 *1 (-1285 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)) (-5 *2 (-112)))) (-3286 (*1 *2 *1) (-12 (-4 *1 (-1285 *3 *2)) (-4 *3 (-851)) (-4 *2 (-1051)))) (-3650 (*1 *2 *1) (-12 (-4 *1 (-1285 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)) (-5 *2 (-112)))) (-3851 (*1 *1 *1) (-12 (-4 *1 (-1285 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1051)))) (-1907 (*1 *1 *1 *1) (-12 (-4 *1 (-1285 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1051)) (-4 *3 (-172)))) (-1907 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1285 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)) (-4 *4 (-172)))) (-3829 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1285 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)))) (-3267 (*1 *2 *1) (-12 (-4 *1 (-1285 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)) (-5 *2 (-645 *3)))))
-(-13 (-1051) (-1282 |t#2|) (-1040 (-820 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -2069 ((-820 |t#1|) $)) (-15 -3713 ((-2 (|:| |k| (-820 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -3694 (|t#2| $ (-820 |t#1|))) (-15 -3694 (|t#2| $ $)) (-15 -2173 ($ $ |t#1|)) (-15 -2173 ($ $ (-820 |t#1|))) (-15 -2173 ($ $ $)) (-15 -2885 ($ $ |t#1|)) (-15 -2885 ($ $ (-820 |t#1|))) (-15 -2885 ($ $ $)) (-15 -2290 ($ (-820 |t#1|) |t#2|)) (-15 -2843 ((-112) $)) (-15 -3592 ($ $)) (-15 -4132 ($ |t#1|)) (-15 -1935 ((-112) $)) (-15 -3286 (|t#2| $)) (-15 -3650 ((-112) $)) (-15 -3851 ($ $)) (IF (|has| |t#2| (-172)) (PROGN (-15 -1907 ($ $ $)) (-15 -1907 ($ $ (-772)))) |%noBranch|) (-15 -3829 ($ (-1 |t#2| |t#2|) $)) (-15 -3267 ((-645 |t#1|) $)) (IF (|has| |t#2| (-6 -4411)) (-6 -4411) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-172)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-617 (-567)) . T) ((-617 #0=(-820 |#1|)) . T) ((-617 |#2|) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#2|) . T) ((-647 $) . T) ((-649 |#2|) . T) ((-649 $) . T) ((-641 |#2|) |has| |#2| (-172)) ((-718 |#2|) |has| |#2| (-172)) ((-727) . T) ((-1040 #0#) . T) ((-1053 |#2|) . T) ((-1058 |#2|) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1282 |#2|) . T))
-((-3419 (((-112) $) 15)) (-2012 (((-112) $) 14)) (-3253 (($ $) 19) (($ $ (-772)) 21)))
-(((-1286 |#1| |#2|) (-10 -8 (-15 -3253 (|#1| |#1| (-772))) (-15 -3253 (|#1| |#1|)) (-15 -3419 ((-112) |#1|)) (-15 -2012 ((-112) |#1|))) (-1287 |#2|) (-365)) (T -1286))
-NIL
-(-10 -8 (-15 -3253 (|#1| |#1| (-772))) (-15 -3253 (|#1| |#1|)) (-15 -3419 ((-112) |#1|)) (-15 -2012 ((-112) |#1|)))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3666 (((-2 (|:| -3951 $) (|:| -4405 $) (|:| |associate| $)) $) 47)) (-4381 (($ $) 46)) (-3949 (((-112) $) 44)) (-3419 (((-112) $) 104)) (-3862 (((-772)) 100)) (-3472 (((-3 $ "failed") $ $) 20)) (-3248 (($ $) 81)) (-2908 (((-421 $) $) 80)) (-3609 (((-112) $ $) 65)) (-2585 (($) 18 T CONST)) (-3753 (((-3 |#1| "failed") $) 111)) (-2038 ((|#1| $) 112)) (-2349 (($ $ $) 61)) (-2109 (((-3 $ "failed") $) 37)) (-2360 (($ $ $) 62)) (-3179 (((-2 (|:| -3694 (-645 $)) (|:| -1398 $)) (-645 $)) 57)) (-4225 (($ $ (-772)) 97 (-2800 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) 96 (-2800 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3184 (((-112) $) 79)) (-4384 (((-834 (-923)) $) 94 (-2800 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1433 (((-112) $) 35)) (-1725 (((-3 (-645 $) "failed") (-645 $) $) 58)) (-2740 (($ $ $) 52) (($ (-645 $)) 51)) (-1419 (((-1160) $) 10)) (-2939 (($ $) 78)) (-2051 (((-112) $) 103)) (-3430 (((-1122) $) 11)) (-3750 (((-1174 $) (-1174 $) (-1174 $)) 50)) (-2774 (($ $ $) 54) (($ (-645 $)) 53)) (-2706 (((-421 $) $) 82)) (-1953 (((-834 (-923))) 101)) (-3402 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1398 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2391 (((-3 $ "failed") $ $) 48)) (-3117 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-1990 (((-772) $) 64)) (-2384 (((-2 (|:| -3102 $) (|:| -4194 $)) $ $) 63)) (-2491 (((-3 (-772) "failed") $ $) 95 (-2800 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1879 (((-134)) 109)) (-3077 (((-834 (-923)) $) 102)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-410 (-567))) 74) (($ |#1|) 110)) (-1903 (((-3 $ "failed") $) 93 (-2800 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-3816 (((-112) $ $) 45)) (-2012 (((-112) $) 105)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-3253 (($ $) 99 (|has| |#1| (-370))) (($ $ (-772)) 98 (|has| |#1| (-370)))) (-2936 (((-112) $ $) 6)) (-3060 (($ $ $) 73) (($ $ |#1|) 108)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 77)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 76) (($ (-410 (-567)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106)))
-(((-1287 |#1|) (-140) (-365)) (T -1287))
-((-2012 (*1 *2 *1) (-12 (-4 *1 (-1287 *3)) (-4 *3 (-365)) (-5 *2 (-112)))) (-3419 (*1 *2 *1) (-12 (-4 *1 (-1287 *3)) (-4 *3 (-365)) (-5 *2 (-112)))) (-2051 (*1 *2 *1) (-12 (-4 *1 (-1287 *3)) (-4 *3 (-365)) (-5 *2 (-112)))) (-3077 (*1 *2 *1) (-12 (-4 *1 (-1287 *3)) (-4 *3 (-365)) (-5 *2 (-834 (-923))))) (-1953 (*1 *2) (-12 (-4 *1 (-1287 *3)) (-4 *3 (-365)) (-5 *2 (-834 (-923))))) (-3862 (*1 *2) (-12 (-4 *1 (-1287 *3)) (-4 *3 (-365)) (-5 *2 (-772)))) (-3253 (*1 *1 *1) (-12 (-4 *1 (-1287 *2)) (-4 *2 (-365)) (-4 *2 (-370)))) (-3253 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1287 *3)) (-4 *3 (-365)) (-4 *3 (-370)))))
-(-13 (-365) (-1040 |t#1|) (-1275 |t#1|) (-10 -8 (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-405)) |%noBranch|) (-15 -2012 ((-112) $)) (-15 -3419 ((-112) $)) (-15 -2051 ((-112) $)) (-15 -3077 ((-834 (-923)) $)) (-15 -1953 ((-834 (-923)))) (-15 -3862 ((-772))) (IF (|has| |t#1| (-370)) (PROGN (-6 (-405)) (-15 -3253 ($ $)) (-15 -3253 ($ $ (-772)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2800 (|has| |#1| (-370)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-617 #0#) . T) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-405) -2800 (|has| |#1| (-370)) (|has| |#1| (-145))) ((-455) . T) ((-559) . T) ((-647 #0#) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) . T) ((-641 |#1|) . T) ((-641 $) . T) ((-718 #0#) . T) ((-718 |#1|) . T) ((-718 $) . T) ((-727) . T) ((-922) . T) ((-1040 |#1|) . T) ((-1053 #0#) . T) ((-1053 |#1|) . T) ((-1053 $) . T) ((-1058 #0#) . T) ((-1058 |#1|) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1222) . T) ((-1275 |#1|) . T))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3267 (((-645 |#1|) $) 99)) (-2721 (($ $ (-772)) 103)) (-3472 (((-3 $ "failed") $ $) NIL)) (-1907 (($ $ $) NIL (|has| |#2| (-172))) (($ $ (-772)) NIL (|has| |#2| (-172)))) (-2585 (($) NIL T CONST)) (-2885 (($ $ |#1|) NIL) (($ $ (-820 |#1|)) NIL) (($ $ $) NIL)) (-3753 (((-3 (-820 |#1|) "failed") $) NIL) (((-3 (-895 |#1|) "failed") $) NIL)) (-2038 (((-820 |#1|) $) NIL) (((-895 |#1|) $) NIL)) (-3014 (($ $) 102)) (-2109 (((-3 $ "failed") $) NIL)) (-3650 (((-112) $) 91)) (-3851 (($ $) 94)) (-4207 (($ $ $ (-772)) 104)) (-1433 (((-112) $) NIL)) (-2695 (((-772) $) NIL)) (-1709 (((-645 $) $) NIL)) (-2843 (((-112) $) NIL)) (-2290 (($ (-820 |#1|) |#2|) NIL) (($ (-895 |#1|) |#2|) 29)) (-3592 (($ $) 121)) (-3713 (((-2 (|:| |k| (-820 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2069 (((-820 |#1|) $) NIL)) (-3066 (((-820 |#1|) $) NIL)) (-3829 (($ (-1 |#2| |#2|) $) NIL)) (-2173 (($ $ |#1|) NIL) (($ $ (-820 |#1|)) NIL) (($ $ $) NIL)) (-3063 (($ $ (-772)) 114 (|has| |#2| (-718 (-410 (-567)))))) (-1901 (((-2 (|:| |k| (-895 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2976 (((-895 |#1|) $) 84)) (-2989 ((|#2| $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-3946 (($ $ (-772)) 111 (|has| |#2| (-718 (-410 (-567)))))) (-3077 (((-772) $) 100)) (-1935 (((-112) $) 85)) (-3286 ((|#2| $) 89)) (-4132 (((-863) $) 70) (($ (-567)) NIL) (($ |#2|) 60) (($ (-820 |#1|)) NIL) (($ |#1|) 72) (($ (-895 |#1|)) NIL) (($ (-665 |#1| |#2|)) 48) (((-1283 |#1| |#2|) $) 77) (((-1292 |#1| |#2|) $) 82)) (-3032 (((-645 |#2|) $) NIL)) (-4136 ((|#2| $ (-895 |#1|)) NIL)) (-3694 ((|#2| $ (-820 |#1|)) NIL) ((|#2| $ $) NIL)) (-4221 (((-772)) NIL T CONST)) (-1745 (((-112) $ $) NIL)) (-1716 (($) 21 T CONST)) (-1728 (($) 28 T CONST)) (-2761 (((-645 (-2 (|:| |k| (-895 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1428 (((-3 (-665 |#1| |#2|) "failed") $) 120)) (-2936 (((-112) $ $) 78)) (-3045 (($ $) 113) (($ $ $) 112)) (-3033 (($ $ $) 20)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 49) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-895 |#1|)) NIL)))
-(((-1288 |#1| |#2|) (-13 (-1289 |#1| |#2|) (-384 |#2| (-895 |#1|)) (-10 -8 (-15 -4132 ($ (-665 |#1| |#2|))) (-15 -4132 ((-1283 |#1| |#2|) $)) (-15 -4132 ((-1292 |#1| |#2|) $)) (-15 -1428 ((-3 (-665 |#1| |#2|) "failed") $)) (-15 -4207 ($ $ $ (-772))) (IF (|has| |#2| (-718 (-410 (-567)))) (PROGN (-15 -3946 ($ $ (-772))) (-15 -3063 ($ $ (-772)))) |%noBranch|))) (-851) (-172)) (T -1288))
-((-4132 (*1 *1 *2) (-12 (-5 *2 (-665 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)) (-5 *1 (-1288 *3 *4)))) (-4132 (*1 *2 *1) (-12 (-5 *2 (-1283 *3 *4)) (-5 *1 (-1288 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)))) (-4132 (*1 *2 *1) (-12 (-5 *2 (-1292 *3 *4)) (-5 *1 (-1288 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)))) (-1428 (*1 *2 *1) (|partial| -12 (-5 *2 (-665 *3 *4)) (-5 *1 (-1288 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)))) (-4207 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-1288 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)))) (-3946 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-1288 *3 *4)) (-4 *4 (-718 (-410 (-567)))) (-4 *3 (-851)) (-4 *4 (-172)))) (-3063 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-1288 *3 *4)) (-4 *4 (-718 (-410 (-567)))) (-4 *3 (-851)) (-4 *4 (-172)))))
-(-13 (-1289 |#1| |#2|) (-384 |#2| (-895 |#1|)) (-10 -8 (-15 -4132 ($ (-665 |#1| |#2|))) (-15 -4132 ((-1283 |#1| |#2|) $)) (-15 -4132 ((-1292 |#1| |#2|) $)) (-15 -1428 ((-3 (-665 |#1| |#2|) "failed") $)) (-15 -4207 ($ $ $ (-772))) (IF (|has| |#2| (-718 (-410 (-567)))) (PROGN (-15 -3946 ($ $ (-772))) (-15 -3063 ($ $ (-772)))) |%noBranch|)))
-((-2403 (((-112) $ $) 7)) (-2460 (((-112) $) 17)) (-3267 (((-645 |#1|) $) 47)) (-2721 (($ $ (-772)) 80)) (-3472 (((-3 $ "failed") $ $) 20)) (-1907 (($ $ $) 50 (|has| |#2| (-172))) (($ $ (-772)) 49 (|has| |#2| (-172)))) (-2585 (($) 18 T CONST)) (-2885 (($ $ |#1|) 61) (($ $ (-820 |#1|)) 60) (($ $ $) 59)) (-3753 (((-3 (-820 |#1|) "failed") $) 71)) (-2038 (((-820 |#1|) $) 72)) (-2109 (((-3 $ "failed") $) 37)) (-3650 (((-112) $) 52)) (-3851 (($ $) 51)) (-1433 (((-112) $) 35)) (-2843 (((-112) $) 57)) (-2290 (($ (-820 |#1|) |#2|) 58)) (-3592 (($ $) 56)) (-3713 (((-2 (|:| |k| (-820 |#1|)) (|:| |c| |#2|)) $) 67)) (-2069 (((-820 |#1|) $) 68)) (-3066 (((-820 |#1|) $) 82)) (-3829 (($ (-1 |#2| |#2|) $) 48)) (-2173 (($ $ |#1|) 64) (($ $ (-820 |#1|)) 63) (($ $ $) 62)) (-1419 (((-1160) $) 10)) (-3430 (((-1122) $) 11)) (-3077 (((-772) $) 81)) (-1935 (((-112) $) 54)) (-3286 ((|#2| $) 53)) (-4132 (((-863) $) 12) (($ (-567)) 33) (($ |#2|) 75) (($ (-820 |#1|)) 70) (($ |#1|) 55)) (-3694 ((|#2| $ (-820 |#1|)) 66) ((|#2| $ $) 65)) (-4221 (((-772)) 32 T CONST)) (-1745 (((-112) $ $) 9)) (-1716 (($) 19 T CONST)) (-1728 (($) 34 T CONST)) (-2936 (((-112) $ $) 6)) (-3045 (($ $) 23) (($ $ $) 22)) (-3033 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69)))
-(((-1289 |#1| |#2|) (-140) (-851) (-1051)) (T -1289))
-((-3066 (*1 *2 *1) (-12 (-4 *1 (-1289 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)) (-5 *2 (-820 *3)))) (-3077 (*1 *2 *1) (-12 (-4 *1 (-1289 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)) (-5 *2 (-772)))) (-2721 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1289 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)))))
-(-13 (-1285 |t#1| |t#2|) (-10 -8 (-15 -3066 ((-820 |t#1|) $)) (-15 -3077 ((-772) $)) (-15 -2721 ($ $ (-772)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-172)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-617 (-567)) . T) ((-617 #0=(-820 |#1|)) . T) ((-617 |#2|) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#2|) . T) ((-647 $) . T) ((-649 |#2|) . T) ((-649 $) . T) ((-641 |#2|) |has| |#2| (-172)) ((-718 |#2|) |has| |#2| (-172)) ((-727) . T) ((-1040 #0#) . T) ((-1053 |#2|) . T) ((-1058 |#2|) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1282 |#2|) . T) ((-1285 |#1| |#2|) . T))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3267 (((-645 (-1178)) $) NIL)) (-3974 (($ (-1283 (-1178) |#1|)) NIL)) (-2721 (($ $ (-772)) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-1907 (($ $ $) NIL (|has| |#1| (-172))) (($ $ (-772)) NIL (|has| |#1| (-172)))) (-2585 (($) NIL T CONST)) (-2885 (($ $ (-1178)) NIL) (($ $ (-820 (-1178))) NIL) (($ $ $) NIL)) (-3753 (((-3 (-820 (-1178)) "failed") $) NIL)) (-2038 (((-820 (-1178)) $) NIL)) (-2109 (((-3 $ "failed") $) NIL)) (-3650 (((-112) $) NIL)) (-3851 (($ $) NIL)) (-1433 (((-112) $) NIL)) (-2843 (((-112) $) NIL)) (-2290 (($ (-820 (-1178)) |#1|) NIL)) (-3592 (($ $) NIL)) (-3713 (((-2 (|:| |k| (-820 (-1178))) (|:| |c| |#1|)) $) NIL)) (-2069 (((-820 (-1178)) $) NIL)) (-3066 (((-820 (-1178)) $) NIL)) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-2173 (($ $ (-1178)) NIL) (($ $ (-820 (-1178))) NIL) (($ $ $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-3317 (((-1283 (-1178) |#1|) $) NIL)) (-3077 (((-772) $) NIL)) (-1935 (((-112) $) NIL)) (-3286 ((|#1| $) NIL)) (-4132 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) NIL) (($ (-820 (-1178))) NIL) (($ (-1178)) NIL)) (-3694 ((|#1| $ (-820 (-1178))) NIL) ((|#1| $ $) NIL)) (-4221 (((-772)) NIL T CONST)) (-1745 (((-112) $ $) NIL)) (-1716 (($) NIL T CONST)) (-1416 (((-645 (-2 (|:| |k| (-1178)) (|:| |c| $))) $) NIL)) (-1728 (($) NIL T CONST)) (-2936 (((-112) $ $) NIL)) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1178) $) NIL)))
-(((-1290 |#1|) (-13 (-1289 (-1178) |#1|) (-10 -8 (-15 -3317 ((-1283 (-1178) |#1|) $)) (-15 -3974 ($ (-1283 (-1178) |#1|))) (-15 -1416 ((-645 (-2 (|:| |k| (-1178)) (|:| |c| $))) $)))) (-1051)) (T -1290))
-((-3317 (*1 *2 *1) (-12 (-5 *2 (-1283 (-1178) *3)) (-5 *1 (-1290 *3)) (-4 *3 (-1051)))) (-3974 (*1 *1 *2) (-12 (-5 *2 (-1283 (-1178) *3)) (-4 *3 (-1051)) (-5 *1 (-1290 *3)))) (-1416 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| |k| (-1178)) (|:| |c| (-1290 *3))))) (-5 *1 (-1290 *3)) (-4 *3 (-1051)))))
-(-13 (-1289 (-1178) |#1|) (-10 -8 (-15 -3317 ((-1283 (-1178) |#1|) $)) (-15 -3974 ($ (-1283 (-1178) |#1|))) (-15 -1416 ((-645 (-2 (|:| |k| (-1178)) (|:| |c| $))) $))))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) NIL)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2585 (($) NIL T CONST)) (-3753 (((-3 |#2| "failed") $) NIL)) (-2038 ((|#2| $) NIL)) (-3014 (($ $) NIL)) (-2109 (((-3 $ "failed") $) 42)) (-3650 (((-112) $) 35)) (-3851 (($ $) 37)) (-1433 (((-112) $) NIL)) (-2695 (((-772) $) NIL)) (-1709 (((-645 $) $) NIL)) (-2843 (((-112) $) NIL)) (-2290 (($ |#2| |#1|) NIL)) (-2069 ((|#2| $) 24)) (-3066 ((|#2| $) 22)) (-3829 (($ (-1 |#1| |#1|) $) NIL)) (-1901 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-2976 ((|#2| $) NIL)) (-2989 ((|#1| $) NIL)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-1935 (((-112) $) 32)) (-3286 ((|#1| $) 33)) (-4132 (((-863) $) 65) (($ (-567)) 46) (($ |#1|) 41) (($ |#2|) NIL)) (-3032 (((-645 |#1|) $) NIL)) (-4136 ((|#1| $ |#2|) NIL)) (-3694 ((|#1| $ |#2|) 28)) (-4221 (((-772)) 14 T CONST)) (-1745 (((-112) $ $) NIL)) (-1716 (($) 29 T CONST)) (-1728 (($) 11 T CONST)) (-2761 (((-645 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-2936 (((-112) $ $) 30)) (-3060 (($ $ |#1|) 67 (|has| |#1| (-365)))) (-3045 (($ $) NIL) (($ $ $) NIL)) (-3033 (($ $ $) 50)) (** (($ $ (-923)) NIL) (($ $ (-772)) 52)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 51) (($ |#1| $) 47) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-2414 (((-772) $) 16)))
-(((-1291 |#1| |#2|) (-13 (-1051) (-1282 |#1|) (-384 |#1| |#2|) (-617 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2414 ((-772) $)) (-15 -3066 (|#2| $)) (-15 -2069 (|#2| $)) (-15 -3014 ($ $)) (-15 -3694 (|#1| $ |#2|)) (-15 -1935 ((-112) $)) (-15 -3286 (|#1| $)) (-15 -3650 ((-112) $)) (-15 -3851 ($ $)) (-15 -3829 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-365)) (-15 -3060 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4411)) (-6 -4411) |%noBranch|) (IF (|has| |#1| (-6 -4415)) (-6 -4415) |%noBranch|) (IF (|has| |#1| (-6 -4416)) (-6 -4416) |%noBranch|))) (-1051) (-847)) (T -1291))
-((* (*1 *1 *1 *2) (-12 (-5 *1 (-1291 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-847)))) (-3014 (*1 *1 *1) (-12 (-5 *1 (-1291 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-847)))) (-3829 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1051)) (-5 *1 (-1291 *3 *4)) (-4 *4 (-847)))) (-2414 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1291 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-847)))) (-3066 (*1 *2 *1) (-12 (-4 *2 (-847)) (-5 *1 (-1291 *3 *2)) (-4 *3 (-1051)))) (-2069 (*1 *2 *1) (-12 (-4 *2 (-847)) (-5 *1 (-1291 *3 *2)) (-4 *3 (-1051)))) (-3694 (*1 *2 *1 *3) (-12 (-4 *2 (-1051)) (-5 *1 (-1291 *2 *3)) (-4 *3 (-847)))) (-1935 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1291 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-847)))) (-3286 (*1 *2 *1) (-12 (-4 *2 (-1051)) (-5 *1 (-1291 *2 *3)) (-4 *3 (-847)))) (-3650 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1291 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-847)))) (-3851 (*1 *1 *1) (-12 (-5 *1 (-1291 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-847)))) (-3060 (*1 *1 *1 *2) (-12 (-5 *1 (-1291 *2 *3)) (-4 *2 (-365)) (-4 *2 (-1051)) (-4 *3 (-847)))))
-(-13 (-1051) (-1282 |#1|) (-384 |#1| |#2|) (-617 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2414 ((-772) $)) (-15 -3066 (|#2| $)) (-15 -2069 (|#2| $)) (-15 -3014 ($ $)) (-15 -3694 (|#1| $ |#2|)) (-15 -1935 ((-112) $)) (-15 -3286 (|#1| $)) (-15 -3650 ((-112) $)) (-15 -3851 ($ $)) (-15 -3829 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-365)) (-15 -3060 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4411)) (-6 -4411) |%noBranch|) (IF (|has| |#1| (-6 -4415)) (-6 -4415) |%noBranch|) (IF (|has| |#1| (-6 -4416)) (-6 -4416) |%noBranch|)))
-((-2403 (((-112) $ $) 27)) (-2460 (((-112) $) NIL)) (-3267 (((-645 |#1|) $) 132)) (-3974 (($ (-1283 |#1| |#2|)) 50)) (-2721 (($ $ (-772)) 38)) (-3472 (((-3 $ "failed") $ $) NIL)) (-1907 (($ $ $) 54 (|has| |#2| (-172))) (($ $ (-772)) 52 (|has| |#2| (-172)))) (-2585 (($) NIL T CONST)) (-2885 (($ $ |#1|) 114) (($ $ (-820 |#1|)) 115) (($ $ $) 26)) (-3753 (((-3 (-820 |#1|) "failed") $) NIL)) (-2038 (((-820 |#1|) $) NIL)) (-2109 (((-3 $ "failed") $) 122)) (-3650 (((-112) $) 117)) (-3851 (($ $) 118)) (-1433 (((-112) $) NIL)) (-2843 (((-112) $) NIL)) (-2290 (($ (-820 |#1|) |#2|) 20)) (-3592 (($ $) NIL)) (-3713 (((-2 (|:| |k| (-820 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2069 (((-820 |#1|) $) 123)) (-3066 (((-820 |#1|) $) 126)) (-3829 (($ (-1 |#2| |#2|) $) 131)) (-2173 (($ $ |#1|) 112) (($ $ (-820 |#1|)) 113) (($ $ $) 62)) (-1419 (((-1160) $) NIL)) (-3430 (((-1122) $) NIL)) (-3317 (((-1283 |#1| |#2|) $) 94)) (-3077 (((-772) $) 129)) (-1935 (((-112) $) 81)) (-3286 ((|#2| $) 32)) (-4132 (((-863) $) 73) (($ (-567)) 87) (($ |#2|) 85) (($ (-820 |#1|)) 18) (($ |#1|) 84)) (-3694 ((|#2| $ (-820 |#1|)) 116) ((|#2| $ $) 28)) (-4221 (((-772)) 120 T CONST)) (-1745 (((-112) $ $) NIL)) (-1716 (($) 15 T CONST)) (-1416 (((-645 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59)) (-1728 (($) 33 T CONST)) (-2936 (((-112) $ $) 14)) (-3045 (($ $) 98) (($ $ $) 101)) (-3033 (($ $ $) 61)) (** (($ $ (-923)) NIL) (($ $ (-772)) 55)) (* (($ (-923) $) NIL) (($ (-772) $) 53) (($ (-567) $) 106) (($ $ $) 22) (($ |#2| $) 19) (($ $ |#2|) 21) (($ |#1| $) 92)))
-(((-1292 |#1| |#2|) (-13 (-1289 |#1| |#2|) (-10 -8 (-15 -3317 ((-1283 |#1| |#2|) $)) (-15 -3974 ($ (-1283 |#1| |#2|))) (-15 -1416 ((-645 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-851) (-1051)) (T -1292))
-((-3317 (*1 *2 *1) (-12 (-5 *2 (-1283 *3 *4)) (-5 *1 (-1292 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)))) (-3974 (*1 *1 *2) (-12 (-5 *2 (-1283 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)) (-5 *1 (-1292 *3 *4)))) (-1416 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| |k| *3) (|:| |c| (-1292 *3 *4))))) (-5 *1 (-1292 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)))))
-(-13 (-1289 |#1| |#2|) (-10 -8 (-15 -3317 ((-1283 |#1| |#2|) $)) (-15 -3974 ($ (-1283 |#1| |#2|))) (-15 -1416 ((-645 (-2 (|:| |k| |#1|) (|:| |c| $))) $))))
-((-1898 (((-645 (-1158 |#1|)) (-1 (-645 (-1158 |#1|)) (-645 (-1158 |#1|))) (-567)) 20) (((-1158 |#1|) (-1 (-1158 |#1|) (-1158 |#1|))) 13)))
-(((-1293 |#1|) (-10 -7 (-15 -1898 ((-1158 |#1|) (-1 (-1158 |#1|) (-1158 |#1|)))) (-15 -1898 ((-645 (-1158 |#1|)) (-1 (-645 (-1158 |#1|)) (-645 (-1158 |#1|))) (-567)))) (-1218)) (T -1293))
-((-1898 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-645 (-1158 *5)) (-645 (-1158 *5)))) (-5 *4 (-567)) (-5 *2 (-645 (-1158 *5))) (-5 *1 (-1293 *5)) (-4 *5 (-1218)))) (-1898 (*1 *2 *3) (-12 (-5 *3 (-1 (-1158 *4) (-1158 *4))) (-5 *2 (-1158 *4)) (-5 *1 (-1293 *4)) (-4 *4 (-1218)))))
-(-10 -7 (-15 -1898 ((-1158 |#1|) (-1 (-1158 |#1|) (-1158 |#1|)))) (-15 -1898 ((-645 (-1158 |#1|)) (-1 (-645 (-1158 |#1|)) (-645 (-1158 |#1|))) (-567))))
-((-3608 (((-645 (-2 (|:| -3892 (-1174 |#1|)) (|:| -2887 (-645 (-954 |#1|))))) (-645 (-954 |#1|))) 174) (((-645 (-2 (|:| -3892 (-1174 |#1|)) (|:| -2887 (-645 (-954 |#1|))))) (-645 (-954 |#1|)) (-112)) 173) (((-645 (-2 (|:| -3892 (-1174 |#1|)) (|:| -2887 (-645 (-954 |#1|))))) (-645 (-954 |#1|)) (-112) (-112)) 172) (((-645 (-2 (|:| -3892 (-1174 |#1|)) (|:| -2887 (-645 (-954 |#1|))))) (-645 (-954 |#1|)) (-112) (-112) (-112)) 171) (((-645 (-2 (|:| -3892 (-1174 |#1|)) (|:| -2887 (-645 (-954 |#1|))))) (-1048 |#1| |#2|)) 156)) (-2690 (((-645 (-1048 |#1| |#2|)) (-645 (-954 |#1|))) 85) (((-645 (-1048 |#1| |#2|)) (-645 (-954 |#1|)) (-112)) 84) (((-645 (-1048 |#1| |#2|)) (-645 (-954 |#1|)) (-112) (-112)) 83)) (-2908 (((-645 (-1148 |#1| (-534 (-865 |#3|)) (-865 |#3|) (-781 |#1| (-865 |#3|)))) (-1048 |#1| |#2|)) 73)) (-2032 (((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|))) 140) (((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|)) (-112)) 139) (((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|)) (-112) (-112)) 138) (((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|)) (-112) (-112) (-112)) 137) (((-645 (-645 (-1026 (-410 |#1|)))) (-1048 |#1| |#2|)) 132)) (-1645 (((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|))) 145) (((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|)) (-112)) 144) (((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|)) (-112) (-112)) 143) (((-645 (-645 (-1026 (-410 |#1|)))) (-1048 |#1| |#2|)) 142)) (-3893 (((-645 (-781 |#1| (-865 |#3|))) (-1148 |#1| (-534 (-865 |#3|)) (-865 |#3|) (-781 |#1| (-865 |#3|)))) 111) (((-1174 (-1026 (-410 |#1|))) (-1174 |#1|)) 102) (((-954 (-1026 (-410 |#1|))) (-781 |#1| (-865 |#3|))) 109) (((-954 (-1026 (-410 |#1|))) (-954 |#1|)) 107) (((-781 |#1| (-865 |#3|)) (-781 |#1| (-865 |#2|))) 33)))
-(((-1294 |#1| |#2| |#3|) (-10 -7 (-15 -2690 ((-645 (-1048 |#1| |#2|)) (-645 (-954 |#1|)) (-112) (-112))) (-15 -2690 ((-645 (-1048 |#1| |#2|)) (-645 (-954 |#1|)) (-112))) (-15 -2690 ((-645 (-1048 |#1| |#2|)) (-645 (-954 |#1|)))) (-15 -3608 ((-645 (-2 (|:| -3892 (-1174 |#1|)) (|:| -2887 (-645 (-954 |#1|))))) (-1048 |#1| |#2|))) (-15 -3608 ((-645 (-2 (|:| -3892 (-1174 |#1|)) (|:| -2887 (-645 (-954 |#1|))))) (-645 (-954 |#1|)) (-112) (-112) (-112))) (-15 -3608 ((-645 (-2 (|:| -3892 (-1174 |#1|)) (|:| -2887 (-645 (-954 |#1|))))) (-645 (-954 |#1|)) (-112) (-112))) (-15 -3608 ((-645 (-2 (|:| -3892 (-1174 |#1|)) (|:| -2887 (-645 (-954 |#1|))))) (-645 (-954 |#1|)) (-112))) (-15 -3608 ((-645 (-2 (|:| -3892 (-1174 |#1|)) (|:| -2887 (-645 (-954 |#1|))))) (-645 (-954 |#1|)))) (-15 -2032 ((-645 (-645 (-1026 (-410 |#1|)))) (-1048 |#1| |#2|))) (-15 -2032 ((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|)) (-112) (-112) (-112))) (-15 -2032 ((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|)) (-112) (-112))) (-15 -2032 ((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|)) (-112))) (-15 -2032 ((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|)))) (-15 -1645 ((-645 (-645 (-1026 (-410 |#1|)))) (-1048 |#1| |#2|))) (-15 -1645 ((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|)) (-112) (-112))) (-15 -1645 ((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|)) (-112))) (-15 -1645 ((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|)))) (-15 -2908 ((-645 (-1148 |#1| (-534 (-865 |#3|)) (-865 |#3|) (-781 |#1| (-865 |#3|)))) (-1048 |#1| |#2|))) (-15 -3893 ((-781 |#1| (-865 |#3|)) (-781 |#1| (-865 |#2|)))) (-15 -3893 ((-954 (-1026 (-410 |#1|))) (-954 |#1|))) (-15 -3893 ((-954 (-1026 (-410 |#1|))) (-781 |#1| (-865 |#3|)))) (-15 -3893 ((-1174 (-1026 (-410 |#1|))) (-1174 |#1|))) (-15 -3893 ((-645 (-781 |#1| (-865 |#3|))) (-1148 |#1| (-534 (-865 |#3|)) (-865 |#3|) (-781 |#1| (-865 |#3|)))))) (-13 (-849) (-308) (-147) (-1024)) (-645 (-1178)) (-645 (-1178))) (T -1294))
-((-3893 (*1 *2 *3) (-12 (-5 *3 (-1148 *4 (-534 (-865 *6)) (-865 *6) (-781 *4 (-865 *6)))) (-4 *4 (-13 (-849) (-308) (-147) (-1024))) (-14 *6 (-645 (-1178))) (-5 *2 (-645 (-781 *4 (-865 *6)))) (-5 *1 (-1294 *4 *5 *6)) (-14 *5 (-645 (-1178))))) (-3893 (*1 *2 *3) (-12 (-5 *3 (-1174 *4)) (-4 *4 (-13 (-849) (-308) (-147) (-1024))) (-5 *2 (-1174 (-1026 (-410 *4)))) (-5 *1 (-1294 *4 *5 *6)) (-14 *5 (-645 (-1178))) (-14 *6 (-645 (-1178))))) (-3893 (*1 *2 *3) (-12 (-5 *3 (-781 *4 (-865 *6))) (-4 *4 (-13 (-849) (-308) (-147) (-1024))) (-14 *6 (-645 (-1178))) (-5 *2 (-954 (-1026 (-410 *4)))) (-5 *1 (-1294 *4 *5 *6)) (-14 *5 (-645 (-1178))))) (-3893 (*1 *2 *3) (-12 (-5 *3 (-954 *4)) (-4 *4 (-13 (-849) (-308) (-147) (-1024))) (-5 *2 (-954 (-1026 (-410 *4)))) (-5 *1 (-1294 *4 *5 *6)) (-14 *5 (-645 (-1178))) (-14 *6 (-645 (-1178))))) (-3893 (*1 *2 *3) (-12 (-5 *3 (-781 *4 (-865 *5))) (-4 *4 (-13 (-849) (-308) (-147) (-1024))) (-14 *5 (-645 (-1178))) (-5 *2 (-781 *4 (-865 *6))) (-5 *1 (-1294 *4 *5 *6)) (-14 *6 (-645 (-1178))))) (-2908 (*1 *2 *3) (-12 (-5 *3 (-1048 *4 *5)) (-4 *4 (-13 (-849) (-308) (-147) (-1024))) (-14 *5 (-645 (-1178))) (-5 *2 (-645 (-1148 *4 (-534 (-865 *6)) (-865 *6) (-781 *4 (-865 *6))))) (-5 *1 (-1294 *4 *5 *6)) (-14 *6 (-645 (-1178))))) (-1645 (*1 *2 *3) (-12 (-5 *3 (-645 (-954 *4))) (-4 *4 (-13 (-849) (-308) (-147) (-1024))) (-5 *2 (-645 (-645 (-1026 (-410 *4))))) (-5 *1 (-1294 *4 *5 *6)) (-14 *5 (-645 (-1178))) (-14 *6 (-645 (-1178))))) (-1645 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1024))) (-5 *2 (-645 (-645 (-1026 (-410 *5))))) (-5 *1 (-1294 *5 *6 *7)) (-14 *6 (-645 (-1178))) (-14 *7 (-645 (-1178))))) (-1645 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1024))) (-5 *2 (-645 (-645 (-1026 (-410 *5))))) (-5 *1 (-1294 *5 *6 *7)) (-14 *6 (-645 (-1178))) (-14 *7 (-645 (-1178))))) (-1645 (*1 *2 *3) (-12 (-5 *3 (-1048 *4 *5)) (-4 *4 (-13 (-849) (-308) (-147) (-1024))) (-14 *5 (-645 (-1178))) (-5 *2 (-645 (-645 (-1026 (-410 *4))))) (-5 *1 (-1294 *4 *5 *6)) (-14 *6 (-645 (-1178))))) (-2032 (*1 *2 *3) (-12 (-5 *3 (-645 (-954 *4))) (-4 *4 (-13 (-849) (-308) (-147) (-1024))) (-5 *2 (-645 (-645 (-1026 (-410 *4))))) (-5 *1 (-1294 *4 *5 *6)) (-14 *5 (-645 (-1178))) (-14 *6 (-645 (-1178))))) (-2032 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1024))) (-5 *2 (-645 (-645 (-1026 (-410 *5))))) (-5 *1 (-1294 *5 *6 *7)) (-14 *6 (-645 (-1178))) (-14 *7 (-645 (-1178))))) (-2032 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1024))) (-5 *2 (-645 (-645 (-1026 (-410 *5))))) (-5 *1 (-1294 *5 *6 *7)) (-14 *6 (-645 (-1178))) (-14 *7 (-645 (-1178))))) (-2032 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1024))) (-5 *2 (-645 (-645 (-1026 (-410 *5))))) (-5 *1 (-1294 *5 *6 *7)) (-14 *6 (-645 (-1178))) (-14 *7 (-645 (-1178))))) (-2032 (*1 *2 *3) (-12 (-5 *3 (-1048 *4 *5)) (-4 *4 (-13 (-849) (-308) (-147) (-1024))) (-14 *5 (-645 (-1178))) (-5 *2 (-645 (-645 (-1026 (-410 *4))))) (-5 *1 (-1294 *4 *5 *6)) (-14 *6 (-645 (-1178))))) (-3608 (*1 *2 *3) (-12 (-4 *4 (-13 (-849) (-308) (-147) (-1024))) (-5 *2 (-645 (-2 (|:| -3892 (-1174 *4)) (|:| -2887 (-645 (-954 *4)))))) (-5 *1 (-1294 *4 *5 *6)) (-5 *3 (-645 (-954 *4))) (-14 *5 (-645 (-1178))) (-14 *6 (-645 (-1178))))) (-3608 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1024))) (-5 *2 (-645 (-2 (|:| -3892 (-1174 *5)) (|:| -2887 (-645 (-954 *5)))))) (-5 *1 (-1294 *5 *6 *7)) (-5 *3 (-645 (-954 *5))) (-14 *6 (-645 (-1178))) (-14 *7 (-645 (-1178))))) (-3608 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1024))) (-5 *2 (-645 (-2 (|:| -3892 (-1174 *5)) (|:| -2887 (-645 (-954 *5)))))) (-5 *1 (-1294 *5 *6 *7)) (-5 *3 (-645 (-954 *5))) (-14 *6 (-645 (-1178))) (-14 *7 (-645 (-1178))))) (-3608 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1024))) (-5 *2 (-645 (-2 (|:| -3892 (-1174 *5)) (|:| -2887 (-645 (-954 *5)))))) (-5 *1 (-1294 *5 *6 *7)) (-5 *3 (-645 (-954 *5))) (-14 *6 (-645 (-1178))) (-14 *7 (-645 (-1178))))) (-3608 (*1 *2 *3) (-12 (-5 *3 (-1048 *4 *5)) (-4 *4 (-13 (-849) (-308) (-147) (-1024))) (-14 *5 (-645 (-1178))) (-5 *2 (-645 (-2 (|:| -3892 (-1174 *4)) (|:| -2887 (-645 (-954 *4)))))) (-5 *1 (-1294 *4 *5 *6)) (-14 *6 (-645 (-1178))))) (-2690 (*1 *2 *3) (-12 (-5 *3 (-645 (-954 *4))) (-4 *4 (-13 (-849) (-308) (-147) (-1024))) (-5 *2 (-645 (-1048 *4 *5))) (-5 *1 (-1294 *4 *5 *6)) (-14 *5 (-645 (-1178))) (-14 *6 (-645 (-1178))))) (-2690 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1024))) (-5 *2 (-645 (-1048 *5 *6))) (-5 *1 (-1294 *5 *6 *7)) (-14 *6 (-645 (-1178))) (-14 *7 (-645 (-1178))))) (-2690 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1024))) (-5 *2 (-645 (-1048 *5 *6))) (-5 *1 (-1294 *5 *6 *7)) (-14 *6 (-645 (-1178))) (-14 *7 (-645 (-1178))))))
-(-10 -7 (-15 -2690 ((-645 (-1048 |#1| |#2|)) (-645 (-954 |#1|)) (-112) (-112))) (-15 -2690 ((-645 (-1048 |#1| |#2|)) (-645 (-954 |#1|)) (-112))) (-15 -2690 ((-645 (-1048 |#1| |#2|)) (-645 (-954 |#1|)))) (-15 -3608 ((-645 (-2 (|:| -3892 (-1174 |#1|)) (|:| -2887 (-645 (-954 |#1|))))) (-1048 |#1| |#2|))) (-15 -3608 ((-645 (-2 (|:| -3892 (-1174 |#1|)) (|:| -2887 (-645 (-954 |#1|))))) (-645 (-954 |#1|)) (-112) (-112) (-112))) (-15 -3608 ((-645 (-2 (|:| -3892 (-1174 |#1|)) (|:| -2887 (-645 (-954 |#1|))))) (-645 (-954 |#1|)) (-112) (-112))) (-15 -3608 ((-645 (-2 (|:| -3892 (-1174 |#1|)) (|:| -2887 (-645 (-954 |#1|))))) (-645 (-954 |#1|)) (-112))) (-15 -3608 ((-645 (-2 (|:| -3892 (-1174 |#1|)) (|:| -2887 (-645 (-954 |#1|))))) (-645 (-954 |#1|)))) (-15 -2032 ((-645 (-645 (-1026 (-410 |#1|)))) (-1048 |#1| |#2|))) (-15 -2032 ((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|)) (-112) (-112) (-112))) (-15 -2032 ((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|)) (-112) (-112))) (-15 -2032 ((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|)) (-112))) (-15 -2032 ((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|)))) (-15 -1645 ((-645 (-645 (-1026 (-410 |#1|)))) (-1048 |#1| |#2|))) (-15 -1645 ((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|)) (-112) (-112))) (-15 -1645 ((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|)) (-112))) (-15 -1645 ((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|)))) (-15 -2908 ((-645 (-1148 |#1| (-534 (-865 |#3|)) (-865 |#3|) (-781 |#1| (-865 |#3|)))) (-1048 |#1| |#2|))) (-15 -3893 ((-781 |#1| (-865 |#3|)) (-781 |#1| (-865 |#2|)))) (-15 -3893 ((-954 (-1026 (-410 |#1|))) (-954 |#1|))) (-15 -3893 ((-954 (-1026 (-410 |#1|))) (-781 |#1| (-865 |#3|)))) (-15 -3893 ((-1174 (-1026 (-410 |#1|))) (-1174 |#1|))) (-15 -3893 ((-645 (-781 |#1| (-865 |#3|))) (-1148 |#1| (-534 (-865 |#3|)) (-865 |#3|) (-781 |#1| (-865 |#3|))))))
-((-2152 (((-3 (-1268 (-410 (-567))) "failed") (-1268 |#1|) |#1|) 21)) (-3784 (((-112) (-1268 |#1|)) 12)) (-1607 (((-3 (-1268 (-567)) "failed") (-1268 |#1|)) 16)))
-(((-1295 |#1|) (-10 -7 (-15 -3784 ((-112) (-1268 |#1|))) (-15 -1607 ((-3 (-1268 (-567)) "failed") (-1268 |#1|))) (-15 -2152 ((-3 (-1268 (-410 (-567))) "failed") (-1268 |#1|) |#1|))) (-640 (-567))) (T -1295))
-((-2152 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1268 *4)) (-4 *4 (-640 (-567))) (-5 *2 (-1268 (-410 (-567)))) (-5 *1 (-1295 *4)))) (-1607 (*1 *2 *3) (|partial| -12 (-5 *3 (-1268 *4)) (-4 *4 (-640 (-567))) (-5 *2 (-1268 (-567))) (-5 *1 (-1295 *4)))) (-3784 (*1 *2 *3) (-12 (-5 *3 (-1268 *4)) (-4 *4 (-640 (-567))) (-5 *2 (-112)) (-5 *1 (-1295 *4)))))
-(-10 -7 (-15 -3784 ((-112) (-1268 |#1|))) (-15 -1607 ((-3 (-1268 (-567)) "failed") (-1268 |#1|))) (-15 -2152 ((-3 (-1268 (-410 (-567))) "failed") (-1268 |#1|) |#1|)))
-((-2403 (((-112) $ $) NIL)) (-2460 (((-112) $) 11)) (-3472 (((-3 $ "failed") $ $) NIL)) (-2375 (((-772)) 8)) (-2585 (($) NIL T CONST)) (-2109 (((-3 $ "failed") $) 58)) (-1348 (($) 49)) (-1433 (((-112) $) 57)) (-3972 (((-3 $ "failed") $) 40)) (-4249 (((-923) $) 15)) (-1419 (((-1160) $) NIL)) (-2672 (($) 32 T CONST)) (-3768 (($ (-923)) 50)) (-3430 (((-1122) $) NIL)) (-3893 (((-567) $) 13)) (-4132 (((-863) $) 27) (($ (-567)) 24)) (-4221 (((-772)) 9 T CONST)) (-1745 (((-112) $ $) 60)) (-1716 (($) 29 T CONST)) (-1728 (($) 31 T CONST)) (-2936 (((-112) $ $) 38)) (-3045 (($ $) 52) (($ $ $) 47)) (-3033 (($ $ $) 35)) (** (($ $ (-923)) NIL) (($ $ (-772)) 54)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 44) (($ $ $) 43)))
-(((-1296 |#1|) (-13 (-172) (-370) (-615 (-567)) (-1153)) (-923)) (T -1296))
-NIL
-(-13 (-172) (-370) (-615 (-567)) (-1153))
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-((-3 3222199 3222204 3222209 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 3222184 3222189 3222194 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 3222169 3222174 3222179 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 3222154 3222159 3222164 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1296 3221297 3222029 3222106 "ZMOD" 3222111 NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1295 3220407 3220571 3220780 "ZLINDEP" 3221129 NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1294 3209707 3211475 3213447 "ZDSOLVE" 3218537 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1293 3208953 3209094 3209283 "YSTREAM" 3209553 NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1292 3206727 3208254 3208458 "XRPOLY" 3208796 NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1291 3203280 3204598 3205173 "XPR" 3206199 NIL XPR (NIL T T) -8 NIL NIL NIL) (-1290 3201001 3202611 3202815 "XPOLY" 3203111 NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1289 3198654 3200022 3200077 "XPOLYC" 3200365 NIL XPOLYC (NIL T T) -9 NIL 3200478 NIL) (-1288 3195029 3197171 3197559 "XPBWPOLY" 3198312 NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1287 3190724 3193019 3193061 "XF" 3193682 NIL XF (NIL T) -9 NIL 3194082 NIL) (-1286 3190345 3190433 3190602 "XF-" 3190607 NIL XF- (NIL T T) -8 NIL NIL NIL) (-1285 3185541 3186830 3186885 "XFALG" 3189057 NIL XFALG (NIL T T) -9 NIL 3189846 NIL) (-1284 3184674 3184778 3184983 "XEXPPKG" 3185433 NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1283 3182783 3184524 3184620 "XDPOLY" 3184625 NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1282 3181590 3182190 3182233 "XALG" 3182238 NIL XALG (NIL T) -9 NIL 3182349 NIL) (-1281 3175032 3179567 3180061 "WUTSET" 3181182 NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1280 3173288 3174084 3174407 "WP" 3174843 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1279 3172890 3173110 3173180 "WHILEAST" 3173240 T WHILEAST (NIL) -8 NIL NIL NIL) (-1278 3172362 3172607 3172701 "WHEREAST" 3172818 T WHEREAST (NIL) -8 NIL NIL NIL) (-1277 3171248 3171446 3171741 "WFFINTBS" 3172159 NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1276 3169152 3169579 3170041 "WEIER" 3170820 NIL WEIER (NIL T) -7 NIL NIL NIL) (-1275 3168198 3168648 3168690 "VSPACE" 3168826 NIL VSPACE (NIL T) -9 NIL 3168900 NIL) (-1274 3168036 3168063 3168154 "VSPACE-" 3168159 NIL VSPACE- (NIL T T) -8 NIL NIL NIL) (-1273 3167845 3167887 3167955 "VOID" 3167990 T VOID (NIL) -8 NIL NIL NIL) (-1272 3165981 3166340 3166746 "VIEW" 3167461 T VIEW (NIL) -7 NIL NIL NIL) (-1271 3162405 3163044 3163781 "VIEWDEF" 3165266 T VIEWDEF (NIL) -7 NIL NIL NIL) (-1270 3151709 3153953 3156126 "VIEW3D" 3160254 T VIEW3D (NIL) -8 NIL NIL NIL) (-1269 3143960 3145620 3147199 "VIEW2D" 3150152 T VIEW2D (NIL) -8 NIL NIL NIL) (-1268 3139312 3143730 3143822 "VECTOR" 3143903 NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1267 3137889 3138148 3138466 "VECTOR2" 3139042 NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1266 3131363 3135670 3135713 "VECTCAT" 3136708 NIL VECTCAT (NIL T) -9 NIL 3137295 NIL) (-1265 3130377 3130631 3131021 "VECTCAT-" 3131026 NIL VECTCAT- (NIL T T) -8 NIL NIL NIL) (-1264 3129831 3130028 3130148 "VARIABLE" 3130292 NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1263 3129764 3129769 3129799 "UTYPE" 3129804 T UTYPE (NIL) -9 NIL NIL NIL) (-1262 3128594 3128748 3129010 "UTSODETL" 3129590 NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1261 3126034 3126494 3127018 "UTSODE" 3128135 NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1260 3117871 3123660 3124149 "UTS" 3125603 NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1259 3108745 3114112 3114155 "UTSCAT" 3115267 NIL UTSCAT (NIL T) -9 NIL 3116025 NIL) (-1258 3106092 3106815 3107804 "UTSCAT-" 3107809 NIL UTSCAT- (NIL T T) -8 NIL NIL NIL) (-1257 3105719 3105762 3105895 "UTS2" 3106043 NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1256 3099945 3102557 3102600 "URAGG" 3104670 NIL URAGG (NIL T) -9 NIL 3105393 NIL) (-1255 3096884 3097747 3098870 "URAGG-" 3098875 NIL URAGG- (NIL T T) -8 NIL NIL NIL) (-1254 3092593 3095519 3095984 "UPXSSING" 3096548 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1253 3084659 3091840 3092113 "UPXS" 3092378 NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1252 3077732 3084563 3084635 "UPXSCONS" 3084640 NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1251 3067477 3074270 3074332 "UPXSCCA" 3074906 NIL UPXSCCA (NIL T T) -9 NIL 3075139 NIL) (-1250 3067115 3067200 3067374 "UPXSCCA-" 3067379 NIL UPXSCCA- (NIL T T T) -8 NIL NIL NIL) (-1249 3056712 3063278 3063321 "UPXSCAT" 3063969 NIL UPXSCAT (NIL T) -9 NIL 3064578 NIL) (-1248 3056142 3056221 3056400 "UPXS2" 3056627 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1247 3054796 3055049 3055400 "UPSQFREE" 3055885 NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1246 3048217 3051274 3051329 "UPSCAT" 3052490 NIL UPSCAT (NIL T T) -9 NIL 3053264 NIL) (-1245 3047421 3047628 3047955 "UPSCAT-" 3047960 NIL UPSCAT- (NIL T T T) -8 NIL NIL NIL) (-1244 3033076 3040844 3040887 "UPOLYC" 3042988 NIL UPOLYC (NIL T) -9 NIL 3044209 NIL) (-1243 3024404 3026830 3029977 "UPOLYC-" 3029982 NIL UPOLYC- (NIL T T) -8 NIL NIL NIL) (-1242 3024031 3024074 3024207 "UPOLYC2" 3024355 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1241 3015842 3023714 3023843 "UP" 3023950 NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1240 3015181 3015288 3015452 "UPMP" 3015731 NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1239 3014734 3014815 3014954 "UPDIVP" 3015094 NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1238 3013302 3013551 3013867 "UPDECOMP" 3014483 NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1237 3012537 3012649 3012834 "UPCDEN" 3013186 NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1236 3012056 3012125 3012274 "UP2" 3012462 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1235 3010523 3011260 3011537 "UNISEG" 3011814 NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1234 3009738 3009865 3010070 "UNISEG2" 3010366 NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1233 3008798 3008978 3009204 "UNIFACT" 3009554 NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1232 2992730 3007975 3008226 "ULS" 3008605 NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1231 2980728 2992634 2992706 "ULSCONS" 2992711 NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1230 2962747 2974732 2974794 "ULSCCAT" 2975432 NIL ULSCCAT (NIL T T) -9 NIL 2975720 NIL) (-1229 2961797 2962042 2962430 "ULSCCAT-" 2962435 NIL ULSCCAT- (NIL T T T) -8 NIL NIL NIL) (-1228 2951171 2957651 2957694 "ULSCAT" 2958557 NIL ULSCAT (NIL T) -9 NIL 2959288 NIL) (-1227 2950601 2950680 2950859 "ULS2" 2951086 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1226 2949728 2950238 2950345 "UINT8" 2950456 T UINT8 (NIL) -8 NIL NIL 2950541) (-1225 2948854 2949364 2949471 "UINT64" 2949582 T UINT64 (NIL) -8 NIL NIL 2949667) (-1224 2947980 2948490 2948597 "UINT32" 2948708 T UINT32 (NIL) -8 NIL NIL 2948793) (-1223 2947106 2947616 2947723 "UINT16" 2947834 T UINT16 (NIL) -8 NIL NIL 2947919) (-1222 2945409 2946366 2946396 "UFD" 2946608 T UFD (NIL) -9 NIL 2946722 NIL) (-1221 2945203 2945249 2945344 "UFD-" 2945349 NIL UFD- (NIL T) -8 NIL NIL NIL) (-1220 2944285 2944468 2944684 "UDVO" 2945009 T UDVO (NIL) -7 NIL NIL NIL) (-1219 2942101 2942510 2942981 "UDPO" 2943849 NIL UDPO (NIL T) -7 NIL NIL NIL) (-1218 2942034 2942039 2942069 "TYPE" 2942074 T TYPE (NIL) -9 NIL NIL NIL) (-1217 2941794 2941989 2942020 "TYPEAST" 2942025 T TYPEAST (NIL) -8 NIL NIL NIL) (-1216 2940765 2940967 2941207 "TWOFACT" 2941588 NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1215 2939788 2940174 2940409 "TUPLE" 2940565 NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1214 2937479 2937998 2938537 "TUBETOOL" 2939271 T TUBETOOL (NIL) -7 NIL NIL NIL) (-1213 2936328 2936533 2936774 "TUBE" 2937272 NIL TUBE (NIL T) -8 NIL NIL NIL) (-1212 2931057 2935300 2935583 "TS" 2936080 NIL TS (NIL T) -8 NIL NIL NIL) (-1211 2919697 2923816 2923913 "TSETCAT" 2929182 NIL TSETCAT (NIL T T T T) -9 NIL 2930713 NIL) (-1210 2914429 2916029 2917920 "TSETCAT-" 2917925 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1209 2909068 2909915 2910844 "TRMANIP" 2913565 NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1208 2908509 2908572 2908735 "TRIMAT" 2909000 NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1207 2906375 2906612 2906969 "TRIGMNIP" 2908258 NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1206 2905895 2906008 2906038 "TRIGCAT" 2906251 T TRIGCAT (NIL) -9 NIL NIL NIL) (-1205 2905564 2905643 2905784 "TRIGCAT-" 2905789 NIL TRIGCAT- (NIL T) -8 NIL NIL NIL) (-1204 2902409 2904422 2904703 "TREE" 2905318 NIL TREE (NIL T) -8 NIL NIL NIL) (-1203 2901683 2902211 2902241 "TRANFUN" 2902276 T TRANFUN (NIL) -9 NIL 2902342 NIL) (-1202 2900962 2901153 2901433 "TRANFUN-" 2901438 NIL TRANFUN- (NIL T) -8 NIL NIL NIL) (-1201 2900766 2900798 2900859 "TOPSP" 2900923 T TOPSP (NIL) -7 NIL NIL NIL) (-1200 2900114 2900229 2900383 "TOOLSIGN" 2900647 NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1199 2898748 2899291 2899530 "TEXTFILE" 2899897 T TEXTFILE (NIL) -8 NIL NIL NIL) (-1198 2896660 2897201 2897630 "TEX" 2898341 T TEX (NIL) -8 NIL NIL NIL) (-1197 2896441 2896472 2896544 "TEX1" 2896623 NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1196 2896089 2896152 2896242 "TEMUTL" 2896373 T TEMUTL (NIL) -7 NIL NIL NIL) (-1195 2894243 2894523 2894848 "TBCMPPK" 2895812 NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1194 2886020 2892403 2892459 "TBAGG" 2892859 NIL TBAGG (NIL T T) -9 NIL 2893070 NIL) (-1193 2881090 2882578 2884332 "TBAGG-" 2884337 NIL TBAGG- (NIL T T T) -8 NIL NIL NIL) (-1192 2880474 2880581 2880726 "TANEXP" 2880979 NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1191 2873864 2880331 2880424 "TABLE" 2880429 NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1190 2873276 2873375 2873513 "TABLEAU" 2873761 NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1189 2867884 2869104 2870352 "TABLBUMP" 2872062 NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1188 2867106 2867253 2867434 "SYSTEM" 2867725 T SYSTEM (NIL) -8 NIL NIL NIL) (-1187 2863565 2864264 2865047 "SYSSOLP" 2866357 NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1186 2863363 2863520 2863551 "SYSPTR" 2863556 T SYSPTR (NIL) -8 NIL NIL NIL) (-1185 2862407 2862912 2863031 "SYSNNI" 2863217 NIL SYSNNI (NIL NIL) -8 NIL NIL 2863302) (-1184 2861714 2862173 2862252 "SYSINT" 2862312 NIL SYSINT (NIL NIL) -8 NIL NIL 2862357) (-1183 2858046 2858992 2859702 "SYNTAX" 2861026 T SYNTAX (NIL) -8 NIL NIL NIL) (-1182 2855204 2855806 2856438 "SYMTAB" 2857436 T SYMTAB (NIL) -8 NIL NIL NIL) (-1181 2850453 2851355 2852338 "SYMS" 2854243 T SYMS (NIL) -8 NIL NIL NIL) (-1180 2847688 2849911 2850141 "SYMPOLY" 2850258 NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1179 2847205 2847280 2847403 "SYMFUNC" 2847600 NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1178 2843224 2844517 2845330 "SYMBOL" 2846414 T SYMBOL (NIL) -8 NIL NIL NIL) (-1177 2836763 2838452 2840172 "SWITCH" 2841526 T SWITCH (NIL) -8 NIL NIL NIL) (-1176 2829997 2835584 2835887 "SUTS" 2836518 NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1175 2822063 2829244 2829517 "SUPXS" 2829782 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1174 2813822 2821681 2821807 "SUP" 2821972 NIL SUP (NIL T) -8 NIL NIL NIL) (-1173 2812981 2813108 2813325 "SUPFRACF" 2813690 NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1172 2812602 2812661 2812774 "SUP2" 2812916 NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1171 2811050 2811324 2811680 "SUMRF" 2812301 NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1170 2810385 2810451 2810643 "SUMFS" 2810971 NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1169 2794352 2809562 2809813 "SULS" 2810192 NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1168 2793954 2794174 2794244 "SUCHTAST" 2794304 T SUCHTAST (NIL) -8 NIL NIL NIL) (-1167 2793249 2793479 2793619 "SUCH" 2793862 NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1166 2787115 2788155 2789114 "SUBSPACE" 2792337 NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1165 2786545 2786635 2786799 "SUBRESP" 2787003 NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1164 2779910 2781210 2782521 "STTF" 2785281 NIL STTF (NIL T) -7 NIL NIL NIL) (-1163 2774083 2775203 2776350 "STTFNC" 2778810 NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1162 2765393 2767265 2769059 "STTAYLOR" 2772324 NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1161 2758523 2765257 2765340 "STRTBL" 2765345 NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1160 2753887 2758478 2758509 "STRING" 2758514 T STRING (NIL) -8 NIL NIL NIL) (-1159 2748748 2753260 2753290 "STRICAT" 2753349 T STRICAT (NIL) -9 NIL 2753411 NIL) (-1158 2741501 2746367 2746978 "STREAM" 2748172 NIL STREAM (NIL T) -8 NIL NIL NIL) (-1157 2741011 2741088 2741232 "STREAM3" 2741418 NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1156 2739993 2740176 2740411 "STREAM2" 2740824 NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1155 2739681 2739733 2739826 "STREAM1" 2739935 NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1154 2738697 2738878 2739109 "STINPROD" 2739497 NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1153 2738249 2738459 2738489 "STEP" 2738569 T STEP (NIL) -9 NIL 2738647 NIL) (-1152 2731681 2738148 2738225 "STBL" 2738230 NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1151 2726807 2730902 2730945 "STAGG" 2731098 NIL STAGG (NIL T) -9 NIL 2731187 NIL) (-1150 2724509 2725111 2725983 "STAGG-" 2725988 NIL STAGG- (NIL T T) -8 NIL NIL NIL) (-1149 2722656 2724279 2724371 "STACK" 2724452 NIL STACK (NIL T) -8 NIL NIL NIL) (-1148 2715351 2720797 2721253 "SREGSET" 2722286 NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1147 2707776 2709145 2710658 "SRDCMPK" 2713957 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1146 2700693 2705216 2705246 "SRAGG" 2706549 T SRAGG (NIL) -9 NIL 2707157 NIL) (-1145 2699710 2699965 2700344 "SRAGG-" 2700349 NIL SRAGG- (NIL T) -8 NIL NIL NIL) (-1144 2694170 2698657 2699078 "SQMATRIX" 2699336 NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1143 2687855 2690888 2691615 "SPLTREE" 2693515 NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1142 2683818 2684511 2685157 "SPLNODE" 2687281 NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1141 2682865 2683098 2683128 "SPFCAT" 2683572 T SPFCAT (NIL) -9 NIL NIL NIL) (-1140 2681602 2681812 2682076 "SPECOUT" 2682623 T SPECOUT (NIL) -7 NIL NIL NIL) (-1139 2673228 2674998 2675028 "SPADXPT" 2679420 T SPADXPT (NIL) -9 NIL 2681454 NIL) (-1138 2672989 2673029 2673098 "SPADPRSR" 2673181 T SPADPRSR (NIL) -7 NIL NIL NIL) (-1137 2671144 2672944 2672975 "SPADAST" 2672980 T SPADAST (NIL) -8 NIL NIL NIL) (-1136 2663089 2664862 2664905 "SPACEC" 2669278 NIL SPACEC (NIL T) -9 NIL 2671094 NIL) (-1135 2661219 2663021 2663070 "SPACE3" 2663075 NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1134 2659971 2660142 2660433 "SORTPAK" 2661024 NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1133 2658063 2658366 2658778 "SOLVETRA" 2659635 NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1132 2657113 2657335 2657596 "SOLVESER" 2657836 NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1131 2652417 2653305 2654300 "SOLVERAD" 2656165 NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1130 2648232 2648841 2649570 "SOLVEFOR" 2651784 NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1129 2642502 2647581 2647678 "SNTSCAT" 2647683 NIL SNTSCAT (NIL T T T T) -9 NIL 2647753 NIL) (-1128 2636608 2640825 2641216 "SMTS" 2642192 NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1127 2631292 2636496 2636573 "SMP" 2636578 NIL SMP (NIL T T) -8 NIL NIL NIL) (-1126 2629451 2629752 2630150 "SMITH" 2630989 NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1125 2622164 2626360 2626463 "SMATCAT" 2627814 NIL SMATCAT (NIL NIL T T T) -9 NIL 2628364 NIL) (-1124 2619104 2619927 2621105 "SMATCAT-" 2621110 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL NIL) (-1123 2616770 2618340 2618383 "SKAGG" 2618644 NIL SKAGG (NIL T) -9 NIL 2618779 NIL) (-1122 2613081 2616186 2616381 "SINT" 2616568 T SINT (NIL) -8 NIL NIL 2616741) (-1121 2612853 2612891 2612957 "SIMPAN" 2613037 T SIMPAN (NIL) -7 NIL NIL NIL) (-1120 2612132 2612388 2612528 "SIG" 2612735 T SIG (NIL) -8 NIL NIL NIL) (-1119 2610970 2611191 2611466 "SIGNRF" 2611891 NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1118 2609803 2609954 2610238 "SIGNEF" 2610799 NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1117 2609109 2609386 2609510 "SIGAST" 2609701 T SIGAST (NIL) -8 NIL NIL NIL) (-1116 2606798 2607253 2607759 "SHP" 2608650 NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1115 2600650 2606699 2606775 "SHDP" 2606780 NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1114 2600223 2600415 2600445 "SGROUP" 2600538 T SGROUP (NIL) -9 NIL 2600600 NIL) (-1113 2600081 2600107 2600180 "SGROUP-" 2600185 NIL SGROUP- (NIL T) -8 NIL NIL NIL) (-1112 2596916 2597614 2598337 "SGCF" 2599380 T SGCF (NIL) -7 NIL NIL NIL) (-1111 2591284 2596363 2596460 "SFRTCAT" 2596465 NIL SFRTCAT (NIL T T T T) -9 NIL 2596504 NIL) (-1110 2584705 2585723 2586859 "SFRGCD" 2590267 NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1109 2577831 2578904 2580090 "SFQCMPK" 2583638 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1108 2577451 2577540 2577651 "SFORT" 2577772 NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1107 2576569 2577291 2577412 "SEXOF" 2577417 NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1106 2575676 2576450 2576518 "SEX" 2576523 T SEX (NIL) -8 NIL NIL NIL) (-1105 2571189 2571904 2571999 "SEXCAT" 2574936 NIL SEXCAT (NIL T T T T T) -9 NIL 2575514 NIL) (-1104 2568342 2571123 2571171 "SET" 2571176 NIL SET (NIL T) -8 NIL NIL NIL) (-1103 2566566 2567055 2567360 "SETMN" 2568083 NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1102 2566062 2566214 2566244 "SETCAT" 2566420 T SETCAT (NIL) -9 NIL 2566530 NIL) (-1101 2565754 2565832 2565962 "SETCAT-" 2565967 NIL SETCAT- (NIL T) -8 NIL NIL NIL) (-1100 2562115 2564215 2564258 "SETAGG" 2565128 NIL SETAGG (NIL T) -9 NIL 2565468 NIL) (-1099 2561573 2561689 2561926 "SETAGG-" 2561931 NIL SETAGG- (NIL T T) -8 NIL NIL NIL) (-1098 2561016 2561269 2561370 "SEQAST" 2561494 T SEQAST (NIL) -8 NIL NIL NIL) (-1097 2560215 2560509 2560570 "SEGXCAT" 2560856 NIL SEGXCAT (NIL T T) -9 NIL 2560976 NIL) (-1096 2559221 2559881 2560063 "SEG" 2560068 NIL SEG (NIL T) -8 NIL NIL NIL) (-1095 2558200 2558414 2558457 "SEGCAT" 2558979 NIL SEGCAT (NIL T) -9 NIL 2559200 NIL) (-1094 2557132 2557563 2557771 "SEGBIND" 2558027 NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1093 2556753 2556812 2556925 "SEGBIND2" 2557067 NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1092 2556326 2556554 2556631 "SEGAST" 2556698 T SEGAST (NIL) -8 NIL NIL NIL) (-1091 2555545 2555671 2555875 "SEG2" 2556170 NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1090 2554955 2555480 2555527 "SDVAR" 2555532 NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1089 2547482 2554725 2554855 "SDPOL" 2554860 NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1088 2546075 2546341 2546660 "SCPKG" 2547197 NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1087 2545239 2545411 2545603 "SCOPE" 2545905 T SCOPE (NIL) -8 NIL NIL NIL) (-1086 2544459 2544593 2544772 "SCACHE" 2545094 NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1085 2544105 2544291 2544321 "SASTCAT" 2544326 T SASTCAT (NIL) -9 NIL 2544339 NIL) (-1084 2543592 2543940 2544016 "SAOS" 2544051 T SAOS (NIL) -8 NIL NIL NIL) (-1083 2543157 2543192 2543365 "SAERFFC" 2543551 NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1082 2537096 2543054 2543134 "SAE" 2543139 NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1081 2536689 2536724 2536883 "SAEFACT" 2537055 NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1080 2535010 2535324 2535725 "RURPK" 2536355 NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1079 2533647 2533953 2534258 "RULESET" 2534844 NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1078 2530870 2531400 2531858 "RULE" 2533328 NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1077 2530482 2530664 2530747 "RULECOLD" 2530822 NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1076 2530272 2530300 2530371 "RTVALUE" 2530433 T RTVALUE (NIL) -8 NIL NIL NIL) (-1075 2529743 2529989 2530083 "RSTRCAST" 2530200 T RSTRCAST (NIL) -8 NIL NIL NIL) (-1074 2524591 2525386 2526306 "RSETGCD" 2528942 NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1073 2513821 2518900 2518997 "RSETCAT" 2523116 NIL RSETCAT (NIL T T T T) -9 NIL 2524213 NIL) (-1072 2511748 2512287 2513111 "RSETCAT-" 2513116 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1071 2504133 2505510 2507030 "RSDCMPK" 2510347 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1070 2502112 2502579 2502653 "RRCC" 2503739 NIL RRCC (NIL T T) -9 NIL 2504083 NIL) (-1069 2501463 2501637 2501916 "RRCC-" 2501921 NIL RRCC- (NIL T T T) -8 NIL NIL NIL) (-1068 2500906 2501159 2501260 "RPTAST" 2501384 T RPTAST (NIL) -8 NIL NIL NIL) (-1067 2474757 2484114 2484181 "RPOLCAT" 2494845 NIL RPOLCAT (NIL T T T) -9 NIL 2498004 NIL) (-1066 2466255 2468595 2471717 "RPOLCAT-" 2471722 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL NIL) (-1065 2457186 2464466 2464948 "ROUTINE" 2465795 T ROUTINE (NIL) -8 NIL NIL NIL) (-1064 2453984 2456812 2456952 "ROMAN" 2457068 T ROMAN (NIL) -8 NIL NIL NIL) (-1063 2452228 2452844 2453104 "ROIRC" 2453789 NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1062 2448460 2450744 2450774 "RNS" 2451078 T RNS (NIL) -9 NIL 2451352 NIL) (-1061 2446969 2447352 2447886 "RNS-" 2447961 NIL RNS- (NIL T) -8 NIL NIL NIL) (-1060 2446372 2446780 2446810 "RNG" 2446815 T RNG (NIL) -9 NIL 2446836 NIL) (-1059 2445375 2445737 2445939 "RNGBIND" 2446223 NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-1058 2444774 2445162 2445205 "RMODULE" 2445210 NIL RMODULE (NIL T) -9 NIL 2445237 NIL) (-1057 2443610 2443704 2444040 "RMCAT2" 2444675 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-1056 2440460 2442956 2443253 "RMATRIX" 2443372 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-1055 2433287 2435547 2435662 "RMATCAT" 2439021 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2440003 NIL) (-1054 2432662 2432809 2433116 "RMATCAT-" 2433121 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL NIL) (-1053 2432063 2432284 2432327 "RLINSET" 2432521 NIL RLINSET (NIL T) -9 NIL 2432612 NIL) (-1052 2431630 2431705 2431833 "RINTERP" 2431982 NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-1051 2430688 2431242 2431272 "RING" 2431328 T RING (NIL) -9 NIL 2431420 NIL) (-1050 2430480 2430524 2430621 "RING-" 2430626 NIL RING- (NIL T) -8 NIL NIL NIL) (-1049 2429321 2429558 2429816 "RIDIST" 2430244 T RIDIST (NIL) -7 NIL NIL NIL) (-1048 2420610 2428789 2428995 "RGCHAIN" 2429169 NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-1047 2419960 2420366 2420407 "RGBCSPC" 2420465 NIL RGBCSPC (NIL T) -9 NIL 2420517 NIL) (-1046 2419118 2419499 2419540 "RGBCMDL" 2419772 NIL RGBCMDL (NIL T) -9 NIL 2419886 NIL) (-1045 2416112 2416726 2417396 "RF" 2418482 NIL RF (NIL T) -7 NIL NIL NIL) (-1044 2415758 2415821 2415924 "RFFACTOR" 2416043 NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-1043 2415483 2415518 2415615 "RFFACT" 2415717 NIL RFFACT (NIL T) -7 NIL NIL NIL) (-1042 2413600 2413964 2414346 "RFDIST" 2415123 T RFDIST (NIL) -7 NIL NIL NIL) (-1041 2413053 2413145 2413308 "RETSOL" 2413502 NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-1040 2412689 2412769 2412812 "RETRACT" 2412945 NIL RETRACT (NIL T) -9 NIL 2413032 NIL) (-1039 2412538 2412563 2412650 "RETRACT-" 2412655 NIL RETRACT- (NIL T T) -8 NIL NIL NIL) (-1038 2412140 2412360 2412430 "RETAST" 2412490 T RETAST (NIL) -8 NIL NIL NIL) (-1037 2404878 2411793 2411920 "RESULT" 2412035 T RESULT (NIL) -8 NIL NIL NIL) (-1036 2403469 2404147 2404346 "RESRING" 2404781 NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-1035 2403105 2403154 2403252 "RESLATC" 2403406 NIL RESLATC (NIL T) -7 NIL NIL NIL) (-1034 2402810 2402845 2402952 "REPSQ" 2403064 NIL REPSQ (NIL T) -7 NIL NIL NIL) (-1033 2400232 2400812 2401414 "REP" 2402230 T REP (NIL) -7 NIL NIL NIL) (-1032 2399929 2399964 2400075 "REPDB" 2400191 NIL REPDB (NIL T) -7 NIL NIL NIL) (-1031 2393829 2395218 2396441 "REP2" 2398741 NIL REP2 (NIL T) -7 NIL NIL NIL) (-1030 2390206 2390887 2391695 "REP1" 2393056 NIL REP1 (NIL T) -7 NIL NIL NIL) (-1029 2382902 2388347 2388803 "REGSET" 2389836 NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-1028 2381667 2382050 2382300 "REF" 2382687 NIL REF (NIL T) -8 NIL NIL NIL) (-1027 2381044 2381147 2381314 "REDORDER" 2381551 NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-1026 2377012 2380257 2380484 "RECLOS" 2380872 NIL RECLOS (NIL T) -8 NIL NIL NIL) (-1025 2376064 2376245 2376460 "REALSOLV" 2376819 T REALSOLV (NIL) -7 NIL NIL NIL) (-1024 2375910 2375951 2375981 "REAL" 2375986 T REAL (NIL) -9 NIL 2376021 NIL) (-1023 2372393 2373195 2374079 "REAL0Q" 2375075 NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-1022 2367994 2368982 2370043 "REAL0" 2371374 NIL REAL0 (NIL T) -7 NIL NIL NIL) (-1021 2367465 2367711 2367805 "RDUCEAST" 2367922 T RDUCEAST (NIL) -8 NIL NIL NIL) (-1020 2366870 2366942 2367149 "RDIV" 2367387 NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-1019 2365938 2366112 2366325 "RDIST" 2366692 NIL RDIST (NIL T) -7 NIL NIL NIL) (-1018 2364535 2364822 2365194 "RDETRS" 2365646 NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-1017 2362347 2362801 2363339 "RDETR" 2364077 NIL RDETR (NIL T T) -7 NIL NIL NIL) (-1016 2360972 2361250 2361647 "RDEEFS" 2362063 NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-1015 2359481 2359787 2360212 "RDEEF" 2360660 NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-1014 2353542 2356462 2356492 "RCFIELD" 2357787 T RCFIELD (NIL) -9 NIL 2358518 NIL) (-1013 2351606 2352110 2352806 "RCFIELD-" 2352881 NIL RCFIELD- (NIL T) -8 NIL NIL NIL) (-1012 2347875 2349707 2349750 "RCAGG" 2350834 NIL RCAGG (NIL T) -9 NIL 2351299 NIL) (-1011 2347503 2347597 2347760 "RCAGG-" 2347765 NIL RCAGG- (NIL T T) -8 NIL NIL NIL) (-1010 2346838 2346950 2347115 "RATRET" 2347387 NIL RATRET (NIL T) -7 NIL NIL NIL) (-1009 2346391 2346458 2346579 "RATFACT" 2346766 NIL RATFACT (NIL T) -7 NIL NIL NIL) (-1008 2345699 2345819 2345971 "RANDSRC" 2346261 T RANDSRC (NIL) -7 NIL NIL NIL) (-1007 2345433 2345477 2345550 "RADUTIL" 2345648 T RADUTIL (NIL) -7 NIL NIL NIL) (-1006 2338549 2344266 2344576 "RADIX" 2345157 NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-1005 2330168 2338391 2338521 "RADFF" 2338526 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-1004 2329815 2329890 2329920 "RADCAT" 2330080 T RADCAT (NIL) -9 NIL NIL NIL) (-1003 2329597 2329645 2329745 "RADCAT-" 2329750 NIL RADCAT- (NIL T) -8 NIL NIL NIL) (-1002 2327697 2329369 2329460 "QUEUE" 2329541 NIL QUEUE (NIL T) -8 NIL NIL NIL) (-1001 2324236 2327632 2327679 "QUAT" 2327684 NIL QUAT (NIL T) -8 NIL NIL NIL) (-1000 2323871 2323914 2324043 "QUATCT2" 2324187 NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-999 2317333 2320678 2320718 "QUATCAT" 2321498 NIL QUATCAT (NIL T) -9 NIL 2322264 NIL) (-998 2313477 2314514 2315901 "QUATCAT-" 2315995 NIL QUATCAT- (NIL T T) -8 NIL NIL NIL) (-997 2310950 2312561 2312602 "QUAGG" 2312977 NIL QUAGG (NIL T) -9 NIL 2313152 NIL) (-996 2310555 2310775 2310843 "QQUTAST" 2310902 T QQUTAST (NIL) -8 NIL NIL NIL) (-995 2309453 2309953 2310125 "QFORM" 2310427 NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-994 2300458 2305697 2305737 "QFCAT" 2306395 NIL QFCAT (NIL T) -9 NIL 2307396 NIL) (-993 2296030 2297231 2298822 "QFCAT-" 2298916 NIL QFCAT- (NIL T T) -8 NIL NIL NIL) (-992 2295668 2295711 2295838 "QFCAT2" 2295981 NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-991 2295128 2295238 2295368 "QEQUAT" 2295558 T QEQUAT (NIL) -8 NIL NIL NIL) (-990 2288274 2289347 2290531 "QCMPACK" 2294061 NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-989 2285823 2286271 2286699 "QALGSET" 2287929 NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-988 2285068 2285242 2285474 "QALGSET2" 2285643 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-987 2283758 2283982 2284299 "PWFFINTB" 2284841 NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-986 2281940 2282108 2282462 "PUSHVAR" 2283572 NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-985 2277858 2278912 2278953 "PTRANFN" 2280837 NIL PTRANFN (NIL T) -9 NIL NIL NIL) (-984 2276260 2276551 2276873 "PTPACK" 2277569 NIL PTPACK (NIL T) -7 NIL NIL NIL) (-983 2275892 2275949 2276058 "PTFUNC2" 2276197 NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-982 2270369 2274764 2274805 "PTCAT" 2275101 NIL PTCAT (NIL T) -9 NIL 2275254 NIL) (-981 2270027 2270062 2270186 "PSQFR" 2270328 NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-980 2268622 2268920 2269254 "PSEUDLIN" 2269725 NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-979 2255385 2257756 2260080 "PSETPK" 2266382 NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-978 2248403 2251143 2251239 "PSETCAT" 2254260 NIL PSETCAT (NIL T T T T) -9 NIL 2255074 NIL) (-977 2246239 2246873 2247694 "PSETCAT-" 2247699 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-976 2245588 2245753 2245781 "PSCURVE" 2246049 T PSCURVE (NIL) -9 NIL 2246216 NIL) (-975 2241586 2243102 2243167 "PSCAT" 2244011 NIL PSCAT (NIL T T T) -9 NIL 2244251 NIL) (-974 2240649 2240865 2241265 "PSCAT-" 2241270 NIL PSCAT- (NIL T T T T) -8 NIL NIL NIL) (-973 2239354 2240014 2240219 "PRTITION" 2240464 T PRTITION (NIL) -8 NIL NIL NIL) (-972 2238829 2239075 2239167 "PRTDAST" 2239282 T PRTDAST (NIL) -8 NIL NIL NIL) (-971 2227918 2230133 2232321 "PRS" 2236691 NIL PRS (NIL T T) -7 NIL NIL NIL) (-970 2225729 2227268 2227308 "PRQAGG" 2227491 NIL PRQAGG (NIL T) -9 NIL 2227593 NIL) (-969 2224933 2225238 2225266 "PROPLOG" 2225513 T PROPLOG (NIL) -9 NIL 2225679 NIL) (-968 2223363 2223884 2224141 "PROPFRML" 2224709 NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-967 2222832 2222939 2223067 "PROPERTY" 2223255 T PROPERTY (NIL) -8 NIL NIL NIL) (-966 2216890 2220998 2221818 "PRODUCT" 2222058 NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-965 2214168 2216348 2216582 "PR" 2216701 NIL PR (NIL T T) -8 NIL NIL NIL) (-964 2213964 2213996 2214055 "PRINT" 2214129 T PRINT (NIL) -7 NIL NIL NIL) (-963 2213304 2213421 2213573 "PRIMES" 2213844 NIL PRIMES (NIL T) -7 NIL NIL NIL) (-962 2211369 2211770 2212236 "PRIMELT" 2212883 NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-961 2211098 2211147 2211175 "PRIMCAT" 2211299 T PRIMCAT (NIL) -9 NIL NIL NIL) (-960 2207213 2211036 2211081 "PRIMARR" 2211086 NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-959 2206220 2206398 2206626 "PRIMARR2" 2207031 NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-958 2205863 2205919 2206030 "PREASSOC" 2206158 NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-957 2205338 2205471 2205499 "PPCURVE" 2205704 T PPCURVE (NIL) -9 NIL 2205840 NIL) (-956 2204933 2205133 2205216 "PORTNUM" 2205275 T PORTNUM (NIL) -8 NIL NIL NIL) (-955 2202292 2202691 2203283 "POLYROOT" 2204514 NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-954 2196474 2201896 2202056 "POLY" 2202165 NIL POLY (NIL T) -8 NIL NIL NIL) (-953 2195857 2195915 2196149 "POLYLIFT" 2196410 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-952 2192132 2192581 2193210 "POLYCATQ" 2195402 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-951 2178844 2183972 2184037 "POLYCAT" 2187551 NIL POLYCAT (NIL T T T) -9 NIL 2189429 NIL) (-950 2172293 2174155 2176539 "POLYCAT-" 2176544 NIL POLYCAT- (NIL T T T T) -8 NIL NIL NIL) (-949 2171880 2171948 2172068 "POLY2UP" 2172219 NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-948 2171512 2171569 2171678 "POLY2" 2171817 NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-947 2170197 2170436 2170712 "POLUTIL" 2171286 NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-946 2168552 2168829 2169160 "POLTOPOL" 2169919 NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-945 2164017 2168488 2168534 "POINT" 2168539 NIL POINT (NIL T) -8 NIL NIL NIL) (-944 2162204 2162561 2162936 "PNTHEORY" 2163662 T PNTHEORY (NIL) -7 NIL NIL NIL) (-943 2160662 2160959 2161358 "PMTOOLS" 2161902 NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-942 2160255 2160333 2160450 "PMSYM" 2160578 NIL PMSYM (NIL T) -7 NIL NIL NIL) (-941 2159765 2159834 2160008 "PMQFCAT" 2160180 NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-940 2159120 2159230 2159386 "PMPRED" 2159642 NIL PMPRED (NIL T) -7 NIL NIL NIL) (-939 2158513 2158599 2158761 "PMPREDFS" 2159021 NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-938 2157177 2157385 2157763 "PMPLCAT" 2158275 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-937 2156709 2156788 2156940 "PMLSAGG" 2157092 NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-936 2156182 2156258 2156440 "PMKERNEL" 2156627 NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-935 2155799 2155874 2155987 "PMINS" 2156101 NIL PMINS (NIL T) -7 NIL NIL NIL) (-934 2155241 2155310 2155519 "PMFS" 2155724 NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-933 2154469 2154587 2154792 "PMDOWN" 2155118 NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-932 2153636 2153794 2153975 "PMASS" 2154308 T PMASS (NIL) -7 NIL NIL NIL) (-931 2152909 2153019 2153182 "PMASSFS" 2153523 NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-930 2152564 2152632 2152726 "PLOTTOOL" 2152835 T PLOTTOOL (NIL) -7 NIL NIL NIL) (-929 2147171 2148375 2149523 "PLOT" 2151436 T PLOT (NIL) -8 NIL NIL NIL) (-928 2142975 2144019 2144940 "PLOT3D" 2146270 T PLOT3D (NIL) -8 NIL NIL NIL) (-927 2141887 2142064 2142299 "PLOT1" 2142779 NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-926 2117276 2121953 2126804 "PLEQN" 2137153 NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-925 2116594 2116716 2116896 "PINTERP" 2117141 NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-924 2116287 2116334 2116437 "PINTERPA" 2116541 NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-923 2115508 2116056 2116143 "PI" 2116183 T PI (NIL) -8 NIL NIL 2116250) (-922 2113805 2114780 2114808 "PID" 2114990 T PID (NIL) -9 NIL 2115124 NIL) (-921 2113556 2113593 2113668 "PICOERCE" 2113762 NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-920 2112876 2113015 2113191 "PGROEB" 2113412 NIL PGROEB (NIL T) -7 NIL NIL NIL) (-919 2108463 2109277 2110182 "PGE" 2111991 T PGE (NIL) -7 NIL NIL NIL) (-918 2106586 2106833 2107199 "PGCD" 2108180 NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-917 2105924 2106027 2106188 "PFRPAC" 2106470 NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-916 2102564 2104472 2104825 "PFR" 2105603 NIL PFR (NIL T) -8 NIL NIL NIL) (-915 2100953 2101197 2101522 "PFOTOOLS" 2102311 NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-914 2099486 2099725 2100076 "PFOQ" 2100710 NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-913 2097987 2098199 2098555 "PFO" 2099270 NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-912 2094540 2097876 2097945 "PF" 2097950 NIL PF (NIL NIL) -8 NIL NIL NIL) (-911 2091874 2093145 2093173 "PFECAT" 2093758 T PFECAT (NIL) -9 NIL 2094142 NIL) (-910 2091319 2091473 2091687 "PFECAT-" 2091692 NIL PFECAT- (NIL T) -8 NIL NIL NIL) (-909 2089922 2090174 2090475 "PFBRU" 2091068 NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-908 2087788 2088140 2088572 "PFBR" 2089573 NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-907 2083670 2085164 2085840 "PERM" 2087145 NIL PERM (NIL T) -8 NIL NIL NIL) (-906 2078904 2079877 2080747 "PERMGRP" 2082833 NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-905 2077010 2077967 2078008 "PERMCAT" 2078454 NIL PERMCAT (NIL T) -9 NIL 2078759 NIL) (-904 2076663 2076704 2076828 "PERMAN" 2076963 NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-903 2074151 2076328 2076450 "PENDTREE" 2076574 NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-902 2072175 2072943 2072984 "PDRING" 2073641 NIL PDRING (NIL T) -9 NIL 2073927 NIL) (-901 2071278 2071496 2071858 "PDRING-" 2071863 NIL PDRING- (NIL T T) -8 NIL NIL NIL) (-900 2068493 2069271 2069939 "PDEPROB" 2070630 T PDEPROB (NIL) -8 NIL NIL NIL) (-899 2066038 2066542 2067097 "PDEPACK" 2067958 T PDEPACK (NIL) -7 NIL NIL NIL) (-898 2064950 2065140 2065391 "PDECOMP" 2065837 NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-897 2062529 2063372 2063400 "PDECAT" 2064187 T PDECAT (NIL) -9 NIL 2064900 NIL) (-896 2062280 2062313 2062403 "PCOMP" 2062490 NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-895 2060458 2061081 2061378 "PBWLB" 2062009 NIL PBWLB (NIL T) -8 NIL NIL NIL) (-894 2052931 2054531 2055869 "PATTERN" 2059141 NIL PATTERN (NIL T) -8 NIL NIL NIL) (-893 2052563 2052620 2052729 "PATTERN2" 2052868 NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-892 2050320 2050708 2051165 "PATTERN1" 2052152 NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-891 2047688 2048269 2048750 "PATRES" 2049885 NIL PATRES (NIL T T) -8 NIL NIL NIL) (-890 2047252 2047319 2047451 "PATRES2" 2047615 NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-889 2045135 2045540 2045947 "PATMATCH" 2046919 NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-888 2044645 2044854 2044895 "PATMAB" 2045002 NIL PATMAB (NIL T) -9 NIL 2045085 NIL) (-887 2043163 2043499 2043757 "PATLRES" 2044450 NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-886 2042709 2042832 2042873 "PATAB" 2042878 NIL PATAB (NIL T) -9 NIL 2043050 NIL) (-885 2040190 2040722 2041295 "PARTPERM" 2042156 T PARTPERM (NIL) -7 NIL NIL NIL) (-884 2039811 2039874 2039976 "PARSURF" 2040121 NIL PARSURF (NIL T) -8 NIL NIL NIL) (-883 2039443 2039500 2039609 "PARSU2" 2039748 NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-882 2039207 2039247 2039314 "PARSER" 2039396 T PARSER (NIL) -7 NIL NIL NIL) (-881 2038828 2038891 2038993 "PARSCURV" 2039138 NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-880 2038460 2038517 2038626 "PARSC2" 2038765 NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-879 2038099 2038157 2038254 "PARPCURV" 2038396 NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-878 2037731 2037788 2037897 "PARPC2" 2038036 NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-877 2036792 2037104 2037286 "PARAMAST" 2037569 T PARAMAST (NIL) -8 NIL NIL NIL) (-876 2036312 2036398 2036517 "PAN2EXPR" 2036693 T PAN2EXPR (NIL) -7 NIL NIL NIL) (-875 2035089 2035433 2035661 "PALETTE" 2036104 T PALETTE (NIL) -8 NIL NIL NIL) (-874 2033482 2034094 2034454 "PAIR" 2034775 NIL PAIR (NIL T T) -8 NIL NIL NIL) (-873 2027352 2032741 2032935 "PADICRC" 2033337 NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-872 2020581 2026698 2026882 "PADICRAT" 2027200 NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-871 2018896 2020518 2020563 "PADIC" 2020568 NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-870 2016006 2017570 2017610 "PADICCT" 2018191 NIL PADICCT (NIL NIL) -9 NIL 2018473 NIL) (-869 2014963 2015163 2015431 "PADEPAC" 2015793 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-868 2014175 2014308 2014514 "PADE" 2014825 NIL PADE (NIL T T T) -7 NIL NIL NIL) (-867 2012562 2013383 2013663 "OWP" 2013979 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-866 2012055 2012268 2012365 "OVERSET" 2012485 T OVERSET (NIL) -8 NIL NIL NIL) (-865 2011101 2011660 2011832 "OVAR" 2011923 NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-864 2010365 2010486 2010647 "OUT" 2010960 T OUT (NIL) -7 NIL NIL NIL) (-863 1999237 2001474 2003674 "OUTFORM" 2008185 T OUTFORM (NIL) -8 NIL NIL NIL) (-862 1998573 1998834 1998961 "OUTBFILE" 1999130 T OUTBFILE (NIL) -8 NIL NIL NIL) (-861 1997880 1998045 1998073 "OUTBCON" 1998391 T OUTBCON (NIL) -9 NIL 1998557 NIL) (-860 1997481 1997593 1997750 "OUTBCON-" 1997755 NIL OUTBCON- (NIL T) -8 NIL NIL NIL) (-859 1996861 1997210 1997299 "OSI" 1997412 T OSI (NIL) -8 NIL NIL NIL) (-858 1996391 1996729 1996757 "OSGROUP" 1996762 T OSGROUP (NIL) -9 NIL 1996784 NIL) (-857 1995136 1995363 1995648 "ORTHPOL" 1996138 NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-856 1992687 1994971 1995092 "OREUP" 1995097 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-855 1990090 1992378 1992505 "ORESUP" 1992629 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-854 1987618 1988118 1988679 "OREPCTO" 1989579 NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-853 1981304 1983505 1983546 "OREPCAT" 1985894 NIL OREPCAT (NIL T) -9 NIL 1986998 NIL) (-852 1978451 1979233 1980291 "OREPCAT-" 1980296 NIL OREPCAT- (NIL T T) -8 NIL NIL NIL) (-851 1977602 1977900 1977928 "ORDSET" 1978237 T ORDSET (NIL) -9 NIL 1978401 NIL) (-850 1977033 1977181 1977405 "ORDSET-" 1977410 NIL ORDSET- (NIL T) -8 NIL NIL NIL) (-849 1975598 1976389 1976417 "ORDRING" 1976619 T ORDRING (NIL) -9 NIL 1976744 NIL) (-848 1975243 1975337 1975481 "ORDRING-" 1975486 NIL ORDRING- (NIL T) -8 NIL NIL NIL) (-847 1974623 1975086 1975114 "ORDMON" 1975119 T ORDMON (NIL) -9 NIL 1975140 NIL) (-846 1973785 1973932 1974127 "ORDFUNS" 1974472 NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-845 1973123 1973542 1973570 "ORDFIN" 1973635 T ORDFIN (NIL) -9 NIL 1973709 NIL) (-844 1969682 1971709 1972118 "ORDCOMP" 1972747 NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-843 1968948 1969075 1969261 "ORDCOMP2" 1969542 NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-842 1965529 1966439 1967253 "OPTPROB" 1968154 T OPTPROB (NIL) -8 NIL NIL NIL) (-841 1962331 1962970 1963674 "OPTPACK" 1964845 T OPTPACK (NIL) -7 NIL NIL NIL) (-840 1960018 1960784 1960812 "OPTCAT" 1961631 T OPTCAT (NIL) -9 NIL 1962281 NIL) (-839 1959402 1959695 1959800 "OPSIG" 1959933 T OPSIG (NIL) -8 NIL NIL NIL) (-838 1959170 1959209 1959275 "OPQUERY" 1959356 T OPQUERY (NIL) -7 NIL NIL NIL) (-837 1956301 1957481 1957985 "OP" 1958699 NIL OP (NIL T) -8 NIL NIL NIL) (-836 1955675 1955901 1955942 "OPERCAT" 1956154 NIL OPERCAT (NIL T) -9 NIL 1956251 NIL) (-835 1955430 1955486 1955603 "OPERCAT-" 1955608 NIL OPERCAT- (NIL T T) -8 NIL NIL NIL) (-834 1952243 1954227 1954596 "ONECOMP" 1955094 NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-833 1951548 1951663 1951837 "ONECOMP2" 1952115 NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-832 1950967 1951073 1951203 "OMSERVER" 1951438 T OMSERVER (NIL) -7 NIL NIL NIL) (-831 1947829 1950407 1950447 "OMSAGG" 1950508 NIL OMSAGG (NIL T) -9 NIL 1950572 NIL) (-830 1946452 1946715 1946997 "OMPKG" 1947567 T OMPKG (NIL) -7 NIL NIL NIL) (-829 1945882 1945985 1946013 "OM" 1946312 T OM (NIL) -9 NIL NIL NIL) (-828 1944429 1945431 1945600 "OMLO" 1945763 NIL OMLO (NIL T T) -8 NIL NIL NIL) (-827 1943389 1943536 1943756 "OMEXPR" 1944255 NIL OMEXPR (NIL T) -7 NIL NIL NIL) (-826 1942680 1942935 1943071 "OMERR" 1943273 T OMERR (NIL) -8 NIL NIL NIL) (-825 1941831 1942101 1942261 "OMERRK" 1942540 T OMERRK (NIL) -8 NIL NIL NIL) (-824 1941282 1941508 1941616 "OMENC" 1941743 T OMENC (NIL) -8 NIL NIL NIL) (-823 1935177 1936362 1937533 "OMDEV" 1940131 T OMDEV (NIL) -8 NIL NIL NIL) (-822 1934246 1934417 1934611 "OMCONN" 1935003 T OMCONN (NIL) -8 NIL NIL NIL) (-821 1932767 1933743 1933771 "OINTDOM" 1933776 T OINTDOM (NIL) -9 NIL 1933797 NIL) (-820 1930105 1931455 1931792 "OFMONOID" 1932462 NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-819 1929516 1930042 1930087 "ODVAR" 1930092 NIL ODVAR (NIL T) -8 NIL NIL NIL) (-818 1926939 1929261 1929416 "ODR" 1929421 NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-817 1919520 1926715 1926841 "ODPOL" 1926846 NIL ODPOL (NIL T) -8 NIL NIL NIL) (-816 1913342 1919392 1919497 "ODP" 1919502 NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-815 1912108 1912323 1912598 "ODETOOLS" 1913116 NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-814 1909075 1909733 1910449 "ODESYS" 1911441 NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-813 1903957 1904865 1905890 "ODERTRIC" 1908150 NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-812 1903383 1903465 1903659 "ODERED" 1903869 NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-811 1900271 1900819 1901496 "ODERAT" 1902806 NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-810 1897228 1897695 1898292 "ODEPRRIC" 1899800 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-809 1895171 1895767 1896253 "ODEPROB" 1896762 T ODEPROB (NIL) -8 NIL NIL NIL) (-808 1891691 1892176 1892823 "ODEPRIM" 1894650 NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-807 1890940 1891042 1891302 "ODEPAL" 1891583 NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-806 1887102 1887893 1888757 "ODEPACK" 1890096 T ODEPACK (NIL) -7 NIL NIL NIL) (-805 1886163 1886270 1886492 "ODEINT" 1886991 NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-804 1880264 1881689 1883136 "ODEIFTBL" 1884736 T ODEIFTBL (NIL) -8 NIL NIL NIL) (-803 1875662 1876448 1877400 "ODEEF" 1879423 NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-802 1875011 1875100 1875323 "ODECONST" 1875567 NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-801 1873136 1873797 1873825 "ODECAT" 1874430 T ODECAT (NIL) -9 NIL 1874961 NIL) (-800 1869991 1872841 1872963 "OCT" 1873046 NIL OCT (NIL T) -8 NIL NIL NIL) (-799 1869629 1869672 1869799 "OCTCT2" 1869942 NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-798 1864278 1866713 1866753 "OC" 1867850 NIL OC (NIL T) -9 NIL 1868708 NIL) (-797 1861505 1862253 1863243 "OC-" 1863337 NIL OC- (NIL T T) -8 NIL NIL NIL) (-796 1860857 1861325 1861353 "OCAMON" 1861358 T OCAMON (NIL) -9 NIL 1861379 NIL) (-795 1860388 1860729 1860757 "OASGP" 1860762 T OASGP (NIL) -9 NIL 1860782 NIL) (-794 1859649 1860138 1860166 "OAMONS" 1860206 T OAMONS (NIL) -9 NIL 1860249 NIL) (-793 1859063 1859496 1859524 "OAMON" 1859529 T OAMON (NIL) -9 NIL 1859549 NIL) (-792 1858321 1858839 1858867 "OAGROUP" 1858872 T OAGROUP (NIL) -9 NIL 1858892 NIL) (-791 1858011 1858061 1858149 "NUMTUBE" 1858265 NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-790 1851584 1853102 1854638 "NUMQUAD" 1856495 T NUMQUAD (NIL) -7 NIL NIL NIL) (-789 1847340 1848328 1849353 "NUMODE" 1850579 T NUMODE (NIL) -7 NIL NIL NIL) (-788 1844695 1845575 1845603 "NUMINT" 1846526 T NUMINT (NIL) -9 NIL 1847290 NIL) (-787 1843643 1843840 1844058 "NUMFMT" 1844497 T NUMFMT (NIL) -7 NIL NIL NIL) (-786 1830002 1832947 1835479 "NUMERIC" 1841150 NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-785 1824372 1829451 1829546 "NTSCAT" 1829551 NIL NTSCAT (NIL T T T T) -9 NIL 1829590 NIL) (-784 1823566 1823731 1823924 "NTPOLFN" 1824211 NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-783 1811643 1820391 1821203 "NSUP" 1822787 NIL NSUP (NIL T) -8 NIL NIL NIL) (-782 1811275 1811332 1811441 "NSUP2" 1811580 NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-781 1801503 1811049 1811182 "NSMP" 1811187 NIL NSMP (NIL T T) -8 NIL NIL NIL) (-780 1799935 1800236 1800593 "NREP" 1801191 NIL NREP (NIL T) -7 NIL NIL NIL) (-779 1798526 1798778 1799136 "NPCOEF" 1799678 NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-778 1797592 1797707 1797923 "NORMRETR" 1798407 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-777 1795633 1795923 1796332 "NORMPK" 1797300 NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-776 1795318 1795346 1795470 "NORMMA" 1795599 NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-775 1795118 1795275 1795304 "NONE" 1795309 T NONE (NIL) -8 NIL NIL NIL) (-774 1794907 1794936 1795005 "NONE1" 1795082 NIL NONE1 (NIL T) -7 NIL NIL NIL) (-773 1794404 1794466 1794645 "NODE1" 1794839 NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-772 1792689 1793540 1793795 "NNI" 1794142 T NNI (NIL) -8 NIL NIL 1794377) (-771 1791109 1791422 1791786 "NLINSOL" 1792357 NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-770 1787350 1788345 1789244 "NIPROB" 1790230 T NIPROB (NIL) -8 NIL NIL NIL) (-769 1786107 1786341 1786643 "NFINTBAS" 1787112 NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-768 1785281 1785757 1785798 "NETCLT" 1785970 NIL NETCLT (NIL T) -9 NIL 1786052 NIL) (-767 1783989 1784220 1784501 "NCODIV" 1785049 NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-766 1783751 1783788 1783863 "NCNTFRAC" 1783946 NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-765 1781931 1782295 1782715 "NCEP" 1783376 NIL NCEP (NIL T) -7 NIL NIL NIL) (-764 1780782 1781555 1781583 "NASRING" 1781693 T NASRING (NIL) -9 NIL 1781773 NIL) (-763 1780577 1780621 1780715 "NASRING-" 1780720 NIL NASRING- (NIL T) -8 NIL NIL NIL) (-762 1779684 1780209 1780237 "NARNG" 1780354 T NARNG (NIL) -9 NIL 1780445 NIL) (-761 1779376 1779443 1779577 "NARNG-" 1779582 NIL NARNG- (NIL T) -8 NIL NIL NIL) (-760 1778255 1778462 1778697 "NAGSP" 1779161 T NAGSP (NIL) -7 NIL NIL NIL) (-759 1769527 1771211 1772884 "NAGS" 1776602 T NAGS (NIL) -7 NIL NIL NIL) (-758 1768075 1768383 1768714 "NAGF07" 1769216 T NAGF07 (NIL) -7 NIL NIL NIL) (-757 1762613 1763904 1765211 "NAGF04" 1766788 T NAGF04 (NIL) -7 NIL NIL NIL) (-756 1755581 1757195 1758828 "NAGF02" 1761000 T NAGF02 (NIL) -7 NIL NIL NIL) (-755 1750805 1751905 1753022 "NAGF01" 1754484 T NAGF01 (NIL) -7 NIL NIL NIL) (-754 1744433 1745999 1747584 "NAGE04" 1749240 T NAGE04 (NIL) -7 NIL NIL NIL) (-753 1735602 1737723 1739853 "NAGE02" 1742323 T NAGE02 (NIL) -7 NIL NIL NIL) (-752 1731555 1732502 1733466 "NAGE01" 1734658 T NAGE01 (NIL) -7 NIL NIL NIL) (-751 1729350 1729884 1730442 "NAGD03" 1731017 T NAGD03 (NIL) -7 NIL NIL NIL) (-750 1721100 1723028 1724982 "NAGD02" 1727416 T NAGD02 (NIL) -7 NIL NIL NIL) (-749 1714911 1716336 1717776 "NAGD01" 1719680 T NAGD01 (NIL) -7 NIL NIL NIL) (-748 1711120 1711942 1712779 "NAGC06" 1714094 T NAGC06 (NIL) -7 NIL NIL NIL) (-747 1709585 1709917 1710273 "NAGC05" 1710784 T NAGC05 (NIL) -7 NIL NIL NIL) (-746 1708961 1709080 1709224 "NAGC02" 1709461 T NAGC02 (NIL) -7 NIL NIL NIL) (-745 1707920 1708503 1708543 "NAALG" 1708622 NIL NAALG (NIL T) -9 NIL 1708683 NIL) (-744 1707755 1707784 1707874 "NAALG-" 1707879 NIL NAALG- (NIL T T) -8 NIL NIL NIL) (-743 1701705 1702813 1704000 "MULTSQFR" 1706651 NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-742 1701024 1701099 1701283 "MULTFACT" 1701617 NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-741 1693748 1697661 1697714 "MTSCAT" 1698784 NIL MTSCAT (NIL T T) -9 NIL 1699299 NIL) (-740 1693460 1693514 1693606 "MTHING" 1693688 NIL MTHING (NIL T) -7 NIL NIL NIL) (-739 1693252 1693285 1693345 "MSYSCMD" 1693420 T MSYSCMD (NIL) -7 NIL NIL NIL) (-738 1689334 1692007 1692327 "MSET" 1692965 NIL MSET (NIL T) -8 NIL NIL NIL) (-737 1686403 1688895 1688936 "MSETAGG" 1688941 NIL MSETAGG (NIL T) -9 NIL 1688975 NIL) (-736 1682244 1683782 1684527 "MRING" 1685703 NIL MRING (NIL T T) -8 NIL NIL NIL) (-735 1681810 1681877 1682008 "MRF2" 1682171 NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-734 1681428 1681463 1681607 "MRATFAC" 1681769 NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-733 1679040 1679335 1679766 "MPRFF" 1681133 NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-732 1673337 1678894 1678991 "MPOLY" 1678996 NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-731 1672827 1672862 1673070 "MPCPF" 1673296 NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-730 1672341 1672384 1672568 "MPC3" 1672778 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-729 1671536 1671617 1671838 "MPC2" 1672256 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-728 1669837 1670174 1670564 "MONOTOOL" 1671196 NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-727 1669062 1669379 1669407 "MONOID" 1669626 T MONOID (NIL) -9 NIL 1669773 NIL) (-726 1668608 1668727 1668908 "MONOID-" 1668913 NIL MONOID- (NIL T) -8 NIL NIL NIL) (-725 1659083 1665034 1665093 "MONOGEN" 1665767 NIL MONOGEN (NIL T T) -9 NIL 1666223 NIL) (-724 1656301 1657036 1658036 "MONOGEN-" 1658155 NIL MONOGEN- (NIL T T T) -8 NIL NIL NIL) (-723 1655134 1655580 1655608 "MONADWU" 1656000 T MONADWU (NIL) -9 NIL 1656238 NIL) (-722 1654506 1654665 1654913 "MONADWU-" 1654918 NIL MONADWU- (NIL T) -8 NIL NIL NIL) (-721 1653865 1654109 1654137 "MONAD" 1654344 T MONAD (NIL) -9 NIL 1654456 NIL) (-720 1653550 1653628 1653760 "MONAD-" 1653765 NIL MONAD- (NIL T) -8 NIL NIL NIL) (-719 1651839 1652463 1652742 "MOEBIUS" 1653303 NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-718 1651117 1651521 1651561 "MODULE" 1651566 NIL MODULE (NIL T) -9 NIL 1651605 NIL) (-717 1650685 1650781 1650971 "MODULE-" 1650976 NIL MODULE- (NIL T T) -8 NIL NIL NIL) (-716 1648365 1649049 1649376 "MODRING" 1650509 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-715 1645309 1646470 1646991 "MODOP" 1647894 NIL MODOP (NIL T T) -8 NIL NIL NIL) (-714 1643897 1644376 1644653 "MODMONOM" 1645172 NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-713 1633938 1642188 1642602 "MODMON" 1643534 NIL MODMON (NIL T T) -8 NIL NIL NIL) (-712 1631094 1632782 1633058 "MODFIELD" 1633813 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-711 1630071 1630375 1630565 "MMLFORM" 1630924 T MMLFORM (NIL) -8 NIL NIL NIL) (-710 1629597 1629640 1629819 "MMAP" 1630022 NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-709 1627676 1628443 1628484 "MLO" 1628907 NIL MLO (NIL T) -9 NIL 1629149 NIL) (-708 1625042 1625558 1626160 "MLIFT" 1627157 NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-707 1624433 1624517 1624671 "MKUCFUNC" 1624953 NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-706 1624032 1624102 1624225 "MKRECORD" 1624356 NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-705 1623079 1623241 1623469 "MKFUNC" 1623843 NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-704 1622467 1622571 1622727 "MKFLCFN" 1622962 NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-703 1621744 1621846 1622031 "MKBCFUNC" 1622360 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-702 1618451 1621298 1621434 "MINT" 1621628 T MINT (NIL) -8 NIL NIL NIL) (-701 1617263 1617506 1617783 "MHROWRED" 1618206 NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-700 1612642 1615798 1616203 "MFLOAT" 1616878 T MFLOAT (NIL) -8 NIL NIL NIL) (-699 1611999 1612075 1612246 "MFINFACT" 1612554 NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-698 1608314 1609162 1610046 "MESH" 1611135 T MESH (NIL) -7 NIL NIL NIL) (-697 1606704 1607016 1607369 "MDDFACT" 1608001 NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-696 1603499 1605863 1605904 "MDAGG" 1606159 NIL MDAGG (NIL T) -9 NIL 1606302 NIL) (-695 1593239 1602792 1602999 "MCMPLX" 1603312 T MCMPLX (NIL) -8 NIL NIL NIL) (-694 1592380 1592526 1592726 "MCDEN" 1593088 NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-693 1590270 1590540 1590920 "MCALCFN" 1592110 NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-692 1589195 1589435 1589668 "MAYBE" 1590076 NIL MAYBE (NIL T) -8 NIL NIL NIL) (-691 1586807 1587330 1587892 "MATSTOR" 1588666 NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-690 1582764 1586179 1586427 "MATRIX" 1586592 NIL MATRIX (NIL T) -8 NIL NIL NIL) (-689 1578528 1579237 1579973 "MATLIN" 1582121 NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-688 1568634 1571820 1571897 "MATCAT" 1576777 NIL MATCAT (NIL T T T) -9 NIL 1578194 NIL) (-687 1564990 1566011 1567367 "MATCAT-" 1567372 NIL MATCAT- (NIL T T T T) -8 NIL NIL NIL) (-686 1563584 1563737 1564070 "MATCAT2" 1564825 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-685 1561696 1562020 1562404 "MAPPKG3" 1563259 NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-684 1560677 1560850 1561072 "MAPPKG2" 1561520 NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-683 1559176 1559460 1559787 "MAPPKG1" 1560383 NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-682 1558255 1558582 1558759 "MAPPAST" 1559019 T MAPPAST (NIL) -8 NIL NIL NIL) (-681 1557866 1557924 1558047 "MAPHACK3" 1558191 NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-680 1557458 1557519 1557633 "MAPHACK2" 1557798 NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-679 1556895 1556999 1557141 "MAPHACK1" 1557349 NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-678 1554974 1555595 1555899 "MAGMA" 1556623 NIL MAGMA (NIL T) -8 NIL NIL NIL) (-677 1554453 1554698 1554789 "MACROAST" 1554903 T MACROAST (NIL) -8 NIL NIL NIL) (-676 1550871 1552692 1553153 "M3D" 1554025 NIL M3D (NIL T) -8 NIL NIL NIL) (-675 1544977 1549240 1549281 "LZSTAGG" 1550063 NIL LZSTAGG (NIL T) -9 NIL 1550358 NIL) (-674 1540934 1542108 1543565 "LZSTAGG-" 1543570 NIL LZSTAGG- (NIL T T) -8 NIL NIL NIL) (-673 1538021 1538825 1539312 "LWORD" 1540479 NIL LWORD (NIL T) -8 NIL NIL NIL) (-672 1537597 1537825 1537900 "LSTAST" 1537966 T LSTAST (NIL) -8 NIL NIL NIL) (-671 1530763 1537368 1537502 "LSQM" 1537507 NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-670 1529987 1530126 1530354 "LSPP" 1530618 NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-669 1527799 1528100 1528556 "LSMP" 1529676 NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-668 1524578 1525252 1525982 "LSMP1" 1527101 NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-667 1518455 1523745 1523786 "LSAGG" 1523848 NIL LSAGG (NIL T) -9 NIL 1523926 NIL) (-666 1515150 1516074 1517287 "LSAGG-" 1517292 NIL LSAGG- (NIL T T) -8 NIL NIL NIL) (-665 1512749 1514294 1514543 "LPOLY" 1514945 NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-664 1512331 1512416 1512539 "LPEFRAC" 1512658 NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-663 1510652 1511425 1511678 "LO" 1512163 NIL LO (NIL T T T) -8 NIL NIL NIL) (-662 1510304 1510416 1510444 "LOGIC" 1510555 T LOGIC (NIL) -9 NIL 1510636 NIL) (-661 1510166 1510189 1510260 "LOGIC-" 1510265 NIL LOGIC- (NIL T) -8 NIL NIL NIL) (-660 1509359 1509499 1509692 "LODOOPS" 1510022 NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-659 1506782 1509275 1509341 "LODO" 1509346 NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-658 1505320 1505555 1505908 "LODOF" 1506529 NIL LODOF (NIL T T) -7 NIL NIL NIL) (-657 1501538 1503969 1504010 "LODOCAT" 1504448 NIL LODOCAT (NIL T) -9 NIL 1504659 NIL) (-656 1501271 1501329 1501456 "LODOCAT-" 1501461 NIL LODOCAT- (NIL T T) -8 NIL NIL NIL) (-655 1498591 1501112 1501230 "LODO2" 1501235 NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-654 1496026 1498528 1498573 "LODO1" 1498578 NIL LODO1 (NIL T) -8 NIL NIL NIL) (-653 1494907 1495072 1495377 "LODEEF" 1495849 NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-652 1490146 1493037 1493078 "LNAGG" 1494025 NIL LNAGG (NIL T) -9 NIL 1494469 NIL) (-651 1489293 1489507 1489849 "LNAGG-" 1489854 NIL LNAGG- (NIL T T) -8 NIL NIL NIL) (-650 1485429 1486218 1486857 "LMOPS" 1488708 NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-649 1484832 1485220 1485261 "LMODULE" 1485266 NIL LMODULE (NIL T) -9 NIL 1485292 NIL) (-648 1482030 1484477 1484600 "LMDICT" 1484742 NIL LMDICT (NIL T) -8 NIL NIL NIL) (-647 1481436 1481657 1481698 "LLINSET" 1481889 NIL LLINSET (NIL T) -9 NIL 1481980 NIL) (-646 1481135 1481344 1481404 "LITERAL" 1481409 NIL LITERAL (NIL T) -8 NIL NIL NIL) (-645 1474298 1480069 1480373 "LIST" 1480864 NIL LIST (NIL T) -8 NIL NIL NIL) (-644 1473823 1473897 1474036 "LIST3" 1474218 NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-643 1472830 1473008 1473236 "LIST2" 1473641 NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-642 1470964 1471276 1471675 "LIST2MAP" 1472477 NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-641 1470560 1470797 1470838 "LINSET" 1470843 NIL LINSET (NIL T) -9 NIL 1470877 NIL) (-640 1469221 1469891 1469932 "LINEXP" 1470187 NIL LINEXP (NIL T) -9 NIL 1470336 NIL) (-639 1467868 1468128 1468425 "LINDEP" 1468973 NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-638 1464635 1465354 1466131 "LIMITRF" 1467123 NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-637 1462938 1463234 1463643 "LIMITPS" 1464330 NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-636 1457366 1462449 1462677 "LIE" 1462759 NIL LIE (NIL T T) -8 NIL NIL NIL) (-635 1456314 1456783 1456823 "LIECAT" 1456963 NIL LIECAT (NIL T) -9 NIL 1457114 NIL) (-634 1456155 1456182 1456270 "LIECAT-" 1456275 NIL LIECAT- (NIL T T) -8 NIL NIL NIL) (-633 1448651 1455604 1455769 "LIB" 1456010 T LIB (NIL) -8 NIL NIL NIL) (-632 1444286 1445169 1446104 "LGROBP" 1447768 NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-631 1442284 1442558 1442908 "LF" 1444007 NIL LF (NIL T T) -7 NIL NIL NIL) (-630 1441124 1441816 1441844 "LFCAT" 1442051 T LFCAT (NIL) -9 NIL 1442190 NIL) (-629 1438026 1438656 1439344 "LEXTRIPK" 1440488 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-628 1434770 1435596 1436099 "LEXP" 1437606 NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-627 1434246 1434491 1434583 "LETAST" 1434698 T LETAST (NIL) -8 NIL NIL NIL) (-626 1432644 1432957 1433358 "LEADCDET" 1433928 NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-625 1431834 1431908 1432137 "LAZM3PK" 1432565 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-624 1426751 1429911 1430449 "LAUPOL" 1431346 NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-623 1426330 1426374 1426535 "LAPLACE" 1426701 NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-622 1424269 1425431 1425682 "LA" 1426163 NIL LA (NIL T T T) -8 NIL NIL NIL) (-621 1423263 1423847 1423888 "LALG" 1423950 NIL LALG (NIL T) -9 NIL 1424009 NIL) (-620 1422977 1423036 1423172 "LALG-" 1423177 NIL LALG- (NIL T T) -8 NIL NIL NIL) (-619 1422812 1422836 1422877 "KVTFROM" 1422939 NIL KVTFROM (NIL T) -9 NIL NIL NIL) (-618 1421735 1422179 1422364 "KTVLOGIC" 1422647 T KTVLOGIC (NIL) -8 NIL NIL NIL) (-617 1421570 1421594 1421635 "KRCFROM" 1421697 NIL KRCFROM (NIL T) -9 NIL NIL NIL) (-616 1420474 1420661 1420960 "KOVACIC" 1421370 NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-615 1420309 1420333 1420374 "KONVERT" 1420436 NIL KONVERT (NIL T) -9 NIL NIL NIL) (-614 1420144 1420168 1420209 "KOERCE" 1420271 NIL KOERCE (NIL T) -9 NIL NIL NIL) (-613 1417974 1418737 1419114 "KERNEL" 1419800 NIL KERNEL (NIL T) -8 NIL NIL NIL) (-612 1417470 1417551 1417683 "KERNEL2" 1417888 NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-611 1411240 1416009 1416063 "KDAGG" 1416440 NIL KDAGG (NIL T T) -9 NIL 1416646 NIL) (-610 1410769 1410893 1411098 "KDAGG-" 1411103 NIL KDAGG- (NIL T T T) -8 NIL NIL NIL) (-609 1403917 1410430 1410585 "KAFILE" 1410647 NIL KAFILE (NIL T) -8 NIL NIL NIL) (-608 1398345 1403428 1403656 "JORDAN" 1403738 NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-607 1397724 1397994 1398115 "JOINAST" 1398244 T JOINAST (NIL) -8 NIL NIL NIL) (-606 1397570 1397629 1397684 "JAVACODE" 1397689 T JAVACODE (NIL) -8 NIL NIL NIL) (-605 1393822 1395775 1395829 "IXAGG" 1396758 NIL IXAGG (NIL T T) -9 NIL 1397217 NIL) (-604 1392741 1393047 1393466 "IXAGG-" 1393471 NIL IXAGG- (NIL T T T) -8 NIL NIL NIL) (-603 1388271 1392663 1392722 "IVECTOR" 1392727 NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-602 1387037 1387274 1387540 "ITUPLE" 1388038 NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-601 1385539 1385716 1386011 "ITRIGMNP" 1386859 NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-600 1384284 1384488 1384771 "ITFUN3" 1385315 NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-599 1383916 1383973 1384082 "ITFUN2" 1384221 NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-598 1381877 1382936 1383214 "ITAYLOR" 1383671 NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-597 1370822 1376014 1377177 "ISUPS" 1380747 NIL ISUPS (NIL T) -8 NIL NIL NIL) (-596 1369926 1370066 1370302 "ISUMP" 1370669 NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-595 1365301 1369871 1369912 "ISTRING" 1369917 NIL ISTRING (NIL NIL) -8 NIL NIL NIL) (-594 1364777 1365022 1365114 "ISAST" 1365229 T ISAST (NIL) -8 NIL NIL NIL) (-593 1363986 1364068 1364284 "IRURPK" 1364691 NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-592 1362922 1363123 1363363 "IRSN" 1363766 T IRSN (NIL) -7 NIL NIL NIL) (-591 1360993 1361348 1361777 "IRRF2F" 1362560 NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-590 1360740 1360778 1360854 "IRREDFFX" 1360949 NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-589 1359355 1359614 1359913 "IROOT" 1360473 NIL IROOT (NIL T) -7 NIL NIL NIL) (-588 1355959 1357039 1357731 "IR" 1358695 NIL IR (NIL T) -8 NIL NIL NIL) (-587 1353572 1354067 1354633 "IR2" 1355437 NIL IR2 (NIL T T) -7 NIL NIL NIL) (-586 1352672 1352785 1352999 "IR2F" 1353455 NIL IR2F (NIL T T) -7 NIL NIL NIL) (-585 1352463 1352497 1352557 "IPRNTPK" 1352632 T IPRNTPK (NIL) -7 NIL NIL NIL) (-584 1349044 1352352 1352421 "IPF" 1352426 NIL IPF (NIL NIL) -8 NIL NIL NIL) (-583 1347371 1348969 1349026 "IPADIC" 1349031 NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-582 1346683 1346931 1347061 "IP4ADDR" 1347261 T IP4ADDR (NIL) -8 NIL NIL NIL) (-581 1346156 1346387 1346497 "IOMODE" 1346593 T IOMODE (NIL) -8 NIL NIL NIL) (-580 1345229 1345753 1345880 "IOBFILE" 1346049 T IOBFILE (NIL) -8 NIL NIL NIL) (-579 1344717 1345133 1345161 "IOBCON" 1345166 T IOBCON (NIL) -9 NIL 1345187 NIL) (-578 1344228 1344286 1344469 "INVLAPLA" 1344653 NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-577 1333876 1336230 1338616 "INTTR" 1341892 NIL INTTR (NIL T T) -7 NIL NIL NIL) (-576 1330211 1330953 1331818 "INTTOOLS" 1333061 NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-575 1329797 1329888 1330005 "INTSLPE" 1330114 T INTSLPE (NIL) -7 NIL NIL NIL) (-574 1327750 1329720 1329779 "INTRVL" 1329784 NIL INTRVL (NIL T) -8 NIL NIL NIL) (-573 1325352 1325864 1326439 "INTRF" 1327235 NIL INTRF (NIL T) -7 NIL NIL NIL) (-572 1324763 1324860 1325002 "INTRET" 1325250 NIL INTRET (NIL T) -7 NIL NIL NIL) (-571 1322760 1323149 1323619 "INTRAT" 1324371 NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-570 1320023 1320606 1321225 "INTPM" 1322245 NIL INTPM (NIL T T) -7 NIL NIL NIL) (-569 1316768 1317367 1318105 "INTPAF" 1319409 NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-568 1311947 1312909 1313960 "INTPACK" 1315737 T INTPACK (NIL) -7 NIL NIL NIL) (-567 1308895 1311744 1311853 "INT" 1311858 T INT (NIL) -8 NIL NIL NIL) (-566 1308147 1308299 1308507 "INTHERTR" 1308737 NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-565 1307586 1307666 1307854 "INTHERAL" 1308061 NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-564 1305432 1305875 1306332 "INTHEORY" 1307149 T INTHEORY (NIL) -7 NIL NIL NIL) (-563 1296838 1298459 1300231 "INTG0" 1303784 NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-562 1277411 1282201 1287011 "INTFTBL" 1292048 T INTFTBL (NIL) -8 NIL NIL NIL) (-561 1276660 1276798 1276971 "INTFACT" 1277270 NIL INTFACT (NIL T) -7 NIL NIL NIL) (-560 1274087 1274533 1275090 "INTEF" 1276214 NIL INTEF (NIL T T) -7 NIL NIL NIL) (-559 1272454 1273193 1273221 "INTDOM" 1273522 T INTDOM (NIL) -9 NIL 1273729 NIL) (-558 1271823 1271997 1272239 "INTDOM-" 1272244 NIL INTDOM- (NIL T) -8 NIL NIL NIL) (-557 1268211 1270139 1270193 "INTCAT" 1270992 NIL INTCAT (NIL T) -9 NIL 1271313 NIL) (-556 1267683 1267786 1267914 "INTBIT" 1268103 T INTBIT (NIL) -7 NIL NIL NIL) (-555 1266382 1266536 1266843 "INTALG" 1267528 NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-554 1265865 1265955 1266112 "INTAF" 1266286 NIL INTAF (NIL T T) -7 NIL NIL NIL) (-553 1259208 1265675 1265815 "INTABL" 1265820 NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-552 1258549 1259015 1259080 "INT8" 1259114 T INT8 (NIL) -8 NIL NIL 1259159) (-551 1257889 1258355 1258420 "INT64" 1258454 T INT64 (NIL) -8 NIL NIL 1258499) (-550 1257229 1257695 1257760 "INT32" 1257794 T INT32 (NIL) -8 NIL NIL 1257839) (-549 1256569 1257035 1257100 "INT16" 1257134 T INT16 (NIL) -8 NIL NIL 1257179) (-548 1251479 1254192 1254220 "INS" 1255154 T INS (NIL) -9 NIL 1255819 NIL) (-547 1248719 1249490 1250464 "INS-" 1250537 NIL INS- (NIL T) -8 NIL NIL NIL) (-546 1247494 1247721 1248019 "INPSIGN" 1248472 NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-545 1246612 1246729 1246926 "INPRODPF" 1247374 NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-544 1245506 1245623 1245860 "INPRODFF" 1246492 NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-543 1244506 1244658 1244918 "INNMFACT" 1245342 NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-542 1243703 1243800 1243988 "INMODGCD" 1244405 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-541 1242211 1242456 1242780 "INFSP" 1243448 NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-540 1241395 1241512 1241695 "INFPROD0" 1242091 NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-539 1238250 1239460 1239975 "INFORM" 1240888 T INFORM (NIL) -8 NIL NIL NIL) (-538 1237860 1237920 1238018 "INFORM1" 1238185 NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-537 1237383 1237472 1237586 "INFINITY" 1237766 T INFINITY (NIL) -7 NIL NIL NIL) (-536 1236559 1237103 1237204 "INETCLTS" 1237302 T INETCLTS (NIL) -8 NIL NIL NIL) (-535 1235175 1235425 1235746 "INEP" 1236307 NIL INEP (NIL T T T) -7 NIL NIL NIL) (-534 1234424 1235072 1235137 "INDE" 1235142 NIL INDE (NIL T) -8 NIL NIL NIL) (-533 1233988 1234056 1234173 "INCRMAPS" 1234351 NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-532 1232806 1233257 1233463 "INBFILE" 1233802 T INBFILE (NIL) -8 NIL NIL NIL) (-531 1228105 1229042 1229986 "INBFF" 1231894 NIL INBFF (NIL T) -7 NIL NIL NIL) (-530 1227013 1227282 1227310 "INBCON" 1227823 T INBCON (NIL) -9 NIL 1228089 NIL) (-529 1226265 1226488 1226764 "INBCON-" 1226769 NIL INBCON- (NIL T) -8 NIL NIL NIL) (-528 1225744 1225989 1226080 "INAST" 1226194 T INAST (NIL) -8 NIL NIL NIL) (-527 1225171 1225423 1225529 "IMPTAST" 1225658 T IMPTAST (NIL) -8 NIL NIL NIL) (-526 1221617 1225015 1225119 "IMATRIX" 1225124 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-525 1220329 1220452 1220767 "IMATQF" 1221473 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-524 1218549 1218776 1219113 "IMATLIN" 1220085 NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-523 1213127 1218473 1218531 "ILIST" 1218536 NIL ILIST (NIL T NIL) -8 NIL NIL NIL) (-522 1211032 1212987 1213100 "IIARRAY2" 1213105 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-521 1206430 1210943 1211007 "IFF" 1211012 NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-520 1205777 1206047 1206163 "IFAST" 1206334 T IFAST (NIL) -8 NIL NIL NIL) (-519 1200772 1205069 1205257 "IFARRAY" 1205634 NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-518 1199952 1200676 1200749 "IFAMON" 1200754 NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-517 1199536 1199601 1199655 "IEVALAB" 1199862 NIL IEVALAB (NIL T T) -9 NIL NIL NIL) (-516 1199211 1199279 1199439 "IEVALAB-" 1199444 NIL IEVALAB- (NIL T T T) -8 NIL NIL NIL) (-515 1198842 1199125 1199188 "IDPO" 1199193 NIL IDPO (NIL T T) -8 NIL NIL NIL) (-514 1198092 1198731 1198806 "IDPOAMS" 1198811 NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-513 1197399 1197981 1198056 "IDPOAM" 1198061 NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-512 1196458 1196734 1196787 "IDPC" 1197200 NIL IDPC (NIL T T) -9 NIL 1197349 NIL) (-511 1195927 1196350 1196423 "IDPAM" 1196428 NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-510 1195303 1195819 1195892 "IDPAG" 1195897 NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-509 1194948 1195139 1195214 "IDENT" 1195248 T IDENT (NIL) -8 NIL NIL NIL) (-508 1191203 1192051 1192946 "IDECOMP" 1194105 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-507 1184041 1185126 1186173 "IDEAL" 1190239 NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-506 1183205 1183317 1183516 "ICDEN" 1183925 NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-505 1182276 1182685 1182832 "ICARD" 1183078 T ICARD (NIL) -8 NIL NIL NIL) (-504 1180336 1180649 1181054 "IBPTOOLS" 1181953 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-503 1175943 1179956 1180069 "IBITS" 1180255 NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-502 1172666 1173242 1173937 "IBATOOL" 1175360 NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-501 1170445 1170907 1171440 "IBACHIN" 1172201 NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-500 1168274 1170291 1170394 "IARRAY2" 1170399 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-499 1164380 1168200 1168257 "IARRAY1" 1168262 NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-498 1158489 1162792 1163273 "IAN" 1163919 T IAN (NIL) -8 NIL NIL NIL) (-497 1158000 1158057 1158230 "IALGFACT" 1158426 NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-496 1157528 1157641 1157669 "HYPCAT" 1157876 T HYPCAT (NIL) -9 NIL NIL NIL) (-495 1157066 1157183 1157369 "HYPCAT-" 1157374 NIL HYPCAT- (NIL T) -8 NIL NIL NIL) (-494 1156661 1156861 1156944 "HOSTNAME" 1157003 T HOSTNAME (NIL) -8 NIL NIL NIL) (-493 1156506 1156543 1156584 "HOMOTOP" 1156589 NIL HOMOTOP (NIL T) -9 NIL 1156622 NIL) (-492 1153138 1154516 1154557 "HOAGG" 1155538 NIL HOAGG (NIL T) -9 NIL 1156217 NIL) (-491 1151732 1152131 1152657 "HOAGG-" 1152662 NIL HOAGG- (NIL T T) -8 NIL NIL NIL) (-490 1145736 1151327 1151476 "HEXADEC" 1151603 T HEXADEC (NIL) -8 NIL NIL NIL) (-489 1144483 1144706 1144969 "HEUGCD" 1145513 NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-488 1143559 1144320 1144450 "HELLFDIV" 1144455 NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-487 1141738 1143336 1143424 "HEAP" 1143503 NIL HEAP (NIL T) -8 NIL NIL NIL) (-486 1141001 1141290 1141424 "HEADAST" 1141624 T HEADAST (NIL) -8 NIL NIL NIL) (-485 1134867 1140916 1140978 "HDP" 1140983 NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-484 1128855 1134502 1134654 "HDMP" 1134768 NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-483 1128179 1128319 1128483 "HB" 1128711 T HB (NIL) -7 NIL NIL NIL) (-482 1121565 1128025 1128129 "HASHTBL" 1128134 NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-481 1121041 1121286 1121378 "HASAST" 1121493 T HASAST (NIL) -8 NIL NIL NIL) (-480 1118819 1120663 1120845 "HACKPI" 1120879 T HACKPI (NIL) -8 NIL NIL NIL) (-479 1114487 1118672 1118785 "GTSET" 1118790 NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-478 1107902 1114365 1114463 "GSTBL" 1114468 NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-477 1100180 1106933 1107198 "GSERIES" 1107693 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-476 1099321 1099738 1099766 "GROUP" 1099969 T GROUP (NIL) -9 NIL 1100103 NIL) (-475 1098687 1098846 1099097 "GROUP-" 1099102 NIL GROUP- (NIL T) -8 NIL NIL NIL) (-474 1097054 1097375 1097762 "GROEBSOL" 1098364 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-473 1095968 1096256 1096307 "GRMOD" 1096836 NIL GRMOD (NIL T T) -9 NIL 1097004 NIL) (-472 1095736 1095772 1095900 "GRMOD-" 1095905 NIL GRMOD- (NIL T T T) -8 NIL NIL NIL) (-471 1091026 1092090 1093090 "GRIMAGE" 1094756 T GRIMAGE (NIL) -8 NIL NIL NIL) (-470 1089492 1089753 1090077 "GRDEF" 1090722 T GRDEF (NIL) -7 NIL NIL NIL) (-469 1088936 1089052 1089193 "GRAY" 1089371 T GRAY (NIL) -7 NIL NIL NIL) (-468 1088123 1088529 1088580 "GRALG" 1088733 NIL GRALG (NIL T T) -9 NIL 1088826 NIL) (-467 1087784 1087857 1088020 "GRALG-" 1088025 NIL GRALG- (NIL T T T) -8 NIL NIL NIL) (-466 1084561 1087369 1087547 "GPOLSET" 1087691 NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-465 1083915 1083972 1084230 "GOSPER" 1084498 NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-464 1079647 1080353 1080879 "GMODPOL" 1083614 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-463 1078652 1078836 1079074 "GHENSEL" 1079459 NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-462 1072808 1073651 1074671 "GENUPS" 1077736 NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-461 1072505 1072556 1072645 "GENUFACT" 1072751 NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-460 1071917 1071994 1072159 "GENPGCD" 1072423 NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-459 1071391 1071426 1071639 "GENMFACT" 1071876 NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-458 1069957 1070214 1070521 "GENEEZ" 1071134 NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-457 1064103 1069568 1069730 "GDMP" 1069880 NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-456 1053445 1057874 1058980 "GCNAALG" 1063086 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-455 1051772 1052634 1052662 "GCDDOM" 1052917 T GCDDOM (NIL) -9 NIL 1053074 NIL) (-454 1051242 1051369 1051584 "GCDDOM-" 1051589 NIL GCDDOM- (NIL T) -8 NIL NIL NIL) (-453 1049914 1050099 1050403 "GB" 1051021 NIL GB (NIL T T T T) -7 NIL NIL NIL) (-452 1038530 1040860 1043252 "GBINTERN" 1047605 NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-451 1036367 1036659 1037080 "GBF" 1038205 NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-450 1035148 1035313 1035580 "GBEUCLID" 1036183 NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-449 1034497 1034622 1034771 "GAUSSFAC" 1035019 T GAUSSFAC (NIL) -7 NIL NIL NIL) (-448 1032864 1033166 1033480 "GALUTIL" 1034216 NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-447 1031172 1031446 1031770 "GALPOLYU" 1032591 NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-446 1028537 1028827 1029234 "GALFACTU" 1030869 NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-445 1020342 1021842 1023450 "GALFACT" 1026969 NIL GALFACT (NIL T) -7 NIL NIL NIL) (-444 1017730 1018388 1018416 "FVFUN" 1019572 T FVFUN (NIL) -9 NIL 1020292 NIL) (-443 1016996 1017178 1017206 "FVC" 1017497 T FVC (NIL) -9 NIL 1017680 NIL) (-442 1016639 1016821 1016889 "FUNDESC" 1016948 T FUNDESC (NIL) -8 NIL NIL NIL) (-441 1016254 1016436 1016517 "FUNCTION" 1016591 NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-440 1013998 1014576 1015042 "FT" 1015808 T FT (NIL) -8 NIL NIL NIL) (-439 1012789 1013299 1013502 "FTEM" 1013815 T FTEM (NIL) -8 NIL NIL NIL) (-438 1011080 1011369 1011766 "FSUPFACT" 1012480 NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-437 1009477 1009766 1010098 "FST" 1010768 T FST (NIL) -8 NIL NIL NIL) (-436 1008676 1008782 1008970 "FSRED" 1009359 NIL FSRED (NIL T T) -7 NIL NIL NIL) (-435 1007375 1007631 1007978 "FSPRMELT" 1008391 NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-434 1004681 1005119 1005605 "FSPECF" 1006938 NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-433 986319 994650 994691 "FS" 998575 NIL FS (NIL T) -9 NIL 1000864 NIL) (-432 974962 977955 982012 "FS-" 982312 NIL FS- (NIL T T) -8 NIL NIL NIL) (-431 974490 974544 974714 "FSINT" 974903 NIL FSINT (NIL T T) -7 NIL NIL NIL) (-430 972782 973483 973786 "FSERIES" 974269 NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-429 971824 971940 972164 "FSCINT" 972662 NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-428 968032 970768 970809 "FSAGG" 971179 NIL FSAGG (NIL T) -9 NIL 971438 NIL) (-427 965794 966395 967191 "FSAGG-" 967286 NIL FSAGG- (NIL T T) -8 NIL NIL NIL) (-426 964836 964979 965206 "FSAGG2" 965647 NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-425 962518 962798 963345 "FS2UPS" 964554 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-424 962152 962195 962324 "FS2" 962469 NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-423 961030 961201 961503 "FS2EXPXP" 961977 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-422 960456 960571 960723 "FRUTIL" 960910 NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-421 951869 955951 957309 "FR" 959130 NIL FR (NIL T) -8 NIL NIL NIL) (-420 946838 949512 949552 "FRNAALG" 950948 NIL FRNAALG (NIL T) -9 NIL 951555 NIL) (-419 942511 943587 944862 "FRNAALG-" 945612 NIL FRNAALG- (NIL T T) -8 NIL NIL NIL) (-418 942149 942192 942319 "FRNAAF2" 942462 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-417 940529 941003 941298 "FRMOD" 941961 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-416 938280 938912 939229 "FRIDEAL" 940320 NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-415 937475 937562 937851 "FRIDEAL2" 938187 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-414 936608 937022 937063 "FRETRCT" 937068 NIL FRETRCT (NIL T) -9 NIL 937244 NIL) (-413 935720 935951 936302 "FRETRCT-" 936307 NIL FRETRCT- (NIL T T) -8 NIL NIL NIL) (-412 932808 934018 934077 "FRAMALG" 934959 NIL FRAMALG (NIL T T) -9 NIL 935251 NIL) (-411 930942 931397 932027 "FRAMALG-" 932250 NIL FRAMALG- (NIL T T T) -8 NIL NIL NIL) (-410 924863 930417 930693 "FRAC" 930698 NIL FRAC (NIL T) -8 NIL NIL NIL) (-409 924499 924556 924663 "FRAC2" 924800 NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-408 924135 924192 924299 "FR2" 924436 NIL FR2 (NIL T T) -7 NIL NIL NIL) (-407 918648 921541 921569 "FPS" 922688 T FPS (NIL) -9 NIL 923245 NIL) (-406 918097 918206 918370 "FPS-" 918516 NIL FPS- (NIL T) -8 NIL NIL NIL) (-405 915399 917068 917096 "FPC" 917321 T FPC (NIL) -9 NIL 917463 NIL) (-404 915192 915232 915329 "FPC-" 915334 NIL FPC- (NIL T) -8 NIL NIL NIL) (-403 913982 914680 914721 "FPATMAB" 914726 NIL FPATMAB (NIL T) -9 NIL 914878 NIL) (-402 911655 912158 912584 "FPARFRAC" 913619 NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-401 907048 907547 908229 "FORTRAN" 911087 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-400 904764 905264 905803 "FORT" 906529 T FORT (NIL) -7 NIL NIL NIL) (-399 902440 903002 903030 "FORTFN" 904090 T FORTFN (NIL) -9 NIL 904714 NIL) (-398 902204 902254 902282 "FORTCAT" 902341 T FORTCAT (NIL) -9 NIL 902403 NIL) (-397 900310 900820 901210 "FORMULA" 901834 T FORMULA (NIL) -8 NIL NIL NIL) (-396 900098 900128 900197 "FORMULA1" 900274 NIL FORMULA1 (NIL T) -7 NIL NIL NIL) (-395 899621 899673 899846 "FORDER" 900040 NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-394 898717 898881 899074 "FOP" 899448 T FOP (NIL) -7 NIL NIL NIL) (-393 897298 897997 898171 "FNLA" 898599 NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-392 896027 896442 896470 "FNCAT" 896930 T FNCAT (NIL) -9 NIL 897190 NIL) (-391 895566 895986 896014 "FNAME" 896019 T FNAME (NIL) -8 NIL NIL NIL) (-390 894129 895092 895120 "FMTC" 895125 T FMTC (NIL) -9 NIL 895161 NIL) (-389 892875 894065 894111 "FMONOID" 894116 NIL FMONOID (NIL T) -8 NIL NIL NIL) (-388 889703 890871 890912 "FMONCAT" 892129 NIL FMONCAT (NIL T) -9 NIL 892734 NIL) (-387 888895 889445 889594 "FM" 889599 NIL FM (NIL T T) -8 NIL NIL NIL) (-386 886319 886965 886993 "FMFUN" 888137 T FMFUN (NIL) -9 NIL 888845 NIL) (-385 885588 885769 885797 "FMC" 886087 T FMC (NIL) -9 NIL 886269 NIL) (-384 882667 883527 883581 "FMCAT" 884776 NIL FMCAT (NIL T T) -9 NIL 885271 NIL) (-383 881533 882433 882533 "FM1" 882612 NIL FM1 (NIL T T) -8 NIL NIL NIL) (-382 879307 879723 880217 "FLOATRP" 881084 NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-381 872882 877036 877657 "FLOAT" 878706 T FLOAT (NIL) -8 NIL NIL NIL) (-380 870320 870820 871398 "FLOATCP" 872349 NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-379 869060 869898 869939 "FLINEXP" 869944 NIL FLINEXP (NIL T) -9 NIL 870037 NIL) (-378 868214 868449 868777 "FLINEXP-" 868782 NIL FLINEXP- (NIL T T) -8 NIL NIL NIL) (-377 867290 867434 867658 "FLASORT" 868066 NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-376 864406 865274 865326 "FLALG" 866553 NIL FLALG (NIL T T) -9 NIL 867020 NIL) (-375 858142 861892 861933 "FLAGG" 863195 NIL FLAGG (NIL T) -9 NIL 863847 NIL) (-374 856868 857207 857697 "FLAGG-" 857702 NIL FLAGG- (NIL T T) -8 NIL NIL NIL) (-373 855910 856053 856280 "FLAGG2" 856721 NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-372 852761 853769 853828 "FINRALG" 854956 NIL FINRALG (NIL T T) -9 NIL 855464 NIL) (-371 851921 852150 852489 "FINRALG-" 852494 NIL FINRALG- (NIL T T T) -8 NIL NIL NIL) (-370 851301 851540 851568 "FINITE" 851764 T FINITE (NIL) -9 NIL 851871 NIL) (-369 843658 845845 845885 "FINAALG" 849552 NIL FINAALG (NIL T) -9 NIL 851005 NIL) (-368 838990 840040 841184 "FINAALG-" 842563 NIL FINAALG- (NIL T T) -8 NIL NIL NIL) (-367 838358 838745 838848 "FILE" 838920 NIL FILE (NIL T) -8 NIL NIL NIL) (-366 837016 837354 837408 "FILECAT" 838092 NIL FILECAT (NIL T T) -9 NIL 838308 NIL) (-365 834732 836260 836288 "FIELD" 836328 T FIELD (NIL) -9 NIL 836408 NIL) (-364 833352 833737 834248 "FIELD-" 834253 NIL FIELD- (NIL T) -8 NIL NIL NIL) (-363 831202 831987 832334 "FGROUP" 833038 NIL FGROUP (NIL T) -8 NIL NIL NIL) (-362 830292 830456 830676 "FGLMICPK" 831034 NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-361 826124 830217 830274 "FFX" 830279 NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-360 825725 825786 825921 "FFSLPE" 826057 NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-359 821714 822497 823293 "FFPOLY" 824961 NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-358 821218 821254 821463 "FFPOLY2" 821672 NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-357 817061 821137 821200 "FFP" 821205 NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-356 812459 816972 817036 "FF" 817041 NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-355 807585 811802 811992 "FFNBX" 812313 NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-354 802514 806720 806978 "FFNBP" 807439 NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-353 797147 801798 802009 "FFNB" 802347 NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-352 795979 796177 796492 "FFINTBAS" 796944 NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-351 792048 794268 794296 "FFIELDC" 794916 T FFIELDC (NIL) -9 NIL 795292 NIL) (-350 790710 791081 791578 "FFIELDC-" 791583 NIL FFIELDC- (NIL T) -8 NIL NIL NIL) (-349 790279 790325 790449 "FFHOM" 790652 NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-348 787974 788461 788978 "FFF" 789794 NIL FFF (NIL T) -7 NIL NIL NIL) (-347 783592 787716 787817 "FFCGX" 787917 NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-346 779213 783324 783431 "FFCGP" 783535 NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-345 774396 778940 779048 "FFCG" 779149 NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-344 755792 764873 764959 "FFCAT" 770124 NIL FFCAT (NIL T T T) -9 NIL 771575 NIL) (-343 750990 752037 753351 "FFCAT-" 754581 NIL FFCAT- (NIL T T T T) -8 NIL NIL NIL) (-342 750401 750444 750679 "FFCAT2" 750941 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-341 739722 743373 744593 "FEXPR" 749253 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-340 738722 739157 739198 "FEVALAB" 739282 NIL FEVALAB (NIL T) -9 NIL 739543 NIL) (-339 737881 738091 738429 "FEVALAB-" 738434 NIL FEVALAB- (NIL T T) -8 NIL NIL NIL) (-338 736447 737264 737467 "FDIV" 737780 NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-337 733467 734208 734323 "FDIVCAT" 735891 NIL FDIVCAT (NIL T T T T) -9 NIL 736328 NIL) (-336 733229 733256 733426 "FDIVCAT-" 733431 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL NIL) (-335 732449 732536 732813 "FDIV2" 733136 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-334 731423 731744 731946 "FCTRDATA" 732267 T FCTRDATA (NIL) -8 NIL NIL NIL) (-333 730109 730368 730657 "FCPAK1" 731154 T FCPAK1 (NIL) -7 NIL NIL NIL) (-332 729208 729609 729750 "FCOMP" 730000 NIL FCOMP (NIL T) -8 NIL NIL NIL) (-331 712910 716358 719896 "FC" 725690 T FC (NIL) -8 NIL NIL NIL) (-330 705273 709301 709341 "FAXF" 711143 NIL FAXF (NIL T) -9 NIL 711835 NIL) (-329 702549 703207 704032 "FAXF-" 704497 NIL FAXF- (NIL T T) -8 NIL NIL NIL) (-328 697601 701925 702101 "FARRAY" 702406 NIL FARRAY (NIL T) -8 NIL NIL NIL) (-327 692495 694562 694615 "FAMR" 695638 NIL FAMR (NIL T T) -9 NIL 696098 NIL) (-326 691385 691687 692122 "FAMR-" 692127 NIL FAMR- (NIL T T T) -8 NIL NIL NIL) (-325 690554 691307 691360 "FAMONOID" 691365 NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-324 688340 689050 689103 "FAMONC" 690044 NIL FAMONC (NIL T T) -9 NIL 690430 NIL) (-323 687004 688094 688231 "FAGROUP" 688236 NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-322 684799 685118 685521 "FACUTIL" 686685 NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-321 683898 684083 684305 "FACTFUNC" 684609 NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-320 676320 683201 683400 "EXPUPXS" 683754 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-319 673803 674343 674929 "EXPRTUBE" 675754 T EXPRTUBE (NIL) -7 NIL NIL NIL) (-318 670074 670666 671396 "EXPRODE" 673142 NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-317 655559 668723 669152 "EXPR" 669678 NIL EXPR (NIL T) -8 NIL NIL NIL) (-316 650113 650700 651506 "EXPR2UPS" 654857 NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-315 649745 649802 649911 "EXPR2" 650050 NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-314 641135 648898 649188 "EXPEXPAN" 649582 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-313 640935 641092 641121 "EXIT" 641126 T EXIT (NIL) -8 NIL NIL NIL) (-312 640415 640659 640750 "EXITAST" 640864 T EXITAST (NIL) -8 NIL NIL NIL) (-311 640042 640104 640217 "EVALCYC" 640347 NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-310 639583 639701 639742 "EVALAB" 639912 NIL EVALAB (NIL T) -9 NIL 640016 NIL) (-309 639064 639186 639407 "EVALAB-" 639412 NIL EVALAB- (NIL T T) -8 NIL NIL NIL) (-308 636432 637734 637762 "EUCDOM" 638317 T EUCDOM (NIL) -9 NIL 638667 NIL) (-307 634837 635279 635869 "EUCDOM-" 635874 NIL EUCDOM- (NIL T) -8 NIL NIL NIL) (-306 622375 625135 627885 "ESTOOLS" 632107 T ESTOOLS (NIL) -7 NIL NIL NIL) (-305 622007 622064 622173 "ESTOOLS2" 622312 NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-304 621758 621800 621880 "ESTOOLS1" 621959 NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-303 615795 617403 617431 "ES" 620199 T ES (NIL) -9 NIL 621609 NIL) (-302 610742 612029 613846 "ES-" 614010 NIL ES- (NIL T) -8 NIL NIL NIL) (-301 607116 607877 608657 "ESCONT" 609982 T ESCONT (NIL) -7 NIL NIL NIL) (-300 606861 606893 606975 "ESCONT1" 607078 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-299 606536 606586 606686 "ES2" 606805 NIL ES2 (NIL T T) -7 NIL NIL NIL) (-298 606166 606224 606333 "ES1" 606472 NIL ES1 (NIL T T) -7 NIL NIL NIL) (-297 605382 605511 605687 "ERROR" 606010 T ERROR (NIL) -7 NIL NIL NIL) (-296 598774 605241 605332 "EQTBL" 605337 NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-295 591277 594088 595537 "EQ" 597358 NIL -2098 (NIL T) -8 NIL NIL NIL) (-294 590909 590966 591075 "EQ2" 591214 NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-293 586198 587247 588340 "EP" 589848 NIL EP (NIL T) -7 NIL NIL NIL) (-292 584798 585089 585395 "ENV" 585912 T ENV (NIL) -8 NIL NIL NIL) (-291 583892 584446 584474 "ENTIRER" 584479 T ENTIRER (NIL) -9 NIL 584525 NIL) (-290 580359 581847 582217 "EMR" 583691 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-289 579503 579688 579742 "ELTAGG" 580122 NIL ELTAGG (NIL T T) -9 NIL 580333 NIL) (-288 579222 579284 579425 "ELTAGG-" 579430 NIL ELTAGG- (NIL T T T) -8 NIL NIL NIL) (-287 579011 579040 579094 "ELTAB" 579178 NIL ELTAB (NIL T T) -9 NIL NIL NIL) (-286 578137 578283 578482 "ELFUTS" 578862 NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-285 577879 577935 577963 "ELEMFUN" 578068 T ELEMFUN (NIL) -9 NIL NIL NIL) (-284 577749 577770 577838 "ELEMFUN-" 577843 NIL ELEMFUN- (NIL T) -8 NIL NIL NIL) (-283 572593 575849 575890 "ELAGG" 576830 NIL ELAGG (NIL T) -9 NIL 577293 NIL) (-282 570878 571312 571975 "ELAGG-" 571980 NIL ELAGG- (NIL T T) -8 NIL NIL NIL) (-281 569539 569818 570112 "ELABEXPR" 570604 T ELABEXPR (NIL) -8 NIL NIL NIL) (-280 562403 564206 565033 "EFUPXS" 568815 NIL EFUPXS (NIL T T T T) -8 NIL NIL NIL) (-279 555853 557654 558464 "EFULS" 561679 NIL EFULS (NIL T T T) -8 NIL NIL NIL) (-278 553338 553696 554168 "EFSTRUC" 555485 NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-277 543129 544695 546243 "EF" 551853 NIL EF (NIL T T) -7 NIL NIL NIL) (-276 542203 542614 542763 "EAB" 543000 T EAB (NIL) -8 NIL NIL NIL) (-275 541385 542162 542190 "E04UCFA" 542195 T E04UCFA (NIL) -8 NIL NIL NIL) (-274 540567 541344 541372 "E04NAFA" 541377 T E04NAFA (NIL) -8 NIL NIL NIL) (-273 539749 540526 540554 "E04MBFA" 540559 T E04MBFA (NIL) -8 NIL NIL NIL) (-272 538931 539708 539736 "E04JAFA" 539741 T E04JAFA (NIL) -8 NIL NIL NIL) (-271 538115 538890 538918 "E04GCFA" 538923 T E04GCFA (NIL) -8 NIL NIL NIL) (-270 537299 538074 538102 "E04FDFA" 538107 T E04FDFA (NIL) -8 NIL NIL NIL) (-269 536481 537258 537286 "E04DGFA" 537291 T E04DGFA (NIL) -8 NIL NIL NIL) (-268 530654 532006 533370 "E04AGNT" 535137 T E04AGNT (NIL) -7 NIL NIL NIL) (-267 529334 529840 529880 "DVARCAT" 530355 NIL DVARCAT (NIL T) -9 NIL 530554 NIL) (-266 528538 528750 529064 "DVARCAT-" 529069 NIL DVARCAT- (NIL T T) -8 NIL NIL NIL) (-265 521675 528337 528466 "DSMP" 528471 NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-264 516456 517620 518688 "DROPT" 520627 T DROPT (NIL) -8 NIL NIL NIL) (-263 516121 516180 516278 "DROPT1" 516391 NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-262 511236 512362 513499 "DROPT0" 515004 T DROPT0 (NIL) -7 NIL NIL NIL) (-261 509581 509906 510292 "DRAWPT" 510870 T DRAWPT (NIL) -7 NIL NIL NIL) (-260 504168 505091 506170 "DRAW" 508555 NIL DRAW (NIL T) -7 NIL NIL NIL) (-259 503801 503854 503972 "DRAWHACK" 504109 NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-258 502532 502801 503092 "DRAWCX" 503530 T DRAWCX (NIL) -7 NIL NIL NIL) (-257 502047 502116 502267 "DRAWCURV" 502458 NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-256 492515 494477 496592 "DRAWCFUN" 499952 T DRAWCFUN (NIL) -7 NIL NIL NIL) (-255 489281 491210 491251 "DQAGG" 491880 NIL DQAGG (NIL T) -9 NIL 492153 NIL) (-254 477405 483874 483957 "DPOLCAT" 485809 NIL DPOLCAT (NIL T T T T) -9 NIL 486354 NIL) (-253 472241 473590 475548 "DPOLCAT-" 475553 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL NIL) (-252 465363 472102 472200 "DPMO" 472205 NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-251 458388 465143 465310 "DPMM" 465315 NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-250 457866 458080 458178 "DOMTMPLT" 458310 T DOMTMPLT (NIL) -8 NIL NIL NIL) (-249 457299 457668 457748 "DOMCTOR" 457806 T DOMCTOR (NIL) -8 NIL NIL NIL) (-248 456511 456779 456930 "DOMAIN" 457168 T DOMAIN (NIL) -8 NIL NIL NIL) (-247 450499 456146 456298 "DMP" 456412 NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-246 450099 450155 450299 "DLP" 450437 NIL DLP (NIL T) -7 NIL NIL NIL) (-245 443921 449426 449616 "DLIST" 449941 NIL DLIST (NIL T) -8 NIL NIL NIL) (-244 440718 442774 442815 "DLAGG" 443365 NIL DLAGG (NIL T) -9 NIL 443595 NIL) (-243 439394 440058 440086 "DIVRING" 440178 T DIVRING (NIL) -9 NIL 440261 NIL) (-242 438631 438821 439121 "DIVRING-" 439126 NIL DIVRING- (NIL T) -8 NIL NIL NIL) (-241 436733 437090 437496 "DISPLAY" 438245 T DISPLAY (NIL) -7 NIL NIL NIL) (-240 430621 436647 436710 "DIRPROD" 436715 NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-239 429469 429672 429937 "DIRPROD2" 430414 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-238 418244 424250 424303 "DIRPCAT" 424713 NIL DIRPCAT (NIL NIL T) -9 NIL 425553 NIL) (-237 415570 416212 417093 "DIRPCAT-" 417430 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL NIL) (-236 414857 415017 415203 "DIOSP" 415404 T DIOSP (NIL) -7 NIL NIL NIL) (-235 411512 413769 413810 "DIOPS" 414244 NIL DIOPS (NIL T) -9 NIL 414473 NIL) (-234 411061 411175 411366 "DIOPS-" 411371 NIL DIOPS- (NIL T T) -8 NIL NIL NIL) (-233 409884 410512 410540 "DIFRING" 410727 T DIFRING (NIL) -9 NIL 410837 NIL) (-232 409530 409607 409759 "DIFRING-" 409764 NIL DIFRING- (NIL T) -8 NIL NIL NIL) (-231 407266 408538 408579 "DIFEXT" 408942 NIL DIFEXT (NIL T) -9 NIL 409236 NIL) (-230 405551 405979 406645 "DIFEXT-" 406650 NIL DIFEXT- (NIL T T) -8 NIL NIL NIL) (-229 402826 405083 405124 "DIAGG" 405129 NIL DIAGG (NIL T) -9 NIL 405149 NIL) (-228 402210 402367 402619 "DIAGG-" 402624 NIL DIAGG- (NIL T T) -8 NIL NIL NIL) (-227 397627 401169 401446 "DHMATRIX" 401979 NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-226 393239 394148 395158 "DFSFUN" 396637 T DFSFUN (NIL) -7 NIL NIL NIL) (-225 388317 392170 392482 "DFLOAT" 392947 T DFLOAT (NIL) -8 NIL NIL NIL) (-224 386580 386861 387250 "DFINTTLS" 388025 NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-223 383609 384601 385001 "DERHAM" 386246 NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-222 381410 383384 383473 "DEQUEUE" 383553 NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-221 380664 380797 380980 "DEGRED" 381272 NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-220 377094 377839 378685 "DEFINTRF" 379892 NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-219 374649 375118 375710 "DEFINTEF" 376613 NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-218 373999 374269 374384 "DEFAST" 374554 T DEFAST (NIL) -8 NIL NIL NIL) (-217 368003 373594 373743 "DECIMAL" 373870 T DECIMAL (NIL) -8 NIL NIL NIL) (-216 365515 365973 366479 "DDFACT" 367547 NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-215 365111 365154 365305 "DBLRESP" 365466 NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-214 362983 363344 363704 "DBASE" 364878 NIL DBASE (NIL T) -8 NIL NIL NIL) (-213 362225 362463 362609 "DATAARY" 362882 NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-212 361331 362184 362212 "D03FAFA" 362217 T D03FAFA (NIL) -8 NIL NIL NIL) (-211 360438 361290 361318 "D03EEFA" 361323 T D03EEFA (NIL) -8 NIL NIL NIL) (-210 358388 358854 359343 "D03AGNT" 359969 T D03AGNT (NIL) -7 NIL NIL NIL) (-209 357677 358347 358375 "D02EJFA" 358380 T D02EJFA (NIL) -8 NIL NIL NIL) (-208 356966 357636 357664 "D02CJFA" 357669 T D02CJFA (NIL) -8 NIL NIL NIL) (-207 356255 356925 356953 "D02BHFA" 356958 T D02BHFA (NIL) -8 NIL NIL NIL) (-206 355544 356214 356242 "D02BBFA" 356247 T D02BBFA (NIL) -8 NIL NIL NIL) (-205 348741 350330 351936 "D02AGNT" 353958 T D02AGNT (NIL) -7 NIL NIL NIL) (-204 346509 347032 347578 "D01WGTS" 348215 T D01WGTS (NIL) -7 NIL NIL NIL) (-203 345576 346468 346496 "D01TRNS" 346501 T D01TRNS (NIL) -8 NIL NIL NIL) (-202 344644 345535 345563 "D01GBFA" 345568 T D01GBFA (NIL) -8 NIL NIL NIL) (-201 343712 344603 344631 "D01FCFA" 344636 T D01FCFA (NIL) -8 NIL NIL NIL) (-200 342780 343671 343699 "D01ASFA" 343704 T D01ASFA (NIL) -8 NIL NIL NIL) (-199 341848 342739 342767 "D01AQFA" 342772 T D01AQFA (NIL) -8 NIL NIL NIL) (-198 340916 341807 341835 "D01APFA" 341840 T D01APFA (NIL) -8 NIL NIL NIL) (-197 339984 340875 340903 "D01ANFA" 340908 T D01ANFA (NIL) -8 NIL NIL NIL) (-196 339052 339943 339971 "D01AMFA" 339976 T D01AMFA (NIL) -8 NIL NIL NIL) (-195 338120 339011 339039 "D01ALFA" 339044 T D01ALFA (NIL) -8 NIL NIL NIL) (-194 337188 338079 338107 "D01AKFA" 338112 T D01AKFA (NIL) -8 NIL NIL NIL) (-193 336256 337147 337175 "D01AJFA" 337180 T D01AJFA (NIL) -8 NIL NIL NIL) (-192 329551 331104 332665 "D01AGNT" 334715 T D01AGNT (NIL) -7 NIL NIL NIL) (-191 328888 329016 329168 "CYCLOTOM" 329419 T CYCLOTOM (NIL) -7 NIL NIL NIL) (-190 325622 326336 327063 "CYCLES" 328181 T CYCLES (NIL) -7 NIL NIL NIL) (-189 324934 325068 325239 "CVMP" 325483 NIL CVMP (NIL T) -7 NIL NIL NIL) (-188 322775 323033 323402 "CTRIGMNP" 324662 NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-187 322211 322569 322642 "CTOR" 322722 T CTOR (NIL) -8 NIL NIL NIL) (-186 321720 321942 322043 "CTORKIND" 322130 T CTORKIND (NIL) -8 NIL NIL NIL) (-185 321011 321327 321355 "CTORCAT" 321537 T CTORCAT (NIL) -9 NIL 321650 NIL) (-184 320609 320720 320879 "CTORCAT-" 320884 NIL CTORCAT- (NIL T) -8 NIL NIL NIL) (-183 320071 320283 320391 "CTORCALL" 320533 NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-182 319445 319544 319697 "CSTTOOLS" 319968 NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-181 315244 315901 316659 "CRFP" 318757 NIL CRFP (NIL T T) -7 NIL NIL NIL) (-180 314719 314965 315057 "CRCEAST" 315172 T CRCEAST (NIL) -8 NIL NIL NIL) (-179 313766 313951 314179 "CRAPACK" 314523 NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-178 313150 313251 313455 "CPMATCH" 313642 NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-177 312875 312903 313009 "CPIMA" 313116 NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-176 309223 309895 310614 "COORDSYS" 312210 NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-175 308635 308756 308898 "CONTOUR" 309101 T CONTOUR (NIL) -8 NIL NIL NIL) (-174 304526 306638 307130 "CONTFRAC" 308175 NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-173 304406 304427 304455 "CONDUIT" 304492 T CONDUIT (NIL) -9 NIL NIL NIL) (-172 303494 304048 304076 "COMRING" 304081 T COMRING (NIL) -9 NIL 304133 NIL) (-171 302548 302852 303036 "COMPPROP" 303330 T COMPPROP (NIL) -8 NIL NIL NIL) (-170 302209 302244 302372 "COMPLPAT" 302507 NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-169 292500 302018 302127 "COMPLEX" 302132 NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-168 292136 292193 292300 "COMPLEX2" 292437 NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-167 291854 291889 291987 "COMPFACT" 292095 NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-166 275934 285928 285968 "COMPCAT" 286972 NIL COMPCAT (NIL T) -9 NIL 288320 NIL) (-165 265446 268373 272000 "COMPCAT-" 272356 NIL COMPCAT- (NIL T T) -8 NIL NIL NIL) (-164 265175 265203 265306 "COMMUPC" 265412 NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-163 264969 265003 265062 "COMMONOP" 265136 T COMMONOP (NIL) -7 NIL NIL NIL) (-162 264525 264720 264807 "COMM" 264902 T COMM (NIL) -8 NIL NIL NIL) (-161 264101 264329 264404 "COMMAAST" 264470 T COMMAAST (NIL) -8 NIL NIL NIL) (-160 263350 263544 263572 "COMBOPC" 263910 T COMBOPC (NIL) -9 NIL 264085 NIL) (-159 262246 262456 262698 "COMBINAT" 263140 NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-158 258703 259277 259904 "COMBF" 261668 NIL COMBF (NIL T T) -7 NIL NIL NIL) (-157 257461 257819 258054 "COLOR" 258488 T COLOR (NIL) -8 NIL NIL NIL) (-156 256937 257182 257274 "COLONAST" 257389 T COLONAST (NIL) -8 NIL NIL NIL) (-155 256577 256624 256749 "CMPLXRT" 256884 NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-154 256025 256277 256376 "CLLCTAST" 256498 T CLLCTAST (NIL) -8 NIL NIL NIL) (-153 251523 252555 253635 "CLIP" 254965 T CLIP (NIL) -7 NIL NIL NIL) (-152 249869 250629 250868 "CLIF" 251350 NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-151 246044 248015 248056 "CLAGG" 248985 NIL CLAGG (NIL T) -9 NIL 249521 NIL) (-150 244466 244923 245506 "CLAGG-" 245511 NIL CLAGG- (NIL T T) -8 NIL NIL NIL) (-149 244010 244095 244235 "CINTSLPE" 244375 NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-148 241511 241982 242530 "CHVAR" 243538 NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-147 240685 241239 241267 "CHARZ" 241272 T CHARZ (NIL) -9 NIL 241287 NIL) (-146 240439 240479 240557 "CHARPOL" 240639 NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-145 239497 240084 240112 "CHARNZ" 240159 T CHARNZ (NIL) -9 NIL 240215 NIL) (-144 237403 238151 238504 "CHAR" 239164 T CHAR (NIL) -8 NIL NIL NIL) (-143 237129 237190 237218 "CFCAT" 237329 T CFCAT (NIL) -9 NIL NIL NIL) (-142 236374 236485 236667 "CDEN" 237013 NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-141 232339 235527 235807 "CCLASS" 236114 T CCLASS (NIL) -8 NIL NIL NIL) (-140 231590 231747 231924 "CATEGORY" 232182 T -10 (NIL) -8 NIL NIL NIL) (-139 231163 231509 231557 "CATCTOR" 231562 T CATCTOR (NIL) -8 NIL NIL NIL) (-138 230614 230866 230964 "CATAST" 231085 T CATAST (NIL) -8 NIL NIL NIL) (-137 230090 230335 230427 "CASEAST" 230542 T CASEAST (NIL) -8 NIL NIL NIL) (-136 225099 226119 226872 "CARTEN" 229393 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-135 224207 224355 224576 "CARTEN2" 224946 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-134 222523 223357 223614 "CARD" 223970 T CARD (NIL) -8 NIL NIL NIL) (-133 222099 222327 222402 "CAPSLAST" 222468 T CAPSLAST (NIL) -8 NIL NIL NIL) (-132 221603 221811 221839 "CACHSET" 221971 T CACHSET (NIL) -9 NIL 222049 NIL) (-131 221073 221395 221423 "CABMON" 221473 T CABMON (NIL) -9 NIL 221529 NIL) (-130 220546 220777 220887 "BYTEORD" 220983 T BYTEORD (NIL) -8 NIL NIL NIL) (-129 219529 220080 220222 "BYTE" 220385 T BYTE (NIL) -8 NIL NIL 220507) (-128 214879 219034 219206 "BYTEBUF" 219377 T BYTEBUF (NIL) -8 NIL NIL NIL) (-127 212388 214571 214678 "BTREE" 214805 NIL BTREE (NIL T) -8 NIL NIL NIL) (-126 209837 212036 212158 "BTOURN" 212298 NIL BTOURN (NIL T) -8 NIL NIL NIL) (-125 207207 209307 209348 "BTCAT" 209416 NIL BTCAT (NIL T) -9 NIL 209493 NIL) (-124 206874 206954 207103 "BTCAT-" 207108 NIL BTCAT- (NIL T T) -8 NIL NIL NIL) (-123 202139 206017 206045 "BTAGG" 206267 T BTAGG (NIL) -9 NIL 206428 NIL) (-122 201629 201754 201960 "BTAGG-" 201965 NIL BTAGG- (NIL T) -8 NIL NIL NIL) (-121 198624 200907 201122 "BSTREE" 201446 NIL BSTREE (NIL T) -8 NIL NIL NIL) (-120 197762 197888 198072 "BRILL" 198480 NIL BRILL (NIL T) -7 NIL NIL NIL) (-119 194414 196488 196529 "BRAGG" 197178 NIL BRAGG (NIL T) -9 NIL 197436 NIL) (-118 192943 193349 193904 "BRAGG-" 193909 NIL BRAGG- (NIL T T) -8 NIL NIL NIL) (-117 186172 192289 192473 "BPADICRT" 192791 NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-116 184487 186109 186154 "BPADIC" 186159 NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-115 184185 184215 184329 "BOUNDZRO" 184451 NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-114 179413 180611 181523 "BOP" 183293 T BOP (NIL) -8 NIL NIL NIL) (-113 177194 177598 178073 "BOP1" 178971 NIL BOP1 (NIL T) -7 NIL NIL NIL) (-112 176019 176768 176917 "BOOLEAN" 177065 T BOOLEAN (NIL) -8 NIL NIL NIL) (-111 175298 175702 175756 "BMODULE" 175761 NIL BMODULE (NIL T T) -9 NIL 175826 NIL) (-110 171099 175096 175169 "BITS" 175245 T BITS (NIL) -8 NIL NIL NIL) (-109 170520 170639 170779 "BINDING" 170979 T BINDING (NIL) -8 NIL NIL NIL) (-108 164527 170117 170265 "BINARY" 170392 T BINARY (NIL) -8 NIL NIL NIL) (-107 162307 163782 163823 "BGAGG" 164083 NIL BGAGG (NIL T) -9 NIL 164220 NIL) (-106 162138 162170 162261 "BGAGG-" 162266 NIL BGAGG- (NIL T T) -8 NIL NIL NIL) (-105 161209 161522 161727 "BFUNCT" 161953 T BFUNCT (NIL) -8 NIL NIL NIL) (-104 159899 160077 160365 "BEZOUT" 161033 NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-103 156368 158751 159081 "BBTREE" 159602 NIL BBTREE (NIL T) -8 NIL NIL NIL) (-102 156102 156155 156183 "BASTYPE" 156302 T BASTYPE (NIL) -9 NIL NIL NIL) (-101 155954 155983 156056 "BASTYPE-" 156061 NIL BASTYPE- (NIL T) -8 NIL NIL NIL) (-100 155388 155464 155616 "BALFACT" 155865 NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-99 154244 154803 154989 "AUTOMOR" 155233 NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-98 153970 153975 154001 "ATTREG" 154006 T ATTREG (NIL) -9 NIL NIL NIL) (-97 152222 152667 153019 "ATTRBUT" 153636 T ATTRBUT (NIL) -8 NIL NIL NIL) (-96 151830 152050 152116 "ATTRAST" 152174 T ATTRAST (NIL) -8 NIL NIL NIL) (-95 151366 151479 151505 "ATRIG" 151706 T ATRIG (NIL) -9 NIL NIL NIL) (-94 151175 151216 151303 "ATRIG-" 151308 NIL ATRIG- (NIL T) -8 NIL NIL NIL) (-93 150820 151006 151032 "ASTCAT" 151037 T ASTCAT (NIL) -9 NIL 151067 NIL) (-92 150547 150606 150725 "ASTCAT-" 150730 NIL ASTCAT- (NIL T) -8 NIL NIL NIL) (-91 148696 150323 150411 "ASTACK" 150490 NIL ASTACK (NIL T) -8 NIL NIL NIL) (-90 147201 147498 147863 "ASSOCEQ" 148378 NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-89 146233 146860 146984 "ASP9" 147108 NIL ASP9 (NIL NIL) -8 NIL NIL NIL) (-88 145996 146181 146220 "ASP8" 146225 NIL ASP8 (NIL NIL) -8 NIL NIL NIL) (-87 144864 145601 145743 "ASP80" 145885 NIL ASP80 (NIL NIL) -8 NIL NIL NIL) (-86 143762 144499 144631 "ASP7" 144763 NIL ASP7 (NIL NIL) -8 NIL NIL NIL) (-85 142716 143439 143557 "ASP78" 143675 NIL ASP78 (NIL NIL) -8 NIL NIL NIL) (-84 141685 142396 142513 "ASP77" 142630 NIL ASP77 (NIL NIL) -8 NIL NIL NIL) (-83 140597 141323 141454 "ASP74" 141585 NIL ASP74 (NIL NIL) -8 NIL NIL NIL) (-82 139497 140232 140364 "ASP73" 140496 NIL ASP73 (NIL NIL) -8 NIL NIL NIL) (-81 138601 139323 139423 "ASP6" 139428 NIL ASP6 (NIL NIL) -8 NIL NIL NIL) (-80 137545 138278 138396 "ASP55" 138514 NIL ASP55 (NIL NIL) -8 NIL NIL NIL) (-79 136494 137219 137338 "ASP50" 137457 NIL ASP50 (NIL NIL) -8 NIL NIL NIL) (-78 135582 136195 136305 "ASP4" 136415 NIL ASP4 (NIL NIL) -8 NIL NIL NIL) (-77 134670 135283 135393 "ASP49" 135503 NIL ASP49 (NIL NIL) -8 NIL NIL NIL) (-76 133454 134209 134377 "ASP42" 134559 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-75 132230 132987 133157 "ASP41" 133341 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-74 131180 131907 132025 "ASP35" 132143 NIL ASP35 (NIL NIL) -8 NIL NIL NIL) (-73 130945 131128 131167 "ASP34" 131172 NIL ASP34 (NIL NIL) -8 NIL NIL NIL) (-72 130682 130749 130825 "ASP33" 130900 NIL ASP33 (NIL NIL) -8 NIL NIL NIL) (-71 129575 130317 130449 "ASP31" 130581 NIL ASP31 (NIL NIL) -8 NIL NIL NIL) (-70 129340 129523 129562 "ASP30" 129567 NIL ASP30 (NIL NIL) -8 NIL NIL NIL) (-69 129075 129144 129220 "ASP29" 129295 NIL ASP29 (NIL NIL) -8 NIL NIL NIL) (-68 128840 129023 129062 "ASP28" 129067 NIL ASP28 (NIL NIL) -8 NIL NIL NIL) (-67 128605 128788 128827 "ASP27" 128832 NIL ASP27 (NIL NIL) -8 NIL NIL NIL) (-66 127689 128303 128414 "ASP24" 128525 NIL ASP24 (NIL NIL) -8 NIL NIL NIL) (-65 126765 127491 127603 "ASP20" 127608 NIL ASP20 (NIL NIL) -8 NIL NIL NIL) (-64 125853 126466 126576 "ASP1" 126686 NIL ASP1 (NIL NIL) -8 NIL NIL NIL) (-63 124795 125527 125646 "ASP19" 125765 NIL ASP19 (NIL NIL) -8 NIL NIL NIL) (-62 124532 124599 124675 "ASP12" 124750 NIL ASP12 (NIL NIL) -8 NIL NIL NIL) (-61 123384 124131 124275 "ASP10" 124419 NIL ASP10 (NIL NIL) -8 NIL NIL NIL) (-60 121235 123228 123319 "ARRAY2" 123324 NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 117000 120883 120997 "ARRAY1" 121152 NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-58 116032 116205 116426 "ARRAY12" 116823 NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-57 110344 112262 112337 "ARR2CAT" 114967 NIL ARR2CAT (NIL T T T) -9 NIL 115725 NIL) (-56 107778 108522 109476 "ARR2CAT-" 109481 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL NIL) (-55 107095 107405 107530 "ARITY" 107671 T ARITY (NIL) -8 NIL NIL NIL) (-54 105871 106023 106322 "APPRULE" 106931 NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 105522 105570 105689 "APPLYORE" 105817 NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 104876 105115 105235 "ANY" 105420 T ANY (NIL) -8 NIL NIL NIL) (-51 104154 104277 104434 "ANY1" 104750 NIL ANY1 (NIL T) -7 NIL NIL NIL) (-50 101684 102591 102918 "ANTISYM" 103878 NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 101176 101391 101487 "ANON" 101606 T ANON (NIL) -8 NIL NIL NIL) (-48 95425 99715 100169 "AN" 100740 T AN (NIL) -8 NIL NIL NIL) (-47 91323 92711 92762 "AMR" 93510 NIL AMR (NIL T T) -9 NIL 94110 NIL) (-46 90435 90656 91019 "AMR-" 91024 NIL AMR- (NIL T T T) -8 NIL NIL NIL) (-45 74874 90352 90413 "ALIST" 90418 NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 71676 74468 74637 "ALGSC" 74792 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 68231 68786 69393 "ALGPKG" 71116 NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 67508 67609 67793 "ALGMFACT" 68117 NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 63543 64122 64716 "ALGMANIP" 67092 NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 54913 63169 63319 "ALGFF" 63476 NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 54109 54240 54419 "ALGFACT" 54771 NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 53050 53650 53688 "ALGEBRA" 53693 NIL ALGEBRA (NIL T) -9 NIL 53734 NIL) (-37 52768 52827 52959 "ALGEBRA-" 52964 NIL ALGEBRA- (NIL T T) -8 NIL NIL NIL) (-36 34861 50770 50822 "ALAGG" 50958 NIL ALAGG (NIL T T) -9 NIL 51119 NIL) (-35 34397 34510 34536 "AHYP" 34737 T AHYP (NIL) -9 NIL NIL NIL) (-34 33328 33576 33602 "AGG" 34101 T AGG (NIL) -9 NIL 34380 NIL) (-33 32762 32924 33138 "AGG-" 33143 NIL AGG- (NIL T) -8 NIL NIL NIL) (-32 30568 30991 31396 "AF" 32404 NIL AF (NIL T T) -7 NIL NIL NIL) (-31 30048 30293 30383 "ADDAST" 30496 T ADDAST (NIL) -8 NIL NIL NIL) (-30 29316 29575 29731 "ACPLOT" 29910 T ACPLOT (NIL) -8 NIL NIL NIL) (-29 18639 26443 26481 "ACFS" 27088 NIL ACFS (NIL T) -9 NIL 27327 NIL) (-28 16666 17156 17918 "ACFS-" 17923 NIL ACFS- (NIL T T) -8 NIL NIL NIL) (-27 12784 14713 14739 "ACF" 15618 T ACF (NIL) -9 NIL 16031 NIL) (-26 11488 11822 12315 "ACF-" 12320 NIL ACF- (NIL T) -8 NIL NIL NIL) (-25 11060 11255 11281 "ABELSG" 11373 T ABELSG (NIL) -9 NIL 11438 NIL) (-24 10927 10952 11018 "ABELSG-" 11023 NIL ABELSG- (NIL T) -8 NIL NIL NIL) (-23 10270 10557 10583 "ABELMON" 10753 T ABELMON (NIL) -9 NIL 10865 NIL) (-22 9934 10018 10156 "ABELMON-" 10161 NIL ABELMON- (NIL T) -8 NIL NIL NIL) (-21 9282 9654 9680 "ABELGRP" 9752 T ABELGRP (NIL) -9 NIL 9827 NIL) (-20 8745 8874 9090 "ABELGRP-" 9095 NIL ABELGRP- (NIL T) -8 NIL NIL NIL) (-19 4334 8084 8123 "A1AGG" 8128 NIL A1AGG (NIL T) -9 NIL 8168 NIL) (-18 30 1252 2814 "A1AGG-" 2819 NIL A1AGG- (NIL T T) -8 NIL NIL NIL)) \ No newline at end of file
+((-2412 (((-112) $ $) 67)) (-3791 (((-112) $) NIL)) (-3275 (((-645 |#1|) $) 52)) (-1326 (($ $ (-772)) 46)) (-2376 (((-3 $ "failed") $ $) NIL)) (-2474 (($ $ (-772)) 24 (|has| |#2| (-172))) (($ $ $) 25 (|has| |#2| (-172)))) (-3647 (($) NIL T CONST)) (-2873 (($ $ $) 70) (($ $ (-820 |#1|)) 56) (($ $ |#1|) 60)) (-3765 (((-3 (-820 |#1|) "failed") $) NIL)) (-2051 (((-820 |#1|) $) NIL)) (-3023 (($ $) 39)) (-3588 (((-3 $ "failed") $) NIL)) (-3603 (((-112) $) NIL)) (-1629 (($ $) NIL)) (-4346 (((-112) $) NIL)) (-2851 (((-772) $) NIL)) (-2659 (((-645 $) $) NIL)) (-3770 (((-112) $) NIL)) (-2296 (($ (-820 |#1|) |#2|) 38)) (-2111 (($ $) 40)) (-2736 (((-2 (|:| |k| (-820 |#1|)) (|:| |c| |#2|)) $) 12)) (-1568 (((-820 |#1|) $) NIL)) (-4334 (((-820 |#1|) $) 41)) (-3841 (($ (-1 |#2| |#2|) $) NIL)) (-1627 (($ $ $) 69) (($ $ (-820 |#1|)) 58) (($ $ |#1|) 62)) (-2006 (((-2 (|:| |k| (-820 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2985 (((-820 |#1|) $) 35)) (-2996 ((|#2| $) 37)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-3104 (((-772) $) 43)) (-1415 (((-112) $) 47)) (-3304 ((|#2| $) NIL)) (-4129 (((-863) $) NIL) (($ (-820 |#1|)) 30) (($ |#1|) 31) (($ |#2|) NIL) (($ (-567)) NIL)) (-3601 (((-645 |#2|) $) NIL)) (-2558 ((|#2| $ (-820 |#1|)) NIL)) (-3705 ((|#2| $ $) 76) ((|#2| $ (-820 |#1|)) NIL)) (-2746 (((-772)) NIL T CONST)) (-3357 (((-112) $ $) NIL)) (-1733 (($) 13 T CONST)) (-1744 (($) 19 T CONST)) (-2987 (((-645 (-2 (|:| |k| (-820 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2946 (((-112) $ $) 44)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) 28)) (** (($ $ (-772)) NIL) (($ $ (-923)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ |#2| $) 27) (($ $ |#2|) 68) (($ |#2| (-820 |#1|)) NIL) (($ |#1| $) 33) (($ $ $) NIL)))
+(((-1284 |#1| |#2|) (-13 (-384 |#2| (-820 |#1|)) (-1290 |#1| |#2|)) (-851) (-1051)) (T -1284))
+NIL
+(-13 (-384 |#2| (-820 |#1|)) (-1290 |#1| |#2|))
+((-3072 ((|#3| |#3| (-772)) 30)) (-3955 ((|#3| |#3| (-772)) 36)) (-2840 ((|#3| |#3| |#3| (-772)) 37)))
+(((-1285 |#1| |#2| |#3|) (-10 -7 (-15 -3955 (|#3| |#3| (-772))) (-15 -3072 (|#3| |#3| (-772))) (-15 -2840 (|#3| |#3| |#3| (-772)))) (-13 (-1051) (-718 (-410 (-567)))) (-851) (-1290 |#2| |#1|)) (T -1285))
+((-2840 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-772)) (-4 *4 (-13 (-1051) (-718 (-410 (-567))))) (-4 *5 (-851)) (-5 *1 (-1285 *4 *5 *2)) (-4 *2 (-1290 *5 *4)))) (-3072 (*1 *2 *2 *3) (-12 (-5 *3 (-772)) (-4 *4 (-13 (-1051) (-718 (-410 (-567))))) (-4 *5 (-851)) (-5 *1 (-1285 *4 *5 *2)) (-4 *2 (-1290 *5 *4)))) (-3955 (*1 *2 *2 *3) (-12 (-5 *3 (-772)) (-4 *4 (-13 (-1051) (-718 (-410 (-567))))) (-4 *5 (-851)) (-5 *1 (-1285 *4 *5 *2)) (-4 *2 (-1290 *5 *4)))))
+(-10 -7 (-15 -3955 (|#3| |#3| (-772))) (-15 -3072 (|#3| |#3| (-772))) (-15 -2840 (|#3| |#3| |#3| (-772))))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-3275 (((-645 |#1|) $) 47)) (-2376 (((-3 $ "failed") $ $) 20)) (-2474 (($ $ $) 50 (|has| |#2| (-172))) (($ $ (-772)) 49 (|has| |#2| (-172)))) (-3647 (($) 18 T CONST)) (-2873 (($ $ |#1|) 61) (($ $ (-820 |#1|)) 60) (($ $ $) 59)) (-3765 (((-3 (-820 |#1|) "failed") $) 71)) (-2051 (((-820 |#1|) $) 72)) (-3588 (((-3 $ "failed") $) 37)) (-3603 (((-112) $) 52)) (-1629 (($ $) 51)) (-4346 (((-112) $) 35)) (-3770 (((-112) $) 57)) (-2296 (($ (-820 |#1|) |#2|) 58)) (-2111 (($ $) 56)) (-2736 (((-2 (|:| |k| (-820 |#1|)) (|:| |c| |#2|)) $) 67)) (-1568 (((-820 |#1|) $) 68)) (-3841 (($ (-1 |#2| |#2|) $) 48)) (-1627 (($ $ |#1|) 64) (($ $ (-820 |#1|)) 63) (($ $ $) 62)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-1415 (((-112) $) 54)) (-3304 ((|#2| $) 53)) (-4129 (((-863) $) 12) (($ (-567)) 33) (($ |#2|) 75) (($ (-820 |#1|)) 70) (($ |#1|) 55)) (-3705 ((|#2| $ (-820 |#1|)) 66) ((|#2| $ $) 65)) (-2746 (((-772)) 32 T CONST)) (-3357 (((-112) $ $) 9)) (-1733 (($) 19 T CONST)) (-1744 (($) 34 T CONST)) (-2946 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69)))
+(((-1286 |#1| |#2|) (-140) (-851) (-1051)) (T -1286))
+((* (*1 *1 *1 *2) (-12 (-4 *1 (-1286 *3 *2)) (-4 *3 (-851)) (-4 *2 (-1051)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1286 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1051)))) (-1568 (*1 *2 *1) (-12 (-4 *1 (-1286 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)) (-5 *2 (-820 *3)))) (-2736 (*1 *2 *1) (-12 (-4 *1 (-1286 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)) (-5 *2 (-2 (|:| |k| (-820 *3)) (|:| |c| *4))))) (-3705 (*1 *2 *1 *3) (-12 (-5 *3 (-820 *4)) (-4 *1 (-1286 *4 *2)) (-4 *4 (-851)) (-4 *2 (-1051)))) (-3705 (*1 *2 *1 *1) (-12 (-4 *1 (-1286 *3 *2)) (-4 *3 (-851)) (-4 *2 (-1051)))) (-1627 (*1 *1 *1 *2) (-12 (-4 *1 (-1286 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1051)))) (-1627 (*1 *1 *1 *2) (-12 (-5 *2 (-820 *3)) (-4 *1 (-1286 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)))) (-1627 (*1 *1 *1 *1) (-12 (-4 *1 (-1286 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1051)))) (-2873 (*1 *1 *1 *2) (-12 (-4 *1 (-1286 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1051)))) (-2873 (*1 *1 *1 *2) (-12 (-5 *2 (-820 *3)) (-4 *1 (-1286 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)))) (-2873 (*1 *1 *1 *1) (-12 (-4 *1 (-1286 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1051)))) (-2296 (*1 *1 *2 *3) (-12 (-5 *2 (-820 *4)) (-4 *4 (-851)) (-4 *1 (-1286 *4 *3)) (-4 *3 (-1051)))) (-3770 (*1 *2 *1) (-12 (-4 *1 (-1286 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)) (-5 *2 (-112)))) (-2111 (*1 *1 *1) (-12 (-4 *1 (-1286 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1051)))) (-4129 (*1 *1 *2) (-12 (-4 *1 (-1286 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1051)))) (-1415 (*1 *2 *1) (-12 (-4 *1 (-1286 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)) (-5 *2 (-112)))) (-3304 (*1 *2 *1) (-12 (-4 *1 (-1286 *3 *2)) (-4 *3 (-851)) (-4 *2 (-1051)))) (-3603 (*1 *2 *1) (-12 (-4 *1 (-1286 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)) (-5 *2 (-112)))) (-1629 (*1 *1 *1) (-12 (-4 *1 (-1286 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1051)))) (-2474 (*1 *1 *1 *1) (-12 (-4 *1 (-1286 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1051)) (-4 *3 (-172)))) (-2474 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1286 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)) (-4 *4 (-172)))) (-3841 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1286 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)))) (-3275 (*1 *2 *1) (-12 (-4 *1 (-1286 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)) (-5 *2 (-645 *3)))))
+(-13 (-1051) (-1283 |t#2|) (-1040 (-820 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -1568 ((-820 |t#1|) $)) (-15 -2736 ((-2 (|:| |k| (-820 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -3705 (|t#2| $ (-820 |t#1|))) (-15 -3705 (|t#2| $ $)) (-15 -1627 ($ $ |t#1|)) (-15 -1627 ($ $ (-820 |t#1|))) (-15 -1627 ($ $ $)) (-15 -2873 ($ $ |t#1|)) (-15 -2873 ($ $ (-820 |t#1|))) (-15 -2873 ($ $ $)) (-15 -2296 ($ (-820 |t#1|) |t#2|)) (-15 -3770 ((-112) $)) (-15 -2111 ($ $)) (-15 -4129 ($ |t#1|)) (-15 -1415 ((-112) $)) (-15 -3304 (|t#2| $)) (-15 -3603 ((-112) $)) (-15 -1629 ($ $)) (IF (|has| |t#2| (-172)) (PROGN (-15 -2474 ($ $ $)) (-15 -2474 ($ $ (-772)))) |%noBranch|) (-15 -3841 ($ (-1 |t#2| |t#2|) $)) (-15 -3275 ((-645 |t#1|) $)) (IF (|has| |t#2| (-6 -4415)) (-6 -4415) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-172)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-617 (-567)) . T) ((-617 #0=(-820 |#1|)) . T) ((-617 |#2|) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#2|) . T) ((-647 $) . T) ((-649 |#2|) . T) ((-649 $) . T) ((-641 |#2|) |has| |#2| (-172)) ((-718 |#2|) |has| |#2| (-172)) ((-727) . T) ((-1040 #0#) . T) ((-1053 |#2|) . T) ((-1058 |#2|) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1283 |#2|) . T))
+((-2038 (((-112) $) 15)) (-2618 (((-112) $) 14)) (-2963 (($ $) 19) (($ $ (-772)) 21)))
+(((-1287 |#1| |#2|) (-10 -8 (-15 -2963 (|#1| |#1| (-772))) (-15 -2963 (|#1| |#1|)) (-15 -2038 ((-112) |#1|)) (-15 -2618 ((-112) |#1|))) (-1288 |#2|) (-365)) (T -1287))
+NIL
+(-10 -8 (-15 -2963 (|#1| |#1| (-772))) (-15 -2963 (|#1| |#1|)) (-15 -2038 ((-112) |#1|)) (-15 -2618 ((-112) |#1|)))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-1489 (((-2 (|:| -4369 $) (|:| -4409 $) (|:| |associate| $)) $) 47)) (-4287 (($ $) 46)) (-2286 (((-112) $) 44)) (-2038 (((-112) $) 104)) (-4355 (((-772)) 100)) (-2376 (((-3 $ "failed") $ $) 20)) (-3659 (($ $) 81)) (-3597 (((-421 $) $) 80)) (-3696 (((-112) $ $) 65)) (-3647 (($) 18 T CONST)) (-3765 (((-3 |#1| "failed") $) 111)) (-2051 ((|#1| $) 112)) (-2357 (($ $ $) 61)) (-3588 (((-3 $ "failed") $) 37)) (-2368 (($ $ $) 62)) (-4367 (((-2 (|:| -3705 (-645 $)) (|:| -1399 $)) (-645 $)) 57)) (-3144 (($ $ (-772)) 97 (-2811 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) 96 (-2811 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3502 (((-112) $) 79)) (-3362 (((-834 (-923)) $) 94 (-2811 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4346 (((-112) $) 35)) (-1469 (((-3 (-645 $) "failed") (-645 $) $) 58)) (-2751 (($ $ $) 52) (($ (-645 $)) 51)) (-2516 (((-1161) $) 10)) (-2949 (($ $) 78)) (-2645 (((-112) $) 103)) (-3437 (((-1122) $) 11)) (-2217 (((-1175 $) (-1175 $) (-1175 $)) 50)) (-2785 (($ $ $) 54) (($ (-645 $)) 53)) (-2717 (((-421 $) $) 82)) (-2845 (((-834 (-923))) 101)) (-2905 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1399 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2400 (((-3 $ "failed") $ $) 48)) (-2372 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-2460 (((-772) $) 64)) (-2452 (((-2 (|:| -2654 $) (|:| -2023 $)) $ $) 63)) (-1760 (((-3 (-772) "failed") $ $) 95 (-2811 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1412 (((-134)) 109)) (-3104 (((-834 (-923)) $) 102)) (-4129 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-410 (-567))) 74) (($ |#1|) 110)) (-2118 (((-3 $ "failed") $) 93 (-2811 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2746 (((-772)) 32 T CONST)) (-3357 (((-112) $ $) 9)) (-3731 (((-112) $ $) 45)) (-2618 (((-112) $) 105)) (-1733 (($) 19 T CONST)) (-1744 (($) 34 T CONST)) (-2963 (($ $) 99 (|has| |#1| (-370))) (($ $ (-772)) 98 (|has| |#1| (-370)))) (-2946 (((-112) $ $) 6)) (-3069 (($ $ $) 73) (($ $ |#1|) 108)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 77)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 76) (($ (-410 (-567)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106)))
+(((-1288 |#1|) (-140) (-365)) (T -1288))
+((-2618 (*1 *2 *1) (-12 (-4 *1 (-1288 *3)) (-4 *3 (-365)) (-5 *2 (-112)))) (-2038 (*1 *2 *1) (-12 (-4 *1 (-1288 *3)) (-4 *3 (-365)) (-5 *2 (-112)))) (-2645 (*1 *2 *1) (-12 (-4 *1 (-1288 *3)) (-4 *3 (-365)) (-5 *2 (-112)))) (-3104 (*1 *2 *1) (-12 (-4 *1 (-1288 *3)) (-4 *3 (-365)) (-5 *2 (-834 (-923))))) (-2845 (*1 *2) (-12 (-4 *1 (-1288 *3)) (-4 *3 (-365)) (-5 *2 (-834 (-923))))) (-4355 (*1 *2) (-12 (-4 *1 (-1288 *3)) (-4 *3 (-365)) (-5 *2 (-772)))) (-2963 (*1 *1 *1) (-12 (-4 *1 (-1288 *2)) (-4 *2 (-365)) (-4 *2 (-370)))) (-2963 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1288 *3)) (-4 *3 (-365)) (-4 *3 (-370)))))
+(-13 (-365) (-1040 |t#1|) (-1276 |t#1|) (-10 -8 (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-405)) |%noBranch|) (-15 -2618 ((-112) $)) (-15 -2038 ((-112) $)) (-15 -2645 ((-112) $)) (-15 -3104 ((-834 (-923)) $)) (-15 -2845 ((-834 (-923)))) (-15 -4355 ((-772))) (IF (|has| |t#1| (-370)) (PROGN (-6 (-405)) (-15 -2963 ($ $)) (-15 -2963 ($ $ (-772)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2811 (|has| |#1| (-370)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-617 #0#) . T) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-405) -2811 (|has| |#1| (-370)) (|has| |#1| (-145))) ((-455) . T) ((-559) . T) ((-647 #0#) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) . T) ((-641 |#1|) . T) ((-641 $) . T) ((-718 #0#) . T) ((-718 |#1|) . T) ((-718 $) . T) ((-727) . T) ((-922) . T) ((-1040 |#1|) . T) ((-1053 #0#) . T) ((-1053 |#1|) . T) ((-1053 $) . T) ((-1058 #0#) . T) ((-1058 |#1|) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1223) . T) ((-1276 |#1|) . T))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-3275 (((-645 |#1|) $) 99)) (-1326 (($ $ (-772)) 103)) (-2376 (((-3 $ "failed") $ $) NIL)) (-2474 (($ $ $) NIL (|has| |#2| (-172))) (($ $ (-772)) NIL (|has| |#2| (-172)))) (-3647 (($) NIL T CONST)) (-2873 (($ $ |#1|) NIL) (($ $ (-820 |#1|)) NIL) (($ $ $) NIL)) (-3765 (((-3 (-820 |#1|) "failed") $) NIL) (((-3 (-895 |#1|) "failed") $) NIL)) (-2051 (((-820 |#1|) $) NIL) (((-895 |#1|) $) NIL)) (-3023 (($ $) 102)) (-3588 (((-3 $ "failed") $) NIL)) (-3603 (((-112) $) 91)) (-1629 (($ $) 94)) (-3809 (($ $ $ (-772)) 104)) (-4346 (((-112) $) NIL)) (-2851 (((-772) $) NIL)) (-2659 (((-645 $) $) NIL)) (-3770 (((-112) $) NIL)) (-2296 (($ (-820 |#1|) |#2|) NIL) (($ (-895 |#1|) |#2|) 29)) (-2111 (($ $) 121)) (-2736 (((-2 (|:| |k| (-820 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1568 (((-820 |#1|) $) NIL)) (-4334 (((-820 |#1|) $) NIL)) (-3841 (($ (-1 |#2| |#2|) $) NIL)) (-1627 (($ $ |#1|) NIL) (($ $ (-820 |#1|)) NIL) (($ $ $) NIL)) (-3072 (($ $ (-772)) 114 (|has| |#2| (-718 (-410 (-567)))))) (-2006 (((-2 (|:| |k| (-895 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2985 (((-895 |#1|) $) 84)) (-2996 ((|#2| $) NIL)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-3955 (($ $ (-772)) 111 (|has| |#2| (-718 (-410 (-567)))))) (-3104 (((-772) $) 100)) (-1415 (((-112) $) 85)) (-3304 ((|#2| $) 89)) (-4129 (((-863) $) 70) (($ (-567)) NIL) (($ |#2|) 60) (($ (-820 |#1|)) NIL) (($ |#1|) 72) (($ (-895 |#1|)) NIL) (($ (-665 |#1| |#2|)) 48) (((-1284 |#1| |#2|) $) 77) (((-1293 |#1| |#2|) $) 82)) (-3601 (((-645 |#2|) $) NIL)) (-2558 ((|#2| $ (-895 |#1|)) NIL)) (-3705 ((|#2| $ (-820 |#1|)) NIL) ((|#2| $ $) NIL)) (-2746 (((-772)) NIL T CONST)) (-3357 (((-112) $ $) NIL)) (-1733 (($) 21 T CONST)) (-1744 (($) 28 T CONST)) (-2987 (((-645 (-2 (|:| |k| (-895 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3879 (((-3 (-665 |#1| |#2|) "failed") $) 120)) (-2946 (((-112) $ $) 78)) (-3053 (($ $) 113) (($ $ $) 112)) (-3041 (($ $ $) 20)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 49) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-895 |#1|)) NIL)))
+(((-1289 |#1| |#2|) (-13 (-1290 |#1| |#2|) (-384 |#2| (-895 |#1|)) (-10 -8 (-15 -4129 ($ (-665 |#1| |#2|))) (-15 -4129 ((-1284 |#1| |#2|) $)) (-15 -4129 ((-1293 |#1| |#2|) $)) (-15 -3879 ((-3 (-665 |#1| |#2|) "failed") $)) (-15 -3809 ($ $ $ (-772))) (IF (|has| |#2| (-718 (-410 (-567)))) (PROGN (-15 -3955 ($ $ (-772))) (-15 -3072 ($ $ (-772)))) |%noBranch|))) (-851) (-172)) (T -1289))
+((-4129 (*1 *1 *2) (-12 (-5 *2 (-665 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)) (-5 *1 (-1289 *3 *4)))) (-4129 (*1 *2 *1) (-12 (-5 *2 (-1284 *3 *4)) (-5 *1 (-1289 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)))) (-4129 (*1 *2 *1) (-12 (-5 *2 (-1293 *3 *4)) (-5 *1 (-1289 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)))) (-3879 (*1 *2 *1) (|partial| -12 (-5 *2 (-665 *3 *4)) (-5 *1 (-1289 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)))) (-3809 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-1289 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)))) (-3955 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-1289 *3 *4)) (-4 *4 (-718 (-410 (-567)))) (-4 *3 (-851)) (-4 *4 (-172)))) (-3072 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-1289 *3 *4)) (-4 *4 (-718 (-410 (-567)))) (-4 *3 (-851)) (-4 *4 (-172)))))
+(-13 (-1290 |#1| |#2|) (-384 |#2| (-895 |#1|)) (-10 -8 (-15 -4129 ($ (-665 |#1| |#2|))) (-15 -4129 ((-1284 |#1| |#2|) $)) (-15 -4129 ((-1293 |#1| |#2|) $)) (-15 -3879 ((-3 (-665 |#1| |#2|) "failed") $)) (-15 -3809 ($ $ $ (-772))) (IF (|has| |#2| (-718 (-410 (-567)))) (PROGN (-15 -3955 ($ $ (-772))) (-15 -3072 ($ $ (-772)))) |%noBranch|)))
+((-2412 (((-112) $ $) 7)) (-3791 (((-112) $) 17)) (-3275 (((-645 |#1|) $) 47)) (-1326 (($ $ (-772)) 80)) (-2376 (((-3 $ "failed") $ $) 20)) (-2474 (($ $ $) 50 (|has| |#2| (-172))) (($ $ (-772)) 49 (|has| |#2| (-172)))) (-3647 (($) 18 T CONST)) (-2873 (($ $ |#1|) 61) (($ $ (-820 |#1|)) 60) (($ $ $) 59)) (-3765 (((-3 (-820 |#1|) "failed") $) 71)) (-2051 (((-820 |#1|) $) 72)) (-3588 (((-3 $ "failed") $) 37)) (-3603 (((-112) $) 52)) (-1629 (($ $) 51)) (-4346 (((-112) $) 35)) (-3770 (((-112) $) 57)) (-2296 (($ (-820 |#1|) |#2|) 58)) (-2111 (($ $) 56)) (-2736 (((-2 (|:| |k| (-820 |#1|)) (|:| |c| |#2|)) $) 67)) (-1568 (((-820 |#1|) $) 68)) (-4334 (((-820 |#1|) $) 82)) (-3841 (($ (-1 |#2| |#2|) $) 48)) (-1627 (($ $ |#1|) 64) (($ $ (-820 |#1|)) 63) (($ $ $) 62)) (-2516 (((-1161) $) 10)) (-3437 (((-1122) $) 11)) (-3104 (((-772) $) 81)) (-1415 (((-112) $) 54)) (-3304 ((|#2| $) 53)) (-4129 (((-863) $) 12) (($ (-567)) 33) (($ |#2|) 75) (($ (-820 |#1|)) 70) (($ |#1|) 55)) (-3705 ((|#2| $ (-820 |#1|)) 66) ((|#2| $ $) 65)) (-2746 (((-772)) 32 T CONST)) (-3357 (((-112) $ $) 9)) (-1733 (($) 19 T CONST)) (-1744 (($) 34 T CONST)) (-2946 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69)))
+(((-1290 |#1| |#2|) (-140) (-851) (-1051)) (T -1290))
+((-4334 (*1 *2 *1) (-12 (-4 *1 (-1290 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)) (-5 *2 (-820 *3)))) (-3104 (*1 *2 *1) (-12 (-4 *1 (-1290 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)) (-5 *2 (-772)))) (-1326 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1290 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)))))
+(-13 (-1286 |t#1| |t#2|) (-10 -8 (-15 -4334 ((-820 |t#1|) $)) (-15 -3104 ((-772) $)) (-15 -1326 ($ $ (-772)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-172)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-617 (-567)) . T) ((-617 #0=(-820 |#1|)) . T) ((-617 |#2|) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#2|) . T) ((-647 $) . T) ((-649 |#2|) . T) ((-649 $) . T) ((-641 |#2|) |has| |#2| (-172)) ((-718 |#2|) |has| |#2| (-172)) ((-727) . T) ((-1040 #0#) . T) ((-1053 |#2|) . T) ((-1058 |#2|) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1283 |#2|) . T) ((-1286 |#1| |#2|) . T))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-3275 (((-645 (-1179)) $) NIL)) (-2098 (($ (-1284 (-1179) |#1|)) NIL)) (-1326 (($ $ (-772)) NIL)) (-2376 (((-3 $ "failed") $ $) NIL)) (-2474 (($ $ $) NIL (|has| |#1| (-172))) (($ $ (-772)) NIL (|has| |#1| (-172)))) (-3647 (($) NIL T CONST)) (-2873 (($ $ (-1179)) NIL) (($ $ (-820 (-1179))) NIL) (($ $ $) NIL)) (-3765 (((-3 (-820 (-1179)) "failed") $) NIL)) (-2051 (((-820 (-1179)) $) NIL)) (-3588 (((-3 $ "failed") $) NIL)) (-3603 (((-112) $) NIL)) (-1629 (($ $) NIL)) (-4346 (((-112) $) NIL)) (-3770 (((-112) $) NIL)) (-2296 (($ (-820 (-1179)) |#1|) NIL)) (-2111 (($ $) NIL)) (-2736 (((-2 (|:| |k| (-820 (-1179))) (|:| |c| |#1|)) $) NIL)) (-1568 (((-820 (-1179)) $) NIL)) (-4334 (((-820 (-1179)) $) NIL)) (-3841 (($ (-1 |#1| |#1|) $) NIL)) (-1627 (($ $ (-1179)) NIL) (($ $ (-820 (-1179))) NIL) (($ $ $) NIL)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-3326 (((-1284 (-1179) |#1|) $) NIL)) (-3104 (((-772) $) NIL)) (-1415 (((-112) $) NIL)) (-3304 ((|#1| $) NIL)) (-4129 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) NIL) (($ (-820 (-1179))) NIL) (($ (-1179)) NIL)) (-3705 ((|#1| $ (-820 (-1179))) NIL) ((|#1| $ $) NIL)) (-2746 (((-772)) NIL T CONST)) (-3357 (((-112) $ $) NIL)) (-1733 (($) NIL T CONST)) (-3606 (((-645 (-2 (|:| |k| (-1179)) (|:| |c| $))) $) NIL)) (-1744 (($) NIL T CONST)) (-2946 (((-112) $ $) NIL)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1179) $) NIL)))
+(((-1291 |#1|) (-13 (-1290 (-1179) |#1|) (-10 -8 (-15 -3326 ((-1284 (-1179) |#1|) $)) (-15 -2098 ($ (-1284 (-1179) |#1|))) (-15 -3606 ((-645 (-2 (|:| |k| (-1179)) (|:| |c| $))) $)))) (-1051)) (T -1291))
+((-3326 (*1 *2 *1) (-12 (-5 *2 (-1284 (-1179) *3)) (-5 *1 (-1291 *3)) (-4 *3 (-1051)))) (-2098 (*1 *1 *2) (-12 (-5 *2 (-1284 (-1179) *3)) (-4 *3 (-1051)) (-5 *1 (-1291 *3)))) (-3606 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| |k| (-1179)) (|:| |c| (-1291 *3))))) (-5 *1 (-1291 *3)) (-4 *3 (-1051)))))
+(-13 (-1290 (-1179) |#1|) (-10 -8 (-15 -3326 ((-1284 (-1179) |#1|) $)) (-15 -2098 ($ (-1284 (-1179) |#1|))) (-15 -3606 ((-645 (-2 (|:| |k| (-1179)) (|:| |c| $))) $))))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) NIL)) (-2376 (((-3 $ "failed") $ $) NIL)) (-3647 (($) NIL T CONST)) (-3765 (((-3 |#2| "failed") $) NIL)) (-2051 ((|#2| $) NIL)) (-3023 (($ $) NIL)) (-3588 (((-3 $ "failed") $) 42)) (-3603 (((-112) $) 35)) (-1629 (($ $) 37)) (-4346 (((-112) $) NIL)) (-2851 (((-772) $) NIL)) (-2659 (((-645 $) $) NIL)) (-3770 (((-112) $) NIL)) (-2296 (($ |#2| |#1|) NIL)) (-1568 ((|#2| $) 24)) (-4334 ((|#2| $) 22)) (-3841 (($ (-1 |#1| |#1|) $) NIL)) (-2006 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-2985 ((|#2| $) NIL)) (-2996 ((|#1| $) NIL)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-1415 (((-112) $) 32)) (-3304 ((|#1| $) 33)) (-4129 (((-863) $) 65) (($ (-567)) 46) (($ |#1|) 41) (($ |#2|) NIL)) (-3601 (((-645 |#1|) $) NIL)) (-2558 ((|#1| $ |#2|) NIL)) (-3705 ((|#1| $ |#2|) 28)) (-2746 (((-772)) 14 T CONST)) (-3357 (((-112) $ $) NIL)) (-1733 (($) 29 T CONST)) (-1744 (($) 11 T CONST)) (-2987 (((-645 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-2946 (((-112) $ $) 30)) (-3069 (($ $ |#1|) 67 (|has| |#1| (-365)))) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) 50)) (** (($ $ (-923)) NIL) (($ $ (-772)) 52)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 51) (($ |#1| $) 47) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-2423 (((-772) $) 16)))
+(((-1292 |#1| |#2|) (-13 (-1051) (-1283 |#1|) (-384 |#1| |#2|) (-617 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2423 ((-772) $)) (-15 -4334 (|#2| $)) (-15 -1568 (|#2| $)) (-15 -3023 ($ $)) (-15 -3705 (|#1| $ |#2|)) (-15 -1415 ((-112) $)) (-15 -3304 (|#1| $)) (-15 -3603 ((-112) $)) (-15 -1629 ($ $)) (-15 -3841 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-365)) (-15 -3069 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4415)) (-6 -4415) |%noBranch|) (IF (|has| |#1| (-6 -4419)) (-6 -4419) |%noBranch|) (IF (|has| |#1| (-6 -4420)) (-6 -4420) |%noBranch|))) (-1051) (-847)) (T -1292))
+((* (*1 *1 *1 *2) (-12 (-5 *1 (-1292 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-847)))) (-3023 (*1 *1 *1) (-12 (-5 *1 (-1292 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-847)))) (-3841 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1051)) (-5 *1 (-1292 *3 *4)) (-4 *4 (-847)))) (-2423 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1292 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-847)))) (-4334 (*1 *2 *1) (-12 (-4 *2 (-847)) (-5 *1 (-1292 *3 *2)) (-4 *3 (-1051)))) (-1568 (*1 *2 *1) (-12 (-4 *2 (-847)) (-5 *1 (-1292 *3 *2)) (-4 *3 (-1051)))) (-3705 (*1 *2 *1 *3) (-12 (-4 *2 (-1051)) (-5 *1 (-1292 *2 *3)) (-4 *3 (-847)))) (-1415 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1292 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-847)))) (-3304 (*1 *2 *1) (-12 (-4 *2 (-1051)) (-5 *1 (-1292 *2 *3)) (-4 *3 (-847)))) (-3603 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1292 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-847)))) (-1629 (*1 *1 *1) (-12 (-5 *1 (-1292 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-847)))) (-3069 (*1 *1 *1 *2) (-12 (-5 *1 (-1292 *2 *3)) (-4 *2 (-365)) (-4 *2 (-1051)) (-4 *3 (-847)))))
+(-13 (-1051) (-1283 |#1|) (-384 |#1| |#2|) (-617 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2423 ((-772) $)) (-15 -4334 (|#2| $)) (-15 -1568 (|#2| $)) (-15 -3023 ($ $)) (-15 -3705 (|#1| $ |#2|)) (-15 -1415 ((-112) $)) (-15 -3304 (|#1| $)) (-15 -3603 ((-112) $)) (-15 -1629 ($ $)) (-15 -3841 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-365)) (-15 -3069 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4415)) (-6 -4415) |%noBranch|) (IF (|has| |#1| (-6 -4419)) (-6 -4419) |%noBranch|) (IF (|has| |#1| (-6 -4420)) (-6 -4420) |%noBranch|)))
+((-2412 (((-112) $ $) 27)) (-3791 (((-112) $) NIL)) (-3275 (((-645 |#1|) $) 132)) (-2098 (($ (-1284 |#1| |#2|)) 50)) (-1326 (($ $ (-772)) 38)) (-2376 (((-3 $ "failed") $ $) NIL)) (-2474 (($ $ $) 54 (|has| |#2| (-172))) (($ $ (-772)) 52 (|has| |#2| (-172)))) (-3647 (($) NIL T CONST)) (-2873 (($ $ |#1|) 114) (($ $ (-820 |#1|)) 115) (($ $ $) 26)) (-3765 (((-3 (-820 |#1|) "failed") $) NIL)) (-2051 (((-820 |#1|) $) NIL)) (-3588 (((-3 $ "failed") $) 122)) (-3603 (((-112) $) 117)) (-1629 (($ $) 118)) (-4346 (((-112) $) NIL)) (-3770 (((-112) $) NIL)) (-2296 (($ (-820 |#1|) |#2|) 20)) (-2111 (($ $) NIL)) (-2736 (((-2 (|:| |k| (-820 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1568 (((-820 |#1|) $) 123)) (-4334 (((-820 |#1|) $) 126)) (-3841 (($ (-1 |#2| |#2|) $) 131)) (-1627 (($ $ |#1|) 112) (($ $ (-820 |#1|)) 113) (($ $ $) 62)) (-2516 (((-1161) $) NIL)) (-3437 (((-1122) $) NIL)) (-3326 (((-1284 |#1| |#2|) $) 94)) (-3104 (((-772) $) 129)) (-1415 (((-112) $) 81)) (-3304 ((|#2| $) 32)) (-4129 (((-863) $) 73) (($ (-567)) 87) (($ |#2|) 85) (($ (-820 |#1|)) 18) (($ |#1|) 84)) (-3705 ((|#2| $ (-820 |#1|)) 116) ((|#2| $ $) 28)) (-2746 (((-772)) 120 T CONST)) (-3357 (((-112) $ $) NIL)) (-1733 (($) 15 T CONST)) (-3606 (((-645 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59)) (-1744 (($) 33 T CONST)) (-2946 (((-112) $ $) 14)) (-3053 (($ $) 98) (($ $ $) 101)) (-3041 (($ $ $) 61)) (** (($ $ (-923)) NIL) (($ $ (-772)) 55)) (* (($ (-923) $) NIL) (($ (-772) $) 53) (($ (-567) $) 106) (($ $ $) 22) (($ |#2| $) 19) (($ $ |#2|) 21) (($ |#1| $) 92)))
+(((-1293 |#1| |#2|) (-13 (-1290 |#1| |#2|) (-10 -8 (-15 -3326 ((-1284 |#1| |#2|) $)) (-15 -2098 ($ (-1284 |#1| |#2|))) (-15 -3606 ((-645 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-851) (-1051)) (T -1293))
+((-3326 (*1 *2 *1) (-12 (-5 *2 (-1284 *3 *4)) (-5 *1 (-1293 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)))) (-2098 (*1 *1 *2) (-12 (-5 *2 (-1284 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)) (-5 *1 (-1293 *3 *4)))) (-3606 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| |k| *3) (|:| |c| (-1293 *3 *4))))) (-5 *1 (-1293 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)))))
+(-13 (-1290 |#1| |#2|) (-10 -8 (-15 -3326 ((-1284 |#1| |#2|) $)) (-15 -2098 ($ (-1284 |#1| |#2|))) (-15 -3606 ((-645 (-2 (|:| |k| |#1|) (|:| |c| $))) $))))
+((-1911 (((-645 (-1159 |#1|)) (-1 (-645 (-1159 |#1|)) (-645 (-1159 |#1|))) (-567)) 20) (((-1159 |#1|) (-1 (-1159 |#1|) (-1159 |#1|))) 13)))
+(((-1294 |#1|) (-10 -7 (-15 -1911 ((-1159 |#1|) (-1 (-1159 |#1|) (-1159 |#1|)))) (-15 -1911 ((-645 (-1159 |#1|)) (-1 (-645 (-1159 |#1|)) (-645 (-1159 |#1|))) (-567)))) (-1219)) (T -1294))
+((-1911 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-645 (-1159 *5)) (-645 (-1159 *5)))) (-5 *4 (-567)) (-5 *2 (-645 (-1159 *5))) (-5 *1 (-1294 *5)) (-4 *5 (-1219)))) (-1911 (*1 *2 *3) (-12 (-5 *3 (-1 (-1159 *4) (-1159 *4))) (-5 *2 (-1159 *4)) (-5 *1 (-1294 *4)) (-4 *4 (-1219)))))
+(-10 -7 (-15 -1911 ((-1159 |#1|) (-1 (-1159 |#1|) (-1159 |#1|)))) (-15 -1911 ((-645 (-1159 |#1|)) (-1 (-645 (-1159 |#1|)) (-645 (-1159 |#1|))) (-567))))
+((-2675 (((-645 (-2 (|:| -2450 (-1175 |#1|)) (|:| -3088 (-645 (-954 |#1|))))) (-645 (-954 |#1|))) 174) (((-645 (-2 (|:| -2450 (-1175 |#1|)) (|:| -3088 (-645 (-954 |#1|))))) (-645 (-954 |#1|)) (-112)) 173) (((-645 (-2 (|:| -2450 (-1175 |#1|)) (|:| -3088 (-645 (-954 |#1|))))) (-645 (-954 |#1|)) (-112) (-112)) 172) (((-645 (-2 (|:| -2450 (-1175 |#1|)) (|:| -3088 (-645 (-954 |#1|))))) (-645 (-954 |#1|)) (-112) (-112) (-112)) 171) (((-645 (-2 (|:| -2450 (-1175 |#1|)) (|:| -3088 (-645 (-954 |#1|))))) (-1048 |#1| |#2|)) 156)) (-3522 (((-645 (-1048 |#1| |#2|)) (-645 (-954 |#1|))) 85) (((-645 (-1048 |#1| |#2|)) (-645 (-954 |#1|)) (-112)) 84) (((-645 (-1048 |#1| |#2|)) (-645 (-954 |#1|)) (-112) (-112)) 83)) (-3597 (((-645 (-1148 |#1| (-534 (-865 |#3|)) (-865 |#3|) (-781 |#1| (-865 |#3|)))) (-1048 |#1| |#2|)) 73)) (-1898 (((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|))) 140) (((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|)) (-112)) 139) (((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|)) (-112) (-112)) 138) (((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|)) (-112) (-112) (-112)) 137) (((-645 (-645 (-1026 (-410 |#1|)))) (-1048 |#1| |#2|)) 132)) (-3800 (((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|))) 145) (((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|)) (-112)) 144) (((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|)) (-112) (-112)) 143) (((-645 (-645 (-1026 (-410 |#1|)))) (-1048 |#1| |#2|)) 142)) (-3902 (((-645 (-781 |#1| (-865 |#3|))) (-1148 |#1| (-534 (-865 |#3|)) (-865 |#3|) (-781 |#1| (-865 |#3|)))) 111) (((-1175 (-1026 (-410 |#1|))) (-1175 |#1|)) 102) (((-954 (-1026 (-410 |#1|))) (-781 |#1| (-865 |#3|))) 109) (((-954 (-1026 (-410 |#1|))) (-954 |#1|)) 107) (((-781 |#1| (-865 |#3|)) (-781 |#1| (-865 |#2|))) 33)))
+(((-1295 |#1| |#2| |#3|) (-10 -7 (-15 -3522 ((-645 (-1048 |#1| |#2|)) (-645 (-954 |#1|)) (-112) (-112))) (-15 -3522 ((-645 (-1048 |#1| |#2|)) (-645 (-954 |#1|)) (-112))) (-15 -3522 ((-645 (-1048 |#1| |#2|)) (-645 (-954 |#1|)))) (-15 -2675 ((-645 (-2 (|:| -2450 (-1175 |#1|)) (|:| -3088 (-645 (-954 |#1|))))) (-1048 |#1| |#2|))) (-15 -2675 ((-645 (-2 (|:| -2450 (-1175 |#1|)) (|:| -3088 (-645 (-954 |#1|))))) (-645 (-954 |#1|)) (-112) (-112) (-112))) (-15 -2675 ((-645 (-2 (|:| -2450 (-1175 |#1|)) (|:| -3088 (-645 (-954 |#1|))))) (-645 (-954 |#1|)) (-112) (-112))) (-15 -2675 ((-645 (-2 (|:| -2450 (-1175 |#1|)) (|:| -3088 (-645 (-954 |#1|))))) (-645 (-954 |#1|)) (-112))) (-15 -2675 ((-645 (-2 (|:| -2450 (-1175 |#1|)) (|:| -3088 (-645 (-954 |#1|))))) (-645 (-954 |#1|)))) (-15 -1898 ((-645 (-645 (-1026 (-410 |#1|)))) (-1048 |#1| |#2|))) (-15 -1898 ((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|)) (-112) (-112) (-112))) (-15 -1898 ((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|)) (-112) (-112))) (-15 -1898 ((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|)) (-112))) (-15 -1898 ((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|)))) (-15 -3800 ((-645 (-645 (-1026 (-410 |#1|)))) (-1048 |#1| |#2|))) (-15 -3800 ((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|)) (-112) (-112))) (-15 -3800 ((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|)) (-112))) (-15 -3800 ((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|)))) (-15 -3597 ((-645 (-1148 |#1| (-534 (-865 |#3|)) (-865 |#3|) (-781 |#1| (-865 |#3|)))) (-1048 |#1| |#2|))) (-15 -3902 ((-781 |#1| (-865 |#3|)) (-781 |#1| (-865 |#2|)))) (-15 -3902 ((-954 (-1026 (-410 |#1|))) (-954 |#1|))) (-15 -3902 ((-954 (-1026 (-410 |#1|))) (-781 |#1| (-865 |#3|)))) (-15 -3902 ((-1175 (-1026 (-410 |#1|))) (-1175 |#1|))) (-15 -3902 ((-645 (-781 |#1| (-865 |#3|))) (-1148 |#1| (-534 (-865 |#3|)) (-865 |#3|) (-781 |#1| (-865 |#3|)))))) (-13 (-849) (-308) (-147) (-1024)) (-645 (-1179)) (-645 (-1179))) (T -1295))
+((-3902 (*1 *2 *3) (-12 (-5 *3 (-1148 *4 (-534 (-865 *6)) (-865 *6) (-781 *4 (-865 *6)))) (-4 *4 (-13 (-849) (-308) (-147) (-1024))) (-14 *6 (-645 (-1179))) (-5 *2 (-645 (-781 *4 (-865 *6)))) (-5 *1 (-1295 *4 *5 *6)) (-14 *5 (-645 (-1179))))) (-3902 (*1 *2 *3) (-12 (-5 *3 (-1175 *4)) (-4 *4 (-13 (-849) (-308) (-147) (-1024))) (-5 *2 (-1175 (-1026 (-410 *4)))) (-5 *1 (-1295 *4 *5 *6)) (-14 *5 (-645 (-1179))) (-14 *6 (-645 (-1179))))) (-3902 (*1 *2 *3) (-12 (-5 *3 (-781 *4 (-865 *6))) (-4 *4 (-13 (-849) (-308) (-147) (-1024))) (-14 *6 (-645 (-1179))) (-5 *2 (-954 (-1026 (-410 *4)))) (-5 *1 (-1295 *4 *5 *6)) (-14 *5 (-645 (-1179))))) (-3902 (*1 *2 *3) (-12 (-5 *3 (-954 *4)) (-4 *4 (-13 (-849) (-308) (-147) (-1024))) (-5 *2 (-954 (-1026 (-410 *4)))) (-5 *1 (-1295 *4 *5 *6)) (-14 *5 (-645 (-1179))) (-14 *6 (-645 (-1179))))) (-3902 (*1 *2 *3) (-12 (-5 *3 (-781 *4 (-865 *5))) (-4 *4 (-13 (-849) (-308) (-147) (-1024))) (-14 *5 (-645 (-1179))) (-5 *2 (-781 *4 (-865 *6))) (-5 *1 (-1295 *4 *5 *6)) (-14 *6 (-645 (-1179))))) (-3597 (*1 *2 *3) (-12 (-5 *3 (-1048 *4 *5)) (-4 *4 (-13 (-849) (-308) (-147) (-1024))) (-14 *5 (-645 (-1179))) (-5 *2 (-645 (-1148 *4 (-534 (-865 *6)) (-865 *6) (-781 *4 (-865 *6))))) (-5 *1 (-1295 *4 *5 *6)) (-14 *6 (-645 (-1179))))) (-3800 (*1 *2 *3) (-12 (-5 *3 (-645 (-954 *4))) (-4 *4 (-13 (-849) (-308) (-147) (-1024))) (-5 *2 (-645 (-645 (-1026 (-410 *4))))) (-5 *1 (-1295 *4 *5 *6)) (-14 *5 (-645 (-1179))) (-14 *6 (-645 (-1179))))) (-3800 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1024))) (-5 *2 (-645 (-645 (-1026 (-410 *5))))) (-5 *1 (-1295 *5 *6 *7)) (-14 *6 (-645 (-1179))) (-14 *7 (-645 (-1179))))) (-3800 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1024))) (-5 *2 (-645 (-645 (-1026 (-410 *5))))) (-5 *1 (-1295 *5 *6 *7)) (-14 *6 (-645 (-1179))) (-14 *7 (-645 (-1179))))) (-3800 (*1 *2 *3) (-12 (-5 *3 (-1048 *4 *5)) (-4 *4 (-13 (-849) (-308) (-147) (-1024))) (-14 *5 (-645 (-1179))) (-5 *2 (-645 (-645 (-1026 (-410 *4))))) (-5 *1 (-1295 *4 *5 *6)) (-14 *6 (-645 (-1179))))) (-1898 (*1 *2 *3) (-12 (-5 *3 (-645 (-954 *4))) (-4 *4 (-13 (-849) (-308) (-147) (-1024))) (-5 *2 (-645 (-645 (-1026 (-410 *4))))) (-5 *1 (-1295 *4 *5 *6)) (-14 *5 (-645 (-1179))) (-14 *6 (-645 (-1179))))) (-1898 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1024))) (-5 *2 (-645 (-645 (-1026 (-410 *5))))) (-5 *1 (-1295 *5 *6 *7)) (-14 *6 (-645 (-1179))) (-14 *7 (-645 (-1179))))) (-1898 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1024))) (-5 *2 (-645 (-645 (-1026 (-410 *5))))) (-5 *1 (-1295 *5 *6 *7)) (-14 *6 (-645 (-1179))) (-14 *7 (-645 (-1179))))) (-1898 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1024))) (-5 *2 (-645 (-645 (-1026 (-410 *5))))) (-5 *1 (-1295 *5 *6 *7)) (-14 *6 (-645 (-1179))) (-14 *7 (-645 (-1179))))) (-1898 (*1 *2 *3) (-12 (-5 *3 (-1048 *4 *5)) (-4 *4 (-13 (-849) (-308) (-147) (-1024))) (-14 *5 (-645 (-1179))) (-5 *2 (-645 (-645 (-1026 (-410 *4))))) (-5 *1 (-1295 *4 *5 *6)) (-14 *6 (-645 (-1179))))) (-2675 (*1 *2 *3) (-12 (-4 *4 (-13 (-849) (-308) (-147) (-1024))) (-5 *2 (-645 (-2 (|:| -2450 (-1175 *4)) (|:| -3088 (-645 (-954 *4)))))) (-5 *1 (-1295 *4 *5 *6)) (-5 *3 (-645 (-954 *4))) (-14 *5 (-645 (-1179))) (-14 *6 (-645 (-1179))))) (-2675 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1024))) (-5 *2 (-645 (-2 (|:| -2450 (-1175 *5)) (|:| -3088 (-645 (-954 *5)))))) (-5 *1 (-1295 *5 *6 *7)) (-5 *3 (-645 (-954 *5))) (-14 *6 (-645 (-1179))) (-14 *7 (-645 (-1179))))) (-2675 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1024))) (-5 *2 (-645 (-2 (|:| -2450 (-1175 *5)) (|:| -3088 (-645 (-954 *5)))))) (-5 *1 (-1295 *5 *6 *7)) (-5 *3 (-645 (-954 *5))) (-14 *6 (-645 (-1179))) (-14 *7 (-645 (-1179))))) (-2675 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1024))) (-5 *2 (-645 (-2 (|:| -2450 (-1175 *5)) (|:| -3088 (-645 (-954 *5)))))) (-5 *1 (-1295 *5 *6 *7)) (-5 *3 (-645 (-954 *5))) (-14 *6 (-645 (-1179))) (-14 *7 (-645 (-1179))))) (-2675 (*1 *2 *3) (-12 (-5 *3 (-1048 *4 *5)) (-4 *4 (-13 (-849) (-308) (-147) (-1024))) (-14 *5 (-645 (-1179))) (-5 *2 (-645 (-2 (|:| -2450 (-1175 *4)) (|:| -3088 (-645 (-954 *4)))))) (-5 *1 (-1295 *4 *5 *6)) (-14 *6 (-645 (-1179))))) (-3522 (*1 *2 *3) (-12 (-5 *3 (-645 (-954 *4))) (-4 *4 (-13 (-849) (-308) (-147) (-1024))) (-5 *2 (-645 (-1048 *4 *5))) (-5 *1 (-1295 *4 *5 *6)) (-14 *5 (-645 (-1179))) (-14 *6 (-645 (-1179))))) (-3522 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1024))) (-5 *2 (-645 (-1048 *5 *6))) (-5 *1 (-1295 *5 *6 *7)) (-14 *6 (-645 (-1179))) (-14 *7 (-645 (-1179))))) (-3522 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1024))) (-5 *2 (-645 (-1048 *5 *6))) (-5 *1 (-1295 *5 *6 *7)) (-14 *6 (-645 (-1179))) (-14 *7 (-645 (-1179))))))
+(-10 -7 (-15 -3522 ((-645 (-1048 |#1| |#2|)) (-645 (-954 |#1|)) (-112) (-112))) (-15 -3522 ((-645 (-1048 |#1| |#2|)) (-645 (-954 |#1|)) (-112))) (-15 -3522 ((-645 (-1048 |#1| |#2|)) (-645 (-954 |#1|)))) (-15 -2675 ((-645 (-2 (|:| -2450 (-1175 |#1|)) (|:| -3088 (-645 (-954 |#1|))))) (-1048 |#1| |#2|))) (-15 -2675 ((-645 (-2 (|:| -2450 (-1175 |#1|)) (|:| -3088 (-645 (-954 |#1|))))) (-645 (-954 |#1|)) (-112) (-112) (-112))) (-15 -2675 ((-645 (-2 (|:| -2450 (-1175 |#1|)) (|:| -3088 (-645 (-954 |#1|))))) (-645 (-954 |#1|)) (-112) (-112))) (-15 -2675 ((-645 (-2 (|:| -2450 (-1175 |#1|)) (|:| -3088 (-645 (-954 |#1|))))) (-645 (-954 |#1|)) (-112))) (-15 -2675 ((-645 (-2 (|:| -2450 (-1175 |#1|)) (|:| -3088 (-645 (-954 |#1|))))) (-645 (-954 |#1|)))) (-15 -1898 ((-645 (-645 (-1026 (-410 |#1|)))) (-1048 |#1| |#2|))) (-15 -1898 ((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|)) (-112) (-112) (-112))) (-15 -1898 ((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|)) (-112) (-112))) (-15 -1898 ((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|)) (-112))) (-15 -1898 ((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|)))) (-15 -3800 ((-645 (-645 (-1026 (-410 |#1|)))) (-1048 |#1| |#2|))) (-15 -3800 ((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|)) (-112) (-112))) (-15 -3800 ((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|)) (-112))) (-15 -3800 ((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|)))) (-15 -3597 ((-645 (-1148 |#1| (-534 (-865 |#3|)) (-865 |#3|) (-781 |#1| (-865 |#3|)))) (-1048 |#1| |#2|))) (-15 -3902 ((-781 |#1| (-865 |#3|)) (-781 |#1| (-865 |#2|)))) (-15 -3902 ((-954 (-1026 (-410 |#1|))) (-954 |#1|))) (-15 -3902 ((-954 (-1026 (-410 |#1|))) (-781 |#1| (-865 |#3|)))) (-15 -3902 ((-1175 (-1026 (-410 |#1|))) (-1175 |#1|))) (-15 -3902 ((-645 (-781 |#1| (-865 |#3|))) (-1148 |#1| (-534 (-865 |#3|)) (-865 |#3|) (-781 |#1| (-865 |#3|))))))
+((-3171 (((-3 (-1269 (-410 (-567))) "failed") (-1269 |#1|) |#1|) 21)) (-2150 (((-112) (-1269 |#1|)) 12)) (-3919 (((-3 (-1269 (-567)) "failed") (-1269 |#1|)) 16)))
+(((-1296 |#1|) (-10 -7 (-15 -2150 ((-112) (-1269 |#1|))) (-15 -3919 ((-3 (-1269 (-567)) "failed") (-1269 |#1|))) (-15 -3171 ((-3 (-1269 (-410 (-567))) "failed") (-1269 |#1|) |#1|))) (-640 (-567))) (T -1296))
+((-3171 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1269 *4)) (-4 *4 (-640 (-567))) (-5 *2 (-1269 (-410 (-567)))) (-5 *1 (-1296 *4)))) (-3919 (*1 *2 *3) (|partial| -12 (-5 *3 (-1269 *4)) (-4 *4 (-640 (-567))) (-5 *2 (-1269 (-567))) (-5 *1 (-1296 *4)))) (-2150 (*1 *2 *3) (-12 (-5 *3 (-1269 *4)) (-4 *4 (-640 (-567))) (-5 *2 (-112)) (-5 *1 (-1296 *4)))))
+(-10 -7 (-15 -2150 ((-112) (-1269 |#1|))) (-15 -3919 ((-3 (-1269 (-567)) "failed") (-1269 |#1|))) (-15 -3171 ((-3 (-1269 (-410 (-567))) "failed") (-1269 |#1|) |#1|)))
+((-2412 (((-112) $ $) NIL)) (-3791 (((-112) $) 11)) (-2376 (((-3 $ "failed") $ $) NIL)) (-2384 (((-772)) 8)) (-3647 (($) NIL T CONST)) (-3588 (((-3 $ "failed") $) 58)) (-1359 (($) 49)) (-4346 (((-112) $) 57)) (-3067 (((-3 $ "failed") $) 40)) (-3474 (((-923) $) 15)) (-2516 (((-1161) $) NIL)) (-2694 (($) 32 T CONST)) (-3779 (($ (-923)) 50)) (-3437 (((-1122) $) NIL)) (-3902 (((-567) $) 13)) (-4129 (((-863) $) 27) (($ (-567)) 24)) (-2746 (((-772)) 9 T CONST)) (-3357 (((-112) $ $) 60)) (-1733 (($) 29 T CONST)) (-1744 (($) 31 T CONST)) (-2946 (((-112) $ $) 38)) (-3053 (($ $) 52) (($ $ $) 47)) (-3041 (($ $ $) 35)) (** (($ $ (-923)) NIL) (($ $ (-772)) 54)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 44) (($ $ $) 43)))
+(((-1297 |#1|) (-13 (-172) (-370) (-615 (-567)) (-1154)) (-923)) (T -1297))
+NIL
+(-13 (-172) (-370) (-615 (-567)) (-1154))
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+((-3 3223327 3223332 3223337 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 3223312 3223317 3223322 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 3223297 3223302 3223307 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 3223282 3223287 3223292 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1297 3222425 3223157 3223234 "ZMOD" 3223239 NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1296 3221535 3221699 3221908 "ZLINDEP" 3222257 NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1295 3210835 3212603 3214575 "ZDSOLVE" 3219665 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1294 3210081 3210222 3210411 "YSTREAM" 3210681 NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1293 3207855 3209382 3209586 "XRPOLY" 3209924 NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1292 3204408 3205726 3206301 "XPR" 3207327 NIL XPR (NIL T T) -8 NIL NIL NIL) (-1291 3202129 3203739 3203943 "XPOLY" 3204239 NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1290 3199782 3201150 3201205 "XPOLYC" 3201493 NIL XPOLYC (NIL T T) -9 NIL 3201606 NIL) (-1289 3196157 3198299 3198687 "XPBWPOLY" 3199440 NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1288 3191852 3194147 3194189 "XF" 3194810 NIL XF (NIL T) -9 NIL 3195210 NIL) (-1287 3191473 3191561 3191730 "XF-" 3191735 NIL XF- (NIL T T) -8 NIL NIL NIL) (-1286 3186669 3187958 3188013 "XFALG" 3190185 NIL XFALG (NIL T T) -9 NIL 3190974 NIL) (-1285 3185802 3185906 3186111 "XEXPPKG" 3186561 NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1284 3183911 3185652 3185748 "XDPOLY" 3185753 NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1283 3182718 3183318 3183361 "XALG" 3183366 NIL XALG (NIL T) -9 NIL 3183477 NIL) (-1282 3176160 3180695 3181189 "WUTSET" 3182310 NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1281 3174416 3175212 3175535 "WP" 3175971 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1280 3174018 3174238 3174308 "WHILEAST" 3174368 T WHILEAST (NIL) -8 NIL NIL NIL) (-1279 3173490 3173735 3173829 "WHEREAST" 3173946 T WHEREAST (NIL) -8 NIL NIL NIL) (-1278 3172376 3172574 3172869 "WFFINTBS" 3173287 NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1277 3170280 3170707 3171169 "WEIER" 3171948 NIL WEIER (NIL T) -7 NIL NIL NIL) (-1276 3169326 3169776 3169818 "VSPACE" 3169954 NIL VSPACE (NIL T) -9 NIL 3170028 NIL) (-1275 3169164 3169191 3169282 "VSPACE-" 3169287 NIL VSPACE- (NIL T T) -8 NIL NIL NIL) (-1274 3168973 3169015 3169083 "VOID" 3169118 T VOID (NIL) -8 NIL NIL NIL) (-1273 3167109 3167468 3167874 "VIEW" 3168589 T VIEW (NIL) -7 NIL NIL NIL) (-1272 3163533 3164172 3164909 "VIEWDEF" 3166394 T VIEWDEF (NIL) -7 NIL NIL NIL) (-1271 3152837 3155081 3157254 "VIEW3D" 3161382 T VIEW3D (NIL) -8 NIL NIL NIL) (-1270 3145088 3146748 3148327 "VIEW2D" 3151280 T VIEW2D (NIL) -8 NIL NIL NIL) (-1269 3140440 3144858 3144950 "VECTOR" 3145031 NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1268 3139017 3139276 3139594 "VECTOR2" 3140170 NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1267 3132491 3136798 3136841 "VECTCAT" 3137836 NIL VECTCAT (NIL T) -9 NIL 3138423 NIL) (-1266 3131505 3131759 3132149 "VECTCAT-" 3132154 NIL VECTCAT- (NIL T T) -8 NIL NIL NIL) (-1265 3130959 3131156 3131276 "VARIABLE" 3131420 NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1264 3130892 3130897 3130927 "UTYPE" 3130932 T UTYPE (NIL) -9 NIL NIL NIL) (-1263 3129722 3129876 3130138 "UTSODETL" 3130718 NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1262 3127162 3127622 3128146 "UTSODE" 3129263 NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1261 3118999 3124788 3125277 "UTS" 3126731 NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1260 3109873 3115240 3115283 "UTSCAT" 3116395 NIL UTSCAT (NIL T) -9 NIL 3117153 NIL) (-1259 3107220 3107943 3108932 "UTSCAT-" 3108937 NIL UTSCAT- (NIL T T) -8 NIL NIL NIL) (-1258 3106847 3106890 3107023 "UTS2" 3107171 NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1257 3101073 3103685 3103728 "URAGG" 3105798 NIL URAGG (NIL T) -9 NIL 3106521 NIL) (-1256 3098012 3098875 3099998 "URAGG-" 3100003 NIL URAGG- (NIL T T) -8 NIL NIL NIL) (-1255 3093721 3096647 3097112 "UPXSSING" 3097676 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1254 3085787 3092968 3093241 "UPXS" 3093506 NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1253 3078860 3085691 3085763 "UPXSCONS" 3085768 NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1252 3068605 3075398 3075460 "UPXSCCA" 3076034 NIL UPXSCCA (NIL T T) -9 NIL 3076267 NIL) (-1251 3068243 3068328 3068502 "UPXSCCA-" 3068507 NIL UPXSCCA- (NIL T T T) -8 NIL NIL NIL) (-1250 3057840 3064406 3064449 "UPXSCAT" 3065097 NIL UPXSCAT (NIL T) -9 NIL 3065706 NIL) (-1249 3057270 3057349 3057528 "UPXS2" 3057755 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1248 3055924 3056177 3056528 "UPSQFREE" 3057013 NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1247 3049345 3052402 3052457 "UPSCAT" 3053618 NIL UPSCAT (NIL T T) -9 NIL 3054392 NIL) (-1246 3048549 3048756 3049083 "UPSCAT-" 3049088 NIL UPSCAT- (NIL T T T) -8 NIL NIL NIL) (-1245 3034204 3041972 3042015 "UPOLYC" 3044116 NIL UPOLYC (NIL T) -9 NIL 3045337 NIL) (-1244 3025532 3027958 3031105 "UPOLYC-" 3031110 NIL UPOLYC- (NIL T T) -8 NIL NIL NIL) (-1243 3025159 3025202 3025335 "UPOLYC2" 3025483 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1242 3016970 3024842 3024971 "UP" 3025078 NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1241 3016309 3016416 3016580 "UPMP" 3016859 NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1240 3015862 3015943 3016082 "UPDIVP" 3016222 NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1239 3014430 3014679 3014995 "UPDECOMP" 3015611 NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1238 3013665 3013777 3013962 "UPCDEN" 3014314 NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1237 3013184 3013253 3013402 "UP2" 3013590 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1236 3011651 3012388 3012665 "UNISEG" 3012942 NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1235 3010866 3010993 3011198 "UNISEG2" 3011494 NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1234 3009926 3010106 3010332 "UNIFACT" 3010682 NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1233 2993858 3009103 3009354 "ULS" 3009733 NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1232 2981856 2993762 2993834 "ULSCONS" 2993839 NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1231 2963875 2975860 2975922 "ULSCCAT" 2976560 NIL ULSCCAT (NIL T T) -9 NIL 2976848 NIL) (-1230 2962925 2963170 2963558 "ULSCCAT-" 2963563 NIL ULSCCAT- (NIL T T T) -8 NIL NIL NIL) (-1229 2952299 2958779 2958822 "ULSCAT" 2959685 NIL ULSCAT (NIL T) -9 NIL 2960416 NIL) (-1228 2951729 2951808 2951987 "ULS2" 2952214 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1227 2950856 2951366 2951473 "UINT8" 2951584 T UINT8 (NIL) -8 NIL NIL 2951669) (-1226 2949982 2950492 2950599 "UINT64" 2950710 T UINT64 (NIL) -8 NIL NIL 2950795) (-1225 2949108 2949618 2949725 "UINT32" 2949836 T UINT32 (NIL) -8 NIL NIL 2949921) (-1224 2948234 2948744 2948851 "UINT16" 2948962 T UINT16 (NIL) -8 NIL NIL 2949047) (-1223 2946537 2947494 2947524 "UFD" 2947736 T UFD (NIL) -9 NIL 2947850 NIL) (-1222 2946331 2946377 2946472 "UFD-" 2946477 NIL UFD- (NIL T) -8 NIL NIL NIL) (-1221 2945413 2945596 2945812 "UDVO" 2946137 T UDVO (NIL) -7 NIL NIL NIL) (-1220 2943229 2943638 2944109 "UDPO" 2944977 NIL UDPO (NIL T) -7 NIL NIL NIL) (-1219 2943162 2943167 2943197 "TYPE" 2943202 T TYPE (NIL) -9 NIL NIL NIL) (-1218 2942922 2943117 2943148 "TYPEAST" 2943153 T TYPEAST (NIL) -8 NIL NIL NIL) (-1217 2941893 2942095 2942335 "TWOFACT" 2942716 NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1216 2940916 2941302 2941537 "TUPLE" 2941693 NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1215 2938607 2939126 2939665 "TUBETOOL" 2940399 T TUBETOOL (NIL) -7 NIL NIL NIL) (-1214 2937456 2937661 2937902 "TUBE" 2938400 NIL TUBE (NIL T) -8 NIL NIL NIL) (-1213 2932185 2936428 2936711 "TS" 2937208 NIL TS (NIL T) -8 NIL NIL NIL) (-1212 2920825 2924944 2925041 "TSETCAT" 2930310 NIL TSETCAT (NIL T T T T) -9 NIL 2931841 NIL) (-1211 2915557 2917157 2919048 "TSETCAT-" 2919053 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1210 2910196 2911043 2911972 "TRMANIP" 2914693 NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1209 2909637 2909700 2909863 "TRIMAT" 2910128 NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1208 2907503 2907740 2908097 "TRIGMNIP" 2909386 NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1207 2907023 2907136 2907166 "TRIGCAT" 2907379 T TRIGCAT (NIL) -9 NIL NIL NIL) (-1206 2906692 2906771 2906912 "TRIGCAT-" 2906917 NIL TRIGCAT- (NIL T) -8 NIL NIL NIL) (-1205 2903537 2905550 2905831 "TREE" 2906446 NIL TREE (NIL T) -8 NIL NIL NIL) (-1204 2902811 2903339 2903369 "TRANFUN" 2903404 T TRANFUN (NIL) -9 NIL 2903470 NIL) (-1203 2902090 2902281 2902561 "TRANFUN-" 2902566 NIL TRANFUN- (NIL T) -8 NIL NIL NIL) (-1202 2901894 2901926 2901987 "TOPSP" 2902051 T TOPSP (NIL) -7 NIL NIL NIL) (-1201 2901242 2901357 2901511 "TOOLSIGN" 2901775 NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1200 2899876 2900419 2900658 "TEXTFILE" 2901025 T TEXTFILE (NIL) -8 NIL NIL NIL) (-1199 2897788 2898329 2898758 "TEX" 2899469 T TEX (NIL) -8 NIL NIL NIL) (-1198 2897569 2897600 2897672 "TEX1" 2897751 NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1197 2897217 2897280 2897370 "TEMUTL" 2897501 T TEMUTL (NIL) -7 NIL NIL NIL) (-1196 2895371 2895651 2895976 "TBCMPPK" 2896940 NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1195 2887148 2893531 2893587 "TBAGG" 2893987 NIL TBAGG (NIL T T) -9 NIL 2894198 NIL) (-1194 2882218 2883706 2885460 "TBAGG-" 2885465 NIL TBAGG- (NIL T T T) -8 NIL NIL NIL) (-1193 2881602 2881709 2881854 "TANEXP" 2882107 NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1192 2874992 2881459 2881552 "TABLE" 2881557 NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1191 2874404 2874503 2874641 "TABLEAU" 2874889 NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1190 2869012 2870232 2871480 "TABLBUMP" 2873190 NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1189 2868234 2868381 2868562 "SYSTEM" 2868853 T SYSTEM (NIL) -8 NIL NIL NIL) (-1188 2864693 2865392 2866175 "SYSSOLP" 2867485 NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1187 2864491 2864648 2864679 "SYSPTR" 2864684 T SYSPTR (NIL) -8 NIL NIL NIL) (-1186 2863535 2864040 2864159 "SYSNNI" 2864345 NIL SYSNNI (NIL NIL) -8 NIL NIL 2864430) (-1185 2862842 2863301 2863380 "SYSINT" 2863440 NIL SYSINT (NIL NIL) -8 NIL NIL 2863485) (-1184 2859174 2860120 2860830 "SYNTAX" 2862154 T SYNTAX (NIL) -8 NIL NIL NIL) (-1183 2856332 2856934 2857566 "SYMTAB" 2858564 T SYMTAB (NIL) -8 NIL NIL NIL) (-1182 2851581 2852483 2853466 "SYMS" 2855371 T SYMS (NIL) -8 NIL NIL NIL) (-1181 2848816 2851039 2851269 "SYMPOLY" 2851386 NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1180 2848333 2848408 2848531 "SYMFUNC" 2848728 NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1179 2844352 2845645 2846458 "SYMBOL" 2847542 T SYMBOL (NIL) -8 NIL NIL NIL) (-1178 2837891 2839580 2841300 "SWITCH" 2842654 T SWITCH (NIL) -8 NIL NIL NIL) (-1177 2831125 2836712 2837015 "SUTS" 2837646 NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1176 2823191 2830372 2830645 "SUPXS" 2830910 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1175 2814950 2822809 2822935 "SUP" 2823100 NIL SUP (NIL T) -8 NIL NIL NIL) (-1174 2814109 2814236 2814453 "SUPFRACF" 2814818 NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1173 2813730 2813789 2813902 "SUP2" 2814044 NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1172 2812178 2812452 2812808 "SUMRF" 2813429 NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1171 2811513 2811579 2811771 "SUMFS" 2812099 NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1170 2795480 2810690 2810941 "SULS" 2811320 NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1169 2795082 2795302 2795372 "SUCHTAST" 2795432 T SUCHTAST (NIL) -8 NIL NIL NIL) (-1168 2794377 2794607 2794747 "SUCH" 2794990 NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1167 2788243 2789283 2790242 "SUBSPACE" 2793465 NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1166 2787673 2787763 2787927 "SUBRESP" 2788131 NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1165 2781038 2782338 2783649 "STTF" 2786409 NIL STTF (NIL T) -7 NIL NIL NIL) (-1164 2775211 2776331 2777478 "STTFNC" 2779938 NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1163 2766521 2768393 2770187 "STTAYLOR" 2773452 NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1162 2759651 2766385 2766468 "STRTBL" 2766473 NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1161 2755015 2759606 2759637 "STRING" 2759642 T STRING (NIL) -8 NIL NIL NIL) (-1160 2749876 2754388 2754418 "STRICAT" 2754477 T STRICAT (NIL) -9 NIL 2754539 NIL) (-1159 2742629 2747495 2748106 "STREAM" 2749300 NIL STREAM (NIL T) -8 NIL NIL NIL) (-1158 2742139 2742216 2742360 "STREAM3" 2742546 NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1157 2741121 2741304 2741539 "STREAM2" 2741952 NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1156 2740809 2740861 2740954 "STREAM1" 2741063 NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1155 2739825 2740006 2740237 "STINPROD" 2740625 NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1154 2739377 2739587 2739617 "STEP" 2739697 T STEP (NIL) -9 NIL 2739775 NIL) (-1153 2738564 2738866 2739014 "STEPAST" 2739251 T STEPAST (NIL) -8 NIL NIL NIL) (-1152 2731996 2738463 2738540 "STBL" 2738545 NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1151 2727122 2731217 2731260 "STAGG" 2731413 NIL STAGG (NIL T) -9 NIL 2731502 NIL) (-1150 2724824 2725426 2726298 "STAGG-" 2726303 NIL STAGG- (NIL T T) -8 NIL NIL NIL) (-1149 2722971 2724594 2724686 "STACK" 2724767 NIL STACK (NIL T) -8 NIL NIL NIL) (-1148 2715666 2721112 2721568 "SREGSET" 2722601 NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1147 2708091 2709460 2710973 "SRDCMPK" 2714272 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1146 2701008 2705531 2705561 "SRAGG" 2706864 T SRAGG (NIL) -9 NIL 2707472 NIL) (-1145 2700025 2700280 2700659 "SRAGG-" 2700664 NIL SRAGG- (NIL T) -8 NIL NIL NIL) (-1144 2694485 2698972 2699393 "SQMATRIX" 2699651 NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1143 2688170 2691203 2691930 "SPLTREE" 2693830 NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1142 2684133 2684826 2685472 "SPLNODE" 2687596 NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1141 2683180 2683413 2683443 "SPFCAT" 2683887 T SPFCAT (NIL) -9 NIL NIL NIL) (-1140 2681917 2682127 2682391 "SPECOUT" 2682938 T SPECOUT (NIL) -7 NIL NIL NIL) (-1139 2673282 2675104 2675134 "SPADXPT" 2679669 T SPADXPT (NIL) -9 NIL 2681769 NIL) (-1138 2673043 2673083 2673152 "SPADPRSR" 2673235 T SPADPRSR (NIL) -7 NIL NIL NIL) (-1137 2671144 2672998 2673029 "SPADAST" 2673034 T SPADAST (NIL) -8 NIL NIL NIL) (-1136 2663089 2664862 2664905 "SPACEC" 2669278 NIL SPACEC (NIL T) -9 NIL 2671094 NIL) (-1135 2661219 2663021 2663070 "SPACE3" 2663075 NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1134 2659971 2660142 2660433 "SORTPAK" 2661024 NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1133 2658063 2658366 2658778 "SOLVETRA" 2659635 NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1132 2657113 2657335 2657596 "SOLVESER" 2657836 NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1131 2652417 2653305 2654300 "SOLVERAD" 2656165 NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1130 2648232 2648841 2649570 "SOLVEFOR" 2651784 NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1129 2642502 2647581 2647678 "SNTSCAT" 2647683 NIL SNTSCAT (NIL T T T T) -9 NIL 2647753 NIL) (-1128 2636608 2640825 2641216 "SMTS" 2642192 NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1127 2631292 2636496 2636573 "SMP" 2636578 NIL SMP (NIL T T) -8 NIL NIL NIL) (-1126 2629451 2629752 2630150 "SMITH" 2630989 NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1125 2622164 2626360 2626463 "SMATCAT" 2627814 NIL SMATCAT (NIL NIL T T T) -9 NIL 2628364 NIL) (-1124 2619104 2619927 2621105 "SMATCAT-" 2621110 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL NIL) (-1123 2616770 2618340 2618383 "SKAGG" 2618644 NIL SKAGG (NIL T) -9 NIL 2618779 NIL) (-1122 2613081 2616186 2616381 "SINT" 2616568 T SINT (NIL) -8 NIL NIL 2616741) (-1121 2612853 2612891 2612957 "SIMPAN" 2613037 T SIMPAN (NIL) -7 NIL NIL NIL) (-1120 2612132 2612388 2612528 "SIG" 2612735 T SIG (NIL) -8 NIL NIL NIL) (-1119 2610970 2611191 2611466 "SIGNRF" 2611891 NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1118 2609803 2609954 2610238 "SIGNEF" 2610799 NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1117 2609109 2609386 2609510 "SIGAST" 2609701 T SIGAST (NIL) -8 NIL NIL NIL) (-1116 2606798 2607253 2607759 "SHP" 2608650 NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1115 2600650 2606699 2606775 "SHDP" 2606780 NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1114 2600223 2600415 2600445 "SGROUP" 2600538 T SGROUP (NIL) -9 NIL 2600600 NIL) (-1113 2600081 2600107 2600180 "SGROUP-" 2600185 NIL SGROUP- (NIL T) -8 NIL NIL NIL) (-1112 2596916 2597614 2598337 "SGCF" 2599380 T SGCF (NIL) -7 NIL NIL NIL) (-1111 2591284 2596363 2596460 "SFRTCAT" 2596465 NIL SFRTCAT (NIL T T T T) -9 NIL 2596504 NIL) (-1110 2584705 2585723 2586859 "SFRGCD" 2590267 NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1109 2577831 2578904 2580090 "SFQCMPK" 2583638 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1108 2577451 2577540 2577651 "SFORT" 2577772 NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1107 2576569 2577291 2577412 "SEXOF" 2577417 NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1106 2575676 2576450 2576518 "SEX" 2576523 T SEX (NIL) -8 NIL NIL NIL) (-1105 2571189 2571904 2571999 "SEXCAT" 2574936 NIL SEXCAT (NIL T T T T T) -9 NIL 2575514 NIL) (-1104 2568342 2571123 2571171 "SET" 2571176 NIL SET (NIL T) -8 NIL NIL NIL) (-1103 2566566 2567055 2567360 "SETMN" 2568083 NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1102 2566062 2566214 2566244 "SETCAT" 2566420 T SETCAT (NIL) -9 NIL 2566530 NIL) (-1101 2565754 2565832 2565962 "SETCAT-" 2565967 NIL SETCAT- (NIL T) -8 NIL NIL NIL) (-1100 2562115 2564215 2564258 "SETAGG" 2565128 NIL SETAGG (NIL T) -9 NIL 2565468 NIL) (-1099 2561573 2561689 2561926 "SETAGG-" 2561931 NIL SETAGG- (NIL T T) -8 NIL NIL NIL) (-1098 2561016 2561269 2561370 "SEQAST" 2561494 T SEQAST (NIL) -8 NIL NIL NIL) (-1097 2560215 2560509 2560570 "SEGXCAT" 2560856 NIL SEGXCAT (NIL T T) -9 NIL 2560976 NIL) (-1096 2559221 2559881 2560063 "SEG" 2560068 NIL SEG (NIL T) -8 NIL NIL NIL) (-1095 2558200 2558414 2558457 "SEGCAT" 2558979 NIL SEGCAT (NIL T) -9 NIL 2559200 NIL) (-1094 2557132 2557563 2557771 "SEGBIND" 2558027 NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1093 2556753 2556812 2556925 "SEGBIND2" 2557067 NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1092 2556326 2556554 2556631 "SEGAST" 2556698 T SEGAST (NIL) -8 NIL NIL NIL) (-1091 2555545 2555671 2555875 "SEG2" 2556170 NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1090 2554955 2555480 2555527 "SDVAR" 2555532 NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1089 2547482 2554725 2554855 "SDPOL" 2554860 NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1088 2546075 2546341 2546660 "SCPKG" 2547197 NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1087 2545239 2545411 2545603 "SCOPE" 2545905 T SCOPE (NIL) -8 NIL NIL NIL) (-1086 2544459 2544593 2544772 "SCACHE" 2545094 NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1085 2544105 2544291 2544321 "SASTCAT" 2544326 T SASTCAT (NIL) -9 NIL 2544339 NIL) (-1084 2543592 2543940 2544016 "SAOS" 2544051 T SAOS (NIL) -8 NIL NIL NIL) (-1083 2543157 2543192 2543365 "SAERFFC" 2543551 NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1082 2537096 2543054 2543134 "SAE" 2543139 NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1081 2536689 2536724 2536883 "SAEFACT" 2537055 NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1080 2535010 2535324 2535725 "RURPK" 2536355 NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1079 2533647 2533953 2534258 "RULESET" 2534844 NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1078 2530870 2531400 2531858 "RULE" 2533328 NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1077 2530482 2530664 2530747 "RULECOLD" 2530822 NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1076 2530272 2530300 2530371 "RTVALUE" 2530433 T RTVALUE (NIL) -8 NIL NIL NIL) (-1075 2529743 2529989 2530083 "RSTRCAST" 2530200 T RSTRCAST (NIL) -8 NIL NIL NIL) (-1074 2524591 2525386 2526306 "RSETGCD" 2528942 NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1073 2513821 2518900 2518997 "RSETCAT" 2523116 NIL RSETCAT (NIL T T T T) -9 NIL 2524213 NIL) (-1072 2511748 2512287 2513111 "RSETCAT-" 2513116 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1071 2504133 2505510 2507030 "RSDCMPK" 2510347 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1070 2502112 2502579 2502653 "RRCC" 2503739 NIL RRCC (NIL T T) -9 NIL 2504083 NIL) (-1069 2501463 2501637 2501916 "RRCC-" 2501921 NIL RRCC- (NIL T T T) -8 NIL NIL NIL) (-1068 2500906 2501159 2501260 "RPTAST" 2501384 T RPTAST (NIL) -8 NIL NIL NIL) (-1067 2474757 2484114 2484181 "RPOLCAT" 2494845 NIL RPOLCAT (NIL T T T) -9 NIL 2498004 NIL) (-1066 2466255 2468595 2471717 "RPOLCAT-" 2471722 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL NIL) (-1065 2457186 2464466 2464948 "ROUTINE" 2465795 T ROUTINE (NIL) -8 NIL NIL NIL) (-1064 2453984 2456812 2456952 "ROMAN" 2457068 T ROMAN (NIL) -8 NIL NIL NIL) (-1063 2452228 2452844 2453104 "ROIRC" 2453789 NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1062 2448460 2450744 2450774 "RNS" 2451078 T RNS (NIL) -9 NIL 2451352 NIL) (-1061 2446969 2447352 2447886 "RNS-" 2447961 NIL RNS- (NIL T) -8 NIL NIL NIL) (-1060 2446372 2446780 2446810 "RNG" 2446815 T RNG (NIL) -9 NIL 2446836 NIL) (-1059 2445375 2445737 2445939 "RNGBIND" 2446223 NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-1058 2444774 2445162 2445205 "RMODULE" 2445210 NIL RMODULE (NIL T) -9 NIL 2445237 NIL) (-1057 2443610 2443704 2444040 "RMCAT2" 2444675 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-1056 2440460 2442956 2443253 "RMATRIX" 2443372 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-1055 2433287 2435547 2435662 "RMATCAT" 2439021 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2440003 NIL) (-1054 2432662 2432809 2433116 "RMATCAT-" 2433121 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL NIL) (-1053 2432063 2432284 2432327 "RLINSET" 2432521 NIL RLINSET (NIL T) -9 NIL 2432612 NIL) (-1052 2431630 2431705 2431833 "RINTERP" 2431982 NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-1051 2430688 2431242 2431272 "RING" 2431328 T RING (NIL) -9 NIL 2431420 NIL) (-1050 2430480 2430524 2430621 "RING-" 2430626 NIL RING- (NIL T) -8 NIL NIL NIL) (-1049 2429321 2429558 2429816 "RIDIST" 2430244 T RIDIST (NIL) -7 NIL NIL NIL) (-1048 2420610 2428789 2428995 "RGCHAIN" 2429169 NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-1047 2419960 2420366 2420407 "RGBCSPC" 2420465 NIL RGBCSPC (NIL T) -9 NIL 2420517 NIL) (-1046 2419118 2419499 2419540 "RGBCMDL" 2419772 NIL RGBCMDL (NIL T) -9 NIL 2419886 NIL) (-1045 2416112 2416726 2417396 "RF" 2418482 NIL RF (NIL T) -7 NIL NIL NIL) (-1044 2415758 2415821 2415924 "RFFACTOR" 2416043 NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-1043 2415483 2415518 2415615 "RFFACT" 2415717 NIL RFFACT (NIL T) -7 NIL NIL NIL) (-1042 2413600 2413964 2414346 "RFDIST" 2415123 T RFDIST (NIL) -7 NIL NIL NIL) (-1041 2413053 2413145 2413308 "RETSOL" 2413502 NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-1040 2412689 2412769 2412812 "RETRACT" 2412945 NIL RETRACT (NIL T) -9 NIL 2413032 NIL) (-1039 2412538 2412563 2412650 "RETRACT-" 2412655 NIL RETRACT- (NIL T T) -8 NIL NIL NIL) (-1038 2412140 2412360 2412430 "RETAST" 2412490 T RETAST (NIL) -8 NIL NIL NIL) (-1037 2404878 2411793 2411920 "RESULT" 2412035 T RESULT (NIL) -8 NIL NIL NIL) (-1036 2403469 2404147 2404346 "RESRING" 2404781 NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-1035 2403105 2403154 2403252 "RESLATC" 2403406 NIL RESLATC (NIL T) -7 NIL NIL NIL) (-1034 2402810 2402845 2402952 "REPSQ" 2403064 NIL REPSQ (NIL T) -7 NIL NIL NIL) (-1033 2400232 2400812 2401414 "REP" 2402230 T REP (NIL) -7 NIL NIL NIL) (-1032 2399929 2399964 2400075 "REPDB" 2400191 NIL REPDB (NIL T) -7 NIL NIL NIL) (-1031 2393829 2395218 2396441 "REP2" 2398741 NIL REP2 (NIL T) -7 NIL NIL NIL) (-1030 2390206 2390887 2391695 "REP1" 2393056 NIL REP1 (NIL T) -7 NIL NIL NIL) (-1029 2382902 2388347 2388803 "REGSET" 2389836 NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-1028 2381667 2382050 2382300 "REF" 2382687 NIL REF (NIL T) -8 NIL NIL NIL) (-1027 2381044 2381147 2381314 "REDORDER" 2381551 NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-1026 2377012 2380257 2380484 "RECLOS" 2380872 NIL RECLOS (NIL T) -8 NIL NIL NIL) (-1025 2376064 2376245 2376460 "REALSOLV" 2376819 T REALSOLV (NIL) -7 NIL NIL NIL) (-1024 2375910 2375951 2375981 "REAL" 2375986 T REAL (NIL) -9 NIL 2376021 NIL) (-1023 2372393 2373195 2374079 "REAL0Q" 2375075 NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-1022 2367994 2368982 2370043 "REAL0" 2371374 NIL REAL0 (NIL T) -7 NIL NIL NIL) (-1021 2367465 2367711 2367805 "RDUCEAST" 2367922 T RDUCEAST (NIL) -8 NIL NIL NIL) (-1020 2366870 2366942 2367149 "RDIV" 2367387 NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-1019 2365938 2366112 2366325 "RDIST" 2366692 NIL RDIST (NIL T) -7 NIL NIL NIL) (-1018 2364535 2364822 2365194 "RDETRS" 2365646 NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-1017 2362347 2362801 2363339 "RDETR" 2364077 NIL RDETR (NIL T T) -7 NIL NIL NIL) (-1016 2360972 2361250 2361647 "RDEEFS" 2362063 NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-1015 2359481 2359787 2360212 "RDEEF" 2360660 NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-1014 2353542 2356462 2356492 "RCFIELD" 2357787 T RCFIELD (NIL) -9 NIL 2358518 NIL) (-1013 2351606 2352110 2352806 "RCFIELD-" 2352881 NIL RCFIELD- (NIL T) -8 NIL NIL NIL) (-1012 2347875 2349707 2349750 "RCAGG" 2350834 NIL RCAGG (NIL T) -9 NIL 2351299 NIL) (-1011 2347503 2347597 2347760 "RCAGG-" 2347765 NIL RCAGG- (NIL T T) -8 NIL NIL NIL) (-1010 2346838 2346950 2347115 "RATRET" 2347387 NIL RATRET (NIL T) -7 NIL NIL NIL) (-1009 2346391 2346458 2346579 "RATFACT" 2346766 NIL RATFACT (NIL T) -7 NIL NIL NIL) (-1008 2345699 2345819 2345971 "RANDSRC" 2346261 T RANDSRC (NIL) -7 NIL NIL NIL) (-1007 2345433 2345477 2345550 "RADUTIL" 2345648 T RADUTIL (NIL) -7 NIL NIL NIL) (-1006 2338549 2344266 2344576 "RADIX" 2345157 NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-1005 2330168 2338391 2338521 "RADFF" 2338526 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-1004 2329815 2329890 2329920 "RADCAT" 2330080 T RADCAT (NIL) -9 NIL NIL NIL) (-1003 2329597 2329645 2329745 "RADCAT-" 2329750 NIL RADCAT- (NIL T) -8 NIL NIL NIL) (-1002 2327697 2329369 2329460 "QUEUE" 2329541 NIL QUEUE (NIL T) -8 NIL NIL NIL) (-1001 2324236 2327632 2327679 "QUAT" 2327684 NIL QUAT (NIL T) -8 NIL NIL NIL) (-1000 2323871 2323914 2324043 "QUATCT2" 2324187 NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-999 2317333 2320678 2320718 "QUATCAT" 2321498 NIL QUATCAT (NIL T) -9 NIL 2322264 NIL) (-998 2313477 2314514 2315901 "QUATCAT-" 2315995 NIL QUATCAT- (NIL T T) -8 NIL NIL NIL) (-997 2310950 2312561 2312602 "QUAGG" 2312977 NIL QUAGG (NIL T) -9 NIL 2313152 NIL) (-996 2310555 2310775 2310843 "QQUTAST" 2310902 T QQUTAST (NIL) -8 NIL NIL NIL) (-995 2309453 2309953 2310125 "QFORM" 2310427 NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-994 2300458 2305697 2305737 "QFCAT" 2306395 NIL QFCAT (NIL T) -9 NIL 2307396 NIL) (-993 2296030 2297231 2298822 "QFCAT-" 2298916 NIL QFCAT- (NIL T T) -8 NIL NIL NIL) (-992 2295668 2295711 2295838 "QFCAT2" 2295981 NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-991 2295128 2295238 2295368 "QEQUAT" 2295558 T QEQUAT (NIL) -8 NIL NIL NIL) (-990 2288274 2289347 2290531 "QCMPACK" 2294061 NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-989 2285823 2286271 2286699 "QALGSET" 2287929 NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-988 2285068 2285242 2285474 "QALGSET2" 2285643 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-987 2283758 2283982 2284299 "PWFFINTB" 2284841 NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-986 2281940 2282108 2282462 "PUSHVAR" 2283572 NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-985 2277858 2278912 2278953 "PTRANFN" 2280837 NIL PTRANFN (NIL T) -9 NIL NIL NIL) (-984 2276260 2276551 2276873 "PTPACK" 2277569 NIL PTPACK (NIL T) -7 NIL NIL NIL) (-983 2275892 2275949 2276058 "PTFUNC2" 2276197 NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-982 2270369 2274764 2274805 "PTCAT" 2275101 NIL PTCAT (NIL T) -9 NIL 2275254 NIL) (-981 2270027 2270062 2270186 "PSQFR" 2270328 NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-980 2268622 2268920 2269254 "PSEUDLIN" 2269725 NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-979 2255385 2257756 2260080 "PSETPK" 2266382 NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-978 2248403 2251143 2251239 "PSETCAT" 2254260 NIL PSETCAT (NIL T T T T) -9 NIL 2255074 NIL) (-977 2246239 2246873 2247694 "PSETCAT-" 2247699 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-976 2245588 2245753 2245781 "PSCURVE" 2246049 T PSCURVE (NIL) -9 NIL 2246216 NIL) (-975 2241586 2243102 2243167 "PSCAT" 2244011 NIL PSCAT (NIL T T T) -9 NIL 2244251 NIL) (-974 2240649 2240865 2241265 "PSCAT-" 2241270 NIL PSCAT- (NIL T T T T) -8 NIL NIL NIL) (-973 2239354 2240014 2240219 "PRTITION" 2240464 T PRTITION (NIL) -8 NIL NIL NIL) (-972 2238829 2239075 2239167 "PRTDAST" 2239282 T PRTDAST (NIL) -8 NIL NIL NIL) (-971 2227918 2230133 2232321 "PRS" 2236691 NIL PRS (NIL T T) -7 NIL NIL NIL) (-970 2225729 2227268 2227308 "PRQAGG" 2227491 NIL PRQAGG (NIL T) -9 NIL 2227593 NIL) (-969 2224933 2225238 2225266 "PROPLOG" 2225513 T PROPLOG (NIL) -9 NIL 2225679 NIL) (-968 2223363 2223884 2224141 "PROPFRML" 2224709 NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-967 2222832 2222939 2223067 "PROPERTY" 2223255 T PROPERTY (NIL) -8 NIL NIL NIL) (-966 2216890 2220998 2221818 "PRODUCT" 2222058 NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-965 2214168 2216348 2216582 "PR" 2216701 NIL PR (NIL T T) -8 NIL NIL NIL) (-964 2213964 2213996 2214055 "PRINT" 2214129 T PRINT (NIL) -7 NIL NIL NIL) (-963 2213304 2213421 2213573 "PRIMES" 2213844 NIL PRIMES (NIL T) -7 NIL NIL NIL) (-962 2211369 2211770 2212236 "PRIMELT" 2212883 NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-961 2211098 2211147 2211175 "PRIMCAT" 2211299 T PRIMCAT (NIL) -9 NIL NIL NIL) (-960 2207213 2211036 2211081 "PRIMARR" 2211086 NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-959 2206220 2206398 2206626 "PRIMARR2" 2207031 NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-958 2205863 2205919 2206030 "PREASSOC" 2206158 NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-957 2205338 2205471 2205499 "PPCURVE" 2205704 T PPCURVE (NIL) -9 NIL 2205840 NIL) (-956 2204933 2205133 2205216 "PORTNUM" 2205275 T PORTNUM (NIL) -8 NIL NIL NIL) (-955 2202292 2202691 2203283 "POLYROOT" 2204514 NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-954 2196474 2201896 2202056 "POLY" 2202165 NIL POLY (NIL T) -8 NIL NIL NIL) (-953 2195857 2195915 2196149 "POLYLIFT" 2196410 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-952 2192132 2192581 2193210 "POLYCATQ" 2195402 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-951 2178844 2183972 2184037 "POLYCAT" 2187551 NIL POLYCAT (NIL T T T) -9 NIL 2189429 NIL) (-950 2172293 2174155 2176539 "POLYCAT-" 2176544 NIL POLYCAT- (NIL T T T T) -8 NIL NIL NIL) (-949 2171880 2171948 2172068 "POLY2UP" 2172219 NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-948 2171512 2171569 2171678 "POLY2" 2171817 NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-947 2170197 2170436 2170712 "POLUTIL" 2171286 NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-946 2168552 2168829 2169160 "POLTOPOL" 2169919 NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-945 2164017 2168488 2168534 "POINT" 2168539 NIL POINT (NIL T) -8 NIL NIL NIL) (-944 2162204 2162561 2162936 "PNTHEORY" 2163662 T PNTHEORY (NIL) -7 NIL NIL NIL) (-943 2160662 2160959 2161358 "PMTOOLS" 2161902 NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-942 2160255 2160333 2160450 "PMSYM" 2160578 NIL PMSYM (NIL T) -7 NIL NIL NIL) (-941 2159765 2159834 2160008 "PMQFCAT" 2160180 NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-940 2159120 2159230 2159386 "PMPRED" 2159642 NIL PMPRED (NIL T) -7 NIL NIL NIL) (-939 2158513 2158599 2158761 "PMPREDFS" 2159021 NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-938 2157177 2157385 2157763 "PMPLCAT" 2158275 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-937 2156709 2156788 2156940 "PMLSAGG" 2157092 NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-936 2156182 2156258 2156440 "PMKERNEL" 2156627 NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-935 2155799 2155874 2155987 "PMINS" 2156101 NIL PMINS (NIL T) -7 NIL NIL NIL) (-934 2155241 2155310 2155519 "PMFS" 2155724 NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-933 2154469 2154587 2154792 "PMDOWN" 2155118 NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-932 2153636 2153794 2153975 "PMASS" 2154308 T PMASS (NIL) -7 NIL NIL NIL) (-931 2152909 2153019 2153182 "PMASSFS" 2153523 NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-930 2152564 2152632 2152726 "PLOTTOOL" 2152835 T PLOTTOOL (NIL) -7 NIL NIL NIL) (-929 2147171 2148375 2149523 "PLOT" 2151436 T PLOT (NIL) -8 NIL NIL NIL) (-928 2142975 2144019 2144940 "PLOT3D" 2146270 T PLOT3D (NIL) -8 NIL NIL NIL) (-927 2141887 2142064 2142299 "PLOT1" 2142779 NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-926 2117276 2121953 2126804 "PLEQN" 2137153 NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-925 2116594 2116716 2116896 "PINTERP" 2117141 NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-924 2116287 2116334 2116437 "PINTERPA" 2116541 NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-923 2115508 2116056 2116143 "PI" 2116183 T PI (NIL) -8 NIL NIL 2116250) (-922 2113805 2114780 2114808 "PID" 2114990 T PID (NIL) -9 NIL 2115124 NIL) (-921 2113556 2113593 2113668 "PICOERCE" 2113762 NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-920 2112876 2113015 2113191 "PGROEB" 2113412 NIL PGROEB (NIL T) -7 NIL NIL NIL) (-919 2108463 2109277 2110182 "PGE" 2111991 T PGE (NIL) -7 NIL NIL NIL) (-918 2106586 2106833 2107199 "PGCD" 2108180 NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-917 2105924 2106027 2106188 "PFRPAC" 2106470 NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-916 2102564 2104472 2104825 "PFR" 2105603 NIL PFR (NIL T) -8 NIL NIL NIL) (-915 2100953 2101197 2101522 "PFOTOOLS" 2102311 NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-914 2099486 2099725 2100076 "PFOQ" 2100710 NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-913 2097987 2098199 2098555 "PFO" 2099270 NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-912 2094540 2097876 2097945 "PF" 2097950 NIL PF (NIL NIL) -8 NIL NIL NIL) (-911 2091874 2093145 2093173 "PFECAT" 2093758 T PFECAT (NIL) -9 NIL 2094142 NIL) (-910 2091319 2091473 2091687 "PFECAT-" 2091692 NIL PFECAT- (NIL T) -8 NIL NIL NIL) (-909 2089922 2090174 2090475 "PFBRU" 2091068 NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-908 2087788 2088140 2088572 "PFBR" 2089573 NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-907 2083670 2085164 2085840 "PERM" 2087145 NIL PERM (NIL T) -8 NIL NIL NIL) (-906 2078904 2079877 2080747 "PERMGRP" 2082833 NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-905 2077010 2077967 2078008 "PERMCAT" 2078454 NIL PERMCAT (NIL T) -9 NIL 2078759 NIL) (-904 2076663 2076704 2076828 "PERMAN" 2076963 NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-903 2074151 2076328 2076450 "PENDTREE" 2076574 NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-902 2072175 2072943 2072984 "PDRING" 2073641 NIL PDRING (NIL T) -9 NIL 2073927 NIL) (-901 2071278 2071496 2071858 "PDRING-" 2071863 NIL PDRING- (NIL T T) -8 NIL NIL NIL) (-900 2068493 2069271 2069939 "PDEPROB" 2070630 T PDEPROB (NIL) -8 NIL NIL NIL) (-899 2066038 2066542 2067097 "PDEPACK" 2067958 T PDEPACK (NIL) -7 NIL NIL NIL) (-898 2064950 2065140 2065391 "PDECOMP" 2065837 NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-897 2062529 2063372 2063400 "PDECAT" 2064187 T PDECAT (NIL) -9 NIL 2064900 NIL) (-896 2062280 2062313 2062403 "PCOMP" 2062490 NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-895 2060458 2061081 2061378 "PBWLB" 2062009 NIL PBWLB (NIL T) -8 NIL NIL NIL) (-894 2052931 2054531 2055869 "PATTERN" 2059141 NIL PATTERN (NIL T) -8 NIL NIL NIL) (-893 2052563 2052620 2052729 "PATTERN2" 2052868 NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-892 2050320 2050708 2051165 "PATTERN1" 2052152 NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-891 2047688 2048269 2048750 "PATRES" 2049885 NIL PATRES (NIL T T) -8 NIL NIL NIL) (-890 2047252 2047319 2047451 "PATRES2" 2047615 NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-889 2045135 2045540 2045947 "PATMATCH" 2046919 NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-888 2044645 2044854 2044895 "PATMAB" 2045002 NIL PATMAB (NIL T) -9 NIL 2045085 NIL) (-887 2043163 2043499 2043757 "PATLRES" 2044450 NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-886 2042709 2042832 2042873 "PATAB" 2042878 NIL PATAB (NIL T) -9 NIL 2043050 NIL) (-885 2040190 2040722 2041295 "PARTPERM" 2042156 T PARTPERM (NIL) -7 NIL NIL NIL) (-884 2039811 2039874 2039976 "PARSURF" 2040121 NIL PARSURF (NIL T) -8 NIL NIL NIL) (-883 2039443 2039500 2039609 "PARSU2" 2039748 NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-882 2039207 2039247 2039314 "PARSER" 2039396 T PARSER (NIL) -7 NIL NIL NIL) (-881 2038828 2038891 2038993 "PARSCURV" 2039138 NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-880 2038460 2038517 2038626 "PARSC2" 2038765 NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-879 2038099 2038157 2038254 "PARPCURV" 2038396 NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-878 2037731 2037788 2037897 "PARPC2" 2038036 NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-877 2036792 2037104 2037286 "PARAMAST" 2037569 T PARAMAST (NIL) -8 NIL NIL NIL) (-876 2036312 2036398 2036517 "PAN2EXPR" 2036693 T PAN2EXPR (NIL) -7 NIL NIL NIL) (-875 2035089 2035433 2035661 "PALETTE" 2036104 T PALETTE (NIL) -8 NIL NIL NIL) (-874 2033482 2034094 2034454 "PAIR" 2034775 NIL PAIR (NIL T T) -8 NIL NIL NIL) (-873 2027352 2032741 2032935 "PADICRC" 2033337 NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-872 2020581 2026698 2026882 "PADICRAT" 2027200 NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-871 2018896 2020518 2020563 "PADIC" 2020568 NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-870 2016006 2017570 2017610 "PADICCT" 2018191 NIL PADICCT (NIL NIL) -9 NIL 2018473 NIL) (-869 2014963 2015163 2015431 "PADEPAC" 2015793 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-868 2014175 2014308 2014514 "PADE" 2014825 NIL PADE (NIL T T T) -7 NIL NIL NIL) (-867 2012562 2013383 2013663 "OWP" 2013979 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-866 2012055 2012268 2012365 "OVERSET" 2012485 T OVERSET (NIL) -8 NIL NIL NIL) (-865 2011101 2011660 2011832 "OVAR" 2011923 NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-864 2010365 2010486 2010647 "OUT" 2010960 T OUT (NIL) -7 NIL NIL NIL) (-863 1999237 2001474 2003674 "OUTFORM" 2008185 T OUTFORM (NIL) -8 NIL NIL NIL) (-862 1998573 1998834 1998961 "OUTBFILE" 1999130 T OUTBFILE (NIL) -8 NIL NIL NIL) (-861 1997880 1998045 1998073 "OUTBCON" 1998391 T OUTBCON (NIL) -9 NIL 1998557 NIL) (-860 1997481 1997593 1997750 "OUTBCON-" 1997755 NIL OUTBCON- (NIL T) -8 NIL NIL NIL) (-859 1996861 1997210 1997299 "OSI" 1997412 T OSI (NIL) -8 NIL NIL NIL) (-858 1996391 1996729 1996757 "OSGROUP" 1996762 T OSGROUP (NIL) -9 NIL 1996784 NIL) (-857 1995136 1995363 1995648 "ORTHPOL" 1996138 NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-856 1992687 1994971 1995092 "OREUP" 1995097 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-855 1990090 1992378 1992505 "ORESUP" 1992629 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-854 1987618 1988118 1988679 "OREPCTO" 1989579 NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-853 1981304 1983505 1983546 "OREPCAT" 1985894 NIL OREPCAT (NIL T) -9 NIL 1986998 NIL) (-852 1978451 1979233 1980291 "OREPCAT-" 1980296 NIL OREPCAT- (NIL T T) -8 NIL NIL NIL) (-851 1977602 1977900 1977928 "ORDSET" 1978237 T ORDSET (NIL) -9 NIL 1978401 NIL) (-850 1977033 1977181 1977405 "ORDSET-" 1977410 NIL ORDSET- (NIL T) -8 NIL NIL NIL) (-849 1975598 1976389 1976417 "ORDRING" 1976619 T ORDRING (NIL) -9 NIL 1976744 NIL) (-848 1975243 1975337 1975481 "ORDRING-" 1975486 NIL ORDRING- (NIL T) -8 NIL NIL NIL) (-847 1974623 1975086 1975114 "ORDMON" 1975119 T ORDMON (NIL) -9 NIL 1975140 NIL) (-846 1973785 1973932 1974127 "ORDFUNS" 1974472 NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-845 1973123 1973542 1973570 "ORDFIN" 1973635 T ORDFIN (NIL) -9 NIL 1973709 NIL) (-844 1969682 1971709 1972118 "ORDCOMP" 1972747 NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-843 1968948 1969075 1969261 "ORDCOMP2" 1969542 NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-842 1965529 1966439 1967253 "OPTPROB" 1968154 T OPTPROB (NIL) -8 NIL NIL NIL) (-841 1962331 1962970 1963674 "OPTPACK" 1964845 T OPTPACK (NIL) -7 NIL NIL NIL) (-840 1960018 1960784 1960812 "OPTCAT" 1961631 T OPTCAT (NIL) -9 NIL 1962281 NIL) (-839 1959402 1959695 1959800 "OPSIG" 1959933 T OPSIG (NIL) -8 NIL NIL NIL) (-838 1959170 1959209 1959275 "OPQUERY" 1959356 T OPQUERY (NIL) -7 NIL NIL NIL) (-837 1956301 1957481 1957985 "OP" 1958699 NIL OP (NIL T) -8 NIL NIL NIL) (-836 1955675 1955901 1955942 "OPERCAT" 1956154 NIL OPERCAT (NIL T) -9 NIL 1956251 NIL) (-835 1955430 1955486 1955603 "OPERCAT-" 1955608 NIL OPERCAT- (NIL T T) -8 NIL NIL NIL) (-834 1952243 1954227 1954596 "ONECOMP" 1955094 NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-833 1951548 1951663 1951837 "ONECOMP2" 1952115 NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-832 1950967 1951073 1951203 "OMSERVER" 1951438 T OMSERVER (NIL) -7 NIL NIL NIL) (-831 1947829 1950407 1950447 "OMSAGG" 1950508 NIL OMSAGG (NIL T) -9 NIL 1950572 NIL) (-830 1946452 1946715 1946997 "OMPKG" 1947567 T OMPKG (NIL) -7 NIL NIL NIL) (-829 1945882 1945985 1946013 "OM" 1946312 T OM (NIL) -9 NIL NIL NIL) (-828 1944429 1945431 1945600 "OMLO" 1945763 NIL OMLO (NIL T T) -8 NIL NIL NIL) (-827 1943389 1943536 1943756 "OMEXPR" 1944255 NIL OMEXPR (NIL T) -7 NIL NIL NIL) (-826 1942680 1942935 1943071 "OMERR" 1943273 T OMERR (NIL) -8 NIL NIL NIL) (-825 1941831 1942101 1942261 "OMERRK" 1942540 T OMERRK (NIL) -8 NIL NIL NIL) (-824 1941282 1941508 1941616 "OMENC" 1941743 T OMENC (NIL) -8 NIL NIL NIL) (-823 1935177 1936362 1937533 "OMDEV" 1940131 T OMDEV (NIL) -8 NIL NIL NIL) (-822 1934246 1934417 1934611 "OMCONN" 1935003 T OMCONN (NIL) -8 NIL NIL NIL) (-821 1932767 1933743 1933771 "OINTDOM" 1933776 T OINTDOM (NIL) -9 NIL 1933797 NIL) (-820 1930105 1931455 1931792 "OFMONOID" 1932462 NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-819 1929516 1930042 1930087 "ODVAR" 1930092 NIL ODVAR (NIL T) -8 NIL NIL NIL) (-818 1926939 1929261 1929416 "ODR" 1929421 NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-817 1919520 1926715 1926841 "ODPOL" 1926846 NIL ODPOL (NIL T) -8 NIL NIL NIL) (-816 1913342 1919392 1919497 "ODP" 1919502 NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-815 1912108 1912323 1912598 "ODETOOLS" 1913116 NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-814 1909075 1909733 1910449 "ODESYS" 1911441 NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-813 1903957 1904865 1905890 "ODERTRIC" 1908150 NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-812 1903383 1903465 1903659 "ODERED" 1903869 NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-811 1900271 1900819 1901496 "ODERAT" 1902806 NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-810 1897228 1897695 1898292 "ODEPRRIC" 1899800 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-809 1895171 1895767 1896253 "ODEPROB" 1896762 T ODEPROB (NIL) -8 NIL NIL NIL) (-808 1891691 1892176 1892823 "ODEPRIM" 1894650 NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-807 1890940 1891042 1891302 "ODEPAL" 1891583 NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-806 1887102 1887893 1888757 "ODEPACK" 1890096 T ODEPACK (NIL) -7 NIL NIL NIL) (-805 1886163 1886270 1886492 "ODEINT" 1886991 NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-804 1880264 1881689 1883136 "ODEIFTBL" 1884736 T ODEIFTBL (NIL) -8 NIL NIL NIL) (-803 1875662 1876448 1877400 "ODEEF" 1879423 NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-802 1875011 1875100 1875323 "ODECONST" 1875567 NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-801 1873136 1873797 1873825 "ODECAT" 1874430 T ODECAT (NIL) -9 NIL 1874961 NIL) (-800 1869991 1872841 1872963 "OCT" 1873046 NIL OCT (NIL T) -8 NIL NIL NIL) (-799 1869629 1869672 1869799 "OCTCT2" 1869942 NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-798 1864278 1866713 1866753 "OC" 1867850 NIL OC (NIL T) -9 NIL 1868708 NIL) (-797 1861505 1862253 1863243 "OC-" 1863337 NIL OC- (NIL T T) -8 NIL NIL NIL) (-796 1860857 1861325 1861353 "OCAMON" 1861358 T OCAMON (NIL) -9 NIL 1861379 NIL) (-795 1860388 1860729 1860757 "OASGP" 1860762 T OASGP (NIL) -9 NIL 1860782 NIL) (-794 1859649 1860138 1860166 "OAMONS" 1860206 T OAMONS (NIL) -9 NIL 1860249 NIL) (-793 1859063 1859496 1859524 "OAMON" 1859529 T OAMON (NIL) -9 NIL 1859549 NIL) (-792 1858321 1858839 1858867 "OAGROUP" 1858872 T OAGROUP (NIL) -9 NIL 1858892 NIL) (-791 1858011 1858061 1858149 "NUMTUBE" 1858265 NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-790 1851584 1853102 1854638 "NUMQUAD" 1856495 T NUMQUAD (NIL) -7 NIL NIL NIL) (-789 1847340 1848328 1849353 "NUMODE" 1850579 T NUMODE (NIL) -7 NIL NIL NIL) (-788 1844695 1845575 1845603 "NUMINT" 1846526 T NUMINT (NIL) -9 NIL 1847290 NIL) (-787 1843643 1843840 1844058 "NUMFMT" 1844497 T NUMFMT (NIL) -7 NIL NIL NIL) (-786 1830002 1832947 1835479 "NUMERIC" 1841150 NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-785 1824372 1829451 1829546 "NTSCAT" 1829551 NIL NTSCAT (NIL T T T T) -9 NIL 1829590 NIL) (-784 1823566 1823731 1823924 "NTPOLFN" 1824211 NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-783 1811643 1820391 1821203 "NSUP" 1822787 NIL NSUP (NIL T) -8 NIL NIL NIL) (-782 1811275 1811332 1811441 "NSUP2" 1811580 NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-781 1801503 1811049 1811182 "NSMP" 1811187 NIL NSMP (NIL T T) -8 NIL NIL NIL) (-780 1799935 1800236 1800593 "NREP" 1801191 NIL NREP (NIL T) -7 NIL NIL NIL) (-779 1798526 1798778 1799136 "NPCOEF" 1799678 NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-778 1797592 1797707 1797923 "NORMRETR" 1798407 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-777 1795633 1795923 1796332 "NORMPK" 1797300 NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-776 1795318 1795346 1795470 "NORMMA" 1795599 NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-775 1795118 1795275 1795304 "NONE" 1795309 T NONE (NIL) -8 NIL NIL NIL) (-774 1794907 1794936 1795005 "NONE1" 1795082 NIL NONE1 (NIL T) -7 NIL NIL NIL) (-773 1794404 1794466 1794645 "NODE1" 1794839 NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-772 1792689 1793540 1793795 "NNI" 1794142 T NNI (NIL) -8 NIL NIL 1794377) (-771 1791109 1791422 1791786 "NLINSOL" 1792357 NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-770 1787350 1788345 1789244 "NIPROB" 1790230 T NIPROB (NIL) -8 NIL NIL NIL) (-769 1786107 1786341 1786643 "NFINTBAS" 1787112 NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-768 1785281 1785757 1785798 "NETCLT" 1785970 NIL NETCLT (NIL T) -9 NIL 1786052 NIL) (-767 1783989 1784220 1784501 "NCODIV" 1785049 NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-766 1783751 1783788 1783863 "NCNTFRAC" 1783946 NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-765 1781931 1782295 1782715 "NCEP" 1783376 NIL NCEP (NIL T) -7 NIL NIL NIL) (-764 1780782 1781555 1781583 "NASRING" 1781693 T NASRING (NIL) -9 NIL 1781773 NIL) (-763 1780577 1780621 1780715 "NASRING-" 1780720 NIL NASRING- (NIL T) -8 NIL NIL NIL) (-762 1779684 1780209 1780237 "NARNG" 1780354 T NARNG (NIL) -9 NIL 1780445 NIL) (-761 1779376 1779443 1779577 "NARNG-" 1779582 NIL NARNG- (NIL T) -8 NIL NIL NIL) (-760 1778255 1778462 1778697 "NAGSP" 1779161 T NAGSP (NIL) -7 NIL NIL NIL) (-759 1769527 1771211 1772884 "NAGS" 1776602 T NAGS (NIL) -7 NIL NIL NIL) (-758 1768075 1768383 1768714 "NAGF07" 1769216 T NAGF07 (NIL) -7 NIL NIL NIL) (-757 1762613 1763904 1765211 "NAGF04" 1766788 T NAGF04 (NIL) -7 NIL NIL NIL) (-756 1755581 1757195 1758828 "NAGF02" 1761000 T NAGF02 (NIL) -7 NIL NIL NIL) (-755 1750805 1751905 1753022 "NAGF01" 1754484 T NAGF01 (NIL) -7 NIL NIL NIL) (-754 1744433 1745999 1747584 "NAGE04" 1749240 T NAGE04 (NIL) -7 NIL NIL NIL) (-753 1735602 1737723 1739853 "NAGE02" 1742323 T NAGE02 (NIL) -7 NIL NIL NIL) (-752 1731555 1732502 1733466 "NAGE01" 1734658 T NAGE01 (NIL) -7 NIL NIL NIL) (-751 1729350 1729884 1730442 "NAGD03" 1731017 T NAGD03 (NIL) -7 NIL NIL NIL) (-750 1721100 1723028 1724982 "NAGD02" 1727416 T NAGD02 (NIL) -7 NIL NIL NIL) (-749 1714911 1716336 1717776 "NAGD01" 1719680 T NAGD01 (NIL) -7 NIL NIL NIL) (-748 1711120 1711942 1712779 "NAGC06" 1714094 T NAGC06 (NIL) -7 NIL NIL NIL) (-747 1709585 1709917 1710273 "NAGC05" 1710784 T NAGC05 (NIL) -7 NIL NIL NIL) (-746 1708961 1709080 1709224 "NAGC02" 1709461 T NAGC02 (NIL) -7 NIL NIL NIL) (-745 1707920 1708503 1708543 "NAALG" 1708622 NIL NAALG (NIL T) -9 NIL 1708683 NIL) (-744 1707755 1707784 1707874 "NAALG-" 1707879 NIL NAALG- (NIL T T) -8 NIL NIL NIL) (-743 1701705 1702813 1704000 "MULTSQFR" 1706651 NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-742 1701024 1701099 1701283 "MULTFACT" 1701617 NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-741 1693748 1697661 1697714 "MTSCAT" 1698784 NIL MTSCAT (NIL T T) -9 NIL 1699299 NIL) (-740 1693460 1693514 1693606 "MTHING" 1693688 NIL MTHING (NIL T) -7 NIL NIL NIL) (-739 1693252 1693285 1693345 "MSYSCMD" 1693420 T MSYSCMD (NIL) -7 NIL NIL NIL) (-738 1689334 1692007 1692327 "MSET" 1692965 NIL MSET (NIL T) -8 NIL NIL NIL) (-737 1686403 1688895 1688936 "MSETAGG" 1688941 NIL MSETAGG (NIL T) -9 NIL 1688975 NIL) (-736 1682244 1683782 1684527 "MRING" 1685703 NIL MRING (NIL T T) -8 NIL NIL NIL) (-735 1681810 1681877 1682008 "MRF2" 1682171 NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-734 1681428 1681463 1681607 "MRATFAC" 1681769 NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-733 1679040 1679335 1679766 "MPRFF" 1681133 NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-732 1673337 1678894 1678991 "MPOLY" 1678996 NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-731 1672827 1672862 1673070 "MPCPF" 1673296 NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-730 1672341 1672384 1672568 "MPC3" 1672778 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-729 1671536 1671617 1671838 "MPC2" 1672256 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-728 1669837 1670174 1670564 "MONOTOOL" 1671196 NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-727 1669062 1669379 1669407 "MONOID" 1669626 T MONOID (NIL) -9 NIL 1669773 NIL) (-726 1668608 1668727 1668908 "MONOID-" 1668913 NIL MONOID- (NIL T) -8 NIL NIL NIL) (-725 1659083 1665034 1665093 "MONOGEN" 1665767 NIL MONOGEN (NIL T T) -9 NIL 1666223 NIL) (-724 1656301 1657036 1658036 "MONOGEN-" 1658155 NIL MONOGEN- (NIL T T T) -8 NIL NIL NIL) (-723 1655134 1655580 1655608 "MONADWU" 1656000 T MONADWU (NIL) -9 NIL 1656238 NIL) (-722 1654506 1654665 1654913 "MONADWU-" 1654918 NIL MONADWU- (NIL T) -8 NIL NIL NIL) (-721 1653865 1654109 1654137 "MONAD" 1654344 T MONAD (NIL) -9 NIL 1654456 NIL) (-720 1653550 1653628 1653760 "MONAD-" 1653765 NIL MONAD- (NIL T) -8 NIL NIL NIL) (-719 1651839 1652463 1652742 "MOEBIUS" 1653303 NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-718 1651117 1651521 1651561 "MODULE" 1651566 NIL MODULE (NIL T) -9 NIL 1651605 NIL) (-717 1650685 1650781 1650971 "MODULE-" 1650976 NIL MODULE- (NIL T T) -8 NIL NIL NIL) (-716 1648365 1649049 1649376 "MODRING" 1650509 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-715 1645309 1646470 1646991 "MODOP" 1647894 NIL MODOP (NIL T T) -8 NIL NIL NIL) (-714 1643897 1644376 1644653 "MODMONOM" 1645172 NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-713 1633938 1642188 1642602 "MODMON" 1643534 NIL MODMON (NIL T T) -8 NIL NIL NIL) (-712 1631094 1632782 1633058 "MODFIELD" 1633813 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-711 1630071 1630375 1630565 "MMLFORM" 1630924 T MMLFORM (NIL) -8 NIL NIL NIL) (-710 1629597 1629640 1629819 "MMAP" 1630022 NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-709 1627676 1628443 1628484 "MLO" 1628907 NIL MLO (NIL T) -9 NIL 1629149 NIL) (-708 1625042 1625558 1626160 "MLIFT" 1627157 NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-707 1624433 1624517 1624671 "MKUCFUNC" 1624953 NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-706 1624032 1624102 1624225 "MKRECORD" 1624356 NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-705 1623079 1623241 1623469 "MKFUNC" 1623843 NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-704 1622467 1622571 1622727 "MKFLCFN" 1622962 NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-703 1621744 1621846 1622031 "MKBCFUNC" 1622360 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-702 1618451 1621298 1621434 "MINT" 1621628 T MINT (NIL) -8 NIL NIL NIL) (-701 1617263 1617506 1617783 "MHROWRED" 1618206 NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-700 1612642 1615798 1616203 "MFLOAT" 1616878 T MFLOAT (NIL) -8 NIL NIL NIL) (-699 1611999 1612075 1612246 "MFINFACT" 1612554 NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-698 1608314 1609162 1610046 "MESH" 1611135 T MESH (NIL) -7 NIL NIL NIL) (-697 1606704 1607016 1607369 "MDDFACT" 1608001 NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-696 1603499 1605863 1605904 "MDAGG" 1606159 NIL MDAGG (NIL T) -9 NIL 1606302 NIL) (-695 1593239 1602792 1602999 "MCMPLX" 1603312 T MCMPLX (NIL) -8 NIL NIL NIL) (-694 1592380 1592526 1592726 "MCDEN" 1593088 NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-693 1590270 1590540 1590920 "MCALCFN" 1592110 NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-692 1589195 1589435 1589668 "MAYBE" 1590076 NIL MAYBE (NIL T) -8 NIL NIL NIL) (-691 1586807 1587330 1587892 "MATSTOR" 1588666 NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-690 1582764 1586179 1586427 "MATRIX" 1586592 NIL MATRIX (NIL T) -8 NIL NIL NIL) (-689 1578528 1579237 1579973 "MATLIN" 1582121 NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-688 1568634 1571820 1571897 "MATCAT" 1576777 NIL MATCAT (NIL T T T) -9 NIL 1578194 NIL) (-687 1564990 1566011 1567367 "MATCAT-" 1567372 NIL MATCAT- (NIL T T T T) -8 NIL NIL NIL) (-686 1563584 1563737 1564070 "MATCAT2" 1564825 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-685 1561696 1562020 1562404 "MAPPKG3" 1563259 NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-684 1560677 1560850 1561072 "MAPPKG2" 1561520 NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-683 1559176 1559460 1559787 "MAPPKG1" 1560383 NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-682 1558255 1558582 1558759 "MAPPAST" 1559019 T MAPPAST (NIL) -8 NIL NIL NIL) (-681 1557866 1557924 1558047 "MAPHACK3" 1558191 NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-680 1557458 1557519 1557633 "MAPHACK2" 1557798 NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-679 1556895 1556999 1557141 "MAPHACK1" 1557349 NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-678 1554974 1555595 1555899 "MAGMA" 1556623 NIL MAGMA (NIL T) -8 NIL NIL NIL) (-677 1554453 1554698 1554789 "MACROAST" 1554903 T MACROAST (NIL) -8 NIL NIL NIL) (-676 1550871 1552692 1553153 "M3D" 1554025 NIL M3D (NIL T) -8 NIL NIL NIL) (-675 1544977 1549240 1549281 "LZSTAGG" 1550063 NIL LZSTAGG (NIL T) -9 NIL 1550358 NIL) (-674 1540934 1542108 1543565 "LZSTAGG-" 1543570 NIL LZSTAGG- (NIL T T) -8 NIL NIL NIL) (-673 1538021 1538825 1539312 "LWORD" 1540479 NIL LWORD (NIL T) -8 NIL NIL NIL) (-672 1537597 1537825 1537900 "LSTAST" 1537966 T LSTAST (NIL) -8 NIL NIL NIL) (-671 1530763 1537368 1537502 "LSQM" 1537507 NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-670 1529987 1530126 1530354 "LSPP" 1530618 NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-669 1527799 1528100 1528556 "LSMP" 1529676 NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-668 1524578 1525252 1525982 "LSMP1" 1527101 NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-667 1518455 1523745 1523786 "LSAGG" 1523848 NIL LSAGG (NIL T) -9 NIL 1523926 NIL) (-666 1515150 1516074 1517287 "LSAGG-" 1517292 NIL LSAGG- (NIL T T) -8 NIL NIL NIL) (-665 1512749 1514294 1514543 "LPOLY" 1514945 NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-664 1512331 1512416 1512539 "LPEFRAC" 1512658 NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-663 1510652 1511425 1511678 "LO" 1512163 NIL LO (NIL T T T) -8 NIL NIL NIL) (-662 1510304 1510416 1510444 "LOGIC" 1510555 T LOGIC (NIL) -9 NIL 1510636 NIL) (-661 1510166 1510189 1510260 "LOGIC-" 1510265 NIL LOGIC- (NIL T) -8 NIL NIL NIL) (-660 1509359 1509499 1509692 "LODOOPS" 1510022 NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-659 1506782 1509275 1509341 "LODO" 1509346 NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-658 1505320 1505555 1505908 "LODOF" 1506529 NIL LODOF (NIL T T) -7 NIL NIL NIL) (-657 1501538 1503969 1504010 "LODOCAT" 1504448 NIL LODOCAT (NIL T) -9 NIL 1504659 NIL) (-656 1501271 1501329 1501456 "LODOCAT-" 1501461 NIL LODOCAT- (NIL T T) -8 NIL NIL NIL) (-655 1498591 1501112 1501230 "LODO2" 1501235 NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-654 1496026 1498528 1498573 "LODO1" 1498578 NIL LODO1 (NIL T) -8 NIL NIL NIL) (-653 1494907 1495072 1495377 "LODEEF" 1495849 NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-652 1490146 1493037 1493078 "LNAGG" 1494025 NIL LNAGG (NIL T) -9 NIL 1494469 NIL) (-651 1489293 1489507 1489849 "LNAGG-" 1489854 NIL LNAGG- (NIL T T) -8 NIL NIL NIL) (-650 1485429 1486218 1486857 "LMOPS" 1488708 NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-649 1484832 1485220 1485261 "LMODULE" 1485266 NIL LMODULE (NIL T) -9 NIL 1485292 NIL) (-648 1482030 1484477 1484600 "LMDICT" 1484742 NIL LMDICT (NIL T) -8 NIL NIL NIL) (-647 1481436 1481657 1481698 "LLINSET" 1481889 NIL LLINSET (NIL T) -9 NIL 1481980 NIL) (-646 1481135 1481344 1481404 "LITERAL" 1481409 NIL LITERAL (NIL T) -8 NIL NIL NIL) (-645 1474298 1480069 1480373 "LIST" 1480864 NIL LIST (NIL T) -8 NIL NIL NIL) (-644 1473823 1473897 1474036 "LIST3" 1474218 NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-643 1472830 1473008 1473236 "LIST2" 1473641 NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-642 1470964 1471276 1471675 "LIST2MAP" 1472477 NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-641 1470560 1470797 1470838 "LINSET" 1470843 NIL LINSET (NIL T) -9 NIL 1470877 NIL) (-640 1469221 1469891 1469932 "LINEXP" 1470187 NIL LINEXP (NIL T) -9 NIL 1470336 NIL) (-639 1467868 1468128 1468425 "LINDEP" 1468973 NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-638 1464635 1465354 1466131 "LIMITRF" 1467123 NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-637 1462938 1463234 1463643 "LIMITPS" 1464330 NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-636 1457366 1462449 1462677 "LIE" 1462759 NIL LIE (NIL T T) -8 NIL NIL NIL) (-635 1456314 1456783 1456823 "LIECAT" 1456963 NIL LIECAT (NIL T) -9 NIL 1457114 NIL) (-634 1456155 1456182 1456270 "LIECAT-" 1456275 NIL LIECAT- (NIL T T) -8 NIL NIL NIL) (-633 1448651 1455604 1455769 "LIB" 1456010 T LIB (NIL) -8 NIL NIL NIL) (-632 1444286 1445169 1446104 "LGROBP" 1447768 NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-631 1442284 1442558 1442908 "LF" 1444007 NIL LF (NIL T T) -7 NIL NIL NIL) (-630 1441124 1441816 1441844 "LFCAT" 1442051 T LFCAT (NIL) -9 NIL 1442190 NIL) (-629 1438026 1438656 1439344 "LEXTRIPK" 1440488 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-628 1434770 1435596 1436099 "LEXP" 1437606 NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-627 1434246 1434491 1434583 "LETAST" 1434698 T LETAST (NIL) -8 NIL NIL NIL) (-626 1432644 1432957 1433358 "LEADCDET" 1433928 NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-625 1431834 1431908 1432137 "LAZM3PK" 1432565 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-624 1426751 1429911 1430449 "LAUPOL" 1431346 NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-623 1426330 1426374 1426535 "LAPLACE" 1426701 NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-622 1424269 1425431 1425682 "LA" 1426163 NIL LA (NIL T T T) -8 NIL NIL NIL) (-621 1423263 1423847 1423888 "LALG" 1423950 NIL LALG (NIL T) -9 NIL 1424009 NIL) (-620 1422977 1423036 1423172 "LALG-" 1423177 NIL LALG- (NIL T T) -8 NIL NIL NIL) (-619 1422812 1422836 1422877 "KVTFROM" 1422939 NIL KVTFROM (NIL T) -9 NIL NIL NIL) (-618 1421735 1422179 1422364 "KTVLOGIC" 1422647 T KTVLOGIC (NIL) -8 NIL NIL NIL) (-617 1421570 1421594 1421635 "KRCFROM" 1421697 NIL KRCFROM (NIL T) -9 NIL NIL NIL) (-616 1420474 1420661 1420960 "KOVACIC" 1421370 NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-615 1420309 1420333 1420374 "KONVERT" 1420436 NIL KONVERT (NIL T) -9 NIL NIL NIL) (-614 1420144 1420168 1420209 "KOERCE" 1420271 NIL KOERCE (NIL T) -9 NIL NIL NIL) (-613 1417974 1418737 1419114 "KERNEL" 1419800 NIL KERNEL (NIL T) -8 NIL NIL NIL) (-612 1417470 1417551 1417683 "KERNEL2" 1417888 NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-611 1411240 1416009 1416063 "KDAGG" 1416440 NIL KDAGG (NIL T T) -9 NIL 1416646 NIL) (-610 1410769 1410893 1411098 "KDAGG-" 1411103 NIL KDAGG- (NIL T T T) -8 NIL NIL NIL) (-609 1403917 1410430 1410585 "KAFILE" 1410647 NIL KAFILE (NIL T) -8 NIL NIL NIL) (-608 1398345 1403428 1403656 "JORDAN" 1403738 NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-607 1397724 1397994 1398115 "JOINAST" 1398244 T JOINAST (NIL) -8 NIL NIL NIL) (-606 1397570 1397629 1397684 "JAVACODE" 1397689 T JAVACODE (NIL) -8 NIL NIL NIL) (-605 1393822 1395775 1395829 "IXAGG" 1396758 NIL IXAGG (NIL T T) -9 NIL 1397217 NIL) (-604 1392741 1393047 1393466 "IXAGG-" 1393471 NIL IXAGG- (NIL T T T) -8 NIL NIL NIL) (-603 1388271 1392663 1392722 "IVECTOR" 1392727 NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-602 1387037 1387274 1387540 "ITUPLE" 1388038 NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-601 1385539 1385716 1386011 "ITRIGMNP" 1386859 NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-600 1384284 1384488 1384771 "ITFUN3" 1385315 NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-599 1383916 1383973 1384082 "ITFUN2" 1384221 NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-598 1381877 1382936 1383214 "ITAYLOR" 1383671 NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-597 1370822 1376014 1377177 "ISUPS" 1380747 NIL ISUPS (NIL T) -8 NIL NIL NIL) (-596 1369926 1370066 1370302 "ISUMP" 1370669 NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-595 1365301 1369871 1369912 "ISTRING" 1369917 NIL ISTRING (NIL NIL) -8 NIL NIL NIL) (-594 1364777 1365022 1365114 "ISAST" 1365229 T ISAST (NIL) -8 NIL NIL NIL) (-593 1363986 1364068 1364284 "IRURPK" 1364691 NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-592 1362922 1363123 1363363 "IRSN" 1363766 T IRSN (NIL) -7 NIL NIL NIL) (-591 1360993 1361348 1361777 "IRRF2F" 1362560 NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-590 1360740 1360778 1360854 "IRREDFFX" 1360949 NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-589 1359355 1359614 1359913 "IROOT" 1360473 NIL IROOT (NIL T) -7 NIL NIL NIL) (-588 1355959 1357039 1357731 "IR" 1358695 NIL IR (NIL T) -8 NIL NIL NIL) (-587 1353572 1354067 1354633 "IR2" 1355437 NIL IR2 (NIL T T) -7 NIL NIL NIL) (-586 1352672 1352785 1352999 "IR2F" 1353455 NIL IR2F (NIL T T) -7 NIL NIL NIL) (-585 1352463 1352497 1352557 "IPRNTPK" 1352632 T IPRNTPK (NIL) -7 NIL NIL NIL) (-584 1349044 1352352 1352421 "IPF" 1352426 NIL IPF (NIL NIL) -8 NIL NIL NIL) (-583 1347371 1348969 1349026 "IPADIC" 1349031 NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-582 1346683 1346931 1347061 "IP4ADDR" 1347261 T IP4ADDR (NIL) -8 NIL NIL NIL) (-581 1346156 1346387 1346497 "IOMODE" 1346593 T IOMODE (NIL) -8 NIL NIL NIL) (-580 1345229 1345753 1345880 "IOBFILE" 1346049 T IOBFILE (NIL) -8 NIL NIL NIL) (-579 1344717 1345133 1345161 "IOBCON" 1345166 T IOBCON (NIL) -9 NIL 1345187 NIL) (-578 1344228 1344286 1344469 "INVLAPLA" 1344653 NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-577 1333876 1336230 1338616 "INTTR" 1341892 NIL INTTR (NIL T T) -7 NIL NIL NIL) (-576 1330211 1330953 1331818 "INTTOOLS" 1333061 NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-575 1329797 1329888 1330005 "INTSLPE" 1330114 T INTSLPE (NIL) -7 NIL NIL NIL) (-574 1327750 1329720 1329779 "INTRVL" 1329784 NIL INTRVL (NIL T) -8 NIL NIL NIL) (-573 1325352 1325864 1326439 "INTRF" 1327235 NIL INTRF (NIL T) -7 NIL NIL NIL) (-572 1324763 1324860 1325002 "INTRET" 1325250 NIL INTRET (NIL T) -7 NIL NIL NIL) (-571 1322760 1323149 1323619 "INTRAT" 1324371 NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-570 1320023 1320606 1321225 "INTPM" 1322245 NIL INTPM (NIL T T) -7 NIL NIL NIL) (-569 1316768 1317367 1318105 "INTPAF" 1319409 NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-568 1311947 1312909 1313960 "INTPACK" 1315737 T INTPACK (NIL) -7 NIL NIL NIL) (-567 1308895 1311744 1311853 "INT" 1311858 T INT (NIL) -8 NIL NIL NIL) (-566 1308147 1308299 1308507 "INTHERTR" 1308737 NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-565 1307586 1307666 1307854 "INTHERAL" 1308061 NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-564 1305432 1305875 1306332 "INTHEORY" 1307149 T INTHEORY (NIL) -7 NIL NIL NIL) (-563 1296838 1298459 1300231 "INTG0" 1303784 NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-562 1277411 1282201 1287011 "INTFTBL" 1292048 T INTFTBL (NIL) -8 NIL NIL NIL) (-561 1276660 1276798 1276971 "INTFACT" 1277270 NIL INTFACT (NIL T) -7 NIL NIL NIL) (-560 1274087 1274533 1275090 "INTEF" 1276214 NIL INTEF (NIL T T) -7 NIL NIL NIL) (-559 1272454 1273193 1273221 "INTDOM" 1273522 T INTDOM (NIL) -9 NIL 1273729 NIL) (-558 1271823 1271997 1272239 "INTDOM-" 1272244 NIL INTDOM- (NIL T) -8 NIL NIL NIL) (-557 1268211 1270139 1270193 "INTCAT" 1270992 NIL INTCAT (NIL T) -9 NIL 1271313 NIL) (-556 1267683 1267786 1267914 "INTBIT" 1268103 T INTBIT (NIL) -7 NIL NIL NIL) (-555 1266382 1266536 1266843 "INTALG" 1267528 NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-554 1265865 1265955 1266112 "INTAF" 1266286 NIL INTAF (NIL T T) -7 NIL NIL NIL) (-553 1259208 1265675 1265815 "INTABL" 1265820 NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-552 1258549 1259015 1259080 "INT8" 1259114 T INT8 (NIL) -8 NIL NIL 1259159) (-551 1257889 1258355 1258420 "INT64" 1258454 T INT64 (NIL) -8 NIL NIL 1258499) (-550 1257229 1257695 1257760 "INT32" 1257794 T INT32 (NIL) -8 NIL NIL 1257839) (-549 1256569 1257035 1257100 "INT16" 1257134 T INT16 (NIL) -8 NIL NIL 1257179) (-548 1251479 1254192 1254220 "INS" 1255154 T INS (NIL) -9 NIL 1255819 NIL) (-547 1248719 1249490 1250464 "INS-" 1250537 NIL INS- (NIL T) -8 NIL NIL NIL) (-546 1247494 1247721 1248019 "INPSIGN" 1248472 NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-545 1246612 1246729 1246926 "INPRODPF" 1247374 NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-544 1245506 1245623 1245860 "INPRODFF" 1246492 NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-543 1244506 1244658 1244918 "INNMFACT" 1245342 NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-542 1243703 1243800 1243988 "INMODGCD" 1244405 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-541 1242211 1242456 1242780 "INFSP" 1243448 NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-540 1241395 1241512 1241695 "INFPROD0" 1242091 NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-539 1238250 1239460 1239975 "INFORM" 1240888 T INFORM (NIL) -8 NIL NIL NIL) (-538 1237860 1237920 1238018 "INFORM1" 1238185 NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-537 1237383 1237472 1237586 "INFINITY" 1237766 T INFINITY (NIL) -7 NIL NIL NIL) (-536 1236559 1237103 1237204 "INETCLTS" 1237302 T INETCLTS (NIL) -8 NIL NIL NIL) (-535 1235175 1235425 1235746 "INEP" 1236307 NIL INEP (NIL T T T) -7 NIL NIL NIL) (-534 1234424 1235072 1235137 "INDE" 1235142 NIL INDE (NIL T) -8 NIL NIL NIL) (-533 1233988 1234056 1234173 "INCRMAPS" 1234351 NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-532 1232806 1233257 1233463 "INBFILE" 1233802 T INBFILE (NIL) -8 NIL NIL NIL) (-531 1228105 1229042 1229986 "INBFF" 1231894 NIL INBFF (NIL T) -7 NIL NIL NIL) (-530 1227013 1227282 1227310 "INBCON" 1227823 T INBCON (NIL) -9 NIL 1228089 NIL) (-529 1226265 1226488 1226764 "INBCON-" 1226769 NIL INBCON- (NIL T) -8 NIL NIL NIL) (-528 1225744 1225989 1226080 "INAST" 1226194 T INAST (NIL) -8 NIL NIL NIL) (-527 1225171 1225423 1225529 "IMPTAST" 1225658 T IMPTAST (NIL) -8 NIL NIL NIL) (-526 1221617 1225015 1225119 "IMATRIX" 1225124 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-525 1220329 1220452 1220767 "IMATQF" 1221473 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-524 1218549 1218776 1219113 "IMATLIN" 1220085 NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-523 1213127 1218473 1218531 "ILIST" 1218536 NIL ILIST (NIL T NIL) -8 NIL NIL NIL) (-522 1211032 1212987 1213100 "IIARRAY2" 1213105 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-521 1206430 1210943 1211007 "IFF" 1211012 NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-520 1205777 1206047 1206163 "IFAST" 1206334 T IFAST (NIL) -8 NIL NIL NIL) (-519 1200772 1205069 1205257 "IFARRAY" 1205634 NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-518 1199952 1200676 1200749 "IFAMON" 1200754 NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-517 1199536 1199601 1199655 "IEVALAB" 1199862 NIL IEVALAB (NIL T T) -9 NIL NIL NIL) (-516 1199211 1199279 1199439 "IEVALAB-" 1199444 NIL IEVALAB- (NIL T T T) -8 NIL NIL NIL) (-515 1198842 1199125 1199188 "IDPO" 1199193 NIL IDPO (NIL T T) -8 NIL NIL NIL) (-514 1198092 1198731 1198806 "IDPOAMS" 1198811 NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-513 1197399 1197981 1198056 "IDPOAM" 1198061 NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-512 1196458 1196734 1196787 "IDPC" 1197200 NIL IDPC (NIL T T) -9 NIL 1197349 NIL) (-511 1195927 1196350 1196423 "IDPAM" 1196428 NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-510 1195303 1195819 1195892 "IDPAG" 1195897 NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-509 1194948 1195139 1195214 "IDENT" 1195248 T IDENT (NIL) -8 NIL NIL NIL) (-508 1191203 1192051 1192946 "IDECOMP" 1194105 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-507 1184041 1185126 1186173 "IDEAL" 1190239 NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-506 1183205 1183317 1183516 "ICDEN" 1183925 NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-505 1182276 1182685 1182832 "ICARD" 1183078 T ICARD (NIL) -8 NIL NIL NIL) (-504 1180336 1180649 1181054 "IBPTOOLS" 1181953 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-503 1175943 1179956 1180069 "IBITS" 1180255 NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-502 1172666 1173242 1173937 "IBATOOL" 1175360 NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-501 1170445 1170907 1171440 "IBACHIN" 1172201 NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-500 1168274 1170291 1170394 "IARRAY2" 1170399 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-499 1164380 1168200 1168257 "IARRAY1" 1168262 NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-498 1158489 1162792 1163273 "IAN" 1163919 T IAN (NIL) -8 NIL NIL NIL) (-497 1158000 1158057 1158230 "IALGFACT" 1158426 NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-496 1157528 1157641 1157669 "HYPCAT" 1157876 T HYPCAT (NIL) -9 NIL NIL NIL) (-495 1157066 1157183 1157369 "HYPCAT-" 1157374 NIL HYPCAT- (NIL T) -8 NIL NIL NIL) (-494 1156661 1156861 1156944 "HOSTNAME" 1157003 T HOSTNAME (NIL) -8 NIL NIL NIL) (-493 1156506 1156543 1156584 "HOMOTOP" 1156589 NIL HOMOTOP (NIL T) -9 NIL 1156622 NIL) (-492 1153138 1154516 1154557 "HOAGG" 1155538 NIL HOAGG (NIL T) -9 NIL 1156217 NIL) (-491 1151732 1152131 1152657 "HOAGG-" 1152662 NIL HOAGG- (NIL T T) -8 NIL NIL NIL) (-490 1145736 1151327 1151476 "HEXADEC" 1151603 T HEXADEC (NIL) -8 NIL NIL NIL) (-489 1144483 1144706 1144969 "HEUGCD" 1145513 NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-488 1143559 1144320 1144450 "HELLFDIV" 1144455 NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-487 1141738 1143336 1143424 "HEAP" 1143503 NIL HEAP (NIL T) -8 NIL NIL NIL) (-486 1141001 1141290 1141424 "HEADAST" 1141624 T HEADAST (NIL) -8 NIL NIL NIL) (-485 1134867 1140916 1140978 "HDP" 1140983 NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-484 1128855 1134502 1134654 "HDMP" 1134768 NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-483 1128179 1128319 1128483 "HB" 1128711 T HB (NIL) -7 NIL NIL NIL) (-482 1121565 1128025 1128129 "HASHTBL" 1128134 NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-481 1121041 1121286 1121378 "HASAST" 1121493 T HASAST (NIL) -8 NIL NIL NIL) (-480 1118819 1120663 1120845 "HACKPI" 1120879 T HACKPI (NIL) -8 NIL NIL NIL) (-479 1114487 1118672 1118785 "GTSET" 1118790 NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-478 1107902 1114365 1114463 "GSTBL" 1114468 NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-477 1100180 1106933 1107198 "GSERIES" 1107693 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-476 1099321 1099738 1099766 "GROUP" 1099969 T GROUP (NIL) -9 NIL 1100103 NIL) (-475 1098687 1098846 1099097 "GROUP-" 1099102 NIL GROUP- (NIL T) -8 NIL NIL NIL) (-474 1097054 1097375 1097762 "GROEBSOL" 1098364 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-473 1095968 1096256 1096307 "GRMOD" 1096836 NIL GRMOD (NIL T T) -9 NIL 1097004 NIL) (-472 1095736 1095772 1095900 "GRMOD-" 1095905 NIL GRMOD- (NIL T T T) -8 NIL NIL NIL) (-471 1091026 1092090 1093090 "GRIMAGE" 1094756 T GRIMAGE (NIL) -8 NIL NIL NIL) (-470 1089492 1089753 1090077 "GRDEF" 1090722 T GRDEF (NIL) -7 NIL NIL NIL) (-469 1088936 1089052 1089193 "GRAY" 1089371 T GRAY (NIL) -7 NIL NIL NIL) (-468 1088123 1088529 1088580 "GRALG" 1088733 NIL GRALG (NIL T T) -9 NIL 1088826 NIL) (-467 1087784 1087857 1088020 "GRALG-" 1088025 NIL GRALG- (NIL T T T) -8 NIL NIL NIL) (-466 1084561 1087369 1087547 "GPOLSET" 1087691 NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-465 1083915 1083972 1084230 "GOSPER" 1084498 NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-464 1079647 1080353 1080879 "GMODPOL" 1083614 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-463 1078652 1078836 1079074 "GHENSEL" 1079459 NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-462 1072808 1073651 1074671 "GENUPS" 1077736 NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-461 1072505 1072556 1072645 "GENUFACT" 1072751 NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-460 1071917 1071994 1072159 "GENPGCD" 1072423 NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-459 1071391 1071426 1071639 "GENMFACT" 1071876 NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-458 1069957 1070214 1070521 "GENEEZ" 1071134 NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-457 1064103 1069568 1069730 "GDMP" 1069880 NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-456 1053445 1057874 1058980 "GCNAALG" 1063086 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-455 1051772 1052634 1052662 "GCDDOM" 1052917 T GCDDOM (NIL) -9 NIL 1053074 NIL) (-454 1051242 1051369 1051584 "GCDDOM-" 1051589 NIL GCDDOM- (NIL T) -8 NIL NIL NIL) (-453 1049914 1050099 1050403 "GB" 1051021 NIL GB (NIL T T T T) -7 NIL NIL NIL) (-452 1038530 1040860 1043252 "GBINTERN" 1047605 NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-451 1036367 1036659 1037080 "GBF" 1038205 NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-450 1035148 1035313 1035580 "GBEUCLID" 1036183 NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-449 1034497 1034622 1034771 "GAUSSFAC" 1035019 T GAUSSFAC (NIL) -7 NIL NIL NIL) (-448 1032864 1033166 1033480 "GALUTIL" 1034216 NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-447 1031172 1031446 1031770 "GALPOLYU" 1032591 NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-446 1028537 1028827 1029234 "GALFACTU" 1030869 NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-445 1020342 1021842 1023450 "GALFACT" 1026969 NIL GALFACT (NIL T) -7 NIL NIL NIL) (-444 1017730 1018388 1018416 "FVFUN" 1019572 T FVFUN (NIL) -9 NIL 1020292 NIL) (-443 1016996 1017178 1017206 "FVC" 1017497 T FVC (NIL) -9 NIL 1017680 NIL) (-442 1016639 1016821 1016889 "FUNDESC" 1016948 T FUNDESC (NIL) -8 NIL NIL NIL) (-441 1016254 1016436 1016517 "FUNCTION" 1016591 NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-440 1013998 1014576 1015042 "FT" 1015808 T FT (NIL) -8 NIL NIL NIL) (-439 1012789 1013299 1013502 "FTEM" 1013815 T FTEM (NIL) -8 NIL NIL NIL) (-438 1011080 1011369 1011766 "FSUPFACT" 1012480 NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-437 1009477 1009766 1010098 "FST" 1010768 T FST (NIL) -8 NIL NIL NIL) (-436 1008676 1008782 1008970 "FSRED" 1009359 NIL FSRED (NIL T T) -7 NIL NIL NIL) (-435 1007375 1007631 1007978 "FSPRMELT" 1008391 NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-434 1004681 1005119 1005605 "FSPECF" 1006938 NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-433 986319 994650 994691 "FS" 998575 NIL FS (NIL T) -9 NIL 1000864 NIL) (-432 974962 977955 982012 "FS-" 982312 NIL FS- (NIL T T) -8 NIL NIL NIL) (-431 974490 974544 974714 "FSINT" 974903 NIL FSINT (NIL T T) -7 NIL NIL NIL) (-430 972782 973483 973786 "FSERIES" 974269 NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-429 971824 971940 972164 "FSCINT" 972662 NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-428 968032 970768 970809 "FSAGG" 971179 NIL FSAGG (NIL T) -9 NIL 971438 NIL) (-427 965794 966395 967191 "FSAGG-" 967286 NIL FSAGG- (NIL T T) -8 NIL NIL NIL) (-426 964836 964979 965206 "FSAGG2" 965647 NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-425 962518 962798 963345 "FS2UPS" 964554 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-424 962152 962195 962324 "FS2" 962469 NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-423 961030 961201 961503 "FS2EXPXP" 961977 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-422 960456 960571 960723 "FRUTIL" 960910 NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-421 951869 955951 957309 "FR" 959130 NIL FR (NIL T) -8 NIL NIL NIL) (-420 946838 949512 949552 "FRNAALG" 950948 NIL FRNAALG (NIL T) -9 NIL 951555 NIL) (-419 942511 943587 944862 "FRNAALG-" 945612 NIL FRNAALG- (NIL T T) -8 NIL NIL NIL) (-418 942149 942192 942319 "FRNAAF2" 942462 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-417 940529 941003 941298 "FRMOD" 941961 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-416 938280 938912 939229 "FRIDEAL" 940320 NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-415 937475 937562 937851 "FRIDEAL2" 938187 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-414 936608 937022 937063 "FRETRCT" 937068 NIL FRETRCT (NIL T) -9 NIL 937244 NIL) (-413 935720 935951 936302 "FRETRCT-" 936307 NIL FRETRCT- (NIL T T) -8 NIL NIL NIL) (-412 932808 934018 934077 "FRAMALG" 934959 NIL FRAMALG (NIL T T) -9 NIL 935251 NIL) (-411 930942 931397 932027 "FRAMALG-" 932250 NIL FRAMALG- (NIL T T T) -8 NIL NIL NIL) (-410 924863 930417 930693 "FRAC" 930698 NIL FRAC (NIL T) -8 NIL NIL NIL) (-409 924499 924556 924663 "FRAC2" 924800 NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-408 924135 924192 924299 "FR2" 924436 NIL FR2 (NIL T T) -7 NIL NIL NIL) (-407 918648 921541 921569 "FPS" 922688 T FPS (NIL) -9 NIL 923245 NIL) (-406 918097 918206 918370 "FPS-" 918516 NIL FPS- (NIL T) -8 NIL NIL NIL) (-405 915399 917068 917096 "FPC" 917321 T FPC (NIL) -9 NIL 917463 NIL) (-404 915192 915232 915329 "FPC-" 915334 NIL FPC- (NIL T) -8 NIL NIL NIL) (-403 913982 914680 914721 "FPATMAB" 914726 NIL FPATMAB (NIL T) -9 NIL 914878 NIL) (-402 911655 912158 912584 "FPARFRAC" 913619 NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-401 907048 907547 908229 "FORTRAN" 911087 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-400 904764 905264 905803 "FORT" 906529 T FORT (NIL) -7 NIL NIL NIL) (-399 902440 903002 903030 "FORTFN" 904090 T FORTFN (NIL) -9 NIL 904714 NIL) (-398 902204 902254 902282 "FORTCAT" 902341 T FORTCAT (NIL) -9 NIL 902403 NIL) (-397 900310 900820 901210 "FORMULA" 901834 T FORMULA (NIL) -8 NIL NIL NIL) (-396 900098 900128 900197 "FORMULA1" 900274 NIL FORMULA1 (NIL T) -7 NIL NIL NIL) (-395 899621 899673 899846 "FORDER" 900040 NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-394 898717 898881 899074 "FOP" 899448 T FOP (NIL) -7 NIL NIL NIL) (-393 897298 897997 898171 "FNLA" 898599 NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-392 896027 896442 896470 "FNCAT" 896930 T FNCAT (NIL) -9 NIL 897190 NIL) (-391 895566 895986 896014 "FNAME" 896019 T FNAME (NIL) -8 NIL NIL NIL) (-390 894129 895092 895120 "FMTC" 895125 T FMTC (NIL) -9 NIL 895161 NIL) (-389 892875 894065 894111 "FMONOID" 894116 NIL FMONOID (NIL T) -8 NIL NIL NIL) (-388 889703 890871 890912 "FMONCAT" 892129 NIL FMONCAT (NIL T) -9 NIL 892734 NIL) (-387 888895 889445 889594 "FM" 889599 NIL FM (NIL T T) -8 NIL NIL NIL) (-386 886319 886965 886993 "FMFUN" 888137 T FMFUN (NIL) -9 NIL 888845 NIL) (-385 885588 885769 885797 "FMC" 886087 T FMC (NIL) -9 NIL 886269 NIL) (-384 882667 883527 883581 "FMCAT" 884776 NIL FMCAT (NIL T T) -9 NIL 885271 NIL) (-383 881533 882433 882533 "FM1" 882612 NIL FM1 (NIL T T) -8 NIL NIL NIL) (-382 879307 879723 880217 "FLOATRP" 881084 NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-381 872882 877036 877657 "FLOAT" 878706 T FLOAT (NIL) -8 NIL NIL NIL) (-380 870320 870820 871398 "FLOATCP" 872349 NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-379 869060 869898 869939 "FLINEXP" 869944 NIL FLINEXP (NIL T) -9 NIL 870037 NIL) (-378 868214 868449 868777 "FLINEXP-" 868782 NIL FLINEXP- (NIL T T) -8 NIL NIL NIL) (-377 867290 867434 867658 "FLASORT" 868066 NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-376 864406 865274 865326 "FLALG" 866553 NIL FLALG (NIL T T) -9 NIL 867020 NIL) (-375 858142 861892 861933 "FLAGG" 863195 NIL FLAGG (NIL T) -9 NIL 863847 NIL) (-374 856868 857207 857697 "FLAGG-" 857702 NIL FLAGG- (NIL T T) -8 NIL NIL NIL) (-373 855910 856053 856280 "FLAGG2" 856721 NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-372 852761 853769 853828 "FINRALG" 854956 NIL FINRALG (NIL T T) -9 NIL 855464 NIL) (-371 851921 852150 852489 "FINRALG-" 852494 NIL FINRALG- (NIL T T T) -8 NIL NIL NIL) (-370 851301 851540 851568 "FINITE" 851764 T FINITE (NIL) -9 NIL 851871 NIL) (-369 843658 845845 845885 "FINAALG" 849552 NIL FINAALG (NIL T) -9 NIL 851005 NIL) (-368 838990 840040 841184 "FINAALG-" 842563 NIL FINAALG- (NIL T T) -8 NIL NIL NIL) (-367 838358 838745 838848 "FILE" 838920 NIL FILE (NIL T) -8 NIL NIL NIL) (-366 837016 837354 837408 "FILECAT" 838092 NIL FILECAT (NIL T T) -9 NIL 838308 NIL) (-365 834732 836260 836288 "FIELD" 836328 T FIELD (NIL) -9 NIL 836408 NIL) (-364 833352 833737 834248 "FIELD-" 834253 NIL FIELD- (NIL T) -8 NIL NIL NIL) (-363 831202 831987 832334 "FGROUP" 833038 NIL FGROUP (NIL T) -8 NIL NIL NIL) (-362 830292 830456 830676 "FGLMICPK" 831034 NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-361 826124 830217 830274 "FFX" 830279 NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-360 825725 825786 825921 "FFSLPE" 826057 NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-359 821714 822497 823293 "FFPOLY" 824961 NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-358 821218 821254 821463 "FFPOLY2" 821672 NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-357 817061 821137 821200 "FFP" 821205 NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-356 812459 816972 817036 "FF" 817041 NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-355 807585 811802 811992 "FFNBX" 812313 NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-354 802514 806720 806978 "FFNBP" 807439 NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-353 797147 801798 802009 "FFNB" 802347 NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-352 795979 796177 796492 "FFINTBAS" 796944 NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-351 792048 794268 794296 "FFIELDC" 794916 T FFIELDC (NIL) -9 NIL 795292 NIL) (-350 790710 791081 791578 "FFIELDC-" 791583 NIL FFIELDC- (NIL T) -8 NIL NIL NIL) (-349 790279 790325 790449 "FFHOM" 790652 NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-348 787974 788461 788978 "FFF" 789794 NIL FFF (NIL T) -7 NIL NIL NIL) (-347 783592 787716 787817 "FFCGX" 787917 NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-346 779213 783324 783431 "FFCGP" 783535 NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-345 774396 778940 779048 "FFCG" 779149 NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-344 755792 764873 764959 "FFCAT" 770124 NIL FFCAT (NIL T T T) -9 NIL 771575 NIL) (-343 750990 752037 753351 "FFCAT-" 754581 NIL FFCAT- (NIL T T T T) -8 NIL NIL NIL) (-342 750401 750444 750679 "FFCAT2" 750941 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-341 739722 743373 744593 "FEXPR" 749253 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-340 738722 739157 739198 "FEVALAB" 739282 NIL FEVALAB (NIL T) -9 NIL 739543 NIL) (-339 737881 738091 738429 "FEVALAB-" 738434 NIL FEVALAB- (NIL T T) -8 NIL NIL NIL) (-338 736447 737264 737467 "FDIV" 737780 NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-337 733467 734208 734323 "FDIVCAT" 735891 NIL FDIVCAT (NIL T T T T) -9 NIL 736328 NIL) (-336 733229 733256 733426 "FDIVCAT-" 733431 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL NIL) (-335 732449 732536 732813 "FDIV2" 733136 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-334 731423 731744 731946 "FCTRDATA" 732267 T FCTRDATA (NIL) -8 NIL NIL NIL) (-333 730109 730368 730657 "FCPAK1" 731154 T FCPAK1 (NIL) -7 NIL NIL NIL) (-332 729208 729609 729750 "FCOMP" 730000 NIL FCOMP (NIL T) -8 NIL NIL NIL) (-331 712910 716358 719896 "FC" 725690 T FC (NIL) -8 NIL NIL NIL) (-330 705273 709301 709341 "FAXF" 711143 NIL FAXF (NIL T) -9 NIL 711835 NIL) (-329 702549 703207 704032 "FAXF-" 704497 NIL FAXF- (NIL T T) -8 NIL NIL NIL) (-328 697601 701925 702101 "FARRAY" 702406 NIL FARRAY (NIL T) -8 NIL NIL NIL) (-327 692495 694562 694615 "FAMR" 695638 NIL FAMR (NIL T T) -9 NIL 696098 NIL) (-326 691385 691687 692122 "FAMR-" 692127 NIL FAMR- (NIL T T T) -8 NIL NIL NIL) (-325 690554 691307 691360 "FAMONOID" 691365 NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-324 688340 689050 689103 "FAMONC" 690044 NIL FAMONC (NIL T T) -9 NIL 690430 NIL) (-323 687004 688094 688231 "FAGROUP" 688236 NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-322 684799 685118 685521 "FACUTIL" 686685 NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-321 683898 684083 684305 "FACTFUNC" 684609 NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-320 676320 683201 683400 "EXPUPXS" 683754 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-319 673803 674343 674929 "EXPRTUBE" 675754 T EXPRTUBE (NIL) -7 NIL NIL NIL) (-318 670074 670666 671396 "EXPRODE" 673142 NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-317 655559 668723 669152 "EXPR" 669678 NIL EXPR (NIL T) -8 NIL NIL NIL) (-316 650113 650700 651506 "EXPR2UPS" 654857 NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-315 649745 649802 649911 "EXPR2" 650050 NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-314 641135 648898 649188 "EXPEXPAN" 649582 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-313 640935 641092 641121 "EXIT" 641126 T EXIT (NIL) -8 NIL NIL NIL) (-312 640415 640659 640750 "EXITAST" 640864 T EXITAST (NIL) -8 NIL NIL NIL) (-311 640042 640104 640217 "EVALCYC" 640347 NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-310 639583 639701 639742 "EVALAB" 639912 NIL EVALAB (NIL T) -9 NIL 640016 NIL) (-309 639064 639186 639407 "EVALAB-" 639412 NIL EVALAB- (NIL T T) -8 NIL NIL NIL) (-308 636432 637734 637762 "EUCDOM" 638317 T EUCDOM (NIL) -9 NIL 638667 NIL) (-307 634837 635279 635869 "EUCDOM-" 635874 NIL EUCDOM- (NIL T) -8 NIL NIL NIL) (-306 622375 625135 627885 "ESTOOLS" 632107 T ESTOOLS (NIL) -7 NIL NIL NIL) (-305 622007 622064 622173 "ESTOOLS2" 622312 NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-304 621758 621800 621880 "ESTOOLS1" 621959 NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-303 615795 617403 617431 "ES" 620199 T ES (NIL) -9 NIL 621609 NIL) (-302 610742 612029 613846 "ES-" 614010 NIL ES- (NIL T) -8 NIL NIL NIL) (-301 607116 607877 608657 "ESCONT" 609982 T ESCONT (NIL) -7 NIL NIL NIL) (-300 606861 606893 606975 "ESCONT1" 607078 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-299 606536 606586 606686 "ES2" 606805 NIL ES2 (NIL T T) -7 NIL NIL NIL) (-298 606166 606224 606333 "ES1" 606472 NIL ES1 (NIL T T) -7 NIL NIL NIL) (-297 605382 605511 605687 "ERROR" 606010 T ERROR (NIL) -7 NIL NIL NIL) (-296 598774 605241 605332 "EQTBL" 605337 NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-295 591277 594088 595537 "EQ" 597358 NIL -2109 (NIL T) -8 NIL NIL NIL) (-294 590909 590966 591075 "EQ2" 591214 NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-293 586198 587247 588340 "EP" 589848 NIL EP (NIL T) -7 NIL NIL NIL) (-292 584798 585089 585395 "ENV" 585912 T ENV (NIL) -8 NIL NIL NIL) (-291 583892 584446 584474 "ENTIRER" 584479 T ENTIRER (NIL) -9 NIL 584525 NIL) (-290 580359 581847 582217 "EMR" 583691 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-289 579503 579688 579742 "ELTAGG" 580122 NIL ELTAGG (NIL T T) -9 NIL 580333 NIL) (-288 579222 579284 579425 "ELTAGG-" 579430 NIL ELTAGG- (NIL T T T) -8 NIL NIL NIL) (-287 579011 579040 579094 "ELTAB" 579178 NIL ELTAB (NIL T T) -9 NIL NIL NIL) (-286 578137 578283 578482 "ELFUTS" 578862 NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-285 577879 577935 577963 "ELEMFUN" 578068 T ELEMFUN (NIL) -9 NIL NIL NIL) (-284 577749 577770 577838 "ELEMFUN-" 577843 NIL ELEMFUN- (NIL T) -8 NIL NIL NIL) (-283 572593 575849 575890 "ELAGG" 576830 NIL ELAGG (NIL T) -9 NIL 577293 NIL) (-282 570878 571312 571975 "ELAGG-" 571980 NIL ELAGG- (NIL T T) -8 NIL NIL NIL) (-281 569539 569818 570112 "ELABEXPR" 570604 T ELABEXPR (NIL) -8 NIL NIL NIL) (-280 562403 564206 565033 "EFUPXS" 568815 NIL EFUPXS (NIL T T T T) -8 NIL NIL NIL) (-279 555853 557654 558464 "EFULS" 561679 NIL EFULS (NIL T T T) -8 NIL NIL NIL) (-278 553338 553696 554168 "EFSTRUC" 555485 NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-277 543129 544695 546243 "EF" 551853 NIL EF (NIL T T) -7 NIL NIL NIL) (-276 542203 542614 542763 "EAB" 543000 T EAB (NIL) -8 NIL NIL NIL) (-275 541385 542162 542190 "E04UCFA" 542195 T E04UCFA (NIL) -8 NIL NIL NIL) (-274 540567 541344 541372 "E04NAFA" 541377 T E04NAFA (NIL) -8 NIL NIL NIL) (-273 539749 540526 540554 "E04MBFA" 540559 T E04MBFA (NIL) -8 NIL NIL NIL) (-272 538931 539708 539736 "E04JAFA" 539741 T E04JAFA (NIL) -8 NIL NIL NIL) (-271 538115 538890 538918 "E04GCFA" 538923 T E04GCFA (NIL) -8 NIL NIL NIL) (-270 537299 538074 538102 "E04FDFA" 538107 T E04FDFA (NIL) -8 NIL NIL NIL) (-269 536481 537258 537286 "E04DGFA" 537291 T E04DGFA (NIL) -8 NIL NIL NIL) (-268 530654 532006 533370 "E04AGNT" 535137 T E04AGNT (NIL) -7 NIL NIL NIL) (-267 529334 529840 529880 "DVARCAT" 530355 NIL DVARCAT (NIL T) -9 NIL 530554 NIL) (-266 528538 528750 529064 "DVARCAT-" 529069 NIL DVARCAT- (NIL T T) -8 NIL NIL NIL) (-265 521675 528337 528466 "DSMP" 528471 NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-264 516456 517620 518688 "DROPT" 520627 T DROPT (NIL) -8 NIL NIL NIL) (-263 516121 516180 516278 "DROPT1" 516391 NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-262 511236 512362 513499 "DROPT0" 515004 T DROPT0 (NIL) -7 NIL NIL NIL) (-261 509581 509906 510292 "DRAWPT" 510870 T DRAWPT (NIL) -7 NIL NIL NIL) (-260 504168 505091 506170 "DRAW" 508555 NIL DRAW (NIL T) -7 NIL NIL NIL) (-259 503801 503854 503972 "DRAWHACK" 504109 NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-258 502532 502801 503092 "DRAWCX" 503530 T DRAWCX (NIL) -7 NIL NIL NIL) (-257 502047 502116 502267 "DRAWCURV" 502458 NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-256 492515 494477 496592 "DRAWCFUN" 499952 T DRAWCFUN (NIL) -7 NIL NIL NIL) (-255 489281 491210 491251 "DQAGG" 491880 NIL DQAGG (NIL T) -9 NIL 492153 NIL) (-254 477405 483874 483957 "DPOLCAT" 485809 NIL DPOLCAT (NIL T T T T) -9 NIL 486354 NIL) (-253 472241 473590 475548 "DPOLCAT-" 475553 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL NIL) (-252 465363 472102 472200 "DPMO" 472205 NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-251 458388 465143 465310 "DPMM" 465315 NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-250 457866 458080 458178 "DOMTMPLT" 458310 T DOMTMPLT (NIL) -8 NIL NIL NIL) (-249 457299 457668 457748 "DOMCTOR" 457806 T DOMCTOR (NIL) -8 NIL NIL NIL) (-248 456511 456779 456930 "DOMAIN" 457168 T DOMAIN (NIL) -8 NIL NIL NIL) (-247 450499 456146 456298 "DMP" 456412 NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-246 450099 450155 450299 "DLP" 450437 NIL DLP (NIL T) -7 NIL NIL NIL) (-245 443921 449426 449616 "DLIST" 449941 NIL DLIST (NIL T) -8 NIL NIL NIL) (-244 440718 442774 442815 "DLAGG" 443365 NIL DLAGG (NIL T) -9 NIL 443595 NIL) (-243 439394 440058 440086 "DIVRING" 440178 T DIVRING (NIL) -9 NIL 440261 NIL) (-242 438631 438821 439121 "DIVRING-" 439126 NIL DIVRING- (NIL T) -8 NIL NIL NIL) (-241 436733 437090 437496 "DISPLAY" 438245 T DISPLAY (NIL) -7 NIL NIL NIL) (-240 430621 436647 436710 "DIRPROD" 436715 NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-239 429469 429672 429937 "DIRPROD2" 430414 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-238 418244 424250 424303 "DIRPCAT" 424713 NIL DIRPCAT (NIL NIL T) -9 NIL 425553 NIL) (-237 415570 416212 417093 "DIRPCAT-" 417430 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL NIL) (-236 414857 415017 415203 "DIOSP" 415404 T DIOSP (NIL) -7 NIL NIL NIL) (-235 411512 413769 413810 "DIOPS" 414244 NIL DIOPS (NIL T) -9 NIL 414473 NIL) (-234 411061 411175 411366 "DIOPS-" 411371 NIL DIOPS- (NIL T T) -8 NIL NIL NIL) (-233 409884 410512 410540 "DIFRING" 410727 T DIFRING (NIL) -9 NIL 410837 NIL) (-232 409530 409607 409759 "DIFRING-" 409764 NIL DIFRING- (NIL T) -8 NIL NIL NIL) (-231 407266 408538 408579 "DIFEXT" 408942 NIL DIFEXT (NIL T) -9 NIL 409236 NIL) (-230 405551 405979 406645 "DIFEXT-" 406650 NIL DIFEXT- (NIL T T) -8 NIL NIL NIL) (-229 402826 405083 405124 "DIAGG" 405129 NIL DIAGG (NIL T) -9 NIL 405149 NIL) (-228 402210 402367 402619 "DIAGG-" 402624 NIL DIAGG- (NIL T T) -8 NIL NIL NIL) (-227 397627 401169 401446 "DHMATRIX" 401979 NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-226 393239 394148 395158 "DFSFUN" 396637 T DFSFUN (NIL) -7 NIL NIL NIL) (-225 388317 392170 392482 "DFLOAT" 392947 T DFLOAT (NIL) -8 NIL NIL NIL) (-224 386580 386861 387250 "DFINTTLS" 388025 NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-223 383609 384601 385001 "DERHAM" 386246 NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-222 381410 383384 383473 "DEQUEUE" 383553 NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-221 380664 380797 380980 "DEGRED" 381272 NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-220 377094 377839 378685 "DEFINTRF" 379892 NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-219 374649 375118 375710 "DEFINTEF" 376613 NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-218 373999 374269 374384 "DEFAST" 374554 T DEFAST (NIL) -8 NIL NIL NIL) (-217 368003 373594 373743 "DECIMAL" 373870 T DECIMAL (NIL) -8 NIL NIL NIL) (-216 365515 365973 366479 "DDFACT" 367547 NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-215 365111 365154 365305 "DBLRESP" 365466 NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-214 362983 363344 363704 "DBASE" 364878 NIL DBASE (NIL T) -8 NIL NIL NIL) (-213 362225 362463 362609 "DATAARY" 362882 NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-212 361331 362184 362212 "D03FAFA" 362217 T D03FAFA (NIL) -8 NIL NIL NIL) (-211 360438 361290 361318 "D03EEFA" 361323 T D03EEFA (NIL) -8 NIL NIL NIL) (-210 358388 358854 359343 "D03AGNT" 359969 T D03AGNT (NIL) -7 NIL NIL NIL) (-209 357677 358347 358375 "D02EJFA" 358380 T D02EJFA (NIL) -8 NIL NIL NIL) (-208 356966 357636 357664 "D02CJFA" 357669 T D02CJFA (NIL) -8 NIL NIL NIL) (-207 356255 356925 356953 "D02BHFA" 356958 T D02BHFA (NIL) -8 NIL NIL NIL) (-206 355544 356214 356242 "D02BBFA" 356247 T D02BBFA (NIL) -8 NIL NIL NIL) (-205 348741 350330 351936 "D02AGNT" 353958 T D02AGNT (NIL) -7 NIL NIL NIL) (-204 346509 347032 347578 "D01WGTS" 348215 T D01WGTS (NIL) -7 NIL NIL NIL) (-203 345576 346468 346496 "D01TRNS" 346501 T D01TRNS (NIL) -8 NIL NIL NIL) (-202 344644 345535 345563 "D01GBFA" 345568 T D01GBFA (NIL) -8 NIL NIL NIL) (-201 343712 344603 344631 "D01FCFA" 344636 T D01FCFA (NIL) -8 NIL NIL NIL) (-200 342780 343671 343699 "D01ASFA" 343704 T D01ASFA (NIL) -8 NIL NIL NIL) (-199 341848 342739 342767 "D01AQFA" 342772 T D01AQFA (NIL) -8 NIL NIL NIL) (-198 340916 341807 341835 "D01APFA" 341840 T D01APFA (NIL) -8 NIL NIL NIL) (-197 339984 340875 340903 "D01ANFA" 340908 T D01ANFA (NIL) -8 NIL NIL NIL) (-196 339052 339943 339971 "D01AMFA" 339976 T D01AMFA (NIL) -8 NIL NIL NIL) (-195 338120 339011 339039 "D01ALFA" 339044 T D01ALFA (NIL) -8 NIL NIL NIL) (-194 337188 338079 338107 "D01AKFA" 338112 T D01AKFA (NIL) -8 NIL NIL NIL) (-193 336256 337147 337175 "D01AJFA" 337180 T D01AJFA (NIL) -8 NIL NIL NIL) (-192 329551 331104 332665 "D01AGNT" 334715 T D01AGNT (NIL) -7 NIL NIL NIL) (-191 328888 329016 329168 "CYCLOTOM" 329419 T CYCLOTOM (NIL) -7 NIL NIL NIL) (-190 325622 326336 327063 "CYCLES" 328181 T CYCLES (NIL) -7 NIL NIL NIL) (-189 324934 325068 325239 "CVMP" 325483 NIL CVMP (NIL T) -7 NIL NIL NIL) (-188 322775 323033 323402 "CTRIGMNP" 324662 NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-187 322211 322569 322642 "CTOR" 322722 T CTOR (NIL) -8 NIL NIL NIL) (-186 321720 321942 322043 "CTORKIND" 322130 T CTORKIND (NIL) -8 NIL NIL NIL) (-185 321011 321327 321355 "CTORCAT" 321537 T CTORCAT (NIL) -9 NIL 321650 NIL) (-184 320609 320720 320879 "CTORCAT-" 320884 NIL CTORCAT- (NIL T) -8 NIL NIL NIL) (-183 320071 320283 320391 "CTORCALL" 320533 NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-182 319445 319544 319697 "CSTTOOLS" 319968 NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-181 315244 315901 316659 "CRFP" 318757 NIL CRFP (NIL T T) -7 NIL NIL NIL) (-180 314719 314965 315057 "CRCEAST" 315172 T CRCEAST (NIL) -8 NIL NIL NIL) (-179 313766 313951 314179 "CRAPACK" 314523 NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-178 313150 313251 313455 "CPMATCH" 313642 NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-177 312875 312903 313009 "CPIMA" 313116 NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-176 309223 309895 310614 "COORDSYS" 312210 NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-175 308635 308756 308898 "CONTOUR" 309101 T CONTOUR (NIL) -8 NIL NIL NIL) (-174 304526 306638 307130 "CONTFRAC" 308175 NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-173 304406 304427 304455 "CONDUIT" 304492 T CONDUIT (NIL) -9 NIL NIL NIL) (-172 303494 304048 304076 "COMRING" 304081 T COMRING (NIL) -9 NIL 304133 NIL) (-171 302548 302852 303036 "COMPPROP" 303330 T COMPPROP (NIL) -8 NIL NIL NIL) (-170 302209 302244 302372 "COMPLPAT" 302507 NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-169 292500 302018 302127 "COMPLEX" 302132 NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-168 292136 292193 292300 "COMPLEX2" 292437 NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-167 291854 291889 291987 "COMPFACT" 292095 NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-166 275934 285928 285968 "COMPCAT" 286972 NIL COMPCAT (NIL T) -9 NIL 288320 NIL) (-165 265446 268373 272000 "COMPCAT-" 272356 NIL COMPCAT- (NIL T T) -8 NIL NIL NIL) (-164 265175 265203 265306 "COMMUPC" 265412 NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-163 264969 265003 265062 "COMMONOP" 265136 T COMMONOP (NIL) -7 NIL NIL NIL) (-162 264525 264720 264807 "COMM" 264902 T COMM (NIL) -8 NIL NIL NIL) (-161 264101 264329 264404 "COMMAAST" 264470 T COMMAAST (NIL) -8 NIL NIL NIL) (-160 263350 263544 263572 "COMBOPC" 263910 T COMBOPC (NIL) -9 NIL 264085 NIL) (-159 262246 262456 262698 "COMBINAT" 263140 NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-158 258703 259277 259904 "COMBF" 261668 NIL COMBF (NIL T T) -7 NIL NIL NIL) (-157 257461 257819 258054 "COLOR" 258488 T COLOR (NIL) -8 NIL NIL NIL) (-156 256937 257182 257274 "COLONAST" 257389 T COLONAST (NIL) -8 NIL NIL NIL) (-155 256577 256624 256749 "CMPLXRT" 256884 NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-154 256025 256277 256376 "CLLCTAST" 256498 T CLLCTAST (NIL) -8 NIL NIL NIL) (-153 251523 252555 253635 "CLIP" 254965 T CLIP (NIL) -7 NIL NIL NIL) (-152 249869 250629 250868 "CLIF" 251350 NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-151 246044 248015 248056 "CLAGG" 248985 NIL CLAGG (NIL T) -9 NIL 249521 NIL) (-150 244466 244923 245506 "CLAGG-" 245511 NIL CLAGG- (NIL T T) -8 NIL NIL NIL) (-149 244010 244095 244235 "CINTSLPE" 244375 NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-148 241511 241982 242530 "CHVAR" 243538 NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-147 240685 241239 241267 "CHARZ" 241272 T CHARZ (NIL) -9 NIL 241287 NIL) (-146 240439 240479 240557 "CHARPOL" 240639 NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-145 239497 240084 240112 "CHARNZ" 240159 T CHARNZ (NIL) -9 NIL 240215 NIL) (-144 237403 238151 238504 "CHAR" 239164 T CHAR (NIL) -8 NIL NIL NIL) (-143 237129 237190 237218 "CFCAT" 237329 T CFCAT (NIL) -9 NIL NIL NIL) (-142 236374 236485 236667 "CDEN" 237013 NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-141 232339 235527 235807 "CCLASS" 236114 T CCLASS (NIL) -8 NIL NIL NIL) (-140 231590 231747 231924 "CATEGORY" 232182 T -10 (NIL) -8 NIL NIL NIL) (-139 231163 231509 231557 "CATCTOR" 231562 T CATCTOR (NIL) -8 NIL NIL NIL) (-138 230614 230866 230964 "CATAST" 231085 T CATAST (NIL) -8 NIL NIL NIL) (-137 230090 230335 230427 "CASEAST" 230542 T CASEAST (NIL) -8 NIL NIL NIL) (-136 225099 226119 226872 "CARTEN" 229393 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-135 224207 224355 224576 "CARTEN2" 224946 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-134 222523 223357 223614 "CARD" 223970 T CARD (NIL) -8 NIL NIL NIL) (-133 222099 222327 222402 "CAPSLAST" 222468 T CAPSLAST (NIL) -8 NIL NIL NIL) (-132 221603 221811 221839 "CACHSET" 221971 T CACHSET (NIL) -9 NIL 222049 NIL) (-131 221073 221395 221423 "CABMON" 221473 T CABMON (NIL) -9 NIL 221529 NIL) (-130 220546 220777 220887 "BYTEORD" 220983 T BYTEORD (NIL) -8 NIL NIL NIL) (-129 219529 220080 220222 "BYTE" 220385 T BYTE (NIL) -8 NIL NIL 220507) (-128 214879 219034 219206 "BYTEBUF" 219377 T BYTEBUF (NIL) -8 NIL NIL NIL) (-127 212388 214571 214678 "BTREE" 214805 NIL BTREE (NIL T) -8 NIL NIL NIL) (-126 209837 212036 212158 "BTOURN" 212298 NIL BTOURN (NIL T) -8 NIL NIL NIL) (-125 207207 209307 209348 "BTCAT" 209416 NIL BTCAT (NIL T) -9 NIL 209493 NIL) (-124 206874 206954 207103 "BTCAT-" 207108 NIL BTCAT- (NIL T T) -8 NIL NIL NIL) (-123 202139 206017 206045 "BTAGG" 206267 T BTAGG (NIL) -9 NIL 206428 NIL) (-122 201629 201754 201960 "BTAGG-" 201965 NIL BTAGG- (NIL T) -8 NIL NIL NIL) (-121 198624 200907 201122 "BSTREE" 201446 NIL BSTREE (NIL T) -8 NIL NIL NIL) (-120 197762 197888 198072 "BRILL" 198480 NIL BRILL (NIL T) -7 NIL NIL NIL) (-119 194414 196488 196529 "BRAGG" 197178 NIL BRAGG (NIL T) -9 NIL 197436 NIL) (-118 192943 193349 193904 "BRAGG-" 193909 NIL BRAGG- (NIL T T) -8 NIL NIL NIL) (-117 186172 192289 192473 "BPADICRT" 192791 NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-116 184487 186109 186154 "BPADIC" 186159 NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-115 184185 184215 184329 "BOUNDZRO" 184451 NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-114 179413 180611 181523 "BOP" 183293 T BOP (NIL) -8 NIL NIL NIL) (-113 177194 177598 178073 "BOP1" 178971 NIL BOP1 (NIL T) -7 NIL NIL NIL) (-112 176019 176768 176917 "BOOLEAN" 177065 T BOOLEAN (NIL) -8 NIL NIL NIL) (-111 175298 175702 175756 "BMODULE" 175761 NIL BMODULE (NIL T T) -9 NIL 175826 NIL) (-110 171099 175096 175169 "BITS" 175245 T BITS (NIL) -8 NIL NIL NIL) (-109 170520 170639 170779 "BINDING" 170979 T BINDING (NIL) -8 NIL NIL NIL) (-108 164527 170117 170265 "BINARY" 170392 T BINARY (NIL) -8 NIL NIL NIL) (-107 162307 163782 163823 "BGAGG" 164083 NIL BGAGG (NIL T) -9 NIL 164220 NIL) (-106 162138 162170 162261 "BGAGG-" 162266 NIL BGAGG- (NIL T T) -8 NIL NIL NIL) (-105 161209 161522 161727 "BFUNCT" 161953 T BFUNCT (NIL) -8 NIL NIL NIL) (-104 159899 160077 160365 "BEZOUT" 161033 NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-103 156368 158751 159081 "BBTREE" 159602 NIL BBTREE (NIL T) -8 NIL NIL NIL) (-102 156102 156155 156183 "BASTYPE" 156302 T BASTYPE (NIL) -9 NIL NIL NIL) (-101 155954 155983 156056 "BASTYPE-" 156061 NIL BASTYPE- (NIL T) -8 NIL NIL NIL) (-100 155388 155464 155616 "BALFACT" 155865 NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-99 154244 154803 154989 "AUTOMOR" 155233 NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-98 153970 153975 154001 "ATTREG" 154006 T ATTREG (NIL) -9 NIL NIL NIL) (-97 152222 152667 153019 "ATTRBUT" 153636 T ATTRBUT (NIL) -8 NIL NIL NIL) (-96 151830 152050 152116 "ATTRAST" 152174 T ATTRAST (NIL) -8 NIL NIL NIL) (-95 151366 151479 151505 "ATRIG" 151706 T ATRIG (NIL) -9 NIL NIL NIL) (-94 151175 151216 151303 "ATRIG-" 151308 NIL ATRIG- (NIL T) -8 NIL NIL NIL) (-93 150820 151006 151032 "ASTCAT" 151037 T ASTCAT (NIL) -9 NIL 151067 NIL) (-92 150547 150606 150725 "ASTCAT-" 150730 NIL ASTCAT- (NIL T) -8 NIL NIL NIL) (-91 148696 150323 150411 "ASTACK" 150490 NIL ASTACK (NIL T) -8 NIL NIL NIL) (-90 147201 147498 147863 "ASSOCEQ" 148378 NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-89 146233 146860 146984 "ASP9" 147108 NIL ASP9 (NIL NIL) -8 NIL NIL NIL) (-88 145996 146181 146220 "ASP8" 146225 NIL ASP8 (NIL NIL) -8 NIL NIL NIL) (-87 144864 145601 145743 "ASP80" 145885 NIL ASP80 (NIL NIL) -8 NIL NIL NIL) (-86 143762 144499 144631 "ASP7" 144763 NIL ASP7 (NIL NIL) -8 NIL NIL NIL) (-85 142716 143439 143557 "ASP78" 143675 NIL ASP78 (NIL NIL) -8 NIL NIL NIL) (-84 141685 142396 142513 "ASP77" 142630 NIL ASP77 (NIL NIL) -8 NIL NIL NIL) (-83 140597 141323 141454 "ASP74" 141585 NIL ASP74 (NIL NIL) -8 NIL NIL NIL) (-82 139497 140232 140364 "ASP73" 140496 NIL ASP73 (NIL NIL) -8 NIL NIL NIL) (-81 138601 139323 139423 "ASP6" 139428 NIL ASP6 (NIL NIL) -8 NIL NIL NIL) (-80 137545 138278 138396 "ASP55" 138514 NIL ASP55 (NIL NIL) -8 NIL NIL NIL) (-79 136494 137219 137338 "ASP50" 137457 NIL ASP50 (NIL NIL) -8 NIL NIL NIL) (-78 135582 136195 136305 "ASP4" 136415 NIL ASP4 (NIL NIL) -8 NIL NIL NIL) (-77 134670 135283 135393 "ASP49" 135503 NIL ASP49 (NIL NIL) -8 NIL NIL NIL) (-76 133454 134209 134377 "ASP42" 134559 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-75 132230 132987 133157 "ASP41" 133341 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-74 131180 131907 132025 "ASP35" 132143 NIL ASP35 (NIL NIL) -8 NIL NIL NIL) (-73 130945 131128 131167 "ASP34" 131172 NIL ASP34 (NIL NIL) -8 NIL NIL NIL) (-72 130682 130749 130825 "ASP33" 130900 NIL ASP33 (NIL NIL) -8 NIL NIL NIL) (-71 129575 130317 130449 "ASP31" 130581 NIL ASP31 (NIL NIL) -8 NIL NIL NIL) (-70 129340 129523 129562 "ASP30" 129567 NIL ASP30 (NIL NIL) -8 NIL NIL NIL) (-69 129075 129144 129220 "ASP29" 129295 NIL ASP29 (NIL NIL) -8 NIL NIL NIL) (-68 128840 129023 129062 "ASP28" 129067 NIL ASP28 (NIL NIL) -8 NIL NIL NIL) (-67 128605 128788 128827 "ASP27" 128832 NIL ASP27 (NIL NIL) -8 NIL NIL NIL) (-66 127689 128303 128414 "ASP24" 128525 NIL ASP24 (NIL NIL) -8 NIL NIL NIL) (-65 126765 127491 127603 "ASP20" 127608 NIL ASP20 (NIL NIL) -8 NIL NIL NIL) (-64 125853 126466 126576 "ASP1" 126686 NIL ASP1 (NIL NIL) -8 NIL NIL NIL) (-63 124795 125527 125646 "ASP19" 125765 NIL ASP19 (NIL NIL) -8 NIL NIL NIL) (-62 124532 124599 124675 "ASP12" 124750 NIL ASP12 (NIL NIL) -8 NIL NIL NIL) (-61 123384 124131 124275 "ASP10" 124419 NIL ASP10 (NIL NIL) -8 NIL NIL NIL) (-60 121235 123228 123319 "ARRAY2" 123324 NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 117000 120883 120997 "ARRAY1" 121152 NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-58 116032 116205 116426 "ARRAY12" 116823 NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-57 110344 112262 112337 "ARR2CAT" 114967 NIL ARR2CAT (NIL T T T) -9 NIL 115725 NIL) (-56 107778 108522 109476 "ARR2CAT-" 109481 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL NIL) (-55 107095 107405 107530 "ARITY" 107671 T ARITY (NIL) -8 NIL NIL NIL) (-54 105871 106023 106322 "APPRULE" 106931 NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 105522 105570 105689 "APPLYORE" 105817 NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 104876 105115 105235 "ANY" 105420 T ANY (NIL) -8 NIL NIL NIL) (-51 104154 104277 104434 "ANY1" 104750 NIL ANY1 (NIL T) -7 NIL NIL NIL) (-50 101684 102591 102918 "ANTISYM" 103878 NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 101176 101391 101487 "ANON" 101606 T ANON (NIL) -8 NIL NIL NIL) (-48 95425 99715 100169 "AN" 100740 T AN (NIL) -8 NIL NIL NIL) (-47 91323 92711 92762 "AMR" 93510 NIL AMR (NIL T T) -9 NIL 94110 NIL) (-46 90435 90656 91019 "AMR-" 91024 NIL AMR- (NIL T T T) -8 NIL NIL NIL) (-45 74874 90352 90413 "ALIST" 90418 NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 71676 74468 74637 "ALGSC" 74792 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 68231 68786 69393 "ALGPKG" 71116 NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 67508 67609 67793 "ALGMFACT" 68117 NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 63543 64122 64716 "ALGMANIP" 67092 NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 54913 63169 63319 "ALGFF" 63476 NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 54109 54240 54419 "ALGFACT" 54771 NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 53050 53650 53688 "ALGEBRA" 53693 NIL ALGEBRA (NIL T) -9 NIL 53734 NIL) (-37 52768 52827 52959 "ALGEBRA-" 52964 NIL ALGEBRA- (NIL T T) -8 NIL NIL NIL) (-36 34861 50770 50822 "ALAGG" 50958 NIL ALAGG (NIL T T) -9 NIL 51119 NIL) (-35 34397 34510 34536 "AHYP" 34737 T AHYP (NIL) -9 NIL NIL NIL) (-34 33328 33576 33602 "AGG" 34101 T AGG (NIL) -9 NIL 34380 NIL) (-33 32762 32924 33138 "AGG-" 33143 NIL AGG- (NIL T) -8 NIL NIL NIL) (-32 30568 30991 31396 "AF" 32404 NIL AF (NIL T T) -7 NIL NIL NIL) (-31 30048 30293 30383 "ADDAST" 30496 T ADDAST (NIL) -8 NIL NIL NIL) (-30 29316 29575 29731 "ACPLOT" 29910 T ACPLOT (NIL) -8 NIL NIL NIL) (-29 18639 26443 26481 "ACFS" 27088 NIL ACFS (NIL T) -9 NIL 27327 NIL) (-28 16666 17156 17918 "ACFS-" 17923 NIL ACFS- (NIL T T) -8 NIL NIL NIL) (-27 12784 14713 14739 "ACF" 15618 T ACF (NIL) -9 NIL 16031 NIL) (-26 11488 11822 12315 "ACF-" 12320 NIL ACF- (NIL T) -8 NIL NIL NIL) (-25 11060 11255 11281 "ABELSG" 11373 T ABELSG (NIL) -9 NIL 11438 NIL) (-24 10927 10952 11018 "ABELSG-" 11023 NIL ABELSG- (NIL T) -8 NIL NIL NIL) (-23 10270 10557 10583 "ABELMON" 10753 T ABELMON (NIL) -9 NIL 10865 NIL) (-22 9934 10018 10156 "ABELMON-" 10161 NIL ABELMON- (NIL T) -8 NIL NIL NIL) (-21 9282 9654 9680 "ABELGRP" 9752 T ABELGRP (NIL) -9 NIL 9827 NIL) (-20 8745 8874 9090 "ABELGRP-" 9095 NIL ABELGRP- (NIL T) -8 NIL NIL NIL) (-19 4334 8084 8123 "A1AGG" 8128 NIL A1AGG (NIL T) -9 NIL 8168 NIL) (-18 30 1252 2814 "A1AGG-" 2819 NIL A1AGG- (NIL T T) -8 NIL NIL NIL)) \ No newline at end of file
diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase
index b0ae6b74..10d8326a 100644
--- a/src/share/algebra/operation.daase
+++ b/src/share/algebra/operation.daase
@@ -1,155 +1,73 @@
-(731666 . 3466723536)
-(((*1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1271))))
- ((*1 *2 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1271)))))
-(((*1 *1 *2) (-12 (-5 *1 (-1028 *2)) (-4 *2 (-1218)))))
-(((*1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1218)) (-4 *2 (-851))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-375 *3)) (-4 *3 (-1218))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-645 (-907 *3))) (-5 *1 (-907 *3)) (-4 *3 (-1102))))
- ((*1 *2 *1 *3)
- (-12 (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *3 (-851))
- (-4 *6 (-1067 *4 *5 *3))
- (-5 *2 (-2 (|:| |under| *1) (|:| -2780 *1) (|:| |upper| *1)))
- (-4 *1 (-978 *4 *5 *3 *6)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-559)) (-5 *2 (-772)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-420 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-645 *2)) (-4 *2 (-951 *4 *5 *6)) (-4 *4 (-308))
- (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-450 *4 *5 *6 *2)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1178))
- (-4 *4 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567))))
- (-5 *1 (-429 *4 *2)) (-4 *2 (-13 (-1203) (-29 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-1178)) (-4 *5 (-147))
- (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-317 *5))
- (-5 *1 (-591 *5)))))
+(732021 . 3467417892)
+(((*1 *2 *3 *4 *5 *6 *7 *6)
+ (|partial| -12
+ (-5 *5
+ (-2 (|:| |contp| *3)
+ (|:| -2158 (-645 (-2 (|:| |irr| *10) (|:| -2298 (-567)))))))
+ (-5 *6 (-645 *3)) (-5 *7 (-645 *8)) (-4 *8 (-851)) (-4 *3 (-308))
+ (-4 *10 (-951 *3 *9 *8)) (-4 *9 (-794))
+ (-5 *2
+ (-2 (|:| |polfac| (-645 *10)) (|:| |correct| *3)
+ (|:| |corrfact| (-645 (-1175 *3)))))
+ (-5 *1 (-626 *8 *9 *3 *10)) (-5 *4 (-645 (-1175 *3))))))
(((*1 *2 *2)
- (-12 (-5 *2 (-645 *3)) (-4 *3 (-1244 (-567))) (-5 *1 (-489 *3)))))
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1004))))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1274)) (-5 *1 (-1271)))))
+(((*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-448 *3)) (-4 *3 (-1051)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-567)) (-5 *2 (-645 (-645 (-225)))) (-5 *1 (-1214)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3)
- (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225))
- (-5 *2 (-1037)) (-5 *1 (-753)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-421 *2)) (-4 *2 (-559)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-923)) (-4 *1 (-238 *3 *4)) (-4 *4 (-1051))
- (-4 *4 (-1218))))
- ((*1 *1 *2)
- (-12 (-14 *3 (-645 (-1178))) (-4 *4 (-172))
- (-4 *5 (-238 (-2414 *3) (-772)))
- (-14 *6
- (-1 (-112) (-2 (|:| -3768 *2) (|:| -3458 *5))
- (-2 (|:| -3768 *2) (|:| -3458 *5))))
- (-5 *1 (-464 *3 *4 *2 *5 *6 *7)) (-4 *2 (-851))
- (-4 *7 (-951 *4 *5 (-865 *3)))))
- ((*1 *2 *2) (-12 (-5 *2 (-945 (-225))) (-5 *1 (-1214)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567))))))
-(((*1 *2)
- (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-420 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-851))
- (-4 *5 (-267 *4)) (-4 *6 (-794)) (-5 *2 (-772))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1051)) (-4 *3 (-851))
- (-4 *5 (-267 *3)) (-4 *6 (-794)) (-5 *2 (-772))))
- ((*1 *2 *1) (-12 (-4 *1 (-267 *3)) (-4 *3 (-851)) (-5 *2 (-772))))
- ((*1 *2 *1) (-12 (-4 *1 (-351)) (-5 *2 (-923))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-338 *4 *5 *6 *7)) (-4 *4 (-13 (-370) (-365)))
- (-4 *5 (-1244 *4)) (-4 *6 (-1244 (-410 *5))) (-4 *7 (-344 *4 *5 *6))
- (-5 *2 (-772)) (-5 *1 (-395 *4 *5 *6 *7))))
- ((*1 *2 *1) (-12 (-4 *1 (-405)) (-5 *2 (-834 (-923)))))
- ((*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-567))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-598 *3)) (-4 *3 (-1051))))
- ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-598 *3)) (-4 *3 (-1051))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-559)) (-5 *2 (-567)) (-5 *1 (-624 *3 *4))
- (-4 *4 (-1244 *3))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *2 (-772)) (-4 *1 (-741 *4 *3)) (-4 *4 (-1051))
- (-4 *3 (-851))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-741 *4 *3)) (-4 *4 (-1051)) (-4 *3 (-851))
- (-5 *2 (-772))))
- ((*1 *2 *1) (-12 (-4 *1 (-870 *3)) (-5 *2 (-772))))
- ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-906 *3)) (-4 *3 (-1102))))
- ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-907 *3)) (-4 *3 (-1102))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-338 *5 *6 *7 *8)) (-4 *5 (-433 *4))
- (-4 *6 (-1244 *5)) (-4 *7 (-1244 (-410 *6)))
- (-4 *8 (-344 *5 *6 *7)) (-4 *4 (-13 (-559) (-1040 (-567))))
- (-5 *2 (-772)) (-5 *1 (-913 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-338 (-410 (-567)) *4 *5 *6))
- (-4 *4 (-1244 (-410 (-567)))) (-4 *5 (-1244 (-410 *4)))
- (-4 *6 (-344 (-410 (-567)) *4 *5)) (-5 *2 (-772))
- (-5 *1 (-914 *4 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-338 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-365))
- (-4 *7 (-1244 *6)) (-4 *4 (-1244 (-410 *7))) (-4 *8 (-344 *6 *7 *4))
- (-4 *9 (-13 (-370) (-365))) (-5 *2 (-772))
- (-5 *1 (-1020 *6 *7 *4 *8 *9))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1244 *3)) (-4 *3 (-1051)) (-4 *3 (-559))
- (-5 *2 (-772))))
- ((*1 *2 *1 *2)
- (-12 (-4 *1 (-1246 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-793))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1246 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-793)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1273)) (-5 *1 (-1181)))))
+ (-12 (-4 *4 (-851)) (-5 *2 (-1191 (-645 *4))) (-5 *1 (-1190 *4))
+ (-5 *3 (-645 *4)))))
+(((*1 *2 *2 *3 *4 *4)
+ (-12 (-5 *4 (-567)) (-4 *3 (-172)) (-4 *5 (-375 *3))
+ (-4 *6 (-375 *3)) (-5 *1 (-689 *3 *5 *6 *2))
+ (-4 *2 (-688 *3 *5 *6)))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-1161)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851))
+ (-4 *4 (-1067 *6 *7 *8)) (-5 *2 (-1274))
+ (-5 *1 (-777 *6 *7 *8 *4 *5)) (-4 *5 (-1073 *6 *7 *8 *4)))))
(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1174 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))))
-(((*1 *1 *1) (-4 *1 (-559))))
-(((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-144)))))
-(((*1 *2) (-12 (-5 *2 (-1135 (-225))) (-5 *1 (-1201)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1160)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
- (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-1273))
- (-5 *1 (-1074 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1160)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
- (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-1273))
- (-5 *1 (-1110 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7)))))
+ (-12 (-4 *3 (-559)) (-4 *3 (-172)) (-4 *4 (-375 *3))
+ (-4 *5 (-375 *3)) (-5 *1 (-689 *3 *4 *5 *2))
+ (-4 *2 (-688 *3 *4 *5)))))
+(((*1 *1 *1 *1)
+ (|partial| -12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))))
+(((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *4 (-1 (-3 (-567) "failed") *5)) (-4 *5 (-1051))
+ (-5 *2 (-567)) (-5 *1 (-546 *5 *3)) (-4 *3 (-1245 *5))))
+ ((*1 *2 *3 *4 *2 *5)
+ (|partial| -12 (-5 *5 (-1 (-3 (-567) "failed") *4)) (-4 *4 (-1051))
+ (-5 *2 (-567)) (-5 *1 (-546 *4 *3)) (-4 *3 (-1245 *4))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-1 (-3 (-567) "failed") *4)) (-4 *4 (-1051))
+ (-5 *2 (-567)) (-5 *1 (-546 *4 *3)) (-4 *3 (-1245 *4)))))
+(((*1 *2 *1 *2)
+ (-12 (|has| *1 (-6 -4423)) (-4 *1 (-1012 *2)) (-4 *2 (-1219)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1244 *5)) (-4 *5 (-365))
- (-4 *7 (-1244 (-410 *6)))
- (-5 *2 (-2 (|:| |answer| *3) (|:| -1382 *3)))
- (-5 *1 (-565 *5 *6 *7 *3)) (-4 *3 (-344 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1244 *5)) (-4 *5 (-365))
- (-5 *2
- (-2 (|:| |answer| (-410 *6)) (|:| -1382 (-410 *6))
- (|:| |specpart| (-410 *6)) (|:| |polypart| *6)))
- (-5 *1 (-566 *5 *6)) (-5 *3 (-410 *6)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1180 (-410 (-567)))) (-5 *2 (-410 (-567)))
- (-5 *1 (-190)))))
-(((*1 *2 *3 *2)
- (-12 (-4 *2 (-13 (-365) (-849))) (-5 *1 (-181 *2 *3))
- (-4 *3 (-1244 (-169 *2)))))
+ (-12 (-5 *3 (-645 *7)) (-4 *7 (-851)) (-4 *5 (-911)) (-4 *6 (-794))
+ (-4 *8 (-951 *5 *6 *7)) (-5 *2 (-421 (-1175 *8)))
+ (-5 *1 (-908 *5 *6 *7 *8)) (-5 *4 (-1175 *8))))
((*1 *2 *3)
- (-12 (-4 *2 (-13 (-365) (-849))) (-5 *1 (-181 *2 *3))
- (-4 *3 (-1244 (-169 *2))))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-365)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4)))
- (-5 *2 (-1268 *6)) (-5 *1 (-338 *3 *4 *5 *6))
- (-4 *6 (-344 *3 *4 *5)))))
-(((*1 *1 *2 *3 *1 *3)
- (-12 (-5 *2 (-894 *4)) (-4 *4 (-1102)) (-5 *1 (-891 *4 *3))
- (-4 *3 (-1102)))))
+ (-12 (-4 *4 (-911)) (-4 *5 (-1245 *4)) (-5 *2 (-421 (-1175 *5)))
+ (-5 *1 (-909 *4 *5)) (-5 *3 (-1175 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-945 *3) (-945 *3))) (-5 *1 (-176 *3))
+ (-4 *3 (-13 (-365) (-1204) (-1004))))))
+(((*1 *2 *3 *4 *4 *5 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225))
+ (-5 *2 (-1037)) (-5 *1 (-753)))))
+(((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4))
+ (-4 *3 (-369 *4))))
+ ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-528))))
+ ((*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-1153)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-365) (-849))) (-5 *1 (-181 *3 *2))
- (-4 *2 (-1244 (-169 *3))))))
+ (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559))
+ (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-979 *3 *4 *5 *6)))))
(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-945 (-225))) (-5 *4 (-875)) (-5 *2 (-1273))
+ (-12 (-5 *3 (-945 (-225))) (-5 *4 (-875)) (-5 *2 (-1274))
(-5 *1 (-471))))
((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1051)) (-4 *1 (-982 *3))))
((*1 *2 *1)
@@ -163,310 +81,337 @@
((*1 *1 *1 *2)
(-12 (-5 *2 (-945 *3)) (-4 *1 (-1136 *3)) (-4 *3 (-1051))))
((*1 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-945 (-225))) (-5 *1 (-1214)) (-5 *3 (-225)))))
+ (-12 (-5 *2 (-945 (-225))) (-5 *1 (-1215)) (-5 *3 (-225)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-923)) (-5 *4 (-421 *6)) (-4 *6 (-1244 *5))
- (-4 *5 (-1051)) (-5 *2 (-645 *6)) (-5 *1 (-447 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1180 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))))
+ (-12 (-5 *3 (-645 *5)) (-5 *4 (-923)) (-4 *5 (-851))
+ (-5 *2 (-645 (-673 *5))) (-5 *1 (-673 *5)))))
+(((*1 *2 *3 *4 *4 *3 *5)
+ (-12 (-5 *4 (-613 *3)) (-5 *5 (-1175 *3))
+ (-4 *3 (-13 (-433 *6) (-27) (-1204)))
+ (-4 *6 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567))))
+ (-5 *2 (-588 *3)) (-5 *1 (-563 *6 *3 *7)) (-4 *7 (-1102))))
+ ((*1 *2 *3 *4 *4 *4 *3 *5)
+ (-12 (-5 *4 (-613 *3)) (-5 *5 (-410 (-1175 *3)))
+ (-4 *3 (-13 (-433 *6) (-27) (-1204)))
+ (-4 *6 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567))))
+ (-5 *2 (-588 *3)) (-5 *1 (-563 *6 *3 *7)) (-4 *7 (-1102)))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-1161)) (-5 *5 (-690 (-225)))
+ (-5 *2 (-1037)) (-5 *1 (-748)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1269 *1)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223))
+ (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1175 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-645 (-484 *4 *5))) (-5 *3 (-645 (-865 *4)))
- (-14 *4 (-645 (-1178))) (-4 *5 (-455)) (-5 *1 (-474 *4 *5 *6))
- (-4 *6 (-455)))))
-(((*1 *2 *3) (-12 (-5 *3 (-945 *2)) (-5 *1 (-984 *2)) (-4 *2 (-1051)))))
+ (-12 (-5 *3 (-613 *2)) (-4 *2 (-13 (-27) (-1204) (-433 *4)))
+ (-4 *4 (-13 (-559) (-1040 (-567)) (-640 (-567))))
+ (-5 *1 (-278 *4 *2)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-338 *5 *6 *7 *8)) (-4 *5 (-433 *4))
+ (-4 *6 (-1245 *5)) (-4 *7 (-1245 (-410 *6)))
+ (-4 *8 (-344 *5 *6 *7)) (-4 *4 (-13 (-559) (-1040 (-567))))
+ (-5 *2 (-2 (|:| -3362 (-772)) (|:| -2624 *8)))
+ (-5 *1 (-913 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-338 (-410 (-567)) *4 *5 *6))
+ (-4 *4 (-1245 (-410 (-567)))) (-4 *5 (-1245 (-410 *4)))
+ (-4 *6 (-344 (-410 (-567)) *4 *5))
+ (-5 *2 (-2 (|:| -3362 (-772)) (|:| -2624 *6)))
+ (-5 *1 (-914 *4 *5 *6)))))
(((*1 *2 *2 *3)
- (-12 (-4 *3 (-365)) (-5 *1 (-1027 *3 *2)) (-4 *2 (-657 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-365)) (-5 *2 (-2 (|:| -3845 *3) (|:| -4179 (-645 *5))))
- (-5 *1 (-1027 *5 *3)) (-5 *4 (-645 *5)) (-4 *3 (-657 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-822)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-673 *3)) (-4 *3 (-851)) (-4 *1 (-376 *3 *4))
- (-4 *4 (-172)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-308)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3))
- (-5 *1 (-1126 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))))
-(((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-690 *11)) (-5 *4 (-645 (-410 (-954 *8))))
- (-5 *5 (-772)) (-5 *6 (-1160)) (-4 *8 (-13 (-308) (-147)))
- (-4 *11 (-951 *8 *10 *9)) (-4 *9 (-13 (-851) (-615 (-1178))))
- (-4 *10 (-794))
- (-5 *2
- (-2
- (|:| |rgl|
- (-645
- (-2 (|:| |eqzro| (-645 *11)) (|:| |neqzro| (-645 *11))
- (|:| |wcond| (-645 (-954 *8)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1268 (-410 (-954 *8))))
- (|:| -2623 (-645 (-1268 (-410 (-954 *8))))))))))
- (|:| |rgsz| (-567))))
- (-5 *1 (-926 *8 *9 *10 *11)) (-5 *7 (-567)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559))
- (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-979 *3 *4 *5 *6))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-645 *7)) (-5 *3 (-112)) (-4 *7 (-1067 *4 *5 *6))
- (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851))
- (-5 *1 (-979 *4 *5 *6 *7)))))
+ (-12 (-5 *2 (-645 (-954 *4))) (-5 *3 (-645 (-1179))) (-4 *4 (-455))
+ (-5 *1 (-920 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-645 (-781 *5 (-865 *6)))) (-5 *4 (-112)) (-4 *5 (-455))
- (-14 *6 (-645 (-1178))) (-5 *2 (-645 (-1048 *5 *6)))
- (-5 *1 (-629 *5 *6)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-327 *2 *3)) (-4 *3 (-793)) (-4 *2 (-1051))
- (-4 *2 (-455))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-645 *4)) (-4 *4 (-1244 (-567))) (-5 *2 (-645 (-567)))
- (-5 *1 (-489 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-455))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-951 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794))
- (-4 *2 (-851)) (-4 *3 (-455)))))
+ (-12 (-5 *3 (-410 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1245 *5))
+ (-5 *1 (-728 *5 *2)) (-4 *5 (-365)))))
+(((*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1161)) (-5 *1 (-711)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))))
(((*1 *2 *1)
- (-12 (-14 *3 (-645 (-1178))) (-4 *4 (-172))
- (-4 *5 (-238 (-2414 *3) (-772)))
- (-14 *6
- (-1 (-112) (-2 (|:| -3768 *2) (|:| -3458 *5))
- (-2 (|:| -3768 *2) (|:| -3458 *5))))
- (-4 *2 (-851)) (-5 *1 (-464 *3 *4 *2 *5 *6 *7))
- (-4 *7 (-951 *4 *5 (-865 *3))))))
-(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4))
- (-4 *3 (-369 *4))))
- ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-772)) (-4 *5 (-559))
- (-5 *2
- (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-971 *5 *3)) (-4 *3 (-1244 *5)))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6)
- (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225))
- (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-78 FUNCTN))))
- (-5 *2 (-1037)) (-5 *1 (-749)))))
+ (|partial| -12 (-4 *3 (-13 (-1040 (-567)) (-640 (-567)) (-455)))
+ (-5 *2
+ (-2
+ (|:| |%term|
+ (-2 (|:| |%coef| (-1254 *4 *5 *6))
+ (|:| |%expon| (-320 *4 *5 *6))
+ (|:| |%expTerms|
+ (-645 (-2 (|:| |k| (-410 (-567))) (|:| |c| *4))))))
+ (|:| |%type| (-1161))))
+ (-5 *1 (-1255 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1204) (-433 *3)))
+ (-14 *5 (-1179)) (-14 *6 *4))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-645 (-645 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
+ (-5 *4 (-645 (-3 (|:| |array| (-645 *3)) (|:| |scalar| (-1179)))))
+ (-5 *6 (-645 (-1179))) (-5 *3 (-1179)) (-5 *2 (-1106))
+ (-5 *1 (-400))))
+ ((*1 *2 *3 *4 *5 *6 *3)
+ (-12 (-5 *5 (-645 (-645 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
+ (-5 *4 (-645 (-3 (|:| |array| (-645 *3)) (|:| |scalar| (-1179)))))
+ (-5 *6 (-645 (-1179))) (-5 *3 (-1179)) (-5 *2 (-1106))
+ (-5 *1 (-400))))
+ ((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *4 (-645 (-1179))) (-5 *5 (-1182)) (-5 *3 (-1179))
+ (-5 *2 (-1106)) (-5 *1 (-400)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1204))))))
+(((*1 *1 *1) (-5 *1 (-863))))
+(((*1 *1 *2) (-12 (-5 *2 (-645 (-381))) (-5 *1 (-264))))
+ ((*1 *1)
+ (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-559)) (-4 *2 (-172))))
+ ((*1 *2 *1) (-12 (-5 *1 (-421 *2)) (-4 *2 (-559)))))
(((*1 *2)
(-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4))
(-4 *3 (-369 *4))))
((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1051)) (-5 *2 (-567)) (-5 *1 (-446 *4 *3 *5))
- (-4 *3 (-1244 *4))
- (-4 *5 (-13 (-407) (-1040 *4) (-365) (-1203) (-285))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-1062)) (-4 *3 (-1203))
- (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))))
-(((*1 *2 *2 *2)
- (-12
- (-5 *2
- (-2 (|:| -2623 (-690 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-690 *3))))
- (-4 *3 (-13 (-308) (-10 -8 (-15 -2908 ((-421 $) $)))))
- (-4 *4 (-1244 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-412 *3 *4)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2774 (-783 *3)) (|:| |coef1| (-783 *3))))
- (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1051))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-559)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851))
- (-5 *2 (-2 (|:| -2774 *1) (|:| |coef1| *1)))
- (-4 *1 (-1067 *3 *4 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-820 *3)) (-4 *3 (-851)) (-5 *1 (-673 *3)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1166 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1051)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-690 (-410 (-954 (-567)))))
- (-5 *2 (-645 (-690 (-317 (-567))))) (-5 *1 (-1033))
- (-5 *3 (-317 (-567))))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-690 *3)) (-4 *3 (-1051)) (-5 *1 (-691 *3))))
- ((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-690 *3)) (-4 *3 (-1051)) (-5 *1 (-691 *3)))))
-(((*1 *2 *3 *3 *1)
- (-12 (-5 *3 (-509)) (-5 *2 (-692 (-1106))) (-5 *1 (-292)))))
-(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7)
- (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *5 (-225))
- (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-61 COEFFN))))
- (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-87 BDYVAL))))
- (-5 *2 (-1037)) (-5 *1 (-750))))
- ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8)
- (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *5 (-225))
- (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-61 COEFFN))))
- (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-87 BDYVAL))))
- (-5 *8 (-391)) (-5 *2 (-1037)) (-5 *1 (-750)))))
-(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4))
- (-4 *3 (-369 *4))))
- ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1166 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1051)))))
+ (-12 (-4 *1 (-922)) (-5 *2 (-2 (|:| -3705 (-645 *1)) (|:| -1399 *1)))
+ (-5 *3 (-645 *1)))))
+(((*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-1225))))))
+(((*1 *1) (-5 *1 (-141))) ((*1 *1 *1) (-5 *1 (-144)))
+ ((*1 *1 *1) (-4 *1 (-1146))))
(((*1 *2 *1)
- (-12 (-5 *2 (-410 (-567))) (-5 *1 (-320 *3 *4 *5)) (-4 *3 (-365))
- (-14 *4 (-1178)) (-14 *5 *3))))
-(((*1 *2 *1) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1218)))))
-(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4418)) (-4 *1 (-492 *3)) (-4 *3 (-1218))
- (-4 *3 (-1102)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-907 *4)) (-4 *4 (-1102)) (-5 *2 (-112))
- (-5 *1 (-906 *4))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-923)) (-5 *2 (-112)) (-5 *1 (-1103 *4 *5)) (-14 *4 *3)
- (-14 *5 *3))))
+ (-12 (-4 *1 (-605 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1219))
+ (-5 *2 (-645 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-557 *3)) (-4 *3 (-13 (-407) (-1203))) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-849)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1070 *4 *3)) (-4 *4 (-13 (-849) (-365)))
- (-4 *3 (-1244 *4)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567)))))))
- (-5 *2 (-645 *4)) (-5 *1 (-1130 *3 *4)) (-4 *3 (-1244 *4))))
- ((*1 *2 *3 *3 *3 *3 *3)
- (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567)))))))
- (-5 *2 (-645 *3)) (-5 *1 (-1130 *4 *3)) (-4 *4 (-1244 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1178)) (-4 *5 (-1222)) (-4 *6 (-1244 *5))
- (-4 *7 (-1244 (-410 *6))) (-5 *2 (-645 (-954 *5)))
- (-5 *1 (-343 *4 *5 *6 *7)) (-4 *4 (-344 *5 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1178)) (-4 *1 (-344 *4 *5 *6)) (-4 *4 (-1222))
- (-4 *5 (-1244 *4)) (-4 *6 (-1244 (-410 *5))) (-4 *4 (-365))
- (-5 *2 (-645 (-954 *4))))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1244 *5))
- (-4 *5 (-13 (-27) (-433 *4))) (-4 *4 (-13 (-559) (-1040 (-567))))
- (-4 *7 (-1244 (-410 *6))) (-5 *1 (-555 *4 *5 *6 *7 *2))
- (-4 *2 (-344 *5 *6 *7)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-1 (-645 *2) *2 *2 *2)) (-4 *2 (-1102))
- (-5 *1 (-103 *2))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1102)) (-5 *1 (-103 *2)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-52)) (-5 *1 (-1196)))))
-(((*1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1218)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1166 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1051)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-954 (-169 *4))) (-4 *4 (-172))
- (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-954 (-169 *5))) (-5 *4 (-923)) (-4 *5 (-172))
- (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-954 *4)) (-4 *4 (-1051))
- (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-954 *5)) (-5 *4 (-923)) (-4 *5 (-1051))
- (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-410 (-954 *4))) (-4 *4 (-559))
- (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-923)) (-4 *5 (-559))
- (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-410 (-954 (-169 *4)))) (-4 *4 (-559))
- (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-410 (-954 (-169 *5)))) (-5 *4 (-923))
- (-4 *5 (-559)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381)))
- (-5 *1 (-786 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-317 *4)) (-4 *4 (-559)) (-4 *4 (-851))
- (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-317 *5)) (-5 *4 (-923)) (-4 *5 (-559))
- (-4 *5 (-851)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381)))
- (-5 *1 (-786 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-317 (-169 *4))) (-4 *4 (-559)) (-4 *4 (-851))
- (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-317 (-169 *5))) (-5 *4 (-923)) (-4 *5 (-559))
- (-4 *5 (-851)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381)))
- (-5 *1 (-786 *5)))))
+ (|partial| -12 (-4 *1 (-1231 *3 *2)) (-4 *3 (-1051))
+ (-4 *2 (-1260 *3)))))
(((*1 *2 *3 *4 *5 *5 *2)
- (|partial| -12 (-5 *2 (-112)) (-5 *3 (-954 *6)) (-5 *4 (-1178))
+ (|partial| -12 (-5 *2 (-112)) (-5 *3 (-954 *6)) (-5 *4 (-1179))
(-5 *5 (-844 *7))
(-4 *6 (-13 (-455) (-1040 (-567)) (-640 (-567))))
- (-4 *7 (-13 (-1203) (-29 *6))) (-5 *1 (-224 *6 *7))))
+ (-4 *7 (-13 (-1204) (-29 *6))) (-5 *1 (-224 *6 *7))))
((*1 *2 *3 *4 *4 *2)
- (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1174 *6)) (-5 *4 (-844 *6))
- (-4 *6 (-13 (-1203) (-29 *5)))
+ (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1175 *6)) (-5 *4 (-844 *6))
+ (-4 *6 (-13 (-1204) (-29 *5)))
(-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567))))
(-5 *1 (-224 *5 *6)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-645 (-1204 *3))) (-5 *1 (-1204 *3)) (-4 *3 (-1102)))))
+ (-12 (-5 *2 (-645 (-1205 *3))) (-5 *1 (-1205 *3)) (-4 *3 (-1102)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-559)) (-5 *2 (-645 *3)) (-5 *1 (-971 *4 *3))
+ (-4 *3 (-1245 *4)))))
+(((*1 *1 *1) (-12 (-5 *1 (-1205 *2)) (-4 *2 (-1102)))))
+(((*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-5 *1 (-1193 *2)) (-4 *2 (-365)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))))
+(((*1 *2 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037))
+ (-5 *1 (-748)))))
+(((*1 *2)
+ (-12 (-4 *4 (-365)) (-5 *2 (-772)) (-5 *1 (-329 *3 *4))
+ (-4 *3 (-330 *4))))
+ ((*1 *2) (-12 (-4 *1 (-1288 *3)) (-4 *3 (-365)) (-5 *2 (-772)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-1183)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1214 *3)) (-4 *3 (-976)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))))
+ (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1204))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1204))))))
+(((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1182)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1122)) (-5 *2 (-112)) (-5 *1 (-822)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1051))
+ (-14 *4 (-645 (-1179)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1051) (-851)))
+ (-14 *4 (-645 (-1179))))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037))
+ (-5 *1 (-756)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112))
+ (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5))))
+ ((*1 *2 *1) (-12 (-4 *1 (-723)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-727)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-690 *5)) (-5 *4 (-1269 *5)) (-4 *5 (-365))
+ (-5 *2 (-112)) (-5 *1 (-668 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4423))))
+ (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4423)))) (-5 *2 (-112))
+ (-5 *1 (-669 *5 *6 *4 *3)) (-4 *3 (-688 *5 *6 *4)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-645 (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567))))))
+ (-5 *2 (-645 (-225))) (-5 *1 (-306)))))
+(((*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-129))))))
(((*1 *2)
- (-12 (-4 *2 (-13 (-433 *3) (-1004))) (-5 *1 (-277 *3 *2))
- (-4 *3 (-559)))))
+ (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-420 *3)))))
+(((*1 *1)
+ (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1102)) (-4 *3 (-23))
+ (-14 *4 *3))))
(((*1 *2 *3)
- (-12 (-5 *2 (-421 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1244 (-48)))))
- ((*1 *2 *3 *1)
- (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3))))
- (-5 *1 (-121 *3)) (-4 *3 (-851))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-588 *4)) (-4 *4 (-13 (-29 *3) (-1203)))
- (-4 *3 (-13 (-455) (-1040 (-567)) (-640 (-567))))
- (-5 *1 (-586 *3 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-588 (-410 (-954 *3))))
- (-4 *3 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-591 *3))))
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
+ (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225)))
+ (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225)))
+ (|:| |abserr| (-225)) (|:| |relerr| (-225))))
+ (-5 *2 (-381)) (-5 *1 (-205)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *2
+ (-645 (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567))))))
+ (-5 *1 (-1022 *3)) (-4 *3 (-1245 (-567)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1244 *5)) (-4 *5 (-365))
- (-5 *2 (-2 (|:| -4180 *3) (|:| |special| *3))) (-5 *1 (-728 *5 *3))))
+ (-12
+ (-5 *2
+ (-645 (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567))))))
+ (-5 *1 (-1022 *3)) (-4 *3 (-1245 (-567)))
+ (-5 *4 (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567)))))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1268 *5)) (-4 *5 (-365)) (-4 *5 (-1051))
- (-5 *2 (-645 (-645 (-690 *5)))) (-5 *1 (-1031 *5))
- (-5 *3 (-645 (-690 *5)))))
+ (-12
+ (-5 *2
+ (-645 (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567))))))
+ (-5 *1 (-1022 *3)) (-4 *3 (-1245 (-567))) (-5 *4 (-410 (-567)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-410 (-567)))
+ (-5 *2 (-645 (-2 (|:| -2961 *5) (|:| -2973 *5)))) (-5 *1 (-1022 *3))
+ (-4 *3 (-1245 (-567))) (-5 *4 (-2 (|:| -2961 *5) (|:| -2973 *5)))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *2
+ (-645 (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567))))))
+ (-5 *1 (-1023 *3)) (-4 *3 (-1245 (-410 (-567))))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1268 (-1268 *5))) (-4 *5 (-365)) (-4 *5 (-1051))
- (-5 *2 (-645 (-645 (-690 *5)))) (-5 *1 (-1031 *5))
- (-5 *3 (-645 (-690 *5)))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-141)) (-5 *2 (-645 *1)) (-4 *1 (-1146))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-144)) (-5 *2 (-645 *1)) (-4 *1 (-1146)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-824)) (-5 *2 (-1273)) (-5 *1 (-823)))))
-(((*1 *1) (-5 *1 (-1273))))
-(((*1 *2 *1) (-12 (-4 *1 (-675 *3)) (-4 *3 (-1218)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-945 *3) (-945 *3))) (-5 *1 (-176 *3))
- (-4 *3 (-13 (-365) (-1203) (-1004))))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5
- *7 *3 *8)
- (-12 (-5 *5 (-690 (-225))) (-5 *6 (-112)) (-5 *7 (-690 (-567)))
- (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-65 QPHESS))))
- (-5 *3 (-567)) (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-754)))))
+ (-12
+ (-5 *2
+ (-645 (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567))))))
+ (-5 *1 (-1023 *3)) (-4 *3 (-1245 (-410 (-567))))
+ (-5 *4 (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567)))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-410 (-567)))
+ (-5 *2 (-645 (-2 (|:| -2961 *4) (|:| -2973 *4)))) (-5 *1 (-1023 *3))
+ (-4 *3 (-1245 *4))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-410 (-567)))
+ (-5 *2 (-645 (-2 (|:| -2961 *5) (|:| -2973 *5)))) (-5 *1 (-1023 *3))
+ (-4 *3 (-1245 *5)) (-5 *4 (-2 (|:| -2961 *5) (|:| -2973 *5))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-645 *4)) (-4 *4 (-365)) (-5 *2 (-690 *4))
+ (-5 *1 (-815 *4 *5)) (-4 *5 (-657 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 *5)) (-5 *4 (-772)) (-4 *5 (-365))
+ (-5 *2 (-690 *5)) (-5 *1 (-815 *5 *6)) (-4 *6 (-657 *5)))))
+(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-258)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1004))))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-1159 *2)) (-4 *2 (-308)) (-5 *1 (-174 *2)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-3 (|:| |fst| (-437)) (|:| -4321 "void")))
- (-5 *1 (-440)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))))
-(((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-875))))
- ((*1 *2 *3) (-12 (-5 *3 (-945 *2)) (-5 *1 (-984 *2)) (-4 *2 (-1051)))))
-(((*1 *1) (-5 *1 (-1084))))
-(((*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-308)))))
+ (-12 (-4 *1 (-1290 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051))
+ (-5 *2 (-820 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-847)) (-5 *1 (-1292 *3 *2)) (-4 *3 (-1051)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-365)) (-5 *2 (-2 (|:| -2654 *3) (|:| -2023 *3)))
+ (-5 *1 (-767 *3 *4)) (-4 *3 (-709 *4))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-365)) (-4 *3 (-1051))
+ (-5 *2 (-2 (|:| -2654 *1) (|:| -2023 *1))) (-4 *1 (-853 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-99 *5)) (-4 *5 (-365)) (-4 *5 (-1051))
+ (-5 *2 (-2 (|:| -2654 *3) (|:| -2023 *3))) (-5 *1 (-854 *5 *3))
+ (-4 *3 (-853 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1204))))))
+(((*1 *1 *2) (-12 (-5 *2 (-317 (-169 (-381)))) (-5 *1 (-331))))
+ ((*1 *1 *2) (-12 (-5 *2 (-317 (-567))) (-5 *1 (-331))))
+ ((*1 *1 *2) (-12 (-5 *2 (-317 (-381))) (-5 *1 (-331))))
+ ((*1 *1 *2) (-12 (-5 *2 (-317 (-695))) (-5 *1 (-331))))
+ ((*1 *1 *2) (-12 (-5 *2 (-317 (-702))) (-5 *1 (-331))))
+ ((*1 *1 *2) (-12 (-5 *2 (-317 (-700))) (-5 *1 (-331))))
+ ((*1 *1) (-5 *1 (-331))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1179)) (-5 *4 (-954 (-567))) (-5 *2 (-331))
+ (-5 *1 (-333)))))
+(((*1 *2 *1) (-12 (-5 *2 (-645 (-1179))) (-5 *1 (-826)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1102))
+ (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1)))
+ (-4 *1 (-388 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-317 (-381))) (-5 *1 (-306)))))
+(((*1 *1 *1) (-4 *1 (-1146))))
+(((*1 *1) (-5 *1 (-130))))
+(((*1 *1) (-5 *1 (-1274))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-567)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1219))
+ (-4 *5 (-375 *4)) (-4 *2 (-375 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-567)) (-4 *1 (-1055 *4 *5 *6 *2 *7)) (-4 *6 (-1051))
+ (-4 *7 (-238 *4 *6)) (-4 *2 (-238 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-351)) (-5 *2 (-960 (-1175 *4))) (-5 *1 (-359 *4))
+ (-5 *3 (-1175 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *3 (-13 (-308) (-10 -8 (-15 -3597 ((-421 $) $)))))
+ (-4 *4 (-1245 *3))
+ (-5 *2
+ (-2 (|:| -2144 (-690 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-690 *3))))
+ (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-412 *3 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-567)) (-4 *4 (-1245 *3))
+ (-5 *2
+ (-2 (|:| -2144 (-690 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-690 *3))))
+ (-5 *1 (-769 *4 *5)) (-4 *5 (-412 *3 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-351)) (-4 *3 (-1245 *4)) (-4 *5 (-1245 *3))
+ (-5 *2
+ (-2 (|:| -2144 (-690 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-690 *3))))
+ (-5 *1 (-987 *4 *3 *5 *6)) (-4 *6 (-725 *3 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-351)) (-4 *3 (-1245 *4)) (-4 *5 (-1245 *3))
+ (-5 *2
+ (-2 (|:| -2144 (-690 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-690 *3))))
+ (-5 *1 (-1278 *4 *3 *5 *6)) (-4 *6 (-412 *3 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-645 (-1137))) (-5 *1 (-1092)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-331)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-365)) (-4 *3 (-1051))
+ (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1399 *1)))
+ (-4 *1 (-853 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-645 (-874 (-1184) (-772)))) (-5 *1 (-334)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))))
- (-5 *2 (-645 (-410 (-567)))) (-5 *1 (-1022 *4))
- (-4 *4 (-1244 (-567))))))
-(((*1 *2 *1) (-12 (-5 *2 (-645 (-645 (-945 (-225))))) (-5 *1 (-471)))))
+ (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225)))
+ (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))
+ (-5 *2 (-1159 (-225))) (-5 *1 (-192))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-317 (-225))) (-5 *4 (-645 (-1179)))
+ (-5 *5 (-1096 (-844 (-225)))) (-5 *2 (-1159 (-225))) (-5 *1 (-301))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1269 (-317 (-225)))) (-5 *4 (-645 (-1179)))
+ (-5 *5 (-1096 (-844 (-225)))) (-5 *2 (-1159 (-225))) (-5 *1 (-301)))))
+(((*1 *2)
+ (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3))
+ (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-772)) (-4 *4 (-351)) (-5 *1 (-216 *4 *2))
+ (-4 *2 (-1245 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1204))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1166 *3 *4)) (-14 *3 (-923))
- (-4 *4 (-1051)))))
+ (-12 (-5 *2 (-645 (-907 *3))) (-5 *1 (-906 *3)) (-4 *3 (-1102)))))
(((*1 *1 *1 *1 *1) (-4 *1 (-548))))
-(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-929)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-112)) (-5 *3 (-645 (-264))) (-5 *1 (-262))))
- ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-264))))
- ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470))))
- ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1273)) (-5 *1 (-1270)))))
+(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1161)) (-5 *1 (-192))))
+ ((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1161)) (-5 *1 (-301))))
+ ((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1161)) (-5 *1 (-306)))))
(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-114)))
((*1 *1 *1) (-5 *1 (-171))) ((*1 *1 *1) (-4 *1 (-548)))
((*1 *1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1102))))
@@ -474,320 +419,268 @@
((*1 *1 *1)
(-12 (-5 *1 (-1142 *2 *3)) (-4 *2 (-13 (-1102) (-34)))
(-4 *3 (-13 (-1102) (-34))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-559)) (-4 *4 (-994 *3)) (-5 *1 (-142 *3 *4 *2))
- (-4 *2 (-375 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-559)) (-4 *5 (-994 *4)) (-4 *2 (-375 *4))
- (-5 *1 (-506 *4 *5 *2 *3)) (-4 *3 (-375 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-690 *5)) (-4 *5 (-994 *4)) (-4 *4 (-559))
- (-5 *2 (-690 *4)) (-5 *1 (-694 *4 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-559)) (-4 *4 (-994 *3)) (-5 *1 (-1237 *3 *4 *2))
- (-4 *2 (-1244 *4)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-891 *5 *3)) (-5 *4 (-894 *5)) (-4 *5 (-1102))
- (-4 *3 (-166 *6)) (-4 (-954 *6) (-888 *5))
- (-4 *6 (-13 (-888 *5) (-172))) (-5 *1 (-178 *5 *6 *3))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *2 (-891 *4 *1)) (-5 *3 (-894 *4)) (-4 *1 (-888 *4))
- (-4 *4 (-1102))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-891 *5 *6)) (-5 *4 (-894 *5)) (-4 *5 (-1102))
- (-4 *6 (-13 (-1102) (-1040 *3))) (-4 *3 (-888 *5))
- (-5 *1 (-933 *5 *3 *6))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-891 *5 *3)) (-4 *5 (-1102))
- (-4 *3 (-13 (-433 *6) (-615 *4) (-888 *5) (-1040 (-613 $))))
- (-5 *4 (-894 *5)) (-4 *6 (-13 (-559) (-888 *5)))
- (-5 *1 (-934 *5 *6 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-891 (-567) *3)) (-5 *4 (-894 (-567))) (-4 *3 (-548))
- (-5 *1 (-935 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-891 *5 *6)) (-5 *3 (-613 *6)) (-4 *5 (-1102))
- (-4 *6 (-13 (-1102) (-1040 (-613 $)) (-615 *4) (-888 *5)))
- (-5 *4 (-894 *5)) (-5 *1 (-936 *5 *6))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-887 *5 *6 *3)) (-5 *4 (-894 *5)) (-4 *5 (-1102))
- (-4 *6 (-888 *5)) (-4 *3 (-667 *6)) (-5 *1 (-937 *5 *6 *3))))
- ((*1 *2 *3 *4 *2 *5)
- (-12 (-5 *5 (-1 (-891 *6 *3) *8 (-894 *6) (-891 *6 *3)))
- (-4 *8 (-851)) (-5 *2 (-891 *6 *3)) (-5 *4 (-894 *6))
- (-4 *6 (-1102)) (-4 *3 (-13 (-951 *9 *7 *8) (-615 *4)))
- (-4 *7 (-794)) (-4 *9 (-13 (-1051) (-888 *6)))
- (-5 *1 (-938 *6 *7 *8 *9 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-891 *5 *3)) (-4 *5 (-1102))
- (-4 *3 (-13 (-951 *8 *6 *7) (-615 *4))) (-5 *4 (-894 *5))
- (-4 *7 (-888 *5)) (-4 *6 (-794)) (-4 *7 (-851))
- (-4 *8 (-13 (-1051) (-888 *5))) (-5 *1 (-938 *5 *6 *7 *8 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-891 *5 *3)) (-4 *5 (-1102)) (-4 *3 (-994 *6))
- (-4 *6 (-13 (-559) (-888 *5) (-615 *4))) (-5 *4 (-894 *5))
- (-5 *1 (-941 *5 *6 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-891 *5 (-1178))) (-5 *3 (-1178)) (-5 *4 (-894 *5))
- (-4 *5 (-1102)) (-5 *1 (-942 *5))))
- ((*1 *2 *3 *4 *5 *2 *6)
- (-12 (-5 *4 (-645 (-894 *7))) (-5 *5 (-1 *9 (-645 *9)))
- (-5 *6 (-1 (-891 *7 *9) *9 (-894 *7) (-891 *7 *9))) (-4 *7 (-1102))
- (-4 *9 (-13 (-1051) (-615 (-894 *7)) (-1040 *8)))
- (-5 *2 (-891 *7 *9)) (-5 *3 (-645 *9)) (-4 *8 (-1051))
- (-5 *1 (-943 *7 *8 *9)))))
-(((*1 *2 *3 *3 *3 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))))
-(((*1 *2 *1) (-12 (-5 *2 (-421 *3)) (-5 *1 (-916 *3)) (-4 *3 (-308)))))
-(((*1 *2 *1) (-12 (-5 *2 (-960 (-772))) (-5 *1 (-334)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-351)) (-5 *2 (-421 (-1174 (-1174 *4))))
- (-5 *1 (-1216 *4)) (-5 *3 (-1174 (-1174 *4))))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-645 (-2 (|:| |totdeg| (-772)) (|:| -2517 *3))))
- (-5 *4 (-772)) (-4 *3 (-951 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-794))
- (-4 *7 (-851)) (-5 *1 (-452 *5 *6 *7 *3)))))
-(((*1 *1) (-5 *1 (-225))) ((*1 *1) (-5 *1 (-381))))
(((*1 *2 *3 *4)
- (-12 (-4 *4 (-365)) (-5 *2 (-645 (-1158 *4))) (-5 *1 (-286 *4 *5))
- (-5 *3 (-1158 *4)) (-4 *5 (-1259 *4)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-982 *2)) (-4 *2 (-1051))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-945 (-225))) (-5 *1 (-1214))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1266 *2)) (-4 *2 (-1218)) (-4 *2 (-1051)))))
+ (-12 (-5 *3 (-772)) (-5 *4 (-567)) (-5 *1 (-448 *2)) (-4 *2 (-1051)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1006 *3)) (-14 *3 (-567)))))
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-375 *3))
+ (-4 *5 (-375 *3)) (-5 *2 (-772))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051))
+ (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-772)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-317 *3)) (-4 *3 (-559)) (-4 *3 (-1102)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *7 (-1067 *4 *5 *6))
+ (-5 *2 (-645 (-2 (|:| -4000 *1) (|:| -3835 (-645 *7)))))
+ (-5 *3 (-645 *7)) (-4 *1 (-1212 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9)
+ (-12 (-5 *4 (-567)) (-5 *5 (-1161)) (-5 *6 (-690 (-225)))
+ (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))))
+ (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))))
+ (-5 *9 (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT))))
+ (-5 *3 (-225)) (-5 *2 (-1037)) (-5 *1 (-750)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-772)) (-5 *2 (-1 (-1159 (-954 *4)) (-1159 (-954 *4))))
+ (-5 *1 (-1277 *4)) (-4 *4 (-365)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-772)) (-4 *3 (-1051)) (-4 *1 (-688 *3 *4 *5))
+ (-4 *4 (-375 *3)) (-4 *5 (-375 *3))))
+ ((*1 *1 *2)
+ (-12 (-4 *2 (-1051)) (-4 *1 (-1125 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2))
+ (-4 *5 (-238 *3 *2)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-567)) (|has| *1 (-6 -4413)) (-4 *1 (-407))
+ (-5 *2 (-923)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-645 (-1179)))
+ (-14 *4 (-645 (-1179))) (-4 *5 (-390))))
+ ((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-645 (-1179)))
+ (-14 *4 (-645 (-1179))) (-4 *5 (-390)))))
+(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7)
+ (-12 (-5 *3 (-1161)) (-5 *5 (-690 (-225))) (-5 *6 (-225))
+ (-5 *7 (-690 (-567))) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-753)))))
+(((*1 *1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-567)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051))
+ (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))))
+(((*1 *1)
+ (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-559)) (-4 *2 (-172)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-375 *3))
+ (-4 *5 (-375 *3)) (-5 *2 (-772))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051))
+ (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-772)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1102)) (-4 *5 (-1102))
+ (-4 *6 (-1102)) (-5 *2 (-1 *6 *5)) (-5 *1 (-685 *4 *5 *6)))))
+(((*1 *2 *2 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567)))))))
+ (-5 *1 (-1130 *3 *2)) (-4 *3 (-1245 *2)))))
(((*1 *1 *1 *2)
(-12 (-5 *2 (-923)) (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370))))
((*1 *2 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-365))))
((*1 *2 *1)
- (-12 (-4 *1 (-372 *2 *3)) (-4 *3 (-1244 *2)) (-4 *2 (-172))))
+ (-12 (-4 *1 (-372 *2 *3)) (-4 *3 (-1245 *2)) (-4 *2 (-172))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1268 *4)) (-5 *3 (-923)) (-4 *4 (-351))
+ (-12 (-5 *2 (-1269 *4)) (-5 *3 (-923)) (-4 *4 (-351))
(-5 *1 (-531 *4))))
((*1 *2 *1)
(-12 (-4 *1 (-1125 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2))
(-4 *5 (-238 *3 *2)) (-4 *2 (-1051)))))
-(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10)
- (|partial| -12 (-5 *2 (-645 (-1174 *13))) (-5 *3 (-1174 *13))
- (-5 *4 (-645 *12)) (-5 *5 (-645 *10)) (-5 *6 (-645 *13))
- (-5 *7 (-645 (-645 (-2 (|:| -1922 (-772)) (|:| |pcoef| *13)))))
- (-5 *8 (-645 (-772))) (-5 *9 (-1268 (-645 (-1174 *10))))
- (-4 *12 (-851)) (-4 *10 (-308)) (-4 *13 (-951 *10 *11 *12))
- (-4 *11 (-794)) (-5 *1 (-708 *11 *12 *10 *13)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-52)) (-5 *1 (-830)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-645 (-645 (-945 (-225))))) (-5 *3 (-645 (-875)))
- (-5 *1 (-471)))))
+(((*1 *2 *3 *3 *3 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))))
+(((*1 *2 *1) (-12 (-4 *1 (-675 *3)) (-4 *3 (-1219)) (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-421 (-1174 (-567)))) (-5 *1 (-191)) (-5 *3 (-567)))))
-(((*1 *2 *3 *4 *4 *5 *6)
- (-12 (-5 *3 (-645 (-645 (-945 (-225))))) (-5 *4 (-875))
- (-5 *5 (-923)) (-5 *6 (-645 (-264))) (-5 *2 (-1269))
- (-5 *1 (-1272))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-645 (-645 (-945 (-225))))) (-5 *4 (-645 (-264)))
- (-5 *2 (-1269)) (-5 *1 (-1272)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1102)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1106)) (-5 *1 (-281)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-772)) (-5 *1 (-103 *3)) (-4 *3 (-1102)))))
+ (|partial| -12 (-5 *3 (-923))
+ (-5 *2 (-1269 (-645 (-2 (|:| -3812 *4) (|:| -3779 (-1122))))))
+ (-5 *1 (-348 *4)) (-4 *4 (-351)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1204))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-645 (-645 (-645 *4)))) (-5 *3 (-645 *4)) (-4 *4 (-851))
+ (-5 *1 (-1190 *4)))))
+(((*1 *1 *1) (-4 *1 (-559))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |pde| (-645 (-317 (-225))))
+ (|:| |constraints|
+ (-645
+ (-2 (|:| |start| (-225)) (|:| |finish| (-225))
+ (|:| |grid| (-772)) (|:| |boundaryType| (-567))
+ (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225))))))
+ (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1161))
+ (|:| |tol| (-225))))
+ (-5 *2 (-112)) (-5 *1 (-210)))))
(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-567)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1218))
+ (-12 (-5 *3 (-567)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1219))
(-4 *4 (-375 *2)) (-4 *5 (-375 *2))))
((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "right") (|has| *1 (-6 -4419)) (-4 *1 (-119 *3))
- (-4 *3 (-1218))))
+ (-12 (-5 *2 "right") (|has| *1 (-6 -4423)) (-4 *1 (-119 *3))
+ (-4 *3 (-1219))))
((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "left") (|has| *1 (-6 -4419)) (-4 *1 (-119 *3))
- (-4 *3 (-1218))))
+ (-12 (-5 *2 "left") (|has| *1 (-6 -4423)) (-4 *1 (-119 *3))
+ (-4 *3 (-1219))))
((*1 *2 *1 *3 *2)
- (-12 (|has| *1 (-6 -4419)) (-4 *1 (-289 *3 *2)) (-4 *3 (-1102))
- (-4 *2 (-1218))))
- ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1178)) (-5 *1 (-633))))
+ (-12 (|has| *1 (-6 -4423)) (-4 *1 (-289 *3 *2)) (-4 *3 (-1102))
+ (-4 *2 (-1219))))
+ ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1179)) (-5 *1 (-633))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *3 (-1235 (-567))) (|has| *1 (-6 -4419)) (-4 *1 (-652 *2))
- (-4 *2 (-1218))))
+ (-12 (-5 *3 (-1236 (-567))) (|has| *1 (-6 -4423)) (-4 *1 (-652 *2))
+ (-4 *2 (-1219))))
((*1 *1 *1 *2 *2 *1)
(-12 (-5 *2 (-645 (-567))) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051))
(-4 *4 (-375 *3)) (-4 *5 (-375 *3))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "value") (|has| *1 (-6 -4419)) (-4 *1 (-1012 *2))
- (-4 *2 (-1218))))
- ((*1 *2 *1 *2) (-12 (-5 *1 (-1028 *2)) (-4 *2 (-1218))))
+ (-12 (-5 *3 "value") (|has| *1 (-6 -4423)) (-4 *1 (-1012 *2))
+ (-4 *2 (-1219))))
+ ((*1 *2 *1 *2) (-12 (-5 *1 (-1028 *2)) (-4 *2 (-1219))))
((*1 *2 *1 *3 *2)
- (-12 (-4 *1 (-1194 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1102))))
+ (-12 (-4 *1 (-1195 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1102))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "last") (|has| *1 (-6 -4419)) (-4 *1 (-1256 *2))
- (-4 *2 (-1218))))
+ (-12 (-5 *3 "last") (|has| *1 (-6 -4423)) (-4 *1 (-1257 *2))
+ (-4 *2 (-1219))))
((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "rest") (|has| *1 (-6 -4419)) (-4 *1 (-1256 *3))
- (-4 *3 (-1218))))
+ (-12 (-5 *2 "rest") (|has| *1 (-6 -4423)) (-4 *1 (-1257 *3))
+ (-4 *3 (-1219))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "first") (|has| *1 (-6 -4419)) (-4 *1 (-1256 *2))
- (-4 *2 (-1218)))))
-(((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1218))))
+ (-12 (-5 *3 "first") (|has| *1 (-6 -4423)) (-4 *1 (-1257 *2))
+ (-4 *2 (-1219)))))
+(((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1219))))
((*1 *1 *1)
(-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794))
(-4 *4 (-851))))
- ((*1 *1 *1) (-12 (-4 *1 (-1256 *2)) (-4 *2 (-1218)))))
-(((*1 *2 *3 *3 *3)
- (|partial| -12
- (-4 *4 (-13 (-147) (-27) (-1040 (-567)) (-1040 (-410 (-567)))))
- (-4 *5 (-1244 *4)) (-5 *2 (-1174 (-410 *5))) (-5 *1 (-616 *4 *5))
- (-5 *3 (-410 *5))))
- ((*1 *2 *3 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 (-421 *6) *6)) (-4 *6 (-1244 *5))
- (-4 *5 (-13 (-147) (-27) (-1040 (-567)) (-1040 (-410 (-567)))))
- (-5 *2 (-1174 (-410 *6))) (-5 *1 (-616 *5 *6)) (-5 *3 (-410 *6)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-331)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
- (-4 *3 (-1067 *5 *6 *7))
- (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2566 *4))))
- (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1268 *5)) (-4 *5 (-793)) (-5 *2 (-112))
- (-5 *1 (-846 *4 *5)) (-14 *4 (-772)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1219)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-331)))))
+(((*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1219)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1160))
- (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-112))
- (-5 *1 (-224 *4 *5)) (-4 *5 (-13 (-1203) (-29 *4))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-559) (-147))) (-5 *1 (-540 *3 *2))
- (-4 *2 (-1259 *3))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-365) (-370) (-615 (-567)))) (-4 *4 (-1244 *3))
- (-4 *5 (-725 *3 *4)) (-5 *1 (-544 *3 *4 *5 *2)) (-4 *2 (-1259 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-365) (-370) (-615 (-567)))) (-5 *1 (-545 *3 *2))
- (-4 *2 (-1259 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-13 (-559) (-147)))
- (-5 *1 (-1154 *3)))))
+ (-12 (-4 *4 (-1051)) (-5 *2 (-567)) (-5 *1 (-446 *4 *3 *5))
+ (-4 *3 (-1245 *4))
+ (-4 *5 (-13 (-407) (-1040 *4) (-365) (-1204) (-285))))))
+(((*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-1221)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-439)))))
(((*1 *2 *1 *3)
- (-12 (-4 *1 (-905 *3)) (-4 *3 (-1102)) (-5 *2 (-1104 *3))))
- ((*1 *2 *1 *3)
- (-12 (-4 *4 (-1102)) (-5 *2 (-1104 (-645 *4))) (-5 *1 (-906 *4))
- (-5 *3 (-645 *4))))
- ((*1 *2 *1 *3)
- (-12 (-4 *4 (-1102)) (-5 *2 (-1104 (-1104 *4))) (-5 *1 (-906 *4))
- (-5 *3 (-1104 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *2 (-1104 *3)) (-5 *1 (-906 *3)) (-4 *3 (-1102)))))
-(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
- ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3))))
- ((*1 *1 *1) (-4 *1 (-1141))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-645 (-645 *8))) (-5 *3 (-645 *8))
- (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-559)) (-4 *6 (-794))
- (-4 *7 (-851)) (-5 *2 (-112)) (-5 *1 (-979 *5 *6 *7 *8)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-308)) (-4 *6 (-375 *5)) (-4 *4 (-375 *5))
+ (-12 (-5 *3 (-645 *1)) (-4 *1 (-1067 *4 *5 *6)) (-4 *4 (-1051))
+ (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1212 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1212 *4 *5 *6 *3)) (-4 *4 (-559)) (-4 *5 (-794))
+ (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-455) (-1040 (-567)))) (-4 *3 (-559))
+ (-5 *1 (-41 *3 *2)) (-4 *2 (-433 *3))
+ (-4 *2
+ (-13 (-365) (-303)
+ (-10 -8 (-15 -1447 ((-1127 *3 (-613 $)) $))
+ (-15 -1462 ((-1127 *3 (-613 $)) $))
+ (-15 -4129 ($ (-1127 *3 (-613 $))))))))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1161)) (-5 *1 (-1200)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381))
(-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2623 (-645 *4))))
- (-5 *1 (-1126 *5 *6 *4 *3)) (-4 *3 (-688 *5 *6 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-945 *2)) (-5 *1 (-984 *2)) (-4 *2 (-1051)))))
+ (-2 (|:| -3812 *4) (|:| -2069 *4) (|:| |totalpts| (-567))
+ (|:| |success| (-112))))
+ (-5 *1 (-790)) (-5 *5 (-567)))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225))
+ (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-78 FUNCTN))))
+ (-5 *2 (-1037)) (-5 *1 (-749)))))
+(((*1 *1) (-4 *1 (-351))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-772)) (-5 *4 (-567)) (-5 *1 (-448 *2)) (-4 *2 (-1051)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-645
- (-2 (|:| -1954 (-772))
- (|:| |eqns|
- (-645
- (-2 (|:| |det| *7) (|:| |rows| (-645 (-567)))
- (|:| |cols| (-645 (-567))))))
- (|:| |fgb| (-645 *7)))))
- (-4 *7 (-951 *4 *6 *5)) (-4 *4 (-13 (-308) (-147)))
- (-4 *5 (-13 (-851) (-615 (-1178)))) (-4 *6 (-794)) (-5 *2 (-772))
- (-5 *1 (-926 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-645 *6)) (-5 *4 (-645 (-1159 *7))) (-4 *6 (-851))
+ (-4 *7 (-951 *5 (-534 *6) *6)) (-4 *5 (-1051))
+ (-5 *2 (-1 (-1159 *7) *7)) (-5 *1 (-1128 *5 *6 *7)))))
+(((*1 *1 *1) (-5 *1 (-1065))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1179)) (-4 *5 (-365)) (-5 *2 (-645 (-1213 *5)))
+ (-5 *1 (-1277 *5)) (-5 *4 (-1213 *5)))))
(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-923)) (-5 *4 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1269)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1160)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
- (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-1273))
- (-5 *1 (-1074 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1160)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
- (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-1273))
- (-5 *1 (-1110 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1273)) (-5 *1 (-823)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-507 (-410 (-567)) (-240 *5 (-772)) (-865 *4)
- (-247 *4 (-410 (-567)))))
- (-14 *4 (-645 (-1178))) (-14 *5 (-772)) (-5 *2 (-112))
- (-5 *1 (-508 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1180 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567)))))
-(((*1 *1 *1 *1) (-5 *1 (-863))))
-(((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))))
+ (-12 (-5 *3 (-923)) (-5 *4 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1270)))))
+(((*1 *1 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-308)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1159 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1051))
+ (-5 *3 (-410 (-567))) (-5 *1 (-1163 *4)))))
+(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3)
+ (-12 (-5 *4 (-690 (-225))) (-5 *5 (-690 (-567))) (-5 *6 (-225))
+ (-5 *3 (-567)) (-5 *2 (-1037)) (-5 *1 (-752)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -2785 (-783 *3)) (|:| |coef2| (-783 *3))))
+ (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1051))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-559)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851))
+ (-5 *2 (-2 (|:| -2785 *1) (|:| |coef2| *1)))
+ (-4 *1 (-1067 *3 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-954 (-567))) (-5 *2 (-645 *1)) (-4 *1 (-1014))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-954 (-410 (-567)))) (-5 *2 (-645 *1)) (-4 *1 (-1014))))
- ((*1 *2 *3) (-12 (-5 *3 (-954 *1)) (-4 *1 (-1014)) (-5 *2 (-645 *1))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1174 (-567))) (-5 *2 (-645 *1)) (-4 *1 (-1014))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1174 (-410 (-567)))) (-5 *2 (-645 *1)) (-4 *1 (-1014))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1174 *1)) (-4 *1 (-1014)) (-5 *2 (-645 *1))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-849) (-365))) (-4 *3 (-1244 *4)) (-5 *2 (-645 *1))
- (-4 *1 (-1070 *4 *3)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-928)))))
+ (-12 (-5 *3 (-820 *4)) (-4 *4 (-851)) (-5 *2 (-112))
+ (-5 *1 (-673 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))))
+(((*1 *2)
+ (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-420 *3)))))
+(((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-13 (-365) (-147) (-1040 (-567))))
+ (-4 *5 (-1245 *4))
+ (-5 *2 (-2 (|:| -2872 (-410 *5)) (|:| |coeff| (-410 *5))))
+ (-5 *1 (-571 *4 *5)) (-5 *3 (-410 *5)))))
+(((*1 *2 *1 *2 *3)
+ (|partial| -12 (-5 *2 (-1161)) (-5 *3 (-567)) (-5 *1 (-1065)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-410 (-954 *4))) (-4 *4 (-308))
- (-5 *2 (-410 (-421 (-954 *4)))) (-5 *1 (-1044 *4)))))
-(((*1 *1) (-5 *1 (-824))))
-(((*1 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-532))))
- ((*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-532)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1174 *2)) (-4 *2 (-433 *4)) (-4 *4 (-559))
- (-5 *1 (-32 *4 *2)))))
+ (-12 (-5 *3 (-1179)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-703 *4 *5 *6 *7))
+ (-4 *4 (-615 (-539))) (-4 *5 (-1219)) (-4 *6 (-1219))
+ (-4 *7 (-1219)))))
+(((*1 *2 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-169 (-225)))) (-5 *2 (-1037))
+ (-5 *1 (-755)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-645 *7)) (-5 *3 (-567)) (-4 *7 (-951 *4 *5 *6))
+ (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-5 *1 (-452 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-1 (-588 *3) *3 (-1179)))
+ (-5 *6
+ (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3
+ (-1179)))
+ (-4 *3 (-285)) (-4 *3 (-630)) (-4 *3 (-1040 *4)) (-4 *3 (-433 *7))
+ (-5 *4 (-1179)) (-4 *7 (-615 (-894 (-567)))) (-4 *7 (-455))
+ (-4 *7 (-888 (-567))) (-4 *7 (-1102)) (-5 *2 (-588 *3))
+ (-5 *1 (-576 *7 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-559))
+ (-12 (-5 *2 (-1 (-945 *3) (-945 *3))) (-5 *1 (-176 *3))
+ (-4 *3 (-13 (-365) (-1204) (-1004))))))
+(((*1 *2)
+ (-12 (-5 *2 (-2 (|:| -2805 (-645 *3)) (|:| -3924 (-645 *3))))
+ (-5 *1 (-1220 *3)) (-4 *3 (-1102)))))
+(((*1 *2 *3) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-564)) (-5 *3 (-567)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-1269 (-645 *3))) (-4 *4 (-308))
+ (-5 *2 (-645 *3)) (-5 *1 (-458 *4 *3)) (-4 *3 (-1245 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863))))
+ ((*1 *1 *1 *1) (-5 *1 (-863))))
+(((*1 *2 *1) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-397)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455))
(-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112))
- (-5 *1 (-979 *4 *5 *6 *7)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1222)) (-4 *3 (-1244 *4))
- (-4 *5 (-1244 (-410 *3))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3))
- (-4 *5 (-1244 (-410 *4))) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3))
- (-4 *5 (-1244 (-410 *4))) (-5 *2 (-112)))))
-(((*1 *1 *1 *1) (-4 *1 (-548))))
+ (-5 *1 (-990 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455))
+ (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112))
+ (-5 *1 (-1109 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7)))))
+(((*1 *2 *3) (-12 (-5 *3 (-410 (-567))) (-5 *2 (-225)) (-5 *1 (-306)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-344 *4 *5 *6)) (-4 *4 (-1222))
- (-4 *5 (-1244 *4)) (-4 *6 (-1244 (-410 *5)))
- (-5 *2 (-2 (|:| |num| (-690 *5)) (|:| |den| *5))))))
-(((*1 *2) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-1271)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-611 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102))
- (-5 *2 (-112)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1244 *5)) (-4 *5 (-365))
- (-5 *2 (-2 (|:| -4180 (-421 *3)) (|:| |special| (-421 *3))))
- (-5 *1 (-728 *5 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-923))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1268 *4)) (-4 *4 (-351)) (-5 *2 (-923))
- (-5 *1 (-531 *4)))))
-(((*1 *2 *2 *2 *2 *2 *3)
- (-12 (-5 *2 (-690 *4)) (-5 *3 (-772)) (-4 *4 (-1051))
- (-5 *1 (-691 *4)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171)))))
-(((*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-906 (-567))) (-5 *1 (-919))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919)))))
-(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-258)))))
+ (-12 (-5 *3 (-1242 *5 *4)) (-4 *4 (-821)) (-14 *5 (-1179))
+ (-5 *2 (-567)) (-5 *1 (-1116 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1175 (-567))) (-5 *1 (-944)) (-5 *3 (-567)))))
(((*1 *2 *2 *2)
(-12 (-5 *2 (-645 (-613 *4))) (-4 *4 (-433 *3)) (-4 *3 (-1102))
(-5 *1 (-576 *3 *4))))
@@ -796,24 +689,43 @@
((*1 *1 *2 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1102))))
((*1 *1 *1 *2) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1102))))
((*1 *1 *1 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1102)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *2 (-1273)) (-5 *1 (-823)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-645 *2)) (-4 *2 (-1244 *4)) (-5 *1 (-542 *4 *2 *5 *6))
- (-4 *4 (-308)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-772))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2))
- (-4 *2 (-13 (-433 *3) (-1203))))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1160)) (-5 *2 (-381)) (-5 *1 (-787)))))
-(((*1 *2 *1) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-276)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
- (-12 (-5 *3 (-1160)) (-5 *4 (-567)) (-5 *5 (-690 (-169 (-225))))
- (-5 *2 (-1037)) (-5 *1 (-755)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-645 (-1205 *3))) (-5 *1 (-1205 *3)) (-4 *3 (-1102)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794))
+ (-4 *4 (-851)) (-4 *2 (-559))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794))
+ (-4 *4 (-851)) (-4 *2 (-559)))))
+(((*1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-1189)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-410 (-954 *3))) (-5 *1 (-456 *3 *4 *5 *6))
+ (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923))
+ (-14 *5 (-645 (-1179))) (-14 *6 (-1269 (-690 *3))))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-645 (-567))) (-5 *2 (-690 (-567))) (-5 *1 (-1112)))))
+(((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-645
+ (-2
+ (|:| -1809
+ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
+ (|:| |fn| (-1269 (-317 (-225))))
+ (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225)))
+ (|:| |g| (-317 (-225))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))
+ (|:| -4236
+ (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381))
+ (|:| |expense| (-381)) (|:| |accuracy| (-381))
+ (|:| |intermediateResults| (-381)))))))
+ (-5 *1 (-804)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *2 (-1274)) (-5 *1 (-823)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225)))
- (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225))
+ (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225)))
+ (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225))
(|:| |relerr| (-225))))
(-5 *2
(-2
@@ -828,10 +740,10 @@
(|:| |notEvaluated|
"End point continuity not yet evaluated")))
(|:| |singularitiesStream|
- (-3 (|:| |str| (-1158 (-225)))
+ (-3 (|:| |str| (-1159 (-225)))
(|:| |notEvaluated|
"Internal singularities not yet evaluated")))
- (|:| -1604
+ (|:| -2408
(-3 (|:| |finite| "The range is finite")
(|:| |lowerInfinite| "The bottom of range is infinite")
(|:| |upperInfinite| "The top of range is infinite")
@@ -839,377 +751,367 @@
"Both top and bottom points are infinite")
(|:| |notEvaluated| "Range not yet evaluated")))))
(-5 *1 (-562)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1268 *3)) (-4 *3 (-1244 *4)) (-4 *4 (-1222))
- (-4 *1 (-344 *4 *3 *5)) (-4 *5 (-1244 (-410 *3))))))
-(((*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1271))))
- ((*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1271)))))
-(((*1 *2 *1 *3 *3 *3 *2)
- (-12 (-5 *3 (-772)) (-5 *1 (-676 *2)) (-4 *2 (-1102)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-559)) (-5 *2 (-772)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-420 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 (-645 *5))) (-4 *5 (-1259 *4))
- (-4 *4 (-38 (-410 (-567))))
- (-5 *2 (-1 (-1158 *4) (-645 (-1158 *4)))) (-5 *1 (-1261 *4 *5)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-509)) (-5 *2 (-112)) (-5 *1 (-114)))))
+ (|partial| -12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *7 (-1067 *4 *5 *6))
+ (-5 *2 (-2 (|:| |bas| (-479 *4 *5 *6 *7)) (|:| -2270 (-645 *7))))
+ (-5 *1 (-979 *4 *5 *6 *7)) (-5 *3 (-645 *7)))))
+(((*1 *1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4422)) (-4 *1 (-492 *4))
+ (-4 *4 (-1219)) (-5 *2 (-112)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1260 *2)) (-4 *2 (-1051)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 *9)) (-4 *8 (-1067 *5 *6 *7))
- (-4 *9 (-1073 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794))
- (-4 *7 (-851)) (-5 *2 (-772)) (-5 *1 (-1071 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 *9)) (-4 *8 (-1067 *5 *6 *7))
- (-4 *9 (-1111 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794))
- (-4 *7 (-851)) (-5 *2 (-772)) (-5 *1 (-1147 *5 *6 *7 *8 *9)))))
-(((*1 *2 *1) (-12 (-5 *2 (-645 (-175))) (-5 *1 (-1087)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-433 *3) (-1004))))))
-(((*1 *1 *2) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-108))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-539))) (-5 *1 (-539)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-421 (-1174 *1))) (-5 *1 (-317 *4)) (-5 *3 (-1174 *1))
- (-4 *4 (-455)) (-4 *4 (-559)) (-4 *4 (-1102))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-911)) (-5 *2 (-421 (-1174 *1))) (-5 *3 (-1174 *1)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-405)) (-5 *2 (-772))))
- ((*1 *1 *1) (-4 *1 (-405))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-794))
- (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559))
- (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-567)) (|has| *1 (-6 -4409)) (-4 *1 (-407))
- (-5 *2 (-923)))))
-(((*1 *2 *1 *1)
- (|partial| -12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051))
- (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)))))
-(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-772)) (-5 *1 (-165 *3 *4))
- (-4 *3 (-166 *4))))
- ((*1 *2)
- (-12 (-14 *4 *2) (-4 *5 (-1218)) (-5 *2 (-772))
- (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5))))
- ((*1 *2)
- (-12 (-4 *4 (-1102)) (-5 *2 (-772)) (-5 *1 (-432 *3 *4))
- (-4 *3 (-433 *4))))
- ((*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-547 *3)) (-4 *3 (-548))))
- ((*1 *2) (-12 (-4 *1 (-764)) (-5 *2 (-772))))
- ((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-772)) (-5 *1 (-797 *3 *4))
- (-4 *3 (-798 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-559)) (-5 *2 (-772)) (-5 *1 (-993 *3 *4))
- (-4 *3 (-994 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-772)) (-5 *1 (-998 *3 *4))
- (-4 *3 (-999 *4))))
- ((*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-1013 *3)) (-4 *3 (-1014))))
- ((*1 *2) (-12 (-4 *1 (-1051)) (-5 *2 (-772))))
- ((*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-1061 *3)) (-4 *3 (-1062)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-338 *5 *6 *7 *8)) (-4 *5 (-433 *4)) (-4 *6 (-1244 *5))
- (-4 *7 (-1244 (-410 *6))) (-4 *8 (-344 *5 *6 *7))
- (-4 *4 (-13 (-559) (-1040 (-567)))) (-5 *2 (-112))
- (-5 *1 (-913 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-338 (-410 (-567)) *4 *5 *6))
- (-4 *4 (-1244 (-410 (-567)))) (-4 *5 (-1244 (-410 *4)))
- (-4 *6 (-344 (-410 (-567)) *4 *5)) (-5 *2 (-112))
- (-5 *1 (-914 *4 *5 *6)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1102)) (-5 *1 (-103 *3))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1102)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-929))
- (-5 *2
- (-2 (|:| |brans| (-645 (-645 (-945 (-225)))))
- (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))))
- (-5 *1 (-153))))
+ (-12 (-5 *4 (-1179)) (-5 *2 (-1 (-225) (-225))) (-5 *1 (-704 *3))
+ (-4 *3 (-615 (-539)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-929)) (-5 *4 (-410 (-567)))
- (-5 *2
- (-2 (|:| |brans| (-645 (-645 (-945 (-225)))))
- (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))))
- (-5 *1 (-153))))
- ((*1 *2 *3)
- (-12
- (-5 *2
- (-2 (|:| |brans| (-645 (-645 (-945 (-225)))))
- (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))))
- (-5 *1 (-153)) (-5 *3 (-645 (-945 (-225))))))
- ((*1 *2 *3)
+ (-12 (-5 *4 (-1179)) (-5 *2 (-1 (-225) (-225) (-225)))
+ (-5 *1 (-704 *3)) (-4 *3 (-615 (-539))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1219)) (-5 *1 (-1134 *4 *2))
+ (-4 *2 (-13 (-605 (-567) *4) (-10 -7 (-6 -4422) (-6 -4423))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-851)) (-4 *3 (-1219)) (-5 *1 (-1134 *3 *2))
+ (-4 *2 (-13 (-605 (-567) *3) (-10 -7 (-6 -4422) (-6 -4423)))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-158 *3 *2)) (-4 *2 (-433 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1179)) (-4 *4 (-559)) (-5 *1 (-158 *4 *2))
+ (-4 *2 (-433 *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1179))))
+ ((*1 *1 *1) (-4 *1 (-160))))
+(((*1 *2 *2)
(-12
(-5 *2
- (-2 (|:| |brans| (-645 (-645 (-945 (-225)))))
- (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))))
- (-5 *1 (-153)) (-5 *3 (-645 (-645 (-945 (-225)))))))
- ((*1 *1 *2) (-12 (-5 *2 (-645 (-1096 (-381)))) (-5 *1 (-264))))
- ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-264)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1268 *5)) (-4 *5 (-640 *4)) (-4 *4 (-559))
- (-5 *2 (-112)) (-5 *1 (-639 *4 *5)))))
+ (-645
+ (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-772)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *4 (-794)) (-4 *6 (-951 *3 *4 *5)) (-4 *3 (-455)) (-4 *5 (-851))
+ (-5 *1 (-452 *3 *4 *5 *6)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1104 *3)) (-5 *1 (-907 *3)) (-4 *3 (-370))
- (-4 *3 (-1102)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))))
-(((*1 *2 *1) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-1198)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))))
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-375 *3))
+ (-4 *5 (-375 *3)) (-5 *2 (-567))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051))
+ (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-567)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))))
+(((*1 *2 *1) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-1199)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *2 (-690 *3)) (-4 *3 (-1051)) (-5 *1 (-691 *3)))))
+(((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1))
+ (-4 *1 (-1067 *3 *4 *5)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1271)))))
+(((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-907 *3)) (-4 *3 (-1102)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *6))
+ (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-645 (-907 *3))) (-5 *1 (-906 *3)) (-4 *3 (-1102)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-559)) (-5 *2 (-645 *3)) (-5 *1 (-971 *4 *3))
- (-4 *3 (-1244 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-548)) (-5 *2 (-112)))))
-(((*1 *1 *1 *2 *1)
- (-12 (-5 *2 (-567)) (-5 *1 (-1158 *3)) (-4 *3 (-1218))))
- ((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4419)) (-4 *1 (-1256 *2)) (-4 *2 (-1218)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-851)) (-4 *5 (-794))
- (-4 *6 (-559)) (-4 *7 (-951 *6 *5 *3))
- (-5 *1 (-465 *5 *3 *6 *7 *2))
- (-4 *2
- (-13 (-1040 (-410 (-567))) (-365)
- (-10 -8 (-15 -4132 ($ *7)) (-15 -1448 (*7 $))
- (-15 -1460 (*7 $))))))))
-(((*1 *1 *1 *1)
+ (-12 (-5 *2 (-1159 (-645 (-567)))) (-5 *1 (-885))
+ (-5 *3 (-645 (-567))))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))))
+(((*1 *1 *1) (-5 *1 (-1065))))
+(((*1 *1)
(-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-567)) (-14 *3 (-772))
- (-4 *4 (-172))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1178)) (-4 *4 (-559)) (-5 *1 (-158 *4 *2))
- (-4 *2 (-433 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1094 *2)) (-4 *2 (-433 *4)) (-4 *4 (-559))
- (-5 *1 (-158 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1094 *1)) (-4 *1 (-160))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1178))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))
- ((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-772)) (-5 *1 (-1288 *3 *4)) (-4 *3 (-851))
(-4 *4 (-172)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-923)) (-4 *4 (-370)) (-4 *4 (-365)) (-5 *2 (-1174 *1))
- (-4 *1 (-330 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-1174 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-372 *3 *2)) (-4 *3 (-172)) (-4 *3 (-365))
- (-4 *2 (-1244 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1268 *4)) (-4 *4 (-351)) (-5 *2 (-1174 *4))
- (-5 *1 (-531 *4)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-1067 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794))
- (-4 *2 (-851))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794))
- (-4 *4 (-851)))))
+(((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-470))))
+ ((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-470))))
+ ((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-929)))))
+(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1178)) (-5 *2 (-539)) (-5 *1 (-538 *4))
- (-4 *4 (-1218)))))
+ (-12 (-5 *3 (-645 *2)) (-4 *2 (-1245 *4)) (-5 *1 (-542 *4 *2 *5 *6))
+ (-4 *4 (-308)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-772))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 (-225))) (-5 *4 (-772)) (-5 *2 (-690 (-225)))
+ (-5 *1 (-306)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1241 *5 *4)) (-4 *4 (-455)) (-4 *4 (-821))
- (-14 *5 (-1178)) (-5 *2 (-567)) (-5 *1 (-1116 *4 *5)))))
+ (-12 (-4 *4 (-13 (-559) (-1040 (-567)))) (-4 *5 (-433 *4))
+ (-5 *2 (-421 *3)) (-5 *1 (-438 *4 *5 *3)) (-4 *3 (-1245 *5)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-410 (-1175 (-317 *3)))) (-4 *3 (-559))
+ (-5 *1 (-1132 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-225)) (-5 *1 (-1272))))
+ ((*1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-1272)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1004))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-5 *1 (-1163 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1261 *2 *3 *4)) (-4 *2 (-1051)) (-14 *3 (-1179))
+ (-14 *4 *2))))
+(((*1 *2 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037))
+ (-5 *1 (-755)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1102)) (-4 *5 (-1102))
- (-5 *2 (-1 *5 *4)) (-5 *1 (-684 *4 *5)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-613 *3)) (-4 *3 (-13 (-433 *5) (-27) (-1203)))
- (-4 *5 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567))))
- (-5 *2 (-588 *3)) (-5 *1 (-569 *5 *3 *6)) (-4 *6 (-1102)))))
+ (-12 (-5 *3 (-1175 (-567))) (-5 *2 (-567)) (-5 *1 (-944)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-923)) (-5 *2 (-1174 *4)) (-5 *1 (-359 *4))
- (-4 *4 (-351)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-772)) (-4 *1 (-1244 *4)) (-4 *4 (-1051))
- (-5 *2 (-1268 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-945 *2)) (-5 *1 (-984 *2)) (-4 *2 (-1051)))))
+ (-12 (-4 *4 (-911)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *7 (-951 *4 *5 *6)) (-5 *2 (-421 (-1175 *7)))
+ (-5 *1 (-908 *4 *5 *6 *7)) (-5 *3 (-1175 *7))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-911)) (-4 *5 (-1245 *4)) (-5 *2 (-421 (-1175 *5)))
+ (-5 *1 (-909 *4 *5)) (-5 *3 (-1175 *5)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1159 (-225)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -2408
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))))
+ (-5 *2 (-1037)) (-5 *1 (-306)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-1051)) (-4 *2 (-688 *4 *5 *6))
+ (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1245 *4)) (-4 *5 (-375 *4))
+ (-4 *6 (-375 *4)))))
(((*1 *2 *3 *4)
(-12 (-5 *3 (-645 *5)) (-5 *4 (-645 *6)) (-4 *5 (-1102))
- (-4 *6 (-1218)) (-5 *2 (-1 *6 *5)) (-5 *1 (-642 *5 *6))))
+ (-4 *6 (-1219)) (-5 *2 (-1 *6 *5)) (-5 *1 (-642 *5 *6))))
((*1 *2 *3 *4 *5)
(-12 (-5 *3 (-645 *5)) (-5 *4 (-645 *2)) (-4 *5 (-1102))
- (-4 *2 (-1218)) (-5 *1 (-642 *5 *2))))
+ (-4 *2 (-1219)) (-5 *1 (-642 *5 *2))))
((*1 *2 *3 *4 *5)
(-12 (-5 *3 (-645 *6)) (-5 *4 (-645 *5)) (-4 *6 (-1102))
- (-4 *5 (-1218)) (-5 *2 (-1 *5 *6)) (-5 *1 (-642 *6 *5))))
+ (-4 *5 (-1219)) (-5 *2 (-1 *5 *6)) (-5 *1 (-642 *6 *5))))
((*1 *2 *3 *4 *5 *2)
(-12 (-5 *3 (-645 *5)) (-5 *4 (-645 *2)) (-4 *5 (-1102))
- (-4 *2 (-1218)) (-5 *1 (-642 *5 *2))))
+ (-4 *2 (-1219)) (-5 *1 (-642 *5 *2))))
((*1 *2 *3 *4 *2)
(-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-645 *5)) (-5 *4 (-645 *6))
- (-4 *5 (-1102)) (-4 *6 (-1218)) (-5 *1 (-642 *5 *6))))
+ (-4 *5 (-1102)) (-4 *6 (-1219)) (-5 *1 (-642 *5 *6))))
((*1 *2 *3 *4 *5 *6)
(-12 (-5 *3 (-645 *5)) (-5 *4 (-645 *2)) (-5 *6 (-1 *2 *5))
- (-4 *5 (-1102)) (-4 *2 (-1218)) (-5 *1 (-642 *5 *2))))
+ (-4 *5 (-1102)) (-4 *2 (-1219)) (-5 *1 (-642 *5 *2))))
((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (-144)) (-5 *2 (-772)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
- (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-990 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
- (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1109 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-978 *4 *5 *6 *3)) (-4 *4 (-1051)) (-4 *5 (-794))
- (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-4 *4 (-559))
- (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1158 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-923)) (-5 *2 (-1174 *4)) (-5 *1 (-359 *4))
- (-4 *4 (-351)))))
-(((*1 *2 *3 *4 *3 *4 *3)
- (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037))
- (-5 *1 (-757)))))
-(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3)
- (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225))
- (-5 *2 (-1037)) (-5 *1 (-752)))))
+(((*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-562)))))
(((*1 *2 *3 *4)
(-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
(-4 *3 (-1067 *5 *6 *7))
- (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2566 *4))))
- (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))))
+ (-5 *2 (-645 (-2 (|:| |val| (-112)) (|:| -2575 *4))))
+ (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1102)))))
+(((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-863)))))
+(((*1 *1 *1 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| -3005 (-645 (-863))) (|:| -1325 (-645 (-863)))
+ (|:| |presup| (-645 (-863))) (|:| -2875 (-645 (-863)))
+ (|:| |args| (-645 (-863)))))
+ (-5 *1 (-1179))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-645 (-863)))) (-5 *1 (-1179)))))
+(((*1 *2 *1) (-12 (-5 *2 (-421 *3)) (-5 *1 (-916 *3)) (-4 *3 (-308)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))))
+(((*1 *2 *3 *3 *4 *5 *5)
+ (-12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851))
+ (-4 *3 (-1067 *6 *7 *8))
+ (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2575 *4))))
+ (-5 *1 (-1110 *6 *7 *8 *3 *4)) (-4 *4 (-1073 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-645 (-2 (|:| |val| (-645 *8)) (|:| -2575 *9))))
+ (-5 *5 (-112)) (-4 *8 (-1067 *6 *7 *4)) (-4 *9 (-1073 *6 *7 *4 *8))
+ (-4 *6 (-455)) (-4 *7 (-794)) (-4 *4 (-851))
+ (-5 *2 (-645 (-2 (|:| |val| *8) (|:| -2575 *9))))
+ (-5 *1 (-1110 *6 *7 *4 *8 *9)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112))
- (-5 *1 (-979 *4 *5 *6 *3)) (-4 *3 (-1067 *4 *5 *6)))))
+ (-12 (-5 *3 (-645 (-2 (|:| -2717 (-1175 *6)) (|:| -3468 (-567)))))
+ (-4 *6 (-308)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-567))
+ (-5 *1 (-743 *4 *5 *6 *7)) (-4 *7 (-951 *6 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1279)))))
+(((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-144)))))
(((*1 *2 *1)
(-12 (-5 *2 (-645 *4)) (-5 *1 (-1143 *3 *4))
(-4 *3 (-13 (-1102) (-34))) (-4 *4 (-13 (-1102) (-34))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))))
-(((*1 *1 *2)
+(((*1 *2 *3)
(-12
- (-5 *2
- (-2 (|:| |mval| (-690 *3)) (|:| |invmval| (-690 *3))
- (|:| |genIdeal| (-507 *3 *4 *5 *6))))
- (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851))
- (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5)))))
-(((*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1271))))
- ((*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1271)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))))
+ (-5 *3
+ (-645
+ (-2 (|:| -1976 (-772))
+ (|:| |eqns|
+ (-645
+ (-2 (|:| |det| *7) (|:| |rows| (-645 (-567)))
+ (|:| |cols| (-645 (-567))))))
+ (|:| |fgb| (-645 *7)))))
+ (-4 *7 (-951 *4 *6 *5)) (-4 *4 (-13 (-308) (-147)))
+ (-4 *5 (-13 (-851) (-615 (-1179)))) (-4 *6 (-794)) (-5 *2 (-772))
+ (-5 *1 (-926 *4 *5 *6 *7)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-1062)) (-4 *3 (-1204))
+ (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1252 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-1229 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1158 (-1158 *4))) (-5 *2 (-1158 *4)) (-5 *1 (-1162 *4))
- (-4 *4 (-1051)))))
+ (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919))))
+ ((*1 *2) (-12 (-5 *2 (-906 (-567))) (-5 *1 (-919)))))
+(((*1 *2)
+ (-12 (-4 *3 (-1223)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4)))
+ (-5 *2 (-1269 *1)) (-4 *1 (-344 *3 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *3 (-13 (-308) (-10 -8 (-15 -3597 ((-421 $) $)))))
+ (-4 *4 (-1245 *3))
+ (-5 *2
+ (-2 (|:| -2144 (-690 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-690 *3))))
+ (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-412 *3 *4))))
+ ((*1 *2)
+ (-12 (-4 *3 (-1245 (-567)))
+ (-5 *2
+ (-2 (|:| -2144 (-690 (-567))) (|:| |basisDen| (-567))
+ (|:| |basisInv| (-690 (-567)))))
+ (-5 *1 (-769 *3 *4)) (-4 *4 (-412 (-567) *3))))
+ ((*1 *2)
+ (-12 (-4 *3 (-351)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 *4))
+ (-5 *2
+ (-2 (|:| -2144 (-690 *4)) (|:| |basisDen| *4)
+ (|:| |basisInv| (-690 *4))))
+ (-5 *1 (-987 *3 *4 *5 *6)) (-4 *6 (-725 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *3 (-351)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 *4))
+ (-5 *2
+ (-2 (|:| -2144 (-690 *4)) (|:| |basisDen| *4)
+ (|:| |basisInv| (-690 *4))))
+ (-5 *1 (-1278 *3 *4 *5 *6)) (-4 *6 (-412 *4 *5)))))
(((*1 *2 *3 *3)
(-12 (-5 *2 (-1 (-381))) (-5 *1 (-1042)) (-5 *3 (-381)))))
(((*1 *1 *2)
(-12 (-4 *3 (-1051)) (-5 *1 (-828 *2 *3)) (-4 *2 (-709 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-559))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3554 *4)))
+ (-5 *1 (-971 *4 *3)) (-4 *3 (-1245 *4)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1268 (-772))) (-5 *1 (-676 *3)) (-4 *3 (-1102)))))
+ (-12 (-5 *2 (-645 (-1184))) (-5 *1 (-183 *3)) (-4 *3 (-185)))))
+(((*1 *2 *1) (|partial| -12 (-5 *1 (-367 *2)) (-4 *2 (-1102))))
+ ((*1 *2 *1) (|partial| -12 (-5 *2 (-1161)) (-5 *1 (-1200)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-645 (-484 *4 *5))) (-14 *4 (-645 (-1178)))
- (-4 *5 (-455)) (-5 *2 (-645 (-247 *4 *5))) (-5 *1 (-632 *4 *5)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-772)) (-4 *1 (-327 *3 *4)) (-4 *3 (-1051))
- (-4 *4 (-793)) (-4 *3 (-172)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-673 *3)) (-4 *3 (-851))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-678 *3)) (-4 *3 (-851))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820 *3)) (-4 *3 (-851)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171)))))
-(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-225)) (-5 *4 (-567))
- (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G)))) (-5 *2 (-1037))
- (-5 *1 (-749)))))
-(((*1 *1 *1) (-4 *1 (-1146))))
-(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5)
- (-12 (-5 *3 (-1160)) (-5 *5 (-690 (-225))) (-5 *6 (-690 (-567)))
- (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-758)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1244 *6))
- (-4 *6 (-13 (-27) (-433 *5))) (-4 *5 (-13 (-559) (-1040 (-567))))
- (-4 *8 (-1244 (-410 *7))) (-5 *2 (-588 *3))
- (-5 *1 (-555 *5 *6 *7 *8 *3)) (-4 *3 (-344 *6 *7 *8)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-772)) (-4 *4 (-351)) (-5 *1 (-216 *4 *2))
- (-4 *2 (-1244 *4)))))
-(((*1 *1 *1) (-5 *1 (-1065))))
-(((*1 *1) (-5 *1 (-509))))
+ (-12 (-5 *3 (-645 *4)) (-4 *4 (-1051)) (-5 *2 (-1269 *4))
+ (-5 *1 (-1180 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-923)) (-5 *2 (-1269 *3)) (-5 *1 (-1180 *3))
+ (-4 *3 (-1051)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-300 *4 *5)) (-14 *4 *3)
+ (-14 *5 *3)))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1096 (-844 (-225)))) (-5 *3 (-225)) (-5 *2 (-112))
+ (-5 *1 (-306))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112))
+ (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1014)) (-5 *2 (-863)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))))
+(((*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-448 *3)) (-4 *3 (-1051)))))
+(((*1 *2 *2) (-12 (-5 *1 (-963 *2)) (-4 *2 (-548)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1102)) (-4 *4 (-13 (-1051) (-888 *3) (-615 (-894 *3))))
+ (-5 *2 (-645 (-1179))) (-5 *1 (-1078 *3 *4 *5))
+ (-4 *5 (-13 (-433 *4) (-888 *3) (-615 (-894 *3)))))))
+(((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1274)) (-5 *1 (-381)))))
(((*1 *2 *1) (-12 (-5 *2 (-186)) (-5 *1 (-138))))
((*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-186)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-645 (-1183))) (-5 *1 (-183 *3)) (-4 *3 (-185)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794))
- (-4 *4 (-851))))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-1211 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794))
- (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-645 (-1178))) (-5 *1 (-1182)))))
-(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-1174 (-954 *4))) (-5 *1 (-419 *3 *4))
- (-4 *3 (-420 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-4 *3 (-365))
- (-5 *2 (-1174 (-954 *3)))))
- ((*1 *2)
- (-12 (-5 *2 (-1174 (-410 (-954 *3)))) (-5 *1 (-456 *3 *4 *5 *6))
- (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923))
- (-14 *5 (-645 (-1178))) (-14 *6 (-1268 (-690 *3))))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1051)) (-4 *2 (-365))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-365)) (-5 *1 (-660 *4 *2))
+ (-4 *2 (-657 *4)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-498)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-132)) (-5 *3 (-772)) (-5 *2 (-1274)))))
(((*1 *2 *3 *2)
(-12 (-5 *1 (-680 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1102)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-588 *3)) (-4 *3 (-365)))))
-(((*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1218)))))
-(((*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1203))))))
-(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1270))))
- ((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1270)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8))
+ (-5 *4 (-690 (-1175 *8))) (-4 *5 (-1051)) (-4 *8 (-1051))
+ (-4 *6 (-1245 *5)) (-5 *2 (-690 *6)) (-5 *1 (-504 *5 *6 *7 *8))
+ (-4 *7 (-1245 *6)))))
+(((*1 *1 *2 *3 *3 *4 *5)
+ (-12 (-5 *2 (-645 (-645 (-945 (-225))))) (-5 *3 (-645 (-875)))
+ (-5 *4 (-645 (-923))) (-5 *5 (-645 (-264))) (-5 *1 (-471))))
+ ((*1 *1 *2 *3 *3 *4)
+ (-12 (-5 *2 (-645 (-645 (-945 (-225))))) (-5 *3 (-645 (-875)))
+ (-5 *4 (-645 (-923))) (-5 *1 (-471))))
+ ((*1 *1 *2) (-12 (-5 *2 (-645 (-645 (-945 (-225))))) (-5 *1 (-471))))
+ ((*1 *1 *1) (-5 *1 (-471))))
(((*1 *1 *2)
(-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-4 *1 (-1100 *3))))
((*1 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1102)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1166 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1051)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-911)) (-4 *5 (-794)) (-4 *6 (-851))
- (-4 *7 (-951 *4 *5 *6)) (-5 *2 (-421 (-1174 *7)))
- (-5 *1 (-908 *4 *5 *6 *7)) (-5 *3 (-1174 *7))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-911)) (-4 *5 (-1244 *4)) (-5 *2 (-421 (-1174 *5)))
- (-5 *1 (-909 *4 *5)) (-5 *3 (-1174 *5)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-645 (-645 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
- (-5 *4 (-645 (-3 (|:| |array| (-645 *3)) (|:| |scalar| (-1178)))))
- (-5 *6 (-645 (-1178))) (-5 *3 (-1178)) (-5 *2 (-1106))
- (-5 *1 (-400))))
- ((*1 *2 *3 *4 *5 *6 *3)
- (-12 (-5 *5 (-645 (-645 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
- (-5 *4 (-645 (-3 (|:| |array| (-645 *3)) (|:| |scalar| (-1178)))))
- (-5 *6 (-645 (-1178))) (-5 *3 (-1178)) (-5 *2 (-1106))
- (-5 *1 (-400))))
- ((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *4 (-645 (-1178))) (-5 *5 (-1181)) (-5 *3 (-1178))
- (-5 *2 (-1106)) (-5 *1 (-400)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1160)) (-5 *1 (-1199)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-645 *4)) (-4 *4 (-1051)) (-5 *2 (-1268 *4))
- (-5 *1 (-1179 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-923)) (-5 *2 (-1268 *3)) (-5 *1 (-1179 *3))
- (-4 *3 (-1051)))))
-(((*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548))))
- ((*1 *1 *2) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-973)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-1102)) (-5 *1 (-966 *2 *3)) (-4 *3 (-1102)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-225)) (-5 *4 (-567))
+ (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G)))) (-5 *2 (-1037))
+ (-5 *1 (-749)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-567)) (-4 *1 (-324 *2 *4)) (-4 *4 (-131))
+ (-4 *2 (-1102))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *1 (-363 *2)) (-4 *2 (-1102))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-388 *2)) (-4 *2 (-1102))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *1 (-421 *2)) (-4 *2 (-559))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-567)) (-4 *2 (-1102)) (-5 *1 (-650 *2 *4 *5))
+ (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *2)
+ (-12 (-4 *1 (-351))
+ (-5 *2 (-645 (-2 (|:| -2717 (-567)) (|:| -3468 (-567))))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-112)) (-5 *3 (-645 (-264))) (-5 *1 (-262))))
+ ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-264)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-559)) (-5 *2 (-1268 (-690 *4))) (-5 *1 (-90 *4 *5))
- (-5 *3 (-690 *4)) (-4 *5 (-657 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1218)) (-4 *1 (-151 *3))))
+ (-12 (-4 *1 (-801))
+ (-5 *3
+ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
+ (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225)))
+ (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225)))
+ (|:| |abserr| (-225)) (|:| |relerr| (-225))))
+ (-5 *2 (-1037)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-772)) (-4 *4 (-351)) (-5 *1 (-216 *4 *2))
+ (-4 *2 (-1245 *4)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-548)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-520)))))
+(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1219)) (-4 *1 (-151 *3))))
((*1 *1 *2)
(-12
- (-5 *2 (-645 (-2 (|:| -3458 (-772)) (|:| -2166 *4) (|:| |num| *4))))
- (-4 *4 (-1244 *3)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-402 *3 *4))))
+ (-5 *2 (-645 (-2 (|:| -3468 (-772)) (|:| -2185 *4) (|:| |num| *4))))
+ (-4 *4 (-1245 *3)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-402 *3 *4))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-3 (|:| |fst| (-437)) (|:| -4321 "void")))
+ (-12 (-5 *2 (-3 (|:| |fst| (-437)) (|:| -4324 "void")))
(-5 *3 (-645 (-954 (-567)))) (-5 *4 (-112)) (-5 *1 (-440))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-3 (|:| |fst| (-437)) (|:| -4321 "void")))
- (-5 *3 (-645 (-1178))) (-5 *4 (-112)) (-5 *1 (-440))))
+ (-12 (-5 *2 (-3 (|:| |fst| (-437)) (|:| -4324 "void")))
+ (-5 *3 (-645 (-1179))) (-5 *4 (-112)) (-5 *1 (-440))))
((*1 *2 *1)
- (-12 (-5 *2 (-1158 *3)) (-5 *1 (-602 *3)) (-4 *3 (-1218))))
+ (-12 (-5 *2 (-1159 *3)) (-5 *1 (-602 *3)) (-4 *3 (-1219))))
((*1 *1 *1 *1) (-12 (-4 *1 (-635 *2)) (-4 *2 (-172))))
((*1 *1 *1 *2)
(-12 (-5 *2 (-673 *3)) (-4 *3 (-851)) (-5 *1 (-665 *3 *4))
@@ -1226,24 +1128,24 @@
((*1 *1 *2 *3)
(-12 (-5 *1 (-714 *2 *3 *4)) (-4 *2 (-851)) (-4 *3 (-1102))
(-14 *4
- (-1 (-112) (-2 (|:| -3768 *2) (|:| -3458 *3))
- (-2 (|:| -3768 *2) (|:| -3458 *3))))))
+ (-1 (-112) (-2 (|:| -3779 *2) (|:| -3468 *3))
+ (-2 (|:| -3779 *2) (|:| -3468 *3))))))
((*1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-1120)) (-5 *1 (-839))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-874 *2 *3)) (-4 *2 (-1218)) (-4 *3 (-1218))))
+ (-12 (-5 *1 (-874 *2 *3)) (-4 *2 (-1219)) (-4 *3 (-1219))))
((*1 *1 *2)
- (-12 (-5 *2 (-645 (-2 (|:| -1795 (-1178)) (|:| -4237 *4))))
+ (-12 (-5 *2 (-645 (-2 (|:| -1809 (-1179)) (|:| -4236 *4))))
(-4 *4 (-1102)) (-5 *1 (-891 *3 *4)) (-4 *3 (-1102))))
((*1 *2 *3 *4)
(-12 (-5 *4 (-645 *5)) (-4 *5 (-13 (-1102) (-34)))
(-5 *2 (-645 (-1142 *3 *5))) (-5 *1 (-1142 *3 *5))
(-4 *3 (-13 (-1102) (-34)))))
((*1 *2 *3)
- (-12 (-5 *3 (-645 (-2 (|:| |val| *4) (|:| -2566 *5))))
+ (-12 (-5 *3 (-645 (-2 (|:| |val| *4) (|:| -2575 *5))))
(-4 *4 (-13 (-1102) (-34))) (-4 *5 (-13 (-1102) (-34)))
(-5 *2 (-645 (-1142 *4 *5))) (-5 *1 (-1142 *4 *5))))
((*1 *1 *2)
- (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -2566 *4)))
+ (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -2575 *4)))
(-4 *3 (-13 (-1102) (-34))) (-4 *4 (-13 (-1102) (-34)))
(-5 *1 (-1142 *3 *4))))
((*1 *1 *2 *3)
@@ -1265,162 +1167,180 @@
(-12 (-5 *2 (-1142 *3 *4)) (-4 *3 (-13 (-1102) (-34)))
(-4 *4 (-13 (-1102) (-34))) (-5 *1 (-1143 *3 *4))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-1167 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-1102)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794))
- (-4 *4 (-851)) (-4 *2 (-455)))))
+ (-12 (-5 *1 (-1168 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-1102)))))
(((*1 *2 *2 *3)
(-12 (-5 *1 (-680 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-1102)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-1051))
- (-4 *2 (-1228 *3)))))
-(((*1 *2)
- (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3))
- (-4 *5 (-1244 (-410 *4))) (-5 *2 (-690 (-410 *4))))))
-(((*1 *2 *1) (-12 (-5 *2 (-645 (-645 (-225)))) (-5 *1 (-928)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1102)) (-4 *3 (-902 *5)) (-5 *2 (-1268 *3))
- (-5 *1 (-693 *5 *3 *6 *4)) (-4 *6 (-375 *3))
- (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4418)))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1178))
- (-4 *4 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147)))
- (-5 *1 (-805 *4 *2)) (-4 *2 (-13 (-29 *4) (-1203) (-961))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-739)))))
-(((*1 *2 *1) (-12 (-4 *1 (-255 *3)) (-4 *3 (-1218)) (-5 *2 (-772))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-645 *6)) (-4 *6 (-851)) (-4 *4 (-365)) (-4 *5 (-794))
+ (-5 *2
+ (-2 (|:| |mval| (-690 *4)) (|:| |invmval| (-690 *4))
+ (|:| |genIdeal| (-507 *4 *5 *6 *7))))
+ (-5 *1 (-507 *4 *5 *6 *7)) (-4 *7 (-951 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *1 (-1214 *2)) (-4 *2 (-976)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-567)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 (-772)) (-4 *5 (-172))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-567)) (-14 *3 (-772))
+ (-4 *4 (-172))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2))
+ (-4 *4 (-375 *2))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-1051)) (-4 *1 (-688 *3 *2 *4)) (-4 *2 (-375 *3))
+ (-4 *4 (-375 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1144 *2 *3)) (-14 *2 (-772)) (-4 *3 (-1051)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1112)))))
+(((*1 *2 *3) (-12 (-5 *3 (-567)) (-5 *2 (-1274)) (-5 *1 (-1008)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567)))))))
+ (-5 *1 (-1130 *3 *2)) (-4 *3 (-1245 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1102)))))
+(((*1 *2 *1) (-12 (-4 *1 (-255 *3)) (-4 *3 (-1219)) (-5 *2 (-772))))
((*1 *2 *1) (-12 (-4 *1 (-303)) (-5 *2 (-772))))
((*1 *2 *3)
(-12 (-4 *4 (-1051))
- (-4 *2 (-13 (-407) (-1040 *4) (-365) (-1203) (-285)))
- (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1244 *4))))
+ (-4 *2 (-13 (-407) (-1040 *4) (-365) (-1204) (-285)))
+ (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1245 *4))))
((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-613 *3)) (-4 *3 (-1102))))
((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863))))
((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-863)))))
-(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-5 *1 (-222 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1218)) (-4 *1 (-255 *3))))
- ((*1 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1218)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-793)) (-4 *2 (-1051))))
- ((*1 *2 *1 *1)
- (-12 (-4 *2 (-1051)) (-5 *1 (-50 *2 *3)) (-14 *3 (-645 (-1178)))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-645 (-923))) (-4 *2 (-365)) (-5 *1 (-152 *4 *2 *5))
- (-14 *4 (-923)) (-14 *5 (-995 *4 *2))))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-317 *3)) (-5 *1 (-223 *3 *4))
- (-4 *3 (-13 (-1051) (-851))) (-14 *4 (-645 (-1178)))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-324 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-131))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-384 *2 *3)) (-4 *3 (-1102)) (-4 *2 (-1051))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-567)) (-4 *2 (-559)) (-5 *1 (-624 *2 *4))
- (-4 *4 (-1244 *2))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-4 *1 (-709 *2)) (-4 *2 (-1051))))
- ((*1 *2 *1 *3)
- (-12 (-4 *2 (-1051)) (-5 *1 (-736 *2 *3)) (-4 *3 (-727))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-645 *5)) (-5 *3 (-645 (-772))) (-4 *1 (-741 *4 *5))
- (-4 *4 (-1051)) (-4 *5 (-851))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-772)) (-4 *1 (-741 *4 *2)) (-4 *4 (-1051))
- (-4 *2 (-851))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-4 *1 (-853 *2)) (-4 *2 (-1051))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-645 *6)) (-5 *3 (-645 (-772))) (-4 *1 (-951 *4 *5 *6))
- (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *6 (-851))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-772)) (-4 *1 (-951 *4 *5 *2)) (-4 *4 (-1051))
- (-4 *5 (-794)) (-4 *2 (-851))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-772)) (-4 *2 (-951 *4 (-534 *5) *5))
- (-5 *1 (-1128 *4 *5 *2)) (-4 *4 (-1051)) (-4 *5 (-851))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-772)) (-5 *2 (-954 *4)) (-5 *1 (-1212 *4))
- (-4 *4 (-1051)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1218)) (-4 *2 (-851))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-375 *3)) (-4 *3 (-1218))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-970 *2)) (-4 *2 (-851))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1136 *2)) (-4 *2 (-1051))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-645 *1)) (-4 *1 (-1136 *3)) (-4 *3 (-1051))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-645 (-1166 *3 *4))) (-5 *1 (-1166 *3 *4))
- (-14 *3 (-923)) (-4 *4 (-1051))))
+(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037))
+ (-5 *1 (-748)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-739)))))
+(((*1 *1 *1 *1)
+ (|partial| -12 (-4 *2 (-172)) (-5 *1 (-290 *2 *3 *4 *5 *6 *7))
+ (-4 *3 (-1245 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
((*1 *1 *1 *1)
- (-12 (-5 *1 (-1166 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1051)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1102)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381))
+ (|partial| -12 (-5 *1 (-712 *2 *3 *4 *5 *6)) (-4 *2 (-172))
+ (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
+ (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *2 (-172))
+ (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
+ (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-954 *4))) (-4 *4 (-455)) (-5 *2 (-112))
+ (-5 *1 (-362 *4 *5)) (-14 *5 (-645 (-1179)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-781 *4 (-865 *5)))) (-4 *4 (-455))
+ (-14 *5 (-645 (-1179))) (-5 *2 (-112)) (-5 *1 (-629 *4 *5)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-772)) (-5 *6 (-112)) (-4 *7 (-455)) (-4 *8 (-794))
+ (-4 *9 (-851)) (-4 *3 (-1067 *7 *8 *9))
(-5 *2
- (-2 (|:| -3802 *4) (|:| -2058 *4) (|:| |totalpts| (-567))
- (|:| |success| (-112))))
- (-5 *1 (-790)) (-5 *5 (-567)))))
+ (-2 (|:| |done| (-645 *4))
+ (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2575 *4))))))
+ (-5 *1 (-1071 *7 *8 *9 *3 *4)) (-4 *4 (-1073 *7 *8 *9 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-772)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851))
+ (-4 *3 (-1067 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-645 *4))
+ (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2575 *4))))))
+ (-5 *1 (-1071 *6 *7 *8 *3 *4)) (-4 *4 (-1073 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-4 *3 (-1067 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-645 *4))
+ (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2575 *4))))))
+ (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-772)) (-5 *6 (-112)) (-4 *7 (-455)) (-4 *8 (-794))
+ (-4 *9 (-851)) (-4 *3 (-1067 *7 *8 *9))
+ (-5 *2
+ (-2 (|:| |done| (-645 *4))
+ (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2575 *4))))))
+ (-5 *1 (-1147 *7 *8 *9 *3 *4)) (-4 *4 (-1111 *7 *8 *9 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-772)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851))
+ (-4 *3 (-1067 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-645 *4))
+ (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2575 *4))))))
+ (-5 *1 (-1147 *6 *7 *8 *3 *4)) (-4 *4 (-1111 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-4 *3 (-1067 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-645 *4))
+ (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2575 *4))))))
+ (-5 *1 (-1147 *5 *6 *7 *3 *4)) (-4 *4 (-1111 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1051)) (-4 *7 (-1051))
+ (-4 *6 (-1245 *5)) (-5 *2 (-1175 (-1175 *7)))
+ (-5 *1 (-504 *5 *6 *4 *7)) (-4 *4 (-1245 *6)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-1268 *3)) (-4 *3 (-365)) (-14 *6 (-1268 (-690 *3)))
- (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-923)) (-14 *5 (-645 (-1178)))))
+ (-12 (-5 *2 (-1269 *3)) (-4 *3 (-365)) (-14 *6 (-1269 (-690 *3)))
+ (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-923)) (-14 *5 (-645 (-1179)))))
((*1 *1 *2) (-12 (-5 *2 (-1127 (-567) (-613 (-48)))) (-5 *1 (-48))))
- ((*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1218))))
+ ((*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1219))))
((*1 *1 *2)
- (-12 (-5 *2 (-1268 (-341 (-4147 'JINT 'X 'ELAM) (-4147) (-700))))
- (-5 *1 (-61 *3)) (-14 *3 (-1178))))
+ (-12 (-5 *2 (-1269 (-341 (-4145 'JINT 'X 'ELAM) (-4145) (-700))))
+ (-5 *1 (-61 *3)) (-14 *3 (-1179))))
((*1 *1 *2)
- (-12 (-5 *2 (-1268 (-341 (-4147) (-4147 'XC) (-700))))
- (-5 *1 (-63 *3)) (-14 *3 (-1178))))
+ (-12 (-5 *2 (-1269 (-341 (-4145) (-4145 'XC) (-700))))
+ (-5 *1 (-63 *3)) (-14 *3 (-1179))))
((*1 *1 *2)
- (-12 (-5 *2 (-341 (-4147 'X) (-4147) (-700))) (-5 *1 (-64 *3))
- (-14 *3 (-1178))))
+ (-12 (-5 *2 (-341 (-4145 'X) (-4145) (-700))) (-5 *1 (-64 *3))
+ (-14 *3 (-1179))))
((*1 *1 *2)
- (-12 (-5 *2 (-341 (-4147) (-4147 'XC) (-700))) (-5 *1 (-66 *3))
- (-14 *3 (-1178))))
+ (-12 (-5 *2 (-341 (-4145) (-4145 'XC) (-700))) (-5 *1 (-66 *3))
+ (-14 *3 (-1179))))
((*1 *1 *2)
- (-12 (-5 *2 (-1268 (-341 (-4147 'X) (-4147 '-1898) (-700))))
- (-5 *1 (-71 *3)) (-14 *3 (-1178))))
+ (-12 (-5 *2 (-1269 (-341 (-4145 'X) (-4145 '-1911) (-700))))
+ (-5 *1 (-71 *3)) (-14 *3 (-1179))))
((*1 *1 *2)
- (-12 (-5 *2 (-1268 (-341 (-4147) (-4147 'X) (-700))))
- (-5 *1 (-74 *3)) (-14 *3 (-1178))))
+ (-12 (-5 *2 (-1269 (-341 (-4145) (-4145 'X) (-700))))
+ (-5 *1 (-74 *3)) (-14 *3 (-1179))))
((*1 *1 *2)
- (-12 (-5 *2 (-1268 (-341 (-4147 'X 'EPS) (-4147 '-1898) (-700))))
- (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1178)) (-14 *4 (-1178))
- (-14 *5 (-1178))))
+ (-12 (-5 *2 (-1269 (-341 (-4145 'X 'EPS) (-4145 '-1911) (-700))))
+ (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1179)) (-14 *4 (-1179))
+ (-14 *5 (-1179))))
((*1 *1 *2)
- (-12 (-5 *2 (-1268 (-341 (-4147 'EPS) (-4147 'YA 'YB) (-700))))
- (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1178)) (-14 *4 (-1178))
- (-14 *5 (-1178))))
+ (-12 (-5 *2 (-1269 (-341 (-4145 'EPS) (-4145 'YA 'YB) (-700))))
+ (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1179)) (-14 *4 (-1179))
+ (-14 *5 (-1179))))
((*1 *1 *2)
- (-12 (-5 *2 (-341 (-4147) (-4147 'X) (-700))) (-5 *1 (-77 *3))
- (-14 *3 (-1178))))
+ (-12 (-5 *2 (-341 (-4145) (-4145 'X) (-700))) (-5 *1 (-77 *3))
+ (-14 *3 (-1179))))
((*1 *1 *2)
- (-12 (-5 *2 (-341 (-4147) (-4147 'X) (-700))) (-5 *1 (-78 *3))
- (-14 *3 (-1178))))
+ (-12 (-5 *2 (-341 (-4145) (-4145 'X) (-700))) (-5 *1 (-78 *3))
+ (-14 *3 (-1179))))
((*1 *1 *2)
- (-12 (-5 *2 (-1268 (-341 (-4147) (-4147 'XC) (-700))))
- (-5 *1 (-79 *3)) (-14 *3 (-1178))))
+ (-12 (-5 *2 (-1269 (-341 (-4145) (-4145 'XC) (-700))))
+ (-5 *1 (-79 *3)) (-14 *3 (-1179))))
((*1 *1 *2)
- (-12 (-5 *2 (-1268 (-341 (-4147) (-4147 'X) (-700))))
- (-5 *1 (-80 *3)) (-14 *3 (-1178))))
+ (-12 (-5 *2 (-1269 (-341 (-4145) (-4145 'X) (-700))))
+ (-5 *1 (-80 *3)) (-14 *3 (-1179))))
((*1 *1 *2)
- (-12 (-5 *2 (-1268 (-341 (-4147 'X '-1898) (-4147) (-700))))
- (-5 *1 (-82 *3)) (-14 *3 (-1178))))
+ (-12 (-5 *2 (-1269 (-341 (-4145 'X '-1911) (-4145) (-700))))
+ (-5 *1 (-82 *3)) (-14 *3 (-1179))))
((*1 *1 *2)
- (-12 (-5 *2 (-690 (-341 (-4147 'X '-1898) (-4147) (-700))))
- (-5 *1 (-83 *3)) (-14 *3 (-1178))))
+ (-12 (-5 *2 (-690 (-341 (-4145 'X '-1911) (-4145) (-700))))
+ (-5 *1 (-83 *3)) (-14 *3 (-1179))))
((*1 *1 *2)
- (-12 (-5 *2 (-690 (-341 (-4147 'X) (-4147) (-700)))) (-5 *1 (-84 *3))
- (-14 *3 (-1178))))
+ (-12 (-5 *2 (-690 (-341 (-4145 'X) (-4145) (-700)))) (-5 *1 (-84 *3))
+ (-14 *3 (-1179))))
((*1 *1 *2)
- (-12 (-5 *2 (-1268 (-341 (-4147 'X) (-4147) (-700))))
- (-5 *1 (-85 *3)) (-14 *3 (-1178))))
+ (-12 (-5 *2 (-1269 (-341 (-4145 'X) (-4145) (-700))))
+ (-5 *1 (-85 *3)) (-14 *3 (-1179))))
((*1 *1 *2)
- (-12 (-5 *2 (-1268 (-341 (-4147 'X) (-4147 '-1898) (-700))))
- (-5 *1 (-86 *3)) (-14 *3 (-1178))))
+ (-12 (-5 *2 (-1269 (-341 (-4145 'X) (-4145 '-1911) (-700))))
+ (-5 *1 (-86 *3)) (-14 *3 (-1179))))
((*1 *1 *2)
- (-12 (-5 *2 (-690 (-341 (-4147 'XL 'XR 'ELAM) (-4147) (-700))))
- (-5 *1 (-87 *3)) (-14 *3 (-1178))))
+ (-12 (-5 *2 (-690 (-341 (-4145 'XL 'XR 'ELAM) (-4145) (-700))))
+ (-5 *1 (-87 *3)) (-14 *3 (-1179))))
((*1 *1 *2)
- (-12 (-5 *2 (-341 (-4147 'X) (-4147 '-1898) (-700))) (-5 *1 (-89 *3))
- (-14 *3 (-1178))))
+ (-12 (-5 *2 (-341 (-4145 'X) (-4145 '-1911) (-700))) (-5 *1 (-89 *3))
+ (-14 *3 (-1179))))
((*1 *1 *2)
(-12 (-5 *2 (-645 (-136 *3 *4 *5))) (-5 *1 (-136 *3 *4 *5))
(-14 *3 (-567)) (-14 *4 (-772)) (-4 *5 (-172))))
@@ -1434,8 +1354,8 @@
(-12 (-5 *2 (-240 *4 *5)) (-14 *4 (-772)) (-4 *5 (-172))
(-5 *1 (-136 *3 *4 *5)) (-14 *3 (-567))))
((*1 *2 *3)
- (-12 (-5 *3 (-1268 (-690 *4))) (-4 *4 (-172))
- (-5 *2 (-1268 (-690 (-410 (-954 *4))))) (-5 *1 (-189 *4))))
+ (-12 (-5 *3 (-1269 (-690 *4))) (-4 *4 (-172))
+ (-5 *2 (-1269 (-690 (-410 (-954 *4))))) (-5 *1 (-189 *4))))
((*1 *2 *3)
(-12 (-5 *3 (-1094 (-317 *4)))
(-4 *4 (-13 (-851) (-559) (-615 (-381)))) (-5 *2 (-1094 (-381)))
@@ -1443,18 +1363,18 @@
((*1 *1 *2) (-12 (-4 *1 (-267 *2)) (-4 *2 (-851))))
((*1 *1 *2) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-276))))
((*1 *2 *1)
- (-12 (-4 *2 (-1244 *3)) (-5 *1 (-290 *3 *2 *4 *5 *6 *7))
+ (-12 (-4 *2 (-1245 *3)) (-5 *1 (-290 *3 *2 *4 *5 *6 *7))
(-4 *3 (-172)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4))
(-14 *6 (-1 (-3 *4 "failed") *4 *4))
(-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))
((*1 *1 *2)
- (-12 (-5 *2 (-1253 *4 *5 *6)) (-4 *4 (-13 (-27) (-1203) (-433 *3)))
- (-14 *5 (-1178)) (-14 *6 *4)
+ (-12 (-5 *2 (-1254 *4 *5 *6)) (-4 *4 (-13 (-27) (-1204) (-433 *3)))
+ (-14 *5 (-1179)) (-14 *6 *4)
(-4 *3 (-13 (-1040 (-567)) (-640 (-567)) (-455)))
(-5 *1 (-314 *3 *4 *5 *6))))
((*1 *2 *1)
(-12 (-5 *2 (-317 *5)) (-5 *1 (-341 *3 *4 *5))
- (-14 *3 (-645 (-1178))) (-14 *4 (-645 (-1178))) (-4 *5 (-390))))
+ (-14 *3 (-645 (-1179))) (-14 *4 (-645 (-1179))) (-4 *5 (-390))))
((*1 *2 *3)
(-12 (-4 *4 (-351)) (-4 *2 (-330 *4)) (-5 *1 (-349 *3 *4 *2))
(-4 *3 (-330 *4))))
@@ -1463,93 +1383,93 @@
(-4 *3 (-330 *4))))
((*1 *2 *1)
(-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172))
- (-5 *2 (-1292 *3 *4))))
+ (-5 *2 (-1293 *3 *4))))
((*1 *2 *1)
(-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172))
- (-5 *2 (-1283 *3 *4))))
+ (-5 *2 (-1284 *3 *4))))
((*1 *1 *2) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-851)) (-4 *3 (-172))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331)))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1183)) (|:| -1814 (-645 (-331)))))
(-4 *1 (-385))))
((*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-385))))
((*1 *1 *2) (-12 (-5 *2 (-645 (-331))) (-4 *1 (-385))))
((*1 *1 *2) (-12 (-5 *2 (-690 (-700))) (-4 *1 (-385))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331)))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1183)) (|:| -1814 (-645 (-331)))))
(-4 *1 (-386))))
((*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-386))))
((*1 *1 *2) (-12 (-5 *2 (-645 (-331))) (-4 *1 (-386))))
((*1 *2 *3) (-12 (-5 *2 (-397)) (-5 *1 (-396 *3)) (-4 *3 (-1102))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331)))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1183)) (|:| -1814 (-645 (-331)))))
(-4 *1 (-399))))
((*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-399))))
((*1 *1 *2) (-12 (-5 *2 (-645 (-331))) (-4 *1 (-399))))
((*1 *1 *2)
(-12 (-5 *2 (-295 (-317 (-169 (-381))))) (-5 *1 (-401 *3 *4 *5 *6))
- (-14 *3 (-1178)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4321 "void")))
- (-14 *5 (-645 (-1178))) (-14 *6 (-1182))))
+ (-14 *3 (-1179)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4324 "void")))
+ (-14 *5 (-645 (-1179))) (-14 *6 (-1183))))
((*1 *1 *2)
(-12 (-5 *2 (-295 (-317 (-381)))) (-5 *1 (-401 *3 *4 *5 *6))
- (-14 *3 (-1178)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4321 "void")))
- (-14 *5 (-645 (-1178))) (-14 *6 (-1182))))
+ (-14 *3 (-1179)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4324 "void")))
+ (-14 *5 (-645 (-1179))) (-14 *6 (-1183))))
((*1 *1 *2)
(-12 (-5 *2 (-295 (-317 (-567)))) (-5 *1 (-401 *3 *4 *5 *6))
- (-14 *3 (-1178)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4321 "void")))
- (-14 *5 (-645 (-1178))) (-14 *6 (-1182))))
+ (-14 *3 (-1179)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4324 "void")))
+ (-14 *5 (-645 (-1179))) (-14 *6 (-1183))))
((*1 *1 *2)
(-12 (-5 *2 (-317 (-169 (-381)))) (-5 *1 (-401 *3 *4 *5 *6))
- (-14 *3 (-1178)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4321 "void")))
- (-14 *5 (-645 (-1178))) (-14 *6 (-1182))))
+ (-14 *3 (-1179)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4324 "void")))
+ (-14 *5 (-645 (-1179))) (-14 *6 (-1183))))
((*1 *1 *2)
(-12 (-5 *2 (-317 (-381))) (-5 *1 (-401 *3 *4 *5 *6))
- (-14 *3 (-1178)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4321 "void")))
- (-14 *5 (-645 (-1178))) (-14 *6 (-1182))))
+ (-14 *3 (-1179)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4324 "void")))
+ (-14 *5 (-645 (-1179))) (-14 *6 (-1183))))
((*1 *1 *2)
(-12 (-5 *2 (-317 (-567))) (-5 *1 (-401 *3 *4 *5 *6))
- (-14 *3 (-1178)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4321 "void")))
- (-14 *5 (-645 (-1178))) (-14 *6 (-1182))))
+ (-14 *3 (-1179)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4324 "void")))
+ (-14 *5 (-645 (-1179))) (-14 *6 (-1183))))
((*1 *1 *2)
(-12 (-5 *2 (-295 (-317 (-695)))) (-5 *1 (-401 *3 *4 *5 *6))
- (-14 *3 (-1178)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4321 "void")))
- (-14 *5 (-645 (-1178))) (-14 *6 (-1182))))
+ (-14 *3 (-1179)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4324 "void")))
+ (-14 *5 (-645 (-1179))) (-14 *6 (-1183))))
((*1 *1 *2)
(-12 (-5 *2 (-295 (-317 (-700)))) (-5 *1 (-401 *3 *4 *5 *6))
- (-14 *3 (-1178)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4321 "void")))
- (-14 *5 (-645 (-1178))) (-14 *6 (-1182))))
+ (-14 *3 (-1179)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4324 "void")))
+ (-14 *5 (-645 (-1179))) (-14 *6 (-1183))))
((*1 *1 *2)
(-12 (-5 *2 (-295 (-317 (-702)))) (-5 *1 (-401 *3 *4 *5 *6))
- (-14 *3 (-1178)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4321 "void")))
- (-14 *5 (-645 (-1178))) (-14 *6 (-1182))))
+ (-14 *3 (-1179)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4324 "void")))
+ (-14 *5 (-645 (-1179))) (-14 *6 (-1183))))
((*1 *1 *2)
(-12 (-5 *2 (-317 (-695))) (-5 *1 (-401 *3 *4 *5 *6))
- (-14 *3 (-1178)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4321 "void")))
- (-14 *5 (-645 (-1178))) (-14 *6 (-1182))))
+ (-14 *3 (-1179)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4324 "void")))
+ (-14 *5 (-645 (-1179))) (-14 *6 (-1183))))
((*1 *1 *2)
(-12 (-5 *2 (-317 (-700))) (-5 *1 (-401 *3 *4 *5 *6))
- (-14 *3 (-1178)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4321 "void")))
- (-14 *5 (-645 (-1178))) (-14 *6 (-1182))))
+ (-14 *3 (-1179)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4324 "void")))
+ (-14 *5 (-645 (-1179))) (-14 *6 (-1183))))
((*1 *1 *2)
(-12 (-5 *2 (-317 (-702))) (-5 *1 (-401 *3 *4 *5 *6))
- (-14 *3 (-1178)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4321 "void")))
- (-14 *5 (-645 (-1178))) (-14 *6 (-1182))))
+ (-14 *3 (-1179)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4324 "void")))
+ (-14 *5 (-645 (-1179))) (-14 *6 (-1183))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331)))))
- (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1178))
- (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4321 "void")))
- (-14 *5 (-645 (-1178))) (-14 *6 (-1182))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1183)) (|:| -1814 (-645 (-331)))))
+ (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1179))
+ (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4324 "void")))
+ (-14 *5 (-645 (-1179))) (-14 *6 (-1183))))
((*1 *1 *2)
(-12 (-5 *2 (-645 (-331))) (-5 *1 (-401 *3 *4 *5 *6))
- (-14 *3 (-1178)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4321 "void")))
- (-14 *5 (-645 (-1178))) (-14 *6 (-1182))))
+ (-14 *3 (-1179)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4324 "void")))
+ (-14 *5 (-645 (-1179))) (-14 *6 (-1183))))
((*1 *1 *2)
- (-12 (-5 *2 (-331)) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1178))
- (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4321 "void")))
- (-14 *5 (-645 (-1178))) (-14 *6 (-1182))))
+ (-12 (-5 *2 (-331)) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1179))
+ (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4324 "void")))
+ (-14 *5 (-645 (-1179))) (-14 *6 (-1183))))
((*1 *1 *2)
(-12 (-5 *2 (-332 *4)) (-4 *4 (-13 (-851) (-21)))
(-5 *1 (-430 *3 *4)) (-4 *3 (-13 (-172) (-38 (-410 (-567)))))))
@@ -1569,52 +1489,52 @@
(-12 (-5 *2 (-1127 *3 (-613 *1))) (-4 *3 (-1051)) (-4 *3 (-1102))
(-4 *1 (-433 *3))))
((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-437))))
- ((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-437))))
- ((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-437))))
- ((*1 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-437))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-437))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-437))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-437))))
((*1 *1 *2) (-12 (-5 *2 (-437)) (-5 *1 (-440))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331)))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1183)) (|:| -1814 (-645 (-331)))))
(-4 *1 (-443))))
((*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-443))))
((*1 *1 *2) (-12 (-5 *2 (-645 (-331))) (-4 *1 (-443))))
- ((*1 *1 *2) (-12 (-5 *2 (-1268 (-700))) (-4 *1 (-443))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1269 (-700))) (-4 *1 (-443))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1182)) (|:| -1800 (-645 (-331)))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1183)) (|:| -1814 (-645 (-331)))))
(-4 *1 (-444))))
((*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-444))))
((*1 *1 *2) (-12 (-5 *2 (-645 (-331))) (-4 *1 (-444))))
((*1 *1 *2)
- (-12 (-5 *2 (-1268 (-410 (-954 *3)))) (-4 *3 (-172))
- (-14 *6 (-1268 (-690 *3))) (-5 *1 (-456 *3 *4 *5 *6))
- (-14 *4 (-923)) (-14 *5 (-645 (-1178)))))
+ (-12 (-5 *2 (-1269 (-410 (-954 *3)))) (-4 *3 (-172))
+ (-14 *6 (-1269 (-690 *3))) (-5 *1 (-456 *3 *4 *5 *6))
+ (-14 *4 (-923)) (-14 *5 (-645 (-1179)))))
((*1 *1 *2) (-12 (-5 *2 (-645 (-645 (-945 (-225))))) (-5 *1 (-471))))
((*1 *2 *1) (-12 (-5 *2 (-863)) (-5 *1 (-471))))
((*1 *1 *2)
- (-12 (-5 *2 (-1253 *3 *4 *5)) (-4 *3 (-1051)) (-14 *4 (-1178))
+ (-12 (-5 *2 (-1254 *3 *4 *5)) (-4 *3 (-1051)) (-14 *4 (-1179))
(-14 *5 *3) (-5 *1 (-477 *3 *4 *5))))
((*1 *1 *2)
- (-12 (-5 *2 (-1264 *4)) (-14 *4 (-1178)) (-5 *1 (-477 *3 *4 *5))
+ (-12 (-5 *2 (-1265 *4)) (-14 *4 (-1179)) (-5 *1 (-477 *3 *4 *5))
(-4 *3 (-1051)) (-14 *5 *3)))
((*1 *1 *2) (-12 (-5 *2 (-1127 (-567) (-613 (-498)))) (-5 *1 (-498))))
- ((*1 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-505))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-505))))
((*1 *1 *2)
(-12 (-5 *2 (-645 *6)) (-4 *6 (-951 *3 *4 *5)) (-4 *3 (-365))
(-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-507 *3 *4 *5 *6))))
- ((*1 *1 *2) (-12 (-5 *2 (-645 (-1217))) (-5 *1 (-527))))
- ((*1 *1 *2) (-12 (-5 *2 (-645 (-1217))) (-5 *1 (-607))))
+ ((*1 *1 *2) (-12 (-5 *2 (-645 (-1218))) (-5 *1 (-527))))
+ ((*1 *1 *2) (-12 (-5 *2 (-645 (-1218))) (-5 *1 (-607))))
((*1 *1 *2)
(-12 (-4 *3 (-172)) (-5 *1 (-608 *3 *2)) (-4 *2 (-745 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-614 *2)) (-4 *2 (-1218))))
- ((*1 *1 *2) (-12 (-4 *1 (-617 *2)) (-4 *2 (-1218))))
+ ((*1 *2 *1) (-12 (-4 *1 (-614 *2)) (-4 *2 (-1219))))
+ ((*1 *1 *2) (-12 (-4 *1 (-617 *2)) (-4 *2 (-1219))))
((*1 *1 *2) (-12 (-4 *1 (-621 *2)) (-4 *2 (-1051))))
((*1 *2 *1)
- (-12 (-5 *2 (-1288 *3 *4)) (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851))
+ (-12 (-5 *2 (-1289 *3 *4)) (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851))
(-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-923))))
((*1 *2 *1)
- (-12 (-5 *2 (-1283 *3 *4)) (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851))
+ (-12 (-5 *2 (-1284 *3 *4)) (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851))
(-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-923))))
((*1 *1 *2)
(-12 (-4 *3 (-172)) (-5 *1 (-636 *3 *2)) (-4 *2 (-745 *3))))
@@ -1641,7 +1561,7 @@
((*1 *2 *1) (-12 (-5 *2 (-381)) (-5 *1 (-700))))
((*1 *2 *3)
(-12 (-5 *3 (-317 (-567))) (-5 *2 (-317 (-702))) (-5 *1 (-702))))
- ((*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1160)) (-5 *1 (-711))))
+ ((*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1161)) (-5 *1 (-711))))
((*1 *2 *1)
(-12 (-4 *2 (-172)) (-5 *1 (-712 *2 *3 *4 *5 *6)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
@@ -1651,7 +1571,7 @@
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-645 (-2 (|:| -3694 *3) (|:| -2290 *4))))
+ (-12 (-5 *2 (-645 (-2 (|:| -3705 *3) (|:| -2296 *4))))
(-4 *3 (-1051)) (-4 *4 (-727)) (-5 *1 (-736 *3 *4))))
((*1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-764))))
((*1 *1 *2)
@@ -1659,60 +1579,60 @@
(-5 *2
(-3
(|:| |nia|
- (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225)))
- (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225))
+ (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225)))
+ (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225))
(|:| |relerr| (-225))))
(|:| |mdnia|
(-2 (|:| |fn| (-317 (-225)))
- (|:| -1604 (-645 (-1096 (-844 (-225)))))
+ (|:| -2408 (-645 (-1096 (-844 (-225)))))
(|:| |abserr| (-225)) (|:| |relerr| (-225))))))
(-5 *1 (-770))))
((*1 *1 *2)
(-12
(-5 *2
(-2 (|:| |fn| (-317 (-225)))
- (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225))
+ (|:| -2408 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225))
(|:| |relerr| (-225))))
(-5 *1 (-770))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225)))
- (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225))
+ (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225)))
+ (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225))
(|:| |relerr| (-225))))
(-5 *1 (-770))))
- ((*1 *2 *3) (-12 (-5 *2 (-775)) (-5 *1 (-774 *3)) (-4 *3 (-1218))))
+ ((*1 *2 *3) (-12 (-5 *2 (-775)) (-5 *1 (-774 *3)) (-4 *3 (-1219))))
((*1 *1 *2)
(-12
(-5 *2
(-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
- (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225)))
+ (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225)))
(|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225)))
(|:| |abserr| (-225)) (|:| |relerr| (-225))))
(-5 *1 (-809))))
- ((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-825))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-825))))
((*1 *1 *2)
(-12
(-5 *2
(-3
(|:| |noa|
- (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225)))
+ (-2 (|:| |fn| (-317 (-225))) (|:| -2694 (-645 (-225)))
(|:| |lb| (-645 (-844 (-225))))
(|:| |cf| (-645 (-317 (-225))))
(|:| |ub| (-645 (-844 (-225))))))
(|:| |lsa|
(-2 (|:| |lfn| (-645 (-317 (-225))))
- (|:| -2672 (-645 (-225)))))))
+ (|:| -2694 (-645 (-225)))))))
(-5 *1 (-842))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225)))))
+ (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2694 (-645 (-225)))))
(-5 *1 (-842))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225)))
+ (-2 (|:| |fn| (-317 (-225))) (|:| -2694 (-645 (-225)))
(|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225))))
(|:| |ub| (-645 (-844 (-225))))))
(-5 *1 (-842))))
@@ -1734,7 +1654,7 @@
(-2 (|:| |start| (-225)) (|:| |finish| (-225))
(|:| |grid| (-772)) (|:| |boundaryType| (-567))
(|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225))))))
- (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1160))
+ (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1161))
(|:| |tol| (-225))))
(-5 *1 (-900))))
((*1 *1 *2)
@@ -1750,8 +1670,8 @@
((*1 *2 *3)
(-12 (-5 *3 (-480)) (-5 *2 (-317 *4)) (-5 *1 (-921 *4))
(-4 *4 (-559))))
- ((*1 *2 *3) (-12 (-5 *2 (-1273)) (-5 *1 (-1035 *3)) (-4 *3 (-1218))))
- ((*1 *2 *3) (-12 (-5 *3 (-313)) (-5 *1 (-1035 *2)) (-4 *2 (-1218))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1274)) (-5 *1 (-1035 *3)) (-4 *3 (-1219))))
+ ((*1 *2 *3) (-12 (-5 *3 (-313)) (-5 *1 (-1035 *2)) (-4 *2 (-1219))))
((*1 *1 *2)
(-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851))
(-5 *1 (-1036 *3 *4 *5 *2 *6)) (-4 *2 (-951 *3 *4 *5))
@@ -1767,164 +1687,138 @@
((*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-863))))
((*1 *1 *2) (-12 (-5 *2 (-144)) (-4 *1 (-1146))))
((*1 *2 *3)
- (-12 (-5 *2 (-1158 *3)) (-5 *1 (-1162 *3)) (-4 *3 (-1051))))
+ (-12 (-5 *2 (-1159 *3)) (-5 *1 (-1163 *3)) (-4 *3 (-1051))))
((*1 *1 *2)
- (-12 (-5 *2 (-1264 *4)) (-14 *4 (-1178)) (-5 *1 (-1169 *3 *4 *5))
+ (-12 (-5 *2 (-1265 *4)) (-14 *4 (-1179)) (-5 *1 (-1170 *3 *4 *5))
(-4 *3 (-1051)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1264 *4)) (-14 *4 (-1178)) (-5 *1 (-1176 *3 *4 *5))
+ (-12 (-5 *2 (-1265 *4)) (-14 *4 (-1179)) (-5 *1 (-1177 *3 *4 *5))
(-4 *3 (-1051)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1241 *4 *3)) (-4 *3 (-1051)) (-14 *4 (-1178))
- (-14 *5 *3) (-5 *1 (-1176 *3 *4 *5))))
- ((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1177))))
- ((*1 *2 *1) (-12 (-5 *2 (-1191 (-1178) (-440))) (-5 *1 (-1182))))
- ((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-1183))))
- ((*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-1183))))
- ((*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1183))))
- ((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-1183))))
- ((*1 *2 *1) (-12 (-5 *2 (-863)) (-5 *1 (-1190 *3)) (-4 *3 (-1102))))
- ((*1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *1 (-1197 *3)) (-4 *3 (-1102))))
+ (-12 (-5 *2 (-1242 *4 *3)) (-4 *3 (-1051)) (-14 *4 (-1179))
+ (-14 *5 *3) (-5 *1 (-1177 *3 *4 *5))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1178))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1192 (-1179) (-440))) (-5 *1 (-1183))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-1184))))
+ ((*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-1184))))
+ ((*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1184))))
+ ((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-1184))))
+ ((*1 *2 *1) (-12 (-5 *2 (-863)) (-5 *1 (-1191 *3)) (-4 *3 (-1102))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1199)) (-5 *1 (-1198 *3)) (-4 *3 (-1102))))
((*1 *1 *2)
- (-12 (-5 *2 (-954 *3)) (-4 *3 (-1051)) (-5 *1 (-1212 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1212 *3)) (-4 *3 (-1051))))
+ (-12 (-5 *2 (-954 *3)) (-4 *3 (-1051)) (-5 *1 (-1213 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1213 *3)) (-4 *3 (-1051))))
((*1 *1 *2)
- (-12 (-5 *2 (-1264 *4)) (-14 *4 (-1178)) (-5 *1 (-1232 *3 *4 *5))
+ (-12 (-5 *2 (-1265 *4)) (-14 *4 (-1179)) (-5 *1 (-1233 *3 *4 *5))
(-4 *3 (-1051)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1096 *3)) (-4 *3 (-1218)) (-5 *1 (-1235 *3))))
+ (-12 (-5 *2 (-1096 *3)) (-4 *3 (-1219)) (-5 *1 (-1236 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1264 *4)) (-14 *4 (-1178)) (-5 *1 (-1260 *3 *4 *5))
+ (-12 (-5 *2 (-1265 *4)) (-14 *4 (-1179)) (-5 *1 (-1261 *3 *4 *5))
(-4 *3 (-1051)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1241 *4 *3)) (-4 *3 (-1051)) (-14 *4 (-1178))
- (-14 *5 *3) (-5 *1 (-1260 *3 *4 *5))))
- ((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1264 *3)) (-14 *3 *2)))
- ((*1 *2 *1) (-12 (-5 *2 (-863)) (-5 *1 (-1269))))
- ((*1 *2 *3) (-12 (-5 *3 (-471)) (-5 *2 (-1269)) (-5 *1 (-1272))))
+ (-12 (-5 *2 (-1242 *4 *3)) (-4 *3 (-1051)) (-14 *4 (-1179))
+ (-14 *5 *3) (-5 *1 (-1261 *3 *4 *5))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1265 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-5 *2 (-863)) (-5 *1 (-1270))))
+ ((*1 *2 *3) (-12 (-5 *3 (-471)) (-5 *2 (-1270)) (-5 *1 (-1273))))
((*1 *1 *2)
- (-12 (-4 *1 (-1285 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1051))))
+ (-12 (-4 *1 (-1286 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1051))))
((*1 *2 *1)
- (-12 (-5 *2 (-1292 *3 *4)) (-5 *1 (-1288 *3 *4)) (-4 *3 (-851))
+ (-12 (-5 *2 (-1293 *3 *4)) (-5 *1 (-1289 *3 *4)) (-4 *3 (-851))
(-4 *4 (-172))))
((*1 *2 *1)
- (-12 (-5 *2 (-1283 *3 *4)) (-5 *1 (-1288 *3 *4)) (-4 *3 (-851))
+ (-12 (-5 *2 (-1284 *3 *4)) (-5 *1 (-1289 *3 *4)) (-4 *3 (-851))
(-4 *4 (-172))))
((*1 *1 *2)
(-12 (-5 *2 (-665 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172))
- (-5 *1 (-1288 *3 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-112)))))
+ (-5 *1 (-1289 *3 *4)))))
(((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-381))))
((*1 *1 *1 *1) (-4 *1 (-548)))
((*1 *1 *1 *2) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365))))
((*1 *1 *2) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365))))
((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-772)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1211 *2 *3 *4 *5)) (-4 *2 (-559)) (-4 *3 (-794))
- (-4 *4 (-851)) (-4 *5 (-1067 *2 *3 *4)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-151 *2))
- (-4 *2 (-1218)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1273)) (-5 *1 (-1181))))
- ((*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-1181)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-1268 *1)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222))
- (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1158 (-2 (|:| |k| (-567)) (|:| |c| *3))))
- (-5 *1 (-597 *3)) (-4 *3 (-1051)))))
-(((*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-276)))))
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1004))))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1141))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-945 *3)) (-4 *3 (-13 (-365) (-1204) (-1004)))
+ (-5 *1 (-176 *3)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-112)) (-5 *1 (-830)))))
+(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-381)) (-5 *3 (-1161)) (-5 *1 (-97))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-381)) (-5 *3 (-1161)) (-5 *1 (-97)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-13 (-365) (-147) (-1040 (-410 (-567)))))
+ (-4 *3 (-1245 *4)) (-5 *1 (-810 *4 *3 *2 *5)) (-4 *2 (-657 *3))
+ (-4 *5 (-657 (-410 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-410 *5))
+ (-4 *4 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *5 (-1245 *4))
+ (-5 *1 (-810 *4 *5 *2 *6)) (-4 *2 (-657 *5)) (-4 *6 (-657 *3)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-772)) (-5 *1 (-784 *2)) (-4 *2 (-38 (-410 (-567))))
+ (-4 *2 (-172)))))
(((*1 *1) (-5 *1 (-186))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-410 (-567))) (-5 *1 (-1026 *3))
- (-4 *3 (-13 (-849) (-365) (-1024)))))
- ((*1 *2 *3 *1 *2)
- (-12 (-4 *2 (-13 (-849) (-365))) (-5 *1 (-1063 *2 *3))
- (-4 *3 (-1244 *2))))
- ((*1 *2 *3 *1 *2)
- (-12 (-4 *1 (-1070 *2 *3)) (-4 *2 (-13 (-849) (-365)))
- (-4 *3 (-1244 *2)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-690 *8)) (-4 *8 (-951 *5 *7 *6))
- (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1178))))
- (-4 *7 (-794))
+(((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1004))))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1102))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1102)))))
+(((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-128)))))
+(((*1 *2 *3 *2)
+ (-12
(-5 *2
(-645
- (-2 (|:| -1954 (-772))
- (|:| |eqns|
- (-645
- (-2 (|:| |det| *8) (|:| |rows| (-645 (-567)))
- (|:| |cols| (-645 (-567))))))
- (|:| |fgb| (-645 *8)))))
- (-5 *1 (-926 *5 *6 *7 *8)) (-5 *4 (-772)))))
+ (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-772)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *3 (-794)) (-4 *6 (-951 *4 *3 *5)) (-4 *4 (-455)) (-4 *5 (-851))
+ (-5 *1 (-452 *4 *3 *5 *6)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1142 *3 *4)) (-4 *3 (-13 (-1102) (-34)))
+ (-4 *4 (-13 (-1102) (-34))))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-923)) (-5 *2 (-1174 *3)) (-5 *1 (-1192 *3))
- (-4 *3 (-365)))))
+ (-12 (-4 *5 (-794)) (-4 *4 (-851)) (-4 *6 (-308)) (-5 *2 (-421 *3))
+ (-5 *1 (-743 *5 *4 *6 *3)) (-4 *3 (-951 *6 *5 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-645 (-317 (-225)))) (-5 *2 (-112)) (-5 *1 (-268))))
- ((*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-112)) (-5 *1 (-268))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112))
- (-5 *1 (-979 *4 *5 *6 *3)) (-4 *3 (-1067 *4 *5 *6)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1270)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1178)) (-5 *4 (-954 (-567))) (-5 *2 (-331))
- (-5 *1 (-333))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1178)) (-5 *4 (-1094 (-954 (-567)))) (-5 *2 (-331))
- (-5 *1 (-333))))
- ((*1 *1 *2 *2 *2)
- (-12 (-5 *2 (-772)) (-5 *1 (-676 *3)) (-4 *3 (-1051))
- (-4 *3 (-1102)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1051)) (-4 *2 (-365))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-365)) (-5 *1 (-660 *4 *2))
- (-4 *2 (-657 *4)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-112)) (-5 *5 (-567)) (-4 *6 (-365)) (-4 *6 (-370))
- (-4 *6 (-1051)) (-5 *2 (-645 (-645 (-690 *6)))) (-5 *1 (-1031 *6))
- (-5 *3 (-645 (-690 *6)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-365)) (-4 *4 (-370)) (-4 *4 (-1051))
- (-5 *2 (-645 (-645 (-690 *4)))) (-5 *1 (-1031 *4))
- (-5 *3 (-645 (-690 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1051))
- (-5 *2 (-645 (-645 (-690 *5)))) (-5 *1 (-1031 *5))
- (-5 *3 (-645 (-690 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-923)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1051))
- (-5 *2 (-645 (-645 (-690 *5)))) (-5 *1 (-1031 *5))
- (-5 *3 (-645 (-690 *5))))))
-(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-258)))))
-(((*1 *2 *2 *3 *4 *4)
- (-12 (-5 *4 (-567)) (-4 *3 (-172)) (-4 *5 (-375 *3))
- (-4 *6 (-375 *3)) (-5 *1 (-689 *3 *5 *6 *2))
- (-4 *2 (-688 *3 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-645 (-874 (-1183) (-772)))) (-5 *1 (-334)))))
+ (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-567))) (-5 *1 (-1049)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-645 *2)) (-4 *2 (-1245 *4)) (-5 *1 (-542 *4 *2 *5 *6))
+ (-4 *4 (-308)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-772))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-5 *1 (-1163 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1261 *2 *3 *4)) (-4 *2 (-1051)) (-14 *3 (-1179))
+ (-14 *4 *2))))
+(((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1042)))))
(((*1 *1) (-5 *1 (-186))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-567)) (-4 *1 (-324 *2 *4)) (-4 *4 (-131))
- (-4 *2 (-1102))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *1 (-363 *2)) (-4 *2 (-1102))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-388 *2)) (-4 *2 (-1102))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *1 (-421 *2)) (-4 *2 (-559))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-567)) (-4 *2 (-1102)) (-5 *1 (-650 *2 *4 *5))
- (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| -2951 *3) (|:| |coef1| (-783 *3)) (|:| |coef2| (-783 *3))))
- (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1051)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))))
-(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-5 *1 (-907 *3)))))
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1179)) (-5 *6 (-645 (-613 *3)))
+ (-5 *5 (-613 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *7)))
+ (-4 *7 (-13 (-455) (-147) (-1040 (-567)) (-640 (-567))))
+ (-5 *2 (-2 (|:| -2872 *3) (|:| |coeff| *3)))
+ (-5 *1 (-560 *7 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-4 *1 (-235 *3))))
+ ((*1 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1102)))))
+(((*1 *2 *1 *2)
+ (-12 (|has| *1 (-6 -4423)) (-4 *1 (-1257 *2)) (-4 *2 (-1219)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1073 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794))
+ (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3))
+ (-4 *5 (-375 *3)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051))
+ (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))))
(((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-137))))
- ((*1 *2 *1) (-12 (-5 *2 (-1217)) (-5 *1 (-156))))
- ((*1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1218))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1218)) (-5 *1 (-156))))
+ ((*1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1219))))
((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-481))))
((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-594))))
((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-627))))
@@ -1934,70 +1828,48 @@
(-5 *1 (-1078 *3 *4 *2))
(-4 *4 (-13 (-1051) (-888 *3) (-615 (-894 *3))))))
((*1 *2 *1)
- (-12 (-4 *2 (-1102)) (-5 *1 (-1167 *3 *2)) (-4 *3 (-1102)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1174 *1)) (-5 *3 (-1178)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-1174 *1)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-954 *1)) (-4 *1 (-27))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1178)) (-4 *1 (-29 *3)) (-4 *3 (-559))))
- ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-559)))))
-(((*1 *2 *3)
- (-12 (-4 *3 (-1244 (-410 (-567))))
- (-5 *2 (-2 (|:| |den| (-567)) (|:| |gcdnum| (-567))))
- (-5 *1 (-915 *3 *4)) (-4 *4 (-1244 (-410 *3)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1244 (-410 *2))) (-5 *2 (-567)) (-5 *1 (-915 *4 *3))
- (-4 *3 (-1244 (-410 *4))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1259 *4))
- (-4 *4 (-38 (-410 (-567))))
- (-5 *2 (-1 (-1158 *4) (-1158 *4) (-1158 *4))) (-5 *1 (-1261 *4 *5)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1135 (-225))) (-5 *3 (-645 (-264))) (-5 *1 (-1270))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1135 (-225))) (-5 *3 (-1160)) (-5 *1 (-1270))))
- ((*1 *1 *1) (-5 *1 (-1270))))
-(((*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-381)) (-5 *1 (-787)))))
+ (-12 (-4 *2 (-1102)) (-5 *1 (-1168 *3 *2)) (-4 *3 (-1102)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225)))
+ (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-66 FUNCT1))))
+ (-5 *2 (-1037)) (-5 *1 (-754)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-365)) (-5 *1 (-767 *2 *3)) (-4 *2 (-709 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-654 *4)) (-4 *4 (-344 *5 *6 *7))
+ (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567)))))
+ (-4 *6 (-1245 *5)) (-4 *7 (-1245 (-410 *6)))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2144 (-645 *4))))
+ (-5 *1 (-807 *5 *6 *7 *4)))))
(((*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-633)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-624 *4 *5))
- (-5 *3
- (-1 (-2 (|:| |ans| *4) (|:| -2963 *4) (|:| |sol?| (-112)))
- (-567) *4))
- (-4 *4 (-365)) (-4 *5 (-1244 *4)) (-5 *1 (-577 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-351)) (-5 *2 (-112)) (-5 *1 (-216 *4 *3))
- (-4 *3 (-1244 *4)))))
+(((*1 *1) (-5 *1 (-509))))
+(((*1 *2 *1) (-12 (-5 *2 (-960 (-772))) (-5 *1 (-334)))))
(((*1 *1) (-5 *1 (-186))))
-(((*1 *2 *1) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-108))))
- ((*1 *2 *1) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-217))))
- ((*1 *2 *1) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-490))))
- ((*1 *1 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-559)) (-4 *2 (-308))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-410 (-567))) (-5 *1 (-1006 *3)) (-14 *3 (-567))))
- ((*1 *1 *1) (-4 *1 (-1062))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-772)) (-5 *2 (-112))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1220 *3)) (-4 *3 (-851))
+ (-4 *3 (-1102)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-567))
- (-5 *1 (-452 *4 *5 *6 *3)) (-4 *3 (-951 *4 *5 *6)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-645 *2)) (-4 *2 (-951 *4 *5 *6)) (-4 *4 (-365))
- (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
- (-5 *1 (-453 *4 *5 *6 *2))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-365))
- (-5 *2
- (-2 (|:| R (-690 *6)) (|:| A (-690 *6)) (|:| |Ainv| (-690 *6))))
- (-5 *1 (-980 *6)) (-5 *3 (-690 *6)))))
-(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10)
- (-12 (-5 *4 (-567)) (-5 *5 (-1160)) (-5 *6 (-690 (-225)))
- (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))))
- (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))))
- (-5 *9 (-3 (|:| |fn| (-391)) (|:| |fp| (-71 PEDERV))))
- (-5 *10 (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT))))
- (-5 *3 (-225)) (-5 *2 (-1037)) (-5 *1 (-750)))))
-(((*1 *2 *1) (-12 (-5 *1 (-1028 *2)) (-4 *2 (-1218)))))
+ (-12 (-5 *2 (-1159 (-645 (-567)))) (-5 *1 (-885)) (-5 *3 (-567)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-337 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1245 *3))
+ (-4 *5 (-1245 (-410 *4))) (-4 *6 (-344 *3 *4 *5))
+ (-5 *2 (-416 *4 (-410 *4) *5 *6))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1269 *6)) (-4 *6 (-13 (-412 *4 *5) (-1040 *4)))
+ (-4 *4 (-994 *3)) (-4 *5 (-1245 *4)) (-4 *3 (-308))
+ (-5 *1 (-416 *3 *4 *5 *6))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-645 *6)) (-4 *6 (-951 *3 *4 *5)) (-4 *3 (-365))
+ (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-507 *3 *4 *5 *6)))))
(((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-137))))
((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-156))))
- ((*1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1218))))
+ ((*1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1219))))
((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-481))))
((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-594))))
((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-627))))
@@ -2007,296 +1879,609 @@
(-5 *1 (-1078 *3 *4 *2))
(-4 *4 (-13 (-1051) (-888 *3) (-615 (-894 *3))))))
((*1 *2 *1)
- (-12 (-4 *2 (-1102)) (-5 *1 (-1167 *2 *3)) (-4 *3 (-1102)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-559)) (-5 *2 (-1174 *3)) (-5 *1 (-41 *4 *3))
- (-4 *3
- (-13 (-365) (-303)
- (-10 -8 (-15 -1448 ((-1127 *4 (-613 $)) $))
- (-15 -1460 ((-1127 *4 (-613 $)) $))
- (-15 -4132 ($ (-1127 *4 (-613 $))))))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1102)))))
-(((*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1160)) (-5 *1 (-306)))))
-(((*1 *1 *1) (-5 *1 (-1065))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-648 *3)) (-4 *3 (-1102)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-365))
- (-5 *1 (-524 *2 *4 *5 *3)) (-4 *3 (-688 *2 *4 *5))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2))
- (|has| *2 (-6 (-4420 "*"))) (-4 *2 (-1051))))
+ (-12 (-4 *2 (-1102)) (-5 *1 (-1168 *2 *3)) (-4 *3 (-1102)))))
+(((*1 *1 *1 *1) (-4 *1 (-548))))
+(((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172))))
+ ((*1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-172)))))
+(((*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1219)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4)
+ (-12 (-5 *3 (-1161)) (-5 *5 (-690 (-225))) (-5 *6 (-225))
+ (-5 *7 (-690 (-567))) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-753)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1094 (-844 *3))) (-4 *3 (-13 (-1204) (-961) (-29 *5)))
+ (-4 *5 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567))))
+ (-5 *2
+ (-3 (|:| |f1| (-844 *3)) (|:| |f2| (-645 (-844 *3)))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-219 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1094 (-844 *3))) (-5 *5 (-1161))
+ (-4 *3 (-13 (-1204) (-961) (-29 *6)))
+ (-4 *6 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567))))
+ (-5 *2
+ (-3 (|:| |f1| (-844 *3)) (|:| |f2| (-645 (-844 *3)))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-219 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-1094 (-844 (-317 *5))))
+ (-4 *5 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567))))
+ (-5 *2
+ (-3 (|:| |f1| (-844 (-317 *5))) (|:| |f2| (-645 (-844 (-317 *5))))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-220 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-410 (-954 *6))) (-5 *4 (-1094 (-844 (-317 *6))))
+ (-5 *5 (-1161))
+ (-4 *6 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567))))
+ (-5 *2
+ (-3 (|:| |f1| (-844 (-317 *6))) (|:| |f2| (-645 (-844 (-317 *6))))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-220 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1094 (-844 (-410 (-954 *5))))) (-5 *3 (-410 (-954 *5)))
+ (-4 *5 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567))))
+ (-5 *2
+ (-3 (|:| |f1| (-844 (-317 *5))) (|:| |f2| (-645 (-844 (-317 *5))))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-220 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1094 (-844 (-410 (-954 *6))))) (-5 *5 (-1161))
+ (-5 *3 (-410 (-954 *6)))
+ (-4 *6 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567))))
+ (-5 *2
+ (-3 (|:| |f1| (-844 (-317 *6))) (|:| |f2| (-645 (-844 (-317 *6))))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-220 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1179))
+ (-4 *5 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567))))
+ (-5 *2 (-3 *3 (-645 *3))) (-5 *1 (-431 *5 *3))
+ (-4 *3 (-13 (-1204) (-961) (-29 *5)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1265 *4)) (-14 *4 (-1179)) (-5 *1 (-477 *3 *4 *5))
+ (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)) (-14 *5 *3)))
+ ((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1096 (-844 (-381))))
+ (-5 *5 (-381)) (-5 *6 (-1065)) (-5 *2 (-1037)) (-5 *1 (-568))))
+ ((*1 *2 *3) (-12 (-5 *3 (-770)) (-5 *2 (-1037)) (-5 *1 (-568))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1096 (-844 (-381))))
+ (-5 *5 (-381)) (-5 *2 (-1037)) (-5 *1 (-568))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1096 (-844 (-381))))
+ (-5 *5 (-381)) (-5 *2 (-1037)) (-5 *1 (-568))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1096 (-844 (-381))))
+ (-5 *2 (-1037)) (-5 *1 (-568))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-317 (-381))) (-5 *4 (-645 (-1096 (-844 (-381)))))
+ (-5 *2 (-1037)) (-5 *1 (-568))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-317 (-381))) (-5 *4 (-645 (-1096 (-844 (-381)))))
+ (-5 *5 (-381)) (-5 *2 (-1037)) (-5 *1 (-568))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-317 (-381))) (-5 *4 (-645 (-1096 (-844 (-381)))))
+ (-5 *5 (-381)) (-5 *2 (-1037)) (-5 *1 (-568))))
+ ((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-317 (-381))) (-5 *4 (-645 (-1096 (-844 (-381)))))
+ (-5 *5 (-381)) (-5 *6 (-1065)) (-5 *2 (-1037)) (-5 *1 (-568))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-317 (-381))) (-5 *4 (-1094 (-844 (-381))))
+ (-5 *5 (-1161)) (-5 *2 (-1037)) (-5 *1 (-568))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-317 (-381))) (-5 *4 (-1094 (-844 (-381))))
+ (-5 *5 (-1179)) (-5 *2 (-1037)) (-5 *1 (-568))))
((*1 *2 *3)
- (-12 (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-172))
- (-5 *1 (-689 *2 *4 *5 *3)) (-4 *3 (-688 *2 *4 *5))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1125 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2))
- (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4420 "*"))) (-4 *2 (-1051)))))
-(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-5 *1 (-738 *3))))
- ((*1 *1 *2) (-12 (-5 *1 (-738 *2)) (-4 *2 (-1102))))
- ((*1 *1) (-12 (-5 *1 (-738 *2)) (-4 *2 (-1102)))))
+ (-12 (-4 *4 (-13 (-365) (-147) (-1040 (-567)))) (-4 *5 (-1245 *4))
+ (-5 *2 (-588 (-410 *5))) (-5 *1 (-571 *4 *5)) (-5 *3 (-410 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-1179)) (-4 *5 (-147))
+ (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567))))
+ (-5 *2 (-3 (-317 *5) (-645 (-317 *5)))) (-5 *1 (-591 *5))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-741 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-851))
+ (-4 *3 (-38 (-410 (-567))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1179)) (-5 *1 (-954 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-4 *3 (-1051))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)) (-4 *2 (-851))
+ (-5 *1 (-1128 *3 *2 *4)) (-4 *4 (-951 *3 (-534 *2) *2))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051))
+ (-5 *1 (-1163 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1265 *4)) (-14 *4 (-1179)) (-5 *1 (-1170 *3 *4 *5))
+ (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1265 *4)) (-14 *4 (-1179)) (-5 *1 (-1176 *3 *4 *5))
+ (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1265 *4)) (-14 *4 (-1179)) (-5 *1 (-1177 *3 *4 *5))
+ (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)) (-14 *5 *3)))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1179)) (-5 *1 (-1213 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-4 *3 (-1051))))
+ ((*1 *1 *1 *2)
+ (-2811
+ (-12 (-5 *2 (-1179)) (-4 *1 (-1229 *3)) (-4 *3 (-1051))
+ (-12 (-4 *3 (-29 (-567))) (-4 *3 (-961)) (-4 *3 (-1204))
+ (-4 *3 (-38 (-410 (-567))))))
+ (-12 (-5 *2 (-1179)) (-4 *1 (-1229 *3)) (-4 *3 (-1051))
+ (-12 (|has| *3 (-15 -2859 ((-645 *2) *3)))
+ (|has| *3 (-15 -4083 (*3 *3 *2))) (-4 *3 (-38 (-410 (-567))))))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1051)) (-4 *2 (-38 (-410 (-567))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1265 *4)) (-14 *4 (-1179)) (-5 *1 (-1233 *3 *4 *5))
+ (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)) (-14 *5 *3)))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1051)) (-4 *2 (-38 (-410 (-567))))))
+ ((*1 *1 *1 *2)
+ (-2811
+ (-12 (-5 *2 (-1179)) (-4 *1 (-1250 *3)) (-4 *3 (-1051))
+ (-12 (-4 *3 (-29 (-567))) (-4 *3 (-961)) (-4 *3 (-1204))
+ (-4 *3 (-38 (-410 (-567))))))
+ (-12 (-5 *2 (-1179)) (-4 *1 (-1250 *3)) (-4 *3 (-1051))
+ (-12 (|has| *3 (-15 -2859 ((-645 *2) *3)))
+ (|has| *3 (-15 -4083 (*3 *3 *2))) (-4 *3 (-38 (-410 (-567))))))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1051)) (-4 *2 (-38 (-410 (-567))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1265 *4)) (-14 *4 (-1179)) (-5 *1 (-1254 *3 *4 *5))
+ (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-2811
+ (-12 (-5 *2 (-1179)) (-4 *1 (-1260 *3)) (-4 *3 (-1051))
+ (-12 (-4 *3 (-29 (-567))) (-4 *3 (-961)) (-4 *3 (-1204))
+ (-4 *3 (-38 (-410 (-567))))))
+ (-12 (-5 *2 (-1179)) (-4 *1 (-1260 *3)) (-4 *3 (-1051))
+ (-12 (|has| *3 (-15 -2859 ((-645 *2) *3)))
+ (|has| *3 (-15 -4083 (*3 *3 *2))) (-4 *3 (-38 (-410 (-567))))))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1260 *2)) (-4 *2 (-1051)) (-4 *2 (-38 (-410 (-567))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1265 *4)) (-14 *4 (-1179)) (-5 *1 (-1261 *3 *4 *5))
+ (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)) (-14 *5 *3))))
(((*1 *2 *1)
(|partial| -12 (-5 *2 (-1 (-539) (-645 (-539)))) (-5 *1 (-114))))
((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-539) (-645 (-539)))) (-5 *1 (-114))))
((*1 *1) (-5 *1 (-581))))
-(((*1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1271))))
- ((*1 *2 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1271)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470))))
- ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470)))))
-(((*1 *1) (-5 *1 (-1270))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-205))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-645 (-381))) (-5 *2 (-381)) (-5 *1 (-205)))))
+(((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-823)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-567)) (-4 *2 (-433 *3)) (-5 *1 (-32 *3 *2))
+ (-4 *3 (-1040 *4)) (-4 *3 (-559)))))
+(((*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-906 (-567))) (-5 *1 (-919))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919)))))
+(((*1 *2 *2) (|partial| -12 (-5 *2 (-317 (-225))) (-5 *1 (-268)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1212 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5))
+ (-5 *2 (-2 (|:| -4000 (-645 *6)) (|:| -3835 (-645 *6)))))))
+(((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-690 *11)) (-5 *4 (-645 (-410 (-954 *8))))
+ (-5 *5 (-772)) (-5 *6 (-1161)) (-4 *8 (-13 (-308) (-147)))
+ (-4 *11 (-951 *8 *10 *9)) (-4 *9 (-13 (-851) (-615 (-1179))))
+ (-4 *10 (-794))
+ (-5 *2
+ (-2
+ (|:| |rgl|
+ (-645
+ (-2 (|:| |eqzro| (-645 *11)) (|:| |neqzro| (-645 *11))
+ (|:| |wcond| (-645 (-954 *8)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1269 (-410 (-954 *8))))
+ (|:| -2144 (-645 (-1269 (-410 (-954 *8))))))))))
+ (|:| |rgsz| (-567))))
+ (-5 *1 (-926 *8 *9 *10 *11)) (-5 *7 (-567)))))
+(((*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-822)))))
(((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-1211 *3 *4 *5 *2)) (-4 *3 (-559))
- (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-317 *3)) (-4 *3 (-13 (-1051) (-851)))
- (-5 *1 (-223 *3 *4)) (-14 *4 (-645 (-1178))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-112)) (-4 *4 (-13 (-365) (-849))) (-5 *2 (-421 *3))
- (-5 *1 (-181 *4 *3)) (-4 *3 (-1244 (-169 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-365) (-849))) (-5 *2 (-421 *3))
- (-5 *1 (-181 *4 *3)) (-4 *3 (-1244 (-169 *4))))))
+ (-12 (-5 *2 (-645 (-52))) (-5 *1 (-894 *3)) (-4 *3 (-1102)))))
+(((*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-112)) (-5 *1 (-268)))))
+(((*1 *1) (-5 *1 (-440))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1178))
- (-4 *4 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147)))
- (-5 *2 (-1 *5 *5)) (-5 *1 (-805 *4 *5))
- (-4 *5 (-13 (-29 *4) (-1203) (-961))))))
-(((*1 *1 *2) (-12 (-5 *2 (-317 (-169 (-381)))) (-5 *1 (-331))))
- ((*1 *1 *2) (-12 (-5 *2 (-317 (-567))) (-5 *1 (-331))))
- ((*1 *1 *2) (-12 (-5 *2 (-317 (-381))) (-5 *1 (-331))))
- ((*1 *1 *2) (-12 (-5 *2 (-317 (-695))) (-5 *1 (-331))))
- ((*1 *1 *2) (-12 (-5 *2 (-317 (-702))) (-5 *1 (-331))))
- ((*1 *1 *2) (-12 (-5 *2 (-317 (-700))) (-5 *1 (-331))))
- ((*1 *1) (-5 *1 (-331))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1218)) (-5 *1 (-1134 *4 *2))
- (-4 *2 (-13 (-605 (-567) *4) (-10 -7 (-6 -4418) (-6 -4419))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-851)) (-4 *3 (-1218)) (-5 *1 (-1134 *3 *2))
- (-4 *2 (-13 (-605 (-567) *3) (-10 -7 (-6 -4418) (-6 -4419)))))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1102))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1102)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1158 (-645 (-567)))) (-5 *3 (-645 (-567)))
- (-5 *1 (-885)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-605 *2 *3)) (-4 *3 (-1218)) (-4 *2 (-1102))
- (-4 *2 (-851)))))
+ (-12 (-4 *4 (-13 (-365) (-1040 (-410 *2)))) (-5 *2 (-567))
+ (-5 *1 (-115 *4 *3)) (-4 *3 (-1245 *4)))))
(((*1 *2 *2) (|partial| -12 (-5 *2 (-317 (-225))) (-5 *1 (-306))))
((*1 *2 *1)
(|partial| -12
(-5 *2 (-2 (|:| |num| (-894 *3)) (|:| |den| (-894 *3))))
(-5 *1 (-894 *3)) (-4 *3 (-1102)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919))))
- ((*1 *2 *3) (-12 (-5 *3 (-973)) (-5 *2 (-906 (-567))) (-5 *1 (-919)))))
-(((*1 *2 *3)
- (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-567))) (-5 *1 (-1049)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-455))
- (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851))
- (-5 *1 (-979 *3 *4 *5 *6)))))
-(((*1 *2 *2 *3)
- (|partial| -12
- (-5 *3 (-645 (-2 (|:| |func| *2) (|:| |pole| (-112)))))
- (-4 *2 (-13 (-433 *4) (-1004))) (-4 *4 (-559))
- (-5 *1 (-277 *4 *2)))))
-(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-1174 (-954 *4))) (-5 *1 (-419 *3 *4))
- (-4 *3 (-420 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-4 *3 (-365))
- (-5 *2 (-1174 (-954 *3)))))
- ((*1 *2)
- (-12 (-5 *2 (-1174 (-410 (-954 *3)))) (-5 *1 (-456 *3 *4 *5 *6))
- (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923))
- (-14 *5 (-645 (-1178))) (-14 *6 (-1268 (-690 *3))))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4419)) (-4 *1 (-119 *2)) (-4 *2 (-1218)))))
-(((*1 *2 *2) (-12 (-5 *2 (-690 *3)) (-4 *3 (-308)) (-5 *1 (-701 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-645 (-567))) (-5 *2 (-1180 (-410 (-567))))
- (-5 *1 (-190)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470))))
- ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470)))))
-(((*1 *2)
- (-12 (-5 *2 (-410 (-954 *3))) (-5 *1 (-456 *3 *4 *5 *6))
- (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923))
- (-14 *5 (-645 (-1178))) (-14 *6 (-1268 (-690 *3))))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
- (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-3 (-112) (-645 *1)))
- (-4 *1 (-1073 *4 *5 *6 *3)))))
-(((*1 *2 *3 *4 *4 *5 *3)
- (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225))
- (-5 *2 (-1037)) (-5 *1 (-753)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1268 *5)) (-4 *5 (-793)) (-5 *2 (-112))
- (-5 *1 (-846 *4 *5)) (-14 *4 (-772)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *4 (-567)) (-5 *6 (-1 (-1273) (-1268 *5) (-1268 *5) (-381)))
- (-5 *3 (-1268 (-381))) (-5 *5 (-381)) (-5 *2 (-1273))
- (-5 *1 (-789))))
- ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3)
- (-12 (-5 *4 (-567)) (-5 *6 (-1 (-1273) (-1268 *5) (-1268 *5) (-381)))
- (-5 *3 (-1268 (-381))) (-5 *5 (-381)) (-5 *2 (-1273))
- (-5 *1 (-789)))))
-(((*1 *2 *1) (-12 (-5 *1 (-1213 *2)) (-4 *2 (-976)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-559)) (-5 *2 (-645 (-772))) (-5 *1 (-971 *4 *3))
- (-4 *3 (-1244 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1211 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794))
- (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-645 *6)))))
-(((*1 *2)
- (|partial| -12 (-4 *4 (-1222)) (-4 *5 (-1244 (-410 *2)))
- (-4 *2 (-1244 *4)) (-5 *1 (-343 *3 *4 *2 *5))
- (-4 *3 (-344 *4 *2 *5))))
- ((*1 *2)
- (|partial| -12 (-4 *1 (-344 *3 *2 *4)) (-4 *3 (-1222))
- (-4 *4 (-1244 (-410 *2))) (-4 *2 (-1244 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-559) (-1040 (-567)))) (-5 *1 (-188 *3 *2))
- (-4 *2 (-13 (-27) (-1203) (-433 (-169 *3))))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1178)) (-4 *4 (-13 (-559) (-1040 (-567))))
- (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1203) (-433 (-169 *4))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-455) (-1040 (-567)) (-640 (-567))))
- (-5 *1 (-1207 *3 *2)) (-4 *2 (-13 (-27) (-1203) (-433 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1178))
- (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567))))
- (-5 *1 (-1207 *4 *2)) (-4 *2 (-13 (-27) (-1203) (-433 *4))))))
-(((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-700))))
- ((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-700)))))
+ (-12 (-4 *3 (-13 (-455) (-1040 (-567)))) (-4 *3 (-559))
+ (-5 *1 (-41 *3 *2)) (-4 *2 (-433 *3))
+ (-4 *2
+ (-13 (-365) (-303)
+ (-10 -8 (-15 -1447 ((-1127 *3 (-613 $)) $))
+ (-15 -1462 ((-1127 *3 (-613 $)) $))
+ (-15 -4129 ($ (-1127 *3 (-613 $))))))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1204))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2))
- (-4 *2 (-13 (-433 *3) (-1203))))))
+ (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1204))))))
+(((*1 *2) (-12 (-5 *2 (-1135 (-225))) (-5 *1 (-1202)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-365)) (-4 *6 (-1245 (-410 *2)))
+ (-4 *2 (-1245 *5)) (-5 *1 (-215 *5 *2 *6 *3))
+ (-4 *3 (-344 *5 *2 *6)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-559))
+ (-5 *2 (-1175 *3)))))
+(((*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1272))))
+ ((*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1272)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-645 *1)) (-4 *1 (-1067 *4 *5 *6)) (-4 *4 (-1051))
+ (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1212 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1212 *4 *5 *6 *3)) (-4 *4 (-559)) (-4 *5 (-794))
+ (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1159 (-567))) (-5 *1 (-1006 *3)) (-14 *3 (-567)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037))
+ (-5 *1 (-756)))))
+(((*1 *2 *3 *1)
+ (-12 (|has| *1 (-6 -4422)) (-4 *1 (-605 *4 *3)) (-4 *4 (-1102))
+ (-4 *3 (-1219)) (-4 *3 (-1102)) (-5 *2 (-112)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1268 (-317 (-225))))
- (-5 *2
- (-2 (|:| |additions| (-567)) (|:| |multiplications| (-567))
- (|:| |exponentiations| (-567)) (|:| |functionCalls| (-567))))
- (-5 *1 (-306)))))
+ (-12 (|has| *2 (-6 (-4424 "*"))) (-4 *5 (-375 *2)) (-4 *6 (-375 *2))
+ (-4 *2 (-1051)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1245 *2))
+ (-4 *4 (-688 *2 *5 *6)))))
+(((*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548))))
+ ((*1 *1 *2) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-973)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-567)) (-4 *4 (-1245 (-410 *3))) (-5 *2 (-923))
+ (-5 *1 (-915 *4 *5)) (-4 *5 (-1245 (-410 *4))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1214 *3)) (-4 *3 (-976)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-645 (-1268 *5))) (-5 *4 (-567)) (-5 *2 (-1268 *5))
- (-5 *1 (-1031 *5)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1051)))))
-(((*1 *2 *1) (-12 (-5 *2 (-645 (-1178))) (-5 *1 (-826)))))
+ (-12 (-5 *3 (-1175 *2)) (-4 *2 (-951 (-410 (-954 *6)) *5 *4))
+ (-5 *1 (-733 *5 *4 *6 *2)) (-4 *5 (-794))
+ (-4 *4 (-13 (-851) (-10 -8 (-15 -3902 ((-1179) $)))))
+ (-4 *6 (-559)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1161)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-1274))
+ (-5 *1 (-1074 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1161)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-1274))
+ (-5 *1 (-1110 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-375 *3))
- (-4 *5 (-375 *3)) (-5 *2 (-567))))
+ (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3))
+ (-4 *5 (-375 *3)) (-5 *2 (-112))))
((*1 *2 *1)
(-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051))
- (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-567)))))
+ (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))))
+(((*1 *2 *1 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| -3554 *3) (|:| |coef1| (-783 *3)) (|:| |coef2| (-783 *3))))
+ (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1051)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-410 *4)) (-4 *4 (-1245 *3)) (-4 *3 (-13 (-365) (-147)))
+ (-5 *1 (-402 *3 *4)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1014)) (-5 *2 (-863)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1102)))))
+(((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4423)) (-4 *1 (-1257 *2)) (-4 *2 (-1219)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-690 (-410 (-567))))
+ (-5 *2
+ (-645
+ (-2 (|:| |outval| *4) (|:| |outmult| (-567))
+ (|:| |outvect| (-645 (-690 *4))))))
+ (-5 *1 (-780 *4)) (-4 *4 (-13 (-365) (-849))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-645 (-645 (-645 *4)))) (-5 *2 (-645 (-645 *4)))
+ (-4 *4 (-851)) (-5 *1 (-1190 *4)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))))
+(((*1 *2 *1 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| -3705 *3) (|:| |gap| (-772)) (|:| -2654 (-783 *3))
+ (|:| -2023 (-783 *3))))
+ (-5 *1 (-783 *3)) (-4 *3 (-1051))))
+ ((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *3 (-851))
+ (-5 *2
+ (-2 (|:| -3705 *1) (|:| |gap| (-772)) (|:| -2654 *1)
+ (|:| -2023 *1)))
+ (-4 *1 (-1067 *4 *5 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851))
+ (-5 *2
+ (-2 (|:| -3705 *1) (|:| |gap| (-772)) (|:| -2654 *1)
+ (|:| -2023 *1)))
+ (-4 *1 (-1067 *3 *4 *5)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1142 *3 *4)) (-4 *3 (-13 (-1102) (-34)))
- (-4 *4 (-13 (-1102) (-34))))))
-(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1270))))
- ((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1270)))))
+ (-12 (-5 *2 (-945 *4)) (-4 *4 (-1051)) (-5 *1 (-1167 *3 *4))
+ (-14 *3 (-923)))))
(((*1 *1 *1)
(-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794))
(-4 *4 (-851)))))
-(((*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-157))))
- ((*1 *2 *3) (-12 (-5 *3 (-945 *2)) (-5 *1 (-984 *2)) (-4 *2 (-1051)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-509)) (-5 *3 (-645 (-967))) (-5 *1 (-292)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-13 (-365) (-147)))
- (-5 *2 (-645 (-2 (|:| -3458 (-772)) (|:| -2166 *4) (|:| |num| *4))))
- (-5 *1 (-402 *3 *4)) (-4 *4 (-1244 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-559))
+ (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 (-1282 *4 *5 *6 *7)))
+ (-5 *1 (-1282 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-645 *9)) (-5 *4 (-1 (-112) *9 *9))
+ (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1067 *6 *7 *8)) (-4 *6 (-559))
+ (-4 *7 (-794)) (-4 *8 (-851)) (-5 *2 (-645 (-1282 *6 *7 *8 *9)))
+ (-5 *1 (-1282 *6 *7 *8 *9)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-645 *2)) (-5 *1 (-179 *2)) (-4 *2 (-308))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *3 (-645 (-645 *4))) (-5 *2 (-645 *4)) (-4 *4 (-308))
+ (-5 *1 (-179 *4))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-645 *8))
+ (-5 *4
+ (-645
+ (-2 (|:| -2144 (-690 *7)) (|:| |basisDen| *7)
+ (|:| |basisInv| (-690 *7)))))
+ (-5 *5 (-772)) (-4 *8 (-1245 *7)) (-4 *7 (-1245 *6)) (-4 *6 (-351))
+ (-5 *2
+ (-2 (|:| -2144 (-690 *7)) (|:| |basisDen| *7)
+ (|:| |basisInv| (-690 *7))))
+ (-5 *1 (-501 *6 *7 *8))))
+ ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))))
+(((*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-134)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-2 (|:| -3812 *4) (|:| -1772 (-567)))))
+ (-4 *4 (-1102)) (-5 *2 (-1 *4)) (-5 *1 (-1019 *4)))))
+(((*1 *2 *3 *4 *4 *5)
+ (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-645 *3))
+ (-4 *3 (-13 (-433 *6) (-27) (-1204)))
+ (-4 *6 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-569 *6 *3 *7)) (-4 *7 (-1102)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-690 (-410 (-954 (-567)))))
+ (-5 *2
+ (-645
+ (-2 (|:| |radval| (-317 (-567))) (|:| |radmult| (-567))
+ (|:| |radvect| (-645 (-690 (-317 (-567))))))))
+ (-5 *1 (-1033)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-772)) (-5 *1 (-676 *3)) (-4 *3 (-1051))
+ (-4 *3 (-1102)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-559) (-1040 (-567)) (-640 (-567))))
+ (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-27) (-1204) (-433 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1179))
+ (-4 *4 (-13 (-559) (-1040 (-567)) (-640 (-567))))
+ (-5 *1 (-278 *4 *2)) (-4 *2 (-13 (-27) (-1204) (-433 *4))))))
+(((*1 *2 *1) (-12 (-5 *2 (-775)) (-5 *1 (-52)))))
(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
(-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381))
(-5 *2
- (-2 (|:| -3802 *4) (|:| -2058 *4) (|:| |totalpts| (-567))
+ (-2 (|:| -3812 *4) (|:| -2069 *4) (|:| |totalpts| (-567))
(|:| |success| (-112))))
(-5 *1 (-790)) (-5 *5 (-567)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134)))))
-(((*1 *2 *3)
- (-12 (-4 *2 (-1244 *4)) (-5 *1 (-810 *4 *2 *3 *5))
- (-4 *4 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *3 (-657 *2))
- (-4 *5 (-657 (-410 *2))))))
-(((*1 *2 *1 *2)
- (-12 (-4 *1 (-366 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1102)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-351)) (-4 *2 (-1051)) (-5 *1 (-713 *2 *3))
- (-4 *3 (-1244 *2)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-1051)) (-5 *1 (-447 *3 *2)) (-4 *2 (-1244 *3)))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3)
- (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-112))
- (-5 *2 (-1037)) (-5 *1 (-754)))))
-(((*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-225)) (-5 *1 (-306)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-645 (-613 *5))) (-5 *3 (-1178)) (-4 *5 (-433 *4))
- (-4 *4 (-1102)) (-5 *1 (-576 *4 *5)))))
-(((*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1203))))))
-(((*1 *2 *1) (-12 (-5 *2 (-775)) (-5 *1 (-52)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-1178)))))
-(((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
- ((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3))))
- ((*1 *1 *1) (-4 *1 (-1141))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *2 (-645 (-1179))) (-5 *1 (-1182)) (-5 *3 (-1179)))))
(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-863) (-863))) (-5 *1 (-114))))
((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-863) (-645 (-863)))) (-5 *1 (-114))))
((*1 *2 *1)
(|partial| -12 (-5 *2 (-1 (-863) (-645 (-863)))) (-5 *1 (-114))))
((*1 *2 *1)
- (-12 (-5 *2 (-1273)) (-5 *1 (-214 *3))
+ (-12 (-5 *2 (-1274)) (-5 *1 (-214 *3))
(-4 *3
(-13 (-851)
- (-10 -8 (-15 -1787 ((-1160) $ (-1178))) (-15 -4022 (*2 $))
- (-15 -1345 (*2 $)))))))
- ((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-397))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *2 (-1273)) (-5 *1 (-397))))
- ((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-505))))
- ((*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-711))))
- ((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-1198))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *2 (-1273)) (-5 *1 (-1198)))))
+ (-10 -8 (-15 -1801 ((-1161) $ (-1179))) (-15 -4025 (*2 $))
+ (-15 -3657 (*2 $)))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-397))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *2 (-1274)) (-5 *1 (-397))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-505))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-711))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-1199))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *2 (-1274)) (-5 *1 (-1199)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-645 (-2 (|:| |integrand| *3) (|:| |intvar| *3))))
+ (-5 *1 (-588 *3)) (-4 *3 (-365)))))
+(((*1 *2 *3 *3 *3 *4 *5 *6)
+ (-12 (-5 *3 (-317 (-567))) (-5 *4 (-1 (-225) (-225)))
+ (-5 *5 (-1096 (-225))) (-5 *6 (-645 (-264))) (-5 *2 (-1135 (-225)))
+ (-5 *1 (-698)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-645 *1)) (-5 *3 (-645 *7)) (-4 *1 (-1073 *4 *5 *6 *7))
- (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
- (-4 *7 (-1067 *4 *5 *6))))
- ((*1 *2 *3 *1)
+ (-12 (-5 *2 (-1 (-945 (-225)) (-945 (-225)))) (-5 *3 (-645 (-264)))
+ (-5 *1 (-262))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-945 (-225)) (-945 (-225)))) (-5 *1 (-264))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-645 (-484 *5 *6))) (-5 *3 (-484 *5 *6))
+ (-14 *5 (-645 (-1179))) (-4 *6 (-455)) (-5 *2 (-1269 *6))
+ (-5 *1 (-632 *5 *6)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-4 *1 (-611 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1102)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-530)) (-5 *3 (-128)) (-5 *2 (-772)))))
+(((*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-1179)))))
+(((*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-359 *3)) (-4 *3 (-351)))))
+(((*1 *1 *1 *2 *1)
+ (-12 (-5 *2 (-567)) (-5 *1 (-1159 *3)) (-4 *3 (-1219))))
+ ((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4423)) (-4 *1 (-1257 *2)) (-4 *2 (-1219)))))
+(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-258)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-990 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1109 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-308))))
+ ((*1 *2 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-308))))
+ ((*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-559)) (-4 *2 (-308))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1062)) (-5 *2 (-567)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-484 *4 *5)) (-14 *4 (-645 (-1179))) (-4 *5 (-1051))
+ (-5 *2 (-247 *4 *5)) (-5 *1 (-946 *4 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-945 *2)) (-5 *1 (-984 *2)) (-4 *2 (-1051)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-645 (-1179))) (-4 *5 (-455))
+ (-5 *2 (-484 *4 *5)) (-5 *1 (-632 *4 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-1051)) (-4 *4 (-1245 *3)) (-5 *1 (-164 *3 *4 *2))
+ (-4 *2 (-1245 *4))))
+ ((*1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1219)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-772)) (-5 *1 (-59 *3)) (-4 *3 (-1219))))
+ ((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1219)) (-5 *1 (-59 *3)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-5 *1 (-1163 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1261 *2 *3 *4)) (-4 *2 (-1051)) (-14 *3 (-1179))
+ (-14 *4 *2))))
+(((*1 *2 *1 *2) (-12 (-5 *1 (-1028 *2)) (-4 *2 (-1219)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1204))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1159 (-645 (-567)))) (-5 *3 (-645 (-567)))
+ (-5 *1 (-885)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1219)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-559)) (-5 *2 (-645 (-772))) (-5 *1 (-971 *4 *3))
+ (-4 *3 (-1245 *4)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-567)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 (-772)) (-4 *5 (-172))))
+ ((*1 *1 *1 *2 *1 *2)
+ (-12 (-5 *2 (-567)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 (-772)) (-4 *5 (-172))))
+ ((*1 *2 *2 *3)
+ (-12
+ (-5 *2
+ (-507 (-410 (-567)) (-240 *5 (-772)) (-865 *4)
+ (-247 *4 (-410 (-567)))))
+ (-5 *3 (-645 (-865 *4))) (-14 *4 (-645 (-1179))) (-14 *5 (-772))
+ (-5 *1 (-508 *4 *5)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-1270))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-1271)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1204))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))))
+(((*1 *1 *1 *1) (-4 *1 (-476))) ((*1 *1 *1 *1) (-4 *1 (-762))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037))
+ (-5 *1 (-756)))))
+(((*1 *2 *3 *3)
(-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455))
- (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *1))
- (-4 *1 (-1073 *4 *5 *6 *7))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-645 *1)) (-4 *1 (-1073 *4 *5 *6 *3)) (-4 *4 (-455))
- (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6))))
+ (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112))
+ (-5 *1 (-990 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-5 *2 (-112))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455))
+ (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112))
+ (-5 *1 (-1109 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1212 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-112)))))
+(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1175 (-410 (-567)))) (-5 *1 (-944)) (-5 *3 (-567)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1204))))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1073 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794))
+ (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-112))))
((*1 *2 *3 *1)
(-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
- (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-645 *1))
+ (-4 *3 (-1067 *4 *5 *6))
+ (-5 *2 (-645 (-2 (|:| |val| (-112)) (|:| -2575 *1))))
(-4 *1 (-1073 *4 *5 *6 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2951 *4)))
- (-5 *1 (-971 *4 *3)) (-4 *3 (-1244 *4)))))
(((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-611 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1102)))))
+ (-12 (-4 *1 (-1073 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794))
+ (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-1219)) (-5 *1 (-874 *3 *2)) (-4 *3 (-1219))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1219)))))
+(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1271))))
+ ((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1271)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-645 (-2 (|:| |gen| *3) (|:| -3955 *4))))
+ (-4 *3 (-1102)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-650 *3 *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-295 (-844 *3))) (-4 *3 (-13 (-27) (-1204) (-433 *5)))
+ (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567))))
+ (-5 *2
+ (-3 (-844 *3)
+ (-2 (|:| |leftHandLimit| (-3 (-844 *3) "failed"))
+ (|:| |rightHandLimit| (-3 (-844 *3) "failed")))
+ "failed"))
+ (-5 *1 (-637 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-295 *3)) (-5 *5 (-1161))
+ (-4 *3 (-13 (-27) (-1204) (-433 *6)))
+ (-4 *6 (-13 (-455) (-1040 (-567)) (-640 (-567))))
+ (-5 *2 (-844 *3)) (-5 *1 (-637 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-295 (-844 (-954 *5)))) (-4 *5 (-455))
+ (-5 *2
+ (-3 (-844 (-410 (-954 *5)))
+ (-2 (|:| |leftHandLimit| (-3 (-844 (-410 (-954 *5))) "failed"))
+ (|:| |rightHandLimit| (-3 (-844 (-410 (-954 *5))) "failed")))
+ "failed"))
+ (-5 *1 (-638 *5)) (-5 *3 (-410 (-954 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-295 (-410 (-954 *5)))) (-5 *3 (-410 (-954 *5)))
+ (-4 *5 (-455))
+ (-5 *2
+ (-3 (-844 *3)
+ (-2 (|:| |leftHandLimit| (-3 (-844 *3) "failed"))
+ (|:| |rightHandLimit| (-3 (-844 *3) "failed")))
+ "failed"))
+ (-5 *1 (-638 *5))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-295 (-410 (-954 *6)))) (-5 *5 (-1161))
+ (-5 *3 (-410 (-954 *6))) (-4 *6 (-455)) (-5 *2 (-844 *3))
+ (-5 *1 (-638 *6)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-645 (-295 *4))) (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851))
+ (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-923)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1174 *4)) (-4 *4 (-351))
- (-4 *2
- (-13 (-405)
- (-10 -7 (-15 -4132 (*2 *4)) (-15 -4249 ((-923) *2))
- (-15 -2623 ((-1268 *2) (-923))) (-15 -3253 (*2 *2)))))
- (-5 *1 (-358 *2 *4)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1180 (-410 (-567)))) (-5 *1 (-190)))))
-(((*1 *2 *1) (-12 (-4 *1 (-557 *2)) (-4 *2 (-13 (-407) (-1203)))))
- ((*1 *1 *1 *1) (-4 *1 (-794))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-645 (-1178)))
- (-14 *4 (-645 (-1178))) (-4 *5 (-390))))
- ((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-645 (-1178)))
- (-14 *4 (-645 (-1178))) (-4 *5 (-390)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1051)) (-4 *2 (-365))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-365)) (-5 *1 (-660 *4 *2))
- (-4 *2 (-657 *4)))))
+ (-12 (-4 *4 (-351)) (-5 *2 (-421 (-1175 (-1175 *4))))
+ (-5 *1 (-1217 *4)) (-5 *3 (-1175 (-1175 *4))))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794))
+ (-4 *4 (-851))))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1212 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5)))))
+(((*1 *2 *2) (-12 (-5 *1 (-683 *2)) (-4 *2 (-1102)))))
+(((*1 *2 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-308)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1268 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172))
+ (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172))
(-5 *2 (-645 (-954 *4)))))
((*1 *2)
(-12 (-4 *4 (-172)) (-5 *2 (-645 (-954 *4))) (-5 *1 (-419 *3 *4))
@@ -2306,528 +2491,289 @@
((*1 *2)
(-12 (-5 *2 (-645 (-954 *3))) (-5 *1 (-456 *3 *4 *5 *6))
(-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923))
- (-14 *5 (-645 (-1178))) (-14 *6 (-1268 (-690 *3)))))
+ (-14 *5 (-645 (-1179))) (-14 *6 (-1269 (-690 *3)))))
((*1 *2 *3)
- (-12 (-5 *3 (-1268 (-456 *4 *5 *6 *7))) (-5 *2 (-645 (-954 *4)))
+ (-12 (-5 *3 (-1269 (-456 *4 *5 *6 *7))) (-5 *2 (-645 (-954 *4)))
(-5 *1 (-456 *4 *5 *6 *7)) (-4 *4 (-559)) (-4 *4 (-172))
- (-14 *5 (-923)) (-14 *6 (-645 (-1178))) (-14 *7 (-1268 (-690 *4))))))
-(((*1 *2 *2) (-12 (-5 *2 (-1122)) (-5 *1 (-331)))))
-(((*1 *1) (-5 *1 (-130))))
-(((*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))))
-(((*1 *2 *3 *4 *3 *3)
- (-12 (-5 *3 (-295 *6)) (-5 *4 (-114)) (-4 *6 (-433 *5))
- (-4 *5 (-13 (-559) (-615 (-539)))) (-5 *2 (-52))
- (-5 *1 (-318 *5 *6))))
- ((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-295 *7)) (-5 *4 (-114)) (-5 *5 (-645 *7))
- (-4 *7 (-433 *6)) (-4 *6 (-13 (-559) (-615 (-539)))) (-5 *2 (-52))
- (-5 *1 (-318 *6 *7))))
- ((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-645 (-295 *7))) (-5 *4 (-645 (-114))) (-5 *5 (-295 *7))
- (-4 *7 (-433 *6)) (-4 *6 (-13 (-559) (-615 (-539)))) (-5 *2 (-52))
- (-5 *1 (-318 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-645 (-295 *8))) (-5 *4 (-645 (-114))) (-5 *5 (-295 *8))
- (-5 *6 (-645 *8)) (-4 *8 (-433 *7))
- (-4 *7 (-13 (-559) (-615 (-539)))) (-5 *2 (-52))
- (-5 *1 (-318 *7 *8))))
- ((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-645 *7)) (-5 *4 (-645 (-114))) (-5 *5 (-295 *7))
- (-4 *7 (-433 *6)) (-4 *6 (-13 (-559) (-615 (-539)))) (-5 *2 (-52))
- (-5 *1 (-318 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 (-114))) (-5 *6 (-645 (-295 *8)))
- (-4 *8 (-433 *7)) (-5 *5 (-295 *8))
- (-4 *7 (-13 (-559) (-615 (-539)))) (-5 *2 (-52))
- (-5 *1 (-318 *7 *8))))
- ((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-295 *5)) (-5 *4 (-114)) (-4 *5 (-433 *6))
- (-4 *6 (-13 (-559) (-615 (-539)))) (-5 *2 (-52))
- (-5 *1 (-318 *6 *5))))
- ((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-114)) (-5 *5 (-295 *3)) (-4 *3 (-433 *6))
- (-4 *6 (-13 (-559) (-615 (-539)))) (-5 *2 (-52))
- (-5 *1 (-318 *6 *3))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-114)) (-5 *5 (-295 *3)) (-4 *3 (-433 *6))
- (-4 *6 (-13 (-559) (-615 (-539)))) (-5 *2 (-52))
- (-5 *1 (-318 *6 *3))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-114)) (-5 *5 (-295 *3)) (-5 *6 (-645 *3))
- (-4 *3 (-433 *7)) (-4 *7 (-13 (-559) (-615 (-539)))) (-5 *2 (-52))
- (-5 *1 (-318 *7 *3)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1268 *4)) (-4 *4 (-640 *5)) (-4 *5 (-365))
- (-4 *5 (-559)) (-5 *2 (-1268 *5)) (-5 *1 (-639 *5 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1268 *4)) (-4 *4 (-640 *5))
- (-1657 (-4 *5 (-365))) (-4 *5 (-559)) (-5 *2 (-1268 (-410 *5)))
- (-5 *1 (-639 *5 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-317 (-225))) (-5 *1 (-210)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-365))
- (-5 *2
- (-2 (|:| A (-690 *5))
- (|:| |eqs|
- (-645
- (-2 (|:| C (-690 *5)) (|:| |g| (-1268 *5)) (|:| -3845 *6)
- (|:| |rh| *5))))))
- (-5 *1 (-814 *5 *6)) (-5 *3 (-690 *5)) (-5 *4 (-1268 *5))
- (-4 *6 (-657 *5))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-365)) (-4 *6 (-657 *5))
- (-5 *2 (-2 (|:| -2316 (-690 *6)) (|:| |vec| (-1268 *5))))
- (-5 *1 (-814 *5 *6)) (-5 *3 (-690 *6)) (-5 *4 (-1268 *5)))))
-(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1063 (-1026 *4) (-1174 (-1026 *4)))) (-5 *3 (-863))
- (-5 *1 (-1026 *4)) (-4 *4 (-13 (-849) (-365) (-1024))))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))))
-(((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-772)) (-4 *5 (-365)) (-5 *2 (-410 *6))
- (-5 *1 (-868 *5 *4 *6)) (-4 *4 (-1259 *5)) (-4 *6 (-1244 *5))))
- ((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-772)) (-5 *4 (-1260 *5 *6 *7)) (-4 *5 (-365))
- (-14 *6 (-1178)) (-14 *7 *5) (-5 *2 (-410 (-1241 *6 *5)))
- (-5 *1 (-869 *5 *6 *7))))
- ((*1 *2 *3 *3 *4)
- (|partial| -12 (-5 *3 (-772)) (-5 *4 (-1260 *5 *6 *7)) (-4 *5 (-365))
- (-14 *6 (-1178)) (-14 *7 *5) (-5 *2 (-410 (-1241 *6 *5)))
- (-5 *1 (-869 *5 *6 *7)))))
-(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3)
- (-12 (-5 *5 (-690 (-225))) (-5 *6 (-690 (-567))) (-5 *3 (-567))
- (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-753)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1268 *1)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222))
- (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))))))
-(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-851)) (-5 *1 (-121 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1256 *2)) (-4 *2 (-1218)))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-772)) (-4 *1 (-1244 *3)) (-4 *3 (-1051)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3)
- (-12 (-5 *4 (-690 (-225))) (-5 *5 (-690 (-567))) (-5 *6 (-225))
- (-5 *3 (-567)) (-5 *2 (-1037)) (-5 *1 (-753)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171))))
- ((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-1269))))
- ((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-1270)))))
+ (-14 *5 (-923)) (-14 *6 (-645 (-1179))) (-14 *7 (-1269 (-690 *4))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-5 *1 (-1002 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-365)) (-5 *2 (-645 *3)) (-5 *1 (-947 *4 *3))
+ (-4 *3 (-1245 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-645 *2)) (-4 *2 (-433 *4)) (-5 *1 (-158 *4 *2))
+ (-4 *4 (-559)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-5 *1 (-1162 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1260 *2 *3 *4)) (-4 *2 (-1051)) (-14 *3 (-1178))
- (-14 *4 *2))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-772)) (-4 *1 (-1244 *3)) (-4 *3 (-1051)))))
+ (-12 (-4 *3 (-13 (-559) (-1040 (-567)))) (-5 *1 (-188 *3 *2))
+ (-4 *2 (-13 (-27) (-1204) (-433 (-169 *3))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-455) (-1040 (-567)) (-640 (-567))))
+ (-5 *1 (-1208 *3 *2)) (-4 *2 (-13 (-27) (-1204) (-433 *3))))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1096 (-225)))
+ (-5 *5 (-112)) (-5 *2 (-1271)) (-5 *1 (-258)))))
(((*1 *2)
- (-12 (-4 *3 (-1222)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4)))
- (-5 *2 (-1268 *1)) (-4 *1 (-344 *3 *4 *5)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1158 *2)) (-4 *2 (-308)) (-5 *1 (-174 *2)))))
-(((*1 *1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))))
+ (-12 (-5 *2 (-1274)) (-5 *1 (-1196 *3 *4)) (-4 *3 (-1102))
+ (-4 *4 (-1102)))))
+(((*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-359 *3)) (-4 *3 (-351)))))
+(((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928)))))
+(((*1 *1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1179)) (-5 *3 (-112)) (-5 *1 (-894 *4))
+ (-4 *4 (-1102)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -3554 *3) (|:| |coef1| (-783 *3))))
+ (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1051)))))
+(((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4))
+ (-4 *3 (-369 *4))))
+ ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-559)) (-4 *2 (-548))))
+ ((*1 *1 *1) (-4 *1 (-1062))))
(((*1 *2 *2 *2)
- (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567)))))))
- (-5 *1 (-1130 *3 *2)) (-4 *3 (-1244 *2)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1014)) (-5 *2 (-863)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1122)) (-5 *1 (-331)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1218)) (-4 *3 (-375 *2))
- (-4 *4 (-375 *2))))
- ((*1 *1 *1 *2)
- (-12 (|has| *1 (-6 -4419)) (-4 *1 (-605 *3 *2)) (-4 *3 (-1102))
- (-4 *2 (-1218)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-433 *3) (-1004))))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-1218)) (-5 *1 (-874 *3 *2)) (-4 *3 (-1218))))
- ((*1 *2 *1) (-12 (-4 *1 (-1256 *2)) (-4 *2 (-1218)))))
-(((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *3 (-851))
- (-5 *2 (-2 (|:| -3694 *1) (|:| |gap| (-772)) (|:| -4194 *1)))
- (-4 *1 (-1067 *4 *5 *3))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851))
- (-5 *2 (-2 (|:| -3694 *1) (|:| |gap| (-772)) (|:| -4194 *1)))
- (-4 *1 (-1067 *3 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-645 (-484 *4 *5))) (-14 *4 (-645 (-1178)))
- (-4 *5 (-455))
- (-5 *2
- (-2 (|:| |gblist| (-645 (-247 *4 *5)))
- (|:| |gvlist| (-645 (-567)))))
- (-5 *1 (-632 *4 *5)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7)
- (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *5 (-1160))
- (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-82 PDEF))))
- (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1037))
- (-5 *1 (-751)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1178)) (-5 *5 (-645 *3))
- (-4 *3 (-13 (-27) (-1203) (-433 *6)))
- (-4 *6 (-13 (-455) (-147) (-1040 (-567)) (-640 (-567))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-560 *6 *3)))))
-(((*1 *2 *2) (-12 (-5 *1 (-683 *2)) (-4 *2 (-1102)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-945 *3) (-945 *3))) (-5 *1 (-176 *3))
- (-4 *3 (-13 (-365) (-1203) (-1004))))))
-(((*1 *1) (-5 *1 (-141))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
- (-12 (-5 *3 (-567)) (-5 *4 (-112)) (-5 *5 (-690 (-169 (-225))))
- (-5 *2 (-1037)) (-5 *1 (-756)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1283 (-1178) *3)) (-4 *3 (-1051)) (-5 *1 (-1290 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1283 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051))
- (-5 *1 (-1292 *3 *4)))))
-(((*1 *1 *1) (-5 *1 (-1065))))
-(((*1 *1 *1) (|partial| -4 *1 (-1153))))
-(((*1 *1 *1) (-5 *1 (-225))) ((*1 *1 *1) (-5 *1 (-381)))
- ((*1 *1) (-5 *1 (-381))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-645 (-2 (|:| |deg| (-772)) (|:| -2424 *5))))
- (-4 *5 (-1244 *4)) (-4 *4 (-351)) (-5 *2 (-645 *5))
- (-5 *1 (-216 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-645 (-2 (|:| -2706 *5) (|:| -3077 (-567)))))
- (-5 *4 (-567)) (-4 *5 (-1244 *4)) (-5 *2 (-645 *5))
- (-5 *1 (-697 *5)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-559) (-1040 (-567)))) (-4 *5 (-433 *4))
- (-5 *2
- (-3 (|:| |overq| (-1174 (-410 (-567))))
- (|:| |overan| (-1174 (-48))) (|:| -3668 (-112))))
- (-5 *1 (-438 *4 *5 *3)) (-4 *3 (-1244 *5)))))
-(((*1 *2 *3 *1 *4)
- (-12 (-5 *3 (-1142 *5 *6)) (-5 *4 (-1 (-112) *6 *6))
- (-4 *5 (-13 (-1102) (-34))) (-4 *6 (-13 (-1102) (-34)))
- (-5 *2 (-112)) (-5 *1 (-1143 *5 *6)))))
-(((*1 *2 *3 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1244 *5))
- (-4 *5 (-13 (-365) (-147) (-1040 (-567))))
- (-5 *2
- (-2 (|:| |a| *6) (|:| |b| (-410 *6)) (|:| |h| *6)
- (|:| |c1| (-410 *6)) (|:| |c2| (-410 *6)) (|:| -2087 *6)))
- (-5 *1 (-1018 *5 *6)) (-5 *3 (-410 *6)))))
-(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1049)))))
+ (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-147))
+ (-4 *3 (-308)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851))
+ (-5 *1 (-979 *3 *4 *5 *6)))))
+(((*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1269 *1)) (-4 *1 (-369 *3)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-1268 *3)) (-4 *3 (-1051)) (-5 *1 (-713 *3 *4))
- (-4 *4 (-1244 *3)))))
-(((*1 *2 *3 *3 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-1 (-225) (-225) (-225)))
- (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined"))
- (-5 *5 (-1096 (-225))) (-5 *6 (-645 (-264))) (-5 *2 (-1135 (-225)))
- (-5 *1 (-698))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-945 (-225)) (-225) (-225))) (-5 *4 (-1096 (-225)))
- (-5 *5 (-645 (-264))) (-5 *2 (-1135 (-225))) (-5 *1 (-698))))
- ((*1 *2 *2 *3 *4 *4 *5)
- (-12 (-5 *2 (-1135 (-225))) (-5 *3 (-1 (-945 (-225)) (-225) (-225)))
- (-5 *4 (-1096 (-225))) (-5 *5 (-645 (-264))) (-5 *1 (-698)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1174 *7)) (-4 *5 (-1051))
- (-4 *7 (-1051)) (-4 *2 (-1244 *5)) (-5 *1 (-504 *5 *2 *6 *7))
- (-4 *6 (-1244 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1051)) (-4 *7 (-1051))
- (-4 *4 (-1244 *5)) (-5 *2 (-1174 *7)) (-5 *1 (-504 *5 *4 *6 *7))
- (-4 *6 (-1244 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-645 (-945 (-225)))) (-5 *1 (-1269)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-559) (-1040 (-567)))) (-4 *5 (-433 *4))
- (-5 *2 (-421 *3)) (-5 *1 (-438 *4 *5 *3)) (-4 *3 (-1244 *5)))))
+ (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-1102)) (-5 *1 (-1191 *3)))))
+(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-589 *3)) (-4 *3 (-548)))))
+(((*1 *1 *1 *2 *2)
+ (|partial| -12 (-5 *2 (-923)) (-5 *1 (-1103 *3 *4)) (-14 *3 *2)
+ (-14 *4 *2))))
(((*1 *2 *1)
- (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-559))
- (-5 *2 (-1174 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-645 *2)) (-4 *2 (-433 *4)) (-5 *1 (-158 *4 *2))
- (-4 *4 (-559)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-772)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851))
- (-4 *3 (-1067 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-645 *4))
- (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2566 *4))))))
- (-5 *1 (-1071 *6 *7 *8 *3 *4)) (-4 *4 (-1073 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
- (-4 *3 (-1067 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-645 *4))
- (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2566 *4))))))
- (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-772)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851))
- (-4 *3 (-1067 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-645 *4))
- (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2566 *4))))))
- (-5 *1 (-1147 *6 *7 *8 *3 *4)) (-4 *4 (-1111 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
- (-4 *3 (-1067 *5 *6 *7))
+ (-12 (-5 *2 (-2 (|:| |var| (-645 (-1179))) (|:| |pred| (-52))))
+ (-5 *1 (-894 *3)) (-4 *3 (-1102)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037))
+ (-5 *1 (-748)))))
+(((*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-550))))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1196 *3 *4)) (-4 *3 (-1102))
+ (-4 *4 (-1102)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1245 *4)) (-4 *4 (-1223))
+ (-4 *6 (-1245 (-410 *5)))
(-5 *2
- (-2 (|:| |done| (-645 *4))
- (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2566 *4))))))
- (-5 *1 (-1147 *5 *6 *7 *3 *4)) (-4 *4 (-1111 *5 *6 *7 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))))
-(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1178)) (-4 *4 (-455)) (-4 *4 (-1102))
- (-5 *1 (-576 *4 *2)) (-4 *2 (-285)) (-4 *2 (-433 *4)))))
+ (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5)
+ (|:| |gd| *5)))
+ (-4 *1 (-344 *4 *5 *6)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1161)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-1274))
+ (-5 *1 (-1074 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1161)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-1274))
+ (-5 *1 (-1110 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
- (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 *4))
- (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-1122)) (-5 *1 (-532)))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6)
- (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *5 (-225))
- (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1037))
- (-5 *1 (-750)))))
-(((*1 *1 *2) (-12 (-5 *2 (-645 (-381))) (-5 *1 (-264))))
- ((*1 *1)
- (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-559)) (-4 *2 (-172))))
- ((*1 *2 *1) (-12 (-5 *1 (-421 *2)) (-4 *2 (-559)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-863))))
- ((*1 *1 *1) (-5 *1 (-863))))
-(((*1 *2 *1) (-12 (-4 *1 (-559)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-317 (-225))) (-5 *4 (-1178))
- (-5 *5 (-1096 (-844 (-225)))) (-5 *2 (-645 (-225))) (-5 *1 (-192))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-317 (-225))) (-5 *4 (-1178))
- (-5 *5 (-1096 (-844 (-225)))) (-5 *2 (-645 (-225))) (-5 *1 (-301)))))
+ (-12 (-5 *3 (-822)) (-5 *4 (-52)) (-5 *2 (-1274)) (-5 *1 (-832)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-509)) (-5 *2 (-645 (-967))) (-5 *1 (-292)))))
(((*1 *1 *2)
(-12 (-5 *2 (-645 (-567))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1051))
- (-14 *4 (-645 (-1178)))))
+ (-14 *4 (-645 (-1179)))))
((*1 *2 *2)
(-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
(-4 *2 (-13 (-433 *3) (-1004)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3))
- (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4))))
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3))
+ (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3))
- (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4))))
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3))
+ (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4))))
((*1 *1 *1) (-4 *1 (-285)))
((*1 *1 *1)
- (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1178)))
- (-14 *3 (-645 (-1178))) (-4 *4 (-390))))
+ (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1179)))
+ (-14 *3 (-645 (-1179))) (-4 *4 (-390))))
((*1 *1 *2)
(-12 (-5 *2 (-665 *3 *4)) (-4 *3 (-851))
(-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-5 *1 (-628 *3 *4 *5))
(-14 *5 (-923))))
((*1 *2 *2)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567))))
- (-5 *1 (-1163 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567))))
(-5 *1 (-1164 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1165 *3))))
((*1 *2 *2 *3)
(-12 (-5 *3 (-772)) (-4 *4 (-13 (-1051) (-718 (-410 (-567)))))
- (-4 *5 (-851)) (-5 *1 (-1284 *4 *5 *2)) (-4 *2 (-1289 *5 *4))))
+ (-4 *5 (-851)) (-5 *1 (-1285 *4 *5 *2)) (-4 *2 (-1290 *5 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-772)) (-5 *1 (-1288 *3 *4))
+ (-12 (-5 *2 (-772)) (-5 *1 (-1289 *3 *4))
(-4 *4 (-718 (-410 (-567)))) (-4 *3 (-851)) (-4 *4 (-172)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-692 (-874 (-968 *3) (-968 *3)))) (-5 *1 (-968 *3))
- (-4 *3 (-1102)))))
-(((*1 *1 *1 *1) (-5 *1 (-225)))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-772)) (-5 *2 (-1 (-381))) (-5 *1 (-1042))))
- ((*1 *1 *1 *1) (-4 *1 (-1141))))
-(((*1 *2 *3 *4 *4 *4 *5 *5 *3)
- (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225))
- (-5 *2 (-1037)) (-5 *1 (-752)))))
-(((*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-561 *3)) (-4 *3 (-548)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-645 (-945 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-645 (-945 *3))) (-4 *3 (-1051)) (-4 *1 (-1136 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-645 (-645 *3))) (-4 *1 (-1136 *3)) (-4 *3 (-1051))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-645 (-945 *3))) (-4 *1 (-1136 *3)) (-4 *3 (-1051)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1102)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1102)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-645 (-2 (|:| |gen| *3) (|:| -3946 *4))))
- (-5 *1 (-650 *3 *4 *5)) (-4 *3 (-1102)) (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *2 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567)))))))
- (-5 *1 (-1130 *3 *2)) (-4 *3 (-1244 *2)))))
-(((*1 *2 *2)
+(((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *2 (-1037))
+ (-5 *1 (-756)))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1179))
+ (-4 *5 (-13 (-455) (-147) (-1040 (-567)) (-640 (-567))))
+ (-5 *2 (-2 (|:| -2872 *3) (|:| |coeff| *3))) (-5 *1 (-560 *5 *3))
+ (-4 *3 (-13 (-27) (-1204) (-433 *5))))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1242 *5 *4)) (-4 *4 (-821)) (-14 *5 (-1179))
+ (-5 *2 (-567)) (-5 *1 (-1116 *4 *5)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))))
+(((*1 *1) (-12 (-4 *1 (-428 *2)) (-4 *2 (-370)) (-4 *2 (-1102)))))
+(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1219)))))
+(((*1 *2 *2 *2)
+ (|partial| -12 (-4 *3 (-13 (-559) (-147))) (-5 *1 (-1239 *3 *2))
+ (-4 *2 (-1245 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-559)) (-5 *2 (-1269 (-690 *4))) (-5 *1 (-90 *4 *5))
+ (-5 *3 (-690 *4)) (-4 *5 (-657 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1279)))))
+(((*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-1182))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1274)) (-5 *1 (-1182))))
+ ((*1 *2 *3 *1) (-12 (-5 *3 (-1179)) (-5 *2 (-1274)) (-5 *1 (-1182)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-645 *2)) (-5 *1 (-489 *2)) (-4 *2 (-1245 (-567))))))
+(((*1 *2 *2 *2)
(-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559))
- (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-979 *3 *4 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-439)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-645 (-52))) (-5 *1 (-894 *3)) (-4 *3 (-1102)))))
+ (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-979 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-645 *7)) (-5 *3 (-112)) (-4 *7 (-1067 *4 *5 *6))
+ (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-5 *1 (-979 *4 *5 *6 *7)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-421 *3)) (-4 *3 (-559)))))
(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-923)) (-5 *4 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1269)))))
+ (-12 (-5 *3 (-923)) (-5 *4 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1270)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1175 *1)) (-5 *3 (-1179)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1175 *1)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-954 *1)) (-4 *1 (-27))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1179)) (-4 *1 (-29 *3)) (-4 *3 (-559))))
+ ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-559))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1175 *2)) (-5 *4 (-1179)) (-4 *2 (-433 *5))
+ (-5 *1 (-32 *5 *2)) (-4 *5 (-559))))
+ ((*1 *1 *2 *3)
+ (|partial| -12 (-5 *2 (-1175 *1)) (-5 *3 (-923)) (-4 *1 (-1014))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-1175 *1)) (-5 *3 (-923)) (-5 *4 (-863))
+ (-4 *1 (-1014))))
+ ((*1 *1 *2 *3)
+ (|partial| -12 (-5 *3 (-923)) (-4 *4 (-13 (-849) (-365)))
+ (-4 *1 (-1070 *4 *2)) (-4 *2 (-1245 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-823)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1122)) (-5 *1 (-331)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-772)) (-4 *1 (-657 *3)) (-4 *3 (-1051)) (-4 *3 (-365))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-772)) (-5 *4 (-1 *5 *5)) (-4 *5 (-365))
- (-5 *1 (-660 *5 *2)) (-4 *2 (-657 *5)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-421 *2)) (-4 *2 (-559)))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-1143 *2 *3)) (-4 *2 (-13 (-1102) (-34)))
- (-4 *3 (-13 (-1102) (-34))))))
-(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-683 *3)) (-4 *3 (-1102)))))
+ (-12 (-4 *1 (-978 *3 *4 *2 *5)) (-4 *3 (-1051)) (-4 *4 (-794))
+ (-4 *2 (-851)) (-4 *5 (-1067 *3 *4 *2)))))
+(((*1 *2)
+ (-12 (-4 *2 (-13 (-433 *3) (-1004))) (-5 *1 (-277 *3 *2))
+ (-4 *3 (-559)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-365) (-147) (-1040 (-410 (-567)))))
- (-4 *5 (-1244 *4))
- (-5 *2 (-645 (-2 (|:| |deg| (-772)) (|:| -3845 *5))))
- (-5 *1 (-810 *4 *5 *3 *6)) (-4 *3 (-657 *5))
- (-4 *6 (-657 (-410 *5))))))
-(((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172))))
- ((*1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-172)))))
-(((*1 *2) (-12 (-5 *2 (-906 (-567))) (-5 *1 (-919)))))
-(((*1 *1) (-5 *1 (-144))) ((*1 *1 *1) (-5 *1 (-863))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-923)) (-4 *5 (-559)) (-5 *2 (-690 *5))
- (-5 *1 (-958 *5 *3)) (-4 *3 (-657 *5)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-303)) (-5 *3 (-1178)) (-5 *2 (-112))))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-303)) (-5 *2 (-112)))))
-(((*1 *2 *2) (|partial| -12 (-5 *1 (-561 *2)) (-4 *2 (-548)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-645 (-2 (|:| |gen| *3) (|:| -3946 (-567)))))
- (-5 *1 (-363 *3)) (-4 *3 (-1102))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-388 *3)) (-4 *3 (-1102))
- (-5 *2 (-645 (-2 (|:| |gen| *3) (|:| -3946 (-772)))))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-645 (-2 (|:| -2706 *3) (|:| -3458 (-567)))))
- (-5 *1 (-421 *3)) (-4 *3 (-559)))))
-(((*1 *1 *1) (-5 *1 (-1065))))
-(((*1 *2 *3 *4 *5 *5 *4 *6)
- (-12 (-5 *5 (-613 *4)) (-5 *6 (-1174 *4))
- (-4 *4 (-13 (-433 *7) (-27) (-1203)))
- (-4 *7 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2623 (-645 *4))))
- (-5 *1 (-563 *7 *4 *3)) (-4 *3 (-657 *4)) (-4 *3 (-1102))))
- ((*1 *2 *3 *4 *5 *5 *5 *4 *6)
- (-12 (-5 *5 (-613 *4)) (-5 *6 (-410 (-1174 *4)))
- (-4 *4 (-13 (-433 *7) (-27) (-1203)))
- (-4 *7 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567))))
+ (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-772))
+ (-5 *1 (-452 *4 *5 *6 *3)) (-4 *3 (-951 *4 *5 *6)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-775)) (-5 *1 (-114))))
+ ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-775)) (-5 *1 (-114)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1274)) (-5 *1 (-823)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-645 (-954 *4))) (-5 *3 (-645 (-1179))) (-4 *4 (-455))
+ (-5 *1 (-920 *4)))))
+(((*1 *2 *2 *2)
+ (-12
(-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2623 (-645 *4))))
- (-5 *1 (-563 *7 *4 *3)) (-4 *3 (-657 *4)) (-4 *3 (-1102)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-863)))))
+ (-2 (|:| -2144 (-690 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-690 *3))))
+ (-4 *3 (-13 (-308) (-10 -8 (-15 -3597 ((-421 $) $)))))
+ (-4 *4 (-1245 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-412 *3 *4)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1087)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-945 *3)) (-4 *3 (-13 (-365) (-1204) (-1004)))
+ (-5 *1 (-176 *3)))))
+(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7)
+ (-12 (-5 *3 (-567)) (-5 *5 (-112)) (-5 *6 (-690 (-225)))
+ (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-77 OBJFUN))))
+ (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-754)))))
+(((*1 *1) (-5 *1 (-141))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-1120)) (-5 *1 (-1117)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1174 *4)) (-4 *4 (-351)) (-5 *2 (-960 (-1122)))
- (-5 *1 (-348 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1174 *3)) (-5 *1 (-916 *3)) (-4 *3 (-308)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1051)) (-14 *3 (-645 (-1178)))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1051) (-851)))
- (-14 *3 (-645 (-1178))))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1141))))
+ (-12 (-4 *4 (-351)) (-4 *5 (-330 *4)) (-4 *6 (-1245 *5))
+ (-5 *2 (-645 *3)) (-5 *1 (-778 *4 *5 *6 *3 *7)) (-4 *3 (-1245 *6))
+ (-14 *7 (-923)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1219)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1175 *6)) (-5 *3 (-567)) (-4 *6 (-308)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-5 *1 (-743 *4 *5 *6 *7)) (-4 *7 (-951 *6 *4 *5)))))
+(((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1042)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-840))
- (-5 *3
- (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225)))
- (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225))))
- (|:| |ub| (-645 (-844 (-225))))))
- (-5 *2 (-1037))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-840))
- (-5 *3
- (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225)))))
- (-5 *2 (-1037)))))
+ (-12 (-5 *3 (-1191 (-645 *4))) (-4 *4 (-851))
+ (-5 *2 (-645 (-645 *4))) (-5 *1 (-1190 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1260 *4)) (-5 *1 (-1262 *4 *2))
+ (-4 *4 (-38 (-410 (-567)))))))
(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-1269 *4)) (-4 *4 (-640 (-567)))
+ (-5 *2 (-1269 (-567))) (-5 *1 (-1296 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1274)) (-5 *1 (-381))))
+ ((*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-381)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1219)) (-4 *2 (-1051))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-863))))
+ ((*1 *1 *1) (-5 *1 (-863)))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-945 (-225))) (-5 *2 (-225)) (-5 *1 (-1215))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1219)) (-4 *2 (-1051)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794))
+ (-4 *4 (-851)) (-4 *2 (-455)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1096 (-844 (-381)))) (-5 *2 (-1096 (-844 (-225))))
+ (-5 *1 (-306)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-313)) (-5 *1 (-830)))))
+(((*1 *2 *2)
(-12
- (-5 *3
- (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225)))
- (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
- (-5 *2
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular| "There are singularities at both end points")
- (|:| |notEvaluated| "End point continuity not yet evaluated")))
- (-5 *1 (-192)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-351))
(-5 *2
- (-2 (|:| |cont| *5)
- (|:| -3920 (-645 (-2 (|:| |irr| *3) (|:| -2625 (-567)))))))
- (-5 *1 (-216 *5 *3)) (-4 *3 (-1244 *5)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4419)) (-4 *1 (-119 *2)) (-4 *2 (-1218)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1266 *2)) (-4 *2 (-1218)) (-4 *2 (-1004))
- (-4 *2 (-1051)))))
-(((*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))))
-(((*1 *2 *3 *4 *5 *6 *7 *6)
- (|partial| -12
- (-5 *5
- (-2 (|:| |contp| *3)
- (|:| -3920 (-645 (-2 (|:| |irr| *10) (|:| -2625 (-567)))))))
- (-5 *6 (-645 *3)) (-5 *7 (-645 *8)) (-4 *8 (-851)) (-4 *3 (-308))
- (-4 *10 (-951 *3 *9 *8)) (-4 *9 (-794))
- (-5 *2
- (-2 (|:| |polfac| (-645 *10)) (|:| |correct| *3)
- (|:| |corrfact| (-645 (-1174 *3)))))
- (-5 *1 (-626 *8 *9 *3 *10)) (-5 *4 (-645 (-1174 *3))))))
-(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1160)) (-5 *1 (-192))))
- ((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1160)) (-5 *1 (-301))))
- ((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1160)) (-5 *1 (-306)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-645 *2)) (-4 *2 (-1244 *4)) (-5 *1 (-542 *4 *2 *5 *6))
- (-4 *4 (-308)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-772))))))
-(((*1 *2 *2) (|partial| -12 (-5 *2 (-317 (-225))) (-5 *1 (-268)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-822)) (-5 *4 (-52)) (-5 *2 (-1273)) (-5 *1 (-832)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-645 (-865 *5))) (-14 *5 (-645 (-1178))) (-4 *6 (-455))
- (-5 *2 (-645 (-645 (-247 *5 *6)))) (-5 *1 (-474 *5 *6 *7))
- (-5 *3 (-645 (-247 *5 *6))) (-4 *7 (-455)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1218)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1204 *3)) (-4 *3 (-1102)))))
-(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2)
- (-12 (-4 *1 (-798 *2)) (-4 *2 (-172))))
- ((*1 *1 *2 *2)
- (-12 (-5 *2 (-1001 *3)) (-4 *3 (-172)) (-5 *1 (-800 *3)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1261 *3 *2))
- (-4 *2 (-1259 *3)))))
+ (-507 (-410 (-567)) (-240 *4 (-772)) (-865 *3)
+ (-247 *3 (-410 (-567)))))
+ (-14 *3 (-645 (-1179))) (-14 *4 (-772)) (-5 *1 (-508 *3 *4)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-851)) (-4 *5 (-794))
+ (-4 *6 (-559)) (-4 *7 (-951 *6 *5 *3))
+ (-5 *1 (-465 *5 *3 *6 *7 *2))
+ (-4 *2
+ (-13 (-1040 (-410 (-567))) (-365)
+ (-10 -8 (-15 -4129 ($ *7)) (-15 -1447 (*7 $))
+ (-15 -1462 (*7 $))))))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
- (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 *4))
- (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))))
+ (-12 (-5 *3 (-645 (-410 (-954 (-169 (-567))))))
+ (-5 *2 (-645 (-645 (-295 (-954 (-169 *4)))))) (-5 *1 (-380 *4))
+ (-4 *4 (-13 (-365) (-849)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 (-295 (-410 (-954 (-169 (-567)))))))
+ (-5 *2 (-645 (-645 (-295 (-954 (-169 *4)))))) (-5 *1 (-380 *4))
+ (-4 *4 (-13 (-365) (-849)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-410 (-954 (-169 (-567)))))
+ (-5 *2 (-645 (-295 (-954 (-169 *4))))) (-5 *1 (-380 *4))
+ (-4 *4 (-13 (-365) (-849)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-295 (-410 (-954 (-169 (-567))))))
+ (-5 *2 (-645 (-295 (-954 (-169 *4))))) (-5 *1 (-380 *4))
+ (-4 *4 (-13 (-365) (-849))))))
+(((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-1159 (-2 (|:| |k| (-567)) (|:| |c| *6))))
+ (-5 *4 (-1028 (-844 (-567)))) (-5 *5 (-1179)) (-5 *7 (-410 (-567)))
+ (-4 *6 (-1051)) (-5 *2 (-863)) (-5 *1 (-597 *6)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-645 *3)) (-4 *3 (-308)) (-5 *1 (-179 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-645 *3)) (-5 *1 (-963 *3)) (-4 *3 (-548)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-112)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-772)) (-5 *5 (-645 *3)) (-4 *3 (-308)) (-4 *6 (-851))
- (-4 *7 (-794)) (-5 *2 (-112)) (-5 *1 (-626 *6 *7 *3 *8))
- (-4 *8 (-951 *3 *7 *6)))))
-(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-875)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-559)) (-5 *2 (-169 *5)) (-5 *1 (-601 *4 *5 *3))
- (-4 *5 (-13 (-433 *4) (-1004) (-1203)))
- (-4 *3 (-13 (-433 (-169 *4)) (-1004) (-1203))))))
+ (-12 (-5 *3 (-1269 *6)) (-5 *4 (-1269 (-567))) (-5 *5 (-567))
+ (-4 *6 (-1102)) (-5 *2 (-1 *6)) (-5 *1 (-1019 *6)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-132)) (-5 *1 (-1086 *2))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-567) *2 *2)) (-4 *2 (-132)) (-5 *1 (-1086 *2)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225))
+ (-5 *2 (-1037)) (-5 *1 (-753)))))
(((*1 *2 *3)
(-12 (-4 *5 (-13 (-615 *2) (-172))) (-5 *2 (-894 *4))
(-5 *1 (-170 *4 *5 *3)) (-4 *4 (-1102)) (-4 *3 (-166 *5))))
@@ -2836,13 +2782,13 @@
(-5 *2 (-645 (-1096 (-844 (-225))))) (-5 *1 (-306))))
((*1 *1 *2 *3) (-12 (-5 *2 (-863)) (-5 *3 (-567)) (-5 *1 (-397))))
((*1 *1 *2)
- (-12 (-5 *2 (-1268 *3)) (-4 *3 (-172)) (-4 *1 (-412 *3 *4))
- (-4 *4 (-1244 *3))))
+ (-12 (-5 *2 (-1269 *3)) (-4 *3 (-172)) (-4 *1 (-412 *3 *4))
+ (-4 *4 (-1245 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-412 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1244 *3))
- (-5 *2 (-1268 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1268 *3)) (-4 *3 (-172)) (-4 *1 (-420 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-1268 *3))))
+ (-12 (-4 *1 (-412 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1245 *3))
+ (-5 *2 (-1269 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1269 *3)) (-4 *3 (-172)) (-4 *1 (-420 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-1269 *3))))
((*1 *1 *2)
(-12 (-5 *2 (-421 *1)) (-4 *1 (-433 *3)) (-4 *3 (-559))
(-4 *3 (-1102))))
@@ -2850,137 +2796,79 @@
(-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-1051))
(-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-466 *3 *4 *5 *6))))
((*1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-539))))
- ((*1 *2 *1) (-12 (-4 *1 (-615 *2)) (-4 *2 (-1218))))
- ((*1 *1 *2) (-12 (-4 *1 (-619 *2)) (-4 *2 (-1218))))
+ ((*1 *2 *1) (-12 (-4 *1 (-615 *2)) (-4 *2 (-1219))))
+ ((*1 *1 *2) (-12 (-4 *1 (-619 *2)) (-4 *2 (-1219))))
((*1 *1 *2)
- (-12 (-4 *3 (-172)) (-4 *1 (-725 *3 *2)) (-4 *2 (-1244 *3))))
+ (-12 (-4 *3 (-172)) (-4 *1 (-725 *3 *2)) (-4 *2 (-1245 *3))))
((*1 *1 *2)
(-12 (-5 *2 (-645 (-894 *3))) (-5 *1 (-894 *3)) (-4 *3 (-1102))))
((*1 *1 *2)
(-12 (-5 *2 (-954 *3)) (-4 *3 (-1051)) (-4 *1 (-1067 *3 *4 *5))
- (-4 *5 (-615 (-1178))) (-4 *4 (-794)) (-4 *5 (-851))))
+ (-4 *5 (-615 (-1179))) (-4 *4 (-794)) (-4 *5 (-851))))
((*1 *1 *2)
- (-2800
+ (-2811
(-12 (-5 *2 (-954 (-567))) (-4 *1 (-1067 *3 *4 *5))
- (-12 (-1657 (-4 *3 (-38 (-410 (-567))))) (-4 *3 (-38 (-567)))
- (-4 *5 (-615 (-1178))))
+ (-12 (-1673 (-4 *3 (-38 (-410 (-567))))) (-4 *3 (-38 (-567)))
+ (-4 *5 (-615 (-1179))))
(-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)))
(-12 (-5 *2 (-954 (-567))) (-4 *1 (-1067 *3 *4 *5))
- (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1178))))
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1179))))
(-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)))))
((*1 *1 *2)
(-12 (-5 *2 (-954 (-410 (-567)))) (-4 *1 (-1067 *3 *4 *5))
- (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1178))) (-4 *3 (-1051))
+ (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1179))) (-4 *3 (-1051))
(-4 *4 (-794)) (-4 *5 (-851))))
((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-645 *7)) (|:| -2566 *8)))
+ (-12 (-5 *3 (-2 (|:| |val| (-645 *7)) (|:| -2575 *8)))
(-4 *7 (-1067 *4 *5 *6)) (-4 *8 (-1073 *4 *5 *6 *7)) (-4 *4 (-455))
- (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-1160))
+ (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-1161))
(-5 *1 (-1071 *4 *5 *6 *7 *8))))
((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-645 *7)) (|:| -2566 *8)))
+ (-12 (-5 *3 (-2 (|:| |val| (-645 *7)) (|:| -2575 *8)))
(-4 *7 (-1067 *4 *5 *6)) (-4 *8 (-1111 *4 *5 *6 *7)) (-4 *4 (-455))
- (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-1160))
+ (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-1161))
(-5 *1 (-1147 *4 *5 *6 *7 *8))))
- ((*1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-1183))))
- ((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-1183))))
- ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-863)) (-5 *3 (-567)) (-5 *1 (-1198))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-863)) (-5 *3 (-567)) (-5 *1 (-1198))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-1184))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-1184))))
+ ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-863)) (-5 *3 (-567)) (-5 *1 (-1199))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-863)) (-5 *3 (-567)) (-5 *1 (-1199))))
((*1 *2 *3)
(-12 (-5 *3 (-781 *4 (-865 *5)))
- (-4 *4 (-13 (-849) (-308) (-147) (-1024))) (-14 *5 (-645 (-1178)))
- (-5 *2 (-781 *4 (-865 *6))) (-5 *1 (-1294 *4 *5 *6))
- (-14 *6 (-645 (-1178)))))
+ (-4 *4 (-13 (-849) (-308) (-147) (-1024))) (-14 *5 (-645 (-1179)))
+ (-5 *2 (-781 *4 (-865 *6))) (-5 *1 (-1295 *4 *5 *6))
+ (-14 *6 (-645 (-1179)))))
((*1 *2 *3)
(-12 (-5 *3 (-954 *4)) (-4 *4 (-13 (-849) (-308) (-147) (-1024)))
- (-5 *2 (-954 (-1026 (-410 *4)))) (-5 *1 (-1294 *4 *5 *6))
- (-14 *5 (-645 (-1178))) (-14 *6 (-645 (-1178)))))
+ (-5 *2 (-954 (-1026 (-410 *4)))) (-5 *1 (-1295 *4 *5 *6))
+ (-14 *5 (-645 (-1179))) (-14 *6 (-645 (-1179)))))
((*1 *2 *3)
(-12 (-5 *3 (-781 *4 (-865 *6)))
- (-4 *4 (-13 (-849) (-308) (-147) (-1024))) (-14 *6 (-645 (-1178)))
- (-5 *2 (-954 (-1026 (-410 *4)))) (-5 *1 (-1294 *4 *5 *6))
- (-14 *5 (-645 (-1178)))))
+ (-4 *4 (-13 (-849) (-308) (-147) (-1024))) (-14 *6 (-645 (-1179)))
+ (-5 *2 (-954 (-1026 (-410 *4)))) (-5 *1 (-1295 *4 *5 *6))
+ (-14 *5 (-645 (-1179)))))
((*1 *2 *3)
- (-12 (-5 *3 (-1174 *4)) (-4 *4 (-13 (-849) (-308) (-147) (-1024)))
- (-5 *2 (-1174 (-1026 (-410 *4)))) (-5 *1 (-1294 *4 *5 *6))
- (-14 *5 (-645 (-1178))) (-14 *6 (-645 (-1178)))))
+ (-12 (-5 *3 (-1175 *4)) (-4 *4 (-13 (-849) (-308) (-147) (-1024)))
+ (-5 *2 (-1175 (-1026 (-410 *4)))) (-5 *1 (-1295 *4 *5 *6))
+ (-14 *5 (-645 (-1179))) (-14 *6 (-645 (-1179)))))
((*1 *2 *3)
(-12
(-5 *3 (-1148 *4 (-534 (-865 *6)) (-865 *6) (-781 *4 (-865 *6))))
- (-4 *4 (-13 (-849) (-308) (-147) (-1024))) (-14 *6 (-645 (-1178)))
- (-5 *2 (-645 (-781 *4 (-865 *6)))) (-5 *1 (-1294 *4 *5 *6))
- (-14 *5 (-645 (-1178))))))
+ (-4 *4 (-13 (-849) (-308) (-147) (-1024))) (-14 *6 (-645 (-1179)))
+ (-5 *2 (-645 (-781 *4 (-865 *6)))) (-5 *1 (-1295 *4 *5 *6))
+ (-14 *5 (-645 (-1179))))))
+(((*1 *2 *1) (-12 (-5 *2 (-645 (-1218))) (-5 *1 (-527)))))
+(((*1 *1 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1219)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-410 (-954 (-169 (-567))))) (-5 *2 (-645 (-169 *4)))
- (-5 *1 (-380 *4)) (-4 *4 (-13 (-365) (-849)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-645 (-410 (-954 (-169 (-567))))))
- (-5 *4 (-645 (-1178))) (-5 *2 (-645 (-645 (-169 *5))))
- (-5 *1 (-380 *5)) (-4 *5 (-13 (-365) (-849))))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-923)) (-5 *4 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1269)))))
-(((*1 *2 *2)
- (-12
- (-5 *2
- (-507 (-410 (-567)) (-240 *4 (-772)) (-865 *3)
- (-247 *3 (-410 (-567)))))
- (-14 *3 (-645 (-1178))) (-14 *4 (-772)) (-5 *1 (-508 *3 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1 (-381))) (-5 *1 (-1042)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2))
- (-4 *4 (-375 *2)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-861)) (-5 *2 (-692 (-129))) (-5 *3 (-129)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-317 (-225))) (-5 *2 (-410 (-567))) (-5 *1 (-306)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-645 *2)) (-4 *2 (-1067 *4 *5 *6)) (-4 *4 (-559))
- (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-979 *4 *5 *6 *2)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-567)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1051))
- (-5 *1 (-322 *4 *5 *2 *6)) (-4 *6 (-951 *2 *4 *5)))))
-(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3)
- (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225))
- (-5 *2 (-1037)) (-5 *1 (-752)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1174 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))))
-(((*1 *1 *1 *1) (-4 *1 (-143)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-559)) (-5 *1 (-158 *3 *2)) (-4 *2 (-433 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548))))
- ((*1 *1 *1 *1) (-5 *1 (-863)))
+ (|partial| -12 (-5 *4 (-410 *2)) (-4 *2 (-1245 *5))
+ (-5 *1 (-808 *5 *2 *3 *6))
+ (-4 *5 (-13 (-365) (-147) (-1040 (-410 (-567)))))
+ (-4 *3 (-657 *2)) (-4 *6 (-657 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-567))) (-5 *1 (-1049))
- (-5 *3 (-567)))))
-(((*1 *2)
- (-12 (-5 *2 (-410 (-954 *3))) (-5 *1 (-456 *3 *4 *5 *6))
- (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923))
- (-14 *5 (-645 (-1178))) (-14 *6 (-1268 (-690 *3))))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-772)) (-5 *2 (-1 (-381))) (-5 *1 (-1042)))))
-(((*1 *1 *2 *3 *3 *4 *4)
- (-12 (-5 *2 (-954 (-567))) (-5 *3 (-1178))
- (-5 *4 (-1096 (-410 (-567)))) (-5 *1 (-30)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1270)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-794))
- (-4 *3 (-13 (-851) (-10 -8 (-15 -3893 ((-1178) $))))) (-4 *5 (-559))
- (-5 *1 (-733 *4 *3 *5 *2)) (-4 *2 (-951 (-410 (-954 *5)) *4 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *4 (-1051)) (-4 *5 (-794))
- (-4 *3
- (-13 (-851)
- (-10 -8 (-15 -3893 ((-1178) $))
- (-15 -3644 ((-3 $ "failed") (-1178))))))
- (-5 *1 (-986 *4 *5 *3 *2)) (-4 *2 (-951 (-954 *4) *5 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-645 *6))
- (-4 *6
- (-13 (-851)
- (-10 -8 (-15 -3893 ((-1178) $))
- (-15 -3644 ((-3 $ "failed") (-1178))))))
- (-4 *4 (-1051)) (-4 *5 (-794)) (-5 *1 (-986 *4 *5 *6 *2))
- (-4 *2 (-951 (-954 *4) *5 *6)))))
+ (-12 (-5 *4 (-645 (-410 *2))) (-4 *2 (-1245 *5))
+ (-5 *1 (-808 *5 *2 *3 *6))
+ (-4 *5 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *3 (-657 *2))
+ (-4 *6 (-657 (-410 *2))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1200)))))
(((*1 *2 *3) (-12 (-5 *2 (-381)) (-5 *1 (-786 *3)) (-4 *3 (-615 *2))))
((*1 *2 *3 *4)
(-12 (-5 *4 (-923)) (-5 *2 (-381)) (-5 *1 (-786 *3))
@@ -3003,159 +2891,285 @@
((*1 *2 *3 *4)
(-12 (-5 *3 (-317 *5)) (-5 *4 (-923)) (-4 *5 (-559)) (-4 *5 (-851))
(-4 *5 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-645 (-945 (-225)))))
+ (-5 *2 (-645 (-1096 (-225)))) (-5 *1 (-930)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-605 *2 *3)) (-4 *3 (-1219)) (-4 *2 (-1102))
+ (-4 *2 (-851)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-2 (|:| -2717 *4) (|:| -3104 (-567)))))
+ (-4 *4 (-1245 (-567))) (-5 *2 (-738 (-772))) (-5 *1 (-445 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-421 *5)) (-4 *5 (-1245 *4)) (-4 *4 (-1051))
+ (-5 *2 (-738 (-772))) (-5 *1 (-447 *4 *5)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-114)) (-5 *1 (-113 *2)) (-4 *2 (-1102)))))
+(((*1 *2 *3)
+ (-12 (-4 *2 (-365)) (-4 *2 (-849)) (-5 *1 (-947 *2 *3))
+ (-4 *3 (-1245 *2)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225)))
+ (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-79 LSFUN1))))
+ (-5 *2 (-1037)) (-5 *1 (-754)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1051)) (-4 *5 (-1245 *4)) (-5 *2 (-1 *6 (-645 *6)))
+ (-5 *1 (-1263 *4 *5 *3 *6)) (-4 *3 (-657 *5)) (-4 *6 (-1260 *4)))))
+(((*1 *2 *3 *3 *3 *4 *5)
+ (-12 (-5 *5 (-645 (-645 (-225)))) (-5 *4 (-225))
+ (-5 *2 (-645 (-945 *4))) (-5 *1 (-1215)) (-5 *3 (-945 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-772)) (-5 *2 (-1 (-381))) (-5 *1 (-1042)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1102)) (-4 *4 (-1102))
- (-4 *6 (-1102)) (-5 *2 (-1 *6 *5)) (-5 *1 (-685 *5 *4 *6)))))
-(((*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1271))))
- ((*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1271)))))
-(((*1 *1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-264))))
- ((*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-264)))))
-(((*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-645 (-866))))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-324 *3 *4)) (-4 *3 (-1102))
- (-4 *4 (-131)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1270)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *2 (-645 (-1174 *7))) (-5 *3 (-1174 *7))
- (-4 *7 (-951 *5 *6 *4)) (-4 *5 (-911)) (-4 *6 (-794))
- (-4 *4 (-851)) (-5 *1 (-908 *5 *6 *4 *7)))))
-(((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-929)))))
+ (-12 (-5 *3 (-567)) (-5 *4 (-421 *2)) (-4 *2 (-951 *7 *5 *6))
+ (-5 *1 (-743 *5 *6 *7 *2)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *7 (-308)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-645 *2)) (-4 *2 (-433 *4)) (-5 *1 (-158 *4 *2))
- (-4 *4 (-559)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-645 *7)) (-4 *7 (-1073 *3 *4 *5 *6)) (-4 *3 (-455))
- (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5))
- (-5 *1 (-990 *3 *4 *5 *6 *7))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-645 *7)) (-4 *7 (-1073 *3 *4 *5 *6)) (-4 *3 (-455))
- (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5))
- (-5 *1 (-1109 *3 *4 *5 *6 *7)))))
-(((*1 *2)
- (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3))
- (-4 *5 (-1244 (-410 *4))) (-5 *2 (-112)))))
-(((*1 *2)
- (-12 (-4 *4 (-365)) (-5 *2 (-772)) (-5 *1 (-329 *3 *4))
- (-4 *3 (-330 *4))))
- ((*1 *2) (-12 (-4 *1 (-1287 *3)) (-4 *3 (-365)) (-5 *2 (-772)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1158 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1051))
- (-5 *3 (-410 (-567))) (-5 *1 (-1162 *4)))))
+ (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *7 (-951 *4 *5 *6)) (-5 *2 (-645 (-645 *7)))
+ (-5 *1 (-451 *4 *5 *6 *7)) (-5 *3 (-645 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-794))
+ (-4 *7 (-851)) (-4 *8 (-951 *5 *6 *7)) (-5 *2 (-645 (-645 *8)))
+ (-5 *1 (-451 *5 *6 *7 *8)) (-5 *3 (-645 *8)))))
+(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-455)) (-4 *4 (-851)) (-4 *5 (-794)) (-5 *2 (-112))
+ (-5 *1 (-989 *3 *4 *5 *6)) (-4 *6 (-951 *3 *5 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1142 *3 *4)) (-4 *3 (-13 (-1102) (-34)))
+ (-4 *4 (-13 (-1102) (-34))))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-721)) (-5 *2 (-923))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-723)) (-5 *2 (-772)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-645 *3)) (-4 *3 (-1245 *5)) (-4 *5 (-308))
+ (-5 *2 (-772)) (-5 *1 (-458 *5 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-645 (-866))))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1102)) (-4 *4 (-13 (-1051) (-888 *3) (-615 (-894 *3))))
- (-5 *2 (-645 (-1178))) (-5 *1 (-1078 *3 *4 *5))
- (-4 *5 (-13 (-433 *4) (-888 *3) (-615 (-894 *3)))))))
+ (-12 (-4 *1 (-1212 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-645 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-645 (-1175 (-567)))) (-5 *1 (-191)) (-5 *3 (-567)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1284 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172))
+ (-5 *1 (-665 *3 *4))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-665 *3 *4)) (-5 *1 (-1289 *3 *4))
+ (-4 *3 (-851)) (-4 *4 (-172)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *2)) (-4 *2 (-172))))
+ ((*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-419 *3 *2)) (-4 *3 (-420 *2))))
+ ((*1 *2) (-12 (-4 *1 (-420 *2)) (-4 *2 (-172)))))
+(((*1 *2 *1) (-12 (-5 *2 (-645 (-1179))) (-5 *1 (-1183)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-645 (-2 (|:| |totdeg| (-772)) (|:| -1774 *3))))
+ (-5 *4 (-772)) (-4 *3 (-951 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-794))
+ (-4 *7 (-851)) (-5 *1 (-452 *5 *6 *7 *3)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-851)) (-5 *2 (-645 (-645 (-645 *4))))
+ (-5 *1 (-1190 *4)) (-5 *3 (-645 (-645 *4))))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1179)) (-5 *3 (-645 (-954 (-567))))
+ (-5 *4 (-317 (-169 (-381)))) (-5 *1 (-331))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1179)) (-5 *3 (-645 (-954 (-567))))
+ (-5 *4 (-317 (-381))) (-5 *1 (-331))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1179)) (-5 *3 (-645 (-954 (-567))))
+ (-5 *4 (-317 (-567))) (-5 *1 (-331))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1179)) (-5 *3 (-1269 (-317 (-169 (-381)))))
+ (-5 *1 (-331))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1179)) (-5 *3 (-1269 (-317 (-381)))) (-5 *1 (-331))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1179)) (-5 *3 (-1269 (-317 (-567)))) (-5 *1 (-331))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1179)) (-5 *3 (-690 (-317 (-169 (-381)))))
+ (-5 *1 (-331))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1179)) (-5 *3 (-690 (-317 (-381)))) (-5 *1 (-331))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1179)) (-5 *3 (-690 (-317 (-567)))) (-5 *1 (-331))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1179)) (-5 *3 (-317 (-169 (-381)))) (-5 *1 (-331))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1179)) (-5 *3 (-317 (-381))) (-5 *1 (-331))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1179)) (-5 *3 (-317 (-567))) (-5 *1 (-331))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1179)) (-5 *3 (-645 (-954 (-567))))
+ (-5 *4 (-317 (-695))) (-5 *1 (-331))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1179)) (-5 *3 (-645 (-954 (-567))))
+ (-5 *4 (-317 (-700))) (-5 *1 (-331))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1179)) (-5 *3 (-645 (-954 (-567))))
+ (-5 *4 (-317 (-702))) (-5 *1 (-331))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1179)) (-5 *3 (-1269 (-317 (-695)))) (-5 *1 (-331))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1179)) (-5 *3 (-1269 (-317 (-700)))) (-5 *1 (-331))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1179)) (-5 *3 (-1269 (-317 (-702)))) (-5 *1 (-331))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1179)) (-5 *3 (-690 (-317 (-695)))) (-5 *1 (-331))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1179)) (-5 *3 (-690 (-317 (-700)))) (-5 *1 (-331))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1179)) (-5 *3 (-690 (-317 (-702)))) (-5 *1 (-331))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1179)) (-5 *3 (-1269 (-695))) (-5 *1 (-331))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1179)) (-5 *3 (-1269 (-700))) (-5 *1 (-331))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1179)) (-5 *3 (-1269 (-702))) (-5 *1 (-331))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1179)) (-5 *3 (-690 (-695))) (-5 *1 (-331))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1179)) (-5 *3 (-690 (-700))) (-5 *1 (-331))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1179)) (-5 *3 (-690 (-702))) (-5 *1 (-331))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1179)) (-5 *3 (-317 (-695))) (-5 *1 (-331))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1179)) (-5 *3 (-317 (-700))) (-5 *1 (-331))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1179)) (-5 *3 (-317 (-702))) (-5 *1 (-331))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-1161)) (-5 *1 (-331))))
+ ((*1 *1 *1 *1) (-5 *1 (-863))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-169 (-225))) (-5 *5 (-567)) (-5 *6 (-1161))
+ (-5 *3 (-225)) (-5 *2 (-1037)) (-5 *1 (-759)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-772)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851))
+ (-4 *3 (-1067 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-645 *4))
+ (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2575 *4))))))
+ (-5 *1 (-1071 *6 *7 *8 *3 *4)) (-4 *4 (-1073 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-4 *3 (-1067 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-645 *4))
+ (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2575 *4))))))
+ (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-772)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851))
+ (-4 *3 (-1067 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-645 *4))
+ (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2575 *4))))))
+ (-5 *1 (-1147 *6 *7 *8 *3 *4)) (-4 *4 (-1111 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-4 *3 (-1067 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-645 *4))
+ (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2575 *4))))))
+ (-5 *1 (-1147 *5 *6 *7 *3 *4)) (-4 *4 (-1111 *5 *6 *7 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-381)) (-5 *1 (-97))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-381)) (-5 *1 (-97)))))
(((*1 *2 *3 *4 *2)
(-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-772)) (-4 *2 (-1102))
(-5 *1 (-679 *2)))))
(((*1 *1) (-5 *1 (-618))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1102)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-823)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1006 *3)) (-14 *3 (-567)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
- (-12 (-5 *3 (-1160)) (-5 *4 (-567)) (-5 *5 (-690 (-225)))
- (-5 *2 (-1037)) (-5 *1 (-755)))))
-(((*1 *2 *1 *3 *3 *4 *4)
- (-12 (-5 *3 (-772)) (-5 *4 (-923)) (-5 *2 (-1273)) (-5 *1 (-1269))))
- ((*1 *2 *1 *3 *3 *4 *4)
- (-12 (-5 *3 (-772)) (-5 *4 (-923)) (-5 *2 (-1273)) (-5 *1 (-1270)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3))
- (-4 *5 (-1244 (-410 *4)))
- (-5 *2 (-2 (|:| |num| (-1268 *4)) (|:| |den| *4))))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1285 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1051))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1291 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-847)))))
-(((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-381)) (-5 *1 (-1042)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |preimage| (-645 *3)) (|:| |image| (-645 *3))))
- (-5 *1 (-907 *3)) (-4 *3 (-1102)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-894 *4)) (-4 *4 (-1102)) (-4 *2 (-1102))
+ (-5 *1 (-891 *4 *2)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1106)) (-5 *3 (-775)) (-5 *1 (-52)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-1161)) (-5 *2 (-381)) (-5 *1 (-787)))))
+(((*1 *2 *1) (-12 (-4 *1 (-303)) (-5 *2 (-645 (-114))))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1102)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-823)))))
+(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1161)) (-5 *4 (-567)) (-5 *5 (-690 (-225)))
+ (-5 *6 (-225)) (-5 *2 (-1037)) (-5 *1 (-753)))))
+(((*1 *2)
+ (-12 (-5 *2 (-923)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-923)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567))))))
+(((*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-52)) (-5 *1 (-830)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))))
-(((*1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-241)))))
+ (-12 (-5 *4 (-645 (-865 *5))) (-14 *5 (-645 (-1179))) (-4 *6 (-455))
+ (-5 *2 (-645 (-645 (-247 *5 *6)))) (-5 *1 (-474 *5 *6 *7))
+ (-5 *3 (-645 (-247 *5 *6))) (-4 *7 (-455)))))
+(((*1 *1 *2) (-12 (-5 *1 (-692 *2)) (-4 *2 (-614 (-863))))))
(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1076))))
((*1 *2 *1 *1)
(-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102))
(-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-112)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1106)) (-5 *3 (-775)) (-5 *1 (-52)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-351)) (-5 *2 (-960 (-1174 *4))) (-5 *1 (-359 *4))
- (-5 *3 (-1174 *4)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1259 *2)) (-4 *2 (-1051)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-433 *3) (-1004))))))
-(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1174 (-410 (-567)))) (-5 *1 (-944)) (-5 *3 (-567)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1219)) (-4 *3 (-1102))
+ (-5 *2 (-112)))))
+(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-5 *1 (-907 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-675 *3)) (-4 *3 (-1219)) (-5 *2 (-772)))))
+(((*1 *2) (-12 (-5 *2 (-1149 (-1161))) (-5 *1 (-394)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-645 *6)) (-4 *1 (-951 *4 *5 *6)) (-4 *4 (-1051))
+ (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-772))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-951 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-5 *2 (-772)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-410 *2)) (-4 *2 (-1244 *5))
- (-5 *1 (-808 *5 *2 *3 *6))
- (-4 *5 (-13 (-365) (-147) (-1040 (-410 (-567)))))
- (-4 *3 (-657 *2)) (-4 *6 (-657 *4))))
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1245 *5)) (-4 *5 (-365))
+ (-4 *7 (-1245 (-410 *6)))
+ (-5 *2 (-2 (|:| |answer| *3) (|:| -2975 *3)))
+ (-5 *1 (-565 *5 *6 *7 *3)) (-4 *3 (-344 *5 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-645 (-410 *2))) (-4 *2 (-1244 *5))
- (-5 *1 (-808 *5 *2 *3 *6))
- (-4 *5 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *3 (-657 *2))
- (-4 *6 (-657 (-410 *2))))))
-(((*1 *2 *1) (|partial| -12 (-4 *1 (-1014)) (-5 *2 (-863)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1040 (-567))) (-4 *1 (-303)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-548)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1102)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-863)) (-5 *1 (-1158 *3)) (-4 *3 (-1102))
- (-4 *3 (-1218)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-861)) (-5 *2 (-692 (-1226))) (-5 *3 (-1226)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1244 (-567)))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1244 (-567))))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-567)) (-4 *4 (-13 (-559) (-147))) (-5 *1 (-540 *4 *2))
- (-4 *2 (-1259 *4))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-567)) (-4 *4 (-13 (-365) (-370) (-615 *3)))
- (-4 *5 (-1244 *4)) (-4 *6 (-725 *4 *5)) (-5 *1 (-544 *4 *5 *6 *2))
- (-4 *2 (-1259 *6))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-567)) (-4 *4 (-13 (-365) (-370) (-615 *3)))
- (-5 *1 (-545 *4 *2)) (-4 *2 (-1259 *4))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1158 *4)) (-5 *3 (-567)) (-4 *4 (-13 (-559) (-147)))
- (-5 *1 (-1154 *4)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-690 *3)) (-4 *3 (-308)) (-5 *1 (-701 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-954 *4)) (-4 *4 (-13 (-308) (-147)))
- (-4 *2 (-951 *4 *6 *5)) (-5 *1 (-926 *4 *5 *6 *2))
- (-4 *5 (-13 (-851) (-615 (-1178)))) (-4 *6 (-794)))))
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1245 *5)) (-4 *5 (-365))
+ (-5 *2
+ (-2 (|:| |answer| (-410 *6)) (|:| -2975 (-410 *6))
+ (|:| |specpart| (-410 *6)) (|:| |polypart| *6)))
+ (-5 *1 (-566 *5 *6)) (-5 *3 (-410 *6)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-567)) (-5 *1 (-241))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-1161))) (-5 *2 (-567)) (-5 *1 (-241)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-2 (|:| -3950 (-567)) (|:| -3920 (-645 *3))))
- (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567))))))
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225)))
+ (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))
+ (-5 *2 (-112)) (-5 *1 (-301)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-645 *7)) (-4 *7 (-1073 *3 *4 *5 *6)) (-4 *3 (-455))
+ (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5))
+ (-5 *1 (-990 *3 *4 *5 *6 *7))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-645 *7)) (-4 *7 (-1073 *3 *4 *5 *6)) (-4 *3 (-455))
+ (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5))
+ (-5 *1 (-1109 *3 *4 *5 *6 *7)))))
+(((*1 *2)
+ (-12 (-4 *3 (-559)) (-5 *2 (-645 (-690 *3))) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-420 *3)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (|has| *1 (-6 -4423)) (-4 *1 (-605 *3 *4)) (-4 *3 (-1102))
+ (-4 *4 (-1219)) (-5 *2 (-1274)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1181 (-410 (-567)))) (-5 *1 (-190)))))
(((*1 *1 *2 *1)
(-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1051))
(-4 *4 (-793))))
((*1 *1 *2 *1)
(-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1051)) (-5 *1 (-50 *3 *4))
- (-14 *4 (-645 (-1178)))))
+ (-14 *4 (-645 (-1179)))))
((*1 *1 *2 *1 *1 *3)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1218))
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219))
(-4 *4 (-375 *3)) (-4 *5 (-375 *3))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1218))
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219))
(-4 *4 (-375 *3)) (-4 *5 (-375 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1218))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219))
(-4 *4 (-375 *3)) (-4 *5 (-375 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1218))
- (-4 *6 (-1218)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1219))
+ (-4 *6 (-1219)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-567))
(-14 *6 (-772)) (-4 *7 (-172)) (-4 *8 (-172))
@@ -3165,19 +3179,19 @@
(-4 *6 (-172)) (-5 *2 (-169 *6)) (-5 *1 (-168 *5 *6))))
((*1 *1 *2 *1)
(-12 (-5 *2 (-1 (-317 *3) (-317 *3))) (-4 *3 (-13 (-1051) (-851)))
- (-5 *1 (-223 *3 *4)) (-14 *4 (-645 (-1178)))))
+ (-5 *1 (-223 *3 *4)) (-14 *4 (-645 (-1179)))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-240 *5 *6)) (-14 *5 (-772))
- (-4 *6 (-1218)) (-4 *7 (-1218)) (-5 *2 (-240 *5 *7))
+ (-4 *6 (-1219)) (-4 *7 (-1219)) (-5 *2 (-240 *5 *7))
(-5 *1 (-239 *5 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-295 *5)) (-4 *5 (-1218))
- (-4 *6 (-1218)) (-5 *2 (-295 *6)) (-5 *1 (-294 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-295 *5)) (-4 *5 (-1219))
+ (-4 *6 (-1219)) (-5 *2 (-295 *6)) (-5 *1 (-294 *5 *6))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1218)) (-5 *1 (-295 *3))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1219)) (-5 *1 (-295 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1160)) (-5 *5 (-613 *6))
- (-4 *6 (-303)) (-4 *2 (-1218)) (-5 *1 (-298 *6 *2))))
+ (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1161)) (-5 *5 (-613 *6))
+ (-4 *6 (-303)) (-4 *2 (-1219)) (-5 *1 (-298 *6 *2))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-613 *5)) (-4 *5 (-303))
(-4 *2 (-303)) (-5 *1 (-299 *5 *2))))
@@ -3191,20 +3205,20 @@
(-4 *6 (-1102)) (-5 *2 (-317 *6)) (-5 *1 (-315 *5 *6))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-338 *5 *6 *7 *8)) (-4 *5 (-365))
- (-4 *6 (-1244 *5)) (-4 *7 (-1244 (-410 *6))) (-4 *8 (-344 *5 *6 *7))
- (-4 *9 (-365)) (-4 *10 (-1244 *9)) (-4 *11 (-1244 (-410 *10)))
+ (-4 *6 (-1245 *5)) (-4 *7 (-1245 (-410 *6))) (-4 *8 (-344 *5 *6 *7))
+ (-4 *9 (-365)) (-4 *10 (-1245 *9)) (-4 *11 (-1245 (-410 *10)))
(-5 *2 (-338 *9 *10 *11 *12))
(-5 *1 (-335 *5 *6 *7 *8 *9 *10 *11 *12))
(-4 *12 (-344 *9 *10 *11))))
((*1 *1 *2 *1)
(-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-340 *3)) (-4 *3 (-1102))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1222)) (-4 *8 (-1222))
- (-4 *6 (-1244 *5)) (-4 *7 (-1244 (-410 *6))) (-4 *9 (-1244 *8))
+ (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1223)) (-4 *8 (-1223))
+ (-4 *6 (-1245 *5)) (-4 *7 (-1245 (-410 *6))) (-4 *9 (-1245 *8))
(-4 *2 (-344 *8 *9 *10)) (-5 *1 (-342 *5 *6 *7 *4 *8 *9 *10 *2))
- (-4 *4 (-344 *5 *6 *7)) (-4 *10 (-1244 (-410 *9)))))
+ (-4 *4 (-344 *5 *6 *7)) (-4 *10 (-1245 (-410 *9)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1218)) (-4 *6 (-1218))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1219)) (-4 *6 (-1219))
(-4 *2 (-375 *6)) (-5 *1 (-373 *5 *4 *6 *2)) (-4 *4 (-375 *5))))
((*1 *1 *2 *1)
(-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-384 *3 *4)) (-4 *3 (-1051))
@@ -3217,9 +3231,9 @@
(-4 *6 (-559)) (-5 *2 (-410 *6)) (-5 *1 (-409 *5 *6))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-416 *5 *6 *7 *8)) (-4 *5 (-308))
- (-4 *6 (-994 *5)) (-4 *7 (-1244 *6))
+ (-4 *6 (-994 *5)) (-4 *7 (-1245 *6))
(-4 *8 (-13 (-412 *6 *7) (-1040 *6))) (-4 *9 (-308))
- (-4 *10 (-994 *9)) (-4 *11 (-1244 *10))
+ (-4 *10 (-994 *9)) (-4 *11 (-1245 *10))
(-5 *2 (-416 *9 *10 *11 *12))
(-5 *1 (-415 *5 *6 *7 *8 *9 *10 *11 *12))
(-4 *12 (-13 (-412 *10 *11) (-1040 *10)))))
@@ -3235,7 +3249,7 @@
(-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1102)) (-4 *6 (-1102))
(-4 *2 (-428 *6)) (-5 *1 (-426 *5 *4 *6 *2)) (-4 *4 (-428 *5))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-492 *3)) (-4 *3 (-1218))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-492 *3)) (-4 *3 (-1219))))
((*1 *1 *2 *1)
(-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-512 *3 *4)) (-4 *3 (-1102))
(-4 *4 (-851))))
@@ -3244,9 +3258,9 @@
(-4 *6 (-365)) (-5 *2 (-588 *6)) (-5 *1 (-587 *5 *6))))
((*1 *2 *3 *4)
(|partial| -12 (-5 *3 (-1 *6 *5))
- (-5 *4 (-3 (-2 (|:| -1752 *5) (|:| |coeff| *5)) "failed"))
+ (-5 *4 (-3 (-2 (|:| -2872 *5) (|:| |coeff| *5)) "failed"))
(-4 *5 (-365)) (-4 *6 (-365))
- (-5 *2 (-2 (|:| -1752 *6) (|:| |coeff| *6)))
+ (-5 *2 (-2 (|:| -2872 *6) (|:| |coeff| *6)))
(-5 *1 (-587 *5 *6))))
((*1 *2 *3 *4)
(|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed"))
@@ -3266,31 +3280,31 @@
(-645 (-2 (|:| |coeff| *6) (|:| |logand| *6))))))
(-5 *1 (-587 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-602 *5)) (-4 *5 (-1218))
- (-4 *6 (-1218)) (-5 *2 (-602 *6)) (-5 *1 (-599 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-602 *5)) (-4 *5 (-1219))
+ (-4 *6 (-1219)) (-5 *2 (-602 *6)) (-5 *1 (-599 *5 *6))))
((*1 *2 *3 *4 *5)
(-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-602 *6)) (-5 *5 (-602 *7))
- (-4 *6 (-1218)) (-4 *7 (-1218)) (-4 *8 (-1218)) (-5 *2 (-602 *8))
+ (-4 *6 (-1219)) (-4 *7 (-1219)) (-4 *8 (-1219)) (-5 *2 (-602 *8))
(-5 *1 (-600 *6 *7 *8))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1158 *6)) (-5 *5 (-602 *7))
- (-4 *6 (-1218)) (-4 *7 (-1218)) (-4 *8 (-1218)) (-5 *2 (-1158 *8))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1159 *6)) (-5 *5 (-602 *7))
+ (-4 *6 (-1219)) (-4 *7 (-1219)) (-4 *8 (-1219)) (-5 *2 (-1159 *8))
(-5 *1 (-600 *6 *7 *8))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-602 *6)) (-5 *5 (-1158 *7))
- (-4 *6 (-1218)) (-4 *7 (-1218)) (-4 *8 (-1218)) (-5 *2 (-1158 *8))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-602 *6)) (-5 *5 (-1159 *7))
+ (-4 *6 (-1219)) (-4 *7 (-1219)) (-4 *8 (-1219)) (-5 *2 (-1159 *8))
(-5 *1 (-600 *6 *7 *8))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1218)) (-5 *1 (-602 *3))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1219)) (-5 *1 (-602 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-645 *5)) (-4 *5 (-1218))
- (-4 *6 (-1218)) (-5 *2 (-645 *6)) (-5 *1 (-643 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-645 *5)) (-4 *5 (-1219))
+ (-4 *6 (-1219)) (-5 *2 (-645 *6)) (-5 *1 (-643 *5 *6))))
((*1 *2 *3 *4 *5)
(-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-645 *6)) (-5 *5 (-645 *7))
- (-4 *6 (-1218)) (-4 *7 (-1218)) (-4 *8 (-1218)) (-5 *2 (-645 *8))
+ (-4 *6 (-1219)) (-4 *7 (-1219)) (-4 *8 (-1219)) (-5 *2 (-645 *8))
(-5 *1 (-644 *6 *7 *8))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-652 *3)) (-4 *3 (-1218))))
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-652 *3)) (-4 *3 (-1219))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1051)) (-4 *8 (-1051))
(-4 *6 (-375 *5)) (-4 *7 (-375 *5)) (-4 *2 (-688 *8 *9 *10))
@@ -3303,9 +3317,9 @@
(-4 *4 (-688 *5 *6 *7)) (-4 *9 (-375 *8)) (-4 *10 (-375 *8))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-559)) (-4 *7 (-559))
- (-4 *6 (-1244 *5)) (-4 *2 (-1244 (-410 *8)))
- (-5 *1 (-710 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1244 (-410 *6)))
- (-4 *8 (-1244 *7))))
+ (-4 *6 (-1245 *5)) (-4 *2 (-1245 (-410 *8)))
+ (-5 *1 (-710 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1245 (-410 *6)))
+ (-4 *8 (-1245 *7))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1051)) (-4 *9 (-1051))
(-4 *5 (-851)) (-4 *6 (-794)) (-4 *2 (-951 *9 *7 *5))
@@ -3342,14 +3356,14 @@
(-12 (-5 *2 (-844 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-844 *5))
(-4 *5 (-1102)) (-4 *6 (-1102)) (-5 *1 (-843 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-879 *5)) (-4 *5 (-1218))
- (-4 *6 (-1218)) (-5 *2 (-879 *6)) (-5 *1 (-878 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-879 *5)) (-4 *5 (-1219))
+ (-4 *6 (-1219)) (-5 *2 (-879 *6)) (-5 *1 (-878 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-881 *5)) (-4 *5 (-1218))
- (-4 *6 (-1218)) (-5 *2 (-881 *6)) (-5 *1 (-880 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-881 *5)) (-4 *5 (-1219))
+ (-4 *6 (-1219)) (-5 *2 (-881 *6)) (-5 *1 (-880 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-884 *5)) (-4 *5 (-1218))
- (-4 *6 (-1218)) (-5 *2 (-884 *6)) (-5 *1 (-883 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-884 *5)) (-4 *5 (-1219))
+ (-4 *6 (-1219)) (-5 *2 (-884 *6)) (-5 *1 (-883 *5 *6))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-891 *5 *6)) (-4 *5 (-1102))
(-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-891 *5 *7))
@@ -3365,11 +3379,11 @@
(-4 *8 (-1051)) (-4 *6 (-794))
(-4 *2
(-13 (-1102)
- (-10 -8 (-15 -3033 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-772))))))
+ (-10 -8 (-15 -3041 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-772))))))
(-5 *1 (-953 *6 *7 *8 *5 *2)) (-4 *5 (-951 *8 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-960 *5)) (-4 *5 (-1218))
- (-4 *6 (-1218)) (-5 *2 (-960 *6)) (-5 *1 (-959 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-960 *5)) (-4 *5 (-1219))
+ (-4 *6 (-1219)) (-5 *2 (-960 *6)) (-5 *1 (-959 *5 *6))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-945 *5)) (-4 *5 (-1051))
(-4 *6 (-1051)) (-5 *2 (-945 *6)) (-5 *1 (-983 *5 *6))))
@@ -3378,8 +3392,8 @@
(-4 *2 (-951 (-954 *4) *5 *6)) (-4 *5 (-794))
(-4 *6
(-13 (-851)
- (-10 -8 (-15 -3893 ((-1178) $))
- (-15 -3644 ((-3 $ "failed") (-1178))))))
+ (-10 -8 (-15 -3902 ((-1179) $))
+ (-15 -3653 ((-3 $ "failed") (-1179))))))
(-5 *1 (-986 *4 *5 *6 *2))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-559)) (-4 *6 (-559))
@@ -3401,498 +3415,474 @@
(-4 *4 (-1055 *5 *6 *7 *8 *9)) (-4 *11 (-238 *6 *10))
(-4 *12 (-238 *5 *10))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1096 *5)) (-4 *5 (-1218))
- (-4 *6 (-1218)) (-5 *2 (-1096 *6)) (-5 *1 (-1091 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1096 *5)) (-4 *5 (-1219))
+ (-4 *6 (-1219)) (-5 *2 (-1096 *6)) (-5 *1 (-1091 *5 *6))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1096 *5)) (-4 *5 (-849))
- (-4 *5 (-1218)) (-4 *6 (-1218)) (-5 *2 (-645 *6))
+ (-4 *5 (-1219)) (-4 *6 (-1219)) (-5 *2 (-645 *6))
(-5 *1 (-1091 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1094 *5)) (-4 *5 (-1218))
- (-4 *6 (-1218)) (-5 *2 (-1094 *6)) (-5 *1 (-1093 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1094 *5)) (-4 *5 (-1219))
+ (-4 *6 (-1219)) (-5 *2 (-1094 *6)) (-5 *1 (-1093 *5 *6))))
((*1 *2 *3 *1)
(-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1097 *4 *2)) (-4 *4 (-849))
(-4 *2 (-1151 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1158 *5)) (-4 *5 (-1218))
- (-4 *6 (-1218)) (-5 *2 (-1158 *6)) (-5 *1 (-1156 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1159 *5)) (-4 *5 (-1219))
+ (-4 *6 (-1219)) (-5 *2 (-1159 *6)) (-5 *1 (-1157 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1158 *6)) (-5 *5 (-1158 *7))
- (-4 *6 (-1218)) (-4 *7 (-1218)) (-4 *8 (-1218)) (-5 *2 (-1158 *8))
- (-5 *1 (-1157 *6 *7 *8))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1159 *6)) (-5 *5 (-1159 *7))
+ (-4 *6 (-1219)) (-4 *7 (-1219)) (-4 *8 (-1219)) (-5 *2 (-1159 *8))
+ (-5 *1 (-1158 *6 *7 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1174 *5)) (-4 *5 (-1051))
- (-4 *6 (-1051)) (-5 *2 (-1174 *6)) (-5 *1 (-1172 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1175 *5)) (-4 *5 (-1051))
+ (-4 *6 (-1051)) (-5 *2 (-1175 *6)) (-5 *1 (-1173 *5 *6))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1194 *3 *4)) (-4 *3 (-1102))
+ (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1195 *3 *4)) (-4 *3 (-1102))
(-4 *4 (-1102))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1232 *5 *7 *9)) (-4 *5 (-1051))
- (-4 *6 (-1051)) (-14 *7 (-1178)) (-14 *9 *5) (-14 *10 *6)
- (-5 *2 (-1232 *6 *8 *10)) (-5 *1 (-1227 *5 *6 *7 *8 *9 *10))
- (-14 *8 (-1178))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1233 *5 *7 *9)) (-4 *5 (-1051))
+ (-4 *6 (-1051)) (-14 *7 (-1179)) (-14 *9 *5) (-14 *10 *6)
+ (-5 *2 (-1233 *6 *8 *10)) (-5 *1 (-1228 *5 *6 *7 *8 *9 *10))
+ (-14 *8 (-1179))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1235 *5)) (-4 *5 (-1218))
- (-4 *6 (-1218)) (-5 *2 (-1235 *6)) (-5 *1 (-1234 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1236 *5)) (-4 *5 (-1219))
+ (-4 *6 (-1219)) (-5 *2 (-1236 *6)) (-5 *1 (-1235 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1235 *5)) (-4 *5 (-849))
- (-4 *5 (-1218)) (-4 *6 (-1218)) (-5 *2 (-1158 *6))
- (-5 *1 (-1234 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1236 *5)) (-4 *5 (-849))
+ (-4 *5 (-1219)) (-4 *6 (-1219)) (-5 *2 (-1159 *6))
+ (-5 *1 (-1235 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1241 *5 *6)) (-14 *5 (-1178))
- (-4 *6 (-1051)) (-4 *8 (-1051)) (-5 *2 (-1241 *7 *8))
- (-5 *1 (-1236 *5 *6 *7 *8)) (-14 *7 (-1178))))
+ (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1242 *5 *6)) (-14 *5 (-1179))
+ (-4 *6 (-1051)) (-4 *8 (-1051)) (-5 *2 (-1242 *7 *8))
+ (-5 *1 (-1237 *5 *6 *7 *8)) (-14 *7 (-1179))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1051)) (-4 *6 (-1051))
- (-4 *2 (-1244 *6)) (-5 *1 (-1242 *5 *4 *6 *2)) (-4 *4 (-1244 *5))))
+ (-4 *2 (-1245 *6)) (-5 *1 (-1243 *5 *4 *6 *2)) (-4 *4 (-1245 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1253 *5 *7 *9)) (-4 *5 (-1051))
- (-4 *6 (-1051)) (-14 *7 (-1178)) (-14 *9 *5) (-14 *10 *6)
- (-5 *2 (-1253 *6 *8 *10)) (-5 *1 (-1248 *5 *6 *7 *8 *9 *10))
- (-14 *8 (-1178))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1254 *5 *7 *9)) (-4 *5 (-1051))
+ (-4 *6 (-1051)) (-14 *7 (-1179)) (-14 *9 *5) (-14 *10 *6)
+ (-5 *2 (-1254 *6 *8 *10)) (-5 *1 (-1249 *5 *6 *7 *8 *9 *10))
+ (-14 *8 (-1179))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1051)) (-4 *6 (-1051))
- (-4 *2 (-1259 *6)) (-5 *1 (-1257 *5 *6 *4 *2)) (-4 *4 (-1259 *5))))
+ (-4 *2 (-1260 *6)) (-5 *1 (-1258 *5 *6 *4 *2)) (-4 *4 (-1260 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1268 *5)) (-4 *5 (-1218))
- (-4 *6 (-1218)) (-5 *2 (-1268 *6)) (-5 *1 (-1267 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1269 *5)) (-4 *5 (-1219))
+ (-4 *6 (-1219)) (-5 *2 (-1269 *6)) (-5 *1 (-1268 *5 *6))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1268 *5))
- (-4 *5 (-1218)) (-4 *6 (-1218)) (-5 *2 (-1268 *6))
- (-5 *1 (-1267 *5 *6))))
+ (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1269 *5))
+ (-4 *5 (-1219)) (-4 *6 (-1219)) (-5 *2 (-1269 *6))
+ (-5 *1 (-1268 *5 *6))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1285 *3 *4)) (-4 *3 (-851))
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1286 *3 *4)) (-4 *3 (-851))
(-4 *4 (-1051))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1051)) (-5 *1 (-1291 *3 *4))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1051)) (-5 *1 (-1292 *3 *4))
(-4 *4 (-847)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-851)) (-5 *1 (-1189 *3)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-388 *2)) (-4 *2 (-1102)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-821)) (-14 *5 (-1178)) (-5 *2 (-645 (-1241 *5 *4)))
- (-5 *1 (-1116 *4 *5)) (-5 *3 (-1241 *5 *4)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-365)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112))
- (-5 *1 (-507 *4 *5 *6 *3)) (-4 *3 (-951 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567)))))))
- (-5 *2 (-645 *4)) (-5 *1 (-1130 *3 *4)) (-4 *3 (-1244 *4))))
- ((*1 *2 *3 *3 *3)
- (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567)))))))
- (-5 *2 (-645 *3)) (-5 *1 (-1130 *4 *3)) (-4 *4 (-1244 *3)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794))
+ (-4 *4 (-851)) (-4 *2 (-455)))))
+(((*1 *2 *1) (-12 (-4 *1 (-675 *2)) (-4 *2 (-1219)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *2 (-1067 *4 *5 *6)) (-5 *1 (-777 *4 *5 *6 *2 *3))
+ (-4 *3 (-1073 *4 *5 *6 *2)))))
+(((*1 *1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1219)) (-4 *2 (-1102))))
+ ((*1 *1 *1) (-12 (-4 *1 (-696 *2)) (-4 *2 (-1102)))))
+(((*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-1161)))))
(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1160)) (-4 *1 (-366 *2 *4)) (-4 *2 (-1102))
+ (-12 (-5 *3 (-1161)) (-4 *1 (-366 *2 *4)) (-4 *2 (-1102))
(-4 *4 (-1102))))
((*1 *1 *2)
(-12 (-4 *1 (-366 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-1102)))))
-(((*1 *1 *2)
- (-12
- (-5 *2
- (-645
- (-2
- (|:| -1795
- (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225)))
- (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
- (|:| -4237
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1158 (-225)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -1604
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite|
- "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated"))))))))
- (-5 *1 (-562)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1174 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-264))))
+ ((*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-264)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1179))))
+ (-4 *6 (-794)) (-5 *2 (-645 (-645 (-567))))
+ (-5 *1 (-926 *4 *5 *6 *7)) (-5 *3 (-567)) (-4 *7 (-951 *4 *6 *5)))))
+(((*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-359 *3)) (-4 *3 (-351)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1006 *3)) (-14 *3 (-567)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-381)) (-5 *1 (-97))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-381)) (-5 *1 (-97)))))
+(((*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-112)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-327 *3 *4)) (-4 *3 (-1051))
+ (-4 *4 (-793)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102))
+ (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 *5)) (-5 *4 (-923)) (-4 *5 (-851))
+ (-5 *2 (-59 (-645 (-673 *5)))) (-5 *1 (-673 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-772)) (-5 *2 (-112)) (-5 *1 (-589 *3)) (-4 *3 (-548)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-772)) (-5 *1 (-1166 *3 *4)) (-14 *3 (-923))
- (-4 *4 (-1051)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-772)) (-5 *2 (-1174 *4)) (-5 *1 (-531 *4))
- (-4 *4 (-351)))))
-(((*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-1160)))))
+ (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1219)) (-4 *3 (-375 *2))
+ (-4 *4 (-375 *2))))
+ ((*1 *1 *1 *2)
+ (-12 (|has| *1 (-6 -4423)) (-4 *1 (-605 *3 *2)) (-4 *3 (-1102))
+ (-4 *2 (-1219)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-308))
- (-5 *2 (-645 (-772))) (-5 *1 (-779 *3 *4 *5 *6 *7))
- (-4 *3 (-1244 *6)) (-4 *7 (-951 *6 *4 *5)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-559)) (-5 *2 (-112)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-645 (-1174 *5))) (-5 *3 (-1174 *5))
- (-4 *5 (-166 *4)) (-4 *4 (-548)) (-5 *1 (-149 *4 *5))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-645 *3)) (-4 *3 (-1244 *5))
- (-4 *5 (-1244 *4)) (-4 *4 (-351)) (-5 *1 (-360 *4 *5 *3))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-645 (-1174 (-567)))) (-5 *3 (-1174 (-567)))
- (-5 *1 (-575))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-645 (-1174 *1))) (-5 *3 (-1174 *1))
- (-4 *1 (-911)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-1158 *3))) (-5 *2 (-1158 *3)) (-5 *1 (-1162 *3))
- (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-923)) (-5 *3 (-645 (-264))) (-5 *1 (-262))))
- ((*1 *1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-264)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-117 *3)) (-14 *3 *2)))
- ((*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-567))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-872 *3)) (-14 *3 *2)))
- ((*1 *1 *1) (-12 (-5 *1 (-872 *2)) (-14 *2 (-567))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-567)) (-14 *3 *2) (-5 *1 (-873 *3 *4))
- (-4 *4 (-870 *3))))
- ((*1 *1 *1)
- (-12 (-14 *2 (-567)) (-5 *1 (-873 *2 *3)) (-4 *3 (-870 *2))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-567)) (-4 *1 (-1230 *3 *4)) (-4 *3 (-1051))
- (-4 *4 (-1259 *3))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1230 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-1259 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-157))))
- ((*1 *2 *1) (-12 (-5 *2 (-157)) (-5 *1 (-875))))
- ((*1 *2 *3) (-12 (-5 *3 (-945 *2)) (-5 *1 (-984 *2)) (-4 *2 (-1051)))))
+ (-12 (-5 *3 (-1175 *4)) (-4 *4 (-351))
+ (-5 *2 (-1269 (-645 (-2 (|:| -3812 *4) (|:| -3779 (-1122))))))
+ (-5 *1 (-348 *4)))))
(((*1 *2 *1)
(-12 (-4 *3 (-1102)) (-4 *4 (-13 (-1051) (-888 *3) (-615 (-894 *3))))
(-5 *2 (-645 (-1078 *3 *4 *5))) (-5 *1 (-1079 *3 *4 *5))
(-4 *5 (-13 (-433 *4) (-888 *3) (-615 (-894 *3)))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-772)) (-5 *4 (-1268 *2)) (-4 *5 (-308))
- (-4 *6 (-994 *5)) (-4 *2 (-13 (-412 *6 *7) (-1040 *6)))
- (-5 *1 (-416 *5 *6 *7 *2)) (-4 *7 (-1244 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-772)) (-4 *1 (-1244 *3)) (-4 *3 (-1051))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-923)) (-4 *1 (-1246 *3 *4)) (-4 *3 (-1051))
- (-4 *4 (-793))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-410 (-567))) (-4 *1 (-1249 *3)) (-4 *3 (-1051)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))))
-(((*1 *1 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-308)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-1228 *3)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-823)))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1212 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1269 (-1269 (-567)))) (-5 *3 (-923)) (-5 *1 (-469)))))
(((*1 *2 *3)
- (-12 (|has| *2 (-6 (-4420 "*"))) (-4 *5 (-375 *2)) (-4 *6 (-375 *2))
- (-4 *2 (-1051)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1244 *2))
- (-4 *4 (-688 *2 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-859))))
- ((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-967))))
- ((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-991))))
- ((*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1218))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-13 (-1102) (-34))) (-5 *1 (-1142 *2 *3))
- (-4 *3 (-13 (-1102) (-34))))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037))
- (-5 *1 (-756)))))
-(((*1 *2 *1) (-12 (-5 *2 (-645 (-1217))) (-5 *1 (-527)))))
-(((*1 *1 *1) (-5 *1 (-112))))
+ (-12
+ (-5 *3
+ (-507 (-410 (-567)) (-240 *5 (-772)) (-865 *4)
+ (-247 *4 (-410 (-567)))))
+ (-14 *4 (-645 (-1179))) (-14 *5 (-772)) (-5 *2 (-112))
+ (-5 *1 (-508 *4 *5)))))
(((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-1178)) (-4 *4 (-1051)) (-4 *4 (-1102))
- (-5 *2 (-2 (|:| |var| (-613 *1)) (|:| -3458 (-567))))
+ (|partial| -12 (-5 *3 (-1179)) (-4 *4 (-1051)) (-4 *4 (-1102))
+ (-5 *2 (-2 (|:| |var| (-613 *1)) (|:| -3468 (-567))))
(-4 *1 (-433 *4))))
((*1 *2 *1 *3)
(|partial| -12 (-5 *3 (-114)) (-4 *4 (-1051)) (-4 *4 (-1102))
- (-5 *2 (-2 (|:| |var| (-613 *1)) (|:| -3458 (-567))))
+ (-5 *2 (-2 (|:| |var| (-613 *1)) (|:| -3468 (-567))))
(-4 *1 (-433 *4))))
((*1 *2 *1)
(|partial| -12 (-4 *3 (-1114)) (-4 *3 (-1102))
- (-5 *2 (-2 (|:| |var| (-613 *1)) (|:| -3458 (-567))))
+ (-5 *2 (-2 (|:| |var| (-613 *1)) (|:| -3468 (-567))))
(-4 *1 (-433 *3))))
((*1 *2 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |val| (-894 *3)) (|:| -3458 (-772))))
+ (|partial| -12 (-5 *2 (-2 (|:| |val| (-894 *3)) (|:| -3468 (-772))))
(-5 *1 (-894 *3)) (-4 *3 (-1102))))
((*1 *2 *1)
(|partial| -12 (-4 *1 (-951 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794))
- (-4 *5 (-851)) (-5 *2 (-2 (|:| |var| *5) (|:| -3458 (-772))))))
+ (-4 *5 (-851)) (-5 *2 (-2 (|:| |var| *5) (|:| -3468 (-772))))))
((*1 *2 *3)
(|partial| -12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1051))
(-4 *7 (-951 *6 *4 *5))
- (-5 *2 (-2 (|:| |var| *5) (|:| -3458 (-567))))
+ (-5 *2 (-2 (|:| |var| *5) (|:| -3468 (-567))))
(-5 *1 (-952 *4 *5 *6 *7 *3))
(-4 *3
(-13 (-365)
- (-10 -8 (-15 -4132 ($ *7)) (-15 -1448 (*7 $))
- (-15 -1460 (*7 $))))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-4 *4 (-559)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5))
- (-4 *5 (-433 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-4 *4 (-559)) (-5 *2 (-112))
- (-5 *1 (-158 *4 *5)) (-4 *5 (-433 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-4 *4 (-559)) (-5 *2 (-112))
- (-5 *1 (-277 *4 *5)) (-4 *5 (-13 (-433 *4) (-1004)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-302 *4)) (-4 *4 (-303))))
- ((*1 *2 *3) (-12 (-4 *1 (-303)) (-5 *3 (-114)) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-4 *5 (-1102)) (-5 *2 (-112))
- (-5 *1 (-432 *4 *5)) (-4 *4 (-433 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-4 *4 (-559)) (-5 *2 (-112))
- (-5 *1 (-434 *4 *5)) (-4 *5 (-433 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-4 *4 (-559)) (-5 *2 (-112))
- (-5 *1 (-631 *4 *5)) (-4 *5 (-13 (-433 *4) (-1004) (-1203))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-410 (-567)))
- (-4 *4 (-13 (-559) (-1040 (-567)) (-640 (-567))))
- (-5 *1 (-278 *4 *2)) (-4 *2 (-13 (-27) (-1203) (-433 *4))))))
+ (-10 -8 (-15 -4129 ($ *7)) (-15 -1447 (*7 $))
+ (-15 -1462 (*7 $))))))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-772)) (-4 *1 (-657 *3)) (-4 *3 (-1051)) (-4 *3 (-365))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-772)) (-5 *4 (-1 *5 *5)) (-4 *5 (-365))
+ (-5 *1 (-660 *5 *2)) (-4 *2 (-657 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1179)) (-4 *5 (-365)) (-5 *2 (-1159 (-1159 (-954 *5))))
+ (-5 *1 (-1277 *5)) (-5 *4 (-1159 (-954 *5))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1204))))))
+(((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-859))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-967))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-991))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1219))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-1102) (-34))) (-5 *1 (-1142 *2 *3))
+ (-4 *3 (-13 (-1102) (-34))))))
+(((*1 *1 *1) (-5 *1 (-112))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2))
+ (-4 *4 (-375 *2)))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-567)) (-14 *3 (-772))
+ (-4 *4 (-172))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1179)) (-4 *4 (-559)) (-5 *1 (-158 *4 *2))
+ (-4 *2 (-433 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1094 *2)) (-4 *2 (-433 *4)) (-4 *4 (-559))
+ (-5 *1 (-158 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1094 *1)) (-4 *1 (-160))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1179))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))
+ ((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-772)) (-5 *1 (-1289 *3 *4)) (-4 *3 (-851))
+ (-4 *4 (-172)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-645 (-410 *6))) (-5 *3 (-410 *6))
+ (-4 *6 (-1245 *5)) (-4 *5 (-13 (-365) (-147) (-1040 (-567))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-571 *5 *6)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1161)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-1274))
+ (-5 *1 (-990 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1161)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-1274))
+ (-5 *1 (-1109 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7)))))
(((*1 *1 *2 *3)
- (-12 (-5 *1 (-874 *2 *3)) (-4 *2 (-1218)) (-4 *3 (-1218)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-954 *4)) (-4 *4 (-1051)) (-4 *4 (-615 *2))
- (-5 *2 (-381)) (-5 *1 (-786 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-954 *5)) (-5 *4 (-923)) (-4 *5 (-1051))
- (-4 *5 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-410 (-954 *4))) (-4 *4 (-559))
- (-4 *4 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-923)) (-4 *5 (-559))
- (-4 *5 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-317 *4)) (-4 *4 (-559)) (-4 *4 (-851))
- (-4 *4 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-317 *5)) (-5 *4 (-923)) (-4 *5 (-559))
- (-4 *5 (-851)) (-4 *5 (-615 *2)) (-5 *2 (-381))
- (-5 *1 (-786 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-613 *4)) (-5 *1 (-612 *3 *4)) (-4 *3 (-1102))
- (-4 *4 (-1102)))))
-(((*1 *2 *1)
- (-12
- (-5 *2
- (-645
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3)
- (|:| |xpnt| (-567)))))
- (-5 *1 (-421 *3)) (-4 *3 (-559))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *4 (-772)) (-4 *3 (-351)) (-4 *5 (-1244 *3))
- (-5 *2 (-645 (-1174 *3))) (-5 *1 (-501 *3 *5 *6))
- (-4 *6 (-1244 *5)))))
-(((*1 *2)
- (-12 (-4 *3 (-1051)) (-5 *2 (-960 (-713 *3 *4))) (-5 *1 (-713 *3 *4))
- (-4 *4 (-1244 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-645 (-317 (-225)))) (-5 *2 (-112)) (-5 *1 (-268)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-645 (-52))) (-5 *1 (-894 *3)) (-4 *3 (-1102)))))
-(((*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-165 *3 *2)) (-4 *3 (-166 *2))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1268 *1)) (-4 *1 (-372 *2 *4)) (-4 *4 (-1244 *2))
- (-4 *2 (-172))))
- ((*1 *2)
- (-12 (-4 *4 (-1244 *2)) (-4 *2 (-172)) (-5 *1 (-411 *3 *2 *4))
- (-4 *3 (-412 *2 *4))))
- ((*1 *2) (-12 (-4 *1 (-412 *2 *3)) (-4 *3 (-1244 *2)) (-4 *2 (-172))))
- ((*1 *2)
- (-12 (-4 *3 (-1244 *2)) (-5 *2 (-567)) (-5 *1 (-769 *3 *4))
- (-4 *4 (-412 *2 *3))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-951 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794))
- (-4 *2 (-851)) (-4 *3 (-172))))
- ((*1 *2 *3)
- (-12 (-4 *2 (-559)) (-5 *1 (-971 *2 *3)) (-4 *3 (-1244 *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1051)) (-4 *2 (-172)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-1102)) (-5 *1 (-966 *3 *2)) (-4 *3 (-1102)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-645 *1)) (-4 *1 (-1067 *4 *5 *6)) (-4 *4 (-1051))
- (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794))
- (-4 *5 (-851)) (-5 *2 (-112))))
- ((*1 *2 *3 *1 *4)
- (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1211 *5 *6 *7 *3))
- (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851))
- (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-112)))))
+ (-12 (-5 *1 (-874 *2 *3)) (-4 *2 (-1219)) (-4 *3 (-1219)))))
(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
(-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
(-4 *2 (-13 (-433 *3) (-1004)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3))
- (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4))))
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3))
+ (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3))
- (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4))))
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3))
+ (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567))))
- (-5 *1 (-1163 *3))))
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1164 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567))))
- (-5 *1 (-1164 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1268 *4)) (-4 *4 (-640 (-567))) (-5 *2 (-112))
- (-5 *1 (-1295 *4)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1073 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794))
- (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-645 (-690 *6))) (-5 *4 (-112)) (-5 *5 (-567))
- (-5 *2 (-690 *6)) (-5 *1 (-1031 *6)) (-4 *6 (-365)) (-4 *6 (-1051))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-645 (-690 *4))) (-5 *2 (-690 *4)) (-5 *1 (-1031 *4))
- (-4 *4 (-365)) (-4 *4 (-1051))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-645 (-690 *5))) (-5 *4 (-567)) (-5 *2 (-690 *5))
- (-5 *1 (-1031 *5)) (-4 *5 (-365)) (-4 *5 (-1051)))))
-(((*1 *1) (-5 *1 (-1181))))
-(((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1178)) (-5 *1 (-676 *3)) (-4 *3 (-1102)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1112)) (-5 *3 (-567)))))
-(((*1 *1 *1 *1) (-5 *1 (-863))))
-(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6)
- (-12 (-5 *4 (-567)) (-5 *6 (-1 (-1273) (-1268 *5) (-1268 *5) (-381)))
- (-5 *3 (-1268 (-381))) (-5 *5 (-381)) (-5 *2 (-1273))
- (-5 *1 (-789)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-365)) (-5 *1 (-286 *3 *2)) (-4 *2 (-1259 *3)))))
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1165 *3)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-907 (-567))) (-5 *4 (-567)) (-5 *2 (-690 *4))
- (-5 *1 (-1030 *5)) (-4 *5 (-1051))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-645 (-567))) (-5 *2 (-690 (-567))) (-5 *1 (-1030 *4))
- (-4 *4 (-1051))))
+ (-12 (-5 *3 (-410 *6)) (-4 *5 (-1223)) (-4 *6 (-1245 *5))
+ (-5 *2 (-2 (|:| -3468 (-772)) (|:| -3705 *3) (|:| |radicand| *6)))
+ (-5 *1 (-148 *5 *6 *7)) (-5 *4 (-772)) (-4 *7 (-1245 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1175 *1)) (-5 *4 (-1179)) (-4 *1 (-27))
+ (-5 *2 (-645 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1175 *1)) (-4 *1 (-27)) (-5 *2 (-645 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-954 *1)) (-4 *1 (-27)) (-5 *2 (-645 *1))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1179)) (-4 *4 (-559)) (-5 *2 (-645 *1))
+ (-4 *1 (-29 *4))))
+ ((*1 *2 *1) (-12 (-4 *3 (-559)) (-5 *2 (-645 *1)) (-4 *1 (-29 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-317 (-225))) (-5 *4 (-645 (-1179)))
+ (-5 *5 (-1096 (-844 (-225)))) (-5 *2 (-1159 (-225))) (-5 *1 (-301)))))
+(((*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-157)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1048 *4 *5)) (-4 *4 (-13 (-849) (-308) (-147) (-1024)))
+ (-14 *5 (-645 (-1179))) (-5 *2 (-645 (-645 (-1026 (-410 *4)))))
+ (-5 *1 (-1295 *4 *5 *6)) (-14 *6 (-645 (-1179)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-849) (-308) (-147) (-1024)))
+ (-5 *2 (-645 (-645 (-1026 (-410 *5))))) (-5 *1 (-1295 *5 *6 *7))
+ (-14 *6 (-645 (-1179))) (-14 *7 (-645 (-1179)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-645 (-907 (-567)))) (-5 *4 (-567))
- (-5 *2 (-645 (-690 *4))) (-5 *1 (-1030 *5)) (-4 *5 (-1051))))
+ (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-849) (-308) (-147) (-1024)))
+ (-5 *2 (-645 (-645 (-1026 (-410 *5))))) (-5 *1 (-1295 *5 *6 *7))
+ (-14 *6 (-645 (-1179))) (-14 *7 (-645 (-1179)))))
((*1 *2 *3)
- (-12 (-5 *3 (-645 (-645 (-567)))) (-5 *2 (-645 (-690 (-567))))
- (-5 *1 (-1030 *4)) (-4 *4 (-1051)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1244 *2)) (-4 *2 (-1222)) (-5 *1 (-148 *2 *4 *3))
- (-4 *3 (-1244 (-410 *4))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1218)) (-5 *2 (-645 *3)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-772)) (-5 *1 (-857 *2)) (-4 *2 (-38 (-410 (-567))))
- (-4 *2 (-172)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5
- (-1 (-2 (|:| |ans| *6) (|:| -2963 *6) (|:| |sol?| (-112))) (-567)
- *6))
- (-4 *6 (-365)) (-4 *7 (-1244 *6))
- (-5 *2 (-2 (|:| |answer| (-588 (-410 *7))) (|:| |a0| *6)))
- (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7)))))
+ (-12 (-5 *3 (-645 (-954 *4)))
+ (-4 *4 (-13 (-849) (-308) (-147) (-1024)))
+ (-5 *2 (-645 (-645 (-1026 (-410 *4))))) (-5 *1 (-1295 *4 *5 *6))
+ (-14 *5 (-645 (-1179))) (-14 *6 (-645 (-1179))))))
+(((*1 *2)
+ (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851))
+ (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-1274))
+ (-5 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *7 (-1073 *3 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851))
+ (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-1274))
+ (-5 *1 (-1110 *3 *4 *5 *6 *7)) (-4 *7 (-1073 *3 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919))))
+ ((*1 *2 *3) (-12 (-5 *3 (-973)) (-5 *2 (-906 (-567))) (-5 *1 (-919)))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *4 (-613 *3)) (-5 *5 (-1 (-1175 *3) (-1175 *3)))
+ (-4 *3 (-13 (-27) (-433 *6))) (-4 *6 (-559)) (-5 *2 (-588 *3))
+ (-5 *1 (-554 *6 *3)))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-772)) (-4 *1 (-985 *2)) (-4 *2 (-1203)))))
+ (-12 (-4 *3 (-365)) (-5 *1 (-286 *3 *2)) (-4 *2 (-1260 *3)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-1067 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794))
+ (-4 *2 (-851))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794))
+ (-4 *4 (-851)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1245 *6))
+ (-4 *6 (-13 (-27) (-433 *5))) (-4 *5 (-13 (-559) (-1040 (-567))))
+ (-4 *8 (-1245 (-410 *7))) (-5 *2 (-588 *3))
+ (-5 *1 (-555 *5 *6 *7 *8 *3)) (-4 *3 (-344 *6 *7 *8)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1219)) (-5 *2 (-645 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-351)) (-5 *3 (-567)) (-5 *2 (-1192 (-923) (-772))))))
+(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112))
+ (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5))))
+ ((*1 *2 *1) (-12 (-4 *1 (-647 *3)) (-4 *3 (-1060)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1053 *3)) (-4 *3 (-1060)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1070 *4 *3)) (-4 *4 (-13 (-849) (-365)))
+ (-4 *3 (-1245 *4)) (-5 *2 (-112)))))
+(((*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-331)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-645 *4)) (-4 *4 (-1102)) (-5 *2 (-1274))
+ (-5 *1 (-1220 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-645 *4)) (-4 *4 (-1102)) (-5 *2 (-1274))
+ (-5 *1 (-1220 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-308)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4))
+ (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3)))
+ (-5 *1 (-1126 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-1051)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 (-264))) (-5 *4 (-1179)) (-5 *2 (-112))
+ (-5 *1 (-264)))))
+(((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-1175 (-954 *4))) (-5 *1 (-419 *3 *4))
+ (-4 *3 (-420 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-4 *3 (-365))
+ (-5 *2 (-1175 (-954 *3)))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1175 (-410 (-954 *3)))) (-5 *1 (-456 *3 *4 *5 *6))
+ (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923))
+ (-14 *5 (-645 (-1179))) (-14 *6 (-1269 (-690 *3))))))
+(((*1 *1) (-5 *1 (-225))) ((*1 *1) (-5 *1 (-381))))
+(((*1 *2 *3)
+ (-12 (-4 *3 (-1245 *2)) (-4 *2 (-1245 *4)) (-5 *1 (-987 *4 *2 *3 *5))
+ (-4 *4 (-351)) (-4 *5 (-725 *2 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1004))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-5 *2 (-772)))))
(((*1 *1 *2) (-12 (-5 *2 (-923)) (-4 *1 (-370))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-923)) (-5 *2 (-1268 *4)) (-5 *1 (-531 *4))
+ (-12 (-5 *3 (-923)) (-5 *2 (-1269 *4)) (-5 *1 (-531 *4))
(-4 *4 (-351))))
((*1 *2 *1)
(-12 (-4 *2 (-851)) (-5 *1 (-714 *2 *3 *4)) (-4 *3 (-1102))
(-14 *4
- (-1 (-112) (-2 (|:| -3768 *2) (|:| -3458 *3))
- (-2 (|:| -3768 *2) (|:| -3458 *3)))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-645 (-1204 *3))) (-5 *1 (-1204 *3)) (-4 *3 (-1102)))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6)
- (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225))
- (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-78 FUNCTN))))
- (-5 *2 (-1037)) (-5 *1 (-749)))))
+ (-1 (-112) (-2 (|:| -3779 *2) (|:| -3468 *3))
+ (-2 (|:| -3779 *2) (|:| -3468 *3)))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1051)) (-4 *7 (-1051))
- (-4 *6 (-1244 *5)) (-5 *2 (-1174 (-1174 *7)))
- (-5 *1 (-504 *5 *6 *4 *7)) (-4 *4 (-1244 *6)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-645 (-645 (-645 *4)))) (-5 *2 (-645 (-645 *4)))
- (-4 *4 (-851)) (-5 *1 (-1189 *4)))))
-(((*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-1181))))
- ((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1273)) (-5 *1 (-1181))))
- ((*1 *2 *3 *1) (-12 (-5 *3 (-1178)) (-5 *2 (-1273)) (-5 *1 (-1181)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
- (-4 *2 (-1067 *4 *5 *6)) (-5 *1 (-777 *4 *5 *6 *2 *3))
- (-4 *3 (-1073 *4 *5 *6 *2)))))
-(((*1 *2 *3 *4 *5 *4 *4 *4)
- (-12 (-4 *6 (-851)) (-5 *3 (-645 *6)) (-5 *5 (-645 *3))
- (-5 *2
- (-2 (|:| |f1| *3) (|:| |f2| (-645 *5)) (|:| |f3| *5)
- (|:| |f4| (-645 *5))))
- (-5 *1 (-1189 *6)) (-5 *4 (-645 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1180 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-645 (-2 (|:| |den| (-567)) (|:| |gcdnum| (-567)))))
- (-4 *4 (-1244 (-410 *2))) (-5 *2 (-567)) (-5 *1 (-915 *4 *5))
- (-4 *5 (-1244 (-410 *4))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1166 *3 *4)) (-14 *3 (-923))
- (-4 *4 (-1051)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-645 (-772))) (-5 *1 (-1166 *3 *4)) (-14 *3 (-923))
- (-4 *4 (-1051)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-433 *3) (-1004))))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-923)) (-5 *2 (-471)) (-5 *1 (-1269)))))
+ (-12 (-5 *3 (-690 (-410 (-567)))) (-5 *2 (-645 *4)) (-5 *1 (-780 *4))
+ (-4 *4 (-13 (-365) (-849))))))
+(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1219)) (-5 *1 (-328 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-645 *3)) (-4 *3 (-1219)) (-5 *1 (-519 *3 *4))
+ (-14 *4 (-567)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-772))
+ (-4 *3 (-13 (-308) (-10 -8 (-15 -3597 ((-421 $) $)))))
+ (-4 *4 (-1245 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-412 *3 *4)))))
(((*1 *2 *2)
- (-12
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-5 *1 (-1163 *3)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1102)) (-5 *2 (-645 *1))
+ (-4 *1 (-433 *3))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-645 (-894 *3))) (-5 *1 (-894 *3))
+ (-4 *3 (-1102))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851))
+ (-5 *2 (-645 *1)) (-4 *1 (-951 *3 *4 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1051))
+ (-4 *7 (-951 *6 *4 *5)) (-5 *2 (-645 *3))
+ (-5 *1 (-952 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-365)
+ (-10 -8 (-15 -4129 ($ *7)) (-15 -1447 (*7 $))
+ (-15 -1462 (*7 $))))))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-1 (-645 *2) *2 *2 *2)) (-4 *2 (-1102))
+ (-5 *1 (-103 *2))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1102)) (-5 *1 (-103 *2)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-225)) (-5 *5 (-567)) (-5 *2 (-1214 *3))
+ (-5 *1 (-791 *3)) (-4 *3 (-976))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *3 (-645 (-645 (-945 (-225))))) (-5 *4 (-112))
+ (-5 *1 (-1214 *2)) (-4 *2 (-976)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1219)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1205 *3)) (-4 *3 (-1102)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-793))
+ (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-1102))
+ (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-597 *3)) (-4 *3 (-1051))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-559)) (-5 *2 (-112)) (-5 *1 (-624 *3 *4))
+ (-4 *4 (-1245 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-736 *3 *4)) (-4 *3 (-1051))
+ (-4 *4 (-727))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1286 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051))
+ (-5 *2 (-112)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-690 *8)) (-4 *8 (-951 *5 *7 *6))
+ (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1179))))
+ (-4 *7 (-794))
(-5 *2
- (-989 (-410 (-567)) (-865 *3) (-240 *4 (-772))
- (-247 *3 (-410 (-567)))))
- (-14 *3 (-645 (-1178))) (-14 *4 (-772)) (-5 *1 (-988 *3 *4)))))
+ (-645
+ (-2 (|:| -1976 (-772))
+ (|:| |eqns|
+ (-645
+ (-2 (|:| |det| *8) (|:| |rows| (-645 (-567)))
+ (|:| |cols| (-645 (-567))))))
+ (|:| |fgb| (-645 *8)))))
+ (-5 *1 (-926 *5 *6 *7 *8)) (-5 *4 (-772)))))
+(((*1 *1 *1 *1) (-5 *1 (-863))))
+(((*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-580))))
+ ((*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-580)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-772)) (-5 *3 (-112)) (-5 *1 (-110))))
+ ((*1 *2 *2) (-12 (-5 *2 (-923)) (|has| *1 (-6 -4413)) (-4 *1 (-407))))
+ ((*1 *2) (-12 (-4 *1 (-407)) (-5 *2 (-923)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1218))))
+ (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1219))))
((*1 *1 *2)
(|partial| -12 (-5 *2 (-954 (-381))) (-5 *1 (-341 *3 *4 *5))
- (-4 *5 (-1040 (-381))) (-14 *3 (-645 (-1178)))
- (-14 *4 (-645 (-1178))) (-4 *5 (-390))))
+ (-4 *5 (-1040 (-381))) (-14 *3 (-645 (-1179)))
+ (-14 *4 (-645 (-1179))) (-4 *5 (-390))))
((*1 *1 *2)
(|partial| -12 (-5 *2 (-410 (-954 (-381)))) (-5 *1 (-341 *3 *4 *5))
- (-4 *5 (-1040 (-381))) (-14 *3 (-645 (-1178)))
- (-14 *4 (-645 (-1178))) (-4 *5 (-390))))
+ (-4 *5 (-1040 (-381))) (-14 *3 (-645 (-1179)))
+ (-14 *4 (-645 (-1179))) (-4 *5 (-390))))
((*1 *1 *2)
(|partial| -12 (-5 *2 (-317 (-381))) (-5 *1 (-341 *3 *4 *5))
- (-4 *5 (-1040 (-381))) (-14 *3 (-645 (-1178)))
- (-14 *4 (-645 (-1178))) (-4 *5 (-390))))
+ (-4 *5 (-1040 (-381))) (-14 *3 (-645 (-1179)))
+ (-14 *4 (-645 (-1179))) (-4 *5 (-390))))
((*1 *1 *2)
(|partial| -12 (-5 *2 (-954 (-567))) (-5 *1 (-341 *3 *4 *5))
- (-4 *5 (-1040 (-567))) (-14 *3 (-645 (-1178)))
- (-14 *4 (-645 (-1178))) (-4 *5 (-390))))
+ (-4 *5 (-1040 (-567))) (-14 *3 (-645 (-1179)))
+ (-14 *4 (-645 (-1179))) (-4 *5 (-390))))
((*1 *1 *2)
(|partial| -12 (-5 *2 (-410 (-954 (-567)))) (-5 *1 (-341 *3 *4 *5))
- (-4 *5 (-1040 (-567))) (-14 *3 (-645 (-1178)))
- (-14 *4 (-645 (-1178))) (-4 *5 (-390))))
+ (-4 *5 (-1040 (-567))) (-14 *3 (-645 (-1179)))
+ (-14 *4 (-645 (-1179))) (-4 *5 (-390))))
((*1 *1 *2)
(|partial| -12 (-5 *2 (-317 (-567))) (-5 *1 (-341 *3 *4 *5))
- (-4 *5 (-1040 (-567))) (-14 *3 (-645 (-1178)))
- (-14 *4 (-645 (-1178))) (-4 *5 (-390))))
+ (-4 *5 (-1040 (-567))) (-14 *3 (-645 (-1179)))
+ (-14 *4 (-645 (-1179))) (-4 *5 (-390))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1178)) (-5 *1 (-341 *3 *4 *5))
+ (|partial| -12 (-5 *2 (-1179)) (-5 *1 (-341 *3 *4 *5))
(-14 *3 (-645 *2)) (-14 *4 (-645 *2)) (-4 *5 (-390))))
((*1 *1 *2)
(|partial| -12 (-5 *2 (-317 *5)) (-4 *5 (-390))
- (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-645 (-1178)))
- (-14 *4 (-645 (-1178)))))
+ (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-645 (-1179)))
+ (-14 *4 (-645 (-1179)))))
((*1 *1 *2)
(|partial| -12 (-5 *2 (-690 (-410 (-954 (-567))))) (-4 *1 (-386))))
((*1 *1 *2)
@@ -3914,195 +3904,167 @@
((*1 *1 *2) (|partial| -12 (-5 *2 (-317 (-567))) (-4 *1 (-399))))
((*1 *1 *2) (|partial| -12 (-5 *2 (-317 (-381))) (-4 *1 (-399))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1268 (-410 (-954 (-567))))) (-4 *1 (-444))))
+ (|partial| -12 (-5 *2 (-1269 (-410 (-954 (-567))))) (-4 *1 (-444))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1268 (-410 (-954 (-381))))) (-4 *1 (-444))))
+ (|partial| -12 (-5 *2 (-1269 (-410 (-954 (-381))))) (-4 *1 (-444))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1268 (-954 (-567)))) (-4 *1 (-444))))
+ (|partial| -12 (-5 *2 (-1269 (-954 (-567)))) (-4 *1 (-444))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1268 (-954 (-381)))) (-4 *1 (-444))))
+ (|partial| -12 (-5 *2 (-1269 (-954 (-381)))) (-4 *1 (-444))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1268 (-317 (-567)))) (-4 *1 (-444))))
+ (|partial| -12 (-5 *2 (-1269 (-317 (-567)))) (-4 *1 (-444))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1268 (-317 (-381)))) (-4 *1 (-444))))
+ (|partial| -12 (-5 *2 (-1269 (-317 (-381)))) (-4 *1 (-444))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-351)) (-4 *5 (-330 *4)) (-4 *6 (-1244 *5))
- (-5 *2 (-1174 (-1174 *4))) (-5 *1 (-778 *4 *5 *6 *3 *7))
- (-4 *3 (-1244 *6)) (-14 *7 (-923))))
+ (|partial| -12 (-4 *4 (-351)) (-4 *5 (-330 *4)) (-4 *6 (-1245 *5))
+ (-5 *2 (-1175 (-1175 *4))) (-5 *1 (-778 *4 *5 *6 *3 *7))
+ (-4 *3 (-1245 *6)) (-14 *7 (-923))))
((*1 *1 *2)
(|partial| -12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5))
(-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851))
(-4 *1 (-978 *3 *4 *5 *6))))
- ((*1 *2 *1) (|partial| -12 (-4 *1 (-1040 *2)) (-4 *2 (-1218))))
+ ((*1 *2 *1) (|partial| -12 (-4 *1 (-1040 *2)) (-4 *2 (-1219))))
((*1 *1 *2)
- (|partial| -2800
+ (|partial| -2811
(-12 (-5 *2 (-954 *3))
- (-12 (-1657 (-4 *3 (-38 (-410 (-567)))))
- (-1657 (-4 *3 (-38 (-567)))) (-4 *5 (-615 (-1178))))
+ (-12 (-1673 (-4 *3 (-38 (-410 (-567)))))
+ (-1673 (-4 *3 (-38 (-567)))) (-4 *5 (-615 (-1179))))
(-4 *3 (-1051)) (-4 *1 (-1067 *3 *4 *5)) (-4 *4 (-794))
(-4 *5 (-851)))
(-12 (-5 *2 (-954 *3))
- (-12 (-1657 (-4 *3 (-548))) (-1657 (-4 *3 (-38 (-410 (-567)))))
- (-4 *3 (-38 (-567))) (-4 *5 (-615 (-1178))))
+ (-12 (-1673 (-4 *3 (-548))) (-1673 (-4 *3 (-38 (-410 (-567)))))
+ (-4 *3 (-38 (-567))) (-4 *5 (-615 (-1179))))
(-4 *3 (-1051)) (-4 *1 (-1067 *3 *4 *5)) (-4 *4 (-794))
(-4 *5 (-851)))
(-12 (-5 *2 (-954 *3))
- (-12 (-1657 (-4 *3 (-994 (-567)))) (-4 *3 (-38 (-410 (-567))))
- (-4 *5 (-615 (-1178))))
+ (-12 (-1673 (-4 *3 (-994 (-567)))) (-4 *3 (-38 (-410 (-567))))
+ (-4 *5 (-615 (-1179))))
(-4 *3 (-1051)) (-4 *1 (-1067 *3 *4 *5)) (-4 *4 (-794))
(-4 *5 (-851)))))
((*1 *1 *2)
- (|partial| -2800
+ (|partial| -2811
(-12 (-5 *2 (-954 (-567))) (-4 *1 (-1067 *3 *4 *5))
- (-12 (-1657 (-4 *3 (-38 (-410 (-567))))) (-4 *3 (-38 (-567)))
- (-4 *5 (-615 (-1178))))
+ (-12 (-1673 (-4 *3 (-38 (-410 (-567))))) (-4 *3 (-38 (-567)))
+ (-4 *5 (-615 (-1179))))
(-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)))
(-12 (-5 *2 (-954 (-567))) (-4 *1 (-1067 *3 *4 *5))
- (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1178))))
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1179))))
(-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)))))
((*1 *1 *2)
(|partial| -12 (-5 *2 (-954 (-410 (-567)))) (-4 *1 (-1067 *3 *4 *5))
- (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1178)))
+ (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1179)))
(-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-645 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5))
- (-14 *3 (-567)) (-14 *4 (-772)))))
-(((*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-1160)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1174 *1)) (-4 *1 (-455))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1174 *6)) (-4 *6 (-951 *5 *3 *4)) (-4 *3 (-794))
- (-4 *4 (-851)) (-4 *5 (-911)) (-5 *1 (-460 *3 *4 *5 *6))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-1174 *1)) (-4 *1 (-911)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-772)) (-4 *4 (-308)) (-4 *6 (-1244 *4))
- (-5 *2 (-1268 (-645 *6))) (-5 *1 (-458 *4 *6)) (-5 *5 (-645 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-645 (-1178))) (-4 *5 (-1051))
- (-5 *2 (-484 *4 *5)) (-5 *1 (-946 *4 *5)))))
-(((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928)))))
-(((*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1271))))
- ((*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1271)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-645 (-954 *4))) (-5 *3 (-645 (-1178))) (-4 *4 (-455))
- (-5 *1 (-920 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-27))
- (-4 *4 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567)))))
- (-4 *5 (-1244 *4)) (-5 *2 (-645 (-654 (-410 *5))))
- (-5 *1 (-658 *4 *5)) (-5 *3 (-654 (-410 *5))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-645 (-1 *4 (-645 *4)))) (-4 *4 (-1102))
- (-5 *1 (-113 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1102))
- (-5 *1 (-113 *4))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-114)) (-5 *2 (-645 (-1 *4 (-645 *4))))
- (-5 *1 (-113 *4)) (-4 *4 (-1102)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-615 (-894 *3))) (-4 *3 (-888 *3)) (-4 *3 (-455))
+ (-5 *1 (-1210 *3 *2)) (-4 *2 (-615 (-894 *3))) (-4 *2 (-888 *3))
+ (-4 *2 (-13 (-433 *3) (-1204))))))
+(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-365)) (-4 *3 (-1051))
+ (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1399 *1)))
+ (-4 *1 (-853 *3)))))
(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1268 (-1178))) (-5 *3 (-1268 (-456 *4 *5 *6 *7)))
- (-5 *1 (-456 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-923))
- (-14 *6 (-645 (-1178))) (-14 *7 (-1268 (-690 *4)))))
+ (-12 (-5 *3 (-363 (-114))) (-4 *2 (-1051)) (-5 *1 (-715 *2 *4))
+ (-4 *4 (-649 *2))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1178)) (-5 *3 (-1268 (-456 *4 *5 *6 *7)))
- (-5 *1 (-456 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-923))
- (-14 *6 (-645 *2)) (-14 *7 (-1268 (-690 *4)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1268 (-456 *3 *4 *5 *6))) (-5 *1 (-456 *3 *4 *5 *6))
- (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 (-1178)))
- (-14 *6 (-1268 (-690 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1268 (-1178))) (-5 *1 (-456 *3 *4 *5 *6))
- (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 (-1178)))
- (-14 *6 (-1268 (-690 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1178)) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-172))
- (-14 *4 (-923)) (-14 *5 (-645 *2)) (-14 *6 (-1268 (-690 *3)))))
- ((*1 *1)
- (-12 (-5 *1 (-456 *2 *3 *4 *5)) (-4 *2 (-172)) (-14 *3 (-923))
- (-14 *4 (-645 (-1178))) (-14 *5 (-1268 (-690 *2))))))
+ (-12 (-5 *3 (-363 (-114))) (-5 *1 (-837 *2)) (-4 *2 (-1051)))))
(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-567)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1218))
+ (-12 (-5 *3 (-567)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1219))
(-4 *4 (-375 *2)) (-4 *5 (-375 *2))))
((*1 *2 *1 *3 *2)
- (-12 (|has| *1 (-6 -4419)) (-4 *1 (-289 *3 *2)) (-4 *3 (-1102))
- (-4 *2 (-1218)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-381)) (-5 *3 (-645 (-264))) (-5 *1 (-262))))
- ((*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-264)))))
+ (-12 (|has| *1 (-6 -4423)) (-4 *1 (-289 *3 *2)) (-4 *3 (-1102))
+ (-4 *2 (-1219)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1178)) (-5 *2 (-1 *6 *5)) (-5 *1 (-707 *4 *5 *6))
- (-4 *4 (-615 (-539))) (-4 *5 (-1218)) (-4 *6 (-1218)))))
-(((*1 *2) (-12 (-5 *2 (-1149 (-1160))) (-5 *1 (-394)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-410 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1244 *5))
- (-5 *1 (-728 *5 *2)) (-4 *5 (-365)))))
-(((*1 *1 *1) (-5 *1 (-1065))))
-(((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381))
- (-5 *2
- (-2 (|:| -3802 *4) (|:| -2058 *4) (|:| |totalpts| (-567))
- (|:| |success| (-112))))
- (-5 *1 (-790)) (-5 *5 (-567)))))
+ (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-645 (-1179))) (-4 *5 (-1051))
+ (-5 *2 (-954 *5)) (-5 *1 (-946 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-250)) (-5 *1 (-334)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-721)) (-5 *2 (-923))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-723)) (-5 *2 (-772)))))
+(((*1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1272))))
+ ((*1 *2 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1272)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1190 (-645 *4))) (-4 *4 (-851))
- (-5 *2 (-645 (-645 *4))) (-5 *1 (-1189 *4)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 (-645 *7) *7 (-1174 *7))) (-5 *5 (-1 (-421 *7) *7))
- (-4 *7 (-1244 *6)) (-4 *6 (-13 (-365) (-147) (-1040 (-410 (-567)))))
- (-5 *2 (-645 (-2 (|:| |frac| (-410 *7)) (|:| -3845 *3))))
- (-5 *1 (-810 *6 *7 *3 *8)) (-4 *3 (-657 *7))
- (-4 *8 (-657 (-410 *7)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-421 *6) *6)) (-4 *6 (-1244 *5))
- (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567)))))
- (-5 *2
- (-645 (-2 (|:| |frac| (-410 *6)) (|:| -3845 (-655 *6 (-410 *6))))))
- (-5 *1 (-813 *5 *6)) (-5 *3 (-655 *6 (-410 *6))))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1218))
- (-4 *4 (-375 *3)) (-4 *5 (-375 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4419)) (-4 *1 (-492 *3))
- (-4 *3 (-1218)))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1211 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794))
- (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-114))))
- ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-114))))
- ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-840))
+ (-5 *3
+ (-2 (|:| |fn| (-317 (-225))) (|:| -2694 (-645 (-225)))
+ (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225))))
+ (|:| |ub| (-645 (-844 (-225))))))
+ (-5 *2 (-1037))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-840))
+ (-5 *3
+ (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2694 (-645 (-225)))))
+ (-5 *2 (-1037)))))
+(((*1 *2 *1 *3)
(-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1051)) (-4 *3 (-851))
- (-4 *5 (-267 *3)) (-4 *6 (-794)) (-5 *2 (-772))))
+ (-4 *5 (-267 *3)) (-4 *6 (-794)) (-5 *2 (-645 (-772)))))
((*1 *2 *1)
(-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-851))
- (-4 *5 (-267 *4)) (-4 *6 (-794)) (-5 *2 (-772))))
- ((*1 *2 *1) (-12 (-4 *1 (-267 *3)) (-4 *3 (-851)) (-5 *2 (-772)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
- (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 *4))
- (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))))
+ (-4 *5 (-267 *4)) (-4 *6 (-794)) (-5 *2 (-645 (-772))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-645 (-225))) (-5 *2 (-1268 (-700))) (-5 *1 (-306)))))
-(((*1 *2 *2) (-12 (-5 *2 (-923)) (|has| *1 (-6 -4409)) (-4 *1 (-407))))
+ (-12 (-5 *3 (-645 (-317 (-225)))) (-5 *2 (-112)) (-5 *1 (-268))))
+ ((*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-112)) (-5 *1 (-268))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112))
+ (-5 *1 (-979 *4 *5 *6 *3)) (-4 *3 (-1067 *4 *5 *6)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037))
+ (-5 *1 (-756)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219))
+ (-4 *4 (-375 *3)) (-4 *5 (-375 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4423)) (-4 *1 (-492 *3))
+ (-4 *3 (-1219)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1051)) (-5 *2 (-645 *1)) (-4 *1 (-1136 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1051)) (-5 *2 (-567)) (-5 *1 (-446 *4 *3 *5))
+ (-4 *3 (-1245 *4))
+ (-4 *5 (-13 (-407) (-1040 *4) (-365) (-1204) (-285))))))
+(((*1 *1 *1) (-4 *1 (-1062)))
+ ((*1 *1 *1 *2 *2)
+ (-12 (-4 *1 (-1247 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-793))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1247 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-793)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-690 *4)) (-4 *4 (-1051)) (-5 *1 (-1144 *3 *4))
+ (-14 *3 (-772)))))
+(((*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-906 (-567))) (-5 *1 (-919))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919)))))
+(((*1 *2 *2) (-12 (-5 *2 (-923)) (|has| *1 (-6 -4413)) (-4 *1 (-407))))
((*1 *2) (-12 (-4 *1 (-407)) (-5 *2 (-923))))
((*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-700))))
((*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-700)))))
-(((*1 *1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-112)) (-5 *1 (-597 *3)) (-4 *3 (-1051)))))
-(((*1 *2 *3 *4 *3 *4 *3)
- (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037))
- (-5 *1 (-757)))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1211 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794))
- (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *4 (-1179)) (-5 *6 (-112))
+ (-4 *7 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567))))
+ (-4 *3 (-13 (-1204) (-961) (-29 *7)))
+ (-5 *2
+ (-3 (|:| |f1| (-844 *3)) (|:| |f2| (-645 (-844 *3)))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-219 *7 *3)) (-5 *5 (-844 *3)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-471)) (-5 *4 (-923)) (-5 *2 (-1274)) (-5 *1 (-1270)))))
(((*1 *2 *1) (-12 (-4 *1 (-976)) (-5 *2 (-1096 (-225))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-923)) (-4 *1 (-745 *3)) (-4 *3 (-172)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *2 (-559)) (-5 *1 (-971 *2 *3)) (-4 *3 (-1244 *2)))))
+(((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4))
+ (-4 *3 (-369 *4))))
+ ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-772)) (-4 *4 (-13 (-559) (-147)))
+ (-5 *1 (-1239 *4 *2)) (-4 *2 (-1245 *4)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1161)) (-5 *4 (-567)) (-5 *5 (-690 (-225)))
+ (-5 *2 (-1037)) (-5 *1 (-755)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-645 (-945 *4))) (-5 *1 (-1167 *3 *4)) (-14 *3 (-923))
+ (-4 *4 (-1051)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *7 (-1067 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-645 *7)) (|:| |badPols| (-645 *7))))
+ (-5 *1 (-979 *4 *5 *6 *7)) (-5 *3 (-645 *7)))))
(((*1 *2 *1 *3 *3)
(-12 (-5 *3 (-772)) (-4 *1 (-741 *4 *5)) (-4 *4 (-1051))
(-4 *5 (-851)) (-5 *2 (-954 *4))))
@@ -4110,142 +4072,187 @@
(-12 (-5 *3 (-772)) (-4 *1 (-741 *4 *5)) (-4 *4 (-1051))
(-4 *5 (-851)) (-5 *2 (-954 *4))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-772)) (-4 *1 (-1259 *4)) (-4 *4 (-1051))
+ (-12 (-5 *3 (-772)) (-4 *1 (-1260 *4)) (-4 *4 (-1051))
(-5 *2 (-954 *4))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-772)) (-4 *1 (-1259 *4)) (-4 *4 (-1051))
+ (-12 (-5 *3 (-772)) (-4 *1 (-1260 *4)) (-4 *4 (-1051))
(-5 *2 (-954 *4)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-645 (-954 *3))) (-4 *3 (-455)) (-5 *1 (-362 *3 *4))
- (-14 *4 (-645 (-1178)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-645 *6)) (-4 *6 (-951 *3 *4 *5)) (-4 *3 (-455))
- (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-453 *3 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-645 *7)) (-5 *3 (-1160)) (-4 *7 (-951 *4 *5 *6))
- (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
- (-5 *1 (-453 *4 *5 *6 *7))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-645 *7)) (-5 *3 (-1160)) (-4 *7 (-951 *4 *5 *6))
- (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
- (-5 *1 (-453 *4 *5 *6 *7))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-365)) (-4 *3 (-794)) (-4 *4 (-851))
- (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-951 *2 *3 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-645 (-781 *3 (-865 *4)))) (-4 *3 (-455))
- (-14 *4 (-645 (-1178))) (-5 *1 (-629 *3 *4)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-772)) (-5 *1 (-1166 *3 *4)) (-14 *3 (-923))
- (-4 *4 (-1051)))))
-(((*1 *1) (-5 *1 (-141))) ((*1 *1 *1) (-5 *1 (-144)))
- ((*1 *1 *1) (-4 *1 (-1146))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-645 *5)) (-4 *5 (-433 *4)) (-4 *4 (-559))
+ (-5 *2 (-863)) (-5 *1 (-32 *4 *5)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1285 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051))
- (-5 *2 (-2 (|:| |k| (-820 *3)) (|:| |c| *4))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-615 (-894 *3))) (-4 *3 (-888 *3)) (-4 *3 (-455))
- (-5 *1 (-1209 *3 *2)) (-4 *2 (-615 (-894 *3))) (-4 *2 (-888 *3))
- (-4 *2 (-13 (-433 *3) (-1203))))))
+ (-12 (-4 *4 (-1102)) (-5 *2 (-891 *3 *4)) (-5 *1 (-887 *3 *4 *5))
+ (-4 *3 (-1102)) (-4 *5 (-667 *4)))))
(((*1 *2 *1) (-12 (-4 *1 (-957)) (-5 *2 (-1096 (-225)))))
((*1 *2 *1) (-12 (-4 *1 (-976)) (-5 *2 (-1096 (-225))))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1051)) (-5 *2 (-1268 *3)) (-5 *1 (-713 *3 *4))
- (-4 *4 (-1244 *3)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-567)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051))
- (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-559))
- (-5 *2 (-2 (|:| -3694 *4) (|:| -3102 *3) (|:| -4194 *3)))
- (-5 *1 (-971 *4 *3)) (-4 *3 (-1244 *4))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851))
- (-5 *2 (-2 (|:| -3102 *1) (|:| -4194 *1))) (-4 *1 (-1067 *3 *4 *5))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-559)) (-4 *3 (-1051))
- (-5 *2 (-2 (|:| -3694 *3) (|:| -3102 *1) (|:| -4194 *1)))
- (-4 *1 (-1244 *3)))))
-(((*1 *2 *3 *3 *3)
- (|partial| -12 (-4 *4 (-13 (-365) (-147) (-1040 (-567))))
- (-4 *5 (-1244 *4)) (-5 *2 (-645 (-410 *5))) (-5 *1 (-1018 *4 *5))
- (-5 *3 (-410 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-129))))))
-(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365)))))
+(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6)
+ (-12 (-5 *4 (-567)) (-5 *5 (-690 (-225)))
+ (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3888)))) (-5 *3 (-225))
+ (-5 *2 (-1037)) (-5 *1 (-749)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-559)) (-5 *2 (-112)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-645 *1)) (-5 *3 (-645 *7)) (-4 *1 (-1073 *4 *5 *6 *7))
+ (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *7 (-1067 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455))
+ (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *1))
+ (-4 *1 (-1073 *4 *5 *6 *7))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-645 *1)) (-4 *1 (-1073 *4 *5 *6 *3)) (-4 *4 (-455))
+ (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-645 *1))
+ (-4 *1 (-1073 *4 *5 *6 *3)))))
+(((*1 *2)
+ (-12
+ (-5 *2 (-2 (|:| -3924 (-645 (-1179))) (|:| -2805 (-645 (-1179)))))
+ (-5 *1 (-1221)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1161) (-775))) (-5 *1 (-114)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-567)) (-4 *4 (-1244 (-410 *3))) (-5 *2 (-923))
- (-5 *1 (-915 *4 *5)) (-4 *5 (-1244 (-410 *4))))))
+ (-12 (-5 *2 (-1181 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-254 *3 *4 *2 *5)) (-4 *3 (-1051)) (-4 *4 (-851))
+ (-4 *5 (-794)) (-4 *2 (-267 *4)))))
(((*1 *2 *1) (-12 (-4 *1 (-957)) (-5 *2 (-1096 (-225)))))
((*1 *2 *1) (-12 (-4 *1 (-976)) (-5 *2 (-1096 (-225))))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-313)) (-5 *1 (-830)))))
-(((*1 *1) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1203))))))
-(((*1 *1) (-5 *1 (-157))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-645 *3)) (-4 *3 (-951 *4 *6 *5)) (-4 *4 (-455))
- (-4 *5 (-851)) (-4 *6 (-794)) (-5 *1 (-989 *4 *5 *6 *3)))))
+(((*1 *2 *3 *2)
+ (|partial| -12 (-5 *3 (-923)) (-5 *1 (-445 *2))
+ (-4 *2 (-1245 (-567)))))
+ ((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-923)) (-5 *4 (-772)) (-5 *1 (-445 *2))
+ (-4 *2 (-1245 (-567)))))
+ ((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-923)) (-5 *4 (-645 (-772))) (-5 *1 (-445 *2))
+ (-4 *2 (-1245 (-567)))))
+ ((*1 *2 *3 *2 *4 *5)
+ (|partial| -12 (-5 *3 (-923)) (-5 *4 (-645 (-772))) (-5 *5 (-772))
+ (-5 *1 (-445 *2)) (-4 *2 (-1245 (-567)))))
+ ((*1 *2 *3 *2 *4 *5 *6)
+ (|partial| -12 (-5 *3 (-923)) (-5 *4 (-645 (-772))) (-5 *5 (-772))
+ (-5 *6 (-112)) (-5 *1 (-445 *2)) (-4 *2 (-1245 (-567)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-923)) (-5 *4 (-421 *2)) (-4 *2 (-1245 *5))
+ (-5 *1 (-447 *5 *2)) (-4 *5 (-1051)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-894 *4)) (-4 *4 (-1102)) (-5 *2 (-645 *5))
- (-5 *1 (-892 *4 *5)) (-4 *5 (-1218)))))
+ (-12 (-5 *3 (-645 (-484 *4 *5))) (-14 *4 (-645 (-1179)))
+ (-4 *5 (-455)) (-5 *2 (-645 (-247 *4 *5))) (-5 *1 (-632 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112))
+ (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-645 *6)) (-4 *6 (-851)) (-4 *4 (-365)) (-4 *5 (-794))
+ (-5 *2 (-112)) (-5 *1 (-507 *4 *5 *6 *7)) (-4 *7 (-951 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1179))
+ (-5 *2
+ (-2 (|:| |zeros| (-1159 (-225))) (|:| |ones| (-1159 (-225)))
+ (|:| |singularities| (-1159 (-225)))))
+ (-5 *1 (-105)))))
+(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-169 (-225)))) (-5 *2 (-1037))
+ (-5 *1 (-757)))))
(((*1 *2 *3)
(-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567)))))))
- (-5 *2 (-645 *4)) (-5 *1 (-1130 *3 *4)) (-4 *3 (-1244 *4))))
+ (-5 *2 (-645 *4)) (-5 *1 (-1130 *3 *4)) (-4 *3 (-1245 *4))))
((*1 *2 *3 *3)
(-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567)))))))
- (-5 *2 (-645 *3)) (-5 *1 (-1130 *4 *3)) (-4 *4 (-1244 *3)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-331)))))
-(((*1 *1) (-5 *1 (-157)))
- ((*1 *2 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-23)))))
+ (-5 *2 (-645 *3)) (-5 *1 (-1130 *4 *3)) (-4 *4 (-1245 *3)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-421 *2)) (-4 *2 (-559)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1102)) (-5 *1 (-103 *3))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1102)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-559)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3))
+ (-5 *1 (-1209 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))))
+(((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-1269
+ (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225))
+ (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -3941 (-567))
+ (|:| -2454 (-567)) (|:| |spline| (-567)) (|:| -2638 (-567))
+ (|:| |axesColor| (-875)) (|:| -1757 (-567))
+ (|:| |unitsColor| (-875)) (|:| |showing| (-567)))))
+ (-5 *1 (-1270)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-410 (-567))) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *7 (-559)) (-4 *8 (-951 *7 *5 *6))
+ (-5 *2 (-2 (|:| -3468 (-772)) (|:| -3705 *9) (|:| |radicand| *9)))
+ (-5 *1 (-955 *5 *6 *7 *8 *9)) (-5 *4 (-772))
+ (-4 *9
+ (-13 (-365)
+ (-10 -8 (-15 -4129 ($ *8)) (-15 -1447 (*8 $)) (-15 -1462 (*8 $))))))))
+(((*1 *2 *1 *3 *2)
+ (-12 (-5 *3 (-772)) (-5 *1 (-213 *4 *2)) (-14 *4 (-923))
+ (-4 *2 (-1102)))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-884 *2)) (-4 *2 (-1219)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1 (-1128 *4 *3 *5))) (-4 *4 (-38 (-410 (-567))))
+ (-4 *4 (-1051)) (-4 *3 (-851)) (-5 *1 (-1128 *4 *3 *5))
+ (-4 *5 (-951 *4 (-534 *3) *3))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1 (-1213 *4))) (-5 *3 (-1179)) (-5 *1 (-1213 *4))
+ (-4 *4 (-38 (-410 (-567)))) (-4 *4 (-1051)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-907 (-567))) (-5 *4 (-567)) (-5 *2 (-690 *4))
+ (-5 *1 (-1030 *5)) (-4 *5 (-1051))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-567))) (-5 *2 (-690 (-567))) (-5 *1 (-1030 *4))
+ (-4 *4 (-1051))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 (-907 (-567)))) (-5 *4 (-567))
+ (-5 *2 (-645 (-690 *4))) (-5 *1 (-1030 *5)) (-4 *5 (-1051))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-645 (-567)))) (-5 *2 (-645 (-690 (-567))))
+ (-5 *1 (-1030 *4)) (-4 *4 (-1051)))))
+(((*1 *1 *2 *2 *3 *1)
+ (-12 (-5 *2 (-509)) (-5 *3 (-1106)) (-5 *1 (-292)))))
(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1292 *4 *2)) (-4 *1 (-376 *4 *2)) (-4 *4 (-851))
+ (-12 (-5 *3 (-1293 *4 *2)) (-4 *1 (-376 *4 *2)) (-4 *4 (-851))
(-4 *2 (-172))))
((*1 *2 *1 *1)
- (-12 (-4 *1 (-1285 *3 *2)) (-4 *3 (-851)) (-4 *2 (-1051))))
+ (-12 (-4 *1 (-1286 *3 *2)) (-4 *3 (-851)) (-4 *2 (-1051))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-820 *4)) (-4 *1 (-1285 *4 *2)) (-4 *4 (-851))
+ (-12 (-5 *3 (-820 *4)) (-4 *1 (-1286 *4 *2)) (-4 *4 (-851))
(-4 *2 (-1051))))
((*1 *2 *1 *3)
- (-12 (-4 *2 (-1051)) (-5 *1 (-1291 *2 *3)) (-4 *3 (-847)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559))
- (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-979 *3 *4 *5 *6)))))
+ (-12 (-4 *2 (-1051)) (-5 *1 (-1292 *2 *3)) (-4 *3 (-847)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-645 *3)) (-4 *3 (-1219)) (-5 *1 (-1159 *3)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-567)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-375 *2))
+ (-4 *5 (-375 *2)) (-4 *2 (-1219))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-772)) (-4 *2 (-1102)) (-5 *1 (-213 *4 *2))
+ (-14 *4 (-923))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-289 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1219))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-567)) (-4 *1 (-1055 *4 *5 *2 *6 *7))
+ (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1051)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-690 *3)) (-4 *3 (-1051)) (-5 *1 (-691 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-645 (-1087))) (-5 *1 (-292)))))
+(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1219)) (-4 *1 (-107 *3)))))
(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-559)) (-4 *3 (-172)) (-4 *4 (-375 *3))
- (-4 *5 (-375 *3)) (-5 *1 (-689 *3 *4 *5 *2))
- (-4 *2 (-688 *3 *4 *5)))))
-(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3)
- (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225))
- (-5 *2 (-1037)) (-5 *1 (-756)))))
-(((*1 *2 *3 *3 *3 *4 *5 *4 *6)
- (-12 (-5 *3 (-317 (-567))) (-5 *4 (-1 (-225) (-225)))
- (-5 *5 (-1096 (-225))) (-5 *6 (-567)) (-5 *2 (-1213 (-928)))
- (-5 *1 (-319))))
- ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7)
- (-12 (-5 *3 (-317 (-567))) (-5 *4 (-1 (-225) (-225)))
- (-5 *5 (-1096 (-225))) (-5 *6 (-567)) (-5 *7 (-1160))
- (-5 *2 (-1213 (-928))) (-5 *1 (-319))))
- ((*1 *2 *3 *3 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-317 (-567))) (-5 *4 (-1 (-225) (-225)))
- (-5 *5 (-1096 (-225))) (-5 *6 (-225)) (-5 *7 (-567))
- (-5 *2 (-1213 (-928))) (-5 *1 (-319))))
- ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8)
- (-12 (-5 *3 (-317 (-567))) (-5 *4 (-1 (-225) (-225)))
- (-5 *5 (-1096 (-225))) (-5 *6 (-225)) (-5 *7 (-567)) (-5 *8 (-1160))
- (-5 *2 (-1213 (-928))) (-5 *1 (-319)))))
-(((*1 *2 *1 *3 *2)
- (-12 (-5 *3 (-772)) (-5 *1 (-213 *4 *2)) (-14 *4 (-923))
- (-4 *2 (-1102)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3788 *4)))
- (-5 *1 (-971 *4 *3)) (-4 *3 (-1244 *4)))))
-(((*1 *2)
- (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851))
- (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-1273))
- (-5 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *7 (-1073 *3 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851))
- (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-1273))
- (-5 *1 (-1110 *3 *4 *5 *6 *7)) (-4 *7 (-1073 *3 *4 *5 *6)))))
-(((*1 *1 *1 *1) (-5 *1 (-863))))
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1004))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-421 *5)) (-4 *5 (-559))
+ (-5 *2
+ (-2 (|:| -3468 (-772)) (|:| -3705 *5) (|:| |radicand| (-645 *5))))
+ (-5 *1 (-321 *5)) (-5 *4 (-772))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1004)) (-5 *2 (-567)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-825)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-308)) (-5 *2 (-112)))))
(((*1 *2 *3 *4 *5)
(-12 (-5 *3 (-881 (-1 (-225) (-225)))) (-5 *4 (-1096 (-381)))
(-5 *5 (-645 (-264))) (-5 *2 (-1135 (-225))) (-5 *1 (-256))))
@@ -4299,343 +4306,350 @@
(-12 (-5 *3 (-884 *5)) (-5 *4 (-1094 (-381)))
(-4 *5 (-13 (-615 (-539)) (-1102))) (-5 *2 (-1135 (-225)))
(-5 *1 (-260 *5)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-857 *2)) (-4 *2 (-172))))
- ((*1 *2 *3 *3 *2)
- (-12 (-5 *3 (-772)) (-5 *1 (-857 *2)) (-4 *2 (-172)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-365)) (-5 *1 (-767 *2 *3)) (-4 *2 (-709 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-923)) (-5 *1 (-1034 *2))
+ (-4 *2 (-13 (-1102) (-10 -8 (-15 * ($ $ $))))))))
+(((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-863)))))
(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-471)) (-5 *4 (-923)) (-5 *2 (-1273)) (-5 *1 (-1269)))))
+ (-12 (-5 *3 (-471)) (-5 *4 (-923)) (-5 *2 (-1274)) (-5 *1 (-1270)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-112)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1102)) (-4 *3 (-23))
+ (-14 *4 *3))))
(((*1 *2 *3)
- (-12 (-4 *4 (-308)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4))
- (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3)))
- (-5 *1 (-1126 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-567)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-375 *2))
- (-4 *5 (-375 *2)) (-4 *2 (-1218))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-772)) (-4 *2 (-1102)) (-5 *1 (-213 *4 *2))
- (-14 *4 (-923))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-289 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1218))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-567)) (-4 *1 (-1055 *4 *5 *2 *6 *7))
- (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1051)))))
-(((*1 *2 *1) (-12 (-5 *2 (-645 (-1087))) (-5 *1 (-292)))))
-(((*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-439))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-439)))))
-(((*1 *1) (-5 *1 (-141))) ((*1 *1 *1) (-5 *1 (-144)))
- ((*1 *1 *1) (-4 *1 (-1146))))
-(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3)
- (-12 (-5 *4 (-690 (-225))) (-5 *5 (-690 (-567))) (-5 *6 (-225))
- (-5 *3 (-567)) (-5 *2 (-1037)) (-5 *1 (-752)))))
+ (-12
+ (-5 *3
+ (-2 (|:| -3055 (-381)) (|:| -2007 (-1161))
+ (|:| |explanations| (-645 (-1161)))))
+ (-5 *2 (-1037)) (-5 *1 (-306))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| -3055 (-381)) (|:| -2007 (-1161))
+ (|:| |explanations| (-645 (-1161))) (|:| |extra| (-1037))))
+ (-5 *2 (-1037)) (-5 *1 (-306)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1219)))))
+(((*1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-1189)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))))
+(((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))))
+(((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-470))))
+ ((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-470))))
+ ((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-929)))))
+(((*1 *2 *2 *1 *3 *4)
+ (-12 (-5 *2 (-645 *8)) (-5 *3 (-1 *8 *8 *8))
+ (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1212 *5 *6 *7 *8)) (-4 *5 (-559))
+ (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-1067 *5 *6 *7)))))
(((*1 *2)
- (-12 (-4 *3 (-1222)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4)))
- (-5 *2 (-1268 *1)) (-4 *1 (-344 *3 *4 *5))))
- ((*1 *2)
- (-12 (-4 *3 (-13 (-308) (-10 -8 (-15 -2908 ((-421 $) $)))))
- (-4 *4 (-1244 *3))
- (-5 *2
- (-2 (|:| -2623 (-690 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-690 *3))))
- (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-412 *3 *4))))
- ((*1 *2)
- (-12 (-4 *3 (-1244 (-567)))
- (-5 *2
- (-2 (|:| -2623 (-690 (-567))) (|:| |basisDen| (-567))
- (|:| |basisInv| (-690 (-567)))))
- (-5 *1 (-769 *3 *4)) (-4 *4 (-412 (-567) *3))))
- ((*1 *2)
- (-12 (-4 *3 (-351)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 *4))
- (-5 *2
- (-2 (|:| -2623 (-690 *4)) (|:| |basisDen| *4)
- (|:| |basisInv| (-690 *4))))
- (-5 *1 (-987 *3 *4 *5 *6)) (-4 *6 (-725 *4 *5))))
- ((*1 *2)
- (-12 (-4 *3 (-351)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 *4))
- (-5 *2
- (-2 (|:| -2623 (-690 *4)) (|:| |basisDen| *4)
- (|:| |basisInv| (-690 *4))))
- (-5 *1 (-1277 *3 *4 *5 *6)) (-4 *6 (-412 *4 *5)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567))))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-112))
+ (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-4 *3 (-1067 *5 *6 *7))
+ (-5 *2 (-645 (-2 (|:| |val| (-112)) (|:| -2575 *4))))
+ (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))))
+(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
+ (-12 (-5 *3 (-1161)) (-5 *4 (-567)) (-5 *5 (-690 (-169 (-225))))
+ (-5 *2 (-1037)) (-5 *1 (-755)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-365) (-1040 (-410 *2)))) (-5 *2 (-567))
- (-5 *1 (-115 *4 *3)) (-4 *3 (-1244 *4)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037))
- (-5 *1 (-748)))))
-(((*1 *2) (-12 (-5 *2 (-1149 (-1160))) (-5 *1 (-394)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1102)) (-5 *2 (-645 *1))
- (-4 *1 (-433 *3))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-645 (-894 *3))) (-5 *1 (-894 *3))
- (-4 *3 (-1102))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851))
- (-5 *2 (-645 *1)) (-4 *1 (-951 *3 *4 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1051))
- (-4 *7 (-951 *6 *4 *5)) (-5 *2 (-645 *3))
- (-5 *1 (-952 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-365)
- (-10 -8 (-15 -4132 ($ *7)) (-15 -1448 (*7 $))
- (-15 -1460 (*7 $))))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1235 (-567))) (-4 *1 (-283 *3)) (-4 *3 (-1218))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-283 *3)) (-4 *3 (-1218)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-645 (-907 *3))) (-4 *3 (-1102)) (-5 *1 (-906 *3)))))
+ (-12 (-5 *3 (-645 *2)) (-4 *2 (-433 *4)) (-5 *1 (-158 *4 *2))
+ (-4 *4 (-559)))))
(((*1 *1)
(-12 (-4 *3 (-1102)) (-5 *1 (-887 *2 *3 *4)) (-4 *2 (-1102))
(-4 *4 (-667 *3))))
((*1 *1) (-12 (-5 *1 (-891 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-1102)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-1051)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| -3951 *1) (|:| -4405 *1) (|:| |associate| *1)))
- (-4 *1 (-559)))))
-(((*1 *2 *3 *3 *3 *3)
- (-12 (-4 *4 (-455)) (-4 *3 (-794)) (-4 *5 (-851)) (-5 *2 (-112))
- (-5 *1 (-452 *4 *3 *5 *6)) (-4 *6 (-951 *4 *3 *5)))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-1037)) (-5 *3 (-1178)) (-5 *1 (-192)))))
-(((*1 *2)
- (-12 (-4 *4 (-1222)) (-4 *5 (-1244 *4)) (-4 *6 (-1244 (-410 *5)))
- (-5 *2 (-772)) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3))
- (-4 *5 (-1244 (-410 *4))) (-5 *2 (-772))))
- ((*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-772)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381))
+(((*1 *2 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037))
+ (-5 *1 (-757)))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *6) (|:| -2973 *6) (|:| |sol?| (-112))) (-567)
+ *6))
+ (-4 *6 (-365)) (-4 *7 (-1245 *6))
(-5 *2
- (-2 (|:| -3802 *4) (|:| -2058 *4) (|:| |totalpts| (-567))
- (|:| |success| (-112))))
- (-5 *1 (-790)) (-5 *5 (-567)))))
-(((*1 *1 *1 *1) (-4 *1 (-969))))
-(((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))))
+ (-3 (-2 (|:| |answer| (-410 *7)) (|:| |a0| *6))
+ (-2 (|:| -2872 (-410 *7)) (|:| |coeff| (-410 *7))) "failed"))
+ (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-945 *3) (-945 *3))) (-5 *1 (-176 *3))
+ (-4 *3 (-13 (-365) (-1204) (-1004))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 (-2 (|:| |val| (-645 *8)) (|:| -2575 *9))))
+ (-5 *4 (-772)) (-4 *8 (-1067 *5 *6 *7)) (-4 *9 (-1073 *5 *6 *7 *8))
+ (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-1274))
+ (-5 *1 (-1071 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 (-2 (|:| |val| (-645 *8)) (|:| -2575 *9))))
+ (-5 *4 (-772)) (-4 *8 (-1067 *5 *6 *7)) (-4 *9 (-1111 *5 *6 *7 *8))
+ (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-1274))
+ (-5 *1 (-1147 *5 *6 *7 *8 *9)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-923)) (-5 *2 (-1175 *3)) (-5 *1 (-1193 *3))
+ (-4 *3 (-365)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1153)))))
+(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (-567)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
+(((*1 *1 *2 *3 *3 *4 *4)
+ (-12 (-5 *2 (-954 (-567))) (-5 *3 (-1179))
+ (-5 *4 (-1096 (-410 (-567)))) (-5 *1 (-30)))))
(((*1 *1) (-5 *1 (-292))))
-(((*1 *1 *2) (-12 (-5 *2 (-1268 *3)) (-4 *3 (-365)) (-4 *1 (-330 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1268 *3)) (-4 *3 (-1244 *4)) (-4 *4 (-1222))
- (-4 *1 (-344 *4 *3 *5)) (-4 *5 (-1244 (-410 *3)))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1268 *4)) (-5 *3 (-1268 *1)) (-4 *4 (-172))
- (-4 *1 (-369 *4))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1268 *4)) (-5 *3 (-1268 *1)) (-4 *4 (-172))
- (-4 *1 (-372 *4 *5)) (-4 *5 (-1244 *4))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1268 *3)) (-4 *3 (-172)) (-4 *1 (-412 *3 *4))
- (-4 *4 (-1244 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1268 *3)) (-4 *3 (-172)) (-4 *1 (-420 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-52)) (-5 *1 (-1197)))))
(((*1 *1 *1) (-5 *1 (-863)))
((*1 *2 *1)
(-12 (-4 *1 (-1105 *2 *3 *4 *5 *6)) (-4 *3 (-1102)) (-4 *4 (-1102))
(-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *2 (-1102))))
- ((*1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-1159))))
- ((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-1178)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1178))
- (-4 *5 (-13 (-1040 (-567)) (-455) (-640 (-567))))
- (-5 *2 (-2 (|:| -1959 *3) (|:| |nconst| *3))) (-5 *1 (-570 *5 *3))
- (-4 *3 (-13 (-27) (-1203) (-433 *5))))))
-(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-851)) (-5 *1 (-487 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-1244 *3)) (-5 *1 (-402 *3 *2))
- (-4 *3 (-13 (-365) (-147))))))
+ ((*1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-1160))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-1179)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470))))
+ ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470)))))
+(((*1 *2 *3 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1245 *5))
+ (-4 *5 (-13 (-365) (-147) (-1040 (-567))))
+ (-5 *2
+ (-2 (|:| |a| *6) (|:| |b| (-410 *6)) (|:| |h| *6)
+ (|:| |c1| (-410 *6)) (|:| |c2| (-410 *6)) (|:| -2097 *6)))
+ (-5 *1 (-1018 *5 *6)) (-5 *3 (-410 *6)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225)))
+ (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))
+ (-5 *2
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular| "There are singularities at both end points")
+ (|:| |notEvaluated| "End point continuity not yet evaluated")))
+ (-5 *1 (-192)))))
(((*1 *2 *1) (-12 (-5 *2 (-645 (-1137))) (-5 *1 (-154))))
((*1 *2 *1) (-12 (-5 *2 (-645 (-1137))) (-5 *1 (-1068)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-455)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851))
- (-5 *2 (-645 *3)) (-5 *1 (-979 *4 *5 *6 *3))
- (-4 *3 (-1067 *4 *5 *6)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-645 *6)) (-4 *6 (-851)) (-4 *4 (-365)) (-4 *5 (-794))
- (-5 *1 (-507 *4 *5 *6 *2)) (-4 *2 (-951 *4 *5 *6))))
- ((*1 *1 *1 *2)
- (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851))
- (-5 *1 (-507 *3 *4 *5 *2)) (-4 *2 (-951 *3 *4 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1285 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051))
- (-5 *2 (-112))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1271)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-645 (-507 *3 *4 *5 *6))) (-4 *3 (-365)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-365)) (-4 *3 (-794)) (-4 *4 (-851))
+ (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-951 *2 *3 *4))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-645 *1)) (-4 *1 (-1073 *4 *5 *6 *3)) (-4 *4 (-455))
+ (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-645 *1)) (-5 *3 (-645 *7)) (-4 *1 (-1073 *4 *5 *6 *7))
+ (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *7 (-1067 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455))
+ (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *1))
+ (-4 *1 (-1073 *4 *5 *6 *7))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-645 *1))
+ (-4 *1 (-1073 *4 *5 *6 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1102)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-951 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794))
+ (-4 *4 (-851)) (-4 *2 (-455))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *3 (-1067 *4 *5 *6))
+ (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2575 *1))))
+ (-4 *1 (-1073 *4 *5 *6 *3))))
+ ((*1 *1 *1) (-4 *1 (-1223)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-1248 *3 *2))
+ (-4 *2 (-13 (-1245 *3) (-559) (-10 -8 (-15 -2785 ($ $ $))))))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-772)) (-4 *1 (-327 *3 *4)) (-4 *3 (-1051))
+ (-4 *4 (-793)) (-4 *3 (-172)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-923)) (-5 *2 (-1274)) (-5 *1 (-214 *4))
+ (-4 *4
+ (-13 (-851)
+ (-10 -8 (-15 -1801 ((-1161) $ (-1179))) (-15 -4025 (*2 $))
+ (-15 -3657 (*2 $)))))))
((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1291 *3 *4)) (-4 *3 (-1051))
- (-4 *4 (-847)))))
-(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
- (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037))
- (-5 *1 (-752)))))
-(((*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-112)))))
+ (-12 (-5 *2 (-1274)) (-5 *1 (-214 *3))
+ (-4 *3
+ (-13 (-851)
+ (-10 -8 (-15 -1801 ((-1161) $ (-1179))) (-15 -4025 (*2 $))
+ (-15 -3657 (*2 $)))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-505)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-38 (-410 (-567))))
- (-5 *2 (-2 (|:| -2987 (-1158 *4)) (|:| -2999 (-1158 *4))))
- (-5 *1 (-1164 *4)) (-5 *3 (-1158 *4)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *1 (-879 *2)) (-4 *2 (-1218))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *1 (-881 *2)) (-4 *2 (-1218))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *1 (-884 *2)) (-4 *2 (-1218)))))
-(((*1 *1)
- (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-559)) (-4 *2 (-172)))))
+ (-12 (-5 *3 (-645 (-1179))) (-5 *2 (-1274)) (-5 *1 (-1221))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-645 (-1179))) (-5 *2 (-1274)) (-5 *1 (-1221)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-4 *3 (-1067 *5 *6 *7))
+ (-5 *2 (-645 (-2 (|:| |val| (-645 *3)) (|:| -2575 *4))))
+ (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-112)) (-5 *5 (-690 (-225)))
+ (-5 *2 (-1037)) (-5 *1 (-756)))))
(((*1 *2 *1) (-12 (-4 *1 (-267 *2)) (-4 *2 (-851))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1178)) (-5 *1 (-865 *3)) (-14 *3 (-645 *2))))
- ((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-991))))
+ (|partial| -12 (-5 *2 (-1179)) (-5 *1 (-865 *3)) (-14 *3 (-645 *2))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-991))))
((*1 *2 *1)
- (-12 (-4 *4 (-1218)) (-5 *2 (-1178)) (-5 *1 (-1059 *3 *4))
+ (-12 (-4 *4 (-1219)) (-5 *2 (-1179)) (-5 *1 (-1059 *3 *4))
(-4 *3 (-1095 *4))))
- ((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1094 *3)) (-4 *3 (-1218))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1094 *3)) (-4 *3 (-1219))))
((*1 *2 *1)
- (-12 (-4 *1 (-1246 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-793))
- (-5 *2 (-1178))))
- ((*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1264 *3)) (-14 *3 *2))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-375 *3))
- (-4 *5 (-375 *3)) (-5 *2 (-772))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051))
- (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-772)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-559) (-1040 (-567)) (-640 (-567))))
- (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-27) (-1203) (-433 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1178))
- (-4 *4 (-13 (-559) (-1040 (-567)) (-640 (-567))))
- (-5 *1 (-278 *4 *2)) (-4 *2 (-13 (-27) (-1203) (-433 *4))))))
-(((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-1158 (-2 (|:| |k| (-567)) (|:| |c| *6))))
- (-5 *4 (-1028 (-844 (-567)))) (-5 *5 (-1178)) (-5 *7 (-410 (-567)))
- (-4 *6 (-1051)) (-5 *2 (-863)) (-5 *1 (-597 *6)))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-613 *3)) (-5 *5 (-1 (-1174 *3) (-1174 *3)))
- (-4 *3 (-13 (-27) (-433 *6))) (-4 *6 (-559)) (-5 *2 (-588 *3))
- (-5 *1 (-554 *6 *3)))))
+ (-12 (-4 *1 (-1247 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-793))
+ (-5 *2 (-1179))))
+ ((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1265 *3)) (-14 *3 *2))))
(((*1 *2 *3 *4 *5)
(-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1096 (-381)))
- (-5 *5 (-645 (-264))) (-5 *2 (-1269)) (-5 *1 (-256))))
+ (-5 *5 (-645 (-264))) (-5 *2 (-1270)) (-5 *1 (-256))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1096 (-381)))
- (-5 *2 (-1269)) (-5 *1 (-256))))
+ (-5 *2 (-1270)) (-5 *1 (-256))))
((*1 *2 *3 *4 *5)
(-12 (-5 *3 (-879 (-1 (-225) (-225)))) (-5 *4 (-1096 (-381)))
- (-5 *5 (-645 (-264))) (-5 *2 (-1269)) (-5 *1 (-256))))
+ (-5 *5 (-645 (-264))) (-5 *2 (-1270)) (-5 *1 (-256))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-879 (-1 (-225) (-225)))) (-5 *4 (-1096 (-381)))
- (-5 *2 (-1269)) (-5 *1 (-256))))
+ (-5 *2 (-1270)) (-5 *1 (-256))))
((*1 *2 *3 *4 *5)
(-12 (-5 *3 (-881 (-1 (-225) (-225)))) (-5 *4 (-1096 (-381)))
- (-5 *5 (-645 (-264))) (-5 *2 (-1270)) (-5 *1 (-256))))
+ (-5 *5 (-645 (-264))) (-5 *2 (-1271)) (-5 *1 (-256))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-881 (-1 (-225) (-225)))) (-5 *4 (-1096 (-381)))
- (-5 *2 (-1270)) (-5 *1 (-256))))
+ (-5 *2 (-1271)) (-5 *1 (-256))))
((*1 *2 *3 *4 *5)
(-12 (-5 *3 (-1 (-945 (-225)) (-225))) (-5 *4 (-1096 (-381)))
- (-5 *5 (-645 (-264))) (-5 *2 (-1270)) (-5 *1 (-256))))
+ (-5 *5 (-645 (-264))) (-5 *2 (-1271)) (-5 *1 (-256))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 (-945 (-225)) (-225))) (-5 *4 (-1096 (-381)))
- (-5 *2 (-1270)) (-5 *1 (-256))))
+ (-5 *2 (-1271)) (-5 *1 (-256))))
((*1 *2 *3 *4 *4 *5)
(-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1096 (-381)))
- (-5 *5 (-645 (-264))) (-5 *2 (-1270)) (-5 *1 (-256))))
+ (-5 *5 (-645 (-264))) (-5 *2 (-1271)) (-5 *1 (-256))))
((*1 *2 *3 *4 *4)
(-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1096 (-381)))
- (-5 *2 (-1270)) (-5 *1 (-256))))
+ (-5 *2 (-1271)) (-5 *1 (-256))))
((*1 *2 *3 *4 *4 *5)
(-12 (-5 *3 (-1 (-945 (-225)) (-225) (-225))) (-5 *4 (-1096 (-381)))
- (-5 *5 (-645 (-264))) (-5 *2 (-1270)) (-5 *1 (-256))))
+ (-5 *5 (-645 (-264))) (-5 *2 (-1271)) (-5 *1 (-256))))
((*1 *2 *3 *4 *4)
(-12 (-5 *3 (-1 (-945 (-225)) (-225) (-225))) (-5 *4 (-1096 (-381)))
- (-5 *2 (-1270)) (-5 *1 (-256))))
+ (-5 *2 (-1271)) (-5 *1 (-256))))
((*1 *2 *3 *4 *4 *5)
(-12 (-5 *3 (-884 (-1 (-225) (-225) (-225)))) (-5 *4 (-1096 (-381)))
- (-5 *5 (-645 (-264))) (-5 *2 (-1270)) (-5 *1 (-256))))
+ (-5 *5 (-645 (-264))) (-5 *2 (-1271)) (-5 *1 (-256))))
((*1 *2 *3 *4 *4)
(-12 (-5 *3 (-884 (-1 (-225) (-225) (-225)))) (-5 *4 (-1096 (-381)))
- (-5 *2 (-1270)) (-5 *1 (-256))))
+ (-5 *2 (-1271)) (-5 *1 (-256))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-295 *7)) (-5 *4 (-1178)) (-5 *5 (-645 (-264)))
+ (-12 (-5 *3 (-295 *7)) (-5 *4 (-1179)) (-5 *5 (-645 (-264)))
(-4 *7 (-433 *6)) (-4 *6 (-13 (-559) (-851) (-1040 (-567))))
- (-5 *2 (-1269)) (-5 *1 (-257 *6 *7))))
+ (-5 *2 (-1270)) (-5 *1 (-257 *6 *7))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1094 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1269))
+ (-12 (-5 *4 (-1094 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1270))
(-5 *1 (-260 *3)) (-4 *3 (-13 (-615 (-539)) (-1102)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1094 (-381))) (-5 *2 (-1269)) (-5 *1 (-260 *3))
+ (-12 (-5 *4 (-1094 (-381))) (-5 *2 (-1270)) (-5 *1 (-260 *3))
(-4 *3 (-13 (-615 (-539)) (-1102)))))
((*1 *2 *3 *4 *5)
(-12 (-5 *3 (-879 *6)) (-5 *4 (-1094 (-381))) (-5 *5 (-645 (-264)))
- (-4 *6 (-13 (-615 (-539)) (-1102))) (-5 *2 (-1269))
+ (-4 *6 (-13 (-615 (-539)) (-1102))) (-5 *2 (-1270))
(-5 *1 (-260 *6))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-879 *5)) (-5 *4 (-1094 (-381)))
- (-4 *5 (-13 (-615 (-539)) (-1102))) (-5 *2 (-1269))
+ (-4 *5 (-13 (-615 (-539)) (-1102))) (-5 *2 (-1270))
(-5 *1 (-260 *5))))
((*1 *2 *3 *4 *5)
(-12 (-5 *3 (-881 *6)) (-5 *4 (-1094 (-381))) (-5 *5 (-645 (-264)))
- (-4 *6 (-13 (-615 (-539)) (-1102))) (-5 *2 (-1270))
+ (-4 *6 (-13 (-615 (-539)) (-1102))) (-5 *2 (-1271))
(-5 *1 (-260 *6))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-881 *5)) (-5 *4 (-1094 (-381)))
- (-4 *5 (-13 (-615 (-539)) (-1102))) (-5 *2 (-1270))
+ (-4 *5 (-13 (-615 (-539)) (-1102))) (-5 *2 (-1271))
(-5 *1 (-260 *5))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-1094 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1270))
+ (-12 (-5 *4 (-1094 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1271))
(-5 *1 (-260 *3)) (-4 *3 (-13 (-615 (-539)) (-1102)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1094 (-381))) (-5 *2 (-1270)) (-5 *1 (-260 *3))
+ (-12 (-5 *4 (-1094 (-381))) (-5 *2 (-1271)) (-5 *1 (-260 *3))
(-4 *3 (-13 (-615 (-539)) (-1102)))))
((*1 *2 *3 *4 *4 *5)
(-12 (-5 *3 (-884 *6)) (-5 *4 (-1094 (-381))) (-5 *5 (-645 (-264)))
- (-4 *6 (-13 (-615 (-539)) (-1102))) (-5 *2 (-1270))
+ (-4 *6 (-13 (-615 (-539)) (-1102))) (-5 *2 (-1271))
(-5 *1 (-260 *6))))
((*1 *2 *3 *4 *4)
(-12 (-5 *3 (-884 *5)) (-5 *4 (-1094 (-381)))
- (-4 *5 (-13 (-615 (-539)) (-1102))) (-5 *2 (-1270))
+ (-4 *5 (-13 (-615 (-539)) (-1102))) (-5 *2 (-1271))
(-5 *1 (-260 *5))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-645 (-225))) (-5 *2 (-1269)) (-5 *1 (-261))))
+ (-12 (-5 *3 (-645 (-225))) (-5 *2 (-1270)) (-5 *1 (-261))))
((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-645 (-225))) (-5 *4 (-645 (-264))) (-5 *2 (-1269))
+ (-12 (-5 *3 (-645 (-225))) (-5 *4 (-645 (-264))) (-5 *2 (-1270))
(-5 *1 (-261))))
((*1 *2 *3)
- (-12 (-5 *3 (-645 (-945 (-225)))) (-5 *2 (-1269)) (-5 *1 (-261))))
+ (-12 (-5 *3 (-645 (-945 (-225)))) (-5 *2 (-1270)) (-5 *1 (-261))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-645 (-945 (-225)))) (-5 *4 (-645 (-264)))
- (-5 *2 (-1269)) (-5 *1 (-261))))
+ (-5 *2 (-1270)) (-5 *1 (-261))))
((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-645 (-225))) (-5 *2 (-1270)) (-5 *1 (-261))))
+ (-12 (-5 *3 (-645 (-225))) (-5 *2 (-1271)) (-5 *1 (-261))))
((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-645 (-225))) (-5 *4 (-645 (-264))) (-5 *2 (-1270))
+ (-12 (-5 *3 (-645 (-225))) (-5 *4 (-645 (-264))) (-5 *2 (-1271))
(-5 *1 (-261)))))
-(((*1 *1 *2 *2 *3 *1)
- (-12 (-5 *2 (-509)) (-5 *3 (-1106)) (-5 *1 (-292)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-225)) (-5 *4 (-567))
- (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3879))))
- (-5 *2 (-1037)) (-5 *1 (-749)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-645 *6)) (-5 *4 (-1178)) (-4 *6 (-433 *5))
- (-4 *5 (-1102)) (-5 *2 (-645 (-613 *6))) (-5 *1 (-576 *5 *6)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-254 *2 *3 *4 *5)) (-4 *2 (-1051)) (-4 *3 (-851))
- (-4 *4 (-267 *3)) (-4 *5 (-794)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-375 *3))
- (-4 *5 (-375 *3)) (-5 *2 (-772))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051))
- (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-772)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-484 *4 *5)) (-14 *4 (-645 (-1179))) (-4 *5 (-1051))
+ (-5 *2 (-954 *5)) (-5 *1 (-946 *4 *5)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-324 *3 *4)) (-4 *3 (-1102))
+ (-4 *4 (-131))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1102)) (-5 *1 (-363 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-388 *3)) (-4 *3 (-1102))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1102)) (-5 *1 (-650 *3 *4 *5))
+ (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-973)))))
+(((*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-772)) (-5 *1 (-592)))))
+(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34)))
+ ((*1 *1) (-5 *1 (-129)))
+ ((*1 *1)
+ (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-567)) (-14 *3 (-772))
+ (-4 *4 (-172))))
+ ((*1 *1) (-5 *1 (-549))) ((*1 *1) (-5 *1 (-550)))
+ ((*1 *1) (-5 *1 (-551))) ((*1 *1) (-5 *1 (-552)))
+ ((*1 *1) (-4 *1 (-727))) ((*1 *1) (-5 *1 (-1179)))
+ ((*1 *1) (-12 (-5 *1 (-1185 *2)) (-14 *2 (-923))))
+ ((*1 *1) (-12 (-5 *1 (-1186 *2)) (-14 *2 (-923))))
+ ((*1 *1) (-5 *1 (-1224))) ((*1 *1) (-5 *1 (-1225)))
+ ((*1 *1) (-5 *1 (-1226))) ((*1 *1) (-5 *1 (-1227))))
+(((*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-760)))))
+(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1223)) (-4 *3 (-1245 *4))
+ (-4 *5 (-1245 (-410 *3))) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3))
+ (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112)))))
(((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-645 *1)) (-4 *1 (-303))))
((*1 *1 *2 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114))))
- ((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-613 *3)) (-4 *3 (-1102))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-613 *3)) (-4 *3 (-1102))))
((*1 *1 *2 *3 *4)
(-12 (-5 *2 (-114)) (-5 *3 (-645 *5)) (-5 *4 (-772)) (-4 *5 (-1102))
(-5 *1 (-613 *5)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037))
- (-5 *1 (-748)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-331)))))
+(((*1 *2 *3 *4 *4 *3)
+ (|partial| -12 (-5 *4 (-613 *3))
+ (-4 *3 (-13 (-433 *5) (-27) (-1204)))
+ (-4 *5 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567))))
+ (-5 *2 (-2 (|:| -2872 *3) (|:| |coeff| *3)))
+ (-5 *1 (-569 *5 *3 *6)) (-4 *6 (-1102)))))
+(((*1 *1) (-5 *1 (-471))))
+(((*1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1219)))))
(((*1 *2 *3 *4)
(-12 (-5 *3 (-645 *8)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-567))
(-14 *6 (-772)) (-4 *7 (-172)) (-4 *8 (-172))
@@ -4645,226 +4659,239 @@
(-4 *8 (-1051)) (-4 *2 (-951 *9 *7 *5))
(-5 *1 (-729 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-794))
(-4 *4 (-951 *8 *6 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1102)) (-4 *6 (-1102))
- (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-685 *4 *5 *6)) (-4 *4 (-1102)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-923)) (-5 *3 (-645 (-264))) (-5 *1 (-262))))
- ((*1 *1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-264)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-1178))
- (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147)))
- (-4 *4 (-13 (-29 *6) (-1203) (-961)))
- (-5 *2 (-2 (|:| |particular| *4) (|:| -2623 (-645 *4))))
- (-5 *1 (-802 *6 *4 *3)) (-4 *3 (-657 *4)))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-645 *10)) (-5 *5 (-112)) (-4 *10 (-1073 *6 *7 *8 *9))
- (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851))
- (-4 *9 (-1067 *6 *7 *8))
- (-5 *2
- (-645
- (-2 (|:| -3845 (-645 *9)) (|:| -2566 *10) (|:| |ineq| (-645 *9)))))
- (-5 *1 (-990 *6 *7 *8 *9 *10)) (-5 *3 (-645 *9))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-645 *10)) (-5 *5 (-112)) (-4 *10 (-1073 *6 *7 *8 *9))
- (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851))
- (-4 *9 (-1067 *6 *7 *8))
- (-5 *2
- (-645
- (-2 (|:| -3845 (-645 *9)) (|:| -2566 *10) (|:| |ineq| (-645 *9)))))
- (-5 *1 (-1109 *6 *7 *8 *9 *10)) (-5 *3 (-645 *9)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-264))) (-5 *1 (-1269))))
- ((*1 *2 *1) (-12 (-5 *2 (-645 (-264))) (-5 *1 (-1269))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-264))) (-5 *1 (-1270))))
- ((*1 *2 *1) (-12 (-5 *2 (-645 (-264))) (-5 *1 (-1270)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-794))
- (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559))
- (-5 *2 (-112)))))
-(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3)
- (-12 (-5 *4 (-690 (-225))) (-5 *5 (-690 (-567))) (-5 *3 (-567))
- (-5 *2 (-1037)) (-5 *1 (-757)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-645 (-539))) (-5 *2 (-1178)) (-5 *1 (-539)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1142 *2 *3)) (-4 *2 (-13 (-1102) (-34)))
- (-4 *3 (-13 (-1102) (-34))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-2 (|:| -1752 *6) (|:| |coeff| *6)) "failed") *6))
- (-4 *6 (-365)) (-4 *7 (-1244 *6))
- (-5 *2 (-2 (|:| |answer| (-588 (-410 *7))) (|:| |a0| *6)))
- (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-455)) (-4 *3 (-851)) (-4 *4 (-794))
- (-5 *1 (-989 *2 *3 *4 *5)) (-4 *5 (-951 *2 *4 *3)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-533 *3)) (-4 *3 (-13 (-727) (-25))))))
(((*1 *2 *1)
- (-12 (-14 *3 (-645 (-1178))) (-4 *4 (-172))
- (-14 *6
- (-1 (-112) (-2 (|:| -3768 *5) (|:| -3458 *2))
- (-2 (|:| -3768 *5) (|:| -3458 *2))))
- (-4 *2 (-238 (-2414 *3) (-772))) (-5 *1 (-464 *3 *4 *5 *2 *6 *7))
- (-4 *5 (-851)) (-4 *7 (-951 *4 *2 (-865 *3))))))
+ (-12 (-4 *3 (-1051)) (-5 *2 (-1269 *3)) (-5 *1 (-713 *3 *4))
+ (-4 *4 (-1245 *3)))))
+(((*1 *1 *2 *2) (-12 (-5 *1 (-879 *2)) (-4 *2 (-1219))))
+ ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-881 *2)) (-4 *2 (-1219))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-645 (-945 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-645 (-945 *3))) (-4 *3 (-1051)) (-4 *1 (-1136 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-645 (-645 *3))) (-4 *1 (-1136 *3)) (-4 *3 (-1051))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-645 (-945 *3))) (-4 *1 (-1136 *3)) (-4 *3 (-1051)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-264))) (-5 *1 (-1270))))
+ ((*1 *2 *1) (-12 (-5 *2 (-645 (-264))) (-5 *1 (-1270))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-264))) (-5 *1 (-1271))))
+ ((*1 *2 *1) (-12 (-5 *2 (-645 (-264))) (-5 *1 (-1271)))))
+(((*1 *2 *3 *2 *4 *5)
+ (-12 (-5 *2 (-645 *3)) (-5 *5 (-923)) (-4 *3 (-1245 *4))
+ (-4 *4 (-308)) (-5 *1 (-463 *4 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-954 (-225))) (-5 *2 (-225)) (-5 *1 (-306)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-645 *5)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-567))
- (-14 *4 (-772)) (-4 *5 (-172)))))
-(((*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-1051)))))
+ (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-645 (-945 *3))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851))
- (-4 *7 (-1067 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-645 *7)) (|:| |badPols| (-645 *7))))
- (-5 *1 (-979 *4 *5 *6 *7)) (-5 *3 (-645 *7)))))
+ (-12 (-5 *3 (-645 (-539))) (-5 *2 (-1179)) (-5 *1 (-539)))))
+(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037))
+ (-5 *1 (-753)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-455) (-1040 (-567)))) (-4 *3 (-559))
- (-5 *1 (-41 *3 *2)) (-4 *2 (-433 *3))
- (-4 *2
- (-13 (-365) (-303)
- (-10 -8 (-15 -1448 ((-1127 *3 (-613 $)) $))
- (-15 -1460 ((-1127 *3 (-613 $)) $))
- (-15 -4132 ($ (-1127 *3 (-613 $))))))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-381)) (-5 *1 (-97))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-381)) (-5 *1 (-97)))))
+ (-12 (-5 *2 (-645 *6)) (-4 *6 (-951 *3 *4 *5)) (-4 *3 (-455))
+ (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-452 *3 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-112)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-548))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-645 (-945 *3))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1268 (-645 (-2 (|:| -3802 *4) (|:| -3768 (-1122))))))
- (-4 *4 (-351)) (-5 *2 (-690 *4)) (-5 *1 (-348 *4)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-308)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1048 *4 *5)) (-4 *4 (-13 (-849) (-308) (-147) (-1024)))
- (-14 *5 (-645 (-1178)))
+ (-12 (-5 *2 (-645 *5)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-567))
+ (-14 *4 (-772)) (-4 *5 (-172)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-654 (-410 *6))) (-5 *4 (-410 *6)) (-4 *6 (-1245 *5))
+ (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567)))))
(-5 *2
- (-645 (-2 (|:| -3892 (-1174 *4)) (|:| -2887 (-645 (-954 *4))))))
- (-5 *1 (-1294 *4 *5 *6)) (-14 *6 (-645 (-1178)))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1024)))
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2144 (-645 *4))))
+ (-5 *1 (-811 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-654 (-410 *6))) (-4 *6 (-1245 *5))
+ (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567)))))
+ (-5 *2 (-2 (|:| -2144 (-645 (-410 *6))) (|:| -4208 (-690 *5))))
+ (-5 *1 (-811 *5 *6)) (-5 *4 (-645 (-410 *6)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-655 *6 (-410 *6))) (-5 *4 (-410 *6)) (-4 *6 (-1245 *5))
+ (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567)))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2144 (-645 *4))))
+ (-5 *1 (-811 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-655 *6 (-410 *6))) (-4 *6 (-1245 *5))
+ (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567)))))
+ (-5 *2 (-2 (|:| -2144 (-645 (-410 *6))) (|:| -4208 (-690 *5))))
+ (-5 *1 (-811 *5 *6)) (-5 *4 (-645 (-410 *6))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-923)) (-4 *1 (-238 *3 *4)) (-4 *4 (-1051))
+ (-4 *4 (-1219))))
+ ((*1 *1 *2)
+ (-12 (-14 *3 (-645 (-1179))) (-4 *4 (-172))
+ (-4 *5 (-238 (-2423 *3) (-772)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -3779 *2) (|:| -3468 *5))
+ (-2 (|:| -3779 *2) (|:| -3468 *5))))
+ (-5 *1 (-464 *3 *4 *2 *5 *6 *7)) (-4 *2 (-851))
+ (-4 *7 (-951 *4 *5 (-865 *3)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-945 (-225))) (-5 *1 (-1215)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-929))
(-5 *2
- (-645 (-2 (|:| -3892 (-1174 *5)) (|:| -2887 (-645 (-954 *5))))))
- (-5 *1 (-1294 *5 *6 *7)) (-5 *3 (-645 (-954 *5)))
- (-14 *6 (-645 (-1178))) (-14 *7 (-645 (-1178)))))
+ (-2 (|:| |brans| (-645 (-645 (-945 (-225)))))
+ (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))))
+ (-5 *1 (-153))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1024)))
+ (-12 (-5 *3 (-929)) (-5 *4 (-410 (-567)))
(-5 *2
- (-645 (-2 (|:| -3892 (-1174 *5)) (|:| -2887 (-645 (-954 *5))))))
- (-5 *1 (-1294 *5 *6 *7)) (-5 *3 (-645 (-954 *5)))
- (-14 *6 (-645 (-1178))) (-14 *7 (-645 (-1178)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1024)))
+ (-2 (|:| |brans| (-645 (-645 (-945 (-225)))))
+ (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))))
+ (-5 *1 (-153))))
+ ((*1 *2 *3)
+ (-12
(-5 *2
- (-645 (-2 (|:| -3892 (-1174 *5)) (|:| -2887 (-645 (-954 *5))))))
- (-5 *1 (-1294 *5 *6 *7)) (-5 *3 (-645 (-954 *5)))
- (-14 *6 (-645 (-1178))) (-14 *7 (-645 (-1178)))))
+ (-2 (|:| |brans| (-645 (-645 (-945 (-225)))))
+ (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))))
+ (-5 *1 (-153)) (-5 *3 (-645 (-945 (-225))))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-849) (-308) (-147) (-1024)))
+ (-12
(-5 *2
- (-645 (-2 (|:| -3892 (-1174 *4)) (|:| -2887 (-645 (-954 *4))))))
- (-5 *1 (-1294 *4 *5 *6)) (-5 *3 (-645 (-954 *4)))
- (-14 *5 (-645 (-1178))) (-14 *6 (-645 (-1178))))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-645 (-295 *4))) (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851))
- (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-923)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1218)) (-4 *3 (-1102))
- (-5 *2 (-112)))))
-(((*1 *1 *1 *1) (-5 *1 (-863))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-455) (-147))) (-5 *2 (-421 *3))
- (-5 *1 (-100 *4 *3)) (-4 *3 (-1244 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-645 *3)) (-4 *3 (-1244 *5)) (-4 *5 (-13 (-455) (-147)))
- (-5 *2 (-421 *3)) (-5 *1 (-100 *5 *3)))))
+ (-2 (|:| |brans| (-645 (-645 (-945 (-225)))))
+ (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))))
+ (-5 *1 (-153)) (-5 *3 (-645 (-645 (-945 (-225)))))))
+ ((*1 *1 *2) (-12 (-5 *2 (-645 (-1096 (-381)))) (-5 *1 (-264))))
+ ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-264)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1096 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-192))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1096 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-301))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1096 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-306)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1153)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1270))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1271)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037))
+ (-5 *1 (-756)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1271)))))
+(((*1 *2 *3 *4 *2 *5)
+ (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 (-894 *6)))
+ (-5 *5 (-1 (-891 *6 *8) *8 (-894 *6) (-891 *6 *8))) (-4 *6 (-1102))
+ (-4 *8 (-13 (-1051) (-615 (-894 *6)) (-1040 *7)))
+ (-5 *2 (-891 *6 *8)) (-4 *7 (-1051)) (-5 *1 (-943 *6 *7 *8)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051))
- (-5 *2 (-645 (-645 (-645 (-772))))))))
+ (-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102))
+ (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-112)))))
+(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-905 *3)) (-4 *3 (-1102)) (-5 *2 (-1104 *3))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-1102)) (-5 *2 (-1104 (-645 *4))) (-5 *1 (-906 *4))
+ (-5 *3 (-645 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-1102)) (-5 *2 (-1104 (-1104 *4))) (-5 *1 (-906 *4))
+ (-5 *3 (-1104 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *2 (-1104 *3)) (-5 *1 (-906 *3)) (-4 *3 (-1102)))))
(((*1 *2 *1)
(-12 (-4 *1 (-1105 *3 *4 *5 *6 *2)) (-4 *3 (-1102)) (-4 *4 (-1102))
(-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *2 (-1102)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-410 *4)) (-4 *4 (-1244 *3))
- (-4 *3 (-13 (-365) (-147) (-1040 (-567)))) (-5 *1 (-571 *3 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-328 *3)) (-4 *3 (-1218))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-519 *3 *4)) (-4 *3 (-1218))
- (-14 *4 (-567)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-559)) (-5 *2 (-645 *3)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-420 *4)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-861)) (-5 *3 (-128)) (-5 *2 (-772)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1179)) (-4 *4 (-559)) (-4 *4 (-1102))
+ (-5 *1 (-576 *4 *2)) (-4 *2 (-433 *4)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-645 (-1175 *5))) (-5 *3 (-1175 *5))
+ (-4 *5 (-166 *4)) (-4 *4 (-548)) (-5 *1 (-149 *4 *5))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-645 *3)) (-4 *3 (-1245 *5))
+ (-4 *5 (-1245 *4)) (-4 *4 (-351)) (-5 *1 (-360 *4 *5 *3))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-645 (-1175 (-567)))) (-5 *3 (-1175 (-567)))
+ (-5 *1 (-575))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-645 (-1175 *1))) (-5 *3 (-1175 *1))
+ (-4 *1 (-911)))))
+(((*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-439))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-439)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-317 (-381))) (-5 *2 (-317 (-225))) (-5 *1 (-306)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1158 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1158 (-645 (-567)))) (-5 *1 (-885))
- (-5 *3 (-645 (-567)))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1158 (-645 (-567)))) (-5 *1 (-885))
- (-5 *3 (-645 (-567))))))
-(((*1 *2 *1) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-397)))))
-(((*1 *1 *1) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-851)) (-4 *3 (-172))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-628 *2 *3 *4)) (-4 *2 (-851))
- (-4 *3 (-13 (-172) (-718 (-410 (-567))))) (-14 *4 (-923))))
- ((*1 *1 *1) (-12 (-5 *1 (-678 *2)) (-4 *2 (-851))))
- ((*1 *1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-851))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1285 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1051)))))
-(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
- ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))))
-(((*1 *2 *3 *4 *4 *5 *3 *6)
- (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-645 *3)) (-5 *6 (-1174 *3))
- (-4 *3 (-13 (-433 *7) (-27) (-1203)))
- (-4 *7 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-563 *7 *3 *8)) (-4 *8 (-1102))))
- ((*1 *2 *3 *4 *4 *5 *4 *3 *6)
- (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-645 *3))
- (-5 *6 (-410 (-1174 *3))) (-4 *3 (-13 (-433 *7) (-27) (-1203)))
- (-4 *7 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-563 *7 *3 *8)) (-4 *8 (-1102)))))
-(((*1 *2 *1) (-12 (-4 *1 (-557 *2)) (-4 *2 (-13 (-407) (-1203))))))
+ (-12 (-4 *4 (-1051)) (-4 *3 (-1245 *4)) (-4 *2 (-1260 *4))
+ (-5 *1 (-1263 *4 *3 *5 *2)) (-4 *5 (-657 *3)))))
+(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4)
+ (-12 (-5 *4 (-690 (-225))) (-5 *5 (-690 (-567))) (-5 *3 (-567))
+ (-5 *2 (-1037)) (-5 *1 (-757)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-645 (-2 (|:| |k| (-673 *3)) (|:| |c| *4))))
- (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851))
- (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-923)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-1199)))))
+ (-12 (-5 *2 (-645 (-2 (|:| |k| (-1179)) (|:| |c| (-1291 *3)))))
+ (-5 *1 (-1291 *3)) (-4 *3 (-1051))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-645 (-2 (|:| |k| *3) (|:| |c| (-1293 *3 *4)))))
+ (-5 *1 (-1293 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051))
- (-5 *2 (-645 (-645 (-645 (-945 *3))))))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-923)) (-5 *4 (-875)) (-5 *2 (-1273)) (-5 *1 (-1269))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-923)) (-5 *4 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1269))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1270)))))
-(((*1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1218))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-1051)) (-5 *1 (-447 *3 *2)) (-4 *2 (-1244 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1102)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1 (-1128 *4 *3 *5))) (-4 *4 (-38 (-410 (-567))))
- (-4 *4 (-1051)) (-4 *3 (-851)) (-5 *1 (-1128 *4 *3 *5))
- (-4 *5 (-951 *4 (-534 *3) *3))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1 (-1212 *4))) (-5 *3 (-1178)) (-5 *1 (-1212 *4))
- (-4 *4 (-38 (-410 (-567)))) (-4 *4 (-1051)))))
+ (-12 (-4 *2 (-951 *3 *5 *4)) (-5 *1 (-989 *3 *4 *5 *2))
+ (-4 *3 (-455)) (-4 *4 (-851)) (-4 *5 (-794)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-1245 *2)) (-4 *2 (-1223)) (-5 *1 (-148 *2 *4 *3))
+ (-4 *3 (-1245 (-410 *4))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102))
- (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))))
+ (-12 (-4 *1 (-1286 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051))
+ (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1292 *3 *4)) (-4 *3 (-1051))
+ (-4 *4 (-847)))))
(((*1 *2 *3)
- (|partial| -12 (-4 *5 (-1040 (-48)))
- (-4 *4 (-13 (-559) (-1040 (-567)))) (-4 *5 (-433 *4))
- (-5 *2 (-421 (-1174 (-48)))) (-5 *1 (-438 *4 *5 *3))
- (-4 *3 (-1244 *5)))))
+ (-12 (-4 *4 (-455))
+ (-5 *2
+ (-645
+ (-2 (|:| |eigval| (-3 (-410 (-954 *4)) (-1168 (-1179) (-954 *4))))
+ (|:| |eigmult| (-772))
+ (|:| |eigvec| (-645 (-690 (-410 (-954 *4))))))))
+ (-5 *1 (-293 *4)) (-5 *3 (-690 (-410 (-954 *4)))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-793))
+ (-5 *2 (-645 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-1102))
+ (-5 *2 (-645 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1159 *3)) (-5 *1 (-598 *3)) (-4 *3 (-1051))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-645 *3)) (-5 *1 (-736 *3 *4)) (-4 *3 (-1051))
+ (-4 *4 (-727))))
+ ((*1 *2 *1) (-12 (-4 *1 (-853 *3)) (-4 *3 (-1051)) (-5 *2 (-645 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1260 *3)) (-4 *3 (-1051)) (-5 *2 (-1159 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-957)) (-5 *2 (-645 (-645 (-945 (-225)))))))
+ ((*1 *2 *1) (-12 (-4 *1 (-976)) (-5 *2 (-645 (-645 (-945 (-225))))))))
+(((*1 *1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-945 *5)) (-5 *3 (-772)) (-4 *5 (-1051))
+ (-5 *1 (-1167 *4 *5)) (-14 *4 (-923)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-645 (-894 *3))) (-5 *1 (-894 *3))
+ (-4 *3 (-1102)))))
+(((*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-561 *3)) (-4 *3 (-548))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-308)) (-5 *2 (-421 *3))
+ (-5 *1 (-743 *4 *5 *6 *3)) (-4 *3 (-951 *6 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-308))
+ (-4 *7 (-951 *6 *4 *5)) (-5 *2 (-421 (-1175 *7)))
+ (-5 *1 (-743 *4 *5 *6 *7)) (-5 *3 (-1175 *7))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-455)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851))
+ (-5 *2 (-421 *1)) (-4 *1 (-951 *3 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-851)) (-4 *5 (-794)) (-4 *6 (-455)) (-5 *2 (-421 *3))
+ (-5 *1 (-981 *4 *5 *6 *3)) (-4 *3 (-951 *6 *5 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-455))
+ (-4 *7 (-951 *6 *4 *5)) (-5 *2 (-421 (-1175 (-410 *7))))
+ (-5 *1 (-1174 *4 *5 *6 *7)) (-5 *3 (-1175 (-410 *7)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-421 *1)) (-4 *1 (-1223))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-559)) (-5 *2 (-421 *3)) (-5 *1 (-1248 *4 *3))
+ (-4 *3 (-13 (-1245 *4) (-559) (-10 -8 (-15 -2785 ($ $ $)))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1048 *4 *5)) (-4 *4 (-13 (-849) (-308) (-147) (-1024)))
+ (-14 *5 (-645 (-1179)))
+ (-5 *2
+ (-645 (-1148 *4 (-534 (-865 *6)) (-865 *6) (-781 *4 (-865 *6)))))
+ (-5 *1 (-1295 *4 *5 *6)) (-14 *6 (-645 (-1179))))))
(((*1 *2 *3 *4 *5)
(-12 (-5 *5 (-1096 *3)) (-4 *3 (-951 *7 *6 *4)) (-4 *6 (-794))
(-4 *4 (-851)) (-4 *7 (-559))
@@ -4877,176 +4904,348 @@
((*1 *1 *1 *1 *1) (-5 *1 (-863))) ((*1 *1 *1 *1) (-5 *1 (-863)))
((*1 *1 *1) (-5 *1 (-863)))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1178))
+ (-12 (-5 *3 (-1179))
(-4 *4 (-13 (-559) (-1040 (-567)) (-640 (-567))))
- (-5 *1 (-1170 *4 *2)) (-4 *2 (-13 (-433 *4) (-160) (-27) (-1203)))))
+ (-5 *1 (-1171 *4 *2)) (-4 *2 (-13 (-433 *4) (-160) (-27) (-1204)))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1094 *2)) (-4 *2 (-13 (-433 *4) (-160) (-27) (-1203)))
+ (-12 (-5 *3 (-1094 *2)) (-4 *2 (-13 (-433 *4) (-160) (-27) (-1204)))
(-4 *4 (-13 (-559) (-1040 (-567)) (-640 (-567))))
- (-5 *1 (-1170 *4 *2))))
+ (-5 *1 (-1171 *4 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1178)) (-4 *5 (-13 (-559) (-1040 (-567))))
- (-5 *2 (-410 (-954 *5))) (-5 *1 (-1171 *5)) (-5 *3 (-954 *5))))
+ (-12 (-5 *4 (-1179)) (-4 *5 (-13 (-559) (-1040 (-567))))
+ (-5 *2 (-410 (-954 *5))) (-5 *1 (-1172 *5)) (-5 *3 (-954 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1178)) (-4 *5 (-13 (-559) (-1040 (-567))))
- (-5 *2 (-3 (-410 (-954 *5)) (-317 *5))) (-5 *1 (-1171 *5))
+ (-12 (-5 *4 (-1179)) (-4 *5 (-13 (-559) (-1040 (-567))))
+ (-5 *2 (-3 (-410 (-954 *5)) (-317 *5))) (-5 *1 (-1172 *5))
(-5 *3 (-410 (-954 *5)))))
((*1 *2 *3 *4)
(-12 (-5 *4 (-1094 (-954 *5))) (-5 *3 (-954 *5))
(-4 *5 (-13 (-559) (-1040 (-567)))) (-5 *2 (-410 *3))
- (-5 *1 (-1171 *5))))
+ (-5 *1 (-1172 *5))))
((*1 *2 *3 *4)
(-12 (-5 *4 (-1094 (-410 (-954 *5)))) (-5 *3 (-410 (-954 *5)))
(-4 *5 (-13 (-559) (-1040 (-567)))) (-5 *2 (-3 *3 (-317 *5)))
- (-5 *1 (-1171 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1158 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))))
+ (-5 *1 (-1172 *5)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1241 *5 *4)) (-4 *4 (-821)) (-14 *5 (-1178))
- (-5 *2 (-645 *4)) (-5 *1 (-1116 *4 *5)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
- (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225)))
- (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225)))
- (|:| |abserr| (-225)) (|:| |relerr| (-225))))
- (-5 *2 (-381)) (-5 *1 (-205)))))
-(((*1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-1188)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-772)) (-5 *6 (-112)) (-4 *7 (-455)) (-4 *8 (-794))
- (-4 *9 (-851)) (-4 *3 (-1067 *7 *8 *9))
- (-5 *2
- (-2 (|:| |done| (-645 *4))
- (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2566 *4))))))
- (-5 *1 (-1071 *7 *8 *9 *3 *4)) (-4 *4 (-1073 *7 *8 *9 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-772)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851))
+ (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1196 *4 *5))
+ (-4 *4 (-1102)) (-4 *5 (-1102)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851))
(-4 *3 (-1067 *6 *7 *8))
(-5 *2
(-2 (|:| |done| (-645 *4))
- (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2566 *4))))))
+ (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2575 *4))))))
(-5 *1 (-1071 *6 *7 *8 *3 *4)) (-4 *4 (-1073 *6 *7 *8 *3))))
((*1 *2 *3 *4)
(-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
(-4 *3 (-1067 *5 *6 *7))
(-5 *2
(-2 (|:| |done| (-645 *4))
- (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2566 *4))))))
- (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-772)) (-5 *6 (-112)) (-4 *7 (-455)) (-4 *8 (-794))
- (-4 *9 (-851)) (-4 *3 (-1067 *7 *8 *9))
- (-5 *2
- (-2 (|:| |done| (-645 *4))
- (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2566 *4))))))
- (-5 *1 (-1147 *7 *8 *9 *3 *4)) (-4 *4 (-1111 *7 *8 *9 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-772)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851))
- (-4 *3 (-1067 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-645 *4))
- (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2566 *4))))))
- (-5 *1 (-1147 *6 *7 *8 *3 *4)) (-4 *4 (-1111 *6 *7 *8 *3))))
+ (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2575 *4))))))
+ (-5 *1 (-1147 *5 *6 *7 *3 *4)) (-4 *4 (-1111 *5 *6 *7 *3)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-690 *5)) (-4 *5 (-1051)) (-5 *1 (-1056 *3 *4 *5))
+ (-14 *3 (-772)) (-14 *4 (-772)))))
+(((*1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1219))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-1051)) (-5 *1 (-447 *3 *2)) (-4 *2 (-1245 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1102)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *1) (-5 *1 (-144)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-264))) (-5 *2 (-1135 (-225))) (-5 *1 (-262))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1135 (-225))) (-5 *1 (-264)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-1102)) (-5 *1 (-907 *3)))))
+(((*1 *2 *3 *3 *2 *4)
+ (-12 (-5 *3 (-690 *2)) (-5 *4 (-567))
+ (-4 *2 (-13 (-308) (-10 -8 (-15 -3597 ((-421 $) $)))))
+ (-4 *5 (-1245 *2)) (-5 *1 (-502 *2 *5 *6)) (-4 *6 (-412 *2 *5)))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-152 *2 *3 *4)) (-14 *2 (-923)) (-4 *3 (-365))
+ (-14 *4 (-995 *2 *3))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *2 (-172)) (-5 *1 (-290 *2 *3 *4 *5 *6 *7))
+ (-4 *3 (-1245 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-559))))
+ ((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *2 (-172))
+ (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
+ (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365))))
+ ((*1 *1) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365))))
+ ((*1 *1 *1) (|partial| -4 *1 (-723)))
+ ((*1 *1 *1) (|partial| -4 *1 (-727)))
((*1 *2 *3 *4)
(-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
- (-4 *3 (-1067 *5 *6 *7))
+ (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3)))
+ (-5 *1 (-777 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3))))
+ ((*1 *2 *2 *1)
+ (|partial| -12 (-4 *1 (-1070 *3 *2)) (-4 *3 (-13 (-849) (-365)))
+ (-4 *2 (-1245 *3))))
+ ((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-5 *1 (-1163 *3)))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1161)) (-5 *4 (-567)) (-5 *5 (-690 (-225)))
+ (-5 *2 (-1037)) (-5 *1 (-758)))))
+(((*1 *1 *2 *2)
+ (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1006 *3)) (-14 *3 (-567)))))
+(((*1 *2 *3 *2)
+ (|partial| -12 (-5 *2 (-1269 *4)) (-5 *3 (-690 *4)) (-4 *4 (-365))
+ (-5 *1 (-668 *4))))
+ ((*1 *2 *3 *2)
+ (|partial| -12 (-4 *4 (-365))
+ (-4 *5 (-13 (-375 *4) (-10 -7 (-6 -4423))))
+ (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4423))))
+ (-5 *1 (-669 *4 *5 *2 *3)) (-4 *3 (-688 *4 *5 *2))))
+ ((*1 *2 *3 *2 *4 *5)
+ (|partial| -12 (-5 *4 (-645 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-365))
+ (-5 *1 (-815 *2 *3)) (-4 *3 (-657 *2))))
+ ((*1 *2 *3)
+ (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567)))))))
+ (-5 *1 (-1130 *3 *2)) (-4 *3 (-1245 *2)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-351))
(-5 *2
- (-2 (|:| |done| (-645 *4))
- (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2566 *4))))))
- (-5 *1 (-1147 *5 *6 *7 *3 *4)) (-4 *4 (-1111 *5 *6 *7 *3)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1073 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794))
- (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
- (-4 *3 (-1067 *4 *5 *6))
- (-5 *2 (-645 (-2 (|:| |val| (-112)) (|:| -2566 *1))))
- (-4 *1 (-1073 *4 *5 *6 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-455)) (-4 *4 (-851)) (-4 *5 (-794)) (-5 *2 (-112))
- (-5 *1 (-989 *3 *4 *5 *6)) (-4 *6 (-951 *3 *5 *4))))
+ (-2 (|:| |cont| *5)
+ (|:| -2158 (-645 (-2 (|:| |irr| *3) (|:| -2298 (-567)))))))
+ (-5 *1 (-216 *5 *3)) (-4 *3 (-1245 *5)))))
+(((*1 *2 *1 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| -2785 (-783 *3)) (|:| |coef1| (-783 *3))
+ (|:| |coef2| (-783 *3))))
+ (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1051))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-559)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851))
+ (-5 *2 (-2 (|:| -2785 *1) (|:| |coef1| *1) (|:| |coef2| *1)))
+ (-4 *1 (-1067 *3 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-14 *3 (-645 (-1179))) (-4 *4 (-172))
+ (-4 *5 (-238 (-2423 *3) (-772)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -3779 *2) (|:| -3468 *5))
+ (-2 (|:| -3779 *2) (|:| -3468 *5))))
+ (-4 *2 (-851)) (-5 *1 (-464 *3 *4 *2 *5 *6 *7))
+ (-4 *7 (-951 *4 *5 (-865 *3))))))
+(((*1 *2 *1) (-12 (-5 *2 (-692 (-1137))) (-5 *1 (-1153)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-772)) (-5 *1 (-784 *2)) (-4 *2 (-38 (-410 (-567))))
+ (-4 *2 (-172)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-673 *3)) (-4 *3 (-851))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-678 *3)) (-4 *3 (-851))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820 *3)) (-4 *3 (-851)))))
+(((*1 *1) (-5 *1 (-804))))
+(((*1 *2 *1) (-12 (-5 *2 (-1218)) (-5 *1 (-180))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1218)) (-5 *1 (-682))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1218)) (-5 *1 (-972))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1218)) (-5 *1 (-1075))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-1120)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3554 *4)))
+ (-5 *1 (-971 *4 *3)) (-4 *3 (-1245 *4)))))
+(((*1 *1) (-5 *1 (-1271))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1223)) (-4 *5 (-1245 *4))
+ (-5 *2 (-2 (|:| -3705 (-410 *5)) (|:| |poly| *3)))
+ (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1245 (-410 *5))))))
+(((*1 *2 *3 *3 *3 *3 *4 *5)
+ (-12 (-5 *3 (-225)) (-5 *4 (-567))
+ (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3888))))
+ (-5 *2 (-1037)) (-5 *1 (-747)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1269 (-1179))) (-5 *3 (-1269 (-456 *4 *5 *6 *7)))
+ (-5 *1 (-456 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-923))
+ (-14 *6 (-645 (-1179))) (-14 *7 (-1269 (-690 *4)))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1179)) (-5 *3 (-1269 (-456 *4 *5 *6 *7)))
+ (-5 *1 (-456 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-923))
+ (-14 *6 (-645 *2)) (-14 *7 (-1269 (-690 *4)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1269 (-456 *3 *4 *5 *6))) (-5 *1 (-456 *3 *4 *5 *6))
+ (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 (-1179)))
+ (-14 *6 (-1269 (-690 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1269 (-1179))) (-5 *1 (-456 *3 *4 *5 *6))
+ (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 (-1179)))
+ (-14 *6 (-1269 (-690 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1179)) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-172))
+ (-14 *4 (-923)) (-14 *5 (-645 *2)) (-14 *6 (-1269 (-690 *3)))))
+ ((*1 *1)
+ (-12 (-5 *1 (-456 *2 *3 *4 *5)) (-4 *2 (-172)) (-14 *3 (-923))
+ (-14 *4 (-645 (-1179))) (-14 *5 (-1269 (-690 *2))))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1179)) (-5 *4 (-954 (-567))) (-5 *2 (-331))
+ (-5 *1 (-333))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1179)) (-5 *4 (-1094 (-954 (-567)))) (-5 *2 (-331))
+ (-5 *1 (-333))))
+ ((*1 *1 *2 *2 *2)
+ (-12 (-5 *2 (-772)) (-5 *1 (-676 *3)) (-4 *3 (-1051))
+ (-4 *3 (-1102)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-281)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-1184))) (-5 *1 (-1184))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-509)) (-5 *3 (-645 (-1184))) (-5 *1 (-1184)))))
+(((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4))
+ (-4 *3 (-369 *4))))
+ ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
+(((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1102)) (-4 *2 (-902 *5)) (-5 *1 (-693 *5 *2 *3 *4))
+ (-4 *3 (-375 *2)) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4422)))))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-328 *3)) (-4 *3 (-1219))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-567)) (-5 *1 (-519 *3 *4)) (-4 *3 (-1219)) (-14 *4 *2))))
+(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1049)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-567)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1219))
+ (-4 *3 (-375 *4)) (-4 *5 (-375 *4)))))
+(((*1 *2 *3 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2604 (-225))
+ (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225))
+ (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))
+ (-5 *3 (-645 (-264))) (-5 *1 (-262))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2604 (-225))
+ (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225))
+ (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))
+ (-5 *1 (-264))))
+ ((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-381)) (-5 *2 (-1274)) (-5 *1 (-1271))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-381)) (-5 *2 (-1274)) (-5 *1 (-1271))))
+ ((*1 *2 *1 *3 *3 *4 *4 *4)
+ (-12 (-5 *3 (-567)) (-5 *4 (-381)) (-5 *2 (-1274)) (-5 *1 (-1271))))
+ ((*1 *2 *1 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2604 (-225))
+ (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225))
+ (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))
+ (-5 *2 (-1274)) (-5 *1 (-1271))))
((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1142 *3 *4)) (-4 *3 (-13 (-1102) (-34)))
- (-4 *4 (-13 (-1102) (-34))))))
+ (-12
+ (-5 *2
+ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2604 (-225))
+ (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225))
+ (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))
+ (-5 *1 (-1271))))
+ ((*1 *2 *1 *3 *3 *3 *3 *3)
+ (-12 (-5 *3 (-381)) (-5 *2 (-1274)) (-5 *1 (-1271)))))
+(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))))
+(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-929)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037))
+ (-5 *1 (-748)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1175 *9)) (-5 *4 (-645 *7)) (-5 *5 (-645 (-645 *8)))
+ (-4 *7 (-851)) (-4 *8 (-308)) (-4 *9 (-951 *8 *6 *7)) (-4 *6 (-794))
+ (-5 *2
+ (-2 (|:| |upol| (-1175 *8)) (|:| |Lval| (-645 *8))
+ (|:| |Lfact|
+ (-645 (-2 (|:| -2717 (-1175 *8)) (|:| -3468 (-567)))))
+ (|:| |ctpol| *8)))
+ (-5 *1 (-743 *6 *7 *8 *9)))))
(((*1 *2)
- (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851))
- (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-1273))
- (-5 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *7 (-1073 *3 *4 *5 *6))))
+ (-12 (-5 *2 (-960 (-1122))) (-5 *1 (-345 *3 *4)) (-14 *3 (-923))
+ (-14 *4 (-923))))
((*1 *2)
- (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851))
- (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-1273))
- (-5 *1 (-1110 *3 *4 *5 *6 *7)) (-4 *7 (-1073 *3 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1217)) (-5 *1 (-180))))
- ((*1 *2 *1) (-12 (-5 *2 (-1217)) (-5 *1 (-682))))
- ((*1 *2 *1) (-12 (-5 *2 (-1217)) (-5 *1 (-972))))
- ((*1 *2 *1) (-12 (-5 *2 (-1217)) (-5 *1 (-1075))))
- ((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1120)))))
-(((*1 *2 *1)
- (-12 (-4 *4 (-1102)) (-5 *2 (-112)) (-5 *1 (-887 *3 *4 *5))
- (-4 *3 (-1102)) (-4 *5 (-667 *4))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-891 *3 *4)) (-4 *3 (-1102))
- (-4 *4 (-1102)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-690 (-410 (-954 (-567)))))
- (-5 *2 (-690 (-317 (-567)))) (-5 *1 (-1033)))))
-(((*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-1174 *3)))))
+ (-12 (-5 *2 (-960 (-1122))) (-5 *1 (-346 *3 *4)) (-4 *3 (-351))
+ (-14 *4 (-1175 *3))))
+ ((*1 *2)
+ (-12 (-5 *2 (-960 (-1122))) (-5 *1 (-347 *3 *4)) (-4 *3 (-351))
+ (-14 *4 (-923)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-929)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-951 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794))
+ (-4 *2 (-851)) (-4 *3 (-172))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *2 (-559)) (-5 *1 (-971 *2 *3)) (-4 *3 (-1245 *2))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794))
+ (-4 *4 (-851)) (-4 *2 (-559))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1051)) (-4 *2 (-172)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-410 *5)) (-4 *5 (-1244 *4)) (-4 *4 (-559))
- (-4 *4 (-1051)) (-4 *2 (-1259 *4)) (-5 *1 (-1262 *4 *5 *6 *2))
- (-4 *6 (-657 *5)))))
+ (-12 (-5 *3 (-690 *4)) (-4 *4 (-365)) (-5 *2 (-1175 *4))
+ (-5 *1 (-535 *4 *5 *6)) (-4 *5 (-365)) (-4 *6 (-13 (-365) (-849))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-455)) (-4 *3 (-794)) (-4 *5 (-851)) (-5 *2 (-112))
+ (-5 *1 (-452 *4 *3 *5 *6)) (-4 *6 (-951 *4 *3 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-851)) (-5 *2 (-645 (-645 *4))) (-5 *1 (-1189 *4))
- (-5 *3 (-645 *4)))))
-(((*1 *2)
- (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3))
- (-4 *5 (-1244 (-410 *4))) (-5 *2 (-690 (-410 *4))))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1219 *3)) (-4 *3 (-1102)))))
+ (-12 (-4 *1 (-911)) (-5 *2 (-421 (-1175 *1))) (-5 *3 (-1175 *1)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-907 *4)) (-4 *4 (-1102)) (-5 *2 (-645 (-772)))
+ (-5 *1 (-906 *4)))))
(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-683 *2)) (-4 *2 (-1102))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-645 *5) (-645 *5))) (-5 *4 (-567))
+ (-5 *2 (-645 *5)) (-5 *1 (-683 *5)) (-4 *5 (-1102)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-907 *4)) (-4 *4 (-1102)) (-5 *2 (-645 (-772)))
+ (-5 *1 (-906 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-539)))))
+(((*1 *1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381))
- (|:| |expense| (-381)) (|:| |accuracy| (-381))
- (|:| |intermediateResults| (-381))))
- (-5 *2 (-1037)) (-5 *1 (-306)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-772)) (-5 *1 (-589 *2)) (-4 *2 (-548)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3)
- (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225))
- (-5 *2 (-1037)) (-5 *1 (-751)))))
-(((*1 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-370)) (-4 *2 (-365))))
+ (-645
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2)
+ (|:| |xpnt| (-567)))))
+ (-4 *2 (-559)) (-5 *1 (-421 *2))))
((*1 *2 *3)
- (-12 (-5 *3 (-923)) (-5 *2 (-1268 *4)) (-5 *1 (-531 *4))
- (-4 *4 (-351)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-645 *7)) (-5 *5 (-645 (-645 *8))) (-4 *7 (-851))
- (-4 *8 (-308)) (-4 *6 (-794)) (-4 *9 (-951 *8 *6 *7))
- (-5 *2
- (-2 (|:| |unitPart| *9)
- (|:| |suPart|
- (-645 (-2 (|:| -2706 (-1174 *9)) (|:| -3458 (-567)))))))
- (-5 *1 (-743 *6 *7 *8 *9)) (-5 *3 (-1174 *9)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-645 (-171))))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1102))
- (-5 *2 (-2 (|:| -3694 (-567)) (|:| |var| (-613 *1))))
- (-4 *1 (-433 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-1 (-225) (-225) (-225)))
- (-5 *4 (-1 (-225) (-225) (-225) (-225)))
- (-5 *2 (-1 (-945 (-225)) (-225) (-225))) (-5 *1 (-698)))))
-(((*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863))))
- ((*1 *1 *1) (-5 *1 (-863))))
+ (-12
+ (-5 *3
+ (-2 (|:| |contp| (-567))
+ (|:| -2158 (-645 (-2 (|:| |irr| *4) (|:| -2298 (-567)))))))
+ (-4 *4 (-1245 (-567))) (-5 *2 (-421 *4)) (-5 *1 (-445 *4)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-303)) (-5 *3 (-1179)) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-303)) (-5 *3 (-114)) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1179)) (-5 *2 (-112)) (-5 *1 (-613 *4))
+ (-4 *4 (-1102))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-613 *4)) (-4 *4 (-1102))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-836 *3)) (-4 *3 (-1102)) (-5 *2 (-112))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1102)) (-5 *2 (-112)) (-5 *1 (-889 *5 *3 *4))
+ (-4 *3 (-888 *5)) (-4 *4 (-615 (-894 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 *6)) (-4 *6 (-888 *5)) (-4 *5 (-1102))
+ (-5 *2 (-112)) (-5 *1 (-889 *5 *6 *4)) (-4 *4 (-615 (-894 *5))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1254 *3 *4 *5)) (-4 *3 (-365)) (-14 *4 (-1179))
+ (-14 *5 *3) (-5 *1 (-320 *3 *4 *5))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1 (-381))) (-5 *1 (-1042)) (-5 *3 (-381)))))
+(((*1 *2)
+ (-12 (-4 *2 (-13 (-433 *3) (-1004))) (-5 *1 (-277 *3 *2))
+ (-4 *3 (-559)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-954 (-225))) (-5 *2 (-317 (-381))) (-5 *1 (-306)))))
-(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1218)) (-4 *1 (-107 *3)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-645 (-894 *3))) (-5 *1 (-894 *3))
- (-4 *3 (-1102)))))
+ (-12 (-4 *4 (-365)) (-4 *4 (-559)) (-4 *5 (-1245 *4))
+ (-5 *2 (-2 (|:| -2743 (-624 *4 *5)) (|:| -1609 (-410 *5))))
+ (-5 *1 (-624 *4 *5)) (-5 *3 (-410 *5))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-645 (-1167 *3 *4))) (-5 *1 (-1167 *3 *4))
+ (-14 *3 (-923)) (-4 *4 (-1051))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-455)) (-4 *3 (-1051))
+ (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1)))
+ (-4 *1 (-1245 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-645 (-1178))) (-4 *5 (-559))
+ (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-645 (-1179))) (-4 *5 (-559))
(-5 *2 (-645 (-645 (-295 (-410 (-954 *5)))))) (-5 *1 (-771 *5))))
((*1 *2 *3)
(-12 (-5 *3 (-645 (-954 *4))) (-4 *4 (-559))
@@ -5054,1065 +5253,1042 @@
((*1 *2 *3 *4 *5)
(-12 (-5 *3 (-690 *7))
(-5 *5
- (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2623 (-645 *6)))
+ (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2144 (-645 *6)))
*7 *6))
(-4 *6 (-365)) (-4 *7 (-657 *6))
(-5 *2
- (-2 (|:| |particular| (-3 (-1268 *6) "failed"))
- (|:| -2623 (-645 (-1268 *6)))))
- (-5 *1 (-814 *6 *7)) (-5 *4 (-1268 *6)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))))
+ (-2 (|:| |particular| (-3 (-1269 *6) "failed"))
+ (|:| -2144 (-645 (-1269 *6)))))
+ (-5 *1 (-814 *6 *7)) (-5 *4 (-1269 *6)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-169 (-225))) (-5 *5 (-567)) (-5 *6 (-1161))
+ (-5 *3 (-225)) (-5 *2 (-1037)) (-5 *1 (-759)))))
+(((*1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1219)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1269 *5)) (-4 *5 (-640 *4)) (-4 *4 (-559))
+ (-5 *2 (-112)) (-5 *1 (-639 *4 *5)))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1269 (-645 (-2 (|:| -3812 *4) (|:| -3779 (-1122))))))
+ (-4 *4 (-351)) (-5 *2 (-772)) (-5 *1 (-348 *4))))
+ ((*1 *2)
+ (-12 (-5 *2 (-772)) (-5 *1 (-353 *3 *4)) (-14 *3 (-923))
+ (-14 *4 (-923))))
+ ((*1 *2)
+ (-12 (-5 *2 (-772)) (-5 *1 (-354 *3 *4)) (-4 *3 (-351))
+ (-14 *4
+ (-3 (-1175 *3)
+ (-1269 (-645 (-2 (|:| -3812 *3) (|:| -3779 (-1122)))))))))
+ ((*1 *2)
+ (-12 (-5 *2 (-772)) (-5 *1 (-355 *3 *4)) (-4 *3 (-351))
+ (-14 *4 (-923)))))
+(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7)
+ (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225)))
+ (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT))))
+ (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-225))
+ (-5 *2 (-1037)) (-5 *1 (-756))))
+ ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8)
+ (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225)))
+ (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT))))
+ (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-391))
+ (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-756)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1141))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-645 (-567))) (-5 *3 (-690 (-567))) (-5 *1 (-1112)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-645 (-1175 *7))) (-5 *3 (-1175 *7))
+ (-4 *7 (-951 *5 *6 *4)) (-4 *5 (-911)) (-4 *6 (-794))
+ (-4 *4 (-851)) (-5 *1 (-908 *5 *6 *4 *7)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-794))
- (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559))
+ (-12 (-4 *1 (-375 *3)) (-4 *3 (-1219)) (-4 *3 (-851)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-375 *4)) (-4 *4 (-1219))
(-5 *2 (-112)))))
-(((*1 *2 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-567)) (-5 *4 (-1160)) (-5 *5 (-690 (-225)))
- (-5 *2 (-1037)) (-5 *1 (-748)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-945 *3)) (-4 *3 (-13 (-365) (-1203) (-1004)))
- (-5 *1 (-176 *3)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-690 *3)) (-4 *3 (-1051)) (-5 *1 (-691 *3)))))
-(((*1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-533 *3)) (-4 *3 (-13 (-727) (-25))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))))
+(((*1 *2 *1) (-12 (-5 *2 (-645 (-1218))) (-5 *1 (-682))))
+ ((*1 *2 *1) (-12 (-5 *2 (-645 (-1184))) (-5 *1 (-1120)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-645 (-645 (-772)))) (-5 *1 (-906 *3)) (-4 *3 (-1102)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1096 (-225)))
+ (-5 *2 (-1271)) (-5 *1 (-258)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-567)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051))
+ (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-772)) (-5 *1 (-857 *2)) (-4 *2 (-38 (-410 (-567))))
+ (-4 *2 (-172)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-945 *3) (-945 *3))) (-5 *1 (-176 *3))
+ (-4 *3 (-13 (-365) (-1204) (-1004)))))
+ ((*1 *2)
+ (|partial| -12 (-4 *4 (-1223)) (-4 *5 (-1245 (-410 *2)))
+ (-4 *2 (-1245 *4)) (-5 *1 (-343 *3 *4 *2 *5))
+ (-4 *3 (-344 *4 *2 *5))))
+ ((*1 *2)
+ (|partial| -12 (-4 *1 (-344 *3 *2 *4)) (-4 *3 (-1223))
+ (-4 *4 (-1245 (-410 *2))) (-4 *2 (-1245 *3)))))
+(((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-700))))
+ ((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-700)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-849) (-308) (-147) (-1024)))
+ (-5 *2 (-645 (-1048 *5 *6))) (-5 *1 (-1295 *5 *6 *7))
+ (-14 *6 (-645 (-1179))) (-14 *7 (-645 (-1179)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-849) (-308) (-147) (-1024)))
+ (-5 *2 (-645 (-1048 *5 *6))) (-5 *1 (-1295 *5 *6 *7))
+ (-14 *6 (-645 (-1179))) (-14 *7 (-645 (-1179)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-954 *4)))
+ (-4 *4 (-13 (-849) (-308) (-147) (-1024)))
+ (-5 *2 (-645 (-1048 *4 *5))) (-5 *1 (-1295 *4 *5 *6))
+ (-14 *5 (-645 (-1179))) (-14 *6 (-645 (-1179))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-645 (-645 (-567)))) (-5 *1 (-973))
+ (-5 *3 (-645 (-567))))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-894 *4)) (-4 *4 (-1102)) (-5 *1 (-891 *4 *3))
+ (-4 *3 (-1102)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1180 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567))))
+ (-12 (-4 *4 (-13 (-365) (-147) (-1040 (-410 (-567)))))
+ (-4 *5 (-1245 *4)) (-5 *2 (-645 (-2 (|:| -2185 *5) (|:| -2547 *5))))
+ (-5 *1 (-808 *4 *5 *3 *6)) (-4 *3 (-657 *5))
+ (-4 *6 (-657 (-410 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-13 (-365) (-147) (-1040 (-410 (-567)))))
+ (-4 *4 (-1245 *5)) (-5 *2 (-645 (-2 (|:| -2185 *4) (|:| -2547 *4))))
+ (-5 *1 (-808 *5 *4 *3 *6)) (-4 *3 (-657 *4))
+ (-4 *6 (-657 (-410 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-365) (-147) (-1040 (-410 (-567)))))
+ (-4 *5 (-1245 *4)) (-5 *2 (-645 (-2 (|:| -2185 *5) (|:| -2547 *5))))
+ (-5 *1 (-808 *4 *5 *6 *3)) (-4 *6 (-657 *5))
+ (-4 *3 (-657 (-410 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-13 (-365) (-147) (-1040 (-410 (-567)))))
+ (-4 *4 (-1245 *5)) (-5 *2 (-645 (-2 (|:| -2185 *4) (|:| -2547 *4))))
+ (-5 *1 (-808 *5 *4 *6 *3)) (-4 *6 (-657 *4))
+ (-4 *3 (-657 (-410 *4))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))))
+(((*1 *1 *1) (-12 (-4 *1 (-675 *2)) (-4 *2 (-1219)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-365)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112))
+ (-5 *1 (-507 *4 *5 *6 *3)) (-4 *3 (-951 *4 *5 *6)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567))))))
+(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
+ ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3))))
+ ((*1 *1 *1) (-4 *1 (-1141))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-509)) (-5 *1 (-281))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-3 (-567) (-225) (-509) (-1161) (-1184)))
+ (-5 *1 (-1184)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-760)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-1159 *3))) (-5 *2 (-1159 *3)) (-5 *1 (-1163 *3))
+ (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1051)) (-4 *2 (-365))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-365)) (-5 *1 (-660 *4 *2))
+ (-4 *2 (-657 *4)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3)
+ (-12 (-5 *4 (-690 (-225))) (-5 *5 (-690 (-567))) (-5 *6 (-225))
+ (-5 *3 (-567)) (-5 *2 (-1037)) (-5 *1 (-753)))))
+(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-97)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3))
+ (-4 *5 (-375 *3)) (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (-5 *2 (-1268 (-3 (-471) "undefined"))) (-5 *1 (-1269)))))
-(((*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1273)) (-5 *1 (-1140))))
+ (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051))
+ (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 (-772) *2)) (-5 *4 (-772)) (-4 *2 (-1102))
+ (-5 *1 (-679 *2))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1 *3 (-772) *3)) (-4 *3 (-1102)) (-5 *1 (-683 *3)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-365)) (-4 *3 (-794)) (-4 *4 (-851))
+ (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-951 *2 *3 *4)))))
+(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037))
+ (-5 *1 (-752)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-365) (-849)))
+ (-5 *2 (-645 (-2 (|:| -2158 (-645 *3)) (|:| -2069 *5))))
+ (-5 *1 (-181 *5 *3)) (-4 *3 (-1245 (-169 *5)))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-365) (-849)))
+ (-5 *2 (-645 (-2 (|:| -2158 (-645 *3)) (|:| -2069 *4))))
+ (-5 *1 (-181 *4 *3)) (-4 *3 (-1245 (-169 *4))))))
+(((*1 *2 *3) (-12 (-5 *3 (-169 (-567))) (-5 *2 (-112)) (-5 *1 (-449))))
((*1 *2 *3)
- (-12 (-5 *3 (-645 (-863))) (-5 *2 (-1273)) (-5 *1 (-1140)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-1178))
- (-4 *4 (-13 (-455) (-147) (-1040 (-567)) (-640 (-567))))
- (-5 *1 (-560 *4 *2)) (-4 *2 (-13 (-27) (-1203) (-433 *4))))))
+ (-12
+ (-5 *3
+ (-507 (-410 (-567)) (-240 *5 (-772)) (-865 *4)
+ (-247 *4 (-410 (-567)))))
+ (-14 *4 (-645 (-1179))) (-14 *5 (-772)) (-5 *2 (-112))
+ (-5 *1 (-508 *4 *5))))
+ ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-963 *3)) (-4 *3 (-548))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1223)) (-5 *2 (-112)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567))))
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1245 *5)) (-4 *5 (-365))
(-5 *2
- (-3 (|:| |%expansion| (-314 *5 *3 *6 *7))
- (|:| |%problem| (-2 (|:| |func| (-1160)) (|:| |prob| (-1160))))))
- (-5 *1 (-423 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1203) (-433 *5)))
- (-14 *6 (-1178)) (-14 *7 *3))))
+ (-2 (|:| |ir| (-588 (-410 *6))) (|:| |specpart| (-410 *6))
+ (|:| |polypart| *6)))
+ (-5 *1 (-577 *5 *6)) (-5 *3 (-410 *6)))))
+(((*1 *1 *1 *1 *1) (-5 *1 (-863)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171)))))
+(((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4))
+ (-4 *3 (-369 *4))))
+ ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-365)) (-4 *7 (-1245 *5)) (-4 *4 (-725 *5 *7))
+ (-5 *2 (-2 (|:| -4208 (-690 *6)) (|:| |vec| (-1269 *5))))
+ (-5 *1 (-812 *5 *6 *7 *4 *3)) (-4 *6 (-657 *5)) (-4 *3 (-657 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-559)) (-5 *2 (-112)) (-5 *1 (-277 *4 *3))
- (-4 *3 (-13 (-433 *4) (-1004))))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-772)) (-4 *3 (-1051)) (-4 *1 (-688 *3 *4 *5))
- (-4 *4 (-375 *3)) (-4 *5 (-375 *3))))
- ((*1 *1 *2)
- (-12 (-4 *2 (-1051)) (-4 *1 (-1125 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2))
- (-4 *5 (-238 *3 *2)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-5 *1 (-1162 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1260 *2 *3 *4)) (-4 *2 (-1051)) (-14 *3 (-1178))
- (-14 *4 *2))))
-(((*1 *1) (-5 *1 (-440))))
-(((*1 *1) (-12 (-4 *1 (-428 *2)) (-4 *2 (-370)) (-4 *2 (-1102)))))
-(((*1 *2 *1) (-12 (-4 *1 (-675 *3)) (-4 *3 (-1218)) (-5 *2 (-772)))))
+ (-12 (-5 *2 (-1181 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567)))))
+(((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-916 *3)) (-4 *3 (-308)))))
+(((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172))))
+ ((*1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-172)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-5 *1 (-1162 *3)))))
-(((*1 *1 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1102)) (-4 *2 (-1051))))
- ((*1 *1 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-559)))))
+ (-12 (-5 *2 (-772)) (-5 *1 (-448 *3)) (-4 *3 (-407)) (-4 *3 (-1051))))
+ ((*1 *2)
+ (-12 (-5 *2 (-772)) (-5 *1 (-448 *3)) (-4 *3 (-407)) (-4 *3 (-1051)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919))))
- ((*1 *2) (-12 (-5 *2 (-906 (-567))) (-5 *1 (-919)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1268 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172))
- (-5 *2 (-690 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-690 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-645 (-1217))) (-5 *1 (-682))))
- ((*1 *2 *1) (-12 (-5 *2 (-645 (-1183))) (-5 *1 (-1120)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-365)) (-5 *1 (-286 *3 *2)) (-4 *2 (-1259 *3)))))
+ (-12 (-5 *2 (-1181 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1269 (-3 (-471) "undefined"))) (-5 *1 (-1270)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-440)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-559)) (-5 *2 (-772)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-420 *4)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-645 (-2 (|:| |val| (-645 *6)) (|:| -2566 *7))))
- (-4 *6 (-1067 *3 *4 *5)) (-4 *7 (-1073 *3 *4 *5 *6)) (-4 *3 (-455))
- (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-990 *3 *4 *5 *6 *7))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-645 (-2 (|:| |val| (-645 *6)) (|:| -2566 *7))))
- (-4 *6 (-1067 *3 *4 *5)) (-4 *7 (-1073 *3 *4 *5 *6)) (-4 *3 (-455))
- (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-1109 *3 *4 *5 *6 *7)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1037)))))
+ (-12 (-5 *3 (-1161)) (-5 *2 (-645 (-1184))) (-5 *1 (-882)))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-1212 *3 *4 *5 *2)) (-4 *3 (-559))
+ (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4423)) (-4 *1 (-119 *2)) (-4 *2 (-1219)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-645 (-1218))) (-5 *3 (-1218)) (-5 *1 (-682)))))
(((*1 *2)
- (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-420 *3)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2774 (-783 *3)) (|:| |coef2| (-783 *3))))
- (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1051))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-559)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851))
- (-5 *2 (-2 (|:| -2774 *1) (|:| |coef2| *1)))
- (-4 *1 (-1067 *3 *4 *5)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-498)))))
-(((*1 *1 *1)
- (-12 (|has| *1 (-6 -4419)) (-4 *1 (-1256 *2)) (-4 *2 (-1218)))))
+ (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4))
+ (-4 *3 (-369 *4))))
+ ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-772)) (-4 *4 (-559)) (-5 *1 (-971 *4 *2))
+ (-4 *2 (-1245 *4)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1175 *9)) (-5 *4 (-645 *7)) (-5 *5 (-645 *8))
+ (-4 *7 (-851)) (-4 *8 (-1051)) (-4 *9 (-951 *8 *6 *7))
+ (-4 *6 (-794)) (-5 *2 (-1175 *8)) (-5 *1 (-322 *6 *7 *8 *9)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-567)) (-5 *2 (-1274)) (-5 *1 (-1271))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-381)) (-5 *2 (-1274)) (-5 *1 (-1271)))))
+(((*1 *1 *1 *1 *1) (-5 *1 (-863))) ((*1 *1 *1 *1) (-5 *1 (-863)))
+ ((*1 *1 *1) (-5 *1 (-863))))
(((*1 *2 *3)
- (-12 (-4 *4 (-351)) (-4 *5 (-330 *4)) (-4 *6 (-1244 *5))
- (-5 *2 (-645 *3)) (-5 *1 (-778 *4 *5 *6 *3 *7)) (-4 *3 (-1244 *6))
- (-14 *7 (-923)))))
+ (-12 (-5 *3 (-1175 *4)) (-4 *4 (-351))
+ (-4 *2
+ (-13 (-405)
+ (-10 -7 (-15 -4129 (*2 *4)) (-15 -3474 ((-923) *2))
+ (-15 -2144 ((-1269 *2) (-923))) (-15 -2963 (*2 *2)))))
+ (-5 *1 (-358 *2 *4)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-971 *3 *2)) (-4 *2 (-1245 *3))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794))
+ (-4 *4 (-851)) (-4 *2 (-559))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1051)) (-4 *2 (-559)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-421 (-1174 *1))) (-5 *1 (-317 *4)) (-5 *3 (-1174 *1))
- (-4 *4 (-455)) (-4 *4 (-559)) (-4 *4 (-1102))))
+ (-12 (-5 *3 (-1269 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172))
+ (-4 *5 (-1245 *4)) (-5 *2 (-690 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-172)) (-4 *5 (-1245 *4)) (-5 *2 (-690 *4))
+ (-5 *1 (-411 *3 *4 *5)) (-4 *3 (-412 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *1 (-412 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1245 *3))
+ (-5 *2 (-690 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-366 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102))
+ (-5 *2 (-1161)))))
+(((*1 *2)
+ (-12 (-4 *4 (-1223)) (-4 *5 (-1245 *4)) (-4 *6 (-1245 (-410 *5)))
+ (-5 *2 (-645 (-645 *4))) (-5 *1 (-343 *3 *4 *5 *6))
+ (-4 *3 (-344 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3))
+ (-4 *5 (-1245 (-410 *4))) (-4 *3 (-370)) (-5 *2 (-645 (-645 *3))))))
+(((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-157))))
+ ((*1 *2 *1) (-12 (-5 *2 (-157)) (-5 *1 (-875))))
+ ((*1 *2 *3) (-12 (-5 *3 (-945 *2)) (-5 *1 (-984 *2)) (-4 *2 (-1051)))))
+(((*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-923))))
((*1 *2 *3)
- (-12 (-4 *1 (-911)) (-5 *2 (-421 (-1174 *1))) (-5 *3 (-1174 *1)))))
+ (-12 (-5 *3 (-1269 *4)) (-4 *4 (-351)) (-5 *2 (-923))
+ (-5 *1 (-531 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-772)) (-4 *5 (-1051)) (-5 *2 (-567))
- (-5 *1 (-446 *5 *3 *6)) (-4 *3 (-1244 *5))
- (-4 *6 (-13 (-407) (-1040 *5) (-365) (-1203) (-285)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1051)) (-5 *2 (-567)) (-5 *1 (-446 *4 *3 *5))
- (-4 *3 (-1244 *4))
- (-4 *5 (-13 (-407) (-1040 *4) (-365) (-1203) (-285))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-794)) (-4 *6 (-851))
- (-4 *7 (-951 *4 *5 *6)) (-5 *2 (-645 (-645 *7)))
- (-5 *1 (-451 *4 *5 *6 *7)) (-5 *3 (-645 *7))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-794))
- (-4 *7 (-851)) (-4 *8 (-951 *5 *6 *7)) (-5 *2 (-645 (-645 *8)))
- (-5 *1 (-451 *5 *6 *7 *8)) (-5 *3 (-645 *8))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-794)) (-4 *6 (-851))
- (-4 *7 (-951 *4 *5 *6)) (-5 *2 (-645 (-645 *7)))
- (-5 *1 (-451 *4 *5 *6 *7)) (-5 *3 (-645 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-794))
- (-4 *7 (-851)) (-4 *8 (-951 *5 *6 *7)) (-5 *2 (-645 (-645 *8)))
- (-5 *1 (-451 *5 *6 *7 *8)) (-5 *3 (-645 *8)))))
-(((*1 *1) (-5 *1 (-440))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-559) (-147))) (-5 *1 (-540 *3 *2))
- (-4 *2 (-1259 *3))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-365) (-370) (-615 (-567)))) (-4 *4 (-1244 *3))
- (-4 *5 (-725 *3 *4)) (-5 *1 (-544 *3 *4 *5 *2)) (-4 *2 (-1259 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-365) (-370) (-615 (-567)))) (-5 *1 (-545 *3 *2))
- (-4 *2 (-1259 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-13 (-559) (-147)))
- (-5 *1 (-1154 *3)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1218)) (-4 *3 (-1102))
- (-5 *2 (-112)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-483)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-1244 (-410 (-567)))) (-5 *1 (-915 *3 *2))
- (-4 *2 (-1244 (-410 *3))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-559) (-147))) (-5 *1 (-540 *3 *2))
- (-4 *2 (-1259 *3))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-365) (-370) (-615 (-567)))) (-4 *4 (-1244 *3))
- (-4 *5 (-725 *3 *4)) (-5 *1 (-544 *3 *4 *5 *2)) (-4 *2 (-1259 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-365) (-370) (-615 (-567)))) (-5 *1 (-545 *3 *2))
- (-4 *2 (-1259 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-13 (-559) (-147)))
- (-5 *1 (-1154 *3)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-760)))))
-(((*1 *1) (-5 *1 (-824))))
-(((*1 *2 *3 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225))
- (-5 *2 (-1037)) (-5 *1 (-753)))))
-(((*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1178))
- (-4 *5 (-13 (-559) (-1040 (-567)) (-147)))
- (-5 *2
- (-2 (|:| -1752 (-410 (-954 *5))) (|:| |coeff| (-410 (-954 *5)))))
- (-5 *1 (-573 *5)) (-5 *3 (-410 (-954 *5))))))
+ (-12 (-5 *4 (-1179))
+ (-4 *5 (-13 (-455) (-147) (-1040 (-567)) (-640 (-567))))
+ (-5 *2 (-588 *3)) (-5 *1 (-560 *5 *3))
+ (-4 *3 (-13 (-27) (-1204) (-433 *5))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-112)) (-5 *3 (-645 (-264))) (-5 *1 (-262))))
+ ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-264))))
+ ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470))))
+ ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470)))))
+(((*1 *1 *2 *1) (-12 (-5 *1 (-645 *2)) (-4 *2 (-1219))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-1159 *2)) (-4 *2 (-1219)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-772)) (|:| |poli| *2)
- (|:| |polj| *2)))
- (-4 *5 (-794)) (-4 *2 (-951 *4 *5 *6)) (-5 *1 (-452 *4 *5 *6 *2))
- (-4 *4 (-455)) (-4 *6 (-851)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-1094 (-954 (-567)))) (-5 *3 (-954 (-567)))
- (-5 *1 (-331))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1094 (-954 (-567)))) (-5 *1 (-331)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-327 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-793))
- (-4 *2 (-455))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-344 *2 *3 *4)) (-4 *2 (-1222)) (-4 *3 (-1244 *2))
- (-4 *4 (-1244 (-410 *3)))))
- ((*1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-455))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-951 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794))
- (-4 *2 (-851)) (-4 *3 (-455))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-951 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794))
- (-4 *4 (-851)) (-4 *2 (-455))))
- ((*1 *2 *2 *3)
- (-12 (-4 *3 (-308)) (-4 *3 (-559)) (-5 *1 (-1165 *3 *2))
- (-4 *2 (-1244 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1218)) (-5 *1 (-1134 *4 *2))
- (-4 *2 (-13 (-605 (-567) *4) (-10 -7 (-6 -4418) (-6 -4419))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-851)) (-4 *3 (-1218)) (-5 *1 (-1134 *3 *2))
- (-4 *2 (-13 (-605 (-567) *3) (-10 -7 (-6 -4418) (-6 -4419)))))))
+ (-507 (-410 (-567)) (-240 *5 (-772)) (-865 *4)
+ (-247 *4 (-410 (-567)))))
+ (-14 *4 (-645 (-1179))) (-14 *5 (-772)) (-5 *2 (-112))
+ (-5 *1 (-508 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1219)) (-5 *2 (-645 *1)) (-4 *1 (-1012 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-645 (-1167 *3 *4))) (-5 *1 (-1167 *3 *4))
+ (-14 *3 (-923)) (-4 *4 (-1051)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1254 *3 *4 *5)) (-5 *1 (-320 *3 *4 *5)) (-4 *3 (-365))
+ (-14 *4 (-1179)) (-14 *5 *3)))
+ ((*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-567))))
+ ((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-421 *3)) (-4 *3 (-559))))
+ ((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-700))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1102)) (-5 *1 (-714 *3 *2 *4)) (-4 *3 (-851))
+ (-14 *4
+ (-1 (-112) (-2 (|:| -3779 *3) (|:| -3468 *2))
+ (-2 (|:| -3779 *3) (|:| -3468 *2)))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-2 (|:| |cd| (-1161)) (|:| -2007 (-1161))))
+ (-5 *1 (-823)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1102)) (-4 *3 (-902 *5)) (-5 *2 (-690 *3))
- (-5 *1 (-693 *5 *3 *6 *4)) (-4 *6 (-375 *3))
- (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4418)))))))
-(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-292)))
- ((*1 *1) (-5 *1 (-863)))
- ((*1 *1)
- (-12 (-4 *2 (-455)) (-4 *3 (-851)) (-4 *4 (-794))
- (-5 *1 (-989 *2 *3 *4 *5)) (-4 *5 (-951 *2 *4 *3))))
- ((*1 *1) (-5 *1 (-1087)))
- ((*1 *1)
- (-12 (-5 *1 (-1142 *2 *3)) (-4 *2 (-13 (-1102) (-34)))
- (-4 *3 (-13 (-1102) (-34)))))
- ((*1 *1) (-5 *1 (-1181))) ((*1 *1) (-5 *1 (-1182))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037))
- (-5 *1 (-756)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-324 *3 *4)) (-4 *3 (-1102))
- (-4 *4 (-131))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1102)) (-5 *1 (-363 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-388 *3)) (-4 *3 (-1102))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1102)) (-5 *1 (-650 *3 *4 *5))
- (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *2)
- (-12 (-4 *2 (-13 (-433 *3) (-1004))) (-5 *1 (-277 *3 *2))
- (-4 *3 (-559)))))
+ (-12 (-5 *3 (-1269 (-645 (-2 (|:| -3812 *4) (|:| -3779 (-1122))))))
+ (-4 *4 (-351)) (-5 *2 (-1274)) (-5 *1 (-531 *4)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-557 *3)) (-4 *3 (-13 (-407) (-1203))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-557 *3)) (-4 *3 (-13 (-407) (-1204))) (-5 *2 (-112))))
((*1 *2 *1) (-12 (-4 *1 (-849)) (-5 *2 (-112))))
((*1 *2 *3 *1)
(-12 (-4 *1 (-1070 *4 *3)) (-4 *4 (-13 (-849) (-365)))
- (-4 *3 (-1244 *4)) (-5 *2 (-112)))))
-(((*1 *2 *3 *2)
+ (-4 *3 (-1245 *4)) (-5 *2 (-112)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-645 *4)) (-4 *4 (-365)) (-4 *2 (-1245 *4))
+ (-5 *1 (-924 *4 *2)))))
+(((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-929)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))))
+(((*1 *2)
(-12
(-5 *2
- (-645
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-772)) (|:| |poli| *3)
- (|:| |polj| *3))))
- (-4 *5 (-794)) (-4 *3 (-951 *4 *5 *6)) (-4 *4 (-455)) (-4 *6 (-851))
- (-5 *1 (-452 *4 *5 *6 *3)))))
+ (-1269 (-645 (-2 (|:| -3812 (-912 *3)) (|:| -3779 (-1122))))))
+ (-5 *1 (-353 *3 *4)) (-14 *3 (-923)) (-14 *4 (-923))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1269 (-645 (-2 (|:| -3812 *3) (|:| -3779 (-1122))))))
+ (-5 *1 (-354 *3 *4)) (-4 *3 (-351)) (-14 *4 (-3 (-1175 *3) *2))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1269 (-645 (-2 (|:| -3812 *3) (|:| -3779 (-1122))))))
+ (-5 *1 (-355 *3 *4)) (-4 *3 (-351)) (-14 *4 (-923)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-822)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *3 (-1223)) (-4 *5 (-1245 *3)) (-4 *6 (-1245 (-410 *5)))
+ (-5 *2 (-112)) (-5 *1 (-343 *4 *3 *5 *6)) (-4 *4 (-344 *3 *5 *6))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3))
+ (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-990 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1109 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-381)) (-5 *3 (-645 (-264))) (-5 *1 (-262))))
+ ((*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-264)))))
+(((*1 *2 *3 *4 *5 *6 *2 *7 *8)
+ (|partial| -12 (-5 *2 (-645 (-1175 *11))) (-5 *3 (-1175 *11))
+ (-5 *4 (-645 *10)) (-5 *5 (-645 *8)) (-5 *6 (-645 (-772)))
+ (-5 *7 (-1269 (-645 (-1175 *8)))) (-4 *10 (-851))
+ (-4 *8 (-308)) (-4 *11 (-951 *8 *9 *10)) (-4 *9 (-794))
+ (-5 *1 (-708 *9 *10 *8 *11)))))
(((*1 *2 *1)
(-12 (-5 *2 (-410 (-954 *3))) (-5 *1 (-456 *3 *4 *5 *6))
(-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923))
- (-14 *5 (-645 (-1178))) (-14 *6 (-1268 (-690 *3))))))
+ (-14 *5 (-645 (-1179))) (-14 *6 (-1269 (-690 *3))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919))))
- ((*1 *2) (-12 (-5 *2 (-906 (-567))) (-5 *1 (-919)))))
-(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-317 (-381))) (-5 *1 (-306)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1158 (-645 (-567)))) (-5 *1 (-885))
- (-5 *3 (-645 (-567))))))
-(((*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-528)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851))
- (-4 *7 (-1067 *4 *5 *6))
- (-5 *2 (-645 (-2 (|:| -3995 *1) (|:| -3823 (-645 *7)))))
- (-5 *3 (-645 *7)) (-4 *1 (-1211 *4 *5 *6 *7)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-433 *3) (-1004))))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1112)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1174 *1)) (-5 *3 (-1178)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-1174 *1)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-954 *1)) (-4 *1 (-27))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1178)) (-4 *1 (-29 *3)) (-4 *3 (-559))))
- ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-559))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1174 *2)) (-5 *4 (-1178)) (-4 *2 (-433 *5))
- (-5 *1 (-32 *5 *2)) (-4 *5 (-559))))
- ((*1 *1 *2 *3)
- (|partial| -12 (-5 *2 (-1174 *1)) (-5 *3 (-923)) (-4 *1 (-1014))))
- ((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-1174 *1)) (-5 *3 (-923)) (-5 *4 (-863))
- (-4 *1 (-1014))))
- ((*1 *1 *2 *3)
- (|partial| -12 (-5 *3 (-923)) (-4 *4 (-13 (-849) (-365)))
- (-4 *1 (-1070 *4 *2)) (-4 *2 (-1244 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1178))))
- (-4 *6 (-794)) (-5 *2 (-645 (-645 (-567))))
- (-5 *1 (-926 *4 *5 *6 *7)) (-5 *3 (-567)) (-4 *7 (-951 *4 *6 *5)))))
-(((*1 *2)
- (-12 (-4 *3 (-13 (-559) (-1040 (-567)))) (-5 *2 (-1273))
- (-5 *1 (-436 *3 *4)) (-4 *4 (-433 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1268 *4)) (-4 *4 (-1051)) (-4 *2 (-1244 *4))
- (-5 *1 (-447 *4 *2))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-410 (-1174 (-317 *5)))) (-5 *3 (-1268 (-317 *5)))
- (-5 *4 (-567)) (-4 *5 (-559)) (-5 *1 (-1132 *5)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-13 (-849) (-365))) (-5 *2 (-112)) (-5 *1 (-1063 *4 *3))
- (-4 *3 (-1244 *4)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-645 *3)) (-4 *3 (-1244 (-567))) (-5 *1 (-489 *3)))))
-(((*1 *1 *2 *3 *3 *3 *4)
- (-12 (-4 *4 (-365)) (-4 *3 (-1244 *4)) (-4 *5 (-1244 (-410 *3)))
- (-4 *1 (-337 *4 *3 *5 *2)) (-4 *2 (-344 *4 *3 *5))))
- ((*1 *1 *2 *2 *3)
- (-12 (-5 *3 (-567)) (-4 *2 (-365)) (-4 *4 (-1244 *2))
- (-4 *5 (-1244 (-410 *4))) (-4 *1 (-337 *2 *4 *5 *6))
- (-4 *6 (-344 *2 *4 *5))))
- ((*1 *1 *2 *2)
- (-12 (-4 *2 (-365)) (-4 *3 (-1244 *2)) (-4 *4 (-1244 (-410 *3)))
- (-4 *1 (-337 *2 *3 *4 *5)) (-4 *5 (-344 *2 *3 *4))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-365)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4)))
- (-4 *1 (-337 *3 *4 *5 *2)) (-4 *2 (-344 *3 *4 *5))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-416 *4 (-410 *4) *5 *6)) (-4 *4 (-1244 *3))
- (-4 *5 (-1244 (-410 *4))) (-4 *6 (-344 *3 *4 *5)) (-4 *3 (-365))
- (-4 *1 (-337 *3 *4 *5 *6)))))
-(((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-381)) (-5 *2 (-1273)) (-5 *1 (-1270)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2951 *3) (|:| |coef2| (-783 *3))))
- (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1051)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-690 *3)) (-4 *3 (-1051)) (-5 *1 (-1030 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-645 (-690 *3))) (-4 *3 (-1051)) (-5 *1 (-1030 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-690 *3)) (-4 *3 (-1051)) (-5 *1 (-1030 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-645 (-690 *3))) (-4 *3 (-1051)) (-5 *1 (-1030 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-897))
- (-5 *3
- (-2 (|:| |pde| (-645 (-317 (-225))))
- (|:| |constraints|
- (-645
- (-2 (|:| |start| (-225)) (|:| |finish| (-225))
- (|:| |grid| (-772)) (|:| |boundaryType| (-567))
- (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225))))))
- (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1160))
- (|:| |tol| (-225))))
- (-5 *2 (-1037)))))
-(((*1 *1 *1 *1) (|partial| -4 *1 (-131))))
-(((*1 *1 *2 *2) (-12 (-4 *1 (-557 *2)) (-4 *2 (-13 (-407) (-1203))))))
-(((*1 *2 *2 *2)
- (-12
+ (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1179))))
+ (-4 *6 (-794)) (-5 *2 (-410 (-954 *4))) (-5 *1 (-926 *4 *5 *6 *3))
+ (-4 *3 (-951 *4 *6 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-690 *7)) (-4 *7 (-951 *4 *6 *5))
+ (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1179))))
+ (-4 *6 (-794)) (-5 *2 (-690 (-410 (-954 *4))))
+ (-5 *1 (-926 *4 *5 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-645 *7)) (-4 *7 (-951 *4 *6 *5))
+ (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1179))))
+ (-4 *6 (-794)) (-5 *2 (-645 (-410 (-954 *4))))
+ (-5 *1 (-926 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-112)) (-4 *6 (-13 (-455) (-1040 (-567)) (-640 (-567))))
+ (-4 *3 (-13 (-27) (-1204) (-433 *6) (-10 -8 (-15 -4129 ($ *7)))))
+ (-4 *7 (-849))
+ (-4 *8
+ (-13 (-1247 *3 *7) (-365) (-1204)
+ (-10 -8 (-15 -1616 ($ $)) (-15 -4083 ($ $)))))
(-5 *2
- (-645
- (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-772)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *4 (-794)) (-4 *6 (-951 *3 *4 *5)) (-4 *3 (-455)) (-4 *5 (-851))
- (-5 *1 (-452 *3 *4 *5 *6)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-1178)))))
-(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7)
- (-12 (-5 *4 (-567)) (-5 *5 (-690 (-225)))
- (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))))
- (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN)))) (-5 *3 (-225))
- (-5 *2 (-1037)) (-5 *1 (-750)))))
-(((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-470))))
- ((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-470))))
- ((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-929)))))
-(((*1 *1 *1 *1) (-5 *1 (-863))))
-(((*1 *1 *2 *1) (-12 (-5 *1 (-645 *2)) (-4 *2 (-1218))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-1158 *2)) (-4 *2 (-1218)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-645 (-295 *3))) (-5 *1 (-295 *3)) (-4 *3 (-559))
- (-4 *3 (-1218)))))
+ (-3 (|:| |%series| *8)
+ (|:| |%problem| (-2 (|:| |func| (-1161)) (|:| |prob| (-1161))))))
+ (-5 *1 (-425 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1161)) (-4 *9 (-985 *8))
+ (-14 *10 (-1179)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225)))
- (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
- (-5 *2
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite| "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite| "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))
- (-5 *1 (-192)))))
+ (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112))
+ (-5 *1 (-979 *4 *5 *6 *3)) (-4 *3 (-1067 *4 *5 *6)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1104 *3)) (-5 *1 (-907 *3)) (-4 *3 (-370))
+ (-4 *3 (-1102)))))
(((*1 *2)
(-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4))
(-4 *4 (-420 *3)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-690 *4)) (-4 *4 (-1051)) (-5 *1 (-1144 *3 *4))
- (-14 *3 (-772)))))
+ (-12 (-5 *2 (-1269 *3)) (-4 *3 (-1051)) (-5 *1 (-713 *3 *4))
+ (-4 *4 (-1245 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-929)))))
+(((*1 *2 *3 *1)
+ (-12 (|has| *1 (-6 -4422)) (-4 *1 (-492 *3)) (-4 *3 (-1219))
+ (-4 *3 (-1102)) (-5 *2 (-772))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4422)) (-4 *1 (-492 *4))
+ (-4 *4 (-1219)) (-5 *2 (-772)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1144 *3 *4)) (-14 *3 (-923)) (-4 *4 (-365))
+ (-5 *1 (-995 *3 *4)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1102))))
+ ((*1 *1 *2) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1102)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-929)))))
+(((*1 *2 *1) (-12 (-5 *2 (-645 (-954 (-567)))) (-5 *1 (-440))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1179)) (-5 *4 (-690 (-225))) (-5 *2 (-1106))
+ (-5 *1 (-760))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1179)) (-5 *4 (-690 (-567))) (-5 *2 (-1106))
+ (-5 *1 (-760)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-1142 *3 *2)) (-4 *3 (-13 (-1102) (-34)))
+ (-4 *2 (-13 (-1102) (-34))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-645 (-1178))) (-5 *2 (-1273)) (-5 *1 (-1220))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-645 (-1178))) (-5 *2 (-1273)) (-5 *1 (-1220)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-328 *3)) (-4 *3 (-1218))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-567)) (-5 *1 (-519 *3 *4)) (-4 *3 (-1218)) (-14 *4 *2))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1253 *3 *4 *5)) (-5 *1 (-320 *3 *4 *5)) (-4 *3 (-365))
- (-14 *4 (-1178)) (-14 *5 *3)))
- ((*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-567))))
- ((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-421 *3)) (-4 *3 (-559))))
- ((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-700))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1102)) (-5 *1 (-714 *3 *2 *4)) (-4 *3 (-851))
- (-14 *4
- (-1 (-112) (-2 (|:| -3768 *3) (|:| -3458 *2))
- (-2 (|:| -3768 *3) (|:| -3458 *2)))))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-567)) (-5 *2 (-112)) (-5 *1 (-556)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-114)) (-5 *4 (-645 *2)) (-5 *1 (-113 *2))
- (-4 *2 (-1102))))
+ (|partial| -12 (-4 *5 (-1040 (-48)))
+ (-4 *4 (-13 (-559) (-1040 (-567)))) (-4 *5 (-433 *4))
+ (-5 *2 (-421 (-1175 (-48)))) (-5 *1 (-438 *4 *5 *3))
+ (-4 *3 (-1245 *5)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-308)) (-5 *1 (-458 *3 *2)) (-4 *2 (-1245 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-645 *4))) (-4 *4 (-1102))
- (-5 *1 (-113 *4))))
+ (-12 (-4 *3 (-308)) (-5 *1 (-463 *3 *2)) (-4 *2 (-1245 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1102))
- (-5 *1 (-113 *4))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-645 *4)))
- (-5 *1 (-113 *4)) (-4 *4 (-1102))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-649 *3)) (-4 *3 (-1051))
- (-5 *1 (-715 *3 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1051)) (-5 *1 (-837 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-433 *3) (-1004))))))
-(((*1 *2 *3)
- (-12 (-4 *3 (-13 (-308) (-10 -8 (-15 -2908 ((-421 $) $)))))
- (-4 *4 (-1244 *3))
- (-5 *2
- (-2 (|:| -2623 (-690 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-690 *3))))
- (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-412 *3 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-567)) (-4 *4 (-1244 *3))
- (-5 *2
- (-2 (|:| -2623 (-690 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-690 *3))))
- (-5 *1 (-769 *4 *5)) (-4 *5 (-412 *3 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-351)) (-4 *3 (-1244 *4)) (-4 *5 (-1244 *3))
- (-5 *2
- (-2 (|:| -2623 (-690 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-690 *3))))
- (-5 *1 (-987 *4 *3 *5 *6)) (-4 *6 (-725 *3 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-351)) (-4 *3 (-1244 *4)) (-4 *5 (-1244 *3))
- (-5 *2
- (-2 (|:| -2623 (-690 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-690 *3))))
- (-5 *1 (-1277 *4 *3 *5 *6)) (-4 *6 (-412 *3 *5)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1270)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1158 (-645 (-567)))) (-5 *1 (-885)) (-5 *3 (-567)))))
+ (-12 (-4 *3 (-308)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-772)))
+ (-5 *1 (-542 *3 *2 *4 *5)) (-4 *2 (-1245 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1102)) (-5 *2 (-1122)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4422)) (-4 *1 (-492 *4))
+ (-4 *4 (-1219)) (-5 *2 (-112)))))
+(((*1 *1 *1 *1 *1 *1)
+ (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794))
+ (-4 *4 (-851)) (-4 *2 (-559)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-863)) (-5 *1 (-393 *3 *4 *5)) (-14 *3 (-772))
+ (-14 *4 (-772)) (-4 *5 (-172)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2))
- (-4 *2 (-13 (-433 *3) (-1203))))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-721)) (-5 *2 (-923))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-723)) (-5 *2 (-772)))))
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-5 *1 (-1163 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1261 *2 *3 *4)) (-4 *2 (-1051)) (-14 *3 (-1179))
+ (-14 *4 *2))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1159 *4)) (-5 *3 (-567)) (-4 *4 (-1051))
+ (-5 *1 (-1163 *4))))
+ ((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-567)) (-5 *1 (-1261 *3 *4 *5)) (-4 *3 (-1051))
+ (-14 *4 (-1179)) (-14 *5 *3))))
+(((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))))
+(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-851)) (-5 *1 (-126 *3)))))
+(((*1 *1)
+ (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-559)) (-4 *2 (-172)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-433 *3) (-1004))))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1174 *1)) (-4 *1 (-1014)))))
-(((*1 *2 *3) (-12 (-5 *3 (-945 *2)) (-5 *1 (-984 *2)) (-4 *2 (-1051)))))
-(((*1 *2 *2) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-400)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-772)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1174 (-567))) (-5 *1 (-191)) (-5 *3 (-567))))
- ((*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-784 *2)) (-4 *2 (-172))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1174 (-567))) (-5 *1 (-944)) (-5 *3 (-567)))))
-(((*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))))
+ (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1204))))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-875)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-645 *2)) (-4 *2 (-433 *4)) (-5 *1 (-158 *4 *2))
- (-4 *4 (-559)))))
-(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *2 (-923)) (-5 *3 (-645 (-264))) (-5 *1 (-262))))
+ ((*1 *1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-264)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))))
+(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
(-12 (-5 *3 (-225)) (-5 *4 (-567))
- (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3879))))
- (-5 *2 (-1037)) (-5 *1 (-749)))))
-(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4418)) (-4 *1 (-492 *3)) (-4 *3 (-1218))
- (-4 *3 (-1102)) (-5 *2 (-772))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4418)) (-4 *1 (-492 *4))
- (-4 *4 (-1218)) (-5 *2 (-772)))))
+ (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G)))) (-5 *2 (-1037))
+ (-5 *1 (-749)))))
+(((*1 *1 *1 *1) (-4 *1 (-548))))
(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-295 *2)) (-4 *2 (-727)) (-4 *2 (-1218)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-433 *3) (-1004))))))
-(((*1 *2 *2 *2 *3 *3 *4 *2 *5)
- (|partial| -12 (-5 *3 (-613 *2))
- (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1178))) (-5 *5 (-1174 *2))
- (-4 *2 (-13 (-433 *6) (-27) (-1203)))
- (-4 *6 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567))))
- (-5 *1 (-563 *6 *2 *7)) (-4 *7 (-1102))))
- ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5)
- (|partial| -12 (-5 *3 (-613 *2))
- (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1178)))
- (-5 *5 (-410 (-1174 *2))) (-4 *2 (-13 (-433 *6) (-27) (-1203)))
- (-4 *6 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567))))
- (-5 *1 (-563 *6 *2 *7)) (-4 *7 (-1102)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-645 *5)) (-4 *5 (-1244 *3)) (-4 *3 (-308))
- (-5 *2 (-112)) (-5 *1 (-458 *3 *5)))))
+ (-12 (-5 *1 (-1167 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1051)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-772)) (-4 *4 (-1051))
+ (-5 *2 (-2 (|:| -2654 *1) (|:| -2023 *1))) (-4 *1 (-1245 *4)))))
+(((*1 *1) (-5 *1 (-292))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-559))
- (-4 *6 (-794)) (-4 *7 (-851))
- (-5 *2 (-2 (|:| |goodPols| (-645 *8)) (|:| |badPols| (-645 *8))))
- (-5 *1 (-979 *5 *6 *7 *8)) (-5 *4 (-645 *8)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-5 *1 (-103 *3)))))
-(((*1 *1) (-4 *1 (-351)))
+ (-12 (-5 *4 (-645 (-645 *8))) (-5 *3 (-645 *8))
+ (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-559)) (-4 *6 (-794))
+ (-4 *7 (-851)) (-5 *2 (-112)) (-5 *1 (-979 *5 *6 *7 *8)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-863)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-1179))
+ (-4 *4 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567))))
+ (-5 *1 (-623 *4 *2)) (-4 *2 (-13 (-1204) (-961) (-29 *4))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437))))
((*1 *2 *3)
- (-12 (-5 *3 (-645 *5)) (-4 *5 (-433 *4)) (-4 *4 (-13 (-559) (-147)))
- (-5 *2
- (-2 (|:| |primelt| *5) (|:| |poly| (-645 (-1174 *5)))
- (|:| |prim| (-1174 *5))))
- (-5 *1 (-435 *4 *5))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-559) (-147)))
- (-5 *2
- (-2 (|:| |primelt| *3) (|:| |pol1| (-1174 *3))
- (|:| |pol2| (-1174 *3)) (|:| |prim| (-1174 *3))))
- (-5 *1 (-435 *4 *3)) (-4 *3 (-27)) (-4 *3 (-433 *4))))
- ((*1 *2 *3 *4 *3 *4)
- (-12 (-5 *3 (-954 *5)) (-5 *4 (-1178)) (-4 *5 (-13 (-365) (-147)))
- (-5 *2
- (-2 (|:| |coef1| (-567)) (|:| |coef2| (-567))
- (|:| |prim| (-1174 *5))))
- (-5 *1 (-962 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-645 (-1178)))
- (-4 *5 (-13 (-365) (-147)))
- (-5 *2
- (-2 (|:| -3694 (-645 (-567))) (|:| |poly| (-645 (-1174 *5)))
- (|:| |prim| (-1174 *5))))
- (-5 *1 (-962 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-645 (-954 *6))) (-5 *4 (-645 (-1178))) (-5 *5 (-1178))
- (-4 *6 (-13 (-365) (-147)))
- (-5 *2
- (-2 (|:| -3694 (-645 (-567))) (|:| |poly| (-645 (-1174 *6)))
- (|:| |prim| (-1174 *6))))
- (-5 *1 (-962 *6)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1102)) (-5 *2 (-1122)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-455))
- (-5 *2
- (-645
- (-2 (|:| |eigval| (-3 (-410 (-954 *4)) (-1167 (-1178) (-954 *4))))
- (|:| |eigmult| (-772))
- (|:| |eigvec| (-645 (-690 (-410 (-954 *4))))))))
- (-5 *1 (-293 *4)) (-5 *3 (-690 (-410 (-954 *4)))))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-509)) (-5 *1 (-281))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-572 *3)) (-4 *3 (-1040 (-567)))))
((*1 *2 *1)
- (-12 (-5 *2 (-3 (-567) (-225) (-509) (-1160) (-1183)))
- (-5 *1 (-1183)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1102))))
- ((*1 *1 *2) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1102)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-455)) (-4 *4 (-851))
- (-4 *5 (-794)) (-5 *1 (-989 *3 *4 *5 *6)) (-4 *6 (-951 *3 *5 *4)))))
-(((*1 *2)
- (|partial| -12 (-4 *3 (-559)) (-4 *3 (-172))
- (-5 *2 (-2 (|:| |particular| *1) (|:| -2623 (-645 *1))))
- (-4 *1 (-369 *3))))
- ((*1 *2)
- (|partial| -12
- (-5 *2
- (-2 (|:| |particular| (-456 *3 *4 *5 *6))
- (|:| -2623 (-645 (-456 *3 *4 *5 *6)))))
- (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-923))
- (-14 *5 (-645 (-1178))) (-14 *6 (-1268 (-690 *3))))))
-(((*1 *1 *1 *1) (-5 *1 (-162)))
- ((*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-162)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-317 *3)) (-4 *3 (-559)) (-4 *3 (-1102)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-410 (-1174 (-317 *3)))) (-4 *3 (-559))
- (-5 *1 (-1132 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172))))
- ((*1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-172)))))
-(((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *2 (-1037))
- (-5 *1 (-756)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1287 *3)) (-4 *3 (-365)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1244 *5)) (-4 *5 (-365))
- (-5 *2 (-2 (|:| -1752 (-410 *6)) (|:| |coeff| (-410 *6))))
- (-5 *1 (-577 *5 *6)) (-5 *3 (-410 *6)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *5 (-613 *4)) (-5 *6 (-1178))
- (-4 *4 (-13 (-433 *7) (-27) (-1203)))
- (-4 *7 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2623 (-645 *4))))
- (-5 *1 (-569 *7 *4 *3)) (-4 *3 (-657 *4)) (-4 *3 (-1102)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1213 *3)) (-4 *3 (-976)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-645 (-923))) (-5 *1 (-1103 *3 *4)) (-14 *3 (-923))
- (-14 *4 (-923)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-825)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1183)))))
-(((*1 *2)
- (|partial| -12 (-4 *3 (-559)) (-4 *3 (-172))
- (-5 *2 (-2 (|:| |particular| *1) (|:| -2623 (-645 *1))))
- (-4 *1 (-369 *3))))
- ((*1 *2)
- (|partial| -12
- (-5 *2
- (-2 (|:| |particular| (-456 *3 *4 *5 *6))
- (|:| -2623 (-645 (-456 *3 *4 *5 *6)))))
- (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-923))
- (-14 *5 (-645 (-1178))) (-14 *6 (-1268 (-690 *3))))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794))
- (-4 *4 (-851)) (-4 *2 (-559)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-863)))))
-(((*1 *2 *2 *3 *4 *5)
- (-12 (-5 *2 (-645 *9)) (-5 *3 (-1 (-112) *9))
- (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9))
- (-4 *9 (-1067 *6 *7 *8)) (-4 *6 (-559)) (-4 *7 (-794))
- (-4 *8 (-851)) (-5 *1 (-979 *6 *7 *8 *9)))))
+ (-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102))
+ (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-112)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-455))
+ (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851))
+ (-5 *1 (-979 *3 *4 *5 *6)))))
+(((*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1274)) (-5 *1 (-1140))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-863))) (-5 *2 (-1274)) (-5 *1 (-1140)))))
(((*1 *2 *3 *4)
(-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4)))
- (-5 *1 (-706 *3 *4)) (-4 *3 (-1218)) (-4 *4 (-1218)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-548))))
-(((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-844 *3)) (-4 *3 (-1102)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-923)) (-5 *2 (-1174 *4)) (-5 *1 (-359 *4))
- (-4 *4 (-351)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1096 (-844 (-225)))) (-5 *1 (-306)))))
+ (-5 *1 (-706 *3 *4)) (-4 *3 (-1219)) (-4 *4 (-1219)))))
(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1102)))))
-(((*1 *2 *1 *1 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1)))
- (-4 *1 (-308))))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1398 *1)))
- (-4 *1 (-308)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
- (-4 *3 (-1067 *5 *6 *7))
- (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2566 *4))))
- (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-351)) (-5 *3 (-567)) (-5 *2 (-1191 (-923) (-772))))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-884 *2)) (-4 *2 (-1218)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037))
- (-5 *1 (-748)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-507 (-410 (-567)) (-240 *5 (-772)) (-865 *4)
- (-247 *4 (-410 (-567)))))
- (-14 *4 (-645 (-1178))) (-14 *5 (-772)) (-5 *2 (-112))
- (-5 *1 (-508 *4 *5)))))
-(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4))
- (-4 *3 (-369 *4))))
- ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794))
- (-4 *4 (-851)) (-4 *2 (-559)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381))
- (-5 *2
- (-2 (|:| -3802 *4) (|:| -2058 *4) (|:| |totalpts| (-567))
- (|:| |success| (-112))))
- (-5 *1 (-790)) (-5 *5 (-567)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-801))
- (-5 *3
- (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
- (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225)))
- (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225)))
- (|:| |abserr| (-225)) (|:| |relerr| (-225))))
- (-5 *2 (-1037)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-41 *3 *2))
+ (-4 *2
+ (-13 (-365) (-303)
+ (-10 -8 (-15 -1447 ((-1127 *3 (-613 $)) $))
+ (-15 -1462 ((-1127 *3 (-613 $)) $))
+ (-15 -4129 ($ (-1127 *3 (-613 $)))))))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-41 *3 *2))
+ (-4 *2
+ (-13 (-365) (-303)
+ (-10 -8 (-15 -1447 ((-1127 *3 (-613 $)) $))
+ (-15 -1462 ((-1127 *3 (-613 $)) $))
+ (-15 -4129 ($ (-1127 *3 (-613 $)))))))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-645 *2))
+ (-4 *2
+ (-13 (-365) (-303)
+ (-10 -8 (-15 -1447 ((-1127 *4 (-613 $)) $))
+ (-15 -1462 ((-1127 *4 (-613 $)) $))
+ (-15 -4129 ($ (-1127 *4 (-613 $)))))))
+ (-4 *4 (-559)) (-5 *1 (-41 *4 *2))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-645 (-613 *2)))
+ (-4 *2
+ (-13 (-365) (-303)
+ (-10 -8 (-15 -1447 ((-1127 *4 (-613 $)) $))
+ (-15 -1462 ((-1127 *4 (-613 $)) $))
+ (-15 -4129 ($ (-1127 *4 (-613 $)))))))
+ (-4 *4 (-559)) (-5 *1 (-41 *4 *2)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455))
- (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112))
- (-5 *1 (-990 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7))))
+ (-12 (-4 *4 (-559))
+ (-5 *2 (-2 (|:| -3705 *4) (|:| -2654 *3) (|:| -2023 *3)))
+ (-5 *1 (-971 *4 *3)) (-4 *3 (-1245 *4))))
((*1 *2 *1 *1)
- (-12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794))
- (-4 *5 (-851)) (-5 *2 (-112))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455))
- (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112))
- (-5 *1 (-1109 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7))))
+ (-12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851))
+ (-5 *2 (-2 (|:| -2654 *1) (|:| -2023 *1))) (-4 *1 (-1067 *3 *4 *5))))
((*1 *2 *1 *1)
- (-12 (-4 *1 (-1211 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794))
- (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-112)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))))
-(((*1 *1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1102)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225)))
- (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
- (-5 *2 (-381)) (-5 *1 (-192)))))
+ (-12 (-4 *3 (-559)) (-4 *3 (-1051))
+ (-5 *2 (-2 (|:| -3705 *3) (|:| -2654 *1) (|:| -2023 *1)))
+ (-4 *1 (-1245 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-690 (-169 (-410 (-567)))))
+ (-5 *2
+ (-645
+ (-2 (|:| |outval| (-169 *4)) (|:| |outmult| (-567))
+ (|:| |outvect| (-645 (-690 (-169 *4)))))))
+ (-5 *1 (-765 *4)) (-4 *4 (-13 (-365) (-849))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1))
- (-4 *1 (-1067 *3 *4 *5)))))
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-375 *3))
+ (-4 *5 (-375 *3)) (-5 *2 (-567))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051))
+ (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-567)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 (-567))) (-4 *3 (-1051)) (-5 *1 (-597 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 (-567))) (-4 *1 (-1229 *3)) (-4 *3 (-1051))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 (-567))) (-4 *1 (-1260 *3)) (-4 *3 (-1051)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2951 *4)))
- (-5 *1 (-971 *4 *3)) (-4 *3 (-1244 *4)))))
+ (-12 (-4 *4 (-455)) (-4 *4 (-559))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| -2562 *4))) (-5 *1 (-971 *4 *3))
+ (-4 *3 (-1245 *4)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1179)) (-5 *5 (-645 (-410 (-954 *6))))
+ (-5 *3 (-410 (-954 *6)))
+ (-4 *6 (-13 (-559) (-1040 (-567)) (-147)))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-573 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7))
+ (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-645 *10))
+ (-5 *1 (-625 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1073 *5 *6 *7 *8))
+ (-4 *10 (-1111 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 (-781 *5 (-865 *6)))) (-5 *4 (-112)) (-4 *5 (-455))
+ (-14 *6 (-645 (-1179))) (-5 *2 (-645 (-1048 *5 *6)))
+ (-5 *1 (-629 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 (-781 *5 (-865 *6)))) (-5 *4 (-112)) (-4 *5 (-455))
+ (-14 *6 (-645 (-1179)))
+ (-5 *2
+ (-645 (-1148 *5 (-534 (-865 *6)) (-865 *6) (-781 *5 (-865 *6)))))
+ (-5 *1 (-629 *5 *6))))
+ ((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7))
+ (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-5 *2 (-645 (-1029 *5 *6 *7 *8))) (-5 *1 (-1029 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7))
+ (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-5 *2 (-645 (-1029 *5 *6 *7 *8))) (-5 *1 (-1029 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-645 (-781 *5 (-865 *6)))) (-5 *4 (-112)) (-4 *5 (-455))
+ (-14 *6 (-645 (-1179))) (-5 *2 (-645 (-1048 *5 *6)))
+ (-5 *1 (-1048 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7))
+ (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-645 *1))
+ (-4 *1 (-1073 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7))
+ (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-5 *2 (-645 (-1148 *5 *6 *7 *8))) (-5 *1 (-1148 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7))
+ (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-5 *2 (-645 (-1148 *5 *6 *7 *8))) (-5 *1 (-1148 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-559))
+ (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *1))
+ (-4 *1 (-1212 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-567)) (-5 *1 (-448 *3)) (-4 *3 (-407)) (-4 *3 (-1051)))))
+(((*1 *2 *2 *3 *3 *4)
+ (-12 (-5 *4 (-772)) (-4 *3 (-559)) (-5 *1 (-971 *3 *2))
+ (-4 *2 (-1245 *3)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1219))
+ (-4 *5 (-1219)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-240 *6 *7)) (-14 *6 (-772))
+ (-4 *7 (-1219)) (-4 *5 (-1219)) (-5 *2 (-240 *6 *5))
+ (-5 *1 (-239 *6 *7 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1219)) (-4 *5 (-1219))
+ (-4 *2 (-375 *5)) (-5 *1 (-373 *6 *4 *5 *2)) (-4 *4 (-375 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1102)) (-4 *5 (-1102))
+ (-4 *2 (-428 *5)) (-5 *1 (-426 *6 *4 *5 *2)) (-4 *4 (-428 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-645 *6)) (-4 *6 (-1219))
+ (-4 *5 (-1219)) (-5 *2 (-645 *5)) (-5 *1 (-643 *6 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-960 *6)) (-4 *6 (-1219))
+ (-4 *5 (-1219)) (-5 *2 (-960 *5)) (-5 *1 (-959 *6 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1159 *6)) (-4 *6 (-1219))
+ (-4 *3 (-1219)) (-5 *2 (-1159 *3)) (-5 *1 (-1157 *6 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1269 *6)) (-4 *6 (-1219))
+ (-4 *5 (-1219)) (-5 *2 (-1269 *5)) (-5 *1 (-1268 *6 *5)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-317 *3)) (-4 *3 (-13 (-1051) (-851)))
+ (-5 *1 (-223 *3 *4)) (-14 *4 (-645 (-1179))))))
+(((*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-112)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-455)) (-4 *4 (-851))
+ (-4 *5 (-794)) (-5 *1 (-989 *3 *4 *5 *6)) (-4 *6 (-951 *3 *5 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *2 (-645 *2))) (-5 *4 (-645 *5))
+ (-4 *5 (-38 (-410 (-567)))) (-4 *2 (-1260 *5))
+ (-5 *1 (-1262 *5 *2)))))
+(((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *4 (-225))
+ (-5 *2
+ (-2 (|:| |brans| (-645 (-645 (-945 *4))))
+ (|:| |xValues| (-1096 *4)) (|:| |yValues| (-1096 *4))))
+ (-5 *1 (-153)) (-5 *3 (-645 (-645 (-945 *4)))))))
(((*1 *2 *1) (-12 (-5 *2 (-1120)) (-5 *1 (-218))))
((*1 *2 *1) (-12 (-5 *2 (-1120)) (-5 *1 (-442))))
((*1 *2 *1) (-12 (-5 *2 (-1120)) (-5 *1 (-839))))
((*1 *2 *1) (-12 (-5 *2 (-1120)) (-5 *1 (-1117))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-645 (-1183))) (-5 *3 (-1183)) (-5 *1 (-1120)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1183)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *5 (-772)) (-4 *6 (-1102)) (-4 *7 (-902 *6))
- (-5 *2 (-690 *7)) (-5 *1 (-693 *6 *7 *3 *4)) (-4 *3 (-375 *7))
- (-4 *4 (-13 (-375 *6) (-10 -7 (-6 -4418)))))))
-(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
- ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3))))
- ((*1 *1 *1) (-4 *1 (-1141))))
-(((*1 *1 *1) (-12 (-4 *1 (-675 *2)) (-4 *2 (-1218)))))
+ (-12 (-5 *2 (-645 (-1184))) (-5 *3 (-1184)) (-5 *1 (-1120)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-692 (-874 (-968 *3) (-968 *3)))) (-5 *1 (-968 *3))
- (-4 *3 (-1102)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1270)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-1268 *5)) (-5 *3 (-772)) (-5 *4 (-1122)) (-4 *5 (-351))
- (-5 *1 (-531 *5)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-365) (-849)))
- (-5 *2 (-2 (|:| |start| *3) (|:| -3920 (-421 *3))))
- (-5 *1 (-181 *4 *3)) (-4 *3 (-1244 (-169 *4))))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3)
- (-12 (-5 *3 (-567)) (-5 *5 (-112)) (-5 *6 (-690 (-225)))
- (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-756)))))
-(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4))
- (-4 *3 (-369 *4))))
- ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-471)) (-5 *4 (-923)) (-5 *2 (-1273)) (-5 *1 (-1269)))))
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-375 *3))
+ (-4 *5 (-375 *3)) (-5 *2 (-567))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051))
+ (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-567)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 (-690 *5))) (-4 *5 (-308)) (-4 *5 (-1051))
+ (-5 *2 (-1269 (-1269 *5))) (-5 *1 (-1031 *5)) (-5 *4 (-1269 *5)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-645 *1)) (-4 *3 (-1051)) (-4 *1 (-688 *3 *4 *5))
+ (-4 *4 (-375 *3)) (-4 *5 (-375 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-645 *3)) (-4 *3 (-1051)) (-4 *1 (-688 *3 *4 *5))
+ (-4 *4 (-375 *3)) (-4 *5 (-375 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1269 *3)) (-4 *3 (-1051)) (-5 *1 (-690 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-645 *4)) (-4 *4 (-1051)) (-4 *1 (-1125 *3 *4 *5 *6))
+ (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1219)) (-4 *2 (-1004))
+ (-4 *2 (-1051)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))))
+(((*1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-1189)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-484 *4 *5)) (-14 *4 (-645 (-1178))) (-4 *5 (-1051))
- (-5 *2 (-954 *5)) (-5 *1 (-946 *4 *5)))))
+ (-12 (-5 *3 (-690 (-410 (-954 *4)))) (-4 *4 (-455))
+ (-5 *2 (-645 (-3 (-410 (-954 *4)) (-1168 (-1179) (-954 *4)))))
+ (-5 *1 (-293 *4)))))
+(((*1 *1) (-5 *1 (-824))))
+(((*1 *2 *2 *2 *2 *2 *3)
+ (-12 (-5 *2 (-690 *4)) (-5 *3 (-772)) (-4 *4 (-1051))
+ (-5 *1 (-691 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-337 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1245 *3))
+ (-4 *5 (-1245 (-410 *4))) (-4 *6 (-344 *3 *4 *5)) (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-690 *4)) (-4 *4 (-365)) (-5 *2 (-1174 *4))
- (-5 *1 (-535 *4 *5 *6)) (-4 *5 (-365)) (-4 *6 (-13 (-365) (-849))))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-772)) (-5 *1 (-448 *3)) (-4 *3 (-407)) (-4 *3 (-1051))))
- ((*1 *2)
- (-12 (-5 *2 (-772)) (-5 *1 (-448 *3)) (-4 *3 (-407)) (-4 *3 (-1051)))))
+ (-12 (-5 *3 (-645 *2)) (-4 *2 (-433 *4)) (-5 *1 (-158 *4 *2))
+ (-4 *4 (-559)))))
+(((*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5))
+ (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851))
+ (-5 *1 (-1282 *3 *4 *5 *6))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-645 *8)) (-5 *3 (-1 (-112) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-559))
+ (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-1282 *5 *6 *7 *8)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-567)) (-5 *2 (-112)) (-5 *1 (-556)))))
+(((*1 *2 *3 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| |cycle?| (-112)) (|:| -3872 (-772)) (|:| |period| (-772))))
+ (-5 *1 (-1159 *4)) (-4 *4 (-1219)) (-5 *3 (-772)))))
(((*1 *2 *1)
(-12 (-4 *3 (-1102)) (-4 *4 (-13 (-1051) (-888 *3) (-615 *2)))
(-5 *2 (-894 *3)) (-5 *1 (-1078 *3 *4 *5))
(-4 *5 (-13 (-433 *4) (-888 *3) (-615 *2))))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-455))
- (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851))
- (-5 *1 (-979 *3 *4 *5 *6)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-772)) (-4 *5 (-559))
+ (-5 *2
+ (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-971 *5 *3)) (-4 *3 (-1245 *5)))))
+(((*1 *1 *1) (-4 *1 (-630)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-631 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1004) (-1204))))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
- (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-112))
- (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
- (-4 *3 (-1067 *5 *6 *7))
- (-5 *2 (-645 (-2 (|:| |val| (-112)) (|:| -2566 *4))))
- (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-772)) (-5 *1 (-59 *3)) (-4 *3 (-1218))))
- ((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1218)) (-5 *1 (-59 *3)))))
+ (-12 (-5 *3 (-772)) (-5 *4 (-1269 *2)) (-4 *5 (-308))
+ (-4 *6 (-994 *5)) (-4 *2 (-13 (-412 *6 *7) (-1040 *6)))
+ (-5 *1 (-416 *5 *6 *7 *2)) (-4 *7 (-1245 *6)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1274)) (-5 *1 (-1271)))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3)
+ (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225))
+ (-5 *2 (-1037)) (-5 *1 (-754)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-319)) (-5 *3 (-225)))))
(((*1 *2 *1 *1)
- (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1218)) (-4 *2 (-1051))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-863))))
- ((*1 *1 *1) (-5 *1 (-863)))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-945 (-225))) (-5 *2 (-225)) (-5 *1 (-1214))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1266 *2)) (-4 *2 (-1218)) (-4 *2 (-1051)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2))
- (-4 *2 (-13 (-433 *3) (-1203))))))
-(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-1235 (-567))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
- (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-990 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-645 *3)) (-4 *3 (-1073 *5 *6 *7 *8)) (-4 *5 (-455))
- (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-1067 *5 *6 *7))
- (-5 *2 (-112)) (-5 *1 (-990 *5 *6 *7 *8 *3))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
- (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1109 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-645 *3)) (-4 *3 (-1073 *5 *6 *7 *8)) (-4 *5 (-455))
- (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-1067 *5 *6 *7))
- (-5 *2 (-112)) (-5 *1 (-1109 *5 *6 *7 *8 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-772)) (-5 *1 (-448 *3)) (-4 *3 (-1051))))
- ((*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-448 *3)) (-4 *3 (-1051)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037))
- (-5 *1 (-753)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-645 (-484 *5 *6))) (-5 *4 (-865 *5))
- (-14 *5 (-645 (-1178))) (-5 *2 (-484 *5 *6)) (-5 *1 (-632 *5 *6))
- (-4 *6 (-455))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-645 (-484 *5 *6))) (-5 *4 (-865 *5))
- (-14 *5 (-645 (-1178))) (-5 *2 (-484 *5 *6)) (-5 *1 (-632 *5 *6))
- (-4 *6 (-455)))))
+ (-12 (-4 *3 (-559)) (-4 *3 (-1051))
+ (-5 *2 (-2 (|:| -2654 *1) (|:| -2023 *1))) (-4 *1 (-853 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-99 *5)) (-4 *5 (-559)) (-4 *5 (-1051))
+ (-5 *2 (-2 (|:| -2654 *3) (|:| -2023 *3))) (-5 *1 (-854 *5 *3))
+ (-4 *3 (-853 *5)))))
(((*1 *2 *3)
+ (-12 (-4 *4 (-559)) (-5 *2 (-772)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-420 *4)))))
+(((*1 *2 *3 *3 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-1 (-225) (-225) (-225)))
+ (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined"))
+ (-5 *5 (-1096 (-225))) (-5 *6 (-645 (-264))) (-5 *2 (-1135 (-225)))
+ (-5 *1 (-698))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-945 (-225)) (-225) (-225))) (-5 *4 (-1096 (-225)))
+ (-5 *5 (-645 (-264))) (-5 *2 (-1135 (-225))) (-5 *1 (-698))))
+ ((*1 *2 *2 *3 *4 *4 *5)
+ (-12 (-5 *2 (-1135 (-225))) (-5 *3 (-1 (-945 (-225)) (-225) (-225)))
+ (-5 *4 (-1096 (-225))) (-5 *5 (-645 (-264))) (-5 *1 (-698)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-567)) (-5 *1 (-697 *2)) (-4 *2 (-1245 *3)))))
+(((*1 *2 *3 *2)
(-12
- (-5 *3
- (-2 (|:| -2316 (-690 (-410 (-954 *4))))
- (|:| |vec| (-645 (-410 (-954 *4)))) (|:| -1954 (-772))
- (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))
- (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1178))))
- (-4 *6 (-794))
(-5 *2
- (-2 (|:| |partsol| (-1268 (-410 (-954 *4))))
- (|:| -2623 (-645 (-1268 (-410 (-954 *4)))))))
- (-5 *1 (-926 *4 *5 *6 *7)) (-4 *7 (-951 *4 *6 *5)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-14 *4 (-645 (-1178))) (-4 *2 (-172))
- (-4 *3 (-238 (-2414 *4) (-772)))
- (-14 *6
- (-1 (-112) (-2 (|:| -3768 *5) (|:| -3458 *3))
- (-2 (|:| -3768 *5) (|:| -3458 *3))))
- (-5 *1 (-464 *4 *2 *5 *3 *6 *7)) (-4 *5 (-851))
- (-4 *7 (-951 *2 *3 (-865 *4))))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-645 (-945 *4))) (-4 *1 (-1136 *4)) (-4 *4 (-1051))
- (-5 *2 (-772)))))
-(((*1 *1 *2) (-12 (-5 *2 (-183 (-249))) (-5 *1 (-248)))))
-(((*1 *2 *3 *2)
- (-12 (-4 *1 (-788)) (-5 *2 (-1037))
- (-5 *3
- (-2 (|:| |fn| (-317 (-225)))
- (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))))
- ((*1 *2 *3 *2)
- (-12 (-4 *1 (-788)) (-5 *2 (-1037))
- (-5 *3
- (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225)))
- (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225))
- (|:| |relerr| (-225)))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-994 *2)) (-4 *2 (-559)) (-5 *1 (-142 *2 *4 *3))
- (-4 *3 (-375 *4))))
+ (-645
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-772)) (|:| |poli| *3)
+ (|:| |polj| *3))))
+ (-4 *5 (-794)) (-4 *3 (-951 *4 *5 *6)) (-4 *4 (-455)) (-4 *6 (-851))
+ (-5 *1 (-452 *4 *5 *6 *3)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-175)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559))
+ (-5 *2 (-112)))))
+(((*1 *1 *1) (-12 (-4 *1 (-428 *2)) (-4 *2 (-1102)) (-4 *2 (-370)))))
+(((*1 *1 *1) (-5 *1 (-1065))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-851))
+ (-4 *5 (-267 *4)) (-4 *6 (-794)) (-5 *2 (-772))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1051)) (-4 *3 (-851))
+ (-4 *5 (-267 *3)) (-4 *6 (-794)) (-5 *2 (-772))))
+ ((*1 *2 *1) (-12 (-4 *1 (-267 *3)) (-4 *3 (-851)) (-5 *2 (-772))))
+ ((*1 *2 *1) (-12 (-4 *1 (-351)) (-5 *2 (-923))))
((*1 *2 *3)
- (-12 (-4 *4 (-994 *2)) (-4 *2 (-559)) (-5 *1 (-506 *2 *4 *5 *3))
- (-4 *5 (-375 *2)) (-4 *3 (-375 *4))))
+ (-12 (-5 *3 (-338 *4 *5 *6 *7)) (-4 *4 (-13 (-370) (-365)))
+ (-4 *5 (-1245 *4)) (-4 *6 (-1245 (-410 *5))) (-4 *7 (-344 *4 *5 *6))
+ (-5 *2 (-772)) (-5 *1 (-395 *4 *5 *6 *7))))
+ ((*1 *2 *1) (-12 (-4 *1 (-405)) (-5 *2 (-834 (-923)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-567))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-598 *3)) (-4 *3 (-1051))))
+ ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-598 *3)) (-4 *3 (-1051))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-559)) (-5 *2 (-567)) (-5 *1 (-624 *3 *4))
+ (-4 *4 (-1245 *3))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *2 (-772)) (-4 *1 (-741 *4 *3)) (-4 *4 (-1051))
+ (-4 *3 (-851))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-741 *4 *3)) (-4 *4 (-1051)) (-4 *3 (-851))
+ (-5 *2 (-772))))
+ ((*1 *2 *1) (-12 (-4 *1 (-870 *3)) (-5 *2 (-772))))
+ ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-906 *3)) (-4 *3 (-1102))))
+ ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-907 *3)) (-4 *3 (-1102))))
((*1 *2 *3)
- (-12 (-5 *3 (-690 *4)) (-4 *4 (-994 *2)) (-4 *2 (-559))
- (-5 *1 (-694 *2 *4))))
+ (|partial| -12 (-5 *3 (-338 *5 *6 *7 *8)) (-4 *5 (-433 *4))
+ (-4 *6 (-1245 *5)) (-4 *7 (-1245 (-410 *6)))
+ (-4 *8 (-344 *5 *6 *7)) (-4 *4 (-13 (-559) (-1040 (-567))))
+ (-5 *2 (-772)) (-5 *1 (-913 *4 *5 *6 *7 *8))))
((*1 *2 *3)
- (-12 (-4 *4 (-994 *2)) (-4 *2 (-559)) (-5 *1 (-1237 *2 *4 *3))
- (-4 *3 (-1244 *4)))))
-(((*1 *2)
- (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-420 *3)))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-1158 *4)) (-5 *3 (-567)) (-4 *4 (-1051))
- (-5 *1 (-1162 *4))))
- ((*1 *1 *2 *2 *1)
- (-12 (-5 *2 (-567)) (-5 *1 (-1260 *3 *4 *5)) (-4 *3 (-1051))
- (-14 *4 (-1178)) (-14 *5 *3))))
+ (|partial| -12 (-5 *3 (-338 (-410 (-567)) *4 *5 *6))
+ (-4 *4 (-1245 (-410 (-567)))) (-4 *5 (-1245 (-410 *4)))
+ (-4 *6 (-344 (-410 (-567)) *4 *5)) (-5 *2 (-772))
+ (-5 *1 (-914 *4 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-338 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-365))
+ (-4 *7 (-1245 *6)) (-4 *4 (-1245 (-410 *7))) (-4 *8 (-344 *6 *7 *4))
+ (-4 *9 (-13 (-370) (-365))) (-5 *2 (-772))
+ (-5 *1 (-1020 *6 *7 *4 *8 *9))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1245 *3)) (-4 *3 (-1051)) (-4 *3 (-559))
+ (-5 *2 (-772))))
+ ((*1 *2 *1 *2)
+ (-12 (-4 *1 (-1247 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-793))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1247 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-793)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1274)) (-5 *1 (-823)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1051))
- (-4 *2 (-13 (-407) (-1040 *4) (-365) (-1203) (-285)))
- (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1244 *4)))))
+ (-12 (-5 *3 (-894 *4)) (-4 *4 (-1102)) (-5 *2 (-1 (-112) *5))
+ (-5 *1 (-892 *4 *5)) (-4 *5 (-1219))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1169)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1257 *3)) (-4 *3 (-1219)) (-5 *2 (-772)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1179)) (-5 *2 (-1 *6 *5)) (-5 *1 (-707 *4 *5 *6))
+ (-4 *4 (-615 (-539))) (-4 *5 (-1219)) (-4 *6 (-1219)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1102)) (-5 *2 (-112)))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4418)) (-4 *1 (-151 *3))
- (-4 *3 (-1218))))
+ (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4422)) (-4 *1 (-151 *3))
+ (-4 *3 (-1219))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1218)) (-5 *1 (-602 *3))))
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1219)) (-5 *1 (-602 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-675 *3)) (-4 *3 (-1218))))
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-675 *3)) (-4 *3 (-1219))))
((*1 *2 *1 *3)
- (|partial| -12 (-4 *1 (-1211 *4 *5 *3 *2)) (-4 *4 (-559))
+ (|partial| -12 (-4 *1 (-1212 *4 *5 *3 *2)) (-4 *4 (-559))
(-4 *5 (-794)) (-4 *3 (-851)) (-4 *2 (-1067 *4 *5 *3))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-772)) (-5 *1 (-1215 *2)) (-4 *2 (-1218)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-645 *7)) (-4 *7 (-951 *4 *5 *6)) (-4 *4 (-455))
- (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-1273))
- (-5 *1 (-452 *4 *5 *6 *7)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-559))
- (-5 *2
- (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-971 *4 *3)) (-4 *3 (-1244 *4)))))
+ (-12 (-5 *3 (-772)) (-5 *1 (-1216 *2)) (-4 *2 (-1219)))))
+(((*1 *1 *1) (-4 *1 (-1146))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-928)))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225))
+ (-5 *2 (-1037)) (-5 *1 (-753)))))
+(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7)
+ (-12 (-5 *4 (-567)) (-5 *5 (-690 (-225)))
+ (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))))
+ (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT))))
+ (-5 *3 (-225)) (-5 *2 (-1037)) (-5 *1 (-750)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-375 *3))
+ (-4 *5 (-375 *3)) (-5 *2 (-567))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051))
+ (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-567)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567))))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-1051)) (-5 *1 (-447 *3 *2)) (-4 *2 (-1245 *3)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1222)) (-4 *3 (-1244 *4))
- (-4 *5 (-1244 (-410 *3))) (-5 *2 (-112))))
+ (-12 (-4 *4 (-351)) (-5 *2 (-421 *3)) (-5 *1 (-216 *4 *3))
+ (-4 *3 (-1245 *4))))
((*1 *2 *3)
- (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3))
- (-4 *5 (-1244 (-410 *4))) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-945 *3) (-945 *3))) (-5 *1 (-176 *3))
- (-4 *3 (-13 (-365) (-1203) (-1004)))))
- ((*1 *2)
- (|partial| -12 (-4 *4 (-1222)) (-4 *5 (-1244 (-410 *2)))
- (-4 *2 (-1244 *4)) (-5 *1 (-343 *3 *4 *2 *5))
- (-4 *3 (-344 *4 *2 *5))))
- ((*1 *2)
- (|partial| -12 (-4 *1 (-344 *3 *2 *4)) (-4 *3 (-1222))
- (-4 *4 (-1244 (-410 *2))) (-4 *2 (-1244 *3)))))
-(((*1 *1)
- (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-559)) (-4 *2 (-172)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1256 *3)) (-4 *3 (-1218)) (-5 *2 (-772)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))))
+ (-12 (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-772)) (-5 *2 (-421 *3)) (-5 *1 (-445 *3))
+ (-4 *3 (-1245 (-567)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-645 (-772))) (-5 *2 (-421 *3)) (-5 *1 (-445 *3))
+ (-4 *3 (-1245 (-567)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-645 (-772))) (-5 *5 (-772)) (-5 *2 (-421 *3))
+ (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-772)) (-5 *2 (-421 *3)) (-5 *1 (-445 *3))
+ (-4 *3 (-1245 (-567)))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-421 *3)) (-5 *1 (-1009 *3))
+ (-4 *3 (-1245 (-410 (-567))))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-421 *3)) (-5 *1 (-1234 *3)) (-4 *3 (-1245 (-567))))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1219)) (-5 *1 (-602 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1219)) (-5 *1 (-1159 *3)))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-1161)) (-5 *5 (-690 (-225)))
+ (-5 *2 (-1037)) (-5 *1 (-748)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-1179))
+ (-4 *4 (-13 (-455) (-147) (-1040 (-567)) (-640 (-567))))
+ (-5 *1 (-560 *4 *2)) (-4 *2 (-13 (-27) (-1204) (-433 *4))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1219)) (-5 *1 (-377 *4 *2))
+ (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4423)))))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1122)) (-5 *1 (-822)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *6) (|:| -2973 *6) (|:| |sol?| (-112))) (-567)
+ *6))
+ (-4 *6 (-365)) (-4 *7 (-1245 *6))
+ (-5 *2 (-2 (|:| |answer| (-588 (-410 *7))) (|:| |a0| *6)))
+ (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1175 *5)) (-4 *5 (-455)) (-5 *2 (-645 *6))
+ (-5 *1 (-541 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-849)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-954 *5)) (-4 *5 (-455)) (-5 *2 (-645 *6))
+ (-5 *1 (-541 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-849))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-894 *4)) (-4 *4 (-1102)) (-5 *2 (-1 (-112) *5))
- (-5 *1 (-892 *4 *5)) (-4 *5 (-1218))))
- ((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1168)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-1040 (-567))) (-4 *3 (-559)) (-5 *1 (-32 *3 *2))
- (-4 *2 (-433 *3))))
- ((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-1174 *4)) (-5 *1 (-165 *3 *4))
- (-4 *3 (-166 *4))))
- ((*1 *1 *1) (-12 (-4 *1 (-1051)) (-4 *1 (-303))))
- ((*1 *2) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-1174 *3))))
- ((*1 *2) (-12 (-4 *1 (-725 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1244 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1070 *3 *2)) (-4 *3 (-13 (-849) (-365)))
- (-4 *2 (-1244 *3)))))
-(((*1 *2 *2)
- (-12
+ (-12 (-5 *3 (-1269 (-317 (-225))))
(-5 *2
- (-645
- (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-772)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *4 (-794)) (-4 *6 (-951 *3 *4 *5)) (-4 *3 (-455)) (-4 *5 (-851))
- (-5 *1 (-452 *3 *4 *5 *6)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3))
- (-4 *5 (-375 *3)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051))
- (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))))
+ (-2 (|:| |additions| (-567)) (|:| |multiplications| (-567))
+ (|:| |exponentiations| (-567)) (|:| |functionCalls| (-567))))
+ (-5 *1 (-306)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-117 *3)) (-14 *3 *2)))
+ ((*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-567))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-872 *3)) (-14 *3 *2)))
+ ((*1 *1 *1) (-12 (-5 *1 (-872 *2)) (-14 *2 (-567))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-567)) (-14 *3 *2) (-5 *1 (-873 *3 *4))
+ (-4 *4 (-870 *3))))
+ ((*1 *1 *1)
+ (-12 (-14 *2 (-567)) (-5 *1 (-873 *2 *3)) (-4 *3 (-870 *2))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-567)) (-4 *1 (-1231 *3 *4)) (-4 *3 (-1051))
+ (-4 *4 (-1260 *3))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1231 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-1260 *2)))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-112)) (-5 *5 (-567)) (-4 *6 (-365)) (-4 *6 (-370))
+ (-4 *6 (-1051)) (-5 *2 (-645 (-645 (-690 *6)))) (-5 *1 (-1031 *6))
+ (-5 *3 (-645 (-690 *6)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-365)) (-4 *4 (-370)) (-4 *4 (-1051))
+ (-5 *2 (-645 (-645 (-690 *4)))) (-5 *1 (-1031 *4))
+ (-5 *3 (-645 (-690 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1051))
+ (-5 *2 (-645 (-645 (-690 *5)))) (-5 *1 (-1031 *5))
+ (-5 *3 (-645 (-690 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-923)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1051))
+ (-5 *2 (-645 (-645 (-690 *5)))) (-5 *1 (-1031 *5))
+ (-5 *3 (-645 (-690 *5))))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1218)) (-5 *1 (-602 *3))))
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1219)) (-5 *1 (-602 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1218)) (-5 *1 (-1158 *3)))))
-(((*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1268 *1)) (-4 *1 (-369 *3)))))
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1219)) (-5 *1 (-1159 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 *6)) (-5 *4 (-645 (-1179))) (-4 *6 (-365))
+ (-5 *2 (-645 (-295 (-954 *6)))) (-5 *1 (-541 *5 *6 *7))
+ (-4 *5 (-455)) (-4 *7 (-13 (-365) (-849))))))
+(((*1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-394)))))
+(((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4))
+ (-4 *3 (-369 *4))))
+ ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-1179))) (-4 *4 (-13 (-308) (-147)))
+ (-4 *5 (-13 (-851) (-615 (-1179)))) (-4 *6 (-794))
+ (-5 *2 (-645 (-410 (-954 *4)))) (-5 *1 (-926 *4 *5 *6 *7))
+ (-4 *7 (-951 *4 *6 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1159 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225)))
- (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
- (-5 *2 (-112)) (-5 *1 (-301)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1051)) (-4 *3 (-851))
- (-4 *5 (-267 *3)) (-4 *6 (-794)) (-5 *2 (-645 (-772)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-851))
- (-4 *5 (-267 *4)) (-4 *6 (-794)) (-5 *2 (-645 (-772))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-645 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1219 *2))
- (-4 *2 (-1102))))
+ (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2694 (-645 (-225)))))
+ (-5 *2 (-381)) (-5 *1 (-268))))
((*1 *2 *3)
- (-12 (-5 *3 (-645 *2)) (-4 *2 (-1102)) (-4 *2 (-851))
- (-5 *1 (-1219 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1178))
- (-4 *5 (-13 (-559) (-1040 (-567)) (-640 (-567))))
- (-5 *2
- (-2 (|:| |func| *3) (|:| |kers| (-645 (-613 *3)))
- (|:| |vals| (-645 *3))))
- (-5 *1 (-278 *5 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *5))))))
-(((*1 *1 *1) (-12 (-5 *1 (-1204 *2)) (-4 *2 (-1102)))))
+ (-12 (-5 *3 (-1269 (-317 (-225)))) (-5 *2 (-381)) (-5 *1 (-306)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1160)) (-4 *4 (-13 (-308) (-147)))
- (-4 *5 (-13 (-851) (-615 (-1178)))) (-4 *6 (-794))
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
+ (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225)))
+ (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225)))
+ (|:| |abserr| (-225)) (|:| |relerr| (-225))))
(-5 *2
- (-645
- (-2 (|:| |eqzro| (-645 *7)) (|:| |neqzro| (-645 *7))
- (|:| |wcond| (-645 (-954 *4)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1268 (-410 (-954 *4))))
- (|:| -2623 (-645 (-1268 (-410 (-954 *4))))))))))
- (-5 *1 (-926 *4 *5 *6 *7)) (-4 *7 (-951 *4 *6 *5)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-365)) (-4 *3 (-1051))
- (-5 *2 (-2 (|:| -3102 *1) (|:| -4194 *1))) (-4 *1 (-853 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-99 *5)) (-4 *5 (-365)) (-4 *5 (-1051))
- (-5 *2 (-2 (|:| -3102 *3) (|:| -4194 *3))) (-5 *1 (-854 *5 *3))
- (-4 *3 (-853 *5)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1218)) (-5 *1 (-602 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1218)) (-5 *1 (-1158 *3)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-410 (-954 *3))) (-5 *1 (-456 *3 *4 *5 *6))
- (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923))
- (-14 *5 (-645 (-1178))) (-14 *6 (-1268 (-690 *3))))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4419)) (-4 *1 (-244 *2)) (-4 *2 (-1218)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1218)) (-5 *2 (-112)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-455))
- (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851))
- (-5 *1 (-979 *3 *4 *5 *6)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-559) (-1040 (-567)) (-640 (-567))))
- (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-27) (-1203) (-433 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1178))
- (-4 *4 (-13 (-559) (-1040 (-567)) (-640 (-567))))
- (-5 *1 (-278 *4 *2)) (-4 *2 (-13 (-27) (-1203) (-433 *4)))))
- ((*1 *1 *1) (-5 *1 (-381)))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
- (-4 *3 (-1067 *5 *6 *7))
- (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2566 *4))))
- (-5 *1 (-777 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-645 (-1096 (-381)))) (-5 *3 (-645 (-264)))
- (-5 *1 (-262))))
- ((*1 *1 *2) (-12 (-5 *2 (-645 (-1096 (-381)))) (-5 *1 (-264))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1096 (-381)))) (-5 *1 (-471))))
- ((*1 *2 *1) (-12 (-5 *2 (-645 (-1096 (-381)))) (-5 *1 (-471)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-38 (-410 (-567))))
- (-5 *2 (-2 (|:| -3128 (-1158 *4)) (|:| -3137 (-1158 *4))))
- (-5 *1 (-1164 *4)) (-5 *3 (-1158 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))))
+ (-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))))
+ (-5 *1 (-205)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-821)) (-14 *5 (-1179)) (-5 *2 (-645 (-1242 *5 *4)))
+ (-5 *1 (-1116 *4 *5)) (-5 *3 (-1242 *5 *4)))))
(((*1 *2 *3 *4)
(-12 (-5 *4 (-923)) (-4 *6 (-559)) (-5 *2 (-645 (-317 *6)))
(-5 *1 (-221 *5 *6)) (-5 *3 (-317 *6)) (-4 *5 (-1051))))
((*1 *2 *1) (-12 (-5 *1 (-421 *2)) (-4 *2 (-559))))
((*1 *2 *3)
- (-12 (-5 *3 (-588 *5)) (-4 *5 (-13 (-29 *4) (-1203)))
+ (-12 (-5 *3 (-588 *5)) (-4 *5 (-13 (-29 *4) (-1204)))
(-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-645 *5))
(-5 *1 (-586 *4 *5))))
((*1 *2 *3)
@@ -6125,230 +6301,235 @@
(-12 (-5 *3 (-645 *1)) (-4 *1 (-1097 *4 *2)) (-4 *4 (-849))
(-4 *2 (-1151 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2))
- (-4 *2 (-13 (-433 *3) (-1203)))))
+ (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1204)))))
((*1 *2 *1)
- (-12 (-5 *2 (-1283 (-1178) *3)) (-5 *1 (-1290 *3)) (-4 *3 (-1051))))
+ (-12 (-5 *2 (-1284 (-1179) *3)) (-5 *1 (-1291 *3)) (-4 *3 (-1051))))
((*1 *2 *1)
- (-12 (-5 *2 (-1283 *3 *4)) (-5 *1 (-1292 *3 *4)) (-4 *3 (-851))
+ (-12 (-5 *2 (-1284 *3 *4)) (-5 *1 (-1293 *3 *4)) (-4 *3 (-851))
(-4 *4 (-1051)))))
-(((*1 *2 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037))
- (-5 *1 (-752)))))
-(((*1 *2 *3 *4 *4 *3 *3 *5)
- (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-1174 *3))
- (-4 *3 (-13 (-433 *6) (-27) (-1203)))
- (-4 *6 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567))))
- (-5 *2 (-2 (|:| -1752 *3) (|:| |coeff| *3)))
- (-5 *1 (-563 *6 *3 *7)) (-4 *7 (-1102))))
- ((*1 *2 *3 *4 *4 *3 *4 *3 *5)
- (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-410 (-1174 *3)))
- (-4 *3 (-13 (-433 *6) (-27) (-1203)))
- (-4 *6 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567))))
- (-5 *2 (-2 (|:| -1752 *3) (|:| |coeff| *3)))
- (-5 *1 (-563 *6 *3 *7)) (-4 *7 (-1102)))))
-(((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1042)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-132)) (-5 *1 (-1086 *2))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-567) *2 *2)) (-4 *2 (-132)) (-5 *1 (-1086 *2)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-645 (-954 *4))) (-5 *3 (-645 (-1178))) (-4 *4 (-455))
- (-5 *1 (-920 *4)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-169 (-225))) (-5 *5 (-567)) (-5 *6 (-1160))
- (-5 *3 (-225)) (-5 *2 (-1037)) (-5 *1 (-759)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-567)) (-4 *4 (-172)) (-4 *5 (-375 *4))
- (-4 *6 (-375 *4)) (-5 *1 (-689 *4 *5 *6 *2))
- (-4 *2 (-688 *4 *5 *6)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-772)) (-4 *1 (-1245 *3)) (-4 *3 (-1051)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-645 *1)) (-4 *1 (-1067 *4 *5 *6)) (-4 *4 (-1051))
+ (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1212 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1212 *4 *5 *6 *3)) (-4 *4 (-559)) (-4 *5 (-794))
+ (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225))
+ (-5 *2 (-1037)) (-5 *1 (-757)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-509)) (-5 *1 (-281)))))
+(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
+ (|partial| -12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-794))
+ (-4 *8 (-851)) (-4 *9 (-1067 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| -3855 (-645 *9)) (|:| -2575 *4) (|:| |ineq| (-645 *9))))
+ (-5 *1 (-990 *6 *7 *8 *9 *4)) (-5 *3 (-645 *9))
+ (-4 *4 (-1073 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
+ (|partial| -12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-794))
+ (-4 *8 (-851)) (-4 *9 (-1067 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| -3855 (-645 *9)) (|:| -2575 *4) (|:| |ineq| (-645 *9))))
+ (-5 *1 (-1109 *6 *7 *8 *9 *4)) (-5 *3 (-645 *9))
+ (-4 *4 (-1073 *6 *7 *8 *9)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-645 *7)) (-4 *7 (-951 *4 *5 *6)) (-4 *6 (-615 (-1179)))
+ (-4 *4 (-365)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-5 *2 (-1168 (-645 (-954 *4)) (-645 (-295 (-954 *4)))))
+ (-5 *1 (-507 *4 *5 *6 *7)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-794)) (-4 *4 (-851)) (-4 *6 (-308)) (-5 *2 (-421 *3))
- (-5 *1 (-743 *5 *4 *6 *3)) (-4 *3 (-951 *6 *5 *4)))))
-(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-589 *3)) (-4 *3 (-548)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12
- (-5 *3
- (-1 (-3 (-2 (|:| -1752 *4) (|:| |coeff| *4)) "failed") *4))
- (-4 *4 (-365)) (-5 *1 (-577 *4 *2)) (-4 *2 (-1244 *4)))))
+ (-12 (-4 *5 (-308)) (-4 *6 (-375 *5)) (-4 *4 (-375 *5))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2144 (-645 *4))))
+ (-5 *1 (-1126 *5 *6 *4 *3)) (-4 *3 (-688 *5 *6 *4)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-112))
+ (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-4 *3 (-1067 *5 *6 *7))
+ (-5 *2 (-645 (-2 (|:| |val| (-112)) (|:| -2575 *4))))
+ (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1245 *5)) (-4 *5 (-365))
+ (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3)))
+ (-5 *1 (-577 *5 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1242 *5 *4)) (-4 *4 (-455)) (-4 *4 (-821))
+ (-14 *5 (-1179)) (-5 *2 (-567)) (-5 *1 (-1116 *4 *5)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-645 *7)) (-4 *7 (-1073 *3 *4 *5 *6)) (-4 *3 (-455))
+ (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5))
+ (-5 *1 (-990 *3 *4 *5 *6 *7))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-645 *7)) (-4 *7 (-1073 *3 *4 *5 *6)) (-4 *3 (-455))
+ (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5))
+ (-5 *1 (-1109 *3 *4 *5 *6 *7)))))
(((*1 *2 *3)
(-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-533 *3)) (-4 *3 (-13 (-727) (-25))))))
-(((*1 *1) (-5 *1 (-440))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-1051)))))
-(((*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1218)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1181 (-410 (-567)))) (-5 *1 (-190)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 (-410 *6))) (-5 *4 (-1 (-645 *5) *6))
- (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567)))))
- (-4 *6 (-1244 *5)) (-5 *2 (-645 (-410 *6))) (-5 *1 (-813 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-654 (-410 *7))) (-5 *4 (-1 (-645 *6) *7))
- (-5 *5 (-1 (-421 *7) *7))
- (-4 *6 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567)))))
- (-4 *7 (-1244 *6)) (-5 *2 (-645 (-410 *7))) (-5 *1 (-813 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-655 *6 (-410 *6))) (-5 *4 (-1 (-645 *5) *6))
- (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567)))))
- (-4 *6 (-1244 *5)) (-5 *2 (-645 (-410 *6))) (-5 *1 (-813 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-655 *7 (-410 *7))) (-5 *4 (-1 (-645 *6) *7))
- (-5 *5 (-1 (-421 *7) *7))
- (-4 *6 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567)))))
- (-4 *7 (-1244 *6)) (-5 *2 (-645 (-410 *7))) (-5 *1 (-813 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-654 (-410 *5))) (-4 *5 (-1244 *4)) (-4 *4 (-27))
- (-4 *4 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567)))))
- (-5 *2 (-645 (-410 *5))) (-5 *1 (-813 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 (-410 *6))) (-5 *4 (-1 (-421 *6) *6))
- (-4 *6 (-1244 *5)) (-4 *5 (-27))
- (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567)))))
- (-5 *2 (-645 (-410 *6))) (-5 *1 (-813 *5 *6))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-655 *5 (-410 *5))) (-4 *5 (-1244 *4)) (-4 *4 (-27))
- (-4 *4 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567)))))
- (-5 *2 (-645 (-410 *5))) (-5 *1 (-813 *4 *5))))
+ (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-112)) (-4 *4 (-13 (-365) (-849))) (-5 *2 (-421 *3))
+ (-5 *1 (-181 *4 *3)) (-4 *3 (-1245 (-169 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-655 *6 (-410 *6))) (-5 *4 (-1 (-421 *6) *6))
- (-4 *6 (-1244 *5)) (-4 *5 (-27))
- (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567)))))
- (-5 *2 (-645 (-410 *6))) (-5 *1 (-813 *5 *6)))))
-(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6)
- (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225)))
- (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-70 APROD)))) (-5 *4 (-225))
- (-5 *2 (-1037)) (-5 *1 (-757)))))
-(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
- (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-990 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
- (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1109 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-760)))))
-(((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1008)))))
-(((*1 *2 *1) (-12 (-4 *1 (-870 *3)) (-5 *2 (-567)))))
+ (-12 (-4 *4 (-13 (-365) (-849))) (-5 *2 (-421 *3))
+ (-5 *1 (-181 *4 *3)) (-4 *3 (-1245 (-169 *4))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-954 *5)) (-4 *5 (-1051)) (-5 *2 (-247 *4 *5))
- (-5 *1 (-946 *4 *5)) (-14 *4 (-645 (-1178))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3)
- (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225))
- (-5 *2 (-1037)) (-5 *1 (-753)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1028 (-844 (-567)))) (-5 *1 (-597 *3)) (-4 *3 (-1051)))))
-(((*1 *2 *3) (-12 (-5 *3 (-945 *2)) (-5 *1 (-984 *2)) (-4 *2 (-1051)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-772)) (-5 *2 (-1268 (-645 (-567)))) (-5 *1 (-483))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1218)) (-5 *1 (-602 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1218)) (-5 *1 (-1158 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1218)) (-5 *1 (-1158 *3)))))
+ (-12 (-4 *4 (-38 (-410 (-567))))
+ (-5 *2 (-2 (|:| -3008 (-1159 *4)) (|:| -3021 (-1159 *4))))
+ (-5 *1 (-1165 *4)) (-5 *3 (-1159 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1175 *7)) (-5 *3 (-567)) (-4 *7 (-951 *6 *4 *5))
+ (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1051))
+ (-5 *1 (-322 *4 *5 *6 *7)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1158 (-1158 *4))) (-5 *2 (-1158 *4)) (-5 *1 (-1162 *4))
- (-4 *4 (-38 (-410 (-567)))) (-4 *4 (-1051)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1146)) (-5 *2 (-141))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1146)) (-5 *2 (-144)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794))
- (-4 *4 (-851)) (-4 *2 (-559))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794))
- (-4 *4 (-851)) (-4 *2 (-559)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))))
+ (-12
+ (-5 *3
+ (-3
+ (|:| |noa|
+ (-2 (|:| |fn| (-317 (-225))) (|:| -2694 (-645 (-225)))
+ (|:| |lb| (-645 (-844 (-225))))
+ (|:| |cf| (-645 (-317 (-225))))
+ (|:| |ub| (-645 (-844 (-225))))))
+ (|:| |lsa|
+ (-2 (|:| |lfn| (-645 (-317 (-225))))
+ (|:| -2694 (-645 (-225)))))))
+ (-5 *2 (-645 (-1161))) (-5 *1 (-268)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919))))
+ ((*1 *2) (-12 (-5 *2 (-906 (-567))) (-5 *1 (-919)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-613 *4)) (-4 *4 (-1102)) (-4 *2 (-1102))
+ (-5 *1 (-612 *2 *4)))))
(((*1 *2 *3)
(-12 (-5 *3 (-1 *5)) (-4 *5 (-1102)) (-5 *2 (-1 *5 *4))
(-5 *1 (-684 *4 *5)) (-4 *4 (-1102))))
((*1 *2 *2)
(-12 (-4 *3 (-1102)) (-5 *1 (-931 *3 *2)) (-4 *2 (-433 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-1178)) (-5 *2 (-317 (-567))) (-5 *1 (-932))))
+ (-12 (-5 *3 (-1179)) (-5 *2 (-317 (-567))) (-5 *1 (-932))))
((*1 *2 *1)
- (-12 (-4 *1 (-1285 *3 *2)) (-4 *3 (-851)) (-4 *2 (-1051))))
+ (-12 (-4 *1 (-1286 *3 *2)) (-4 *3 (-851)) (-4 *2 (-1051))))
((*1 *2 *1)
- (-12 (-4 *2 (-1051)) (-5 *1 (-1291 *2 *3)) (-4 *3 (-847)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-645 *5)) (-4 *5 (-433 *4)) (-4 *4 (-559))
- (-5 *2 (-863)) (-5 *1 (-32 *4 *5)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
- (-4 *3 (-1067 *5 *6 *7))
- (-5 *2 (-645 (-2 (|:| |val| (-645 *3)) (|:| -2566 *4))))
- (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))))
+ (-12 (-4 *2 (-1051)) (-5 *1 (-1292 *2 *3)) (-4 *3 (-847)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-690 *4)) (-5 *3 (-923)) (-4 *4 (-1051))
+ (-5 *1 (-1030 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-645 (-690 *4))) (-5 *3 (-923)) (-4 *4 (-1051))
+ (-5 *1 (-1030 *4)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1102)) (-4 *2 (-902 *5)) (-5 *1 (-693 *5 *2 *3 *4))
- (-4 *3 (-375 *2)) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4418)))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *3 (-1222)) (-4 *5 (-1244 *3)) (-4 *6 (-1244 (-410 *5)))
- (-5 *2 (-112)) (-5 *1 (-343 *4 *3 *5 *6)) (-4 *4 (-344 *3 *5 *6))))
- ((*1 *2 *3 *3)
- (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3))
- (-4 *5 (-1244 (-410 *4))) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-559)) (-5 *2 (-772)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-420 *4)))))
+ (|partial| -12 (-5 *3 (-114)) (-5 *4 (-645 *2)) (-5 *1 (-113 *2))
+ (-4 *2 (-1102))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-645 *4))) (-4 *4 (-1102))
+ (-5 *1 (-113 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1102))
+ (-5 *1 (-113 *4))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-645 *4)))
+ (-5 *1 (-113 *4)) (-4 *4 (-1102))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-649 *3)) (-4 *3 (-1051))
+ (-5 *1 (-715 *3 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1051)) (-5 *1 (-837 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-772)) (-4 *4 (-365)) (-4 *5 (-1244 *4)) (-5 *2 (-1273))
- (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1244 (-410 *5))) (-14 *7 *6))))
+ (-12 (-5 *3 (-1144 *4 *2)) (-14 *4 (-923))
+ (-4 *2 (-13 (-1051) (-10 -7 (-6 (-4424 "*")))))
+ (-5 *1 (-904 *4 *2)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-772)) (-5 *2 (-1269 (-645 (-567)))) (-5 *1 (-483))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1219)) (-5 *1 (-602 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1219)) (-5 *1 (-1159 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1219)) (-5 *1 (-1159 *3)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-112)) (-5 *5 (-1104 (-772))) (-5 *6 (-772))
+ (-5 *2
+ (-2 (|:| |contp| (-567))
+ (|:| -2158 (-645 (-2 (|:| |irr| *3) (|:| -2298 (-567)))))))
+ (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567))))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-645 (-645 (-645 *5)))) (-5 *3 (-1 (-112) *5 *5))
+ (-5 *4 (-645 *5)) (-4 *5 (-851)) (-5 *1 (-1190 *5)))))
(((*1 *1 *1 *2) (-12 (-4 *1 (-1146)) (-5 *2 (-141))))
((*1 *1 *1 *2) (-12 (-4 *1 (-1146)) (-5 *2 (-144)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-613 *2)) (-4 *2 (-13 (-27) (-1203) (-433 *4)))
- (-4 *4 (-13 (-559) (-1040 (-567)) (-640 (-567))))
- (-5 *1 (-278 *4 *2)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |pde| (-645 (-317 (-225))))
- (|:| |constraints|
- (-645
- (-2 (|:| |start| (-225)) (|:| |finish| (-225))
- (|:| |grid| (-772)) (|:| |boundaryType| (-567))
- (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225))))))
- (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1160))
- (|:| |tol| (-225))))
- (-5 *2 (-112)) (-5 *1 (-210)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1278)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1174 *2)) (-4 *2 (-951 (-410 (-954 *6)) *5 *4))
- (-5 *1 (-733 *5 *4 *6 *2)) (-4 *5 (-794))
- (-4 *4 (-13 (-851) (-10 -8 (-15 -3893 ((-1178) $)))))
- (-4 *6 (-559)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-775)) (-5 *1 (-114))))
- ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1160)) (-5 *3 (-775)) (-5 *1 (-114)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-327 *3 *4)) (-4 *3 (-1051))
- (-4 *4 (-793)))))
-(((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-894 *3)) (-4 *3 (-1102))))
- ((*1 *2 *1) (-12 (-4 *1 (-1123 *3)) (-4 *3 (-1218)) (-5 *2 (-772)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-772)) (-5 *3 (-945 *5)) (-4 *5 (-1051))
- (-5 *1 (-1166 *4 *5)) (-14 *4 (-923))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-645 (-772))) (-5 *3 (-772)) (-5 *1 (-1166 *4 *5))
- (-14 *4 (-923)) (-4 *5 (-1051))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-645 (-772))) (-5 *3 (-945 *5)) (-4 *5 (-1051))
- (-5 *1 (-1166 *4 *5)) (-14 *4 (-923)))))
+(((*1 *2 *3 *3 *1)
+ (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-3 *3 (-645 *1)))
+ (-4 *1 (-1073 *4 *5 *6 *3)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3))
- (-4 *5 (-1244 (-410 *4)))
- (-5 *2 (-2 (|:| |num| (-1268 *4)) (|:| |den| *4))))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-147)) (-4 *2 (-308)) (-4 *2 (-455)) (-4 *3 (-851))
- (-4 *4 (-794)) (-5 *1 (-989 *2 *3 *4 *5)) (-4 *5 (-951 *2 *4 *3))))
- ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-317 (-567))) (-5 *1 (-1121))))
+ (-12 (-5 *2 (-645 (-52))) (-5 *1 (-894 *3)) (-4 *3 (-1102)))))
+(((*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))))
+(((*1 *1)
+ (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-567)) (-14 *3 (-772))
+ (-4 *4 (-172)))))
+(((*1 *1 *1) (-5 *1 (-225)))
+ ((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
+ ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
((*1 *2 *2)
- (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2))
- (-4 *2 (-13 (-433 *3) (-1203))))))
+ (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3))))
+ ((*1 *1 *1) (-4 *1 (-1141))) ((*1 *1 *1 *1) (-4 *1 (-1141))))
+(((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-894 *3)) (-4 *3 (-1102))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1123 *3)) (-4 *3 (-1219)) (-5 *2 (-772)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-567)) (|has| *1 (-6 -4423)) (-4 *1 (-1257 *3))
+ (-4 *3 (-1219)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1146)) (-5 *2 (-141))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1146)) (-5 *2 (-144)))))
+(((*1 *1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-772)) (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051))
+ (-4 *4 (-794)) (-4 *5 (-851)) (-4 *3 (-559)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))))
+(((*1 *2 *3 *3 *3)
+ (|partial| -12 (-4 *4 (-13 (-365) (-147) (-1040 (-567))))
+ (-4 *5 (-1245 *4)) (-5 *2 (-645 (-410 *5))) (-5 *1 (-1018 *4 *5))
+ (-5 *3 (-410 *5)))))
+(((*1 *2 *1 *1 *3 *4)
+ (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6))
+ (-4 *5 (-13 (-1102) (-34))) (-4 *6 (-13 (-1102) (-34)))
+ (-5 *2 (-112)) (-5 *1 (-1142 *5 *6)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-692 (-968 *3))) (-5 *1 (-968 *3)) (-4 *3 (-1102)))))
+ (|partial| -12 (-5 *2 (-645 (-894 *3))) (-5 *1 (-894 *3))
+ (-4 *3 (-1102)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567))))))
+(((*1 *2 *1) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-397))))
+ ((*1 *2 *1) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-1199)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-410 (-954 *3))) (-5 *1 (-456 *3 *4 *5 *6))
+ (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923))
+ (-14 *5 (-645 (-1179))) (-14 *6 (-1269 (-690 *3))))))
+(((*1 *2 *1) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-397))))
+ ((*1 *2 *1) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-1199)))))
+(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5)
+ (-12 (-5 *3 (-1161)) (-5 *5 (-690 (-225))) (-5 *6 (-690 (-567)))
+ (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-758)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-772)) (-5 *2 (-645 (-1178))) (-5 *1 (-210))
- (-5 *3 (-1178))))
+ (-12 (-5 *4 (-772)) (-5 *2 (-645 (-1179))) (-5 *1 (-210))
+ (-5 *3 (-1179))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-317 (-225))) (-5 *4 (-772)) (-5 *2 (-645 (-1178)))
+ (-12 (-5 *3 (-317 (-225))) (-5 *4 (-772)) (-5 *2 (-645 (-1179)))
(-5 *1 (-268))))
((*1 *2 *1)
(-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172))
@@ -6361,194 +6542,128 @@
((*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-820 *3)) (-4 *3 (-851))))
((*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-895 *3)) (-4 *3 (-851))))
((*1 *2 *1)
- (-12 (-4 *1 (-1285 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051))
+ (-12 (-4 *1 (-1286 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051))
(-5 *2 (-645 *3)))))
(((*1 *2 *3 *1)
(|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102))
- (-5 *2 (-2 (|:| -1795 *3) (|:| -4237 *4))))))
-(((*1 *2 *3 *4 *4 *5 *6)
- (-12 (-5 *3 (-645 (-645 (-945 (-225))))) (-5 *4 (-875))
- (-5 *5 (-923)) (-5 *6 (-645 (-264))) (-5 *2 (-471)) (-5 *1 (-1272))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-645 (-645 (-945 (-225))))) (-5 *2 (-471))
- (-5 *1 (-1272))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-645 (-645 (-945 (-225))))) (-5 *4 (-645 (-264)))
- (-5 *2 (-471)) (-5 *1 (-1272)))))
-(((*1 *2)
- (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3))
- (-4 *5 (-1244 (-410 *4))) (-5 *2 (-690 (-410 *4))))))
+ (-5 *2 (-2 (|:| -1809 *3) (|:| -4236 *4))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1274)) (-5 *1 (-1182)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-613 *5)) (-4 *5 (-433 *4)) (-4 *4 (-1040 (-567)))
- (-4 *4 (-559)) (-5 *2 (-1174 *5)) (-5 *1 (-32 *4 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-613 *1)) (-4 *1 (-1051)) (-4 *1 (-303))
- (-5 *2 (-1174 *1)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-645 (-2 (|:| |val| (-645 *8)) (|:| -2566 *9))))
- (-5 *4 (-772)) (-4 *8 (-1067 *5 *6 *7)) (-4 *9 (-1073 *5 *6 *7 *8))
- (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-1273))
- (-5 *1 (-1071 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-645 (-2 (|:| |val| (-645 *8)) (|:| -2566 *9))))
- (-5 *4 (-772)) (-4 *8 (-1067 *5 *6 *7)) (-4 *9 (-1111 *5 *6 *7 *8))
- (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-1273))
- (-5 *1 (-1147 *5 *6 *7 *8 *9)))))
+ (-12 (-5 *3 (-772)) (-4 *4 (-365)) (-4 *5 (-1245 *4)) (-5 *2 (-1274))
+ (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1245 (-410 *5))) (-14 *7 *6))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-559) (-147))) (-5 *2 (-645 *3))
- (-5 *1 (-1238 *4 *3)) (-4 *3 (-1244 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1174 *7)) (-4 *7 (-951 *6 *4 *5)) (-4 *4 (-794))
- (-4 *5 (-851)) (-4 *6 (-1051)) (-5 *2 (-1174 *6))
- (-5 *1 (-322 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-772)) (-5 *2 (-1 (-1159 (-954 *4)) (-1159 (-954 *4))))
+ (-5 *1 (-1277 *4)) (-4 *4 (-365)))))
+(((*1 *2 *3 *4 *5 *3 *6 *3)
+ (-12 (-5 *3 (-567)) (-5 *5 (-169 (-225))) (-5 *6 (-1161))
+ (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-759)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-645 (-645 *6))) (-4 *6 (-951 *3 *5 *4))
- (-4 *3 (-13 (-308) (-147))) (-4 *4 (-13 (-851) (-615 (-1178))))
- (-4 *5 (-794)) (-5 *1 (-926 *3 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-645 (-225))) (-5 *2 (-645 (-1160))) (-5 *1 (-192))))
+ (-12 (-4 *3 (-559)) (-4 *4 (-994 *3)) (-5 *1 (-142 *3 *4 *2))
+ (-4 *2 (-375 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-645 (-225))) (-5 *2 (-645 (-1160))) (-5 *1 (-301))))
+ (-12 (-4 *4 (-559)) (-4 *5 (-994 *4)) (-4 *2 (-375 *4))
+ (-5 *1 (-506 *4 *5 *2 *3)) (-4 *3 (-375 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-645 (-225))) (-5 *2 (-645 (-1160))) (-5 *1 (-306)))))
-(((*1 *2 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1218))))
+ (-12 (-5 *3 (-690 *5)) (-4 *5 (-994 *4)) (-4 *4 (-559))
+ (-5 *2 (-690 *4)) (-5 *1 (-694 *4 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-4 *4 (-994 *3)) (-5 *1 (-1238 *3 *4 *2))
+ (-4 *2 (-1245 *4)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1179)) (-5 *3 (-381)) (-5 *1 (-1065)))))
+(((*1 *2 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1219))))
((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1098))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1211 *3 *4 *5 *2)) (-4 *3 (-559))
+ (|partial| -12 (-4 *1 (-1212 *3 *4 *5 *2)) (-4 *3 (-559))
(-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-772)) (-4 *1 (-1256 *3)) (-4 *3 (-1218))))
- ((*1 *2 *1) (-12 (-4 *1 (-1256 *2)) (-4 *2 (-1218)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-645 *6)) (-4 *6 (-951 *3 *4 *5)) (-4 *3 (-308))
- (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-450 *3 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-645 *7)) (-5 *3 (-1160)) (-4 *7 (-951 *4 *5 *6))
- (-4 *4 (-308)) (-4 *5 (-794)) (-4 *6 (-851))
- (-5 *1 (-450 *4 *5 *6 *7))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-645 *7)) (-5 *3 (-1160)) (-4 *7 (-951 *4 *5 *6))
- (-4 *4 (-308)) (-4 *5 (-794)) (-4 *6 (-851))
- (-5 *1 (-450 *4 *5 *6 *7)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-772)) (-4 *5 (-559))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-971 *5 *3)) (-4 *3 (-1244 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-532))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-580))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-862)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-351)) (-4 *4 (-330 *3)) (-4 *5 (-1244 *4))
- (-5 *1 (-778 *3 *4 *5 *2 *6)) (-4 *2 (-1244 *5)) (-14 *6 (-923))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-772)) (-4 *1 (-1287 *3)) (-4 *3 (-365)) (-4 *3 (-370))))
- ((*1 *1 *1) (-12 (-4 *1 (-1287 *2)) (-4 *2 (-365)) (-4 *2 (-370)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 *9)) (-4 *8 (-1067 *5 *6 *7))
- (-4 *9 (-1073 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794))
- (-4 *7 (-851)) (-5 *2 (-772)) (-5 *1 (-1071 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 *9)) (-4 *8 (-1067 *5 *6 *7))
- (-4 *9 (-1111 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794))
- (-4 *7 (-851)) (-5 *2 (-772)) (-5 *1 (-1147 *5 *6 *7 *8 *9)))))
-(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *6 (-559)) (-4 *2 (-951 *3 *5 *4))
- (-5 *1 (-733 *5 *4 *6 *2)) (-5 *3 (-410 (-954 *6))) (-4 *5 (-794))
- (-4 *4 (-13 (-851) (-10 -8 (-15 -3893 ((-1178) $))))))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112))
- (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-645 *6)) (-4 *6 (-851)) (-4 *4 (-365)) (-4 *5 (-794))
- (-5 *2 (-112)) (-5 *1 (-507 *4 *5 *6 *7)) (-4 *7 (-951 *4 *5 *6)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-951 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794))
- (-4 *4 (-851)) (-4 *2 (-455))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
- (-4 *3 (-1067 *4 *5 *6))
- (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2566 *1))))
- (-4 *1 (-1073 *4 *5 *6 *3))))
- ((*1 *1 *1) (-4 *1 (-1222)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-559)) (-5 *1 (-1247 *3 *2))
- (-4 *2 (-13 (-1244 *3) (-559) (-10 -8 (-15 -2774 ($ $ $))))))))
+ (-12 (-5 *2 (-772)) (-4 *1 (-1257 *3)) (-4 *3 (-1219))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1219)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-844 *3)) (-4 *3 (-1102)))))
(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1178)) (-5 *3 (-645 *1)) (-4 *1 (-433 *4))
+ (-12 (-5 *2 (-1179)) (-5 *3 (-645 *1)) (-4 *1 (-433 *4))
(-4 *4 (-1102))))
((*1 *1 *2 *1 *1 *1 *1)
- (-12 (-5 *2 (-1178)) (-4 *1 (-433 *3)) (-4 *3 (-1102))))
+ (-12 (-5 *2 (-1179)) (-4 *1 (-433 *3)) (-4 *3 (-1102))))
((*1 *1 *2 *1 *1 *1)
- (-12 (-5 *2 (-1178)) (-4 *1 (-433 *3)) (-4 *3 (-1102))))
+ (-12 (-5 *2 (-1179)) (-4 *1 (-433 *3)) (-4 *3 (-1102))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1178)) (-4 *1 (-433 *3)) (-4 *3 (-1102))))
+ (-12 (-5 *2 (-1179)) (-4 *1 (-433 *3)) (-4 *3 (-1102))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1178)) (-4 *1 (-433 *3)) (-4 *3 (-1102)))))
-(((*1 *1) (-5 *1 (-804))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-440)))))
+ (-12 (-5 *2 (-1179)) (-4 *1 (-433 *3)) (-4 *3 (-1102)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-772)) (-4 *1 (-985 *2)) (-4 *2 (-1204)))))
+(((*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863))))
+ ((*1 *1 *1 *1) (-5 *1 (-863))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7))
- (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-645 *10))
- (-5 *1 (-625 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1073 *5 *6 *7 *8))
- (-4 *10 (-1111 *5 *6 *7 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-645 (-781 *5 (-865 *6)))) (-5 *4 (-112)) (-4 *5 (-455))
- (-14 *6 (-645 (-1178))) (-5 *2 (-645 (-1048 *5 *6)))
- (-5 *1 (-629 *5 *6))))
+ (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1175 *7)) (-4 *5 (-1051))
+ (-4 *7 (-1051)) (-4 *2 (-1245 *5)) (-5 *1 (-504 *5 *2 *6 *7))
+ (-4 *6 (-1245 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-645 (-781 *5 (-865 *6)))) (-5 *4 (-112)) (-4 *5 (-455))
- (-14 *6 (-645 (-1178)))
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1051)) (-4 *7 (-1051))
+ (-4 *4 (-1245 *5)) (-5 *2 (-1175 *7)) (-5 *1 (-504 *5 *4 *6 *7))
+ (-4 *6 (-1245 *4)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))))
+(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-258)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-966 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-1102)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567))))
(-5 *2
- (-645 (-1148 *5 (-534 (-865 *6)) (-865 *6) (-781 *5 (-865 *6)))))
- (-5 *1 (-629 *5 *6))))
- ((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7))
- (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
- (-5 *2 (-645 (-1029 *5 *6 *7 *8))) (-5 *1 (-1029 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7))
- (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
- (-5 *2 (-645 (-1029 *5 *6 *7 *8))) (-5 *1 (-1029 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-645 (-781 *5 (-865 *6)))) (-5 *4 (-112)) (-4 *5 (-455))
- (-14 *6 (-645 (-1178))) (-5 *2 (-645 (-1048 *5 *6)))
- (-5 *1 (-1048 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7))
- (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-645 *1))
- (-4 *1 (-1073 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7))
- (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
- (-5 *2 (-645 (-1148 *5 *6 *7 *8))) (-5 *1 (-1148 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7))
- (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
- (-5 *2 (-645 (-1148 *5 *6 *7 *8))) (-5 *1 (-1148 *5 *6 *7 *8))))
+ (-3 (|:| |%expansion| (-314 *5 *3 *6 *7))
+ (|:| |%problem| (-2 (|:| |func| (-1161)) (|:| |prob| (-1161))))))
+ (-5 *1 (-423 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1204) (-433 *5)))
+ (-14 *6 (-1179)) (-14 *7 *3))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-1102)) (-5 *1 (-931 *3 *2)) (-4 *2 (-433 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-559))
- (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *1))
- (-4 *1 (-1211 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-1179)) (-5 *2 (-317 (-567))) (-5 *1 (-932)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-605 *2 *3)) (-4 *3 (-1219)) (-4 *2 (-1102))
+ (-4 *2 (-851)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1219)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-645 (-264))) (-5 *4 (-1178))
- (-5 *1 (-263 *2)) (-4 *2 (-1218))))
+ (|partial| -12 (-5 *3 (-645 (-264))) (-5 *4 (-1179))
+ (-5 *1 (-263 *2)) (-4 *2 (-1219))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-645 (-264))) (-5 *4 (-1178)) (-5 *2 (-52))
+ (|partial| -12 (-5 *3 (-645 (-264))) (-5 *4 (-1179)) (-5 *2 (-52))
(-5 *1 (-264)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))))
-(((*1 *1 *1 *1) (-4 *1 (-303))) ((*1 *1 *1) (-4 *1 (-303))))
-(((*1 *1 *1) (-4 *1 (-1146))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *2 (-690 *3)) (-4 *3 (-1051)) (-5 *1 (-691 *3)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-772)) (-4 *5 (-559))
+ (-5 *2
+ (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-971 *5 *3)) (-4 *3 (-1245 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-455))
+ (-5 *2
+ (-645
+ (-2 (|:| |eigval| (-3 (-410 (-954 *4)) (-1168 (-1179) (-954 *4))))
+ (|:| |geneigvec| (-645 (-690 (-410 (-954 *4))))))))
+ (-5 *1 (-293 *4)) (-5 *3 (-690 (-410 (-954 *4)))))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794))
+ (-4 *4 (-851)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-559))
+ (-4 *7 (-951 *3 *5 *6))
+ (-5 *2 (-2 (|:| -3468 (-772)) (|:| -3705 *8) (|:| |radicand| *8)))
+ (-5 *1 (-955 *5 *6 *3 *7 *8)) (-5 *4 (-772))
+ (-4 *8
+ (-13 (-365)
+ (-10 -8 (-15 -4129 ($ *7)) (-15 -1447 (*7 $)) (-15 -1462 (*7 $))))))))
(((*1 *1 *2 *1)
- (-12 (|has| *1 (-6 -4418)) (-4 *1 (-151 *2)) (-4 *2 (-1218))
+ (-12 (|has| *1 (-6 -4422)) (-4 *1 (-151 *2)) (-4 *2 (-1219))
(-4 *2 (-1102))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4418)) (-4 *1 (-151 *3))
- (-4 *3 (-1218))))
+ (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4422)) (-4 *1 (-151 *3))
+ (-4 *3 (-1219))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-675 *3)) (-4 *3 (-1218))))
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-675 *3)) (-4 *3 (-1219))))
((*1 *1 *2 *1 *3)
(-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-567)) (-4 *4 (-1102))
(-5 *1 (-738 *4))))
@@ -6557,914 +6672,789 @@
((*1 *1 *2 *1)
(-12 (-5 *2 (-1142 *3 *4)) (-4 *3 (-13 (-1102) (-34)))
(-4 *4 (-13 (-1102) (-34))) (-5 *1 (-1143 *3 *4)))))
-(((*1 *1 *1 *1 *2 *3)
- (-12 (-5 *2 (-945 *5)) (-5 *3 (-772)) (-4 *5 (-1051))
- (-5 *1 (-1166 *4 *5)) (-14 *4 (-923)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-1102)) (-5 *1 (-931 *3 *2)) (-4 *2 (-433 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1178)) (-5 *2 (-317 (-567))) (-5 *1 (-932)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-894 *4)) (-4 *4 (-1102)) (-5 *1 (-891 *4 *3))
- (-4 *3 (-1102)))))
-(((*1 *2 *1) (-12 (-5 *2 (-645 (-954 (-567)))) (-5 *1 (-440))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1178)) (-5 *4 (-690 (-225))) (-5 *2 (-1106))
- (-5 *1 (-760))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1178)) (-5 *4 (-690 (-567))) (-5 *2 (-1106))
- (-5 *1 (-760)))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3)
- (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225))
- (-5 *2 (-1037)) (-5 *1 (-754)))))
-(((*1 *2 *3 *3 *1)
- (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
- (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-3 *3 (-645 *1)))
- (-4 *1 (-1073 *4 *5 *6 *3)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-388 *2)) (-4 *2 (-1102)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-169 *4)) (-5 *1 (-181 *4 *3))
+ (-4 *4 (-13 (-365) (-849))) (-4 *3 (-1245 *2)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1242 *5 *4)) (-4 *4 (-821)) (-14 *5 (-1179))
+ (-5 *2 (-645 *4)) (-5 *1 (-1116 *4 *5)))))
+(((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-700))))
+ ((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-700)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-410 (-954 *3))) (-5 *1 (-456 *3 *4 *5 *6))
+ (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923))
+ (-14 *5 (-645 (-1179))) (-14 *6 (-1269 (-690 *3))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-1159 *3))) (-5 *1 (-1159 *3)) (-4 *3 (-1219)))))
+(((*1 *2)
+ (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3))
+ (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112)))))
(((*1 *2 *1) (-12 (-5 *2 (-139)) (-5 *1 (-140))))
((*1 *2 *1) (-12 (-5 *1 (-183 *2)) (-4 *2 (-185))))
((*1 *2 *1) (-12 (-5 *2 (-249)) (-5 *1 (-248)))))
-(((*1 *1) (-5 *1 (-130))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851))
- (-4 *7 (-1067 *4 *5 *6))
- (-5 *2 (-2 (|:| |bas| (-479 *4 *5 *6 *7)) (|:| -2262 (-645 *7))))
- (-5 *1 (-979 *4 *5 *6 *7)) (-5 *3 (-645 *7)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-772)) (-5 *1 (-784 *2)) (-4 *2 (-38 (-410 (-567))))
- (-4 *2 (-172)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-1051)) (-4 *4 (-1244 *3)) (-5 *1 (-164 *3 *4 *2))
- (-4 *2 (-1244 *4))))
- ((*1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1218)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3)
- (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225))
- (-5 *2 (-1037)) (-5 *1 (-753)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1174 *1)) (-5 *4 (-1178)) (-4 *1 (-27))
- (-5 *2 (-645 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-1174 *1)) (-4 *1 (-27)) (-5 *2 (-645 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-954 *1)) (-4 *1 (-27)) (-5 *2 (-645 *1))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1178)) (-4 *4 (-559)) (-5 *2 (-645 *1))
- (-4 *1 (-29 *4))))
- ((*1 *2 *1) (-12 (-4 *3 (-559)) (-5 *2 (-645 *1)) (-4 *1 (-29 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-317 (-225))) (-5 *4 (-645 (-1178)))
- (-5 *5 (-1096 (-844 (-225)))) (-5 *2 (-1158 (-225))) (-5 *1 (-301)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919))))
- ((*1 *2) (-12 (-5 *2 (-906 (-567))) (-5 *1 (-919)))))
-(((*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-1102))))
- ((*1 *1 *1) (-5 *1 (-633))))
(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
(-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
(-4 *2 (-13 (-433 *3) (-1004)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3))
- (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4))))
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3))
+ (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3))
- (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4))))
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3))
+ (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567))))
- (-5 *1 (-1163 *3))))
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1164 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567))))
- (-5 *1 (-1164 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1178)) (-4 *4 (-559)) (-5 *1 (-158 *4 *2))
- (-4 *2 (-433 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1094 *2)) (-4 *2 (-433 *4)) (-4 *4 (-559))
- (-5 *1 (-158 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1094 *1)) (-4 *1 (-160))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1178)))))
-(((*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-128)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-645 (-645 (-945 (-225))))) (-5 *1 (-1213 *3))
- (-4 *3 (-976)))))
-(((*1 *1) (-5 *1 (-144))))
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1165 *3)))))
+(((*1 *2 *3 *1)
+ (-12 (|has| *1 (-6 -4422)) (-4 *1 (-492 *3)) (-4 *3 (-1219))
+ (-4 *3 (-1102)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-907 *4)) (-4 *4 (-1102)) (-5 *2 (-112))
+ (-5 *1 (-906 *4))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-923)) (-5 *2 (-112)) (-5 *1 (-1103 *4 *5)) (-14 *4 *3)
+ (-14 *5 *3))))
+(((*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-410 (-567))) (-4 *1 (-557 *3))
+ (-4 *3 (-13 (-407) (-1204)))))
+ ((*1 *1 *2) (-12 (-4 *1 (-557 *2)) (-4 *2 (-13 (-407) (-1204)))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-557 *2)) (-4 *2 (-13 (-407) (-1204))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1175 *1)) (-5 *4 (-1179)) (-4 *1 (-27))
+ (-5 *2 (-645 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1175 *1)) (-4 *1 (-27)) (-5 *2 (-645 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-954 *1)) (-4 *1 (-27)) (-5 *2 (-645 *1))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1179)) (-4 *4 (-559)) (-5 *2 (-645 *1))
+ (-4 *1 (-29 *4))))
+ ((*1 *2 *1) (-12 (-4 *3 (-559)) (-5 *2 (-645 *1)) (-4 *1 (-29 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172)))))
+(((*1 *2 *3 *3 *3 *4 *5 *4 *6)
+ (-12 (-5 *3 (-317 (-567))) (-5 *4 (-1 (-225) (-225)))
+ (-5 *5 (-1096 (-225))) (-5 *6 (-567)) (-5 *2 (-1214 (-928)))
+ (-5 *1 (-319))))
+ ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7)
+ (-12 (-5 *3 (-317 (-567))) (-5 *4 (-1 (-225) (-225)))
+ (-5 *5 (-1096 (-225))) (-5 *6 (-567)) (-5 *7 (-1161))
+ (-5 *2 (-1214 (-928))) (-5 *1 (-319))))
+ ((*1 *2 *3 *3 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-317 (-567))) (-5 *4 (-1 (-225) (-225)))
+ (-5 *5 (-1096 (-225))) (-5 *6 (-225)) (-5 *7 (-567))
+ (-5 *2 (-1214 (-928))) (-5 *1 (-319))))
+ ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8)
+ (-12 (-5 *3 (-317 (-567))) (-5 *4 (-1 (-225) (-225)))
+ (-5 *5 (-1096 (-225))) (-5 *6 (-225)) (-5 *7 (-567)) (-5 *8 (-1161))
+ (-5 *2 (-1214 (-928))) (-5 *1 (-319)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-613 *1)) (-4 *1 (-303)))))
+(((*1 *2)
+ (-12 (-4 *3 (-1223)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4)))
+ (-5 *2 (-1269 *1)) (-4 *1 (-344 *3 *4 *5)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-559)) (-4 *3 (-172)) (-4 *4 (-375 *3))
- (-4 *5 (-375 *3)) (-5 *1 (-689 *3 *4 *5 *2))
- (-4 *2 (-688 *3 *4 *5)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-645 (-52))) (-5 *1 (-894 *3)) (-4 *3 (-1102)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-567)) (|has| *1 (-6 -4409)) (-4 *1 (-407))
- (-5 *2 (-923)))))
-(((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-470))))
- ((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-470))))
- ((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-929)))))
-(((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-823)))))
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1004))))))
(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
(-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
(-4 *2 (-13 (-433 *3) (-1004)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3))
- (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4))))
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3))
+ (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3))
- (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4))))
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3))
+ (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567))))
- (-5 *1 (-1163 *3))))
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1164 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567))))
- (-5 *1 (-1164 *3)))))
-(((*1 *2 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-308)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1178)) (-5 *3 (-645 (-954 (-567))))
- (-5 *4 (-317 (-169 (-381)))) (-5 *1 (-331))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1178)) (-5 *3 (-645 (-954 (-567))))
- (-5 *4 (-317 (-381))) (-5 *1 (-331))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1178)) (-5 *3 (-645 (-954 (-567))))
- (-5 *4 (-317 (-567))) (-5 *1 (-331))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1178)) (-5 *3 (-1268 (-317 (-169 (-381)))))
- (-5 *1 (-331))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1178)) (-5 *3 (-1268 (-317 (-381)))) (-5 *1 (-331))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1178)) (-5 *3 (-1268 (-317 (-567)))) (-5 *1 (-331))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1178)) (-5 *3 (-690 (-317 (-169 (-381)))))
- (-5 *1 (-331))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1178)) (-5 *3 (-690 (-317 (-381)))) (-5 *1 (-331))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1178)) (-5 *3 (-690 (-317 (-567)))) (-5 *1 (-331))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1178)) (-5 *3 (-317 (-169 (-381)))) (-5 *1 (-331))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1178)) (-5 *3 (-317 (-381))) (-5 *1 (-331))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1178)) (-5 *3 (-317 (-567))) (-5 *1 (-331))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1178)) (-5 *3 (-645 (-954 (-567))))
- (-5 *4 (-317 (-695))) (-5 *1 (-331))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1178)) (-5 *3 (-645 (-954 (-567))))
- (-5 *4 (-317 (-700))) (-5 *1 (-331))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1178)) (-5 *3 (-645 (-954 (-567))))
- (-5 *4 (-317 (-702))) (-5 *1 (-331))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1178)) (-5 *3 (-1268 (-317 (-695)))) (-5 *1 (-331))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1178)) (-5 *3 (-1268 (-317 (-700)))) (-5 *1 (-331))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1178)) (-5 *3 (-1268 (-317 (-702)))) (-5 *1 (-331))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1178)) (-5 *3 (-690 (-317 (-695)))) (-5 *1 (-331))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1178)) (-5 *3 (-690 (-317 (-700)))) (-5 *1 (-331))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1178)) (-5 *3 (-690 (-317 (-702)))) (-5 *1 (-331))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1178)) (-5 *3 (-1268 (-695))) (-5 *1 (-331))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1178)) (-5 *3 (-1268 (-700))) (-5 *1 (-331))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1178)) (-5 *3 (-1268 (-702))) (-5 *1 (-331))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1178)) (-5 *3 (-690 (-695))) (-5 *1 (-331))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1178)) (-5 *3 (-690 (-700))) (-5 *1 (-331))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1178)) (-5 *3 (-690 (-702))) (-5 *1 (-331))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1178)) (-5 *3 (-317 (-695))) (-5 *1 (-331))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1178)) (-5 *3 (-317 (-700))) (-5 *1 (-331))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1178)) (-5 *3 (-317 (-702))) (-5 *1 (-331))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-1160)) (-5 *1 (-331))))
- ((*1 *1 *1 *1) (-5 *1 (-863))))
-(((*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-906 (-567))) (-5 *1 (-919))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-1 (-225) (-225) (-225)))
- (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined"))
- (-5 *5 (-1096 (-225))) (-5 *6 (-645 (-264))) (-5 *2 (-1135 (-225)))
- (-5 *1 (-698)))))
-(((*1 *1 *1 *1) (-5 *1 (-863))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1259 *4)) (-5 *1 (-1261 *4 *2))
- (-4 *4 (-38 (-410 (-567)))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *5 *5))
- (-4 *5 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567)))))))
- (-5 *2
- (-2 (|:| |solns| (-645 *5))
- (|:| |maps| (-645 (-2 (|:| |arg| *5) (|:| |res| *5))))))
- (-5 *1 (-1130 *3 *5)) (-4 *3 (-1244 *5)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-823)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-363 *3)) (-4 *3 (-1102))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-567)) (-4 *1 (-388 *4)) (-4 *4 (-1102)) (-5 *2 (-772))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-567)) (-4 *2 (-23)) (-5 *1 (-650 *4 *2 *5))
- (-4 *4 (-1102)) (-14 *5 *2))))
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1165 *3)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-645 *4)) (-4 *4 (-1102)) (-4 *4 (-1219)) (-5 *2 (-112))
+ (-5 *1 (-1159 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1161)) (-5 *1 (-787)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-295 (-954 (-567))))
- (-5 *2
- (-2 (|:| |varOrder| (-645 (-1178)))
- (|:| |inhom| (-3 (-645 (-1268 (-772))) "failed"))
- (|:| |hom| (-645 (-1268 (-772))))))
- (-5 *1 (-236)))))
+ (-12 (-5 *3 (-1179))
+ (-4 *4 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147)))
+ (-5 *2 (-1 *5 *5)) (-5 *1 (-805 *4 *5))
+ (-4 *5 (-13 (-29 *4) (-1204) (-961))))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7)
+ (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225)))
+ (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-75 FCN JACOBF JACEPS))))
+ (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-76 G JACOBG JACGEP))))
+ (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-750)))))
+(((*1 *1 *1 *1) (-5 *1 (-863))))
+(((*1 *2 *3) (-12 (-5 *3 (-945 *2)) (-5 *1 (-984 *2)) (-4 *2 (-1051)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-951 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794))
+ (-4 *2 (-851))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-794)) (-4 *5 (-1051)) (-4 *6 (-951 *5 *4 *2))
+ (-4 *2 (-851)) (-5 *1 (-952 *4 *2 *5 *6 *3))
+ (-4 *3
+ (-13 (-365)
+ (-10 -8 (-15 -4129 ($ *6)) (-15 -1447 (*6 $))
+ (-15 -1462 (*6 $)))))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-410 (-954 *4))) (-4 *4 (-559))
+ (-5 *2 (-1179)) (-5 *1 (-1045 *4)))))
+(((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4))
+ (-4 *3 (-369 *4))))
+ ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-690 (-567))) (-5 *3 (-645 (-567))) (-5 *1 (-1112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-1224))))))
(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
(-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
(-4 *2 (-13 (-433 *3) (-1004)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3))
- (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4))))
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3))
+ (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3))
- (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4))))
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3))
+ (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567))))
- (-5 *1 (-1163 *3))))
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1164 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567))))
- (-5 *1 (-1164 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-923)) (-5 *2 (-1174 *4)) (-5 *1 (-359 *4))
- (-4 *4 (-351)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-923))
- (-5 *2
- (-3 (-1174 *4)
- (-1268 (-645 (-2 (|:| -3802 *4) (|:| -3768 (-1122)))))))
- (-5 *1 (-348 *4)) (-4 *4 (-351)))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-645 *6)) (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051))
- (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5))
- (-4 *3 (-559)))))
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1165 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *2 (-559)) (-5 *1 (-971 *2 *3)) (-4 *3 (-1245 *2)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))))
+(((*1 *1 *1 *2 *3 *1)
+ (-12 (-4 *1 (-327 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-793)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1102)) (-4 *6 (-888 *5)) (-5 *2 (-887 *5 *6 (-645 *6)))
+ (-5 *1 (-889 *5 *6 *4)) (-5 *3 (-645 *6)) (-4 *4 (-615 (-894 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1102)) (-5 *2 (-645 (-295 *3))) (-5 *1 (-889 *5 *3 *4))
+ (-4 *3 (-1040 (-1179))) (-4 *3 (-888 *5)) (-4 *4 (-615 (-894 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1102)) (-5 *2 (-645 (-295 (-954 *3))))
+ (-5 *1 (-889 *5 *3 *4)) (-4 *3 (-1051))
+ (-1673 (-4 *3 (-1040 (-1179)))) (-4 *3 (-888 *5))
+ (-4 *4 (-615 (-894 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1102)) (-5 *2 (-891 *5 *3)) (-5 *1 (-889 *5 *3 *4))
+ (-1673 (-4 *3 (-1040 (-1179)))) (-1673 (-4 *3 (-1051)))
+ (-4 *3 (-888 *5)) (-4 *4 (-615 (-894 *5))))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-112)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-690 *7)) (-5 *3 (-645 *7)) (-4 *7 (-951 *4 *6 *5))
- (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1178))))
- (-4 *6 (-794)) (-5 *1 (-926 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-114)) (-4 *4 (-1051)) (-5 *1 (-715 *4 *2))
+ (-4 *2 (-649 *4))))
+ ((*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-837 *2)) (-4 *2 (-1051)))))
(((*1 *2 *3)
(-12 (-4 *4 (-559)) (-5 *2 (-772)) (-5 *1 (-43 *4 *3))
(-4 *3 (-420 *4)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-388 *2)) (-4 *2 (-1102)))))
+(((*1 *1 *1 *1) (-4 *1 (-303))) ((*1 *1 *1) (-4 *1 (-303))))
(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
(-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
(-4 *2 (-13 (-433 *3) (-1004)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3))
- (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4))))
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3))
+ (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3))
- (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4))))
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3))
+ (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567))))
- (-5 *1 (-1163 *3))))
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1164 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567))))
- (-5 *1 (-1164 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-772)) (-5 *2 (-690 (-954 *4))) (-5 *1 (-1030 *4))
- (-4 *4 (-1051)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1174 *9)) (-5 *4 (-645 *7)) (-4 *7 (-851))
- (-4 *9 (-951 *8 *6 *7)) (-4 *6 (-794)) (-4 *8 (-308))
- (-5 *2 (-645 (-772))) (-5 *1 (-743 *6 *7 *8 *9)) (-5 *5 (-772)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-433 *3) (-1004))))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-772)) (-4 *4 (-13 (-1051) (-718 (-410 (-567)))))
- (-4 *5 (-851)) (-5 *1 (-1284 *4 *5 *2)) (-4 *2 (-1289 *5 *4)))))
-(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1 *8 *8))
- (-5 *5
- (-1 (-2 (|:| |ans| *7) (|:| -2963 *7) (|:| |sol?| (-112)))
- (-567) *7))
- (-5 *6 (-645 (-410 *8))) (-4 *7 (-365)) (-4 *8 (-1244 *7))
- (-5 *3 (-410 *8))
- (-5 *2
- (-2
- (|:| |answer|
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (|:| |a0| *7)))
- (-5 *1 (-577 *7 *8)))))
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1165 *3)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567)))))))
+ (-5 *1 (-1130 *3 *2)) (-4 *3 (-1245 *2)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *1 (-879 *2)) (-4 *2 (-1219))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *1 (-881 *2)) (-4 *2 (-1219))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *1 (-884 *2)) (-4 *2 (-1219)))))
+(((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-772)) (-4 *5 (-365)) (-5 *2 (-410 *6))
+ (-5 *1 (-868 *5 *4 *6)) (-4 *4 (-1260 *5)) (-4 *6 (-1245 *5))))
+ ((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-772)) (-5 *4 (-1261 *5 *6 *7)) (-4 *5 (-365))
+ (-14 *6 (-1179)) (-14 *7 *5) (-5 *2 (-410 (-1242 *6 *5)))
+ (-5 *1 (-869 *5 *6 *7))))
+ ((*1 *2 *3 *3 *4)
+ (|partial| -12 (-5 *3 (-772)) (-5 *4 (-1261 *5 *6 *7)) (-4 *5 (-365))
+ (-14 *6 (-1179)) (-14 *7 *5) (-5 *2 (-410 (-1242 *6 *5)))
+ (-5 *1 (-869 *5 *6 *7)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-772)) (-4 *4 (-351)) (-5 *1 (-216 *4 *2))
+ (-4 *2 (-1245 *4))))
+ ((*1 *2 *2 *3 *2 *3)
+ (-12 (-5 *3 (-567)) (-5 *1 (-697 *2)) (-4 *2 (-1245 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-645 (-264))) (-5 *4 (-1178)) (-5 *2 (-112))
- (-5 *1 (-264)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-559)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3))
- (-5 *1 (-1208 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))))
-(((*1 *2 *3 *3 *2 *4)
- (-12 (-5 *3 (-690 *2)) (-5 *4 (-567))
- (-4 *2 (-13 (-308) (-10 -8 (-15 -2908 ((-421 $) $)))))
- (-4 *5 (-1244 *2)) (-5 *1 (-502 *2 *5 *6)) (-4 *6 (-412 *2 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-169 (-567))) (-5 *2 (-112)) (-5 *1 (-449))))
- ((*1 *2 *3)
- (-12
- (-5 *3
- (-507 (-410 (-567)) (-240 *5 (-772)) (-865 *4)
- (-247 *4 (-410 (-567)))))
- (-14 *4 (-645 (-1178))) (-14 *5 (-772)) (-5 *2 (-112))
- (-5 *1 (-508 *4 *5))))
- ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-963 *3)) (-4 *3 (-548))))
- ((*1 *2 *1) (-12 (-4 *1 (-1222)) (-5 *2 (-112)))))
+ (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1245 *6))
+ (-4 *6 (-13 (-27) (-433 *5))) (-4 *5 (-13 (-559) (-1040 (-567))))
+ (-4 *8 (-1245 (-410 *7))) (-5 *2 (-588 *3))
+ (-5 *1 (-555 *5 *6 *7 *8 *3)) (-4 *3 (-344 *6 *7 *8)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-690 (-317 (-225)))) (-5 *2 (-381)) (-5 *1 (-205)))))
(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
(-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
(-4 *2 (-13 (-433 *3) (-1004)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3))
- (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4))))
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3))
+ (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3))
- (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4))))
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3))
+ (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567))))
- (-5 *1 (-1163 *3))))
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1164 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567))))
- (-5 *1 (-1164 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-455)) (-4 *4 (-559))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| -2806 *4))) (-5 *1 (-971 *4 *3))
- (-4 *3 (-1244 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1174 *7)) (-5 *3 (-567)) (-4 *7 (-951 *6 *4 *5))
- (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1051))
- (-5 *1 (-322 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-455))
- (-5 *2
- (-645
- (-2 (|:| |eigval| (-3 (-410 (-954 *4)) (-1167 (-1178) (-954 *4))))
- (|:| |geneigvec| (-645 (-690 (-410 (-954 *4))))))))
- (-5 *1 (-293 *4)) (-5 *3 (-690 (-410 (-954 *4)))))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-922)) (-5 *2 (-2 (|:| -3694 (-645 *1)) (|:| -1398 *1)))
- (-5 *3 (-645 *1)))))
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1165 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1178)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-703 *4 *5 *6 *7))
- (-4 *4 (-615 (-539))) (-4 *5 (-1218)) (-4 *6 (-1218))
- (-4 *7 (-1218)))))
-(((*1 *2 *3 *4 *4 *3)
- (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037))
- (-5 *1 (-748)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-530)) (-5 *3 (-128)) (-5 *2 (-772)))))
+ (-12 (-4 *4 (-1245 (-410 *2))) (-5 *2 (-567)) (-5 *1 (-915 *4 *3))
+ (-4 *3 (-1245 (-410 *4))))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-410 (-567))) (-5 *1 (-597 *3)) (-4 *3 (-38 *2))
+ (-4 *3 (-1051)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-582)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-825)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-151 *2))
+ (-4 *2 (-1219)))))
+(((*1 *2) (-12 (-5 *2 (-645 (-1179))) (-5 *1 (-105)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-772)) (-4 *5 (-559))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-971 *5 *3)) (-4 *3 (-1245 *5)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-891 *5 *3)) (-5 *4 (-894 *5)) (-4 *5 (-1102))
+ (-4 *3 (-166 *6)) (-4 (-954 *6) (-888 *5))
+ (-4 *6 (-13 (-888 *5) (-172))) (-5 *1 (-178 *5 *6 *3))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *2 (-891 *4 *1)) (-5 *3 (-894 *4)) (-4 *1 (-888 *4))
+ (-4 *4 (-1102))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-891 *5 *6)) (-5 *4 (-894 *5)) (-4 *5 (-1102))
+ (-4 *6 (-13 (-1102) (-1040 *3))) (-4 *3 (-888 *5))
+ (-5 *1 (-933 *5 *3 *6))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-891 *5 *3)) (-4 *5 (-1102))
+ (-4 *3 (-13 (-433 *6) (-615 *4) (-888 *5) (-1040 (-613 $))))
+ (-5 *4 (-894 *5)) (-4 *6 (-13 (-559) (-888 *5)))
+ (-5 *1 (-934 *5 *6 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-891 (-567) *3)) (-5 *4 (-894 (-567))) (-4 *3 (-548))
+ (-5 *1 (-935 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-891 *5 *6)) (-5 *3 (-613 *6)) (-4 *5 (-1102))
+ (-4 *6 (-13 (-1102) (-1040 (-613 $)) (-615 *4) (-888 *5)))
+ (-5 *4 (-894 *5)) (-5 *1 (-936 *5 *6))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-887 *5 *6 *3)) (-5 *4 (-894 *5)) (-4 *5 (-1102))
+ (-4 *6 (-888 *5)) (-4 *3 (-667 *6)) (-5 *1 (-937 *5 *6 *3))))
+ ((*1 *2 *3 *4 *2 *5)
+ (-12 (-5 *5 (-1 (-891 *6 *3) *8 (-894 *6) (-891 *6 *3)))
+ (-4 *8 (-851)) (-5 *2 (-891 *6 *3)) (-5 *4 (-894 *6))
+ (-4 *6 (-1102)) (-4 *3 (-13 (-951 *9 *7 *8) (-615 *4)))
+ (-4 *7 (-794)) (-4 *9 (-13 (-1051) (-888 *6)))
+ (-5 *1 (-938 *6 *7 *8 *9 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-891 *5 *3)) (-4 *5 (-1102))
+ (-4 *3 (-13 (-951 *8 *6 *7) (-615 *4))) (-5 *4 (-894 *5))
+ (-4 *7 (-888 *5)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-4 *8 (-13 (-1051) (-888 *5))) (-5 *1 (-938 *5 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-891 *5 *3)) (-4 *5 (-1102)) (-4 *3 (-994 *6))
+ (-4 *6 (-13 (-559) (-888 *5) (-615 *4))) (-5 *4 (-894 *5))
+ (-5 *1 (-941 *5 *6 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-891 *5 (-1179))) (-5 *3 (-1179)) (-5 *4 (-894 *5))
+ (-4 *5 (-1102)) (-5 *1 (-942 *5))))
+ ((*1 *2 *3 *4 *5 *2 *6)
+ (-12 (-5 *4 (-645 (-894 *7))) (-5 *5 (-1 *9 (-645 *9)))
+ (-5 *6 (-1 (-891 *7 *9) *9 (-894 *7) (-891 *7 *9))) (-4 *7 (-1102))
+ (-4 *9 (-13 (-1051) (-615 (-894 *7)) (-1040 *8)))
+ (-5 *2 (-891 *7 *9)) (-5 *3 (-645 *9)) (-4 *8 (-1051))
+ (-5 *1 (-943 *7 *8 *9)))))
(((*1 *2 *2)
(-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
(-4 *2 (-13 (-433 *3) (-1004)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3))
- (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4))))
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3))
+ (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3))
- (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4))))
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3))
+ (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4))))
((*1 *1 *1) (-4 *1 (-496)))
((*1 *2 *2)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567))))
- (-5 *1 (-1163 *3))))
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1164 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567))))
- (-5 *1 (-1164 *3)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1268 *6)) (-5 *4 (-1268 (-567))) (-5 *5 (-567))
- (-4 *6 (-1102)) (-5 *2 (-1 *6)) (-5 *1 (-1019 *6)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *3 (-567)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime"))
- (-5 *1 (-421 *2)) (-4 *2 (-559)))))
-(((*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-112)) (-5 *1 (-268)))))
-(((*1 *1 *1 *2 *2)
- (|partial| -12 (-5 *2 (-923)) (-5 *1 (-1103 *3 *4)) (-14 *3 *2)
- (-14 *4 *2))))
-(((*1 *1 *1 *1) (-5 *1 (-863))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
- (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225)))
- (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-79 LSFUN1))))
- (-5 *2 (-1037)) (-5 *1 (-754)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-1178))) (-5 *1 (-539)))))
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1165 *3)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-567)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime"))
+ (-5 *1 (-421 *4)) (-4 *4 (-559)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-645 (-645 *8))) (-5 *3 (-645 *8))
+ (-4 *8 (-951 *5 *7 *6)) (-4 *5 (-13 (-308) (-147)))
+ (-4 *6 (-13 (-851) (-615 (-1179)))) (-4 *7 (-794)) (-5 *2 (-112))
+ (-5 *1 (-926 *5 *6 *7 *8)))))
+(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1204))))
+ ((*1 *2 *1) (-12 (-5 *1 (-332 *2)) (-4 *2 (-851))))
+ ((*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-613 *3)) (-4 *3 (-1102)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-605 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1219))
+ (-5 *2 (-112)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1179)) (-5 *3 (-381)) (-5 *1 (-1065)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-567)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1219))
+ (-4 *5 (-375 *4)) (-4 *2 (-375 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-567)) (-4 *1 (-1055 *4 *5 *6 *7 *2)) (-4 *6 (-1051))
+ (-4 *7 (-238 *5 *6)) (-4 *2 (-238 *4 *6)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1167 *3 *4)) (-14 *3 (-923))
+ (-4 *4 (-1051)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-559)) (-5 *2 (-112)) (-5 *1 (-277 *4 *3))
+ (-4 *3 (-13 (-433 *4) (-1004))))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-1179))) (-5 *1 (-539)))))
(((*1 *2 *2)
(-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
(-4 *2 (-13 (-433 *3) (-1004)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3))
- (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4))))
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3))
+ (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3))
- (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4))))
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3))
+ (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4))))
((*1 *1 *1) (-4 *1 (-496)))
((*1 *2 *2)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567))))
- (-5 *1 (-1163 *3))))
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1164 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567))))
- (-5 *1 (-1164 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-645 *3)) (-4 *3 (-951 *5 *6 *7)) (-4 *5 (-455))
- (-4 *6 (-794)) (-4 *7 (-851))
- (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5)))
- (-5 *1 (-452 *5 *6 *7 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1051))
- (-14 *4 (-645 (-1178)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1218))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1051) (-851)))
- (-14 *4 (-645 (-1178)))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-673 *3)) (-4 *3 (-851))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-678 *3)) (-4 *3 (-851))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-895 *3)) (-4 *3 (-851)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-112)) (-4 *6 (-13 (-455) (-1040 (-567)) (-640 (-567))))
- (-4 *3 (-13 (-27) (-1203) (-433 *6) (-10 -8 (-15 -4132 ($ *7)))))
- (-4 *7 (-849))
- (-4 *8
- (-13 (-1246 *3 *7) (-365) (-1203)
- (-10 -8 (-15 -1593 ($ $)) (-15 -2416 ($ $)))))
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1165 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-225)) (-5 *1 (-306)))))
+(((*1 *2 *3 *4 *5 *5 *4 *6)
+ (-12 (-5 *5 (-613 *4)) (-5 *6 (-1175 *4))
+ (-4 *4 (-13 (-433 *7) (-27) (-1204)))
+ (-4 *7 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567))))
(-5 *2
- (-3 (|:| |%series| *8)
- (|:| |%problem| (-2 (|:| |func| (-1160)) (|:| |prob| (-1160))))))
- (-5 *1 (-425 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1160)) (-4 *9 (-985 *8))
- (-14 *10 (-1178)))))
-(((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1218)))))
-(((*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1273)) (-5 *1 (-1140))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-645 (-863))) (-5 *2 (-1273)) (-5 *1 (-1140)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1270)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794))
- (-4 *4 (-851))))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-1211 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794))
- (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5)))))
-(((*1 *2)
- (-12 (-5 *2 (-1273)) (-5 *1 (-1195 *3 *4)) (-4 *3 (-1102))
- (-4 *4 (-1102)))))
-(((*1 *2 *1) (-12 (-4 *1 (-768 *3)) (-4 *3 (-1102)) (-5 *2 (-112)))))
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2144 (-645 *4))))
+ (-5 *1 (-563 *7 *4 *3)) (-4 *3 (-657 *4)) (-4 *3 (-1102))))
+ ((*1 *2 *3 *4 *5 *5 *5 *4 *6)
+ (-12 (-5 *5 (-613 *4)) (-5 *6 (-410 (-1175 *4)))
+ (-4 *4 (-13 (-433 *7) (-27) (-1204)))
+ (-4 *7 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2144 (-645 *4))))
+ (-5 *1 (-563 *7 *4 *3)) (-4 *3 (-657 *4)) (-4 *3 (-1102)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-645 *2)) (-4 *2 (-951 *4 *5 *6)) (-4 *4 (-308))
+ (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-450 *4 *5 *6 *2)))))
+(((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1219)))))
+(((*1 *2 *1) (-12 (-5 *2 (-645 (-945 (-225)))) (-5 *1 (-1270)))))
+(((*1 *1 *1 *1) (-5 *1 (-863))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-692 (-874 (-968 *3) (-968 *3)))) (-5 *1 (-968 *3))
+ (-4 *3 (-1102)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-772)) (|:| |poli| *2)
+ (|:| |polj| *2)))
+ (-4 *5 (-794)) (-4 *2 (-951 *4 *5 *6)) (-5 *1 (-452 *4 *5 *6 *2))
+ (-4 *4 (-455)) (-4 *6 (-851)))))
(((*1 *2 *2)
(-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
(-4 *2 (-13 (-433 *3) (-1004)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3))
- (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4))))
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3))
+ (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3))
- (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4))))
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3))
+ (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4))))
((*1 *1 *1) (-4 *1 (-496)))
((*1 *2 *2)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567))))
- (-5 *1 (-1163 *3))))
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1164 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567))))
- (-5 *1 (-1164 *3)))))
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1165 *3)))))
+(((*1 *1) (-5 *1 (-1087))))
(((*1 *2 *3 *4)
- (-12 (-4 *7 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-559))
- (-4 *8 (-951 *7 *5 *6))
- (-5 *2 (-2 (|:| -3458 (-772)) (|:| -3694 *3) (|:| |radicand| *3)))
- (-5 *1 (-955 *5 *6 *7 *8 *3)) (-5 *4 (-772))
- (-4 *3
- (-13 (-365)
- (-10 -8 (-15 -4132 ($ *8)) (-15 -1448 (*8 $)) (-15 -1460 (*8 $))))))))
-(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4))
- (-4 *3 (-369 *4))))
- ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-381)) (-5 *1 (-97)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-410 (-954 *3))) (-5 *1 (-456 *3 *4 *5 *6))
- (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923))
- (-14 *5 (-645 (-1178))) (-14 *6 (-1268 (-690 *3))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-254 *3 *4 *2 *5)) (-4 *3 (-1051)) (-4 *4 (-851))
- (-4 *5 (-794)) (-4 *2 (-267 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455))
- (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112))
- (-5 *1 (-990 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7))))
+ (|partial| -12 (-5 *3 (-1269 *4)) (-4 *4 (-640 (-567)))
+ (-5 *2 (-1269 (-410 (-567)))) (-5 *1 (-1296 *4)))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-645 (-690 *6))) (-5 *4 (-112)) (-5 *5 (-567))
+ (-5 *2 (-690 *6)) (-5 *1 (-1031 *6)) (-4 *6 (-365)) (-4 *6 (-1051))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455))
- (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112))
- (-5 *1 (-1109 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-509)) (-5 *3 (-645 (-967))) (-5 *1 (-109)))))
-(((*1 *2 *1) (-12 (-4 *1 (-512 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-851)))))
+ (-12 (-5 *3 (-645 (-690 *4))) (-5 *2 (-690 *4)) (-5 *1 (-1031 *4))
+ (-4 *4 (-365)) (-4 *4 (-1051))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-645 (-690 *5))) (-5 *4 (-567)) (-5 *2 (-690 *5))
+ (-5 *1 (-1031 *5)) (-4 *5 (-365)) (-4 *5 (-1051)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567))))))
+ (-12 (-4 *3 (-1040 (-567))) (-4 *3 (-559)) (-5 *1 (-32 *3 *2))
+ (-4 *2 (-433 *3))))
+ ((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-1175 *4)) (-5 *1 (-165 *3 *4))
+ (-4 *3 (-166 *4))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1051)) (-4 *1 (-303))))
+ ((*1 *2) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-1175 *3))))
+ ((*1 *2) (-12 (-4 *1 (-725 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1245 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1070 *3 *2)) (-4 *3 (-13 (-849) (-365)))
+ (-4 *2 (-1245 *3)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))))
+(((*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-1102)))))
+(((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-772)) (-5 *1 (-783 *3)) (-4 *3 (-1051))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *1 (-965 *3 *2)) (-4 *2 (-131)) (-4 *3 (-559))
+ (-4 *3 (-1051)) (-4 *2 (-793))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-772)) (-5 *1 (-1175 *3)) (-4 *3 (-1051))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-973)) (-4 *2 (-131)) (-5 *1 (-1181 *3)) (-4 *3 (-559))
+ (-4 *3 (-1051))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-772)) (-5 *1 (-1242 *4 *3)) (-14 *4 (-1179))
+ (-4 *3 (-1051)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-978 *3 *4 *2 *5)) (-4 *3 (-1051)) (-4 *4 (-794))
+ (-4 *2 (-851)) (-4 *5 (-1067 *3 *4 *2)))))
(((*1 *2 *2)
(-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
(-4 *2 (-13 (-433 *3) (-1004)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3))
- (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4))))
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3))
+ (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3))
- (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4))))
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3))
+ (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1178)))
- (-14 *3 (-645 (-1178))) (-4 *4 (-390))))
+ (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1179)))
+ (-14 *3 (-645 (-1179))) (-4 *4 (-390))))
((*1 *1 *1) (-4 *1 (-496)))
((*1 *2 *2)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567))))
- (-5 *1 (-1163 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567))))
- (-5 *1 (-1164 *3)))))
-(((*1 *1 *1) (-12 (-5 *1 (-421 *2)) (-4 *2 (-559)))))
-(((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1008))))
- ((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1008)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-559))
- (-5 *2 (-2 (|:| -2316 (-690 *5)) (|:| |vec| (-1268 (-645 (-923))))))
- (-5 *1 (-90 *5 *3)) (-5 *4 (-923)) (-4 *3 (-657 *5)))))
-(((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5
- (-1 (-2 (|:| |ans| *6) (|:| -2963 *6) (|:| |sol?| (-112))) (-567)
- *6))
- (-4 *6 (-365)) (-4 *7 (-1244 *6))
- (-5 *2
- (-3 (-2 (|:| |answer| (-410 *7)) (|:| |a0| *6))
- (-2 (|:| -1752 (-410 *7)) (|:| |coeff| (-410 *7))) "failed"))
- (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7)))))
-(((*1 *2 *3 *2)
- (|partial| -12 (-5 *2 (-1268 *4)) (-5 *3 (-690 *4)) (-4 *4 (-365))
- (-5 *1 (-668 *4))))
- ((*1 *2 *3 *2)
- (|partial| -12 (-4 *4 (-365))
- (-4 *5 (-13 (-375 *4) (-10 -7 (-6 -4419))))
- (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4419))))
- (-5 *1 (-669 *4 *5 *2 *3)) (-4 *3 (-688 *4 *5 *2))))
- ((*1 *2 *3 *2 *4 *5)
- (|partial| -12 (-5 *4 (-645 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-365))
- (-5 *1 (-815 *2 *3)) (-4 *3 (-657 *2))))
- ((*1 *2 *3)
- (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567)))))))
- (-5 *1 (-1130 *3 *2)) (-4 *3 (-1244 *2)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 (-772) *2)) (-5 *4 (-772)) (-4 *2 (-1102))
- (-5 *1 (-679 *2))))
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1164 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1 *3 (-772) *3)) (-4 *3 (-1102)) (-5 *1 (-683 *3)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-772)) (-4 *4 (-1051))
- (-5 *2 (-2 (|:| -3102 *1) (|:| -4194 *1))) (-4 *1 (-1244 *4)))))
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1165 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-645 (-1178))) (-4 *4 (-13 (-308) (-147)))
- (-4 *5 (-13 (-851) (-615 (-1178)))) (-4 *6 (-794))
- (-5 *2 (-645 (-410 (-954 *4)))) (-5 *1 (-926 *4 *5 *6 *7))
- (-4 *7 (-951 *4 *6 *5)))))
+ (-12 (-5 *3 (-923)) (-5 *2 (-1175 *4)) (-5 *1 (-359 *4))
+ (-4 *4 (-351)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1219)) (-5 *2 (-567)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3)
+ (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225))
+ (-5 *2 (-1037)) (-5 *1 (-753)))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-645 *6)) (-5 *4 (-645 (-247 *5 *6))) (-4 *6 (-455))
+ (-5 *2 (-247 *5 *6)) (-14 *5 (-645 (-1179))) (-5 *1 (-632 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567)))))))
+ (-5 *2 (-645 *4)) (-5 *1 (-1130 *3 *4)) (-4 *3 (-1245 *4))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567)))))))
+ (-5 *2 (-645 *3)) (-5 *1 (-1130 *4 *3)) (-4 *4 (-1245 *3)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-645 (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567))))))
+ (-5 *2 (-645 (-410 (-567)))) (-5 *1 (-1022 *4))
+ (-4 *4 (-1245 (-567))))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-772)) (-4 *5 (-559))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-971 *5 *3)) (-4 *3 (-1245 *5)))))
+(((*1 *1 *1 *1) (-4 *1 (-969))))
(((*1 *2 *2)
(-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
(-4 *2 (-13 (-433 *3) (-1004)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3))
- (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4))))
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3))
+ (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3))
- (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4))))
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3))
+ (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1178)))
- (-14 *3 (-645 (-1178))) (-4 *4 (-390))))
+ (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1179)))
+ (-14 *3 (-645 (-1179))) (-4 *4 (-390))))
((*1 *1 *1) (-4 *1 (-496)))
((*1 *2 *2)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567))))
- (-5 *1 (-1163 *3))))
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1164 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567))))
- (-5 *1 (-1164 *3)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1218)))))
-(((*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1181)))))
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1165 *3)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-410 (-954 *3))) (-5 *1 (-456 *3 *4 *5 *6))
- (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923))
- (-14 *5 (-645 (-1178))) (-14 *6 (-1268 (-690 *3))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-520)))))
-(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-258)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1218)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-645 (-410 *6))) (-5 *3 (-410 *6))
- (-4 *6 (-1244 *5)) (-4 *5 (-13 (-365) (-147) (-1040 (-567))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-571 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-645 (-52))) (-5 *2 (-1273)) (-5 *1 (-864)))))
+ (-12 (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-945 *3) (-945 *3))) (-5 *1 (-176 *3))
+ (-4 *3 (-13 (-365) (-1204) (-1004))))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-645 (-613 *2))) (-5 *4 (-645 (-1179)))
+ (-4 *2 (-13 (-433 (-169 *5)) (-1004) (-1204))) (-4 *5 (-559))
+ (-5 *1 (-601 *5 *6 *2)) (-4 *6 (-13 (-433 *5) (-1004) (-1204))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-1065)) (-5 *3 (-1161)))))
+(((*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1204))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112))
+ (-5 *1 (-979 *4 *5 *6 *3)) (-4 *3 (-1067 *4 *5 *6)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-225)) (-5 *4 (-567))
+ (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3888))))
+ (-5 *2 (-1037)) (-5 *1 (-749)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-157)) (-5 *2 (-1274)) (-5 *1 (-1271)))))
(((*1 *2 *2)
(-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
(-4 *2 (-13 (-433 *3) (-1004)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3))
- (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4))))
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3))
+ (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3))
- (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4))))
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3))
+ (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1178)))
- (-14 *3 (-645 (-1178))) (-4 *4 (-390))))
+ (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1179)))
+ (-14 *3 (-645 (-1179))) (-4 *4 (-390))))
((*1 *1 *1) (-4 *1 (-496)))
((*1 *2 *2)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567))))
- (-5 *1 (-1163 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567))))
- (-5 *1 (-1164 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-559))
- (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112))
- (-5 *1 (-979 *4 *5 *6 *7)))))
-(((*1 *2 *2) (-12 (-5 *1 (-963 *2)) (-4 *2 (-548)))))
-(((*1 *2 *3 *2 *2)
- (-12 (-5 *2 (-645 (-484 *4 *5))) (-5 *3 (-865 *4))
- (-14 *4 (-645 (-1178))) (-4 *5 (-455)) (-5 *1 (-632 *4 *5)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1160)) (-5 *3 (-645 (-264))) (-5 *1 (-262))))
- ((*1 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-264))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1269))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1270)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
- (-4 *3 (-1067 *5 *6 *7))
- (-5 *2 (-645 (-2 (|:| |val| (-645 *3)) (|:| -2566 *4))))
- (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1174 (-567))) (-5 *1 (-944)) (-5 *3 (-567))))
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1164 *3))))
((*1 *2 *2)
- (-12 (-4 *3 (-308)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3))
- (-5 *1 (-1126 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))))
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1165 *3)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-405)) (-5 *2 (-772))))
+ ((*1 *1 *1) (-4 *1 (-405))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-509)) (-5 *3 (-645 (-967))) (-5 *1 (-109)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-690 (-410 (-954 (-567))))) (-5 *2 (-645 (-317 (-567))))
- (-5 *1 (-1033)))))
+ (-12 (-5 *3 (-772)) (-5 *2 (-690 (-954 *4))) (-5 *1 (-1030 *4))
+ (-4 *4 (-1051)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1178)) (-5 *2 (-1 (-1174 (-954 *4)) (-954 *4)))
- (-5 *1 (-1276 *4)) (-4 *4 (-365)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-945 *3)) (-4 *3 (-13 (-365) (-1203) (-1004)))
- (-5 *1 (-176 *3)))))
+ (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2433 *4)))
+ (-5 *1 (-971 *4 *3)) (-4 *3 (-1245 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-559))
+ (-4 *6 (-794)) (-4 *7 (-851))
+ (-5 *2 (-2 (|:| |goodPols| (-645 *8)) (|:| |badPols| (-645 *8))))
+ (-5 *1 (-979 *5 *6 *7 *8)) (-5 *4 (-645 *8)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1159 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))))
(((*1 *1 *1) (-4 *1 (-95)))
((*1 *2 *2)
(-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
(-4 *2 (-13 (-433 *3) (-1004)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3))
- (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4))))
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3))
+ (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3))
- (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4))))
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3))
+ (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567))))
- (-5 *1 (-1163 *3))))
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1164 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567))))
- (-5 *1 (-1164 *3)))))
-(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-645 *1)) (-4 *1 (-922)))))
-(((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *5 (-112))
- (-5 *2 (-1037)) (-5 *1 (-746)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-567)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-308))
- (-4 *9 (-951 *8 *6 *7))
- (-5 *2 (-2 (|:| -2517 (-1174 *9)) (|:| |polval| (-1174 *8))))
- (-5 *1 (-743 *6 *7 *8 *9)) (-5 *3 (-1174 *9)) (-5 *4 (-1174 *8)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-241))))
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1165 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-557 *3)) (-4 *3 (-13 (-407) (-1204))) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-849)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1070 *4 *3)) (-4 *4 (-13 (-849) (-365)))
+ (-4 *3 (-1245 *4)) (-5 *2 (-112)))))
+(((*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1161)) (-5 *1 (-787)))))
+(((*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1161)) (-5 *1 (-306)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1161)) (-5 *3 (-645 (-264))) (-5 *1 (-262))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-264))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1270))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1271)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-241))))
((*1 *2 *3)
- (-12 (-5 *3 (-645 (-1160))) (-5 *2 (-1273)) (-5 *1 (-241)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-645 *5)) (-5 *4 (-645 (-1 *6 (-645 *6))))
- (-4 *5 (-38 (-410 (-567)))) (-4 *6 (-1259 *5)) (-5 *2 (-645 *6))
- (-5 *1 (-1261 *5 *6)))))
+ (-12 (-5 *3 (-645 (-1161))) (-5 *2 (-1274)) (-5 *1 (-241)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-772)) (-5 *1 (-103 *3)) (-4 *3 (-1102)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-567)) (-5 *3 (-923)) (-5 *1 (-700))))
+ ((*1 *2 *2 *2 *3 *4)
+ (-12 (-5 *2 (-690 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5))
+ (-4 *5 (-365)) (-5 *1 (-980 *5)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1028 (-844 (-567))))
+ (-5 *3 (-1159 (-2 (|:| |k| (-567)) (|:| |c| *4)))) (-4 *4 (-1051))
+ (-5 *1 (-597 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-645 (-171))))))
(((*1 *2 *1) (-12 (-5 *2 (-645 (-183 (-139)))) (-5 *1 (-140)))))
-(((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-772)) (-5 *1 (-783 *3)) (-4 *3 (-1051))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *1 (-965 *3 *2)) (-4 *2 (-131)) (-4 *3 (-559))
- (-4 *3 (-1051)) (-4 *2 (-793))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-772)) (-5 *1 (-1174 *3)) (-4 *3 (-1051))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-973)) (-4 *2 (-131)) (-5 *1 (-1180 *3)) (-4 *3 (-559))
- (-4 *3 (-1051))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-772)) (-5 *1 (-1241 *4 *3)) (-14 *4 (-1178))
- (-4 *3 (-1051)))))
+(((*1 *2)
+ (-12 (-4 *3 (-559)) (-5 *2 (-645 (-690 *3))) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-420 *3)))))
+(((*1 *1 *1) (-4 *1 (-95)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1004)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3))
+ (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3))
+ (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1164 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1165 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2))
- (-4 *2 (-13 (-433 *3) (-1203))))))
+ (-12 (-5 *2 (-645 (-954 *3))) (-4 *3 (-455)) (-5 *1 (-362 *3 *4))
+ (-14 *4 (-645 (-1179)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-645 *6)) (-4 *6 (-951 *3 *4 *5)) (-4 *3 (-455))
+ (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-453 *3 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-645 *7)) (-5 *3 (-1161)) (-4 *7 (-951 *4 *5 *6))
+ (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-5 *1 (-453 *4 *5 *6 *7))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-645 *7)) (-5 *3 (-1161)) (-4 *7 (-951 *4 *5 *6))
+ (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-5 *1 (-453 *4 *5 *6 *7))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-365)) (-4 *3 (-794)) (-4 *4 (-851))
+ (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-951 *2 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-645 (-781 *3 (-865 *4)))) (-4 *3 (-455))
+ (-14 *4 (-645 (-1179))) (-5 *1 (-629 *3 *4)))))
+(((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-470))))
+ ((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-470))))
+ ((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-929)))))
+(((*1 *2 *3 *4 *4 *5 *3 *6)
+ (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-645 *3)) (-5 *6 (-1175 *3))
+ (-4 *3 (-13 (-433 *7) (-27) (-1204)))
+ (-4 *7 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-563 *7 *3 *8)) (-4 *8 (-1102))))
+ ((*1 *2 *3 *4 *4 *5 *4 *3 *6)
+ (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-645 *3))
+ (-5 *6 (-410 (-1175 *3))) (-4 *3 (-13 (-433 *7) (-27) (-1204)))
+ (-4 *7 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-563 *7 *3 *8)) (-4 *8 (-1102)))))
+(((*1 *1 *1) (-4 *1 (-1062))))
+(((*1 *1) (-5 *1 (-157)))
+ ((*1 *2 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-23)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1159 (-645 (-567)))) (-5 *1 (-885)) (-5 *3 (-567))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1159 (-645 (-567)))) (-5 *1 (-885)) (-5 *3 (-567))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1159 (-645 (-567)))) (-5 *1 (-885)) (-5 *3 (-567)))))
+(((*1 *1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *2 (-645 (-169 *4))) (-5 *1 (-155 *3 *4))
+ (-4 *3 (-1245 (-169 (-567)))) (-4 *4 (-13 (-365) (-849)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-365) (-849))) (-5 *2 (-645 (-169 *4)))
+ (-5 *1 (-181 *4 *3)) (-4 *3 (-1245 (-169 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *4 (-13 (-365) (-849))) (-5 *2 (-645 (-169 *4)))
+ (-5 *1 (-181 *4 *3)) (-4 *3 (-1245 (-169 *4))))))
(((*1 *2 *3) (-12 (-5 *2 (-567)) (-5 *1 (-572 *3)) (-4 *3 (-1040 *2))))
((*1 *2 *1)
(-12 (-4 *1 (-1105 *3 *4 *2 *5 *6)) (-4 *3 (-1102)) (-4 *4 (-1102))
(-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *2 (-1102)))))
-(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-923)) (-5 *2 (-772)) (-5 *1 (-1103 *4 *5)) (-14 *4 *3)
+ (-14 *5 *3))))
(((*1 *1 *1) (-4 *1 (-95)))
((*1 *2 *2)
(-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
(-4 *2 (-13 (-433 *3) (-1004)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3))
- (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4))))
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3))
+ (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3))
- (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4))))
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3))
+ (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567))))
- (-5 *1 (-1163 *3))))
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1164 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567))))
- (-5 *1 (-1164 *3)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-645 (-1078 *4 *5 *2))) (-4 *4 (-1102))
- (-4 *5 (-13 (-1051) (-888 *4) (-615 (-894 *4))))
- (-4 *2 (-13 (-433 *5) (-888 *4) (-615 (-894 *4))))
- (-5 *1 (-54 *4 *5 *2))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-645 (-1078 *5 *6 *2))) (-5 *4 (-923)) (-4 *5 (-1102))
- (-4 *6 (-13 (-1051) (-888 *5) (-615 (-894 *5))))
- (-4 *2 (-13 (-433 *6) (-888 *5) (-615 (-894 *5))))
- (-5 *1 (-54 *5 *6 *2)))))
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1165 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1159 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-645 (-1 (-112) *8))) (-4 *8 (-1067 *5 *6 *7))
- (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851))
- (-5 *2 (-2 (|:| |goodPols| (-645 *8)) (|:| |badPols| (-645 *8))))
- (-5 *1 (-979 *5 *6 *7 *8)) (-5 *4 (-645 *8)))))
-(((*1 *1) (-5 *1 (-440))))
-(((*1 *1 *1 *2)
- (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851))
- (-5 *1 (-507 *3 *4 *5 *2)) (-4 *2 (-951 *3 *4 *5))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-365)) (-4 *3 (-794)) (-4 *4 (-851))
- (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-951 *2 *3 *4)))))
-(((*1 *2 *3 *1 *4 *4 *4 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
- (-5 *2 (-645 (-1029 *5 *6 *7 *3))) (-5 *1 (-1029 *5 *6 *7 *3))
- (-4 *3 (-1067 *5 *6 *7))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-645 *6)) (-4 *1 (-1073 *3 *4 *5 *6)) (-4 *3 (-455))
- (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-1073 *3 *4 *5 *2)) (-4 *3 (-455)) (-4 *4 (-794))
- (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5))))
- ((*1 *2 *3 *1 *4 *4 *4 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
- (-5 *2 (-645 (-1148 *5 *6 *7 *3))) (-5 *1 (-1148 *5 *6 *7 *3))
- (-4 *3 (-1067 *5 *6 *7)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381))
- (-5 *2
- (-2 (|:| -3802 *4) (|:| -2058 *4) (|:| |totalpts| (-567))
- (|:| |success| (-112))))
- (-5 *1 (-790)) (-5 *5 (-567)))))
+ (-12 (-5 *3 (-1179)) (-5 *4 (-954 (-567))) (-5 *2 (-331))
+ (-5 *1 (-333)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1269 *3)) (-4 *3 (-365)) (-4 *1 (-330 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1269 *3)) (-4 *3 (-1245 *4)) (-4 *4 (-1223))
+ (-4 *1 (-344 *4 *3 *5)) (-4 *5 (-1245 (-410 *3)))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1269 *4)) (-5 *3 (-1269 *1)) (-4 *4 (-172))
+ (-4 *1 (-369 *4))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1269 *4)) (-5 *3 (-1269 *1)) (-4 *4 (-172))
+ (-4 *1 (-372 *4 *5)) (-4 *5 (-1245 *4))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1269 *3)) (-4 *3 (-172)) (-4 *1 (-412 *3 *4))
+ (-4 *4 (-1245 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1269 *3)) (-4 *3 (-172)) (-4 *1 (-420 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1274)) (-5 *1 (-1182))))
+ ((*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-1182)))))
(((*1 *2 *1)
- (-12 (-4 *2 (-1095 *3)) (-5 *1 (-1059 *2 *3)) (-4 *3 (-1218))))
+ (-12 (-4 *2 (-1095 *3)) (-5 *1 (-1059 *2 *3)) (-4 *3 (-1219))))
((*1 *2 *1)
- (-12 (-5 *2 (-1096 *3)) (-5 *1 (-1094 *3)) (-4 *3 (-1218))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1218))))
- ((*1 *1 *2) (-12 (-5 *1 (-1235 *2)) (-4 *2 (-1218)))))
-(((*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-5 *1 (-1192 *2)) (-4 *2 (-365)))))
+ (-12 (-5 *2 (-1096 *3)) (-5 *1 (-1094 *3)) (-4 *3 (-1219))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1219))))
+ ((*1 *1 *2) (-12 (-5 *1 (-1236 *2)) (-4 *2 (-1219)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1204))))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))))
(((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-180))))
((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-312))))
((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-972))))
((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-996))))
((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1038))))
((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1075)))))
-(((*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863))))
- ((*1 *1 *1 *1) (-5 *1 (-863))))
-(((*1 *1 *1) (-4 *1 (-95)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-433 *3) (-1004)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3))
- (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3))
- (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567))))
- (-5 *1 (-1163 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567))))
- (-5 *1 (-1164 *3)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-567)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 (-772)) (-4 *5 (-172))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-567)) (-14 *3 (-772))
- (-4 *4 (-172))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2))
- (-4 *4 (-375 *2))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-1051)) (-4 *1 (-688 *3 *2 *4)) (-4 *2 (-375 *3))
- (-4 *4 (-375 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1144 *2 *3)) (-14 *2 (-772)) (-4 *3 (-1051)))))
-(((*1 *2 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-308))))
- ((*1 *2 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-308))))
- ((*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-559)) (-4 *2 (-308))))
- ((*1 *2 *1) (-12 (-4 *1 (-1062)) (-5 *2 (-567)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1268 (-317 (-225)))) (-5 *2 (-1268 (-317 (-381))))
- (-5 *1 (-306)))))
-(((*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1218)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1178))
- (-4 *5 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567))))
- (-5 *2 (-588 *3)) (-5 *1 (-429 *5 *3))
- (-4 *3 (-13 (-1203) (-29 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1178)) (-4 *5 (-13 (-559) (-1040 (-567)) (-147)))
- (-5 *2 (-588 (-410 (-954 *5)))) (-5 *1 (-573 *5))
- (-5 *3 (-410 (-954 *5))))))
-(((*1 *2 *2 *3 *3)
- (|partial| -12 (-5 *3 (-1178))
- (-4 *4 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567))))
- (-5 *1 (-578 *4 *2))
- (-4 *2 (-13 (-1203) (-961) (-1141) (-29 *4))))))
-(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-1218)) (-5 *1 (-182 *3 *2))
- (-4 *2 (-675 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-295 (-410 (-954 *5)))) (-5 *4 (-1178))
- (-4 *5 (-13 (-308) (-147)))
- (-5 *2 (-1167 (-645 (-317 *5)) (-645 (-295 (-317 *5)))))
- (-5 *1 (-1131 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-1178))
- (-4 *5 (-13 (-308) (-147)))
- (-5 *2 (-1167 (-645 (-317 *5)) (-645 (-295 (-317 *5)))))
- (-5 *1 (-1131 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1105 *3 *2 *4 *5 *6)) (-4 *3 (-1102)) (-4 *4 (-1102))
- (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *2 (-1102)))))
-(((*1 *1 *1) (-4 *1 (-95))) ((*1 *1 *1 *1) (-5 *1 (-225)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-433 *3) (-1004)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3))
- (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3))
- (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1178)))
- (-14 *3 (-645 (-1178))) (-4 *4 (-390))))
- ((*1 *1 *1 *1) (-5 *1 (-381)))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567))))
- (-5 *1 (-1163 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567))))
- (-5 *1 (-1164 *3)))))
-(((*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-804)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-13 (-849) (-365))) (-5 *1 (-1063 *2 *3))
- (-4 *3 (-1244 *2)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-645 (-865 *5))) (-14 *5 (-645 (-1178))) (-4 *6 (-455))
- (-5 *2
- (-2 (|:| |dpolys| (-645 (-247 *5 *6)))
- (|:| |coords| (-645 (-567)))))
- (-5 *1 (-474 *5 *6 *7)) (-5 *3 (-645 (-247 *5 *6))) (-4 *7 (-455)))))
-(((*1 *1 *1)
- (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-559))))
- ((*1 *1 *1) (|partial| -4 *1 (-723))))
-(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-999 *2)) (-4 *2 (-172)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1244 (-410 *2))) (-5 *2 (-567)) (-5 *1 (-915 *4 *3))
- (-4 *3 (-1244 (-410 *4))))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-690 *2)) (-5 *4 (-772))
+ (-4 *2 (-13 (-308) (-10 -8 (-15 -3597 ((-421 $) $)))))
+ (-4 *5 (-1245 *2)) (-5 *1 (-502 *2 *5 *6)) (-4 *6 (-412 *2 *5)))))
(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-793))))
((*1 *2 *1)
(-12 (-5 *2 (-772)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1051))
- (-14 *4 (-645 (-1178)))))
+ (-14 *4 (-645 (-1179)))))
((*1 *2 *1)
(-12 (-5 *2 (-567)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1051) (-851)))
- (-14 *4 (-645 (-1178)))))
+ (-14 *4 (-645 (-1179)))))
((*1 *2 *1 *3)
(-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1051)) (-4 *3 (-851))
(-4 *5 (-267 *3)) (-4 *6 (-794)) (-5 *2 (-772))))
((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-276))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1174 *8)) (-5 *4 (-645 *6)) (-4 *6 (-851))
+ (-12 (-5 *3 (-1175 *8)) (-5 *4 (-645 *6)) (-4 *6 (-851))
(-4 *8 (-951 *7 *5 *6)) (-4 *5 (-794)) (-4 *7 (-1051))
(-5 *2 (-645 (-772))) (-5 *1 (-322 *5 *6 *7 *8))))
((*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-923))))
@@ -7474,7 +7464,7 @@
((*1 *2 *1) (-12 (-4 *1 (-473 *3 *2)) (-4 *3 (-172)) (-4 *2 (-23))))
((*1 *2 *1)
(-12 (-4 *3 (-559)) (-5 *2 (-567)) (-5 *1 (-624 *3 *4))
- (-4 *4 (-1244 *3))))
+ (-4 *4 (-1245 *3))))
((*1 *2 *1) (-12 (-4 *1 (-709 *3)) (-4 *3 (-1051)) (-5 *2 (-772))))
((*1 *2 *1) (-12 (-4 *1 (-853 *3)) (-4 *3 (-1051)) (-5 *2 (-772))))
((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-906 *3)) (-4 *3 (-1102))))
@@ -7489,170 +7479,249 @@
(-12 (-4 *1 (-975 *3 *2 *4)) (-4 *3 (-1051)) (-4 *4 (-851))
(-4 *2 (-793))))
((*1 *2 *1)
- (-12 (-4 *1 (-1211 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794))
+ (-12 (-4 *1 (-1212 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794))
(-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-772))))
((*1 *2 *1)
- (-12 (-4 *1 (-1230 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-1259 *3))
+ (-12 (-4 *1 (-1231 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-1260 *3))
(-5 *2 (-567))))
((*1 *2 *1)
- (-12 (-4 *1 (-1251 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-1228 *3))
+ (-12 (-4 *1 (-1252 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-1229 *3))
(-5 *2 (-410 (-567)))))
((*1 *2 *1)
- (-12 (-4 *1 (-1287 *3)) (-4 *3 (-365)) (-5 *2 (-834 (-923)))))
+ (-12 (-4 *1 (-1288 *3)) (-4 *3 (-365)) (-5 *2 (-834 (-923)))))
((*1 *2 *1)
- (-12 (-4 *1 (-1289 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051))
+ (-12 (-4 *1 (-1290 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051))
(-5 *2 (-772)))))
+(((*1 *1 *1) (-4 *1 (-95))) ((*1 *1 *1 *1) (-5 *1 (-225)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1004)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3))
+ (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3))
+ (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1179)))
+ (-14 *3 (-645 (-1179))) (-4 *4 (-390))))
+ ((*1 *1 *1 *1) (-5 *1 (-381)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1164 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1165 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-863)))))
+(((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5 (-1 (-3 (-2 (|:| -2872 *6) (|:| |coeff| *6)) "failed") *6))
+ (-4 *6 (-365)) (-4 *7 (-1245 *6))
+ (-5 *2
+ (-3 (-2 (|:| |answer| (-410 *7)) (|:| |a0| *6))
+ (-2 (|:| -2872 (-410 *7)) (|:| |coeff| (-410 *7))) "failed"))
+ (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-645 *8)) (-5 *3 (-1 (-112) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-559))
+ (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-979 *5 *6 *7 *8)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-645 (-645 (-171)))))))
-(((*1 *2 *2) (-12 (-5 *2 (-645 (-690 (-317 (-567))))) (-5 *1 (-1033)))))
+ (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3))
+ (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-645 *2)) (-4 *2 (-1067 *4 *5 *6)) (-4 *4 (-559))
+ (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-979 *4 *5 *6 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-528)))))
+(((*1 *1 *1 *1) (-5 *1 (-225)))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-772)) (-5 *2 (-1 (-381))) (-5 *1 (-1042))))
+ ((*1 *1 *1 *1) (-4 *1 (-1141))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1105 *3 *2 *4 *5 *6)) (-4 *3 (-1102)) (-4 *4 (-1102))
+ (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *2 (-1102)))))
(((*1 *1 *1) (-4 *1 (-95)))
((*1 *2 *2)
(-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
(-4 *2 (-13 (-433 *3) (-1004)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3))
- (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4))))
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3))
+ (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3))
- (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4))))
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3))
+ (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1178)))
- (-14 *3 (-645 (-1178))) (-4 *4 (-390))))
+ (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1179)))
+ (-14 *3 (-645 (-1179))) (-4 *4 (-390))))
((*1 *2 *2)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567))))
- (-5 *1 (-1163 *3))))
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1164 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567))))
- (-5 *1 (-1164 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2951 *4)))
- (-5 *1 (-971 *4 *3)) (-4 *3 (-1244 *4)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-645 (-945 *4))) (-5 *1 (-1166 *3 *4)) (-14 *3 (-923))
- (-4 *4 (-1051)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 (-410 *6))) (-5 *4 (-410 *6)) (-4 *6 (-1244 *5))
- (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567)))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2623 (-645 *4))))
- (-5 *1 (-811 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 (-410 *6))) (-4 *6 (-1244 *5))
- (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567)))))
- (-5 *2 (-2 (|:| -2623 (-645 (-410 *6))) (|:| -2316 (-690 *5))))
- (-5 *1 (-811 *5 *6)) (-5 *4 (-645 (-410 *6)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-655 *6 (-410 *6))) (-5 *4 (-410 *6)) (-4 *6 (-1244 *5))
- (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567)))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2623 (-645 *4))))
- (-5 *1 (-811 *5 *6))))
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1165 *3)))))
+(((*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-439)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-52)) (-5 *1 (-830)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1179))
+ (-4 *4 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567))))
+ (-5 *1 (-429 *4 *2)) (-4 *2 (-13 (-1204) (-29 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-655 *6 (-410 *6))) (-4 *6 (-1244 *5))
- (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567)))))
- (-5 *2 (-2 (|:| -2623 (-645 (-410 *6))) (|:| -2316 (-690 *5))))
- (-5 *1 (-811 *5 *6)) (-5 *4 (-645 (-410 *6))))))
+ (-12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-1179)) (-4 *5 (-147))
+ (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-317 *5))
+ (-5 *1 (-591 *5)))))
(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4))
- (-4 *3 (-369 *4))))
- ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-52)))))
+ (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3))
+ (-4 *5 (-1245 (-410 *4))) (-5 *2 (-690 (-410 *4))))))
(((*1 *1 *2)
- (-12 (-5 *2 (-645 *1)) (-4 *3 (-1051)) (-4 *1 (-688 *3 *4 *5))
- (-4 *4 (-375 *3)) (-4 *5 (-375 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-645 *3)) (-4 *3 (-1051)) (-4 *1 (-688 *3 *4 *5))
- (-4 *4 (-375 *3)) (-4 *5 (-375 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1268 *3)) (-4 *3 (-1051)) (-5 *1 (-690 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-645 *4)) (-4 *4 (-1051)) (-4 *1 (-1125 *3 *4 *5 *6))
- (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-645 *5) *6))
- (-4 *5 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *6 (-1244 *5))
- (-5 *2 (-645 (-2 (|:| |poly| *6) (|:| -3845 *3))))
- (-5 *1 (-810 *5 *6 *3 *7)) (-4 *3 (-657 *6))
- (-4 *7 (-657 (-410 *6)))))
+ (-12 (-5 *2 (-1 (-945 (-225)) (-945 (-225)))) (-5 *1 (-264))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1269 *1)) (-4 *1 (-330 *4)) (-4 *4 (-365))
+ (-5 *2 (-690 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-1269 *3))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172))
+ (-5 *2 (-690 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172))
+ (-5 *2 (-1269 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1269 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172))
+ (-4 *5 (-1245 *4)) (-5 *2 (-690 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1269 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172))
+ (-4 *5 (-1245 *4)) (-5 *2 (-1269 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1269 *1)) (-4 *1 (-412 *4 *5)) (-4 *4 (-172))
+ (-4 *5 (-1245 *4)) (-5 *2 (-690 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-412 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1245 *3))
+ (-5 *2 (-1269 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1269 *1)) (-4 *1 (-420 *4)) (-4 *4 (-172))
+ (-5 *2 (-690 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-1269 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-645 *5) *6))
- (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567)))))
- (-4 *6 (-1244 *5))
- (-5 *2 (-645 (-2 (|:| |poly| *6) (|:| -3845 (-655 *6 (-410 *6))))))
- (-5 *1 (-813 *5 *6)) (-5 *3 (-655 *6 (-410 *6))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1289 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051))
- (-5 *2 (-820 *3))))
+ (-12 (-5 *4 (-645 (-690 *5))) (-5 *3 (-690 *5)) (-4 *5 (-365))
+ (-5 *2 (-1269 *5)) (-5 *1 (-1088 *5)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-1094 (-954 (-567)))) (-5 *3 (-954 (-567)))
+ (-5 *1 (-331))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1094 (-954 (-567)))) (-5 *1 (-331)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-598 *3)) (-4 *3 (-1051))))
((*1 *2 *1)
- (-12 (-4 *2 (-847)) (-5 *1 (-1291 *3 *2)) (-4 *3 (-1051)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1174 (-567))) (-5 *2 (-567)) (-5 *1 (-944)))))
+ (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-793))
+ (-4 *5 (-851)) (-5 *2 (-112)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-690 (-410 (-567))))
- (-5 *2
- (-645
- (-2 (|:| |outval| *4) (|:| |outmult| (-567))
- (|:| |outvect| (-645 (-690 *4))))))
- (-5 *1 (-780 *4)) (-4 *4 (-13 (-365) (-849))))))
+ (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1161)) (-4 *1 (-366 *3 *4)) (-4 *3 (-1102))
+ (-4 *4 (-1102)))))
+(((*1 *1 *1) (-4 *1 (-95)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1004)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3))
+ (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3))
+ (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1179)))
+ (-14 *3 (-645 (-1179))) (-4 *4 (-390))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1164 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1165 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-645 (-613 *5))) (-5 *3 (-1179)) (-4 *5 (-433 *4))
+ (-4 *4 (-1102)) (-5 *1 (-576 *4 *5)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-772)) (-5 *2 (-1274)) (-5 *1 (-1270))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-772)) (-5 *2 (-1274)) (-5 *1 (-1271)))))
+(((*1 *1) (-5 *1 (-1182))))
+(((*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-1272)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-52)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-692 (-874 (-968 *3) (-968 *3)))) (-5 *1 (-968 *3))
+ (-4 *3 (-1102)))))
+(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3)
+ (-12 (-5 *5 (-690 (-225))) (-5 *6 (-690 (-567))) (-5 *3 (-567))
+ (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-753)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-532))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-580))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-862)))))
+(((*1 *1) (-5 *1 (-292))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-455))
+ (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851))
+ (-5 *1 (-979 *3 *4 *5 *6)))))
(((*1 *2 *2)
(-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
(-4 *2 (-13 (-433 *3) (-1004)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3))
- (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4))))
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3))
+ (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3))
- (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4))))
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3))
+ (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4))))
((*1 *1 *1) (-4 *1 (-285)))
((*1 *2 *3)
(-12 (-5 *3 (-421 *4)) (-4 *4 (-559))
- (-5 *2 (-645 (-2 (|:| -3694 (-772)) (|:| |logand| *4))))
+ (-5 *2 (-645 (-2 (|:| -3705 (-772)) (|:| |logand| *4))))
(-5 *1 (-321 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1178)))
- (-14 *3 (-645 (-1178))) (-4 *4 (-390))))
+ (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1179)))
+ (-14 *3 (-645 (-1179))) (-4 *4 (-390))))
((*1 *2 *1)
(-12 (-5 *2 (-665 *3 *4)) (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851))
(-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-923))))
((*1 *2 *2)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567))))
- (-5 *1 (-1163 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567))))
(-5 *1 (-1164 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1165 *3))))
((*1 *2 *2 *3)
(-12 (-5 *3 (-772)) (-4 *4 (-13 (-1051) (-718 (-410 (-567)))))
- (-4 *5 (-851)) (-5 *1 (-1284 *4 *5 *2)) (-4 *2 (-1289 *5 *4))))
+ (-4 *5 (-851)) (-5 *1 (-1285 *4 *5 *2)) (-4 *2 (-1290 *5 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-772)) (-5 *1 (-1288 *3 *4))
+ (-12 (-5 *2 (-772)) (-5 *1 (-1289 *3 *4))
(-4 *4 (-718 (-410 (-567)))) (-4 *3 (-851)) (-4 *4 (-172)))))
-(((*1 *1 *1) (-4 *1 (-95)))
- ((*1 *2 *2)
+(((*1 *2 *2)
(-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
(-4 *2 (-13 (-433 *3) (-1004)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3))
- (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4))))
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3))
+ (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3))
- (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1178)))
- (-14 *3 (-645 (-1178))) (-4 *4 (-390))))
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3))
+ (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567))))
- (-5 *1 (-1163 *3))))
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1164 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567))))
- (-5 *1 (-1164 *3)))))
-(((*1 *1 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1218)))))
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1165 *3))))
+ ((*1 *1 *1) (-4 *1 (-1207))))
+(((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-31))))
+ ((*1 *2) (-12 (-4 *1 (-407)) (-5 *2 (-923)))) ((*1 *1) (-4 *1 (-548)))
+ ((*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-700))))
+ ((*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-906 *3)) (-4 *3 (-1102)))))
(((*1 *1 *1 *2)
(-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-793))
(-4 *2 (-365))))
((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-225))))
((*1 *1 *1 *1)
- (-2800 (-12 (-5 *1 (-295 *2)) (-4 *2 (-365)) (-4 *2 (-1218)))
- (-12 (-5 *1 (-295 *2)) (-4 *2 (-476)) (-4 *2 (-1218)))))
+ (-2811 (-12 (-5 *1 (-295 *2)) (-4 *2 (-365)) (-4 *2 (-1219)))
+ (-12 (-5 *1 (-295 *2)) (-4 *2 (-476)) (-4 *2 (-1219)))))
((*1 *1 *1 *1) (-4 *1 (-365)))
((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-381))))
((*1 *1 *2 *2)
@@ -7660,7 +7729,7 @@
(-4 *1 (-433 *3))))
((*1 *1 *1 *1) (-4 *1 (-476)))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1268 *3)) (-4 *3 (-351)) (-5 *1 (-531 *3))))
+ (-12 (-5 *2 (-1269 *3)) (-4 *3 (-351)) (-5 *1 (-531 *3))))
((*1 *1 *1 *1) (-5 *1 (-539)))
((*1 *1 *2 *3)
(-12 (-4 *4 (-172)) (-5 *1 (-622 *2 *4 *3)) (-4 *2 (-38 *4))
@@ -7681,7 +7750,7 @@
((*1 *1 *1 *1) (-5 *1 (-863)))
((*1 *1 *1 *1)
(|partial| -12 (-5 *1 (-867 *2 *3 *4 *5)) (-4 *2 (-365))
- (-4 *2 (-1051)) (-14 *3 (-645 (-1178))) (-14 *4 (-645 (-772)))
+ (-4 *2 (-1051)) (-14 *3 (-645 (-1179))) (-14 *4 (-645 (-772)))
(-14 *5 (-772))))
((*1 *1 *1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1102))))
((*1 *1 *2 *2) (-12 (-4 *1 (-994 *2)) (-4 *2 (-559))))
@@ -7689,38 +7758,44 @@
(-12 (-4 *1 (-1055 *3 *4 *2 *5 *6)) (-4 *2 (-1051))
(-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-365))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-5 *1 (-1162 *3))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-365))))
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-5 *1 (-1163 *3))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-365))))
((*1 *1 *1 *1)
(|partial| -12 (-4 *2 (-365)) (-4 *2 (-1051)) (-4 *3 (-851))
(-4 *4 (-794)) (-14 *6 (-645 *3))
- (-5 *1 (-1280 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-951 *2 *4 *3))
+ (-5 *1 (-1281 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-951 *2 *4 *3))
(-14 *7 (-645 (-772))) (-14 *8 (-772))))
((*1 *1 *1 *2)
- (-12 (-5 *1 (-1291 *2 *3)) (-4 *2 (-365)) (-4 *2 (-1051))
+ (-12 (-5 *1 (-1292 *2 *3)) (-4 *2 (-365)) (-4 *2 (-1051))
(-4 *3 (-847)))))
-(((*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1037)) (-5 *1 (-841))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-645 (-317 (-381)))) (-5 *4 (-645 (-381)))
- (-5 *2 (-1037)) (-5 *1 (-841)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1251 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-1228 *3))
- (-5 *2 (-410 (-567))))))
-(((*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-549))))))
+ (-12 (-5 *2 (-1028 (-844 (-567)))) (-5 *1 (-597 *3)) (-4 *3 (-1051)))))
+(((*1 *1 *1) (|partial| -4 *1 (-1154))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-923)) (-5 *2 (-1175 *4)) (-5 *1 (-590 *4))
+ (-4 *4 (-351)))))
(((*1 *1 *2 *2) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))))
+(((*1 *2 *1) (-12 (-5 *2 (-645 (-183 (-139)))) (-5 *1 (-140)))))
+(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1271))))
+ ((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1271)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1271)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-645 (-1175 *7))) (-5 *3 (-1175 *7))
+ (-4 *7 (-951 *4 *5 *6)) (-4 *4 (-911)) (-4 *5 (-794))
+ (-4 *6 (-851)) (-5 *1 (-908 *4 *5 *6 *7))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-645 (-1175 *5))) (-5 *3 (-1175 *5))
+ (-4 *5 (-1245 *4)) (-4 *4 (-911)) (-5 *1 (-909 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1104 *4)) (-4 *4 (-1102)) (-5 *2 (-1 *4))
- (-5 *1 (-1019 *4))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-381))) (-5 *1 (-1042)) (-5 *3 (-381))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1096 (-567))) (-5 *2 (-1 (-567))) (-5 *1 (-1049)))))
-(((*1 *2 *2) (-12 (-5 *2 (-690 (-317 (-567)))) (-5 *1 (-1033)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-365)) (-5 *1 (-767 *2 *3)) (-4 *2 (-709 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))))
-(((*1 *1) (-5 *1 (-141))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1178)) (-5 *2 (-440)) (-5 *1 (-1182)))))
+ (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172))
+ (-5 *2 (-690 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-690 *4)) (-5 *1 (-419 *3 *4))
+ (-4 *3 (-420 *4))))
+ ((*1 *2) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-690 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-317 (-225))) (-5 *2 (-317 (-410 (-567))))
+ (-5 *1 (-306)))))
(((*1 *2 *1 *3)
(-12 (-5 *2 (-410 (-567))) (-5 *1 (-117 *4)) (-14 *4 *3)
(-5 *3 (-567))))
@@ -7734,57 +7809,156 @@
((*1 *2 *1 *1) (-12 (-4 *1 (-1014)) (-5 *2 (-410 (-567)))))
((*1 *2 *3 *1 *2)
(-12 (-4 *1 (-1070 *2 *3)) (-4 *2 (-13 (-849) (-365)))
- (-4 *3 (-1244 *2))))
+ (-4 *3 (-1245 *2))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1246 *2 *3)) (-4 *3 (-793))
- (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -4132 (*2 (-1178))))
+ (-12 (-4 *1 (-1247 *2 *3)) (-4 *3 (-793))
+ (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -4129 (*2 (-1179))))
(-4 *2 (-1051)))))
(((*1 *2 *2)
(-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
(-4 *2 (-13 (-433 *3) (-1004)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3))
- (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4))))
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3))
+ (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3))
- (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4))))
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3))
+ (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567))))
- (-5 *1 (-1163 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567))))
(-5 *1 (-1164 *3))))
- ((*1 *1 *1) (-4 *1 (-1206))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-954 *5)) (-4 *5 (-1051)) (-5 *2 (-484 *4 *5))
- (-5 *1 (-946 *4 *5)) (-14 *4 (-645 (-1178))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-31))))
- ((*1 *2) (-12 (-4 *1 (-407)) (-5 *2 (-923)))) ((*1 *1) (-4 *1 (-548)))
- ((*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-700))))
- ((*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-906 *3)) (-4 *3 (-1102)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1165 *3))))
+ ((*1 *1 *1) (-4 *1 (-1207))))
(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-951 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794))
- (-4 *2 (-851))))
+ (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051))
+ (-5 *2
+ (-2 (|:| -3941 (-772)) (|:| |curves| (-772))
+ (|:| |polygons| (-772)) (|:| |constructs| (-772)))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-770))
+ (-5 *2
+ (-2 (|:| -3055 (-381)) (|:| -2007 (-1161))
+ (|:| |explanations| (-645 (-1161))) (|:| |extra| (-1037))))
+ (-5 *1 (-568))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-770)) (-5 *4 (-1065))
+ (-5 *2
+ (-2 (|:| -3055 (-381)) (|:| -2007 (-1161))
+ (|:| |explanations| (-645 (-1161))) (|:| |extra| (-1037))))
+ (-5 *1 (-568))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-788)) (-5 *3 (-1065))
+ (-5 *4
+ (-2 (|:| |fn| (-317 (-225)))
+ (|:| -2408 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))
+ (-5 *2
+ (-2 (|:| -3055 (-381)) (|:| |explanations| (-1161))
+ (|:| |extra| (-1037))))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-788)) (-5 *3 (-1065))
+ (-5 *4
+ (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225)))
+ (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))
+ (-5 *2
+ (-2 (|:| -3055 (-381)) (|:| |explanations| (-1161))
+ (|:| |extra| (-1037))))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-801)) (-5 *3 (-1065))
+ (-5 *4
+ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
+ (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225)))
+ (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225)))
+ (|:| |abserr| (-225)) (|:| |relerr| (-225))))
+ (-5 *2 (-2 (|:| -3055 (-381)) (|:| |explanations| (-1161))))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-794)) (-4 *5 (-1051)) (-4 *6 (-951 *5 *4 *2))
- (-4 *2 (-851)) (-5 *1 (-952 *4 *2 *5 *6 *3))
- (-4 *3
- (-13 (-365)
- (-10 -8 (-15 -4132 ($ *6)) (-15 -1448 (*6 $))
- (-15 -1460 (*6 $)))))))
+ (-12 (-5 *3 (-809))
+ (-5 *2
+ (-2 (|:| -3055 (-381)) (|:| -2007 (-1161))
+ (|:| |explanations| (-645 (-1161)))))
+ (-5 *1 (-806))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-809)) (-5 *4 (-1065))
+ (-5 *2
+ (-2 (|:| -3055 (-381)) (|:| -2007 (-1161))
+ (|:| |explanations| (-645 (-1161)))))
+ (-5 *1 (-806))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-840)) (-5 *3 (-1065))
+ (-5 *4
+ (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2694 (-645 (-225)))))
+ (-5 *2 (-2 (|:| -3055 (-381)) (|:| |explanations| (-1161))))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-840)) (-5 *3 (-1065))
+ (-5 *4
+ (-2 (|:| |fn| (-317 (-225))) (|:| -2694 (-645 (-225)))
+ (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225))))
+ (|:| |ub| (-645 (-844 (-225))))))
+ (-5 *2 (-2 (|:| -3055 (-381)) (|:| |explanations| (-1161))))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-410 (-954 *4))) (-4 *4 (-559))
- (-5 *2 (-1178)) (-5 *1 (-1045 *4)))))
+ (-12 (-5 *3 (-842))
+ (-5 *2
+ (-2 (|:| -3055 (-381)) (|:| -2007 (-1161))
+ (|:| |explanations| (-645 (-1161)))))
+ (-5 *1 (-841))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-842)) (-5 *4 (-1065))
+ (-5 *2
+ (-2 (|:| -3055 (-381)) (|:| -2007 (-1161))
+ (|:| |explanations| (-645 (-1161)))))
+ (-5 *1 (-841))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-897)) (-5 *3 (-1065))
+ (-5 *4
+ (-2 (|:| |pde| (-645 (-317 (-225))))
+ (|:| |constraints|
+ (-645
+ (-2 (|:| |start| (-225)) (|:| |finish| (-225))
+ (|:| |grid| (-772)) (|:| |boundaryType| (-567))
+ (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225))))))
+ (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1161))
+ (|:| |tol| (-225))))
+ (-5 *2 (-2 (|:| -3055 (-381)) (|:| |explanations| (-1161))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-900))
+ (-5 *2
+ (-2 (|:| -3055 (-381)) (|:| -2007 (-1161))
+ (|:| |explanations| (-645 (-1161)))))
+ (-5 *1 (-899))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-900)) (-5 *4 (-1065))
+ (-5 *2
+ (-2 (|:| -3055 (-381)) (|:| -2007 (-1161))
+ (|:| |explanations| (-645 (-1161)))))
+ (-5 *1 (-899)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-172)) (-4 *2 (-23)) (-5 *1 (-290 *3 *4 *2 *5 *6 *7))
+ (-4 *4 (-1245 *3)) (-14 *5 (-1 *4 *4 *2))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-23)) (-5 *1 (-712 *3 *2 *4 *5 *6)) (-4 *3 (-172))
+ (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
+ ((*1 *2)
+ (-12 (-4 *2 (-1245 *3)) (-5 *1 (-713 *3 *2)) (-4 *3 (-1051))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-23)) (-5 *1 (-716 *3 *2 *4 *5 *6)) (-4 *3 (-172))
+ (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
+ ((*1 *2) (-12 (-4 *1 (-870 *3)) (-5 *2 (-567)))))
(((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21)))
((*1 *1 *1 *1) (|partial| -5 *1 (-134)))
((*1 *1 *1 *1)
(-12 (-5 *1 (-214 *2))
(-4 *2
(-13 (-851)
- (-10 -8 (-15 -1787 ((-1160) $ (-1178))) (-15 -4022 ((-1273) $))
- (-15 -1345 ((-1273) $)))))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1218))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1218))))
+ (-10 -8 (-15 -1801 ((-1161) $ (-1179))) (-15 -4025 ((-1274) $))
+ (-15 -3657 ((-1274) $)))))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1219))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1219))))
((*1 *1 *1 *1)
(-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))
((*1 *1 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))
@@ -7796,70 +7970,108 @@
(-4 *4 (-375 *2))))
((*1 *1 *1) (-5 *1 (-863))) ((*1 *1 *1 *1) (-5 *1 (-863)))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-5 *1 (-1162 *3))))
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-5 *1 (-1163 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-5 *1 (-1162 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-945 (-225))) (-5 *1 (-1214))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1266 *2)) (-4 *2 (-1218)) (-4 *2 (-21))))
- ((*1 *1 *1) (-12 (-4 *1 (-1266 *2)) (-4 *2 (-1218)) (-4 *2 (-21)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1188)))))
-(((*1 *1) (-5 *1 (-157)))
- ((*1 *2 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-23)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1268 *1)) (-4 *1 (-369 *2)) (-4 *2 (-172))))
- ((*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-419 *3 *2)) (-4 *3 (-420 *2))))
- ((*1 *2) (-12 (-4 *1 (-420 *2)) (-4 *2 (-172)))))
-(((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1218)))))
-(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4
- *4 *6 *4)
- (-12 (-5 *4 (-567)) (-5 *5 (-690 (-225))) (-5 *6 (-676 (-225)))
- (-5 *3 (-225)) (-5 *2 (-1037)) (-5 *1 (-751)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-439)))))
-(((*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-406 *3)) (-4 *3 (-407))))
- ((*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-406 *3)) (-4 *3 (-407))))
- ((*1 *2 *2) (-12 (-5 *2 (-923)) (|has| *1 (-6 -4409)) (-4 *1 (-407))))
- ((*1 *2) (-12 (-4 *1 (-407)) (-5 *2 (-923))))
- ((*1 *2 *1) (-12 (-4 *1 (-870 *3)) (-5 *2 (-1158 (-567))))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-365)) (-4 *3 (-1051))
- (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1398 *1)))
- (-4 *1 (-853 *3)))))
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-5 *1 (-1163 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-945 (-225))) (-5 *1 (-1215))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1219)) (-4 *2 (-21))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1219)) (-4 *2 (-21)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1189)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-645 (-410 *7)))
+ (-4 *7 (-1245 *6)) (-5 *3 (-410 *7)) (-4 *6 (-365))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-577 *6 *7)))))
+(((*1 *2 *1) (-12 (-4 *1 (-512 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-851)))))
+(((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1219)))))
+(((*1 *1 *1 *1) (-5 *1 (-863))) ((*1 *1 *1) (-5 *1 (-863)))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1175 (-567))) (-5 *3 (-567)) (-4 *1 (-870 *4)))))
+(((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-645
+ (-2
+ (|:| -1809
+ (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225)))
+ (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))
+ (|:| -4236
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1159 (-225)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -2408
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite|
+ "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated"))))))))
+ (-5 *1 (-562)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-5 *1 (-1163 *3)))))
(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567))))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567))))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1179)) (-4 *5 (-615 (-894 (-567))))
+ (-4 *5 (-888 (-567)))
+ (-4 *5 (-13 (-1040 (-567)) (-455) (-640 (-567))))
+ (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
+ (-5 *1 (-570 *5 *3)) (-4 *3 (-630))
+ (-4 *3 (-13 (-27) (-1204) (-433 *5)))))
+ ((*1 *2 *2 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-1179)) (-5 *4 (-844 *2)) (-4 *2 (-1141))
+ (-4 *2 (-13 (-27) (-1204) (-433 *5)))
+ (-4 *5 (-615 (-894 (-567)))) (-4 *5 (-888 (-567)))
+ (-4 *5 (-13 (-1040 (-567)) (-455) (-640 (-567))))
+ (-5 *1 (-570 *5 *2)))))
(((*1 *2 *2)
(-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
(-4 *2 (-13 (-433 *3) (-1004)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3))
- (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4))))
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3))
+ (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3))
- (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567))))
- (-5 *1 (-1163 *3))))
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3))
+ (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567))))
(-5 *1 (-1164 *3))))
- ((*1 *1 *1) (-4 *1 (-1206))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051))
- (-5 *2
- (-2 (|:| -3932 (-772)) (|:| |curves| (-772))
- (|:| |polygons| (-772)) (|:| |constructs| (-772)))))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1165 *3))))
+ ((*1 *1 *1) (-4 *1 (-1207))))
+(((*1 *2 *2) (-12 (-5 *2 (-1096 (-844 (-225)))) (-5 *1 (-306)))))
(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-157)))
((*1 *1 *1 *1)
(-12 (-5 *1 (-214 *2))
(-4 *2
(-13 (-851)
- (-10 -8 (-15 -1787 ((-1160) $ (-1178))) (-15 -4022 ((-1273) $))
- (-15 -1345 ((-1273) $)))))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-25)) (-4 *2 (-1218))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-25)) (-4 *2 (-1218))))
+ (-10 -8 (-15 -1801 ((-1161) $ (-1179))) (-15 -4025 ((-1274) $))
+ (-15 -3657 ((-1274) $)))))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-25)) (-4 *2 (-1219))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-25)) (-4 *2 (-1219))))
((*1 *1 *2 *1)
(-12 (-4 *1 (-324 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-131))))
((*1 *1 *2 *1)
(-12 (-4 *3 (-13 (-365) (-147))) (-5 *1 (-402 *3 *2))
- (-4 *2 (-1244 *3))))
+ (-4 *2 (-1245 *3))))
((*1 *1 *1 *1)
(-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))
((*1 *1 *1 *1)
@@ -7872,323 +8084,111 @@
((*1 *1 *1 *1) (-5 *1 (-863)))
((*1 *1 *1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1102))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-5 *1 (-1162 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-945 (-225))) (-5 *1 (-1214))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1266 *2)) (-4 *2 (-1218)) (-4 *2 (-25)))))
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-5 *1 (-1163 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-945 (-225))) (-5 *1 (-1215))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1219)) (-4 *2 (-25)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559))
+ (-5 *2 (-112)))))
+(((*1 *2 *3) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-564)) (-5 *3 (-567)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-793))
- (-5 *2 (-645 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-1102))
- (-5 *2 (-645 *3))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1158 *3)) (-5 *1 (-598 *3)) (-4 *3 (-1051))))
+ (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370))
+ (-5 *2 (-1175 *3)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1114)) (-4 *3 (-1102)) (-5 *2 (-645 *1))
+ (-4 *1 (-433 *3))))
((*1 *2 *1)
- (-12 (-5 *2 (-645 *3)) (-5 *1 (-736 *3 *4)) (-4 *3 (-1051))
- (-4 *4 (-727))))
- ((*1 *2 *1) (-12 (-4 *1 (-853 *3)) (-4 *3 (-1051)) (-5 *2 (-645 *3))))
+ (|partial| -12 (-5 *2 (-645 (-894 *3))) (-5 *1 (-894 *3))
+ (-4 *3 (-1102))))
((*1 *2 *1)
- (-12 (-4 *1 (-1259 *3)) (-4 *3 (-1051)) (-5 *2 (-1158 *3)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1141))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-863)) (-5 *1 (-393 *3 *4 *5)) (-14 *3 (-772))
- (-14 *4 (-772)) (-4 *5 (-172)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1218)) (-5 *1 (-377 *4 *2))
- (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4419)))))))
-(((*1 *2 *1) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-397))))
- ((*1 *2 *1) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-1198)))))
-(((*1 *1) (-5 *1 (-130))))
+ (|partial| -12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851))
+ (-5 *2 (-645 *1)) (-4 *1 (-951 *3 *4 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1051))
+ (-4 *7 (-951 *6 *4 *5)) (-5 *2 (-645 *3))
+ (-5 *1 (-952 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-365)
+ (-10 -8 (-15 -4129 ($ *7)) (-15 -1447 (*7 $))
+ (-15 -1462 (*7 $))))))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-559)) (-4 *3 (-1051))
+ (-5 *2 (-2 (|:| -2654 *1) (|:| -2023 *1))) (-4 *1 (-853 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-99 *5)) (-4 *5 (-559)) (-4 *5 (-1051))
+ (-5 *2 (-2 (|:| -2654 *3) (|:| -2023 *3))) (-5 *1 (-854 *5 *3))
+ (-4 *3 (-853 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))))
+(((*1 *1 *1) (-4 *1 (-173)))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-366 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-1102)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-645 *4)) (-4 *4 (-365)) (-5 *2 (-690 *4))
- (-5 *1 (-815 *4 *5)) (-4 *5 (-657 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-645 *5)) (-5 *4 (-772)) (-4 *5 (-365))
- (-5 *2 (-690 *5)) (-5 *1 (-815 *5 *6)) (-4 *6 (-657 *5)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4418)) (-4 *1 (-492 *4))
- (-4 *4 (-1218)) (-5 *2 (-112)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-645 (-484 *3 *4))) (-14 *3 (-645 (-1178)))
- (-4 *4 (-455)) (-5 *1 (-632 *3 *4)))))
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-344 *4 *5 *6)) (-4 *4 (-1223))
+ (-4 *5 (-1245 *4)) (-4 *6 (-1245 (-410 *5)))
+ (-5 *2 (-2 (|:| |num| (-690 *5)) (|:| |den| *5))))))
(((*1 *2 *2)
(-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
(-4 *2 (-13 (-433 *3) (-1004)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3))
- (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3))
- (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4))))
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3))
+ (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567))))
- (-5 *1 (-1163 *3))))
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3))
+ (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1179)))
+ (-14 *3 (-645 (-1179))) (-4 *4 (-390))))
((*1 *2 *2)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567))))
(-5 *1 (-1164 *3))))
- ((*1 *1 *1) (-4 *1 (-1206))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-433 *3) (-1004))))))
-(((*1 *2 *1) (-12 (-5 *2 (-645 (-1178))) (-5 *1 (-1182)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3)
- (-12 (-5 *4 (-690 (-567))) (-5 *5 (-112)) (-5 *7 (-690 (-225)))
- (-5 *3 (-567)) (-5 *6 (-225)) (-5 *2 (-1037)) (-5 *1 (-755)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-645 (-410 (-954 (-567)))))
- (-5 *2 (-645 (-645 (-295 (-954 *4))))) (-5 *1 (-382 *4))
- (-4 *4 (-13 (-849) (-365)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-645 (-295 (-410 (-954 (-567))))))
- (-5 *2 (-645 (-645 (-295 (-954 *4))))) (-5 *1 (-382 *4))
- (-4 *4 (-13 (-849) (-365)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-410 (-954 (-567)))) (-5 *2 (-645 (-295 (-954 *4))))
- (-5 *1 (-382 *4)) (-4 *4 (-13 (-849) (-365)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-295 (-410 (-954 (-567)))))
- (-5 *2 (-645 (-295 (-954 *4)))) (-5 *1 (-382 *4))
- (-4 *4 (-13 (-849) (-365)))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1178))
- (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147)))
- (-4 *4 (-13 (-29 *6) (-1203) (-961)))
- (-5 *2 (-2 (|:| |particular| *4) (|:| -2623 (-645 *4))))
- (-5 *1 (-653 *6 *4 *3)) (-4 *3 (-657 *4))))
- ((*1 *2 *3 *2 *4 *2 *5)
- (|partial| -12 (-5 *4 (-1178)) (-5 *5 (-645 *2))
- (-4 *2 (-13 (-29 *6) (-1203) (-961)))
- (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147)))
- (-5 *1 (-653 *6 *2 *3)) (-4 *3 (-657 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-690 *5)) (-4 *5 (-365))
- (-5 *2
- (-2 (|:| |particular| (-3 (-1268 *5) "failed"))
- (|:| -2623 (-645 (-1268 *5)))))
- (-5 *1 (-668 *5)) (-5 *4 (-1268 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-645 (-645 *5))) (-4 *5 (-365))
- (-5 *2
- (-2 (|:| |particular| (-3 (-1268 *5) "failed"))
- (|:| -2623 (-645 (-1268 *5)))))
- (-5 *1 (-668 *5)) (-5 *4 (-1268 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-690 *5)) (-4 *5 (-365))
- (-5 *2
- (-645
- (-2 (|:| |particular| (-3 (-1268 *5) "failed"))
- (|:| -2623 (-645 (-1268 *5))))))
- (-5 *1 (-668 *5)) (-5 *4 (-645 (-1268 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-645 (-645 *5))) (-4 *5 (-365))
- (-5 *2
- (-645
- (-2 (|:| |particular| (-3 (-1268 *5) "failed"))
- (|:| -2623 (-645 (-1268 *5))))))
- (-5 *1 (-668 *5)) (-5 *4 (-645 (-1268 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4419))))
- (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4419))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2623 (-645 *4))))
- (-5 *1 (-669 *5 *6 *4 *3)) (-4 *3 (-688 *5 *6 *4))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4419))))
- (-4 *7 (-13 (-375 *5) (-10 -7 (-6 -4419))))
- (-5 *2
- (-645
- (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2623 (-645 *7)))))
- (-5 *1 (-669 *5 *6 *7 *3)) (-5 *4 (-645 *7))
- (-4 *3 (-688 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-645 (-1178))) (-4 *5 (-559))
- (-5 *2 (-645 (-645 (-295 (-410 (-954 *5)))))) (-5 *1 (-771 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-645 (-954 *4))) (-4 *4 (-559))
- (-5 *2 (-645 (-645 (-295 (-410 (-954 *4)))))) (-5 *1 (-771 *4))))
- ((*1 *2 *2 *2 *3 *4)
- (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1178))
- (-4 *5 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147)))
- (-5 *1 (-773 *5 *2)) (-4 *2 (-13 (-29 *5) (-1203) (-961)))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-690 *7)) (-5 *5 (-1178))
- (-4 *7 (-13 (-29 *6) (-1203) (-961)))
- (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147)))
- (-5 *2
- (-2 (|:| |particular| (-1268 *7)) (|:| -2623 (-645 (-1268 *7)))))
- (-5 *1 (-803 *6 *7)) (-5 *4 (-1268 *7))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-690 *6)) (-5 *4 (-1178))
- (-4 *6 (-13 (-29 *5) (-1203) (-961)))
- (-4 *5 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147)))
- (-5 *2 (-645 (-1268 *6))) (-5 *1 (-803 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-645 (-295 *7))) (-5 *4 (-645 (-114)))
- (-5 *5 (-1178)) (-4 *7 (-13 (-29 *6) (-1203) (-961)))
- (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147)))
- (-5 *2
- (-2 (|:| |particular| (-1268 *7)) (|:| -2623 (-645 (-1268 *7)))))
- (-5 *1 (-803 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-645 *7)) (-5 *4 (-645 (-114)))
- (-5 *5 (-1178)) (-4 *7 (-13 (-29 *6) (-1203) (-961)))
- (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147)))
- (-5 *2
- (-2 (|:| |particular| (-1268 *7)) (|:| -2623 (-645 (-1268 *7)))))
- (-5 *1 (-803 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-295 *7)) (-5 *4 (-114)) (-5 *5 (-1178))
- (-4 *7 (-13 (-29 *6) (-1203) (-961)))
- (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147)))
- (-5 *2
- (-3 (-2 (|:| |particular| *7) (|:| -2623 (-645 *7))) *7 "failed"))
- (-5 *1 (-803 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-114)) (-5 *5 (-1178))
- (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147)))
- (-5 *2
- (-3 (-2 (|:| |particular| *3) (|:| -2623 (-645 *3))) *3 "failed"))
- (-5 *1 (-803 *6 *3)) (-4 *3 (-13 (-29 *6) (-1203) (-961)))))
- ((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *3 (-295 *2)) (-5 *4 (-114)) (-5 *5 (-645 *2))
- (-4 *2 (-13 (-29 *6) (-1203) (-961))) (-5 *1 (-803 *6 *2))
- (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147)))))
- ((*1 *2 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-114)) (-5 *4 (-295 *2)) (-5 *5 (-645 *2))
- (-4 *2 (-13 (-29 *6) (-1203) (-961)))
- (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147)))
- (-5 *1 (-803 *6 *2))))
- ((*1 *2 *3) (-12 (-5 *3 (-809)) (-5 *2 (-1037)) (-5 *1 (-806))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-809)) (-5 *4 (-1065)) (-5 *2 (-1037)) (-5 *1 (-806))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1268 (-317 (-381)))) (-5 *4 (-381)) (-5 *5 (-645 *4))
- (-5 *2 (-1037)) (-5 *1 (-806))))
- ((*1 *2 *3 *4 *4 *5 *4)
- (-12 (-5 *3 (-1268 (-317 (-381)))) (-5 *4 (-381)) (-5 *5 (-645 *4))
- (-5 *2 (-1037)) (-5 *1 (-806))))
- ((*1 *2 *3 *4 *4 *5 *6 *4)
- (-12 (-5 *3 (-1268 (-317 *4))) (-5 *5 (-645 (-381)))
- (-5 *6 (-317 (-381))) (-5 *4 (-381)) (-5 *2 (-1037)) (-5 *1 (-806))))
- ((*1 *2 *3 *4 *4 *5 *5 *4)
- (-12 (-5 *3 (-1268 (-317 (-381)))) (-5 *4 (-381)) (-5 *5 (-645 *4))
- (-5 *2 (-1037)) (-5 *1 (-806))))
- ((*1 *2 *3 *4 *4 *5 *6 *5 *4)
- (-12 (-5 *3 (-1268 (-317 *4))) (-5 *5 (-645 (-381)))
- (-5 *6 (-317 (-381))) (-5 *4 (-381)) (-5 *2 (-1037)) (-5 *1 (-806))))
- ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4)
- (-12 (-5 *3 (-1268 (-317 *4))) (-5 *5 (-645 (-381)))
- (-5 *6 (-317 (-381))) (-5 *4 (-381)) (-5 *2 (-1037)) (-5 *1 (-806))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12
- (-5 *5
- (-1
- (-3 (-2 (|:| |particular| *6) (|:| -2623 (-645 *6))) "failed")
- *7 *6))
- (-4 *6 (-365)) (-4 *7 (-657 *6))
- (-5 *2 (-2 (|:| |particular| (-1268 *6)) (|:| -2623 (-690 *6))))
- (-5 *1 (-814 *6 *7)) (-5 *3 (-690 *6)) (-5 *4 (-1268 *6))))
- ((*1 *2 *3) (-12 (-5 *3 (-900)) (-5 *2 (-1037)) (-5 *1 (-899))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-900)) (-5 *4 (-1065)) (-5 *2 (-1037)) (-5 *1 (-899))))
- ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8)
- (-12 (-5 *4 (-772)) (-5 *6 (-645 (-645 (-317 *3)))) (-5 *7 (-1160))
- (-5 *8 (-225)) (-5 *5 (-645 (-317 (-381)))) (-5 *3 (-381))
- (-5 *2 (-1037)) (-5 *1 (-899))))
- ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7)
- (-12 (-5 *4 (-772)) (-5 *6 (-645 (-645 (-317 *3)))) (-5 *7 (-1160))
- (-5 *5 (-645 (-317 (-381)))) (-5 *3 (-381)) (-5 *2 (-1037))
- (-5 *1 (-899))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-954 (-410 (-567)))) (-5 *2 (-645 (-381)))
- (-5 *1 (-1025)) (-5 *4 (-381))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-954 (-567))) (-5 *2 (-645 (-381))) (-5 *1 (-1025))
- (-5 *4 (-381))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567)))))))
- (-5 *2 (-645 *4)) (-5 *1 (-1130 *3 *4)) (-4 *3 (-1244 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147)))
- (-5 *2 (-645 (-295 (-317 *4)))) (-5 *1 (-1133 *4))
- (-5 *3 (-317 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147)))
- (-5 *2 (-645 (-295 (-317 *4)))) (-5 *1 (-1133 *4))
- (-5 *3 (-295 (-317 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1178))
- (-4 *5 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147)))
- (-5 *2 (-645 (-295 (-317 *5)))) (-5 *1 (-1133 *5))
- (-5 *3 (-295 (-317 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1178))
- (-4 *5 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147)))
- (-5 *2 (-645 (-295 (-317 *5)))) (-5 *1 (-1133 *5))
- (-5 *3 (-317 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-645 (-1178)))
- (-4 *5 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147)))
- (-5 *2 (-645 (-645 (-295 (-317 *5))))) (-5 *1 (-1133 *5))
- (-5 *3 (-645 (-295 (-317 *5))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-645 (-410 (-954 *5)))) (-5 *4 (-645 (-1178)))
- (-4 *5 (-559)) (-5 *2 (-645 (-645 (-295 (-410 (-954 *5))))))
- (-5 *1 (-1187 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-645 (-1178))) (-4 *5 (-559))
- (-5 *2 (-645 (-645 (-295 (-410 (-954 *5)))))) (-5 *1 (-1187 *5))
- (-5 *3 (-645 (-295 (-410 (-954 *5)))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-645 (-410 (-954 *4)))) (-4 *4 (-559))
- (-5 *2 (-645 (-645 (-295 (-410 (-954 *4)))))) (-5 *1 (-1187 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-559)) (-5 *2 (-645 (-645 (-295 (-410 (-954 *4))))))
- (-5 *1 (-1187 *4)) (-5 *3 (-645 (-295 (-410 (-954 *4)))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1178)) (-4 *5 (-559))
- (-5 *2 (-645 (-295 (-410 (-954 *5))))) (-5 *1 (-1187 *5))
- (-5 *3 (-410 (-954 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1178)) (-4 *5 (-559))
- (-5 *2 (-645 (-295 (-410 (-954 *5))))) (-5 *1 (-1187 *5))
- (-5 *3 (-295 (-410 (-954 *5))))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-559)) (-5 *2 (-645 (-295 (-410 (-954 *4)))))
- (-5 *1 (-1187 *4)) (-5 *3 (-410 (-954 *4)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1165 *3))))
+ ((*1 *1 *1) (-4 *1 (-1207))))
+(((*1 *1 *1) (-4 *1 (-870 *2))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-233)) (-4 *3 (-1051)) (-4 *4 (-851)) (-4 *5 (-267 *4))
+ (-4 *6 (-794)) (-5 *2 (-1 *1 (-772))) (-4 *1 (-254 *3 *4 *5 *6))))
((*1 *2 *3)
- (-12 (-4 *4 (-559)) (-5 *2 (-645 (-295 (-410 (-954 *4)))))
- (-5 *1 (-1187 *4)) (-5 *3 (-295 (-410 (-954 *4)))))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037))
- (-5 *1 (-756)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-567)) (-5 *1 (-381)))))
+ (-12 (-4 *4 (-1051)) (-4 *3 (-851)) (-4 *5 (-267 *3)) (-4 *6 (-794))
+ (-5 *2 (-1 *1 (-772))) (-4 *1 (-254 *4 *3 *5 *6))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-267 *2)) (-4 *2 (-851)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-945 *3)) (-4 *3 (-13 (-365) (-1204) (-1004)))
+ (-5 *1 (-176 *3)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1175 *9)) (-5 *4 (-645 *7)) (-4 *7 (-851))
+ (-4 *9 (-951 *8 *6 *7)) (-4 *6 (-794)) (-4 *8 (-308))
+ (-5 *2 (-645 (-772))) (-5 *1 (-743 *6 *7 *8 *9)) (-5 *5 (-772)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-645 *2)) (-4 *2 (-548)) (-5 *1 (-159 *2)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1271)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1102))
+ (-5 *2 (-2 (|:| -3705 (-567)) (|:| |var| (-613 *1))))
+ (-4 *1 (-433 *3)))))
(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-793))))
((*1 *1 *1)
- (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1051)) (-14 *3 (-645 (-1178)))))
+ (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1051)) (-14 *3 (-645 (-1179)))))
((*1 *1 *1)
(-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1051) (-851)))
- (-14 *3 (-645 (-1178)))))
+ (-14 *3 (-645 (-1179)))))
((*1 *1 *1)
(-12 (-4 *1 (-384 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-1102))))
((*1 *1 *1)
- (-12 (-14 *2 (-645 (-1178))) (-4 *3 (-172))
- (-4 *5 (-238 (-2414 *2) (-772)))
+ (-12 (-14 *2 (-645 (-1179))) (-4 *3 (-172))
+ (-4 *5 (-238 (-2423 *2) (-772)))
(-14 *6
- (-1 (-112) (-2 (|:| -3768 *4) (|:| -3458 *5))
- (-2 (|:| -3768 *4) (|:| -3458 *5))))
+ (-1 (-112) (-2 (|:| -3779 *4) (|:| -3468 *5))
+ (-2 (|:| -3779 *4) (|:| -3468 *5))))
(-5 *1 (-464 *2 *3 *4 *5 *6 *7)) (-4 *4 (-851))
(-4 *7 (-951 *3 *5 (-865 *2)))))
((*1 *1 *1) (-12 (-4 *1 (-512 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-851))))
((*1 *1 *1)
- (-12 (-4 *2 (-559)) (-5 *1 (-624 *2 *3)) (-4 *3 (-1244 *2))))
+ (-12 (-4 *2 (-559)) (-5 *1 (-624 *2 *3)) (-4 *3 (-1245 *2))))
((*1 *1 *1) (-12 (-4 *1 (-709 *2)) (-4 *2 (-1051))))
((*1 *1 *1)
(-12 (-5 *1 (-736 *2 *3)) (-4 *3 (-851)) (-4 *2 (-1051))
@@ -8198,65 +8198,72 @@
(-12 (-4 *1 (-1067 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794))
(-4 *2 (-851))))
((*1 *1 *1)
- (-12 (-5 *1 (-1291 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-847)))))
-(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4))
- (-4 *3 (-369 *4))))
- ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
+ (-12 (-5 *1 (-1292 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-847)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1142 *2 *3)) (-4 *2 (-13 (-1102) (-34)))
+ (-4 *3 (-13 (-1102) (-34))))))
(((*1 *2 *2)
(-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
(-4 *2 (-13 (-433 *3) (-1004)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3))
- (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4))))
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3))
+ (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3))
- (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4))))
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3))
+ (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4))))
+ ((*1 *1 *2) (-12 (-5 *1 (-332 *2)) (-4 *2 (-851))))
((*1 *1 *1)
- (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1178)))
- (-14 *3 (-645 (-1178))) (-4 *4 (-390))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567))))
- (-5 *1 (-1163 *3))))
+ (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1179)))
+ (-14 *3 (-645 (-1179))) (-4 *4 (-390))))
((*1 *2 *2)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567))))
(-5 *1 (-1164 *3))))
- ((*1 *1 *1) (-4 *1 (-1206))))
-(((*1 *1) (-12 (-5 *1 (-645 *2)) (-4 *2 (-1218)))))
-(((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-2 (|:| -1752 *6) (|:| |coeff| *6)) "failed") *6))
- (-4 *6 (-365)) (-4 *7 (-1244 *6))
- (-5 *2
- (-3 (-2 (|:| |answer| (-410 *7)) (|:| |a0| *6))
- (-2 (|:| -1752 (-410 *7)) (|:| |coeff| (-410 *7))) "failed"))
- (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-645 (-613 *6))) (-5 *4 (-1178)) (-5 *2 (-613 *6))
- (-4 *6 (-433 *5)) (-4 *5 (-1102)) (-5 *1 (-576 *5 *6)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-857 *2)) (-4 *2 (-172)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-351))
- (-5 *2 (-645 (-2 (|:| |deg| (-772)) (|:| -2424 *3))))
- (-5 *1 (-216 *4 *3)) (-4 *3 (-1244 *4)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *2 (-1102)) (-5 *1 (-1195 *3 *2)) (-4 *3 (-1102)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-945 *3) (-945 *3))) (-5 *1 (-176 *3))
- (-4 *3 (-13 (-365) (-1203) (-1004))))))
-(((*1 *2 *3 *3 *3 *3 *4 *5)
- (-12 (-5 *3 (-225)) (-5 *4 (-567))
- (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3879))))
- (-5 *2 (-1037)) (-5 *1 (-747)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-645 (-1217))) (-5 *3 (-1217)) (-5 *1 (-682)))))
-(((*1 *2 *3 *1)
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1165 *3))))
+ ((*1 *1 *1) (-4 *1 (-1207))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-1179))
+ (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-317 *5)))
+ (-5 *1 (-1131 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 (-410 (-954 *5)))) (-5 *4 (-645 (-1179)))
+ (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-645 (-317 *5))))
+ (-5 *1 (-1131 *5)))))
+(((*1 *1 *1) (-5 *1 (-1065))))
+(((*1 *1) (-12 (-5 *1 (-645 *2)) (-4 *2 (-1219)))))
+(((*1 *2 *1) (-12 (-4 *1 (-557 *2)) (-4 *2 (-13 (-407) (-1204))))))
+(((*1 *2)
+ (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-420 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851))
+ (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-1274))
+ (-5 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *7 (-1073 *3 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851))
+ (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-1274))
+ (-5 *1 (-1110 *3 *4 *5 *6 *7)) (-4 *7 (-1073 *3 *4 *5 *6)))))
+(((*1 *2 *1 *1)
(-12
(-5 *2
- (-2 (|:| |cycle?| (-112)) (|:| -3848 (-772)) (|:| |period| (-772))))
- (-5 *1 (-1158 *4)) (-4 *4 (-1218)) (-5 *3 (-772)))))
+ (-2 (|:| |polnum| (-783 *3)) (|:| |polden| *3) (|:| -1921 (-772))))
+ (-5 *1 (-783 *3)) (-4 *3 (-1051))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851))
+ (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -1921 (-772))))
+ (-4 *1 (-1067 *3 *4 *5)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-430 *3 *2)) (-4 *3 (-13 (-172) (-38 (-410 (-567)))))
+ (-4 *2 (-13 (-851) (-21))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1269 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172))
+ (-4 *5 (-1245 *4)) (-5 *2 (-690 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-412 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1245 *3))
+ (-5 *2 (-690 *3)))))
(((*1 *1 *2 *2 *3)
- (-12 (-5 *3 (-645 (-1178))) (-4 *4 (-1102))
+ (-12 (-5 *3 (-645 (-1179))) (-4 *4 (-1102))
(-4 *5 (-13 (-1051) (-888 *4) (-615 (-894 *4))))
(-5 *1 (-1078 *4 *5 *2))
(-4 *2 (-13 (-433 *5) (-888 *4) (-615 (-894 *4))))))
@@ -8267,78 +8274,102 @@
(((*1 *2 *1)
(-12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1))
(-4 *1 (-951 *3 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1181 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567)))))
(((*1 *2 *2)
(-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
(-4 *2 (-13 (-433 *3) (-1004)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3))
- (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4))))
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3))
+ (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3))
- (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4))))
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3))
+ (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4))))
((*1 *1 *2) (-12 (-5 *1 (-332 *2)) (-4 *2 (-851))))
((*1 *1 *1)
- (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1178)))
- (-14 *3 (-645 (-1178))) (-4 *4 (-390))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567))))
- (-5 *1 (-1163 *3))))
+ (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1179)))
+ (-14 *3 (-645 (-1179))) (-4 *4 (-390))))
((*1 *2 *2)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567))))
(-5 *1 (-1164 *3))))
- ((*1 *1 *1) (-4 *1 (-1206))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1165 *3))))
+ ((*1 *1 *1) (-4 *1 (-1207))))
(((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567))))))
+ (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567)))))))
+ (-5 *2 (-645 *4)) (-5 *1 (-1130 *3 *4)) (-4 *3 (-1245 *4))))
+ ((*1 *2 *3 *3 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567)))))))
+ (-5 *2 (-645 *3)) (-5 *1 (-1130 *4 *3)) (-4 *4 (-1245 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-324 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-131))
+ (-5 *2 (-645 (-2 (|:| |gen| *3) (|:| -3955 *4))))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-645 (-2 (|:| -3705 *3) (|:| -2296 *4))))
+ (-5 *1 (-736 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-727))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1247 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-793))
+ (-5 *2 (-1159 (-2 (|:| |k| *4) (|:| |c| *3)))))))
+(((*1 *1 *1 *1) (-5 *1 (-863))))
(((*1 *2 *1 *1) (-12 (-4 *1 (-851)) (-5 *2 (-112))))
((*1 *1 *1 *1) (-5 *1 (-863))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-605 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1218))
- (-5 *2 (-112)))))
-(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-13 (-365) (-147) (-1040 (-567))))
- (-4 *5 (-1244 *4))
- (-5 *2 (-2 (|:| -1752 (-410 *5)) (|:| |coeff| (-410 *5))))
- (-5 *1 (-571 *4 *5)) (-5 *3 (-410 *5)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-645 *6)) (-4 *6 (-851)) (-4 *4 (-365)) (-4 *5 (-794))
- (-5 *2
- (-2 (|:| |mval| (-690 *4)) (|:| |invmval| (-690 *4))
- (|:| |genIdeal| (-507 *4 *5 *6 *7))))
- (-5 *1 (-507 *4 *5 *6 *7)) (-4 *7 (-951 *4 *5 *6)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
- (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-990 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
- (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1109 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3 *3)
+ (|partial| -12
+ (-4 *4 (-13 (-147) (-27) (-1040 (-567)) (-1040 (-410 (-567)))))
+ (-4 *5 (-1245 *4)) (-5 *2 (-1175 (-410 *5))) (-5 *1 (-616 *4 *5))
+ (-5 *3 (-410 *5))))
+ ((*1 *2 *3 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 (-421 *6) *6)) (-4 *6 (-1245 *5))
+ (-4 *5 (-13 (-147) (-27) (-1040 (-567)) (-1040 (-410 (-567)))))
+ (-5 *2 (-1175 (-410 *6))) (-5 *1 (-616 *5 *6)) (-5 *3 (-410 *6)))))
+(((*1 *1)
+ (-12 (-4 *1 (-407)) (-1673 (|has| *1 (-6 -4413)))
+ (-1673 (|has| *1 (-6 -4405)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-428 *2)) (-4 *2 (-1102)) (-4 *2 (-851))))
+ ((*1 *1) (-4 *1 (-845))) ((*1 *1 *1 *1) (-4 *1 (-851)))
+ ((*1 *2 *1) (-12 (-4 *1 (-970 *2)) (-4 *2 (-851)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1269 *1)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223))
+ (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-645 (-645 (-945 (-225)))))
- (-5 *2 (-645 (-1096 (-225)))) (-5 *1 (-930)))))
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
+ (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225)))
+ (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225)))
+ (|:| |abserr| (-225)) (|:| |relerr| (-225))))
+ (-5 *2 (-381)) (-5 *1 (-205)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794))
- (-4 *5 (-851)) (-5 *2 (-772)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-421 *3)) (-4 *3 (-559)) (-5 *1 (-422 *3)))))
+ (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3))
+ (-4 *5 (-375 *3)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051))
+ (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-4 *1 (-351))
+ (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1204))))))
(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-793)) (-4 *2 (-1051))))
((*1 *2 *1)
- (-12 (-4 *2 (-1051)) (-5 *1 (-50 *2 *3)) (-14 *3 (-645 (-1178)))))
+ (-12 (-4 *2 (-1051)) (-5 *1 (-50 *2 *3)) (-14 *3 (-645 (-1179)))))
((*1 *2 *1)
(-12 (-5 *2 (-317 *3)) (-5 *1 (-223 *3 *4))
- (-4 *3 (-13 (-1051) (-851))) (-14 *4 (-645 (-1178)))))
+ (-4 *3 (-13 (-1051) (-851))) (-14 *4 (-645 (-1179)))))
((*1 *2 *1)
(-12 (-4 *1 (-384 *2 *3)) (-4 *3 (-1102)) (-4 *2 (-1051))))
((*1 *2 *1)
- (-12 (-14 *3 (-645 (-1178))) (-4 *5 (-238 (-2414 *3) (-772)))
+ (-12 (-14 *3 (-645 (-1179))) (-4 *5 (-238 (-2423 *3) (-772)))
(-14 *6
- (-1 (-112) (-2 (|:| -3768 *4) (|:| -3458 *5))
- (-2 (|:| -3768 *4) (|:| -3458 *5))))
+ (-1 (-112) (-2 (|:| -3779 *4) (|:| -3468 *5))
+ (-2 (|:| -3779 *4) (|:| -3468 *5))))
(-4 *2 (-172)) (-5 *1 (-464 *3 *2 *4 *5 *6 *7)) (-4 *4 (-851))
(-4 *7 (-951 *2 *5 (-865 *3)))))
((*1 *2 *1) (-12 (-4 *1 (-512 *2 *3)) (-4 *3 (-851)) (-4 *2 (-1102))))
((*1 *2 *1)
- (-12 (-4 *2 (-559)) (-5 *1 (-624 *2 *3)) (-4 *3 (-1244 *2))))
+ (-12 (-4 *2 (-559)) (-5 *1 (-624 *2 *3)) (-4 *3 (-1245 *2))))
((*1 *2 *1) (-12 (-4 *1 (-709 *2)) (-4 *2 (-1051))))
((*1 *2 *1)
(-12 (-4 *2 (-1051)) (-5 *1 (-736 *2 *3)) (-4 *3 (-851))
@@ -8350,74 +8381,59 @@
((*1 *1 *1 *2)
(-12 (-4 *1 (-1067 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794))
(-4 *2 (-851)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1065)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-433 *3) (-1004)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1259 *3))
- (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1230 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1228 *3))
- (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1251 *3 *4)) (-4 *5 (-985 *4))))
- ((*1 *1 *2) (-12 (-5 *1 (-332 *2)) (-4 *2 (-851))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1178)))
- (-14 *3 (-645 (-1178))) (-4 *4 (-390))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567))))
- (-5 *1 (-1163 *3))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-772)) (-5 *1 (-1167 *3 *4)) (-14 *3 (-923))
+ (-4 *4 (-1051)))))
+(((*1 *1 *1) (-4 *1 (-630)))
((*1 *2 *2)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567))))
- (-5 *1 (-1164 *3))))
- ((*1 *1 *1) (-4 *1 (-1206))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-365))
- (-5 *2 (-645 (-2 (|:| C (-690 *5)) (|:| |g| (-1268 *5)))))
- (-5 *1 (-980 *5)) (-5 *3 (-690 *5)) (-5 *4 (-1268 *5)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-772)) (-4 *6 (-365)) (-5 *4 (-1212 *6))
- (-5 *2 (-1 (-1158 *4) (-1158 *4))) (-5 *1 (-1276 *6))
- (-5 *5 (-1158 *4)))))
+ (-12 (-4 *3 (-559)) (-5 *1 (-631 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1004) (-1204))))))
(((*1 *2 *1 *1) (-12 (-4 *1 (-851)) (-5 *2 (-112))))
((*1 *1 *1 *1) (-5 *1 (-863)))
((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-906 *3)) (-4 *3 (-1102)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-863)) (-5 *1 (-393 *3 *4 *5)) (-14 *3 (-772))
- (-14 *4 (-772)) (-4 *5 (-172)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-945 *3) (-945 *3))) (-5 *1 (-176 *3))
- (-4 *3 (-13 (-365) (-1203) (-1004))))))
-(((*1 *1)
- (-12 (-4 *1 (-407)) (-1657 (|has| *1 (-6 -4409)))
- (-1657 (|has| *1 (-6 -4401)))))
- ((*1 *2 *1) (-12 (-4 *1 (-428 *2)) (-4 *2 (-1102)) (-4 *2 (-851))))
- ((*1 *1) (-4 *1 (-845))) ((*1 *1 *1 *1) (-4 *1 (-851)))
- ((*1 *2 *1) (-12 (-4 *1 (-970 *2)) (-4 *2 (-851)))))
-(((*1 *2 *3 *4 *3 *4 *4 *4)
- (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *2 (-1037))
- (-5 *1 (-757)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-690 *3))
- (-4 *3 (-13 (-308) (-10 -8 (-15 -2908 ((-421 $) $)))))
- (-4 *4 (-1244 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-412 *3 *4))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-690 *3))
- (-4 *3 (-13 (-308) (-10 -8 (-15 -2908 ((-421 $) $)))))
- (-4 *4 (-1244 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-412 *3 *4)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-169 (-225))) (-5 *5 (-567)) (-5 *6 (-1160))
- (-5 *3 (-225)) (-5 *2 (-1037)) (-5 *1 (-759)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-128)))))
+ (-12 (-5 *3 (-645 (-923))) (-5 *2 (-906 (-567))) (-5 *1 (-919)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1175 *4)) (-4 *4 (-351)) (-5 *2 (-960 (-1122)))
+ (-5 *1 (-348 *4)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-327 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-793))
+ (-4 *2 (-455))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-344 *2 *3 *4)) (-4 *2 (-1223)) (-4 *3 (-1245 *2))
+ (-4 *4 (-1245 (-410 *3)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-455))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-951 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794))
+ (-4 *2 (-851)) (-4 *3 (-455))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-951 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794))
+ (-4 *4 (-851)) (-4 *2 (-455))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *3 (-308)) (-4 *3 (-559)) (-5 *1 (-1166 *3 *2))
+ (-4 *2 (-1245 *3)))))
+(((*1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-760)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-1102))
+ (-5 *2 (-645 (-2 (|:| |k| *4) (|:| |c| *3))))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-645 (-2 (|:| |k| (-895 *3)) (|:| |c| *4))))
+ (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851))
+ (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-923))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-645 (-673 *3))) (-5 *1 (-895 *3)) (-4 *3 (-851)))))
+(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))))
(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-793))))
((*1 *2 *1)
(-12 (-4 *1 (-384 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-1102))))
((*1 *2 *1)
- (-12 (-14 *3 (-645 (-1178))) (-4 *4 (-172))
- (-4 *6 (-238 (-2414 *3) (-772)))
+ (-12 (-14 *3 (-645 (-1179))) (-4 *4 (-172))
+ (-4 *6 (-238 (-2423 *3) (-772)))
(-14 *7
- (-1 (-112) (-2 (|:| -3768 *5) (|:| -3458 *6))
- (-2 (|:| -3768 *5) (|:| -3458 *6))))
+ (-1 (-112) (-2 (|:| -3779 *5) (|:| -3468 *6))
+ (-2 (|:| -3779 *5) (|:| -3468 *6))))
(-5 *2 (-714 *5 *6 *7)) (-5 *1 (-464 *3 *4 *5 *6 *7 *8))
(-4 *5 (-851)) (-4 *8 (-951 *4 *6 (-865 *3)))))
((*1 *2 *1)
@@ -8426,439 +8442,354 @@
((*1 *1 *1)
(-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-793))
(-4 *4 (-851)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-559)) (-4 *2 (-13 (-433 (-169 *4)) (-1004) (-1203)))
- (-5 *1 (-601 *4 *3 *2)) (-4 *3 (-13 (-433 *4) (-1004) (-1203))))))
-(((*1 *1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1051))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-559)) (-4 *4 (-172)) (-4 *5 (-375 *4))
- (-4 *6 (-375 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4)))
- (-5 *1 (-689 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-172)) (-4 *2 (-1051)) (-5 *1 (-715 *2 *3))
- (-4 *3 (-649 *2))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-172)) (-4 *2 (-1051)) (-5 *1 (-715 *2 *3))
- (-4 *3 (-649 *2))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-837 *2)) (-4 *2 (-172)) (-4 *2 (-1051))))
- ((*1 *1 *1) (-12 (-5 *1 (-837 *2)) (-4 *2 (-172)) (-4 *2 (-1051)))))
-(((*1 *1 *1) (-4 *1 (-630)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-559)) (-5 *1 (-631 *3 *2))
- (-4 *2 (-13 (-433 *3) (-1004) (-1203))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2))
- (-4 *2 (-13 (-433 *3) (-1203))))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1051)) (-5 *2 (-1269 *3)) (-5 *1 (-713 *3 *4))
+ (-4 *4 (-1245 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-645 (-645 (-171)))))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-303)) (-4 *2 (-1219))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-645 (-613 *1))) (-5 *3 (-645 *1)) (-4 *1 (-303))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-295 *1))) (-4 *1 (-303))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-295 *1)) (-4 *1 (-303)))))
+(((*1 *2) (-12 (-5 *2 (-645 (-772))) (-5 *1 (-1272))))
+ ((*1 *2 *2) (-12 (-5 *2 (-645 (-772))) (-5 *1 (-1272)))))
(((*1 *2 *1 *1) (-12 (-4 *1 (-851)) (-5 *2 (-112))))
((*1 *1 *1 *1) (-5 *1 (-863))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))))
-(((*1 *2)
- (-12 (-5 *2 (-690 (-912 *3))) (-5 *1 (-353 *3 *4)) (-14 *3 (-923))
- (-14 *4 (-923))))
- ((*1 *2)
- (-12 (-5 *2 (-690 *3)) (-5 *1 (-354 *3 *4)) (-4 *3 (-351))
- (-14 *4
- (-3 (-1174 *3)
- (-1268 (-645 (-2 (|:| -3802 *3) (|:| -3768 (-1122)))))))))
- ((*1 *2)
- (-12 (-5 *2 (-690 *3)) (-5 *1 (-355 *3 *4)) (-4 *3 (-351))
- (-14 *4 (-923)))))
+ (-12 (-5 *4 (-1179))
+ (-4 *5 (-13 (-1040 (-567)) (-455) (-640 (-567))))
+ (-5 *2 (-2 (|:| -2099 *3) (|:| |nconst| *3))) (-5 *1 (-570 *5 *3))
+ (-4 *3 (-13 (-27) (-1204) (-433 *5))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1219)) (-5 *2 (-772)) (-5 *1 (-182 *4 *3))
+ (-4 *3 (-675 *4)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *2)) (-4 *2 (-172))))
+ ((*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-419 *3 *2)) (-4 *3 (-420 *2))))
+ ((*1 *2) (-12 (-4 *1 (-420 *2)) (-4 *2 (-172)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102))
- (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-112)))))
-(((*1 *1 *1 *1) (-4 *1 (-143)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-559)) (-5 *1 (-158 *3 *2)) (-4 *2 (-433 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1218)) (-4 *2 (-851))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-283 *3)) (-4 *3 (-1218))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-970 *2)) (-4 *2 (-851)))))
-(((*1 *1) (-5 *1 (-55))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794))
- (-4 *4 (-851)) (-4 *2 (-455)))))
-(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1218))))
+ (-12
+ (-5 *2
+ (-645
+ (-2 (|:| |scalar| (-410 (-567))) (|:| |coeff| (-1175 *3))
+ (|:| |logand| (-1175 *3)))))
+ (-5 *1 (-588 *3)) (-4 *3 (-365)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-567)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1051))
+ (-5 *1 (-322 *4 *5 *2 *6)) (-4 *6 (-951 *2 *4 *5)))))
+(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1219))))
((*1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-851))))
((*1 *1 *1) (-12 (-5 *1 (-678 *2)) (-4 *2 (-851))))
((*1 *1 *1) (-5 *1 (-863)))
((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863))))
((*1 *2 *1)
(-12 (-4 *2 (-13 (-849) (-365))) (-5 *1 (-1063 *2 *3))
- (-4 *3 (-1244 *2)))))
+ (-4 *3 (-1245 *2)))))
+(((*1 *2 *3 *4 *4 *4 *5 *5 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225))
+ (-5 *2 (-1037)) (-5 *1 (-752)))))
(((*1 *2 *1) (-12 (-4 *1 (-327 *2 *3)) (-4 *3 (-793)) (-4 *2 (-1051))))
((*1 *2 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1102)))))
-(((*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-303)) (-4 *2 (-1218))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-645 (-613 *1))) (-5 *3 (-645 *1)) (-4 *1 (-303))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-295 *1))) (-4 *1 (-303))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-295 *1)) (-4 *1 (-303)))))
-(((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-470))))
- ((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-470))))
- ((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-929)))))
+(((*1 *2)
+ (-12 (-5 *2 (-923)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-923)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1274)) (-5 *1 (-1182))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-1183)))))
(((*1 *2 *1 *1) (-12 (-4 *1 (-851)) (-5 *2 (-112))))
((*1 *1 *1 *1) (-5 *1 (-863)))
((*1 *2 *1 *1) (-12 (-4 *1 (-905 *3)) (-4 *3 (-1102)) (-5 *2 (-112))))
((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-906 *3)) (-4 *3 (-1102)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-772))
- (-4 *3 (-13 (-308) (-10 -8 (-15 -2908 ((-421 $) $)))))
- (-4 *4 (-1244 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-412 *3 *4)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-112)) (-5 *3 (-645 (-264))) (-5 *1 (-262))))
- ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-264)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *2 (-645 (-1178))) (-5 *1 (-1181)) (-5 *3 (-1178)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-645 (-613 *6))) (-5 *4 (-1179)) (-5 *2 (-613 *6))
+ (-4 *6 (-433 *5)) (-4 *5 (-1102)) (-5 *1 (-576 *5 *6)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-645 *3)) (-4 *3 (-1245 (-567))) (-5 *1 (-489 *3)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1269 *1)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223))
+ (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-114)) (-5 *1 (-113 *2)) (-4 *2 (-1102)))))
-(((*1 *1) (-5 *1 (-1269))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-1160)) (-5 *4 (-1122)) (-5 *2 (-112)) (-5 *1 (-822)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-951 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794))
- (-4 *2 (-851)) (-4 *3 (-172))))
- ((*1 *2 *3 *3)
- (-12 (-4 *2 (-559)) (-5 *1 (-971 *2 *3)) (-4 *3 (-1244 *2))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794))
- (-4 *4 (-851)) (-4 *2 (-559))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1051)) (-4 *2 (-172)))))
-(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1218))))
+ (-12 (-5 *3 (-844 (-381))) (-5 *2 (-844 (-225))) (-5 *1 (-306)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-351)) (-4 *4 (-330 *3)) (-4 *5 (-1245 *4))
+ (-5 *1 (-778 *3 *4 *5 *2 *6)) (-4 *2 (-1245 *5)) (-14 *6 (-923))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-772)) (-4 *1 (-1288 *3)) (-4 *3 (-365)) (-4 *3 (-370))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1288 *2)) (-4 *2 (-365)) (-4 *2 (-370)))))
+(((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |mval| (-690 *3)) (|:| |invmval| (-690 *3))
+ (|:| |genIdeal| (-507 *3 *4 *5 *6))))
+ (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851))
+ (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5)))))
+(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1219))))
((*1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-851))))
((*1 *1 *1) (-12 (-5 *1 (-678 *2)) (-4 *2 (-851))))
((*1 *1 *1) (-5 *1 (-863)))
((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863))))
((*1 *2 *1)
(-12 (-4 *2 (-13 (-849) (-365))) (-5 *1 (-1063 *2 *3))
- (-4 *3 (-1244 *2)))))
+ (-4 *3 (-1245 *2)))))
(((*1 *2 *1)
(-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-793))
(-5 *2 (-112))))
((*1 *2 *1) (-12 (-4 *1 (-433 *3)) (-4 *3 (-1102)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-929)))))
-(((*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1160)) (-5 *1 (-787)))))
-(((*1 *2 *3 *3)
- (-12 (|has| *2 (-6 (-4420 "*"))) (-4 *5 (-375 *2)) (-4 *6 (-375 *2))
- (-4 *2 (-1051)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1244 *2))
- (-4 *4 (-688 *2 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-645 (-645 (-567)))) (-5 *1 (-973))
- (-5 *3 (-645 (-567))))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1141))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-645 (-2 (|:| |gen| *3) (|:| -3946 *4))))
- (-4 *3 (-1102)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-650 *3 *4 *5)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-894 *4)) (-4 *4 (-1102)) (-4 *2 (-1102))
- (-5 *1 (-891 *4 *2)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-645 *5) *6))
- (-4 *5 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *6 (-1244 *5))
- (-5 *2 (-645 (-2 (|:| -3286 *5) (|:| -3845 *3))))
- (-5 *1 (-810 *5 *6 *3 *7)) (-4 *3 (-657 *6))
- (-4 *7 (-657 (-410 *6))))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1178)) (-5 *1 (-588 *2)) (-4 *2 (-1040 *3))
- (-4 *2 (-365))))
- ((*1 *1 *2 *2) (-12 (-5 *1 (-588 *2)) (-4 *2 (-365))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1178)) (-4 *4 (-559)) (-5 *1 (-631 *4 *2))
- (-4 *2 (-13 (-433 *4) (-1004) (-1203)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1094 *2)) (-4 *2 (-13 (-433 *4) (-1004) (-1203)))
- (-4 *4 (-559)) (-5 *1 (-631 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-961)) (-5 *2 (-1178))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1094 *1)) (-4 *1 (-961)))))
+ (-12 (-5 *3 (-645 (-317 (-225)))) (-5 *4 (-772))
+ (-5 *2 (-690 (-225))) (-5 *1 (-268)))))
+(((*1 *1 *1) (-4 *1 (-630)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-631 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1004) (-1204))))))
+(((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
+(((*1 *2 *3) (-12 (-5 *3 (-945 *2)) (-5 *1 (-984 *2)) (-4 *2 (-1051)))))
+(((*1 *2 *1) (-12 (-4 *1 (-327 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-793))))
+ ((*1 *2 *1) (-12 (-4 *1 (-709 *3)) (-4 *3 (-1051)) (-5 *2 (-772))))
+ ((*1 *2 *1) (-12 (-4 *1 (-853 *3)) (-4 *3 (-1051)) (-5 *2 (-772))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-645 *6)) (-4 *1 (-951 *4 *5 *6)) (-4 *4 (-1051))
+ (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 (-772)))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-951 *4 *5 *3)) (-4 *4 (-1051)) (-4 *5 (-794))
+ (-4 *3 (-851)) (-5 *2 (-772)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-3 (-410 (-954 *5)) (-1168 (-1179) (-954 *5))))
+ (-4 *5 (-455)) (-5 *2 (-645 (-690 (-410 (-954 *5)))))
+ (-5 *1 (-293 *5)) (-5 *4 (-690 (-410 (-954 *5)))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-317 (-225))) (-5 *2 (-317 (-381))) (-5 *1 (-306)))))
+(((*1 *2 *1) (-12 (-5 *2 (-825)) (-5 *1 (-826)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1004))))))
(((*1 *1 *1) (-4 *1 (-243)))
((*1 *1 *1)
(-12 (-4 *2 (-172)) (-5 *1 (-290 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1244 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-4 *3 (-1245 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
(-14 *6 (-1 (-3 *4 "failed") *4 *4))
(-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
((*1 *1 *1)
- (-2800 (-12 (-5 *1 (-295 *2)) (-4 *2 (-365)) (-4 *2 (-1218)))
- (-12 (-5 *1 (-295 *2)) (-4 *2 (-476)) (-4 *2 (-1218)))))
+ (-2811 (-12 (-5 *1 (-295 *2)) (-4 *2 (-365)) (-4 *2 (-1219)))
+ (-12 (-5 *1 (-295 *2)) (-4 *2 (-476)) (-4 *2 (-1219)))))
((*1 *1 *1) (-4 *1 (-476)))
- ((*1 *2 *2) (-12 (-5 *2 (-1268 *3)) (-4 *3 (-351)) (-5 *1 (-531 *3))))
+ ((*1 *2 *2) (-12 (-5 *2 (-1269 *3)) (-4 *3 (-351)) (-5 *1 (-531 *3))))
((*1 *1 *1)
(-12 (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *1 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)) (-4 *2 (-365)))))
-(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7)
- (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225)))
- (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT))))
- (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-225))
- (-5 *2 (-1037)) (-5 *1 (-756))))
- ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8)
- (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225)))
- (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT))))
- (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-391))
- (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-756)))))
-(((*1 *1 *1) (-4 *1 (-630)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-559)) (-5 *1 (-631 *3 *2))
- (-4 *2 (-13 (-433 *3) (-1004) (-1203))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-559) (-1040 (-567)) (-640 (-567))))
+ (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-27) (-1204) (-433 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1179))
+ (-4 *4 (-13 (-559) (-1040 (-567)) (-640 (-567))))
+ (-5 *1 (-278 *4 *2)) (-4 *2 (-13 (-27) (-1204) (-433 *4)))))
+ ((*1 *1 *1) (-5 *1 (-381)))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-4 *3 (-1067 *5 *6 *7))
+ (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2575 *4))))
+ (-5 *1 (-777 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-509)) (-5 *1 (-114))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-114)))))
(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))
- ((*1 *1 *2 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1218))))
+ ((*1 *1 *2 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1219))))
((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437))))
((*1 *1 *1 *1) (-5 *1 (-863)))
((*1 *2 *1 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1028 *3)) (-4 *3 (-1218)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-1178))
- (-4 *4 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567))))
- (-5 *1 (-623 *4 *2)) (-4 *2 (-13 (-1203) (-961) (-29 *4))))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-1028 *3)) (-4 *3 (-1219)))))
+(((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1179)) (-5 *1 (-676 *3)) (-4 *3 (-1102)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1236 *3)) (-4 *3 (-1219)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))))
+(((*1 *1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-645 (-1142 *4 *5))) (-5 *3 (-1 (-112) *5 *5))
+ (-4 *4 (-13 (-1102) (-34))) (-4 *5 (-13 (-1102) (-34)))
+ (-5 *1 (-1143 *4 *5))))
+ ((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-645 (-1142 *3 *4))) (-4 *3 (-13 (-1102) (-34)))
+ (-4 *4 (-13 (-1102) (-34))) (-5 *1 (-1143 *3 *4)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1175 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-5 *1 (-103 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-420 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-559)) (-5 *1 (-624 *2 *3)) (-4 *3 (-1245 *2)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-559) (-1040 (-567)))) (-5 *1 (-188 *3 *2))
+ (-4 *2 (-13 (-27) (-1204) (-433 (-169 *3))))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1179)) (-4 *4 (-13 (-559) (-1040 (-567))))
+ (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1204) (-433 (-169 *4))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-455) (-1040 (-567)) (-640 (-567))))
+ (-5 *1 (-1208 *3 *2)) (-4 *2 (-13 (-27) (-1204) (-433 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1179))
+ (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567))))
+ (-5 *1 (-1208 *4 *2)) (-4 *2 (-13 (-27) (-1204) (-433 *4))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567))))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
- (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225)))
- (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225)))
- (|:| |abserr| (-225)) (|:| |relerr| (-225))))
- (-5 *2
- (-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))))
- (-5 *1 (-205)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1222)) (-4 *5 (-1244 *4))
- (-5 *2
- (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-410 *5))
- (|:| |c2| (-410 *5)) (|:| |deg| (-772))))
- (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1244 (-410 *5))))))
+ (-12 (-5 *3 (-567)) (|has| *1 (-6 -4413)) (-4 *1 (-407))
+ (-5 *2 (-923)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5 (-1 (-3 (-645 *6) "failed") (-567) *6 *6)) (-4 *6 (-365))
+ (-4 *7 (-1245 *6))
+ (-5 *2 (-2 (|:| |answer| (-588 (-410 *7))) (|:| |a0| *6)))
+ (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-455)) (-4 *4 (-851)) (-4 *5 (-794))
+ (-5 *2 (-112)) (-5 *1 (-989 *3 *4 *5 *6))
+ (-4 *6 (-951 *3 *5 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1142 *3 *4)) (-4 *3 (-13 (-1102) (-34)))
+ (-4 *4 (-13 (-1102) (-34))))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037))
+ (-5 *1 (-756)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-1269 *5)) (-5 *3 (-772)) (-5 *4 (-1122)) (-4 *5 (-351))
+ (-5 *1 (-531 *5)))))
(((*1 *2 *3)
- (-12
- (-5 *2
- (-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))))
- (-5 *1 (-1022 *3)) (-4 *3 (-1244 (-567)))))
- ((*1 *2 *3 *4)
- (-12
- (-5 *2
- (-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))))
- (-5 *1 (-1022 *3)) (-4 *3 (-1244 (-567)))
- (-5 *4 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))))))
- ((*1 *2 *3 *4)
- (-12
- (-5 *2
- (-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))))
- (-5 *1 (-1022 *3)) (-4 *3 (-1244 (-567))) (-5 *4 (-410 (-567)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-410 (-567)))
- (-5 *2 (-645 (-2 (|:| -2950 *5) (|:| -2963 *5)))) (-5 *1 (-1022 *3))
- (-4 *3 (-1244 (-567))) (-5 *4 (-2 (|:| -2950 *5) (|:| -2963 *5)))))
- ((*1 *2 *3)
- (-12
- (-5 *2
- (-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))))
- (-5 *1 (-1023 *3)) (-4 *3 (-1244 (-410 (-567))))))
- ((*1 *2 *3 *4)
- (-12
- (-5 *2
- (-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))))
- (-5 *1 (-1023 *3)) (-4 *3 (-1244 (-410 (-567))))
- (-5 *4 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-410 (-567)))
- (-5 *2 (-645 (-2 (|:| -2950 *4) (|:| -2963 *4)))) (-5 *1 (-1023 *3))
- (-4 *3 (-1244 *4))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-410 (-567)))
- (-5 *2 (-645 (-2 (|:| -2950 *5) (|:| -2963 *5)))) (-5 *1 (-1023 *3))
- (-4 *3 (-1244 *5)) (-5 *4 (-2 (|:| -2950 *5) (|:| -2963 *5))))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5)
- (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225)))
- (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-66 FUNCT1))))
- (-5 *2 (-1037)) (-5 *1 (-754)))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1096 (-225)))
- (-5 *5 (-112)) (-5 *2 (-1270)) (-5 *1 (-258)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1174 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-365) (-147) (-1040 (-567)))) (-4 *5 (-1244 *4))
- (-5 *2 (-2 (|:| |ans| (-410 *5)) (|:| |nosol| (-112))))
- (-5 *1 (-1017 *4 *5)) (-5 *3 (-410 *5)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-1102)) (-4 *1 (-905 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-849)) (-5 *1 (-304 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-690 *3)) (-4 *3 (-308)) (-5 *1 (-701 *3)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-365)) (-4 *5 (-559))
- (-5 *2
- (-2 (|:| |minor| (-645 (-923))) (|:| -3845 *3)
- (|:| |minors| (-645 (-645 (-923)))) (|:| |ops| (-645 *3))))
- (-5 *1 (-90 *5 *3)) (-5 *4 (-923)) (-4 *3 (-657 *5)))))
+ (-12 (-5 *3 (-923)) (-5 *2 (-1175 *4)) (-5 *1 (-359 *4))
+ (-4 *4 (-351)))))
+(((*1 *1) (-5 *1 (-141))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1178))
+ (-12 (-5 *3 (-1179))
(-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52))
- (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1203) (-433 *4)))))
+ (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1204) (-433 *4)))))
((*1 *2 *3)
(-12 (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52))
- (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *4)))))
+ (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *4)))))
((*1 *2 *3 *4)
(-12 (-5 *4 (-410 (-567)))
(-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52))
- (-5 *1 (-316 *5 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *5)))))
+ (-5 *1 (-316 *5 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *5)))
+ (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *5)))
(-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52))
(-5 *1 (-316 *5 *3))))
((*1 *2 *3 *4 *5)
(-12 (-5 *4 (-295 *3)) (-5 *5 (-410 (-567)))
- (-4 *3 (-13 (-27) (-1203) (-433 *6)))
+ (-4 *3 (-13 (-27) (-1204) (-433 *6)))
(-4 *6 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52))
(-5 *1 (-316 *6 *3))))
((*1 *2 *3 *4 *5 *6)
(-12 (-5 *3 (-1 *8 (-410 (-567)))) (-5 *4 (-295 *8))
- (-5 *5 (-1235 (-410 (-567)))) (-5 *6 (-410 (-567)))
- (-4 *8 (-13 (-27) (-1203) (-433 *7)))
+ (-5 *5 (-1236 (-410 (-567)))) (-5 *6 (-410 (-567)))
+ (-4 *8 (-13 (-27) (-1204) (-433 *7)))
(-4 *7 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52))
(-5 *1 (-462 *7 *8))))
((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *4 (-1178)) (-5 *5 (-295 *3)) (-5 *6 (-1235 (-410 (-567))))
- (-5 *7 (-410 (-567))) (-4 *3 (-13 (-27) (-1203) (-433 *8)))
+ (-12 (-5 *4 (-1179)) (-5 *5 (-295 *3)) (-5 *6 (-1236 (-410 (-567))))
+ (-5 *7 (-410 (-567))) (-4 *3 (-13 (-27) (-1204) (-433 *8)))
(-4 *8 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52))
(-5 *1 (-462 *8 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-410 (-567))) (-4 *4 (-1051)) (-4 *1 (-1251 *4 *3))
- (-4 *3 (-1228 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-700)) (-5 *1 (-306)))))
-(((*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-823)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-645 (-281))) (-5 *1 (-281))))
- ((*1 *2 *1) (-12 (-5 *2 (-645 (-1183))) (-5 *1 (-1183)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-567)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime"))
- (-5 *1 (-421 *4)) (-4 *4 (-559)))))
-(((*1 *2 *1) (-12 (-5 *2 (-645 (-183 (-139)))) (-5 *1 (-140)))))
+ (-12 (-5 *2 (-410 (-567))) (-4 *4 (-1051)) (-4 *1 (-1252 *4 *3))
+ (-4 *3 (-1229 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-334)))))
+(((*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1204))))))
(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-455)) (-4 *4 (-851)) (-4 *5 (-794))
- (-5 *2 (-112)) (-5 *1 (-989 *3 *4 *5 *6))
- (-4 *6 (-951 *3 *5 *4))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1142 *3 *4)) (-4 *3 (-13 (-1102) (-34)))
- (-4 *4 (-13 (-1102) (-34))))))
+ (-12 (-5 *2 (-645 (-2 (|:| |k| (-673 *3)) (|:| |c| *4))))
+ (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851))
+ (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-923)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3 (-567))) (-4 *3 (-1051)) (-5 *1 (-99 *3))))
+ ((*1 *1 *2 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1051)) (-5 *1 (-99 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1051)) (-5 *1 (-99 *3)))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-1159 *4)) (-5 *3 (-567)) (-4 *4 (-1051))
+ (-5 *1 (-1163 *4))))
+ ((*1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-567)) (-5 *1 (-1261 *3 *4 *5)) (-4 *3 (-1051))
+ (-14 *4 (-1179)) (-14 *5 *3))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-645 (-783 *3))) (-5 *1 (-783 *3)) (-4 *3 (-559))
+ (-4 *3 (-1051)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-559) (-1040 (-567)))) (-5 *1 (-188 *3 *2))
- (-4 *2 (-13 (-27) (-1203) (-433 (-169 *3))))))
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1004))))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-794))
+ (-4 *3 (-13 (-851) (-10 -8 (-15 -3902 ((-1179) $))))) (-4 *5 (-559))
+ (-5 *1 (-733 *4 *3 *5 *2)) (-4 *2 (-951 (-410 (-954 *5)) *4 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1178)) (-4 *4 (-13 (-559) (-1040 (-567))))
- (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1203) (-433 (-169 *4))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-455) (-1040 (-567)) (-640 (-567))))
- (-5 *1 (-1207 *3 *2)) (-4 *2 (-13 (-27) (-1203) (-433 *3)))))
+ (-12 (-4 *4 (-1051)) (-4 *5 (-794))
+ (-4 *3
+ (-13 (-851)
+ (-10 -8 (-15 -3902 ((-1179) $))
+ (-15 -3653 ((-3 $ "failed") (-1179))))))
+ (-5 *1 (-986 *4 *5 *3 *2)) (-4 *2 (-951 (-954 *4) *5 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1178))
- (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567))))
- (-5 *1 (-1207 *4 *2)) (-4 *2 (-13 (-27) (-1203) (-433 *4))))))
-(((*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-702))))
- ((*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-702)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1158 (-567))) (-5 *1 (-1162 *4)) (-4 *4 (-1051))
- (-5 *3 (-567)))))
-(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-567)) (-5 *4 (-690 (-169 (-225)))) (-5 *2 (-1037))
- (-5 *1 (-757)))))
-(((*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-561 *3)) (-4 *3 (-548))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-308)) (-5 *2 (-421 *3))
- (-5 *1 (-743 *4 *5 *6 *3)) (-4 *3 (-951 *6 *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-308))
- (-4 *7 (-951 *6 *4 *5)) (-5 *2 (-421 (-1174 *7)))
- (-5 *1 (-743 *4 *5 *6 *7)) (-5 *3 (-1174 *7))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-455)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851))
- (-5 *2 (-421 *1)) (-4 *1 (-951 *3 *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-851)) (-4 *5 (-794)) (-4 *6 (-455)) (-5 *2 (-421 *3))
- (-5 *1 (-981 *4 *5 *6 *3)) (-4 *3 (-951 *6 *5 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-455))
- (-4 *7 (-951 *6 *4 *5)) (-5 *2 (-421 (-1174 (-410 *7))))
- (-5 *1 (-1173 *4 *5 *6 *7)) (-5 *3 (-1174 (-410 *7)))))
- ((*1 *2 *1) (-12 (-5 *2 (-421 *1)) (-4 *1 (-1222))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-559)) (-5 *2 (-421 *3)) (-5 *1 (-1247 *4 *3))
- (-4 *3 (-13 (-1244 *4) (-559) (-10 -8 (-15 -2774 ($ $ $)))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1048 *4 *5)) (-4 *4 (-13 (-849) (-308) (-147) (-1024)))
- (-14 *5 (-645 (-1178)))
- (-5 *2
- (-645 (-1148 *4 (-534 (-865 *6)) (-865 *6) (-781 *4 (-865 *6)))))
- (-5 *1 (-1294 *4 *5 *6)) (-14 *6 (-645 (-1178))))))
+ (-12 (-5 *3 (-645 *6))
+ (-4 *6
+ (-13 (-851)
+ (-10 -8 (-15 -3902 ((-1179) $))
+ (-15 -3653 ((-3 $ "failed") (-1179))))))
+ (-4 *4 (-1051)) (-4 *5 (-794)) (-5 *1 (-986 *4 *5 *6 *2))
+ (-4 *2 (-951 (-954 *4) *5 *6)))))
+(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928)))))
+(((*1 *2) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-1272)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1178))
+ (-12 (-5 *3 (-1179))
(-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52))
- (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1203) (-433 *4)))))
+ (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1204) (-433 *4)))))
((*1 *2 *3)
(-12 (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52))
- (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *4)))))
+ (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *4)))))
((*1 *2 *3 *4)
(-12 (-5 *4 (-567)) (-4 *5 (-13 (-455) (-1040 *4) (-640 *4)))
(-5 *2 (-52)) (-5 *1 (-316 *5 *3))
- (-4 *3 (-13 (-27) (-1203) (-433 *5)))))
+ (-4 *3 (-13 (-27) (-1204) (-433 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *5)))
+ (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *5)))
(-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52))
(-5 *1 (-316 *5 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *6)))
+ (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *6)))
(-4 *6 (-13 (-455) (-1040 *5) (-640 *5))) (-5 *5 (-567))
(-5 *2 (-52)) (-5 *1 (-316 *6 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-567))) (-5 *4 (-295 *7)) (-5 *5 (-1235 (-567)))
- (-4 *7 (-13 (-27) (-1203) (-433 *6)))
+ (-12 (-5 *3 (-1 *7 (-567))) (-5 *4 (-295 *7)) (-5 *5 (-1236 (-567)))
+ (-4 *7 (-13 (-27) (-1204) (-433 *6)))
(-4 *6 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52))
(-5 *1 (-462 *6 *7))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1178)) (-5 *5 (-295 *3)) (-5 *6 (-1235 (-567)))
- (-4 *3 (-13 (-27) (-1203) (-433 *7)))
+ (-12 (-5 *4 (-1179)) (-5 *5 (-295 *3)) (-5 *6 (-1236 (-567)))
+ (-4 *3 (-13 (-27) (-1204) (-433 *7)))
(-4 *7 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52))
(-5 *1 (-462 *7 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-567)) (-4 *4 (-1051)) (-4 *1 (-1230 *4 *3))
- (-4 *3 (-1259 *4))))
+ (-12 (-5 *2 (-567)) (-4 *4 (-1051)) (-4 *1 (-1231 *4 *3))
+ (-4 *3 (-1260 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-1228 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))))
-(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7)
- (-12 (-5 *4 (-567)) (-5 *5 (-690 (-225)))
- (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))))
- (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT))))
- (-5 *3 (-225)) (-5 *2 (-1037)) (-5 *1 (-750)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-317 *4)) (-4 *4 (-13 (-829) (-1051))) (-5 *2 (-1160))
- (-5 *1 (-827 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-317 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-829) (-1051)))
- (-5 *2 (-1160)) (-5 *1 (-827 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-823)) (-5 *4 (-317 *5)) (-4 *5 (-13 (-829) (-1051)))
- (-5 *2 (-1273)) (-5 *1 (-827 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-823)) (-5 *4 (-317 *6)) (-5 *5 (-112))
- (-4 *6 (-13 (-829) (-1051))) (-5 *2 (-1273)) (-5 *1 (-827 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-829)) (-5 *2 (-1160))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-829)) (-5 *3 (-112)) (-5 *2 (-1160))))
- ((*1 *2 *3 *1) (-12 (-4 *1 (-829)) (-5 *3 (-823)) (-5 *2 (-1273))))
- ((*1 *2 *3 *1 *4)
- (-12 (-4 *1 (-829)) (-5 *3 (-823)) (-5 *4 (-112)) (-5 *2 (-1273)))))
+ (-12 (-4 *1 (-1252 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-1229 *3)))))
+(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
+ (-12 (-5 *3 (-1161)) (-5 *4 (-567)) (-5 *5 (-690 (-225)))
+ (-5 *2 (-1037)) (-5 *1 (-755)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851))
+ (-4 *6 (-1067 *3 *4 *5)) (-5 *1 (-625 *3 *4 *5 *6 *7 *2))
+ (-4 *7 (-1073 *3 *4 *5 *6)) (-4 *2 (-1111 *3 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-945 *3) (-945 *3))) (-5 *1 (-176 *3))
- (-4 *3 (-13 (-365) (-1203) (-1004))))))
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225)))
+ (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))
+ (-5 *2 (-2 (|:| -4178 (-114)) (|:| |w| (-225)))) (-5 *1 (-204)))))
(((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-772))))
((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-923))))
((*1 *1 *1 *1)
@@ -8867,16 +8798,16 @@
((*1 *1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-157))))
((*1 *1 *2 *1) (-12 (-5 *2 (-923)) (-5 *1 (-157))))
((*1 *2 *1 *2)
- (-12 (-5 *2 (-945 *3)) (-4 *3 (-13 (-365) (-1203)))
+ (-12 (-5 *2 (-945 *3)) (-4 *3 (-13 (-365) (-1204)))
(-5 *1 (-227 *3))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1218)) (-4 *2 (-727))))
+ (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1219)) (-4 *2 (-727))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1218)) (-4 *2 (-727))))
+ (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1219)) (-4 *2 (-727))))
((*1 *1 *2 *1)
- (-12 (-5 *1 (-295 *2)) (-4 *2 (-1114)) (-4 *2 (-1218))))
+ (-12 (-5 *1 (-295 *2)) (-4 *2 (-1114)) (-4 *2 (-1219))))
((*1 *1 *1 *2)
- (-12 (-5 *1 (-295 *2)) (-4 *2 (-1114)) (-4 *2 (-1218))))
+ (-12 (-5 *1 (-295 *2)) (-4 *2 (-1114)) (-4 *2 (-1219))))
((*1 *1 *2 *3)
(-12 (-4 *1 (-324 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-131))))
((*1 *1 *1 *2) (-12 (-5 *1 (-363 *2)) (-4 *2 (-1102))))
@@ -8888,11 +8819,11 @@
((*1 *1 *1 *2) (-12 (-4 *1 (-388 *2)) (-4 *2 (-1102))))
((*1 *1 *2 *1) (-12 (-4 *1 (-388 *2)) (-4 *2 (-1102))))
((*1 *1 *2 *1)
- (-12 (-14 *3 (-645 (-1178))) (-4 *4 (-172))
- (-4 *6 (-238 (-2414 *3) (-772)))
+ (-12 (-14 *3 (-645 (-1179))) (-4 *4 (-172))
+ (-4 *6 (-238 (-2423 *3) (-772)))
(-14 *7
- (-1 (-112) (-2 (|:| -3768 *5) (|:| -3458 *6))
- (-2 (|:| -3768 *5) (|:| -3458 *6))))
+ (-1 (-112) (-2 (|:| -3779 *5) (|:| -3468 *6))
+ (-2 (|:| -3779 *5) (|:| -3468 *6))))
(-5 *1 (-464 *3 *4 *5 *6 *7 *2)) (-4 *5 (-851))
(-4 *2 (-951 *4 *6 (-865 *3)))))
((*1 *1 *1 *2)
@@ -8903,7 +8834,7 @@
(-12 (-4 *2 (-365)) (-4 *3 (-794)) (-4 *4 (-851))
(-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-951 *2 *3 *4))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1268 *3)) (-4 *3 (-351)) (-5 *1 (-531 *3))))
+ (-12 (-5 *2 (-1269 *3)) (-4 *3 (-351)) (-5 *1 (-531 *3))))
((*1 *1 *1 *1) (-5 *1 (-539)))
((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-598 *3)) (-4 *3 (-1051))))
((*1 *1 *2 *1) (-12 (-4 *1 (-647 *2)) (-4 *2 (-1060))))
@@ -8933,7 +8864,7 @@
((*1 *1 *1 *1) (-4 *1 (-721))) ((*1 *1 *1 *1) (-5 *1 (-863)))
((*1 *1 *1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1102))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-1268 *4)) (-4 *4 (-1244 *3)) (-4 *3 (-559))
+ (-12 (-5 *2 (-1269 *4)) (-4 *4 (-1245 *3)) (-4 *3 (-559))
(-5 *1 (-971 *3 *4))))
((*1 *1 *1 *2) (-12 (-4 *1 (-1053 *2)) (-4 *2 (-1060))))
((*1 *1 *1 *1) (-4 *1 (-1114)))
@@ -8947,426 +8878,300 @@
(-12 (-4 *3 (-1051)) (-4 *4 (-851)) (-5 *1 (-1128 *3 *4 *2))
(-4 *2 (-951 *3 (-534 *4) *4))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-5 *1 (-1162 *3))))
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-5 *1 (-1163 *3))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-5 *1 (-1162 *3))))
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-5 *1 (-1163 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-5 *1 (-1162 *3))))
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-5 *1 (-1163 *3))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-945 (-225))) (-5 *3 (-225)) (-5 *1 (-1214))))
+ (-12 (-5 *2 (-945 (-225))) (-5 *3 (-225)) (-5 *1 (-1215))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1266 *2)) (-4 *2 (-1218)) (-4 *2 (-727))))
+ (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1219)) (-4 *2 (-727))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-1266 *2)) (-4 *2 (-1218)) (-4 *2 (-727))))
+ (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1219)) (-4 *2 (-727))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-567)) (-4 *1 (-1266 *3)) (-4 *3 (-1218)) (-4 *3 (-21))))
+ (-12 (-5 *2 (-567)) (-4 *1 (-1267 *3)) (-4 *3 (-1219)) (-4 *3 (-21))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-1285 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1051))))
+ (-12 (-4 *1 (-1286 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1051))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1285 *3 *2)) (-4 *3 (-851)) (-4 *2 (-1051))))
+ (-12 (-4 *1 (-1286 *3 *2)) (-4 *3 (-851)) (-4 *2 (-1051))))
((*1 *1 *1 *2)
- (-12 (-5 *1 (-1291 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-847)))))
-(((*1 *2 *1) (|partial| -12 (-5 *1 (-367 *2)) (-4 *2 (-1102))))
- ((*1 *2 *1) (|partial| -12 (-5 *2 (-1160)) (-5 *1 (-1199)))))
+ (-12 (-5 *1 (-1292 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-847)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-171)) (-5 *1 (-1167 *3 *4)) (-14 *3 (-923))
+ (-4 *4 (-1051)))))
+(((*1 *1 *1) (-4 *1 (-630)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-631 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1004) (-1204))))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559))
+ (-5 *2 (-112)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-5 *1 (-1162 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1260 *2 *3 *4)) (-4 *2 (-1051)) (-14 *3 (-1178))
- (-14 *4 *2))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-851)) (-5 *2 (-645 (-645 (-645 *4))))
- (-5 *1 (-1189 *4)) (-5 *3 (-645 (-645 *4))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-690 *8)) (-4 *8 (-951 *5 *7 *6))
- (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1178))))
- (-4 *7 (-794))
- (-5 *2
- (-645
- (-2 (|:| |eqzro| (-645 *8)) (|:| |neqzro| (-645 *8))
- (|:| |wcond| (-645 (-954 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1268 (-410 (-954 *5))))
- (|:| -2623 (-645 (-1268 (-410 (-954 *5))))))))))
- (-5 *1 (-926 *5 *6 *7 *8)) (-5 *4 (-645 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-690 *8)) (-5 *4 (-645 (-1178))) (-4 *8 (-951 *5 *7 *6))
- (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1178))))
- (-4 *7 (-794))
- (-5 *2
- (-645
- (-2 (|:| |eqzro| (-645 *8)) (|:| |neqzro| (-645 *8))
- (|:| |wcond| (-645 (-954 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1268 (-410 (-954 *5))))
- (|:| -2623 (-645 (-1268 (-410 (-954 *5))))))))))
- (-5 *1 (-926 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-690 *7)) (-4 *7 (-951 *4 *6 *5))
- (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1178))))
- (-4 *6 (-794))
- (-5 *2
- (-645
- (-2 (|:| |eqzro| (-645 *7)) (|:| |neqzro| (-645 *7))
- (|:| |wcond| (-645 (-954 *4)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1268 (-410 (-954 *4))))
- (|:| -2623 (-645 (-1268 (-410 (-954 *4))))))))))
- (-5 *1 (-926 *4 *5 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-690 *9)) (-5 *5 (-923)) (-4 *9 (-951 *6 *8 *7))
- (-4 *6 (-13 (-308) (-147))) (-4 *7 (-13 (-851) (-615 (-1178))))
- (-4 *8 (-794))
- (-5 *2
- (-645
- (-2 (|:| |eqzro| (-645 *9)) (|:| |neqzro| (-645 *9))
- (|:| |wcond| (-645 (-954 *6)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1268 (-410 (-954 *6))))
- (|:| -2623 (-645 (-1268 (-410 (-954 *6))))))))))
- (-5 *1 (-926 *6 *7 *8 *9)) (-5 *4 (-645 *9))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-690 *9)) (-5 *4 (-645 (-1178))) (-5 *5 (-923))
- (-4 *9 (-951 *6 *8 *7)) (-4 *6 (-13 (-308) (-147)))
- (-4 *7 (-13 (-851) (-615 (-1178)))) (-4 *8 (-794))
- (-5 *2
- (-645
- (-2 (|:| |eqzro| (-645 *9)) (|:| |neqzro| (-645 *9))
- (|:| |wcond| (-645 (-954 *6)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1268 (-410 (-954 *6))))
- (|:| -2623 (-645 (-1268 (-410 (-954 *6))))))))))
- (-5 *1 (-926 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-690 *8)) (-5 *4 (-923)) (-4 *8 (-951 *5 *7 *6))
- (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1178))))
- (-4 *7 (-794))
- (-5 *2
- (-645
- (-2 (|:| |eqzro| (-645 *8)) (|:| |neqzro| (-645 *8))
- (|:| |wcond| (-645 (-954 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1268 (-410 (-954 *5))))
- (|:| -2623 (-645 (-1268 (-410 (-954 *5))))))))))
- (-5 *1 (-926 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-690 *9)) (-5 *4 (-645 *9)) (-5 *5 (-1160))
- (-4 *9 (-951 *6 *8 *7)) (-4 *6 (-13 (-308) (-147)))
- (-4 *7 (-13 (-851) (-615 (-1178)))) (-4 *8 (-794)) (-5 *2 (-567))
- (-5 *1 (-926 *6 *7 *8 *9))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-690 *9)) (-5 *4 (-645 (-1178))) (-5 *5 (-1160))
- (-4 *9 (-951 *6 *8 *7)) (-4 *6 (-13 (-308) (-147)))
- (-4 *7 (-13 (-851) (-615 (-1178)))) (-4 *8 (-794)) (-5 *2 (-567))
- (-5 *1 (-926 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-690 *8)) (-5 *4 (-1160)) (-4 *8 (-951 *5 *7 *6))
- (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1178))))
- (-4 *7 (-794)) (-5 *2 (-567)) (-5 *1 (-926 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-690 *10)) (-5 *4 (-645 *10)) (-5 *5 (-923))
- (-5 *6 (-1160)) (-4 *10 (-951 *7 *9 *8)) (-4 *7 (-13 (-308) (-147)))
- (-4 *8 (-13 (-851) (-615 (-1178)))) (-4 *9 (-794)) (-5 *2 (-567))
- (-5 *1 (-926 *7 *8 *9 *10))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-690 *10)) (-5 *4 (-645 (-1178))) (-5 *5 (-923))
- (-5 *6 (-1160)) (-4 *10 (-951 *7 *9 *8)) (-4 *7 (-13 (-308) (-147)))
- (-4 *8 (-13 (-851) (-615 (-1178)))) (-4 *9 (-794)) (-5 *2 (-567))
- (-5 *1 (-926 *7 *8 *9 *10))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-690 *9)) (-5 *4 (-923)) (-5 *5 (-1160))
- (-4 *9 (-951 *6 *8 *7)) (-4 *6 (-13 (-308) (-147)))
- (-4 *7 (-13 (-851) (-615 (-1178)))) (-4 *8 (-794)) (-5 *2 (-567))
- (-5 *1 (-926 *6 *7 *8 *9)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-567)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051))
- (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))))
+ (-12 (-5 *2 (-945 *3)) (-4 *3 (-13 (-365) (-1204) (-1004)))
+ (-5 *1 (-176 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1178))
+ (-12 (-5 *3 (-1179))
(-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52))
- (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1203) (-433 *4)))))
+ (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1204) (-433 *4)))))
((*1 *2 *3)
(-12 (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52))
- (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *4)))))
+ (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *4)))))
((*1 *2 *3 *4)
(-12 (-5 *4 (-772)) (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567))))
(-5 *2 (-52)) (-5 *1 (-316 *5 *3))
- (-4 *3 (-13 (-27) (-1203) (-433 *5)))))
+ (-4 *3 (-13 (-27) (-1204) (-433 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *5)))
+ (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *5)))
(-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52))
(-5 *1 (-316 *5 *3))))
((*1 *2 *3 *4 *5)
(-12 (-5 *4 (-295 *3)) (-5 *5 (-772))
- (-4 *3 (-13 (-27) (-1203) (-433 *6)))
+ (-4 *3 (-13 (-27) (-1204) (-433 *6)))
(-4 *6 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52))
(-5 *1 (-316 *6 *3))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 (-567))) (-5 *4 (-295 *6))
- (-4 *6 (-13 (-27) (-1203) (-433 *5)))
+ (-4 *6 (-13 (-27) (-1204) (-433 *5)))
(-4 *5 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52))
(-5 *1 (-462 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1178)) (-5 *5 (-295 *3))
- (-4 *3 (-13 (-27) (-1203) (-433 *6)))
+ (-12 (-5 *4 (-1179)) (-5 *5 (-295 *3))
+ (-4 *3 (-13 (-27) (-1204) (-433 *6)))
(-4 *6 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52))
(-5 *1 (-462 *6 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-567))) (-5 *4 (-295 *7)) (-5 *5 (-1235 (-772)))
- (-4 *7 (-13 (-27) (-1203) (-433 *6)))
+ (-12 (-5 *3 (-1 *7 (-567))) (-5 *4 (-295 *7)) (-5 *5 (-1236 (-772)))
+ (-4 *7 (-13 (-27) (-1204) (-433 *6)))
(-4 *6 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52))
(-5 *1 (-462 *6 *7))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1178)) (-5 *5 (-295 *3)) (-5 *6 (-1235 (-772)))
- (-4 *3 (-13 (-27) (-1203) (-433 *7)))
+ (-12 (-5 *4 (-1179)) (-5 *5 (-295 *3)) (-5 *6 (-1236 (-772)))
+ (-4 *3 (-13 (-27) (-1204) (-433 *7)))
(-4 *7 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52))
(-5 *1 (-462 *7 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-1230 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-1259 *3)))))
+ (-12 (-4 *1 (-1231 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-1260 *3)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-645 *5)) (-5 *4 (-567)) (-4 *5 (-849)) (-4 *5 (-365))
+ (-5 *2 (-772)) (-5 *1 (-947 *5 *6)) (-4 *6 (-1245 *5)))))
+(((*1 *2 *1 *1 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1)))
+ (-4 *1 (-308))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1399 *1)))
+ (-4 *1 (-308)))))
+(((*1 *2 *3)
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225)))
+ (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))
+ (-5 *2 (-645 (-225))) (-5 *1 (-204)))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-114)) (-5 *4 (-772))
+ (-4 *5 (-13 (-455) (-1040 (-567)))) (-4 *5 (-559))
+ (-5 *1 (-41 *5 *2)) (-4 *2 (-433 *5))
+ (-4 *2
+ (-13 (-365) (-303)
+ (-10 -8 (-15 -1447 ((-1127 *5 (-613 $)) $))
+ (-15 -1462 ((-1127 *5 (-613 $)) $))
+ (-15 -4129 ($ (-1127 *5 (-613 $))))))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567)))))))
+ (-5 *2 (-645 *4)) (-5 *1 (-1130 *3 *4)) (-4 *3 (-1245 *4))))
+ ((*1 *2 *3 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567)))))))
+ (-5 *2 (-645 *3)) (-5 *1 (-1130 *4 *3)) (-4 *4 (-1245 *3)))))
+(((*1 *1 *1 *1) (-5 *1 (-863))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1159 (-2 (|:| |k| (-567)) (|:| |c| *3))))
+ (-5 *1 (-597 *3)) (-4 *3 (-1051)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-894 *4)) (-4 *4 (-1102)) (-5 *1 (-892 *4 *3))
+ (-4 *3 (-1219))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-894 *3)) (-4 *3 (-1102)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *6 (-923)) (-4 *5 (-308)) (-4 *3 (-1245 *5))
+ (-5 *2 (-2 (|:| |plist| (-645 *3)) (|:| |modulo| *5)))
+ (-5 *1 (-463 *5 *3)) (-5 *4 (-645 *3)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5 (-1 (-3 (-2 (|:| -2872 *6) (|:| |coeff| *6)) "failed") *6))
+ (-4 *6 (-365)) (-4 *7 (-1245 *6))
+ (-5 *2 (-2 (|:| |answer| (-588 (-410 *7))) (|:| |a0| *6)))
+ (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1245 *3)) (-4 *3 (-1051)) (-5 *2 (-1175 *3)))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1159 *3)) (-4 *3 (-1102))
+ (-4 *3 (-1219)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-648 *3)) (-4 *3 (-1102)))))
+(((*1 *1 *1) (-5 *1 (-225))) ((*1 *1 *1) (-5 *1 (-381)))
+ ((*1 *1) (-5 *1 (-381))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1219)) (-5 *1 (-1134 *4 *2))
+ (-4 *2 (-13 (-605 (-567) *4) (-10 -7 (-6 -4422) (-6 -4423))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-851)) (-4 *3 (-1219)) (-5 *1 (-1134 *3 *2))
+ (-4 *2 (-13 (-605 (-567) *3) (-10 -7 (-6 -4422) (-6 -4423)))))))
+(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4
+ *4 *6 *4)
+ (-12 (-5 *4 (-567)) (-5 *5 (-690 (-225))) (-5 *6 (-676 (-225)))
+ (-5 *3 (-225)) (-5 *2 (-1037)) (-5 *1 (-751)))))
+(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225))
+ (-5 *2 (-1037)) (-5 *1 (-752)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-645 (-1078 *4 *5 *2))) (-4 *4 (-1102))
+ (-4 *5 (-13 (-1051) (-888 *4) (-615 (-894 *4))))
+ (-4 *2 (-13 (-433 *5) (-888 *4) (-615 (-894 *4))))
+ (-5 *1 (-54 *4 *5 *2))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-645 (-1078 *5 *6 *2))) (-5 *4 (-923)) (-4 *5 (-1102))
+ (-4 *6 (-13 (-1051) (-888 *5) (-615 (-894 *5))))
+ (-4 *2 (-13 (-433 *6) (-888 *5) (-615 (-894 *5))))
+ (-5 *1 (-54 *5 *6 *2)))))
+(((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1182)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1175 *3)) (-5 *1 (-916 *3)) (-4 *3 (-308)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-696 *3)) (-4 *3 (-1102))
+ (-5 *2 (-645 (-2 (|:| -4236 *3) (|:| -3447 (-772))))))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-4 *3 (-1067 *5 *6 *7))
+ (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2575 *4))))
+ (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))))
+(((*1 *2 *2 *3)
+ (-12
+ (-5 *2
+ (-2 (|:| |partsol| (-1269 (-410 (-954 *4))))
+ (|:| -2144 (-645 (-1269 (-410 (-954 *4)))))))
+ (-5 *3 (-645 *7)) (-4 *4 (-13 (-308) (-147)))
+ (-4 *7 (-951 *4 *6 *5)) (-4 *5 (-13 (-851) (-615 (-1179))))
+ (-4 *6 (-794)) (-5 *1 (-926 *4 *5 *6 *7)))))
(((*1 *2 *2)
(-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
(-4 *2 (-13 (-433 *3) (-1004))))))
-(((*1 *2)
- (-12 (-4 *3 (-559)) (-5 *2 (-645 (-690 *3))) (-5 *1 (-43 *3 *4))
- (-4 *4 (-420 *3)))))
-(((*1 *2 *3 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-749)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-645 *7)) (|:| -2566 *8)))
- (-4 *7 (-1067 *4 *5 *6)) (-4 *8 (-1073 *4 *5 *6 *7)) (-4 *4 (-455))
- (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112))
- (-5 *1 (-990 *4 *5 *6 *7 *8))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-645 *7)) (|:| -2566 *8)))
- (-4 *7 (-1067 *4 *5 *6)) (-4 *8 (-1073 *4 *5 *6 *7)) (-4 *4 (-455))
- (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112))
- (-5 *1 (-1109 *4 *5 *6 *7 *8)))))
-(((*1 *2 *1) (-12 (-5 *2 (-213 4 (-129))) (-5 *1 (-582)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *3))
- (-5 *1 (-979 *4 *5 *6 *3)) (-4 *3 (-1067 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))))
-(((*1 *2) (-12 (-5 *2 (-645 (-1178))) (-5 *1 (-105)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 (-945 (-225)) (-945 (-225)))) (-5 *1 (-264))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1268 *1)) (-4 *1 (-330 *4)) (-4 *4 (-365))
- (-5 *2 (-690 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-1268 *3))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-1268 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172))
- (-5 *2 (-690 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1268 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172))
- (-5 *2 (-1268 *4))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-1268 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172))
- (-4 *5 (-1244 *4)) (-5 *2 (-690 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1268 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172))
- (-4 *5 (-1244 *4)) (-5 *2 (-1268 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1268 *1)) (-4 *1 (-412 *4 *5)) (-4 *4 (-172))
- (-4 *5 (-1244 *4)) (-5 *2 (-690 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-412 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1244 *3))
- (-5 *2 (-1268 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1268 *1)) (-4 *1 (-420 *4)) (-4 *4 (-172))
- (-5 *2 (-690 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-1268 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-645 (-690 *5))) (-5 *3 (-690 *5)) (-4 *5 (-365))
- (-5 *2 (-1268 *5)) (-5 *1 (-1088 *5)))))
+(((*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1272))))
+ ((*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1272)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))))
+(((*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1161)) (-5 *1 (-711)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-317 (-225))) (-5 *2 (-317 (-381))) (-5 *1 (-306)))))
+ (-12 (-5 *3 (-1159 (-1159 *4))) (-5 *2 (-1159 *4)) (-5 *1 (-1163 *4))
+ (-4 *4 (-38 (-410 (-567)))) (-4 *4 (-1051)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-645 (-295 *3))) (-5 *1 (-295 *3)) (-4 *3 (-559))
+ (-4 *3 (-1219)))))
+(((*1 *1 *1 *1) (-5 *1 (-863))))
+(((*1 *2) (-12 (-5 *2 (-645 *3)) (-5 *1 (-1086 *3)) (-4 *3 (-132)))))
(((*1 *2 *2 *1)
- (-12 (-5 *2 (-1292 *3 *4)) (-4 *1 (-376 *3 *4)) (-4 *3 (-851))
+ (-12 (-5 *2 (-1293 *3 *4)) (-4 *1 (-376 *3 *4)) (-4 *3 (-851))
(-4 *4 (-172))))
((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-388 *2)) (-4 *2 (-1102))))
((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-820 *2)) (-4 *2 (-851))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-1285 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1051))))
+ (-12 (-4 *1 (-1286 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1051))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-820 *3)) (-4 *1 (-1285 *3 *4)) (-4 *3 (-851))
+ (-12 (-5 *2 (-820 *3)) (-4 *1 (-1286 *3 *4)) (-4 *3 (-851))
(-4 *4 (-1051))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1285 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1051)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1158 (-410 *3))) (-5 *1 (-174 *3)) (-4 *3 (-308)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-365) (-147) (-1040 (-410 (-567)))))
- (-4 *5 (-1244 *4)) (-5 *2 (-645 (-2 (|:| -2166 *5) (|:| -2537 *5))))
- (-5 *1 (-808 *4 *5 *3 *6)) (-4 *3 (-657 *5))
- (-4 *6 (-657 (-410 *5)))))
+ (-12 (-4 *1 (-1286 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1051)))))
+(((*1 *2 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-365)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 *9)) (-4 *8 (-1067 *5 *6 *7))
+ (-4 *9 (-1073 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794))
+ (-4 *7 (-851)) (-5 *2 (-772)) (-5 *1 (-1071 *5 *6 *7 *8 *9))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-365) (-147) (-1040 (-410 (-567)))))
- (-4 *4 (-1244 *5)) (-5 *2 (-645 (-2 (|:| -2166 *4) (|:| -2537 *4))))
- (-5 *1 (-808 *5 *4 *3 *6)) (-4 *3 (-657 *4))
- (-4 *6 (-657 (-410 *4)))))
+ (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 *9)) (-4 *8 (-1067 *5 *6 *7))
+ (-4 *9 (-1111 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794))
+ (-4 *7 (-851)) (-5 *2 (-772)) (-5 *1 (-1147 *5 *6 *7 *8 *9)))))
+(((*1 *1) (-4 *1 (-351)))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-365) (-147) (-1040 (-410 (-567)))))
- (-4 *5 (-1244 *4)) (-5 *2 (-645 (-2 (|:| -2166 *5) (|:| -2537 *5))))
- (-5 *1 (-808 *4 *5 *6 *3)) (-4 *6 (-657 *5))
- (-4 *3 (-657 (-410 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-365) (-147) (-1040 (-410 (-567)))))
- (-4 *4 (-1244 *5)) (-5 *2 (-645 (-2 (|:| -2166 *4) (|:| -2537 *4))))
- (-5 *1 (-808 *5 *4 *6 *3)) (-4 *6 (-657 *4))
- (-4 *3 (-657 (-410 *4))))))
-(((*1 *1 *1 *1) (-4 *1 (-548))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1241 *5 *4)) (-4 *4 (-455)) (-4 *4 (-821))
- (-14 *5 (-1178)) (-5 *2 (-567)) (-5 *1 (-1116 *4 *5)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 (-1158 *3))) (-5 *1 (-1158 *3)) (-4 *3 (-1218)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-690 *5)) (-5 *4 (-1268 *5)) (-4 *5 (-365))
- (-5 *2 (-112)) (-5 *1 (-668 *5))))
+ (-12 (-5 *3 (-645 *5)) (-4 *5 (-433 *4)) (-4 *4 (-13 (-559) (-147)))
+ (-5 *2
+ (-2 (|:| |primelt| *5) (|:| |poly| (-645 (-1175 *5)))
+ (|:| |prim| (-1175 *5))))
+ (-5 *1 (-435 *4 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-559) (-147)))
+ (-5 *2
+ (-2 (|:| |primelt| *3) (|:| |pol1| (-1175 *3))
+ (|:| |pol2| (-1175 *3)) (|:| |prim| (-1175 *3))))
+ (-5 *1 (-435 *4 *3)) (-4 *3 (-27)) (-4 *3 (-433 *4))))
+ ((*1 *2 *3 *4 *3 *4)
+ (-12 (-5 *3 (-954 *5)) (-5 *4 (-1179)) (-4 *5 (-13 (-365) (-147)))
+ (-5 *2
+ (-2 (|:| |coef1| (-567)) (|:| |coef2| (-567))
+ (|:| |prim| (-1175 *5))))
+ (-5 *1 (-962 *5))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4419))))
- (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4419)))) (-5 *2 (-112))
- (-5 *1 (-669 *5 *6 *4 *3)) (-4 *3 (-688 *5 *6 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1174 (-567))) (-5 *1 (-944)) (-5 *3 (-567)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-13 (-365) (-147) (-1040 (-410 (-567)))))
- (-4 *3 (-1244 *4)) (-5 *1 (-810 *4 *3 *2 *5)) (-4 *2 (-657 *3))
- (-4 *5 (-657 (-410 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-410 *5))
- (-4 *4 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *5 (-1244 *4))
- (-5 *1 (-810 *4 *5 *2 *6)) (-4 *2 (-657 *5)) (-4 *6 (-657 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-645 *2)) (-5 *1 (-179 *2)) (-4 *2 (-308))))
- ((*1 *2 *3 *2)
- (-12 (-5 *3 (-645 (-645 *4))) (-5 *2 (-645 *4)) (-4 *4 (-308))
- (-5 *1 (-179 *4))))
+ (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-645 (-1179)))
+ (-4 *5 (-13 (-365) (-147)))
+ (-5 *2
+ (-2 (|:| -3705 (-645 (-567))) (|:| |poly| (-645 (-1175 *5)))
+ (|:| |prim| (-1175 *5))))
+ (-5 *1 (-962 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-645 *8))
- (-5 *4
- (-645
- (-2 (|:| -2623 (-690 *7)) (|:| |basisDen| *7)
- (|:| |basisInv| (-690 *7)))))
- (-5 *5 (-772)) (-4 *8 (-1244 *7)) (-4 *7 (-1244 *6)) (-4 *6 (-351))
+ (-12 (-5 *3 (-645 (-954 *6))) (-5 *4 (-645 (-1179))) (-5 *5 (-1179))
+ (-4 *6 (-13 (-365) (-147)))
(-5 *2
- (-2 (|:| -2623 (-690 *7)) (|:| |basisDen| *7)
- (|:| |basisInv| (-690 *7))))
- (-5 *1 (-501 *6 *7 *8))))
- ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))))
-(((*1 *1) (-5 *1 (-141))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1051)) (-5 *2 (-567)) (-5 *1 (-446 *4 *3 *5))
- (-4 *3 (-1244 *4))
- (-4 *5 (-13 (-407) (-1040 *4) (-365) (-1203) (-285))))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794))
- (-4 *4 (-851)) (-4 *2 (-455)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-365)) (-5 *2 (-645 *3)) (-5 *1 (-947 *4 *3))
- (-4 *3 (-1244 *4)))))
-(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1 *8 *8))
- (-5 *5
- (-1 (-3 (-2 (|:| -1752 *7) (|:| |coeff| *7)) "failed") *7))
- (-5 *6 (-645 (-410 *8))) (-4 *7 (-365)) (-4 *8 (-1244 *7))
- (-5 *3 (-410 *8))
- (-5 *2
- (-2
- (|:| |answer|
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (|:| |a0| *7)))
- (-5 *1 (-577 *7 *8)))))
-(((*1 *2 *3 *3)
- (-12
- (-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-772)) (|:| |poli| *7)
- (|:| |polj| *7)))
- (-4 *5 (-794)) (-4 *7 (-951 *4 *5 *6)) (-4 *4 (-455)) (-4 *6 (-851))
- (-5 *2 (-112)) (-5 *1 (-452 *4 *5 *6 *7)))))
-(((*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1160)) (-5 *1 (-306)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-14 *5 (-645 (-1178))) (-4 *2 (-172))
- (-4 *4 (-238 (-2414 *5) (-772)))
- (-14 *6
- (-1 (-112) (-2 (|:| -3768 *3) (|:| -3458 *4))
- (-2 (|:| -3768 *3) (|:| -3458 *4))))
- (-5 *1 (-464 *5 *2 *3 *4 *6 *7)) (-4 *3 (-851))
- (-4 *7 (-951 *2 *4 (-865 *5))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2))
- (-4 *2 (-13 (-433 *3) (-1203))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2))
- (-4 *2 (-13 (-433 *3) (-1203))))))
-(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1063 (-1026 *3) (-1174 (-1026 *3))))
- (-5 *1 (-1026 *3)) (-4 *3 (-13 (-849) (-365) (-1024))))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-772)) (-5 *2 (-112))))
- ((*1 *2 *3 *3)
- (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1219 *3)) (-4 *3 (-1102))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1102)) (-5 *2 (-112))
- (-5 *1 (-1219 *3)))))
-(((*1 *2) (-12 (-5 *2 (-645 *3)) (-5 *1 (-1086 *3)) (-4 *3 (-132)))))
-(((*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-1271)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-645 *6) "failed") (-567) *6 *6)) (-4 *6 (-365))
- (-4 *7 (-1244 *6))
- (-5 *2 (-2 (|:| |answer| (-588 (-410 *7))) (|:| |a0| *6)))
- (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-709 *3)) (-5 *1 (-828 *2 *3)) (-4 *3 (-1051)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))))
-(((*1 *2 *2 *3 *4 *4)
- (-12 (-5 *4 (-567)) (-4 *3 (-172)) (-4 *5 (-375 *3))
- (-4 *6 (-375 *3)) (-5 *1 (-689 *3 *5 *6 *2))
- (-4 *2 (-688 *3 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-954 (-225))) (-5 *2 (-225)) (-5 *1 (-306)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-929)))))
+ (-2 (|:| -3705 (-645 (-567))) (|:| |poly| (-645 (-1175 *6)))
+ (|:| |prim| (-1175 *6))))
+ (-5 *1 (-962 *6)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |cd| (-1160)) (|:| -1996 (-1160))))
- (-5 *1 (-823)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-772)) (-5 *2 (-1 (-1158 (-954 *4)) (-1158 (-954 *4))))
- (-5 *1 (-1276 *4)) (-4 *4 (-365)))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-645 *6)) (-5 *4 (-645 (-247 *5 *6))) (-4 *6 (-455))
- (-5 *2 (-247 *5 *6)) (-14 *5 (-645 (-1178))) (-5 *1 (-632 *5 *6)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1268 (-645 *3))) (-4 *4 (-308))
- (-5 *2 (-645 *3)) (-5 *1 (-458 *4 *3)) (-4 *3 (-1244 *4)))))
+ (-12 (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-645 *5)))))
+(((*1 *1) (-5 *1 (-141))) ((*1 *1 *1) (-5 *1 (-144)))
+ ((*1 *1 *1) (-4 *1 (-1146))))
(((*1 *2 *3 *2)
- (-12
+ (-12 (-5 *2 (-1159 *4)) (-5 *3 (-1 *4 (-567))) (-4 *4 (-1051))
+ (-5 *1 (-1163 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1179))))
+ (-4 *6 (-794)) (-4 *7 (-951 *4 *6 *5))
(-5 *2
- (-645
- (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-772)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *3 (-794)) (-4 *6 (-951 *4 *3 *5)) (-4 *4 (-455)) (-4 *5 (-851))
- (-5 *1 (-452 *4 *3 *5 *6)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1073 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794))
- (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-112)))))
+ (-2 (|:| |sysok| (-112)) (|:| |z0| (-645 *7)) (|:| |n0| (-645 *7))))
+ (-5 *1 (-926 *4 *5 *6 *7)) (-5 *3 (-645 *7)))))
+(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-851)) (-5 *1 (-487 *3)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-772)) (-5 *1 (-1167 *3 *4)) (-14 *3 (-923))
+ (-4 *4 (-1051)))))
+(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-851)) (-5 *1 (-121 *3)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-421 *2)) (-4 *2 (-308)) (-5 *1 (-916 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-1179))
+ (-4 *5 (-13 (-308) (-147))) (-5 *2 (-52)) (-5 *1 (-917 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-421 (-954 *6))) (-5 *5 (-1179)) (-5 *3 (-954 *6))
+ (-4 *6 (-13 (-308) (-147))) (-5 *2 (-52)) (-5 *1 (-917 *6)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-863)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-645 (-2 (|:| -2717 (-1175 *6)) (|:| -3468 (-567)))))
+ (-4 *6 (-308)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112))
+ (-5 *1 (-743 *4 *5 *6 *7)) (-4 *7 (-951 *6 *4 *5))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1136 *2)) (-4 *2 (-1051)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225)))))
- (-5 *2 (-645 (-1178))) (-5 *1 (-268))))
+ (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2694 (-645 (-225)))))
+ (-5 *2 (-645 (-1179))) (-5 *1 (-268))))
((*1 *2 *3)
- (-12 (-5 *3 (-1174 *7)) (-4 *7 (-951 *6 *4 *5)) (-4 *4 (-794))
+ (-12 (-5 *3 (-1175 *7)) (-4 *7 (-951 *6 *4 *5)) (-4 *4 (-794))
(-4 *5 (-851)) (-4 *6 (-1051)) (-5 *2 (-645 *5))
(-5 *1 (-322 *4 *5 *6 *7))))
((*1 *2 *1)
- (-12 (-5 *2 (-645 (-1178))) (-5 *1 (-341 *3 *4 *5)) (-14 *3 *2)
+ (-12 (-5 *2 (-645 (-1179))) (-5 *1 (-341 *3 *4 *5)) (-14 *3 *2)
(-14 *4 *2) (-4 *5 (-390))))
((*1 *2 *1)
- (-12 (-4 *1 (-433 *3)) (-4 *3 (-1102)) (-5 *2 (-645 (-1178)))))
+ (-12 (-4 *1 (-433 *3)) (-4 *3 (-1102)) (-5 *2 (-645 (-1179)))))
((*1 *2 *1)
(-12 (-5 *2 (-645 (-894 *3))) (-5 *1 (-894 *3)) (-4 *3 (-1102))))
((*1 *2 *1)
@@ -9378,7 +9183,7 @@
(-5 *1 (-952 *4 *5 *6 *7 *3))
(-4 *3
(-13 (-365)
- (-10 -8 (-15 -4132 ($ *7)) (-15 -1448 (*7 $)) (-15 -1460 (*7 $)))))))
+ (-10 -8 (-15 -4129 ($ *7)) (-15 -1447 (*7 $)) (-15 -1462 (*7 $)))))))
((*1 *2 *1)
(-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-793))
(-4 *5 (-851)) (-5 *2 (-645 *5))))
@@ -9386,130 +9191,105 @@
(-12 (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-794))
(-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-645 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-410 (-954 *4))) (-4 *4 (-559)) (-5 *2 (-645 (-1178)))
+ (-12 (-5 *3 (-410 (-954 *4))) (-4 *4 (-559)) (-5 *2 (-645 (-1179)))
(-5 *1 (-1045 *4)))))
(((*1 *1 *2 *2 *3)
- (-12 (-5 *2 (-772)) (-4 *3 (-1218)) (-4 *1 (-57 *3 *4 *5))
+ (-12 (-5 *2 (-772)) (-4 *3 (-1219)) (-4 *1 (-57 *3 *4 *5))
(-4 *4 (-375 *3)) (-4 *5 (-375 *3))))
((*1 *1) (-5 *1 (-171)))
((*1 *1) (-12 (-5 *1 (-213 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1102))))
- ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1160)) (-4 *1 (-392))))
+ ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1161)) (-4 *1 (-392))))
((*1 *1) (-5 *1 (-397)))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-772)) (-4 *1 (-652 *3)) (-4 *3 (-1218))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-772)) (-4 *1 (-652 *3)) (-4 *3 (-1219))))
((*1 *1)
(-12 (-4 *3 (-1102)) (-5 *1 (-887 *2 *3 *4)) (-4 *2 (-1102))
(-4 *4 (-667 *3))))
((*1 *1) (-12 (-5 *1 (-891 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-1102))))
((*1 *1 *2)
(-12 (-5 *1 (-1144 *3 *2)) (-14 *3 (-772)) (-4 *2 (-1051))))
- ((*1 *1) (-12 (-5 *1 (-1166 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1051))))
- ((*1 *1 *1) (-5 *1 (-1178))) ((*1 *1) (-5 *1 (-1178)))
- ((*1 *1) (-5 *1 (-1198))))
+ ((*1 *1) (-12 (-5 *1 (-1167 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1051))))
+ ((*1 *1 *1) (-5 *1 (-1179))) ((*1 *1) (-5 *1 (-1179)))
+ ((*1 *1) (-5 *1 (-1199))))
(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-567)) (-4 *1 (-652 *3)) (-4 *3 (-1218))))
+ (-12 (-5 *2 (-567)) (-4 *1 (-652 *3)) (-4 *3 (-1219))))
((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-567)) (-4 *1 (-652 *2)) (-4 *2 (-1218)))))
-(((*1 *1 *2) (-12 (-5 *1 (-692 *2)) (-4 *2 (-614 (-863))))))
+ (-12 (-5 *3 (-567)) (-4 *1 (-652 *2)) (-4 *2 (-1219)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-923)) (-5 *1 (-787)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1271)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-567)) (-5 *2 (-645 (-645 (-225)))) (-5 *1 (-1215)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-857 *2)) (-4 *2 (-172)))))
+(((*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1219)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-793))
- (-5 *2 (-112))))
+ (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-793))
+ (-5 *2 (-772))))
((*1 *2 *1)
(-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-1102))
- (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-597 *3)) (-4 *3 (-1051))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-559)) (-5 *2 (-112)) (-5 *1 (-624 *3 *4))
- (-4 *4 (-1244 *3))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-736 *3 *4)) (-4 *3 (-1051))
- (-4 *4 (-727))))
+ (-5 *2 (-772))))
((*1 *2 *1)
- (-12 (-4 *1 (-1285 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051))
- (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-772)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-861)) (-5 *2 (-692 (-552))) (-5 *3 (-552)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-567)) (-4 *5 (-351)) (-5 *2 (-421 (-1174 (-1174 *5))))
- (-5 *1 (-1216 *5)) (-5 *3 (-1174 (-1174 *5))))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4418)) (-4 *1 (-235 *3))
- (-4 *3 (-1102))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-283 *3)) (-4 *3 (-1218)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-1142 *2 *3)) (-4 *2 (-13 (-1102) (-34)))
- (-4 *3 (-13 (-1102) (-34))))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-338 *5 *6 *7 *8)) (-4 *5 (-433 *4))
- (-4 *6 (-1244 *5)) (-4 *7 (-1244 (-410 *6)))
- (-4 *8 (-344 *5 *6 *7)) (-4 *4 (-13 (-559) (-1040 (-567))))
- (-5 *2 (-2 (|:| -4384 (-772)) (|:| -2614 *8)))
- (-5 *1 (-913 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-338 (-410 (-567)) *4 *5 *6))
- (-4 *4 (-1244 (-410 (-567)))) (-4 *5 (-1244 (-410 *4)))
- (-4 *6 (-344 (-410 (-567)) *4 *5))
- (-5 *2 (-2 (|:| -4384 (-772)) (|:| -2614 *6)))
- (-5 *1 (-914 *4 *5 *6)))))
+ (-12 (-5 *2 (-772)) (-5 *1 (-736 *3 *4)) (-4 *3 (-1051))
+ (-4 *4 (-727)))))
+(((*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1064))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1064)))))
+(((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1274)) (-5 *1 (-381))))
+ ((*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-381)))))
(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1174 (-410 (-1174 *2)))) (-5 *4 (-613 *2))
- (-4 *2 (-13 (-433 *5) (-27) (-1203)))
+ (-12 (-5 *3 (-1175 (-410 (-1175 *2)))) (-5 *4 (-613 *2))
+ (-4 *2 (-13 (-433 *5) (-27) (-1204)))
(-4 *5 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567))))
(-5 *1 (-563 *5 *2 *6)) (-4 *6 (-1102))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1174 *1)) (-4 *1 (-951 *4 *5 *3)) (-4 *4 (-1051))
+ (-12 (-5 *2 (-1175 *1)) (-4 *1 (-951 *4 *5 *3)) (-4 *4 (-1051))
(-4 *5 (-794)) (-4 *3 (-851))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1174 *4)) (-4 *4 (-1051)) (-4 *1 (-951 *4 *5 *3))
+ (-12 (-5 *2 (-1175 *4)) (-4 *4 (-1051)) (-4 *1 (-951 *4 *5 *3))
(-4 *5 (-794)) (-4 *3 (-851))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-410 (-1174 *2))) (-4 *5 (-794)) (-4 *4 (-851))
+ (-12 (-5 *3 (-410 (-1175 *2))) (-4 *5 (-794)) (-4 *4 (-851))
(-4 *6 (-1051))
(-4 *2
(-13 (-365)
- (-10 -8 (-15 -4132 ($ *7)) (-15 -1448 (*7 $)) (-15 -1460 (*7 $)))))
+ (-10 -8 (-15 -4129 ($ *7)) (-15 -1447 (*7 $)) (-15 -1462 (*7 $)))))
(-5 *1 (-952 *5 *4 *6 *7 *2)) (-4 *7 (-951 *6 *5 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-410 (-1174 (-410 (-954 *5))))) (-5 *4 (-1178))
+ (-12 (-5 *3 (-410 (-1175 (-410 (-954 *5))))) (-5 *4 (-1179))
(-5 *2 (-410 (-954 *5))) (-5 *1 (-1045 *5)) (-4 *5 (-559)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-645 (-2 (|:| -1795 *3) (|:| -4237 *4))))
- (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *1 (-1194 *3 *4))))
- ((*1 *1) (-12 (-4 *1 (-1194 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-1102)))))
-(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3)
- (-12 (-5 *4 (-690 (-225))) (-5 *5 (-690 (-567))) (-5 *3 (-567))
- (-5 *2 (-1037)) (-5 *1 (-757)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037))
- (-5 *1 (-758)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-645 (-1174 *4))) (-5 *3 (-1174 *4))
- (-4 *4 (-911)) (-5 *1 (-664 *4)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *2 (-567)) (-5 *1 (-572 *3)) (-4 *3 (-1040 *2)))))
+ (-12 (-5 *2 (-645 (-2 (|:| -1809 *3) (|:| -4236 *4))))
+ (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *1 (-1195 *3 *4))))
+ ((*1 *1) (-12 (-4 *1 (-1195 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-1102)))))
+(((*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-561 *3)) (-4 *3 (-548)))))
+(((*1 *2)
+ (-12 (-4 *4 (-365)) (-5 *2 (-923)) (-5 *1 (-329 *3 *4))
+ (-4 *3 (-330 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-365)) (-5 *2 (-834 (-923))) (-5 *1 (-329 *3 *4))
+ (-4 *3 (-330 *4))))
+ ((*1 *2) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-923))))
+ ((*1 *2)
+ (-12 (-4 *1 (-1288 *3)) (-4 *3 (-365)) (-5 *2 (-834 (-923))))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1112)) (-5 *3 (-567)))))
+(((*1 *2 *1 *1)
+ (|partial| -12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051))
+ (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)))))
(((*1 *2 *2 *2)
- (-12 (-4 *3 (-794)) (-4 *4 (-851)) (-4 *5 (-308))
- (-5 *1 (-918 *3 *4 *5 *2)) (-4 *2 (-951 *5 *3 *4))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1174 *6)) (-4 *6 (-951 *5 *3 *4)) (-4 *3 (-794))
- (-4 *4 (-851)) (-4 *5 (-308)) (-5 *1 (-918 *3 *4 *5 *6))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-645 *2)) (-4 *2 (-951 *6 *4 *5))
- (-5 *1 (-918 *4 *5 *6 *2)) (-4 *4 (-794)) (-4 *5 (-851))
- (-4 *6 (-308)))))
+ (-12 (-4 *3 (-1219)) (-5 *1 (-182 *3 *2)) (-4 *2 (-675 *3)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-645 *3)) (-4 *3 (-1218)) (-5 *1 (-1149 *3)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1160)) (-4 *1 (-366 *3 *4)) (-4 *3 (-1102))
- (-4 *4 (-1102)))))
+ (-12 (-5 *2 (-645 *3)) (-4 *3 (-1219)) (-5 *1 (-1149 *3)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-772)) (-4 *4 (-13 (-1051) (-718 (-410 (-567)))))
+ (-4 *5 (-851)) (-5 *1 (-1285 *4 *5 *2)) (-4 *2 (-1290 *5 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-365) (-849)))
+ (-5 *2 (-2 (|:| |start| *3) (|:| -2158 (-421 *3))))
+ (-5 *1 (-181 *4 *3)) (-4 *3 (-1245 (-169 *4))))))
+(((*1 *2 *3 *4 *3 *4 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037))
+ (-5 *1 (-757)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-645 (-317 (-225)))) (-5 *4 (-772))
- (-5 *2 (-690 (-225))) (-5 *1 (-268)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-794))
- (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-645 *5)))))
-(((*1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))))
+ (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1102)) (-4 *4 (-1102))
+ (-4 *6 (-1102)) (-5 *2 (-1 *6 *5)) (-5 *1 (-685 *5 *4 *6)))))
(((*1 *1 *2 *3)
(-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-793))))
((*1 *1 *2 *3)
@@ -9517,17 +9297,17 @@
(-4 *2 (-365)) (-14 *5 (-995 *4 *2))))
((*1 *1 *2 *3)
(-12 (-5 *3 (-714 *5 *6 *7)) (-4 *5 (-851))
- (-4 *6 (-238 (-2414 *4) (-772)))
+ (-4 *6 (-238 (-2423 *4) (-772)))
(-14 *7
- (-1 (-112) (-2 (|:| -3768 *5) (|:| -3458 *6))
- (-2 (|:| -3768 *5) (|:| -3458 *6))))
- (-14 *4 (-645 (-1178))) (-4 *2 (-172))
+ (-1 (-112) (-2 (|:| -3779 *5) (|:| -3468 *6))
+ (-2 (|:| -3779 *5) (|:| -3468 *6))))
+ (-14 *4 (-645 (-1179))) (-4 *2 (-172))
(-5 *1 (-464 *4 *2 *5 *6 *7 *8)) (-4 *8 (-951 *2 *6 (-865 *4)))))
((*1 *1 *2 *3)
(-12 (-4 *1 (-512 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-851))))
((*1 *1 *2 *3)
(-12 (-5 *3 (-567)) (-4 *2 (-559)) (-5 *1 (-624 *2 *4))
- (-4 *4 (-1244 *2))))
+ (-4 *4 (-1245 *2))))
((*1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-709 *2)) (-4 *2 (-1051))))
((*1 *1 *2 *3)
(-12 (-5 *1 (-736 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-727))))
@@ -9550,215 +9330,204 @@
((*1 *1 *1 *2 *3)
(-12 (-4 *1 (-975 *4 *3 *2)) (-4 *4 (-1051)) (-4 *3 (-793))
(-4 *2 (-851)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-645 (-1096 (-381)))) (-5 *3 (-645 (-264)))
+ (-5 *1 (-262))))
+ ((*1 *1 *2) (-12 (-5 *2 (-645 (-1096 (-381)))) (-5 *1 (-264))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1096 (-381)))) (-5 *1 (-471))))
+ ((*1 *2 *1) (-12 (-5 *2 (-645 (-1096 (-381)))) (-5 *1 (-471)))))
+(((*1 *2 *2) (-12 (-5 *2 (-645 (-690 (-317 (-567))))) (-5 *1 (-1033)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-1200)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-649 *3)) (-4 *3 (-1051))
+ (-5 *1 (-715 *3 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1051)) (-5 *1 (-837 *3)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-645 *1)) (|has| *1 (-6 -4423)) (-4 *1 (-1012 *3))
+ (-4 *3 (-1219)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-471)) (-5 *3 (-645 (-264))) (-5 *1 (-1270))))
+ ((*1 *1 *1) (-5 *1 (-1270))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1004))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1204))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1004))))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1219)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1102)) (-4 *6 (-1102))
- (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-685 *4 *5 *6)) (-4 *5 (-1102)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1230 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-1259 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-421 *3)) (-4 *3 (-559))))
+ (-12 (-5 *3 (-1179)) (-4 *5 (-1223)) (-4 *6 (-1245 *5))
+ (-4 *7 (-1245 (-410 *6))) (-5 *2 (-645 (-954 *5)))
+ (-5 *1 (-343 *4 *5 *6 *7)) (-4 *4 (-344 *5 *6 *7))))
((*1 *2 *3)
- (-12 (-5 *3 (-645 (-2 (|:| -2706 *4) (|:| -3077 (-567)))))
- (-4 *4 (-1244 (-567))) (-5 *2 (-772)) (-5 *1 (-445 *4)))))
+ (-12 (-5 *3 (-1179)) (-4 *1 (-344 *4 *5 *6)) (-4 *4 (-1223))
+ (-4 *5 (-1245 *4)) (-4 *6 (-1245 (-410 *5))) (-4 *4 (-365))
+ (-5 *2 (-645 (-954 *4))))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-1051)) (-5 *1 (-896 *2 *3)) (-4 *2 (-1245 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-5 *1 (-1163 *3)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))))
-(((*1 *2 *2 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567)))))))
- (-5 *1 (-1130 *3 *2)) (-4 *3 (-1244 *2)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919))))
- ((*1 *2) (-12 (-5 *2 (-906 (-567))) (-5 *1 (-919)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037))
- (-5 *1 (-756)))))
-(((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1273)) (-5 *1 (-381))))
- ((*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-381)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-410 *6)) (-4 *5 (-1222)) (-4 *6 (-1244 *5))
- (-5 *2 (-2 (|:| -3458 (-772)) (|:| -3694 *3) (|:| |radicand| *6)))
- (-5 *1 (-148 *5 *6 *7)) (-5 *4 (-772)) (-4 *7 (-1244 *3)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-978 *3 *4 *2 *5)) (-4 *3 (-1051)) (-4 *4 (-794))
- (-4 *2 (-851)) (-4 *5 (-1067 *3 *4 *2)))))
-(((*1 *1 *2) (-12 (-5 *2 (-645 (-331))) (-5 *1 (-331)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-1037)) (-5 *3 (-1178)) (-5 *1 (-268)))))
-(((*1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-1188)))))
+ (-12 (-5 *1 (-1143 *2 *3)) (-4 *2 (-13 (-1102) (-34)))
+ (-4 *3 (-13 (-1102) (-34))))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381)))
- (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1177))))
- (-5 *1 (-1177)))))
+ (-3 (|:| I (-317 (-567))) (|:| -3888 (-317 (-381)))
+ (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1178))))
+ (-5 *1 (-1178)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-709 *3)) (-5 *1 (-828 *2 *3)) (-4 *3 (-1051)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1112)) (-5 *3 (-567)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-645 (-945 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-645 (-945 *3))) (-4 *3 (-1051)) (-4 *1 (-1136 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-645 (-645 *3))) (-4 *1 (-1136 *3)) (-4 *3 (-1051))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-645 (-945 *3))) (-4 *1 (-1136 *3)) (-4 *3 (-1051)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-1 (-225) (-225) (-225)))
+ (-5 *4 (-1 (-225) (-225) (-225) (-225)))
+ (-5 *2 (-1 (-945 (-225)) (-225) (-225))) (-5 *1 (-698)))))
(((*1 *2 *3 *1)
- (-12 (-4 *1 (-978 *4 *5 *3 *6)) (-4 *4 (-1051)) (-4 *5 (-794))
- (-4 *3 (-851)) (-4 *6 (-1067 *4 *5 *3)) (-5 *2 (-112)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-1160)) (-5 *3 (-567)) (-5 *1 (-241)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *2 (-559)) (-4 *2 (-455)) (-5 *1 (-971 *2 *3))
- (-4 *3 (-1244 *2)))))
+ (-12 (-4 *1 (-611 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102))
+ (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-3 (|:| |Null| "null") (|:| |Assignment| "assignment")
+ (|:| |Conditional| "conditional") (|:| |Return| "return")
+ (|:| |Block| "block") (|:| |Comment| "comment")
+ (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while")
+ (|:| |Repeat| "repeat") (|:| |Goto| "goto")
+ (|:| |Continue| "continue")
+ (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save")
+ (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")))
+ (-5 *1 (-331)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-1179)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-772)) (-4 *4 (-559)) (-5 *1 (-971 *4 *2))
+ (-4 *2 (-1245 *4)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1178)) (-4 *5 (-615 (-894 (-567))))
- (-4 *5 (-888 (-567)))
- (-4 *5 (-13 (-1040 (-567)) (-455) (-640 (-567))))
- (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
- (-5 *1 (-570 *5 *3)) (-4 *3 (-630))
- (-4 *3 (-13 (-27) (-1203) (-433 *5))))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794))
- (-4 *4 (-851)))))
-(((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-772)) (-4 *5 (-365)) (-5 *2 (-174 *6))
- (-5 *1 (-868 *5 *4 *6)) (-4 *4 (-1259 *5)) (-4 *6 (-1244 *5)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-794))
- (-4 *3 (-13 (-851) (-10 -8 (-15 -3893 ((-1178) $))))) (-4 *5 (-559))
- (-5 *1 (-733 *4 *3 *5 *2)) (-4 *2 (-951 (-410 (-954 *5)) *4 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *4 (-1051)) (-4 *5 (-794))
- (-4 *3
- (-13 (-851)
- (-10 -8 (-15 -3893 ((-1178) $))
- (-15 -3644 ((-3 $ "failed") (-1178))))))
- (-5 *1 (-986 *4 *5 *3 *2)) (-4 *2 (-951 (-954 *4) *5 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-645 *6))
- (-4 *6
- (-13 (-851)
- (-10 -8 (-15 -3893 ((-1178) $))
- (-15 -3644 ((-3 $ "failed") (-1178))))))
- (-4 *4 (-1051)) (-4 *5 (-794)) (-5 *1 (-986 *4 *5 *6 *2))
- (-4 *2 (-951 (-954 *4) *5 *6)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-559) (-1040 (-567)))) (-5 *2 (-410 (-567)))
- (-5 *1 (-436 *4 *3)) (-4 *3 (-433 *4))))
+ (-12 (-4 *2 (-1245 *4)) (-5 *1 (-808 *4 *2 *3 *5))
+ (-4 *4 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *3 (-657 *2))
+ (-4 *5 (-657 (-410 *2)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-613 *3)) (-4 *3 (-433 *5))
- (-4 *5 (-13 (-559) (-1040 (-567)))) (-5 *2 (-1174 (-410 (-567))))
- (-5 *1 (-436 *5 *3)))))
+ (-12 (-4 *2 (-1245 *4)) (-5 *1 (-808 *4 *2 *5 *3))
+ (-4 *4 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *5 (-657 *2))
+ (-4 *3 (-657 (-410 *2))))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381)))
- (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1177))))
- (-5 *1 (-1177)))))
-(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1203))))
- ((*1 *2 *1) (-12 (-5 *1 (-332 *2)) (-4 *2 (-851))))
- ((*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-613 *3)) (-4 *3 (-1102)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-52)) (-5 *1 (-830)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1218)) (-5 *2 (-772)) (-5 *1 (-182 *4 *3))
- (-4 *3 (-675 *4)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3)) (-4 *3 (-1102))
- (-4 *3 (-1218)))))
+ (-3 (|:| I (-317 (-567))) (|:| -3888 (-317 (-381)))
+ (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1178))))
+ (-5 *1 (-1178)))))
+(((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-559))))
+ ((*1 *1 *1) (|partial| -4 *1 (-723))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-857 *2)) (-4 *2 (-172))))
+ ((*1 *2 *3 *3 *2)
+ (-12 (-5 *3 (-772)) (-5 *1 (-857 *2)) (-4 *2 (-172)))))
+(((*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-276)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 (-1 (-112) *8))) (-4 *8 (-1067 *5 *6 *7))
+ (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-5 *2 (-2 (|:| |goodPols| (-645 *8)) (|:| |badPols| (-645 *8))))
+ (-5 *1 (-979 *5 *6 *7 *8)) (-5 *4 (-645 *8)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-923)) (-5 *1 (-787)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1219)))))
+(((*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-702))))
+ ((*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-702)))))
(((*1 *2 *2)
(-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-875)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-645 (-567))) (-5 *2 (-690 (-567))) (-5 *1 (-1112)))))
-(((*1 *2 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037))
- (-5 *1 (-757)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1222)) (-4 *5 (-1244 *4))
- (-5 *2 (-2 (|:| -3694 (-410 *5)) (|:| |poly| *3)))
- (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1244 (-410 *5))))))
-(((*1 *1 *1) (-5 *1 (-1177)))
+(((*1 *1 *1) (-12 (-5 *1 (-421 *2)) (-4 *2 (-559)))))
+(((*1 *1 *1) (-5 *1 (-1178)))
((*1 *1 *2)
(-12
(-5 *2
- (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381)))
- (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1177))))
- (-5 *1 (-1177)))))
+ (-3 (|:| I (-317 (-567))) (|:| -3888 (-317 (-381)))
+ (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1178))))
+ (-5 *1 (-1178)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-2 (|:| |deg| (-772)) (|:| -3481 *5))))
+ (-4 *5 (-1245 *4)) (-4 *4 (-351)) (-5 *2 (-645 *5))
+ (-5 *1 (-216 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 (-2 (|:| -2717 *5) (|:| -3104 (-567)))))
+ (-5 *4 (-567)) (-4 *5 (-1245 *4)) (-5 *2 (-645 *5))
+ (-5 *1 (-697 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-375 *3))
+ (-4 *5 (-375 *3)) (-5 *2 (-645 *3))))
+ ((*1 *2 *1)
+ (-12 (|has| *1 (-6 -4422)) (-4 *1 (-492 *3)) (-4 *3 (-1219))
+ (-5 *2 (-645 *3)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-567)) (-5 *2 (-1274)) (-5 *1 (-906 *4))
+ (-4 *4 (-1102))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-906 *3)) (-4 *3 (-1102)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-365)) (-4 *7 (-1244 *5)) (-4 *4 (-725 *5 *7))
- (-5 *2 (-2 (|:| -2316 (-690 *6)) (|:| |vec| (-1268 *5))))
- (-5 *1 (-812 *5 *6 *7 *4 *3)) (-4 *6 (-657 *5)) (-4 *3 (-657 *4)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1218))
- (-4 *5 (-1218)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-240 *6 *7)) (-14 *6 (-772))
- (-4 *7 (-1218)) (-4 *5 (-1218)) (-5 *2 (-240 *6 *5))
- (-5 *1 (-239 *6 *7 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1218)) (-4 *5 (-1218))
- (-4 *2 (-375 *5)) (-5 *1 (-373 *6 *4 *5 *2)) (-4 *4 (-375 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1102)) (-4 *5 (-1102))
- (-4 *2 (-428 *5)) (-5 *1 (-426 *6 *4 *5 *2)) (-4 *4 (-428 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-645 *6)) (-4 *6 (-1218))
- (-4 *5 (-1218)) (-5 *2 (-645 *5)) (-5 *1 (-643 *6 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-960 *6)) (-4 *6 (-1218))
- (-4 *5 (-1218)) (-5 *2 (-960 *5)) (-5 *1 (-959 *6 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1158 *6)) (-4 *6 (-1218))
- (-4 *3 (-1218)) (-5 *2 (-1158 *3)) (-5 *1 (-1156 *6 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1268 *6)) (-4 *6 (-1218))
- (-4 *5 (-1218)) (-5 *2 (-1268 *5)) (-5 *1 (-1267 *6 *5)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-690 *4)) (-5 *3 (-923)) (-4 *4 (-1051))
- (-5 *1 (-1030 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-645 (-690 *4))) (-5 *3 (-923)) (-4 *4 (-1051))
- (-5 *1 (-1030 *4)))))
+ (-12 (-4 *5 (-1102)) (-4 *3 (-902 *5)) (-5 *2 (-690 *3))
+ (-5 *1 (-693 *5 *3 *6 *4)) (-4 *6 (-375 *3))
+ (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4422)))))))
(((*1 *1) (-4 *1 (-969))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-645 (-2 (|:| -1795 (-1178)) (|:| -4237 *4))))
+ (-12 (-4 *1 (-1040 (-567))) (-4 *1 (-303)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-548)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1102)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-645 (-2 (|:| -1809 (-1179)) (|:| -4236 *4))))
(-5 *1 (-891 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102))))
((*1 *2 *1)
(-12 (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102))
(-4 *7 (-1102)) (-5 *2 (-645 *1)) (-4 *1 (-1105 *3 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-5 *2 (-645 (-1137))) (-5 *1 (-1092)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1051)) (-4 *2 (-688 *4 *5 *6))
- (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1244 *4)) (-4 *5 (-375 *4))
- (-4 *6 (-375 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-365)) (-4 *6 (-1244 (-410 *2)))
- (-4 *2 (-1244 *5)) (-5 *1 (-215 *5 *2 *6 *3))
- (-4 *3 (-344 *5 *2 *6)))))
-(((*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-559)) (-4 *2 (-548))))
- ((*1 *1 *1) (-4 *1 (-1062))))
-(((*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-567)) (-5 *1 (-241))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-455)) (-4 *3 (-851)) (-4 *4 (-794))
+ (-5 *1 (-989 *2 *3 *4 *5)) (-4 *5 (-951 *2 *4 *3)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-4 *3 (-1067 *5 *6 *7))
+ (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2575 *4))))
+ (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-365))
+ (-5 *1 (-524 *2 *4 *5 *3)) (-4 *3 (-688 *2 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2))
+ (|has| *2 (-6 (-4424 "*"))) (-4 *2 (-1051))))
((*1 *2 *3)
- (-12 (-5 *3 (-645 (-1160))) (-5 *2 (-567)) (-5 *1 (-241)))))
-(((*1 *2 *3 *4 *5 *5 *4 *6)
- (-12 (-5 *4 (-567)) (-5 *6 (-1 (-1273) (-1268 *5) (-1268 *5) (-381)))
- (-5 *3 (-1268 (-381))) (-5 *5 (-381)) (-5 *2 (-1273))
- (-5 *1 (-789)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-375 *3))
- (-4 *5 (-375 *3)) (-5 *2 (-645 *3))))
+ (-12 (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-172))
+ (-5 *1 (-689 *2 *4 *5 *3)) (-4 *3 (-688 *2 *4 *5))))
((*1 *2 *1)
- (-12 (|has| *1 (-6 -4418)) (-4 *1 (-492 *3)) (-4 *3 (-1218))
- (-5 *2 (-645 *3)))))
+ (-12 (-4 *1 (-1125 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2))
+ (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4424 "*"))) (-4 *2 (-1051)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1051)) (-14 *3 (-645 (-1179)))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1051) (-851)))
+ (-14 *3 (-645 (-1179))))))
+(((*1 *1) (-5 *1 (-1065))))
(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
- (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225)))
- (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225)))
- (|:| |abserr| (-225)) (|:| |relerr| (-225))))
- (-5 *2
- (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381))
- (|:| |expense| (-381)) (|:| |accuracy| (-381))
- (|:| |intermediateResults| (-381))))
- (-5 *1 (-804)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112))
- (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5)))))
+ (-12 (-5 *3 (-645 (-613 *5))) (-4 *4 (-1102)) (-5 *2 (-613 *5))
+ (-5 *1 (-576 *4 *5)) (-4 *5 (-433 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-439)))))
(((*1 *1 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-455))))
((*1 *1 *1 *1) (-4 *1 (-455)))
((*1 *2 *3)
- (-12 (-5 *3 (-645 *2)) (-5 *1 (-489 *2)) (-4 *2 (-1244 (-567)))))
+ (-12 (-5 *3 (-645 *2)) (-5 *1 (-489 *2)) (-4 *2 (-1245 (-567)))))
((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-567)) (-5 *1 (-697 *2)) (-4 *2 (-1244 *3))))
+ (-12 (-5 *3 (-567)) (-5 *1 (-697 *2)) (-4 *2 (-1245 *3))))
((*1 *1 *1 *1) (-5 *1 (-772)))
((*1 *2 *2 *2)
(-12 (-4 *3 (-794)) (-4 *4 (-851)) (-4 *5 (-308))
@@ -9768,268 +9537,334 @@
(-5 *1 (-918 *4 *5 *6 *2)) (-4 *4 (-794)) (-4 *5 (-851))
(-4 *6 (-308))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1174 *6)) (-4 *6 (-951 *5 *3 *4)) (-4 *3 (-794))
+ (-12 (-5 *2 (-1175 *6)) (-4 *6 (-951 *5 *3 *4)) (-4 *3 (-794))
(-4 *4 (-851)) (-4 *5 (-308)) (-5 *1 (-918 *3 *4 *5 *6))))
((*1 *2 *3)
- (-12 (-5 *3 (-645 (-1174 *7))) (-4 *4 (-794)) (-4 *5 (-851))
- (-4 *6 (-308)) (-5 *2 (-1174 *7)) (-5 *1 (-918 *4 *5 *6 *7))
+ (-12 (-5 *3 (-645 (-1175 *7))) (-4 *4 (-794)) (-4 *5 (-851))
+ (-4 *6 (-308)) (-5 *2 (-1175 *7)) (-5 *1 (-918 *4 *5 *6 *7))
(-4 *7 (-951 *6 *4 *5))))
((*1 *1 *1 *1) (-5 *1 (-923)))
((*1 *2 *2 *2)
(-12 (-4 *3 (-455)) (-4 *3 (-559)) (-5 *1 (-971 *3 *2))
- (-4 *2 (-1244 *3))))
+ (-4 *2 (-1245 *3))))
((*1 *2 *2 *1)
(-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794))
(-4 *4 (-851)) (-4 *2 (-455)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-857 *2)) (-4 *2 (-172))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1174 (-567))) (-5 *1 (-944)) (-5 *3 (-567)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-4 *3 (-1067 *5 *6 *7))
+ (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2575 *4))))
+ (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-437))
+ (-5 *2
+ (-645
+ (-3 (|:| -2007 (-1179))
+ (|:| -4320 (-645 (-3 (|:| S (-1179)) (|:| P (-954 (-567)))))))))
+ (-5 *1 (-1183)))))
(((*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863))))
((*1 *1 *1) (-5 *1 (-863)))
((*1 *1 *2)
(-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-4 *1 (-1100 *3))))
((*1 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1102)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559))
- (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-979 *3 *4 *5 *6))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *3))
- (-5 *1 (-979 *4 *5 *6 *3)) (-4 *3 (-1067 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-645 *3)) (-4 *3 (-1067 *4 *5 *6)) (-4 *4 (-559))
- (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-979 *4 *5 *6 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559))
- (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-979 *3 *4 *5 *6))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 (-645 *7) (-645 *7))) (-5 *2 (-645 *7))
- (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-559)) (-4 *5 (-794))
- (-4 *6 (-851)) (-5 *1 (-979 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 *7)) (-4 *7 (-851))
- (-4 *8 (-951 *5 *6 *7)) (-4 *5 (-559)) (-4 *6 (-794))
- (-5 *2
- (-2 (|:| |particular| (-3 (-1268 (-410 *8)) "failed"))
- (|:| -2623 (-645 (-1268 (-410 *8))))))
- (-5 *1 (-670 *5 *6 *7 *8)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1218)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1166 *3 *4)) (-14 *3 (-923))
- (-4 *4 (-1051)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1142 *4 *5)) (-4 *4 (-13 (-1102) (-34)))
- (-4 *5 (-13 (-1102) (-34))) (-5 *2 (-112)) (-5 *1 (-1143 *4 *5)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-1067 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794))
- (-4 *2 (-851))))
- ((*1 *1 *1 *1)
+ (|partial| -12 (-5 *2 (-1175 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1004))))))
+(((*1 *1 *1 *1)
(-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794))
- (-4 *4 (-851)))))
+ (-4 *4 (-851)) (-4 *2 (-559))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794))
+ (-4 *4 (-851)) (-4 *2 (-559)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1006 *3)) (-14 *3 (-567)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2))
- (-4 *2 (-13 (-433 *3) (-1203))))))
-(((*1 *2 *2) (-12 (-5 *2 (-1158 (-645 (-567)))) (-5 *1 (-885)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455))
- (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112))
- (-5 *1 (-990 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455))
- (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112))
- (-5 *1 (-1109 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-598 *3)) (-4 *3 (-1051))))
+ (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-548))
+ (-5 *2 (-410 (-567)))))
((*1 *2 *1)
- (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-793))
- (-4 *5 (-851)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-1102))
- (-5 *2 (-645 (-2 (|:| |k| *4) (|:| |c| *3))))))
+ (-12 (-5 *2 (-410 (-567))) (-5 *1 (-421 *3)) (-4 *3 (-548))
+ (-4 *3 (-559))))
+ ((*1 *2 *1) (-12 (-4 *1 (-548)) (-5 *2 (-410 (-567)))))
((*1 *2 *1)
- (-12 (-5 *2 (-645 (-2 (|:| |k| (-895 *3)) (|:| |c| *4))))
- (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851))
- (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-923))))
+ (-12 (-4 *1 (-798 *3)) (-4 *3 (-172)) (-4 *3 (-548))
+ (-5 *2 (-410 (-567)))))
((*1 *2 *1)
- (-12 (-5 *2 (-645 (-673 *3))) (-5 *1 (-895 *3)) (-4 *3 (-851)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-645 *2)) (-4 *2 (-1218)))))
+ (-12 (-5 *2 (-410 (-567))) (-5 *1 (-834 *3)) (-4 *3 (-548))
+ (-4 *3 (-1102))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-410 (-567))) (-5 *1 (-844 *3)) (-4 *3 (-548))
+ (-4 *3 (-1102))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-999 *3)) (-4 *3 (-172)) (-4 *3 (-548))
+ (-5 *2 (-410 (-567)))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-410 (-567))) (-5 *1 (-1010 *3)) (-4 *3 (-1040 *2)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1051))
+ (-4 *2 (-13 (-407) (-1040 *4) (-365) (-1204) (-285)))
+ (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1245 *4)))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-5 *2 (-772)) (-4 *1 (-1245 *3)) (-4 *3 (-1051)))))
+(((*1 *2 *3)
+ (-12 (-14 *4 (-645 (-1179))) (-14 *5 (-772))
+ (-5 *2
+ (-645
+ (-507 (-410 (-567)) (-240 *5 (-772)) (-865 *4)
+ (-247 *4 (-410 (-567))))))
+ (-5 *1 (-508 *4 *5))
+ (-5 *3
+ (-507 (-410 (-567)) (-240 *5 (-772)) (-865 *4)
+ (-247 *4 (-410 (-567))))))))
+(((*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1272))))
+ ((*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1272)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1204))))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-645 *2)) (-4 *2 (-1219)))))
+(((*1 *2)
+ (-12 (-5 *2 (-690 (-912 *3))) (-5 *1 (-353 *3 *4)) (-14 *3 (-923))
+ (-14 *4 (-923))))
+ ((*1 *2)
+ (-12 (-5 *2 (-690 *3)) (-5 *1 (-354 *3 *4)) (-4 *3 (-351))
+ (-14 *4
+ (-3 (-1175 *3)
+ (-1269 (-645 (-2 (|:| -3812 *3) (|:| -3779 (-1122)))))))))
+ ((*1 *2)
+ (-12 (-5 *2 (-690 *3)) (-5 *1 (-355 *3 *4)) (-4 *3 (-351))
+ (-14 *4 (-923)))))
(((*1 *2 *3 *2 *3)
- (-12 (-5 *2 (-440)) (-5 *3 (-1178)) (-5 *1 (-1181))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-440)) (-5 *3 (-1178)) (-5 *1 (-1181))))
+ (-12 (-5 *2 (-440)) (-5 *3 (-1179)) (-5 *1 (-1182))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-440)) (-5 *3 (-1179)) (-5 *1 (-1182))))
((*1 *2 *3 *2 *4 *1)
- (-12 (-5 *2 (-440)) (-5 *3 (-645 (-1178))) (-5 *4 (-1178))
- (-5 *1 (-1181))))
+ (-12 (-5 *2 (-440)) (-5 *3 (-645 (-1179))) (-5 *4 (-1179))
+ (-5 *1 (-1182))))
((*1 *2 *3 *2 *3 *1)
- (-12 (-5 *2 (-440)) (-5 *3 (-1178)) (-5 *1 (-1181))))
+ (-12 (-5 *2 (-440)) (-5 *3 (-1179)) (-5 *1 (-1182))))
((*1 *2 *3 *2 *1)
- (-12 (-5 *2 (-440)) (-5 *3 (-1178)) (-5 *1 (-1182))))
+ (-12 (-5 *2 (-440)) (-5 *3 (-1179)) (-5 *1 (-1183))))
((*1 *2 *3 *2 *1)
- (-12 (-5 *2 (-440)) (-5 *3 (-645 (-1178))) (-5 *1 (-1182)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1040 (-567))) (-4 *1 (-303)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-548)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1102)))))
-(((*1 *2 *3 *3 *3 *3)
- (-12 (-5 *3 (-567)) (-5 *2 (-112)) (-5 *1 (-483)))))
-(((*1 *2 *3) (-12 (-5 *3 (-509)) (-5 *2 (-692 (-187))) (-5 *1 (-187)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
- (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-112))
- (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
- (-4 *3 (-1067 *5 *6 *7))
- (-5 *2 (-645 (-2 (|:| |val| (-112)) (|:| -2566 *4))))
- (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-430 *3 *2)) (-4 *3 (-13 (-172) (-38 (-410 (-567)))))
- (-4 *2 (-13 (-851) (-21))))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-794))
- (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559))
- (-5 *2 (-112)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-433 *3) (-1004))))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-1192 *2)) (-4 *2 (-365)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1268 *4)) (-4 *4 (-1218)) (-4 *1 (-238 *3 *4)))))
-(((*1 *2 *2 *2 *2 *3)
- (-12 (-4 *3 (-559)) (-5 *1 (-971 *3 *2)) (-4 *2 (-1244 *3)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-147))
- (-4 *3 (-308)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851))
- (-5 *1 (-979 *3 *4 *5 *6)))))
-(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
- (-12 (-5 *3 (-1160)) (-5 *4 (-567)) (-5 *5 (-690 (-169 (-225))))
- (-5 *2 (-1037)) (-5 *1 (-755)))))
-(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4)
- (-12 (-5 *4 (-690 (-225))) (-5 *5 (-690 (-567))) (-5 *3 (-567))
- (-5 *2 (-1037)) (-5 *1 (-757)))))
-(((*1 *2 *3) (-12 (-5 *3 (-494)) (-5 *2 (-692 (-582))) (-5 *1 (-582)))))
+ (-12 (-5 *2 (-440)) (-5 *3 (-645 (-1179))) (-5 *1 (-1183)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-365)) (-4 *4 (-559)) (-4 *5 (-1244 *4))
- (-5 *2 (-2 (|:| -3654 (-624 *4 *5)) (|:| -4036 (-410 *5))))
- (-5 *1 (-624 *4 *5)) (-5 *3 (-410 *5))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-645 (-1166 *3 *4))) (-5 *1 (-1166 *3 *4))
- (-14 *3 (-923)) (-4 *4 (-1051))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-455)) (-4 *3 (-1051))
- (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1)))
- (-4 *1 (-1244 *3)))))
+ (-12 (-4 *4 (-559))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2433 *4)))
+ (-5 *1 (-971 *4 *3)) (-4 *3 (-1245 *4)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1051) (-851)))
+ (-14 *3 (-645 (-1179))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1178))))
- (-4 *6 (-794)) (-5 *2 (-410 (-954 *4))) (-5 *1 (-926 *4 *5 *6 *3))
- (-4 *3 (-951 *4 *6 *5))))
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225)))
+ (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))
+ (-5 *2
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite| "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))
+ (-5 *1 (-192)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1269 *5)) (-4 *5 (-793)) (-5 *2 (-112))
+ (-5 *1 (-846 *4 *5)) (-14 *4 (-772)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-365)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3))
+ (-5 *1 (-524 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-690 *7)) (-4 *7 (-951 *4 *6 *5))
- (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1178))))
- (-4 *6 (-794)) (-5 *2 (-690 (-410 (-954 *4))))
- (-5 *1 (-926 *4 *5 *6 *7))))
+ (-12 (-4 *4 (-559)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4))
+ (-4 *7 (-994 *4)) (-4 *2 (-688 *7 *8 *9))
+ (-5 *1 (-525 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-688 *4 *5 *6))
+ (-4 *8 (-375 *7)) (-4 *9 (-375 *7))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2))
+ (-4 *4 (-375 *2)) (-4 *2 (-308))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-308)) (-4 *3 (-172)) (-4 *4 (-375 *3))
+ (-4 *5 (-375 *3)) (-5 *1 (-689 *3 *4 *5 *2))
+ (-4 *2 (-688 *3 *4 *5))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-690 *3)) (-4 *3 (-308)) (-5 *1 (-701 *3))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1055 *2 *3 *4 *5 *6)) (-4 *4 (-1051))
+ (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *2 *4)) (-4 *4 (-308)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-862))))
+ ((*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-862)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-1193 *2)) (-4 *2 (-365)))))
+(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-645 (-945 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-645 (-945 *3))) (-4 *3 (-1051)) (-4 *1 (-1136 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-645 (-645 *3))) (-4 *1 (-1136 *3)) (-4 *3 (-1051))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-645 (-945 *3))) (-4 *1 (-1136 *3)) (-4 *3 (-1051)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1269 *4)) (-4 *4 (-1219)) (-4 *1 (-238 *3 *4)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-13 (-1040 (-567)) (-640 (-567)) (-455)))
+ (-5 *2 (-844 *4)) (-5 *1 (-314 *3 *4 *5 *6))
+ (-4 *4 (-13 (-27) (-1204) (-433 *3))) (-14 *5 (-1179))
+ (-14 *6 *4)))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-13 (-1040 (-567)) (-640 (-567)) (-455)))
+ (-5 *2 (-844 *4)) (-5 *1 (-1255 *3 *4 *5 *6))
+ (-4 *4 (-13 (-27) (-1204) (-433 *3))) (-14 *5 (-1179))
+ (-14 *6 *4))))
+(((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))))
+(((*1 *2 *2) (-12 (-5 *2 (-645 (-317 (-225)))) (-5 *1 (-268)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-337 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1245 *3))
+ (-4 *5 (-1245 (-410 *4))) (-4 *6 (-344 *3 *4 *5))
+ (-5 *2
+ (-2 (|:| -3983 (-416 *4 (-410 *4) *5 *6)) (|:| |principalPart| *6)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1245 *5)) (-4 *5 (-365))
+ (-5 *2
+ (-2 (|:| |poly| *6) (|:| -4179 (-410 *6))
+ (|:| |special| (-410 *6))))
+ (-5 *1 (-728 *5 *6)) (-5 *3 (-410 *6))))
((*1 *2 *3)
- (-12 (-5 *3 (-645 *7)) (-4 *7 (-951 *4 *6 *5))
- (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1178))))
- (-4 *6 (-794)) (-5 *2 (-645 (-410 (-954 *4))))
- (-5 *1 (-926 *4 *5 *6 *7)))))
+ (-12 (-4 *4 (-365)) (-5 *2 (-645 *3)) (-5 *1 (-898 *3 *4))
+ (-4 *3 (-1245 *4))))
+ ((*1 *2 *3 *4 *4)
+ (|partial| -12 (-5 *4 (-772)) (-4 *5 (-365))
+ (-5 *2 (-2 (|:| -2961 *3) (|:| -2973 *3))) (-5 *1 (-898 *3 *5))
+ (-4 *3 (-1245 *5))))
+ ((*1 *2 *3 *2 *4 *4)
+ (-12 (-5 *2 (-645 *9)) (-5 *3 (-645 *8)) (-5 *4 (-112))
+ (-4 *8 (-1067 *5 *6 *7)) (-4 *9 (-1073 *5 *6 *7 *8)) (-4 *5 (-455))
+ (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-1071 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
+ (-12 (-5 *2 (-645 *9)) (-5 *3 (-645 *8)) (-5 *4 (-112))
+ (-4 *8 (-1067 *5 *6 *7)) (-4 *9 (-1073 *5 *6 *7 *8)) (-4 *5 (-455))
+ (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-1071 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *2 *4 *4)
+ (-12 (-5 *2 (-645 *9)) (-5 *3 (-645 *8)) (-5 *4 (-112))
+ (-4 *8 (-1067 *5 *6 *7)) (-4 *9 (-1111 *5 *6 *7 *8)) (-4 *5 (-455))
+ (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-1147 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
+ (-12 (-5 *2 (-645 *9)) (-5 *3 (-645 *8)) (-5 *4 (-112))
+ (-4 *8 (-1067 *5 *6 *7)) (-4 *9 (-1111 *5 *6 *7 *8)) (-4 *5 (-455))
+ (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-1147 *5 *6 *7 *8 *9)))))
+(((*1 *2 *3) (-12 (-5 *3 (-494)) (-5 *2 (-692 (-582))) (-5 *1 (-582)))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3)
+ (-12 (-5 *3 (-567)) (-5 *5 (-112)) (-5 *6 (-690 (-225)))
+ (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-756)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-772)) (-5 *2 (-1175 *4)) (-5 *1 (-531 *4))
+ (-4 *4 (-351)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-645 (-690 *5))) (-4 *5 (-308)) (-4 *5 (-1051))
- (-5 *2 (-1268 (-1268 *5))) (-5 *1 (-1031 *5)) (-5 *4 (-1268 *5)))))
+ (-12 (-5 *3 (-645 (-781 *5 (-865 *6)))) (-5 *4 (-112)) (-4 *5 (-455))
+ (-14 *6 (-645 (-1179)))
+ (-5 *2
+ (-645 (-1148 *5 (-534 (-865 *6)) (-865 *6) (-781 *5 (-865 *6)))))
+ (-5 *1 (-629 *5 *6)))))
(((*1 *1 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-455))))
((*1 *1 *1 *1) (-4 *1 (-455))))
(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172))))
((*1 *2 *3)
(-12 (-4 *4 (-13 (-559) (-1040 (-567)))) (-5 *2 (-317 *4))
- (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1203) (-433 (-169 *4))))))
+ (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1204) (-433 (-169 *4))))))
((*1 *2 *2)
(-12 (-4 *3 (-13 (-455) (-1040 (-567)) (-640 (-567))))
- (-5 *1 (-1207 *3 *2)) (-4 *2 (-13 (-27) (-1203) (-433 *3))))))
+ (-5 *1 (-1208 *3 *2)) (-4 *2 (-13 (-27) (-1204) (-433 *3))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919))))
- ((*1 *2) (-12 (-5 *2 (-906 (-567))) (-5 *1 (-919)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-433 *3) (-1004))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-433 *3) (-1004))))))
-(((*1 *2 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-567)) (-5 *4 (-690 (-169 (-225)))) (-5 *2 (-1037))
- (-5 *1 (-755)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-225)) (-5 *4 (-567))
- (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G)))) (-5 *2 (-1037))
- (-5 *1 (-749)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-863))))
- ((*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1273)) (-5 *1 (-964)))))
-(((*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-134)))))
-(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7)
- (-12 (-5 *3 (-567)) (-5 *5 (-112)) (-5 *6 (-690 (-225)))
- (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-77 OBJFUN))))
- (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-754)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1174 *4)) (-4 *4 (-351))
- (-5 *2 (-1268 (-645 (-2 (|:| -3802 *4) (|:| -3768 (-1122))))))
- (-5 *1 (-348 *4)))))
+ (-12 (-4 *4 (-38 (-410 (-567))))
+ (-5 *2 (-2 (|:| -3145 (-1159 *4)) (|:| -3155 (-1159 *4))))
+ (-5 *1 (-1165 *4)) (-5 *3 (-1159 *4)))))
+(((*1 *1) (-5 *1 (-440))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1245 *5))
+ (-4 *5 (-13 (-27) (-433 *4))) (-4 *4 (-13 (-559) (-1040 (-567))))
+ (-4 *7 (-1245 (-410 *6))) (-5 *1 (-555 *4 *5 *6 *7 *2))
+ (-4 *2 (-344 *5 *6 *7)))))
+(((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-772)) (-5 *1 (-165 *3 *4))
+ (-4 *3 (-166 *4))))
+ ((*1 *2)
+ (-12 (-14 *4 *2) (-4 *5 (-1219)) (-5 *2 (-772))
+ (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *4 (-1102)) (-5 *2 (-772)) (-5 *1 (-432 *3 *4))
+ (-4 *3 (-433 *4))))
+ ((*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-547 *3)) (-4 *3 (-548))))
+ ((*1 *2) (-12 (-4 *1 (-764)) (-5 *2 (-772))))
+ ((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-772)) (-5 *1 (-797 *3 *4))
+ (-4 *3 (-798 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-559)) (-5 *2 (-772)) (-5 *1 (-993 *3 *4))
+ (-4 *3 (-994 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-772)) (-5 *1 (-998 *3 *4))
+ (-4 *3 (-999 *4))))
+ ((*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-1013 *3)) (-4 *3 (-1014))))
+ ((*1 *2) (-12 (-4 *1 (-1051)) (-5 *2 (-772))))
+ ((*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-1061 *3)) (-4 *3 (-1062)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3)
+ (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225))
+ (-5 *2 (-1037)) (-5 *1 (-753)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-863))))
+ ((*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1274)) (-5 *1 (-964)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1051)) (-5 *2 (-645 *1)) (-4 *1 (-1136 *3)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-567) (-567))) (-5 *1 (-363 *3)) (-4 *3 (-1102))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-772) (-772))) (-4 *1 (-388 *3)) (-4 *3 (-1102))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4)
- (-5 *1 (-650 *3 *4 *5)) (-4 *3 (-1102)))))
+ (-12 (-4 *2 (-1245 *3)) (-5 *1 (-402 *3 *2))
+ (-4 *3 (-13 (-365) (-147))))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *3 (-851))
+ (-5 *2 (-2 (|:| -2654 *1) (|:| -2023 *1))) (-4 *1 (-951 *4 *5 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1051)) (-5 *2 (-2 (|:| -2654 *1) (|:| -2023 *1)))
+ (-4 *1 (-1245 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-916 *3)) (-4 *3 (-308)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172))))
((*1 *2 *3)
(-12 (-4 *4 (-13 (-559) (-1040 (-567)))) (-5 *2 (-317 *4))
- (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1203) (-433 (-169 *4))))))
+ (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1204) (-433 (-169 *4))))))
((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172))))
((*1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-172))))
((*1 *2 *2)
(-12 (-4 *3 (-13 (-455) (-1040 (-567)) (-640 (-567))))
- (-5 *1 (-1207 *3 *2)) (-4 *2 (-13 (-27) (-1203) (-433 *3))))))
-(((*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))))
-(((*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-218))))
- ((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1218))))
- ((*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-677))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794))
- (-4 *4 (-851)))))
-(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-365)) (-5 *1 (-898 *2 *3))
- (-4 *2 (-1244 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-351)) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1174 *4)) (-4 *4 (-351)) (-5 *2 (-112))
- (-5 *1 (-359 *4)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-772)) (-4 *1 (-376 *3 *4)) (-4 *3 (-851))
- (-4 *4 (-172))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-772)) (-4 *1 (-1289 *3 *4)) (-4 *3 (-851))
- (-4 *4 (-1051)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-365)) (-5 *2 (-2 (|:| -3102 *3) (|:| -4194 *3)))
- (-5 *1 (-767 *3 *4)) (-4 *3 (-709 *4))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-365)) (-4 *3 (-1051))
- (-5 *2 (-2 (|:| -3102 *1) (|:| -4194 *1))) (-4 *1 (-853 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-99 *5)) (-4 *5 (-365)) (-4 *5 (-1051))
- (-5 *2 (-2 (|:| -3102 *3) (|:| -4194 *3))) (-5 *1 (-854 *5 *3))
- (-4 *3 (-853 *5)))))
+ (-5 *1 (-1208 *3 *2)) (-4 *2 (-13 (-27) (-1204) (-433 *3))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1))
- (-4 *1 (-1067 *3 *4 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-4 *1 (-235 *3))))
- ((*1 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1102)))))
-(((*1 *2 *1 *2) (-12 (-5 *1 (-1028 *2)) (-4 *2 (-1218)))))
+ (-12 (-4 *1 (-1286 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051))
+ (-5 *2 (-2 (|:| |k| (-820 *3)) (|:| |c| *4))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051))
+ (-5 *2 (-645 (-645 (-645 (-945 *3))))))))
+(((*1 *1 *1 *1) (-5 *1 (-863))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1269 (-1269 *4))) (-4 *4 (-1051)) (-5 *2 (-690 *4))
+ (-5 *1 (-1031 *4)))))
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1 *8 *8))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *7) (|:| -2973 *7) (|:| |sol?| (-112)))
+ (-567) *7))
+ (-5 *6 (-645 (-410 *8))) (-4 *7 (-365)) (-4 *8 (-1245 *7))
+ (-5 *3 (-410 *8))
+ (-5 *2
+ (-2
+ (|:| |answer|
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (|:| |a0| *7)))
+ (-5 *1 (-577 *7 *8)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1159 (-410 *3))) (-5 *1 (-174 *3)) (-4 *3 (-308)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1159 (-1159 *4))) (-5 *2 (-1159 *4)) (-5 *1 (-1163 *4))
+ (-4 *4 (-1051)))))
+(((*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863))))
+ ((*1 *1 *1) (-5 *1 (-863))))
(((*1 *1 *1)
- (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1178)))
- (-14 *3 (-645 (-1178))) (-4 *4 (-390))))
+ (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1179)))
+ (-14 *3 (-645 (-1179))) (-4 *4 (-390))))
((*1 *1 *1 *2) (-12 (-4 *1 (-870 *3)) (-5 *2 (-567))))
((*1 *1 *1) (-4 *1 (-1004)))
((*1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-1014))))
@@ -10037,82 +9872,116 @@
((*1 *1 *1 *2) (-12 (-4 *1 (-1014)) (-5 *2 (-923))))
((*1 *1 *1) (-4 *1 (-1014))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-567)) (-4 *1 (-1095 *3)) (-4 *3 (-1218)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-567)) (-5 *4 (-421 *2)) (-4 *2 (-951 *7 *5 *6))
- (-5 *1 (-743 *5 *6 *7 *2)) (-4 *5 (-794)) (-4 *6 (-851))
- (-4 *7 (-308)))))
-(((*1 *2 *3 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037))
- (-5 *1 (-752)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1174 (-410 (-954 *3)))) (-5 *1 (-456 *3 *4 *5 *6))
- (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923))
- (-14 *5 (-645 (-1178))) (-14 *6 (-1268 (-690 *3))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-1199))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-1199)))))
-(((*1 *1) (-5 *1 (-824))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381))
- (-5 *2
- (-2 (|:| -3802 *4) (|:| -2058 *4) (|:| |totalpts| (-567))
- (|:| |success| (-112))))
- (-5 *1 (-790)) (-5 *5 (-567)))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-820 *3)) (-4 *3 (-851)) (-5 *1 (-673 *3)))))
+ (-12 (-5 *2 (-567)) (-4 *1 (-1095 *3)) (-4 *3 (-1219)))))
+(((*1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))))
+(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7)
+ (-12 (-5 *4 (-567)) (-5 *5 (-690 (-225)))
+ (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-84 FCNF))))
+ (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-225))
+ (-5 *2 (-1037)) (-5 *1 (-750)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-613 (-48)))) (-5 *1 (-48))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-613 (-48))) (-5 *1 (-48))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1175 (-48))) (-5 *3 (-645 (-613 (-48)))) (-5 *1 (-48))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1175 (-48))) (-5 *3 (-613 (-48))) (-5 *1 (-48))))
+ ((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172))))
+ ((*1 *2 *3)
+ (-12 (-4 *2 (-13 (-365) (-849))) (-5 *1 (-181 *2 *3))
+ (-4 *3 (-1245 (-169 *2)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-923)) (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370))))
+ ((*1 *2 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-365))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-372 *2 *3)) (-4 *3 (-1245 *2)) (-4 *2 (-172))))
+ ((*1 *2 *1)
+ (-12 (-4 *4 (-1245 *2)) (-4 *2 (-994 *3)) (-5 *1 (-416 *3 *2 *4 *5))
+ (-4 *3 (-308)) (-4 *5 (-13 (-412 *2 *4) (-1040 *2)))))
+ ((*1 *2 *1)
+ (-12 (-4 *4 (-1245 *2)) (-4 *2 (-994 *3))
+ (-5 *1 (-417 *3 *2 *4 *5 *6)) (-4 *3 (-308)) (-4 *5 (-412 *2 *4))
+ (-14 *6 (-1269 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-923)) (-4 *5 (-1051))
+ (-4 *2 (-13 (-407) (-1040 *5) (-365) (-1204) (-285)))
+ (-5 *1 (-446 *5 *3 *2)) (-4 *3 (-1245 *5))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-613 (-498)))) (-5 *1 (-498))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-613 (-498))) (-5 *1 (-498))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1175 (-498))) (-5 *3 (-645 (-613 (-498))))
+ (-5 *1 (-498))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1175 (-498))) (-5 *3 (-613 (-498))) (-5 *1 (-498))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1269 *4)) (-5 *3 (-923)) (-4 *4 (-351))
+ (-5 *1 (-531 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-455)) (-4 *5 (-725 *4 *2)) (-4 *2 (-1245 *4))
+ (-5 *1 (-776 *4 *2 *5 *3)) (-4 *3 (-1245 *5))))
+ ((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172))))
+ ((*1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-172))))
+ ((*1 *1 *1) (-4 *1 (-1062))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-945 (-225))) (-5 *2 (-1274)) (-5 *1 (-471)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-929))
- (-5 *2
- (-2 (|:| |brans| (-645 (-645 (-945 (-225)))))
- (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))))
- (-5 *1 (-153))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-929)) (-5 *4 (-410 (-567)))
- (-5 *2
- (-2 (|:| |brans| (-645 (-645 (-945 (-225)))))
- (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))))
- (-5 *1 (-153)))))
+ (-12 (-4 *4 (-351))
+ (-5 *2 (-645 (-2 (|:| |deg| (-772)) (|:| -3481 *3))))
+ (-5 *1 (-216 *4 *3)) (-4 *3 (-1245 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-645 (-1137))) (-5 *1 (-672))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-645 (-923))) (-5 *1 (-1103 *3 *4)) (-14 *3 (-923))
+ (-14 *4 (-923)))))
+(((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4))
+ (-4 *3 (-369 *4))))
+ ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1102) (-34)))
+ (-5 *2 (-112)) (-5 *1 (-1142 *4 *5)) (-4 *4 (-13 (-1102) (-34))))))
+(((*1 *2 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-1161)) (-5 *5 (-690 (-225)))
+ (-5 *2 (-1037)) (-5 *1 (-748)))))
(((*1 *2 *3 *4)
(-12 (-5 *4 (-645 (-48))) (-5 *2 (-421 *3)) (-5 *1 (-39 *3))
- (-4 *3 (-1244 (-48)))))
+ (-4 *3 (-1245 (-48)))))
((*1 *2 *3)
- (-12 (-5 *2 (-421 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1244 (-48)))))
+ (-12 (-5 *2 (-421 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1245 (-48)))))
((*1 *2 *3 *4)
(-12 (-5 *4 (-645 (-48))) (-4 *5 (-851)) (-4 *6 (-794))
(-5 *2 (-421 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-951 (-48) *6 *5))))
((*1 *2 *3 *4)
(-12 (-5 *4 (-645 (-48))) (-4 *5 (-851)) (-4 *6 (-794))
- (-4 *7 (-951 (-48) *6 *5)) (-5 *2 (-421 (-1174 *7)))
- (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1174 *7))))
+ (-4 *7 (-951 (-48) *6 *5)) (-5 *2 (-421 (-1175 *7)))
+ (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1175 *7))))
((*1 *2 *3)
(-12 (-4 *4 (-308)) (-5 *2 (-421 *3)) (-5 *1 (-167 *4 *3))
- (-4 *3 (-1244 (-169 *4)))))
+ (-4 *3 (-1245 (-169 *4)))))
((*1 *2 *3 *4 *5)
(-12 (-5 *5 (-112)) (-4 *4 (-13 (-365) (-849))) (-5 *2 (-421 *3))
- (-5 *1 (-181 *4 *3)) (-4 *3 (-1244 (-169 *4)))))
+ (-5 *1 (-181 *4 *3)) (-4 *3 (-1245 (-169 *4)))))
((*1 *2 *3 *4)
(-12 (-4 *4 (-13 (-365) (-849))) (-5 *2 (-421 *3))
- (-5 *1 (-181 *4 *3)) (-4 *3 (-1244 (-169 *4)))))
+ (-5 *1 (-181 *4 *3)) (-4 *3 (-1245 (-169 *4)))))
((*1 *2 *3)
(-12 (-4 *4 (-13 (-365) (-849))) (-5 *2 (-421 *3))
- (-5 *1 (-181 *4 *3)) (-4 *3 (-1244 (-169 *4)))))
+ (-5 *1 (-181 *4 *3)) (-4 *3 (-1245 (-169 *4)))))
((*1 *2 *3)
(-12 (-4 *4 (-351)) (-5 *2 (-421 *3)) (-5 *1 (-216 *4 *3))
- (-4 *3 (-1244 *4))))
+ (-4 *3 (-1245 *4))))
((*1 *2 *3)
- (-12 (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567)))))
+ (-12 (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567)))))
((*1 *2 *3 *4)
(-12 (-5 *4 (-772)) (-5 *2 (-421 *3)) (-5 *1 (-445 *3))
- (-4 *3 (-1244 (-567)))))
+ (-4 *3 (-1245 (-567)))))
((*1 *2 *3 *4)
(-12 (-5 *4 (-645 (-772))) (-5 *2 (-421 *3)) (-5 *1 (-445 *3))
- (-4 *3 (-1244 (-567)))))
+ (-4 *3 (-1245 (-567)))))
((*1 *2 *3 *4 *5)
(-12 (-5 *4 (-645 (-772))) (-5 *5 (-772)) (-5 *2 (-421 *3))
- (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567)))))
+ (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567)))))
((*1 *2 *3 *4 *4)
(-12 (-5 *4 (-772)) (-5 *2 (-421 *3)) (-5 *1 (-445 *3))
- (-4 *3 (-1244 (-567)))))
+ (-4 *3 (-1245 (-567)))))
((*1 *2 *3)
(-12 (-5 *2 (-421 (-169 (-567)))) (-5 *1 (-449))
(-5 *3 (-169 (-567)))))
@@ -10120,63 +9989,63 @@
(-12
(-4 *4
(-13 (-851)
- (-10 -8 (-15 -3893 ((-1178) $))
- (-15 -3644 ((-3 $ "failed") (-1178))))))
+ (-10 -8 (-15 -3902 ((-1179) $))
+ (-15 -3653 ((-3 $ "failed") (-1179))))))
(-4 *5 (-794)) (-4 *7 (-559)) (-5 *2 (-421 *3))
(-5 *1 (-459 *4 *5 *6 *7 *3)) (-4 *6 (-559))
(-4 *3 (-951 *7 *5 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-308)) (-5 *2 (-421 (-1174 *4))) (-5 *1 (-461 *4))
- (-5 *3 (-1174 *4))))
+ (-12 (-4 *4 (-308)) (-5 *2 (-421 (-1175 *4))) (-5 *1 (-461 *4))
+ (-5 *3 (-1175 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-421 *6) *6)) (-4 *6 (-1244 *5)) (-4 *5 (-365))
+ (-12 (-5 *4 (-1 (-421 *6) *6)) (-4 *6 (-1245 *5)) (-4 *5 (-365))
(-4 *7 (-13 (-365) (-147) (-725 *5 *6))) (-5 *2 (-421 *3))
- (-5 *1 (-497 *5 *6 *7 *3)) (-4 *3 (-1244 *7))))
+ (-5 *1 (-497 *5 *6 *7 *3)) (-4 *3 (-1245 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-421 (-1174 *7)) (-1174 *7)))
+ (-12 (-5 *4 (-1 (-421 (-1175 *7)) (-1175 *7)))
(-4 *7 (-13 (-308) (-147))) (-4 *5 (-851)) (-4 *6 (-794))
(-5 *2 (-421 *3)) (-5 *1 (-543 *5 *6 *7 *3))
(-4 *3 (-951 *7 *6 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-421 (-1174 *7)) (-1174 *7)))
+ (-12 (-5 *4 (-1 (-421 (-1175 *7)) (-1175 *7)))
(-4 *7 (-13 (-308) (-147))) (-4 *5 (-851)) (-4 *6 (-794))
- (-4 *8 (-951 *7 *6 *5)) (-5 *2 (-421 (-1174 *8)))
- (-5 *1 (-543 *5 *6 *7 *8)) (-5 *3 (-1174 *8))))
+ (-4 *8 (-951 *7 *6 *5)) (-5 *2 (-421 (-1175 *8)))
+ (-5 *1 (-543 *5 *6 *7 *8)) (-5 *3 (-1175 *8))))
((*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-561 *3)) (-4 *3 (-548))))
((*1 *2 *3 *4)
(-12 (-5 *4 (-1 (-645 *5) *6))
(-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567)))))
- (-4 *6 (-1244 *5)) (-5 *2 (-645 (-654 (-410 *6))))
+ (-4 *6 (-1245 *5)) (-5 *2 (-645 (-654 (-410 *6))))
(-5 *1 (-658 *5 *6)) (-5 *3 (-654 (-410 *6)))))
((*1 *2 *3)
(-12 (-4 *4 (-27))
(-4 *4 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567)))))
- (-4 *5 (-1244 *4)) (-5 *2 (-645 (-654 (-410 *5))))
+ (-4 *5 (-1245 *4)) (-5 *2 (-645 (-654 (-410 *5))))
(-5 *1 (-658 *4 *5)) (-5 *3 (-654 (-410 *5)))))
((*1 *2 *3)
(-12 (-5 *3 (-820 *4)) (-4 *4 (-851)) (-5 *2 (-645 (-673 *4)))
(-5 *1 (-673 *4))))
((*1 *2 *3 *4)
(-12 (-5 *4 (-567)) (-5 *2 (-645 *3)) (-5 *1 (-697 *3))
- (-4 *3 (-1244 *4))))
+ (-4 *3 (-1245 *4))))
((*1 *2 *3)
(-12 (-4 *4 (-851)) (-4 *5 (-794)) (-4 *6 (-351)) (-5 *2 (-421 *3))
(-5 *1 (-699 *4 *5 *6 *3)) (-4 *3 (-951 *6 *5 *4))))
((*1 *2 *3)
(-12 (-4 *4 (-851)) (-4 *5 (-794)) (-4 *6 (-351))
- (-4 *7 (-951 *6 *5 *4)) (-5 *2 (-421 (-1174 *7)))
- (-5 *1 (-699 *4 *5 *6 *7)) (-5 *3 (-1174 *7))))
+ (-4 *7 (-951 *6 *5 *4)) (-5 *2 (-421 (-1175 *7)))
+ (-5 *1 (-699 *4 *5 *6 *7)) (-5 *3 (-1175 *7))))
((*1 *2 *3)
(-12 (-4 *4 (-794))
(-4 *5
(-13 (-851)
- (-10 -8 (-15 -3893 ((-1178) $))
- (-15 -3644 ((-3 $ "failed") (-1178))))))
+ (-10 -8 (-15 -3902 ((-1179) $))
+ (-15 -3653 ((-3 $ "failed") (-1179))))))
(-4 *6 (-308)) (-5 *2 (-421 *3)) (-5 *1 (-731 *4 *5 *6 *3))
(-4 *3 (-951 (-954 *6) *4 *5))))
((*1 *2 *3)
(-12 (-4 *4 (-794))
- (-4 *5 (-13 (-851) (-10 -8 (-15 -3893 ((-1178) $))))) (-4 *6 (-559))
+ (-4 *5 (-13 (-851) (-10 -8 (-15 -3902 ((-1179) $))))) (-4 *6 (-559))
(-5 *2 (-421 *3)) (-5 *1 (-733 *4 *5 *6 *3))
(-4 *3 (-951 (-410 (-954 *6)) *4 *5))))
((*1 *2 *3)
@@ -10189,301 +10058,368 @@
(-4 *3 (-951 *6 *5 *4))))
((*1 *2 *3)
(-12 (-4 *4 (-851)) (-4 *5 (-794)) (-4 *6 (-13 (-308) (-147)))
- (-4 *7 (-951 *6 *5 *4)) (-5 *2 (-421 (-1174 *7)))
- (-5 *1 (-742 *4 *5 *6 *7)) (-5 *3 (-1174 *7))))
+ (-4 *7 (-951 *6 *5 *4)) (-5 *2 (-421 (-1175 *7)))
+ (-5 *1 (-742 *4 *5 *6 *7)) (-5 *3 (-1175 *7))))
((*1 *2 *3)
(-12 (-5 *2 (-421 *3)) (-5 *1 (-1009 *3))
- (-4 *3 (-1244 (-410 (-567))))))
+ (-4 *3 (-1245 (-410 (-567))))))
((*1 *2 *3)
(-12 (-5 *2 (-421 *3)) (-5 *1 (-1043 *3))
- (-4 *3 (-1244 (-410 (-954 (-567)))))))
+ (-4 *3 (-1245 (-410 (-954 (-567)))))))
((*1 *2 *3)
- (-12 (-4 *4 (-1244 (-410 (-567))))
+ (-12 (-4 *4 (-1245 (-410 (-567))))
(-4 *5 (-13 (-365) (-147) (-725 (-410 (-567)) *4)))
- (-5 *2 (-421 *3)) (-5 *1 (-1081 *4 *5 *3)) (-4 *3 (-1244 *5))))
+ (-5 *2 (-421 *3)) (-5 *1 (-1081 *4 *5 *3)) (-4 *3 (-1245 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-1244 (-410 (-954 (-567)))))
+ (-12 (-4 *4 (-1245 (-410 (-954 (-567)))))
(-4 *5 (-13 (-365) (-147) (-725 (-410 (-954 (-567))) *4)))
- (-5 *2 (-421 *3)) (-5 *1 (-1083 *4 *5 *3)) (-4 *3 (-1244 *5))))
+ (-5 *2 (-421 *3)) (-5 *1 (-1083 *4 *5 *3)) (-4 *3 (-1245 *5))))
((*1 *2 *3)
(-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-455))
- (-4 *7 (-951 *6 *4 *5)) (-5 *2 (-421 (-1174 (-410 *7))))
- (-5 *1 (-1173 *4 *5 *6 *7)) (-5 *3 (-1174 (-410 *7)))))
- ((*1 *2 *1) (-12 (-5 *2 (-421 *1)) (-4 *1 (-1222))))
+ (-4 *7 (-951 *6 *4 *5)) (-5 *2 (-421 (-1175 (-410 *7))))
+ (-5 *1 (-1174 *4 *5 *6 *7)) (-5 *3 (-1175 (-410 *7)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-421 *1)) (-4 *1 (-1223))))
((*1 *2 *3)
- (-12 (-5 *2 (-421 *3)) (-5 *1 (-1233 *3)) (-4 *3 (-1244 (-567))))))
-(((*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-645 (-645 (-945 (-225))))) (-5 *2 (-645 (-225)))
- (-5 *1 (-471)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1051)) (-4 *1 (-1244 *3)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1268 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172))
- (-5 *2 (-690 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-690 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-332 *3)) (-4 *3 (-851)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-613 *1)) (-4 *1 (-303)))))
-(((*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1203))))))
+ (-12 (-5 *2 (-421 *3)) (-5 *1 (-1234 *3)) (-4 *3 (-1245 (-567))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1245 *5)) (-4 *5 (-365))
+ (-5 *2 (-2 (|:| -4179 (-421 *3)) (|:| |special| (-421 *3))))
+ (-5 *1 (-728 *5 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-851))
+ (-12 (-5 *2 (-1159 (-567))) (-5 *1 (-1163 *4)) (-4 *4 (-1051))
+ (-5 *3 (-567)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-794))
+ (-4 *7 (-851)) (-4 *8 (-1067 *5 *6 *7)) (-5 *2 (-645 *3))
+ (-5 *1 (-593 *5 *6 *7 *8 *3)) (-4 *3 (-1111 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147)))
(-5 *2
- (-2 (|:| |f1| (-645 *4)) (|:| |f2| (-645 (-645 (-645 *4))))
- (|:| |f3| (-645 (-645 *4))) (|:| |f4| (-645 (-645 (-645 *4))))))
- (-5 *1 (-1189 *4)) (-5 *3 (-645 (-645 (-645 *4)))))))
-(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1270))))
- ((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1270)))))
+ (-645 (-2 (|:| -2450 (-1175 *5)) (|:| -3088 (-645 (-954 *5))))))
+ (-5 *1 (-1080 *5 *6)) (-5 *3 (-645 (-954 *5)))
+ (-14 *6 (-645 (-1179)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-308) (-147)))
+ (-5 *2
+ (-645 (-2 (|:| -2450 (-1175 *4)) (|:| -3088 (-645 (-954 *4))))))
+ (-5 *1 (-1080 *4 *5)) (-5 *3 (-645 (-954 *4)))
+ (-14 *5 (-645 (-1179)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147)))
+ (-5 *2
+ (-645 (-2 (|:| -2450 (-1175 *5)) (|:| -3088 (-645 (-954 *5))))))
+ (-5 *1 (-1080 *5 *6)) (-5 *3 (-645 (-954 *5)))
+ (-14 *6 (-645 (-1179))))))
+(((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1008))))
+ ((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1008)))))
(((*1 *2 *3 *4)
(-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-793))
- (-5 *2 (-772))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-1102))
- (-5 *2 (-772))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-772)) (-5 *1 (-736 *3 *4)) (-4 *3 (-1051))
- (-4 *4 (-727)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-862))))
- ((*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-862)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-308)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4))
- (-5 *2
- (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3)))
- (-5 *1 (-1126 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-410 (-567))) (-5 *1 (-1026 *3))
+ (-4 *3 (-13 (-849) (-365) (-1024)))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-4 *2 (-13 (-849) (-365))) (-5 *1 (-1063 *2 *3))
+ (-4 *3 (-1245 *2))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-4 *1 (-1070 *2 *3)) (-4 *2 (-13 (-849) (-365)))
+ (-4 *3 (-1245 *2)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-365)) (-5 *1 (-767 *2 *3)) (-4 *2 (-709 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1178))
+ (-12 (-4 *4 (-851))
(-5 *2
- (-2 (|:| |zeros| (-1158 (-225))) (|:| |ones| (-1158 (-225)))
- (|:| |singularities| (-1158 (-225)))))
- (-5 *1 (-105)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1269))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1270)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-849) (-308) (-147) (-1024)))
- (-5 *2 (-645 (-1048 *5 *6))) (-5 *1 (-1294 *5 *6 *7))
- (-14 *6 (-645 (-1178))) (-14 *7 (-645 (-1178)))))
+ (-2 (|:| |f1| (-645 *4)) (|:| |f2| (-645 (-645 (-645 *4))))
+ (|:| |f3| (-645 (-645 *4))) (|:| |f4| (-645 (-645 (-645 *4))))))
+ (-5 *1 (-1190 *4)) (-5 *3 (-645 (-645 (-645 *4)))))))
+(((*1 *1 *1 *1) (-4 *1 (-143)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-158 *3 *2)) (-4 *2 (-433 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548))))
+ ((*1 *1 *1 *1) (-5 *1 (-863)))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-849) (-308) (-147) (-1024)))
- (-5 *2 (-645 (-1048 *5 *6))) (-5 *1 (-1294 *5 *6 *7))
- (-14 *6 (-645 (-1178))) (-14 *7 (-645 (-1178)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-645 (-954 *4)))
- (-4 *4 (-13 (-849) (-308) (-147) (-1024)))
- (-5 *2 (-645 (-1048 *4 *5))) (-5 *1 (-1294 *4 *5 *6))
- (-14 *5 (-645 (-1178))) (-14 *6 (-645 (-1178))))))
-(((*1 *1 *1 *1 *1 *1)
- (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794))
- (-4 *4 (-851)) (-4 *2 (-559)))))
+ (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-567))) (-5 *1 (-1049))
+ (-5 *3 (-567)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-351)) (-5 *2 (-421 *3)) (-5 *1 (-216 *4 *3))
- (-4 *3 (-1244 *4))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-772)) (-5 *2 (-421 *3)) (-5 *1 (-445 *3))
- (-4 *3 (-1244 (-567)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-645 (-772))) (-5 *2 (-421 *3)) (-5 *1 (-445 *3))
- (-4 *3 (-1244 (-567)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-645 (-772))) (-5 *5 (-772)) (-5 *2 (-421 *3))
- (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-772)) (-5 *2 (-421 *3)) (-5 *1 (-445 *3))
- (-4 *3 (-1244 (-567)))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-421 *3)) (-5 *1 (-1009 *3))
- (-4 *3 (-1244 (-410 (-567))))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-421 *3)) (-5 *1 (-1233 *3)) (-4 *3 (-1244 (-567))))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1245 (-567))))))
+(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1219)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-645 *4)) (-4 *4 (-365)) (-4 *2 (-1244 *4))
- (-5 *1 (-924 *4 *2)))))
-(((*1 *1) (-5 *1 (-824))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-923)) (-5 *1 (-1032 *2))
- (-4 *2 (-13 (-1102) (-10 -8 (-15 -3033 ($ $ $))))))))
-(((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-312))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-772)) (-5 *1 (-1166 *3 *4)) (-14 *3 (-923))
- (-4 *4 (-1051)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-112)) (-5 *5 (-1104 (-772))) (-5 *6 (-772))
- (-5 *2
- (-2 (|:| |contp| (-567))
- (|:| -3920 (-645 (-2 (|:| |irr| *3) (|:| -2625 (-567)))))))
- (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567))))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037))
- (-5 *1 (-756)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))))
-(((*1 *2 *2) (-12 (-5 *1 (-963 *2)) (-4 *2 (-548)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 *4)) (-4 *4 (-344 *5 *6 *7))
- (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567)))))
- (-4 *6 (-1244 *5)) (-4 *7 (-1244 (-410 *6)))
+ (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3554 *4)))
+ (-5 *1 (-971 *4 *3)) (-4 *3 (-1245 *4)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1141))))
+(((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-1161)) (-5 *4 (-169 (-225))) (-5 *5 (-567))
+ (-5 *2 (-1037)) (-5 *1 (-759)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-559) (-1040 (-567)))) (-4 *5 (-433 *4))
(-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2623 (-645 *4))))
- (-5 *1 (-807 *5 *6 *7 *4)))))
+ (-3 (|:| |overq| (-1175 (-410 (-567))))
+ (|:| |overan| (-1175 (-48))) (|:| -3678 (-112))))
+ (-5 *1 (-438 *4 *5 *3)) (-4 *3 (-1245 *5)))))
+(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-292)))
+ ((*1 *1) (-5 *1 (-863)))
+ ((*1 *1)
+ (-12 (-4 *2 (-455)) (-4 *3 (-851)) (-4 *4 (-794))
+ (-5 *1 (-989 *2 *3 *4 *5)) (-4 *5 (-951 *2 *4 *3))))
+ ((*1 *1) (-5 *1 (-1087)))
+ ((*1 *1)
+ (-12 (-5 *1 (-1142 *2 *3)) (-4 *2 (-13 (-1102) (-34)))
+ (-4 *3 (-13 (-1102) (-34)))))
+ ((*1 *1) (-5 *1 (-1182))) ((*1 *1) (-5 *1 (-1183))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-295 (-844 *3))) (-4 *3 (-13 (-27) (-1203) (-433 *5)))
- (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567))))
- (-5 *2
- (-3 (-844 *3)
- (-2 (|:| |leftHandLimit| (-3 (-844 *3) "failed"))
- (|:| |rightHandLimit| (-3 (-844 *3) "failed")))
- "failed"))
- (-5 *1 (-637 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-295 *3)) (-5 *5 (-1160))
- (-4 *3 (-13 (-27) (-1203) (-433 *6)))
- (-4 *6 (-13 (-455) (-1040 (-567)) (-640 (-567))))
- (-5 *2 (-844 *3)) (-5 *1 (-637 *6 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-295 (-844 (-954 *5)))) (-4 *5 (-455))
+ (-12 (-5 *3 (-690 *8)) (-5 *4 (-772)) (-4 *8 (-951 *5 *7 *6))
+ (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1179))))
+ (-4 *7 (-794))
(-5 *2
- (-3 (-844 (-410 (-954 *5)))
- (-2 (|:| |leftHandLimit| (-3 (-844 (-410 (-954 *5))) "failed"))
- (|:| |rightHandLimit| (-3 (-844 (-410 (-954 *5))) "failed")))
- "failed"))
- (-5 *1 (-638 *5)) (-5 *3 (-410 (-954 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-295 (-410 (-954 *5)))) (-5 *3 (-410 (-954 *5)))
- (-4 *5 (-455))
+ (-645
+ (-2 (|:| |det| *8) (|:| |rows| (-645 (-567)))
+ (|:| |cols| (-645 (-567))))))
+ (-5 *1 (-926 *5 *6 *7 *8)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381))
(-5 *2
- (-3 (-844 *3)
- (-2 (|:| |leftHandLimit| (-3 (-844 *3) "failed"))
- (|:| |rightHandLimit| (-3 (-844 *3) "failed")))
- "failed"))
- (-5 *1 (-638 *5))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-295 (-410 (-954 *6)))) (-5 *5 (-1160))
- (-5 *3 (-410 (-954 *6))) (-4 *6 (-455)) (-5 *2 (-844 *3))
- (-5 *1 (-638 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1268 *1)) (-4 *1 (-369 *2)) (-4 *2 (-172))))
- ((*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-419 *3 *2)) (-4 *3 (-420 *2))))
- ((*1 *2) (-12 (-4 *1 (-420 *2)) (-4 *2 (-172)))))
+ (-2 (|:| -3812 *4) (|:| -2069 *4) (|:| |totalpts| (-567))
+ (|:| |success| (-112))))
+ (-5 *1 (-790)) (-5 *5 (-567)))))
+(((*1 *2 *3 *3 *3 *3)
+ (-12 (-5 *3 (-567)) (-5 *2 (-112)) (-5 *1 (-483)))))
+(((*1 *2 *3 *4)
+ (-12
+ (-5 *3
+ (-645
+ (-2 (|:| |eqzro| (-645 *8)) (|:| |neqzro| (-645 *8))
+ (|:| |wcond| (-645 (-954 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1269 (-410 (-954 *5))))
+ (|:| -2144 (-645 (-1269 (-410 (-954 *5))))))))))
+ (-5 *4 (-1161)) (-4 *5 (-13 (-308) (-147))) (-4 *8 (-951 *5 *7 *6))
+ (-4 *6 (-13 (-851) (-615 (-1179)))) (-4 *7 (-794)) (-5 *2 (-567))
+ (-5 *1 (-926 *5 *6 *7 *8)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-923)) (-5 *1 (-1032 *2))
+ (-4 *2 (-13 (-1102) (-10 -8 (-15 -3041 ($ $ $))))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1159 (-567))) (-5 *1 (-1163 *4)) (-4 *4 (-1051))
+ (-5 *3 (-567)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794))
+ (-4 *4 (-851))))
+ ((*1 *1) (-4 *1 (-1154))))
+(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-875)))))
+(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-5 *1 (-738 *3))))
+ ((*1 *1 *2) (-12 (-5 *1 (-738 *2)) (-4 *2 (-1102))))
+ ((*1 *1) (-12 (-5 *1 (-738 *2)) (-4 *2 (-1102)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1179))
+ (-4 *4 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147)))
+ (-5 *1 (-805 *4 *2)) (-4 *2 (-13 (-29 *4) (-1204) (-961)))))
+ ((*1 *1 *1 *1 *1) (-5 *1 (-863))) ((*1 *1 *1 *1) (-5 *1 (-863)))
+ ((*1 *1 *1) (-5 *1 (-863)))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1159 *3)) (-5 *1 (-1163 *3)) (-4 *3 (-1051)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-548))))
+(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-929)))))
+(((*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-406 *3)) (-4 *3 (-407))))
+ ((*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-406 *3)) (-4 *3 (-407))))
+ ((*1 *2 *2) (-12 (-5 *2 (-923)) (|has| *1 (-6 -4413)) (-4 *1 (-407))))
+ ((*1 *2) (-12 (-4 *1 (-407)) (-5 *2 (-923))))
+ ((*1 *2 *1) (-12 (-4 *1 (-870 *3)) (-5 *2 (-1159 (-567))))))
+(((*1 *2 *2 *2 *2 *3)
+ (-12 (-4 *3 (-559)) (-5 *1 (-971 *3 *2)) (-4 *2 (-1245 *3)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-645 (-1179))) (-5 *3 (-52)) (-5 *1 (-894 *4))
+ (-4 *4 (-1102)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-945 *4)) (-5 *1 (-1167 *3 *4)) (-14 *3 (-923))
+ (-4 *4 (-1051)))))
(((*1 *2 *1 *3)
(-12 (-5 *3 (-613 *1)) (-4 *1 (-433 *4)) (-4 *4 (-1102))
- (-4 *4 (-559)) (-5 *2 (-410 (-1174 *1)))))
+ (-4 *4 (-559)) (-5 *2 (-410 (-1175 *1)))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-613 *3)) (-4 *3 (-13 (-433 *6) (-27) (-1203)))
+ (-12 (-5 *4 (-613 *3)) (-4 *3 (-13 (-433 *6) (-27) (-1204)))
(-4 *6 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567))))
- (-5 *2 (-1174 (-410 (-1174 *3)))) (-5 *1 (-563 *6 *3 *7))
- (-5 *5 (-1174 *3)) (-4 *7 (-1102))))
+ (-5 *2 (-1175 (-410 (-1175 *3)))) (-5 *1 (-563 *6 *3 *7))
+ (-5 *5 (-1175 *3)) (-4 *7 (-1102))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1264 *5)) (-14 *5 (-1178)) (-4 *6 (-1051))
- (-5 *2 (-1241 *5 (-954 *6))) (-5 *1 (-949 *5 *6)) (-5 *3 (-954 *6))))
+ (-12 (-5 *4 (-1265 *5)) (-14 *5 (-1179)) (-4 *6 (-1051))
+ (-5 *2 (-1242 *5 (-954 *6))) (-5 *1 (-949 *5 *6)) (-5 *3 (-954 *6))))
((*1 *2 *1)
(-12 (-4 *1 (-951 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794))
- (-4 *5 (-851)) (-5 *2 (-1174 *3))))
+ (-4 *5 (-851)) (-5 *2 (-1175 *3))))
((*1 *2 *1 *3)
- (-12 (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *3 (-851)) (-5 *2 (-1174 *1))
+ (-12 (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *3 (-851)) (-5 *2 (-1175 *1))
(-4 *1 (-951 *4 *5 *3))))
((*1 *2 *3 *4)
(-12 (-4 *5 (-794)) (-4 *4 (-851)) (-4 *6 (-1051))
- (-4 *7 (-951 *6 *5 *4)) (-5 *2 (-410 (-1174 *3)))
+ (-4 *7 (-951 *6 *5 *4)) (-5 *2 (-410 (-1175 *3)))
(-5 *1 (-952 *5 *4 *6 *7 *3))
(-4 *3
(-13 (-365)
- (-10 -8 (-15 -4132 ($ *7)) (-15 -1448 (*7 $)) (-15 -1460 (*7 $)))))))
+ (-10 -8 (-15 -4129 ($ *7)) (-15 -1447 (*7 $)) (-15 -1462 (*7 $)))))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-1174 *3))
+ (-12 (-5 *2 (-1175 *3))
(-4 *3
(-13 (-365)
- (-10 -8 (-15 -4132 ($ *7)) (-15 -1448 (*7 $)) (-15 -1460 (*7 $)))))
+ (-10 -8 (-15 -4129 ($ *7)) (-15 -1447 (*7 $)) (-15 -1462 (*7 $)))))
(-4 *7 (-951 *6 *5 *4)) (-4 *5 (-794)) (-4 *4 (-851))
(-4 *6 (-1051)) (-5 *1 (-952 *5 *4 *6 *7 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1178)) (-4 *5 (-559))
- (-5 *2 (-410 (-1174 (-410 (-954 *5))))) (-5 *1 (-1045 *5))
+ (-12 (-5 *4 (-1179)) (-4 *5 (-559))
+ (-5 *2 (-410 (-1175 (-410 (-954 *5))))) (-5 *1 (-1045 *5))
(-5 *3 (-410 (-954 *5))))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-365)) (-4 *3 (-1051))
- (-5 *1 (-1162 *3)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794))
- (-4 *4 (-851))))
- ((*1 *1) (-4 *1 (-1153))))
-(((*1 *1 *1) (-5 *1 (-1065))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-673 *3)) (-4 *3 (-851)) (-4 *1 (-376 *3 *4))
+ (-4 *4 (-172)))))
+(((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
+ ((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3))))
+ ((*1 *1 *1) (-4 *1 (-1141))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-351)) (-5 *2 (-421 (-1175 (-1175 *4))))
+ (-5 *1 (-1217 *4)) (-5 *3 (-1175 (-1175 *4))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1178))
- (-4 *4 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147)))
- (-5 *1 (-805 *4 *2)) (-4 *2 (-13 (-29 *4) (-1203) (-961)))))
- ((*1 *1 *1 *1 *1) (-5 *1 (-863))) ((*1 *1 *1 *1) (-5 *1 (-863)))
- ((*1 *1 *1) (-5 *1 (-863)))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1158 *3)) (-5 *1 (-1162 *3)) (-4 *3 (-1051)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 (-112) *7 (-645 *7))) (-4 *1 (-1211 *4 *5 *6 *7))
- (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851))
- (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2774 *3)))
- (-5 *1 (-971 *4 *3)) (-4 *3 (-1244 *4)))))
-(((*1 *2)
- (-12 (-4 *4 (-1222)) (-4 *5 (-1244 *4)) (-4 *6 (-1244 (-410 *5)))
- (-5 *2 (-772)) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3))
- (-4 *5 (-1244 (-410 *4))) (-5 *2 (-772)))))
+ (-12 (-5 *3 (-690 (-169 (-410 (-567))))) (-5 *2 (-645 (-169 *4)))
+ (-5 *1 (-765 *4)) (-4 *4 (-13 (-365) (-849))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-645 *7)) (-4 *7 (-951 *4 *5 *6)) (-4 *4 (-455))
+ (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-1274))
+ (-5 *1 (-452 *4 *5 *6 *7)))))
(((*1 *2 *2)
- (-12 (-4 *2 (-172)) (-4 *2 (-1051)) (-5 *1 (-715 *2 *3))
- (-4 *3 (-649 *2))))
- ((*1 *2 *2) (-12 (-5 *1 (-837 *2)) (-4 *2 (-172)) (-4 *2 (-1051)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1122)) (-5 *2 (-1273)) (-5 *1 (-832)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1174 *7))
- (-4 *5 (-1051)) (-4 *7 (-1051)) (-4 *2 (-1244 *5))
- (-5 *1 (-504 *5 *2 *6 *7)) (-4 *6 (-1244 *2)))))
+ (-12 (-5 *2 (-945 *3)) (-4 *3 (-13 (-365) (-1204) (-1004)))
+ (-5 *1 (-176 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-849)) (-5 *2 (-567))))
+ ((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-907 *3)) (-4 *3 (-1102))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1070 *4 *3)) (-4 *4 (-13 (-849) (-365)))
+ (-4 *3 (-1245 *4)) (-5 *2 (-567))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-13 (-559) (-1040 *2) (-640 *2) (-455)))
+ (-5 *2 (-567)) (-5 *1 (-1118 *4 *3))
+ (-4 *3 (-13 (-27) (-1204) (-433 *4)))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1179)) (-5 *5 (-844 *3))
+ (-4 *3 (-13 (-27) (-1204) (-433 *6)))
+ (-4 *6 (-13 (-559) (-1040 *2) (-640 *2) (-455))) (-5 *2 (-567))
+ (-5 *1 (-1118 *6 *3))))
+ ((*1 *2 *3 *4 *3 *5)
+ (|partial| -12 (-5 *4 (-1179)) (-5 *5 (-1161))
+ (-4 *6 (-13 (-559) (-1040 *2) (-640 *2) (-455))) (-5 *2 (-567))
+ (-5 *1 (-1118 *6 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *6)))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-410 (-954 *4))) (-4 *4 (-455)) (-5 *2 (-567))
+ (-5 *1 (-1119 *4))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1179)) (-5 *5 (-844 (-410 (-954 *6))))
+ (-5 *3 (-410 (-954 *6))) (-4 *6 (-455)) (-5 *2 (-567))
+ (-5 *1 (-1119 *6))))
+ ((*1 *2 *3 *4 *3 *5)
+ (|partial| -12 (-5 *3 (-410 (-954 *6))) (-5 *4 (-1179))
+ (-5 *5 (-1161)) (-4 *6 (-455)) (-5 *2 (-567)) (-5 *1 (-1119 *6))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *2 (-567)) (-5 *1 (-1201 *3)) (-4 *3 (-1051)))))
+(((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4423)) (-4 *1 (-375 *2)) (-4 *2 (-1219))
+ (-4 *2 (-851))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4423))
+ (-4 *1 (-375 *3)) (-4 *3 (-1219)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1048 *4 *5)) (-4 *4 (-13 (-849) (-308) (-147) (-1024)))
+ (-14 *5 (-645 (-1179)))
+ (-5 *2
+ (-645 (-2 (|:| -2450 (-1175 *4)) (|:| -3088 (-645 (-954 *4))))))
+ (-5 *1 (-1295 *4 *5 *6)) (-14 *6 (-645 (-1179)))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1024)))
+ (-5 *2
+ (-645 (-2 (|:| -2450 (-1175 *5)) (|:| -3088 (-645 (-954 *5))))))
+ (-5 *1 (-1295 *5 *6 *7)) (-5 *3 (-645 (-954 *5)))
+ (-14 *6 (-645 (-1179))) (-14 *7 (-645 (-1179)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1024)))
+ (-5 *2
+ (-645 (-2 (|:| -2450 (-1175 *5)) (|:| -3088 (-645 (-954 *5))))))
+ (-5 *1 (-1295 *5 *6 *7)) (-5 *3 (-645 (-954 *5)))
+ (-14 *6 (-645 (-1179))) (-14 *7 (-645 (-1179)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1024)))
+ (-5 *2
+ (-645 (-2 (|:| -2450 (-1175 *5)) (|:| -3088 (-645 (-954 *5))))))
+ (-5 *1 (-1295 *5 *6 *7)) (-5 *3 (-645 (-954 *5)))
+ (-14 *6 (-645 (-1179))) (-14 *7 (-645 (-1179)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-849) (-308) (-147) (-1024)))
+ (-5 *2
+ (-645 (-2 (|:| -2450 (-1175 *4)) (|:| -3088 (-645 (-954 *4))))))
+ (-5 *1 (-1295 *4 *5 *6)) (-5 *3 (-645 (-954 *4)))
+ (-14 *5 (-645 (-1179))) (-14 *6 (-645 (-1179))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1102)) (-4 *5 (-1102))
- (-5 *2 (-1 *5)) (-5 *1 (-684 *4 *5)))))
-(((*1 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-370)) (-4 *2 (-365)))))
+ (-12 (-4 *6 (-559)) (-4 *2 (-951 *3 *5 *4))
+ (-5 *1 (-733 *5 *4 *6 *2)) (-5 *3 (-410 (-954 *6))) (-4 *5 (-794))
+ (-4 *4 (-13 (-851) (-10 -8 (-15 -3902 ((-1179) $))))))))
(((*1 *2 *1)
(-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102))
(-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-112)))))
-(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-5 *1 (-91 *3)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1218)) (-5 *2 (-567)))))
+(((*1 *1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-264))))
+ ((*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-264)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))))
+(((*1 *2 *3) (-12 (-5 *3 (-539)) (-5 *1 (-538 *2)) (-4 *2 (-1219))))
+ ((*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-539)))))
+(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037))
+ (-5 *1 (-753)))))
+(((*1 *2)
+ (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-420 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1269 *5)) (-4 *5 (-793)) (-5 *2 (-112))
+ (-5 *1 (-846 *4 *5)) (-14 *4 (-772)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-923)) (-5 *2 (-1174 *4)) (-5 *1 (-590 *4))
- (-4 *4 (-351)))))
-(((*1 *2 *1) (-12 (-4 *1 (-327 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-793))))
- ((*1 *2 *1) (-12 (-4 *1 (-709 *3)) (-4 *3 (-1051)) (-5 *2 (-772))))
- ((*1 *2 *1) (-12 (-4 *1 (-853 *3)) (-4 *3 (-1051)) (-5 *2 (-772))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-645 *6)) (-4 *1 (-951 *4 *5 *6)) (-4 *4 (-1051))
- (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 (-772)))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-951 *4 *5 *3)) (-4 *4 (-1051)) (-4 *5 (-794))
- (-4 *3 (-851)) (-5 *2 (-772)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *2 (-1244 *4)) (-5 *1 (-808 *4 *2 *3 *5))
- (-4 *4 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *3 (-657 *2))
- (-4 *5 (-657 (-410 *2)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *2 (-1244 *4)) (-5 *1 (-808 *4 *2 *5 *3))
- (-4 *4 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *5 (-657 *2))
- (-4 *3 (-657 (-410 *2))))))
+ (-12 (-4 *4 (-308)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4))
+ (-5 *2
+ (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3)))
+ (-5 *1 (-1126 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))))
+(((*1 *2 *3 *4 *4 *5 *6 *7)
+ (-12 (-5 *5 (-1179))
+ (-5 *6
+ (-1
+ (-3
+ (-2 (|:| |mainpart| *4)
+ (|:| |limitedlogs|
+ (-645 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
+ "failed")
+ *4 (-645 *4)))
+ (-5 *7
+ (-1 (-3 (-2 (|:| -2872 *4) (|:| |coeff| *4)) "failed") *4 *4))
+ (-4 *4 (-13 (-1204) (-27) (-433 *8)))
+ (-4 *8 (-13 (-455) (-147) (-1040 *3) (-640 *3))) (-5 *3 (-567))
+ (-5 *2 (-2 (|:| |ans| *4) (|:| -2973 *4) (|:| |sol?| (-112))))
+ (-5 *1 (-1015 *8 *4)))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-1159 *4)) (-5 *3 (-567)) (-4 *4 (-1051))
+ (-5 *1 (-1163 *4))))
+ ((*1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-567)) (-5 *1 (-1261 *3 *4 *5)) (-4 *3 (-1051))
+ (-14 *4 (-1179)) (-14 *5 *3))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-365)) (-4 *3 (-1051))
+ (-5 *1 (-1163 *3)))))
(((*1 *2 *2)
(-12 (-5 *2 (-114)) (-4 *3 (-559)) (-5 *1 (-32 *3 *4))
(-4 *4 (-433 *3))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-55)) (-5 *1 (-114))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-772)) (-5 *1 (-114))))
- ((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-114))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-55)) (-5 *1 (-114))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-772)) (-5 *1 (-114))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-114))))
((*1 *2 *2)
(-12 (-5 *2 (-114)) (-4 *3 (-559)) (-5 *1 (-158 *3 *4))
(-4 *4 (-433 *3))))
- ((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-114)) (-5 *1 (-163))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-114)) (-5 *1 (-163))))
((*1 *2 *2)
(-12 (-5 *2 (-114)) (-4 *3 (-559)) (-5 *1 (-277 *3 *4))
(-4 *4 (-13 (-433 *3) (-1004)))))
@@ -10498,60 +10434,66 @@
((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-613 *3)) (-4 *3 (-1102))))
((*1 *2 *2)
(-12 (-5 *2 (-114)) (-4 *3 (-559)) (-5 *1 (-631 *3 *4))
- (-4 *4 (-13 (-433 *3) (-1004) (-1203)))))
+ (-4 *4 (-13 (-433 *3) (-1004) (-1204)))))
((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1021)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-945 (-225))) (-5 *2 (-1273)) (-5 *1 (-471)))))
-(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-645 (-1268 *4))) (-5 *1 (-368 *3 *4))
- (-4 *3 (-369 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-559))
- (-5 *2 (-645 (-1268 *3))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-421 *5)) (-4 *5 (-559))
- (-5 *2
- (-2 (|:| -3458 (-772)) (|:| -3694 *5) (|:| |radicand| (-645 *5))))
- (-5 *1 (-321 *5)) (-5 *4 (-772))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1004)) (-5 *2 (-567)))))
-(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928)))))
-(((*1 *2 *3) (-12 (-5 *3 (-539)) (-5 *1 (-538 *2)) (-4 *2 (-1218))))
- ((*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-539)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-365)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112))
- (-5 *1 (-507 *4 *5 *6 *3)) (-4 *3 (-951 *4 *5 *6)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-1142 *3 *2)) (-4 *3 (-13 (-1102) (-34)))
- (-4 *2 (-13 (-1102) (-34))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-375 *3))
- (-4 *5 (-375 *3)) (-5 *2 (-567))))
+ (-12 (-14 *3 (-645 (-1179))) (-4 *4 (-172))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -3779 *5) (|:| -3468 *2))
+ (-2 (|:| -3779 *5) (|:| -3468 *2))))
+ (-4 *2 (-238 (-2423 *3) (-772))) (-5 *1 (-464 *3 *4 *5 *2 *6 *7))
+ (-4 *5 (-851)) (-4 *7 (-951 *4 *2 (-865 *3))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-225))) (-5 *2 (-1269 (-700))) (-5 *1 (-306)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1051)) (-4 *4 (-1102)) (-5 *2 (-645 *1))
+ (-4 *1 (-384 *3 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051))
- (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-567)))))
-(((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-700))))
- ((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-700)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2))
- (-4 *2 (-13 (-433 *3) (-1203))))))
+ (-12 (-5 *2 (-645 (-736 *3 *4))) (-5 *1 (-736 *3 *4)) (-4 *3 (-1051))
+ (-4 *4 (-727))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1))
+ (-4 *1 (-951 *3 *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1161))
+ (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-112))
+ (-5 *1 (-224 *4 *5)) (-4 *5 (-13 (-1204) (-29 *4))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-308))
+ (-5 *2 (-645 (-772))) (-5 *1 (-779 *3 *4 *5 *6 *7))
+ (-4 *3 (-1245 *6)) (-4 *7 (-951 *6 *4 *5)))))
(((*1 *2)
- (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-420 *3)))))
+ (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4))
+ (-4 *3 (-369 *4))))
+ ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851))
+ (-5 *1 (-507 *3 *4 *5 *2)) (-4 *2 (-951 *3 *4 *5))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-365)) (-4 *3 (-794)) (-4 *4 (-851))
+ (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-951 *2 *3 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-645 (-645 (-945 (-225))))) (-5 *1 (-471)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-300 *4 *5)) (-14 *4 *3)
- (-14 *5 *3)))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1096 (-844 (-225)))) (-5 *3 (-225)) (-5 *2 (-112))
- (-5 *1 (-306))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112))
- (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5)))))
+ (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1102)) (-4 *6 (-1102))
+ (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-685 *4 *5 *6)) (-4 *5 (-1102)))))
(((*1 *2 *1) (-12 (-5 *2 (-645 (-613 *1))) (-4 *1 (-303)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1213 *3)) (-4 *3 (-976)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-365) (-849))) (-5 *1 (-181 *3 *2))
+ (-4 *2 (-1245 (-169 *3))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-772))
- (-5 *1 (-452 *4 *5 *6 *3)) (-4 *3 (-951 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-112)))))
+ (-12 (-5 *3 (-338 *5 *6 *7 *8)) (-4 *5 (-433 *4)) (-4 *6 (-1245 *5))
+ (-4 *7 (-1245 (-410 *6))) (-4 *8 (-344 *5 *6 *7))
+ (-4 *4 (-13 (-559) (-1040 (-567)))) (-5 *2 (-112))
+ (-5 *1 (-913 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-338 (-410 (-567)) *4 *5 *6))
+ (-4 *4 (-1245 (-410 (-567)))) (-4 *5 (-1245 (-410 *4)))
+ (-4 *6 (-344 (-410 (-567)) *4 *5)) (-5 *2 (-112))
+ (-5 *1 (-914 *4 *5 *6)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))))
(((*1 *1 *1 *2 *3)
(-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-772)) (-4 *1 (-231 *4))
(-4 *4 (-1051))))
@@ -10561,10 +10503,10 @@
((*1 *1 *1) (-4 *1 (-233)))
((*1 *1 *1 *2)
(-12 (-5 *2 (-772)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-402 *3 *4))
- (-4 *4 (-1244 *3))))
+ (-4 *4 (-1245 *3))))
((*1 *1 *1)
(-12 (-4 *2 (-13 (-365) (-147))) (-5 *1 (-402 *2 *3))
- (-4 *3 (-1244 *2))))
+ (-4 *3 (-1245 *2))))
((*1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1051))))
((*1 *1 *1 *2 *3)
(-12 (-5 *2 (-645 *4)) (-5 *3 (-645 (-772))) (-4 *1 (-902 *4))
@@ -10574,41 +10516,100 @@
((*1 *1 *1 *2)
(-12 (-5 *2 (-645 *3)) (-4 *1 (-902 *3)) (-4 *3 (-1102))))
((*1 *1 *1 *2) (-12 (-4 *1 (-902 *2)) (-4 *2 (-1102)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-366 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1102)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-559) (-1040 (-567)))) (-4 *5 (-433 *4))
- (-5 *2 (-421 (-1174 (-410 (-567))))) (-5 *1 (-438 *4 *5 *3))
- (-4 *3 (-1244 *5)))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-3 (-410 (-954 *6)) (-1167 (-1178) (-954 *6))))
- (-5 *5 (-772)) (-4 *6 (-455)) (-5 *2 (-645 (-690 (-410 (-954 *6)))))
- (-5 *1 (-293 *6)) (-5 *4 (-690 (-410 (-954 *6))))))
+(((*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1219))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-851))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-851))))
+ ((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-567)) (-4 *1 (-283 *3)) (-4 *3 (-1219))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-567)) (-4 *1 (-283 *2)) (-4 *2 (-1219))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2
+ (|:| -1809
+ (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225)))
+ (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))
+ (|:| -4236
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1159 (-225)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -2408
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite|
+ "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))))))
+ (-5 *1 (-562))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-772)) (-4 *1 (-696 *2)) (-4 *2 (-1102))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2
+ (|:| -1809
+ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
+ (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225)))
+ (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225)))
+ (|:| |abserr| (-225)) (|:| |relerr| (-225))))
+ (|:| -4236
+ (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381))
+ (|:| |expense| (-381)) (|:| |accuracy| (-381))
+ (|:| |intermediateResults| (-381))))))
+ (-5 *1 (-804))))
((*1 *2 *3 *4)
+ (-12 (-5 *2 (-1274)) (-5 *1 (-1196 *3 *4)) (-4 *3 (-1102))
+ (-4 *4 (-1102)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1288 *3)) (-4 *3 (-365)) (-5 *2 (-112)))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *6)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225))
+ (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1037))
+ (-5 *1 (-747)))))
+(((*1 *2 *3 *4 *5 *6 *7 *7 *8)
(-12
(-5 *3
- (-2 (|:| |eigval| (-3 (-410 (-954 *5)) (-1167 (-1178) (-954 *5))))
- (|:| |eigmult| (-772)) (|:| |eigvec| (-645 *4))))
- (-4 *5 (-455)) (-5 *2 (-645 (-690 (-410 (-954 *5)))))
- (-5 *1 (-293 *5)) (-5 *4 (-690 (-410 (-954 *5)))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102))
- (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-112)))))
-(((*1 *1) (-5 *1 (-1087))))
+ (-2 (|:| |det| *12) (|:| |rows| (-645 (-567)))
+ (|:| |cols| (-645 (-567)))))
+ (-5 *4 (-690 *12)) (-5 *5 (-645 (-410 (-954 *9))))
+ (-5 *6 (-645 (-645 *12))) (-5 *7 (-772)) (-5 *8 (-567))
+ (-4 *9 (-13 (-308) (-147))) (-4 *12 (-951 *9 *11 *10))
+ (-4 *10 (-13 (-851) (-615 (-1179)))) (-4 *11 (-794))
+ (-5 *2
+ (-2 (|:| |eqzro| (-645 *12)) (|:| |neqzro| (-645 *12))
+ (|:| |wcond| (-645 (-954 *9)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1269 (-410 (-954 *9))))
+ (|:| -2144 (-645 (-1269 (-410 (-954 *9)))))))))
+ (-5 *1 (-926 *9 *10 *11 *12)))))
(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-410 *5)) (-4 *4 (-1222)) (-4 *5 (-1244 *4))
- (-5 *1 (-148 *4 *5 *2)) (-4 *2 (-1244 *3))))
+ (-12 (-5 *3 (-410 *5)) (-4 *4 (-1223)) (-4 *5 (-1245 *4))
+ (-5 *1 (-148 *4 *5 *2)) (-4 *2 (-1245 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-1180 (-410 (-567)))) (-5 *2 (-410 (-567)))
+ (-12 (-5 *3 (-1181 (-410 (-567)))) (-5 *2 (-410 (-567)))
(-5 *1 (-190))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-690 (-317 (-225)))) (-5 *3 (-645 (-1178)))
- (-5 *4 (-1268 (-317 (-225)))) (-5 *1 (-205))))
+ (-12 (-5 *2 (-690 (-317 (-225)))) (-5 *3 (-645 (-1179)))
+ (-5 *4 (-1269 (-317 (-225)))) (-5 *1 (-205))))
((*1 *1 *1 *2)
(-12 (-5 *2 (-645 (-295 *3))) (-4 *3 (-310 *3)) (-4 *3 (-1102))
- (-4 *3 (-1218)) (-5 *1 (-295 *3))))
+ (-4 *3 (-1219)) (-5 *1 (-295 *3))))
((*1 *1 *1 *1)
- (-12 (-4 *2 (-310 *2)) (-4 *2 (-1102)) (-4 *2 (-1218))
+ (-12 (-4 *2 (-310 *2)) (-4 *2 (-1102)) (-4 *2 (-1219))
(-5 *1 (-295 *2))))
((*1 *1 *1 *2 *3)
(-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-303))))
@@ -10620,20 +10621,20 @@
((*1 *1 *1 *2 *3)
(-12 (-5 *2 (-645 (-114))) (-5 *3 (-645 (-1 *1 *1))) (-4 *1 (-303))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1178)) (-5 *3 (-1 *1 *1)) (-4 *1 (-303))))
+ (-12 (-5 *2 (-1179)) (-5 *3 (-1 *1 *1)) (-4 *1 (-303))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1178)) (-5 *3 (-1 *1 (-645 *1))) (-4 *1 (-303))))
+ (-12 (-5 *2 (-1179)) (-5 *3 (-1 *1 (-645 *1))) (-4 *1 (-303))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-645 (-1178))) (-5 *3 (-645 (-1 *1 (-645 *1))))
+ (-12 (-5 *2 (-645 (-1179))) (-5 *3 (-645 (-1 *1 (-645 *1))))
(-4 *1 (-303))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-645 (-1178))) (-5 *3 (-645 (-1 *1 *1))) (-4 *1 (-303))))
+ (-12 (-5 *2 (-645 (-1179))) (-5 *3 (-645 (-1 *1 *1))) (-4 *1 (-303))))
((*1 *1 *1 *2)
(-12 (-5 *2 (-645 (-295 *3))) (-4 *1 (-310 *3)) (-4 *3 (-1102))))
((*1 *1 *1 *2)
(-12 (-5 *2 (-295 *3)) (-4 *1 (-310 *3)) (-4 *3 (-1102))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 (-567))) (-5 *4 (-1180 (-410 (-567))))
+ (-12 (-5 *3 (-1 *2 (-567))) (-5 *4 (-1181 (-410 (-567))))
(-5 *1 (-311 *2)) (-4 *2 (-38 (-410 (-567))))))
((*1 *1 *1 *2 *3)
(-12 (-5 *2 (-645 *4)) (-5 *3 (-645 *1)) (-4 *1 (-376 *4 *5))
@@ -10641,47 +10642,47 @@
((*1 *1 *1 *2 *1)
(-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-851)) (-4 *3 (-172))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1178)) (-5 *3 (-772)) (-5 *4 (-1 *1 *1))
+ (-12 (-5 *2 (-1179)) (-5 *3 (-772)) (-5 *4 (-1 *1 *1))
(-4 *1 (-433 *5)) (-4 *5 (-1102)) (-4 *5 (-1051))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1178)) (-5 *3 (-772)) (-5 *4 (-1 *1 (-645 *1)))
+ (-12 (-5 *2 (-1179)) (-5 *3 (-772)) (-5 *4 (-1 *1 (-645 *1)))
(-4 *1 (-433 *5)) (-4 *5 (-1102)) (-4 *5 (-1051))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-645 (-1178))) (-5 *3 (-645 (-772)))
+ (-12 (-5 *2 (-645 (-1179))) (-5 *3 (-645 (-772)))
(-5 *4 (-645 (-1 *1 (-645 *1)))) (-4 *1 (-433 *5)) (-4 *5 (-1102))
(-4 *5 (-1051))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-645 (-1178))) (-5 *3 (-645 (-772)))
+ (-12 (-5 *2 (-645 (-1179))) (-5 *3 (-645 (-772)))
(-5 *4 (-645 (-1 *1 *1))) (-4 *1 (-433 *5)) (-4 *5 (-1102))
(-4 *5 (-1051))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-645 (-114))) (-5 *3 (-645 *1)) (-5 *4 (-1178))
+ (-12 (-5 *2 (-645 (-114))) (-5 *3 (-645 *1)) (-5 *4 (-1179))
(-4 *1 (-433 *5)) (-4 *5 (-1102)) (-4 *5 (-615 (-539)))))
((*1 *1 *1 *2 *1 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-1178)) (-4 *1 (-433 *4)) (-4 *4 (-1102))
+ (-12 (-5 *2 (-114)) (-5 *3 (-1179)) (-4 *1 (-433 *4)) (-4 *4 (-1102))
(-4 *4 (-615 (-539)))))
((*1 *1 *1)
(-12 (-4 *1 (-433 *2)) (-4 *2 (-1102)) (-4 *2 (-615 (-539)))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-645 (-1178))) (-4 *1 (-433 *3)) (-4 *3 (-1102))
+ (-12 (-5 *2 (-645 (-1179))) (-4 *1 (-433 *3)) (-4 *3 (-1102))
(-4 *3 (-615 (-539)))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1178)) (-4 *1 (-433 *3)) (-4 *3 (-1102))
+ (-12 (-5 *2 (-1179)) (-4 *1 (-433 *3)) (-4 *3 (-1102))
(-4 *3 (-615 (-539)))))
((*1 *1 *1 *2 *3)
- (-12 (-4 *1 (-517 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-1218))))
+ (-12 (-4 *1 (-517 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-1219))))
((*1 *1 *1 *2 *3)
(-12 (-5 *2 (-645 *4)) (-5 *3 (-645 *5)) (-4 *1 (-517 *4 *5))
- (-4 *4 (-1102)) (-4 *5 (-1218))))
+ (-4 *4 (-1102)) (-4 *5 (-1219))))
((*1 *2 *1 *2)
(-12 (-5 *2 (-834 *3)) (-4 *3 (-365)) (-5 *1 (-719 *3))))
((*1 *2 *1 *2) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365))))
((*1 *2 *1 *2) (-12 (-4 *1 (-905 *2)) (-4 *2 (-1102))))
((*1 *2 *2 *3 *2)
- (-12 (-5 *2 (-410 (-954 *4))) (-5 *3 (-1178)) (-4 *4 (-559))
+ (-12 (-5 *2 (-410 (-954 *4))) (-5 *3 (-1179)) (-4 *4 (-559))
(-5 *1 (-1045 *4))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-645 (-1178))) (-5 *4 (-645 (-410 (-954 *5))))
+ (-12 (-5 *3 (-645 (-1179))) (-5 *4 (-645 (-410 (-954 *5))))
(-5 *2 (-410 (-954 *5))) (-4 *5 (-559)) (-5 *1 (-1045 *5))))
((*1 *2 *2 *3)
(-12 (-5 *3 (-295 (-410 (-954 *4)))) (-5 *2 (-410 (-954 *4)))
@@ -10690,50 +10691,46 @@
(-12 (-5 *3 (-645 (-295 (-410 (-954 *4))))) (-5 *2 (-410 (-954 *4)))
(-4 *4 (-559)) (-5 *1 (-1045 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-5 *1 (-1162 *3))))
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-5 *1 (-1163 *3))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1246 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-793))
- (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1158 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-690 *1)) (-5 *4 (-1268 *1)) (-4 *1 (-640 *5))
- (-4 *5 (-1051))
- (-5 *2 (-2 (|:| -2316 (-690 *5)) (|:| |vec| (-1268 *5))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-690 *1)) (-4 *1 (-640 *4)) (-4 *4 (-1051))
- (-5 *2 (-690 *4)))))
+ (-12 (-4 *1 (-1247 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-793))
+ (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1159 *3)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1269 (-772))) (-5 *1 (-676 *3)) (-4 *3 (-1102)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1102)) (-4 *3 (-23))
+ (-14 *4 *3))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-410 (-567))) (-5 *4 (-567)) (-5 *2 (-52))
- (-5 *1 (-1007)))))
-(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1270))))
- ((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1270)))))
-(((*1 *1) (-5 *1 (-581))))
+ (-12 (-5 *3 (-295 (-410 (-954 *5)))) (-5 *4 (-1179))
+ (-4 *5 (-13 (-308) (-147)))
+ (-5 *2 (-1168 (-645 (-317 *5)) (-645 (-295 (-317 *5)))))
+ (-5 *1 (-1131 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-1179))
+ (-4 *5 (-13 (-308) (-147)))
+ (-5 *2 (-1168 (-645 (-317 *5)) (-645 (-295 (-317 *5)))))
+ (-5 *1 (-1131 *5)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-923)) (-5 *4 (-875)) (-5 *2 (-1274)) (-5 *1 (-1270))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-923)) (-5 *4 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1270))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1271)))))
+(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6)
+ (-12 (-5 *4 (-567)) (-5 *6 (-1 (-1274) (-1269 *5) (-1269 *5) (-381)))
+ (-5 *3 (-1269 (-381))) (-5 *5 (-381)) (-5 *2 (-1274))
+ (-5 *1 (-789)))))
(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-929)))))
-(((*1 *2)
- (-12 (-4 *3 (-1051)) (-5 *2 (-960 (-713 *3 *4))) (-5 *1 (-713 *3 *4))
- (-4 *4 (-1244 *3)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1268 *4)) (-4 *4 (-420 *3)) (-4 *3 (-308))
- (-4 *3 (-559)) (-5 *1 (-43 *3 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-923)) (-4 *4 (-365)) (-5 *2 (-1268 *1))
- (-4 *1 (-330 *4))))
- ((*1 *2) (-12 (-4 *3 (-365)) (-5 *2 (-1268 *1)) (-4 *1 (-330 *3))))
- ((*1 *2)
- (-12 (-4 *3 (-172)) (-4 *4 (-1244 *3)) (-5 *2 (-1268 *1))
- (-4 *1 (-412 *3 *4))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-308)) (-4 *4 (-994 *3)) (-4 *5 (-1244 *4))
- (-5 *2 (-1268 *6)) (-5 *1 (-416 *3 *4 *5 *6))
- (-4 *6 (-13 (-412 *4 *5) (-1040 *4)))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-308)) (-4 *4 (-994 *3)) (-4 *5 (-1244 *4))
- (-5 *2 (-1268 *6)) (-5 *1 (-417 *3 *4 *5 *6 *7))
- (-4 *6 (-412 *4 *5)) (-14 *7 *2)))
- ((*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1268 *1)) (-4 *1 (-420 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-923)) (-5 *2 (-1268 (-1268 *4))) (-5 *1 (-531 *4))
- (-4 *4 (-351)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-455)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-5 *2 (-645 *3)) (-5 *1 (-979 *4 *5 *6 *3))
+ (-4 *3 (-1067 *4 *5 *6)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-978 *4 *5 *6 *3)) (-4 *4 (-1051)) (-4 *5 (-794))
+ (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-4 *4 (-559))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-954 (-225))) (-5 *2 (-317 (-381))) (-5 *1 (-306)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))))
(((*1 *2 *3)
(-12 (-5 *2 (-169 (-381))) (-5 *1 (-786 *3)) (-4 *3 (-615 (-381)))))
((*1 *2 *3 *4)
@@ -10782,495 +10779,437 @@
(-12 (-5 *3 (-317 (-169 *5))) (-5 *4 (-923)) (-4 *5 (-559))
(-4 *5 (-851)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381)))
(-5 *1 (-786 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1178))
- (-4 *5 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567))))
- (-5 *2 (-588 *3)) (-5 *1 (-429 *5 *3))
- (-4 *3 (-13 (-1203) (-29 *5))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-945 *3) (-945 *3))) (-5 *1 (-176 *3))
- (-4 *3 (-13 (-365) (-1203) (-1004))))))
+(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3)
+ (-12 (-5 *4 (-645 (-112))) (-5 *5 (-690 (-225)))
+ (-5 *6 (-690 (-567))) (-5 *7 (-225)) (-5 *3 (-567)) (-5 *2 (-1037))
+ (-5 *1 (-755)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3))
- (-4 *5 (-375 *3)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051))
- (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1096 (-844 (-381)))) (-5 *2 (-1096 (-844 (-225))))
- (-5 *1 (-306)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1051))
- (-4 *2 (-13 (-407) (-1040 *4) (-365) (-1203) (-285)))
- (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1244 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-923)) (-4 *5 (-1051))
- (-4 *2 (-13 (-407) (-1040 *5) (-365) (-1203) (-285)))
- (-5 *1 (-446 *5 *3 *2)) (-4 *3 (-1244 *5)))))
+ (-12 (-5 *2 (-772)) (-5 *1 (-1167 *3 *4)) (-14 *3 (-923))
+ (-4 *4 (-1051)))))
+(((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-645 (-1269 *4))) (-5 *1 (-368 *3 *4))
+ (-4 *3 (-369 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-559))
+ (-5 *2 (-645 (-1269 *3))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-923)) (-5 *2 (-1268 (-1268 (-567)))) (-5 *1 (-469)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-567)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1218))
- (-4 *3 (-375 *4)) (-4 *5 (-375 *4)))))
+ (|partial| -12 (-4 *2 (-1102)) (-5 *1 (-1196 *3 *2)) (-4 *3 (-1102)))))
+(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1271))))
+ ((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1271)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1269 *4)) (-5 *3 (-772)) (-4 *4 (-351))
+ (-5 *1 (-531 *4)))))
(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-645 (-1178))) (-5 *3 (-1178)) (-5 *1 (-539))))
+ (-12 (-5 *2 (-645 (-1179))) (-5 *3 (-1179)) (-5 *1 (-539))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-1178)) (-5 *1 (-705 *3)) (-4 *3 (-615 (-539)))))
+ (-12 (-5 *2 (-1179)) (-5 *1 (-705 *3)) (-4 *3 (-615 (-539)))))
((*1 *2 *3 *2 *2)
- (-12 (-5 *2 (-1178)) (-5 *1 (-705 *3)) (-4 *3 (-615 (-539)))))
+ (-12 (-5 *2 (-1179)) (-5 *1 (-705 *3)) (-4 *3 (-615 (-539)))))
((*1 *2 *3 *2 *2 *2)
- (-12 (-5 *2 (-1178)) (-5 *1 (-705 *3)) (-4 *3 (-615 (-539)))))
+ (-12 (-5 *2 (-1179)) (-5 *1 (-705 *3)) (-4 *3 (-615 (-539)))))
((*1 *2 *3 *2 *4)
- (-12 (-5 *4 (-645 (-1178))) (-5 *2 (-1178)) (-5 *1 (-705 *3))
+ (-12 (-5 *4 (-645 (-1179))) (-5 *2 (-1179)) (-5 *1 (-705 *3))
(-4 *3 (-615 (-539))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1268 (-645 (-2 (|:| -3802 *4) (|:| -3768 (-1122))))))
- (-4 *4 (-351)) (-5 *2 (-1273)) (-5 *1 (-531 *4)))))
+(((*1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1219)))))
(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-875)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-1051)) (-5 *1 (-447 *3 *2)) (-4 *2 (-1244 *3)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-645 (-690 *4))) (-5 *2 (-690 *4)) (-4 *4 (-1051))
- (-5 *1 (-1031 *4)))))
-(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4))
- (-4 *3 (-369 *4))))
- ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
-(((*1 *2 *1 *2 *3)
- (|partial| -12 (-5 *2 (-1160)) (-5 *3 (-567)) (-5 *1 (-1065)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8))
- (-5 *4 (-690 (-1174 *8))) (-4 *5 (-1051)) (-4 *8 (-1051))
- (-4 *6 (-1244 *5)) (-5 *2 (-690 *6)) (-5 *1 (-504 *5 *6 *7 *8))
- (-4 *7 (-1244 *6)))))
-(((*1 *1 *1)
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-281)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-945 *3)) (-4 *3 (-13 (-365) (-1204) (-1004)))
+ (-5 *1 (-176 *3)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1212 *4 *5 *3 *6)) (-4 *4 (-559)) (-4 *5 (-794))
+ (-4 *3 (-851)) (-4 *6 (-1067 *4 *5 *3)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1288 *3)) (-4 *3 (-365)) (-5 *2 (-112)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-1051))))
+ ((*1 *1 *1 *1)
(-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794))
(-4 *4 (-851)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-645 *3)) (-5 *1 (-963 *3)) (-4 *3 (-548)))))
-(((*1 *2 *2 *2 *2 *3 *3 *4)
- (|partial| -12 (-5 *3 (-613 *2))
- (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1178)))
- (-4 *2 (-13 (-433 *5) (-27) (-1203)))
- (-4 *5 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567))))
- (-5 *1 (-569 *5 *2 *6)) (-4 *6 (-1102)))))
-(((*1 *2) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-1271))))
- ((*1 *2 *2) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-1271)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-433 *3) (-1004))))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-690 *1)) (-4 *1 (-351)) (-5 *2 (-1269 *1))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-690 *1)) (-4 *1 (-145)) (-4 *1 (-911))
+ (-5 *2 (-1269 *1)))))
+(((*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-129)))))
+(((*1 *2 *3 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-749)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-690 *3)) (-4 *3 (-308)) (-5 *1 (-701 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-559)) (-5 *1 (-158 *3 *2)) (-4 *2 (-433 *3)))))
+ (-12 (-4 *3 (-13 (-308) (-147))) (-4 *4 (-13 (-851) (-615 (-1179))))
+ (-4 *5 (-794)) (-5 *1 (-926 *3 *4 *5 *2)) (-4 *2 (-951 *3 *5 *4)))))
+(((*1 *2)
+ (-12 (-5 *2 (-410 (-954 *3))) (-5 *1 (-456 *3 *4 *5 *6))
+ (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923))
+ (-14 *5 (-645 (-1179))) (-14 *6 (-1269 (-690 *3))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-559)) (-5 *2 (-645 *3)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-420 *4)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-645 (-567))) (-5 *2 (-690 (-567))) (-5 *1 (-1112)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-645 (-954 *6))) (-5 *4 (-645 (-1178)))
- (-4 *6 (-13 (-559) (-1040 *5))) (-4 *5 (-559))
- (-5 *2 (-645 (-645 (-295 (-410 (-954 *6)))))) (-5 *1 (-1041 *5 *6)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-365) (-849))) (-5 *1 (-181 *3 *2))
- (-4 *2 (-1244 (-169 *3))))))
-(((*1 *2 *1) (-12 (-5 *2 (-645 (-839))) (-5 *1 (-140)))))
+ (-12 (-4 *5 (-559))
+ (-5 *2 (-2 (|:| -4208 (-690 *5)) (|:| |vec| (-1269 (-645 (-923))))))
+ (-5 *1 (-90 *5 *3)) (-5 *4 (-923)) (-4 *3 (-657 *5)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-241)) (-5 *3 (-1160))))
- ((*1 *2 *2) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-241))))
+ (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-241)) (-5 *3 (-1161))))
+ ((*1 *2 *2) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-241))))
((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-875)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-772)) (-4 *4 (-365)) (-5 *1 (-898 *2 *4))
- (-4 *2 (-1244 *4)))))
-(((*1 *2 *3 *4 *2 *5 *6)
- (-12
- (-5 *5
- (-2 (|:| |done| (-645 *11))
- (|:| |todo| (-645 (-2 (|:| |val| *3) (|:| -2566 *11))))))
- (-5 *6 (-772))
- (-5 *2 (-645 (-2 (|:| |val| (-645 *10)) (|:| -2566 *11))))
- (-5 *3 (-645 *10)) (-5 *4 (-645 *11)) (-4 *10 (-1067 *7 *8 *9))
- (-4 *11 (-1073 *7 *8 *9 *10)) (-4 *7 (-455)) (-4 *8 (-794))
- (-4 *9 (-851)) (-5 *1 (-1071 *7 *8 *9 *10 *11))))
- ((*1 *2 *3 *4 *2 *5 *6)
- (-12
- (-5 *5
- (-2 (|:| |done| (-645 *11))
- (|:| |todo| (-645 (-2 (|:| |val| *3) (|:| -2566 *11))))))
- (-5 *6 (-772))
- (-5 *2 (-645 (-2 (|:| |val| (-645 *10)) (|:| -2566 *11))))
- (-5 *3 (-645 *10)) (-5 *4 (-645 *11)) (-4 *10 (-1067 *7 *8 *9))
- (-4 *11 (-1111 *7 *8 *9 *10)) (-4 *7 (-455)) (-4 *8 (-794))
- (-4 *9 (-851)) (-5 *1 (-1147 *7 *8 *9 *10 *11)))))
-(((*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-129)))))
-(((*1 *2 *3 *3 *3 *4 *5)
- (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1244 *6))
- (-4 *6 (-13 (-365) (-147) (-1040 *4))) (-5 *4 (-567))
+(((*1 *2 *3 *1 *4)
+ (-12 (-5 *3 (-1142 *5 *6)) (-5 *4 (-1 (-112) *6 *6))
+ (-4 *5 (-13 (-1102) (-34))) (-4 *6 (-13 (-1102) (-34)))
+ (-5 *2 (-112)) (-5 *1 (-1143 *5 *6)))))
+(((*1 *1 *2 *2 *2)
+ (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1204)))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365))))
+ ((*1 *1 *2) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365))))
+ ((*1 *2 *1 *3 *4 *4)
+ (-12 (-5 *3 (-923)) (-5 *4 (-381)) (-5 *2 (-1274)) (-5 *1 (-1270)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1184)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-929))
(-5 *2
- (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112))))
- (|:| -3845
- (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3)
- (|:| |beta| *3)))))
- (-5 *1 (-1017 *6 *3)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037))
- (-5 *1 (-756)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-645 *4)) (-4 *4 (-1102)) (-4 *4 (-1218)) (-5 *2 (-112))
- (-5 *1 (-1158 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1158 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))))
-(((*1 *2)
- (-12 (-5 *2 (-923)) (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-923)) (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-923)) (-5 *1 (-787)))))
-(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7)
- (-12 (-5 *4 (-567)) (-5 *5 (-690 (-225)))
- (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-84 FCNF))))
- (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-225))
- (-5 *2 (-1037)) (-5 *1 (-750)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-721)) (-5 *2 (-923))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-723)) (-5 *2 (-772)))))
-(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34)))
- ((*1 *1) (-5 *1 (-129)))
- ((*1 *1)
- (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-567)) (-14 *3 (-772))
- (-4 *4 (-172))))
- ((*1 *1) (-5 *1 (-549))) ((*1 *1) (-5 *1 (-550)))
- ((*1 *1) (-5 *1 (-551))) ((*1 *1) (-5 *1 (-552)))
- ((*1 *1) (-4 *1 (-727))) ((*1 *1) (-5 *1 (-1178)))
- ((*1 *1) (-12 (-5 *1 (-1184 *2)) (-14 *2 (-923))))
- ((*1 *1) (-12 (-5 *1 (-1185 *2)) (-14 *2 (-923))))
- ((*1 *1) (-5 *1 (-1223))) ((*1 *1) (-5 *1 (-1224)))
- ((*1 *1) (-5 *1 (-1225))) ((*1 *1) (-5 *1 (-1226))))
-(((*1 *1 *1) (-12 (-4 *1 (-675 *2)) (-4 *2 (-1218)))))
-(((*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4419)) (-4 *1 (-244 *2)) (-4 *2 (-1218)))))
+ (-2 (|:| |brans| (-645 (-645 (-945 (-225)))))
+ (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))))
+ (-5 *1 (-153))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-929)) (-5 *4 (-410 (-567)))
+ (-5 *2
+ (-2 (|:| |brans| (-645 (-645 (-945 (-225)))))
+ (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))))
+ (-5 *1 (-153)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2))
- (-4 *2 (-13 (-433 *3) (-1203))))))
+ (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-147))
+ (-4 *3 (-308)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851))
+ (-5 *1 (-979 *3 *4 *5 *6)))))
+(((*1 *2 *3) (-12 (-5 *3 (-509)) (-5 *2 (-692 (-187))) (-5 *1 (-187)))))
+(((*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-1051)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1184)))))
+(((*1 *2 *2 *3 *4 *4)
+ (-12 (-5 *4 (-567)) (-4 *3 (-172)) (-4 *5 (-375 *3))
+ (-4 *6 (-375 *3)) (-5 *1 (-689 *3 *5 *6 *2))
+ (-4 *2 (-688 *3 *5 *6)))))
+(((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1042)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-365)) (-5 *1 (-1027 *3 *2)) (-4 *2 (-657 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-365)) (-5 *2 (-2 (|:| -3855 *3) (|:| -4178 (-645 *5))))
+ (-5 *1 (-1027 *5 *3)) (-5 *4 (-645 *5)) (-4 *3 (-657 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-567)) (-5 *2 (-645 (-2 (|:| -2717 *3) (|:| -3104 *4))))
+ (-5 *1 (-697 *3)) (-4 *3 (-1245 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-295 (-954 (-567))))
+ (-5 *2
+ (-2 (|:| |varOrder| (-645 (-1179)))
+ (|:| |inhom| (-3 (-645 (-1269 (-772))) "failed"))
+ (|:| |hom| (-645 (-1269 (-772))))))
+ (-5 *1 (-236)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6
+ *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8
+ *9)
+ (-12 (-5 *4 (-690 (-225))) (-5 *5 (-112)) (-5 *6 (-225))
+ (-5 *7 (-690 (-567)))
+ (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-80 CONFUN))))
+ (-5 *9 (-3 (|:| |fn| (-391)) (|:| |fp| (-77 OBJFUN))))
+ (-5 *3 (-567)) (-5 *2 (-1037)) (-5 *1 (-754)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-324 *3 *4)) (-4 *3 (-1102))
+ (-4 *4 (-131)))))
(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (-144)) (-5 *2 (-112)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2))
- (-4 *2 (-13 (-433 *3) (-1203))))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-1120)) (-5 *1 (-1117)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1218)))))
-(((*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-225)) (-5 *1 (-306)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2))
- (-4 *2 (-13 (-433 *3) (-1203))))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1178)) (-5 *2 (-1182)) (-5 *1 (-1181)))))
-(((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-328 *3)) (-4 *3 (-1218))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-772)) (-5 *1 (-519 *3 *4)) (-4 *3 (-1218))
- (-14 *4 (-567)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1259 *4))
- (-4 *4 (-38 (-410 (-567)))) (-5 *2 (-1 (-1158 *4) (-1158 *4)))
- (-5 *1 (-1261 *4 *5)))))
-(((*1 *2 *1 *3 *3 *4)
- (-12 (-5 *3 (-1 (-863) (-863) (-863))) (-5 *4 (-567)) (-5 *2 (-863))
- (-5 *1 (-650 *5 *6 *7)) (-4 *5 (-1102)) (-4 *6 (-23)) (-14 *7 *6)))
- ((*1 *2 *1 *2)
- (-12 (-5 *2 (-863)) (-5 *1 (-855 *3 *4 *5)) (-4 *3 (-1051))
- (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-863))))
- ((*1 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-863))))
- ((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-863))))
- ((*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863))))
- ((*1 *2 *1 *2)
- (-12 (-5 *2 (-863)) (-5 *1 (-1174 *3)) (-4 *3 (-1051)))))
+ (-12 (-5 *3 (-588 *2)) (-4 *2 (-13 (-29 *4) (-1204)))
+ (-5 *1 (-586 *4 *2))
+ (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-588 (-410 (-954 *4))))
+ (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-317 *4))
+ (-5 *1 (-591 *4)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-559)) (-4 *2 (-1051))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-971 *3 *2)) (-4 *2 (-1245 *3))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794))
+ (-4 *4 (-851)) (-4 *2 (-559))))
+ ((*1 *2 *3 *3 *1)
+ (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *3 (-1067 *4 *5 *6))
+ (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2575 *1))))
+ (-4 *1 (-1073 *4 *5 *6 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-317 (-225)))) (-5 *2 (-112)) (-5 *1 (-268)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-559)) (-5 *2 (-645 *3)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-420 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-559))
+ (-5 *2
+ (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-971 *4 *3)) (-4 *3 (-1245 *4)))))
+(((*1 *2)
+ (-12 (-4 *4 (-1223)) (-4 *5 (-1245 *4)) (-4 *6 (-1245 (-410 *5)))
+ (-5 *2 (-112)) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3))
+ (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-4 *3 (-1067 *5 *6 *7))
+ (-5 *2 (-645 (-2 (|:| |val| (-112)) (|:| -2575 *4))))
+ (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-824)) (-5 *1 (-823)))))
+(((*1 *2)
+ (-12 (-5 *2 (-772)) (-5 *1 (-120 *3)) (-4 *3 (-1245 (-567)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-772)) (-5 *1 (-120 *3)) (-4 *3 (-1245 (-567))))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-559)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3))
+ (-5 *1 (-1209 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))))
+(((*1 *2 *3 *1 *4 *4 *4 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-5 *2 (-645 (-1029 *5 *6 *7 *3))) (-5 *1 (-1029 *5 *6 *7 *3))
+ (-4 *3 (-1067 *5 *6 *7))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-645 *6)) (-4 *1 (-1073 *3 *4 *5 *6)) (-4 *3 (-455))
+ (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-1073 *3 *4 *5 *2)) (-4 *3 (-455)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5))))
+ ((*1 *2 *3 *1 *4 *4 *4 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-5 *2 (-645 (-1148 *5 *6 *7 *3))) (-5 *1 (-1148 *5 *6 *7 *3))
+ (-4 *3 (-1067 *5 *6 *7)))))
(((*1 *2 *1) (-12 (-4 *1 (-132)) (-5 *2 (-772))))
((*1 *2 *3 *1 *2)
- (-12 (-5 *2 (-567)) (-4 *1 (-375 *3)) (-4 *3 (-1218))
+ (-12 (-5 *2 (-567)) (-4 *1 (-375 *3)) (-4 *3 (-1219))
(-4 *3 (-1102))))
((*1 *2 *3 *1)
- (-12 (-4 *1 (-375 *3)) (-4 *3 (-1218)) (-4 *3 (-1102))
+ (-12 (-4 *1 (-375 *3)) (-4 *3 (-1219)) (-4 *3 (-1102))
(-5 *2 (-567))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-375 *4)) (-4 *4 (-1218))
+ (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-375 *4)) (-4 *4 (-1219))
(-5 *2 (-567))))
((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-532))))
((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1146)) (-5 *2 (-567)) (-5 *3 (-141))))
((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1146)) (-5 *2 (-567)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))))
-(((*1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-760)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-772)) (-4 *5 (-351)) (-4 *6 (-1245 *5))
+ (-5 *2
+ (-645
+ (-2 (|:| -2144 (-690 *6)) (|:| |basisDen| *6)
+ (|:| |basisInv| (-690 *6)))))
+ (-5 *1 (-501 *5 *6 *7))
+ (-5 *3
+ (-2 (|:| -2144 (-690 *6)) (|:| |basisDen| *6)
+ (|:| |basisInv| (-690 *6))))
+ (-4 *7 (-1245 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567)))))
+ (-5 *2 (-410 (-567))) (-5 *1 (-1022 *4)) (-4 *4 (-1245 (-567))))))
(((*1 *2 *1) (-12 (-5 *2 (-645 (-613 *1))) (-4 *1 (-303)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1204 *3)) (-4 *3 (-1102)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1028 (-844 (-567))))
- (-5 *3 (-1158 (-2 (|:| |k| (-567)) (|:| |c| *4)))) (-4 *4 (-1051))
- (-5 *1 (-597 *4)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1274)) (-5 *1 (-1196 *3 *4)) (-4 *3 (-1102))
+ (-4 *4 (-1102)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-825)))))
(((*1 *1 *2 *2 *2)
- (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1203)))))
+ (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1204)))))
((*1 *2 *1 *3 *4 *4)
- (-12 (-5 *3 (-923)) (-5 *4 (-381)) (-5 *2 (-1273)) (-5 *1 (-1269))))
+ (-12 (-5 *3 (-923)) (-5 *4 (-381)) (-5 *2 (-1274)) (-5 *1 (-1270))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-381)) (-5 *2 (-1273)) (-5 *1 (-1270)))))
+ (-12 (-5 *3 (-381)) (-5 *2 (-1274)) (-5 *1 (-1271)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))))
+(((*1 *2 *3) (-12 (-5 *3 (-945 *2)) (-5 *1 (-984 *2)) (-4 *2 (-1051)))))
+(((*1 *2 *2) (-12 (-5 *2 (-317 (-225))) (-5 *1 (-210)))))
(((*1 *2 *3)
(-12
(-5 *3
(-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
- (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225)))
+ (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225)))
(|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225)))
(|:| |abserr| (-225)) (|:| |relerr| (-225))))
(-5 *2 (-381)) (-5 *1 (-205)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-171)) (-5 *1 (-1166 *3 *4)) (-14 *3 (-923))
+ (-12 (-5 *2 (-112)) (-5 *1 (-1167 *3 *4)) (-14 *3 (-923))
(-4 *4 (-1051)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1112)) (-5 *3 (-567)))))
-(((*1 *2 *1) (-12 (-5 *2 (-645 (-1137))) (-5 *1 (-672))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-645 (-923))) (-5 *1 (-1103 *3 *4)) (-14 *3 (-923))
- (-14 *4 (-923)))))
-(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1218)) (-5 *1 (-328 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-645 *3)) (-4 *3 (-1218)) (-5 *1 (-519 *3 *4))
- (-14 *4 (-567)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037))
- (-5 *1 (-756)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1166 *3 *4)) (-14 *3 (-923))
- (-4 *4 (-1051)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-645 *1)) (-4 *1 (-1067 *4 *5 *6)) (-4 *4 (-1051))
- (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794))
- (-4 *5 (-851)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1211 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794))
- (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1211 *4 *5 *6 *3)) (-4 *4 (-559)) (-4 *5 (-794))
- (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1273)) (-5 *1 (-381)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-205))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-645 (-381))) (-5 *2 (-381)) (-5 *1 (-205)))))
-(((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928)))))
-(((*1 *2 *1) (-12 (-5 *2 (-645 (-967))) (-5 *1 (-109))))
- ((*1 *2 *1) (-12 (-5 *2 (-45 (-1160) (-775))) (-5 *1 (-114)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1122)) (-5 *1 (-331)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1102)) (-5 *2 (-112)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-772)) (-5 *3 (-112)) (-5 *1 (-110))))
- ((*1 *2 *2) (-12 (-5 *2 (-923)) (|has| *1 (-6 -4409)) (-4 *1 (-407))))
- ((*1 *2) (-12 (-4 *1 (-407)) (-5 *2 (-923)))))
(((*1 *2 *2)
(-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
(-4 *2 (-13 (-433 *3) (-1004))))))
-(((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7))
- (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
- (-5 *2 (-645 (-1029 *5 *6 *7 *8))) (-5 *1 (-1029 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7))
- (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
- (-5 *2 (-645 (-1148 *5 *6 *7 *8))) (-5 *1 (-1148 *5 *6 *7 *8)))))
-(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1096 (-225))) (-5 *1 (-928))))
- ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1096 (-225))) (-5 *1 (-929))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1096 (-225))) (-5 *1 (-929))))
- ((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-381)) (-5 *2 (-1273)) (-5 *1 (-1270))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1273)) (-5 *1 (-1270)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-1198)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1222)) (-4 *3 (-1244 *4))
- (-4 *5 (-1244 (-410 *3))) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3))
- (-4 *5 (-1244 (-410 *4))) (-5 *2 (-112)))))
+(((*1 *1 *1 *1) (-4 *1 (-143)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-158 *3 *2)) (-4 *2 (-433 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548)))))
+(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7)
+ (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *5 (-225))
+ (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-61 COEFFN))))
+ (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-87 BDYVAL))))
+ (-5 *2 (-1037)) (-5 *1 (-750))))
+ ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8)
+ (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *5 (-225))
+ (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-61 COEFFN))))
+ (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-87 BDYVAL))))
+ (-5 *8 (-391)) (-5 *2 (-1037)) (-5 *1 (-750)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-509)) (-5 *2 (-692 (-109))) (-5 *1 (-175))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-509)) (-5 *2 (-692 (-109))) (-5 *1 (-1087)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *2 (-559)) (-4 *2 (-455)) (-5 *1 (-971 *2 *3))
+ (-4 *3 (-1245 *2)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-147))
- (-4 *3 (-308)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851))
- (-5 *1 (-979 *3 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-973)) (-5 *1 (-907 *3)) (-4 *3 (-1102)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4418)) (-4 *1 (-235 *3))
- (-4 *3 (-1102))))
- ((*1 *1 *2 *1)
- (-12 (|has| *1 (-6 -4418)) (-4 *1 (-235 *2)) (-4 *2 (-1102))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-283 *2)) (-4 *2 (-1218)) (-4 *2 (-1102))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-283 *3)) (-4 *3 (-1218))))
+ (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1204))))))
+(((*1 *2 *1) (-12 (-5 *2 (-645 (-967))) (-5 *1 (-109))))
+ ((*1 *2 *1) (-12 (-5 *2 (-45 (-1161) (-775))) (-5 *1 (-114)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1122)) (-5 *1 (-331)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-793)) (-4 *2 (-1051))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *2 (-1051)) (-5 *1 (-50 *2 *3)) (-14 *3 (-645 (-1179)))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-645 (-923))) (-4 *2 (-365)) (-5 *1 (-152 *4 *2 *5))
+ (-14 *4 (-923)) (-14 *5 (-995 *4 *2))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-317 *3)) (-5 *1 (-223 *3 *4))
+ (-4 *3 (-13 (-1051) (-851))) (-14 *4 (-645 (-1179)))))
((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-611 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1102))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-567)) (-4 *4 (-1102))
- (-5 *1 (-738 *4))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-567)) (-5 *1 (-738 *2)) (-4 *2 (-1102))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1142 *3 *4)) (-4 *3 (-13 (-1102) (-34)))
- (-4 *4 (-13 (-1102) (-34))) (-5 *1 (-1143 *3 *4)))))
-(((*1 *2 *3 *4 *4 *4 *5 *6 *7)
- (|partial| -12 (-5 *5 (-1178))
- (-5 *6
- (-1
- (-3
- (-2 (|:| |mainpart| *4)
- (|:| |limitedlogs|
- (-645 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
- "failed")
- *4 (-645 *4)))
- (-5 *7
- (-1 (-3 (-2 (|:| -1752 *4) (|:| |coeff| *4)) "failed") *4 *4))
- (-4 *4 (-13 (-1203) (-27) (-433 *8)))
- (-4 *8 (-13 (-455) (-147) (-1040 *3) (-640 *3))) (-5 *3 (-567))
- (-5 *2 (-645 *4)) (-5 *1 (-1016 *8 *4)))))
-(((*1 *1 *2 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1218))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-1160)) (-5 *1 (-991))))
+ (-12 (-4 *1 (-324 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-131))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-384 *2 *3)) (-4 *3 (-1102)) (-4 *2 (-1051))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-567)) (-4 *2 (-559)) (-5 *1 (-624 *2 *4))
+ (-4 *4 (-1245 *2))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-4 *1 (-709 *2)) (-4 *2 (-1051))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *2 (-1051)) (-5 *1 (-736 *2 *3)) (-4 *3 (-727))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-645 *5)) (-5 *3 (-645 (-772))) (-4 *1 (-741 *4 *5))
+ (-4 *4 (-1051)) (-4 *5 (-851))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-772)) (-4 *1 (-741 *4 *2)) (-4 *4 (-1051))
+ (-4 *2 (-851))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-4 *1 (-853 *2)) (-4 *2 (-1051))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-645 *6)) (-5 *3 (-645 (-772))) (-4 *1 (-951 *4 *5 *6))
+ (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *6 (-851))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-772)) (-4 *1 (-951 *4 *5 *2)) (-4 *4 (-1051))
+ (-4 *5 (-794)) (-4 *2 (-851))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-772)) (-4 *2 (-951 *4 (-534 *5) *5))
+ (-5 *1 (-1128 *4 *5 *2)) (-4 *4 (-1051)) (-4 *5 (-851))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-772)) (-5 *2 (-954 *4)) (-5 *1 (-1213 *4))
+ (-4 *4 (-1051)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037))
+ (-5 *1 (-753)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1102)))))
+(((*1 *1 *1 *1 *2)
+ (|partial| -12 (-5 *2 (-112)) (-5 *1 (-597 *3)) (-4 *3 (-1051)))))
+(((*1 *2 *1) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-108))))
+ ((*1 *2 *1) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-217))))
+ ((*1 *2 *1) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-490))))
+ ((*1 *1 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-559)) (-4 *2 (-308))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-410 (-567))) (-5 *1 (-1006 *3)) (-14 *3 (-567))))
+ ((*1 *1 *1) (-4 *1 (-1062))))
+(((*1 *1) (-5 *1 (-144))) ((*1 *1 *1) (-5 *1 (-863))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-559) (-147))) (-5 *1 (-540 *3 *2))
+ (-4 *2 (-1260 *3))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-365) (-370) (-615 (-567)))) (-4 *4 (-1245 *3))
+ (-4 *5 (-725 *3 *4)) (-5 *1 (-544 *3 *4 *5 *2)) (-4 *2 (-1260 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-365) (-370) (-615 (-567)))) (-5 *1 (-545 *3 *2))
+ (-4 *2 (-1260 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-13 (-559) (-147)))
+ (-5 *1 (-1155 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1212 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-645 *5)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-3 (|:| |fst| (-437)) (|:| -4324 "void")))
+ (-5 *1 (-440)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-410 (-567))) (-5 *4 (-567)) (-5 *2 (-52))
+ (-5 *1 (-1007)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-559)) (-5 *2 (-169 *5)) (-5 *1 (-601 *4 *5 *3))
+ (-4 *5 (-13 (-433 *4) (-1004) (-1204)))
+ (-4 *3 (-13 (-433 (-169 *4)) (-1004) (-1204))))))
+(((*1 *1 *2 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1219))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-1161)) (-5 *1 (-991))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1178)) (-4 *4 (-1218)) (-5 *1 (-1059 *3 *4))
+ (-12 (-5 *2 (-1179)) (-4 *4 (-1219)) (-5 *1 (-1059 *3 *4))
(-4 *3 (-1095 *4))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1178)) (-5 *3 (-1096 *4)) (-4 *4 (-1218))
+ (-12 (-5 *2 (-1179)) (-5 *3 (-1096 *4)) (-4 *4 (-1219))
(-5 *1 (-1094 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1102)))))
-(((*1 *1 *1) (-4 *1 (-1062))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))))
+(((*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-804)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1204))))))
+(((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-990 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1109 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-645 *6)) (-4 *6 (-851)) (-4 *4 (-365)) (-4 *5 (-794))
+ (-5 *1 (-507 *4 *5 *6 *2)) (-4 *2 (-951 *4 *5 *6))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851))
+ (-5 *1 (-507 *3 *4 *5 *2)) (-4 *2 (-951 *3 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-645 (-923))) (-5 *2 (-906 (-567))) (-5 *1 (-919)))))
-(((*1 *1 *1 *1) (-5 *1 (-863))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-337 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1244 *3))
- (-4 *5 (-1244 (-410 *4))) (-4 *6 (-344 *3 *4 *5))
- (-5 *2
- (-2 (|:| -3979 (-416 *4 (-410 *4) *5 *6)) (|:| |principalPart| *6)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1244 *5)) (-4 *5 (-365))
- (-5 *2
- (-2 (|:| |poly| *6) (|:| -4180 (-410 *6))
- (|:| |special| (-410 *6))))
- (-5 *1 (-728 *5 *6)) (-5 *3 (-410 *6))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-365)) (-5 *2 (-645 *3)) (-5 *1 (-898 *3 *4))
- (-4 *3 (-1244 *4))))
- ((*1 *2 *3 *4 *4)
- (|partial| -12 (-5 *4 (-772)) (-4 *5 (-365))
- (-5 *2 (-2 (|:| -2950 *3) (|:| -2963 *3))) (-5 *1 (-898 *3 *5))
- (-4 *3 (-1244 *5))))
- ((*1 *2 *3 *2 *4 *4)
- (-12 (-5 *2 (-645 *9)) (-5 *3 (-645 *8)) (-5 *4 (-112))
- (-4 *8 (-1067 *5 *6 *7)) (-4 *9 (-1073 *5 *6 *7 *8)) (-4 *5 (-455))
- (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-1071 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
- (-12 (-5 *2 (-645 *9)) (-5 *3 (-645 *8)) (-5 *4 (-112))
- (-4 *8 (-1067 *5 *6 *7)) (-4 *9 (-1073 *5 *6 *7 *8)) (-4 *5 (-455))
- (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-1071 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *2 *4 *4)
- (-12 (-5 *2 (-645 *9)) (-5 *3 (-645 *8)) (-5 *4 (-112))
- (-4 *8 (-1067 *5 *6 *7)) (-4 *9 (-1111 *5 *6 *7 *8)) (-4 *5 (-455))
- (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-1147 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
- (-12 (-5 *2 (-645 *9)) (-5 *3 (-645 *8)) (-5 *4 (-112))
- (-4 *8 (-1067 *5 *6 *7)) (-4 *9 (-1111 *5 *6 *7 *8)) (-4 *5 (-455))
- (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-1147 *5 *6 *7 *8 *9)))))
-(((*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1218))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-851))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-851))))
- ((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-567)) (-4 *1 (-283 *3)) (-4 *3 (-1218))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-567)) (-4 *1 (-283 *2)) (-4 *2 (-1218))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-2
- (|:| -1795
- (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225)))
- (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
- (|:| -4237
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1158 (-225)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -1604
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite|
- "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))))))
- (-5 *1 (-562))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-772)) (-4 *1 (-696 *2)) (-4 *2 (-1102))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-2
- (|:| -1795
- (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
- (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225)))
- (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225)))
- (|:| |abserr| (-225)) (|:| |relerr| (-225))))
- (|:| -4237
- (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381))
- (|:| |expense| (-381)) (|:| |accuracy| (-381))
- (|:| |intermediateResults| (-381))))))
- (-5 *1 (-804))))
- ((*1 *2 *3 *4)
- (-12 (-5 *2 (-1273)) (-5 *1 (-1195 *3 *4)) (-4 *3 (-1102))
- (-4 *4 (-1102)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1 (-945 (-225)) (-225) (-225)))
- (-5 *3 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-256)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-690 *5)) (-4 *5 (-1051)) (-5 *1 (-1056 *3 *4 *5))
- (-14 *3 (-772)) (-14 *4 (-772)))))
-(((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-375 *3))
- (-4 *5 (-375 *3)) (-5 *2 (-567))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051))
- (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-567)))))
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1260 *4))
+ (-4 *4 (-38 (-410 (-567)))) (-5 *2 (-1 (-1159 *4) (-1159 *4)))
+ (-5 *1 (-1262 *4 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-1245 (-410 (-567)))) (-5 *1 (-915 *3 *2))
+ (-4 *2 (-1245 (-410 *3))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1144 *4 *2)) (-14 *4 (-923))
- (-4 *2 (-13 (-1051) (-10 -7 (-6 (-4420 "*")))))
- (-5 *1 (-904 *4 *2)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1102)) (-4 *6 (-888 *5)) (-5 *2 (-887 *5 *6 (-645 *6)))
- (-5 *1 (-889 *5 *6 *4)) (-5 *3 (-645 *6)) (-4 *4 (-615 (-894 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1102)) (-5 *2 (-645 (-295 *3))) (-5 *1 (-889 *5 *3 *4))
- (-4 *3 (-1040 (-1178))) (-4 *3 (-888 *5)) (-4 *4 (-615 (-894 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1102)) (-5 *2 (-645 (-295 (-954 *3))))
- (-5 *1 (-889 *5 *3 *4)) (-4 *3 (-1051))
- (-1657 (-4 *3 (-1040 (-1178)))) (-4 *3 (-888 *5))
- (-4 *4 (-615 (-894 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1102)) (-5 *2 (-891 *5 *3)) (-5 *1 (-889 *5 *3 *4))
- (-1657 (-4 *3 (-1040 (-1178)))) (-1657 (-4 *3 (-1051)))
- (-4 *3 (-888 *5)) (-4 *4 (-615 (-894 *5))))))
-(((*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1218)))))
+ (-12 (-5 *3 (-1179)) (-5 *2 (-1 (-1175 (-954 *4)) (-954 *4)))
+ (-5 *1 (-1277 *4)) (-4 *4 (-365)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-1051)) (-5 *1 (-713 *3 *2)) (-4 *2 (-1245 *3)))))
+(((*1 *2 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037))
+ (-5 *1 (-752)))))
+(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5)
+ (-12 (-5 *3 (-225)) (-5 *4 (-567))
+ (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G)))) (-5 *2 (-1037))
+ (-5 *1 (-749)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-690 *3)) (-4 *3 (-1051)) (-5 *1 (-1030 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-645 (-690 *3))) (-4 *3 (-1051)) (-5 *1 (-1030 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-690 *3)) (-4 *3 (-1051)) (-5 *1 (-1030 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-645 (-690 *3))) (-4 *3 (-1051)) (-5 *1 (-1030 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1269 *4)) (-5 *3 (-567)) (-4 *4 (-351))
+ (-5 *1 (-531 *4)))))
(((*1 *2 *1) (-12 (-5 *1 (-692 *2)) (-4 *2 (-614 (-863)))))
- ((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-877))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-877))))
((*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-877))))
((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-567))))
- ((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-1160))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-1161))))
((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-509))))
((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-594))))
((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-481))))
((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-137))))
((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-156))))
- ((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-1168))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-1169))))
((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-627))))
((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-1098))))
((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-1092))))
@@ -11281,8 +11220,9 @@
((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-312))))
((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-672))))
((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-154))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-1153))))
((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-528))))
- ((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-1279))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-1280))))
((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-1068))))
((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-520))))
((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-682))))
@@ -11290,248 +11230,180 @@
((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-1117))))
((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-133))))
((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-138))))
- ((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-1278))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-1279))))
((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-677))))
((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-218))))
((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-527))))
- ((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-1183))))
- ((*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-1183))))
- ((*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1183))))
- ((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-1183)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1014)) (-5 *2 (-863)))))
-(((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| -3694 *3) (|:| |gap| (-772)) (|:| -3102 (-783 *3))
- (|:| -4194 (-783 *3))))
- (-5 *1 (-783 *3)) (-4 *3 (-1051))))
- ((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *3 (-851))
- (-5 *2
- (-2 (|:| -3694 *1) (|:| |gap| (-772)) (|:| -3102 *1)
- (|:| -4194 *1)))
- (-4 *1 (-1067 *4 *5 *3))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851))
- (-5 *2
- (-2 (|:| -3694 *1) (|:| |gap| (-772)) (|:| -3102 *1)
- (|:| -4194 *1)))
- (-4 *1 (-1067 *3 *4 *5)))))
-(((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1042)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1160)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
- (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-1273))
- (-5 *1 (-990 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1160)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
- (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-1273))
- (-5 *1 (-1109 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-1184))))
+ ((*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-1184))))
+ ((*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1184))))
+ ((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-1184)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1 (-945 (-225)) (-225) (-225)))
+ (-5 *3 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-256)))))
+(((*1 *1) (-5 *1 (-157)))
+ ((*1 *2 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-23)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1104 (-1104 *3))) (-5 *1 (-906 *3)) (-4 *3 (-1102)))))
+(((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-1179)) (-5 *1 (-613 *3)) (-4 *3 (-1102)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1268 *4)) (-4 *4 (-351)) (-5 *2 (-1174 *4))
- (-5 *1 (-531 *4)))))
+ (-12 (-5 *3 (-613 *5)) (-4 *5 (-433 *4)) (-4 *4 (-1040 (-567)))
+ (-4 *4 (-559)) (-5 *2 (-1175 *5)) (-5 *1 (-32 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-613 *1)) (-4 *1 (-1051)) (-4 *1 (-303))
+ (-5 *2 (-1175 *1)))))
+(((*1 *2 *3) (-12 (-5 *3 (-645 (-52))) (-5 *2 (-1274)) (-5 *1 (-864)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559))
- (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-979 *3 *4 *5 *6)))))
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1004))))))
+(((*1 *2 *1) (-12 (-5 *2 (-645 (-839))) (-5 *1 (-140)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851))
- (-4 *7 (-1067 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-645 *7)) (|:| |badPols| (-645 *7))))
- (-5 *1 (-979 *4 *5 *6 *7)) (-5 *3 (-645 *7)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-645 (-410 (-954 (-567))))) (-5 *4 (-645 (-1178)))
- (-5 *2 (-645 (-645 *5))) (-5 *1 (-382 *5))
- (-4 *5 (-13 (-849) (-365)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-410 (-954 (-567)))) (-5 *2 (-645 *4)) (-5 *1 (-382 *4))
- (-4 *4 (-13 (-849) (-365))))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))))
+ (-12 (-5 *3 (-1096 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-192))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1096 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-301))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1096 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-306)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1161)) (-5 *3 (-645 (-264))) (-5 *1 (-262))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-264)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225)))
- (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
- (-5 *2 (-567)) (-5 *1 (-204)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-645 (-1 (-112) *8))) (-4 *8 (-1067 *5 *6 *7))
- (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851))
- (-5 *2 (-2 (|:| |goodPols| (-645 *8)) (|:| |badPols| (-645 *8))))
- (-5 *1 (-979 *5 *6 *7 *8)) (-5 *4 (-645 *8)))))
-(((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928)))))
+ (-12 (-5 *3 (-954 *4)) (-4 *4 (-13 (-308) (-147)))
+ (-4 *2 (-951 *4 *6 *5)) (-5 *1 (-926 *4 *5 *6 *2))
+ (-4 *5 (-13 (-851) (-615 (-1179)))) (-4 *6 (-794)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-365)) (-5 *1 (-767 *2 *3)) (-4 *2 (-709 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-772)) (-4 *1 (-1245 *3)) (-4 *3 (-1051)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-567))) (-5 *2 (-1181 (-410 (-567))))
+ (-5 *1 (-190)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-455) (-1040 (-567)) (-640 (-567))))
- (-5 *1 (-423 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1203) (-433 *3)))
- (-14 *4 (-1178)) (-14 *5 *2)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-455) (-1040 (-567)) (-640 (-567))))
- (-4 *2 (-13 (-27) (-1203) (-433 *3) (-10 -8 (-15 -4132 ($ *4)))))
- (-4 *4 (-849))
- (-4 *5
- (-13 (-1246 *2 *4) (-365) (-1203)
- (-10 -8 (-15 -1593 ($ $)) (-15 -2416 ($ $)))))
- (-5 *1 (-425 *3 *2 *4 *5 *6 *7)) (-4 *6 (-985 *5)) (-14 *7 (-1178)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1174 (-954 *6))) (-4 *6 (-559))
- (-4 *2 (-951 (-410 (-954 *6)) *5 *4)) (-5 *1 (-733 *5 *4 *6 *2))
- (-4 *5 (-794))
- (-4 *4 (-13 (-851) (-10 -8 (-15 -3893 ((-1178) $))))))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1268 *5)) (-4 *5 (-793)) (-5 *2 (-112))
- (-5 *1 (-846 *4 *5)) (-14 *4 (-772)))))
+ (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1204))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1180 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-645 *5)) (-5 *4 (-567)) (-4 *5 (-849)) (-4 *5 (-365))
- (-5 *2 (-772)) (-5 *1 (-947 *5 *6)) (-4 *6 (-1244 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1218)))))
-(((*1 *2 *3 *4)
- (-12
- (-5 *3
- (-645
- (-2 (|:| |eqzro| (-645 *8)) (|:| |neqzro| (-645 *8))
- (|:| |wcond| (-645 (-954 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1268 (-410 (-954 *5))))
- (|:| -2623 (-645 (-1268 (-410 (-954 *5))))))))))
- (-5 *4 (-1160)) (-4 *5 (-13 (-308) (-147))) (-4 *8 (-951 *5 *7 *6))
- (-4 *6 (-13 (-851) (-615 (-1178)))) (-4 *7 (-794)) (-5 *2 (-567))
- (-5 *1 (-926 *5 *6 *7 *8)))))
+ (-12 (-4 *2 (-1245 *4)) (-5 *1 (-810 *4 *2 *3 *5))
+ (-4 *4 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *3 (-657 *2))
+ (-4 *5 (-657 (-410 *2))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1102)) (-5 *2 (-1161)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-645 (-52))) (-5 *1 (-894 *3)) (-4 *3 (-1102)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-588 *2)) (-4 *2 (-13 (-29 *4) (-1203)))
- (-5 *1 (-586 *4 *2))
- (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-588 (-410 (-954 *4))))
- (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-317 *4))
- (-5 *1 (-591 *4)))))
-(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1102))))
- ((*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1102)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *3 (-308)) (-4 *3 (-172)) (-4 *4 (-375 *3))
- (-4 *5 (-375 *3)) (-5 *2 (-2 (|:| -3102 *3) (|:| -4194 *3)))
- (-5 *1 (-689 *3 *4 *5 *6)) (-4 *6 (-688 *3 *4 *5))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-2 (|:| -3102 *3) (|:| -4194 *3))) (-5 *1 (-701 *3))
- (-4 *3 (-308)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-567)) (-5 *1 (-317 *3)) (-4 *3 (-559)) (-4 *3 (-1102)))))
+ (-12 (-5 *2 (-1 (-945 *3) (-945 *3))) (-5 *1 (-176 *3))
+ (-4 *3 (-13 (-365) (-1204) (-1004))))))
+(((*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-645 (-954 *6))) (-5 *4 (-645 (-1179))) (-4 *6 (-455))
+ (-5 *2 (-645 (-645 *7))) (-5 *1 (-541 *6 *7 *5)) (-4 *7 (-365))
+ (-4 *5 (-13 (-365) (-849))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-645 *4)) (-4 *4 (-849)) (-4 *4 (-365)) (-5 *2 (-772))
+ (-5 *1 (-947 *4 *5)) (-4 *5 (-1245 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-923)) (-5 *2 (-1175 *4)) (-5 *1 (-359 *4))
+ (-4 *4 (-351)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
- (-4 *3 (-1067 *5 *6 *7))
- (-5 *2 (-645 (-2 (|:| |val| (-112)) (|:| -2566 *4))))
- (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1158 (-567))) (-5 *1 (-1006 *3)) (-14 *3 (-567)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-375 *3)) (-4 *3 (-1218)) (-4 *3 (-851)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-375 *4)) (-4 *4 (-1218))
- (-5 *2 (-112)))))
-(((*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-359 *3)) (-4 *3 (-351)))))
-(((*1 *2)
- (-12 (-4 *3 (-559)) (-5 *2 (-645 (-690 *3))) (-5 *1 (-43 *3 *4))
- (-4 *4 (-420 *3)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1102)) (-5 *2 (-112)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1160)) (-5 *3 (-824)) (-5 *1 (-823)))))
-(((*1 *2 *1) (-12 (-4 *1 (-351)) (-5 *2 (-772))))
- ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-405)) (-5 *2 (-772)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *3 (-772)) (-4 *4 (-13 (-559) (-147)))
- (-5 *1 (-1238 *4 *2)) (-4 *2 (-1244 *4)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-857 *2)) (-4 *2 (-172))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1174 (-567))) (-5 *1 (-944)) (-5 *3 (-567)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3)
- (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225))
- (-5 *2 (-1037)) (-5 *1 (-753)))))
+ (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1122)) (-5 *2 (-1274)) (-5 *1 (-832)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-509)) (-5 *2 (-112)) (-5 *1 (-114)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-645 (-645 (-945 (-225))))) (-5 *3 (-645 (-875)))
+ (-5 *1 (-471)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851))
- (-5 *1 (-452 *3 *4 *5 *2)) (-4 *2 (-951 *3 *4 *5)))))
+ (|partial| -12 (-4 *3 (-365)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3))
+ (-5 *1 (-524 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-559)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4))
+ (-4 *7 (-994 *4)) (-4 *2 (-688 *7 *8 *9))
+ (-5 *1 (-525 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-688 *4 *5 *6))
+ (-4 *8 (-375 *7)) (-4 *9 (-375 *7))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051))
+ (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (-4 *2 (-365))))
+ ((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-365)) (-4 *3 (-172)) (-4 *4 (-375 *3))
+ (-4 *5 (-375 *3)) (-5 *1 (-689 *3 *4 *5 *2))
+ (-4 *2 (-688 *3 *4 *5))))
+ ((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-690 *2)) (-4 *2 (-365)) (-4 *2 (-1051))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-1125 *2 *3 *4 *5)) (-4 *3 (-1051))
+ (-4 *4 (-238 *2 *3)) (-4 *5 (-238 *2 *3)) (-4 *3 (-365))))
+ ((*1 *2 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-851)) (-5 *1 (-1190 *3)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-381)) (-5 *1 (-1065)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-772)) (-5 *3 (-945 *4)) (-4 *1 (-1136 *4))
+ (-4 *4 (-1051))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-772)) (-5 *4 (-945 (-225))) (-5 *2 (-1274))
+ (-5 *1 (-1271)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1269 (-645 (-2 (|:| -3812 *4) (|:| -3779 (-1122))))))
+ (-4 *4 (-351)) (-5 *2 (-690 *4)) (-5 *1 (-348 *4)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-875)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *7 (-1067 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-645 *7)) (|:| |badPols| (-645 *7))))
+ (-5 *1 (-979 *4 *5 *6 *7)) (-5 *3 (-645 *7)))))
+(((*1 *2 *1 *2)
+ (-12 (|has| *1 (-6 -4423)) (-4 *1 (-1257 *2)) (-4 *2 (-1219)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *4 (-567))) (-5 *5 (-1 (-1159 *4))) (-4 *4 (-365))
+ (-4 *4 (-1051)) (-5 *2 (-1159 *4)) (-5 *1 (-1163 *4)))))
(((*1 *2 *1)
(|partial| -12
- (-5 *2 (-2 (|:| -4179 (-114)) (|:| |arg| (-645 (-894 *3)))))
+ (-5 *2 (-2 (|:| -4178 (-114)) (|:| |arg| (-645 (-894 *3)))))
(-5 *1 (-894 *3)) (-4 *3 (-1102))))
((*1 *2 *1 *3)
(|partial| -12 (-5 *3 (-114)) (-5 *2 (-645 (-894 *4)))
(-5 *1 (-894 *4)) (-4 *4 (-1102)))))
-(((*1 *2 *3 *4 *3 *5 *3)
- (-12 (-5 *4 (-690 (-225))) (-5 *5 (-690 (-567))) (-5 *3 (-567))
- (-5 *2 (-1037)) (-5 *1 (-755)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4419)) (-4 *1 (-244 *2)) (-4 *2 (-1218))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1218))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1218))))
- ((*1 *1 *1 *2)
- (-12 (|has| *1 (-6 -4419)) (-4 *1 (-1256 *2)) (-4 *2 (-1218))))
- ((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4419)) (-4 *1 (-1256 *2)) (-4 *2 (-1218)))))
-(((*1 *2)
- (-12 (-5 *2 (-1273)) (-5 *1 (-1195 *3 *4)) (-4 *3 (-1102))
- (-4 *4 (-1102)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-923)) (-5 *2 (-1174 *4)) (-5 *1 (-359 *4))
- (-4 *4 (-351)))))
-(((*1 *2 *1)
- (-12
- (-5 *2
- (-645
- (-645
- (-3 (|:| -1996 (-1178))
- (|:| -2783 (-645 (-3 (|:| S (-1178)) (|:| P (-954 (-567))))))))))
- (-5 *1 (-1182)))))
-(((*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1160)) (-5 *1 (-787)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))))
-(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225)))
- (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
- (-5 *2 (-2 (|:| -4179 (-114)) (|:| |w| (-225)))) (-5 *1 (-204)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-147))
+ (-4 *3 (-308)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851))
+ (-5 *1 (-979 *3 *4 *5 *6)))))
(((*1 *1 *1) (-5 *1 (-48)))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1218))
- (-4 *2 (-1218)) (-5 *1 (-58 *5 *2))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1219))
+ (-4 *2 (-1219)) (-5 *1 (-58 *5 *2))))
((*1 *2 *3 *1 *2 *2)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1102)) (|has| *1 (-6 -4418))
- (-4 *1 (-151 *2)) (-4 *2 (-1218))))
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1102)) (|has| *1 (-6 -4422))
+ (-4 *1 (-151 *2)) (-4 *2 (-1219))))
((*1 *2 *3 *1 *2)
- (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4418)) (-4 *1 (-151 *2))
- (-4 *2 (-1218))))
+ (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4422)) (-4 *1 (-151 *2))
+ (-4 *2 (-1219))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4418)) (-4 *1 (-151 *2))
- (-4 *2 (-1218))))
+ (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4422)) (-4 *1 (-151 *2))
+ (-4 *2 (-1219))))
((*1 *2 *3)
(-12 (-4 *4 (-1051))
- (-5 *2 (-2 (|:| -2517 (-1174 *4)) (|:| |deg| (-923))))
- (-5 *1 (-221 *4 *5)) (-5 *3 (-1174 *4)) (-4 *5 (-559))))
+ (-5 *2 (-2 (|:| -1774 (-1175 *4)) (|:| |deg| (-923))))
+ (-5 *1 (-221 *4 *5)) (-5 *3 (-1175 *4)) (-4 *5 (-559))))
((*1 *2 *3 *4 *2)
(-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-240 *5 *6)) (-14 *5 (-772))
- (-4 *6 (-1218)) (-4 *2 (-1218)) (-5 *1 (-239 *5 *6 *2))))
+ (-4 *6 (-1219)) (-4 *2 (-1219)) (-5 *1 (-239 *5 *6 *2))))
((*1 *1 *2 *3)
(-12 (-4 *4 (-172)) (-5 *1 (-290 *4 *2 *3 *5 *6 *7))
- (-4 *2 (-1244 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3))
+ (-4 *2 (-1245 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3))
(-14 *6 (-1 (-3 *3 "failed") *3 *3))
(-14 *7 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *1 *1) (-12 (-5 *1 (-317 *2)) (-4 *2 (-559)) (-4 *2 (-1102))))
((*1 *1 *1)
- (-12 (-4 *1 (-337 *2 *3 *4 *5)) (-4 *2 (-365)) (-4 *3 (-1244 *2))
- (-4 *4 (-1244 (-410 *3))) (-4 *5 (-344 *2 *3 *4))))
+ (-12 (-4 *1 (-337 *2 *3 *4 *5)) (-4 *2 (-365)) (-4 *3 (-1245 *2))
+ (-4 *4 (-1245 (-410 *3))) (-4 *5 (-344 *2 *3 *4))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1218)) (-4 *2 (-1218))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1219)) (-4 *2 (-1219))
(-5 *1 (-373 *5 *4 *2 *6)) (-4 *4 (-375 *5)) (-4 *6 (-375 *2))))
((*1 *2 *3 *4 *2)
(-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1102)) (-4 *2 (-1102))
(-5 *1 (-426 *5 *4 *2 *6)) (-4 *4 (-428 *5)) (-4 *6 (-428 *2))))
((*1 *1 *1) (-5 *1 (-498)))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-645 *5)) (-4 *5 (-1218))
- (-4 *2 (-1218)) (-5 *1 (-643 *5 *2))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-645 *5)) (-4 *5 (-1219))
+ (-4 *2 (-1219)) (-5 *1 (-643 *5 *2))))
((*1 *2 *3 *4 *2)
(-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1051)) (-4 *2 (-1051))
(-4 *6 (-375 *5)) (-4 *7 (-375 *5)) (-4 *8 (-375 *2))
@@ -11542,19 +11414,19 @@
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *1 *2)
- (-12 (-4 *3 (-1051)) (-5 *1 (-713 *3 *2)) (-4 *2 (-1244 *3))))
+ (-12 (-4 *3 (-1051)) (-5 *1 (-713 *3 *2)) (-4 *2 (-1245 *3))))
((*1 *1 *2 *3)
(-12 (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-410 *4)) (-4 *4 (-1244 *3)) (-4 *3 (-365))
+ (|partial| -12 (-5 *2 (-410 *4)) (-4 *4 (-1245 *3)) (-4 *3 (-365))
(-4 *3 (-172)) (-4 *1 (-725 *3 *4))))
((*1 *1 *2)
- (-12 (-4 *3 (-172)) (-4 *1 (-725 *3 *2)) (-4 *2 (-1244 *3))))
+ (-12 (-4 *3 (-172)) (-4 *1 (-725 *3 *2)) (-4 *2 (-1245 *3))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-960 *5)) (-4 *5 (-1218))
- (-4 *2 (-1218)) (-5 *1 (-959 *5 *2))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-960 *5)) (-4 *5 (-1219))
+ (-4 *2 (-1219)) (-5 *1 (-959 *5 *2))))
((*1 *1 *2)
(-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851))
(-5 *1 (-1036 *3 *4 *5 *2 *6)) (-4 *2 (-951 *3 *4 *5))
@@ -11566,575 +11438,698 @@
(-5 *1 (-1057 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12))
(-4 *4 (-1055 *5 *6 *7 *8 *9)) (-4 *12 (-1055 *5 *6 *2 *10 *11))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1158 *5)) (-4 *5 (-1218))
- (-4 *2 (-1218)) (-5 *1 (-1156 *5 *2))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1159 *5)) (-4 *5 (-1219))
+ (-4 *2 (-1219)) (-5 *1 (-1157 *5 *2))))
((*1 *2 *2 *1 *3 *4)
(-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2))
- (-4 *1 (-1211 *5 *6 *7 *2)) (-4 *5 (-559)) (-4 *6 (-794))
+ (-4 *1 (-1212 *5 *6 *7 *2)) (-4 *5 (-559)) (-4 *6 (-794))
(-4 *7 (-851)) (-4 *2 (-1067 *5 *6 *7))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1268 *5)) (-4 *5 (-1218))
- (-4 *2 (-1218)) (-5 *1 (-1267 *5 *2)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-1051)) (-5 *1 (-896 *2 *3)) (-4 *2 (-1244 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-5 *1 (-1162 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-613 (-48)))) (-5 *1 (-48))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-613 (-48))) (-5 *1 (-48))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1174 (-48))) (-5 *3 (-645 (-613 (-48)))) (-5 *1 (-48))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1174 (-48))) (-5 *3 (-613 (-48))) (-5 *1 (-48))))
- ((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172))))
- ((*1 *2 *3)
- (-12 (-4 *2 (-13 (-365) (-849))) (-5 *1 (-181 *2 *3))
- (-4 *3 (-1244 (-169 *2)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-923)) (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370))))
- ((*1 *2 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-365))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1269 *5)) (-4 *5 (-1219))
+ (-4 *2 (-1219)) (-5 *1 (-1268 *5 *2)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-645 *7)) (|:| -2575 *8)))
+ (-4 *7 (-1067 *4 *5 *6)) (-4 *8 (-1073 *4 *5 *6 *7)) (-4 *4 (-455))
+ (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112))
+ (-5 *1 (-990 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-645 *7)) (|:| -2575 *8)))
+ (-4 *7 (-1067 *4 *5 *6)) (-4 *8 (-1073 *4 *5 *6 *7)) (-4 *4 (-455))
+ (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112))
+ (-5 *1 (-1109 *4 *5 *6 *7 *8)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (-4 *1 (-372 *2 *3)) (-4 *3 (-1244 *2)) (-4 *2 (-172))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-421 *3)) (-4 *3 (-548)) (-4 *3 (-559))))
+ ((*1 *2 *1) (-12 (-4 *1 (-548)) (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (-4 *4 (-1244 *2)) (-4 *2 (-994 *3)) (-5 *1 (-416 *3 *2 *4 *5))
- (-4 *3 (-308)) (-4 *5 (-13 (-412 *2 *4) (-1040 *2)))))
+ (-12 (-4 *1 (-798 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (-4 *4 (-1244 *2)) (-4 *2 (-994 *3))
- (-5 *1 (-417 *3 *2 *4 *5 *6)) (-4 *3 (-308)) (-4 *5 (-412 *2 *4))
- (-14 *6 (-1268 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-923)) (-4 *5 (-1051))
- (-4 *2 (-13 (-407) (-1040 *5) (-365) (-1203) (-285)))
- (-5 *1 (-446 *5 *3 *2)) (-4 *3 (-1244 *5))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-613 (-498)))) (-5 *1 (-498))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-613 (-498))) (-5 *1 (-498))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1174 (-498))) (-5 *3 (-645 (-613 (-498))))
- (-5 *1 (-498))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1174 (-498))) (-5 *3 (-613 (-498))) (-5 *1 (-498))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1268 *4)) (-5 *3 (-923)) (-4 *4 (-351))
- (-5 *1 (-531 *4))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-834 *3)) (-4 *3 (-548)) (-4 *3 (-1102))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-844 *3)) (-4 *3 (-548)) (-4 *3 (-1102))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-999 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-112))))
((*1 *2 *3)
- (-12 (-4 *4 (-455)) (-4 *5 (-725 *4 *2)) (-4 *2 (-1244 *4))
- (-5 *1 (-776 *4 *2 *5 *3)) (-4 *3 (-1244 *5))))
- ((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172))))
- ((*1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-172))))
- ((*1 *1 *1) (-4 *1 (-1062))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-772)) (-5 *1 (-1166 *3 *4)) (-14 *3 (-923))
- (-4 *4 (-1051)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-825)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-951 *3 *5 *4)) (-5 *1 (-989 *3 *4 *5 *2))
- (-4 *3 (-455)) (-4 *4 (-851)) (-4 *5 (-794)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567))))))
-(((*1 *1 *1 *1) (-4 *1 (-662))))
-(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-851)) (-5 *1 (-126 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1122)) (-5 *1 (-822)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-410 (-567))) (-4 *1 (-557 *3))
- (-4 *3 (-13 (-407) (-1203)))))
- ((*1 *1 *2) (-12 (-4 *1 (-557 *2)) (-4 *2 (-13 (-407) (-1203)))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-557 *2)) (-4 *2 (-13 (-407) (-1203))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2))
- (-4 *2 (-13 (-433 *3) (-1203))))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-1010 *3)) (-4 *3 (-1040 (-410 (-567)))))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1220 *3)) (-4 *3 (-1102)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-559) (-1040 (-567)))) (-5 *2 (-112))
+ (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1204) (-433 (-169 *4))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-112))
+ (-5 *1 (-1208 *4 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *4))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-923)) (-5 *2 (-1175 *4)) (-5 *1 (-359 *4))
+ (-4 *4 (-351)))))
+(((*1 *2)
+ (|partial| -12 (-4 *3 (-559)) (-4 *3 (-172))
+ (-5 *2 (-2 (|:| |particular| *1) (|:| -2144 (-645 *1))))
+ (-4 *1 (-369 *3))))
+ ((*1 *2)
+ (|partial| -12
+ (-5 *2
+ (-2 (|:| |particular| (-456 *3 *4 *5 *6))
+ (|:| -2144 (-645 (-456 *3 *4 *5 *6)))))
+ (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-923))
+ (-14 *5 (-645 (-1179))) (-14 *6 (-1269 (-690 *3))))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-861)) (-5 *3 (-128)) (-5 *2 (-772)))))
+(((*1 *2 *1) (-12 (-4 *1 (-768 *3)) (-4 *3 (-1102)) (-5 *2 (-112)))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-1037)) (-5 *3 (-1179)) (-5 *1 (-192)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-613 *6)) (-4 *6 (-13 (-433 *5) (-27) (-1203)))
+ (-12 (-5 *4 (-613 *6)) (-4 *6 (-13 (-433 *5) (-27) (-1204)))
(-4 *5 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567))))
- (-5 *2 (-1174 (-410 (-1174 *6)))) (-5 *1 (-563 *5 *6 *7))
- (-5 *3 (-1174 *6)) (-4 *7 (-1102))))
+ (-5 *2 (-1175 (-410 (-1175 *6)))) (-5 *1 (-563 *5 *6 *7))
+ (-5 *3 (-1175 *6)) (-4 *7 (-1102))))
((*1 *2 *1)
- (-12 (-4 *2 (-1244 *3)) (-5 *1 (-713 *3 *2)) (-4 *3 (-1051))))
+ (-12 (-4 *2 (-1245 *3)) (-5 *1 (-713 *3 *2)) (-4 *3 (-1051))))
((*1 *2 *1)
- (-12 (-4 *1 (-725 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1244 *3))))
+ (-12 (-4 *1 (-725 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1245 *3))))
((*1 *2 *3 *4 *4 *5 *6 *7 *8)
- (|partial| -12 (-5 *4 (-1174 *11)) (-5 *6 (-645 *10))
+ (|partial| -12 (-5 *4 (-1175 *11)) (-5 *6 (-645 *10))
(-5 *7 (-645 (-772))) (-5 *8 (-645 *11)) (-4 *10 (-851))
(-4 *11 (-308)) (-4 *9 (-794)) (-4 *5 (-951 *11 *9 *10))
- (-5 *2 (-645 (-1174 *5))) (-5 *1 (-743 *9 *10 *11 *5))
- (-5 *3 (-1174 *5))))
+ (-5 *2 (-645 (-1175 *5))) (-5 *1 (-743 *9 *10 *11 *5))
+ (-5 *3 (-1175 *5))))
((*1 *2 *1)
(-12 (-4 *2 (-951 *3 *4 *5)) (-5 *1 (-1036 *3 *4 *5 *2 *6))
(-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-14 *6 (-645 *2)))))
-(((*1 *2)
- (-12 (-5 *2 (-2 (|:| -2504 (-645 *3)) (|:| -3131 (-645 *3))))
- (-5 *1 (-1219 *3)) (-4 *3 (-1102)))))
-(((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-128)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2))
- (-4 *2 (-13 (-433 *3) (-1203))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1199)))))
-(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112))
- (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5))))
- ((*1 *2 *1) (-12 (-4 *1 (-647 *3)) (-4 *3 (-1060)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-1053 *3)) (-4 *3 (-1060)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1070 *4 *3)) (-4 *4 (-13 (-849) (-365)))
- (-4 *3 (-1244 *4)) (-5 *2 (-112)))))
-(((*1 *1) (-5 *1 (-1065))))
-(((*1 *1 *1 *1) (-4 *1 (-662))))
-(((*1 *1) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-23)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-645 (-317 (-225)))) (-5 *3 (-225)) (-5 *2 (-112))
- (-5 *1 (-210)))))
-(((*1 *2 *3 *4 *5 *6 *5 *3 *7)
- (-12 (-5 *4 (-567))
- (-5 *6
- (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3041 (-381))))
- (-5 *7 (-1 (-1273) (-1268 *5) (-1268 *5) (-381)))
- (-5 *3 (-1268 (-381))) (-5 *5 (-381)) (-5 *2 (-1273))
- (-5 *1 (-789))))
- ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3)
- (-12 (-5 *4 (-567))
- (-5 *6
- (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3041 (-381))))
- (-5 *7 (-1 (-1273) (-1268 *5) (-1268 *5) (-381)))
- (-5 *3 (-1268 (-381))) (-5 *5 (-381)) (-5 *2 (-1273))
- (-5 *1 (-789)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-421 *2)) (-4 *2 (-559)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-645 *3)) (-4 *3 (-1111 *5 *6 *7 *8))
+ (-4 *5 (-13 (-308) (-147))) (-4 *6 (-794)) (-4 *7 (-851))
+ (-4 *8 (-1067 *5 *6 *7)) (-5 *2 (-112))
+ (-5 *1 (-593 *5 *6 *7 *8 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1271))))
+ ((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1271)))))
(((*1 *2)
(-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851))
- (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-1273))
+ (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-1274))
(-5 *1 (-990 *3 *4 *5 *6 *7)) (-4 *7 (-1073 *3 *4 *5 *6))))
((*1 *2)
(-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851))
- (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-1273))
+ (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-1274))
(-5 *1 (-1109 *3 *4 *5 *6 *7)) (-4 *7 (-1073 *3 *4 *5 *6)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-559))
+ (-5 *2 (-1175 *3)))))
+(((*1 *2 *3 *3 *4 *4)
+ (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *2 (-1037))
+ (-5 *1 (-749)))))
+(((*1 *1 *1 *1) (-4 *1 (-662))))
(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-1222)) (-4 *5 (-1244 *4))
- (-5 *2 (-2 (|:| |radicand| (-410 *5)) (|:| |deg| (-772))))
- (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1244 (-410 *5))))))
-(((*1 *1 *2 *2)
- (-12
- (-5 *2
- (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381)))
- (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1177))))
- (-5 *1 (-1177)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-264))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225) (-225))) (-5 *1 (-264))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-264)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-690 *4)) (-5 *3 (-923)) (|has| *4 (-6 (-4420 "*")))
- (-4 *4 (-1051)) (-5 *1 (-1030 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-645 (-690 *4))) (-5 *3 (-923))
- (|has| *4 (-6 (-4420 "*"))) (-4 *4 (-1051)) (-5 *1 (-1030 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-692 *3)) (-5 *1 (-968 *3)) (-4 *3 (-1102)))))
-(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-365)) (-5 *1 (-767 *2 *3)) (-4 *2 (-709 *3))))
+ (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-567))
+ (-5 *1 (-452 *4 *5 *6 *3)) (-4 *3 (-951 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-772)) (-4 *1 (-1286 *3 *4)) (-4 *3 (-851))
+ (-4 *4 (-1051)) (-4 *4 (-172))))
((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))))
+ (-12 (-4 *1 (-1286 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1051))
+ (-4 *3 (-172)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1219)) (-4 *2 (-851))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-375 *3)) (-4 *3 (-1219))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-970 *2)) (-4 *2 (-851))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1136 *2)) (-4 *2 (-1051))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-645 *1)) (-4 *1 (-1136 *3)) (-4 *3 (-1051))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-645 (-1167 *3 *4))) (-5 *1 (-1167 *3 *4))
+ (-14 *3 (-923)) (-4 *4 (-1051))))
+ ((*1 *1 *1 *1)
+ (-12 (-5 *1 (-1167 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1051)))))
(((*1 *2 *3 *4)
- (-12 (-5 *2 (-645 (-169 *4))) (-5 *1 (-155 *3 *4))
- (-4 *3 (-1244 (-169 (-567)))) (-4 *4 (-13 (-365) (-849)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-365) (-849))) (-5 *2 (-645 (-169 *4)))
- (-5 *1 (-181 *4 *3)) (-4 *3 (-1244 (-169 *4)))))
+ (-12 (-4 *5 (-365))
+ (-5 *2
+ (-2 (|:| A (-690 *5))
+ (|:| |eqs|
+ (-645
+ (-2 (|:| C (-690 *5)) (|:| |g| (-1269 *5)) (|:| -3855 *6)
+ (|:| |rh| *5))))))
+ (-5 *1 (-814 *5 *6)) (-5 *3 (-690 *5)) (-5 *4 (-1269 *5))
+ (-4 *6 (-657 *5))))
((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-365) (-849))) (-5 *2 (-645 (-169 *4)))
- (-5 *1 (-181 *4 *3)) (-4 *3 (-1244 (-169 *4))))))
-(((*1 *1 *1)
- (-12 (|has| *1 (-6 -4418)) (-4 *1 (-151 *2)) (-4 *2 (-1218))
- (-4 *2 (-1102)))))
-(((*1 *2)
- (-12 (-4 *1 (-351))
- (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-945 *3)) (-4 *3 (-13 (-365) (-1203) (-1004)))
- (-5 *1 (-176 *3)))))
+ (-12 (-4 *5 (-365)) (-4 *6 (-657 *5))
+ (-5 *2 (-2 (|:| -4208 (-690 *6)) (|:| |vec| (-1269 *5))))
+ (-5 *1 (-814 *5 *6)) (-5 *3 (-690 *6)) (-5 *4 (-1269 *5)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2))
- (-4 *2 (-13 (-433 *3) (-1203))))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))))
-(((*1 *2 *3 *4 *5 *6 *7 *7 *8)
- (-12
- (-5 *3
- (-2 (|:| |det| *12) (|:| |rows| (-645 (-567)))
- (|:| |cols| (-645 (-567)))))
- (-5 *4 (-690 *12)) (-5 *5 (-645 (-410 (-954 *9))))
- (-5 *6 (-645 (-645 *12))) (-5 *7 (-772)) (-5 *8 (-567))
- (-4 *9 (-13 (-308) (-147))) (-4 *12 (-951 *9 *11 *10))
- (-4 *10 (-13 (-851) (-615 (-1178)))) (-4 *11 (-794))
- (-5 *2
- (-2 (|:| |eqzro| (-645 *12)) (|:| |neqzro| (-645 *12))
- (|:| |wcond| (-645 (-954 *9)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1268 (-410 (-954 *9))))
- (|:| -2623 (-645 (-1268 (-410 (-954 *9)))))))))
- (-5 *1 (-926 *9 *10 *11 *12)))))
-(((*1 *1 *2 *2)
- (-12
- (-5 *2
- (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381)))
- (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1177))))
- (-5 *1 (-1177)))))
-(((*1 *2 *1)
(-12
(-5 *2
- (-1268
- (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225))
- (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -3932 (-567))
- (|:| -1310 (-567)) (|:| |spline| (-567)) (|:| -3585 (-567))
- (|:| |axesColor| (-875)) (|:| -1741 (-567))
- (|:| |unitsColor| (-875)) (|:| |showing| (-567)))))
- (-5 *1 (-1269)))))
-(((*1 *2 *3 *4 *2 *5)
- (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 (-894 *6)))
- (-5 *5 (-1 (-891 *6 *8) *8 (-894 *6) (-891 *6 *8))) (-4 *6 (-1102))
- (-4 *8 (-13 (-1051) (-615 (-894 *6)) (-1040 *7)))
- (-5 *2 (-891 *6 *8)) (-4 *7 (-1051)) (-5 *1 (-943 *6 *7 *8)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-911)) (-5 *2 (-421 (-1174 *1))) (-5 *3 (-1174 *1)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-112)) (-4 *6 (-13 (-455) (-1040 (-567)) (-640 (-567))))
- (-4 *3 (-13 (-27) (-1203) (-433 *6) (-10 -8 (-15 -4132 ($ *7)))))
- (-4 *7 (-849))
- (-4 *8
- (-13 (-1246 *3 *7) (-365) (-1203)
- (-10 -8 (-15 -1593 ($ $)) (-15 -2416 ($ $)))))
- (-5 *2
- (-3 (|:| |%series| *8)
- (|:| |%problem| (-2 (|:| |func| (-1160)) (|:| |prob| (-1160))))))
- (-5 *1 (-425 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1160)) (-4 *9 (-985 *8))
- (-14 *10 (-1178)))))
-(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-648 *2)) (-4 *2 (-1102)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-928)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1244 (-567))))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-978 *4 *5 *6 *3)) (-4 *4 (-1051)) (-4 *5 (-794))
- (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-4 *4 (-559))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))))
+ (-989 (-410 (-567)) (-865 *3) (-240 *4 (-772))
+ (-247 *3 (-410 (-567)))))
+ (-14 *3 (-645 (-1179))) (-14 *4 (-772)) (-5 *1 (-988 *3 *4)))))
+(((*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-97)))))
+(((*1 *1) (-5 *1 (-824))))
+(((*1 *1 *1 *1) (-4 *1 (-662))))
+(((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4))
+ (-4 *3 (-369 *4))))
+ ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-410 (-567))) (-4 *5 (-794)) (-4 *6 (-851))
- (-4 *7 (-559)) (-4 *8 (-951 *7 *5 *6))
- (-5 *2 (-2 (|:| -3458 (-772)) (|:| -3694 *9) (|:| |radicand| *9)))
- (-5 *1 (-955 *5 *6 *7 *8 *9)) (-5 *4 (-772))
- (-4 *9
- (-13 (-365)
- (-10 -8 (-15 -4132 ($ *8)) (-15 -1448 (*8 $)) (-15 -1460 (*8 $))))))))
-(((*1 *1 *2 *2)
- (-12
- (-5 *2
- (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381)))
- (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1177))))
- (-5 *1 (-1177)))))
-(((*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-772)) (-5 *1 (-592)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-1183))) (-5 *1 (-1183))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-509)) (-5 *3 (-645 (-1183))) (-5 *1 (-1183)))))
-(((*1 *1 *1) (-4 *1 (-662))))
-(((*1 *1 *1 *1 *1) (-5 *1 (-863))) ((*1 *1 *1 *1) (-5 *1 (-863)))
- ((*1 *1 *1) (-5 *1 (-863))))
+ (|partial| -12 (-5 *4 (-923)) (-4 *5 (-559)) (-5 *2 (-690 *5))
+ (-5 *1 (-958 *5 *3)) (-4 *3 (-657 *5)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-567)) (-5 *1 (-448 *3)) (-4 *3 (-407)) (-4 *3 (-1051)))))
-(((*1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-394)))))
-(((*1 *1 *1) (-12 (-5 *1 (-678 *2)) (-4 *2 (-851))))
- ((*1 *1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-851))))
- ((*1 *1 *1) (-12 (-5 *1 (-895 *2)) (-4 *2 (-851))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-1211 *2 *3 *4 *5)) (-4 *2 (-559))
- (-4 *3 (-794)) (-4 *4 (-851)) (-4 *5 (-1067 *2 *3 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-772)) (-4 *1 (-1256 *3)) (-4 *3 (-1218))))
- ((*1 *1 *1) (-12 (-4 *1 (-1256 *2)) (-4 *2 (-1218)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1178)) (-5 *3 (-381)) (-5 *1 (-1065)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-772)) (-4 *5 (-559))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-971 *5 *3)) (-4 *3 (-1244 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-675 *3)) (-4 *3 (-1218)) (-5 *2 (-112)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))))
+ (-12 (-4 *1 (-897))
+ (-5 *3
+ (-2 (|:| |pde| (-645 (-317 (-225))))
+ (|:| |constraints|
+ (-645
+ (-2 (|:| |start| (-225)) (|:| |finish| (-225))
+ (|:| |grid| (-772)) (|:| |boundaryType| (-567))
+ (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225))))))
+ (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1161))
+ (|:| |tol| (-225))))
+ (-5 *2 (-1037)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1094 (-844 *3))) (-4 *3 (-13 (-1203) (-961) (-29 *5)))
- (-4 *5 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567))))
- (-5 *2
- (-3 (|:| |f1| (-844 *3)) (|:| |f2| (-645 (-844 *3)))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-219 *5 *3))))
+ (-12 (-5 *3 (-645 (-410 (-954 (-567)))))
+ (-5 *2 (-645 (-645 (-295 (-954 *4))))) (-5 *1 (-382 *4))
+ (-4 *4 (-13 (-849) (-365)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 (-295 (-410 (-954 (-567))))))
+ (-5 *2 (-645 (-645 (-295 (-954 *4))))) (-5 *1 (-382 *4))
+ (-4 *4 (-13 (-849) (-365)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-410 (-954 (-567)))) (-5 *2 (-645 (-295 (-954 *4))))
+ (-5 *1 (-382 *4)) (-4 *4 (-13 (-849) (-365)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-295 (-410 (-954 (-567)))))
+ (-5 *2 (-645 (-295 (-954 *4)))) (-5 *1 (-382 *4))
+ (-4 *4 (-13 (-849) (-365)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1094 (-844 *3))) (-5 *5 (-1160))
- (-4 *3 (-13 (-1203) (-961) (-29 *6)))
- (-4 *6 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567))))
+ (|partial| -12 (-5 *5 (-1179))
+ (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147)))
+ (-4 *4 (-13 (-29 *6) (-1204) (-961)))
+ (-5 *2 (-2 (|:| |particular| *4) (|:| -2144 (-645 *4))))
+ (-5 *1 (-653 *6 *4 *3)) (-4 *3 (-657 *4))))
+ ((*1 *2 *3 *2 *4 *2 *5)
+ (|partial| -12 (-5 *4 (-1179)) (-5 *5 (-645 *2))
+ (-4 *2 (-13 (-29 *6) (-1204) (-961)))
+ (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147)))
+ (-5 *1 (-653 *6 *2 *3)) (-4 *3 (-657 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-690 *5)) (-4 *5 (-365))
(-5 *2
- (-3 (|:| |f1| (-844 *3)) (|:| |f2| (-645 (-844 *3)))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-219 *6 *3))))
+ (-2 (|:| |particular| (-3 (-1269 *5) "failed"))
+ (|:| -2144 (-645 (-1269 *5)))))
+ (-5 *1 (-668 *5)) (-5 *4 (-1269 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-1094 (-844 (-317 *5))))
- (-4 *5 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567))))
+ (-12 (-5 *3 (-645 (-645 *5))) (-4 *5 (-365))
(-5 *2
- (-3 (|:| |f1| (-844 (-317 *5))) (|:| |f2| (-645 (-844 (-317 *5))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-220 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-410 (-954 *6))) (-5 *4 (-1094 (-844 (-317 *6))))
- (-5 *5 (-1160))
- (-4 *6 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567))))
+ (-2 (|:| |particular| (-3 (-1269 *5) "failed"))
+ (|:| -2144 (-645 (-1269 *5)))))
+ (-5 *1 (-668 *5)) (-5 *4 (-1269 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-690 *5)) (-4 *5 (-365))
(-5 *2
- (-3 (|:| |f1| (-844 (-317 *6))) (|:| |f2| (-645 (-844 (-317 *6))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-220 *6))))
+ (-645
+ (-2 (|:| |particular| (-3 (-1269 *5) "failed"))
+ (|:| -2144 (-645 (-1269 *5))))))
+ (-5 *1 (-668 *5)) (-5 *4 (-645 (-1269 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1094 (-844 (-410 (-954 *5))))) (-5 *3 (-410 (-954 *5)))
- (-4 *5 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567))))
+ (-12 (-5 *3 (-645 (-645 *5))) (-4 *5 (-365))
(-5 *2
- (-3 (|:| |f1| (-844 (-317 *5))) (|:| |f2| (-645 (-844 (-317 *5))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-220 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1094 (-844 (-410 (-954 *6))))) (-5 *5 (-1160))
- (-5 *3 (-410 (-954 *6)))
- (-4 *6 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567))))
+ (-645
+ (-2 (|:| |particular| (-3 (-1269 *5) "failed"))
+ (|:| -2144 (-645 (-1269 *5))))))
+ (-5 *1 (-668 *5)) (-5 *4 (-645 (-1269 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4423))))
+ (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4423))))
(-5 *2
- (-3 (|:| |f1| (-844 (-317 *6))) (|:| |f2| (-645 (-844 (-317 *6))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-220 *6))))
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2144 (-645 *4))))
+ (-5 *1 (-669 *5 *6 *4 *3)) (-4 *3 (-688 *5 *6 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1178))
- (-4 *5 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567))))
- (-5 *2 (-3 *3 (-645 *3))) (-5 *1 (-431 *5 *3))
- (-4 *3 (-13 (-1203) (-961) (-29 *5)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1264 *4)) (-14 *4 (-1178)) (-5 *1 (-477 *3 *4 *5))
- (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)) (-14 *5 *3)))
- ((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1096 (-844 (-381))))
- (-5 *5 (-381)) (-5 *6 (-1065)) (-5 *2 (-1037)) (-5 *1 (-568))))
- ((*1 *2 *3) (-12 (-5 *3 (-770)) (-5 *2 (-1037)) (-5 *1 (-568))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1096 (-844 (-381))))
- (-5 *5 (-381)) (-5 *2 (-1037)) (-5 *1 (-568))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1096 (-844 (-381))))
- (-5 *5 (-381)) (-5 *2 (-1037)) (-5 *1 (-568))))
+ (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4423))))
+ (-4 *7 (-13 (-375 *5) (-10 -7 (-6 -4423))))
+ (-5 *2
+ (-645
+ (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2144 (-645 *7)))))
+ (-5 *1 (-669 *5 *6 *7 *3)) (-5 *4 (-645 *7))
+ (-4 *3 (-688 *5 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1096 (-844 (-381))))
- (-5 *2 (-1037)) (-5 *1 (-568))))
+ (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-645 (-1179))) (-4 *5 (-559))
+ (-5 *2 (-645 (-645 (-295 (-410 (-954 *5)))))) (-5 *1 (-771 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-954 *4))) (-4 *4 (-559))
+ (-5 *2 (-645 (-645 (-295 (-410 (-954 *4)))))) (-5 *1 (-771 *4))))
+ ((*1 *2 *2 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1179))
+ (-4 *5 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147)))
+ (-5 *1 (-773 *5 *2)) (-4 *2 (-13 (-29 *5) (-1204) (-961)))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-690 *7)) (-5 *5 (-1179))
+ (-4 *7 (-13 (-29 *6) (-1204) (-961)))
+ (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147)))
+ (-5 *2
+ (-2 (|:| |particular| (-1269 *7)) (|:| -2144 (-645 (-1269 *7)))))
+ (-5 *1 (-803 *6 *7)) (-5 *4 (-1269 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-317 (-381))) (-5 *4 (-645 (-1096 (-844 (-381)))))
- (-5 *2 (-1037)) (-5 *1 (-568))))
+ (|partial| -12 (-5 *3 (-690 *6)) (-5 *4 (-1179))
+ (-4 *6 (-13 (-29 *5) (-1204) (-961)))
+ (-4 *5 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147)))
+ (-5 *2 (-645 (-1269 *6))) (-5 *1 (-803 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-317 (-381))) (-5 *4 (-645 (-1096 (-844 (-381)))))
- (-5 *5 (-381)) (-5 *2 (-1037)) (-5 *1 (-568))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-317 (-381))) (-5 *4 (-645 (-1096 (-844 (-381)))))
- (-5 *5 (-381)) (-5 *2 (-1037)) (-5 *1 (-568))))
- ((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-317 (-381))) (-5 *4 (-645 (-1096 (-844 (-381)))))
- (-5 *5 (-381)) (-5 *6 (-1065)) (-5 *2 (-1037)) (-5 *1 (-568))))
+ (|partial| -12 (-5 *3 (-645 (-295 *7))) (-5 *4 (-645 (-114)))
+ (-5 *5 (-1179)) (-4 *7 (-13 (-29 *6) (-1204) (-961)))
+ (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147)))
+ (-5 *2
+ (-2 (|:| |particular| (-1269 *7)) (|:| -2144 (-645 (-1269 *7)))))
+ (-5 *1 (-803 *6 *7))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-317 (-381))) (-5 *4 (-1094 (-844 (-381))))
- (-5 *5 (-1160)) (-5 *2 (-1037)) (-5 *1 (-568))))
+ (|partial| -12 (-5 *3 (-645 *7)) (-5 *4 (-645 (-114)))
+ (-5 *5 (-1179)) (-4 *7 (-13 (-29 *6) (-1204) (-961)))
+ (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147)))
+ (-5 *2
+ (-2 (|:| |particular| (-1269 *7)) (|:| -2144 (-645 (-1269 *7)))))
+ (-5 *1 (-803 *6 *7))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-317 (-381))) (-5 *4 (-1094 (-844 (-381))))
- (-5 *5 (-1178)) (-5 *2 (-1037)) (-5 *1 (-568))))
+ (-12 (-5 *3 (-295 *7)) (-5 *4 (-114)) (-5 *5 (-1179))
+ (-4 *7 (-13 (-29 *6) (-1204) (-961)))
+ (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147)))
+ (-5 *2
+ (-3 (-2 (|:| |particular| *7) (|:| -2144 (-645 *7))) *7 "failed"))
+ (-5 *1 (-803 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-114)) (-5 *5 (-1179))
+ (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147)))
+ (-5 *2
+ (-3 (-2 (|:| |particular| *3) (|:| -2144 (-645 *3))) *3 "failed"))
+ (-5 *1 (-803 *6 *3)) (-4 *3 (-13 (-29 *6) (-1204) (-961)))))
+ ((*1 *2 *3 *4 *3 *5)
+ (|partial| -12 (-5 *3 (-295 *2)) (-5 *4 (-114)) (-5 *5 (-645 *2))
+ (-4 *2 (-13 (-29 *6) (-1204) (-961))) (-5 *1 (-803 *6 *2))
+ (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147)))))
+ ((*1 *2 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-114)) (-5 *4 (-295 *2)) (-5 *5 (-645 *2))
+ (-4 *2 (-13 (-29 *6) (-1204) (-961)))
+ (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147)))
+ (-5 *1 (-803 *6 *2))))
+ ((*1 *2 *3) (-12 (-5 *3 (-809)) (-5 *2 (-1037)) (-5 *1 (-806))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-809)) (-5 *4 (-1065)) (-5 *2 (-1037)) (-5 *1 (-806))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1269 (-317 (-381)))) (-5 *4 (-381)) (-5 *5 (-645 *4))
+ (-5 *2 (-1037)) (-5 *1 (-806))))
+ ((*1 *2 *3 *4 *4 *5 *4)
+ (-12 (-5 *3 (-1269 (-317 (-381)))) (-5 *4 (-381)) (-5 *5 (-645 *4))
+ (-5 *2 (-1037)) (-5 *1 (-806))))
+ ((*1 *2 *3 *4 *4 *5 *6 *4)
+ (-12 (-5 *3 (-1269 (-317 *4))) (-5 *5 (-645 (-381)))
+ (-5 *6 (-317 (-381))) (-5 *4 (-381)) (-5 *2 (-1037)) (-5 *1 (-806))))
+ ((*1 *2 *3 *4 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1269 (-317 (-381)))) (-5 *4 (-381)) (-5 *5 (-645 *4))
+ (-5 *2 (-1037)) (-5 *1 (-806))))
+ ((*1 *2 *3 *4 *4 *5 *6 *5 *4)
+ (-12 (-5 *3 (-1269 (-317 *4))) (-5 *5 (-645 (-381)))
+ (-5 *6 (-317 (-381))) (-5 *4 (-381)) (-5 *2 (-1037)) (-5 *1 (-806))))
+ ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4)
+ (-12 (-5 *3 (-1269 (-317 *4))) (-5 *5 (-645 (-381)))
+ (-5 *6 (-317 (-381))) (-5 *4 (-381)) (-5 *2 (-1037)) (-5 *1 (-806))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12
+ (-5 *5
+ (-1
+ (-3 (-2 (|:| |particular| *6) (|:| -2144 (-645 *6))) "failed")
+ *7 *6))
+ (-4 *6 (-365)) (-4 *7 (-657 *6))
+ (-5 *2 (-2 (|:| |particular| (-1269 *6)) (|:| -2144 (-690 *6))))
+ (-5 *1 (-814 *6 *7)) (-5 *3 (-690 *6)) (-5 *4 (-1269 *6))))
+ ((*1 *2 *3) (-12 (-5 *3 (-900)) (-5 *2 (-1037)) (-5 *1 (-899))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-900)) (-5 *4 (-1065)) (-5 *2 (-1037)) (-5 *1 (-899))))
+ ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8)
+ (-12 (-5 *4 (-772)) (-5 *6 (-645 (-645 (-317 *3)))) (-5 *7 (-1161))
+ (-5 *8 (-225)) (-5 *5 (-645 (-317 (-381)))) (-5 *3 (-381))
+ (-5 *2 (-1037)) (-5 *1 (-899))))
+ ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7)
+ (-12 (-5 *4 (-772)) (-5 *6 (-645 (-645 (-317 *3)))) (-5 *7 (-1161))
+ (-5 *5 (-645 (-317 (-381)))) (-5 *3 (-381)) (-5 *2 (-1037))
+ (-5 *1 (-899))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-954 (-410 (-567)))) (-5 *2 (-645 (-381)))
+ (-5 *1 (-1025)) (-5 *4 (-381))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-954 (-567))) (-5 *2 (-645 (-381))) (-5 *1 (-1025))
+ (-5 *4 (-381))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-365) (-147) (-1040 (-567)))) (-4 *5 (-1244 *4))
- (-5 *2 (-588 (-410 *5))) (-5 *1 (-571 *4 *5)) (-5 *3 (-410 *5))))
+ (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567)))))))
+ (-5 *2 (-645 *4)) (-5 *1 (-1130 *3 *4)) (-4 *3 (-1245 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147)))
+ (-5 *2 (-645 (-295 (-317 *4)))) (-5 *1 (-1133 *4))
+ (-5 *3 (-317 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147)))
+ (-5 *2 (-645 (-295 (-317 *4)))) (-5 *1 (-1133 *4))
+ (-5 *3 (-295 (-317 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-1178)) (-4 *5 (-147))
- (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567))))
- (-5 *2 (-3 (-317 *5) (-645 (-317 *5)))) (-5 *1 (-591 *5))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-741 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-851))
- (-4 *3 (-38 (-410 (-567))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1178)) (-5 *1 (-954 *3)) (-4 *3 (-38 (-410 (-567))))
- (-4 *3 (-1051))))
- ((*1 *1 *1 *2 *3)
- (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)) (-4 *2 (-851))
- (-5 *1 (-1128 *3 *2 *4)) (-4 *4 (-951 *3 (-534 *2) *2))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051))
- (-5 *1 (-1162 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1264 *4)) (-14 *4 (-1178)) (-5 *1 (-1169 *3 *4 *5))
- (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1264 *4)) (-14 *4 (-1178)) (-5 *1 (-1175 *3 *4 *5))
- (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1264 *4)) (-14 *4 (-1178)) (-5 *1 (-1176 *3 *4 *5))
- (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)) (-14 *5 *3)))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1178)) (-5 *1 (-1212 *3)) (-4 *3 (-38 (-410 (-567))))
- (-4 *3 (-1051))))
- ((*1 *1 *1 *2)
- (-2800
- (-12 (-5 *2 (-1178)) (-4 *1 (-1228 *3)) (-4 *3 (-1051))
- (-12 (-4 *3 (-29 (-567))) (-4 *3 (-961)) (-4 *3 (-1203))
- (-4 *3 (-38 (-410 (-567))))))
- (-12 (-5 *2 (-1178)) (-4 *1 (-1228 *3)) (-4 *3 (-1051))
- (-12 (|has| *3 (-15 -2847 ((-645 *2) *3)))
- (|has| *3 (-15 -2416 (*3 *3 *2))) (-4 *3 (-38 (-410 (-567))))))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1228 *2)) (-4 *2 (-1051)) (-4 *2 (-38 (-410 (-567))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1264 *4)) (-14 *4 (-1178)) (-5 *1 (-1232 *3 *4 *5))
- (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)) (-14 *5 *3)))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1051)) (-4 *2 (-38 (-410 (-567))))))
- ((*1 *1 *1 *2)
- (-2800
- (-12 (-5 *2 (-1178)) (-4 *1 (-1249 *3)) (-4 *3 (-1051))
- (-12 (-4 *3 (-29 (-567))) (-4 *3 (-961)) (-4 *3 (-1203))
- (-4 *3 (-38 (-410 (-567))))))
- (-12 (-5 *2 (-1178)) (-4 *1 (-1249 *3)) (-4 *3 (-1051))
- (-12 (|has| *3 (-15 -2847 ((-645 *2) *3)))
- (|has| *3 (-15 -2416 (*3 *3 *2))) (-4 *3 (-38 (-410 (-567))))))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1249 *2)) (-4 *2 (-1051)) (-4 *2 (-38 (-410 (-567))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1264 *4)) (-14 *4 (-1178)) (-5 *1 (-1253 *3 *4 *5))
- (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)) (-14 *5 *3)))
+ (-12 (-5 *4 (-1179))
+ (-4 *5 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147)))
+ (-5 *2 (-645 (-295 (-317 *5)))) (-5 *1 (-1133 *5))
+ (-5 *3 (-295 (-317 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1179))
+ (-4 *5 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147)))
+ (-5 *2 (-645 (-295 (-317 *5)))) (-5 *1 (-1133 *5))
+ (-5 *3 (-317 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-645 (-1179)))
+ (-4 *5 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147)))
+ (-5 *2 (-645 (-645 (-295 (-317 *5))))) (-5 *1 (-1133 *5))
+ (-5 *3 (-645 (-295 (-317 *5))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 (-410 (-954 *5)))) (-5 *4 (-645 (-1179)))
+ (-4 *5 (-559)) (-5 *2 (-645 (-645 (-295 (-410 (-954 *5))))))
+ (-5 *1 (-1188 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-645 (-1179))) (-4 *5 (-559))
+ (-5 *2 (-645 (-645 (-295 (-410 (-954 *5)))))) (-5 *1 (-1188 *5))
+ (-5 *3 (-645 (-295 (-410 (-954 *5)))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-410 (-954 *4)))) (-4 *4 (-559))
+ (-5 *2 (-645 (-645 (-295 (-410 (-954 *4)))))) (-5 *1 (-1188 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-559)) (-5 *2 (-645 (-645 (-295 (-410 (-954 *4))))))
+ (-5 *1 (-1188 *4)) (-5 *3 (-645 (-295 (-410 (-954 *4)))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1179)) (-4 *5 (-559))
+ (-5 *2 (-645 (-295 (-410 (-954 *5))))) (-5 *1 (-1188 *5))
+ (-5 *3 (-410 (-954 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1179)) (-4 *5 (-559))
+ (-5 *2 (-645 (-295 (-410 (-954 *5))))) (-5 *1 (-1188 *5))
+ (-5 *3 (-295 (-410 (-954 *5))))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-559)) (-5 *2 (-645 (-295 (-410 (-954 *4)))))
+ (-5 *1 (-1188 *4)) (-5 *3 (-410 (-954 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-559)) (-5 *2 (-645 (-295 (-410 (-954 *4)))))
+ (-5 *1 (-1188 *4)) (-5 *3 (-295 (-410 (-954 *4)))))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1051)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-559) (-147))) (-5 *1 (-540 *3 *2))
+ (-4 *2 (-1260 *3))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-365) (-370) (-615 (-567)))) (-4 *4 (-1245 *3))
+ (-4 *5 (-725 *3 *4)) (-5 *1 (-544 *3 *4 *5 *2)) (-4 *2 (-1260 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-365) (-370) (-615 (-567)))) (-5 *1 (-545 *3 *2))
+ (-4 *2 (-1260 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-13 (-559) (-147)))
+ (-5 *1 (-1155 *3)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1142 *4 *5)) (-4 *4 (-13 (-1102) (-34)))
+ (-4 *5 (-13 (-1102) (-34))) (-5 *2 (-112)) (-5 *1 (-1143 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-308)) (-5 *2 (-772)))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-317 (-567))) (|:| -3888 (-317 (-381)))
+ (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1178))))
+ (-5 *1 (-1178)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1102)) (-4 *6 (-1102))
+ (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-685 *4 *5 *6)) (-4 *4 (-1102)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-772)) (-4 *4 (-365)) (-5 *1 (-898 *2 *4))
+ (-4 *2 (-1245 *4)))))
+(((*1 *2 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-1161)) (-5 *5 (-690 (-225)))
+ (-5 *2 (-1037)) (-5 *1 (-748)))))
+(((*1 *1 *2) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-490)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-923)) (-5 *4 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1270)))))
+(((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4422)) (-4 *1 (-151 *2)) (-4 *2 (-1219))
+ (-4 *2 (-1102)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -2654 *1) (|:| -2023 *1))) (-4 *1 (-308))))
+ ((*1 *2 *1 *1)
+ (|partial| -12 (-4 *3 (-1102))
+ (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-388 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -2654 (-772)) (|:| -2023 (-772))))
+ (-5 *1 (-772))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| -2654 *3) (|:| -2023 *3)))
+ (-5 *1 (-971 *4 *3)) (-4 *3 (-1245 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-645 *2)) (-4 *2 (-433 *4)) (-5 *1 (-158 *4 *2))
+ (-4 *4 (-559)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-410 (-954 (-169 (-567))))) (-5 *2 (-645 (-169 *4)))
+ (-5 *1 (-380 *4)) (-4 *4 (-13 (-365) (-849)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-645 (-410 (-954 (-169 (-567))))))
+ (-5 *4 (-645 (-1179))) (-5 *2 (-645 (-645 (-169 *5))))
+ (-5 *1 (-380 *5)) (-4 *5 (-13 (-365) (-849))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-945 *3)) (-4 *3 (-13 (-365) (-1204) (-1004)))
+ (-5 *1 (-176 *3)))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-317 (-567))) (|:| -3888 (-317 (-381)))
+ (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1178))))
+ (-5 *1 (-1178)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225)))
+ (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))
+ (-5 *2 (-567)) (-5 *1 (-204)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-849) (-365))) (-5 *1 (-1063 *2 *3))
+ (-4 *3 (-1245 *2)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-567)) (-4 *1 (-1229 *4)) (-4 *4 (-1051)) (-4 *4 (-559))
+ (-5 *2 (-410 (-954 *4)))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-567)) (-4 *1 (-1229 *4)) (-4 *4 (-1051)) (-4 *4 (-559))
+ (-5 *2 (-410 (-954 *4))))))
+(((*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-645 (-112))))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-14 *5 (-645 (-1179))) (-4 *2 (-172))
+ (-4 *4 (-238 (-2423 *5) (-772)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -3779 *3) (|:| -3468 *4))
+ (-2 (|:| -3779 *3) (|:| -3468 *4))))
+ (-5 *1 (-464 *5 *2 *3 *4 *6 *7)) (-4 *3 (-851))
+ (-4 *7 (-951 *2 *4 (-865 *5))))))
+(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-648 *2)) (-4 *2 (-1102)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-645 *2)) (-4 *2 (-951 *4 *5 *6)) (-4 *4 (-455))
+ (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-452 *4 *5 *6 *2)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-559) (-147))) (-5 *2 (-645 *3))
+ (-5 *1 (-1239 *4 *3)) (-4 *3 (-1245 *4)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470))))
+ ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-690 *2)) (-4 *4 (-1245 *2))
+ (-4 *2 (-13 (-308) (-10 -8 (-15 -3597 ((-421 $) $)))))
+ (-5 *1 (-502 *2 *4 *5)) (-4 *5 (-412 *2 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1125 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2))
+ (-4 *5 (-238 *3 *2)) (-4 *2 (-1051)))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-317 (-567))) (|:| -3888 (-317 (-381)))
+ (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1178))))
+ (-5 *1 (-1178)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-169 (-225))) (-5 *5 (-567)) (-5 *6 (-1161))
+ (-5 *3 (-225)) (-5 *2 (-1037)) (-5 *1 (-759)))))
+(((*1 *1 *1) (-4 *1 (-662))))
+(((*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-165 *3 *2)) (-4 *3 (-166 *2))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1269 *1)) (-4 *1 (-372 *2 *4)) (-4 *4 (-1245 *2))
+ (-4 *2 (-172))))
+ ((*1 *2)
+ (-12 (-4 *4 (-1245 *2)) (-4 *2 (-172)) (-5 *1 (-411 *3 *2 *4))
+ (-4 *3 (-412 *2 *4))))
+ ((*1 *2) (-12 (-4 *1 (-412 *2 *3)) (-4 *3 (-1245 *2)) (-4 *2 (-172))))
+ ((*1 *2)
+ (-12 (-4 *3 (-1245 *2)) (-5 *2 (-567)) (-5 *1 (-769 *3 *4))
+ (-4 *4 (-412 *2 *3))))
((*1 *1 *1 *2)
- (-2800
- (-12 (-5 *2 (-1178)) (-4 *1 (-1259 *3)) (-4 *3 (-1051))
- (-12 (-4 *3 (-29 (-567))) (-4 *3 (-961)) (-4 *3 (-1203))
- (-4 *3 (-38 (-410 (-567))))))
- (-12 (-5 *2 (-1178)) (-4 *1 (-1259 *3)) (-4 *3 (-1051))
- (-12 (|has| *3 (-15 -2847 ((-645 *2) *3)))
- (|has| *3 (-15 -2416 (*3 *3 *2))) (-4 *3 (-38 (-410 (-567))))))))
+ (-12 (-4 *1 (-951 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794))
+ (-4 *2 (-851)) (-4 *3 (-172))))
+ ((*1 *2 *3)
+ (-12 (-4 *2 (-559)) (-5 *1 (-971 *2 *3)) (-4 *3 (-1245 *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1051)) (-4 *2 (-172)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-760)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-410 (-954 *4))) (-5 *3 (-1179))
+ (-4 *4 (-13 (-559) (-1040 (-567)) (-147))) (-5 *1 (-573 *4)))))
+(((*1 *1 *1) (-12 (-5 *1 (-678 *2)) (-4 *2 (-851))))
+ ((*1 *1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-851))))
+ ((*1 *1 *1) (-12 (-5 *1 (-895 *2)) (-4 *2 (-851))))
((*1 *1 *1)
- (-12 (-4 *1 (-1259 *2)) (-4 *2 (-1051)) (-4 *2 (-38 (-410 (-567))))))
+ (|partial| -12 (-4 *1 (-1212 *2 *3 *4 *5)) (-4 *2 (-559))
+ (-4 *3 (-794)) (-4 *4 (-851)) (-4 *5 (-1067 *2 *3 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1264 *4)) (-14 *4 (-1178)) (-5 *1 (-1260 *3 *4 *5))
- (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)) (-14 *5 *3))))
+ (-12 (-5 *2 (-772)) (-4 *1 (-1257 *3)) (-4 *3 (-1219))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1219)))))
+(((*1 *1 *2 *3 *4)
+ (-12
+ (-5 *3
+ (-645
+ (-2 (|:| |scalar| (-410 (-567))) (|:| |coeff| (-1175 *2))
+ (|:| |logand| (-1175 *2)))))
+ (-5 *4 (-645 (-2 (|:| |integrand| *2) (|:| |intvar| *2))))
+ (-4 *2 (-365)) (-5 *1 (-588 *2)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-645 (-945 (-225))))) (-5 *2 (-645 (-225)))
+ (-5 *1 (-471)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834 *3)) (-4 *3 (-1102))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-844 *3)) (-4 *3 (-1102)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1102)) (-4 *5 (-1102))
+ (-4 *6 (-1102)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-685 *4 *5 *6)))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381)))
- (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1177))))
- (-5 *1 (-1177)))))
-(((*1 *2 *1) (-12 (|has| *1 (-6 -4418)) (-4 *1 (-34)) (-5 *2 (-772))))
+ (-3 (|:| I (-317 (-567))) (|:| -3888 (-317 (-381)))
+ (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1178))))
+ (-5 *1 (-1178)))))
+(((*1 *2 *3 *4 *3 *4 *4 *4)
+ (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *2 (-1037))
+ (-5 *1 (-757)))))
+(((*1 *2 *1) (-12 (|has| *1 (-6 -4422)) (-4 *1 (-34)) (-5 *2 (-772))))
((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-250))))
((*1 *2 *1)
(-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102))
(-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-567))))
((*1 *2 *1)
- (-12 (-5 *2 (-772)) (-5 *1 (-1291 *3 *4)) (-4 *3 (-1051))
+ (-12 (-5 *2 (-772)) (-5 *1 (-1292 *3 *4)) (-4 *3 (-1051))
(-4 *4 (-847)))))
-(((*1 *1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1178)) (-5 *3 (-112)) (-5 *1 (-894 *4))
- (-4 *4 (-1102)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-823)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-580))))
- ((*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-580)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-174 *3)) (-4 *3 (-308))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-675 *3)) (-4 *3 (-1218))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-772)) (-4 *1 (-741 *3 *4)) (-4 *3 (-1051))
- (-4 *4 (-851))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-870 *3)) (-5 *2 (-567))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-645 *3)) (-4 *1 (-982 *3)) (-4 *3 (-1051))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-645 *1)) (-5 *3 (-645 *7)) (-4 *1 (-1073 *4 *5 *6 *7))
- (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
- (-4 *7 (-1067 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455))
- (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *1))
- (-4 *1 (-1073 *4 *5 *6 *7))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-645 *1)) (-4 *1 (-1073 *4 *5 *6 *3)) (-4 *4 (-455))
- (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
- (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-645 *1))
- (-4 *1 (-1073 *4 *5 *6 *3))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1211 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794))
- (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1246 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-793)))))
+(((*1 *2 *3 *4 *3 *4 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037))
+ (-5 *1 (-757)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1179)) (-4 *5 (-615 (-894 (-567))))
+ (-4 *5 (-888 (-567)))
+ (-4 *5 (-13 (-1040 (-567)) (-455) (-640 (-567))))
+ (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
+ (-5 *1 (-570 *5 *3)) (-4 *3 (-630))
+ (-4 *3 (-13 (-27) (-1204) (-433 *5))))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1175 *7))
+ (-4 *5 (-1051)) (-4 *7 (-1051)) (-4 *2 (-1245 *5))
+ (-5 *1 (-504 *5 *2 *6 *7)) (-4 *6 (-1245 *2)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-14 *4 (-645 (-1179))) (-4 *2 (-172))
+ (-4 *3 (-238 (-2423 *4) (-772)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -3779 *5) (|:| -3468 *3))
+ (-2 (|:| -3779 *5) (|:| -3468 *3))))
+ (-5 *1 (-464 *4 *2 *5 *3 *6 *7)) (-4 *5 (-851))
+ (-4 *7 (-951 *2 *3 (-865 *4))))))
(((*1 *2 *1)
(-12 (-4 *1 (-605 *3 *2)) (-4 *3 (-1102)) (-4 *3 (-851))
- (-4 *2 (-1218))))
+ (-4 *2 (-1219))))
((*1 *2 *1) (-12 (-5 *1 (-678 *2)) (-4 *2 (-851))))
((*1 *2 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-851))))
((*1 *2 *1)
- (-12 (-4 *2 (-1218)) (-5 *1 (-874 *2 *3)) (-4 *3 (-1218))))
+ (-12 (-4 *2 (-1219)) (-5 *1 (-874 *2 *3)) (-4 *3 (-1219))))
((*1 *2 *1) (-12 (-5 *2 (-673 *3)) (-5 *1 (-895 *3)) (-4 *3 (-851))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1211 *3 *4 *5 *2)) (-4 *3 (-559))
+ (|partial| -12 (-4 *1 (-1212 *3 *4 *5 *2)) (-4 *3 (-559))
(-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-772)) (-4 *1 (-1256 *3)) (-4 *3 (-1218))))
- ((*1 *2 *1) (-12 (-4 *1 (-1256 *2)) (-4 *2 (-1218)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1178)))))
-(((*1 *2 *2) (|partial| -12 (-5 *1 (-589 *2)) (-4 *2 (-548)))))
-(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-556)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1174 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))))
-(((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *5 (-112))
- (-5 *2 (-1037)) (-5 *1 (-746)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-863))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-532)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1230 *3 *2)) (-4 *3 (-1051))
- (-4 *2 (-1259 *3)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-1 (-588 *3) *3 (-1178)))
- (-5 *6
- (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3
- (-1178)))
- (-4 *3 (-285)) (-4 *3 (-630)) (-4 *3 (-1040 *4)) (-4 *3 (-433 *7))
- (-5 *4 (-1178)) (-4 *7 (-615 (-894 (-567)))) (-4 *7 (-455))
- (-4 *7 (-888 (-567))) (-4 *7 (-1102)) (-5 *2 (-588 *3))
- (-5 *1 (-576 *7 *3)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-772)) (-4 *4 (-351)) (-5 *1 (-216 *4 *2))
- (-4 *2 (-1244 *4)))))
+ (-12 (-5 *2 (-772)) (-4 *1 (-1257 *3)) (-4 *3 (-1219))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1219)))))
+(((*1 *2 *1 *3 *3 *4)
+ (-12 (-5 *3 (-1 (-863) (-863) (-863))) (-5 *4 (-567)) (-5 *2 (-863))
+ (-5 *1 (-650 *5 *6 *7)) (-4 *5 (-1102)) (-4 *6 (-23)) (-14 *7 *6)))
+ ((*1 *2 *1 *2)
+ (-12 (-5 *2 (-863)) (-5 *1 (-855 *3 *4 *5)) (-4 *3 (-1051))
+ (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-863))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-863))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-863))))
+ ((*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863))))
+ ((*1 *2 *1 *2)
+ (-12 (-5 *2 (-863)) (-5 *1 (-1175 *3)) (-4 *3 (-1051)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-645 (-2 (|:| -3802 *4) (|:| -3729 (-567)))))
- (-4 *4 (-1102)) (-5 *2 (-1 *4)) (-5 *1 (-1019 *4)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-978 *3 *4 *2 *5)) (-4 *3 (-1051)) (-4 *4 (-794))
- (-4 *2 (-851)) (-4 *5 (-1067 *3 *4 *2)))))
+ (-12 (-5 *2 (-2 (|:| -2413 (-567)) (|:| -2158 (-645 *3))))
+ (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567))))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-923)) (-5 *2 (-1274)) (-5 *1 (-1270))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-923)) (-5 *2 (-1274)) (-5 *1 (-1271)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-645 (-645 (-645 *4)))) (-5 *2 (-645 (-645 *4)))
- (-5 *1 (-1189 *4)) (-4 *4 (-851)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-851))
- (-4 *5 (-267 *4)) (-4 *6 (-794)) (-5 *2 (-645 *4)))))
-(((*1 *1 *2) (-12 (-5 *1 (-1204 *2)) (-4 *2 (-1102))))
+ (-12 (-5 *3 (-645 *2)) (-4 *2 (-433 *4)) (-5 *1 (-158 *4 *2))
+ (-4 *4 (-559)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-863))))
+ ((*1 *1 *1) (-5 *1 (-863))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))
+ ((*1 *1 *1 *1) (-5 *1 (-863))))
+(((*1 *2 *1 *2)
+ (-12 (-4 *1 (-366 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1102)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 *9)) (-4 *8 (-1067 *5 *6 *7))
+ (-4 *9 (-1073 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794))
+ (-4 *7 (-851)) (-5 *2 (-772)) (-5 *1 (-1071 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 *9)) (-4 *8 (-1067 *5 *6 *7))
+ (-4 *9 (-1111 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794))
+ (-4 *7 (-851)) (-5 *2 (-772)) (-5 *1 (-1147 *5 *6 *7 *8 *9)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *7 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-559))
+ (-4 *8 (-951 *7 *5 *6))
+ (-5 *2 (-2 (|:| -3468 (-772)) (|:| -3705 *3) (|:| |radicand| *3)))
+ (-5 *1 (-955 *5 *6 *7 *8 *3)) (-5 *4 (-772))
+ (-4 *3
+ (-13 (-365)
+ (-10 -8 (-15 -4129 ($ *8)) (-15 -1447 (*8 $)) (-15 -1462 (*8 $))))))))
+(((*1 *1 *2) (-12 (-5 *2 (-645 (-1096 (-410 (-567))))) (-5 *1 (-264))))
+ ((*1 *1 *2) (-12 (-5 *2 (-645 (-1096 (-381)))) (-5 *1 (-264)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559))
+ (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-979 *3 *4 *5 *6)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-690 *3))
+ (-4 *3 (-13 (-308) (-10 -8 (-15 -3597 ((-421 $) $)))))
+ (-4 *4 (-1245 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-412 *3 *4)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-772)) (-4 *1 (-1245 *4)) (-4 *4 (-1051))
+ (-5 *2 (-1269 *4)))))
+(((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-894 *4)) (-4 *4 (-1102)) (-5 *2 (-112))
+ (-5 *1 (-891 *4 *5)) (-4 *5 (-1102))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-894 *5)) (-4 *5 (-1102)) (-5 *2 (-112))
+ (-5 *1 (-892 *5 *3)) (-4 *3 (-1219))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 *6)) (-5 *4 (-894 *5)) (-4 *5 (-1102))
+ (-4 *6 (-1219)) (-5 *2 (-112)) (-5 *1 (-892 *5 *6)))))
+(((*1 *1 *2) (-12 (-5 *1 (-1205 *2)) (-4 *2 (-1102))))
((*1 *1 *2)
- (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-5 *1 (-1204 *3))))
+ (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-5 *1 (-1205 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *3 (-645 (-1204 *2))) (-5 *1 (-1204 *2)) (-4 *2 (-1102)))))
+ (-12 (-5 *3 (-645 (-1205 *2))) (-5 *1 (-1205 *2)) (-4 *2 (-1102)))))
(((*1 *1) (-5 *1 (-581)))
- ((*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-864))))
- ((*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1273)) (-5 *1 (-864))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-864))))
+ ((*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1274)) (-5 *1 (-864))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1160)) (-5 *4 (-863)) (-5 *2 (-1273)) (-5 *1 (-864))))
+ (-12 (-5 *3 (-1161)) (-5 *4 (-863)) (-5 *2 (-1274)) (-5 *1 (-864))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-567)) (-5 *2 (-1273)) (-5 *1 (-1158 *4))
- (-4 *4 (-1102)) (-4 *4 (-1218)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-690 *6)) (-5 *5 (-1 (-421 (-1174 *6)) (-1174 *6)))
- (-4 *6 (-365))
- (-5 *2
- (-645
- (-2 (|:| |outval| *7) (|:| |outmult| (-567))
- (|:| |outvect| (-645 (-690 *7))))))
- (-5 *1 (-535 *6 *7 *4)) (-4 *7 (-365)) (-4 *4 (-13 (-365) (-849))))))
+ (-12 (-5 *3 (-567)) (-5 *2 (-1274)) (-5 *1 (-1159 *4))
+ (-4 *4 (-1102)) (-4 *4 (-1219)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-455)) (-4 *4 (-559))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2562 *4)))
+ (-5 *1 (-971 *4 *3)) (-4 *3 (-1245 *4)))))
(((*1 *1 *1 *2)
(|partial| -12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-559))))
((*1 *1 *1 *2)
@@ -12149,71 +12144,80 @@
(|partial| -12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-559))))
((*1 *1 *1 *1) (-5 *1 (-863)))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1268 *4)) (-4 *4 (-1244 *3)) (-4 *3 (-559))
+ (-12 (-5 *2 (-1269 *4)) (-4 *4 (-1245 *3)) (-4 *3 (-559))
(-5 *1 (-971 *3 *4))))
((*1 *1 *1 *2)
(|partial| -12 (-4 *1 (-1055 *3 *4 *2 *5 *6)) (-4 *2 (-1051))
(-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-559))))
((*1 *2 *2 *2)
- (|partial| -12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-5 *1 (-1162 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-645 (-317 (-225)))) (-5 *1 (-268)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-891 *4 *5)) (-5 *3 (-891 *4 *6)) (-4 *4 (-1102))
- (-4 *5 (-1102)) (-4 *6 (-667 *5)) (-5 *1 (-887 *4 *5 *6)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-559)) (-5 *1 (-41 *3 *2))
- (-4 *2
- (-13 (-365) (-303)
- (-10 -8 (-15 -1448 ((-1127 *3 (-613 $)) $))
- (-15 -1460 ((-1127 *3 (-613 $)) $))
- (-15 -4132 ($ (-1127 *3 (-613 $))))))))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-225)) (-5 *3 (-772)) (-5 *1 (-226))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-169 (-225))) (-5 *3 (-772)) (-5 *1 (-226))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1141))))
-(((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-281)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1211 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794))
- (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-645 *5)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -3102 *1) (|:| -4194 *1))) (-4 *1 (-308))))
- ((*1 *2 *1 *1)
- (|partial| -12 (-4 *3 (-1102))
- (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-388 *3))))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -3102 (-772)) (|:| -4194 (-772))))
- (-5 *1 (-772))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| -3102 *3) (|:| -4194 *3)))
- (-5 *1 (-971 *4 *3)) (-4 *3 (-1244 *4)))))
-(((*1 *2 *3 *4 *5 *6 *7 *8 *9)
- (|partial| -12 (-5 *4 (-645 *11)) (-5 *5 (-645 (-1174 *9)))
- (-5 *6 (-645 *9)) (-5 *7 (-645 *12)) (-5 *8 (-645 (-772)))
- (-4 *11 (-851)) (-4 *9 (-308)) (-4 *12 (-951 *9 *10 *11))
- (-4 *10 (-794)) (-5 *2 (-645 (-1174 *12)))
- (-5 *1 (-708 *10 *11 *9 *12)) (-5 *3 (-1174 *12)))))
+ (|partial| -12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-5 *1 (-1163 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-365)) (-4 *5 (-559))
+ (-5 *2
+ (-2 (|:| |minor| (-645 (-923))) (|:| -3855 *3)
+ (|:| |minors| (-645 (-645 (-923)))) (|:| |ops| (-645 *3))))
+ (-5 *1 (-90 *5 *3)) (-5 *4 (-923)) (-4 *3 (-657 *5)))))
+(((*1 *2 *3 *4 *3 *5 *3)
+ (-12 (-5 *4 (-690 (-225))) (-5 *5 (-690 (-567))) (-5 *3 (-567))
+ (-5 *2 (-1037)) (-5 *1 (-755)))))
+(((*1 *2 *3 *4 *2 *2 *5)
+ (|partial| -12 (-5 *2 (-844 *4)) (-5 *3 (-613 *4)) (-5 *5 (-112))
+ (-4 *4 (-13 (-1204) (-29 *6)))
+ (-4 *6 (-13 (-455) (-1040 (-567)) (-640 (-567))))
+ (-5 *1 (-224 *6 *4)))))
+(((*1 *1) (-5 *1 (-141))))
+(((*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-281)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-645 *4)) (-4 *4 (-851)) (-5 *2 (-645 (-665 *4 *5)))
- (-5 *1 (-628 *4 *5 *6)) (-4 *5 (-13 (-172) (-718 (-410 (-567)))))
- (-14 *6 (-923)))))
+ (-12 (-4 *4 (-1051))
+ (-4 *2 (-13 (-407) (-1040 *4) (-365) (-1204) (-285)))
+ (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1245 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-923))
+ (-5 *2
+ (-3 (-1175 *4)
+ (-1269 (-645 (-2 (|:| -3812 *4) (|:| -3779 (-1122)))))))
+ (-5 *1 (-348 *4)) (-4 *4 (-351)))))
+(((*1 *1) (-5 *1 (-581))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381))
+ (|:| |expense| (-381)) (|:| |accuracy| (-381))
+ (|:| |intermediateResults| (-381))))
+ (-5 *2 (-1037)) (-5 *1 (-306)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1244 (-48))))))
+ (-12 (-5 *3 (-1161)) (-4 *4 (-13 (-308) (-147)))
+ (-4 *5 (-13 (-851) (-615 (-1179)))) (-4 *6 (-794))
+ (-5 *2
+ (-645
+ (-2 (|:| |eqzro| (-645 *7)) (|:| |neqzro| (-645 *7))
+ (|:| |wcond| (-645 (-954 *4)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1269 (-410 (-954 *4))))
+ (|:| -2144 (-645 (-1269 (-410 (-954 *4))))))))))
+ (-5 *1 (-926 *4 *5 *6 *7)) (-4 *7 (-951 *4 *6 *5)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794))
+ (-4 *4 (-851)) (-4 *2 (-559)))))
(((*1 *2 *1 *1)
(|partial| -12 (-5 *2 (-2 (|:| |lm| (-820 *3)) (|:| |rm| (-820 *3))))
(-5 *1 (-820 *3)) (-4 *3 (-851))))
((*1 *1 *1 *1) (-5 *1 (-863))))
-(((*1 *2 *1) (-12 (-5 *2 (-1158 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1178)) (-5 *3 (-381)) (-5 *1 (-1065)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-645 *8)) (-5 *3 (-1 (-112) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-559))
- (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-979 *5 *6 *7 *8)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-645 *2)) (-4 *2 (-951 *4 *5 *6)) (-4 *4 (-365))
+ (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-5 *1 (-453 *4 *5 *6 *2))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-365))
+ (-5 *2
+ (-2 (|:| R (-690 *6)) (|:| A (-690 *6)) (|:| |Ainv| (-690 *6))))
+ (-5 *1 (-980 *6)) (-5 *3 (-690 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-317 (-381))) (-5 *2 (-317 (-225))) (-5 *1 (-306)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-421 (-1175 (-567)))) (-5 *1 (-191)) (-5 *3 (-567)))))
(((*1 *2)
- (-12 (-14 *4 *2) (-4 *5 (-1218)) (-5 *2 (-772))
+ (-12 (-14 *4 *2) (-4 *5 (-1219)) (-5 *2 (-772))
(-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5))))
((*1 *2 *1)
(-12 (-4 *1 (-324 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-131))
@@ -12231,133 +12235,94 @@
(-12 (-5 *2 (-772)) (-5 *1 (-650 *3 *4 *5)) (-4 *3 (-1102))
(-4 *4 (-23)) (-14 *5 *4)))
((*1 *2)
- (-12 (-4 *4 (-172)) (-4 *5 (-1244 *4)) (-5 *2 (-772))
+ (-12 (-4 *4 (-172)) (-4 *5 (-1245 *4)) (-5 *2 (-772))
(-5 *1 (-724 *3 *4 *5)) (-4 *3 (-725 *4 *5))))
((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1008))))
((*1 *2 *1)
(-12 (-4 *2 (-13 (-849) (-365))) (-5 *1 (-1063 *2 *3))
- (-4 *3 (-1244 *2)))))
-(((*1 *2 *2 *3)
- (-12
- (-5 *2
- (-2 (|:| |partsol| (-1268 (-410 (-954 *4))))
- (|:| -2623 (-645 (-1268 (-410 (-954 *4)))))))
- (-5 *3 (-645 *7)) (-4 *4 (-13 (-308) (-147)))
- (-4 *7 (-951 *4 *6 *5)) (-4 *5 (-13 (-851) (-615 (-1178))))
- (-4 *6 (-794)) (-5 *1 (-926 *4 *5 *6 *7)))))
+ (-4 *3 (-1245 *2)))))
+(((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-645 (-613 *2))) (-5 *4 (-1179))
+ (-4 *2 (-13 (-27) (-1204) (-433 *5)))
+ (-4 *5 (-13 (-559) (-1040 (-567)) (-640 (-567))))
+ (-5 *1 (-278 *5 *2)))))
+(((*1 *1) (-5 *1 (-141))))
(((*1 *2 *3)
- (-12 (-5 *3 (-645 (-613 *5))) (-4 *4 (-1102)) (-5 *2 (-613 *5))
- (-5 *1 (-576 *4 *5)) (-4 *5 (-433 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-929)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-363 (-114))) (-4 *2 (-1051)) (-5 *1 (-715 *2 *4))
- (-4 *4 (-649 *2))))
- ((*1 *1 *2 *3)
- (-12 (-5 *3 (-363 (-114))) (-5 *1 (-837 *2)) (-4 *2 (-1051)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-645 (-507 *3 *4 *5 *6))) (-4 *3 (-365)) (-4 *4 (-794))
- (-4 *5 (-851)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-365)) (-4 *3 (-794)) (-4 *4 (-851))
- (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-951 *2 *3 *4))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-645 *1)) (-4 *1 (-1073 *4 *5 *6 *3)) (-4 *4 (-455))
- (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-645 *1)) (-5 *3 (-645 *7)) (-4 *1 (-1073 *4 *5 *6 *7))
- (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
- (-4 *7 (-1067 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455))
- (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *1))
- (-4 *1 (-1073 *4 *5 *6 *7))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
- (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-645 *1))
- (-4 *1 (-1073 *4 *5 *6 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1102)))))
-(((*1 *2 *3 *2)
- (-12
- (-5 *2
- (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2172 (-225))
- (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225))
- (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))
- (-5 *3 (-645 (-264))) (-5 *1 (-262))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2172 (-225))
- (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225))
- (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))
- (-5 *1 (-264))))
- ((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-381)) (-5 *2 (-1273)) (-5 *1 (-1270))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-381)) (-5 *2 (-1273)) (-5 *1 (-1270))))
- ((*1 *2 *1 *3 *3 *4 *4 *4)
- (-12 (-5 *3 (-567)) (-5 *4 (-381)) (-5 *2 (-1273)) (-5 *1 (-1270))))
- ((*1 *2 *1 *3)
- (-12
- (-5 *3
- (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2172 (-225))
- (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225))
- (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))
- (-5 *2 (-1273)) (-5 *1 (-1270))))
- ((*1 *2 *1)
- (-12
- (-5 *2
- (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2172 (-225))
- (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225))
- (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))
- (-5 *1 (-1270))))
- ((*1 *2 *1 *3 *3 *3 *3 *3)
- (-12 (-5 *3 (-381)) (-5 *2 (-1273)) (-5 *1 (-1270)))))
-(((*1 *2 *3 *4 *5 *6 *2 *7 *8)
- (|partial| -12 (-5 *2 (-645 (-1174 *11))) (-5 *3 (-1174 *11))
- (-5 *4 (-645 *10)) (-5 *5 (-645 *8)) (-5 *6 (-645 (-772)))
- (-5 *7 (-1268 (-645 (-1174 *8)))) (-4 *10 (-851))
- (-4 *8 (-308)) (-4 *11 (-951 *8 *9 *10)) (-4 *9 (-794))
- (-5 *1 (-708 *9 *10 *8 *11)))))
-(((*1 *1 *1) (-4 *1 (-630)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-559)) (-5 *1 (-631 *3 *2))
- (-4 *2 (-13 (-433 *3) (-1004) (-1203))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-567)) (|has| *1 (-6 -4419)) (-4 *1 (-1256 *3))
- (-4 *3 (-1218)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-645 *6)) (-4 *6 (-951 *3 *4 *5)) (-4 *3 (-365))
- (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-507 *3 *4 *5 *6)))))
+ (-12 (-4 *4 (-559)) (-4 *5 (-994 *4))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-142 *4 *5 *3))
+ (-4 *3 (-375 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-559)) (-4 *5 (-994 *4))
+ (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4)))
+ (-5 *1 (-506 *4 *5 *6 *3)) (-4 *6 (-375 *4)) (-4 *3 (-375 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-690 *5)) (-4 *5 (-994 *4)) (-4 *4 (-559))
+ (-5 *2 (-2 (|:| |num| (-690 *4)) (|:| |den| *4)))
+ (-5 *1 (-694 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-13 (-365) (-147) (-1040 (-410 (-567)))))
+ (-4 *6 (-1245 *5))
+ (-5 *2 (-2 (|:| -3855 *7) (|:| |rh| (-645 (-410 *6)))))
+ (-5 *1 (-808 *5 *6 *7 *3)) (-5 *4 (-645 (-410 *6)))
+ (-4 *7 (-657 *6)) (-4 *3 (-657 (-410 *6)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-559)) (-4 *5 (-994 *4))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1238 *4 *5 *3))
+ (-4 *3 (-1245 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1204))))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225)))
- (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
- (-5 *2 (-1158 (-225))) (-5 *1 (-192))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-317 (-225))) (-5 *4 (-645 (-1178)))
- (-5 *5 (-1096 (-844 (-225)))) (-5 *2 (-1158 (-225))) (-5 *1 (-301))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1268 (-317 (-225)))) (-5 *4 (-645 (-1178)))
- (-5 *5 (-1096 (-844 (-225)))) (-5 *2 (-1158 (-225))) (-5 *1 (-301)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))))
-(((*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1160)) (-5 *1 (-711)))))
+ (-12 (-5 *3 (-690 (-410 (-954 (-567)))))
+ (-5 *2 (-645 (-690 (-317 (-567))))) (-5 *1 (-1033)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-539)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-923))
- (-5 *2 (-1268 (-645 (-2 (|:| -3802 *4) (|:| -3768 (-1122))))))
- (-5 *1 (-348 *4)) (-4 *4 (-351)))))
+ (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1196 *4 *5))
+ (-4 *4 (-1102)) (-4 *5 (-1102)))))
+(((*1 *1 *1 *1) (|partial| -4 *1 (-131))))
+(((*1 *2)
+ (-12 (-4 *4 (-1223)) (-4 *5 (-1245 *4)) (-4 *6 (-1245 (-410 *5)))
+ (-5 *2 (-772)) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3))
+ (-4 *5 (-1245 (-410 *4))) (-5 *2 (-772))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-772)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1102)))))
+(((*1 *2 *1) (-12 (-5 *2 (-213 4 (-129))) (-5 *1 (-582)))))
+(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-645 *1)) (-4 *1 (-922)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-1223)) (-4 *5 (-1245 *4))
+ (-5 *2 (-2 (|:| |radicand| (-410 *5)) (|:| |deg| (-772))))
+ (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1245 (-410 *5))))))
+(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3)
+ (-12 (-5 *4 (-690 (-225))) (-5 *5 (-690 (-567))) (-5 *3 (-567))
+ (-5 *2 (-1037)) (-5 *1 (-757)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-4 *8 (-1067 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |val| (-645 *8))
+ (|:| |towers| (-645 (-1029 *5 *6 *7 *8)))))
+ (-5 *1 (-1029 *5 *6 *7 *8)) (-5 *3 (-645 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-4 *8 (-1067 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |val| (-645 *8))
+ (|:| |towers| (-645 (-1148 *5 *6 *7 *8)))))
+ (-5 *1 (-1148 *5 *6 *7 *8)) (-5 *3 (-645 *8)))))
(((*1 *1 *1 *1) (-4 *1 (-308))) ((*1 *1 *1 *1) (-5 *1 (-772)))
((*1 *1 *1 *1) (-5 *1 (-863))))
(((*1 *1 *1)
- (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-112)) (-5 *1 (-830)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-645 (-2 (|:| |integrand| *3) (|:| |intvar| *3))))
- (-5 *1 (-588 *3)) (-4 *3 (-365)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-945 *3)) (-4 *3 (-13 (-365) (-1203) (-1004)))
- (-5 *1 (-176 *3)))))
+ (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794))
+ (-4 *4 (-851)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1051)) (-5 *2 (-112)) (-5 *1 (-447 *4 *3))
+ (-4 *3 (-1245 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-973)) (-5 *1 (-907 *3)) (-4 *3 (-1102)))))
(((*1 *2 *3 *4 *2)
(-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-649 *5)) (-4 *5 (-1051))
(-5 *1 (-53 *5 *2 *3)) (-4 *3 (-853 *5))))
@@ -12367,533 +12332,397 @@
((*1 *2 *3 *2 *2 *4 *5)
(-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1051))
(-5 *1 (-854 *2 *3)) (-4 *3 (-853 *2)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-645 *7)) (-4 *7 (-1073 *3 *4 *5 *6)) (-4 *3 (-455))
- (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5))
- (-5 *1 (-990 *3 *4 *5 *6 *7))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-645 *7)) (-4 *7 (-1073 *3 *4 *5 *6)) (-4 *3 (-455))
- (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5))
- (-5 *1 (-1109 *3 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-645
- (-2 (|:| -1954 (-772))
- (|:| |eqns|
- (-645
- (-2 (|:| |det| *7) (|:| |rows| (-645 (-567)))
- (|:| |cols| (-645 (-567))))))
- (|:| |fgb| (-645 *7)))))
- (-4 *7 (-951 *4 *6 *5)) (-4 *4 (-13 (-308) (-147)))
- (-4 *5 (-13 (-851) (-615 (-1178)))) (-4 *6 (-794)) (-5 *2 (-772))
- (-5 *1 (-926 *4 *5 *6 *7)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-1196)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-851)) (-5 *4 (-645 *6))
- (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-645 *4))))
- (-5 *1 (-1189 *6)) (-5 *5 (-645 *4)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-772)) (-5 *2 (-410 (-567))) (-5 *1 (-225))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-772)) (-5 *2 (-410 (-567))) (-5 *1 (-225))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-772)) (-5 *2 (-410 (-567))) (-5 *1 (-381))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-772)) (-5 *2 (-410 (-567))) (-5 *1 (-381)))))
+(((*1 *1) (-5 *1 (-824))))
+(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-923)) (-5 *4 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1270)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-645 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5))
+ (-14 *3 (-567)) (-14 *4 (-772)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-532))))
+ ((*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-532)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1167 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1051)))))
(((*1 *1 *1 *1) (-4 *1 (-308))) ((*1 *1 *1 *1) (-5 *1 (-772)))
((*1 *1 *1 *1) (-5 *1 (-863))))
-(((*1 *2 *3)
- (-12 (-14 *4 (-645 (-1178))) (-4 *5 (-455))
- (-5 *2
- (-2 (|:| |glbase| (-645 (-247 *4 *5))) (|:| |glval| (-645 (-567)))))
- (-5 *1 (-632 *4 *5)) (-5 *3 (-645 (-247 *4 *5))))))
-(((*1 *2) (-12 (-5 *2 (-645 (-923))) (-5 *1 (-1271))))
- ((*1 *2 *2) (-12 (-5 *2 (-645 (-923))) (-5 *1 (-1271)))))
-(((*1 *2 *3) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-564)) (-5 *3 (-567))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1174 (-410 (-567)))) (-5 *1 (-944)) (-5 *3 (-567)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2))
- (-4 *2 (-13 (-433 *3) (-1203))))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-303)) (-5 *3 (-1179)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-303)) (-5 *2 (-112)))))
+(((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-851)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-772)) (-4 *6 (-1102)) (-4 *3 (-902 *6))
+ (-5 *2 (-690 *3)) (-5 *1 (-693 *6 *3 *7 *4)) (-4 *7 (-375 *3))
+ (-4 *4 (-13 (-375 *6) (-10 -7 (-6 -4422)))))))
(((*1 *1 *1)
(-12 (-4 *1 (-254 *2 *3 *4 *5)) (-4 *2 (-1051)) (-4 *3 (-851))
(-4 *4 (-267 *3)) (-4 *5 (-794)))))
(((*1 *1 *1 *1)
- (-12 (-5 *1 (-645 *2)) (-4 *2 (-1102)) (-4 *2 (-1218)))))
-(((*1 *1 *2) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-490)))))
-(((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-851)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2774 *3)))
- (-5 *1 (-971 *4 *3)) (-4 *3 (-1244 *4)))))
-(((*1 *2 *1)
+ (-12 (-5 *1 (-645 *2)) (-4 *2 (-1102)) (-4 *2 (-1219)))))
+(((*1 *2 *3 *4 *5 *6 *7 *8 *9)
+ (|partial| -12 (-5 *4 (-645 *11)) (-5 *5 (-645 (-1175 *9)))
+ (-5 *6 (-645 *9)) (-5 *7 (-645 *12)) (-5 *8 (-645 (-772)))
+ (-4 *11 (-851)) (-4 *9 (-308)) (-4 *12 (-951 *9 *10 *11))
+ (-4 *10 (-794)) (-5 *2 (-645 (-1175 *12)))
+ (-5 *1 (-708 *10 *11 *9 *12)) (-5 *3 (-1175 *12)))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *5 (-772)) (-4 *6 (-1102)) (-4 *7 (-902 *6))
+ (-5 *2 (-690 *7)) (-5 *1 (-693 *6 *7 *3 *4)) (-4 *3 (-375 *7))
+ (-4 *4 (-13 (-375 *6) (-10 -7 (-6 -4422)))))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-1067 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794))
+ (-4 *2 (-851))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794))
+ (-4 *4 (-851)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863))))
+ ((*1 *2 *1)
(-12
(-5 *2
- (-645
- (-2
- (|:| -1795
- (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225)))
- (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
- (|:| -4237
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1158 (-225)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -1604
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite|
- "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated"))))))))
- (-5 *1 (-562))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-605 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1218))
- (-5 *2 (-645 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-183 (-249))) (-5 *1 (-248)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-410 (-567))) (-5 *1 (-597 *3)) (-4 *3 (-38 *2))
- (-4 *3 (-1051)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))))
+ (-2 (|:| -3005 (-645 (-863))) (|:| -1325 (-645 (-863)))
+ (|:| |presup| (-645 (-863))) (|:| -2875 (-645 (-863)))
+ (|:| |args| (-645 (-863)))))
+ (-5 *1 (-1179)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))))
+ (-12 (-5 *3 (-645 (-1 (-112) *8))) (-4 *8 (-1067 *5 *6 *7))
+ (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-5 *2 (-2 (|:| |goodPols| (-645 *8)) (|:| |badPols| (-645 *8))))
+ (-5 *1 (-979 *5 *6 *7 *8)) (-5 *4 (-645 *8)))))
+(((*1 *2)
+ (-12 (-5 *2 (-410 (-954 *3))) (-5 *1 (-456 *3 *4 *5 *6))
+ (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923))
+ (-14 *5 (-645 (-1179))) (-14 *6 (-1269 (-690 *3))))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1212 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5)))))
+(((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1008)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-696 *3)) (-4 *3 (-1102))
- (-5 *2 (-645 (-2 (|:| -4237 *3) (|:| -3439 (-772))))))))
+ (-12 (-4 *2 (-1102)) (-5 *1 (-966 *3 *2)) (-4 *3 (-1102)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))))
(((*1 *2) (-12 (-5 *2 (-844 (-567))) (-5 *1 (-537))))
((*1 *1) (-12 (-5 *1 (-844 *2)) (-4 *2 (-1102)))))
(((*1 *1 *1 *1)
- (-12 (-5 *1 (-645 *2)) (-4 *2 (-1102)) (-4 *2 (-1218)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-548))
- (-5 *2 (-410 (-567)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-410 (-567))) (-5 *1 (-421 *3)) (-4 *3 (-548))
- (-4 *3 (-559))))
- ((*1 *2 *1) (-12 (-4 *1 (-548)) (-5 *2 (-410 (-567)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-798 *3)) (-4 *3 (-172)) (-4 *3 (-548))
- (-5 *2 (-410 (-567)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-410 (-567))) (-5 *1 (-834 *3)) (-4 *3 (-548))
- (-4 *3 (-1102))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-410 (-567))) (-5 *1 (-844 *3)) (-4 *3 (-548))
- (-4 *3 (-1102))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-999 *3)) (-4 *3 (-172)) (-4 *3 (-548))
- (-5 *2 (-410 (-567)))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-410 (-567))) (-5 *1 (-1010 *3)) (-4 *3 (-1040 *2)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-690 (-169 (-410 (-567))))) (-5 *2 (-645 (-169 *4)))
- (-5 *1 (-765 *4)) (-4 *4 (-13 (-365) (-849))))))
+ (-12 (-5 *1 (-645 *2)) (-4 *2 (-1102)) (-4 *2 (-1219)))))
+(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3)
+ (-12 (-5 *6 (-645 (-112))) (-5 *7 (-690 (-225)))
+ (-5 *8 (-690 (-567))) (-5 *3 (-567)) (-5 *4 (-225)) (-5 *5 (-112))
+ (-5 *2 (-1037)) (-5 *1 (-755)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851))
- (-4 *7 (-1067 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-645 *7)) (|:| |badPols| (-645 *7))))
- (-5 *1 (-979 *4 *5 *6 *7)) (-5 *3 (-645 *7)))))
-(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))))
+ (|partial| -12 (-5 *3 (-1269 *5)) (-4 *5 (-640 *4)) (-4 *4 (-559))
+ (-5 *2 (-1269 *4)) (-5 *1 (-639 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1161)) (-5 *2 (-567)) (-5 *1 (-1201 *4))
+ (-4 *4 (-1051)))))
+(((*1 *2 *1) (-12 (-4 *1 (-836 *3)) (-4 *3 (-1102)) (-5 *2 (-55)))))
(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-567)) (-5 *3 (-923)) (-4 *1 (-407))))
((*1 *1 *2 *2) (-12 (-5 *2 (-567)) (-4 *1 (-407))))
((*1 *2 *1)
(-12 (-4 *1 (-1105 *3 *4 *5 *2 *6)) (-4 *3 (-1102)) (-4 *4 (-1102))
(-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *2 (-1102)))))
-(((*1 *2)
- (-12 (-5 *2 (-960 (-1122))) (-5 *1 (-345 *3 *4)) (-14 *3 (-923))
- (-14 *4 (-923))))
- ((*1 *2)
- (-12 (-5 *2 (-960 (-1122))) (-5 *1 (-346 *3 *4)) (-4 *3 (-351))
- (-14 *4 (-1174 *3))))
- ((*1 *2)
- (-12 (-5 *2 (-960 (-1122))) (-5 *1 (-347 *3 *4)) (-4 *3 (-351))
- (-14 *4 (-923)))))
-(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-331))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-331)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1051))
+ (-4 *2 (-13 (-407) (-1040 *4) (-365) (-1204) (-285)))
+ (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1245 *4))))
+ ((*1 *1 *1) (-4 *1 (-548)))
+ ((*1 *2 *1) (-12 (-5 *2 (-923)) (-5 *1 (-673 *3)) (-4 *3 (-851))))
+ ((*1 *2 *1) (-12 (-5 *2 (-923)) (-5 *1 (-678 *3)) (-4 *3 (-851))))
+ ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-820 *3)) (-4 *3 (-851))))
+ ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-895 *3)) (-4 *3 (-851))))
+ ((*1 *2 *1) (-12 (-4 *1 (-997 *3)) (-4 *3 (-1219)) (-5 *2 (-772))))
+ ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1216 *3)) (-4 *3 (-1219))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1219)) (-4 *2 (-1004))
+ (-4 *2 (-1051)))))
+(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-331))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-331)))))
(((*1 *1 *2 *3)
- (-12 (-5 *3 (-645 (-1178))) (-5 *2 (-1178)) (-5 *1 (-331)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-559)) (-5 *1 (-971 *3 *2)) (-4 *2 (-1244 *3))))
- ((*1 *1 *1 *1)
+ (-12 (-5 *3 (-645 (-1179))) (-5 *2 (-1179)) (-5 *1 (-331)))))
+(((*1 *2 *3 *4 *2 *5 *6)
+ (-12
+ (-5 *5
+ (-2 (|:| |done| (-645 *11))
+ (|:| |todo| (-645 (-2 (|:| |val| *3) (|:| -2575 *11))))))
+ (-5 *6 (-772))
+ (-5 *2 (-645 (-2 (|:| |val| (-645 *10)) (|:| -2575 *11))))
+ (-5 *3 (-645 *10)) (-5 *4 (-645 *11)) (-4 *10 (-1067 *7 *8 *9))
+ (-4 *11 (-1073 *7 *8 *9 *10)) (-4 *7 (-455)) (-4 *8 (-794))
+ (-4 *9 (-851)) (-5 *1 (-1071 *7 *8 *9 *10 *11))))
+ ((*1 *2 *3 *4 *2 *5 *6)
+ (-12
+ (-5 *5
+ (-2 (|:| |done| (-645 *11))
+ (|:| |todo| (-645 (-2 (|:| |val| *3) (|:| -2575 *11))))))
+ (-5 *6 (-772))
+ (-5 *2 (-645 (-2 (|:| |val| (-645 *10)) (|:| -2575 *11))))
+ (-5 *3 (-645 *10)) (-5 *4 (-645 *11)) (-4 *10 (-1067 *7 *8 *9))
+ (-4 *11 (-1111 *7 *8 *9 *10)) (-4 *7 (-455)) (-4 *8 (-794))
+ (-4 *9 (-851)) (-5 *1 (-1147 *7 *8 *9 *10 *11)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-923)) (-5 *3 (-645 (-264))) (-5 *1 (-262))))
+ ((*1 *1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-264)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919))))
+ ((*1 *2) (-12 (-5 *2 (-906 (-567))) (-5 *1 (-919)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1102)) (-4 *5 (-1102))
+ (-5 *2 (-1 *5)) (-5 *1 (-684 *4 *5)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-559))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-971 *4 *3)) (-4 *3 (-1245 *4)))))
+(((*1 *1 *1)
(-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794))
- (-4 *4 (-851)) (-4 *2 (-559))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1051)) (-4 *2 (-559)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))))
-(((*1 *1)
- (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-567)) (-14 *3 (-772))
- (-4 *4 (-172)))))
-(((*1 *1 *1 *2 *3 *1)
- (-12 (-4 *1 (-327 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-793)))))
+ (-4 *4 (-851)) (-4 *2 (-455)))))
(((*1 *2) (-12 (-5 *2 (-844 (-567))) (-5 *1 (-537))))
((*1 *1) (-12 (-5 *1 (-844 *2)) (-4 *2 (-1102)))))
(((*1 *1 *1 *1)
- (-12 (-5 *1 (-645 *2)) (-4 *2 (-1102)) (-4 *2 (-1218)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-548))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-645 (-225))) (-5 *4 (-772)) (-5 *2 (-690 (-225)))
- (-5 *1 (-306)))))
-(((*1 *2 *1 *2)
- (-12 (|has| *1 (-6 -4419)) (-4 *1 (-1256 *2)) (-4 *2 (-1218)))))
+ (-12 (-5 *1 (-645 *2)) (-4 *2 (-1102)) (-4 *2 (-1219)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-5 *1 (-1002 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-381)) (-5 *1 (-97))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-381)) (-5 *1 (-97)))))
-(((*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-331)))))
-(((*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-822)))))
-(((*1 *2 *2) (-12 (-5 *1 (-589 *2)) (-4 *2 (-548)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-559)) (-5 *2 (-960 *3)) (-5 *1 (-1165 *4 *3))
- (-4 *3 (-1244 *4)))))
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1051)) (-4 *1 (-1245 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1004))))))
+(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-225)) (-5 *4 (-567))
+ (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3888))))
+ (-5 *2 (-1037)) (-5 *1 (-749)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1158 (-225))) (-5 *2 (-645 (-1160))) (-5 *1 (-192))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1158 (-225))) (-5 *2 (-645 (-1160))) (-5 *1 (-301))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1158 (-225))) (-5 *2 (-645 (-1160))) (-5 *1 (-306)))))
+ (-12 (-5 *3 (-1175 *7)) (-4 *7 (-951 *6 *4 *5)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-4 *6 (-1051)) (-5 *2 (-1175 *6))
+ (-5 *1 (-322 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-645 (-865 *5))) (-14 *5 (-645 (-1179))) (-4 *6 (-455))
+ (-5 *2
+ (-2 (|:| |dpolys| (-645 (-247 *5 *6)))
+ (|:| |coords| (-645 (-567)))))
+ (-5 *1 (-474 *5 *6 *7)) (-5 *3 (-645 (-247 *5 *6))) (-4 *7 (-455)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-4 *3 (-1067 *5 *6 *7))
+ (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2575 *4))))
+ (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1219)) (-5 *1 (-377 *4 *2))
+ (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4423)))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1204))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-559))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3554 *4)))
+ (-5 *1 (-971 *4 *3)) (-4 *3 (-1245 *4)))))
(((*1 *1 *1)
(-12 (-4 *1 (-1105 *2 *3 *4 *5 *6)) (-4 *2 (-1102)) (-4 *3 (-1102))
(-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1166 3 *3)) (-4 *3 (-1051)) (-4 *1 (-1136 *3))))
- ((*1 *1) (-12 (-4 *1 (-1136 *2)) (-4 *2 (-1051)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-645 *4)) (-4 *4 (-849)) (-4 *4 (-365)) (-5 *2 (-772))
- (-5 *1 (-947 *4 *5)) (-4 *5 (-1244 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1102)) (-4 *5 (-1102))
- (-4 *6 (-1102)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-685 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1160)) (-5 *2 (-567)) (-5 *1 (-1200 *4))
- (-4 *4 (-1051)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-851)) (-5 *1 (-1190 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-875))))
+ ((*1 *2 *3) (-12 (-5 *3 (-945 *2)) (-5 *1 (-984 *2)) (-4 *2 (-1051)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *2 (-567)) (-5 *1 (-1200 *3)) (-4 *3 (-1051)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1))
- (-4 *1 (-1067 *3 *4 *5)))))
-(((*1 *1 *1) (-4 *1 (-630)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-559)) (-5 *1 (-631 *3 *2))
- (-4 *2 (-13 (-433 *3) (-1004) (-1203))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-30))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-421 *4) *4)) (-4 *4 (-559)) (-5 *2 (-421 *4))
- (-5 *1 (-422 *4))))
- ((*1 *1 *1) (-5 *1 (-928)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1096 (-225))) (-5 *1 (-928))))
- ((*1 *1 *1) (-5 *1 (-929)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1096 (-225))) (-5 *1 (-929))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))))
- (-5 *4 (-410 (-567))) (-5 *1 (-1022 *3)) (-4 *3 (-1244 (-567)))))
- ((*1 *2 *3 *2 *2)
- (|partial| -12
- (-5 *2 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))))
- (-5 *1 (-1022 *3)) (-4 *3 (-1244 (-567)))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))))
- (-5 *4 (-410 (-567))) (-5 *1 (-1023 *3)) (-4 *3 (-1244 *4))))
- ((*1 *2 *3 *2 *2)
- (|partial| -12
- (-5 *2 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))))
- (-5 *1 (-1023 *3)) (-4 *3 (-1244 (-410 (-567))))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-13 (-849) (-365))) (-5 *1 (-1063 *2 *3))
- (-4 *3 (-1244 *2)))))
+ (-12 (-5 *3 (-645 (-1161))) (-5 *2 (-1161)) (-5 *1 (-192))))
+ ((*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))))
+(((*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-1175 *3)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-690 *3))
+ (-4 *3 (-13 (-308) (-10 -8 (-15 -3597 ((-421 $) $)))))
+ (-4 *4 (-1245 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-412 *3 *4))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-690 *3))
+ (-4 *3 (-13 (-308) (-10 -8 (-15 -3597 ((-421 $) $)))))
+ (-4 *4 (-1245 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-412 *3 *4)))))
+(((*1 *1 *1) (-4 *1 (-548))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-567)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1219))
+ (-4 *5 (-375 *4)) (-4 *3 (-375 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-645 (-175))) (-5 *1 (-1087)))))
(((*1 *2)
- (-12 (-4 *3 (-559)) (-5 *2 (-645 (-690 *3))) (-5 *1 (-43 *3 *4))
- (-4 *4 (-420 *3)))))
+ (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4))
+ (-4 *3 (-369 *4))))
+ ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-645 (-945 *4))) (-4 *1 (-1136 *4)) (-4 *4 (-1051))
+ (-5 *2 (-772)))))
(((*1 *1 *1)
(-12 (-4 *1 (-1105 *2 *3 *4 *5 *6)) (-4 *2 (-1102)) (-4 *3 (-1102))
(-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-645 (-1174 *7))) (-5 *3 (-1174 *7))
- (-4 *7 (-951 *4 *5 *6)) (-4 *4 (-911)) (-4 *5 (-794))
- (-4 *6 (-851)) (-5 *1 (-908 *4 *5 *6 *7))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-645 (-1174 *5))) (-5 *3 (-1174 *5))
- (-4 *5 (-1244 *4)) (-4 *4 (-911)) (-5 *1 (-909 *4 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-433 *3) (-1004))))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-421 *2)) (-4 *2 (-308)) (-5 *1 (-916 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-1178))
- (-4 *5 (-13 (-308) (-147))) (-5 *2 (-52)) (-5 *1 (-917 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-421 (-954 *6))) (-5 *5 (-1178)) (-5 *3 (-954 *6))
- (-4 *6 (-13 (-308) (-147))) (-5 *2 (-52)) (-5 *1 (-917 *6)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1178)) (-4 *4 (-559)) (-4 *4 (-1102))
- (-5 *1 (-576 *4 *2)) (-4 *2 (-433 *4)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-365) (-849)))
- (-5 *2 (-645 (-2 (|:| -3920 (-645 *3)) (|:| -2058 *5))))
- (-5 *1 (-181 *5 *3)) (-4 *3 (-1244 (-169 *5)))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-365) (-849)))
- (-5 *2 (-645 (-2 (|:| -3920 (-645 *3)) (|:| -2058 *4))))
- (-5 *1 (-181 *4 *3)) (-4 *3 (-1244 (-169 *4))))))
+(((*1 *2 *2 *2 *3 *3)
+ (-12 (-5 *3 (-772)) (-4 *4 (-1051)) (-5 *1 (-1241 *4 *2))
+ (-4 *2 (-1245 *4)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-945 *5)) (-4 *5 (-1051)) (-5 *2 (-772))
+ (-5 *1 (-1167 *4 *5)) (-14 *4 (-923))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-645 (-772))) (-5 *3 (-772)) (-5 *1 (-1167 *4 *5))
+ (-14 *4 (-923)) (-4 *5 (-1051))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-645 (-772))) (-5 *3 (-945 *5)) (-4 *5 (-1051))
+ (-5 *1 (-1167 *4 *5)) (-14 *4 (-923)))))
+(((*1 *2 *3) (-12 (-5 *3 (-945 *2)) (-5 *1 (-984 *2)) (-4 *2 (-1051)))))
+(((*1 *2)
+ (-12 (-4 *3 (-1051)) (-5 *2 (-960 (-713 *3 *4))) (-5 *1 (-713 *3 *4))
+ (-4 *4 (-1245 *3)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037))
+ (-5 *1 (-758)))))
(((*1 *1 *2 *3)
(-12 (-4 *1 (-384 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-1102))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-567)) (-5 *2 (-1158 *3)) (-5 *1 (-1162 *3))
+ (-12 (-5 *4 (-567)) (-5 *2 (-1159 *3)) (-5 *1 (-1163 *3))
(-4 *3 (-1051))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-820 *4)) (-4 *4 (-851)) (-4 *1 (-1285 *4 *3))
+ (-12 (-5 *2 (-820 *4)) (-4 *4 (-851)) (-4 *1 (-1286 *4 *3))
(-4 *3 (-1051)))))
-(((*1 *1 *1) (-4 *1 (-548))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 (-567))) (-4 *3 (-1051)) (-5 *1 (-597 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 (-567))) (-4 *1 (-1228 *3)) (-4 *3 (-1051))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 (-567))) (-4 *1 (-1259 *3)) (-4 *3 (-1051)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-370)) (-4 *1 (-330 *3))
- (-4 *3 (-365)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-365)) (-4 *3 (-1051))
- (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1398 *1)))
- (-4 *1 (-853 *3)))))
-(((*1 *1 *2) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1218))))
- ((*1 *2 *1) (-12 (-5 *2 (-645 (-1178))) (-5 *1 (-1178)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
- (-4 *3 (-1067 *5 *6 *7))
- (-5 *2 (-645 (-2 (|:| |val| (-112)) (|:| -2566 *4))))
- (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-455) (-1040 (-567)))) (-4 *3 (-559))
- (-5 *1 (-41 *3 *2)) (-4 *2 (-433 *3))
- (-4 *2
- (-13 (-365) (-303)
- (-10 -8 (-15 -1448 ((-1127 *3 (-613 $)) $))
- (-15 -1460 ((-1127 *3 (-613 $)) $))
- (-15 -4132 ($ (-1127 *3 (-613 $))))))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-1102)) (-5 *1 (-1190 *3)))))
-(((*1 *2 *1 *1)
- (|partial| -12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370))
- (-5 *2 (-1174 *3))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-351)) (-4 *2 (-1051)) (-5 *1 (-713 *2 *3))
+ (-4 *3 (-1245 *2)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4423)) (-4 *1 (-244 *2)) (-4 *2 (-1219))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1219))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1219))))
+ ((*1 *1 *1 *2)
+ (-12 (|has| *1 (-6 -4423)) (-4 *1 (-1257 *2)) (-4 *2 (-1219))))
+ ((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4423)) (-4 *1 (-1257 *2)) (-4 *2 (-1219)))))
+(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10)
+ (-12 (-5 *4 (-567)) (-5 *5 (-1161)) (-5 *6 (-690 (-225)))
+ (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))))
+ (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))))
+ (-5 *9 (-3 (|:| |fn| (-391)) (|:| |fp| (-71 PEDERV))))
+ (-5 *10 (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT))))
+ (-5 *3 (-225)) (-5 *2 (-1037)) (-5 *1 (-750)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))))
+(((*1 *1 *2) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1219))))
+ ((*1 *2 *1) (-12 (-5 *2 (-645 (-1179))) (-5 *1 (-1179)))))
+(((*1 *2) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-830)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-772)) (-5 *1 (-589 *2)) (-4 *2 (-548)))))
+(((*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-1161)))))
+(((*1 *2 *1) (-12 (-4 *1 (-559)) (-5 *2 (-112)))))
+(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-700)) (-5 *1 (-306)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2785 *3)))
+ (-5 *1 (-971 *4 *3)) (-4 *3 (-1245 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1159 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3))
+ (-4 *5 (-375 *3)) (-5 *2 (-645 (-645 *3)))))
((*1 *2 *1)
- (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370))
- (-5 *2 (-1174 *3)))))
+ (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051))
+ (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-645 (-645 *5)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-645 (-645 *3))) (-5 *1 (-1191 *3)) (-4 *3 (-1102)))))
(((*1 *2 *1)
- (-12 (|has| *1 (-6 -4418)) (-4 *1 (-492 *3)) (-4 *3 (-1218))
- (-5 *2 (-645 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-738 *3)) (-4 *3 (-1102))))
- ((*1 *2 *1) (-12 (-5 *2 (-645 (-442))) (-5 *1 (-866)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-690 *3)) (-4 *3 (-1051)) (-5 *1 (-691 *3)))))
-(((*1 *1 *1) (-4 *1 (-548))))
-(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4)
- (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *2 (-1037))
- (-5 *1 (-756)))))
+ (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051))
+ (-5 *2 (-645 (-645 (-945 *3))))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-645 (-645 (-945 *4)))) (-5 *3 (-112)) (-4 *4 (-1051))
+ (-4 *1 (-1136 *4))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-645 (-645 (-945 *3)))) (-4 *3 (-1051))
+ (-4 *1 (-1136 *3))))
+ ((*1 *1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-645 (-645 (-645 *4)))) (-5 *3 (-112))
+ (-4 *1 (-1136 *4)) (-4 *4 (-1051))))
+ ((*1 *1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-645 (-645 (-945 *4)))) (-5 *3 (-112))
+ (-4 *1 (-1136 *4)) (-4 *4 (-1051))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-645 (-645 (-645 *5)))) (-5 *3 (-645 (-171)))
+ (-5 *4 (-171)) (-4 *1 (-1136 *5)) (-4 *5 (-1051))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-645 (-645 (-945 *5)))) (-5 *3 (-645 (-171)))
+ (-5 *4 (-171)) (-4 *1 (-1136 *5)) (-4 *5 (-1051)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-567)) (-5 *1 (-448 *3)) (-4 *3 (-407)) (-4 *3 (-1051)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1051)) (-5 *2 (-645 *1)) (-4 *1 (-1136 *3)))))
-(((*1 *1 *1 *2)
- (-12
- (-5 *2
- (-2 (|:| -3466 (-645 (-863))) (|:| -4016 (-645 (-863)))
- (|:| |presup| (-645 (-863))) (|:| -2533 (-645 (-863)))
- (|:| |args| (-645 (-863)))))
- (-5 *1 (-1178))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-645 (-863)))) (-5 *1 (-1178)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-559)) (-4 *2 (-1051))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-559)) (-5 *1 (-971 *3 *2)) (-4 *2 (-1244 *3))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794))
- (-4 *4 (-851)) (-4 *2 (-559))))
- ((*1 *2 *3 *3 *1)
- (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
- (-4 *3 (-1067 *4 *5 *6))
- (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2566 *1))))
- (-4 *1 (-1073 *4 *5 *6 *3)))))
-(((*1 *2 *1 *2)
- (-12 (|has| *1 (-6 -4419)) (-4 *1 (-1256 *2)) (-4 *2 (-1218)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-539)))))
+ (-12 (-4 *4 (-13 (-559) (-1040 (-567)))) (-5 *2 (-169 (-317 *4)))
+ (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1204) (-433 (-169 *4))))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567))))
+ (-5 *2 (-169 *3)) (-5 *1 (-1208 *4 *3))
+ (-4 *3 (-13 (-27) (-1204) (-433 *4))))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-645 *6)) (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051))
+ (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5))
+ (-4 *3 (-559)))))
+(((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *5 (-112))
+ (-5 *2 (-1037)) (-5 *1 (-746)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-264))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225) (-225))) (-5 *1 (-264))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-264)))))
(((*1 *2 *2 *2) (-12 (-5 *2 (-1037)) (-5 *1 (-306))))
((*1 *2 *3)
(-12 (-5 *3 (-645 (-1037))) (-5 *2 (-1037)) (-5 *1 (-306))))
- ((*1 *1 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-652 *3)) (-4 *3 (-1218))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1218))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1218))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1218))))
+ ((*1 *1 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-652 *3)) (-4 *3 (-1219))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1219))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1219))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1219))))
((*1 *1 *1 *1) (-5 *1 (-1065)))
((*1 *2 *3)
- (-12 (-5 *3 (-1158 (-1158 *4))) (-5 *2 (-1158 *4)) (-5 *1 (-1155 *4))
- (-4 *4 (-1218))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-1256 *2)) (-4 *2 (-1218))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1256 *2)) (-4 *2 (-1218)))))
-(((*1 *2 *2)
- (-12
- (-5 *2
- (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225)))
- (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225))))
- (|:| |ub| (-645 (-844 (-225))))))
- (-5 *1 (-268)))))
-(((*1 *2 *1) (-12 (-5 *2 (-645 (-109))) (-5 *1 (-175)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-605 *2 *3)) (-4 *3 (-1218)) (-4 *2 (-1102))
- (-4 *2 (-851)))))
-(((*1 *1) (-5 *1 (-1087))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-770))
- (-5 *2
- (-2 (|:| -2264 (-381)) (|:| -1996 (-1160))
- (|:| |explanations| (-645 (-1160))) (|:| |extra| (-1037))))
- (-5 *1 (-568))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-770)) (-5 *4 (-1065))
- (-5 *2
- (-2 (|:| -2264 (-381)) (|:| -1996 (-1160))
- (|:| |explanations| (-645 (-1160))) (|:| |extra| (-1037))))
- (-5 *1 (-568))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-788)) (-5 *3 (-1065))
- (-5 *4
- (-2 (|:| |fn| (-317 (-225)))
- (|:| -1604 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
- (-5 *2
- (-2 (|:| -2264 (-381)) (|:| |explanations| (-1160))
- (|:| |extra| (-1037))))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-788)) (-5 *3 (-1065))
- (-5 *4
- (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225)))
- (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
- (-5 *2
- (-2 (|:| -2264 (-381)) (|:| |explanations| (-1160))
- (|:| |extra| (-1037))))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-801)) (-5 *3 (-1065))
- (-5 *4
- (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
- (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225)))
- (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225)))
- (|:| |abserr| (-225)) (|:| |relerr| (-225))))
- (-5 *2 (-2 (|:| -2264 (-381)) (|:| |explanations| (-1160))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-809))
- (-5 *2
- (-2 (|:| -2264 (-381)) (|:| -1996 (-1160))
- (|:| |explanations| (-645 (-1160)))))
- (-5 *1 (-806))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-809)) (-5 *4 (-1065))
- (-5 *2
- (-2 (|:| -2264 (-381)) (|:| -1996 (-1160))
- (|:| |explanations| (-645 (-1160)))))
- (-5 *1 (-806))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-840)) (-5 *3 (-1065))
- (-5 *4
- (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225)))))
- (-5 *2 (-2 (|:| -2264 (-381)) (|:| |explanations| (-1160))))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-840)) (-5 *3 (-1065))
- (-5 *4
- (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225)))
- (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225))))
- (|:| |ub| (-645 (-844 (-225))))))
- (-5 *2 (-2 (|:| -2264 (-381)) (|:| |explanations| (-1160))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-842))
- (-5 *2
- (-2 (|:| -2264 (-381)) (|:| -1996 (-1160))
- (|:| |explanations| (-645 (-1160)))))
- (-5 *1 (-841))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-842)) (-5 *4 (-1065))
- (-5 *2
- (-2 (|:| -2264 (-381)) (|:| -1996 (-1160))
- (|:| |explanations| (-645 (-1160)))))
- (-5 *1 (-841))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-897)) (-5 *3 (-1065))
- (-5 *4
- (-2 (|:| |pde| (-645 (-317 (-225))))
- (|:| |constraints|
- (-645
- (-2 (|:| |start| (-225)) (|:| |finish| (-225))
- (|:| |grid| (-772)) (|:| |boundaryType| (-567))
- (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225))))))
- (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1160))
- (|:| |tol| (-225))))
- (-5 *2 (-2 (|:| -2264 (-381)) (|:| |explanations| (-1160))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-900))
- (-5 *2
- (-2 (|:| -2264 (-381)) (|:| -1996 (-1160))
- (|:| |explanations| (-645 (-1160)))))
- (-5 *1 (-899))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-900)) (-5 *4 (-1065))
- (-5 *2
- (-2 (|:| -2264 (-381)) (|:| -1996 (-1160))
- (|:| |explanations| (-645 (-1160)))))
- (-5 *1 (-899)))))
-(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
- (-12 (-5 *3 (-1160)) (-5 *4 (-567)) (-5 *5 (-690 (-225)))
- (-5 *2 (-1037)) (-5 *1 (-755)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1218)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-433 *3) (-1004))))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-823)))))
+ (-12 (-5 *3 (-1159 (-1159 *4))) (-5 *2 (-1159 *4)) (-5 *1 (-1156 *4))
+ (-4 *4 (-1219))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1219))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1219)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-365)) (-4 *3 (-1051))
+ (-5 *2 (-2 (|:| -2654 *1) (|:| -2023 *1))) (-4 *1 (-853 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-99 *5)) (-4 *5 (-365)) (-4 *5 (-1051))
+ (-5 *2 (-2 (|:| -2654 *3) (|:| -2023 *3))) (-5 *1 (-854 *5 *3))
+ (-4 *3 (-853 *5)))))
+(((*1 *2 *2 *3 *4 *5)
+ (-12 (-5 *2 (-645 *9)) (-5 *3 (-1 (-112) *9))
+ (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9))
+ (-4 *9 (-1067 *6 *7 *8)) (-4 *6 (-559)) (-4 *7 (-794))
+ (-4 *8 (-851)) (-5 *1 (-979 *6 *7 *8 *9)))))
+(((*1 *1 *2 *2) (-12 (-4 *1 (-557 *2)) (-4 *2 (-13 (-407) (-1204))))))
(((*1 *2 *3)
(-12 (-5 *3 (-645 *2)) (-4 *2 (-433 *4)) (-5 *1 (-158 *4 *2))
(-4 *4 (-559)))))
-(((*1 *1 *2 *2)
- (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1006 *3)) (-14 *3 (-567)))))
-(((*1 *2)
- (-12
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1219)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12
+ (-5 *3
+ (-1 (-3 (-2 (|:| -2872 *4) (|:| |coeff| *4)) "failed") *4))
+ (-4 *4 (-365)) (-5 *1 (-577 *4 *2)) (-4 *2 (-1245 *4)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-13 (-559) (-147)))
+ (-5 *2 (-2 (|:| -2961 *3) (|:| -2973 *3))) (-5 *1 (-1239 *4 *3))
+ (-4 *3 (-1245 *4)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381))
(-5 *2
- (-1268 (-645 (-2 (|:| -3802 (-912 *3)) (|:| -3768 (-1122))))))
- (-5 *1 (-353 *3 *4)) (-14 *3 (-923)) (-14 *4 (-923))))
- ((*1 *2)
- (-12 (-5 *2 (-1268 (-645 (-2 (|:| -3802 *3) (|:| -3768 (-1122))))))
- (-5 *1 (-354 *3 *4)) (-4 *3 (-351)) (-14 *4 (-3 (-1174 *3) *2))))
- ((*1 *2)
- (-12 (-5 *2 (-1268 (-645 (-2 (|:| -3802 *3) (|:| -3768 (-1122))))))
- (-5 *1 (-355 *3 *4)) (-4 *3 (-351)) (-14 *4 (-923)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-144))))
+ (-2 (|:| -3812 *4) (|:| -2069 *4) (|:| |totalpts| (-567))
+ (|:| |success| (-112))))
+ (-5 *1 (-790)) (-5 *5 (-567)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1269 (-317 (-225)))) (-5 *4 (-645 (-1179)))
+ (-5 *2 (-690 (-317 (-225)))) (-5 *1 (-205))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1102)) (-4 *6 (-902 *5)) (-5 *2 (-690 *6))
+ (-5 *1 (-693 *5 *6 *3 *4)) (-4 *3 (-375 *6))
+ (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4422)))))))
+(((*1 *2 *3 *3 *2)
+ (|partial| -12 (-5 *2 (-772))
+ (-4 *3 (-13 (-727) (-370) (-10 -7 (-15 ** (*3 *3 (-567))))))
+ (-5 *1 (-246 *3)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-144))))
((*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-144)))))
-(((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *4 (-1 (-3 (-567) "failed") *5)) (-4 *5 (-1051))
- (-5 *2 (-567)) (-5 *1 (-546 *5 *3)) (-4 *3 (-1244 *5))))
- ((*1 *2 *3 *4 *2 *5)
- (|partial| -12 (-5 *5 (-1 (-3 (-567) "failed") *4)) (-4 *4 (-1051))
- (-5 *2 (-567)) (-5 *1 (-546 *4 *3)) (-4 *3 (-1244 *4))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1 (-3 (-567) "failed") *4)) (-4 *4 (-1051))
- (-5 *2 (-567)) (-5 *1 (-546 *4 *3)) (-4 *3 (-1244 *4)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2))
- (-4 *2 (-13 (-433 *3) (-1203))))))
+ (-12
+ (-5 *2
+ (-2 (|:| |fn| (-317 (-225))) (|:| -2694 (-645 (-225)))
+ (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225))))
+ (|:| |ub| (-645 (-844 (-225))))))
+ (-5 *1 (-268)))))
+(((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-772)) (-4 *5 (-365)) (-5 *2 (-174 *6))
+ (-5 *1 (-868 *5 *4 *6)) (-4 *4 (-1260 *5)) (-4 *6 (-1245 *5)))))
(((*1 *2 *3 *4)
(-12 (-5 *3 (-842)) (-5 *4 (-1065)) (-5 *2 (-1037)) (-5 *1 (-841))))
((*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1037)) (-5 *1 (-841))))
@@ -12910,215 +12739,204 @@
((*1 *2 *3 *4)
(-12 (-5 *3 (-645 (-317 (-381)))) (-5 *4 (-645 (-381)))
(-5 *2 (-1037)) (-5 *1 (-841)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-645 (-954 *4))) (-4 *4 (-455)) (-5 *2 (-112))
- (-5 *1 (-362 *4 *5)) (-14 *5 (-645 (-1178)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-645 (-781 *4 (-865 *5)))) (-4 *4 (-455))
- (-14 *5 (-645 (-1178))) (-5 *2 (-112)) (-5 *1 (-629 *4 *5)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1244 *4)) (-4 *4 (-1222))
- (-4 *6 (-1244 (-410 *5)))
- (-5 *2
- (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5)
- (|:| |gd| *5)))
- (-4 *1 (-344 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-4 *1 (-675 *2)) (-4 *2 (-1218)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-455)) (-4 *4 (-851)) (-4 *5 (-794)) (-5 *2 (-645 *6))
- (-5 *1 (-989 *3 *4 *5 *6)) (-4 *6 (-951 *3 *5 *4)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))))
-(((*1 *2 *2)
- (-12
- (-5 *2
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4)
- (|:| |xpnt| (-567))))
- (-4 *4 (-13 (-1244 *3) (-559) (-10 -8 (-15 -2774 ($ $ $)))))
- (-4 *3 (-559)) (-5 *1 (-1247 *3 *4)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1178)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-703 *3 *5 *6 *7))
- (-4 *3 (-615 (-539))) (-4 *5 (-1218)) (-4 *6 (-1218))
- (-4 *7 (-1218))))
+(((*1 *2 *3 *4 *4 *5 *6)
+ (-12 (-5 *3 (-645 (-645 (-945 (-225))))) (-5 *4 (-875))
+ (-5 *5 (-923)) (-5 *6 (-645 (-264))) (-5 *2 (-1270))
+ (-5 *1 (-1273))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1178)) (-5 *2 (-1 *6 *5)) (-5 *1 (-707 *3 *5 *6))
- (-4 *3 (-615 (-539))) (-4 *5 (-1218)) (-4 *6 (-1218)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-567)) (-5 *2 (-645 (-2 (|:| -2706 *3) (|:| -3077 *4))))
- (-5 *1 (-697 *3)) (-4 *3 (-1244 *4)))))
+ (-12 (-5 *3 (-645 (-645 (-945 (-225))))) (-5 *4 (-645 (-264)))
+ (-5 *2 (-1270)) (-5 *1 (-1273)))))
+(((*1 *2 *3 *4 *4 *2 *2 *2)
+ (-12 (-5 *2 (-567))
+ (-5 *3
+ (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-772)) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (-4 *6 (-794)) (-4 *4 (-951 *5 *6 *7)) (-4 *5 (-455)) (-4 *7 (-851))
+ (-5 *1 (-452 *5 *6 *7 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-645 (-509))) (-5 *1 (-49))))
+ ((*1 *2 *1) (-12 (-5 *2 (-645 (-877))) (-5 *1 (-486)))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-1179)) (-5 *2 (-440)) (-5 *1 (-1183)))))
+(((*1 *2 *3 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225))
+ (-5 *2 (-1037)) (-5 *1 (-753)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-3 (-112) (-645 *1)))
+ (-4 *1 (-1073 *4 *5 *6 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1 (-381))) (-5 *1 (-1042)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1269 (-690 *4))) (-4 *4 (-172))
+ (-5 *2 (-1269 (-690 (-954 *4)))) (-5 *1 (-189 *4)))))
(((*1 *2 *2 *2 *3 *4)
(-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1051))
(-5 *1 (-854 *5 *2)) (-4 *2 (-853 *5)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-416 *3 *4 *5 *6)) (-4 *6 (-1040 *4)) (-4 *3 (-308))
+ (-4 *4 (-994 *3)) (-4 *5 (-1245 *4)) (-4 *6 (-412 *4 *5))
+ (-14 *7 (-1269 *6)) (-5 *1 (-417 *3 *4 *5 *6 *7))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1269 *6)) (-4 *6 (-412 *4 *5)) (-4 *4 (-994 *3))
+ (-4 *5 (-1245 *4)) (-4 *3 (-308)) (-5 *1 (-417 *3 *4 *5 *6 *7))
+ (-14 *7 *2))))
+(((*1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1272))))
+ ((*1 *2 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1272)))))
+(((*1 *2 *2) (|partial| -12 (-5 *1 (-561 *2)) (-4 *2 (-548)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4422)) (-4 *1 (-235 *3))
+ (-4 *3 (-1102))))
+ ((*1 *1 *2 *1)
+ (-12 (|has| *1 (-6 -4422)) (-4 *1 (-235 *2)) (-4 *2 (-1102))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-283 *2)) (-4 *2 (-1219)) (-4 *2 (-1102))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-283 *3)) (-4 *3 (-1219))))
+ ((*1 *2 *3 *1)
+ (|partial| -12 (-4 *1 (-611 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1102))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-567)) (-4 *4 (-1102))
+ (-5 *1 (-738 *4))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-567)) (-5 *1 (-738 *2)) (-4 *2 (-1102))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1142 *3 *4)) (-4 *3 (-13 (-1102) (-34)))
+ (-4 *4 (-13 (-1102) (-34))) (-5 *1 (-1143 *3 *4)))))
+(((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-559)) (-4 *3 (-172)) (-4 *4 (-375 *3))
+ (-4 *5 (-375 *3)) (-5 *1 (-689 *3 *4 *5 *2))
+ (-4 *2 (-688 *3 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-645 *2)) (-4 *2 (-433 *4)) (-5 *1 (-158 *4 *2))
- (-4 *4 (-559)))))
+ (-12 (-5 *3 (-645 *4)) (-4 *4 (-851)) (-5 *2 (-645 (-665 *4 *5)))
+ (-5 *1 (-628 *4 *5 *6)) (-4 *5 (-13 (-172) (-718 (-410 (-567)))))
+ (-14 *6 (-923)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1268 *5)) (-4 *5 (-640 *4)) (-4 *4 (-559))
- (-5 *2 (-1268 *4)) (-5 *1 (-639 *4 *5)))))
+ (|partial| -12 (-5 *2 (-567)) (-5 *1 (-1201 *3)) (-4 *3 (-1051)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1006 *3)) (-14 *3 (-567)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-923)) (-5 *3 (-645 (-264))) (-5 *1 (-262))))
- ((*1 *1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-264)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-1051)) (-5 *1 (-1240 *3 *2)) (-4 *2 (-1244 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-645 (-509))) (-5 *1 (-49))))
- ((*1 *2 *1) (-12 (-5 *2 (-645 (-877))) (-5 *1 (-486)))))
+ (-12 (-5 *3 (-1175 *2)) (-4 *2 (-433 *4)) (-4 *4 (-559))
+ (-5 *1 (-32 *4 *2)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-410 (-567))) (-5 *1 (-320 *3 *4 *5)) (-4 *3 (-365))
+ (-14 *4 (-1179)) (-14 *5 *3))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-567)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1218))
- (-4 *5 (-375 *4)) (-4 *2 (-375 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-567)) (-4 *1 (-1055 *4 *5 *6 *7 *2)) (-4 *6 (-1051))
- (-4 *7 (-238 *5 *6)) (-4 *2 (-238 *4 *6)))))
-(((*1 *1 *1 *1) (-5 *1 (-863))) ((*1 *1 *1) (-5 *1 (-863)))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1174 (-567))) (-5 *3 (-567)) (-4 *1 (-870 *4)))))
-(((*1 *1 *1 *1 *2 *3)
- (-12 (-5 *2 (-645 (-1142 *4 *5))) (-5 *3 (-1 (-112) *5 *5))
- (-4 *4 (-13 (-1102) (-34))) (-4 *5 (-13 (-1102) (-34)))
- (-5 *1 (-1143 *4 *5))))
- ((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-645 (-1142 *3 *4))) (-4 *3 (-13 (-1102) (-34)))
- (-4 *4 (-13 (-1102) (-34))) (-5 *1 (-1143 *3 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1218)))))
+ (-12 (-5 *3 (-645 *1)) (-4 *1 (-1067 *4 *5 *6)) (-4 *4 (-1051))
+ (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1 *4)
+ (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1212 *5 *6 *7 *3))
+ (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-870 *3)) (-5 *2 (-567)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381))
+ (-5 *2
+ (-2 (|:| -3812 *4) (|:| -2069 *4) (|:| |totalpts| (-567))
+ (|:| |success| (-112))))
+ (-5 *1 (-790)) (-5 *5 (-567)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1063 (-1026 *4) (-1175 (-1026 *4)))) (-5 *3 (-863))
+ (-5 *1 (-1026 *4)) (-4 *4 (-13 (-849) (-365) (-1024))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-365)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3))
- (-5 *1 (-524 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-559)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4))
- (-4 *7 (-994 *4)) (-4 *2 (-688 *7 *8 *9))
- (-5 *1 (-525 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-688 *4 *5 *6))
- (-4 *8 (-375 *7)) (-4 *9 (-375 *7))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2))
- (-4 *4 (-375 *2)) (-4 *2 (-308))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-308)) (-4 *3 (-172)) (-4 *4 (-375 *3))
- (-4 *5 (-375 *3)) (-5 *1 (-689 *3 *4 *5 *2))
- (-4 *2 (-688 *3 *4 *5))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-690 *3)) (-4 *3 (-308)) (-5 *1 (-701 *3))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1055 *2 *3 *4 *5 *6)) (-4 *4 (-1051))
- (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *2 *4)) (-4 *4 (-308)))))
-(((*1 *2 *3 *4 *4 *5 *6 *7)
- (-12 (-5 *5 (-1178))
- (-5 *6
- (-1
- (-3
- (-2 (|:| |mainpart| *4)
- (|:| |limitedlogs|
- (-645 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
- "failed")
- *4 (-645 *4)))
- (-5 *7
- (-1 (-3 (-2 (|:| -1752 *4) (|:| |coeff| *4)) "failed") *4 *4))
- (-4 *4 (-13 (-1203) (-27) (-433 *8)))
- (-4 *8 (-13 (-455) (-147) (-1040 *3) (-640 *3))) (-5 *3 (-567))
- (-5 *2 (-2 (|:| |ans| *4) (|:| -2963 *4) (|:| |sol?| (-112))))
- (-5 *1 (-1015 *8 *4)))))
-(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6)
- (-12 (-5 *4 (-567)) (-5 *5 (-690 (-225)))
- (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3879)))) (-5 *3 (-225))
- (-5 *2 (-1037)) (-5 *1 (-749)))))
-(((*1 *1) (-5 *1 (-471))))
-(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1244 *5)) (-4 *5 (-365))
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1004))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-645 (-645 *6))) (-4 *6 (-951 *3 *5 *4))
+ (-4 *3 (-13 (-308) (-147))) (-4 *4 (-13 (-851) (-615 (-1179))))
+ (-4 *5 (-794)) (-5 *1 (-926 *3 *4 *5 *6)))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-295 *2)) (-4 *2 (-727)) (-4 *2 (-1219)))))
+(((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928)))))
+(((*1 *2 *3 *3 *3 *4 *5)
+ (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1245 *6))
+ (-4 *6 (-13 (-365) (-147) (-1040 *4))) (-5 *4 (-567))
(-5 *2
- (-2 (|:| |ir| (-588 (-410 *6))) (|:| |specpart| (-410 *6))
- (|:| |polypart| *6)))
- (-5 *1 (-577 *5 *6)) (-5 *3 (-410 *6)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1178)) (-5 *5 (-645 (-410 (-954 *6))))
- (-5 *3 (-410 (-954 *6)))
- (-4 *6 (-13 (-559) (-1040 (-567)) (-147)))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-573 *6)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-821)) (-14 *5 (-1178)) (-5 *2 (-645 (-1241 *5 *4)))
- (-5 *1 (-1116 *4 *5)) (-5 *3 (-1241 *5 *4)))))
+ (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112))))
+ (|:| -3855
+ (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3)
+ (|:| |beta| *3)))))
+ (-5 *1 (-1017 *6 *3)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1 (-945 (-225)) (-945 (-225)))) (-5 *3 (-645 (-264)))
- (-5 *1 (-262))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1 (-945 (-225)) (-945 (-225)))) (-5 *1 (-264))))
+ (-12 (-5 *3 (-690 *2)) (-4 *2 (-172)) (-5 *1 (-146 *2))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-172)) (-4 *2 (-1245 *4)) (-5 *1 (-177 *4 *2 *3))
+ (-4 *3 (-725 *4 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-645 (-484 *5 *6))) (-5 *3 (-484 *5 *6))
- (-14 *5 (-645 (-1178))) (-4 *6 (-455)) (-5 *2 (-1268 *6))
- (-5 *1 (-632 *5 *6)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))))
-(((*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-157)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-772)) (-4 *4 (-13 (-559) (-147)))
- (-5 *1 (-1238 *4 *2)) (-4 *2 (-1244 *4)))))
+ (-12 (-5 *3 (-690 (-410 (-954 *5)))) (-5 *4 (-1179))
+ (-5 *2 (-954 *5)) (-5 *1 (-293 *5)) (-4 *5 (-455))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-690 (-410 (-954 *4)))) (-5 *2 (-954 *4))
+ (-5 *1 (-293 *4)) (-4 *4 (-455))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-372 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1245 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-690 (-169 (-410 (-567)))))
+ (-5 *2 (-954 (-169 (-410 (-567))))) (-5 *1 (-765 *4))
+ (-4 *4 (-13 (-365) (-849)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-690 (-169 (-410 (-567))))) (-5 *4 (-1179))
+ (-5 *2 (-954 (-169 (-410 (-567))))) (-5 *1 (-765 *5))
+ (-4 *5 (-13 (-365) (-849)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-690 (-410 (-567)))) (-5 *2 (-954 (-410 (-567))))
+ (-5 *1 (-780 *4)) (-4 *4 (-13 (-365) (-849)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-690 (-410 (-567)))) (-5 *4 (-1179))
+ (-5 *2 (-954 (-410 (-567)))) (-5 *1 (-780 *5))
+ (-4 *5 (-13 (-365) (-849))))))
+(((*1 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-370)) (-4 *2 (-365)))))
+(((*1 *1) (-5 *1 (-157)))
+ ((*1 *2 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-23)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *3))
+ (-5 *1 (-979 *4 *5 *6 *3)) (-4 *3 (-1067 *4 *5 *6)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172))
+ (-5 *2 (-690 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-690 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1174 *6)) (-4 *6 (-1051)) (-4 *4 (-794)) (-4 *5 (-851))
- (-5 *2 (-1174 *7)) (-5 *1 (-322 *4 *5 *6 *7))
- (-4 *7 (-951 *6 *4 *5)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9))
- (-4 *9 (-1067 *6 *7 *8)) (-4 *6 (-559)) (-4 *7 (-794))
- (-4 *8 (-851)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2262 (-645 *9))))
- (-5 *3 (-645 *9)) (-4 *1 (-1211 *6 *7 *8 *9))))
+ (-12 (-5 *3 (-645 (-1179))) (-5 *2 (-1274)) (-5 *1 (-1182))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1067 *5 *6 *7))
- (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851))
- (-5 *2 (-2 (|:| |bas| *1) (|:| -2262 (-645 *8))))
- (-5 *3 (-645 *8)) (-4 *1 (-1211 *5 *6 *7 *8)))))
-(((*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1062))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1178)))
- (-14 *3 (-645 (-1178))) (-4 *4 (-390))))
+ (-12 (-5 *4 (-645 (-1179))) (-5 *3 (-1179)) (-5 *2 (-1274))
+ (-5 *1 (-1182))))
+ ((*1 *2 *3 *4 *1)
+ (-12 (-5 *4 (-645 (-1179))) (-5 *3 (-1179)) (-5 *2 (-1274))
+ (-5 *1 (-1182)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225)))
+ (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-63 LSFUN2))))
+ (-5 *2 (-1037)) (-5 *1 (-754)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-1179))
+ (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147)))
+ (-4 *4 (-13 (-29 *6) (-1204) (-961)))
+ (-5 *2 (-2 (|:| |particular| *4) (|:| -2144 (-645 *4))))
+ (-5 *1 (-802 *6 *4 *3)) (-4 *3 (-657 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1179))
+ (-5 *2 (-3 (|:| |fst| (-437)) (|:| -4324 "void"))) (-5 *1 (-1182)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-397)))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037))
+ (-5 *1 (-756)))))
+(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
+ ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
((*1 *2 *2)
(-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)) (-4 *2 (-1062))))
- ((*1 *1 *1) (-4 *1 (-849)))
- ((*1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-172)) (-4 *2 (-1062))))
- ((*1 *1 *1) (-4 *1 (-1062))) ((*1 *1 *1) (-4 *1 (-1141))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-557 *3)) (-4 *3 (-13 (-407) (-1203))) (-5 *2 (-112)))))
-(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-1160)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851))
- (-4 *4 (-1067 *6 *7 *8)) (-5 *2 (-1273))
- (-5 *1 (-777 *6 *7 *8 *4 *5)) (-4 *5 (-1073 *6 *7 *8 *4)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-410 (-954 *4))) (-5 *3 (-1178))
- (-4 *4 (-13 (-559) (-1040 (-567)) (-147))) (-5 *1 (-573 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))))
-(((*1 *1 *1 *1) (-4 *1 (-762))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1125 *3 *4 *2 *5)) (-4 *4 (-1051)) (-4 *5 (-238 *3 *4))
- (-4 *2 (-238 *3 *4)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037))
- (-5 *1 (-748)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-172)) (-4 *2 (-23)) (-5 *1 (-290 *3 *4 *2 *5 *6 *7))
- (-4 *4 (-1244 *3)) (-14 *5 (-1 *4 *4 *2))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2))
- (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-23)) (-5 *1 (-712 *3 *2 *4 *5 *6)) (-4 *3 (-172))
- (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
- (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
- ((*1 *2)
- (-12 (-4 *2 (-1244 *3)) (-5 *1 (-713 *3 *2)) (-4 *3 (-1051))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-23)) (-5 *1 (-716 *3 *2 *4 *5 *6)) (-4 *3 (-172))
- (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
- (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
- ((*1 *2) (-12 (-4 *1 (-870 *3)) (-5 *2 (-567)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))))
+ ((*1 *1 *1) (-4 *1 (-1141))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-388 *2)) (-4 *2 (-1102)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1175 *1)) (-4 *1 (-455))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1175 *6)) (-4 *6 (-951 *5 *3 *4)) (-4 *3 (-794))
+ (-4 *4 (-851)) (-4 *5 (-911)) (-5 *1 (-460 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1175 *1)) (-4 *1 (-911)))))
(((*1 *1 *1)
- (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-559))))
- ((*1 *1 *1) (|partial| -4 *1 (-723))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-548))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
- (-12 (-5 *3 (-567)) (-5 *4 (-112)) (-5 *5 (-690 (-225)))
- (-5 *2 (-1037)) (-5 *1 (-756)))))
+ (|partial| -12 (-5 *1 (-295 *2)) (-4 *2 (-727)) (-4 *2 (-1219)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-772)) (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051))
+ (-4 *4 (-794)) (-4 *5 (-851)) (-4 *3 (-559)))))
(((*1 *1 *1 *1)
(-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1102)) (-4 *3 (-23))
(-14 *4 *3)))
@@ -13127,801 +12945,736 @@
(-14 *4 *3)))
((*1 *1 *1 *1)
(-12 (-5 *1 (-676 *2)) (-4 *2 (-1051)) (-4 *2 (-1102)))))
-(((*1 *1 *2 *3)
- (-12
- (-5 *3
- (-645
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2)
- (|:| |xpnt| (-567)))))
- (-4 *2 (-559)) (-5 *1 (-421 *2))))
- ((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |contp| (-567))
- (|:| -3920 (-645 (-2 (|:| |irr| *4) (|:| -2625 (-567)))))))
- (-4 *4 (-1244 (-567))) (-5 *2 (-421 *4)) (-5 *1 (-445 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
- (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-990 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
- (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1109 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2672 (-645 (-225)))))
- (-5 *2 (-381)) (-5 *1 (-268))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1268 (-317 (-225)))) (-5 *2 (-381)) (-5 *1 (-306)))))
+(((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-559))))
+ ((*1 *1 *1) (|partial| -4 *1 (-723))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1004))))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-381)) (-5 *1 (-97)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1179)) (-5 *5 (-1096 (-225))) (-5 *2 (-929))
+ (-5 *1 (-927 *3)) (-4 *3 (-615 (-539)))))
+ ((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *4 (-1179)) (-5 *5 (-1096 (-225))) (-5 *2 (-929))
+ (-5 *1 (-927 *3)) (-4 *3 (-615 (-539)))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1096 (-225))) (-5 *1 (-928))))
+ ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1096 (-225)))
+ (-5 *1 (-928))))
+ ((*1 *1 *2 *2 *2 *2 *3)
+ (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1096 (-225)))
+ (-5 *1 (-928))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1096 (-225))) (-5 *1 (-929))))
+ ((*1 *1 *2 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1096 (-225)))
+ (-5 *1 (-929))))
+ ((*1 *1 *2 *2 *3)
+ (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1096 (-225)))
+ (-5 *1 (-929))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-645 (-1 (-225) (-225)))) (-5 *3 (-1096 (-225)))
+ (-5 *1 (-929))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-645 (-1 (-225) (-225)))) (-5 *3 (-1096 (-225)))
+ (-5 *1 (-929))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1096 (-225)))
+ (-5 *1 (-929))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1096 (-225)))
+ (-5 *1 (-929)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1178)) (-5 *3 (-645 (-539))) (-5 *1 (-539)))))
-(((*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172)))))
+ (-12 (-5 *2 (-1179)) (-5 *3 (-645 (-539))) (-5 *1 (-539)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-567)) (-5 *1 (-317 *3)) (-4 *3 (-559)) (-4 *3 (-1102)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-645 (-567))) (-5 *3 (-112)) (-5 *1 (-1112)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))))
(((*1 *2 *3 *4 *5)
(-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1102))
(-4 *6 (-1102)) (-4 *2 (-1102)) (-5 *1 (-681 *5 *6 *2)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-645 (-613 *2))) (-5 *4 (-645 (-1178)))
- (-4 *2 (-13 (-433 (-169 *5)) (-1004) (-1203))) (-4 *5 (-559))
- (-5 *1 (-601 *5 *6 *2)) (-4 *6 (-13 (-433 *5) (-1004) (-1203))))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-645 (-567))) (-5 *2 (-690 (-567))) (-5 *1 (-1112)))))
-(((*1 *1 *1 *1) (-4 *1 (-548))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-509)) (-5 *2 (-645 (-967))) (-5 *1 (-292)))))
-(((*1 *1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-264))))
- ((*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-264)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *4 (-1178)) (-5 *6 (-112))
- (-4 *7 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567))))
- (-4 *3 (-13 (-1203) (-961) (-29 *7)))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-169 (-225))) (-5 *5 (-567)) (-5 *6 (-1161))
+ (-5 *3 (-225)) (-5 *2 (-1037)) (-5 *1 (-759)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-430 *3 *2)) (-4 *3 (-13 (-172) (-38 (-410 (-567)))))
+ (-4 *2 (-13 (-851) (-21))))))
+(((*1 *2)
+ (-12 (-5 *2 (-1274)) (-5 *1 (-1196 *3 *4)) (-4 *3 (-1102))
+ (-4 *4 (-1102)))))
+(((*1 *2 *1) (-12 (-5 *1 (-1028 *2)) (-4 *2 (-1219)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1204))))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381))
(-5 *2
- (-3 (|:| |f1| (-844 *3)) (|:| |f2| (-645 (-844 *3)))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-219 *7 *3)) (-5 *5 (-844 *3)))))
-(((*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-308))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1180 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567))))
- ((*1 *1 *1) (-12 (-4 *1 (-675 *2)) (-4 *2 (-1218))))
- ((*1 *1 *1) (-4 *1 (-870 *2)))
- ((*1 *1 *1)
- (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-793))
- (-4 *4 (-851)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-645 (-567))) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-567))
- (-14 *4 (-772)) (-4 *5 (-172)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1241 *4 *5)) (-5 *3 (-645 *5)) (-14 *4 (-1178))
- (-4 *5 (-365)) (-5 *1 (-925 *4 *5))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-645 *5)) (-4 *5 (-365)) (-5 *2 (-1174 *5))
- (-5 *1 (-925 *4 *5)) (-14 *4 (-1178))))
- ((*1 *2 *3 *3 *4 *4)
- (-12 (-5 *3 (-645 *6)) (-5 *4 (-772)) (-4 *6 (-365))
- (-5 *2 (-410 (-954 *6))) (-5 *1 (-1052 *5 *6)) (-14 *5 (-1178)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1268 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172))
- (-5 *2 (-1268 (-690 *4)))))
- ((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-1268 (-690 *4))) (-5 *1 (-419 *3 *4))
- (-4 *3 (-420 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-1268 (-690 *3)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-645 (-1178))) (-4 *5 (-365))
- (-5 *2 (-1268 (-690 (-410 (-954 *5))))) (-5 *1 (-1088 *5))
- (-5 *4 (-690 (-410 (-954 *5))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-645 (-1178))) (-4 *5 (-365))
- (-5 *2 (-1268 (-690 (-954 *5)))) (-5 *1 (-1088 *5))
- (-5 *4 (-690 (-954 *5)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-645 (-690 *4))) (-4 *4 (-365))
- (-5 *2 (-1268 (-690 *4))) (-5 *1 (-1088 *4)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1174 *1)) (-4 *1 (-1014)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1122)) (-5 *2 (-112)) (-5 *1 (-822)))))
+ (-2 (|:| -3812 *4) (|:| -2069 *4) (|:| |totalpts| (-567))
+ (|:| |success| (-112))))
+ (-5 *1 (-790)) (-5 *5 (-567)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-923)) (-5 *3 (-645 (-264))) (-5 *1 (-262))))
+ ((*1 *1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-264)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-690 *4)) (-5 *3 (-923)) (|has| *4 (-6 (-4424 "*")))
+ (-4 *4 (-1051)) (-5 *1 (-1030 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-645 (-690 *4))) (-5 *3 (-923))
+ (|has| *4 (-6 (-4424 "*"))) (-4 *4 (-1051)) (-5 *1 (-1030 *4)))))
+(((*1 *2 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1245 *5))
+ (-4 *5 (-13 (-365) (-147) (-1040 (-567))))
+ (-5 *2
+ (-2 (|:| |a| *6) (|:| |b| (-410 *6)) (|:| |c| (-410 *6))
+ (|:| -2097 *6)))
+ (-5 *1 (-1017 *5 *6)) (-5 *3 (-410 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))))
+(((*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-823)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-455)) (-4 *4 (-559))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2806 *4)))
- (-5 *1 (-971 *4 *3)) (-4 *3 (-1244 *4)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5))
- (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851))
- (-5 *1 (-1281 *3 *4 *5 *6))))
- ((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-645 *8)) (-5 *3 (-1 (-112) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-559))
- (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-1281 *5 *6 *7 *8)))))
+ (-12 (-5 *2 (-1159 (-645 (-567)))) (-5 *1 (-885))
+ (-5 *3 (-645 (-567)))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1159 (-645 (-567)))) (-5 *1 (-885))
+ (-5 *3 (-645 (-567))))))
(((*1 *2 *1)
(-12
(-5 *2
- (-3 (|:| |Null| "null") (|:| |Assignment| "assignment")
- (|:| |Conditional| "conditional") (|:| |Return| "return")
- (|:| |Block| "block") (|:| |Comment| "comment")
- (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while")
- (|:| |Repeat| "repeat") (|:| |Goto| "goto")
- (|:| |Continue| "continue")
- (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save")
- (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")))
- (-5 *1 (-331)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1218)) (-5 *2 (-645 *1)) (-4 *1 (-1012 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102))
- (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-317 (-225))) (-5 *2 (-317 (-410 (-567))))
- (-5 *1 (-306)))))
+ (-645
+ (-2
+ (|:| -1809
+ (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225)))
+ (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))
+ (|:| -4236
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1159 (-225)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -2408
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite|
+ "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated"))))))))
+ (-5 *1 (-562))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-605 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1219))
+ (-5 *2 (-645 *4)))))
(((*1 *1 *1) (-5 *1 (-863))) ((*1 *1 *1 *1) (-5 *1 (-863)))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1218))))
- ((*1 *1 *2) (-12 (-5 *1 (-1235 *2)) (-4 *2 (-1218)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-559)) (-5 *1 (-624 *2 *3)) (-4 *3 (-1244 *2)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-645 (-2 (|:| -2706 (-1174 *6)) (|:| -3458 (-567)))))
- (-4 *6 (-308)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112))
- (-5 *1 (-743 *4 *5 *6 *7)) (-4 *7 (-951 *6 *4 *5))))
- ((*1 *1 *1) (-12 (-4 *1 (-1136 *2)) (-4 *2 (-1051)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-281)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-433 *3) (-1004))))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-1292 *3 *4)) (-4 *1 (-376 *3 *4)) (-4 *3 (-851))
- (-4 *4 (-172))))
- ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-388 *2)) (-4 *2 (-1102))))
- ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-820 *2)) (-4 *2 (-851))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1285 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1051))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-820 *3)) (-4 *1 (-1285 *3 *4)) (-4 *3 (-851))
- (-4 *4 (-1051))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1285 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1051)))))
-(((*1 *1 *2 *2 *2)
- (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1203)))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365))))
- ((*1 *1 *2) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365))))
- ((*1 *2 *1 *3 *4 *4)
- (-12 (-5 *3 (-923)) (-5 *4 (-381)) (-5 *2 (-1273)) (-5 *1 (-1269)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1259 *4)) (-5 *1 (-1261 *4 *2))
- (-4 *4 (-38 (-410 (-567)))))))
-(((*1 *1 *2 *3 *3 *4 *5)
- (-12 (-5 *2 (-645 (-645 (-945 (-225))))) (-5 *3 (-645 (-875)))
- (-5 *4 (-645 (-923))) (-5 *5 (-645 (-264))) (-5 *1 (-471))))
- ((*1 *1 *2 *3 *3 *4)
- (-12 (-5 *2 (-645 (-645 (-945 (-225))))) (-5 *3 (-645 (-875)))
- (-5 *4 (-645 (-923))) (-5 *1 (-471))))
- ((*1 *1 *2) (-12 (-5 *2 (-645 (-645 (-945 (-225))))) (-5 *1 (-471))))
- ((*1 *1 *1) (-5 *1 (-471))))
-(((*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-112)) (-5 *1 (-830)))))
-(((*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-1226))))))
-(((*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-112)))))
-(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1160)) (-5 *3 (-567)) (-5 *1 (-241))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1219))))
+ ((*1 *1 *2) (-12 (-5 *1 (-1236 *2)) (-4 *2 (-1219)))))
+(((*1 *1 *1 *1) (-4 *1 (-762))))
+(((*1 *1) (-5 *1 (-1084))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-112)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))))
+(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1161)) (-5 *3 (-567)) (-5 *1 (-241))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-645 (-1160))) (-5 *3 (-567)) (-5 *4 (-1160))
+ (-12 (-5 *2 (-645 (-1161))) (-5 *3 (-567)) (-5 *4 (-1161))
(-5 *1 (-241))))
((*1 *1 *1) (-5 *1 (-863)))
((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863))))
((*1 *2 *1)
- (-12 (-4 *1 (-1246 *2 *3)) (-4 *3 (-793)) (-4 *2 (-1051)))))
+ (-12 (-4 *1 (-1247 *2 *3)) (-4 *3 (-793)) (-4 *2 (-1051)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3)
+ (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225))
+ (-5 *2 (-1037)) (-5 *1 (-751)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-567)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-308))
+ (-4 *9 (-951 *8 *6 *7))
+ (-5 *2 (-2 (|:| -1774 (-1175 *9)) (|:| |polval| (-1175 *8))))
+ (-5 *1 (-743 *6 *7 *8 *9)) (-5 *3 (-1175 *9)) (-5 *4 (-1175 *8)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-645 (-1175 *4))) (-5 *3 (-1175 *4))
+ (-4 *4 (-911)) (-5 *1 (-664 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-1051)) (-5 *1 (-447 *3 *2)) (-4 *2 (-1245 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-559) (-1040 (-567)))) (-5 *1 (-188 *3 *2))
- (-4 *2 (-13 (-27) (-1203) (-433 (-169 *3))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-455) (-1040 (-567)) (-640 (-567))))
- (-5 *1 (-1207 *3 *2)) (-4 *2 (-13 (-27) (-1203) (-433 *3))))))
+ (-12 (-4 *3 (-308)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3))
+ (-5 *1 (-1126 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037))
+ (-5 *1 (-748)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-112)) (-5 *5 (-690 (-169 (-225))))
+ (-5 *2 (-1037)) (-5 *1 (-756)))))
+(((*1 *2 *2 *2)
+ (-12
+ (-5 *2
+ (-645
+ (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-772)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *4 (-794)) (-4 *6 (-951 *3 *4 *5)) (-4 *3 (-455)) (-4 *5 (-851))
+ (-5 *1 (-452 *3 *4 *5 *6)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051))
- (-5 *2 (-645 (-645 (-945 *3))))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-645 (-645 (-945 *4)))) (-5 *3 (-112)) (-4 *4 (-1051))
- (-4 *1 (-1136 *4))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-645 (-645 (-945 *3)))) (-4 *3 (-1051))
- (-4 *1 (-1136 *3))))
- ((*1 *1 *1 *2 *3 *3)
- (-12 (-5 *2 (-645 (-645 (-645 *4)))) (-5 *3 (-112))
- (-4 *1 (-1136 *4)) (-4 *4 (-1051))))
- ((*1 *1 *1 *2 *3 *3)
- (-12 (-5 *2 (-645 (-645 (-945 *4)))) (-5 *3 (-112))
- (-4 *1 (-1136 *4)) (-4 *4 (-1051))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-645 (-645 (-645 *5)))) (-5 *3 (-645 (-171)))
- (-5 *4 (-171)) (-4 *1 (-1136 *5)) (-4 *5 (-1051))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-645 (-645 (-945 *5)))) (-5 *3 (-645 (-171)))
- (-5 *4 (-171)) (-4 *1 (-1136 *5)) (-4 *5 (-1051)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1160)) (-5 *2 (-214 (-505))) (-5 *1 (-838)))))
-(((*1 *1) (-5 *1 (-440))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1195 *3 *4)) (-4 *3 (-1102))
- (-4 *4 (-1102)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-645 (-772))) (-5 *3 (-171)) (-5 *1 (-1166 *4 *5))
- (-14 *4 (-923)) (-4 *5 (-1051)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-645 *1)) (-4 *1 (-1136 *3)) (-4 *3 (-1051))))
- ((*1 *2 *2 *1)
- (|partial| -12 (-5 *2 (-410 *1)) (-4 *1 (-1244 *3)) (-4 *3 (-1051))
- (-4 *3 (-559))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-1244 *2)) (-4 *2 (-1051)) (-4 *2 (-559)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1096 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-192))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1096 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-301))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1096 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-306)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-567)) (-4 *1 (-1228 *4)) (-4 *4 (-1051)) (-4 *4 (-559))
- (-5 *2 (-410 (-954 *4)))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-567)) (-4 *1 (-1228 *4)) (-4 *4 (-1051)) (-4 *4 (-559))
- (-5 *2 (-410 (-954 *4))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919))))
- ((*1 *2) (-12 (-5 *2 (-906 (-567))) (-5 *1 (-919)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-690 *2)) (-4 *2 (-172)) (-5 *1 (-146 *2))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-172)) (-4 *2 (-1244 *4)) (-5 *1 (-177 *4 *2 *3))
- (-4 *3 (-725 *4 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-690 (-410 (-954 *5)))) (-5 *4 (-1178))
- (-5 *2 (-954 *5)) (-5 *1 (-293 *5)) (-4 *5 (-455))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-690 (-410 (-954 *4)))) (-5 *2 (-954 *4))
- (-5 *1 (-293 *4)) (-4 *4 (-455))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-372 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1244 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-690 (-169 (-410 (-567)))))
- (-5 *2 (-954 (-169 (-410 (-567))))) (-5 *1 (-765 *4))
- (-4 *4 (-13 (-365) (-849)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-690 (-169 (-410 (-567))))) (-5 *4 (-1178))
- (-5 *2 (-954 (-169 (-410 (-567))))) (-5 *1 (-765 *5))
- (-4 *5 (-13 (-365) (-849)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-690 (-410 (-567)))) (-5 *2 (-954 (-410 (-567))))
- (-5 *1 (-780 *4)) (-4 *4 (-13 (-365) (-849)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-690 (-410 (-567)))) (-5 *4 (-1178))
- (-5 *2 (-954 (-410 (-567)))) (-5 *1 (-780 *5))
- (-4 *5 (-13 (-365) (-849))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-954 (-410 (-567)))) (-5 *4 (-1178))
- (-5 *5 (-1096 (-844 (-225)))) (-5 *2 (-645 (-225))) (-5 *1 (-301)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-762))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1268 *4)) (-4 *4 (-640 (-567)))
- (-5 *2 (-1268 (-410 (-567)))) (-5 *1 (-1295 *4)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-772)) (-5 *2 (-1273)) (-5 *1 (-1269))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-772)) (-5 *2 (-1273)) (-5 *1 (-1270)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1273)) (-5 *1 (-1181))))
- ((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-1182)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1158 *4)) (-5 *3 (-1 *4 (-567))) (-4 *4 (-1051))
- (-5 *1 (-1162 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-567))))
- ((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-700)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1051) (-851)))
- (-14 *3 (-645 (-1178))))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1178)) (-5 *3 (-437)) (-4 *5 (-1102))
- (-5 *1 (-1108 *5 *4)) (-4 *4 (-433 *5)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-351)) (-5 *2 (-421 (-1174 (-1174 *4))))
- (-5 *1 (-1216 *4)) (-5 *3 (-1174 (-1174 *4))))))
-(((*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-906 (-567))) (-5 *1 (-919))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919)))))
-(((*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-760)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-539)))))
+ (-12 (-4 *1 (-1212 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1212 *4 *5 *6 *3)) (-4 *4 (-559)) (-4 *5 (-794))
+ (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1))
+ (-4 *1 (-1067 *3 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1268 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172))
- (-4 *5 (-1244 *4)) (-5 *2 (-690 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-172)) (-4 *5 (-1244 *4)) (-5 *2 (-690 *4))
- (-5 *1 (-411 *3 *4 *5)) (-4 *3 (-412 *4 *5))))
- ((*1 *2)
- (-12 (-4 *1 (-412 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1244 *3))
- (-5 *2 (-690 *3)))))
+ (-12 (-5 *3 (-645 (-567))) (-5 *2 (-567)) (-5 *1 (-489 *4))
+ (-4 *4 (-1245 *2)))))
(((*1 *1 *2)
(|partial| -12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5))
(-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851))
- (-5 *1 (-1281 *3 *4 *5 *6))))
+ (-5 *1 (-1282 *3 *4 *5 *6))))
((*1 *1 *2 *3 *4)
(|partial| -12 (-5 *2 (-645 *8)) (-5 *3 (-1 (-112) *8 *8))
(-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-559))
- (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-1281 *5 *6 *7 *8)))))
-(((*1 *2 *1 *1 *3 *4)
- (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6))
- (-4 *5 (-13 (-1102) (-34))) (-4 *6 (-13 (-1102) (-34)))
- (-5 *2 (-112)) (-5 *1 (-1142 *5 *6)))))
-(((*1 *2 *1 *2)
- (-12 (|has| *1 (-6 -4419)) (-4 *1 (-1012 *2)) (-4 *2 (-1218)))))
-(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7)
- (-12 (-5 *3 (-1160)) (-5 *5 (-690 (-225))) (-5 *6 (-225))
- (-5 *7 (-690 (-567))) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-753)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1278)))))
-(((*1 *1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1218)) (-4 *2 (-1102))))
- ((*1 *1 *1) (-12 (-4 *1 (-696 *2)) (-4 *2 (-1102)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-823)))))
+ (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-1282 *5 *6 *7 *8)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-548))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-794))
+ (-4 *3 (-13 (-851) (-10 -8 (-15 -3902 ((-1179) $))))) (-4 *5 (-559))
+ (-5 *1 (-733 *4 *3 *5 *2)) (-4 *2 (-951 (-410 (-954 *5)) *4 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *4 (-1051)) (-4 *5 (-794))
+ (-4 *3
+ (-13 (-851)
+ (-10 -8 (-15 -3902 ((-1179) $))
+ (-15 -3653 ((-3 $ "failed") (-1179))))))
+ (-5 *1 (-986 *4 *5 *3 *2)) (-4 *2 (-951 (-954 *4) *5 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-645 *6))
+ (-4 *6
+ (-13 (-851)
+ (-10 -8 (-15 -3902 ((-1179) $))
+ (-15 -3653 ((-3 $ "failed") (-1179))))))
+ (-4 *4 (-1051)) (-4 *5 (-794)) (-5 *1 (-986 *4 *5 *6 *2))
+ (-4 *2 (-951 (-954 *4) *5 *6)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-772)) (-4 *5 (-1051)) (-4 *2 (-1244 *5))
- (-5 *1 (-1262 *5 *2 *6 *3)) (-4 *6 (-657 *2)) (-4 *3 (-1259 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-645 *7)) (-4 *7 (-951 *4 *6 *5))
- (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1178))))
- (-4 *6 (-794)) (-5 *2 (-112)) (-5 *1 (-926 *4 *5 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-645 (-954 *4))) (-4 *4 (-13 (-308) (-147)))
- (-4 *5 (-13 (-851) (-615 (-1178)))) (-4 *6 (-794)) (-5 *2 (-112))
- (-5 *1 (-926 *4 *5 *6 *7)) (-4 *7 (-951 *4 *6 *5)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-772)) (|:| |poli| *7)
- (|:| |polj| *7)))
- (-4 *5 (-794)) (-4 *7 (-951 *4 *5 *6)) (-4 *4 (-455)) (-4 *6 (-851))
- (-5 *2 (-112)) (-5 *1 (-452 *4 *5 *6 *7)))))
-(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5)
- (-12 (-5 *3 (-923)) (-5 *4 (-225)) (-5 *5 (-567)) (-5 *6 (-875))
- (-5 *2 (-1273)) (-5 *1 (-1269)))))
+ (-12 (-5 *3 (-169 (-225))) (-5 *4 (-567)) (-5 *2 (-1037))
+ (-5 *1 (-759)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))))
+(((*1 *2 *1 *3 *4 *4 *5)
+ (-12 (-5 *3 (-945 (-225))) (-5 *4 (-875)) (-5 *5 (-923))
+ (-5 *2 (-1274)) (-5 *1 (-471))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-945 (-225))) (-5 *2 (-1274)) (-5 *1 (-471))))
+ ((*1 *2 *1 *3 *4 *4 *5)
+ (-12 (-5 *3 (-645 (-945 (-225)))) (-5 *4 (-875)) (-5 *5 (-923))
+ (-5 *2 (-1274)) (-5 *1 (-471)))))
+(((*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))))
+(((*1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-760)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1204))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1004))))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-410 (-954 *3))) (-5 *1 (-456 *3 *4 *5 *6))
+ (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923))
+ (-14 *5 (-645 (-1179))) (-14 *6 (-1269 (-690 *3))))))
+(((*1 *2 *1) (-12 (-5 *2 (-645 (-109))) (-5 *1 (-175)))))
+(((*1 *1 *2) (-12 (-5 *1 (-1028 *2)) (-4 *2 (-1219)))))
+(((*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-567))))
+ ((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-700)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1073 *3 *4 *5 *6)) (-4 *3 (-455)) (-4 *4 (-794))
- (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1073 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794))
- (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-112)))))
+ (-12 (-5 *2 (-645 (-2 (|:| |gen| *3) (|:| -3955 (-567)))))
+ (-5 *1 (-363 *3)) (-4 *3 (-1102))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-388 *3)) (-4 *3 (-1102))
+ (-5 *2 (-645 (-2 (|:| |gen| *3) (|:| -3955 (-772)))))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-645 (-2 (|:| -2717 *3) (|:| -3468 (-567)))))
+ (-5 *1 (-421 *3)) (-4 *3 (-559)))))
+(((*1 *1 *2) (-12 (-5 *2 (-183 (-249))) (-5 *1 (-248)))))
+(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3)
+ (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225))
+ (-5 *2 (-1037)) (-5 *1 (-756)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1245 (-48))))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2))
+ (-4 *4 (-375 *2)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-1051)) (-5 *1 (-713 *3 *2)) (-4 *2 (-1244 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834 *3)) (-4 *3 (-1102))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-844 *3)) (-4 *3 (-1102)))))
-(((*1 *2 *1) (-12 (-4 *1 (-836 *3)) (-4 *3 (-1102)) (-5 *2 (-55)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
- (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225)))
- (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-63 LSFUN2))))
- (-5 *2 (-1037)) (-5 *1 (-754)))))
+ (-12 (-4 *2 (-13 (-365) (-849))) (-5 *1 (-181 *2 *3))
+ (-4 *3 (-1245 (-169 *2))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-4 *6 (-1245 *9)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *9 (-308))
+ (-4 *10 (-951 *9 *7 *8))
+ (-5 *2
+ (-2 (|:| |deter| (-645 (-1175 *10)))
+ (|:| |dterm|
+ (-645 (-645 (-2 (|:| -3694 (-772)) (|:| |pcoef| *10)))))
+ (|:| |nfacts| (-645 *6)) (|:| |nlead| (-645 *10))))
+ (-5 *1 (-779 *6 *7 *8 *9 *10)) (-5 *3 (-1175 *10)) (-5 *4 (-645 *6))
+ (-5 *5 (-645 *10)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-894 *4)) (-4 *4 (-1102)) (-5 *1 (-891 *4 *3))
+ (-4 *3 (-1102)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1269 *4)) (-4 *4 (-640 (-567))) (-5 *2 (-112))
+ (-5 *1 (-1296 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-954 *5)) (-4 *5 (-1051)) (-5 *2 (-247 *4 *5))
+ (-5 *1 (-946 *4 *5)) (-14 *4 (-645 (-1179))))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1102)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1146)) (-5 *2 (-141))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1146)) (-5 *2 (-144)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-559))
+ (-4 *3 (-951 *7 *5 *6))
+ (-5 *2
+ (-2 (|:| -3468 (-772)) (|:| -3705 *3) (|:| |radicand| (-645 *3))))
+ (-5 *1 (-955 *5 *6 *7 *3 *8)) (-5 *4 (-772))
+ (-4 *8
+ (-13 (-365)
+ (-10 -8 (-15 -4129 ($ *3)) (-15 -1447 (*3 $)) (-15 -1462 (*3 $))))))))
(((*1 *2 *2 *2 *2)
(-12 (-5 *2 (-690 *3)) (-4 *3 (-1051)) (-5 *1 (-691 *3)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-397))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-1198)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-978 *3 *4 *2 *5)) (-4 *3 (-1051)) (-4 *4 (-794))
- (-4 *2 (-851)) (-4 *5 (-1067 *3 *4 *2)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1268 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172))
- (-5 *2 (-690 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-690 *4)) (-5 *1 (-419 *3 *4))
- (-4 *3 (-420 *4))))
- ((*1 *2) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-690 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-825)) (-5 *1 (-826)))))
-(((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1273)) (-5 *1 (-381))))
- ((*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-381)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2))
- (-4 *2 (-13 (-433 *3) (-1203))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-1102)) (-5 *1 (-931 *3 *2)) (-4 *2 (-433 *3))))
+ (-12 (-5 *2 (-1269 *4)) (-4 *4 (-420 *3)) (-4 *3 (-308))
+ (-4 *3 (-559)) (-5 *1 (-43 *3 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-1178)) (-5 *2 (-317 (-567))) (-5 *1 (-932)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-1051)) (-4 *1 (-688 *3 *4 *5))
- (-4 *4 (-375 *3)) (-4 *5 (-375 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-645 (-645 (-863)))) (-5 *1 (-863))))
+ (-12 (-5 *3 (-923)) (-4 *4 (-365)) (-5 *2 (-1269 *1))
+ (-4 *1 (-330 *4))))
+ ((*1 *2) (-12 (-4 *3 (-365)) (-5 *2 (-1269 *1)) (-4 *1 (-330 *3))))
+ ((*1 *2)
+ (-12 (-4 *3 (-172)) (-4 *4 (-1245 *3)) (-5 *2 (-1269 *1))
+ (-4 *1 (-412 *3 *4))))
((*1 *2 *1)
- (-12 (-5 *2 (-1144 *3 *4)) (-5 *1 (-995 *3 *4)) (-14 *3 (-923))
- (-4 *4 (-365))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-645 (-645 *5))) (-4 *5 (-1051))
- (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *6 (-238 *4 *5))
- (-4 *7 (-238 *3 *5)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-645 (-1178))) (-5 *3 (-52)) (-5 *1 (-894 *4))
- (-4 *4 (-1102)))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6
- *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8
- *9)
- (-12 (-5 *4 (-690 (-225))) (-5 *5 (-112)) (-5 *6 (-225))
- (-5 *7 (-690 (-567)))
- (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-80 CONFUN))))
- (-5 *9 (-3 (|:| |fn| (-391)) (|:| |fp| (-77 OBJFUN))))
- (-5 *3 (-567)) (-5 *2 (-1037)) (-5 *1 (-754)))))
+ (-12 (-4 *3 (-308)) (-4 *4 (-994 *3)) (-4 *5 (-1245 *4))
+ (-5 *2 (-1269 *6)) (-5 *1 (-416 *3 *4 *5 *6))
+ (-4 *6 (-13 (-412 *4 *5) (-1040 *4)))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-308)) (-4 *4 (-994 *3)) (-4 *5 (-1245 *4))
+ (-5 *2 (-1269 *6)) (-5 *1 (-417 *3 *4 *5 *6 *7))
+ (-4 *6 (-412 *4 *5)) (-14 *7 *2)))
+ ((*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1269 *1)) (-4 *1 (-420 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-923)) (-5 *2 (-1269 (-1269 *4))) (-5 *1 (-531 *4))
+ (-4 *4 (-351)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-559))
+ (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112))
+ (-5 *1 (-979 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1219)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102))
+ (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-954 (-410 (-567)))) (-5 *4 (-1179))
+ (-5 *5 (-1096 (-844 (-225)))) (-5 *2 (-645 (-225))) (-5 *1 (-301)))))
+(((*1 *2 *3 *4 *4 *4 *5 *6 *7)
+ (|partial| -12 (-5 *5 (-1179))
+ (-5 *6
+ (-1
+ (-3
+ (-2 (|:| |mainpart| *4)
+ (|:| |limitedlogs|
+ (-645 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
+ "failed")
+ *4 (-645 *4)))
+ (-5 *7
+ (-1 (-3 (-2 (|:| -2872 *4) (|:| |coeff| *4)) "failed") *4 *4))
+ (-4 *4 (-13 (-1204) (-27) (-433 *8)))
+ (-4 *8 (-13 (-455) (-147) (-1040 *3) (-640 *3))) (-5 *3 (-567))
+ (-5 *2 (-645 *4)) (-5 *1 (-1016 *8 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-821)) (-14 *5 (-1179)) (-5 *2 (-645 (-1242 *5 *4)))
+ (-5 *1 (-1116 *4 *5)) (-5 *3 (-1242 *5 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-954 *5)) (-4 *5 (-1051)) (-5 *2 (-484 *4 *5))
+ (-5 *1 (-946 *4 *5)) (-14 *4 (-645 (-1179))))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-772)) (-4 *4 (-308)) (-4 *6 (-1245 *4))
+ (-5 *2 (-1269 (-645 *6))) (-5 *1 (-458 *4 *6)) (-5 *5 (-645 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-225))) (-5 *2 (-645 (-1161))) (-5 *1 (-192))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-225))) (-5 *2 (-645 (-1161))) (-5 *1 (-301))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-225))) (-5 *2 (-645 (-1161))) (-5 *1 (-306)))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-645 *10)) (-5 *5 (-112)) (-4 *10 (-1073 *6 *7 *8 *9))
+ (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851))
+ (-4 *9 (-1067 *6 *7 *8))
+ (-5 *2
+ (-645
+ (-2 (|:| -3855 (-645 *9)) (|:| -2575 *10) (|:| |ineq| (-645 *9)))))
+ (-5 *1 (-990 *6 *7 *8 *9 *10)) (-5 *3 (-645 *9))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-645 *10)) (-5 *5 (-112)) (-4 *10 (-1073 *6 *7 *8 *9))
+ (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851))
+ (-4 *9 (-1067 *6 *7 *8))
+ (-5 *2
+ (-645
+ (-2 (|:| -3855 (-645 *9)) (|:| -2575 *10) (|:| |ineq| (-645 *9)))))
+ (-5 *1 (-1109 *6 *7 *8 *9 *10)) (-5 *3 (-645 *9)))))
(((*1 *2 *2 *3)
(-12 (-5 *2 (-894 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1102))
- (-4 *5 (-1218)) (-5 *1 (-892 *4 *5))))
+ (-4 *5 (-1219)) (-5 *1 (-892 *4 *5))))
((*1 *2 *2 *3)
(-12 (-5 *2 (-894 *4)) (-5 *3 (-645 (-1 (-112) *5))) (-4 *4 (-1102))
- (-4 *5 (-1218)) (-5 *1 (-892 *4 *5))))
+ (-4 *5 (-1219)) (-5 *1 (-892 *4 *5))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-894 *5)) (-5 *3 (-645 (-1178)))
- (-5 *4 (-1 (-112) (-645 *6))) (-4 *5 (-1102)) (-4 *6 (-1218))
+ (-12 (-5 *2 (-894 *5)) (-5 *3 (-645 (-1179)))
+ (-5 *4 (-1 (-112) (-645 *6))) (-4 *5 (-1102)) (-4 *6 (-1219))
(-5 *1 (-892 *5 *6))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1218)) (-4 *4 (-1102))
+ (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1219)) (-4 *4 (-1102))
(-5 *1 (-939 *4 *2 *5)) (-4 *2 (-433 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-645 (-1 (-112) *5))) (-4 *5 (-1218)) (-4 *4 (-1102))
+ (-12 (-5 *3 (-645 (-1 (-112) *5))) (-4 *5 (-1219)) (-4 *4 (-1102))
(-5 *1 (-939 *4 *2 *5)) (-4 *2 (-433 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1178)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1218))
+ (-12 (-5 *3 (-1179)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1219))
(-5 *2 (-317 (-567))) (-5 *1 (-940 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1178)) (-5 *4 (-645 (-1 (-112) *5))) (-4 *5 (-1218))
+ (-12 (-5 *3 (-1179)) (-5 *4 (-645 (-1 (-112) *5))) (-4 *5 (-1219))
(-5 *2 (-317 (-567))) (-5 *1 (-940 *5))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-645 (-1178))) (-5 *3 (-1 (-112) (-645 *6)))
+ (-12 (-5 *2 (-645 (-1179))) (-5 *3 (-1 (-112) (-645 *6)))
(-4 *6 (-13 (-433 *5) (-888 *4) (-615 (-894 *4)))) (-4 *4 (-1102))
(-4 *5 (-13 (-1051) (-888 *4) (-615 (-894 *4))))
(-5 *1 (-1078 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-973)))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-152 *2 *3 *4)) (-14 *2 (-923)) (-4 *3 (-365))
- (-14 *4 (-995 *2 *3))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *2 (-172)) (-5 *1 (-290 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1244 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
- (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-559))))
- ((*1 *1 *1)
- (|partial| -12 (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *2 (-172))
- (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
- (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365))))
- ((*1 *1) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365))))
- ((*1 *1 *1) (|partial| -4 *1 (-723)))
- ((*1 *1 *1) (|partial| -4 *1 (-727)))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
- (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3)))
- (-5 *1 (-777 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3))))
- ((*1 *2 *2 *1)
- (|partial| -12 (-4 *1 (-1070 *3 *2)) (-4 *3 (-13 (-849) (-365)))
- (-4 *2 (-1244 *3))))
- ((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-5 *1 (-1162 *3)))))
-(((*1 *1 *1 *1 *1) (-5 *1 (-863)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037))
+ (-5 *1 (-756)))))
+(((*1 *2 *3 *3 *4 *4 *4 *4 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037))
+ (-5 *1 (-753)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-375 *3))
- (-4 *5 (-375 *3)) (-5 *2 (-567))))
+ (-12 (-5 *2 (-410 (-954 *3))) (-5 *1 (-456 *3 *4 *5 *6))
+ (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923))
+ (-14 *5 (-645 (-1179))) (-14 *6 (-1269 (-690 *3))))))
+(((*1 *1 *1 *1) (-4 *1 (-969))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-645 *3)) (-4 *3 (-851)) (-5 *1 (-740 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-332 *3)) (-4 *3 (-851)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-1102)) (-5 *1 (-931 *3 *2)) (-4 *2 (-433 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1179)) (-5 *2 (-317 (-567))) (-5 *1 (-932)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-1051)) (-4 *1 (-688 *3 *4 *5))
+ (-4 *4 (-375 *3)) (-4 *5 (-375 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-645 (-645 (-863)))) (-5 *1 (-863))))
((*1 *2 *1)
- (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051))
- (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-567)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-645 (-645 (-645 *5)))) (-5 *3 (-1 (-112) *5 *5))
- (-5 *4 (-645 *5)) (-4 *5 (-851)) (-5 *1 (-1189 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-1223))))))
-(((*1 *2)
- (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3))
- (-4 *5 (-1244 (-410 *4))) (-5 *2 (-112)))))
-(((*1 *1)
- (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-567)) (-14 *3 (-772))
- (-4 *4 (-172)))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1160)) (-5 *4 (-567)) (-5 *5 (-690 (-225)))
- (-5 *2 (-1037)) (-5 *1 (-758)))))
-(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-97)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))))
-(((*1 *1 *1) (-12 (-4 *1 (-428 *2)) (-4 *2 (-1102)) (-4 *2 (-370)))))
+ (-12 (-5 *2 (-1144 *3 *4)) (-5 *1 (-995 *3 *4)) (-14 *3 (-923))
+ (-4 *4 (-365))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-645 (-645 *5))) (-4 *5 (-1051))
+ (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *6 (-238 *4 *5))
+ (-4 *7 (-238 *3 *5)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-645 (-247 *4 *5))) (-5 *2 (-247 *4 *5))
+ (-14 *4 (-645 (-1179))) (-4 *5 (-455)) (-5 *1 (-632 *4 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-455) (-1040 (-567)) (-640 (-567))))
+ (-5 *1 (-423 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1204) (-433 *3)))
+ (-14 *4 (-1179)) (-14 *5 *2)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-455) (-1040 (-567)) (-640 (-567))))
+ (-4 *2 (-13 (-27) (-1204) (-433 *3) (-10 -8 (-15 -4129 ($ *4)))))
+ (-4 *4 (-849))
+ (-4 *5
+ (-13 (-1247 *2 *4) (-365) (-1204)
+ (-10 -8 (-15 -1616 ($ $)) (-15 -4083 ($ $)))))
+ (-5 *1 (-425 *3 *2 *4 *5 *6 *7)) (-4 *6 (-985 *5)) (-14 *7 (-1179)))))
+(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-999 *2)) (-4 *2 (-172)))))
+(((*1 *1 *2) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-108))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-539))) (-5 *1 (-539)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-645 *3)) (-4 *3 (-308)) (-5 *1 (-179 *3)))))
+(((*1 *1 *1) (|partial| -4 *1 (-145))) ((*1 *1 *1) (-4 *1 (-351)))
+ ((*1 *1 *1) (|partial| -12 (-4 *1 (-145)) (-4 *1 (-911)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-690 *7)) (-5 *3 (-645 *7)) (-4 *7 (-951 *4 *6 *5))
+ (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1179))))
+ (-4 *6 (-794)) (-5 *1 (-926 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-990 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1109 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037))
+ (-5 *1 (-752)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-112)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-923)) (-4 *1 (-745 *3)) (-4 *3 (-172)))))
+(((*1 *1 *1) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-851)) (-4 *3 (-172))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-628 *2 *3 *4)) (-4 *2 (-851))
+ (-4 *3 (-13 (-172) (-718 (-410 (-567))))) (-14 *4 (-923))))
+ ((*1 *1 *1) (-12 (-5 *1 (-678 *2)) (-4 *2 (-851))))
+ ((*1 *1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-851))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1286 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1051)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-559)) (-5 *2 (-1175 *3)) (-5 *1 (-41 *4 *3))
+ (-4 *3
+ (-13 (-365) (-303)
+ (-10 -8 (-15 -1447 ((-1127 *4 (-613 $)) $))
+ (-15 -1462 ((-1127 *4 (-613 $)) $))
+ (-15 -4129 ($ (-1127 *4 (-613 $))))))))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-317 (-567))) (|:| -3879 (-317 (-381)))
- (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1177))))
- (-5 *1 (-1177)))))
-(((*1 *1 *1 *1 *1 *2)
- (-12 (-5 *2 (-772)) (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051))
- (-4 *4 (-794)) (-4 *5 (-851)) (-4 *3 (-559)))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-690 (-567))) (-5 *3 (-645 (-567))) (-5 *1 (-1112)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-645 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567))))))
- (-5 *2 (-645 (-225))) (-5 *1 (-306)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1241 *5 *4)) (-4 *4 (-821)) (-14 *5 (-1178))
- (-5 *2 (-567)) (-5 *1 (-1116 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1102)))))
-(((*1 *2 *3 *3 *3 *4 *5 *6)
- (-12 (-5 *3 (-317 (-567))) (-5 *4 (-1 (-225) (-225)))
- (-5 *5 (-1096 (-225))) (-5 *6 (-645 (-264))) (-5 *2 (-1135 (-225)))
- (-5 *1 (-698)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794))
- (-4 *4 (-851)) (-4 *2 (-455)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1178)) (-4 *5 (-365)) (-5 *2 (-1158 (-1158 (-954 *5))))
- (-5 *1 (-1276 *5)) (-5 *4 (-1158 (-954 *5))))))
-(((*1 *2 *3 *3 *4 *5 *5)
- (-12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851))
- (-4 *3 (-1067 *6 *7 *8))
- (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2566 *4))))
- (-5 *1 (-1074 *6 *7 *8 *3 *4)) (-4 *4 (-1073 *6 *7 *8 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-645 (-2 (|:| |val| (-645 *8)) (|:| -2566 *9))))
- (-5 *5 (-112)) (-4 *8 (-1067 *6 *7 *4)) (-4 *9 (-1073 *6 *7 *4 *8))
- (-4 *6 (-455)) (-4 *7 (-794)) (-4 *4 (-851))
- (-5 *2 (-645 (-2 (|:| |val| *8) (|:| -2566 *9))))
- (-5 *1 (-1074 *6 *7 *4 *8 *9)))))
-(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-4 *1 (-905 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1 (-381))) (-5 *1 (-1042)))))
-(((*1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1271))))
- ((*1 *2 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1271)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-548))
- (-5 *2 (-410 (-567)))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-410 (-567))) (-5 *1 (-421 *3)) (-4 *3 (-548))
- (-4 *3 (-559))))
- ((*1 *2 *1) (|partial| -12 (-4 *1 (-548)) (-5 *2 (-410 (-567)))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-798 *3)) (-4 *3 (-172)) (-4 *3 (-548))
- (-5 *2 (-410 (-567)))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-410 (-567))) (-5 *1 (-834 *3)) (-4 *3 (-548))
- (-4 *3 (-1102))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-410 (-567))) (-5 *1 (-844 *3)) (-4 *3 (-548))
- (-4 *3 (-1102))))
+ (-3 (|:| I (-317 (-567))) (|:| -3888 (-317 (-381)))
+ (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1178))))
+ (-5 *1 (-1178)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-567)) (-5 *1 (-381)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-1051)) (-5 *1 (-1241 *3 *2)) (-4 *2 (-1245 *3)))))
+(((*1 *2 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037))
+ (-5 *1 (-752)))))
+(((*1 *2 *1) (-12 (-5 *2 (-692 *3)) (-5 *1 (-968 *3)) (-4 *3 (-1102)))))
+(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225))
+ (-5 *2 (-1037)) (-5 *1 (-752)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-128)))))
+(((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-312))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-999 *3)) (-4 *3 (-172)) (-4 *3 (-548))
- (-5 *2 (-410 (-567)))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *2 (-410 (-567))) (-5 *1 (-1010 *3))
- (-4 *3 (-1040 *2)))))
-(((*1 *1 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-1 (-945 (-225)) (-225))) (-5 *3 (-1096 (-225)))
- (-5 *1 (-928))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-945 (-225)) (-225))) (-5 *3 (-1096 (-225)))
- (-5 *1 (-928))))
- ((*1 *1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1 (-945 (-225)) (-225))) (-5 *3 (-1096 (-225)))
- (-5 *1 (-929))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-945 (-225)) (-225))) (-5 *3 (-1096 (-225)))
- (-5 *1 (-929)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-645 (-954 *3))) (-4 *3 (-455))
- (-5 *1 (-362 *3 *4)) (-14 *4 (-645 (-1178)))))
- ((*1 *2 *2)
- (|partial| -12 (-5 *2 (-645 (-781 *3 (-865 *4)))) (-4 *3 (-455))
- (-14 *4 (-645 (-1178))) (-5 *1 (-629 *3 *4)))))
-(((*1 *2 *3 *4 *4 *3 *5)
- (-12 (-5 *4 (-613 *3)) (-5 *5 (-1174 *3))
- (-4 *3 (-13 (-433 *6) (-27) (-1203)))
- (-4 *6 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567))))
- (-5 *2 (-588 *3)) (-5 *1 (-563 *6 *3 *7)) (-4 *7 (-1102))))
- ((*1 *2 *3 *4 *4 *4 *3 *5)
- (-12 (-5 *4 (-613 *3)) (-5 *5 (-410 (-1174 *3)))
- (-4 *3 (-13 (-433 *6) (-27) (-1203)))
- (-4 *6 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567))))
- (-5 *2 (-588 *3)) (-5 *1 (-563 *6 *3 *7)) (-4 *7 (-1102)))))
+ (-12 (-5 *2 (-772)) (-5 *1 (-1167 *3 *4)) (-14 *3 (-923))
+ (-4 *4 (-1051)))))
(((*1 *1 *2)
(-12 (-5 *2 (-645 (-1078 *3 *4 *5))) (-4 *3 (-1102))
(-4 *4 (-13 (-1051) (-888 *3) (-615 (-894 *3))))
(-4 *5 (-13 (-433 *4) (-888 *3) (-615 (-894 *3))))
(-5 *1 (-1079 *3 *4 *5)))))
-(((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2))
- (-4 *2 (-13 (-433 *3) (-1203))))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-1179)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-911)) (-4 *5 (-794)) (-4 *6 (-851))
- (-4 *7 (-951 *4 *5 *6)) (-5 *2 (-421 (-1174 *7)))
- (-5 *1 (-908 *4 *5 *6 *7)) (-5 *3 (-1174 *7))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-911)) (-4 *5 (-1244 *4)) (-5 *2 (-421 (-1174 *5)))
- (-5 *1 (-909 *4 *5)) (-5 *3 (-1174 *5)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-772)) (-5 *2 (-112))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-1219 *3)) (-4 *3 (-851))
+ (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-684 *4 *3)) (-4 *4 (-1102))
(-4 *3 (-1102)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2951 *3) (|:| |coef1| (-783 *3))))
- (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1051)))))
-(((*1 *2)
- (-12 (-5 *2 (-923)) (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1284 (-1179) *3)) (-4 *3 (-1051)) (-5 *1 (-1291 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1284 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051))
+ (-5 *1 (-1293 *3 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1 (-381))) (-5 *1 (-1042)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-923)) (-5 *2 (-1175 *4)) (-5 *1 (-359 *4))
+ (-4 *4 (-351)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-1167 3 *3))))
+ ((*1 *1) (-12 (-5 *1 (-1167 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1051))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1135 (-225))) (-5 *1 (-1271))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1135 (-225))) (-5 *1 (-1271)))))
+(((*1 *1 *1) (-12 (-4 *1 (-675 *2)) (-4 *2 (-1219)))))
+(((*1 *1 *1) (-4 *1 (-630)))
((*1 *2 *2)
- (-12 (-5 *2 (-923)) (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567))))))
+ (-12 (-4 *3 (-559)) (-5 *1 (-631 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1004) (-1204))))))
+(((*1 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-370)) (-4 *2 (-365))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-923)) (-5 *2 (-1269 *4)) (-5 *1 (-531 *4))
+ (-4 *4 (-351)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *2 (-567)) (-5 *1 (-572 *3)) (-4 *3 (-1040 *2)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-645 (-281))) (-5 *1 (-281))))
+ ((*1 *2 *1) (-12 (-5 *2 (-645 (-1184))) (-5 *1 (-1184)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-650 *3 *4 *5)) (-4 *3 (-1102))
+ (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *2 *1) (-12 (-5 *2 (-183 (-249))) (-5 *1 (-248)))))
+(((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-1063 (-1026 *3) (-1175 (-1026 *3))))
+ (-5 *1 (-1026 *3)) (-4 *3 (-13 (-849) (-365) (-1024))))))
+(((*1 *1) (-5 *1 (-331))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1212 *2 *3 *4 *5)) (-4 *2 (-559)) (-4 *3 (-794))
+ (-4 *4 (-851)) (-4 *5 (-1067 *2 *3 *4)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))))
(((*1 *1 *1 *2) (-12 (-5 *2 (-509)) (-5 *1 (-114))))
((*1 *2 *2 *3)
(-12 (-5 *3 (-509)) (-4 *4 (-1102)) (-5 *1 (-931 *4 *2))
(-4 *2 (-433 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1178)) (-5 *4 (-509)) (-5 *2 (-317 (-567)))
+ (-12 (-5 *3 (-1179)) (-5 *4 (-509)) (-5 *2 (-317 (-567)))
(-5 *1 (-932)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1006 *3)) (-14 *3 (-567)))))
+(((*1 *2 *2 *2 *3 *3 *4 *2 *5)
+ (|partial| -12 (-5 *3 (-613 *2))
+ (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1179))) (-5 *5 (-1175 *2))
+ (-4 *2 (-13 (-433 *6) (-27) (-1204)))
+ (-4 *6 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567))))
+ (-5 *1 (-563 *6 *2 *7)) (-4 *7 (-1102))))
+ ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5)
+ (|partial| -12 (-5 *3 (-613 *2))
+ (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1179)))
+ (-5 *5 (-410 (-1175 *2))) (-4 *2 (-13 (-433 *6) (-27) (-1204)))
+ (-4 *6 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567))))
+ (-5 *1 (-563 *6 *2 *7)) (-4 *7 (-1102)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-317 (-225))) (-5 *4 (-1179))
+ (-5 *5 (-1096 (-844 (-225)))) (-5 *2 (-645 (-225))) (-5 *1 (-192))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-317 (-225))) (-5 *4 (-1179))
+ (-5 *5 (-1096 (-844 (-225)))) (-5 *2 (-645 (-225))) (-5 *1 (-301)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-112))
+ (-5 *2 (-1037)) (-5 *1 (-754)))))
+(((*1 *1 *1) (-5 *1 (-1065))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 (-844 (-225)))) (-5 *4 (-225)) (-5 *2 (-645 *4))
+ (-5 *1 (-268)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1211 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794))
- (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-4 *5 (-370))
- (-5 *2 (-772)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-1268 (-567))) (-5 *3 (-567)) (-5 *1 (-1112))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-1268 (-567))) (-5 *3 (-645 (-567))) (-5 *4 (-567))
- (-5 *1 (-1112)))))
-(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-559))
- (-5 *2 (-2 (|:| -3102 *3) (|:| -4194 *3))) (-5 *1 (-1239 *4 *3))
- (-4 *3 (-1244 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-567)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
- (-5 *2 (-1273)) (-5 *1 (-452 *4 *5 *6 *7)) (-4 *7 (-951 *4 *5 *6)))))
+ (-12 (-4 *1 (-1125 *3 *4 *2 *5)) (-4 *4 (-1051)) (-4 *5 (-238 *3 *4))
+ (-4 *2 (-238 *3 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1122)) (-5 *1 (-956)))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1179))
+ (-4 *5 (-13 (-559) (-1040 (-567)) (-147)))
+ (-5 *2
+ (-2 (|:| -2872 (-410 (-954 *5))) (|:| |coeff| (-410 (-954 *5)))))
+ (-5 *1 (-573 *5)) (-5 *3 (-410 (-954 *5))))))
+(((*1 *2 *1) (-12 (-5 *2 (-334)) (-5 *1 (-249)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1285 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051))
- (-5 *2 (-820 *3))))
+ (-12 (-4 *1 (-978 *3 *4 *2 *5)) (-4 *3 (-1051)) (-4 *4 (-794))
+ (-4 *5 (-1067 *3 *4 *2)) (-4 *2 (-851))))
((*1 *2 *1)
- (-12 (-4 *2 (-847)) (-5 *1 (-1291 *3 *2)) (-4 *3 (-1051)))))
-(((*1 *1 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-303))))
- ((*1 *1 *1) (-4 *1 (-303)))
- ((*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863))))
- ((*1 *1 *1) (-5 *1 (-863))))
-(((*1 *1 *2) (-12 (-5 *2 (-1122)) (-5 *1 (-956)))))
-(((*1 *2)
- (-12 (-5 *2 (-772)) (-5 *1 (-120 *3)) (-4 *3 (-1244 (-567)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-772)) (-5 *1 (-120 *3)) (-4 *3 (-1244 (-567))))))
-(((*1 *1) (-5 *1 (-331))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-381)) (-5 *1 (-1065)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-690 *3))
- (-4 *3 (-13 (-308) (-10 -8 (-15 -2908 ((-421 $) $)))))
- (-4 *4 (-1244 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-412 *3 *4)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-945 *5)) (-4 *5 (-1051)) (-5 *2 (-772))
- (-5 *1 (-1166 *4 *5)) (-14 *4 (-923))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-645 (-772))) (-5 *3 (-772)) (-5 *1 (-1166 *4 *5))
- (-14 *4 (-923)) (-4 *5 (-1051))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-645 (-772))) (-5 *3 (-945 *5)) (-4 *5 (-1051))
- (-5 *1 (-1166 *4 *5)) (-14 *4 (-923)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794))
- (-4 *5 (-851)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037))
- (-5 *1 (-752)))))
-(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4))
- (-4 *3 (-369 *4))))
- ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-313)) (-5 *1 (-297))))
+ (-12 (-4 *1 (-1067 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794))
+ (-4 *2 (-851)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1159 (-645 (-567)))) (-5 *1 (-885)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1219)) (-5 *2 (-645 *1)) (-4 *1 (-1012 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-313)) (-5 *1 (-297))))
((*1 *2 *3)
- (-12 (-5 *3 (-645 (-1160))) (-5 *2 (-313)) (-5 *1 (-297))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-313)) (-5 *1 (-297))))
+ (-12 (-5 *3 (-645 (-1161))) (-5 *2 (-313)) (-5 *1 (-297))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-313)) (-5 *1 (-297))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-645 (-1160))) (-5 *3 (-1160)) (-5 *2 (-313))
+ (-12 (-5 *4 (-645 (-1161))) (-5 *3 (-1161)) (-5 *2 (-313))
(-5 *1 (-297)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-567)) (-5 *3 (-923)) (-5 *1 (-700))))
- ((*1 *2 *2 *2 *3 *4)
- (-12 (-5 *2 (-690 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5))
- (-4 *5 (-365)) (-5 *1 (-980 *5)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1114)) (-4 *3 (-1102)) (-5 *2 (-645 *1))
- (-4 *1 (-433 *3))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-645 (-894 *3))) (-5 *1 (-894 *3))
- (-4 *3 (-1102))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851))
- (-5 *2 (-645 *1)) (-4 *1 (-951 *3 *4 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1051))
- (-4 *7 (-951 *6 *4 *5)) (-5 *2 (-645 *3))
- (-5 *1 (-952 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-365)
- (-10 -8 (-15 -4132 ($ *7)) (-15 -1448 (*7 $))
- (-15 -1460 (*7 $))))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-559) (-1040 (-567)))) (-5 *2 (-410 (-567)))
+ (-5 *1 (-436 *4 *3)) (-4 *3 (-433 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-613 *3)) (-4 *3 (-433 *5))
+ (-4 *5 (-13 (-559) (-1040 (-567)))) (-5 *2 (-1175 (-410 (-567))))
+ (-5 *1 (-436 *5 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-559)) (-5 *2 (-772)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-420 *4)))))
(((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-520))))
((*1 *2 *1)
(-12 (-4 *2 (-13 (-1102) (-34))) (-5 *1 (-1142 *3 *2))
(-4 *3 (-13 (-1102) (-34)))))
- ((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1279)))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037))
- (-5 *1 (-756)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-471)) (-5 *3 (-645 (-264))) (-5 *1 (-1269))))
- ((*1 *1 *1) (-5 *1 (-1269))))
-(((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-916 *3)) (-4 *3 (-308)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1287 *3)) (-4 *3 (-365)) (-5 *2 (-112)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-645 *3)) (-4 *3 (-1218)) (-5 *1 (-1158 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-957)) (-5 *2 (-645 (-645 (-945 (-225)))))))
- ((*1 *2 *1) (-12 (-4 *1 (-976)) (-5 *2 (-645 (-645 (-945 (-225))))))))
-(((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172))))
- ((*1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-172)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1280)))))
+(((*1 *2 *3 *2)
+ (-12 (-4 *1 (-788)) (-5 *2 (-1037))
+ (-5 *3
+ (-2 (|:| |fn| (-317 (-225)))
+ (|:| -2408 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))))
+ ((*1 *2 *3 *2)
+ (-12 (-4 *1 (-788)) (-5 *2 (-1037))
+ (-5 *3
+ (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225)))
+ (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225)))))))
+(((*1 *2 *3)
+ (-12 (|has| *6 (-6 -4423)) (-4 *4 (-365)) (-4 *5 (-375 *4))
+ (-4 *6 (-375 *4)) (-5 *2 (-645 *6)) (-5 *1 (-524 *4 *5 *6 *3))
+ (-4 *3 (-688 *4 *5 *6))))
((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-572 *3)) (-4 *3 (-1040 (-567)))))
+ (-12 (|has| *9 (-6 -4423)) (-4 *4 (-559)) (-4 *5 (-375 *4))
+ (-4 *6 (-375 *4)) (-4 *7 (-994 *4)) (-4 *8 (-375 *7))
+ (-4 *9 (-375 *7)) (-5 *2 (-645 *6))
+ (-5 *1 (-525 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-688 *4 *5 *6))
+ (-4 *10 (-688 *7 *8 *9))))
((*1 *2 *1)
- (-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102))
- (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3)
- (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225))
- (-5 *2 (-1037)) (-5 *1 (-757)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))))
-(((*1 *2 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037))
- (-5 *1 (-748)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1178)) (-4 *5 (-365)) (-5 *2 (-645 (-1212 *5)))
- (-5 *1 (-1276 *5)) (-5 *4 (-1212 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-1102)) (-5 *1 (-966 *2 *3)) (-4 *3 (-1102)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-559))
- (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 (-1281 *4 *5 *6 *7)))
- (-5 *1 (-1281 *4 *5 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-645 *9)) (-5 *4 (-1 (-112) *9 *9))
- (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1067 *6 *7 *8)) (-4 *6 (-559))
- (-4 *7 (-794)) (-4 *8 (-851)) (-5 *2 (-645 (-1281 *6 *7 *8 *9)))
- (-5 *1 (-1281 *6 *7 *8 *9)))))
+ (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3))
+ (-4 *5 (-375 *3)) (-4 *3 (-559)) (-5 *2 (-645 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-559)) (-4 *4 (-172)) (-4 *5 (-375 *4))
+ (-4 *6 (-375 *4)) (-5 *2 (-645 *6)) (-5 *1 (-689 *4 *5 *6 *3))
+ (-4 *3 (-688 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051))
+ (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-559))
+ (-5 *2 (-645 *7)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1159 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))))
(((*1 *2 *3)
- (-12 (-4 *2 (-365)) (-4 *2 (-849)) (-5 *1 (-947 *2 *3))
- (-4 *3 (-1244 *2)))))
-(((*1 *2 *1) (-12 (-4 *1 (-557 *2)) (-4 *2 (-13 (-407) (-1203)))))
+ (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-645 (-1179))) (-4 *5 (-1051))
+ (-5 *2 (-484 *4 *5)) (-5 *1 (-946 *4 *5)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-861)) (-5 *2 (-692 (-129))) (-5 *3 (-129)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4423)) (-4 *1 (-244 *2)) (-4 *2 (-1219)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794))
+ (-4 *4 (-851)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-112)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1073 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794))
+ (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1102)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-645 *1))
+ (-4 *1 (-1073 *4 *5 *6 *3)))))
+(((*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-308)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-397))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-1199)))))
+(((*1 *2 *1) (-12 (-4 *1 (-557 *2)) (-4 *2 (-13 (-407) (-1204)))))
((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863))))
((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-863)))))
-(((*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1218))))
+(((*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1219))))
((*1 *1 *2)
(-12 (-5 *2 (-954 (-381))) (-5 *1 (-341 *3 *4 *5))
- (-4 *5 (-1040 (-381))) (-14 *3 (-645 (-1178)))
- (-14 *4 (-645 (-1178))) (-4 *5 (-390))))
+ (-4 *5 (-1040 (-381))) (-14 *3 (-645 (-1179)))
+ (-14 *4 (-645 (-1179))) (-4 *5 (-390))))
((*1 *1 *2)
(-12 (-5 *2 (-410 (-954 (-381)))) (-5 *1 (-341 *3 *4 *5))
- (-4 *5 (-1040 (-381))) (-14 *3 (-645 (-1178)))
- (-14 *4 (-645 (-1178))) (-4 *5 (-390))))
+ (-4 *5 (-1040 (-381))) (-14 *3 (-645 (-1179)))
+ (-14 *4 (-645 (-1179))) (-4 *5 (-390))))
((*1 *1 *2)
(-12 (-5 *2 (-317 (-381))) (-5 *1 (-341 *3 *4 *5))
- (-4 *5 (-1040 (-381))) (-14 *3 (-645 (-1178)))
- (-14 *4 (-645 (-1178))) (-4 *5 (-390))))
+ (-4 *5 (-1040 (-381))) (-14 *3 (-645 (-1179)))
+ (-14 *4 (-645 (-1179))) (-4 *5 (-390))))
((*1 *1 *2)
(-12 (-5 *2 (-954 (-567))) (-5 *1 (-341 *3 *4 *5))
- (-4 *5 (-1040 (-567))) (-14 *3 (-645 (-1178)))
- (-14 *4 (-645 (-1178))) (-4 *5 (-390))))
+ (-4 *5 (-1040 (-567))) (-14 *3 (-645 (-1179)))
+ (-14 *4 (-645 (-1179))) (-4 *5 (-390))))
((*1 *1 *2)
(-12 (-5 *2 (-410 (-954 (-567)))) (-5 *1 (-341 *3 *4 *5))
- (-4 *5 (-1040 (-567))) (-14 *3 (-645 (-1178)))
- (-14 *4 (-645 (-1178))) (-4 *5 (-390))))
+ (-4 *5 (-1040 (-567))) (-14 *3 (-645 (-1179)))
+ (-14 *4 (-645 (-1179))) (-4 *5 (-390))))
((*1 *1 *2)
(-12 (-5 *2 (-317 (-567))) (-5 *1 (-341 *3 *4 *5))
- (-4 *5 (-1040 (-567))) (-14 *3 (-645 (-1178)))
- (-14 *4 (-645 (-1178))) (-4 *5 (-390))))
+ (-4 *5 (-1040 (-567))) (-14 *3 (-645 (-1179)))
+ (-14 *4 (-645 (-1179))) (-4 *5 (-390))))
((*1 *1 *2)
- (-12 (-5 *2 (-1178)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-645 *2))
+ (-12 (-5 *2 (-1179)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-645 *2))
(-14 *4 (-645 *2)) (-4 *5 (-390))))
((*1 *1 *2)
(-12 (-5 *2 (-317 *5)) (-4 *5 (-390)) (-5 *1 (-341 *3 *4 *5))
- (-14 *3 (-645 (-1178))) (-14 *4 (-645 (-1178)))))
+ (-14 *3 (-645 (-1179))) (-14 *4 (-645 (-1179)))))
((*1 *1 *2) (-12 (-5 *2 (-690 (-410 (-954 (-567))))) (-4 *1 (-386))))
((*1 *1 *2) (-12 (-5 *2 (-690 (-410 (-954 (-381))))) (-4 *1 (-386))))
((*1 *1 *2) (-12 (-5 *2 (-690 (-954 (-567)))) (-4 *1 (-386))))
@@ -13934,30 +13687,30 @@
((*1 *1 *2) (-12 (-5 *2 (-954 (-381))) (-4 *1 (-399))))
((*1 *1 *2) (-12 (-5 *2 (-317 (-567))) (-4 *1 (-399))))
((*1 *1 *2) (-12 (-5 *2 (-317 (-381))) (-4 *1 (-399))))
- ((*1 *1 *2) (-12 (-5 *2 (-1268 (-410 (-954 (-567))))) (-4 *1 (-444))))
- ((*1 *1 *2) (-12 (-5 *2 (-1268 (-410 (-954 (-381))))) (-4 *1 (-444))))
- ((*1 *1 *2) (-12 (-5 *2 (-1268 (-954 (-567)))) (-4 *1 (-444))))
- ((*1 *1 *2) (-12 (-5 *2 (-1268 (-954 (-381)))) (-4 *1 (-444))))
- ((*1 *1 *2) (-12 (-5 *2 (-1268 (-317 (-567)))) (-4 *1 (-444))))
- ((*1 *1 *2) (-12 (-5 *2 (-1268 (-317 (-381)))) (-4 *1 (-444))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1269 (-410 (-954 (-567))))) (-4 *1 (-444))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1269 (-410 (-954 (-381))))) (-4 *1 (-444))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1269 (-954 (-567)))) (-4 *1 (-444))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1269 (-954 (-381)))) (-4 *1 (-444))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1269 (-317 (-567)))) (-4 *1 (-444))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1269 (-317 (-381)))) (-4 *1 (-444))))
((*1 *2 *1)
(-12
(-5 *2
(-3
(|:| |nia|
- (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225)))
- (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225))
+ (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225)))
+ (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225))
(|:| |relerr| (-225))))
(|:| |mdnia|
(-2 (|:| |fn| (-317 (-225)))
- (|:| -1604 (-645 (-1096 (-844 (-225)))))
+ (|:| -2408 (-645 (-1096 (-844 (-225)))))
(|:| |abserr| (-225)) (|:| |relerr| (-225))))))
(-5 *1 (-770))))
((*1 *2 *1)
(-12
(-5 *2
(-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
- (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225)))
+ (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225)))
(|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225)))
(|:| |abserr| (-225)) (|:| |relerr| (-225))))
(-5 *1 (-809))))
@@ -13966,13 +13719,13 @@
(-5 *2
(-3
(|:| |noa|
- (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225)))
+ (-2 (|:| |fn| (-317 (-225))) (|:| -2694 (-645 (-225)))
(|:| |lb| (-645 (-844 (-225))))
(|:| |cf| (-645 (-317 (-225))))
(|:| |ub| (-645 (-844 (-225))))))
(|:| |lsa|
(-2 (|:| |lfn| (-645 (-317 (-225))))
- (|:| -2672 (-645 (-225)))))))
+ (|:| -2694 (-645 (-225)))))))
(-5 *1 (-842))))
((*1 *2 *1)
(-12
@@ -13983,173 +13736,163 @@
(-2 (|:| |start| (-225)) (|:| |finish| (-225))
(|:| |grid| (-772)) (|:| |boundaryType| (-567))
(|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225))))))
- (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1160))
+ (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1161))
(|:| |tol| (-225))))
(-5 *1 (-900))))
((*1 *1 *2)
(-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-1051))
(-4 *4 (-794)) (-4 *5 (-851)) (-4 *1 (-978 *3 *4 *5 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-1218))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-1219))))
((*1 *1 *2)
- (-2800
+ (-2811
(-12 (-5 *2 (-954 *3))
- (-12 (-1657 (-4 *3 (-38 (-410 (-567)))))
- (-1657 (-4 *3 (-38 (-567)))) (-4 *5 (-615 (-1178))))
+ (-12 (-1673 (-4 *3 (-38 (-410 (-567)))))
+ (-1673 (-4 *3 (-38 (-567)))) (-4 *5 (-615 (-1179))))
(-4 *3 (-1051)) (-4 *1 (-1067 *3 *4 *5)) (-4 *4 (-794))
(-4 *5 (-851)))
(-12 (-5 *2 (-954 *3))
- (-12 (-1657 (-4 *3 (-548))) (-1657 (-4 *3 (-38 (-410 (-567)))))
- (-4 *3 (-38 (-567))) (-4 *5 (-615 (-1178))))
+ (-12 (-1673 (-4 *3 (-548))) (-1673 (-4 *3 (-38 (-410 (-567)))))
+ (-4 *3 (-38 (-567))) (-4 *5 (-615 (-1179))))
(-4 *3 (-1051)) (-4 *1 (-1067 *3 *4 *5)) (-4 *4 (-794))
(-4 *5 (-851)))
(-12 (-5 *2 (-954 *3))
- (-12 (-1657 (-4 *3 (-994 (-567)))) (-4 *3 (-38 (-410 (-567))))
- (-4 *5 (-615 (-1178))))
+ (-12 (-1673 (-4 *3 (-994 (-567)))) (-4 *3 (-38 (-410 (-567))))
+ (-4 *5 (-615 (-1179))))
(-4 *3 (-1051)) (-4 *1 (-1067 *3 *4 *5)) (-4 *4 (-794))
(-4 *5 (-851)))))
((*1 *1 *2)
- (-2800
+ (-2811
(-12 (-5 *2 (-954 (-567))) (-4 *1 (-1067 *3 *4 *5))
- (-12 (-1657 (-4 *3 (-38 (-410 (-567))))) (-4 *3 (-38 (-567)))
- (-4 *5 (-615 (-1178))))
+ (-12 (-1673 (-4 *3 (-38 (-410 (-567))))) (-4 *3 (-38 (-567)))
+ (-4 *5 (-615 (-1179))))
(-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)))
(-12 (-5 *2 (-954 (-567))) (-4 *1 (-1067 *3 *4 *5))
- (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1178))))
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1179))))
(-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)))))
((*1 *1 *2)
(-12 (-5 *2 (-954 (-410 (-567)))) (-4 *1 (-1067 *3 *4 *5))
- (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1178))) (-4 *3 (-1051))
+ (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1179))) (-4 *3 (-1051))
(-4 *4 (-794)) (-4 *5 (-851)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
- (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 *4))
- (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4)
- (-12 (-5 *3 (-1160)) (-5 *5 (-690 (-225))) (-5 *6 (-225))
- (-5 *7 (-690 (-567))) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-753)))))
-(((*1 *2)
- (-12 (-5 *2 (-1273)) (-5 *1 (-1195 *3 *4)) (-4 *3 (-1102))
- (-4 *4 (-1102)))))
-(((*1 *2 *1) (-12 (-4 *1 (-303)) (-5 *2 (-645 (-114))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-112))
- (-5 *2
- (-2 (|:| |contp| (-567))
- (|:| -3920 (-645 (-2 (|:| |irr| *3) (|:| -2625 (-567)))))))
- (-5 *1 (-445 *3)) (-4 *3 (-1244 (-567)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112))
- (-5 *2
- (-2 (|:| |contp| (-567))
- (|:| -3920 (-645 (-2 (|:| |irr| *3) (|:| -2625 (-567)))))))
- (-5 *1 (-1233 *3)) (-4 *3 (-1244 (-567))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-645 (-954 (-567)))) (-5 *4 (-645 (-1178)))
- (-5 *2 (-645 (-645 (-381)))) (-5 *1 (-1025)) (-5 *5 (-381))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1048 *4 *5)) (-4 *4 (-13 (-849) (-308) (-147) (-1024)))
- (-14 *5 (-645 (-1178))) (-5 *2 (-645 (-645 (-1026 (-410 *4)))))
- (-5 *1 (-1294 *4 *5 *6)) (-14 *6 (-645 (-1178)))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-849) (-308) (-147) (-1024)))
- (-5 *2 (-645 (-645 (-1026 (-410 *5))))) (-5 *1 (-1294 *5 *6 *7))
- (-14 *6 (-645 (-1178))) (-14 *7 (-645 (-1178)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-849) (-308) (-147) (-1024)))
- (-5 *2 (-645 (-645 (-1026 (-410 *5))))) (-5 *1 (-1294 *5 *6 *7))
- (-14 *6 (-645 (-1178))) (-14 *7 (-645 (-1178)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-849) (-308) (-147) (-1024)))
- (-5 *2 (-645 (-645 (-1026 (-410 *5))))) (-5 *1 (-1294 *5 *6 *7))
- (-14 *6 (-645 (-1178))) (-14 *7 (-645 (-1178)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-645 (-954 *4)))
- (-4 *4 (-13 (-849) (-308) (-147) (-1024)))
- (-5 *2 (-645 (-645 (-1026 (-410 *4))))) (-5 *1 (-1294 *4 *5 *6))
- (-14 *5 (-645 (-1178))) (-14 *6 (-645 (-1178))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2))
- (|has| *2 (-6 (-4420 "*"))) (-4 *2 (-1051))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-172))
- (-5 *1 (-689 *2 *4 *5 *3)) (-4 *3 (-688 *2 *4 *5))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1125 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2))
- (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4420 "*"))) (-4 *2 (-1051)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1141))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-509)) (-5 *3 (-645 (-877))) (-5 *1 (-486)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))))
-(((*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-1086 *3)) (-4 *3 (-132)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-509)) (-5 *2 (-692 (-109))) (-5 *1 (-175))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-509)) (-5 *2 (-692 (-109))) (-5 *1 (-1087)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *4 (-567))) (-5 *5 (-1 (-1158 *4))) (-4 *4 (-365))
- (-4 *4 (-1051)) (-5 *2 (-1158 *4)) (-5 *1 (-1162 *4)))))
-(((*1 *2 *3 *4 *2 *2 *5)
- (|partial| -12 (-5 *2 (-844 *4)) (-5 *3 (-613 *4)) (-5 *5 (-112))
- (-4 *4 (-13 (-1203) (-29 *6)))
- (-4 *6 (-13 (-455) (-1040 (-567)) (-640 (-567))))
- (-5 *1 (-224 *6 *4)))))
+ (-12 (-5 *4 (-1179))
+ (-4 *5 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567))))
+ (-5 *2 (-588 *3)) (-5 *1 (-429 *5 *3))
+ (-4 *3 (-13 (-1204) (-29 *5))))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-308)) (-4 *3 (-994 *2)) (-4 *4 (-1245 *3))
+ (-5 *1 (-416 *2 *3 *4 *5)) (-4 *5 (-13 (-412 *3 *4) (-1040 *3))))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1175 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-762))))
+(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-5 *1 (-91 *3)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1269 *4)) (-5 *3 (-1122)) (-4 *4 (-351))
+ (-5 *1 (-531 *4)))))
(((*1 *2 *1)
(-12 (-4 *4 (-1102)) (-5 *2 (-891 *3 *5)) (-5 *1 (-887 *3 *4 *5))
(-4 *3 (-1102)) (-4 *5 (-667 *4)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1205 *3)) (-4 *3 (-1102)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-365)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112))
+ (-5 *1 (-507 *4 *5 *6 *3)) (-4 *3 (-951 *4 *5 *6)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
- (-4 *3 (-1067 *5 *6 *7))
- (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2566 *4))))
- (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-397)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-645 *3)) (-4 *3 (-308)) (-5 *1 (-179 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-585)))))
+ (-12 (-5 *3 (-645 *5)) (-5 *4 (-645 (-1 *6 (-645 *6))))
+ (-4 *5 (-38 (-410 (-567)))) (-4 *6 (-1260 *5)) (-5 *2 (-645 *6))
+ (-5 *1 (-1262 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1102) (-1040 *5)))
+ (-4 *5 (-888 *4)) (-4 *4 (-1102)) (-5 *2 (-1 (-112) *5))
+ (-5 *1 (-933 *4 *5 *6)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1223)) (-4 *3 (-1245 *4))
+ (-4 *5 (-1245 (-410 *3))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3))
+ (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3))
+ (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1288 *3)) (-4 *3 (-365)) (-5 *2 (-112)))))
+(((*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-1086 *3)) (-4 *3 (-132)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455))
+ (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112))
+ (-5 *1 (-990 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455))
+ (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112))
+ (-5 *1 (-1109 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1106)) (-5 *1 (-281)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-690 (-317 (-225))))
+ (-5 *2
+ (-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))))
+ (-5 *1 (-205)))))
+(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-875)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-645 *6)) (-4 *6 (-951 *3 *4 *5)) (-4 *3 (-308))
+ (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-450 *3 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-645 *7)) (-5 *3 (-1161)) (-4 *7 (-951 *4 *5 *6))
+ (-4 *4 (-308)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-5 *1 (-450 *4 *5 *6 *7))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-645 *7)) (-5 *3 (-1161)) (-4 *7 (-951 *4 *5 *6))
+ (-4 *4 (-308)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-5 *1 (-450 *4 *5 *6 *7)))))
(((*1 *2 *1)
(-12 (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-794))
- (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-112)))))
-(((*1 *2 *1)
+ (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559))
+ (-5 *2 (-112)))))
+(((*1 *2 *1 *1)
+ (|partial| -12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370))
+ (-5 *2 (-1175 *3))))
+ ((*1 *2 *1)
(-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370))
- (-5 *2 (-1174 *3)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3 (-567))) (-4 *3 (-1051)) (-5 *1 (-99 *3))))
- ((*1 *1 *2 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1051)) (-5 *1 (-99 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1051)) (-5 *1 (-99 *3)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1143 *2 *3)) (-4 *2 (-13 (-1102) (-34)))
- (-4 *3 (-13 (-1102) (-34))))))
-(((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-1160)) (-5 *4 (-169 (-225))) (-5 *5 (-567))
- (-5 *2 (-1037)) (-5 *1 (-759)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1211 *4 *5 *3 *6)) (-4 *4 (-559)) (-4 *5 (-794))
- (-4 *3 (-851)) (-4 *6 (-1067 *4 *5 *3)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-1287 *3)) (-4 *3 (-365)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1195 *4 *5))
- (-4 *4 (-1102)) (-4 *5 (-1102)))))
+ (-5 *2 (-1175 *3)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1180 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567)))))
+ (-12 (-5 *2 (-421 (-1175 *1))) (-5 *1 (-317 *4)) (-5 *3 (-1175 *1))
+ (-4 *4 (-455)) (-4 *4 (-559)) (-4 *4 (-1102))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-911)) (-5 *2 (-421 (-1175 *1))) (-5 *3 (-1175 *1)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-585)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1102)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-645 (-645 *4)))) (-5 *2 (-645 (-645 *4)))
+ (-5 *1 (-1190 *4)) (-4 *4 (-851)))))
(((*1 *2 *3 *4)
(-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-645 *7)) (-4 *7 (-951 *4 *5 *6)) (-4 *6 (-615 (-1178)))
- (-4 *4 (-365)) (-4 *5 (-794)) (-4 *6 (-851))
- (-5 *2 (-1167 (-645 (-954 *4)) (-645 (-295 (-954 *4)))))
- (-5 *1 (-507 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-4 *3 (-1067 *5 *6 *7))
+ (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2575 *4))))
+ (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-978 *4 *5 *6 *3)) (-4 *4 (-1051)) (-4 *5 (-794))
+ (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-4 *4 (-559))
+ (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1175 (-954 *6))) (-4 *6 (-559))
+ (-4 *2 (-951 (-410 (-954 *6)) *5 *4)) (-5 *1 (-733 *5 *4 *6 *2))
+ (-4 *5 (-794))
+ (-4 *4 (-13 (-851) (-10 -8 (-15 -3902 ((-1179) $))))))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-225)) (-5 *4 (-567))
+ (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G)))) (-5 *2 (-1037))
+ (-5 *1 (-749)))))
+(((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-645
+ (-645
+ (-3 (|:| -2007 (-1179))
+ (|:| -4320 (-645 (-3 (|:| S (-1179)) (|:| P (-954 (-567))))))))))
+ (-5 *1 (-1183)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1102)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))))
(((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-31))))
- ((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-49))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-49))))
((*1 *2 *1) (-12 (-5 *2 (-645 (-1137))) (-5 *1 (-133))))
((*1 *2 *1) (-12 (-5 *2 (-645 (-1137))) (-5 *1 (-138))))
((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-154))))
@@ -14159,220 +13902,235 @@
((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1021))))
((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1068))))
((*1 *2 *1) (-12 (-5 *2 (-645 (-1137))) (-5 *1 (-1098)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1174 *1)) (-5 *4 (-1178)) (-4 *1 (-27))
- (-5 *2 (-645 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-1174 *1)) (-4 *1 (-27)) (-5 *2 (-645 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-954 *1)) (-4 *1 (-27)) (-5 *2 (-645 *1))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1178)) (-4 *4 (-559)) (-5 *2 (-645 *1))
- (-4 *1 (-29 *4))))
- ((*1 *2 *1) (-12 (-4 *3 (-559)) (-5 *2 (-645 *1)) (-4 *1 (-29 *3)))))
-(((*1 *1)
- (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1102)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2 *3) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-564)) (-5 *3 (-567)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-772)) (-5 *1 (-676 *3)) (-4 *3 (-1051))
- (-4 *3 (-1102)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-645 (-410 (-954 (-169 (-567))))))
- (-5 *2 (-645 (-645 (-295 (-954 (-169 *4)))))) (-5 *1 (-380 *4))
- (-4 *4 (-13 (-365) (-849)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-645 (-295 (-410 (-954 (-169 (-567)))))))
- (-5 *2 (-645 (-645 (-295 (-954 (-169 *4)))))) (-5 *1 (-380 *4))
- (-4 *4 (-13 (-365) (-849)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-410 (-954 (-169 (-567)))))
- (-5 *2 (-645 (-295 (-954 (-169 *4))))) (-5 *1 (-380 *4))
- (-4 *4 (-13 (-365) (-849)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-295 (-410 (-954 (-169 (-567))))))
- (-5 *2 (-645 (-295 (-954 (-169 *4))))) (-5 *1 (-380 *4))
- (-4 *4 (-13 (-365) (-849))))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1211 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794))
- (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-1102)) (-4 *2 (-902 *4)) (-5 *1 (-693 *4 *2 *5 *3))
- (-4 *5 (-375 *2)) (-4 *3 (-13 (-375 *4) (-10 -7 (-6 -4418)))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-520)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-421 (-1175 *1))) (-5 *1 (-317 *4)) (-5 *3 (-1175 *1))
+ (-4 *4 (-455)) (-4 *4 (-559)) (-4 *4 (-1102))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-911)) (-5 *2 (-421 (-1175 *1))) (-5 *3 (-1175 *1)))))
+(((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-1161)) (-5 *4 (-169 (-225))) (-5 *5 (-567))
+ (-5 *2 (-1037)) (-5 *1 (-759)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1122)) (-5 *1 (-331)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-30))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-421 *4) *4)) (-4 *4 (-559)) (-5 *2 (-421 *4))
+ (-5 *1 (-422 *4))))
+ ((*1 *1 *1) (-5 *1 (-928)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1096 (-225))) (-5 *1 (-928))))
+ ((*1 *1 *1) (-5 *1 (-929)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1096 (-225))) (-5 *1 (-929))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567)))))
+ (-5 *4 (-410 (-567))) (-5 *1 (-1022 *3)) (-4 *3 (-1245 (-567)))))
+ ((*1 *2 *3 *2 *2)
+ (|partial| -12
+ (-5 *2 (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567)))))
+ (-5 *1 (-1022 *3)) (-4 *3 (-1245 (-567)))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567)))))
+ (-5 *4 (-410 (-567))) (-5 *1 (-1023 *3)) (-4 *3 (-1245 *4))))
+ ((*1 *2 *3 *2 *2)
+ (|partial| -12
+ (-5 *2 (-2 (|:| -2961 (-410 (-567))) (|:| -2973 (-410 (-567)))))
+ (-5 *1 (-1023 *3)) (-4 *3 (-1245 (-410 (-567))))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-13 (-849) (-365))) (-5 *1 (-1063 *2 *3))
+ (-4 *3 (-1245 *2)))))
+(((*1 *2 *2 *2)
+ (|partial| -12 (-4 *3 (-365)) (-5 *1 (-767 *2 *3)) (-4 *2 (-709 *3))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-559)) (-4 *2 (-13 (-433 (-169 *4)) (-1004) (-1204)))
+ (-5 *1 (-601 *4 *3 *2)) (-4 *3 (-13 (-433 *4) (-1004) (-1204))))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -2785 (-783 *3)) (|:| |coef1| (-783 *3))))
+ (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1051))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-559)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851))
+ (-5 *2 (-2 (|:| -2785 *1) (|:| |coef1| *1)))
+ (-4 *1 (-1067 *3 *4 *5)))))
+(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7)
+ (-12 (-5 *4 (-567)) (-5 *5 (-690 (-225)))
+ (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))))
+ (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN)))) (-5 *3 (-225))
+ (-5 *2 (-1037)) (-5 *1 (-750)))))
+(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
+ ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))))
(((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-96))))
((*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-109))))
((*1 *2 *1)
(-12 (-4 *1 (-366 *2 *3)) (-4 *3 (-1102)) (-4 *2 (-1102))))
- ((*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-1160))))
- ((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-441 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-1161))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-441 *3)) (-14 *3 *2)))
((*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-486))))
((*1 *2 *1) (-12 (-4 *1 (-836 *2)) (-4 *2 (-1102))))
((*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-866))))
((*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-967))))
- ((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1077 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1077 *3)) (-14 *3 *2)))
((*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-1117))))
- ((*1 *1 *1) (-5 *1 (-1178))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-645 *2)) (-4 *2 (-951 *4 *5 *6)) (-4 *4 (-455))
- (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-452 *4 *5 *6 *2)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-324 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-131))
- (-4 *3 (-793)))))
-(((*1 *1 *2) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-217)))))
+ ((*1 *1 *1) (-5 *1 (-1179))))
(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1178)) (-5 *1 (-613 *3)) (-4 *3 (-1102)))))
-(((*1 *2 *1) (-12 (-4 *1 (-308)) (-5 *2 (-772)))))
+ (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-1102))
+ (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *4 (-567)) (-5 *6 (-1 (-1274) (-1269 *5) (-1269 *5) (-381)))
+ (-5 *3 (-1269 (-381))) (-5 *5 (-381)) (-5 *2 (-1274))
+ (-5 *1 (-789))))
+ ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3)
+ (-12 (-5 *4 (-567)) (-5 *6 (-1 (-1274) (-1269 *5) (-1269 *5) (-381)))
+ (-5 *3 (-1269 (-381))) (-5 *5 (-381)) (-5 *2 (-1274))
+ (-5 *1 (-789)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-559)) (-4 *5 (-994 *4))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-142 *4 *5 *3))
- (-4 *3 (-375 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-559)) (-4 *5 (-994 *4))
- (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4)))
- (-5 *1 (-506 *4 *5 *6 *3)) (-4 *6 (-375 *4)) (-4 *3 (-375 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-690 *5)) (-4 *5 (-994 *4)) (-4 *4 (-559))
- (-5 *2 (-2 (|:| |num| (-690 *4)) (|:| |den| *4)))
- (-5 *1 (-694 *4 *5))))
+ (-12 (-5 *2 (-421 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1245 (-48)))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3))))
+ (-5 *1 (-121 *3)) (-4 *3 (-851))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-588 *4)) (-4 *4 (-13 (-29 *3) (-1204)))
+ (-4 *3 (-13 (-455) (-1040 (-567)) (-640 (-567))))
+ (-5 *1 (-586 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-588 (-410 (-954 *3))))
+ (-4 *3 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-591 *3))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-365) (-147) (-1040 (-410 (-567)))))
- (-4 *6 (-1244 *5))
- (-5 *2 (-2 (|:| -3845 *7) (|:| |rh| (-645 (-410 *6)))))
- (-5 *1 (-808 *5 *6 *7 *3)) (-5 *4 (-645 (-410 *6)))
- (-4 *7 (-657 *6)) (-4 *3 (-657 (-410 *6)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-559)) (-4 *5 (-994 *4))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1237 *4 *5 *3))
- (-4 *3 (-1244 *5)))))
-(((*1 *2 *3 *3 *2)
- (|partial| -12 (-5 *2 (-772))
- (-4 *3 (-13 (-727) (-370) (-10 -7 (-15 ** (*3 *3 (-567))))))
- (-5 *1 (-246 *3)))))
-(((*1 *2 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1244 *5))
- (-4 *5 (-13 (-365) (-147) (-1040 (-567))))
- (-5 *2
- (-2 (|:| |a| *6) (|:| |b| (-410 *6)) (|:| |c| (-410 *6))
- (|:| -2087 *6)))
- (-5 *1 (-1017 *5 *6)) (-5 *3 (-410 *6)))))
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1245 *5)) (-4 *5 (-365))
+ (-5 *2 (-2 (|:| -4179 *3) (|:| |special| *3))) (-5 *1 (-728 *5 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1269 *5)) (-4 *5 (-365)) (-4 *5 (-1051))
+ (-5 *2 (-645 (-645 (-690 *5)))) (-5 *1 (-1031 *5))
+ (-5 *3 (-645 (-690 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1269 (-1269 *5))) (-4 *5 (-365)) (-4 *5 (-1051))
+ (-5 *2 (-645 (-645 (-690 *5)))) (-5 *1 (-1031 *5))
+ (-5 *3 (-645 (-690 *5)))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-141)) (-5 *2 (-645 *1)) (-4 *1 (-1146))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-144)) (-5 *2 (-645 *1)) (-4 *1 (-1146)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-645 *4)) (-4 *4 (-365)) (-5 *2 (-1269 *4))
+ (-5 *1 (-815 *4 *3)) (-4 *3 (-657 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 (-781 *5 (-865 *6)))) (-5 *4 (-112)) (-4 *5 (-455))
+ (-14 *6 (-645 (-1179))) (-5 *2 (-645 (-1048 *5 *6)))
+ (-5 *1 (-629 *5 *6)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-645 *7)) (-5 *5 (-645 (-645 *8))) (-4 *7 (-851))
+ (-4 *8 (-308)) (-4 *6 (-794)) (-4 *9 (-951 *8 *6 *7))
+ (-5 *2
+ (-2 (|:| |unitPart| *9)
+ (|:| |suPart|
+ (-645 (-2 (|:| -2717 (-1175 *9)) (|:| -3468 (-567)))))))
+ (-5 *1 (-743 *6 *7 *8 *9)) (-5 *3 (-1175 *9)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-645 *5)) (-4 *5 (-1245 *3)) (-4 *3 (-308))
+ (-5 *2 (-112)) (-5 *1 (-458 *3 *5)))))
+(((*1 *1) (-5 *1 (-440))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 (-645 *7) *7 (-1175 *7))) (-5 *5 (-1 (-421 *7) *7))
+ (-4 *7 (-1245 *6)) (-4 *6 (-13 (-365) (-147) (-1040 (-410 (-567)))))
+ (-5 *2 (-645 (-2 (|:| |frac| (-410 *7)) (|:| -3855 *3))))
+ (-5 *1 (-810 *6 *7 *3 *8)) (-4 *3 (-657 *7))
+ (-4 *8 (-657 (-410 *7)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-421 *6) *6)) (-4 *6 (-1245 *5))
+ (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567)))))
+ (-5 *2
+ (-645 (-2 (|:| |frac| (-410 *6)) (|:| -3855 (-655 *6 (-410 *6))))))
+ (-5 *1 (-813 *5 *6)) (-5 *3 (-655 *6 (-410 *6))))))
(((*1 *1) (-12 (-5 *1 (-692 *2)) (-4 *2 (-614 (-863))))))
-(((*1 *2 *3 *4 *4 *3)
- (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037))
- (-5 *1 (-752)))))
-(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-875)))))
-(((*1 *1 *1 *1) (-4 *1 (-969))))
-(((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-528)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3))
- (-4 *5 (-375 *3)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051))
- (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *6 (-923)) (-4 *5 (-308)) (-4 *3 (-1244 *5))
- (-5 *2 (-2 (|:| |plist| (-645 *3)) (|:| |modulo| *5)))
- (-5 *1 (-463 *5 *3)) (-5 *4 (-645 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-645 (-945 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-645 (-945 *3))) (-4 *3 (-1051)) (-4 *1 (-1136 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-645 (-645 *3))) (-4 *1 (-1136 *3)) (-4 *3 (-1051))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-645 (-945 *3))) (-4 *1 (-1136 *3)) (-4 *3 (-1051)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-365)) (-4 *3 (-1051))
- (-5 *1 (-1162 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-433 *3) (-1004))))))
(((*1 *2)
- (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-420 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1051))
- (-14 *4 (-645 (-1178)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1051) (-851)))
- (-14 *4 (-645 (-1178))))))
-(((*1 *1 *2)
- (-12
- (-5 *2
- (-645
- (-2
- (|:| -1795
- (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
- (|:| |fn| (-1268 (-317 (-225))))
- (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225)))
- (|:| |g| (-317 (-225))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
- (|:| -4237
- (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381))
- (|:| |expense| (-381)) (|:| |accuracy| (-381))
- (|:| |intermediateResults| (-381)))))))
- (-5 *1 (-804)))))
+ (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4))
+ (-4 *3 (-369 *4))))
+ ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-567)) (-4 *4 (-172)) (-4 *5 (-375 *4))
+ (-4 *6 (-375 *4)) (-5 *1 (-689 *4 *5 *6 *2))
+ (-4 *2 (-688 *4 *5 *6)))))
+(((*1 *2 *1) (|partial| -12 (-4 *1 (-1014)) (-5 *2 (-863)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1179)) (-5 *5 (-1096 (-225))) (-5 *2 (-929))
+ (-5 *1 (-927 *3)) (-4 *3 (-615 (-539)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1179)) (-5 *2 (-929)) (-5 *1 (-927 *3))
+ (-4 *3 (-615 (-539)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-929))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1096 (-225)))
+ (-5 *1 (-929)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-945 *3)) (-4 *3 (-13 (-365) (-1203) (-1004)))
- (-5 *1 (-176 *3)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-567)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 (-772)) (-4 *5 (-172))))
- ((*1 *1 *1 *2 *1 *2)
- (-12 (-5 *2 (-567)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 (-772)) (-4 *5 (-172))))
+ (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-455))
+ (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851))
+ (-5 *1 (-979 *3 *4 *5 *6))))
((*1 *2 *2 *3)
- (-12
+ (-12 (-5 *2 (-645 *7)) (-5 *3 (-112)) (-4 *7 (-1067 *4 *5 *6))
+ (-4 *4 (-455)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-5 *1 (-979 *4 *5 *6 *7)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-645 (-1179))) (-4 *4 (-1102))
+ (-4 *5 (-13 (-1051) (-888 *4) (-615 (-894 *4))))
+ (-5 *1 (-54 *4 *5 *2))
+ (-4 *2 (-13 (-433 *5) (-888 *4) (-615 (-894 *4)))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-692 (-874 (-968 *3) (-968 *3)))) (-5 *1 (-968 *3))
+ (-4 *3 (-1102)))))
+(((*1 *2 *2 *2 *2 *3 *3 *4)
+ (|partial| -12 (-5 *3 (-613 *2))
+ (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1179)))
+ (-4 *2 (-13 (-433 *5) (-27) (-1204)))
+ (-4 *5 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567))))
+ (-5 *1 (-569 *5 *2 *6)) (-4 *6 (-1102)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112))
(-5 *2
- (-507 (-410 (-567)) (-240 *5 (-772)) (-865 *4)
- (-247 *4 (-410 (-567)))))
- (-5 *3 (-645 (-865 *4))) (-14 *4 (-645 (-1178))) (-14 *5 (-772))
- (-5 *1 (-508 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-645 (-2 (|:| -2706 *4) (|:| -3077 (-567)))))
- (-4 *4 (-1244 (-567))) (-5 *2 (-738 (-772))) (-5 *1 (-445 *4))))
+ (-2 (|:| |contp| (-567))
+ (|:| -2158 (-645 (-2 (|:| |irr| *3) (|:| -2298 (-567)))))))
+ (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112))
+ (-5 *2
+ (-2 (|:| |contp| (-567))
+ (|:| -2158 (-645 (-2 (|:| |irr| *3) (|:| -2298 (-567)))))))
+ (-5 *1 (-1234 *3)) (-4 *3 (-1245 (-567))))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 *4))
+ (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-772)) (-5 *2 (-112))))
+ ((*1 *2 *3 *3)
+ (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1220 *3)) (-4 *3 (-1102))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1102)) (-5 *2 (-112))
+ (-5 *1 (-1220 *3)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1219)))))
+(((*1 *2 *3 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037))
+ (-5 *1 (-752)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455))
+ (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112))
+ (-5 *1 (-990 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455))
+ (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112))
+ (-5 *1 (-1109 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7)))))
+(((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-794)) (-4 *4 (-851)) (-4 *5 (-308))
+ (-5 *1 (-918 *3 *4 *5 *2)) (-4 *2 (-951 *5 *3 *4))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1175 *6)) (-4 *6 (-951 *5 *3 *4)) (-4 *3 (-794))
+ (-4 *4 (-851)) (-4 *5 (-308)) (-5 *1 (-918 *3 *4 *5 *6))))
((*1 *2 *3)
- (-12 (-5 *3 (-421 *5)) (-4 *5 (-1244 *4)) (-4 *4 (-1051))
- (-5 *2 (-738 (-772))) (-5 *1 (-447 *4 *5)))))
+ (-12 (-5 *3 (-645 *2)) (-4 *2 (-951 *6 *4 *5))
+ (-5 *1 (-918 *4 *5 *6 *2)) (-4 *4 (-794)) (-4 *5 (-851))
+ (-4 *6 (-308)))))
(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-928)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1051)) (-4 *2 (-688 *4 *5 *6))
- (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1244 *4)) (-4 *5 (-375 *4))
- (-4 *6 (-375 *4)))))
-(((*1 *1 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1102)) (-4 *2 (-559))))
- ((*1 *1 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-559)))))
-(((*1 *2 *2) (-12 (-5 *2 (-317 (-225))) (-5 *1 (-268)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *3 (-567)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime"))
+ (-5 *1 (-421 *2)) (-4 *2 (-559)))))
(((*1 *1 *1) (-5 *1 (-1065))))
-(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3)
- (-12 (-5 *4 (-645 (-112))) (-5 *5 (-690 (-225)))
- (-5 *6 (-690 (-567))) (-5 *7 (-225)) (-5 *3 (-567)) (-5 *2 (-1037))
- (-5 *1 (-755)))))
-(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5)
- (-12 (-5 *3 (-225)) (-5 *4 (-567))
- (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G)))) (-5 *2 (-1037))
- (-5 *1 (-749)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-169 (-225))) (-5 *5 (-567)) (-5 *6 (-1160))
- (-5 *3 (-225)) (-5 *2 (-1037)) (-5 *1 (-759)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-567)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1218))
- (-4 *5 (-375 *4)) (-4 *3 (-375 *4)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-430 *3 *2)) (-4 *3 (-13 (-172) (-38 (-410 (-567)))))
- (-4 *2 (-13 (-851) (-21))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-684 *4 *3)) (-4 *4 (-1102))
- (-4 *3 (-1102)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-112)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567)))))))
- (-5 *1 (-1130 *3 *2)) (-4 *3 (-1244 *2)))))
-(((*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-439)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-509)) (-5 *1 (-114))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-114)))))
(((*1 *2 *1)
(-12 (-5 *2 (-772)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-567))
(-14 *4 *2) (-4 *5 (-172))))
@@ -14381,17 +14139,17 @@
(-4 *3 (-166 *4))))
((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-923))))
((*1 *2)
- (-12 (-4 *1 (-372 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1244 *3))
+ (-12 (-4 *1 (-372 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1245 *3))
(-5 *2 (-923))))
((*1 *2 *3)
(-12 (-4 *4 (-365)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4))
(-5 *2 (-772)) (-5 *1 (-524 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-690 *5)) (-5 *4 (-1268 *5)) (-4 *5 (-365))
+ (-12 (-5 *3 (-690 *5)) (-5 *4 (-1269 *5)) (-4 *5 (-365))
(-5 *2 (-772)) (-5 *1 (-668 *5))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4419))))
- (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4419)))) (-5 *2 (-772))
+ (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4423))))
+ (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4423)))) (-5 *2 (-772))
(-5 *1 (-669 *5 *6 *4 *3)) (-4 *3 (-688 *5 *6 *4))))
((*1 *2 *1)
(-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3))
@@ -14404,23 +14162,64 @@
(-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051))
(-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-559))
(-5 *2 (-772)))))
-(((*1 *2)
- (-12 (-4 *4 (-365)) (-5 *2 (-923)) (-5 *1 (-329 *3 *4))
- (-4 *3 (-330 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-365)) (-5 *2 (-834 (-923))) (-5 *1 (-329 *3 *4))
- (-4 *3 (-330 *4))))
- ((*1 *2) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-923))))
- ((*1 *2)
- (-12 (-4 *1 (-1287 *3)) (-4 *3 (-365)) (-5 *2 (-834 (-923))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1212 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-4 *5 (-370))
+ (-5 *2 (-772)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1158 (-567))) (-5 *1 (-1162 *4)) (-4 *4 (-1051))
- (-5 *3 (-567)))))
+ (-12 (-4 *4 (-365)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4))
+ (-5 *2 (-772)) (-5 *1 (-524 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3))
+ (-4 *5 (-375 *3)) (-4 *3 (-559)) (-5 *2 (-772))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-559)) (-4 *4 (-172)) (-4 *5 (-375 *4))
+ (-4 *6 (-375 *4)) (-5 *2 (-772)) (-5 *1 (-689 *4 *5 *6 *3))
+ (-4 *3 (-688 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051))
+ (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-559))
+ (-5 *2 (-772)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-317 (-225))) (-5 *2 (-410 (-567))) (-5 *1 (-306)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-945 *3) (-945 *3))) (-5 *1 (-176 *3))
+ (-4 *3 (-13 (-365) (-1204) (-1004))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1219)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1269 (-317 (-225)))) (-5 *2 (-1269 (-317 (-381))))
+ (-5 *1 (-306)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1175 *1)) (-5 *3 (-1179)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1175 *1)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-954 *1)) (-4 *1 (-27))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1179)) (-4 *1 (-29 *3)) (-4 *3 (-559))))
+ ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-559)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-994 *2)) (-4 *2 (-559)) (-5 *1 (-142 *2 *4 *3))
+ (-4 *3 (-375 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-994 *2)) (-4 *2 (-559)) (-5 *1 (-506 *2 *4 *5 *3))
+ (-4 *5 (-375 *2)) (-4 *3 (-375 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-690 *4)) (-4 *4 (-994 *2)) (-4 *2 (-559))
+ (-5 *1 (-694 *2 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-994 *2)) (-4 *2 (-559)) (-5 *1 (-1238 *2 *4 *3))
+ (-4 *3 (-1245 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-906 (-567))) (-5 *1 (-919))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919)))))
+(((*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1037)) (-5 *1 (-841))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 (-317 (-381)))) (-5 *4 (-645 (-381)))
+ (-5 *2 (-1037)) (-5 *1 (-841)))))
(((*1 *2 *3)
(|partial| -12
(-5 *3
- (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225)))
- (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225))
+ (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225)))
+ (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225))
(|:| |relerr| (-225))))
(-5 *2
(-2
@@ -14435,10 +14234,10 @@
(|:| |notEvaluated|
"End point continuity not yet evaluated")))
(|:| |singularitiesStream|
- (-3 (|:| |str| (-1158 (-225)))
+ (-3 (|:| |str| (-1159 (-225)))
(|:| |notEvaluated|
"Internal singularities not yet evaluated")))
- (|:| -1604
+ (|:| -2408
(-3 (|:| |finite| "The range is finite")
(|:| |lowerInfinite| "The bottom of range is infinite")
(|:| |upperInfinite| "The top of range is infinite")
@@ -14446,710 +14245,845 @@
"Both top and bottom points are infinite")
(|:| |notEvaluated| "Range not yet evaluated")))))
(-5 *1 (-562)))))
-(((*1 *1 *1) (-4 *1 (-1062)))
- ((*1 *1 *1 *2 *2)
- (-12 (-4 *1 (-1246 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-793))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1246 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-793)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3))
- (-4 *5 (-375 *3)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051))
- (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))))
+ (-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102))
+ (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-112)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-365) (-147) (-1040 (-567)))) (-4 *5 (-1245 *4))
+ (-5 *2 (-2 (|:| |ans| (-410 *5)) (|:| |nosol| (-112))))
+ (-5 *1 (-1017 *4 *5)) (-5 *3 (-410 *5)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-319)) (-5 *3 (-225)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1051)) (-4 *2 (-559)))))
+ (-12
+ (-5 *3
+ (-645
+ (-2 (|:| -1976 (-772))
+ (|:| |eqns|
+ (-645
+ (-2 (|:| |det| *7) (|:| |rows| (-645 (-567)))
+ (|:| |cols| (-645 (-567))))))
+ (|:| |fgb| (-645 *7)))))
+ (-4 *7 (-951 *4 *6 *5)) (-4 *4 (-13 (-308) (-147)))
+ (-4 *5 (-13 (-851) (-615 (-1179)))) (-4 *6 (-794)) (-5 *2 (-772))
+ (-5 *1 (-926 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-276)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037))
+ (-5 *1 (-748)))))
(((*1 *1 *2)
(-12 (-5 *2 (-923)) (-5 *1 (-152 *3 *4 *5)) (-14 *3 *2)
(-4 *4 (-365)) (-14 *5 (-995 *3 *4)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-567)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1218))
- (-4 *5 (-375 *4)) (-4 *2 (-375 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-567)) (-4 *1 (-1055 *4 *5 *6 *2 *7)) (-4 *6 (-1051))
- (-4 *7 (-238 *4 *6)) (-4 *2 (-238 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-645 (-2 (|:| -2706 (-1174 *6)) (|:| -3458 (-567)))))
- (-4 *6 (-308)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-567))
- (-5 *1 (-743 *4 *5 *6 *7)) (-4 *7 (-951 *6 *4 *5)))))
-(((*1 *2 *3 *4 *4 *5)
- (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-645 *3))
- (-4 *3 (-13 (-433 *6) (-27) (-1203)))
- (-4 *6 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-569 *6 *3 *7)) (-4 *7 (-1102)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-794)) (-4 *6 (-851))
- (-4 *7 (-951 *4 *5 *6)) (-5 *2 (-645 (-645 *7)))
- (-5 *1 (-451 *4 *5 *6 *7)) (-5 *3 (-645 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-794))
- (-4 *7 (-851)) (-4 *8 (-951 *5 *6 *7)) (-5 *2 (-645 (-645 *8)))
- (-5 *1 (-451 *5 *6 *7 *8)) (-5 *3 (-645 *8)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-365)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4))
- (-5 *2 (-772)) (-5 *1 (-524 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3))
- (-4 *5 (-375 *3)) (-4 *3 (-559)) (-5 *2 (-772))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-559)) (-4 *4 (-172)) (-4 *5 (-375 *4))
- (-4 *6 (-375 *4)) (-5 *2 (-772)) (-5 *1 (-689 *4 *5 *6 *3))
- (-4 *3 (-688 *4 *5 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051))
- (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-559))
- (-5 *2 (-772)))))
-(((*1 *2 *3 *4 *4 *2 *2 *2 *2)
- (-12 (-5 *2 (-567))
- (-5 *3
- (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-772)) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-4 *6 (-794)) (-4 *4 (-951 *5 *6 *7)) (-4 *5 (-455)) (-4 *7 (-851))
- (-5 *1 (-452 *5 *6 *7 *4)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851))
- (-4 *7 (-1067 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-645 *7)) (|:| |badPols| (-645 *7))))
- (-5 *1 (-979 *4 *5 *6 *7)) (-5 *3 (-645 *7)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-567)) (-4 *1 (-324 *4 *2)) (-4 *4 (-1102))
- (-4 *2 (-131)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-281))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1102))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1285 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051))
- (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1291 *3 *4)) (-4 *3 (-1051))
- (-4 *4 (-847)))))
-(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-645 (-954 *6))) (-5 *4 (-645 (-1178))) (-4 *6 (-455))
- (-5 *2 (-645 (-645 *7))) (-5 *1 (-541 *6 *7 *5)) (-4 *7 (-365))
- (-4 *5 (-13 (-365) (-849))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1051))
- (-4 *2 (-13 (-407) (-1040 *4) (-365) (-1203) (-285)))
- (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1244 *4)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-559) (-147)))
- (-5 *2 (-2 (|:| -2950 *3) (|:| -2963 *3))) (-5 *1 (-1238 *4 *3))
- (-4 *3 (-1244 *4)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2))
+ (-4 *4 (-375 *2)))))
+(((*1 *1) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1204))))))
+(((*1 *2 *3 *4 *5 *5 *4 *6)
+ (-12 (-5 *4 (-567)) (-5 *6 (-1 (-1274) (-1269 *5) (-1269 *5) (-381)))
+ (-5 *3 (-1269 (-381))) (-5 *5 (-381)) (-5 *2 (-1274))
+ (-5 *1 (-789)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1181 (-410 (-567)))) (-5 *2 (-410 (-567)))
+ (-5 *1 (-190)))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1196 *3 *4)) (-4 *3 (-1102))
+ (-4 *4 (-1102)))))
+(((*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-157))))
+ ((*1 *2 *3) (-12 (-5 *3 (-945 *2)) (-5 *1 (-984 *2)) (-4 *2 (-1051)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1102)) (-5 *2 (-112)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-559))
- (-4 *3 (-951 *7 *5 *6))
+ (-12 (-5 *3 (-645 (-690 *5))) (-5 *4 (-1269 *5)) (-4 *5 (-308))
+ (-4 *5 (-1051)) (-5 *2 (-690 *5)) (-5 *1 (-1031 *5)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-772)) (-5 *1 (-589 *2)) (-4 *2 (-548))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-2 (|:| -3070 *3) (|:| -3468 (-772)))) (-5 *1 (-589 *3))
+ (-4 *3 (-548)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-1252 *3 *2)) (-4 *3 (-1051))
+ (-4 *2 (-1229 *3)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1175 (-410 (-567)))) (-5 *1 (-944)) (-5 *3 (-567)))))
+(((*1 *2 *3 *4 *5 *4 *4 *4)
+ (-12 (-4 *6 (-851)) (-5 *3 (-645 *6)) (-5 *5 (-645 *3))
(-5 *2
- (-2 (|:| -3458 (-772)) (|:| -3694 *3) (|:| |radicand| (-645 *3))))
- (-5 *1 (-955 *5 *6 *7 *3 *8)) (-5 *4 (-772))
- (-4 *8
- (-13 (-365)
- (-10 -8 (-15 -4132 ($ *3)) (-15 -1448 (*3 $)) (-15 -1460 (*3 $))))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-248)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-114)) (-4 *4 (-1051)) (-5 *1 (-715 *4 *2))
- (-4 *2 (-649 *4))))
- ((*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-837 *2)) (-4 *2 (-1051)))))
+ (-2 (|:| |f1| *3) (|:| |f2| (-645 *5)) (|:| |f3| *5)
+ (|:| |f4| (-645 *5))))
+ (-5 *1 (-1190 *6)) (-5 *4 (-645 *5)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-772)) (-5 *3 (-945 *5)) (-4 *5 (-1051))
+ (-5 *1 (-1167 *4 *5)) (-14 *4 (-923))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-645 (-772))) (-5 *3 (-772)) (-5 *1 (-1167 *4 *5))
+ (-14 *4 (-923)) (-4 *5 (-1051))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-645 (-772))) (-5 *3 (-945 *5)) (-4 *5 (-1051))
+ (-5 *1 (-1167 *4 *5)) (-14 *4 (-923)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-248)))))
+(((*1 *1 *1 *1) (-4 *1 (-548))))
(((*1 *2 *1)
- (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3))
- (-4 *5 (-1244 (-410 *4))) (-5 *2 (-112)))))
-(((*1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-760)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-433 *3) (-1004))))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-567)) (-5 *2 (-1273)) (-5 *1 (-906 *4))
- (-4 *4 (-1102))))
- ((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-906 *3)) (-4 *3 (-1102)))))
+ (-12 (|has| *1 (-6 -4422)) (-4 *1 (-492 *3)) (-4 *3 (-1219))
+ (-5 *2 (-645 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-738 *3)) (-4 *3 (-1102))))
+ ((*1 *2 *1) (-12 (-5 *2 (-645 (-442))) (-5 *1 (-866)))))
+(((*1 *1 *1 *1) (-5 *1 (-863))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-690 *3)) (-4 *3 (-1051)) (-5 *1 (-691 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-690 *8)) (-5 *4 (-772)) (-4 *8 (-951 *5 *7 *6))
- (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1178))))
+ (-12 (-5 *3 (-1175 *5)) (-4 *5 (-365)) (-5 *2 (-645 *6))
+ (-5 *1 (-535 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-849))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-690 *8)) (-4 *8 (-951 *5 *7 *6))
+ (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1179))))
(-4 *7 (-794))
(-5 *2
(-645
- (-2 (|:| |det| *8) (|:| |rows| (-645 (-567)))
- (|:| |cols| (-645 (-567))))))
- (-5 *1 (-926 *5 *6 *7 *8)))))
-(((*1 *1 *1 *1) (-5 *1 (-863))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-923)) (-5 *1 (-1034 *2))
- (-4 *2 (-13 (-1102) (-10 -8 (-15 * ($ $ $))))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-1102)) (-5 *1 (-907 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1144 *3 *4)) (-14 *3 (-923)) (-4 *4 (-365))
- (-5 *1 (-995 *3 *4)))))
-(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (-567)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225))
- (-5 *2 (-1037)) (-5 *1 (-753)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-645 (-690 *5))) (-5 *4 (-567)) (-4 *5 (-365))
- (-4 *5 (-1051)) (-5 *2 (-112)) (-5 *1 (-1031 *5))))
+ (-2 (|:| |eqzro| (-645 *8)) (|:| |neqzro| (-645 *8))
+ (|:| |wcond| (-645 (-954 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1269 (-410 (-954 *5))))
+ (|:| -2144 (-645 (-1269 (-410 (-954 *5))))))))))
+ (-5 *1 (-926 *5 *6 *7 *8)) (-5 *4 (-645 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-690 *8)) (-5 *4 (-645 (-1179))) (-4 *8 (-951 *5 *7 *6))
+ (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1179))))
+ (-4 *7 (-794))
+ (-5 *2
+ (-645
+ (-2 (|:| |eqzro| (-645 *8)) (|:| |neqzro| (-645 *8))
+ (|:| |wcond| (-645 (-954 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1269 (-410 (-954 *5))))
+ (|:| -2144 (-645 (-1269 (-410 (-954 *5))))))))))
+ (-5 *1 (-926 *5 *6 *7 *8))))
((*1 *2 *3)
- (-12 (-5 *3 (-645 (-690 *4))) (-4 *4 (-365)) (-4 *4 (-1051))
- (-5 *2 (-112)) (-5 *1 (-1031 *4)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-1102))
- (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1)))
- (-4 *1 (-388 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455))
- (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112))
- (-5 *1 (-990 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455))
- (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112))
- (-5 *1 (-1109 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1051)) (-4 *3 (-1102))
- (-5 *2 (-2 (|:| |val| *1) (|:| -3458 (-567)))) (-4 *1 (-433 *3))))
- ((*1 *2 *1)
- (|partial| -12
- (-5 *2 (-2 (|:| |val| (-894 *3)) (|:| -3458 (-894 *3))))
- (-5 *1 (-894 *3)) (-4 *3 (-1102))))
+ (-12 (-5 *3 (-690 *7)) (-4 *7 (-951 *4 *6 *5))
+ (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1179))))
+ (-4 *6 (-794))
+ (-5 *2
+ (-645
+ (-2 (|:| |eqzro| (-645 *7)) (|:| |neqzro| (-645 *7))
+ (|:| |wcond| (-645 (-954 *4)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1269 (-410 (-954 *4))))
+ (|:| -2144 (-645 (-1269 (-410 (-954 *4))))))))))
+ (-5 *1 (-926 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-690 *9)) (-5 *5 (-923)) (-4 *9 (-951 *6 *8 *7))
+ (-4 *6 (-13 (-308) (-147))) (-4 *7 (-13 (-851) (-615 (-1179))))
+ (-4 *8 (-794))
+ (-5 *2
+ (-645
+ (-2 (|:| |eqzro| (-645 *9)) (|:| |neqzro| (-645 *9))
+ (|:| |wcond| (-645 (-954 *6)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1269 (-410 (-954 *6))))
+ (|:| -2144 (-645 (-1269 (-410 (-954 *6))))))))))
+ (-5 *1 (-926 *6 *7 *8 *9)) (-5 *4 (-645 *9))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-690 *9)) (-5 *4 (-645 (-1179))) (-5 *5 (-923))
+ (-4 *9 (-951 *6 *8 *7)) (-4 *6 (-13 (-308) (-147)))
+ (-4 *7 (-13 (-851) (-615 (-1179)))) (-4 *8 (-794))
+ (-5 *2
+ (-645
+ (-2 (|:| |eqzro| (-645 *9)) (|:| |neqzro| (-645 *9))
+ (|:| |wcond| (-645 (-954 *6)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1269 (-410 (-954 *6))))
+ (|:| -2144 (-645 (-1269 (-410 (-954 *6))))))))))
+ (-5 *1 (-926 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-690 *8)) (-5 *4 (-923)) (-4 *8 (-951 *5 *7 *6))
+ (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1179))))
+ (-4 *7 (-794))
+ (-5 *2
+ (-645
+ (-2 (|:| |eqzro| (-645 *8)) (|:| |neqzro| (-645 *8))
+ (|:| |wcond| (-645 (-954 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1269 (-410 (-954 *5))))
+ (|:| -2144 (-645 (-1269 (-410 (-954 *5))))))))))
+ (-5 *1 (-926 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-690 *9)) (-5 *4 (-645 *9)) (-5 *5 (-1161))
+ (-4 *9 (-951 *6 *8 *7)) (-4 *6 (-13 (-308) (-147)))
+ (-4 *7 (-13 (-851) (-615 (-1179)))) (-4 *8 (-794)) (-5 *2 (-567))
+ (-5 *1 (-926 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-690 *9)) (-5 *4 (-645 (-1179))) (-5 *5 (-1161))
+ (-4 *9 (-951 *6 *8 *7)) (-4 *6 (-13 (-308) (-147)))
+ (-4 *7 (-13 (-851) (-615 (-1179)))) (-4 *8 (-794)) (-5 *2 (-567))
+ (-5 *1 (-926 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-690 *8)) (-5 *4 (-1161)) (-4 *8 (-951 *5 *7 *6))
+ (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1179))))
+ (-4 *7 (-794)) (-5 *2 (-567)) (-5 *1 (-926 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-690 *10)) (-5 *4 (-645 *10)) (-5 *5 (-923))
+ (-5 *6 (-1161)) (-4 *10 (-951 *7 *9 *8)) (-4 *7 (-13 (-308) (-147)))
+ (-4 *8 (-13 (-851) (-615 (-1179)))) (-4 *9 (-794)) (-5 *2 (-567))
+ (-5 *1 (-926 *7 *8 *9 *10))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-690 *10)) (-5 *4 (-645 (-1179))) (-5 *5 (-923))
+ (-5 *6 (-1161)) (-4 *10 (-951 *7 *9 *8)) (-4 *7 (-13 (-308) (-147)))
+ (-4 *8 (-13 (-851) (-615 (-1179)))) (-4 *9 (-794)) (-5 *2 (-567))
+ (-5 *1 (-926 *7 *8 *9 *10))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-690 *9)) (-5 *4 (-923)) (-5 *5 (-1161))
+ (-4 *9 (-951 *6 *8 *7)) (-4 *6 (-13 (-308) (-147)))
+ (-4 *7 (-13 (-851) (-615 (-1179)))) (-4 *8 (-794)) (-5 *2 (-567))
+ (-5 *1 (-926 *6 *7 *8 *9)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-772)) (-4 *5 (-1051)) (-5 *2 (-567))
+ (-5 *1 (-446 *5 *3 *6)) (-4 *3 (-1245 *5))
+ (-4 *6 (-13 (-407) (-1040 *5) (-365) (-1204) (-285)))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1051))
- (-4 *7 (-951 *6 *4 *5))
- (-5 *2 (-2 (|:| |val| *3) (|:| -3458 (-567))))
- (-5 *1 (-952 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-365)
- (-10 -8 (-15 -4132 ($ *7)) (-15 -1448 (*7 $))
- (-15 -1460 (*7 $))))))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-825)) (-5 *3 (-645 (-1178))) (-5 *1 (-826)))))
-(((*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1218)))))
-(((*1 *1) (-5 *1 (-562))))
+ (-12 (-4 *4 (-1051)) (-5 *2 (-567)) (-5 *1 (-446 *4 *3 *5))
+ (-4 *3 (-1245 *4))
+ (-4 *5 (-13 (-407) (-1040 *4) (-365) (-1204) (-285))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-823)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1158 (-410 *3))) (-5 *1 (-174 *3)) (-4 *3 (-308)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-772)) (-4 *1 (-1285 *3 *4)) (-4 *3 (-851))
- (-4 *4 (-1051)) (-4 *4 (-172))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1285 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1051))
- (-4 *3 (-172)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-772)) (-4 *6 (-1102)) (-4 *3 (-902 *6))
- (-5 *2 (-690 *3)) (-5 *1 (-693 *6 *3 *7 *4)) (-4 *7 (-375 *3))
- (-4 *4 (-13 (-375 *6) (-10 -7 (-6 -4418)))))))
+ (-12 (-4 *1 (-366 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1102)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1269 *5)) (-4 *5 (-793)) (-5 *2 (-112))
+ (-5 *1 (-846 *4 *5)) (-14 *4 (-772)))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1245 *5)) (-4 *5 (-365))
+ (-5 *2 (-2 (|:| -2872 (-410 *6)) (|:| |coeff| (-410 *6))))
+ (-5 *1 (-577 *5 *6)) (-5 *3 (-410 *6)))))
+(((*1 *1 *1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-567)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051))
+ (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-13 (-559) (-1040 (-567)))) (-5 *2 (-1274))
+ (-5 *1 (-436 *3 *4)) (-4 *4 (-433 *3)))))
(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-851)) (-5 *1 (-245 *3)))))
-(((*1 *1) (-5 *1 (-157)))
- ((*1 *2 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-23)))))
-(((*1 *1 *1) (|partial| -4 *1 (-145))) ((*1 *1 *1) (-4 *1 (-351)))
- ((*1 *1 *1) (|partial| -12 (-4 *1 (-145)) (-4 *1 (-911)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-455)) (-4 *4 (-851)) (-4 *5 (-794)) (-5 *2 (-645 *6))
+ (-5 *1 (-989 *3 *4 *5 *6)) (-4 *6 (-951 *3 *5 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-27))
+ (-4 *4 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567)))))
+ (-4 *5 (-1245 *4)) (-5 *2 (-645 (-654 (-410 *5))))
+ (-5 *1 (-658 *4 *5)) (-5 *3 (-654 (-410 *5))))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-559))
+ (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112))
+ (-5 *1 (-979 *4 *5 *6 *7)))))
(((*1 *1 *1) (-4 *1 (-630)))
((*1 *2 *2)
(-12 (-4 *3 (-559)) (-5 *1 (-631 *3 *2))
- (-4 *2 (-13 (-433 *3) (-1004) (-1203))))))
+ (-4 *2 (-13 (-433 *3) (-1004) (-1204))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-1102))
- (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))))
+ (-12 (-5 *2 (-1175 (-410 (-954 *3)))) (-5 *1 (-456 *3 *4 *5 *6))
+ (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923))
+ (-14 *5 (-645 (-1179))) (-14 *6 (-1269 (-690 *3))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-851))
+ (-4 *5 (-267 *4)) (-4 *6 (-794)) (-5 *2 (-645 *4)))))
+(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3)
+ (-12 (-5 *4 (-690 (-225))) (-5 *5 (-690 (-567))) (-5 *3 (-567))
+ (-5 *2 (-1037)) (-5 *1 (-757)))))
(((*1 *2)
- (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3))
- (-4 *5 (-1244 (-410 *4))) (-5 *2 (-690 (-410 *4))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-3 (-410 (-954 *5)) (-1167 (-1178) (-954 *5))))
- (-4 *5 (-455)) (-5 *2 (-645 (-690 (-410 (-954 *5)))))
- (-5 *1 (-293 *5)) (-5 *4 (-690 (-410 (-954 *5)))))))
+ (-12 (-5 *2 (-1269 (-1103 *3 *4))) (-5 *1 (-1103 *3 *4))
+ (-14 *3 (-923)) (-14 *4 (-923)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-365)) (-4 *3 (-1051))
+ (-5 *1 (-1163 *3)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-978 *3 *4 *2 *5)) (-4 *3 (-1051)) (-4 *4 (-794))
+ (-4 *2 (-851)) (-4 *5 (-1067 *3 *4 *2)))))
+(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-1236 (-567))))))
+(((*1 *2 *3 *3 *4 *5 *5)
+ (-12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851))
+ (-4 *3 (-1067 *6 *7 *8))
+ (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2575 *4))))
+ (-5 *1 (-1074 *6 *7 *8 *3 *4)) (-4 *4 (-1073 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-645 (-2 (|:| |val| (-645 *8)) (|:| -2575 *9))))
+ (-5 *5 (-112)) (-4 *8 (-1067 *6 *7 *4)) (-4 *9 (-1073 *6 *7 *4 *8))
+ (-4 *6 (-455)) (-4 *7 (-794)) (-4 *4 (-851))
+ (-5 *2 (-645 (-2 (|:| |val| *8) (|:| -2575 *9))))
+ (-5 *1 (-1074 *6 *7 *4 *8 *9)))))
+(((*1 *1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1102)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-365)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3))
+ (-5 *1 (-524 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-1102)) (-4 *2 (-902 *4)) (-5 *1 (-693 *4 *2 *5 *3))
+ (-4 *5 (-375 *2)) (-4 *3 (-13 (-375 *4) (-10 -7 (-6 -4422)))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-923)) (-4 *4 (-370)) (-4 *4 (-365)) (-5 *2 (-1175 *1))
+ (-4 *1 (-330 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-1175 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-372 *3 *2)) (-4 *3 (-172)) (-4 *3 (-365))
+ (-4 *2 (-1245 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1269 *4)) (-4 *4 (-351)) (-5 *2 (-1175 *4))
+ (-5 *1 (-531 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 (-1158 *4) (-1158 *4))) (-5 *2 (-1158 *4))
- (-5 *1 (-1293 *4)) (-4 *4 (-1218))))
+ (-12 (-4 *4 (-1051))
+ (-4 *2 (-13 (-407) (-1040 *4) (-365) (-1204) (-285)))
+ (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1245 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-645 (-1158 *5)) (-645 (-1158 *5)))) (-5 *4 (-567))
- (-5 *2 (-645 (-1158 *5))) (-5 *1 (-1293 *5)) (-4 *5 (-1218)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-1218)) (-5 *1 (-182 *3 *2)) (-4 *2 (-675 *3)))))
+ (-12 (-5 *4 (-923)) (-4 *5 (-1051))
+ (-4 *2 (-13 (-407) (-1040 *5) (-365) (-1204) (-285)))
+ (-5 *1 (-446 *5 *3 *2)) (-4 *3 (-1245 *5)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1268 (-1268 *4))) (-4 *4 (-1051)) (-5 *2 (-690 *4))
- (-5 *1 (-1031 *4)))))
+ (-12 (-5 *3 (-1 (-1159 *4) (-1159 *4))) (-5 *2 (-1159 *4))
+ (-5 *1 (-1294 *4)) (-4 *4 (-1219))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-645 (-1159 *5)) (-645 (-1159 *5)))) (-5 *4 (-567))
+ (-5 *2 (-645 (-1159 *5))) (-5 *1 (-1294 *5)) (-4 *5 (-1219)))))
+(((*1 *1 *2) (-12 (-5 *2 (-820 *3)) (-4 *3 (-851)) (-5 *1 (-673 *3)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-690 *1)) (-4 *1 (-351)) (-5 *2 (-1268 *1))))
+ (-12 (-5 *3 (-114)) (-4 *4 (-559)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5))
+ (-4 *5 (-433 *4))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-690 *1)) (-4 *1 (-145)) (-4 *1 (-911))
- (-5 *2 (-1268 *1)))))
-(((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))))
-(((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| -2774 (-783 *3)) (|:| |coef1| (-783 *3))
- (|:| |coef2| (-783 *3))))
- (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1051))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-559)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851))
- (-5 *2 (-2 (|:| -2774 *1) (|:| |coef1| *1) (|:| |coef2| *1)))
- (-4 *1 (-1067 *3 *4 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-366 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102))
- (-5 *2 (-1160)))))
-(((*1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-1188)))))
-(((*1 *1 *1) (-5 *1 (-225)))
- ((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
- ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3))))
- ((*1 *1 *1) (-4 *1 (-1141))) ((*1 *1 *1 *1) (-4 *1 (-1141))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-825)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-645 *6)) (-5 *4 (-645 (-1158 *7))) (-4 *6 (-851))
- (-4 *7 (-951 *5 (-534 *6) *6)) (-4 *5 (-1051))
- (-5 *2 (-1 (-1158 *7) *7)) (-5 *1 (-1128 *5 *6 *7)))))
+ (-12 (-5 *3 (-114)) (-4 *4 (-559)) (-5 *2 (-112))
+ (-5 *1 (-158 *4 *5)) (-4 *5 (-433 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-114)) (-4 *4 (-559)) (-5 *2 (-112))
+ (-5 *1 (-277 *4 *5)) (-4 *5 (-13 (-433 *4) (-1004)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-302 *4)) (-4 *4 (-303))))
+ ((*1 *2 *3) (-12 (-4 *1 (-303)) (-5 *3 (-114)) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-114)) (-4 *5 (-1102)) (-5 *2 (-112))
+ (-5 *1 (-432 *4 *5)) (-4 *4 (-433 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-114)) (-4 *4 (-559)) (-5 *2 (-112))
+ (-5 *1 (-434 *4 *5)) (-4 *5 (-433 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-114)) (-4 *4 (-559)) (-5 *2 (-112))
+ (-5 *1 (-631 *4 *5)) (-4 *5 (-13 (-433 *4) (-1004) (-1204))))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-421 *2)) (-4 *2 (-559)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919))))
+ ((*1 *2) (-12 (-5 *2 (-906 (-567))) (-5 *1 (-919)))))
(((*1 *2 *2)
(-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
(-4 *2 (-13 (-433 *3) (-1004))))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-645 *3)) (-4 *3 (-1244 *5)) (-4 *5 (-308))
- (-5 *2 (-772)) (-5 *1 (-458 *5 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-645 *4)) (-4 *4 (-1102)) (-5 *2 (-1273))
- (-5 *1 (-1219 *4))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-645 *4)) (-4 *4 (-1102)) (-5 *2 (-1273))
- (-5 *1 (-1219 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037))
- (-5 *1 (-753)))))
+(((*1 *1) (-5 *1 (-1270))))
(((*1 *2 *1)
- (-12 (-4 *3 (-365)) (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4)))
- (-5 *2 (-1268 *6)) (-5 *1 (-338 *3 *4 *5 *6))
- (-4 *6 (-344 *3 *4 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-929)))))
-(((*1 *2)
- (-12 (-14 *4 (-772)) (-4 *5 (-1218)) (-5 *2 (-134))
- (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5))))
- ((*1 *2)
- (-12 (-4 *4 (-365)) (-5 *2 (-134)) (-5 *1 (-329 *3 *4))
- (-4 *3 (-330 *4))))
- ((*1 *2)
- (-12 (-5 *2 (-772)) (-5 *1 (-393 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
- (-4 *5 (-172))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-567))
- (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-645 *6)) (-4 *6 (-851)) (-4 *4 (-365)) (-4 *5 (-794))
- (-5 *2 (-567)) (-5 *1 (-507 *4 *5 *6 *7)) (-4 *7 (-951 *4 *5 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-982 *3)) (-4 *3 (-1051)) (-5 *2 (-923))))
- ((*1 *2) (-12 (-4 *1 (-1275 *3)) (-4 *3 (-365)) (-5 *2 (-134)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1273)) (-5 *1 (-1270)))))
+ (-12 (-4 *1 (-1040 (-567))) (-4 *1 (-303)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-548)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1102)))))
+(((*1 *1) (-5 *1 (-1065))))
(((*1 *2 *3)
- (-12 (-5 *3 (-690 *2)) (-4 *4 (-1244 *2))
- (-4 *2 (-13 (-308) (-10 -8 (-15 -2908 ((-421 $) $)))))
- (-5 *1 (-502 *2 *4 *5)) (-4 *5 (-412 *2 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1125 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2))
- (-4 *5 (-238 *3 *2)) (-4 *2 (-1051)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-772)) (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051))
- (-4 *4 (-794)) (-4 *5 (-851)) (-4 *3 (-559)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-112)))))
-(((*1 *1) (-5 *1 (-440))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))))
+ (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-567))) (-5 *1 (-1049)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1051)) (-5 *2 (-1268 *3)) (-5 *1 (-713 *3 *4))
- (-4 *4 (-1244 *3)))))
-(((*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1181)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-437))
- (-5 *2
- (-645
- (-3 (|:| -1996 (-1178))
- (|:| -2783 (-645 (-3 (|:| S (-1178)) (|:| P (-954 (-567)))))))))
- (-5 *1 (-1182)))))
+ (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-851))
+ (-4 *5 (-267 *4)) (-4 *6 (-794)) (-5 *2 (-112)))))
+(((*1 *1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1051))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-559)) (-4 *4 (-172)) (-4 *5 (-375 *4))
+ (-4 *6 (-375 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4)))
+ (-5 *1 (-689 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-172)) (-4 *2 (-1051)) (-5 *1 (-715 *2 *3))
+ (-4 *3 (-649 *2))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-172)) (-4 *2 (-1051)) (-5 *1 (-715 *2 *3))
+ (-4 *3 (-649 *2))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-837 *2)) (-4 *2 (-172)) (-4 *2 (-1051))))
+ ((*1 *1 *1) (-12 (-5 *1 (-837 *2)) (-4 *2 (-172)) (-4 *2 (-1051)))))
+(((*1 *2) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-1272))))
+ ((*1 *2 *2) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-1272)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-645 (-954 (-567)))) (-5 *4 (-645 (-1179)))
+ (-5 *2 (-645 (-645 (-381)))) (-5 *1 (-1025)) (-5 *5 (-381))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1048 *4 *5)) (-4 *4 (-13 (-849) (-308) (-147) (-1024)))
+ (-14 *5 (-645 (-1179))) (-5 *2 (-645 (-645 (-1026 (-410 *4)))))
+ (-5 *1 (-1295 *4 *5 *6)) (-14 *6 (-645 (-1179)))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-849) (-308) (-147) (-1024)))
+ (-5 *2 (-645 (-645 (-1026 (-410 *5))))) (-5 *1 (-1295 *5 *6 *7))
+ (-14 *6 (-645 (-1179))) (-14 *7 (-645 (-1179)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-849) (-308) (-147) (-1024)))
+ (-5 *2 (-645 (-645 (-1026 (-410 *5))))) (-5 *1 (-1295 *5 *6 *7))
+ (-14 *6 (-645 (-1179))) (-14 *7 (-645 (-1179)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-849) (-308) (-147) (-1024)))
+ (-5 *2 (-645 (-645 (-1026 (-410 *5))))) (-5 *1 (-1295 *5 *6 *7))
+ (-14 *6 (-645 (-1179))) (-14 *7 (-645 (-1179)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-954 *4)))
+ (-4 *4 (-13 (-849) (-308) (-147) (-1024)))
+ (-5 *2 (-645 (-645 (-1026 (-410 *4))))) (-5 *1 (-1295 *4 *5 *6))
+ (-14 *5 (-645 (-1179))) (-14 *6 (-645 (-1179))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-945 *4)) (-5 *1 (-1166 *3 *4)) (-14 *3 (-923))
- (-4 *4 (-1051)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-772)) (-4 *5 (-351)) (-4 *6 (-1244 *5))
- (-5 *2
- (-645
- (-2 (|:| -2623 (-690 *6)) (|:| |basisDen| *6)
- (|:| |basisInv| (-690 *6)))))
- (-5 *1 (-501 *5 *6 *7))
- (-5 *3
- (-2 (|:| -2623 (-690 *6)) (|:| |basisDen| *6)
- (|:| |basisInv| (-690 *6))))
- (-4 *7 (-1244 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1268 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-365))
- (-4 *1 (-725 *5 *6)) (-4 *5 (-172)) (-4 *6 (-1244 *5))
- (-5 *2 (-690 *5)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-875)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-559))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2951 *4)))
- (-5 *1 (-971 *4 *3)) (-4 *3 (-1244 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
+ (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1175 *4)) (-4 *4 (-351)) (-5 *2 (-112))
+ (-5 *1 (-359 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1269 *4)) (-4 *4 (-351)) (-5 *2 (-112))
+ (-5 *1 (-531 *4)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-421 *3)) (-4 *3 (-548)) (-4 *3 (-559))))
- ((*1 *2 *1) (-12 (-4 *1 (-548)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-798 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-834 *3)) (-4 *3 (-548)) (-4 *3 (-1102))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-844 *3)) (-4 *3 (-548)) (-4 *3 (-1102))))
+ (-12 (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559))
+ (-5 *2 (-112)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-494)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1175 (-410 (-954 *3)))) (-5 *1 (-456 *3 *4 *5 *6))
+ (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923))
+ (-14 *5 (-645 (-1179))) (-14 *6 (-1269 (-690 *3))))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1175 *1)) (-4 *1 (-1014)))))
+(((*1 *2 *1)
+ (-12 (-4 *4 (-1102)) (-5 *2 (-112)) (-5 *1 (-887 *3 *4 *5))
+ (-4 *3 (-1102)) (-4 *5 (-667 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-999 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-112))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-891 *3 *4)) (-4 *3 (-1102))
+ (-4 *4 (-1102)))))
+(((*1 *1) (-5 *1 (-130))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1212 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1161)) (-5 *4 (-567)) (-5 *5 (-690 (-169 (-225))))
+ (-5 *2 (-1037)) (-5 *1 (-755)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-645 *3)) (-4 *3 (-951 *5 *6 *7)) (-4 *5 (-455))
+ (-4 *6 (-794)) (-4 *7 (-851))
+ (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5)))
+ (-5 *1 (-452 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *4 (-365)) (-5 *2 (-645 (-1159 *4))) (-5 *1 (-286 *4 *5))
+ (-5 *3 (-1159 *4)) (-4 *5 (-1260 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-645 *5) *6))
+ (-4 *5 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *6 (-1245 *5))
+ (-5 *2 (-645 (-2 (|:| -3304 *5) (|:| -3855 *3))))
+ (-5 *1 (-810 *5 *6 *3 *7)) (-4 *3 (-657 *6))
+ (-4 *7 (-657 (-410 *6))))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-1269 (-567))) (-5 *3 (-567)) (-5 *1 (-1112))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-1269 (-567))) (-5 *3 (-645 (-567))) (-5 *4 (-567))
+ (-5 *1 (-1112)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-824)) (-5 *2 (-1274)) (-5 *1 (-823)))))
+(((*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-822)))))
+(((*1 *2 *3 *3 *4 *5 *3 *6)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225))
+ (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1037))
+ (-5 *1 (-747)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-421 *3)) (-4 *3 (-559)) (-5 *1 (-422 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1219)))))
+(((*1 *2 *3)
+ (-12 (-4 *3 (-1245 (-410 (-567))))
+ (-5 *2 (-2 (|:| |den| (-567)) (|:| |gcdnum| (-567))))
+ (-5 *1 (-915 *3 *4)) (-4 *4 (-1245 (-410 *3)))))
((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-1010 *3)) (-4 *3 (-1040 (-410 (-567)))))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-945 *3)) (-4 *3 (-13 (-365) (-1203) (-1004)))
- (-5 *1 (-176 *3)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-1051)))))
-(((*1 *2 *1 *3 *4 *4 *5)
- (-12 (-5 *3 (-945 (-225))) (-5 *4 (-875)) (-5 *5 (-923))
- (-5 *2 (-1273)) (-5 *1 (-471))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-945 (-225))) (-5 *2 (-1273)) (-5 *1 (-471))))
- ((*1 *2 *1 *3 *4 *4 *5)
- (-12 (-5 *3 (-645 (-945 (-225)))) (-5 *4 (-875)) (-5 *5 (-923))
- (-5 *2 (-1273)) (-5 *1 (-471)))))
+ (-12 (-4 *4 (-1245 (-410 *2))) (-5 *2 (-567)) (-5 *1 (-915 *4 *3))
+ (-4 *3 (-1245 (-410 *4))))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-824)) (-5 *1 (-823)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-174 *3)) (-4 *3 (-308))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-675 *3)) (-4 *3 (-1219))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-772)) (-4 *1 (-741 *3 *4)) (-4 *3 (-1051))
+ (-4 *4 (-851))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-870 *3)) (-5 *2 (-567))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-645 *3)) (-4 *1 (-982 *3)) (-4 *3 (-1051))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-645 *1)) (-5 *3 (-645 *7)) (-4 *1 (-1073 *4 *5 *6 *7))
+ (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *7 (-1067 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455))
+ (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *1))
+ (-4 *1 (-1073 *4 *5 *6 *7))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-645 *1)) (-4 *1 (-1073 *4 *5 *6 *3)) (-4 *4 (-455))
+ (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-645 *1))
+ (-4 *1 (-1073 *4 *5 *6 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1212 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1247 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-793)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1236 (-567))) (-4 *1 (-283 *3)) (-4 *3 (-1219))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-283 *3)) (-4 *3 (-1219)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-1 (-225) (-225) (-225)))
+ (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined"))
+ (-5 *5 (-1096 (-225))) (-5 *6 (-645 (-264))) (-5 *2 (-1135 (-225)))
+ (-5 *1 (-698)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-567)) (-5 *3 (-772)) (-5 *1 (-564)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-484 *4 *5)) (-14 *4 (-645 (-1178))) (-4 *5 (-1051))
- (-5 *2 (-247 *4 *5)) (-5 *1 (-946 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))))
-(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
- (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037))
- (-5 *1 (-752)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-303)) (-5 *3 (-1178)) (-5 *2 (-112))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-303)) (-5 *3 (-114)) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1178)) (-5 *2 (-112)) (-5 *1 (-613 *4))
- (-4 *4 (-1102))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-613 *4)) (-4 *4 (-1102))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-836 *3)) (-4 *3 (-1102)) (-5 *2 (-112))))
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
+ (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225)))
+ (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225)))
+ (|:| |abserr| (-225)) (|:| |relerr| (-225))))
+ (-5 *2
+ (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381))
+ (|:| |expense| (-381)) (|:| |accuracy| (-381))
+ (|:| |intermediateResults| (-381))))
+ (-5 *1 (-804)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 (-567))) (-5 *4 (-907 (-567)))
+ (-5 *2 (-690 (-567))) (-5 *1 (-592))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-567))) (-5 *2 (-645 (-690 (-567))))
+ (-5 *1 (-592))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-1102)) (-5 *2 (-112)) (-5 *1 (-889 *5 *3 *4))
- (-4 *3 (-888 *5)) (-4 *4 (-615 (-894 *5)))))
+ (-12 (-5 *3 (-645 (-567))) (-5 *4 (-645 (-907 (-567))))
+ (-5 *2 (-645 (-690 (-567)))) (-5 *1 (-592)))))
+(((*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172)))))
+(((*1 *2)
+ (|partial| -12 (-4 *4 (-1223)) (-4 *5 (-1245 (-410 *2)))
+ (-4 *2 (-1245 *4)) (-5 *1 (-343 *3 *4 *2 *5))
+ (-4 *3 (-344 *4 *2 *5))))
+ ((*1 *2)
+ (|partial| -12 (-4 *1 (-344 *3 *2 *4)) (-4 *3 (-1223))
+ (-4 *4 (-1245 (-410 *2))) (-4 *2 (-1245 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-1051)) (-4 *2 (-688 *4 *5 *6))
+ (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1245 *4)) (-4 *5 (-375 *4))
+ (-4 *6 (-375 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-1197)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-455) (-147))) (-5 *2 (-421 *3))
+ (-5 *1 (-100 *4 *3)) (-4 *3 (-1245 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-645 *6)) (-4 *6 (-888 *5)) (-4 *5 (-1102))
- (-5 *2 (-112)) (-5 *1 (-889 *5 *6 *4)) (-4 *4 (-615 (-894 *5))))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4418)) (-4 *1 (-492 *4))
- (-4 *4 (-1218)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1112)) (-5 *3 (-567)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-825)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))))
+ (-12 (-5 *4 (-645 *3)) (-4 *3 (-1245 *5)) (-4 *5 (-13 (-455) (-147)))
+ (-5 *2 (-421 *3)) (-5 *1 (-100 *5 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1102)) (-4 *2 (-1051))))
+ ((*1 *1 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-559)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1004))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1195 *4 *5))
- (-4 *4 (-1102)) (-4 *5 (-1102)))))
+ (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1179))))
+ (-4 *6 (-794)) (-5 *2 (-645 *3)) (-5 *1 (-926 *4 *5 *6 *3))
+ (-4 *3 (-951 *4 *6 *5)))))
+(((*1 *2 *3) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-449)) (-5 *3 (-567)))))
+(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2)
+ (-12 (-4 *1 (-798 *2)) (-4 *2 (-172))))
+ ((*1 *1 *2 *2)
+ (-12 (-5 *2 (-1001 *3)) (-4 *3 (-172)) (-5 *1 (-800 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-225)) (-5 *1 (-306)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-645 *2)) (-4 *2 (-433 *4)) (-5 *1 (-158 *4 *2))
- (-4 *4 (-559)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037))
- (-5 *1 (-748)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-650 *3 *4 *5)) (-4 *3 (-1102))
- (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-582)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1178)) (-5 *4 (-954 (-567))) (-5 *2 (-331))
- (-5 *1 (-333)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-324 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-131))
- (-5 *2 (-645 (-2 (|:| |gen| *3) (|:| -3946 *4))))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-645 (-2 (|:| -3694 *3) (|:| -2290 *4))))
- (-5 *1 (-736 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-727))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1246 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-793))
- (-5 *2 (-1158 (-2 (|:| |k| *4) (|:| |c| *3)))))))
+ (-12 (-5 *3 (-1161)) (-5 *2 (-645 (-1184))) (-5 *1 (-1138)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-772)))))
+(((*1 *2 *3 *2)
+ (-12 (-4 *2 (-13 (-365) (-849))) (-5 *1 (-181 *2 *3))
+ (-4 *3 (-1245 (-169 *2)))))
+ ((*1 *2 *3)
+ (-12 (-4 *2 (-13 (-365) (-849))) (-5 *1 (-181 *2 *3))
+ (-4 *3 (-1245 (-169 *2))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-1102)) (-4 *1 (-905 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1160)) (-5 *2 (-645 (-1183))) (-5 *1 (-1138)))))
+ (-12 (-5 *3 (-1269 *4)) (-4 *4 (-1051)) (-4 *2 (-1245 *4))
+ (-5 *1 (-447 *4 *2))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-410 (-1175 (-317 *5)))) (-5 *3 (-1269 (-317 *5)))
+ (-5 *4 (-567)) (-4 *5 (-559)) (-5 *1 (-1132 *5)))))
(((*1 *2 *3)
+ (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172))
+ (-5 *2 (-690 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-690 *4)) (-5 *1 (-419 *3 *4))
+ (-4 *3 (-420 *4))))
+ ((*1 *2) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-690 *3)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1051)) (-4 *3 (-1102))
+ (-5 *2 (-2 (|:| |val| *1) (|:| -3468 (-567)))) (-4 *1 (-433 *3))))
+ ((*1 *2 *1)
(|partial| -12
- (-5 *3
- (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225)))
- (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
- (-5 *2 (-645 (-225))) (-5 *1 (-204)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-772)) (-4 *4 (-559)) (-5 *1 (-971 *4 *2))
- (-4 *2 (-1244 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-794))
- (-4 *7 (-851)) (-4 *8 (-1067 *5 *6 *7)) (-5 *2 (-645 *3))
- (-5 *1 (-593 *5 *6 *7 *8 *3)) (-4 *3 (-1111 *5 *6 *7 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147)))
- (-5 *2
- (-645 (-2 (|:| -3892 (-1174 *5)) (|:| -2887 (-645 (-954 *5))))))
- (-5 *1 (-1080 *5 *6)) (-5 *3 (-645 (-954 *5)))
- (-14 *6 (-645 (-1178)))))
+ (-5 *2 (-2 (|:| |val| (-894 *3)) (|:| -3468 (-894 *3))))
+ (-5 *1 (-894 *3)) (-4 *3 (-1102))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-308) (-147)))
- (-5 *2
- (-645 (-2 (|:| -3892 (-1174 *4)) (|:| -2887 (-645 (-954 *4))))))
- (-5 *1 (-1080 *4 *5)) (-5 *3 (-645 (-954 *4)))
- (-14 *5 (-645 (-1178)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147)))
- (-5 *2
- (-645 (-2 (|:| -3892 (-1174 *5)) (|:| -2887 (-645 (-954 *5))))))
- (-5 *1 (-1080 *5 *6)) (-5 *3 (-645 (-954 *5)))
- (-14 *6 (-645 (-1178))))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-1051))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794))
- (-4 *4 (-851)))))
-(((*1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-1188)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851))
- (-4 *3 (-1067 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-645 *4))
- (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2566 *4))))))
- (-5 *1 (-1071 *6 *7 *8 *3 *4)) (-4 *4 (-1073 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
+ (|partial| -12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1051))
+ (-4 *7 (-951 *6 *4 *5))
+ (-5 *2 (-2 (|:| |val| *3) (|:| -3468 (-567))))
+ (-5 *1 (-952 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-365)
+ (-10 -8 (-15 -4129 ($ *7)) (-15 -1447 (*7 $))
+ (-15 -1462 (*7 $))))))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
+ (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225)))
+ (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225)))
+ (|:| |abserr| (-225)) (|:| |relerr| (-225))))
+ (-5 *2 (-381)) (-5 *1 (-205)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-327 *2 *3)) (-4 *3 (-793)) (-4 *2 (-1051))
+ (-4 *2 (-455))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-645 *4)) (-4 *4 (-1245 (-567))) (-5 *2 (-645 (-567)))
+ (-5 *1 (-489 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-455))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-951 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794))
+ (-4 *2 (-851)) (-4 *3 (-455)))))
+(((*1 *2)
+ (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3))
+ (-4 *5 (-1245 (-410 *4))) (-5 *2 (-690 (-410 *4))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-772)) (-4 *5 (-1051)) (-4 *2 (-1245 *5))
+ (-5 *1 (-1263 *5 *2 *6 *3)) (-4 *6 (-657 *2)) (-4 *3 (-1260 *5)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-13 (-559) (-1040 (-567)))) (-4 *5 (-433 *4))
+ (-5 *2 (-421 (-1175 (-410 (-567))))) (-5 *1 (-438 *4 *5 *3))
+ (-4 *3 (-1245 *5)))))
+(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928)))))
+(((*1 *1) (-5 *1 (-157))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-509)) (-5 *3 (-645 (-967))) (-5 *1 (-292)))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-1143 *2 *3)) (-4 *2 (-13 (-1102) (-34)))
+ (-4 *3 (-13 (-1102) (-34))))))
+(((*1 *2 *3 *3 *4)
(-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
(-4 *3 (-1067 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-645 *4))
- (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2566 *4))))))
- (-5 *1 (-1147 *5 *6 *7 *3 *4)) (-4 *4 (-1111 *5 *6 *7 *3)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-365)) (-4 *3 (-794)) (-4 *4 (-851))
- (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-951 *2 *3 *4)))))
-(((*1 *1) (-5 *1 (-292))))
-(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
- (|partial| -12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-794))
- (-4 *8 (-851)) (-4 *9 (-1067 *6 *7 *8))
- (-5 *2
- (-2 (|:| -3845 (-645 *9)) (|:| -2566 *4) (|:| |ineq| (-645 *9))))
- (-5 *1 (-990 *6 *7 *8 *9 *4)) (-5 *3 (-645 *9))
- (-4 *4 (-1073 *6 *7 *8 *9))))
- ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
- (|partial| -12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-794))
- (-4 *8 (-851)) (-4 *9 (-1067 *6 *7 *8))
- (-5 *2
- (-2 (|:| -3845 (-645 *9)) (|:| -2566 *4) (|:| |ineq| (-645 *9))))
- (-5 *1 (-1109 *6 *7 *8 *9 *4)) (-5 *3 (-645 *9))
- (-4 *4 (-1073 *6 *7 *8 *9)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7)
- (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225)))
- (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-75 FCN JACOBF JACEPS))))
- (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-76 G JACOBG JACGEP))))
- (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-750)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2))
- (-4 *2 (-13 (-433 *3) (-1203))))))
+ (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2575 *4))))
+ (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))))
+(((*1 *2 *1 *3 *3 *4 *4)
+ (-12 (-5 *3 (-772)) (-5 *4 (-923)) (-5 *2 (-1274)) (-5 *1 (-1270))))
+ ((*1 *2 *1 *3 *3 *4 *4)
+ (-12 (-5 *3 (-772)) (-5 *4 (-923)) (-5 *2 (-1274)) (-5 *1 (-1271)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-559)) (-5 *1 (-158 *3 *2)) (-4 *2 (-433 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1178)) (-4 *4 (-559)) (-5 *1 (-158 *4 *2))
- (-4 *2 (-433 *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1178))))
- ((*1 *1 *1) (-4 *1 (-160))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1073 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794))
- (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-365)) (-5 *2 (-645 *3)) (-5 *1 (-947 *4 *3))
- (-4 *3 (-1244 *4)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-169 (-225))) (-5 *5 (-567)) (-5 *6 (-1160))
- (-5 *3 (-225)) (-5 *2 (-1037)) (-5 *1 (-759)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))))
-(((*1 *2 *3 *3 *4 *5 *3 *6)
- (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225))
- (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1037))
- (-5 *1 (-747)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-1067 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794))
- (-4 *2 (-851))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794))
- (-4 *4 (-851)))))
-(((*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172))))
- ((*1 *1 *1 *1) (-4 *1 (-476)))
- ((*1 *1 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172))))
- ((*1 *2 *2) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-885))))
- ((*1 *1 *1) (-5 *1 (-973)))
- ((*1 *1 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-172)))))
+ (-12 (-5 *2 (-645 (-484 *3 *4))) (-14 *3 (-645 (-1179)))
+ (-4 *4 (-455)) (-5 *1 (-632 *3 *4)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-692 (-874 (-968 *3) (-968 *3)))) (-5 *1 (-968 *3))
- (-4 *3 (-1102)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1178)) (-5 *4 (-954 (-567))) (-5 *2 (-331))
- (-5 *1 (-333)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-645 (-410 (-954 *5)))) (-5 *4 (-645 (-1178)))
- (-4 *5 (-559)) (-5 *2 (-645 (-645 (-954 *5)))) (-5 *1 (-1187 *5)))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1160)) (-4 *1 (-392)))))
-(((*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-97)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2))
- (-4 *2 (-13 (-433 *3) (-1203))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1268 (-317 (-225)))) (-5 *4 (-645 (-1178)))
- (-5 *2 (-690 (-317 (-225)))) (-5 *1 (-205))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1102)) (-4 *6 (-902 *5)) (-5 *2 (-690 *6))
- (-5 *1 (-693 *5 *6 *3 *4)) (-4 *3 (-375 *6))
- (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4418)))))))
+ (-12 (-4 *1 (-1252 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-1229 *3))
+ (-5 *2 (-410 (-567))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-690 *6)) (-5 *5 (-1 (-421 (-1175 *6)) (-1175 *6)))
+ (-4 *6 (-365))
+ (-5 *2
+ (-645
+ (-2 (|:| |outval| *7) (|:| |outmult| (-567))
+ (|:| |outvect| (-645 (-690 *7))))))
+ (-5 *1 (-535 *6 *7 *4)) (-4 *7 (-365)) (-4 *4 (-13 (-365) (-849))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-645 (-567))) (-5 *2 (-567)) (-5 *1 (-489 *4))
- (-4 *4 (-1244 *2)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1006 *3)) (-14 *3 (-567)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-645 (-1178))) (-4 *4 (-1102))
- (-4 *5 (-13 (-1051) (-888 *4) (-615 (-894 *4))))
- (-5 *1 (-54 *4 *5 *2))
- (-4 *2 (-13 (-433 *5) (-888 *4) (-615 (-894 *4)))))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1268 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172))
- (-4 *5 (-1244 *4)) (-5 *2 (-690 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-412 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1244 *3))
- (-5 *2 (-690 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-894 *4)) (-4 *4 (-1102)) (-5 *1 (-892 *4 *3))
- (-4 *3 (-1218))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-894 *3)) (-4 *3 (-1102)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-923)) (-5 *1 (-787)))))
-(((*1 *2 *1 *1 *3)
- (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1102) (-34)))
- (-5 *2 (-112)) (-5 *1 (-1142 *4 *5)) (-4 *4 (-13 (-1102) (-34))))))
-(((*1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1218)))))
+ (-12 (-5 *3 (-923)) (-5 *2 (-1269 (-1269 (-567)))) (-5 *1 (-469)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3))
+ (-4 *5 (-1245 (-410 *4)))
+ (-5 *2 (-2 (|:| |num| (-1269 *4)) (|:| |den| *4))))))
+(((*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-308))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1181 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567))))
+ ((*1 *1 *1) (-12 (-4 *1 (-675 *2)) (-4 *2 (-1219))))
+ ((*1 *1 *1) (-4 *1 (-870 *2)))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-793))
+ (-4 *4 (-851)))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1161)) (-4 *1 (-392)))))
(((*1 *2 *2 *3)
- (-12 (-4 *3 (-365)) (-5 *1 (-286 *3 *2)) (-4 *2 (-1259 *3)))))
+ (-12 (-4 *3 (-365)) (-5 *1 (-286 *3 *2)) (-4 *2 (-1260 *3)))))
(((*1 *2 *3)
- (-12
+ (-12 (-5 *2 (-1181 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-690 *3)) (-4 *3 (-1051)) (-5 *1 (-691 *3)))))
+(((*1 *1 *1) (-5 *1 (-1065))))
+(((*1 *1 *2) (-12 (-5 *2 (-645 (-331))) (-5 *1 (-331)))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *3 (-851))
+ (-5 *2 (-2 (|:| -3705 *1) (|:| |gap| (-772)) (|:| -2023 *1)))
+ (-4 *1 (-1067 *4 *5 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851))
+ (-5 *2 (-2 (|:| -3705 *1) (|:| |gap| (-772)) (|:| -2023 *1)))
+ (-4 *1 (-1067 *3 *4 *5)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-567) (-567))) (-5 *1 (-363 *3)) (-4 *3 (-1102))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-772) (-772))) (-4 *1 (-388 *3)) (-4 *3 (-1102))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4)
+ (-5 *1 (-650 *3 *4 *5)) (-4 *3 (-1102)))))
+(((*1 *2 *3 *4 *4 *2 *2 *2 *2)
+ (-12 (-5 *2 (-567))
(-5 *3
- (-2 (|:| -2264 (-381)) (|:| -1996 (-1160))
- (|:| |explanations| (-645 (-1160)))))
- (-5 *2 (-1037)) (-5 *1 (-306))))
+ (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-772)) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (-4 *6 (-794)) (-4 *4 (-951 *5 *6 *7)) (-4 *5 (-455)) (-4 *7 (-851))
+ (-5 *1 (-452 *5 *6 *7 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *7 (-951 *4 *5 *6)) (-5 *2 (-645 (-645 *7)))
+ (-5 *1 (-451 *4 *5 *6 *7)) (-5 *3 (-645 *7))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-794))
+ (-4 *7 (-851)) (-4 *8 (-951 *5 *6 *7)) (-5 *2 (-645 (-645 *8)))
+ (-5 *1 (-451 *5 *6 *7 *8)) (-5 *3 (-645 *8))))
((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| -2264 (-381)) (|:| -1996 (-1160))
- (|:| |explanations| (-645 (-1160))) (|:| |extra| (-1037))))
- (-5 *2 (-1037)) (-5 *1 (-306)))))
+ (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *7 (-951 *4 *5 *6)) (-5 *2 (-645 (-645 *7)))
+ (-5 *1 (-451 *4 *5 *6 *7)) (-5 *3 (-645 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-794))
+ (-4 *7 (-851)) (-4 *8 (-951 *5 *6 *7)) (-5 *2 (-645 (-645 *8)))
+ (-5 *1 (-451 *5 *6 *7 *8)) (-5 *3 (-645 *8)))))
+(((*1 *2 *2) (-12 (-5 *1 (-963 *2)) (-4 *2 (-548)))))
+(((*1 *1 *1 *1) (-5 *1 (-863))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-1179))
+ (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-295 (-317 *5))))
+ (-5 *1 (-1131 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-410 (-954 *4))) (-4 *4 (-13 (-308) (-147)))
+ (-5 *2 (-645 (-295 (-317 *4)))) (-5 *1 (-1131 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-295 (-410 (-954 *5)))) (-5 *4 (-1179))
+ (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-295 (-317 *5))))
+ (-5 *1 (-1131 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-295 (-410 (-954 *4)))) (-4 *4 (-13 (-308) (-147)))
+ (-5 *2 (-645 (-295 (-317 *4)))) (-5 *1 (-1131 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 (-410 (-954 *5)))) (-5 *4 (-645 (-1179)))
+ (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-645 (-295 (-317 *5)))))
+ (-5 *1 (-1131 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-410 (-954 *4)))) (-4 *4 (-13 (-308) (-147)))
+ (-5 *2 (-645 (-645 (-295 (-317 *4))))) (-5 *1 (-1131 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 (-295 (-410 (-954 *5))))) (-5 *4 (-645 (-1179)))
+ (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-645 (-295 (-317 *5)))))
+ (-5 *1 (-1131 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-295 (-410 (-954 *4)))))
+ (-4 *4 (-13 (-308) (-147))) (-5 *2 (-645 (-645 (-295 (-317 *4)))))
+ (-5 *1 (-1131 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-114)) (-5 *3 (-645 (-1 *4 (-645 *4)))) (-4 *4 (-1102))
+ (-5 *1 (-113 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1102))
+ (-5 *1 (-113 *4))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-114)) (-5 *2 (-645 (-1 *4 (-645 *4))))
+ (-5 *1 (-113 *4)) (-4 *4 (-1102)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *5 (-613 *4)) (-5 *6 (-1179))
+ (-4 *4 (-13 (-433 *7) (-27) (-1204)))
+ (-4 *7 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2144 (-645 *4))))
+ (-5 *1 (-569 *7 *4 *3)) (-4 *3 (-657 *4)) (-4 *3 (-1102)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1051)) (-4 *3 (-1244 *4)) (-4 *2 (-1259 *4))
- (-5 *1 (-1262 *4 *3 *5 *2)) (-4 *5 (-657 *3)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1096 (-225)))
- (-5 *2 (-1270)) (-5 *1 (-258)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-929)))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3)
- (-12 (-5 *3 (-567)) (-5 *4 (-1160)) (-5 *5 (-690 (-225)))
- (-5 *2 (-1037)) (-5 *1 (-748)))))
+ (-12 (-5 *3 (-1161)) (-5 *2 (-214 (-505))) (-5 *1 (-838)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-410 (-567)))
+ (-4 *4 (-13 (-559) (-1040 (-567)) (-640 (-567))))
+ (-5 *1 (-278 *4 *2)) (-4 *2 (-13 (-27) (-1204) (-433 *4))))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794))
+ (-4 *4 (-851)) (-4 *2 (-455)))))
+(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-4 *1 (-905 *3)))))
(((*1 *2 *1)
(-12
(-5 *2
(-3 (|:| |nullBranch| "null")
(|:| |assignmentBranch|
- (-2 (|:| |var| (-1178))
+ (-2 (|:| |var| (-1179))
(|:| |arrayIndex| (-645 (-954 (-567))))
(|:| |rand|
- (-2 (|:| |ints2Floats?| (-112)) (|:| -3602 (-863))))))
+ (-2 (|:| |ints2Floats?| (-112)) (|:| -3612 (-863))))))
(|:| |arrayAssignmentBranch|
- (-2 (|:| |var| (-1178)) (|:| |rand| (-863))
+ (-2 (|:| |var| (-1179)) (|:| |rand| (-863))
(|:| |ints2Floats?| (-112))))
(|:| |conditionalBranch|
- (-2 (|:| |switch| (-1177)) (|:| |thenClause| (-331))
+ (-2 (|:| |switch| (-1178)) (|:| |thenClause| (-331))
(|:| |elseClause| (-331))))
(|:| |returnBranch|
- (-2 (|:| -3572 (-112))
- (|:| -3802
- (-2 (|:| |ints2Floats?| (-112)) (|:| -3602 (-863))))))
+ (-2 (|:| -3885 (-112))
+ (|:| -3812
+ (-2 (|:| |ints2Floats?| (-112)) (|:| -3612 (-863))))))
(|:| |blockBranch| (-645 (-331)))
- (|:| |commentBranch| (-645 (-1160))) (|:| |callBranch| (-1160))
+ (|:| |commentBranch| (-645 (-1161))) (|:| |callBranch| (-1161))
(|:| |forBranch|
- (-2 (|:| -1604 (-1094 (-954 (-567))))
- (|:| |span| (-954 (-567))) (|:| -2006 (-331))))
+ (-2 (|:| -2408 (-1094 (-954 (-567))))
+ (|:| |span| (-954 (-567))) (|:| -2017 (-331))))
(|:| |labelBranch| (-1122))
- (|:| |loopBranch| (-2 (|:| |switch| (-1177)) (|:| -2006 (-331))))
+ (|:| |loopBranch| (-2 (|:| |switch| (-1178)) (|:| -2017 (-331))))
(|:| |commonBranch|
- (-2 (|:| -1996 (-1178)) (|:| |contents| (-645 (-1178)))))
+ (-2 (|:| -2007 (-1179)) (|:| |contents| (-645 (-1179)))))
(|:| |printBranch| (-645 (-863)))))
(-5 *1 (-331)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-966 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-1102)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-1182)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-645 *7)) (-5 *3 (-567)) (-4 *7 (-951 *4 *5 *6))
- (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
- (-5 *1 (-452 *4 *5 *6 *7)))))
-(((*1 *2)
- (-12 (-4 *1 (-351))
- (-5 *2 (-645 (-2 (|:| -2706 (-567)) (|:| -3458 (-567))))))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-1161)) (-5 *4 (-1122)) (-5 *2 (-112)) (-5 *1 (-822)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-567)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051))
+ (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-1067 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794))
+ (-4 *2 (-851))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794))
+ (-4 *4 (-851)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-520)))))
(((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-471))))
- ((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-1269))))
- ((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-1270)))))
-(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4418)) (-4 *1 (-605 *4 *3)) (-4 *4 (-1102))
- (-4 *3 (-1218)) (-4 *3 (-1102)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1218)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1180 (-410 (-567)))) (-5 *1 (-190)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-645 *1)) (-4 *1 (-1067 *4 *5 *6)) (-4 *4 (-1051))
- (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794))
- (-4 *5 (-851)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1211 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794))
- (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1211 *4 *5 *6 *3)) (-4 *4 (-559)) (-4 *5 (-794))
- (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-559))
- (-4 *7 (-951 *3 *5 *6))
- (-5 *2 (-2 (|:| -3458 (-772)) (|:| -3694 *8) (|:| |radicand| *8)))
- (-5 *1 (-955 *5 *6 *3 *7 *8)) (-5 *4 (-772))
- (-4 *8
- (-13 (-365)
- (-10 -8 (-15 -4132 ($ *7)) (-15 -1448 (*7 $)) (-15 -1460 (*7 $))))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-1270))))
+ ((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-1271)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1219)) (-5 *1 (-377 *4 *2))
+ (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4423)))))))
+(((*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1219)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-605 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1218))
- (-5 *2 (-645 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-455) (-1040 (-567)))) (-4 *3 (-559))
- (-5 *1 (-41 *3 *2)) (-4 *2 (-433 *3))
- (-4 *2
- (-13 (-365) (-303)
- (-10 -8 (-15 -1448 ((-1127 *3 (-613 $)) $))
- (-15 -1460 ((-1127 *3 (-613 $)) $))
- (-15 -4132 ($ (-1127 *3 (-613 $))))))))))
+ (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2))
+ (|has| *2 (-6 (-4424 "*"))) (-4 *2 (-1051))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-172))
+ (-5 *1 (-689 *2 *4 *5 *3)) (-4 *3 (-688 *2 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1125 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2))
+ (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4424 "*"))) (-4 *2 (-1051)))))
+(((*1 *1) (-5 *1 (-440))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-990 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-645 *3)) (-4 *3 (-1073 *5 *6 *7 *8)) (-4 *5 (-455))
+ (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-1067 *5 *6 *7))
+ (-5 *2 (-112)) (-5 *1 (-990 *5 *6 *7 *8 *3))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1109 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-645 *3)) (-4 *3 (-1073 *5 *6 *7 *8)) (-4 *5 (-455))
+ (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-1067 *5 *6 *7))
+ (-5 *2 (-112)) (-5 *1 (-1109 *5 *6 *7 *8 *3)))))
+(((*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-1102))))
+ ((*1 *1 *1) (-5 *1 (-633))))
(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-567)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1218))
+ (-12 (-5 *3 (-567)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1219))
(-4 *4 (-375 *2)) (-4 *5 (-375 *2))))
((*1 *2 *1 *3 *3)
(-12 (-5 *3 (-567)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-375 *2))
- (-4 *5 (-375 *2)) (-4 *2 (-1218))))
+ (-4 *5 (-375 *2)) (-4 *2 (-1219))))
((*1 *1 *1 *2)
- (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1218))))
- ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1218))))
+ (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1219))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1219))))
((*1 *2 *1 *3)
(-12 (-5 *3 (-645 (-567))) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2))
(-14 *4 (-567)) (-14 *5 (-772))))
@@ -15169,30 +15103,30 @@
(-12 (-4 *2 (-172)) (-5 *1 (-136 *3 *4 *2)) (-14 *3 (-567))
(-14 *4 (-772))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-1178)) (-5 *2 (-245 (-1160))) (-5 *1 (-214 *4))
+ (-12 (-5 *3 (-1179)) (-5 *2 (-245 (-1161))) (-5 *1 (-214 *4))
(-4 *4
(-13 (-851)
- (-10 -8 (-15 -1787 ((-1160) $ *3)) (-15 -4022 ((-1273) $))
- (-15 -1345 ((-1273) $)))))))
+ (-10 -8 (-15 -1801 ((-1161) $ *3)) (-15 -4025 ((-1274) $))
+ (-15 -3657 ((-1274) $)))))))
((*1 *1 *1 *2)
(-12 (-5 *2 (-991)) (-5 *1 (-214 *3))
(-4 *3
(-13 (-851)
- (-10 -8 (-15 -1787 ((-1160) $ (-1178))) (-15 -4022 ((-1273) $))
- (-15 -1345 ((-1273) $)))))))
+ (-10 -8 (-15 -1801 ((-1161) $ (-1179))) (-15 -4025 ((-1274) $))
+ (-15 -3657 ((-1274) $)))))))
((*1 *2 *1 *3)
(-12 (-5 *3 "count") (-5 *2 (-772)) (-5 *1 (-245 *4)) (-4 *4 (-851))))
((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-245 *3)) (-4 *3 (-851))))
((*1 *1 *1 *2)
(-12 (-5 *2 "unique") (-5 *1 (-245 *3)) (-4 *3 (-851))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1183)) (-5 *1 (-250))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1184)) (-5 *1 (-250))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-287 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1218))))
+ (-12 (-4 *1 (-287 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1219))))
((*1 *2 *1 *3 *2)
- (-12 (-4 *1 (-289 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1218))))
+ (-12 (-4 *1 (-289 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1219))))
((*1 *2 *1 *2)
(-12 (-4 *3 (-172)) (-5 *1 (-290 *3 *2 *4 *5 *6 *7))
- (-4 *2 (-1244 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4))
+ (-4 *2 (-1245 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4))
(-14 *6 (-1 (-3 *4 "failed") *4 *4))
(-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))
((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-645 *1)) (-4 *1 (-303))))
@@ -15201,13 +15135,13 @@
((*1 *1 *2 *1 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114))))
((*1 *1 *2 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114))))
((*1 *2 *1 *2 *2)
- (-12 (-4 *1 (-344 *2 *3 *4)) (-4 *2 (-1222)) (-4 *3 (-1244 *2))
- (-4 *4 (-1244 (-410 *3)))))
+ (-12 (-4 *1 (-344 *2 *3 *4)) (-4 *2 (-1223)) (-4 *3 (-1245 *2))
+ (-4 *4 (-1245 (-410 *3)))))
((*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-420 *2)) (-4 *2 (-172))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1160)) (-5 *1 (-505))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-52)) (-5 *1 (-633))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1161)) (-5 *1 (-505))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-52)) (-5 *1 (-633))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1235 (-567))) (-4 *1 (-652 *3)) (-4 *3 (-1218))))
+ (-12 (-5 *2 (-1236 (-567))) (-4 *1 (-652 *3)) (-4 *3 (-1219))))
((*1 *2 *1 *3 *3 *3)
(-12 (-5 *3 (-772)) (-5 *1 (-676 *2)) (-4 *2 (-1102))))
((*1 *1 *1 *2 *2)
@@ -15225,8 +15159,8 @@
(-12 (-5 *3 (-240 *4 *2)) (-14 *4 (-923)) (-4 *2 (-365))
(-5 *1 (-995 *4 *2))))
((*1 *2 *1 *3)
- (-12 (-5 *3 "value") (-4 *1 (-1012 *2)) (-4 *2 (-1218))))
- ((*1 *2 *1) (-12 (-5 *1 (-1028 *2)) (-4 *2 (-1218))))
+ (-12 (-5 *3 "value") (-4 *1 (-1012 *2)) (-4 *2 (-1219))))
+ ((*1 *2 *1) (-12 (-5 *1 (-1028 *2)) (-4 *2 (-1219))))
((*1 *2 *1 *3 *3 *2)
(-12 (-5 *3 (-567)) (-4 *1 (-1055 *4 *5 *2 *6 *7)) (-4 *2 (-1051))
(-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2))))
@@ -15251,375 +15185,354 @@
(-12 (-5 *2 (-567)) (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102))
(-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102))))
((*1 *1 *1 *1) (-4 *1 (-1146)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-1178))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-1179))))
((*1 *2 *3 *2)
- (-12 (-5 *3 (-410 *1)) (-4 *1 (-1244 *2)) (-4 *2 (-1051))
+ (-12 (-5 *3 (-410 *1)) (-4 *1 (-1245 *2)) (-4 *2 (-1051))
(-4 *2 (-365))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-410 *1)) (-4 *1 (-1244 *3)) (-4 *3 (-1051))
+ (-12 (-5 *2 (-410 *1)) (-4 *1 (-1245 *3)) (-4 *3 (-1051))
(-4 *3 (-559))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1246 *2 *3)) (-4 *3 (-793)) (-4 *2 (-1051))))
+ (-12 (-4 *1 (-1247 *2 *3)) (-4 *3 (-793)) (-4 *2 (-1051))))
((*1 *2 *1 *3)
- (-12 (-5 *3 "last") (-4 *1 (-1256 *2)) (-4 *2 (-1218))))
+ (-12 (-5 *3 "last") (-4 *1 (-1257 *2)) (-4 *2 (-1219))))
((*1 *1 *1 *2)
- (-12 (-5 *2 "rest") (-4 *1 (-1256 *3)) (-4 *3 (-1218))))
+ (-12 (-5 *2 "rest") (-4 *1 (-1257 *3)) (-4 *3 (-1219))))
((*1 *2 *1 *3)
- (-12 (-5 *3 "first") (-4 *1 (-1256 *2)) (-4 *2 (-1218)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-559))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2951 *4)))
- (-5 *1 (-971 *4 *3)) (-4 *3 (-1244 *4)))))
+ (-12 (-5 *3 "first") (-4 *1 (-1257 *2)) (-4 *2 (-1219)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-1200))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-1200)))))
+(((*1 *1) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-23)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-455))
+ (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851))
+ (-5 *1 (-979 *3 *4 *5 *6)))))
+(((*1 *1 *1 *1) (-5 *1 (-863))))
+(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037))
+ (-5 *1 (-752)))))
+(((*1 *2 *1) (-12 (-4 *1 (-675 *3)) (-4 *3 (-1219)) (-5 *2 (-112)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))))
-(((*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-550))))))
-(((*1 *2 *1 *3 *3)
- (-12 (|has| *1 (-6 -4419)) (-4 *1 (-605 *3 *4)) (-4 *3 (-1102))
- (-4 *4 (-1218)) (-5 *2 (-1273)))))
-(((*1 *2 *1) (-12 (-5 *2 (-250)) (-5 *1 (-334)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-923)) (-5 *2 (-772)) (-5 *1 (-1103 *4 *5)) (-14 *4 *3)
- (-14 *5 *3))))
+ (-12 (-5 *1 (-1167 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1051)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1051))
+ (-14 *4 (-645 (-1179)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1219))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1051) (-851)))
+ (-14 *4 (-645 (-1179)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-673 *3)) (-4 *3 (-851))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-678 *3)) (-4 *3 (-851))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-895 *3)) (-4 *3 (-851)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
- (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225)))
- (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225)))
- (|:| |abserr| (-225)) (|:| |relerr| (-225))))
- (-5 *2 (-381)) (-5 *1 (-205)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-772)) (-5 *2 (-1241 *5 *4)) (-5 *1 (-1176 *4 *5 *6))
- (-4 *4 (-1051)) (-14 *5 (-1178)) (-14 *6 *4)))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-772)) (-5 *2 (-1241 *5 *4)) (-5 *1 (-1260 *4 *5 *6))
- (-4 *4 (-1051)) (-14 *5 (-1178)) (-14 *6 *4))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-365)) (-5 *1 (-767 *2 *3)) (-4 *2 (-709 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-295 (-834 *3)))
- (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567))))
- (-5 *2 (-834 *3)) (-5 *1 (-637 *5 *3))
- (-4 *3 (-13 (-27) (-1203) (-433 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-295 (-834 (-954 *5)))) (-4 *5 (-455))
- (-5 *2 (-834 (-410 (-954 *5)))) (-5 *1 (-638 *5))
- (-5 *3 (-410 (-954 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-295 (-410 (-954 *5)))) (-5 *3 (-410 (-954 *5)))
- (-4 *5 (-455)) (-5 *2 (-834 *3)) (-5 *1 (-638 *5)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-645 (-772))) (-5 *3 (-112)) (-5 *1 (-1166 *4 *5))
- (-14 *4 (-923)) (-4 *5 (-1051)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-1102)) (-5 *1 (-907 *3)))))
-(((*1 *1 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-308)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1213 *3)) (-4 *3 (-976)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794))
- (-4 *4 (-851)) (-4 *2 (-559))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794))
- (-4 *4 (-851)) (-4 *2 (-559)))))
-(((*1 *1 *1 *1)
- (|partial| -12 (-4 *2 (-172)) (-5 *1 (-290 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1244 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
- (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-712 *2 *3 *4 *5 *6)) (-4 *2 (-172))
- (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
- (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *2 (-172))
- (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
- (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-359 *3)) (-4 *3 (-351)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-645 *3)) (-4 *3 (-308)) (-5 *1 (-179 *3)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-645 *4)) (-4 *4 (-365)) (-5 *2 (-1268 *4))
- (-5 *1 (-815 *4 *3)) (-4 *3 (-657 *4)))))
+ (-12 (-5 *3 (-654 (-410 *2))) (-4 *2 (-1245 *4)) (-5 *1 (-811 *4 *2))
+ (-4 *4 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567)))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-655 *2 (-410 *2))) (-4 *2 (-1245 *4))
+ (-5 *1 (-811 *4 *2))
+ (-4 *4 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))))))
+(((*1 *2 *1) (-12 (-4 *1 (-428 *3)) (-4 *3 (-1102)) (-5 *2 (-772)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1175 *6)) (-4 *6 (-1051)) (-4 *4 (-794)) (-4 *5 (-851))
+ (-5 *2 (-1175 *7)) (-5 *1 (-322 *4 *5 *6 *7))
+ (-4 *7 (-951 *6 *4 *5)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-365)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3))
- (-5 *1 (-524 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1218)) (-5 *1 (-377 *4 *2))
- (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4419)))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1102))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102))
- (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-112)))))
-(((*1 *1 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1218))))
- ((*1 *1 *1)
- (-12 (|has| *1 (-6 -4419)) (-4 *1 (-375 *2)) (-4 *2 (-1218))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1102)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1037)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1268 *4)) (-5 *3 (-772)) (-4 *4 (-351))
- (-5 *1 (-531 *4)))))
+ (-12 (-4 *3 (-13 (-559) (-1040 (-567)))) (-5 *1 (-188 *3 *2))
+ (-4 *2 (-13 (-27) (-1204) (-433 (-169 *3))))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1179)) (-4 *4 (-13 (-559) (-1040 (-567))))
+ (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1204) (-433 (-169 *4))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-455) (-1040 (-567)) (-640 (-567))))
+ (-5 *1 (-1208 *3 *2)) (-4 *2 (-13 (-27) (-1204) (-433 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1179))
+ (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567))))
+ (-5 *1 (-1208 *4 *2)) (-4 *2 (-13 (-27) (-1204) (-433 *4))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1104 (-1104 *3))) (-5 *1 (-906 *3)) (-4 *3 (-1102)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-645 *2)) (-4 *2 (-951 *4 *5 *6)) (-4 *4 (-455))
- (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-452 *4 *5 *6 *2)))))
-(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3)
- (-12 (-5 *6 (-645 (-112))) (-5 *7 (-690 (-225)))
- (-5 *8 (-690 (-567))) (-5 *3 (-567)) (-5 *4 (-225)) (-5 *5 (-112))
- (-5 *2 (-1037)) (-5 *1 (-755)))))
+ (-12 (-5 *2 (-863)) (-5 *1 (-1159 *3)) (-4 *3 (-1102))
+ (-4 *3 (-1219)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-690 (-410 (-954 (-567)))))
+ (-5 *2 (-690 (-317 (-567)))) (-5 *1 (-1033)))))
+(((*1 *2 *3) (-12 (-5 *3 (-945 *2)) (-5 *1 (-984 *2)) (-4 *2 (-1051)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-225)) (-5 *4 (-567))
+ (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3888))))
+ (-5 *2 (-1037)) (-5 *1 (-749)))))
(((*1 *2 *2)
(-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
(-4 *2 (-13 (-433 *3) (-1004))))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1146)) (-5 *2 (-141))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1146)) (-5 *2 (-144)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
- (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-645 *1))
- (-4 *1 (-1073 *4 *5 *6 *3)))))
-(((*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-1102)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-692 (-874 (-968 *3) (-968 *3)))) (-5 *1 (-968 *3))
- (-4 *3 (-1102)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-844 (-381))) (-5 *2 (-844 (-225))) (-5 *1 (-306)))))
-(((*1 *2 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-365)))))
+ (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1260 *4))
+ (-4 *4 (-38 (-410 (-567))))
+ (-5 *2 (-1 (-1159 *4) (-1159 *4) (-1159 *4))) (-5 *1 (-1262 *4 *5)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1269 *3)) (-4 *3 (-1245 *4)) (-4 *4 (-1223))
+ (-4 *1 (-344 *4 *3 *5)) (-4 *5 (-1245 (-410 *3))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1179)))))
+(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-410 (-567))) (-5 *1 (-306)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-1179)) (-5 *1 (-588 *2)) (-4 *2 (-1040 *3))
+ (-4 *2 (-365))))
+ ((*1 *1 *2 *2) (-12 (-5 *1 (-588 *2)) (-4 *2 (-365))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1179)) (-4 *4 (-559)) (-5 *1 (-631 *4 *2))
+ (-4 *2 (-13 (-433 *4) (-1004) (-1204)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1094 *2)) (-4 *2 (-13 (-433 *4) (-1004) (-1204)))
+ (-4 *4 (-559)) (-5 *1 (-631 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-961)) (-5 *2 (-1179))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1094 *1)) (-4 *1 (-961)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1260 *4)) (-5 *1 (-1262 *4 *2))
+ (-4 *4 (-38 (-410 (-567)))))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-1067 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794))
+ (-4 *2 (-851))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794))
+ (-4 *4 (-851)))))
+(((*1 *2 *2) (-12 (-5 *1 (-589 *2)) (-4 *2 (-548)))))
(((*1 *2 *3)
- (-12 (-14 *4 (-645 (-1178))) (-14 *5 (-772))
- (-5 *2
- (-645
- (-507 (-410 (-567)) (-240 *5 (-772)) (-865 *4)
- (-247 *4 (-410 (-567))))))
- (-5 *1 (-508 *4 *5))
- (-5 *3
- (-507 (-410 (-567)) (-240 *5 (-772)) (-865 *4)
- (-247 *4 (-410 (-567))))))))
-(((*1 *2 *1) (-12 (-4 *1 (-849)) (-5 *2 (-567))))
- ((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-907 *3)) (-4 *3 (-1102))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1070 *4 *3)) (-4 *4 (-13 (-849) (-365)))
- (-4 *3 (-1244 *4)) (-5 *2 (-567))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-559) (-1040 *2) (-640 *2) (-455)))
- (-5 *2 (-567)) (-5 *1 (-1118 *4 *3))
- (-4 *3 (-13 (-27) (-1203) (-433 *4)))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1178)) (-5 *5 (-844 *3))
- (-4 *3 (-13 (-27) (-1203) (-433 *6)))
- (-4 *6 (-13 (-559) (-1040 *2) (-640 *2) (-455))) (-5 *2 (-567))
- (-5 *1 (-1118 *6 *3))))
- ((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *4 (-1178)) (-5 *5 (-1160))
- (-4 *6 (-13 (-559) (-1040 *2) (-640 *2) (-455))) (-5 *2 (-567))
- (-5 *1 (-1118 *6 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *6)))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-410 (-954 *4))) (-4 *4 (-455)) (-5 *2 (-567))
- (-5 *1 (-1119 *4))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1178)) (-5 *5 (-844 (-410 (-954 *6))))
- (-5 *3 (-410 (-954 *6))) (-4 *6 (-455)) (-5 *2 (-567))
- (-5 *1 (-1119 *6))))
- ((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *3 (-410 (-954 *6))) (-5 *4 (-1178))
- (-5 *5 (-1160)) (-4 *6 (-455)) (-5 *2 (-567)) (-5 *1 (-1119 *6))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *2 (-567)) (-5 *1 (-1200 *3)) (-4 *3 (-1051)))))
-(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4))
- (-4 *3 (-369 *4))))
- ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *4 *3)
- (|partial| -12 (-5 *4 (-613 *3))
- (-4 *3 (-13 (-433 *5) (-27) (-1203)))
- (-4 *5 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567))))
- (-5 *2 (-2 (|:| -1752 *3) (|:| |coeff| *3)))
- (-5 *1 (-569 *5 *3 *6)) (-4 *6 (-1102)))))
+ (-12 (-5 *3 (-1269 *4)) (-4 *4 (-351)) (-5 *2 (-1175 *4))
+ (-5 *1 (-531 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-114))))
+ ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-114))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1051)) (-4 *3 (-851))
+ (-4 *5 (-267 *3)) (-4 *6 (-794)) (-5 *2 (-772))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-851))
+ (-4 *5 (-267 *4)) (-4 *6 (-794)) (-5 *2 (-772))))
+ ((*1 *2 *1) (-12 (-4 *1 (-267 *3)) (-4 *3 (-851)) (-5 *2 (-772)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-851)) (-5 *4 (-645 *6))
+ (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-645 *4))))
+ (-5 *1 (-1190 *6)) (-5 *5 (-645 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051))
+ (-5 *2 (-645 (-645 (-645 (-772))))))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-455)) (-4 *3 (-794)) (-4 *5 (-851)) (-5 *2 (-112))
- (-5 *1 (-452 *4 *3 *5 *6)) (-4 *6 (-951 *4 *3 *5)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1102)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *5 *3 *6 *3)
- (-12 (-5 *3 (-567)) (-5 *5 (-169 (-225))) (-5 *6 (-1160))
- (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-759)))))
+ (-12 (-4 *4 (-559))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2785 *3)))
+ (-5 *1 (-971 *4 *3)) (-4 *3 (-1245 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-851)) (-5 *2 (-1190 (-645 *4))) (-5 *1 (-1189 *4))
- (-5 *3 (-645 *4)))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9)
- (-12 (-5 *4 (-567)) (-5 *5 (-1160)) (-5 *6 (-690 (-225)))
- (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))))
- (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))))
- (-5 *9 (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT))))
- (-5 *3 (-225)) (-5 *2 (-1037)) (-5 *1 (-750)))))
+ (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919))))
+ ((*1 *2) (-12 (-5 *2 (-906 (-567))) (-5 *1 (-919)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1274)) (-5 *1 (-1271)))))
+(((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-559))
+ (-5 *2 (-2 (|:| -2654 *3) (|:| -2023 *3))) (-5 *1 (-1240 *4 *3))
+ (-4 *3 (-1245 *4)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1262 *3 *2))
+ (-4 *2 (-1260 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-3 (|:| |fst| (-437)) (|:| -4324 "void")))
+ (-5 *2 (-1274)) (-5 *1 (-1182))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1179))
+ (-5 *4 (-3 (|:| |fst| (-437)) (|:| -4324 "void"))) (-5 *2 (-1274))
+ (-5 *1 (-1182))))
+ ((*1 *2 *3 *4 *1)
+ (-12 (-5 *3 (-1179))
+ (-5 *4 (-3 (|:| |fst| (-437)) (|:| -4324 "void"))) (-5 *2 (-1274))
+ (-5 *1 (-1182)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1065)))))
+(((*1 *1 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1102)) (-4 *2 (-559))))
+ ((*1 *1 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-559)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-13 (-849) (-365))) (-5 *2 (-112)) (-5 *1 (-1063 *4 *3))
+ (-4 *3 (-1245 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-351)) (-5 *2 (-772))))
+ ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-405)) (-5 *2 (-772)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-982 *2)) (-4 *2 (-1051))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-945 (-225))) (-5 *1 (-1215))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1219)) (-4 *2 (-1051)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-772)) (-5 *2 (-1242 *5 *4)) (-5 *1 (-1177 *4 *5 *6))
+ (-4 *4 (-1051)) (-14 *5 (-1179)) (-14 *6 *4)))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-772)) (-5 *2 (-1242 *5 *4)) (-5 *1 (-1261 *4 *5 *6))
+ (-4 *4 (-1051)) (-14 *5 (-1179)) (-14 *6 *4))))
(((*1 *2 *3 *2)
(-12 (-5 *2 (-645 (-381))) (-5 *3 (-645 (-264))) (-5 *1 (-262))))
((*1 *2 *1 *2) (-12 (-5 *2 (-645 (-381))) (-5 *1 (-471))))
((*1 *2 *1) (-12 (-5 *2 (-645 (-381))) (-5 *1 (-471))))
((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-923)) (-5 *4 (-875)) (-5 *2 (-1273)) (-5 *1 (-1269))))
+ (-12 (-5 *3 (-923)) (-5 *4 (-875)) (-5 *2 (-1274)) (-5 *1 (-1270))))
((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-923)) (-5 *4 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1269)))))
-(((*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-225)) (-5 *1 (-1271))))
- ((*1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-1271)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-365)) (-5 *1 (-767 *2 *3)) (-4 *2 (-709 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |var| (-645 (-1178))) (|:| |pred| (-52))))
- (-5 *1 (-894 *3)) (-4 *3 (-1102)))))
-(((*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-359 *3)) (-4 *3 (-351)))))
-(((*1 *1 *1 *2 *2 *2 *2)
- (-12 (-5 *2 (-567)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051))
- (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))))
+ (-12 (-5 *3 (-923)) (-5 *4 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1270)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1268 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172))
- (-5 *2 (-690 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-690 *4)) (-5 *1 (-419 *3 *4))
- (-4 *3 (-420 *4))))
- ((*1 *2) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-690 *3)))))
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225)))
+ (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))
+ (-5 *2 (-381)) (-5 *1 (-192)))))
+(((*1 *1 *2) (-12 (-5 *2 (-645 (-144))) (-5 *1 (-141))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-141)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112))
+ (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-365)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4)))
+ (-5 *2 (-1269 *6)) (-5 *1 (-338 *3 *4 *5 *6))
+ (-4 *6 (-344 *3 *4 *5)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037))
+ (-5 *1 (-753)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1179))
+ (-4 *5 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567))))
+ (-5 *2 (-588 *3)) (-5 *1 (-429 *5 *3))
+ (-4 *3 (-13 (-1204) (-29 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1179)) (-4 *5 (-13 (-559) (-1040 (-567)) (-147)))
+ (-5 *2 (-588 (-410 (-954 *5)))) (-5 *1 (-573 *5))
+ (-5 *3 (-410 (-954 *5))))))
(((*1 *2 *1 *1)
(-12 (-4 *3 (-559)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851))
(-5 *2 (-645 *1)) (-4 *1 (-1067 *3 *4 *5)))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-923)) (-5 *1 (-1103 *3 *4)) (-14 *3 *2)
- (-14 *4 *2))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-690 *3)) (-4 *3 (-1051)) (-5 *1 (-691 *3)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
- (-4 *3 (-1067 *5 *6 *7))
- (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2566 *4))))
- (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1160)) (-5 *1 (-711)))))
+(((*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1161)) (-5 *1 (-711)))))
+(((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7))
+ (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-5 *2 (-645 (-1029 *5 *6 *7 *8))) (-5 *1 (-1029 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7))
+ (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-5 *2 (-645 (-1148 *5 *6 *7 *8))) (-5 *1 (-1148 *5 *6 *7 *8)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-588 *3)) (-4 *3 (-365)))))
(((*1 *1 *1 *1) (-5 *1 (-129)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-1185 *2)) (-14 *2 (-923))))
- ((*1 *1 *1 *1) (-5 *1 (-1223))) ((*1 *1 *1 *1) (-5 *1 (-1224)))
- ((*1 *1 *1 *1) (-5 *1 (-1225))) ((*1 *1 *1 *1) (-5 *1 (-1226))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-1186 *2)) (-14 *2 (-923))))
+ ((*1 *1 *1 *1) (-5 *1 (-1224))) ((*1 *1 *1 *1) (-5 *1 (-1225)))
+ ((*1 *1 *1 *1) (-5 *1 (-1226))) ((*1 *1 *1 *1) (-5 *1 (-1227))))
+(((*1 *2 *1) (-12 (-5 *2 (-645 (-645 (-225)))) (-5 *1 (-928)))))
(((*1 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))
((*1 *1) (-5 *1 (-539))) ((*1 *1) (-4 *1 (-723)))
((*1 *1) (-4 *1 (-727)))
((*1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1102))))
((*1 *1) (-12 (-5 *1 (-895 *2)) (-4 *2 (-851)))))
-(((*1 *1 *1 *1) (-5 *1 (-863))))
-(((*1 *2 *1) (-12 (-5 *2 (-1096 (-225))) (-5 *1 (-928))))
- ((*1 *2 *1) (-12 (-5 *2 (-1096 (-225))) (-5 *1 (-929)))))
-(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-645 *1)) (-4 *1 (-308)))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-645 *6)) (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051))
- (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5))
- (-4 *3 (-559)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1160)) (-5 *3 (-645 (-264))) (-5 *1 (-262))))
- ((*1 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-264)))))
-(((*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-645 (-112))))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-147)) (-4 *2 (-308)) (-4 *2 (-455)) (-4 *3 (-851))
+ (-4 *4 (-794)) (-5 *1 (-989 *2 *3 *4 *5)) (-4 *5 (-951 *2 *4 *3))))
+ ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-317 (-567))) (-5 *1 (-1121))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1204))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1051)) (-5 *2 (-112)) (-5 *1 (-447 *4 *3))
- (-4 *3 (-1244 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794))
- (-4 *5 (-851)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *4 *2 *2 *2)
- (-12 (-5 *2 (-567))
- (-5 *3
- (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-772)) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-4 *6 (-794)) (-4 *4 (-951 *5 *6 *7)) (-4 *5 (-455)) (-4 *7 (-851))
- (-5 *1 (-452 *5 *6 *7 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-169 (-225))) (-5 *4 (-567)) (-5 *2 (-1037))
- (-5 *1 (-759)))))
+ (-12 (-5 *3 (-645 (-2 (|:| |den| (-567)) (|:| |gcdnum| (-567)))))
+ (-4 *4 (-1245 (-410 *2))) (-5 *2 (-567)) (-5 *1 (-915 *4 *5))
+ (-4 *5 (-1245 (-410 *4))))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-861)) (-5 *2 (-692 (-552))) (-5 *3 (-552)))))
+(((*1 *2 *1) (-12 (-4 *1 (-675 *3)) (-4 *3 (-1219)) (-5 *2 (-112)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-645 (-844 (-225)))) (-5 *4 (-225)) (-5 *2 (-645 *4))
- (-5 *1 (-268)))))
+ (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-954 *4)) (-4 *4 (-1051)) (-4 *4 (-615 *2))
+ (-5 *2 (-381)) (-5 *1 (-786 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-954 *5)) (-5 *4 (-923)) (-4 *5 (-1051))
+ (-4 *5 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-410 (-954 *4))) (-4 *4 (-559))
+ (-4 *4 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-923)) (-4 *5 (-559))
+ (-4 *5 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-317 *4)) (-4 *4 (-559)) (-4 *4 (-851))
+ (-4 *4 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-317 *5)) (-5 *4 (-923)) (-4 *5 (-559))
+ (-4 *5 (-851)) (-4 *5 (-615 *2)) (-5 *2 (-381))
+ (-5 *1 (-786 *5)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-683 *3)) (-4 *3 (-1102)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-645 (-907 *3))) (-4 *3 (-1102)) (-5 *1 (-906 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172)))))
(((*1 *1 *1 *1) (-5 *1 (-129)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-1185 *2)) (-14 *2 (-923))))
- ((*1 *1 *1 *1) (-5 *1 (-1223))) ((*1 *1 *1 *1) (-5 *1 (-1224)))
- ((*1 *1 *1 *1) (-5 *1 (-1225))) ((*1 *1 *1 *1) (-5 *1 (-1226))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-1186 *2)) (-14 *2 (-923))))
+ ((*1 *1 *1 *1) (-5 *1 (-1224))) ((*1 *1 *1 *1) (-5 *1 (-1225)))
+ ((*1 *1 *1 *1) (-5 *1 (-1226))) ((*1 *1 *1 *1) (-5 *1 (-1227))))
(((*1 *1) (-4 *1 (-23)))
((*1 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))
((*1 *1) (-5 *1 (-539)))
((*1 *1) (-12 (-4 *1 (-647 *2)) (-4 *2 (-1060))))
((*1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1102))))
((*1 *1) (-12 (-4 *1 (-1053 *2)) (-4 *2 (-1060)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-559)) (-4 *2 (-13 (-433 *4) (-1004) (-1204)))
+ (-5 *1 (-601 *4 *2 *3))
+ (-4 *3 (-13 (-433 (-169 *4)) (-1004) (-1204))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-645 *7)) (-4 *7 (-951 *4 *6 *5))
+ (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1179))))
+ (-4 *6 (-794)) (-5 *2 (-112)) (-5 *1 (-926 *4 *5 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-954 *4))) (-4 *4 (-13 (-308) (-147)))
+ (-4 *5 (-13 (-851) (-615 (-1179)))) (-4 *6 (-794)) (-5 *2 (-112))
+ (-5 *1 (-926 *4 *5 *6 *7)) (-4 *7 (-951 *4 *6 *5)))))
+(((*1 *2 *3 *2 *2)
+ (-12 (-5 *2 (-645 (-484 *4 *5))) (-5 *3 (-865 *4))
+ (-14 *4 (-645 (-1179))) (-4 *5 (-455)) (-5 *1 (-632 *4 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-645 (-645 *8))) (-5 *3 (-645 *8))
- (-4 *8 (-951 *5 *7 *6)) (-4 *5 (-13 (-308) (-147)))
- (-4 *6 (-13 (-851) (-615 (-1178)))) (-4 *7 (-794)) (-5 *2 (-112))
- (-5 *1 (-926 *5 *6 *7 *8)))))
-(((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))))
-(((*1 *2) (-12 (-5 *2 (-645 (-772))) (-5 *1 (-1271))))
- ((*1 *2 *2) (-12 (-5 *2 (-645 (-772))) (-5 *1 (-1271)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1178))))
- (-4 *6 (-794)) (-4 *7 (-951 *4 *6 *5))
- (-5 *2
- (-2 (|:| |sysok| (-112)) (|:| |z0| (-645 *7)) (|:| |n0| (-645 *7))))
- (-5 *1 (-926 *4 *5 *6 *7)) (-5 *3 (-645 *7)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863))))
- ((*1 *2 *1)
- (-12
- (-5 *2
- (-2 (|:| -3466 (-645 (-863))) (|:| -4016 (-645 (-863)))
- (|:| |presup| (-645 (-863))) (|:| -2533 (-645 (-863)))
- (|:| |args| (-645 (-863)))))
- (-5 *1 (-1178)))))
-(((*1 *2 *2) (-12 (-5 *2 (-645 (-317 (-225)))) (-5 *1 (-268)))))
+ (-12 (-5 *3 (-645 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1220 *2))
+ (-4 *2 (-1102))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-645 *2)) (-4 *2 (-1102)) (-4 *2 (-851))
+ (-5 *1 (-1220 *2)))))
+(((*1 *1) (-5 *1 (-440))))
+(((*1 *2 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-849)) (-5 *1 (-304 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-1037)) (-5 *3 (-1179)) (-5 *1 (-268)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-825)) (-5 *3 (-645 (-1179))) (-5 *1 (-826)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1051)) (-4 *4 (-1102)) (-5 *2 (-645 *1))
- (-4 *1 (-384 *3 *4))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-645 (-736 *3 *4))) (-5 *1 (-736 *3 *4)) (-4 *3 (-1051))
- (-4 *4 (-727))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1))
- (-4 *1 (-951 *3 *4 *5)))))
-(((*1 *2)
- (-12
- (-5 *2 (-2 (|:| -3131 (-645 (-1178))) (|:| -2504 (-645 (-1178)))))
- (-5 *1 (-1220)))))
-(((*1 *2 *3 *2 *4 *5)
- (-12 (-5 *2 (-645 *3)) (-5 *5 (-923)) (-4 *3 (-1244 *4))
- (-4 *4 (-308)) (-5 *1 (-463 *4 *3)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-907 *4)) (-4 *4 (-1102)) (-5 *2 (-645 (-772)))
- (-5 *1 (-906 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-822)))))
+ (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3))
+ (-4 *5 (-1245 (-410 *4)))
+ (-5 *2 (-2 (|:| |num| (-1269 *4)) (|:| |den| *4))))))
(((*1 *2 *1 *3)
(-12 (-5 *3 (-509)) (-5 *2 (-692 (-775))) (-5 *1 (-114))))
((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-1160)) (-5 *2 (-775)) (-5 *1 (-114))))
+ (|partial| -12 (-5 *3 (-1161)) (-5 *2 (-775)) (-5 *1 (-114))))
((*1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-1106)) (-5 *1 (-967)))))
(((*1 *1 *1) (-5 *1 (-225)))
((*1 *1 *1)
- (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1178)))
- (-14 *3 (-645 (-1178))) (-4 *4 (-390))))
+ (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1179)))
+ (-14 *3 (-645 (-1179))) (-4 *4 (-390))))
((*1 *1 *1) (-5 *1 (-381))) ((*1 *1) (-5 *1 (-381))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1204))))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| -1477)) (-5 *2 (-112)) (-5 *1 (-618))))
+ (-12 (-5 *3 (|[\|\|]| -1479)) (-5 *2 (-112)) (-5 *1 (-618))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| -3858)) (-5 *2 (-112)) (-5 *1 (-618))))
+ (-12 (-5 *3 (|[\|\|]| -3867)) (-5 *2 (-112)) (-5 *1 (-618))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| -2786)) (-5 *2 (-112)) (-5 *1 (-618))))
+ (-12 (-5 *3 (|[\|\|]| -2796)) (-5 *2 (-112)) (-5 *1 (-618))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| -1986)) (-5 *2 (-112)) (-5 *1 (-692 *4))
+ (-12 (-5 *3 (|[\|\|]| -1997)) (-5 *2 (-112)) (-5 *1 (-692 *4))
(-4 *4 (-614 (-863)))))
((*1 *2 *1 *3)
(-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-614 (-863))) (-5 *2 (-112))
(-5 *1 (-692 *4))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-1160))) (-5 *2 (-112)) (-5 *1 (-877))))
+ (-12 (-5 *3 (|[\|\|]| (-1161))) (-5 *2 (-112)) (-5 *1 (-877))))
((*1 *2 *1 *3)
(-12 (-5 *3 (|[\|\|]| (-509))) (-5 *2 (-112)) (-5 *1 (-877))))
((*1 *2 *1 *3)
(-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-567))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-1160))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-1161))) (-5 *2 (-112))))
((*1 *2 *1 *3)
(-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-509))) (-5 *2 (-112))))
((*1 *2 *1 *3)
@@ -15631,7 +15544,7 @@
((*1 *2 *1 *3)
(-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-156))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-1168))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-1169))) (-5 *2 (-112))))
((*1 *2 *1 *3)
(-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-627))) (-5 *2 (-112))))
((*1 *2 *1 *3)
@@ -15653,9 +15566,11 @@
((*1 *2 *1 *3)
(-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112))))
((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-1153))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
(-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-528))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-1279))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-1280))) (-5 *2 (-112))))
((*1 *2 *1 *3)
(-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-1068))) (-5 *2 (-112))))
((*1 *2 *1 *3)
@@ -15671,7 +15586,7 @@
((*1 *2 *1 *3)
(-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-1278))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-1279))) (-5 *2 (-112))))
((*1 *2 *1 *3)
(-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-677))) (-5 *2 (-112))))
((*1 *2 *1 *3)
@@ -15679,448 +15594,411 @@
((*1 *2 *1 *3)
(-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-527))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-1160))) (-5 *2 (-112)) (-5 *1 (-1183))))
+ (-12 (-5 *3 (|[\|\|]| (-1161))) (-5 *2 (-112)) (-5 *1 (-1184))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-509))) (-5 *2 (-112)) (-5 *1 (-1183))))
+ (-12 (-5 *3 (|[\|\|]| (-509))) (-5 *2 (-112)) (-5 *1 (-1184))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-225))) (-5 *2 (-112)) (-5 *1 (-1183))))
+ (-12 (-5 *3 (|[\|\|]| (-225))) (-5 *2 (-112)) (-5 *1 (-1184))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-567))) (-5 *2 (-112)) (-5 *1 (-1183)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-559)) (-4 *3 (-1051))
- (-5 *2 (-2 (|:| -3102 *1) (|:| -4194 *1))) (-4 *1 (-853 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-99 *5)) (-4 *5 (-559)) (-4 *5 (-1051))
- (-5 *2 (-2 (|:| -3102 *3) (|:| -4194 *3))) (-5 *1 (-854 *5 *3))
- (-4 *3 (-853 *5)))))
-(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-645 (-894 *3))) (-5 *1 (-894 *3))
- (-4 *3 (-1102)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1051))
- (-4 *2 (-13 (-407) (-1040 *4) (-365) (-1203) (-285)))
- (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1244 *4))))
- ((*1 *1 *1) (-4 *1 (-548)))
- ((*1 *2 *1) (-12 (-5 *2 (-923)) (-5 *1 (-673 *3)) (-4 *3 (-851))))
- ((*1 *2 *1) (-12 (-5 *2 (-923)) (-5 *1 (-678 *3)) (-4 *3 (-851))))
- ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-820 *3)) (-4 *3 (-851))))
- ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-895 *3)) (-4 *3 (-851))))
- ((*1 *2 *1) (-12 (-4 *1 (-997 *3)) (-4 *3 (-1218)) (-5 *2 (-772))))
- ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1215 *3)) (-4 *3 (-1218))))
+ (-12 (-5 *3 (|[\|\|]| (-567))) (-5 *2 (-112)) (-5 *1 (-1184)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-645 *2)) (-4 *2 (-951 *4 *5 *6)) (-4 *4 (-455))
+ (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-452 *4 *5 *6 *2)))))
+(((*1 *2 *2) (-12 (-5 *2 (-645 (-317 (-225)))) (-5 *1 (-268)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1179)) (-4 *4 (-455)) (-4 *4 (-1102))
+ (-5 *1 (-576 *4 *2)) (-4 *2 (-285)) (-4 *2 (-433 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-645 (-567))) (-5 *2 (-1181 (-410 (-567))))
+ (-5 *1 (-190)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1214 *3)) (-4 *3 (-976)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1141))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-1051)))))
+(((*1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1272))))
+ ((*1 *2 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1272)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1004))))))
+(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))
+ ((*1 *1 *1 *1) (-5 *1 (-1122))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1102))))
((*1 *2 *1)
- (-12 (-4 *1 (-1266 *2)) (-4 *2 (-1218)) (-4 *2 (-1004))
- (-4 *2 (-1051)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-645 *7)) (-4 *7 (-851)) (-4 *5 (-911)) (-4 *6 (-794))
- (-4 *8 (-951 *5 *6 *7)) (-5 *2 (-421 (-1174 *8)))
- (-5 *1 (-908 *5 *6 *7 *8)) (-5 *4 (-1174 *8))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-911)) (-4 *5 (-1244 *4)) (-5 *2 (-421 (-1174 *5)))
- (-5 *1 (-909 *4 *5)) (-5 *3 (-1174 *5)))))
-(((*1 *1 *1 *2 *2 *1)
- (-12 (-5 *2 (-567)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051))
- (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))))
+ (-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102))
+ (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-112)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-645 *3)) (-4 *3 (-951 *4 *6 *5)) (-4 *4 (-455))
+ (-4 *5 (-851)) (-4 *6 (-794)) (-5 *1 (-989 *4 *5 *6 *3)))))
(((*1 *2 *3)
+ (-12 (-5 *3 (-1179)) (-5 *2 (-539)) (-5 *1 (-538 *4))
+ (-4 *4 (-1219)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-174 (-410 (-567)))) (-5 *1 (-117 *3)) (-14 *3 (-567))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *3 (-1159 *2)) (-4 *2 (-308)) (-5 *1 (-174 *2))))
+ ((*1 *1 *2) (-12 (-5 *2 (-410 *3)) (-4 *3 (-308)) (-5 *1 (-174 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-174 (-567))) (-5 *1 (-766 *3)) (-4 *3 (-407))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-174 (-410 (-567)))) (-5 *1 (-872 *3)) (-14 *3 (-567))))
+ ((*1 *2 *1)
+ (-12 (-14 *3 (-567)) (-5 *2 (-174 (-410 (-567))))
+ (-5 *1 (-873 *3 *4)) (-4 *4 (-870 *3)))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-3 (-410 (-954 *6)) (-1168 (-1179) (-954 *6))))
+ (-5 *5 (-772)) (-4 *6 (-455)) (-5 *2 (-645 (-690 (-410 (-954 *6)))))
+ (-5 *1 (-293 *6)) (-5 *4 (-690 (-410 (-954 *6))))))
+ ((*1 *2 *3 *4)
(-12
(-5 *3
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1158 (-225)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -1604
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite| "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))))
- (-5 *2 (-1037)) (-5 *1 (-306)))))
-(((*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-906 (-567))) (-5 *1 (-919))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-147))
- (-4 *3 (-308)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851))
- (-5 *1 (-979 *3 *4 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-52)) (-5 *1 (-830)))))
+ (-2 (|:| |eigval| (-3 (-410 (-954 *5)) (-1168 (-1179) (-954 *5))))
+ (|:| |eigmult| (-772)) (|:| |eigvec| (-645 *4))))
+ (-4 *5 (-455)) (-5 *2 (-645 (-690 (-410 (-954 *5)))))
+ (-5 *1 (-293 *5)) (-5 *4 (-690 (-410 (-954 *5)))))))
+(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4)
+ (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *2 (-1037))
+ (-5 *1 (-756)))))
+(((*1 *1) (-5 *1 (-440))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-225)) (-5 *5 (-567)) (-5 *2 (-1213 *3))
- (-5 *1 (-791 *3)) (-4 *3 (-976))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *3 (-645 (-645 (-945 (-225))))) (-5 *4 (-112))
- (-5 *1 (-1213 *2)) (-4 *2 (-976)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-645 (-567))) (-5 *4 (-907 (-567)))
- (-5 *2 (-690 (-567))) (-5 *1 (-592))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-645 (-567))) (-5 *2 (-645 (-690 (-567))))
- (-5 *1 (-592))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-645 (-567))) (-5 *4 (-645 (-907 (-567))))
- (-5 *2 (-645 (-690 (-567)))) (-5 *1 (-592)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-3 (|:| |fst| (-437)) (|:| -4321 "void")))
- (-5 *2 (-1273)) (-5 *1 (-1181))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1178))
- (-5 *4 (-3 (|:| |fst| (-437)) (|:| -4321 "void"))) (-5 *2 (-1273))
- (-5 *1 (-1181))))
- ((*1 *2 *3 *4 *1)
- (-12 (-5 *3 (-1178))
- (-5 *4 (-3 (|:| |fst| (-437)) (|:| -4321 "void"))) (-5 *2 (-1273))
- (-5 *1 (-1181)))))
-(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))
- ((*1 *1 *1 *1) (-5 *1 (-1122))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-772)) (-4 *2 (-559)) (-5 *1 (-971 *2 *4))
- (-4 *4 (-1244 *2)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-1051)) (-5 *1 (-1240 *3 *2)) (-4 *2 (-1244 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-645 (-567))) (-5 *2 (-645 (-690 (-567))))
- (-5 *1 (-1112)))))
-(((*1 *2 *3) (-12 (-5 *3 (-822)) (-5 *2 (-52)) (-5 *1 (-832)))))
+ (-12 (-5 *4 (-112)) (-4 *6 (-13 (-455) (-1040 (-567)) (-640 (-567))))
+ (-4 *3 (-13 (-27) (-1204) (-433 *6) (-10 -8 (-15 -4129 ($ *7)))))
+ (-4 *7 (-849))
+ (-4 *8
+ (-13 (-1247 *3 *7) (-365) (-1204)
+ (-10 -8 (-15 -1616 ($ $)) (-15 -4083 ($ $)))))
+ (-5 *2
+ (-3 (|:| |%series| *8)
+ (|:| |%problem| (-2 (|:| |func| (-1161)) (|:| |prob| (-1161))))))
+ (-5 *1 (-425 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1161)) (-4 *9 (-985 *8))
+ (-14 *10 (-1179)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834 *3)) (-4 *3 (-1102))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-844 *3)) (-4 *3 (-1102)))))
+(((*1 *1 *1) (-4 *1 (-548))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1179)) (-4 *4 (-559)) (-5 *1 (-158 *4 *2))
+ (-4 *2 (-433 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1094 *2)) (-4 *2 (-433 *4)) (-4 *4 (-559))
+ (-5 *1 (-158 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1094 *1)) (-4 *1 (-160))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1179)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-559) (-1040 (-567)))) (-5 *2 (-112))
- (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1203) (-433 (-169 *4))))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-112))
- (-5 *1 (-1207 *4 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *4))))))
+ (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *7 (-1067 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-645 *7)) (|:| |badPols| (-645 *7))))
+ (-5 *1 (-979 *4 *5 *6 *7)) (-5 *3 (-645 *7)))))
+(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-863)))
+ ((*1 *1 *1 *1) (-4 *1 (-969))))
(((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-894 *4)) (-4 *4 (-1102)) (-5 *2 (-112))
- (-5 *1 (-891 *4 *5)) (-4 *5 (-1102))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-894 *5)) (-4 *5 (-1102)) (-5 *2 (-112))
- (-5 *1 (-892 *5 *3)) (-4 *3 (-1218))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-645 *6)) (-5 *4 (-894 *5)) (-4 *5 (-1102))
- (-4 *6 (-1218)) (-5 *2 (-112)) (-5 *1 (-892 *5 *6)))))
-(((*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-1174 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-645 (-1178))) (-5 *2 (-1273)) (-5 *1 (-1181))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-645 (-1178))) (-5 *3 (-1178)) (-5 *2 (-1273))
- (-5 *1 (-1181))))
- ((*1 *2 *3 *4 *1)
- (-12 (-5 *4 (-645 (-1178))) (-5 *3 (-1178)) (-5 *2 (-1273))
- (-5 *1 (-1181)))))
-(((*1 *2 *2)
- (-12 (-4 *2 (-13 (-365) (-849))) (-5 *1 (-181 *2 *3))
- (-4 *3 (-1244 (-169 *2))))))
+ (-12 (-4 *1 (-861)) (-5 *2 (-692 (-1227))) (-5 *3 (-1227)))))
+(((*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-1175 *3)))))
+(((*1 *2 *2 *3)
+ (|partial| -12
+ (-5 *3 (-645 (-2 (|:| |func| *2) (|:| |pole| (-112)))))
+ (-4 *2 (-13 (-433 *4) (-1004))) (-4 *4 (-559))
+ (-5 *1 (-277 *4 *2)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-645 (-567))) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-567))
+ (-14 *4 (-772)) (-4 *5 (-172)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1135 (-225))) (-5 *3 (-645 (-264))) (-5 *1 (-1271))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1135 (-225))) (-5 *3 (-1161)) (-5 *1 (-1271))))
+ ((*1 *1 *1) (-5 *1 (-1271))))
+(((*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-559)) (-4 *2 (-548))))
+ ((*1 *1 *1) (-4 *1 (-1062))))
(((*1 *2 *1)
- (-12 (-4 *1 (-978 *3 *4 *2 *5)) (-4 *3 (-1051)) (-4 *4 (-794))
- (-4 *5 (-1067 *3 *4 *2)) (-4 *2 (-851))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1067 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794))
- (-4 *2 (-851)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-455))
- (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851))
- (-5 *1 (-979 *3 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-645 *7)) (-5 *3 (-112)) (-4 *7 (-1067 *4 *5 *6))
- (-4 *4 (-455)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851))
- (-5 *1 (-979 *4 *5 *6 *7)))))
+ (-12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-365)) (-5 *2 (-645 *3)) (-5 *1 (-947 *4 *3))
+ (-4 *3 (-1245 *4)))))
(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-863)))
((*1 *1 *1 *1) (-4 *1 (-969))))
-(((*1 *1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))))
-(((*1 *1 *1) (-4 *1 (-173)))
- ((*1 *1 *1)
- (-12 (-4 *1 (-366 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-1102)))))
-(((*1 *1) (-5 *1 (-141))))
-(((*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1064))))
- ((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1064)))))
+(((*1 *1) (-5 *1 (-824))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-559)) (-5 *2 (-960 *3)) (-5 *1 (-1166 *4 *3))
+ (-4 *3 (-1245 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-549))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))))
(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
- (-4 *3 (-1067 *5 *6 *7))
- (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2566 *4))))
- (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381))
- (-5 *2
- (-2 (|:| -3802 *4) (|:| -2058 *4) (|:| |totalpts| (-567))
- (|:| |success| (-112))))
- (-5 *1 (-790)) (-5 *5 (-567)))))
+ (-12 (-5 *4 (-645 (-317 (-225)))) (-5 *3 (-225)) (-5 *2 (-112))
+ (-5 *1 (-210)))))
+(((*1 *2 *3 *3)
+ (-12 (|has| *2 (-6 (-4424 "*"))) (-4 *5 (-375 *2)) (-4 *6 (-375 *2))
+ (-4 *2 (-1051)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1245 *2))
+ (-4 *4 (-688 *2 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-690 (-410 (-954 (-567)))))
+ (-5 *2 (-645 (-690 (-317 (-567))))) (-5 *1 (-1033))
+ (-5 *3 (-317 (-567))))))
+(((*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1272))))
+ ((*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1272)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-308) (-147))) (-4 *4 (-13 (-851) (-615 (-1178))))
- (-4 *5 (-794)) (-5 *1 (-926 *3 *4 *5 *2)) (-4 *2 (-951 *3 *5 *4)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1102)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-112)))))
-(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-863)))
- ((*1 *1 *1 *1) (-4 *1 (-969))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-907 *4)) (-4 *4 (-1102)) (-5 *2 (-645 (-772)))
- (-5 *1 (-906 *4)))))
+ (-12 (-5 *2 (-645 *3)) (-4 *3 (-1245 (-567))) (-5 *1 (-489 *3)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9))
+ (-4 *9 (-1067 *6 *7 *8)) (-4 *6 (-559)) (-4 *7 (-794))
+ (-4 *8 (-851)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2270 (-645 *9))))
+ (-5 *3 (-645 *9)) (-4 *1 (-1212 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1067 *5 *6 *7))
+ (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-5 *2 (-2 (|:| |bas| *1) (|:| -2270 (-645 *8))))
+ (-5 *3 (-645 *8)) (-4 *1 (-1212 *5 *6 *7 *8)))))
+(((*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1219)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1178))
- (-4 *5 (-13 (-455) (-147) (-1040 (-567)) (-640 (-567))))
- (-5 *2 (-588 *3)) (-5 *1 (-560 *5 *3))
- (-4 *3 (-13 (-27) (-1203) (-433 *5))))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-645 *1)) (-4 *1 (-1067 *4 *5 *6)) (-4 *4 (-1051))
- (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794))
- (-4 *5 (-851)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1211 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794))
- (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1211 *4 *5 *6 *3)) (-4 *4 (-559)) (-4 *5 (-794))
- (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-421 *3)) (-4 *3 (-559)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-225)) (-5 *4 (-567))
- (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G)))) (-5 *2 (-1037))
- (-5 *1 (-749)))))
-(((*1 *2)
- (-12 (-5 *2 (-1268 (-1103 *3 *4))) (-5 *1 (-1103 *3 *4))
- (-14 *3 (-923)) (-14 *4 (-923)))))
-(((*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1218)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))))
-(((*1 *1) (-5 *1 (-440))))
+ (-12 (-5 *4 (-1 *5 *5))
+ (-4 *5 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567)))))))
+ (-5 *2
+ (-2 (|:| |solns| (-645 *5))
+ (|:| |maps| (-645 (-2 (|:| |arg| *5) (|:| |res| *5))))))
+ (-5 *1 (-1130 *3 *5)) (-4 *3 (-1245 *5)))))
(((*1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1) (-5 *1 (-863)))
((*1 *1 *1) (-4 *1 (-969))) ((*1 *1 *1) (-5 *1 (-1122))))
+(((*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172))))
+ ((*1 *1 *1 *1) (-4 *1 (-476)))
+ ((*1 *1 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172))))
+ ((*1 *2 *2) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-885))))
+ ((*1 *1 *1) (-5 *1 (-973)))
+ ((*1 *1 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-172)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559))
+ (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-979 *3 *4 *5 *6)))))
+(((*1 *2 *2) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-400)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-112)) (-5 *1 (-830)))))
+(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1102))))
+ ((*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1102)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 *4))
+ (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-772)) (-4 *4 (-13 (-559) (-147)))
+ (-5 *1 (-1239 *4 *2)) (-4 *2 (-1245 *4)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-772)) (-5 *2 (-410 (-567))) (-5 *1 (-225))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-772)) (-5 *2 (-410 (-567))) (-5 *1 (-225))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-772)) (-5 *2 (-410 (-567))) (-5 *1 (-381))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-772)) (-5 *2 (-410 (-567))) (-5 *1 (-381)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-169 *5)) (-4 *5 (-13 (-433 *4) (-1004) (-1203)))
- (-4 *4 (-559)) (-4 *2 (-13 (-433 (-169 *4)) (-1004) (-1203)))
- (-5 *1 (-601 *4 *5 *2)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| -2950 (-410 (-567))) (|:| -2963 (-410 (-567)))))
- (-5 *2 (-410 (-567))) (-5 *1 (-1022 *4)) (-4 *4 (-1244 (-567))))))
-(((*1 *2 *3 *3 *4 *4)
- (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *2 (-1037))
- (-5 *1 (-749)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
- (-4 *8 (-1067 *5 *6 *7))
+ (-12 (-5 *3 (-645 (-484 *4 *5))) (-14 *4 (-645 (-1179)))
+ (-4 *5 (-455))
(-5 *2
- (-2 (|:| |val| (-645 *8))
- (|:| |towers| (-645 (-1029 *5 *6 *7 *8)))))
- (-5 *1 (-1029 *5 *6 *7 *8)) (-5 *3 (-645 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
- (-4 *8 (-1067 *5 *6 *7))
+ (-2 (|:| |gblist| (-645 (-247 *4 *5)))
+ (|:| |gvlist| (-645 (-567)))))
+ (-5 *1 (-632 *4 *5)))))
+(((*1 *2 *2) (|partial| -12 (-5 *1 (-589 *2)) (-4 *2 (-548)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1219)) (-4 *2 (-851))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-283 *3)) (-4 *3 (-1219))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-970 *2)) (-4 *2 (-851)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-645 *3)) (-4 *3 (-1219)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-772)) (-4 *2 (-559)) (-5 *1 (-971 *2 *4))
+ (-4 *4 (-1245 *2)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-567)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-5 *2 (-1274)) (-5 *1 (-452 *4 *5 *6 *7)) (-4 *7 (-951 *4 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 *6)) (-5 *4 (-1179)) (-4 *6 (-433 *5))
+ (-4 *5 (-1102)) (-5 *2 (-645 (-613 *6))) (-5 *1 (-576 *5 *6)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-567)) (|has| *1 (-6 -4423)) (-4 *1 (-375 *3))
+ (-4 *3 (-1219)))))
+(((*1 *2 *3 *4 *3 *3)
+ (-12 (-5 *3 (-295 *6)) (-5 *4 (-114)) (-4 *6 (-433 *5))
+ (-4 *5 (-13 (-559) (-615 (-539)))) (-5 *2 (-52))
+ (-5 *1 (-318 *5 *6))))
+ ((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-295 *7)) (-5 *4 (-114)) (-5 *5 (-645 *7))
+ (-4 *7 (-433 *6)) (-4 *6 (-13 (-559) (-615 (-539)))) (-5 *2 (-52))
+ (-5 *1 (-318 *6 *7))))
+ ((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-645 (-295 *7))) (-5 *4 (-645 (-114))) (-5 *5 (-295 *7))
+ (-4 *7 (-433 *6)) (-4 *6 (-13 (-559) (-615 (-539)))) (-5 *2 (-52))
+ (-5 *1 (-318 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-645 (-295 *8))) (-5 *4 (-645 (-114))) (-5 *5 (-295 *8))
+ (-5 *6 (-645 *8)) (-4 *8 (-433 *7))
+ (-4 *7 (-13 (-559) (-615 (-539)))) (-5 *2 (-52))
+ (-5 *1 (-318 *7 *8))))
+ ((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-645 *7)) (-5 *4 (-645 (-114))) (-5 *5 (-295 *7))
+ (-4 *7 (-433 *6)) (-4 *6 (-13 (-559) (-615 (-539)))) (-5 *2 (-52))
+ (-5 *1 (-318 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 (-114))) (-5 *6 (-645 (-295 *8)))
+ (-4 *8 (-433 *7)) (-5 *5 (-295 *8))
+ (-4 *7 (-13 (-559) (-615 (-539)))) (-5 *2 (-52))
+ (-5 *1 (-318 *7 *8))))
+ ((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-295 *5)) (-5 *4 (-114)) (-4 *5 (-433 *6))
+ (-4 *6 (-13 (-559) (-615 (-539)))) (-5 *2 (-52))
+ (-5 *1 (-318 *6 *5))))
+ ((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-114)) (-5 *5 (-295 *3)) (-4 *3 (-433 *6))
+ (-4 *6 (-13 (-559) (-615 (-539)))) (-5 *2 (-52))
+ (-5 *1 (-318 *6 *3))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-114)) (-5 *5 (-295 *3)) (-4 *3 (-433 *6))
+ (-4 *6 (-13 (-559) (-615 (-539)))) (-5 *2 (-52))
+ (-5 *1 (-318 *6 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-114)) (-5 *5 (-295 *3)) (-5 *6 (-645 *3))
+ (-4 *3 (-433 *7)) (-4 *7 (-13 (-559) (-615 (-539)))) (-5 *2 (-52))
+ (-5 *1 (-318 *7 *3)))))
+(((*1 *2 *2 *3 *3)
+ (|partial| -12 (-5 *3 (-1179))
+ (-4 *4 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567))))
+ (-5 *1 (-578 *4 *2))
+ (-4 *2 (-13 (-1204) (-961) (-1141) (-29 *4))))))
+(((*1 *1 *1 *1) (-5 *1 (-863))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-410 *4)) (-4 *4 (-1245 *3))
+ (-4 *3 (-13 (-365) (-147) (-1040 (-567)))) (-5 *1 (-571 *3 *4)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-365)) (-5 *1 (-767 *2 *3)) (-4 *2 (-709 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))))
+(((*1 *2 *2) (-12 (-5 *2 (-772)) (-5 *1 (-448 *3)) (-4 *3 (-1051))))
+ ((*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-448 *3)) (-4 *3 (-1051)))))
+(((*1 *2 *2)
+ (-12
(-5 *2
- (-2 (|:| |val| (-645 *8))
- (|:| |towers| (-645 (-1148 *5 *6 *7 *8)))))
- (-5 *1 (-1148 *5 *6 *7 *8)) (-5 *3 (-645 *8)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-416 *3 *4 *5 *6)) (-4 *6 (-1040 *4)) (-4 *3 (-308))
- (-4 *4 (-994 *3)) (-4 *5 (-1244 *4)) (-4 *6 (-412 *4 *5))
- (-14 *7 (-1268 *6)) (-5 *1 (-417 *3 *4 *5 *6 *7))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1268 *6)) (-4 *6 (-412 *4 *5)) (-4 *4 (-994 *3))
- (-4 *5 (-1244 *4)) (-4 *3 (-308)) (-5 *1 (-417 *3 *4 *5 *6 *7))
- (-14 *7 *2))))
-(((*1 *1 *2 *3 *1)
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4)
+ (|:| |xpnt| (-567))))
+ (-4 *4 (-13 (-1245 *3) (-559) (-10 -8 (-15 -2785 ($ $ $)))))
+ (-4 *3 (-559)) (-5 *1 (-1248 *3 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1269 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-365))
+ (-4 *1 (-725 *5 *6)) (-4 *5 (-172)) (-4 *6 (-1245 *5))
+ (-5 *2 (-690 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 *4))
+ (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))))
+(((*1 *1 *2 *3 *1 *3)
(-12 (-5 *2 (-894 *4)) (-4 *4 (-1102)) (-5 *1 (-891 *4 *3))
(-4 *3 (-1102)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-169 *4)) (-5 *1 (-181 *4 *3))
- (-4 *4 (-13 (-365) (-849))) (-4 *3 (-1244 *2)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))))
-(((*1 *1 *1) (-4 *1 (-870 *2))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-365))
+ (-5 *2 (-645 (-2 (|:| C (-690 *5)) (|:| |g| (-1269 *5)))))
+ (-5 *1 (-980 *5)) (-5 *3 (-690 *5)) (-5 *4 (-1269 *5)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-645 (-567))) (-5 *1 (-247 *3 *4))
+ (-14 *3 (-645 (-1179))) (-4 *4 (-1051))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-645 (-567))) (-14 *3 (-645 (-1179)))
+ (-5 *1 (-457 *3 *4 *5)) (-4 *4 (-1051))
+ (-4 *5 (-238 (-2423 *3) (-772)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-645 (-567))) (-5 *1 (-484 *3 *4))
+ (-14 *3 (-645 (-1179))) (-4 *4 (-1051)))))
+(((*1 *2 *2) (-12 (-5 *2 (-317 (-225))) (-5 *1 (-268)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1 (-112) *7 (-645 *7))) (-4 *1 (-1212 *4 *5 *6 *7))
+ (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-5 *2 (-923)) (-5 *1 (-1103 *3 *4)) (-14 *3 *2)
+ (-14 *4 *2))))
+(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172))
+ (-5 *2 (-690 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-690 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1244 *3)) (-4 *3 (-1051)) (-5 *2 (-1174 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-559))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3788 *4)))
- (-5 *1 (-971 *4 *3)) (-4 *3 (-1244 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1048 *4 *5)) (-4 *4 (-13 (-849) (-308) (-147) (-1024)))
- (-14 *5 (-645 (-1178))) (-5 *2 (-645 (-645 (-1026 (-410 *4)))))
- (-5 *1 (-1294 *4 *5 *6)) (-14 *6 (-645 (-1178)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-849) (-308) (-147) (-1024)))
- (-5 *2 (-645 (-645 (-1026 (-410 *5))))) (-5 *1 (-1294 *5 *6 *7))
- (-14 *6 (-645 (-1178))) (-14 *7 (-645 (-1178)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-849) (-308) (-147) (-1024)))
- (-5 *2 (-645 (-645 (-1026 (-410 *5))))) (-5 *1 (-1294 *5 *6 *7))
- (-14 *6 (-645 (-1178))) (-14 *7 (-645 (-1178)))))
+ (-12 (-4 *1 (-1231 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-1260 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1))
+ (-4 *1 (-1067 *3 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1167 *3 *4)) (-14 *3 (-923))
+ (-4 *4 (-1051)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-857 *2)) (-4 *2 (-172))))
((*1 *2 *3)
- (-12 (-5 *3 (-645 (-954 *4)))
- (-4 *4 (-13 (-849) (-308) (-147) (-1024)))
- (-5 *2 (-645 (-645 (-1026 (-410 *4))))) (-5 *1 (-1294 *4 *5 *6))
- (-14 *5 (-645 (-1178))) (-14 *6 (-645 (-1178))))))
-(((*1 *1 *1) (-12 (-4 *1 (-1256 *2)) (-4 *2 (-1218)))))
-(((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-645 *3)) (-4 *3 (-1218)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112))
- (-5 *1 (-979 *4 *5 *6 *3)) (-4 *3 (-1067 *4 *5 *6)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-509)) (-5 *1 (-281)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1268 *1)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222))
- (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-820 *4)) (-4 *4 (-851)) (-5 *2 (-112))
- (-5 *1 (-673 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))))
-(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4))
- (-4 *3 (-369 *4))))
- ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
+ (-12 (-5 *2 (-1175 (-567))) (-5 *1 (-944)) (-5 *3 (-567)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))))
+ (-12 (-4 *5 (-1102)) (-4 *3 (-902 *5)) (-5 *2 (-1269 *3))
+ (-5 *1 (-693 *5 *3 *6 *4)) (-4 *6 (-375 *3))
+ (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4422)))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-851))
- (-4 *5 (-267 *4)) (-4 *6 (-794)) (-5 *2 (-112)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1273)) (-5 *1 (-1270)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-397))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-1198)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1160)) (-5 *3 (-824)) (-5 *1 (-823)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1051)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-433 *3) (-1004))))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-645 (-567))) (-5 *3 (-112)) (-5 *1 (-1112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-334)) (-5 *1 (-249)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-559)) (-4 *3 (-1051))
- (-5 *2 (-2 (|:| -3102 *1) (|:| -4194 *1))) (-4 *1 (-853 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-99 *5)) (-4 *5 (-559)) (-4 *5 (-1051))
- (-5 *2 (-2 (|:| -3102 *3) (|:| -4194 *3))) (-5 *1 (-854 *5 *3))
- (-4 *3 (-853 *5)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-645 (-783 *3))) (-5 *1 (-783 *3)) (-4 *3 (-559))
- (-4 *3 (-1051)))))
+ (-12 (-4 *3 (-365)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4)))
+ (-5 *2 (-1269 *6)) (-5 *1 (-338 *3 *4 *5 *6))
+ (-4 *6 (-344 *3 *4 *5)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-433 *3) (-1004))))))
-(((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *3 (-851))
- (-5 *2 (-2 (|:| -3102 *1) (|:| -4194 *1))) (-4 *1 (-951 *4 *5 *3))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1051)) (-5 *2 (-2 (|:| -3102 *1) (|:| -4194 *1)))
- (-4 *1 (-1244 *3)))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *6)
- (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225))
- (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1037))
- (-5 *1 (-747)))))
-(((*1 *2 *3 *2)
- (|partial| -12 (-5 *3 (-923)) (-5 *1 (-445 *2))
- (-4 *2 (-1244 (-567)))))
- ((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-923)) (-5 *4 (-772)) (-5 *1 (-445 *2))
- (-4 *2 (-1244 (-567)))))
- ((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-923)) (-5 *4 (-645 (-772))) (-5 *1 (-445 *2))
- (-4 *2 (-1244 (-567)))))
- ((*1 *2 *3 *2 *4 *5)
- (|partial| -12 (-5 *3 (-923)) (-5 *4 (-645 (-772))) (-5 *5 (-772))
- (-5 *1 (-445 *2)) (-4 *2 (-1244 (-567)))))
- ((*1 *2 *3 *2 *4 *5 *6)
- (|partial| -12 (-5 *3 (-923)) (-5 *4 (-645 (-772))) (-5 *5 (-772))
- (-5 *6 (-112)) (-5 *1 (-445 *2)) (-4 *2 (-1244 (-567)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-923)) (-5 *4 (-421 *2)) (-4 *2 (-1244 *5))
- (-5 *1 (-447 *5 *2)) (-4 *5 (-1051)))))
-(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037))
- (-5 *1 (-753)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1253 *3 *4 *5)) (-4 *3 (-365)) (-14 *4 (-1178))
- (-14 *5 *3) (-5 *1 (-320 *3 *4 *5))))
- ((*1 *2 *3) (-12 (-5 *2 (-1 (-381))) (-5 *1 (-1042)) (-5 *3 (-381)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-772)) (-4 *4 (-559)) (-5 *1 (-971 *4 *2))
- (-4 *2 (-1244 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 (-645 *2))) (-5 *4 (-645 *5))
- (-4 *5 (-38 (-410 (-567)))) (-4 *2 (-1259 *5))
- (-5 *1 (-1261 *5 *2)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-3
- (|:| |noa|
- (-2 (|:| |fn| (-317 (-225))) (|:| -2672 (-645 (-225)))
- (|:| |lb| (-645 (-844 (-225))))
- (|:| |cf| (-645 (-317 (-225))))
- (|:| |ub| (-645 (-844 (-225))))))
- (|:| |lsa|
- (-2 (|:| |lfn| (-645 (-317 (-225))))
- (|:| -2672 (-645 (-225)))))))
- (-5 *2 (-645 (-1160))) (-5 *1 (-268)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-772)) (-4 *5 (-559))
- (-5 *2
- (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-971 *5 *3)) (-4 *3 (-1244 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-1224))))))
-(((*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-1220)))))
-(((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-863)))))
-(((*1 *2 *3)
- (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-567))) (-5 *1 (-1049)))))
-(((*1 *2 *3) (-12 (-5 *3 (-945 *2)) (-5 *1 (-984 *2)) (-4 *2 (-1051)))))
+ (-12 (-4 *3 (-559)) (-5 *1 (-158 *3 *2)) (-4 *2 (-433 *3)))))
+(((*1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-1189)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1268 *4)) (-4 *4 (-640 (-567)))
- (-5 *2 (-1268 (-567))) (-5 *1 (-1295 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-331)))))
+ (-12 (-5 *2 (-613 *4)) (-5 *1 (-612 *3 *4)) (-4 *3 (-1102))
+ (-4 *4 (-1102)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1286 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1051))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1292 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-847)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1006 *3)) (-14 *3 (-567)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-1293 *3 *4)) (-4 *1 (-376 *3 *4)) (-4 *3 (-851))
+ (-4 *4 (-172))))
+ ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-388 *2)) (-4 *2 (-1102))))
+ ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-820 *2)) (-4 *2 (-851))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1286 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1051))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-820 *3)) (-4 *1 (-1286 *3 *4)) (-4 *3 (-851))
+ (-4 *4 (-1051))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1286 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1051)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-559) (-147))) (-5 *1 (-540 *3 *2))
+ (-4 *2 (-1260 *3))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-365) (-370) (-615 (-567)))) (-4 *4 (-1245 *3))
+ (-4 *5 (-725 *3 *4)) (-5 *1 (-544 *3 *4 *5 *2)) (-4 *2 (-1260 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-365) (-370) (-615 (-567)))) (-5 *1 (-545 *3 *2))
+ (-4 *2 (-1260 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-13 (-559) (-147)))
+ (-5 *1 (-1155 *3)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102))
+ (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-112)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-645 *5)) (-5 *4 (-923)) (-4 *5 (-851))
- (-5 *2 (-645 (-673 *5))) (-5 *1 (-673 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-645 (-1096 (-410 (-567))))) (-5 *1 (-264))))
- ((*1 *1 *2) (-12 (-5 *2 (-645 (-1096 (-381)))) (-5 *1 (-264)))))
+ (-12 (-5 *4 (-567)) (-4 *5 (-351)) (-5 *2 (-421 (-1175 (-1175 *5))))
+ (-5 *1 (-1217 *5)) (-5 *3 (-1175 (-1175 *5))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3))
- (-4 *5 (-375 *3)) (-5 *2 (-645 (-645 *3)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051))
- (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-645 (-645 *5)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-645 (-645 *3))) (-5 *1 (-1190 *3)) (-4 *3 (-1102)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1102)) (-4 *3 (-23))
- (-14 *4 *3))))
+ (-12 (-5 *2 (-692 (-968 *3))) (-5 *1 (-968 *3)) (-4 *3 (-1102)))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-772)) (-5 *1 (-589 *2)) (-4 *2 (-548))))
+ (-12 (-5 *2 (-690 *3)) (-4 *3 (-308)) (-5 *1 (-701 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1274)) (-5 *1 (-1140))))
((*1 *2 *3)
- (-12 (-5 *2 (-2 (|:| -3047 *3) (|:| -3458 (-772)))) (-5 *1 (-589 *3))
- (-4 *3 (-548)))))
-(((*1 *2 *3) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-564)) (-5 *3 (-567)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567)))))))
- (-5 *2 (-645 *4)) (-5 *1 (-1130 *3 *4)) (-4 *3 (-1244 *4))))
- ((*1 *2 *3 *3 *3 *3)
- (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567)))))))
- (-5 *2 (-645 *3)) (-5 *1 (-1130 *4 *3)) (-4 *4 (-1244 *3)))))
-(((*1 *1) (-5 *1 (-1065))))
-(((*1 *2 *3 *4 *4 *3)
- (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037))
- (-5 *1 (-753)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2))
- (-4 *2 (-13 (-433 *3) (-1203))))))
+ (-12 (-5 *3 (-645 (-863))) (-5 *2 (-1274)) (-5 *1 (-1140)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1096 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-192))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1096 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-301))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1096 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-306)))))
+ (-12 (-4 *4 (-13 (-365) (-147) (-1040 (-410 (-567)))))
+ (-4 *5 (-1245 *4))
+ (-5 *2 (-645 (-2 (|:| |deg| (-772)) (|:| -3855 *5))))
+ (-5 *1 (-810 *4 *5 *3 *6)) (-4 *3 (-657 *5))
+ (-4 *6 (-657 (-410 *5))))))
+(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1096 (-225))) (-5 *1 (-928))))
+ ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1096 (-225))) (-5 *1 (-929))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1096 (-225))) (-5 *1 (-929))))
+ ((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-381)) (-5 *2 (-1274)) (-5 *1 (-1271))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1274)) (-5 *1 (-1271)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))))
(((*1 *1 *1 *2 *3)
(-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-772)) (-4 *1 (-231 *4))
(-4 *4 (-1051))))
@@ -16131,20 +16009,20 @@
((*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-267 *3)) (-4 *3 (-851))))
((*1 *1 *1) (-12 (-4 *1 (-267 *2)) (-4 *2 (-851))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222))
- (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4)))))
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223))
+ (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4)))))
((*1 *1 *1 *2)
(-12 (-5 *2 (-772)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-402 *3 *4))
- (-4 *4 (-1244 *3))))
+ (-4 *4 (-1245 *3))))
((*1 *1 *1)
(-12 (-4 *2 (-13 (-365) (-147))) (-5 *1 (-402 *2 *3))
- (-4 *3 (-1244 *2))))
+ (-4 *3 (-1245 *2))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1264 *4)) (-14 *4 (-1178)) (-5 *1 (-477 *3 *4 *5))
+ (-12 (-5 *2 (-1265 *4)) (-14 *4 (-1179)) (-5 *1 (-477 *3 *4 *5))
(-4 *3 (-1051)) (-14 *5 *3)))
((*1 *2 *1 *3)
(-12 (-4 *2 (-365)) (-4 *2 (-902 *3)) (-5 *1 (-588 *2))
- (-5 *3 (-1178))))
+ (-5 *3 (-1179))))
((*1 *2 *1 *3)
(-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-588 *2)) (-4 *2 (-365))))
((*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-863))))
@@ -16157,434 +16035,655 @@
(-12 (-5 *2 (-645 *3)) (-4 *1 (-902 *3)) (-4 *3 (-1102))))
((*1 *1 *1 *2) (-12 (-4 *1 (-902 *2)) (-4 *2 (-1102))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1264 *4)) (-14 *4 (-1178)) (-5 *1 (-1169 *3 *4 *5))
+ (-12 (-5 *2 (-1265 *4)) (-14 *4 (-1179)) (-5 *1 (-1170 *3 *4 *5))
(-4 *3 (-1051)) (-14 *5 *3)))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1264 *4)) (-14 *4 (-1178)) (-5 *1 (-1175 *3 *4 *5))
+ (-12 (-5 *2 (-1265 *4)) (-14 *4 (-1179)) (-5 *1 (-1176 *3 *4 *5))
(-4 *3 (-1051)) (-14 *5 *3)))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1264 *4)) (-14 *4 (-1178)) (-5 *1 (-1176 *3 *4 *5))
+ (-12 (-5 *2 (-1265 *4)) (-14 *4 (-1179)) (-5 *1 (-1177 *3 *4 *5))
(-4 *3 (-1051)) (-14 *5 *3)))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1264 *4)) (-14 *4 (-1178)) (-5 *1 (-1232 *3 *4 *5))
+ (-12 (-5 *2 (-1265 *4)) (-14 *4 (-1179)) (-5 *1 (-1233 *3 *4 *5))
(-4 *3 (-1051)) (-14 *5 *3)))
((*1 *1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1244 *3)) (-4 *3 (-1051))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1245 *3)) (-4 *3 (-1051))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1264 *4)) (-14 *4 (-1178)) (-5 *1 (-1253 *3 *4 *5))
+ (-12 (-5 *2 (-1265 *4)) (-14 *4 (-1179)) (-5 *1 (-1254 *3 *4 *5))
(-4 *3 (-1051)) (-14 *5 *3)))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1264 *4)) (-14 *4 (-1178)) (-5 *1 (-1260 *3 *4 *5))
+ (-12 (-5 *2 (-1265 *4)) (-14 *4 (-1179)) (-5 *1 (-1261 *3 *4 *5))
(-4 *3 (-1051)) (-14 *5 *3))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1268 (-645 (-2 (|:| -3802 *4) (|:| -3768 (-1122))))))
- (-4 *4 (-351)) (-5 *2 (-772)) (-5 *1 (-348 *4))))
- ((*1 *2)
- (-12 (-5 *2 (-772)) (-5 *1 (-353 *3 *4)) (-14 *3 (-923))
- (-14 *4 (-923))))
- ((*1 *2)
- (-12 (-5 *2 (-772)) (-5 *1 (-354 *3 *4)) (-4 *3 (-351))
- (-14 *4
- (-3 (-1174 *3)
- (-1268 (-645 (-2 (|:| -3802 *3) (|:| -3768 (-1122)))))))))
- ((*1 *2)
- (-12 (-5 *2 (-772)) (-5 *1 (-355 *3 *4)) (-4 *3 (-351))
- (-14 *4 (-923)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-308)) (-5 *1 (-458 *3 *2)) (-4 *2 (-1244 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *3 (-308)) (-5 *1 (-463 *3 *2)) (-4 *2 (-1244 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *3 (-308)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-772)))
- (-5 *1 (-542 *3 *2 *4 *5)) (-4 *2 (-1244 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1174 *5)) (-4 *5 (-455)) (-5 *2 (-645 *6))
- (-5 *1 (-541 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-849)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-954 *5)) (-4 *5 (-455)) (-5 *2 (-645 *6))
- (-5 *1 (-541 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-849))))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-410 (-954 *3))) (-5 *1 (-456 *3 *4 *5 *6))
- (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923))
- (-14 *5 (-645 (-1178))) (-14 *6 (-1268 (-690 *3))))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-891 *4 *5)) (-5 *3 (-891 *4 *6)) (-4 *4 (-1102))
+ (-4 *5 (-1102)) (-4 *6 (-667 *5)) (-5 *1 (-887 *4 *5 *6)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-1179)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-4 *3 (-1067 *5 *6 *7))
+ (-5 *2 (-645 (-2 (|:| |val| (-645 *3)) (|:| -2575 *4))))
+ (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1178)) (-5 *4 (-954 (-567))) (-5 *2 (-331))
- (-5 *1 (-333)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *6))
- (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-645 (-907 *3))) (-5 *1 (-906 *3)) (-4 *3 (-1102)))))
-(((*1 *1 *2) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-331))))
- ((*1 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-331)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1211 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794))
- (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5))
- (-5 *2 (-2 (|:| -3995 (-645 *6)) (|:| -3823 (-645 *6)))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-645 *2)) (-5 *1 (-489 *2)) (-4 *2 (-1244 (-567))))))
+ (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 *4))
+ (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102))
- (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-112)))))
+ (-12 (-5 *2 (-645 (-2 (|:| |gen| *3) (|:| -3955 *4))))
+ (-5 *1 (-650 *3 *4 *5)) (-4 *3 (-1102)) (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1004))))))
(((*1 *2 *1)
- (-12 (-4 *4 (-1102)) (-5 *2 (-891 *3 *4)) (-5 *1 (-887 *3 *4 *5))
- (-4 *3 (-1102)) (-4 *5 (-667 *4)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-645 *3)) (-4 *3 (-1218)) (-5 *1 (-1268 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-1178))
- (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-295 (-317 *5))))
- (-5 *1 (-1131 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-410 (-954 *4))) (-4 *4 (-13 (-308) (-147)))
- (-5 *2 (-645 (-295 (-317 *4)))) (-5 *1 (-1131 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-295 (-410 (-954 *5)))) (-5 *4 (-1178))
- (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-295 (-317 *5))))
- (-5 *1 (-1131 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-295 (-410 (-954 *4)))) (-4 *4 (-13 (-308) (-147)))
- (-5 *2 (-645 (-295 (-317 *4)))) (-5 *1 (-1131 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-645 (-410 (-954 *5)))) (-5 *4 (-645 (-1178)))
- (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-645 (-295 (-317 *5)))))
- (-5 *1 (-1131 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-645 (-410 (-954 *4)))) (-4 *4 (-13 (-308) (-147)))
- (-5 *2 (-645 (-645 (-295 (-317 *4))))) (-5 *1 (-1131 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-645 (-295 (-410 (-954 *5))))) (-5 *4 (-645 (-1178)))
- (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-645 (-295 (-317 *5)))))
- (-5 *1 (-1131 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-645 (-295 (-410 (-954 *4)))))
- (-4 *4 (-13 (-308) (-147))) (-5 *2 (-645 (-645 (-295 (-317 *4)))))
- (-5 *1 (-1131 *4)))))
+ (-12 (-4 *3 (-13 (-365) (-147)))
+ (-5 *2 (-645 (-2 (|:| -3468 (-772)) (|:| -2185 *4) (|:| |num| *4))))
+ (-5 *1 (-402 *3 *4)) (-4 *4 (-1245 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-331))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-331)))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1196 *3 *4)) (-4 *3 (-1102))
+ (-4 *4 (-1102)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-509)) (-5 *3 (-645 (-877))) (-5 *1 (-486)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-174 (-410 (-567)))) (-5 *1 (-117 *3)) (-14 *3 (-567))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *3 (-1158 *2)) (-4 *2 (-308)) (-5 *1 (-174 *2))))
- ((*1 *1 *2) (-12 (-5 *2 (-410 *3)) (-4 *3 (-308)) (-5 *1 (-174 *3))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-174 (-567))) (-5 *1 (-766 *3)) (-4 *3 (-407))))
+ (|partial| -12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-548))
+ (-5 *2 (-410 (-567)))))
((*1 *2 *1)
- (-12 (-5 *2 (-174 (-410 (-567)))) (-5 *1 (-872 *3)) (-14 *3 (-567))))
+ (|partial| -12 (-5 *2 (-410 (-567))) (-5 *1 (-421 *3)) (-4 *3 (-548))
+ (-4 *3 (-559))))
+ ((*1 *2 *1) (|partial| -12 (-4 *1 (-548)) (-5 *2 (-410 (-567)))))
((*1 *2 *1)
- (-12 (-14 *3 (-567)) (-5 *2 (-174 (-410 (-567))))
- (-5 *1 (-873 *3 *4)) (-4 *4 (-870 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-552))))))
-(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8)
- (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-112))
- (-5 *6 (-225)) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-68 APROD))))
- (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-73 MSOLVE))))
- (-5 *2 (-1037)) (-5 *1 (-757)))))
-(((*1 *1 *1) (-4 *1 (-143)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-559)) (-5 *1 (-158 *3 *2)) (-4 *2 (-433 *3))))
- ((*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-559))
- (-5 *2 (-1174 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-690 (-410 (-954 (-567)))))
- (-5 *2 (-645 (-690 (-317 (-567))))) (-5 *1 (-1033)))))
+ (|partial| -12 (-4 *1 (-798 *3)) (-4 *3 (-172)) (-4 *3 (-548))
+ (-5 *2 (-410 (-567)))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-410 (-567))) (-5 *1 (-834 *3)) (-4 *3 (-548))
+ (-4 *3 (-1102))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-410 (-567))) (-5 *1 (-844 *3)) (-4 *3 (-548))
+ (-4 *3 (-1102))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-999 *3)) (-4 *3 (-172)) (-4 *3 (-548))
+ (-5 *2 (-410 (-567)))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *2 (-410 (-567))) (-5 *1 (-1010 *3))
+ (-4 *3 (-1040 *2)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-1051)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-645 *3)) (-4 *3 (-1219)) (-5 *1 (-1269 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1219))))
+ ((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4423)) (-4 *1 (-375 *2)) (-4 *2 (-1219))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1102)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))))
+(((*1 *2 *3 *4 *4 *3 *3 *5)
+ (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-1175 *3))
+ (-4 *3 (-13 (-433 *6) (-27) (-1204)))
+ (-4 *6 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567))))
+ (-5 *2 (-2 (|:| -2872 *3) (|:| |coeff| *3)))
+ (-5 *1 (-563 *6 *3 *7)) (-4 *7 (-1102))))
+ ((*1 *2 *3 *4 *4 *3 *4 *3 *5)
+ (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-410 (-1175 *3)))
+ (-4 *3 (-13 (-433 *6) (-27) (-1204)))
+ (-4 *6 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567))))
+ (-5 *2 (-2 (|:| -2872 *3) (|:| |coeff| *3)))
+ (-5 *1 (-563 *6 *3 *7)) (-4 *7 (-1102)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1242 *4 *5)) (-5 *3 (-645 *5)) (-14 *4 (-1179))
+ (-4 *5 (-365)) (-5 *1 (-925 *4 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-645 *5)) (-4 *5 (-365)) (-5 *2 (-1175 *5))
+ (-5 *1 (-925 *4 *5)) (-14 *4 (-1179))))
+ ((*1 *2 *3 *3 *4 *4)
+ (-12 (-5 *3 (-645 *6)) (-5 *4 (-772)) (-4 *6 (-365))
+ (-5 *2 (-410 (-954 *6))) (-5 *1 (-1052 *5 *6)) (-14 *5 (-1179)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1268 (-690 *4))) (-4 *4 (-172))
- (-5 *2 (-1268 (-690 (-954 *4)))) (-5 *1 (-189 *4)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-4 *6 (-1244 *9)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *9 (-308))
- (-4 *10 (-951 *9 *7 *8))
+ (-12
+ (-5 *3
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-772)) (|:| |poli| *7)
+ (|:| |polj| *7)))
+ (-4 *5 (-794)) (-4 *7 (-951 *4 *5 *6)) (-4 *4 (-455)) (-4 *6 (-851))
+ (-5 *2 (-112)) (-5 *1 (-452 *4 *5 *6 *7)))))
+(((*1 *2)
+ (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3))
+ (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-645 (-923))) (-5 *1 (-1103 *3 *4)) (-14 *3 (-923))
+ (-14 *4 (-923)))))
+(((*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1219)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-381)) (-5 *1 (-787)))))
+(((*1 *2 *1) (-12 (-5 *2 (-645 (-1179))) (-5 *1 (-1183)))))
+(((*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-128)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381))
(-5 *2
- (-2 (|:| |deter| (-645 (-1174 *10)))
- (|:| |dterm|
- (-645 (-645 (-2 (|:| -1922 (-772)) (|:| |pcoef| *10)))))
- (|:| |nfacts| (-645 *6)) (|:| |nlead| (-645 *10))))
- (-5 *1 (-779 *6 *7 *8 *9 *10)) (-5 *3 (-1174 *10)) (-5 *4 (-645 *6))
- (-5 *5 (-645 *10)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-308)) (-4 *3 (-994 *2)) (-4 *4 (-1244 *3))
- (-5 *1 (-416 *2 *3 *4 *5)) (-4 *5 (-13 (-412 *3 *4) (-1040 *3))))))
+ (-2 (|:| -3812 *4) (|:| -2069 *4) (|:| |totalpts| (-567))
+ (|:| |success| (-112))))
+ (-5 *1 (-790)) (-5 *5 (-567)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-556)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1242 *5 *4)) (-4 *4 (-455)) (-4 *4 (-821))
+ (-14 *5 (-1179)) (-5 *2 (-567)) (-5 *1 (-1116 *4 *5)))))
(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1195 *3 *4)) (-4 *3 (-1102))
- (-4 *4 (-1102)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1178)) (-4 *5 (-615 (-894 (-567))))
- (-4 *5 (-888 (-567)))
- (-4 *5 (-13 (-1040 (-567)) (-455) (-640 (-567))))
- (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
- (-5 *1 (-570 *5 *3)) (-4 *3 (-630))
- (-4 *3 (-13 (-27) (-1203) (-433 *5)))))
- ((*1 *2 *2 *3 *4 *4)
- (|partial| -12 (-5 *3 (-1178)) (-5 *4 (-844 *2)) (-4 *2 (-1141))
- (-4 *2 (-13 (-27) (-1203) (-433 *5)))
- (-4 *5 (-615 (-894 (-567)))) (-4 *5 (-888 (-567)))
- (-4 *5 (-13 (-1040 (-567)) (-455) (-640 (-567))))
- (-5 *1 (-570 *5 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-334)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1218)))))
-(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1218)))))
+ (-12 (-4 *4 (-172)) (-5 *2 (-1175 (-954 *4))) (-5 *1 (-419 *3 *4))
+ (-4 *3 (-420 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-4 *3 (-365))
+ (-5 *2 (-1175 (-954 *3)))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1175 (-410 (-954 *3)))) (-5 *1 (-456 *3 *4 *5 *6))
+ (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923))
+ (-14 *5 (-645 (-1179))) (-14 *6 (-1269 (-690 *3))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-945 *3) (-945 *3))) (-5 *1 (-176 *3))
+ (-4 *3 (-13 (-365) (-1204) (-1004))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-559)) (-5 *2 (-645 *3)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-420 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2))
- (-4 *2 (-13 (-433 *3) (-1203))))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-556)))))
+ (-12 (-5 *2 (-567)) (-5 *1 (-448 *3)) (-4 *3 (-407)) (-4 *3 (-1051)))))
(((*1 *2)
- (-12 (-4 *4 (-1222)) (-4 *5 (-1244 *4)) (-4 *6 (-1244 (-410 *5)))
- (-5 *2 (-112)) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6))))
+ (-12 (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-911))
+ (-5 *1 (-460 *3 *4 *2 *5)) (-4 *5 (-951 *2 *3 *4))))
((*1 *2)
- (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3))
- (-4 *5 (-1244 (-410 *4))) (-5 *2 (-112)))))
+ (-12 (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-911))
+ (-5 *1 (-908 *2 *3 *4 *5)) (-4 *5 (-951 *2 *3 *4))))
+ ((*1 *2) (-12 (-4 *2 (-911)) (-5 *1 (-909 *2 *3)) (-4 *3 (-1245 *2)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-645 (-1174 (-567)))) (-5 *1 (-191)) (-5 *3 (-567)))))
+ (-12 (-14 *4 (-645 (-1179))) (-4 *5 (-455))
+ (-5 *2
+ (-2 (|:| |glbase| (-645 (-247 *4 *5))) (|:| |glval| (-645 (-567)))))
+ (-5 *1 (-632 *4 *5)) (-5 *3 (-645 (-247 *4 *5))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-308)) (-5 *2 (-421 *3))
+ (-5 *1 (-743 *4 *5 *6 *3)) (-4 *3 (-951 *6 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1219)))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-1179)) (-5 *2 (-1183)) (-5 *1 (-1182)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-645 (-484 *4 *5))) (-5 *3 (-645 (-865 *4)))
+ (-14 *4 (-645 (-1179))) (-4 *5 (-455)) (-5 *1 (-474 *4 *5 *6))
+ (-4 *6 (-455)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-410 *5)) (-4 *5 (-1245 *4)) (-4 *4 (-559))
+ (-4 *4 (-1051)) (-4 *2 (-1260 *4)) (-5 *1 (-1263 *4 *5 *6 *2))
+ (-4 *6 (-657 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1159 (-225))) (-5 *2 (-645 (-1161))) (-5 *1 (-192))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1159 (-225))) (-5 *2 (-645 (-1161))) (-5 *1 (-301))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1159 (-225))) (-5 *2 (-645 (-1161))) (-5 *1 (-306)))))
+(((*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-552))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1245 (-567)))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1245 (-567))))))
+(((*1 *1) (-5 *1 (-440))))
+(((*1 *2 *1 *3 *3 *3 *2)
+ (-12 (-5 *3 (-772)) (-5 *1 (-676 *2)) (-4 *2 (-1102)))))
+(((*1 *1 *2 *3 *3 *3 *4)
+ (-12 (-4 *4 (-365)) (-4 *3 (-1245 *4)) (-4 *5 (-1245 (-410 *3)))
+ (-4 *1 (-337 *4 *3 *5 *2)) (-4 *2 (-344 *4 *3 *5))))
+ ((*1 *1 *2 *2 *3)
+ (-12 (-5 *3 (-567)) (-4 *2 (-365)) (-4 *4 (-1245 *2))
+ (-4 *5 (-1245 (-410 *4))) (-4 *1 (-337 *2 *4 *5 *6))
+ (-4 *6 (-344 *2 *4 *5))))
+ ((*1 *1 *2 *2)
+ (-12 (-4 *2 (-365)) (-4 *3 (-1245 *2)) (-4 *4 (-1245 (-410 *3)))
+ (-4 *1 (-337 *2 *3 *4 *5)) (-4 *5 (-344 *2 *3 *4))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-365)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4)))
+ (-4 *1 (-337 *3 *4 *5 *2)) (-4 *2 (-344 *3 *4 *5))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-416 *4 (-410 *4) *5 *6)) (-4 *4 (-1245 *3))
+ (-4 *5 (-1245 (-410 *4))) (-4 *6 (-344 *3 *4 *5)) (-4 *3 (-365))
+ (-4 *1 (-337 *3 *4 *5 *6)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7)
+ (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *5 (-1161))
+ (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-82 PDEF))))
+ (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1037))
+ (-5 *1 (-751)))))
+(((*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1204))))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1235 (-567))) (-4 *1 (-652 *3)) (-4 *3 (-1218))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-652 *3)) (-4 *3 (-1218)))))
-(((*1 *2 *3) (-12 (-5 *3 (-567)) (-5 *2 (-1273)) (-5 *1 (-1008)))))
+ (-12 (-5 *2 (-1236 (-567))) (-4 *1 (-652 *3)) (-4 *3 (-1219))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-652 *3)) (-4 *3 (-1219)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-645 (-645 (-772)))) (-5 *1 (-906 *3)) (-4 *3 (-1102)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1178))
- (-4 *5 (-13 (-455) (-147) (-1040 (-567)) (-640 (-567))))
- (-5 *2 (-2 (|:| -1752 *3) (|:| |coeff| *3))) (-5 *1 (-560 *5 *3))
- (-4 *3 (-13 (-27) (-1203) (-433 *5))))))
-(((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-1160)) (-5 *4 (-169 (-225))) (-5 *5 (-567))
- (-5 *2 (-1037)) (-5 *1 (-759)))))
-(((*1 *2 *3) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-449)) (-5 *3 (-567)))))
-(((*1 *1) (-5 *1 (-144)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-645 (-264))) (-5 *2 (-1135 (-225))) (-5 *1 (-262))))
- ((*1 *1 *2) (-12 (-5 *2 (-1135 (-225))) (-5 *1 (-264)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-916 *3)) (-4 *3 (-308)))))
+ (-12 (-4 *1 (-1286 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051))
+ (-5 *2 (-820 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-847)) (-5 *1 (-1292 *3 *2)) (-4 *3 (-1051)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-690 (-410 (-954 *4)))) (-4 *4 (-455))
- (-5 *2 (-645 (-3 (-410 (-954 *4)) (-1167 (-1178) (-954 *4)))))
- (-5 *1 (-293 *4)))))
-(((*1 *2 *3 *4 *4 *5 *4 *4 *5)
- (-12 (-5 *3 (-1160)) (-5 *4 (-567)) (-5 *5 (-690 (-225)))
- (-5 *2 (-1037)) (-5 *1 (-758)))))
-(((*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-448 *3)) (-4 *3 (-1051)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1102)) (-4 *5 (-1102))
- (-4 *6 (-1102)) (-5 *2 (-1 *6 *5)) (-5 *1 (-685 *4 *5 *6)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1218)) (-5 *1 (-377 *4 *2))
- (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4419)))))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1178))
- (-5 *2 (-3 (|:| |fst| (-437)) (|:| -4321 "void"))) (-5 *1 (-1181)))))
+ (-12 (-5 *3 (-894 *4)) (-4 *4 (-1102)) (-5 *2 (-645 *5))
+ (-5 *1 (-892 *4 *5)) (-4 *5 (-1219)))))
+(((*1 *2 *3 *4 *5 *6 *5 *3 *7)
+ (-12 (-5 *4 (-567))
+ (-5 *6
+ (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3049 (-381))))
+ (-5 *7 (-1 (-1274) (-1269 *5) (-1269 *5) (-381)))
+ (-5 *3 (-1269 (-381))) (-5 *5 (-381)) (-5 *2 (-1274))
+ (-5 *1 (-789))))
+ ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3)
+ (-12 (-5 *4 (-567))
+ (-5 *6
+ (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3049 (-381))))
+ (-5 *7 (-1 (-1274) (-1269 *5) (-1269 *5) (-381)))
+ (-5 *3 (-1269 (-381))) (-5 *5 (-381)) (-5 *2 (-1274))
+ (-5 *1 (-789)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *3 (-308)) (-4 *3 (-172)) (-4 *4 (-375 *3))
+ (-4 *5 (-375 *3)) (-5 *2 (-2 (|:| -2654 *3) (|:| -2023 *3)))
+ (-5 *1 (-689 *3 *4 *5 *6)) (-4 *6 (-688 *3 *4 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-2 (|:| -2654 *3) (|:| -2023 *3))) (-5 *1 (-701 *3))
+ (-4 *3 (-308)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-954 (-567))) (-5 *2 (-645 *1)) (-4 *1 (-1014))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-954 (-410 (-567)))) (-5 *2 (-645 *1)) (-4 *1 (-1014))))
+ ((*1 *2 *3) (-12 (-5 *3 (-954 *1)) (-4 *1 (-1014)) (-5 *2 (-645 *1))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1175 (-567))) (-5 *2 (-645 *1)) (-4 *1 (-1014))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1175 (-410 (-567)))) (-5 *2 (-645 *1)) (-4 *1 (-1014))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1175 *1)) (-4 *1 (-1014)) (-5 *2 (-645 *1))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-849) (-365))) (-4 *3 (-1245 *4)) (-5 *2 (-645 *1))
+ (-4 *1 (-1070 *4 *3)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-772)) (-5 *2 (-112)))))
(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1266 *3)) (-4 *3 (-1218)) (-4 *3 (-1051))
+ (-12 (-4 *1 (-1267 *3)) (-4 *3 (-1219)) (-4 *3 (-1051))
(-5 *2 (-690 *3)))))
-(((*1 *2 *3 *3 *4 *4 *4 *4 *3)
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-690 *3)) (-4 *3 (-1051)) (-5 *1 (-691 *3))))
+ ((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-690 *3)) (-4 *3 (-1051)) (-5 *1 (-691 *3)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-857 *2)) (-4 *2 (-172))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1175 (-567))) (-5 *1 (-944)) (-5 *3 (-567)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1096 (-225))) (-5 *1 (-928))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1096 (-225))) (-5 *1 (-929)))))
+(((*1 *2 *3 *4 *3)
(-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037))
- (-5 *1 (-753)))))
+ (-5 *1 (-748)))))
+(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-556)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-690 (-317 (-225))))
- (-5 *2
- (-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))))
- (-5 *1 (-205)))))
+ (-12 (-5 *3 (-1104 *4)) (-4 *4 (-1102)) (-5 *2 (-1 *4))
+ (-5 *1 (-1019 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-381))) (-5 *1 (-1042)) (-5 *3 (-381))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1096 (-567))) (-5 *2 (-1 (-567))) (-5 *1 (-1049)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-823)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-1051)) (-5 *1 (-1241 *3 *2)) (-4 *2 (-1245 *3)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-692 (-874 (-968 *3) (-968 *3)))) (-5 *1 (-968 *3))
+ (-4 *3 (-1102)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-945 *3) (-945 *3))) (-5 *1 (-176 *3))
- (-4 *3 (-13 (-365) (-1203) (-1004))))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-645 (-410 *7)))
- (-4 *7 (-1244 *6)) (-5 *3 (-410 *7)) (-4 *6 (-365))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-577 *6 *7)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))))
-(((*1 *2 *1) (-12 (-5 *2 (-960 (-183 (-139)))) (-5 *1 (-334))))
- ((*1 *2 *1) (-12 (-5 *2 (-645 (-1217))) (-5 *1 (-607)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1270)))))
-(((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))))
+ (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *7 (-1067 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-645 *7)) (|:| |badPols| (-645 *7))))
+ (-5 *1 (-979 *4 *5 *6 *7)) (-5 *3 (-645 *7)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-875)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1160) (-775))) (-5 *1 (-114)))))
-(((*1 *1 *2 *2) (-12 (-5 *1 (-879 *2)) (-4 *2 (-1218))))
- ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-881 *2)) (-4 *2 (-1218))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-645 (-945 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-645 (-945 *3))) (-4 *3 (-1051)) (-4 *1 (-1136 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-645 (-645 *3))) (-4 *1 (-1136 *3)) (-4 *3 (-1051))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-645 (-945 *3))) (-4 *1 (-1136 *3)) (-4 *3 (-1051)))))
+ (-12 (-5 *3 (-645 (-954 *6))) (-5 *4 (-645 (-1179)))
+ (-4 *6 (-13 (-559) (-1040 *5))) (-4 *5 (-559))
+ (-5 *2 (-645 (-645 (-295 (-410 (-954 *6)))))) (-5 *1 (-1041 *5 *6)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2785 *3)))
+ (-5 *1 (-971 *4 *3)) (-4 *3 (-1245 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-328 *3)) (-4 *3 (-1219))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-519 *3 *4)) (-4 *3 (-1219))
+ (-14 *4 (-567)))))
+(((*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1062))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1179)))
+ (-14 *3 (-645 (-1179))) (-4 *4 (-390))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)) (-4 *2 (-1062))))
+ ((*1 *1 *1) (-4 *1 (-849)))
+ ((*1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-172)) (-4 *2 (-1062))))
+ ((*1 *1 *1) (-4 *1 (-1062))) ((*1 *1 *1) (-4 *1 (-1141))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-295 (-834 *3)))
+ (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567))))
+ (-5 *2 (-834 *3)) (-5 *1 (-637 *5 *3))
+ (-4 *3 (-13 (-27) (-1204) (-433 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-295 (-834 (-954 *5)))) (-4 *5 (-455))
+ (-5 *2 (-834 (-410 (-954 *5)))) (-5 *1 (-638 *5))
+ (-5 *3 (-410 (-954 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-295 (-410 (-954 *5)))) (-5 *3 (-410 (-954 *5)))
+ (-4 *5 (-455)) (-5 *2 (-834 *3)) (-5 *1 (-638 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-960 (-183 (-139)))) (-5 *1 (-334))))
+ ((*1 *2 *1) (-12 (-5 *2 (-645 (-1218))) (-5 *1 (-607)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1179)) (-5 *3 (-437)) (-4 *5 (-1102))
+ (-5 *1 (-1108 *5 *4)) (-4 *4 (-433 *5)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1174 *9)) (-5 *4 (-645 *7)) (-5 *5 (-645 (-645 *8)))
- (-4 *7 (-851)) (-4 *8 (-308)) (-4 *9 (-951 *8 *6 *7)) (-4 *6 (-794))
+ (-12 (-5 *3 (-2 (|:| |totdeg| (-772)) (|:| -1774 *4))) (-5 *5 (-772))
+ (-4 *4 (-951 *6 *7 *8)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851))
(-5 *2
- (-2 (|:| |upol| (-1174 *8)) (|:| |Lval| (-645 *8))
- (|:| |Lfact|
- (-645 (-2 (|:| -2706 (-1174 *8)) (|:| -3458 (-567)))))
- (|:| |ctpol| *8)))
- (-5 *1 (-743 *6 *7 *8 *9)))))
+ (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (-5 *1 (-452 *6 *7 *8 *4)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559))
+ (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-979 *3 *4 *5 *6))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *3))
+ (-5 *1 (-979 *4 *5 *6 *3)) (-4 *3 (-1067 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-645 *3)) (-4 *3 (-1067 *4 *5 *6)) (-4 *4 (-559))
+ (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-979 *4 *5 *6 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559))
+ (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-979 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-645 *7) (-645 *7))) (-5 *2 (-645 *7))
+ (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-559)) (-4 *5 (-794))
+ (-4 *6 (-851)) (-5 *1 (-979 *4 *5 *6 *7)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-567)) (-4 *1 (-324 *4 *2)) (-4 *4 (-1102))
+ (-4 *2 (-131)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-254 *2 *3 *4 *5)) (-4 *2 (-1051)) (-4 *3 (-851))
+ (-4 *4 (-267 *3)) (-4 *5 (-794)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-365) (-849))) (-5 *1 (-181 *3 *2))
+ (-4 *2 (-1245 (-169 *3))))))
+(((*1 *1) (-5 *1 (-55))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))))
+(((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172))))
+ ((*1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-172)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1218)) (-5 *2 (-645 *1)) (-4 *1 (-1012 *3))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-645 (-1166 *3 *4))) (-5 *1 (-1166 *3 *4))
- (-14 *3 (-923)) (-4 *4 (-1051)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1273)) (-5 *1 (-823)))))
-(((*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863))))
- ((*1 *1 *1 *1) (-5 *1 (-863))))
-(((*1 *1 *1) (-5 *1 (-863))))
-(((*1 *1) (-4 *1 (-351))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-132)) (-5 *3 (-772)) (-5 *2 (-1273)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-690 (-410 (-954 (-567)))))
+ (-12
(-5 *2
(-645
- (-2 (|:| |radval| (-317 (-567))) (|:| |radmult| (-567))
- (|:| |radvect| (-645 (-690 (-317 (-567))))))))
- (-5 *1 (-1033)))))
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3)
+ (|:| |xpnt| (-567)))))
+ (-5 *1 (-421 *3)) (-4 *3 (-559))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *4 (-772)) (-4 *3 (-351)) (-4 *5 (-1245 *3))
+ (-5 *2 (-645 (-1175 *3))) (-5 *1 (-501 *3 *5 *6))
+ (-4 *6 (-1245 *5)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037))
+ (-5 *1 (-753)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1174 *6)) (-5 *3 (-567)) (-4 *6 (-308)) (-4 *4 (-794))
- (-4 *5 (-851)) (-5 *1 (-743 *4 *5 *6 *7)) (-4 *7 (-951 *6 *4 *5)))))
+ (-12 (-4 *3 (-365)) (-5 *1 (-286 *3 *2)) (-4 *2 (-1260 *3)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1268 (-1268 (-567)))) (-5 *3 (-923)) (-5 *1 (-469)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1174 (-410 (-954 *3)))) (-5 *1 (-456 *3 *4 *5 *6))
- (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923))
- (-14 *5 (-645 (-1178))) (-14 *6 (-1268 (-690 *3))))))
-(((*1 *1 *1 *1) (-5 *1 (-863))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-645 (-567))) (-5 *2 (-1180 (-410 (-567))))
- (-5 *1 (-190)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-1178)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-794))
- (-4 *5 (-13 (-851) (-10 -8 (-15 -3893 ((-1178) $))))) (-4 *6 (-559))
- (-5 *2 (-2 (|:| -4016 (-954 *6)) (|:| -3589 (-954 *6))))
- (-5 *1 (-733 *4 *5 *6 *3)) (-4 *3 (-951 (-410 (-954 *6)) *4 *5)))))
+ (-12 (-5 *3 (-1179))
+ (-4 *4 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147)))
+ (-5 *1 (-805 *4 *2)) (-4 *2 (-13 (-29 *4) (-1204) (-961))))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1269 *4)) (-4 *4 (-640 *5)) (-4 *5 (-365))
+ (-4 *5 (-559)) (-5 *2 (-1269 *5)) (-5 *1 (-639 *5 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1269 *4)) (-4 *4 (-640 *5))
+ (-1673 (-4 *5 (-365))) (-4 *5 (-559)) (-5 *2 (-1269 (-410 *5)))
+ (-5 *1 (-639 *5 *4)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-645 (-772))) (-5 *1 (-1167 *3 *4)) (-14 *3 (-923))
+ (-4 *4 (-1051)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-772)) (-5 *5 (-645 *3)) (-4 *3 (-308)) (-4 *6 (-851))
+ (-4 *7 (-794)) (-5 *2 (-112)) (-5 *1 (-626 *6 *7 *3 *8))
+ (-4 *8 (-951 *3 *7 *6)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-772)) (-4 *6 (-365)) (-5 *4 (-1213 *6))
+ (-5 *2 (-1 (-1159 *4) (-1159 *4))) (-5 *1 (-1277 *6))
+ (-5 *5 (-1159 *4)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-5 *1 (-1162 *3))))
+ (-12 (-4 *3 (-13 (-455) (-1040 (-567)))) (-4 *3 (-559))
+ (-5 *1 (-41 *3 *2)) (-4 *2 (-433 *3))
+ (-4 *2
+ (-13 (-365) (-303)
+ (-10 -8 (-15 -1447 ((-1127 *3 (-613 $)) $))
+ (-15 -1462 ((-1127 *3 (-613 $)) $))
+ (-15 -4129 ($ (-1127 *3 (-613 $))))))))))
+(((*1 *1 *1) (-5 *1 (-1065))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1271)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-978 *4 *5 *3 *6)) (-4 *4 (-1051)) (-4 *5 (-794))
+ (-4 *3 (-851)) (-4 *6 (-1067 *4 *5 *3)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-218))))
+ ((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1219))))
+ ((*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-677))))
((*1 *1 *1)
- (-12 (-5 *1 (-1260 *2 *3 *4)) (-4 *2 (-1051)) (-14 *3 (-1178))
- (-14 *4 *2))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-772)) (-4 *1 (-1244 *3)) (-4 *3 (-1051)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-923)) (-5 *2 (-1273)) (-5 *1 (-1269))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-923)) (-5 *2 (-1273)) (-5 *1 (-1270)))))
+ (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794))
+ (-4 *4 (-851)))))
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1 *8 *8))
+ (-5 *5
+ (-1 (-3 (-2 (|:| -2872 *7) (|:| |coeff| *7)) "failed") *7))
+ (-5 *6 (-645 (-410 *8))) (-4 *7 (-365)) (-4 *8 (-1245 *7))
+ (-5 *3 (-410 *8))
+ (-5 *2
+ (-2
+ (|:| |answer|
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (|:| |a0| *7)))
+ (-5 *1 (-577 *7 *8)))))
+(((*1 *2 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567)))))))
+ (-5 *1 (-1130 *3 *2)) (-4 *3 (-1245 *2)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1219)) (-4 *3 (-1102))
+ (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *4 *5 *6)
+ (-12 (-5 *3 (-645 (-645 (-945 (-225))))) (-5 *4 (-875))
+ (-5 *5 (-923)) (-5 *6 (-645 (-264))) (-5 *2 (-471)) (-5 *1 (-1273))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-645 (-945 (-225))))) (-5 *2 (-471))
+ (-5 *1 (-1273))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 (-645 (-945 (-225))))) (-5 *4 (-645 (-264)))
+ (-5 *2 (-471)) (-5 *1 (-1273)))))
+(((*1 *1) (-5 *1 (-1087))))
+(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-929)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-645 (-1160))) (-5 *2 (-1160)) (-5 *1 (-192))))
- ((*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-295 *2)) (-4 *2 (-727)) (-4 *2 (-1218)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-645 (-247 *4 *5))) (-5 *2 (-247 *4 *5))
- (-14 *4 (-645 (-1178))) (-4 *5 (-455)) (-5 *1 (-632 *4 *5)))))
+ (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1223)) (-4 *3 (-1245 *4))
+ (-4 *5 (-1245 (-410 *3))) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3))
+ (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112)))))
+(((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-1219)) (-5 *1 (-182 *3 *2))
+ (-4 *2 (-675 *3)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-645 (-772))) (-5 *3 (-171)) (-5 *1 (-1167 *4 *5))
+ (-14 *4 (-923)) (-4 *5 (-1051)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))))
+(((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-381)) (-5 *1 (-1042)))))
+(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10)
+ (|partial| -12 (-5 *2 (-645 (-1175 *13))) (-5 *3 (-1175 *13))
+ (-5 *4 (-645 *12)) (-5 *5 (-645 *10)) (-5 *6 (-645 *13))
+ (-5 *7 (-645 (-645 (-2 (|:| -3694 (-772)) (|:| |pcoef| *13)))))
+ (-5 *8 (-645 (-772))) (-5 *9 (-1269 (-645 (-1175 *10))))
+ (-4 *12 (-851)) (-4 *10 (-308)) (-4 *13 (-951 *10 *11 *12))
+ (-4 *11 (-794)) (-5 *1 (-708 *11 *12 *10 *13)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3554 *4)))
+ (-5 *1 (-971 *4 *3)) (-4 *3 (-1245 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-421 *3)) (-4 *3 (-559))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-2 (|:| -2717 *4) (|:| -3104 (-567)))))
+ (-4 *4 (-1245 (-567))) (-5 *2 (-772)) (-5 *1 (-445 *4)))))
+(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5)
+ (-12 (-5 *3 (-923)) (-5 *4 (-225)) (-5 *5 (-567)) (-5 *6 (-875))
+ (-5 *2 (-1274)) (-5 *1 (-1270)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1102) (-1040 *5)))
- (-4 *5 (-888 *4)) (-4 *4 (-1102)) (-5 *2 (-1 (-112) *5))
- (-5 *1 (-933 *4 *5 *6)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-225)) (-5 *4 (-567))
- (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -3879))))
- (-5 *2 (-1037)) (-5 *1 (-749)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-5 *1 (-1162 *3)))))
-(((*1 *2)
- (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-420 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-863)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-645 (-781 *5 (-865 *6)))) (-5 *4 (-112)) (-4 *5 (-455))
- (-14 *6 (-645 (-1178)))
+ (-12 (-5 *2 (-1175 (-567))) (-5 *1 (-944)) (-5 *3 (-567))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-308)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3))
+ (-5 *1 (-1126 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-1122)) (-5 *1 (-532)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-41 *3 *2))
+ (-4 *2
+ (-13 (-365) (-303)
+ (-10 -8 (-15 -1447 ((-1127 *3 (-613 $)) $))
+ (-15 -1462 ((-1127 *3 (-613 $)) $))
+ (-15 -4129 ($ (-1127 *3 (-613 $))))))))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381))
(-5 *2
- (-645 (-1148 *5 (-534 (-865 *6)) (-865 *6) (-781 *5 (-865 *6)))))
- (-5 *1 (-629 *5 *6)))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-1158 *4)) (-5 *3 (-567)) (-4 *4 (-1051))
- (-5 *1 (-1162 *4))))
- ((*1 *1 *2 *2 *1)
- (-12 (-5 *2 (-567)) (-5 *1 (-1260 *3 *4 *5)) (-4 *3 (-1051))
- (-14 *4 (-1178)) (-14 *5 *3))))
+ (-2 (|:| -3812 *4) (|:| -2069 *4) (|:| |totalpts| (-567))
+ (|:| |success| (-112))))
+ (-5 *1 (-790)) (-5 *5 (-567)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-654 (-410 *6))) (-5 *4 (-1 (-645 *5) *6))
+ (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567)))))
+ (-4 *6 (-1245 *5)) (-5 *2 (-645 (-410 *6))) (-5 *1 (-813 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-654 (-410 *7))) (-5 *4 (-1 (-645 *6) *7))
+ (-5 *5 (-1 (-421 *7) *7))
+ (-4 *6 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567)))))
+ (-4 *7 (-1245 *6)) (-5 *2 (-645 (-410 *7))) (-5 *1 (-813 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-655 *6 (-410 *6))) (-5 *4 (-1 (-645 *5) *6))
+ (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567)))))
+ (-4 *6 (-1245 *5)) (-5 *2 (-645 (-410 *6))) (-5 *1 (-813 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-655 *7 (-410 *7))) (-5 *4 (-1 (-645 *6) *7))
+ (-5 *5 (-1 (-421 *7) *7))
+ (-4 *6 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567)))))
+ (-4 *7 (-1245 *6)) (-5 *2 (-645 (-410 *7))) (-5 *1 (-813 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-654 (-410 *5))) (-4 *5 (-1245 *4)) (-4 *4 (-27))
+ (-4 *4 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567)))))
+ (-5 *2 (-645 (-410 *5))) (-5 *1 (-813 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-654 (-410 *6))) (-5 *4 (-1 (-421 *6) *6))
+ (-4 *6 (-1245 *5)) (-4 *5 (-27))
+ (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567)))))
+ (-5 *2 (-645 (-410 *6))) (-5 *1 (-813 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-655 *5 (-410 *5))) (-4 *5 (-1245 *4)) (-4 *4 (-27))
+ (-4 *4 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567)))))
+ (-5 *2 (-645 (-410 *5))) (-5 *1 (-813 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-655 *6 (-410 *6))) (-5 *4 (-1 (-421 *6) *6))
+ (-4 *6 (-1245 *5)) (-4 *5 (-27))
+ (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567)))))
+ (-5 *2 (-645 (-410 *6))) (-5 *1 (-813 *5 *6)))))
(((*1 *2 *2 *3)
- (-12 (-4 *3 (-559)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3))
- (-5 *1 (-1208 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1256 *2)) (-4 *2 (-1218)))))
-(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4))
- (-4 *3 (-369 *4))))
- ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-567)) (-5 *2 (-1273)) (-5 *1 (-1270))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-381)) (-5 *2 (-1273)) (-5 *1 (-1270)))))
+ (|partial| -12 (-5 *2 (-624 *4 *5))
+ (-5 *3
+ (-1 (-2 (|:| |ans| *4) (|:| -2973 *4) (|:| |sol?| (-112)))
+ (-567) *4))
+ (-4 *4 (-365)) (-4 *5 (-1245 *4)) (-5 *1 (-577 *4 *5)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-337 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1244 *3))
- (-4 *5 (-1244 (-410 *4))) (-4 *6 (-344 *3 *4 *5)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-397))))
- ((*1 *2 *1) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-1198)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-690 (-317 (-225)))) (-5 *2 (-381)) (-5 *1 (-205)))))
+ (-12 (-5 *2 (-645 (-645 (-945 (-225))))) (-5 *1 (-1214 *3))
+ (-4 *3 (-976)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-1199)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1037)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-1179)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-703 *3 *5 *6 *7))
+ (-4 *3 (-615 (-539))) (-4 *5 (-1219)) (-4 *6 (-1219))
+ (-4 *7 (-1219))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1179)) (-5 *2 (-1 *6 *5)) (-5 *1 (-707 *3 *5 *6))
+ (-4 *3 (-615 (-539))) (-4 *5 (-1219)) (-4 *6 (-1219)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-772)) (-5 *2 (-1 (-1158 (-954 *4)) (-1158 (-954 *4))))
- (-5 *1 (-1276 *4)) (-4 *4 (-365)))))
-(((*1 *2 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037))
- (-5 *1 (-755)))))
-(((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1042)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))))
+ (-12 (-4 *4 (-794))
+ (-4 *5 (-13 (-851) (-10 -8 (-15 -3902 ((-1179) $))))) (-4 *6 (-559))
+ (-5 *2 (-2 (|:| -1325 (-954 *6)) (|:| -3017 (-954 *6))))
+ (-5 *1 (-733 *4 *5 *6 *3)) (-4 *3 (-951 (-410 (-954 *6)) *4 *5)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-324 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-131))
+ (-4 *3 (-793)))))
(((*1 *2) (-12 (-5 *2 (-834 (-567))) (-5 *1 (-537))))
((*1 *1) (-12 (-5 *1 (-834 *2)) (-4 *2 (-1102)))))
-(((*1 *2 *3 *3 *3 *4 *5)
- (-12 (-5 *5 (-645 (-645 (-225)))) (-5 *4 (-225))
- (-5 *2 (-645 (-945 *4))) (-5 *1 (-1214)) (-5 *3 (-945 *4)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-1067 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794))
- (-4 *2 (-851))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794))
- (-4 *4 (-851)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4422)) (-4 *1 (-235 *3))
+ (-4 *3 (-1102))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-283 *3)) (-4 *3 (-1219)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))))
+(((*1 *2) (-12 (-5 *2 (-645 (-923))) (-5 *1 (-1272))))
+ ((*1 *2 *2) (-12 (-5 *2 (-645 (-923))) (-5 *1 (-1272)))))
+(((*1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1272))))
+ ((*1 *2 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1272)))))
+(((*1 *1 *2 *3 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-945 (-225)) (-225))) (-5 *3 (-1096 (-225)))
+ (-5 *1 (-928))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-945 (-225)) (-225))) (-5 *3 (-1096 (-225)))
+ (-5 *1 (-928))))
+ ((*1 *1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-945 (-225)) (-225))) (-5 *3 (-1096 (-225)))
+ (-5 *1 (-929))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-945 (-225)) (-225))) (-5 *3 (-1096 (-225)))
+ (-5 *1 (-929)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-794))
- (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559))
- (-5 *2 (-112)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-559))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2774 *3)))
- (-5 *1 (-971 *4 *3)) (-4 *3 (-1244 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))))
-(((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-5 *1 (-1162 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1260 *2 *3 *4)) (-4 *2 (-1051)) (-14 *3 (-1178))
- (-14 *4 *2))))
-(((*1 *1 *1 *1) (-4 *1 (-476))) ((*1 *1 *1 *1) (-4 *1 (-762))))
+ (-12 (-5 *2 (-2 (|:| -4369 *1) (|:| -4409 *1) (|:| |associate| *1)))
+ (-4 *1 (-559)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-397))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-1199)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-567)) (-4 *4 (-13 (-559) (-147))) (-5 *1 (-540 *4 *2))
+ (-4 *2 (-1260 *4))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-567)) (-4 *4 (-13 (-365) (-370) (-615 *3)))
+ (-4 *5 (-1245 *4)) (-4 *6 (-725 *4 *5)) (-5 *1 (-544 *4 *5 *6 *2))
+ (-4 *2 (-1260 *6))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-567)) (-4 *4 (-13 (-365) (-370) (-615 *3)))
+ (-5 *1 (-545 *4 *2)) (-4 *2 (-1260 *4))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1159 *4)) (-5 *3 (-567)) (-4 *4 (-13 (-559) (-147)))
+ (-5 *1 (-1155 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1051)) (-4 *5 (-1244 *4)) (-5 *2 (-1 *6 (-645 *6)))
- (-5 *1 (-1262 *4 *5 *3 *6)) (-4 *3 (-657 *5)) (-4 *6 (-1259 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1244 *6))
- (-4 *6 (-13 (-27) (-433 *5))) (-4 *5 (-13 (-559) (-1040 (-567))))
- (-4 *8 (-1244 (-410 *7))) (-5 *2 (-588 *3))
- (-5 *1 (-555 *5 *6 *7 *8 *3)) (-4 *3 (-344 *6 *7 *8)))))
+ (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1102)) (-4 *5 (-1102))
+ (-5 *2 (-1 *5 *4)) (-5 *1 (-684 *4 *5)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4423)) (-4 *1 (-119 *2)) (-4 *2 (-1219)))))
(((*1 *2)
(-12 (-4 *2 (-13 (-433 *3) (-1004))) (-5 *1 (-277 *3 *2))
(-4 *3 (-559))))
((*1 *1)
- (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1178)))
- (-14 *3 (-645 (-1178))) (-4 *4 (-390))))
- ((*1 *1) (-5 *1 (-480))) ((*1 *1) (-4 *1 (-1203))))
-(((*1 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-494)))))
-(((*1 *2 *1) (-12 (-4 *1 (-428 *3)) (-4 *3 (-1102)) (-5 *2 (-772)))))
+ (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1179)))
+ (-14 *3 (-645 (-1179))) (-4 *4 (-390))))
+ ((*1 *1) (-5 *1 (-480))) ((*1 *1) (-4 *1 (-1204))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172))
+ (-5 *2 (-1269 (-690 *4)))))
+ ((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-1269 (-690 *4))) (-5 *1 (-419 *3 *4))
+ (-4 *3 (-420 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-1269 (-690 *3)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 (-1179))) (-4 *5 (-365))
+ (-5 *2 (-1269 (-690 (-410 (-954 *5))))) (-5 *1 (-1088 *5))
+ (-5 *4 (-690 (-410 (-954 *5))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 (-1179))) (-4 *5 (-365))
+ (-5 *2 (-1269 (-690 (-954 *5)))) (-5 *1 (-1088 *5))
+ (-5 *4 (-690 (-954 *5)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-690 *4))) (-4 *4 (-365))
+ (-5 *2 (-1269 (-690 *4))) (-5 *1 (-1088 *4)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794))
- (-4 *5 (-851)) (-5 *2 (-112)))))
+ (-12 (-4 *3 (-1051)) (-5 *2 (-645 *1)) (-4 *1 (-1136 *3)))))
+(((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-381)) (-5 *2 (-1274)) (-5 *1 (-1271)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-308)) (-5 *2 (-421 *3))
- (-5 *1 (-743 *4 *5 *6 *3)) (-4 *3 (-951 *6 *4 *5)))))
+ (-12 (-4 *4 (-559)) (-5 *2 (-772)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-420 *4)))))
(((*1 *1) (-4 *1 (-969))))
(((*1 *2 *3 *4)
(-12 (-5 *3 (-494)) (-5 *4 (-956)) (-5 *2 (-692 (-536)))
@@ -16592,78 +16691,58 @@
((*1 *2 *3 *4)
(-12 (-5 *4 (-956)) (-4 *3 (-1102)) (-5 *2 (-692 *1))
(-4 *1 (-768 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-1273))
- (-5 *1 (-452 *4 *5 *6 *3)) (-4 *3 (-951 *4 *5 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *3)
- (-12 (-5 *3 (-567)) (-5 *4 (-1160)) (-5 *5 (-690 (-225)))
- (-5 *2 (-1037)) (-5 *1 (-748)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-645 (-645 (-645 *4)))) (-5 *3 (-645 *4)) (-4 *4 (-851))
- (-5 *1 (-1189 *4)))))
-(((*1 *2 *3 *3 *4 *5 *5)
- (-12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851))
- (-4 *3 (-1067 *6 *7 *8))
- (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2566 *4))))
- (-5 *1 (-1110 *6 *7 *8 *3 *4)) (-4 *4 (-1073 *6 *7 *8 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-645 (-2 (|:| |val| (-645 *8)) (|:| -2566 *9))))
- (-5 *5 (-112)) (-4 *8 (-1067 *6 *7 *4)) (-4 *9 (-1073 *6 *7 *4 *8))
- (-4 *6 (-455)) (-4 *7 (-794)) (-4 *4 (-851))
- (-5 *2 (-645 (-2 (|:| |val| *8) (|:| -2566 *9))))
- (-5 *1 (-1110 *6 *7 *4 *8 *9)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-455)) (-5 *1 (-1209 *3 *2))
- (-4 *2 (-13 (-433 *3) (-1203))))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3)
+ (-12 (-5 *4 (-690 (-567))) (-5 *5 (-112)) (-5 *7 (-690 (-225)))
+ (-5 *3 (-567)) (-5 *6 (-225)) (-5 *2 (-1037)) (-5 *1 (-755)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-820 *3)) (-4 *3 (-851)) (-5 *1 (-673 *3)))))
(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1195 *3 *4)) (-4 *3 (-1102))
- (-4 *4 (-1102)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-645 *6)) (-4 *1 (-951 *4 *5 *6)) (-4 *4 (-1051))
- (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-772))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-951 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794))
- (-4 *5 (-851)) (-5 *2 (-772)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2))
- (-4 *4 (-375 *2)))))
+ (-12 (-4 *3 (-559)) (-5 *2 (-645 (-690 *3))) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-420 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1178))))
- (-4 *6 (-794)) (-5 *2 (-645 *3)) (-5 *1 (-926 *4 *5 *6 *3))
- (-4 *3 (-951 *4 *6 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-645 (-144))) (-5 *1 (-141))))
- ((*1 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-141)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-645 (-567))) (-5 *1 (-247 *3 *4))
- (-14 *3 (-645 (-1178))) (-4 *4 (-1051))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-645 (-567))) (-14 *3 (-645 (-1178)))
- (-5 *1 (-457 *3 *4 *5)) (-4 *4 (-1051))
- (-4 *5 (-238 (-2414 *3) (-772)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-645 (-567))) (-5 *1 (-484 *3 *4))
- (-14 *3 (-645 (-1178))) (-4 *4 (-1051)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-2 (|:| |totdeg| (-772)) (|:| -2517 *4))) (-5 *5 (-772))
- (-4 *4 (-951 *6 *7 *8)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851))
- (-5 *2
- (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-5 *1 (-452 *6 *7 *8 *4)))))
-(((*1 *2) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-23)))))
+ (-12 (-4 *4 (-851)) (-5 *2 (-645 (-645 *4))) (-5 *1 (-1190 *4))
+ (-5 *3 (-645 *4)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1167 3 *3)) (-4 *3 (-1051)) (-4 *1 (-1136 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1136 *2)) (-4 *2 (-1051)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-825)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))))
+(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-645 *1)) (-4 *1 (-308)))))
+(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1271))))
+ ((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1271)))))
+(((*1 *1) (-5 *1 (-562))))
+(((*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-62 *3)) (-14 *3 (-1179))))
+ ((*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-69 *3)) (-14 *3 (-1179))))
+ ((*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-72 *3)) (-14 *3 (-1179))))
+ ((*1 *2 *1) (-12 (-4 *1 (-398)) (-5 *2 (-1274))))
+ ((*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1274)) (-5 *1 (-400))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1161)) (-5 *4 (-863)) (-5 *2 (-1274)) (-5 *1 (-1140))))
+ ((*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1274)) (-5 *1 (-1140))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-863))) (-5 *2 (-1274)) (-5 *1 (-1140)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
- (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225)))
- (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225)))
- (|:| |abserr| (-225)) (|:| |relerr| (-225))))
- (-5 *2 (-381)) (-5 *1 (-205)))))
+ (-12 (-5 *3 (-772)) (-5 *2 (-1274)) (-5 *1 (-867 *4 *5 *6 *7))
+ (-4 *4 (-1051)) (-14 *5 (-645 (-1179))) (-14 *6 (-645 *3))
+ (-14 *7 *3)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-772)) (-4 *4 (-1051)) (-4 *5 (-851)) (-4 *6 (-794))
+ (-14 *8 (-645 *5)) (-5 *2 (-1274))
+ (-5 *1 (-1281 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-951 *4 *6 *5))
+ (-14 *9 (-645 *3)) (-14 *10 *3))))
+(((*1 *1 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-303))))
+ ((*1 *1 *1) (-4 *1 (-303)))
+ ((*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863))))
+ ((*1 *1 *1) (-5 *1 (-863))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1175 (-567))) (-5 *1 (-191)) (-5 *3 (-567))))
+ ((*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-784 *2)) (-4 *2 (-172))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1175 (-567))) (-5 *1 (-944)) (-5 *3 (-567)))))
(((*1 *2 *1) (-12 (-5 *2 (-1127 (-567) (-613 (-48)))) (-5 *1 (-48))))
((*1 *2 *1)
- (-12 (-4 *3 (-994 *2)) (-4 *4 (-1244 *3)) (-4 *2 (-308))
+ (-12 (-4 *3 (-994 *2)) (-4 *4 (-1245 *3)) (-4 *2 (-308))
(-5 *1 (-416 *2 *3 *4 *5)) (-4 *5 (-13 (-412 *3 *4) (-1040 *3)))))
((*1 *2 *1)
(-12 (-4 *3 (-559)) (-4 *3 (-1102)) (-5 *2 (-1127 *3 (-613 *1)))
@@ -16676,62 +16755,46 @@
(-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-727) *4))
(-5 *1 (-663 *3 *4 *2)) (-4 *3 (-718 *4))))
((*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-559)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-645 *3)) (-4 *3 (-1111 *5 *6 *7 *8))
- (-4 *5 (-13 (-308) (-147))) (-4 *6 (-794)) (-4 *7 (-851))
- (-4 *8 (-1067 *5 *6 *7)) (-5 *2 (-112))
- (-5 *1 (-593 *5 *6 *7 *8 *3)))))
-(((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-645 (-613 *2))) (-5 *4 (-1178))
- (-4 *2 (-13 (-27) (-1203) (-433 *5)))
- (-4 *5 (-13 (-559) (-1040 (-567)) (-640 (-567))))
- (-5 *1 (-278 *5 *2)))))
-(((*1 *2) (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-830)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381))
- (-5 *2
- (-2 (|:| -3802 *4) (|:| -2058 *4) (|:| |totalpts| (-567))
- (|:| |success| (-112))))
- (-5 *1 (-790)) (-5 *5 (-567)))))
+(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-112))
+ (-5 *6 (-225)) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-68 APROD))))
+ (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-73 MSOLVE))))
+ (-5 *2 (-1037)) (-5 *1 (-757)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))))
+(((*1 *1 *1) (-4 *1 (-548))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-169 *5)) (-4 *5 (-13 (-433 *4) (-1004) (-1204)))
+ (-4 *4 (-559)) (-4 *2 (-13 (-433 (-169 *4)) (-1004) (-1204)))
+ (-5 *1 (-601 *4 *5 *2)))))
+(((*1 *1 *1) (-5 *1 (-539))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3)
+ (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225))
+ (-5 *2 (-1037)) (-5 *1 (-753)))))
+(((*1 *2)
+ (-12 (-4 *3 (-1051)) (-5 *2 (-960 (-713 *3 *4))) (-5 *1 (-713 *3 *4))
+ (-4 *4 (-1245 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-1166 3 *3))))
- ((*1 *1) (-12 (-5 *1 (-1166 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1051))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1135 (-225))) (-5 *1 (-1270))))
- ((*1 *2 *1) (-12 (-5 *2 (-1135 (-225))) (-5 *1 (-1270)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-772)) (-4 *4 (-351)) (-5 *1 (-216 *4 *2))
- (-4 *2 (-1244 *4))))
- ((*1 *2 *2 *3 *2 *3)
- (-12 (-5 *3 (-567)) (-5 *1 (-697 *2)) (-4 *2 (-1244 *3)))))
-(((*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-62 *3)) (-14 *3 (-1178))))
- ((*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-69 *3)) (-14 *3 (-1178))))
- ((*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-72 *3)) (-14 *3 (-1178))))
- ((*1 *2 *1) (-12 (-4 *1 (-398)) (-5 *2 (-1273))))
- ((*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1273)) (-5 *1 (-400))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1160)) (-5 *4 (-863)) (-5 *2 (-1273)) (-5 *1 (-1140))))
- ((*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1273)) (-5 *1 (-1140))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-645 (-863))) (-5 *2 (-1273)) (-5 *1 (-1140)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1158 (-645 (-567)))) (-5 *1 (-885)) (-5 *3 (-567))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1158 (-645 (-567)))) (-5 *1 (-885)) (-5 *3 (-567))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-1158 (-645 (-567)))) (-5 *1 (-885)) (-5 *3 (-567)))))
-(((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| |polnum| (-783 *3)) (|:| |polden| *3) (|:| -2673 (-772))))
- (-5 *1 (-783 *3)) (-4 *3 (-1051))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851))
- (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -2673 (-772))))
- (-4 *1 (-1067 *3 *4 *5)))))
-(((*1 *1 *1) (-4 *1 (-630)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-559)) (-5 *1 (-631 *3 *2))
- (-4 *2 (-13 (-433 *3) (-1004) (-1203))))))
+ (-12 (-5 *2 (-1104 *3)) (-5 *1 (-906 *3)) (-4 *3 (-1102))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1104 *3)) (-5 *1 (-907 *3)) (-4 *3 (-1102)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1175 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-863)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5
+ *7 *3 *8)
+ (-12 (-5 *5 (-690 (-225))) (-5 *6 (-112)) (-5 *7 (-690 (-567)))
+ (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-65 QPHESS))))
+ (-5 *3 (-567)) (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-754)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-567))) (-5 *2 (-645 (-690 (-567))))
+ (-5 *1 (-1112)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-363 *3)) (-4 *3 (-1102))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-567)) (-4 *1 (-388 *4)) (-4 *4 (-1102)) (-5 *2 (-772))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-567)) (-4 *2 (-23)) (-5 *1 (-650 *4 *2 *5))
+ (-4 *4 (-1102)) (-14 *5 *2))))
(((*1 *2 *2 *3)
(-12 (-5 *3 (-410 (-567))) (-4 *4 (-1040 (-567))) (-4 *4 (-559))
(-5 *1 (-32 *4 *2)) (-4 *2 (-433 *4))))
@@ -16742,10 +16805,10 @@
((*1 *1 *1 *2) (-12 (-4 *1 (-243)) (-5 *2 (-567))))
((*1 *2 *2 *3)
(-12 (-5 *3 (-410 (-567))) (-4 *4 (-365)) (-4 *4 (-38 *3))
- (-4 *5 (-1259 *4)) (-5 *1 (-279 *4 *5 *2)) (-4 *2 (-1230 *4 *5))))
+ (-4 *5 (-1260 *4)) (-5 *1 (-279 *4 *5 *2)) (-4 *2 (-1231 *4 *5))))
((*1 *2 *2 *3)
(-12 (-5 *3 (-410 (-567))) (-4 *4 (-365)) (-4 *4 (-38 *3))
- (-4 *5 (-1228 *4)) (-5 *1 (-280 *4 *5 *2 *6)) (-4 *2 (-1251 *4 *5))
+ (-4 *5 (-1229 *4)) (-5 *1 (-280 *4 *5 *2 *6)) (-4 *2 (-1252 *4 *5))
(-4 *6 (-985 *5))))
((*1 *1 *1 *1) (-4 *1 (-285)))
((*1 *1 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-363 *2)) (-4 *2 (-1102))))
@@ -16759,7 +16822,7 @@
(-12 (-5 *2 (-772)) (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851))
(-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1268 *4)) (-5 *3 (-567)) (-4 *4 (-351))
+ (-12 (-5 *2 (-1269 *4)) (-5 *3 (-567)) (-4 *4 (-351))
(-5 *1 (-531 *4))))
((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-539))))
((*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-539))))
@@ -16796,17 +16859,17 @@
(-12 (-5 *2 (-567)) (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *4 (-1051))
(-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4)) (-4 *4 (-365))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567))))
- (-5 *1 (-1163 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567))))
(-5 *1 (-1164 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1165 *3))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1259 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))))
+ (-12 (-4 *1 (-1260 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))))
(((*1 *2 *1) (-12 (-5 *2 (-1127 (-567) (-613 (-48)))) (-5 *1 (-48))))
((*1 *2 *1)
- (-12 (-4 *3 (-308)) (-4 *4 (-994 *3)) (-4 *5 (-1244 *4))
- (-5 *2 (-1268 *6)) (-5 *1 (-416 *3 *4 *5 *6))
+ (-12 (-4 *3 (-308)) (-4 *4 (-994 *3)) (-4 *5 (-1245 *4))
+ (-5 *2 (-1269 *6)) (-5 *1 (-416 *3 *4 *5 *6))
(-4 *6 (-13 (-412 *4 *5) (-1040 *4)))))
((*1 *2 *1)
(-12 (-4 *3 (-1051)) (-4 *3 (-1102)) (-5 *2 (-1127 *3 (-613 *1)))
@@ -16819,211 +16882,180 @@
(-12 (-4 *3 (-172)) (-4 *2 (-718 *3)) (-5 *1 (-663 *2 *3 *4))
(-4 *4 (|SubsetCategory| (-727) *3))))
((*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-559)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-928)))))
+(((*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-394)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))))
-(((*1 *1 *1) (-4 *1 (-548))))
-(((*1 *1 *1) (-5 *1 (-539))))
+ (-12 (-5 *3 (-1179)) (-5 *4 (-954 (-567))) (-5 *2 (-331))
+ (-5 *1 (-333)))))
+(((*1 *2 *3 *3 *1)
+ (-12 (-5 *3 (-509)) (-5 *2 (-692 (-1106))) (-5 *1 (-292)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1112)) (-5 *3 (-567)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1219)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-645 (-772))) (-5 *3 (-112)) (-5 *1 (-1167 *4 *5))
+ (-14 *4 (-923)) (-4 *5 (-1051)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1179)) (-5 *5 (-645 *3))
+ (-4 *3 (-13 (-27) (-1204) (-433 *6)))
+ (-4 *6 (-13 (-455) (-147) (-1040 (-567)) (-640 (-567))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-560 *6 *3)))))
(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4))
- (-4 *3 (-369 *4))))
- ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1218)))))
+ (-12 (-4 *4 (-1223)) (-4 *5 (-1245 *4)) (-4 *6 (-1245 (-410 *5)))
+ (-5 *2 (-772)) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3))
+ (-4 *5 (-1245 (-410 *4))) (-5 *2 (-772)))))
+(((*1 *2) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-23)))))
+(((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-328 *3)) (-4 *3 (-1219))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-772)) (-5 *1 (-519 *3 *4)) (-4 *3 (-1219))
+ (-14 *4 (-567)))))
+(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-875)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-690 (-410 (-567)))) (-5 *2 (-645 *4)) (-5 *1 (-780 *4))
- (-4 *4 (-13 (-365) (-849))))))
-(((*1 *2 *2 *1 *3 *4)
- (-12 (-5 *2 (-645 *8)) (-5 *3 (-1 *8 *8 *8))
- (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1211 *5 *6 *7 *8)) (-4 *5 (-559))
- (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-1067 *5 *6 *7)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-772)) (-5 *1 (-784 *2)) (-4 *2 (-38 (-410 (-567))))
- (-4 *2 (-172)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1174 *9)) (-5 *4 (-645 *7)) (-5 *5 (-645 *8))
- (-4 *7 (-851)) (-4 *8 (-1051)) (-4 *9 (-951 *8 *6 *7))
- (-4 *6 (-794)) (-5 *2 (-1174 *8)) (-5 *1 (-322 *6 *7 *8 *9)))))
-(((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *4 (-225))
+ (-12 (-5 *3 (-923)) (-5 *4 (-421 *6)) (-4 *6 (-1245 *5))
+ (-4 *5 (-1051)) (-5 *2 (-645 *6)) (-5 *1 (-447 *5 *6)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037))
+ (-5 *1 (-748)))))
+(((*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1274)) (-5 *1 (-394))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-394)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794))
+ (-4 *4 (-851))))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1212 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5)))))
+(((*1 *2) (-12 (-5 *2 (-906 (-567))) (-5 *1 (-919)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1095 *3)) (-4 *3 (-1219)) (-5 *2 (-567)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-645 (-484 *5 *6))) (-5 *4 (-865 *5))
+ (-14 *5 (-645 (-1179))) (-5 *2 (-484 *5 *6)) (-5 *1 (-632 *5 *6))
+ (-4 *6 (-455))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 (-484 *5 *6))) (-5 *4 (-865 *5))
+ (-14 *5 (-645 (-1179))) (-5 *2 (-484 *5 *6)) (-5 *1 (-632 *5 *6))
+ (-4 *6 (-455)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-559)) (-5 *2 (-772)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-420 *4)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-331)))))
+(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-5 *1 (-222 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1219)) (-4 *1 (-255 *3))))
+ ((*1 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1219)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 *7)) (-4 *7 (-851))
+ (-4 *8 (-951 *5 *6 *7)) (-4 *5 (-559)) (-4 *6 (-794))
(-5 *2
- (-2 (|:| |brans| (-645 (-645 (-945 *4))))
- (|:| |xValues| (-1096 *4)) (|:| |yValues| (-1096 *4))))
- (-5 *1 (-153)) (-5 *3 (-645 (-645 (-945 *4)))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-863)))))
-(((*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-394)))))
+ (-2 (|:| |particular| (-3 (-1269 (-410 *8)) "failed"))
+ (|:| -2144 (-645 (-1269 (-410 *8))))))
+ (-5 *1 (-670 *5 *6 *7 *8)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1244 *5)) (-4 *5 (-365))
- (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3)))
- (-5 *1 (-577 *5 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1273)) (-5 *1 (-381))))
- ((*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-381)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112))
- (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5))))
- ((*1 *2 *1) (-12 (-4 *1 (-723)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-727)) (-5 *2 (-112)))))
-(((*1 *2 *3) (-12 (-5 *3 (-410 (-567))) (-5 *2 (-225)) (-5 *1 (-306)))))
-(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-381)) (-5 *3 (-1160)) (-5 *1 (-97))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-381)) (-5 *3 (-1160)) (-5 *1 (-97)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1095 *3)) (-4 *3 (-1218)) (-5 *2 (-567)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-645 (-1178))) (-4 *5 (-455))
- (-5 *2 (-484 *4 *5)) (-5 *1 (-632 *4 *5)))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1283 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172))
- (-5 *1 (-665 *3 *4))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-665 *3 *4)) (-5 *1 (-1288 *3 *4))
- (-4 *3 (-851)) (-4 *4 (-172)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1174 *4)) (-4 *4 (-351)) (-5 *2 (-112))
- (-5 *1 (-359 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1268 *4)) (-4 *4 (-351)) (-5 *2 (-112))
- (-5 *1 (-531 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-654 (-410 *2))) (-4 *2 (-1244 *4)) (-5 *1 (-811 *4 *2))
- (-4 *4 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567)))))))
+ (-12 (-5 *3 (-690 *1)) (-5 *4 (-1269 *1)) (-4 *1 (-640 *5))
+ (-4 *5 (-1051))
+ (-5 *2 (-2 (|:| -4208 (-690 *5)) (|:| |vec| (-1269 *5))))))
((*1 *2 *3)
- (-12 (-5 *3 (-655 *2 (-410 *2))) (-4 *2 (-1244 *4))
- (-5 *1 (-811 *4 *2))
- (-4 *4 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))))))
-(((*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1273)) (-5 *1 (-394))))
- ((*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-1273)) (-5 *1 (-394)))))
-(((*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-559)) (-4 *2 (-548))))
- ((*1 *1 *1) (-4 *1 (-1062))))
+ (-12 (-5 *3 (-690 *1)) (-4 *1 (-640 *4)) (-4 *4 (-1051))
+ (-5 *2 (-690 *4)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-645 (-410 (-954 (-567))))) (-5 *4 (-645 (-1179)))
+ (-5 *2 (-645 (-645 *5))) (-5 *1 (-382 *5))
+ (-4 *5 (-13 (-849) (-365)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-410 (-954 (-567)))) (-5 *2 (-645 *4)) (-5 *1 (-382 *4))
+ (-4 *4 (-13 (-849) (-365))))))
(((*1 *2)
- (-12 (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-911))
- (-5 *1 (-460 *3 *4 *2 *5)) (-4 *5 (-951 *2 *3 *4))))
+ (|partial| -12 (-4 *3 (-559)) (-4 *3 (-172))
+ (-5 *2 (-2 (|:| |particular| *1) (|:| -2144 (-645 *1))))
+ (-4 *1 (-369 *3))))
((*1 *2)
- (-12 (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-911))
- (-5 *1 (-908 *2 *3 *4 *5)) (-4 *5 (-951 *2 *3 *4))))
- ((*1 *2) (-12 (-4 *2 (-911)) (-5 *1 (-909 *2 *3)) (-4 *3 (-1244 *2)))))
-(((*1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1271))))
- ((*1 *2 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1271)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1218)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1102)) (-5 *2 (-1160)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2))
- (-4 *4 (-375 *2)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-433 *3) (-1004))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-645 (-2 (|:| |k| (-1178)) (|:| |c| (-1290 *3)))))
- (-5 *1 (-1290 *3)) (-4 *3 (-1051))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-645 (-2 (|:| |k| *3) (|:| |c| (-1292 *3 *4)))))
- (-5 *1 (-1292 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1160)) (-5 *2 (-645 (-1183))) (-5 *1 (-882)))))
-(((*1 *1 *1) (-5 *1 (-1065))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
- (-4 *3 (-1067 *5 *6 *7))
- (-5 *2 (-645 (-2 (|:| |val| (-112)) (|:| -2566 *4))))
- (-5 *1 (-777 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))))
+ (|partial| -12
+ (-5 *2
+ (-2 (|:| |particular| (-456 *3 *4 *5 *6))
+ (|:| -2144 (-645 (-456 *3 *4 *5 *6)))))
+ (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-923))
+ (-14 *5 (-645 (-1179))) (-14 *6 (-1269 (-690 *3))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-1161)) (-5 *3 (-567)) (-5 *1 (-241)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-645 (-907 *3))) (-5 *1 (-906 *3)) (-4 *3 (-1102)))))
-(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1178)) (-5 *6 (-645 (-613 *3)))
- (-5 *5 (-613 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *7)))
- (-4 *7 (-13 (-455) (-147) (-1040 (-567)) (-640 (-567))))
- (-5 *2 (-2 (|:| -1752 *3) (|:| |coeff| *3)))
- (-5 *1 (-560 *7 *3)))))
-(((*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-1178)))))
-(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4)
- (-12 (-5 *3 (-1160)) (-5 *4 (-567)) (-5 *5 (-690 (-225)))
- (-5 *6 (-225)) (-5 *2 (-1037)) (-5 *1 (-753)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1174 (-410 (-567)))) (-5 *1 (-944)) (-5 *3 (-567)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1218)))))
-(((*1 *2 *1) (-12 (-4 *1 (-675 *3)) (-4 *3 (-1218)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1222)) (-4 *3 (-1244 *4))
- (-4 *5 (-1244 (-410 *3))) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3))
- (-4 *5 (-1244 (-410 *4))) (-5 *2 (-112)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-645 (-2 (|:| -1795 (-1178)) (|:| -4237 (-440)))))
- (-5 *1 (-1182)))))
-(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1270))))
- ((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1270)))))
-(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-365)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3))
- (-5 *1 (-524 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-559)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4))
- (-4 *7 (-994 *4)) (-4 *2 (-688 *7 *8 *9))
- (-5 *1 (-525 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-688 *4 *5 *6))
- (-4 *8 (-375 *7)) (-4 *9 (-375 *7))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051))
- (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (-4 *2 (-365))))
- ((*1 *2 *2)
- (|partial| -12 (-4 *3 (-365)) (-4 *3 (-172)) (-4 *4 (-375 *3))
- (-4 *5 (-375 *3)) (-5 *1 (-689 *3 *4 *5 *2))
- (-4 *2 (-688 *3 *4 *5))))
- ((*1 *1 *1)
- (|partial| -12 (-5 *1 (-690 *2)) (-4 *2 (-365)) (-4 *2 (-1051))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-1125 *2 *3 *4 *5)) (-4 *3 (-1051))
- (-4 *4 (-238 *2 *3)) (-4 *5 (-238 *2 *3)) (-4 *3 (-365))))
- ((*1 *2 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-851)) (-5 *1 (-1189 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1102)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1218)) (-5 *2 (-112)))))
+ (-12 (-5 *2 (-2 (|:| |preimage| (-645 *3)) (|:| |image| (-645 *3))))
+ (-5 *1 (-907 *3)) (-4 *3 (-1102)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-557 *3)) (-4 *3 (-13 (-407) (-1204))) (-5 *2 (-112)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-772)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1051))
- (-14 *4 (-645 (-1178)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-772)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1051) (-851)))
- (-14 *4 (-645 (-1178)))))
- ((*1 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-370)) (-4 *2 (-365))))
+ (-12 (-5 *2 (-645 (-2 (|:| -1809 (-1179)) (|:| -4236 (-440)))))
+ (-5 *1 (-1183)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-281))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1102))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-337 *3 *4 *5 *2)) (-4 *3 (-365))
- (-4 *4 (-1244 *3)) (-4 *5 (-1244 (-410 *4)))
- (-4 *2 (-344 *3 *4 *5))))
- ((*1 *1 *2)
+ (-12 (-4 *1 (-1286 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051))
+ (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1292 *3 *4)) (-4 *3 (-1051))
+ (-4 *4 (-847)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-225)) (-5 *3 (-772)) (-5 *1 (-226))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-169 (-225))) (-5 *3 (-772)) (-5 *1 (-226))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1141))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1073 *3 *4 *5 *6)) (-4 *3 (-455)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1073 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794))
+ (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-14 *4 (-772)) (-4 *5 (-1219)) (-5 *2 (-134))
+ (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *4 (-365)) (-5 *2 (-134)) (-5 *1 (-329 *3 *4))
+ (-4 *3 (-330 *4))))
+ ((*1 *2)
(-12 (-5 *2 (-772)) (-5 *1 (-393 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
(-4 *5 (-172))))
- ((*1 *1) (-12 (-4 *2 (-172)) (-4 *1 (-725 *2 *3)) (-4 *3 (-1244 *2)))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-567))
+ (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-645 *6)) (-4 *6 (-851)) (-4 *4 (-365)) (-4 *5 (-794))
+ (-5 *2 (-567)) (-5 *1 (-507 *4 *5 *6 *7)) (-4 *7 (-951 *4 *5 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-982 *3)) (-4 *3 (-1051)) (-5 *2 (-923))))
+ ((*1 *2) (-12 (-4 *1 (-1276 *3)) (-4 *3 (-365)) (-5 *2 (-134)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-690 (-410 (-954 (-567))))) (-5 *2 (-645 (-317 (-567))))
+ (-5 *1 (-1033)))))
+(((*1 *2 *3 *4 *4 *5 *4 *4 *5)
+ (-12 (-5 *3 (-1161)) (-5 *4 (-567)) (-5 *5 (-690 (-225)))
+ (-5 *2 (-1037)) (-5 *1 (-758)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-645 *1)) (-4 *1 (-1136 *3)) (-4 *3 (-1051))))
+ ((*1 *2 *2 *1)
+ (|partial| -12 (-5 *2 (-410 *1)) (-4 *1 (-1245 *3)) (-4 *3 (-1051))
+ (-4 *3 (-559))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-4 *1 (-1245 *2)) (-4 *2 (-1051)) (-4 *2 (-559)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1219)))))
+(((*1 *2 *2 *2)
+ (|partial| -12 (-4 *3 (-365)) (-5 *1 (-898 *2 *3))
+ (-4 *2 (-1245 *3)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1241 *5 *4)) (-4 *4 (-821)) (-14 *5 (-1178))
- (-5 *2 (-567)) (-5 *1 (-1116 *4 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-645 *5)) (-5 *4 (-923)) (-4 *5 (-851))
- (-5 *2 (-59 (-645 (-673 *5)))) (-5 *1 (-673 *5)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-567)) (|has| *1 (-6 -4419)) (-4 *1 (-375 *3))
- (-4 *3 (-1218)))))
-(((*1 *1 *1)
- (-12 (|has| *1 (-6 -4419)) (-4 *1 (-375 *2)) (-4 *2 (-1218))
- (-4 *2 (-851))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4419))
- (-4 *1 (-375 *3)) (-4 *3 (-1218)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-690 (-169 (-410 (-567)))))
- (-5 *2
- (-645
- (-2 (|:| |outval| (-169 *4)) (|:| |outmult| (-567))
- (|:| |outvect| (-645 (-690 (-169 *4)))))))
- (-5 *1 (-765 *4)) (-4 *4 (-13 (-365) (-849))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))))
+ (-12
+ (-5 *3
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-772)) (|:| |poli| *7)
+ (|:| |polj| *7)))
+ (-4 *5 (-794)) (-4 *7 (-951 *4 *5 *6)) (-4 *4 (-455)) (-4 *6 (-851))
+ (-5 *2 (-112)) (-5 *1 (-452 *4 *5 *6 *7)))))
(((*1 *2 *1)
(-12
(-5 *2
(-645
- (-2 (|:| |var| (-1178)) (|:| |fn| (-317 (-225)))
- (|:| -1604 (-1096 (-844 (-225)))) (|:| |abserr| (-225))
+ (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225)))
+ (|:| -2408 (-1096 (-844 (-225)))) (|:| |abserr| (-225))
(|:| |relerr| (-225)))))
(-5 *1 (-562))))
((*1 *2 *1)
@@ -17034,146 +17066,205 @@
(-5 *2
(-645
(-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
- (|:| |fn| (-1268 (-317 (-225)))) (|:| |yinit| (-645 (-225)))
+ (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225)))
(|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225)))
(|:| |abserr| (-225)) (|:| |relerr| (-225)))))
(-5 *1 (-804)))))
-(((*1 *2 *2 *2 *3 *3)
- (-12 (-5 *3 (-772)) (-4 *4 (-1051)) (-5 *1 (-1240 *4 *2))
- (-4 *2 (-1244 *4)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-645 *3)) (-4 *3 (-851)) (-5 *1 (-740 *3)))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-690 *2)) (-5 *4 (-772))
- (-4 *2 (-13 (-308) (-10 -8 (-15 -2908 ((-421 $) $)))))
- (-4 *5 (-1244 *2)) (-5 *1 (-502 *2 *5 *6)) (-4 *6 (-412 *2 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-351)) (-5 *2 (-112)) (-5 *1 (-216 *4 *3))
+ (-4 *3 (-1245 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-690 (-317 (-567)))) (-5 *1 (-1033)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-483)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-5 *1 (-1163 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1261 *2 *3 *4)) (-4 *2 (-1051)) (-14 *3 (-1179))
+ (-14 *4 *2))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1004))))))
(((*1 *1 *2)
- (-12 (-5 *2 (-410 *4)) (-4 *4 (-1244 *3)) (-4 *3 (-13 (-365) (-147)))
- (-5 *1 (-402 *3 *4)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1087)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1268 *4)) (-5 *3 (-567)) (-4 *4 (-351))
- (-5 *1 (-531 *4)))))
-(((*1 *2 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-567)) (-5 *4 (-1160)) (-5 *5 (-690 (-225)))
- (-5 *2 (-1037)) (-5 *1 (-748)))))
-(((*1 *1) (-5 *1 (-292))))
+ (-12 (-5 *2 (-772)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1051))
+ (-14 *4 (-645 (-1179)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-772)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1051) (-851)))
+ (-14 *4 (-645 (-1179)))))
+ ((*1 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-370)) (-4 *2 (-365))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-337 *3 *4 *5 *2)) (-4 *3 (-365))
+ (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4)))
+ (-4 *2 (-344 *3 *4 *5))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-772)) (-5 *1 (-393 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
+ (-4 *5 (-172))))
+ ((*1 *1) (-12 (-4 *2 (-172)) (-4 *1 (-725 *2 *3)) (-4 *3 (-1245 *2)))))
(((*1 *2 *1)
- (-12
- (-5 *2
- (-645
- (-2 (|:| |scalar| (-410 (-567))) (|:| |coeff| (-1174 *3))
- (|:| |logand| (-1174 *3)))))
- (-5 *1 (-588 *3)) (-4 *3 (-365)))))
+ (-12 (-5 *2 (-863)) (-5 *1 (-393 *3 *4 *5)) (-14 *3 (-772))
+ (-14 *4 (-772)) (-4 *5 (-172)))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225))
+ (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-78 FUNCTN))))
+ (-5 *2 (-1037)) (-5 *1 (-749)))))
+(((*1 *2 *3) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-564)) (-5 *3 (-567))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1175 (-410 (-567)))) (-5 *1 (-944)) (-5 *3 (-567)))))
+(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6)
+ (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225)))
+ (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-70 APROD)))) (-5 *4 (-225))
+ (-5 *2 (-1037)) (-5 *1 (-757)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-645 (-954 *3))) (-4 *3 (-455))
+ (-5 *1 (-362 *3 *4)) (-14 *4 (-645 (-1179)))))
+ ((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-645 (-781 *3 (-865 *4)))) (-4 *3 (-455))
+ (-14 *4 (-645 (-1179))) (-5 *1 (-629 *3 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-331)))))
(((*1 *2)
- (-12 (-4 *4 (-1222)) (-4 *5 (-1244 *4)) (-4 *6 (-1244 (-410 *5)))
- (-5 *2 (-645 (-645 *4))) (-5 *1 (-343 *3 *4 *5 *6))
- (-4 *3 (-344 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3))
- (-4 *5 (-1244 (-410 *4))) (-4 *3 (-370)) (-5 *2 (-645 (-645 *3))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-567)) (-5 *1 (-697 *2)) (-4 *2 (-1244 *3)))))
-(((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
-(((*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1160)) (-5 *1 (-711)))))
-(((*1 *2 *2 *3 *3 *4)
- (-12 (-5 *4 (-772)) (-4 *3 (-559)) (-5 *1 (-971 *3 *2))
- (-4 *2 (-1244 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-645 (-52))) (-5 *1 (-894 *3)) (-4 *3 (-1102)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-772)) (-5 *2 (-112)) (-5 *1 (-589 *3)) (-4 *3 (-548)))))
+ (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3))
+ (-4 *5 (-1245 (-410 *4))) (-5 *2 (-690 (-410 *4))))))
+(((*1 *1 *2) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-217)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-1142 *2 *3)) (-4 *2 (-13 (-1102) (-34)))
+ (-4 *3 (-13 (-1102) (-34))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-645 (-690 *4))) (-5 *2 (-690 *4)) (-4 *4 (-1051))
+ (-5 *1 (-1031 *4)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -3554 *3) (|:| |coef2| (-783 *3))))
+ (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1051)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1219)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-52)) (-5 *1 (-830)))))
+(((*1 *1) (-5 *1 (-144))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-954 (-169 *4))) (-4 *4 (-172))
+ (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-954 (-169 *5))) (-5 *4 (-923)) (-4 *5 (-172))
+ (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-954 *4)) (-4 *4 (-1051))
+ (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-954 *5)) (-5 *4 (-923)) (-4 *5 (-1051))
+ (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-410 (-954 *4))) (-4 *4 (-559))
+ (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-923)) (-4 *5 (-559))
+ (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-410 (-954 (-169 *4)))) (-4 *4 (-559))
+ (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-410 (-954 (-169 *5)))) (-5 *4 (-923))
+ (-4 *5 (-559)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381)))
+ (-5 *1 (-786 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-317 *4)) (-4 *4 (-559)) (-4 *4 (-851))
+ (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-317 *5)) (-5 *4 (-923)) (-4 *5 (-559))
+ (-4 *5 (-851)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381)))
+ (-5 *1 (-786 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-317 (-169 *4))) (-4 *4 (-559)) (-4 *4 (-851))
+ (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-317 (-169 *5))) (-5 *4 (-923)) (-4 *5 (-559))
+ (-4 *5 (-851)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381)))
+ (-5 *1 (-786 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-645 (-690 *5))) (-5 *4 (-1268 *5)) (-4 *5 (-308))
- (-4 *5 (-1051)) (-5 *2 (-690 *5)) (-5 *1 (-1031 *5)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-645 *6)) (-4 *6 (-951 *3 *4 *5)) (-4 *3 (-455))
- (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-452 *3 *4 *5 *6)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-645 (-567))) (-5 *3 (-690 (-567))) (-5 *1 (-1112)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-331)))))
-(((*1 *2) (-12 (-5 *2 (-1273)) (-5 *1 (-562)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-233)) (-4 *3 (-1051)) (-4 *4 (-851)) (-4 *5 (-267 *4))
- (-4 *6 (-794)) (-5 *2 (-1 *1 (-772))) (-4 *1 (-254 *3 *4 *5 *6))))
+ (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))))
+(((*1 *2 *2) (-12 (-5 *2 (-690 *3)) (-4 *3 (-308)) (-5 *1 (-701 *3)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-613 *3)) (-4 *3 (-13 (-433 *5) (-27) (-1204)))
+ (-4 *5 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567))))
+ (-5 *2 (-588 *3)) (-5 *1 (-569 *5 *3 *6)) (-4 *6 (-1102)))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6)
+ (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *5 (-225))
+ (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1037))
+ (-5 *1 (-750)))))
+(((*1 *2) (-12 (-5 *2 (-1149 (-1161))) (-5 *1 (-394)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 (-645 *5))) (-4 *5 (-1260 *4))
+ (-4 *4 (-38 (-410 (-567))))
+ (-5 *2 (-1 (-1159 *4) (-645 (-1159 *4)))) (-5 *1 (-1262 *4 *5)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-645 *6)) (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051))
+ (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5))
+ (-4 *3 (-559)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-1274))
+ (-5 *1 (-452 *4 *5 *6 *3)) (-4 *3 (-951 *4 *5 *6)))))
+(((*1 *2 *3 *3 *3 *3)
+ (-12 (-4 *4 (-455)) (-4 *3 (-794)) (-4 *5 (-851)) (-5 *2 (-112))
+ (-5 *1 (-452 *4 *3 *5 *6)) (-4 *6 (-951 *4 *3 *5)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1051)) (-4 *2 (-559)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-911)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *7 (-951 *4 *5 *6)) (-5 *2 (-421 (-1175 *7)))
+ (-5 *1 (-908 *4 *5 *6 *7)) (-5 *3 (-1175 *7))))
((*1 *2 *3)
- (-12 (-4 *4 (-1051)) (-4 *3 (-851)) (-4 *5 (-267 *3)) (-4 *6 (-794))
- (-5 *2 (-1 *1 (-772))) (-4 *1 (-254 *4 *3 *5 *6))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-267 *2)) (-4 *2 (-851)))))
+ (-12 (-4 *4 (-911)) (-4 *5 (-1245 *4)) (-5 *2 (-421 (-1175 *5)))
+ (-5 *1 (-909 *4 *5)) (-5 *3 (-1175 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-303))))
+ ((*1 *1 *1) (-4 *1 (-303))) ((*1 *1 *1) (-5 *1 (-863))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1175 *1)) (-4 *1 (-1014)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-421 *2)) (-4 *2 (-559)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381))
+ (-5 *2
+ (-2 (|:| -3812 *4) (|:| -2069 *4) (|:| |totalpts| (-567))
+ (|:| |success| (-112))))
+ (-5 *1 (-790)) (-5 *5 (-567)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851))
- (-4 *6 (-1067 *3 *4 *5)) (-5 *1 (-625 *3 *4 *5 *6 *7 *2))
- (-4 *7 (-1073 *3 *4 *5 *6)) (-4 *2 (-1111 *3 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-863)))))
+ (-12 (-4 *2 (-172)) (-4 *2 (-1051)) (-5 *1 (-715 *2 *3))
+ (-4 *3 (-649 *2))))
+ ((*1 *2 *2) (-12 (-5 *1 (-837 *2)) (-4 *2 (-172)) (-4 *2 (-1051)))))
(((*1 *1 *1) (-12 (-5 *1 (-503 *2)) (-14 *2 (-567))))
((*1 *1 *1) (-5 *1 (-1122))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-281)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-410 (-954 *3))) (-5 *1 (-456 *3 *4 *5 *6))
- (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923))
- (-14 *5 (-645 (-1178))) (-14 *6 (-1268 (-690 *3))))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-175)))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-114)) (-5 *4 (-772))
- (-4 *5 (-13 (-455) (-1040 (-567)))) (-4 *5 (-559))
- (-5 *1 (-41 *5 *2)) (-4 *2 (-433 *5))
- (-4 *2
- (-13 (-365) (-303)
- (-10 -8 (-15 -1448 ((-1127 *5 (-613 $)) $))
- (-15 -1460 ((-1127 *5 (-613 $)) $))
- (-15 -4132 ($ (-1127 *5 (-613 $))))))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-649 *3)) (-4 *3 (-1051))
- (-5 *1 (-715 *3 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1051)) (-5 *1 (-837 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-645 *6)) (-5 *4 (-645 (-1178))) (-4 *6 (-365))
- (-5 *2 (-645 (-295 (-954 *6)))) (-5 *1 (-541 *5 *6 *7))
- (-4 *5 (-455)) (-4 *7 (-13 (-365) (-849))))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794))
- (-4 *4 (-851)))))
-(((*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-448 *3)) (-4 *3 (-1051)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-945 *4)) (-4 *4 (-1051)) (-5 *1 (-1166 *3 *4))
- (-14 *3 (-923)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-421 *2)) (-4 *2 (-559)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-503 *2)) (-14 *2 (-567))))
- ((*1 *1 *1 *1) (-5 *1 (-1122))))
(((*1 *1)
- (-12 (-4 *1 (-407)) (-1657 (|has| *1 (-6 -4409)))
- (-1657 (|has| *1 (-6 -4401)))))
+ (-12 (-4 *1 (-407)) (-1673 (|has| *1 (-6 -4413)))
+ (-1673 (|has| *1 (-6 -4405)))))
((*1 *2 *1) (-12 (-4 *1 (-428 *2)) (-4 *2 (-1102)) (-4 *2 (-851))))
((*1 *2 *1) (-12 (-4 *1 (-831 *2)) (-4 *2 (-851))))
((*1 *1) (-4 *1 (-845))) ((*1 *1 *1 *1) (-4 *1 (-851))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-772)) (-5 *3 (-945 *4)) (-4 *1 (-1136 *4))
- (-4 *4 (-1051))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-772)) (-5 *4 (-945 (-225))) (-5 *2 (-1273))
- (-5 *1 (-1270)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-157)) (-5 *2 (-1273)) (-5 *1 (-1270)))))
-(((*1 *1) (-5 *1 (-331))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1167 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1051)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851))
+ (-5 *1 (-452 *3 *4 *5 *2)) (-4 *2 (-951 *3 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1223)) (-4 *3 (-1245 *4))
+ (-4 *5 (-1245 (-410 *3))) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3))
+ (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1037)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-1178))
- (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-317 *5)))
- (-5 *1 (-1131 *5))))
+ (-12 (-5 *4 (-1 (-645 *5) *6))
+ (-4 *5 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *6 (-1245 *5))
+ (-5 *2 (-645 (-2 (|:| |poly| *6) (|:| -3855 *3))))
+ (-5 *1 (-810 *5 *6 *3 *7)) (-4 *3 (-657 *6))
+ (-4 *7 (-657 (-410 *6)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-645 (-410 (-954 *5)))) (-5 *4 (-645 (-1178)))
- (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-645 (-317 *5))))
- (-5 *1 (-1131 *5)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1203)))))
+ (-12 (-5 *4 (-1 (-645 *5) *6))
+ (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567)))))
+ (-4 *6 (-1245 *5))
+ (-5 *2 (-645 (-2 (|:| |poly| *6) (|:| -3855 (-655 *6 (-410 *6))))))
+ (-5 *1 (-813 *5 *6)) (-5 *3 (-655 *6 (-410 *6))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-923)) (-5 *2 (-1174 *4)) (-5 *1 (-359 *4))
+ (-12 (-5 *3 (-923)) (-5 *2 (-1175 *4)) (-5 *1 (-359 *4))
(-4 *4 (-351))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-923)) (-5 *2 (-1174 *4)) (-5 *1 (-359 *4))
+ (-12 (-5 *3 (-923)) (-5 *2 (-1175 *4)) (-5 *1 (-359 *4))
(-4 *4 (-351))))
((*1 *1) (-4 *1 (-370)))
((*1 *2 *3)
- (-12 (-5 *3 (-923)) (-5 *2 (-1268 *4)) (-5 *1 (-531 *4))
+ (-12 (-5 *3 (-923)) (-5 *2 (-1269 *4)) (-5 *1 (-531 *4))
(-4 *4 (-351))))
((*1 *1 *1) (-4 *1 (-548))) ((*1 *1) (-4 *1 (-548)))
((*1 *1 *1) (-5 *1 (-772)))
@@ -17182,1119 +17273,1035 @@
(-12 (-5 *3 (-567)) (-5 *2 (-907 *4)) (-5 *1 (-906 *4))
(-4 *4 (-1102))))
((*1 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-548)) (-4 *2 (-559)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-13 (-1040 (-567)) (-640 (-567)) (-455)))
- (-5 *2 (-844 *4)) (-5 *1 (-314 *3 *4 *5 *6))
- (-4 *4 (-13 (-27) (-1203) (-433 *3))) (-14 *5 (-1178))
- (-14 *6 *4)))
- ((*1 *2 *1)
- (|partial| -12 (-4 *3 (-13 (-1040 (-567)) (-640 (-567)) (-455)))
- (-5 *2 (-844 *4)) (-5 *1 (-1254 *3 *4 *5 *6))
- (-4 *4 (-13 (-27) (-1203) (-433 *3))) (-14 *5 (-1178))
- (-14 *6 *4))))
-(((*1 *2 *3)
- (-12 (-4 *3 (-1244 *2)) (-4 *2 (-1244 *4)) (-5 *1 (-987 *4 *2 *3 *5))
- (-4 *4 (-351)) (-4 *5 (-725 *2 *3)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-923)) (-5 *2 (-1273)) (-5 *1 (-214 *4))
- (-4 *4
- (-13 (-851)
- (-10 -8 (-15 -1787 ((-1160) $ (-1178))) (-15 -4022 (*2 $))
- (-15 -1345 (*2 $)))))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1273)) (-5 *1 (-214 *3))
- (-4 *3
- (-13 (-851)
- (-10 -8 (-15 -1787 ((-1160) $ (-1178))) (-15 -4022 (*2 $))
- (-15 -1345 (*2 $)))))))
- ((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-505)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-683 *2)) (-4 *2 (-1102))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-645 *5) (-645 *5))) (-5 *4 (-567))
- (-5 *2 (-645 *5)) (-5 *1 (-683 *5)) (-4 *5 (-1102)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1158 *4)) (-5 *3 (-567)) (-4 *4 (-1051))
- (-5 *1 (-1162 *4))))
- ((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-567)) (-5 *1 (-1260 *3 *4 *5)) (-4 *3 (-1051))
- (-14 *4 (-1178)) (-14 *5 *3))))
-(((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-823)))))
+(((*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-421 *2)) (-4 *2 (-559)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1179))
+ (-4 *5 (-13 (-559) (-1040 (-567)) (-640 (-567))))
+ (-5 *2
+ (-2 (|:| |func| *3) (|:| |kers| (-645 (-613 *3)))
+ (|:| |vals| (-645 *3))))
+ (-5 *1 (-278 *5 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *5))))))
+(((*1 *2)
+ (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-420 *3)))))
(((*1 *1 *1 *1) (-12 (-5 *1 (-503 *2)) (-14 *2 (-567))))
((*1 *1 *1 *1) (-5 *1 (-1122))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-645 (-2 (|:| |val| (-645 *6)) (|:| -2575 *7))))
+ (-4 *6 (-1067 *3 *4 *5)) (-4 *7 (-1073 *3 *4 *5 *6)) (-4 *3 (-455))
+ (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-990 *3 *4 *5 *6 *7))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-645 (-2 (|:| |val| (-645 *6)) (|:| -2575 *7))))
+ (-4 *6 (-1067 *3 *4 *5)) (-4 *7 (-1073 *3 *4 *5 *6)) (-4 *3 (-455))
+ (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-1109 *3 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))))
+(((*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-1227))))))
+(((*1 *1) (-5 *1 (-331))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-532)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4423)) (-4 *1 (-244 *2)) (-4 *2 (-1219)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 (-410 (-954 *5)))) (-5 *4 (-645 (-1179)))
+ (-4 *5 (-559)) (-5 *2 (-645 (-645 (-954 *5)))) (-5 *1 (-1188 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-822)) (-5 *2 (-52)) (-5 *1 (-832)))))
+(((*1 *1 *1) (-4 *1 (-143)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-158 *3 *2)) (-4 *2 (-433 *3))))
+ ((*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 (-1269 *5))) (-5 *4 (-567)) (-5 *2 (-1269 *5))
+ (-5 *1 (-1031 *5)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1051)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-772)) (-4 *1 (-1245 *3)) (-4 *3 (-1051))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-923)) (-4 *1 (-1247 *3 *4)) (-4 *3 (-1051))
+ (-4 *4 (-793))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-410 (-567))) (-4 *1 (-1250 *3)) (-4 *3 (-1051)))))
+(((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1274)) (-5 *1 (-381))))
+ ((*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-381)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-503 *2)) (-14 *2 (-567))))
+ ((*1 *1 *1 *1) (-5 *1 (-1122))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))))
(((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-645 (-1160))) (-5 *2 (-1160)) (-5 *1 (-1269))))
- ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-1269))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-1269))))
+ (-12 (-5 *3 (-645 (-1161))) (-5 *2 (-1161)) (-5 *1 (-1270))))
+ ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-1270))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-1270))))
((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-645 (-1160))) (-5 *2 (-1160)) (-5 *1 (-1270))))
- ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-1270))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1160)) (-5 *1 (-1270)))))
+ (-12 (-5 *3 (-645 (-1161))) (-5 *2 (-1161)) (-5 *1 (-1271))))
+ ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-1271))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-1271)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-1102)) (-5 *1 (-907 *3)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-13 (-1040 (-567)) (-640 (-567)) (-455)))
- (-5 *2
- (-2
- (|:| |%term|
- (-2 (|:| |%coef| (-1253 *4 *5 *6))
- (|:| |%expon| (-320 *4 *5 *6))
- (|:| |%expTerms|
- (-645 (-2 (|:| |k| (-410 (-567))) (|:| |c| *4))))))
- (|:| |%type| (-1160))))
- (-5 *1 (-1254 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1203) (-433 *3)))
- (-14 *5 (-1178)) (-14 *6 *4))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1178)) (-5 *2 (-1 (-225) (-225))) (-5 *1 (-704 *3))
- (-4 *3 (-615 (-539)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1178)) (-5 *2 (-1 (-225) (-225) (-225)))
- (-5 *1 (-704 *3)) (-4 *3 (-615 (-539))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-567)) (-4 *2 (-433 *3)) (-5 *1 (-32 *3 *2))
- (-4 *3 (-1040 *4)) (-4 *3 (-559)))))
-(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-13 (-559) (-147))) (-5 *1 (-1238 *3 *2))
- (-4 *2 (-1244 *3)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1178)) (-5 *5 (-1096 (-225))) (-5 *2 (-929))
- (-5 *1 (-927 *3)) (-4 *3 (-615 (-539)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1178)) (-5 *2 (-929)) (-5 *1 (-927 *3))
- (-4 *3 (-615 (-539)))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-929))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1096 (-225)))
- (-5 *1 (-929)))))
-(((*1 *1 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-303))))
- ((*1 *1 *1) (-4 *1 (-303))) ((*1 *1 *1) (-5 *1 (-863))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-567)) (-5 *3 (-772)) (-5 *1 (-564)))))
+ (-12 (-5 *2 (-1159 (-410 *3))) (-5 *1 (-174 *3)) (-4 *3 (-308)))))
+(((*1 *1 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-308)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-559)) (-4 *2 (-13 (-433 *4) (-1004) (-1203)))
- (-5 *1 (-601 *4 *2 *3))
- (-4 *3 (-13 (-433 (-169 *4)) (-1004) (-1203))))))
+ (-12 (-5 *3 (-317 *4)) (-4 *4 (-13 (-829) (-1051))) (-5 *2 (-1161))
+ (-5 *1 (-827 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-317 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-829) (-1051)))
+ (-5 *2 (-1161)) (-5 *1 (-827 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-823)) (-5 *4 (-317 *5)) (-4 *5 (-13 (-829) (-1051)))
+ (-5 *2 (-1274)) (-5 *1 (-827 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-823)) (-5 *4 (-317 *6)) (-5 *5 (-112))
+ (-4 *6 (-13 (-829) (-1051))) (-5 *2 (-1274)) (-5 *1 (-827 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-829)) (-5 *2 (-1161))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-829)) (-5 *3 (-112)) (-5 *2 (-1161))))
+ ((*1 *2 *3 *1) (-12 (-4 *1 (-829)) (-5 *3 (-823)) (-5 *2 (-1274))))
+ ((*1 *2 *3 *1 *4)
+ (-12 (-4 *1 (-829)) (-5 *3 (-823)) (-5 *4 (-112)) (-5 *2 (-1274)))))
(((*1 *2)
- (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1222)) (-4 *4 (-1244 *3))
- (-4 *5 (-1244 (-410 *4))) (-5 *2 (-112)))))
+ (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3))
+ (-4 *5 (-1245 (-410 *4))) (-5 *2 (-690 (-410 *4))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-772)) (-5 *2 (-1273)) (-5 *1 (-867 *4 *5 *6 *7))
- (-4 *4 (-1051)) (-14 *5 (-645 (-1178))) (-14 *6 (-645 *3))
- (-14 *7 *3)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-772)) (-4 *4 (-1051)) (-4 *5 (-851)) (-4 *6 (-794))
- (-14 *8 (-645 *5)) (-5 *2 (-1273))
- (-5 *1 (-1280 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-951 *4 *6 *5))
- (-14 *9 (-645 *3)) (-14 *10 *3))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3)
- (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037))
- (-5 *1 (-753)))))
-(((*1 *1 *2 *3 *4)
- (-12
- (-5 *3
- (-645
- (-2 (|:| |scalar| (-410 (-567))) (|:| |coeff| (-1174 *2))
- (|:| |logand| (-1174 *2)))))
- (-5 *4 (-645 (-2 (|:| |integrand| *2) (|:| |intvar| *2))))
- (-4 *2 (-365)) (-5 *1 (-588 *2)))))
+ (-12 (-5 *2 (-1181 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-559) (-1040 (-567)))) (-5 *2 (-169 (-317 *4)))
- (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1203) (-433 (-169 *4))))))
+ (-12 (-5 *3 (-410 (-954 *4))) (-4 *4 (-308))
+ (-5 *2 (-410 (-421 (-954 *4)))) (-5 *1 (-1044 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-1223)) (-4 *5 (-1245 *4))
+ (-5 *2
+ (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-410 *5))
+ (|:| |c2| (-410 *5)) (|:| |deg| (-772))))
+ (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1245 (-410 *5))))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))))
+(((*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-906 (-567))) (-5 *1 (-919))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567))))
- (-5 *2 (-169 *3)) (-5 *1 (-1207 *4 *3))
- (-4 *3 (-13 (-27) (-1203) (-433 *4))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1211 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794))
- (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1211 *4 *5 *6 *3)) (-4 *4 (-559)) (-4 *5 (-794))
- (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-112)))))
+ (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919)))))
(((*1 *2 *3)
- (-12 (|has| *6 (-6 -4419)) (-4 *4 (-365)) (-4 *5 (-375 *4))
- (-4 *6 (-375 *4)) (-5 *2 (-645 *6)) (-5 *1 (-524 *4 *5 *6 *3))
- (-4 *3 (-688 *4 *5 *6))))
- ((*1 *2 *3)
- (-12 (|has| *9 (-6 -4419)) (-4 *4 (-559)) (-4 *5 (-375 *4))
- (-4 *6 (-375 *4)) (-4 *7 (-994 *4)) (-4 *8 (-375 *7))
- (-4 *9 (-375 *7)) (-5 *2 (-645 *6))
- (-5 *1 (-525 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-688 *4 *5 *6))
- (-4 *10 (-688 *7 *8 *9))))
+ (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-830)) (-5 *3 (-1161)))))
+(((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *5 (-112))
+ (-5 *2 (-1037)) (-5 *1 (-746)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-772)) (-4 *1 (-376 *3 *4)) (-4 *3 (-851))
+ (-4 *4 (-172))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-772)) (-4 *1 (-1290 *3 *4)) (-4 *3 (-851))
+ (-4 *4 (-1051)))))
+(((*1 *2 *1) (-12 (-4 *1 (-557 *2)) (-4 *2 (-13 (-407) (-1204)))))
+ ((*1 *1 *1 *1) (-4 *1 (-794))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-923)) (-5 *2 (-471)) (-5 *1 (-1270)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1219)) (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3))
- (-4 *5 (-375 *3)) (-4 *3 (-559)) (-5 *2 (-645 *5))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-1167 *3 *4)) (-14 *3 (-923))
+ (-4 *4 (-1051)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-370)) (-4 *1 (-330 *3))
+ (-4 *3 (-365)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 (-690 *5))) (-5 *4 (-567)) (-4 *5 (-365))
+ (-4 *5 (-1051)) (-5 *2 (-112)) (-5 *1 (-1031 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-559)) (-4 *4 (-172)) (-4 *5 (-375 *4))
- (-4 *6 (-375 *4)) (-5 *2 (-645 *6)) (-5 *1 (-689 *4 *5 *6 *3))
- (-4 *3 (-688 *4 *5 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051))
- (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-559))
- (-5 *2 (-645 *7)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-1065)) (-5 *3 (-1160)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-645 *2)) (-4 *2 (-548)) (-5 *1 (-159 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-907 *3)) (-4 *3 (-1102)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-337 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1244 *3))
- (-4 *5 (-1244 (-410 *4))) (-4 *6 (-344 *3 *4 *5))
- (-5 *2 (-416 *4 (-410 *4) *5 *6))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1268 *6)) (-4 *6 (-13 (-412 *4 *5) (-1040 *4)))
- (-4 *4 (-994 *3)) (-4 *5 (-1244 *4)) (-4 *3 (-308))
- (-5 *1 (-416 *3 *4 *5 *6))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-645 *6)) (-4 *6 (-951 *3 *4 *5)) (-4 *3 (-365))
- (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-507 *3 *4 *5 *6)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-559)) (-5 *1 (-41 *3 *2))
- (-4 *2
- (-13 (-365) (-303)
- (-10 -8 (-15 -1448 ((-1127 *3 (-613 $)) $))
- (-15 -1460 ((-1127 *3 (-613 $)) $))
- (-15 -4132 ($ (-1127 *3 (-613 $)))))))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-559)) (-5 *1 (-41 *3 *2))
- (-4 *2
- (-13 (-365) (-303)
- (-10 -8 (-15 -1448 ((-1127 *3 (-613 $)) $))
- (-15 -1460 ((-1127 *3 (-613 $)) $))
- (-15 -4132 ($ (-1127 *3 (-613 $)))))))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-645 *2))
- (-4 *2
- (-13 (-365) (-303)
- (-10 -8 (-15 -1448 ((-1127 *4 (-613 $)) $))
- (-15 -1460 ((-1127 *4 (-613 $)) $))
- (-15 -4132 ($ (-1127 *4 (-613 $)))))))
- (-4 *4 (-559)) (-5 *1 (-41 *4 *2))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-645 (-613 *2)))
- (-4 *2
- (-13 (-365) (-303)
- (-10 -8 (-15 -1448 ((-1127 *4 (-613 $)) $))
- (-15 -1460 ((-1127 *4 (-613 $)) $))
- (-15 -4132 ($ (-1127 *4 (-613 $)))))))
- (-4 *4 (-559)) (-5 *1 (-41 *4 *2)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-613 *4)) (-4 *4 (-1102)) (-4 *2 (-1102))
- (-5 *1 (-612 *2 *4)))))
+ (-12 (-5 *3 (-645 (-690 *4))) (-4 *4 (-365)) (-4 *4 (-1051))
+ (-5 *2 (-112)) (-5 *1 (-1031 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-645 (-1178))) (-4 *5 (-1051))
- (-5 *2 (-954 *5)) (-5 *1 (-946 *4 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-410 (-567))) (-5 *1 (-306)))))
+ (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919))))
+ ((*1 *2) (-12 (-5 *2 (-906 (-567))) (-5 *1 (-919)))))
(((*1 *1 *2 *2)
(-12 (-5 *2 (-772)) (-4 *3 (-1051)) (-4 *1 (-688 *3 *4 *5))
(-4 *4 (-375 *3)) (-4 *5 (-375 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-772)) (-4 *1 (-1266 *3)) (-4 *3 (-23)) (-4 *3 (-1218)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-1269))))
- ((*1 *2 *1) (-12 (-5 *2 (-1273)) (-5 *1 (-1270)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834 *3)) (-4 *3 (-1102))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-844 *3)) (-4 *3 (-1102)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037))
- (-5 *1 (-748)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1104 *3)) (-5 *1 (-906 *3)) (-4 *3 (-1102))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1104 *3)) (-5 *1 (-907 *3)) (-4 *3 (-1102)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-645 (-1160))) (-5 *1 (-830)) (-5 *3 (-1160)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-923)) (-5 *4 (-1160)) (-5 *2 (-1273)) (-5 *1 (-1269)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-559))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-971 *4 *3)) (-4 *3 (-1244 *4)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1178)) (-5 *5 (-1096 (-225))) (-5 *2 (-929))
- (-5 *1 (-927 *3)) (-4 *3 (-615 (-539)))))
- ((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *4 (-1178)) (-5 *5 (-1096 (-225))) (-5 *2 (-929))
- (-5 *1 (-927 *3)) (-4 *3 (-615 (-539)))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1096 (-225))) (-5 *1 (-928))))
- ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1096 (-225)))
- (-5 *1 (-928))))
- ((*1 *1 *2 *2 *2 *2 *3)
- (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1096 (-225)))
- (-5 *1 (-928))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1096 (-225))) (-5 *1 (-929))))
- ((*1 *1 *2 *2 *3 *3 *3)
- (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1096 (-225)))
- (-5 *1 (-929))))
- ((*1 *1 *2 *2 *3)
- (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1096 (-225)))
- (-5 *1 (-929))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-645 (-1 (-225) (-225)))) (-5 *3 (-1096 (-225)))
- (-5 *1 (-929))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-645 (-1 (-225) (-225)))) (-5 *3 (-1096 (-225)))
- (-5 *1 (-929))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1096 (-225)))
- (-5 *1 (-929))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1096 (-225)))
- (-5 *1 (-929)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1268 *4)) (-5 *3 (-1122)) (-4 *4 (-351))
- (-5 *1 (-531 *4)))))
+ (-12 (-5 *2 (-772)) (-4 *1 (-1267 *3)) (-4 *3 (-23)) (-4 *3 (-1219)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1178))
+ (-12 (-5 *3 (-1179))
(-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52))
- (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1203) (-433 *4)))))
+ (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1204) (-433 *4)))))
((*1 *2 *3)
(-12 (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52))
- (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *4)))))
+ (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *4)))))
((*1 *2 *3 *4)
(-12 (-5 *4 (-410 (-567)))
(-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52))
- (-5 *1 (-316 *5 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *5)))))
+ (-5 *1 (-316 *5 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1203) (-433 *5)))
+ (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *5)))
(-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52))
(-5 *1 (-316 *5 *3))))
((*1 *2 *3 *4 *5)
(-12 (-5 *4 (-295 *3)) (-5 *5 (-410 (-567)))
- (-4 *3 (-13 (-27) (-1203) (-433 *6)))
+ (-4 *3 (-13 (-27) (-1204) (-433 *6)))
(-4 *6 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52))
(-5 *1 (-316 *6 *3))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 (-567))) (-5 *4 (-295 *6))
- (-4 *6 (-13 (-27) (-1203) (-433 *5)))
+ (-4 *6 (-13 (-27) (-1204) (-433 *5)))
(-4 *5 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52))
(-5 *1 (-462 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1178)) (-5 *5 (-295 *3))
- (-4 *3 (-13 (-27) (-1203) (-433 *6)))
+ (-12 (-5 *4 (-1179)) (-5 *5 (-295 *3))
+ (-4 *3 (-13 (-27) (-1204) (-433 *6)))
(-4 *6 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52))
(-5 *1 (-462 *6 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-567))) (-5 *4 (-295 *7)) (-5 *5 (-1235 (-567)))
- (-4 *7 (-13 (-27) (-1203) (-433 *6)))
+ (-12 (-5 *3 (-1 *7 (-567))) (-5 *4 (-295 *7)) (-5 *5 (-1236 (-567)))
+ (-4 *7 (-13 (-27) (-1204) (-433 *6)))
(-4 *6 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52))
(-5 *1 (-462 *6 *7))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1178)) (-5 *5 (-295 *3)) (-5 *6 (-1235 (-567)))
- (-4 *3 (-13 (-27) (-1203) (-433 *7)))
+ (-12 (-5 *4 (-1179)) (-5 *5 (-295 *3)) (-5 *6 (-1236 (-567)))
+ (-4 *3 (-13 (-27) (-1204) (-433 *7)))
(-4 *7 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52))
(-5 *1 (-462 *7 *3))))
((*1 *2 *3 *4 *5 *6)
(-12 (-5 *3 (-1 *8 (-410 (-567)))) (-5 *4 (-295 *8))
- (-5 *5 (-1235 (-410 (-567)))) (-5 *6 (-410 (-567)))
- (-4 *8 (-13 (-27) (-1203) (-433 *7)))
+ (-5 *5 (-1236 (-410 (-567)))) (-5 *6 (-410 (-567)))
+ (-4 *8 (-13 (-27) (-1204) (-433 *7)))
(-4 *7 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52))
(-5 *1 (-462 *7 *8))))
((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *4 (-1178)) (-5 *5 (-295 *3)) (-5 *6 (-1235 (-410 (-567))))
- (-5 *7 (-410 (-567))) (-4 *3 (-13 (-27) (-1203) (-433 *8)))
+ (-12 (-5 *4 (-1179)) (-5 *5 (-295 *3)) (-5 *6 (-1236 (-410 (-567))))
+ (-5 *7 (-410 (-567))) (-4 *3 (-13 (-27) (-1204) (-433 *8)))
(-4 *8 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52))
(-5 *1 (-462 *8 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1158 (-2 (|:| |k| (-567)) (|:| |c| *3))))
+ (-12 (-5 *2 (-1159 (-2 (|:| |k| (-567)) (|:| |c| *3))))
(-4 *3 (-1051)) (-5 *1 (-597 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-5 *1 (-598 *3))))
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-5 *1 (-598 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1158 (-2 (|:| |k| (-567)) (|:| |c| *3))))
- (-4 *3 (-1051)) (-4 *1 (-1228 *3))))
+ (-12 (-5 *2 (-1159 (-2 (|:| |k| (-567)) (|:| |c| *3))))
+ (-4 *3 (-1051)) (-4 *1 (-1229 *3))))
((*1 *1 *2 *3)
(-12 (-5 *2 (-772))
- (-5 *3 (-1158 (-2 (|:| |k| (-410 (-567))) (|:| |c| *4))))
- (-4 *4 (-1051)) (-4 *1 (-1249 *4))))
+ (-5 *3 (-1159 (-2 (|:| |k| (-410 (-567))) (|:| |c| *4))))
+ (-4 *4 (-1051)) (-4 *1 (-1250 *4))))
((*1 *1 *2)
- (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1051)) (-4 *1 (-1259 *3))))
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-4 *1 (-1260 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1158 (-2 (|:| |k| (-772)) (|:| |c| *3))))
- (-4 *3 (-1051)) (-4 *1 (-1259 *3)))))
+ (-12 (-5 *2 (-1159 (-2 (|:| |k| (-772)) (|:| |c| *3))))
+ (-4 *3 (-1051)) (-4 *1 (-1260 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-1270))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-1271)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1174 *5)) (-4 *5 (-365)) (-5 *2 (-645 *6))
- (-5 *1 (-535 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-849))))))
+ (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))))
+(((*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1161)) (-5 *1 (-306)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794))
+ (-4 *4 (-851)) (-4 *2 (-559)))))
+(((*1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-241)))))
+(((*1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1219)) (-4 *2 (-851))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-375 *3)) (-4 *3 (-1219))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-645 (-907 *3))) (-5 *1 (-907 *3)) (-4 *3 (-1102))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *3 (-851))
+ (-4 *6 (-1067 *4 *5 *3))
+ (-5 *2 (-2 (|:| |under| *1) (|:| -3969 *1) (|:| |upper| *1)))
+ (-4 *1 (-978 *4 *5 *3 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-331)))))
+(((*1 *1 *1 *1) (-5 *1 (-162)))
+ ((*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-162)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-645 *6)) (-4 *6 (-951 *3 *4 *5)) (-4 *3 (-365))
+ (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-507 *3 *4 *5 *6)))))
+(((*1 *1) (-5 *1 (-130))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| -4208 (-690 (-410 (-954 *4))))
+ (|:| |vec| (-645 (-410 (-954 *4)))) (|:| -1976 (-772))
+ (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))
+ (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1179))))
+ (-4 *6 (-794))
+ (-5 *2
+ (-2 (|:| |partsol| (-1269 (-410 (-954 *4))))
+ (|:| -2144 (-645 (-1269 (-410 (-954 *4)))))))
+ (-5 *1 (-926 *4 *5 *6 *7)) (-4 *7 (-951 *4 *6 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-351)) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1175 *4)) (-4 *4 (-351)) (-5 *2 (-112))
+ (-5 *1 (-359 *4)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2566 *4))))
+ (-12 (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2575 *4))))
(-5 *1 (-1143 *3 *4)) (-4 *3 (-13 (-1102) (-34)))
(-4 *4 (-13 (-1102) (-34))))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-945 *3)) (-4 *3 (-13 (-365) (-1203) (-1004)))
- (-5 *1 (-176 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1235 *3)) (-4 *3 (-1218)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-645 *1)) (|has| *1 (-6 -4419)) (-4 *1 (-1012 *3))
- (-4 *3 (-1218)))))
-((-1301 . 731561) (-1302 . 731489) (-1303 . 731389) (-1304 . 731231)
- (-1305 . 731082) (-1306 . 728241) (-1307 . 728140) (-1308 . 726960)
- (-1309 . 726818) (-1310 . 726725) (-1311 . 726647) (-1312 . 726495)
- (-1313 . 726394) (-1314 . 726204) (-1315 . 726098) (-1316 . 725891)
- (-1317 . 725817) (-1318 . 725690) (-1319 . 725579) (-1320 . 724615)
- (-1321 . 724137) (-1322 . 724066) (-1323 . 723988) (-1324 . 723906)
- (-1325 . 723019) (-1326 . 722738) (-1327 . 722428) (-1328 . 722182)
- (-1329 . 722063) (-1330 . 721683) (-1331 . 721559) (-1332 . 721403)
- (-1333 . 721333) (-1334 . 721221) (-1335 . 720840) (-1336 . 720728)
- (-1337 . 720611) (-1338 . 720377) (-1339 . 719914) (-1340 . 719520)
- (-1341 . 719428) (-1342 . 719375) (-1343 . 719157) (-1344 . 718952)
- (-1345 . 718530) (-1346 . 718402) (-1347 . 717975) (-1348 . 717353)
- (-1349 . 717287) (-1350 . 716976) (-1351 . 716948) (-1352 . 716871)
- (-1353 . 716670) (-1354 . 716392) (-1355 . 716300) (-1356 . 716227)
- (-1357 . 716125) (-1358 . 716057) (-1359 . 715959) (-1360 . 715771)
- (-1361 . 715589) (-1362 . 715265) (-1363 . 715210) (-1364 . 715031)
- (-1365 . 714979) (-1366 . 714893) (-1367 . 714841) (-1368 . 714652)
- (-1369 . 714286) (-1370 . 714236) (-1371 . 714180) (-1372 . 714090)
- (-1373 . 713949) (-1374 . 713807) (-1375 . 713717) (-1376 . 713638)
- (-1377 . 713532) (-1378 . 713464) (-1379 . 713397) (-1380 . 713318)
- (-1381 . 713007) (-1382 . 712829) (-1383 . 712801) (-1384 . 712675)
- (-1385 . 712578) (-1386 . 712522) (-1387 . 712409) (-1388 . 712221)
- (-1389 . 712143) (-1390 . 712035) (-1391 . 711440) (-1392 . 711352)
- (-1393 . 711114) (-1394 . 710906) (-1395 . 710802) (-1396 . 710675)
- (-1397 . 710554) (-1398 . 709943) (-1399 . 709871) (-1400 . 709800)
- (-1401 . 708834) (-1402 . 708733) (-1403 . 708631) (-1404 . 708379)
- (-1405 . 708327) (-1406 . 708256) (-1407 . 708199) (-1408 . 708062)
- (-1409 . 707888) (-1410 . 707837) (-1411 . 707550) (-1412 . 707467)
- (-1413 . 707249) (-1414 . 707217) (-1415 . 707139) (-1416 . 706883)
- (-1417 . 706788) (-1418 . 706682) (-1419 . 706628) (-1420 . 706569)
- (-1421 . 706468) (-1422 . 706158) (-1423 . 706058) (-1424 . 705923)
- (-1425 . 705605) (-1426 . 705334) (-1427 . 705248) (-1428 . 705024)
- (-1429 . 704895) (-1430 . 704823) (-1431 . 704682) (-1432 . 704608)
- (-1433 . 704321) (-1434 . 704205) (-1435 . 704047) (-1436 . 703997)
- (-1437 . 703945) (-1438 . 703727) (-1439 . 703520) (-1440 . 703414)
- (-1441 . 703211) (-1442 . 703088) (-1443 . 703031) (-1444 . 702873)
- (-1445 . 702842) (-1446 . 702811) (-1447 . 702723) (-1448 . 702021)
- (** . 699027) (-1450 . 698895) (-1451 . 698579) (-1452 . 698322)
- (-1453 . 697771) (-1454 . 697585) (-1455 . 697313) (-1456 . 697094)
- (-1457 . 697037) (-1458 . 696829) (-1459 . 696619) (-1460 . 695940)
- (-1461 . 695648) (-1462 . 695596) (-1463 . 695306) (-1464 . 694932)
- (-1465 . 694822) (-1466 . 694644) (-1467 . 694538) (-1468 . 694295)
- (-1469 . 694202) (-1470 . 694106) (-1471 . 693576) (-1472 . 693462)
- (-1473 . 693333) (-1474 . 693245) (-1475 . 693106) (-1476 . 692914)
- (-1477 . 692886) (-1478 . 692745) (-1479 . 692632) (-1480 . 692561)
- (-1481 . 692508) (-1482 . 692255) (-1483 . 692017) (-1484 . 691864)
- (-1485 . 691799) (-1486 . 691626) (-1487 . 691568) (-1488 . 691516)
- (-1489 . 691366) (-1490 . 691208) (-1491 . 691005) (-1492 . 690863)
- (-1493 . 690756) (-1494 . 690703) (-1495 . 690653) (-1496 . 690546)
- (-1497 . 690421) (-1498 . 690338) (-1499 . 690219) (-1500 . 690066)
- (-1501 . 689914) (-1502 . 689756) (-1503 . 689699) (-1504 . 689566)
- (-1505 . 689348) (-1506 . 689125) (-1507 . 689056) (-1508 . 688961)
- (-1509 . 688880) (-1510 . 688714) (-1511 . 688547) (-1512 . 688408)
- (-1513 . 688325) (-1514 . 688190) (-1515 . 688038) (-1516 . 687961)
- (-1517 . 687788) (-1518 . 687549) (-1519 . 687486) (-1520 . 687389)
- (-1521 . 687355) (-1522 . 687168) (-1523 . 687080) (-1524 . 686920)
- (-1525 . 686707) (-1526 . 686636) (-1527 . 686608) (-1528 . 686577)
- (-1529 . 686486) (-1530 . 686415) (-1531 . 686230) (-1532 . 685864)
- (-1533 . 685411) (-1534 . 685342) (-1535 . 685254) (-1536 . 685199)
- (-1537 . 685126) (-1538 . 685002) (-1539 . 684928) (-1540 . 684625)
- (-1541 . 684510) (-1542 . 684357) (-1543 . 684244) (-1544 . 684145)
- (-1545 . 684032) (-1546 . 683895) (-1547 . 683752) (-1548 . 683683)
- (-1549 . 683554) (-1550 . 683396) (-1551 . 683323) (-1552 . 683155)
- (-1553 . 683081) (-1554 . 682961) (-1555 . 682726) (-1556 . 682673)
- (-1557 . 682607) (-1558 . 682520) (-1559 . 682451) (-1560 . 682295)
- (-1561 . 682211) (-1562 . 681938) (-1563 . 681883) (-1564 . 681787)
- (-1565 . 681689) (-1566 . 681633) (-1567 . 681574) (-1568 . 681522)
- (-1569 . 680936) (-1570 . 680843) (-1571 . 680699) (-1572 . 680290)
- (-1573 . 680171) (-1574 . 680056) (-1575 . 679962) (-1576 . 679802)
- (-1577 . 679529) (-1578 . 679470) (-1579 . 678961) (-1580 . 677738)
- (-1581 . 677661) (-1582 . 677539) (-1583 . 677386) (-1584 . 677303)
- (-1585 . 677118) (-1586 . 677007) (-1587 . 676785) (-1588 . 676687)
- (-1589 . 676505) (-1590 . 676210) (-1591 . 675920) (-1592 . 675441)
- (-1593 . 673279) (-1594 . 673031) (-1595 . 672935) (-1596 . 672831)
- (-1597 . 672802) (-1598 . 672505) (-1599 . 672431) (-1600 . 672241)
- (-1601 . 672145) (-1602 . 672092) (-1603 . 671743) (-1604 . 671604)
- (-1605 . 671483) (-1606 . 671430) (-1607 . 671307) (-1608 . 671233)
- (-1609 . 671148) (-1610 . 671096) (-1611 . 671045) (-1612 . 670985)
- (-1613 . 670804) (-1614 . 670405) (-1615 . 670259) (-1616 . 670156)
- (-1617 . 669965) (-1618 . 669843) (-1619 . 669092) (-1620 . 668909)
- (-1621 . 668657) (-1622 . 668562) (-1623 . 668458) (-1624 . 668172)
- (-1625 . 668106) (-1626 . 668054) (-1627 . 667971) (-1628 . 667876)
- (-1629 . 667816) (-1630 . 667742) (-1631 . 667617) (-1632 . 667551)
- (-1633 . 667479) (-1634 . 667346) (-1635 . 667258) (-1636 . 667100)
- (-1637 . 667047) (-1638 . 666954) (-1639 . 666823) (-1640 . 666761)
- (-1641 . 666622) (-1642 . 666551) (-1643 . 666502) (-1644 . 666445)
- (-1645 . 665562) (-1646 . 665415) (-1647 . 665337) (-1648 . 665303)
- (-1649 . 665237) (-1650 . 665124) (-1651 . 665020) (-1652 . 664659)
- (-1653 . 664149) (-1654 . 664045) (-1655 . 663889) (-1656 . 663715)
- (-1657 . 663598) (-1658 . 663570) (-1659 . 663517) (-1660 . 663461)
- (-1661 . 663353) (-1662 . 663188) (-1663 . 663115) (-1664 . 662588)
- (-1665 . 662402) (-1666 . 662298) (-1667 . 662201) (-1668 . 662129)
- (-1669 . 662033) (-1670 . 661876) (-1671 . 661654) (-1672 . 661436)
- (-1673 . 661331) (-1674 . 661303) (-1675 . 661197) (-1676 . 661126)
- (-1677 . 661029) (-1678 . 660693) (-1679 . 660472) (-1680 . 660370)
- (-1681 . 660090) (-1682 . 660016) (-1683 . 659641) (-1684 . 659297)
- (-1685 . 659231) (-1686 . 659137) (-1687 . 659053) (-1688 . 658950)
- (-1689 . 658852) (-1690 . 658479) (-1691 . 658154) (-1692 . 657923)
- (-1693 . 657857) (-1694 . 657679) (-1695 . 657524) (-1696 . 656459)
- (-1697 . 656332) (-1698 . 656015) (-1699 . 655340) (-1700 . 655241)
- (-1701 . 654955) (-1702 . 651457) (-1703 . 651260) (-1704 . 651031)
- (-1705 . 650978) (-1706 . 650874) (-1707 . 650750) (-1708 . 650640)
- (-1709 . 650324) (-1710 . 650258) (-1711 . 649991) (-1712 . 649727)
- (-1713 . 649612) (-1714 . 649557) (-1715 . 649333) (-1716 . 649059)
- (-1717 . 648837) (-1718 . 648730) (-1719 . 648632) (-1720 . 648379)
- (-1721 . 648170) (-1722 . 648111) (-1723 . 647980) (-1724 . 647816)
- (-1725 . 647748) (-1726 . 647630) (-1727 . 647596) (-1728 . 647349)
- (-1729 . 647127) (-1730 . 647059) (-1731 . 646841) (-1732 . 646759)
- (-1733 . 646655) (-1734 . 646521) (-1735 . 646262) (-1736 . 646132)
- (-1737 . 646062) (-1738 . 645942) (-1739 . 645789) (-1740 . 645673)
- (-1741 . 645289) (-1742 . 644967) (-1743 . 644862) (-1744 . 644721)
- (-1745 . 644665) (-1746 . 644571) (-1747 . 644430) (-1748 . 644165)
- (-1749 . 644007) (-1750 . 642664) (-1751 . 642379) (-1752 . 642324)
- (-1753 . 642241) (-1754 . 642138) (-1755 . 642067) (-1756 . 641918)
- (-1757 . 641808) (-1758 . 641713) (-1759 . 641508) (-1760 . 641364)
- (-1761 . 641279) (-1762 . 641182) (-1763 . 641129) (-1764 . 640904)
- (-1765 . 640682) (-1766 . 640545) (-1767 . 640416) (-1768 . 640279)
- (-1769 . 640201) (-1770 . 640131) (-1771 . 639471) (-1772 . 639241)
- (-1773 . 639167) (-1774 . 639112) (-1775 . 639029) (-1776 . 638905)
- (-1777 . 638409) (-1778 . 638256) (-1779 . 637984) (-1780 . 637692)
- (-1781 . 637583) (-1782 . 637531) (-1783 . 637407) (-1784 . 637348)
- (-1785 . 637262) (-1786 . 637112) (-1787 . 631944) (-1788 . 631659)
- (-1789 . 631561) (-1790 . 631245) (-1791 . 630718) (-1792 . 630648)
- (-1793 . 630592) (-1794 . 630456) (-1795 . 630302) (-1796 . 630205)
- (-1797 . 630040) (-1798 . 629986) (-1799 . 629906) (-1800 . 628725)
- (-1801 . 628593) (-1802 . 628541) (-1803 . 628413) (-1804 . 628286)
- (-1805 . 627950) (-1806 . 627868) (-1807 . 627798) (-1808 . 627646)
- (-1809 . 627578) (-1810 . 627406) (-1811 . 627186) (-1812 . 627120)
- (-1813 . 626922) (-1814 . 626841) (-1815 . 626740) (-1816 . 626441)
- (-1817 . 626345) (-1818 . 626296) (-1819 . 626237) (-1820 . 626086)
- (-1821 . 625988) (-1822 . 625885) (-1823 . 625606) (-1824 . 625403)
- (-1825 . 625223) (-1826 . 625135) (-1827 . 624997) (-1828 . 624894)
- (-1829 . 624751) (-1830 . 624492) (-1831 . 624396) (-1832 . 624102)
- (-1833 . 623463) (-1834 . 623435) (-1835 . 623312) (-1836 . 622752)
- (-1837 . 622701) (-1838 . 622543) (-1839 . 621679) (-1840 . 621576)
- (-1841 . 621334) (-1842 . 621255) (-1843 . 620874) (-1844 . 620776)
- (-1845 . 620723) (-1846 . 620612) (-1847 . 620511) (-1848 . 620412)
- (-1849 . 620299) (-1850 . 620247) (-1851 . 620195) (-1852 . 620112)
- (-1853 . 619988) (-1854 . 619325) (-1855 . 619212) (-1856 . 619159)
- (-1857 . 619087) (-1858 . 618957) (-1859 . 618630) (-1860 . 618571)
- (-1861 . 618471) (-1862 . 617821) (-1863 . 617769) (-1864 . 617619)
- (-1865 . 617540) (-1866 . 617381) (-1867 . 617052) (-1868 . 616953)
- (-1869 . 616772) (-1870 . 616721) (-1871 . 616619) (-1872 . 616553)
- (-1873 . 616525) (-1874 . 616453) (-1875 . 616319) (-1876 . 616231)
- (-1877 . 615953) (-1878 . 615881) (-1879 . 615146) (-1880 . 615094)
- (-1881 . 614934) (-1882 . 614806) (-1883 . 614751) (-1884 . 614558)
- (-1885 . 614440) (-1886 . 614374) (-1887 . 614279) (-1888 . 614088)
- (-1889 . 614036) (-1890 . 613681) (-1891 . 613630) (-1892 . 613534)
- (-1893 . 613181) (-1894 . 613126) (-1895 . 612935) (-1896 . 612828)
- (-1897 . 612746) (-1898 . 612477) (-1899 . 612284) (-1900 . 612150)
- (-1901 . 612031) (-1902 . 611899) (-1903 . 611770) (-1904 . 611689)
- (-1905 . 611616) (-1906 . 611424) (-1907 . 611215) (-1908 . 611132)
- (-1909 . 611104) (-1910 . 611048) (-1911 . 610968) (-1912 . 610382)
- (-1913 . 609995) (-1914 . 609873) (-1915 . 609623) (-1916 . 609537)
- (-1917 . 609418) (-1918 . 609344) (-1919 . 609243) (-1920 . 609155)
- (-1921 . 609072) (-1922 . 608961) (-1923 . 608927) (-1924 . 608621)
- (-1925 . 608453) (-1926 . 608358) (-1927 . 608308) (-1928 . 608181)
- (-1929 . 608009) (-1930 . 607956) (-1931 . 607629) (-1932 . 607471)
- (-1933 . 607328) (-1934 . 607134) (-1935 . 606827) (-1936 . 606730)
- (-1937 . 606516) (-1938 . 606460) (-1939 . 606204) (-1940 . 605622)
- (-1941 . 605242) (-1942 . 604876) (-1943 . 604673) (-1944 . 604421)
- (-1945 . 604306) (-1946 . 604229) (-1947 . 604148) (-1948 . 603901)
- (-1949 . 603849) (-1950 . 603658) (-1951 . 602362) (-1952 . 602262)
- (-1953 . 601931) (-1954 . 600681) (-1955 . 600572) (-1956 . 600522)
- (-1957 . 600389) (-1958 . 600333) (-1959 . 600234) (-1960 . 600115)
- (-1961 . 599992) (-1962 . 599854) (-1963 . 599689) (-1964 . 599502)
- (-1965 . 599470) (-1966 . 599411) (-1967 . 599287) (-1968 . 599129)
- (-1969 . 599077) (-1970 . 598812) (-1971 . 598372) (-1972 . 598272)
- (-1973 . 597726) (-1974 . 597510) (-1975 . 597415) (-1976 . 597320)
- (-1977 . 597221) (-1978 . 597169) (-1979 . 596833) (-1980 . 596651)
- (-1981 . 596404) (-1982 . 596351) (-1983 . 596317) (-1984 . 596265)
- (-1985 . 596161) (-1986 . 596102) (-1987 . 595827) (-1988 . 595681)
- (-1989 . 594811) (-1990 . 594759) (-1991 . 594675) (-1992 . 594616)
- (-1993 . 594519) (-1994 . 594431) (-1995 . 594287) (-1996 . 593641)
- (-1997 . 593588) (-1998 . 593435) (-1999 . 593307) (-2000 . 592655)
- (-2001 . 592563) (-2002 . 592475) (-2003 . 592401) (-2004 . 592311)
- (-2005 . 591909) (-2006 . 591317) (-2007 . 591090) (-2008 . 591002)
- (-2009 . 590918) (-2010 . 590802) (-2011 . 590749) (-2012 . 590537)
- (-2013 . 590417) (-2014 . 590312) (-2015 . 590080) (-2016 . 589986)
- (-2017 . 589846) (-2018 . 589777) (-2019 . 589699) (-2020 . 589636)
- (-2021 . 589421) (-2022 . 589299) (-2023 . 589082) (-2024 . 588933)
- (-2025 . 588776) (-2026 . 588707) (-2027 . 588654) (-2028 . 588560)
- (-2029 . 588481) (-2030 . 588254) (-2031 . 587857) (-2032 . 586595)
- (-2033 . 586216) (-2034 . 586157) (-2035 . 586063) (-2036 . 585864)
- (-2037 . 585684) (-2038 . 580346) (-2039 . 580180) (-2040 . 580083)
- (-2041 . 579666) (-2042 . 579589) (-2043 . 579464) (-2044 . 579357)
- (-2045 . 579271) (-2046 . 579140) (-2047 . 578859) (-2048 . 578751)
- (-2049 . 578607) (-2050 . 578530) (-2051 . 578459) (-2052 . 578389)
- (-2053 . 578279) (-2054 . 578169) (-2055 . 577961) (-2056 . 577351)
- (-2057 . 577157) (-2058 . 576848) (-2059 . 576690) (-2060 . 576580)
- (-2061 . 576464) (-2062 . 576100) (-2063 . 575930) (-2064 . 575858)
- (-2065 . 575830) (-2066 . 575675) (-2067 . 575622) (-2068 . 575452)
- (-2069 . 575279) (-2070 . 575125) (-2071 . 574977) (-2072 . 574786)
- (-2073 . 574628) (-2074 . 574379) (-2075 . 574224) (-2076 . 574093)
- (-2077 . 573931) (-2078 . 573635) (-2079 . 573539) (-2080 . 573453)
- (-2081 . 573247) (-2082 . 572769) (-2083 . 572511) (-2084 . 572094)
- (-2085 . 571277) (-2086 . 571176) (-2087 . 571103) (-2088 . 571029)
- (-2089 . 570499) (-2090 . 570359) (-2091 . 570246) (-2092 . 570069)
- (-2093 . 569998) (-2094 . 569880) (-2095 . 569737) (-2096 . 569647)
- (-2097 . 569510) (-2098 . 569338) (-2099 . 569267) (-2100 . 569181)
- (-2101 . 569130) (-2102 . 569010) (-2103 . 568915) (-2104 . 568791)
- (-2105 . 568731) (-2106 . 568588) (-2107 . 568342) (-2108 . 568245)
- (-2109 . 567029) (-2110 . 566977) (-2111 . 565825) (-2112 . 565421)
- (-2113 . 565317) (-2114 . 564884) (-2115 . 564730) (-2116 . 564634)
- (-2117 . 564518) (-2118 . 564466) (-2119 . 564207) (-2120 . 564079)
- (-2121 . 563954) (-2122 . 563872) (-2123 . 563701) (-2124 . 563631)
- (-2125 . 563491) (-2126 . 563411) (-2127 . 563130) (-2128 . 562972)
- (-2129 . 562734) (-2130 . 562343) (-2131 . 562198) (-2132 . 562145)
- (-2133 . 562019) (-2134 . 561965) (-2135 . 561879) (-2136 . 561813)
- (-2137 . 561629) (-2138 . 561545) (-2139 . 561361) (-2140 . 560985)
- (-2141 . 560652) (-2142 . 560599) (-2143 . 560549) (-2144 . 560394)
- (-2145 . 560272) (-2146 . 560152) (-2147 . 560051) (-2148 . 559949)
- (-2149 . 559842) (-2150 . 559720) (-2151 . 559568) (-2152 . 559435)
- (-2153 . 559398) (-2154 . 559253) (-2155 . 558168) (-2156 . 558031)
- (-2157 . 557790) (-2158 . 557542) (-2159 . 557271) (-2160 . 557147)
- (-2161 . 557054) (-2162 . 557026) (-2163 . 556949) (-2164 . 556142)
- (-2165 . 555878) (-2166 . 555547) (-2167 . 555495) (-2168 . 555435)
- (-2169 . 555367) (-2170 . 554982) (-2171 . 554864) (-2172 . 554585)
- (-2173 . 554094) (-2174 . 553999) (-2175 . 553947) (-2176 . 553859)
- (-2177 . 553598) (-2178 . 553519) (-2179 . 553344) (-2180 . 553251)
- (-2181 . 553098) (-2182 . 553021) (-2183 . 552506) (-2184 . 552130)
- (-2185 . 552044) (-2186 . 551879) (-2187 . 551808) (-2188 . 551741)
- (-2189 . 551040) (-2190 . 550650) (-2191 . 550527) (-2192 . 550209)
- (-2193 . 549874) (-2194 . 549772) (-2195 . 549693) (-2196 . 549659)
- (-2197 . 549572) (-2198 . 549362) (-2199 . 549219) (-2200 . 549164)
- (-2201 . 549084) (-2202 . 548866) (-2203 . 548515) (-2204 . 548144)
- (-2205 . 547876) (-2206 . 547733) (-2207 . 547618) (-2208 . 547581)
- (-2209 . 547460) (-2210 . 547386) (-2211 . 546673) (-2212 . 546572)
- (-2213 . 546459) (-2214 . 546425) (-2215 . 546372) (-2216 . 546227)
- (-2217 . 546028) (-2218 . 545939) (-2219 . 545454) (-2220 . 544936)
- (-2221 . 544771) (-2222 . 544644) (-2223 . 544595) (-2224 . 544529)
- (-2225 . 544184) (-2226 . 544049) (-2227 . 543723) (-2228 . 543501)
- (-2229 . 543449) (-2230 . 543421) (-2231 . 543227) (-2232 . 542716)
- (-2233 . 541898) (-2234 . 541842) (-2235 . 541532) (-2236 . 541389)
- (-2237 . 541137) (-2238 . 541022) (-2239 . 540938) (-2240 . 540809)
- (-2241 . 540677) (-2242 . 540578) (-2243 . 540451) (-2244 . 540319)
- (-2245 . 540007) (-2246 . 539772) (-2247 . 539706) (-2248 . 539565)
- (-2249 . 539509) (-2250 . 539283) (-2251 . 539021) (-2252 . 538342)
- (-2253 . 538246) (-2254 . 537785) (-2255 . 537682) (-2256 . 537620)
- (-2257 . 537180) (-2258 . 537096) (-2259 . 536997) (-2260 . 536925)
- (-2261 . 536830) (-2262 . 536773) (-2263 . 536632) (-2264 . 533333)
- (-2265 . 533304) (-2266 . 533209) (-2267 . 533150) (-2268 . 532931)
- (-2269 . 532301) (-2270 . 532248) (-2271 . 532164) (-2272 . 531711)
- (-2273 . 531433) (-2274 . 531356) (-2275 . 531268) (-2276 . 531152)
- (-2277 . 531121) (-2278 . 531039) (-2279 . 530809) (-2280 . 530607)
- (-2281 . 530523) (-2282 . 530238) (-2283 . 530019) (-2284 . 529904)
- (-2285 . 529760) (-2286 . 529663) (-2287 . 529597) (-2288 . 529347)
- (-2289 . 529316) (-2290 . 529040) (-2291 . 528694) (-2292 . 528578)
- (-2293 . 528221) (-2294 . 528126) (-2295 . 527795) (-2296 . 527657)
- (-2297 . 527555) (-2298 . 526485) (-2299 . 526353) (-2300 . 526237)
- (-2301 . 526153) (-2302 . 526060) (-2303 . 525917) (-2304 . 525787)
- (-2305 . 525721) (-2306 . 525589) (-2307 . 525451) (-2308 . 525200)
- (-2309 . 525096) (-2310 . 525041) (-2311 . 524989) (-2312 . 524930)
- (-2313 . 524795) (-2314 . 524718) (-2315 . 524634) (-2316 . 524530)
- (-2317 . 524493) (-2318 . 524416) (-2319 . 524309) (-2320 . 524224)
- (-2321 . 524129) (-2322 . 524076) (-2323 . 523805) (-2324 . 523724)
- (-2325 . 523611) (-2326 . 523313) (-2327 . 523051) (-2328 . 522999)
- (-2329 . 522785) (-2330 . 522648) (-2331 . 521935) (-2332 . 521858)
- (-2333 . 521751) (-2334 . 521636) (-2335 . 521548) (-2336 . 521474)
- (-2337 . 521371) (-2338 . 521312) (-2339 . 519770) (-2340 . 519640)
- (-2341 . 519582) (-2342 . 519523) (-2343 . 519446) (-2344 . 519328)
- (-2345 . 519232) (-2346 . 519076) (-2347 . 518961) (-2348 . 518763)
- (-2349 . 518666) (-2350 . 518350) (-2351 . 518152) (-2352 . 518098)
- (-2353 . 517705) (-2354 . 517354) (-2355 . 516963) (-2356 . 516863)
- (-2357 . 516744) (-2358 . 516673) (-2359 . 516587) (-2360 . 516490)
- (-2361 . 516333) (-2362 . 516265) (-2363 . 516199) (-2364 . 515685)
- (-2365 . 515544) (-2366 . 515442) (-2367 . 515310) (-2368 . 514965)
- (-2369 . 513625) (-2370 . 512665) (-2371 . 512477) (-2372 . 512425)
- (-2373 . 512300) (-2374 . 512006) (-2375 . 511070) (-2376 . 511004)
- (-2377 . 510805) (-2378 . 510728) (-2379 . 510654) (-2380 . 510491)
- (-2381 . 510413) (-2382 . 510240) (-2383 . 509909) (-2384 . 509488)
- (-2385 . 509345) (-2386 . 509292) (-2387 . 509033) (-2388 . 508805)
- (-2389 . 508659) (-2390 . 508593) (-2391 . 507732) (-2392 . 507442)
- (-2393 . 507084) (-2394 . 506866) (-2395 . 506730) (-2396 . 506612)
- (-2397 . 506484) (-2398 . 506352) (-2399 . 506249) (-2400 . 505871)
- (-2401 . 505774) (-2402 . 505722) (-2403 . 505635) (-2404 . 505516)
- (-2405 . 505430) (-2406 . 505378) (-2407 . 505313) (-2408 . 505260)
- (-2409 . 504647) (-2410 . 503449) (-2411 . 503346) (-2412 . 503293)
- (-2413 . 503192) (-2414 . 502825) (-2415 . 502653) (-2416 . 495710)
- (-2417 . 495624) (-2418 . 495553) (-2419 . 495393) (-2420 . 495316)
- (-2421 . 494889) (-2422 . 494839) (-2423 . 494751) (-2424 . 494654)
- (-2425 . 494623) (-2426 . 494480) (-2427 . 494406) (-2428 . 494234)
- (-2429 . 493896) (-2430 . 493707) (-2431 . 493627) (-2432 . 493575)
- (-2433 . 493513) (-2434 . 493031) (-2435 . 492947) (-2436 . 492683)
- (-2437 . 492323) (-2438 . 492151) (-2439 . 491517) (-2440 . 491451)
- (-2441 . 491355) (-2442 . 491255) (-2443 . 491164) (-2444 . 491065)
- (-2445 . 490678) (-2446 . 490503) (-2447 . 490429) (-2448 . 490172)
- (-2449 . 489961) (-2450 . 489789) (-2451 . 489599) (-2452 . 489258)
- (-2453 . 489185) (-2454 . 489099) (-2455 . 488556) (-2456 . 488449)
- (-2457 . 488397) (-2458 . 488363) (-2459 . 488334) (-2460 . 487847)
- (-2461 . 487794) (-2462 . 487698) (-2463 . 487646) (-2464 . 487530)
- (-2465 . 486688) (-2466 . 486592) (-2467 . 486359) (-2468 . 486306)
- (-2469 . 486233) (-2470 . 486199) (-2471 . 486119) (-2472 . 485996)
- (-2473 . 485944) (-2474 . 485848) (-2475 . 484065) (-2476 . 483903)
- (-2477 . 480294) (-2478 . 480025) (-2479 . 479934) (-2480 . 479866)
- (-2481 . 479689) (-2482 . 479595) (-2483 . 479501) (-2484 . 479140)
- (-2485 . 479011) (-2486 . 478755) (-2487 . 478632) (-2488 . 478495)
- (-2489 . 478347) (-2490 . 478217) (-2491 . 478102) (-2492 . 478031)
- (-2493 . 477954) (-2494 . 477852) (-2495 . 477782) (-2496 . 477591)
- (-2497 . 477509) (-2498 . 477290) (-2499 . 477199) (-2500 . 476902)
- (-2501 . 476786) (-2502 . 476490) (-2503 . 476042) (-2504 . 475985)
- (-2505 . 475834) (-2506 . 475750) (-2507 . 475634) (-2508 . 475423)
- (-2509 . 474919) (-2510 . 474870) (-2511 . 474623) (-2512 . 474413)
- (-2513 . 474327) (-2514 . 474040) (-2515 . 473826) (-2516 . 473684)
- (-2517 . 473586) (-2518 . 473500) (-2519 . 473109) (-2520 . 473059)
- (-2521 . 472513) (-2522 . 472457) (-2523 . 470499) (-2524 . 470443)
- (-2525 . 469733) (-2526 . 469596) (-2527 . 469350) (-2528 . 469292)
- (-2529 . 469174) (-2530 . 469047) (-2531 . 466632) (-2532 . 465055)
- (-2533 . 465021) (-2534 . 464938) (-2535 . 464906) (-2536 . 464835)
- (-2537 . 464507) (-2538 . 463992) (-2539 . 463249) (-2540 . 463178)
- (-2541 . 463003) (-2542 . 462751) (-2543 . 462687) (-2544 . 462345)
- (-2545 . 461937) (-2546 . 461842) (-2547 . 461653) (-2548 . 461576)
- (-2549 . 461523) (-2550 . 461400) (-2551 . 461351) (-2552 . 461219)
- (-2553 . 461151) (-2554 . 460624) (-2555 . 460528) (-2556 . 460424)
- (-2557 . 460336) (-2558 . 460166) (-2559 . 460005) (-2560 . 459922)
- (-2561 . 459826) (-2562 . 459534) (-2563 . 459289) (-2564 . 459141)
- (-2565 . 459064) (-2566 . 459002) (-2567 . 458952) (-2568 . 458899)
- (-2569 . 458378) (-2570 . 457814) (-2571 . 457661) (-2572 . 457497)
- (-2573 . 457424) (-2574 . 457328) (-2575 . 457261) (-2576 . 457201)
- (-2577 . 457129) (-2578 . 457033) (-2579 . 456967) (-2580 . 456893)
- (-2581 . 456797) (-2582 . 456714) (-2583 . 456659) (-2584 . 456603)
- (-2585 . 456069) (-2586 . 455961) (-2587 . 455697) (-2588 . 455629)
- (-2589 . 455474) (-2590 . 455400) (-2591 . 455286) (-2592 . 455170)
- (-2593 . 454826) (-2594 . 454774) (-2595 . 453972) (-2596 . 453872)
- (-2597 . 453686) (-2598 . 453627) (-2599 . 453525) (-2600 . 453329)
- (-2601 . 453251) (-2602 . 453156) (-2603 . 453039) (-2604 . 452769)
- (-2605 . 452691) (-2606 . 452593) (-2607 . 452364) (-2608 . 452277)
- (-2609 . 452119) (-2610 . 452011) (-2611 . 451928) (-2612 . 451876)
- (-2613 . 451734) (-2614 . 451288) (-2615 . 451165) (-2616 . 451080)
- (-2617 . 450778) (-2618 . 450676) (-2619 . 450429) (-2620 . 450314)
- (-2621 . 450135) (-2622 . 448003) (-2623 . 447137) (-2624 . 447082)
- (-2625 . 446974) (-2626 . 446922) (-2627 . 446894) (-2628 . 446793)
- (-2629 . 446696) (-2630 . 446439) (-2631 . 442432) (-2632 . 442403)
- (-2633 . 442250) (-2634 . 441765) (-2635 . 441585) (-2636 . 441508)
- (-2637 . 440676) (-2638 . 440624) (-2639 . 440486) (-2640 . 440415)
- (-2641 . 440353) (-2642 . 440009) (-2643 . 439914) (-2644 . 439818)
- (-2645 . 439719) (-2646 . 439473) (-2647 . 439365) (-2648 . 439224)
- (-2649 . 439104) (-2650 . 439052) (-2651 . 438821) (-2652 . 438621)
- (-2653 . 438541) (-2654 . 437446) (-2655 . 437104) (-2656 . 436641)
- (-2657 . 436547) (-2658 . 436470) (-2659 . 436397) (-2660 . 436244)
- (-2661 . 436177) (-2662 . 436059) (-2663 . 435861) (-2664 . 435789)
- (-2665 . 435623) (-2666 . 435350) (-2667 . 435220) (-2668 . 435041)
- (-2669 . 434705) (-2670 . 434617) (-2671 . 434585) (-2672 . 434460)
- (-2673 . 434361) (-2674 . 434275) (-2675 . 432873) (-2676 . 432678)
- (-2677 . 431380) (-2678 . 431087) (-2679 . 431032) (-2680 . 430958)
- (-2681 . 430848) (-2682 . 430782) (-2683 . 430548) (-2684 . 430402)
- (-2685 . 430287) (-2686 . 430259) (-2687 . 430156) (-2688 . 429358)
- (-2689 . 429236) (-2690 . 428592) (-2691 . 428448) (-2692 . 428271)
- (-2693 . 428061) (-2694 . 427958) (-2695 . 427679) (-2696 . 427591)
- (-2697 . 427490) (-2698 . 427253) (-2699 . 427184) (-2700 . 427119)
- (-2701 . 427049) (-2702 . 426878) (-2703 . 426800) (-2704 . 426700)
- (-2705 . 426641) (-2706 . 421127) (-2707 . 420729) (-2708 . 420644)
- (-2709 . 420425) (-2710 . 420397) (-2711 . 420288) (-2712 . 420101)
- (-2713 . 419991) (-2714 . 419829) (-2715 . 419752) (-2716 . 419359)
- (-2717 . 419299) (-2718 . 419174) (-2719 . 419058) (-2720 . 418647)
- (-2721 . 418455) (-2722 . 418311) (-2723 . 418213) (-2724 . 417961)
- (-2725 . 417908) (-2726 . 417853) (-2727 . 417412) (-2728 . 417125)
- (-2729 . 417048) (-2730 . 416903) (-2731 . 416678) (-2732 . 416626)
- (-2733 . 416507) (-2734 . 416336) (-2735 . 416222) (-2736 . 416127)
- (-2737 . 416032) (-2738 . 415895) (-2739 . 415560) (-2740 . 415473)
- (-2741 . 415322) (-2742 . 414715) (-2743 . 414292) (-2744 . 414218)
- (-2745 . 414080) (-2746 . 413932) (-2747 . 413757) (-2748 . 413669)
- (-2749 . 413589) (-2750 . 413515) (-2751 . 413420) (-2752 . 413259)
- (-2753 . 413140) (-2754 . 412746) (-2755 . 412672) (-2756 . 412594)
- (-2757 . 412398) (-2758 . 412346) (-2759 . 411860) (-2760 . 411801)
- (-2761 . 411417) (-2762 . 411236) (-2763 . 410849) (-2764 . 410782)
- (-2765 . 410686) (-2766 . 410605) (-2767 . 410402) (-2768 . 410257)
- (-2769 . 410091) (-2770 . 409813) (-2771 . 409060) (-2772 . 408845)
- (-2773 . 408697) (-2774 . 407595) (-2775 . 407457) (-2776 . 406978)
- (-2777 . 406759) (-2778 . 406580) (-2779 . 406437) (-2780 . 406337)
- (-2781 . 406174) (-2782 . 406016) (-2783 . 405955) (-2784 . 405666)
- (-2785 . 405592) (-2786 . 405564) (-2787 . 405363) (-2788 . 404182)
- (-2789 . 403970) (-2790 . 403771) (-2791 . 403605) (-2792 . 403495)
- (-2793 . 403405) (-2794 . 403353) (-2795 . 403275) (-2796 . 403185)
- (-2797 . 403088) (-2798 . 403021) (-2799 . 402825) (-2800 . 402653)
- (-2801 . 402375) (-2802 . 401718) (-2803 . 401559) (-2804 . 401461)
- (-2805 . 401150) (-2806 . 401050) (-2807 . 400979) (-2808 . 400836)
- (-12 . 400664) (-2810 . 400613) (-2811 . 400541) (-2812 . 400482)
- (-2813 . 400354) (-2814 . 400143) (-2815 . 400027) (-2816 . 399917)
- (-2817 . 399780) (-2818 . 399641) (-2819 . 399555) (-2820 . 399350)
- (-2821 . 399269) (-2822 . 399183) (-2823 . 399043) (-2824 . 397414)
- (-2825 . 397362) (-2826 . 397219) (-2827 . 397108) (-2828 . 397009)
- (-2829 . 396932) (-2830 . 396521) (-2831 . 396435) (-2832 . 396314)
- (-2833 . 396210) (-2834 . 396063) (-2835 . 395861) (-2836 . 395002)
- (-2837 . 394461) (-2838 . 394353) (-2839 . 394162) (-2840 . 394022)
- (-2841 . 393943) (-2842 . 393871) (-2843 . 393336) (-2844 . 393274)
- (-2845 . 393118) (-2846 . 392348) (-2847 . 391052) (-2848 . 390909)
- (-2849 . 390670) (-2850 . 390525) (-2851 . 390365) (-2852 . 390240)
- (-2853 . 390160) (-2854 . 390066) (-2855 . 390017) (-2856 . 389943)
- (-2857 . 389787) (-2858 . 389699) (-2859 . 389620) (-2860 . 389377)
- (-2861 . 389326) (-2862 . 389255) (-2863 . 388994) (-2864 . 388853)
- (-2865 . 388757) (-2866 . 388661) (-2867 . 388368) (-2868 . 388300)
- (-2869 . 388059) (-2870 . 387592) (-2871 . 387492) (-2872 . 387379)
- (-2873 . 387221) (-2874 . 387155) (-2875 . 387127) (-2876 . 386541)
- (-2877 . 386188) (-2878 . 386111) (-2879 . 385796) (-2880 . 385713)
- (-2881 . 385577) (-2882 . 385543) (-2883 . 384655) (-2884 . 384572)
- (-2885 . 384081) (-2886 . 383998) (-2887 . 382806) (-2888 . 382749)
- (-2889 . 382696) (-2890 . 382551) (-2891 . 382490) (-2892 . 382033)
- (-2893 . 381933) (-2894 . 381831) (-2895 . 381736) (-2896 . 379970)
- (-2897 . 379846) (-2898 . 375686) (-2899 . 375568) (-2900 . 375395)
- (-2901 . 375267) (* . 371000) (-2903 . 370885) (-2904 . 370109)
- (-2905 . 369859) (-2906 . 369807) (-2907 . 368352) (-2908 . 367079)
- (-2909 . 366956) (-2910 . 366856) (-2911 . 366757) (-2912 . 366190)
- (-2913 . 365915) (-2914 . 365849) (-2915 . 365729) (-2916 . 365601)
- (-2917 . 365549) (-2918 . 365482) (-2919 . 363992) (-2920 . 363753)
- (-2921 . 363701) (-2922 . 363649) (-2923 . 363563) (-2924 . 363485)
- (-2925 . 363412) (-2926 . 363329) (-2927 . 363138) (-2928 . 363052)
- (-2929 . 362906) (-2930 . 362729) (-2931 . 362643) (-2932 . 361211)
- (-2933 . 360978) (-2934 . 360619) (-2935 . 360451) (-2936 . 360179)
- (-2937 . 360047) (-2938 . 359509) (-2939 . 358773) (-2940 . 358265)
- (-2941 . 358011) (-2942 . 357897) (-2943 . 357754) (-2944 . 357527)
- (-2945 . 357434) (-2946 . 357248) (-2947 . 357180) (-2948 . 357128)
- (-2949 . 356965) (-2950 . 356627) (-2951 . 356240) (-2952 . 356148)
- (-2953 . 356119) (-2954 . 356036) (-2955 . 355954) (-2956 . 355825)
- (-2957 . 355658) (-2958 . 355427) (-2959 . 355281) (-2960 . 355002)
- (-2961 . 354950) (-2962 . 354822) (-2963 . 354484) (-2964 . 354371)
- (-2965 . 354344) (-2966 . 354126) (-2967 . 353957) (-2968 . 353804)
- (-2969 . 353445) (-2970 . 353357) (-2971 . 353270) (-2972 . 353174)
- (-2973 . 353042) (-2974 . 352458) (-2975 . 352305) (-2976 . 351661)
- (-2977 . 351606) (-2978 . 351468) (-2979 . 351127) (-2980 . 351017)
- (-2981 . 350739) (-2982 . 350624) (-2983 . 350511) (-2984 . 350352)
- (-2985 . 350194) (-2986 . 350032) (-2987 . 349303) (-2988 . 349246)
- (-2989 . 348074) (-2990 . 347996) (-2991 . 347883) (-2992 . 347775)
- (-2993 . 347424) (-2994 . 347170) (-2995 . 346955) (-2996 . 346857)
- (-2997 . 346770) (-2998 . 346690) (-2999 . 345961) (-3000 . 345846)
- (-3001 . 345471) (-3002 . 345308) (-3003 . 345227) (-3004 . 345067)
- (-3005 . 344952) (-3006 . 344864) (-3007 . 344725) (-3008 . 344652)
- (-3009 . 344505) (-3010 . 344175) (-3011 . 344122) (-3012 . 343446)
- (-3013 . 343288) (-3014 . 342151) (-3015 . 342096) (-3016 . 341986)
- (-3017 . 341900) (-3018 . 332450) (-3019 . 332397) (-3020 . 332214)
- (-3021 . 332153) (-3022 . 332058) (-3023 . 331494) (-3024 . 331379)
- (-3025 . 331255) (-3026 . 331005) (-3027 . 330977) (-3028 . 330858)
- (-3029 . 330721) (-3030 . 330608) (-3031 . 330381) (-3032 . 329870)
- (-3033 . 328684) (-3034 . 328509) (-3035 . 327945) (-3036 . 327868)
- (-3037 . 327724) (-3038 . 327409) (-3039 . 327340) (-3040 . 327133)
- (-3041 . 327077) (-3042 . 326882) (-3043 . 326801) (-3044 . 326731)
- (-3045 . 325549) (-3046 . 325071) (-3047 . 324825) (-3048 . 324698)
- (-3049 . 324134) (-3050 . 323458) (-3051 . 323386) (-3052 . 323358)
- (-3053 . 323205) (-3054 . 323138) (-3055 . 322884) (-3056 . 322826)
- (-3057 . 322767) (-3058 . 322661) (-3059 . 322483) (-3060 . 320276)
- (-3061 . 320220) (-3062 . 319546) (-3063 . 318320) (-3064 . 318103)
- (-3065 . 318026) (-3066 . 317853) (-3067 . 317334) (-3068 . 316890)
- (-3069 . 316838) (-3070 . 316680) (-3071 . 315652) (-3072 . 315546)
- (-3073 . 315416) (-3074 . 314742) (-3075 . 314668) (-3076 . 314580)
- (-3077 . 312466) (-3078 . 312351) (-3079 . 312287) (-3080 . 312166)
- (-3081 . 311916) (-3082 . 311820) (-3083 . 311770) (-3084 . 311033)
- (-3085 . 310895) (-3086 . 310528) (-3087 . 310433) (-3088 . 310235)
- (-3089 . 309891) (-3090 . 309835) (-3091 . 309733) (-3092 . 309679)
- (-3093 . 309452) (-3094 . 308963) (-3095 . 308401) (-3096 . 308310)
- (-3097 . 308000) (-3098 . 307926) (-3099 . 307656) (-3100 . 307434)
- (-3101 . 306774) (-3102 . 306524) (-3103 . 306496) (-3104 . 306249)
- (-3105 . 305819) (-3106 . 305257) (-3107 . 305192) (-3108 . 304982)
- (-3109 . 304886) (-3110 . 304389) (-3111 . 304323) (-3112 . 304152)
- (-3113 . 304007) (-3114 . 303941) (-3115 . 303691) (-3116 . 303572)
- (-3117 . 303504) (-3118 . 302942) (-3119 . 302842) (-3120 . 302724)
- (-3121 . 302616) (-3122 . 302411) (-3123 . 302186) (-3124 . 301913)
- (-3125 . 301774) (-3126 . 301719) (-3127 . 301556) (-3128 . 300881)
- (-3129 . 300807) (-3130 . 300498) (-3131 . 300441) (-3132 . 300389)
- (-3133 . 300336) (-3134 . 300157) (-3135 . 300106) (-3136 . 300047)
- (-3137 . 299372) (-3138 . 299154) (-3139 . 299031) (-3140 . 298841)
- (-3141 . 298258) (-3142 . 297908) (-3143 . 297738) (-3144 . 297637)
- (-3145 . 297582) (-3146 . 296907) (-3147 . 296827) (-3148 . 296753)
- (-3149 . 296674) (-3150 . 296287) (-3151 . 296169) (-3152 . 295990)
- (-3153 . 295920) (-3154 . 295762) (-3155 . 295431) (-3156 . 294868)
- (-3157 . 294797) (-3158 . 294703) (-3159 . 294476) (-3160 . 294403)
- (-3161 . 294258) (-3162 . 294202) (-3163 . 293720) (-3164 . 293216)
- (-3165 . 293021) (-3166 . 292458) (-3167 . 292395) (-3168 . 292309)
- (-3169 . 292138) (-3170 . 292104) (-3171 . 291997) (-3172 . 291923)
- (-3173 . 291800) (-3174 . 291659) (-3175 . 291096) (-3176 . 291026)
- (-3177 . 290922) (-3178 . 290757) (-3179 . 290647) (-3180 . 290405)
- (-3181 . 290241) (-3182 . 290093) (-3183 . 289531) (-3184 . 289142)
- (-3185 . 288951) (-3186 . 288818) (-3187 . 288720) (-3188 . 288234)
- (-3189 . 288081) (-3190 . 287986) (-3191 . 287780) (-3192 . 287678)
- (-3193 . 287116) (-3194 . 287021) (-3195 . 286822) (-3196 . 286743)
- (-3197 . 286579) (-3198 . 286413) (-3199 . 286319) (-3200 . 285757)
- (-3201 . 285540) (-3202 . 285268) (-3203 . 285191) (-3204 . 284935)
- (-3205 . 284811) (-3206 . 284777) (-3207 . 284557) (-3208 . 284402)
- (-3209 . 281621) (-3210 . 281566) (-3211 . 281004) (-3212 . 280952)
- (-3213 . 280806) (-3214 . 280712) (-3215 . 280630) (-3216 . 280483)
- (-3217 . 280455) (-3218 . 280358) (-3219 . 280306) (-3220 . 279994)
- (-3221 . 279432) (-3222 . 279347) (-3223 . 279210) (-3224 . 278664)
- (-3225 . 278539) (-3226 . 278380) (-3227 . 278274) (-3228 . 278041)
- (-3229 . 278013) (-3230 . 277858) (-3231 . 277799) (-3232 . 277639)
- (-3233 . 277508) (-3234 . 277248) (-3235 . 277144) (-3236 . 276990)
- (-3237 . 276867) (-3238 . 276268) (-3239 . 276186) (-3240 . 276154)
- (-3241 . 276092) (-3242 . 276039) (-3243 . 275816) (-3244 . 273848)
- (-3245 . 273796) (-3246 . 273768) (-3247 . 273352) (-3248 . 272905)
- (-3249 . 272610) (-3250 . 272417) (-3251 . 272365) (-3252 . 271941)
- (-3253 . 271639) (-3254 . 271487) (-3255 . 271327) (-3256 . 270861)
- (-3257 . 270487) (-3258 . 270239) (-3259 . 270054) (-3260 . 269889)
- (-3261 . 269775) (-3262 . 269271) (-3263 . 269038) (-3264 . 268904)
- (-3265 . 268537) (-3266 . 268399) (-3267 . 267583) (-3268 . 267500)
- (-3269 . 267181) (-3270 . 267015) (-3271 . 266648) (-3272 . 266507)
- (-3273 . 266406) (-3274 . 266261) (-3275 . 266057) (-3276 . 266003)
- (-3277 . 265575) (-3278 . 265415) (-3279 . 265305) (-3280 . 265149)
- (-3281 . 265054) (-3282 . 264769) (-3283 . 264616) (-3284 . 264391)
- (-3285 . 264278) (-3286 . 263861) (-3287 . 263775) (-3288 . 263545)
- (-3289 . 263435) (-3290 . 263299) (-3291 . 262984) (-3292 . 262910)
- (-3293 . 262822) (-3294 . 262688) (-3295 . 262616) (-3296 . 262489)
- (-3297 . 262434) (-3298 . 262384) (-3299 . 262331) (-3300 . 261948)
- (-3301 . 261745) (-3302 . 259967) (-3303 . 259911) (-3304 . 259852)
- (-3305 . 259824) (-3306 . 259736) (-3307 . 259555) (-3308 . 259485)
- (-3309 . 259341) (-3310 . 259188) (-3311 . 259050) (-3312 . 258939)
- (-3313 . 258770) (-3314 . 258720) (-3315 . 258132) (-3316 . 258025)
- (-3317 . 257058) (-3318 . 257005) (-3319 . 256850) (-3320 . 256555)
- (-3321 . 256022) (-3322 . 255859) (-3323 . 255787) (-3324 . 255704)
- (-3325 . 255522) (-3326 . 255355) (-3327 . 255069) (-3328 . 254642)
- (-3329 . 254585) (-3330 . 254333) (-3331 . 254280) (-3332 . 254227)
- (-3333 . 254025) (-3334 . 253972) (-3335 . 253691) (-3336 . 253481)
- (-3337 . 253410) (-3338 . 253243) (-3339 . 252996) (-3340 . 252760)
- (-3341 . 252276) (-3342 . 252103) (-3343 . 252051) (-3344 . 251979)
- (-3345 . 251900) (-3346 . 251512) (-3347 . 251260) (-3348 . 251097)
- (-3349 . 250937) (-3350 . 250450) (-3351 . 250307) (-3352 . 250089)
- (-3353 . 249994) (-3354 . 249572) (-3355 . 249165) (-3356 . 249106)
- (-3357 . 249001) (-3358 . 248708) (-3359 . 248260) (-3360 . 247939)
- (-3361 . 247826) (-3362 . 247689) (-3363 . 246953) (-3364 . 246886)
- (-3365 . 246790) (-3366 . 246474) (-3367 . 246330) (-3368 . 245936)
- (-3369 . 245773) (-3370 . 245598) (-3371 . 245427) (-3372 . 245281)
- (-3373 . 245154) (-3374 . 245062) (-3375 . 244904) (-3376 . 244755)
- (-3377 . 244598) (-3378 . 244482) (-3379 . 244409) (-3380 . 244306)
- (-3381 . 244250) (-3382 . 244035) (-3383 . 243840) (-3384 . 243787)
- (-3385 . 243734) (-3386 . 243447) (-3387 . 243317) (-3388 . 243201)
- (-3389 . 242991) (-3390 . 242935) (-3391 . 242869) (-3392 . 242227)
- (-3393 . 241934) (-3394 . 241712) (-3395 . 241599) (-3396 . 241441)
- (-3397 . 241243) (-3398 . 241139) (-3399 . 241077) (-3400 . 240993)
- (-3401 . 240775) (-3402 . 240562) (-3403 . 240500) (-3404 . 240433)
- (-3405 . 240339) (-3406 . 240267) (-3407 . 240230) (-3408 . 240100)
- (-3409 . 239872) (-3410 . 239819) (-3411 . 239706) (-3412 . 239298)
- (-3413 . 239245) (-3414 . 239193) (-3415 . 239090) (-3416 . 238969)
- (-3417 . 238659) (-3418 . 238456) (-3419 . 238385) (-3420 . 238278)
- (-3421 . 238170) (-3422 . 238070) (-3423 . 237982) (-3424 . 237898)
- (-3425 . 237490) (-3426 . 237335) (-3427 . 237222) (-3428 . 237069)
- (-3429 . 236801) (-3430 . 236747) (-3431 . 235599) (-3432 . 235520)
- (-3433 . 235443) (-3434 . 235203) (-3435 . 235085) (-3436 . 234493)
- (-3437 . 234398) (-3438 . 234315) (-3439 . 234076) (-3440 . 233910)
- (-3441 . 233811) (-3442 . 233732) (-3443 . 233680) (-3444 . 233457)
- (-3445 . 233388) (-3446 . 233328) (-3447 . 233254) (-3448 . 233187)
- (-3449 . 233092) (-3450 . 232984) (-3451 . 232888) (-3452 . 232804)
- (-3453 . 232731) (-3454 . 231852) (-3455 . 231757) (-3456 . 231155)
- (-3457 . 231085) (-3458 . 230617) (-3459 . 230454) (-3460 . 230295)
- (-3461 . 230196) (-3462 . 230101) (-3463 . 229610) (-3464 . 229509)
- (-3465 . 229392) (-3466 . 229358) (-3467 . 229212) (-3468 . 228967)
- (-3469 . 228904) (-3470 . 228665) (-3471 . 228593) (-3472 . 228549)
- (-3473 . 228120) (-3474 . 227798) (-3475 . 227667) (-3476 . 227587)
- (-3477 . 226829) (-3478 . 226746) (-3479 . 226632) (-3480 . 226391)
- (-3481 . 226276) (-3482 . 226069) (-3483 . 225332) (-3484 . 225266)
- (-3485 . 225210) (-3486 . 225115) (-3487 . 224909) (-3488 . 224857)
- (-3489 . 224760) (-3490 . 224686) (-3491 . 224549) (-3492 . 224370)
- (-3493 . 224131) (-3494 . 223883) (-3495 . 223791) (-3496 . 223421)
- (-3497 . 223317) (-3498 . 222941) (-3499 . 222767) (-3500 . 222471)
- (-3501 . 221876) (-3502 . 221708) (-3503 . 221485) (-3504 . 221245)
- (-3505 . 221186) (-3506 . 221058) (-3507 . 221030) (-3508 . 220981)
- (-3509 . 220535) (-3510 . 220431) (-3511 . 220376) (-3512 . 220280)
- (-3513 . 219834) (-3514 . 219806) (-3515 . 219042) (-3516 . 218710)
- (-3517 . 218492) (-3518 . 218327) (-3519 . 218246) (-3520 . 218191)
- (-3521 . 217891) (-3522 . 217796) (-3523 . 217743) (-3524 . 217314)
- (-3525 . 217219) (-3526 . 217137) (-3527 . 217018) (-3528 . 216847)
- (-3529 . 216710) (-3530 . 216585) (-3531 . 216507) (-3532 . 216436)
- (-3533 . 216368) (-3534 . 216340) (-3535 . 216167) (-3536 . 215935)
- (-3537 . 215825) (-3538 . 215506) (-3539 . 215325) (-3540 . 215180)
- (-3541 . 215018) (-3542 . 214966) (-3543 . 214881) (-3544 . 214802)
- (-3545 . 214702) (-3546 . 214576) (-3547 . 214418) (-3548 . 214332)
- (-3549 . 213728) (-3550 . 213629) (-3551 . 213555) (-3552 . 213472)
- (-3553 . 213384) (-3554 . 213214) (-3555 . 213162) (-3556 . 213014)
- (-3557 . 212933) (-3558 . 212615) (-3559 . 212456) (-3560 . 212319)
- (-3561 . 212246) (-3562 . 212026) (-3563 . 211957) (-3564 . 211823)
- (-3565 . 211719) (-3566 . 211556) (-3567 . 211482) (-3568 . 211361)
- (-3569 . 211152) (-3570 . 210893) (-3571 . 210551) (-3572 . 210246)
- (-3573 . 209917) (-3574 . 208187) (-3575 . 208137) (-3576 . 207845)
- (-3577 . 207721) (-3578 . 207647) (-3579 . 206219) (-3580 . 206019)
- (-3581 . 205966) (-3582 . 205813) (-3583 . 205498) (-3584 . 205273)
- (-3585 . 205019) (-3586 . 204918) (-3587 . 204864) (-3588 . 204684)
- (-3589 . 204615) (-3590 . 203825) (-3591 . 203716) (-3592 . 203340)
- (-3593 . 203280) (-3594 . 203091) (-3595 . 203017) (-3596 . 202934)
- (-3597 . 202864) (-3598 . 202766) (-3599 . 202700) (-3600 . 202536)
- (-3601 . 202395) (-3602 . 202257) (-3603 . 202159) (-3604 . 201911)
- (-3605 . 201877) (-3606 . 201781) (-3607 . 201629) (-3608 . 200327)
- (-3609 . 200272) (-3610 . 200131) (-3611 . 200047) (-3612 . 199912)
- (-3613 . 199627) (-3614 . 199413) (-3615 . 199357) (-3616 . 199241)
- (-3617 . 198957) (-3618 . 198834) (-3619 . 198574) (-3620 . 198469)
- (-3621 . 198392) (-3622 . 198236) (-3623 . 198078) (-3624 . 197838)
- (-3625 . 197205) (-3626 . 196953) (-3627 . 196824) (-3628 . 196684)
- (-3629 . 196283) (-3630 . 196230) (-3631 . 196129) (-3632 . 195820)
- (-3633 . 195574) (-3634 . 195456) (-3635 . 195312) (-3636 . 195146)
- (-3637 . 195067) (-3638 . 191004) (-3639 . 190828) (-3640 . 190618)
- (-3641 . 190326) (-3642 . 190237) (-3643 . 189991) (-3644 . 189473)
- (-3645 . 189394) (-3646 . 189176) (-3647 . 189021) (-3648 . 188969)
- (-3649 . 188856) (-3650 . 188668) (-3651 . 188397) (-3652 . 188237)
- (-3653 . 188118) (-3654 . 188023) (-3655 . 187950) (-3656 . 187743)
- (-3657 . 187473) (-3658 . 186876) (-3659 . 186848) (-3660 . 186795)
- (-3661 . 186761) (-3662 . 186542) (-3663 . 186199) (-3664 . 186122)
- (-3665 . 185975) (-3666 . 185869) (-3667 . 185810) (-3668 . 185642)
- (-3669 . 185559) (-3670 . 185403) (-3671 . 184795) (-3672 . 184737)
- (-3673 . 184633) (-3674 . 184512) (-3675 . 183514) (-3676 . 183358)
- (-3677 . 183272) (-3678 . 183167) (-3679 . 183107) (-3680 . 182675)
- (-3681 . 182493) (-3682 . 182401) (-3683 . 182248) (-3684 . 182099)
- (-3685 . 179754) (-3686 . 179720) (-3687 . 179378) (-3688 . 179251)
- (-3689 . 179150) (-3690 . 178396) (-3691 . 178265) (-3692 . 178102)
- (-3693 . 177960) (-3694 . 177602) (-3695 . 177521) (-3696 . 177465)
- (-3697 . 177174) (-3698 . 177058) (-3699 . 176914) (-3700 . 176886)
- (-3701 . 176820) (-3702 . 176749) (-3703 . 176631) (-3704 . 176501)
- (-3705 . 176437) (-3706 . 176378) (-3707 . 176199) (-3708 . 175772)
- (-3709 . 175648) (-3710 . 175546) (-3711 . 175428) (-3712 . 175243)
- (-3713 . 175117) (-3714 . 175031) (-3715 . 174935) (-3716 . 174118)
- (-3717 . 173692) (-3718 . 173610) (-3719 . 173537) (-3720 . 173477)
- (-3721 . 173422) (-3722 . 173294) (-3723 . 173187) (-3724 . 173098)
- (-3725 . 172880) (-3726 . 172796) (-3727 . 172710) (-3728 . 172530)
- (-3729 . 172092) (-3730 . 171964) (-3731 . 171737) (-3732 . 171163)
- (-3733 . 171051) (-3734 . 170832) (-3735 . 170779) (-3736 . 170747)
- (-3737 . 170625) (-3738 . 170567) (-3739 . 170427) (-3740 . 170298)
- (-3741 . 170066) (-3742 . 169070) (-3743 . 168742) (-3744 . 168533)
- (-3745 . 168422) (-3746 . 168321) (-3747 . 168272) (-3748 . 168142)
- (-3749 . 167982) (-3750 . 167723) (-3751 . 167670) (-3752 . 167554)
- (-3753 . 163012) (-3754 . 162832) (-3755 . 162761) (-3756 . 162666)
- (-3757 . 162560) (-3758 . 162464) (-3759 . 162285) (-3760 . 162201)
- (-3761 . 161976) (-3762 . 161815) (-3763 . 161625) (-3764 . 161504)
- (-3765 . 161328) (-3766 . 161133) (-3767 . 161048) (-3768 . 160721)
- (-3769 . 160635) (-3770 . 160355) (-3771 . 160302) (-3772 . 160196)
- (-3773 . 160119) (-3774 . 160004) (-3775 . 159530) (-3776 . 159448)
- (-3777 . 159263) (-3778 . 159229) (-3779 . 159146) (-3780 . 159066)
- (-3781 . 159037) (-3782 . 158618) (-3783 . 158475) (-3784 . 158373)
- (-3785 . 157811) (-3786 . 157390) (-3787 . 157313) (-3788 . 156610)
- (-3789 . 156531) (-3790 . 156448) (-3791 . 156340) (-3792 . 156005)
- (-3793 . 155907) (-3794 . 155067) (-3795 . 154987) (-3796 . 154823)
- (-3797 . 153981) (-3798 . 152903) (-3799 . 152872) (-3800 . 152812)
- (-3801 . 152699) (-3802 . 152387) (-3803 . 152204) (-3804 . 152123)
- (-3805 . 152068) (-3806 . 151980) (-3807 . 151725) (-3808 . 151673)
- (-3809 . 151489) (-3810 . 151286) (-3811 . 151112) (-3812 . 150516)
- (-3813 . 150387) (-3814 . 150251) (-3815 . 149763) (-3816 . 149708)
- (-3817 . 149538) (-3818 . 149485) (-3819 . 149391) (-3820 . 149292)
- (-3821 . 149206) (-3822 . 147760) (-3823 . 147586) (-3824 . 147292)
- (-3825 . 147151) (-3826 . 147016) (-3827 . 146957) (-3828 . 146874)
- (-3829 . 132786) (-3830 . 132664) (-3831 . 132486) (-3832 . 132405)
- (-3833 . 131880) (-3834 . 131719) (-3835 . 131638) (-3836 . 131545)
- (-3837 . 131349) (-3838 . 131286) (-3839 . 130883) (-3840 . 130749)
- (-3841 . 130654) (-3842 . 130597) (-3843 . 130492) (-3844 . 130422)
- (-3845 . 130212) (-3846 . 130162) (-3847 . 130074) (-3848 . 130012)
- (-3849 . 129887) (-3850 . 129819) (-3851 . 129667) (-3852 . 129501)
- (-3853 . 129307) (-3854 . 129175) (-3855 . 129094) (-3856 . 129041)
- (-3857 . 128970) (-3858 . 128942) (-3859 . 128841) (-3860 . 128647)
- (-3861 . 128524) (-3862 . 128365) (-3863 . 128241) (-3864 . 127890)
- (-3865 . 127791) (-3866 . 127742) (-3867 . 127549) (-3868 . 127476)
- (-3869 . 127424) (-3870 . 127323) (-3871 . 127264) (-3872 . 127162)
- (-3873 . 127061) (-3874 . 126918) (-3875 . 125997) (-3876 . 125340)
- (-3877 . 125267) (-3878 . 125146) (-3879 . 125068) (-3880 . 124892)
- (-3881 . 124587) (-3882 . 124501) (-3883 . 124367) (-3884 . 124228)
- (-3885 . 124083) (-3886 . 124000) (-3887 . 123921) (-3888 . 123818)
- (-3889 . 123745) (-3890 . 123565) (-3891 . 123472) (-3892 . 123157)
- (-3893 . 119490) (-3894 . 119316) (-3895 . 119264) (-3896 . 119084)
- (-3897 . 118904) (-3898 . 118805) (-3899 . 118650) (-3900 . 118508)
- (-3901 . 118309) (-3902 . 118222) (-3903 . 118153) (-3904 . 118008)
- (-3905 . 117808) (-3906 . 117357) (-3907 . 117298) (-3908 . 117204)
- (-3909 . 117121) (-3910 . 116922) (-3911 . 116349) (-3912 . 115979)
- (-3913 . 115752) (-3914 . 115569) (-3915 . 115490) (-3916 . 115388)
- (-3917 . 115335) (-3918 . 114695) (-3919 . 114663) (-3920 . 114323)
- (-3921 . 114258) (-3922 . 114134) (-3923 . 114004) (-3924 . 113948)
- (-3925 . 113892) (-3926 . 113784) (-3927 . 113555) (-3928 . 113483)
- (-3929 . 113365) (-3930 . 113292) (-3931 . 113082) (-3932 . 112989)
- (-3933 . 112907) (-3934 . 112855) (-3935 . 112786) (-3936 . 112644)
- (-3937 . 112508) (-3938 . 112365) (-3939 . 112294) (-3940 . 112198)
- (-3941 . 111862) (-3942 . 111789) (-3943 . 111661) (-3944 . 111326)
- (-3945 . 111223) (-3946 . 110023) (-3947 . 109749) (-3948 . 109696)
- (-3949 . 109644) (-3950 . 109560) (-3951 . 109371) (-3952 . 109170)
- (-3953 . 109114) (-3954 . 108934) (-3955 . 108803) (-3956 . 108751)
- (-3957 . 108699) (-3958 . 107581) (-3959 . 107482) (-3960 . 107388)
- (-3961 . 107246) (-3962 . 107179) (-3963 . 106845) (-3964 . 106300)
- (-3965 . 106198) (-3966 . 106136) (-3967 . 105823) (-3968 . 105646)
- (-3969 . 105413) (-3970 . 105101) (-3971 . 105016) (-3972 . 104974)
- (-3973 . 104942) (-3974 . 104756) (-3975 . 104606) (-3976 . 104518)
- (-3977 . 104490) (-3978 . 104375) (-3979 . 104319) (-3980 . 103977)
- (-3981 . 103731) (-3982 . 103524) (-3983 . 103191) (-3984 . 103059)
- (-3985 . 102964) (-3986 . 102756) (-3987 . 102703) (-3988 . 102647)
- (-3989 . 102517) (-3990 . 102462) (-3991 . 102383) (-3992 . 102255)
- (-3993 . 102178) (-3994 . 102005) (-3995 . 101846) (-3996 . 101672)
- (-3997 . 101585) (-3998 . 101528) (-3999 . 101455) (-4000 . 101324)
- (-4001 . 101147) (-4002 . 100611) (-4003 . 100525) (-4004 . 100379)
- (-4005 . 100314) (-4006 . 99842) (-4007 . 99783) (-4008 . 99464)
- (-4009 . 97683) (-4010 . 97609) (-4011 . 97581) (-4012 . 97528)
- (-4013 . 96860) (-4014 . 96682) (-4015 . 96429) (-4016 . 96328)
- (-4017 . 96258) (-4018 . 96032) (-4019 . 95942) (-4020 . 95812)
- (-4021 . 95189) (-4022 . 94435) (-4023 . 94220) (-4024 . 94157)
- (-4025 . 94106) (-4026 . 94037) (-4027 . 93911) (-4028 . 93837)
- (-4029 . 93685) (-4030 . 93602) (-4031 . 93504) (-4032 . 93424)
- (-4033 . 93255) (-4034 . 93206) (-4035 . 92987) (-4036 . 92820)
- (-4037 . 92732) (-4038 . 92650) (-4039 . 92526) (-4040 . 92428)
- (-4041 . 92327) (-4042 . 92204) (-4043 . 91958) (-4044 . 91898)
- (-4045 . 91743) (-4046 . 91530) (-4047 . 91434) (-4048 . 91335)
- (-4049 . 90768) (-4050 . 90493) (-4051 . 90350) (-4052 . 90243)
- (-4053 . 90187) (-4054 . 89825) (-4055 . 89709) (-4056 . 89587)
- (-4057 . 89426) (-4058 . 89250) (-4059 . 89151) (-4060 . 89057)
- (-4061 . 88984) (-4062 . 88901) (-4063 . 88519) (-4064 . 88340)
- (-4065 . 88177) (-4066 . 88092) (-4067 . 87937) (-4068 . 87733)
- (-4069 . 87638) (-4070 . 87541) (-4071 . 87423) (-4072 . 87127)
- (-4073 . 86750) (-4074 . 86566) (-4075 . 86304) (-4076 . 86185)
- (-4077 . 86044) (-4078 . 86015) (-4079 . 85916) (-4080 . 85815)
- (-4081 . 85634) (-4082 . 85455) (-4083 . 84931) (-4084 . 84860)
- (-4085 . 84828) (-4086 . 84760) (-4087 . 84689) (-4088 . 84442)
- (-4089 . 83883) (-4090 . 83826) (-4091 . 83438) (-4092 . 83079)
- (-4093 . 82941) (-4094 . 82591) (-9 . 82563) (-4096 . 82466)
- (-4097 . 82248) (-4098 . 82196) (-4099 . 82128) (-4100 . 81930)
- (-4101 . 81763) (-4102 . 81489) (-4103 . 81187) (-4104 . 80628)
- (-4105 . 80554) (-4106 . 80468) (-4107 . 80306) (-4108 . 79885)
- (-4109 . 79819) (-8 . 79791) (-4111 . 79717) (-4112 . 79561)
- (-4113 . 79509) (-4114 . 78832) (-4115 . 78758) (-4116 . 78580)
- (-4117 . 78276) (-4118 . 78203) (-4119 . 77911) (-4120 . 77813)
- (-4121 . 77399) (-4122 . 77092) (-7 . 77064) (-4124 . 77012)
- (-4125 . 76900) (-4126 . 76769) (-4127 . 76650) (-4128 . 76550)
- (-4129 . 76425) (-4130 . 76176) (-4131 . 76104) (-4132 . 57529)
- (-4133 . 57310) (-4134 . 57239) (-4135 . 56701) (-4136 . 55113)
- (-4137 . 54916) (-4138 . 54488) (-4139 . 54419) (-4140 . 54254)
- (-4141 . 54079) (-4142 . 54013) (-4143 . 53879) (-4144 . 53782)
- (-4145 . 53702) (-4146 . 53589) (-4147 . 50768) (-4148 . 50644)
- (-4149 . 50532) (-4150 . 50336) (-4151 . 50272) (-4152 . 49669)
- (-4153 . 49373) (-4154 . 49295) (-4155 . 49166) (-4156 . 49065)
- (-4157 . 48996) (-4158 . 48940) (-4159 . 48870) (-4160 . 48790)
- (-4161 . 48738) (-4162 . 48356) (-4163 . 48295) (-4164 . 48068)
- (-4165 . 47988) (-4166 . 47886) (-4167 . 47858) (-4168 . 47826)
- (-4169 . 47723) (-4170 . 47485) (-4171 . 47331) (-4172 . 47299)
- (-4173 . 47131) (-4174 . 47079) (-4175 . 46864) (-4176 . 46749)
- (-4177 . 46606) (-4178 . 46525) (-4179 . 46446) (-4180 . 46368)
- (-4181 . 46260) (-4182 . 46174) (-4183 . 46073) (-4184 . 45837)
- (-4185 . 45749) (-4186 . 45626) (-4187 . 45487) (-4188 . 45272)
- (-4189 . 45138) (-4190 . 45031) (-4191 . 44937) (-4192 . 44885)
- (-4193 . 44811) (-4194 . 44603) (-4195 . 44252) (-4196 . 44199)
- (-4197 . 43326) (-4198 . 43252) (-4199 . 43153) (-4200 . 43059)
- (-4201 . 42852) (-4202 . 42731) (-4203 . 42598) (-4204 . 42506)
- (-4205 . 42303) (-4206 . 41928) (-4207 . 41344) (-4208 . 41038)
- (-4209 . 40876) (-4210 . 40821) (-4211 . 40733) (-4212 . 40630)
- (-4213 . 40564) (-4214 . 40503) (-4215 . 40450) (-4216 . 40355)
- (-4217 . 40240) (-4218 . 39324) (-4219 . 39151) (-4220 . 38724)
- (-4221 . 37862) (-4222 . 37733) (-4223 . 37639) (-4224 . 37478)
- (-4225 . 37394) (-4226 . 37176) (-4227 . 37057) (-4228 . 36962)
- (-4229 . 36902) (-4230 . 36478) (-4231 . 36408) (-4232 . 36241)
- (-4233 . 36146) (-4234 . 36061) (-4235 . 35960) (-4236 . 35826)
- (-4237 . 34624) (-4238 . 34485) (-4239 . 34426) (-4240 . 34346)
- (-4241 . 34250) (-4242 . 34105) (-4243 . 34034) (-4244 . 33672)
- (-4245 . 33620) (-4246 . 33465) (-4247 . 33410) (-4248 . 33304)
- (-4249 . 33160) (-4250 . 32992) (-4251 . 32894) (-4252 . 32836)
- (-4253 . 32652) (-4254 . 32618) (-4255 . 32235) (-4256 . 32075)
- (-4257 . 31973) (-4258 . 31870) (-4259 . 31842) (-4260 . 31724)
- (-4261 . 31675) (-4262 . 31086) (-4263 . 31033) (-4264 . 30999)
- (-4265 . 30915) (-4266 . 30717) (-4267 . 30645) (-4268 . 30253)
- (-4269 . 30160) (-4270 . 29767) (-4271 . 29676) (-4272 . 29602)
- (-4273 . 29391) (-4274 . 29203) (-4275 . 28988) (-4276 . 28616)
- (-4277 . 28170) (-4278 . 28007) (-4279 . 27891) (-4280 . 27673)
- (-4281 . 27620) (-4282 . 27187) (-4283 . 26980) (-4284 . 25676)
- (-4285 . 25602) (-4286 . 25539) (-4287 . 25479) (-4288 . 25199)
- (-4289 . 25115) (-4290 . 25012) (-4291 . 24945) (-4292 . 24524)
- (-4293 . 24098) (-4294 . 24017) (-4295 . 23821) (-4296 . 23691)
- (-4297 . 23638) (-4298 . 23434) (-4299 . 23312) (-4300 . 23253)
- (-4301 . 23180) (-4302 . 23083) (-4303 . 20856) (-4304 . 20416)
- (-4305 . 20089) (-4306 . 20017) (-4307 . 19791) (-4308 . 19739)
- (-4309 . 19702) (-4310 . 19606) (-4311 . 19533) (-4312 . 19353)
- (-4313 . 19298) (-4314 . 19269) (-4315 . 19145) (-4316 . 19051)
- (-4317 . 18958) (-4318 . 18678) (-4319 . 18560) (-4320 . 18489)
- (-4321 . 18460) (-4322 . 18389) (-4323 . 17297) (-4324 . 17205)
- (-4325 . 17127) (-4326 . 17042) (-4327 . 16596) (-4328 . 14740)
- (-4329 . 14662) (-4330 . 14592) (-4331 . 14524) (-4332 . 14341)
- (-4333 . 14102) (-4334 . 13750) (-4335 . 13450) (-4336 . 13202)
- (-4337 . 12886) (-4338 . 12829) (-4339 . 12712) (-4340 . 12634)
- (-4341 . 12476) (-4342 . 11933) (-4343 . 11850) (-4344 . 11691)
- (-4345 . 11548) (-4346 . 11470) (-4347 . 11397) (-4348 . 11097)
- (-4349 . 10851) (-4350 . 10785) (-4351 . 10652) (-4352 . 10494)
- (-4353 . 10336) (-4354 . 10144) (-4355 . 9963) (-4356 . 9805)
- (-4357 . 9518) (-4358 . 9136) (-4359 . 8964) (-4360 . 8655)
- (-4361 . 8035) (-4362 . 7905) (-4363 . 7809) (-4364 . 7757)
- (-4365 . 7524) (-4366 . 7450) (-4367 . 7270) (-4368 . 7182)
- (-4369 . 7098) (-4370 . 6961) (-4371 . 6323) (-4372 . 6221)
- (-4373 . 6114) (-4374 . 5954) (-4375 . 5749) (-4376 . 5652)
- (-4377 . 5201) (-4378 . 4809) (-4379 . 4751) (-4380 . 4699)
- (-4381 . 4668) (-4382 . 4582) (-4383 . 4512) (-4384 . 2256)
- (-4385 . 2161) (-4386 . 2084) (-4387 . 1646) (-4388 . 1573)
- (-4389 . 1487) (-4390 . 1356) (-4391 . 1272) (-4392 . 1189)
- (-4393 . 858) (-4394 . 714) (-4395 . 619) (-4396 . 188) (-4397 . 131)
- (-4398 . 30)) \ No newline at end of file
+ (-12 (-5 *2 (-645 (-52))) (-5 *1 (-894 *3)) (-4 *3 (-1102)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-4 *3 (-1067 *5 *6 *7))
+ (-5 *2 (-645 (-2 (|:| |val| (-112)) (|:| -2575 *4))))
+ (-5 *1 (-777 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))))
+((-1302 . 731803) (-1303 . 731721) (-1304 . 731563) (-1305 . 731419)
+ (-1306 . 730971) (-1307 . 730943) (-1308 . 730802) (-1309 . 730718)
+ (-1310 . 730665) (-1311 . 730234) (-1312 . 730184) (-1313 . 730071)
+ (-1314 . 730003) (-1315 . 729915) (-1316 . 729809) (-1317 . 726968)
+ (-1318 . 726761) (-1319 . 726624) (-1320 . 726374) (-1321 . 726277)
+ (-1322 . 726191) (-1323 . 726025) (-1324 . 725954) (-1325 . 725853)
+ (-1326 . 725661) (-1327 . 725542) (-1328 . 725464) (-1329 . 725309)
+ (-1330 . 725243) (-1331 . 725010) (-1332 . 724892) (-1333 . 724808)
+ (-1334 . 724674) (-1335 . 723898) (-1336 . 723843) (-1337 . 723760)
+ (-1338 . 723677) (-1339 . 723283) (-1340 . 723217) (-1341 . 723125)
+ (-1342 . 723009) (-1343 . 722754) (-1344 . 722599) (-1345 . 722439)
+ (-1346 . 722373) (-1347 . 722222) (-1348 . 722139) (-1349 . 722087)
+ (-1350 . 722059) (-1351 . 721999) (-1352 . 721946) (-1353 . 721517)
+ (-1354 . 721425) (-1355 . 721330) (-1356 . 721078) (-1357 . 721005)
+ (-1358 . 720953) (-1359 . 720331) (-1360 . 719812) (-1361 . 719759)
+ (-1362 . 719507) (-1363 . 719384) (-1364 . 719306) (-1365 . 719028)
+ (-1366 . 718942) (-1367 . 718776) (-1368 . 718554) (-1369 . 718481)
+ (-1370 . 718414) (-1371 . 718348) (-1372 . 718236) (-1373 . 717940)
+ (-1374 . 717863) (-1375 . 717716) (-1376 . 717577) (-1377 . 717413)
+ (-1378 . 717246) (-1379 . 717188) (-1380 . 716987) (-1381 . 716780)
+ (-1382 . 716707) (-1383 . 716619) (-1384 . 714763) (-1385 . 714735)
+ (-1386 . 714668) (-1387 . 714609) (-1388 . 714478) (-1389 . 714370)
+ (-1390 . 714262) (-1391 . 714203) (-1392 . 714069) (-1393 . 714016)
+ (-1394 . 713758) (-1395 . 713555) (-1396 . 713399) (-1397 . 713207)
+ (-1398 . 713094) (-1399 . 712483) (-1400 . 712388) (-1401 . 712215)
+ (-1402 . 712160) (-1403 . 712093) (-1404 . 711996) (-1405 . 711401)
+ (-1406 . 711160) (-1407 . 711062) (-1408 . 711005) (-1409 . 710734)
+ (-1410 . 710605) (-1411 . 710497) (-1412 . 709762) (-1413 . 709481)
+ (-1414 . 709222) (-1415 . 708915) (-1416 . 708813) (-1417 . 708724)
+ (-1418 . 708599) (-1419 . 708528) (-1420 . 708475) (-1421 . 708067)
+ (-1422 . 707780) (-1423 . 707523) (-1424 . 707245) (-1425 . 707048)
+ (-1426 . 706992) (-1427 . 706897) (-1428 . 706576) (-1429 . 706504)
+ (-1430 . 706448) (-1431 . 706221) (-1432 . 706086) (-1433 . 705985)
+ (-1434 . 705848) (-1435 . 705796) (-1436 . 705632) (-1437 . 705580)
+ (-1438 . 705307) (-1439 . 704965) (-1440 . 704841) (-1441 . 704784)
+ (-1442 . 704701) (-1443 . 704618) (-1444 . 704520) (-1445 . 704470)
+ (-1446 . 704421) (-1447 . 703719) (** . 700725) (-1449 . 700453)
+ (-1450 . 700359) (-1451 . 700079) (-1452 . 700027) (-1453 . 699941)
+ (-1454 . 699789) (-1455 . 699681) (-1456 . 699544) (-1457 . 699513)
+ (-1458 . 699339) (-1459 . 699308) (-1460 . 699222) (-1461 . 698949)
+ (-1462 . 698270) (-1463 . 698047) (-1464 . 697877) (-1465 . 697497)
+ (-1466 . 696946) (-1467 . 696918) (-1468 . 696817) (-1469 . 696749)
+ (-1470 . 696683) (-1471 . 696631) (-1472 . 696578) (-1473 . 696446)
+ (-1474 . 696342) (-1475 . 696240) (-1476 . 696155) (-1477 . 695972)
+ (-1478 . 695780) (-1479 . 695752) (-1480 . 695657) (-1481 . 695577)
+ (-1482 . 695500) (-1483 . 694799) (-1484 . 694546) (-1485 . 694463)
+ (-1486 . 694342) (-1487 . 693817) (-1488 . 693692) (-1489 . 693586)
+ (-1490 . 693169) (-1491 . 693068) (-1492 . 692953) (-1493 . 692867)
+ (-1494 . 692676) (-1495 . 692569) (-1496 . 692472) (-1497 . 692233)
+ (-1498 . 691921) (-1499 . 691868) (-1500 . 691804) (-1501 . 691707)
+ (-1502 . 691489) (-1503 . 689711) (-1504 . 689492) (-1505 . 689264)
+ (-1506 . 689208) (-1507 . 689003) (-1508 . 688845) (-1509 . 688640)
+ (-1510 . 688510) (-1511 . 688089) (-1512 . 688021) (-1513 . 687927)
+ (-1514 . 687803) (-1515 . 687708) (-1516 . 687456) (-1517 . 687404)
+ (-1518 . 687375) (-1519 . 687008) (-1520 . 686912) (-1521 . 686776)
+ (-1522 . 686309) (-1523 . 686057) (-1524 . 685914) (-1525 . 685841)
+ (-1526 . 685809) (-1527 . 685524) (-1528 . 685366) (-1529 . 685186)
+ (-1530 . 685080) (-1531 . 684761) (-1532 . 684596) (-1533 . 684514)
+ (-1534 . 684401) (-1535 . 684066) (-1536 . 683958) (-1537 . 683872)
+ (-1538 . 683845) (-1539 . 683743) (-1540 . 683625) (-1541 . 683528)
+ (-1542 . 682775) (-1543 . 682485) (-1544 . 682365) (-1545 . 682241)
+ (-1546 . 681745) (-1547 . 681260) (-1548 . 681096) (-1549 . 680966)
+ (-1550 . 680770) (-1551 . 680691) (-1552 . 680477) (-1553 . 680374)
+ (-1554 . 680290) (-1555 . 680213) (-1556 . 679959) (-1557 . 679907)
+ (-1558 . 679806) (-1559 . 679688) (-1560 . 679540) (-1561 . 679381)
+ (-1562 . 679282) (-1563 . 679213) (-1564 . 678624) (-1565 . 678327)
+ (-1566 . 677784) (-1567 . 677668) (-1568 . 677495) (-1569 . 677339)
+ (-1570 . 677270) (-1571 . 677024) (-1572 . 676266) (-1573 . 676181)
+ (-1574 . 676153) (-1575 . 675992) (-1576 . 675933) (-1577 . 675682)
+ (-1578 . 675519) (-1579 . 675339) (-1580 . 675266) (-1581 . 675210)
+ (-1582 . 675069) (-1583 . 674871) (-1584 . 674561) (-1585 . 674473)
+ (-1586 . 674355) (-1587 . 674302) (-1588 . 673920) (-1589 . 673787)
+ (-1590 . 673732) (-1591 . 673513) (-1592 . 673461) (-1593 . 673400)
+ (-1594 . 673332) (-1595 . 673276) (-1596 . 673173) (-1597 . 673049)
+ (-1598 . 672811) (-1599 . 672421) (-1600 . 671833) (-1601 . 671745)
+ (-1602 . 671520) (-1603 . 671443) (-1604 . 671384) (-1605 . 670567)
+ (-1606 . 670488) (-1607 . 670395) (-1608 . 670284) (-1609 . 670117)
+ (-1610 . 670022) (-1611 . 669879) (-1612 . 669699) (-1613 . 669474)
+ (-1614 . 669411) (-1615 . 669265) (-1616 . 667103) (-1617 . 667050)
+ (-1618 . 666708) (-1619 . 666479) (-1620 . 666334) (-1621 . 666256)
+ (-1622 . 666173) (-1623 . 666033) (-1624 . 665880) (-1625 . 665814)
+ (-1626 . 665368) (-1627 . 664877) (-1628 . 664796) (-1629 . 664644)
+ (-1630 . 664546) (-1631 . 664495) (-1632 . 664417) (-1633 . 664257)
+ (-1634 . 664082) (-1635 . 663934) (-1636 . 663838) (-1637 . 663722)
+ (-1638 . 663641) (-1639 . 663470) (-1640 . 663418) (-1641 . 663314)
+ (-1642 . 663135) (-1643 . 663076) (-1644 . 662702) (-1645 . 662540)
+ (-1646 . 662433) (-1647 . 662253) (-1648 . 662094) (-1649 . 661859)
+ (-1650 . 661722) (-1651 . 661569) (-1652 . 661428) (-1653 . 661394)
+ (-1654 . 661196) (-1655 . 659415) (-1656 . 659311) (-1657 . 659167)
+ (-1658 . 659013) (-1659 . 658910) (-1660 . 658839) (-1661 . 658621)
+ (-1662 . 658556) (-1663 . 658349) (-1664 . 658033) (-1665 . 657903)
+ (-1666 . 657723) (-1667 . 657607) (-1668 . 657539) (-1669 . 657479)
+ (-1670 . 657337) (-1671 . 657285) (-1672 . 657006) (-1673 . 656889)
+ (-1674 . 656633) (-1675 . 656577) (-1676 . 656059) (-1677 . 655976)
+ (-1678 . 655875) (-1679 . 655732) (-1680 . 655546) (-1681 . 655439)
+ (-1682 . 655386) (-1683 . 655327) (-1684 . 655223) (-1685 . 655195)
+ (-1686 . 655098) (-1687 . 654998) (-1688 . 654885) (-1689 . 654785)
+ (-1690 . 654587) (-1691 . 654534) (-1692 . 654411) (-1693 . 654232)
+ (-1694 . 654158) (-1695 . 654077) (-1696 . 653980) (-1697 . 653766)
+ (-1698 . 653454) (-1699 . 653423) (-1700 . 653233) (-1701 . 652751)
+ (-1702 . 652723) (-1703 . 652607) (-1704 . 652122) (-1705 . 651613)
+ (-1706 . 651521) (-1707 . 651377) (-1708 . 651155) (-1709 . 651057)
+ (-1710 . 650962) (-1711 . 650861) (-1712 . 650802) (-1713 . 650575)
+ (-1714 . 650454) (-1715 . 650357) (-1716 . 650226) (-1717 . 650160)
+ (-1718 . 650016) (-1719 . 646435) (-1720 . 646339) (-1721 . 646142)
+ (-1722 . 645913) (-1723 . 645747) (-1724 . 645667) (-1725 . 645595)
+ (-1726 . 645507) (-1727 . 645434) (-1728 . 645406) (-1729 . 645204)
+ (-1730 . 645065) (-1731 . 644674) (-1732 . 644518) (-1733 . 644244)
+ (-1734 . 644022) (-1735 . 643967) (-1736 . 643884) (-1737 . 643812)
+ (-1738 . 642972) (-1739 . 642884) (-1740 . 642813) (-1741 . 642734)
+ (-1742 . 642555) (-1743 . 642236) (-1744 . 641989) (-1745 . 641923)
+ (-1746 . 641701) (-1747 . 641631) (-1748 . 641223) (-1749 . 641155)
+ (-1750 . 641021) (-1751 . 640677) (-1752 . 640549) (-1753 . 640389)
+ (-1754 . 640251) (-1755 . 640141) (-1756 . 639931) (-1757 . 639547)
+ (-1758 . 639275) (-1759 . 639079) (-1760 . 638964) (-1761 . 638850)
+ (-1762 . 638726) (-1763 . 638669) (-1764 . 638296) (-1765 . 638197)
+ (-1766 . 638049) (-1767 . 637977) (-1768 . 637840) (-1769 . 637690)
+ (-1770 . 637592) (-1771 . 637394) (-1772 . 636956) (-1773 . 636882)
+ (-1774 . 636784) (-1775 . 636729) (-1776 . 636526) (-1777 . 636402)
+ (-1778 . 635894) (-1779 . 635820) (-1780 . 635767) (-1781 . 635633)
+ (-1782 . 635466) (-1783 . 635371) (-1784 . 635205) (-1785 . 635131)
+ (-1786 . 635010) (-1787 . 634944) (-1788 . 634851) (-1789 . 634284)
+ (-1790 . 634119) (-1791 . 634048) (-1792 . 633730) (-1793 . 633226)
+ (-1794 . 633148) (-1795 . 633077) (-1796 . 632964) (-1797 . 632930)
+ (-1798 . 632767) (-1799 . 632715) (-1800 . 632606) (-1801 . 627438)
+ (-1802 . 627353) (-1803 . 626617) (-1804 . 626589) (-1805 . 626192)
+ (-1806 . 626136) (-1807 . 625999) (-1808 . 625946) (-1809 . 625792)
+ (-1810 . 625739) (-1811 . 625536) (-1812 . 625412) (-1813 . 625320)
+ (-1814 . 624139) (-1815 . 624065) (-1816 . 623952) (-1817 . 623788)
+ (-1818 . 623711) (-1819 . 623401) (-1820 . 623073) (-1821 . 621850)
+ (-1822 . 621816) (-1823 . 621761) (-1824 . 620997) (-1825 . 620741)
+ (-1826 . 620454) (-1827 . 620121) (-1828 . 620062) (-1829 . 620030)
+ (-1830 . 619948) (-1831 . 619864) (-1832 . 619782) (-1833 . 619723)
+ (-1834 . 619405) (-1835 . 619239) (-1836 . 619154) (-1837 . 618864)
+ (-1838 . 618758) (-1839 . 618643) (-1840 . 618449) (-1841 . 618231)
+ (-1842 . 618113) (-1843 . 618031) (-1844 . 618003) (-1845 . 617951)
+ (-1846 . 617771) (-1847 . 617626) (-1848 . 617492) (-1849 . 617110)
+ (-1850 . 616818) (-1851 . 616232) (-1852 . 615973) (-1853 . 615732)
+ (-1854 . 615649) (-1855 . 615444) (-1856 . 615372) (-1857 . 615293)
+ (-1858 . 615226) (-1859 . 615071) (-1860 . 614997) (-1861 . 614819)
+ (-1862 . 614724) (-1863 . 614599) (-1864 . 614351) (-1865 . 614297)
+ (-1866 . 614139) (-1867 . 613864) (-1868 . 613809) (-1869 . 613484)
+ (-1870 . 613005) (-1871 . 612935) (-1872 . 612715) (-1873 . 612559)
+ (-1874 . 611361) (-1875 . 611290) (-1876 . 611016) (-1877 . 610960)
+ (-1878 . 610882) (-1879 . 610702) (-1880 . 610650) (-1881 . 610579)
+ (-1882 . 610388) (-1883 . 610134) (-1884 . 610082) (-1885 . 609952)
+ (-1886 . 609757) (-1887 . 609618) (-1888 . 609566) (-1889 . 609438)
+ (-1890 . 609410) (-1891 . 609201) (-1892 . 609134) (-1893 . 608947)
+ (-1894 . 608894) (-1895 . 608841) (-1896 . 608683) (-1897 . 608412)
+ (-1898 . 607150) (-1899 . 607033) (-1900 . 606449) (-1901 . 606316)
+ (-1902 . 606231) (-1903 . 606202) (-1904 . 606006) (-1905 . 605977)
+ (-1906 . 605882) (-1907 . 605745) (-1908 . 605672) (-1909 . 604830)
+ (-1910 . 604757) (-1911 . 604488) (-1912 . 604422) (-1913 . 604120)
+ (-1914 . 603745) (-1915 . 603592) (-1916 . 603463) (-1917 . 603407)
+ (-1918 . 602877) (-1919 . 602810) (-1920 . 602682) (-1921 . 602583)
+ (-1922 . 602475) (-1923 . 602319) (-1924 . 602183) (-1925 . 601996)
+ (-1926 . 601864) (-1927 . 601701) (-1928 . 601492) (-1929 . 601351)
+ (-1930 . 601278) (-1931 . 601163) (-1932 . 601033) (-1933 . 600830)
+ (-1934 . 600714) (-1935 . 600637) (-1936 . 600584) (-1937 . 600252)
+ (-1938 . 596092) (-1939 . 595943) (-1940 . 595861) (-1941 . 595827)
+ (-1942 . 595597) (-1943 . 595563) (-1944 . 595510) (-1945 . 595143)
+ (-1946 . 594918) (-1947 . 594781) (-1948 . 594684) (-1949 . 594494)
+ (-1950 . 594352) (-1951 . 594275) (-1952 . 594151) (-1953 . 594058)
+ (-1954 . 593961) (-1955 . 593782) (-1956 . 593716) (-1957 . 593610)
+ (-1958 . 593495) (-1959 . 593394) (-1960 . 593335) (-1961 . 592942)
+ (-1962 . 592751) (-1963 . 592598) (-1964 . 591302) (-1965 . 591124)
+ (-1966 . 590969) (-1967 . 590547) (-1968 . 590245) (-1969 . 590159)
+ (-1970 . 590057) (-1971 . 589985) (-1972 . 589870) (-1973 . 589787)
+ (-1974 . 589205) (-1975 . 589047) (-1976 . 587797) (-1977 . 587765)
+ (-1978 . 587642) (-1979 . 587556) (-1980 . 587504) (-1981 . 587093)
+ (-1982 . 587044) (-1983 . 586657) (-1984 . 586547) (-1985 . 586487)
+ (-1986 . 586226) (-1987 . 586046) (-1988 . 585667) (-1989 . 585397)
+ (-1990 . 585294) (-1991 . 585096) (-1992 . 584760) (-1993 . 584379)
+ (-1994 . 584316) (-1995 . 584163) (-1996 . 584005) (-1997 . 583946)
+ (-1998 . 583372) (-1999 . 583344) (-2000 . 583226) (-2001 . 582908)
+ (-2002 . 582736) (-2003 . 582599) (-2004 . 581507) (-2005 . 581145)
+ (-2006 . 581026) (-2007 . 580380) (-2008 . 580271) (-2009 . 580026)
+ (-2010 . 579726) (-2011 . 579573) (-2012 . 579398) (-2013 . 578328)
+ (-2014 . 578275) (-2015 . 578155) (-2016 . 577937) (-2017 . 577345)
+ (-2018 . 577292) (-2019 . 577221) (-2020 . 577044) (-2021 . 576879)
+ (-2022 . 576668) (-2023 . 576460) (-2024 . 576245) (-2025 . 576157)
+ (-2026 . 576039) (-2027 . 575968) (-2028 . 575899) (-2029 . 575681)
+ (-2030 . 575479) (-2031 . 575321) (-2032 . 574855) (-2033 . 574803)
+ (-2034 . 574650) (-2035 . 574587) (-2036 . 574200) (-2037 . 574131)
+ (-2038 . 574060) (-2039 . 573677) (-2040 . 573510) (-2041 . 573339)
+ (-2042 . 573198) (-2043 . 573121) (-2044 . 572999) (-2045 . 572898)
+ (-2046 . 572825) (-2047 . 572788) (-2048 . 572702) (-2049 . 572558)
+ (-2050 . 572379) (-2051 . 567041) (-2052 . 566875) (-2053 . 566750)
+ (-2054 . 566695) (-2055 . 566546) (-2056 . 566450) (-2057 . 566307)
+ (-2058 . 566235) (-2059 . 566137) (-2060 . 566054) (-2061 . 565975)
+ (-2062 . 565845) (-2063 . 565771) (-2064 . 564884) (-2065 . 564477)
+ (-2066 . 564269) (-2067 . 564174) (-2068 . 563896) (-2069 . 563587)
+ (-2070 . 563510) (-2071 . 563443) (-2072 . 563222) (-2073 . 563170)
+ (-2074 . 562930) (-2075 . 562877) (-2076 . 562764) (-2077 . 562657)
+ (-2078 . 562625) (-2079 . 562473) (-2080 . 562199) (-2081 . 561607)
+ (-2082 . 561526) (-2083 . 561277) (-2084 . 561191) (-2085 . 561066)
+ (-2086 . 561038) (-2087 . 560897) (-2088 . 560838) (-2089 . 560727)
+ (-2090 . 560599) (-2091 . 560513) (-2092 . 560354) (-2093 . 560222)
+ (-2094 . 560166) (-2095 . 559894) (-2096 . 559800) (-2097 . 559727)
+ (-2098 . 559541) (-2099 . 559442) (-2100 . 559379) (-2101 . 559173)
+ (-2102 . 559027) (-2103 . 558972) (-2104 . 558838) (-2105 . 558764)
+ (-2106 . 558654) (-2107 . 558570) (-2108 . 558515) (-2109 . 558343)
+ (-2110 . 558096) (-2111 . 557720) (-2112 . 557647) (-2113 . 557575)
+ (-2114 . 557471) (-2115 . 557120) (-2116 . 557067) (-2117 . 556868)
+ (-2118 . 556739) (-2119 . 556661) (-2120 . 556542) (-2121 . 556478)
+ (-2122 . 555974) (-2123 . 555835) (-2124 . 555402) (-2125 . 555248)
+ (-2126 . 555182) (-2127 . 555112) (-2128 . 555034) (-2129 . 555000)
+ (-2130 . 554821) (-2131 . 554708) (-2132 . 554592) (-2133 . 553440)
+ (-2134 . 552807) (-2135 . 552559) (-2136 . 552399) (-2137 . 552272)
+ (-2138 . 552137) (-2139 . 551622) (-2140 . 551477) (-2141 . 551324)
+ (-2142 . 551267) (-2143 . 551107) (-2144 . 550241) (-2145 . 550159)
+ (-2146 . 549832) (-2147 . 549722) (-2148 . 549662) (-2149 . 549535)
+ (-2150 . 549433) (-2151 . 549329) (-2152 . 548920) (-2153 . 548818)
+ (-2154 . 548715) (-2155 . 548637) (-2156 . 548506) (-2157 . 548447)
+ (-2158 . 548107) (-2159 . 548005) (-2160 . 547948) (-2161 . 547889)
+ (-2162 . 547707) (-2163 . 547612) (-2164 . 547516) (-2165 . 547466)
+ (-2166 . 547407) (-2167 . 547080) (-2168 . 547027) (-2169 . 546929)
+ (-2170 . 546272) (-2171 . 546235) (-2172 . 545859) (-2173 . 545758)
+ (-2174 . 545642) (-2175 . 545570) (-2176 . 545289) (-2177 . 545050)
+ (-2178 . 544900) (-2179 . 544799) (-2180 . 544669) (-2181 . 544586)
+ (-2182 . 544465) (-2183 . 544215) (-2184 . 544078) (-2185 . 543747)
+ (-2186 . 543668) (-2187 . 543639) (-2188 . 543605) (-2189 . 543430)
+ (-2190 . 541888) (-2191 . 541699) (-2192 . 541647) (-2193 . 541594)
+ (-2194 . 541319) (-2195 . 541062) (-2196 . 540933) (-2197 . 540714)
+ (-2198 . 540618) (-2199 . 540561) (-2200 . 540467) (-2201 . 540348)
+ (-2202 . 540293) (-2203 . 540155) (-2204 . 540012) (-2205 . 539959)
+ (-2206 . 539843) (-2207 . 539760) (-2208 . 539669) (-2209 . 539589)
+ (-2210 . 538409) (-2211 . 538339) (-2212 . 538244) (-2213 . 538123)
+ (-2214 . 537855) (-2215 . 537721) (-2216 . 537638) (-2217 . 537379)
+ (-2218 . 537320) (-2219 . 537105) (-2220 . 536995) (-2221 . 536932)
+ (-2222 . 536819) (-2223 . 536764) (-2224 . 536512) (-2225 . 536341)
+ (-2226 . 536061) (-2227 . 535890) (-2228 . 535745) (-2229 . 535664)
+ (-2230 . 535597) (-2231 . 534512) (-2232 . 534168) (-2233 . 534119)
+ (-2234 . 534036) (-2235 . 533851) (-2236 . 533756) (-2237 . 533610)
+ (-2238 . 533391) (-2239 . 533336) (-2240 . 532915) (-2241 . 532798)
+ (-2242 . 532696) (-2243 . 532615) (-2244 . 532531) (-2245 . 532358)
+ (-2246 . 532195) (-2247 . 531452) (-2248 . 531387) (-2249 . 531286)
+ (-2250 . 530925) (-2251 . 530798) (-2252 . 530679) (-2253 . 530606)
+ (-2254 . 530445) (-2255 . 530317) (-2256 . 530245) (-2257 . 530130)
+ (-2258 . 529877) (-2259 . 529597) (-2260 . 528918) (-2261 . 528759)
+ (-2262 . 528540) (-2263 . 528437) (-2264 . 528351) (-2265 . 528205)
+ (-2266 . 527906) (-2267 . 527687) (-2268 . 527529) (-2269 . 527348)
+ (-2270 . 527291) (-2271 . 527203) (-2272 . 527104) (-2273 . 527032)
+ (-2274 . 526804) (-2275 . 526518) (-2276 . 525888) (-2277 . 525677)
+ (-2278 . 525558) (-2279 . 525394) (-2280 . 525084) (-2281 . 524277)
+ (-2282 . 523928) (-2283 . 523854) (-2284 . 523724) (-2285 . 523657)
+ (-2286 . 523605) (-2287 . 523552) (-2288 . 523479) (-2289 . 523426)
+ (-2290 . 523369) (-2291 . 523254) (-2292 . 523201) (-2293 . 522813)
+ (-2294 . 522452) (-2295 . 522354) (-2296 . 522078) (-2297 . 521974)
+ (-2298 . 521866) (-2299 . 521792) (-2300 . 521428) (-2301 . 521320)
+ (-2302 . 521182) (-2303 . 521077) (-2304 . 520919) (-2305 . 520859)
+ (-2306 . 520736) (-2307 . 520705) (-2308 . 520364) (-2309 . 520290)
+ (-2310 . 520155) (-2311 . 520031) (-2312 . 519948) (-2313 . 519810)
+ (-2314 . 519660) (-2315 . 519564) (-2316 . 519427) (-2317 . 519212)
+ (-2318 . 518962) (-2319 . 518874) (-2320 . 518709) (-2321 . 518543)
+ (-2322 . 518448) (-2323 . 518370) (-2324 . 518293) (-2325 . 518186)
+ (-2326 . 518073) (-2327 . 517931) (-2328 . 517813) (-2329 . 517676)
+ (-2330 . 517547) (-2331 . 516745) (-2332 . 516664) (-2333 . 516551)
+ (-2334 . 515876) (-2335 . 515614) (-2336 . 515544) (-2337 . 515451)
+ (-2338 . 515319) (-2339 . 515114) (-2340 . 515037) (-2341 . 514930)
+ (-2342 . 514844) (-2343 . 514767) (-2344 . 514717) (-2345 . 514589)
+ (-2346 . 514413) (-2347 . 514166) (-2348 . 513899) (-2349 . 513696)
+ (-2350 . 513501) (-2351 . 513170) (-2352 . 513093) (-2353 . 512975)
+ (-2354 . 512783) (-2355 . 512725) (-2356 . 512601) (-2357 . 512504)
+ (-2358 . 512426) (-2359 . 512323) (-2360 . 512207) (-2361 . 512114)
+ (-2362 . 512049) (-2363 . 512021) (-2364 . 511630) (-2365 . 511559)
+ (-2366 . 511350) (-2367 . 511252) (-2368 . 511155) (-2369 . 510645)
+ (-2370 . 510498) (-2371 . 510308) (-2372 . 510240) (-2373 . 510179)
+ (-2374 . 510108) (-2375 . 509765) (-2376 . 509721) (-2377 . 509608)
+ (-2378 . 509555) (-2379 . 509440) (-2380 . 509344) (-2381 . 508474)
+ (-2382 . 508446) (-2383 . 508238) (-2384 . 507302) (-2385 . 507218)
+ (-2386 . 507135) (-2387 . 506776) (-2388 . 506613) (-2389 . 506500)
+ (-2390 . 506073) (-2391 . 505853) (-2392 . 505825) (-2393 . 505659)
+ (-2394 . 505516) (-2395 . 505463) (-2396 . 505435) (-2397 . 505218)
+ (-2398 . 505089) (-2399 . 504850) (-2400 . 503989) (-2401 . 503824)
+ (-2402 . 503466) (-2403 . 503248) (-2404 . 502873) (-2405 . 502774)
+ (-2406 . 502604) (-2407 . 502462) (-2408 . 502323) (-2409 . 501992)
+ (-2410 . 501568) (-2411 . 501488) (-2412 . 501401) (-2413 . 501317)
+ (-2414 . 501218) (-2415 . 501066) (-2416 . 500944) (-2417 . 500380)
+ (-2418 . 499767) (-2419 . 499474) (-2420 . 499276) (-2421 . 498965)
+ (-2422 . 498858) (-2423 . 498491) (-2424 . 498381) (-2425 . 498209)
+ (-2426 . 498066) (-2427 . 497926) (-2428 . 497826) (-2429 . 497580)
+ (-2430 . 497153) (-2431 . 497008) (-2432 . 496955) (-2433 . 496252)
+ (-2434 . 496221) (-2435 . 496083) (-2436 . 495911) (-2437 . 495633)
+ (-2438 . 495534) (-2439 . 495420) (-2440 . 495276) (-2441 . 495182)
+ (-2442 . 495120) (-2443 . 494827) (-2444 . 494768) (-2445 . 494527)
+ (-2446 . 494431) (-2447 . 494221) (-2448 . 494049) (-2449 . 493949)
+ (-2450 . 493634) (-2451 . 493535) (-2452 . 493114) (-2453 . 493015)
+ (-2454 . 492922) (-2455 . 492863) (-2456 . 492737) (-2457 . 492637)
+ (-2458 . 492497) (-2459 . 492325) (-2460 . 492273) (-2461 . 492128)
+ (-2462 . 491682) (-2463 . 491622) (-2464 . 482172) (-2465 . 481743)
+ (-2466 . 481613) (-2467 . 481455) (-2468 . 481421) (-2469 . 481393)
+ (-2470 . 481344) (-2471 . 481164) (-2472 . 480692) (-2473 . 480154)
+ (-2474 . 479945) (-2475 . 479893) (-2476 . 479755) (-2477 . 479721)
+ (-2478 . 479617) (-2479 . 479523) (-2480 . 479182) (-2481 . 479081)
+ (-2482 . 478871) (-2483 . 478818) (-2484 . 477976) (-2485 . 477899)
+ (-2486 . 477828) (-2487 . 477758) (-2488 . 477350) (-2489 . 477256)
+ (-2490 . 476912) (-2491 . 476843) (-2492 . 476193) (-2493 . 475736)
+ (-2494 . 472127) (-2495 . 471952) (-2496 . 471696) (-2497 . 471547)
+ (-2498 . 471463) (-2499 . 471249) (-2500 . 471170) (-2501 . 471029)
+ (-2502 . 470828) (-2503 . 470756) (-2504 . 469790) (-2505 . 469687)
+ (-2506 . 469617) (-2507 . 469545) (-2508 . 469493) (-2509 . 469405)
+ (-2510 . 469311) (-2511 . 469181) (-2512 . 468987) (-2513 . 468928)
+ (-2514 . 468813) (-2515 . 468734) (-2516 . 468680) (-2517 . 468511)
+ (-2518 . 468415) (-2519 . 468321) (-2520 . 468244) (-2521 . 468091)
+ (-2522 . 467913) (-2523 . 467782) (-2524 . 467534) (-2525 . 467475)
+ (-2526 . 467380) (-2527 . 467306) (-2528 . 467073) (-2529 . 466989)
+ (-2530 . 466904) (-2531 . 466823) (-2532 . 466696) (-2533 . 464686)
+ (-2534 . 464589) (-2535 . 464267) (-2536 . 464102) (-2537 . 463995)
+ (-2538 . 463915) (-2539 . 463797) (-2540 . 463693) (-2541 . 463540)
+ (-2542 . 463269) (-2543 . 462886) (-2544 . 462790) (-2545 . 462740)
+ (-2546 . 462654) (-2547 . 462326) (-2548 . 462152) (-2549 . 462055)
+ (-2550 . 461962) (-2551 . 461819) (-2552 . 461373) (-2553 . 461317)
+ (-2554 . 460967) (-2555 . 460878) (-2556 . 460807) (-2557 . 460688)
+ (-2558 . 459100) (-2559 . 459047) (-2560 . 458924) (-2561 . 458828)
+ (-2562 . 458728) (-2563 . 458571) (-2564 . 458028) (-2565 . 457859)
+ (-2566 . 457764) (-2567 . 457668) (-2568 . 457376) (-2569 . 457317)
+ (-2570 . 457243) (-2571 . 457128) (-2572 . 456883) (-2573 . 456831)
+ (-2574 . 456737) (-2575 . 456675) (-2576 . 456519) (-2577 . 456190)
+ (-2578 . 455669) (-2579 . 455009) (-2580 . 454876) (-2581 . 454721)
+ (-2582 . 454647) (-2583 . 454428) (-2584 . 454155) (-2585 . 453992)
+ (-2586 . 453894) (-2587 . 453811) (-2588 . 453358) (-2589 . 453062)
+ (-2590 . 452988) (-2591 . 452887) (-2592 . 452483) (-2593 . 452266)
+ (-2594 . 452134) (-2595 . 451901) (-2596 . 451851) (-2597 . 451695)
+ (-2598 . 451642) (-2599 . 451586) (-2600 . 451512) (-2601 . 451337)
+ (-2602 . 450939) (-2603 . 450886) (-2604 . 450607) (-2605 . 450430)
+ (-2606 . 450244) (-2607 . 450074) (-2608 . 449984) (-2609 . 449935)
+ (-2610 . 449837) (-2611 . 449661) (-2612 . 449504) (-2613 . 449423)
+ (-2614 . 449323) (-2615 . 449271) (-2616 . 449080) (-2617 . 448922)
+ (-2618 . 448710) (-2619 . 448610) (-2620 . 448558) (-2621 . 448506)
+ (-2622 . 448454) (-2623 . 448384) (-2624 . 447938) (-2625 . 447841)
+ (-2626 . 447740) (-2627 . 447652) (-2628 . 447452) (-2629 . 447356)
+ (-2630 . 447169) (-2631 . 445037) (-2632 . 444984) (-2633 . 444901)
+ (-2634 . 444712) (-2635 . 444552) (-2636 . 444500) (-2637 . 444315)
+ (-2638 . 444061) (-2639 . 443694) (-2640 . 443598) (-2641 . 443517)
+ (-2642 . 439510) (-2643 . 438876) (-2644 . 438693) (-2645 . 438622)
+ (-2646 . 436207) (-2647 . 435375) (-2648 . 435289) (-2649 . 434862)
+ (-2650 . 434760) (-2651 . 434698) (-2652 . 434558) (-2653 . 434485)
+ (-2654 . 434235) (-2655 . 434077) (-2656 . 433907) (-2657 . 433744)
+ (-2658 . 433656) (-2659 . 433340) (-2660 . 433256) (-2661 . 432972)
+ (-2662 . 431877) (-2663 . 431778) (-2664 . 431560) (-2665 . 431049)
+ (-2666 . 430839) (-2667 . 430723) (-2668 . 430628) (-2669 . 430524)
+ (-2670 . 430404) (-2671 . 430318) (-2672 . 430216) (-2673 . 430063)
+ (-2674 . 429870) (-2675 . 428568) (-2676 . 428360) (-2677 . 427017)
+ (-2678 . 426917) (-2679 . 426757) (-2680 . 426620) (-2681 . 426498)
+ (-2682 . 426283) (-2683 . 426187) (-2684 . 424785) (-2685 . 424686)
+ (-2686 . 424582) (-2687 . 424494) (-2688 . 424179) (-2689 . 424127)
+ (-2690 . 424090) (-2691 . 423754) (-2692 . 423575) (-2693 . 423523)
+ (-2694 . 423398) (-2695 . 423298) (-2696 . 423183) (-2697 . 422735)
+ (-2698 . 422657) (-2699 . 422435) (-2700 . 422129) (-2701 . 421753)
+ (-2702 . 421520) (-2703 . 421400) (-2704 . 421173) (-2705 . 421043)
+ (-2706 . 420987) (-2707 . 420907) (-2708 . 420602) (-2709 . 420365)
+ (-2710 . 420212) (-2711 . 419905) (-2712 . 419817) (-2713 . 419716)
+ (-2714 . 418852) (-2715 . 418752) (-2716 . 418584) (-2717 . 413070)
+ (-2718 . 412944) (-2719 . 412792) (-2720 . 412634) (-2721 . 412473)
+ (-2722 . 412334) (-2723 . 412254) (-2724 . 410471) (-2725 . 410207)
+ (-2726 . 410155) (-2727 . 410078) (-2728 . 409685) (-2729 . 409597)
+ (-2730 . 409489) (-2731 . 409406) (-2732 . 408920) (-2733 . 408813)
+ (-2734 . 408779) (-2735 . 408678) (-2736 . 408552) (-2737 . 408464)
+ (-2738 . 408023) (-2739 . 407971) (-2740 . 407905) (-2741 . 407835)
+ (-2742 . 407583) (-2743 . 407488) (-2744 . 407369) (-2745 . 407238)
+ (-2746 . 406376) (-2747 . 406137) (-2748 . 406109) (-2749 . 405954)
+ (-2750 . 405619) (-2751 . 405532) (-2752 . 405309) (-2753 . 405215)
+ (-2754 . 405066) (-2755 . 404992) (-2756 . 403415) (-2757 . 403349)
+ (-2758 . 403294) (-2759 . 402867) (-2760 . 402787) (-2761 . 402451)
+ (-2762 . 402399) (-2763 . 402325) (-2764 . 402222) (-2765 . 401404)
+ (-2766 . 401288) (-2767 . 400797) (-2768 . 400696) (-2769 . 400549)
+ (-2770 . 400063) (-2771 . 399704) (-2772 . 399645) (-2773 . 399549)
+ (-2774 . 399448) (-2775 . 399163) (-2776 . 399076) (-2777 . 398933)
+ (-2778 . 398220) (-2779 . 397990) (-2780 . 397895) (-2781 . 397809)
+ (-2782 . 397594) (-2783 . 397413) (-2784 . 397195) (-2785 . 396093)
+ (-2786 . 396024) (-2787 . 395899) (-2788 . 395870) (-2789 . 395687)
+ (-2790 . 395163) (-2791 . 394945) (-2792 . 394859) (-2793 . 394736)
+ (-2794 . 394447) (-2795 . 394251) (-2796 . 394223) (-2797 . 394049)
+ (-2798 . 393881) (-2799 . 393662) (-2800 . 393350) (-2801 . 393151)
+ (-2802 . 393096) (-2803 . 393018) (-2804 . 392919) (-2805 . 392862)
+ (-2806 . 392794) (-2807 . 392547) (-2808 . 392495) (-2809 . 392346)
+ (-2810 . 392225) (-2811 . 392053) (-2812 . 391711) (-2813 . 391608)
+ (-2814 . 391545) (-2815 . 391030) (-2816 . 390932) (-2817 . 390762)
+ (-2818 . 390426) (-2819 . 390338) (-2820 . 390255) (-2821 . 390176)
+ (-12 . 390004) (-2823 . 389899) (-2824 . 389737) (-2825 . 389385)
+ (-2826 . 389326) (-2827 . 389231) (-2828 . 389135) (-2829 . 389040)
+ (-2830 . 388930) (-2831 . 388825) (-2832 . 388643) (-2833 . 388589)
+ (-2834 . 388515) (-2835 . 388220) (-2836 . 386591) (-2837 . 386448)
+ (-2838 . 386341) (-2839 . 386184) (-2840 . 386031) (-2841 . 385954)
+ (-2842 . 385872) (-2843 . 385743) (-2844 . 385660) (-2845 . 385329)
+ (-2846 . 385256) (-2847 . 385054) (-2848 . 384195) (-2849 . 384079)
+ (-2850 . 383974) (-2851 . 383695) (-2852 . 383639) (-2853 . 383566)
+ (-2854 . 383482) (-2855 . 383409) (-2856 . 383341) (-2857 . 383185)
+ (-2858 . 382415) (-2859 . 381119) (-2860 . 380858) (-2861 . 380789)
+ (-2862 . 380432) (-2863 . 380359) (-2864 . 380260) (-2865 . 380187)
+ (-2866 . 379923) (-2867 . 379816) (-2868 . 379730) (-2869 . 379587)
+ (-2870 . 378439) (-2871 . 378015) (-2872 . 377960) (-2873 . 377469)
+ (-2874 . 377398) (-2875 . 377364) (-2876 . 377263) (-2877 . 377127)
+ (-2878 . 377059) (-2879 . 376971) (-2880 . 376919) (-2881 . 376818)
+ (-2882 . 376723) (-2883 . 376429) (-2884 . 376211) (-2885 . 376096)
+ (-2886 . 376017) (-2887 . 375951) (-2888 . 375900) (-2889 . 375470)
+ (-2890 . 375336) (-2891 . 375129) (-2892 . 374833) (-2893 . 374748)
+ (-2894 . 374677) (-2895 . 374587) (-2896 . 374509) (-2897 . 374249)
+ (-2898 . 374067) (-2899 . 373895) (-2900 . 373783) (-2901 . 373749)
+ (-2902 . 373452) (-2903 . 373128) (-2904 . 372886) (-2905 . 372673)
+ (-2906 . 372522) (-2907 . 370756) (-2908 . 370656) (-2909 . 370495)
+ (-2910 . 370363) (-2911 . 370267) (-2912 . 370193) (* . 365926)
+ (-2914 . 365657) (-2915 . 365468) (-2916 . 365327) (-2917 . 363872)
+ (-2918 . 363814) (-2919 . 363762) (-2920 . 363105) (-2921 . 363010)
+ (-2922 . 362906) (-2923 . 362688) (-2924 . 362456) (-2925 . 362276)
+ (-2926 . 362207) (-2927 . 362155) (-2928 . 360665) (-2929 . 360637)
+ (-2930 . 360543) (-2931 . 360427) (-2932 . 360317) (-2933 . 360042)
+ (-2934 . 359799) (-2935 . 359705) (-2936 . 359625) (-2937 . 359058)
+ (-2938 . 358979) (-2939 . 358884) (-2940 . 358805) (-2941 . 358719)
+ (-2942 . 358409) (-2943 . 358335) (-2944 . 358263) (-2945 . 358183)
+ (-2946 . 357911) (-2947 . 357802) (-2948 . 357269) (-2949 . 356533)
+ (-2950 . 356438) (-2951 . 356386) (-2952 . 356303) (-2953 . 356215)
+ (-2954 . 356022) (-2955 . 355559) (-2956 . 355485) (-2957 . 355418)
+ (-2958 . 355286) (-2959 . 355175) (-2960 . 355012) (-2961 . 354674)
+ (-2962 . 354438) (-2963 . 354136) (-2964 . 354053) (-2965 . 353922)
+ (-2966 . 353839) (-2967 . 353692) (-2968 . 353461) (-2969 . 353339)
+ (-2970 . 353184) (-2971 . 353056) (-2972 . 352928) (-2973 . 352590)
+ (-2974 . 352451) (-2975 . 352273) (-2976 . 352078) (-2977 . 352012)
+ (-2978 . 351915) (-2979 . 351708) (-2980 . 351621) (-2981 . 351506)
+ (-2982 . 351227) (-2983 . 351139) (-2984 . 351037) (-2985 . 350393)
+ (-2986 . 350328) (-2987 . 349944) (-2988 . 349894) (-2989 . 349299)
+ (-2990 . 349197) (-2991 . 349114) (-2992 . 349026) (-2993 . 348867)
+ (-2994 . 348735) (-2995 . 348639) (-2996 . 347467) (-2997 . 347371)
+ (-2998 . 347280) (-2999 . 347033) (-3000 . 346741) (-3001 . 346610)
+ (-3002 . 346332) (-3003 . 345899) (-3004 . 345812) (-3005 . 345778)
+ (-3006 . 345397) (-3007 . 345097) (-3008 . 344368) (-3009 . 344284)
+ (-3010 . 344169) (-3011 . 343794) (-3012 . 343574) (-3013 . 343455)
+ (-3014 . 343139) (-3015 . 342797) (-3016 . 342702) (-3017 . 342633)
+ (-3018 . 342580) (-3019 . 342548) (-3020 . 342237) (-3021 . 341508)
+ (-3022 . 341403) (-3023 . 340266) (-3024 . 340118) (-3025 . 340045)
+ (-3026 . 339967) (-3027 . 339761) (-3028 . 339661) (-3029 . 339295)
+ (-3030 . 339204) (-3031 . 339170) (-3032 . 338494) (-3033 . 338310)
+ (-3034 . 338204) (-3035 . 338152) (-3036 . 337866) (-3037 . 337256)
+ (-3038 . 337162) (-3039 . 337088) (-3040 . 336927) (-3041 . 335741)
+ (-3042 . 335674) (-3043 . 335110) (-3044 . 334524) (-3045 . 334447)
+ (-3046 . 334366) (-3047 . 332920) (-3048 . 332777) (-3049 . 332721)
+ (-3050 . 332647) (-3051 . 332344) (-3052 . 332274) (-3053 . 331092)
+ (-3054 . 330379) (-3055 . 327080) (-3056 . 326905) (-3057 . 326341)
+ (-3058 . 325665) (-3059 . 325572) (-3060 . 325313) (-3061 . 324982)
+ (-3062 . 324909) (-3063 . 324808) (-3064 . 324742) (-3065 . 324684)
+ (-3066 . 324590) (-3067 . 324548) (-3068 . 324460) (-3069 . 322253)
+ (-3070 . 322007) (-3071 . 321443) (-3072 . 320217) (-3073 . 320054)
+ (-3074 . 320026) (-3075 . 319874) (-3076 . 319697) (-3077 . 319594)
+ (-3078 . 319542) (-3079 . 319491) (-3080 . 319462) (-3081 . 319310)
+ (-3082 . 319184) (-3083 . 318510) (-3084 . 318411) (-3085 . 318323)
+ (-3086 . 318142) (-3087 . 317974) (-3088 . 316782) (-3089 . 316648)
+ (-3090 . 316317) (-3091 . 316250) (-3092 . 316200) (-3093 . 315526)
+ (-3094 . 315388) (-3095 . 315053) (-3096 . 315000) (-3097 . 314855)
+ (-3098 . 314728) (-3099 . 314529) (-3100 . 314199) (-3101 . 314144)
+ (-3102 . 314091) (-3103 . 313354) (-3104 . 311240) (-3105 . 311052)
+ (-3106 . 310742) (-3107 . 310676) (-3108 . 310580) (-3109 . 310310)
+ (-3110 . 310191) (-3111 . 309594) (-3112 . 309496) (-3113 . 309422)
+ (-3114 . 309348) (-3115 . 308786) (-3116 . 308677) (-3117 . 308467)
+ (-3118 . 308080) (-3119 . 308009) (-3120 . 307752) (-3121 . 307671)
+ (-3122 . 307639) (-3123 . 306849) (-3124 . 306703) (-3125 . 305886)
+ (-3126 . 305324) (-3127 . 305222) (-3128 . 305156) (-3129 . 305075)
+ (-3130 . 304927) (-3131 . 304733) (-3132 . 304659) (-3133 . 304514)
+ (-3134 . 304241) (-3135 . 304173) (-3136 . 304105) (-3137 . 303857)
+ (-3138 . 303295) (-3139 . 303221) (-3140 . 302981) (-3141 . 302854)
+ (-3142 . 302752) (-3143 . 302673) (-3144 . 302589) (-3145 . 301914)
+ (-3146 . 301837) (-3147 . 301671) (-3148 . 301532) (-3149 . 301463)
+ (-3150 . 301381) (-3151 . 301171) (-3152 . 301056) (-3153 . 300916)
+ (-3154 . 300850) (-3155 . 300175) (-3156 . 300141) (-3157 . 299981)
+ (-3158 . 299801) (-3159 . 299507) (-3160 . 299347) (-3161 . 299213)
+ (-3162 . 299136) (-3163 . 299042) (-3164 . 298367) (-3165 . 298239)
+ (-3166 . 297742) (-3167 . 297671) (-3168 . 297605) (-3169 . 297121)
+ (-3170 . 296702) (-3171 . 296569) (-3172 . 296540) (-3173 . 295977)
+ (-3174 . 295754) (-3175 . 295651) (-3176 . 295617) (-3177 . 295550)
+ (-3178 . 295494) (-3179 . 295350) (-3180 . 294710) (-3181 . 294636)
+ (-3182 . 294073) (-3183 . 294010) (-3184 . 293900) (-3185 . 293804)
+ (-3186 . 293552) (-3187 . 293475) (-3188 . 293377) (-3189 . 293181)
+ (-3190 . 292957) (-3191 . 292837) (-3192 . 292274) (-3193 . 290047)
+ (-3194 . 289887) (-3195 . 289830) (-3196 . 289730) (-3197 . 289678)
+ (-3198 . 289625) (-3199 . 289522) (-3200 . 289407) (-3201 . 288845)
+ (-3202 . 288762) (-3203 . 288524) (-3204 . 288338) (-3205 . 287802)
+ (-3206 . 287584) (-3207 . 287451) (-3208 . 286889) (-3209 . 286827)
+ (-3210 . 286768) (-3211 . 286673) (-3212 . 286501) (-3213 . 285791)
+ (-3214 . 285706) (-3215 . 285632) (-3216 . 285550) (-3217 . 284988)
+ (-3218 . 284928) (-3219 . 284838) (-3220 . 284680) (-3221 . 284202)
+ (-3222 . 284128) (-3223 . 284094) (-3224 . 283800) (-3225 . 283616)
+ (-3226 . 283548) (-3227 . 283434) (-3228 . 282872) (-3229 . 282777)
+ (-3230 . 282649) (-3231 . 282584) (-3232 . 281830) (-3233 . 281775)
+ (-3234 . 281373) (-3235 . 281140) (-3236 . 281088) (-3237 . 280772)
+ (-3238 . 280210) (-3239 . 280055) (-3240 . 279931) (-3241 . 279848)
+ (-3242 . 279666) (-3243 . 279567) (-3244 . 279443) (-3245 . 279330)
+ (-3246 . 278731) (-3247 . 278415) (-3248 . 278317) (-3249 . 278075)
+ (-3250 . 277894) (-3251 . 277671) (-3252 . 277619) (-3253 . 277553)
+ (-3254 . 277494) (-3255 . 277399) (-3256 . 277245) (-3257 . 276926)
+ (-3258 . 276846) (-3259 . 276794) (-3260 . 276708) (-3261 . 276374)
+ (-3262 . 276283) (-3263 . 276197) (-3264 . 275781) (-3265 . 275709)
+ (-3266 . 275335) (-3267 . 275258) (-3268 . 274818) (-3269 . 274732)
+ (-3270 . 274591) (-3271 . 274466) (-3272 . 274310) (-3273 . 274240)
+ (-3274 . 274102) (-3275 . 273286) (-3276 . 273132) (-3277 . 273013)
+ (-3278 . 272834) (-3279 . 272715) (-3280 . 272635) (-3281 . 272536)
+ (-3282 . 272352) (-3283 . 272173) (-3284 . 272120) (-3285 . 271983)
+ (-3286 . 271873) (-3287 . 271821) (-3288 . 271719) (-3289 . 271578)
+ (-3290 . 271223) (-3291 . 271128) (-3292 . 271069) (-3293 . 270990)
+ (-3294 . 270935) (-3295 . 270775) (-3296 . 270665) (-3297 . 270522)
+ (-3298 . 270288) (-3299 . 269973) (-3300 . 269836) (-3301 . 269234)
+ (-3302 . 269033) (-3303 . 268980) (-3304 . 268563) (-3305 . 268452)
+ (-3306 . 268315) (-3307 . 267916) (-3308 . 267752) (-3309 . 267597)
+ (-3310 . 267335) (-3311 . 267247) (-3312 . 267177) (-3313 . 267089)
+ (-3314 . 266738) (-3315 . 266602) (-3316 . 266444) (-3317 . 266050)
+ (-3318 . 265984) (-3319 . 265773) (-3320 . 265546) (-3321 . 264907)
+ (-3322 . 264845) (-3323 . 264714) (-3324 . 264187) (-3325 . 264110)
+ (-3326 . 263143) (-3327 . 263008) (-3328 . 262649) (-3329 . 262431)
+ (-3330 . 262357) (-3331 . 262139) (-3332 . 261981) (-3333 . 261931)
+ (-3334 . 261743) (-3335 . 261576) (-3336 . 260899) (-3337 . 260303)
+ (-3338 . 260090) (-3339 . 259795) (-3340 . 259515) (-3341 . 259462)
+ (-3342 . 259400) (-3343 . 259263) (-3344 . 259082) (-3345 . 258950)
+ (-3346 . 258783) (-3347 . 257985) (-3348 . 257902) (-3349 . 257822)
+ (-3350 . 257769) (-3351 . 257523) (-3352 . 257273) (-3353 . 257154)
+ (-3354 . 257102) (-3355 . 257070) (-3356 . 256583) (-3357 . 256527)
+ (-3358 . 256387) (-3359 . 256315) (-3360 . 256142) (-3361 . 256071)
+ (-3362 . 253815) (-3363 . 253783) (-3364 . 253712) (-3365 . 253554)
+ (-3366 . 253499) (-3367 . 253260) (-3368 . 253181) (-3369 . 252636)
+ (-3370 . 252541) (-3371 . 252255) (-3372 . 252174) (-3373 . 252043)
+ (-3374 . 251971) (-3375 . 251787) (-3376 . 251655) (-3377 . 251474)
+ (-3378 . 251299) (-3379 . 251136) (-3380 . 251066) (-3381 . 250690)
+ (-3382 . 250635) (-3383 . 250536) (-3384 . 250383) (-3385 . 250277)
+ (-3386 . 250249) (-3387 . 250091) (-3388 . 250040) (-3389 . 249987)
+ (-3390 . 249893) (-3391 . 249449) (-3392 . 249298) (-3393 . 249052)
+ (-3394 . 248765) (-3395 . 248547) (-3396 . 248401) (-3397 . 248246)
+ (-3398 . 248194) (-3399 . 248075) (-3400 . 246894) (-3401 . 246788)
+ (-3402 . 246700) (-3403 . 244732) (-3404 . 244406) (-3405 . 244258)
+ (-3406 . 244008) (-3407 . 243762) (-3408 . 243674) (-3409 . 243436)
+ (-3410 . 243009) (-3411 . 242045) (-3412 . 241983) (-3413 . 241853)
+ (-3414 . 241708) (-3415 . 241545) (-3416 . 241264) (-3417 . 241096)
+ (-3418 . 241043) (-3419 . 240855) (-3420 . 240827) (-3421 . 240704)
+ (-3422 . 240626) (-3423 . 240592) (-3424 . 240424) (-3425 . 240350)
+ (-3426 . 240221) (-3427 . 240125) (-3428 . 240046) (-3429 . 239973)
+ (-3430 . 239920) (-3431 . 239702) (-3432 . 239616) (-3433 . 239443)
+ (-3434 . 239330) (-3435 . 239208) (-3436 . 239084) (-3437 . 239030)
+ (-3438 . 238740) (-3439 . 238540) (-3440 . 238432) (-3441 . 238380)
+ (-3442 . 238286) (-3443 . 238026) (-3444 . 237974) (-3445 . 237861)
+ (-3446 . 237760) (-3447 . 237521) (-3448 . 237469) (-3449 . 237367)
+ (-3450 . 237272) (-3451 . 237177) (-3452 . 237038) (-3453 . 236556)
+ (-3454 . 235949) (-3455 . 235770) (-3456 . 235425) (-3457 . 235296)
+ (-3458 . 234945) (-3459 . 234660) (-3460 . 234607) (-3461 . 234167)
+ (-3462 . 234081) (-3463 . 234032) (-3464 . 233929) (-3465 . 233681)
+ (-3466 . 233539) (-3467 . 233445) (-3468 . 232977) (-3469 . 232792)
+ (-3470 . 232594) (-3471 . 232477) (-3472 . 232251) (-3473 . 232065)
+ (-3474 . 231921) (-3475 . 231747) (-3476 . 231436) (-3477 . 231340)
+ (-3478 . 231007) (-3479 . 230736) (-3480 . 230510) (-3481 . 230413)
+ (-3482 . 230261) (-3483 . 230054) (-3484 . 229951) (-3485 . 229793)
+ (-3486 . 229712) (-3487 . 229629) (-3488 . 229488) (-3489 . 229410)
+ (-3490 . 229358) (-3491 . 229196) (-3492 . 229025) (-3493 . 228917)
+ (-3494 . 228844) (-3495 . 228786) (-3496 . 228702) (-3497 . 228490)
+ (-3498 . 228332) (-3499 . 228280) (-3500 . 228183) (-3501 . 227961)
+ (-3502 . 227572) (-3503 . 227226) (-3504 . 227113) (-3505 . 226990)
+ (-3506 . 226800) (-3507 . 226553) (-3508 . 226502) (-3509 . 226328)
+ (-3510 . 226150) (-3511 . 226014) (-3512 . 225965) (-3513 . 225812)
+ (-3514 . 225597) (-3515 . 225517) (-3516 . 225376) (-3517 . 225320)
+ (-3518 . 225232) (-3519 . 224344) (-3520 . 224240) (-3521 . 224147)
+ (-3522 . 223503) (-3523 . 223404) (-3524 . 223016) (-3525 . 222963)
+ (-3526 . 222857) (-3527 . 222733) (-3528 . 222605) (-3529 . 222518)
+ (-3530 . 222399) (-3531 . 222208) (-3532 . 222015) (-3533 . 221925)
+ (-3534 . 221698) (-3535 . 221160) (-3536 . 220681) (-3537 . 220604)
+ (-3538 . 220489) (-3539 . 220419) (-3540 . 220281) (-3541 . 219677)
+ (-3542 . 219254) (-3543 . 219162) (-3544 . 218971) (-3545 . 218308)
+ (-3546 . 217937) (-3547 . 217884) (-3548 . 217780) (-3549 . 217575)
+ (-3550 . 217471) (-3551 . 217387) (-3552 . 217246) (-3553 . 217100)
+ (-3554 . 216713) (-3555 . 216664) (-3556 . 216366) (-3557 . 216000)
+ (-3558 . 215896) (-3559 . 215844) (-3560 . 215792) (-3561 . 215740)
+ (-3562 . 214400) (-3563 . 214277) (-3564 . 214215) (-3565 . 214052)
+ (-3566 . 213899) (-3567 . 213850) (-3568 . 213692) (-3569 . 213549)
+ (-3570 . 213497) (-3571 . 213193) (-3572 . 212197) (-3573 . 212037)
+ (-3574 . 211871) (-3575 . 211842) (-3576 . 211712) (-3577 . 211453)
+ (-3578 . 211425) (-3579 . 211210) (-3580 . 211104) (-3581 . 211043)
+ (-3582 . 210756) (-3583 . 210403) (-3584 . 210204) (-3585 . 209621)
+ (-3586 . 209537) (-3587 . 209417) (-3588 . 208201) (-3589 . 208010)
+ (-3590 . 207927) (-3591 . 207759) (-3592 . 207534) (-3593 . 207416)
+ (-3594 . 206856) (-3595 . 206740) (-3596 . 205312) (-3597 . 204039)
+ (-3598 . 203940) (-3599 . 203817) (-3600 . 203673) (-3601 . 203162)
+ (-3602 . 202894) (-3603 . 202706) (-3604 . 202591) (-3605 . 202468)
+ (-3606 . 202212) (-3607 . 202074) (-3608 . 201947) (-3609 . 201842)
+ (-3610 . 201354) (-3611 . 201238) (-3612 . 201100) (-3613 . 200728)
+ (-3614 . 200676) (-3615 . 200523) (-3616 . 200471) (-3617 . 200207)
+ (-3618 . 200134) (-3619 . 200030) (-3620 . 199886) (-3621 . 199832)
+ (-3622 . 199584) (-3623 . 198668) (-3624 . 198230) (-3625 . 197202)
+ (-3626 . 197086) (-3627 . 197049) (-3628 . 196977) (-3629 . 196836)
+ (-3630 . 196714) (-3631 . 196637) (-3632 . 196553) (-3633 . 196479)
+ (-3634 . 196355) (-3635 . 196115) (-3636 . 195662) (-3637 . 195560)
+ (-3638 . 195475) (-3639 . 195074) (-3640 . 195017) (-3641 . 194989)
+ (-3642 . 194724) (-3643 . 194415) (-3644 . 194163) (-3645 . 194111)
+ (-3646 . 194061) (-3647 . 193527) (-3648 . 193453) (-3649 . 193401)
+ (-3650 . 193031) (-3651 . 192904) (-3652 . 188841) (-3653 . 188323)
+ (-3654 . 188180) (-3655 . 187955) (-3656 . 187796) (-3657 . 187374)
+ (-3658 . 187259) (-3659 . 186812) (-3660 . 185852) (-3661 . 185779)
+ (-3662 . 185660) (-3663 . 185087) (-3664 . 184774) (-3665 . 184675)
+ (-3666 . 184405) (-3667 . 184337) (-3668 . 184309) (-3669 . 184188)
+ (-3670 . 184136) (-3671 . 184062) (-3672 . 184008) (-3673 . 183910)
+ (-3674 . 183406) (-3675 . 183291) (-3676 . 182941) (-3677 . 182831)
+ (-3678 . 182663) (-3679 . 182564) (-3680 . 182416) (-3681 . 182022)
+ (-3682 . 181945) (-3683 . 181742) (-3684 . 181596) (-3685 . 181541)
+ (-3686 . 181488) (-3687 . 181437) (-3688 . 181380) (-3689 . 181044)
+ (-3690 . 180948) (-3691 . 180892) (-3692 . 180800) (-3693 . 180748)
+ (-3694 . 180637) (-3695 . 178292) (-3696 . 178237) (-3697 . 178185)
+ (-3698 . 177954) (-3699 . 177859) (-3700 . 177785) (-3701 . 177725)
+ (-3702 . 177646) (-3703 . 177214) (-3704 . 177137) (-3705 . 176779)
+ (-3706 . 176700) (-3707 . 176226) (-3708 . 175911) (-3709 . 175849)
+ (-3710 . 175748) (-3711 . 175410) (-3712 . 175354) (-3713 . 174994)
+ (-3714 . 174906) (-3715 . 174773) (-3716 . 174687) (-3717 . 174514)
+ (-3718 . 174441) (-3719 . 174150) (-3720 . 174027) (-3721 . 173850)
+ (-3722 . 173555) (-3723 . 173412) (-3724 . 172661) (-3725 . 172543)
+ (-3726 . 172425) (-3727 . 172341) (-3728 . 172272) (-3729 . 172162)
+ (-3730 . 171539) (-3731 . 171484) (-3732 . 171290) (-3733 . 171172)
+ (-3734 . 171050) (-3735 . 170937) (-3736 . 170511) (-3737 . 170297)
+ (-3738 . 170191) (-3739 . 170059) (-3740 . 169932) (-3741 . 169774)
+ (-3742 . 169714) (-3743 . 169622) (-3744 . 169287) (-3745 . 169069)
+ (-3746 . 168914) (-3747 . 168815) (-3748 . 168624) (-3749 . 168466)
+ (-3750 . 168389) (-3751 . 168162) (-3752 . 168058) (-3753 . 167766)
+ (-3754 . 167485) (-3755 . 167115) (-3756 . 167014) (-3757 . 166906)
+ (-3758 . 166854) (-3759 . 166727) (-3760 . 166495) (-3761 . 166307)
+ (-3762 . 166163) (-3763 . 166111) (-3764 . 165926) (-3765 . 161384)
+ (-3766 . 161195) (-3767 . 161092) (-3768 . 161058) (-3769 . 160644)
+ (-3770 . 160109) (-3771 . 159967) (-3772 . 159736) (-3773 . 159553)
+ (-3774 . 158945) (-3775 . 158867) (-3776 . 158700) (-3777 . 158530)
+ (-3778 . 158407) (-3779 . 158080) (-3780 . 157967) (-3781 . 157872)
+ (-3782 . 157784) (-3783 . 157656) (-3784 . 157603) (-3785 . 157221)
+ (-3786 . 157123) (-3787 . 157064) (-3788 . 156882) (-3789 . 156689)
+ (-3790 . 156630) (-3791 . 156143) (-3792 . 156059) (-3793 . 155982)
+ (-3794 . 155744) (-3795 . 155541) (-3796 . 155459) (-3797 . 155283)
+ (-3798 . 155128) (-3799 . 154786) (-3800 . 153903) (-3801 . 153854)
+ (-3802 . 153308) (-3803 . 153097) (-3804 . 153011) (-3805 . 152449)
+ (-3806 . 152369) (-3807 . 151978) (-3808 . 151669) (-3809 . 151085)
+ (-3810 . 150979) (-3811 . 150948) (-3812 . 150636) (-3813 . 150540)
+ (-3814 . 150400) (-3815 . 150190) (-3816 . 149112) (-3817 . 148914)
+ (-3818 . 148826) (-3819 . 148698) (-3820 . 148626) (-3821 . 148423)
+ (-3822 . 148278) (-3823 . 148070) (-3824 . 147980) (-3825 . 147853)
+ (-3826 . 147700) (-3827 . 147599) (-3828 . 147547) (-3829 . 147412)
+ (-3830 . 147346) (-3831 . 147265) (-3832 . 147195) (-3833 . 146988)
+ (-3834 . 146886) (-3835 . 146712) (-3836 . 146659) (-3837 . 146533)
+ (-3838 . 146372) (-3839 . 146316) (-3840 . 146203) (-3841 . 132115)
+ (-3842 . 132045) (-3843 . 131921) (-3844 . 131819) (-3845 . 131468)
+ (-3846 . 131258) (-3847 . 131115) (-3848 . 130664) (-3849 . 130421)
+ (-3850 . 130355) (-3851 . 130297) (-3852 . 130226) (-3853 . 130152)
+ (-3854 . 130056) (-3855 . 129846) (-3856 . 129784) (-3857 . 129585)
+ (-3858 . 129519) (-3859 . 129364) (-3860 . 129190) (-3861 . 129137)
+ (-3862 . 129060) (-3863 . 129001) (-3864 . 128921) (-3865 . 128851)
+ (-3866 . 128737) (-3867 . 128709) (-3868 . 128608) (-3869 . 128473)
+ (-3870 . 127355) (-3871 . 127217) (-3872 . 127155) (-3873 . 124374)
+ (-3874 . 124256) (-3875 . 124202) (-3876 . 123998) (-3877 . 123937)
+ (-3878 . 123742) (-3879 . 123518) (-3880 . 123434) (-3881 . 123291)
+ (-3882 . 123232) (-3883 . 123114) (-3884 . 123006) (-3885 . 122701)
+ (-3886 . 122321) (-3887 . 122159) (-3888 . 122081) (-3889 . 121939)
+ (-3890 . 121786) (-3891 . 121615) (-3892 . 121518) (-3893 . 121435)
+ (-3894 . 121170) (-3895 . 121075) (-3896 . 120967) (-3897 . 120046)
+ (-3898 . 119993) (-3899 . 119590) (-3900 . 119534) (-3901 . 119474)
+ (-3902 . 115807) (-3903 . 115682) (-3904 . 115616) (-3905 . 115447)
+ (-3906 . 115306) (-3907 . 115234) (-3908 . 115156) (-3909 . 115078)
+ (-3910 . 114868) (-3911 . 114216) (-3912 . 113910) (-3913 . 113730)
+ (-3914 . 113659) (-3915 . 113557) (-3916 . 113444) (-3917 . 113128)
+ (-3918 . 113012) (-3919 . 112889) (-3920 . 112771) (-3921 . 112659)
+ (-3922 . 112609) (-3923 . 112449) (-3924 . 112392) (-3925 . 112227)
+ (-3926 . 112155) (-3927 . 112127) (-3928 . 111902) (-3929 . 111802)
+ (-3930 . 111746) (-3931 . 111500) (-3932 . 111389) (-3933 . 111317)
+ (-3934 . 111172) (-3935 . 111034) (-3936 . 110942) (-3937 . 110814)
+ (-3938 . 110761) (-3939 . 110708) (-3940 . 109971) (-3941 . 109878)
+ (-3942 . 109805) (-3943 . 109496) (-3944 . 109413) (-3945 . 109223)
+ (-3946 . 109169) (-3947 . 109045) (-3948 . 108933) (-3949 . 108877)
+ (-3950 . 108809) (-3951 . 108723) (-3952 . 108602) (-3953 . 108367)
+ (-3954 . 108260) (-3955 . 107060) (-3956 . 106981) (-3957 . 106894)
+ (-3958 . 106502) (-3959 . 106276) (-3960 . 106183) (-3961 . 106124)
+ (-3962 . 106020) (-3963 . 105900) (-3964 . 105793) (-3965 . 105723)
+ (-3966 . 105639) (-3967 . 105568) (-3968 . 105390) (-3969 . 105290)
+ (-3970 . 105132) (-3971 . 105001) (-3972 . 104900) (-3973 . 104851)
+ (-3974 . 104781) (-3975 . 104687) (-3976 . 104541) (-3977 . 104277)
+ (-3978 . 104178) (-3979 . 104075) (-3980 . 103998) (-3981 . 103330)
+ (-3982 . 103275) (-3983 . 103219) (-3984 . 102992) (-3985 . 102870)
+ (-3986 . 102718) (-3987 . 101420) (-3988 . 101277) (-3989 . 101176)
+ (-3990 . 101044) (-3991 . 100901) (-3992 . 100572) (-3993 . 100476)
+ (-3994 . 100342) (-3995 . 99700) (-3996 . 99587) (-3997 . 99522)
+ (-3998 . 99469) (-3999 . 99373) (-4000 . 99214) (-4001 . 98774)
+ (-4002 . 98667) (-4003 . 98610) (-4004 . 98544) (-4005 . 98447)
+ (-4006 . 98351) (-4007 . 98291) (-4008 . 98118) (-4009 . 97974)
+ (-4010 . 97815) (-4011 . 97686) (-4012 . 97612) (-4013 . 97482)
+ (-4014 . 97255) (-4015 . 96904) (-4016 . 96852) (-4017 . 96690)
+ (-4018 . 96620) (-4019 . 96569) (-4020 . 96499) (-4021 . 96409)
+ (-4022 . 96064) (-4023 . 95887) (-4024 . 95768) (-4025 . 95014)
+ (-4026 . 94932) (-4027 . 94713) (-4028 . 94662) (-4029 . 94370)
+ (-4030 . 94278) (-4031 . 94065) (-4032 . 93699) (-4033 . 93567)
+ (-4034 . 93515) (-4035 . 92929) (-4036 . 92863) (-4037 . 92446)
+ (-4038 . 92348) (-4039 . 92246) (-4040 . 91700) (-4041 . 91614)
+ (-4042 . 91493) (-4043 . 91276) (-4044 . 91195) (-4045 . 91124)
+ (-4046 . 91068) (-4047 . 90955) (-4048 . 90793) (-4049 . 90727)
+ (-4050 . 90480) (-4051 . 90088) (-4052 . 89884) (-4053 . 89813)
+ (-4054 . 89683) (-4055 . 89571) (-4056 . 89388) (-4057 . 89302)
+ (-4058 . 89166) (-4059 . 89056) (-4060 . 88974) (-4061 . 88447)
+ (-4062 . 88346) (-4063 . 88252) (-4064 . 88089) (-4065 . 88031)
+ (-4066 . 87935) (-4067 . 87839) (-4068 . 87554) (-4069 . 87350)
+ (-4070 . 87229) (-4071 . 87201) (-4072 . 87127) (-4073 . 87045)
+ (-4074 . 86993) (-4075 . 86373) (-4076 . 86188) (-4077 . 86119)
+ (-4078 . 85964) (-4079 . 85847) (-4080 . 85795) (-4081 . 85663)
+ (-4082 . 85482) (-4083 . 78539) (-4084 . 78340) (-4085 . 78268)
+ (-4086 . 78216) (-4087 . 78108) (-4088 . 78074) (-4089 . 77515)
+ (-4090 . 77037) (-4091 . 76953) (-4092 . 76875) (-4093 . 76713)
+ (-9 . 76685) (-4095 . 76626) (-4096 . 76598) (-4097 . 76546)
+ (-4098 . 76253) (-4099 . 76100) (-4100 . 75923) (-4101 . 75870)
+ (-4102 . 75311) (-4103 . 75064) (-4104 . 74921) (-4105 . 74837)
+ (-4106 . 74712) (-4107 . 74425) (-8 . 74397) (-4109 . 74347)
+ (-4110 . 74174) (-4111 . 74029) (-4112 . 73944) (-4113 . 73800)
+ (-4114 . 73677) (-4115 . 73438) (-4116 . 73386) (-4117 . 73268)
+ (-4118 . 73173) (-4119 . 73120) (-7 . 73092) (-4121 . 72986)
+ (-4122 . 72633) (-4123 . 72492) (-4124 . 72421) (-4125 . 72321)
+ (-4126 . 72094) (-4127 . 71999) (-4128 . 71750) (-4129 . 53175)
+ (-4130 . 52999) (-4131 . 51269) (-4132 . 51007) (-4133 . 50347)
+ (-4134 . 50278) (-4135 . 50174) (-4136 . 49746) (-4137 . 49675)
+ (-4138 . 49545) (-4139 . 49476) (-4140 . 49420) (-4141 . 48931)
+ (-4142 . 48875) (-4143 . 48621) (-4144 . 48541) (-4145 . 45720)
+ (-4146 . 45667) (-4147 . 45612) (-4148 . 45509) (-4149 . 45216)
+ (-4150 . 45087) (-4151 . 44990) (-4152 . 44569) (-4153 . 44398)
+ (-4154 . 44321) (-4155 . 44192) (-4156 . 43807) (-4157 . 43578)
+ (-4158 . 43489) (-4159 . 43409) (-4160 . 43338) (-4161 . 43250)
+ (-4162 . 43195) (-4163 . 43017) (-4164 . 42915) (-4165 . 42847)
+ (-4166 . 42653) (-4167 . 42601) (-4168 . 42546) (-4169 . 42478)
+ (-4170 . 42425) (-4171 . 42369) (-4172 . 42025) (-4173 . 41959)
+ (-4174 . 41763) (-4175 . 41635) (-4176 . 41555) (-4177 . 41405)
+ (-4178 . 41326) (-4179 . 41248) (-4180 . 40250) (-4181 . 40113)
+ (-4182 . 40032) (-4183 . 39899) (-4184 . 39506) (-4185 . 39383)
+ (-4186 . 39331) (-4187 . 39277) (-4188 . 39074) (-4189 . 38544)
+ (-4190 . 38458) (-4191 . 38385) (-4192 . 38107) (-4193 . 38055)
+ (-4194 . 37984) (-4195 . 37765) (-4196 . 37715) (-4197 . 36842)
+ (-4198 . 36684) (-4199 . 35619) (-4200 . 35323) (-4201 . 35246)
+ (-4202 . 35139) (-4203 . 34966) (-4204 . 34871) (-4205 . 34755)
+ (-4206 . 34655) (-4207 . 34513) (-4208 . 34409) (-4209 . 34264)
+ (-4210 . 34200) (-4211 . 34054) (-4212 . 33959) (-4213 . 33927)
+ (-4214 . 33841) (-4215 . 33744) (-4216 . 33658) (-4217 . 33436)
+ (-4218 . 33365) (-4219 . 33292) (-4220 . 33226) (-4221 . 33110)
+ (-4222 . 33052) (-4223 . 32970) (-4224 . 32909) (-4225 . 32843)
+ (-4226 . 32777) (-4227 . 32531) (-4228 . 32295) (-4229 . 32036)
+ (-4230 . 31740) (-4231 . 31506) (-4232 . 31449) (-4233 . 31325)
+ (-4234 . 31270) (-4235 . 31037) (-4236 . 29835) (-4237 . 29764)
+ (-4238 . 29218) (-4239 . 29131) (-4240 . 28952) (-4241 . 28902)
+ (-4242 . 28672) (-4243 . 28587) (-4244 . 28225) (-4245 . 28148)
+ (-4246 . 28030) (-4247 . 27956) (-4248 . 27569) (-4249 . 27509)
+ (-4250 . 27418) (-4251 . 27273) (-4252 . 27199) (-4253 . 27083)
+ (-4254 . 26968) (-4255 . 26590) (-4256 . 26425) (-4257 . 26311)
+ (-4258 . 26146) (-4259 . 26072) (-4260 . 25985) (-4261 . 25770)
+ (-4262 . 25675) (-4263 . 25587) (-4264 . 25494) (-4265 . 25194)
+ (-4266 . 25038) (-4267 . 24915) (-4268 . 24860) (-4269 . 24767)
+ (-4270 . 24642) (-4271 . 24610) (-4272 . 24419) (-4273 . 24391)
+ (-4274 . 24196) (-4275 . 23974) (-4276 . 23910) (-4277 . 23625)
+ (-4278 . 23098) (-4279 . 23029) (-4280 . 22978) (-4281 . 22820)
+ (-4282 . 22764) (-4283 . 22711) (-4284 . 22504) (-4285 . 21200)
+ (-4286 . 20772) (-4287 . 20741) (-4288 . 20627) (-4289 . 20531)
+ (-4290 . 20374) (-4291 . 20303) (-4292 . 20206) (-4293 . 19780)
+ (-4294 . 19641) (-4295 . 19498) (-4296 . 19252) (-4297 . 19173)
+ (-4298 . 19046) (-4299 . 18862) (-4300 . 18609) (-4301 . 18515)
+ (-4302 . 18283) (-4303 . 18158) (-4304 . 17836) (-4305 . 17630)
+ (-4306 . 17542) (-4307 . 17296) (-4308 . 17205) (-4309 . 16878)
+ (-4310 . 16678) (-4311 . 16641) (-4312 . 16558) (-4313 . 16462)
+ (-4314 . 16359) (-4315 . 16235) (-4316 . 15721) (-4317 . 15647)
+ (-4318 . 15503) (-4319 . 15447) (-4320 . 15386) (-4321 . 14507)
+ (-4322 . 14402) (-4323 . 14150) (-4324 . 14121) (-4325 . 14093)
+ (-4326 . 14061) (-4327 . 13987) (-4328 . 13865) (-4329 . 13805)
+ (-4330 . 13707) (-4331 . 13330) (-4332 . 13234) (-4333 . 12823)
+ (-4334 . 12650) (-4335 . 12571) (-4336 . 12476) (-4337 . 12424)
+ (-4338 . 12174) (-4339 . 10742) (-4340 . 10450) (-4341 . 10360)
+ (-4342 . 10265) (-4343 . 10206) (-4344 . 10063) (-4345 . 9748)
+ (-4346 . 9461) (-4347 . 9351) (-4348 . 9135) (-4349 . 9064)
+ (-4350 . 9013) (-4351 . 8917) (-4352 . 8821) (-4353 . 8747)
+ (-4354 . 8693) (-4355 . 8534) (-4356 . 8427) (-4357 . 8339)
+ (-4358 . 8265) (-4359 . 8208) (-4360 . 8105) (-4361 . 8020)
+ (-4362 . 7574) (-4363 . 7477) (-4364 . 7379) (-4365 . 7293)
+ (-4366 . 7233) (-4367 . 7123) (-4368 . 6965) (-4369 . 6776)
+ (-4370 . 6745) (-4371 . 6649) (-4372 . 6046) (-4373 . 5583)
+ (-4374 . 5497) (-4375 . 5429) (-4376 . 5307) (-4377 . 5196)
+ (-4378 . 4655) (-4379 . 4495) (-4380 . 4409) (-4381 . 4278)
+ (-4382 . 4149) (-4383 . 3671) (-4384 . 3550) (-4385 . 2912)
+ (-4386 . 2770) (-4387 . 2667) (-4388 . 2509) (-4389 . 2387)
+ (-4390 . 2272) (-4391 . 1955) (-4392 . 1871) (-4393 . 1410)
+ (-4394 . 1324) (-4395 . 1177) (-4396 . 978) (-4397 . 822)
+ (-4398 . 717) (-4399 . 648) (-4400 . 576) (-4401 . 481) (-4402 . 30)) \ No newline at end of file